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On the Born-Infeld electron: Spin effects
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We start from a natural generalization of the Born–Infeld Lagrangian which in-
volves two constantsh,k and two parameterss,u0 and show, by investigating static
solutions of a first order approximation with respect to a small parameter
(e5h/k) that s51/2 and thath is directly proportional to Planck’s constant. It
seems reasonable to interprets51/2 as the spin of the electron and the angleu0 as
its orientation. Thus we obtain solutions that appear to reflect the influence of the
states of spin on the electromagnetic field. ©1999 American Institute of Physics.
@S0022-2488~99!02901-1#

I. A GENERALIZATION OF THE BORN–INFELD LAGRANGIAN

The equations of nonlinear electrodynamics are derived from a nonlinear Lagrangian d
L(Q,R) which is a function of the electromagnetic invariants

Q5 1
4F

abFab5 1
2~B22E2!, R5 1

4F
abFab* 5E–B, ~1!

and are given by

] t~LQE2LRB!2¹3~LQB1LRE!50, ~2!

] tB1¹3E50, ~3!

¹•~LQE2LRB!50, ~4!

“–B50. ~5!

We observe thatE and

H5LQB1LRE, ~6!

are the components of themain field1 that symmetrizes the system of the evolutive equations~2!
and ~3!.

According to the Maxwell equations the static electric field of a charged particle is give
the Coulomb’s law. To solve the paradox of the infinite field at the center of the particle Born
Infeld2 introduced new field equations derived from the nonlinear Lagrangian,

L~Q,R!5A2R21k~2Q1k!, ~7!

wherek is a positive constant. In this way they obtained the famous static solution with sph
symmetry,

a!Permanent address: Department of Applied Mathematics, University of Clermont.
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E05
Ak

A11j4

r

r
, B050 , j5

r

r 0
, ~8!

which for r 50 yields the finite valueAk of the electric field also called theabsolute fieldand for
r @r 0 is equivalent to the Coulomb’s law, provided that

Ak5
e

r 0
2 , ~9!

wheree is the charge of the electron andr 0 is interpreted as theradius of the electron.
Calculating the total energy of the electrostatic field by integrating the Hamiltonian de

over the whole space and assuming that the rest energy of the electron is of electromagnetic
they also find the relation

m0c251.2361
e2

r 0
,

which shows thatr 0 is larger than the classical electron radius by the factor 1.2361,

r 053.47310213 cm.

It follows by ~9! that

Ak53.9731015 e.s.u.51.1931020 V/m.

‘‘The enormous magnitude of this field, observe the authors, justifies the application of
well’s equations in their classical form in all cases, except those where the inner structure
electron is concerned~field of the orderb@5Ak#, distance of wavelength of the orderr 0!.’’

Now, as a consequence of nonlinearity, the wave frontsw(xa)50 are no longer null surface
(gab]aw]bw50), but satisfy the characteristic equations,

$FarFb
r2~2Q1z!gab%]aw]bw50, ~10!

wherez takes on two valuesz1(Q,R), z2(Q,R) depending on the choice of the Lagrangian.3

These two values coincide and turn out to be equal to the positive constantk only if L is the
Born–Infeld Lagrangian~7!.3–5

Thus the velocities given by~10! are double and as a consequence the corresponding w
areexceptional (linearly degenerated). This concept introduced by Lax6 appears to be of specia
importance in the applications.1 The waves behave in a linear way and characteristic sho
traveling with the wave velocities exist. Therefore it seemed quite natural to look for Lagran
leading to this property for each family of waves~10!. The most general one has the form

L5F~z! f ~Q,R;z!1RG~z!1H~z!, ~11!

with

f ~Q,R;z!5A2R21z~2Q1z!,

wherez(Q,R) is obtained by solving the equation

]L

]z
5F8 f 1RG81H81~Q1z!

F

f
50. ~12!
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Clearly the field equations obtained in this way are a direct generalization of the Born–I
equations, condition~12! resulting from the variation ofz in the variational principle. Now eithe
z1 or z2 may be used to yield the~same! Lagrangian. As a result the functionsF,G,H are
completely determined and using for instancez1 for z they read3

F25
1

s~11g2! H g2

z2 ~k22h2!12K
g

z
21J , ~13!

G52
g

z
H,

H25
1

s~11g2!
$h22~z2k!2%, ~14!

with

2K5
k

g
$s111g2~s21!%, s.0.

Setting

g5tan
u0

2
,

the two valuesz1 ,z2 are obtained by the following change of constants:

z15z~Q,R;k,h,s,u0!, z25z~Q,R;k,h,2s,u01p!, ~15!

and

~z12k!2<h2<~z22k!2.

From ~14! it appears thatz5k whenh50 and~11! becomes equivalent to the Lagrangian
Born–Infeld ~7!.

Let

h5ek,

wheree is a small dimensionless parameter. Having in mind a model of a single electron it s
reasonable to think that, in this case,h is related to the Planck constant ands to the spin of the
electron. As a matter of fact by~9! and the formula of the fine-structure constant,

a5
e2

\c
'

1

137
,

it follows

h5e
c

137r 0
4 \.

II. FIRST ORDER APPROXIMATION

To illustrate the role played by the additional constantss,u0 appearing in the generalize
Lagrangian~11! we look for an extension to the first order ine of the classical Born–Infeld
solution ~8!.
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Since the exact solution of Eqs.~12!–~14! is not easy to find we expand the various quantit
in terms ofe. We set

z5k~11eu1¯ !,

and retaining only the first order terms we get

F512
s11

2s
eu,

G5
g

As~11g2!
eA12u2,

H52
k

As~11g2!
eA12u2,

f 5 f ~Q,R;k!1
ek~k1Q!u

f ~Q,R;k!
,

L5 f ~Q,R;k!1eFk~k1Q!u

f ~Q,R;k!
2

s11

2s
u f~Q,R;k!2~k2gR!A 12u2

s~11g2!
G .

As we shall see later in Sec. IV, the present sign ofH corresponds to the choice of a positivee.
By ~12! equating to zero the derivative with respect tou we obtain

u

A12u2
5

As~11g2!

k2gR Fs11

2s
f ~Q,R;k!2

k~k1Q!

f ~Q,R;k!G .
Or, simply whenR50,

u5
@2Q2k~s21!#A11g2

A@k~s11!12Q#21g2@k~s21!22Q#2
.

To the first order ine we have

E5E01eE11¯ , B5eB11¯ , ~16!

Q5Q01eQ11¯5Q02eE0•E11¯ , R5eR11¯5eE0•B11¯ ,

u5
~f2s!A11g2

A~s1f!21g2~s2f!2
, f5

j4

11j4 , ~17!

LQ5
Fz

f ~Q,R;z!
5

1

Af
H 12

e

2 F S 1

f
1

1

sDu12
Q1

kf G J 1¯ , ~18!

LR52R
F

f ~Q,R;z!
1G52eF R1

kAf
2

g

As~11g2!
A12u2G1¯ . ~19!

With the substitution of~17! into ~18! and ~19!,
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u5
f2s

As21f212sf cosu0

, ~20!

LQ5
1

Af
H 12eF Q1

kf
1

1

2fs

f22s2

As21f212sf cosu0
G J , ~21!

LR52eS R1

kAf
2

sin u0Af

As21f212sf cosu0
D . ~22!

According to ~2! and ~3! the static solutions we are interested in, are derived from sc
potentials. Hence, by~16!, ~21!, and~22!,

H15~LQB1LRE!15
1

Af
B12S R1

kAf
2

sin u0Af

As21f212sf cosu0
D E05¹x, ~23!

E15¹c,

~LQE2LRB!15
1

Af
E12

1

f3/2 S Q1

k
1

1

2s

f22s2

As21f212sf cosu0
D E0 . ~24!

Further from~4! and ~5! we have

¹•F 1

Af
E12

1

f3/2 S Q1

k
1

1

2s

f22s2

As21f212sf cosu0
D E0G50, ~25!

“–B150. ~26!

Multiplying ~23! by E0 we find

R15
1

Af
E0•¹x2

E0
2 sin u0

As21f212sf cosu0

, ~27!

B15Af¹x1E0S 1

kAf
E0•¹x2

sin u0

As21f212sf cosu0
D . ~28!

Substituting~24! into ~25! we get:

¹2c1
1

j4

]2c

]r 2 2
4

r 0j5

]c

]r
2

Ak

2sA11j4

d

dr S f22s2

fAs21f212sf cosu0
D 50,

or

]

]r F 1

fA12f

]c

]r
2

Ak

2s

f22s2

fAs21f212sf cosu0
G1

1

r 0
2Af

Dc50, ~29!

where the Laplacian, in spherical coordinates, is given by

¹2c5
1

r 2

]

]r S r 2
]c

]r D1
1

r 2 Dc
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with

Dc5
1

sin u

]

]u S sin u
]c

]u D1
1

sin2 u

]2c

]w2 .

III. ELECTRIC FIELD

The general solution to~29! is c5ĉ1cs , whereĉ satisfies

¹2ĉ1
1

j4

]2ĉ

]r 2 2
4

r 0j5

]c̄

]r
50, ~30!

andcs(r ) is a particular solution of the full equation.
From ~8!, ~16!, and~24! it follows that, at the first order, the electric field is given by

E5
Ak

A11j4

r

r
1eS ¹ĉ1Es

r

r D , ~31!

where

Es5“cs~r !5Es

r

r
,

andEs from ~29! can be taken as

Es~j;s,u0!5
Ak

2s

~f22s2!A12f

As21f212sf cosu0

. ~32!

On introducing the two vectorsf,s of the respective modulif,s, making an angleu0 , we can
also write

Es~j;s,u0!5
E0~j!

2s

f1s

uf1su
•~f2s!.

SinceEs is not a monotonic function off we require an extremum to take place on the sph
r 5r 0 , i.e., for j51, which implies

cosu052
1

2

~4s211!21~4s!2

4s~4s211!
,

a function ofs which is always smaller than21 except when

4s21154s⇔s5 1
2⇔u05p.

Thus the values ofs,u0 are determined. This would not have been the case had the extre
occurred for another value ofj ~since a single equation—the vanishing of the derivative ofEs—is
not sufficient, in general, to determine two quantities!. Then the solution~32! becomes

Es~j;1/2,p!5Ak~f1 1
2!A12f sgn~f2 1

2!.

This electric field is a decreasing function ofr inside the electron (r ,r 0), is discontinuous
across the surfacer 5r 0 , decreases outside (r .r 0), and tends to zero at infinity like 1/r 2 @see Fig.
1~f!#. To obtain the solution corresponding to the other orientation of the spin we takeu050 in
~32! to get
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Es~j;1/2,0!5Ak~f2 1
2!A12f.

This field is continuous, vanishes on the surfacer 5r 0 , has a maximum forf55/6, and tends
to zero like 1/r 2 @see Fig. 1~a!#. Some intermediate states are illustrated in Fig. 1.

IV. ABSOLUTE FIELD

In nonlinear electrodynamics the quantitiesz1
1/2, z2

1/2 represent the absolute value of th
electric field in a frame traveling at the ray velocity.3

From ~15!, ~20!,

z15k1h
f2s

As21f212sf cosu0

5k1h
ufu2usu
uf1su

,

z25k1h
f1s

As21f212sf cosu0

5k1h
ufu1usu
uf1su

,

and therefore withs51/2,

u05p, z15 H k2h, r ,r 0

k1h, r .r 0
, z25H k1h~ 1

21f!/~ 1
22f! r ,r 0

k1h~f1 1
2!/~f2 1

2! r .r 0

,

u050, z15k1h~f2 1
2!/~f1 1

2!, z25k1h.

Since bothz’s must be positive~for hyperbolicity!,3 also h is positive and this justifies the
choice of the sign ofH in Sec. II. Furtherz1<z2 and the inequalityE2<z1 must hold, so that the
wave and shock velocities do not exceed the speed of light.1

According to~10! a signal travels at light velocity whenr 5r 0 wherez2 is infinite.

FIG. 1. Plot ofEs vs j, (k51): ~a! u050, ~b! u05p/5, ~c! u053p/5, ~d! u054.5p/5, ~e! u054.9p/5, ~f! u05p.
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V. MAGNETIC FIELD

Turning back to the scalar fieldx, substituting~28! into ~26! we get

]

]r S A11j4
]x

]r
2

Akf sin u0

As21f212sf cosu0
D 1

Af

r 0
2 Dx50.

The general solution isx5x̂1xs , where x̂ is the general solution of the homogeneo
equation andxs(r ) is a particular solution of the full equation.

At the first order the fieldH is given by

H5eS ¹x̂1Hs

r

r D , ~33!

where

Hs~j;s,u0!5
Ak

A11j4

Af sin u0

As21f212sf cosu0

,

i.e.,

Hs5
Ak

j2

u~f1s!3su
usuuf1su

.

This function vanishes together with its derivative forj50 and inside the sphere of radiusr 0

for

j45
1

A514 cosu0

has a positive maximumHs
max defined by

~Hs
max!25

2k

112 cosu01A514 cosu0

sin2 u0

~see Fig. 2!.
When u0→p this ratio, by L’Hospital’s rule, tends tok. While for u050 the Hs field is

identically zero, foru05p it is zero everywhere except on the spherer 5r 0 , where it has a peak
of height equal toAk @see Fig. 2~f!#.

To see this we write

s21f212sf cosu05~s2f!214sf cos2
f0

2
5r2

with

s2f5r cosa, 2Asf cos
u0

2
5r sin a, 0<a<p.

Then,

Hs5
Ak

As~11j4!
sin

u0

2
sin a.
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When j→1, f→s51/2, u0→p, Hs→Ak sina for any value ofa and therefore the maxi
mum of Hs is Ak. For another value ofj then,rÞ0, a50, Hs50.

Now from ~27! it follows

R15
Ak

j2

]x̂

]r

and from~23!,

B15
1

A11j4 S j2¹x̂1
1

j2

]x̂

]r

r

r D . ~34!

VI. SOLUTION TO THE HOMOGENEOUS EQUATIONS

The complete solutions for the electric~31! and magnetic field~33! include also the solutions
to the homogenous equations forĉ,x̂. Substituting~34! into ~26! the latter equation can b
written,

~11j4!
]2x̂

]j2 12j3
]x̂

]j
1j2Dx̂50.

This means thatx̂ is a harmonic function with respect to the metric defined by

ds25fdj21j2~du21sin2 u dw2!.

The former equation~31!,

S 11
1

j4D ]2ĉ

]j2 1
2

j S 12
2

j4D ]ĉ

]j
1

1

j2 Dĉ50

shows thatĉ is a harmonic function for the conformal metric,

FIG. 2. Plot ofHs vs j, (k51): ~a! u050, ~b! u05p/5, ~c! u053p/5, ~d! u054.5p/5, ~e! u054.9p/5, ~f! u05p.
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ds* 5
1

f
ds.

From ~31!, ~32! we have:

E25E0
212eE0•Es12eE0•¹ĉ

and for r 50, at the center of the particle, we must have3

E25z15k2h,

i.e.,

S ]ĉ

]r
D

r 50

50.

We point out that even if the potentialsc5ĉ1cs , x5x̂1xs include the general solution
ĉ,x̂ to the homogenous equations, of which nothing more at present can be said, the only
which are completely determined, are the special solutionscs(j;s,u0), xs(j;s,u0) of the inho-
mogeneous equations, which have been analyzed in the previous sections.

VII. CONCLUSION

Recently there has been a renewal of interest for the Born–Infeld theory due partly to it
with relativistic strings, membranes7 and gravitation theory8 and partly to its nonlinear structure
In fact, in the last years, more researchers seem to be interested in the nonlinear nature
physical phenomena.

In our investigation of the static field of a single electron we started from the observation
a natural generalization of the Born–Infeld Lagrangian involves, apart from the classical ab
field k ~already introduced by Born and Infeld!, a constanth, a dimensionless parameters, and an
angleu0 .

By looking for static solutions at the first order of approximation with respect to the s
parametere5h/k we find that the field is the sum of two contributions; one of them is a harm
function in a suitable metric space, and not much can be said about it. The other one d
explicitly on the mentioned constants and can be studied. It results that a maximum for the e
field occurs on the surface of the electron (r 5r 0) only for the valuess51/2,u05p. Furthermore
whenu0Þp this solution vanishes forr 5r 0 and this seems to reflect the influence of the state
spin on the electromagnetic field which is discontinuous when the angleu0 is equal top.

So it appears reasonable, in this context~single electron!, to relates to the spin of the electron
andu0 to its orientation~up and down!, while h is proportional to the Planck’s constant.
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Thermalization of quantum states
Dorje C. Brodya)

Department of Applied Mathematics and Theoretical Physics, Cambridge University,
Silver Street, Cambridge CB3 9EW, United Kingdom
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An exact stochastic model for the thermalization of quantum states is proposed.
The model has various physically appealing properties. The dynamics are charac-
terized by an underlying Schro¨dinger evolution, together with a nonlinear term
driving the system toward an asymptotic equilibrium state and a stochastic term
reflecting fluctuations. There are two free parameters, one of which can be identi-
fied with the heat bath temperature, while the other determines the characteristic
time scale for thermalization. Exact expressions are derived for the evolutionary
dynamics of the system energy, the system entropy, and the associated density
operator. ©1999 American Institute of Physics.@S0022-2488~99!01901-5#

I. INTRODUCTION

The construction of a microscopic description for dynamical systems out of equilibrium
topic of considerable interest in statistical mechanics. While many studies have been purs
this direction,1 the subject remains refractory owing to its nonlinear character. In particula
realistic framework must be simple enough to be tractable, yet sufficiently sophisticated to c
some of the physical essentials. Our goal here is to propose in this spirit an elementa
compelling stochastic model that characterizes the thermalization process for a quantum sy
an arbitrary given initial state.

The approach here, though carried out largely within the framework of standard qua
theory, involves a reexamination of the traditional hypotheses forming the basis of qua
statistical mechanics. In particular, we shall take the view that a quantum statistical ensem
‘‘state,’’ is correctly described, not simply by a density matrixrb

a , but rather by a probability
distribution on the space of pure quantum mechanical states. For measurements associa
ordinary quantum mechanical observables, this description reduces to the usual one, for wh
unconditional expectation of a linear observable is given by the familiar trace formula invo
rb

a . The advantage of the present formulation, however, is that we can give meaning
concept of ensembles and other mixed states in nonlinear quantum mechanics.2,3 Furthermore, the
fact that the space of pure states has a symplectic structure allows us to introduce the con
a quantum phase spaceG, and hence the use of probability distributions onG as ensembles. In
particular, for thermal equilibrium in certain situations, we propose the distribution given in~12!
below, which we call the canonicalG ensemble. The corresponding density matrix differs in so
respects from the conventional density matrix of quantum statistical mechanics, and th
applicability of the theory may, in principle, be testable.

Our first step is to derive the Fokker–Planck equation for the time-dependent proba
density function associated with a general Brownian motion with drift on the space of
quantum states. SinceG is compact, we can apply a theorem of Zeeman to show that there
special class of drift terms for which, given any initial condition, the resulting asymptotic sta

a!Electronic mail: d.brody@damtp.cam.ac.uk
b!Electronic mail: lane_hughston@yahoo.com
120022-2488/99/40(1)/12/7/$15.00 © 1999 American Institute of Physics
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ary solution is the canonicalG ensemble described above. The nonequilibrium dynamics
consider here is governed by a nonlinear Schro¨dinger evolution coupled to a thermal noise ter
described by the stochastic differential equation~14!. This choice is the simplest possible th
leads to thermal equilibrium for arbitrary initial states.

In what follows we use the dynamical law~14! to derive a formula for the total system energ
~18!, leading to a formula for the heat capacity~19!. These ideas are applied, by way of illustr
tion, to the case of a spin one-half particle in a heat bath. Then we derive an expression
dynamics of the system entropy, given in~24!, from which we are able to deduce a fundamen
thermodynamic inequality~25!. Finally, we study the evolution of the density matrix associa
with the underlying process. We show that the time development of the density matrix invo
higher moment of the projection operator onto pure states.

II. QUANTUM HAMILTONIAN DYNAMICS

We begin by considering the quantum mechanical phase spaceCPn. This is the space of pure
quantum states, given by rays through the origin in the associated Hilbert space.2 The quantum
phase space can be viewed as a 2n-dimensional real manifoldG, endowed with the Fubini–Study
metric gab . The reason thatG plays the role of a quantum phase space is that Hamilton’s e
tions onG can be lifted to the Hilbert space to give the Schro¨dinger dynamics. This follows from
the fact thatG has a natural symplectic structure, given by a nondegenerate antisymmetric
Vab , compatible with the metricgab in the sense that¹aVbc50 and VabV

bc52da
c , where

Vab5gacgbdVcd and¹a denotes the standard covariant derivative, satisfying¹agbc50. Then the
Schrödinger dynamics take the Hamiltonian form

dxa52Vab ¹bH dt, ~1!

wheredxa/dt is tangent to the quantum phase space trajectory. The Hamiltonian functionH(x) on
G is given by the expectation of the energy operator at each pointxPG. More specifically, the
expectation of the Hermitian operatorHb

a with respect to the Hilbert space vectorca (a,b
50,1,...,n) is given byH(x)5Hb

ac̄acb/c̄gcg. Since each pointxPG corresponds to an equiva
lence class$lca,lPC20% for some Hilbert space vectorca, it follows that H(x) is defined
globally onG. Conversely, one can show that such functions correspond to global solutions
equation

¹2H5~n11!~H̄2H !, ~2!

where¹2 is the Laplace–Beltrami operator onG. HereH̄5Ha
a/(n11), Ha

a being the trace of the
Hamiltonian. ThusH̄ is the uniform average of the energy eigenvalues, corresponding to
thermal equilibrium energy of the system at high temperature.

III. STOCHASTIC DYNAMICS

Now we generalize the Schro¨dinger dynamics by consideration of a diffusion processxt

taking values inG. For this purpose we make use of standard techniques of stochastic differ
geometry.4,5 We shall examine the case of a Brownian motion with drift onG, determined by the
covariant stochastic differential equation,

dxa5ma dt1ks i
a dWt

i , ~3!

where k is a constant,ma is a vector field, and the vectorss i
a ( i 51,2,...,2n) constitute an

orthonormal basis in the tangent space ofG such thatgab5s i
as j

bd i j ands i
as j

bgab5d i j . Heredxa

is the covariant Ito differential,5 and the standard 2n-dimensional Wiener processWt
i satisfies

dWt
i dWt

j5d i j dt. In local coordinatesxa (a51,2,...,2n), the Ito differential is given by
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dxa5da
a~dxa1 1

2k
2Gbc

a gbc dt!. ~4!

Here da
a is a coordinate basis for the given patch ofG, andda

a the dual basis, such that for th
covariant derivative¹ajb of a vector fieldja with componentsja5da

aja, we can write

db
bda

a~¹bja!5
]ja

]xb 1Gbc
a jc. ~5!

The Ito differential~4! is constructed in such a way that the stochastic differential equation~3! is
fully tensorial.

Supposef(x) is a smooth function onG, and define the processf t5f(xt). It follows from
Ito’s lemma thatdf t5¹af dxa1 1

2¹a¹bf dxa dxb. Then the relationdxa dxb5k2gab dt im-
plies

df t5~ma ¹af1 1
2k

2 ¹2f!dt1k ¹af s i
a dWt

i , ~6!

where¹2f5gab¹a ¹bf. Since the processxt is Markovian, there is a normalized density fun
tion r(x,t) for the state at timet, characterized by a partial differential equation subject
specified initial conditions. The expectation of the processf t is thus

E@f t#5E
G
f~x!r~x,t !dV, ~7!

wheredV denotes the volume element onG. On the other hand, it follows from Ito’s lemma~6!
that

f t5f01E
0

tS ma ¹af1
1

2
k2 ¹2f Dds1kE

0

t

s i
a ¹af dWs

i . ~8!

Here the integrands are valued at times at the pointxsPG. Since the second integral above h
vanishing expectation, we obtain

E@f t#5f01EF E
0

tS ma ¹af1
1

2
k2 ¹2f DdsG . ~9!

Hence, differentiating~7! and ~9! with respect tot and equating the results, we have

E
G
ṙ~x,t !f~x!dV5E

G
S ma ¹af1

k2

2
¹2f D r~x,t !dV, ~10!

whereṙ5]r/]t. Integrating by parts, and using the fact that the resulting relation must hol
all f(x), we find thatr(x,t) satisfies

]

]t
r~x,t !52¹a~mar!1

1

2
k2 ¹2r. ~11!

This is the covariant Fokker–Planck equation for the density function onG, corresponding to the
stochastic process~3!. The solution of~11! thus characterizes the distribution of the diffusion~3!
at time t, given an initial distributionr(x,0). In the case of a singular initial distribution, e.g.,
initially pure state, we interpretr(x,t) as a generalized function, i.e., it has to satisfy~10! for all
smoothf(x).

The foregoing results are valid on arbitrary compact Riemannian manifolds. We are
cerned, however, with the case whereG is the quantum phase spaceCPn, endowed with the
Fubini–Study metric. SinceG is compact, Eq.~11! may admit nontrivial asymptotic (t→`)
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stationary solutions. We shall examine a simple situation in which this is the case, namely,
the drift is given by a gradient flowma52(1/2)k2b ¹aH generated byH(x), whereb is a
parameter. Then we can use a theorem of Zeeman6 to show that there is a unique stationa
solution for ~11! of the form

r~x!5
exp„2bH~x!…

Z~b!
, ~12!

whereZ(b)5*G exp„2bH(x)…dV. It follows that the probability density functionp(E) for the
distribution of the energy functionH(x) is P(E)5V(E)exp(2bE)/Z(b), where

V~E!5E
G
d~H~x!2E!dV ~13!

is the density of states inG for which E<H(x),E1dE, and Z(b) is the partition function.
Another way of characterizing the distribution~12! is that it maximizes the entropyS
52*Gr(x)ln r(x)dV for a given value of system energyU5*Gr(x)H(x)dV. The theorem of
Zeeman implies in the present context that~12! is the asymptotic distribution of the processxt

under essentially arbitrary initial conditions, and thatp(E) is the asymptotic energy distribution
We have so far considered a process of the form~3! with the driftma52(1/2)k2b ¹aH. This

process, as such, does not yet make reference to the Schro¨dinger dynamics. If we view the drift
term as a nonlinear correction to the underlying quantum evolution, we can represent the co
dynamics according to the prescription

dxa5S 2Vab ¹bH2
1

2
k2b ¹aH Ddt1ks i

a dWt
i , ~14!

which in the limit k→0 reduces to the ordinary Schro¨dinger dynamics. Due to the antisymmet
of Vab , inclusion of the symplectic term does not affect the resulting asymptotic state~12!, since
r(x) is a function ofH(x). Hence, the analysis above shows that, given an arbitrary initial s
~pure or general! on the quantum phase space, the dynamical law~14! necessarily takes that sta
into the thermal equilibrium state~12!. In particular, the process~14! is ergodic on the energy
surface, and asymptotically leads to a uniform distribution on each such surface. We note th~14!
involves two parameters,b andk. The stationary solution forr(x,t) depends only onb, which we
identify as the inverse of the heat bath temperature. The parameterk, which has the unitss21/2,
and may depend onb, determines the thermalization time scale.

IV. HAMILTONIAN PROCESS

Our next step is to study the stochastic processHt5H(xt) associated with the Hamiltonia
function. From Ito’s lemma~6! for the process~14! we find

dHt5
1
2k

2~¹2Ht2bVt!dt1k ¹aH s i
a dWt

i . ~15!

Here Vt5V(xt), whereV(x)5gab ¹aH ¹bH is the squared energy uncertainty at the poinx
PG, conditional on the pure state to whichx corresponds. Integrating~15! and taking its expec-
tation, we have

E@Ht#5H01
1

2
k2E

0

t

E@¹2Hs2bVs#ds. ~16!

Let Ut denoteE@Ht#, the unconditional energy expectation, which can be interpreted as the
system energy at timet. Then by differentiating~16! we obtain
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]Ut

]t
5

1

2
k2

„~n11!~H̄2Ut!2bE@Vt#…, ~17!

by use of the Laplace–Beltrami equation forHt . This relation can be integrated to yield th
solution for the time development of the system energy:

Ut5H̄1~H02H̄ !e2~1/2!k2~n11!t2
1

2
k2bE

0

tE
G
e~1/2!k2~n11!~s2t !V~x!r~x,s!dV ds. ~18!

In the limit t→` the only contribution is given by the trace termH̄ and the integral ofV(x), and
the resulting energy approaches the internal energy of the system in thermal equilibriu
particular, in the high-temperature limitb→0 the contribution fromV(x) vanishes, and we
recover the uniform average of the energy eigenvalues. In the low-temperature limitb→`, the
gradient term in the drift of~14! dominates, and the system is forced to fall to the ground stat
is interesting to observe, as a consequence of~17!, that once thermal equilibrium is reached, w
have the identity

kT2C5Var@H#1~n11!kT~U2H̄ !, ~19!

for the heat capacityC5]U/]T, whereb51/kT and Var@H#5(DH)r
2 is the unconditional energy

variance. This follows from the conditional variance formula,

Var@H#5E†Varx@H#‡1Var†Ex@H#‡, ~20!

where Ex@H# and Varx@H# are, respectively, the conditional expectation and the conditio
variance of the energy, when the system is in the pure statex. This relation expresses the tot
energy uncertainty by the sum of terms corresponding to quantum and thermal uncertainti

As an illustration, consider the case of a spin one-half particle in a heat bath. The state
is CP1, which we view as a 2-sphere, the north and the south poles corresponding to the upp
lower energy eigenstates, with energies1h and 2h, whereh is the magnetic moment of th
particle times the external field strength. The symplectic flow gives rise to latitudinal cir
orbits on the sphere, while the gradient flow is in the direction along the great circles pa
through the two eigenstates, pushing the state toward the south pole. The equilibrium
latitude is obtained by balancing the gradient flow and the Brownian fluctuations. If weu
denote the angular coordinate for the state as measured from the north pole, then the
energy uncertainty, given that the system is in a pure state at latitudeu, is Varu@H#5h2 sin2 u.
The conditional energy expectation isEu@H#5h cosu. SinceH̄ vanishes, the only contribution to
the energy in~18! is from the volume integral, which givesU5b212h coth(bh), in agreement
with the result of a direct calculation ofE†Eu@H#‡. At infinite temperature the system energ
corresponds to that of the equator, whereas for a finite temperature the system energy corr
to that of a latitude in the southern hemisphere. At zero temperature, the system collapses
ground state.

V. ENTROPY PRODUCTION

Next we shall consider the dynamics of the total entropy of the system, given
St52*Gr(x,t)ln r(x,t)dV. Without loss of generality, we can write

r~x,t !5
exp~2b„H~x!1h~x,t !…!

*G exp~2b„H~x!1h~x,t !…!dV
, ~21!

for a general density function, whereh(x,t) determines the departure from thermal equilibriu
Substituting this expression into the formula forSt , and making use of the Fokker–Planck equ
tion ~11! with drift as in ~14!, we find
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]St

]t
5

1

2
k2b2E

G
~¹ah ¹aH1¹ah ¹ah!r dV. ~22!

On the other hand, for the total energyUt we have

]Ut

]t
5

1

2
k2bE

G
~¹ah ¹aH !r dV. ~23!

Therefore, we obtain

]St

]t
5b

]Ut

]t
1

1

2
k2b2E

G
~¹ah ¹ah!r dV. ~24!

This is the general formula for the entropy production associated with the process~14!, which
shows that

]St

]t
>b

]Ut

]t
, ~25!

in all circumstances. In particular, ifUt increases as a consequence of heating, then the entro
the system also necessarily increases.

VI. EVOLUTION OF THE DENSITY MATRIX

Finally, we derive the dynamics of the density matrixrb
a(t) associated with the process~14!.

Let us revert to the use of homogeneous coordinates for the state spaceCPn, and writePb
a(x)

5ca(x)c̄b(x)/cg(x)c̄g(x) for the projection operator onto the pure statexPG represented by
the Hilbert space vectorca(x). From Eqs.~7! and ~10! it follows that for a general~possibly
nonlinear! observablef(x) on G we have

]

]t
E@f~xt!#5E

G
S 2Vab¹af ¹bH1

1

2
k2¹2f2

1

2
k2bgab ¹af ¹bH D r~x,t !dV. ~26!

However, iff(x) is given, more specifically, by the conditional expectation of an ordinary lin
quantum mechanical observablefb

a , thenf(x)5fa
bPb

a(x). Thus, for a linear observable we hav
E@f(xt)#5fa

brb
a(t), where

rb
a~ t !5E

G
Pb

a~x!r~x,t !dV ~27!

is the time-dependent density matrix associated with the stater(x,t). To obtain the equation o
motion for rb

a(t) we need to evaluate the three terms in the integrand on the right of~26!. These
are given as follows. For the commutator term we have

Vab ¹af ¹bH5 1
2i ~fg

bHa
g2Hg

bfa
g !; ~28!

for the term involving the Laplace–Beltrami operator we find

¹2f5„fg
gda

b2~n11!fa
b
…Pb

a , ~29!

and for the anticommutator term we obtain

gab ¹af ¹bH5 1
2~fg

bHa
g1Hg

bfa
g !Pb

a2~fa
bHg

d !Pb
aPd

g . ~30!
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Inserting these expressions into~26!, and noting that the result must hold for arbitraryfa
b , we

deduce that

]

]t
rb

a5 i @Hg
arb

g2rg
aHb

g#2
1

4
k2b~Hg

arb
g1rg

aHb
g !1

1

2
k2

„db
a2~n11!rb

a1bHg
drbd

ag
…. ~31!

Here the density matrixrb
a(t) is given by~27!, the first moment of the projection operatorPb

a(x),
whereasrag

bd(t) is the second moment ofPb
a(x), given by

rbd
ag~ t !5E

G
Pb

a~x!Pd
g~x!r~x,t !dV. ~32!

Equation~31! is the dynamical law for the density operator, which takes an arbitrary initial s
into an equilibrium state, with heat bath temperatureT. The first term on the right of~31! leads to
the Liouville equation of linear quantum dynamics, while the general nonequilibrium proces
a richer structure. The emergence of the second moment term in~31! can also be interpreted b
analogy with the renormalization group equations.

VII. DISCUSSION

The model we have described here is surprisingly tractable, and has many attractive fe
Experimental support could be pursued in two stages. First, we point out that it is not difficu
the case of the canonicalG ensemble, to derive explicit formulas for the partition functionZ(b),
the state densityV(E), the density matrixrb

a , and the second momentrbd
ag . If these results turn

out to give a better account of equilibrium phenomena than the conventional approach in
contexts, then the next step would be to look for effects resulting from the higher moment te
the nonequilibrium dynamical law~31!.
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Existence and nonexistence in Chern–Simons–Higgs
theory with a constant electric charge density
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In this paper we are devoted to proving the existence and nonexistence of self-dual
equations arising in Chern–Simons–Higgs theory with a constant electric charge
density. There are three kinds of boundary conditions that admit solitonic struc-
tures. It is shown that there exist solutions in two cases of them. In the other case,
we prove that there is a critical electric charge density with negative value such that
above the value there exists a solution and below it we have no solution. We also
study asymptotic behaviors for solutions as the electric charge density goes to zero.
It is found that they converge to solutions of a topological Chern–Simons system
without constant electric charge density. ©1999 American Institute of Physics.
@S0022-2488~99!01801-0#

I. INTRODUCTION

It is well known that the (211) Chern–Simons–Higgs model without a Maxwell term adm
vortex solutions. These Chern–Simons~CS! vortices, called anyons, are different from Nielsen
Olesen-type vortices, in that they carry electric charge as well as magnetic flux due to the CS
A special choice for the potentialV(ufu) produces a Bogomol’nyi-type energy lower boun
which is achieved by fields satisfying a set of first-order differential equations, so-called sel
equations.1,2 The Maxwell–Higgs system has self-dual configurations only when the coup
constant is equal to some critical value, but in CS theory such configurations hold for all cou
constants. These equations possess topological and nontopological soliton solutions acco
asymptotic behaviors of the Higgs field.3 The mathematical existence results of topological m
tivortex solutions for those equations can be found in Refs. 4 and 5. Unlikely to the Maxw
Higgs system, whether the solution is uniquely determined by the zeros of the Higgs field re
open. In the nontopological case the existence of radially symmetric solutions was establis
Ref. 6, and a rigorous result of the existence of arbitrary vortex solutions is established rece
Ref. 7. On the other hand, it is still open whether the first-order equations are equivalent
second-order equations~the Euler–Lagrange equations of the energy functional!.

An interesting generalization of such self-dual models arises when the system is couple
external charge density or an external magnetic field. For example, the Maxwell–Higgs s
with the background electric charge density is more closely related to the real supercon
rather than the system without it. In that case the self-dual equations can be reduced to thos
pure Maxwell–Higgs system.8 In this paper we consider the self-dual Chern–Simons mo
coupled to an external background charge density introduced in Ref. 9. In this situatio
self-dual equations are quite different from those of the system without the background e
charge density, as we shall see.

The Higgs fieldfPC is coupled to a CS gauge fieldAmPR. The gauge field is coupled to

a!Electronic mail: dhchae@math.snu.ac.kr
b!Electronic mail: jmhan@math.snu.ac.kr
c!Electronic mail: oleg@kias.kaist.ac.kr
190022-2488/99/40(1)/19/16/$15.00 © 1999 American Institute of Physics
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constant background electric charge densityr, so that the Lagrangian of the model can be writt
as

L5
k

2
emnrAm]nAp1uDmfu22U2rA0 , ~1.1!

where the self-dual potential is given by

U5
1

4k2 ufu2~2ufu22s!22
r

2k
~2ufu22s!. ~1.2!

HereDmf5(]m1 iAm)f andemnr is a totally skew-symmetric tensor withe01251. The param-
eterss andr can be either positive or negative, but we assume that the Chern–Simons co
constantk.0. The system is invariant under the local gauge transformation. The static ene
the system is given by

E5E~f,A!5E
R2

~ uD jfu21ufu2A0
21U !dx, ~1.3!

with the Gauss’ constraint~the variational equation with respect toA0!:

kF1212ufu2A02r50, ~1.4!

where F125]1A22]2A1 is the magnetic field. We shall consider cases where the backgr
charge densityr is canceled at spatial infinity by either magnetic fieldF12 or the Higgs charge
density22ufu2A0 . The first class of sectors are called the symmetric phase and the latte
asymmetric phase. We will pay attention to the asymmetric phase so that we have the bo
condition F12→0 as uxu→`. Using Gauss’ constraint and integrating by parts, we rewrite
energy as

E5E
R2

uD1f2 iD 2fu21ufu2S „A02
1

2k
~2ufu22s!…2Ddx1

s

2 E
R2

F12 dx. ~1.5!

We consider the excited states of finite total magnetic fluxC5*R2F12 dx, and for those configu-
rations we find the following self-dual bound:

E>
s

2
C.

This self-dual bound is saturated by the following self-dual equations:

D1f2 iD 2f50, ~1.6!

kF121
1

k
ufu2~2ufu22s!2r50. ~1.7!

Let f5 f eiu/&, f >0. A self-dual vortex-like configuration always consists of antivortices on

u52 (
k51

N

arg~x2pk!1h,

wherepk’s are the positions of the antivortices, not necessarily distinct, andh is a single-valued
smooth function. We may combine the coupled first-order equations~1.6!, ~1.7! to obtain a single
second-order elliptic equation forf;
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2D ln f 21(
k

4pd~x2pk!1
1

k2 f 2~ f 22s!2
2r

k
50. ~1.8!

There are three cases of boundary conditions that admit solitonic structure. These are o
from the consideration ofF12→0;

~BC 1! s.0, r.0, f 2→~ f * !25
s1As218kr

2
,

~BC 2! s.0, 2s2/8k,r,0, f 2→~ f * !25
g j1As218kr

2
,

~BC 3! s,0, r.0, f 2→~ f * !25
s1As218kr

2
.

If the boundary condition is given by~BC1! or ~BC2!, then the substitution

lnS f 2

s D5u, i.e.,
f 2

s
5eu, ~1.9!

transforms~1.8! into the following form:

Du5
s2

k2 eu~eu21!2
2r

k
1(

k
4pd~x2pk!, in R2,

~1.10!

u→u* 5 lnS f
*
2

s D , as uxu→`,

andu* satisfies

s2

k2 eu
* ~eu

* 21!2
2r

k
50. ~1.11!

Let

v5u2u* .

Then by~1.10! and ~1.11! we have

Dv5
s2

k2 e2u
* ~ev21!~ev112e2u

* !1(
k

4pd~x2pk!, in R2,

~1.12!
v→0, as uxu→`.

When the boundary condition is given by~BC3!, a similar substitution is possible, and it will b
induced in Sec. IV.

We state the main theorem.
Theorem 1.1: Let p1 ,p2 ,...,pN be arbitrary points inR2 not necessarily distinct. Then th

equations (1.6) and (1.7) with boundary conditions (BC1) or (BC3) have a solution(f,A) so that
the zeros off are exactly p1 ,p2 ,...,pN and the corresponding energy E(f,A) is finite. Moreover,
the energy E and the magnetic fluxC are quantized as

E52spN and C54pN. ~1.13!
                                                                                                                



e
and

of

in

22 J. Math. Phys., Vol. 40, No. 1, January 1999 Chae, Han, and Imanuvilov

                    
If the boundary condition is given by (BC2), there is a critical electric charge densityr0 depend-
ing on N so that (1.6) and (1.7) have a finite energy solution(f,A) for all r0,r,0 with zeros
of f being p1 ,p2 ,...,pN and there holds (1.13), while we have no solution for allr satisfying
2s2/8k,r,r0 .

When the boundary condition is given by~BC1! or ~BC3!, the existence of solutions are to b
shown in Sec. II and IV by virtue of the super- and subsolution method. The existence
nonexistence for the case~BC2! are to be shown in Sec. III. In Sec. V we prove that solutions
~1.10! converge to solutions of topological CS vortex equations asr goes to 0.

For notations we denote theL2(R2)-norm by i•i2 . We use the notationHk(R2)5Wk,2(R2)
for kPZ as Sobolev spaces.

II. Existence in the case „BC 1…

In this section we proceed with the boundary condition~BC 1!. If we define

u052(
k

ln~11ux2pku22!, m.0,

the substitutionw5v2u0 gives the following form:

Dw5
s2

k2 e2u
* ~eu01w21!~e01w112e2u

* !1g, in R2,

~2.1!
w→0, as uxu→`,

whereu* .0 and

g54(
k

~11ux2pku2!22.

We will construct a solution to~2.1! by an iteration scheme. First of all, we recall some results
the Abelian Higgs model.

Theorem 2.1:Consider the following equation:

Du5a~eu21!1 (
k51

N

4pd~x2pk!, in R2,

~2.2!
u→0, as uxu→`,

where a is a positive constant. Let u5u01w and rewrite (2.2) as

Dw5a~eu01w21!1g, in R2,

w→0, as uxu→`. ~2.3!

Then (2.3) admits a unique solution in C`(R2)ùHk(R2) for all k>2 satisfying u01w,0. More-
over, for given0,d,1 there exists a constant M5M (a,d) and m5m(a,d) so that

0,12eu01w<M exp„2~12d!muxu…. ~2.4!

Proof: See Ref. 10, Chap. 3.
Theorem 2.2:There is a solution w̄to (2.1) satisfying w̄PC`(R2)ùHk(R2) for all k>2.
Proof: Let us consider the unique solutionsU andW satisfying
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DU5
s2

k2 e2u
* ~12e2u

* !~eu01U21!1g, in R2,

~2.5!
U→0, as uxu→`,

and

DW5
s2

k2 e2u
* ~22e2u

* !~eu01W21!1g, in R2,

~2.6!
W→0, as uxu→`.

It is easily checked thatU andW are sub- and supersolutions to~2.1!, respectively, and satisfy th
inequalityU<W.

Choosing a constantK.2e2u
* s2/k2, we define the following iterative sequence:

Dwn112Kwn115
s2

k2 e2u
* ~eu01wn21!~eu01wn112e2u

* !1g2Kwn
2 ,

wn11→0, as uxu→`, ~2.7!

w05W.

For n51,

Dw12Kw15
s2

k2 e2u
* ~eu01w021!~eu01w0112e2u

* !1g2Kw0PL2~R2!. ~2.8!

Here we used the fact thatu01w0PL2 and ueu01w021u<uu01w0u, which follows from the fact
that u01w0<0. SinceD2K:H2(R2)→L2(R2) is bijective, there existsw1PH2(R2) satisfying
~2.8! so thatw1 goes to 0 asuxu→`. Inductively wnPH2(R2) is well defined and vanishes a
infinity.

Using standard iteration methods and a maximum principle, we find out that there ex
unique functionw̄PL2(R2) satisfying

U<w̄<¯<wn<¯<w1<w05W,

so thatwn→w̄ in H2(R2) and w̄→0 as uxu→`. Consequently,w̄ is a solution to~2.1!, and
standard elliptic arguments show thatw̄PC`(R2)ùHk(R2) for all k>2. h

We can also construct an iterative sequence from below using the subsolution~2.5!. Let us
consider the following equation:

Dw̃n112Kw̃n115
s2

k2 e2u
* ~ew̃n1u021!~ew̃n1u0112e2u

* !1g2Kw̃n ,

w̃n11→0, as uxu→`, ~2.9!

w̃05U.

The constantK satisfies the inequalityK.2e2u
* s2/k2. Then as above we can find a solution

~2.1! wI PC`(R2)ùHk(R2) for all k>2, so that

U5w̃0<w̃1<¯<wI <W.
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Proposition 2.3: Any solutions of (2.1) obtained by the iteration methods (2.7) are maxim
the C2(R2)-solution class. In particular, the solutions w¯ via iteration (2.7) are independent of K
Similarly wI is a minimal solution and independent of K.

Proof: Let w be any given solution inC2(R2). It suffices to show thatw<wn for all n, where
wn is given by~2.7!. Let u5u* 1u01w. We observe thatu<u* . Otherwise,u(x8).u* at the
maximum pointx8 of u andDu(x8)<0. But then

Du~x8!.
s2

k2 eu
* ~eu

* 21!2
2r

k
1(

k
4pd~x82pk!>0,

a contradiction. Sinceu01w5u2u* <0,

Dw>
s2

k2 e2u
* ~22e2u

* !~eu01w21!1g,

and thus

D~w2w0!>
s2

k2 e2u
* ~22e2u

* !~eu01w2eu01w0!5
s2

k2 e2u
* ~22e2u

* !eu01w8~w2w0!,

for somew8 betweenw andw0 . Hencew<w0 . Now suppose thatw<wk for all 0<k<n. Then

~D2K !~w2wn11!5
s2

k2 e2u
*

12u0~e2w2e2wn!2
s2

k2 eu
*

1u0~ew2ewn!2K~w2wn!

>K~e2u012w821!~w2wn!>0.

So w<wn11 . h

Theorem 2.4: Let w be any solution to (2.1). Then, given0,d,1, there are positive con-
stants M5M (w,d) and m5m(w,d), so that

0,12eu01w<M exp„2~12d!muxu…. ~2.10!

Proof: By Theorem 2.1, there exist constantsM15M1(w̄,d), M25M2(wI ,d), m1

5m1(w̄,d), andm25m2(wI ,d), so that

12eu01w̄<M1 exp„2~12d!m1uxu…, ~2.11!

12eu01wI <M2 exp„2~12d!m2uxu…. ~2.12!

SincewI <w<w̄, estimates~2.11! and ~2.12! give ~2.10!. h

Now given any solutionw to ~2.1!, we can construct a solution pair (f,A) to ~1.6! and~1.7!
by standard arguments.10 In fact, we have

f5
1

&
f eiu5

As

&
expS ~u01w1u* !/22 i (

k51

N

arg~x2pk!D , ~2.13!

A1522 Re~ i ]̄ ln f̄ !, A2522 Im~ i ]̄ ln f̄ !, ~2.14!

where ]̄5(]11 i ]2)/2. We show that these solution pairs (f,A) of the self-dual equations~1.6!
and ~1.7! are indeed of finite energy.

Theorem 2.5:Let (f,A) be any solution pairs of (1.6) and (1.7) with the boundary condit
(BC1). Then(f,A) is of finite energy, i.e., E(f,A),`. Furthermore, the energy E and th
magnetic fluxC are quantized as
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E52spN and C54pN. ~2.15!

Proof: Sinceu<u* ~Proposition 2.3!, it follows that f 2< f
*
2 . For given 0,d,1, Theorem

2.4 states that

0< f
*
2 2 f 2< f

*
2 M exp„2~12d!muxu…, ~2.16!

for some positive constantsM andm. From ~1.4! and ~1.7! it turns out that

f 2A0
25

1

4k2 f 2~ f 22s!2,

and hence

1

2
f 2A0

21U5
1

4k2 f 2~ f 22s!22
r

2k
~ f 22s!5

1

4k2 ~ f
*
2 2 f 2!~ f 22s!~ f

*
2 1 f 22s!.

This equation, combined with~2.16! and the fact thatf 2< f
*
2 , yields

ufu2A0
21U5 1

2 f 2A0
21UPL1~R2!.

Next, using~1.6!, we find that

uD jfu25 1
2~] j f !21 1

2 f 2~] ju1A1!25 1
2u¹ f u2.

Since f 5Aseu/25Aseu
*

/2e(u01w)/2, we have

] j f 5 1
2 Aseu

*
/2~] ju0eu0/2

•ew/21] jw•e~u01w!/2!PL2~R2!.

ThereforeuD1fu21uD2fu25u¹ f u2PL1(R2).
For the proof of~2.15! we return to the equation~2.1! and rewrite~2.1! as the following form:

Dw5F~eu01w!1g.

Letting v5u01w, we have

D] jv5F8~ev!] jv,

for all uxu.supupku. Since F8(1).0, there exist constantsR.supupku and m.0, such that
F8(ev)>m for all uxu>R. Using a suitable comparison function, we can show that] jv is expo-
nentially decreasing. Consequently, integrating~2.1!, we get

E
R2

F~eu01w!dx524pN. ~2.17!

Now the equations~1.7! and ~2.17! give ~2.15!. h

III. Existence and nonexistence in the case „BC2…

A similar background substitution of~1.12! as in Sec. II gives the final form of the equatio
with the boundary condition~BC2!;
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Dw5
s2

k2 e2u
* ~eu01w21!~eu01w112e2u

* !1g, in R2,

~3.1!
w→0, as uxu→`,

where

2 ln 2,u* ,0,

u052(
k

ln~11ux2pku22!,

g54(
k

~11ux2pku2!22.

We rewrite~3.1! as

Dw5l~eu01w21!21l~12e!~eu01w21!1g. ~3.2!

Here

l5l~e!5
s2

k2 e2u
* , e5e2u

* 21.

We note that 0,e,1 and 0<l,l05s2/k2.
Theorem 3.1: For all sufficiently small e.0, (3.2) has a maximal solution w

PC`(R2)ùHk(R2) for all k>2. There exist positive constants R5R(e), C5C(e), and m
5m(e) such that

0<12eu01w<Ce2muxu,

for all uxu>R. Furthermore, the corresponding solution pair(f,A) given by (2.13) and (2.14) is
of finite energy and there holds (1.13).

Proof: Without loss of generality we may assume 0,e,1/2 so that

4

9
l0,l,l0 and

l

2
~12e!.

1

9
l0 .

Let R052 supkupku and choose a smooth functiong̃:R2→R so that 0<g̃<l0 ,
suppg̃,B(0,2R0), andg̃5l0 on B(0,R0). Let us consider the following equation:

Dg5
l0

9
eu01q~eu01q21!1g1g̃, in R2,

q→0, as uxu→`.

This is a slight variation of the topological CS equation and its existence result is establish
Refs. 4 and 5.

For uxu<R0 we have

Dq>l~12e!eu01q~eu01q21!1g1l0>l~eu01q21!21l~12e!~eu01q21!1g.

Sinceu01q→0 asuxu→`, there existse05e0(N).0 depending only on the number of vortice
so thateu01q>2e0 for uxu>R0 . Hence, if 0,e,e0 , then
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eu01q>
2e

11e
,

which implies that foruxu>R0 ,

Dq>l~12e!eu01q~eu01q21!1g2
l

2
~12e!eu01q~eu01q21!

>l~eu01q21!21l~12e!~eu01q21!1g.

Consequently,q is a subsolution to (3.2)e for all eP(0,e0). Since2u0 is a supersolution, we can
use monotone iteration techniques to obtain a maximal solution to (3.2) .

It remains to show that the corresponding solution pair (f,A) is of finite energy. Letv5u0

1w<0. Thenv goes to 0 asuxu→0, and since 0,e,1, there is a constantR.supkupku such that
2(12e)/2<v<0 andev>1/2, if uxu>R.

For uxu>R, ~3.2! can be rewritten as

Dv5l~ev21!21l~12e!~ev21!

5lev8v@ev8v1~12e!# ~v<v8<0!

<
l~12e!

4
v[m2v. ~3.3!

Comparing~3.3! with the functionCe2muxu, by a maximum principle we find that

2Ce2muxu<v<0,

for uxu>R. HereC5C(e)52emR inf$v(x):uxu5R%. Hence

12ev<uvu<Ce2muxu.

As a consequence, we can prove as in Theorem 2.5 thatE(f,A),` and the quantization~1.13!
holds. h

Corollary 3.2: Let0, ẽ,1 be given so that there exist a solution w˜ to (3.2)ẽ . Then(3.2)e has a
solution for each0,e, ẽ. Consequently, there exists a critical numbere05e0(N)P(0,1# de-
pending only on the number of vortices such that(3.2)e has a solution for alleP(0,e0) and no
solution for all eP(e0,1).

Proof: We see thatw̃ is a subsolution to (3.2)e . Thus we can construct a solution to (3.2)e by
iteration arguments. h

Our next aim is to show thate0(N) is less than 1. Indeed,~3.2! has no solution whene51.
Sinceg is strictly positive, we may expect that~3.2! has no solution for alle sufficiently close to
1. We first prove thate0(1),1, showing the nonexistence of a radially symmetric solution of
auxiliary equation by a shooting argument.

Theorem 3.3:Suppose that N51 and the vortex point is the origin. Thene0(1),1.
Proof: We assume thate> 1

2 and the vortex point is the origin. To clarify the dependence
the equation one, we rewrite~3.2! as

Dwe5le~eu11we21!21le~12e!~eu11we21!1g1 ,
~3.4!

we→0, as uxu→`,

where

u152 ln~11uxu22!, g154/~11uxu2!2, le5
s2

k2

1

~11e!2 .
                                                                                                                



e

n to
at

y

28 J. Math. Phys., Vol. 40, No. 1, January 1999 Chae, Han, and Imanuvilov

                    
Let us consider the function

f e~a!5le~ea21!21le~12e!~ea21!.

We construct a function

he~a!5H me , 2`,a(21,

f e~a!, 21,a,`

whereme5 f e(21)>m0 for somem0.0 independent ofe. To prove the theorem we need th
following lemma.

Lemma 3.4: There existse1P(0,1) such that there is no radially symmetric solution of

Dbe5he~be!14pd~x!, be→0, as uxu→`, ~3.5!

for all eP(e1,1).
Proof of lemma:The proof is given by contradiction. Let us assume that there is a solutio

~3.5!. We drop the subscripte for simplicity. It is easily seen by a maximum principle th
b(x),0 for all xÞ0. By definition ofh, there existsr 05r 0(e).0 such that

Db5m14pd~x!, for uxu<r 0 . ~3.6!

But the solution of~3.6! is given by the following form:

b~x!52 lnuxu1 1
4muxu21H~x!, ~3.7!

whereH(x) is harmonic inB(0,r 0). Furthermore, by definition ofh we also have the boundar
condition

b~r 0!521,

and the harmonic function in~3.7! becomesH(x)5const. Since

]b

]r
~r 0!5

2

r 0
1

1

2
mr0 ,

we have

]b

]r
~r 0!>2Am>2Am0. ~3.8!

Since f (a).0 for 2`,a, ln e, there isr 15r 1(e).r 0 satisfyingb(r 1)5 ln e such that

Db5 f ~b!>0, ~3.9!

for r 0<uxu<r 1 . We wish to estimate (]b/]r )(r 1). Let us define a function,

b̃~x!5r 0

]b

]r
~r 0!ln

uxu
r 0

21,

for uxu>r 0 . We observe that

b̃~r 0!5b~r 0!521, ~3.10!

]b̃

]r
~r 0!5

]b

]r
~r 0!. ~3.11!
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SinceDb̃50, using~3.9! and ~3.11!, we have

]b

]r
~r !>

]b̃

]r
~r !, ~3.12!

for r 0<r<r 1 . Let r̂ 5 r̂ (e) be given byb̃( r̂ )50. Sinceb(r ) is negative, it follows from~3.10!
and ~3.12! that r̂>r 1 . Noting that]b̃/]r is monotonically decreasing, we find that

]b

]r
~r 1!>

]b̃

]r
~r 1!>

]b̃

]r
~ r̂ !. ~3.13!

Since

ln
r̂

r 0
5

2

41mr0
2 <

1

2
,

we have

1

Ae
<

r 0

r̂
.

Consequently,~3.8! and ~3.13! yield

]b

]r
~r 1!>

2Am0

Ae
. ~3.14!

Now for uxu>r 1 , we rewrite~3.5! in polar coordinates as

]

]r S r
]b

]r D5rh~b!.

Integrating both sides and using~3.14!, we have

]b

]r
~r !5

r 1

r

]b

]r
~r 1!1

1

r E
r 1

r

sh„b~s!…ds>
r 1

r

2Am0

Ae
2~r 2r 1! sup

sP@r 1 ,r #

uh„b~s!…u.

Since supx<0uh(x)u is uniformly bounded with respect toe, we can find a numbera.0 and a
constantC0.0 independent ofe, satisfying

]b

]r
~r !>C0 ,

for all r P@r 1 ,r 11a#. Sinceb(r 1)5 ln e→0 ase→1, we conclude thatb(r 11a).0 for all e
sufficiently close to 1, which contradicts the fact thatb(r ) is negative. h

Let us assume that there exists a solutionwe of ~3.4! for eP(e1,1). If we make substitutions
ye5be2u1 in ~3.5!, we get

Dye5he~u11ye!1g1 , ye→0, as uxu→`. ~3.15!

By Lemma 3.4 the equation~3.15! has no radially symmetric solution foreP(e1,1). Let us drop
e for brevity. We shall construct a radially symmetric solution of~3.15!, usingwe , to conclude a
contradiction. Let us define an iterative sequence,
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Dyn112Kyn115h~u11yn!1g12Kyn ,
~3.16!

yn11→0, as uxu→`,

where

y052u1 , K5ih8i`11.

Since the right-hand side of~3.16! is radially symmetric, the unique solution of~3.16! is also
radially symmetric. It is easily checked thaty1<y0 . Moreover, inductively we have

~D2K !~yn112yn!5h~u11yn!2h~u11yn21!2K~yn2yn21!

5„h8~u11j!2K…~yn2yn21!>0,

whereyn<j<yn21 . Thus, by the maximum principleyn11<yn . Now let us show thatw is a
subsolution of~3.15!. It is easily seen thatw<y0 . Inductively,

~D2K !~w2yn11!5 f ~u11w!2h~u11yn!2K~w2yn!

>h~u11w!2h~u11yn!2K~w2yn!

5„h8~j1u1!2K…~w2yn!>0,

wherew<j<yn . Thereforeyn11>w. Consequently, we get a sequence of radially symme
functions satisfying

y0>y1>¯>w.

Then it is easy to show thatyn converges to a radially symmetric solution of~3.15!, a contradic-
tion to Lemma 3.4.

We recall from Corollary 3.2 thate0(1) is the maximal number satisfying that there exist
solution to~3.4! for all eP„0,e0(1)…. Since there is no solution to~3.4! for eP(e1,1), we con-
clude thate0(1)<e1,1. h

Corollary 3.5: Suppose that the number of vortices is N.1. Thene0(N),1.
Proof: By Theorem 3.3 it suffices to show thate0(N)<e0(1). Let eP„0,e0(N)… andw be a

solution of ~3.2!. Then returning to~1.12!, we have a solutionv and

Dv>
s2

k2 e2u
* ~ev21!~ev112e2u

* !14pd~x2p1!.

We may assume thatp150. Lettingw̃5v2u1 , we see thatw̃ is a subsolution of~3.4!. Since2u1

is a supersolution to~3.4!, we can construct a solution to~3.4! by standard iterative schemes w
have developed. Hencee0(N)<e0(1),1. h

IV. EXISTENCE IN THE CASE „BC3…

In the ~BC3! case, if we transforms into 2s so thats.0, then the background substitutio
as in Sec. I gives

Dw5
s2

k2 e2u
* ~eu01w21!~eu01w111e2u

* !1g, in R2,

w→0, as uxu→`, ~4.1!

2`,u* ,`,
                                                                                                                



e
ons.

31J. Math. Phys., Vol. 40, No. 1, January 1999 Chae, Han, and Imanuvilov

                    
where

u052(
k

ln~11ux2pku22!, m.0,

g54(
k

~11ux2pku2!22,

andu* satisfies that

s2

k2 eu
* ~eu

* 11!2
2r

k
50.

As in Sec. II, we consider the following two equations:

DU5
s2

k2 e2u
* ~21e2u

* !~eu01U21!1g, ~4.2!

U→0, as uxu→`,

and

DW5
s2

k2 e2u
* ~11e2u

* !~eu01W21!1g,

~4.3!
W→0, as uxu→`.

Then it is easily checked thatU andW are sub- and supersolutions of~4.1! as in Sec. II. Now,
all existence results via an iteration process are parallel to the case~BC1! so that we achieve the
following theorem.

Theorem 4.1: There exist maximal and minimal solutions of (4.1) for all parameters2`
,u* ,` satisfying (2.10). For any solution of (4.1) the corresponding pair (f,A) given by (2.13)
and (2.14) is a finite energy solution of (1.6) and (1.7). Moreover, there holds (1.13).

V. ASYMPTOTICS FOR SOLUTIONS AS r˜0

In this section we study asymptotics for solutions to~1.10! when the boundary conditions ar
given by~BC1! or ~BC2!. We first recall the existence results of topological CS vortex equati

Theorem 5.1:Consider the following equation:

Du5aeu~eu21!1 (
k51

N

4pd~x2pk!, in R2,

~5.1!
u→0, as uxu→`,

where a is a positive constant. Let u5u01w and rewrite (5.1) as

Dw5aeu01w~eu01w21!1g, in R2,
~5.2!

w→0, as uxu→`.

Then ~5.2! admits a maximal solution inC`(R2)ùHk(R2) for all k>2 satisfyingu01w,0.
Moreover, for given 0,d,1 there exist a constantM5M (a,d) such that

0,12eu01w<M exp~2~12d!Aauxu!. ~5.3!
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Proof: See Ref. 4.
We established maximal solutionsw to ~2.1! and~3.1! in Secs. II and III, and hence maxima

solutionsu to ~1.10! for all sufficiently smalluru. To clarify the dependence of solutions onr let us
denote the maximal solutionswr and rewrite~2.1! and ~3.1! as

Dwr5
s2

k2 e2u
*
r
~eu01wr21!~eu01wr112e2u

*
r
!1g, in R2,

~5.4!

wr→0, as uxu→`.

Let us chooser1.0 such that~5.4! has a maximal solution for alluru<r1 . We notice thatwr̃

<wr if r̃<r. In fact, the proof of Corollary 3.2 can also be applied to the case that one or tw
r and r̃ are positive or negative. In the sequel, there exist two functionsw1 andw2 so that, for
r̃,0,r,

wr̃<w2<w1<wr ,

andwr̃ andwr converge pointwise and inL2(R2) to w1 andw2, respectively.
Theorem 5.2:The functions w1 and w2 are solutions of the following topological CS vorte

equation 8

Dw5
s2

k2 eu01w~eu01w21!1g, in R2,

~5.5!

w→0, as uxu→`,

and wr converges in Hk(R2) for all k>1 to w1 asr→01 and w2 asr→02. Moreover, w1 is
the maximal solution appearing in Theorem 5.1 with a5s2/k2.

Proof: First, we prove the theorem for the caser.0. Suppose that 0, r̃,r. Then

D~wr2wr̃ !5
s2

k2 e2u
*
r
~eu01wr21!~eu01wr112e2u

*
r
!

2
s2

k2 e2u
*
r̃
~eu01wr̃21!~eu01wr̃112e2u

*
r̃
!. ~5.6!

Multiplying 2(wr2wr̃) on both sides of~5.6! and integrating by parts, we get

E
R2

u“wr2“wr̃u2 dx<CE
R2

~ ueu01wr21u1ueu01wr̃21u!uwr2wr̃udx

<C~ ieu01wr21i21ieu01wr̃21iu2!iwr2wr̃i2

<Cieu01w2r121i2iwr2wr̃i2→0.

Here C.0 is a constant that may vary at different places. The last inequality follows from
inequality

0,12eu01wr<12eu01w2r1.

Consequently,wr→w1 in H1(R2). A differentiation of~5.6! gives
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D~] jwr2] jwr̃ !5
s2

k2 e2u
*
r
] j~u01wr!eu01wr~2eu01wr2e2u

*
r
!

2
s2

k2 e2u
*
r̃
] j~u01wr̃ !eu01wr̃~2eu01wr̃2e2u

*
r̃
!.

Multiplying 2(] jwr2] jwr̃) on both sides and integrating by parts, we obtain

E
R2

u“~] jwr2] jwr̃ !u2 dx<CE
R2

~2u] ju0eu0u1u] jwru1u] jwr̃u!u] jwr2] jwr̃udx

<C~ i] ju0 eu0i21i] jwri21i] jwr̃i2!i] jwr2] jwr̃i2→0.

Thus,wr→w1 in H2(R2). Successively, it is shown thatwr→w1 in Hk(R2) for all k>3, and we
are led to

Dw15
s2

k2 eu01w1
~eu01w121!1g, in R2,

wr→0, as uxu→`.

This implies thatw1 is a solution to~5.5!. Similarly, w2 is a solution to~5.5! andwr→w2 in
Hk(R2) for all k→1 whenr,0.

To verify thatw1 is a maximal solution to~5.5!, it suffices to prove thatw<wr for given any
solutionw to ~5.5! because$wr% is a decreasing sequence converging tow1 for r.0. We recall
that forr.0, wr was constructed by the iterative sequencewn

r defined by~2.7!. Thus, it is enough
to show thatw<wn

r for all k>0.
Let Wr be the unique solution of~2.6! corresponding tor.0, satisfying

DWr5
s2

k2 e2u
*
r
~22e2u

*
r
!~eu01Wr

21!1g, in R2,

Wr→0, as uxu→`.

Sinceu
*
r .0, we have

Dw>
s2

k2 e2u
*
r
~22e2u

*
r
!~eu01w21!1g.

Hence

D~w2Wr!>
s2

k2 e2u
*
r
~22e2u

*
r
!eu01w8~w2Wr!,

for somew8 betweenw andWr. The maximum principle implies thatw<Wr5w0
r . Suppose that

w<wk
r for all 0<k<n. Then

~D2K !~w2wn11
r !>

s2

k2 e2u
*
r
e2u0~e2w2e2wn

r
!2

s2

k2 eu
*
r
eu0~ew2ewn

r
!2K~w2wn

r!

>K~e2u012w821!~w2wn
r!>0,

wherew<w8<wn
r<w0

r . Now the maximum principle verifies thatw<wn11
r , which completes

the proof of maximality ofw1. h
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On the spectral theory of dispersive N-body Hamiltonians
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In this work we describe a general class of dispersiveN-body Hamiltonians for
which we prove the Hunziker, van Winter, and Zislin~HWZ! theorem and a
Mourre estimate outside a closed and countable set of energies called thresholds.
As a consequence of the Mourre estimate we prove a strong form of the limiting
absorption principle, which implies the absence of a singular continuous spectrum
and gives criteria of local smoothness. ©1999 American Institute of Physics.
@S0022-2488~99!00901-9#

I. INTRODUCTION

The basic Hamiltonian describingN nonrelativistic interacting particles is

H5(
i 51

N
21

2mi
Dxi

1(
i , j

Vi j ~xi2xj !5(
i 51

N
1

2mi
Pi

21(
i , j

Vi j ~xi2xj !,

wherexiPR3, mi.0 andPi52 i“xi
are the position, mass, and momentum of particle numbi.

Important results concerning the spectral theory of this type of Hamiltonian have been ob
during the last years~see Ref. 1!. One of the oldest~but fundamental results, the theorem
Hunziker, van Winter, and Zislin~HWZ! concerning the essential spectrum of such an opera
has been established in Refs. 2–4; also see Refs. 5–6. This theorem says that the bottom
essential spectrum of a nonrelativistic multiparticle operator is determined by the two-c
decompositions of the system of particles. In Ref. 7 Lewis, Siedentop, and Vugalter show th
result still holds for multiparticle relativistic Hamiltonians too, in this case the kinetic ene
(1/2mi)Pi

2 being replaced by (Pi
21mi

2)1/2.
A fundamental step in the study of more subtle spectral properties ofN-body Schro¨dinger

operatorsH is the proof that they obey a Mourre estimate at all nonthreshold points. The first
of this result is due to Mourre, Ref. 8, forN53 and to Perry, Sigal, and Simon, Ref. 9, for gene
N; these proofs were simplified afterward by Froese–Herbst, Ref. 10.

Our purpose here is to prove the HWZ theorem and the Mourre estimate~outside a set of
points called thresholds! for a rather general class ofN-body dispersive systems, i.e., for Ham
tonians of the form

H5h~P!1(
i , j

Vi j ~xi2xj !,

whereP52 i“ andh is a function continuous and divergent at infinity.
In particular, the relativistic and nonrelativistic Hamiltonians are included. The class of i

actions that we consider is sensibly more general than usual, e.g., they can be nonlocal an
singular. In the case of relativistic operators the Coulomb potentials are allowed.

The first proof that a dispersiveN-body operator satisfies a Mourre estimate is due to De
inski, Ref. 11, but his hypotheses contain implicit conditions that are difficult to check on
amples. After this, Gerard, Ref. 12, gave a new proof of the estimate for what he called ‘‘re
dispersive systems.’’ Both proofs are geometric in nature, being natural extensions of the p
350022-2488/99/40(1)/35/14/$15.00 © 1999 American Institute of Physics
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Froese and Herbst. Also, the proof of the HWZ theorem in the relativistic case due to L
Siedentop, and Vugalter follows the geometric ideas introduced by Zislin in this context~see Ref.
6!.

In this paper we use quite different methods, namely, theC* -algebra techniques introduced
Refs. 13–14 that require neither partitions of unity in configuration space nor equations
Weinberg–van Winter type. The algebraic techniques allows us to prove in a rather simpl
the main results of this paper~Theorems III.1 and IV.1! for a very general class of kineti
energies. For example, in the HWZ theoremh is an arbitrary continuous function such th
h(k)→` as uku→`. For the Mourre estimate the only regularity condition that we need is thh
be of classC1 andukh8(k)u<c„11uh(k)u… ~plus positivity conditions of the same nature as tho
of Gerard!. Moreover, the interaction terms of our Hamiltonians can be nonlocal operators
results of Lewis, Siedentop, and Vugalter cover only relativistic particles with two-body l
interactions. Gerard requiresh to be a smooth symbol and the interactions to be multiplicat
operators.

As a consequence of the Mourre estimate we get the absence of singular continuous sp
discreteness of eigenvalues outside the thresholds, and local~outside the thresholds! H smoothness
of operators decaying likêx&2s for all s. 1

2.
The organization of this paper is as follows. In Sec. II we introduce the algebraic frame

in which our investigations will be done. The main results of Sec. III are Theorem III.1, whic
a general criterion for an operator to be affiliated to theC* -algebraI, and the dispersive HWZ
theorem. We also show that theN-body relativistic Hamiltonians with Coulomb interactions a
covered by our general results. Section IV is devoted to the proof of the Mourre estimate
rather general class ofN-body dispersive systems. Our conditions~both on the kinetic energy an
on the interactions! are of the same nature as those of Gerard, but are simpler and more ge
In Sec. IV.4 we present several explicit examples of dispersive Hamiltonians verifying al
conditions. Finally, the Appendix contains a proof of the fact that the algebrasI(a) we are using
are independent of the choice of the spacesXa.

II. PRELIMINARIES

II.1. Throughout this paperL denotes a finite lattice, i.e., a finite partially ordered set such
for any two elementsa,bPL their upper and lower boundsa∨b,a∧b exist in L. In the usual
setting of theN-body problem,L is the lattice of partitions of the set$1,2,...,N%. The order relation
in L is denoteda<b anda,b means strict inequality;amin ~resp.,amax! are the least~resp., the
largest! element ofL. We denote byL~2! the set of maximal elements ofL\$amax% ~in theN-body
case this is the set of two-cluster partitions!.

II.2. Let X be a finite-dimensional real vector space equipped with a volume elementdx, i.e.,
dx is a translation-invariant positive Radon measure onX. Equivalently, one may give a nonzer
elemente of the exterior product∧nX(n5dim X), and if (e1 ,...,en) is a basis inX such that
e1∧¯∧en5e then one sets* f dx5*Rnf (x1e11¯1xnen)dx1¯dxn . ThenH(X) will be the
Hilbert spaceL2(X;dx) and we denoteB(X) @resp.,K(X)# the C* -algebra of bounded~resp.,
compact! operators inH(X). Note thatB(X) andK(X) do not depend on the choice of the volum
element.

Let X* be the dual space ofX. The Fourier transformation of a functionf :X→C is the
functionFf [ f̂ :X*→C defined byf̂ (k)5* exp@2i^x,k&#f(x)dx. There is a unique volume elemen
dk on X* such thatF extends to an isometric operator ofL2(X;dx) onto L2(X* ;dk). We shall
always equipX* with this volume element, and we setH(X* )5L2(X* ;dk).

If f :X→C is a Borel function, we denotef (Q) the operator of multiplication byf in the space
H(X). If g:X*→C is a Borel function, theng(P) is the operator inH(X) such thatFg(P)F * is
the operator of multiplication byg in H(X* ). Let T(X) be theC* -subalgebra ofB(X) consisting
of operators of the formf (P), where f :X*→C is continuous and convergent to zero at infinit

II.3. If Y is a subspace ofX provided with a volume elementdy, then the Hilbert spaceH(Y),
                                                                                                                



e

e

ce

2.1
eral
en the

ce

he
ason

37J. Math. Phys., Vol. 40, No. 1, January 1999 Mondher Damak

                    
the Fourier transformFY, and theC* -algebrasB(Y), K(Y), and T(Y) are well defined. By
convention, ifY50[$0% we putH(0)5K(0)5T(0)5C.

Now let Z be a subspace ofX supplementary toY, soX5Y% Z. Then there is a unique volum
elementdz on Z such thatdx5dy^ dz. Indeed, if e and u are elements of∧nX and ∧kY (k
5dim Y), which define the volume elementsdx and dy, respectively, then there is a uniquev
P∧mZ (m5dim Z) such thate5u∧v; dz will be the volume element onZ associated tov. We
then get a canonical isomorphism,

H~X!>H~Y! ^H~Z!>L2
„Z;H~Y!….

The decompositionX5Y% Z induces also a canonical identificationX* 5Y* % Z* , and if we
make a Fourier transformation in the variablezPZ only we get a canonical isomorphism,

H~X!>H~Y! ^H~Z* !>L2
„Z* ;H~Y!….

II.4. Let $Xa,Xa%aPL be a family of couples of vector subspace ofX equipped with volume
elementsdxa, dxa such that the subspacesXa and Xa are supplementary inX and dx5dxa

^ dxa , ;aPL. We suppose the following:
~i! if b<a thenXb,Xa andXa,Xb ;
~ii ! Xa1Xb5Xa∨b andXaùXb5Xa∨b ;
~iii ! Xamax5Xamin

5X andXamin5Xamax
5$0%.

Then for eacha we have a canonical factorization,

H~X!>H~Xa! ^H~Xa!>L2
„Xa ;H~Xa!….

If SPB(Xa), TPB(Xa) we shall denote byS^ aT the operator inH(X) that corresponds to
S^ T by the preceding isomorphism. IfC1,B(Xa) andC2,B(Xa) areC* -subalgebras, we denot
by C1^ aC2 the C* -subalgebra ofB(X) generated by the operators of the formS^ aT with S
PC1 , TPC2 .

For eachaPL, we introduce now the followingC* -subalgebra ofB(X):

I~a!ªK~Xa! ^ aT~Xa!,

and for eachaPL we define

Iaª (
b<a,bPL

I~b!, I5Iamax
5 (

aPL
I~a!.

The sums that appear on the right-hand side~r.h.s.! have to be interpreted in the vector spa
sense. Note the following particular cases:I(amin)5T(X), I(amax)5K(X). The main property of
these spaces are the following:I is a C* -algebra,I(a)I(b),I(a∨b) for eacha,bPL; the
preceding sums are direct in the Banach space sense and eachIa is a C* -subalgebra ofI.

These assertions can be proved without difficulty by mimicking the proof of Theorem
from Ref. 15~or see Chap. 9 in Ref. 16!. These facts can also be deduced from the more gen
formalism developed in Ref. 17 by observing that there are canonical isomorphisms betwe
algebrasI(a) and the algebras denotedC(Xa

s) in Sec. II of Ref. 17~see pp. 35–36!. This is
interesting because it shows thatthe C* -algebrasI(a) depend only on the choice of the subspa
Xa of X; if other choices for the volume element on Xa and for the supplementary space Xa are
made, then we get the same algebrasI(a). The freedom that one has in the choice of t
subspacesXa is quite useful in applications; cf. the examples at the end of Sec. IV. For this re
we shall give a direct and elementary proof of the independence ofI(a) on Xa in an Appendix to
this paper.

If b<a thenXb,Xa and we putXb
a5XaùXb soXa5Xb

% Xb
a . We equipXb

a with the volume
elementdxb

a associated todxa anddxb by the ruledxa5dxb
^ dxb

a , and we define
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Ia~b!5K~Xb! ^ T~Xb
a!, Ia5 (

b<a,bPL
I a~b!.

The tensor product here is relative to the factorizationL2(Xa)>L2(Xb) ^ L2(Xb
a). Using the fact

that X5Xa
% Xa5Xb

% Xb
a

% Xa and T(Xb)5T(Xb
a

% Xa)5T(Xb
a) ^ T(Xa), it is easily shown that

one has the following relation betweenIa andIa :

Ia5Ia
^ aT~Xa!,

relative to the factorizationH(X)>H(Xa) ^H(Xa).
II.5. Let S(X) be the space of a rapidly decreasing test function andS* (X) its adjoint space,

the space of temperate distributions onX. The operatorsf (Q) andg(P) have natural extensions t
the spaceS* (X) if f andg are of classC` and are polynomially bounded together with all the
derivatives. We denoteu•u some Euclidean norms onX or X* and we put̂ x&5(11uxu2)1/2. This
allows us to define the operators^Q&s and^P&s for anysPR; they act in the spaceS* (X). Then
we define the Sobolev spacesHs(X)5$ f PS* (X)u^P&sf PH(X)% with the natural topology.
These spaces do not depend on the chosen norms.

We introduce now a class of weighted Sobolev spaces. LetuPC0
`(X) be such thatu(x).0 if

221,uxu,2 andu(x)50 otherwise. Choose one more functionhPC0
`(X) such thath(x).0 if

uxu,1. Then for anys, tPR and 1<p<` let Ht,p
s be the space of distributionsu that locally

belong toHs, and such that

ih~Q!uiHs1S E
1

`

ir tu~r 21Q!uiHs
p dr

r D 1/p

,`.

If p5` the second term is interpreted as supr>1ir tu(r 21Q)uiHs. The left-hand side above is
norm onHt,p

s that provides this space with a Banach space structure. We setHt
s[Ht,2

s ; these are
the usual weighted Sobolev spaces defined by the normsi^P&s^Q& tui . If t1,t,t2 , t5(1
2l)t11lt2 andp,p1 ,p2P@1,̀ #, sPR, then

Ht,p
s 5~Ht1 ,p1

s ,Ht2 ,p2

s !l,p.

Moreover, if 1<p,` and 1/p11/p851, then (Ht,p
s )* 5H2t,p8

2s .

III. A DISPERSIVE HWZ THEOREM

We describe now some explicit classes of self-adjoint operators affiliated toI. We shall keep
the notations introduced above. Let us fix a continuous functionh:X*→R such thath(k)→1` as
uku→`. We denote byH0 the self-adjoint operatorh(P) in the Hilbert spaceH(X). Sinceh is
bounded from belowH0 is bounded from below too.

Recall the canonical isomorphismX* 5Xa* % Xa* . For eachaPL, we defineha:Xa*→R by
ha(ka)5 inf$h(ka1ka)ukaPXa* %. Observe thatha is continuous and divergent at infinity. Then l
Hh(Xa) be the form domain inH(Xa) of the operatorha(Pa) @we denote byPa the momentum
operator inH(Xa)# equipped with the graph norm̂f ,(11uha(Pa)u) f &1/2. After identifyingH(Xa)
andH(Xa)* , we get

Hh~Xa!,H~Xa!,Hh~Xa!* .

We shall consider HamiltoniansH of the formH5H01V with perturbations of the formV
5(aVa

^ a1, where ^ a is the tensor product determined by the factorizationH(X)>H(Xa)
^H(Xa) andVa is a sesquilinear form inH(Xa). SinceH(Xamin)5C, Vamin is a real constant.

The next lemma allows us to define the total Hamiltonian for the interactions we ha
mind.
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Lemma III.1: Let Va be a symmetric form onH(Xa) that is ha(Pa)-form bounded with
relative boundn>0. Then Va5Va

^ a1 is a symmetric form inH(X), h(P)-form bounded with
relative bound equal ton.

Proof: By hypothesis,Va is a continuous sesquilinear form on the Hilbert spaceHh(Xa) and
there is a constantc,` such thatu^u,Vau&u<n^u,ha(Pa)u&1ciui2 for all uPHh(Xa). Then
Va5Va

^ a1 is a continuous symmetric form onHh(Xa) ^H(Xa). H h(X) is the form domain of
h(P) andH h(X),Hh(Xa) ^H(Xa). We work in the representationH(X)>L2

„Xa ;H(Xa)… and
we make a Fourier transformation in the variablexaPXa . Then we have (Vaf̂ )(ka)5Vaf̂ (ka) for
f̂ PL2

„Xa* ;H h(Xa)… andkaPXa* , while the operatorh(P) becomes the operator of multiplicatio
by the operator valued functionka°h(Pa1ka). Then, for eache.0 there is a constantce,`
such that

6^ f ,Vaf &56E
Xa*

^ f̂ ~ka!,Vaf̂ ~ka!&dka

<~n1e!E
Xa*

^ f̂ ~ka!,ha~Pa! f̂ ~ka!&dka1ceE
Xa*

i f̂ ~ka!i2 dka

<~n1e!E
Xa*

^ f̂ ~ka!,h~Pa1ka! f̂ ~ka!&dka1ceE
Xa*

i f̂ ~ka!i2 dka

<~n1e!^ f ,h~P! f &1cei f i2, for all f PHh~X!.

This proves the lemma. j

Let us recall the notion of smallness at infinity that is the weak decay assumption th
need.

Definition: Let s, tPR, let Y be a vector space and let L:Hs(Y)→Ht(Y) a linear continuous
operator. We shall say that L is small at infinity if it satisfies one (and therefore all) of
following equivalent conditions:

(a) L: Hs(Y)→H t8(Y) is compact for some t8,t;
(a8) the preceding assertion holds for all t8,t;
(b) there isuPC`(Y) with u(y)50 (resp., 1) ifuyu<1 (resp.,uyu>2) and there is t8,t such that
limr→`iu(Qr21)LiB(Hs,Ht8)50;
(b8) L has the preceding property for alluPC`(Y) with u(y)50 (resp., 1) near zero (resp., nea
`) and all t8,t.

For the proof of the equivalence see Definition 3.5 in Ref. 15. Ift52s then giving a
continuous linear operatorHs→H2s is equivalent with giving a continuous sesquilinear form
Hs. In particular, we get the notion of sesquilinear form onHs small at infinity.

The algebraic techniques developed in Ref. 16 apply only to the self-adjoint operatorsH onH
that are affiliated to theC* -algebraI. One says thatH is affiliated to I if ( H2z)21PI for some
complex numberz outside the spectrum ofH. If this is the case thenw(H)PI for each continuous
function onR, which tends to zero at infinity.

Now we state and prove a criterion for an operator to be affiliated toI. Observe thatVa may
be nonlocal and that it could be a pseudodifferential operator of the same order ash(P).

Let m52s, s.0. From now on we suppose thatthere are two constants c1 and c2 such that

c1^k&m<h~k!<c2^k&m, for all kPX* .

Then we also havec18^k
a&m<ha(ka)<c28^k

a&m for all kaPXa* . It is clear thatHh(Xa)
5Hs(Xa).

Theorem III.1: Assume that for each aPL a continuous symmetric and small at infini
sesquilinear form Va with domainHs(Xa) is given such that(ama,1, wherema is the relative
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form bound of Va with respect to ha(Pa). Identify Va with an operatorHs(Xa)→H2s(Xa) and
assume that there is a t.s such that VaHt(Xa),Ht22s(Xa). Then Hªh(P)1(aPLVa is a
self-adjoint operator inH(X) with form domain equal toHs(X). The same assertion holds fo
each Ha5h(P)1(b<aVb . The operator H is a affiliated toI and Ha is affiliated toIa .

Proof: Our proof is similar to that of Proposition 3.6 in Ref. 15. By the closed graph theo
Va is continuous when considered as operatorVa:Ht(Xa)→H t22s(Xa). Without loss of general-
ity we assumes,t<2s. For anye.0 let us defineVe

a5„11eha(Pa)…21Va
„11eha(Pa)…21.

SinceVa:H2s(Xa)→H2s(Xa) is a compact symmetric operator, we haveVe
aPK(Xa) and Ve

a is
symmetric too. Since„11eha(Pa)…21→1 as e→0 strongly in eachHr(Xa), we see thatVe

a

→Va strongly in B„H r(Xa),Hr 22s(Xa)… for all r P@2s2t,t# and in norm in
B„H r(Xa),H r 22s2d(Xa)… for r P@2s2t,t# andd.0. Let Heªh(P)1Ve with Ve5(a(Va)e and
(Va)e5Ve

a
^ a1. Then (He)aªh(P)1(b<a(Vb)e . Proposition 9.3.4 in Ref. 16 implies thatHe is

affiliated toI. Hence, it is enough to show that lime→0 He5H in a norm-resolvent sense. For th
we use the identity~l.0 large enough!

~l1He!
212~l1H !215~l1He!

21@V2Ve#~l1H !21.

Since (l1H)21 and (l1He)
21 are isomorphisms ofH2s(X) ontoH s(X) and V2Ve :Hs(X)

→H2s(X) the identity holds in B„H2s(X),Hs(X)…. We shall show two things: (l
1H)21H(X),Hr(X) for somer .s andi(l1He)

21iB(H2s,Hs)<const independently ofe ; here
l is large enough and also independent ofe. Assuming these facts are true, we get

i~l1He!
212~l1H !21iB~H,Hs!<ciV2VeiB~Hr ,H2s!→0,

because we may taked5r 2s.0 above. Observe thatVe
a→Va in norm in B„Hr(Xa),H2s(Xa)…,

which implies (Va)e→Va in norm in B„Hr(X),H2s(X)….
Now we prove the assertion concerning (l1He)

21. Using the equality (l1He)
215„l

1h(P)…21/2@11„l1h(P)…21/2Ve
„l1h(P)…21/2#21

„l1h(P)…21/2 it is enough to show that ther
arel andm,1 independent ofe, such thati„l1h(P)…21/2Ve„l1h(P)…21/2i<m,1. But

„l1h~P!…21/2Ve„l1h~P!…21/25(
a

„l1h~P!…21/2
„l1eha~Pa!…21Va

„l1eha~Pa!…21

^ a1.„l1h~P!…21/2;

hence

i„l1h~P!…21/2Ve„l1h~P!…21/2i<(
a

i„l1h~P!…21/2Va„l1h~P!…21/2i<(
a

S ma1
c

l D ,

wherec/l can be made as small as we want by choosingl large enough. Finally, the proof of th
assertion concerning (l1He)

21 is the same as in Ref. 15. j

The main result of this section is the following generalization of the HWZ Theorem.
Theorem III.2: For each aPL defineta5 in f s(Ha) and lett5minaPL(2)ta . If the hypoth-

eses of Theorem III.1 hold, thensess(H)5@t,`).
Proof: By Theorem III.1,H is affiliated toI andHa is affiliated toIa . According to Propo-

sition 8.4.2 in Ref. 16 ~see also Theorem 3.2 in Ref. 15! we shall then have
sess(H)5øaPL(2)s(Ha). So it suffices to show that for eachaPL(2),s(Ha) is a half-line.
SinceH is bounded from below we may assume, without loss of generality, thatH is positive; this
impliesHa>0. Ia is the tensor product ofIa with the AbelianC* -algebraT(Xa). Working in the
spectral representation ofT(Xa) we see that there is a family$Ha(ka), kaPXa* % of Hamiltonians
Ha(ka) affiliated toIa such thatFa(Ha11)21Fa* ~whereFa51^ aFXa is the operator of Fourier
transformation in the variablexaPXa only! is the operator of multiplication by the operato
valued functionka°„Ha(ka)11…21[F(ka) ~see remark 9.2.6 in Ref. 16!. Moreover, this func-
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tion is norm continuous, tends in norm to zero at infinity, and 0,F(ka)<1. So m(ka)
[supF(ka)5iF(ka)i→0 aska→`. But m(ka) is the upper bound of the spectrum ofF(ka) and
depends continuously onka ~by the norm continuity ofF!. SinceXa* is a connected set we see th
the range ofm has to be an interval. Finally, one hass(Ha)5økaPX

a*
s„Ha(ka)… ~see Sec. 8.2.4

in Ref. 16!, which clearly shows thats(Ha) is an interval which has to be a half-line. This finish
the proof. j

Application: Relativistic Hamiltonians with Coulomb potentials

We consider the quantum mechanical many-body problem of electrons and fixed nuc
teracting via Coulomb forces with a relativistic form for the kinetic energy. The HWZ theorem
this model has been established in Ref. 7; here we show that this situation is covered
general theorem, Theorem III.2.

We recall the framework from Ref. 7. The system consists ofNn identical nuclei of massM
and chargeZ, andNe electrons of massm; let N5Nn1Ne . If the coordinates of the electrons an
nuclei are denoted byr 1 ,...,r Ne

andR1 ,...,RNn
, respectively, then the potential energy is

V52 (
n51

Ne

(
k51

Nn aZ

ur m2Rku
1 (

1<m,n<Ne

a

ur m2r nu
1 (

1<k,l<Nn

aZ2

uRk2Rlu
,

wherea is the fine structure constant. Then the total Hamiltonian is

H5 (
n51

Ne

AuPnu21m21 (
k51

Nn

AuPku21M21V,

with natural notations. It is convenient to introduce new notations:xi5r i , mi5m if 1< i<Ne ,
and xNe1 i5Ri , mNe1 i5M if 1< i<Nn . We work in L2(X) with X5$xPR3Nu( i 51

N mixi50%.
Then L is the lattice of partitions of the set$1,2,...,N%, and for aPL we take
Xa5$xPXu(kPCmkxk50, for each CPa%; Xa5$xPXuxi5xj if i , j belong to the same cluste
of a%.

As we explained in II.4 only the choice of the spacesXa is really important.
Theorem III.3: If aZ,2/p and a, 1

47, then sess(H)5@t,`), where t
5minaPL(2) infs(Ha).

Remark:In corollary 2~p. 24! of Ref. 7 two different sets of conditions are imposed. We ha
chosen the simplest one, the second being treated in the same way.

Proof: We define the functionh:X*→R by h(k)5( i 51
N Auki u21mi

2, where X* 5$k
PR3Nu( i 51

N ki50% is the dual~momentum! space ofX. Then h is continuous and divergent a
infinity, Hh(Xa)5H1/2(Xa) andHh(Xa)* 5H21/2(Xa) (s5 1

2). Since, in our caseH contains only
two-body forces~i.e., VaÞ0 only if a5 l is a pair! eachVa:H1/2(Xa)→H21/2(Xa) is small at
infinity. Indeed, ifVaÞ0 thenXa>R3 and eachVa is of the formg/uxu(gPR), which be may
written as Va(x)5V1(x)1V2(x) with V1PL2(R3) and V2PC`(R3). We also have that
VaH1(R3),H(R3) (t51. 1

2). If a is small the relative bound ofV will be less than one, and we
may apply directly Theorem III.2 to finish the proof. In order to get the stated result we arg
follows.

Let V25sup(0,2V) andV15V1V2 ; thenV5V12V2 andV6>0. As it is explained in
Ref. 7, it follows from the results of Lieb and Yau~Ref. 18! that there are constants 0,m,1 and
d.0 such that 0<V2<mH01d. Let c.0 and Hc5H01cV12V2 . Since V6 are positive
H0-form bounded perturbations and theH0-form bound ofV2 is strictly less than 1, it follows tha
for eachc>0 ~in fact, small negativesc are allowed! the operatorHc ~defined as a form sum! is
self-adjoint. Moreover, the resolvent ofHc depends analytically oncP(0,̀ ). For smallc we may
apply now the theorems III.1 and III.2. But the result will remain true for allc.0 for analyticity
reasons. Indeed, by series expansion~in c! one sees that the resolvent ofHc remains in the algebra
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I ~which is norm closed! for all c. Similarly, the resolvent ofHa
c will belong toIa and the equality

Pa@(Hc2z)21#5(Ha
c2z)21, valid for smallc, will hold for all c.0. So the HWZ Theorem holds

for all c.0.

IV. THE MOURRE ESTIMATE

In this section we prove that forN-body dispersive systems the Mourre estimate holds out
a set of points~called thresholds!, which can be described explicitly in terms of eigenvalues
some sub-Hamiltonians. The conjugate operator is the generator of dilationsD5 1

2(^Q,P&
1^P,Q&) on X. We will denote byDa the generator of dilations onXa (D5Damax). We shall keep
the notations introduced above.

IV.1. We recall some results concerning the conjugate operator method~see Ref. 16 for
details!. Let H be a Hilbert space andA a self-adjoint, densely defined operator inH. If S
PB(H), we denoteWt(S)5e2 iAtSeiAt; then $Wt%tPR is a group of automorphisms ofB(H).
The derivative (d/dt)Wt(S)ut505 i @S,A# exists as a sesquilinear form onD(A), and it exists in
the strong topology ofB(H) if and only if the sesquilinear form@S,A# extends to a bounded
operator inH ~which will be denoted by the same symbol!. In this case we say thatS is of class
C1(A) and we writeSPC1(A). If the derivative exists in the norm topology ofB(H), we say that
S is of classCu

1(A). For the development of the theory, for example, in order to show that
limiting absorption principle holds, one has to require more regularity thanCu

1 ~see Ref. 16 and
references there!. We say thatSPB(H) is of classC1,1(A) if *0

1i(Wt21)2Si(dt/t2),`. If S is
of classC1,1(A) it will be automatically of classCu

1(A).
Now let H be a self-adjoint operator inH. We shall say thatH is of classC1(A), Cu

1(A) or
C1,1(A) if R(z)5(H2z)21 has the corresponding property for somezPC\s(H).

The proof of the Mourre estimate is simplified by the introduction of two functionsrH[rH
A

and r̃H[r̃H
A defined onR with values in~2`,1`#. Let H be any self-adjoint operator of clas

C1(A). For anylPR we denote the following:

rH~l!5sup$aPRu'wPC0
`~R!real, w~l!Þ0, such thatw~H !@H,iA#w~H !>aw~H !2%,

r̃H~l!5sup$aPRu'wPC0
`~R!real, w~l!Þ0, and K a compact operator, such that

w~H !@H,iA#w~H !>aw~H !21K%.

For a detailed description of the properties of the functionsr and r̃, see Ref. 16.
We say thatA is conjugate toH at the pointlPR if r̃H(l).0. Let J,R a Borel set; if

r̃H(l).0 for all lPJ we say thatA is locally conjugate toH on J.
IV.2. For eachaPL, we define the operatorHa5h(Pa)1(b<aVb

a where Vb
a5Vb

^ 1, the
tensor product being determined by the factorizationL2(Xa)>L2(Xb) ^ L2(Xb

a). We use the no-
tation sp(H) for the set of eigenvalues of a self-adjoint operatorH. If H is a dispersiveN-body
Hamiltonian, one associates to it two sets: the set of thresholds ofH, defined ast(H)
ªøa,amax

sp(H
a), and the critical set ofH, defined ask(H)ªøaPLsp(Ha). We define also the

setmD(H)5R\k(H).
The next lemma contains a technical results that will be needed in the proof of the

theorem of this section.
Lemma IV.1: Let X be a vector space, A a self-adjoint operator in a Hilbert spaceH and

$Hx%xPX a family of self-adjoint operators of class C1(A). Assume that for some (hence for a
zPC\R the maps x°(Hx2z)21 and x°@(Hx2z)21,A# are norm continuous. LetlPR; then
(a) The function x°rHx

(l) is lower semicontinuous.
(b) Let U be a compact subset of X and c0.0 a constant such that c0,rHx

(l) for all xPU. For

each c1P(0,c0) there exists wPC0
`(R) real, with w(l)Þ0, such that for all xPU:

w(Hx)@Hx ,iA#w(Hx)>c1w2(Hx).
Proof: ~a! By using, for example, the Helfer–Sjo¨strand formula@or see~8.1.1! in Ref. 16#.

One easily sees that the functionsx°w(Hx) andx°@c(Hx),iA# are continuous in norm for al
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w, cPC0
`(R). On the other handw(Hx)@Hx ,iA#w(Hx)5w(Hx)@c(Hx),iA#w(Hx) where c is

any function inC0
`(R) such thatc(x)5x on suppw, so the functionx°w(Hx)@Hx ,iA#w(Hx) is

also norm continuous.
Let x0PX andr PR be such thatrHx0

(l).r . We must show that there is a neighborhood

x0 on whichrHx
(l).r . There exista2.a1.r andw0PC0

`(R) real with w0(m)51 on a neigh-

borhood ofl and such thatw0(Hx0
)@Hx0

,iA#w0(Hx0
)>a2w0

2(Hx0
).

Let e0.0. By a continuity argument there is a neighborhoodV0 of x0 in X such that
w0(Hx)@Hx ,iA#w0(Hx)>a2w0

2(Hx)2e0 for all xPV0 . Let c0PC0
`(R) be real withc0(l)Þ0

andw0(m)51 on suppc0 . Multiplying left and right the preceding inequality byc0(Hx) we get
c0(Hx)@Hx ,iA#c0(Hx)>(a22e0)c0

2(Hx) for all xPV0 . Finally, choosee0 such thata22e0

5a1 . Thenc0(Hx)@Hx ,iA#c0(Hx)>a1c0
2(Hx); hencerHx

(l)>a1.r for all xPV0 .
~b! As in the proof of~a! we show that eachx0PU has a neighborhoodU(x0) in U such that

there isw0PC0
`(R) real with w0(m)51 on a neighborhood ofl, with the property

xPU~x0!⇒c1w0
2~Hx!<w0~Hx!@Hx ,iA#w0~Hx!.

Now the proof can be completed as follows. SinceU is compact, on may choose a finite numb
of neighborhoodsU(x1),...,U(xn) covering U. Let w1 ,...,wn be the corresponding function
constructed as above. Then for eachkP$1,...,n%c1wk

2(Hx)<wk(Hx)@Hx ,iA#wk(Hx) for all x
PU(xk). Finally, letwPC0

`(R) real withw(l)Þ0 andwk(m)51 on suppw for all k. Multiplying
left and right the preceding inequality byw(Hx), we getc1w2(Hx)<w(Hx)@Hx ,iA#w(Hx) for all
xPU. j

We now state the main result of this section. Note that we only need thatH to be of class
Cu

1(A). For physically interesting and nontrivial functionsh satisfying all the conditions below
~e.g., relativistic three-body kinetic energy! see Ref. 12.

Theorem IV.1: Besides the hypotheses of Theorem III.1 we assume that h is of
C1,ukh8(k)u<c(11uh(k)u) for all kPX* , and that kb

ah8(kb1kb
a1ka)>0 for all a,bPL with

b,a and all kbPXb* ,kb
aPXb

a* ,kaPXa* . Moreover, in the case a5maxL assume that the stron
ger inequality kbh8(kb1kb).0 holds if kbÞ0. Finally, assume that@Da,Va# is a compact op-
eratorH2s(Xa)→H22s(Xa). Then
(i) t(H) is a closed and countable real set;
(ii) the eigenvalues of H which do not belong tot(H) [i.e., the points ofk(H)\t(H)] are of finite
multiplicity and can accumulate only to points fromt(H);
(iii) D is locally conjugate to H onR\t(H).

Proof: At steps~a!–~e! below we shall prove thatD is locally conjugate toH on R\t(H).
Now we explain the ‘‘standard’’ proof of~i! and ~ii !. The assertion~ii ! is a consequence of th
abstract results of Mourre~see, for example, Corollary 7.2.11 in Ref. 16!. The sett(H) is clearly
countable, but the fact that it is closed is far from obvious. But note that the operatorsHa on
L2(Xa) have the same properties as the operatorH on L2(X) @see step~c! below#. If aÞmaxL
then the latticeLa5$bPLub<a% associated toHa is strictly smaller thanL. So one can make the
induction hypothesis thatt(Ha)5øb,asp(Hb) is closed and that the generator of dilations
L2(Xa) is locally conjugate toHa onR\t(Ha) ~for a5minL this is trivial!. Thenk(Ha) is closed
andt(H)5øa,maxLk(Ha) is closed too.

~a! By a simple calculation one shows thate2 i DtI(a)ei Dt,I(a), ;aPL and tPR. More-
over, one can see easily that@(H11)21,iD #PI, which implies thatH is of classCu

1(D) ~see p.
420 of Ref. 16!. Hence, from Theorem 5.10 in Ref. 15~or see Theorem 8.4.3 in Ref. 16!, it follows
that r̃H(l)5minaPL(2) rHa

(l), so for the proof of~iii ! it is sufficient to show that ifl¹t(H),
thenrHa

(l).0 for all aPL(2).
~b! Using the relationD5Da

^ a111^ aDa ~whereDa is the generator of dilations onXa! we
write @Ha ,iD #5@Ha ,iD a

^ a1#1@Ha ,i (1^ aDa)#. If we work in the representationH(X)
>L2

„Xa ;H(Xa)… and we make a Fourier transformation in the variablexaPXa ; then for each real
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functionwPC0
`(R) the operatorw(Ha)@Ha ,iD #w(Ha) becomes the operator of multiplication b

the operator-valued function:

ka°w„Ha~ka!…$@Ha~ka!,iD a#1kah8~Pa1ka!%w„Ha~ka!…. ~1!

Since the family$Ha(ka)%kaPX
a*

is proper (aÞamax), we havew„Ha(ka)…50 if ka is large enough

and if w has support in a fixed compact. Let us fixl¹t(H) and a compact neighborhoodK of l.
Then for eachaPL(2) there is a compact setUa in X such thatw(Ha(ka))50 if ka¹Ua and
suppw,K. So it is enough to show that there arec0.0 and wPC0

`(R) with w(l)Þ0 and
suppw,K such that the r.h.s of~1! is larger thanc0w2

„Ha(ka)… for all kaPUa .
~c! Since l¹t(H), the inequalityrHa(0)(l).0 is a straightforward consequence of t

definition oft(H). Note thatHa(0)5Ha. From ~a! of the preceding lemma we conclude that t
functionka°rHa(ka) is lower semicontinuous. So there exists a compact neighborhoodVa of 0 in

Xa* and a constantc1.0 such thatrHa(ka)(l)>c1 for eachkaPVa . Now, from ~b! of the pre-

ceding lemma, if we choosec2P(0,c1), then there existswPC0
`(R) with w(l)Þ0 and

suppw,K, such that

;kaPVa ,w„Ha~ka!…@Ha~ka!,iD a#w„Ha~ka!…>c2w2
„Ha~ka!…. ~2!

~d! By induction overa and by using the equalityr̃H(l)5minaPL(2) rHa
(l), we easily get

that r̃H(l)>0. From the decompositionIa5I a
^ aT(Xa) we see thatHa(ka) has inH(Xa)

properties similar to those ofH in H(X). More precisely, the kinetic energy part ofHa(ka) is
given by the functionka°h(ka1ka), and by hypothesis we havekb

ah8(kb1kb
a1ka)>0 if b

,a. It follows that r̃Ha(ka)(l)>0. Now, as a consequence of Lemma 7.2.12 in Ref. 16 we

;e.0, 'wPC0
`(R) with w(l)Þ0, such that

;kaPUa ,w„Ha~ka!…@Ha~ka!,iD a#w„Ha~ka!…>2ew2
„Ha~ka!…. ~3!

~e! From our hypotheses it follows that there isc3.0 such thatkah8(Pa1ka)>c3.0 for
eachka¹Va . Note that this strict positivity condition has not been used until now.

Finally, if we takee0< inf(c2 ,c3) andw0PC0
`(R) with w0(l)Þ0, such that~3! holds fore0

andw0 , we get

w0„H
a~ka!…$@Ha~ka!,iD a#1kah8~Pa1ka!%w0„H

a~ka!…> inf~c2 ,c3!w0
2
„Ha~ka!…;

this completes the proof of the theorem. j

IV.3. We summarize in the next theorem some consequences concerning the spectral
ties of the dispersiveN-body HamiltonianH. Here we need thatH be of classC 1,1(D).

Theorem IV.2: Besides the hypotheses of Theorem III.1 we assume that h is of clas2,
„ukh8(k)u1uk2h9(k)u…<c„11uh(k)u… for all kPX* , and that kb

ah8(kb1kb
a1ka)>0 for all

a,bPL with b,a and all kbPXb* , kb
aPXb

a* , kaPXa* . Moreover, in the case a5maxL assume
that the stronger inequality kbh8(kb1kb).0 holds if kbÞ0. Assume also that Va can be decom-
posed into a sum Va5VS

a1VL
a , where VS

a : Hs(Xa)→H2s(Xa) (the short-range component) an
VL

a : Hs(Xa)→H2s(Xa) (the long-range component) are symmetric operators satisfying the
lowing decay conditions at infinity. ChooseuPC0

`(X) such thatu(x).0 if 0,1,uxu,2 and
u(x)50 otherwise and denotei•iX is the norm inX[B„Hs(Xa),H2s(Xa)…. Then we assume
@VL

a ,iD a#PX and

E
1

`H I uS Qa

r DVS
aI
X
1 I1

r
uS Qa

r D @VL
a ,iD a# I

X
J dr,`.

Thent(H) is a closed countable set, the eigenvalues of H outsidet(H) are of finite multiplicity and
can accumulate only at points belonging tot(H), and H has no singularly continuous spectrum
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The limitslimm→60(H2l2 im)21 exist in theweak* topology of B(H1/2,1
2s ,H21/2,̀

s ) uniformly in
l on each compact subset of the open real setmD(H). Finally, if K is a Hilbert space and T:
H(X)→K is a linear operator that is continuous whenH(X) is equipped with the topology
induced byH21/2,̀

s , then T is locally H-smooth onmD(H).
Proof: The first assertion will hold inductively given the conclusion of the second asse

for subsystems and the definition of thresholds. Our hypotheses imply thatH is of classC1,1(D);
for this we use Proposition 7.5.7 and Theorem 7.5.8 in Ref. 16 withL5^Q&. SinceH is bounded
from below, it has a spectral gap. Then the second and the third assertion are conseque
Theorem 7.3.1 and Theorem 7.4.2 of Ref. 16 and also of the first assertion. The last as
follows from Theorem 7.4.1 and Proposition 7.4.4 of Ref. 16. j

IV.4. We give now three classes of examples of dispersive systems, for which we prov
the hypotheses of Theorem IV.1 hold.

Example 1:Assume thatX is an Euclidean space identified withX* and letg be a functiong:
@0,̀ )→R, such that

g8~ t !>c.0,

tg8~ t !<const„11g~ t !…,

for all t>0. Then all the hypotheses of Theorem IV.1 hold forh(k)5g(uku) if we takeXa5Xa
'

(;a).
Example 2:Let X5Rn3Rn wheren>1, and let

H5v~P1!1v~P2!1V1~x1!1V2~x2!1V12~x12x2!.

We assume thatv:Rn→R is a function such thatv(k)5U(uku) for some increasing and conve
function U. In particular, the Hamiltonian of two relativistic particles with the same mas
included.

We identify X* 5X, soh:X*→R is given byh(k)5v(k1)1v(k2) for k5(k1 ,k2). The set
of subspace$Xa% is the following: if a5$(1,2)% thenXa5$xPXux15x2%; if a5 i ( i 51,2) then
Xa5$xPXuxi50%. We takeXamax

50 andXamin
5X.

Let us check that~1! if a,b then ka
bh8~ka1ka

b1kb!>0;

~2! if b5amax then kah8~ka1ka!.0 for kaÞ0.

~i! For a5amin : we haveXamin50.
~a! kh8(k)5k1v8(k1)1k2v8(k2)5uk1uU8(uk1u)1uk2uU8(uk2u).0 if kÞ0 becauseU is increas-
ing, so~2! holds.
~b! In this case,~1! is equivalent to check thatkbh8(kb1kb)>0 if b51,2,$(1,2)%. For b5 i , (i
51,2) we takeXb5$xPXuxj50,j Þb% and we check easily thatkbh8(kb1kb)>0. For example,
if b51, thenkb5(k1,0), kb5(0,k2) andkbh8(kb1kb)5k1v8(k1)5uk1uU8(uk1u)>0.

For b5$(1,2)% we takeXb5$xPXux152x2%, thenkb5(k2 ,2k2), kb5(k1 ,k1). Let us set
x5k11k2 andy5k12k2 ; then

kbh8~kb1kb!5k2v8~k11k2!2k2v8~k12k2!51/2F ~x2y!
x

uxu
U8~ uxu!2~x2y!

y

uyu
U8~ uyu!G .

We use polar coordinates:x5re, y5r f , wheree,fare two unitary vectors andr ,r>0, and we set
u5e• f P@21,1#. Then kbh8(kb1kb)>0 is equivalent to rU 8(r )1rU8(r)>u(rU 8(r)
1rU8(r )). So it suffices to check that the last inequality holds foru51, which is true becauseU8
is increasing.

~ii ! If a51,2 thenb5amax and the hypotheses~1! and~2! are easy to check. For example,
a51 thenka5(k1,0), ka5(0,k2) andkah8(ka1ka)5k2v8(k2)5uk2uU8(uk2u).0 for k2Þ0.
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~iii ! For a5$(1,2)% then ka5(k1 ,2k1), ka5(k2 ,k2), and as in~i! we have thatkah8(ka

1ka)5k2v8(k11k2)1k2v8(k22k1)5k2v8(k11k2)2k2v8(k12k2).0 if kaÞ0.
Example 3:In this example we show the usefulness of the freedom one has in the cho

the spacesXa supplementary toXa . We consider two models of Hamiltonians describing partic
with distinct kinetic energy:

H5v1~P1!1v2~P2!1V1~x1!1V2~x2!1V12~x12x2!.

Thenh(k)5v1(k1)1v2(k2) for k5(k1 ,k2). We shall keep the spaceX and the set of subspace
$Xa% introduced in Example 2.

~a! The first model is simply the Hamiltonian of nonrelativistic particles. Thenv i(ki)
5uki u2/2mi ( i 51,2), wheremi.0 is the mass of particlesi. By Example 2, we have to check onl
that: kah8(ka1ka)>0 and kah8(ka1ka).0 if kaÞ0 for a5$(1,2)%. Let Xa5$xPXux
5(y,ay),yPRn%, with someaPR. Thenka5(k1 ,ak1), ka5(k2 ,k2) and

kah8~ka1ka!5^k1 ,v18~k11k2!&1^ak1 ,v28~ak11k2!&

5
1

m1
^k1 ,~k11k2!&1

a

m2
^k1 ,~ak11k2!&.

Let us sett5uk1u2 ands5^k1 ,k2&. Then the last expression is positive for allk1 ,k2PRn if and
only if (m21a2m1)t1(m21am1)s>0 for all t>0 andsPR. But for a fixedt this is true for all
sPR only if a52m2 /m1 . Now with thisa it is easy to check the second assertion.

~b! The second model appears in the theory of elasticity: we takev i(ki)5ci uki u4 ( i 51,2)
whereci.0 is a constant. Here we suppose thatn51 and as in the last example we takeXa

5$xPXux5(s,as),sPR%, with someaPR. Thenka5(s,as), ka5(t,t), and

kah8~ka1ka!5sv18~s1t !1asv28~as1t !

54~c11c2a4!s4112~c11c2a2!s2t214~c11c2a!st3112~c11c2a3!s3t.

Then it is clear that~1! and ~2! hold if a52c1 /c2 .
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APPENDIX

We shall prove here that the algebraI(a) is independent of the choice of the supplement
spaceXa and of the various volume elements~see II.4!.

Let us fix a vector subspaceY of X and let us choose a supplementary subspaceZ to Y in X ~so
X5Y1Z, YùZ5$0%! and some volume elementsdy, dz on Y and Z. We identify L2(X)
5L2(Z) ^ L2(Y) and we define theC* -algebraK(Z) ^ T(Y) as the norm closure inB(X) of the
linear spaceK(Z,Y) generated by the operators of the formS^ T with S compact inL2(Z) and
TPT(Y). The spaceK(Z,Y) depends on the choice ofZ ~see the last identity in the proof of th
next lemma!. Our purpose here is to show that its norm closureK(Z) ^ T(Y) is, however, inde-
pendent ofZ. For this we shall introduce a class of operatorsK, which clearly has the same norm
closure asK(Z,Y), and then we show that this class of operators is independent ofZ.

If kPCc(Y3Z3Z) ~spaces of continuous functions with compact support onY3Z3Z! then
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~K f !~y1z!5E
Y
E

Z
k~y2y8,z,z8! f ~y81z8!dy8 dz8

defines an element ofB(X). Indeed, if Ky is the operator inL2(Z) defined by the kerne
k(y,•,•) with respect to the volume elementdz, thenKy is a Hilbert–Schmidt operator and

i~K f !~y1• !iL2~Z!<E
Y

iKy2y8 f ~y81• !iL2~Z! dy8<E
Y

iKy8iB~Z!i f ~y2y81• !iL2~Z! dy8.

We may assume thatdx5dy^ dz. Then we get

iK f iL2~X!5F E
Y

i~K f !~y1• !iL2~Z!
2 dyG1/2

<E
Y

iKy8iB~Z! dy8•i f iL2~X! ,

and the r.h.s. is a finite number.
Lemma: The class of operators of the form K is independent of the choice of Z, dy, dz.

Proof: Let Z1 ,Z2 be two supplemenary spaces toY in X and letp1 be the projection ofX onto
Y defined byZ1 . If xPX and x5y11z15y21z2 with y1 , y2PY and z1PZ1 , z2PZ2 then
p1z150, p1y25y2 , hencey15y21p1z2 . Moreover, if we setq1512p1 then q1y250, so z1

5q1z2 . Observe thatq1uZ2 is a bijective linear map ofZ2 onto Z1 .
Now let k1PCc(Y3Z13Z1) and choose some volume elementsdy, dz1 on Y andZ1 . Then

defineK by

~K f !~x!5~K f !~y11z1!5E
Y
E

Z1

k1~y12y18 ,z1 ,z18! f ~y181z18!dy18 dz18 .

In the integral overZ1 we make the change of variablez185q1z28 . The volume elementdz18 is the
image of a volume elementz28 on Z2 through this map and we get

~K f !~x!5E
Y
E

Z2

k1~y12y18 ,z1 ,q1z28! f ~y181q1z28!dy18 dz28 .

In the integral overY ~for a fixedz28! we make the translationy185y281p1z28 and get

~K f !~x!5E
Y
E

Z2

k1~y12y282p1z28 ,z1 ,q1z28! f ~y181p1z281q1z28!dy28 dz28 .

We havep1z281q1z285z28 . Now x5y11z15y21z2 andy15y21p1z2 , z15q1z2 . We get

~K f !~y21z2!5E
Y
E

Z2

k1(y22y281p1~z22z28 ,q1z2 ,q1z28! f ~y281z28!dy28 dz28

[E
Y
E

Z2

k2~y22y28 ,q1z2 ,q1z28! f ~y281z28!dy28 dz28 .

The functionk2 :Y3Z23Z2→C defined byk2(y,z2 ,z28)5k1(y1p1(z22z28 ,q1z2 ,q1z28)) is con-
tinuous with compact support becauseq1uZ2 :Z2→Z1 is a bijective linear map. Now the assertio
of the lemma is clear. j
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Beginning with ordinary quantum mechanics for spinless particles, together with
the hypothesis that all experimental measurements consist of positional measure-
ments at different times, we characterize directly a class of nonlinear quantum
theories physically equivalent to linear quantum mechanics through nonlinear
gauge transformations. We show that under two physically motivated assumptions,
these transformations are uniquely determined: they are exactly the group of time-
dependent, nonlinear gauge transformations introduced previously for a family of
nonlinear Schro¨dinger equations. The general equation in this family, including
terms considered by Kostin, by Bialynicki-Birula and Mycielski, and by Doebner
and Goldin, with time-dependent coefficients, can be obtained from the linear
Schrödinger equation through gauge transformation and a subsequent process we
call gauge generalization. We thus unify, on fundamental grounds, a rather diverse
set of nonlinear time evolutions in quantum mechanics. ©1999 American Insti-
tute of Physics.@S0022-2488~98!04011-0#

I. INTRODUCTION

Recently a groupN of nonlinear gauge transformations was introduced and shown to a
a transformation group in a familyF of nonlinear Schro¨dinger equations~NLSEs!.1 The familyF

consists of equations with nonlinear terms of the type introduced by Kostin,2 by Bialynicki-Birula
and Mycielski,3 by Guerra and Pusterla,4 and by Doebner and Goldin,5,6 with time-dependent
coefficients.

A transformationN(g,L)PN is labeled by two real, time-dependent parametersg andL ~with
LÞ0!, and acts as a nonlinear analog of a gauge transformation in quantum mechanics.
the time-dependent wave functionc(x,t) on R3 be an arbitrary solution of any particular NLSE
F , N(g,L) is given by

c85N~g,L!@c#5ucuexp@ i ~g lnucu1L arg c!#. ~1!

Thenc8 solves a transformed equation that also belongs toF .
The physical interpretation of this construction, developed briefly below, was elaborated

some detail in Ref. 1. However, the underlying mathematical structure, and the physical re
for the form of~1!, remained somewhat hidden. Equation~1! was motivated in earlier work by the

a!Electronic mail: ashdd@pt.tu-clausthal.de
b!Electronic mail: gagoldin@dimacs.rutgers.edu
c!Electronic mail: aspn@pt.tu-clausthal.de
490022-2488/99/40(1)/49/15/$15.00 © 1999 American Institute of Physics
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desire to linearize the equations in a special subset ofF , and to obtain stationary and nonstatio
ary solutions.6–11 The present paper takes a different, more fundamental approach to non
gauge transformations and their consequences.

We begin with linear, nonrelativistic quantum mechanics for spinless particles inR3, together
with the assumption, advocated for instance in Refs. 12–14, and discussed in Refs. 1, 9,
and 16, that all experimental measurements consist fundamentally of positional measur
made at different times. Defining as usual the positional probability densityr(x,t)
5c(x,t)c(x,t), wherec conventionally is a normalized solution of the linear Schro¨dinger equa-
tion, we are therefore interested in transformationsN which leaver(x,t) invariant—i.e., such that
for all c in an appropriate domain of the unit sphere in the Hilbert spaceH,

N@c#~x,t !N@c#~x,t !5c~x,t !c~x,t !. ~2!

In addition,N should respect the prescription for writing the wave function subsequent t
ideal positional measurement. A conventional prescription for such a measurement at tt1

consists of a projection in a regionB of position space~a Borel subset ofR3!, with normalization,

cs~x,t1!5H c~x,t1!

~*Buc~x,t1!u2d3x!1/2,

0,

xPB

x¹B

~3!

followed by time-evolution ofcs(x,t) for t.t1 ~here the subscript ‘‘s’’ stands for ‘‘subsequent’’!.
As N should respect this prescription, we need for allc, x and t>t1 ,

uN@c#s~x,t !u25ucs~x,t !u2, ~4!

and because of~2!,

uN@c#s~x,t !u25uN@cs#~x,t !u2. ~5!

We remark that in writing~3! we do not intend to express a commitment to a particu
formalism for describing measurement. We merely note that the justification ofN as a gauge
transformation requires that in addition to~2! it leave invariant the outcomes ofsequencesof
positional measurements at various times. Equation~3! is one prescription for predicting suc
outcomes in quantum mechanics.

Now if all actual measurements~outcomes of experiments! are obtained from positiona
measurements performed at various times, it can be argued that a system with statesc obeying the
Schrödinger equation, and one with statesN@c# obeying a transformed equation, have the sa
physical content. But we make two essential observations:

~a! Equations~2! and ~4!–~5! do not requireN to be a linear transformation—nonlinearN are
also possible.

~b! Such nonlinear choices ofN will transform a system governed by the usual, linear Sch¨-
dinger equation to physically equivalent systems obeying NLSEs that are, of course, l
izable ~by construction!.

The usual formulation and interpretation of quantum mechanics is based quite deep
linearity and linear structures—superposition principle, on observables modeled by self-a
linear operators, on a linear time-evolution equation for the states, on a measurement p
involving orthogonal projection onto linear subspaces for all sorts of observables, and o
description of mixed states by density matrices. Any proposal for nonlinearity in quantum
chanics requires a revised mathematical formulation and physical interpretation of all these
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Here the linearizable NLSEs obtained usingN can be useful. Due to their physical equivalen
with linear quantum mechanics, they serve as a kind of ‘‘laboratory’’ for exploring how
generalize quantum mechanics to accommodate nonlinearities.

When N is assumedto be linear~and densely defined!, Eq. ~2! implies that it is aunitary
multiplication operatorfor eacht. ThenN is labeled by a measurable functionu(x,t), and we
have

c8~x,t !5~Uuc!~x,t !5exp@ iu~x,t !#c~x,t !. ~6!

Any suchUu commutes with the projection in~3!, thus ensuring~5! and respecting the conven
tional prescription for wave functions subsequent to a positional measurement.

If u is independent ofx and t, we have just introduced a fixed phase, sometimes calle
‘‘gauge transformation of the first kind.’’ This changes neither the Schro¨dinger equation nor the
form of position and momentum operators. A space- and time-dependent, linearU(1)-gauge
transformation, implemented by~6!, is sometimes called a ‘‘gauge transformation of the sec
kind.’’ Such transformations constitute an Abelian groupUloc of local unitary operators acting on
H. The physical equivalence of the two theories, with statesc andc8, respectively, is guarantee
by the invariance of the outcomes of sequences of positional observations at all times.

A system with wave functions governed by the~linear! Schrödinger equation

i\] tc52
\2

2m
¹2c1Vc ~7!

is transformed by~6! to a physically equivalent system, with wave functionc8 and Schro¨dinger
equation

i\] tc85
1

2m S \

i
¹2\¹u D 2

c81~V2\] tu!c8. ~8!

This observation suggests ageneric wayto construct new systems that arenot physically equiva-
lent to the original family given by~7! and~8!. The scalar term2\] tu and the vector term\¹u

are merely special choices. If we replace2\] tu by a generalscalar fieldF̂(x,t) and\¹u by a
generalvector fieldÂ(x,t), calling them~Abelian! gauge fields, we obtain two well-known and
well-established structures:

~a! a family F (F̂,Â) of time-evolution equations labeled by the gauge fieldsF̂ and Â:

i\]tc5
1

2m S\i ¹2ÂD 2

c1~V1F̂!c; ~9!

and

~b! an action on this family by the gauge transformationsUu , to establish equivalence

classes—so that Schro¨dinger equations with (F̂,Â) and with (F̂8,Â8)5(F̂2\] tu,Â
1\¹u) describe physically equivalent systems—with the family being closed unde
action of gauge transformations.

This generic construction, which we here callgauge generalization, is physically relevant becaus
external electromagnetic fields~F,A! interacting with a charged particle provide a realization

(F̂,Â) in nature: In Gaussian units,F̂5eF andÂ5(e/c)A, wheree is the charge of the particle
The gauge-transformed Schro¨dinger equations are physically equivalent to the original, but th
obtained from them by gauge generalization are not. These well-known results provide a
for similar arguments involving the nonlinear transformationsN.
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In Sec. II, we demonstrate that two straightforward, physically motivated conditions prec
specify the groupN of time-dependent, nonlinear gauge transformations introduced in Re
These assumptions are:~a! strict locality and~b! a separation condition. We observe that~5! is
then ensured.

In Sec. III, we apply various subgroups ofN to the linear Schro¨dinger equation~7!. This
leads to physically equivalent systems satisfying NLSEs, where the coefficients obey c
constraints. Then, in structural analogy to the way~8! motivates~9!, we construct new, physically
inequivalentsystems by generalizing the parameters so as to break the constraints.

In Sec. IV, following this analogy, we consider the parameters asgauge parameters. We thus
obtain a family of NLSEs through gauge generalization and gauge closure, labeled by the
parameters, on which the gauge group acts to establish physical equivalence classes. In th
we derive naturally—as a unified class—equations containing the terms proposed by K
Bialynicki-Birula and Mycielski, and Doebner and Goldin, with coefficients that are~in general!
time dependent. The subfamily that includes the equations of Guerra and Pusterla turns ou
equivalent to linear quantum mechanics.

We believe this to offer a fundamentally new perspective, partially elucidating the hi
mathematical and physical structure behind certain nonlinear quantum time evolutions.

II. CONDITIONS ON NONLINEAR GAUGE TRANSFORMATIONS

A. Locality

We have from Eq.~2! that

N@c#~x,t !5exp@ iGc~x,t !#uc~x,t !u, ~10!

whereGc is a real-valued function ofx and t depending onc. It is apparent thatGc must be
further restricted if for instance we hope to ensure~5! for all Borel subsetsB of R3. Suppose the
value ofGc(x,t) at x5x1 depends nontrivially on values ofc(x,t) for xÞx1 and the evolution
equation is local. Then we will be unable to satisfy~4! and ~5! in the general case of a regionB
wherex1PB but x¹B. Therefore let us assumeN to be alocal transformation, in analogy with
the linear gauge transformationsUu . This is taken here in the strict sense that the value ofN@c#
at (x,t) should depend only onx, t, and the value ofc(x,t)—not on any other space or tim
points, and not on derivatives ofc. Then we must have

c8~x,t !5NF@c#~x,t !5exp@ iF ~c~x,t !,x,t !#uc~x,t !u, ~11!

whereF is a real-valued function~defined up to integer multiples of 2p! of the three variables
whose values are provided byc(x,t), x, and t. The possible dependence ofF on the value of
c(x,t) allows nonlinearity inNF . With R(x,t)5uc(x,t)u and S(x,t)5argc(x,t), we can con-
siderF to be a function of the real variablesR, S, x, andt, relaxing for now the requirement tha
F take the same value atS andS12pn.

Note that a weaker assumption, in whichF is permitted to depend on finitely many derivativ
of c at (x,t), may still be compatible with~5!. We make a stricter assumption here, which lim
the resulting time-evolution equations to second order.

B. A separation condition

We consider now systems ofn particles described by normalized states inH (n)

5L2(R3n,d3nx). For simplicity, take each individual particle to evolve under the same ti
evolution operatorT(1). We suppose a hierarchy of time-evolutionsT(n) of n-particle states,
fulfilling the separation condition. For linear time evolutions this condition requires that prod
statesc (n)5c1^ ...^ cn , ic j i51, j 51,...,n, evolve into product states:

T~n!@c~n!#5T~1!@c1# ^ T~1!@c2# ^¯^ T~1!@cn#. ~12!
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It ensures that in the absence of interaction terms, initially uncorrelated subsystems rema
correlated, andT(n) is extended~by linearity! from product states to all ofH (n).

It is physically plausible to assume~12! for nonlinear time evolutionsT(n) as well.3,17 Then
nonlinear gauge transformationsNF

(n) should respect this condition. Here, the statesc j8(x,t)
5NF@c j # in ~11! are governed by a nonlinear time evolutionT(1)8, and our separation conditio
becomes for product statesc (n)85c18^ ...^ cn8 , ic j8i51, j 51,...,n,

T~n!8@c~n!8#5T~1!8@c18# ^¯^ T~1!8@cn8#. ~13!

We thus want a nonlinear gauge transformationNF
(n) acting on the unit sphere inH (n), with

iNF
(n)@c#i51, so that on the product statesc (n)

NF
~n!@c#5NF@c1# ^¯^ NF@cn#. ~14!

Unitary gauge transformationsU(n) in H (n) may be written as

~Uc~n!!~x1 ,...,xn ,t !5exp@ iun~x1 ,...,xn ,t !#c~x1 ,...,xn ,t !. ~15!

On product states, using~6!, we want

U~n!c~n!5~Uuc1! ^ ~Uuc2! ^¯^ ~Uucn!, ~16!

so that

un~x1 ,x2 ,...,xn ,t !5(
j 51

n

u~xj ,t !. ~17!

And of course, for this case, the operators are linear and can be extended by linearity from p
states to the whole Hilbert space. ButNF

(n) in Eq. ~14! is nonlinear, so we cannot extend it unique
to H (n).

The apparently weak condition~14! leads nevertheless to a sharp restriction onF. To see this
it is sufficient to discuss the casen52. With Rj5uc j u, Sj5argcj , j 51,2, Eqs.~11! and ~14!
imply that

F~R1 ,S1 ,x1 ,t !1F~R2 ,S2 ,x2 ,t ! ~18!

depends only on the productR5R1R2 and the sumS5S11S2 . Thus

F~R1 ,S1 ,x1 ,t !1F~R2 ,S2 ,x2 ,t !5F~R,S,x1 ,t !1F~1,0,x2 ,t !, ~19!

for all R,S,x1 ,x2 ,t, whenceF(R2 ,S2 ,x2 ,t)2F(1,0,x2 ,t) must be independent ofx2 . Setting
F(1,0,x,t)5u(x,t) andL(R,S,t)5F(R,S,x,t)2u(x,t), we have the functional equation

L~R1 ,S1 ,t !1L~R2 ,S2 ,t !5L~R1R2 ,S11S2 ,t !. ~20!

The smooth solutions of~20! are given byL(R,S,t)5g(t)ln R1L(t)S, whereg,L are real func-
tions of t. Nondegeneracy of the transformation requiresL(t)Þ0. Finally, we have

F~R,S,x,t !5g~ t !ln R1L~ t !S1u~x,t !. ~21!

The above argument is similar to the way in which generalized homogeneity of the time evo
is deduced from the separation property.17

Note that our separation condition isweakin the sense that for nonlinearT(n) andNF
(n) it is

only defined on product states; for nonproduct~entangled! initial states, noninteracting subsystem
may yet acquire new correlations. The nonlocal effects in some nonlinear evolution equatio
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be traced back to this fact.18 A strong version of the separation condition, more adapted to
physical situation and valid for general states, can be formulated along the lines given in R

C. The result

In short, the locality and the separation condition required onn-particle product states boi
down the transformationsNF for single particle states to those labeled by two real functionsg and
L of time, with L nonvanishing, and a real functionu of space and time:

~N~g,L,u!@c#!~x,t !5uc~x,t !uexp@ i ~g~ t !lnuc~x,t !u1L~ t !arg c~x,t !1u~x,t !!#. ~22!

The setN(g,L,u) forms a groupG , with multiplication law

N~g8,L8,u8!+N~g,L,u!5N~g81L8g,L8L,u81L8u! . ~23!

This can be expressed in terms of 333 matrices,

N~g,L,u!.S 1 0 0

u L 0

g 0 L
D ~24!

with entriesL5L(t), g5g(t), andu5u(x,t) taken from the corresponding function spaces. W
thus have here a groupG of nonlinear gauge transformations, strictly local and separating
n-particle product states, labeled by time-dependent parametersg andL together with a function
u(x,t). The group is a semidirect product of the group of gauge transformations of the s
kind Uloc5$Uu% and the groupN , mentioned in Sec. I, of ‘‘pure nonlinear’’ gauge transform
tions ~whereu[0!:

G 5N ^ sUloc . ~25!

G can be viewed as anonlinear generalizationof Uloc , i.e., as the group of ‘‘gauge transforma
tions of thethird kind.’’ 1

The transformationsN(g,L,u) are not uniquely defined on the Hilbert space. If we restrict
range ofL to the integers,L(t)PZ, then N(g,L,u) is well defined. Then ifL is a continuous
function of time,L has to be a constant;N(g,L,u) is invertible with this restriction only forL5

61. L521 corresponds to complex conjugation:N(0,21,0)c5c̄. N(g,1,u) is strongly continuous,15

and the set of these transformations is an Abelian subgroup ofG ,

G .G 05N 0^ Uloc , ~26!

whereN 0ª$NgªN(g,L[1,u[0)%.
For nonintegerL, N(g,L,u) may be specified uniquely on certain domains in the Hilbert sp

e.g., by imposing continuity of the phase ofN@c# on a domain of nonvanishing functionsc.
However, such a domain is not needed explicitly for our further considerations.

D. A generalization

Because of the difficulties with the separation condition mentioned above, a more g
group structure is also of interest. This can be obtained, without assuming separation, by m
a physically motivated, weaker assumption: an intertwining relation that follows from requ
compatibility with linear gauge transformations.

The group of linear gauge transformationsUloc is commutative, but this need not be the ca
for the set$NF%.Uloc . In particular,Uu might not commute withNF . We explore the condition
thatNF be consistent with the usual notion of physical equivalence under gauge transformati
the second kind. That is, the result of applyingNF to a gauge-transformed theory with wav
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functionsUuc should be expressible as a transform byUu8 of the theory with wave functions
NF@c#, where, in general,u8(x,t)Þu(x,t). Thus we require anintertwining relation

NF@Uuc#5Uu8NF@c#. ~27!

Here the functionu8(x,t) depends on both of the functionsF andu.
Then Eq.~27! implies the functional equation

exp i @F~R,S1u;x,t !#5exp i @u8~x,t !1F~R,S;x,t !#, ~28!

valid for eachR, S, x, andt. It is straightforward to show that smooth solutionsF of ~28! take the
form F(R,S;x,t)5k(R,x,t)1l(x,t)S, wherek andl are real-valued functions of the indicate
variables. Nondegeneracy of the transformation requiresl(x,t)Þ0 for all x,t. ThusNF is param-
etrized byk andl, and given by

N~k,l!@c#~x,t !5exp i @k~ uc~x,t !u,x,t !1l~x,t !arg c~x,t !#uc~x,t !u. ~29!

One easily checks that~2!, ~11!, and~27! are fulfilled, with

u8~x,t !5l~x,t !u~x,t !. ~30!

The set$N(k,l) ;l(x,t)Þ0% is a noncommutative, infinite dimensional groupG̃ with multi-
plication law

N~k,l!+N~k8,l8!5N~k1k8l,ll8! . ~31!

N(0,1) acts as the identity onc, andN(2k/l,1/l) is the ~formal! inverse ofN(k,l) . The group law
may be expressed as multiplication of 232 matrices

N~k,l!.S 1 0

k l
D ~32!

with entriesk(ucu,x,t) andl(x,t) taken from suitable function spaces. Such matrices span a li
representation Aff~1! of the one-dimensional affine group.

The nonlinear transformationsN(g,L,u) are special cases ofN(k,l) , i.e., the separation condi
tion restrictsk andl to the form

k~ ucu,x,t !5g~ t !lnucu1u~x,t !, ~33!

l~x,t !5L~ t !; ~34!

andG is a subgroup ofG̃ .

III. NONLINEAR QUANTUM-MECHANICAL EVOLUTION EQUATIONS FROM GAUGE
GENERALIZATION

A. Linearizable NLSEs

In accordance with the discussion in Sec. I, we are now interested in the evolution equa

c8~x,t !5N~g,L,u!@c#~x,t !, ~35!

whenc(x,t) is a solution of a linear Schro¨dinger equation

i ] tc5~n1D1m0V!c. ~36!
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Let us regard~36! as belonging to a parametrized familyF 0(n1 ,m0), n1Þ0, depending on the
two real parametersn1 ,m0 ; in Eq. ~7!, n152\/2m andm051/\.

Due to ~27! linear gauge transformations can be treated independently, and we shal
restrict ourselves to the caseu[0. Applying the groupN to F 0 , we obtain a familyF 0 of
NLSEs,

i ] tc85~n18~ t !D1m08~ t !V1FDG
~0!@c8#1FBM@c8#1FK@c8# !c8, ~37!

where the subscripts DG, BM, and K, refer to terms of types considered respectively by Do
and Goldin, Bialynicki-Birula and Mycielski, and Kostin; specifically:

FDG
~0!@c8#5m18~ t !S ¹S ImH ¹c8

c8 J D1
i

2

Duc8u2

uc8u2 D12k8~ t !
Duc8u
uc8u

, ~38!

FBM@c8#5a18~ t !loguc8u2, ~39!

FK@c8#5a28~ t !arg c8. ~40!

The coefficientsn18 , m08 , m18 , k8, a18 , anda28 are constrained, and depend on bothn1 ,m0 , and on
L(t),g(t):

n18~ t !5
1

L~ t !
n1 , m08~ t !5L~ t !m0 , m18~ t !52

g~ t !

L~ t !
n1 , k8~ t !5

g~ t !21L~ t !221

2L~ t !
n1 ,

~41!

a18~ t !5g~ t !
L̇~ t !

2L~ t !
2

1

2
ġ~ t !, a28~ t !52

L̇~ t !

L~ t !
.

This family F 0 is closed underN , i.e., it is thegauge closureof F 0(n1 ,m0) under the action
of the groupN . It is, up to questions of domain mentioned above, linearizable. It dep
on the independent quantitiesn1 , m0 , g(t) and L(t). One could also writeF 0 as
F (n1 ,m0 ,m1 ,k,a1 ,a2) labeled by time-dependent coefficients that are constrained.

Note that if L and g are independent oft, the coefficients are time independent, anda18
5a2850.

If we restrictN to the subgroupN 0 , then starting withF 0(n1 ,m0), we obtain a familyF 0
0

closed underN 0 and contained inF 0; here the indexed bar denotes the closure with respec
N 0 . The elements inF 0

0 are by construction linearizable NLSEs. The parameters are

n185n1 , m085m0 , m18~ t !5g~ t !n1 , k8~ t !5
g~ t !2

2
n1 ,

~42!

a18~ t !52 1
2ġ~ t !, a28~ t !50.

Now the termFK disappears, everything is well-defined, andn18 and m08 are time-independen
invariants. Strictly speaking, these NLSEs aredefinedusing the continuity and invertibility of
N(g,1,0) .

For later purposes we mention thatFDG
(0) decomposes into independent nonlinear real functi

alsR with the following properties:R@c# is Euclidean invariant, complex homogeneous of deg
zero and a rational function ofc,c̄ with derivatives not higher than second order in the numera
only. There exist five functionals of this type~see Ref. 6!:
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R1@c#5
¹–J

r
, R2@c#5

Dr

r
,

~43!

R3@c#5
J2

r2 , R4@c#5
J–¹r

r2 , R5@c#5
~¹r!2

r2 ,

wherer5c̄c andJ5(1/2i )(c̄¹c2(¹c̄)c) are the probability density and current correspon
ing to c. With this notationFDG

(0) in ~38! is a complex linear combination:

FDG
~0!@c#5m1~ t !~R1@c#2R4@c#!1 in2~ t !R2@c#1k~ t !~R2@c#2 1

2R5@c#!, ~44!

with

n2~ t !52 1
2m1~ t !. ~45!

The termR3@c# will appear in Sec. III B.

B. Generalizing linearizable NLSEs; gauge parameters

The nonlinear gauge transformationsN(g,L) generate special linearizable NLSEs, i.e., nonl
ear partial differential equations with constrained coefficients, physically equivalent to l
Schrödinger equations. Hence the situation is similar to the case of gauge transformationsUu in
Sec. I. It is possible to construct generically throughgauge generalizationsandgauge closuresa
sequence of new families of evolution equations physicallyinequivalent to the linear Schro¨dinger
equation. We obtain the sequence of these families in three steps:

Step 1:We break the constraints~41! in F 0 ~gauge generalization!, i.e., we take the six
constrained coefficientsn18 ,m08 ,m18 ,k8,a18 ,a28 as independent functions of time. Thus we obtain
family F 1(n1 ,m0 ,m1 ,k,a1 ,a2) with six independent parameters. The gauge transformationN

are automorphisms of this family. That is,F 15F 1 ; the family is gauge closed. In the notation
Ref. 1,k5m22 1

2n1 .
Step 2:We break the constraint~45! for FDG

0 in F 1 ~gauge generalization!,

FDG
~1!@c#5 in2~ t !R2@c#1m1~ t !~R1@c#2R4@c#!1k~ t !~R2@c#2 1

2R5@c#!, ~46!

and obtain a seven-parameter familyF 2(n1 ,n2 ,m0 ,m1 ,k,a1 ,a2) of NLSEs ~37!, with FDG
(1) re-

placingFDG
(0) .

The action of the groupN , however, does not leave this family invariant. The gauge clos
F 2 of F 2 consists of NLSEs~37! with

FDG
~2!@c#5 in28~ t !R2@c#1m18~ t !~R1@c#2R4@c#!1k8~ t !R2@c#1j8~ t !R5@c# ~47!

in place ofFDG
(1) . Now there are eight coefficients which already are unconstrained. Thus we

F 2 as a family F 3(n1 ,n2 ,m0 ,m1 ,k,j,a1 ,a2) with eight time-dependent parameters, that
invariant by construction underN , i.e., F 25F 35F 3. In the notation of Ref. 1,j5m51 1

4n1 .
The explicit formula for these coefficients is given by Eq.~50! below, with m352n1 and j5
2 1

2k.
Step 3:We write Dc as a complex linear combination ofRj@c#c,

Dc5~ iR1@c#1 1
2R2@c#2R3@c#2 1

4R5@c#!c, ~48!

insert into ~37! and obtain an additional term (m31n1)R3@c# in FDG, and a constraintm3(t)
52n1(t).

We break this constraint, and obtain fromF 3 a family F 4(n1 ,n2 ,m0 ,m1 ,k,m3 ,j,a1 ,a2)
depending on nine time-dependent parameters.
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The closureF 4 is larger thanF 4 and contains all NLSEs~37! with

FDG@c#5 in28R2@c#1m18R1@c#1k8R2@c#1~m381n18!R3@c#1m48R4@c#1j8R5@c#, ~49!

where the time-dependent coefficients are given by

n185
n1

L
, n2852

g

2L
n11n2 , m085Lm0 , m1852

g

L
n11m1 ,

k85
g21L221

2L
n12gn22

g

2
m11Lk, m385

1

L
m3 , m485

g

L
n12m12

g

L
m3 ,

~50!

j85
12g22L2

4L
n11

g

2
m11

g2

4L
m31Lj,

a185La12
g

2
a21g

L̇

2L
2

1

2
ġ, a285a22

L̇

L
.

These coefficients are actually independent, so thatF 4 is a ten-parameter family. For a mor
symmetrical notation, we now go over to usingm25k1 1

2n1 andm55j2 1
4n1 , denoting the family

by F 5(n1 ,n2 ,m0 ,...,m5 ,a1 ,a2):

i ] tc5 i (
j 51

2

n jRj@c#c1 (
k51

5

mkRk@c#c1m0Vc1a1 logucu2c1a2~arg c!c, ~51!

or in a form which exhibits the linear part separately, with LaplacianD,

i ] tc5~n1D1m0V!c1 in2R2@c#c1m1R1@c#c1~m22 1
2 n1!R2@c#c1~m31n1!R3@c#c

1m4R4@c#c1~m51 1
4 n1!R5@c#c1a1 logucu2c1a2~arg c!c. ~52!

F 5 is invariant under the action of the groupN , i.e., F 55F 5 .
Starting with the linear familyF 0 , through iterated gauge generalizations and gauge clos

with respect to the pure nonlinear gauge groupN , we have thus obtained a sequence

F 0,F 0,F 15F 1,F 2,F 25F 35F 3,F 4,F 45F 5 ~53!

of families of nonlinear Schro¨dinger equations.
The same procedure can be followed for the restricted gauge groupN 0 . It turns out that there

is an analogous sequence of familiesRj of NLSEs:

F 0[R0,R 0
0,R15R 1

0,R2,R 2
05R35R 3

0,R4,R 4
05R5 . ~54!

The familiesRj are subsets of theF j :

Rj5F j�n1~ t !5n1 ,m0~ t !5m0 ,m3~ t !52n1 ,a2~ t !50 . ~55!

The only type of term that is not obtained in these families is the termFK ~which is technically not
well defined!. Note furthermore that here the parameters of the original linear familyR0[F 0

remain invariant,n185n1 andm085m0 .
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IV. DISCUSSION OF THE GAUGE-GENERALIZED NLSE

A. Gauge-invariant parameters, Ehrenfest relations, and Galilei invariance

The groupN transforms the familyF 5 into itself. In fact,N(g,L) acts~for all t! linearly on
the eight gauge parametersn 5(n1 ,...,5),

¨

n18

n28

m08

m18

m28

m38

m48

m58

©

5

¨

1

L
0 0 0 0 0 0 0

2
g

2L
1 0 0 0 0 0 0

0 0 L 0 0 0 0 0

2
g

L
0 0 1 0 0 0 0

g2

2L
2g 0 2

g

2
L 0 0 0

0 0 0 0 0
1

L
0 0

0 0 0 0 0 2
g

L
1 0

0 0 0 0 0
g2

4L
2

g

2
L

© ¨

n1

n2

m0

m1

m2

m3

m4

m5

©

. ~56!

One can show that the orbits ofN , for a fixed timet, are two dimensional on the spaceṘt
8

ª$nPRt
8un1Þ0%, and foliateṘt

8 in two-dimensional leaves. Hence there exist~in general, at least
locally; but here in fact globally! six functionally independent parametersi0 ,...,i5 invariant under
the action ofN ,8,9

i05n1m0 , i15n1m22n2m1 , i25m122n2 , i3511m3 /n1 ,
~57!

i45m42m1m3 /n1 , i55n1~m212m5!2n2~m112m4!12n2
2m3 /n1 .

On the remaining two parametersa 5(a1 ,a2), the transformationN(g,L) acts as an affine trans
formation,

S a18

a28

D 5S L 2
g

2

0 1

D S a1

a2

D 1S 1

2
S g

L̇

L
2ġ D

2
L̇

L

D . ~58!

Thus there are two further independent parameters invariant under the action ofN on thecontrol

spaceṘt
10 spanned byn anda,

i65n1a12n2a21n2

ṅ1

n1
2 ṅ2 , i75a22

ṅ1

n1
, ~59!

generalizing the result in Refs. 8 and 9 for the family of NLSEs derived in Refs. 5 and 6. We
i 5(i0 ,...,i7) gauge-invariant parameters. They are important for interpretingF 5 and its sub-
families; for details, we refer to Ref. 1, where gauge-invariant parameters have been discu
a slightly different context.
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The subfamiliesF j andRj , that are closed under the gauge groupsN andN 0 respectively,
can now be characterized in terms of the vanishing of gauge-invariant parameters. Such
acterization is given in Tables I and II, respectively. Note thatn1 andm3 are themselves gauge
invariant parameters of the subfamiliesRj .

Some of these families show interesting behavior. In the familyF 1 consider the time depen
dence of the expectation values^x&c(t)5*R3 xr t(x)d3x5*R3 xc(x,t)c(x,t)d3x. Then

d

dt
^x&c~ t !522n1^2 i¹&c~ t ! , ~60!

d2

dt2
^x&c~ t !522i0^2 V&c~ t !1i7

d

dt
^x&c~ t ! , ~61!

i.e., we have the analog of the first and second Ehrenfest relations forF 1 . The center of a
nonstationary solution behaves like a classical system under a conservative force and a fr
force proportional to the velocity. For the linearizable subfamilyF 0,F 1 , the frictional term
disappears (i750). This is plausible: A linear or nonlinear quantum-mechanical evolution e
tion and itsN transform describe physically equivalent systems.1

The first Ehrenfest relation~60! holds for all members ofF 5 . This shows that the physica
systems described byF 5 have something in common. ForF 2 ,...,F 5 there are additional terms in
the second Ehrenfest relation~61!, which are connected with the quantum-mechanical diffus
current.5,6

The free linear SE (V[0) is invariant under the centrally extended Galilei groupGe(3)
including time translations. Consider theGe(3) invariance ofF 5 and its subfamilies.F 5 is
invariant underT(t) if the gauge-invariant parametersi are time independent. If in additioni3

5i45i750, the equations are invariant underGe(3). Thegenerator of time translations is rep
resented via a nonlinear operatorHnl , i ] tc5Hnl@c#, as in Eqs.~51! and ~52!, while all other
generators ofGe(3) are as usual represented linearly. Hence, one has a nonlinear representa
Ge(3) ~see also Refs. 8, 19, and 20!.

B. Gauge-generalized NLSE as a unification

Now we are ready to understand the connection between various proposals for nonlinea
to be added to the linear Schro¨dinger equation. Such terms have often been chosen in a phys
guided, butad hocway. Some proposed terms have been based directly on fundamental c
erations. Our attempt is of the latter type. Its foundation, the physical equivalence of theorie

TABLE I. Classification of subfamilies ofF 5 using gauge invariants.

i0 i1 i2 i3 i4 i5 i6 i7

F 0 3 3 0 0 0 0 0 0
F 1 3 3 0 0 0 0 3 3

F 3 3 3 3 0 0 3 3 3

F 5 3 3 3 3 3 3 3 3

TABLE II. Classification of subfamilies ofR5 using gauge invariants.

i1 i2 i3 i4 i5 i6 n1 m0

R0 3 0 0 0 0 0 3 3

R1 3 0 0 0 0 3 3 3

R3 3 3 0 0 3 3 3 3

R5 3 3 3 3 3 3 3 3
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the resulting group of nonlinear gauge transformations~together with gauge generalization an
gauge closure!, reflects some of the structure of quantum mechanics. Consequently the famiF 5

exhibits a common, fundamental basis for some of the proposed NLSEs. Let us consider s
the particular nonlinearities that have been proposed.

1. Logarithmic nonlinearity

Based on the observation that all linear evolution equations for physical quantities are k
to be approximations of nonlinear evolutions~except for the Schro¨dinger equation!, Bialynicki-
Birula and Mycielski3 added a~local! nonlinear termF(ucu2). They used the separation proper
to show thatF has to be logarithmic,F(ucu2)52b lnucu2. Their NLSE~the BM family! is

i\] tc5S 2
\2

2m
D1V2b lnucu2Dc. ~62!

This NLSE is contained inF 5 with

n15
\

2m
, m25

\

4m
, m352

\

2m
, m552

\

8m
, m05

1

\
, a152

b

\
, ~63!

and the other coefficients vanishing. Note that in order to obtain this logarithmic term in our g
generalization, we had to allow for a time-dependent group parameterg5g(t).

2. Nonlinearity proportional to the phase

One of many examples of a heuristic implementation of dissipation in quantum mechan
the approach by Kostin.2 Starting with a frictional term proportional to the expectation of t
momentum operator in the~second! Ehrenfest relation, Kostin motivated adding a nonlinear te
proportional to the phase ofc to the linear Schro¨dinger equation, i.e.~with f PR!,

i\] tc5S 2
\2

2m
D1V1

\ f

m
arg c Dc. ~64!

Kostin’s NLSE ~the K family! is contained inF 5 with

n15
\

2m
, m25

\

4m
, m352

\

2m
, m352

\

8m
, m05

1

\
, a25

f

m
, ~65!

and the other coefficients vanishing. To obtain this term in our approach, we had to assum
L5L(t) can be a function of time. Obviously, argc is not well defined; this is reflected in th
problem of gauge transformations withLÞ61, discussed in Sec. II C.

3. Nonlinearity from diffeomorphism group representations

The approach of Doebner and Goldin5,6 is motivated by fundamental considerations. T
generic kinematical symmetry algebraS(R3) on R3 is a semidirect sum of the Lie algebra of re
smooth functionsf PC`(R3), and the Lie algebra of vector fieldsXPVect(R3), or equivalently a
local current algebra onR3.21–23 Vect(R3) is the Lie algebra of a subgroup of the group
diffeomorphisms ofR3 ~diffeomorphisms trivial at infinity!. The functionsf PC`(R3) can be
interpreted physically as classical position observables and the vector fieldsXPVect(R3) as
classical kinematical momenta. Then a quantization mapQ represents the kinematical algeb
S(R3) by self-adjoint operators in the single particle Hilbert spaceH (1). Under physically mo-
tivated assumptions, all such representationsQ can be classified up to unitary equivalence by
real parameterD with the dimensionality of a diffusion coefficient@ length2/time#. The presence of
such a family of inequivalent representations reflects the richness of Vect(R3). The method can be
generalized to any smooth manifold.24–26
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To obtain some information about the evolution equation ofc, local probability conservation
~for pure states! is assumed,5 or a generalized first Ehrenfest relation is postulated.25,26 Then the
time-dependent probability density and current are related through an equation of Fokker–
type,

] tr52
\

m
¹–J1DDr. ~66!

This restricts the evolution equation ofc to the form

i\] tc5S 2
\2

2m
D1VDc1 i

\D

2

Dr

r
c1R@c#c, ~67!

where R@c# is an arbitrary real-valued~nonlinear! operator. The form of the pure imaginar
functional,Dr/r, is enforced. IfR@c# is assumed to be of a similar form, i.e., if it is~i! complex
homogeneous of degree zero,~ii ! a rational function with derivatives of no more than second or
occurring only in the numerator, and~iii ! invariant under the three-dimensional Euclidean gro
E(3), then a five-parameter family of NLSEs~the DG family! is obtained:

R@c#5\D8(
j 51

5

cjRj@c#, ~68!

with theRj as in Eq.~43!. Obviously this is a special case ofF 5 , wherea15a250 and all gauge
parameters are time-independent:

n152
\

2m
, n25

\D

2
, m05

1

\
, m15\D8c1 , m25\D8c22

\

4m
,

~69!

m35\D8c31
\

2m
, m45\D8c4 , m55\D8c51

\

8m
, a15a250.

The equation proposed by Guerra and Pusterla in connection with de Broglie’s double so
theory4 is contained in this family, withD50, c15c35c450, c552 1

2c2 .

V. SUMMARY

To summarize, we have taken a small step toward a nonlinear quantum theory which co
physically relevant by discussing nonlinear evolution equations derived from fundamental c
erations.

Under the assumption that all measurements are positional measurements performed
ferent times, we derived a group of nonlinear gauge transformationsG , including the usual linear
ones. Applying these transformations to a linear Schro¨dinger equation, we obtained nonline
ones, and after gauge generalization and gauge closure we reached a familyF 5 of nonlinear
Schrödinger equations. Certain subfamilies ofF 5 were motivated originally by different physica
ideas and different mathematical structures. ThusF 5 is a unification of these NLSEs: the BM
family, the K family, and the DG family. It is surprising, and also satisfying, when differ
structures and lines of reasoning yield the same or compatible results. This is an indicatio
these structures have a common origin. If there is some deeper reason for this, beyond th
generalization process described here, we have not yet unveiled it.

Moreover, our discussion may show how to circumvent some formal arguments agains
linear quantum theory put forth by Gisin and others;27–29 in connection with nonlocal effects, w
refer especially to Ref. 18. We have not touched on other problems of nonlinear quantum t
such as the concept of mixed states~see Ref. 16!, or discussed the physical interpretation of
~necessarily non-self-adjoint! nonlinear Hamiltonian.
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A rigorous real time Feynman path integral
Ken Looa)

P.O. Box 9160, Portland, Oregon 97207

~Received 24 June 1998; accepted for publication 21 September 1998!

Using improper Riemann integrals, we will formulate a rigorous version of the
real-time, time-sliced Feynman path integral for theL2 transition probability am-
plitude. We will do this for nonvector potential Hamiltonians with potential which
has, at most, a finite number of discontinuities and singularities. We will also
provide a Nonstandard Analysis version of our formulation. ©1999 American
Institute of Physics.@S0022-2488~99!03801-3#

I. INTRODUCTION AND NOTATIONS

In this paper, we will formulate a rigorous version of the real-time, time-sliced Feynman
integral for theL2 transition probability amplitude,

K f* ,expS 2 i tH̄

\
DcL

L2

5E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx, ~1.1!

wheref,cPL2, H5(2\2/2m)D1V(x) is essentially self-adjoint,H̄ is the closure ofH, andf,
c, V each carries, at most, a finite number of singularities and discontinuities. In favor of ph
literature, we will formulate the Feynman path integral with improper Riemann integrals. In
that with further research we can formulate a rigorous polygonal path integral, we will
provide a Nonstandard Analysis version of the Feynman path integral. Using Nonstandard
sis is not essential to our formulation, and the idea of using Nonstandard Analysis on the Fe
path integral is not a new concept. For readers interested in Nonstandard Analysis, and its
cations to Feynman path integrals, see Refs. 1–5 and references within. We will assume t
reader is familiar with Nonstandard Analysis.

In physics, the Feynman path integral is formulated on the propagator, and it is formally
by ~see Refs. 6–8!

Kt~x,x0!5 lim
k→`

wn,kE
R~k21!n

expF i e

\
Sk~x,...,x0!Gdx1¯dxk21 , ~1.2!

where

wn,k5S m

2ip\e D nk/2

, e5
t

k
,

~1.3!

Sk~x5xk ,...,x0!5(
j 51

k Fm

2 S xj2xj 21

e D 2

2V~xj !G ,
and all integrals are improper Riemann integrals.

In mathematics, there is a rigorous time-sliced Feynman path integral for the wave fun
~see Refs. 9 and 10!

a!Electronic mail: look@math.purdue.edu
640022-2488/99/40(1)/64/7/$15.00 © 1999 American Institute of Physics
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FexpS 2 i t

\ DcG~x!5 lim
k→`

wn,kE
Rkn

expF i e

\
Sk~x,...,x0!Gc~x0!dx0¯dxk21 , ~1.4!

where the integrals in~1.4! are improper Lebesgue integrals and their convergence is in thL2

norm. Other popular rigorous versions of the Feynman path integral are the Wiener integr~see
Refs. 11–14 and 10!, generalization of Fresnel integrals~see Ref. 15!, and Henstock integrals~see
Ref. 16!. For a more detailed exposition and further references, see Refs. 15 and 17.

Our main concern in this paper is to provide a rigorous version of~1.2! for the transition
probability amplitude given in~1.1! by using ~1.4!. We will show that for any essentially self
adjoint Hamiltonian with potential that carries a finite number of singularities and discontinu
and for anyf,cPL2 which also has a finite number of singularities and discontinuities
following holds:

E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx

5 lim
k→`

wn,kE
R~k11!n

f~xk!expF i e

\
Sk~xk ,...,x0!Gc~x0!dx0¯dxk . ~1.5!

In the last line of~1.5!, the integral is an improper Riemann integral overR(k11)n.
A trivial application of Nonstandard Analysis on thek limit in ~1.5! yields ~1.6!,

E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx

5stH wn,vE
* R~v11!n

f~xv!expF i e

\
Sv~xv ,...,x0!Gc~x0!dx0¯dxvJ , ~1.6!

where the integral in the last line of~1.6! is a * -transformed improper Riemann integral ov
* R(v11)n, andvP*N2N.

The main idea in the proof of~1.5! is the following. For simplicity, supposef (x)PL2(R),
g(x,y)PL2(R3R) are such that they are bounded and continuous. Further, suppose that b

h~x!5E
2a

b

g~x,y!dy,

~1.7!

p~x!5 lim
a,b→`

E
2a

b

g~x,y!dy

are in L2(R) as a function ofx. In ~1.7!, we take the integral to be Lebesgue integrals and
limits are taken independent of each other in theL2 topology. Notice that forp(x), we can
interpret the integral as an improper Lebesgue integral with convergence in theL2 topology. Let
us denotex@2c,d# to be the characteristic function on@2c,d#. Schwarz’s inequality then implies

U E
R

f ~x!p~x!2E
2c

d E
2a

b

f ~x!g~x,y!dx dyU<i f i2ip2hi21i f 2x@2c,d# f i2ihi2→0. ~1.8!

Thus, we can write

E
R

f ~x!p~x!5 lim
a,b,c,d→`

E
2c

d E
2a

b

f ~x!g~x,y!dx dy, ~1.9!
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where the limits are all taken independent of each other. Sincef andg are bounded and continu
ous, the Lebesgue integral over@2a,b#3@2c,d# in ~1.9! can be replaced by a Riemann integr
Since the limits are taken independent of each other, we can then interpret the right-hand
~1.9! as an improper Riemann integral. Iff andg carry singularities and discontinuities, care mu
be taken in the region of integration so that the replacement of the Lebesgue integral wit
mann integrals can be done.

We now set some notations to deal withn-dimensional integrations, singularities and disco
tinuities. LetkPN and 0< l<k. We will denote the interior of thelth box by

Al5~2a1
l ,b1

l !3¯3~2an
l ,bn

l !, ~1.10!

for positive and largea’s andb’s. Let K5$y1¯yp% be the set of discontinuous and singular poin
of f, c andV. For eachyq5(y1

q ,...,yn
q)PK, denote thelth box centered atyq by

Bq
l 5S y1

q2
1

c1
q,l ,y1

q1
1

d1
q,l D 3¯3S yn

q2
1

cn
q,l ,yn

q1
1

dn
q,l D , ~1.11!

for positive and largec’s andd’s. Let

Cl5Al2H ø
q51

p

Bq
l J . ~1.12!

For arbitrary largea’s, b’s, c’s andd’s, Cl is a box which encloses the setK and at each point of
K, a small box centered at that point is taken out. Associated withCl is a set of indices,

$ j l%5$a1
l ,...,an

l ,b1
l ,...,bn

l ,c1
1,l ,...,cn

1,l ,...,c1
p,l ,...,cn

p,l ,d1
1,l ,...,dn

1,l ,...,d1
p,l ,...,dn

p,l%.
~1.13!

We will denote by$ j l%→` to mean

a1
l ,...,an

l ,b1
l ,...,bn

l ,c1
1,l ,...,cn

1,l ,...,c1
p,l ,...,cn

p,l ,d1
1,l ,...,dn

1,l ,...,d1
p,l ,...,dn

p,l→`, ~1.14!

where all indices go to infinity independent of each other. Notice that as$ j l%→`, we recoverRn

a.e. from Cl . We will denote byx$ j l %
the characteristic function onCl . Notice that for f

PL2(Rn),

lim
$ j l %→`

x$ j l% f 5 f , a.e. ~1.15!

Last, let us write

D $J0
k%5C03¯3Ck. ~1.16!

Associated withD $J0
k% is a set of indices,

$J0
k%5 ø

l 50

k

$ j l%, ~1.17!

and as before, we will use the notation$J0
k%→` to mean

$ j 0%→`,...,$ j k%→`, ~1.18!

where the indices are taken to infinity independent of each other.
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From here on, we will assume thatf,cPL2 andV are such that they have, at most, a fin
number of singularities and discontinuities and the set of those points are denotedK
5$y1¯yp%. Finally, we will denote by* rO to be Riemann or improper Riemann integration ov
the regionO and*O to be Lebesgue integration over the regionO.

II. FEYNMAN PATH INTEGRALS

The standard derivation of~1.4! is via the Trotter product formula~see Refs. 9, 14, and 10!,
which says that for any essentially self-adjointH5H01V with H05(2\2/2m)D and anyc
PL2,

expS 2 i tH̄

\
Dc5 lim

k→`
H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

c, ~2.1!

where the limit is taken in theL2 norm.
Thus, we have the following.
Lemma 2.1: Suppose H5H01V is essentially self-adjoint. Letc,f P L2; then

E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx5 lim

k→`
E

Rn
f~x!F H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

cG~x!dx,

~2.2!

where the limit in~2.2! is taken pointwise int.
Proof: The proof is just an application of~2.1! and Schwarz’s inequality. h

It is well known that~see Refs. 9 and 10! for nPL1(Rn)ùL2(Rn),

FexpS 2 i eH0

\ D n G~x1!5S m

2ip\e D n/2E
Rn

expF ime

2\ S x12x0

e D 2Gn~x0!dx0 , ~2.3!

and that the operator exp(2ieH0 /\) is unitary. Thus, we can write

FexpS 2 i eH0

\ Dc G~x1!5FexpS 2 i eH0

\ D @ lim
$ j 0%→`

x$ j 0%c#G ~x1!

5 lim
$ j 0%→`

FexpS 2 i eH0

\ Dx$ j 0%c G~x1!

5 lim
$ j 0%→`

S m

2ip\e D n/2E
C0

expF ime

2\ S x12x0

e D 2Gc~x0!dx0 , ~2.4!

where the limits are taken inL2. Notice that by construction of the regionC0, c is bounded and
continuous onC0, hence the Lebesgue integral in the last line of~2.4! can be replaced by a
Riemann integral.

For notation convenience, we will denote

r~xk ,$J0
k21%!5wn,kE

D$J0
k21%

expF i t

~k11!\
Sk~xk ,...,x0!Gc~x0!dx0¯dxk21 ,

~2.5!

T5expS 2 i tV

k\ DexpS 2 i tH 0

k\ D , Tk5H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

.

Lemma 2.2: Suppose H5H01V is essentially self-adjoint. LetcPL2, then for kPN the
following holds:
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H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

c

5 lim
$J0

k21%→`

wn,kE
D$J0

k21%

expF i e

\
Sk~xk ,...,x0!Gc~x0!dx0¯dxk21 , ~2.6!

where the limits are taken in theL2 norm.
Proof: We will proof ~2.6! by induction. Supposek52; then~2.4! implies

T2c5TH lim
$J0

0%→`

r(x1 ,$J0
0%)J

5expS 2 i tV

2\ DexpS 2 i tH 0

2\ D H lim
$ j 1%→`

x$ j 1%F lim
$J0

0%→`

r(x1 ,$J0
0%) G J . ~2.7!

Since multiplication by a characteristic function exp(2itV/2\), and exp(2itH0/2\) are all con-
tinuous operators fromL2 to L2, we can take theL2 limits in ~2.7! outside of the operators and w
can do this in any order we wish. Hence,~2.6! is true fork52. Assuming~2.6! to be true fork,
then

Tk11c5expS 2 i tV

~k11!\ DexpS 2 i tH 0

~k11!\ D H lim
$ j k%→`

x$ j k%F lim
$J0

k21%→`

r~xk ,$J0
k21%!G J . ~2.8!

By the same reasoning as for the case ofk52, we can take all theL2 limits in ~2.8! outside of the
operators, and we can do this in any order we wish. Hence,~2.6! is true for allkPN. h

Proposition 2.3: Suppose H5H01V is essentially self-adjoint. Letc,fPL2; Let c, f, V be
such that they have at most a finite number of discontinuities and singularities then for
PN the following is true:

E
Rn

f~x!F H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

c G~x!dx

5wn,kE
rR~k11!n

f~xk!expF i e

\
Sk~xk ,...,x0!Gc~x0!dx0¯dxk . ~2.9!

Proof: Lemma 2.2 implies that

E
Rn

f(x)F H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

c G (x)dx

5wn,kE
RnH lim

$ j k%→`

x$ j k%f(xk)J
3H lim

$J0
k21%→`

wn,kE
D$J0

k21%

expF i e

\
Sk(xk ,...,x0)Gc(x0)dx0¯dxk21J dxk . ~2.10!
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We now apply the idea in~1.8! and~1.9!. Since all limits in~2.10! are taken independent of eac
other, we can use Schwarz’s inequality and take all theL2 limits outside of the integral as
pointwise limits. Thus,

E
Rn

f~x!F H expS 2 i tV

k\ DexpS 2 i tH 0

k\ D J k

c G~x!dx

5wn,k lim
$J0

k%→`

E
D$J0

k%

f~xk!expF i e

\
Sk~xk ,...,x0!Gc~x0!dx0¯dxk , ~2.11!

where the limits are pointwise int.
By construction ofD $J0

k% , the integrandf(xk)exp@(ie/\)Sk(xk ,...,x0)#c(x0) in ~2.11! is a

bounded and continuous function onD $J0
k% . Hence, we can replace the Lebesgue integrals

~2.11! by Riemann integrals. Since all limits in~2.11! are taken independent of each other, we c
interpret~2.11! as an improper Riemann integral. h

We are now ready to prove~1.5!.
Theorem 2.4: Suppose H5H01V is essentially self-adjoint. Letc,fPL2. Furthermore,

suppose thatc, f and V have, at most, a finite number of singularities and discontinuities. W
our previously defined notations, the following is true:

E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx

5 lim
k→`

wn,kE
rR~k11!n

f~xk!expF i e

\
Sk~xk ,...,x0!Gc~x0!dx0¯dxk . ~2.12!

Proof: Follows from Lemma 2.1 and Proposition 2.3. h

III. NONSTANDARD FEYNMAN PATH INTEGRALS

A trivial application of Nonstandard Analysis on theK limit in ~2.2! will produce ~1.6!. It is
our hope that with further research, a rigorous nonstandard polygonal path integral can be
lated.

Theorem 3.1: Suppose H5H01V is essentially self-adjoint. Letc,fPL2. Furthermore,
suppose thatc, f and V has, at most, a finite number of singularities and discontinuities. With
previously defined notations, the following is true:

E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx

5stH wn,vE
r* R~v11!n

f~xv!expF i e

\
Sv~xv ,...,x0!Gc~x0!dx0¯dxvJ , ~3.1!

where the integral in the last line of (3.1) is a* -transformed improper Riemann integral ove
* R(v11)n, and vP*N2N.

Proof: The nonstandard equivalent of Lemma 2.1 is that, for anyvP*N2N,

E
Rn

f~x!FexpS 2 i tH̄

\
DcG~x!dx5stH E

Rn
f~x!F H expS 2 i tV

v\ DexpS 2 i tH 0

v\ D J v

c G~x!dx.

~3.2!

After * -transforming Proposition 2.3, Eq.~3.1! follows from ~3.2!. h
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Second-order mixtures in relativistic Schro ¨ dinger theory
M. Mattes and M. Sorg
II. Institut für Theoretische Physik der Universita¨t Stuttgart,
Pfaffenwaldring 57, D 70550 Stuttgart, Germany

~Received 24 September 1997; accepted for publication 19 August 1998!

In relativistic Schro¨dinger theory the mixtures and pure states can be treated from
a unified point of view such that a pure state merely emerges as a special case of a
mixture. Here the concept of mixture is of purely local nature and therefore the
mixture character~degree of order! can change over space and time. Although the
general dynamics does not forbid the transitions from mixtures to pure states~and
vice versa!, the considered models do admit these transitions only in an asymptotic
sense. The general concepts and results are demonstrated by considering the four-
component Dirac theory for spinning matter over the Robertson–Walker universes.
A detailed study is made for a specific subclass of second-order mixtures sharing
many of their properties with the pure states~i.e., wave functions!. © 1999
American Institute of Physics.@S0022-2488~98!01312-7#

I. INTRODUCTION AND SURVEY

The right interpretation of quantum theory was a permanent point of concern for those p
who were not satisfied with merely extracting numerical predictions from the quantum forma
The recent controversy1 may be especially considered as further evidence for the fact tha
commonly accepted viewpoint among physicists exists about such fundamental questions
following.

~i! Are the true laws of physics time symmetric?~If yes, how do you then explain the time
asymmetric reduction of the wave function during the measuring process?!

~ii ! Is there some continuous dynamical process which links a pure state to a mixture
progression of time?

The last problem in particular, originally put forward by Schro¨dinger2 in the form of his famous
cat paradox, acquires more and more experimental relevance. The reason is that certain fea
the wave function~e.g., its phase! increasingly become accessible to experimental observa3

and this provides us with the certainty that physical systems can actually occur as pure state
in the macroscopic domain. Moreover, the experimental situation also supports Schro¨dinger’s
claim that the wave functionc must develop according to his famous equation

i\
]c

]t
5Ĥc. ~I.1!

On the other hand, it was already pointed out by von Neumann4 that not any quantum system
can be described by some wave function~or state vector! c, but rather must be characterized by
more general concept: the density matrixr̂. Its equation of motion was written down by vo
Neumann as

i\
dr̂

dt
5@Ĥ, r̂ #, ~I.2!

so that Schro¨dinger’s approach~I.1! was recovered as a special subcase hereof, namely whe
density matrix is composed of a single wave function only:

r̂→c ^ c̄. ~I.3!
710022-2488/99/40(1)/71/22/$15.00 © 1999 American Institute of Physics
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The density matrix approach to the quantum phenomena has received much credit~for a review
see, e.g., Ref. 5!, but nevertheless the pure states~to be described by a single wave function! must
retain their physical significance. In such a situation, one could have expected that some
theory would have been readily established so that one can predict when a pure state dec
a mixture~and vice versa!. Indeed there were a few attempts to construct such a combined th
which were especially aimed at the resolution of the well-known ‘‘quantum paradoxes,’’ e.g., the
Einstein–Podolsky–Rosen paradox~for a review, see Ref. 6!. However, it seems that the rela
tively moderate success of these attempts is due to the fact that some basic structural elem
the conventional quantum theory have been unduly distorted@e.g., Eq.~I.1! itself or the conser-
vation laws#. Thus it seems reasonable to look for a completely new modification of the con
tional theory so that its truly basic structure is preserved to a larger extent~albeit only in a more
formal respect!.

The present paper is concerned with such a completely new modification and prese
investigation of the relationships between mixtures and pure states within the framework
recently established relativistic Schro¨dinger theory.7–9 In particular, the smooth transitions from
mixtures into pure states~and vice versa! are considered in detail. Here, the original Schro¨dinger
equation~I.1! is replaced by its relativistic counterpart

i\cDmc5Hmc. ~I.4!

The ~gauge plus coordinate! covariant derivativeDm is defined as usual through

Dmcª]mc1Am•c, ~I.5!

where the anti-Hermitian gauge potentialAm(52Ām) generates the ‘‘field strength’’~i.e., bundle
curvature! Fmn in the standard way

Fmn5¹mAn2¹nAm1@Am , An#. ~I.6!

The HamiltonianHm , corresponding to Schro¨dinger’s Ĥ ~I.1!, is now aGL(N,C)-valued one-
form and acts upon theNf -component wave functionc as a section of the underlying comple
vector bundle. However, contrary to Schro¨dinger’sĤ, the present relativistic HamiltonianHm is
itself a dynamical object to be first determined from its field equations. These consist o
‘‘ integrability condition’’

DmHn2DnHm1
i

\c
@Hm , Hn#5 i\cFmn ~I.7!

and of the ‘‘conservation equation’’ which reads in the present case of the four-component Di
theory (Nf54)

gm
•Hm5Mc2

•1. ~I.8!

Clearly,M is the mass parameter and the objectsgm(m50,1,2,3) are the Dirac matrices generati
the Clifford algebraC~1,3! over pseudo-Riemannian space–time. Thus, any solutionc(x) of the
relativistic Schro¨dinger’s equation~I.4! also obeys the Dirac equation

igmDmc5mc, S mª

Mc

\ D . ~I.9!

After Schrödinger’s ideas have thus been incorporated into the new framework, let us
turn to von Neumann’s equation~I.2!. ~The equation of motion for the field strengthFmn is of the
Yang–Mills type not to be considered here.! The relativistic analog ofr̂ is the ‘‘intensity matrix’’
I and obeys the following equation of motion:

i\cDmI5@Hm•I2I•H̄m#. ~I.10!
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Observe here that the Hamiltonian in general, will not be Hermitian (HmÞH̄m), but nevertheless
the conservation laws do apply. For instance, consider the continuity equation

¹m j m50, ~I.11!

and define the current densityj m through

j m5tr ~I•gm!, ~I.12!

resp. for the case of a pure state

j m5c̄•gm•c, ~I.13a!

~I→c ^ c̄ !. ~I.13b!

Now carry through the differentiation process~I.10!, i.e.,

¹m j m5tr „gm~DmI!…, ~Dmgn[0!. ~I.14!

Furthermore, observe the relativistic von Neumann equation~I.10! as well as the conservatio
equation~I.8! and then find that the continuity equation~I.11! actually is valid. Thus, we simul-
taneously can attain the relativistic realization of both Schro¨dinger’s and von Neumann’s idea
together with the validity of the conservation laws!

Thus, Hermiticity of the Hamiltonian is not necessary and not even desirable for the pr
approach, contrary to the nonrelativistic Schro¨dinger theory~whereĤ5Ĥ1). Neither is the Her-
miticity of the Hamiltonian in our theory needed for obtaining real energy eigenvalues becau
nonrelativistic concept of energy eigenvalue must in any case be incorporated into a more g
relativistic context. Consequently, the ‘‘energy’’ will emerge here by solving the nonlinear
equations for the HamiltonianHm ~see below!, but not by solving some linear eigenvalue proble
for Hm which, in fact, would have required its Hermiticity. It is well known for the nonrelativis
approach that it is just the Hermiticity of the HamiltonianĤ which forbids the possibility of
transitions from mixtures into pure states~and vice versa!.10 However, since the relativistic Hamil
tonianHm is not Hermitian, it becomes possible in relativistic Schro¨dinger theory~RST! to study
those transitions between mixtures and pure states. More precisely, one expects that a p
system may be a true mixture over one part of space–time@→generalI(x)#, but may be in a pure
state~I.13b! in some other part. The purely temporal transitions have been studied for a
Higgs doublet in a preceding paper,9 and it has been found that a mixture cannot evolve into a p
state, except if one admits the existence of a ‘‘Fierz potential.’’ Such a potential minimize
energy of the system for the pure states but equips the mixtures with an additional energy c
Although the system is pressed into a pure state by such a potential, the pure-state config
could be attained only asymptotically after sufficiently large expansion of the universe.

In the present paper, we are concerned with the analogous questions for Dirac’s the
spinning matter; especially we want to know whether RST admitsspatial changes of the mixture
character.

First, in Sec. II we present a collection of the kinematical properties of the pure states~i.e.,
Dirac spinors! which are most concisely expressed by the well-known Fierz identities for
physical densities@see Eqs.~II.5a!–~II.5c!#. From this presentation arises a natural classification
the mixtures in terms of their ‘‘degree of order’’ N8(>1) so that the pure states appear
‘‘mixtures of orderN851.’’ Such a unified view of mixtures and pure states is convenient for
study of transitions between different order parametersN8! Moreover, it thus becomes obviou
that for any orderN8 there must exist the corresponding generalization of the Fierz identitie

In Sec. III we introduce the deviation operatorDF ~‘‘ deviator’’ ! which measures the deviatio
of a mixture from a pure-state configuration@see Eq.~III.1!#. For the Dirac fiber dimensionNf

54 there arise 434516 deviation fields$DF ,D̃F ,Dm ,D̃m ,Dmn%. It turns out that there is a specia
subclass ofsecond-order mixtures(N852) whose kinematic structure is especially similar to th
of the pure states and which is characterized by vanishing tensor deviation (Dmn[0). For in-
stance, the polarization densitySmn is the same as for the pure states, if expressed in terms o
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scalar and vector densities@see Eq.~II.5c!#, and, moreover, the remaining deviation fields can
be parametrized by the single scalarDF . Thus forDF50 one can be sure to deal with a pure sta
Because of these nice properties, such a mixture is chosen for the subsequent investigatio

In Sec. IV we present the dynamical equation for the deviatorDF @see Eq.~IV.1!#. Clearly,
any pure state (DF[0) must fit into this equation of motion, otherwise it could not be the fi
stage of a mixture. However, this does not guarantee thestability of the pure states and thi
question cannot be settled here in full generality.

In Sec. V the fiber distributions are studied in terms of projectors. The latter object
relevant for the relationship between mixtures and pure states because any pure state is as
to some one-dimensional projector. Thus it becomes important to elaborate the field equat
the projectors@see Eqs.~V.3a!–~V.3b!#.

In Sec. VI we specify our model Hamiltonian for the subsequent investigation of the sp
time behavior of the second-order mixtures@see Eq.~VI.1!#. It is true that this Hamiltonian may
appear somewhat unsuitable for the present purpose because it originally was set up to d
the homogeneous and isotropic matter distributions in agreement with the cosmological prin7

However, it turns out that this Hamiltonian can also account for SO~3! symmetric, localized matte
distributions which are then used in Sec. VII for the study of the spatial behavior of mixt
Concerning their temporal evolution, the selected class of Hamiltonians forbids the transitio
a pure state and the situation is somewhat similar to the previous case of the Klein–Gordon–
fields.9

In the final section~Sec. VII!, the difference between mixtures and pure states is elabor
with respect to some specific spatial pattern. As expected, the relativistic von Neumann eq
~I.10! admits more physically meaningful configurations than the Schro¨dinger equation~I.4!. For
instance, for the considered SO~3! symmetric configuration the wave functionc(x), as a solution
of ~I.4!, would develop a singularity at the symmetry center and therefore would forbid
whereas the more general equation~I.10! admits mixtures with completely regular behavior.

II. FIRST-ORDER IDENTITIES

In Dirac’s one-particle theory, the wave functionc(x) is some section of a complex vecto
bundle over pseudo-Riemannian space–time with the complex vector spaceC4 as typical fiber.
Such a fiber space admits the existence of 16 Hermitian operators~m50,1,2,3!, namely1, gm,
«5(1/4!)«mnlsgmgnglgs, g̃m5«•gm, andSmn5 1

4@gm, gn#. Any other Hermitian operator es
sentially is a linear combination of these basic elements e.g.,

* Smn
ª2«•Smn5 1

2 «mn
lsSls ~II.1!

or

$Smn,gl%[Smngl1glSmn5«s
mnlg̃s. ~II.2!

These~and similar! relations may easily be verified by referring to the defining equations of
Clifford algebraC~1,3!,

gm•gn1gn•gm52gmn•1, ~II.3!

with gmn denoting the pseudo-Riemannian metric tensor.
As soon as a vector sectionc(x) is at hand together with these operator sections, one

immediately form the corresponding physical densities, i.e.,

r~x!ªc̄•c, ~II.4a!

r̃~x!ªc̄•«•c, ~II.4b!

j m~x!ªc̄•gm•c, ~II.4c!
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j̃ m~x!ª i c̄•g̃m•c, ~II.4d!

Smn~x!ª
i

2
c̄•Smn•c. ~II.4e!

Since these 16 real densities have been built up by the four-component wave functionc, there
must exist certain constraints among them, the ‘‘Fierz identities.’’ 11,12 In compact notation, these
relations read

j m j m[2 j̃ m j̃ m[r21 r̃ 2, ~II.5a!

j m j̃ m[0, ~II.5b!

Smn[
1

4

r̃

r21 r̃ 2
@ j m j̃ n2 j n j̃ m#2

1

4

r

r21 r̃ 2
«mnls j l j̃ s. ~II.5c!

Further relationships between the densities are immediately deduced hereof, e.g., thevector iden-
tities

r̃ j m[24Smn j̃ n, ~II.6a!

r̃ j̃ m[24Smn j n, ~II.6b!

r j̃ m[24* Smn j n, ~II.6c!

r j m[24* Smn j̃ n, ~II.6d!

~* Smnª
1
2«mnlsSls!,

the scalar identities

* SmnSmn[2 1
4 rr̃, ~II.7a!

SmnSmn5 1
8~r22 r̃ 2!; ~II.7b!

or the tensoridentities

SlmSn
l[ 1

16~r2gmn1 j̃ m j̃ n2 j m j n!. ~II.8!

@Hint: Check the consistency of the scalar identity~II.7b! with the tensor case~II.8! by contracting
the latter equation with the metric tensorgmn, etc.#. Concerning the number of independent fie
degrees of freedom, we observe that the nine constraints~II.5a!–~II.5c! for the 16 densities
~II.4a!–~II.4e! leave us with seven independent field variables which are represented by th
complex components of the spinor fieldc minus an irrelevant U~1! phase factor dropping out o
the bispinor densities. In view of this circumstance, it is convenient to reparametrize th
densitiesr, r̃, j m , j̃ m by ten other variables in such a way that the three constraints~II.5a!1~II.5b!
are automatically satisfied. Choosing here the ten new variables as the scalar densityr itself,
further some orthonormal tetrad$bm ,ĝm ,p̂m ,l̂m% with its six degrees of freedom

bmbm52ĝmĝm52p̂mp̂m52l̂ml̂m511, ~II.9a!

bmĝm5bmp̂m5ĝml̂m5¯50, ~II.9b!

and three additional scalar fieldsz, k, x, the reparametrization looks as follows:

r̃5zr sinh 2k sin x, ~II.10a!
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j m5r~cosh 2kbm1sinh 2k@ ĝm•cosx1p̂m~12z2!1/2
•sin x#!, ~II.10b!

j̃ m52r~z sinh 2k•cosxbm1z cosh 2k•ĝm1~12z2!1/2
•l̂m!. ~II.10c!

The polarization densitySmn ~II.5c! is then easily found by use of the results~II.10a!–~II.10c! but
need not be reproduced here~cf. Ref. 13!.

Clearly, the Fierz identities~II.5a!–~II.5c! with all its implications do apply only because th
physical densities~II.4a!–~II.4e! have been constructed by means of the wave functionc. How-
ever, the very concept of a ‘‘wave function’’c can easily be generalized to the notion of ‘‘inte
sity matrix’’ I which accounts for the simultaneous presence of several wave functions.
purely formal respect, this generalization process is mathematically equivalent to the replac
of the state vectoruc& by the intensity matrixr̂ in nonrelativistic quantum mechanics.14 For the
present context one observes that the physical densities~II.4a!–~II.4e! can be generated also in th
following alternative way: first form the tensor product of the wave functionc and its Hermitian
adjoint c̄

I5c ^ c̄ ~II.11!

and then find the physical densities in terms of the intensity matrixI ~II.11! as

r5tr ~I•1!, ~II.12a!

r̃5tr ~I•«!, ~II.12b!

j m5tr ~I•gm!, ~II.12c!

j̃ m5 i tr ~I•g̃m!, ~II.12d!

Smn5
i

2
tr ~I•Smn!. ~II.12e!

Of course the Fierz identities~II.5a!–~II.5c! are still valid here, because both densities~II.4a!–
~II.4e! and ~II.12a!–~II.12e! are identical, but the identities can now be recast into the com
form

I 25rI ~II.13!

with the intensity matrixI being given by15

I5 1
4~r•12 r̃•«1 j mgm2 i j̃ mg̃m14iSmnSmn!. ~II.14!

@Hint: Check the consistency of this new operator form~II.13! for the Fierz identities by action
upon the wave functionc which is an eigenvector ofI with eigenvaluer, i.e., I•c5rc#.

However, once we are equipped with an intensity matrixI as a Hermitian operator~I5Ī !
over the fiber spaceC4, we can construct the physical densities~II.12a!–~II.12e! also in those
cases whereI is built up by more than one single wave function

I5c1^ c̄11c2^ c̄21¯ ~II.15!

(c1 ,c2 ,... being neither orthogonal nor normalized in general!. However, as a consequence
this generalization, the Fierz identity~II.13!, or ~II.5a!–~II.5c! resp., will no longer apply as i
stands. Is it possible that those constraints~II.5a!–~II.5c! survive in some generalized form co
responding to the generalized intensity matrixI ~II.15!? Obviously, it becomes desirable to su
divide the whole set of all possible intensity matrices into different classes, being characteriz
some ‘‘degree of order’’N8, so that for anyN8<Nf ~presentlyN54) there exists the correspond
ing ‘‘ Fierz identity of order N8’’ for the physical densities~II.12a!–~II.12e!. The desired classi-
fication is obtained in a most natural way by identifying theorder parameter N8 with the number
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of nonzero eigenvalues of the intensity matrixI. Thus the previous case~II.13!, from which we
started off, has order parameterN851 ~‘‘ pure state’’ !. For N8.1 we have a ‘‘mixture.’’

For N8.1 the first-order identities~II.5a!–~II.5c! are generalized in some way, but whenev
some nonzero eigenvalue for a higher-order mixture tends to zero, the physical densities m~at
least asymptotically! obey the Fierz identities of the next lower order. In this sense the disc
order parameterN8 can undergo a~discontinuous! change. Clearly, such a specific process rep
sents some kind of intrinsic transition of the physical system and must be expected to be a
panied by some singular effects. In order to see this phenomenon in some more detail, we
consider the transition of a second-order mixture (N852) into a pure state (N851). By the very
definition of the second order, there must existtwo nonzero eigenvalues ofI, sayze andhe :

I•c5zec, ~II.16a!

I•f5hef. ~II.16b!

@SinceI is ~pseudo-!Hermitian,I5Ī, the eigenvaluesze , he are real.# Consequently, thesecond-
order generalization of thefirst-order identities~II.13! must read

I 32~ze1he!I 21~ze•he!I[0. ~II.17!

@Hint: Convince yourself by applying this operator relation to the eigenvalue system~II.16a! and
~II.16b!.# Now, remember here that the sum of the eigenvalues must always equal the tr
~II.12a! of the intensity matrixI, i.e.,

ze1he[r. ~II.18!

However, this result recasts the second-order identity~II.17! into the following form:

I 32rI 21~ze•he!I[0. ~II.19!

~For expressing the product of eigenvalues in terms of the physical densities, see below.! Now it
may be possible that in some region of space–time~distant past or future, say! one of the eigen-
values tends to zero and the other to the densityr, according to Eq.~II.18!. For such a situation the
second-order identity~II.19! leaves us with the truncated form

I 32rI 2[0, ~II.20!

which immediately leads us back to the first-order identity~II.13!. Thus we see that the degree
orderN8 is truly indicated by the corresponding Fierz identities for the physical densities.

After the kinematics of those order transitions has been settled, we next have to in
whether they are really admitted by the dynamics of the system.~In conventional quantum theor
they are forbidden.! In parlicular, one would like to know whether the dynamics equips
mixtures or the pure states with a higher stability. For a Higgs doublet of scalar fields~i.e., Nf

52), the pure states have already been shown to be unstable9 and this leads us to study a simila
question for the spinor fields. However, before turning to the general equation of motion,
first look for a convenient parametrization of the second-order mixtures in order to get
variable measuring the ‘‘distance’’ from a pure state.

III. SECOND-ORDER MIXTURES

The most general mixture evidently is encountered when the degree of order (N8) coincides
with the ‘‘degree of complexity’’ (Nf), i.e., when the number of nonzero eigenvalues ofI agrees
with the fiber dimensionNf and thus the intensity matrix is regular~detIÞ0!. If the physical
system tends now to adopt all the properties of a pure state, there may exist various ro
ultimately reach such a state. For instance, the order parameterN8 could be lowered successivel
by one unit until the pure state valueN851 is reached, orN8 may continue to equalNf during the
‘‘distance’’ from the final pure state shrinks to zero. Conversely, if at the beginning the syst
                                                                                                                



f such a
d some

ties as

a

ing
are

rtheless

78 J. Math. Phys., Vol. 40, No. 1, January 1999 M. Mattes and M. Sorg

                    
already in a pure state, one wants to know whether the dynamics admits the persistence o
special state or whether the pure state has to decay into a mixture. In any case we nee
measure over the configuration space for those deviations.

For that purpose, we define thedeviation operator~‘‘deviator’’ 9! DF through

DF5rI2I 2, ~III.1!

so that the pure states are uniquely characterized by the vanishing ofDF . Like any operator over
the typical fiberCN, DF may be decomposed with respect to the basic operators, i.e., forNf54,

DF51
4~DF•12D̃F•«1Dmgm2 i D̃mg̃m14iDmnSmn). ~III.2!

The deviation densities occurring here are then easily found in terms of the physical densi

DF[tr ~DF•1!5 1
4~3r21 r̃ 22 j m j m1 j̃ m j̃ m28SmnSmn!, ~III.3a!

D̃F[tr ~DF•«!5 1
2~rr̃14* SmnSmn!, ~III.3b!

Dm[tr ~DF•gm!5 1
2~r j m14* Smn j̃ n!, ~III.3c!

D̃m5 i tr ~DF•g̃m!5 1
2~r j̃ m14* Smn j n!, ~III.3d!

Dmn5 1
2~rSmn2 r̃* Smn1 1

4«mnls j l j̃ s!. ~III.3e!

Clearly, all the deviation fieldsDF , D̃F , Dm , D̃m , Dmn must vanish whenever the system is in
pure state, i.e., when the Fierz identities for the physical densities~II.5a!–~II.5c! do apply.@Hint:
Check this by use of the implications~II.6a!–~II.8!#. Observe here again that though the vanish
of all the deviation fields~III.3a!–~III.3e! is equivalent to the existence of a pure state, there
further deviation variables not being contained in the set~III.3a!–~III.3e!. For instance, it is easily
verified that for a pure state also the following deviations have to vanish:

Dm8ª
1
2~ r̃ j̃ m14Smn j n!, ~III.4a!

D̃m8ª
1
2~ r̃ j m14Smn j̃ n!, ~III.4b!

Zmnª j m j n2 j̃ m j̃ n2r2gmn116SmlSn
l . ~III.4c!

Here the situation is somewhat similar to that for the Fierz identities~II.5a!–~II.5c! which them-
selves are the necessary and sufficient conditions for the existence of a pure state but neve
admit the additional identities~II.6a!–~II.8!.

Now we want to restrict ourselves to mixtures of thesecondorder. Here the intensity matrix
I obeys the algebraic condition~II.17!. Eliminating from that equationI 2 in favor of the deviator
DF yields

$I,DF%52zehe•I, ~III.5!

or in coefficient form

~DF24zehe!r2 r̃D̃F1Dm j m2D̃m j̃ m28DmnSmn50, ~III.6a!

~DF24zehe!r̃1rD̃F28Dmn* Smn50, ~III.6b!

~DF24zehe! j m1rDm24* SmnD̃n24* Dmn j̃ n50, ~III.6c!

~DF24zehe! j̃ m1rD̃m24* SmnDn24* Dmn j n50, ~III.6d!

~DF24zehe!Smn1D̃F* Smn1 r̃* Dmn1rDmn1 1
4«mnls~ j̃ lDs2 j lD̃s!50. ~III.6e!
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Finally, after expressing here the product of the eigenvalues in terms of the physical and de
densities by taking the trace in Eq.~III.5!,

DF24•zehe5
1

r
~r̃D̃F1Dm j m2D̃m j̃ m18DmnSmn! ~III.7!

then leaves us with a certain set of identities~III.6a!–~III.6e! which are generally valid for all
mixtures of the second order. Obviously, these ‘‘Fierz identities of second order’’ ~III.6a!–~III.6e!
are nothing else than a set of constraints between the 16 deviation variablesDF , D̃F , Dm , D̃m ,
Dmn .

For our subsequent investigation of the transitions between mixtures and pure states we
only want to restrict ourselves to the present second-order mixturesNf54 andN852, but we
additionally confine the discussions to those cases where the deviation tensorDmn ~III.3e! vanishes
identically: Dmn[0. Here, it immediately follows from the very definition~III.3e! that the polar-
ization densitySmn adopts just that form for a pure state, cf.~II.5c!. Clearly the idea is that if
transitions from mixtures into pure states are possible, then they should be observable mos
for those situations where the mixture is already as ‘‘close’’ as possible to the pure state. W
defining a rigorous measure for this ‘‘closeness,’’ one surely may expect that the closer a m
is to a pure state, the more identities of the first order are satisfied. In this sense, our
Dmn[0 for a second-order mixture (N852) has put us already fairly ‘‘close’’ to the pure state
The pure states can differ from these specific second-order mixtures (Dmn[0) only through the
invalidation of the first two identities~II.5a! and~II.5b!! However, this implies that all the remain
ing deviation variables can be expressed in terms of three scalar deviation parameters (a0 , ã1 , and
a2 , say!.

A convenient choice for these parameters is the following:

a05
j m j m

r21 r̃ 2
21, ~III.8a!

ã15
j m j̃ m

r21 r̃ 2
, ~III.8b!

a25
j̃ m j̃ m

r21 r̃ 2
11. ~III.8c!

However, the situation becomes even further simplified because the second-order ide
~III.6a!–~III.6e! impose the following constraint:

a0•a25ã 1
2. ~III.9!

Consequently, we need only two parameters (a0 ,a2) for rewriting the remaining deviation field
~III.3a!–~III.3e!:

DF5 1
2r

2~a22a0!, ~III.10a!

D̃F5
1

2
rr̃~a22a0!5

r̃

r
DF , ~III.10b!

Dm5 1
2r~a2• j m2ã1• j̃ m!, ~III.10c!

D̃m5
1

2
r~ ã1• j m2a0 j̃ m!5

a0

ã1
Dm . ~III.10d!

Moreover, the product of eigenvalues~III.7! is found in terms of the new parameters as
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ze•he5 1
4r

2~a22a0![ 1
2DF , ~III.11!

or, similarly, the additional deviation fields~III.4a!–~III.4c! read now

Dm8 5
1

2
r̃~ ã1• j m2a0 j̃ m!5

r̃

r
D̃m , ~III.12a!

D̃m8 5
1

2
r̃~a2• j m2ã1• j̃ m!5

r̃

r
Dm , ~III.12b!

Zmn5a2• j m j n1a0 j̃ m j̃ n2ã1~ j m j̃ n1 j n j̃ m!1~a02a2!r2gmn . ~III.12c!

Summarizing, we can say that there are specific mixtures of the second order (N852) which
are characterized by only two scalar deviation degrees of freedom~i.e.,a0 anda2) and thus it may
be expected that the deviation dynamics~for the transition between mixtures and pure states! will
be cut down to an effectively two-dimensional problem. It is very instructive to see in some
detail to what extent the present second-order mixtures differ, if at all, from the pure states. T
end, we start with the observation that all the deviation vectors point into the same four-dire
cf. ~III.10d!, ~III.12a!, and~III.12b!. Thus, let this common direction be denoted by the timel
unit vector fieldbm(→bmbm511),

Dm5abm . ~III.13a!

One directly concludes from the reparametrizations~III.10a!–~III.10d!

~r21 r̃ 2!bm5I • j m2 Ĩ • j̃ m , ~III.13b!

where we have put

Iªbm j m , ~III.14a!

Ĩªbm j̃ m . ~III.14b!

Now multiply through the new result~III.13b! by bm and find the scalar relationship

r21 r̃ 25I 22 Ĩ 2. ~III.15!

On the other hand, look at the pure-state densities~II.10a!–~II.10c! and find that the latter relation
~III.15! also holds for those pure states which havez51. As a consequence, the interrelationsh
between the present second-order mixtures (Dmn[0) and thez51 subset of pure states is thre
fold: both configurations

~i! share the same form of the polarization densitySmn , cf. ~II.5c!,
~ii ! are characterized by a timelike unit vectorbm , and
~iii ! obey the same scalar relationship~III.15!.

It does not seem possible to find mixtures which have more than these threestructuralelements in
common with the pure states! For later purpose, the situation may even be made somewh
transparent by reformulating the deviation fields in terms of the new elementsbm and a of
~III.13a!. Here the new factora is found to be related to the former deviation parameters~III.8a!–
~III.8c! through

a5
1

2

r

Ĩ
~r21 r̃ 2!ã15

1

2

r

I
~r21 r̃ 2!a25

1

2

I •r

Ĩ 2 ~r21 r̃ 2!a0 , ~III.16!

and this yields the desired result, namely,
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DF5
r

I
a, ~III.17a!

Dm5abm5
I

r
DFbm , ~III.17b!

D̃m5
Ĩ

I
Dm5

Ĩ

r
DFbm , ~III.17c!

Dm8 5
r̃• Ĩ

r2
DFbm , ~III.17d!

D̃m8 5
r̃•I

r2
DFbm , ~III.17e!

Zmn5
2

r2
DF@~r21 r̃ 2!bmbn2r2gmn#. ~III.17f!

Indeed, this is a nice result because it says that all the relevant deviation fields are proporti
the scalar deviationDF so that they must tend to zero if onlyDF does ~→ pure state!. As a
consequence, we merely have to look for one single dynamical equation~for DF , namely! in order
to describe the transition dynamics for mixtures and pure states.

IV. DEVIATION DYNAMICS

Once the kinematical presumptions have been settled, one can now take the next step
the central question of whether the dynamics will admit the transitions between mixtur
different orderN8. Of course the integerN8 cannot change continuously but a transition betwe
different ordersN8 may be understood in the sense that some of the nonzero eigenvalues
intensity matrixI become infinitely small~albeit not exactly zero!, or conversely, an initially very
small eigenvalue raises to the order of magnitude of the others. It must be expected that the
to the questions of this kind will strongly depend upon the specific dynamics to be applied
intensity matrixI. The proper choice of dynamics~Sec. VI! has already been attained throug
some previous work7,16 and therefore it need not be further discussed here. Instead, let us re
try to transfer the equation of motion for the intensity matrixI of ~I.10! to the general deviatorDF

of ~III.1! and see whether there arises a homogeneous or an inhomogeneous equationDF .
Clearly, if we find a homogeneous equation, there exists a permanently pure state (DF[0) as a
solution of the equation of motion whereas in the inhomogeneous case the inhomogeneity w
as a force driving the initially pure state (N851) into the configuration space of the mixture
N8.1. Evidently this leads to the question of stability of the pure states with respect to their
into a mixture.

Thus the dynamical equation for the deviatorDF(I ) in ~III.1! is deduced from the origina
equation of motion~I.10! as

DmDF5
i

\c
@DF•H̄m2Hm•DF#1$Lm ,DF%1Em . ~IV.1!

Here, the HamiltonianHm has been split up into its~anti-! Hermitian constituentsKm , Lm as
usual,

Hm5\c~Km1 iLm!, ~IV.2!

and the inhomogeneous termEm on the right of~IV.1! is found in terms of the ‘‘localization field’’
Lm as
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Em5†I, @I, Lm#‡1I•tr $I,Lm%2$I,Lm%•tr I. ~IV.3!

Now, as a consequence of the emergence of the inhomogeneityEm , it may appear that the
permanency of a pure state (DF[0) would not be admitted by the deviation dynamics~IV.1!.
However, we have to remember here that the characterization of a pure state by the vanis
the deviatorDF([0) entails further identities, e.g., Eqs.~III.4a!–~III.4c!. Therefore one canno
exclude that the inhomogeneous termEm in ~IV.3! eventually is built up completely by thos
secondary deviation objects which, in fact, are not contained in the original set of deviation
~III.3a!–~III.3e!, but nevertheless ensure the vanishing of the inhomogeneous termEm for the case
of a pure state.

Let us inspect this supposition in more detail for Dirac’s spinor field (Nf54). Here the
C~1,3!-valued localization fieldLm is decomposed with respect to the basis operators, menti
at the beginning of Sec. II, according to

Lm5Lm•11L̃m•«1Llmgl1 i L̃ lmg̃ l1 iL lsmSls, ~IV.4!

where the coefficientsLm , L̃m , etc. are ordinary tensor fields. However, since the inhomogen
Em ~IV.3! is linear with respect to the localization fieldLm ,

Em5E~Lm!5Lm•E~1!1L̃m•E~«!1Llm•E~gl!1 i L̃ lm•E~ g̃ l!1 iL lsmE~Sls!, ~IV.5!

it is sufficient for its vanishing that the value ofE upon any one of the basis operators be zero,

E~1!5E~«!5E~gl!5E~ g̃l!5E~Sls!50. ~IV.6!

Indeed, the case for the identity operator is trivial:E~1![0; next for the pseudo-scalar cas
one finds with a little bit of Clifford algebra and by use of the intensity matrixI in ~II.14!,

E~«!:5†I, @I, «#‡1I•tr $I,«%2$I,«%•tr I

5
1

4
„ j l j l2 j̃ l j̃ l22~r21 r̃ 2!…•«1

1

2
D̃m8 •gm2

i

2
Dm8 •g̃m14i * Dmn•Smn. ~IV.7!

However, remember here the first-order identities~II.5a! as well as the vanishing of the deviatio
fieldsDmn @~III.3e!#, Dm8 @~III.4a!#, andD̃m8 @~III.4b!# for a pure state and thus actually findE~«![0
as required by Eq.~IV.6!. Quite similar arguments do apply also to the vector inhomogeneity,

E~gm!ª†I, @I, gm#‡1I tr $I,gm%2$I,gm%•tr I

52 1
2 D̃8m

•«1 1
4 ~ j n j n2r22 r̃ 2!•gm1 1

4 Zn
m

•gn2
i

4
~ j n• j̃ n!•g̃m24i * Dn

m
•g̃n2 iDn8•Smn22i D̃n•* Snm. ~IV.8!

Observe here again that all the coefficient fields must vanish for a pure state either on a
of the first-order identities~II.5a! and ~II.5b! or because they directly coincide with one of th
deviation fields~III.3a!–~III.3e! or ~III.4a!–~III.4c!. Thus we actually end up again withE(gm)
[0 in agreement with the claim~IV.6!. Finally, it can be shown by quite similar arguments th
the two remaining objects of inhomogeneityE(g̃m) andE(Smn) do indeed also vanish for a pur
state, but for the sake of brevity the corresponding formulas are not reproduced here. What
important lies in the fact that the inhomogeneous termEm in ~IV.3! alwaysvanishes for a pure
state and thereforeDF[0 becomes an exact solution of the deviation dynamics~IV.1!.

However, even if we have to concede now the theoretical persistency of the pure sta
remains to be clarified whether the pure states are stable or unstable configurations. The qu
computation for a Higgs doublet of scalar fields (Nf52) have shown that the pure state subma
fold of the configuration space for the physical densities~i.e., the ‘‘Fierz cone’’ ! is equipped with
some repulsive potential of singular nature.9 As a consequence, a pure-state configuration co
never be reached exactly. Thus, the repulsive potential appears as the physical counterpa
                                                                                                                



is
onnec-

es de-
ing a

f

e in

re
nishing
iti-

the

83J. Math. Phys., Vol. 40, No. 1, January 1999 M. Mattes and M. Sorg

                    
mathematical fact which says that an integer (N8) cannot change continuously. It is just from th
purely formal reason that one tends to believe the repulsive phenomena occurring also in c
tion with the present spinor fields.

For the subsequent study of this effect we return again to those second-order mixtur
scribed in the preceding section. Moreover, we further simplify the situation by consider
Dmn50 mixture which admitted the introduction of some unit vector fieldbm @~III.13a!# and
finally led to that specific form of the deviation fields@see Eqs.~III.17a!–~III.17f!#. As a conse-
quence, the deviatorDF in ~III.2! also adopts a very specific shape, namely,

DF5 1
2 DF•Pi , ~IV.9!

and thus becomes proportional to some two-dimensional projectorPi :

Pi5
1

2 S 12
r̃

r
«1

I

r
b2 i

Ĩ

r
b̃ D , ~IV.10!

i.e.,

Pi•Pi5Pi , ~IV.11a!

tr Pi52. ~IV.11b!

These projector properties are easily verified by observing the constraint~III.15! together with the
fact that the corresponding operators$1,«,bªbmgm ,b̃ªbmg̃m% obey a very simple subalgebra o
C~1,3!, namely,

b•b5b̃•b̃52«•«511, ~IV.12a!

«•b52b•«5b̃, ~IV.12b!

«•b̃52b̃•«52b, ~IV.12c!

b̃•b52b•b̃5«. ~IV.12d!

Clearly the projectorPi in ~IV.10! is nothing else than the identity operator for that subspac
which the intensity matrixI is living in, i.e.,

Pi•I5I. ~IV.13!

Here, it is a nice check to reassure that all the algebraic properties~including Dmn[0) of the
present second-order mixture just follow from that compact characterization~IV.13!. For instance,
insert the projector result for the deviatorDF ~IV.9! into the second-order identity~III.5!, then
observe the projective relation~IV.13! and thus readily verify that the scalar deviationDF just
equals twice the product of the eigenvalueszehe , cf. Eq. ~III.11!.

However, when the central dynamical equation~I.10! respects the permanency of the pu
states, does it also respect the permanency of those second-order mixtures which have va
tensor deviation (Dmn50)? Obviously, this question must first be clarified now before we leg
mately can restrict ourselves to that subclass of mixtures.

V. FIBER DISTRIBUTIONS

The emergence of the projectorPi indicates the significance of certain subspaces of
typical fiberC4 over space–time. More concretely, consider allC4 elementsc(x) at any eventx of
space–time such that

Pi•c5c. ~V.1!
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Obviously, this set$c%x defines some two-dimensional moving subspace ofC4 ~‘‘distribution’’ !.
Let the orthogonal projector beP' ,

Pi1P'51, ~V.2a!

P'
2 5P' , ~V.2b!

P'•Pi50, ~V.2c!

tr P'52; ~V.2d!

we get a moving~212!-splitting of the typical fiber. More generally, a (Ni1N')-splitting is
generated by the orthogonal projectorsPi(x) andP'(x) such that trPi1tr P'5Ni1N'5Nf ,
where Nf is the dimension of the typical vector fiberCNf in which the wave functions~i.e.,
sections! are living.

The question with these fiber distributions is now whether they are consistent with the g
dynamics, or, more concretely: let the intensity matrixI be a solution of the general equation
motion ~I.10!. How then must the field equation forPi look in order that those relations as, e.g
~IV.13!, do hold over the whole space–time? A possible answer is the following:

DmPi5
i

\c
~Pi•H̄m2Hm•Pi!22L

~ i !

m , ~V.3a!

DmP'5
i

\c
~P'•Hm2H̄m•P'!12 L

~' !

m , ~V.3b!

where the projective localization fields have been defined in a nearby manner, i.e.,

L
~ i !

m5Pi•Lm•Pi , ~V.4a!

L
~' !

m5P'•Lm•P' . ~V.4b!

It is a nice exercise to make sure that all the projector properties~IV.11a!, ~IV.11b!, ~IV.13!, and
~V.2a!–~V.2d! are correctly respected by the proposed equations of motion~V.3a! and ~V.3b!.
Furthermore, the necessary bundle identities8 are also valid:

~DmDn2DnDm!Pi5@Fmn ,Pi#, ~V.5a!

~DmDn2DnDm!P'5@Fmn ,P'#. ~V.5b!

Thus we see that if the HamiltonianHm admits some fiber splitting~V.3a! and ~V.3b!, such
thatNi1N'5Nf , then the dimensions of the corresponding distributions must necessarily re
constant (→N'5const,Ni5const).@Hint: Take the traces for the equations~V.3a! and ~V.3b!#.
However, since an intensity matrixI(x) of order degreeN8([Ni) always annihilates the comple
mentary fiber space

P'•I[0, ~V.6!

and this constraint must then be valid at any event, we conclude that the mixture’s degree o
(N8) canneverbe changed. In any case, a pure state (N851) cannot decay into a mixture (N8
.1), at least in the strict sense which confirms the result of the preceding section. Th
conjecture that the relativistic Schro¨dinger theory could eventually admit the transition from
mixture (N8.1) into a pure state (N851) only in the asymptotic sense. Observe, however,
the present conclusions heavily rely upon the validity of the splitting dynamics~V.3a! and~V.3b!
and, therefore, they readily have to be abandoned if such a fiber distribution does not exis

In order to keep the situation as simple as possible, we shall restrict ourselves to the s
order mixtures with vanishing tensor deviation. Since this subclass of mixtures has its deviaDF
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proportional to the projectorPi , remember~IV.9!, we have to make sure that both field equatio
for the deviatorDF in ~IV.1! and for the projectorPi in ~V.3a! are really compatible with each
other.

To this end, the special result for the deviatorDF in ~IV.9! is introduced into its genera
dynamical equation~IV.1!. This first yields for the derivative by use of Eq.~V.3a!

DmDF5
1

2
~]mDF!•Pi2DF•L

~ i !

m1
i

\c
~DF•H̄m2Hm•DF!. ~V.7!

Comparing this now to the original equation~IV.1! puts the inhomogeneous termEm into the
following form:

Em5 1
2~]mDF!•Pi2DF•L

~ i !

m2 1
2DF$Lm ,Pi%. ~V.8!

Now observe here that the trace of the inhomogeneous termEm just yields the derivative of the
scalarDF , cf. ~IV.1!,

]mDF54 tr ~DF•Lm!52DF tr ~L
~ i !

m!, ~V.9!

and thus rewrite the inhomogeneous termEm ~V.8! in its final form as

Em5DF~Pi•tr L
~ i !

m2L
~ i !

m2 1
2Lm•Pi2

1
2Pi•Lm!. ~V.10!

From here it is realized once more thatEm must vanish for a pure state (DF50) @see the argu-
ments below~IV.6!#.

However, the significance of Eq.~V.10! rather lies in the fact that it appears to establish so
constraint upon the localization fieldLm . The reason is that the objectEm has been already define
in terms ofLm through the equation~IV.3! and, therefore, it may be possible that both Eqs.~IV.3!
and~V.10! are compatible only ifLm obeys some restrictive condition. This would readily imp
the conclusion that our specific second-order mixtures are preserved only when the corresp
HamiltonianHm ~IV.2! is of some special form. However, we want to stress here that su
constraint uponHm does not actually exist. In order to verify this claim we merely decompose
localization fieldLm into its parallel and orthogonal parts

Lm5L
~ i !

m1 L
~' !

m1Pi•Lm•P'1P'•Lm•Pi , ~V.11!

and use this decomposition for the compatibility test of both Eqs.~V.10! and~IV.3!. This test leads
to the following remaining requirement of purely parallel character:

†I, @I, L
~ i !

m#‡1I•tr $I,L
~ i !

m%2$I,L
~ i !

m%•tr I522DF~L
~ i !

m2 1
2Pi•tr L

~ i !

m!. ~V.12!

Though this may appear as a rather unwieldy constraint binding together the intensity matrixI and

the parallel partL
(i)

m of the localization field, it actually is anidentity ~for Ni52) which holds for
all matricesI of the type~II.17! with ~IV.13! and forall localization fieldsLm . ~For a quick check
put Lm proportional to the identity operator:Lm→ l m•1.)

Consequently, the original presumption was correct, i.e., the special second-order m
(Dmn[0) with their characteristic deviatorDF in ~IV.9! are preserved byany HamiltonianHm!
Observe that this result is not quite trivial because, in general, it is only the order (N8) of the
mixture which is preserved in the strict sense during the Hamiltonian space–time evolutio
the preservation of certain specific subclasses~due to the sameN8) cannot be expected. In an
case, the present result provides us with a very convenient possibility to study the~asymptotic!
transitions between mixtures and pure states within that specific subclass (Dmn50) characterized
by only one single deviation variable (DF).
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VI. HAMILTONIAN DYNAMICS

The preceding result provides us with the freedom to choose an arbitrary HamiltoniaHm

being subject only to the field equations~I.7! and~I.8!. Clearly one will select an objectHm whose
properties have already been studied in sufficient detail:16

1

\c
•Hm5

m

4
gm1

3

2
ibm~N•12Ñ•«!1~4bmbl2gml!~W•11W̃•«!g l

2 ibl~N•Sml1Ñ•* Sml!. ~VI.1!

This Hamiltonian is due to a Robertson–Walker~RW! universe whose Hubble flow vectorbm is
thus identified with the present deviation vector~III.13a!. Furthermore,m is the rescaled mas
M (ª\m/c) and, according to the RW symmetry, the four complex scalar fieldsW,W̃,N,Ñ are
homogeneous, i.e., they exclusively depend upon the cosmic timeu (]mu[bm).

Introducing the present ansatz forHm ~VI.1! into the field equations~I.7! and~I.8! must yield
the field equations for those four ansatz scalarsW,W̃,N,Ñ, i.e.,

bm]mWªẆ52H•S W2
m

4 D2~N1H !S 3W1
m

4 D , ~VI.2a!

W8 52H•W̃23~N1H !•W̃, ~VI.2b!

N8 52H•Ñ, ~VI.2c!

Ṅ1Ḣ1
s

R2
5N•~N1H !116W2116W̃224mW2Ñ2. ~VI.2d!

However, besides these dynamical equations one also finds some algebraic constraints
ansatz fields:

Ñ•W̃50, ~VI.3a!

Ñ•S W2
m

4 D50, ~VI.3b!

Ñ•~N1H !50, ~VI.3c!

s

R2
5~N1H !214S W2

m

4
D 2

14W̃22Ñ2. ~VI.3d!

Here, the scale parameter of the RW line-element has been denoted byR ~‘‘radius of the uni-
verse’’!, H([Ṙ/R) is the Hubble expansion rate, ands is the topological index~s511: open
universe;s50: flat; s521: closed!. Perhaps the most striking feature of the present Hamilton
Hm in ~VI.1! is the fact that it falls apart into two subsets, which are rather different from
topological point of view, according to whether the ansatz scalarÑ does vanish or not, cf. Ref. 16

However, for the present context it is more important to consider the splitting ofHm into its
~anti-!Hermitian partsKm , Lm , of ~IV.2! because the localization fieldLm explicitly governs the
deviation dynamics@see Eq.~V.7!#. The kinetic fieldKm as the Hermitian part of the Hamiltonia
Hm of ~VI.1! is found as

Km5
m

4
gm1

3

2
Nrbm•12

3

2
Ñrbm•«1~4bmbl2gml!~Wr•11 iW̃c•«!g l

2 ibl~Nc•Sml1Ñc•* Sml! ~VI.4!
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and similarly for the anti-Hermitian part:

Lm5
3

2
Ncbm•12

3

2
Ñcbm•«1~4bmbl2gml!~Wc•g l2 iW̃r g̃

l!1 ibl~Nr•Sml1Ñr•* Sml!.

~VI.5!

Observe here that the ansatz scalars have been split up into their real and imaginary parts
ing to

W5Wr1 iWc , ~VI.6a!

W̃5W̃r1 iW̃c , ~VI.6b!

N5Nc2 iNr , ~VI.6c!

Ñ5Ñc2 iÑ r , ~VI.6d!

and that the Spin~1,3! generatorsSmn5 1
4@gm , gn# are anti-Hermitian (S̄mn52Smn) as well as the

axial velocity operatorg̃lª«gl52gD l .
Once the HamiltonianHm is known, one can now study the dynamics for the deviation sc

DF ~V.9!. However, the information carried byDF ~with respect to the existence of a pure sta!
can be improved by relating it to the scalar densityr. As the physical densities~II.10a!–~II.10c!
are demonstrating clearly, the scalarr essentially determines their absolute magnitudes; and s
the deviation fields~III.3a!–~III.3e! are certain combinations of these physical densities, t
magnitude will also be determined by the scalarr. Thus if we want to have an adequate meas
for the presence of a pure state, it is better to consider thereduceddeviation fieldDF /r2. There-
fore, let us combine the derivative forDF of ~V.9! with that of r,

]mr5tr ~DmI !52 tr ~I•Lm!, ~VI.7!

to find

]mS DF

r2 D 5
4

r2
tr F S DF2

DF

r
ID •LmG . ~VI.8!

Introducing here the intensity matrixI of ~II.14!, the specific deviation fields~III.17a!–~III.17f!,
and the present localization fieldLm ~VI.5! then yield

]mS DF

r2
D5

4

r
SDF

r2D @2Wc~ Ibm2 j m!1W̃r~ Ĩ bm2 j̃ m!12Nrb
lSlm12Ñrb

l* Slm#. ~VI.9!

This is the desired result because, if we succeed in integrating this equation, we can ju
which region of space–time there prevails a pure state (DF /r2!1) and where one has a mixtur
(DF /r2;1). A special property of the result~VI.9! consists in the fact that the reduced deviati
does not change with cosmic timeu. Indeed, multiply through the equation~VI.9! by the Hubble
flow bm and find

bm]mS DF

r2 D 5
d

du
S DF

r2 D [0. ~VI.10!

Clearly, this time independence of the reduced deviationDF /r2 is due to our special assumption
concerning the choice of HamiltonianHm , and will not apply in the general case. However,
account of the time independence, one can concentrate now upon the study of the purely
variations ofDF /r2.
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VII. SO„3… SYMMETRIC MIXTURES

The most striking difference between mixtures and pure states lies in the fact that c
configurations of the physical densities cannot be generated by a pure state but are availab
by a mixture. This circumstance becomes especially clear in the context of certain symmet
the physical densities. For instance, in the present case of spinning~Dirac! matter, one would
expect that spin effects should show up in~at least some of! the physical densities which therefor
could not be isotropic. The cosmological principle, requiring strict isotropy and homogen
should therefore not apply to all of the physical densities carried by spinning matter.17 However,
even if one admits some lower symmetry, the mixtures develop a higher potentiality for rea
those symmetries.

As an example, return for a moment to the former relationship~III.13b! which establishes a
linear dependence of three vector fields$bm , j m j̃ m% and also implies the scalar relationship~III.15!.
However, though the latter scalar constraint does apply also for the pure state densities~II.10a!–
~II.10c! ~for z51), the former vector relationship~III.13b! does not hold in general for th
pure-state case~II.10a!–~II.10c!! Consequently, the immediate conclusions, to be drawn from
vector relationship~III.13b!, cannot be obeyed by the pure-state configurations. We now dem
strate that among those properties, not being available for the pure states, is just the~3!
symmetry of certain physical densities. Clearly, one furthermore needs the breaking of ho
neity down to~e.g.! the SO~3! symmetry in order to demonstrate the spatial variations of
reduced deviationDF /r2 as a measure for the ‘‘distance’’ between mixtures and pure states

The point of departure for this demonstration is the observation that the crucial vector re
~III.13b! admits the introduction of a space–like vectorc̃m :

c̃m5
I

r21 r̃ 2
• j̃ m2

Ĩ

r21 r̃ 2
• j m . ~VII.1!

Evidently this vector field is orthogonal to the Hubble flowbm ,

bm
• c̃m[0, ~VII.2!

and is found to be of lengthc̃

c̃ 2
ª2 c̃mc̃m5122

DF

r2
, ~VII.3!

when the properties of the second-order mixtures~Sec. III! are used. Thus the values of th
reduced deviation are restricted to the following range:

0<
DF

r2
<

1

2
. ~VII.4!

Indeed, this result is now the crucial point for the emergence of new spatial structures whi
forbidden for the pure states(DF[0). The reason is that forDF→0 the vectorc̃m ~VII.1! becomes
a unit vector which, by its very definition, can nowhere vanish. However, the existence of a
of the vector fieldc̃m is necessary, e.g., for the case of a rotationally symmetric configuratio
otherwisec̃m would not be differentiable at the symmetry center. However, this isno problem for
a mixturebecause, in view of Eq.~VII.3!, one merely has to demand for the center (r 50)

lim
r→0

DF

r2
5

1

2
~VII.5!

and the vector fieldc̃m becomes zero there as desired.
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In what follows we want to elaborate this point in some more detail but, in order to se
essential point, it will be sufficient to select the most simple Hamiltonian from the set~VI.1!,
namely the case of nonvanishing scalarÑ for an open RW universe~i.e., s511!. For this
presumption the Hamiltonian constraint~VI.3d! yields

1

R2
52Ñ252Ñc

21Ñr
212iÑc•Ñr . ~VII.6!

ThusÑc must be zero and the derivative of the scalar densityr ~VI.7!, with the localization field
Lm being given by~VI.5!, tells us that we will then get some nontrivial spatial structure over
time slicesu5const. Consequently, the choice for the localization fieldLm is the following:

Lm→ ~;!Lm52 3
2Hbm•11 iÑ r•* Smlbl, ~VII.7!

and the corresponding kinetic fieldKm ~VI.4! becomes

Km→ ~;!Km52 3
2Ñrbm•«1mbm•b1 iH •Smlbl. ~VII.8!

Next, the RW homogeneity on the time slices must be broken down to SO~3! symmetry. This
is attained most conveniently by rewriting the RW line-element in terms of ‘‘polar coordina
$r ,q,f% ~Ref. 18! as

ds25du22R2
„dr21sinh2 r ~dq21sin2 q df2!… ~VII.9!

such that the origin (r 50) becomes the symmetry center. The radial coordinater may be con-
sidered as a scalar field over space–time, whose unit normalr m is then given by17

r m5R•]mr , ~VII.10a!

r mr m521, ~VII.10b!

bmr m50. ~VII.10c!

Clearly the coordinate vectorr m is an SO~3! symmetric vector field and obeys the field equation17

¹mr n5
1

R•tanh r
~gmn2bmbn1r mr n!2Hbnr m . ~VII.11!

Therefore, if the physical densities~II.12a!–~II.12e! are coined SO~3! symmetric by the presen
Hamiltonian(;)Hm5\c((;)Km1 i (;)Lm) via the relativistic von-Neumann equation~I.10!, then
the spacelike vector fieldc̃m ~VII.1! must obey the SO~3! symmetry condition

¹nc̃m5Ñr~gmn2bmbn1 c̃mc̃n!2Hbmc̃n ~VII.12a!

or, resp., for its normalized versionĉm(ª c̃21
• c̃m ,ĉmĉm521):

¹nĉm5Ñr•
gmn2bmbn1 ĉmĉn

c̃
2Hbmĉn . ~VII.12b!

Here, the origin of the symmetry claim~VII.12a! lies in the observation that the spati
derivatives of the physical densities are governed mainly by the vector fieldc̃m . However, it is
then immediately obvious that the total density configuration will be SO~3! symmetric ifc̃m obeys
that symmetry condition~VII.12a! ~observe that the geometric background remains RW symm
ric!. In order to present a few examples, consider first the reduced deviationDF /r2 ~VI.9!. Since
our choice of Hamiltonians~VII.7! and~VII.8! lets only the ansatz scalarÑr survive, the deriva-
tive ~VI.9! is first simplified to
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]mS DF

r2
D5

8

r

DF

r2
Ñrb

l* Slm . ~VII.13!

But on the other hand, the former second-order identities~III.6a!–~III.6e! imply

bl* Slm5 1
4r c̃m , ~VII.14a!

blSlm5 1
4r̃ c̃m , ~VII.14b!

so that the polarization densitySmn of ~II.5c! becomes

Smn5 1
4r̃~bmc̃n2bnc̃m!2 1

4r«mnlsblc̃s. ~VII.15!

Thus the derivative of the reduced deviation~VII.13! is actually found proportional to the vecto
c̃m ,

]mS DF

r2
D52

DF

r2
Ñr c̃m , ~VII.16!

as expected. Further examples refer to the case of the scalar densityr of ~VI.7!, pseudo-scalarr̃
of ~II.12b!, or the other scalar productsI of ~III.14a! and Ĩ of ~III.14b!:

]mr523Hrbm2Ñrr c̃m , ~VII.17a!

]mr̃52~2mĨ13H r̃ !bm2Ñr r̃ c̃m , ~VII.17b!

]mI 523~HI 1Ñr Ĩ !bm2Ñr Ic̃m , ~VII.17c!

]m Ĩ 523~HĨ 1Ñr I 2 2
3mr̃ !bm2Ñr Ĩ c̃m . ~VII.17d!

Moreover, the space parts of both current densitiesj m of ~II.12c! and j̃ m of ~II.12d! also point to
the direction ofc̃m :

j m5Ibm1 Ĩ c̃m , ~VII.18a!

j̃ m5 Ĩ bm1I c̃m , ~VII.18b!

which is easily found by inverting both Eqs.~III.13b! for bm and~VII.1! for c̃m . Thus, the whole
matter configuration is safely SO~3! symmetric if only the SO~3! symmetry condition~VII.12a!
upon the vector fieldc̃m is valid. But observe again here that the vector and tensor objects~VII.15!
and ~VII.18a! and ~VII.18b! can be nonsingular at the symmetry centerr 50 only for a mixture
(DFÞ0) @see the arguments following~VII.4!#.

However, the desired symmetry is readily established by explicit differentiation. It ma
sufficient to demonstrate the technique for the current-densityj m . Differentiating the defining
equation~II.12c! yields first

¹n j m5tr „~DnI !•gm… ~VII.19!

or, by use of the relativistic von-Neumann equation~I.10!,

¹n j m5
i

\c
tr ~I @H̄n•gm2gm•Hn#!5 i tr ~I•@Kn ,gm#!1tr ~I•$Ln ,gm%!. ~VII.20!

Then, introducing here the adopted form for the kinetic fieldKm ~VII.8! and localization fieldLm

~VII.7! finally leads to the result
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¹n j m52mr̃bnc̃m1~Ñr• Ĩ 1H•I !gmn23~Ñr• j̃ m1H• j m!bn2~Ñr• j̃ n1H• j n!bm .
~VII.21!

As a consistency check one immediately verifies here the validity of the continuity equatio

¹m j m50, ~VII.22!

or multiply through the equation~VII.23! with the Hubble flowbm , whose derivative reads

¹mbn5HBmn[H~gmn2bmbn!, ~VII.23!

and just find the equation~VII.17c! for the derivative of the scalar productI ([ j mbm).
In any case, with this technique of computing the derivatives of the physical densities on

actually verify the correctness of the SO~3! symmetry condition~VII.12a!. In the next step, one
then wants to see the dependence of the reduced deviationDF /r2 upon the radial variabler
~VII.9!. For that purpose, the corresponding derivative~VII.16! is recast into the following form:

ĉm]mS DF

r2 D [
1

R
d

dr
S DF

r2 D 522Ñr•
DF

r2
• c̃~r !. ~VII.24!

On the other hand, the lengthc̃(r ) of the surface vectorc̃m depends upon the reduced deviation
is shown in Eq.~VII.3! so that we end up with a closed equation forDF /r2.

d

dr
S DF

r2 D 522RÑr

DF

r2
A122

DF

r2
. ~VII.25!

Putting here@in agreement with the Hamiltonian constraint~VII.6!#

RÑr511, ~VII.26!

the obvious solution of~VII.25! for the reduced deviation is found as

DF

r2
5

1

2
~12tanh2 r !5

1

2 cosh2 r
. ~VII.27!

Since this solution just obeys the smoothness condition~VII.5! for the radially symmetric tenso
objects@e.g., j m , j̃ m ~VII.18a! and~VII.18b! or Smn ~VII.15!#, it seems as if one would have foun
the desired SO~3! symmetric mixture configuration which in the outside region (r→`) becomes
a pure state (DF /r2→0).

However, the situation here is not quite so favorable because we applied a certain t
HamiltonianHm ~VII.7! and ~VII.8! which originally was designed for cosmological purpos
~Ref. 19!. For such a situation, the cosmological principle demands homogeneity and isotro
the matter distribution, which is just the contrary of a well-localized distribution of the phys
densities, as it is desired for the present context. Therefore one should not be surprised
spatial concentration of the reduced deviation~VII.27! is actually spurious, namely in the sen
that the scalar deviationDF is constant and the scalar densityr is increasing exponentially in the
outside region (r→`). These assertions can immediately be checked by explicitly solving
field equation for the scalar densityr ~III.17a! to yield

r~u,r !5r inS Rin

R~u! D
3

coshr , ~VII.28!

which implies the spatial constancy for the scalar deviationDF :

DF5
1

2
rin

2 S Rin

R~u! D
6

. ~VII.29!
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However, this drawback of the present model should not be taken too seriously. It is expect
the unboundedness of the physical densities will be removed by considering a closed un
~s521! or by applying some Hamiltonian due to an attractive potential. Therefore, despi
deficiencies, the results for the present model may be understood as a distinct hint up
existence of well-localized mixtures which become pure states in the outside region (DF /r2

→0).
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8D oscillator and 5 D Kepler problem: The case
of nontrivial constraints

M. V. Pletyukhova) and E. A.Tolkachevb)

Institute of Physics, National Academy of Sciences of Belarus,
Minsk 220072 Scorina av. 70, Belarus

~Received 29 December 1997; accepted for publication 22 September 1998!

The topologically nontrivial correspondence between the 5D SU(2)-Kepler prob-
lem and the 8D singular oscillator is considered. It is shown that both ‘‘isospinor’’
and ‘‘isovector’’ particles on theSU(2) instanton1 1/R background in 5D can
be described in terms of an 8D singular oscillator. The energy spectrum is calcu-
lated for an arbitrary ‘‘isospin’’ case. ©1999 American Institute of Physics.
@S0022-2488~99!01301-8#

I. INTRODUCTION

Nonbijective bilinear transformations of Levi-Civita~LCT! R2→R2, Kustaanheimo–Stiefe
~KST! R4→R3, Hurwitz ~HT! R8→R5 and the transformationR16→R9, their extensions and
applications have been the objects of numerous studies~e.g., see Refs. 1–4 and referenc
therein!. These transformations constitute a series of mappingsR2p→Rp11 which possess the
property r mr m5(xmxm)2 for r mPRp11, m50, . . . ,p; xmPR2p, m51, . . . ,2p; p52q

51,2,4,8. They are closely connected with division algebras of real, complex numbers, q
nions and octonions. The LCT, KST and HT are inherent to the Hopf fibrations, namely
S1/Z25S1, complexS3/S15S2 and quaternionS7/S35S4, respectively.

In particular, these transformations are exploited to establish the correspondence b
oscillator and Kepler problems, both classical and quantum, in the respective dimensions.5 More-
over, using KST it has been shown~e.g., see Refs. 6,7! that the Schro¨dinger equation for a 4D
isotropic oscillator with a constraint is equivalent to that for a 3D particle on the background o
the U(1) Dirac monopole1Kepler ~Coulomb! 1/R1extra 1/R2. The latter is known as MIC-
Kepler problem.8 Introducing the corresponding singular term into the 4D equation one can
remove the extra centrifugal—Zwanziger’s9—potential in 3D and the equation for the dyoge
atom arises.10 Its energy spectrum and eigenfunctions have been obtained on the basis
dynamical symmetries of the 4D singular isotropic oscillator.11

As for HT, it establishes the relation between an 8D oscillator and 5D Kepler problems. In
the quantum case it is usually supposed5,12,13that the corresponding wavefunctions are related
C (8)(xm)5C (5)(r m). Thus, the Hilbert space of the 8D oscillator appears to be in one-to-on
correspondence with that of a 5D problem. A geometric quantization procedure for this case
been developed in Ref. 14.

Recently attempts to consider a topologically nontrivial version imposing a less strict
straint onC (8)(xm) have been made.15,16 The results obtained allow us to describe a 5D ‘‘isos-
pin’’ particle on the background ofSU(2) instanton1Kepler 1/R1extra 1/R2 in the oscillator
framework as well. To make it explicit, it is necessary to choose the certain parametrizatio
SU(2) representations of the gauge group. The Eulerian one complicates computations and
fore seems to be inefficient for explicit usage of nontrivial constraints.17 Those introduced in Refs
18,19 makes the geometric nature of the problem less transparent. The parametrization p
by the authors15 helped to choose the fiber coordinate in a simple form and to fulfill the strai

a!Electronic mail: plet@dragon.bas-net.by
b!Electronic mail: tea@dragon.bas-net.by
930022-2488/99/40(1)/93/8/$15.00 © 1999 American Institute of Physics
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forward transition to Hilbert space of theSU(2) Kepler problem in the ‘‘isovector’’~integer
‘‘isospins’’! case.

In this paper, in Sec. II, we describe the well-known correspondence between an 8D harmonic
oscillator and a 5D SU(2)-Kepler problem on the background of a centrifugal Zwanziger-l
term (5D MIC-Kepler problem! in suitable parametrization, half-integer ‘‘isospins’’ being treat
as well. Then, in Sec. III, we introduce the singular term into the oscillator’s Hamiltonian
show that this ‘‘corrected’’ equation is associated with the 5D Kepler problem onSU(2) instan-
ton background~a higher dimensional dyogen atom’s counterpart!. The energy spectrum of th
latter problem is obtained for the first time.

II. 8D OSCILLATOR AND 5 D KEPLER PROBLEM

Let us start with the Schro¨dinger equation for an 8D isotropic oscillator,

2
1

2
D8C~8!1

v2

2
~u21v2!C~8!5EC~8!, ~1!

whereC (8)5C (8)(ui ,v i) is a scalar wave function.
It is well-known that Hurwitz transformation~HT! mappingṘ8[R8\$0%→Ṙ5[R5\$0%,

r 05uiui2v iv i[u22v2,
~2!

r a52~2u0va1uav02«abcubvc!, r 452uiv i ,

(a,b,c51,2,3; i 50,1,2,3), possesses the property

~u21v2!25r 0
21r a

21r 4
2[r m

2 [R2 ~m50, . . . ,4!. ~3!

HT makes projection in the principal fiber bundle,Ṙ8, Ṙ5 andSU(2) being total bundle, base
and structure group, respectively. The operators removing the function, which depends on th
coordinatesr m only, i.e.,Xaf (r m)50, are called vertical and have the form20

Xa52ua

]

]u0
1u0

]

]ua
2«abcub

]

]uc
2va

]

]v0
1v0

]

]va
2«abcvb

]

]vc
. ~4!

The operatorsX̂a[ ( i /2) Xa obey standardSU(2) commutation relations.
It is convenient to introduce fiber coordinatesza5ua /u0 and pass from one se

(u0 ,ua ,v0 ,va) to another (r 0 ,r a ,r 4 ,za). This transformation is valid locally, i.e., in the regio
whereuuuÞ0, or RÞ2r 0 , only. Then

X̂a→Ta5
i

2S zazb

]

]zb
1

]

]za
2«abczb

]

]zc
D . ~5!

These vertical operators exactly coincide withSU(2) generators acting in the group space e
pressed in terms of vector-parameters.21 Note that vector parametrization ofSU(2)(SO(3)) is
related with Eulerian one via

z15tan
u

2
cos

w2c

2 Y cos
w1c

2
,

~6!

z25tan
u

2
sin

w2c

2 Y cos
w1c

2
, z35tan

w1c

2
.

In the new set of coordinates the 8D Laplacian reads as
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D8524R(2 i ]m1Am
a Oab~z!Tb~z…!22

4

R
T2, ~7!

where

Am
a drm5

1

R~R1r 0!
~2r 4dra1r adr42«abcr bdrc! ~8!

is an instantonic connection form;22

Oab~z!5dab1
2

11z2
~zazb2z2dab1«adbzd! ~9!

is the orthogonal matrix in the vector parametrization.21

It can be readily shown that

Oab~z!Tb~z!5
i

2 S zazb

]

]zb
1

]

]za
1«abczb

]

]zc
D52Ta~2z![2Ka~z![2Ka . ~10!

The following relations are valid:

@Ka ,Tb#50, @Ka ,Kb#5 i«abcKc , K2[KaKa5T2[TaTa . ~11!

Then the initial equation~1! can be identically rewritten as

1

2
~2 i ]m2Am

a Ka!2C~8!1S K2

2R2
2

a

RD C~8!5«C~8!, ~12!

where«52v2/8, a5E/4.
To complete the transition toṘ5, one should impose additional constraints onto the func

C (8)(r m ,z). Instead of the topologically trivial condition—the independence ofC (8) upon the
fiber coordinates5,12,13—we require the equivariance condition to hold:15,16

K2C~8!5 l ~ l 11!C~8!. ~13!

Note that the trivial case corresponds to ‘‘isospin’’l 50.
Consider now theSU(2) Wigner representation constructed according to the classic sch

K2c mm8
l

5 l ~ l 11!c mm8
l , K3c mm8

l
5mc mm8

l ,

~14!
~2T3!c mm8

l
5m8c mm8

l , 2 l<m,m8< l .

For c5(cmm8
l ), the identity

KacT5cTLa ~15!

is valid, provided thatLa are the generators of the respective representation with ‘‘isospin’’l .
Let us expandC (8) in a series ofcmm8

l ,

C~8!5 (
m,m8

cmm8
l Fmm85Sp@cT~z!F~r m!#. ~16!

Then
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~2 i ]m2Am
a Ka!C~8!5Sp@cT~z!~2 i ]m2Am

a La!F~r m!#. ~17!

Substituting~17! into ~12!, we obtain the equation forf[Fml ~without loss of generality it is
chosen asm85 l ):

S pm
2

2
1

l ~ l 11!

2R2
2

a

RD f5«f, ~18!

where pm52 i ]m2Am
a La . Equation ~18! is the 5D counterpart of the MIC-Kepler problem

arising in electrodynamics with magnetic charge.8 The energy spectrum of~18! is known16 to be

«N52
a2

2@~N/2! 12!2
, N50,1,2,. . . . ~19!

Though there is no explicit dependence onl , N takes only even values:N50,2,4,. . . , for l 50.12

To finish this section, we recall the relation between the Hermitian products inṘ8 andṘ5 ~see,
for instance, Ref. 13!. From the definition

^C1uC2&85
27

p2E C1* ~ui ,v i !C2~ui ,v i !~ uuu21uvu2!d4uid
4v i , ~20!

and the natural requirement

^C1uC2&85^w1uw2&5 ,

one obtains

^w1uw2&55E w1
1~r m!w2~r m!d5r m . ~21!

The latter is valid because

27

p2ES3
~ uuu21uvu2!d4uid

4v i5d5r m , ~22!

where factor 28 is due to the bilinearity of HT and 2p2 is SU(2) group volume.

III. ENERGY SPECTRUM OF SU„2… KEPLER PROBLEM

In Ref. 11 it has been shown that introduction of the certain singular term into theD
oscillator’s equation leads to the 3D dyogen atom’s problem. The Hamiltonian of the latter do
not contain a nonphysical Zwanziger’s term.

Let us consider on the analogy a singular 8D Hamiltonian,

H52
1

2 (
s51

8
]2

]xs
2

1
v2x2

2
2

2l ~ l 11!

x2 S x25(
s51

8

xsxsD . ~23!

Here and below we mean (x1 , . . . ,x4 ,x5 , . . . ,x8)5(u0 , . . . ,u3 ,v0 , . . . ,v3). The eigenvalues
of ~23! are given by23,24

En j52v~n11/21A2 l ~ l 11!1 j ~ j 13!19/4!, ~24!

wherej takes integer and half-integer values.
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Under the HT Hamiltonian~23! is associated with a 5D counterpart of the dyogen atom:

S pm
2

2
2

a

RDw5«w. ~25!

Since«52v2/8 anda5E/4, one can readily find

«n j52
a2

2~n11/21A2 l ~ l 11!1 j ~ j 13!19/4!2
. ~26!

But such treatment does not clarify what valuesj exactly takes.
To obtain the expression~26! in the closed form, we shall use the ideas based on the dyn

cal symmetry approach. Consider the operators

B2
15B20

1 2 i
2l ~ l 11!

x2
, B25B201 i

2l ~ l 11!

x2
,

~27!

H5H02
2l ~ l 11!

x2
,

expressed via nonsingular~harmonic! ones,

B20
1 52 ivas

1as
1 , B205 ivasas , H05v~as

1as14!. ~28!

The creationas
1 and annihilationas operators obey@as ,at

1#5dst as usual.
The operators~28! satisfy the relations

@H,B2
1#52vB2

1 , @H,B2#522vB2 , @B2 ,B2
1#54vH, ~29!

as well as the operators~28! do,

@H0 ,B20
1 #52vB20

1 , @H0 ,B20#522vB20, @B20,B20
1 #54vH0 . ~30!

Let us introduce

K05
H

2v
, K15

B2
1

2v
, K25

B2

2v
, ~31!

which satisfySU(1,1) commutation relations,

@K0 ,K6#56K6 , @K2 ,K1#52K0 . ~32!

The representation ofSU(1,1) is constructed as follows:24

K0un,k&5~n1k!un,k&,

K1un,k&5A~n11!~n12k!un11,k&, ~33!

K2un,k&5An~n12k21!un21,k&,

wheren50,1, . . . , andk(k21) are the eigenvalues of the Casimir operator,

C25K0
22K02K1K2 . ~34!
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From the formal relation

E

2v
5n1k, ~35!

it follows that

«nk52
vnk

2

8
52

a2

2~n1k!2
. ~36!

Heren takes the arbitrary integer non-negative values. One should figure out what valuesk takes.
The Casimir operatorsC2 of SU(1,1) ~34! andC20 of SU(1,1) generated byH0/2v, B20

1 /2v,
B20/2v, are related as

C25C202 l ~ l 11!, ~37!

where

C205
1

4v2
~v2~as

1as14!222v2~as
1as14!2v2~as

1!2~at!
2!52

1

8
~as

1at2at
1as!

212.

~38!

Taking into accountxs] t2xt]s5as
1at2at

1as it is equal,

C2052
1

8
~xs] t2xt]s!

2125
1

4
~2x2D817xs]s1xsxt]s] t!12. ~39!

The spatial symmetry of the Hamiltonian~23! is SO(8). Its 28 generators areFst5 i (xs] t

2xt]s), 1<s,t<8. One can expressC20 through the operator of the squaredSO(8) angular
momentumF2,

C205
1

8
~Fst!

2125
1

4 (
s,t

FstFst125
1

4
F212. ~40!

The complete set of the wavefunctions of the 8D harmonic oscillator has been constructed21

by means of the consideration of the subgroup chainSO(8).SO(4)3SO(4).U(1)3U(1)
3U(1)3U(1). The obtained wavefunctionsYj 1m11m12j 2m21m22

j are the simultaneous eigenfun

tions of the mutually commuting operatorsF2, I25I1
25I2

2, N25N1
25N2

2, I 13
,I 23

, N13
,N23

with
eigenvalues

F2Yf5 f ~ f 16!Yf , I2Yf5 j 1~ j 111!Yf ,

N2Yf5 j 2~ j 211!Yf , I 13
Yf5m11Y

f , ~41!

I 23
Yf5m12Y

f , N13
Yf5m21Y

f , N23
Yf5m22Y

f ,

where

0< f <N, N even, f even,

1< f <N, N odd, f odd;

0< j 11 j 2< f /2, f even, j 11 j 2 integer,
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1/2< j 11 j 2< f /2, f odd, j 11 j 2 half2integer;

2 j 1<m11,m12< j 1 ,

2 j 2<m21,m22< j 2 ,

andN is the oscillator’s occupation number:EN5v(N14), N50,1,2, . . . .
Comparing the explicit form of the operatorsX̂ ~4! and I1 , I2 , N1 , N2 ,

I 1a
5

i

2 S 2ua

]

]u0
1u0

]

]ua
2«abcub

]

]uc
D ,

I 2a
5

i

2 S 2ua

]

]u0
1u0

]

]ua
1«abcub

]

]uc
D ,

N1a
5

i

2 S 2va

]

]v0
1v0

]

]va
2«abcvb

]

]vc
D ,

N2a
5

i

2 S 2va

]

]v0
1v0

]

]va
1«abcvb

]

]vc
D ,

we deduce thatX̂5I11N1 .
We recall that there exist the constraint~13! which in this context can be written as

X̂2Yf5 l ~ l 11!Yf . ~42!

According to the angular momentum addition rulesl 5 j 12 j 2 , j 12 j 211, . . . ,j 11 j 2 ~we put j 1

> j 2 for certainty!, i.e., l takes values which depend onj 1 and j 2 . We shall rearrange the schem
~65! in order to makel the free index, i.e., taking the arbitrary integer and half-integer valuel
50,1/2,1, . . . .

Let us definej 5 f /2 and putl 5q2p, whereq5 j 11 j 2 , p50,1, . . . ,2j 2 . From the comment
to ~41! it follows that j 5q,q11, . . .5q1p8, wherep850,1,2, . . . . Fixing l we find j 5 l 1(p
1p8), wherep9[p1p850,1,2, . . . . At fixed j , one hasN52 j ,2j 11, . . . . It is natural to define
the free quantum numbern5 N/22 j 50,1,2, . . . .

From ~37!, ~40! and ~41! it follows that the relation

k~k21!5 j ~ j 13!122 l ~ l 11!, ~43!

which allows us to expressk throughj,

k51/21A2 l ~ l 11!1 j ~ j 13!19/4. ~44!

Substituting~44! into ~36!, we obtain the energy spectrum for the 5D Kepler problem on the
background of theSU(2) instanton,

«nk→«n j52
a2

2~n11/21A2 l ~ l 11!1 j ~ j 13!19/4!2
. ~45!

It exactly coincides with~26!, but now we are convinced that

j 5 l ,l 11, . . . .

In the particular casel 50,
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«n j52
a2

2~n1 j 12!2
, n50,1,2, . . . , j 50,1,2, . . . . ~46!

Taking into account the relation betweenn, j andN, one can conclude that~46! is in full corre-
spondence with~19! considered atl 50 as well.

In conclusion, we note that the Hurwitz transformation and related topics may be use
some nuclear models~see the references in Ref. 20!.

ACKNOWLEDGMENT

The authors would like to thank I. E. Pris’ for fruitful discussions.

1I. Polubarinov, preprint JINR E2-84-607, Dubna, 1984.
2D. Lambert and M. Kibler, J. Phys. A21, 307 ~1988!.
3M. Kibler and P. Labastie, preprint LYCEN 8829, Lyon, 1988~also available as hep-th\9409196!.
4M. Hage Hassan and M. Kibler, preprint LYCEN 9110, Lyon, 991~also available as hep-th\9409051!.
5I. Polubarinov, preprint JINR P2-83-872, Dubna, 1983.
6T. Iwai and Y. Uwano, J. Math. Phys.27, 1523~1986!.
7T. Iwai and Y. Uwano, J. Phys. A21, 4083~1988!.
8A. Cisneros and H. McIntosh, J. Math. Phys.10, 277 ~1969!.
9D. Zwanziger, Phys. Rev.176, 1480~1968!.

10C. Gerry and J. Keifer, Phys. Rev. A37, 665 ~1988!.
11I. E. Pris’ and E. A. Tolkachev, Sov. J. Nucl. Phys.54, 582 ~1991!.
12L. Davtyanet al., J. Phys. A20, 6121~1987!.
13M. Trunk, Int. J. Mod. Phys. A11, 2329~1996!.
14I. Mladenov and V. Tsanov, J. Geom. Phys.2, 17 ~1985!.
15M. Pletyukhov and E. Tolkachev,Proceedings of the International Workshop on Quantum Systems: New Trend

Methods (QS-96)~World Scientific, Singapore, 1997!, pp. 77–80.
16T. Iwai and T. Sunako,Proceedings of the VII International Conference on Symmetry Methods in Physics, edited by A.

Sissakian and G. Pogosyan~Joint Institute for Nuclear Research, Dubna, 1996!, Vol. I, pp. 273–281; T. Iwai and T.
Sunako, J. Geom. Phys.20, 250 ~1996!.

17L. Mardoyan, A. Sissakian, and V. Ter-Antonyan, preprint JINR E2-96-24, Dubna, 1996, submitted to Phys. LA
~also available as hep-th\9601093!.

18Kh. Karayan, L. Mardoyan, and V. Ter-Antonyan, preprint JINR E2-94-359, Dubna, 1994.
19Kh. Karayan, L. Mardoyan, and V. Ter-Antonyan, preprint JINR E2-94-439, Dubna, 1994.
20M. Kibler and P. Winternitz, J. Phys. A21, 1787~1988!.
21F. I. Fedorov,Lorentz Group~Nauka, Moscow, 1979!.
22C. N. Yang, J. Math. Phys.19, 320 ~1978!.
23I. Malkin and V. Man’ko,Dynamical Symmetries and Coherent States of Quantum Systems~Nauka, Moscow, 1979!.
24A. Perelomov,Generalized Coherent States and Their Applications~Springer-Verlag, Berlin, 1986!.
                                                                                                                



antum
luding

racy of
ich

come

ory,
nd our
stem
their

are
’ the
s for

ng
ells
these

imple

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 1 JANUARY 1999

                    
Isolated versus nonisolated periodic orbits in variants
of the two-dimensional square and circular billiards

R. W. Robinett
Department of Physics, The Pennsylvania State University,
University Park, Pennsylvania 16802
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Square and circular infinite wells are among the simplest two-dimensional poten-
tials which can completely solved in both classical and quantum mechanics. Using
the methods of periodic orbit theory, we study several variants of these planar
billiard systems which admit both singular isolated and continuous classes of non-
isolated periodic orbits.~In this context, isolated orbits are defined as those which
arenot members of a continuous family of paths whose orbits are all of the same
length.! Examples include~i! various ‘‘folded’’ versions of the standard infinite
wells ~i.e., potentials whose geometrical shapes or ‘‘footprints’’ can be obtained by
repeated folding of the basic square and circular shapes! and~ii ! a square well with
an infinite-strength repulsived-function ‘‘core,’’ which is a special case of a Sinai
billiard. In each variant case considered, new isolated orbits are introduced and
their connections to the changes in the quantum mechanical energy spectrum are
explored. Finally, we also speculate about the connections between the periodic
orbit structure of supersymmetric partner potentials, using the two-dimensional
square well and it superpartner potential as a specific example. ©1999 American
Institute of Physics.@S0022-2488~99!03101-1#

I. INTRODUCTION

Many of the physical principles and mathematical tools necessary to understand qu
mechanics are first approached through a variety of familiar one-dimensional examples, inc
problems involving infinite potential wells. The extension to two-dimensional~2D! systems, such
as square and circular infinite wells, allows for the study of new features such as degene
energy levels~accidental or otherwise! as well as providing some of the simplest systems wh
exhibit both classical and quantum mechanical chaos.

It is also in such two-dimensional systems that several novel methods of analysis be
nontrivially applicable, with examples including the study of energy-level statistics1 and periodic
orbit ~PO! theory.2 In this report, we study how the second method, namely periodic orbit the
can be applied to a variety of variants of the simplest square and circular well geometries a
main focus will be on the relationship between the symmetries of the potential well sy
~geometrical and otherwise!, the structure of the allowed energy eigenvalue space, and
relationships to the presence of isolated periodic orbits, that is, orbits which arenot part of a
continuous family of paths, all of which are characterized by identical path lengths.

The infinite well potentials upon which we will first focus our attention are the familiar squ
and circular wells,3 as well as several variants thereon which can be constructed by ‘‘folding’
basic geometrical footprints in obviously symmetrical ways. Specifically we will derive result
rectangular (231 aspect ratio! wells ~which do not have new isolated orbits! and triangular
~isosceles! wells ~which do!!, both of which can be obtained from the square well by folding alo
horizontal~vertical! or diagonal axes respectively, as well as the half- and quarter-circular w
obtained by repeated foldings of the circle along an axis of symmetry. We concentrate on
examples for several reasons:

~i! Because of the high degree of symmetry involved in all these cases, there will be s
1010022-2488/99/40(1)/101/22/$15.00 © 1999 American Institute of Physics
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connections between both the energy eigenvalues of the folded wells and their more
dard precursors, as well as for the classes of allowed periodic orbits in these geometr
we will see, the way in which the energy eigenvalue spectrum and the periodic orbi
changed are remarkably similar for the ‘‘half’’ circular well and the triangular folding
the square billiard.

~ii ! Folded versions of the basic well shapes will have a reduced amount of degeneracy
pared to their original counterparts and this will allow us to study the effects that
degeneracies have on the appearance of new features corresponding to isolated p
orbits.

~iii ! The use of square and circular well geometries ensures that, due to the infinite num
bound state energies, one can readily obtain a large number of energy levels to incre
statistical sample in any numerical analysis. In addition, these simple geometries allo
to easily calculate the energy levels using standard mathematical techniques. More co
geometries, such as stadium-shaped billiards4 or even elliptical wells,5,6 require more so-
phisticated mathematical methods~or even experimental7 techniques! in order to evaluate
the energy eigenvalues.

In addition to these folded-wells, we will also consider a 2D square well with an infin
strength repulsived-function ‘‘core’’ placed at the center of the well which will be seen to a
induce new isolated periodic orbits in an even more dramatic fashion. For this case, whic
limiting case of the Sinai billiard,8 we find that an infinite number of isolated new periodic orb
are generated, with a correspondingly more dramatic change in the energy eigenvalue spe

Finally, we will speculate on the connections between the periodic orbit structure of sy
whose potential energy functions are related by supersymmetric quantum mechanics. Bec
the high degree of correlation between the energy eigenvalue spectra of two systems
potentials are related by supersymmetry, we expect similarly close connections between
lowed periodic orbits in the classical theory. This somewhat obvious, but nonetheless inter
question, deserves to be examined more fully and formally, but as a starting point we will co
the superpartner potential of the 2D infinite square well and we will note that the relative im
tance of isolated versus nonisolated orbits may also play a significant role there as well.

In the next sections, we first briefly review the main ideas of periodic orbit theory and
applications in the circular and square well~Secs. II A and II B!. We then apply these ideas to tw
folded versions of the square well, namely the triangular well~Sec. II C! and the rectangular wel
~Sec. II D!. We discuss in some detail the square well plus repulsived-function ‘‘core’’ in Sec.
II E, while we present a discussion of the relationship between quantum mechanical supers
try and periodic orbit theory in Sec. II F, with our conclusions appearing in Sec. II G. Finall
the Appendix, we discuss some of the technical details required to evaluate the energy eige
spectrum we use in Sec. II E, using a matrix mechanics formulation of quantum theory.

II. PERIODIC ORBIT THEORY

Of the possible approaches which can be used to explore the many relationships betw
classical and quantum mechanical descriptions of nature, periodic orbit~PO! theory2 is certainly
one of the most compelling. An intimate connection between the quantum mechanical den
energy eigenvalues and the set of classical closed paths has been discussed by Gutzw
others9–11 and is described by the formula

(
n

d~E2En![r~E!5r0~E!1 (
p51

`

(
g

r~g,p! cosFpS Sg~E!

\
2fgD G . ~1!

In this expression, theEn are the quantized energy eigenvalues in the bound state system w
therefore define the energy level density,r(E). This can be decomposed into a smooth pa
r0(E), which has no information on the classical orbits, and an oscillatory piece depending o
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Sg which are the values of the classical action corresponding to all possible closed paths~char-
acterized by the labelg) of the classical motion; the integral values ofp51,2, . . . simply corre-
spond to repetitions or recurrences of the basic ‘‘primitive’’ periodic orbits or closed trajecto
In this context, Eq.~1! has been used to make connections with the energy level structu
important physical systems, such as metallic clusters12 or the hydrogen atom in large magnet
fields.13

This connection can be simplified even more in so-called billiard systems, two- and t
dimensional free particle systems confined in infinite well type potentials. There one finds f
quantityr(L) @essentially the Fourier transform ofr(E)]

r~L ![ (
n51

`

eiknL5r0~L !1 (
p51

`

(
g

r~g,p! d~L2pLg!. ~2!

~We note that Balian and Bloch11 use a slightly different weighting in their study of the thre
dimensional spherical billiard system.! In this relation,Lg is the length of an individual primitive
~or ‘‘once-around’’! periodic or closed orbit andp51,2,3, . . . once again label the recurrenc
@The r (g,r) are constants which will not be relevant to our present discussion; ther0(L) term
arises from the smoothr0(E) term and is highly peaked aroundL50.] Thus, the Fourier trans
form of the quantum energy spectrum, defined viar(L) using knowledge of the quantizedkn

values, will show features at values ofL corresponding to the lengths of classical periodic orb
~and their repetitions!. @We recall that one of our interests is in exploring the relative importa
of isolated versus nonisolated periodic orbits whose path lengths will both appear as feature
right hand side of Eq.~2!.# Since we necessarily use a finite number of energy eigenvalues
numerical evaluation ofr(L), we will actually evaluate

r~L,NTOT![ (
n51

NTOT

eiknL ~3!

and we will find it useful to examine the scaling properties ofr(L,NTOT), as a function ofNTOT ,
for various obvious features corresponding to both isolated and nonisolated orbits.

The analysis of simple billiard systems such as 2D square3 and rectangular14 wells as well as
2D circular wells3 rely heavily on geometrical ideas and symmetry principles to visualize both
patterns of energy eigenvalues and periodic orbits. Using just such ideas, it was possible in
to extend the PO theory analysis of the circular well to simple variants thereof, such as the
and quarter-well cases.~A much more complete analysis of the general case of an ‘‘angular sl
well, characterized by an infinite well with a circular arc boundary and walls separated b
arbitrary angleQ was performed in Ref. 14; the half- and quarter-well cases are then special
of this more general result corresponding toQ5p andQ5p/2, respectively.! For both complete-
ness sake, as well as for use in later discussions, we very briefly review these results for v
versions of the circular well before proceeding to variants on the square well.

A. Circular and half-circular well

The periodic orbits or closed trajectories in a circular infinite well~of radiusR! or billiard can
be characterized by two integers,p ~which counts the number of ‘‘hits’’ on the inner wall! andq
~which counts the number of net revolutions made by the particle before it returns to the
location in phase space! and the two are related by the conditionpQ5q(2p), whereQ is the
angle subtended by the chord length between bounces. The total path length for such a p
or once-around closed orbit is

L~p,q!52pRsinS pq

p D ~4!
                                                                                                                



also
uiva-
s of

m
l
e
y

e the

ple
ist as
the

h the
f an

rgy

104 J. Math. Phys., Vol. 40, No. 1, January 1999 R. W. Robinett

                    
and integral multiples of this, corresponding to multiple repetitions of the basic trajectory, are
allowed. Each set of (p,q) actually corresponds to a continuous set of closed paths, each eq
lent to each other in length, and only differing in the initial angle. These continuous familie
trajectories are our first example of sets of nonisolated orbits.

The corresponding quantum mechanical system has an energy spectrum given by

E~m,nr !5
\2@a~m,nr !#

2

2mR2
5S \2

2m D kn
2, ~5!

where we denote the particle mass bym in order to avoid confusion with the angular momentu
quantum number,m. The a(m,nr )

denote thenr th zero of theumuth regular cylindrical Besse
function and the orbital angular momentum is given byLz5m\. The angular wave functions ar
given byQm(u)}cos(mu) and sin(u) so that for each value ofm.0 there is a twofold degenerac
~corresponding to the indistinguishability of clockwise versus counterclockwise motion!, while for
m50 only one copy of the constant cos(0) solutions is present.

Using the values of thea(m,nr )
, the Fourier transform defined by Eq.~2! is shown in Fig. 1 for

the full well case where many of the path lengths described by Eq.~4! are clearly visible. The
large feature atL50 corresponds to the Fourier transform of the smoothr0(E) piece, while the
dashed vertical line shows the limiting value of (p,q)→(`,1) whereL(`,1)52pR; evaluating
r(L) with a finite number of eigenvalues implies limited resolution near such locations wher
path-length features are increasingly closely spaced.

For the half-circular well, defined by folding the circular well along a diameter, sim
geometrical constructions guarantee that any periodic orbit in the full well will continue to ex
a closed trajectory in the half-well, due to the mirroring effect of the new infinite wall along
diameter. The only new feature to be expected is an isolated ‘‘back-and-forth’’ orbit throug
center of the well, perpendicular to the diametrical infinite wall; this is our first example o
isolated periodic orbit. This singular new feature will haveL/R52.0 ~and recurrences! in addition

FIG. 1. Fourier transform of the energy level densityur(L)u2 @defined by Eq.~3!# versusL/R for the circular well~top!,
the half-circular well~middle! and quarter-circular well~bottom! geometries. The lowest-lying 2000, 1500, and 860 ene
levels have been used in each case, respectively. Note the emergence of a path length feature atL/R52.00 corresponding
to an isolated, ‘‘back-and-forth’’ orbit in the half-well case.
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to the continuous set of (p,q)5(2,1) features withL/R54.0 ~and recurrences! and would be
expected to show up, if at all, in ther(L) plots as a much smaller ‘‘bump.’’ To confirm this, w
require knowledge of the quantum energy spectrum in the half-well which we can easily o
from the solutions of the full well. TheQm(u)}sin(mu) solutions will remain solutions of the
half-well as they satisfy the new boundary condition of vanishing along the diametrical wall. T
the energy spectrum consists of one-half of them.0 spectrum for the full well, with no contri-
butions from the nondegeneratem50 eigenstates. The large amount of degeneracy present i
full well is completely lost in the half-well as there are no ‘‘accidental’’ degeneracies in
system as there are in the square well.16

The resultingr(L) versusL plot for the half-well using this set of eigenvalues is also sho
in Fig. 1 ~middle data! and does indeed show ‘‘spikes’’ at the same locations as in the full circ
well, plus the expected additional small feature atL/R52.0; recurrences of this new feature
L/R54.0 and 6.0 are hidden by more standard (p,q)5(2,1) and (6,1) spikes.

In order to examine any differences between the features corresponding to isolated
~such as theL/R52.0 feature! and nonisolated paths, we also explore the dependence of a
observed features in ther(L) spectrum as the number of energy eigenvaluesNTOT used in the
evaluation of Eq.~3! is increased. We evaluate the ‘‘peak height’’ for the first seven recogniz
features corresponding to obvious nonisolated paths for increasing values ofNTOT , namely,

RMAX ~NTOT![ur~L~p,q!,NTOT!u2 ~6!

and we plot the results in Fig. 2. We note that the behavior ofRMAX(NTOT) for these features is
consistent with a power law scaling of the form

RMAX ~NTOT!;A~NTOT!a ~7!

with a53/2 so that the magnitude of these path length features certainly increases withNTOT . In
order to compare this dependence with that for the isolated orbits as well as the ‘‘backgro
we evaluateur(L,NTOT)u2 for several values ofNTOT ~namely, 100, 200, 400, 800, 1600, an
3200) for each value ofL in the range 0.0<L/R<14.0, fit each data set to a power law of th
form in Eq.~7!, and plot the resulting fitted values ofa versusL/R in Fig. 3. Directly below each
such plot, we also showur(L)u2 itself using a larger (NTOT53200) data set than in Fig. 1 for th
half-well for comparison. We immediately note several features:

FIG. 2. Scaling behavior ofRMAX(NTOT) @defined in Eq.~7!# for the first seven nonisolated orbit features as a function
NTOT illustrating the power law behavior consistent with an exponent ofa53/2.
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~i! Even with the increased statistics used, obvious features corresponding to isolated
and-forth orbits withL/R52.0 and even 10.0 are still obvious~indicated by bold arrows!.
Contributions of these orbits to features atL/R54.0, 8.0, and 12.0 are, as mention
above, hidden under the larger peaks corresponding toL(p,q) features with (p,q)
5(2,1) and (6,1). It is sometimes possible, however, to separate the otherwise ‘‘deg
ate’’ contributions from various types of periodic orbits in the circular well by using o
appropriate subsets of energy eigenvalues, corresponding in obvious ways to the ap
ate classical orbits15 and that same observation can be used in this case to observe
rately the contributions of the isolated orbits.

~ii ! The effective value ofa drops rapidly from itsL50 value ofa52 to something consisten
with unity or smaller, except for isolated features.@Recall that the definition in Eq.~3!
implies thatr(L50,NTOT)[N2.] This means that the scaling behavior of the~uninterest-
ing! r0(L) term is relatively unimportant forL/R*0.1.

~iii ! As noted above, peaks in thea versusL/R plot with values ofa'1.5 are obvious for each
resolvable, nonisolated path length feature in ther(L) spectrum, implying that the standar
L(p,q) features in ther(L,NTOT) spectrum will grow in relative importance in theNTOT

→` limit, just as expected.
~iv! Small features in thea versusL/R spectrum nearL/R52.0 and 10.0 indicate that th

scaling properties of these features are different from the ‘‘background’’ values nearb

FIG. 3. Fitted values of the power law exponenta @from Eq. ~7!# versusL/R for the half-circular well~top plots! with
corresponding values ofur(L)u2 directly below. A total ofNTOT53200 eigenvalues was used in the numerical evalua
of r(L) in this case compared toNTOT51500 in Fig. 1. Only standard nonisolated path length features given by theL(p,q)
in Eq. ~4! ~indicated by vertical dashed lines! and a new isolated back-and-forth orbit feature atL/R52.00,10.00 are
visible. The horizontal dashed line indicates the value ofa53/2.
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the case of theL/R52.0 feature, the value ofa'1 is separated from the nearby value
while the L/R510.0 value ofa'2.5 indicates that the feature will continue to rema
significant asNTOT→`.

~v! No other new features~due, for example, to diffraction effects! are obvious in ther(L)
spectrum in the region explored, except those due to isolated orbits introduced b
folding.

Finally, a second folding, resulting in a quarter-well yields qualitatively new path len
features. Orbits in the half-well corresponding to values ofp which areevencan be mirrored in the
quarter-well with resulting path lengths which are half as long as in the precursor well, whil
features forodd values ofq remain unchanged in length.~This geometry is not so different from
the familiar optics problem of counting the number of images visible when an object is p
between two pivoted mirrors with an opening angleQ or other similarly kaleidoscopic arrange
ments of mirrors.! The quantized energy eigenvalues required to evaluater(L) for this geometry
can be obtained from those of the standard circular well by choosing one copy of them.0
eigenvalues forevenvalues ofm as the corresponding eigenfunctions will then satisfy the bou
ary conditions along both thex- andy-axes. The Fourier transformr(L) using these values is als
shown in Fig. 1 and shows the expected pattern. Continued foldings into quarter-wells and b
can be analyzed in a very general manner and the results have been extensively discus
visualized in Ref. 14.

B. Square well

The general pattern of allowed orbits in a two-dimensional square well will consist
‘‘plaid’’ pattern of line segments traced by the particles trajectory. This pattern will com
increasingly ‘‘paint’’ the square area of the well increasingly uniformly~for the visualization of
such orbits, see Ref. 3! unless certain conditions are satisfied which lead to closed orbits. In o
for trajectories to eventually close on themselves, we require that

vy

vx
5

ny

nx
, ~8!

wherevx ,vy are the magnitudes of the classical velocity components in thex,y directions and
nx ,ny50,1,2, . . . take on integer values. This condition is then independent of the total ene
the particle, depending only on geometry as it should for a billiard system of this type.
integers (nx ,ny) give the number of bounces experienced by the particle~during a single primitive
periodic orbit! from the vertical~horizontal! walls as 2nx (2ny). As with the circular well, each
label corresponds to a continuous family of paths, of identical path length, differing only by i
position; once again this is a continuous set of nonisolated periodic orbits, one family for

FIG. 4. Typical periodic orbits for the square well~a!, the once-folded triangular well~b!, and the twice-folded triangular
well ~c! corresponding to the integer labels (nx ,ny)5(1,0)/(0,1).
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(nx ,ny) label. A few of the simplest such patterns are shown in Figs. 4~a!, 5~a!, and 6~a!. The
corresponding primitive or once-around path lengths are then given by a simple geom
construction to be

L~nx ,ny ;a!52aAnx
21ny

2. ~9!

A simple extension of this system is to a rectangular well~of dimensionsax3ay) where the
classification of closed orbits can still be described by an (nx ,ny) pair, but where the path length
are now given by

L~nx ,ny ;ax ,ay!52A~nxax!
21~nyay!2. ~10!

The quantum mechanical case is equally simple to analyze with bound state energie~with
wave numberskn) given by

E~ i , j !5
\2p2

2ma2
~ i 21 j 2!5

\2kn
2

2m
or kn5

p

a
Ai 21 j 2 ~11!

and wave functions

c~ i , j !~x,y!5FA2

a
sinS ipx

a D GFA2

a
sinS j py

a D G , ~12!

FIG. 5. Same as Fig. 4, but for (nx ,ny)5(1,1). For case~b!, note the appearance of an isolated orbit of lengthL/a
5A2 ~dotted-dashed line! in addition to the continuous family of nonisolated paths withL/a52A2 ~exemplified by the
solid and dashed paths.!

FIG. 6. Same as Fig. 4, but for (nx ,ny)5(2,1)/(2,1).
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where i , j 51,2,3, . . . . For future reference we note that odd~even! values ofi , j correspond to
wave functions which are even~odd! with respect to a parity operation about horizontal or verti
lines through the center of the square. One of the most important features of this spectrum
large degree of degeneracy, sinceE( i , j )5E( j ,i ) , and a symmetry group analysis of this doub
degeneracy has recently been presented in Ref. 16.

A standard periodic orbit theory analysis applied to such a billiard system then procee
taking a large number of low-lying energy eigenvalues~in this case we useNTOT54000) and
evaluating Eq.~3! using the correspondingkn in Eq. ~11!. The resulting plot ofur(L)u2 versusL/a
is shown~at the bottom! in Fig. 7, with the~a! label corresponding to the initial square well. A
of the expected features at values ofL/a5Anx

21ny
2 ~and recurrences! are observed in the regio

shown.

C. Triangular foldings of the square well

The basic square well geometry can be folded in a variety of ways which result in so
quantum mechanical and classical systems and the ‘‘triangular’’ foldings illustrated in Figs
and 6 are closest in spirit to the half-circular well case considered above. If we fold the squar
footprint along a diagonal, we obtain an isosceles triangle and the allowed set of closed or
the full well is reproduced in this triangular half-well; this is shown in parts~a! and ~b! of those
figures where we consider cases corresponding to the (nx ,ny)5(1,0)/(0,1)~Fig. 4!, (1,1) ~Fig. 5!,
and (1,2)/(2,1)~Fig. 6! cases, respectively. In each case shown there, an allowed orbit i
square well is supported by the triangular well with the identical overall path length. The only
feature arises from a special isolated orbit of the type shown in Fig. 5~b! ~as the vertical dot-dash
line! for the (1,1) case. This back-and-forth orbit is very similar to that seen in the half-circ
well case and should give rise to a small feature at integral multiples ofL/a5A2 and theodd
multiples (1,3,5,. . . ) of this feature will not be hidden under the recurrences of the more stan
(nx ,ny)5(1,1) features at integral multiples ofL/a52A2.

FIG. 7. Fourier transform of the energy level density,ur(L)u2 @defined by Eq.~3!# versusL/a for the full square well~a!,
the once-folded triangular well~b!, the twice-folded triangular well~c!, and the three-times-folded triangular well~d!. Note
that the path length spectrum of the once-folded well is basically identical to the square well except for the appea
new small features atL/a5nA2 wheren is odd, corresponding to the isolated back-and-forth orbits shown in Fig. 5~b!.
Cases~c! and ~d! are shown with the horizontal axis scaled down by factors ofA2 and 2, respectively, to show that th
same structures are visible for all three isosceles triangles, but withL scaled appropriately.
                                                                                                                



of the
defi-

l
di-

ave

well
ns of
e

lar
in

milar

alues
he
s

110 J. Math. Phys., Vol. 40, No. 1, January 1999 R. W. Robinett

                    
Although it is seldom stressed in textbooks, the energy eigenvalues and eigenfunctions
isosceles triangular well can be easily obtained from those of the square well. Taking for
niteness a square well defined over the intervalsx,yP(0,a), we can form a triangular well by
restricting the area further to satisfyy<x with the y5x line defining another infinite potentia
wall. While eigenfunctions of the type in Eq.~12! do not satisfy the necessary boundary con
tions, appropriate linear combinations of pairs of degenerate solutions, defined by

c~ i , j !
~b! ~x,y! } c~ i , j !~x,y!2c~ j ,i !~x,y! ~13!

~with i . j andx>y), do vanish on all infinite wall boundaries and so are the appropriate w
functions. The corresponding energy eigenvalues are then given by Eq.~11!, but with the restric-
tion that i . j . In this way, a large amount of the degeneracy which is obvious in the square
is removed.~In fact, linear combinations of just this type have been recently used in discussio
the symmetry group for the square well potential.16! The ground state probability density in th
triangular well @corresponding to (i , j )5(2,1#, as well as its ‘‘precursor’’ in the full well are
shown in Fig. 8~left column! as a contour plot; the wave function in the once-folded triangu
well ~lower left! is more peaked~note the contours!!, since in order to be properly normalized
the smaller well it must have a larger magnitude.

In this regard, the energy spectrum of the triangular folding is obtained in a very si
manner to the half-circular well considered above. The nondegenerate states (m50 in the circular
case,i 5 j in the square case! are not used and one-half of the remaining degenerate eigenv
(mÞ0 in the circular case,iÞ j in the square case! are retained. Because of this, much of t
original degeneracy of the system is removed. Some of the original accidental degeneracie16 are
also eliminated, such as those degenerate states labeled by (i , j )5(1,7)/(5,5) or (7,17)/(13,13),

FIG. 8. Contour plots of the full square well probability densities from Eq.~13! for ( i , j )5(2,1) ~upper left! and (3,1)
~upper right!. The corresponding ground state wave functions for the once-folded triangular well~lower left! and twice-
folded triangular well~lower right! are also shown.
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because (i ,i ) states are no longer present. However, the majority of such accidental degene
are still present, for example, those of the form (4,7)/(1,8), (2,9)/(6,7), and
(5,20)/(8,19)/13/16).~We note that a large fraction of such accidental degeneracies are, in
lifted in the square well variant considered in Sec. II E as discussed in detail in the Appen!

Given these simple connections between the energy eigenvalues for the full square w
its triangular folding, it is then perhaps not surprising that when we evaluater(L) using this
energy spectrum, we obtain the result shown in Fig. 7~b! which shows all of the same path leng
features as the full square well, but with additional small features obvious atL/a
5A2, 3A2, 5A2; the next feature atL/a57A2'9.9 is almost hidden under the more standa
5(1,0) and 1(3,4) peaks which fall atL/a510.0.

Further foldings of the isosceles triangular well along a perpendicular bisector result in
gruent isosceles triangular footprints, but with an area of half the size and edges a factor 1A2 as
long. The closed paths allowed in the first-folded wells in Figs. 4~b!, 5~b!, and 6~b!, upon a second
folding, are mirrored into periodic orbits in the smaller versions of the triangular wells,
corresponding to a different set of (nx ,ny) labels. For example, in going from~b! to ~c! in
Figs. 4, 5, and 6, we find that the (nx ,ny) labels correspond to (1,0)/(0,1)→(1,1), (1,1)
→(1,0)/(0,1), and (1,2)/(2,1)→(3,1)/(1,3) respectively. Thus, the entire set of allowed orb
are indeed reproduced, with path length features reduced by a factor of 1/A2.

The quantum mechanical eigenvalues in the ‘‘second-folded’’ triangular well can als
obtained from the first-folded triangular well by further restrictions in the allowed values oi , j
using symmetry arguments. If one restricts the second-folded well to lie below the liney5a2x
~i.e., the other diagonal of the original square!, then a subset of the states in Eq.~13! will still be
solutions in the restricted well and also satisfy the necessary boundary conditions on th
infinite wall boundary. Specifically, thosei . j states with (i , j ) either both evenor both odd will
have a nodal line alongy5a2x and comprise the allowed solution space. We compile, in Ta
I, the lowest-lying energy eigenvalues with the corresponding (i , j ) labels for the first-folded~b!
and second-folded~c! triangular wells. To visualize the new ground state wave function in
second-folded well, we show in Fig. 8~right column! the (i , j )5(3,1) state, both in the full
precursor well~upper right! and in the second-folded triangular well~lower right!. Note that the
ground state wave function is even more highly peaked than in the larger triangular well d
normalization constraints, but its shape is identical to that in the first-folded triangular case

From Table I, we see that the pattern of allowedi , j values in the second-folded well is give
by (i 1 j ,i 2 j ) in which case the energies are related to those in the first-folded well by

TABLE I. Energy eigenvalues,En5E( i , j )5(\2p2/2ma2)( i 21 j 2), for the triangular wells resulting from the first~b!,
second~c!, and third~d! triangular foldings of the square well, scaled to the value ofE05\2p2/2ma2. The values of (i , j )
for the second-folded triangular well are given by (i 1 j ,i 2 j ) which explains whyEn

(c)52En
(b) .

First triangle Second triangle Third triangle

( i , j )
( i , j ) i . j and either (i , j )
i . j En

(b)/E0 both even or both odd En
(c)/E0 i . j and both even En

(d)/E0

(2,1) 5 (3,1) 10 (4,2) 20
(3,1) 10 (4,2) 20 (6,2) 40
(3,2) 13 (5,1) 26 (6,4) 52
(4,1) 17 (5,3) 34 (8,2) 68
(4,2) 20 (6,2) 40 (8,4) 80
(4,3) 25 (7,1) 50 (8,6) 100
(5,1) 26 (6,2) 52 (10,2) 104
(5,2) 29 (7,3) 58 (10,4) 116
(5,3) 34 (8,2) 68 (10,6) 136
(6,1) 37 (7,5) 74 (12,2) 148
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E~ i , j !
~c! 5

\2p2

2ma2
@~ i 1 j !21~ i 2 j !2#52F \2p2

2ma2
~ i 21 j 2!G52E~ i , j !

~b! . ~14!

@The combination (i 1 j ,i 2 j ) which arises in this case is easily seen, either via Fig. 8 or u
analytic constructions, to be connected to the fact that the wave functions in the once-folde
can be related to those in the twice-folded well by rotations through various multiples of 45
subsequent scaling of lengths by factors of 1/A2.] So, since the energy spectrum in the seco
folded well consists of values which are exactly twice those in the once-folded well, i.e.,$En

(c)%
5$2En

(b)%, we also know that the allowed wave numbers satisfy$kn
(c)%5$A2kn

(b)%. This simple
scaling result implies that the Fourier transform definingr(L) in case~c! will then have the
identical spectral features in case~b!, simply scaled down inL by the appropriate factor of 1/A2.
We illustrate this in Fig. 7 where the horizontalr(L) ‘‘spectrum’’ for part ~c! is identical to that
for part ~b! when plotted with the appropriately scaled value ofL/a.

Finally, additional foldings along axes of symmetry result in ever smaller isosceles trian
wells, with appropriately smaller path lengths and increasingly large energy eigenvalue
example, the third-folding~not shown in Figs. 4, 5, or 6! will give path length features at half th
original lengths. The energy eigenvalues which lead to this are obtained from the original w
further restricting theE( i , j )

(b) to (i , j ) values which arebotheven and the resulting energy spectru
~see Table I once again! consists of values which are obviously 4 times the original, with twice
resultingkn values and path length features at half the precursor values. Examples of suc
length features are shown in Fig. 7~d!.

We have also performed a scaling analysis ofr(L,NTOT) versusNTOT similar to that for the
half-circle as shown in Figs. 2 and 3, and we find very similar results, specifically, the sc
coefficient for the standard, nonisolated features is completely consistent witha53/2 for all of the
path length features shown in Fig. 7.

D. Rectangular foldings of the square well

As another simple example of a folding of the square well, let us examine both the e
eigenvalue spectrum and the periodic orbit structure of the rectangular well of dimensioa
3a/2 obtained by restricting ourselves to the region of the initial square well definedy

FIG. 9. Typical periodic orbits for the square well~a!, the once-folded rectangular well~b!, and the twice-folded square
well of half the original size~c!. The plots correspond to the integer labels (nx ,ny)5(1,0) ~solid! and (0,1)~dashed! at the
top, and to several versions of (nx ,ny)5(1,1) on the bottom.
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>a/2, i.e., the upper half.~We will find no isolated orbits in this ‘‘folding,’’ but we consider thi
case for completeness.! The wave functions in Eq.~12! are still solutions of the appropriat
Schrödinger equation within the restricted well and those with evenj values also satisfy the
boundary condition thatc(x,y5a/2)50 on the new boundary. Thus, the appropriate ene
eigenvalues are still given by Eq.~11!, but with j restricted to be an even integer.

The corresponding path lengths, given by Eq.~10!, can be written in the form

L ~b!~nx ,ny!52A~nxa!21ny~a/2!25 1
2 @2aA~2nx!

21ny
2#5 1

2 L ~a!~2nx ,ny ;a!. ~15!

The changes in path lengths for allowed orbits can also be visualized by folding over all
trajectories in the square box as shown in Figs. 9 and 10. The corresponding spectrum of a
path lengths,L, will then be somewhat similar to that of the square well, but with the follow
changes:

~i! For each path length feature in the full square well characterized by a value of (nx ,ny),
there will be a corresponding feature in the once-folded, rectangular well with half the
length, provided thatnx andny are not both odd.

This pattern can be confirmed by evaluatingr(L) using Eq.~2!, but with theNTOT54000 lowest
eigenvalues given by Eq.~11!, but wherej is an even integer. The resulting plot for the rectangu
well is shown in Fig. 11, directly above that for the square well, and with an appropriately s
horizontal axis. One sees immediately that the resulting path length spectrum is as de
above, similar to the square well result, scaled down by a factor of 2, but with the appro
(nx ,ny)5~odd, odd! peaks missing.

A subsequent second folding of the rectangular well into a square well of one-quarter th
of the original square is an obvious continuation of the pattern. The resulting possible path l
can be obtained by folding or reflections as shown in Figs. 9~c! and 10~c! and are, of course
identical to the original well, but with path lengths given by

L ~c!~nx ,ny!52A~nxa/2!21~nya/2!25 1
2 @2aAnx

21ny
2#5 1

2 L ~a!~nx ,ny!, ~16!

i.e., simply scaled down by the appropriate factor of 2. The energy eigenvalues are given
~11!, but in order to satisfy the boundary conditions alongy5a/2 andx5a/2, we require thatboth

i and j be even integers, so thatĩ 52i , j̃ 52 j which gives

FIG. 10. Same as Fig. 9, but for (nx ,ny)5(1,2) ~top! and (2,1)~bottom!.
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Ẽ~ ĩ , j̃ !5
\2p2

2ma2
~ ĩ 21 j̃ 2!54F \2p2

2ma2
~ i 21 j 2!G54E~ i , j ! ~17!

so that the wave numbers required in Eq.~2! satisfy k̃n52kn . This immediately implies that the
r(L) evaluated with thisk̃n spectrum will have peaks at values ofL̃5L/2 as expected. Additiona
foldings will continue to reproduce these patterns, but with 231 rectangles and squares of in
creasingly smaller dimensions. For example, after 2n foldings, the allowed energy eigenvalues
the smaller square well will, by symmetry considerations alone, be given byẼ( ĩ , j̃ )5(2n)2E( i , j )

and wave numbers related byk̃n5(2n)kn immediately implying square well path length featur
given by r̃ (2n)(L)5r(L/2n).

E. Another variant of the square well

Other variants of the square well which also exhibit induced isolated periodic orbits
possible beyond those derived by foldings and the next such system we consider is the squ
with an ‘‘infinite-strength’’ repulsived-function potential at the center. This variant is similar
spirit to the study of the annular circular well or circular disk considered in Ref. 17 with the ra
of the inner annulus made vanishingly small. It can also be obtained by adding a rep
potential of the form

VREP~x,y!51g̃d~r2r0!, ~18!

wherer0 defines the center of the square well and we then letg̃→`.
The structure of the classical periodic orbits in this slightly modified system is clear.

standard orbit of the type in Sec. II B will still be allowed, provided it misses the central obs
tion. Exactly one isolated orbit for each value of (nx ,ny) which doeshit the center will also form
a closed trajectory, but with half the path length. Thus, the path length spectrum exhibited inr(L)
should consist of the standard large spike features at values given byL/a52Anx

21ny
2 ~and rep-

etitions!, but will also show much smaller features~similar in magnitude to the isolated path leng

FIG. 11. Fourier transform of the energy level density,ur(L)u2 @defined by Eq.~2!# versusL/a for the full square well~a!,
the once-folded rectangular well~b! and the twice-folded square well of half the original size~c!. Note the different
horizontal scales used in~b! and ~c! compared to case~a!. Labels corresponding to (nx ,ny) both odd are shown.
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features for special back-and-forth orbits in the half-circular and triangular wells! at values ofL/a
equal to half the standard ones.~We note that for a square well with a repulsive core consisting
a circular infinite barrier with a finite radius, one obtains a Sinai billiard8 which is known to
exhibit classical chaotic motion; we are therefore considering a very simple special case.!

A large part of the quantum mechanical energy spectrum for this problem can once ag
trivially obtained by symmetry arguments. Energy eigenfunctions in the original square well
eitheri or j even will have an appropriate node at the middle of the well and will be unaffecte
the presence of the centrald-function ‘‘core.’’ States characterized by (i , j ) both odd can, in
principle, be increased in energy, but once again symmetry arguments restrict the states wh
affected. For such~odd,odd! states which haveiÞ j , we can construct two linear combinations
the standard eigenfunctions in Eq.~12!, namely the one already discussed in Eq.~13! and the
orthogonal state corresponding to the sum of the two basic states. The antisymmetric
combinations vanish at the center of the well and so are unaffected by thed-function addition;
thus, something just less than (1/2) of the remaining~odd, odd! states remain eigenstates of th
new problem since thei 5 j ~odd, odd! states will be affected. There then remain a set of sta
characterized by (i , j ) with i< j and both odd which will be shifted up in energy, but in contr
to the much simpler one-dimensional case, the resulting spectrum is not easily related
standard spectrum in the same obvious way.~The one-dimensional case18 is reviewed in the
Appendix as a model upon which we base our solution for the 2D problem of interest h!
Crudely speaking then, something like (3/4)1(1/8)2'7/8 of the energy values in the square w
plus core problem are identical to the standard square well and will obviously contribute
large array of standard path length features when used to evaluater(L). In order to obtain
estimates for the remaining energy eigenstates whichare affected by the central core, we wi
make use of the matrix mechanics approach which is discussed at some length in the Ap
~We note that a perturbative approach is not useful in the case wheng̃→`, but we can check the
results of the matrix approach for small values ofg̃ using perturbation theory as a consisten
check on our method; we find complete agreement in that limit.!

Using the lowest 800 eigenvalues~roughly 100 or 1/8 of which are those affected by t
additionald-function!, we numerically evaluater(L) as usual and obtain the results shown in F
12. The spectrum including the infinite-strengthd-function is shown in part~b! and does indeed
exhibit many new features@most of which are labeled by the appropriate values of (nx ,ny)] at half
the ordinary path length values familiar from the ordinary 2D well spectrum which is show
Fig. 12~a! for comparison. The new spectrum is also shown in part~c! on an expanded scale. I
this case there is now a large array of new~smaller! features corresponding to a large class
distinct new isolated orbits.

F. Supersymmetric version of the square well

We have focused extensively in this report on the connections between systems with
etries which are related by simple symmetry operations and have found, not surprisingly, th
structure of the allowed space of periodic orbits and the quantized energy eigenvalues are
correlated with one another. In several such cases, we have found that the energy spectra
related systems are almost identical to one another, but with special strings of eigenvalu
appearing in one case or the other. One of the most familiar examples of a symmetry for
this pattern is known to happen quite generally is found in supersymmetric quantum mecha19

In more familiar one-dimensional supersymmetry~SUSY! problems, the energy spectra of tw
superpartner potentials,V(2)(x) and V(1)(x), are identical except that the zero-energy grou
state inV(2)(x) is missing forV(1)(x). While commonly discussed for one-dimensional pro
lems, it is just as easy to derive the supersymmetric pair potentials corresponding to th
dimensional square well under discussion here. Since the problem is separable, we nee
consider the 1D SUSY partner potentials for the standard square well20 and combine results.

In order to obtain a ground state solution with vanishing energy~necessary for the construc
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tion of the superpotential!, we subtract the ground state energy from the standard 1D infi
square potential (Vh(x)) thus defining

V~2 !~x!5Vh~x!2
\2p2

2ma2
~19!

with a similar result for they coordinate. The resulting energy spectrum is then given by

E~ i , j !
~2 ! 5

\2p2

2ma2
@ i ~ i 12!1 j ~ j 12!#, where i , j 50,1,2,3, . . . . ~20!

The supersymmetric partner potentials for either coordinate can be derived using sta
results20 and we find that

V~1 !~x!5
\2p2

2ma2F2 csc2S px

a D21G ~21!

so thatV(1)(x,y)5V(1)(x)1V(2)(y).
A contour plot of this potential is shown in Fig. 13 and the limiting case of very high ener

approaches the dashed~square well! boundary shown; thus, whenE( i , j )
(1) @\2p2/2ma2 we recover

the familiar 2D square well geometry. If, for example, we set (\2p2/2ma2)( i ( i 12)1 j ( j 12))
5V(1)(x,y), the distance from the~smooth! corner of the corresponding contour ofV(1)(x,y) to
the ~sharp! corner of theV(2)(x,y) potential is approximately

x'aS 2

pAi 21 j 2D→0 as i , j→`. ~22!

FIG. 12. Comparison ofur(L)u2 versusL/a for the standard square well@bottom plot labeled~a!#, and the square well with
an infinite-strengthd-function spike at the center~middle and top plots!. New features due to isolated orbits which hit th
central spike are present in case~b! and ~c! at half the path lengths of the more standard nonisolated orbits. Case~c! is
identical to case~b!, but with an expanded scale for easier comparison.
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The corresponding energy eigenvalues are given by Eq.~20!, but now with the restriction tha
i , j 51,2,3, . . . since the zero-energy ground state in each direction is excluded.

An obvious question is how the periodic orbits in the two wells are related to each other,
given Eq.~1!, the energy level densities,r(E), for the two systems are very highly correlate
Because the SUSY partner potential defined byV(1)(x,y) is not a purely free-particle billiard-like
system, we cannot use Eq.~2! directly. However, because the system does approach the sq
well case in the limit of high energies, we do expect a very close correspondence betwe
structure of the periodic orbits in the two systems. In order to model what the likely difference
in the two model systems, we calculater(L) using Eq.~2!, but instead of using the full energ
spectrum in Eq.~20!, we evaluater(L) using the energy~and wave number! values with the case
i , j 50 excluded. We compare the two evaluations ofr(L) in Fig. 14 the dashed~solid! curves
correspond to theV(2) (V(1)) spectrum.

FIG. 13. Plots of the supersymmetric partner potentials defined by the two-dimensional square well problem. A
plot of the supersymmetric partner potential,V1(x,y) @defined by Eq.~21!#, is shown on the right along with the dashe
~square well! boundaries which is the limiting case forE@\2p2/2ma2.

FIG. 14. Comparison ofur(L)u2 versusL/a using the energy eigenvalues,E( i , j )
(2) with i , j 50,1,2, . . . defined by Eq.~20!

~dashed curve! versus those in the supersymmetric partner potential,E( i , j )
(1) for i , j 51,2,3, . . . ~solid curve!. Only the path

length features corresponding to the (1,0),(0,1) purely horizontal or vertical closed orbits are seemingly affected.
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Perhaps not surprisingly, the only observable differences are the relative importance
(1,0)/(0,1) features corresponding to purely back-and-forth or up-and-down motions. In th
square well, the paths characterized by these integer labels form a continuous set and so a
‘‘full spikes’’ in the r(L) spectrum; in the SUSY partner case, the relative importance of t
features, and especially of their recurrences, become increasingly smaller. This can lik
attributed to the fact that only purely horizontal or vertical closed pathsthrough the center of the
‘‘rounded’’ V(1)(x,y) potential will support closed orbits and paths which are onlynear the
center will increasingly become ‘‘defocused,’’ repetition after repetition. We reiterate that th
not, in any sense, a complete or rigorous analysis of this problem, but it does point ou
because of Eq.~1!, there will likely be a very interesting relationship between the classe
allowed periodic orbits in superpartner potentials. In cases where the 2D potential is separa
here, we do expect the general pattern of energy level differences, namely that theE(1) spectrum
will be identical to theE(2) one, but with two one-dimensional arrays of eigenvalues miss
~those corresponding here toi , j 50.) Examples for further study could also include the SUS
partner potentials for the circular infinite well, in which case one would likely have to cons
V(2)

(m) (r ) andV(1)
(m) (r ) potentials~for the corresponding radial equation! separately for each value o

the orbital angular momentum quantum numberm.
One can already see, in broad strokes, how the construction of a superpartner po

V(1)(x,y), from a zero-energy version of any infinite well potential,V(2)(x,y), using superpo-
tentials will ensure that the resultingV(1)(x,y) will have the same set of infinite wall boundarie
for large energies. The vanishing of the ground state solution inV(2)(x,y)5V(2)(r ) on the
boundary~labeledC!, schematically given byc(r )C50, ensures that the superpotential, whi
consists of factors such asc8(r )/c(r ) will give a partner potential which will diverge~due to the
vanishing denominator! on the boundary of the original infinite well geometry. This connect
between the two potential wells is a specific example of the shape invariance relationsh
SUSY partner potentials discussed in Ref. 20 and a general analysis of the periodic orbit
interpretation of supersymmetric quantum mechanics will, no doubt, rely heavily on this pro

G. Conclusions

We have studied two folded versions of standard two-dimensional billiard systems, na
the half-circular well and the ‘‘triangular’’ folding of the square well, and found that the chan
in the energy eigenvalue spectrum and the new classical periodic orbits induced by the fold
very similar. We have discussed the scaling properties of the isolated and nonisolated orb
tures as a function ofNTOT and have found that the values ofur(L)u2 for standard, nonisolated
path length features increase as (NTOT)

3/2 in both cases, at least with the simple normalization u
in Eq. ~3!; the isolated path ‘‘spikes’’ also exhibit well-separated local maxima in plots oa
versusL. In each case, with the largest number of states used, the only new features obvious
r(L) spectra are those corresponding to the back-and-forth orbits and these new features
sponding to isolated orbits continue to be apparent above the background asNTOT is increased.

For the case of the square well plusd-function, we find that a much larger fraction of th
energy eigenstates are affected by the introduction of the central barrier with a correspo
effect on the number of new isolated orbits. Compared to the folded cases where a
dimensional set of energy eigenvalues is changed~discarded! and a single isolated periodic orb
~and its repetitions! are induced, in this case a significant fraction of the energy spectrum is al
and an infinite series of new path length features~as well as their repetitions! are then observed in
the r(L) spectrum.

Finally, we have discussed some possible connections between the periodic orbits in p
partner potentials related by supersymmetry and the corresponding energy eigenvalue
focusing on the 2D square well and its superpartner as a specific example, in the context
other cases considered here. We consider this discussion as motivation for a more thoroug
of this interesting connection.
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APPENDIX A:

For the discussion of the square well variant in Sec. II E, we require the energy eigen
spectrum for the case of a square well of sidea with the addition of an infinite strength, repulsiv
d-function potential of the form

VREP~x,y!51g̃d~r2r0!51g̃d~x2a/2!d~y2a/2!, ~A1!

where we letg̃→`. To gain some guidance on how to solve this problem, we can conside
simpler one-dimensional analog of this case, namely a particle in a 1D well with an addi
potential

Ṽ~x!5gd~x2a/2!. ~A2!

This problem is solvable analytically~by simple matching of the appropriate boundary conditio
at the centrald-function! and one can therefore take the limit whereg→` exactly.@We note that
the dimensions ofg̃ ~in 2D! andg ~in 1D! are different.# In that case one finds that the 1D stat
labeled by odd values of the integeri, i.e., those states which are nonvanishing at the center o
well and are thus affected by thed-function at all, are increased in energy until they beco
degenerate with the eveni states just above them in the spectrum. This problem can als
approached by using perturbation theory, with expansions up at least third-order21 having ap-
peared in the literature. In our case, where we are interested in the nonperturbative limit
g→`, this approach is not useful, but we can check our matrix results with a similar perturb
expansion in the limit of smallg̃ as a consistency check on our method.

For the 2D case under consideration in this study, an analytic solution is not possible sin
potential defined by Eq.~A1! is not separable and a different approach must be followed
relatively straightforward matrix mechanics approach to the 1D problem22 can be extended to th
two-dimensional case under consideration and that is the approach we follow in obtainin
estimates of the energy eigenvalue spectrum used in Sec. II E. In this Appendix, we b
describe the method used in the 1D case and then discuss how it is extended to th
dimensional problem.

In the purely one-dimensional case, we only consider the basis states given by

c~ i !~x!5A2

a
sinS ipx

a D ~A3!

with i odd as these are the states which are affected by the new potential. The matrix ele
required are given by

Hi j ~g!5^c i uĤ01gd~x2a/2!uc j&5~ i 2E0!d i , j1D sinS ip

2 D sinS j p

2 D , ~A4!

where

E05
\2p2

2ma2
and D5D~g!5

2g

a
~A5!

or in matrix form
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H~g!5S E01D 2D 1D •••

2D 9E01D 2D •••

1D 2D 25E01D •••

A A A �

D . ~A6!

In order to obtain increasingly accurate values for the eigenvalues of this system, we
nalizeH(g) for increasingly larger values ofNTOT whereNTOT is the dimensionality of the matrix
At the same time, we also use increasingly large values ofg to approach the desiredg→` limit.
Specifically, we use a value ofg given by

D~g!

E0
510•~2NTOT21!2 ~A7!

which corresponds to off-diagonal terms,D, which are ten times larger than the largest diago
energy term used in the matrix diagonalization. In this way, the lowestNTOT21 eigenvalues
approach the desired energies, while the largest eigenvalue increases without bound
roughly asNTOT

3 , as we increaseg via Eq. ~A7!; this special eigenvalue is an artifact of th
diagonalization process we use. As an estimate of the convergence of this method asNTOT andg
are increased, we show the values of the first 4 eigenvalues~and their ratio to the expected value
in the largeg limit ! for several values ofNTOT in Table II. We see that the convergence is fair
rapid and uniform.

For the two-dimensional case, we employ the same strategy, but as a basis set we u
those 2D wave functions which are affected by the presence of the centrald-function, namely
those characterized by integer labels (i , j ) whereboth i and j are odd. Wheni 5 j , we simply use
the standard basis states given in Eq.~12!, while for iÞ j , we use the linear combination which
orthogonal to the antisymmetric states given by Eq.~13!, namely

c~ i , j !
~1 ! ~x,y!}c~ i , j !~x,y!1c~ j ,i !~x,y! ~A8!

as these states are the ones which are nonvanishing at the center of the potential well be
d-function is added.~The normalized version of this combination is used.! We evaluate the
Hamiltonian matrix just as above, sorting the states in order of increasing~unperturbed! energies
asNTOT increases. We show in Table III the results of such a resulting diagonalization proce
to values ofNTOT580, along with the corresponding values of energies for theg̃50 case for
comparison. The convergence is not quite so rapid as in the 1D case where the unperturbed
eigenvalues are initially more separated in energy. For the numerical application required i

TABLE II. Estimated energy eigenvalues for the one-dimensional square well plus repulsived-function potential of the
form Eq. ~A2! using the matrix diagonalization method discussed in the Appendix. The unperturbed energies are
terized by odd values ofi and are given byE( i )5 i 2E0 , whereE05\2p2/2ma2. The exact solutions asg→` correspond
to each such odd state approaching the even state just above it in energy. We show the resulting estimate for in
values ofNTOT andg as well as the ratio of the approximate result to the limiting value of (i 11)2E0 .

Unperturbed
energies Exact values

~in units of E0) NTOT55 NTOT510 NTOT520 NTOT540 for g→`

1 4.34 (1.08) 4.17 (1.04) 4.08 (1.02) 4.04 (1.01) 4.00
9 17.41 (1.09) 16.67 (1.04) 16.39 (1.02) 16.16 (1.01) 16.00

25 39.38 (1.09) 37.53 (1.04) 36.74 (1.02) 36.37 (1.01) 36.00
49 70.76 (1.10) 66.76 (1.04) 65.32 (1.02) 64.65 (1.01) 64.00
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II E, we make use of the lowest-lying 99 energy eigenvalues of this type in addition to as ma
the ‘‘unaffected’’ energy eigenvalues as required so as to make a total of 800 energies
numerical evaluation of Eq.~2!.

As a check on the program used to numerically evaluate the eigenvalues and eigenve
this matrix approach~we useMATHEMATICA ®), we note that when we use this set of ba
functions, there still are a number of ‘‘accidental’’ pairwise degeneracies23 present in the original
spectrum; for example (i , j )5(5,5) and (7,1) both giveE( i , j ) /E0550 for the unperturbed states
We note that when we examine the resulting energy eigenvalues, the appropriate linear co
tion of such states is found which isunaffectedby the d-function perturbation and its energ

TABLE III. Estimated energy eigenvalues for the two-dimensional square well plus repulsived-function potential of the
form Eq. ~A1! using the matrix diagonalization technique discussed in the Appendix. The matrix diagonalization is
using basis states characterized by those states withi and j both odd; for the case ofiÞ j , we use the symmetric
combination wave function in Eq.~A8!. For states with an accidental pairwise degeneracy~such as the (5,5) and (1,7
states!, the numerical calculation finds the appropriate linear combination which vanishes at the origin~and is thus
unaffected by thed-function potential!; we see this for the (1,7),(5,5) case where one eigenvalue given byE550E0 is
always found, within the numerical accuracy of the program.

Unperturbed
energies

( i , j ) ~in units of E0) NTOT510 NTOT520 NTOT540 NTOT580

(1,1) 2 3.46 3.22 3.05 2.92
(1,3) 10 13.45 12.87 12.44 12.12
(3,3) 18 20.17 19.71 19.40 19.19
(1,5) 26 29.69 29.06 28.60 28.25
(3,5) 34 40.92 39.03 37.92 37.20
(1,7) 50 50.00 50.00 50.00 50.00
(5,5) 50 55.02 54.24 53.69 53.26

FIG. 15. Plots ofuc(x,y)u2 versus (x,y) for the two lowest energy states in the 2D well which are nonvanishing at
center of the well. The top row shows the (i , j )5(1,1) state~the true ground state! on the upper left and the (i , j )
5(3,1) symmetric state@as defined in Eq.~A8!#, for the unperturbed square well. The bottom row shows the same s
now including the effect of the infinited-function at the origin given by Eq.~A1!. In the evaluation of the perturbed
eigenstates, the lowest-lyingNTOT520 states are used in the matrix diagonalization approach followed in the Appe
We note that while each wave function is properly normalized, different scales are used in each figure to empha
shape ofuc(x,y)u2.
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eigenvalue is, within machine errors, the same as the unperturbed value. For an examp
Table III for the case of (1,7),(5,5).

As a final visualization of the effect of the infinite strengthd-function addition to the 2D well,
we plot uc(x,y)u2 versus (x,y) in Fig. 15 the (i , j )5(1,1) and (3,1) states, both without th
d-function ~top row! and with VREP(x,y) added in the limit whereg̃→` ~bottom row!. The
presence of the cusp in the wave function at the center of the well due toVREP(x,y) is obvious.
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Chaotic observables for a free quantum particle
Clasine van Winter
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University of Kentucky, Lexington, Kentucky 40506

~Received 14 April 1998; accepted for publication 14 September 1998!

This paper is devoted to the time evolution of observables in the quantum mechan-
ics of a single particle without interaction. It is assumed that wave functions belong
to a certain setK2 that is dense inL2. The paper applies to observables represented
by positive self-adjoint operatorsA on L2 with the property thatA1/2 mapsK2 into
L2. Quadratic forms with form domainsK2 are used to generate a topology for
operatorsA, defining a topological spaceX. The spaceX provides the framework
to define sensitive dependence on initial conditions, topological transitivity, and
existence of a dense set of periodic points, the three aspects of chaos in Devaney’s
definition of chaos for maps on metric spaces. It is shown that every neighborhood
of every operatorA in X contains operators that establish sensitive dependence on
initial conditions, and similarly for the other aspects of chaos. Hence, the time
evolution of operators in the Heisenberg picture is chaotic in the sense of this
paper. © 1999 American Institute of Physics.
@S0022-2488~99!00101-2#

I. INTRODUCTION

Chaos in classical dynamical systems is characterized by three distinctive features.
Definition 1.1 (Devaney):1 Let X be a set. A mapF:X→X is said to be chaotic onX if

~1! F has sensitive dependence on initial conditions.

~2! F is topologically transitive.

~3! Periodic points are dense inX.

Definition 1.2 (Devaney):1 Let X be a metric space. LetF:X→X be a map.

~1! F has sensitive dependence on initial conditions if there existsd.0 such that, for anyx
PX and any neighborhoodV of x, there existsyPV and n>0 such thatuF (n)(x)
2F (n)(y)u.d.

~2! F is said to be topologically transitive if for any pair of open setsV,W,X there exists
n.0 such thatF (n)(V)ùWÞB.

~3! A point xPX is a periodic point of periodn if F (n)(x)5x.

In this paper a version of chaos is introduced that applies to quantum mechanics. The
x become operators; the mapF is replaced by the time evolution. The quantities correspondin
F (n)(x) are time-dependent operators representing observables in the Heisenberg picture. T
evolution of such observables is examined in a one-particle system without interaction.

Let f be a wave function inL2; let H0 be the Hamiltonian. In the Schro¨dinger picture the time
evolution is represented byf (t)5exp (2iH0t)f. Let A be a self-adjoint operator onL2. In the
Heisenberg picture the time-dependent operator,

A~ t !:5exp ~ iH 0t !A exp ~2 iH 0t !,

acts on time-independent wave functionsf .
To find quantum analogs of the concepts in Definitions 1.1 and 1.2, we make some rest

assumptions on wave functionsf and observablesA. It is assumed thatf belongs to a setK2 which
1230022-2488/99/40(1)/123/17/$15.00 © 1999 American Institute of Physics
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is dense inL2 in theL2-norm, in addition to being a Hilbert space in its own right. Iff PK2, then
exp(2iH0t)fPK2 if t.0, but not necessarily ift,0. Hencet>0 in all of the following, corre-
sponding ton>0 in Definitions 1.1 and 1.2. IfA corresponds toxPX, thenA(t) corresponds to
F (n)(x).

We only consider positive operatorsA. Hence, letA be a positive self-adjoint operator onL2.
Let $E(l)% be the corresponding family of spectral projections. Suppose we have a system i
f and we measure the observable represented byA. The probability of finding the measured valu
in a Borel setD is *D d(E(l) f , f ). If A1/2f PL2, the expectation value ofA is

E
0

`

l d~E~l! f , f !5E
0

`

l1/2dlE
0

l

m1/2 d~E~m! f , f !

5E
0

`

l1/2 dlE
0

`

m1/2dm~E~l! f ,E~m! f !

5E
0

`

l1/2 d~E~l! f ,A1/2f !

5~A1/2f ,A1/2f !.

Hence we allow all positive self-adjoint operatorsA on L2 with the property thatA1/2f PL2 for
every f PK2. For the purpose of calculating expectation values withf ,gPK2, the set of allowed
A can be divided into equivalence classes characterized by positive self-adjointA such thatK2 is
a core forA1/2. The set of operatorsA with the latter properties is denoted byG. All bounded
positiveA belong toG. If APG, thenA(t)PG if t.0. For f ,gPK2, we define

^ f uAug&:5~A1/2f ,A1/2g!,

^ f uA~ t !ug&:5~A1/2 exp @2 iH 0t# f ,A1/2 exp @2 iH 0t#g!.
~1.1!

There is a one-to-one correspondence between operatorsAPG and operatorsÃ in a coneG̃ in
the space of bounded self-adjoint operators onK2. This fact is used to define a topology onG. The
result is a topological spaceX to replace the metric spaceX in Definition 1.2. If a net$Zt%(t
>0) of operators inX tends toAPX as t→`, then ^ f uZtug& tends to^ f uAug& for every fixed
f ,gPK2.

The above framework leads to the following quantum analogs of the three parts of Deva
definition of chaos. Instead of oned.0 as in Definition 1.2, we may allow anyN.0.

Theorem S„sensitive dependence on initial conditions…: Given APX and N.0, there is a
net $ZNt%PX(t>0) with the property that f,gPK2 and e.0 determine T.0 such that

u^ f uAug&2^ f uZNtug&u,e if t.T,

u^ f uA~ t !u f &2^ f uZNt~ t !u f &u.Nuu f uu2, if t>t.

Theorem T „topological transitivity …: Given A,BPX, there is a net$Zt%PX(t>0) with the
property that f,gPK2 and e.0 determine T.0 such that

u^ f uAug&2^ f uZtug&u,e, if t.T,

u^ f uBug&2^ f uZt~t!ug&u,e, if t.T.

Theorem P „existence of a dense set of periodic points…: Given APX, there is a net
$Zt%PX(t>0) with the property that f,gPK2 and e.0 determine T.0 such that
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u^ f uAug&2^ f uZtug&u,e, if t.T.

Moreover,

Zt~ t1nt!5Zt~ t !, if t>0, n50,1,2, . . .

In each theorem,Zt belongs to ane-neighborhood ofA whent.T. Hence, suppose an exper
ment is meant to determine^ f uA(t)u f &, but actually measureŝf uZt(t)u f &. The error could be due
to design imperfections. Ife is of the order of the error in reading off experimental data, o
cannot distinguish between the two expectation values at timet50, but at later times the differ-
ence may be substantial. In the case of Theorem S, the error may increase to any valueNuu f uu2.
Theorem T says thatZt in an e-neighborhoodV of A may develop intoZt(t) in an
e-neighborhoodW of B. This corresponds toF (n)(V)ùWÞB in Definition 1.2. According to
Theorem P, cases may occur in whichZt(t) is periodic with periodt. Since there is an operato
Zt with this property in any neighborhood of anyAPX, periodic operatorsZt form a dense set in
X.

The nets$Zt% to which our theorems refer do not depend onf ,gPK2. It is a property of the
topological spaceX that convergence of$Zt% in X implies convergence of expectation valu
^ f uZtug& for fixed f ,gPK2. The proofs of Theorems T and P are carried out in the language o
spaceX. This determines the topology of these results, although it might appear that the the
are formulated in terms of the weak operator topology onL2.

Sensitive dependence on initial conditions calls for a distance concept, but it is not nec
that this distance generates the topology. In Theorem S the topology ofX is augmented by a
distance measured in terms of the diagonal matrix elements of the identity operator. On
adopt this augmented topology, the time evolution of operatorsA(t)PX is chaotic in the sense o
Definitions 1.1 and 1.2.

The space of wave functionsK2 is described in Sec. II. Section III is devoted to quadra
form techniques to be used later on. The topological spaceX is defined in Sec. IV. That operator
Zt exist as desired is due to properties of the time evolution onK2 derived in Sec. V. It is shown
in Sec. VI that the time evolution takesAPX into A(t)PX. Theorems S, T, and P are proved
Secs. VII, VIII, and IX. The method of proof is inspired by symbolic dynamics. To indicate
relation, in Sec. X a comparison is made between the time evolution onK2 and canonical models
of chaos in classical dynamical systems.

There is an extensive literature on chaos in quantum mechanics from an entirely dif
point of view.2–4 Its focus is on quantum systems with chaotic classical limits. There is st
evidence that such systems have spectral properties and other characteristics that do not
the underlying classical system is integrable. It is not clear, however, whether these qu
signatures of chaos can be related to the definition of chaos in classical dynamical system

II. THE SPACE OF WAVE FUNCTIONS

This paper is best understood in the momentum representation. Wave functionsf (k) belong to
L2(R3). We write uku5k and introduce two spherical polar coordinatesv. Identifying f (k) and
f (k,v), we write L2 instead ofL2(R3). Units are chosen so that the HamiltonianH0 acts as
multiplication byk2.

The dilation operatorD is the self-adjoint operator onL2 which acts onC0
`-functionsf PL2 as

the differential operator,

D5
i

2
~k•“k1“k•k!.

In a previous paper5 we definedJ:5exp (2pD/2). The operatorJ is positive and self-adjoint bu
not bounded. The set of allf PL2 with the property thatJ fPL2 was denoted byK2. This set is
                                                                                                                



nd-

he

r

t

-

126 J. Math. Phys., Vol. 40, No. 1, January 1999 Clasine van Winter

                    
dense inL2 in the L2-norm. It was shown thatf (k,v)PK2 if and only if f (k,v) is the mean-
square boundary value of a functionf (keif,v) which is analytic in the sector2p/2,f,0 for
almost everyvPS2 and has the property that the integral,

E
S2
E

0

`

ukeif f ~keif,v!u2 dk dv,

is bounded uniformly in the sector.
It is known6,7 that all functionsf (keif,v) with the above properties have mean-square bou

ary valuesf (k,v) and f (ke2 ip/2,v). Under the inner product,

^ f ,g&5E
S2
E

0

`

@ f ~k,v!ḡ~k,v!1 f ~ke2 ip/2,v!ḡ~ke2 ip/2,v!#k2 dk dv, ~2.1!

the set is a Hilbert space which we denote byG2.
It was shown before5 that boundary values off PG2 satisfy

J f~k,v!5e23ip/4f ~ke2 ip/2,v!. ~2.2!

In terms of inner products (•,•) on L2, we may therefore rewrite Eq.~2.1! as

^ f ,g&5~ f ,g!1~J f ,Jg!. ~2.3!

SinceG2 is a Hilbert space andf PK2 if and only if f (k,v) is the boundary value atf50 of
f PG2, the setK2 is complete under the inner product~2.3!, hence a Hilbert space. We denote t
Hilbert space byK2. It is easy to verify that

^ f ,g&5~@11J2#1/2f ,@11J2#1/2g!. ~2.4!

Summarizing, inner products onL2 are denoted by (•,•), inner products onK2 by ^•,•&. The
expressions in Eqs.~2.3! and ~2.4! are linear inf , antilinear ing. Henceforth norms onL2 are
denoted byuu•uu, norms onK2 by uuu•uuu. The restriction toK2 of an operatorT:L2→L2 is T�K2.
The domain ofT is Dom(T). The adjoint onL2 of an operatorT:L2→L2 is denoted byT* , the
adjoint onK2 of an operatorS:K2→K2 is denoted byS†. For example, ifT is a bounded operato
on L2 and f PK2 is such that (11J2) f PL2, it follows from the definition of an adjoint that

T†f 5~11J2!21T* ~11J2! f . ~2.5!

Lemma 2.1: If T is a closed operator on L2 with Dom(T)$K2, then (11J2)21/2T is a
bounded operator on K2.

Proof: Supposef PK2. By the data and Eq.~2.4!, (11J2)21/2T f belongs toK2. HenceS:
5(11J2)21/2T can be viewed as an operator onK2. If we can show thatS is closed, the
proposition follows from the closed-graph theorem.

To verify that S is closed, consider a Cauchy sequence$gn%(n51,2,. . . ) in K2 with the
property thatuuuSgn2Sgmuuu→0. Sinceuuugn2gmuuu→0, an elementgPK2 exists such thatuuugn

2guuu→0. SincegPK2, the data imply thatTgPL2, henceSgPK2. We have to show tha
uuuSgn2Sguuu→0.

Since theL2-norm is weaker that theK2-norm, uugn2guu→0. Due to Eq.~2.4!, uuuSgn

2Sgmuuu→0 implies uuTgn2Tgmuu→0. HencehPL2 exists such thatuuTgm2huu→0. BecauseT
is closed by assumption, it follows not only thatTgPL2, but also thatTg5h. This means that
uuTgn2Tguu→0. With Eq. ~2.4! it follows that uuuSgn2Sguuu→0. HenceS is closed. The closed
graph theorem completes the proof. h
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III. QUADRATIC FORMS

Let A be a positive self-adjoint operator onL2 such that Dom (A1/2)$K2. It follows from
Lemma 2.1 that (11J2)21/2A1/2 is a bounded operator onK2.

Now consider the positive quadratic form,

q@ f ,g#:5~A1/2f ,A1/2g!, ~3.1!

on L2 with form domain Dom(q)5K2. If K2 happens to be equal to Dom(A1/2), the formq is
closed. Otherwiseq is closable.8 In any case,

q@ f ,g#5^~11J2!21/2A1/2f ,~11J2!21/2A1/2g&5^@~11J2!21/2A1/2#†~11J2!21/2A1/2f ,g&.
~3.2!

In an obvious notation, we write

q@ f ,g#5^Ãf ,g&. ~3.3!

This defines a bounded positive operatorÃ on K2. In caseA is bounded onL2, it follows with Eq.
~2.5! that Ã5(11J2)21A.

In Eq. ~3.1! the operatorA determines the formq. We now letq@ f ,g# be a positive quadratic
form on L2 with form domain Dom(q)5K2. Supposeq is closed or closable. Denote the closu
by q̄ and its form domain by Dom(q̄). The formq̄ determines a positive self-adjoint operatorA on
L2 with domain Dom(A),Dom(q̄) and

q̄@ f ,g#5~A f ,g!, ~3.4!

for every f PDom(A) andgPDom(q̄). Moreover, Dom(A1/2)5Dom(q̄) and

q̄@ f ,g#5~A1/2f ,A1/2g!, ~3.5!

for every f ,gPDom(q̄). A subsetD8 of Dom(q̄) is a core forq̄ if and only if it is a core forA1/2.
The above propositions follow from two representation theorems for quadratic forms.9 The

assumption thatq with form domainK2 has closureq̄ means thatK2 is a core forq̄. Hence we
may letD8 be K2, showing thatK2 is a core forA1/2 in Eq. ~3.5!.

Restricting Eq.~3.5! to K2, we find Eq.~3.1!. On the other hand, in setting up Eq.~3.1! we did
not assume thatK2 was a core forA1/2. Given the operatorA that was the starting point for Eq
~3.1!, it may happen thatA1/2�K2 has more than one self-adjoint extension. Among all possib
ties, the representation theorems select (A1/2�K2)* . This is the operatorA1/2 in Eq. ~3.5! whose
square isA in Eq.~3.4!.

Since we are looking only at expectation values of the form~3.1!, with f ,gPK2, all positive
self-adjoint operatorsA with the sameA1/2�K2 form an equivalence class characterized by
particularA that satisfies the representation theorems. Hence we denote byG the set of all positive
self-adjoint operatorsA on L2 with the property thatK2 is a core forA1/2.

The set of positive closable forms onL2 with form domainK2 is denoted byGq . Sinceq

PGq determinesAPG andAPG determines the bounded positive operatorÃ on K2 as in Eqs.
~3.2! and~3.3!, eachqPGq is of the form^Ãf ,g& with someÃ. We denote the set of operatorsÃ

by G̃. GivenÃPG̃, we can constructqPGq which determinesAPG. In this senseA is a function
of Ã. For future reference we writeA5g(Ã). The inverse relationÃ5g21(A) is illustrated by
Eqs.~3.2! and ~3.3!.

In proving Theorems S, T, and P, our strategy is to construct operatorsZ̃tPG̃ giving rise to
forms qPGq . Via the representation theorems, the forms determine operatorsZtPG and expec-
tation valueŝ f uZt(t)ug& as desired.
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IV. THE TOPOLOGY

Let A,BPG determine the formsqA ,qBPGq . The formq:5qA1qB with domain Dom(q)
5K2 is closable.8 HenceqPGq . The closureq̄ determines an operator9 AuBPG known as the
form sum ofA andB. For f ,gPK2, it follows from Eqs.~3.1! and ~3.3! that

~A1/2f ,A1/2g!1~B1/2f ,B1/2g!5^Ãf ,g&1^B̃f ,g&

5^@Ã1B̃# f ,g&

5~@AuB#1/2f ,@AuB#1/2g!.

Expectation values satisfy

^ f uAug&1^ f uBug&5^ f uAuBug&.

This shows that we can define a sum onG. If APG andc is a positive constant,cAPG. Hence
multiplication by positive constants is defined onG. Summarizing,G is a cone corresponding t

a coneG̃ in the vector spaceB̃ consisting of bounded self-adjoint operators onK2.
The weak operator topology onB̃ is a suitable starting point for defining a topology onG. It

is generated by the family of seminorms,

r:5$ f ,gPK2,T̃PB̃,r f g~ T̃!:5u^T̃f ,g&u%.

A neighborhood base at 0 is formed by the sets

W̃e~Km
2 ,Kn

2!:5$T̃PB̃ur f g~ T̃!,e, f PKm
2 ,gPKn

2%,

for all e.0 and any finite setsKm
2 PK2,Kn

2PK2.
Let us denote the topology byw and letW̃ be a typical open set. The pair (B̃,w) is a locally

convex space. It induces onG̃ the relative topology10 v with open setsW̃ùG̃,

v:5$W̃ùG̃uW̃Pw%.

We denote the topological space (G̃,v) by X̃. A net $Z̃t%PX̃(t>0) tends toÃPX̃ ast→` if and
only if ^Z̃t f ,g& tends to^Ãf ,g& for every fixedf ,gPK2. By Eqs.~3.1! and ~3.3!,

lim
t→`

~Zt
1/2f ,Zt

1/2g!5~A1/2f ,A1/2g!. ~4.1!

Conversely, if Eq.~4.1! is true for everyf ,gPK2, thenZ̃t tends toÃ in X̃. Hence we want Eq.
~4.1! to express what it means for a net$Zt% to converge toA. This convergence concept make

the functiong:G̃→G introduced at the end of Sec. III continuous with a continuous inverse. S

g maps G̃ onto G, the only topology onG to make g and g21 continuous is the quotien
topology10 defined by

vg :5$W#Gug21~W!Pv%.

The topological space (G,vg) is denoted byX. This is our space of observablesA.
As a map between topological spaces, the functiong:X̃→X is continuous and maps open se

onto open sets. In additiong is one-to-one and onto. Henceg is a homeomorphism. A net$Zt%
PX tends toAPX if and only if $Z̃t%PX̃ tends toÃPX̃. By Equation~1.1!, this condition is
necessary and sufficient in order that expectation values^ f uZtug& tend to^ f uAug&.
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V. THE TIME EVOLUTION

In order that we can use operators onK2 as intermediate steps in proving Theorems S, T, a
P, we need to know how the time evolution exp(2iH0t) acts onK2. SinceH0 acts as multiplica-
tion by k2, the operator exp(2iH0t) acts onL2 as multiplication by exp(2ik2t). If 2p/2,f
,0, then exp(2ik2e2ift) is bounded if and only ift>0. Hence, if f (keif,v)PG2, then
exp(2ik2e2ift)f(keif,v)PG2 if t>0, but not necessarily ift,0. By the same token, iff (k,v)
PK2, then exp(2ik2t)f(k,v)PK2 if t>0 but not necessarily ift,0. Hencet>0 in all of the
following.

If f PK2 and t>0, it follows from Eq.~2.2! that

J exp ~2 ik2t ! f ~k,v!5exp~ ik2t !J f~k,v!. ~5.1!

For t>0 only, we define the operatorU(t) on L2 by

U~ t ! f ~k,v!:5exp~2 ik2t ! f ~k,v!. ~5.2!

This operator is unitary. Its adjointU* (t) acts as multiplication by exp(ik2t). Due to Eqs.~2.3! and
~5.1!,

^U~ t ! f ,U~ t !g&5^ f ,g&. ~5.3!

HenceU(t) is an isometry onK2. It follows that U†(t)U(t) acts onK2 as the identity. By Eq.
~2.5!, U†(t) is not the same asU* (t). SinceU(t) is an isometry onK2, the setU(t)K2 is a
subspace ofK2 which is closed in theK2-norm. Let the subspace be denoted byK2(t) and let
Q(t) be the orthogonal projection ofK2 onto K2(t). By general properties of isometries,11

U~ t !U†~ t !5Q~ t !. ~5.4!

To see howQ(t) acts onK2, we first consider the spaceG2 and use the fact thatG2 is isometri-
cally isomorphic to the Hardy spaceH2 of the lower half-plane.6 For f PG2, we define

v1 iw:5k2e2if, F~v1 iw,v!:5~keif/2!1/2f ~keif,v!.

When keif varies in the sector2p/2,f,0, thenv1 iw runs through the lower half-plane. I
f ,gPG2, the inner product̂ f ,g& satisfies

^ f ,g&5E
S2
E

2`

`

F~v2 i0,v!Ḡ~v2 i0,v! dv dv.

Now define the Fourier transform,

f̂ ~s,v!5~2p!21/2E
2`

`

exp~ ivs!F~v2 i0,v! dv.

By the Paley–Wiener theorem,12 f̂ (s,v)50 if s,0, for almost everyv. The Fourier transform is
a unitary map takingf PG2 into f̂ (s,v)PL2(R13S2).

If f PK2, then U(t) f (k,v)PK2 is the boundary value atf50 of exp(2ik2e2ift)f(keif,v).
The latter function corresponds to exp(2ivt1wt)F(v1iw,v) with Fourier transform

~2p!21/2E
2`

`

exp~2 ivt1 ivs!F~v2 i0,v! dv5 f̂ ~s2t,v!. ~5.5!

For fixed t>0, this Fourier transform vanishes ifs,t.
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We now return to the spaceK2. SinceK2 andG2 are isometrically isomorphic, the Fourie
transform onG2 gives rise to a unitary map takingf (k,v)PK2 into f̂ (s,v)PL2(R13S2). With
Eq. ~5.5! this point of view yields

^U~ t ! f ,g&5E
S2
E

t

`

f̂ ~s2t,v! ḡ̂~s,v! ds dv

5^ f ,U†~ t !g&

5E
S2
E

0

`

f̂ ~s,v! ḡ̂~s1t,v! ds dv. ~5.6!

Replacingf by U†(t) f gives

^Q~ t ! f ,g&5E
S2
E

t

`

f̂ ~s,v! ḡ̂~s,v! ds dv.

SinceQ(t) is an orthogonal projection,

uuuQ~ t ! f uuu25E
S2
E

t

`

u f̂ ~s,v!u2 ds dv. ~5.7!

This quantity tends to 0 ast→`.
SinceU(t) takesK2 into K2 andU(s)U(t) equalsU(s1t), the family $U(t)u0<t,`% is a

semigroup of operators onK2. If 0<t,s, it follows from the semigroup property and Eq.~5.4!
that

Q~s!U~ t !5U~s!U†~s!U~ t !

5U~ t !U~s2t !U†~s2t !U†~ t !U~ t !

5U~ t !U~s2t !U†~s2t !

5U~ t !Q~s2t !,

Q~s!Q~ t !5U~s!U†~s!U~ t !U†~ t !

5U~s!U†~s2t !U†~ t !U~ t !U†~ t !

5U~s!U†~s2t !U†~ t !5U~s!U†~s!5Q~s!.

With similar calculations for 0<s<t, we find

Q~s!U~ t !5U~ t !, if 0<s<t,

5U~ t !Q~s2t !, if 0<t,s, ~5.8!

Q~s!Q~ t !5Q~max s,t !. ~5.9!

VI. THE HEISENBERG PICTURE

An operatorAPG gives rise to a formq as in Eqs.~3.1! and ~3.3!. Replacingf ,gPK2 by
U(t) f ,U(t)gPK2 gives

qt@ f ,g#:5^U†~ t !ÃU~ t ! f ,g&5~A1/2U~ t ! f ,A1/2U~ t !g!, ~6.1!
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with form domainK2. According to Lemma 6.1 below,qt is closable, hence determinesAtPG.
On the other hand, we can applyU* (t)AU(t) to U* (t)Dom(A). The operatorA(t) so defined is
symmetric. By Lemma 6.2 it is self-adjoint and equal toAt . HenceA(t)PG if APG. This means
that the Heisenberg picture can be used without ambiguity. Given a formqPGq , we can extract
APG, then constructA(t)PG. Or we can letq develop intoqt , then determineAtPG. The result
is the same. Similarly,A(t) andAt act in the same way as elements of the topological spaceX.

Lemma 6.1: Let T be a symmetric operator on L2 with domain K2. Let U(t) be defined by Eq.
(5.2). Let q and qt be the forms defined by

q@ f ,g#:5~T f ,Tg!,

qt@ f ,g#:5~TU~ t ! f ,TU~ t !g!,

each with form domain K2.
The forms are closable. The form domains of the closures satisfy

Dom~ q̄!5U~ t !Dom~ q̄t!, Dom~ q̄t!5U* ~ t !Dom~ q̄!. ~6.2!

Let A and At be the positive self-adjoint operators defined by q and qt , respectively. Then

At
1/25U* ~ t !A1/2U~ t !, ~6.3!

where each side is self-adjoint with domainDom(q̄t).
Proof: Since T is symmetric,T is closable. Henceq is closable. SinceU(t)K2#K2, the

operatorU* (t)TU(t)�K2 is symmetric, hence closable. This is sufficient forqt to be closable.
By the representation theorems,9 A andAt are well-defined. The domains ofA1/2 andAt

1/2 are
equal to Dom(q̄) and Dom(q̄t), respectively. The common domain Dom(q)5Dom(qt)5K2 is a
core for bothA1/2 andAt

1/2.
Choose f PDom(q̄t). Since K2 is a core for At

1/2, there exists a sequence$ f n%PK2(n
51,2,. . . ) such thatuu f n2 f uu→0 and uuAt

1/2( f n2 f m)uu→0 asn,m→`. SinceU(t) f nPK2, the
sequence$ f n% has the property thatuuU(t) f n2U(t) f uu→0 and

uuAt
1/2~ f n2 f m!uu5uuTU~ t !~ f n2 f m!uu

5uuT@U~ t ! f n2U~ t ! f m#uu

5uuA1/2@U~ t ! f n2U~ t ! f m#uu→0.

SinceA1/2 is closed, it follows thatU(t) f PDom(A1/2). Hence

U~ t !Dom~ q̄t!#Dom~ q̄!. ~6.4!

That K2 is a core forAt
1/2 also implies that

At
1/25@U* ~ t !TU~ t !�K2#* . ~6.5!

Likewise A1/25T* . Now choose gPU* (t)Dom(q̄). Clearly g5U* (t)h with h5U(t)g
PDom(q̄). If f PK2,

~U* ~ t !TU~ t ! f ,g!5~TU~ t ! f ,h!

5~ f ,U* ~ t !T* h!

5~ f ,U* ~ t !A1/2h!

5~ f ,U* ~ t !A1/2U~ t !g!. ~6.6!
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Due to Eq.~6.5!, this shows thatgPDom(At
1/2), hence

U* ~ t !Dom~ q̄!#Dom~ q̄t!. ~6.7!

The relations~6.4! and ~6.7! give the desired equality~6.2!. Henceg in Eq. ~6.6! may be any
element of Dom(q̄t). With Eq. ~6.5!, it follows that At

1/2 acts on Dom(q̄t) in the same way as
U* (t)A1/2U(t), confirming Eq.~6.3!. It is known from the representation theorems thatAt

1/2 with
domain Dom(q̄t) is self-adjoint.

It remains to show thatU* (t)A1/2U(t) with domainU* (t)Dom(q̄) is self-adjoint. It is easy
to see that the operator is symmetric. To prove that it is self-adjoint, it is sufficient to show th
operatorsU* (t)A1/2U(t)6 i have rangeL2. Hence we letf run through Dom(q̄) and examine

U* ~ t !~A1/26 i !U~ t !U* ~ t ! f 5U* ~ t !~A1/26 i ! f .

SinceA1/2 with domain Dom(q̄) is self-adjoint, (A1/26 i ) f runs throughL2. This is sufficient for
U* (t)(A1/26 i ) f to run throughL2, as we wanted to show. h

Lemma 6.2: Let the data be as in Lemma 6.1. The operator

A~ t !:5U* ~ t !AU~ t !

with domain U* (t)Dom(A) is self-adjoint and equal to At .
Proof: The reasoning applied toU* (t)A1/2U(t) at the end of the proof of Lemma 6.1, can b

repeated to show thatA(t) with domainU* (t)Dom(A) is self-adjoint. The operator on the righ
hand side of Eq.~6.3! is the square root@A(t)#1/2. Since it is equal toAt

1/2, it follows that A(t)
5At . h

Corollary 6.3: If APX and t>0, then A(t)PX. h

For future reference we define

Ã~ t !:5U†~ t !ÃU~ t !.

By Eq. ~6.1!, this is the operator inX̃ determined byA(t) in X.
SinceÃ(t) is a bounded operator onK2 whenevert>0, this quantity is easy to work with. In

the notation of Lemma 6.1, the domain ofA(t) is a subset ofU* (t)Dom(q̄). We do not know
whether the intersectionù t>0 Dom@A(t)# is sufficiently large to be useful. On the other hand, t
operator@A(t)#1/2 can be applied to everyf PK2 at all timest>0. This is the reason why it is
convenient to express expectation values of observables in the form~1.1!.

VII. SENSITIVE DEPENDENCE ON INITIAL CONDITIONS

Proof of Theorem S:The operatorAPX determines the positive operatorÃ on K2 as in Eqs.
~3.2! and ~3.3!. For N.0 andt>0, define

Z̃Nt :5Ã1~11t!211NQ~t!. ~7.1!

This is a positive operator onK2. SinceÃ is bounded by Lemma 2.1 andQ(t) is a projection
operator,Z̃Nt is bounded.

We claim that the form

q@ f ,g#:5^Z̃Nt f ,g&

with form domainK2 is closed for every fixedN,t. To prove this, we choose a sequence$ f n%
PK2(n51,2,. . . ) such thatuu f n2 f muu→0 and
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^Z̃Nt~ f n2 f m!, f n2 f m&→0, ~7.2!

asn,m→`. It follows that f PL2 exists such thatuu f n2 f uu→0. We have to show thatf PK2 and

^Z̃Nt( f n2 f ), f n2 f &→0.
By Eq. ~7.1!,

^Z̃Nt~ f n2 f m!, f n2 f m&>~11t!21uuu f n2 f muuu2. ~7.3!

Henceuuu f n2 f muuu→0. SinceK2 is a Hilbert space, it follows thatgPK2 exists such thatuuu f n

2guuu→0. From this it follows thatuu f n2guu→0. Hencef 5g and f PK2. Moreover,

u^Z̃Nt~ f n2 f !, f n2 f &u<@ uuuÃuuu1~11t!211N#uuu f n2 f uuu2→0. ~7.4!

This is sufficient for the formq@ f ,g# to be closed.
By the representation theorems9 and Lemmas 6.1, 6.2, the formq@ f ,g# determines operator

ZNtPX andZNt(t)PX. The operator@ZNt(t)#1/2 has domainU* (t)K2 (t>0).
Given any fixedf PK2, it is clear that (11t)21uuu f uuu tends to 0 ast→`. By Equation~5.7!

uuuQ(t) f uuu→0. SinceN is fixed, it follows thatuuu(Z̃Nt2Ã) f uuu→0 ast→`. HenceZ̃Nt→Ã in X̃
andZNt→A in X. Given f ,gPK2 ande.0, we can findT such that

u^Z̃Nt f ,g&2^Ãf ,g&u,e, if t.T. ~7.5!

Via Eqs.~1.1! and~3.1!, ~3.3!, this proves that expectation values at timet50 agree with Theorem
S.

At time t>t we have to examine

^Z̃Nt~ t ! f , f &2^Ã~ t ! f , f &5~11t!21^ f , f &1N^U†~ t !Q~t!U~ t ! f , f &.

By Eqs.~5.3! and ~5.8!,

U†~ t !Q~t!U~ t !5U†~ t !U~ t !5I ,

whereI is the identity operator. Hence

u^ f uA~ t !u f &2^ f uZNt~ t !u f &u>Nuuu f uuu2>Nuu f uu2,

as desired. h

Chaos in classical dynamical systems can often be characterized in terms of Lyapunov
nents related to the rate at which the distance between nearby orbits increases.4,13–17In an experi-
ment in which we want to measure^ f uA(t)u f & but actually observê f uZNt(t)u f &, the operator
(11t)211NQ(t) on K2 represents the error. Let us examine the rate at which its expect
value increases. Ife in Eq. ~7.5! is small andt.T, thent is large. This makes (11t)21^ f , f &
small. Hence we focus on the error

Et~ t !:5N^U†~ t !Q~t!U~ t ! f , f &.

As long as 0<t<t, it follows from Eqs.~5.7! and ~5.8! that

Et~ t !5N^U†~ t !U~ t !Q~t2t ! f , f &5N^Q~t2t ! f , f &5NE
S2
E

t2t

`

u f̂ ~s,v!u2 ds dv.

This is a nondecreasing function oft which reaches its maximumNuuu f uuu2 at time t5t. By Eq.
~5.8!, Et(t) is constant and equal toNuuu f uuu2 if t>t.

When 0<t<t, the relative rate of increase at timet is
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Rt~ t !5@Et~ t !#21 dEt~ t !/dt5uuuQ~t2t ! f uuu22E
S2

u f̂ ~t2t,v!u2 dv.

Averaging over the time period 0<t<t yields

Rt5t21E
0

t

Rt~ t ! dt5t21ln @ uuu f uuu2 uuuQ~t! f uuu22#.

Taket.T as in Eq.~7.5!. As an example, now suppose that

E
S2

u f̂ ~s,v!u2 dv5C exp~2lpsp! ~7.6!

whens.T, with some positive constantsC,l, andp. This gives

Rt5t21 ln uuu f uuu22t21 ln E
t

`

C exp~2lpsp! ds.

To get an estimate ofRt at larget, we evaluate limt→` Rt by applying L’Hospital’s rule twice.
The result is

lim
t→`

Rt5 lim
t→`

plptp2150, if 0,p,1;5l, if p51;5`, if p.1.

If 0 ,p,1 and the equality sign in Eq.~7.6! is replaced by>, it remains true thatRt tends to 0.
Similarly, if p.1 and the equality sign is replaced by<1, it remains true thatRt tends to`.

A more complicated example is

E
S2

u f̂ ~s,v!u2 dv5exp~2ls! cos2 ms.

In this case limt→` Rt does not exist. On the other hand, since

uuuQ~t! f uuu2<E
t

`

exp~2ls! ds5l21exp~2lt!,

we find that

Rt>t21 ln uuu f uuu21t21 ln l1l.

Given anyd.0, it follows thatQ exists such thatRt.l2d if t.Q.

VIII. TOPOLOGICAL TRANSITIVITY

Proof of Theorem T:Let Ã andB̃ be the operators inX̃ determined byA andB in X. Define

Z̃t :5@12Q~t!#Ã@12Q~t!#1U~t!B̃U†~t!1~11t!21. ~8.1!

This is a bounded operator onK2 satisfying

uuuZ̃tuuu<uuuÃuuu1uuuB̃uuu1~11t!21. ~8.2!

The form ^Z̃t f ,g& with form domainK2 is closed. To show this, we choose a sequence$ f n%
PK2(n51,2, . . . ) such thatuu f n2 f muu→0 and the analog of Eq.~7.2! is satisfied. As with Eq.
~7.3!, it follows that f PK2 exists such thatuuu f n2 f uuu→0. In fact, the term (11t)21 is included
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in Z̃t to make sure the form is closed or closable, even in caseÃ andB̃ have nonempty nullspaces
Due to Eq.~8.2!, the analog of Eq.~7.4! is true. Hence the form is closed.

At time t50, we examine

uuu~ Z̃t2Ã! f uuu5uuu@2Q~t!Ã2ÃQ~t!1Q~t!ÃQ~t!1U~t!B̃U†~t!1~11t!21# f uuu

<uuuQ~t!Ãf uuu12uuuÃuuu uuuQ~t! f uuu1uuuB̃uuu uuuU†~t! f uuu1~11t!21uuu f uuu.

SinceÃf is fixed, uuuQ(t)Ãf uuu→0 ast→`. Similarly, uuuQ(t) f uuu→0. Furthermore,

uuuU†~t! f uuu25^U~t!U†~t! f , f &5^Q~t! f , f &5uuuQ~t! f uuu2→0.

HenceZ̃t→Ã in X̃.
At time t5t, we have

Z̃t~t!5B̃1~11t!21.

This is true because@12Q(t)#U(t)50 by Eq.~5.8! andU†(t)U(t)5I by Eq. ~5.3!. It follows
that Z̃t(t)→B̃ in X̃. To be specific, iff ,gPK2 andT is so large that (11T)21u^ f ,g&u,e, then

u^Z̃t~t! f ,g&2^B̃f ,g&u,e, if t.T.

By choosingT sufficiently large, we can also arrange for Eq.~7.5! to be true~with Z̃t instead of
Z̃Nt). That expectation values agree with Theorem T can now be proved as in Sec. VII.h

Recall Definitions 1.1 and 1.2. In classical dynamical systems, topological transitivity m
that the spaceX does not contain disjoint setsV andW that are each invariant under the mapF.
As a corollary, if a continuous functionc:X→R is invariant underF, it has to be constant onX.
In Hamiltonian systems the implication is that conserved quantities must be constant throu
the phase space.

In the present context there are operators representing conserved quantities, but there
nontrivial invariant sets. For example,APX may be the projection onto angular momentuml A . In
that case Dom(A)5L2 andA(t)5A. The proof of Theorem T shows that any neighborhood oA
contains operatorsZt with the property thatZt(t)ÞZt for some or allt.0. Hence, althoughA(t)
is invariant, typical neighborhoods ofA(t) are not. The only exception isX interpreted as a
neighborhood ofA(t). By Corollary 6.3, the time evolution takesX into X.

Suppose we want to measure^ f uA(t)u f & in the above example, but inadvertedly meas
^ f uZt(t)u f & as in Eq.~8.1!, with B projecting onto angular momentuml BÞ l A . The error causes
measurements taken at different times to have entirely different outcomes, although the ob
is to determine a conserved quantity.

IX. EXISTENCE OF A DENSE SET OF PERIODIC POINTS

Proof of Theorem P:For anyt.0, defineQ(0):5I and

DQ~n!:5Q~nt!2Q~@n11#t! ~n50,1,2, . . .!. ~9.1!

By Eq. ~5.9!,

DQ~n!DQ~m!5dmnDQ~n!.

The operatorsDQ(n) are projections onK2 with mutually orthogonal ranges.
Let ÃPX̃ be the operator determined byAPX and define
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Z̃t :5 (
n50

`

DQ~n!U~nt!@Ã1~11t!21#U†~nt!DQ~n!. ~9.2!

The sum converges in the strong operator topology onK2. To show this, we introduce the
abbreviation

Ãn :5U~nt!@Ã1~11t!21#U†~nt!.

This gives

UUU (
n5N

M

DQ~n!ÃnDQ~n! fUUU2

5 (
n5N

M

uuuDQ~n!ÃnDQ~n! f uuu2

< (
n5N

M

uuuÃnDQ~n! f uuu2

<@ uuuÃuuu1~11t!21#2 (
n5N

M

uuuDQ~n! f uuu2

<@ uuuÃuuu1~11t!21#2 uuuQ~Nt! f uuu2.
~9.3!

SinceuuuQ(Nt) f uuu tends to 0 asN→`, the sum forZ̃t converges. Moreover,

uuuZ̃t uuu<uuuÃuuu1~11t!21. ~9.4!

By Eq. ~5.9!,

DQ~n!U~nt!U†~nt!DQ~n!5DQ~n!Q~nt!DQ~n!5DQ~n!.

It follows that the terms with (11t)21 in Eq. ~9.2! add up to (11t)21. Since each term withÃ
is non-negative,

^Z̃t f , f &>~11t!21 uuu f uuu2. ~9.5!

Using Eqs.~9.4! and~9.5!, we can repeat the reasoning in Secs. VII and VIII to show that the f

^Z̃t f ,g& with form domainK2 is closed.
By Eq. ~5.8!,

DQ~n!U~nt!5U~nt!DQ~0!.

It follows that

U†~t!Z̃tU~t!5 (
n50

`

U†~t!U~nt!DQ~0!@Ã1~11t!21#DQ~0!U†~nt!U~t!.

The term withn50 actually vanishes. This is due to

DQ~0!U†~0!U~t!5DQ~0!U~t!5@12Q~t!#U~t!50,

where we have used Eqs.~5.8! and ~9.1!. In the terms withn51,2, . . ., we have

U†~nt!U~t!5U†~@n21#t!U†~t!U~t!5U†~@n21#t!.
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Hence

U†~t!Z̃tU~t!5Z̃t .

By iteration and the semigroup property of$U(t)%,

Z̃t~ t1nt!5U†~ t !U†~nt!Z̃tU~nt!U~ t !5Z̃t~ t ! ~n50,1,2, . . .!.

We now show thatZ̃t→Ã in X̃ whent→`. To this end, we denote(n51
` . . . in Eq.~9.2! by

DZ̃t . By the reasoning in Eq.~9.3!,

uuuDZ̃tuuu<uuuÃuuu1~11t!21.

By Eqs.~5.9! and ~9.1!,

DQ~n!Q~t!5DQ~n! ~n51,2, . . .!,

hence

DZ̃t5Q~t!~DZ̃t!Q~t!.

It follows that

uuu~ Z̃t2Ã! f uuu5uuu$@12Q~t!#@Ã1~11t!21#@12Q~t!#1Q~t!~DZ̃t!Q~t!2Ã% f uuu

5uuu$2Q~t!Ã2ÃQ~t!1Q~t!~Ã1DZ̃t!Q~t!1~11t21!@12Q~t!#% f uuu

<uuuQ~t!Ãf uuu1@3uuuÃuuu1~11t!21#uuuQ~t! f uuu1~11t!21 uuu f uuu.

This tends to 0 ast→`.
Given f ,gPK2 ande.0, we first findT such that

u^Z̃t f ,g&2^Ãf ,g&u,e, if t.T.

As in Secs. VII and VIII, this guarantees that the expectation values ofA and Zt are close ift
.T. Next we chooset. This results in a periodic operatorZ̃t(t) with periodt. By Lemmas 6.1
and 6.2, the quadratic form,

qt@ f ,g#:5^U†~ t !Z̃tU~ t ! f ,g&5~Zt
1/2U~ t ! f ,Zt

1/2U~ t !g!,

uniquely determinesZt(t). Notice that the form is equal tôZ̃t(t) f ,g&. By the periodicity of
Z̃t(t), the operatorsZt(t) determined at timest and t1nt are equal. HenceZt(t) has the same
periodicity asZ̃t(t). h

Since there is an operatorZt with periodic time evolution in anye-neighborhood of anyA
PX, the set of periodic operators is dense inX.

X. CONCLUDING REMARKS

The set of operatorsA to which this paper applies contains all bounded positive operator
L2. In particular, all orthogonal projections are included. It is assumed that wave functions b
to the spaceK2 which is dense inL2.

The important point aboutK2 is that the time evolution$U(t) u0<t,`% on K2 is unitarily
equivalent to a semigroup of shift operators, as shown by Eq.~5.6!. This is suggestive of Bernoull
systems and otherK-maps in which the dynamics can be represented by a shift on sequenc
symbols.1,13,15–18 Our construction of operatorsZ̃t is based on ideas from the symbol
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dynamics1,13,15–18used in choas proofs forK-maps. A canonical model forK-flows is due to
Sinai.19 On the orthogonal complement of the constant functions, aK-flow can be represented i
terms of Hilbert spacesN and L2(R) ^ N, and a unitary group$V(t)u2`,t,`% such that
ĝ(s)PL2(R) ^ N transforms according to

~V~ t !ĝ!~s!5ĝ~s2t !. ~10.1!

The same canonical form occurs in the Lax–Phillips scattering theory,20 where it is called the
translation representation.

Although this paper has captured some of the chaos-related features of the translation
sentation, it must be emphasized that the Lax–Phillips theory was developed for the wave
tion. It cannot be used in quantum mechanics. Corresponding to the Hilbert spaceN, we have
L2(S2), the space of square-integrable functions on the unit sphere inR3. It makes a difference
however, that we have a translation semigroup onL2(R1), not a group onL2(R).

The starting point for this paper is the group$exp(2iH0t)% on L2 with self-adjoint generator
H0 . The spectrum of the generator is@0,̀ ). The group$V(t)% in Eq. ~10.1! has self-adjoint
generator2 id/ds with spectrum (2`,`). The semigroup$U(t)% on K2 has generatork2. If we
let Dom(k2) be the set of allf PK2 with the property thatk2f (k,v)PK2, it follows from Eq.~2.2!
that Jk2f 52k2J f for all f PDom(k2). This makes it easy to show that the operatork2 is closed
and symmetric. To identify its spectrum, we examine the resolvent (k22l)21. For fixedl, the
resolvent is a bounded operator onK2 if and only if (k2e2if2l)21f (keif,v)PG2 for every f
PG2. Sincek2e2if runs through the lower half-plane, the open upper half-plane is the reso
set, and the closed lower half-plane is the spectrum of the operatork2 on K2. This is an example
of an operator that does not have self-adjoint extensions.

Although the HamiltonianH0 does not belong to the coneG consisting of allowed operator
A on L2, we can define its counterpartH̃0 on K2 as follows. Let Dom(q) be the set of allf
PK2 with the property thatk fPL2. Define the quadratic form

q@ f ,g#:5~k f ,kg! ~10.2!

on K2 with form domain Dom(q). This form is densely defined and positive. By Lemma 1
below, the form is closed. Hence it defines a positive self-adjoint operatorH̃0 on K2 with
Dom(H̃0),Dom(q). For f PDom(H̃0) andgPDom(q),

q@ f ,g#5^H̃0f ,g&.

For f ,gPDom(q) we have Eq.~10.2! and

q@ f ,g#5^H̃0
1/2f ,H̃0

1/2g&.

If f ,gPK2 and bothk2f PL2 andk2gPL2,

q@ f ,g#5~k2f ,g!5^~11J2!21k2f ,g&5~ f ,k2g!5^ f ,~11J2!21k2g&.

HenceH̃0 is the Friedrichs extension9 of (11J2)21k2.
The foregoing illustrates that the generator of the semigroup$U(t)% is very different fromH̃0 .

If f PDom(q), thenU(t) f PDom(q). For f ,gPDom(q),

^H̃0
1/2U~ t ! f ,H̃0

1/2U~ t !g&5~kU~ t ! f ,kU~ t !g!5~k f ,kg!5^H̃0
1/2f ,H̃0

1/2g&.

Hence the energy represented byH̃0 on K2 is conserved under the time evolution represented
the semigroup$U(t)% on K2.

It remains to prove that the form~10.2! is closed.
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Lemma 10.1: LetDom(q) be the set of all fPK2 with the property that k fPL2. The form
(10.2) on K2 with form domainDom(q) is closed.

Proof: Let $ f n%(n51,2,. . . ) be asequence in Dom(q) such thatuuu f n2 f uuu→0 and q@ f n

2 f m , f n2 f m#→0 asn,m→`. We have to show thatf PDom(q) andq@ f n2 f , f n2 f #→0.
By assumptionf PK2. Moreover, uu f n2 f uu→0 and uuk( f n2 f m)uu→0. Sincek is a closed

operator onL2, it follows that k fPL2 and uuk( f n2 f )uu→0. The last statement means thatq@ f n

2 f , f n2 f #→0. Sincef PK2 and k fPL2, we havef PDom(q). Hence all requirements for th
form to be closed are satisfied. h
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A compact expression for the calculation of phase shifts is derived for a potential
which is the sum of local and nonlocal parts. Nonlocal potentials can support
positive energy bound states, that is, states embedded in the continuous energy
spectrum. These states, sometimes referred to as ‘‘isolated’’ states, are not associ-
ated with any poles of theS matrix. Some controversy exists in the literature on
how such bound states are included in Levinson’s theorem; it is found that the
phase shift should be taken continuous at the energy of the bound state rather than
taken to have a discontinuity ofp. For simplicity, the analysis is restricted to the
radial s wave Schro¨dinger equation and separable nonlocal potentials. ©1999
American Institute of Physics.@S0022-2488~99!03601-4#

I. INTRODUCTION

As is well known, in an attempt to account for the suppression of degrees of free
nonlocal potentials are used in the description of many particle systems to create an ef
equation for the relative motion of two particles. Such potentials are also useful in cre
phase-equivalent potentials for the study of nucleon–nucleus and nucleus–nucleus scatter
cluster models of light nuclei. For these reasons it would be advantageous to have a co
expression from which the phase shifts could be found so that the effect of changes in the po
could more easily be gauged.

Nonlocal potentials can support bound states with energy embedded in the continuous
trum. These states are sometimes called ‘‘isolated’’ since theS matrix element does not have
pole at the energy of such a state.1 How to include such states in Levinson’s theorem has b
controversial.

In the rest of Sec. I, the standard analysis of nonlocal potentials2 is reviewed. Then in Sec. II
it is shown that, for Levinson’s theorem to hold, the phase shift should be taken continuo
bound states with energy embedded in the continuum. In Secs. III and IV, the potential is ex
to include the addition of a local potential and in Sec. V, it is shown that the phase shift is ju
negative of the phase of a compact expression which plays the same role as the Jost functi
for local potentials. It is seen that Levinson’s theorem also holds for this general case. And fi
in Sec. VI, an example is given.

The analysis is restricted to the radials wave Schro¨dinger equation

2
d2

dr2 c~r !1V~r !c~r !1E
0

`

U~r ,r 8!c~r 8!dr85k2c~r !, ~1!

where\52m51 andE5k2.
The nonlocal potential is taken to be separable,

U~r ,r 8!5( giv i~r !v i~r 8!, ~2!
1400022-2488/99/40(1)/140/10/$15.00 © 1999 American Institute of Physics
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wherev i(r ) are real and well behaved, and thegi are real constants, positive or negative. The
conditions ensure that the Hamiltonian is Hermitian. Only one term in the sum will be used
following analysis; the results are easily generalized.

The physical solution of Eq.~1! is defined by the mixed boundary conditions,

c~k,0!50, ~3a!

and, for larger,

c~k,r !→ 1
2i @e2 ikr2S~k!eikr #, ~3b!

whereS(k) is the scattering matrix element which can be written in terms of the phase shi

S~k!5e2id~k!. ~4!

In these equations,k is taken to be real positive. The usual notation of a superscript ‘‘1’’
indicating the physical solution and the corresponding Green’s function is not used here
there is little likelihood of confusion. In the following, the Fredholm determinant of the phys
solution, written as an integral equation, is constructed. The zeros of this determinant gi
energies of solutions to the homogeneous equation and these solutions, if normalizable, are
states. In this section the local potential is taken to be zero.

Taking the nonlocal potential to have only one term, the physical solution to the Schro¨dinger
equation is

c~k,r !5sin kr1E
0

`

ds K~r ,s!c~k,s!, ~5!

with kernel,

K~r ,s!5gv~s!E
0

`

dr8 G~k,r ,r 8!v~r 8!, ~6!

and Green’s function,

G~k,r ,r 8!52
1

k
eikr . sin kr, , ~7!

wherer . indicates the larger ofr andr 8 while r , denotes the smaller. Note that the integral
the kernel is convergent for Imk.0, that is, the solutions will be analytic in the upper-half of t
complexk plane. Ifv(r ) is of finite range, the solutions will also be analytic functions ofk in the
lower half plane while ifv(r ) is exponentially damping, the solutions will be analytic in a st
along the realk axis in the lower half plane.

The Fredholm determinant is easily found to be

D~k!512E
0

`

K~r ,r !dr512gE
0

`

dr v~r !E
0

`

dr8 G~k,r ,r 8!v~r 8!. ~8!

This determinant can be written in the momentum representation on the half-line using the
form

v~r !5
2

p E
0

`

p dp ṽ~p!sin pr, ~9!

with
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ṽ~p!5E
0

`

v~r !
sin pr

p
dr. ~10!

In the resulting integrals, it is assumed thatk has a positive imaginary part so that the need
distributions is avoided. The result,

D~k!511
2g

p E
0

`

p2 dp
ṽ2~p!

p22k2 , ~11!

can be easily generalized to the sum of separable terms by replacing in the integrand,

gṽ2⇒g1ṽ1
2~p!1g2ṽ2

2~p!1¯ . ~12!

The expression for the Fredholm determinant given in Eq.~11! is analytic in the upper half
complexk plane. To evaluateD(k) for real momentum values,k is taken to approach the rea
positive axis from above. Then,

D~k!511
2g

p
`E

0

`

p2 dp
ṽ2~p!

p22k2 1 igk ṽ2~k!, ~13!

where k is real positive and̀ indicates the Cauchy principal part. For the conjugate phys
solution,k is taken to approach the negative real axis.

The determinantD(k) will be analytic in the lower halfk plane within a strip along the rea
axis providedv(r ) is exponentially damping for larger. To continueD(k) into the lower half
plane, the path of integration is distorted around the simple pole atk ask is moved from the upper
half plane to the lower. Finally the contour of integration is pinched off ask passes into the lowe
half plane. The result is exactly the same as given in Eq.~11! but with the addition of the residue
at the pole:

D~k!511
2g

p E
0

`

p2 dp
ṽ2~p!

p22k2 12igk ṽ2~k!. ~14!

It is not difficult to show thatD(k) given by Eq.~11! or the continuation given in Eq.~14!
satisfies the condition,

D~k!5D* ~2k* !, ~15!

where~* ! indicates complex conjugate.
For a solution of the homogeneous equation atk0 real and positive, both the real and imag

nary parts of the Fredholm determinant given in Eq.~13! must be zero,

11
2g

p
`E

0

`

p2 dp
ṽ2~p!

p22k0
2 50, ~16a!

and

ṽ2~k0!50. ~16b!

Such a solution may represent a bound state in the continuous spectrum provided it is no
able. The homogeneous equation is

c~k,r !52
g

k E
0

`

ds8 v~s!c~k,s!FeikrE
0

r

dr8 sin kr8v~r 8!1sin krE
r

`

dr8 eikr 8 v~r 8!G .
~17!
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From Eq. ~16b! it is seen that this solution is zero forr→`. If this approach to zero is fas
enough, there will be a bound state which can be written as

c~k0 ,r !5CE
0

`

dj sin k0j v~j1r !, ~18!

whereC is a constant. It is apparent that ifv(r ) is of finite range or decreases exponentially, t
solution will be normalizable. Ifv(r ) goes asr 2a then the wave function also goes asr 2a so that,
if a is greater than 1/2, the solution will be normalizable. These normalizable wave func
represent bound states with energy embedded in the continuous spectrum.

II. THE PHASE SHIFT AND LEVINSON’S THEOREM

Levinson’s theorem states that

d~0!5p~n1q/2!, ~19!

where the phase shiftd(k) is evaluated at zero momentum,n is the number of bound states, an
q is either 1 or 0 depending on whether or not a ‘‘half bound’’ state exists. There has been
disagreement in the literature on the application of this theorem to the case of nonlocal pot
which support bound states with energy embedded in the continuous spectrum. Bolsterli3 suggests
that a jump ofp should be added to the phase shift at the energy of the bound state wh
Newton4 states that the phase shift should be taken continuous. The following derivation con
Newton’s analysis.

It is not difficult to show that thet matrix is proportional to the reciprocal of the Fredhol
determinant and that the Jost function is proportional to the determinant3 with a real proportion-
ality factor.5 Therefore, the phase shift can be taken to be the negative phase ofD(k), that is,

D~k!5uD~k!ue2 id~k!. ~20!

This phase shift has a discontinuity ofp at k0 , the value ofk associated with the bound state
the continuum. This jump ofp comes about becauseD(k) goes through zero atk0 where the real
part changes sign but not the imaginary. But theS matrix element,

S~k!5
D* ~k!

D~k!
5e2id~k!, ~21!

is continuous atk0 . There are no zeros forD(k) in the upper half plane except possibly on t
positive imaginaryk axis. Such zeros correspond to conventional bound states with negativ
energies. If the continuation to the lower half plane is possible thenD(k), given by Eq.~14!, may
also have zeros there. In the rest of the analysis, it will be assumed thatD(k) has a zero atk0

which may be complex. Then it follows from Eq.~15! that D(k) has a zero at2k0* , symmetri-
cally placed with respect to the imaginary axis, and that for realk,

d~k!52d~2k!. ~22!

Suppose that these two zeros atk0 and2k0* can be moved around in the complexk plane by
varying the parameters of the potential. With zeros only in the lower half plane, that is, no b
states, the following integral is zero:

I 5E
2`

`

d ln D~k!5E
2`

` 1

D~k!

dD~k!

dk
dk50. ~23!
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This is readily seen by closing the contour of integration by a large semicircle in the uppe
plane and letting the radius go to infinity. Doing the integral along the real axis and notin
definition of the phase shift in terms ofD(k), one obtains

d~0!2d~`!50. ~24!

As usual, the phase shift for infinite wave number is taken to be zero and, since there are n
on the real axis, the phase shift is continuous. In the following, continuous phase shifts w
denoted by a subscriptc.

Imagine how the phase shift changes whenk is varied along the real axis and passes nea
simple pole due to a zero ofD(k) in the lower halfk plane. The phase shift will increase sharp
but continuously throughp/2. This behavior of the phase shift is usually taken to indicat
resonance at the real part of the wave number of the zero.

Now suppose that the parameters are varied such that the zeros approach the real ax
below. The path of integration is deformed around the zeros as shown in Fig. 1. It should be
that it is not possible to have the zero pop up into the upper halfk plane for Rek.0 and still have
a Hermitian Hamiltonian. The integral is again zero as can be seen by closing the contou
large semicircle. Assuming that the zeros are simple, one obtains

I 5`E
2`

`

d ln D~k!22ip52idc~0!22p i , ~25!

where the22p i comes from the integration around the two semicircles and the principal
defines a continuous phase shift,

`E
2`

`

d ln D~k!52idc~0!. ~26!

Since I given in Eq.~25! is zero, Levinson’s theorem reads, for a bound state with ene
embedded in the continuum,

dc~0!5p, ~27!

with the phase shift defined continuously. If the zero is of orderm then

dc~0!5mp. ~28!

It may surprise one that the principal part defines a continuous phase shift since, for a simp
at k0 real and positive, the integration from 0 tok0 will give a logarithmic singularity. But one
must remember to include the integration from2k0 to 0 which results in a cancellation of th
logarithmic singularity and gives a continuous phase shift ask passes throughk0 .

FIG. 1. Path of integration for Levinson’s theorem. The zeros ofD(k), symmetric about the imaginary axis, approach t
real axis from below.
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In an actual experiment, the measurement of the phase shift will be continuous since an
of p will not affect the cross section. There appears to be nothing in the phase shift at the e
of the bound state that would signify its existence. The existence of the bound state, ho
shows up in the modification of the phase shift at zero energy as described by Levinson’s th

III. CASE WITH AN ADDITIONAL LOCAL POTENTIAL

The basis functions to be used for the case of a local plus a nonlocal potential are the so
of the Schro¨dinger equation with only the local potential. These solutions will be denoted
subscript 0. The Fredholm determinant for the integral equation of the physical solution fo
combined potentials is

D~k!512gE dr dr8 G~k,r ,r 8!v~r !v~r 8!, ~29!

where the Green’s function is

G~k,r ,r 8!52
f 0~k,r .!f0~k,r ,!

F0~k!
. ~30!

The Jost solution is defined by its asymptotic form for larger

f 0~k,r !→eikr , ~31!

while the regular solution,f0(k,r ), is defined such that, at the origin, the function and its fi
derivative are zero and one, respectively. The Jost function,

F0~k!5 f 0~k,0!, ~32!

will have zeros on the imaginary axis in the upper half complexk plane at the location of bound
states of the local potential.

For reference,

f0~k,r !5
1

2ik
@F0* ~k! f 0~k,r !2F0~k! f 0* ~k,r !#, ~33!

for real values ofk. Furthermore, the regular solution is real for realk or for purely imaginaryk
and, for the usual restrictions on the potential, it is regular for allk while the Jost solution is
analytic in the upper halfk plane. For a discussion of these properties see Newton.6

The nonlocal potential functionv(r ) can be expanded in terms of the Jost solution and
regular solution of the local potential by use of the completeness relation,7

E
C

k dk f0~k,r ! f 0~k,r 8!

F0~k!
5 ipd~r 2r 8!, ~34!

where the contourC goes along the realk axis from minus infinity, over any zeros ofF0(k) in the
upper half plane, to plus infinity and as shown in Fig. 2. In this way the bound states of the
potential are included in the expansion.

Using the completeness relation gives

v~r !5E
C

p dp

F0~p!
f0~p,r !v̄~p!, ~35!

where
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v̄~p!5
1

p i E0

`

dr v~r ! f 0~p,r !. ~36!

Substituting forv(r ) from Eq. ~35! into D(k) gives

D~k!511gE
C

p dp

F0~p!

v̄~p!ṽ~p!

p22k2 , ~37!

where

ṽ~p!5E
0

`

dr v~r !f0~p,r !. ~38!

To arrive at this result it is useful to use the relation

d

dr
W@f0~k1 ,r !,c0~k2 ,r !#5~k1

22k2
2!f0~k1 ,r !c0~k2 ,r !, ~39!

for the Wronskian, valid for any solution to the Schro¨dinger equation with the local potentia
regardless of boundary conditions.

For the particular case of no bound states of the local potential, Eq.~37! reduces to

D~k!511
2g

p E
0

` p2 dp ṽ2~p!

~p22k2!uF0~p!u2 , ~40!

as given in Ref. 2.
But D(k) given in Eq. ~37! cannot tell the whole story since forv(r )50, D(k)51. This

appears to say there are no bound states even if the local potential supports a boun
Examination of thet matrix8 suggests that for the local and nonlocal potentials combined, Eq.~37!
should be modified by the overall factorF0(k) on the right-hand side.

IV. GENERAL CASE WITH ALL ZEROS OF BOUND STATES CONTAINED IN D„k …

For the general case, one could proceed by finding the Fredholm determinant for the in
equation of the physical solution with the free particle states as the basis. But then to
expression like Eq.~37! would require changing the basis. Rather than searching for the Fred
determinant, it is simpler to find the Jost function for the combined potentials in the basis
solutions of the local potentials. The integral equation for the Jost solution is

f ~k,r !5 f 0~k,r !1E
r

`

dr8 G~k,r ,r 8!E
0

`

ds U~r 8,s! f ~k,s!, ~41!

FIG. 2. Integration contour for the completeness relation. The dots on the imaginary axis represent the zeros of
function.
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where the subscript 0 denotes solutions for the local potential. Substituting the nonlocal po
given in Eq.~2! yields

f ~k,r !5 f 0~k,r !1gI~k!E
r

`

dr8 G~k,r ,r 8!v~r 8!, ~42!

where

I ~k![E
0

`

ds v~s! f 0~k,s!. ~43!

The functionI (k) is found by multiplying Eq.~42! by v(r ), integrating, and then solving th
resulting algebraic equation to get

I ~k!5
*0

`dr f 0~k,r !v~r !

12g*0
`dr8 v~r 8!* r 8

` dr v~r !G~k,r ,r 8!
. ~44!

The Green’s function that is 0 forr 8,r and satisfies

F2
d2

dr2 1V~r !2k2GG~k,r ,r 8!52d~r 2r 8! ~45!

can be constructed out of solutions of the Schro¨dinger equation with the local potential. One fin
that

G~r ,r 8,k!52
f0~k,r ! f 0~k,r 8!

F0~k!
1

f0~k,r 8! f 0~k,r !

F0~k!
for r ,r 8,

50 for r 8,r , ~46!

which has the necessary unit step atr 5r 8 in the first derivative.
The relation given in Eq.~39! is useful for doing the integrals involving the Green’s functio

Again the functionv(r ) is expanded in terms of the basis functions using the complete
relation, Eq.~34!. After some straightforward manipulation it is found that

I ~k!5p i F v̄~k!Y S 11gE
C

pdp

F0~p!

ṽ~p!

p22k2 @ v̄~p!2 v̄~k!# D G , ~47!

so that the Jost function, found by evaluating the Jost solution atr 50, is

F~k!5F0~k!S 11gE
C

pdp

F0~p!

v̄~p!ṽ~p!

p22k2 D Y S 11gE
C

pdp

F0~k!

ṽ~p!

p22k2 @ v̄~p!2 v̄~k!# D . ~48!

It is not difficult to show that the denominator of the Jost solution on the right-hand sid
Eq. ~48! is the Fredholm determinant of the regular solution in the basis of the solutions fo
local potential. Hence the Jost function for the general case is just the product of the Jost fu
for the local potential by itself times the ratio of the Fredholm determinants of the phy
solution and the regular solution. For a bound state in the continuous spectrum, say atk0 , the
numerator of the Jost function or equivalentlyD(k) given in Eq.~37! must be zero. This require
that the real and imaginary parts must be separately zero, that is,

11g`E
C

pdp

F0~p!

v̄~p!ṽ~p!

p22k0
2 50, ~49a!

and
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ṽ2~k0!50. ~49b!

These conditions also imply that the denominator of the Jost function is also zero atk0 . For the
Jost function, there is a jump in phase ofp at k0 for both the denominator and the numerator. Th
the Jost function is continuous atk0 unlike the functionD(k).

Since the Fredholm determinant of the regular solution is real for real values ofk, the de-
nominator of the Jost function is real so that it can be dropped in calculating theSmatrix element
formed by the ratioF* (k)/F(k). This justifies using

D~k!5F0~k!F11gE
C

p dp

F0~p!

v̄~p!ṽ~p!

p22k2 G , ~50!

for calculating the phase shift. Note that the results of Sec. II on Levinson’s theorem apply
also and therefore the phase shift is taken continuous at bound states in the continuous sp
This compact form forD(k) is the main result of this paper.

V. EXAMPLE

It is simple to arrange things so that the only effect of the nonlocal potential is to shif
energies of any bound state of the local potential. Takev(r ) for the nonlocal potential to be th
same as one of the bound states eigenfunctions of the local potential, say atE5k0

2,0. Then the
contour of integration for completeness reduces to a contour around the simple pole due
zero ofF0(k) at k0 . Using the linear dependence off 0(k,r ) andf0(k,r ) at a zero ofF0(k), one
obtains

D~k!5F0~k!H 11
4ig k0

2ṽ2~k0!

F0* ~k0!@dF0~k!/dk#k0
~k22k0

2!J . ~51!

That this function is not equal to zero atk0 can be seen by rewritingD(k) as

D~k!5F0~k!Fk21K22gN2ṽ2~k0!

k21K2 G , ~52!

where

k05 iK , ~53!

with K real and positive, andN the normalization of the regular solution of the local potentia

N2E dr f0
2~k0 ,r !51. ~54!

It is apparent that the zero ofD(k) now appears at

k252K21gN2ṽ2~k0!, ~55!

which, for a positiveg large enough, is a bound state embedded in the continuous spectrum
specific example studied in an earlier paper,9 a bound state of the local potential was moved
positive energy by use of a nonlocal potential. The phase shift was found to be the negative
of the Jost function of the local potential, that is, the term in braces in Eq.~51! was missing. The
resulting cross section is the same in either case since the missing term is real. But in the
work, Levinson’s theorem held because of the zero in the Jost function at the original ene
the bound state, as if its ghost remained. The situation described in this paper is much
satisfying.
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An estimate of the ground state energy of the fractional
quantum Hall effect

Jingbo Xiaa)

Department of Mathematics, State University of New York, Buffalo, New York 14214-3093
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Suppose that there areN electrons in a disk of radiusR with a perpendicular
magnetic field. We give an estimate for the ground state energy of such a system in
the caseN'nR2. © 1999 American Institute of Physics.
@S0022-2488~99!02101-5#

I. INTRODUCTION

In the study of the fractional quantum Hall effect,1 one considers the two-dimensional Co
lomb interactions of electrons in a magnetic field. In this paper we will give an estimate fo
ground state energy of such a system. Suppose thatN electrons are confined to a disk of radiusR.
We will show that in the limitR→` andN/R2→n, wheren is theLandau level filling factor, the
ground state energy is on the order ofN3/2. Our result is motivated by the observation that, in t
Hamiltonian forN electrons, there areN(N21)/2 terms of Coulomb potentials compared wi
only N terms for kinetic energy. Therefore, for largeN, the total energy of the system can be clo
to its minimum, even when the kinetic energy is not. This will be seen from the state we u
obtain the estimateN3/2, which imposes a uniform spacing between the electrons and is co
erably different from the Laughlin state.2

More specifically, let us considerN electrons in the planeR2 interacting with each other, with
a randomly distributed, bounded potential, and with a constant magnetic fieldB in the perpen-
dicular direction. In units of magnetic length (2c\/euBu)1/2 and cyclotron energyeuBu\/2mec, the
Hamiltonian representing this system reads as

HN5(
j 51

N S 1

2
D j1Q~zj ! D1l (

1< j ,k<N
uzj2zku21.

Here,D j5„2 i (]/]xj )1yj…
21„2 i (]/]yj )2xj…

2, zj5(xj ,yj )PR2, Q is a bounded, real-valued
function, andl5(2e3me

2c/\3uBu)1/2. Sincee3me
2c/\3'2.433109 G, the dimensionless constan

l is large under earthly conditions.
For R.0, letD(N,R) be the polydisk$(z1 ,...,zN):uzj u,R, j 51,...,N% in (R2)N. Let H(N,R)

be the restriction ofHN to D(N,R) with the Dirichlet boundary condition. By a well-know
construction3,4 of Friedrichs,H(N,R) is realized as a self-adjoint operator@which we also denote
by H(N,R)# on a dense domain in the Hilbert spaceL2

„D(N,R)…. LetDa(N,R) be the collection
of the functions in the domain ofH(N,R) that are antisymmetric under the interchange of any t
variables. We define

Ha~N,R!5H~N,R!uDa~N,R!,

the restriction ofH(N,R) to Da(N,R). If the electrons are confined to the disk$zPR2:uzu,R%,
then, taking the exclusion principle into account, the more appropriate operator to cons
Ha(N,R) rather thanHN .

Let I (N,R) be the ground state energy ofHa(N,R). That is,

a!jxia@acsu.buffalo.edu
1500022-2488/99/40(1)/150/6/$15.00 © 1999 American Institute of Physics
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I ~N,R!5 inf$^Ha~N,R! f , f &: f PDa~N,R!,i f i51%.

A natural question concerning the operatorHa(N,R) is, what isI (N,R)? Or, at the very least we
would like to know the asymptotics ofI (N,R) asR→` andN/R2→n, wheren.0 is the Landau
level filling factor of the system under consideration. This is precisely the situation that aris
the study of the fractional quantum Hall effect~FQHE!. See Ref. 1 and Sec. VII in Ref. 5.

The Dirichlet boundary condition guarantees that the operator( j 51
N D j is positive. Hence, it

follows that I (N,R)>2iQi`N1„lN(N21)/2… infuzu,R,uwu,Ruz2wu21>2iQi`N1l(N(N

21)/4R). Thus, for largeR, if N/R2'n, then I (N,R)> 1
4lAnN3/22KN for some 0,K,`,

which is independent ofN. That is,

lim inf
R→`

N/R2→n

N23/2I ~N,R!>0.253lAn.

Note that this lower-bound estimate forI (N,R) is extremely crude; it does not even take t
exclusion principle into account. What is amazing is that crude as it is, this estimate is only
a factor of less than 4. The purpose of this paper is to report the following.

Theorem: Suppose thatn.0. Then

lim sup
R→`

N/R2→n

N23/2I ~N,R!<
8

3p
lAn50.8488...3lAn. ~1!

A consequence of our theorem is that it sets a cap on the energy of any approximation
ground state of the FQHE. In particular, this cap applies to the Laughlin state, which lies
heart of the incompressible quantum fluid approach to the FQHE. Recall that the Laughlinm state
for N electrons is

FN
m~z1 ,...,zN!5expS 2(

j 51

N
1

2
uzj u2D )

1< j ,k<N
~zj2zk!

m,

where m.1 is an odd integer.1,2 This function is generally taken as an approximation to
ground state of FQHE with Landau level filling factor 1/m. In light of our theorem, ifFN

m truly
approximates the ground state of FQHE, then we should have

lim sup
N→`

(
1< j ,k<N

^uzj2zku21FN
m ,FN

m&

N3/2iFN
mi2 <

8

3p
A1

m
. ~2!

So far, our attempts have failed to produce a proof of this. In fact, we are not even able to as
that the left-hand side of~2! is finite. But this seems to be an interesting problem, for it serve
test how closelyFN

m approximates the ground state of FQHE.
The original version of our theorem was stated as

lim sup
R→`

N/R2→n

N23/2I ~N,R!<ClAn, ~3!

with a finiteC that was not explicitly determined. And this was derived with a proof that invo
the eigenfunctions ofD1 ,...,DN and that is rather long and technical. Friesecke subseque
found a much simpler and shorter proof of~3!. Using local gauge transformations, his proof avo
the eigenfunctions ofD1 ,...,DN completely and circumvents several technical difficulties. M
important, his use of local gauge transformations makes it possible to impose a uniform s
between the electrons. As it turns out, with the electrons uniformly spaced, it is possible to
a reasonably good value forC. The proof of our theorem presented here is a refinemen
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Friesecke’s proof of~3!. That is, by carefully tracking the various constants that appea
Friesecke’s proof of~3!, we are able to show that 8/3p will do for C. We thank Friesecke for the
permission to use his proof of~3! here.

The proof of our theorem involves estimates that are quite technical. In order not to lose
of the main idea, therefore, it is perhaps desirable to give a general outline before present
details.

GivenN electrons in a disk of radiusR5O(AN), we need to find a stateC whose total energy
is O(N3/2). If at all possible, one tries to achieve this in the form of a single Slater determin

C~z1 ,...,zN!5~N! !21/2 det„w i~zj !…i , j 51
N .

The arrangement of the electrons,w1 ,...,wN , are determined by the following considerations:
there is a cap on the kinetic energy of each electron, then the total kinetic energy will on
O(N), which is negligible in comparison toO(N3/2). The simplest way to obtain such a cap is
take an equally spaced latticeG of N points in the disk of radiusR and translate a single electro
state~which we callxb below! by the vectors inG. Because of the presence of the magnetic fie
we also need to apply gauge transformations to the translated electron states to ensure th
kinetic energy is the same as that forxb , which provides the desired cap. Thusw1 ,...,wN are
simply an enumeration of

$UkTkxb :kPG%,

whereTk is the translation determined by the vectork andUk the corresponding gauge transfo
mation. This takes care of the kinetic part of the Hamiltonian. Since the random potentiaQ is
assumed to be bounded, its contribution to the Hamiltonian is alsoO(N).

To facilitate the estimate of the potential energy ofC, which is the dominant part, we confin
the original statexb to a small disk so that there is no overlapping amongw1 ,...,wN . With such
an arrangement of the electrons, whenN is large, each individual electron sees a charge distr
tion on the disk that is approximately uniform. Accordingly, because of the 1/r falloff of the
Coulomb potential, the potential energy attributable to each electron is on the order of

E
uzu<R

1

uzu
dA~z!5O~R!5O~AN!.

Hence, the total potential energy isN3O(AN)5O(N3/2). By carefully working out the details o
this argument, we obtain the numerical factor 8/3p in ~1!.

II. PROOF OF THEOREM

Throughout the proof, we letBr(w) denote the open disk$zPR2:uw2zu,r % in R2. We start
by picking ane such that 0,e,n. Suppose thatN>106 andR are so large that

N/R2<n1e. ~4!

Note that 4(N1/624)21,1, which will be relevant later. Leta.0 be such that

~N117AN!a25pR2. ~5!

We have 1/a25(N/R2)(1117N21/2)/p<(n1e)(1117N21/2)/p<2n.
Let h be a C` function on @0,̀ ! such thath50 on @1

3, `!, h5const on @0, 1
4#, and

2p*0
`uh(r )u2r dr 51. Definex(z)5h(uzu), zPR2. Thenx(z)50 if uzu> 1

3 andx is a unit vector
in L2(R2). Let b5min$1,a% andxb(z)5b21x(b21z). Thenixbi5ixi51. Sincexb is a radial
function, we have„y(]/]x)2x(]/]y)…xb50. Now xb(z)50 if uzu>b/3. Thereforeiuzu2xbi
<b2ixbi5b2<1. Also, (Dxb)(z)5b22$b21(Dx)(b21z)%, which implies iDxbi5b22iDxi
<(112n)iDxi . Let D5„2 i (]/]x)1y…21„2 i (]/]y)2x…2. Then
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iDxbi<iDxbi1iuzu2xbi<~112n!iDxi11. ~6!

For eachk5(k1 ,k2)PR2, define the unitary operators

~Tkf !~x,y!5 f ~x2k1 ,y2k2! and ~Ukf !~x,y!5ei ~k1y2k2x! f ~x,y!,

on L2(R2). If we setD(k)5„2 i (]/]x)1y2k2…
21„2 i (]/]y)2x1k1…

2 for k5(k1 ,k2), then it
is easy to verify thatDUk5UkD(k) andD(k)Tk5TkD. Thus, by~6!,

iDUk Tkxbi5iUkD~k!Tkxbi5iUkTk Dxbi5iDxbi<~112n!iDxi11. ~7!

Let

G5 H S a i 1
a

2
,a j 1

a

2 D : i , j PZ,a2~ i 1a!21a2~ j 1b!2,R2 for all a,bP$0,1%J .

We claim that Card(G)>N. For this purpose letN8 be the number of squares of the sizea3a

with vertices of the form (a i ,a j ), i, j PZ, which have a nonempty intersection withBR(0), and
let N9 be the number of such squares that are contained inBR(0). That is,N95Card(G). If such
a square intersects the circleuzu5R, then it is contained in the annulus$zPR2:R2&a
<uzu<R1&a% since the diagonal of the square is&a. Hence (N82N9)a2<4&paR. That is,
N82N9<4&pR/a<4&pA2N/p58ApAN<16AN. On the other hand,N8a2>pR25(N
117AN)a2. That is,N8>N117AN>N1N82N9. This proves that Card(G)5N9>N.

Thus we can choose a subsetV,G such that Card(V)5N. For eachkPV, let ck

5UkTkxb . Thus, eachck is supported inBb/3(k),Ba/3(k),BR(0) and ckck850 for all k
Þk8 in V. Let w1 ,...,wN be an enumeration of$ck :kPV%, which is an orthonormal set. Defin
the Slater determinant C(z1 ,...,zN)5(N!) 21/2 det„w i(zj )…i , j 51

N . Since ^( j 51
N D jC,C&

5N^D1C,C&5N(sPSN
^Dws(1) ,ws(1)&/N!, whereSN is the group of permutations of$1,...,N%,

and since eachws(1) is someUkTkxb , it follows from ~7! that

(
j 51

N

^D jC,C&<$~112n!iDxi11%N.

Next, we estimate the repulsive potentialY5(1< i , j <N^uzi2zj u21C,C&.
Clearly Yi j 5^uzi2zj u21C,C& is independent of the indicesi , j . Hence Y5N(N

21)Y12/2. Now, if s, s8PSN are such thats( j )Þs8( j ) for some j .2, then ^uz12z2u21

ws(1)(z1)¯ws(N)(zN), ws8(1)(z1)¯ws8(N)(zN)&50. That is,

Y125
1

N! (
sPSN

^uz2wu21ws~1!~z!ws~2!~w!,$ws~1!~z!ws~2!~w!2ws~2!~z!ws~1!~w!%&.

Sincew1 ,...,wN are an enumeration of$ck :kPV%, we can writeY125(Z2Z8)/N(N21) with

Z5 (
k,k8PV

kÞk8

^uz2wu21ck~z!ck8~w!,ck~z!ck8~w!&,

Z85 (
k,k8PV

kÞk8

^uz2wu21ck~z!ck8~w!,ck8~z!ck~w!&.

Now, if kÞk8, thenck(z)ck8(w)ck8(z)ck(w)50 because the supports ofck and ck8 are dis-
joint. ThereforeZ850. That is,Y5N(N21)Y12/25Z/2. Thus, recalling thateP(0,n) is arbitrary,
the theorem will follow once we establish
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Z<
16

3p
•

~1117N21/2!2

124~N1/624!21 An1eN3/21O~N4/3!. ~8!

To prove ~8!, let P5$(k,k8):k,k8PV,kÞk8,uk2k8u.aN1/6% and L5$(k,k8):k,k8PV,k
Þk8,uk2k8u<aN1/6%. ThenZ5U1V, where

U5 (
~k,k8!PP

^uz2wu21ck~z!ck8~w!,ck~z!ck8~w!&,

V5 (
~k,k8!PL

^uz2wu21ck~z!ck8~w!,ck~z!ck8~w!&.

For eachkPV, if n(k) is the number ofk8’s in V such thatuk2k8u<aN1/6, then n(k)a2

<p(2aN1/6)2. That is,n(k)<4pN1/3. Thus, Card(L)<4pN4/3. Now every term inV is bounded
by (3/a)•b4

•(ixi` /b)4. ThereforeV is accounted for by theO(N4/3) term in ~8!.
For eachk5„a i (k)1(a/2),a j (k)1(a/2)…PV, where i (k), j (k)PZ, let S(k) be thea

3a square whose vertices are„a( i (k)1a), a( j (k)1b)…, a, bP$0,1%. Of course,S(k) contains
the support ofck . Suppose that (k,k8)PP and (z,w), (u,v)PS(k)3S(k8). Then uz2wu>uu
2vu24a5(124auu2vu21)uu2vu>(124(N1/624)21)uu2vu. This shows that, if (k,k8)
PP, then

K 1

uz2wu
ck~z!ck8~w!,ck~z!ck8~w!L <

a24

124~N1/624!21 E
S~k!

E
S~k8!

uu2vu21 dA~u!dA~v !,

wheredA is the area measure onR2. Becauseø (k,k8)PPS(k)3S(k8),BR(0)3BR(0),

U<
a24

124~N1/624!21 E
uzu<R

E
uwu<R

uz2wu21 dA~z!dA~w!5
R3/a4

124~N1/624!21 •J,

where

J5E
uzu<1

E
uwu<1

uz2wu21 dA~z!dA~w!.

It follows from ~4! and ~5! that R3/a45(R/a)3(1/a)<p22N3/2(1117N21/2)2An1e. Thus, the
proof of ~8! will be complete once we show thatJ516p/3.

Define f (w)5* uzu<1uz2wu21 dA(z)5* uz1wu<1uzu21 dA(z) for uwu<1 and considerz andw
also as complex variables. For 0<r ,1, the equation

r52r cosu1A12r 2 sin2 u

describes the circle$z:uz1r u51% in the polar coordinates~u,r!. Thus

f ~r !5E
0

2pE
0

2r cosu1A12r 2 sin2 u 1

r
r dr du54E

0

p/2
A12r 2 sin2 udu.

It is obvious thatf (w)5 f (eitw) if tPR. Therefore

J5E
uwu<1

f ~w!dA~w!52pE
0

1

f ~r !r dr 58pE
0

p/2S E
0

1

rA12r 2 sin2 udr D du.

Evaluate the double integral in the order indicated, and we obtainJ516p/3. This completes the
proof of the theorem.
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Rigorous application of the stochastic functional
method to plane-wave scattering from a random
cylindrical surface

Nikolaos C. Skaropoulos and Dimitrios P. Chrissoulidisa)

Department of Electrical and Computer Engineering, Faculty of Technology,
Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece

~Received 16 March 1998; accepted for publication 2 October 1998!

The stochastic functional method is applied to plane-wave scattering from a ran-
dom cylindrical surface, whereupon the Dirichlet boundary condition is rigorously
imposed. Analytical results, accurate to second and fourth order in surface rough-
ness, are obtained for the coefficients of the Wiener–Hermite expansion of the
secondary scattered wave field. The validity of approximate solutions is numeri-
cally investigated by means of the boundary condition criterion and of the energy
consistency criterion. The former, which is introduced herein, states that any ap-
proximate solution should be in conformity with the boundary condition, whereas
the latter pertains to the energy conservation law. The numerical investigation
indicates that the rigorous application of the stochastic functional method yields
more accurate results in terms of both criteria than did previous treatments of the
problem under consideration. Moreover, it is suggested that applicability limits
should be set through the mean boundary condition criterion instead of the energy
consistency criterion; the latter may lead to underestimating deficiencies of the
approximate solution under test. ©1999 American Institute of Physics.
@S0022-2488~99!02401-9#

I. INTRODUCTION

Several studies of wave scattering from random surfaces were lately based on the sto
functional method,1–6 which may be summarized as follows. The scattering surface is repres
by a homogeneous, Gaussian random field; the scattered wave field is regarded as a n
stochastic functional of surface roughness and it is expanded into a series of orthogonal W
Hermite ~WH! functionals by application of the Cameron–Martin theorem7 and extensions
thereof.8,9 The expansion coefficients are determined through an approximation of the bou
condition that is imposed upon the random surface. By use of the orthogonality properties
WH functionals, the approximate boundary condition is transformed into a set of linear dete
istic equations that yields the expansion coefficients. Algebraic manipulations are greatly
tated via a group-theoretic consideration of the stochastic homogeneity of surface roug
which accounts for the symmetries of the scattered wave field.5

Previous applications of the stochastic functional method include studies of wave sca
from a random planar surface,1–3 as well as from a random cylindrical4 or spherical5 surface; a
detailed list of pertinent references can be found in Ref. 6. Thus far, the expansion coeffi
have been determined through a first-order approximation of the boundary condition and, as
the accuracy of the resulting solution has been evaluated through tests of energy consiste

In the present paper, it is shown that the expansion coefficients can be more acc
determined, should the boundary condition be rigorously imposed on the random surfac
application of the stochastic functional method presented herein makes use of the complete
series expansion of the boundary condition; the truncation of that series is deferred un

a!Electronic mail: dpchriss@vergina.eng.auth.gr
1560022-2488/99/40(1)/156/13/$15.00 © 1999 American Institute of Physics
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formulation of a hierarchical set of linear equations for the expansion coefficients. The res
second- and fourth-order approximations of that set of equations include terms that would
been unnecessarily discarded otherwise and they yield more accurate expressions for the
sion coefficients.

Moreover, it is argued that energy conservation may not always be an adequate criter
the validity of approximate solutions under test. Apart from energy consistency, conformity
the boundary condition on the random surface should be examined. To this end, a bo
condition test, which consists in numerically investigating whether the mean field satisfie
boundary condition on the random surface, is introduced herein; conformity of higher-orde
tistical moments of the field with the boundary condition could also be investigated.

The above are applied to the two-dimensional problem of plane-wave scattering from
dom cylindrical surface, whereupon the Dirichlet boundary condition is imposed; other scat
surfaces and boundary conditions could also be treated, yet more complicated cases are de
future work. The numerical results indicate that the approximate solutions obtained by use
rigorous application of the stochastic functional method are more accurate than those of a p
treatment of the problem in hand,4 both in terms of the boundary condition criterion and of t
energy consistency criterion. Furthermore, it is seen that the limits of validity should be s
means of the boundary condition criterion instead of the energy consistency criterion; the
may lead to underestimating the inherent error of the approximate solution under test.

The paper is organized as follows: in Sec. II we deal with the analytical formulation o
stochastic functional method, second- and fourth-order approximations of the expansion
cients are obtained in Sec. III, expressions for the characteristics of farfield scatter are dete
in Sec. IV, and a numerical application is presented in Sec. V.

II. ANALYTICAL FORMULATION

A. Homogeneous random circular surface

A two-dimensional~2-D! random rough surfaceS, circular in the mean and centered at t
origin O of a cylindrical coordinate system (O;ru) ~Fig. 1!, is considered.Smay be described by
the equationr s5a1 f (u,v), wherea stands for the mean radius andf (u,v) is a zero-mean
random field on the circleS2 ; the parametervPV, denoting a sample point in the spaceV, will
be suppressed from this point onward. Assuming thatf (u) is a homogeneous Gaussian rando
field, the following spectral representation can be written:4

f ~u!5 (
n52`

`

einuFnBn ; ~1!

$Bn ,nPZ% is a set of zero-mean, mutually orthogonal, Gaussian random variables; orthogo
suggests that̂BmBn&5dm,n , the overbar implying the complex conjugate;dm,n is the Kronecker
delta. Sincef (u) is real valued,B2n5Bn andF2n5Fn. As can be verified from the correspond
ing spectral representation of the correlation function,

FIG. 1. Geometric configuration.
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R~u1 ,u2!5^ f ~u1! f ~u2!&5 (
n52`

`

uFnu2ein~u12u2!, ~2!

the coefficientsFn of ~1!, actually the squared magnitude thereof, constitute the power spectru
f (u). Accordingly, the variances2 of the roughness of the random surfaceScan be expressed a
follows:

s25^ f 2~u!&5 (
n52`

`

uFnu2. ~3!

B. Wave field expressions

A random wave fieldc(kr,u) outsideS ~i.e., for r>r s! is a solution to the 2-D Helmholtz
equation,

~¹21k2!c~kr,u!50, ~4!

wherek stands for the wave number. By use of the shorthand notationr5kr, a boundary condi-
tion of the Dirichlet type onS is expressed as follows:

c~r,u!ur5rs5krs
50. ~5!

The wave fieldc5c inc1cscaconsists of two terms, which represent the incident and the scat
wave field, respectively. If excitation by a plane wave, propagated along the directiî
5 x̂ cosuinc 1 ŷ sinuinc ~Fig. 1!, is considered,c inc can be written as follows:

c inc~r,u!5 (
m52`

`

i mcm
inc~r,u!e2 imu inc, ~6!

where cm
inc(r,u)5Jm(r)eimu is the mth-order cylindrical wave function andJm(•) is the

mth-order cylindrical Bessel function of the first kind.10 A similar expression can be written fo
the scattered wave field:

csca~r,u!5 (
m52`

`

i mcm
sca~r,u!e2 imu inc; ~7!

~6! and~7! imply thatcm
inc gives rise tocm

sca. Such simple coupling between excitation and sca
results from the statistical homogeneity of the random surfaceS; a proof, based on group-theoret
considerations, may be found in Ref. 4. Themth-order term of the scattered wave field,cm

sca

5 (p)cm
sca1 (s)cm

sca, consists of two terms, which are referred to as the primary and the seco
wave. On the one hand, the primary wave(p)cm

sca corresponds to unperturbed scatter from
smooth cylindrical surface of radiusa, and it is expressed as follows:

~p!cm
sca~r,u!5am

0 Hm
~1!~r!eimu, ~8!

am
0 52Jm(r0)/Hm

(1)(r0), r05ka, andHm
(1)(•) is themth-order cylindrical Hankel function of the

first kind.10 On the other hand, the secondary wave(s)cm
sca incorporates the effect of surfac

roughness, and it can be regarded as a nonlinear functional of the random surfaceS. By use of the
Cameron–Martin theorem,7–9

(s)cm
sca can be expanded in a series of complex, orthogonaln-

variate, Wiener–Hermite~WH! functionalsĤn of the complex Gaussian random sequenceBn ,4,11
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~s!cm
sca~r,u!5 (

n50

`

(
j 152`

`

(
j 252`

`

¯ (
j n52`

`

Am
n ~ j 1 , j 2 ,...,j n!Hm1 j 11 j 21¯1 j n

~1! ~r!

3ei ~m1 j 11 j 21¯1 j n!uĤn~Bj 1
,Bj 2

,...,Bj n
!, ~9!

whereĤn are defined by

Ĥ051, Ĥ1~Bj 1
!5Bj 1

, Ĥ2~Bj 1
,Bj 2

!5Bj 1
Bj 2

2d2 j 1 , j 2
, ~10!

and the recurrence relation:

Ĥn11~Bj 1
,Bj 2

,...,Bj n11
!5Ĥ1~Bj 1

!Ĥn~Bj 2
,...,Bj n11

!

2 (
k52

n

Ĥn21~Bj 2
,...,Bj k21

,Bj k11
,...,Bj n

!d2 j 1 , j k
. ~11!

The cylindrical wave functionHm1 j 11 j 21¯1 j n
(1) (r)ei (m1 j 11 j 21¯1 j n)u satisfies the 2-D Helmholtz

equation as well as the radiation condition at infinity; hence, so does(s)cm
sca, as expanded in~9!.

Am
n are deterministicn-variate coefficients, which are symmetric with respect to their argume

these coefficients are determined in Sec. III by application of the Dirichlet boundary conditio
S.

III. CALCULATION OF THE EXPANSION COEFFICIENTS

A. Taylor series expansion of boundary condition

The first step toward the determination ofAm
n is taken by expanding the left-hand side of~5!

into a Taylor series around the pointr5r0 :

(
p50

`
1

p!
kpf p~u!c~p!~r,u!ur5r0

50 . ~12!

The abbreviationc (p)5]pc/]rp has been used in~12!. By use of~6!–~9!, ~12! yields

(
p51

`
1

p!
kpWm

~p!~r0! (
n152`

`

(
n252`

`

¯ (
np52`

`

ei ~n11n21¯1np!u)
i 51

p

Fni
Ĥ1~Bni

!

1 (
n50

`

(
j 152`

`

(
j 252`

`

¯ (
j n52`

`

Am
n ~ j 1 , j 2 ,...,j n!ei ~ j 11 j 21¯1 j n!uĤn~Bj 1

,Bj 2
,...,Bj n

!

3FHm1 j 11 j 21¯1 j n
~1! ~r0!1 (

p51

`
1

p!
kp~Hm1 j 11 j 21¯1 j n

~1! !~p!~r0!

3 (
n152`

`

(
n252`

`

¯ (
np52`

`

ei ~n11n21¯1np!u)
i 51

p

Fni
Ĥ1~Bni

!G50, ~13!

whereWm5Jm1am
0 Hm

(1) . It should be pointed out that in the present paper the complete Ta
series expansion of the boundary condition is used instead of the first-order approximation t
which was used in the previous treatment of this problem4 as well as in other applications of th
stochastic functional method.1–3,5,6The truncation of the infinite Taylor series is postponed u
the formulation of a hierarchical set of equations forAm

n . As shown in Sec. V, this approac
results in more accurate expressions for the expansion coefficients.
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B. Hierarchy of equations

Linear equations forAm
n can be obtained from~13! by multiplying both sides by

Ĥ l(Bk1
,Bk2

,...,Bkl
), wherel 50,1,..., and averaging overV. Use is then made of the following

formula for the expectation value of a product of WH functionals:11

^Ĥn1
~Bj 1

,...,Bj n1
!Ĥn2

~Bj n111
,...,Bj n11n2

!¯Ĥnm
~Bj n11...1nm2111

,...,Bj n11...1nm
!&

5H (
distinct

exogamous
pairs

0

)
exogamous

pairs

d2 j k , j l
, if ~n11n21¯1nm! is Heven,

odd. ~14!

Each one ofd2 j k , j l
on the right-hand side of~14! has an exogamous pair of indices, which mea

that j k , j l do not originate from the sameĤ function; if either of j k , j l originates from an

Ĥ̄ function, d j k , j l
, instead of d2 j k , j l

, should be used. The indicesj 1 , j 2 ,...,j n11...1nm
are

used once in any product of Kronecker deltas, and the summation is taken over all po
arrangements of all indices into distinct exogamous pairs. According to these
straints, ^Ĥ1(Bj 1

)Ĥ1(Bj 2
)Ĥ2(Bj 3

,Bj 4
)& is equal to d2 j 1 , j 3

d2 j 2 , j 4
1d2 j 1 , j 4

d2 j 2 , j 3
, whereas

^Ĥ1(Bj 1
)Ĥ1(Bj 2

)Ĥ2(Bj 3
,Bj 4

)& equalsd j 1 , j 3
d j 2 , j 4

1d j 1 , j 4
d j 2 , j 3

.

C. Second-order approximation

Approximate expressions forAm
n , accurate toO„(ks)2

…, are determined next. Since, as su
gested by~3!, kFj5O(ks), the triad of equations obtained forl 50, 1, 2 is the following:

1

2
~ks!2Wm

~2!~r0!1Am
0 Hm

~1!~r0!1 (
j 152`

`

kF j 1
Am

1 ~ j 1!~Hm1 j 1
~1! !~1!~r0!50, ~15a!

kFk1
Wm

~1!~r0!1Am
1 ~k1!Hm1k1

~1! ~r0!50, ~15b!

k2Fk1
Fk2

Wm
~2!~r0!1kFk2

Am
1 ~k1!~Hm1k1

~1! !~1!~r0!1kFk1
Am

1 ~k2!~Hm1k2

~1! !~1!~r0!

12Am
2 ~k1 ,k2!Hm1k11k2

~1! ~r0!50. ~15c!

The second-order approximations toAm
n are readily obtained from~15!,

Am
0 52~ks!2

Wm
~2!~r0!

2Hm
~1!~r0!

1
Wm

~1!~r0!

Hm
~1!~r0!

(
j 152`

`

ukFj 1
u2

~Hm1 j 1

~1! !~1!~r0!

Hm1 j 1

~1! ~r0!
, ~16a!

Am
1 ~ j 1!52kFj 1

Wm
~1!~r0!

Hm1 j 1

~1! ~r0!
, ~16b!

Am
2 ~ j 1 , j 2!52k2F j 1

F j 2

3

S Wm
2 ~r0!2

~Hm1 j 1

~1! !~1!~r0!

Hm1 j 1
~1! ~r0!

Wm
~1!~r0!2

~Hm1 j 2
~1! !~1!~r0!

Hm1 j 2
~1! ~r0!

Wm
~1!~r0!D

2Hm1 j 11 j 2

~1! ~r0!
, ~16c!
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and, evidently,Am
n 50, if n>3. The expressions of~16! are identical to those obtained through t

single-scattering approximation of the previous treatment of this problem,4 apart from the first
term on the right-hand side of~16a!, which does not appear in the corresponding result of Re
this is due to the first-order approximation of the boundary condition used therein. Furtherm
should be noted that Eqs.~15! were obtained with thea priori assumptionsAm

0 5O„(ks)2
… and

Am
n 5O„(ks)n

…, n>1, which area posteriori justified by the results of~16!.

D. Fourth-order approximation

A similar procedure yields fourth-order approximations toAm
n . The tetrad of equations ob

tained forl 50, 1, 2, 3 is given below:

1
2~ks!2Wm

~2!~r0!1 1
8~ks!4Wm

~4!~r0!1Am
0 @Hm

~1!~r0!1 1
2~ks!2~Hm

~1!!~2!~r0!#

1 (
j 152`

`

kF j 1
Am

1 ~ j 1!~~Hm1 j 1

~1! !~1!~r0!1 1
2~ks!2~Hm1 j 1

~1! !~3!~r0!!

1 (
j 152`

`

(
j 252`

`

k2F j 1
F j 2

Am
2 ~ j 1 , j 2!~Hm1 j 11 j 2

~1! !~2!~r0!50, ~17a!

kFk1
@Wm

~1!~r0!1 1
2~ks!2Wm

~3!~r0!#1kFk1
Am

0 Hm
~1!~r0!1Am

1 ~k1!@Hm1k1

~1! ~r0!

1 1
2~ks!2~Hm1k1

~1! !~2!~r0!#1 (
j 152`

`

kF j 1
@kFk1

Am
1 ~ j 1!~Hm1 j 1

~1! !~2!~r0!

12Am
2 ~k1 , j 1!~Hm1k11 j 1

~1! !~1!~r0!#50, ~17b!

k2Fk1
Fk2

@Wm
~2!~r0!1 1

2~ks!2Wm
~4!~r0!1Am

0 ~Hm
~1!!~2!~r0!#1kFk2

Am
1 ~k1!@~Hm1k1

~1! !~1!~r0!

1 1
2~ks!2~Hm1k1

~1! !~3!~r0!#1kFk1
Am

1 ~k2!@~Hm1k2

~1! !~1!~r0!1 1
2~ks!2~Hm1k2

~1! !~3!~r0!#

1 (
j 152`

`

k3Fk1
Fk2

F j 1
Am

1 ~ j 1!~Hm1 j 1

~1! !~3!~r0!12Am
2 ~k1 ,k2!@Hm1k11k2

~1! ~r0!

1 1
2~ks!2~Hm1k11k2

~1! !~2!~r0!#12 (
j 152`

`

k2Fk2
F j 1

Am
2 ~k1 , j 1!~Hm1k11 j 1

~1! !~2!~r0!

12 (
j 152`

`

k2Fk1
F j 1

Am
2 ~k2 , j 1!~Hm1k21 j 1

~1! !~2!~r0!16 (
j 152`

`

kF j 1
Am

3 ~k1 ,k2 , j 1!

3~Hm1k11k21 j 1

~1! !~1!~r0!50, ~17c!

k3Fk1
Fk2

Fk3
Wm

~3!~r0!1k2Fk2
Fk3

Am
1 ~k1!~Hm1k1

~1! !~2!~r0!1k2Fk1
Fk3

Am
1 ~k2!~Hm1k2

~1! !~2!~r0!

1k2Fk1
Fk2

Am
1 ~k3!~Hm1k3

~1! !~2!~r0!12kFk1
Am

2 ~k2 ,k3!~Hm1k21k3

~1! !~1!~r0!12kFk2
Am

2 ~k1 ,k3!

3~Hm1k11k3

~1! !~1!~r0!12kFk3
Am

2 ~k1 ,k2!~Hm1k11k2

~1! !~1!~r0!16Am
3 ~k1 ,k2 ,k3!

3Hm1k11k21k3

~1! ~r0!50. ~17d!

Elimination of Am
0 and Am

3 from ~17a! and ~17d!, respectively, yields an infinite set of linea
equations forAm

1 andAm
2 :
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(
j 152`

` FC1~ j 1 ;m,k1!Am
1 ~ j 1!1 (

j 252`

`

C2~ j 1 , j 2 ;m,k1!Am
2 ~ j 1 , j 2!G5B1~m,k1!, ~18a!

(
j 152`

` FC3~ j 1 ;m,k1 ,k2!Am
1 ~ j 1!1 (

j 252`

`

C4~ j 1 , j 2 ;m,k1 ,k2!Am
2 ~ j 1 , j 2!G5B2~m,k1 ,k2!.

~18b!

The following abbreviations are used in~18!:

C1~ j 1 ;m,k1!5d j 1 ,k1
@Hm1k1

~1! ~r0!1 1
2~ks!2~Hm1k1

~1! !~2!~r0!#@Hm
~1!~r0!1 1

2~ks!2~Hm
~1!!~2!~r0!#

2k2Fk1
F j 1

@~Hm1 j 1

~1! !~1!~r0!1 1
2~ks!2~Hm1 j 1

~1! !~3!~r0!#~Hm
~1!!~1!~r0!

1k2Fk1
F j 1

@Hm
~1!~r0!1 1

2~ks!2~Hm
~1!!~2!~r0!#~Hm1 j 1

~1! !~2!~r0!, ~19a!

C2~ j 1 , j 2 ;m,k1!52d j 2 ,k1
kF j 1

~Hm1 j 11 j 2

~1! !~1!~r0!@Hm
~1!~r0!1 1

2~ks!2~Hm
~1!!~2!~r0!#

2k3Fk1
F j 1

F j 2
~Hm1 j 11 j 2

~1! !~2!~r0!~Hm
~1!!~1!~r0!, ~19b!

C3~ j 1 ;m,k1 ,k2!5k~Fk2
d j 1 ,k1

1Fk1
d j 1 ,k2

!@Hm
~1!~r0!1 1

2 ~ks!2~Hm
~1!!~2!~r0!#

3F ~Hm1 j 1

~1! !~1!~r0!2~Hm1 j 1
~1! !~2!~r0! (

j 52`

`

ukFj u2
~Hm1k11k21 j

~1! !~1!~r0!

Hm1k11k21 j
~1! ~r0!

1
1

2
~ks!2~Hm1 j 1

~1! !~3!~r0!G2k3Fk1
Fk2

F j 1
~Hm

~1!!~2!~r0!

3@~Hm1 j 1

~1! !~1!~r0!1 1
2~ks!2~Hm1 j 1

~1! !~3!~r0!#1k3Fk1
Fk2

F j 1
@Hm

~1!~r0!

1 1
2~ks!2~Hm

~1!!~2!~r0!#

3F ~Hm1 j 1

~1! !~3!~r0!2~Hm1 j 1
~1! !~2!~r0!

~Hm1k11k21 j 1

~1! !~1!~r0!

Hm1k11k21 j 1

~1! ~r0! G , ~19c!

C4~ j 1 , j 2 ;m,k1 ,k2!

52d j 1 ,k1
d j 2 ,k2

@Hm
~1!~r0!1 1

2 ~ks!2~Hm
~1!!~2!~r0!#

3FHm1k11k2

~1! ~r0!2~Hm1k11k2

~1! !~1!~r0! (
j 52`

`

ukFj u2
~Hm1k11k21 j

~1! !~1!~r0!

Hm1k11k21 j
~1! ~r0!

1
1

2
~ks!2~Hm1k11k2

~1! !~2!~r0!G12k2F j 1
~Fk2

d j 2 ,k1
1Fk1

d j 2 ,k2
!

3FHm
~1!~r0!1

1

2
~ks!2~Hm

~1!!~2!~r0!G
3F ~Hm1 j 11 j 2

~1! !~2!~r0!2~Hm1 j 11 j 2

~1! !~1!~r0!
~Hm1k11k21 j 1

~1! !~1!~r0!

Hm1k11k21 j 1

~1! ~r0! G
2k4Fk1

Fk2
F j 1

F j 2
~Hm

~1!!~2!~r0!~Hm1 j 11 j 2

~1! !~2!~r0!, ~19d!
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B1~m,k1!52kFk1
@Wm

~1!~r0!1 1
2~ks!2Wm

~3!~r0!#@Hm
~1!~r0!1 1

2~ks!2~Hm
~1!!~2!~r0!#

1 1
2~ks!2kFk1

~Hm
~1!!~1!~r0!@Wm

~2!~r0!1 1
4~ks!2Wm

~4!~r0!#, ~20a!

B2~m,k1 ,k2!52k2Fk1
Fk2

@Hm
~1!~r0!1 1

2 ~ks!2~Hm
~1!!~2!~r0!#

3FWm
~2!~r0!2Wm

~3!~r0! (
j 52`

`

ukFj u2
~Hm1k11k21 j

~1! !~1!~r0!

Hm1k11k21 j
~1! ~r0!

1
1

2
~ks!2Wm

~4!~r0!G1 1
2~ks!2k2Fk1

Fk2
~Hm

~1!!~2!~r0!@Wm
~2!~r0!

1 1
4~ks!2Wm

~4!~r0!#. ~20b!

The set of~18! may be solved by truncation of the infinite summations and numerical inver
Let M be the appropriate truncation number; the choice ofM is discussed in Sec. V. Since th
coefficientsAm

2 ( j 1 , j 2) are symmetric with respect toj 1 , j 2 , there are (2M11)(M12) unknowns
in ~18! with j 1 and j 2 varying in the range@2M ,M # and @2M , j 1#, respectively. A set of
(2M11)(M12) equations can be obtained by allowingk1 to vary in the range@2M ,M # andk2

to vary in the range@2M ,k1#. This set yieldsAm
1 ( j 1) andAm

2 ( j 1 , j 2) for j 1 , j 2P@2M ,M #.

IV. CHARACTERISTICS OF FARFIELD SCATTER

A. Scattering amplitude

The scattered wave field far from the origin of coordinates~i.e., for r@1!, is usually ex-
pressed as a diverging cylindrical wavecsca(r,u)5eirF(u)/Ar. The direction-dependent facto

F~u!5A 2

p i (
m52`

`

eimuS am
0 1 (

n50

`

(
j 152`

`

(
j 252`

`

¯ (
j n52`

`

Am
n ~ j 1 , j 2 ,...,j n!

3
ei ~ j 11 j 21¯1 j n!u

i ~ j 11 j 21¯1 j n! Ĥn~Bj 1
,Bj 2

,...,Bj n
!D ~21!

is the scattering amplitude, which is given above foru inc50; this assumption implies that inci
dence is along thex axis ~Fig. 1!, and it has no effect on generality whatsoever.

B. Coherent scattering

The coherent part of the scattering amplitude^F~u!& can be obtained from~21! by averaging

^F~u!&5A 2

p i (
m52`

`

eimu~am
0 1Am

0 !. ~22!

The coherent differential scattering cross section is defined assc(u)5u^F(u)&u2 and, if integrated
with respect tou in the range@0,p#, it yields the coherent scattering cross section:

sc54 (
m52`

`

uam
0 1Am

0 u2. ~23!

C. Incoherent scattering

The incoherent differential scattering cross section is defined ass ic(u)5^uF(u)u2&
2u^F(u)&u2 and, by use of~21!, the following expression can be obtained:
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s ic~u!5
2

p (
n51

`

n! (
j 152`

`

(
j 252`

`

¯ (
j n52`

` U (
m52`

`

Am
n ~ j 1 , j 2 ,...,j n!eimuU2

. ~24!

Integration of ~24! with respect tou in the range@0,p# yields the incoherent scattering cro
section:

s ic54 (
m52`

`

(
n51

`

n! (
j 152`

`

(
j 252`

`

¯ (
j n52`

`

uAm
n ~ j 1 , j 2 ,...,j n!u2. ~25!

V. NUMERICAL RESULTS

The numerical results are aimed at investigating the accuracy and applicability of the se
and fourth-order solutions obtained in Sec. III; these solutions are compared to those obta
a previous treatment of the problem under consideration.4 The validity of approximate solutions i
tested by means of the following two criteria: first, that any approximate solution should
conformity with the boundary condition and, second, that it should be energy consisten
calculations make use of the following coefficients:

uFnu25s2S e2K2n2/2Y (
n52`

`

e2K2n2/2D , ~26!

for the power spectrum off (u); K ~rad! is the correlation distance of surface roughness. W
regard to the infinite summations of the expressions for the characteristics of farfield s
three-digit convergence can be achieved in all cases with truncation numberM<12.

A. Boundary condition test

The boundary condition test is performed by means of the following equation, whic
obtained from the Dirichlet boundary condition~5! by averaging and by use of~14!:

(
l 51

`
~2l 21!!!

~2l !!
~ks!2lWm

~2l !~r0!5Am
0 FHm

~1!~r0!1(
l 51

`
~2l 21!!!

~2l !!
~ks!2l~Hm

~1!!~2l !~r0!G
1 (

j 152`

`

kF j 1
Am

1 ~ j 1!(
l 50

`
~2l 11!!!

~2l 11!!
~ks!2l~Hm1 j 1

~1! !~2l 11!~r0!

1 (
j 152`

`

(
j 252`

`

k2F j 1
F j 2

Am
2 ~ j 1 , j 2!

3(
l 51

`
~2l 21!!!

~2l 21!!
~ks!2l 22~Hm1 j 11 j 2

~1! !~2l !~r0!

1 (
j 152`

`

(
j 252`

`

(
j 352`

`

k3F j 1
F j 2

F j 3
Am

3 ~ j 1 , j 2 , j 3!

3(
l 51

`
~2l 21!!!

~2l 21!!
~ks!2l 22~Hm1 j 11 j 21 j 3

~1! !~2l 11!~r0!. ~27!

The abbreviation (2l 21)!! 51.3̄ (2l 21) has been used in~27!. The left-hand side of~27!
represents the mean value ofcm

inc1 (p)cm
sca at r5rs , whereas the right-hand side represents

mean value of2 (s)cm
sca, also atr5rs . The former can be calculated exactly, thus serving a

reference for approximate calculations of the latter, which involves the approximate expre
for Am

n . Results for the modulus of both sides of~27! are shown in Fig. 2. It may be seen th
curves 1 and 2, corresponding to approximate calculations of the right-hand side of~27! by use of
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~16! and~17!, respectively, follow closely the reference curve for the left-hand side as long aks
is small; the deviation of the approximate curves from the reference curve increases withks. The
fourth-order approximation is evidently more accurate than the second-order approxim
roughly up toks50.1; from that value onward the fourth-order solution deteriorates. Curv
and 4, corresponding to the previous treatment of this problem,4 are quite far from the referenc
curve, which is probably due to the first-order approximation of the boundary condition th
used therein.

B. Energy consistency test

Energy consistency can be checked through the optical theorem,4 which states thatsc1s ic

5A8p Im$^F(0)&/Ai %. The ratio of the left- to right-hand side of this equation may serve a
measure of energy consistency, any deviation from the value 1 revealing deficiencies
approximate solution under test. The energy consistency test can be performed more effecti
discarding the dominant zeroth-order terms from both sides of the optical theorem by use
identity (m52`

` uam
0 u252(m52`

` Re$am
0 %; thus, the following equations, which are accurate

O„(ks)2
… andO„(ks)4

… respectively, are obtained:

(
m52`

` F uAm
0 u212 Re$am

0 Am
0 %1 (

j 152`

`

uAm
1 ~ j 1!u2G52 (

m52`

`

Re$Am
0 %, ~28a!

(
m52`

` F uAm
0 u212 Re$am

0 Am
0 %1 (

j 152`

`

uAm
1 ~ j 1!u214 (

j 152`

`

(
j 252`

`

uAm
2 ~ j 1 , j 2!u2G

52 (
m52`

`

Re$Am
0 %. ~28b!

Numerical results for the ratio of the left- to right-hand side of~28a! or ~28b! are displayed in Fig.
3. It is readily seen that curve 1 is constantly equal to 1 regardless ofks; the second-order
approximation is, therefore, energy consistent, which can also be verified analytically. The f
order approximation results in a nonzero energy error, which is, however, less than 1%

FIG. 2. Boundary condition test (ka51,K50.6 rad): the thick curve depicts the modulus of the left-hand side of~25! and
serves as reference; curves 1–4 correspond to approximate calculations of the modulus of the right-hand side o~25!.
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cases. In general, all approximate solutions meet the energy consistency criterion more s
torily than they meet the boundary condition criterion. This is more evident for the approxi
solutions of Ref. 4, which were seen in Fig. 2 to fail with regard to the latter criterion.

C. Applicability limit

It can be argued, after inspection of Figs. 2 and 3, that the boundary condition test is
sensitive than the energy conservation test to inherent errors of approximate solutions
therefore, plausible to investigate the limit of applicability of approximate solutions through
culations of the relative mean boundary condition error, which is defined as the ratio of the
minus the right- to left-hand side of~27!. Numerical results for the relative mean bounda
condition error are displayed in Fig. 4, the main conclusion being that it increases rapidly witks,
especially forK50.4 rad. The applicability limit, defined as the highest value ofks for the small
mean boundary condition error, is well below the corresponding value that would have
estimated by use of the energy consistency criterion. This argument is most convincing
applied to the second-order approximate solution of this paper, which yields a substantial
boundary condition error, even for smallks, although, as mentioned above, it is energy consis
for any ks.

D. Angular distribution of farfield scatter

Calculations of the angular distribution of farfield scatter are presented in Fig. 5. It ca
observed that the effect of surface roughness is most pronounced in the backscattering d
~i.e., foru5180°!, where it manifests itself as a reduction of coherent scatter; this is a well-kn
result from studies of light scattering from irregular particles.12 Incoherent scatter is strongest
the backscattering direction, but it is roughly two orders of magnitude weaker than coh
scatter.

FIG. 3. Energy consistency test (ka51,K50.6 rad): plots of the ratio of the left- to right-hand side of~26!, which should
equal 1 for an energy consistent solution. Curve 1 corresponds to~26a!; the expressions forAm

0 ,Am
1 ( j 1) are those of~14!.

Curve 2 corresponds to~26b!; Am
1 ( j 1),Am

2 ( j 1 , j 2) are determined from~16!, whereasAm
0 are obtained from~15a!. Curves

3 and 4 correspond to~26a! and ~26b!, respectively, withAm
n as expressed in Ref. 4.
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VI. CONCLUSIONS

The rigorous application of the boundary condition improves the results obtained b
stochastic functional method, both in terms of the boundary condition criterion and of the e
consistency criterion. The former places stricter restrictions to the applicability of approx
solutions and it is, therefore, more reliable than the latter. The second-order approximate s
obtained herein exhibits considerable boundary condition error and, yet, it is energy cons

FIG. 4. Relative mean boundary condition error versus normalized varianceks (ka51). This error is defined as the
modulus of the ratio of the left- minus the right- to left-hand side of~25!, and it should equal 0 for an accurate solutio

FIG. 5. Angular distribution of farfield scatter (ka51). ~a! Coherent differential scattering cross section versus scatte
angleu~°!. The thick curve is associated with the left-hand vertical axis, and it corresponds to scattering from a s
cylindrical surface (ks50!; curves 1 and 2 are associated with the right-hand vertical axis and they display the perc
difference insc(u) of a random cylindrical surface from the corresponding smooth surface.~b! Incoherent differential
scattering cross section.
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which indicates the limitations of the energy consistency criterion as a means of validatin
proximate solutions. The fourth-order approximate solution exhibits negligible energy error
is more accurate with respect to the boundary condition criterion than the second-order solu
this paper and the solutions obtained in Ref. 4.
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Lattice electromagnetic theory from a topological
viewpoint a…

F. L. Teixeirab) and W. C. Chew
Center for Computational Electromagnetics, Electromagnetics Laboratory,
Department of Electrical and Computer Engineering,
University of Illinois at Urbana—Champaign, Urbana, Illinois 61801-2991

~Received 7 July 1998; accepted for publication 25 September 1998!

The language of differential forms and topological concepts are applied to study
classical electromagnetic theory on a lattice. It is shown that differential forms and
their discrete counterparts~cochains! provide a natural bridge between the con-
tinuum and the lattice versions of the theory, allowing for a natural factorization of
the field equations into topological field equations~i.e., invariant under homeomor-
phisms! and metric field equations. The various potential sources of inconsistency
in the discretization process are identified, distinguished, and discussed. A rationale
for a consistent extension of the lattice theory to more general situations, such as to
irregular lattices, is considered. ©1999 American Institute of Physics.
@S0022-2488~99!02301-4#

I. INTRODUCTION

For historical reasons, the prevalent approach to study initial and/or boundary value pro
for Maxwell’s equations is based on the vector calculus language. Relatively few references
use of differential forms1–23 as an alternative mathematical language to describe classical ele
magnetic~EM! field theory, despite its adequacy and strong geometrical content. This is in m
contrast with the current tendency of geometrization of other areas of physics.13–23

The classical approach for deriving a lattice electromagnetic~EM! theory utilizes the vector
calculus language. Such description assumes a space~and time! infinitely divisible. The discrete
theory is then obtained by a finite-difference, finite-volume, or finite-element approxima
There has been a number of consistent~in the sense that properties exhibited by the continu
theory, such as divergence-preserving conditions, reciprocity, and conservation laws, are re!
and self-contained formulations of a lattice EM theory in the past.24–26 However, until recently,
these formulations were restricted for the finite-difference case and regular lattices.24,26

Apart from exhibiting some interesting physical phenomena not present in its contin
counterpart~such as high-frequency cutoff and rotational symmetry breaking!, the interest in the
development of a discrete EM theory is driven basically by the recent surge of interest
numerical simulation of EM fields in complex environments using differential equation sol
made possible by advances in computer technology. The absence of consistency in more
lattices usually leads to harmful effects on the numerical simulations for hyperbolic equa
~time–domain simulations!, such as unconditional late-time instabilities.11,27 In the case of elliptic
equations~frequency–domain simulations!, they are usually associated with the presence of s
rious modes.3

Traditionally, the derivation of a lattice EM theory using the classical, vector calculus
proach has some inherent drawbacks, which hamper its application for developing more g
discrete models on irregular lattices. First, it involves an approximation whereby derivative
replaced by finite differences~e.g., in the finite-difference method!. Second, in the case of struc
tured lattices, the discretization is dependent on the underlying coordinate system; in the c

a!This work is dedicated to the memory of Professor George A. Deschamps.
b!E-mail: fteixeir@cspark.ece.uiuc.edu
1690022-2488/99/40(1)/169/19/$15.00 © 1999 American Institute of Physics
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unstructured lattices, the differential operators are replaced by integral operators and the
tion of fields involves an averaging procedure~e.g., in the finite-volume method! or a projection
on a functional space~e.g., in the finite-element method!. More importantly, the use of vecto
calculus implies that the placement of the theory on the lattice depends on the metric on wh
continuum field theory was first cast. This leads, in most cases, to lengthy formulas. Furthe
the underlying geometrical concepts and the metric independence of Maxwell’s equations a
explored. When written in the vector calculus language, the metric independence of Max
equations is hidden because the topological structure is intertwined with their metric struct

More recently, an alternative approach to the finite-difference discretization of Maxw
equations for irregular quadrilateral lattices based on the support operator method~SOM!28,29 has
been described in Ref. 30. Such an approach is still based on the vector calculus langua
compared to traditional discretization schemes, has the distinct advantage of being consisby
constructionand, therefore, free from spurious solutions and numerical instabilities. More
such an approach also explores the metric independence of Maxwell’s equations, since the
ing discrete operators can be written as a composition of a topological part~formal differences!
and a metric part.28

Here, we explore and discuss the application of differential forms and their discrete co
parts~cochains! to study lattice EM theory. One of the advantages of using differential form
that the metric independence of Maxwell’s equations is already factored out in the continuum
therefore, explicitly manifested.2 This fact implies that the continuum Maxwell’s equations writt
in the differential forms language are invariant under diffeomorphisms, while their lattice c
terparts are invariant under homeomorphisms~in Fig. 1, we illustrate the concepts of the top
logical and metric structure of a lattice!. Metric concepts are present only in the so-called Hod
star operators, which also generalize the constitutive relations of the medium. In the lattice
operators can be thought of either defininga priori the local metric structure of the lattice, or bein
defineda posterioriby a given metric structure of the lattice.

In the discrete counterpart of the differential forms language, the continuum derivative o
tions are replaced not by finite-difference approximations, but as exact exterior derivatives
lattice cell complex. The discrete exterior derivative corresponds not to a discreteapproximation,
but to a discretecounterpart. The exterior derivative is an operator that can be related to a sim
evaluation of quantities on the boundary of the elements of the lattice complex, and which
no assumptions about differentiability. These observations illustrate yet another advantage

FIG. 1. Topological and metric structure of general, irregular lattices. The differential form language reveals the
independence of Maxwell’s equations. When put on a lattice, Maxwell’s equations~but not Maxwell’s system! become
invariant for any lattice with the same topology.
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use of differential forms: their discrete counterparts are objects amenable to analysis us
powerful tools of algebraic topology.

Algebraic topological tools have been used to study discrete models for many years~see, e.g.,
Ref. 17 and references therein!. The generality achieved by using algebraic topology was rece
illustrated in Ref. 23, where it provided a conceptual basis to analyze the general similaritie
differences among various discretization schemes, in the context of thermostatics.

The main objective of this paper is to tackle the general problem of the consistency of l
EM theory within the framework of algebraic topology. Bygeneral, we mean lattices with arbi-
trary metric and topologicalstructures. We distinguish three basic classes of consistency req
ments. The first class~based on topological considerations only! is common to all field theories
cast on a discrete form, and it is associated with the correct implementation of the bou
operator on the lattice. Discrete schemes that satisfy this first class can be classified as dive
preserving schemes. The second class~also based on topological considerations only! is related to
the topological structure of EM theory and the dual nature of ordinary and twisted cell comp
The third class is the metric-dependent one, associated with the Hodge operators. We po
that each requirement is a separate, necessary condition for an overall consistent lattice EM

The remainder of this work is organized as follows. In Sec. II, we write Maxwell’s equat
using the language of differential forms and discuss their factorization into topological and m
equations. In Sec. III, we review the discretization of differential forms on a lattice using alge
topological tools. In Sec. IV, we put Maxwell’s equations on the lattice using the concepts o
previous sections, stressing that it provides an exact counterpart to the continuum theory
invariant under homeomorphisms. We also discuss the topological consistency requireme
sociated with the correct implementation of the boundary operator, and their connection w
usual theorems of vector calculus. In Sec. V, we discuss the concept of dual lattices and
arises from the necessity of a proper discretization of the different geometrical objects repr
ing the EM fields. In Sec. VI, we treat some additional algebraic properties of the resu
discrete Maxwell’s equations by discussing additional topological consistency requirements
ciated with the dual structure of the ordinary and twisted cell complexes~important to guarantee
reciprocity of the discrete Maxwell’s equations!. In Sec. VII, we discuss the problem of th
discretization of the constitutive relations, where metric concepts are present and approxim
are involved through the discretization of the Hodge operators. We do not present explici
structions for the Hodge operators~these are highly problem specific!; instead, we discuss gener
rationales for this, and describe basic requirements thatany consistent version of the discret
Hodge should satisfy. Finally, in Sec. VIII, we summarize the conclusions. We use a (311)
representation with thee2 ivt time convention assumed. Throughout this work, the term disc
zation refers tospatial discretization, unless indicated otherwise.

II. MAXWELL’S EQUATIONS AND DIFFERENTIAL FORMS

In the language of differential forms,1–23 Maxwell’s equations are written as

dE5 ivB, ~1!

dH52 ivD1JE , ~2!

dB50, ~3!

dD5rE . ~4!

In the above,E andH are electric and magnetic field intensity 1-forms,D andB are electric and
magnetic flux density 2-forms,JE is the electric current density 2-form, andrE is the electric
charge density 3-form.

The operatord is the usual exterior derivative, which simultaneously plays the role of the
and div operators of vector calculus. The exterior derivative is an operator applicable t
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differentiable manifold, even without a metric defined on it. This is in contrast to the ve
calculus operators, which depend on metric factors and have different expressions when wr
different coordinate systems. The Maxwell’s equations in the above form~27!–~30! are metric
independent and retain the same form irrespective of the coordinate system used.1,2

Constitutive parameters of a given medium relate the 1-formsE,H to the 2-formsD,B and are
given in terms ofHodge operators, !e and!h ,6–8 as

D5!eE, ~5!

B5!hH. ~6!

These relations close the Maxwell’s system. In this paper, the term Maxwell’s equations will
to Eqs.~1!–~4!, while the term Maxwell’s system will refer to~1!–~6!. In the case of a three
dimensional manifold, the Hodge operator establishes a natural isomorphism between the s
1-forms asE andH and the space of 2-forms asD andB. This isomorphism is usually called
Hodge duality map. The Hodge operators depend on a metric and, in the equations~1!–~6!, all the
information about the metric of space is contained in the constitutive relations~5! and ~6!. Any
modification on the metric tensor preserves the form of Maxwell’s equations.

The possibility of decomposing the field equations into a purely topological part and a m
one is not a special property of the EM theory. Such a decomposition is equally possible
context of other classical field theories.23

III. DIFFERENTIAL FORMS ON A LATTICE

In this section, we will briefly review the correspondence between continuum and la
equations provided by the known mapping of differential forms onto linear functions on the s
of some lattice elements. For brevity, we have deliberately chosen a somewhat sloppy appr
any topological subtleties~these are discussed elsewhere, e.g., in Refs. 17–20!, by focusing on the
important concepts behind the terminology.

To make the right correspondence between the continuum and the lattice, the latter sho
considered as acell complex~or cell decomposition!.13,14,16–20,22,23A cell complex is a partitioning
of some spaceX into a finite number ofk cells of different sizes, coveringX without overlap!,
which form a setx. In our case of interest,X is just a region of the three-dimensional Euclide
space. Ak-cell si

k is an object homeomorphic toRk so that, a 0-cell is a point, a 1-cell is a lin
~edge!, etc. In general,k-cells arek-dimensional (k50,1,2,3) elements of the lattice. The set of
k-cells is denoted byxk. The cell complex is the direct sum of such sets,

x5 %
k50

n

xk. ~7!

Eachk-dimensional element ofxk, for k50,1,2,3, corresponds to a point~vertex!, link ~edge!,
plaquette~face!, and polyhedron~volume!, respectively.

We assume a fixed orientation for eachk-cell si
k on xk, which results in anoriented cell

complex. For brevity, the term complex will refer to oriented complex in the remaining of
work. With this assumption, acell k-chain, or simplyk-chain, is defined as a linear combination
k-cells in xk through

Sk5(
i

a isi
kPxk. ~8!

The weightsa i belong, in general, to any additive Abelian group. For our purposes, we do
need such a generality and assume that they are just integer numbers. From this defin
0-chain is a linear combination of points, a 1-chain is a linear combination of links, etc. A c
is always one of these types; there are no mixed chains.
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The k-cells si
k form a basis for the space ofk-chains. An arbitrary decomposition ofX is not

a cell complexx. To characterize a cell complex, certain conditions must be observed. In pa
lar, theboundaryof any k-cell on x should be the union of lower-dimensional cells inx, and no
overlapping cells are allowed. The boundary operator] is an operator onx, ] : xk°xk21, which
carries the usual geometric interpretation and is subject to the requirement]2[]+]50. It connects
the algebra ofk-chains with the algebra of (k21)-chains on the lattice: ifSk is ak-chain, then]Sk

is a (k21)-chain. Moreover, the boundary operator acts linearly on the space of chains.
If V is a k-form and g is a k-dimensional integration surface, then integration define

pairing,

E
g
V, ~9!

which gives a scalar as a result. Therefore, the space ofk-forms can be thought of as beingdual
to the space ofk-dimensional surfaces. This motivates the definition ofcochains: if the space of
k-dimensional surfaces on the continuum is identified with the space ofk-chains on the lattice;
then the space ofk-forms in the continuum is identified as the space of cochains, which are l
functionals on the space of chains. Cochains constitute the discrete representation for the
ential forms on the lattice, or the discrete counterparts of forms. Here, to emphasize the con
between the lattice and the continuum, we will also refer to cochains aslattice differential forms.

The continuum pairing given by the previous equation has the followingexact counterparton
the lattice, in terms of ak-chainSk and ak-lattice formQk,

E
g
V→^Sk,Qk&. ~10!

Such pairing defines acontractionbetweenSk andQk. From the basis fork-chains,si
k , we define

a dual basis of lattice forms,u i
k , such that̂ si

k ,u j
k&5d i j . This basis generates the space ofk-lattice

forms so that the generick-lattice formQk is written as

Qk5(
i

b iu i
k . ~11!

In the above,b iPG, whereG is some Abelian group. To make the correspondence with
continuum,G is assumed to beR, and the composition law assumed to be the usual algebraic
of addition. The contraction of chains and lattice forms then gives

^Sk,Qk&5K (
i

a isi
k ,(

j
b ju j

kL 5(
i

(
j

a ib j^si
k ,u j

k&5(
i

a ib i . ~12!

From Eqs.~1!–~4!, we see that the only spatial operator present in the differential fo
language version of Maxwell’s equations is the exterior derivative. The concept of duality m
the definition of the exterior derivative on a lattice very natural, usually called thecoboundary
operator. Here, to emphasize the connection between the lattice and the continuum, we wi
refer to it as thelattice exterior derivativeand write it with the same symbol,d, as in the
continuum case. The lattice exterior derivatived is defined in terms of its adjoint, the bounda
operator], as

^Sk,dQk21&5^]Sk,Qk21&. ~13!

This definition has some interesting properties. First, it definesd on a lattice in anexact
manner. The coboundary does not correspond to an approximation to the continuum e
derivatived, but instead, as a counterpart to it. Second, it is defined without any need for d
entiability. Third, it automatically satisfies the generalized Stokes’ theorem.
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In this framework, the usual differential operators of vector calculus are replaced by asingle
operator on the lattice: the boundary operator] acting on the elements of the lattice~cell complex!.
The div operator corresponds to the action of] on a 3-cell, the curl to the action of] on a 2-cell,
and the grad to the action of] on a 1-cell. Furthermore, in this sense, these operators are dis
from an unnecessary metric structure, becoming purely topological operations.

In the next section, these remarks will be substantiated when discussing Maxwell’s equ
on a lattice.

IV. MAXWELL’S EQUATIONS ON A LATTICE

In this section Maxwell’s equations are put on a lattice using the previously discussed
cepts. The lattice counterpart to Maxwell’s equations~1!–~4! are formally the same as the con
tinuum ones, written as

dE5 ivB, ~14!

dH52 ivD1JE , ~15!

dB50, ~16!

dD5rE , ~17!

but with E andH properly interpreted as lattice 1-forms,B andD interpreted as lattice 2-forms
and d interpreted as the coboundary operator. Since lattice forms are operators on the sp
chains, we need to contract the above equations with any 2- and 3-chainsS2,S̃2S3,S̃3 to get actual
numbers,

^S2,dE&5 iv^S2,B&, ~18!

^S̃2,dH&52 iv^S̃2,D&1^S̃2,JE&, ~19!

^S3,dB&50, ~20!

^S̃3,dD&5^S̃3,rE&. ~21!

Using the definition of the coboundary operator~the generalized Stokes’ theorem!, we get

^]S2,E&5 iv^S2,B&, ~22!

^]S̃2,H&52 iv^S̃2,D&1^S̃2,JE&, ~23!

^]S3,B&50, ~24!

^]S̃3,D&5^S̃3,rE&. ~25!

We use an overtilde to distinguish between the chains belonging to the cell complex,x ~i.e., the
cell complex over whichE andB live!, from the chains belonging the cell complex,x̃ ~i.e., the cell
complex over whichD andH live!. These cell complexes are not necessarily the samesince the
pair of equations for~E,B! and for~D,H! are independent of each other. Indeed, we will show t
there are strong reasons to use different cell complexes for these quantities~this is discussed in the
next section!. To find the lattice forms at each edge or face, we apply the above procedure fo
edge or face of the cell complex, or, equivalently, to each elementsi

k of the basis ofk-chains,

^]si
2,E&5 iv^si

2,B&, ~26!
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^] s̃i
2,H&52 iv^s̃i

2,D&1^s̃i
2,JE&, ~27!

^]si
3,B&50, ~28!

^] s̃i
3,D&5^s̃i

3,rE&. ~29!

Since ] is an operator fromxk to xk21 ~or x̃k to x̃k21!, the boundaries]si
1,]si

2,]si
3 ~or

] s̃i
2,] s̃i

2,] s̃i
3! can be expressed in terms of a basis of 0-, 1-, and 2-chains, respectively,

]si
15(

j
a i j sj

0, ~30!

]si
25(

j
b i j sj

1, ~31!

]si
35(

j
g i j sj

2, ~32!

] s̃i
15(

j
ã i j s̃j

0, ~33!

] s̃i
25(

j
b̃ i j s̃j

1, ~34!

] s̃i
35(

j
g̃ i j s̃j

2. ~35!

The matricesa i j ,b i j ,g i j ~and ã i j ,b̃ i j ,g̃ i j ! define theincidence relationsfor the operator] in a
given complexx ~and x̃!. They are the discrete-topological counterpart to the grad, curl, and
operators, respectively. The elements of these matrices are integers having the values61 ~depend-
ing on their relative chosen orientation! whensj

(k21)P]si
k , and zero otherwise. Furthermore, fo

any x, the identity]250 implies

(
j

b i j a jk50, ~36!

(
j

g i j b jk50, ~37!

and similar relations inx̃. Equations~36!–~37! are the topological equivalents onx of the familiar
identities curl50 and div curl50, respectively. The fact that these identities are preserved in
numerical discretization scheme are necessary to ensure that the theorems of the continu
preserved, although not sufficient. Schemes satisfying~36!–~37! may be classified as divergenc
preserving schemes, for obvious reasons.

Substituting~30!–~35! in ~26!–~29!, we have

(
j

b i j ^sj
1,E&5 iv^si

2,B&, ~38!

(
j

b̃ i j ^s̃j
1,H&52 iv^s̃i

2,D&1^ s̃i
2,JE&, ~39!
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(
j

g i j ^sj
2,B&50, ~40!

(
j

g̃ i j ^s̃j
2,D&5^s̃i

3,rE&. ~41!

These equations gives theexact lattice counterparts of Maxwell’s equations in terms of t
lattice variables^si

2,B&, ^s̃i
2,D&, ^s̃i

1,H&, and ^si
1,E&. The lattice 2-formsB, D that live on

2-chainssi
2,s̃i

2 are related to the lattice 1-formsE, D, respectively, which live on 1-chains]si
2,] s̃i

2.
The above equations in terms of lattice variables are the same forany lattice with the same

topological structure. Maxwell’s equations in this form are invariant under homeomorphisms
topological equivalence leads to an equivalence relation among lattices.

We also note that the fundamental dynamic variables in the lattice theory are not the
forms E,H,D,B ~i.e., the field values themselves! anymore, but their contraction with the ce
complex elements. The latter quantities are the usual ones of interest associated with a finite
of space~i.e., global quantities like electric voltages and magnetic fluxes!. The discretization
process just described can be viewed as a process of limiting the~originally infinite! degrees of
freedom in accessing these global quantities.

The problem of obtaining acontinuumrepresentation for thecontinuumforms E,H,D,Bover
X from the knowledge of̂ si

1,E&,^s̃i
1,H&,^s̃i

2,D&,^si
2,B& over x, x̃, is nevertheless important fo

discretizing the Hodge operators~constitutive relations! in ~5! and ~6! and to achieve the full
discretization of the Maxwell’s system~1!–~6!. This is a part of the general problem of obtainin
a consistent but approximate continuum representation for a differentialk-form V on X from the
knowledge of its discrete counterpart~k-cochain! Qk on xk. The discussion of this general prob
lem is postponed until Sec. VII.

V. DUAL LATTICES AND TWISTED FORMS

In this section, we will discuss the concept of dual lattices for EM field simulations~such as
in the Yee scheme31 or usual finite-volume discretizations32! and show that its convenience aris
not only for computational purposes, but also from geometrical reasons not obviated by the
language. These reasons are connected with the concept oforientation.

We start by noting that there are two fundamental ways to define an orientation in
dimensions.22,23 This is illustrated in Fig. 2 in the case of a one-dimensional object~line! in a
three-dimensional space. The first way is to specify a~inner! direction along the line. This does
not make use of additional dimensions other than the one defined by the line itself~one dimen-
sional! and is referred to asinternal orientation. The second way is to specify a~transversal!

FIG. 2. The concept of two orientations applied for one-dimensional objects on a three-dimensional space. The
orientation is based on the circulation around the object and makes use of additional dimensions. The internal or
is based on a direction along the object and does not require additional dimensions other than that of the object it
two orientations can be related to each other if a screw sense is defined. If the right-hand rule is adopted, the orie
chosen in this figure become equivalent. In the differential form language, two different objects may be defined ac
to the orientation they possess. Ordinary forms have an internal orientation. Twisted forms have an external orie
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circulation along the line. In this case, additional dimensions are required and is referred
externalorientation. Internal and external orientations behave differently under coordinate r
tion. These two kinds of orientations necessitate the definition of two different kinds of fo
Forms with internal orientation are calledordinary differential forms~for historical reasons only
since there is nothing about them to make them more ‘‘ordinary’’ than the twisted forms!. Forms
with external orientation are calledtwisteddifferential forms.22 In the case of vectors, this dis
tinction is not present because the vector calculus language comes with a predefinedscrew sense
~in addition to a metric structure!. For instance, if the right-hand rule is used for the obje
~1-forms! of Fig. 2, then their vector counterparts automatically will have the same orienta
However, using the concept of two different kinds of orientations, noa posterioriright-hand rules
are necessary.

Figure 3 illustrates the concept of internal and external orientation for two-dimensiona
jects in the three-dimensional space~this concept may also be applied for zero and thr
dimensional objects22,23!.

As expected, the boundary operator] preserves orientation in the sense that the boundar
an ordinary/twisted form is another ordinary/twisted form. More interestingly, we note from
2 and 3 that the same concept~direction! that gives the internal orientation for one-dimension
objects gives the external orientation for two-dimensional objects. Similarly, the second co
~circulation!, while giving internal orientation for two-dimensional objects, gives external or
tation for one-dimensional ones.

If a given cell complexx is chosen to discretize the spaceX so that its links~edges! have
internal orientation and its faces have external orientation~consistently through the boundar
operator!, then there is a dual cell complexx̃ where edge orientations are given by circulations a
the face orientations given by directions. This is depicted in Fig. 4. The edges~faces! of the dual
cell complex are associated with faces~edges! of the primary cell complex. If the lattice ordinar
forms live on the primary cell complexx, then the lattice twisted forms should live on the dual c
complexx̃. This is one important distinction between differential forms in the continuum and

FIG. 3. The concept of two orientations now applied for two-dimensional objects on a three-dimensional space. Th
observations made for Fig. 2 also apply here.

FIG. 4. Oriented cell complexes give rise to two distinct kinds of cell complexes. In the ordinary complex, eac
complex is endowed with an internal orientation and the associated lattice forms~cochains! are ordinary forms. In the
twisted complex, each cell complex is endowed with an external orientation and the associated lattice forms~cochains! are
twisted forms. On an EM lattice, these ordinary and twisted cell complexes are combined such thatk-cells of one complex
are associated to (n2k)-cells of the other, wheren is the dimensionality of the space. This gives rise to the concept
dual lattice~complex!. The fieldsE andB live on the ordinary complex, whileD andH live on the twisted complex~also
see Fig. 5!.
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lattice forms. For the continuum forms, ordinary and twisted forms live on the same spaceX; but
for the lattice forms, ordinary and twisted forms live on different spaces,x andx̃. The role of the
orientation concept in defining dual lattices was first discussed in Ref. 23.

To stress their geometrical properties, we will refer to the primary cell complex,x, as the
ordinary cell complexand to the dual cell complex,x̃, as thetwisted cell complex.

The concept of distinct orientations applies directly to three-dimensional EM fields.
electric fieldE is associated with internally oriented lines~ordinary 1-form!, the magnetic fieldH
is associated with externally oriented lines~twisted 1-form!, the electric fluxD with externally
oriented surfaces~twisted 2-form!, and the magnetic fluxB with internally oriented surfaces
~ordinary 2-form!. In addition, electric charge density is associated with externally oriented
umes ~twisted 3-form!, and the electric current density is associated with externally orie
surfaces~twisted 2-form!. Figure 5 illustrates this classification for EM fields. TheE andB lattice
forms live onx, while D andH ~andJE ,rE , which are also twisted forms! live on x̃.

The ordinary EM forms~E andB! are associated with the concept of forces~Lorentz formula!,
while the twisted EM forms~D andH! are associated with the concept of sources (rE andJE!.
Indeed, in the four-dimensional space–time notation, the formsE and B are components of a
single two-formF ~Faraday!, while the formsD and H are components of its Hodge dual,!F
~Maxwell two-form!.1

Here, we appreciate the amount of geometric structure that is lost when representing t
fields in the vector language. Each EM field is a distinct geometric object~Fig. 5!, but in vector
calculus, all are under the same umbrella as three-dimensional~contravariant! vectors. The need
for two cell complexes arises not only as a computational device but also to account fo
inherent geometric differences among the electromagnetic fields.

VI. ALGEBRAIC PROPERTIES OF MAXWELL’S EQUATIONS ON A LATTICE

The expansions~30!–~35! should satisfy, by construction, some conditions resulting from
properties of the boundary operator] and from the dual complex construction. In this section,
shall describe and discuss these conditions. The fact that they are preserved in the lattice t
important to preserve the continuum theorems and ensure an overall consistent theory.

The dual complex construction is such that, in the three-dimensional case, to each 2-cel
ordinary cell complex, there corresponds a 1-cell on the twisted cell complex, and vice-ver
this natural one-to-one pairing, the 1-cells~links!, on the ordinary complex cross associate 2-ce
~faces! on the dual complex, and vice-versa. A similar pairing also exist between 0-cells
3-cells and vice-versa. For the two-dimensional case, the pairing is between ordinary 0-ce
twisted 2-cells~and vice-versa!, and between ordinary and twisted 1-cells. This is true not only
hexahedral cells but for cell complexes with different cell topologies.

If the indices chosen for the basis elements of the cell complexesx andx̃ reflects this natural
pairing, i.e., if the cellsi

k on the ordinary cell complex has the samei index of the associated ce
s̃i

(n2k) ~on ann-dimensional space! on the twisted cell complex, then it is easy to show that
coefficients for the incidence relations in~30!–~35! are related through~see Fig. 6!

FIG. 5. Each EM field is a different geometrical object with distinct properties. This is hidden in the vector ca
language and best revealed through the use of the differential form language. In the continuum theory this dis
~usually! does not have an important role, but on a lattice, where the degrees of freedom in accessing global quan
limited and exhibit a specific interdependence~e.g., edges as a boundary of faces! each field must be associated with
proper geometric object~1- or 2-cell! on the proper lattice~ordinary or twisted!.
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a i j 5g̃ j i , ~42!

b i j 5b̃ j i , ~43!

g i j 5ã j i . ~44!

These relations do not depend on the primary orientation chosen forx and x̃. Similar to Eqs.
~36!–~37!, Eqs.~42!–~44! are another example of consistency relations derived from topolog
considerations only. The fact that these relations are satisfied in a particular discretization s
is of key importance to preserve symmetry and positive definiteness of the resulting matri
tems, and, consequently, stability in time–domain updates of numerical methods. Combine
symmetry properties to be observed on the discrete representation for the Hodge operators!e ,!m

~discussed in Sec. VII!, they mimic, on a lattice, the reciprocal nature of the continuum Maxwe
equations. Equations~42!–~44! are also related with the consistency requirements for the bo
ary operator on the twisted complexx̃. This can be seen by substituting Eqs.~42!–~44! into Eqs.
~36!, ~37!,

(
j

b i j a jk5(
j

b̃ j i g̃k j5(
j

g̃k jb̃ j i 50, ~45!

(
j

g i j b jk5(
j

ã j i b̃k j5(
j

b̃k jã j i 50, ~46!

which is equivalent to having the identity]250 fulfilled on x̃.
For lattices with simple topology, the relations~42!–~44! hold true because of the stagger

nature of the ordinary and twisted cells. However, for more exotic lattices, such as those e
tered in subgridding or in modeling curved boundaries through locally distorted lattice elem
they do not necessarily hold true in commonly employed discretizations schemes~with naive
interpolatory rules!, so that the reciprocity of the continuum Maxwell’s equations is lost. In th
cases, the relations~42!–~44! should be enforced by construction to ensure that reciprocit
maintained. This is also discussed in Refs. 33–35, but from a completely different point of

FIG. 6. Illustration of the reciprocal relationship between the boundary operator coefficients~incidence relations! for the
ordinary and twisted lattices. At the left, we illustrate that a volume-to-face incidence relation on the ordinary com
mirrored by a link-to-node incidence relation in the twisted complex. At the right, we illustrate that a face-to-link inci
relation in the ordinary complex is mirrored by another face-to-link incidence relation in the twisted complex
visualization purposes, we depicted a regular hexahedral lattice, but this is valid for general lattices as well.
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VII. HODGE OPERATORS ON A LATTICE

The discretization of the Hodge operators!e ,!m ~constitutive relations! is a central step for
the formulation a general lattice EM theory. The discrete Hodge operators relate the lattice
of the ordinary grid to the lattice forms of the twisted grid, and involve material properties o
particular medium. From the continuum equations, where the Hodge operators are m
dependent objects, such relationship should also involve concepts such as lengths, ang
Contrary to the topological equations treated before, the discrete Hodge operators areapproxima-
tions to the continuum operators. The continuum Hodge operators are linear mapping of the
of k-forms into the space of (n2k)-forms, wheren is the dimensionality of the space. In the E
case, the constitutive relations are written in terms of those operators,D5!eE, B5!mH, con-
necting the 2-formsD,B on one cell complex with the 1-formsE,H on the other cell complex
Since they are linear mappings, the discrete version of the Hodge operators in the lattice
represented as a generic linear mapping connecting the dynamical discrete variables onx andx̃ as
follows:

@!e#:x→x̃,

^s̃i
2,D&5(

j
@!e# i j ^sj

1,E&, ~47!

@!m#:x̃→x,

^si
2,B&5(

j
@!m# i j ^ s̃j

1,H&. ~48!

In the above,@!e# and @!m#, are square, nonsingular, sparse matrices representing the di
Hodge operators for a general dispersive and anisotropic linear media~in the general case o
bianisotropic media, the following discussion remains essentially unchanged, except for t
pearance of cross terms,@!z# and@!j#, in the above equations, relating quantities on the same
complex!. These approximate equations close the Maxwell’s system~1!–~6! and, along with the
exact discrete Maxwell’s equations~38!–~41!, constitute the discreteapproximationto the Max-
well’s system.

We now discuss some rationales for the construction of the Hodge operator on a lattic
we do not claim such rationales to be unique. More importantly, we draw attention to the
consistency requirements that any discrete Hodge should obey.

A rationale for a systematic construction of the discrete Hodge operators for a part
lattice geometry~metric! is described in RouteA below.
Route A:

~i! An approximatecontinuum representation for the electromagnetic formsE andH is built
from the knowledge of the discrete quantities^si

1,E& and^s̃i
1,H& over x and x̃, respectively~this

will be discussed shortly!.
~ii ! The Hodge star operators!e and!m are applied to the resultant continuum representa

for E andH, respectively, to yield the corresponding approximate continuum representationsD
andB.

~iii ! These resulting approximate representations forD andB are then paired with the elemen
of the cell complexesx̃ andx, respectively, to yield̂s̃i

2,D& and^si
2,B&. When^s̃i

2,D& and^si
2,B&

are written as functions of̂si
1,E& and ^s̃i

1,H&, respectively, we have determined the mat
elements@!e# i j and @!m# i j . Note that in Eqs.~47!, ~48!, the approximate continuum represent
tions for the electromagnetic formsE,B,D,Hdo not appear. They are used only as an auxiliary t
to obtain @!e# and @!m#. This is only natural, since, in a true discrete theory,E,B,D,H are not
primary quantities and@!e#, @!m# should be treated as being givena priori, in the same manne
as the material constitutive tensors,ē and m̄, for the continuum theory.
                                                                                                                



ns-
t

eter-

l

ions of
the

ap-
eral,

e
es of

l struc-
er
ll

no

e will

a

d

181J. Math. Phys., Vol. 40, No. 1, January 1999 F. L. Teixeira and W. C. Chew

                    
As a result, an alternative route to~i!–~iii ! can be followed by using, instead ofE,B,D,H, their
vector counterpartsE,B,D,H, without changing the final formalism. This alternative route tra
lates the metric dependency of the Hodge operators isolated in step~ii ! to the metric-dependen
notions of vector fields and surface integrals in modified versions of steps~i! and~iii !. In this case,
the modified step~ii ! becomes just a tensorial product on vectors. This alternative route to d
mine the discrete Hodge operator may be summarized as follows.
Route B:

~i! An approximatecontinuum representation for the electromagnetic vector fieldsE andH is
built from the knowledge of the discrete quantities^si

1,E& and^ s̃i
1,H& overx andx̃, respectively.

~ii ! The approximate continuum representations forD and B are found using the tensoria
productsD5 ē–E andB5m̄–H.

~iii ! These resulting approximate representations for the vector fieldsD andB are then inte-
grated over 2-cells to givês̃i

2,D& and ^si
2,B&.

Variant schemes from the above are possible, where instead of first using the contract
1-forms,^si

1,E& and^s̃i
1,H& overx andx̃, to find the approximate continuum representations,

contractions used are located over the same cell complex, sayx. In such a case, the continuum
representations are derived from̂si

1,E& and ^si
2,B& and the discrete operators obtained are

proximations to!e and!m
21. This does not result in equivalence, however, because, in gen

@!m
21#Þ@!m#21. In particular, the matrix@!m

21# is sparse, but@!m#21 is not. The use of a sam
cell complex to obtain the continuum field representation from the contractions is sometim
interest because, in general, the primary and dual cell complexes have different topologica
tures~not only metric structure!, as illustrated in Fig. 7. As will become clear shortly, a prop
continuum representation construction at step~i! depends directly on the topology of the ce
complex over which the contractions are defined.

Both RoutesA and B above are inevitably metric dependent, and, in principle, there is
conceptual advantage in adopting one over another. However, since RouteB involves vector
calculus concepts only, which supposedly results in a more familiar operational approach, w
base our remaining discussion mainly on it.

To find the continuum approximation for the vector fieldsE and H, a continuum basis of
k-formsVs

i
k, counterpart to the basis ofk-cochainsu i

k ~duals tosi
k! should be constructed. Such

basis is built to obey the following properties.
~i! Vs

i
k50 outsidesi

k and its neighborhood~i.e., such forms should be compactly supporte!,

which ensures the sparsity of@!e#, @!m#.

FIG. 7. A two-dimensional, irregular simplicial lattice~solid lines! and its dual lattice~dashed lines!, which is not
simplicial anymore~hexagonal elements!.
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~ii ! Vs
i
k5dV]s

i
k, consistent with Eq.~13! and indicating a proper relationship between t

Vs
i
k’s for the differentk’s and a hierarchical construction that can be invoked.

~iii ! The lattice formu i
k and its continuum counterpartVs

i
k give the same results when con

tracted or integrated, respectively, over corresponding elements ofx andX, i.e.,

E
g
V s

i
k5^sj

k ,u i
k&, ~49!

whereg is thek-dimensional region inX corresponding to thek-cell sj
k in x.

A basis for the space of forms obeying~i!–~iii ! is introduced in Ref. 13 for asimplicial lattice
~cell complex!, and the resulting continuum forms are usually calledWhitney forms. A simplicial
lattice is one having the property thatall its cell elements aresimplices, i.e., cells whose bound
aries are the union of a minimal number of lower-dimensional cells. Therefore, in a simp
lattice, a 0-cell is a point~0-simplex!, a 1-cell a link~1-simplex!, a 2-cell a triangle~2-simplex!, a
3-cell a tetrahedron~3-simplex!, etc. The Whitney form associated withk-cell ~simplex! si

k is
written as3,13

Vs
i
k5k! (

j 50

k

~21! jz i , jdz i ,0∧¯dz i , j 21∧dz i , j 11∧¯∧dz i ,k , ~50!

wherez i , j , 0< j <k, are the barycentric coordinates of the simplexsi
k , and the wedge denotes th

usual exterior product. These are piecewise linear forms. Higher-order forms are also po
The Whitneyk-forms are just linear interpolants for simplicial cochains and are uniquely d
mined from their integration over thek-simplices, which completely defines their degrees
freedom.

Using a Euclidean metric for the continuum three-dimensional case, the Whitney forms f
various degrees can be easily written using the vector calculus language3 as basis functions forE
andH @step~i! of RouteB above#. For thek50 case, we simply have, for each nodei,

Vs
i
0→

gE

ts
i
05z i ,0 , ~51!

wherez i ,0 is the ~single! barycentric coordinate associated with the 0-simplexsi
0 ~node!, andgE

denotes the isomorphism~0-form to scalar! governed by the Euclidean metric. In this case,
Whitney form is the barycentric coordinate itself~a scalar! and the continuum approximation fo
a lattice 0-form is the usual node~point-based! interpolation through scalar functionsts

i
0. The

value of this function is equal to unity atsi
0, and equal to zero at all other 0-cellssj

0, j Þ i .
For thek51 case, we have, for each edgei,

Vs
i
1→

gE

ts
i
15z i ,0 ¹z i ,12z i ,1 ¹z i ,0 , ~52!

wherez i ,0 andz i ,1 are the barycentric coordinates associated with thetwo vertices of the 1-simplex
si

1 ~edge!. The Whitney forms~1-forms! in this case translate to a vector field,ts
i
1 ~from the

isomorphism between 1-forms and vectors governed by the Euclidean metric!. The resultant
interpolation scheme for a lattice 1-form using the above elements is the so-called edge in
lation. The line integral of this function is equal to unity along its associated edgesi

1, and equal to
zero at all other 1-cellssj

1, j Þ i .
For thek52 case, we have, for each facei,

Vs
i
2→

gE

ts
i
252~z i ,0 ¹z i ,13¹z i ,21z i ,1 ¹z i ,23¹z i ,01z i ,2 ¹z i ,03¹z i ,1!, ~53!
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where nowz i , j , j 50,1,2 are the barycentric coordinates associated with the three vertices
2-simplexsi

2 ~triangular face!. The Whitney forms~2-forms! in this case translate to a~pseudo-!
vector field, ts

i
2 ~from the isomorphism between 2-forms and pseudovectors governed b

Euclidean metric!. The surface integral of this function is equal to unity over its associated
si

2, and equal to zero at all other 2-cellssj
2, j Þ i .

The k53 case, we have, for each volumei,

Vs
i
3→

gE

ts
i
356@~z i ,0 ¹z i ,13¹z i ,2!–¹z i ,31~z i ,1 ¹z i ,23¹z i ,3!•¹z i ,01~z i ,2 ¹z i ,33¹z i ,0!•¹z i ,1

1~z i ,3 ¹z i ,03¹z i ,1!•¹z i ,2#, ~54!

which results in a~pseudo-!scalar function,ts
i
3 ~from the isomorphism between 3-forms an

pseudoscalars governed by the Euclidean metric! associated with each 3-simplex~tetrahedron!.
Despite the complicated appearance of Eq.~54!, these are simple, step-like functions, which a
constant on the associated tetrahedron and zero elsewhere. The corresponding volume in
equal to unity over its associated volumesi

3, and equal to zero over all other 3-cellssj
3, j Þ i .

Using the Whitney forms, we may write the 1-chain approximation for theE fields as a sum
of thek51 vector basis functions running over all 1-simplicessi

1 of the simplicial cell complexx,

E5(
i

^si
1,E&ts

i
1. ~55!

For theH field, the sum runs over the 1-cells of the dual complexx̃ ~not simplicial anymore!,

H5(
i

^ s̃i
1,H&ts̃

i
1. ~56!

Alternatively, as discussed before, a discrete approximation may be first sought for the in
operator!m

21, so that

@!m
21#:x→x̃,

^s̃i
1,H&5(

j
@!m

21# i j ^sj
2,B&, ~57!

andB is expanded over 2-simplicessi
2 of the simplicial cell complexx,

B5(
i

^si
2,B&ts

i
2. ~58!

Note that Eqs.~55!, ~56!, and~58! are approximations for the total vector fields~and not for
each of their components separately!.

The Whitney functions are commonly used as vector basis functions for the finite-ele
method to avoid the appearance of spurious solutions.3 According to their order,k, they are
sometimes referred to as node interpolants (k50), edge elements (k51), or face elements (k
52). Such elements have been generalized for other types of complexes also~e.g., with hexahe-
dral cells!. However, as opposed to the simplicial case, there are no established mathem
results behind such generalizations. More importantly, some of the basic properties of W
forms on a simplicial lattice are not preserved in more general lattices. Among them i
divergence-free condition. It can be shown that, although forregular hexahedral lattices, thes
vector basis functions are divergence-free inside each element, in the case of general hex
elements, this is not true.36 The divergence in this case is proportional to the amount of devia
from a regular lattice.
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For the general cell complex case, i.e., not necessary simplicial@note that even for the sim
plicial case, its dual lattice is not simplicial anymore, as exemplified by Fig. 7 and Eq.~56!#, and
in the present absence of definitive mathematical results, the use of simplerad hocinterpolatory
schemes to obtain@!e# and@!m# are of interest for practical purposes. Any such scheme is hig
dependent on the type of problem and geometry considered. However,any interpolatory scheme
should meet some basic consistency requirements, described next.

For a reciprocal medium,m̄5m̄t, ē5 ē t, the continuum Hodge operators!m , !e on a Rie-
mannian manifold are symmetric, nondegenerate, and positive definite operators. These pr
are a simple consequence from the fact that a Riemannian metric tensor itself is a sym
nondegenerate, positive definite tensor.

However, for nonorthogonal lattices, usual interpolatory schemes for the discrete Hodg
erators do not generally preserve the symmetry of the continuum operators. This is beca
discrete versions of the Hodge are not strictly local. The lattice variables^si

1,E&, ^s̃i
1,H&, ^si

2,B&,
^ s̃i

2,D& are defined over different geometric elements that spanfinite regions of space. Elements o
the ordinary~twisted! cell complex that contribute to a given element of the twisted~ordinary! cell
complex~and therefore define the local interpolatory stencil! are associated with metric elemen
defined at different points of space. Since the metric itself is a function of position, thelocal
symmetry of!m , !e may be lost on@!m#, @!e#, if not enforced by construction.27 In addition,
even if symmetry is enforced by construction on@!m#, @!e#, the positive definiteness condition o
the discrete Hodge may be violated when highly skewed lattices are employed.11,27

Symmetric, positive-definite discrete Hodge operators yield real, positive eigenvalues f
matrices@!m#, @!e#. This means the resultant discrete Maxwell’s system will not contain spur
eigenmodes with exponential growth in time. Nonsymmetric, nonpositive definite matrices w
give rise to negative or complex eigenvalues. Regardless of their magnitude, negative or co
eigenvalues lead to spurious eigenmodes withunconditionalexponential time growth that even
tually contaminate the solution~late-time instabilities!. This can be seen by substituting Eqs.~47!,
~48! into Eqs.~38!–~41! and solving, e.g., for̂si

1,E&. As a result, we get

(
m

S (
j ,k,l

~@!e#
21! i j b̃ jk~@!m#21!klb lm2v2d imD ^sm

1 ,E&50, ~59!

for all i. The eigenfunctions of the corresponding system of differential equations for^si
1,E& in the

time–domain are given by

^si
1,E&→f~ t !5e6 i Ā1/2tf0, ~60!

wheref(t) is the column vector of eigenfunctions,f0 is the initial value off(t) at t50, and the
elements of the matrixĀ are given by

Aim5(
j ,k,l

~@!e#
21! i j b̃ jk~@!m#21!klb lm . ~61!

The above functional operations on matrices are understood in the usual manner, by usin
larity transformations and operating on the matrix eigenvalues. We letĀ5W̄–l̄–V̄t, or Ā–W̄
5W̄–l̄, whereW̄ contains the right eigenvectors ofĀ, while V̄ contains the left eigenvectors~for
a symmetric Ā, they are the same!, and V̄t

–W̄5 Ī . Consequently,Ā–W̄–u5W̄–l̄–u, and
Ān

–W̄–u5W̄–l̄n
–u, or, in general,f (Ā)–W̄–u5W̄–f (l̄)–u, by using a Taylor expansion o

f (•), wherel̄ is a diagonal matrix containing the eigenvalues ofĀ. Using V̄t
–W̄5 Ī , we can let

f05V̄t
–W̄–f0, i.e., expandf̄ 0 in terms of the eigenvectors ofW̄. Equation~60! then becomes

f~ t !5W̄•e6 i l̄1/2tV̄t
–f0. ~62!
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Equation~62! gives the solutions of the semidiscrete problem, i.e., without considerations a
the time discretization. For any convergent time-discretization scheme~e.g., independent of the
time step chosen!, Eq. ~62! will lead to boundedsolutions,f(t), if all the eigenvalues ofĀ are
real and positive~note that for a lossless, dispersionless media,Ā is real and, therefore, an
complex eigenvalues will occur in conjugate pairs!. If b̃ i j 5b j i @Eq. ~43!#, it can be easily shown
that this is true if@!e#

21 and @!m#21 ~and, consequently,@!e# and @!m#! are simultaneously
nonsingular, symmetric, negative definite or positive definite. The positive definite is the ca
interest to recover the continuum Hodge operators.

As observed in Sec. IV, the discretization process can be viewed as a process of limiti
degrees of freedom in accessing global dynamic quantities of interest. The original infinite d
of freedom in the continuum theory are reduced to a finite number over the cell complex elem
In the semidiscrete dynamic equations, Eq.~59!, this is reflected in the reduction of the spect
content of the solution to a finite number of poles~eigenfrequencies!. Usually this may also be
viewed as a low-pass filtering, which is determined by the lattice spacing size and nat
approximation; but in general terms corresponds to a rearrangement of the spectral conte
requirement for symmetric, positive definite discrete Hodge operators corresponds to assu~in
lossless media! that no spurious poles are introduced in the upper-half complexv plane after
discretization.

An additional, interesting point revealed by the differential forms language is that, sinc
metric is entirely defined in the Hodge operators, the simulation of Maxwell’s equations o
irregular lattice and homogeneous medium can be mimicked by a dual theory, where we vie
simulation performed on aregular lattice, but on an inhomogeneous, particular class of ortho
pic medium with electric and magnetic constitutive tensors proportional to each other, iē

5eḠ, m̄5mḠ. In this latter case, metric factors are incorporated into the medium properti
that lattice irregularities become orthotropic inhomogeneities. By making use of such an ob
tion, the properties that should be explicitly enforced on the final, approximate matrix repr
tation of the discrete Hodge operators on a general irregular lattice can be established o
simple physical grounds only. This is simply because the violation of symmetry or pos
definiteness would render the orthotropic media of the dual theory nonreciprocal or active,
rise to spurious numerical artifacts.

As mentioned, symmetry and positive definiteness for@!e# and @!m# ~or their procedural
equivalents in the vector calculus language! are not always met by some of the commonly e
ployed interpolations for finite-volume or finite-difference simulations. Symmetry is guaran
only if it is explicitly enforced at each lattice point~e.g., through a perfectly symmetric numeric
evaluation of the metric coefficients27! and the positive definiteness is usually violated when us
highly skewed or curved meshes.11,27

It should be stressed that these~metric-dependent! conditions over@!e# and @!m# are not
sufficient for the consistency of the lattice theory. They should be enforcedin addition to the
topological consistency conditions previously discussed in Secs. IV and VI.

VIII. CONCLUSIONS

In this work, we discussed the application of differential forms and topological concepts t
study of lattice EM theory.

Differential forms provide a very concise and elegant language to treat the classica
theory on a lattice. It allows for the factorization of the field equations into a topological par
a metric part. The resultant topological equations are invariant under homeomorphisms
invariant for lattices with the same topological structure. All the usual vector calculus ope
are unified by a single operator, the exterior derivative, which admits a trivial and exact dis
zation on an arbitrary lattice through the use of its discrete adjoint, the boundary operator
allows for a more general interpretation for the derivative on the lattice, not as a finite-diffe
approximation, but as an evaluation of fields at boundaries.
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Consistency conditions for the lattice theory, such as divergence-free conditions and rec
ity, are discussed in a very general setting using purely topological concepts. Metric concep
to be invoked only in connection with the Hodge operators, which also generalize the const
relations of the medium. General consistency requirements on the discrete Hodge operator
discussed.

Lattice differential forms provide a richer geometrical language to discuss some aspects
discretization procedure. The potential sources of inconsistency can be adequately identifi
classified. The treatment of the EM fieldsE and B as ordinary forms, andD and H as twisted
forms reveals a geometric reason of the dual lattice construction, common to EM discreti
schemes for numerical simulations, such as the celebrated Yee scheme.31
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Integrable systems in low dimensions, constructed through the symmetry reduction
method, are studied using phase portrait and variable separation techniques. In
particular, invariant quantities and explicit periodic solutions are determined.
Widely applied models in Physics are shown to appear as particular cases of the
method. © 1999 American Institute of Physics.@S0022-2488~99!01201-3#

I. INTRODUCTION

Integrable Hamiltonian systems play a fundamental role in the study and description of p
cal systems, due to their many interesting properties, both from the mathematical and ph
points of view. The construction of such models represents a contribution to this field, and
of them have proved to be of an extraordinary physical interest. Let us be reminded here
Morse1 and Po¨schl–Teller2 potentials in one dimension, or the Calogero3–5 and Sutherland6 po-
tentials. These constructions have also been considered from many points of view. See,
stance, the reviews in Refs. 7 and 8.

A method used to construct these systems is the Marsden–Weinstein reduction proced9 or
its extensions,10 to free Hamiltonians lying on anN-dimensional homogeneous space unde
suitable Lie group. In this way~using an appropriate momentum map!, one assures the integra
bility, or even the superintegrability11 of the system. In the first case, there existsN constants of
motion in involution, one of them the Hamiltonian. The superintegrability requires more thN
constants of motion~not all of them in involution! and more than one subset ofN constants in
involution. There are good reasons to suspect that any integrable system may be constructe
way, as a reduction of a free one,10 so the problem to construct these systems and study
properties is a profitable and very interesting field. A related topic is the problem of separat
variables for the associated Hamilton–Jacobi~HJ! equations. As it is well known, the existence
quadratic invariants allows us to classify and construct these systems,12,13 relating them in many
occasions to subgroups of the invariance group.

A series of articles appeared in the last years, and has been devoted to the study o
superintegrable systems constructed using homogeneous spaces over the pseudounitary g
(p,q).14,15 In particular, using the maximal Abelian subalgebras~MASA! of the corresponding
algebras, one can build a family of integrable systems of arbitrary dimension, and presen
invariants and the coordinate systems in which the HJ equation is separated. The explicit so
and a unifying view of the compact Cartan subalgebra case have been presented in Ref.

a!Electronic mail: juacal@wmatem.eis.uva.es
b!Electronic mail: olmo@fta.uva.es
c!Electronic mail: rodrigue@eucmos.sim.ucm.es
1880022-2488/99/40(1)/188/22/$15.00 © 1999 American Institute of Physics
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Our aim in this article is to work in detail with the low dimensional cases. The reaso
twofold. On one side, the one-dimensional case allows an easy geometric description
systems, through their phase portrait. The potentials we obtain are not new, but have been
successfully in many physical models~for instance, the Po¨schl–Teller and Morse potentials!. They
also appear in the study of quasi-exactly solvable~QES! models,17,18 as the case of exactly
solvable systems, providing examples in which, from the quantum point of view, the corres
ing Schrödinger equation can be solved algebraically~a part of the spectrum for QES systems
an arbitrary number of states for the exactly solvable ones!. On the other side, the two-dimension
case can be studied from the point of view of variable separation, and we can solve t
equation in a wide class of coordinate systems, especially in the noncompact case.19,20The results
we present here~in the two-dimensional case! should be considered in a local context. Consid
ations about global behavior, which will differ from the compact to the noncompact case, wi
be addressed in this work.

The article is organized as follows. In Sec. II we present a concise description of the m
used to construct these Hamiltonian systems. Section III is devoted to the one-dimensiona
while the two-dimensional case is studied in Sec. IV. In each case we present the list of
conserved quantities for these systems in terms of the generators of the corresponding a
and the explicit form in the chosen coordinate system. Conclusions and further outlook o
research are discussed in Sec. V.

II. INTEGRABLE HAMILTONIAN SYSTEMS AND PSEUDOUNITARY GROUPS

The results presented in this section are a summary of the contents of Refs. 14 and 15. W
include some of them to set the notations which will be used in the following sections.

We will consider the free Hamiltonian (m,n50, . . . ,N5p1q21),

H54cgmn̄pmp̄n ~2.1!

~the bar denoting complex conjugate! defined in the Hermitian hyperbolic space~with coordinates
ymPC, satisfyinggm̄nȳmyn51, and conjugate momentapm),

SU~p,q!/SU~p21,q!3U~1! ~2.2!

whose geometry is described in Ref. 21. The real constantc is related to the sectional curvature
the Hermitian space. See also Ref. 16 for a detailed analysis of this space and its propert

Using a maximal Abelian subalgebra ofsu(p,q),22 we carry a reduction procedure,9 in order
to obtain a reduced Hamiltonian~which is not free! in the reduced space, a homogeneous SO(p,q)
space,

H5c~ 1
2 gmnpsmpsn1V~s!!, ~2.3!

whereV(s) is a potential depending on the real coordinatessm. The set of complex coordinatesym

is transformed in the reduction procedure into a set of ignorable variablesxm ~which are the
parameters of the transformation associated to the MASA ofu(p,q) used in the reduction! and the
coordinatessm with the constraintgmnsmsn51.

If Ym , m50, . . . ,N, is a basis of the considered MASA ofu(p,q), formed by pure imagi-
nary matrices, the relation between old (ym) and new coordinates (xm,sm) is

ym5B~x!n
msn, B~x!5exp~xmYm!, ~2.4!

which assures the ignorability of thex coordinates~the vector fields corresponding to the MAS
are straightened out in these coordinates!. The Jacobian matrix,J, is easily obtained. If
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An
m5

]ym

]xn
5~Yn!r

myr, ~2.5!

then

J5
]~y,ȳ!

]~x,s!
5S A B

Ā B̄
D . ~2.6!

The Hamiltonian calculated in the new coordinates is written as

H5c~ 1
2 gmnpmpn1V~s!!, V~s!5px

T~A†KA!21px , ~2.7!

wherepx are the constant momenta associated to the ignorable coordinatesx andK is the matrix
defined by the metricg.

Note that, to obtain these Hamiltonians, we need MASAs ofsu(p,q) of dimensionN5p
1q21 ~corresponding to MASAs ofu(p,q) of dimensionp1q). We also require that thes
MASAs have a representation in terms of imaginary matrices that allows to write the Hamilt
in the form~2.7!. Once we have chosen a particular MASA, we can obtain a set of invariants
also the corresponding coordinate systems in which the HJ equation separates. The MA
su(p,q) are classified in Ref. 22, and for low ranks are completely determined. The correspo
potentials have been obtained for SU(N) in Ref. 19, for SU(2,1) in Ref. 20, for SU(2,2) in Re
15 and for any SU(p,q), choosing as the MASA one of the Cartan subalgebras, in Ref. 14. F
now on, we will always use contravariant coordinates, but we will write the indices as subs
in order to simplify the notation and avoid the use of unnecessary brackets.

III. ONE-DIMENSIONAL HAMILTONIANS

One-dimensional Hamiltonians are always integrable and the phase portrait gives a co
description of the allowed motions. We shall expose the main ideas in order to achieve a
understanding of the more complicate systems we will study in the next section. We hav
cases:su(2) andsu(1,1).

A. su „2…

We will use as a basis forsu(2) the operatorsX1 ,X2 ,X3, which are given in the natural 2
32 matrix representation by

X1→S i 0

0 2 i D , X2→S 0 1

21 0D , X3→S 0 i

i 0D
in the metricK5diag(1,1).

In the compact algebrasu(2) there is only one class of MASAs, corresponding to the Ca
subalgebra~CC!.22 A basis of a representative of this class of MASA is

S i 0

0 2 i D . ~3.1!

A basis of the corresponding MASA ofu(2) can be chosen as

Y05S i 0

0 0D , Y15S 0 0

0 i D . ~3.2!
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The relation between old and new coordinates is given by the matrixB(x) in ~2.4!. Note that
a change of basis in the corresponding MASA ofu(2) changes only the parameters appearing
the potential,

y05s0eix0, y15s1eix1. ~3.3!

The Hamiltonian, following the general expression~2.7!, is

H5c@ 1
2 ~ps0

2 1ps1

2 !1V~s!#, V~s!5
m0

2

s0
2 1

m1
2

s1
2 ~3.4!

with the constraints0
21s1

251. Parameterizing the circleS1 in spherical coordinates,s0

5cosf, s15sinf, we get the Hamiltonian (c51),

H~f!5
1

2
pf

2 1V~f!, V~f!5
m0

2

cos2 f
1

m1
2

sin2 f
. ~3.5!

We have only one second order conserved quantity, the Hamiltonian, which is equal
Casimir of the algebra,C, up to an additive constant,

Q̂15X2
21X3

2 . ~3.6!

The square of the generator in the compact Cartan subalgebra,C15X1
2, is constant after the

reduction andC5C11Q̂1.
The specific values of the real positive constantsm0 ,m1 play no essential role in the qualita

tive description of the orbits and trajectories of this system. The potential has singularities~in the
generic case! in f50,p/2,p,3p/2. Whenm0 or m1 are equal to zero we have only two singula
ties in 0,p or p/2,3p/2, respectively.

The particles are confined inside a sector, and there, the motion is periodic, with an e
rium point ~a center in the phase space! corresponding to the unique minimum of the potential,
tanf5Am1 /m0. The solution can be easily computed, using Hamilton equations. The poten
bounded from below, and the energy is always positive (E>(m01m1)2). Though the use of the
HJ equation is not necessary in this context of one-dimensional systems, we will write dow
equation in order to compare it to the two dimensional cases. In fact, when we will make
ration of variables there, we will find again this equation,

1

2S ]S

]f D 2

1
m0

2

cos2 f
1

m1
2

sin2 f
5E ~3.7!

with the solution (u5cos2 f),

u5
1

2E
~b1Ab224m0

2E cos 2A2Et! ~3.8!

andb5m0
22m1

21E. This solution is obviously much simpler to find if we consider the equat
of orbits in the phase portrait of this system.

For instance, ifm050, m151, the solution is

s05cosf5A12
1

E
cosA2Et, ~3.9!

that is, a system with similar solutions to a harmonic oscillator, but now the frequency depen
the energy.
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B. su „1,1…

The noncompact algebrasu(1,1) has three nonconjugate classes of MASAs, compact Ca
subalgebra, noncompact Cartan subalgebra and a class of nilpotent maximal Abelian suba
~MANS!.22 We will fix the metric to be

K5S 1 0

0 21D , ~3.10!

and the basis$X1 ,X2 ,X3% is given in the 232 matrix representation through the corresponde

X1→S i 0

0 2 i D , X2→S 0 1

1 0D , X3→S 0 i

2 i 0D .

1. Compact Cartan subalgebra (CC)

We choose, as a representative of this class, the same matrices as in~3.2!. Hence, the old and
new coordinates are related in the same way they did in thesu(2) case~3.3!, and the Hamiltonian
is now

H5c@ 1
2 ~ps0

2 2ps1

2 !1V~s!#, V~s!5
m0

2

s0
2 2

m1
2

s1
2 , ~3.11!

with the constraints0
22s1

251. This hyperbola can be described with a coordinatef varying in the
real line,s05coshf, s15sinhf, and the Hamiltonian in these coordinates is (c521),

H~f!5 1
2pf

2 1V~f!, V~f!52
m0

2

cosh2 f
1

m1
2

sinh2 f
. ~3.12!

The second order invariant~the Hamiltonian! is

Q̂15X2
21X3

2 ~3.13!

and the trivial constant associated to the MASA isC15X1
2. Hence, the Casimir in terms of thes

two quantities isC5C12Q̂1.
The HJ equation is

1

2S ]S

]f D 2

2
m0

2

cosh2 f
1

m1
2

sinh2 f
5E ~3.14!

and the solution depends on the values ofE and the parameters.
Considering different values of the parametersm0 ,m1 we obtain three different systems.
~a! If m1Þ0 the potential has a singularity inf50. It is easy to check that, ifm1>m0, there

are no minima for the potential and all the motions are unbounded~with a turning point!. The
energy is always positive. The parametersm0 ,m1 do not modify qualitatively the phase portrait o
the form of the solutions. The solution can be written as (u5cosh2 f)

u5
1

2E
~2b1Ab214m0

2E cosh 2A2Et! ~3.15!

andb5m0
22m1

22E. If m050, m151, the solution is

s0~ t !5A11
1

E
coshA2Et. ~3.16!
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~b! If m0.m1.0, the potential has two minima, symmetric respect to the origin where it
the singularity. The energy is bounded from below,E>2(m02m1)2, the valueE52(m0

2m1)2 corresponding to the equilibrium solution in the center of the phase space. The
solutions are easily calculated (b has the same value as in case a!,

~i! 2(m02m1)2,E,0

s05
1

A2uEu
@b1Ab214Em0

2 cos 2A2uEut#1/2. ~3.17!

~ii ! E50

s05F m0
2

m0
22m1

2 12~m0
22m1

2!t2G1/2

. ~3.18!

WhenE.0 we get the solution~3.15!.
~c! If m150 there is no singularity in the potential, which has a minimum inf50, with

periodic motions of negative energy and unbounded motions of positive or zero energy
multiplicative constantm0 plays no essential role for the qualitative description of the system.
solutions can be read off from case~b! with m150.

2. Noncompact Cartan subalgebra (NC)

A representative subalgebra of this class has the basis@in the metric~3.10!#,

Y15S 0 i

2 i 0D ~3.19!

and we will add the matrixY05 i I to get a MASA ofu(1,1). The new and old coordinates a
related in a slightly more complicated way,

y05eix0~s0 coshx11 is1 sinhx1!, y15eix0~2 is0 sinhx11s1 coshx1! ~3.20!

and the Hamiltonian is written in the new coordinates as

H5c@ 1
2 ~ps0

2 2ps1

2 !1V~s!#, V~s!5
m0

22m1
214m0m1s0s1

114s0
2s1

2 , ~3.21!

and the constraints0
22s1

251. Using again thef coordinate as in the previous case, we get

H~f!5
1

2
pf

2 1V~f!, V~f!52
m0

22m1
212m0m1 sinh 2f

cosh2 2f
. ~3.22!

The Casimir is written asC5Q̂12C1, whereC15X3
2, the square of the generator of th

noncompact Cartan subalgebra, and

Q̂15X1
22X2

2, ~3.23!

which is equal to the Hamiltonian.
We will also write down HJ equation for future references,

1

2S ]S

]f D 2

2
m0

22m1
212m0m1 sinh 2f

cosh2 2f
5E. ~3.24!
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If m0 or m1 are equal to 0, we obtain similar results to those of the case of compact C
MASA, an attractive potential ifm0

2.m1
2 and a repulsive one in the opposite case. Ifm0m1Þ0,

the potential is qualitatively the same for all values ofm0 andm1.
The potentialV(f) has two extrema in sinh 2f5m1 /m0,2m0 /m1. The first point corresponds

to a minimum~a center in the phase portrait!, and the potential takes the valueV52m0
2. The

second point is a maximum~a saddle point in the phase portrait!, andV5m1
2 there. The energy is

bounded from below (E>2m0
2) and the explicit solutions are (u5sinh 2f),

~i! 2m0
2,E,0

u5
1

uEu @m0m11A~E1m0
2!~m1

22E! cos 2A2uEut#. ~3.25!

~ii ! E50

u52
m0

22m1
2

2m0m1
14m0m1t2. ~3.26!

~iii ! 0,E,m1
2

u5
1

E
@2m0m11A~E1m0

2!~m1
22E! cosh 2A2uEut#. ~3.27!

~iv! E5m1
2

u52m01e2A2m1t. ~3.28!

~v! E.m1
2

u5
1

E
@2m0m11A~E1m0

2!~E2m1
2! sinh 2A2Et#. ~3.29!

3. Nilpotent subalgebra (NIL)

Though the simplest representative of this class of subalgebras is obtained in the
diagonal metric, we will use again the diagonal one, because in this way, the kinetic term i
diagonal. We will take as a basis,

Y15S i i

2 i 2 i D , ~3.30!

which is a nilpotent matrix. As in the noncompact case we will also useY05 i I to complete the
basis of au(1,1) MASA. Old and new coordinates satisfy

y05eix0~~11 ix1!s01 ix1s1!, y15eix0~2 ix1s01~12 ix1!s1!. ~3.31!

The Hamiltonian is

H5c@ 1
2 ~ps0

2 2ps1

2 !1V~s!#, V~s!5
2m0m1

~s01s1!2 2
m1

2

~s01s1!4 , ~3.32!

with the constraint~which is the same for all the subalgebras in thesu(1,1) case, as we are usin
the same metric!, s0

22s1
251. The expression of the Hamiltonian in terms of thef coordinate

(c521) is
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H~f!5
1

2
pf

2 1V~f!, V~f!5m1
2e24f22m0m1e22f. ~3.33!

The Hamiltonian in terms of the second order operators in the enveloping algebra is
($Xi ,Xj%5XiXj1XjXi)

Q̂152X1
21$X1 ,X3%2X2

2 ~3.34!

and the trivial constantC1 is equal to (X11X3)2, with C5Q̂12C1.
The HJ equation is

1

2S ]S

]f D 2

22m0m1e22f1m1
2e24f5E. ~3.35!

We will assumem1Þ0 to obtain nontrivial results. Depending on the constantsm0 ,m1 we get
essentially two classes of systems.

~1! If m0m1<0 there is no extremum for the potential, and the energy is always positive
solutions, with a unique turning point, are given by

e2f5
m1

E
@2m01AE1m0

2 coshA2Et#. ~3.36!

~2! If m0m1.0 the potential has a minimum, inf5(1/2)log(m1 /m0) and the energy is
bounded from below,E.2m0

2. As in the first case, the values of the parameters are not esse
if they satisfy the constraints. The solutions for the different values of the energy are

~i! 2m0
2,E,0

e2f5
m1

uEu @m01AE1m0
2 cosA2Et#. ~3.37!

~ii ! E50

e2f5
m1

2m0
14m0m1t2. ~3.38!

If E.0 the solution is the same as~3.36!.
This case completes the set of one-dimensional Hamiltonians obtained through a red

procedure out of free Hamiltonians, invariant under SU(p,q), p1q52, and defined over a
homogeneous space of the corresponding group. In Table I, we present a summary o

TABLE I. One-dimensional potentials.

Algebra MASA Kinetic term Potential

su(2) Compact Cartan pf
2 m0

2

cos2 f
1

m1
2

sin2 f

su(1,1) Compact Cartan pf
2

2
m0

2

cosh2 f
1

m1
2

sinh2 f

Noncompact Cartan pf
2

2
m0

22m1
212m0m1 sinh 2f

cosh2 2f

Nilpotent pf
2 m1

2e24f22m0m1e22f
                                                                                                                



nk 2

ians of

atrices

s

In this

riants

196 J. Math. Phys., Vol. 40, No. 1, January 1999 Calzada, del Olmo, and Rodriguez

                    
Hamiltonians in the one-dimensional case.
In the next section we will treat the two-dimensional Hamiltonians associated with the ra

algebrassu(3) andsu(2,1).

IV. THE TWO-DIMENSIONAL CASE

There are two pseudounitary algebras to be used to construct superintegrable Hamilton
dimension 2,su(3) andsu(2,1). We will treat separately both cases.

A. su „3…

We will use as a basis forsu(3) the operators$X1 , . . . ,X8% which are given in the 333
matrix representation by

X1→S i 0 0

0 2 i 0

0 0 0
D , X2→S 0 0 0

0 i 0

0 0 2 i
D , X3→S 0 1 0

21 0 0

0 0 0
D ,

X4→S 0 i 0

i 0 0

0 0 0
D , X5→S 0 0 1

0 0 0

21 0 0
D , X6→S 0 0 i

0 0 0

i 0 0
D ,

X7→S 0 0 0

0 0 1

0 21 0
D , X8→S 0 0 0

0 0 i

0 i 0
D ,

when the metric isK5diag(1,1,1).
In the compact case there is only one MASA, the Cartan subalgebra, generated by the m

S i

2 i

0
D , S 0

i

2 i
D , ~4.1!

and we shall use the following basis for the corresponding MASA inu(3):

Y05S i

0

0
D , Y15S 0

i

0
D , Y25S 0

0

i
D . ~4.2!

The coordinatess are related to the coordinatesy in the same way as insu(2), ~3.3!,

y05s0eix0, y15s1eix1, y25s2eix2, ~4.3!

and the Hamiltonian has also the same form of all cases using compact Cartan subalgebra~3.4!,

H5 1
2 ~p0

21p1
21p2

2!1V~s!, V~s!5
m0

2

s0
2 1

m1
2

s1
2 1

m2
2

s2
2 , ~4.4!

with the constraints0
21s1

21s2
251.

In the one-dimensional case, there was only one invariant, which was the Hamiltonian.
case, we can construct three invariants, only two of them in involution at the same time~one of
them the Hamiltonian!. The system is superintegrable in the sense of Ref. 12. These inva
are14
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R015~s0p12s1p0!21S m0

s1

s0
1m1

s0

s1
D 2

,

R025~s0p22s2p0!21S m0

s2

s0
1m2

s0

s2
D 2

, ~4.5!

R125~s1p22s2p1!21S m1

s2

s1
1m2

s1

s2
D 2

.

The sum of these three invariants is the Hamiltonian up to an additive constant. In order to
the solutions of this problem we need construct a coordinate system in which the corresp
HJ equation separates into a system of ordinary differential equations. As in Ref. 16 we w
spherical coordinates,19 defined by

s05cosf2 cosf1 , s15cosf2 sinf1 , s25sinf2 , ~4.6!

and the Hamiltonian is written as (c51)

H5
1

2 S pf2

2 1
pf1

2

cos2 f2
D 1V~f1 ,f2!,

~4.7!

V~f1 ,f2!5
1

cos2 f2
S m0

2

cos2 f1

1
m1

2

sin2 f1
D 1

m2
2

sin2 f2

,

where the constantsm0 ,m1 ,m2 are chosen to be non-negative.
The second order conserved quantities~4.5! ~we will follow the notationQ̂ for these opera-

tors! can be written in terms of the basis$X1 , . . . ,X8%,

Q̂15X3
21X4

2 , Q̂25X5
21X6

2 , Q̂35X7
21X8

2 ~4.8!

with commutation relations~the commutator is a third order element which plays no essential
in the method!,

@Q̂1 ,Q̂2#5@Q̂2 ,Q̂3#5@Q̂3 ,Q̂1#.

The Casimir is

C54C112C214C313Q̂113Q̂213Q̂3 ,

where

C15X1
2 , C25$X1 ,X2%, C35X2

2

are the second order operators in the enveloping algebra of the compact Cartan subalgeb
The Hamiltonian is

H5Q11Q21Q31constant

whereQi is the expression ofQ̂i in spherical coordinates,19
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Q15
1

2
pf1

2 1
m0

2

cos2 f1

1
m1

2

sin2 f1

,

Q25tan2 f2S 1

2
pf1

2 sin2 f11
m0

2

cos2 f1
D 1cos2 f1S 1

2
pf2

2 1
m2

2

tan2 f2
D

1
1

2
pf1

pf2
sin 2f1 tanf2 ,

Q35tan2 f2S 1

2
pf1

2 cos2 f11
m1

2

sin2 f1
D 1sin2 f1S 1

2
pf2

2 1
m2

2

tan2 f2
D

2
1

2
pf1

pf2
sin2f1 tanf2.

The HJ equation is

1

2S ]S

]f2
D 2

1
m2

2

sin2 f2
1

1

cos2 f2
S 1

2S ]S

]f1
D 2

1
m0

2

cos2 f1
1

m1
2

sin2 f1
D 5E, ~4.9!

and separates into two ordinary differential equations usingS(f1 ,f2)5S1(f1)1S2(f2)2Et,

1

2 S ]S1

]f1
D 2

1
m0

2

cos2 f1
1

m1
2

sin2 f1
5a1 , ~4.10!

1

2 S ]S2

]f2
D 2

1
m2

2

sin2 f2
1

a1

cos2 f2
5a2 , ~4.11!

wherea25E anda1 are the separation constants~which are positive!. These equations have th
same form as those in~3.7! The solutions are easily computed and can be found as particular
in Ref. 16. The potential has singularities along the coordinate lines,f150,p/2,p,3p/2, andf2

5p/2,3p/2 in the generic case. It has a unique minimum inside each regularity domain
analysis of the associated dynamical system~Hamilton equations! shows that all the orbits in a
neighborhood of the critical point~center! are closed and hence, the corresponding trajectories
periodic~a direct consequence of the correspondence between extrema of the potential and
points of the phase space!. Let us restrict to the domain 0,f1 ,f2,p/2, where the minimum is
tanf15Am1 /m0, tanf25Am2 /(m01m1). The value of the potential at this point is (m01m1

1m2)2, hence the energyE is bounded from below (E>(m01m11m2)2). The explicit solutions
are

cos2 f25
1

2E
@b21Ab2

224a1E cos 2A2Et#, ~4.12!

cos2 f15
1

2a1
Fb11

1

cos2 f2
Fb1

224a1m0
2

b2
224a1E G1/2

~~b2 cos2 f222a1!sin 2A2a1b1

12Aa1@~b22E cos2 f2!cos2 f22a1#1/2cos2A2a1b1!G , ~4.13!

whereb15a11m0
22m1

2 andb25E1a12m2
2.
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Let us remark that these results reflect essentially the casesu(2). In fact all systems we can
construct using Cartan subalgebras can be described in a unified way as it was shown in R
and 16.

B. su „2,1…

The basis we will use is formed by the set of operators$X1 , . . . ,X8% which are given in the
333 matrix representation by

X1→S i 0 0

0 2 i 0

0 0 0
D , X2→S 0 0 0

0 i 0

0 0 2 i
D , X3→S 0 1 0

21 0 0

0 0 0
D ,

X4→S 0 i 0

i 0 0

0 0 0
D , X5→S 0 0 1

0 0 0

1 0 0
D , X6→S 0 0 i

0 0 0

2 i 0 0
D ,

X7→S 0 0 0

0 0 1

0 1 0
D , X8→S 0 0 0

0 0 i

0 2 i 0
D .

According to general results,22 su(2,1) has four MASAs, two of them Cartan subalgebr
~compact and noncompact!, one orthogonally decomposable subalgebra, with one nilpotent
ment, and one nilpotent subalgebra. We will discuss these four cases in the following. Alth
some of these subalgebras have a simpler expression in some skew diagonal metrics,
always use the diagonal one,

K5S 1

1

21
D ~4.14!

because, in this way, the kinetic part is always diagonal. There are nine coordinate sy
associated withO(2,1) free Hamiltonians, spherical, hyperbolic, elliptic~I and II!, complex ellip-
tic, horospheric, elliptic parabolic, hyperbolic parabolic, and semicircular parabolic.20,23Not all of
them will separate our systems because these are not free. However, the appropriate syste
been computed in Ref. 20 and we will use their results.

1. Compact Cartan subalgebra (CC)

The compact Cartan subalgebra has a basis formed by the same two matrices we
su(3), and thesame situation happens for the corresponding MASA inu(2,1) ~4.2!. The coordi-
natess are also related to the coordinatesy as they did in the compact casesu(3) ~4.3!.

However, the Hamiltonian reflects the noncompact character ofsu(2,1)

H5c~ 1
2 ~p0

21p1
22p2

2!1V~s!!, V~s!5
m0

2

s0
2 1

m1
2

s1
2 2

m2
2

s2
2 , ~4.15!

where the constraints0
21s1

22s2
251 must be satisfied.

This Hamiltonian separates in four coordinate systems, spherical, hyperbolic, and ell
and II.20 We will use spherical coordinates to discuss the explicit solution,

s05coshf2 cosf1 , s15coshf2 sinf1 , s25sinhf2 . ~4.16!

Choosingc521, we have the Hamiltonian in these coordinates,
                                                                                                                



he

e
cal
e

200 J. Math. Phys., Vol. 40, No. 1, January 1999 Calzada, del Olmo, and Rodriguez

                    
H5
1

2 S pf2

2 2
pf1

2

cosh2 f2
D 1V~f1 ,f2!,

~4.17!

V~f1 ,f2!52
1

cosh2 f2
S m0

2

cos2 f1
1

m1
2

sin2 f1
D 1

m2
2

sinh2 f2
.

Due to the form of the potential the constantsm0 ,m1 ,m2 can be chosen to be non-negative. T
potential is regular inside the domain 0,f1,p/2, 0,f2,`. It has a saddle point, tanf1

5Am1 /m0, tanhf25Am2 /(m01m1), if m01m1.m2. However, due to the special form of th
kinetic term ~which is not positive definite!, it is easy to check that the associated dynami
system has all the orbits in a neighborhood of the critical point~which is also a center as in th
compact case! closed and again, the corresponding trajectories are periodic.

The second order operators in the enveloping algebra of this MASA are

C15X1
2 , C25$X1 ,X2%, C35X2

2.

The quadratic constants of motion lying in the enveloping algebra ofsu(2,1) and commuting with
the elements in the compact Cartan subalgebra are

Q̂15X3
21X4

2 , Q̂25X5
21X6

2 , Q̂35X7
21X8

2 ~4.18!

with commutation relations

@Q̂1 ,Q̂2#5@Q̂3 ,Q̂2#52@Q̂3 ,Q̂1#.

The Casimir is written in terms of these second order operators as

C54C112C214C313Q̂123Q̂223Q̂3 ,

and the Hamiltonian is

H52Q11Q21Q31constant

whereQi are the conserved quantities in spherical coordinates,

Q15
1

2
pf1

2 1
m0

2

cos2 f1
1

m1
2

sin2 f1
,

Q25tanh2 f2S 1

2
pf1

2 sin2f11
m0

2

cos2 f1
D 1cos2 f1S 1

2
pf2

2 1
m2

2

tanh2 f2
D

2
1

2
pf1

pf2
sin 2f1 tanhf2 ,

Q35tanh2 f2S 1

2
pf1

2 cos2 f11
m1

2

sin2 f1
D 1sin2 f1S 1

2
pf2

2 1
m2

2

tanh2 f2
D

1
1

2
pf1

pf2
sin 2f1 tanhf2 .

The HJ equations corresponding to the Hamiltonian~4.17! are
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1

2 S ]S1

]f1
D 2

1
m0

2

cos2 f1
1

m1
2

sin2 f1
5a1 , ~4.19!

1

2 S ]S2

]f2
D 2

1
m2

2

sinh2 f2
2

a1

cosh2 f2
5a2 . ~4.20!

The first one is the same as we got insu(3) ~4.10!, a1 is always positive anda25E.
The solutions depend on the values of the parameters and energy

~i! E,0

u25
1

2uEu @2b21Ab2
214a1E cos 2A2uEut#. ~4.21!

~ii ! E50

u25
a1

a12m2
2 12~a12m2

2!t2. ~4.22!

~iii ! E.0

u25
1

2E
@b21Ab2

214a1E cosh 2A2Et#, ~4.23!

whereu25cosh2 f2, b25E2a11m2
2. The other equation can be solved as we did in the previ

cases. The result is

u15
1

2a1
Fb11

1

u2
Fb1

224a1m0
2

b2
214a1E G1/2

~2~b2u212a1!sin2A2a1b1

12Aa1@~Eu22b2!u22a1#1/2cos 2A2a1b1!G , ~4.24!

whereu15cos2 f1 andb15a11m0
22m1

2.

2. Noncompact Cartan subalgebra (NC)

There is only one noncompact Cartan subalgebra. A representative can be chosen acco
the same criteria we used insu(1,1) ~3.19!, keeping one element compact and the other~as in
su(1,1)) noncompact,

S 2i

2 i

2 i
D , S 0

0 i

2 i 0
D , ~4.25!

and the basis for the corresponding MASA ofu(2,1) will be

Y05S i

0

0
D , Y15S 0

i

i
D , Y25S 0

0 i

2 i 0
D . ~4.26!

The coordinates are as insu(1,1),

y05eix0s0 ,
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y15eix1~s1 coshx21 is2 sinhx2!, ~4.27!

y25eix1~2 is1 sinhx21s2 coshx2!.

The Hamiltonian is

H5c~ 1
2 ~p0

21p1
22p2

2!1V~s!!,

V~s!5
m0

2

s0
2 1

~m1
22m2

2!~s1
22s2

2!14m1m2s1s2

~s1
21s2

2!2
, ~4.28!

where we will takem0.0 andm1 ,m2 can take any value, and the coordinates satisfy the c
straint ~the same for allsu(2,1) MASAs, as we have chosen the same metric in all cases!, s0

2

1s1
22s2

251.
There are two systems of coordinates in which the associated HJ equation separates

bolic and complex elliptic.20 We will use hyperbolic coordinates, defined as

s05coshf2 , s15sinhf2 sinhf1 , s25sinhf2 coshf1 , ~4.29!

and the new Hamiltonian is (c521)

H5
1

2 S pf2

2 2
pf1

2

sinh2 f2
D 1V~f1 ,f2!,

~4.30!

V~f1 ,f2!52
m0

2

cosh2 f2

1
1

sinh2 f2
S m1

22m2
222m1m2 sinh 2f1

cosh2 2f1
D .

Note that the potential follows the same pattern as the corresponding case insu(1,1). It is regular
inside the domain,2`,f1,`, 0,f2,`, and has also a saddle point at sinh 2f152m2 /m1,
tanhf25Aum1 /m0u, whenum1u,um0u. As in the previous case, the associated dynamical sys
has a center and the trajectories in a neighborhood of it are periodic.

The basis for this MASA is$2X11X2 ,X8%, and the corresponding second order elements

C15~2X11X2!2, C25$2X11X2 ,X8%, C35X8
2.

The second order conserved quantities, commuting with 2X11X2 andX8, and belonging to
the enveloping algebra ofsu(2,1) are

Q̂15X2
22X7

2 ,

Q̂25X3
21X4

22X5
22X6

2 , ~4.31!

Q̂35$X3 ,X5%1$X4 ,X6%,

with commuting relations,

@Q̂3 ,Q̂1#5@Q̂2 ,Q̂3#, @Q̂1 ,Q̂2#50.

The Casimir is written as

C5C123C313Q̂113Q̂2 ,

and the Hamiltonian is
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H5Q11Q21constant.

Finally, the conserved quantities are expressed in hyperbolic coordinates by

Q15
1

2
pf1

2 2
m1

22m2
222m1m2 sinh 2f1

cosh2 2f1
,

Q25
1

2
pf2

2 2
m0

2

cosh2 f2
2

1

tanh2 f2
S 1

2
pf1

2 2
m1

22m2
222m1m2 sinh 2f1

cosh2 2f1
D ,

Q35
1

2
sinh 2f1S pf2

2 1
1

tanh2 f2
pf1

2 D2
cosh2f1

tanhf2
pf1

pf2

1m0
2 tanh2 f2 sinh 2f12

~m1
22m2

2!sinh 2f112m1m2

tanh2 f2 cosh2 2f1
.

The Hamilton–Jacobi equation separates into two ordinary differential equations,

1

2 S ]S1

]f1
D 2

2
m1

22m2
222m1m2 sinh 2f1

cosh2 2f1
5a1 , ~4.32!

1

2 S ]S2

]f2
D 2

2
m0

2

cosh2 f2
2

a1

sinh2 f2
5E. ~4.33!

The solutions have the same form we have found before.

~i! E,0

u25
1

2uEu @b21Ab2
224a1E cos 2A2uEut#. ~4.34!

~ii ! E50

u252
a1

a11m0
2 12~a11m0

2!t2. ~4.35!

~iii ! E.0

u25
1

2E
@2b21Ab2

224a1E cosh 2A2Et#, ~4.36!

whereu25sinh2 f2, b25E1a11m0
2.

The solution for the other coordinate is obtained in the same way~with the changeu1

5sinh 2f1). The equation for this coordinate is the same as that given in formula~3.24! and its
solutions can be found in formulas~3.25!–~3.29!. Due to the possible different signs of the ener
and the constanta1, one should take care of the square roots appearing in all the formulas.

3. Orthogonally decomposable subalgebra (OD)

The orthogonally decomposable subalgebra~a representative of the class! has a basis formed
by a compact element and a nilpotent one,
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S 2i

2 i

2 i
D , S 0

i i

2 i 2 i
D , ~4.37!

and the basis for the corresponding MASA ofu(2,1) is

Y05S i

0

0
D , Y15S 0

i

i
D , Y25S 0

i i

2 i 2 i
D . ~4.38!

The coordinates have also a similar form to those insu(1,1) ~3.31!

y05eix0s0 ,

y15eix1~~11 ix2!s11 ix2s2!, ~4.39!

y25eix1~2 ix2s11~12 ix2!s2!.

The Hamiltonian is

H5c~ 1
2 ~p0

21p1
22p2

2!1V~s!!,

~4.40!

V~s!5
m0

2

s0
2 2

m2
2~s12s2!

~s11s2!3 1
2m1m2

~s11s2!2

with s0
21s1

22s2
251.

There are four coordinate systems associated to this subalgebra, hyperbolic, horos
elliptic parabolic, and hyperbolic parabolic.20 We will use again the hyperbolic ones, defined as
~4.29!.

The Hamiltonian is (c521)

H5
1

2 S pf2

2 2
pf1

2

sinh2 f2
D 1V~f1 ,f2!,

~4.41!

V~f1 ,f2!52
m0

2

cosh2 f2
2

1

sinh2 f2
~m2

2e24f112m1m2e22f1!.

The potential is regular inside the domain,2`,f1,`, 0,f2,`, and, as it happens in all th
su(2,1) cases, has a saddle point atf15(1/2)log(um2 /m1u), tanhf25Aum1 /m0u, when um0u
.um1u,m1m2,0. The situation is the same as in all other cases insu(2,1).

The second order operators in the enveloping algebra of the MASA under considerati
given by

C15~2X11X2!2, C25$2X11X2 ,X21X8%, C35~X21X8!2,

and the quadratic constants of motion,

Q̂15X3
21X4

22X5
22X6

2 ,

Q̂25~X31X5!21~X41X6!2, ~4.42!
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Q̂35X7
212$X1 ,X21X8%,

satisfy the commutation relations

@Q̂1 ,Q̂2#5@Q̂2 ,Q̂3#, @Q̂1 ,Q̂3#50.

The Casimir is given in terms of these operators by

C5C113C223C313Q̂123Q̂3

and the Hamiltonian is

H52Q11Q31constant.

We can write the conserved quantities in hyperbolic coordinates,

Q15
1

tanh2 f2
S 1

2
pf1

2 1m2
2e24f112m1m2e22f1D 2S 1

2
pf2

2 2
m0

2

cosh2 f2
D ,

Q25e2f1S 1

2
pf2

2 1m0
2 tanh2 f21

1

tanh2 f2
S 1

2
pf1

2 1m2
2e24f1D

2
1

tanhf2
pf1

pf2D ,

Q35
1

2
pf1

2 1m2
2e24f112m1m2e22f2.

The HJ equation is separated into the following equations:

1

2 S ]S1

]f1
D 2

1~m2
2e24f112m1m2e22f1!5a1 , ~4.43!

1

2 S ]S2

]f2
D 2

2
m0

2

cosh2 f2
2

a1

sinh2 f2
5E. ~4.44!

Equation~4.44! is integrated usingu25sinh2 f2. The result is the same as in the previous c
~4.33!. Equation~4.43! is solved usingu15e2f1 ~the same change we use in the nilpotent MAS
of the su(1,1) case!, and the results are essentially the same we have found above~see 3.35!.

4. Nilpotent subalgebra (NIL)

The nilpotent subalgebra has a basis formed by two nilpotent elements~one of order 2 and the
other of order 3!,

S 0

i i

2 i 2 i
D , S 0 i i

i 0 0

2 i 0 0
D , ~4.45!

and the basis for the MASA ofu(2,1) can be obtained adding to these two matrices the ide
times the imaginary unit.

The new coordinates are defined through

y05eix0~s01 ix2~s11s2!!,
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y15eix0S ix2s01S 12
x2

2

2
1 ix1D s11S 2

x2
2

2
1 ix1D s2D , ~4.46!

y25eix0S 2 ix2s01S x2
2

2
2 ix1D s11S 11

x2
2

2
2 ix1D s2D .

The Hamiltonian is

H5C~ 1
2 ~p0

21p1
22p2

2!1V~s!!,

~4.47!

V~s!5
2m0m11m2

2

~s11s2!2 2
4m1m2s0

~s11s2!3 1
m1

2~4s0
221!

~s11s2!4 ,

with the constraint,s0
21s1

22s2
251.

We have now two separable coordinate systems: horospheric and semicircular parabolic20 We
will use now the horospheric ones, defined by

s05f1ef2, s15coshf22 1
2 f1

2ef2, s25sinhf21 1
2 f1

2ef2. ~4.48!

The Hamiltonian is (c521)

H5 1
2 ~pf2

2 2e22f2pf1

2 !1V~f1 ,f2!,

~4.49!
V~f1 ,f2!5m1

2e24f22e22f2~m2
212m0m114m1f1~m1f12m2!!.

The potential has no singularity in the whole plain (f1 ,f2). It has a saddle point atf1

5m2/2m1, f25(1/2)log(m1 /m0), whenm0m1.0. The situation is the same as in all other cas
in su(2,1).

The second order elements in the enveloping algebra of the nilpotent subalgebra are

C15~X21X8!2, C25$X21X8 ,X41X6%, C35~X41X6!2,

and the constants of motion

Q̂153~X31X5!222$2X11X2 ,X21X8%,

Q̂25$2X11X2 ,X41X6%16$X4 ,X21X8%23$X7 ,X31X5%, ~4.50!

Q̂354X1
213X2

222$X1 ,X2%16X3
216X4

223X7
22$4X12X2 ,X8%13$X3 ,X5%13$X4 ,X6%,

have the following commutation relations:

@Q̂1 ,Q̂2#5@Q̂3 ,Q̂2#, @Q̂1 ,Q̂3#50.

The Casimir is

C523C123C32Q̂11Q̂3 ,

and the Hamiltonian

H5Q12Q31constant.
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Finally, the second order constant of motion are given in horospheric coordinates b
following expressions:

Q15 1
2pf1

2 14m1f1~m1f12m2!,

Q25 1
2 f1pf1

2 2 1
2 pf1

pf2
1~m2

212m0m1!f1

2m1e22f2~2m1f12m2!14m1f1
2~m1f12m2!,

Q35~11e22f2!~ 1
2 pf1

2 14m1f1~m1f12m2!!

2~ 1
2pf2

2 1m1
2e24f22~m2

212m0m1!e22f2!.

This is the most interesting case, in the sense that the others are easily reduced to the
dimension 1, while this nilpotent subalgebra does not appear in thesu(1,1) case. However, the
solutions are still very similar to those found before. It is worth mentioning here, that al
potentials we have constructed~and any potential we could construct by using this method! are
always inverse quadratic potentials in the coordinates, and the solutions have always simila
~though they depend on the specific characteristics of these potentials and the constants in!.

The HJ equation is separated into the following equations:

1

2 S ]S1

]f1
D 2

1m2
212m0m114m1f1~m1f12m2!5a1 , ~4.51!

1

2 S ]S2

]f2
D 2

1m1
2e24f22a1e22f25E. ~4.52!

The changeu25e2f2 allows us to solve the second equation, and the other one is solved dir
The solutions are

~i! E,0

u25
1

2uEu @a11Aa1
214m1

2E cos 2A2uEut#. ~4.53!

~ii ! E50

u25
m1

2

a1
12a1t2. ~4.54!

~iii ! E.0

u25
1

2E
@2a11Aa1

214m1
2E cosh 2A2Et#. ~4.55!

The first equation gives the value of thef1 coordinate,

f15
1

2m1
Fm21

1

u2
Fa122m0m1

a1
214m1

2E G1/2

~~a1u222m1
2!sin 2A2b1m1

12m1@~Eu22a1!u22m1
2#1/2cos 2A2b1m1!G . ~4.56!

In Table II, we present a summary of these Hamiltonians in the two-dimensional case.
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V. CONCLUSIONS

We have presented in this work a complete analysis of a series of one- and two-dimen
integrable Hamiltonians, which in the two-dimensional case are superintegrable in the sen
scribed in the Introduction. Though the one-dimensional case is always an integrable system
remark the importance and applications of the potentials described in Sec. II. Regardin
two-dimensional ones, we have provided them with a set of conserved quantities which allo
to study the HJ equations in several separable coordinate systems and compute in some int
cases the explicit solutions.

The one-dimensional Hamiltonians obtained here have been extensively studied in the
ture from many other points of view. See for instance Ref. 24 for a recent application of M
potentials. As an example of these different approaches, all of them appear in the classifica
quasi-exactly solvable Schro¨dinger operators,17,18as particular types of these systems correspo
ing to the so called exactly solvable systems. Following the classification in Ref. 18, the e
solvable potentials of Cases 1 and 2 are just the ones we have obtained associated tosu(1,1) and
its compact and noncompact Cartan subalgebras. The first one~3.12! is the celebrated Po¨schl–
Teller potential. That appearing in case 3 is the Morse potential~3.33!, which we get using the
nilpotent subalgebra ofsu(1,1). Finally the potential~3.5!, associated to the Cartan subalgebra
su(2) is related to the modified harmonic oscillators appearing in Ref. 18 as cases 4 and
has to take into account in this case, that QES potentials, as studied in Ref. 18, are define
line ~or half-line!, and we are working here in a sector ofS1 ~see also Ref. 25 for a study o
harmonic oscillators in a sector!. The relation is not surprising at all if one considers that Q
systems in the line are related to the complex Lie algebrasl(2),17 and the ones we get here refle
the invariance undersu(2) andsu(1,1), the real forms ofsl(2). In the QESsetting, Schro¨dinger
operators belong to the enveloping algebra of a Lie algebra, while in our approach, the
sponding classical Hamiltonians are second order Casimirs of the algebra, and hence, t
particular cases~exactly solvable! of the former.

Two prolongations of this study are now in progress. One of them is the use of contra
in Lie algebras to obtain other Hamiltonian systems associated to different algebras, not ne
ily semisimple. In this sense, the Hamiltonians, the conserved quantities and the coordina
tems can be obtained by contraction.26,27The second one is to apply this approach to the quan
case, considering the Schro¨dinger equation with these potentials.28 We also plan to study the links

‘TABLE II. Two-dimensional potentials.

Algebra MASA Kinetic term Potential

su~3! CC
1

2 Spf2

2 1
pf1

2

cos2 f2
D 1

cos2 f2
S m0

2

cos2 f1
1

m1
2

sin2 f1
D1 m2

2

sin2 f2

su~2,1! CC
1

2 S pf2

2 2
pf1

2

cosh2 f2
D 2

1

cosh2 f2
S m0

2

cos2 f1
1

m1
2

sin2 f1
D1 m2

2

sinh2 f2

NC
1

2 Spf2

2 2
pf1

2

sinh2 f2
D 2

m0
2

cosh2 f2
1

1

sinh2 f2
Sm1

22m2
222m1m2sinh 2f1

cosh2 2f1
D

OD
1

2 Spf2

2 2
pf1

2

sinh2 f2
D 2

m0
2

cosh2 f2
2

1

sinh2 f2
~m2

2e24f112m1m2e
22f1!

NIL 1

2
~pf2

2 2e22f2pf1

2 !
m1

2e24f22e22f2~m2
212m0m114m1f1~m1f12m2!!
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of this theory with QES systems and the possibility of considering partial integrability and p
variable separation in HJ equations.29

ACKNOWLEDGMENTS

The authors would like to thank J. Negro for many interesting discussions. This work has
partially supported by CICYT~Spain, Projects PB95-0719 and PB95-0401! and Junta de Castilla
y León ~Spain!.

1P. M. Morse, Phys. Rev.34, 57 ~1929!.
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Symmetries of Hamiltonian systems with two degrees
of freedom
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We classify the Lie point symmetry groups for an autonomous Hamiltonian system
with two degrees of freedom. With the exception of the harmonic oscillator or a
free particle where the dimension is 15, we obtain all dimensions between 1 and 7.
For each system in the classification we examine integrability. ©1999 American
Institute of Physics.@S0022-2488~99!01101-9#

I. INTRODUCTION

The objective of this paper is a complete classification of the Lie point symmetry group
a Hamiltonian system with two degrees of freedom. We should clarify that we are dealing
with point transformations. In other words, the generators are functions of the depende
independent variables; there is no dependence on the derivatives. We study the equa
Newtonian form since a first order system always has an infinite number of symmetries
consider the motion of a particle of unit mass in the plane (q1 ,q2) under the influence of a
potential of the formV(q1 ,q2). We will assume that the Hamiltonian is time independent. Thi
not really a restriction because a time-dependentn-dimensional system is equivalent to a tim
independent (n11)-dimensional system by regarding the time variable as the new coordinate
the most part we assume that the system is two-dimensional with Hamiltonian

H~q1 ,q2 ,p1 ,p2!5 1
2p1

21 1
2p2

21V~q1 ,q2!. ~1!

However, in Sec. VI we generalize some of the results to then-dimensional case. The real value
function V(q1 ,q2) is assumed to be smooth on some open, connected subset ofR2.

Hamilton’s equations, in Newtonian form, become

q̈152
]V

]q1
, q̈252

]V

]q2
. ~2!

We search for point symmetries of the system~2!. That is, we search for the infinitesimal tran
formations of the form

t85t1e T~ t,q1 ,q2!1O~e2!,

q185q11e Q1~ t,q1 ,q2!1O~e2!, ~3!

q285q21e Q2~ t,q1 ,q2!1O~e2!.

The functionsV(q1 ,q2) such that the system~2! admit such transformations are complete
classified. Therefore, in the following analysis we determine the functionsV, T, Q1 andQ2 .

Equations~2! admit Lie transformations of the form~3! if and only if

a!Electronic mail: damianou@ucy.ac.cy
b!Electronic mail: christod@ucy.ac.cy
2100022-2488/99/40(1)/210/26/$15.00 © 1999 American Institute of Physics
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G~2!$q̈11Vq1
%50, G~2!$q̈21Vq2

%50, ~4!

whereG (2) is the second prolongation of

G5T
]

]t
1Q1

]

]q1
1Q2

]

]q2
. ~5!

For the reader who is unfamiliar with the definition and properties of Lie point symmet
there are a number of excellent books on the subject, e.g., Refs. 1–4.

Equations~4! give two identities of the form

E1~ t,q1 ,q2 ,q̇1,q̇2!50, E2~t,q1,q2,q̇1,q̇2!50, ~6!

where we have used thatq̈152]V/]q1 andq̈252]V/]q2 . The functionsE1 andE2 are explicit
polynomials inq̇1 andq̇2. We impose the condition that Eqs.~6! are identities in five variablest,
q1 , q2 , q̇1 andq̇2 which are regarded as independent. These two identities enable the infinite
transformations to be derived and ultimately impose restrictions on the functional forms ofV, T,
Q1 andQ2 .

After some straightforward calculations one can show, see, e.g., Ref. 5, that the gen
necessarily have the following form:

T5a~ t !1b1~ t !q11b2~ t !q2 ,

Q15b18~ t !q1
21b28~ t !q1q21c11~ t !q11c12~ t !q21d1~ t !, ~7!

Q25b18~ t !q1q21b28~ t !q2
21c21~ t !q11c22~ t !q21d2~ t !.

In this paper we classify the symmetry groups of the system according to the form of the g
tors. Here is a preview of the various cases and the potentials that appear.
Case 1. b1Þ0, b2Þ0.

In this case the potential is of the form

V5
l

2
~q1

21q2
2!1l1q11l2q2 .

The symmetry group has maximum dimension. It is a 15-parameter group of transform
isomorphic tosl(4, R).
Case 2. b15b250.

In other words,T is function of time only. We consider two possibilities according toa9
Þ0 or a950.
First subcase: a9Þ0
~2a!

V5
l

2
~q1

21q2
2!1

m

~q11kq2!2 .

In this case we obtain a 6-parameter group.
~2b!

V5
l

2
~q1

21q2
2!1

m

q2
2 .
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This is a special case of the previous one withk50.
~2c!

V5
l

2
~q1

21q2
2!1

1

q2
2 F~j!,

wherej5 q1 /q2 . For F arbitrary we end up with a 3-parameter symmetry group. For spe
types ofF we obtain a 4-parameter group.
Second subcase: a950
This is the case whereT is a linear function of time.
~2d!

V5q2
21l1q1q21F~j!,

where j5q12lq2 . For F arbitrary we end up with a 4-parameter symmetry group. ForF
quadratic we obtain a 7-parameter group and settingl150, for some special forms ofF ~expo-
nential, logarithmic,nth power! results in a 5-parameter group of symmetries.
~2e!

V5l1q2
21F~q1!.

The casel150 is the case of a separable potential with one variable missing. We will com
on this case separately. Ifl1Þ0, we end up with a 4-parameter group.
~2f! The dimensions of the symmetry groups in this case are all equal to 2 except for the las
systems where the dimension is 3. Specifically, we obtain the following list of potentials.

1.

V5q2
NFS q1

q2
D .

2.

V5l1 logq21FS q1

q2
D .

3.

V5emq1F~q2!.

4

V5emq1F~q12lq2!.

5–10.

V5l1f 1~q1!1l2f 2~q2!,

where f 1(q1)5q1
n , logq1, emq1 and f 2(q2)5q2

m , logq2, emq2.

11.

V5F~q1
21q2

2!.

12.

V5l~q1
21q2

2!n, nÞ21, 0, 1 .
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13.

V5l log~q1
21q2

2!

14.

V5l sin21
q1

22q2
2

q1
21q2

2 .

Finally, we note that the potentialV(q1 ,q2)5q1
k has a 15-parameter group of symmetries

k50,1, a 7-parameter group fork52, a 6-parameter group fork522 and a 5-parameter group o
symmetries otherwise. These dimensions generalize for arbitraryn>2 to (n12)221, n213, n2

12, n211 respectively.
In this paper we will not consider the general case of motion inRn, however, for the case

n53, the classification of symmetry groups is in progress; see Ref. 6. In this case, we end up
with a maximal dimension of (n12)221524 for the harmonic oscillator or a free particle, b
the dimensions of the other groups in the classification vary from 1 to 12 (n213). We did not
obtain the dimension 8 and any dimension between 13 and 23. Forn54 the dimensions 13 and 1
are probably missing.

In Sec. II we will also consider the simplest system, with one degree of freedom, main
illustrate the procedure we use for the two-dimensional case. The classification for a g
ordinary differential equation of second order with one dependent and one independent v
goes back to Sophus Lie.7 He showed that the dimensions of a maximal admitted algebra take
the values 1, 2, 3 and 8. Lie actually gave a group classification of all arbitrary order O.D.E
this way he identified all equations that can be reduced to lower-order equations or comp
integrated by group theoretical methods.8 The problem of classifying symmetry groups for
system of differential equations is open. This is mentioned in Ref. 9 where some known fac
presented. Some results for linear systems of second order ordinary differential equations
found in Ref. 10.

Of course, the ultimate goal in classical mechanics is to integrate explicitly the equatio
motion. Such systems are called integrable. For the definition and basic concepts of Hami
Systems and Symplectic Geometry there are a number of good references, e.g., Refs. 11–
key result is the following theorem of Liouville which in the 2-dimensional case translate
follows: Consider a Hamiltonian system with two degrees of freedom. If in addition to the Ha
tonian H there is a second integral of motion I, independent of H, then the system is integ
i.e., in principle one can solve the equations by quadratures.Even though most of the well known
systems of classical mechanics are Liouville integrable, the fact is that most Hamiltonian sy
are not integrable, a result demonstrated by Poincare´. It is not surprising that most of the symmetr
groups that appear in our classification correspond to integrable potentials. The noninte
potentials appear mainly in case 2f, where the size of the symmetry group is small. The in
bility of two-dimensional systems has been the subject of numerous investigations; see,
ample, Refs. 16–22. Of course, a system with symmetries should be expected to be inte
after all this is the essence of Noether’s theorem; in this direction see, for example, the rev23

On the other hand, one can give a number of examples of integrable systems whose sy
group is trivial~i.e., one-dimensional!. Some of the chaotic systems that do not appear in our
for example, the famous He´non–Heiles system, are known to have only]/]t as a single symme
try. Of course, we should point out that all the systems which do not appear in our classifi
will have ]/]t as a single symmetry. One can construct a number of systems possessing on
symmetry. For example, one can take

V5q1
212q2

21q1
kq2 , ~8!

with k.1.
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As was discussed in Ref. 24 there are integrable systems which possess only one sym
This situation is also investigated in Ref. 25. We would like to point out another example:

V54q1
21q2

21
r 1

q1
1

r 2

q2
2 . ~9!

In this system the associated Hamilton–Jacobi equation is separable in Cartesian coordina
should point out that integrable systems have symmetries other than point symmetries. On
allow the infinitesimalsT, Qi to depend ont, qi and the derivatives ofqi . Transformations of this
type are commonly called Lie–Ba¨ckland or generalized transformations. For more details see
example, Refs. 26–28 or the books Refs. 1–4. There is also the notion of dynamical or c
symmetries~a subset of Lie–Ba¨ckland transformations! where the generators are velocity depe
dent. The connection between first integrals and symmetries is more transparent when thes
of symmetries are used. Furthermore, these generalizations cover a wider range of system
drawback, of course, is the complexity of calculating and classifying these types of sym
groups. This is an obvious direction of future research. Another direction is to consider vel
dependent potentials.

For the integrable systems that appear in the list we actually give the second integral~when-
ever it is not obvious! or a reference. Since integrability is preserved under various transfo
tions, e.g., translations, rotations, scalings, time reflections, we construct the second invari
a representative of that class. Generally we choose the potential to be as simple as pos
order to illustrate the symmetry group and demonstrate integrability.

II. SYSTEMS WITH ONE DEGREE OF FREEDOM

Before attacking the two-dimensional case, we classify the symmetries for a one-dimen
system, just to illustrate the techniques we use on the two-dimensional case. We con
Hamiltonian of the form

H51/2p21V~q!. ~10!

The equation of motion of the particle is

q̈52
]V

]q
. ~11!

We search for symmetries for Eq.~11! of the form

t85t1e T~ t,q!1O~e2!, q85q1e Q~ t,q!1O~e2!. ~12!

Equation~11! admits symmetries of the form~12! if and only if

G~2!$q̈1Vq%50, ~13!

whereG (2) is the second prolongation of

G5T
]

]t
1Q

]

]q
. ~14!

The definition of the second prolongation is the following: First we define the first prolonga

G~1!5G1@2Tqq̇21~Qq2Tt!q̇1Qt#
]

]q̇
. ~15!

The second prolongation ofG is an extension ofG (1) given by
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G~2!5G~1!1@~Qq22Tt23Tqq̇!q̈2Tqqq̇
31~Qqq22Ttq!q̇21~2Qtq2Ttt!q̇1Qtt#

]

]q̈
. ~16!

Equation~13! becomes an identity of the form

E~ t,q,q̇!50, ~17!

using the fact thatq̈52Vq .
The coefficient of q̇3 in ~17! gives Tqq50. Similarly, the coefficient ofq̇2 gives Qqq

52Ttq . Therefore,

T5a~ t !1b~ t !q, Q5b8~ t !q21c~ t !q1d~ t !. ~18!

Using Eqs.~18!, identity ~17! becomes

F3b
]V

]q
13qb92a912c8G q̇1~q2b81qc1d!

]2V

]q2 1~2a82c!
]V

]q
1q2b-1qc91d950.

~19!

The coefficient ofq̇ in ~19! gives

3b
]V

]q
13qb92a912c850. ~20!

We split the analysis into two exclusive cases: Case 1.bÞ0. Case 2.b50.
Case 1. bÞ0.

From Eq.~20! we obtain

V5
l1

2
q21l2q1l3 . ~21!

One easily calculates that the algebra of symmetries has dimension 8. It is a simple Lie a
isomorphic tosl(3,R).
Case 2. b50.

From ~20! we have

c5 1
2 a81c1 ,

and Eq.~19! becomes

@q~a812c1!12d#
]2V

]q2 1~3a822c1!
]V

]q
1a-q12d950. ~22!

From Eq.~22! we deduce thatV satisfies an o.d.e. of the form

~l1q1l2!Vqq1l3Vq5l4q1l5 . ~23!

In order to solve Eq.~23! we consider the following five possibilities.

1. l15l25l35l45l550. In this case we geta(t)5constant,c150 andd(t)50. There-
fore for V arbitrary we haveT5c2 , Q50. In other words the symmetry group is trivia
~one-dimensional!.

2. l15l350, l2Þ0. In this case,V is quadratic, a case already examined.
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3. l150, l2Þ0, l3Þ0. From~23! we getV5lemq, where we have ignored linear terms. W
obtain a 2-parameter group of symmetries withT522c1t1c2 andQ54c1 /m.

4. l1Þ0, l350. From~23! we obtainV5q logq. The symmetry group here is also trivia
5. l1Þ0, l3Þ0. Without loss of generality we takel250 in ~23! and we obtain either

~i! V5lqn, nÞ0,1,2, or~ii ! V5l logq.

~i! We substituteV5lqn into ~22! to obtaina(t)5c2t212c3t1c4 , d(t)5c150 if n522
and a(t)5@2(22n)/n12#c1t1c2 , d(t)50 if nÞ22. To summarize, we have forV
5l/q2,

T5c2t212c3t1c4 , Q5~c2t1c3!q, ~24!

and forV5lqn, nÞ22,0,1,2 the generators have the following form:

T5
2~22n!

n12
c1t1c2 , Q5

4c1

n12
q. ~25!

In other words, we obtain either a two-parameter or a three-parameter group of symm
~ii ! WhenV5l logq we geta(t)52c1t1c2 andd(t)50. Therefore,

T52c1t1c2 , Q52c1q. ~26!

This is a two-parameter group of symmetries.

To summarize the results: In the case of one degree of freedom we obtain a maximal d
sion of 8 for the harmonic oscillator or a free particle, but the dimensions in the other groups
classification vary from 1 to 3. We do not obtain any dimension between 4 and 7.

III. SYSTEMS WITH TWO DEGREES OF FREEDOM

We return now to the case of two-degrees of freedom. The analysis is analogous to th
used in the case of one-degree of freedom. We substitute the forms ofT, Q1 , Q2 in ~7! into Eqs.
~6!.

The coefficient ofq̇1 in Eq. ~6! @E250# gives

2S ]V

]q2
b11

]2b1

]t2 q21
]c21

]t D50. ~27!

On the other hand, the coefficient ofq̇2 in Eq. ~6! @E150# implies

2S ]V

]q1
b21

]2b2

]t2 q11
]c12

]t D50. ~28!

Similarly, the coefficient ofq̇1 in Eq. ~6! @E150# gives

3b1

]V

]q1
1b2

]V

]q2
13q1

]2b1

]t2 1q2

]2b2

]t2 2
]2a

]t2 12
]c11

]t
50, ~29!

while the coefficient ofq̇2 in Eq. ~6! @E250# implies

3b2

]V

]q2
1b1

]V

]q1
13q2

]2b2

]t2 1q1

]2b1

]t2 2
]2a

]t2 12
]c22

]t
50. ~30!
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If b1(t)Þ0 andb2(t)Þ0, then from Eqs.~27! and ~28! we deduce thatV is quadratic inq1 and
q2 . We also note that ifb150, b2Þ0 ~or b1Þ0, b250), then from Eqs.~28! and~29! V has again
a quadratic form. We therefore split the analysis into two exclusive cases:Case 1.b1Þ0, b2

Þ0. Case 2.b15b250.

IV. CASE 1

From Eqs.~27! and ~28! we deduce that

V5l1q1
21l2q2

21l3q11l4q21l5 . ~31!

Now, substituting~31! into ~6! the coefficients ofq1q̇1 in E1 andq2q̇1 in E2 give, respectively,

3~b1912l1b1!50, 3~b1912l2b1!50. ~32!

Hence, it follows thatl15l250 or l15l2Þ0.
In the casel15l250, V is linear. We shall present the symmetries for this case, but in

remaining part of the analysis we shall ignore linear terms in the form ofV. Adding a constant to
Eqs.~2! has no effect on the symmetry groups.
Subcase 1a:V5l1q11l2q21l3 .

Note that we have takenl15l250 in ~31! and then renamed the constants. Without pres
ing any calculations, we state that the system~2! with V linear has the following 15 symmetries

G15
]

]t
, G25

]

]q1
, G35

]

]q2
,

G45q1

]

]t
2S l1

2

4
t31

3

2
l1tq1D ]

]q1
2S l1l2

4
t31

1

2
l1tq21l2tq1D ]

]q2
,

G55t
]

]t
1S 1

2
q12

3

4
l1t2D ]

]q1
1S 1

2
q22

3

4
l2t2D ]

]q2
,

G65t2
]

]t
1S q1t2

l1

2
t3

]

]q1
1S q2t2

l2

2
t3D ]

]q2
,

G75q2

]

]t
2S l1l2

4
t31l1tq21

1

2
l2tq1D ]

]q1
2S l2

2

4
t31

3

2
l2tq2D ]

]q2
,

G85~2tq21l2t3!
]

]t
1S 2q1q21l2t2q12l1t2q22

1

2
l1l2t4D ]

]q1
1S 2q2

22
1

2
l2

2t4D ]

]q2
,

G95~2tq11l1t3!
]

]t
1S 2q1

22
1

2
l1

2t4D ]

]q1
1S 2q1q21l1t2q22l2t2q12

1

2
l1l2t4D ]

]q2
,

G105S q21
1

2
l2t2D ]

]q1
, G115S q11

1

2
l1t2D ]

]q2
, G125t

]

]q1
,

G135t
]

]q2
, G145S q11

1

2
l1t2D ]

]q1
, G155S q21

1

2
l2t2D ]

]q2
.
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Remark: This system is, of course, integrable. The second integral is I51/2p1
21l1q1 or I

51/2p2
21l2q2 . It also has constants of motion linear in the momenta, for example, I52l2p1

1l1p2 .
Subcase 1b:V5(l/2)(q1

21q2
2).

We will choosel51. We substitute the form ofV into Eqs.~6! and equate coefficients.
In E1 , q̇1q150 implies

d2b1

dt2
1b150.

In E1 , q̇1q250 implies

d2b2

dt2
1b250.

In E1 , q̇250 implies

dc12

dt
50,

thereforec12 is constant. Similarly, by examining the coefficient ofq̇1 in E2 we see thatc21 is also
constant.

In E1 , q̇150 and inE2 , q̇250, imply that

d2a

dt2
22

dc11

dt
50,

and

d2a

dt2
22

dc22

dt
50.

Similarly, using the coefficient ofq150 in E1 andq250 in E2 , we obtain

d2c11

dt2
12

da

dt
50,

and

d2c22

dt2
12

da

dt
50.

Finally, E150 and E250 imply that the functionsd1(t) and d2(t) are solutions of the
equation

d2x

dt2
1x50.

Therefore the form of the generators in this case is the following:
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T5k11k2 cos 2t1k3 sin 2t1~k4 cost1k5 sint !q11~k6 cost1k7 sint !q2 ,

Q15~2k4 sint1k5 cost !q1
21~2k6 sint1k7 cost !q1q2

1~2k2 sin 2t1k3 cos 2t1c11!q11c12q21k8 cost1k9 sint,

Q25~2k4 sint1k5 cost !q1q21~2k6 sint1k7 cost !q2
21c21q1

1~2k2 sin 2t1k3 cos 2t1c22!q21k10cost1k11sint.

We note that the system~2! with V5(l/2)(q1
21q2

2) admits a 15-parameter group of tran
formations isomorphic tosl(4, R).

Remark: This system is the 2-dimensional isotropic oscillator. A second integral1
51/2p1

211/2q1
2 or I 251/2p2

21 1
2 q2

2. We also have constants of motion linear in the momen
for example, I35q2p12q1p2 .

Remark: Cases 1a and 1b give the most general form of Hamiltonian for which the se
invariant is linear in the momenta.21

V. CASE 2

We use the identitiesE150 andE250 in ~6! to obtain

E1 : q̇250 ⇔ c128 50, E2: q̇150 ⇔ c218 50,

E1 :q̇150 ⇔ 2c118 2a950, E2 :q̇250 ⇔ 2c228 2a950.

~33!

Therefore,c125c1 , c215c2 , c1151/2a81c3 andc2251/2a81c4 . Here and elsewhere theci are
constants. Using these results, Eqs.~6! take the form

~a8q212c2q112c4q212d2!Vq1q2
1~a8q112c3q112c1q212d1!Vq1q1

1~3a822c3!Vq1
22c1Vq2

1a-q112d1950, ~34!

and

~a8q112c3q112c1q212d1!Vq1q2
1~a8q212c2q112c4q212d2!Vq2q2

1~3a822c4!Vq2
22c2Vq1

1a-q212d2950. ~35!

We differentiate Eqs.~34! and ~35! with respect tot to obtain, respectively,

~a9q212d28!Vq1q2
1~a9q112d18!Vq1q1

13a9Vq1
1a-8q112d1-50, ~36!

~a9q112d18!Vq1q2
1~a9q212d28!Vq2q2

13a9Vq2
1a-8q212d2-50. ~37!

We now split the analysis into two parts:a9Þ0 or a950.
Nonlinear T: a9Þ0

We divide Eqs.~36! and~37! by a9 and then differentiate with respect tot to obtain, respec-
tively,

2S d28

a9
D 8

Vq1q2
12S d18

a9
D 8

Vq1q1
1S a-8

a9
D 8

q112S d1-

a9
D 8

50, ~38!
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2S d18

a9
D 8

Vq1q2
12S d28

a9
D 8

Vq2q2
1S a-8

a9
D 8

q212S d2-

a9
D 8

50. ~39!

From Eqs.~38! and~39! we deduce that the functionV(q1 ,q2) satisfies two partial differentia
equations of the form

l1Vq1q2
1l2Vq1q1

1l3q11l450, ~40!

l2Vq1q2
1l1Vq2q2

1l3q21l550. ~41!

In order to solve Eqs.~40! and ~41! we consider the following cases:

~i! l1Þ0, l2Þ0

~ii ! l150, l2Þ0 ~or l1Þ0, l250!
~iii ! l15l25l35l450 .

In the following three subcases we determine the form ofV from Eqs.~40! and ~41!. The
corresponding generators may be obtained with the employment of Eqs.~34!–~39!.
Subcase 2a:

In this case,V takes the form

V5
l

2
~q1

21q2
2!1

m

~q11kq2!2 , ~42!

with the corresponding generators

T5a~ t !,

Q15 1
2 a8~ t !q11k2c4q12kc4q21kd2~ t !, ~43!

Q25 1
2 a8~ t !q22kc4q11c4q22d2~ t !,

wherea914la5c8 andd2 is a solution ofd291ld250 ~6-parameter group!.
Subcase 2b:

Settingl150 in ~40! and ~41! we deduce thatV has the form

V5k1q1
31k2q1

21k3q1q2
21k4q1q21k5q11F~q2!. ~44!

Using Eqs.~36! and ~37! we get k15k35k450 and F5k2q2
21k6q21k71m/q2

2. Therefore,
ignoring the linear terms,V takes the form

V5
l

2
~q1

21q2
2!1

m

q2
2 . ~45!

Finally, using Eqs.~34! and ~35! we obtain the forms of the group generators:

T5a~ t !, Q15c3q11 1
2 a8~ t !q11d1~ t !,

~46!
Q25 1

2 a8~ t !q2 ,

wherea914la5c8 andd191ld150 ~6-parameter group!.
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The casel50 is equivalent to the systemV(q1 ,q2)51/q1
2 with generators

T5c1t212c2t1c3 , Q15~c1t1c2!q1 ,
~47!

Q25~c1t1c21c4!q21c5t1c6 .

We choose the following basis for the Lie algebra of symmetries:

X15
]

]t
,

X252t
]

]t
1q1

]

]q1
1q2

]

]q2
,

X35t2
]

]t
1q1t

]

]q1
1q2t

]

]q2
,

X45q2

]

]q2
, X55t

]

]q2
, X65

]

]q2
,

with ~nonzero! bracket relations

@X1 ,X2#52X1 , @X1 ,X3#5X2 ,

@X1 ,X5#5X6 , @X2 ,X3#52X3 ,
~48!

@X2 ,X5#5X5 , @X2 ,X6#52X6 ,

@X3 ,X6#52X5 , @X4 ,X5#52X5 , @X4 ,X6#52X6 .

This algebra is not semi-simple since the ideal generated byX5 , X6 is Abelian. It is not
solvable either becauseL (1)5$X1 ,X2 ,X3 ,X5 ,X6%, andL (2)5L (1).

Remark: It is clear that Subcase 2b is a special case of Subcase 2a by settingk50.
Subcase 2c:

Since all the coefficients of the terms in Eqs.~38! and ~39! vanish, the functionsa(t), d1(t)
andd2(t) may be determined. From Eqs.~36! and ~37! we deduce that

V5
l

2
~q1

21q2
2!1

1

q2
2 F~j!, ~49!

wherej5q1 /q2 . We now use Eqs.~34! and ~35! to determine the forms of the generators.
Without presenting any more calculations we state the following results.

F arbitrary:

T5a~ t !, Q15 1
2 a8~ t !q1 , Q25 1

2 a8~ t !q2 , ~50!

wherea914la5c8 ~3-parameter group!.
For l50 the Lie algebra has a basis given by

X15
]

]t
, X252t

]

]t
1q1

]

]q1
1q2

]

]q2
,

X35t2
]

]t
1tq1

]

]q1
1tq2

]

]q2
,
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with bracket relations of a simple Lie algebra:

@X1 ,X2#52X1 , @X1 ,X3#5X2 , @X2 ,X3#52X3 .

F5m/j2 5m(q2
2/q1

2):
It follows from ~49! that

V5
l

2
~q1

21q2
2!1

m

q1
2 . ~51!

This potential already appeared in 2b.
F5m5constant:

It follows from ~49! that

V5
l

2
~q1

21q2
2!1

m

q2
2 . ~52!

This system is not different from the previous one.
F5m/(j211)] ec tan21 j:

It follows from ~49! that

V5
l

2
~q1

21q2
2!1

m

q1
21q2

2 ec tan21 ~q1 /q2!. ~53!

The generators take the form

T5a~ t !, Q15 1
4 cc1q11c1q21 1

2 a8~ t !q1 , ~54!

Q25 1
4 cc1q22c1q11 1

2 a8~ t !q2 ,

wherea914la5c8 ~4-parameter group!.
The Lie algebra for this system is a direct sum of ansl(2, R) and a one-dimensional Lie

algebra. It has a basis consisting of the vectors

X15
]

]t
,

X252t
]

]t
1q1

]

]q1
1q2

]

]q2
,

X35t2
]

]t
1tq1

]

]q1
1tq2

]

]q2
,

X45S 1

4
cq11q2D ]

]q1
1S 1

4
cq22q1D ]

]q2
,

with bracket relations

@X1 ,X2#52X1 , @X1 ,X3#5X2 ,

@X2 ,X3#52X3 , @Xi ,X4#50, i 51,2,3.

This example generalizes ann dimension to a Lie algebra which is a direct sumsl(2,R)
% so(n, R).
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Remark: In polar coordinates this system is

V5
l

2
~r 2!1

m

r 2 ecu.

It is integrable, by taking B(u)5mecu and I5 1
2 l 21B(u), where l5q1p22p1q2 .

TakingF(j)5r 1 /j2 1r 2 we end up with the system

V5
l

2
~q1

21q2
2!1

r 1

q1
2 1

r 2

q2
2 .

The associated Hamilton–Jacobi equation is separable in Cartesian and polar coordinates. T
system is an example of a system with closed trajectories under the influence of a Non
field.29 For l51, the generators take the form

T5c11c2 cos 2t1c3 sin 2t,

Q15~2c2 sin 2t1c3 cos 2t !q1 ,

Q25~2c2 sin 2t1c3 cos 2t !q2 .

They form a 3-dimensional Lie algebra,

X15
]

]t
,

X25cos 2t
]

]t
2q1 sin 2t

]

]q1
2q2 sin 2t

]

]q2
,

X35 sin 2t
]

]t
1q1 cos 2t

]

]q1
1q2 cos 2t

]

]q2
,

with bracket relations

@X1 ,X2#522X3 , @X1 ,X3#52X2 , @X2 ,X3#52X1 . ~55!

In other words, it is a simple Lie algebra of type A1 isomorphic to so(3, R). For l50 we obtain
a Lie algebra isomorphic to sl(2, R). In Ref.30 the most general form of a differential equatio
invariant under the action of the generators of sl(2, R) is determined.

We note that the similar system,

V5
l

2
~4q1

21q2
2!1

r 1

q1
1

r 2

q2
2 , ~56!

has]/]t as the only symmetry.
In general, the system V5(l/2)(q1

21q2
2)1(1/q2

2)F(q1 /q2) is integrable: Changing to polar
coordinates q15r cosu, q25r sinu we find that

V5
l

2
r 21

F~cotu!

r 2 sin2 u
5

l

2
r 21

B~u!

r 2 .

Letting l5q1p22p1q2 , the second integral is I51/2l 21B(u).
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The system V5(l/2)(q1
21q2

2)1m/(q11kq2)2 is integrable. It is a special case of (49) wit
F(j)5m/(j1k)2.
T linear: a950

In this casea(t) is a linear function of time.
From Eqs.~36! and~37! we deduce that the functionV(q1 ,q2) satisfies two partial differentia

equations of the form

l1Vq1q1
1l2Vq1q2

1l350, ~57!

l1Vq1q2
1l2Vq2q2

1l450. ~58!

In order to solve these equations, we consider the following cases:

~i! l1Þ0, l2Þ0,

~ii ! l150, l2Þ0 ~or l1Þ0, l250!,

~iii ! l15l25l35l450.

Without giving any more details, using Eqs.~34! and~35!, we are led to the following results
Subcase 2d:V5l1q2

21l2q1q21F(j),
wherej5q12lq2 . We obtain various forms of the generators depending on the form o

function F.
F5l3j2:
That is,V is quadratic of the form

V5l1q2
21l2q1q21l3q1

2. ~59!

We have followed the common practice of renaming the constants. The corresponding gen
are

T5c6 , Q15c1q21c3q11d1~ t !,
~60!

Q25c1q11S 2S l1

l2
2

l3

l2
D c11c3Dq21d2~ t !,

where d1(t) and d2(t) satisfy the o.d.e.’sd1912l3d1(t)1l2d2(t)50, and d2912l1d2(t)
1l2d1(t)50 ~7-parameter group!.

If l250 thenl1Þl3 , Q15c3q11d1(t), Q25c4q21d2(t) andd1(t), d2(t) satisfy the same
o.d.e.’s withl250.

We describe explicitly the Lie algebra for the potentialV(q1 ,q2)52 1
2q1

21 1
2q2

2. The Lie
algebra is 7-dimensional with generators:

X15
]

]t
, X25q1

]

]q1
, X35et

]

]q1
,

X45e2t
]

]q1
, X55q2

]

]q2
, X65cost

]

]q2
, X75sint

]

]q2
,

with ~nonzero! bracket relations
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@X1 ,X3#5X3 , @X1 ,X4#52X4 , @X1 ,X6#52X7 ,

@X1 ,X7#5X6 , @X2 ,X3#52X3 ,

@X2 ,X4#52X4 , @X5 ,X6#52X6 , @X5 ,X7#52X7 .

This Lie algebraL is solvable withL (1)5@L,L#5$X3 ,X4 ,X6 ,X7% andL (2)5$0%.
Remark: The system with the Hamiltonian,

H5 1
2 p1

21 1
2 p2

21l1q1
21l2q1q21l3q2

2, ~61!

is integrable. We can actually rotate the Hamiltonian to a separable one, obtain the se
integral and then rotate back to obtain the invariant in the original coordinates. So, we set

q15cosu Qx1sinu Qy ,

q252sinu Qx1cosu Qy ,

p15cosu px1sinu py ,

p252sinu px1cosu py .

The Hamiltonian H will be transformed to a new Hamiltonian which is a function of Qx , Qy , px

and py . The coefficient of QxQy in the rotated Hamiltonian is

~l12l3!sin2u1l2 cos 2u.

If l15l3 , we chooseu5p/4. If l1Þl3 , then we chooseu to satisfy

tan 2u5
l2

l32l1
.

Therefore, in the new coordinates the Hamiltonian is separable of the form

1
2px

21 1
2py

21m1Qx
21m2Qy

2.

We may choose the second integral to be px
21m1Qx

2 . The second integral for the original syste
is

I 5~cosu p12sinu p2!21m1~cosu q12sinu q2!2.

F arbitrary:
In this case,V has the form

V5l2S q1q21
12l2

2l
q2

2D1F~q12lq2!. ~62!

The corresponding generators are

T5c6 ,

Q15lc2q11c2q21ld2~ t !, ~63!

Q25c2q11
1

l
c2q21d2~ t !,
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whered2(t) satisfies the o.d.e.d291(l2 /l)d2(t)50 ~4-parameter group!.
Remark: Assumel51. The system with Hamiltonian

H5 1
2p1

21 1
2p2

21l2q1q21F~q12q2!, ~64!

is integrable. We can actually transform the Hamiltonian to a separable one, obtain the se
integral and then rotate back to obtain the invariant in the original coordinates. So, we set

q15
1

A2
Qx1

1

A2
Qy , q252

1

A2
Qx1

1

A2
Qy ,

p15
1

A2
px1

1

A2
py , p252

1

A2
px1

1

A2
py .

The Hamiltonian H will be transformed to a new Hamiltonian which is a function of Qx , Qy , px

and py . Therefore, in the new coordinates the Hamiltonian is separable of the form

1

2
px

21
1

2
py

21F~A2Qx!1
l2

2
~Qy

22Qx
2!.

We may choose the second integral to be1
2 px

21F(A2Qx)2(l2/2)Qx
2 . The second integral for the

original system is

I 5
1

4
~p12p2!21F~q12q2!2

l2

4
~q12q2!2.

F5l3jn, nÞ0,1,2:
In this case,V has the form

V5l2S q1q21
12l2

2l
q2

2D1l3~q12lq2!n, ~65!

with nÞ0,1,2.
The generators are

T52c5t1c6 ,

Q15c2~lq11q2!2
4

n22
c5q11ld2~ t !, ~66!

Q25c2S q11
1

l
q2D2

4

n22
c5q21d2~ t !,

whered2(t) satisfies the o.d.e.d291l2 /l d2(t)50.
If l250 then d2(t)5c31c4t and we end-up with a 5-parameter group. Note that fon

522 we are in subcase 2a with a 6-parameter group.
If l2Þ0, then we setc550 and we end up with a 4-parameter group~the same asF

arbitrary!.
For example, ifV(q1 ,q2)5q1q21(q12q2)3 then the Lie algebra is generated by
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X15
]

]t
, X25~q11q2!S ]

]q1
1

]

]q2
D ,

X35costS ]

]q1
1

]

]q2
D , X45sintS ]

]q1
1

]

]q2
D ,

with ~nonzero! bracket relations

@X1 ,X3#52X4 , @X1 ,X4#5X3 ,

@X2 ,X3#522X3 , @X2 ,X4#522X4 .

This Lie algebraL is solvable withL (1)5@L,L#5$X3 ,X4% andL (2)5$0%.
On the other hand, the potentialV(q1 ,q2)5(q12q2)3 gives a five-dimensional Lie algebra

This Lie algebra is isomorphic with the symmetry Lie algebra for the potentialV(q1 ,q2)5q1
3

which we examine later.
F5l3emj:

In this case,V has the form

V5l2S q1q21
12l2

2l
q2

2D1l3em~q12lq2!. ~67!

The generators are

T52c5t1c6 ,

Q15c2~lq11q2!2
4

m
c51ld2~ t !, ~68!

Q25c2S q11
1

l
q2D1d2~ t !,

whered2(t) satisfies the o.d.e.d291(l2 /l)d250.
If l250 thend2(t)5c31c4t and we end up with a 5-parameter group.
If l2Þ0, then we setc550 and we end up with a 4-parameter group~the same asF

arbitrary!.
The casel5m51 andl250 is the Toda Lattice, a well-known integrable system.31,32We will

calculate the Lie algebra of symmetries for the potential of the Toda latticeV(q1 ,q2)5eq12q2.
We obtain a five-dimensional Lie algebra with generators

X15
]

]t
, X252t

]

]t
24

]

]q1
,

X35~q11q2!S ]

]q1
1

]

]q2
D , X45S ]

]q1
1

]

]q2
D ,

X55tS ]

]q1
1

]

]q2
D ,

with ~nonzero! bracket relations
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@X1 ,X2#52X1 , @X1 ,X5#5X4 ,

@X2 ,X3#524X4 , @X2 ,X5#52X5 ,

@X3 ,X4#522X4 , @X3 ,X5#522X5 .

This Lie algebraL is solvable withL (1)5@L,L#5$X1 ,X4 ,X5%, L (2)5$X4% andL (3)5$0%.
For the casel2Þ0 we obtain a Lie algebra which is identical with the one inF arbitrary.

F5l3 logj:
Settingl250, V takes the form

V5l3 log~q12lq2!, ~69!

T52c5t1c6 ,

Q15lc2q11c2q212c5q11ld2~ t !, ~70!

Q25c2q11
1

l
c2q212c5q21d2~ t !,

whered2(t)5c3t1c4 ~5-parameter group!.
If l2Þ0 the result again is the same as inF arbitrary.
Subcase 2e:V5l1q2

21F(q1).
We obtain various forms of the generators depending on the form of the functionF.

F arbitrary:
The generators take the form

T5c6 , Q150, Q25c4q21d2~t!, ~71!

whered2(t) satisfies the o.d.e.d2912l1d2(t)50 ~4-parameter group!.
F5l2q1

n , nÞ22,0,1,2:
If l150, then

T52c5t1c6 , Q15
4

22n
c5q1 , Q25c4q21c1t1c2 ~72!

~5-parameter group!.
If l1Þ0, we setc550. We end up with a 4-parameter group. It is the same as inF arbitrary.
We will calculate explicitly the Lie algebra for the potentialV(q1 ,q2)5q1

3. For a basis we
choose the following five vector fields:

X15
]

]t
, X25t

]

]t
22q1

]

]q1
,

X35q2

]

]q2
, X45t

]

]q2
, X55

]

]q2
,

with ~nonzero! bracket relations

@X1 ,X2#5X1 , @X1 ,X4#5X5 ,

@X2 ,X4#5X4 , @X3 ,X4#52X4 , @X3 ,X5#52X5 .

This Lie algebraL is solvable withL (1)5@L,L#5$X1 ,X4 ,X5%, L (2)5$X5% andL (3)5$0%.
On the other hand, for the potentialV(q1 ,q2)5 1

2 q2
21q1

3 we obtain a 4-parameter group wit
basis
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X15
]

]t
, X25q2

]

]q2
, X35cost

]

]q2
, X45sint

]

]q2
.

This Lie algebraL is also solvable withL (1)5@L,L#5$X3 ,X4% and L (2)5$0%. It is isomorphic
with the algebra of symmetries of potential~65! which we already examined.
F5l2emq1:

If l150, then

T52c5t1c6 , Q15
24

m
c5 , Q25c4q21d2~ t !, ~73!

whered2(t) satisfies the o.d.e.d2912l1d250 ~5-parameter group!.
If l1Þ0, we setc550. It is the same case as inF arbitrary.

F5l2 logq1:
We setl150. ThenV5l2 logq1 and the generators take the form

T52c5t1c6 , Q152c5q1 , Q25c4q21c7t1c8 , ~74!

~5-parameter group!.
Remark: The potentials that appear in this case are clearly integrable, being sepa

potentials. At this point we have completed the analysis of a separable potential with one va
missing. The potential1/q1

2 was considered in subcase 2b. The potentials q1
n for n50,1 are

covered by Case 1. The potential q1
2 was considered in subcase 2d. The potential f(q1) falls under

subcase 2e.
Subcase 2f:
Equations~36! and~37! are satisfied@d1(t)5constant ,d2(t)5constant]. From Eqs.~34! and

~35! we obtain the following results.
1.

V5q2
NFS q1

q2
D , T5 1

2 c3~22N!t1c6 , Q15c3q1 , Q25c3q2 , ~75!

a 2-parameter group of transformations. The Lie algebra in this case is the two-dimen

non-Abelian Lie algebra with bracket@X1 ,X2#5 1
2 (22N)X1 if NÞ2 and an Abelian 2-

dimensional Lie algebra ifN52. We should mention that for certain choices ofF we may obtain
a larger symmetry group, e.g., forF(x)5xN, but generically the Lie algebra is 2-dimension
Some values ofN will also give different results. For example,N522 falls under subcase 2c.

Remark: In general, this system is not integrable, however, there are some integrab
amples. We mention the Holt potentials,19,20,33

V~q1 ,q2!5q2
22/3~cq2

21q1
2!, ~76!

wherec5 3
4, c5 9

2 andc512.
Also the Fokas–Lagerstro¨m potential,34

V~q1 ,q2!5
1

~q1
22q2

2!22/3. ~77!

Case 2f includes He´non–Heiles type potentials of the form cq2
31q1

2q2 . They are integrable
for the following values of c: c5 1

3, c52 andc5 16
3 .35–37

Finally, we mention the potential

V~q1 ,q2!5
q1

q2
. ~78!
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It was shown by Hietarinta38 that the second integral for this potential is a transcenden
function. It can be expressed as a combination of W1 and W2 , the standard Whittaker functions
i.e., the solutions of the equation

y91~ 1
4x

22a!y50. ~79!

2.

V5l1 logq21FS q1

q2
D , T5c3t1c6 ,

~80!

Q15c3q1 , Q25c3q2 ,

a 2-parameter group of transformations. The Lie algebra in this case is the two-dimen
non-Abelian Lie algebra with bracket@X1 ,X2#5X1 .

3.

V5emq1F~q2!, T5 1
2 c5t1c6 ,

~81!

Q152
c5

m
, Q250,

a 2-parameter group of transformations.
Remark: TakingF(q2)5e2mq2 we obtain again the Toda lattice. However, we already ha

seen that this system has a 5-parameter group of transformations. Therefore, for the s
potential we do not obtain a maximal admitted algebra. Generically, the symmetry gro
2-dimensional. For example, taking V(q1 ,q2)5eq1q2

3 gives a two-dimensional non-Abelian alg
bra with basis X15]/]t and X25t(]/]t) 22(]/]q1).

4.

V5emq1F~q12lq2!, T52 1
2 lmc8t1c6

~82!

Q15lc8 , Q25c8 ,

a 2-parameter group of transformations. The Lie algebra is again the two-dimensional non-A
Lie algebra with bracket@X1 ,X2#52 1

2 lmX1 .
Remark: We should mention that because of symmetry we do not list potentials of th

V(q1 ,q2)5emq2F(q22lq1). We can also replace q12lq2 with aq11bq2 . Takingm51, a51
and b522 we obtain the potential V(q1 ,q2)5eq12q21eq2. This is a generalized Toda lattic
associated with a Lie algebra of type B2 , first considered by Bogoyavlensky in Ref. 39.

5.

V5l1q1
n1l2q2

m , T5 1
2 c5t1c6 ,

~83!

Q15
c5

22n
q1 , Q25

c5

22m
q2 ,

a 2-parameter group of transformations. Here,nÞ0,1,2 andmÞ0,1,2 andm,n not both equal to
                                                                                                                



acket

same

g in a

nzero

al

is the

231J. Math. Phys., Vol. 40, No. 1, January 1999 P. Damianou and C. Sophocleous

                    
22. The Lie algebra in this case is the two-dimensional non-Abelian Lie algebra with br

@X1 ,X2#5 1
2 X1 . The symmetry Lie algebra for the potentials 6–10 satisfies precisely the

bracket relation.
6.

V5l1q1
n1l2 logq2 , nÞ0,1,2, T5 1

2 c5t1c6 , Q15
c5

22n
q1 , Q25

c5

2
q2 . ~84!

7.

V5l1q1
n1l2emq2, nÞ0,1,2, T5 1

2 c5t1c6 , Q15
c5

22n
q1 , Q252

c5

m
. ~85!

8.

V5l1 logq11l2 logq2 , T5 1
2 c5t1c6 , Q15

c5

2
q1 , Q25

c5

2
q2 . ~86!

9.

V5l1 logq11l2emq2, T5 1
2 c5t1c6 , Q15

c5

2
q1 , Q252

c5

m
. ~87!

10.

V5l1em1q11l2em2q2, T5 1
2 c5t1c6 , Q152

c5

m1
, Q252

c5

m2
. ~88!

11.

V5F~q1
21q2

2!, T5c6 , Q15c1q2 , Q252c1q1 , ~89!

a 2-parameter group of transformations. This is a unit mass in 2-dimensional space movin
central field, i.e., a potential which is a function ofr only. The functionq1p22q2p1 is a second
integral. Note that in this case the Lie algebra is Abelian.

12.

V5l~q1
21q2

2!n, nÞ21, 0, 1,

T52c5t1c6 , Q15c1q22
2

n21
c5q1 , Q252c1q12

2

n21
c5q2 , ~90!

a 3-parameter group of transformations. The Lie algebra is 3-dimensional with only no
bracket@X1 ,X2#52X1 . The casen52 1

2 is a Kepler problem. Forn521 the Lie algebra is
4-dimensional; it falls under subcase 2c. See~53! with l5c50 andm51.
Remark: This potential is a special case of system 1 with N52n. Taking n52, we have a system
of the form aq1

41bq1
2q2

21cq2
4. In general (for a, b, c non-zero) this system has a 2-dimension

group of symmetries unless b52a52c. Generically the potential V(q1 ,q2)5aq1
41bq1

2q2
2

1cq2
4 is not integrable, but for certain values of the parameters it becomes integrable. That

case when b56a56c or a516c, b512c or b56a, c58a.19,21,40

13.

V5l log ~q1
21q2

2!,
~91!

T52c5t1c6 , Q15c1q212c5q1 , Q252c1q112c5q2 ,
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a 3-parameter group of transformations. The Lie algebra, which is the same as in the pr
case, may not seem interesting, but inn dimensions it is a direct sum of a 2-dimensional L
algebra withso(n, R).

14.

V5l sin21
q1

22q2
2

q1
21q2

2 ,

~92!
T52c5t1c6 , Q15c1q212c5q1 , Q252c1q112c5q2 ,

a 3-parameter group of transformations. This potential can be written in the forml11l2u, in
polar coordinates. In other words, it is a linear function ofu.

VI. GENERALIZATIONS

Case 1 generalizes inn dimensions. Consider a Hamiltonian withn degrees of freedom,

H5
1

2(i 51

n

pi
21V~q1 ,q2 , . . . ,qn!,

and the associated Lagrange–Newton equations,

q̈i1Vqi
50 , i 51,2,. . . ,n . ~93!

As in the case of two degrees of freedom we seek point symmetries of Eqs.~93!. We consider
the equations

G~2!$q̈i1Vqi
%50, i 51,2,. . . ,n, ~94!

whereG (2) is the second prolongation of

G5T
]

]t
1(

i 51

n

Qi

]

]qi
. ~95!

Equations~94! give n identities of the form

Ei~ t,q1 ,q2 , . . . ,qn ,q̇1,q̇2, . . . ,q̇n!50, i 51,2,. . . ,n, ~96!

where, we have used thatq̇i52]V/]qi . The functions Ei are explicit polynomials in
q̇1,q̇2, . . . ,q̇n. We impose the condition that Eqs.~96! are identities in the variablest, qi , qi̇

which are regarded as independent.
Again, the functionsT andQi must be of the form

T5a~ t !1(
i 51

n

bi~ t !qi ,

Qi5 (
k51

n

bk8~ t !qiqk1 (
k51

n

cik~ t !qk1di~ t !, i 51,2,. . . ,n . ~97!

We substitute~97! into ~96!. By considering the coefficient ofq̇k in Ej we obtain the followingn2

equations:
For j Þk,
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bk9~ t !qj1cjk8 ~ t !1
]V

]qj
bk50, ~98!

and for j 5k,

2cj j8 ~ t !2a9~ t !13bj9~ t !qj13
]V

]qj
bj1(

i 5” j
S bi9~ t !qi1

]V

]qi
bi~ t ! D50. ~99!

It follows from Eqs.~98! that V is quadratic of the form

V5(
i 51

n

l iqi
21(

i 51

n

m iqi , ~100!

unlessbi(t)50 for i 51,2,. . . ,n.
Substituting~100! into ~99!, we obtain

bi912l ibi50, i 52,3,. . . ,n

and

bi912l1bi50, i 52,3,. . . ,n.

Therefore for nonzerobi(t), we necessarily have

l15l25¯5ln .

Hence,V is of the form

V5
l

2(
i 51

n

qi
2,

where the linear terms are ignored.
One can easily deduce the form of the generatorsa(t) is a solution of a second order equatio

of the form a914la5c. ~3 parameters!; bi(t) is a solution ofbi91lbi50. (2n parameters!;
di(t) is a solution ofdi91ldi50. (2n parameters!; ci j (t) are constant foriÞ j andckk5ct1ck

22l*a(t)dt (n2 parameters!.
Therefore, the dimension of the symmetry algebra is 312n12n1n25(n12)221.
The case of the harmonic oscillator has been studied in Ref. 41 where it is shown th

symmetry group for a time-dependent harmonic oscillator isSL(n12, R).
Whenl50, the potential energy is zero and we have a free particle moving inRn. In this case

the generators take the following simple form:

a~ t !5c11c2t1ct2, bi~ t !5a i1b i t,

di~ t !5g i1d i t, cii 5e i1ct, ~101!

ci j 5k i j , iÞ j .

The dimension is again (n12)221.
This dimension is in agreement with the results in Ref. 42, where upper bounds fo

dimension of symmetry groups are obtained.
In case 2,bi(t)50 for i 51,2,. . . ,n and Eqs.~99! and ~100! imply that

cjk~ t !5cjk , for j Þk,

cj j ~ t !5 1
2 a8~ t !1cj j ,
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wherecjk are constants. Equations~96! now become

1

2
a-~ t !qi1di9~ t !1 (

k51

n
]2V

]qi]qk
gk1

3

2
a8~ t !

]V

]qi
2 (

k51

n

cik

]V

]qk
50, ~102!

for i 51,2,. . . ,n, where

gk5
1

2
qka8~ t !1(

j 51

n

ck jqj1dk~ t !. ~103!

Using Eqs.~102! we can prove the following.

~1! The potentialq1
2 has ann213 parameter group of symmetries.

~2! The potential 1/q1
2 has ann212 parameter group of symmetries.

~3! The potentialq1
k ,k¹$22,0,1,2% has ann211 parameter group of symmetries.

~4! The potential f ~q1! where f is arbitrary but not exponential, logarithmic
or a power has ann2 parameter group of symmetries.

We give the proof for the potential

V~q1 ,q2 , . . . ,qn!5 1
2 q1

2.

The proof for the other three cases is similar. Since the variablesq2 ,q3 , . . . ,qn are missing, Eqs.
~102! for k52,3,. . . ,n become

1
2 a-qk1dk92ck1q150.

Therefore,a-50, dk(t)5jk1hkt, and ck150 for k52,3,. . . ,n. On the other hand, the firs
equation in~102! gives

d191g11S 3

2
a82c11Dq150,

where

g15
1

2
q1a81(

j 51

n

c1 jqj1d1 .

Therefore,a8(t)50, d1(t)5c2 cost1c3 sint, andc1 j50 for j 52,3,. . . ,n.
We obtain the following form for the generators:

T5c1 ,

Q15c11q11c2 cost1c3 sint, ~104!

Qk5(
j 52

n

ck jqj1jk1hkt, k52, . . . ,n.

Therefore, the dimension of the algebra of symmetries is 41(n21)212(n21)5n213.
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Superintegrability of the Calogero–Moser system:
Constants of motion, master symmetries,
and time-dependent symmetries

Manuel F. Rañadaa)
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The classicaln-dimensional Calogero–Moser system is a maximally superinte-
grable system endowed with a rich variety of symmetries and constants of motion.
In the first part of the article some properties related with the existence of several
families of constants of motion are analyzed. In the second part, the master sym-
metries and the time-dependent symmetries of this system are studied. ©1999
American Institute of Physics.@S0022-2488~99!01401-2#

I. INTRODUCTION

A superintegrable system is a system that is integrable~in the sense of Liouville–Arnold! and
that, in addition to this, possesses more globally defined constants of motion than degr
freedom. If the numberN of independent constants takes the valueN52n21 (n the number of
degrees of freedom! then the system is called maximally superintegrable~see Refs. 1–19!. There
are three well known cases of this very particular class of systems, namely, the Kepler pro
the isotropic harmonic oscillator, and the nonisotropic oscillator with rational frequencies
Kepler possesses not only the energy and the angular momentum but also the Runge–Lenz
five of these integrals are functionally independent. The harmonic oscillator is a system tr
integrable since it is a direct sum of one degree of freedom systems. If the oscillator is iso
then it has the angular momentum as an additional integral of motion. If the oscillator is no
tropic then the angular momentum is not preserved but in the very particular case in whi
quotients of the frequencies are rational the system has other additional nonlinear integrals
these three cases it is known that all the orbits became closed for the case of bounded m
This high degree of regularity~the existence of periodic motions! is a consequence of the supe
integrable character.

The system of Calogero–Moser20–26 is a system ofn particles in which the interaction forc
between every two particles is given by the inverse of the square of their relative distance
Lagrangian of this system is given by

LCM5
1

2 (
j 51

n

v j
22(

i , j
Vi j , Vi j 5

c0
2

qi j
2 ,

whereqi j 5qi2qj , i , j 51,2,. . . ,n, andc0 is an arbitrary constant~the masses of the particles a
set equal to unity!. This system has been extensively studied from many different viewpoints~see
Refs. 27–29 for general reviews on the Calogero–Moser system and Refs. 30–36 for some
published in these last years!. Wojciechowsky proved in Ref. 4 that the Calogero–Moser sys
is not only integrable but even maximally superintegrable, that is, there existN52n21 indepen-
dent integrals of motion. More recently Kutnetsov33 and Gonera35 have also proved that th
corresponding quantum system is superintegrable as well.

a!Electronic mail: mfran@posta.unizar.es
2360022-2488/99/40(1)/236/12/$15.00 © 1999 American Institute of Physics
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In this article we will study some properties closely related with the superintegrability o
Calogero–Moser system. The article is organized as follows: In Sec. II we discuss the exi
and properties of the additional families of constants of motion. In Sec. III, we discus
existence and the geometric properties of master symmetries, and in Sec. IV we study th
tence of time-dependent constants of motion. Finally, in Sec. V we make some final comm

II. SUPERINTEGRABILITY OF THE CALOGERO–MOSER SYSTEM

Moser proved26 that the Calogero system can be presented as a Lax equation,

dA

dt
5@A,B#, A5A11 ic0A2 , B5 ic0~B12B2!,

whereA1 andB1 denote the diagonal matrices,

A15diagonal@v1 ,v2 , . . . ,vn#, B15diagonalF(
j Þ1

x1 j
2 ,(

j Þ2
x2 j

2 , . . . ,(
j Þn

xn j
2 G

andA2 andB2 take the form

A25@~12d i j !xi j #, B25@~12d i j !xi j
2 #,

where, for ease of notation, we usexi j for denoting 1/qi j . The important point is that, because
the Lax equation, the traces of the powers of the matrixA are constants of motion,

I k5S 1

kD tr Ak,
d

dt
I k50, k51,2,. . . ,n.

Moreover, thesen functionsI k , k51,2,. . . ,n, are globally defined, independent, and in invo
tion. They take the form

I k5S 1

kD ~v1
k1v2

k1¯1vn
k!1terms of lower order in the velocities.

Wojciechowsky proved in Ref. 4 the existence of an additional family of integralsK j , j
52,3,. . . ,n. One of the main differences between this new family and the old one is that the
or leading term of then functionsI k is q-independent~this term is dominant for large values of th
qi); whereas the first term of then21 functionsK j is linear in the coordinatesq.

It is known~see, e.g., Refs. 18, 19! that the potentialV(x,y)5k/x2 (k is an arbitrary constant!
is superintegrable. Two fundamental constants of motion,I 1 and I 2 , are

I 15vy , I 25S 1

2D ~vx
21vy

2!1S k

x2D ,

and, concerning the third constant, one can choose any one of the two following quadratic
tions:

K25~xvy2yvx!vx22kS y

x2D ,

J25~xvy2yvx!
212kS y

xD 2

.

This potential can be transformed into then52 Calogero–Moser potential by a rotation. Then t
function K2 becomes then52 particular case of the integral obtained by Wojciechowsky. N
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we will prove thatJ2 , which is quadratic in the angular momentum, can also be considered
very particular case of a family of integrals for the generaln-particle Calogero–Moser system.

In the following we will make use of the matrixQ defined by

Q5diagonal@q1 ,q2 , . . . ,qn#.

Notice that the time-evolution ofQ can be written as follows:

Q̇5@Q,B#1A.

Let us denote byTr
(q) the following functions:

Tr
~q!5tr~QqAr !.

Then we have the following proposition.
Proposition 1: The traces Tr

(2) and Tr
(1) satisfy the following two properties:

~a!
d

dt
Tr

~2!52Tr 11
~1! ,

~b!
d

dt
Tr

~1!5Tr 11
~0! .

Proof: The time derivative ofTr
(2) can be written as

d

dt
Tr

~2!5
d

dt
@ tr~Q2Ar !#5trF d

dt
~Q2Ar !G5tr~M11M2!,

where the two matrices,M1 andM2 , are given by

M15Q̇QAr1QQ̇Ar5~@Q,B#1A!QAr1Q~@Q,B#1A!Ar

5~Q2BAr2BQ2Ar !1~AQAr1QAr 11!

and

M25 (
p51

r

Q2Ap21ȦAr 2p5 (
p51

r

Q2Ap21@A,B#Ar 2p5Q2ArB2Q2BAr .

Hence

tr~M11M2!5tr~Q2ArB2BQ2Ar !1tr~AQAr1QAr 11!

5tr~@Q2Ar ,B# !12 tr~QAr 11!52Tr 11
~1! .

Property~b! is proved in a similar way:

d

dt
Tr

~1!5
d

dt
@ tr~QAr !#5trF d

dt
~QAr !G5tr~N11N2!,

where the two matrices,N1 andN2 , take the form

N15Q̇Ar5~QB2BQ!Ar1Ar 11

and
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N25 (
p50

r

QAp21ȦAr 2p5 (
p50

r

QAp21@A,B#Ar 2p5QArB2QBAr .

Hence

tr~N11N2!5tr~QArB2BQAr !1tr Ar 115tr~@QAr ,B# !1tr Ar 115Tr 11
~0! .

Notice that this proposition means that the tracesTr
(1) are nonconstant functions generatin

integral of motion by a time derivation. Similarly, theTr
(2) generate also constants of motion b

now making use of two successive time derivations.
Making use of the above proposition, it is easy to prove that the following two familie

functions,Krs andJrs , defined by

Krs5rI rTs21
~1! 2sIsTr 21

~1! ,

Jrs5~r 11!I r 11Ts21
~2! 1~s11!I s11Tr 21

~2! 22Tr
~1!Ts

~1! ,

are constants of motion. The first family of integrals,Krs , r ,s51,2,. . . ,n, has been studied in
Ref. 4.

Of course, the existence of these two families means an excessive number of integral
the maximum number of~time-independent! functionally independent integrals isN52n21.
Notice thatKsr52Krs and Jsr5Jrs ; so the total number of elements in every one of the
two-parametric families is (1/2)n(n21) and (1/2)n(n11), respectively. We will focus our at
tention in the following more reduced one-parameter familiesKr[K1r andJ2r[(1/2)Jrr . That is

Kr5I 1Tr 21
~1! 2rI rT0

~1! ,

J2r5~r 11!I r 11Tr 21
~2! 2~Tr

~1!!2.

The functionsJ2r , r 51,2 . . . ,n, generalize the above-mentioned functionJ2 of then52 particle
system.

Next we present the form of the integralsKr andJ2r for the particular casen53. We denote
by Lk j the components of the angular momentum, that is,Lk j5qkv j2qjvk .
~a! The functionsKr have the following expressions:

K25@ tr~QA!#I 12@ tr~Q!#~2I 2!

5L21~v22v1!1L32~v32v2!1L13~v12v3!

1other terms of lower order,

K35@ tr~QA2!#I 12@ tr~Q!#~3I 3!

5L21~v2
22v1

2!1L32~v3
22v2

2!1L13~v1
22v3

2!

1other terms of lower order,

K45@ tr~QA3!#I 12@ tr~Q!#~4I 4!

5L21~v2
32v1

3!1L32~v3
32v2

3!1L13~v1
32v3

3!1¯ .

~b! The functionsJ2r have the following expressions:

J25@ tr~Q2!#~2I 2!2@ tr~QA!#25L21
2 1L32

2 1L13
2 1other terms of lower order,
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J45@ tr~Q2A!#~3I 3!2@ tr~QA2!#2

5L21
2 ~v2v1!1L32

2 ~v3v2!1L13
2 ~v1v3!

1other terms of lower order,

J65@ tr~Q2A2!#~4I 4!2@ tr~QA3!#25L21
2 ~v2v1!21L32

2 ~v3v2!21L13
2 ~v1v3!21¯ .

Therefore, the leading term of the the familyKr is linear in the angular momentum, and th
leading term of the familyJ2r is quadratic.

III. MASTER SYMMETRIES

From this point we will make use of the Hamiltonian formalism.
The Hamiltonian phase spaceM is the 2n-dimensional cotangent bundleM5T* Q of the

n-dimensional configuration spaceQ. Cotangent bundles are manifolds endowed, in a natura
canonical way, with a symplectic structurev0 that in coordinates,$(qi ,pi); i 51,2,. . . ,n%, is
given by37–40

v05dqi∧dpi

~summation on the indexi is understood!. This symplectic structure defines a one-to-one relati
ship between the setX(M ) of vector fields onM and the set∧1(M ) of one-forms onM as
follows: To every vector fieldX we associate a one-formaX given by the contraction ofX with
v0 ; that is,X°aX5 i (X)v0 . Conversely, to every one-forma we can associate the vector fie
Xa uniquely determined as a solution of the equationi (Xa)v05a.

Given a differentiable functionF5F(q,p), the vector fieldXF defined as the solution of th
equation

i ~XF!v05dF,

is called the Hamiltonian vector field of the functionF. At this point we make following three
observations.

~1! The Hamiltonian vector field of a given function is uniqueley defined~without ambigu-
ities!. This uniqueness is a consequence of the symplectic character of the two-formv0 .

~2! Suppose that we are given a HamiltonianH5H(q,p). Then the dynamics is given by th
Hamiltonian vector fieldGH of the Hamiltonian function. That is,i (GH)v05dH.

~3! If I is a constant of motion forH then, according to the Noether approach to the dynam
we can consider thatI arises from a symmetry. In this case the symmetry is geometric
represented by the Hamiltonian vector fieldXI of the functionI .

Let us now return to the Calogero–Moser system. For ease of notation, we will frequ
denoteTr

(1) just by Tr , and we writerI r instead ofTr
(0) . We will not change the notation for th

constants of motion and we will continue writingI r , Kr , J2r , r 51,2,. . . ,n, for the correspond-
ing functions but now considered as functions of the momenta. We will denote byG r the Hamil-
tonian vector field ofI r except for the caseG2 corresponding toI 25H that will be denoted just by
G.

Proposition 2: Let Xr
(1) be the Hamiltonian vector field of the function Tr

(1) with respect the

canonical symplectic structurev0 , and let X̃r
(1) be the vector field defined by X˜

r
(1)5@Xr

(1) ,G#.
Then the vector field X˜

r
(1) is a symmetry of the dynamical vector fieldG.

Proof: Let us denote byG r
K the Hamiltonian vector field of the functionKr ,

i ~G r
K!v05dKr .

The functionKr is given by
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Kr5I 1Tr 212rI rT0 ;

therefore

dKr5I 1dTr 212~rI r !dT01Tr 21dI12~rT0!dIr .

Thus the vector fieldG r
K takes the form

G r
K5I 1Xr 21

~1! 2~rI r !X0
~1!1Tr 21G12~rT0!G r .

Hence, the Lie bracket ofG r
K with the dynamical vector fieldG can be written as follows:

@G r
K ,G#5I 1@Xr 21

~1! ,G#2~rI r !@X0
~1! ,G#1Tr 21@G1 ,G#2~rI 0!@G r ,G#

2G~ I 1!Xr 21
~1! 1rG~ I r !X0

~1!2G~Tr 21!G11rG~T0!G r .

The functionsI r ,Kr , r 51,2,. . . ,n, are constants of motion, and the associated vector fi
G r ,G r

K , are symmetries ofG,

G~ I r !50, @G r ,G#50, @G r
K ,G#50, r 51,2,. . . ,n,

Thus, if we denote byX̃r
(1) the vector fields,

X̃r
~1!5@Xr

~1! ,G#, r 51,2,. . . ,n,

we arrive at

I 1X̃r 21
~1! 5~rI r !X̃0

~1!1G~Tr 21!G12rG~T0!G r5~rI r !@X̃0
~1!1G1#2rI 1G r .

Notice thatG1 and X0
(1) that are the Hamiltonian vector fields of the functionsI 15tr(A)5p1

1p21¯1pn , andT0
(1)5tr(Q)5q11q21¯1qn , take the following form in coordinates:

G15
]

]q1
1

]

]q2
1¯1

]

]qn
, X0

~1!52
]

]p1
2

]

]p2
2¯2

]

]pn
.

Making use of these two expressions we obtain

@X0
~1! ,G#52G1 .

So, we thus arrive at the following two equations:

X̃r 21
~1! 52rG r , @X̃r 21

~1! ,G#50,

and the proposition is proved.
In differential geometric terms, a symmetry of the dynamics is a vector fieldXPX(M ) such

that @X,GH#50 ~this geometric approach is also valid in the Lagrangian case but thenM is given
by the tangent bundleM5TQ). A vector fieldX that satisfies the following two properties:

@X,GH#Þ0, @@X,GH#,GH#50,

is called a ‘‘master symmetry’’ or a ‘‘generator of symmetries’’ of degreem51 for GH ~see Refs.
41–43!. If X is such that

@X,GH#Þ0, @@X,GH#,GH#Þ0, and @@@X,GH#,GH#,GH#50,

then it is called a ‘‘master symmetry’’ or a ‘‘generator of symmetries’’ of degreem52.
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Next we illustrate this situation with a simple example. The HamiltonianH and the vector
field GH of the n51 free particle are given by

H5S 1

2D p2, GH5p
]

]q
.

Then the vector fieldX5]/]p satisfies

F ]

]p
,p

]

]qG5
]

]q
, and F ]

]q
,p

]

]qG50.

So X5]/]p is a ‘‘master symmetry’’ of degreem51 for the free particle.
Consequently, and according to proposition 2, the vector fieldsXr

(1) , r 51,2 . . . ,n, are ‘‘mas-
ter symmetries’’ of degreem51 for the Calogero-Moser system. Now we consider the case o
functionsTr

(2) .
Proposition 3: The Hamiltonian vector field Xr

(2) of the function Tr
(2) is a ‘‘generator of

symmetries’’ of degree m52.
Proof: Let us denote byG2r

J the Hamiltonian vector field of the functionJ2r ,

i ~G2r
J !v05dJ2r .

The functionJ2r is given by

J2r5~r 11! I r 11Tr 21
~2! 2~Tr !

2;

therefore

dJ2r5~r 11!I r 11dTr 21
~2! 1~r 11!Tr 21

~2! dIr 1122TrdTr .

Hence the vector fieldG2r
J takes the form

G2r
J 5~r 11!I r 11Xr 21

~2! 1~r 11!Tr 21
~2! G r 1122TrXr

~1! .

The Lie bracket ofG2r
J with the dynamical vector fieldG is given by

@G2r
J ,G#5~r 11!I r 11@Xr 21

~2! ,G#1~r 11!Tr 21
~2! @G r 11 ,G#22Tr@Xr

~1! ,G#

2~r 11!G~ I r 11!Xr 21
~2! 2~r 11!G~Tr 21

~2! !G r 1112G~Tr !Xr
~1! .

We recall first that the functionsI r , r 51,2,. . . ,n are constants of motion, and that the associa
vector fieldsG r are symmetries ofG, and second that the Lie derivatives ofTr

(1) and Tr
(2) with

respect toG are given by

G~Tr
~1!!5Tr 11

~0! 5~r 11!I r 11 , G~Tr
~2!!52Tr 11

~1! .

Thus, if we denote byX̃r
(1) and X̃r

(2) the following vector fields:

X̃r
~1!5@Xr

~1! ,G#, X̃r
~2!5@Xr

~2! ,G#, r 51,2,. . . ,n,

the Lie bracket ofG2r
J with G becomes

@G2r
J ,G#5~r 11!I r 11X̃r 21

~2! 22TrX̃r
~1!22~r 11!Tr

~1!G r 1112~r 11!I r 11Xr
~1!

5~r 11!I r 11@X̃r 21
~2! 12Xr

~1!#.
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The vector fieldG2r
J is a symmetry of the dynamics; so it satisfies,@G2r

J ,G#50. Therefore, we
have arrived at the following three properties:

@Xr
~2! ,G#5X̃r

~2!Þ0, r 51,2,. . . ,n,

@X̃r
~2! ,G#522X̃r 11

~1! 52~r 12!G r 12 ,

@@X̃r
~2! ,G#,G#50,

which state thatXr
(2) is a ‘‘generator of symmetries’’ forG of degreem52.

We close this section with the following observations.
It is known that ifR andS are constants of motion for a Hamiltonian system then so is

Poisson bracket$R,S%. For the Calogero–Moser system the situation is more general sinc
functionsMrs defined byMrs5$Tr ,I s% are also constants of motion,

d

dt
Mrs5H dTr

dt
,I sJ 1H Tr ,

dIs

dt J 50.

Nevertheless they do not represent new functions. We have directly verified that

Mrs5~r 1s21!I r 1s21 , r ,s51,2,3.

In geometric terms this property is as follows. The vector fieldZrs defined byZrs5@Xr ,X̃s# is a
symmetry of the dynamics

@Zrs ,G#5@@G,X̃s#,Xr #1@X̃r ,X̃s#50.

Then it can be proven that

i ~Zrs!v05~s11!d$Tr ,I s11%.

Consequently, the constantMrs11 is the Hamiltonian function of the vector fieldZrs .
An important point is that ifH is an arbitrary Hamiltonian, andF a function such that its

Hamiltonian vector fieldXF is a master symmetry forGH , thenI F5GH(F) is a constant of motion
for H. Conversely, ifI is a constant of motion forH, and if the two equations,

i ~XI !v05dI, @X,GH#5XI ,

admit as a solution a well defined complete vector fieldX, thenX is a master symmetry forGH .
Therefore, the existence of master symmetries can be considered as a property closely

with the theory of constants of motion. Nevertheless, in most of cases, obtaining master s
tries implies a very difficult calculus. The important point concerning the Calogero–Moser sy
is that, as this system is very peculiar, we can obtain, in a simple and direct way, the Hamil
functions,Tr

(1) andTr
(2) , of the master symmetries of the system.

IV. TIME-DEPENDENT SYMMETRIES

The time-dependent Hamiltonian formalism has as phase space the manifoldM defined as
M5T* Q3R, and as a fundamental geometric structure the~nonsymplectic! two-form VH de-
fined as

VH5v01dH∧dt.

The dynamics is now given by the unique time-dependent vector fieldGH defined as solution of
the following two equations:
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i ~GH!VH50, i ~GH!dt51.

Notice that, in fact, the dynamical equation is the first one; the second equation must be con
as a restriction that leads to the uniqueness of the solution. In coordinatesGH takes the form

GH5S ]H

]pi
D ]

]qi
2S ]H

]qi
D ]

]pi
1

]

]t
.

We now apply the results obtained in Sec. III to the theory of time-dependent symmetr
the Calogero–Moser system. We first recall that a time-independent HamiltonianH5H(q,p) can
also be endowed with time-dependent constants of motionI 5I (q,p,t).

Let H be a time-independent Hamiltonian, andX a ~time-independent! master symmetry for
GH . Then the time-dependent vector fieldYX defined by42–43

YX5X1t@X,GH#1~ 1
2!t

2@@X,GH#,GH#

is a time-dependent symmetry ofH. If the degree ofX is m51 then YX will determine a
time-dependent constant of motionI t linear in the timet; if m52 then this constant will be
quadratic int.

As an example, let us consider once more the case of then51 free particle. Then we have

X5
]

]p
, YX5t

]

]q
1

]

]p

and

F t
]

]q
1

]

]p
,p

]

]q
1

]

]t G50.

Notice that in this case,

i ~YX!VH52d~q2tp!,

so, the time-dependent constant of motionI 5I (q,p,t) arising from the vector fieldYX is I 5q
2tp.

We denote byYr
(1) the time-dependent symmetry of the Calogero–Moser system determ

by Xr
(1) ,

Yr
~1!5Xr

~1!1t@Xr
~1! ,G#.

In order to obtain the associated time-dependent constant of motion, we must calculate th
traction of the vector fieldYr

(1) with the two-formVH ,

i ~Yr
~1!!VH5 i ~Xr

~1!!v01@ i ~Xr
~1!!dH#dt1t i ~X̃r

~1!!v01t@ i ~X̃r
~1!!dH#dt.

We have

i ~Xr
~1!!v05dTr

~1! ,

i ~Xr
~1!!dH5Xr

~1!~dH!52G~Tr
~1!!52~r 11!I r 11 ,

i ~X̃r
~1!!v052~r 11!i ~G r 11!v052~r 11!dIr 11 ,

i ~X̃r
~1!!dH5X̃r

~1!~H !52~r 11!G r 11~H !50.
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Thus, we arrive at

i ~Yr
~1!!VH5d@Tr

~1!2~r 11!tI r 11#.

Consequently the time-dependent functionsI r
t , r 51,2,. . . ,n, defined by

I r
t 5Tr 21

~1! 2rtI r ,

are time-dependent constants of motion for the Calogero–Moser system.
Next we consider the time-dependent symmetry of the Calogero–Moser system determi

Xr
(2) ,

Yr
~2!5Xr

~2!1tX̃r
~2!1~ 1

2!t
2@X̃r

~2! ,G#.

In this second case the contraction of the vector fieldYr
(2) with the two-formVH is given by

i ~Yr
~2!!VH5 i ~Xr

~2!!v01@ i ~Xr
~2!!dH#dt1t i ~X̃r

~2!!v01t@ i ~X̃r
~2!!dH#dt

1~ 1
2!t

2i ~@X̃r
~2! ,G#!v01~ 1

2!t
2@ i ~@X̃r

~2! ,G#!dH#dt.

Now we have

i ~Xr
~2!!v05dTr

~2! ,

i ~Xr
~2!!dH5Xr

~2!~H !52G~Tr
~2!!522Tr 11

~1! ,

i ~X̃r
~2!!v0522i ~Xr 11

~1! !v0522dTr 11
~1! ,

i ~X̃r
~2!!dH522i ~Xr 11

~1! !~dH!52G~Tr 11
~1! !52~r 12!I r 12 ,

i ~@X̃r
~2! ,G#!v052~r 12!i ~G r 12!v052~r 12!dIr 12 ,

i ~@X̃r
~2! ,G#!dH52~r 12!G r 12~H !50.

Thus, we arrive at

i ~Yr
~2!!VH5d@Tr

~2!22tTr 11
~1! 1~r 12!t2I r 12#.

Consequently the time-dependent functionsJr
t , r 51,2,. . . ,n, defined by

Jr
t 5Tr 21

~2! 22tTr
~1!1~r 11!t2I r 11 ,

are time-dependent constants of motion for the Calogero–Moser system.
Now, with the knowledge of these time-dependent integrals, we can consider a new ap

to the two time-independent families of constants obtained in Sec. II.
It can be proven that, after some calculus, the integralsKrs and Jrs can be rewritten as

follows:

Krs5~rI r !I s
t 2~sIs!I r

t ,

Jrs5~r 11!I r 11Js
t 1~s11!I s11Jr

t 22I r 11
t I s11

t .

So, in a sense, the existence ofKrs andJrs can be considered as a consequence of the existen
I r

t andJr
t . Everyone of theKrs ~with the two indices! appears as arising from an algebraic pairi
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of I r
t with I s

t . Similarly, every one of theJrs arises from a pairing ofJr
t andI r 11

t with Js
t andI s11

t .
Notice that, in both constructions, the previous existence of the fundamental familyI r is neces-
sary.

We close this section with then53 particular case as an example. In this simple case
time-dependent functionsI 1

t , I 2
t , andJ1

t , have the following expressions:

I 1
t 5~q11q21q3!2t~p11p21p3!,

I 2
t 5~q1p11q2p21q3p3!2t@p1

21p2
21p3

212~V121V231V13!#,

J1
t 5~q1

21q2
21q3

2!22t~q1p11q2p21q3p3!2t2@p1
21p2

21p3
212~V121V231V13!#.

V. FINAL COMMENTS

The Calogero–Moser system is a maximally superintegrable system that is endowed
great amount of different symmetries. The associated constants can be grouped in familie
first and fundamental family is the one studied by Moser in Ref. 26 which is directly related
the Lax equation. There exist, in addition to this fundamental one, other different families. I
article we have analyzed the properties of four families. Two of them are time-independen

Krs5rI rTs21
~1! 2sIsTr 21

~1! ,

Jrs5~r 11!I r 11Ts21
~2! 1~s11!I s11Tr 21

~2! 22Tr
~1!Ts

~1! ,

and the other two are time-dependent,

I r
t 5Tr 21

~1! 2rtI r ,

Jr
t 5Tr 21

~2! 22tTr
~1!1~r 11!t2I r 11 .

Finally, let us comment that the existence of some integrable Calogero-related system
Calogero interacting particles in an external field have been proven. It is known that fo
particular casen52 the constantJ2 is compatible with a harmonic oscillator~see, e.g., Refs. 2, 18
19!. We think that a prolongation of this study could be the analysis of similar properties fo
n-dimensional Calogero–Moser system wih harmonic oscillators.

Note added in proof. We have found the additional Ref. 44 that also studies the existenc
master symmetries and the Calogero–Moser system.
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18M. F. Rañada, J. Math. Phys.38, 4165–4178~1997!.
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The study of dromion interactions of „211…-dimensional
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Starting from a two-line soliton solution of an integrable (211)-dimensional sys-
tem in bilinear form, one can find a dromion solution that is localized in all direc-
tions for a suitable potential. The interaction between two dromions is studied in
detail through the method of figure analysis for a (211)-dimensional modified
Korteweg–deVries~KdV! system, sine–Gordon system and Sawada–Kotera sys-
tem. Except for a phase shift, there are no changes in the shape and velocity of the
dromions after interactions for these models. The interactions of dromions for these
models are not only elastic~there is no exchange of energy! but also irrotational
~there is no exchange of angular momentum!. © 1999 American Institute of Phys-
ics. @S0022-2488~98!03112-0#

I. INTRODUCTION

Recently, since the pioneering work of Boitiet al.,1 the study of the exponentially localize
soltion solutions, called dromions, in (211)-dimensions has been attracting much attention fr
physicists and mathematicians. Usually, dromion solutions are driven by two or more nonp
straight-line ghost solitons. For instance, for the Davey–Stewartson~DS!2 and the Nizhnik–
Novikov–Veselov~NVV !3 equations, their dromion solutions are driven by two perpendicular
ghost solitons.1,4 For the Kadomtsev–Petviashivili~KP! equation, the dromion solutions are drive
by nonperpendicular line ghost solitons.5 For one type of nonlinear models, say, the DS, NN
and asymmetrical NNV~ANNV !6 equations, the dromion solutions exist for the physical fiel
However, for other types of equations like the KP and the breaking soliton equations, the dr
solutions exist only for some suitable potentials of the field.5,7 More recently, even more gene
alized dromion solutions which are driven by curved and straight-line solitons for some typ
(211)-dimensional nonlinear modes are found.8

In this paper, we are interested in the interaction of dromions for (211)-dimensional inte-
grable systems. It is well known that the interactions of (111)-dimensional solitons are elastic
There is no exchange of energy~no change of shape and velocity! among interacting solitons. We
hope to know whether the interactions among dromions for (211)-dimensional integrable sys
tems are elastic or not. Different from (111)-dimensional cases, the interactions between
(211)-dimensional objects with finite size, say, dromions, may lead to rotations. So we ho
know also whether there are exchanges of angular momentum among interacting dromio
other words, whether the interactions among dromions are rotational or irrotational.

The paper is organized as follows. In Sec. II, the multi-dromion solutions are given for
(211)-dimensional integrable systems, modified KdV~MKdV !, Sawada–Kotera~SK!, and sine–
Gordon~SG! systems. The plots of interaction of two dromions for two systems are shown in
III. Section IV includes a summary and discussion.

a!Mailing address.
2480022-2488/99/40(1)/248/8/$15.00 © 1999 American Institute of Physics
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II. MULTI-DROMION SOLUTION OF A THREE „211…-DIMENSIONAL INTEGRABLE
SYSTEM

A. Multi-dromion solutions of the MKdV system

The bilinear form of the (211)-dimensional MKdV system can be written as

A~DX!~ f • f 1g•g![A~Dx ,Dy ,Dt!~ f • f 1g•g!50, ~1!

B~DX! f •g[B~Dx ,Dy ,Dt! f •g50, ~2!

whereA andB are even and odd functions of their variablesX5(x,y,t) andDX5(Dx ,Dy ,Dt),
respectively. TheD-operators are defined by9,10

Dx
nDy

mDt
pf •g[~]x2]x8!

n~]y2]y8!
m~] t2] t8!

p
„f ~X!•g~X8!…uX85X . ~3!

It can be proved that a single dromion solution of the equation system~1! and ~2! exists if a
physical field is defined suitably.

u5L~]X!K~]X!„tan21~g/ f !…[~a1]x1b1]y!~a1]x1b2]y!„tan21~g/ f !…, ~4!

wherea1 , b1 , a2 and b2 , should be selected such that the linear operatorsL(]X) and K(]X)
annihilate two-line solitons,

f 511a12 exp~h11h2!, g5exp~h1!1exp~h2!, ~5!

h i5pix1qiy1wit1const[Pi•X1const, ~6!

with

Pi5~pi ,qi ,wi ! ~ i 51,2!, B~Pi !50, a1252
A~P12P2!

A~P11P2!
. ~7!

That is to say, in the space–time~x,y,t!, the dromion solutions are driven by ghost line solito
which are nonparallel to each other. Two-line solitons are annihilated by two-linear ope
L(]X) andK(]X) while a dromion which is located at the cross point of the two-line soliton
survived. Taking a space transformation

p1x1q1y5px1 , p2x1q2y5qy1 , D[p1q22p2q1Þ0, ~8!

and fixing the constantsai andbi , in Eq. ~4! asa152q1q/D, b15p1q/D, a25q2p/D, andb2

52p2p/D, we can rewrite Eqs.~4!–~6! as

u5~a1]x1b1]y!~a2]x1b2]y!„tan21~g/ f !…[]x1
]y1

„tan21~g/ f !…, ~9!

f 511a12 exp~h11h2!, g5exp~h1!1exp~h2!, h15px11const, h25qy11const.
~10!

Now, let us discuss in detail the dromion structures for the following (211)-dimensional inte-
grable MKdV equation:11

A~DX!~ f • f 1g•g!5Dx
2~ f • f 1g•g!50, ~11!

B~DX! f •g5~Dx
2Dt1Dx

51Dy! f •g50. ~12!

By means of the general method developed by Hirota, theN-line soliton solution of the equation
system~11! and ~12! can be written as

f ~x,y,t !5 (
n50

N/2

(
NC2n

a~ i 1 ,i 2 ,...,i 2n!exp~h i11h i21¯1h i2n!, ~13!
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g~x,y,t !5 (
m50

@~N21!/2#

(
NC2m11

a~ j 1 , j 2 ,...,j 2m11!exp~h j 11h j 21¯1h j 2m11!, ~14!

a~ i 1 ,i 2 ,...,i n!5H )
k,l

~n!

a~ i k ,i l ! for n>2,

1, n50,1,

~15!

a~ i k ,i l !52
A~Pik2Pil !

A~Pik1Pil !
52

~pik2pil !
2

~pik1pil !
2 , ~16!

h i5pix1qiy1wit1h i0 , ~17!

B~Pik!5pi
2wi

21pi
51qi50. ~18!

Here uN/2u denotes the maximum integer which does not exceedN/2 andni0 is an arbitrary but
finite real constant related to the phase of thei th soliton. NCn indicates summation over a
possible combination ofn elements taken fromN, andP i ,1

(n) indicates the product of all possibl
combinations of then elements. It can be known from Eqs.~8! and ~9! that the multi-dromion
solutions for the potentialu given by~9! are allowed only for a special form such that two line
operatorsai]x1bi]y( i 51,2) with fixedai andbi annihilate all the line solitons, sinceai andbi

are dependent ofqi andpi . In other words the only allowed line solitons must be perpendicula
the axes in the new space coordinatesx1 andy1 . So the multi-dromion solutions exist only for th
following potential form.

u5]x1]y1~ tan21
„g~x1 ,y1 ,t !/ f ~x1 ,y1 ,t !…!, ~19!

where the forms ofg(x1 ,y1 ,t) and f (x1 ,y1 ,t) are the same as those of~13! and ~14!, but h i

should be taken as

h i5pix1qiy1wit1h i05pi8x11wit1h i0 or h i5pix1qiy1wit1h i05qi8y11wit1h i0 .
~20!

As an example, we write down the explicit forms off andg for N53:

f ~x,y,t !511a~1,2!exp~h11h2!1a~1,3!exp~h11h3!1a~2,3!exp~h21h3!, ~21!

g~x,y,t !5exp~h1!1exp~h2!1exp~h3!1a~1,2!a~1,3!a~2,3!exp~h11h21h3!, ~22!

h i5pi8x1wit1h i0 or h i5qiy1wit1h i0 , ~23!

pi
2wi1pi

51qi50, ~24!

a~ i , j !52
~pi2pj !

2

~pi1pj !
2 . ~25!

B. Multi-dromion solutions of a „211…-dimensional sine-Gordon system

The bilinear form of a (211)-dimensional sine-Gordon system is given by

A~DX!~ f • f 2g•g![A~Dx ,Dy ,Dt!~ f • f 2g•g!50, ~26!

B~DX! f •g[B~Dx ,Dy ,Dt! f •g50, ~27!

whereA andB are even functions of their variables. For simplicity, we shall discuss the drom
structure of the sine–Gordon system for a special selection of the operatorsA andB:

A~DX!~ f • f 2g•g![DxDt~ f • f 2g•g!50, ~28!
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B~DX! f •g5~Dx
3Dt1DyDt1a! f •g50. ~29!

Performing the similar procedure leading to Eqs.~13!–~15!, we find that theN-line soliton solu-
tion of the equation system~28! and ~29! possesses the same form as Eqs.~13!–~15! but with

a~ i k ,i l !5
A~pik2pil !

A~pik1pil !
5

~pik2pil !~wik2wil !

~pik1pil !~wik1wil !
, ~30!

h i5pix1qiy1wit5h i0 , ~31!

B~Pik!5pi
3wi1qiwi1a50. ~32!

From the dispersion relation~32!, we see that bothpi andqi can be selected as zero. So in ord
to obtain the dromion solution of the sine–Gordon system~28! and ~29!, we can simply takeh i

5pix1wit1h i0 , or h i5qiy1wit1h i0 . In this case, the linear operators to annihilate all the l
solitons can be taken asL(]X)5]x andK(]X)5]y . Then the physical field with dromion solu
tions reads

u5]x]y~ tan21
„g~x,y,t !/ f ~x,y,t !…!. ~33!

C. Multi-dromion solutions of a „211…-dimensional Sawada–Kotera equation

Then-line soliton solution of the following (211)-dimensional SK equation in bilinear form

A~DX!5~Dx
615DyDx

325Dy
21DxDt!F•F50, ~34!

can be written as

F~x,y,t !511(
i 51

n

exp~h i !1(
i , j

n

ai j exp~h i1h j !

1 (
i , j ,k

ai j ajkaik exp~h i1h j1hk!1¯1S)
i , j

ai j Dexp (
k51

n

hk , ~35!

where

ai j 52
A~Pi2Pj !

A~Pi1Pj !
52

~pi2pj !
615~qi2qj !~pi2pj !

325~qi2qj !
21~pi2pj !~wi2wj !

~pi1pj !
615~qi1qj !~pi1pj !

325~qi1qj !
21~pi1pj !~wi1wj !

,

~36!

h i5pix1qiy1wit1h i0 , ~37!

pi
615qipi

325qi
21piwi50. ~38!

It may be proved that multi-dromion solutions of Eq.~33! exist if the physical field is defined a

u5]x1]y1 ln F~x1 ,y1 ,t !, ~39!

wherexi andy1 are new space coordinates. In the new space–time (x1 ,y1 ,t), the only allowed
line solitons must be perpendicular to the axes andh i in function F(x1 ,y1 ,t) should be taken as

h i5pix1qiy1wit1h i05pi8x11wit1h i0 or h i5pix1qiy1wit1h i05qi8y11wit1h i0 .
~40!

Substituting~34! with ~35!, ~37!, and ~39! into ~38!, we obtain a single (211)-dimensional
dromion solution which is localized in all directions forN52, two dromion solution forN53,
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three or four dromion solutions forN54, and so on. The number of the dromions of ann-line
soliton solution is determined by how many intersect points exist in the lines. As an examp
write down the explicit forms ofF for N53:

FIG. 1. The plots of the interaction of two dromions for the (211)-dimensional MKdV equation formed by three-lin
solitons which are characterized byh15x1(1/4)y2(5/4)t5x12(5/4)t, h252x1(1/3)y2(97/12)t5(1/3)y1

2(97/12)t, andh353x1(1/2)y2(487/18)t53x12(487/18)t. The times of the figures read:~a! t522, ~b! t50, ~c! t
52, ~d! is a cross-section plot (u50.005) in correspondence with~a!–~c!.
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F~x1 ,y1 ,t !511exp~h1!1exp~h2!1exp~h3!1a12 exp~h11h2!1a13 exp~h11h3!

1a23 exp~h21h3!1a12a13a23 exp~h11h21h3!, ~41!

h i5pix1qiy1wit1h i05pi8x11wit1h i0 or h i5pix1qiy1wit1h i05qi8y11h i0 ,
~42!

pi
615qipi

325qi
21piwi50, ~43!

ai j 52
A~pi2pj !

A~pi1pj !
. ~44!

III. DROMION INTERACTIONS

It is known that in (111)-dimensions, there is no exchange of physical quantities like en
and momentum of the solitons after collision. Except for the phase shifts, the velocities and s
all remained unchanged.

We hope to know whether the similar property is valid or not for the interactions am
dromions. Especially, we hope to known whether the dromions rotate or not. In other wor
there exchange of angular momentum when the (211)-dimensional ‘‘objects,’’ dromions, col-
lide?

It is difficult to study analytically the interaction of the dromions because of the complexi
the multi-dromion solutions. It is more straightforward to study the interaction of the drom
graphically.

Figure 1 is the interaction plot of two dromions~which are formed by three ghost lin
solitons! for the MKdV equation, where three ghost line solitons are characterized by

h15x1
1

4
y2

5

4
t5x12

5

4
t,

h252x1
1

3
y2

97

12
t5

1

3
y12

97

12
t, ~45!

h353x1
1

2
y2

487

18
t5

1

2
y12

487

18
t,

respectively. In Figs. 1~a!–~c!, the timet is taken as22, 0, and 2, respectively. Figure 1~d! is a
cross-section plot of the two dromions before and after interaction in correspondence with
1~a!–~c!, while u5const.50.005. From Figs. 1~a!–~d!, we see that the shapes of dromions are
changed. Especially from Fig. 1~d!, one can see clearly that the shapes and the directions~if we
locate a vector on every dromion! of two dromions are totally the same, which means there is
no exchange of the angular momentum between the dromions when they are interacting. T
change found from Fig. 1~d! is the phase shifts of the interacting dromions.

Figure 2 is the interaction plot of two dromions for sine–Gordon equation, where

h15x2t, h25
1

2
y22t, h35

3

2
x2

8

27
t, ~46!

and Fig. 2~d! is a cross-section plot of the two dromions in correspondence with Figs. 2~a!–~c! at
time t5215, t50, andt515 for u5const520.001. As in Fig. 1, from the Figs. 2~a!–~d!, we can
see all interacting phenomenon between the interaction of the dromions for the sine–G
system~28! and~29!. There are no exchanges of the energy, momentum, and angular mom
except the phase shifts.

For the same way, the interacting property between dromions for the SK equation is s
and the same conclusions are obtained. Except for the phase shifts, there is no change at a
dromions after collision; especially, there is no rotation.
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IV. SUMMARY AND DISCUSSIONS

In summary, we have constructed multidromion solutions of the (211)-dimensional MKdV-
type, (211)-dimensional sine–Gordon-type, and the (211)-dimensional SK-type equations fo

FIG. 2. The plots of the interaction of two dromions for a (211)-dimensional sine—Gordon equation. The relat
three-line solitons are determined byh15x2t, h25(1/2)y22t, andh35(3/2)x2(8/27)t. The times of the figures read
~a! t5215, ~b! t50, ~c! t515; ~d! is a cross-section plot (u520.001) in correspondence with~a!–~c!.
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some suitable potentials. The multidromions are constructed by multi-line solitons, say, a
dromion is constructed by two-line solitons, two-dromion solutions are constructed by thre
solitons. All the line solitons should be parallel to the new axises$x1 ,y1%.

For (111)-dimensional integrable models, like the KdV equation, the interaction am
solitons are completely elastic. There is no energy and momentum exchange among soliton
they are interacting. The only effect of the soliton interaction is the phase shifts
(211)-dimensional cases, the similar conclusions for three types of models, MKdV, s
Gordon, and SK models, are obtained. Figures 1~c! and 2~c! show us that the ‘‘shapes’’ and
velocities of two dromions in the two systems are totally the same before and after interac
The only effect observed from Figs. 1~d! and 2~d! of the interactions is the phase shifts. That is
say there is no energy and momentum exchange when the dromions finishing the inter
Different from the (111)-dimensional case, there may be exchange of another physical qua
angular momentum, for the collision of (211)-dimensional objects. However, for the three typ
of (211)-dimensional integrable models studied in this paper, we find that no rotations
when the dromions are interacting. In other words, there is no angular momentum exc
among the interaction dromions of the three types of (211)-dimensional models.

We believe that the conclusions obtained in this paper are true for all (211)-dimensional
integrable models and (311)-dimensional models~if there exist!, though we obtained the result
only from three types of (211)-dimensional models. We hope this conviction can be checke
a future study.
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Spin and wave function as attributes of ideal fluid
Yuri A. Rylova)
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An ideal fluid whose internal energy depends on density, density gradient, and
entropy is considered. Dynamic equations are integrated, and a description in terms
of hydrodynamic~Clebsch! potentials occurs. All essential information on the fluid
flow ~including initial and boundary conditions! appears to be carried by the dy-
namic equations for hydrodynamic potentials. Information on initial values of the
fluid flow is carried by arbitrary integration functions. Initial and boundary condi-
tions for potentials contain only nonessential information concerning the fluid par-
ticle labeling. It is shown that the description in terms ofn-component complex
wave function is a kind of such description in terms of hydrodynamic potentials.
Spin determined by the irreducible numbernm of the wave function components
appears to be an attribute of the fluid flow. Classification of fluid flows by the spin
appears to be connected with invariant subspaces of the relabeling group. ©1999
American Institute of Physics.@S0022-2488~99!01001-4#

I. INTRODUCTION

An ideal~nondissipative! fluid with the internal energyE of a very general form is considered
The internal energyE is supposed to depend on the fluid densityr, density gradient“r, and
entropy per unit massS. The stress tensor for such fluid has the form

Pab5dabFr2
]E

]r
1

]~rE!

]rg
rgG2r]a

]~rE!

]rb
, a,b51,2,3

~1!

ra[]ar, ] i[
]

]xi , i 50,1,2,3.

If E5E(r,S) does not depend on“r, the stress tensor has the form

Pab5pdb
a ,

wherep5r2]E/]r is the pressure. Conventionally the dependence of the internal energy o“r
is not considered. There are two motives for the consideration of such an unusual fluid.

First, the proper dependence ofE on “r prevents sound waves from tilting. Indeed, let t
internal energy have the form

E5E0~r,S!1a~“r/r!2, ~2!

wherea is a small positive quantity. For usual laminar flows, where“r/r is small, the last term of
~2! does not give a significant contribution to the stress tensor~1!, and it is of no importance
whether or not there is the last term in~2!. In the case of the wave tilting the last term in~2! comes
to be principal. At the front of the tilted sound waveE tends tò , and the tilting of the wave may
be stopped.

a!Electronic mail: rylov@ipmnet.ru
2560022-2488/99/40(1)/256/23/$15.00 © 1999 American Institute of Physics
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Second, fluid models with an internal energy of a very general form are used for the de
tion of statistical ensembles of stochastic particles. By definition a statistical ensembleE@Sst# of
stochastic particlesSst is a set of many independent identical stochastic particlesSst. Usually the
term ‘‘statistical ensemble’’ is associated with some tool for the calculation of average valu
physical quantities. But this tool is effective, provided the statistical ensemble is a set of
ministic ~nonstochastic! particles. In reality the principal property of the statistical ensemble
formulated as follows.The statistical ensemble of many stochastic (or deterministic) particles
deterministic dynamic system. This statement seems rather unexpected, because for a stat
ensemble of deterministic systems this property looks like a trivial one. In statistical phy
statistical ensembles of deterministic systems are mainly considered~the only exception is the
statistical ensemble of Brownian particles!, and the statistical ensemble’s property of being
deterministic dynamic system needs some explanation.1,2

The result of an experiment with a single stochastic particleSst is irreproducible. But distri-
butions of results of similar experiments with many independent stochastic particles are rep
ible. Projecting many independent identical stochastic particlesSst to the same space–time regio
one obtains a cloudE @N,Sst# of N independent identical particlesSst moving randomly. With the
numberN of particles tending tò , this cloud E @`,Sst# may be considered as a continuo
medium, or as a fluid. This fluid is a deterministic dynamic system, because experiments w
fluid E @`,Sst# are reproducible. Besides, any reproducible experiments with the stochastic p
can be described in terms of the fluidE @`,Sst# without reference to any probabilistic constructio
~i.e., without reference to the statistical ensemble’s property of being a tool for the calculat
average values!. The probabilistic constructions are effective only if the statistical ensem
E @`,Sd# consists of deterministic particlesSd , whose properties can be determined independ
of E @`,Sd#. In the case ofE @`,Sst# these probabilistic constructions~probability density, or
probability amplitude! are needed only for the interpretation of the fluid in terms of a sin
stochastic particle~see Ref. 3 for details!.

For instance, let us consider a single electronSst, flying from an electron gun, passing throug
a narrow slit in a diaphragm and hitting a screen at a pointx1 . Another electronSst, prepared in
the same way, hits the screen at another pointx2 which does not coincide withx1 . In other words,
an experiment with a single electron is irreproducible in general. It means that a single elec
a stochastic particle. Let us consider a series ofN (N→`) experiments with identically prepare
independent electrons. The distribution ofN impact points over the screen is reproducible, i.e.
is approximately the same for other series ofN experiments. It means that a setE @N,Sst# of N
(N→`) independent identical electronsSst is a deterministic dynamic system, although a sin
electronSst is a stochastic system. IfE @`,Sst# can be considered to be a fluid, then by solvi
dynamic equations for this fluid and calculating the flux of the fluidE @`,Sst# through the screen
one can calculate the diffraction picture~the distribution of the impact points over the screen!. For
such calculation one needs only characteristics of the dynamic systemE @`,Sst# ~dynamic equa-
tions, expressions for the particle flux and the energy–momentum tensor!. Any quantum axiom-
atics and corresponding probabilistic constructions~wave function, linear operators, commutatio
relations, etc.! are not needed. It means that quantum effects can be explained and calcula
purely dynamical effects.3

On the other hand, quantum particles are described conventionally in terms of wave fun
The wave function is considered to be a fundamental object which cannot be defined via
more fundamental objects. As a result, like any fundamental object, the wave function a
properties are defined by a system of axioms~quantum axiomatics, or quantum principles!. Some
connection of the wave function with the irrotational flow of some quantum~Madelung! fluid4–10

has been known for a long time.~The connection of the wave function with the irrotational flo
was discovered comparatively recently.11! But always the wave function is considered to be
fundamental object, whereas the quantum fluid is considered as a derivative object. In this
the fluid is considered as a fundamental object, connected directly with the statistical desc
of stochastic particles, whereas the wave function is considered to be a derivative const
whose properties can be expressed via the properties of the fluid.
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In general, the wave function as a property of the fluid satisfies the quantum princ
~linearity of dynamic equations, etc.! only in some special cases. For instance, in the case whe
internal energy~2! depends only onvdif52\(2m)21

“r/r and has the form

E5E~r,“r!5
vdif

2

2
, vdif52

\“r

2mr
, ~3!

wherem is the particle mass and\ is the Planck constant. To avoid misunderstanding and
distinguish between the wave function as a fundamental object, satisfying the quantum axiom
and the wave function as a property of a fluid, we shall use two different terms—‘‘wave funct
in the first case and ‘‘c function’’ in the second one.

It is very important that the quantum phenomena be connected directly with the fluid m
i.e., such connection does not contain any reference to the quantum principles. There is ho
quantum superfluids like liquid helium may be described as an ideal fluid with the internal e
depending on“r.

In the present paper some mathematical properties of conservative dynamic systems
vestigated. Such a systemS is a continuous set of particles, interacting via some self-consis
potential force fieldV. The dynamic systemS is described by the action of the form

AL@x#5E H m

2 S dx

dt D
2

2VJ r0~j!dtdj, ~4!

wherex5$xa(t,j)%, a51,2,3 are functions of timet and of particle labelsj5$j1 ,j2 ,j3%. r0(j)
is some non-negative weight function, andm5const is the mass of the fluid particle.V is a
self-consistent potential depending onx and the derivatives ofx with respect toj. This function is
supposed to have such a form that the potentialV is a given function of variablesr, “r, andS.
Here

r[mr0~j!
]~j1 ,j2 ,j3!

]~x1,x2,x3!
, ~5!

and S5S0(j) is some fixed function of variablesj. In this case the dynamic systemS may be
considered to be some ideal fluid. It will be shown that in the Euler description, wherex5$t,x%
are independent variables, andj,r,v[dx/dt, S are dependent variables, the action~4! generates
dynamic equations of the form

]r

]t
1“~rv!50, ~6!

]va

]t
1~v“ !va52

1

r
]bPab, a51,2,3, ~7!

]S

]t
1~v“ !S50, ~8!

wherex05t is the time,x5$x1,x2,x3% is the position vector,r andv5$v1,v2,v3% are the fluid
mass density and the fluid velocity, respectively, considered to be functions ofx5$t,x%. Pab is a
stress tensor, defined by~1!, andE(r,“r,S)5V(r,“r,S)/m is the internal energy of a unit mas
E depends on the densityr, on the density gradient“r, and on the entropyS per unit mass.

In the case of a usual fluid, whenV does not depend on“r, the stress tensorPab is isotropic,
and Eq.~7! turns to the Euler equations for the ideal fluid
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]v

]t
1~v“ !v52

1

r
“p, p5r2

]E

]r
, ~9!

wherep is the pressure, andE5E(r,S) is the internal energy of a unit mass considered a
function ofr andS. Thus, ifV depends only on variablesr,“r,S the dynamic systemS, described
by the action~4! will be referred to as nondissipative~ideal! fluid.

The system of hydrodynamic equations~6!–~8!, as well as the system~6!, ~9!, and ~8! is a
closed system of differential equations which has a unique solution inside some space–time
V, provided dependent dynamic variablesr andv5$v1,v2,v3%, S are given as functions of thre
arguments on the space–time boundaryG of the regionV. Nevertheless, being closed, syste
~6!–~8! is incomplete, because it describes only momentum-energetic characteristics of the
The action~4! generates additional dynamic equations,

]j

]t
1~v“ !j50, ~10!

known as Lin constraints.12 These equations describe the motion of fluid particles along t
trajectories.

If Eq. ~10! is solved andj is determined as a function of (t,x), the finite relations

j~ t,x!5jin5const

describe implicitly a fluid particle trajectory and a motion along it.
The system of eight equations~6!–~8!, ~10! forms a complete system of dynamic equatio

describing a fluid, whereas the system of five equations~6!–~8! forms a curtailed system o
dynamic equations. The last system is closed, but to be a complete system, it must be
mented by the kinematic equations

dx

dt
5v~ t,x!, x5x~ t,j!, ~11!

or by the Lin constraints~10! which are equivalent to~11!.
The fact that the complete system~6!–~8!, ~10! of dynamic equations admits a closed su

system~6!–~8! is connected with the invariance of the system~6!–~8!, ~10! with respect to the
group of relabeling transformations~relabeling group!,

ja→ j̃a5 j̃a~j!, D5deti]j̃a /]jbiÞ0, a,b51,2,3, ~12!

w5j0→ j̃05w̃5 j̃0~j0!1a0~j!, ]j̃0 /]j0.0, ~13!

where j5$j0 ,j% are curvilinear Lagrangian coordinates in the space–time andj̃5$j̃0 ,j̃% is
another system of curvilinear Lagrangian coordinates.j̃ anda0 are arbitrary functions ofj. j̃0 is
an arbitrary function ofj0 . j0 is a temporal Lagrangian coordinate, andj are spatial ones.

The relabeling group properties have been used in hydrodynamics compara
recently.13–20 The action~4! is invariant with respect to the relabeling group~12!, ~13!, provided
the weight functionr0(j) transforms as a scalar density,

r0~j!→ r̃0~ j̃!5D21r0~j!, D5
]~ j̃!

]~j!
[

]~ j̃1 ,j̃2 ,j̃3!

]~j1 ,j2 ,j3!
. ~14!

The group of relabeling transformations appears to be a symmetry group of the dynamic s
~fluid!. Any special particle labeling is unessential from a physical viewpoint. It is a reason
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several equations~6!–~8! of the complete system form a closed system describing conserv
laws. This symmetry group also permits one to integrate the complete system~6!–~8!, ~10! in the
form ~see the proof below Sec. III!

S~ t,x!5S0~j!, ~15!

r~ t,x!5r0~j!
]~j1 ,j2 ,j3!

]~x1,x2,x3!
[r0~j!

]~j!

]~x!
, ~16!

v~ t,x!5p~w,j,h,S![“w1ga~j!“ja2h“S, ~17!

whereS0(j), r0(j), g(j)5$ga(j)%, a51,2,3 are arbitrary integration functions of argumentj,
andw, h are new dependent variables, satisfying the dynamic equations

]w

]t
1p~w,j,h,S!“w2

1

2
@p~w,j,h,S!#21

]~rE!

]r
2]a

]~rE!

]ra
50, ~18!

]h

]t
1p~w,j,h,S!“h52

]E

]S
. ~19!

If five dependent variablesw,j,h satisfy the system of equations~10!, ~18!, ~19!, the five dynamic
variablesS,r,v ~15!–~17! satisfy dynamic equations~6!–~8!. Indefinite functionsS0(j), r0(j),
g(j) can be determined from initial and boundary conditions in such a way that the initia
boundary conditions for the variablesw,j,h are universal in the sense that they do not depend
the fluid flow.

The integration of the complete system~6!–~8!, ~10! and some corollaries of this integratio
correlate with the Hamilton properties of the ideal fluid.14,19,20,23,24,27It is connected with the fac
that the curtailed system~6!–~8! is not a Hamiltonian system in itself, whereas the compl
system~6!–~8!, ~10! is a Hamiltonian one. Constructing Hamiltonian mechanics of the ideal fl
one uses~implicitly or explicitly! the Lin constraints~or part of them!. It is this expansion of the
curtailed system~but not Hamiltonian properties! that is important for integration and derivatio
of other useful results. To show this, the Hamiltonian technique and Hamiltonian properties
ideal fluid will not be used at all.

According to~16! and ~17! the physical quantitiesr,v are obtained as a result of differentia
tion of the variablesw,j,S, and the variablesw,j,h can be regarded as hydrodynamic potentia
These potentials appear in the Hamilton fluid dynamics23 as dependent variables. They are as
ciated with Clebsch,21,22 who introduced these quantities for the incompressible fluid. Such q
tities as ga(j) also appear in the Hamilton fluid mechanics,23 but they appear as depende
variables~Lagrange invariants! satisfying dynamic equations of the type~10!. They also are
regarded as hydrodynamic potentials. Note that in the Hamilton fluid mechanics23 the quantities
ga are considered simply as dependent variables, but not as indefinite functions ofj arising as a
result of integration, although corresponding dynamic equations forga can be integrated easily.

Integration of the dynamic equations admits a description of any ideal fluid in term
hydrodynamic potentialsj5$j0 ,j%. The hydrodynamic potentialsj are Lagrangian coordinate
considered as functions of independent Eulerian coordinatesx5$t,x%. Spatial Lagrangian coordi
natesj5$ja%, a51,2,3 label fluid particles, whereas the temporal Lagrangian coordinatj0

5j0(t,x) means some generalized time for the fluid particle placed at the space–time px
5$t,x%.

The description of any ideal fluid in terms of hydrodynamic potentialsj can transform into a
description in terms of a complexn-component hydrodynamic potentialc5$ca%, a51,2,...,n
which associates with the wave function, used in the quantum mechanics, whereas the irre
~minimally possible! numbernm of c-function components associates with the spin of the fl
~not of the particle!.
                                                                                                                



l fluid.
matic
antum

r
a

which
ics has
d
n tech-
progress
obian

ns
a

x
umber

f

261J. Math. Phys., Vol. 40, No. 1, January 1999 Yuri A. Rylov

                    
In the presented paper it is shown that the wave function is a way of describing any idea
The spin is a natural property of any flow of the ideal fluid. The appearance of these enig
quantities at the description of quantum particles may be explained merely as a result of a qu
particle description in terms of an ideal fluid~statistical ensemble!. Note that the curtailed system
~6!–~8! has the same order as the integrated system~10!, ~18!, ~19!, but takes into account neithe
initial conditions, nor kinematic equations~11!. The fact that the ideal fluid considered as
dynamic system admits both the curtailed system~6!–~8! and the integrated system~10!, ~18!, ~19!
is connected closely with the group of the relabeling transformation~12!.

Section II is devoted to a presentation of the space–time symmetric Jacobian technique
is needed for the integration of hydrodynamic equations. Use of Jacobians in hydrodynam
had a long history, dating back to the time of Clebsch.21,22It was the use of Jacobians that allowe
us to introduce the Clebsch potentials and integrate hydrodynamic equations. The Jacobia
nique has been used in Refs. 14, 20, 23, 24, 25, and many other papers. It seems that the
in the integration of hydrodynamic equations is connected mainly with the developed Jac
technique.

Further it will be proved~Sec. III! that the complete system of hydrodynamic equatio
~6!–~8!, ~10! can be integrated in the form~10!, ~15!–~19! that leads to a special form of
description in terms of hydrodynamic potentials~DTHP!. In Sec. IV the initial and boundary
conditions are used for a determination of functiong. In Sec. V a special type of comple
hydrodynamic potentials is considered and the fluid flows are classified on the irreducible n
of wave function components which appears to be an invariant of the relabeling group.

II. JACOBIAN TECHNIQUE

Let us consider such a space–time symmetric mathematical object as the Jacobian

J[
]~j0 ,j1 ,j2 ,j3!

]~x0,x1,x2,x3!
[detij i ,ki , j i ,k[]kj i[

]j i

]xk , i ,k50,1,2,3. ~20!

Here j5$j0 ,j%5$j0 ,j1 ,j2 ,j3% are four scalars considered as functionsj5j(x) of x5$x0,x%.
The functions$j0 ,j1 ,j2 ,j3% are supposed to be independent in the sense thatJÞ0. It is useful to
consider the JacobianJ as a four-linear function of variablesj i ,k[]kj i , i ,k50,1,2,3. Then one
can introduce derivatives ofJ with respect toj i ,k . The derivative]J/]j i ,k appears as a result o
the substitution ofj i by xk in relation ~20!,

]J

]j i ,k
[

]~j0 ,...,j i 21 ,xk,j i 11 ,...,j3!

]~x0,x1,x2,x3!
, i ,k50,1,2,3. ~21!

For instance,

]J

]j0,i
[

]~xi ,j1 ,j2 ,j3!

]~x0,x1,x2,x3!
, i 50,1,2,3. ~22!

This rule is also valid for higher derivatives ofJ,

]2J

]j i ,k]js,l
[

]~j0 ,...,j i 21 ,xk,j i 11 ,...,js21 ,xl ,js11 ,...,j3!

]~x0,x1,x2,x3!

[
]~xk,xl !

]~j i ,js!

]~j0 ,j1 ,j2 ,j3!

]~x0,x1,x2,x3!

[JS ]xk

]j i

]xl

]js
2

]xk

]js

]xl

]j i
D , i ,k,l ,s50,1,2,3. ~23!

It follows from ~20! and ~21! that
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]xk

]j i
[

]~j0 ,...,j i 21 ,xk,j i 11 ,...,j3!

]~j0 ,j1 ,j2 ,j3!

[
]~j0 ,...,j i 21 ,xk,j i 11 ,...,j3!

]~x0,x1,x2,x3!

]~x0,x1,x2,x3!

]~j0 ,j1 ,j2 ,j3!

[
1

J

]J

]j i ,k
, i ,k50,1,2,3 ~24!

and ~23! may be written in the form

]2J

]j i ,k]js,l
[

1

J S ]J

]j i ,k

]J

]js,l
2

]J

]j i ,l

]J

]js,k
D , i ,k,l ,s50,1,2,3. ~25!

The derivative]J/]j i ,k is a cofactor to the elementj i ,k of the determinant~20!. Then one has
the following identities:

j l ,k

]J

]js,k
[d l

sJ, jk,l

]J

]jk,s
[d l

sJ, l ,s50,1,2,3, ~26!

]k

]J

]j i ,k
[

]2J

]j i ,k]js,l
]k] ljs[0, i 50,1,2,3. ~27!

Here and subsequently a summation on two repeated indices is produced~0–3! for Latin indices
and ~1–3! for the Greek ones. The identity~27! can be considered as a corollary of the ident
~25! and a symmetry of]k] ljs with respect to the permutation of indicesk,l. The convolution of
~25! with ]k , or ] l also vanishes.

Relations~20!–~25! are written for four independent variablesx, but they are valid in an
evident way for an arbitrary numbern11 of variablesx5$x0,x1,...,xn% and j5$j0 ,j%, j
5$j1 ,j2 ,...,jn%.

Application of the JacobianJ to hydrodynamics is founded on the property that the fluid fl

j i5m
]J

]j0,i
, j 5$ j i%5$r,rv%, i 50,1,2,3 ~28!

constructed on the basis of the variablesj5$j1 ,j2 ,j3% satisfies Lin constraints~10! and the
continuity equation

] i j
i50 ~29!

identically for any choice of variablesj, as it follows from the identity~27! for i 50. The
continuity equation~29! is used without approximations in all hydrodynamic models, and
change of variables$r,rv%↔j described by~28! is very important.

In particular, in the case of two-dimensional established flow of incompressible fluid
variablesj reduce to one variablej15c, known as the stream function. In this case there are o
two essential dependent variablesx05x, x15y, and the relations~28!, ~29! reduce to the relations

r21 j x5vx5
]c

]y
, r21 j y5vy52

]c

]x
,

]vx

]x
1

]vy

]y
50. ~30!

Defining the stream line as a line tangent to the fluxj,

dx

j x
5

dy

j y
, ~31!
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one obtains that the stream function is constant along the stream line, because according to
two equations of~30!, c5c(x,y) is an integral of Eq.~31!.

In the general case, when the space dimensionality isn andx5$x0,x1,...,xn%, j5$j0 ,j%, j
5$j1 ,j2 ,...,jn%, the quantitiesj5$ja%, a51,2,...,n are constant along the lineL tangent to the
flux vector j 5$ j i%, i 50,1,...,n,

L:
dxi

dt
5 j i~x!, i 50,1,...,n, ~32!

where t is a parameter along the lineL which is described parametrically by the equationx
5x(t). This statement is formulated mathematically in the form

dja

dt
5 j i] ija5m

]J

]j0,i
] ija50, a51,2,...,n.

The last equality follows from the first identity~26! taken fors50, l 51,2,...,n
Interpretation of the line~32! tangent to the flux is different for different cases. Ifx

5$x0,x1,...,xn% contains only spatial coordinates, the line~32! is a line in the usual space. It i
regarded as a streamline, andj can be interpreted as quantities which are constant along
streamline~i.e., as a generalized stream function!. If x0 is the time coordinate, Eq.~32! describes
a line in the space–time. This line~known as a world line of a fluid particle! determines a motion
of the fluid particle. Variablesj5$j1 ,j2 ,...,jn% which are constant along the world line a
different, generally, for different particles. Ifja , a51,2,...,n are independent, they may be us
for the fluid particle labeling.

Thus, although interpretation of the relation~28! considered as a replacement of depend
variablesj by j may be different, from a mathematical viewpoint this transformation mea
replacement of the continuity equation by some equations for the labeling~or generalized stream
function! j. The difference of the interpretation is of no importance in this context.

Note that the expressions

j i5mr0~j!
]J

]j0,i
[mr0~j!

]~xi ,j1 ,j2 ,j3!

]~x0,x1,x2,x3!
, i 50,1,2,3, ~33!

can be also considered as four-flux satisfying the continuity equation~29!. Herem is a constant
andr0(j) is an arbitrary function ofj. It follows from the identity

mr0~j!
]~xi ,j1 ,j2 ,j3!

]~x0,x1,x2,x3!
[m

]~xi ,j̃1 ,j2 ,j3!

]~x0,x1,x2,x3!
, j̃15E

0

j1
r0~j18 ,j2 ,j3!dj18 .

As an example of the application of the Jacobian technique, let us show that~5! satisfies~6!
by virtue of ~10!. Let us multiply~10! by ~5! and introduce new variablesj5rv5$ j 1, j 2, j 3%. One
obtains three equations

mr0~j!
]J

]j0,0
jb,01 j ajb,a50, b51,2,3. ~34!

Considering~34! as a system of three linear equations forj a, a51,2,3 and resolving it with
respect toj a, one obtains

j a5mr0~j!
]J

]j0,a
, a51,2,3. ~35!
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It is easy to verify this, substituting~35! into ~34! and using~26!. One obtains thatj 5$ j 0,j%
5$r,rv% is described by the relations~33! which satisfy the continuity equation~29! identically.
Thus,~6! is satisfied by~16! by virtue of ~10!.

III. VARIATIONAL PRINCIPLE

In general, the equivalency of the system~10!, ~18!, ~19! and the system~6!–~8!, ~10! can be
verified by a direct substitution of the variablesr,S,v, defined by relations~15!–~17! into Eqs.
~6!–~8!. Using Eqs.~10!, ~18!, and~19!, one obtains identities after subsequent calculations.
such computations do not display a connection between the integration and the invarianc
respect to the relabeling group~12!. Besides, the meaning of the new variablesw,h is not clear.
We shall use for our investigations a variational principle. Note that for a long time a deriv
of a variational principle for hydrodynamic equations~6!–~8! existed as a self-depende
problem.12,14,16,23,24,26,27The existence of this problem was connected to a lack of understan
that the system of hydrodynamic equations~6!–~8! is a curtailed system, and the full system
dynamic equations~6!–~8!, ~10! includes equations~10! describing a motion of the fluid particle
in the given velocity field. The variational principle can generate only the complete syste
dynamic variables~but not its closed subsystem!. Without understanding this, one tried to form th
Lagrangian for the system~6!–~8! as a sum of some quantities taken with Lagrange multipli
The left-hand side of dynamic equations~6!–~8! and some other constraints were taken as s
quantities.

Now this problem has been solved~see the review by Salmon23! on the basis of the Eulerian
version of the variational principle for the Lagrangian description~4!, where equations~10! appear
automatically and cannot be ignored. In our version of the variational principle we follow Re
with some modifications which underline a curtailed character of hydrodynamic equations~6!–~8!,
because an understanding of the curtailed character of the system~6!–~8! removes the problem o
derivation of the variational principle for the hydrodynamic equations~6!–~8!.

We consider the ideal fluid as a conservative dynamic system whose dynamic equatio
be derived from the variational principle. This dynamic system is a continuous set of
identical particles moving in some self-consistent potential force field. The action functiona
the form~4!. Variation of the action with respect tox generates six first-order dynamic equatio
for six dependent variablesx,v5dx/dt, considered as functions oft and of independent curvilin-
ear Lagrangian coordinatesj. It is a Lagrangian representation of hydrodynamic equations.

We prefer to work with Eulerian representation, when Lagrangian coordinates~particle label-
ing! j5$j0 ,j%, j5$j1 ,j2 ,j3% are considered as dependent variables, and Eulerian coordi
x5$x0,x%5$t,x%, x5$x1,x2,x3% are considered as independent variables. Herej0 is a temporal
Lagrangian coordinate which evolves along the particle trajectory in an arbitrary way. Now tj0

is a fictitious variable, but after the integration of equations thej0 stops being fictitious and turn
to the variablew, appearing in the integrated system~10!, ~18!, ~19!.

Further, space–time symmetric designations will mainly be used, which simplifies con
ably all computations. In the Eulerian description the action functional~4! is to be represented a
an integral over independent variablesx5$x0,x%5$t,x%. One uses the Jacobian technique for su
a transformation of the action~4!,

Let us note that according to~22! the derivativedx/dt can be written in the form

va5
dxa

dt
[

]J

]j0,a
S ]J

]j0,0
D 21

, a51,2,3.

Then components of the four fluxj 5$ j 0,j%[$r,rv% can be written in the form~33!, provided the
designation~5!

j 05r5mr0~j!
]J

]j0,0
[mr0~j!

]~x0,j1 ,j2 ,j3!

]~x0,x1,x2,x3!
~36!
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is used.
At such a form of the mass densityr the four flux j 5$ j i%, i 50,1,2,3 satisfies identically the

continuity equation~29! which takes place by virtue of identities~26! and~27!. Besides, by virtue
of identities~26! and ~27! the Lin constraints~10! are fulfilled identically,

j i] ija50, a51,2,3. ~37!

The componentsj i are invariant with respect to the relabeling group~12!, provided the function
r0(j) transforms according to~14!.

One has

r0~j!dt dj5r0~j!
]J

]j0,0
dt dx5

r

m
dt dx,

m

2 S dxa

dt D 2

5
m

2 S ]J

]j0,a
D 2S ]J

]j0,0
D 22

5
m

2 S j a

r D 2

,

and the variational problem with the action functional~4! is written as a variational problem with
the action functional

AE@j#5E S j2

2r
2rEDdt dx, E5

V

m
, ~38!

wherer5 j 0 and j5$ j 1, j 2, j 3% are fixed functions ofj5$j0 ,j% and of ja,i[] ija , a51,2,3, i
50,1,2,3, defined by relations~33!. E is the internal energy of the fluid which is supposed to b
fixed function ofr,“r,S0(j),

E5E~r,“r,S0~j!!, ~39!

wherer is defined by~36! andS0(j) is some fixed function ofj, describing the initial distribution
of the entropy over the fluid.

The action~38! is invariant with respect to the subgroupGS0
of the relabeling group~12!. The

subgroupGS0
is determined in such a way that any surfaceS0(j)5const is invariant with respec

to GS0
. In general, the subgroupGS0

is determined by two arbitrary functions ofj.
The action~38! generates the six order system of dynamic equations, consisting of

second-order equations for three dependent variablesj. Invariance of the action~38! with respect
to the subgroupGS0

admits one to integrate the system of dynamic equations. The order o
system reduces, and two arbitrary integration functions appear. The order of the system red
five ~but not to four!, because the fictitious dependent variablej0 stops being fictitious as a resu
of the integration.

Unfortunately, the subgroupGS0
depends on the form of the functionS0(j) and cannot be

obtained in a general form. In the special case, whenS0(j) does not depend onj, the subgroup
GS0

coincides with the whole relabeling groupG, and the order of the integrated system reduce
four.

In the general case it is convenient to introduce a new dependent variable,

S5S0~j!.

According to~37! the variableS satisfies the dynamic equation~8!,

j i] iS50. ~40!
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By virtue of designations~28! and identities~26! and ~27!, Eqs. ~40! and ~37! are fulfilled,
identically. Hence, they can be added to the action functional~38! as side constraints without
change of the variational problem. Adding~40! to the Lagrangian of the action~38! by means of
a Lagrange multiplierh, one obtains

AE@j,h,S#5E H j2

2r
2rE1h j k]kSJ dt dx, ~41!

where the quantitiesj 5$r,j% are determined by~33!, and E5E(r,“r,S). The action~41! is
invariant with respect to the relabeling groupG which is determined by three arbitrary functions
j.

To obtain the dynamic equations, it is convenient to introduce new dependent variabj i ,
defined by~33!. Let us introduce the new variablesj i by means of designations~33! taken with the
Lagrange multiplierspi , i 50,1,2,3. Then the action~41! takes the form

AE@r,j ,j,p,h,S#5E H j2

2r
2rE2pkF j k2mr0~j!

]J

]j0,k
G1h j k]kSJ dt dx. ~42!

It is useful to keep in mind that four designations~33!, introducing variablesr, j5rv via variables
j, are equivalent to three Lin constraints~10! together with the designation~36!, as was shown a
the end of Sec. II. The addition of relations~33! to the action~41! as side constraints is equivale
to the addition of relations~10! and ~36! considered as side constraints.

For obtaining dynamic equations, the variablesr,j ,j,p,h,S are to be varied. Let us eliminat
the variablespi from the action~42!. Dynamic equations arising as a result of a variation w
respect toja have the form

dAE

dja
[L̂ap52m]kFr0~j!

]2J

]j0,i]ja,k
pi G1m

]r0~j!

]ja

]J

]j0,k
pk50, a51,2,3, ~43!

where L̂a are linear operators acting on variablesp5$pi%, i 50,1,2,3. These equations can b
integrated in the form

pi5bg0~j0!] ij01bga~j!] ija , i 50,1,2,3, ~44!

whereb is an arbitrary scale constant,j0 is some new variable~temporal Lagrangian coordinate!,
ga(j), a51,2,3 are arbitrary functions of the labelsj, g0(j0) is an arbitrary function ofj0 . The
relations ~44! satisfy equations~43! identically. Indeed, substituting~44! into ~43! and using
identities~25! and ~26!, one obtains

2m]kH r0~j!F ]J

]ja,k
g0~j0!2

]J

]j0,k
ga~j!G J 1m

]r0~j!

]ja
Jg0~j0!50, a51,2,3. ~45!

Differentiating braces and using identities~27! and ~26!, one concludes that~45! is an identity.
Setting for simplicity

]kw5g0~j0!]kj0 , k50,1,2,3

one obtains

pk5b]kw1bga~j!]kja , k50,1,2,3. ~46!

Substituting~46! in ~42!, one can eliminate variablespi , i 50,1,2,3 from the functional~42!.
The termga(j)]kja]J/]j0,k vanishes, the term]kw]J/]j0,k gives no contribution to the dynami
equations. The action functional takes the form
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Ag@r,j ,w,j,h,S#5E H j2

2r
2rE2 j k@b]kw1bga~j!]kja2h]kS#J dt dx, ~47!

wherega(j) are considered as fixed functions ofj which are determined from initial conditions
The action~47! is a functional of indefinite fixed functionsg~x!. Varying the action~47! with
respect tow,j,h,S,j ,r, one obtains dynamic equations;

dw: ]kj k50, ~48!

dja : Vab j k]kjb50, a51,2,3, ~49!

dh: j k]kS50, ~50!

dS: j k]kh52r
]E

]S
, ~51!

d j : v[ j /r5b“w1bga~j!“ja2h“S, ~52!

dr: 2
j2

2r22
]~rE!

]r
1]a

]~rE!

]ra
2b]0w2bga~j!]0ja1h]0S50. ~53!

HereVab is defined by

Vab5bS ]ga~j!

]jb
2

]gb~j!

]ja
D , a,b51,2,3. ~54!

Deriving relations~49! and~51!, the continuity equation~48! was used. It is easy to see that~49!
is equivalent to~10!, provided

detiVabiÞ0. ~55!

Then Eqs.~50! and~48! can be integrated in the form of~15! and~16! respectively. Equations
~51! and ~52! are equivalent to~19! and ~17!. Finally, eliminating]0ja and ]0S from ~53! by
means of~49! and ~50!, one obtains Eq.~18! and, hence, the system of dynamic equations~10!,
~18!, and~19!, where designations~15!–~17! are used.

The curtailed system~6!–~8! can be obtained from Eqs.~48! to ~53! as follows. Equations~48!
and ~50! coincide with~6! and ~8!. For deriving~7! let us note that the vorticityv[“3v and
v3v are obtained from~52! in the form

v5“3v5 1
2V

ab
“jb3“ja2“h3“S, ~56!

v3v5Vab
“jb~v“ !ja1“S~v“ !h2“h~v“ !S. ~57!

Let us form a difference between the time derivative of~52! and the gradient of~53!. Elimi-
natingVab]0ja , ]0S, and]0h by means of Eqs.~49!, ~50!, ~51!, one obtains

]0v1“

v2

2
1

]2~rE!

]r2 “r1
]2~rE!

]r]S
“S1“rb

]2~rE!

]rb]r
2“]b

]2~rE!

]rb
2

]E

]S
“S

2Vab
“jb~v“ !ja1“h~v¹!S2“S~v“ !h50. ~58!

Using ~56! and ~57! expression~58! reduces to

]0v1“

v2

2
2v3~“3v!1

1

r
“S r2

]E

]r D2
1

r
]bFr“ ]2~rE!

]rb
G50. ~59!
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By virtue of the identity

v3~“3v![“

v2

2
2~v“ !v

the last equation is equivalent to~7!. The form of the stress tensor~1! appears as a result o
transformations of the relation~59! to the form~7!. The stress tensor~1! is determined to within
the tensor with a vanishing divergence.

Thus, differentiating Eqs.~52! and ~53! and eliminating the variablesw,j,h, one obtains the
curtailed system~6!–~8!, whereas the system~10!, ~18!, and~19! follows directly from the system
~48! to ~53! ~i.e., without differentiating!. It means that the system~10!, ~18!, and ~19! is an
integrated system, whereas the curtailed system~6!–~8! is not, although formally they have th
same order.

The action of the form~47!, or close to this form was obtained by some authors,23,27 but the
quantitiesga, a51,2,3 are always considered as additional dependent variables~but not as in-
definite functions ofj which can be expressed via initial conditions!. The action was not consid
ered as a functional of fixed indefinite functionsga(j).

The variableh was introduced to make the action invariant with respect to the transforma
of the whole relabeling group~12!. To understand what theh means from a mathematical view
point, let us return to the action~38!, where the internal energyE has the form~39!. Adding new
variablesj by means of designations~33!, one obtains instead of~42!

AE@r,j ,j,p#5E H j2

2r
2rE2pkF j k2mr0~j!

]J

]j0,k
G J dt dx, ~60!

whereE has the form~39!.
Variation of ~60! with respect toja leads to the equation

L̂ap5r
]E~r,S0~j!!

]S0

]S0

]ja
, a51,2,3, ~61!

where linear operatorsL̂a are defined by~43!. Equations~61! are linear nonuniform equations fo
the variablesp. A solution of ~61! is a sum of the general solution~46! of the uniform equations
~43! and of a particular solution of the nonuniform equations~61!. This particular solution depend
on the form of the functionS0 and cannot be found in a general form. Adding to Eq.~41! an
extraterm2h j k]kS with h satisfying~51!, a reduction of nonuniform equations~61! to uniform
equations~43! appears to be possible. Thus, the extravariableh is responsible for the particula
solution of ~61!.

From the viewpoint of the action~60! the dependence of the internal energyE on the entropy
simply means a dependence ofE on the labelsj via a functionS(j). If such a dependence cann
be expressed through one function~for instance,E5E@r,S1(j),S2(j)#) the ideal fluid is de-
scribed by two entropiesS1 andS2 and by two temperaturesT15]E/]S1 , T25]E/]S2 . Such a
situation may appear for a conducting fluid in a strong magnetic field, where there are
temperatures—longitudinal and transversal.

Thus five equations~10!, ~18!, and~19! with S, r, andv, defined, respectively, by~15!, ~16!,
and ~17!, constitute the fifth-order system for five dependent variablesj5$j0 ,j%,h. Equations
~6!, ~8!, ~10!, ~18!, ~19! constitute the seventh-order system for seven variablesr,j,w,h,S.

IV. INITIAL AND BOUNDARY CONDITIONS

Boundary conditions describing vessel walls can be taken into account by means of a
choice of the internal energyE(x,r,“r,S) which can include the energy of the fluid in an extern
potentialU,
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E5E0~r,“r,S!1U~ t,x!,

whereU is some given external potential. For instance, let the fluid move inside a volumeV. Then

U~x!5 H 0
`

inside V
outside V.

Such a choice of energyE provides that the fluid does not escape the volumeV.
In this section let us set for simplicity the scale constantb51, and consider the case whenE

does not depend on“r, and the fluid flow is considered in the space–time regionV defined by
inequalities

V: t>0, x3>0.

The regionV has two boundaries:I defined by the relationst50, x3>0, andB defined by the
relationsx350, t>0. The initial conditions for the system of equations~6!–~8!, and~10! have the
form

r~0,x!5r in~x!, va~0,x!5v in
a~x!, a51,2,3, ~62!

S~0,x!5Sin~x!, ja~0,x!5j in
a~x!, a51,2,3 ~63!

at xPI ~t50, x3>0!. Herer in , vin , Sin , andjin are given functions of argumentx. The boundary
conditions on the boundaryB of V have the form:

r~x!ux3505rb~ t,y!, S~x!ux3505Sb~ t,y!, $t,y%PB, ~64!

va~x!ux3505vb
a~ t,y!, a51,2,3, $t,y%PB, ~65!

ja~x!ux3505jb
a~ t,y!, a51,2,3, $t,y%PB, ~66!

where

y[$x1,x2%. ~67!

Hererb , Sb , vb , andjb are given functions of the argument$t,y%.
Let us show that indefinite functionsg,S0 ,r0 can be expressed via initial and bounda

conditions~62!–~66!. The initial conditions for the system~48!–~53! have the form

ja~0,x!5j in
a~x!, a51,2,3, ~68!

r~0,x!5r in~x!, S~0,x!5S0@jin~x!#, ~69!

w~0,x!5w in~x!, h~0,x!5h in~x!, ~70!

~68!–~70! take place atxPI. The functionsw in(x),h in(x) as wellga(j) are to be determined from
the relations

]aw in~x!1gb@jin~x!#]aj in
b~x!2h in~x!

]S0@jin~x!#

]j in
b ]aj in

b~x!5v in
a~x!, a51,2,3, xPI.

~71!

It is clear that five functionsg,w in ,h in cannot be determined unambiguously from three relati
~71!.

There are at least two different approaches for the determination of the functionsjin(x) and
g~j.!
                                                                                                                



eter-

ion

270 J. Math. Phys., Vol. 40, No. 1, January 1999 Yuri A. Rylov

                    
~1! One fixes the functionsj in
a (x) in some conventional way, sets

w in~x!50, h in~x!50, xPI, ~72!

and determines functionsg from the three relations~71!.
~2! Functionsg are fixed in some conventional way, and the remaining functions are d

mined from relations~71!.
The first way.Let condition~68! be given in the form

ja~0,x!5j in
a~x!5xa, a51,2,3, xPI. ~73!

In other words, att50 the labelsj coincide with the Eulerian coordinates. By virtue of~72!, the
relations~71! take the form

gb@jin~x!#5v in
b~x!, a51,2,3, xPI, ~74!

which are resolved in the form

ga~j!5v in
a~j!, a51,2,3, j3.0. ~75!

Thus, the functionsg are expressed through initial conditions~62!.
The boundary conditions for the system of equations~48!–~53! have the form

ja~x!ux3505jb
a~ t,y!, a51,2,3, $t,y%PB, ~76!

S~x!ux3505S0@jb~ t,y!#5Sb~ t,y!, $t,y%PB, ~77!

r~x!ux3505rb~ t,y!, v~x!ux3505vb~ t,y!, $t,y%PB, ~78!

w~x!ux3505h~x!ux35050, $t,y%PB. ~79!

Let us set

jb
a~ t,y!5xa, a51,2, jb

3~ t,y!52ct, ~ t,y!PB, ~80!

wherec is a constant.
Writing relations~10! and ~53! for j3,0 on the boundaryB and using~79! and ~80!, one

obtains constraints for the functionsg~j!,

gb@jb~ t,y!#]ajb
b~ t,y!5vb

a~ t,y!, a51,2, $t,y%PB, ~81!

gb@jb~ t,y!#]0jb
b~ t,y!52Kb~ t,y!, $t,y%PB, ~82!

where

Kb~ t,y![
vb

2~ t,y!

2
1

]$rb~ t,y!E@rb~ t,y!,Sb~ t,y!#%

]rb~ t,y!
, $t,y%PB, ~83!

Substituting relations~80! into ~81! and~82!, one obtains three equations for the determinat
of functionsg~j!. Resolving this system of equations with respect tog, one obtains

ga~j!5vb
a~2j3 /c,j1 ,j2!, a51,2, j3,0,

~84!
g3~j!5c21Kb~2j3 /c,j1 ,j2!, j3,0.
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Thus,g~j! is determined by~75! for j3.0 and by~84! for j3,0. In other words, the boundar
conditions and the initial conditions determine the vector fieldg~j! in different regions of the
argumentj. The fieldg~j! can describe both initial and boundary conditions. For any fluid fl
the system~10!, ~18!, and~19! of dynamic equations for variablesw, h, andj is to be solved under
universal initial conditions~72! and ~73! and under universal boundary conditions~79! and ~80!.
All essential information on the fluid flow is found in the dynamic equations~10!, ~18!, and~19!,
where the quantitiesS,r,v are determined by~15!–~17!.

The second way.Let us choose the functionsg in a simple form. Let for instance,

g1~j!5j2 , g2~j!50, g3~j!50.

Let us set

x5w, l5j2 , m5j1 .

Then expression~17! takes the form

u~x,l,m,h,S![“x1l“m2h“S5v, ~85!

wherex, l, and m, are Clebsch potentials.21,22 Now six equations~6!, ~8!, ~49!–~53!, and ~55!
@~49! for a53 is of no importance# for six dependent variablesr, x, l, m, h, andSdo not contain
indefinite functions and have an unambiguous form,

]0r1“~ru!50, ]0l1~u“ !l50, ]0m1~u“ !m50, ]0S1~u“ !S50, ~86!

]0h1~u“ !h52
]E

]S
, ]0x1l]0m2h]0S1

1

2
u21

]~rE!

]r
50,

whereu is defined by~85!.
The initial conditions for variablesr, x, l, m, h, andS are determined by the relations

r~0,x!5r in~0,x!, S~0,x!5Sin~0,x!, ~87!

“x in1l in“m in2h in“Sin52vin . ~88!

The three equations~87! and ~88! do not determine the initial conditions

x~0,x!5x in~x!, l~0,x!5l in~x!, ~89!

m~0,x!5m in~x!, h~0,x!5h in~x!, ~90!

unambiguously.
If the fluid is described in terms of Clebsch potentials, the dynamic equations contain n

arbitrary functions, nor information about the initial conditions. It should be interpreted in
sense that the description~85!–~86! in terms of the Clebsch potentials is a result of a change
variables in dynamic equations~6!–~8!, whereas the description~48!–~53! is a result of the
integration of the dynamic equations~6!–~8! and~10!. In other words, the description~85!–~86! in
terms of Clebsch potentials relates to the description~48!–~53! in the same way, as a particula
solution of a system of differential equations relates to a general solution of the same syste
us note that there are many other ways for a determination of indefinite functionsg~j!.
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V. WAVE FUNCTION AND SPIN

Equations~6!, ~8!, ~10!, ~18!, and~19! can be derived from the action functional

A@r,w,j,h,S#5E rF2p0~w,j,h,S!2
1

2
p2~w,j,h,S!2E~x,r,“r,S!Gd4x, ~91!

wherep5$p1 ,p2 ,p3%, andpk5pk2h]kS, k50,1,2,3 are determined by relations~46!,

pk~w,j,h,S![b@]kw1ga~j!]kja#2h]kS, k50,1,2,3. ~92!

The action~91! results from the action~47! after elimination of the variablej from the relations
~47! and ~52!. The functionsg5$gb(j)%, b51,2,3 are considered as fixed functions of th
arguments. Equations~6!, ~8!, ~10!, ~18!, and ~19! can be obtained as a result of variation wi
respect tow, h, j, S, and r, respectively. Equation~10! is obtained, provided the fieldg is
nonpotential. If the fieldg is potentialga(j)8]F/]ja , it can be included in the variablew by
means of the substitution

w1F→w.

In this case the action~91! does not depend onj, and~10! may be omitted.
Let us introduce ann-component complex functionc5$ca%, a51,2,...,n, defining it by the

relations

ca5Areiwua~j!, ca* 5Are2 iwua* ~j!, a51,2,...,n,

c* c[ (
a51

n

ca* ca ,

where an asterisk~* ! means the complex conjugate,ua(j), a51,2,...,n are only functions of
variablesj, and satisfy the relations

2
i

2 (
a51

n S ua*
]ua

]jb
2

]ua*

]jb
uaD 5gb~j!, b51,2,3, (

a51

n

ua* ua51. ~93!

n is such a natural number that equations~93! admit a solution. In generaln may depend on the
form of the arbitrary integration functionsg5$gb(j)%, b51,2,3.

It is easy to verify that

rpk~w,j,h,S!52
ib

2
~c* ]kc2]kc* •c!2h]kSc* c, k50,1,2,3, ~94!

r5c* c, j52
ib

2
~c*“c2“c* •c!2h“Sc* c. ~95!

The variational problem with the action~91! appears to be equivalent to the variational probl
with the action functional

A@c,c* ,h,S#5E H ib

2
~c* ]0c2]0c* •c!1h]0Sc* c2

1

2c* c F ib

2
~c*“c2“c* •c!

1h“Sc* c G2

2E@x,c* c,“~c* c!,S#c* cJ d4x. ~96!
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Note that the functionc considered as a function of independent variables$t,x% is very
indefinite in the sense that the same fluid flow may be described by differentc functions. There
are two reasons for such an indefiniteness. First, the functionsua(j) are not determined uniquel
by differential equations~93!. Second, their argumentsj as functions ofx are determined only to
within the transformation~12!. Description of a fluid in terms of the functionc is more indefinite
than the description in terms of the hydrodynamic potentialsj. Information about initial and
boundary conditions contained in the functionsg~j! is lost at the description in terms of thec
function. Thec function can be obtained from the Clebsch variables by means of a proper ch
of variables.11

Let the functionc haven components. Regrouping components of the functionc in the action
~96!, one obtains the action in the form

AE@c,c* ,h,S#5E H 1

2
@c* ~ ib]01A0!c1~2 ib]0c* 1A0c* !c#

2
1

2
~ ib“c* 2Ac* !~2 ib“c2Ac!

1
b2

4 (
a,b51

n

Qab,g* Qab,gr1
b2

8r
~“r!22rEJ d4x, r[c* c, ~97!

where

A5$A0 ,A%, A0[h]0S, A[h“S,
~98!

Qab,g5
1

c* c U ca cb

]gca ]gcb
U, a,b51,2,...,n, g51,2,3.

Corresponding dynamic equations have the form

dA
dca*

5~ ib]01A0!ca2
1

2
~ ib“1A!2ca2

b2

4 (
m,n51

n

Qmn,g* Qmn,gca1
b2

2 (
n51

n

Qan,g]gcn*

1
b2

2 (
n51

n

]g~Qan,gcn* !1
]

]r F b2

8r
~“r!22rEGca

2]gH ]

]rg
F b2

8r
~“r!22rEG J ca50, a51,2,...,n, ~99!

dA
dS

5] i~ j ih!2
]~rE!

]S
50, ~100!

dA
dh

52] i~ j iS!50, ~101!

where j 5$r,j%5$ j k%, k50,1,2,3 is defined by~95!.
In the case of the irrotational flow, whenga(j)5]F(j)/]ja , equations~93! have a solution

for n51, and the functionc may have one component. Then allQab,g[0, as it follows from Eq.
~98!.

Let us consider an irrotational flow of a fluid with the internal energy per unit mass define
relation ~3!, wherem is the mass of a stochastic particle associated with the fluid. The inte
energy does not depend on the entropy, and according to~3! and~100! the variableh is a function
of only labelsj. Then the expressionh]kS has the formf a(j)]kja . It may be included in the
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term ga(j)ja,k . It means that without a loss of generality one may seth[0, S[0. Then for an
irrotational flow, when thec function is one component, Eq.~99! takes the form

dA
dc*

5 ib]0c2
b2

2
“

2c1S b22
\2

m2D H ]

]r

~“r!2

8r
2]gF ]

]rg

~“r!2

8r G J c50. ~102!

Choosing arbitrary constantb in the formb52\/m, one obtains instead of Eq.~102! the well-
known Schro¨dinger equation

i\]0c1
\2

2m
“

2c50,

where the complex variablec is known as the wave function. The Schro¨dinger equation describe
an irrotational flow of the Madelung fluid.4

On this basis it is possible in general to identify the functionc with the wave function and
consider the wave function as a way of description of any ideal fluid. If the fluid flow is rotatio
the dynamic equation in terms of thec function is nonlinear, even in the case~3! and atb5
2\/m. In this case thec function is not one component, and the quantitiesQab,g do not vanish
generally.

In general, the dynamic equation~99! for the c function is nonlinear and rather complicate
But for a special form~3! of the internal energy and for a special form of the arbitrary ph
constantb the dynamic equation in terms of thec function becomes linear and simple.

It is worth noting that the internal energy per unit mass~3! associates with the mean diffusio
velocity vdif52D“r/r describing the mean motion of random wandering of stochastic part
~D is the diffusion coefficient!. The diffusion velocity is characteristic for any stochastic partic
~both Brownian and quantum!. The Brownian fluid is dissipative, and the evolution of the flu
stater is described directly byvdif by means of the continuity equation

]0r1“~rvdif!50.

For the ideal Madelung fluid the diffusion velocity influences the fluid flow via the internal fl
energy per unit mass determined by means of relation~3!. Besides, the diffusion coefficientsD are
different for Brownian particles and for quantum ones, because the origin of the stochasti
different in the two cases.

The numbern of thec-function components in the actions~96! and~97! is arbitrary. A formal
variation of the action with respect toca andca* , a51,2,...,n leads to 2n real dynamic equations
but not all of them are independent. There are such combinations of variationsdca ,dca* , a
51,2,...,n which do not change expressions~94! and ~95!. Such combinations of variation
dca ,dca* , a51,2,...,n do not change the action~96!, and corresponding combinations of d
namic equationsdA/dca50, dA/dca* 50 are identities that associate with a correlation betw
dynamic equations. Thus, increasing the numbern, one increases the number of dynamic eq
tions, but the number of independent dynamic equations remains the same.

In such a situation it is important to determine the minimal numbernm of the c-function
components, sufficient for a description of the given vector fieldgb(j) in the spaceVj of the
labelsj.

Note that under the relabeling transformations~12! the quantityg~j! transforms as a vector

gb~j!→g̃b~ j̃!5
]ja

]j̃b

ga~j!, b51,2,3.

It is necessary for the quantities~94!, ~95! and the action~91! to be invariant with respect to th
transformation~12!
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Let G be a set of all vector fieldsgb(j) in Vj , andGn be a set of such vector fieldsgb(j) in
Vj which can be presented in the form

gb~j!5 (
k51

n

hk
2~j!]zk~j!/]jb , b51,2,3, h1[1, ~103!

wheren is a fixed natural number and the functionshk , zk , k51,2,...,n are scalars inVj . Under
the relabeling transformation~12! the functions~103! transform as follows:

hk~j!→h̃k~ j̃!5hk~j!, zk~j!→ z̃k~ j̃!5zk~j!, k51,2,...,n,

gb~j!→g̃b~ j̃!5
]ja

]j̃b

ga~j!5
]ja

]j̃b

(
k51

n

hk
2~j!

]zk~j!

]ja

5 (
k51

n

h̃k
2~ j̃!

]z̃k~ j̃!

]j̃a

.

In other words, a vector fieldgb(j) of the form~103! transforms into the vector fieldg̃b( j̃) of the
same form~103!, and the setGn is invariant with respect to the group~12! of the relabeling
transformations.

It is easy to see that

Gn21#Gn , G05B, n51,2,...

because thenth term of the sum~103! can be combined with the first one, ifzn is a function of
hn . Let

Sn5Gn\Gn21 , n51,2,... .

Then

G5 ø
s51

s5nm

Ss , Sl5B, l 5nm11,nm12,...,

wherenm is the number of nonempty invariant subsets of the setG. Each subsetSk contains only
such vector fieldsgb(j) which associate with thek-component c-function c5$ca%, a
51,2,...,k, having the components

c15H S 12 (
a52

k

ha
2 D rJ 1/2

exp@ i ~w1z1!#,

ca5haAr exp@ i ~w1za1z1!#, a52,3,...,k.

In particular, the setS1 associates with an irrotational flow, described by a one-componec
function determined by one scalarz1 ; and the setS2 associates with a rotational flow described
a two-componentc function, determined by three scalar functionsz1 , h2 , and z2 ~Clebsch
variables!.

In conventional quantum mechanics the numbern of c-function components is connecte
with the spins of the particle, described by thec, by means of the relations5(n21)/2. The spin
is considered as an internal property of a quantum particle. Particles with different spin
considered as different physical objects, described by different dynamic equations.

In a like manner the irrotational flow, whengb(j) is described by one functionz1 , associates
with the kinematic spin~k-spin! s50, whereas the rotational flow, whengb(j) is described by
three scalar functionsz1 , h2 , and z2 , associates with the kinematic spins51/2. The term
‘‘kinematic spin’’ ~instead of ‘‘spin’’ simply! is used now for the following reasons.
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First, the kinematic spin~k-spin! is determined by the form of the vector fieldgb(j), which
arises essentially as a result of an integration of equations~43!. The vector fieldgb(j) is a
kinematic structure, because it does not depend on the form of the internal energy. At the
time thek-spin is not an internal property of a particle in itself, because the action~96! describes,
at least, two differentk-spins~s50 ands51/2! simultaneously, and thek-spin looks rather like an
integration constant, than a property of single fluid particles.

Second, there is a distinction between the transformation properties of the spin and th
thek-spin under the space rotation group. Components of then-componentc function are scalars
under the space rotation group for any value ofn ~and for any value of thek-spin s!. In the
conventional quantum mechanics the wave function transforms according to a representa
the rotation group. In particular, a one-component wave functionc (s50) is a scalar, whereas th
two-componentc function c (s51/2) transforms as a spinor under the rotation group.

Taking into account the indefiniteness of thec function, it is possible to change transform
tion properties of thec function accompanying any spatial rotation by a proper transformatio
the group~12!. The additional transformations~12! can be chosen in such a way that the tw
componentc function becomes a spinor under spatial rotations. Then the formal distin
between the ‘‘k-spin’’ and the ‘‘spin’’ vanishes, and one can identify them.

For instance, let the two-componentc function be written in the form

c5Ar exp@ i ~w1sj!#x,

wherer, w, andj are scalar functions ofx, s5$sa%, a51,2,3 are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

andx is a two-component constant column (x* x51).
Let any infinitesimal spatial rotation

x0→ x̃05x0, x→ x̃5x1v3x1O~v2!, uvu!1 ~104!

be accompanied by an infinitesimal transformation

j→ j̃5j2v/2. ~105!

Then thec function transforms as a spinor with respect to the combined transformation~104! and
~105!,

c~x!→c̃~ x̃!5Ar̃~ x̃! exp@ i ~ w̃~ x̃!1sj̃~ x̃!!#x5exp~2 i vs/2!c~x!1O~v2!,

and as a scalar with respect to the space rotation~104! alone.
If the dynamic system is described in terms of a two-componentc function, the labelsj are

not mentioned at all, and thec function can be considered equally ready as a scalar and
spinor.

For the two-componentc function the following identity takes place:

~“r!22~c*“c2“c* c!2[4r“c*“c2r2s2, ~106!

r[c* c, s[c* sc/~2r!, s5$sa%, a51,2,3, ~107!

wheresa are Pauli matrices. By virtue of the identity~106! the action~96! reduces to the form
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A@c,c* ,h,S#5E H 1

2
@c* ~ ib]01A0!c1~2 ib]01A0!c* c#2

1

2
@ ib“c* 2Ac* #@2 ib“c

2Ac#1
b2

2
~“sa!~“sa!r1

b2

8r
~“r!22rEJ d4x, ~108!

r[c* c, Ak[h]kS, k50,1,2,3

wheresa are defined by Eq.~107!. The quantitys5$sa%, a51,2,3 associates with the mean sp
~especially, ifb52\/m!, because it is constructed on the base of the Pauli matrices. As on
see, in Eq.~108! sa convolutes only withsa , but not with¹a . As a result the action~108! is
invariant with respect to space–time rotations and relabeling transformations~12! separately.

It is interesting to note in this connection that the actionAP@c,c* # for the dynamical system
SP@c#, described by the Pauli equation, implies the convolution betweens and“. The action
AP@c,c* # is invariant only with respect to the combined transformation~104! and ~105!, i.e., if
the c is considered as a spinor, but it is not invariant with respect to the transformation~104!,
when c is considered as a scalar. In other words, the actionAP@c,c* # is not invariant with
respect to the rotation group~104!, if SP@c# is considered as a fluidlike dynamic system. T
same actionAP@c,c* # can be made invariant with respect to the rotation group~104! alone,
providedc is considered as a fundamental object~not as an attribute of a dynamic system!. In the
last case thec is declared as a spinor, but the mathematical object, described by the a
AP@c,c* #, stops being a dynamic system. It may be regarded, for instance, as a ‘‘dynamic system
restricted by quantum axiomatics,’’ but it is not a dynamic system in the conventional sense of t
term, because a possibility of change of dynamic variables is restricted@any rotation~104! is
accompanied by a proper relabeling~105!#. Of course, one may insist on the fundamental ch
acter ofc and state thatc is a spinor, but thenSP@c# stops being a dynamic system, and this fa
may have far-reaching consequences~see the details in Ref. 28!. There is a similar problem with
the relativistic invariance of the dynamic systemSD@c# described by the Dirac equation.29

Thus, thek-spin is an integral property of a fluid flow, connected with kinematic propertie
a dynamic system. Locally any vector fieldg~j! in the three-dimensionalVj can be written in the
form

g~j!5“z11h2“z2 ~109!

~expressed via Clebsch potentials!, and one should expect thats51/2 is a maximalk-spin of any
flow in the three-dimensional space. But possible singular points of the representation~109! may
lead to the circumstance that the spin of the total flow appears to be higher thans51/2. It is
connected with the so-called helicity of a vector field. Examples and a discussion of s
velocity field can be found in Refs. 16 and 30.

VI. CONCLUDING REMARKS

Taking into account dynamic equations for the labelsj ~Lagrangian coordinates considered
dynamic variables!, one succeeds in integrating the system of hydrodynamic equations for an
fluid. This integration leads to the appearance of three arbitrary functionsga, a51,2,3 of labels
j. The functionsga form a vectorg in the spaceVj of labelsj. The vectorg can be expressed vi
initial and boundary values of the fluid velocity. Dynamic equations appear to carry all ess
information about the fluid motion. This form of the fluid description may appear to be impo
in such problems, where the character of the fluid motion depends essentially on the chara
the initial and boundary conditions, and one needs to investigate dynamic equations togeth
boundary and initial conditions. For instance, such a necessity arises when investigating ph
ena connected with a transition to an irregular motion of a fluid~turbulence!.

The appearance of the fieldg activates the relabeling group. Invariant subsets of this gr
can be used for a classification of the fluid flows. The fieldg allows one to introduce such concep
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asc function andk-spin which are new for the fluid dynamics. In some special cases these
constructive concepts can be identified with the wave function and the spin. Concepts of the
function and of the spin are fundamental concepts in the sense that they cannot be defin
other more fundamental concepts. In the quantum mechanics the concepts of the wave f
and of the spin are defined by their properties, i.e., by a system of axioms~quantum axiomatics!.

On one hand there are derivative constructions ofc function andk-spin, connected with
stochastic electron via the construction of the statistical ensemble~ideal fluid!. On the other hand
there are fundamental concepts of wave function and spin, connected with the stochastic e
via a system of axioms~quantum axiomatics!. Sometimes thec function coincides with the wave
function, but not always. Then such a question arises. Which of the two conception is vac
function, or wave function?

A like problem arose in the theory of thermal phenomena. On one hand there was an a
atic thermodynamics with its fundamental concepts of thermodynamic potentials. On the
hand there was the statistical physics, where the thermodynamic potentials were const
quantities derived from the conception of the heat as a chaotic motion of molecules. Th
constructive theory~statistical physics! appeared to be more successful, than the axiomatic
~thermodynamics!. Now the question is yet open, although there is a series of arguments in
of the constructive approach which seems to be more reasonable and less enigmatic.

The considered general approach to the fluid dynamics is interesting from the point of
that sometimes it permits one to use advantages of the quantum technique in the dynamics
fluids, as well as the general technique of the fluid dynamics in application to quantum mech
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The Stäckel systems and algebraic curves
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St. Petersburg University, 198 904, St. Petersburg, Russia
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We show how the Abel–Jacobi map provides all the principal properties of an
ample family of integrable mechanical systems associated to hyperelliptic curves.
We prove that derivative of the Abel–Jacobi map is just the Sta¨ckel matrix, which
determinesn-orthogonal curvilinear coordinate systems in a flat space. The Lax
pairs,r-matrix algebras and explicit form of the flat coordinates are constructed. An
application of the Weierstrass reduction theory allows us to construct several flat
coordinate systems on a common hyperelliptic curve and to connect among them-
selves different integrable systems on a single phase space. ©1999 American
Institute of Physics.@S0022-2488~98!02009-X#

I. INTRODUCTION

In the classical mechanics the arrow from the initial physical variables to the action-
variables is provided by the separation of variables and then by the Arnold construction
action-angle representation.1 The motion in the opposite direction ought to allow us to constr
various mechanical integrable systems. However, in the action-angle representation all th
chanical systems with fixed number of degrees of freedom are indistinguishable. To describ
particular integrable system one should present an explicit construction of the initial ph
variables as functions on the action-angle variables. This mapping contains all the inform
about a given integrable system. By using a variety of these mappings the different inte
models may be connected together via the common action-angle variables. For instance, m
cal systems may be related to nonlinear equations and to gauge field theory.

As an example, investigation of the finite-gap solutions of the nonlinear problems leads
introduction2–4 of analytic symplectic formVg on the Jacobian fibrations and to the definition
the action-angle variables on the complex space of Liouville variables. In Ref. 5 it is shown
possible obstructions to the existence of global systems of action-angle variables on sym
vector bundles are a nontrivial first Chern class and the presence of monodromy at singul
Introduction of the action-angle representation enables one to consider mechanical inte
systems as systems associated with these variables on a torus bundle with baseM, moduli space
of complex polynomials

F~l!5 )
j 51

2g11

~l2l j !, ~I.1!

and with a fiberJ(C ), the g-dimensional complex Jacobian of auxiliary curveC defined by the
Abel–Jacobi mapU.1,6 The fact that action-angle variables could be used for quantizatio
classical systems leads to the introduction of semiclassical geometric phases. This appro
sults, for instance, in quantum conditions on the moduli ofn-dimensional Jacobi varieties.7

By using this Abel–Jacobi mapU and the Jacobi problem of inversion, the so-called r
variables$pj ,qj% j 51

n ~Refs. 8 and 9! on an associated Riemann surfaceC may be constructed
instead of the action-angle variables. In these root variables on the level of integrals of moti
action is represented as a sum of items depending on one coordinate only, i.e., these varia
separated variables. The corresponding Riemann surfaceC depends on parameters~moduli!,
parameterizing the moduli spaceM of C .4,10 In terms of mechanical integrable systems, the cu

a!Electronic mail: tsiganov@mph.niif.spbu.ru
2790022-2488/99/40(1)/279/20/$15.00 © 1999 American Institute of Physics
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C is interpreted as a time-independent spectral curve, integrals of motion are some s
coordinates on the moduli spaceM, and the JacobianJ(C ) is a common level of the involutive
integrals of the system.1

In what follows, we have to describe appropriate mechanical systems together with their
space in initial physical coordinates$pj ,xj% j 51

n . In particular, separated coordinate systems ou
to be orthogonal curvilinear coordinate systems on the flat Riemannian manifold.11,12 In this case,
these separated coordinate systems are associated to some solutions to the Lame´ equation.13–15

Recently, the solutions to this equation have been obtained in an explicit form with the help
‘‘dressing procedure,’’13 the Baker-Akhiezer function14,16 and the Lie algebraic construction15

within framework of the inverse problem method.
The main objective of this paper is to illustrate how fixed mapping from the action-a

variables1,6,14 to separated variables completely defines all the principal properties of mecha
systems. We shall consider the uniform Sta¨ckel models associated to the Abel–Jacobi mapU on
the hyperelliptic curveC and the well-known elliptic, parabolic and spherical curvilinear coor
nate systems onRn. Also, we discuss relations of these mechanical systems with other integ
models associated to the same algebraic curve.

II. THE STÄCKEL SYSTEMS

One of the oldest problems of the Hamiltonian mechanics is to find the quadratures f
integrable Hamiltonian systems. The simplest models integrable in quadratures are the Li
systems and the Sta¨ckel systems17 ~the Liouville systems are a particular case of the Sta¨ckel
systems!.

Before proceeding farther it is useful to recall the classical work of Sta¨ckel.17 The system
associated with the name of Sta¨ckel17 is a holonomic system on the phase spaceR2n. Their
Hamiltonian is

H5(
j 51

n

gj~q1 ,...,qn!~pj
21U j !. ~II.1!

Here$pj ,qj% j 51
n are canonical variables inR2n with the standard symplectic structure and with t

following Poisson brackets

Vn5(
j 51

n

dpj∧dqj , $pj ,qk%5d jk . ~II.2!

Let us recall the Sta¨ckel theorem.
Theorem 1: For a Hamiltonian system with HamiltonianH of the form ~II.1! the following

assertions are equivalent:
~i! The associated Hamilton–Jacobi equation is separable.
~ii ! There exists a nondegeneraten3n Stäckel matrixS, whose elementssk j depend only on

qj :

det SÞ0,
]sk j

]qm
50, for j Þm, and such that(

j 51

n

sk j~qj !gj~q1 ,...,qn!5dk1 . ~II.3!

~iii ! There existn functionally independent integrals of motion which are quadratic in m
menta.

Let C5@cik# denote the inverse matrix toS such thatcj 15gj . Then the Sta¨ckel theorem11,17

asserts that there aren first integrals of motion, namely

I k5(
j 51

n

cjk~pj
21U j !, I 15H. ~II.4!

The common level surface of these integrals,

Ma5$zPR2n:I k~z!5ak , k51,...,n%,
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is diffeomorphic to then-dimensional real torus and one immediately obtains

pj
25S ]S

]qj
D 2

5 (
k51

n

aksk j~qj !2U j~qj !, ~II.5!

whereS(q1 ,...,qn) is an action function.1 If this real torus is part of a complex algebraic toru
then the corresponding mechanical system is called an algebraic completely integrable sy18

The Stäckel theorem allows one to reduce the solution of the equations of motion to a pro
in algebraic geometry. We can regard each expression~II.5! as being defined on the Rieman
surface

C j : yj
25F j~l!, F j~l!5 (

k51

n

aksk j~l!2U j~l!, ~II.6!

which depends on the valuesak of integrals of motion. All the pairs of variables (pj ,qj ) lie on
these Riemann surfaces~II.6!. Considered together, they determine ann-dimensional Lagrangian
submanifold inR2n:

C ~n!: C 1~p1 ,q1!3C 2~p2 ,q2!3¯3C n~pn ,qn!. ~II.7!

The associated Hamilton–Jacobi equation,

]S

]t
1HS t,

]S

]q1
,...,

]S

]qn
,q1 ,...,qnD50⇒gj j

]S

]qj

]S

]qj
5E, ~II.8!

on the local manifoldV n with diagonal metricgj j 5gj (q1 ,...,qn) analytic in the local coordinate
$qj% has the following additive solution:

S~q1 ,...,qn!5(
j 51

n

sj~qj !, sj~qj !5E AF j~qj ! dqj , ~II.9!

with the functionsF j (l) defined in~II.6!. Coordinatesqj (t,a1 ,...,an) are determined from the
equations

(
j 51

n E
g0~p0 ,q0!

g j ~pj ,qj ! s1 j~l!dl

A(k51
n aks1 j~l!2U j~l!

5b15t,

~II.10!

(
j 51

n E
g0~p0 ,q0!

g j ~pj ,qj ! sk j~l!dl

A(k51
n aksk j~l!2U j~l!

5bk , k52,...,n,

where pointsg j (pj ,qj ) andg0(p0 ,q0) be on the curveC j of ~II.6!. Notice that bounded motion
in this case will not be periodic in general, but only conditionally periodic.11,17If l j

0 andl j are the
turning points determined by the conditions that functionsF j (l) @~II.6! and ~II.9!# vanish, the
periods of the motionwjk are equal to

wk j5E
l j

0

l j sk j~l!dl

AF j~l!
. ~II.11!

Thus, Sta¨ckel17 showed that the orthogonal coordinates$qj% j 51
n permit separation in the

Hamilton–Jacobi equation~II.8! if the metric

ds25(
j 51

n

gj j ~q1 ,...,qn!~dqj !2, gj j ~q1 ,...,qn![gj~q1 ,...,qn!, ~II.12!

is in the Sta¨ckel form
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gj j ~q1 ,...,qn!5Hj
2~q1 ,...,qn!5

det S

Sj 1 , ~II.13!

whereSj 1 means the cofactor ofsj 1 in matrix S @~II.3!#. Heregj j is a diagonal metric andHj are
called the Lame´ coefficients. For a modern approach to construction of the Lame´ coefficients, see
Refs. 13–15.

Henceforth, we shall restrict our attention to the uniform Sta¨ckel systems, where all the
potentialsU j (qj )5U(qj ) and curvesC j @~II.6!# are equal. Variables$sk ,wk% @~II.9! and ~II.11!#
on a single curveC are the action-angle variables for the uniform Sta¨ckel systems. To construc
the metricgj (q1 ,...,qn) and the potentialsU(qj ) in an explicit form we shall identify periodswk

@~II.11!# with periods of the Abel differentials on a common hyperelliptic curveC @~II.5!# along
the elements of a homology basis.1,6 In this case definition of the separated variables$qj% @~II.10!#
leads to the Jacobi inversion problem. In the next section we prove that the Sta¨ckel matrix S
@~II.3!# is completely defined by the derivative of the Abel–Jacobi mapU on C at generic point
~the so-called Brill–Noether matrix!.

III. UNIFORM STÄCKEL SYSTEMS AND ALGEBRAIC CURVES

To begin with, let us briefly recall some necessary facts about the action-angle variab
the JacobianJ(C ).1,6,4The main ingredient of this construction is a universal configuration sp
which is the moduli space10 of all algebraic curves with fixed jets of local coordinates at a fix
number of punctures. This concept is closely related to the notion of the Baker–Akhiezer fu
on admissible curves14 and to the theory of algebraic completely integrable systems.18

Let us consider a genusg Riemann surfaceC with N ordered puncturesPj and with two
special Abelian integralsy andl with poles of order at mostl 5( l j ) j 51

N andm5(mj ) j 51
N at the

punctures. The universal configuration spaceMg( l ,m) can then be defined as a moduli space
C under certain constraints on the set of algebraic geometrical data.14,4 In this case the spac
Mg( l ,m) is a complex manifold with only orbifold singularities. To introduce the local coo
nates onMg( l ,m) we cut apart the Riemann surfaceC along a homology basisAi , Bj , j
51,...,g, with canonical intersection matrix

Ai+Aj5Bi+Bj50, Ai+Bj5d i j . ~III.1!

By selecting cuts fromP1 to otherPj for each 2< j >N one gets a well-defined branch of th
Abelian integralsy andl. Among the complete set of local coordinates onMg( l ,m), the follow-
ing moduli are distinguished:

sj5 R
Aj

ydl, j 51,...,g. ~III.2!

The universal configuration spaceMg( l ,m) is a base space for a hierarchy of fibratio
C (k)( l ,m) of particular interest to us. These are the fibrations whose fiber above each po
Mg( l ,m) is thekth symmetric powerSk(C ) of C . This fiberC (k)( l ,m) is the set of all effective
divisorsD5g11¯1gk ~theg j ’s may not be mutually distinct! of degk of C , i.e.,C (k)( l ,m) can
be identified with the set of all unorderedk-tuples $g1 ,...,gk%, where theg j ’s are arbitrary
elements ofC .

Let D be the open set inMg( l ,m), where the zero divisors ofdy anddl do not intersect.
Fixing all the local coordinates onMg( l ,m) exceptsj @~III.2!#, one can determine a smoot
g-dimensional foliation ofD , independent of the choice we made to define the coordin
themselves.4 Hereafter, by abuse of notation, one leaf of this foliation is denoted just byM, and
C (k) means the above fibrations restricted toM.

Let dS5ydl be a meromorphic one-form onC with the special Abelian integralsy andl,
which have fixed expansions near the puncturesPj .4 It means that we have imposed certa
constraints on the algebraic geometrical data~according to Ref. 14 we used admissible dat!.
These constraints ensure the existence of a global system of action-angle variables and th
ence of the corresponding symplectic form.5 The fact that we impose some constraints provides
with additional properties ofdS. Namely, generating one-formdS possesses the property
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]dS

]sj
5

]ydl

]sj
5dwj , j 51,...,g, ~III.3!

wheresj are action coordinates of~III.2! on the moduli spaceM and differentials of the angle
variablesdwj form some basis of holomorphic differentials~normally, even if the differential is
holomorphic, its moduli derivative is not!. Moreover, formdS gives rise to differentials spannin
a whole spaceH1(C ) of holomorphic differentials. Hence, for any generic divisorD5g1

1¯gg on C the standard two-form onC (g),

Vg5dS (
j 51

g

y~g j !dl~g j !D 5(
j 51

g

dy~g j !∧dl~g j !5(
j 51

g

dsj∧dwj ~III.4!

is a desired holomorphic symplectic formVg on C (g). The set of variables$sj ,wj% j 51
g is the

complete set of action-angle variables onJ(C ). These action-angle variables$sj ,wj% have been
obtained by generalizing the definition of actions introduced for integrable systems on tori
form of periods of holomorphic differentialsdwj along the elements of a homology basis in Re
1 and 6.

Now we turn to the uniform Sta¨ckel systems. The corresponding algebraic curve~II.6! is a
hyperelliptic curve given by an equation of the form

C : y25 )
i 51

2g11

~l2l i !, ~III.5!

and punctureP is the point at infinityl5`. Recall that the modulil j of C are integrals of motion
~II.6!. Solution to the inverse Jacobi problem and associated Abel–Jacobi map onC relate a set of
the action-angle variables and the separated variables.

Variables of separationqj (t) give the solution to the inverse Jacobi problem~II.10!. The
associated Abel–Jacobi mapU: Div ( C )→J(C ) is restricted to Lagrangian submanifoldC (k):

U: C ~k!→J~C !. ~III.6!

Note that whenever we discuss the Abel–Jacobi map, we shall tacitly assume that a base pg0

@~II.10!# on C has already been fixed in an appropriate position.
Suppose that pointD5g11¯1gk , k<g belongs toC (k). The differential of the Abel–

Jacobi map~III.6! at the pointD is a linear mapping from the tangent spaceTD(C (g)) of C (g) at
the pointD into the tangent spaceTU(D)(J(C )) of J(C ) at the pointU(D):

UD* : TD~C~k!!→TU~D !~J~C !!.

Now suppose thatD is a generic divisor, andzj is a local coordinate onC near the pointg j . Then
(z1 ,...,zk) yields a local coordinate system near the pointD in C (k). Let dwk (k51,...,g) be a
basis for a spaceH1(C ) of holomorphic differentials onC , and nearg j

dwk5fk j~zj !dzj ,

wherefk j(zj ) is holomorphic. It follows that the Abel–Jacobi mapU can be expressed nearD as

U~z1 ,...,zk!5S (
j 51

k E
g0

zj
f1 j~zj !dzj ,...,(

j 51

k E
g0

zj
fg j~zj !dzj D .

Hence

UD* 5S f11~g1! ¯ fg1~g1!

] � ]

f1k~gk! ¯ fgk~gk!
D ~III.7!

is the so-called Brill–Noether matrix.
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Theorem 2: Transpose the Brill–Noether matrixUD* on the genusg>n hyperelliptic curve
C , which is the derivative of the Abel–Jacobi mapU at generic divisorD (degD5n) is equal to
the Stäckel matrixS for the uniform Sta¨ckel system onC2n with metric

gj j ~q1 ,...,qn!5
det S

Sj 1 .

At generic pointD, degD5g matrix S5UD*
t is a regular matrix satisfying the Sta¨ckel theorem.

At g.n we have to consider restriction of the Abel–Jacobi map~III.6! ontoC (n). In this case
the symplectic formVn on C (n) is an appropriate projection ofVg @~III.4!# andC (n) is a Lagrang-
ian submanifold in the phase spaceC2n. The separated variables$pj ,qj% j 51

n are constructed from
the first 2n action-angle variables~III.9! only, and the action differentialdS5( j 51

n pjdqj gives
rise to ann-dimensional chart of the whole spaceH1(C ). The correspondingn3n Stäckel matrix
is the left uppern3n block of the general matrixS5UD*

t and, therefore, unless otherwise ind
cated, we assumen5g.

As an example, let us consider some basis forH1(C ), for instance,

dwj5
l j 21

y~l!
dl, j 51,...,g. ~III.8!

By choosing this basis we fix a basis of action-angle variables~III.2!–~III.4!. To solve the Jacob
inversion problem~II.10! one obtains variables of separation

pj5y~g j !, qj5l~g j !, j 51,...,g, ~III.9!

for a generic pointD5g11¯1gg on C , which coincides with the divisor of simple poles of th
corresponding Baker–Akhiezer function.14 In the real case~whenpj andqj are real!, the separated
variablesqj from ~III.9! ~so-called root variables! vary along cyclesAj @~III.1!# over basic cuts on
C and, therefore, our problem is defined on ag-dimensional real torus. The holomorphic sym
plectic form Vg on C (g) coincides with standard ones of~II.2! and a fiberC (g) is a complex
Lagrangian submanifold of the phase spaceC2g @~II.7!#:

C ~n![Sn~C !: ~C ~l!3C ~m!3¯3C ~n!!/sn , n<g, ~III.10!

wheresn is the permutation group onn letters.
Recall that the derivativeUD* bears a great resemblance to the usual Gauss mapping. The

UD* induces a canonical mapping fromC into the (g21)-dimensional projective spaceC
→Pg21. On the other hand, the canonical mapping is defined by the derivative of the Abel–J
map. For a hyperelliptic curveC of genusg>2, the canonical mapC→Pg21 is the composition
of the double covering mapC→P1, sending (y,l) to l, with the Veronese mapP1→Pg21 given
by a basis for the polynomial ring of degreeg21. With respect to the basis ofH1(C ) in ~III.8!,
the canonical map ofC has an extremely simple expression:

~y,l!→l→@lg21,lg22,...,l,1#.

By using this map we introduce theg3g matrix

S~l,m,...,n!5S lg21 mg21
¯ ng21

] ] � ]

l m ¯ n

1 1 ¯ 1

D , ~III.11!

determined on the Lagrangian submanifold~III.10!. For a generic pointD5g11¯1gg in ~III.9!,
the Stäckel matrix is equal to

S~q1 ,q2 ,...,qg!5S~l,m,...,n!ul5q1 ,m5q2 ,...,n5qg
, sk j~qj !5lg2kul5qj

. ~III.12!
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Recall that the diagonal metricgj j is completely determined by the corresponding Sta¨ckel matrix
~II.13!. Nevertheless, we introduce another equivalent definition of the metric. Substitutin
Stäckel matrix ~III.12! in the algebraic equation~II.3! one obtain,

(
j 51

g

sk j~qj !gj j ~q1 ,q2 ,...,qg!5dk15(
j 51

g

Resul5qj

lk21

e~l!
5

1

2p i R
C

lk21

e~l!
, ~III.13!

where, by definition,

gj j ~q1 ,q2 ,...,qn!5Resul5qj

1

e~l!
.

Here we introduced functione(l), which has zeroes at the pointsqj giving the solution of the
inverse Jacobi problem.

In general, functione(l) with g zeroes, which are solutions of inverse Jacobi problem
expressed in the Riemann theta-function

e~l!5u~U~g1 ,...,gg!2b2K !, U~g1 ,...,gg!5U~g1!1¯1U~gg!. ~III.14!

Here K is a vector of the Riemann constants andb5(b1 ,...,bg)PCg is a fixed vector.3 The
principal properties of the functione(l) in ~III.14! are considered in Ref. 3.

Proposition 1: Function e(l) on C with g zeroes (pj ,qj ) giving solution to the Jacob
inversion problem is completely defined by the metricgj j (q1 ,q2 ,...,qn) @~III.13!# for a uniform
Stäckel system.

We prove this proposition in the polynomial ring only. In this case

e~l!5)
k51

g

~l2qk!, ~III.15!

and

gj j ~q1 ,q2 ,...,qg!5Resul5qj
e21~l!5

1

P j Þk
g ~qj2qk!

. ~III.16!

To prove~III.13! for this metric, it suffices to consider the following integral:

1

2p i R
C

lk

e~l!
5(

j 51

g

Resul5qj

lk

e~l!
52Resul5`

lk

e~l!
5dk,g21 , ~III.17!

whereC encloses allqj .
The functione(l) is defined on the universal configuration space, i.e., it is independent o

moduli l j of C ~integrals of motion! and on a choice of the basis of holomorphic differentials
H1(C ). For instance, in the polynomial ring let us consider a set of the equivalent St¨ckel
matrices with the following entries~III.7!:

sk j~l!uqj
5fk j~l!uqj

, fk j~l!5lg2k1a1
~ j !lg2k211¯1ag2k

~ j ! , ~III.18!

where polynomialsfk j form various bases for the polynomial ring of degreeg21. Substituting
~III.18! in ~III.13! and ~III.17! one obtains at once universal solutione(l) of ~III.15!. Below we
shall see that the HamiltonianH @~II.1!# with the diagonal metricgj j @~III.16!# is closely related to
the distinguished punctureP at infinity l5` on the hyperelliptic curveC @~III.5!#. The different
Stäckel matrices~III.18! correspond to the distinct sets of the integrals of motion in the involu
for a single HamiltonianH. The completeness and functional independence of these inte
directly follows from the completeness and independence of the basis elements~III.18! for a
polynomial ring.

Finally, we look at other fibrationsC (n) at nÞg. At g.n, to construct the metric
gj j (q1 ,...,qn) on C (n), we expand the initial curveC @~III.5!# by
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y25 )
i 51

2g11

~l2l i !5U2g11~l!1 )
i 51

2n11

~l2l̃i !, n<g. ~III.19!

HereU2g11(l) is an at most 2g11 order polynomial, which is regarded as a potential in~II.6!.
The n3n Stäckel matrix and the corresponding functione(l) may be associated to the auxiliar
genusn curve

C̃ : ỹ25 )
i 51

2n11

~l2l̃i !. ~III.20!

The functione(l) is independent on the moduli ofC @~III.19!# and, therefore, uniform potentia
U2g11 in ~III.19! has an arbitrary form and decomposition~III.19! determines the highest power o
the polynomialU(l) only.

At n.g the above holomorphic symplectic formVg on the leavesM is degenerate. How-
ever, a nondegenerate form onC (n) may be obtained by restrictingC (n) to the larger leavesM̃ of
the foliation.4 The leavesM̃ correspond to the level sets of all the local coordinates excep
holomorphicsj @~III.2!# and to some additional (n2g) coordinates associated to meromorph
differentialsdw̃j in ~III.3! and ~III.4!. In fact, to construct the action-angle variables, we have
add several meromorphic differentials to holomorphic angle variables. Thus, atn.g the symplec-
tic two-form Vn on C (n) is meromorphic.4

As an example, atn5g11, we can add one local coordinate in the neighborhood of punc
P at infinity.4 This additional coordinate occurs in the Sta¨ckel matrix and in the metric in the
following way:

S~g11!~l,m,...,n!5q0S~g!~l,m,...,n!,
~III.21!

e~l!5q0)
j 51

n

~l2qj !, g005Resul5`

lg21

g~l!
.

At n.g these systems with meromorphic formVn possess several reductions of the additio
meromorphic coordinates, for instanceq05const in~III.21!.19

The above formulas are well adjusted for generalization. If the curveC in ~III.5! is substituted
by

C : y25F~l!5
Pl~l!

Qm~l!
5

P j 51
2g11~l2l j !

Pk51
m ~l2dk!

, m<2g11, ~III.22!

where$dk% is a set ofm arbitrary constant, one obtains

sk j~l!ul5qj
5

fk j~l!

Qm~l!
U

qj

, e~l!5
P j 51

g ~l2qj !

Qm~l!
. ~III.23!

Note that the algebraic equation~III.13! is covariant with respect to the transformations

S→R21~l!S, e~l!→R21~l!e~l!,

which leads to the general form of the metric

gj j ~q1 ,q2 ,...,qn!5Resul5qjS Qm~l!R~l!

P j 51
g ~l2qj !

D ~III.24!

associated to the curveC . We shall use this freedom to consider the standard curvilinear co
nate systems.11,12,20

So, the hyperelliptic genusg curve C may be associated to a family of the uniform Sta¨ckel
systems on the phase spaceC2n by using the Abel–Jacobi mapU, its differentialUD* , and their
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restrictions onC (n). Diagonal metricgj j (q1 ,q2 ,...,qn) @~II.13!# in the Hamiltonian~II.1! is com-
pletely defined by number of degrees of freedomn, and potentialU(l) is at most 2g11 order
arbitrary polynomial.

On the other hand, one fixed metricgj j (q1 ,...,qn) may be associated to an infinite set of t
hyperelliptic curvesC . The corresponding Hamiltonian systems differ from each other by
power and by the form of polynomial potentialsU(l) in ~III.19!. Among these systems we mu
distinguish systems onC (n) at n.g @~III.10!# for which the number of degrees of freedomn is
more than the genusg of the associated curveC . In this case the corresponding symplec
two-form on C is meromorphic.4 In the next section, we shall identify these systems with
degenerate or superintegrable systems.21 Recall that for the degenerate system the numbe
independent integrals of motion is more than the number of degrees of freedom.

IV. THE LAX REPRESENTATIONS

Let us recall that the key idea, which has started the modern age in the study of cla
integrable systems, is to bring them into the Lax form. All the properties of the uniform Sta¨ckel
systems may be recovered from the properties of the Abel map. Nevertheless, now we w
obtain the Lax representations for all the uniform Sta¨ckel systems associated to the hyperellip
curveC (y,l) in ~III.5!. We consider construction of the Lax representation as a necessary
mediate step to study quantum counterparts of the Sta¨ckel systems.

In the simplest case the Lax matricesL(l) or L(y) are defined as the matrix-valued functio
on bare spectral curvesFl , lPFl @~I.1!# or Fy , yPFy , while the full spectral curveC (y,l) is
given by the Lax eigenvalue equations

C : det~L~l!2y!50, det~L~y!2l!50. ~IV.1!

As a result,C arises as a ramified covering over the bare spectral curveFl or Fy .22

Until now a delicate question was how to construct the Lax matricesL(l) or L(y) for a given
integrable system. The one integrable system may be associated to the different curves a
curve C may be associated to the different mechanical integrable system on a common
space. As an example, then-particles Toda lattice can be equivalently formulated in terms of
different Lax representations23 associated to the single hyperelliptic curveC .

Here we consider the equation for a general algebro-geometric symplectic structure ass
to the spectral curveC of the given Lax representationL,

Vn52(
a

ResPa

^dc1∧dLc&

^c1c&
, ~IV.2!

proposed in Ref. 4. HereVn is the restriction of the algebro-geometrical symplectic form~III.4! on
C generated by two differentialsdy anddl having poles at puncturesPa . Functionsc andc1

are the Baker–Akhiezer function onC and its dual function. If we fix some two-formVn and the
Baker–Akhiezer functionsc, c1 on a given curveC , then one can attempt to recover th
associated Lax matrixL.

For some particular Sta¨ckel systems the 232 Lax matrices20,24 and the corresponding vecto
Baker–Akhiezer functioncW associated to natural vector fields on the Jacobian of any hyperel
curve are known. On the other hand, we know the general scalar Baker–Akhiezer functionc on
C defined by its analytical properties onC , which corresponds to geodesic systems with diago
metric.14

Note here we have the vector Baker–Akhiezer functioncW , which is the eigenfunction of the
matrix L associated to the curveC , and the scalar Baker–Akhiezerc, which is completely defined
by analytical properties on the same curveC .

For the uniform Sta¨ckel systems let us identify the preassigned symplectic structureV @~II.2!#
with the symplectic structure~III.4! defined on a hyperelliptic algebraic curveC . Next we try to
recover Lame matrix for a geodesic motion under the following additional assumptions:

~1! L(l) is a generic 232 matrix associated to a spectral hyperelliptic curveC of genusg
5@(n21)/2#.

~2! The associated vector Baker–Akhiezer functioncW has a constant normalizationaW :25
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^aW ,cW &5a1c11a2c251, aW 5~0,1!.

~3! The first component ofcW in ~IV.2! is proportional to the unique Baker–Akhiezer functio
c on C with fixed analytical properties.14

At the first assumptionn is a number of integrals of motion, which are moduli ofC (n
52g11) and, therefore, formVn in ~IV.2! is a restriction of meromorphic symplectic formVg in
~III.4! to the minimaln-dimensional leafM̃ ~Ref. 4! for integrable systems onC2n. The second
assumption allows us to reduce the vector Baker–Akhiezer function to a scalar one. In this
the solution of~IV.2! is completely defined by the functionc on C only. At first we present this
particular solution in terms of the functione(l) associated to the Abel mapU. We introduce the
function e(l) and its time derivative

e~l!5
P j 51

n ~l2qj !

Pk51
m ~l2dk!

, m<n, ex~l!5$H,e~l!%, ~IV.3!

where$dk% is a set ofm arbitrary constant andH is a Hamiltonian of the geodesic motion

H5(
j 51

n

gj j ~q1 ,...,qn!pj
2, gj j ~q1 ,...,qn!5Resul5qj

1

e~l!
. ~IV.4!

Thus, in the Lax equation for a geodesic motion

Lx~l!5$H,L%5@L,A#,

matricesL andA are given by

L~l!5S 2ex/2 e

2exx/2 ex/2
D ~l![S h e

f 2hD ~l!,

~IV.5!

A~l!5S 0 1

0 0D .

The HamiltonianH in ~IV.4! is equal to a highest residue at the distinguished Weierstrass poi
C at infinity l5`,

H52Resul5`ln2m det L~l!, ~IV.6!

where the full spectral curveC is equal to

C : y25F~l![det L~l!,
~IV.7!

F~l!52h2~l!2e~l! f ~l!5
e•exx

2
2

ex
2

4
.

By definition the zeroes ofe(l) are separation variables and conjugated variablespj are given by

pj5h~l!ul5qj
, h~l!52ex/25e~l!(

j 51

n
gj j ~q1 ,...,qn!pj

l2qj
. ~IV.8!

In accordance with Ref. 25 pairs of separation variables (qj ,pj ) lie on the spectral curveC :

y2~g j !5pj
25h2~l!ul5qj

52F~l5qj !52F~l!ug j
.

As usual, the rational functionF(l) admits some different representations:

F~l!5
S j 51

n I jl
n2 j

Pk51
m ~l2dk!

5 (
k51

m
Jk

~l2dk!
1 (

k5m11

n

Jkl
n2k21. ~IV.9!
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Here $I j% j 51
n and $Jk%k51

n are two sets of independent integrals of motion in the involution. T
first set of integrals$I j% j 51

n in ~IV.9! corresponds to the Sta¨ckel matrix in ~III.11!. The set of
equivalent Sta¨ckel matrices~III.18! relate to another decomposition of a numerator ofF(l) in
~IV.9!. The second set of integrals$Jk%k51

n in ~IV.9! is associated to an expansion near punctu
$dk ,`% on C .

The spectral curveC in ~IV.1! is a time-independent curve and, therefore,

$H,F~l!%50⇒]x
3e~l!5exxx50. ~IV.10!

Thus, in fact,26 we consider the polynomial solutionse(l)5P(l2qj (t)) to the equation~IV.10!
and describe the Hamiltonian dynamics of their zeroesqj (t) ~recall that]x means derivative by
time!.

Substituting functione(l) from ~IV.3! and HamiltonianH from ~IV.4! into ~IV.10! one
obtains the equations in the metricgj j 5Hj

2 from ~II.12!. If we introduce so-called rotation coef
ficients,

b i j 5
] iHj

Hi
, iÞ j , ~IV.11!

these equations may be reduced to the following equations:13

]kb i j 5b ikbk j , iÞ j Þk,
~IV.12!

] ib i j 1] jb j i 1 (
mÞ i , j

bmibm j50, iÞ j ,

where the notationiÞ j Þk means that indicesi , j ,k are distinct.
Of course, these equations may be obtained without any Lax representation by using de

~II.13! of the metric, properties of the Abel-Jacobi map, and preassigned asymptotic behav
e(l) at the distinguished pointl5`.

The equations~IV.12! are equivalent to the vanishing conditions of alla priori nontrivial
components of the curvature tensor.13–15 Therefore, using~IV.12! we conclude that the loca
Riemannian submanifold (V n ,guV ) in ~II.8! of the Riemannian manifold (Cn,g) is a flat manifold
whose metric is diagonal with respect to the coordinates$qj%. Imposing some additional restric
tions on the space of solutions to~IV.2!,19 one could get the Bourlet type equations15 related to
another Riemannian manifold of constant curvature.

To construct more general solutions to~IV.2! associated to hyperelliptic curveC of higher
genus we begin with the calculation of the Poisson bracket relations for the initial Lax m
L(l). It allows us to identify the space of solutions to Eq.~IV.2! with the loop algebraL~sl~2!!
in fundamental representation23 and then to use the representation theory of the underlying alg
sl~2!.27

Theorem 3: The Poisson bracket relations for the matrixL(l) @~IV.5!# are closed into the
following r-matrix algebra atm<n only:

$L
1

~l!,L
2

~m!%5@r 12~l,m!,L
1

~l!#2@r 21~l,m!,L
2

~m!#. ~IV.13!

Here the standard notations are introduced:

L
1

~l!5L~l! ^ I , L
2

~m!5I ^ L~m!,
~IV.14!

r 12~l,m!5
P

l2m
, r 21~l,m!5Pr 12~m,l!P,

andP is the permutation operator of auxiliary spaces.23

The Poisson bracket relations for the Lax matrixL(l) in ~IV.5! are preassigned by the initia
symplectic structure~III.4!. It is necessary to calculate two brackets only:
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$e~l!,e~m!%50 ~IV.15!

and

$h~l!,e~m!%5H e~l!(
j 51

n
gj j ~q1 ,...,qn!pj

l2qj
,

P j 51
n ~l2qj !

Pk51
m ~l2dk!

J
52e~l!e~m!(

j 51

n
gj j

~l2qj !~m2qj !

5
e~l!e~m!

l2m (
j 51

n S gj j

l2qj
2

gj j

m2qj
D5

1

l2m
@e~m!2e~l!#, ~IV.16!

where we used a standard decomposition of rational function

e21~l!5(
j 51

n
gj j

l2qj
, gj j 5Resul5qj

e21~l!.

Another Poisson bracket may be directly derived from these brackets and by definition
entries of the Lax matrixL(l) in ~IV.5! via derivative of the single functione(l)

$h~l!,h~m!%50,

$ f ~l!,e~m!%5]x$h~l!,e~m!%5
2

l2m
@h~l!2h~m!#,

~IV.17!

$ f ~l!,h~m!%52
1

2
]x

2$h~l!,e~m!%5
1

l2m
@ f ~l!2 f ~m!#,

$ f ~l!, f ~m!%52 1
2 ]x

3$h~l!,e~m!%50.

To derive the first bracket we have to combine second and first derivatives of the brackets~IV.15!
and ~IV.16!, respectively. At the last bracket one substitutes the equation of motion~IV.10!.

If, contrary to our geometric conventions, the order of polynomialQm(l) is more than an
order of polynomialPl in ~III.22!, i.e., if m.n in the metric~IV.5!, then the rational function
e(l) admits another representation,

e21~l!5(
j 51

n
gj j

l2qj
1j~l,q1 ,...,qn!,

where remainderj~l! is a certain polynomial. Substituting this functione(l) into ~IV.15!–~IV.17!
one obtains

]j~l,q1 ,...,qn!

]l
50.

This constraint to remainderj(l,q1 ,...,qn) directly follows from the symmetry of the last Pois
son bracket in~IV.17!.

The r-matrix algebra~IV.13! is the so-called linear case of ther-matrix algebras correspond
ing to integrable systems, which are modelled on coadjoint orbits of the Lie algebra sl~2!. The
r-matrix in ~IV.14! is a standard rationalr-matrix onL~sl~2!!.28 The general form of the function
e(l) in ~III.14! leads to the elliptic and trigonometricr-matrices.28,29

Thus, for a geodesic motion~IV.4!, the Lax representation~IV.5! with arbitrary poles$dk%k51
m

in ~IV.3! may be regarded as a generic point at the loop algebraL~sl~2!! in fundamental repre-
sentation after an appropriate completion.28 To construct the Lax representation for a potent
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motion with the fixed metricgj j (q1 ,...,qn) in ~IV.3!, we can use the outer automorphism of t
space of infinite-dimensional representations of sl~2! proposed in Ref. 27.

Applying this automorphism of the underlying algebra sl~2! directly to the Lax representatio
L(l) in ~IV.5! on L~sl~2!! we obtain a family of the new Lax pairs:

L8~l!5L~l!2s2•@f~l!21~l!#N , s25S 0 0

1 0D ,

~IV.18!

A8~l!5A2s2•@f~l!e22~l!#N5S 0 1

uN~l! 0D .

Here f~l! is a function on spectral parameter and@z#N means restriction ofz onto the
adR* -invariant Poisson subspace of the initialr-bracket.27,29,30For the rationalr-matrix ~IV.14! we
can use the linear combinations of the following Taylor projections

@z#N5F (
k52`

1`

zkl
kG

N

[(
k50

N

zkl
k, ~IV.19!

or the Laurent projections.27,29

The mappings~IV.18! from the representation of the loop algebraL~sl~2!! to representations
of the universal enveloping algebraU(L) play the role of a dressing procedure, allowing us
construct the Lax matricesLN8 (l) for an infinite set of new integrable systems starting from
single known Lax matrixL(l) associated to one integrable model. This mapping preserve
metric gj (q1 ,...,qn) in the Hamiltonian~II.1!, but changes the potentialU(qj ) and associated
curveC .

The new Lax matrixL8(l) in ~IV.18! obeys the linearr-bracket ~IV.13!, where constant
r i j -matrices substituted byr i j8 -matrices depend on dynamical variables:27,29

r 12~l,m!→r 128 5r 122
~@f~l!e22~l!#N2@f~m!e22~m!#N!

~l2m!
•s2 ^ s2 . ~IV.20!

We have to distinguish systems onC (n) at n.g @~III.10!# for which the number of degrees o
freedomn is more than genusg of the associated curveC . According to Ref. 4 the correspondin
symplectic form is meromorphic. In this case the action differentialdS5ydl gives rise to a whole
spaceH1(C ) and, in addition, several meromorphic differentials onC . We can identify these
systems with the degenerate or superintegrable systems.21

Theorem 4: The complete set of noncommutative integrals of motion for the degene
uniform Stäckel systems with meromorphic symplectic formVg is determined by the generalize
spectral surface

C ~y,l,m!: det~yI1PL8~l! ^ L8~m!!50.

Here we used the outer product of the 232 Lax matricesL8(l) with L8(m) and P means 4
34 permutation matrix inC23C2. The equation of motion for the matrixL(l,m)5PL8(l)
^ L8(m) is equal to

d

dt
L~l,m!5L~l,m!A~l,m!2PA~l,m!P21L~l,m!,

~IV.21!

A~l,m!5A~l! ^ I 1I ^ A~m!,

where the matrixA(l) is a second Lax matrix andI is a unit matrix.
It is easy to derive from~IV.18! thatn.g iff n>N, whereN is a highest power in the Taylo

projection~IV.19!. In this case the correspondingr-matrix ~IV.20! preserves the simple pole at th
punctureP at l5` and the associated second Lax matrixA8 remains a constant in spectral sen
]A(l)/]l50 under the mapping~IV.18!.
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Thus, for the degenerate systems,A(l,m)5PA(l,m)P21, and Eq.~IV.21! takes the stan-
dard Lax form and it proves the theorem.

As usual, spectral curveC @~IV.1!# of L8(l) is a generating function of the involutive famil
of integrals of motion. Substituting functionsf(l)5lnQm

21(l)UN(l) into L8(l) @~IV.18!# one
obtains their spectral curve in the form

C : y25F8~l!5det L8~l!5UN~l!1
S j 51

n I j8l
n2 j

Pk51
m ~l2dk!

,

where$I j8% are integrals of motion. It is a time-independent curve and, therefore,

dF8~l!

dt
50⇒F1

4
]x

31uN~l!]x1
1

2
uN,x~l!G•e~l!50. ~IV.22!

Of course, this equation may be obtained directly in the framework of symplectic geometry.31 Let
us briefly explain an origin of this equation in the theory of nonlinear equations that allows
relate the scalar Baker–Akhiezer functionc and functione(l).

The same algebro-geometrical symplectic formVg @~III.4!# on hyperelliptic curveC @~III.5!#
leads directly to a Hamiltonian structure for soliton equations.2,4 As an example, we consider th
Kortewege–de Vries~KdV! equation associated to hyperelliptic curve~III.5! with one puncture
P(N51) at infinity l5` and atl 51, m52.4 Let us select one leaf of foliation corresponding
dl with all zero periods

R
C
dl50

for an arbitrary cycleC. In this case, the Abelian integrall(P) is a single-valued function, with
only a pole of second order atP(m52). For finite-gap solutions of the KdV equations, modulisj

from ~III.2! are canonically conjugated with respect to the Gardner–Faddeev–Zakharov sym
tic structure to angle variableswj ~see Ref. 32 and references within!. Thus, the uniform Sta¨ckel
systems have a common set of the action-angle variables with solutions of the KdV equat

Starting with this set of variables we consider general algebro-geometric equation~IV.2! for
nonlinear systems. Solution of the equation~IV.2! in a ring of second order differential operato
with the standard Baker–Akhiezer functionc on C @~III.5!# is well known.2–4,9 The associated
Shrödinger operator has the form

L~l!52
]2

]x2 1u~x,t,l!, ~IV.23!

wherel is a parameter. In some simple cases, such as the KdV equation, this parameterl appears
as an eigenvalue and one ultimately equates the potentialu with a solution of the nonlinear
equation itself. Let us look for a solutionA~l! of the Lax system in the ring of differentia
operators

L~l!c50,

S ]L~l!

]t
1@L,A# Dc50 ~IV.24!

of the form

A~l!5e~l!
]

]x
2

1

2

]e~l!

]x
. ~IV.25!

Substituting the given form ofA into the Lax system, one obtains

]u

]t
522F1

4
]x

31u~l!]x1
1

2
ux~l!G•e~l!. ~IV.26!
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Equation~IV.26! is called the generating equation. For different choices of the form ofe(l) and
u(l), this procedure leads to different hierarchies of integrable equations, as an example
KdV, nonlinear Shro¨dinger, and sine–Gordon hierarchies8,9 or to the Dym hierarchy.33 If we
consider the solutions of the equation~IV.26! in the form of polynomial~III.15!, then the rootsqj

of e(l) define the root variables and, as a result, finite-gap solutions of the problem o
geodesic~see Refs. 8, 9, and 33 and references within!.

Substitution of the special form of second operatorA~l! @~IV.25!# into the Lax system
~IV.24! allows us to eliminate the Baker–Akhiezer functionc and to construct a 232 Lax matrix
in e(l). In fact, we replace the Baker–Akhiezer functionc on C to the mutually disjoint function
e(l) on C , which has a transparent mechanical interpretation~III.15!. Recall that the function
e(l) is defined as a function with zeroes, which gives solution to the Jacobi inversion proble3 on
the hyperelliptic curveC .

V. THE FLAT COORDINATES

According to Ref. 14, atn5g the orthogonal curvilinear coordinates$pj ,qj% j 51
g form a

generic divisor of the simple poles of the Baker–Akhiezer functionc, which is defined by their
analytical properties onC . The evaluation ofc at a set of punctures onC determines the flat
coordinates$pj ,xj% j 51

g for the diagonal metric~II.12!. It turns out that, up to constant factors, th
LamécoefficientsH j are equal to the leading terms of the expansion of the same functionc at the
punctures onC .14

Next we reach the same conclusions by using the functione(l) and the corresponding La
representationL(l) on C . As usual, we reduce the study of algebraic geometrical data to
analysis of the associated geodesic motion. The crucial observation is that the equations of
in coordinates$pj ,xj% j 51

n on the Riemannian manifolds of constant curvature have a Newto
form and the corresponding Hamiltonian has a natural form

ẍ j5j j~x1 ,...,xn!, H5( ai j pipj1V~x1 ,...,xn!, ai j PC, ~V.1!

wherej j (x1 ,...,xn) and potentialV(x1 ,...,xn) are functions on coordinates only. Let us introdu
new functionB~l!,

B2~l!5e~l!5H22~l!, ~V.2!

which is ‘‘inverse’’ to the Lame´ coefficientsHj in ~II.13!. One immediately obtains

F~l!5B3Bxx , F8~l!5B3Bxx1B 4Ff~l!

B 4 G
N

. ~V.3!

These equations have the form of Newton’s equations for the functionB:

Bxx5F~l!B23,
~V.4!

Bxx5F8~l!B232BFf~l!

B4 G
N

,

To expand functionB~l! at the Laurent set,

B5(
j 50

N

xN2 jl
j ,

it is easy to prove that coefficientsxj obey the Newtonian equation of motion~V.4! @see~IV.10!
and references within Ref. 26#. Here we reinterpret the coefficients of the bare curvesF(l) and
F8(l) in ~V.4! not as functions on the phase space, but rather as integration constants. In va
xj , mapping~IV.18! affects only the potential~x dependent! part of the integrals of motionI k .
The kinetic ~momentum dependent! part of I k remains unchanged. So, the dressing mapp
~IV.18! allows us to get over from a free motion onC2n to a potential motion onC2n.
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As an example, from~V.4! we get some well known orthogonal curvilinear coordinates onRn

~see Refs. 11, 12, and 19!:

elliptic coordinatesm5n in ~III.23!:

e~l,q1 ,...,qn!5
P j 51

n ~l2qj !

Pk51
n ~l2dk!

511 (
k51

n xk
2

l2dk
5B2~l,x1 ,...,xn!,

d1,x1,d2¯,dn,xn ,

parabolic coordinatesm5n21 in ~III.23!:

e~l,q1 ,...,qn!5
P j 51

n ~l2qj !

Pk51
n21~l2dk!

5l2xn1 (
k51

n21 xk
2

l2dk
5B2~l,x1 ,...,xn!,

x1,d1,x2¯,dn21,xn ,

spherical coordinatesm5n11 in ~III.21!:

e~l,q0 ,...,qn!5
q0P j 51

n ~l2qj !

Pk51
n11~l2dk!

5 (
k51

n11 xk
2

l2dk
5B2~l,x1 ,...,xn11!.

Curvilinear coordinates$qj% are zeroes of functione(l) and flat coordinates$xj% are residues of
e(l)5B2(l) at the punctures, in accordance with the Baker–Akhiezer function approach.14,25

All the separable orthogonal curvilinear coordinate systems inRn may be obtained from thes
coordinate systems.12,19,20According to Ref. 34, all the possible separables in these coordin
potentials, which are polynomials or rational functions of the Cartesian coordinatesxj , belong to
the set of uniform Sta¨ckel systems. Thus, we can claim that every such mechanical syste
embedded into a proposed scheme.

A. Quasi-point canonical transformations

In conclusion, we discuss another parametrizations of the functione(l). Of course, function
e(l) admits various representations in different variables and we can use this freedom
example to solve equations of motion.26 The parametrization considered above describes the p
canonical transformation only. Here we discuss an application of the Weierstrass reduction
to construct other Cartesian coordinates onC .

It is obvious that the Lax representation,

L̇~l!5@L~l!,A~l!#,

is covariant with respect to the transformation of the first Lax matrix,

L~l!→f~l,l1 ,...,lk!L~l!,

with an arbitrary functionf(l,l1 ,...,lk) on time-independent moduli$l j% of C and on spectral
parameterl. However, this transformation drastically changes the Poisson bracket rela
~IV.14! and parametrization ofL(l) in the flat coordinates$pj ,xj%. Hence, in addition to the fla
coordinates$pj ,xj% j 51

n considered above, the same functione(l,q1 ,...,qn) may be associated to
another set of flat coordinates. Now we show that to introduce these new variables$pj ,xj% we can
use various coverings of the initial curveC , for example, the covering listed in Ref. 35.

Let us assume that the initial torusJ(C )5T2g may be decomposed in a direct product
several tori:

T2g5T2g13¯3T2gk, (
j 51

k

gj5g. ~V.5!
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The corresponding Riemann matrix has a block formB5B13B2 ...3Bk , whereBj are thegj

3gj Riemann matrices and the corresponding Baker–Akhiezer function onC is factorized. In this
case we can consider curveC as aK-sheeted covering of toriT2gj . Such covers are known to exis
for any K.1 and for arbitrary tori.35

First of all, we can introduce the separated variables$qj% associated to a whole torusT2g. For
dynamics onJ(C )5T2g, the corresponding Lax representationsL(l) in ~IV.5! are 232 matrices.

Second, we can introduce another set of separated variables$q̃ j% associated to each torusT2gj

in ~V.5!. For dynamics splitting on several toriT2gj , the Lax representations have a block form

L~l!5S L1

�

Lk

D ~l!, ~V.6!

whereL j (l) are the 232 matrices defined by functionsej (l) on each torusT2gj .29 Two sets of
variables$qj% and $q̃ j% are related by canonical transformation induced by the covering, w
allows us to obtain a 232 Lax matrix instead of matrix~V.6!. This means that we have tw
isomorphic integrable systems with different Lax representations and the corresponding can
transformation is a quasi-point transformation.36

To illustrate this construction we take as an example several systems atn52. Starting with a
hyperelliptic curveC of genusg5n52 we define variables (p1 ,q1) and (p2 ,q2) on the Lagrang-
ian submanifoldC (2) from ~III.9!. The Jacobi inversion problem is the problem of finding the
variables from the equations~II.10! with the Stäckel matrixS given by ~III.12!. This problem is
solved by using the Kleiniaǹ-functions, which are second logarithmic derivatives of the Klein
s-function:

` i j 52
] ln s~b1 ,b2!

]b i]b j
, `225q11q2 , `1252q1q2

~for details, see Refs. 35 and 37!. The functione(l) @~III.15!# on C with zeroes at the points
q1 ,q2 is equal to

e~l!5l22`22l2`125~l2q1!~l2q2!5l212lx11~2x21x1
2! ~V.7!

or

e~l!5
~l2q1!~l2q2!

~l2d1!~l2d2!
511

x18
2

l2d1
1

x28
2

l2d2
. ~V.8!

Here we used the freedom~III.23!, and Cartesian coordinates$xj% or $xj8% are derived from the
‘‘inverse’’ Lamé function B(l) in ~V.2!. Applying the outer additive automorphism of sl~2!, we
can construct the Lax matricesL8(l) for an infinite set of integrable mechanical systems with
following Hamiltonians:

H5p1p21VN~x1 ,x2!,
~V.9!

H5p18
21p28

21VN8 ~x18 ,x28!.

Among them, we distinguish the He´non–Heiles systems atN53 and the systems with quarti
potential atN54. For these systems the genus of associated curveC is equal to the number o
degrees of freedomg5n52.

The functione(l) in ~III.13! is independent on the moduli ofC and, therefore, the abov
construction of the integrable systems~V.9! readily gets over on the reducible curveC . To
construct this reducible curve, let us take two toriT1,2

2 ,

w6
2 5j~12j!~12k6

2 j!, ~V.10!

with a Jacobi moduli
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k6
2 52

~Aa7Ab!2

~12a!~12b!
.

Making the rational order two (K52) change of variables

w652A~12a!~12b!
l7Aab

~l2a!2~l2b!2 y, j5
~12a!~12b!

~l2a!~l2b!
l, ~V.11!

one obtains the hyperelliptic curve

C : y25l~l21!~l2a!~l2b!~l2ab!, ~V.12!

which gives a two-sheeted covering of two toriT1,2
2 @~V.10!#. It is a well-known example of the

reduction of hyperelliptic integrals to elliptic ones by using the rational change of varia
proposed by Legendre and generalized by Jacobi.35

The complex torusT2 is isomorphic to the curve of genusg51 given by the equationw2

5 f (j). In the above, we have presented the covering for the two odd curves~V.10! at deg (f )
52g1153. All computations concerning the even curves at deg (f )52g1254 give similar
covering,35 so we do not present these formulas. The odd and even curves atg51 are associated
to the integrable cases of the He´non–Hailes system and the system with quartic potential, res
tively.

Next we can introduce two pairs of variables (p̃1 ,q̃1) and (p̃2 ,q̃2) on the toriT1,2
2 . Functions

e1,2(l) on T1,2
2 are equal to

e1~l!5l2q̃1 , e2~l!5l2q̃2 . ~V.13!

Variables$ p̃ j ,q̃ j% are separated Cartesian coordinates for the integrable systems onT1
23T2

2 with
the Hamiltonians

H3,45 p̃1
21 p̃2

21V3,4~ q̃1!1V3,4~ q̃2!, ~V.14!

which is a sum of two one-dimensional Hamiltonians onT1,2
2 . The corresponding 434 Lax

representation has a block form~V.6!, whose blocks are determined by the functionse1,2(l) of
~V.13!.

The covering~V.11! induces canonical transformation of variables$ p̃ j ,q̃ j% to $pj ,qj%.
37

These pairs of variables lie on the different curvesT1,2
2 andC , respectively. The common modu

a and b of these curves are integrals of motion. On the orbitO (a5const, b5const) this
canonical transformation~V.11! becomes a point transformation. It is the so-called quasi-p
transformation.36

By using the change of variables induced by covering~V.11! one can construct the 232 Lax
matrix for the evolution~V.14! splitting on two tori. In variables$q̃ j% the matrixL(l) is deter-
mined by the function

e~l!5
~l2a!~l2b!

~12a!~12b!
ẽ~l!, ẽ~l!5~l2q̃1!~l2q̃2!. ~V.15!

In fact, we add two additional zeroesa andb into the functione(l) of ~III.13! on the reducible
curve C in ~V.12! and, therefore, change the parametrization of the Lax matrices in flat co
nates$pj ,xj%.

In general, to introduce new flat coordinates, we can take any toriT1,2
2gj of arbitrary genus

g1,2.1 and consider the two-dimensional evolution~V.14! splitting on these curves with a
arbitrary one-dimensional potentialV2gj 11(qj ). The standard change of variables,

q̃ j5
x̃16 x̃2

2
⇒ẽ~l!5l22 x̃11

x̃1
22 x̃2

2

4
, ~V.16!

preserves the natural form of the Hamiltonians~V.14! for arbitrary potentialsV2gj 11(qj ). The

equations of motion remain the Newtonian equations in these variables$ p̃ j ,xj̃ %.
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In the example~V.10! considered above both independent hyperelliptic integrals are red
to elliptic ones by using a common substitutionj→l @~V.11!#. It relates to the existence of th
second order automorphism of a hyperelliptic curve~V.12!:35

t: ~l,y!→S ab

l
,

y

l3 Aa3b3D . ~V.17!

It allows us to introduce another parametrization of the functionẽ(l) in Cartesian coordinates
which preserves the natural form of the Hamiltonian. Namely, in addition to~V.16!, we can use
the following canonical transformation of variables$ p̃ j ,q̃ j% to the Cartesian coordinates$ p̂ j ,x̂ j%

ẽ~l!5l22
Q11Q2

x̂1
1

~Q12Q2!2

4x̂1
. ~V.18!

Here functionsQ6( p̂ j ,x̂ j ) are the classical counterparts of the supercharges in two-dimens
supersymmetric quantum mechanics~SUSY!36 with the following properties:

$H,Q6%56 f ~ p̂ j ,x̂ j !Q6 , $H,Q1Q2%50.

At g52 @N53 or N54 in ~V.14!# these functionsQ6 and f on variables$ p̃ j ,q̃ j% or $ p̂ j ,x̂ j% are
listed in Ref. 36. Modulia and b in ~V.17! are integrals of motion; therefore, automorphismt
induces a second quasi-point transformation associated to torusT1

23T2
2 @~V.10!#.

Two quasi-point transformations~V.11! and ~V.18! for the physical variables$xj8%, $x̃ j% and
$x̂ j% bind together all the integrable cases of the He´non–Hailes system atN53 and three inte-
grable cases of the system with quartic potential atN54. Of course, these systems have a comm
set of action-angle variables. Moreover, the same variables are associated to the Kowalews3

which is a supersymmetric quantum model as well.
Thus, several supersymmetric models are related to evolution splitting on the tori, whe

number of degrees of freedom is equal to the genusg5n of the associated covering curveC

5T13T2 . It would be interesting to get a geometrical interpretation of these supersymm
objects arising from finite-dimensional SUSY quantum mechanics.

VI. CONCLUSION

It is known that curvesy1y215F(l) together with the one-forms

dS~4!5l
dy

y
, dS~5!5 log l

dy

y
,

are implied by integrable models of the Toda chain family~standard and relativistic models!. The
corresponding Lax representations are defined on the Poisson–Lie groups with quadraticr-matrix
algebra. The corresponding mapping from the action-angle variables to separated variab
been proposed in Ref. 32.

On the other hand, we can consider the umbilic solutions of the KdV equation.9,33 These
systems are defined on a generalized Jacobi variety of the symmetric product ofn logarithmic
Riemannian surfaces in place of the Liouville tori. Nevertheless, it is possible to introduce
ables that linearize the corresponding Hamiltonian flows. These systems may be interpre
counterparts of the discrete-time Sta¨ckel systems.

Both these sets of models are associated to the change of parametrization of the hype
curve from ‘‘plane’’ parametrization to ‘‘annulus’’ ones (l→ log l). Another possible generali
zation relates to the interpretation of the parameterl as a coordinate on elliptic curve.

For all these integrable models it would be interesting to estimate the possibility of applic
of the usual Sta¨ckel approach. In this way we should consider mapping between action-a
variables and separated variables, and should study the differential of this map. In the pre
paper there are the Jacobi inversion problem and the differential of the Abel-Jacobi map.
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Lax pairs for integrable lattice systems
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This paper studies the structure of Lax pairs associated with integrable lattice
systems~where space is a one-dimensional lattice, and time is continuous!. It de-
scribes a procedure for generating examples of such systems, and emphasizes the
features that are needed to obtain equations which are local on the spatial lattice.
© 1999 American Institute of Physics.@S0022-2488~99!02001-0#

I. INTRODUCTION

There has long been interest in integrable differential-difference equations~integrable lattice
systems!, especially since the discovery of the Toda lattice.1 Such systems can have direct app
cations, for example, in condensed-matter physics; and also occur as spatially discrete vers
integrable partial differential equations.2 Associated with each integrable lattice is a Lax pa
involving a matrixL that ‘‘steps’’ along the lattice, together with another matrixV that generates
the time evolution. Our purpose in this paper is to investigate the structure of this Lax pai
how it affects the nature of the associated integrable systems.

Throughout the paper, we work with functionswn(t) which depend on timet, and on an
integer variablen. Such a function will be written simply asw, its dependence ont andn being
understood; thenw1 denoteswn11(t), and w2 denoteswn21(t). The symbolD denotes the
forward-difference operator, i.e.,Dw5w12w. For example, the Toda lattice equation~in first-
order form! is

d

dt
w5c,

d

dt
c5exp Dw2exp Dw2 . ~1!

We shall take the integern to be unrestricted~i.e., the lattice is infinite!. Our primary interest is in
systems that are local, in the sense that the time derivative of a variable at siten equals some
expression involving the variables at sitesn21, n andn11: i.e., nearest neighbors only.

The point of view adopted here is that a lattice equation is integrable if it can be written a
consistency condition for a linear system~Lax pair! of a suitable type. This involves twoq3q
matricesL andV, the entries of which are functions of a ‘‘spectral parameter’’l, as well as oft
andn. In what follows, we shall, for the sake of simplicity, restrict to the caseq52 ~i.e., 232
matrices!. The linear system is

C15LC,
d

dt
C5VC, ~2!

whereC is a column 2-vector~depending onl, t, andn!. The consistency condition for~2! is

d

dt
L5V1L2LV. ~3!

a!Electronic mail: Richard.Ward@durham.ac.uk
2990022-2488/99/40(1)/299/10/$15.00 © 1999 American Institute of Physics
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The crucial feature of~3! is that it specifies the evolution only ofL, and not ofV; so in order to
get a meaningful equation,V has to be determined in terms ofL. In the next section, we shall se
how this happens. The subsequent sections illustrate how this structure can be used to g
integrable lattice systems. We shall see how known examples fit into this framework; and as
example, construct a system that couples lattice versions of the Heisenberg ferromagnet
derivative nonlinear Schro¨dinger equation.

II. HOW L „l… DETERMINES V„l…

In order to analyze the structure ofL(l) andV(l), one needs to impose some requireme
on the way that they depend onl. Let us assume thatL, L21, andV are rational functions ofl,
with poles at constant values ofl ~that is, the location of the poles does not depend ont or n!. This
is not the only possibility: for example, there is the well-known case of the lattice Landau–Lif
equation,3 which involves elliptic functions ofl. But we shall restrict to the rational case.

By making a Möbius transformation onl, we may ensure thatV(l) is finite atl5`, i.e., that
its poles occur at finite values ofl. Furthermore, since~3! is homogeneous inL, we have the
freedom to multiplyL by a scalar function ofl ~not depending ont or n!. We can use this freedom
to ensure thatL is a ~matrix! polynomial in l that is nonzero at each of the poles ofV. Let p
denote the degree ofL as a polynomial inl.

Equation ~3! determines the evolution of each matrix coefficient in the polynomialL(l)
5Alp1Blp211¯1D; so at this stage it is a set of coupled equations forq2(p11) functions
~with q52 in what follows!. As was emphasized above, the matrixV has to be determined in
terms ofL, since~3! does not specify its evolution: let us now examine how this happens.

Assume for the time being that the poles ofV are all simple. SoV has the form

V~l!5 (
a51

N

V~a!~l2la!211V~0!, ~4!

whereV(0),V(1),...,V(N) are matrices, independent ofl. The general idea is thatV(0) is deter-
mined by a choice of gauge, whereas eachV(a) for 1<a<N is determined by the residue of~3!
at the polel5la . Note that Eqs.~2! and ~3! are invariant under the gauge transformations,

C°LC, L°L1LL21, V°LVL211S d

dt
L DL21, ~5!

whereL is a nonsingular 232 matrix depending ont and n ~but not onl!. A choice of gauge
involves the following steps.

~i! Choose a form forL(l) ~an algebraic condition on the entries in the matrixL!, such that
a necessary condition for this form to be preserved under gauge transformations~5! is that L1

5L.
~ii ! Then choose anyV(0) that is consistent with~i! and the evolution equation~3!.
As an example to illustrate how this works, choose the coefficient oflp in L(l) ~i.e., the

leading term! to be the identity matrix. Then the remaining gauge freedom is~5!, with L inde-
pendent ofn, as required. And the leading term in~3! gives V1

(0)5V(0), so any choiceV(0)

5V(0)(t) then fixes the gauge completely; to obtain an autonomous system of equation
choosesV(0) to be a constant matrix. This is the most straightforward choice of gauge; for
gauges,V(0) will depend on the functions appearing inL(l), and this dependence is, in gener
nonlocal, as we shall see below.

Consider, next, the pole atl5la . Clearly the residue of the right-hand side of~3! at this pole
must vanish, i.e.,

V1
~a!L ~a!2L ~a!V~a!50, ~6!
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whereL (a)5L(la). The idea is that this constraint determinesV(a). SinceL (a) is a nonzero 2
32 matrix, there are two gauge-invariant possibilities: the rank ofL (a) could be either 2 or 1. In
the next section we deal with the rank 2 case; thereafter, we concentrate on the rank 1 ca

III. RANK 2 CASE: NONLOCAL SYSTEMS

If L (a) is invertible, then~6! is a difference equation,

V1
~a!5L ~a!V~a!L ~a!21,

which determinesVn
(a) in terms of ~say! Ln21

(a) , Ln22
(a) ,..., andV2`

(a) . In other words,V(a) is a
nonlocal function of the entries inL (a).

To obtain a simple example that illustrates this case, takep5N51. Without loss of general-
ity, we may setl150. Write L5Al1B, whereB is invertible; and choose a gauge by specifyi

A5S 0 1

1 0D ,

andV(0)50. SoV(l)5V(1)/l, whereV(1) is the solution of the difference equation,

V1
~1!5BV~1!B21. ~7!

In general, the 232 matrix B contains four functions; let us effect a reduction to one funct
yn(t) by takingB to have the form

B5S ey 0

0 e2yD . ~8!

In order for the reduction to be consistent, we needV2`
(1) to have the form

V2`
~1! 5S 0 b

c 0D
~plus a multiple of the identity, which has no eventual effect!. The resulting system of equation
for y is

d

dt
y5b exp~Y!2c exp~2Y!, ~9!

whereYn(t) is given by the nonlocal expression

Yn5yn12 (
k52`

n21

yk .

This equation can be transformed to a form that looks local, by writingyn5fn2fn11 . In terms
of fn(t), Eq. ~9! becomes

d

dt
~f12f!5c exp~f11f!2b exp~2f12f!. ~10!

If ~for example! b50, then~10! is a differential-difference version of the Liouville equation,

f tx5exp~2f!. ~11!
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To get ~11! from ~10!, we interpretc as the lattice spacing, putx5nc, and take the continuum
limit c→0. Similarly, puttingb5c in ~10! gives a differential-difference version of the sin
Gordon equation.4 But for these lattice Liouville and sine-Gordon systems,x andt ~or n andt! do
not represent space and time; rather they are characteristic~null! coordinates. In particular, on
cannot specify arbitrary initial data att50. In these lattice equations, one of the characteri
coordinates has become discrete, while the other~namelyt! remains continuous.

This example can be generalized in several directions, as follows. If one does not ma
reduction~8!, then one obtains an equation for the matrixB. Choosing the slightly different gaug
A5I ~the identity matrix! andV(0)50, leads to

d

dt
B2DV~1!50, ~12!

together with~7!. Now ~7! and ~12! ensure that there exists a matrixRn(t) with

B511R1R21, V~1!52S d

dt
RDR21.

Then ~12! becomes

d

dt
~R1R21!1DF S d

dt
RDR21G50. ~13!

This is a differential-difference version of the principal chiral equation,

~RxR
21! t1~RtR

21!x50, ~14!

in which, as before, one of the characteristic coordinates has become discrete.
This chiral equation generalizes, of course, to larger matrices (q.2). Similarly, the Liouville

and sine-Gordon examples generalize to differential-difference versions of other Toda field
tions.

Finally, it might be noted that there are difference-difference versions of the principal ch5

and Toda field6 equations in which both characteristic coordinates~herex andt! become discrete
Another, very general, example of this type is the Hirota bilinear difference equation.7

So systems with detL(a)Þ0 may be thought of as time-evolution equations that are nonl
on the spatial lattice, or as equations where a characteristic coordinate~neither space nor time! has
become discrete. To get local evolution equations, it is necessary for eachL (a) to have rank 1.
From now on, we shall concentrate on this case.

IV. RANK 1 CASE: LOCAL SYSTEMS

Given that L (a) has rank 1 the constraint~6! may be solved as follows. WriteK (a)

5L2
(a)L (a). Assuming that trK (a) is nonzero, the general solution of~6! is

V~a!5
1

tr K ~a! @ f ~a!K ~a!1g~a! adj K ~a!#, ~15!

where adjK (a) denotes the adjoint matrix ofK (a), and wheref (a) andg(a) are scalar functions
with f 1

(a)5 f (a). So the constraint~6! does not determineV(1),...,V(N) uniquely: in particular, one
has the arbitrary functionsg(a). However, there is a further constraint, namely that the condi
detL(a)50 has to be preserved by the evolution~3!. This gives equations on theg(a), which are
precisely that they are constant on the lattice, just as thef (a) are: g1

(a)5g(a). Then ~15! can be
rewritten as
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V~a!5
c~a!

tr K ~a! K ~a!1d~a!I ,

wherec(a) andd(a) are functions oft only. It is clear that thed(a) term will not contribute in the
evolution equations, and so only thec(a) remain; we may as well setd(a)50, and take

V~a!5
c~a!

tr K ~a! K ~a!. ~16!

At this stage, thec(a) could still be functions of timet; for simplicity, let us take them to be
constants. One point to note about~16! is thatV(a) is local: Vn

(a) is expressed in terms ofLn and
Ln21 .

So to obtain local evolution equations with 232 matrix Lax pairs, one first specifies th
integerp @the degree ofL(l)#; the integerN appearing in~4! equals 2p, since thela all have to
be roots of detL(l). The matricesV(a) for 1<a<2p are given by~16!, and involve the 2p
constantsc(a). Finally, there is the choice of gauge, which determinesV(0). In general,V(0) turns
out to be nonlocal, and special gauge choices are needed to ensure that it is local.

One can relate all this to ther-matrix description~see, for example, Ref. 3; and also Ref.
which addresses the construction of anr-matrix from a given Lax pair!. Suppose one has anL(l),
a Poisson bracket and anr-matrix such that the Fundamental Poisson Bracket Relations
satisfied. Suppose also that there existl1 ,...,lN such that detL(la)50 for eacha. Let t~l! be the
trace of the monodromy matrix ...L2(l)L1(l)L0(l)L21(l)... ~which propagates fromn52`
to n51`!. Then

H5 (
a51

N

c~a! log t~la!

is a local Hamiltonian, and the corresponding Hamiltonian equations are just~3!; the constants
c(a) are the same as those appearing in~16!. The problem from this point of view is to choos
L(l), in a suitable gauge, such that a compatibler-matrix structure exists.

More generally, one wantst~l! to be conserved in time, for alll—this then gives infinitely
many conserved quantities. If one has a Lax pair~2! and boundary conditions which imply tha
V1`5V2` , thent~l! is indeed conserved. WhenV(l) depends locally on the fields, then then
is easy to ensure that this condition is met; if, on the other hand,V is nonlocal, then the conser
vation of t~l! is not guaranteed. This is one reason why locality is desirable, in the pre
context.

If p51 @in other words,L(l) is linear inl#, then detL(l) is a quadratic polynomial inl, the
roots of which arel1 andl2 . For the time being, let us assume that these roots are distinct
by translatingl setl151 andl2521. It follows thatL(l) has the form

L~l!5 1
2~l11!L ~1!2 1

2~l21!L ~2!, ~17!

whereL (1) and L (2) are 232 matrices each having a zero determinant. So the entries inL (a)

involve six independent functions oft andn @in effect, the requirement thatl1 andl2 be constant
has reduced the number of functions inL(l) from eight to six#. The twoL (a) satisfy evolution
equations obtained by expanding~3!: these are

d

dt
L ~a!5V1

~0!L ~a!2L ~a!V~0!2 1
2J, ~18!

whereJ5V1
(1)L (2)2L (2)V(1)2V1

(2)L (1)1L (1)V(2). The gauge choice reduces the number of fu
tions by four~sinceL contains four entries!, and we end up with a system involving two function
A number of examples of this type are described in the following section.
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V. SOME p 51 EXAMPLES

In this section we exhibit some systems of the type described in the previous section
examples are simple to generate; but before doing so, we should ask when two lattice eq
are to be regarded as being ‘‘the same.’’ More specifically, is there an appropriate equiv
relation on the set of all such systems? Certainly such an equivalence would include
transformations in whichL was constant; and strictly local redefinitions of the functions appea
in L ~i.e., the new functions at lattice siten depend on the old functions at siten only!. However,
it is customary to allow more general transformations than just these. A well-known case is t
the Toda lattice~1!. If one replacesw by

r 5Dw25w2w2 , ~19!

then ~1! becomes

d2

dt2
r 5er 122er1er 2; ~20!

and this is regarded as simply another form of the Toda lattice equation.
But any equivalence relation that admitted~1! and~20! to the same class, would also have

allow the transformationsw°Dkw for all integersk ~negative as well as positive!. If one allows
such highly nonlocal transformations, then ones ends up with rather few equivalence clas
fact, one might as well transform to action-angle variables, and say that the ‘‘only’’ integ
lattice is linear. Clearly this is inappropriate.

The point of this argument is to conclude that there is no useful equivalence relatio
integrable systems of the type that we are considering@unless we insist that~1! and~20! are to be
regarded as distinct#. This means that the task of listing such systems in a systematic way i
really well defined. The best that one can do is to exhibit examples, and indicate how th
related to one another.

Example (i).Choose a gauge such thatL (1)2L (2)52I . This is the gauge that was mentione
as an example in Sec. II. As was remarked there, the gauge is then fixed completely by spe
someV(0)(t). The simplest choice is to setV(0)50. Note thatL (1) andL (2) must have the form

L ~1!5I1M , L ~2!52I1M ,

whereM is trace-free and detM521. So we may writeM5f•s, wheres1 , s2 , ands3 are the
Pauli matrices, andf5fn(t) is a unit 3-vector. The dot denotes the usual three-dimensional
clidean scalar product~and∧ below will denote the vector product!. The evolution equation forf,
derived from~18!, is then

d

dt
f5D@~11f2–f !21~mf21mf1nf2∧f!#, ~21!

wherem5 1
2(c

(1)2c(2)) andn5 1
2i (c

(1)1c(2)) are constants. Equation~21!, then, is an integrable
equation for the unit-vector functionf5fn(t). If the parametern is nonzero, it can be set to unit
by scalingt; so the system effectively depends on the single parameterm. The casem50 is the
‘‘Lattice Heisenberg Model,’’3,9 so called because it has the equation of the Heisenberg fe
magnet as a continuum limit. Indeed, if we setn52/h2, m5m̂/h, and leth→0, then~21! becomes

ft5m̂fx1f∧fxx ; ~22!

the Heisenberg model corresponds tom̂50. A slightly different choice of gauge, namely one
which V(0) is a nonzero constant matrix, yields a lattice nonlinear Schro¨dinger equation~different
from the one in the next example!. This is the lattice counterpart of the well-known gau
equivalence of the nonlinear Schro¨dinger and Heisenberg systems.
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Example (ii).Choose a gauge such that

L ~1!5S 1 0

u 0D , L ~2!52S 0 v

0 1D , ~23!

whereu and v are functions oft and n. The remaining gauge freedom hasL being a diagonal
matrix function oft only. Substituting~23! into the evolution equation~18! determinesV(0) as

V~0!5
1

2 S 2c~1!vu2 c~1!v1c~2!v2

c~2!u1c~1!u2 2c~2!uv2
D ,

plus a diagonal matrix function oft, which by the residual gauge freedom may be set to zero
addition,~18! gives the equations foru andv, namely

d

dt
u5

1

2
~c~2!Du1c~1!Du21c~1!vuu22c~2!vuu1!,

~24!
d

dt
v5

1

2
~c~1!Dv1c~2!Dv21c~2!uvv22c~1!uvv1!.

This is exactly the Ablowitz–Ladik system;2 their L operator is slightly different from the on
presented here~it is, in effect, quadratic rather than linear inl!; but it is easily seen to be
equivalent. In particular, if we choosec(1)52i 52c(2), and impose the~consistent! reductionv
56u* , then~24! reduces to a lattice nonlinear Schro¨dinger equation,

i
d

dt
u5u122u1u27uu* ~u11u2!.

Example (iii).Here we choose a gauge such thatL (1) is constant. Without loss of generality
we may takeL (1) to be

L ~1!5S 1 0

0 0D . ~25!

The most general form for the matrixL (2) is

L ~2!5S uv uw

v w D , ~26!

whereu, v, andw are functions ofn andt. The evolution equation~18! for L (1) implies thatV(0)

must have the form

V~0!52
c~1!

2 S 0 uw

v2 0 D 2
c~2!

2~vu21w! S vu2 wu2

v 0 D 1S A 0

0 D D , ~27!

whereDA50 ~i.e., A depends only ont!. The residual gauge freedom, i.e., that which preser
~25!, is ~5! with

L5S f ~ t ! 0

0 g~n,t ! D ;

this has to be used to determineA andD, and to eliminate one of the three functionsu, v, or w.
In fact, the role off (t) is simply to fixA: let us chooseA5 1

2c
(1). The remaining freedom now is
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u°g1
21u, v°g1v, w°g21g1w. ~28!

Equation~18! for L (2) gives equations foru, v, andw, one form of which is

d

d
log v5D11

1

2
c~1!~wv2 /v2uv !1

1

2
c~2!

v11vw1

v~uv11w1!
,

d

dt
log w5DS D2

1

2
c~2!

vu2

vu21wD ,

~29!
d

dt
~uv !5DS 2

1

2
c~1!uwv21

1

2
c~2!

vu2

vu21wD ,

d

dt
log~uw!52D2

1

2
c~1!~u1w1 /u2uv !2

1

2
c~2!

uw1u2

u~vu21w!
.

~Any three of these equations implies the fourth.! We see from~28! that in order to remove the
remaining gauge freedom, i.e., fixg ~at least up to a function oft!, there are three possibilities
Namely, we can specify eitherw, or uw, or v as a function of the gauge-invariant combinationuv.
This, in turn, will determineD, and henceV(0), on eliminating the relevant variable from~29!. For
example, specifyinguw as a function ofuv will give a local formula forD. Similarly, v can be
specified as any function ofuv. But if we imposew5F(uv), then we needF to be an exponentia
in order to get a local expression forD. This illustrates the way in which some choices of gau
lead to a nonlocal expression forV(0).

As an example, let us take the gaugew5const. Choosew521, and writeu52ex, uv
5y. Then~29! reduces to the system

d

dt
y5

1

2
c~1!D~y2eDx2!1

1

2
c~2!DS y

y2exp Dx2
D ,

~30!
d

dt
x5

1

2
c~1!~y1eDx!2

c~2!

2~y2exp Dx2!
.

This is a version of the relativistic Toda lattice.10–14

Example (iv).The gauge choice,

L ~1!5S 21 ex

0 0 D , L ~2!5S ey 0

2key2x 0D ,

wherek is a constant, gives

V~0!5
c~1!

2 S 12key21Dx2 2ex

2key22x2 0 D 1
c~2!

2 S 0 ex2y

ke2x2 12ke2y1Dx2
D ,

and again leads to the relativistic Toda system,10,14,15this time in the form

d

dt
y52

1

2
c~1!kD~ey21Dx2!2

1

2
c~2!kD~e2y1Dx2!,

~31!
d

dt
x52

1

2
c~1!ey~11keDx!1

1

2
c~2!e2y~11keDx2!.
                                                                                                                



et

is to

ix:

hoice
s, the
tice

le. One
tion in
I

and
rdi-

keep
lowing

307J. Math. Phys., Vol. 40, No. 1, January 1999 R. Ward

                    
The limit k→0 gives the Toda system~1!; it is worth examining this in more detail. In order to g
~1!, one may replace the variablesx andy by w andc, where

ex52Akew, ey5211Akc,

and setc(1)5c(2)521/Ak. Then thek→0 limit of ~31! is indeed~1!. But sincec(a)→` in this
limit, we need to reinterpret the associated Lax pair. The way to get a well-behaved limit
replacel by 2l/Ak. The roots of detL(l) now occur atl56 1

2Ak, and so in thek→0 limit they
coincide. In fact, whenk50 we have

L~l!52S 11cl ewl

2e2wl 0 D ,

and detL(l) has a double zero atl50 ~cf. Ref. 3!. The corresponding expression forV(l) is
obtained by taking thek→0 limit after first subtracting a constant multiple of the identity matr
this yields

V~l!5S 0 2ew

e2w2 l21 D .

VI. SOME p 52 EXAMPLES

In the p52 case,L(l) has the formL(l)5Al21Bl1C, whereA, B, and C are 232
matrices; so to begin with, one has 12 functions ofn and t. The requirement that the zerosla of
the quartic polynomial detL(l) be constant imposes four equations on these functions, and c
of gauge imposes a further four, so one is left with four independent functions. In other word
generic system in thisp52, q52 case is a system of coupled evolution equations for four lat
variables.

Reductions of such systems, so that fewer functions are involved, are, of course, possib
example that has been known for some time is a lattice version of the sine-Gordon equa
which space is discrete and time continuous~by contrast with the version mentioned in Sec. II!.
Here theL operator has the form16,3

L5S l f ~w!eih 1
4 h~e2 iw/22l2eiw/2!

1
4 h~l2e2 iw/22eiw/2! l f ~w!e2 ih D ,

wherew andh are functions ofn and t, h is a constant corresponding to the lattice spacing,
f (w)5(11 1

8h
2 cosw)1/2. The resulting integrable lattice has sine-Gordon in ‘‘laboratory coo

nates’’ as a continuum limit: if we replacen by x5nh and leth→0, thenw satisfiesw tt2wxx

1sinw50.
In order to obtain another example, let us choose a different gauge, namelyA5I , V(0)50. On

B and C we impose the four constraints trB50, detC5l const, tr(BC)50, and trC1detB
522k constant. It then follows that detL(l)5l422kl21l has constant zeros. The matricesB and
C now involve four independent functions, and their evolution is given by

d

dt
B5DQ,

d

dt
C5R1C2CR, ~32!

where Q5(aV(a), R52(ala
21V(a), and theV(a) are constructed as in~16!. There are four

parameters, namely thec(a).
We can get an idea of what this system represents by looking at a continuum limit. To

things simple, we assign particular values to the parameters, and this leads to the fol
continuum integrable system.
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Let B and C be 3-vectors, functions ofx and t, satisfying the constraintsB–C50 andC–C
51. Their time evolution is given by

Bt5~C∧Bx!x2$~C∧Cx–B!C%x1 1
2$~B–B!B%x ,

~33!
Ct5~C∧Cx!x1~C∧Cx–B!B∧C1 1

2~B–B!Cx .

This is integrable: it has a Lax pair of the formCx5UC, C t5VC, where U52 1
2i (Bl21

1Cl22)•s corresponds toL(l), andV5(k51
4 Vkl

2k is a limiting version of theV(l) of the
lattice system.

The equations~33! have two obvious reductions: ifB50, then we are left with the Heisenber
ferromagnet equation forC; while if C is a constant unit vector, thenB satisfies the derivative
nonlinear Schro¨dinger equation. So~33! may be viewed as a coupled Heisenberg–DNLS syst
and ~32! is a spatially discrete version of this coupled system.

VII. CONCLUDING REMARKS

It is clear that the examples given above provide only a very small sample of integrable
systems. One may envisage a classification involving the three integersq ~the size of the matrices
L andV!, p @the degree ofL(l)#, andr @the maximum order of the poles ofV(l)#. But in view
of the remarks at the beginning of Sec. V, a complete classification would require a way of d
with the problem of equivalence.

We conclude with a remark on higher values ofr. One can take a givenL(l) ~thereby fixing
q andp!, and allowr .1: in other words, higher-order poles inV(l). This leads to hierarchies o
lattice systems, of which ther 51 cases are the first members. So hierarcies also fit naturally
this framework.
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Solutions of Penrose’s equation
E. N. Glassa)
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The computational use of Killing potentials which satisfy Penrose’s equation is
discussed. Penrose’s equation is presented as a conformal Killing–Yano equation
and the class of possible solutions is analyzed. It is shown that solutions exist in
space–times of Petrov typeO, D, or N. In the particular case of the Kerr back-
ground, it is shown that there can be no Killing potential for the axial Killing
vector. © 1999 American Institute of Physics.@S0022-2488~99!03001-7#

I. INTRODUCTION

In a space–time which admits a Killing vectorka it is straightforward to find its Killing
potential. Killing potentials are real bivectorsQab whose divergence returns the Killing vecto
(1/3)¹bQab5ka. Killing potentials attain physical importance when they are used in the Penr
Goldberg ~PG!1 superpotential for computing conserved quantities such as mass and a
momentum. The PG superpotential is

UPG
ab5A2g

1

2
Gab

cdQ
cd, ~1!

whereGab
cd52* R* ab

cd , the negative right and left dual of the Riemann tensor. When the R
tensor is zero thenGab

cd5Cab
cd , the Weyl tensor. IfQab satisfies Penrose’s equation~4! then

¹bUPG
ab5A2gGabkb ~2!

for Einstein tensorGab. The current density

Ja5A2gGabkb ~3!

is conserved independently of the left-hand side of Eq.~2!. It is the PG superpotential that allow
the Noether quantities to be computed by integrating over closed two-surfaces, which is Pe
quasilocal construction.2 If one views the Killing vector itself as a conserved current then
integral over a three-surface is identically equal to 1/3 the integral of its Killing potential ove
bounding two-surface and no new information can be obtained.

The tensor version of Penrose’s equation3 is

Pabc:5¹ (aQb)c2¹ (aQc)b1ga[bQc]e
;e50. ~4!

With j a:5(1/3)¹bQ* ab, andka:5(1/3)¹bQab, an equivalent equation4 to Pabc50 is

¹cQ
ab522dc

@akb]12~dc
@aj b] !* . ~5!

If Qab is a solution of the Penrose equation thenk(b;c)52(1/2)Qa(bRa
c) with a similar relation

connectingj a andQ* ab. For Ricci-flat space–timesj a andka are Killing vectors.

a!Permanent address: Physics Department, University of Windsor, Ontario, Canada.
3090022-2488/99/40(1)/309/9/$15.00 © 1999 American Institute of Physics
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For a particular space–time the number of independent Killing vectors is between zer
ten. Penrose3 gave the complete solution to Eq.~4! in Minkowski space for ten real independe
Qab.

This work discusses the existence of Killing potentials which satisfy Penrose’s equati
equivalently the conformal Killing–Yano~CKY! equation for two-formQ. The fact that such
tensors only exist in space–times of Petrov typeD, N, or O is discussed in Sec. III B and
AppendicesC andD.

In the Kerr background, it has previously been shown that there is no Killing potential fo
axial Killing vector.5 We show, in Sec. III C, how this can be anticipated from properties of
curvature and the fact that the axial Killing vector must vanish along the axis of symmetry

We use both the abstract index notation familiar to relativists and some coordinate
notation for which we provide Appendix A as a reference. We use boldface characters for
free tensor notation, excepting differential forms which appear in calligraphic type. Append
describes some aspects of the Petrov classification in a way convenient for our purposes.

II. PREVIOUS RESULTS

An exact solution of the Penrose equation for Kerr’s vacuum solution is given in Eq.~8!. This
solution was first used in the context of the PG superpotential construction in Ref. 6. The
solution has two Killing vectors~KVs!, stationaryk(t) and axialk(w) , and the metric is

gKerr5 l ^ n1n^ l 2m^ m̄2m̄^ m, ~6!

where $ l ,n,m,m̄% is the Newman–Penrose principal null coframe, given in Boyer–Lindq
coordinates by

l 5dt2~S/D!dr2a sin2 u dw,

n5
D

2S
@dt1~S/D!dr2a sin2 u dw#, ~7!

m5
1

A2R̄
@ ia sin udt2Sdu2 i ~r 21a2!sin u dw#,

whereR5r 2 ia cosu, S5RR̄, andD5r 21a222m0r . The Killing potential fork(t) is the bi-
vectorQ(t)

ab obtained by raising the components of the two-form

Q~ t !52~RM1R̄M̄!, ~8!

whereM:5 l `n2m`m̄ is an anti-self-dual two-form, that is*M52 iM. We mention that
Q(t)

ab is a global solution since the quasilocal PG mass, resulting from integration of the
superpotential over two-surfaces of constantt and r, is independent of choice of two-surface

R
S2

UPG
ab dSab528p m0 ~9!

for any r beyond the outer event horizon.
The next interesting result involves the axial Kerr symmetry. Goldberg1 found asymptotic

solutions of the Penrose equation for the Bondi–Sachs metric which includes the Kerr solu
a special case. But Glass5 showed that the axial Killing potential could not be a solution of t
Penrose equation at finiter.

The bivectorQ(t)
ab generally has six independent components and so enough informati

describe two Killing vectors. Since the Kerr solution has two KVs, can the dual ofQ(t)
ab yield k(w)?

Direct differentiation shows
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¹bQ~ t !* ab50, ~10!

and soQ(t)
ab can only yieldk(t) . In fact Q(t)* ab satisfies the Killing–Yano~KY ! equation, which for

an antisymmetric tensorAab can be written as

Aa~b;c!50. ~11!

This generalizes Killing’s equation to antisymmetric tensors and can be further generaliz
antisymmetric tensors of arbitrary valence. Modern usage reserves the name KY tensor fo
symmetric tensors. For the Kerr solution a symmetric tensorKab is constructed from the dua
Killing potential by

Kab5Q~ t !a* e Qeb* ~ t !52S l (anb)2r 2gab . ~12!

This ‘‘hidden’’ symmetry of the Kerr solution was discovered by Carter7 and later shown to be the
‘‘square’’ of a two-index Killing spinor,8 or equivalently, the ‘‘square’’ of a Killing–Yano tensor
ThoughKab satisfies Eq.~11! it is symmetric and generally referred to as a Killing tensor.

Collinson9 found that all vacuum metrics of Petrov typeD, with the exception of Kinnersley’s
type IIIB , possess a KY tensor. He gave an explicit expression for both the KY tensor a
associated Killing tensor.

III. EXISTENCE OF SOLUTIONS

A. Conformal Killing–Yano tensors

Many of the arguments in this work depend on the conformal covariance of Penrose’s
tion. Penrose and Rindler10 established the conformal covariance of its spinor form¹A8

(AsBC)

50 for a symmetric spinorsBC. The tensor version was previously discovered by Tachiban
the conformally covariant generalization of the KY equation.11 In this paper it was written in the
form

Qa~b;c!5~1/3!@gbcQa;e
e 2ga(bQc)

e
;e#. ~13!

In that same work Tachibana showed that in a Ricci-flat space, forQab a CKY bivector satisfying
Eq. ~13!, (1/3)¹bQab is a Killing vector.

From Eq. ~13! we can obtain an expression forQab;c by writing out the symmetrization
brackets explicitly:

Qab;c52Qac;b1 2
3gbcQa;e

e 2 1
3gabQc;e

e 2 1
3gacQb;e

e .

Now, sinceQab;c is antisymmetric in the first two indices, we have

3Qab;c5Qab;c1Qab;c2Qba;c

5Qab;c2Qac;b1 2
3gbcQa;e

e 2 1
3gabQc;e

e 2 1
3gacQb;e

e

1Qbc;a2 2
3gacQb;e

e 1 1
3gbaQc;e

e 1 1
3gbcQa;e

e

and so from~13! we can deduce that

3Qab;c53Q@ab;c#22gc[aQb]
e
;e . ~14!

It is easily verified that given Eq.~14! we recover Eq.~13! and hence Eq.~14! is an alternative
form of the CKY equation. Furthermore Penrose’s Eq.~4! can easily be rewritten as Tachibana
Eq. ~13! and so is another form of the CKY equation.
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SinceQ is an antisymmetric tensor, it is natural to discuss its properties in the langua
differential forms. Equation~14! is manifestly antisymmetric in the first two indices, and so it
straightforward to verify that it is the abstract index equivalent of the CKY two-form equatio
Bennet al.,12

3¹zQ5Z4dQ2Z[`dQ, ;Z. ~15!

In this form, since* commutes with¹Z , it is readily verified using the identities given i
Appendix A, that wheneverQ is a CKY two-form so is*Q. Thus any solution to the CKY
equation can be decomposed into self-dual and anti-self-dual CKY two-forms.

B. Existence of CKY two-forms

On a flat background the CKY equation has many solutions, while, as will be explained
more general space–time the curvature imposes tight consistency conditions and there ca
most two independent solutions, one self-dual and one anti-self-dual with respect to the
star. This result appears to be closely tied to the four-dimensional nature of space–time a
properties of these solutions are almost universally discussed in their spinor form, where the
of the two-component spinor formalism simplifies the calculations. A detailed discussion o
can be found in spinor form in Ref. 12 or in terms of differential forms in Ref. 13.

Since any CKY two-form can be decomposed into self-dual and anti-self-dual parts th
themselves CKY two-forms, in discussing their existence, it is sufficient to consider only
forms of definite Hodge-duality.

In order to understand how the curvature of the underlying space–time restricts the so
to Eq.~15! two steps are required. First, it can be shown directly from the CKY two-form equa
that the real eigenvectors of~anti-! self-dual CKY two-forms are shear-free and hence princi
null directions of the conformal tensor. Second, by differentiating Eq.~15! an integrability con-
dition can be obtained that restricts the Petrov type by showing these eigenvectors to berepeated
principal null directions.

In the case of non-null self-dual two-forms, Dietz and Ru¨diger14 used spinor methods to
obtain both of these results for a scaling covariant generalization of Eq.~15!. It was later shown,
again using spinor methods, that similar results can be obtained for the null case.12

An outline of these results in the notation of differential forms is given in Appendices C
D. It is shown that apart from conformally flat space–times, non-null~anti-! self-dual CKY
two-forms can only exist in space–times of Petrov typeD, while null ~anti-! self-dual CKY
two-forms require a background space–time of Petrov typeN.

C. The divergence of a CKY two-form

In order to apply the PG superpotential method using a given CKY two-formQ, its diver-
gence~coderivative! dQ must be dual to a Killing vector. Tachibana showed that this was alw
the case in a Ricci flat background11 ~the result also holds for the slightly more general case o
Einstein space–time!.

In the Kerr background, there are two independent Killing vectors and two independent
two-forms ~one of each Hodge-duality!. However the divergence of either of these CKY tw
forms is proportional to the timelike Killing vector, leaving the axial KV without a Killin
potential. This allows a divergence free linear combination of the self-dual and anti-self-dual
two-forms to be found. The Hodge-dual of this two-form is known as a Killing–Yano two-fo
and satisfies the Killing–Yano equation~11!, which can be written in a similar fashion to Eq.~15!
as

3¹XQ5X4dQ. ~16!
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However, this leaves open the question of why it is that the timelike rather than the axia
possesses a Killing potential? To answer this question, we note that the axial Killing vector
vanish along the symmetry axis and we show that a Killing vector obtained as the diverge
a CKY two-form must be nowhere vanishing.

First consider a non-null anti-self-dual CKY two-formQ2. From Eq. ~15! we can write
d(Q22) in terms ofQ2 anddQ2:

d~Q22!5 4
3~dQ2!]

4Q2,

which after contracting withQ2 leads to

dQ252 3
2~d~Q22!!]

4Q2.

HencedQ2 vanishes if and only ifd(Q22) vanishes.
In a vacuum typeD background we can deduce thatQ22 is a constant multiple ofC2

22/3

from the fact thatQ2 is an eigen-two-form ofC and both (Q22)23/2Q2 andCQ2 are Maxwell
fields. Hence ifQ2 vanishes, then so doesC2 and the background becomes conformally flat.

Further, it can be deduced from the Bianchi identities that for a typeD vacuum space–time
the gradient ofC2 vanishes if and only if theC2 itself vanishes.@In the Newman–Penrose~NP!
formalism, using a principal null tetrad, the vacuum typeD condition implies that the only
nonzero curvature component isC2 andk5s5n5l50. Then, imposing¹Xa

C250, the Bianchi
identities lead to eitherr5m5t5p50 or C250. If we assume the former, then the NP equatio
for the derivatives of the spin coefficients immediately force the conclusion thatC2 vanishes.# We
therefore conclude thatQ22 is nowhere constant and hencedQ2 is nowhere vanishing and Kerr’
axial Killing vector cannothave a Killing potential.

IV. SUMMARY

We have shown here that Penrose’s equation for Killing potentials is equivalent to the
formal Killing–Yano equation for two-forms. With no appeal to Ricci-flatness existence of s
tions was proven for space–times of Petrov typeD, N or O. It was further shown, for typeD
vacuum backgrounds possessing a Killing–Yano two-form, that Killing vectors with zeros ca
have Killing potentials.
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APPENDIX A: DIFFERENTIAL FORMS

We denote a basis for vector fields by$Xa%. The natural dual of this we denote by$ea%, a
basis for covector or one-form fields. A coordinate basis isXa5]/]xa andea5dxa. The metric
gives a natural bijection between vector and one-form fields, which we denote by] and[

; X[ is
the one-form metric dual to the vectorX anda] is the vector field metric dual to the one-forma.

The one-forms, along with the wedge product`, generate the algebra of differential form
The wedge product is antisymmetric and so the differential forms of degreep can be thought of as
the subset of covariant tensors of valencep that are antisymmetric in their arguments. Ifa andb
are one-forms with componentsaa5a(Xa) andba5b(Xa), then

a`b5a [aba]e
a

^ eb5aabbea`eb. ~A1!

A vector can be contracted with thep-form P to give a (p21)-form X4P so that

~X4P!~Xa1
,Xa2

,...,Xap21
!5pP~X,Xa1

,Xa2
,...,Xap21

!,
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and so the components of ap-form can be expressed using the hook as

Pab¯c5P~Xa ,Xb ,...,Xc!5
1

p!
Xc4¯4Xb4Xa4P.

We can define an inner product between any pair of two-forms:

P•Q5 1
2Xa4Xb4PXa

4Xb
4Q52PabQab.

For P•P we writeP2.
The metric defines a natural map fromp-forms to (n2p)-forms called the Hodge star. In fou

dimensions, this maps two-forms to two-forms, and is defined so that

P`*Q5~P•Q!* 1,

where*1 is the volume four-form. For a Lorentzian metric, this map squares to21 and so has
eigenvalues,6 i . Elements of the eigenspace corresponding to (2 i )1 i are called~anti-! self-dual
two-forms. Any two-form can be decomposed into self-dual and anti-self-dual parts

P5P11P2 where *P656 iP.

The Hodge star relates the hook and wedge operations by

X4*P5* ~P`X[!. ~A2!

The two-form commutator is given by

@P,Q#522Xa4P`Xa
4Q ~A3!

for two-formsP andQ. The Lie algebra of two-forms under commutation is the Lie algebra of
Lorentz group.

It is often useful to work with a null coframe~basis for one-forms! $ l ,n,m,m̄% dual to a
Newman–Penrose tetrad, that is, one for which all inner products vanish except

l •n52m•m̄51. ~A4!

From this we can construct a basis for the anti-self-dual two-forms:

U52n`m̄, M5 l `n2m`m̄, V5 l `m ~A5!

with the property that all inner products vanish except

U–V51, M–M522. ~A6!

In this basis, the two-form commutator can be calculated from

@M,U#524U, @M,V#54V, @U,V#52M. ~A7!

The null basis elementsU andV for each have one two-dimensional eigenspace, with corresp
ing zero eigenvalue, spanned by$n],m̄]% and $ l ],m]%, respectively. These are also the eigen
paces ofM for which they have eigenvalues11 and21. Note that choosingM determinesU and
V up to their relative scaling or interchange.

We denote the torsion-free metric compatible covariant derivative of a two-formQ with
respect to a vector fieldZ by ¹ZQ. In terms of this, the exterior derivatived and coderivatived
5* d* can be expressed:

d[ea`¹Xa
, d[2Xa

4¹Xa
.
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APPENDIX B: THE PETROV CLASSIFICATION

In a vacuum background, the Riemann curvature tensorR is equal to the Weyl conforma
curvature tensorC. The symmetries of these tensors allow them to be written as the sum of t
made of symmetric tensor products of two-forms~i.e., terms likeP ^Q1P ^Q!. So, both can be
considered as self-adjoint maps on two-forms; ifCabcd are components ofC andPab the compo-
nents of a two-form, then the definition

~CP!ab5 1
2CabcdPcd

gives the components of the two-formCP. As a map on two-forms, the conformal tensor pr
serves the eigenspaces of* and so may be decomposed into a part made from self-dual two-fo
alone and a part made from anti-self-dual two-forms. That is, we can write

C5C~1 !1C~2 !,

whereC(6)Q750. Note that since the conformal tensor is real,C(2) is the complex conjugate o
C(1), and so it is sufficient to classify only one of these.

The action ofC(2) on the Newman–Penrose two-form basis described in Appendix A is
same as the action ofC on this basis and can be written as

C~2 !F UM
V
G5F 2C2 C3 2C4

22C1 2C2 22C3

2C0 C1 2C2

G F UM
V
G .

Note that the matrix of this transformation is trace-free and the mapping is self-adjoint~that is,
Q•CP5CQ•P!.

The Petrov classification is a classification of this mapping. The space–time is know
algebraically general when there are three distinct eigenvalues, and algebraically specia
wise. Two special cases of interest here are that of typeD andN, for which a basis can be chose
so that the matrix above takes the forms,

F 2C2 0 0

0 2C2 0

0 0 2C2

G , F 0 0 0

0 0 0

2C0 0 0
G ,

respectively.
The real null direction of a null anti-self-dual two-formQ is said to be aprincipal null

direction~PND! of the conformal tensor ifQ•CQ50. We will call such aQ, aprincipal null ~PN!
two-form. There can be at most four independent PNDs and their number and ‘‘multiplici
provide another description of the Petrov types.3 The multiplicities can be determined in th
present formulation by the following~with P an anti-self-dual two-form!:

Multiplicity Equivalent conditions

1 Q•CQ50 C450
2 @Q,CQ#50 CQ}Q C35C450
3 Q•CP50 ;P CQ50 C25C35C450
4 @Q,CP#50 ;P CP}Q ;P C15C25C35C450
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APPENDIX C: CKY TWO-FORMS AND SHEAR-FREE CONGRUENCES

Defining the shear of a null geodesic vector field requires the choice of a ‘‘screen space
so is not an intrinsic property of the vector field. However, if the shear vanishes for one cho
screen space, then it does for all and hence the notion of a shear-free null vector field
defined. For definitions and discussion of optical scalars see Ref. 3.

Robinson15 showed that the real null eigenvectorl of a ~anti! self-dual null two-formf is
geodesic and shear-free if and only iff is proportional to a source-free Maxwell field, that
df50. Note that the eigenspace of such a two-form is two-dimensional, isotropic and integ
So we can use this fact or the Frobenius integrability condition, thatdf5a`f for somea, for
the vanishing of the shear ofl. It is convenient here to use these results interchangeably as
criterion for a shear-free null geodesic.

Note that a shear-free null geodesic is a PND of the conformal tensor.

1. Null CKY two-forms

Now, suppose thatQ is a null anti-self-dual CKY two-form. Since the right-hand side of CK
two-form Eq.~15! is simply the anti-self-dual part of22Z[`dQ, we have that

05Q•3¹ZQ522~Z[`dQ!•Q52Z4~dQ!]
4Q.

Hence we can find ana such thatdQ5a]
4Q or equivalentlydQ52a`Q. So the real null

eigenvector ofQ is shear-free.

2. Non-null CKY two-forms

We wish to show that the eigenspaces of a non-null CKY two-formQ are integrable and
hence contain a shear-free null geodesic vector field. That is, we want to show that ifX andY are
elements of the same eigenspace ofQ with eigenvaluel (X4Q5lX[ andY4Q5lY[), then so
is @X,Y#. Since@X,Y#5¹xY2¹YX, we will show that¹XY4Q5l¹XY[. Note that this eigen-
space is isotropic, that isg(X,Y)50.

Since the mapa°a]
4Q is of maximal rank for non-nullQ, it can always be inverted and

one-forma found such thatdQ52a]
4Q anddQ5a`Q. Using these expressions fordQ and

dQ, and the CKY two-form Eq.~15!, we have

¹XY4Q5¹X~Y4Q!2Y4¹XQ5l¹XY[1XlY[2 1
3la~X!Y[.

Rearranging and writing the vector equation dual to this shows that

~¹XY4Q!]2l¹XY5~Xl2 1
3la~X!!Y. ~C1!

Note that the right-hand side is a multiple ofY and hence an eigenvector ofQ with eigenvaluel.
However, upon contracting the left-hand side withQ, we find that it is an element of the othe
eigenspace, having eigenvalue2l. Hence we must conclude that

¹XY4Q2l¹XY[50, ~C2!

and we have the required result.
Since each eigenspace ofQ is integrable they each give rise to a null self-dual two-fo

proportional to a Maxwell field, and hence the real eigenvectors ofQ are shear-free.

APPENDIX D: INTEGRABILITY OF CKY TWO-FORMS

Apart from conformally flat space–times, CKY two-forms can only exist in space–time
Petrov typeD or N. To understand this it is sufficient to consider only CKY tensors of defi
Hodge-duality, for which we give an integrability condition. For an anti-self-dual CKY two-fo
Q,
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@Q,CP#5 1
2@P,CQ#, ; two-forms P. ~D1!

If we let P5Q, it follows that

@CQ,Q#50.

Then, from the commutator algebra of anti-self-dual two-forms Eq.~A7!, it can be deduced tha
CQ must be proportional toQ, i.e.,

CQ5mQ, ~D2!

wherem is a scalar. From this, we can deduce the Petrov type as described in Appendix B

1. Null CKY two-forms

WhenQ is null this implies that the real null eigenvector ofQ is a repeated principal nul
direction. However, if we write out Eq.~D1! in an anti-self-dual two-form basis chosen so th
U5Q andV}P, we find thatm52C250. Not only does this immediately tell us thatCQ50, but
upon substitution into Eq.~D1! we have that@Q,CP#50 for all anti-self-dual two-formsP. Hence
the real null direction defined byQ is a fourfold PND and the space–time is of Petrov typeN.

2. Non-null CKY two-forms

WhenQ is non-null, we concluded in Appendix C that the real null eigenvectors ofQ are
shear-free. If we align our anti-self-dual two-form basis so thatM}Q thenU andV have shear-
free eigenvectors and hence are PN two-forms. From this we conclude thatC05C450. The
integrability condition Eq.~D2! immediately requires thatC1 and C3 vanish and hence the
space–time is of Petrov typeD.

This reasoning made no use of Ricci-flatness wherein the Goldberg-Sachs theorem16 would
imply the same result.
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Black hole interacting with matter as a simple dynamical
system

Petr Hájı́ček
Institute for Theoretical Physics, University of Bern,
Sidlerstrasse 5, CH-3012 Bern, Switzerland

~Received 21 July 1998; accepted for publication 28 August 1998!

Recently, a variational principle has been derived from Einstein–Hilbert and a
matter Lagrangian for the spherically symmetric system of a dust shell and a black
hole. The so-called physical region of the phase space, which contains all physi-
cally meaningful states of the system defined by the variational principle, is speci-
fied; it has a complicated boundary. The principle is then transformed to new
variables that remove some problems of the original formalism: the whole phase
space is covered~in particular, the variables are regular at all horizons!, the con-
straint has a polynomial form, and the constraint equation is uniquely solvable for
two of the three conserved momenta. The solutions for the momenta are written
down explicitly. The symmetry group of the system is studied. The equations of
motion are derived from the transformed principle and are shown to be equivalent
to the previous ones. Some lower-dimensional systems are constructed by exclu-
sion of cyclic variables, and some of their properties are found. ©1999 American
Institute of Physics.@S0022-2488~99!03701-9#

I. INTRODUCTION

The spherically symmetric gravitating shell has been used as a simplified quantum mo
many occasions. One can mention the quantum effects of domain walls in the early Univ1

quantum aspects of gravitational collapse,2 quantum theory of black holes3 or Hawking evapora-
tion of black holes.4

The equations of motion for the shells has been derived by Dautcourt5 and transformed to a
geometric~i.e., ‘‘gauge invariant’’! form by Israel.6 However, for a quantum theory, one needs
variational principle rather than dynamical equations. Such a variational principle has as ye
just guessed from the dynamical equations, Refs. 7 and 8, or from some intermediate vari
principle, Refs. 4 and 9. Quite a number of different Hamiltonians have resulted and the
sponding quantum theories have not been unitarily equivalent. There are two sources
ambiguity.

The first source of ambiguity is the invariance of the general relativity with respect to
coordinate transformations on one hand, and the property of Hamiltonians to generate dy
with respect to a particular time coordinate on the other. For example, the choice of the p
time along the shell as such a coordinate leads to the coshp Hamiltonian, Refs. 7 and 10, th
Schwarzschild time coordinate inside the shell to the square-root Hamiltonian, Ref. 2, an
Schwarzschild time coordinate outside the shell to a merely implicitly determined Hamiltoni
Refs. 4 and 9. An attempt to work out a gauge invariant theory for at least some class
guessed Hamiltonians is Ref. 8; based on a technical assumption that the super-Hamilto
quadratic in the momenta, it gives a unique action principle.

The second source of ambiguity is the fact that equations of motion do not determin
corresponding variational principle uniquely, in general. This ambiguity can be removed
direct derivation of the variational principle for the shell from the Einstein–Hilbert and s
matter Lagrangian. Three such derivations exist: Refs. 11, 12, and 13; they all lead to the
variational principle for the same system. In Refs. 12 and 13, the reduction of the second
formalism to the spherically symmetric case is done first, followed by a reduction to dyna
3180022-2488/99/40(1)/318/22/$15.00 © 1999 American Institute of Physics
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variables of the shell alone and by the transformation to the second order formalism. In R
a first and second order formalism for a general shell and gravitational field is derived~no
symmetry!; this second order formalism is reduced by the spherical symmetry and to shell
ables in Ref. 14.

We are then left with the following dilemma. The super-Hamiltonian of Ref. 8 is simple
amenable to the existing gauge invariant quantization methods~like, e.g., Refs. 15 and 16!. The
super-Hamiltonian of Refs. 12, 14 and 13 follows from the Einstein–Hilbert and shell-m
Lagrangian, but it is extremely complicated: it contains nested square roots and hyperbolic
tions, and for a good measure it is formulated in coordinates that diverge on horizons. It wo
difficult to quantize.

A natural question then arises: what is the relation between the guessed and simple var
principle of Ref. 8 and the derived but complicated one of Refs. 12, 14 and 13? If the s
principle were equivalent to the complicated one, we could use the simple principle and forg
complicated one. However, the answer turns out to be rather surprising~see Ref. 17!: the two
descriptions are only locally, but not globally, equivalent. The local equivalence explains wh
equations of motion are the same. For the study of the problem, a geometric approach of R
has been applied. All gauge invariant properties of a constrained system are encoded
objects: the constraint manifoldG and the presymplectic formV on G. The equivalence of two
such systems, (G1 ,V1) and (G2 ,V2), is then a well-defined mathematical concept independen
a choice of extended phase space, a choice of constraint functions or a choice of gauge.

In this situation, it seems natural to look for a transformation of the variational principl
Refs. 12, 14 and 13 to a better set of coordinates, and this will be the main topic of the p
paper. The method will again be based on the gauge invariant description~G,V! of reparametri-
zation invariant systems. We shall perform the transformation in three steps; to motivate the
we take into account the symmetry of the system, the structure of the so-calledCartan formQ,
which is defined bydQªV, and the topology of the space~G,V!. The topological problem
involved here is the existence of transversal surfaces inG; such surfaces are nowhere tangential
the dynamical trajectories. Functions whose levels are transversal are not only helpful, if one
for nice coordinates, because they simplifyQ. Quite generally, they have to do with the existen
of Hamiltonian and with the possibility to give the quantum dynamics the form of the Schro¨dinger
equation~cf. Ref. 18!. We shall, therefore, also look for transversal surfaces in a more syste
way. Finally, we shall find that the structure of the phase space of the spherically symmetric
is not simple. Only a proper subset, which we call aphysical region, contains physical states of th
shell. Its nature can be roughly specified as follows. All points inside it correspond to the s
consisting of a shell of positive mass and radius, interacting with a black hole. The bound
the region is complicated; it contains shells with zero radius, shells with zero rest mass~which
cannot, however, be regarded as shells made of light-like matter!, as well as self-gravitating
isolated shells with positive radius and mass—these are the points at the boundary that are
cally meaningful. The points outside the region that describe shells with positive radius and
correspond to systems consisting of the shell and a negative mass source. A conclusion s
be that the system will be difficult to quantize even if the new variables have made it algebra
simple. One problem will be to keep the spectra of observables contained within the ph
region. Another problem will be to construct a unitary dynamics, because the classical dyn
breaks down at the boundary of the physical region.

The plan of the paper is as follows. In Sec. II, we collect the relevant results of the pre
papers, mainly Refs. 14 and 13. The variational principle that we describe allows also f
internal degree of freedom of the shell; it depends, therefore, on two additional variab
comparison with Refs. 12 and 14: the proper time along the shell trajectory and the rest m
the shell. We determine the constraint manifoldG and the Cartan formQ that follow from the
variational principle. We study the physical region.

In Sec. III, we introduce three new functions on the phase space that are regular
horizons and that will replace the momentumP of the shell and the two Schwarzschild timesT6

that diverge there. We describe their physical and geometrical meaning, also using some re
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previous papers. In Sec. IV, we specify a new set of coordinates onG, and show that the trans
formation from the old to the new coordinates is differentiable and invertible. We also find
ranges of these coordinates in the physical region. In Sec. V we collect and extend the
about symmetries of the system that were obtained in Ref. 17 and express the symmetry tr
mations in the new coordinates; the form of the transformation simplifies. The new time
cyclic coordinates, as the old have been. In Sec. VI, we transform the Cartan form into
coordinates. The square roots and hyperbolic functions disappear, and an equivalent form b
regular at the horizons so that it can be smoothly matched across them. However, the Carta
is still complicated and this motivates further transformations. The final result thereof ca

described as follows. The extended phase space is (R8,V̄). The natural coordinates ofR8 form a

Darboux chart forV̄. The equation of the constraint surfaceG in R8 is polynomial in all momenta

and the presymplectic formdQ is the pull-back ofV̄ to G.
In Sec. VII, we study the polynomial constraint. We show that it defines two disjoint

manifolds inR8. One, denoted byG6 , is six-dimensional and lies well outside the physical regi
The other, denoted byG7 , is seven-dimensional and intersects the physical region. In the i
section ofG7 with the physical region, we find two different foliations by transversal surfa
They are not globally transversal, however, because none of them is intersected by all dyn
trajectories. The problem is that each dynamical trajectory starts or finishes at the (R50)-subset
of the boundary of the physical region. The two different Hamiltonians corresponding to the
foliations are written down explicitly; they contain second and third roots.

In Sec. VIII, we repeat the study for some important lower-dimensional cases; they c
obtained by exclusion of cyclic coordinates from the original system. In particular, a~dynamical!
black hole and the shell without its internal degree of freedom, the shell in the field of a
black hole external field or the isolated self-gravitating shell~with the flat spacetime inside! are
considered.

II. DESCRIPTION OF THE SYSTEM

In this section, we shall collect some results of Refs. 8, 14 and 13 so that the paper be
relatively self-consistent. We shall also describe and study the physical region.

A spherically symmetric thin-shell spacetime solution of Einstein equations can be
structed as follows. Consider two Schwarzschild spacetimesM1 andM2 with Schwarzschild
massesE1 and E2 . Let S1 be a time-like hypersurface inM1 and S2 be one inM2 . Let S1

divideM1 into two subspacetimes,M11 andM12 , and similarlyS2 divideM2 intoM21 and
M22 . As everything is spherically symmetric, all spacetimes are effectively two-dimensiona
chose fixed time and space orientation in the two-dimensional Schwarzschild spacetimes
future and past as well as right and left are unambiguous; then letM21 andM11 be right with
respect toM22 andM12 . Let S1 andS2 be isometric; then the spacetimeM12 can be pasted
together with the spacetimeM21 along the boundariesS1 andS2 . The result is a shell spacetim
Ms . Given a shell spacetime, we shall leave out the indices 1 and 2, having right~left! energyE1

(E2), shell trajectoryS, and the right~left! subspacetimeM1 (M2). Thus,M15M2ùMs

andM25M1ùMs . In Refs. 14, 17 and 8, the Schwarzschild massesEe , e561 were assumed
to bepositive.

Each subspacetimeMe has the metric

dse
252Fe~R!~dTe!21Fe

21~R!dR2, ~1!

where

Fe~R!ª12
2Ee

R
,
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and it is split up by its horizons into four quadrants: we denote byQI that which is adjacent to the
right infinity, QII to the left infinity,QIII to the future singularity andQIV to the past singularity.
Suitable notation~introduced in Ref. 14! enables us to write all formulas in a form valid in an
quadrant: we define four sign functionsae and be distinguishing the quadrants ofMe : ae

ªsgnFe , and be equals to11 ~21! in the past~future! of the event horizon in the spacetim
(Me ,ge). We also include the dust internal degree of freedom,M, and the proper timeT along the
shell trajectory using the results of Ref. 13. Then the total action for the dust and gravity c
rewritten in the form

SS@T,M;T6,E6 ;R,P;n#5E dt~PṘ2E1Ṫ11E2Ṫ21MṪ2nC!, ~2!

wheren is a Lagrange multiplier,

C5M2RAF11F222a2b1b2AuF1F2usha1a2
~P/R!, ~3!

is the super-Hamiltonian, shaxª(ex1ae2x)/2 for anya561 andxP(2`,`). The momentum
P conjugate to the radial coordinateR can be defined as follows~for more details, see Ref. 14!. Let
(ne ,me) be the orthonormal dyad at a shell point in the subspacetime (Me ,ge), the vectorne

being tangential to the shell and future oriented,me being right oriented; we call itshell dyad.
Further, let the so-calledSchwarzschild dyad(nSe ,mSe) be defined at each point of the shell in th
spacetime (Me ,ge) by the requirement thatnSe be time-like future oriented,mSe be right oriented
and that one of the vectors be tangential to the (R5const)-curves. Clearly, in each quadrant, w
have a different formula for the components of the Schwarzschild dyad; with respect t
Schwarzschild coordinates:

for Fe.0, nSe5~be /AFc,0!, mSe5~0,beAFe!;

for Fe,0, nSe5~0,beAuFeu!, mSe5~2be /AuFeu,0!.

Then,Pe /R is the hyperbolic angle between the Schwarzschild and shell dyads:

ne5nSe coshPe /R1mSe sinh Pe /R,

me5nSe sinh Pe /R1mSe coshPe /R.

Finally, Pª@P#, where we use the common short-hand for the jump@A#ªA12A2 of a quantity
A across the shell.

The extended phase space of the system is eight-dimensional, split up into 16 disjoint s
each sector being a pair of quadrants, one chosen from the left and one from the right sub
times. Each of these sectors can be covered with the coordinatesP, R, E1 , T1, E2 , T2, M and
T. The constraint surface that we callG is defined by the constraint equationC50 in the extended
phase space. It does not intersects all 16 sectors, but it is split up into at most~if E2.M!
nonempty intersections of the sectors with it.~Observe that we admit unphysical sectors, i.e., th
in which the constraint equationC50 has no solutions. This simplifies the boundary of t
extended phase space a great deal and does not lead to any problem: it is the very pur
extended phase spaces to enclose also nonphysical poits, if this leads to any simplification.! These
can be covered by the system of seven coordinatesP, R, E1 , T1, E2 , T2 andT. The following
coordinates are assumed to have nontrivial ranges:

R.0, E1.0, E2.0, M.0. ~4!

The pull-back of the Liouville form of the action~2! to the constraint surfaceG in these
coordinates is simply
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Q5P dR2E1 dT11E2 dT21M dT, ~5!

whereM is now a function of the seven coordinates defined by

M5RAF11F222a2b1b2AuF1F2usha1a2
~P/R!. ~6!

The form~5! is calledCartan formof the system; it contains all information about the dynam
and about the Poisson brackets~see, e.g., Refs. 19 or 17!.

In the present paper we start from these formulas and quantities. The first new observati
we make is that all these formulas remain valid also for the valuesE150 or E250, if the
notation and conventions are adapted a little. These cases are interesting because they de
isolated self-gravitating shell~with the flat spacetime inside!. Indeed, the metric of the flat space
time is covered by formula~1!. However, the flat spacetime does not contain any horizon an
not split into quadrants. Still, a piece of the flat spacetime can be used in four distinct ways
construction of the shell spacetime: either it lies to the left (E250) or to the right (E150) of the
shell, and, in each case, theR coordinate can either increase to the right or to the left~R is always
space-like in the flat spacetime!. We can, therefore, formally define theE-spacetimefor E.0 as
before to be the Kruskal spacetime of Schwarzschild massE with four quadrants, and forE50 as
consisting of two topologically separated quadrantsQI andQII , each isometric to the flat space
time, but with opposite time and space orientations: inQI , the radial~‘‘Schwarzschild’’! coordi-
nateR increases to the right and the ‘‘Schwarzschild’’ timeT to the future; inQII , R increases to
the left andT to the past. It is amusing to observe that the validity of the formulas~2! and~3! can
then be extended to vanishingE’s, if we just use the valuesae51 everywhere,be511 in QI and
be521 in QII . This works because the components of the Schwarzschild dyad that are c
for the derivation of Eq.~3! in Ref. 14 retain their form in the quadrantsQI and QII of the
E-spacetime forE50, and there are no quadrantsQIII andQIV . Similarly, the sign relation~14!
of Ref. 8, which is basic for the form of the dynamical equations, remains valid with our o
tation and quadrant conventions. Observe that the presence of two topologically separate
spacetimes is not observable and does not imply any physical assertion; similarly, the orie
of coordinates is a mere coordinate convention without any physical meaning.

A very important but rather embarrassing observation is now that a formally impeccable
spacetime can be pasted together from Schwarzschild spacetimes of any mass, even a
one. The metric is still given by Eq.~1! and the spacetime has a similar global structure as the
one: there are no horizons and there are two possible orientations of how it can be built in.
all equations remain valid, if we accept the same sign, quadrant and orientation conventions
the flat spacetime and define the~two-quadrant! E-spacetime forE,0 analogously to what we
have done forE50. The corresponding shell dynamics is then again given by the action~2!.

Let us quickly discuss the dynamical equations following from the action~2! under these
conventions. There are three conservation laws,

Ė15Ė25Ṁ50, ~7!

resulting from varying the action with respect to the cyclic coordinatesT1, T2 and T. The
variations with respect of the conserved momenta andP with the subsequent simplification by th
constraint~6! yield

Ṫ5n, ~8!

Ṫe52en
R

M S 12a2b1b2

AuF1F2u
Fe

sha1a2

P

RD , ~9!

Ṙ5na2b1b2

R

M
AuF1F2ush2a1a2

P

R
. ~10!
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The equation determiningṖ can be obtained either by varying the action with respect toR, or by
differentiating the constraint equationC50 with respect tot followed by substitution for all other
t-derivatives from Eqs.~7!–~10!. Let us rewrite the constraint equation in the form

2
M

2R
1

R

2M
~F11F2!5a2b1b2

R

M
AuF1F2usha1a2

P

R
. ~11!

Equations~7!–~11! represent a complete system of dynamical equations for the shell.
We derive some important consequences from the dynamical equations. Equations~8!–~11!

imply that

2FeS dTe

dT D 2

1
1

Fe
S dR

dTD 2

521,

confirming thatT is the proper time along shell trajectories. Equations~8!, ~9! and~11! deliver the
time equation:

Fe

dTe

dT
52e

M

2R
1

E12E2

M
. ~12!

From Eqs.~10! and ~11!, the radial equationfollows:

dR

dT
52vA2V, ~13!

where

V~R!52
M2

4R22
E11E2

R
2

~E12E2!2

M2 11, ~14!

andv561 is a suitable sign@see Eq.~2! of Ref. 17#. The square of the radial equation can
rewritten in one of the two forms

Fe1S dR

dTD 2

5Je
2, ~15!

according ase561, where

Jeª
M

2R
2e

E12E2

M
~16!

~cf. Ref. 8!. It follows immediately from this definition ofJe that

J11J25
M

R
,

and this can be transformed with the help of Eq.~15! to

sgnJ1AF11S dR

dTD 2

1sgnJ2AF21S dR

dTD 2

5
M

R
.

However, comparing Eqs.~12! and ~16!, we observe that
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sgnJe52e sgnS Fe

dTe

dT D .

The sign of the expressionFe(dTe/dT) deserves a name; let us call itte ~cf. Ref. 8!. Then, we
obtain, finally,

2t1AF11S dR

dTD 2

1t2AF21S dR

dTD 2

5
M

R
. ~17!

This is the so-calledIsrael equationfor a dust shell@cf. Eqs.~14!, ~21! and ~22! of Ref. 8#.
Equations~12!–~17! are valid for all values of Schwarzschild massesE1P(2`,1`) and

E2P(2`,1`). Some features of the unphysical~negativeEe! cases are described by the fo
lowing theorem.

Theorem 1: Let Ee be nonpositive and not larger than E2e for some value ofe. Then the
timelike (connected) center(R50) curve lies in the subspacetimeMe on thee-side of the shell.
To prove the theorem, we observe thatEe<E2e implies

AFe1~dR/dT!2>AF2e1~dR/dT!2.

Thus, the left-hand side of Eq.~17! can only be positive, ifte52e. The assumptionEe<0 of the
theorem implies thatMe is the two-quadrantE-spacetime withte.0 in the quadrantQI andte

,0 in the quadrantQII ; this follows from the definition ofte and from the positivity ofFe ~in
fact, forEe<0, we haveFe>1!. Hence, to the right (M1) of the shell, there is a part ofQII with
the center to the right, and to the left of the shell (M2), there must beQI with the center to the
left. Q.E.D.

An interpretation of the theorem is that the shell spacetime containing one or two neg
mass subspacetimes is unphysical: there must be at least one negative-mass source so
outside the shell. The theorem also says that a shell spacetime constructed from one flat a
positive-mass subspacetimes must have a regular center inside the flat subspacetime.

To summarize: The action~2! generates a regular dynamics in the enlarged phase spac
defined by

M.0, R.0. ~18!

For E1.0 andE2.0, it describes a shell interacting with a black hole of massE2 ~or E1 ,
depending on from where we observe the shell!. For E1.0 andE250 ~or E150 andE2.0!,
it describes a self-gravitating shell with flat spacetime inside. If any ofE1 andE2 are negative,
it describes the shell interacting with a negative mass source. Only the points with

E1>0, E2>0, ~19!

are physically sensible; the subset specified by the inequalities~18! and~19! is thephysical region
of the phase space. There seems to be nothing about the variational principle~2! that would help
us to enforce the validity of the Eqs.~19! in any natural, automatic way.

III. RADIAL AND KRUSKAL MOMENTA

From the definition of the functionsT6 andP as given in the previous section, it follows th
they are singular at the horizons:Te at R52Ee andP at R52E2 as well as atR52E1 . In this
section, we introduce three functions that are well-defined on the whole constraint surfa
replaceT6 andP. Another replacement ofT6 andP with similar properties has been tried in Re
14. There, the functions were constructed from the Kruskal coordinates; however, the K
coordinates make no sense for flat spacetime and so the important caseE250 could not be
incorporated. In this subsection, we remove this problem.
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Let us define the new functionsq, @T1# and T̄1 by

qªa2b1b2RAuF1F2ush2a1a2

P

R
, ~20!

T̄1ª
T11T2

2
1E1 lnUu1

v1
U1E2 lnUu2

v2
U, ~21!

@T1#ªT12T212E1 lnUu1

v1
U22E2 lnUu2

v2
U, ~22!

and the auxiliary functionsue andve by

ueª2
q

M
2

@E#

M
1e

M

2R
, veª2

q

M
1

@E#

M
2e

M

2R
, ~23!

in Eq. ~23!, the functionsq andM are given by Eqs.~20!, ~6! and @E#ªE12E2 .
The meaning of the momentumq can be seen if it is expressed by means of velocities al

dynamical trajectories. Comparing Eqs.~8!, ~10! and ~20!, we find that

q5M
dR

dT
; ~24!

hence,q is a kind of radial momentum, and it is regular everywhere along dynamical trajecto
The meaning of the functionsT̄1 and@T1# can be inferred from that ofT1

e , which are defined
by

T1
e
ªT̄11

e

2
@T1#.

Equations~21! and ~22! lead then to

T1
e5Te12Ee lnUue

ve
U,

for eache561. Let us limit ourselves to the physical region and distinguish two cases.Ee50.
Then,T1

e5Te in both quadrants of theE-spacetime, sobeT1
e is the time coordinate of the inertia

system of the Minkowski spacetimeMe in which the center of mass of the shell is in rest.Ee.0.
Then, it is possible to introduce Kruskal coordinatesUe andVe in the Kruskal spacetimeMe by

R52Eek~2UeVe!,
~25!

Te52Ee lnUVe

Ue
U,

and by the requirement that both functionsUe and Ve increase to the future, wherek is the
well-known monotonous function defined on the interval~21,̀ ! by its inverse,

k21~x!5~x21!ex.

At each point of the shell trajectoryUe5Ue(t) andVe5Ve(t), the so-calledKruskal momentum,
PK

e , was defined in Ref. 14 by
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PK
e
ª

R

2
ln

dVe

dUe
.

In Ref. 17, four further functionsue andve were defined by

ueª
Uee

PK
e /R

Akee
ke

, veª
Vee

2PK
e /R

Akee
ke

, ~26!

wherekeªk(2UeVe).
The following relation between the pairsue ,ve and R,Ee was shown to hold in Ref. 17

@Eqs.~32! and ~33!#:

ue52
@E#

M
1e

M

2R
1vA2V, ve5

@E#

M
2e

M

2R
1vA2V.

A comparison with Eqs.~13! and ~14! shows that our functionsue andve defined by Eqs.~23!
coincide with the functionsue andve of Ref. 17, if the dynamical equations are satisfied. Equa
~26! then shows thatue andve vanish at horizons and that their logarithms diverge there. It t
also follows for the functionsT1

e along dynamical trajectories that

T1
e5

4EePK
e

R
. ~27!

We can see that the functionsT1
e are directly determined by the geometry of the dynami

trajectory in the spacetimeMe and are regular everywhere along the trajectory.

IV. A REGULAR COORDINATE SYSTEM

In this section, we describe a coordinate system that is regular at the horizons, and at th
time remains meaningful for the special valuesEe50 of Schwarzschild masses.

As such coordinates onG, we suggest the seven functionsq, R, M, T, @E#, T̄1 , and@T1#. Let
us show that the Jacobian of the transformation from these coordinates toP, R, E1 , T1, E2 , T2

andT is nonzero. To calculate the determinant, we observe that the four columnsR, T1, T2 and
T of the Jacobian,

]~q,...,@T1# !

]~P,...,T!
,

contain each, at most, two nonzero elements; if we expand the determinant along these co
we obtain

]~q,...,@T1# !

]~P,...,T!
52

]q

]P S ]M

]E1
1

]M

]E2
D1

]M

]P S ]q

]E1
1

]q

]E2
D . ~28!

For the derivatives involved here, Eqs.~6! and ~20! yield immediately

]q

]P
5a2b1b2AuF1F2usha1a2

P

R
,

]M

]P
52a2b1b2AuF1F2u

R

M
sh2a1a2

P

R
,

]M

]E1
1

]M

]E2
5

R

M S 221a1b1b2

F11F2

AuF1F2u
sha1a2

P

RD ,
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]q

]E1
1

]q

]E2
52a1b1b2

F11F2

AuF1F2u
sh2a1a2

P

R
.

Substituting this in Eq.~28! and using again Eq.~6!, we arrive at the simple result

]~q,..,@T1# !

]~P,..,T!
52

M

R
,

which holds in each sector ofG.
It follows that the transformation is regular within each sector and can be inverted. In fa

is not difficult to find the functions defining the inverse transformation. First, we show that

Ē5
R

2 S 11
q2

M22
@E#2

M2 2
M2

4R2D , ~29!

in each sector. To this aim, we substitute forq andM from Eqs.~6! and~20! into Eq.~29! and use
the identities

F11F252S 12
2Ē

R
D , F1F25S 12

2Ē

R
D 2

2
@E#2

R2 . ~30!

In this way, we obtain

2Ē

R
215

R2

M2 S 22S 12
2Ē

R
D 2

12a2b1b2S 12
2Ē

R
DAuF1F2usha1a2

P

R
D .

Now, the equality follows immediately from Eq.~6!.
The next nontrivial part of the inverse transformation is the relation

P5
R

2
lnUu1v2

u2v1
U, ~31!

which again holds in each sector. To show Eq.~31!, we use Eqs.~23! to obtain

u1v2

u2v1
5

~q2M2/2R!22@E#2

~q1M2/2R!22@E#2 .

The substitution forq andM gives

q1h
M2

2R
5h~R22Ē!2ha2hb1b2RAuF1F2uehP/R,

whereh561. After some rearrangement and applying Eqs.~30!, we have

S q1h
M2

2RD 2

2@E#252a2hb1b2R2AuF1F2uehP/RS F11F222a2b1b1sha1a2

P

RD .

Then, Eq.~6! leads immediately to

S q1h
M2

2RD 2

2@E#252ahb1b2M2AuF1F2uehP/R,

and this implies Eq.~31!.
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The rest of the inverse transformation is easy: the functionsR andT are the same in both set
of variables,

Ee5Ē1
e

2
@E# ~32!

and

Te5T̄11
e

2
@T1#22Ee lnUue

ve
U; ~33!

in the last equation, one has to substitute Eq.~32! for Ee and Eqs.~23! for ue andve .
The ranges of the variablesq, R, M, T, @E#, T̄1 and@T1# in the physical region are implied b

the conditions~18!, ~19! and Eq.~29!. Let us work them out. Equation~29! together withĒ>0
implies that

@E#2<M21q22
M4

4R2 ; ~34!

hence,

M21q2>
M4

4R2 . ~35!

The two inequalitiesE1>0 andE2>0 are equivalent to@E#2<4Ē2. Equation~29! implies that
this inequality is, in turn, equivalent to

S @E#22S M21q21
M4

4R2D D 2

>S M2

R
AM21q2D 2

. ~36!

From Eq.~34!, it follows that

@E#22S M21q21
M4

4R2D<2
M4

2R2,0.

Equation~36! is, therefore, equivalent to

@E#2<SAM21q22
M2

2RD 2

. ~37!

Equation~35! shows that the inequality~37! is not weaker than~34!. Hence, all information is
contained in the following inequality:

u@E#u<AM21q22
M2

2R
. ~38!

Inequality~38! together withM.0 andR.0 define the ranges of the variablesq, R, M, T, @E#, T̄1

and @T1# in the physical region.

V. SYMMETRY OF THE SYSTEM

In this section, we collect the results of Ref. 17 on the symmetry of the shell action
describe the action of the symmetry transformations on the new variables.
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In Ref. 17, we have found that there is a continuous symmetry group generated by an ar
function ofE1 andE2 . A simple generalization of the argument given in Ref. 17 implies that
following finite transformation of the variablesEe , ue , ve and P̃e , which were used there, is
symmetry of the system

P̃e ° P̃e2e
]L

4]Ee
, e561,

the other variables being invariant, whereL(E1 ,E2) is an arbitrary smooth function of two
variables~the factor 1/4 is introduced for convenience!. In addition to this continuous infinitely
dimensional group, there were two reflections, which we denote here bys1 ands2 . s1 is a time
reflection defined by

Ee °Ee , ue1ue °2~ue1ve!, ue2ue °ue2ve , P̃e °2 P̃e ,

ands2 is a left–right reflection defined by

E1↔E2 , u1↔v2 , u2↔v1 , P̃1↔2 P̃2 .

These results can be easily expressed in our variablesq, R, @E#, T̄1 , Ē and@T1# and extended
to M andT. Consider the functionq; Eqs.~23! yield

q52M~ue1ve!, e561.

It is clear thatM is invariant with respect to the whole group; hence,q is invariant with respect to
theL-transformation for anyL(E1 ,E2), it changes sign by the time reflections1 and is invariant
with respect tos2 . The functionR was written in terms ofuc andve in Ref. 17 in the form

R5
2Ee

11ueve
, e561.

Realizing that 4ueve5(ue1ve)
22(ue2ve)

2, we can see thatR is an invariant of all above
transformations. The function@E# transforms nontrivially only bys2 ,

@E#°2@E#,

and Ē is an invariant likeR. A comparison of our Eq.~27! with Eq. ~43! of Ref. 17 reveals that
T1

e54P̃e , so that itsL-transformation is

T1
e°T1

e2e
]L

]Ee
.

Using this formula, one finds easily that

T̄1°T̄12
]L

]@E#
, @T1#°@T1#2

]L

]Ē
. ~39!

The time reflections1 changes the signs of both times:

T̄1°2T̄1 , @T1#°2@T1#,

but the left–right reflections2 acts as follows:

T̄1°2T̄1 , @T1#°@T1#.
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From the physical meaning ofM and T, it follows that they are invariant with respect to th
continuous transformation for anyL(E1 ,E2) and of the left–right reflections2 , whereas the
time reflections1 must give

M°M, T°2T.

However, asT is a new cyclic coordinate, the new system has larger continuous symmetry: w
extendL to an arbitrary function of the three variablesE1 , E2 andM, and define the action on
T as follows:

T°T1
]L

]M
. ~40!

Let us postpone the proof that this extendedL-transformation is a symmetry to Sec. VI.
generates three independent constant shifts of the cyclic variablesT̄1 , @T1# andT that are different
in different shell spacetimes.

We can see from these results that our new variables transform particularly simply. This
in fact, the idea that helped to find the variables in the first place.

VI. TRANSFORMATIONS OF THE CARTAN FORM

Let us transform the Cartan formQ in each sector ofG to the variablesq, R, M, T, @E#, T̄1 and
@T1# and check that it can then be extended smoothly accross the boundaries of the secto

If we substitute forP, T1, T2 andM, we obtain

Q52Ēd@T1#2@E#dT̄11M dT12E1
2 dS lnUu1

v1
U D22E2

2 dS lnUu2

v2
U D

1 lnUu1v2

u2v1
UdS R2

4 D1 lnUu1

v1
Ud~E1

2 !2 lnUu2

v2
Ud~E2

2 !.

The logarithms can be rearanged as follows:

Q52Ēd@T1#2@E#dT̄11M dT1dS S R2

4
1E1

2 D lnUu1

v1
U2S R2

4
1E2

2 D lnUu2

v2
U D

2S R2

4
2E1

2 DdS lnUu1

v1
U D1S R2

4
2E2

2 DdS lnUu2

v2
U D .

The total differential of a function~that diverges badly at the horizons! can be left out. We obtain

Q52Ēd@T1#2@E#dT̄11M dT2F S R2

4
2E2DdS lnUuvU D G , ~41!

where we must substitute forE1 , E2 , Ē, ue andve from Eqs.~32!, ~29! and~23!. This form of
Q has been obtained in Ref. 17~without the matter term!; there, however,ue andve were regarded
as independent variables. Observe that Eqs.~23!, ~29! and ~32! imply

2Ee

R
215ueve , ~42!

so thatue andve are not independent functions forEe50.
Now, we can show that the last term inQ is regular: we just rewrite it using Eq.~42!:
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F S R2

4
2E2DdS lnUuvU D G5FR2

4 S 11
2E

R D ~v du2u dv !G . ~43!

Thus, our new variables cover all of the constraint hypersurfaceG as promised.
Let us expressQ explicitly by means of the variablesq, R, M and@E#. Employing Eqs.~23!,

we have

v du2u dv52S 2
@E#

M2 dq1
q

M2 d@E# D ,

@v du2u dv#52S 1

R
dq1

q

R2 dR2
2q

RM
dMD .

Then, applying the well-known identity@AB#5Ā@B#1B̄@A# that holds for jumps and averages
any two functionsA andB, and after using Eq.~29!, we arrive at

F S R2

4
2E2DdS lnUuvU D G5

Rq@E#

M2 d@E#2S 2Rq

M
1

Rq3

M3 2
Rq@E#2

M3 2
qM

4RDdM

1S R1
Rq2

2M22
3R@E#2

2M2 2
M2

8RDdq1S q1
q3

2M22
q@E#2

2M2 2
qM2

8R2 DdR.

~44!

This, together with Eq.~41!, givesQ as a function of new variables. It is a complicated one, so
have to transform the coordinates further in order to get a simple expression.

The following question will give some direction to this search for simplicity: is the varia
@T1# suitable for the role of time? More concretely, the time levels in constraint surface shou
transversal~this is shown in Ref. 10!. A surface is transversal, if dynamical trajectories intersec
transversally and only once. We can see if the surface@T1#5const has this property as follows
The direction of motion on the constraint surface coincides with the direction of degenerat
the presymplectic formdQ; hence, the pull-backdQ f of dQ to any transversal surfacef
5const must be nondegenerate. If the surface is 2n-dimensional, then the 2n-form dQ f∧¯∧dQ f

must be everywhere nonzero. In our case,n53. Let us calculatedQ@T1#∧dQ@T1#∧dQ@T1# . Equa-
tions ~41! and ~44! imply that

dQ@T1#52d@E#∧dT̄11dM∧dT1A1dR∧dq1A2dR∧d@E#

1A3dR∧dM1A4dq∧d@E#1A5dq∧dM1A6d@E#∧dM,

whereAi , i 51,...,6 are some functions of the variablesR, q, @E# andM. It is clear, therefore, tha

dQ@T1#∧dQ@T1#∧dQ@T1#526A1d@E#∧dT̄1∧dM∧dT∧dR∧dq,

and the points where the six-form vanishes coincide with those whereA1 vanishes.A1 can be
calculated from Eq.~44! with the result

A15
q2

M2 1
@E#2

M2 2
M2

4R2 . ~45!

Thus,A1 vanishes for

@E#25
M4

4R22q2.
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Do these points lie in the physical region that is given by inequality~38!? Let us substitute the
value of @E#2 into Eq. ~38! and rewrite the result in the form

M2

R2 <4S 11
q2

M2D2
3M2

M21q2 .

This inequality implies inequality~35!; hence, all zero points ofA1 lie in the physical region. We
conclude that@T1#5const isno transversal surface.

Let us try to shift@T1# by a function dependent on the variablesR, q, @E# andM:

@T1#5T21X~R,q,@E#,M!.

Our motivation for choosing such a form is thatT2 is then transformed by theL-symmetry~39! in
the same way as@T1# is, and that it is also a cyclic coordinate. Substitution for@T1# into dQ
changes the coefficientA1 at dR∧dq in dQT2

by

A1→A11
]Ē

]q

]X

]R
2

]Ē

]R

]X

]q
.

ComparingA1 , Eq. ~45!, with ]Ē/]R calculated from Eq.~29!,

]Ē

]R
5

1

2
1

q2

2M22
@E#2

2M2 1
M2

8R2 ,

we observe that

A112
]Ē

]R
5212

q2

M2 ,

which is always positive; thus, one possible shift is

@T1#5T222q. ~46!

If we perform this transformation inQ, we find out easily that another shift,

T̄15T312
Rq@E#

M2 , ~47!

miraculously cancels some pesky cross terms indQ. Indeed, shifting the ‘‘times’’ in the Cartan
form, we have

2Ēd@T1#2@E#dT̄11M dT52Ē dT22@E#dT31M dT2S R1
Rq2

M2 2
3R@E#2

M2 2
M2

4RDdq

1
2q@E#2

M2 dR1
2qR@E#

M2 d@E#2
4qR@E#2

M3 dM.

Using Eqs.~41! and ~44!, we obtain

Q52Ē dT22@E#dT31M dT2dS 3qR@E#2

2M2 1
qM2

8R D
1

Rq2

2M2 dq2S q1
q3

2M2DdR1
2R

M S q1
q3

2M2DdM.
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The last three terms do not contain other variables thanq, R and M and so the terms with
d@E#∧dR, d@E#∧dq andd@E#∧dM disappear fromdQ. We have not found any simple physic
or geometrical interpretation of the new timesT2 and T3 ; observe that the shifts~46! and ~47!
‘‘mix the sides.’’

The fact that the last three terms inQ contain only three variables means that they can
simplified to just one term. For example,

Rq2

2M2 dq2S q1
q3

2M2DdR1
2R

M S q1
q3

2M2DdM5dS Rq3

6M2D2S qM21
2q3

3 DdS R

M2D .

This suggests the second step of our transformation:

pªqM21
2q3

3
, ~48!

xª
R

M2 . ~49!

We arrive so at the final shape of the Cartan form,

Q52Ē dT22@E#dT31M dT2p dx, ~50!

whereĒ is given by Eq.~29! in which q andR are expressed in terms ofp andx; such expressions
can be obtained by solving Eqs.~48! and ~49! for q andR.

Consider Eq.~48!. If we keepM fixed, p is an increasing function ofq in the whole interval
~2`,`!, for

]p

]q
5M212q2.0.

Hence, the function maps the range~2`,`! of q onto the range~2`,`! of p in a bijective way,
and it possesses a unique inverse. One can explicitly write down this inverse using seco
third roots; this will makeĒ a complicated function ofp, x, M and@E# @we shall write down this
function later; cf. Eq.~63!#.

Equation~50! implies that

dQT2
∧dQT2

∧dQT2
56d@E#∧dT3∧dM∧dT∧dp∧dx,

dQT3
∧dQT3

∧dQT3
56

]Ē

]@E#
d@E#∧dT2∧dM∧dT∧dp∧dx,

dQT∧dQT∧dQT526
]Ē

]M
d@E#∧dT3∧dM∧dT2∧dp∧dx,

and Eq.~29! gives

]Ē

]@E#
52

R

M2 @E#,

]Ē

]M
52

M

4R
.
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Thus, the surfaceT35const is not transversal at@E#50, but T25const andT5const are trans-
versal everywhere.

The Cartan form~50! is not yet very simple, becauseĒ is a complicated function ofp, x, @E#
andM. What we can still do is to extend the phase space to an eight-dimensional manifold
the coordinatesĒ, @T2#, @E#, T̄2 , M, T, p and x, and to express the constraint between th
variables as a polynomial. Indeed, applying Eq.~49!, we can rewrite Eq.~29! as follows:

q25
1

4x2 1
2Ē

x
1@E#22M2;

squaring Eq.~48! and substituting the above expression forq2 into the result, we obtain

p25
1

9
S 1

4x2 1
2Ē

x
1@E#22M2D S 1

2x2 1
4Ē

x
12@E#21M2D 2

. ~51!

This is a constraint that is polynomial in the momentap, Ē, @E# andM. The inequalities defining
the ranges of the variablesĒ, @T2#, @E#, T̄2 , M, T, p and x in the physical region are als
simplified:

@E#2<4Ē2, M.0, x.0. ~52!

Let us, finally, find the transformation of the variablesp, x, M, T, Ē, T2 , @E# andT3 by the
symmetry group. The results are as follows. We have for theL-transformation,

p°p, x°x, M°M, T°T, Ē°Ē, @E#°@E#,

T2°T22
]L

]Ē
, T3°T32

]L

]@E#
, T°T1

]L

]M
;

for the time reflections1 ,

p°2p, x°x, M°M, T°2T, Ē°Ē, @E#°@E#, T2°2T2 , T3°2T3 ;

and for the left–right reflections2 ,

p°p, x°x, M°M, T°T, Ē°Ē, @E#°2@E#, T2°T2 , T3°2T3 .

Thus, the simple form of the symmetry transformations is preserved by the shifts~46! and~47! as
well as by transformations~48! and ~49!. Equation~50! implies that

Q°Q1dS ]L

]Ē
Ē1

]L

]@E#
@E#1

]L

]M
M2L D ,

by a L-transformation, so our extendedL-transformation is a symmetry,

Q°2Q,

by the time reflections1 , and

Q°Q,
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by the left–right reflections2 . ~The sign change ofQ by s1 is necessary, because time reflectio
are anti-symplectic transformations.! The constraint equation~51! is clearly invariant of the group
Thus, the action of the symmetry group is well-defined in the whole phase space and it pre
the physical region.

VII. THE CONSTRAINT SURFACE

In this section, we are going to study the properties of the constraint~51!. We are interested
in the topology of the constraint surface; we shall investigate the salient question of whether
any spurious solutions have been unintentionally included during the process of transformi
constraint to the polynomial form; and we shall look for solutions of the constraint~51! with
respect to some momenta.

Our new variational principle reads as follows:

S5E dt~2ĒṪ22@E#Ṫ31MṪ2pẋ2n1C1!, ~53!

where

C159p22S 1

4x2 1
2Ē

x
1@E#22M2D S 1

2x2 1
4Ē

x
12@E#21M2D 2

. ~54!

The constraint surface is trivial in the direction of the three timesT2 , T3 andT, so we can limit
ourselves to its projection to the five-dimensional space spanned byĒ, @E#, M, p and x. Let us
observe thatC1 depends onĒ, @E# andx through a function that we shall callB,

Bª
1

4x2 1
2Ē

x
1@E#2, ~55!

and that the gradient ofB is nonzero. It is, therefore, advantageous, to writeC1 as a composed
function,

C159p22~B2M2!~2B1M2!2.

Let us first look for the singular points of the constraint surface~that is, where the gradient o
C1 vanishes!. We have

]C1

]p
518p, ~56!

]C1

]M
56M3~2B1M2!, ~57!

]C1

]B
523~2B1M2!~2B2M2!. ~58!

As all three derivatives must vanish at a singular point, all such points are determined b
equations

p50, 2B1M250. ~59!

All points satisfying Eqs.~59! are solutions of Eq.~51!; however, the physical ranges~52! of the
variablesĒ, @E# andx do not allowB to be negative. We conclude that the constraint surfac
regular~smooth! in the physical region~52!.
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The topology of the constraint surface can be found in the shortest way, if we considerC1 as
a functionC1(B) of B keeping all other variables constant. Studying Eqs.~54! and ~58! we can
easily see thatC1(B) decreases in the interval (2`,2M2/2) from ` to 9p2, it increases in the
interval (2M2/2),M2/2), from 9p2 to 9p212M6 and it decreases again in the interval (M2/2,̀ )
from 9p212M6 to 2`. It follows that there is only one solution forpÞ0 @becauseC1(B)
59p2 for B5M2#. As C1(M2)59p2.0, the solution must satisfy the inequalityB.M2. This
solution depends smoothly on the values of all other variables. Forp50, there are, however, two
solutions: one withB5M2, which is a continuous extension of the previouspÞ0 case, and a new
one withB52M2/2, which appears when the local minimum at2M2/2 touches theB-axis. This
shows that the constraint surface consists of two components: one is a seven-dimensional
manifold, let us denote it byG7 , that lies in the regionB>M2, and one is a six-dimensiona
smooth manifold, let us denote it byG6 , that is defined by Eqs.~59!.

Next, let us study the solvability of the constraint equation~51! with respect to the conserve
momenta. The unique solution of the constraint~51! with respect toB at G7 is given by

B5 f ~p,M!, ~60!

where

f ~p,M!ª 1
2
A3 9p21M613pA9p212M61 1

2
A3 9p21M623pA9p212M6. ~61!

The equation~51! has, in fact, three independent solutions, but only one of them is real. Fp
50, B reaches its minimumM2 on G7 ; thus, atG7 ,

B>M2. ~62!

Given B, one can solve uniquely forĒ and there is also a unique solution for@E#2. The solution
for Ē is

Ē52
1

8x
2

x@E#2

2
1

x

2
f ~p,M!. ~63!

Similarly, we can find the solution of the constraint~51! with respect toM. ConsiderC1 as a
function C1(M) of M, keeping all other variables fixed.C1(M) is symmetric with respect to the
reflection on theC1-axis. We have to distinguish two cases:B,0, B50: C1(M) decreases in the
interval (2`,2B) from ` to 9p2, it increases in the interval (2B,0) from 9p2 to the local
maximum 9p224B3 at M50, it decreases again in the interval (0,22B) from 9p224B3 to 9p2

and, finally, it increases in (22B,`) from 9p2 to `. A solution exists only forp50, and there are
two solutions; thenM56A22B. This is at the surfaceG6 . B.0: then, there is only one
minimum, atM50, with the value 9p224B3; there are no other extrema. Consider Eq.~51! as an
equation forM22. There are three real solutions forM22, but all of them are negative unless

4B329p2>0, ~64!

and then there is only one non-negative solution. A reasonable solution is, therefore, uni
depends continuously of the other variables and it lies atG7 . We can write it in the form

M56A4 4B329p2

4B S cos
1

3
arctan

3p

A4B329p2D 21/2

.

This solution can, of course, be also expressed by means of square and third roots, but onl
employs complex numbers. We can see that squaring ofM introduced nonphysical solutions wit
negativeM; we have to choose the positive branch. Observe that all points at the surfaceG7 must
satisfy the inequalities~62! and ~64!.
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The equations of motion that follow from the action~53! can be written as follows:

Ė̄5@Ė#5Ṁ50, ~65!

Ṫ252n1

]C1

]B

]B

]Ē
, ~66!

Ṫ352n1

]C1

]B

]B

]@E#
, ~67!

Ṫ5n1

]C1

]M
, ~68!

ṗ5n1

]C1

]B

]B

]x
, ~69!

ẋ52n1

]C1

]p
. ~70!

It is easy to derive the radial equation from them. OnG6 , we have only a static solution:

ẋ5Ṫ5 ṗ5Ṫ25Ṫ350.

On G7 , Ṫ.0 for n1.0 and Eqs.~57!, ~68! and ~70! yield

dx

dT
52

3p

M3~2B1M2!
.

Using the constraint~51! to excludep, we obtain the radial equation onG7 :

dx

dT
56

1

M2 A B

M221. ~71!

Let us compare it with Eq.~13!. Eqs.~65! and ~49! imply that

dx

dT
5

1

M2

dR

dT
,

whereas Eqs.~55!, ~49! and ~14! give

V512
B

M2 .

Hence, the radial equations~71! and~13! are equivalent, and the dynamics of the new action onG7

coincides with that of the old action.G6 consists of the unintentionally added unphysical solutio
at least on the phase space defined by Eqs.~18!, but nothing is added in the physical region.

Finally, we shall study the question of the monotonicity of the time functionsT2 , T3 andT
along the dynamical trajectories atG7 . Equations~57! and~58! show that the right-hand sides o
Eqs.~66! and ~68! cannot vanish, and we have forn1.0,

Ṫ2.0, Ṫ.0.
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Hence,T2 andT are good times and, as we have seen above, the constraint can be solved u
for the corresponding momenta,Ē and M. As for T3 , Eq. ~67! implies thatṪ3.0 for @E#.0,
Ṫ350 for @E#50 andṪ3,0 for @E#,0. The solvability with respect to@E# is also only partial:
there is a unique positive and a unique negative solution. ThusT3 is a good time only in some
special cases, as the next section will show.

VIII. SOME INTERESTING SPECIAL CASES

In this section, we shall remove some degrees of freedom and describe the resulting s
models in terms of the new variables.

A. Dust degrees of freedom removed

Here, we remove the variablesM andT and return to the system considered in Ref. 14. It h
two degrees of freedom: the black hole massE2 and the positionx of the shell. To this aim, we
first choose a particular value ofM and demote it so to a mere parameter. In this way, a subm
fold G7M of G7 emerges. Second, we take a quotient ofG7M by theT-curves~see Ref. 17 for more
details of thisexclusion of a cyclic variable!. The system that results has the action

SM5E dt~2ĒṪ22@E#Ṫ32pẋ2n1C1!,

whereC1 is given by Eq.~54! as before, onlyM is a parameter now. The equations of moti
comprise Eq.~65! without Ṁ50, as well as Eqs.~66!, ~67!, ~69! and ~70!.

The properties of this system are analogous to that of the original one. In particula
constraint is regular everywhere onG7M because the derivative~56! and ~58! cannot both simul-
taneously vanish,T2 is a good time variable and the constraint equation is uniquely solvable foĒ.

B. Black hole degree of freedom removed

Here, we demote the variableE2 to a parameter and remove the corresponding cyclic varia
T2/22T3 ; the remaining two degrees of freedom are the internal energyM and the positionx of
the shell. The system obtained in this way will describe the dynamics of the dust shell in the
of a fixed black hole ifE2.0 or in the Minkowski space ifE250. One returns so to the syste
considered in Ref. 13; the procedure, in different coordinates, has been performed in Ref.

To begin with, we transform variables as follows:

Ē5
E11E2

2
, T2

15T2/21T3 ,

@E#5E12E2 , T2
25T2/22T3 .

Then, we choose a particular value forE2 ; this defines the black hole mass, and formally
six-dimensional submanifoldG7E of G7 . Finally, we take the quotientG7E /T2 of G7E by the
T2-curves. The result is the action

SE5E dt~2E1Ṫ2
11MṪ2pẋ2n1C2!,

where

C259p22~B22M2!~2B21M2!2,

and
                                                                                                                



l
a

nuous
the
form

to

the

ue

,
tem

sical
e
t the

in

339J. Math. Phys., Vol. 40, No. 1, January 1999 P. Hájı́ček

                    
B25
1

4x2 1
E11E2

x
1~E12E2!2.

The variableT is a good time andC250 is, of course, solvable forM exactly as in the genera
case. The variableT2

1 is, for large values of the parameterE2 , not a good time, because it is
combinationT2/21T3 of T2 that increases along all dynamical trajectories andT3 that increases
along those withE1.E2 and decreases along those withE1,E2 . One can show thatṪ2

1 is
positive for E12E2.0 and negative forE12E2,2M and that there is no surface forE2

.M that would be transversal to both the dynamical trajectories and the orbits of the conti
subgroup.@Still, one can transformT2

1 so that the resulting time levels are transversal to
dynamical trajectories, but a mere shift is not sufficient; one must screw the level to a helix
with the helix axis in theE1-direction; this may be done by a singular ‘‘shift’’ proportional
(E12E2)21. We shall not go into detail.# The derivative ofC2 with respect toE1 changes sign
somewhere ifE2 is sufficiently large and so there are more than one, or no solution of
constraint with respect toE1 .

There is one prominent exception: suppose thatE250. Then,E12E2 is positive if E1 is.
Hence, in the physical region~whereE1.0!, T2

1 is a good time and the constraint has a uniq
solution forE1 there, namely,

E152
1

2x
1Af ~p,M!,

wheref is defined by Eq.~61!.
One can also remove all four variablesT, M, E2 andT2

2 so that only one degree of freedom
the positionx of the shell, remains, but it is not difficult to work out the properties of the sys
using the results obtained in this section, and we left it as an easy exercise to the reader.

The special caseE250 is also interesting, because it is a part of the boundary of the phy
region given by inequalities~52! on G7 . The variational principle~53! does not break down at th
boundary, that is, it defines a regular dynamics there. From this, it must clearly follow tha
action defines a regular dynamics even at those points ofG7 that do not satisfy the conditions~52!.
We have studied the meaning of this dynamics and of these points in Sec. II.
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Asymptotic behavior in polarized T 2-symmetric vacuum
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We use the Fuchsian algorithm to study the behavior near the singularity of a class
of solutions of Einstein’s vacuum equations. These solutions admit two commuting
spacelike Killing fields like the Gowdy space–times, but their twist does not van-
ish. The space–times are also polarized in the sense that one of the ‘‘gravitational
degrees of freedom’’ is turned off. Examining an analytic family of solutions with
the maximum number of arbitrary functions, we find that they are all asymptoti-
cally velocity-term dominated as one approaches the singularity. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!00601-5#

I. INTRODUCTION

There is increasing evidence that cosmological solutions exhibit rather special dyna
behavior in the neighborhood of their singularities. The evidence is still essentially limite
families of solutions with at least one Killing field. However, it is quite striking that although
Hawking–Penrose singularity theorems1 require nothing more than geodesic incompletenes
generic cosmological solutions, every study to date indicates that the solutions under invest
are either ‘‘asymptotically velocity-term dominated’’~AVD ! or show ‘‘Mixmaster’’ behavior~see
Refs. 2–8!.

In a space with AVD behavior, the metric tensorgab(x,t) evolves in such a way that a
observer with fixedx0 moving toward the singularity sees the dynamics ofgab(x0 ,t) asymptoti-
cally approach that of a Kasner space–time, with there being generally a different Kasner lim
each differentx0 ~see Refs. 9, 3, 5, and 7, and references therein!. Mixmaster behavior is similar
except that this observer seesgab(x0 ,t) move through an infinite sequence of Kasner epochs, w
regular intermittent bounces from one epoch to another~see Ref. 10!. Again, different observers
generally see different sequences~see, for instance, Refs. 3 and 8!. While neither AVD nor
Mixmaster behavior as described above is trivial, the Einstein equations, even with the sim
cation of an assumed symmetry, are sufficiently complicated that the prevalence of these
behaviors is quite remarkable.

The earliest verifications of AVD behavior in a family of inhomogeneous solutions,
polarized Gowdy space–times, took the form of a theorem.5,11 The techniques developed i
proving that result have not, however, been readily extended to more general families. In
most of the recent evidence for AVD and Mixmaster behavior in cosmological space–time
been based on numerical work: Berger and Moncrief12 provide strong numerical evidence fo
AVD behavior in general (T3) Gowdy space–times, but find that the Kasner exponents sh
satisfy some inequalities in generic solutions~the solutions should be ‘‘low-velocity’’!; they also

a!Electronic mail: jim@newton.uoregon.edu
b!Electronic mail: satyanad.kichenassamy@univ-reims.fr Permanent address: Laboratoire de Mathe´matiques, Universite´ de

Reims, Moulin de la Housse, B. P. 1039, F-51687 Reims Cedex 2, France.
3400022-2488/99/40(1)/340/13/$15.00 © 1999 American Institute of Physics
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have evidence in polarizedU~1!-symmetric space–times.13 One should note that it is not alway
easy to be sure, in numerical computations, that the constraint equations do hold, excep
Gowdy class. Note also that Weaver, Berger, and Isenberg8 provide similar evidence that locally
T2-symmetric space–times with certain magnetic fields have Mixmaster behavior.

This numerical evidence motivates the search for a theoretical explanation for the prev
of these behaviors and numerical observations such as the distinction between high- an
velocity solutions, and, if possible, a means to predict which behavior occurs. The recent w
Kichenassamy and Rendall7 introduces a new tool for obtaining such information. They use
Fuchsian algorithm to prove that there is a family of general~non-polarized! Gowdy space–times
parametrized by the maximum number of free functions, namely four, which all exhibit A
‘‘low-velocity’’ behavior. If the derivative of one of these functions vanishes, ‘‘high-velocit
behavior is allowed. This family of solutions includes all of the previously known solutions in
class. The results also shed new light on other features of the numerical computations.

It is very likely that one can show that these new Gowdy space–times are stable under s
perturbation of Cauchy data, by adapting the techniques described in Refs. 14 and 15. The
strategy consists in showing, using the Nash–Moser implicit function theorem, that the
functions which determine the solutions given by the Fuchsian algorithm can be used to p
etrize solutions much in the same way as one uses Cauchy data on a hypersurface to labe
solutions. In a sense, one therefore generates systematically an ‘‘asymptotic phase spa
families of solutions, as was called for in Ref. 5.

In this work, we show that the Fuchsian algorithm is an effective tool for proving that A
behavior occurs in a wider class of space–times: those which possess, like the Gowdy
times, aT2 isometry group with spacelike generators, but in which, unlike the Gowdy case
Killing vectors have a nonvanishing twist. The main new difficulty is that this nonvanishing t
prevents the constraint equations from decoupling from the evolution equations, resultin
considerably more complicated partial differential equation~PDE! system than what obtains in th
case of Gowdy space–times.16–18 This difficulty is overcome by abandoning the separation
constraint and evolution equations. It is found that, combining some of the constraints with
of the ‘‘evolution’’ equations, one can form a system which is sufficient to determine the m
One then proves directly that the remaining constraints hold everywhere if they hold asym
cally at the singularity. This latter condition can be expressed explicitly in terms of the data w
determine the asymptotics at the singularity, or ‘‘singularity data’’ for short.

The Fuchsian algorithm has been extensively studied and takes a variety of forms~see Refs.
15, 19, 20, and 7!. In Sec. II, we briefly review the form of the algorithm we use here, and a
relevant results we will need. Next, we describe in Sec. III theT2-symmetric space–times, notin
some of their properties and defining the polarized subfamily. Then, in Sec. IV, we propo
AVD ansatz for the metric coefficients and show that the ‘‘regular part’’ of the field is ind
negligible in comparison with the leading terms. Finally, we discuss in Sec. V our conclusion
plans for future work.

II. THE FUCHSIAN ALGORITHM

The Fuchsian algorithm was initially developed to understand the behavior of solutio
differential equations in the neighborhood of a possible singularity of unknown location.
rationale was that if singularities are to form, it would be desirable to figure out by what me
nism they form: Which components of the solution become singular? Do singularities occu
in higher derivatives? Is the locus of the singularity arbitrary? How does it vary with Cauchy
given on a surface where the solution is smooth?

Existing results prior to Fuchsian techniques gave some information on the time of th
singularity, but did not shed light on the mechanism of singularity formation, except for sp
classes of singularities, such as shock waves in low dimensions, or caustic formation.

The questions asked above would be answered if it were possible to establish an expan
the solution to relatively high order. To achieve this, one needs to establish a formal solutio
to prove that this formal expansion does characterize the solution. In practice, one is not pri
                                                                                                                



like to

xpo-

em of
one of
that

with
re for

to

e

ral

al
me

the
ar-

s

in
other

po-

342 J. Math. Phys., Vol. 40, No. 1, January 1999 J. Isenberg and S. Kichenassamy

                    
interested in the convergence or divergence of a series representation. Rather, one would
know whether the parameters entering in a formal series representation dodetermine uniquelythe
solution, or whether there are infinitely many solutions differing from each other by, say, e
nentially small corrections.

The Fuchsian method tackles this problem by seeking a reduction of the given syst
PDEs to a Fuchsian system; that is, one which has a regular singular point with respect to
the variables, which we callt. Using a change of coordinates if necessary, one may assume
the locus of the singularity ist50. It is also possible to set things up so that one always deals
first-orderFuchsian systems, by the introduction of new variables. This is a familiar procedu
the Cauchy problem: for instance, ifu solves the wave equation in Minkowski space, it is easy
check that the quantities (u,]au) satisfy a first-order system.

Let us consider a PDE system which we write symbolically as

F@u#50.

The exact form of the nonlinearity is not important for what follows. Generally,u can have any
number of components.

Schematically, the Fuchsian algorithm has three parts:
Step 1. Identify the leading partof the desired expansion foru. This can be done in many

cases by seeking a leading balance; that is, a leading terma(t) such that, upon substitution into th
equation, the most singular terms cancel each other.

Step 2.Introduce arenormalized unknown. This means that one writes

u5a~ t !1tsv~ t !, ~1!

where v is the new unknown. It is generally useful to computea to relatively high order if
possible, so that any arbitrary functions in the expansion are already included ina. If a is a
solution up to ordern, one may usually takes5n1«, where« is small.

Step 3. Obtain and solve aFuchsian systemfor v. Indeed, one finds under rather gene
circumstances that the functionv solves an equation of a very particular form, namely

~ t] t1A!v5t« f ~ t,xr,v,¹rv !, ~2!

wherer stands for spatial indices in this formula. The matrixA depends at most on the spati
variables, andf is, say, bounded. By takingt« to be a new time variable, one may always assu
that « is equal to one. Observe how spatial derivatives are effectively switched off from
equation whent goes to zero:the Fuchsian algorithm provides a systematic procedure to gu
antee AVD behavior.

There is a variety of existence results for Fuchsian systems.19,21,7For our purposes, it suffice
to note the following~see, Refs. 7 and 19!.

Theorem 1: There is a unique local solution which is continuous in time and analytic
space, and vanishes as t goes to zero, provided that (a) f is continuous in t and analytic in its
arguments and satisfies an estimate of the form

u f ~ t,xr,v,¹rv !2 f ~ t,xr,w,¹rw!u<C@ uv2wu1u¹rv2¹rwu#

for some constant C provided v and w are bounded, and (b) the matrixsA@5exp(A ln s)# is
uniformly bounded for0,s,1.

Condition ~b! is usually most conveniently checked by simply computing the matrix ex
nential.

We emphasize that we are not allowed to prescribe arbitrarily the initial value ofv. The free
data~usually called ‘‘singularity data’’! which label the solutionu are already built into the choice
of a in ~1!, and are subsequently incorporated into the functionf in ~2!. A straightforward exten-
sion of the theorem can be made if we assume only thatv(0) belongs to the null space ofA. By
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considering the equation satisfied byv2v(0), one canreduce the problem to an equation
which the theorem applies. In such a case,v(0) must be added to the list of singularity data.

General strategies for carrying out the algorithm can be found in Refs. 15, 20, 19, and 7
applications to several examples. Let us simply describe here what these steps entail for t
PDE to which these ideas were applied successfully:

hab]abu5eu ~3!

in Minkowski space, whereu is a scalar field~there are similar results for power nonlinearities
well!. Let t5c(x) be the locus of the~yet unknown! singularity, and letx stand for the spatia
variables. For one space dimension, Eq.~3! has a closed-form solution~‘‘Liouville field theory’’ !;
however, we allow here the number of space dimensions to be arbitrary. LetT5t2c(x). If we
choose the leading part ofu so that exp(u);w(x)Ts wheres andw are unknown, one readily find
that, to eliminate the most singular term in the expansion of~3!, we need to chooses522 and
w52(12u¹xcu2) which must therefore be positive. Hence the leading part ofu takes the form

u' ln
2

T2 1 ln~12u¹xcu2!.

This completes the first step.
It is useful to write out the rest of the leading parta(t) of u up to order two inT for two

reasons:~a! this reveals that the solution contains logarithmic terms, which disappear, in fact,
if the scalar curvature of the singularity manifold vanishes identically; and~b! this shows that the
coefficient ofT2 in the expansion is arbitrary. We therefore compute, by direct substitution,

u' ln
2

T2 1u0~x!1u1~x!T1u1,1~x!T2lnT1u2~x!T21 . . . ,

whereu0 , u1 , andu1,1 are entirely determined byc; in particular,u05 ln(12u¹xcu2). However,u2

remains arbitrary. One then sets

u5 ln
2

T2 1u0~x!1u1~x!T1u1,1~x!T2ln T1vT2, ~4!

so that the arbitrary functionu2 appears as an ‘initial value’ for the renormalized unknownv. This
completes the second step.

The singularity data in this case arec and u25v(0). Once they are known, the forma
solution is completely determined.

For the third step, we now substitute expression~4! for u into ~3!, and find thatv solves an
equation which can be thought of as a nonlinear perturbation of the Euler–Poisson–Da
equation. One then checks thatv, TvT , andT¹rv solve a Fuchsian system. This has the followi
consequences:

~a! There is a formal solution to all orders, in powers ofT andT ln T; for T,0, one replaces
T ln T by T lnuTu. The series are convergent ifc andu2 are analytic; otherwise, they are vali
as far as the differentiability of the free functions allows. As already mentioned, the
rithmic terms cannot be dispensed with, except for very special solutions. The exam
Gowdy space–times shows that one should even allow terms such asTk(x) for the applica-
tion to Einstein’s equations.

~b! The solution is uniquely determined by the ‘‘singularity data’’$c,u2%. In fact, the corre-
spondence between these data and the Cauchy data on a hypersurface where the so
regular can be inverted, using the Nash–Moser version of the inverse function theorem~see
Ref. 14!. From a practical viewpoint, this means that(i) the smoother the Cauchy data, th
smoother the singularity surface; and(ii) there is a recipe for computing how the singular
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data vary when the Cauchy data vary. The question in the opposite direction is simple
series representation gives explicitly the solution in terms of the singularity data.

All this makes the series representations generated by Fuchsian techniques as reliab
exact solution in the vicinity of the singularity—a place where at present no other represen
is available.

It should be stressed that the Fuchsian method applies without symmetry or integr
restrictions. For this reason, it enables one to study directly the stability of solutions furnish
generation techniques, even under fully ‘‘inhomogeneous’’ or ‘‘asymmetric’’ perturbations,
the information it provides yields concrete analytical insight into the properties of solutions

III. POLARIZED T2-SYMMETRIC SPACE–TIMES

While the GowdyT3 space–times22 have been extensively studied over the years,5,16,6,12,7and
are relatively well understood, the more generalT2-symmetric space–times have only recen
begun to be considered.16–18The technical condition which distinguishes the Gowdy subfamily
the requirement that the Killing fieldsX andY which generate the isometry group have vanish
twist constantskxª«abcdXaYb¹cXd and kyª«abcdXaYb¹cYd , where«abcd is the Levi-Civita
tensor. The essential difference in practice is that, if one chooses the constant orbit are
foliation ~‘‘Gowdy time’’ !,22 the constraint equations decouple from the evolution equations in
Gowdy case, and can therefore more or less be ignored in the analysis. If, however, eitherkx or ky

is nonzero, then no such decoupling occurs.
The general form of the metric and the field equations for theT2-symmetric space–times i

presented in Ref. 17, along with a proof that the Gowdy time always exists globally for
space–times. To write the metric, we assume that all metric components depend on two
nates, the Gowdy timet and spatial coordinateuPS1 with ]/]x and ]/]y generating theT2

isometry. By choosingX and Y to be suitable linear combinations of the generators, we m
always assume without loss of generality thatkx50. We then drop the subscript fromky . We
now focus our attention on the subclass of polarized space–times, which haveA[0 in the
notation of Ref. 17. The metric takes the form

ds25e2~n2u!~2adt21du2!1le2u~dx1G1du1M1dt!21le22ut2~dy1G2du1M2dt!2,
~5!

wherel is a positive constant and the functionsu, n, a, G1 , M1 , G2 , andM2 depend ont and
u. The vacuum field equations take the form, writingut for ]u/]t, etc., D5t] t , D25t2] t

2

1t] t , andm5lk2,

D2u2t2auuu5
1

2a
DaDu1

t2

2
auuu , ~6a!

Da52
a2

t2 me2n, ~6b!

Dn5~Du!21t2auu
21

a

4t2 me2n, ~6c!

]un52uuDu2
au

2a
, ~6d!

G1,t5M1,u , ~6e!
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G2,t5M2,u1
ka1/2

t3
e2n, ~6f!

k t50, ~6g!

ku50. ~6h!

Note that the Gowdy case is recovered ifk50, a51, andG15G25M15M250. SinceG1,t

5M1,u , G1du1M1dt is locally an exact differentialdw. Replacingx by x1w, we may assume
locally thatG15M150. Similarly, one can setM250 by redefiningy. Since these reductions ar
only local and may be incompatible with global requirements, we do not consider them fu
even though they do make the geometric ‘‘degrees of freedom’’ more clear.

Equations~6a! constitute an initial-value problem for the polarized space–times, in which
equations~6a!–~6d! decouple from the rest. They form an independent system for$u,a,n%. Once
these three functions are known, the other equations can be solved easily.

We note that Eqs.~6b!–~6d! in particular—three of the four equations which constitute
heart of the Cauchy problem for these space–times—actually derive from the constraint equ
of Einstein’s theory. Unlike the Gowdy case, the wave equation~6a! does not decouple from th
constraints, since it contains the functiona. We therefore take~6a!–~6d! as our basic equations
treating~6a!–~6c! as evolution equations, and~6d! as the only effective constraint.

The local well-posedness of the initial-value problem away from the singularity att50 is not
quite straightforward, for we must prove that Eq.~6d! propagates. This is not an immedia
consequence of standard results because we are not using any of the standard setups
initial-value problem. It nevertheless does hold, and this can be ascertained in two ways.

One approach is as follows~this is basically the argument used by Refs. 17 and 16!: if we
choose$u,ut ,a,n, . . . % at some initial timet0.0 so that they satisfy the constraint~6d!, then we
can view these as an initial data set for the Einstein equations without any symmetry and co
a local solution in the standard way. One then uses the results of Ref. 16 to introduce coor
in this region so that the metric takes the form~5!.

We can also give a direct argument, which will be useful later. We first deal with the ana
case, which is all we need for the results of Sec. IV. In view of its independent interest, we
in the appendix how to deal with the nonanalytic Cauchy problem as well.

Away from t50, the PDE system~6a!–~6c! is of Cauchy–Kowalewska type. More precisel
we can reduce it to the following first-order system for (z0 ,z1 ,z2 ,a,n)ª(u,ut ,uu ,a,n):

] tz05z1 ,

] tz15a]uz22
z1

t
2

m

2t3 z1e2n1 1
2z2au ,

] tz25]uz1 ,

] ta52
a2

t3 me2n,

] tn5tz1
21taz2

21
a

4t3 me2n.

In particular, ignoring the constraint~6d!, we obtain a unique solution of the remaining equatio
by prescribing the data$u,ut ,a,n% for t5t0 . Now let us set

Nªnu22uuDu1
au

2a
. ~7!
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Calculating

05Dnu2]uDn5DN1DS 2uuDu2
au

2a D2]uDn,

we find, using~6a!–~6c!,

DN2
1

2a
NDa50. ~8!

This is a linearordinary differential equation~ODE! for N ~there are nou-derivatives!. Hence if
we choose data$u,ut ,a,n% for t5t0 so thatN(t0)50, the uniqueness theorem for ODEs gu
antees thatN is identically zero for all time.

We therefore have proved the well posedness of the initial-value problem. The results o
17 ensure that the solution remains bounded fort.r, wherer>0 is independent ofu. It is
expected thatr.0 in special cases only, such as exact Kasner space–times.23 We are interested in
asymptotics neart50. Note that Fuchsian techniques may be useful for analyzing singularitie
t nearr.0; however, if these solutions are nongeneric in some reasonable sense, they sho
contain the full number of free parameters, and they may be nonpolarized as well. It does
that there are consistent asymptotics of the formu'u0 , n' 1/2 ln(t2r)1n0(u), anda'a0(u)
3(t2r)22.

As far as the number of free functions in the metric is concerned, one might expect tha
will only be two, since one of the gravitational degrees of freedom has been turned off. In
while the initial data for~6a!–~6c! consist of four functions$u,ut ,a,n%, they are constrained by
one relation,viz. ~6d!, and, if we set aside the choice of the initial value for the lapse functiona,
we obtain two arbitrary functions in the solution.

Similarly, we will obtain a family ofsingular solutions of ~6a!–~6c! depending on four
arbitrary functions occurring in its singular expansion, and will show that if these ‘‘singula
data’’ are constrained by one relation, the constraint~6d! holds for all time as well.

IV. APPLICATION OF THE FUCHSIAN ALGORITHM

We are interested in generating solutions to~6! which have controlled asymptotics neart
50 and which are parametrized by as many arbitrary singularity data as possible. We achie
by following the program outlined in Sec. II.

Step 1. Leading-order asymptotics.Since we expect Kasner-like behavior at the singular
and sinceu andn appear in the metric exponentially, we choose logarithmic leading termsu
andn:

u'k~u!lnt1u0~u!1¯; ~9a!

n'~11s~u!!lnt1n0~u!1¯; ~9b!

a'a0~u!1¯ . ~9c!

For Eq. ~6b! to hold at leading order, it is sufficient thats.0. For ~6c! to hold at leading
order, one needsDn and (Du)2 to balance each other, which requires that

k2511s, ~10!

which we assume from now on. The functiona0 should be taken to be positive, to ensure t
metric has the correct signature.
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Note that there are four free functions, namely (k,u0 ,a0 ,n0), in these leading term expan
sions, just as there were four Cauchy data in the discussion of Sec. III. These four free fun
are the singularity data for this system. They are 2p-periodic; furthermore,a0 ands5k221 are
positive.

These asymptotics may be compared with those of the solutions obtained in the Gowd
in Ref. 7. If kG denotes the parameter calledk in Ref. 7, the correspondence is6kG52k21. This
means that the solutions we obtain here, withk2.1, are similar to the ‘‘high-velocity’’ Gowdy
solutions, for whichkG.1. The asymptotics~9a!–~9c! are not compatible with Eqs.~6! if 0 ,k
,1, unlessm50, which is the Gowdy case. Indeed,~6b! implies thata is of the ordert2s, which
is singular ifs5k221 is negative. This makes the termDaDu/(2a) in ~6a! more singular than
all the other terms in this equation, so that~6a! cannot hold. There are two ways to circumve
this: ~1! take k50, so thatDu vanishes to leading order, giving a consistent balance, at
expense of losing the freedom to varyk; and ~2! add terms to the field equations which wou
compensate the most singular term in~6a!—which is possible by going over to the nonpolariz
field equations. These possibilities will be addressed when we deal with nonpolarized s
times, in a forthcoming paper.

Step 2. Renormalized unknown.We now introduce new unknowns which will provide a
exact form for the remainders indicated with ‘¯’ in ~9a!–~9c!. Because of thee2n term, we see
that it is not possible to assume that the remainder terms are of ordert. We do expect them to be
of order t« if « is small compared to the minimum ofs. We therefore define the renormalize
unknowns (v,m,b) by

u~u,t !5k~u!lnt1u0~u!1t«v~u,t !; ~11a!

n~u,t !5k2~u!lnt1n0~u!1t«m~u,t !; ~11b!

a~u,t !5a01t«b~u,t !. ~11c!

Step 3. Fuchsian system.We shall now show that the renormalized field variables solv
Fuchsian problem. Consequently, once the functions (k,u0 ,a0 ,n0) have been specified, and« has
been chosen small enough, the unknownsv, m, andb are uniquely determined via Theorem 1

To achieve this, let us first, since we are looking for a first-order system, introduce first-
derivatives ofv as new unknowns. This suggests letting

vW 5~v1 ,v2 ,v3 ,v4 ,v5!ª~v,Dv,t«vu ,b,m!.

Let us also introduce the abbreviationE5mexp(2n012t«m). It is helpful to remove thet-
derivatives ofa in the right-hand side of~6a! by using

Da

a
52at2s~u!E, ~12!

which follows from ~6b! and ~11b!. We then find the following evolution equations forvW :

Dv15v2 ; ~13a!

Dv212«v21«2v15t22«~a01t«b!~kuulnt1u0,uu1v3,u!

2 1
2Eat2s2«~k1t«~v21«v1!!

1 1
2t

22«~a01t«b!~kulnt1u0,u1v3!; ~13b!

Dv35t«]u~«v11v2!; ~13c!

~D1«!v452t2s2«~a01t«b!2E; ~13d!
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~D1«!v552k~v21«v1!1t«~v21«v1!21 1
4Et2s2«~a01t«b!

1at22«~kulnt1u0,u1v3!2. ~13e!

This system has the general form

~D1A!vW 5t« fW~ t,x,vW ,]uvW !,

where

A5S 0 21 0 0 0

«2 2« 0 0 0

0 0 0 0 0

0 0 0 « 0

22k« 22k 0 0 «

D ,

and fW is a five-component object containing all the terms in the system that are not al
included in the right-hand side.

By taking« small ~less than the smaller of 1 and any possible value ofs), we can ensure tha
fW is continuous int and analytic in all the remaining variables. Since the eigenvalues ofA are«
and 0, of multiplicities four and one, respectively, we conclude that the boundedness condi
Theorem 1 holds. Explicitly, we haveP21AP5A0 , hencesA5PsA0P21, where

A05S 0 0 0 0 0

0 « 0 0 1

0 0 « 0 0

0 0 0 « 2k

0 0 0 0 «

D and P5S 0 1 0 0 0

0 2« 0 0 21

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

D ,

so that

sA05S 0 0 0 0 0

0 s« 0 0 s« ln s

0 0 s« 0 0

0 0 0 s« 2ks« ln s

0 0 0 0 s«

D .

We conclude from Theorem 1 that there is a unique solution of the Fuchsian system~13! which
vanishes ast tends to zero, and which is analytic inu and continuous in time. We note in particula
that if we constructu, n, anda from ~11a!–~11c! with v5v1 , m5v5 , andb5v4 , then (u,n,a)
is a solution of equations~6a!–~6c!. To verify this, we note that equations~13a!–~13c! imply that

D~v32t«v1,u!50,

so that any solution which tends to zero witht has also the property thatv25tv1,t and v3

5t«v1,u .
We now wish to show that, by imposing a constraint on the singularity data (k,u0 ,a0 ,n0), we

can guarantee that the solution (u,n,a) of ~6a!–~6c! obtained by solving the Fuchsian system~13!
will satisfy the constraint~6d! as well, in order to obtain genuine solutions of Einstein’s vacu
equations. We achieve this using~8!, which in turn has been derived using only~6a!–~6c!.
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First of all, sincefW is bounded, we know that (D1A)vW is actuallyO(t«), which implies in
particular thata and Da are of order 1 andt«, respectively. In particular,Da/a5ta t /a
5O(t«). This means, using~8!, that

] tN

N
5

a t

2a
5O~ t«21!,

which is integrable up tot50. @One could also have estimatedDa/a directly from ~12!.# Letting
z(t,u) be the integral of this function from 0 tot, we find that

N~ t,u!}exp z~ t,u!.

Thus, if we can choose the data so thatN→0 ast→0 for fixedu, we will know thatN is, in fact,
identically zero, and therefore that the constraint is satisfied. Now

N5nu22uuDu1
au

2a

5n0,u22ku0,u1
a0u

2a0
1o~1!,

whereo(1) is some expression which tends to zero witht. We conclude that the constraint
satisfied if and only if the singularity data satisfy

n0,u22ku0,u1
a0u

2a0
50. ~14!

Note also that all the considerations in this paper are, in fact, local inu, and therefore allow
in principle for other spatial topologies.

To summarize, we have proved the following result:
Theorem 2: For any choice of the singularity data k(u), u0(u), n0(u), anda0(u), subject to

condition (14), theT2-symmetric vacuum Einstein equations have a solution of the form
whereb, v, andn are bounded near, t50. It is unique once the twist constantk has been fixed,
except for the freedom in the functions G1 , G2 , M1 , and M2 . Each of these solutions generate
space–times with AVD asymptotics.

V. CONCLUDING REMARKS

We have therefore obtained a family of singularT2-symmetric space–times with precis
asymptotics at the singularity, which is of AVD type, and which depends on the maximum nu
of singularity data, that is, as many singularity data as there are Cauchy data for solutions
from the singularity. Fuchsian techniques therefore apply even if the constraints do not de
from the ‘‘evolution’’ equations as in the Gowdy case.

We may also note the following.
First, it is likely that, as in the case of scalar fields, these singular solutions are stabl

Sobolev topology, by application of the Nash–Moser theorem, in which case these solution
an open set in the space of all solutions. This means that this type of AVD behavior isstablein
this class, and is therefore not a special feature of some closed-form solution.

Second, the polarized U~1!-symmetric solutions are believed to be AVD as well,13 and work
is underway to address this class by Fuchsian methods.

Third, it appears that the general~nonpolarized! T2-symmetric space–times may show Mix
master behavior.24 Numerical and analytical work to explore this possibility is being carried o
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APPENDIX: NONANALYTIC INITIAL-VALUE PROBLEM

In this appendix, we consider the nonanalytic version of the initial-value problem
T2-symmetric space–times. The strategy is as follows: We first promoteau to a new field variable
zªau , and produce an evolution equation forz by differentiating~6b! with respect tou. We then
use~6b! to eliminateDa from ~6a!, and equation~6d! to express]un in terms of the other field
variables. This gives us a symmetric-hyperbolic system~A1! for (z0 ,z1 ,z2 ,a,z,n). Standard
theorems then ensure that~A1! admits a unique solution, defined in a small time interval,
nonanalytic, but sufficiently smooth, initial data. We then show that the constraintsz5au and
N50 do propagate, by a variant of the argument used for the propagation of the constrN
50. This will establish that we do obtain solutions to~6a!–~6d! with nonanalytic initial data.

We proceed with the details of this argument. The symmetric–hyperbolic system is

] tz05z1 , ~A1a!

] tz15a]uz22
z1

t
2

m

2t3 z1e2n1
1

2
z2z, ~A1b!

a] tz25a]uz1 , ~A1c!

] ta52
a2

t3 me2n, ~A1d!

] tn5tz1
21taz2

21
a

4t3 me2n, ~A1e!

] tz52
2ma

t3 e2nFz1aS 2tz1z22
z

2a D G . ~A1f!

One verifies by inspection that this system is symmetric–hyperbolic, so that if we pres
sufficiently smooth initial data$u,ut ,a,z,n% for t5t0 , we obtain a unique solution. The first an
third equations ensure respectively thatz15] tz0 and ] t(z22]uz0)50; we may thus setz05u,
z15ut andz25uu . Equations~6a!–~6c! therefore hold, withau replaced byz in ~6a!.

Now, let us set

Rªz2au and N8ªnu22uuDu1
z

2a
. ~A2!

We proceed to derive a first-order system of ODEs forR andN8. For the rest of this section, w
write N for N8, for convenience.

First of all, using Eqs.~A1d! and ~A1f!,
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DR5D~z2au!

52
2ma

t2 e2nFz1aS 2uuDu2
z

2a D G2]uS 2
a2

t2 me2nD
52

2ma

t2 e2n@R2aN#

52
Da

a
@R2aN#. ~A3!

Using the expression forN from ~A2!, taking the relationz5au1R into account, we have

DN5~Dn!u22DuDuu22uuD2u1DS au1R

2a D ,

or

DN2DS R

2a D5~Dn!u22DuDuu22uuD2u1DS au

2a D .

Then, from~A1a!, ~A1b!, and~A1d! and the definition ofR, we find

DN2DS R

2a D5]uS 2
Da

4a D2
Da

a
uuDu2t2uu

2R1DS au

2a D
52t2uu

2R1]uS Da

4a D2
Da

2a
~2uuDu!.

Since, from~6b!, one has

S Da

4a D
u

5
Da

2a S nu1
au

2a D ,

it follows that

DN2DS R

2a D1t2uu
2R5

Da

2a S N2
R

2a D . ~A4!

Thus, combining~A3! and ~A4!, we have

DN5N
Da

2a
1RS DS 1

2a D2t2uu
2D2

RDa

4a2 1
Da

a2 @R2aN#

5RFDa

a2 S 2
1

2
2

1

4
11D2t2uu

2G2N
Da

2a

5RF Da

4a2 2t2uu
2G2N

Da

2a
. ~A5!

Equations~A3! and ~A5! constitute a linear, homogeneous system of ODEs forR andN. There-
fore, if the initial data are such that these quantities are zero fort5t0 , they remain so for all time,
QED.
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backward in time, the space–time stops before the Gowdy timet, which is proportional to the area of theT2-orbits, hits
zero.

24J. Isenberg and M. Weaver, unpublished.
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The kinematical role of automorphisms in the orthonormal
frame approach to Bianchi cosmology
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I-00185 Roma, Italy
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The automorphism group and frame commutator relations in the orthonormal frame
approach to Bianchi cosmology are used to construct an explicit coordinate repre-
sentation of the orthonormal frame itself~and hence of the spacetime metric! which
depends algebraically on the connection coefficients. This is not possible in general
inhomogeneous models where differential equations must instead be solved. The
shift vector field required for this procedure is intimately related to the true Smarr–
York minimal strain and minimal distortion shifts. ©1999 American Institute of
Physics.@S0022-2488~99!01701-6#

I. INTRODUCTION

When studying spatially homogeneous~SH! Bianchi cosmology, two complementary ap
proaches have been taken, one using orthonormal frames in which the metric components a
and the dynamics resides in the commutation functions~see references in Ref. 1! and the other
using computational frames2 in which the commutation functions are fixed and the dynam
resides in the metric components~see references in Ref. 3!. The relationship between these tw
has been clouded by the fact that one usually uses a synchronous frame in the computation
approach to Bianchi cosmology. By instead choosing a computational frame based on a s
shift vector field intimately related to the true Smarr–York minimal strain and minimal distor
shifts,4,5 one can construct an explicit coordinate representation of all the orthonormal f
vectors ~and therefore a coordinate representation of the spacetime metric! using an algebraic
procedure involving the commutator functions and commutator relations of the orthonormal
approach.

For general inhomogeneous models, such an algebraic procedure is not possible and
instead forced to solve differential equations resulting from the commutator relations in ord
obtain a coordinate representation of the orthonormal frame. The closest one might come
present SH construction in more general inhomogeneous cases would be to use a compu
frame with a minimal strain or minimal distortion shift vector field. It is remarkable that the u
orthonormal frame approach to Bianchi cosmology is so closely connected to these genera
about fixing the coordinate gauge freedom in evolving a spacetime from initial data.

Bianchi cosmology has long served as a testing ground for exploring features of ge
relativity both in generalizing aspects of these highly symmetric models to the broader cont
more general inhomogeneous spacetimes and in specializing results from the general th
explore them in SH models which facilitate computations. While one may not need the m
explicitly to answer questions about Bianchi models alone, an explicit representation of the
is essential for answering many interesting questions about general inhomogeneous spa

a!Electronic mail: jantzen@ucis.vill.edu
3530022-2488/99/40(1)/353/16/$15.00 © 1999 American Institute of Physics
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Thus relating results of Bianchi cosmology to a wider setting requires the construction o
metric.

The outline of this article is as follows. In Sec. II the symmetry group properties of this c
of spacetimes are summarized. In Sec. III the essentials of the orthonormal frame approa
reviewed. In Sec. IV the general framework is described for constructing the metric in a co
tational frame starting from the commutation functions of an orthonormal frame and th
discussion of why it works is given. In Sec. V the metric is explicitly constructed for each Bia
type. The last section ends with concluding remarks.

II. SYMMETRY PROPERTIES

In the present discussion we consider only those symmetry types for which the full spac
symmetry group admits a simply transitive 3-dimensional subgroupG acting on the spatially
homogeneous~SH! hypersurfaces, i.e., a Bianchi group action. Such spacetimes admit a cla
spatial frames$êi% ( i 51,2,3) tangent to each hypersurface which are not only invariant unde
action of the group but which have structure or commutator functionsĈi j

k which are constants
throughout the spacetime. These invariant vector fields thus themselves generate a transfo
group which turns out to be isomorphic to the original Bianchi group. The constant stru
functions are defined by

@ êi ,êj #5Ĉi j
k êk , ~2.1!

and may be represented in the form~see e.g., Ref. 6!

Ĉi j
k 52â[ id j ]

k 1e i j l n̂
lk, ~2.2!

where the Jacobi identitiesĈl
m[ i Ĉ

m
jk]50 require

05n̂i j â j . ~2.3!

A useful parameterh may be defined by

âi â j5
1

2
he ikle jmnn̂

kmn̂ln. ~2.4!

The Bianchi symmetry types may be divided into 2 symmetry classes, A and B, dependi
whetherâi is zero or not.

It is often convenient to choose a gauge in which the structure constantsn̂i j are diagonal, and
the covectorâi is aligned with one of the basis directions, here chosen to be the third one,

n̂i j 5diag~ n̂1 ,n̂2 ,n̂3!, âi5~0,0,â!. ~2.5!

This ‘‘diagonal-alignment’’ gauge will be assumed here. Canonical choices of the structure
stants for each Bianchi type are given in this form in Table I.6 The Bianchi symmetry group actio

TABLE I. Canonical structure constants for each Bianchi symmetry type.
Note the special case Bianchi type III5VI21 with â51.

Class A Class B

Type IX VIII VII 0 VI0 II I VII h VIh IV V
n̂1 1 1 1 1 1 0 1 1 1 0
n̂2 1 1 1 21 0 0 1 21 0 0
n̂3 1 21 0 0 0 0 0 0 0 0
â>0 0 0 0 0 0 0 â â 1 1
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is assumed to be a global action by a simply connected group.~The discussion of local symmetr
actions which are not global is considerably more complicated.!

The automorphism matrix group of the Lie algebra with structure constantsĈi
jk is the sub-

group of linear transformations of its basis$êi% which leaves those constants invariant,

Bk
lĈ

l
mnB

21m
iB

21n
j5Ĉk

i j . ~2.6!

The Lie algebra of this matrix group consists of the matrix derivations of the original Lie alg

Fk
lĈ

l
i j 5Ĉk

l j F
l
i1Ĉk

il F
l
j . ~2.7!

The matrix adjoint group is the subgroup of inner automorphisms generated by the matr
algebra whose basis consists of a linearly independent subset of the adjoint matricesk̂i defined by

@ k̂i #
j
k5Ĉj

ik representing the inner derivations~Lie bracketing by elements of the original Li
algebra!,

£êi
êj5@ k̂i #

l
j êl . ~2.8!

These matrices satisfy the derivation property~2.7! due to the Jacobi identities. Automorphism
which are not inner are called outer automorphisms. The dimensions of the adjoint and au
phism groups are given in Table II. Their differences represent the number of independen
automorphism generators which exist in any basis of the full matrix automorphism Lie alg
which includes a basis of the matrix adjoint Lie algebra. The automorphism structure summ
in Table II is important for the algebraic procedure for constructing the metric from the com
tator functions.

III. THE ORTHONORMAL FRAME APPROACH

Let $ea% be a SH orthonormal frame (a50,1,2,3) with dual frame$va% ~satisfying^va,eb&
5da

b) so that the metric takes the form

g5habvavb, ~3.1!

where (hab)5diag(21,1,1,1). Choosee05n5naea to be the unit normal vector field of the SH
hypersurfaces. The remaining frame vector fields are then tangent to the SH hypersurfaces
are related to any set of invariant spatial frame vectorsêi by a linear transformation which is
constant on any given such hypersurface.

The full set of commutator functionsga
bc are defined by

@ea ,eb#5gc
abec , dva52 1

2 ga
bcv

b∧vc. ~3.2!

As a consequence of the symmetry and hypersurface-forming condition, the normaln has zero
acceleration and rotation. Thus, making a 311 decomposition of these functions leads to1

ga
0b52ub

a1ea
bgVg, gg

ab52a[adg
b]1eabdndg, ~3.3!

TABLE II. Dimensions of the adjoint and automorphism groups for each
Bianchi symmetry type.

Type VIII, IX IV, VI, VII III V II I

dim~Ad! 3 3 2 3 2 0
dim~Aut! 3 4 4 6 6 9
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whereeabg is the permutation symbol satisfyinge12351 anda51,2,3. The quantityVa can be
interpreted as the local angular velocity of a spatial frame$ea% with respect to a second spati
frame $ēa% which is Fermi-propagated alonge05n. The quantityuab is the expansion tensor
which is often represented in terms of the trace-free shear tensorsab , the expansion scalarQ, and
the spatial metrichab5gab1nanb as uab5sab1 1

3Qhab . The purely spatial componentsga
bg

have been decomposed in the same way asĈk
i j and are assumed to have the same diago

alignment gauge form as the canonical structure constants for each Bianchi type, with the
spondingly defined structure functions (n1 ,n2 ,n3 ,a) having the same signs~when nonzero! as the
corresponding structure constants (n̂1 ,n̂2 ,n̂3 ,â). The symbolna will be used only to designate
these structure functions in the remainder of the paper, and not the covariant spatial comp
of the normal vector field, which are no longer needed.

The 311 decomposition of the Jacobi identities,

@@ea ,eb#,ec#1@@eb ,ec#,ea#1@@ec ,ea#,eb#50⇔e[a~gd
bc] !1ge

[abg
d

c]e50, ~3.4!

leads to

e0~aa!52abuab2eabgabVg , ~3.5!

e0~nab!52Qnab12u (a
gnb)g22egd(anb)

gVd , ~3.6!

05abnab. ~3.7!

The diagonal-alignment conditions imposed on the structure functions cause certain comp
of the first two derivative equations to have an identically zero left hand side, leading to c
relationships among components ofVa anduab when the right hand side is not also identica
zero. Two relationships follow from the first two components of Eq.~3.5! whenaÞ0 and three
from the off-diagonal components of~3.6!, all of which must be identically zero. These restri
tions are

a~u132V2!505a~u231V1!, ~3.8!

and

~n11n2!u121~n12n2!V350, ~3.9!

and its two cyclic permutations.

IV. CONSTRUCTION OF THE METRIC: GENERAL FRAMEWORK

Once the commutation functions have been obtained as explicit functions of some time
tion t ~for example, by solving the constraint and evolution equations for some metric theory
a particular choice of the lapse functionN), it is possible to construct the spacetime met
explicitly in terms of local coordinates$t,xi% ( i 51,2,3) adapted to the SH hypersurfaces. This
accomplished without solving any additional differential equations, using the particular stru
that is associated with the SH symmetry.

Here the orthonormal spatial frame$ea% will be expressed first in terms of an invariant spat
frame$êi% with canonical structure constant values for its structure functions and then in ter
local coordinates. The full orthonormal frame is related to the computational frame$t ,êi% by

e05N~ t !21~t2N̂i~ t,x!êi !, ea5ê~ t !a
i êi , ~4.1!

whereN is the lapse function andN¢ 5N̂i êi is the shift vector field. The corresponding dual 1-form
are given by
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v05N~ t !dt, va5êa
i@v̂i1N̂~ t,x! idt#, ~4.2!

whereD̂5(êa
i) is the inverse matrix of (êa

j ) ~i.e., êa
i êa

j5d j
i).

This leads to the following spacetime metric:

g52N~ t !2 dt21ĝi j ~ t !@v̂i1N̂i~ t,x!dt#@v̂ j1N̂j~ t,x!dt#, ~4.3!

where the SH components of the spatial metric tensor in the spatial frame$êi% are given by

ĝi j 5dabêa
i ê

b
j , ~4.4!

or simply (ĝi j )5D̂TD̂ in matrix notation.
The computational frame$t ,êi% is characterized by the Lie dragging condition £t

êi50
which implies the time-independent local coordinate expressionêi5êi

j (xk)j for the invariant
spatial frame, whose constant commutator functionsĈk

i j are assumed to have their canonic
values given in Table I. Explicit coordinate expressions forêi

j (xk) follow from the representation
of the left invariant vector fields in canonical coordinates of the second kind in Refs. 7 a
These spatial coordinates will be assumed throughout this article. Similarly, explicit coord
expressions for a basis of the homogeneity Killing vector fields follow from the representati
the right invariant vector fields in these coordinates.7,8

The lapse function is SH, but the associated shift vector field is not necessarily SH. I
exploiting the action of the outer automorphisms requires an inhomogeneous shift. Howev
shift Lie derivative of the spatial frameêi and its dual must be SH,

£N¢ êi52Â~ t ! j
i êj , £N¢ v̂ j5Â~ t ! j

iv̂
i , ~4.5!

in order that the Lie derivative of the induced spatial metric be SH for any component m
(ĝi j ),

£N¢ ĝi j 52ĝk( i Â
k

j ) . ~4.6!

This in turn guarantees that the extrinsic curvature~sign-reversed expansion tensor! be SH under
the same condition,

K̂ i j 5
1

2
N21@2 ġ̂i j 1£N¢ ĝi j #52êi

aej
buab . ~4.7!

Thus, for a fixed value oft, this restricts the shift to the finite-dimensional space of derivation
the Lie algebra of invariant spatial vector fields.7 This derivation Lie algebra~containing the
homogeneity Killing vector fields which correspond to the trivial zero derivation! generates an
action of the automorphism-translation group of the Bianchi homogeneity groupG on each SH
hypersurface which induces the action of the matrix automorphism group on the invariant s
vector fields under Lie dragging. Given a basis for the matrix derivation Lie algebra$kP% ~so that
P is an index taking values from 1 to the dimension of the automorphism group given in Tab!,
one can construct a corresponding basis$jP% for the Lie algebra of derivation vector fields modu
Killing vector fields by the relation

£jP
êi5@kP# j

i êj . ~4.8!

One can then express the shift and its corresponding derivation matrix as time-dependen
combinations of these respective bases with SH coefficients,

2Â~ t !5M P~ t !kP→N¢ 5M P~ t !jP . ~4.9!
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This relationship may then be used to determine the shift vector field from the matrixÂ. The basis
vector fieldsjP can be taken from a subset of invariant spatial frame vector fieldsêi which
generate the inner automorphisms, plus some independent outer automorphism generator
dinate expressions for the additional independent outer automorphism vector field generat
each symmetry type, most of which may be found in Appendix 3 of Ref. 9, will be given be
while expressions for the invariant spatial vector fields themselves have already been dis
All of these follow from known results for 3-dimensional Lie groups.

In the diagonal-alignment gauge the action of the matrix automorphism group on the s
metric induced by the action of Lie dragging by the automorphism-translations,

ĝi j→Bm
iB

n
j ĝmn , ~4.10!

has orbits which may be parametrized by a submanifold of the space of diagonal metric m
~not unique when diagonal automorphism matrices exist!. It is exactly this fact which allows one
to assume a shift for which the spatial metric component matrix is confined to such a dia
submanifold, i.e., making the matrixD̂ diagonal. This shift generates a time-dependent ma
automorphism which transforms the orthogonal~zero shift! gauge metric matrix into the diagona
matrix (ĝi j ).

One may evaluate the relationship between the structure functions of the original orthon
frame and the computational frame by inserting the expressions~4.1! into Eqs.~3.2! and ~3.3!
leading to

ga
0b5N21@2 ė̂a

i êb
i1êa

i Â
i
j êb

i #52ub
a1ea

bgVg, ~4.11!

ga
bg5êa

i Ĉ
i
jkêb

j êg
k. ~4.12!

The first of these in matrix notation takes the form

~ga
0b!5N21@2 Ḋ̂D̂211D̂ÂD̂21#5~2ua

b1ea
bggV

g!. ~4.13!

The shift may be chosen so that the matrixD̂ is diagonal and positive-definite,

D̂5~ êa
i !5diag~eb1

,eb2
,eb3

!, ~4.14!

as will always be assumed here, with the number of independent components equal to three
the number of independent diagonal automorphisms. This matrix represents the time-dep
rescaling of the orthogonal spatial frame$êi% which normalizes it to the orthonormal spatial fram
$ea% and transforms the nonzero structure constants of the first frame into the correspo
nonzero time-dependent structure functions of the second frame by Eq.~4.12!,

n15eb12b22b3
n̂1 , n25eb22b32b1

n̂2 , n35eb32b12b2
n̂3 , ~4.15!

a5e2b3
â. ~4.16!

When D̂ is diagonal, the~index-lowered! symmetric part of Eq.~4.13! is equivalent to the
orthonormal components of the mixed form of Eq.~4.7!, evaluating the extrinsic curvature o
sign-reversed expansion tensor,

N21@2 Ḋ̂D̂211 1
2 ~D̂ÂD̂21!1 1

2 ~D̂ÂD̂21!T#5D̂~K̂ i
j !D̂

21, ~4.17!
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while the antisymmetric part of Eq.~4.13! relates the shift Lie derivative term involving the matr
Â to the local angular velocityVa of the spatial orthonormal frame@or to the off-diagonal
components of the expansion tensor, due to Jacobi identities of the form~3.8! and ~3.9!#. The
particular way in which this diagonal matrixD̂ is fixed when some freedom remains allows one
specialize the shift vector field either to a true minimal strain or minimal distortion shift. T
shifts minimize the contribution of the diagonal time derivative term,

2 Ḋ̂D̂2152~ ln D̂ ! ˙ 5diag~ ḃ1,ḃ2,ḃ3!, ~4.18!

to the formula~4.17! for the extrinsic curvature tensor in two different ways.

A true minimal strain shift is one for which the diagonal time-derivative term2 Ḋ̂D̂21 in Eq.
~4.17! is orthogonal to the remaining twoÂ terms in that expression under the trace inner prod
for second rank tensors, while the true minimal distortion shift is the one for which the trace

part of 2 Ḋ̂D̂21 is instead orthogonal to the trace-free part of the remaining twoÂ terms in that
expression.5 The assumption thatD̂ is diagonal is consistent with the generic off-diagonal part
the second term in Eq.~4.13! for all Bianchi types in the diagonal-alignment gauge, leaving o
the diagonal orthogonality conditions to be analyzed. By representing the logarithm ofD̂ as an
arbitrary linear combination of a set of diagonal matrices which are each orthogonal to the m
generators of the matrix automorphism group, one obtains a true minimal strain shift vector
By representing it instead so that the trace-free parts are orthogonal, one obtains a true m
distortion shift vector field. Since only the true minimal strain and distortion shifts are releva
the SH case, the modifier ‘‘true’’ will be implicitly understood below.

A. The construction procedure

The procedure for constructing a coordinate representation of the metric consists of th
lowing steps.

~1! Represent the diagonal matrixD̂ in terms of a minimal set of variables which parametrize
quotient space of the diagonal metric matrices under the action of the diagonal aut
phisms. When 1 or 2 independent diagonal automorphism generators exist, there is no
choice for these variables, and a parameterz describes the most useful variations, allowin
one to specialize to a minimal strain or minimal distortion shift if desired. This is done
choosing to parametrize lnD̂ or its trace-free part, respectively, so that it is always orthogo
to the diagonal matrix automorphism generators.

~2! Express the minimal diagonal variables in terms of the spatial commutation functions
Eqs.~4.15! and ~4.16!.

~3! Construct the diagonal (kD) and off-diagonal (kO) matrix automorphism generators, so th
the matrix2Â can be expressed as a linear combination of them,2Â5MDkD1MOkO .

~4! Use the diagonal components of Eq.~4.13! to express the time derivatives of the minimalD̂
variables as functions of the diagonal components ofuab and then use these results in th
solution of the same equation for the automorphism coefficients (MD,MO) to express the
latter entirely in terms of the commutation functions. Note that some of these may b
pressed in several equivalent ways due to the Jacobi identities~3.8! and ~3.9!.

~5! Give coordinate expressions for the basis$jP% of the automorphism vector fields~modulo
Killing vector fields!. $êi% provide a basis of the inner automorphism generators correspon
to the adjoint matrices$k̂i% so one only needs coordinate expressions for the remai
independent outer automorphism vector fields which may be easily found from their ma
using the condition~4.8!.

~6! Re-express the automorphism matrices as a linear combination of a linearly indepe
subset of the adjoint matricesk̂i and the remaining outer automorphisms, so that one can
re-express the shift vector fieldN¢ 5MDjD1MOjO as the same linear combination of th
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corresponding invariant vectorsêi and the remaining inhomogeneous outer automorph
generators.

The final result then gives a coordinate representation of the orthonormal frame vectors
the metric whose time dependence is completely determined by the commutation fun
through the diagonal matrixD̂5(êa

i) and the shift coefficientsMD. The spatial homogeneity
determines the remaining spatial coordinate dependence.

B. Why it works

Before carrying out these steps explicitly for the various symmetry types, it is worth exp
ing why the symmetry allows this procedure to work. As discussed in Ref. 7, the ‘‘minig
group’’ of symmetry compatible diffeomorphisms for Bianchi cosmology is the subgroup o
spacetime diffeomorphism group which maps into itself both the space of SH spatial vector
and also leaves invariant the normal vector fieldn to the SH hypersurfaces. Its corresponding L
algebra consists of vector fields of the formX5X'n1X¢ , whereX' is SH and the spatial vecto
field X¢ belongs to the ‘‘automorphism-translation’’ Lie algebra on each SH hypersurface.

Since the Bianchi symmetry groupG acts simply transitively on its orbits, each orbit
diffeomorphic to G with its action on the orbit corresponding to its action on itself by l
translation, and one may map the semidirect product group of automorphisms and~left or right!
translations Aut(G) ^ sL(G)5Aut(G) ^ sR(G) onto each orbit, the generators of which define t
‘‘automorphism-translation’’ Lie algebra. It is characterized by the condition that the Lie de
tives of the SH spatial vector fields by its elements are themselves SH. The SH spatial vecto
correspond to the left invariant vector fields onG, while the spacetime Killing vector fields
generating the action ofG correspond to the right invariant vector fields. A minigauge gro
diffeomorphism of the spacetime is then a 1-parameter~i.e., time-dependent! family of such
automorphism-translations acting on the family of SH orbits.

The subgroup of diffeomorphisms generated by the SH spatial vector fields, when act
the space of SH spatial vector fields by Lie dragging, induces the action of the linear
automorphism or adjoint group on that space, while the full symmetry compatible diffeomorp
subgroup of automorphism-translations induces the action of the whole linear automor
group. When expressed in terms of a given invariant spatial frame, these groups are represe
their corresponding matrix groups, which are entirely determined by the values of the str
constants for that frame.

Associated with every computational frame$t ,êi% is an equivalence class of comovin
coordinate systems$t,xi% which establish an identification of the spacetime manifold with
product manifoldR3G. The usual synchronous gauge frame has the time lines aligned wit
unit normal vector fieldn, and any other symmetry compatible computational frame with the s
structure constants is related to it by the action of a time-dependent automorphism matrix in
by the action of the related shift vector field in Lie dragging the original invariant spatial fra
Conversely time-dependent changes of an invariant spatial frame by a time-dependent au
phism matrix are equivalent to the choice of a new time direction for the computational fr
Thus one can reconstruct the associated shift for a new computational frame from a knowle
the time-dependent automorphism which relates the spatial frames, modulo spacetime
vector fields which commute with the spatial frame vectors and induce no change in them
the spatial metric or extrinsic curvature, but only change the direction of the time lines o
associated comoving coordinate system sincet5Nn1N¢ .

Given a choice of SH spatial frame$êi%, the action of the symmetry compatible diffeomo
phism group of automorphism-translations on this frame by Lie dragging induces the action~4.10!
of the matrix automorphism group on the space of SH inner product matrices. For the dia
alignment gauge choice of the structure constants of such a frame, the orbits of this action
parametrized by a submanifold of the diagonal inner product matrices~corresponding to orthogo
nal spatial frames!. Thus, starting from a frame with arbitrary inner products in synchron
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gauge, one can always produce from it an orthogonal frame with minimal freedom in
diagonal inner product components by using the automorphism matrix freedom to choo
appropriate new time direction via the corresponding generating shift vector field. Conve
given any orthogonal invariant spatial frame with constant structure functions, one can a
pick a vector field to complete it to a spacetime computational frame. This is equivalent to pi
the shift which generates the time-dependent automorphism matrix which transforms the sy
nous gauge inner product matrix to the one of the orthogonal computational frame. Solvin
key equation~4.13! for a symmetry compatible shift vector field under the assumption thatD̂ is a
diagonal matrix parametrizing the orbits of the matrix automorphism group determines this d
shift.

V. CONSTRUCTION OF THE METRIC: SPECIFIC BIANCHI TYPES

The metric is simultaneously constructed for each subset of Bianchi types listed in Ta
according to common adjoint and automorphism dimensions, except for Bianchi type III5VI21,
which is included with the type VI and VII discussion, and type IV which is treated separa
This is an artifact of the choices of automorphism matrix parametrizations made for the c
nience of calculation.

A. Bianchi types VIII and IX

In this case there are no diagonal or outer automorphisms,â505a, and n1n2n3Þ0
Þn̂1n̂2n̂3 , and the equations~4.15! uniquely determine theba, yielding

e22ba
5~nbng!/~ n̂bn̂g!, ~5.1!

where ~a,b,g! is a cyclic permutation of~1,2,3!. Given the canonical choice of (n̂a) for each
symmetry type, theba variables are then expressed in terms of the structure functionsna .

The relationship~4.13! may then be used to solve for the matrix automorphism generatorÂi
j .

For these symmetry types, the matrix automorphism generators are off-diagonal, and
entirely of inner automorphism generators belonging to the adjoint Lie algebra of the origina
algebra with structure constantsĈi

jk , a basis for which consists of the three off-diagonal adjo
matrices,

@k i #
j
k5@ k̂i #

j
k5Ĉj

ik5e ikl n̂
j l , ~5.2!

so that

2Âj
k5Mi@k i #

j
k5Mi@ k̂i #

j
k . ~5.3!

Since there are no diagonal automorphisms, there is no need to examine the diagona
ponents of the key equation~4.13!. Its off-diagonal components immediately determine the o
diagonal matrixÂ in terms ofVa and the off-diagonal components ofua

b , the latter of which are
related by the off-diagonal components of the Jacobi identities~3.9!. The results are

N21M35~2u121V3!/~n1eb3
!5~u121V3!/~n2eb3

!, ~5.4!

and its two cyclic permutations.
The shift vector field is then SH and given by

N¢ 5Miji5Mi êi , ~5.5!

which is both a minimal strain and a minimal distortion shift.
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B. Bianchi types VI and VII

For this category of symmetry types, both class A and B including type III5VI21, the matrix
automorphism group has one independent diagonal automorphism generator so that one r
ship may be imposed on theba, which may be parametrized as follows:

ln D̂5diag~b1,b2,b3!5b2 diag~),2),0!1b3 diag~z,z,1!

5diag~zb31)b2,zb32)b2,b3!. ~5.6!

The arbitrary parameterz, which can be chosen to have any convenient value, reflects a free
in the shift vector field. Theb variables are determined in terms of the structure functions by
two independent components of the equation~4.15!,

e22b3
5~n1n2!/~ n̂1n̂2!, e4)b2

5~n1n̂2!/~ n̂1n2!. ~5.7!

Note that in the class B casea25hn1n2 and â25hn̂1n̂2 leading to an equivalent expressio
e22b3

5(a/â)2.
A basis of the matrix automorphism Lie algebra consists of the following three off-diag

matrices whose nonzero entries are given by

@k i #
j
k5e ikl n̂

j l , ~5.8!

for each of the three cyclic permutations of (i , j ,k) and the fourth diagonal automorphism ge
erator,

k45diag~1,1,0!. ~5.9!

One can then express the matrixÂ as a linear combination of these matricesÂ5Mik i1M4k4 .
~One could have chosen instead the basis$k1 ,k2 ,k32ak4 ,k4% more closely related to the adjoin
matrices but thenk1 andk2 are linearly dependent for type III.!

The key equation~4.13! then becomes

N21@2ḃ2 diag~),2),0!2ḃ3 diag~z,z,1!1D̂ÂD̂21#5~2ua
b1ea

bgVg!, ~5.10!

where the choicez50 corresponds to a minimal strain shift and the choicez51 corresponds to a
minimal distortion shift.

The third diagonal component of this equation yields

N21ḃ35u33. ~5.11!

Using this in the sum of the first two diagonal components of the same equation leads to

N21M452 1
2 ~u111u22!1zu33. ~5.12!

The off-diagonal components of Eq.~5.10! may be used to determine the coefficients of the th
off-diagonal automorphism generators in the same way as in the previous case of types V
IX,

N21M15~2u231V1!/~n2eb1
!, N21M25~u131V2!/~n1eb2

!, ~5.13!
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N21M35~2u121V3!/~n1eb3
!5~u121V3!/~n2eb3

!.

The shift vector field itself is then determined once a vector field generator corresponding
diagonal automorphism is identified. Letj4 be the unique time-independent~inhomogeneous!
spatial vector field which satisfies

£j4
êi5@diag~1,1,0!# j

i êj . ~5.14!

It has the expressionj452x1]12x2]2 in coordinates that correspond to canonical coordinate
the second kind.9

Except for Bianchi type III (VIh with h521) the first three automorphism matrices may
expressed in terms of the adjoint matricesk̂i and the matrixk4 in the following way:

k15~11h!21@ k̂11~ â/n̂1!k̂2#, k25~11h!21@ k̂22~ â/n̂2!k̂1#, k35 k̂32âk4 , ~5.15!

allowing one to expandÂ in terms of these latter four matrices instead. The desired shift ve
field is then the same linear combination of the corresponding vector fieldsêi ,j4 ,

N¢ 5~11h!21@M12~ â/n̂2!M2#ê11~11h!21@M21~ â/n̂1!M1#ê21M3ê31~M42âM3!j4 .

~5.16!

In the type III case, there is one less independent adjoint matrix and one more independen
automorphism matrix whose corresponding vector field generator must be evaluated. Introd
combination

k55k11k25S 0 0 1

0 0 1

0 0 0
D , j552x3~]11]2!52x3~ ê11ê2!. ~5.17!

Then the shift vector field can be chosen to be instead

N¢ 5 1
2 ~M11M2!ê11 1

2 ~M12M2!j51M3ê31~M42âM3!j4 . ~5.18!

C. Bianchi type IV

Bianchi type IV is very similar to the previous case, but with slightly different algebra.
can use the same parametrization ofD̂ in terms ofb2 andb3 but their relation to the structure
functions following from Eqs.~4.15! and ~4.16! is now

e2b3
5a/â, e2)b2

5~n1â!/~ n̂1a!. ~5.19!

A basis of the matrix automorphism Lie algebra consists of the following three off-diag
matrices,

k15 k̂1 , k25 k̂2 , k35 k̂32â diag~1,1,0!, ~5.20!
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and the fourth diagonal automorphism generator,

k45diag~1,1,0!. ~5.21!

One can then express the matrixÂ as a linear combination of these matricesÂ5Mik i1M4k4 .
The key equation~5.10! and its immediate consequence~5.11! remain the same, leading to th

same expression~5.12! for M4 and to the same values ofz for the minimal strain and minima
distortion shifts. The off-diagonal components of this equation lead to the following expres
for the remaining automorphism coefficients:

N21M152@~u131V2!2~n1 /a!~2u231V1!#/~aeb1
!,

N21M25~u232V1!/~aeb2
!, N21M35~u122V3!/~n1eb3

!. ~5.22!

Let j4 be the same as in the previous case. The first three automorphism matrices m
expressed in terms of the adjoint matricesk̂i andk4 ,

k152@ k̂21~ n̂1 /â!k̂1#/â, k25~2n̂1 /â!k̂1 ,k35k32âk4 , ~5.23!

allowing one to expand2Â in terms of these latter four matrices instead. Then the desired
vector field is

N¢ 52@~ n̂1M1/â2!1~ n̂1M2/â!#ê12~M1/â!ê21M3ê31~M42âM3!j4 , ~5.24!

with the same remarks about the minimal strain and distortion conditions holding as in th
vious case.

D. Bianchi type V

The parametrization ofD̂ for types VI, VII, IV with b250 is appropriate here, with the on
independentb variable now given by

e2b3
5a/â, ~5.25!

as in the type IV case. In addition to the three adjoint matricesk i5 k̂i , one must introduce three
outer automorphism matrices:

k45diag~1,21,0!, k55S 0 1 0

0 0 0

0 0 0
D , k65S 0 0 0

1 0 0

0 0 0
D , ~5.26!

so that one has2Â5Mik̂i1M4k41M5k51M6k6 . Note thatk̂35â diag(1,1,0) is diagonal and
â51 by assumption. Since the diagonal matrixk4 is trace-free and orthogonal to lnD̂, andk̂3 is
the same diagonal automorphism matrix generator as in the previous two cases, the same
tive values ofz yield the minimal strain and minimal distortion shifts.

As before the third diagonal component of the key equation~4.13! yields the same resul
N21ḃ35u33, while its diagonal components together yield
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N21M35@2 1
2 ~u111u22!1zu33#, N21M45 1

2 ~2u111u22!. ~5.27!

The off-diagonal components then give the remaining automorphism coefficients:

N21M15~u131V2!/~aeb1
!, N21M25~u232V1!/~aeb2

!,
~5.28!

N21M55~2u121V3!eb22b1
, N21M652~u211V3!eb12b2

.

Let

j452x1]11x2]2 , j552x2]1 , j652x1]2 , ~5.29!

be the explicit expressions for the outer automorphism vector fields corresponding tok4 ,k5 ,k6 .9

Then the desired shift vector field is

N¢ 5Mi êi1M4j41M5j51M6j6 , ~5.30!

with the same minimal distortion and strain features as in the previous Class B models.

E. Bianchi type II

For this symmetry type, the matrix automorphism group has two additional diagonal auto
phism generators leading to two relationships among theba, which may be parametrized a
follows:

ln D̂5diag~b1,b2,b3!5b† diag~~4z21!/3, ~2z11!/3, ~2z11!/3!. ~5.31!

The arbitrary parameterz, which can be chosen to have any convenient value, reflects a free
in the shift vector field. The variableb† is determined in terms of one nonvanishing structu
function by the one independent component of the equation~4.15!,

e2b†
5n1 /n̂1 . ~5.32!

A basis of the matrix automorphism Lie algebra consists of the following off-diagonal m
ces:

k25 k̂2 , k35 k̂3 , k15S 0 0 0

0 0 1

0 0 0
D , k45S 0 0 0

0 0 0

0 1 0
D , ~5.33!

plus the additional two diagonal matrices,

k55diag~2,1,1!, k65diag~0,1,21!. ~5.34!

One can then express the matrixÂ as a linear combination of these matrices2Â5M1k1

1M2k̂21M3k̂31M4k41M5k51M6k6 .
The key equation~4.13! then becomes
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N21@2ḃ† diag~~4z21!/3, ~2z11!/3, ~2z11!/3!1D̂ÂD̂21#5~2ua
b1ea

bgVg!,
~5.35!

where the choicez50 corresponds to a minimal strain shift and the choicez51 corresponds to a
minimal distortion shift as in the previous cases. The first diagonal component of this equ
minus the sum of the last two diagonal components yields

N21ḃ†52u111u221u33. ~5.36!

Using this in the average of the last two diagonal components of the same equation leads

N21M552zu111~z21!~u221u33!. ~5.37!

Taking half the difference of the last two diagonal components of that equation then yield
remaining diagonal automorphism coefficient,

N21M652u221u33. ~5.38!

The off-diagonal components yield the remaining coefficients,

N21M15~2u231V1!eb32b2
, N21M252~u131V2!/~n1eb2

!,
~5.39!

N21M35~u122V3!/~n1eb3
!, N21M452~u231V1!eb22b3

.

The generating vector fieldsj1 ,j4 ,j5 ,j6 , corresponding to outer automorphism matric
expressed in canonical coordinates of the second kind are9

j152x3]21 1
2 ~x3!2]1 , j5522x1]12x2]22x3]3 ,

~5.40!

j452x2]31 1
2 ~x2!2]1 , j652x2]21x3]3 .

Finally the desired shift vector field is

N¢ 5M1j11M2ê21M3ê31M4j41M5j51M6j6 . ~5.41!

F. Bianchi type I

For this symmetry type, there exist no nontrivial inner matrix automorphisms and the m
automorphisms are just the entire general linear group, so the problem is somewhat simpl

@Ei
j #

k
l5d i

ld
k

j ~5.42!

be the component definition of the natural basis of 333 matrices. In Cartesian coordinate
adapted to the translational symmetry, a basis of the corresponding vector field Lie algebra i9

j i
j52@Ei

j #
k
lx

l]k . ~5.43!

One may setD̂ equal to the identity, so that~4.13! reduces to

N21Âi
j5d i

bda
j~2ua

b1ea
bgVg!, ~5.44!
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and the corresponding~inhomogeneous! shift vector field is

N¢ 52Âi
jj

j
i , ~5.45!

where the entries of the matrixÂ themselves play the role of the automorphism coefficie
MD,MO of the previous cases.

This is clearly both a minimal strain shift and a minimal distortion shift. However,
minimal distortion shift for all the other Bianchi types still has a time-dependent isotropic pa
D̂ present. To restore this possibility, one can relax the condition onD̂ to allow it to have a purely
isotropic time-dependent part (b15b25b3) while retaining the minimal distortion condition o
the shift, though not the minimal strain condition. Then the parametrization,

ln D̂5b0 diag~1,1,1!, ~5.46!

leads to an arbitrary contribution to the pure trace part ofÂ,

Tr Â52Q13N21ḃ0. ~5.47!

VI. CONCLUDING REMARKS

The essential ingredient of the above procedure for constructing a coordinate representa
the orthonormal frame is the hypersurface transitivity of the symmetry group. It can therefo
carried over to the temporally homogeneous case and to some extent to their corresp
hypersurface self-similar cases. While the latter are not hypersurface-homogeneous, they a
formally hypersurface-homogeneous with a particular conformal factor.

The construction procedure for SH models is valid for any choice of lapse function. How
it suggests a preferred class of lapse functions, namely those which depend only on the c
tator functions through an algebraic relationship. A lapse of this type is used to produce a d
sionless time variable in the dynamical systems formulation1 of the orthonormal frame equation

Geometrical objects on spacetime can be assigned dimensions under constant spaceti
formal transformations. In a computational frame the lapse has dimension 1 and the shift d
sion 0 provided that a dimensionless time variable is used, while the spatial metric has dim
2 and henceD̂ dimension 1, except for Bianchi type I whereD̂ is the identity and the spatia
coordinates instead have dimension 1. By re-introducing an isotropic degree of freedom inD̂ to
carry the dimension as described above for this case, the spatial coordinates become dim
less. In an orthonormal frame the commutation functions have dimension21.

In the dynamical systems analysis of the orthonormal frame equations, dimensionles
ables are obtained by dividing the commutation functions by a function of them which ha
same dimension. Usually one chooses the expansion scalarQ, which leads to the so-called expan
sion normalized variables.1 To produce a dimensionless time variable, the lapse must be a fun
constructed from the commutator functions with dimension 1. In the expansion normalize
proach, the associated lapse isN}Q21.

The minimal distortion shift choice of the present approach is naturally adapted to any
dimensionless formulation since it allows the factorization of the metric into an overall confo
factor carrying the dimension and the remaining part which is therefore automatically expres
terms of dimensionless variables. This can be seen from the fact that by choosing the m
distortion shift for all Bianchi types provides a purely isotropicb variable parametrizing part ofD̂
that carries the dimension, making the remaining variables, if any, dimensionless. Allowin
extra isotropic degree of freedom for Bianchi type I, one can re-express the metric for all Bi
types in the form in which the square of the lapse is an overall conformal factor times a
unphysical metric. In the minimal distortion gauge, if the lapse is chosen to be a function o
commutation functions with dimension 1, then the new unphysical metric is then expresse
tirely in terms of dimensionless combinations of the commutator functions.
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In the special case of a Bianchi spacetime with an additional homothetic Killing vecto
tangent to the SH hypersurfaces, all dimensionless quantities take constant values10,11 under these
conditions, and the spacetime metric in the minimal distortion gauge is explicitly stationary e
for an overall conformal factor which is exponential in the dimensionless time variable. Thu
automatically obtains the standard form for a transitively self-similar spacetime metric adap
the homothetic Killing vector field~compare Ref. 9!.

1J. Wainwright and G. F. R. Ellis,Dynamical Systems in Cosmology~Cambridge University Press, Cambridge, 1997!.
2J. W. York, Jr.,Sources of Gravitational Radiation, edited by L. Smarr~Cambridge University Press, Cambridge, 1979!.
3K. Rosquist and R. T. Jantzen, Phys. Rev. D166, 90 ~1988!.
4L. Smarr and J. W. York, Jr., Phys. Rev. D17, 2529~1978!.
5R. T. Jantzen, Ann. Inst. Henri Poincare´ 33, 121 ~1980!.
6G. F. R. Ellis and M. A. H. MacCallum, Commun. Math. Phys.12, 108 ~1969!.
7R. T. Jantzen, Commun. Math. Phys.64, 211 ~1979!.
8R. T. Jantzen,Proc. Int. Sch. Phys. ‘‘E Fermi’’ Course LXXXVI on ‘‘Gamov Cosmology,’’edited by R. Ruffini and F.
Melchiorri ~North-Holland, Amsterdam, 1987!; Cosmology of the Early Universe, edited by L. Z. Fang and R. Ruffin
~World Scientific, Singapore, 1984!.

9R. T. Jantzen and K. Rosquist, Class. Quantum Grav.3, 281 ~1986!.
10R. T. Jantzen and K. Rosquist, Class. Quantum Grav.2, L129 ~1985!.
11L. Hsu and J. Wainwright, Class. Quantum Grav.3, 1105~1986!.
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Inverse Laplace transform and perturbation theory
T. Biswas and Satish D. Joglekara)

Department of Physics, Indian Institute of Technology, Kanpur, Kanpur 208016, India
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We prove an extension of the result on the inverse Laplace transform. This exten-
sion will help toward making the applications of Borel techniques to perturbation
theory in Quantum Field Theories be placed on a more rigorous foundation.
© 1999 American Institute of Physics.@S0022-2488~98!02812-6#

I. INTRODUCTION

The known elementary particle processes are very well described by the standard m1

which is a Quantum Field Theory~QFT! in four dimensions. No QFTs that are of direct physic
interest are exactly soluble in four dimensions. Hence a recourse has to be made to the p
tion theory in the coupling constant~s! in order to evaluate testable consequences of the Q
However, as it turns out,2 even for the simplelf@4#

4 theory, the series in powers of couplingl is
only an asymptotic series.3 While a suitable truncation of an asymptotic series can offer a g
approximation to a physical quantityP(l) being calculated for a given couplingl, nonetheless, as
the asymptotic series is a strictly divergent one, it cannot be regarded as a rigorous mathe
expression forP(l) and may miss out on some features ofP(l). Moreover, an attempt at th
evaluation ofP(l) in a power series inl inherently assumes the analytic nature ofP at l50, and
this will miss out contributions toP(l) which may be singular atl50. Such contributions are
known to exist, say, in QCD.4

In view of the divergent nature of the perturbation series forP(l), attempts have been mad
to relate this perturbation series to a series with improved convergence properties, and the
this new series extract information aboutP(l) that was originally lost in its asymptotic
expansion.5 The various techniques of Borel/Laplace transforms have been utilized in
works.6–10 In this process, results have had to be used whose mathematical validity has no
known for the class of functions to which they have been applied. Our purpose in this pape
try to fill this gap by extending the existing results in this regard further to the set of functions
may be of interest in physical theories but not covered in the conditions that are necess
existing results on the Borel/Laplace transform to hold.

We now summarize the plan of the paper. In Sec. II, we summarize the various method
uses involving Borel/Laplace transforms that have been employed in QFT literature.

We summarize the known results on these in the mathematical literature.11

In Sec. III, we state the extended version of the theorem and prove it. In Sec. IV we
comments on the usefulness of the results and suggest further extensions of the proof.

II. PREVIOUS RESULTS

A. Uses of Borel sum, Borel transforms

First we shall review, in a nonrigorous fashion, the use of a Borel sum/transform in
literature. As mentioned in the Introduction, the perturbation expansion in powers of the cou
l for a physical quantityP(l) is generally an asymptotic expansion,

P~l!5 (
n50

`

anln. ~1!

a!Electronic mail: sdj@iitk.ernet.in
3690022-2488/99/40(1)/369/14/$15.00 © 1999 American Institute of Physics
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In addition, there could be nonperturbative contributions toP(l), singular atl50, say of the
form eA/l, which are missed in the usual Feynman diagrammatic perturbation expansion
series in such cases, has zero radius of convergence; yet it can give a good approximationP(l)
for small enoughl if one keeps a correct number of terms in~1! to get the best approximation
Now it may happen that the additional information aboutP(l) may be hidden in~1! itself but as
~1! is not an expansion forP(l) it cannot directly be deduced from the asymptotic series. He
one constructs a companion series to~1!; viz., the ‘‘Borel sum,’’

B1~z![ (
n50

`

an

zn

n!
. ~2!

The series in~2! may have a finite radius of convergence~depending upon the behavior ofan’s!,
even though~1! had radius of convergence zero.

@Of course, if~1! has a finite radius of convergence, then it can be shown that~2! represents
an entire function.2# Now ~2! could then be, in principle, summable in the diskuzu,R and could
possibly be analytically continued to the entire complex plane. The functionP(l) can be recov-
ered formally fromB1(z) via

lP~l!5E
0

`

e2z/lB1~z!dz. ~3!

The reconstruction ofP(l) from B1(z) is possible only ifB1(z) has no singularities on the
positive real axis. In such cases, the theory is said to be Borel summable. On the other ha
presence of a singularity ofB1(z) on the positive real axis makes~3! ill defined and any procedure
of giving meaning to the right-hand side of~3! by deformation of the contour makes the proce
ambiguous, as the latter could be chosen in multiple ways. In such cases the theory is sai
Borel nonsummable. QCD is an example of a Borel nonsummable theory; and this is due
presence of singularities ofB1(z) called Renormalons on the positive real axis. In these la
cases, the perturbation series alone is unable to unambiguously obtainP(l) via ~3! uniquely.5

Equation ~3! allows one to construct, in the case of Borel summable theories, the e
analytic functionP(l) of which ~1! was only a perturbative asymptotic expansion.

Alternate forms of Borel/Laplace transforms have also been used. Here are some imp
ones.

First we define7

B8~s![E
0

`

es/ fZ~ f !dS 1

f D , ~4!

B2~sr ![
1

2p
disc B8~s!; ~5!

disc5discontinuity across the real axis ats5sr . Then in some cases we can construct backZ( f ),

Z~ f !5E
0

`

B2~s!e2s/ f ds. ~6!

The one we shall be dealing with extensively in this work is defined as follows:
Let P(l) be the function we are interested in.

Define

F~z!5PS 1

zD , ~7!

assuming this is possible.
Now define the inverse Laplace transform,6
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B3~s!5
1

2p i Ec2 i`

c1 i`

eszF~z!dz; ~8!

c is, at present, arbitrary. Then we can reconstructF(z) by the Laplace transform

F~z!5E
0

`

e2tzB3~ t !dt. ~9!

We note that ifP(l)5(n51
` cnln, and the seriesF(z) defined by~7! is substituted in~8! one

would obtain~if summations and integrations could commute!

B3~ t !5 (
n51

`

cn11

tn

n!
, ~10!

which is very similar toB1(t) @cn being replaced bycn11 , and, in fact, by a slight modification
of the definition of the Borel sum, as in Ref. 8, it may be made to coincide withB3(t)].

We now make comments on the rigor of the above result.~1! is valid generally only as an
asymptotic series, enabling one to estimateP to a good accuracy.B1(z) of ~2! is defined only
within a finite radius of convergenceuzu,R outside; it has to be analytically continued, and th
analytic continuation is used in~3! for uzu.R. For smalll, and Borel summable theories, one c
argue5 that~3! yields the correct asymptotic series~1!, as the regionuzu,l,R is what contributes
to the right-hand side of~3! where the uniformly convergent expansion~2! for B1(z) holds and
term by term integration becomes possible. We thenassumethat P(l) of ~3! is indeed the
physical quantity we are looking for in anyl.

The expression forF(z) of ~7! is only valid as an asymptotic expansion and not as a unifor
convergent series. Hence on the right-hand side of~8! the interchange of summation and integr
tion that would lead to~10! is not really justified.

In this work, we shall deal mainly with the reconstruction viaB3(t) of ~8!. Our aim is not so
much to apply it yet to the asymptotic series such as~7! but to extend and rigorously establish th
sufficient conditions under which such a reconstruction is valid for a functionF(z). We will
discuss a few applications of our extension in Sec. IV. However, we will not make the ulti
contact of establishing a rigorous procedure for reconstruction starting from asymptotic
P(l). We aim only at the extension of the known results in this connection, which we
recapitulate.

B. Known results on inverse Laplace transform

The Complex Laplace Inverse Theorem.11

Theorem: Let F(z) be analytic in the whole of the Complex plane, except that it has a fi
number of poles. Suppose thatF(z) is analytic on half-plane$zuRez.s% and that uF(z)u
<M /uzub for all uzu>R for constantsM, b.0. Then fort>0, let

F̃~ t !5( $residue of eztF~z! at each of its pole%. ~11!

Then

LzF̃~ t !5F~z!, ; Re z.s. ~12!

A corollary to this theorem is

F̃~ t !5
1

2p i Ec2 i`

c1`

eztF~z!dz, ; Re z.s. ~13!

We have tried to extend this theorem to cover a larger class of functions. Following i
modified version.
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III. EXTENSION OF THE RESULT ON LAPLACE TRANSFORM

In this section, we shall present the extension of the result on the Laplace transform.
A. The theorem

Let F(z) be analytic on the half-plane$zuRez.s%. Let c[max(s,0). We then define, fort
>0,

F̃~ t !5
1

2p i Ec2 i`

c1`

eztF~z!dz ~14!

~whenever integral exists!. Then

LzF̃~ t ![E
0

`

F̃~ t !e2zt dt5F~z!, ~15!

for all Rez.c, if F(z) satisfies the following~weaker! conditions. These require thatF(z) can be
written as a finite sum of functions:

F~z!5(
i 51

N

Fi~z!, ~16!

with eachFi(z) satisfying the following conditions.
~a! With someRi , uFi(z)u can be bounded, foruzu.Ri , as

uFi~z!u<
Mie

2b Re z

uzub i
, ~17!

with Mi ,bi ,b i.0.
~b! Fi(z) has only a finite number of singularitieswi j ( j 51,2 . . .mi).
~c! Fi(z) has only a finite numberB of separated branch cuts, which can be chosen to b

horizontal type, extending parallel to the negative real axis.
The proof, being lengthy, is being broken up. We first prove several lemmas. In the proo

shall constantly refer to various contours that we shall first define.
The contoursK j ( j 51...,B) are around the branch pointK j . Of theseki represents the branc

point with maximum real part.C21,C22,...,C2(B11) represents a broken up vertical contou
which we shall denote collectively byC2 . ThenC represents the closed contour consisting of
segmentsC0 ,C1 ,C2 ,C3 andK j ( j 51,...,B). x1 ,y1 ,y2 ,x18 are all positive. By assumptionx1 , y1 ,
andy2 have been chosen to be large enough andK j narrow enough so thatC always encloses al
isolated singularities ofFk(z) for a given k, except those lying on the branch cut itself. T
contour C28 is always to the right ofC0 ~i.e., x18.c). C0 ,C18 ,C28 ,C38 together constitute the
contourC8. We assume thatK j ’s have been chosen symmetrically around the branch cut
distancee j such that there are no singularities in the strip of width 2e j , except those lying on the
branch cut itself.

B. The lemmas

In all the three lemmas below we shall always restrict ourselves to a functiong(z) satisfying
the condition that there existR.0 such thatug(z)u can be bounded as

ug~z!u<
Me2b Re z

uzub
uzu.R ~18!

with some positive realM, b, b. We shall call this condition A.
Lemma 1:Let g(z) satisfy condition A. We define

I ~C̃!5E
C̃
g~z!ezt dz. ~19!
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Then ~i! for t,b,

lim
C̃→`

I ~C̃!50, C̃5C18 ,C28 ,C38 ; ~20!

~ii ! for t.b,

lim
C̃→`

I ~C̃!50, C̃5C1 ,C2 ,C3 ; ~21!

and ~iii ! for t5b if b.1,

lim
C̃→`

I ~C̃!50, C̃5C1 ,C2 ,C3 ,C18 ,C28 ,C38 . ~22!

In ~ii ! above, the limitC̃→` implies, whenever applicable, thaty1 and/ory2→` after x18 or x1

→`.
Proof: As the contourC̃ is tending to infinity, we can assume, without loss of generality, t

all points onC̃ are at a distance>R from the origin. Then,y1 ,y2 ,x182c,x11c>R. ~i! We note
that

I ~C18!5E
c

x18g~z!ext1 iyt dx, ~23!

so that in view of the fact thaty1.R and the condition A,

uI ~C18!u<E
c

x18 Me2bxext

~x21y1
2!b/2 dx<

M

y1
b E

c

x18e~ t2b!x dx ~24!

5
M

y1
b

1

t2b
@e2~b2t !x182e2~b2t !c#, tÞb

→0, as y1→`, ~25!

for any x1 and for t,b and I (C18)→0 for x18→`, y1→` in any order.
~iia! The argument also goes through withC18→C38 . It also works withC18→C1 or C3 ~with

x18→2x1), providedt.b.
~ib!

I ~C28!5 i E
2y2

y1
g~z!ex18t1 iyt dy, ~26!

so that withx18.R and the condition A ong(z),

uI ~C28!u<E
2y2

y1 Me2bx18ex18t

~x18
21y1

2!b/2 dy ~27!

<Me2~b2t !x18E
2y2

y1 dy

~R21y2!b/2→0, as x18→`, ~28!

for t,b, assumingy1 ,y2 to be finite.
~iib! The argument above also goes through withC28→C2 andx18→2x1 if t.b.
~iii ! For t5b andb5114a.1, we have from~24!,
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uI ~C18!u<E
c

x18 M

~x21y1
2!1/212a dx

<ME
c

x18 dx

~x21y1
2!1/21a~y1

2!a

<
M

y1
2a E

c

x18 dx

x112a

5
M

y1
2a

~x18!22a2~c!22a

~22a!
→0, as y1→`,

for any fixedx18 ~and also asx18→`, y1→` in any order!. The same argument goes through
C18→C38 . It also goes through forC18→C1 , with minor modifications.

Further, fort5b andb5114a.1, we have, from~27!,

uI ~C28!u<E
2y2

y1 M

~x18
21y2!1/212a dy

<E
2y2

y1 M

~x1
281y2!1/2x18

2a dy

5
M

x18
2a F̃~y1 ,y2!→0, as x18→`,

for any finitey1 ,y2 @sinceF̃(y1 ,y2) is then finite#.
The same argument goes through withC28→C2 andx18→2x1 .
Lemma 2:Let g(z) satisfy condition A and be continuous onC0 . Then for Rez.c.

lim
r→`

e2rzE
C

dz8g~z8!erz8

z82z
[ lim

r→`

I ~r !50,

whereC is chosen as in Fig. 1 withx1 ,y1 ,y2.R.
Proof: On C1 ,C3 ,C21,C22,...,C2(B11) ; uz8u.R. So that condition A yields that on these,

ug~z8!u<
Me2b Re z8

uz8ub
<

Mebx1

Rb [g1 . ~29!

Also, g(z) is continuous on the finite segmentC0 and hence bounded. Hence

ug~z!u<g2 , on C0 . ~30!

Further,g(z) is analytic onK j8s, j 51,2,...,B, which are finite in length. Hence it is bounded o
the set of disjoint contoursK11K21¯1KB . Let

ug~z!u<g3 , for zeK j , ; j . ~31!

Let g0[max(g1,g2,g3). Then

ug~z!u<g0 , on C. ~32!

Also,

uerz8u5erx8<erc on C, ~33!

1

uz2z8u
5

1

@~x82x!21~y2y8!2#1/2<
1

ux2x8u
<

1

~x2c!
on C. ~34!

Further, the length of the contourC @emax[max(e1,...,eB)#,
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L<2~y1y1!12~c1x1!1B@2~x11ki !14emax#[L0 . ~35!

Thus,

Ue2rzE
C

dz8g~z8!erz8

uz82zu U<L0g0

1

~x2c!
erce2rx→0, as r→`, for Rez5x.c. ~36!

Lemma 3:Let g(z) satisfy the condition A. Then, for Rez.c, we have

I 5 lim
K j→`

E
K j

g~z8!dz8E
b

`

e~z2z8! dt5E
b

`

dt e2ztE
K j→`

ez8tg~z8!dz8 ~37!

@whereK j is the contour around the branch cut consisting of~i! a straight line parallel to thex axis:
y5y1[Im kj1e ; 2x1<x<x0[Rekj1e ; ~ii ! a straight line oriented antiparallel to they axis:
x5x0 , Im kj2e [y2<y<y1 ; ~iii ! A straight line antiparallel to thex axis: y5y2 , x0.x.
2x1 .]

Proof: Introducing the notation

G~x8,y8,t ![e~z82z!tg~z8![GR~x8,y8,t !1 iGI~x8,y8,t !, ~38!

we could expressI as

I 5I 12I 22I 2 , ~39!

FIG. 1. The contours used in the proof of the theorem.
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with

I 6[E
2`

x0
dx8E

b

`

dt GR~x8,y6 ,t !1 i E
2`

x0
dx8E

b

`

dt GI~x8,y6 ,t !, ~40!

I 2[ i E
y2

y1

dy8E
b

`

dt GR~x0 ,y8,t !2E
y2

y1

dy8E
b

`

dt GI~x0 ,y8,t !. ~41!

Equation~37! is established if the order of integration in each of the six real integrals occurrin
~40!–~41! can be interchanged. According to the Tonelli–Hobson Theorem,12 this is possible in
each case if the real integral under consideration or one obtained by interchange of the o
integrations is shown to exist. Thus,~37! would be established if, in particular, the six re
integrals present in~40! and ~41! are ~themselves! shown to exist. However, these six integra
exist iff I 1 ,I 2 ,I 2 themselves exist. We thus need to show that

I 65E
2`

x0
dx8E

b

`

dt e~z82z!tg~z8!uy85y6
~42!

and

I 25E
y2

y1

dy8E
b

`

dt e~z82z!tg~z8!ux85x0
~43!

exist. Performing thet integrals in both cases~and noting that Rez.c.Rez8), we find @ g̃(z8)
[2g(z8)e(z82z)b#,

I 65E
2`

x0
dx8

g̃~z8!

z82zU
y85y6

, ~44!

I 25E
y2

y1

dy8
g̃~z8!

z82zU
x85x0

. ~45!

Now, as for I 2 , g(z8)/(z82z) is analytic on the finite intervaly2<y8<y1 , x85x0 and thus
bounded. The range ofy8 is also bounded. Hence

uI 2u5~y12y2!$@ g̃~z8!/z82z#x85x0
%max,`. ~46!

As for I 6 ,

I 65E
2R

x0
dx8

g~z8!

z82zU
y85y6

1E
2`

2R

dx8
g~z8!

z82z
. ~47!

The first integral on the right-hand of~46! is finite and will approach a finite limit asR→` if the
second residual integral (I 1) goes to zero asR→`. Now

uI 1u<E
2`

2R

dx8
ug~z8!u
uz82zu

. ~48!

We now note that on the contourI 1 , uz8u.R so that condition A then implies

ug̃~z8!u5ueb~z82z!uug~z8!u<eb~x82x!
Me2bx8

uz8ub
5e2bx

M

ux8ub
. ~49!

Further, noting thatx.0 while x8,2R,
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1

uz82zu
,

1

ux82xu
,

1

ux8u
, ~50!

so that

I 1<E
2`

2R

dx8
Me2bx

ux8u11b 5F E
R

` dw

w11bGMe2bx5
Me2bx

bRb →0, as R→`, ~51!

Hence, etc.

C. Proof of the theorem

As F(z) is expressible as the finite sum~16!: if we could prove the result for oneFi(z), the
result forF(z) follows.

The proof proceeds as follows: We first evaluateF̃ i(t) of ~14! in three steps.
~1! We show thatF̃ i(t) vanishes fort,bi .
~2! We then castF̃ i(t) for t.bi in a form amenable to the evaluation ofLzF̃ i(t) via ~15!.
~3! LzF̃ i(t) is then evaluated as a limit of the integral

lim
r→`

E
0

r

F̃ i~ t !e2zt dt. ~52!

This we then show indeed isFi(z), ; Rez.c.
In the following proof, we drop the suffixi on bi , b i , andMi for convenience.
~1! Let C8[C01C181C282C38 . Consider

F̃~ t,C8![ R
C8

F~z!ezt dz5E
C0

F~z!ezt dz1(
i 51

3 E
Ci8

F~z!ezt dz. ~53!

By Lemma 1, fort,b,

lim
Ci8→`

E
Ci8

F~z!ezt dt[0. ~54!

Also, on account of analyticity ofF(z)ezt on and withinC8, F̃(t,C8)505 limC8→` F̃(t,C8).
Hence, taking the limitC8→` in ~53! and noting~54!, we obtain, fort,b,

F̃~ t !5
1

2p i Ec2 i`

c1 i`

eztF~z!dz50. ~55!

~2! Now consider, fort.b,

F̃~ t,C![ R
C
eztF~z!dz, ~56!

where the closed contourC has been defined in Sec. III A. SinceC, in particular, continues to
contain the same singularities ofF~z! asC→`2* , we have

F̃~ t,C!5 lim
C→`

F̃~ t,C!52p i F̃ ~ t !1(
j 51

3

lim
C j→`

E eztF~z!dz1 lim
K j→`

(
j 51

B E
K j

eztF~z!dz. ~57!

~The singularities lying on the branch cut~if at all! are always outside the contourC.!
Lemma 1 ensures that the second term on the right-hand side vanishes. This implies
                                                                                                                



378 J. Math. Phys., Vol. 40, No. 1, January 1999 T. Biswas and S. D. Joglekar

                    
F̃~ t !5
1

2p i F F̃~ t,C!2 lim
K j→`

(
j 51

B E
K j

eztF~z!dzG . ~58!

~3! Now we reexpress

LzF̃~ t ![E
0

`

e2ztF̃~ t !dt[ lim
r→`

E
0

r

e2ztF̃~ t !dt5 lim
r→`

E
b

r

e2ztF̃~ t !dt[ lim
r→`

F~z,r !, ~59!

in view of ~55!. Now ~56! above leads to

F~z,r !5E
b

r

e2ztF̃~ t !dt

5
1

2p i Eb

r

e2zt dtF F̃~ t,C!2 lim
K j→`

(
j 51

B E
K j

ez8tF~z8!dz8G
[

1

2p i
@J2K#. ~60!

Now consider the first term on the right-hand side:

J[E
b

r

e2zt dtF̃~ t,C!5E
b

r

e2zt dt R
C
ez8tF~z8!dz8. ~61!

Now the integrals over finite ranges commute. Hence

J5 R
C
dz8 F~z8!E

b

r

dt e~z82z!t5 R
C
dz8 F~z8!

1

z82z
@er ~z82z!2eb~z82z!#

5e2zr R
C

F~z8!erz8 dz8

z82z
2 R

C

F~z8!eb~z82z! dz8

z82z

[J12J2 . ~62!

Now consider

J2[ R
C

F~z8!eb~z82z! dz8

z82z
[ R

C
H~z8!etz8dz8u t5b . ~63!

Now, onC1 , C2 , andC3 , in view of the fact thatuz8u.R, we have

uH~z8!u5UF~z8!

z82zU< Me2b Re z8

uz8ubuz82zu
<

Me2b Re z8

uz8ub11U12
z

z8
U . ~64!

For a givenz, we now chooseC such that onC1 , C2 , andC3 u12z/z8u.1/2, which is possible
without loss of generality, as we are ultimately going to letC→`. Then

uH~z8!u<2
Me2b Re z8

uz8ub8
, ~65!

whereb8511b.1. Thus on account of Lemma 1 part~iii !,

lim
C→`

R
C11C21C3

H~z8!etz8 dz8u t5b50. ~66!
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Thus, in view of the fact thatC always encloses the same singularities ofF(z8),

J25 R
C

F~z8!eb~z82z! dz8

z82z

5 lim
C→`

R
C

F~z8!eb~z82z! dz8

z82z

5 lim
C0→`

E
C0

F~z8!eb~z82z! dz8

z82z
1(

j 51

B

lim
K j→`

E
K j

F~z8!eb~z82z! dz8

z82z
. ~67!

Applying Lemma 1 part~iii ! once again, we can replaceC0→C8 in the first term. Thus

J25 lim
C8→`

E
C8

F~z8!eb~z82z! dz8

z82z
1(

j 51

B

lim
K j→`

E
K j

F~z8!eb~z82z! dz8

z82z
. ~68!

The integrand in the first term on the right-hand side is analytic everywhere on and withi~the
clockwise contour! C8, except for the simple pole atz85z. Hence

J2522p iF ~z!1(
j 51

B

lim
K j→`

E
C

F~z8!eb~z82z! dz8

z82z
. ~69!

Thus, using~60!, ~62!, and~69!, we obtain

F~z,r !5
1

2p i
@J12J22K#5

1

2p i F J112p iF ~z!2(
j 51

B

lim
K j→`

E
K j

F~z8!eb~z82z!dz8

z82z
2KG .

~70!

We now take the limit asr→` in ~70! and note that Lemma 2 ensures that limr→` J150 @refer
to ~62! for a definition#. On the other hand Lemma 3 ensures that

lim
r→`

K5(
j 51

B E
b

`

e2zt dtE
K j→`

F~z8!ez8t dz85(
j 51

B E
K j→`

dz8 F~z8!E
b

`

e~z82z!t dt

5(
j 51

B E
K j→`

dz8 F~z8!
~21!eb~z82z!

z82z
, ~71!

in view of Rez.c>Rez8 always. Thus, the last two terms on the right-hand side of~70! vanish as
r→`. Thus, asr→`, ~70! leads to

LzF̃~ t !5 lim
r→`

F~z,r !5F~z!, ; Re z.c. ~72!

~72! is proved for a componentFi of F as in~16!. The result~15! then follows from the additive
nature of both sides of~15!. Hence, etc.

IV. DISCUSSION AND AN APPLICATION

A. Scope of results

Having proved the extension of the Laplace Inverse Theorem, the next natural step
investigate its utility. For this purpose let us consider a general physical quantityP(l). It seems
reasonable to assume that there exists a continuation ofP(l) to an entire complex plane ofl,
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which is analytic everywhere except possibly at some singularities and branch cuts. Thu
class of functions~which we will refer to asF! contains the most general physically accepta
functions.

We define

F~z![PS 1

zD . ~73!

We then observe the following.
~1! If there is a singularity atz5a in P, then it is manifested as a singularity inF at z

51/a.
~2! If there is a branch cut inP, we get corresponding branch cuts inF. For example,~a! if

P;1/(z2a)1/2 nearz5a, F;z1/2/a1/2(1/a2z)1/2, i.e., branch cuts atz50 andz51/a; and~b! if
P; ln(a1z), F; ln a2ln z1ln(z11/a), i.e., branch cuts atz521/a andz50.

~3! The behavior ofP at z50 is related to the behavior ofF asz→`.
We are now ready to describe the subclass ofF for which the previously existing theorem an

our extended version guarantees the existence of the Laplace Inverse. We will refer to themF1

andF2 , respectively~see Table I!.
Thus we find that our extended version has definitely enlarged the subclass inF whose

Laplace inverse exists. However, for an application to the Field Theory it is desirable to en
the class further, and we discuss this in some detail in Sec. IV C and also suggest how it
achieved.

B. An application

Let us now look at a physical example where the relevent function belongs toF22F1 .
Consider a one-dimensional~1-D! spin chain defined by the action

S5(
i 51

N

~12f̂ i •f̂ i 11!, ~74!

wheref̂ i are unit 3-D vectors. Choosing a free boundary condition, one finds the partition
tion given by

ZN~ f !5E )
i

df̂ i e2S@f#/ f5S f

2D N

~12e22/f !N. ~75!

TABLE I. Description of functions to which the previously existing theorem and our extended version apply.

F1 F2

1. Only a finite number of poles Only a finite number of isolated singularities
in F are allowed, which implies are allowed, which implies that a finite
only a finite number of poles in number of isolated singularities inP are
P are permissible. permissible~these need not be only poles!.

2. uFu,1/uzub, ;uzu.R uFu,e2b Rez/uzub, ;uzu.R
⇒F→0 asz→` ⇒F→e2b Rez/uzub, asz→`
⇒P→0 asl→0, i.e.,P(0)50 ~i.e., it is not necessary that
and hence functions singular at F→0 asz→` in all directions
the origin are not covered. ⇒P;lbe2b/l, l→0, i.e., some types of

essential singularities atl50 are
allowed.~In fact, in Field Theory this is
the most common type of singularity
encountered atl50.)

3. No branch cuts are allowed. A finite number of branch cuts are allowed.
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For illustration purposes we takeN51. Then

Z~ f !5
f

2
~12e22/f !5P1~ f !1P2~ f !, ~76!

where P1( f )5( f /2)e20/f5 f /2 and P2( f )5( f /2)e22/f . Then F1(z)51/2z and F2(z)
5(1/2z)e22z. Now, though the previous theorem does not guarantee the existence of the L
Inverse, the extended version does; and indeed as we will see soon, the inverse exists,

F̃1~ t !5
1

2p i Ec2 i`

c1 i` etz

2z
dz, c.0. ~77!

We can close the contour from the right fort,0, since the integral over the right half circl
vanishes, and hence the integral is zero~no pole is contained!. However, fort.0, we have to close
the contour from the left and then since the residue atz50 is 2 1

2, we getF̃1(t)5 1
2. Hence, finally

we have

F̃1~ t !5 1
2u~ t !. ~78!

Similarly, one can computeF̃2(t), which comes out to be

F̃2~ t !52 1
2u~ t22!, ~79!

F̃~ t !5 1
2@u~ t !2u~ t22!#5 1

2u~ t !u~22t !5B3~ t !. ~80!

One can verify that by taking the Laplace Transform ofB3 we get backF and henceP,

E
0

`

e2zt
1

2
u~ t !u~22t !dt5

1

2 E
0

2

e2zt dt5
1

2z
~12e22z!, ~81!

and we get backZ( f )5( f /2)(12e22/f).
In Field Theory we also find instances whereP(l) have branch cuts. In Ref. 8, for exampl

it is mentioned that in expression~1!, if ak115(1/zi)
kkgak(g.0), then B1 has a singularity

proportional to (z2zi)
2g21; so if g is a positive integer we have a pole; and for nonintegerg a

branch point in thez plane atz5zi . It is easy to check that such a Borel transform indica
branch cuts in the original functionP(l).

C. Possible generalization

Let us first try to find the types of functions that belong toF2F2 .
First, most functions that behave badly atl50, say having poles at 0, does not belong toF2 .

Here, however, we present an argument that suggests that such functions can be han
switching to generalized functions and slightly modifying the definition of the Laplace trans
that does not affect our earlier discussion. We define the Laplace transform ofF̃(t) ~which can
now be a generalized function! as

Lz@ F̃~ t !#[ lim
e→0

E
2e

`

F̃~ t !e2zt dt. ~82!

Say nowP(l)5a/ln, n>0, is an integer. ThenF(z)5azn, and we have

F̃~ t !5
1

2p i Ec2 i`

c1 i`

F~z!etz dz5
1

2p E
2`

`

~c1 iy !necteiyt dy. ~83!
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Now we also have 2pd(t)5*2`
` eiyt dy or

2p@d~ t !ect#n5E
2`

`

~c1 iy !necteiyt dy ~84!

~the suffixn denotes differentiation with respect tot!. Thus

F̃~ t !5a@d~ t !ect#n5adn~ t !. ~85!

Now

Lz@ F̃~ t !#5 lim
e→0

E
2e

`

F̃~ t !e2zt dt5 lim
e→0

aE
2e

`

dn~ t !e2zt dt5a~2z!n~21!n5azn. ~86!

Thus, we see that it works and, in fact, it will now work for any polynomial inl also.

1See, for example, T-P. Cheng and L. F. Li,Gauge Theory of Elementary Particle Physics~Clarendon, Oxford, 1984!.
2See, e.g., R. Rajaraman,Solitons and Instantons~North-Holland, New York, 1982!.
3For a discussion of asymptotic series, see, e.g., E. T. Whittaker and C. N. Watson,A Course of Modern Analysis, 4th ed.
~University Press, Cambridge, 1952!.

4See, e.g., C. G. Callan, Jr., R. Dashen, and D. Gross, Phys. Lett. B63, 334 ~1976!.
5See, for example, the discussion in S. Weinberg,The Quantum Theory of Fields~Cambridge University Press, Cam
bridge, 1996!, Vol. 2, and references therein.

6A. H. Mueller, Nucl. Phys. B250, 327 ~1985!.
7A. Duncan and S. Pernice, Phys. Rev. D51, 1956~1995!.
8C. N. Lovett-Turner and C. J. Maxwell, Nucl. Phys. B432, 147 ~1994!.
9J. Fischer, Int. J. Mod. Phys. A12, 3625~1997!.

10A. H. Mueller, Phys. Lett. B308, 355 ~1993!.
11See any standard Complex analysis textbook for, e.g., E. Marsden,Basic Complex Analysis~Freeman & Co., San

Francisco, 1973!.
12The Tonelli–Hobson Theorem applies for two-dimensional Lebesgue measurable functions and it is well know

piecewise continuous functions~since f is analytic and hence continuous the functions we are dealing with trivi
satisfy this condition! are measurable. For a reference see T. Apostol,Mathematical Analysis~Addison-Wesley, New
York, 1974!.
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The level surfaces of solutions to the eikonal equation define null or characteristic
surfaces. In this paper we study, in Minkowski space, properties of these surfaces.
In particular, we are interested both in the singularities of these ‘‘surfaces’’~which
can, in general, self-intersect and be only piecewise smooth! and in the decompo-
sition of the null surfaces into a one-parameter family of two-dimensional wave-
fronts which can also have self-intersections and singularities. We first review a
beautiful method for constructing the general solution to the flat-space eikonal
equation; it allows for solutions either from arbitrary Cauchy data or for time-
independent~stationary! solutions of the formS5t2S0(x,y,z). We then apply this
method to obtain global, asymptotically spherical, null surfaces that are associated
with shearing~‘‘bad’’ ! two-dimensional cuts of null infinity; the surfaces are de-
fined from the normal rays to the cut. This is followed by a study of the caustics
and singularities of these surfaces and those of their associated wavefronts. We
then treat the same set of issues from an alternative point of view, namely from
Arnold’s theory of generating families. This treatment allows one to deal~para-
metrically! with the regions of self-intersection and nonsmoothness of the null
surfaces, regions which are difficult to treat otherwise. Finally, we generalize the
analysis of the singularities to the case of families of characteristic surfaces.
© 1999 American Institute of Physics.@S0022-2488~99!00801-4#

I. INTRODUCTION

The study of the propagation of electromagnetic wavefronts, in the high-frequency or
metric optics limit, is almost ubiquitous in physics; it is a basic staple of elementary ph
courses, it arises in the practical area of optical equipment, in applied subjects, too numer
mention in detail, involving materials with variable refractive index and in atmospheric
astrophysical studies. They have been a prime illustration of V. I. Arnold’s theory of Lagran
and Legendre maps.1–4 In a different guise, similar problems arise in catastrophe theory
addition to the various applications to more standard physics problems, they also play a
fundamental role in general relativity, e.g., the continuous propagation of the two-dimens
wavefronts, i.e., the one-parameter family of evolving wavefronts, form null~or characteristic!
three-surfaces that are determined by the dynamics of the curved space–time in which the
fronts propagate.5,6 In this context it forms the basis for the theory of gravitational lensing.7 The
converse statement is also true, namely that sets of null surfaces define, up to a conforma
the space–time geometry itself.8,9 In arbitrary space–times, the high-frequency limit is complet
governed by the eikonal equation,
3830022-2488/99/40(1)/383/25/$15.00 © 1999 American Institute of Physics
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gab]aSbS50, ~1!

wherexa5(xi ,t) are local space–time coordinates,gab(xc) is a given space–time metric, andS
5S(xa). The level surfaces ofS, i.e.,S(xa)5const, define the characteristic or null three-surfa
~or what Arnold calls the ‘‘big wave fronts’’2! and theS(xi ,t)5const for constt define the
two-dimensional ‘‘small’’ wavefront in the three-dimensional space oft5const. The vectorpa

5gab]bS is tangent to the null geodesics that rule the characteristic surface. Though w
basically interested in Eq.~1! for arbitrary space–times, here we will confine ourselves to a st
of its solutions only in flat~Minkowski! space.~A future paper, in preparation, will generalize th
present material to curved space–times.! Equation~1! then becomes

hab]aS]bS5~] tS!22~]xS!22~]yS!22~]zS!250. ~2!

The level surfaces of the solutions to Eq.~1! or ~2!, the null surfaces, can be viewed as bei
generated by the evolution of two-dimensional wavefronts. Specifically, a wavefront evolv
following light rays that are normal to it, generating the null three-surface. A smooth wavefro
three-space, in general, progresses into a singular one, either to the past or the future, i.e., a
null surface in space–time has singularities. The singular wavefronts are two-surfaces th
continuous with existing first derivatives, but where~piecewise! the second derivatives are sing
lar, being either undefined or infinite. The structure of the singularities are generically cusp
and swallowtails. There are unstable exceptions.

A textbook example2,3 of flat space singular wavefronts~and associated big wavefront! are
from imploding triaxial ellipsoids, where an initially ellipsoidal wavefront is evolved inward
self-intersects for some finite period of time, and eventually expands out to infinity, beco
spherical in the limit.

The singularities of wavefronts are also interpreted as the location of focusing regions,
the intensity of light becomes very high. At the focusing regions, neighboring null geodesics
and the cross-sectional area of the bundle of light rays collapses to zero, which leads
increase in intensity. Spherical wavefronts focus at a single point~which are unstable under sma
perturbations of the front! whereas generic wavefronts trace spatial curves of focusing points~cusp
ridges and swallowtails!.

In Sec. II we will review a beautiful method for giving the general solution to the flat-sp
eikonal; it allows for solutions either from arbitrary Cauchy data or for stationary solutions
arise from the ansatz,S5t2S0(x,y,z).

In Sec. III, we will apply the method of Sec. II to obtain global asymptotically spherical
surfaces that are associated with shearing~‘‘bad’’ ! cuts of null infinity.10,11 They will be defined
from the normal rays to a ‘‘bad’’ cut. This construction can be thought of as beginning w
deformed, initial, two-sphere in a finite region of space–time. Then, construct the future ou
directed null normals to the two surface which generates a null surface and finally ‘‘slide
initial two-surface along the null geodesics that generate the null surface, to future null in
This limit is the ‘‘bad’’ cut of null infinity.

In Sec. IV, we will study the caustics and singularities of these characteristic surface
their associated wavefronts.

In Sec. V, we treat the same problems of the singularities of these surfaces but now fr
alternate point of view, namely from Arnold’s theory of generating families.4 This treatment
allows one to handle~parametrically! the regions of self-intersection and nonsmoothness of
null surfaces.

In Sec. VI, we discuss a generalization of the ideas presented to this point. Thoug
generalization is primarily intended for use in nonflat Lorentzian space–times, neverthele
believe that it is quite useful to see it in the simpler case of flat space–time; it allows fo
clarification of certain points that would be difficult in more general situations. Specifically
will consider solutions of the eikonal equation that depend on two parameters—that are dif
from the two-parameter family of plane waves. We will see the slightly surprising result tha
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singularity structure of the individual characteristic surfaces can be studied via the para
behavior of nearby solutions. More precisely, if the two-parameter set of solutions is give
Z(xa,m,m̄), the singularities of the level surfaces ofZ for fixed values of (m,m̄) can be studied
and expressed in terms of (m,m̄) derivatives ofZ. These results become important in asympto
cally flat space–times where theZ(xa,m,m̄) can be chosen to represent the family of past n
cones from all the points of future null infinity.

II. SOLUTIONS OF THE EIKONAL EQUATION

We review a powerful method for solving the flat-space eikonal equation with arbitrary g
Cauchy data. We begin with a solutionS* of the eikonal equation that depends on three arbitr
parameters, i.e.,

S* 5S* ~xi ,t,a i !5xia i2tAS~a i !
2 ~3!

called a complete integral. A ‘‘general integral’’~which involves an arbitrary function! can be
constructed from the complete integral in the following manner: we first add to it an arbi
function of the threea i , i.e., we consider

S** 5S* ~xi ,t,a i !2F~a i !, ~4!

with the weak condition that~aside from lower-dimensional regions!

U ]2S**

]a i]a j
UÞ0. ~5!

We next demand that]S** /]a i5]S* /]a i2]F/]a i50, which implies that there are three fun
tions of the forma i5Ai(x

i ,t). ~In general these solutions are not unique and they mus
expressed on different sheets. See Sec. IV for a complete discussion of this issue.! Finally, via
a i5Ai(x

i ,t), thea i are eliminated in theS** , yielding ~perhaps multivalued!

S~xi ,t !5S* „xi ,t,Ai~xi ,t !…2F~Ai~xi ,t !!. ~6!

The level surfaces of thisS might self-intersect and be only piecewise differentiable.
It is not difficult to show that theSso constructed satisfies the eikonal equation.12 This follows

immediately from the fact that

]aS5]aS* 1~]Ai
S* 2]Ai

F !]aAi5]aS* .

This solution now depends on an arbitrary function of three variables, namely theF. The task
is now to determine theF(a i) in terms of~appropriate! Cauchy data,SC(xi). This is accomplished
as follows; definea i5]SC/]xi and algebraically invert it in the form of the three equationsxi

5Xi(a i). At t5t0 we have that

S~xi ,t0!5S* „xi ,t0 ,Ai~xi ,t0!…2F„Ai~xi ,t0!…. ~7!

Replacing all theAi by a i and all thexi by Xi(a i), we have that

F~a i !5S* ~Xi ,t0 ,a i !2SC~Xi !, ~8!

i.e., the freeF(a i) is now expressed in terms of the free Cauchy data,SC(xi).
This allows us to find~in principle, modulo algebraic inversions or parametrizations! solutions

of the flat-space eikonal equation with arbitrary Cauchy data.
There exists a special class of solutions that are not studied or found easily via the C

problem, namely the ‘‘stationary’’ solutions which have the form
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S5t2S0~xi !.

To generate solutions of this form we modify the complete integral, Eq.~3!, making it a function
of only two free parameters by imposing the condition thatS(a i)

25const @for convenience
chosen asS(a i)

251/&#.
We then write the modified complete integral as

S* 5xal a~z,z̄ !, ~9!

where

l a~z,z̄ !5
1

&~11zz̄ !
@~11zz̄ !,2~z1 z̄ !,2 i ~ z̄2z!,~12zz̄ !#. ~10!

The complex numberz, which plays the role of two of the independent parameters among
threea i , can be thought of as the complex stereographic coordinate on the sphere; thel a(z,z̄) is
a Minkowski null vectorhabl al b50 that spans the entire lightcone asz ranges over the sphere
Equation~9! represents a spheres worth of different families of plane waves parametrized b
directionz.

If we now take

S** 5xal a~z,z̄ !1a~z,z̄ ! ~11!

and constructZS** 5ZpS** 50, i.e.,

v[xama~z,z̄ !1Za~z,z̄ !50, ~12!

v̄[xam̄a~z,z̄ !1Za~z,z̄ !50, ~13!

where

ma~z,z̄ !5Zl a~z,z̄ ![~11zz̄ !
] l a~z,z̄ !

]z
, ~14!

m̄a~z,z̄ !5Zpl a ,~z,z̄ ![~11zz̄ !
] l a~z,z̄ !

]z̄
. ~15!

For generica(z,z̄), Eq. ~12! can be solved for

z5Y~x,y,z!, ~16!

where again these solutions need not be unique and must be expressed on different she~See
Sec. IV for a full treatment of this problem.! Note that Eq.~12! does not depend on the timet and
henceY is a function only of the spatial coordinates. When theY(x,y,z) is substituted into Eq.
~11!, i.e.,

S~ t,x,y,z!5
t

&
2S0~x,y,z!5

t

&
1xi l i~Y,Ȳ !1a~Y,Ȳ !, ~17!

we have a solution of the eikonal equation depending on an arbitrary function of two varia
a(Y,Ȳ). The level surfaces ofS could in general self-intersect and be only piecewise differ
tiable.
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The procedure of beginning with a complete solution and obtaining the general solutio
the two~or three! variable arbitrary functionis geometrically equivalent to the construction of a
envelope from the family of plane waves as the two~or three! constants in the complete solution
are varied.13

Since in this work we will only be interested in individual null surfaces and their proper
we can and will confine ourselves to the level surfaces of the solutions of the form given i
~17!.

III. NULL SURFACES GENERATED BY NORMALS TO TWO-SURFACES

We want to give a slightly different geometric interpretation to the method of the prev
section for generating the stationary solutions of the eikonal equation. Given any~spatial! two-
surface~for example, consider any two-dimensional slice of the past light cone of an arb
space–time point!, the normal rays to the surface~either the outgoing or incoming ones! generate
a null surface. In this section we will consider a particular case of this construction where thipast
light coneis taken to be the future null infinity,I1, of Penrose.10

The future null boundary,I1 ~the endpoints of future directed null geodesics!, of any asymp-
totically simple space–time is a null surface with topologyR3S2. A choice of Bondi coordinates
(u,z,z̄) can be assigned toI1, wherez5cot(u/2)eif for the S2 sector. The intersection of th
future lightconeCx of a point xa with I1 is a two-surface, locally imbedded inR3S2; it can
generically be described locally byu5Z(xa,z,z̄). The two-surface is referred to as a light co
cut,14 whereas the functionZ(xa,z,z̄) is referred to as a light cone cut function, and is a two-po
real function on the space–time and the boundary,I1.

Remark 1: Though for this work it is irrelevant, we mention that the light cone cut func

Z(xa,z,z̄) is one of two fundamental variables in a reformulation of general relativity via n
surfaces.8,9 It encodes all the conformal information of the space–time.

In the remainder of this work we will confine ourselves to flat space–time where~modulo
Poincare transformations! a natural choice of Bondi coordinates (un ,z,z̄) exists; theun5const is
constructed from the intersection of the future light cone,C(t,o,o,o) , of the spatial origin, at time
t5un , with I1; the (z,z̄) are just the null directions, at the origin, carried along by the n
generators of the lightcone. Using Cartesian coordinatesxa for the space–time and these natu
Bondi coordinates,15 the light cone cuts can be described as

un5xal a~z,z̄ !, ~18!

wherel a represents the covariant version of a null vectorl a with Cartesian components given a

l a~z,z̄ !5
1

&~11zz̄ !
„~11zz̄ !,~z1 z̄ !,i ~ z̄2z!,~zz̄21!…

5
1

&
~1,sinu cosf,sin u sin f,cosu!. ~19!

Adding the radial coordinater, this natural choice of Bondi coordinates is identical to t
standard null polar coordinates (un ,r ,z,z̄) given by

xa5uta1rl a~z,z̄ !, ta5&~1,0,0,0!. ~20!

Note that Eqs.~18! and ~19! are identical with Eqs.~9! and ~10! though their meanings ar
different; Eq.~18! has the dual meaning of being, for fixed value of thexa, the light cone cut of
I1 and also, for fixed values of (un ,z,z̄), it describes the plane wave~null surface! intersecting
the time axis att5un in the direction of (z,z̄).
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By Eq. ~18!, the light cone cuts of any pointsxa5(t,0,0,0) along the time axis take, as w
mentioned earlier, a constant value onI1, namely, they are the constant-un slices. The natural
Bondi cuts are light cone cuts as well. By following inwardly the null geodesics that leave
natural Bondi cuts orthogonally, we find no focusing other than at the apex~on the time axis! of
the light cone.

By a slight modification of the above we can find other null surfaces leavingI1 that have
much more complicated focusing properties than that of a light cone. If we consider the
parameter family of cuts ofI1 given, say by,

un52a~z,z̄ !1u, ~21!

wherea(z,z̄) is a given but arbitrary regular function onS2, andu is a parameter onR, we can
ask for the null surfaces generated by the null normals to the family of cuts.

• Note that Eq.~21! can be rewritten asu5un1a(z,z̄) and reinterpreted as a@Bondi–
Metzner–Sachs~BMS!# supertranslation11 between the coordinatesun andu on I1.

We now construct the null surface formed by the normal rays to the cuts, Eq.~21!, determined
by u5const; replacing theun in Eq. ~21! by the null planes Eq.~18!, @un5xal a(z,z̄)#, we have

u5xal a~z,z̄ !1a~z,z̄ !, ~22!

which is identical to Eq.~11!. The envelope formed from all the null planes that are normal to
family of cuts are found by setting to zero thez and z̄ derivatives of Eq.~22! and eliminating the
(z,z̄) from ~22!, a procedureidentical to that followed in the previous section to obtain Eq.~17!,
i.e., we now have the one-parameter family of null surfaces

S** [u5
t

&
1xi l i~Y,Ȳ !1a~Y,Ȳ ! ~23!

with z5Y(x,y,z), a solution of Eqs.~12! and~13!. The procedure of setting to zero thev andv̄
in

v[xama~z,z̄ !1Zpa~z,z̄ !50, ~24!

v̄[xam̄a~z,z̄ !1Zpa~z,z̄ !50 ~25!

selects the null ray at each point ofI1 that is orthogonal to the cut given by Eq.~21!.
• Note thata can be chosen to contain only spherical harmonics of orderl>2 since anyl

50,1 components ofa could be absorbed byxal a with no modification other than displacing th
origin of the coordinatesxa, sincel a is precisely the collection of spherical harmonics of orde
and 1.

We can give a parametric description of the family of null surfaces, Eq.~23!, by the following
procedure: we consider the four functions

z5Y~x,y,z!⇔xama~z,z̄ !1Zpa~z,z̄ !50, ~26!

z̄5Ȳ~x,y,z!⇔xam̄a~z,z̄ !1Zpa~z,z̄ !50, ~27!

u5u~ t,x,y,z!5$xal a~z,z̄ !1a~z,z̄ !%uY,Ȳ , ~28!

r 5r ~x,y,z!5$xa~na2 l a!~z,z̄ !1ZZpa~z,z̄ !%uY,Ȳ , ~29!
                                                                                                                



rm

meter

ametric

e

three-

e
n

the
act
tandard

s
s.

389J. Math. Phys., Vol. 40, No. 1, January 1999 Frittelli, Newman, and Silva-Ortigoza

                    
and consider them as a coordinate transformation between the$u,z,z̄,r % and the$xa%. We have
usedma[Zl a, m̄a[Zpl a, andna[ZZpl a1 l a. From the fact that (l a,ma,m̄a,na) form a null tetrad
for every fixed value of (z,z̄), this coordinate transformation can be readily inverted into the fo

xa5~u2a!~na1 l a!1~r 2ZZpa!l a1~Za!m̄a1~Zpa!ma. ~30!

This relationship can alternatively be looked on as the parametric version of the one-para
family of null surfaces, Eq.~23! @where, for fixedu, the (r ,z,z̄) parametrize the surface#, or as the
coordinate transformation between the$xa% and the null-geodesic coordinates, (u,z,z̄,r ); u labels
the null surfaces, the pair (z,z̄) labels null geodesics~via their intersection withI1!, andr is an
affine parameter along the null geodesics. That this is true can be easily seen from the par
form, Eq. ~30!, by simply constructing

dxa

dr
5 l a~z,z̄ ! ~31!

and observing thatl a is a null tangent vector with affine normalization.
The transformation between thexa and the (u,r ,z,z̄) breaks down when the Jacobian of th

transformation, Eq.~30!, vanishes, i.e., when

D[
]~ t,x,y,z!

]~u,r ,z,z̄ !
5r 22Z2aZp2a50. ~32!

Geometrically, this is where the null surface develops singularities. In the projection to the
space~x,y,z! it is a two-surface; the ‘‘caustic surface.’’ To see this explicitly, we return to Eq.~30!

where we have~for fixed u! that (x,y,z)5xi5Xi(r ,z,z̄), i.e., are known functions of (r ,z,z̄). If
the r in Xi is replaced by ther from Eq. ~32! we have the parametric form of the caustic,

xi5Xi~r ~z,z̄ !,z,z̄ !5X̂i~z,z̄ !. ~33!

We will return to this in the next section.
It is interesting to note that the coordinates (u,z,z̄,r ) represent a type of null coordinat

system that we could callasymptotic null-polar coordinateswhich are the flat space case of a
interior Bondi coordinate system,16,11 i.e., the extension into the interior of the space–time of
Bondi coordinates (u,z,z̄) on I1. They differ from the standard null polar coordinates by the f
that the null geodesics that rule these surfaces possess nonvanishing shear while for the s
ones the shear vanishes.

The complex shear is defined ass5MaMb¹aLb , whereLb is tangent to the null geodesic
andMa is complex null, orthogonal toLb , and such thatMaM̄a521. In our case, because of Eq
~30! and ~31! and the fact that (l a,ma,m̄a,na) forms a null tetrad, we have thatLb5 l b and Ma

5ma. Furthermore, the gradient ofl b is ¹al b5maz ,b1m̄az̄ ,b and thuss52ma
bz̄ ,b . To obtain the

derivative ofz̄ alongmb we take the gradients of Eqs.~24! and ~25! which yields

mb~z,z̄ !1$xa~na2 l a!1ZZpa%z̄ ,b1Z2az ,b50, ~34!

m̄b~z,z̄ !1$xa~na2 l a!1ZZpa%z ,b1Zp2az̄ ,b50. ~35!

Using Eq.~29! and contracting Eqs.~34! and ~35! by mb, we obtain

rmbz̄ ,b1Zp2ambz ,b50, ~36!
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211rmbz ,b1Zp2ambz̄ ,b50. ~37!

By eliminating thembz ,b from these equations, we find

~r 22Z2aZp2a!mbz̄ ,b1Z2a50 ~38!

or

s5
s0

r 22s0s̄0 , ~39!

wheres05Z2a. This is also a confirmation of the Sachs theorem on the transformation o
asymptotic shear,s0, under a BMS transformation. Equation~39! represents a special~nontwist-
ing! case of a more general result valid for generic null congruences in flat space.17

We point out that the flat-space line element, using Eq.~30!, can easily be expressed in term
of these shearing Bondi coordinates as18

ds25habdxadxb52duS du1dr2ZpZ2a
dz

P
2ZZp2a

dz̄

P
D 2

2r

P2 ~Z2adz21Zp2adz̄2!

22~r 21Z2aZp2a!
dzdz̄

P2 , ~40!

whereP511zz̄. The determinant ofgab is given byugu5(1/P4)$r 22Z2aZp2a%25D2/P4 whose
vanishing agrees with the vanishing of the Jacobian, Eq.~32!.

Note that the asymptoticr 5const⇒` sections, atu5const, become metric spheres.
• It is perhaps interesting to speculate on the use of Eq.~40! as the Minkowski space lowest

order term, in perturbation calculations, for solutions of the Einstein equations.
We complete this section by showing how a null surface can be constructed explicitly

the normals to an arbitrary spacelike two surface,S, in a manner virtually identical to thos
constructed from a cut or slice of null infinity.

We begin from Eq.~22!

u505xal a~z,z̄ !1a~z,z̄ !

with Eqs.~24! and ~25!. The issue is, given the surfaceS, how is one to choosea(z,z̄)?
First S is defined parametrically,xa5x0

a(z,z̄), where the parameters are chosen as follo
consider a timelike world line at the spacial origin and the family of light cones centered o
line. The null geodesics ruling these cones are labeled by their directions (z,z̄) on the sphere and
coincide with labeling of the generators of null infinity. The points onS are now ~locally!
parametrized by the labels of the null geodesics passing thru those points. With this param
tion the functiona(z,z̄) is defined by

a~z,z̄ !52x0
a~z,z̄ !l a~z,z̄ !

so that Eq.~23! becomes

u505„xa2x0
a~z,z̄ !…l a~z,z̄ !

and Eqs.~24! and ~25! become

„xa2x0
a~z,z̄ !…ma~z,z̄ !2 l a~z,z̄ !Zx0

a50 and c.c. ~41!
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We see that the null surface so defined goes thruS, i.e., thruxa5x0
a(z,z̄). To see that it is

also normal toS, we notice that atS the first two terms of Eq.~41! cancel out and we are left a
S with

l a~z,z̄ !Zx0
a50.

Thus as was claimed, the tangent vectors toS, namely Zx0
a(z,z̄), are normal to the null

tangent vectors to the null surface,l a .
We see that the earlier construction of null surfaces from cuts of null infinity actually incl

those constructed from finite surfaces.

IV. WAVEFRONT EVOLUTION AND SINGULARITIES

In the previous section, we mentioned that the null coordinate system broke down an
associated shearing null surfaces developed caustics at the points wherer 25Z2aZp2a.

Here we focus our attention on the two-dimensional wavefronts associated with thes
surfaces. We show that the wavefronts develop singularities, and we locate the singularities
standard method of singularity theory, and via our light cone cut approach. The evolution of
singularities as the wave fronts evolve become the caustics.

A wavefront is, by definition, the intersection of our null surface,u5u0 , with a constant-time
t0 surface. This represents an instant in the progression of a wave. In our case, this require
the time coordinatex05t0 in Eq. ~30! and solving for

r 5&t022u012a1ZZpa. ~42!

The remaining coordinates~x,y,z!, using Eq.~42! to eliminater, trace a two-surface~a ‘‘small’’
wavefront! in the Euclidean three-space, parametrized by (z,z̄) @or ~u,f! under the transformation
z5eif cotu/2#:

x5
1

&
F ~&t022u012a!

~z1 z̄ !

~11zz̄ !
1Zpa

~12 z̄2!

~11zz̄ !
1Za

~12z2!

~11zz̄ !
G , ~43!

y5
i

&
F ~&t022u012a!

~ z̄2z!

~11zz̄ !
2Zpa

~11 z̄2!

~11zz̄ !
1Za

~11z2!

~11zz̄ !
G , ~44!

z5
1

&
F ~&t022u012a!

~zz̄21!

~11zz̄ !
1Zpa

2z̄

~11zz̄ !
1Za

2z

~11zz̄ !
G . ~45!

The map (z,z̄)→(x,y,z) is singular at points where the Jacobian matrix

S Zx Zpx

Zy Zpy

Zz Zpz
D ~46!

drops rank, from 2 to 1 or 0. The drop in rank takes place if the three two-determinants v
simultaneously:

ZxZpy2ZyZpx50, ~47!

ZyZpz2ZzZpy50, ~48!
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ZzZpx2ZxZpz50. ~49!

Since

Zxauu,t5Z2am̄a1rma, ~50!

Zpxauu,t5Zp2ama1rm̄a, ~51!

the explicit expressions of the two-determinants are as follows:

ZxZpy2ZyZpx5~r 22Z2aZp2a!~mxm̄y2m̄xmy!, ~52!

ZyZpz2ZzZpy5~r 22Z2aZp2a!~mym̄z2m̄ymz!, ~53!

ZzZpx2ZxZpz5~r 22Z2aZp2a!~mzm̄x2m̄zmx!. ~54!

Thus, all three determinants vanish at points where

D[r 22Z2aZp2a50, ~55!

which, with r from Eq. ~42!, determines a curve, the wavefront singularities. Note that the
lution of the wavefront singularities~obtained by varyingt0! yields the caustic surface.

Sincea is a regular function on the sphere, so isZ2aZp2a; therefore, Eq.~55! @with r given by
Eq. ~42!# admits solutionsz only within a finite interval of timet. Thus the wavefronts are singula
only during a closed interval of time. On the other hand, at very long times the wavefronts be
spherical, which follows from the line element Eq.~40!.

The wavefront singularities~curves! are places where neighboring null geodesics meet.
have a null surfacexa(r ,z,z̄) foliated by null geodesics. At every fixed value ofr, there are two
connecting vectorsZxauu,r andZpxauu,r . The null geodesics in this congruence meet wherever
area orthogonal to the congruence, spanned by the connecting vectors, vanishes. The co
vectors are, explicitly,

Zxauu,r52ZpZ2a l a1Z2am̄a1rma, ~56!

Zpxauu,r52ZZp2a l a1rm̄a1Zp2ama. ~57!

The area spanned by the connecting vectors~calculated from their skew product! is simply D

[r 22Z2aZp2a. The vanishing of this area takes place at exactly the points given by Eq.~55!.
We close this section with two examples.
Example 1:a5Y2053 cos2 u21. Due to axial symmetry, the wavefronts and their singula

ties for this choice ofa can be completely worked out analytically, which gives insights into m
general cases. The wavefronts at a given timet are given by

x5
1

&
sin u cosf~&t22u2226 cos2 u!, ~58!

y5
1

&
sin u sin f~&t22u2226 cos2 u!, ~59!

z5
1

&
cosu~&t22u11026 cos2 u!. ~60!
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These are axially symmetric. For a closed interval of time, all the wavefronts are singula
early and late times, however, the wavefronts are smooth.

The singular points are located by eliminatingr from Eqs.~55! and~42!, yielding in this case,
the two solutions or ‘‘sheets’’

~&t22u110218 cos2 u!~&t22u2226 cos2 u!50. ~61!

There is a solutionu only at times&(u25)<t<&(41u). This is the interval where every
wavefront is singular. A smooth wavefront and its corresponding profile at a late time are s
in Fig. 1. A wavefront at a time when both the cusp ridge singularities and thez-axis singularities
are occurring, and its corresponding profile, are shown in Fig. 2. In Fig. 3, we have a
wavefront and profile with only the cusp ridge singularity. In Fig. 4, we display the evolutio
the singularities forming the caustic two-surface.

The high symmetry of this case is responsible for the lack of resemblance of the sin
points on thez axis with standard cusps. At these points, null geodesics labeled by differen
neighboring, values off meet. This is clear from the fact that]x/]f5]x/]f5]z/]f50 at these
points, therefore the vector that connects geodesics with different values off vanishes.

In order to make a comparison, Fig. 5 shows a wavefront in the evolution of an implo
ellipsoid of revolution which is very similar to that of example 1. In this case, an ellipsoi
revolution sends an incoming wavefront, which develops singularities during a certain inter
time. The standard cuspoidal ridges are clearly visible as rings at both ends of the figure. Ho
the crossover points in between are also singular, of the same type of singularity as th
developed in our example. Assuming a speed of light of 1, the formulas for the implo
wavefront in this case are

x5a sin u cosfS 12
t

Aa2 sin2 u1~a2/c!2 cos2 u
D , ~62!

y5a sin u sin fS 12
t

Aa2 sin2 u1~a2/c!2 cos2 u
D , ~63!

FIG. 1. The wavefront and profile~t510, u50! of the shearing Bondi congruence witha5Y20(u,f).
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z5c cosuS 12
t

A~c2/a!2 sin2 u1c2 cos2 u
D . ~64!

Example 2:a5Real (Y21)5(z1 z̄)(zz̄21)/(11zz̄)2. In this case, there is no advantage
writing the wavefronts explicitly. However, they can be plotted with ease, displaying the ty
singularities of three-dimensional wavefronts, namely swallowtails and cusp ridges. Cusp
are clearly visible in Fig. 6, which represents a wavefront atu50 and t51.5. Swallowtails are
exemplified in Fig. 7, which represents another wavefront in the sameu50 family, but at a later
time of t52.35. Locally all swallowtails have the form of Fig. 8.

Both Figs. 6 and 7 compare remarkably well with a typical wavefront in the evolution
triaxial ellipsoid, in which case an ellipsoid (x/a)21(y/b)21(z/c)251 emits a wavefront of light

FIG. 2. The wavefront and profile~t52.73, u50! of the shearing Bondi congruence witha5Y20(u,f). Notice the
focusing at the crossover point.

FIG. 3. The wavefront and profile~t50, u50! of the shearing Bondi congruence witha5Y20(u,f). The only singulari-
ties are the standard cups, showing as rings.
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inwardly, which develops singularities for a period of time. A typical singular imploding wa
front is shown in Fig. 9. The formulas for the imploding triaxial-ellipsoidal wavefront are
following:

x5a sin u cosfS 12
t

a2A~sin u cosf/a2!21~sin u sin f/b2!21~cosu/c2!2D ,

FIG. 4. The caustic surface (u50) of the shearing Bondi congruence witha5Y20(u,f). The caustic is the time evolution
of the cusp ridges, projected in three-space. There is another sheet of the caustic surface, representing the time
of the crossover singularities, which is a line along thez axis, not visible in this picture.

FIG. 5. A wavefront, and its profile, in the evolution of an imploding ellipsoid of revolution. The semiaxes of the i
ellipsoid (x/a)21(y/b)21(z/c)251 have been chosen asa5b51 andc51.2, and the instant of time ist50.9 assuming
a speed of light of 1. Notice the cuspoidal ridges and the focusing at the crossover points.
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y5b sin u sin fS 12
t

b2A~sin u cosf/a2!21~sin u sin f/b2!21~cosu/c2!2D , ~65!

z5c cosuS 12
t

c2A~sin u cosf/a2!21~sin u sin f/b2!21~cosu/c2!2D .

V. GENERATING FAMILIES

In this section we will study the subject of the caustics of the null surfaces and the wave
singularities via an alternative method, namely from the use of generating families for the
struction of Lagrangian and Legendre submanifolds~developed by V. I. Arnold and his
colleagues1–4! associated with cotangent and contact bundles over space–time. The value
treatment is that it allows one to deal~via a parametric representation! with the regions of self-
intersection and nondifferentiability of the null surfaces.

We first give a brief review of a special case of this theory that is adapted to the proble
null surfaces in four-dimensional space–time. Consider a four-dimensional Lorentzian ma
~with local coordinates,$t,xi%! foliated by the constantt surfaces. Now consider thexi as the
coordinates of a configuration spaceM and pi as the conjugate momentum so that we have
six-dimensional cotangent bundleT* M , with local coordinates (xi ,pi). We now describe the
construction of a three-dimensional submanifold ofT* M ~a Lagrangian submanifold—a maxima
submanifold such that the symplectic form, restricted to it, vanishes! that plays a fundamental rol
in the discussion of the singularities of wavefronts and their associated caustics. We begin
general description without any particular choice of dynamics, later restricting ourselves t
geodesic motion.

Choose a scalar function~determined later from the dynamics!, referred to as a generatin
family, of the six variables

f 5F~ t,xi ,z,z̄ !; ~66!

thexi are spatial points, the (z,z̄) are parametric labels~for convenience we are using a comple
representation! for points on a given spatial two-surface,s, i.e., we have a two-point function
while t is the time for the~dynamic! particle to go from a point ons to the pointxi . For a constant
value of f, we consider Eq.~66! as definingt implicitly as a function of (xi ,z,z̄), i.e.,

FIG. 6. A wavefront~t51.5,u50! of the shearing Bondi congruence witha5R„Y21(u,f)…. Notice the cuspoidal ridges
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t5T~ f ;xi ,z,z̄ !

or simply

t5T~xi ,z,z̄ !. ~67!

Note thatT might be a multivalued function of its arguments, in which case it must be consid
separately on the different sheets.

We now ask for the relationship between the (xi ,z,z̄) whenT is an extremal under variation
of the (z,z̄); i.e., we require that

]T/]z5]T/]z̄50, ~68!

which in turn forces

]F/]z5]F/]z̄50. ~69!

Finally, a rank condition is imposed on the choice ofF; the following 235 matrix must have rank
2:

FIG. 7. A wavefront~t52.35,u50! of the shearing Bondi congruence witha5R„Y21(u,f)…. Notice the swallowtails and
the cuspoidal ridges.

FIG. 8. The general form of a swallowtail singularity.
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F ]2F

]z2

]2F

]z]z̄

]2F

]z]xi

]2F

]z]z̄

]2F

]z̄2

]2F

]z̄]xi

G . ~70!

The meaning of this condition is that the two equations@~69! or ~68!# can be solved~locally! in at
least one of a variety of possible ways for two of the five variables (xi ,z,z̄); often it is necessary
to solve them in different ways in different regions. We then have three different possible c

~1! z5Y(xi), z̄5Ȳ(xi); the simplest of the three cases. It allowsF to be treated as a function o
just xi . In the other casesF must be treated parametrically.

~2! z5C(xA,z̄), xJ5XJ(xA,z̄), wherexA are any two of the threexi andxJ is the third one, or
the conjugate version,z̄5C̄(xA,z), xJ5XJ(xA,z).

~3! xA5XA(xJ,z,z̄), where againxA are any two of the threexi andxJ is the third one.

Case 1 can occur when the determinant

D̂5U ]2F

]z2

]2F

]z]z̄

]2F

]z]z̄

]2F

]z̄2

UÞ0; ~71!

FIG. 9. An imploding triaxial-ellipsoidal wavefront, corresponding tot50.8 and semiaxesa51, b51.5, andc52 and
assuming a speed of light of 1. Notice the cuspoidal ridges. Earlier instants, such ast50.65, display swallowtails as well
not visible here.
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D̂50 when there is a critical point of the Lagrangian map defined shortly.
The Lagrangian submanifold obtained fromF is defined in the following way:
First we havepi5]F/]xi . @Note that this involves only the explicitxi dependence inF since

any implicit dependence, via the (z,z̄), does not enter into the definition ofpi because of Eq.
~69!.# Now depending on which case, 1, 2, or 3, is relevant, we eliminate two of the five vari
(xi ,z,z̄), in thepi5(]F/]xi)(xi ,z,z̄). This leaves the result that the six coordinates ofT* M can
be expressed in terms of three parameters, thus defining a three-dimensional submanifold
of the cases;

~i! In case 1,pi5Pi(x
i), xi5xi ; the three parameters$xi%5xa.

~ii ! In case 2,pi5Pi(x
A,z̄), xA5xA, xJ5XJ(xA,z̄); the three parameters$xA,z̄%5xa.

~iii ! In case 3,pi5Pi(x
J,z,z̄), xA5XA(xJ,z,z̄), xJ5xJ; the three parameters$xJ,z,z̄%5xa.

To simplify the discussion, we have referred to the three parameters, in each of the
simply asxa. In each case we thus have

xi5Xi~xa!, pi5Pi~xa!. ~72!

Of immediate relevance to us is the projection~Lagrange map! of the Lagrange submanifold
into the configuration space which becomes in each of the cases,xi5Xi(xa) or

~i! in case 1,xi5xi , trivial diffeomorphism,
~ii ! in case 2,xA5xA, xJ5XJ(xA,z̄),
~iii ! in case 3,xA5XA(xJ,z,z̄), xJ5xJ.

The caustics of this problem are the regions in the configuration space where the mapp
2, or 3 have rank 2 or 1; i.e, where the Jacobian of the mapping vanishes. They occur wh
determinantD̂50. The inverse image to the caustics in the parameter space are referred to
critical points of the Lagrange map. It is clear that in case 1, the Jacobian is one and rank red
can only occur in cases 2 and 3.

This treatment of caustics can be extended into the full four-space by eliminating, i
expression fort5T( f ;xi ,z,z̄), or in the implicit version,f 5F(t,xi ,z,z̄), two of the five variables
(xi ,z,z̄) via the cases 1, 2, 3. This results int now are a function of the three parameters,xa.
Though we will not need the full theory here, this construction leads to a seven-dimen
manifold, (t,xi ,pi) $an example of a contact manifold%, and a three-dimensional submanifold
the contact manifold~a Legendre submanifold! defined by

t5T~xa!, xi5Xi~xa!, pi5Pi~xa!, ~73!

as well as the Legendre mapping from the Legendre submanifold, to space–time, (t,xi),

$t,xi ,pi%~xa!⇒t5T~xa!, xi5Xi~xa!, ~74!

a three-surface in space–time—the ‘‘big wavefronts’’ in Arnold’s language—in our case a
surface. The singularities of the map~74!, where the rank drops below 3, are the null surfa
singularities. These singularities, at fixedt, are the~‘‘small’’ ! wavefront singularities of the pre
vious section.

We now return to the question of the determination of the functionf 5F(t,xi ,z,z̄) of Eq. ~66!
for use in the study of null surfaces. Our choice will be, from Eq.~11!,

F~ t,xi ,z,z̄ !5S** ~ t,xi ,z,z̄ ![xal a~z,z̄ !1a~z,z̄ !. ~75!

There are three independent reasons for this choice;
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~1! It was the method of generating an arbitrary null surface from the complete solu
xal a(z,z̄); see Sec. II.

~2! It was the method for the construction of a null surface such that the generators were or
nal to a given two-surface; see Sec. III.

~3! It arises from a variant of Fermat’s principle of stationary time: Consider a timelike world
L ~in a Lorentzian space–time!, of the form, in local coordinates,~xi5const,t varies! and a
two-dimensional spacelike surface,s(z,z̄). Assume, locally, that from every point ofs(z,z̄)
there is a null geodesic that reachesL at a timet5T(xi ,z,z̄). Thent is extremized by those
curves that are normal tos(z,z̄). This result~which will be described in detail elsewhere!
follows from Schro¨dinger’s derivation19 of the gravitational frequency shift.

Note that the rank condition on the matrix, Eq.~70!, is satisfied by direct calculation.
From the discussion of generating families, we see that the treatment of the null surfac

we proposed, in Secs. II and III, namely to solve for thez5Y(x,y,z), was really only valid for
case 1, but we actually used a version of case 3 where the additional parameterr was introduced
in order not to single out any particular Cartesian coordinate. Case 1 broke down precisely
caustic given by

r 25Z2aZp2a, ~76!

which is where cases 2 and 3 must be applied.
What follows is a straightforward application of case 3 of these ideas—on one patch

completeness we repeat some of the earlier steps.
Starting with

u5S** ~xa,z,z̄ !5xal a~z,z̄ !1a~z,z̄ !, ~77!

then

ZS** 5
1

&~11zz̄ !
@ z̄2W2W̄22zz̄ #1Za,

~78!

ZpS** 5
1

&~11zz̄ !
@z2W̄2W22zz#1Zpa,

with W5(x1 iy). From ZS** 50 andZpS** 50, we obtain@from case 3, wherexA are ~x,y! or
(W,W̄)# that

W5
&~Zpa1z2Za!22zz

12zz̄
,

~79!

W̄5
&~Za1 z̄2Zpa!22zz̄

12zz̄
.

From Eq.~77! we have that

px5
]S**

]x
52

z1 z̄

&~11zz̄ !
,
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py5
]S**

]y
5

i ~z2 z̄ !

&~11zz̄ !
, ~80!

pz5
]S**

]z
5

~12zz̄ !

&~11zz̄ !
.

Taking p5&(px1 ipy), we obtain

p52
2z

11zz̄
. ~81!

The Lagrange submanifold, parametrized by (z,z,z̄), is given by

z5z, ~82!

W5
&~Zpa1z2Za!22zz

12zz̄
, ~83!

W̄5
&~Za1 z̄2Zpa!22zz̄

12zz̄
, ~84!

p52
2z

11zz̄
, ~85!

p̄52
2z̄

11zz̄
, ~86!

pz5
~12zz̄ !

&~11zz̄ !
. ~87!

The projection to the configuration space is given by

z5z,

W5
&~Zpa1z2Za!22zz

12zz̄
, ~88!

W̄5
&~Za1 z̄2Zpa!22zz̄

12zz̄
.

The critical points of the Lagrange map are obtained from the condition that the Jacob

J5
]~z,W,W̄!

]~z,z,z̄ !
. ~89!
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vanishes. The vanishing ofJ is equivalent toD5r 22Z2aZp2a50.
To construct the Legendrian submanifold@in the seven-dimensional contact space, (t,xi ,pi)#

we take the generating familyu5S** (xa,z,z̄) whereu is constant and solve fort expressing the
contact coordinatet in terms of the three parameters (z,z,z̄) by

t5
zW̄1 z̄W2z~12zz̄ !

~11zz̄ !
1&@u2a~z,z̄ !# ~90!

with

W5
&~Zpa1z2Za!22zz

12zz̄
,

~91!

W̄5
&~Za1 z̄2Zpa!22zz̄

12zz̄
.

The full Legendre submanifold is then given by Eqs.~82!–~87! and ~90!.
Note that this entire construction, using Case 3, was valid where 12zz̄Þ0 ~or equivalently

wherepzÞ0!. To include the region wherepz50, a different choice of parametrization would b
necessary, e.g., (x,z,z̄), which is valid in the region wherepxÞ0 or (y,z,z̄), valid wherepy

Þ0.
Using the example~2!, from Sec. IV, given by

S** ~xa,z,z̄ !5xal a~z,z̄ !1a~z,z̄ !, a52
~12zz̄ !~z1 z̄ !

~11zz̄ !2
~92!

with

ZS** 50⇔$x~211 z̄2!1 iy~11 z̄2!22zz̄ #~11zz̄ !5&@11 z̄3z23z̄~z1 z̄ !# ~93!

and

ZpS** 50⇔$x~211z2!2 iy~11z2!22zz#~11zz̄ !5&@11z3z̄23z~z1 z̄ !#, ~94!

one could try to solve for different pairs from the set (x,y,z,z,z̄). WhenDÞ0 one could always
solve for (z,z̄), though, in general, there would be more than one solution; i.e., for fixed~x,y,z!
there would in general be more than one ray going thru that space-point, either at the sam
different times. Alternately one could try to solve in different regions for~x,y!, ~y,z!, ~z,x!, etc.
Solving for~x,y! or W we have that the Lagrange map@from the (z,z,z̄) parameter space# becomes

W5
&~2z214zz̄212z2z̄2!22zz~11zz̄ !

12z2z̄2
, ~95!

W̄5
&~2z̄214zz̄212z2z̄2!22zz̄~11zz̄ !

12z2z̄2
, ~96!

which in turn becomes the Legendre map when the contact coordinatet is added in:
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t5&H u1
1

~12zz̄ !~11zz̄ !2
F4zz̄~z1 z̄ !2

z

&
~113zz̄13z2z̄21z3z̄3!G J . ~97!

Though none of the details of this analysis is particularly enlightening, it nevertheless s
how in principle one constructs the Lagrange submanifold and the Lagrange map even
presence of the caustics.

VI. FAMILIES OF FOLIATIONS

In this section we will generalize, in the following sense, the ideas of Sec. II. Recently
has been a reformulation of general relativity, referred to as the null surface formulation~NSF!
where the basic idea has been to use a family~a sphere’s worth! of null foliations of space–time,
so that there are a spheres worth of null surfaces passing through each point of space–time
surfaces are described as the level surfaces of the function

u5Z~xa,z,z̄ !;

xa are the local space–time coordinates and (z,z̄) are the complex stereographic coordinate on
sphere which labels the family of foliations. The functionZ, for every fixed value of (z,z̄),
satisfies the eikonal equation,

gab]aZ]bZ50. ~98!

Knowing these families of foliations one can construct the~conformal! metric in terms ofZ.
The idea was then to express the Einstein equations in terms of these surfaces, i.e., in terZ
and a conformal factor. Though this was successfully accomplished, a technical difficulty in
understanding the equations arose due to the fact that the null surfaces developed sing
~caustics! and self-intersections. It was clear that the development of caustics was a generic
of the equations but it was not at all clear how to see and study their existence directly in te
the functionZ(xa,z,z̄) and its derivatives. In this section, we will study, in flat space, the c
struction of such families and show explicitly how to calculate the structure of the null su
singularities~the caustics and wavefront singularities! directly in terms of theZ function.

Locally ~up to first derivatives! there is no direct curvature involvement in the eikonal eq
tion, so that the form of the caustics in terms ofZ should apply equally in curved space as
Minkowski space. The results obtained here for Minkowski space will thus likely apply to
curved space situation.

Starting with the two-parameter family of plane waves used earlier,Z0(xa,z,z̄)5xal a(z,z̄),
we will first construct a general two-parameter family of solutions to the flat-space eikonal
tion, Z(xa,m,m̄), with (m,m̄) parametrizing the sphere; we then study the singularities and c
tics of this new family.

We begin by generalizing Eq.~11!, namely

S** 5xal a~z,z̄ !1a~z,z̄ !,

by writing a as a function onS23S2; i.e., asa5a(z,z̄,m,m̄), and then repeating the earlie
procedure of setting to zero, theZ andZp derivatives with respect to the (z,z̄). Considering

u5Z** ~x,z,z̄,m,m̄ !5xal a~z,z̄ !1a~z,z̄,m,m̄ ! ~99!

and

ZzZ** 5ZpzZ** 50, ~100!
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and then solving them~when possible! for (z,z̄) obtaining

z5Y~x,y,z,m,m̄ !, z̄5Ȳ~x,y,z,m,m̄ ! ~101!

so that when substituted into Eq.~99!, we obtain the new family which depends on the choice
a(z,z̄,m,m̄):

Z~xa,m,m̄ !5xal a~Y,Ȳ !1a~Y,Ȳ,m,m̄ !. ~102!

@Alternatively we could use the different cases of Sec. V, when one can not solve for (z,z̄).#
It is obvious from the previous discussion that Eq.~102! satisfies the eikonal equation for eac
fixed value of (m,m̄). All we have done so far is create a new sphere’s worth of null foliati
~wavefront families! of Minkowski space, different from the plane wave case ofS5xal a(z,z̄). As
in the earlier sections we could have analyzed the null surfaces for each value of (m,m̄) separately
but now in this generalization the null surfaces are smoothly connected to each other throu
variable (m,m̄) and it becomes of interest to see the development of the caustics via the var
of the (m,m̄), or through the (m,m̄) derivatives.

Remark 2: We will use, respectively, the notation(Zm ,Zpm) for the eth and ethbar derivative

with respect to the variables(m,m̄) and (Zz ,Zpz) for the variables(z,z̄).
We begin by defining several derivatives ofZ:

v5ZmZ, v̄5ZpmZ ~103!

R5ZpmZmZ, ~104!

L5Zm
2 Z, L̄5Zpm

2 Z. ~105!

A level surface ofZ, with fixed (m,m̄), is ruled by null geodesics, whose tangent vectors
given by l a(Y,Ȳ). A pencil of rays defined from a pair of geodesic deviation vectors~from a
given geodesic! has an areaA that can be given20 up to a proportionality by

A5K
V22

A~12L ,1L̄ ,1!
, ~106!

whereK is a constant determined by the initial area and

V25 l aR,a

and

L ,15V22l aL ,a .

The derivation of Eq.~106! is lengthy and will not be given here. It will, however, be show
in this case to be proportional to the area.

We now want to see the behavior ofv, L, andR, as well as the areaA, in the neighborhood
of a caustic.

By direct calculation we have, from Eqs.~102! and ~100!, that

v5Zma, v̄5Zpma, ~107!

and hence is singularity free.
After a rather lengthy calculation, using Eqs.~99! and ~100!, we obtain
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R5ZmZpma1
1

D
$~ZzZma!@~ZzZpma!~Zpz

2u!2~ZpzZpma!~ZzZpzu!#1~ZpzZma!@~ZpzZpma!~Zz
2u!

2~ZzZpma!~ZzZpzu!#%, ~108!

where

D5~ZzZpzu!22Zz
2uZpz

2u. ~109!

In a similar way we obtain

L5Zm
2 a1

1

D
$~ZzZma!@~ZzZma!~Zpz

2u!2~ZpzZma!~ZzZpzu!#

1~ZpzZma!@~ZpzZma!~Zz
2u!2~ZzZma!~ZzZpzu!#%. ~110!

First we see that for fixed values of (m,m̄), D from Eq. ~109! is the same as in Eq.~32!,
namelyD5r 22Zz

2aZpz
2a and hence vanishes at the caustic. We can now see thatv is regular at the

caustic while bothR andL have singularities of the formD21 at the caustic.
In order to find the areaA we first needR,a andL ,a . After a lengthy calculation we obtain

V2[ l aR,a5
1

D2 $@~Zz
2u!~Zpz

2u!1~ZzZpzu!2#@~ZzZma!~ZpzZpma!1~ZpzZma!~ZzZpma!#

22@~ZzZma!~ZzZpma!~Zpz
2u!1~ZpzZpma!~ZpzZma!~Zz

2u!#~ZzZpzu!% ~111!

and

V2L ,1[ l aL ,a5
2

D2 $@~Zz
2u!~Zpz

2u!1~ZzZpzu!2#~ZzZma!~ZpzZma!

2@~ZzZma!2~Zpz
2u!1~ZpzZma!2~Zz

2u!#~ZzZpzu!%. ~112!

Though it is not immediately obvious, from Eqs.~111! and ~112! one can show that (1
2L ,1L̄ ,1) is proportional toD2 or thatuL ,1u⇒11O(D) at the caustic. From these results we ha
that

A5K
V22

A~12L ,1L̄ ,1!

5
6KD

K̂
~113!

with

K̂5uZzZmau22uZpzZmau2.

From Eqs.~100! and ~101!, we have thatK̂5K̂(Y,Ȳ) from which it can be shown that

l aK̂ ,a50,

i.e., K̂ is constant along the geodesic flow. If we choseK56K̂ we have thatA5D, in agreement
with the area obtained in Sec. III from geodesic deviation.

Several important observations can now be made:
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~1! In our particular case of flat space, we have seen that the quantitiesR andL diverge asD21

at the caustic. It appears virtually certain that this is a general result and remains tru
general curved space.

~2! As was to be expected, the area of a pencil of null geodesics vanishes at the caustic.
clearly true in general and the result here is a confirmation that Eq.~106! really is the area
formula.

~3! The quantityV ~which plays a central role in the NSF version of GR! diverges asD21 at the
caustic.

~4! ThoughL diverges at the caustic, the absolute value of its weighted derivative

uL ,1u5uV22L ,al au

approaches one as 12O(D). From this one sees thatL ,al a diverges asD22.

VII. DISCUSSION

Our main interest in the study of wavefronts and their associated null surfaces lies i
desire to understand and describe their singularity structure in curved Lorentzian manifolds
particular to find the most appropriate variables and representations for their analysis. T
locally the classification of generic singularities and caustics is complete and is the same i
flat and curved spaces,5 however, in general spaces, curvature effects are large and must ev
ally be taken into account for global questions.~For example, the structure of the light cone in
curved space is very different from that of a light cone in flat space.! The present work is intende
to begin this study with the description of singular, global, asymptotically spherical, null sur
in flat spaces. A follow-up second paper will be devoted tothe sameissues as here but in
asymptotically flat space–times. We will see that beginning with a two-parameter fami
solutions of the eikonal equation—analogous to the plane wave solutions of flat space–tim
will be possible to construct any other null surface and then analyze its singularity structu
particular, it is possible to construct, in terms of the two-parameter family, the light cone o
space–time point. These insights are important for applications of the null surface formulat
GR.8,9
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S4 symmetry of 6 j symbols and Frobenius–Schur
indicators in rigid monoidal C* categories
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We show that a left-rigid monoidalC* category with irreducible monoidal unit is
also a sovereign and spherical category. Defining a Frobenius–Schur-type indicator
we obtain selection rules for the fusion coefficients of irreducible objects. As a
main result we proveS4 invariance of 6j symbols in such a category. ©1999
American Institute of Physics.@S0022-2488~99!00701-X#

I. INTRODUCTION

The quantities that are known as 6j symbolsor F coefficientsappear in various disguises i
mathematics and physics, for instance, as recoupling coefficients in the theory of groups1–3 and
quantum groups,4 as ~partially gauge-fixed! fusing matrices5–7 in conformal field theory, as the
Boltzmann weights for triangulations of three-manifolds8–11 giving rise to topological lattice field
theories,11–13 as expansion coefficients of exchange algebra relations in the algebraic the
superselection sectors,14 as the components of the three-cocycle in Ocneanu’s non-Abe
cohomology,15 as structure constants in the theory of three-algebras,16 as specific endomorphism
of a von Neumann factorM in the theory of subfactors,17 and as components of the coassocia
w of a rational Hopf algebra.18–20 More generally, theF coefficients can be described as t
projections of the associativity constraintw of a semisimple, rigid, monoidal category onto irr
ducible objects, hence they map a pair of basic intertwiner spaces to another pair. TheF coeffi-
cients depend on the choice of basis~gauge choices! in the basic intertwiner spaces~spaces of
three-point functions!.

An important property of theF coefficients is their ‘‘tetrahedral symmetry’’ or, more pre
cisely, the fact that the gauge freedom that is present in their definition can be fixed in such
that they are invariant under a set of transformations which form the permutation groupS4 . This
symmetry property is, for example, needed in three-dimensional lattice theories in order f
partition function that is defined in terms of theF coefficients to be independent of the triang
lation so that the theory is topological~see, e.g., Refs. 21 and 9!. Other places where this sym
metry plays an important role are the derivation of identities for ‘‘higher-order fus
coefficients’’22 and the construction of solutions to the ‘‘big pentagon equation.’’23 Also, in
pursuing a project for finding~possibly with the aid of computers! explicit solutions of the
Moore–Seiberg polynomial equations for ‘‘small’’ fusion rings, the assumption of tetrahe
symmetry allows for the substantial increase in the number of accessible fusion rings.~In confor-
mal field theory the explicit computation of fusing matrices is, e.g., required for the calculati
the operator product coefficients.!

Let us remark that in conformal field theory it seems to be common lore that theF coefficients

a!Electronic mail: jfuchs@x4u2.desy.de
4080022-2488/99/40(1)/408/19/$15.00 © 1999 American Institute of Physics
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possessS4 invariance~see, e.g., Refs. 7 and 24!; but, as a matter of fact, no complete and detai
proof has ever been published. In the theory of subfactors it was realized that theS4 symmetry
follows from Frobenius reciprocity of intertwiners between bimodules,17 and in algebraic field
theory the same aspects of the symmetry are implicit in the results of Ref. 14~see, in particular,
the appendix of that paper!. The Frobenius maps between basic intertwiners generate the g
S3 , and the coherent choice of bases in the orbits of thisS3 group lead toS4-symmetricF
coefficients. In Ref. 9 it was shown that in order to haveS4 symmetry one does not need
braiding—it is sufficient that the category be spherical; however, in that paper the possibil
nontrivial Frobenius–Schur~FS! indicators25–27 was not considered.

In this paper we present a proof that in a left-rigid monoidalC* category theF coefficients
possessS4 symmetry. We would like to emphasize two fine points. The first is that, in general
to the possibility of having nontrivial FS indicators, the Frobenius maps provide on
Z2-projective representation ofS3 ; but nevertheless the corresponding signs cancel in the tr
formation of theF coefficients so that theF’s are truly S4 invariant. The second point is th
following. The Frobenius transformations of order 3 map the basic intertwiners space (p3p,p̂)
into itself; hence its eigenvalues are third roots of unity~herep̂ is the conjugate of the irreducibl
objectp!. When consideringF’s that involve such intertwiner spaces, then in order to verifyS4

invariance we must calculate the different transforms ofF in different bases of the space (p
3p,p̂). If, instead, we use only a single basis in this space, then the transforms ofF will possibly
carry factors of third roots of unity~this is illustrated in an example in the Appendix!.

Let us also briefly mention a possible application of our results to the quest of expl
solving the polynomial equations for the braiding and fusing matrices, which constitutes, e
part of the problem of classifying all rational conformal field theories. Namely, one expects
when the category is modular, then the trace of the braiding matricesRpp,q can be expressed
completely in terms of the modular data, i.e., of the fusion rules, the modularS matrix and
balancing phases~in the case of doubles of finite groups this was proved in Ref. 27!. Assuming
that this expectation is indeed correct, it follows that the Frobenius–Schur indicators as well
multiplicities of the above-mentioned third roots of unity do not constitute independent data
are already determined uniquely by the modular data. In particular, one can immediately
down all theF coefficients for which at least one line is colored by the unit object as well as
R coefficients. In fact, there are further specialF coefficients that can easily be solved for. Final
our results concerning theS4 symmetry allow us to reduce the number of unknowns in
polynomial equations drastically, namely for genericF coefficients by a factor of 24.@Further
simplifications come from the action of simple currents on theF-coefficients, which should be
derivable in a way similar to theS4-action. Moreover, one would expect the pentagon equa
itself, which can be regarded as the boundary of a four-simplex, to possessS5-symmetry, just like
the tetrahedra~F-coefficients!—the boundaries of three-simplices—possessS4-symmetry.#

II. RIGID MONOIDAL C* CATEGORIES WITH IRREDUCIBLE MONOIDAL UNIT

Our starting point is a left-rigid monoidalC* category (C;(«,3,$l,r,w%);( ˆ ,$e,c%);* ) with
the restriction that the monoidal unit« is irreducible. Here3 is the monoidal product and
la ,ra ,wa,b,c with a,b,cPObj C are natural isomorphisms,

la : a→a3«, ra : a→«3a,
~2.1!

wa,b,c : a3~b3c!→~a3b!3c,

that satisfy the triangle identity

wa,«,c5~la31c!~1a3rc
21!, ~2.2!

and the pentagon identity

wa3b,c,dwa,b,c3d5~wa,b,c31d!wa,b3c,d~1a3wb,c,d!. ~2.3!
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The C* property requires the arrows~the intertwiners!

~a,b![Hom~a,b!ª$T: a→b% ~2.4!

between two objectsa,b to form a complex Banach space. The* is an involutive monoidal
contravariant functor acting as identity on the objects and antilinearly on the intertwiner sp
The norm of the intertwiners satisfies theC* property,iT* Ti5iTi2, and the natural equivalence
$l,r,w% are isometries. Irreducibility of« implies that («,«)5C•1« .

The left conjugationL: C→C is an antimonoidal contravariant~linear! functor, which is the
identity on the monoidal unit. The functorL is built up from a left rigidity structure (̂,$e,c%),
where ˆ is the left conjugation on objects:â[L(a). The left evaluation and coevaluation ma
ea : â3a→« andca : «→a3â, aPObj C, satisfy the left rigidity equations

la* ~1a3ea!wa,â,a
* ~ca31a!ra51a , r â

* ~ea31â!w â,a,â~1â3ca!l â51â , ~2.5!

and lead to the definition

~a,b!{T ° L~T!ªr â
* ~eb31â!„~1b̂3T!31â…w b̂,a,â~1b̂3ca!l b̂P~ b̂,â! ~2.6!

of the conjugated intertwinersL(T). Note that two left conjugationsL1 andL2 that arise from left
rigidity structures are always related by canonical natural equivalencesm: L1→L2 given by

ma5ra2* ~ea
131a2!wa1,a,a2~1a13ca

2!la1P~a1,a2!,

ma
215ra1* ~ea

231a1!wa2,a,a1~1a23ca
1!la2P~a2,a1!,

for every aPObj C, ~2.7!

whereai[Li(a) for i 51,2.
The C* property allows us to define a right rigidity structure withinC:

„R~a!,ea
R ,ca

R
…ª„L~a!,ca

L* ,ea
L* …[~ â,ca* ,ea* ! for aPObj C, ~2.8!

leading to a right conjugate functorR: C→C similarly to ~2.6!:

~a,b!{T ° R~T!ªlR~a!
* ~1R~a!3eb

R!„1R~a!3~T31R~b!!…wR~a!,a,R~b!
* ~ca

R31R~b!!rR~b!

[l â
* ~1â3cb* !„1â3~T31b̂!…w

â,a,b̂
* ~ea* 31b̂!r b̂P~ b̂,â!. ~2.9!

Since the right and left conjugated objects are identical,R(a)5L(a)[â for all aPObj C, the
canonical natural isomorphisms

$ka : R~L~a!!→a%, $k̃a : L~R~a!!→a% ~2.10!

are given by

ka5la* ~1a3eL~a!
R !wa,L~a!,R„L~a!…

* ~ca
L31R„L~a!…!rR„L~a!…[la* ~1a3câ

* !wa,â,a9
* ~ca31a9 !ra9 ,

~2.11!
k̃a5ra* ~eR~a!

L 31a!wL„R~a!…,R~a!,a~1L„R~a!…3ca
R!lL„R~a!…[ra* ~eâ31a!wa9 ,â,a~1a93ea* !la9 ,

which satisfy

ka
215la9

* ~1a93ea!wa9 ,â,a
* ~eâ

* 31a!ra5k̃a* ,

~2.12!
k̃a

215ra9
* ~ca* 31a9 !wa,â,a9 ~1a3câ!la5ka* .

One can define~positive! left and right inverses foraPObj C:28
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Fa
L : ~a3b,a3c!→~b,c!, Fa

R : ~b3a,c3a!→~b,c!, for b,cPObj C, ~2.13!

using evaluation and coevaluation maps. In the special caseb5c5« these maps,

~a,a!{T ° Fa
L~T!ªea~1â3T!ea* P~«,«!5C•1« ,

~2.14!
~a,a!{T ° Fa

R~T!ªca* ~T31â!caP~«,«!5C•1« ,

are faithful positive linear functionals. Since they are bounded from below,28

~a,a!{T* T<ra* ~ca* ca31a!ra•la* „1a3Fa
L~T* T!…la ,

~a,a!{T* T<la* ~1a3eaea* !la•ra* „Fa
R~T* T!31a…ra ,

for TP~a,b!, ~2.15!

it follows that Enda[(a,a) is finite dimensional for everyaPObj C; thereforeC is semisimple.
We denote the subset of irreducible objects byI,Obj C.

Semisimplicity allows us to construct the so-calledstandardrigidity intertwiners,28 leading to
a left conjugation functorLs among the equivalent ones@cf. ~2.7!# that obeysLs5Rs by ~2.8! and
~2.9!. This conjugation is achieved by the following procedure.

In the case of an irreducible objectpPI, one uses the scalar freedomep°zpep , cp°zp
21cp

with zpPC\$0% to set

epep* 5dp1«5cp* cp for every pPI, ~2.16!

whereda is thequantumor statistics dimensionof an arbitrary objectaPC, defined to be

daªieaiicai . ~2.17!

Then for an arbitrary objecta one chooses two orthogonal and complete sets of pa
isometries

Va
pa : p→a,

Wa
pa : p̂→â,

for pPI, a51,...,ma
p , ~2.18!

satisfying

Va
pa* Va

p8a85dpp8daa81p , Wa
pa* Wa

p8a85dpp8daa81p̂ , ~2.19!

and

(
p,a

Va
paVa

pa* 51a , (
p,a

Wa
paWa

pa* 51â , ~2.20!

to define

eaª(
p,a

ep~Wa
pa* 3Va

pa* !P~ â3a,«!, caª(
p,a

~Va
pa3Wa

pa!cpP~«,a3â!. ~2.21!

Then (̂ ,$ea ,ca%) becomes a left rigidity structure, i.e., it satisfies~2.5! due to naturality of$l,r,w%
and~2.19! and~2.20!. The rigidity intertwiners (ea ,ca) of an objecta satisfying~2.16! and~2.21!
are calledstandard.

Now the corresponding right rigidity structure@cf. ~2.8! and ~2.9!# ( ˆ ,$ca* ,ea* %) leads to a
right conjugation functorR that is identical to the left conjugationL. As a matter of fact, by an
explicit calculation one obtains
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~b,a!{T ° R~T!5L~T!5 (
p,a,b

Wb
pbtp

ab1p̂Wa
pa* P~ â,b̂!, ~2.22!

with

tp
ab1pªVa

pa* TVb
pb , tp

abPC. ~2.23!

Therefore, in the case of standard conjugation, we use the notationT̂[R(T)5L(T) for the
conjugated intertwiners.

One can also prove28 that if (ea ,ca) and (ea8 ,ca8) are both standard, then

ea85ea~1â3Ua!, ca85~Ua* 31â!ca , ~2.24!

whereUaP(a,a) is unitary. Moreover,

e~a,b!ªeb~1b̂3rb!„1b̂3~ea31b!…~1b̂3w â,a,b!w
b̂,â,a3b
* P„~ b̂3â!3~a3b!,«…,

~2.25!
c~a,b!ªw

a3b,b̂,â
* ~wa,b,b̂31â!„~1a3cb!31â…~la31â!caP„«,~a3b!3~ b̂3â!…

are standard if (ea ,ca) and (eb ,cb) are standard. Thus in the case of standard conjugatioL

5R, the natural equivalence$aa,b : a3b̂→b̂3â% that expresses the antimonoidality of the co
jugation functor is given by

aa,b5r
b̂3â
* ~ea3b31b̂3â!wa3b̂,a3b,b̂3â~1a3b̂3c~a,b!!la3bP~a3b̂,b̂3â!,

~2.26!
aa,b

215ra3b̂
* ~e~a,b!31a3b̂!w b̂3â,a3b,a3b̂~1b̂3â3ca3b!l b̂3âP~ b̂3â,a3b̂!.

III. SOVEREIGNTY, TRACES, AND SPHERICITY

We note that in the case of standard rigidity intertwiners the choicecaª1â for every a
PObj C leads to a natural equivalencec: R→L and makesC a sovereigncategory.29 Indeed,
c«51« and monoidality ofc is clear, one has only to show the commutativity of the sovereig
diagram, which reads in this case aska5k̃a . Sincek andk̃ are natural equivalences it is enoug
to show this equality forpPI. But then one has

kp* kp5xp1p9 and k̃p* k̃p5 x̃p1p9 for all pPI, ~3.1!

with xp ,x̃pPR1 andxp5 x̃p
21 due to~2.12!. Using ~2.16! and rigidity one obtains

xpdp̂1«5ep̂~xp1p931p̂!ep̂
* 5ep̂~kp* kp31p̂!ep̂

* 5cp* cp5dp1« ,

~3.2!
x̃pdp̂1«5cp̂

* ~1p̂3 x̃p1p9 !cp̂5cp̂
* ~1p̂3k̃p* k̃p!cp̂5epep* 5dp1« ,

which imply xp5 x̃p , hencexp5 x̃p51 anddp̂5dp . Then~3.1! and ~2.12! lead to the equalities
k̃p5kp , pPI, of isometries. Owing to naturality, the mapsk̃a[ka : a9→a, aPObj C, are isom-
etries.

Having reached a standard conjugation,L5R, and sovereignty, let us consider the conjuga
of standard rigidity intertwiners. Using~2.26! one obtains

aâ,aêa5câP~«,â3a9 !, ĉaaa,â
21

5eâP~a93â,«!, ~3.3!

and the rigidity intertwiners of conjugated objects are related to the original ones as
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eâ5ca* ~ka31â!, câ5~1â3ka
21!ea* , ~3.4!

as is seen by using~2.11! and~2.12!. From~3.4! it follows that further specification of the rigidity
intertwiners, e.g., identification of the (ea ,ca) and (câ

* ,eâ
* ) rigidity pairs, may be achieved only

in the case of involutive conjugation, which will be discussed in Sec. V.
In a sovereign monoidal category one can define left and right traces tra

L/R : (a,a)→(«,«) for
eachaPObj C:

tra
L~T!ªea

L~ca3T!ca
R ,

tra
R~T!ªea

R~T3ca!ca
L ,

for ca : R~a!→L~a!, ~3.5!

obeying the property

tra
R/L~TS!5trb

R/L~ST! for all TP~b,a!, SP~a,b!. ~3.6!

In the case of standard conjugation in aC* category, together with the previously chosen sov
eignty maps,$ca51â%, these left~right! traces become identical to left~right! inverses~2.14!,
hence they are positive traces. Moreover, due to standardness they are equal:

tra
L~T!5tra

R~T!5:tra~T! for all TP~a,a!; ~3.7!

henceC is also asphericalcategory.9

IV. FROBENIUS–SCHUR INDICATORS

For any finite groupG one defines the Frobenius–Schur elements of the group algebraCG as
in Ref. 25, i.e.~up to normalization!,

sª
1

uGu (
gPG

g2. ~4.1!

The Frobenius–Schur element is a central self-adjoint element ofCG; its central decomposition
reads

s5(
r PI

n r

dr
er with n r5 H 0 for rÞ r̂ ,

61 for r 5 r̂ , ~4.2!

whereer , r PI, are the minimal central projectors anddr5trr(er) is the ~integral! dimension of
the corresponding simple ideal of the group algebraCG. The three-valent indicatorn r that is
defined by~4.2! is the Frobenius–Schur indicator, which is zero on non-self-conjugate simp
ideals while on self-conjugate simple ideals the1~2! sign indicates~pseudo!reality.

There is an extension ofs for C* -Hopf30 or weakC* -Hopf algebras,23 which is obtained
using the Haar integralhPH of the ~weak! C* -Hopf algebraH:

sª
1

e~1!
h~1!h~2!; ~4.3!

here we use Sweedler notation for the coproduct, i.e.,h(1)
^ h(2)[D(h), and1 ande are the unit

and the counit ofH, respectively. Since weakC* -Hopf algebras containC* -Hopf algebras as
special cases, we prove the property~4.2! for s as defined in~4.3! only for the former case.

There is a unique positivegPH ~Ref. 31! that implements the square of the antipode, i
gxg215S2(x) for all xPH, and satisfies the normalization condition trDr(g)5tr Dr(g

21)
5:t rPR1 . Then S(g)5g21 holds, and if the unit representation is irreducible, thent r

5dr /e(1). Using the properties32
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h25h* 5S~h!5h, h~1!
^ xh~2!y5S~x!h~1!S21~y! ^ h~2! for all x,yPH ~4.4!

and

h~2!
^ h~1!5h~1!

^ gh~2!g, S~h~1!! ^ h~2!5(
r PI

1

t r
(
i , j

er
i j g21/2

^ g21/2er
ji ~4.5!

of the Haar integralhPH, one obtains

s* 5
1

e~1!
h~2!h~1!5

1

e~1!
h~1!gh~2!g5

1

e~1!
h~1!S21~g!gh~2!5s ~4.6!

and

s•y5
1

e~1!
h~18!h~1!h~28!h~2!

•y

5
1

e~1!
S~h~1!!h~18!h~28!h~2!

•y

5
1

e~1!
S~h~1!S21~y!!h~18!h~28!h~2!5y•s ~4.7!

for all yPH, i.e., s is a central self-adjoint element ofH. From the second identity in~4.5! it
follows thats vanishes on non-self-conjugate ideals, hencen r50 for rÞ r̂ . For a self-conjugate
ideal,er5er̂ , one obtains

e~1!•ers5
1

t r
(
i , j

S21~er
i j g21/2!g21/2er

ji 5
1

t r
(
i , j

g1/2S21~er
i j !g21/2er

ji 5
1

t r
(
i , j

S0~er
i j !er

ji ,

~4.8!

whereS0ªAdg1/2+S21 is the involutive antipode:S0
25 idH , S0+* 5* +S0 . Sinceer5er̂ for matrix

units, it follows thatS0(er
i j )5v rer

j i v r* with v rPerH unitary. Moreover,

er
i j 5S0

2~er
i j !5S0~v r* !v rer

i j v r* S0~v r ! ~4.9!

implies thatS0(v r* )v r is a central unitary element inerH, henceS0(v r* )56v r* 5:n rv r* for r
5 r̂ due to the involutivity ofS0 . But then

s5(
r PI
r 5 r̂

1

e~1!t r
(
i , j

S0~er
i j !er

ji

5(
r PI
r 5 r̂

1

dr
(
i , j

v rer
j i v r* er

ji

5(
r PI
r 5 r̂

1

dr
v rv r*

T5(
tPI
r 5 r̂

1

dr
v rv r* S0~v r* !v r5(

r PI

n r

dr
er , ~4.10!

proving ~4.2!.
There exists a purely categorical definition of the Frobenius–Schur indicator. LetC be a

category as in Sec. II andp an irreducible object. Ifp is self-conjugate, then there exists a
invertible intertwinerJp :p→ p̂. Let us define the self-intertwiner

npªJp
21Ĵpkp

21P~p,p!, ~4.11!
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which is independent of the choice ofJp due to irreducibility ofp and linearity of the conjugation
Hencenp is an isometry, because an isometricJp can be chosen. In order to prove that evennp

561p holds, one first computes that

Fp
R~np!ªcp* ~np31p̂!cp5cp* ~Jp

213Jp!ep* , ~4.12!

using ~2.6! and ~2.12!. However, the rigidity intertwiners

~ep8 ,cp8!ª„cp* ~Jp
213Jp!,~Jp

213Jp!ep* …P„~ p̂3p,e!,~e,p3 p̂!… ~4.13!

are standard; hence, owing to~2.24! we have

ep85epup and cp85up* cp for some upPC with uupu51. ~4.14!

Therefore,

updp5upepep* 5ep8ep* 5Fp
R~np!5cp* cp85up* cp* cp5up* dp , ~4.15!

which proves thatup561 andnp561p .
Definingnp as the zero intertwiner for non-self-conjugate irreducible objectsp, one can obtain

a natural mapn between the identity functors.
Since the representation category of a~pure weak! C* -Hopf algebra is a rigid monoidalC*

category with irreducible unit object, the consistency of the Hopf algebraic and the categ
definitions of the FS indicator requires thatnp5dpDp(s) for pPI, whereDp :H→End Vp is an
irreducible representation ofH. This is indeed the case: One can use the natural equivalencl
andr, the standard rigidity intertwiners that were given in Ref. 23, and the involutive conjug
on the objectsD°D̂ªDT+S0 to arrive atkD51D . Then for an irreducible self-conjugate obje
Dp the choiceJp

âa
ªDp

âa
„S0(vp* )… for the matrix elements of the mapJp :Vp→V̂p leads to the

desired result.

V. INVOLUTIVE CONJUGATION

The existence of the natural isomorphism$ka :a9→a% suggests that a convenient choicea9
5a can be achieved. This requires, however, a further assumption on the categoryC; namely, the
cardinalities of the sets of objects in any two equivalence classes that are related by conju
must be equal. This quite harmless assumption will always hold after adjoining, if necessar
objects toC, and this procedure does not change the category within equivalence.

Therefore, from now on we assume that the object mapa°â of our conjugation functor is
involutive, a95a for all aPObj C, and thatâ5a wheneverâ.a. It follows that every choice of
standard rigidity intertwiners leads to a conjugation functorL[R that is involutive on the arrows
as well. As a matter of fact, for eachTP(a,b) we haveTLL5TLR5kb

21Tka5T.
Due to the involutivity of the conjugation, for irreducible objectsp the natural isomorphism

kp :p95p→p becomeskp5xp1p with xp;C anduxpu51. The question arises whether the sca
xp that appears here has something to do with the Frobenius–Schur indicator or it c
‘‘gauged’’ away. The relations~3.4! now read as

ep̂5cp* ~kp31p̂!5xpcp* ,
~5.1!

cp̂5~1p̂3kp
21!ep* 5xp

21ep* [x̄pep* .

Insertingp5q̂ in the first equation, we obtainx q̂eq9
* 5cq̂5x̄qeq* , implying thatx q̂5x̄q[xq

21. For
self-conjugate irreduciblesq5q̂ we obtainxq561. In this case by choosing the mapJq :q→q̂ in
the definition~4.12! of the FS indicator to be 1q , we obtain

nq5J21Ĵkq
2151q1q~xq

211q!5xq
211q for all qPI with q5q̂. ~5.2!
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If pÞ p̂ for pPI, then we can employ the freedom~2.24! so as to change the rigidity intertwiner
of one of the irreducible objects of the pair$p,p̂%, let us say ofp̂:

ep̂8ªxp
21ep̂ , cp̂8ªxpcp̂ , ep8ªep , cp8ªcp . ~5.3!

Thenep̂85cp8* andcp̂85ep8* , i.e., the coefficientsx that are present in~5.1! are gauged away fo
pPI, pÞ p̂.

To summarize: after enlargingC appropriately, there exists astandard conjugation functor
that is involutive both on the objects and on the arrows and has the property that forpPI

ep̂5xpcp* ,

cp̂5xp
21ep* ,

with xp5 H1 for pÞ p̂,
np for p5 p̂. ~5.4!

VI. FROBENIUS MAPS ON BASIC INTERTWINER SPACES

Let us call the space (p,q3r ), for p,q,r PI, a basic intertwinerspace. It is a Hilbert space
with scalar product determined by

~ t1 ,t2!1pªt1* t2 for t1 ,t2P~p,q3r !. ~6.1!

We define two antilinear maps

x: ~p,q3r !→~r ,q̂3p!, y: ~p,q3r !→~q,p3 r̂ ! ~6.2!

by

x~ t !ª~1q̂3t* !w q̂,q,r
* ~eq* 31r !r rAdr

dp
, y~ t !ª~ t* 31r̂ !wq,r , r̂

* ~1q3cr !l rAdq

dp
~6.3!

and call them the Frobenius maps. These maps are antilinear isometries, i.e., for the scalar
the formula

„x~ t1!,x~ t2!…5~ t2 ,t1!5„y~ t1!,y~ t2!… ~6.4!

holds due to the trace property~3.6!. They generate aZ2-graded antilinear and projective action
S3 on the basic intertwiner spaces. AZ2-graded antilinear action of aZ2-graded group mean
linear~antilinear! action for even~odd! elements of the group. A permutation group is naturallyZ2

graded by distinguishing even and odd permutations. Moreover, the Frobenius maps genera
a projective action since using~5.4! one proves that

x25xq• id ~p,q3r ! , y25x r• id ~p,q3r ! , ~6.5!

as well as

xyx5yxy: ~p,q3r !→~ p̂, r̂ 3q̂!, ~6.6!

which constitutes just a projective version of the definingS3 relations for the transpositions
s12↔x, s23↔y. In a generic case the Frobenius maps lead to an orbit of six different intertw
spaces:

Im~ id !5~p,q3r !, Im~xy!5~ r̂ ,p̂3q!,

Im~x!5~r ,q̂3p!, Im~yx!5~ q̂,r 3 p̂!, ~6.7!

Im~y!5~q,p3 r̂ !, Im~yxy!5~ p̂, r̂ 3q̂!.
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It is easy to give the action of the Frobenius maps on canonical basic intertwinersrpP(p,«
3p) andlpP(p,p3«), namely,

x~rp!5rp , y~rp!5
1

Adp

cp , xy~rp!5l p̂ , ~6.8!

and

x~lp!5
1

Adp

ep* , y~lp!5lp , yx~lp!5r p̂ . ~6.9!

Therefore, they are not generic but length three orbits ofS3 with a possible projectiveZ2 extension
by xp .

There are other cases, too, where the orbits are not generic. Then we have a represen
the corresponding nontrivial stabilizer subgroup ofS3 on a basic intertwiner space. In the li
below we present all the possible irreducible representations of the stabilizer subgroups
nongeneric cases. In two cases we obtain certain restrictions on fusion coefficients.

~1! q5q̂, r 5pÞq: orbit5$(p,p3q),(q,p̂3p),(p̂,q3 p̂)%. Therefore there is aZ2-graded anti-
linear ~projective if xq521) representation ofZ2 on (p,p3q) generated byy. But an anti-
linear unitary is always of order 2, therefore this intertwiner space is the null spacexq

521, i.e., the corresponding fusion coefficient isNpq
p 50. If xq51, we have aZ2-graded

antilinear representation ofZ2 , and such irreducible representations are unique up to un
equivalence.

~2! q5r 5 p̂Þp: orbit5$(p,p̂3 p̂),(p̂,p3p)%. Therefore there is a linear representation ofZ3 on
(p,p̂3 p̂), generated byxy. One can use an orthonormal basis in (p,p̂3 p̂) in which the basis
elements carry one of the three possible~one-dimensional! irreducible representations ofZ3 .
~A simple example is given in the Appendix.!

~3! q5r 5p5 p̂: orbit5$(p,p3p)%. Therefore there is aZ2-graded antilinear~projective if xp

521) representation ofS3 on (p,p3p). Similarly to the first case we haveNpp
p 50 if xp

521. If xp51, we get aZ2-graded antilinear proper representation ofS3 . Such irreducible
representations are one-dimensional and can be labelled by the three possible irre
representations ofZ3 . One can use a basis in (p,p3p) where basis elements carry the
irreducible representations.

VII. S4-TRANSFORMED SIMPLICIAL MAPS OF A TETRAHEDRON

Let us consider the following Hilbert space containing certain fourfold tensor produc
basic intertwiner spaces as orthogonal subspaces:

H[ %
s

Hs:5 %
p,q,r ,t,u,vPI

~p3q,u! ^ ~u3r ,t ! ^ ~v,q3r ! ^ ~ t,p3v !

[ %
p,q,r ,t,u,vPI

~u,p3q!* ^ ~ t,u3r !* ^ ~v,q3r ! ^ ~ t,p3v !, ~7.1!

where we put (u,p3q)*ª$t* utP(u,p3q)%. Vectors in subspacesHs of H that correspond to a
fourfold tensor product of basic intertwiner spaces can be labeled by the two-dimensional s
cial complex of the boundary of a tetrahedronD3. More precisely, there are simplicial maps

n5~n0,n1,n2!: ]D3→Hs ~7.2!
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as follows.n0 maps all vertices into one point, thus the vertices of the tetrahedron remain
beled.~Nontrivial n0 is needed only in two-categories, which is out of the scope of the pre
paper.! n1 associates to each oriented edge ofD3 an irreducible object from the set of represe
tantsI. Thus the edges become labeled withI:

n1~12!ªp, n1~14!ªt,

n1~23!ªq, n1~13!ªu, ~7.3!

n1~34!ªr , n1~24!ªv.

Edges with opposite orientation carry the conjugate objects, e.g.,n1(21)5 p̂.
To every element of a basic intertwiner space one can associate an oriented face by

hand rule:

~In the vertex pictures, all arrows point downwards; correspondingly we can safely sup
them.!

The two possible orientations tell us whether we are in a basic intertwiner space (u,p3q) or
in its adjoint (u,p3q)* [(p3q,u). Now the images of the faces of the tetrahedron are define
be elements of basic intertwiner spaces:

n2~123!ªapq
u P~u,p3q![„n1~13!,n1~12!3n1~23!…,

n2~134!ªbur
t P~ t,u3r ![~n1~14!,n1~13!3n1~34!…,

~7.4!
n2~234!ªgqr

v P~v,q3r ![„n1~24!,n1~23!3n1~34!…,

n2~124!ªdpv
t P~ t,p3v ![„n1~14!,n1~12!3n1~24!….

Permutation of the index set$1,2,3,4% of the points of the tetrahedron defines, using
Frobenius mapsx,y, anS4-action on the mapsn:]D3→Hs as follows:

~nt!
0
ªn0+t, ~nt!

1~ i j !ªn1
„t~ i !,t~ j !… for all tPS4 and i , j P$1,2,3,4%. ~7.5!

The definition of the transforms ofn2 uses the Frobenius maps. Lett12, t23, andt34 denote the
generating transpositions ofS4 . Then

~nt12
!2~123!ªx„n2~123!…, ~nt12

!2~234!ªn2~134!,

~7.6!
~nt12

!2~134!ªn2~234!, ~nt12
!2~124!ªx„n2~124!…;

in other words, introducing the notation
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a* ^ b* ^ g ^ d5n2~123!* ^ n2~134!* ^ n2~234! ^ n2~124!PHs , ~7.7!

one has the induced transformations

t12: a* ^ b* ^ g ^ d→x~a!* ^ g* ^ b ^ x~d!,

t23: a* ^ b* ^ g ^ d→y~a!* ^ d* ^ x~g! ^ b, ~7.8!

t34: a* ^ b* ^ g ^ d→d* ^ y~b!* ^ y~g! ^ a

on then2 images. The images of the original and the transformed mapsn, nt12
, nt23

, andnt34
can

be pictured as

Extending the maps in~7.8! antilinearly, one obtains an action ofS4 on the Hilbert spaceH
in ~7.1!. The important property of thisS4 action is the following:

Lemma: The above-defined action of the transpositionst12, t23, andt34 induces aZ2-graded
antilinear representation of S4 onH.

Proof: One has to check only the defining relations ofS4 :

t12
2 5t23

2 5t34
2 5 id, t12t23t125t23t12t23, t23t34t235t34t23t34. ~7.9!

Indeed one obtains

t12
2 ~a* ^ b* ^ g ^ d!5x2~a!* ^ b* ^ g ^ x2~d!5xp

2
•a* ^ b* ^ g ^ d5a* ^ b* ^ g ^ d,

t23
2 ~a* ^ b* ^ g ^ d!5y2~a!* ^ b* ^ x2~g! ^ d5xq

2
•a* ^ b* ^ g ^ d5a* ^ b* ^ g ^ d,

~7.10!

t34
2 ~a* ^ b* ^ g ^ d!5a* ^ y2~b!* ^ y2~g! ^ d5x r

2
•a* ^ b* ^ g ^ d5a* ^ b* ^ g ^ d,

while
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t12t23t12~a* ^ b* ^ g ^ d!5xyx~a!* ^ x~b!* ^ x~d! ^ x~g!

5yxy~a!* ^ x~b!* ^ x~d! ^ x~g!

5t23t12t23~a* ^ b* ^ g ^ d!,
~7.11!

t23t34t23~a* ^ b* ^ g ^ d!5y~b!* ^ y~a!* ^ xyx~g! ^ y~d!

5y~b!* ^ y~a!* ^ yxy~g! ^ y~d!

5t34t23t34~a* ^ b* ^ g ^ d!.
j

Notice that although the Frobenius maps lead to a (Z2-graded antilinear! projectiverepresentation
of S3 on each basic intertwiner space, due to the fact that]D3 is a closed orientable surfac
without boundary, the action ofS4 on H is a proper ~i.e., nonprojective! representation. As a
matter of fact, according to~7.10!, the Frobenius transformationsx2 andy2 that lead to the signs
x are always coming in pairs.

VIII. AN S4-INVARIANT LINEAR FUNCTIONAL ON H

Let us define a linear functionalF: H→C on the Hilbert spaceH ~7.1! by

F~apq
u* ^ bur

t* ^ gqr
v

^ dpv
t !ªAdpdqdr

dt
•et~1 t̂3bur

t* !„1 t̂3~apq
u* !…

~1 t̂3wp,q,r !„1 t̂3~1p3gqr
v !…~1 t̂3dpv

t !et* . ~8.1!

Pictorially, the value is

~8.2!

~In order not to overburden the picture, we do not indicate the mapsl, r, andw; due to coherence
and naturality they can be put back unambiguously.!

The action oftPS4 on F is the one induced by the action onH,

~tF!~a* ^ b* ^ g ^ d!ªF„t21~a* ^ b* ^ g ^ d!…
degt

, ~8.3!
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where the notation ‘‘overline to the power of degt’’ means complex conjugation for oddS4

elements and the identity operation for even elements. This transformation property is requ
the linearity ofF and the antilinearity ofS4 onH to be compatible:

~tF!~lX!5F„t21~lX!…
degt

5l̄degtF„t21~X!…
degt

5l•F„t21~X!…
degt

~8.4!

for XPH. Hence the functionalF is S4 invariant if

~tF!~X!ªF„t21~X!…
degt

5F~X! ~8.5!

for all tPS4 , or equivalently

F„t21~X!…5F~X!
degt

~8.6!

for all tPS4 .
Proposition: The functionalF is constant on S4 orbits.
Proof: It is sufficient to show this property for the generators ofS4 . Below there is a dia-

grammatic proof where we used the definitions of the Frobenius maps, the trace property, r
the property End«5C•1« , and sphericity in the last series of pictures.

Invariance with respect tot12 is shown by the following chain of equalities:
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Here we have used the definition of the Frobenius mapx in the first equality, the monoidality o
the functor of taking duals in the second, used the trace property in the third, and the defini
‘‘ * ’’ in the fourth equality.

Proof of the invariance with respect tot23:

This chain of equalities is obtained as follows. In the first equality we used the definition o
Frobenius mapsx and y; in the second equality the rigidity identity is used; and in the th
equality the definition of ‘‘* ’’ is implemented.

Proof of the invariance with respect tot34:
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In this chain of equalities we have used the definition of the Frobenius mapy in the first equality;
the spherical property in the second; the monoidality of the functor of taking duals in the
used the trace property in the fourth; used the spherical property in the fifth; and used the
tion of ‘‘ * ’’ in the sixth. j

By definition the normalizedF-coefficients are

F̆u,v
~pqr!t~a* ^ b* ^ g ^ d!ªF~apq

u* ^ bur
t* ^ gqr

v
^ dpv

t !, ~8.7!

wherea, b, g, andd are elements of orthonormal bases of the corresponding basic intertw
spaces. Their relation to the 6j -symbols$Faub,gvd

(pqr) t % is given by
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Faub,gvd
~pqr!t 5

1

Adpdqdrdt

F̆u,v
~pqr!t~a* ^ b* ^ g ^ d!. ~8.8!

Because of the isometry property ofw they are unitary matrices in the multi-labels (aub,gvd).
The proposition leads to the possibility of computingF̆ in a single point of anS4 orbit and
determine the 6j symbols on all the other elements of that orbit.
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APPENDIX: S4 SYMMETRY FOR C* CATEGORIES BASED ON Z3

As a simple but nevertheless nontrivial illustration of the results of the main text, le
consider the following three~degenerate! rational Hopf algebras18,19 that can be obtained a
deformations of the Hopf algebraCZ3 , i.e., of the group algebra of the cyclic groupZ3 . The
structural data can be summarized as follows:

H5Ce0% Ce1% Ce2 , ep* 5ep
25ep for i 50,1,2, ~A1!

D~ep!5 (
q,r 50

q1r 5p mod 3

2

eq^ er , S~ep!5e2p mod 3, ~A2!

l5r51[e01e11e25 l 5r PH, ~A3!

w5 (
p,q,r 50

2

vpqr•ep^ eq^ erPH ^ H ^ H. ~A4!

Here v1115v2225v1125v2215v2115v1225:v is a third root of unity,v351, which param-
etrizes the three different rational Hopf algebras, while in all three cases one hasvpqr51 for all
other combinations of indices.

The representation categoryRep H is a rigid monoidalC* -category. The irreducible repre
sentationsDp , p50,1,2, are one-dimensional and obeyDp(eq)5dp,q . The basic intertwiner
spaces are one-dimensional at most, and we can choose (p,q3r )5C•1qr

p for the nontrivial ones,
where 1qr

p maps the tensor product of the chosen unit vectors into the chosen unit vector
corresponding one-dimensional representation spaces, i.e., 1qr

p (vq^ v r)5vp . The natural isome-
tries connected to monoidality and the standard rigidity intertwiners are given by

lp51p0
p , rp510p

p , wp,q,r5~Dp^ Dq^ Dr !~w!, ~A5!

ep51p̂p
0* , cp51pp̂

0 . ~A6!

The values ofx ~5.4! are all trivial: xp51 for p50,1,2. Using the definitions~6.3! of the
Frobenius maps, one obtains

x~1qr
p !5v̄ q̂qr1q̂p

r , y~1qr
p !5vqrr̂1pr̂

q , ~A7!

with vpqr as in ~A4!. In the case (p,q3r )5(1,232), this leads to
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xy~122
1 !5v•122

1 , ~A8!

which serve as examples of a degenerate orbit of type 2 in Sec. VI with the possible third ro
unity.

The S4 symmetry is valid in a nontrivial way in the following sense. First note that there
five S4 orbits of normalizedF-coefficientsF̆u,v

(pqr) t(apq
u* ^ bur

t* ^ gqr
v

^ dpv
t ) that have the element

~only their pqr edges indicated!:

$000%, $001,200,120,012%, $002,100,210,021%,

$010,020,102,201,121,212%, ~A9!

$101,011,110,202,022,220,111,222,112,122,221,211%,

respectively, together with their complex conjugated quantities. One can easily compute th
normalizedF coefficient of the fifth orbit:

F̆1,1
~101!2~110

1* ^ 111
2* ^ 101

1
^ 111

2 !51; ~A10!

then due to theS4 invariance one deduces that the other coefficients in the same orbit hav
value 1, too. Computation of thet12-transformed quantity

15t12„F̆1,1
~101!2~110

1* ^ 111
2* ^ 101

1
^ 111

2 !…5F̆0,2
~211!1~x~110

1 !* ^ 101
1* ^ 111

2
^ x~111

2 !!

5F̆0,2
~211!1~v210v̄211•121

0* ^ 101
1* ^ 111

2
^ 122

1 !5v•F̆0,2
~211!1~121

0* ^ 101
1* ^ 111

2
^ 122

1 !5v•v̄

~A11!

then shows that one may not haveS4 invariance for a fixed set of basic intertwiners in general,
it is important to take the action of the Frobenius maps into account. In this example eve
following stronger statement holds: in the case ofvÞ1 there isno such choice for the set o
orthonormal basic intertwiners,$bqr

q3r
ªvqr•1qr

q3r uq, r 50,1,2% with arbitrary but fixed values of
vqrPC, uvqru51, that leads to a constant value of normalizedF coefficients within the chosen se
of intertwiners. Indeed, the relation

F̆1,1
~101!2~b10

1* ^ b11
2* ^ b01

1
^ b11

2 !5t13~ F̆1,1
~101!2~b10

1* ^ b11
2* ^ b01

1
^ b11

2 !!

5F̆1,1
~101!2~y~b10

1 !* ^ b11
2* ^ x~b01

1 ! ^ b11
2 ! ~A12!

implies that the common value should be61, but then the product of thet12t34- and
t23t34t12t23-transformedF-coefficients leads to the contradiction

1ÞF̆1,1
~222!0

„x~b11
2 !* ^ y~b01

1 !* ^ y~b11
2 ! ^ x~b10

1 !…

3F̆2,2
~111!0~xy~b11

2 !* ^ xy~b01
1 !* ^ xy~b11

2 ! ^ yx~b10
1 !…5v2. ~A13!

We also note that for a nontrivial third root of unity,vÞ1, there are no solutions of th
hexagon equations, that isRepH cannot be made into a braided category in those cases.
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The quantum dynamical Yang–Baxter~or Gervais–Neveu–Felder! equation de-
fines anR-matrix R̂(p), wherep stands for a set of mutually commuting variables.
A family of SL(n)-type solutions of this equation provides a new realization of the
Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quan-
tum determinant and compute the inverse quantum matrix for matrix algebras of the
typeR̂(p)a1a25a1a2R̂. It is pointed out that such a quantum matrix algebra arises
in the operator realization of the chiral zero modes of the WZNW model. ©1999
American Institute of Physics.@S0022-2488~99!02801-7#

I. INTRODUCTION

Let $v ( i ) , i 51, . . . ,n % be a ‘‘barycentric basis’’ in a Cartan subalgebrah,sl(n). Viewed as
operators in then-dimensional complex spaceV5Cn, v ( i ) can be realized as real traceless diago
n3n matrices:

~v ~ i !! j
j5d i j 2

1

n
⇒ (

i 51

n

v ~ i !50 . ~1.1!

Let further$pi% i 51
n span the dual Lie algebrah* . Introduce the traceless diagonal matrix

p5piv
~ i !S [(

i 51

n

piv
~ i !D , @pi ,pj #50, (

i 51

n

pi50. ~1.2!
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We define a Hecke-type quantum dynamicalR-matrix R̂(p) as a map fromh* to End (V^ V)
satisfying thetwisted braid relation

R̂12~p!R̂23~p2v1!R̂12~p!5R̂23~p2v1!R̂12~p!R̂23~p2v1! ~1.3!

and the Hecke condition

R̂~p!25I1~q2q̄!R̂~p! , q̄ ª q21 . ~1.4!

~Although the notation is tailored to the special case in which the parameterq takes values on the
unit circle, we shall not use this property in the main body of the paper.! The subscripts in~1.3!
refer to the, by now standard, tensor product notation of Faddeevet al. ~see, e.g., Ref. 1!; in
particular,R̂23(p2v1)PEnd(V^ 3) has matrix elements

~R̂23~p2v1!! j 1 j 2 j 3

i 1i 2i 3 5 d j 1

i 1 R̂~p2v ~ i 1!! j 2 j 3

i 2i 3 . ~1.5!

The twisted braid relation~1.3! is equivalent to thequantum dynamical2,3 ~or deformed4! Yang–
Baxter equation~QDYBE! for the matrix R(p) related to the braid operatorR̂(p) by R̂(p)
5PR(p), where P stands for the permutation operatorPx1y25y1x2 ,x,yPV,P251. Abusing
terminology we shall also refer to Eq.~1.3! by the above abbreviation. The term ‘‘dynamic
R-matrix’’ for R̂(p) is suggested by the fact that in the physical applications its arguments pla
role of ~commuting! dynamical variables and thatR̂(p) satisfies a finite difference rather than
purely algebraic equation.

The important concept of aquantum matrix algebraA5A(R̂(p),R̂) ~Sec. V! can be intro-
duced as a~complex! associative algebra with 1 generated by rational functions ofqpi,i
51, . . . ,n, and the~noncommuting! entries of ann3n matrix a5(aa

i ) satisfying the quadratic
exchange relations

R̂~p! a1 a2 5 a1 a2 R̂, ~1.6!

whereR̂[R̂b1b2

a1a2 in the right-hand side is a constant~i.e., p-independent! solution of ~1.3!, ~1.4!,

and all entries in a matrix rowai5$aa
i %a51

n are acting equivalently as shift operators forp:

p ai5ai~p 1v ~ i !!or pjkai5ai ~pjk1d j
i 2d k

i ! for pjk5pj2pk . ~1.7!

Remark 1.1:It has been pointed out4,5 that, in the su(2) case, the matrixa generates the
q-Clebsh–Gordan coefficients whileR̂(p) plays the role of a ‘‘quantum 6j -symbol.’’6–8

Remark 1.2:Eq. ~1.6! is related to the one with indices 1 and 2 interchanged,

R̂~p! a2 a1 5 a2 a1 R̂, ~1.8!

by the substitutionR̂→PR̂P , R̂(p)→PR̂(p) P. It is, on the other hand, formally obtained fro

R̂ ā2 ā1 5 ā2 ā1 R̂~p! ~1.9!

by the substitutionā5a21; the same substitution relates~1.8! to

R̂ ā1 ā2 5 ā1 ā2 R̂~p!. ~1.10!

Since

R̂~p!215P R̂~p!P ~1.11!
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satisfies conditions of the same type asR̂(p) , we can start with either of these relations.
The QDYBE, introduced by Gervais and Neveu2 for the exchange algebra associated with

Liouville equation and applied to the zero mode algebra5 of the Wess–Zumino–Novikov–Witten
~WZNW! model9–11 is attracting ever more attention. Its classical counterpart, introduced in
3 ~see also Ref. 12! has been displayed in Ref. 5 for the sl(2) case and in Ref. 13 for an arbi
simple Lie algebra. The quantumR̂(p) is central to a continuing study4 of q-deformed cotangen
bundles on group manifolds and quantum model spaces. A quasi-Hopf-algebraic point of v
taken in Refs. 14,15, whereR̂(p) is obtained by a Drinfeld twist of the constantR-matrix. Felder16

explores the more general case of~classical and! QDYBE depending on a spectral parameter a
finds elliptic solutions of this equation. These solutions are applied in Ref. 17 to qua
Calogero–Moser and Ruijsenaars–Schneider models. A class of SL(num)-type solutions of the
QDYBE ~and related trigonometric solutions of the equation with spectral parameter! are de-
scribed in Ref. 18. A more mathematically minded approach to the subject in term
‘‘ h-algebroids’’ is being developed in Ref. 19.

The present work was motivated in part by earlier study20–22of the canonical quantization o
the WZNW model~following Refs. 6,10,5,11,23!. It was noticed, in particular, that the exchan
relations21 for the chiral zero modesaa

i that diagonalize theUq(sl(2)) monodromy matrix can be
written in the form~1.8!. As a result, the operator realization of the chiral group valued field
understood as a quantization of the~deformed! classical Poisson bracket relations of Ref. 13 th
opening the way to its generalization for SU(n). Here we show that a special solution of th
QDYBE ~1.3! yields a new matrix representation of the Hecke algebra. We concentrate
general study of the Hecke algebra properties of this solution and the ensuing properties
quantum matrices satisfying~1.6! relegating applications to the WZNW model to a subsequ
publication24 which is highlighted in Sec. VI. A central result is the computation of the quan
determinant ofa and the~based on it! evaluation of the inverse quantum matrix.

The paper is organized as follows. We review and extend in Sec. II results of Gurevich25 on
quantum~anti!symmetrizers and illustrate them in Sec. III on the known example of a constaR̂.
We proceed in Sec. IV to a study of a family of SL(n)-type dynamicalR-matrices and describe
two types of symmetry transformations for this family: the twist transformation~a version of
Drinfeld’s twist for dynamicalR-matrices! and the canonical shifts. In Sec. V we show that the
dynamical matrices provide a new realization of the Hecke algebra. This allows us to d
‘‘dynamical’’ (p-dependent! analogs of quantum antisymmetrizers, including the Levi-Civita` E
tensor. In Sec. VI we study the quantum algebraA, define the quantum determinant det (a), and
compute the inverse matrixa21. We demonstrate thatA provides a realization of a reflectio
equation algebra which is interpreted as a quantum monodromy algebra in the WZNW theo
Appendix is devoted to deriving some useful identities for the parameters determining the so
of the QDYBE found in Ref. 18 and to computing the normalization of the dynamical Levi-C`
tensor.

II. HECKE ALGEBRAS AND q -ANTISYMMETRIZERS

In this section we collect some basic notions on Hecke algebras and describeq-
antisymmetrizers technique which is to be applied later on. We follow closely the approa
Gurevich.25

In the present context by a Hecke algebraHk(q) we understand aC-algebra with generators
1,g1 ,g2 , . . . ,gk21 , a nonzero parameterqPC, and defining relations

gi gi 11 gi5gi 11 gi gi 11 for 1< i<k22, ~2.1!

gi
2511~q2q̄! gi for 1< i<k21, ~2.2!

gi gj5gj gi if u i 2 j u>2, ~2.3!
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whereq̄ªq21.
We shall consider the set of idempotentsA( j )PHk(q), j 51, . . . ,k, associated with single

column Young diagrams containingj nodes — the so-calledq-antisymmetrizers. Their inductive
definition is given by

A~1!51, A~ j !5
1

@ j #
A~ j 21!~qj 212@ j 21#gj 21!A~ j 21! . ~2.4!

Here @ j #5(qj2q̄ j )/(q2q̄) and we assume@ j #Þ0, for j 52, . . . ,k. Note, thatA(k) is a central
idempotent in the algebraHk(q).

Equivalently, one may write

A~ j !5
1

@ j #
A~2,j 21!~qj 212@ j 21#g1!A~2,j 21! , ~2.5!

where we have adopted the notationA( i , j ), 1< i< j , for the central idempotent of the subalgeb
Hi , j (q),Hj (q) generated by the subset 1,gi , . . . ,gj 21 . In particular,A(1,j )5A( j ), A( j , j )51.

Remark 2.1:All the subalgebrasHi ,r 1 i(q),Hk(q), i 51, . . . ,k2r , are isomorphic by defi-
nition. Moreover, they are related by innerHk(q)-automorphisms. For example, the automo
phismf i :Hi ,r 1 i(q)→Hi 11,r 1 i 11(q) is given by

f i~ t !5gigi 11 . . . gr 1 i t ~gigi 11 . . . gr 1 i !
21, ;tPHi ,r 1 i~q!. ~2.6!

The termq-antisymmetrizer for the elementsA( j ) is justified by the following properties:

~gi1q̄!A~ j !5A~ j !~gi1q̄!50 for 1< i< j 21 , ~2.7!

A~ j !A~ i ,l !5A~ i ,l !A~ j !5A~ j ! for 1< i< l< j . ~2.8!

Remark 2.2:Replacingq by (2q21) in ~2.4! leads to another sequence of projectors, ca
symmetrizers. Abstractly, inside the Hecke algebra, it is a matter of convention — which p
tors one calls symmetrizers, and which — antisymmetrizers. We use the common conve
However, on the level of representations, when one can calculate the ranks of projectors a
which sequence of projectors terminates, the distinction between symmetrizers and antis
trizers becomes meaningful.

Consider a representationrW,k : Hk(q)→Aut(W) of the algebraHk(q) in a vector spaceW.
Definition 2.1: We shall say thatrW,k is a representation of height n in one of the followin

two cases:
(a) n,k and the conditions

rW,k~A~n11!!50, ~2.9!

rankrW,k~A~n!!51, ~2.10!

are fulfilled, or
~b! n5k and rankrW,n(A(n))51.
Remark 2.3:The notion of height of a Hecke algebra representation was introduced in Re

for the special case of the representations generated by constantR-matrices. There it was name
the rank of the R-matrix. We have changed the name here in order to avoid a possible conf
with the standard notion of rank of a matrix. Note that the use of the term ‘‘height’’ is sugge
by the fact that imposing condition~2.9! for the representationrW,k results in vanishing of any
central ~and primitive! idempotent related to a Young diagram~standard tableaux! containing
more thann boxes in one of its columns.
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Remark 2.4: In view of Remark 2.1, the whole sets ofq-antisymmetrizers
$rW,k(A

( i ,n1 i ))% i 51, . . . ,k2n and $rW,k(A
( j ,n1 j 21))% j 51, . . . ,k2n11 satisfy conditions ~2.9! and

~2.10!, respectively.
Remark 2.5:Instead of using~2.9! one can impose the condition

A~n11!50 ~2.11!

at the algebraic level. This is the way how generalized Temperley–Lieb–Martin algebra
defined~cf. Ref. 26!. Below we present several useful equivalent forms of this condition.

Lemma 2.1: The condition (2.11) is equivalent to any of the following relations:

A~n! gn•••g2g15~21!n21q @n#A~n!A~2,n11!, ~2.12a!

g1g2•••gnA~n!5~21!n21q @n#A~2,n11!A~n!, ~2.12b!

gn•••g2g1A~2,n11!5~21!n21q @n#A~n!A~2,n11!, ~2.12c!

A~2,n11!g1g2•••gn5~21!n21q @n#A~2,n11!A~n!, ~2.12d!

A~n!A~2,n11!A~n!5@n#22A~n!, ~2.12e!

A~2,n11!A~n!A~2,n11!5@n#22A~2,n11!. ~2.12f!

Proof: Applying repeatedly~2.4! for the q-antisymmetrizers that appear as last factors in
resulting products and using~2.7!, ~2.8! we find

A~n11!5
1

@n11#
A~n!~qn2@n#gn!A~n!

5
1

@n11#
$qnA~n!2A~n!gn~qn212@n21#gn21!A~n21!%

5
1

@n11#
$A~n!~qn2qn21gn!1A~n!gngn21~qn222@n22#gn22!A~n22!%•••

5
1

@n11#
A~n!~qn2qn21gn1•••1~21!ngngn21•••g1!. ~2.13!

Next, we applyA(2,n11) to the both sides of Eq.~2.13!. Using again~2.7! and~2.8! we obtain

A~n11!5
1

@n11#
A~n!$q@n#A~2,n11!1~21!ngngn21•••g1A~2,n11!%.

Taking into account the relation (gngn21•••g1)A(2,n11)5A(n)(gngn21•••g1) which is a conse-
quence of~2.1! we end up with

A~n11!5
1

@n11#
$q@n#A~n!A~2,n11!1~21!nA~n!gngn21•••g1%. ~2.14!

This proves the equivalence of Eqs.~2.11! and ~2.12a!. A similar argument using iteratively a
substitution of the firstq-antisymmetrizer in the right-hand side of~2.4! implies the equivalence o
~2.11! and ~2.12b!. Condition~2.11! is transformed to the forms~2.12c! and ~2.12d! in the same
manner starting from Eq.~2.5!.

To show equivalence of~2.11! to ~2.12e! and to ~2.12f! one should employ Eqs.~2.4! and
~2.5!, respectively. We shall treat the case of~2.12e! here.
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Consider the difference

@n#2A~n!A~2,n11!A~n!2A~n! 5 A~n!~ @n#2A~2,n11!21!A~n!

5A~n!$@n#A~2,n!~qn212@n21#gn!A~2,n!21%A~n!

5@n21#A~n!~qn2gn!A~n!5@n21#@n11#A~n11!,

where we have again used the definition~2.4! and the relations~2.8!. Comparing the first and the
last lines of the calculation we deduce the equivalence of conditions~2.11! and ~2.12e!. j

Equations~2.12a!–~2.12f! display properties of the rank 1 idempotentsrW,k(A
(n)) that are

hidden in~2.11!. In fact, they are the basic technical tools which one needs to effectively deal
the heightn Hecke algebra representations.

In the rest of the paper we make use of a special type of representations of the algebrasHk(q)
for which the representation space is given bykth tensor power of an@n-dimensional, in the case
of SL(n)] vector spaceV: W5V^ k. These representations are generated by constant or dyna
R-matrices of Hecke-type. The representations we are dealing with have the specific featu
their height, when defined~i.e., for k>n ), coincides with the dimension of the spaceV.27

Below we first illustrate the general notions introduced above on the well known ca
constant SL(n)-type R-matrices relegating the study of dynamicalR-matrices to Secs. IV and V

III. REPRESENTATIONS GENERATED BY A CONSTANT R-MATRIX OF THE SL „n …
TYPE

The R-matrix corresponding to the Drinfeld–Jimbo deformation of SL(n) ~Refs. 28,29! is an
operator acting in a tensor square of ann-dimensional vector spaceV and given by

R̂b1b2

a1a25qda1a2 db2

a1db1

a2 1 ~q2q̄! ua2a1
db1

a1db2

a2, ~3.1!

~no summation in the right-hand side! where the indicesa, b take values from 1 ton, anduab

5$1 if a.b, 0 if a<b%.
This R-matrix is a particular representative of a family of constant HeckeR-matrices, i.e., it

satisfies the braid relation and the Hecke condition

R̂12R̂23R̂125R̂23R̂12R̂23, ~3.2!

R̂25I1~q2q̄! R̂. ~3.3!

Equations~3.2!, ~3.3! imply that the matricesR̂12,R̂23 generate a representation ofH3(q) in
V^ 3. For an arbitraryk the representationr R̂,k : Hk(q)→Aut(V^ k) generated by a constant Heck
R-matrix is defined by

r R̂,k~gi !5R̂i i 11 . ~3.4!

For representationsr R̂,k generated by theR-matrix ~3.1! we have

heightr R̂,k 5n if k>n .

The rank 1q-antisymmetrizersr R̂,k(A
( i ,n1 i 21)) are most conveniently described in terms ofq-

analogs of~co- and contravariant! Levi-Cività tensors which are solutions of the equations

R̂b ib i 11

a ia i 11«a1•••b ib i 11•••an52q̄ «a1•••a ia i 11•••an ,

«a1•••b ib i 11•••an
R̂a ia i 11

b ib i 1152q̄ «a1•••a ia i 11•••an
, i 51,2,. . . ,n21 .
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It is straightforward to prove that these equations have unique~up to normalization! solutions. The
rank1 condition~2.10! follows as a corollary.

In the special case of representationsr R̂,k generated by theR-matrix ~3.1! the only nonvan-
ishing components of the«-tensors have pairwise different indicesa1 ,a2 , . . . ,an , and can be
chosen as

«a1a2•••an5q̄n~n21!/2 ~2q! l ~s!, «a1a2•••an
5~2q! l ~s!. ~3.5!

Here l (s) is the length of the permutations5(a1,
1,

a2,
2,

...,

...,
a
n).

The rank 1q-antisymmetrizers are expressed in terms of the«-tensors as

r R̂,k~A~ i ,n1 i 21!!5
1

@n#!
« u i •••n1 i 21&«^ i •••n1 i 21u , i 51, . . . ,k2n11. ~3.6!

Here~by analogy with the matrix notation! we substitute the vector space indices of«-tensors by
their labels:a i→ i . The ‘‘bra’’ and ‘‘ket’’ notation of «-tensor indices is used in order to distin
guish labels of matrix spaces from those of vector spaces. One should have in mind the fol
symbolic decomposition for the matrix space label:i 5u i & ^ ^ i u. For example, the equatio
Ai uu i &([A ^ i u

u i & uu i &5v u i & is to be understood as(b i
Ab i

a i ub i5va i.

Finally, we shall adapt forr R̂,k those formulas~2.12a!–~2.12f! which will be used in Sec. VI.
Written in terms of the«-tensors the relations~2.12b!, ~2.12c!, ~2.12e! and ~2.12f! assume the
form

r R̂,n11~g1•••gn!« u1•••n&[R̂12•••R̂n n11« u1•••n&5q « u2•••n11& N ^n11u
u1& , ~3.7!

r R̂,n11~gn•••g1!« u2•••n11&[R̂n n11•••R̂12«
u2•••n11&5q « u1•••n& K ^1u

un11& , ~3.8!

K N5N K5I. ~3.9!

Here the matricesN andK are defined as

N ^n11u
u1& 5

~21!n21

@n21#!
«^2•••n11u«

u1•••n&, ~3.10!

K ^1u
un11&5

~21!n21

@n21#!
«^1•••nu«

u2•••n11&, ~3.11!

and for the«-tensors given by Eq.~3.5! we have just

N5K5I. ~3.12!

IV. SL„n …-TYPE DYNAMICAL R-MATRICES

We now turn to the dynamicalR-matrix defined in the Introduction. In order to present t
QDYBE in a form suitable for our purposes we shall introduce a set of commutative variab

Xi , i 51, . . . ,n, @Xi , Xj #50 , )
i 51

n

Xi51, ~4.1a!

which play the role of elementary shift operators forpi :

p Xi 5 Xi ~ p 1 v ~ i ! ! . ~4.1b!
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The elementsXi andqpi provide a realization of~the Weyl’s form of! the canonical commutation
relations. Note that in concrete applications they can be naturally identified with~a subset of!
dynamical variables of a model~see, e.g., Ref. 5!.

Let us arrange the auxiliary variablesXi into a unimodular diagonal matrix,

X5diag$X1, . . . ,Xn%, det~X!51. ~4.2!

The Hecke-type dynamical R-matrixis characterized by the following set of relations:

R̂12~p!~X1R̂23~p!X1
21!R̂12~p!5~X1R̂23~p!X1

21!R̂12~p!~X1R̂23~p!X1
21! , ~4.3!

R̂~p!25I1~q2q̄!R̂~p! , ~4.4!

R̂12~p!X1X25X1X2R̂12~p! . ~4.5!

Here the first and second relations are the dynamical Yang–Baxter equation and the
condition, respectively. A condition of type~4.5!, although not always imposed on dynamic
R-matrices, is also necessary in our treatment. As we shall see below, it ensures that con
~2.3! for the Hecke algebra representations generated byR̂(p) are satisfied.

Following Ref. 18 we shall consider dynamicalR-matrices of the form

R̂j 1 j 2

i 1i 2 ~p!5ai 1i 2
~p! d j 2

i 1d j 1

i 2 1 bi 1i 2
~p! d j 1

i 1d j 2

i 2, i 1,2, j 1,251, . . . ,n ~4.6!

~there is no summation over repeated upper and lower indices in the right-hand side!; in order to
have a unique decomposition in terms of the unit and the permutation matrices in the tensor
of spaces we impose the conditionbii (p)50. This special class ofp-dependent HeckeR-matrices
will be calleddynamical R-matrices of anSL(n)-type.30

The unknown functionsai j (p), bi j (p) in the Ansatz~4.6! are to be fixed by the condition
~4.3!–~4.5!. The Hecke condition~4.4! gives

bii 50, bi j 1bji 5q2q̄, for iÞ j , ~4.7!

ai j aji 2bi j bji 51, for iÞ j , ~4.8!

aii
2 2~q2q̄! aii 51. ~4.9!

The last equation has two solutions:aii 56 q61 for each i. Below we consider only the cas
aii 5q, ; i ~the other cases correspond, in particular, to quantum supergroups and have
considered in Ref. 18!. Finally, the dynamical Yang–Baxter equation~4.3! and Eq.~4.5! impose
the constraints

ai j ~p1 , . . . ,pn!5ai j ~pi j !, bi j ~p1 , . . . ,pn!5bi j ~pi j !,

bi j bjkbki1bikbk jbji 50, ~4.10!

bi j ~pi j 11!5
bi j ~pi j ! q

q̄1bi j ~pi j !
, ~4.11!

wherepi jªpi2pj . For aii 5q the general solution of~4.7!–~4.11! can be written as18

ai j ~p!5a i j ~pi j !j i j ~pi j !, bi j ~p!5q2j i j ~pi j !, ~4.12!

wherej i j (p)are expressed as the following ratios:
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j i j ~p!5
f ~pi j 21,b i j !

f ~pi j ,b i j !
, f ~p,b!5q̄p1@p#b. ~4.13!

Here b i j (pi j )5b i j (pi j 11). We shall considerb i j as constant parameters since their functio
dependence does not change any of the results below. The functionf (p,b) satisfies the finite
difference equation

f ~p11,b!1 f ~p21,b!5@2# f ~p,b!, ~4.14!

with the initial conditions

f ~0,b!51, f ~1,b!5q̄1b. ~4.15!

Equations~4.14! can be deduced from~4.11!.
Not all of the remaining in~4.12!, ~4.13! parametersa i j (pi j ) and b i j are independent. The

relations between them are given by

a i i 51 , a i j ~pi j !a j i ~pji !51, ~4.16!

b i i 50 , b i j 1b j i 5q2q̄ for iÞ j , ~4.17a!

b i j b jkbki1b ikbk jb j i 50. ~4.17b!

An easy way to solve Eqs.~4.17a!, ~4.17b! is to make the substitution

b i j 5
q2q̄

12p i j
⇔ p i j 5

b i j 2q1q̄

b i j
, for iÞ j . ~4.18a!

We stress that the parametersp i i are not fixed here and can be chosen as arbitrary constan
terms of the new variablesp i j Eqs.~4.17a!, ~4.17b! take the simple form

p i j p j i 51, p i j p jk pki51, ~4.18b!

and are solved byp i j 5)k5 i
j 21pk k115p j i

21 , for i , j . Hence,

b i j 5
~q2q̄!)k5 i

j 21bk

)k5 i
j 21bk2)k5 i

j 21~bk2q1q̄!
, for i , j , ~4.19!

where the remaining (n21) parametersb i[b i i 11 are independent.
We shall describe two types of transformations on the set of SL(n)-type dynamicalR-

matrices.

~1! a simple version oftwisting for dynamicalR-matrices:

R̂~p!21→FR̂215F̂ R̂~p! F̂21,

whereF̂(p)5F12(p)P12 and

F12[F j 1 j 2

i 1i 2 ~p!5d j 1

i 1 d j 2

i 2 c i 1i 2
~p!, ~4.20!

~an analog of Drinfeld’s twist, see Ref. 31!. An explanation on how this twist works is given in th
two Lemmas below.

Lemma 4.1: Let F(p) be an operator acting in V^V. If
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F̂12
21 X1

21 F̂235Â123X3
21 Â123 ~4.21!

for some operator A(p) acting in V̂V^V and

R̂~p!12 Â1235Â123R̂~p!23 ~4.22!

then the matrixFR̂215F̂R̂(p)F̂21 satisfies the QDYBE (4.3).

Proof: SubstituteFR̂21 in the QDYBE taking into account that the QDYBE has two equival
forms:

R̂~p!23X3
21 R̂~p!12X3 R̂~p!235X3

21 R̂~p!12X3 R̂~p!23X3
21 R̂~p!12X3 ,

R̂~p!21X1
21R̂~p!32X1 R̂~p!215X1

21R̂~p!32X1 R̂~p!21X1
21R̂~p!32X1 .

The first equation results from repeated application of~4.5! to ~4.3!. The second equation i
obtained from the first one by simply permuting the subscripts 1 and 3. j

Lemma 4.2: Let F12 be the diagonal matrix (4.20) wherec i j c j i 51 and c i i 51. Assume that

c i j depends on pi j only. Then, Eqs. (4.21), (4.22) are satisfied by Aˆ 5AP23P12, where the matrix
A is diagonal, Aabc

i jk 5ai jkda
i db

j dc
k , the elements ai jk being given by

ai jk5H c ik c jk if iÞ j ,

@c ik~pik11!#2 if i 5 j .
~4.23!

Proof: The operatorA123 is symmetric in the first two indices,A1235A213 which implies that
it commutes with anyR-matrix of the form~4.6!. Therefore,~4.22! is satisfied.

Equation~4.21! can be checked directly. j

These Lemmas demonstrate that the operator~4.20! indeed generates a twist leading to t
changesa i j→a i j c j i

2 , b i j→b i j of the parameters in~4.12!, ~4.13!.

~2! Canonical transformationsof the dynamical parameterspi→pi1ci , where ci , i
51, . . . ,n are arbitrary constants satisfying the condition( i 51

n ci50.
We conclude the section by a brief discussion of the structure of the family of SL(n)-type

dynamicalR-matrices~4.6!, ~4.12!, ~4.13!. There are two essentially different domains for t
parametersb i of this family.

~a! b iÞ0 andb iÞq2q̄, for all i.
In this case the whole family~4.6!, ~4.12!, ~4.13! can be generated starting from any particu

representative with the use of the two types of transformations described above.
Indeed, the parametersa i j can be excluded with the help of a twist. Then, performing

canonical transformation of the form

q2pi j→q2pi j p i j 5q2pi j )
k5 i

j 21
bk2q1q̄

bk
for i , j ,

for instance, one excludes the parametersb i j from the ansatz~4.6!, ~4.12!, ~4.13! and passes to a
dynamicalR-matrix with

j i j ~p!5
@pi j 21#

@pi j #
~4.24!

@cf. ~4.13!–~4.17b!#. This R-matrix is the limiting caseb i→` of our family, and it is this type of
dynamicalR-matrix which is discussed in Ref. 5.

~b! Either all b i5q2q̄, or all b i50.
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We shall consider the first caseb i5q2q̄ for which

b i j 5H q2q̄ for i , j

0 for i> j
~4.25!

and puta i j (pi j )5consti j . In this case theR-matrix ~4.6!, ~4.12!, ~4.13! becomes independent o
the dynamical variablespi and is reduced to the constantR-matrix describing the
multiparametric32 deformations of GL(n) which are all twist-equivalent.

With the particular choice

a i j 5H q for i , j

1 for i 5 j

q̄ for i . j

~4.26!

one reproduces the standard SL(n)-type R-matrix ~3.1!.
Remark 4.1:In the intermediate cases~where only a part of the parametersb i are equal to 0

or q2q̄) the corresponding dynamicalR-matrix R̂(p) contains the~dynamical and constant!
R-matrices described in~a! and ~b! as submatrices.

V. REPRESENTATIONS GENERATED BY THE SL „n …-TYPE DYNAMICAL R-MATRICES

Now we are in a position to introduce the Hecke algebra representations associate
Hecke-type dynamicalR-matrices.

Proposition 5.1:Let R̂(p) be a dynamical R-matrix of the Hecke type. The matrices

r R̂~p!,k~gi !5~X1X2•••Xi 21!R̂i ,i 11~p!~X1X2•••Xi 21!21, i 51, . . . ,k21, ~5.1a!

generate a Hecke algebra representation,r R̂(p),k :Hk(q)→Aut(V^ k).
Proof: Obviously, Eq.~4.3! implies that the matricesr R̂(p),k(gi) andr R̂(p),k(gi 11) satisfy the

braid relations~2.1!. Then, the conditions~4.5! ensure that the matrices~5.1a! satisfy ~2.3! and,
therefore,~5.1a! represent the generators of the braid algebraBk . Finally, the Hecke conditions
~2.2! for the generators~5.1a! follow from the Hecke property~4.4! of the dynamicalR-matrix
~2.2!. j

Remark 5.1:In contrast with the case of constant HeckeR-matrix ~3.4! the representations
generated by a dynamical HeckeR-matrix are nonlocal; in other words, the matricesr R̂(p),k(gi)
act nontrivially as diagonal matrices onVj with j , i ~and not merely onVi ^ Vi 11). Only the
representation of the first generator withi 51 has the usual ‘‘locality’’ property.

Remark 5.2:One can construct representations equivalent tor R̂(p),k in which some other
generator is ‘‘localized’’ insteadg1 . For instance, the representationr̄ R̂(p),k which localizes
r̄ R̂(p),k(gk21) is given by

r̄ R̂~p!,k~ t !5~X1X2•••Xk!
21r R̂~p!,k~ t !~X1X2•••Xk!, ;tPHk~q! ~5.1b!

so that

r̄ R̂~p!,k~gi !5~Xi 12•••Xk!
21R̂i ,i 11~p!~Xi 12•••Xk!. ~5.1c!

Note that in addition to the nonlocal property the representation matrices ofr̄ R̂(p),k depend ex-
plicitly on k.

From now on we shall restrict ourselves to discussing those representationsr R̂(p),k which are
generated by the SL(n)-type dynamicalR-matrices~4.6!, ~4.12!, ~4.13!. For k>n all these repre-
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sentations are of heightn. The rank1q-antisymmetrizers are conveniently expressed in term
dynamicalE-tensorsE u1•••n&(p) andE^1•••nu(p), which are the unique~up to normalization! solu-
tions of the equations

r R̂~p!,k~gi !Eu1•••n&~p!52q̄Eu1•••n&~p!,

E^1...nu~p!r R̂~p!,k~gi !5q̄E^1...nu~p!,
1< i<n21. ~5.2!

The only nonvanishing components of theseE-tensors have pairwise different indicesi 1 ,i 2 , . . . ,i n

and look like

E i 1i 2 . . . i n~p!5~21! l ~s! )
~ j ,i !PJ~s!

a j i ~pji ! )
1<a,b<n

j i ai b
~pi ai b

!, ~5.3!

Ei 1i 2••• i n
~p!5~21! l ~s! )

~ j ,i !PJ~s!
a i j ~pi j !. ~5.4!

Here l (s) is the length of the permutations5( i 1,
1,

i 2,
2,

...,

...,
i n
n ), and

J~s!5$~ i a ,i b!:a,b,i a. i b%.

The dynamicalE-tensors~5.3!, ~5.4! are normalized so that they would coincide with the const
«-tensors~3.5! in the case~4.25!, ~4.26!.

Now the expressions for rank 1q-antisymmetrizers in the representationsr R̂(p),k are given by

r R̂~p!,k~A~ i ,n1 i 21!!5
1

@n#!
~X1•••Xi 21!E u i •••n1 i 21&~p!E^ i •••n1 i 21u~p!~X1•••Xi 21!21. ~5.5!

The numerical coefficient in this formula is calculated with the use of the relation

E^1•••nu~p!E u1•••n&~p!5@n#!, ~5.6!

which is proved in the Appendix.
We conclude the discussion on dynamicalR-matrices by writing down formulas~2.12a!,

~2.12d!, and~2.12e!, ~2.12f! for the representationr R̂(p),n11 :

E^1•••nu~p! r R̂~p!,n11~gngn21•••g1!5q K ^1u
un11& ~p! X1E^2•••n11u~p!X1

21, ~5.7!

X1E^2•••n11u~p!X1
21r R̂~p!,n11~g1g2•••gn!5q N ^n11u

u1& ~p! E^1 . . .nu~p!, ~5.8!

K~p! N~p!5N~p! K~p!5I. ~5.9!

Here the matricesN(p), K(p) are defined as

N ^n11u
u1& ~p!5

~21!n21

@n21#!
X1E^2•••n11u~p!X1

21E u1•••n&~p!, ~5.10!

K ^1u
un11& ~p!5

~21!n21

@n21#!
E^1•••nu~p!X1E u2•••n11&~p!X1

21. ~5.11!

For the SL(n)-type dynamicalR-matrices the matricesN(p), K(p) are diagonal. Inserting for-
mulas~5.3!, ~5.4! for the dynamical«-tensors into~5.10!, ~5.11! and using~5.6!, one ends up with
the following expressions for their diagonal components:
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Ni
i~p! 5 ~Ki

i~p!!215)
j Þ i

a i j ~pi j 2u j i ! j i j ~pi j !, ~5.12!

whereu j i 5$1 if j . i , 0 if j , i %.

VI. QUANTUM MATRIX ALGEBRA A„R̂„P…,R̂…: QUANTUM DETERMINANT AND
INVERSION FORMULA

We shall apply the above technique to the quantum matrix algebraA which is defined as
follows ~cf. the Introduction!.

Definition 6.1: LetF be the field of the complex meromorphic functions of the (commu

variables pj , j 51, . . . ,n. Let R̂(p) be a dynamical R-matrix of anSL(n)-type and Rˆ be a

constantSL(m)-type R-matrix. Assume that both Rˆ (p) and R̂ satisfy the Hecke condition (1.4

with the same value of q. ThenA5A(R̂(p),R̂) is a complex algebra with1 that is generated by
F and the mn elements aa

i ( i 51, . . . ,n anda51, . . . ,m), satisfying the relations

R̂~p!12a1 a2 5 a1 a2 R̂12, ~6.1!

a f~p!5X f~p!X21a, ; f ~p!PF, ~6.2!

where X is a unimodular diagonal matrix (4.2) whose diagonal elements Xi satisfy (4.1a), (4.1b).
Remark 6.1:The definition above is given for arbitrarym andn. However in the sequel we

shall discuss the casem5n only.
Remark 6.2:For the applications envisaged here, the fieldF of meromorphic functions ofpj

can be replaced by its subfield of rational functions ofqpj ~as stated in the Introduction!. Then we
should just require

Xkqpi j ~Xk!215qpi j 1d jk2d ik

instead of~4.1b!. Note that forq a root of unity, q2h51 @cf. Eq. ~7.8! below# pi j are only
determined up to an additive integer multiple of 2h.

Remark 6.3:More general matrix algebras are of interest in which theR-matrices on both
sides of the quadratic relations~6.1! are allowed to depend on possibly different sets of commu
variablesp andp8

R̂~p!12Q1Q2 5 Q1Q2R̂8~p8!12, ~6.3!

while the shift properties assume the form

pkl Qj
i 5 Qj

i ~pkl1dk
i 2d l

i !, p8kl Qj
i 5 Qj

i ~p8kl1d jk2d j l !. ~6.4!

SuchA(R̂(p),R̂8(p8)) can be treated in much the same way or reduced to the study of two m
algebras of the above type settingQj

i 5aa
i ā j

a , wherea andā satisfy exchange relations of the typ
~1.6! and ~1.10!, respectively~see Ref. 24!. Note that dynamical quantum groups~introduced in
Ref. 16! are defined by relations similar to~6.3! and~6.4! but with the dynamicalR-matrices~and
momentap,p8) related to each other by some equivalence transformationR̂8(p8)5X21R̂(p)X.
Another desirable modification of the matrix algebra~6.1! corresponds to the case whenR̂ is an
SOq or Spq constantR-matrix. In this caseR̂ and R̂(p) satisfy a third order~Birman–Wenzl!
condition instead of the Hecke property~2.2! and the QDYBE~4.3! have to be modified corre
spondingly.

Remark 6.4:The algebraA differs from the one considered in Ref. 33 where the counter
of a matrixb5X21a @denoted byua

i (v̄) in Eq. ~11! of Ref. 33# which commutes withp is used
for changing the basis of chiral vertex operators. It is assumed in Ref. 33 that the elemenb
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only depend onp and hence commute among themselves while in our case this is not so. In
the reflection equation subalgebraM(R̂), defined in Proposition 6.5 below, is noncommutati
although its elements commute with thep’s. The difference is essential: as a result, Cremmer
Gervais do not recover the standard~constant! SLq(n)R-matrix for n.2 but introduce instead
new solutions of the Yang–Baxter equation. One of the authors~I.T.! would like to thank J.-L.
Gervais and E. Cremmer for an enlightening discussion on this point.

The term‘‘matrix algebra’’34 for the algebraA[A(R̂(p),R̂) is justified by the fact that we
shall be able to~define and! compute the determinant ofa — as a function ofp — and to find the
inverse ofa. In the case of 232 matrices the determinant ofa was constructed in Ref. 4~see also
Ref. 36! for the special choiceb i→`,a i j 51 of the parameters. We shall present the definition
the determinant in a general setting.

Definition 6.2: Let a5uuaa
i uu be the matrix of generators of the algebraA(R̂(p),R̂). The

determinant of the matrix a is given by

det~a! 5
1

@n#!
E^1•••nu~p!a1 a2 •••an « u1•••n&. ~6.5!

The meaning of this definition is made clear by the following three Propositions. The firs
the third of them are the quantum analogs of the basic determinant properties. The seco
allows to perform an SL(n)-reduction in the algebraA(R̂(p),R̂).

Proposition 6.1: The product(a1 a2•••an ) intertwines between constant and dynamic
«-tensors:

E^1•••nu~p!a1 a2•••an 5det~a! «^1•••nu , ~6.6!

a1 a2•••ane u1...n&5E u1•••n&~p!det~a!. ~6.7!

Proof: First, observe that due to the relations~6.1!, ~6.2! the product of k matrices
(a1 a2•••ak ) intertwines between the representationsr R̂,k andr R̂(p),k of the algebraHk(q). In-
deed,

~a1•••ak !r R̂,k~gi !5 ~a1•••ak !R̂i ~ i 11!

5a1•••ai 21 ~R̂i ~ i 11!~p!ai ai 11 !ai 12•••ak

5~X1•••Xi 21!R̂i ~ i 11!~p!~X1•••Xi 21!21~a1•••ak !5 r R̂~p!,k~gi !~a1•••ak !.

~6.8!

In particular, one has

~a1•••an !r R̂,n~A~n!!5r R̂~p!,n~A~n!!~a1•••an !.

Multiplying both sides byr R̂,n(A(n)) from the right or byr R̂(p),n(A(n)) from the left and using
projector property of theq-antisymmetrizer one comes to the equations

r R̂~p!,n~A~n!!~a1•••an !5r R̂~p!,n~A~n!!~a1•••an !r R̂,n~A~n!!, ~6.9!

~a1•••an !r R̂,n~A~n!!5r R̂~p!,n~A~n!!~a1•••an !r R̂,n~A~n!!. ~6.10!

Finally, expressing~3.6!, ~5.5! for constant and dynamicalq-antisymmetrizers in terms of th
«-tensors, one transforms~6.9!, ~6.10! to the form~6.6!, ~6.7!. j

Proposition 6.2: The elementdet(a) of the algebraA(R̂(p),R̂) commutes with the generator
pi and its commutation with the generators aa

i is described by
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det~a! a5K~p! a det~a!, ~6.11!

where the diagonal matrix K(p) is given in (5.11), (5.12).
Proof: Consider the permutation of det(a) with an arbitrary functionh(p):

det~a!h~p!5E^1•••nu~p!a1•••an h~p!« u1•••n&/@n#!

5E^1•••nu~p!~Xn •••X1!h~p!

3~Xn •••X1!21a1•••an « u1•••n&/@n#!. ~6.12!

Since the only nonvanishing components of the tensorE^1•••nu(p) are those with pairwise differen
indices and due to the diagonal structure of the matrixX one has

E^1•••nu~p!Xn •••X15E^1•••nu~p!det~X!5E^1•••nu~p!,

where in the last equality the unimodularity ofX @see~4.2!# is taken into account. Now we ca
complete the transformation of~6.12!:

det~a!h~p!5•••

5h~p!E^1•••nu~p!~Xn •••X1!21a1•••an « u1•••n&/@n#! 5h~p!det~a!.

This proves commutivity of det(a) andpi .
Consider now permutation of det(a) with the matrixa. It is technically convenient to takea

living in the matrix space with label (n11):

det~a! an11 5E^1•••nu~p!$a1•••an an11 %« u1•••n&/@n#!

5$E^1•••nu~p! r R̂~p!,n11~gn •••g1!%a1•••an11 $r R̂,n11
21

~gn •••g1! « u1•••n&%/@n#!

5K ^1u
un11& ~p!$X1E^2•••n11u~p!X1

21 a1 %$a2•••an11 « u2•••n11&%K21
^n11u

u1& /@n#!

5K ^1u
un11& ~p! a1 $E^2•••n11u~p!E u2•••n11&~p!%det~a! K21u1&

^n11u
/@n#!

5~K~p!aK21!n11 det~a!.

The following formulas are used in the course of the calculation:~6.5! and ~6.8! in the first line,
~5.7! and~3.8! in the second line,~6.2! and~6.7! in the third line, and~5.6! in passing to the las
line. For clarity we put into braces those expressions which are to be transformed in the nex

Finally, substitutingI for the matrixK @see~3.12!# we obtain~6.11!. j

Corollary 6.1: The element

D5det~a! )
i , j

w i j ~pi j !

f ~pi j !
, ~6.13!

where f(pi j )5q̄pi j 1@pi j #b i j and the functionsw i j are defined by the relations

a i j ~pi j !5
w i j ~pi j 11!

w i j ~pi j !
~6.14!

belongs to the center of the algebraA(R̂(p),R̂). TheSL(n)-reduction in the algebraA(R̂(p),R̂)
can be performed by imposing the conditionD51.

Proof: We shall search for the central element inA(R̂(p),R̂)in the form D5U(p)det(a),
whereU(p) is some function ofpi which is to be fixed. As follows from Proposition 6.2, th
elementD commutes withpi and its commutivity with the generatorsaa

i imposes the following
conditions on the functionU
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XiU~p!~Xi !215U~p!Ki
i~p!, i 51,•••,n. ~6.15!

Now using ~4.1b!, ~4.13! and ~5.12! it is straightforward to check that with the choice~6.13!,
~6.14! one satisfies conditions~6.15!. j

Proposition 6.3: Let the algebraA(R̂(p),R̂) be completed with the inverse determinant of
(det a)21 det(a)5det(a)(deta)2151. Then the left and right inverse of a is given by

~a21! ^n11u
u1& 5

~21!n21

@n21#!
~deta!21 E^2•••n11u~p! a2•••an « u1•••n&. ~6.16!

Proof: We first check that the expression~6.16! is a left inverse ofa:

~a21! ^n11u
u1& an11 5

~21!n21

@n21#!
~deta!21$E^2•••n11u~p!a2•••an an11 %« u1•••n&

5
~21!n21

@n21#!
~deta!21det~a! «^2•••n11u«

u1•••n& 5 N ^n11u
u1& 5 I ^n11u

u1& .

Here we have used successively Eqs.~6.6!, ~3.10! and ~3.12!.
Checking that~6.16! is also a right inverse is slightly more complicated:

a1 ~a21! ^n11u
u1& 5

~21!n21

@n21#!
$a1 ~deta!21%E^2•••n11u~p! a2•••an « u1•••n&

5
~21!n21

@n21#!
~deta!21K1~p!$a1 E^2•••n11u~p!%a2•••an « u1•••n&

5
~21!n21

@n21#!
~deta!21K1~p! X1 E^2•••n11u~p!X1

21$a1•••an « u1•••n&

5~deta!21K1~p! N ^n11u
u1& ~p! det~a!5I ^n11u

u1& ,

where we have applied successively Eqs.~6.11!, ~6.2!, ~6.7!, ~5.10! and ~5.9!. j

The existence of inverse matrixa21 is needed in many applications of the algeb
A(R̂(p),R̂). As an example of such application we shall construct a realization of a refle
equation algebraM(R̂) ~for definition of this algebra see, e.g., Ref. 37, and references therei! in
terms of the generators ofA(R̂(p),R̂). We have to use here the following general property
SL(n)-type dynamicalR-matrices~which has been noticed in Ref. 5 for the SL(2) case, see
Refs. 4,14!.

Proposition 6.4: The dynamical matrix Rˆ (p) (4.6), (4.12), (4.13) satisfies the equation

D1 R̂~p! D2
215R̂~p!21 s12, ~6.17!

where the diagonal matrices D ands

D j
i [qdid j

i , ~s12! j 1 j 2

i 1i 2 5d j 1

i 1d j 2

i 2 s i 1i 2
~6.18!

are fixed by (6.17) as

qdi2dj5q22pi j p i j ~ iÞ j ! , ~6.19!

s i j 5q2d i j ~6.20!

so that di are functions of p.
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Proof: First of all we note that from the Hecke condition~4.4! @and ~4.7!# one can deduce

R̂~p!215~ai 1i 2
~p!2~q2q̄!d i 1i 2

! d j 2

i 1d j 1

i 2 2 bi 2i 1
~p! d j 1

i 1d j 2

i 2. ~6.21!

Substitution of~4.6!, ~6.18! and~6.21! into ~6.17! gives the following equations for the paramete
s i j anddi :

ai j 5~ai j 2~q2q̄!d i j ! s j i , ~6.22!

qdi2dj bi j 52bji s i j . ~6.23!

Equation~6.22! leads to~6.20! while ~6.23! is equivalent@in view of ~A7!# to ~6.19!. j

Now we construct the matrixMa
b which is diagonalized with the help of the matrixaa

i and
the spectrum of which is defined by the matrixD ~6.18!, ~6.19!

M5a21 D a. ~6.24!

It is clear that@D1 , D2#50 and therefore the spectrum of the matrixM gives a commutative
set of elements.

Proposition 6.5: The elements of the matrix M~6.24! satisfy a reflection equation of the form

M2 R̂21 M2 R̂215R̂21 M2 R̂21 M2 , ~6.25!

and thus provide a realization of a reflection equation subalgebraM(R̂) in A(R̂(p),R̂). The

matrix elements of M satisfy the following exchange relations with the generators ofA(R̂(p),R̂):

@D2 , M1#50, M1 a25q2/n a2 R̂21 M2 R̂21. ~6.26!

Proof: Using~6.2!, one can bring the commutation relations of the matrixD with the elements
aa

i to the form

a1 D25q22/n s12D2 a1 , ~6.27!

where the diagonal matrixs12 is given by ~6.18!, ~6.20!. Equations~6.24! and ~6.27! imply
@D2 , M1#50. Then one proves~6.25! and the second relation in~6.26! by using ~6.24!, ~6.1!,
~6.27! and ~6.17!. j

VII. APPLICATION TO THE SU „n … WZNW MODEL

As an application of quantum matrix algebras we briefly describe here a typical proble
the two dimensional conformal field theory in which such matrices arise~see Ref. 24 for more
details!.

Let G be a connected compact Lie group andg5g(t,x) be a map from the cylinderR3S1

into G which satisfies the Wess–Zumino–Novikov–Witten~WZNW! equations of motion. The
general periodic solutiong(t,x)5g(t,x12p) of these equations factorizes into a product
group valued chiral fields

gB
A~ t,x!5ua

A~x2t !ūB
a~x1t ! ~classically, g,u,ūPG!, ~7.1!

each of which satisfies a twisted periodicity condition; in particular,

u~x12p!5u~x!M ~MPG!, ~7.2!

whereM is the monodromy.
Furthermore, the quantum chiral fields obey quadratic exchange relations5,6,10,11,20,21,23,38,39
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u~y!2u~x!15 u~x!1u~y!2R~x2y! ⇔ Pu~y!2u~x!15 u~x!2u~y!1R̂~x2y! . ~7.3!

Here the matrixR(x) is a solution of the quantum Yang–Baxter equation whosex-dependence is
given by a step function, whileR̂(x) is the associated braid operator:

R̂~x!5R̂ u~x!1R̂21 u~2x! , R̂~x!5P R~x! 5R̂«~x! ~7.4!

@«(x)5u(x)2u(2x) # .
Since R̂ enters Eq.~7.3! in pair with P it should be normalized to have determinant deR̂

5det P. For G5SU(n) this implies the relation

R̂ii 115q̄1/n r~gi ! ~ for gi
25I1~q2q̄!gi ! ⇒ det R̂5det P5~21!~2

n
! ~7.5!

so that we have to renormalizeR̂ of ~3.1! by multiplying it by q̄1/n. ~The resultingR̂ has eigen-
valuesq121/n and2q̄11 1/n of multiplicities ( 2

n11) and (2
n), respectively; thus the product of alln2

eigenvalues ofR̂ is indeed (21)(2
n).)

We expand, following Refs. 21 and 4,u(x) into a basis of zero modes that diagonalizes
monodromy matrixM at least for ‘‘physical weights’’~satisfyingp1n,h ):

ua
A~x!5aa

i ui
A~x,p! , a M5D a , D j

i 5qdid j
i . ~7.6!

Heredi522pi21/n11, p5$pi% are central elements of the reflection equation algebraM(R̂);
in the quantum field theoretic representation at hand they form a commuting set of operator
that Eq.~1.7! takes place. The eigenvalues of the differencespii 11(5pi2pi 11) are natural num-
bers that can be identified with the extended weights,l i11 labeling the~finite dimensional!
irreducible representations of SU(n) . The labels of the (j

n) dimensional fundamental represent
tion are given byl i

( j )5d i
j , 1< i , j <n21. Under these assumptions Eq.~7.3! implies exchange

relations of the type

R̂~p! a1 a25a1 a2 R̂21 , ~7.7!

where R̂(p) obeys the QDYBE~1.3!. Hence, the results displayed in Secs. IV and V can
applied with slight modifications.~SinceR̂(p) andR̂21 enter~7.7! homogeneously, the factorq̄1/n&

of ~7.5! cancels in the two sides.! Thus we can also apply the results of Sec. VI to the~chiral zero
mode! quantum matrix algebraA of the SU(n) WZNW model. It should be noted that in this cas
q is a root of21 associated with the levelk sû(n) Kac–Moody algebra:

q5ei ~p/h! , @2#5q1q̄52 cos
p

h
, h5n1k~>n11! . ~7.8!

The eigenvaluesqdi of the diagonal matrixD can be expressed as differences of conform
dimensions. Indeed, according to Ref. 21, the chiral vertex operatorsuj (x,p) satisfy

uj~x12p,p!5uj~x,p! e2p i ~Dh~p!2Dh~p1v~ j !!! , ~7.9!

where the matricesv ( j ) andp are defined by~1.1! and ~1.2!. Here the conformal dimensions ar
expressed in terms of the SU(n) Casimir operator,

2 h Dh~p!5C2~p!5
1

n (
1< i ,k<n

pik
2 2

n~n221!

12
, ~7.10!

so that
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dj5C2~p!2C2~p1v ~ j !!522~puv ~ j !!2uv ~ j !u25 ~1/n! 2122pj . ~7.11!

Inserting this in~6.19!, we deduce thatp i j 51 so that we arrive at the special solution~4.24! for
R̂(p), allowing us to present~7.7! in the form

a i j ~p!@pi j 21# aa
j ab

i 5 @pi j # ab
i aa

j 2qebapi j aa
i ab

j ~7.12!

~hereeab is equal 1 fora.b, 0 for a5b and21 for a,b ). According to the analysis of Sec
IV we can reduce~7.12! to the casea i j (p)51 by a suitable twist.

An important consequence of~7.8! and ~7.12! is the existence of an idealIh of A generated
by n2 elements (aa

i )h such that the factor algebraA/Ih is finite dimensional.24 This allows to
define a finite dimensional ‘‘Fock space representation’’ ofA with a unique vacuum vectoruvac&
corresponding to the trivial su(n) weight l i50 (pii 1151, i 51, . . . ,n21) such that

aa
i uvac&50 for i .1 , Ih uvac&50 . ~7.13!
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APPENDIX: NORMALIZATION OF DYNAMICAL LEVI-CIVITA` TENSORS

The definitions~5.3!, ~5.4! lead to the expression

Ei 1••• i n
~p! E i 1••• i n~p!5 )

1<a,b<n
j i ai b

~A1!

~there are no summations over the indicesi k), and the normalization condition~5.6! for the
dynamicalE-tensors follows from

Proposition A: Letj i j 5d2bi j , where d is a constant (comparing with (4.12), one gets
5q) and the elements bi j satisfy (4.7), (4.10). Then the following identity holds:

I k[(
Sk

)
1<a,b<k

j i ai b
5@k#d!, ~A2!

where k<n, @k#d5(dk2(d2l)k)/l (l5q2q̄) and Sk denotes all permutations of indice
( i 1 , . . . ,i k) ( i aÞ i b for aÞb). Note that@k#d5@k# for d5q @as it is needed in~5.6!#.

Proof: We shall proceed by induction. Fork52 we have

I 25j i 1i 2
1j i 2i 1

52 d2l5@2#d .

Let ~A2! be correct for somek(1,k,n), then fork11 we derive
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I k115 (
Sk11

F S )
l 51

k

j i l i k11D )
1<a,b<k

j i ai bG
5 (

r 51

k11 F S )
l 51
lÞr

k11

j i l i r D (
Sk

)
aÞrÞb

1<a,b<k11

j i ai bG
5I k (

r 51

k11

)
l 51
lÞr

k11

j i l i r
.

Therefore we should prove the identity

@k11#d5 (
r 51

k11

)
l 51
lÞr

k11

j i l i r
5 (

r 51

k11

)
l 51
lÞr

k11

~d2bi l i r
!. ~A3!

This identity follows from the relation

(
r 51

m

)
l 51
lÞr

m

bi l i r
5lm21~m<k11!, ~A4!

which can be obtained by induction. Indeed, from Eqs.~4.7!, ~4.10! we have form52,3,

bi 1i 2
1bi 2i 1

5l, bi 2i 1
bi 3i 1

1bi 1i 2
bi 3i 2

1bi 1i 3
bi 2i 3

5l2.

Then we deduce

)
l 52

m

bi l i 1
5bi 2i 1 S lm222(

r 53

m

~l2bi r i 1
! )

l 53
lÞr

bi l i r D
5bi 2i 1 (r 53

m

bi r i 1 )l 53
lÞr

bi l i r

5(
r 53

m

~l22bi 1i 2
bi r i 2

2bi 1i r
bi 2i r

! )
l 53
lÞr

bi l i r

5lm212(
r 52

m

)
l 51
lÞr

bi l i r
,

which proves~A4!. Expanding the right hand side of~A3! in power series ofd and taking into
account~A4! we verify the relations~A3! and, thus, complete the proof. j

One can reformulate the statement of Proposition A in more concise form~only in terms of
elementsj i j ).

Proposition B: Letj i j satisfy

j i j 1j j i 5@2#5j i j j jk jki1j ik jk j j j i ~ iÞ j ÞkÞ i !.

We rewrite these conditions as
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(
r 51

k

)
l 51
lÞr

k

j i l i r
5@k# for k52,3. ~A5!

Then, Eq. (A5) is also valid for4<k<n, and the following identity holds:

I k[(
Sk

)
1<a,b<k

j i ai b
5@k#!, ~A6!

where Sk denotes all permutations of the indices( i 1 ,•••,i k) and iaÞ i b for aÞb.
Proof: The proof is similar to that of Proposition A. j

Remark:There are many other interesting relations among the elementsbi j ~4.7!, ~4.10! ~as
well as amongj i j ). For example, one can easily deduce the identity

bi 1i 2
bi 2i 3

•••bi k21 i k
bi k i 1

5~21!k bi 1i k
bi ki k21

•••bi 3 i 2
bi 2 i 1

,

which generalizes~4.10! and follows from the relation

2
bji ~p!

bi j ~p!
q2pi j 5p i j . ~A7!

Note that we considerp i j as constants which are independent ofpi .
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Lie subalgebras of real and complex orthogonal groups
in dimension four
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We give an explicit description of all Lie subalgebras of the Lie algebrasso4R and
so4C of the orthogonal groupsO(4,R) andO(4,C). © 1999 American Institute of
Physics.@S0022-2488~99!00501-0#

I. INTRODUCTION

In view of applications to mathematical physics as well as to differential geometry, we fi
worthy to give a description, as explicit as possible, of the Lie subalgebras of the orthogon
algebrasso4R andso4C.

Our approach is elementary, in the sense that we do not rely on Dynkin diagrams or g
structure theorems: only some linear algebra and elementary facts about Borel subalgeb
needed.

II. LIE SUBALGEBRAS OF so4R

Let H be the skew field of quaternions and letS3,H be the Lie group of unit quaternions
isomorphic to the three-dimensional sphere. For each (p,q)PS33S3, let wp,q be theR-linear map
defined by

wp,q : H→H,

x°pxq21,

for every xPH. Since iwp,qxi5ipiixiiq21i5ixi , for all p,qPS3 the mapfp,q belongs to
O(4,R), where we identifyR4 with H. Let w be the map

w: S33S3→O~4,R!,

~p,q!°fp,q .

Sincew is continuous andS33S3 is connected, the imagew(S33S3) of w is in fact contained in
the connected componentSO(4,R). Then we have a commutative diagram of Lie group hom
morphisms:

whereD is the diagonal map of the Lie groupS3 and the inclusion ofSO(3,R) in SO(4,R) is
induced by the identification ofR3 with the subspace of pure quaternions. Then the Lie groupS3,

a!Electronic mail: fedlas@mate.polimi.it
4490022-2488/99/40(1)/449/5/$15.00 © 1999 American Institute of Physics
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readily seen; is the universal covering ofSO(3,R) and the Lie groupS33S3 is the universal
covering ofSO(4,R) ~see, e.g., Ref. 1!. As a consequence,we have a Lie algebra isomorphism:

so4R.so3R% so3R. ~II.1!

Henceforth, denote byso3E andso3F the first and the second summand of the direct sum~II.1!:

so4R.so3E% so3F. ~II.2!

Given any subalgebrag,so4R.so3E% so3F, choose a linear subspaceg8 ~in general, not
uniquely determined! in such a way that

g5~gùso3E! % ~gùso3F ! % g8,

as a direct sum of vector spaces. Let

prE :so3E% so3F→so3E, prF :so3E% so3F→so3F

be the projections, and denote by

ḡE5prE~g!, ḡF5prF~g!

the projections of the Lie algebrag on slE andslF, respectively. It is easy to prove thatgùso3E
andgùso3F are ideal of the Lie algebrasḡE and ḡF , respectively.

From the linear isomorphisms,

g

gùso3F
. ḡE ;

g

gùso3F
.~gùso3E! % g8,

we see that

ḡE.~gùso3E! % g8,

as vector spaces. At the same way, we see, of course, that

ḡF.~gùso3F ! % g8.

Since dimg8<3, a priori the following cases may occur:

~a! dim g850.

Theng5(gùso3E) % (gùso3F) is direct sum of Lie subalgebras ofso3E andso3F;

~b! dim g851.

Since there are no two-dimensional Lie subalgebras inso3R ~becauseso3R is isomorphic to
the Lie algebra (R3,∧), where∧ is the ordinary vector product!, we havegùso3E5gùso3F
50 and thereforeg5g8 is one-dimensional;

~c! dim g852.

This would imply that dimḡE52 or 3. Either cases are impossible, because on the one
there are no two-dimensional subalgebras ofso3E and, on the other, if dimḡE were equal to 3,
thenso3E5 ḡE would contain a one-dimensional idealgE , which is impossible;

~d! dim g853.
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If this case occurs, thengùso3E5gùso3F50. Thereforeg. ḡE. ḡF.so3R is the ‘‘diago-
nal’’ Lie subalgebra,

g5$~A,A!Pso3R% so3R, APso3R%.

Results are summarized in Table I. In particular, we find the following results, already s
in Ref. 2.

~1! The Lie algebraso4R has no five-dimensional Lie subalgebras.
~2! Every subalgebra ofso4R of dimension four is a direct sum of two summands: a o

dimensional subalgebra contained either in the idealso3E or in so3F, and the idealso3F or
so3E, respectively.

III. LIE SUBALGEBRAS OF so4C

It is well known thatso4C.sl2C% sl2C ~see, e.g., Ref. 3!. We therefore begin by investigatin
the Lie subalgebras ofsl2C.

Each nonzero matrixAPsl2C is GL2C conjugate—and henceSL2C conjugate—to one of the
following matrices in Jordan canonical form:

Ul 0

0 2l
U or U0 1

0 0
U.

Therefore the only one-dimensional Lie subalgebra ofsl2C are, up to conjugation,CH andCE1 ,
where

H5U1 0

0 21
U and E15U0 1

0 0
U.

Since two-dimensional Lie algebras are solvable and it is well known that Borel subalg
~maximal solvable Lie subalgebras! are conjugate~see Ref. 3!, the only two-dimensional Lie
subalgebra ofsl2C is

H Ua b

0 2a
Uq a,bPCJ 5CH›CE1 ,

where we use the following:
Notation.g5a›h means that the Lie algebrag is a semidirect sumof the Lie subalgebraa

and of theideal h.
We now go back to the problem of describing Lie subalgebras ofso4C. Let g be a Lie

subalgebra ofso4C.sl2C% sl2C5slE% slF. Here we simply callslE the first summand andslF
the second, withE.F.C2. Fix a linearsubspaceg8#slE% slF such that

g5~gùslE! % ~gùslF ! % g8,

TABLE I. Lie subalgebras ofso3R.so3R% so3R. so3E andso3F are, respec-
tively, the first and the second summand ofso4R.so3R% so3R. (e1 ,e2 ,e3) is a
basis ofso3E for which @e1 ,e2#5e3 , @e2 ,e3#5e1 , @e3 ,e1#5e2 . (e18 ,e28 ,e38)
is a basis ofso3F for which @e18 ,e28#5e38 , @e28 ,e38#5e18 , @e38 ,e18#5e28 .

dim 1 dim 2 dim 3 dim 4 dim 5

Re1 Re11Re18 so3E Re1% so3F
Re18 so3F so3E% Re18
R(e11e18) $~A,A!, APso3R%
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as a direct sum ofvector spaces. ~Of course, such ag8 is not uniquely determined.!
Set

gE5gùslE, gF5gùslF;

let

prE :slE% slF→slE, prF :slE% slF→slF

be the natural projections, and denote by

ḡE5prE~g!, ḡF5prE~g!

the projections ofg on slE andslF.
Remark:gE is an ideal of ḡE ~and similarlygF is an ideal ofḡF).
Proof: Let xPgE , y5prE(y1z)P ḡE , with y1zPg, zPslF; then@x,y#5@x,y1z#Pg, be-

cause bothx and y1z are in g. But @x,y#PslE, becausex,yPslE; therefore@x,y#PgùslE
5gE .

Remark:dim g8<3 ~by the Grassmann formula!.
Let us examine the different cases: dimg850,1,2,3.
Case 0:dim g850.
Then the Lie subalgebrag is a direct sum, as a Lie algebra, of the two Lie subalgeb

gùslE,slE andgùslF,slF:

g5~gùslE! % ~gùslF !.

Case 1:dim g851.
From the vector space isomorphisms

g

gùslF
.~gùslE! % g8 and

g

gùslF
. ḡE ,

we haveḡE.(gùslE) % g8. Therefore

dim ḡE11 and dimḡF5dim gF11.

Hence dimḡE,3 and dimḡF,3, because the simple Lie algebrasslE and slF can not contain
two-dimensional ideals. The following cases are possible: if dimḡE52, that isḡE5CH›CE1 ,
then gE5CE1 , becauseCH is not an ideal inCH›CE1 ; if dim ḡE51 ~i.e., ḡE5CE1), then
gE50. Analogous results hold forḡF , gF .

Case 2:dim g852.
By the same argument as in Case 1, we have

dim ḡE5dim gE12 and dimḡF5dim gF12;

sincesl2C is simple, dimḡE5dim ḡF52. ThusḡE5st E, ḡF5st F, and therefore

g5H ~A,A!Psl2C% sl2C, A5Ua b

0 2a
U a,bPCJ 5C~H1H8!›C~E11E18 !.

Case 3:dim g853.
This impliesḡE5slE and ḡF5slF. Thereforeg is the ‘‘diagonal’’ Lie subalgebra,

g5$~A,A!Psl2C% sl2C, APsl2C%.

See Table II for a summary of results.
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TABLE II. Lie subalgebras ofso4C.sl2C% sl2C.

dim 1 dim 2 dim 3 dim 4 dim 5

CH st E slE CH1slF st E1slF
CH8 st F slF slE1CH8 slE1st F
CE1 C(H1H8)›C(E11E18 ) $(A,A),APsl2C% CE1 % slF
CE18 CH % CH8 st E% CH8 slE% CE18
C(H1H8) CE1 % CE18 CH % st F st E% st F
C(E11E18 ) CH % CE18 CE1 % st F
C(E11H8) CE1’C(H1H8) st E% CE18

CE18 ’C(H1H8) (CE11CE18 )’C(H1H8)
CE1’C(H1E18 )
CE18 ’C(E11H8)

slE and slF are,respectively, the first and the second summand ofsl2C% sl2C.

H5U1 0

1 21
U, E15U0 1

0 0
UPsl E; H85U1 0

0 21
U, E18 5U0 1

0 0
UPsl F.

st E5H Ua b

0 2a
Ua,bPCJ 5CH % CE1 ~Borel subalgebra ofsl E).

st F5H Ua b

0 2a
Ua,bPCJ 5CH8% CE1 ~Borel subalgebra ofsl F).

g5g1’g2 is the semidirect sumof the Lie subalgebrasg1 andg2 ; g1 is an ideal.
                                                                                                                



ite

er
over

nifold
ional
et us

need
index
n. Our
e only
case
er the

er the
uitable

le and
rsal
is the
up
in
ese

is used
tinu-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 1 JANUARY 1999

                    
String structure over the Brownian bridge
Rémi Léandre
Département de Mathe´matiques, Institut Elie Cartan, Faculte´ des Sciences,
Universitéde Nancy I, 54000. Vandoeuvre-les-Nancy, France

~Received 22 September 1997; accepted for publication 18 September 1998!

We give the definition of a line bundle over the Brownian bridge by using its
section. This allows us to define a Hilbert space of sections of a line bundle over
the Brownian bridge associated to the transgression of a representative of an ele-
ment of H3(M ;Z). We consider the case of a string structure over the Brownian
bridge: this allows us to define a Hilbert space of spinor fields over the Brownian
bridge, when the first Pontryaguin class of the spin bundle over the manifold is
equal to 0. ©1999 American Institute of Physics.@S0022-2488~99!00401-6#

I. INTRODUCTION

Let M be a compact-oriented even-dimensional manifold. A spin structure overM is a lifting
of the frame bundle by the spinor group ‘‘spin’’ which is aZ/2Z extension of SO(n) wheren is
the dimension ofM. We choose aZ/2Z cover of SO(n) because the spin representation in fin
dimension is a projective representation of SO(n) with fiber Z/2Z.1 There is a topological ob-
struction to constructing a spin structure overM,2 which is the second Stiefel–Whitney class ofM.
It cannot be seen generally at the level of differential forms and of the de Rham theory ovM.

Our goal is to go at the infinite-dimensional case, in order to construct spin structures
some infinite-dimensional objects. Namely in finite dimension, the Dirac operator over a ma
is related to the construction of a spin structure. In infinite dimension, the infinite-dimens
Dirac operator will be related to the construction of infinite-dimensional spin structures. L
consider the free loop spaceLfin(M ) of M: it is the space of finite energy maps from the circleS1

into M. In other words, it is the set of loopss→gs such that*0
1id/dsgsi2ds,`. Infinite-

dimensional operators overLfinM give topological invariants of the manifold,3,4 if we consider
their index. These are the Witten genus, the elliptic genus, and the elliptic genus of levelN, which
play an important role in the theory of cobordism. In order to work with these operators, we
a measure. The latter is useful for the computation of the adjoint of the operator. The
theorem is a statement at the level of Sobolev spaces. It is true at least in finite dimensio
choice of measure is to take this Brownian bridge measure. The loops under study ar
continuous.5 A beginning of construction of these operators is given in Refs. 6–9. The
studied in Ref. 6 is related to the Witten genus of the manifold and to the Dirac operator ov
free loop space.

Unfortunately, Ref. 6 gives only an approach to the construction of the Dirac operator ov
free loop space, because the fiber is not what it should be. Namely, the construction of the s
fiber is related to the theory of representations of a loop group.1 Namely, the projective spin
representation of a loop group is related to a central extension of this loop group by the circ
not by Z/2Z. It uses differential form unlike the finite-dimensional construction of the unive
cover of SO(n).10 If we consider the case of the smooth free loop space, the structure group
loop group of SO(n). A spin structure is related to a lifting of the principal bundle in a loop gro
by a central extension of this loop group.11,4 The obstruction is related to the first Pontryagu
class of the original bundle,3,4,12–14and, more precisely, to its transgression; but, of course, th
considerations work only for the smooth loop space. On the other hand, the BHK measure
in order to compute the adjoint of this type of operator and the Brownian bridge is only con
ous. Let us recall the BHK measure. It is the measure over the free loop space@p1(x,x)dx
^ dP1,x#/@*p1(x,x)dx# wherept(x,y) is the heat kernel over the Riemannian manifoldM and
4540022-2488/99/40(1)/454/26/$15.00 © 1999 American Institute of Physics
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dP1,x is the Brownian bridge measure over the based loop space of continuous loops startin
x. Gross15 had shown that the tangent space of a continuous loop remains a Hilbert spa
infinite-dimensional analysis, although the support of the measure is a Banach manifold.
paper, we will follow the choice of Ref. 16 or 17 for the tangent space of a continuous loo

Reference 13 has given a geometrical construction of such lifting, called a string structu
the case of the based loop space of finite energy loopsLfinM . Our goal is to construct such lifting
for the Brownian bridge. The purpose of this work is to try to unify the considerations of Re
over the smooth loop space with the stochastic considerations of Refs. 17 and 18 over th
tinuous loop space. In order to construct a string structure, Ref. 13 introduces a comm
diagram. The holonomy over a loop plays an important role in this commutative diagram. Na
let us consider aG principal bundleP overM. We consider the based loop spaceLP of P of loop
starting from~x,e! in P: it is anLG principal bundle. Reference 13 constructs aU1 bundle overLP

denotedL̃P which is an L̃G bundle for a given central extension ofLG. In order to give an
explicit construction, they suppose thatLP andLG are simply connected. Under this hypothes
we can construct this bundle for a given representative of a integral cohomology class ofLP of
degree two. They avoid in this way all torsion phenomena: a circle bundle over a simply
nected manifold is indeed determined by its curvature. So the construction of this lift is str
related to a theory of forms and a theory of construction of a bundle by starting from a
cohomology class. The treatment is simplified, because the loop space ofP is supposed simply
connected.

In Ref. 17 or 18 the continuous loop space is introduced. A suitable Hilbert space which
tangent space of a continuous loop is introduced in order to get the integration by
formulas.5,18,19Reference 17 developed a theory of forms over the loop space without differe
operations. In Refs. 20 and 21 a theory of stochastic cohomology of the Brownian loop is d
oped, where the stochastic Chen forms play a key role.

The purpose of this paper is to go one step further, by starting from elementary geom
considerations: that is, to construct bundles by starting from a stochastic two-form. A prelim
work is Ref. 9. A closed Chen form of degree 1 is integrated by patching together its
integrals, when the path space is supposed simply connected. The key tool is the po
theorem of Ref. 22 or 23.~The reader can find in Ref. 24 a jump version of this theorem.! Of
course, we cannot integrate explicitly any closed one-form. Namely, we meet the problem th
deformation of a loop which is useful in order to integrate a form over a path in the contin
loop space does not keep the measure. Generally, the law of the deformed stochastic lo
foreign law with respect to the Brownian bridge law. For this reason, we restrict our attenti
the case where the form is a stochastic Chen form. This form is defined for a larger cla
processes.

In the first part of this paper, we start from a closed Chen form of degree 2 with int
values overLfinM . An example is the transgressiont~v! of a representativev of an element of
H3(M ,Z). A surface in the loop space is constituted by a volume in the manifold. The m
property is that the integral of the transgression over a surface in the smooth loop space i
to the integral of the underlying form over the underlying volume inM.

Let us recall14,1 how we construct a line bundle over a simply connected manifold~of finite
dimension or of infinite dimension! by starting from its curvatureṽ. It is the set of couples of the
shape„l

•

(x),a… @l
•

(x) is a path starting from a point of reference and arriving atx in the manifold
anda is an element of the complex line#. We say that the couple„l

•

(x),a… and „l
•

8(x8),a8… are
equivalent if the endpoints of the pathsx andx8 are equal and if

a85a expF22ipE
S
ṽG . ~1.1!

S is any surface bounded by the loop constituted ofl
•

(x) andl
•

8(x8) circled in the opposite sense
Such surface exists because we suppose that the manifold is simply connected. In the sto
context,*St(v) leads to the study of some stochastic integrals. We have the choice of
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distinguished surfaces in order to be able to integrate this transgression over a given surfac
stochastic loop space. Instead of constructing the bundle globally as in~1.1!, we construct it by
using a system of transition functions. However, we cannot construct the stochastic line b
associated to this Chen form over the stochastic-based loop space. Namely, the transition fu
are only almost surely defined. We request that the transition functions belong to all the So
spaces, in order to give some rigidity to them. Let us recall namely that all bundles o
finite-dimensional manifold are measurably trivial. However, we construct the Hilbert spa
sections of this formal line bundle, and a connection which operates over the space of sectio
hope that there are some applications to the geometric quantization of the loop space.25 In order to
do this, we suppose that the based loop space of loops with finite energyLfin(M ) is simply
connected. We can determine explicitly the system of the measurable transition functio
connection allows us to define the space ofC1 Sobolev sections of this formal line bundle. Th
bundle obtained is an extension in a certain sense of the underlying bundle over the finite
loop space. Namely, if we take the polygonal approximation of a continuous loop, the tran
functions are surely defined. They are, in fact, the transition functions which defined the u
lying line bundle over the smooth loop space. Moreover, they tend almost surely to the tran
functions which define the formal line bundle over the continuous loop space, when the len
the subdivision goes to the infinity.

We summarize the results of the second part of this work in this theorem-definition.~We refer
to Ref. 20 for the theory of forms over the loop space.!

Definition I.I: Let Lx(M ) be the based loop space of the Riemannian manifoldM endowed
with the Brownian bridge measure. Let us suppose thatM is two connected, and let us consider
three-form v which is closed Z-valued. We can construct the two-form ov
Lx(M )*0

1v(dgs ,.,.)5ṽ whereg denotes the typical continuous loop inM. There exists a system
of open subsetsOi for the uniform topology which is a cover ofLx(M ) and a setr i , j of Brownian
functionals with values in the unit circle ofC, defined overOiùOj , which are almost surely
defined and which belong to all the Sobolev spaces. OverOiùOj , they are such thatr i , jr j ,i

51 almost surely and, over a triple intersectionOiùOjùOk , they satisfy almost surely to th
relation r i , jr j ,krk,i51. Moreover, there exists a set of one-forms overOi denoted byAi with
values in the Lie algebra of the unit circle ofC, such that almost surely overOiùOj we have
Ai5Aj1r i , j

21dr i , j and such thatdAi5A212pṽ. A section of the formal line bundle associate
to the set ofr i , j is a collection of random variablesa i from Oi into C such thata j5a ir i , j over
OiùOj . The Hilbert space of sections is the set of sectionsc such thatE@ ucu2#,` whereua i u
5ucu is intrinsically defined.

After these elementary geometrical considerations, we consider the more complicated c
the construction of a string structure over the Brownian bridge. In the second part, we cons
G principal bundleP over M. We suppose thatG is simple, simply connected. Moreover, w
suppose that the based loop group of loops of finite energyLfinG is simply connected. There exist
a central extensionL̃finG of LfinG. Let us suppose that there is a unitary representation Spi
L̃finG, which is a Hilbert space~The reader can find references in this direction in Ref. 1 or 2!.
We construct overLM, the set of the Brownian bridge, anLfinG bundle which extends the natura
LfinG bundle which exists overLM. We use the parallel transport over a loop. This bundleQ is
only formal, in the sense that the transition functions are only measurable, because they
only to all the Sobolev spaces. This allows us to construct, by using the associated tra
functions, a formal linear bundle whose fiber is Spin. But we can define rigorously the spa
sections of this formal linear bundle, which belong to someLp spaces. The Dirac operator over th
based loop space should act over the Hilbert space of a section of this formal bundle. We h
same topological obstructions which are involved with the first Pontryaguin classP of M as in the
smooth case. This part is a mixture of the geometrical construction of Ref. 11 where the holo
along a stochastic-based loop has a key role and of the stochastic considerations of the fi

We can summarize the results of the third part of this work by the following theor
definition:

Definition I.2: Let Q→M be a principal bundle over a compact Riemannian manifold w
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compact structural group, which is supposed simple and simply connected. We suppose thM is
two connected. LetLfinG be the based loop group ofG of loops with finite energy. LetLeQ be the
space of loops inQ of the shapets

Ggs wheregs is a path inG of finite energy andts
G the parallel

transport over a random loop inM for the Brownian bridge measure, if the principal bundleQ is
endowed by a connection. Associated toLeQ, there exists a system of subsetsVi of LxM such that
øVi5LxM almost surely. OverViùVj , there exists a natural measurable applicationgi , j with
values inLfinG such thatgi , jgj ,i5e

•

almost surely overViùVj and such that almost surely ove
ViùVjùVk , gi , jgj ,kgk,i5e

•

. We suppose that the Pontryagin class of the bundle is equal
There exists a refinement ofVi , still denoted byVi , and a measurable applicationr i , j from
ViùVj into L̃finG, the basical central extension ofLfinG, which satisfies the following conditions

~i! Over ViùVj , r i , jr j ,i5ẽ almost surely.
~ii ! Over ViùVjùVk , r i , jr j ,krk,i5ẽ almost surely.
~iii ! pr i , j5gi , j almost surely, wherep is the projection fromL̃finG into LfinG.

Let us suppose, given a unitary representation ofL̃finG, the space of measurable sections of t
associated bundle to the system of transition functionalsr i , j is given by a set of measurabl
functionals in the representation space calledc i defined overVi , satisfyingc j5r j ,ic i almost
surely over ViùVj . The Hilbert space of the sections is the space of sections such
E@ ici2#,`, where the random variableici5ic i i over Vi is intrinsically defined.

This work is an element of a set of three papers about this construction.27,28We thank M. Katz
for helpful discussions.

II. STOCHASTIC LINE BUNDLE

Let M be a compact Riemannian manifold. LetLxM5LM be the space of continuous loops
M starting fromx and coming back in time 1 inx. Let dP1,x be the law of the Brownian bridge
starting fromx and coming back in time 1 inx: it is a probability measure overLM. Let us recall
how dP1,x is defined. Let us introduce the heat kernelpt(x,y) associated to the Laplace–Beltram
operator overM. Let F(g t1

,...,g tr
), 0,t1,¯,t r,1, be a cylindrical functional over the base

loop space. We have

E1,x@F~g t1
,...,g tr

!#

5
1

p1~x,x!
E E F~x1 ,...,xr !pt1

~x,x1!pt22t1
~x1 ,x2!¯p12tr

~xr ,x!dx1 ...dxr ; ~2.1!

s→gs is a semi-martingale with respect to the canonical filtration associated to the can
processg

•

→gs .
Let us recall for that the definition of a semi-martingale. Let us introduce a filtration

s-algebras indexed byR1 such thatFs#Fts.t and a processXs with values inRd such that

~i! Xs is Fs adapted.
~ii ! s→Xs is continuous almost surely for a given probabilityP.
~iii ! Xs is in L2.
~iv! E@XtuFs#5Xs almost surely fors,t.

We say that such a random processX
•

is a L2 martingale adapted to the filtrationFs . A
semi-martingale is, roughly speaking, the sum of a martingale and an adapted finite varia
process.

The main result is the following: ifX
•

i , i 51,...,d is a semi-martingale inRd, X
•

i X
•

j is still a
semi-martingale. When we consider a family of martingales, there is an adapted finite varia
process associated to each product, called the bracket ofX

•

i X
•

j and denoted bŷXi ,Xj&s .
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Let us consider a martingaleXs andYs a continuous ADAPTED process which is supposed
be bounded. The Itoˆ integral *0

t ^Ys ,dXs& is the limit of the sum( i^Yti
,Xti 11

2Xti
& for a given

partition when the length of the subdivision tends to 0. It is still anL2 martingale if the processX
•

is a L2 martingale. The main ingredient in the sequel is the Itoˆ formula.
Let X

•

be a semi-martingale overRd and let f be a function fromRd into R with bounded
derivatives of all orders.f (X

•

) is still a semi-martingale and we have

f ~Xt!5 f ~X0!1E
0

t

^d f~Xs!,dXs&1
1

2 ( E
0

t ]2

]xi]xj
f ~Xs!d^Xi ,Xj&s . ~2.2!

We will not specify the natural different criteria of integrability which appear in these definiti
We will say that a processX

•

over a manifold is a semi-martingale if, for all smooth functio
with bounded derivatives with values inR, the processf (X

•

) is a semi-martingale with values i
R. In order to specify the meaning of the sentence ‘‘the Brownian bridge’’ is a semi-martin
we have to define a probability space. It is the spaceLM of continuous functionss→gs from the
circle into the manifold such thatg05x. The formula~2.1! gives overLM a probability measure
it is not immediately clear and is the purpose of a theorem. Thes-algebraFs is the smallest
s-algebra such that the evaluation mapseu : g

•

→gu are measurable for allu<s. We will not
specify the technical difficulties which appear here.

Let g t be a loop. Lett t be the parallel transport fromg0 to g t . In order to define it, we
consider the polygonal approximationg t

n of a loop g, and the parallel transportt t
n along the

polygonal approximation of this loop:t
•

n→t
•

almost surely for the topology of the uniform
convergence.

In order to be more precise, we have to recall quickly the theory of stochastic differe
equations. LetX

•

be a semi-martingale inRd. We considerA(y) a linear application fromRd into
Rm which depends smoothly ony in Rm. We consider the Itoˆ stochastic differential equation:

dYt5A~Yt!dYt . ~2.3!

This means that almost surely

Yt5Y01E
0

t

A~Ys!dYs . ~2.4!

It has a unique solution. It can be given by the Picard iteration method or the Peano appro
tion, which converges to the solution.

There is another type of stochastic differential equation, which is simpler under a geom
point of view. LetY

•

andX
•

be twoR-valued semi-martingales. We put

E
0

t

YsdXs5E
0

t

YsdXs1
1

2 E
0

t

d^X,Y&s . ~2.5!

It is called the Stratonovich integral. The Itoˆ formula becomes the classical formula in the St
tonovich calculus:

f ~Xt!5 f ~X0!1E
0

t

f 8~Xs!dXs . ~2.6!

This leads to the following principle, called Malliavin’s transfer principle. A formula which is t
over a manifold in the deterministic context, which has a meaning in the stochastic context,
true in the stochastic context. This leads to the theory of Stratonovich stochastic differ
equations:

dYt5A~Yt!dXt , ~2.7!
                                                                                                                



to

the

stic

tions,

t the

nian

on-

ition

at

n. It is

459J. Math. Phys., Vol. 40, No. 1, January 1999 Rémi Léandre

                    
instead of~1.3! or equivalentlyYt5Y01*0
t A(Ys)dXs . This equation can be converted into an Iˆ

stochastic differential equation.
An important case of stochastic process is the flat Brownian motion.
We consider a setB

•

i , i 51,...,m, R-valued martingales inL2 with bracket^Bi ,Bj&s5d i , j s
starting from (xi)5x in Rm. The law of such a process is uniquely determined and is called
law of the flat Brownian motion starting fromx. Let us introduce the flat LaplacianD over Rm:

D5
1

2 (
i

m
]2

]xi
2 . ~2.8!

Let exp@tD# be the semi-group overRm associated to the flat Laplacian. We have a stocha
representation of it. Namely, iff is a smooth function with bounded derivatives, we get

exp@ tD# f ~x!5E@ f ~Bt!#, ~2.9!

whereB
•

is a flat Brownian motion starting fromx.
Let Xi be some vector fields over the compact manifoldM. Let Dc be the operator12(1

mXi
2

1X0 . Let us introduce the Stratonovich differential equation,

dXt5(
1

m

Xi~Xt!dBt
i1X0~Xt!dt, ~2.10!

starting fromx. Let us introduce the heat semi-group associated toDc denoted by exp@2tDc#. We
have the following stochastic representation:

exp@ tDc# f ~x!5E@ f ~Xt!#. ~2.11!

The equation~2.10! has a meaning in local charts, and we can patch together the local solu
because the Itoˆ formula in the Stratonovich context is the usual one. The equation~2.10! gives
Schwartz’s construction of the Brownian motion over a manifold: let us recall namely tha
Laplace–Beltrami operator over a Riemannian compact manifold can be written asD5 1

2(Xi
2

1X0 . The semi-group associated toD ~called the heat semi-group associated to the Rieman
manifold! has a stochastic representation in terms of the semi-martingale solution of~2.10!. The
law of the Brownian motion starting fromx gives a probability measure over the space of c
tinuous functionsg . starting fromx into M. Let us denote bydP1

x this probability measure. It is
characterized by

EP
1
x@ f ~g t1

,...,g tr
!#

5E E ¯E f ~x1 ,...,xr !pt1
~x,x1!pt22t1

~x1 ,x2!...ptr2tr 21
~xr 21 ,xr !dx1 ...dxr . ~2.12!

Compare with~2.1!. This gives another approach to the Brownian bridge measure. If we cond
the Brownian motion to come back to the departure, the law ofg t is given by the density
@pt(x,y)p12t(y,x)/p1(x,x)#dy. We deduce that the law ofg t satisfies an inhomogeneous he
equation. Equation~2.10! becomes

dXt5( Xi~Xt!„dBt
i1^Xi~Xt!, gradlogp12t~Xt ,x!&dt…1X0~ t !dt. ~2.13!

Therefore, the equation of the bridge is an inhomogeneous Stratonovich differential equatio
a nontrivial result thatXt→x when t→1 and thatX. is a semi-martingale. The law ofXt starting
from x is the measure over the based loop space given by~2.1!.
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Let Q→M be a principal bundle with compact structural group. We can trivialize it loca
We endow it with a connection¹. Let G be the Christoffel symbol in this trivialization. LetX. be
a semi-martingale over the manifold. The following Stratonovich differential equation has a m
ing

dt t52Gt t
~Xt!dXt ~2.14!

if we operate in the local chart of the trivialization. Since the Itoˆ formula in the Stratonovich
calculus is the traditional one, this equation is intrinsically defined and we can patch togeth
local solution of it, when we change of charts. We callt t the parallel transport over the sem
martingaleXt . This works too if we look at a linear bundle overM. This allows us to give the
notion of a semi-martingale with values inQ over the semi-martingaleX. : Z. is a semi-martingale
over X. if and only if t t

21Zt is a semi-martingale overX0 .
The interest of the Stratonovich calculus is twofold: first of all, as we have seen, thˆ

formula in the Stratonovich calculus is the classical one. Second, if we consider the poly
approximation ofBt

i , we get a classical solution of~2.10! or ~2.13!, and we get a finite energy
processX.

n which tends almost surely to the solution solution of the Stratonovoch differe
equation for the uniform topology. This second property can be generalized. If in~2.14! we
consider the polygonal approximation ofXt , which is defined if the length of the dyadic subd
vision tends to infinity, we get the classical equation of the parallel transport over a finite e
curve. Let us denote it byt .

n Whenn→`, t .
n→t . almost surely. We can consider other types

finite energy approximation of the leading semi-martingaleX. ~See Ref. 29, for instance!.
This allows us to give the notion of the Stratonovich integral of a one-form along the tr

tories of a semi-martingaleXt . Let v be a one-form over the manifold and letXt be a semi-
martingale in the manifoldM. The Stratonovich integral*0

1^v(Xs),dXs& is the limit of the clas-
sical integrals*0

1^v(Xs
n),dXs

n& for the polygonal approximationX.
n of the semi-martingaleX. .

The tangent space of a loopg . is the space of sectionsXt over g t of TM such that

Xt5t tHt , H05H150, ~2.15!

wheres→Hs is a process inTg0
(M ). We suppose, moreover, thatHs has finite energy and we

take as the Hilbertian norm

iXi25E
0

1

uHs8u
2ds. ~2.16!

Let us recall the definition of a Chen form. LetV .(M ) be the space of forms over the manifold
degree not equal to 0. LetṽnPV .

^ :

ṽn5v1^¯^ vn . ~2.17!

We associate a form over the based loop space by the formula

Sṽn5E
0,s1,¯,sn,1

v1~dgs1
,.!∧¯∧vn~dgsn

,.!. ~2.18!

We will not repeat general considerations over the Chen forms. We will give two exampl
order to show how they act. First of all, let us consider anr-form. Sv1 is anr 21 form over the
loop space given by the formula

Sv1~X1,...,Xr 21!5E v1~dgs ,Xs
1,...,Xs

r 21!. ~2.19!
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This formula does not cause any problem if we work over the smooth loop space, becauseXs is a
vector overgs and because the differentialdgs is defined. If we consider continuous loops, we g
Xs5tsHs andHs5*0

sHu8 du. We apply the Fubini theorem in~2.19! and we have

Sv1~X1,...,Xr 21!5E ¯E k~s1 ,...,sr 21!Hs1
81
¯Hsr 21

8r 21 ds1¯dsr 21 , ~2.20!

wherek(s1 ,...,sr 1
) is a stochastic kernel given by Stratonovitch differential integral.

Let us consider the case of two-forms of degree 2,v1 and v2 . Let us considerṽ25v1

^ v2 . For smooth loops,

Sṽ2~X1,X2!5E
0,s1,s2,1

v1~dgs1
,Xs1

1 !v2~dgs2
,Xs2

2 !2E
0,s1,s2,1

v1~dgs1
,Xs1

2 !v2~dgs2
,Xs2

1 !.

~2.21!

For continuous loops,Xs
15tsHs

1, Xs
25tsHs

2 whereH1 andH2 have finite energy. We apply th
Fubini theorem in the stochastic integral~2.21!, and we deduce a formula analogous to~2.20! for
Sṽ2 .

The exterior derivative of the Chen formSṽn corresponds to the Chen form associated to
Hochschild coboundary ofṽn .30 Let us recall that the Hochschild coboundary is given by (b1

1b2)ṽn . Without specifying the signs which appear in the following expressions~see Refs. 30 or
20!, we have

b1~ṽn!5( sign v1^¯^ dv i ^¯^ vn ~2.22!

and

b2~ṽn!5( sign v1^¯^ v i∧v i 11^¯^ vn . ~2.23!

For the smooth loop space, the cohomology of Chen forms is equal to the cohomology
based loop space.31 Equivalently, the Hochschild cohomology of forms of the manifold is equa
the cohomology of the smooth loop space. A version of this theorem for the continuous loop
can be seen in Refs. 20 and 21. Especially for the continuous loop space of an homog
manifold, the Brownian cohomology is equal to the Hochschild cohomology of the forms o
manifold. This remains true for the finite energy loop space. In particular, the part without to
of the Z cohomology ofLfinM for loops of finite energy is given by Chen forms. Let us take
representativev of a cohomology class of degree 3 with integral values. The transgression

t~v!5E
0

1

v~dgs ,.,.! ~2.24!

is a Chen form overLfinM which is closed and with values inZ. Its integral over closed surface
in the smooth loop space is equal to an integer. Namely, the integral over this surface oft~v! is
equal to the integral over the underlying volume inM of v. If the surface in the loop space has n
boundary, the underlying volume in the manifold has no boundary. This comes from the fac
the circle has no boundary.25

Let us recall how we produce anS1 bundle from aZ closed form of degree 2ṽ over a simply
connected manifoldV.14 This construction works, of course, for the smooth based loop spac

We fix a base pointx0PV. We consider the set of triple (x,l (x0 ,x) ,a) wherel (x0 ,x) is a path
going from x0 to x, and a is an element ofS1. We identify two triples (x,l (x0 ,x) ,a) and

(x8,l (x0 ,x8)
8 ,a8) if x5x8 and if a85exp@22ip*Bṽ#a. B is any surface bounded by the loop goin
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from x0 to x by l and going back fromx to x0 by l 8 circled in the opposite sense. Sincev is
integral, the value of*Bv depends on the surface by an integer. Moreover, we can find su
surface becauseV is simply connected. The integral over the surface depends on the surface
integer, becauseṽ is Z valued.

We construct the connection from the parallel transport. Letl (x,x8) be a path inV. The
parallel transport fromx to x8 of (x,l (x,x0) ,a) is given by the following formula: we choose th
path which goes fromx0 to x8, first by going fromx0 to x by l (x0 ,x) and, second, by going from
x to x8 by l (x,x8) , and we choose the samea. If we choose a loop which goes fromx to xl (x,x) , the
holonomy over this loop is given by exp@22pi*Bv# whereB is a surface bounded by the loo
l (x,x) .

This procedure for constructing anS1 bundle is global and cannot be extended to the c
struction of line bundles over the Brownian bridge. However, the reader can find a solution o
problem in Ref. 32, and a definition of a stochastic curve in the stochastic loop space. W
overcome this problem in another way:t~v! becomes a stochastic Chen form, and the integ
over B of t~v! leads to the study of some stochastic integrals. So we have to choose a
guished surface which depends in a ‘‘nice’’ way ong . in order to perform these stochast
integrals. The same remark remains true for a generalZ-valued closed Chen form. We present
procedure which can be adapted to the Brownian bridge.

Let x0 be a base point inV. Let Oi be a countable system of charts ofV: there is a
distinguished pointxi in eachOi such that the two following conditions are satisfied:

~i! If xPOi , there is a distinguished curvel (xi ,x) going fromxi to x which depends smoothly
on x.

~ii ! There is a distinguished curvel (x0 ,xi )
going fromx0 to xi .

Therefore, there is by composition a distinguished curve going fromx0 to xPOil i(x0 ,x)
which depends smoothly onx. This will give a system of charts which will allow us to constru
our S1 bundle by using a system of transition functions. LetaPC overOi . We identify by using
r j ,ia with exp@22pi*Bṽ#a overOj . B is any surface bounded by the loop going fromx0 to x by
l i(x0 ,x) and coming back tox0 by l j (x0 ,x).

The system ofr i , j defines a system of transition functions. Namely overOiùOj , we have

r i , jr j ,i5Id, ~2.25!

and overOiùOjùOk , we have

r i , jr j ,krk,i5Id ~2.26!

because we integrate in this caseṽ over the sum of three surfaces:

~i! The first one is the surface bounded by the loop constituted by the path going fromx0 to x
by l i ~orientation1! and coming back fromx to x0 by l k ~orientation2!.

~ii ! The second one is a surface bounded by the loop constituted by the path going fromx0 to
x by l k ~orientation1! and coming back tox0 by l j ~orientation2!.

~iii ! The third one is a surface bounded by the loop constituted of the path going fromx0 to x
by l j ~orientation1! and coming back tox0 by l i ~orientation2!.

The sum of these three surfaces has no boundary, and the integral ofṽ over the sum of these
three surfaces is an integer.

In the global construction given above, the parallel transport is given by the distinguished
l i(x0 ,x) going fromx0 to x and after running fromx to x8 by l (x,x8) with x8POj , with the same
aPC. But if x8 belongs toOj , we have chosen a distinguished pathl j (x0 ,x8) joining x0 to x8.
So the parallel transport is given by exp@22ip*Bṽ# whereB is a surface bounded byl i(x0 ,x),
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l (x,x8), and l j (x0 ,x8) circled in the opposite sense: this means that„l i(x0 ,x),a… is transformed
into „l j (x0 ,x8),exp@22ip*Bṽ#a…. We obtain that the connection form overOi is given modulo the
normalizing constant 2p i by

Ai~x!5E
0

1

ṽS l i ,t8 ~x0 ,x!,
]

]x
l i ,t~x0 ,x! D , ~2.27!

where l i ,t8 (x0 ,x) is the speed ofl i(x0 ,x) and ]/]x the directional derivative in the chartOi of
l i ,t(x0 ,x). Here Ai is the restriction by the mapx→ l i(x0 ,x) of a Chen form. ThereforedAi

5ṽ.30

Let us consider the Brownian bridge endowed with a closed Chen formṽ of degree 2. We
suppose that this Chen form restricted to the finite energy loop space isZ valued. Equivalently, we
consider a form whose restriction to smooth loop isZ valued: namely, any surface withou
boundary can be approximated by a surface without boundary over the smooth loop spa
order to see this, we imbed the manifold intoRd, we regularize our loops by convolution, and,
the radius of the convolution is small, we can project the regularized loops into the manifol
this procedure we get a surface without boundary over the smooth loop space. The surface
is obtained is an approximation of the original surface over the finite energy loop space. Th
no boundary in all the surfaces which are considered. The integral of the Chen form ov
approximated surface is an integer; by continuity, the integral over the surface in the finite e
loop space is still an integer, because the surface over the smooth loop space is an approx
of the original surface not only for the uniform distance, but also for the energy distance, w
can be obtained by imbedding the manifold into a flat space.

We will postpone the problem of the locality of the following constructions later. We will n
produce a system of chartsOi of LM: let g i be a countable system of finite energy paths such
the balls of radiusd for the uniform norm determines an open cover ofLM. We can suppose tha
d is small. The loopg i constitutes a distinguished point inOi5B(g i ,d). ~It is in fact the center
of this ball.! Here l (g i ,g) is constructed as follows: sinced is small,g i ,s andgs are joined by a
unique geodesic.l t(g i ,g) is the loops→expgi,s

@t(gs2gi,s)# wheregs2g i ,s is the vector of the
unique geodesic joiningg i ,s to gs . This allows us to define overOi a distinguished path joining
g . to the centerg i . We take a distinguished path joininggbaseto g i . We get a distinguished pat
going fromgbaseto g . , l i(gbase,g .): we glue together the two previous pieces of paths.

The second step is to specify a distinguished surface bounded byl i(gbase,g .) andl j (gbase,g .),
whengPOiùOj .

SinceOiùOj is not empty, and sinced is small, there is a pathu→expgi,.
@u(gj,.2gi,.)# joining

g i to g j . BecauseLfinM is supposed simply connected, we can fill in by a surface the deter
istic triangle constituted by the path joininggbasedto g i , the path joiningg i to g j , and the path
joining g j to gbased. We can, moreover, fill in the small stochastic triangle constituted byl t(g i ,g),
l t(g j ,g .), and the path expgi,.

u(gj,.2gi,.) by the surface defined as follows: we joinl t(g i ,g .) to
l t(g j ,g) by the curvel t,u,i , j (g .):s→explt(gi ,g)s

u„l t(g j ,g)s2 l t(g i ,g)s…. We produce in this way a
small random surface bounded by the triangle whose the vertices areg i ,. . , g . , andg j ,. . We glue
together these two surfaces, and we get a surface bounded byl i(gbase,g .) and l j (gbase,g .). Let
l u,v(g) be this surface calledBi , j (g .). We have to specify a little bit what we mean by a surfa
It is a sum of smooth maps from the oriented simplex inR2 into the continuous loop space.~See
Ref. 32 for a complete theory of such stochastic surfaces.! In our case, we consider the sum of
small stochastic simplex and a deterministic simplex: (u,v) describes a square.

This surfaceBi , j (g) is useful in so far as we can integrate the Chen formṽ over it by means
of the theory of stochastic integrals. Namely,l u,v(g)s is a semi-martingale, and (]/]u) l u,v(g .) is
a semi-martingale over the semi-martingalel u,v(g .). (]/]v) l u,v(g .) too, is, a semi-martingale
over l u,v(g .). We recall what is a semi-martingale over a semi-martingaleX. with values in a
manifold: the stochastic parallel transportts along a curve with respect to the Levi-Civita co
nection is almost surely defined. The processYs is a semi-martingale ifts

21Ys is a semi-
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martingale with value in the tangent space of the starting point ofX. , which is supposed deter
ministic. We can specify what is the sense of the second term, because (]/]u) l u,v(g)(s) is a
vector overl u,v(g)(s). We parallel transport (]/]u) l u,v(g)(s) over the pathl u,v(g)(s) circled in
the opposite sense by using the time in the reversed sense. We get a semi-martingale o
tangent space ofx. Therefore the integral ofṽ over Bi , j (g .) appears as a nonanticipative Str
tonovitch integral, which is smooth ing . . In order to be more precise, it i
ṽ„(]/]u) l u,v(g .),(]/]v) l u,v(g .)…, which is a stochastic Stratonovitch integral, whenl u,v belongs
to the small stochastic triangle constituting one of the two parts ofBi , j (g .). Let us specify a little
bit what it means:

ṽS ]

]u
l u,v~g .!,

]

]v
l u,v~g .! D5E

0

1

vS dsl u,v~g .!,
]

]u
l u,v~g .!s ,

]

]v
l u,v~g .!sD . ~2.28!

Moreover, it belongs to all the Sobolev spaces. Therefore, we can consider the system of tra
functionsr i , j (g .)5exp@22pA21*Bi , j (g .)

ṽ#. The transition functions belong to all the Sobol
spaces.18 Let us recall briefly what these Sobolev spaces are: letXs5tsHs , Hs deterministic, be a
vector field overg. We get the integration by parts formula:

E@^dF,X&#5E@F div X# ~2.29!

true for any cylindrical functionalF. We put

^dF,X&5E
0

1

^ks ,d/dsHs&ds. ~2.30!

This allows us to define the notion of first-order Sobolev space, because this notion of der
is intrinsically defined by using~2.29!:

iFiW1,p
5E@ uFup#1/p1EF S E

0

1

uksu2dsD p/2G1/p

. ~2.31!

We can iterate the notion of gradient. Namely, we introduce a connection¹X.5t .DH . , whereD
is the traditionalH-derivative. Let us suppose thatd¹

r F is defined inductively. We defined¹
r 11F

by

d¹
r 11F~X1 ,...,Xr 11!5^d~d¹

r F~X1 ,..,Xr !,Xr 11&2( d¹
r F~X1 ,..,¹Xr 11

Xi ,..,Xr !. ~2.32!

Hered¹
r is a Hilbert–Schmidt cotensor: it is given by kernels. Let us denote it bykr(s1 ,...,sr).

We put

iFiWr ,p
5E@ uFup#1/p1(

j <r
EF S E E ukj~s1 ,...,sj !u2ds1¯dsj D 1/2G1/p

. ~2.33!

The main theorem~see Ref. 18, theorems 3.6 and 3.7 for the free loop space! is that stochastic
integrals belong to all the Sobolev spaces as well as the solution of stochastic differential
tions.

By using the positivity theorem of Ref. 22 or 23, we deduce that ther i , j are transition
functions, in the sense that they satisfy~2.25! and ~2.26! almost surely. Moreover, ther i , j are
smooth functions, in the sense that they belong to all the Sobolev spaces.

The previous discussion is not completely true, because these considerations work o
cally. As a first step, we regularize the indicator function ofOi . Let g be a function from@0,d# into
@1,̀ #, which is infinite if z is larger thand2a/2, which is smooth over@0,d2a/2@ , and which
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behaves as 1/(z2d1a/2)1n when z→(d2a/2)2 . Moreover,z<d2a is equivalent tog(z)
51. Let F be an auxiliary function from@1,̀ # into @0,1#, which is equal to 1 only in 1 and with
compact support. LetGi be the functional:

Gi~g .!5FS E
0

1

g„d~gs ,g i ,s!…dsD . ~2.34!

The functionalGi(g .) is equal to 1 if and only ifd(g,g i)<d2a and if Gi(g .).0, d(g,g i)
,d.

Moreover,Gi is smooth~it belongs to all the Sobolev spaces!, if n is big enough. Namely, by
the exponential inequality, we have

PH Sup
1

„d~gs ,g i ,s!2d1a/2…1.1/e;E 1

„d~gs ,g i ,s!2d1a/2…
1,CJ ,C~p!ep. ~2.35!

Moreover, we can find a sequencea i ,gi ,Fi such that the sequence of the correspondingGi(g)
tends simply to the indicator function ofOi . The reader can see Ref. 8, p. 106, and Ref. 6, E
~2.12!–~2.14!, for analogous considerations.

We imbed the manifold inRd. We can extend (x,y)→expx@u(y2x)# if x andy are close to a
smooth map fromRd3Rd into Rd which depends smoothly onu. This allows us to extend to the
whole loop spaceL(M ) the distinguished path which was defined only overOi , and to extend to
L(M ) the distinguished stochastic surfaceBi , j (g .). The price to pay is thatl i ,t(g .) is a process
which belongs toRd and not toM. We can extend the forms constituting the Chen form overRd.
This gives an extension of the Chen form to the semi-martingalel i ,t(g .) and to the semi-
martingalel u,v over the extended surface ofBi , j (g .). This works wheng . describes the whole
loop space and not onlyOi or OiùOj . This allows us to produce stochastic integrals, who
restriction overOiùOj is equal to the stochastic integrals which appear in the definition ofr i , j .
These stochastic integrals are smooth overLM.

This allows us to give the following definition:
Definition II.1: A measurable sectionf of the line bundle associated to the Chen formṽ is a

collection of random variablesa i over Oi with value inC submitted to the rule

a j5a ir i , j ~2.36!

almost surely overOiùOj .
Over Oi , we put the metric

ia~g .!i25iai2 ~2.37!

Since the transition functions are of modulus one, this metric is intrinsically defined.
We can give the definition:
Definition II.2: The Lp space of sections of the line bundle associated toṽ is the space of

measurable sectionsf endowed with the norm:

ifiLp5iifiiLp. ~2.38!

Unfortunately the random measurable sections of the line bundle do not give a lot of inform
about the structure of the line bundle. For this purpose, we need to studyC1 sections. We will
introduce a connection.

Over Oi , the connection form is given by

Ai~g!5E
0

1

ṽ l i ,t~gbase,g .!S l i ,t8 ~gbase,g .!,
]

]g .
l i ,t~gbase,g .! Ddt. ~2.39!
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We have to specify what the meaning of this expression is.l i ,t8 (gbase,g .) is a semi-martingale in
the tangent bundle ofM over l i ,t(gbase,g .). The quantity (]/]g .) l i ,t(gbase,g .) too, is a semi-
martingale overl i ,t(gbase,g .) if we describe what it is. Let us recall namely that in infinit
dimensional analysis, the tangent space is smaller than the natural tangent space of the fu
space which is studied.15 In (]/]g) l i ,t(gbase,g .), we have to take the derivative o
l i ,t„g(base),g…(s) over the tangent vectort t(g .)Ht (H05H150, Ht of finite energy!. This leads
to the study of some stochastic integrals whose the structure is very similar to stochastic
forms.17 Namely,

]

]g .
expg i ,s

@ t~gs2g i ,s!#tsHs5ts~ l i ,t~gbase,g .!AsHs , ~2.40!

whereAs is a nonanticipative process of matrices. Moreover the Ito–Stratonovitch formula of
33 shows that

d expg i ,s
@ t~ggs2g i ,s!#5

]

]gs
expg i ,s

@ t~gs2g i ,s!#dgs1finite energy. ~2.41!

These finite energy terms are nonanticipative processes. This shows that the stochastic
part of Ai(g) is

Ãi~g!~H !5E
0

1

^Bsts
21dgs ,Hs&, ~2.42!

whereBs is a nonanticipative semi-martingale. Of course these manipulations are true only
Oi , but they can be extended smoothly overLM as it was done forr i , j . We extendl i ,t to the
whole L(M ), and we extendṽ to the new set of paths by extending the forms overM which
defineṽ.

For a finite energy loop, the connection formsAi are compatible with the transition function
r i , j . We deduce from the positivity theorem of Refs. 22 and 23 that this remains true i
stochastic case. This theorem tells namely that a formula which is given in terms of stoc
integrals and of the parallel transport of the Brownian bridge is true almost surely if the unde
formula which is given for the smooth loop space is true surely. Letgn be the polygonal approxi-
mation ofg . . Herer i , j (g

n) is surely defined and checks surely~2.25! and ~2.26!. Moreover, by
the rules of the approximation of Stratonovitch integrals by traditional integrals,r i , j (g .

n) tends
almost surely tor i , j (g .), when the length of the subdivision tends to the infinity.33 This says that
the formal bundle overL(M ) extends the bundle over the finite energy loop space whic
deduced fromṽ.

For finite energy paths, the connection preserves the metric, because the parallel tra
preserves the metric. Leta(g .) be a scalar which depends only on a finite number of coordina
It is a cylindrical functional. LetGi(g .)a5f i(g .) be the corresponding section of the line bund
which is equal to 0 outsideOi . Let us consider another section of the same structure. Since
connection preserves the metric

¹X^f,f8&5^¹Xf,f8&1^f,¹Xf8& ~2.43!

for any vector fieldX.
Let us suppose that the vector fieldX has a divergence~see Refs. 16, 5, and 19!. This means

that

E@^dF,X&#5E@F div X# ~2.44!

for all cylindrical functionals. We conclude that
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¹X* 52¹X1div X. ~2.45!

If Ht is deterministic,Xt has a divergence~see Refs. 16 and 5!, which is in all theLp.
For any sumf of sectionsf i of the previous structure,¹ .f is a tensor in the tangent spac

in g . with value in the fiber. We take its Hilbert–Schmidt normi¹fig . TheWp,1(ṽ) norm of this
special type of section is

ifiWp,1~ṽ !5iifiiLp1ii¹ .fiiLp. ~2.46!

Since we have integration by parts formulas, the operation of covariant derivative is closab
allows us to obtain the following.

Definition II.3: The Sobolev spaceWp,1(ṽ) of a section of the formal line bundle associat
to ṽ is the completion of finite combination(f i of local sections overOi for the norm~2.45!.

The space ofC1 sections is the intersection of the Sobolev spacesWp,1(ṽ). Let us recall that
there is the Sobolev spaceWp,1 of functionals which belong toLp such thatdF belongs inLp. We
have, obviously, the following.

Proposition II.4:The space ofC1 sectionsùWp,1(ṽ) is a module overùWp,1 .
Moreover, ifF belongs to all theWp,1 , if f is a C1 section, and ifX is a vector field,

¹X~Ff!5^dF,X&f1F¹Xf. ~2.47!

Remark:Over Oi , the connection form has an exterior derivative. Namely, it is given
nonanticipative stochastic integrals and the pathsl i ,t(g .) depend smoothly ong . . We can apply
indeed toAi the procedure of Ref. 20 in order to define a stochastic exterior derivative, alth
the Lie bracket of two vector fields is not a vector field. Over the finite energy loop space,

dAi5ṽ ~2.48!

by construction. As a matter of fact,Ai is a Chen form over a set of paths overL(M ). The
connection formAi is a Chen form over the set of distinguished paths overL(M ) constructed from
the form ṽ over L(M ). Therefore,

dAi~g!5ṽ„l i ,1l ~gbase,g .!…S ]

]g
l i ,1~gbase,g .!,

]

]g
l i ,1~gbase,g .! D5ṽ ~2.49!

by the rules over the exterior derivatives of a Chen form, which are still true in infinite dimen
It remains true over the continuous loop space almost surely, by the positivity theorems of
22 and 23. The curvature of the formal line bundle isṽ. This notion of curvature has, howeve
only a formal meaning, because@X,Y# is not a vector field.

Remark:If we suppose that the loopsg i are smooth, which is possible, we can apply t
theory of Ref. 20 to the formAi(g). Namely, we imbedM into Rd and we extendv into vext. It
is possible to extendl i ,t(g .)s into a functionf t(s,gs) wheref is a smooth application fromRd into
Rd, smooth ins and piecewise smooth int.

Here Ai(g) is the restriction toB(g i ;d) of the global formÃi(g) given by the following
formula:

Ãi~g!5E
0

1E
0

1

vext„f t~s,gs!…S dsf t~s,gs!,
]

]t
f t~s,gs!,

]

]g .
f t~s,gs! D . ~2.50!

Let us recall what is a form which belongs to all the Nualart–Pardoux spaces over the
space~see Ref. 20!. Let s be a form of degreen over the Brownian bridge:

s~t .H .
1,...,t .H

n!5E
0

1

¯E
0

1

k~s1 ,...,sn!Hs1
81
¯Hsn

8n ds1¯dsn , ~2.51!
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wherek(s1 ,...,sn) is a random variable inTg0

^ n ~We do not specify the conditions of antisymmet

which naturally appear.! Since we have a connection over the Brownian bridge@see a little bit
before~2.32! the definition of this connection#, we can define the iterate covariant derivative of t
form s for this connection; let us denote them by¹ rs. It is given by kernels
k(s1 ,...,sn ;t1 ,...,t r). The Nualart–Pardoux Sobolev normsN.Pp,k(LM ) of the n-form s are
given by the two smallest constantsC(p;k) andC8(p;k) such that

ik~s1 ,...,sn ;t1 ,...,tk!2k~s18 ,...,sn8 ;t18 ,...,tk8!iLp<C~p;k!S ( Ausi2si8u1( Aut j2t j8u D
~2.52!

if s1 ,...,sn ,t1 ,...,t r ands18 ,...,sn8 ,t18 ,...t r8 belong to the same connected component of@0,1#n1k
.

where we have removed the diagonal and such that

ik~s1 ,...,sn ;t1 ,...tk!iLp<C8~p;k! ~2.53!

for all s1 ,...,sn ,t1 ,...tk . By definition, the space of forms which belong to all the Nuala
Pardoux Sobolev spacesN.Pk,p(LM ) is the space of forms which are smooth in the Nuala
Pardoux sense, denoted byN.P`2(LM ), endowed with its natural topology. The exterior deriv
tive is continuous fromN.P`2(LM ) into N.P`2(LM ) ~see Ref. 20!.

Sinces→ f t(s,.) is smooth,Ãi(g) is a form of degree 1 which is smooth in the Nualar
Pardoux sense. We can therefore define its exterior derivative, and define by restriction th
rior derivative ofAi(g).

Remark:We can specify now what is a finite-dimensional bundle overL(M ). Let G be a
compact Lie group and letR be a representation of it overCd or overRd. Let Oi be a countable
family of open set which constitutes a cover ofL(M ) and let r i , j (g) be a set of transition
functions with values inG. In other words, we suppose that overOiùOj

r i , jr j ,i51 ~2.54!

almost surely, and that overOiùOjùOk

r i , jr j ,krk,i51 ~2.55!

almost surely. We can define the set of measurable sections of the associated to the repres
R as in the Definition I.1. But we can go one step further. We imbedG into SO(N). For all smooth
functionalsF with support inOiùOj , we suppose thatg→Fr i , j belongs to all the Sobolev
spaces. We would like to say that the transition functions are in some sense continuous. F
we define the capacity of an open set:

Capr ,p~O!5Inf$iFiWr ,p
,F>1O almost surely%. ~2.56!

The capacity of a Borelian subsetA of L(M ) is the infimum of the capacities of the open sub
which containA. A slim set is a set, all of whose capacities equal 0.34 For instance, a point is a
slim set, unlike the finite-dimensional case. A functional which belongs to all the Sobolev s
should have a redefinition which is continuous outside a slim set~see Ref. 34, Chap. IV.2!. This
shows us that the transition functionalsr i , j should have a redefinition continuous outside a slim
and ~2.54! and ~2.55! should be checked outside a slim set for this redefinition. In others wo
we should be able to define the topological space of the principal bundle overL(M ) outside a set
of capacity 0. We should be able to define the linear bundle associated to the representR
outside a slim set. Under this point of view, the open setOi should be defined modulo a slim s
and they should constitute a cover modulo a slim set. We do not give more details about thi
of view, because we are ultimately interested in infinite-dimensional operators, which op
about a space of sections.
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Remark:The system of sections of the line bundle depends apparently on the systems o
g i ,. chosen. Let us consider another countable system of finite energy loopsg i8 such that the balls
of radius d8 for d8 small enough and of centerg i8 constitute an open cover ofL(M ) for the
uniform distance. The set ofB(g j8 ,d8)ùB(g i ,d) constitutes still an open cover ofL(M ). Let us
call this open cover byOi . There exists two distinguished curves going fromgbaseto g: the first
one, l i(gbase,g), is constructed as before and is passing byg i . The second one,l 8(gbase,g), is
passing byg i8 . There exists two distinguished surfacesBi , j (g) andBi , j8 (g) constructed as before
over OiùOj , by choosing the system ofg i or the system ofg i8 . Let us denote

r i , j~g!5expF22pA21E
Bi , j ~g!

ṽG ~2.57!

and

r i , j8 ~g!5expF22pA21E
Bi , j8 ~g!

ṽG . ~2.58!

We choose a small stochastic surface as it was done before whose boundary is the sma
constructed froml i(gbase,g) andl i8(gbase,g) circled in the opposite sense. Let us call itSi(g). We
put

x i~g!5expF22pA21E
Si ~g!

ṽG . ~2.59!

We get, sinceṽ is Z valued, almost surely

r i , j~g!5x i~g!x j
21~g!r i , j8 ~g!. ~2.60!

Let us define the section of the line bundle by its local sectiona i for r i , j anda i8 for r i , j8 . Let us
consider the transformation:

a i8→a i8x i
215a i . ~2.61!

It defines an isomorphism of the measurable sections of the line bundle and of the spaceLp

sections of the line bundle, since the complex numberx i is of modulus 1. Namely the relation
a i85a j8r j ,i8 is equivalent to the relationa i5a jr j ,i over OiùOj , because we have the relatio
~2.61!.

III. STOCHASTIC STRING STRUCTURE

Let us introduce a compact, simple, simply connected Lie groupG. SinceG is simple, all the
invariant bilinear forms on LieG are proportional. We can find a Killing form such that

v~X,Y,Z!5
1

8p2 ^X,@Y,Z#& ~3.1!

defines aG-invariant form with integral values,1,14 sinceG is simple.
In all this part, we will identify a form invariant under the group action over the Lie alge

with the corresponding form over the Lie group.
Let PfinG be the space of the finite energy path overG starting frome. Let p be the projection

from PfinG to G which to a pathgs associates its end pointg1 . Let LfinG be the based loop grou
of loops of finite energy inG starting frome. Herep determines aLfinG fibration. If g1 is in a
small neighborhoodOi(G) of G, we get a trivialization of this principal bundle. We introduce t
local slice of Oi(G) into PfinG: g1→gs

i (g1) where the pathgs
i (g) depends smoothly ofg in

Oi(G) and joinse to g. The transition functionsr i , j are equal to (gs
j )(g)21gs

i (g) and satisfy the
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rule of a system of transition functions. SinceG is compact, there exists¹G an LfinG connection
over PfinG.35 Moreover,LfinG is a Hilbertian Lie group. Its Lie algebra is the space of fin
energy loopsLfin Lie G going from 0 and arriving at 0 at time 1 in the Lie algebra ofG. We
introduce over it the energy Hilbert norm.

In the local chart given overOi(G) by the sliceg→g.
i(g), the connection form is a one-form

Ai with values in Lfin Lie G. This one-form is compatible with the transition function
Oi(G)ùOj (G).35

Let XsPLfin Lie G. We choose a two cocycle

c~X,Y!5
1

8p2 S E
0

1

^Xs ,dXs&2^Ys ,dXs& D . ~3.2!

This gives an invariant closed form of degree 2 overLfinG. It has integral values. Namelyc is
equal to the transgression ofv modulo an exact form.1 The transgression ofv is the Chen form
over LfinG:

E
0

1

v~dgfin,s ,Xs ,Ys!, ~3.3!

which is closed overLfinG. NamelyX05Y050 anddv50. This transgression is integral becau
the circle has no boundary. The reader can see the first part for analogous consideratio
integrability condition holds classically for the smooth loop space25 and not for the finite energy
loop space: we can approximate any surface without boundary in the finite energy loop sp
a surface without boundary in the smooth loop space, as it was done in the first chapter. Th
the integrability condition holds for the finite energy loop space.

The formula~3.2! gives a form overPfin Lie G, the Lie algebra ofPfinG. The difference is
that we do not haveX05X150. The main property of this form is the following;11 when we
consider its version overPfinG:

dc5p* ~v!. ~3.4!

Let us remark that in the previous considerations, we have always worked with finite e
paths.

Let LM be the space of continuous based loop endowed with the Brownian bridge me
Let us suppose that there is principal bundleP over M with structure groupG. We introduce a
connection overP. Let ts

G be the parallel transport starting frome in G overx5g0 . (gs ,ts
G) is the

horizontal lift of gs starting frome and is almost surely defined.Q is the set of pathsgs over gs

such thatgs5ts
Gl s wherel s is of finite energy and such thatg05g15e. We can give a description

of Q in a more algebraic way.13

We have a mapf from LM into G which to a stochastic loopg associates (t1
G)21. Q is the

pullback ofPfinG by f. We have the following commutative diagram:

Q → PfinG

↓ ↓
LM → G

~3.5!

The first vertical map is the projection mapp. The second vertical map is the projection mapp.
The lower horizontal map isf and the upper horizontal map isf * . f is an application fromL(M )
into G which belongs to all the Sobolev spaces, because the parallel transport is a solutio
stochastic differential equation.18

A system of trivializations ofQ is given by the pullback of a system of trivializations
PfinG. If ( t1

G)21POi(G), Q is trivialized by the sliceg→g.
i
„(t1

G)21
…, and the fiber is isomorphic

to LfinG. The transition functions aregj
„(t1

G)21
…

21gi
„(t1

G)21
… and belong to all the Sobole
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spaces fromLM into the Hilbertian Lie groupLfinG. They are smooth in the sense that they
restrictions of smooth functions inLfinR

d, after imbeddingG into Rd, and after extendingg.
j (g)

over Rd. This is possible becauseRd is contractible.
Over the principal bundleQ→LM with projectionp, we choose the pullback connection¹G.

If ( t1
G)21POi(G), the pullback connection form is the one-form:

Ai„d~t1
G!21

…5Ai
f* . ~3.6!

We can take the derivative oft1
G , becauset1

G belongs to all the Sobolev spaces.
Let us introduce the Pontryagin class of theG bundleP. Let FG be the curvature of theG

bundleP for the connection¹ determining the horizontal liftts
G over the Brownian loop. We have

Pont~FG!5
1

8p2 ^FG∧FG&. ~3.7!

It is a closed form overM. The transgression of Pont(FG) is the closed form of degree 3 ove
LM*0

1 Pont(FG)(dgs ,.).
It is a stochastic Chen form.17

We have13 the following.
Lemma III.1: f* 21v is cohomologuous to the transgression of the Pontryagin class.
Proof: Let us consider overLM the principal bundlePs which is the pullback by the evalu

ation mapg .→gs of the principal bundleP over M. Let ¹s be the pullback connection of th
connection¹ by this evaluation map. Its curvatureFs

G is given by

Fs
G~X,Y!5Fgs

G ~Xs ,Ys!. ~3.8!

Moreover,Ps is a trivial bundle: a trivialization is given byts
Gg whereg belongs to the fiber ofP

over x5g0 . In this system of trivializations, the connection form is given by the heuristic n
tion:

~ts
G!21¹

•

ts
G5Âs . ~3.9!

In order to give a rigorous meaning to this notation, let us introducev1
G , the canonical connection

form associated to the connection¹ over theG bundle P. Us is the derivative of the couple
(gs ,ts

G) in P over the vector fieldX
•

. We transformg
•

in expg
•

(lX), we compute the associate

lift ts
G( l ), and we take its derivative inl 50. We get a vectorUs over (gs ,ts

G) in P and we apply
v1

G to Us .
Since the curvature is intrinsically defined, and since the bundlePs is trivial, we have the

important relation:

dÂs1@Âs ,Âs#5~ts
G!21Fgs

G ~ts
G!, ~3.10!

where we take the exterior derivative ofÂs overLM. This exterior derivative has not only a forma
sense. Namely, we can use the matrix notation for the group. The computations of Refs. 36
show that

Âs~X!5E
0

s

~t t
G!21Fg t

G ~dg t ,Xt!t t
G , ~3.11!

which takes its values in the Lie algebra ofG. Moreover,Xs5tsHs where ts is the parallel
transport for the Levi-Civita connection for the tangent space. We have the obvious rel
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H05H150 andHs is of finite energy.16,17 X
•

is a vector overg
•

. Let us recall that it is the
parallel transportt which has a key role in the definition of Sobolev calculus over loop space5,18

and notts
G .

Let us suppose thatH andH1 are deterministic. Since the Levi-Civita connection is witho
torsion, we have16,36

@X,Y# t5~¹Yt t!Ht2~¹Xt t!Ht
1, ~3.12!

if Yt5t tHt
1. Moreover, we have

¹Yt t5t t
21E

0

t

ts
21R~dgs ,Ys!ts . ~3.13!

Moreover, we have

dÂs~X,Y!5XÂs~Y!2YÂs~X!2Âs@X,Y#. ~3.14!

From ~3.12!–~3.14!, we deduce thatdÂs exists and is a stochastic nonanticipative integral in
way described in Ref. 17.

Let us compute nowÂ1 . We consider the based loop space, such thatX05X150. Therefore
the counterterm which appears when we considerv1

G(U1) which depends linearly fromx1 and
from the Christoffel symbols of the connection¹ disappears.18 This shows us that

Â15~t1
G!21dt1

G . ~3.15!

From the formula~2.12!, we deduce the analogous formula then~5.7! in Ref. 13:

dsÂs~X!5~ts
G!21Fgs

~dgs ,Xs!ts
G . ~3.16!

Moreover, we have

FG∧FG~dgs ,Xs ,Ys ,Zs!5FG~dgs ,Xs!F
G~Ys ,Zs!1antisymmetry. ~3.17!

We have

~FG∧FG!~dgs ,.!5FG~dgs ,.!∧FG1FG∧FG~dgs ,.!. ~3.18!

Since the Killing form is symmetric, we have

^~FG∧FG!~dgs ,.!&52^FG~dgs ,.!∧FG&. ~3.19!

We use the fact that the Killing form is invariant under the group action. We find, after u
~3.10! and ~3.11!,

8p2E
0

1

Pont~FG!~dg t ,.!52E
0

1

^dtÂt∧dÂt&12E
0

1

^dtÂt∧@Ât ,Ât#&5B1C. ~3.20!

In *0
1^dtdÂt∧Ât(X,Y,Z)&, there are three expressions which occur of the t

*0
1^dtdÂt(X,Y,Z)Ât(Z)&. When we sum these expressions after performing an integratio

parts, we find, sincedtd5dtd,

E
0

1

^ddtÂt∧Ât&~X,Y,Z!52S E
0

1

dtAt∧dAtD ~X,Y,Z!. ~3.21!
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We have used the symmetry of the Killing form. It remains to consider the integrated
However, we have

^Â1~Y!Â1~X!2Â1~X!Â1~Y!,Â1~Z!&52^Â1~X!,Â1~Y!Â1~Z!2Â1~Z!Â1~Y!&

5^Â1~X!,Â1~Z!Â1~Y!2Â1~Y!Â1~Z!&. ~3.22!

because the form̂.& is invariant under theG action. This shows that, by using~3.10!,

E
0

1

^dtdÂt∧Ât&528p2f * v2E
0

1

^dtÂt∧dÂt&. ~3.23!

This shows us that

dc~Â,Â!528p2f * v22E
0

1

^dtÂ∧dÂt&, ~3.24!

or, equivalently, we have

2E
0

1

dtÂt∧dÂt528p2f * v2dc~Â,Â!. ~3.25!

Let us study now

E
0

1

^dtÂt~X!,Ât~Y!Ât~Z!2Ât~Z!2Ât~Z!Ât~Y!&. ~3.26!

We integrate by parts. We find

^Â1~X!,Â1~Y!Â1~Z!2Â1~Z!Â1~Y!&2E
0

1

^Ât~X!,dtÂt~Y!Ât~Z!2Ât~Z!dtÂt~Y!&

2E
0

1

^Ât~X!,Ât~Y!dtÂt~Z!2dtÂt~Z!Ât~Y!&

5^Â1~X!,Â1~Y!Â1~Z!2Â1~Z!Â1~Y!&1E
0

1

^dtÂt~Y!,Ât~X!Ât~Z!2Ât~Z!Ât~X!&

2E
0

1

^dtÂt~Z!,Ât~X!Ât~Y!2Ât~Y!Ât~X!&. ~3.27!

Because the form̂.& is invariant under theG action, the two last integrals cancel with the tw
others which appear in*0

1^dtÂt ,@Ât ,Ât#&(X,Y,Z). These two other terms are in fac
2*0

1^dtÂt(Y),Ât(X)Ât(Z)2Ât(Z)Ât(X)& and *0
1^dtÂt(Z),Ât(X)Ât(Y)2Ât(Y)Ât(X)&. Namely

in the first case, we deduce~Y,X,Z! from ~X,Y,Z! by one permutation and~Z,X,Y! from ~X,Y,Z! by
two permutations.

In order to summarize,

2E
0

1

^dtÂt ,@Ât ,Ât#&58p22 f * v. ~3.28!

We deduce by~3.20! that
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f * ~v!5E
0

1

PontFG~dg t ,.!1dc~Â,Â!. ~3.29!

This proves the lemma. L
Let us recall how we construct a central extension ofLfinG from the cocyclec.37,14

We will make in this paper the following hypothesis:
Hypothesis H.1: LfinG is simply connected.
We consider the set of path starting from the unit path inLfinG. Let l t be such a path. We

consider a product of (l
•

,a) whereaPS1. We endow the set of (l ,a) with the group structure:

~ l
•

,a!~ l 8,b!5„l l 8,c~ l ,l 8!ab…, ~3.30!

wherec( l ,l 8)5exp@2pi*Bc#. The integral ofc is taken over any surface bounded by the triangle
LfinG with vertices (1,1l 18 ,l 1l 18) and edges (l t8 ,l tl 18) and l tl t8 , the last one being circled in th
opposite direction. Under the hypothesis H.1, we can find such surface. We identify (l

•

,a) and
( l

•

8 ,a8) modulo a normal subgroup. This one is constituted of (l ,a) wherel is a loop inLfinG and
a5exp@22pi*Bc# whereB is a surface bounded byl. c being integral valued, the integral over th
surface depends only on its boundary modulo an integer. We get by this procedure a
extensionL̃finG of LfinG.

If we consider the diagram~3.5! for the finite energy loop, we get a bundleQfin over LfinM ,
the based loop space of loops of finite energy inM. We make the following hypothesis:

Hypothesis H.2: Qfin is simply connected.
This will allow us to construct a formalS1 bundle overQ by starting from a given closed form

of degree 2 with integral values overQfin .
The last hypothesis we will give is the following:
Hypothesis H.3:PontFG gives a trivial cohomology class.
This will allow us to construct a closed form with integral value overQfin ~see Ref. 13!.

Namely, if PontFG gives a trivial cohomology class, we have

PontFG5dm. ~3.31!

Over the finite energy based loop spaceLfinG,

f * v5dE
0

1

m~dgs ,.!1dc~Â,Â!5dn. ~3.32!

Namely, we have

dE
0

1

m~dgs ,.!5E
0

1

dm~dgs ,.!, ~3.33!

since we work over the based loop space~We refer to Ref. 30 for the rules of derivation of Che
forms!. Equation~3.32! remains true for the stochastic loop space.

We follow Ref. 13. Let us put

FQfin
5 f * c2p* n. ~3.34!

Over Qfin , dFQfin
50, but FQfin

has no integral values. TheZ homology of LfinM is finitely
generated. SinceLfinG is simply connected, we can find a lifting of the finite numbers of cy
which generate theZ homology ofLfinM . Moreover, the Hochschild cohomology is equal to t
cohomology of the based loop space.31 We can perturbn in ~3.34! by a finite combination of Chen
forms of degree 2 such thatFQfin

in ~3.34! has integral values overQfin . The number of string
structures is related to the number of deformations by Chen forms ofFQfin

. A perturbation by a
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Chen form instead of a general form as in Ref. 13 is useful in so far as we can integrate
forms over random surfaces as it was done in the first part. We will still callFQ the perturbated
Z-valued form.

Let us recall what Ref. 13 does in order to construct the liftQ̃fin of Qfin : they consider the
space of pathPQfin starting from a based point inQfin . Over PQfin3S1 @a typical element is
denoted by (q

•

,a)#, there is an action ofPLfinG3S1, wherePLfinG is the set of path inLfinG
starting from the unit path. A typical element of this last one is denoted by (l

•

,a). The action is
defined as follows:

~q
•

,a
•
!~ l

•

,a8!5„ql,c~q,l !aa8…. ~3.35!

The expressionc(q,l ) is defined as follows:

c~q,l !5expF2ipE FQG . ~3.36!

We omit writing the distinction betweenFQ andFQfin
. The integral is taken over any surfaceB

filling in the triangle with vertices (q0 ,qol 1 ,q1l 1) and edges (q0l t ,qtl 1) and (qtl t), the edgeqtl t

being circled in the opposite sense. We identify (q,a) and (q8,a8) if q and q8 have the same
point and if

a85c~q,q8!a, ~3.37!

wherec(q,q8)5exp@2pi*FQ#. ~see Refs. 14 and 37 for analogous considerations!. The integral is
taken over a surfaceB whose boundary is the loop constituted fromq8 circled in the positive
direction andq circled in the negative direction. We use the fact thatFQ is invariant under the
LfinG action. We construct anS1 bundleQ̃fin over Qfin which is anL̃finG principal bundle. The
bundle Q̃fin over Qfin is an S1 bundle with a connection whose curvature isFQ modulo the
normalizing term 2p i . There is a tower of bundles:Q̃fin which is anS1 bundle overQfin . Qfin

which is anLfinG bundle overLfin(M ) andQ̃fin which is anL̃finG bundle overLfin(M ).
The purpose of the remaining part of this paper is to construct a formalL̃finG bundle over the

stochastic loop spaceL(M ) which extends in some sense the bundleQ̃fin over Lfin(M ). For that,
we have to construct overQ the analogous parts of the distinguished curves and of the di
guished surfaces of the first part. It is the purpose of a connection to lift curves over a bund
introducing a suitable connection overQ, we will produce a system of transition functions wi
values in L̃finG, which satisfy almost surely~2.25! and ~2.26!. But these transition functions
cannot be defined over a system of open sets for the uniform distance overL(M ), because they
depend ont1

G which is only almost surely defined.
Let g i be a countable set of finite energy loops such that the union of the open balls of r

d for the uniform normB(g i ,d) is equal toLM. If g
•

belongs toB(g i ,d), there is a curve
l t(g i ,g

•

) joining g i to g
•

. The parallel transportt1
G
„l t(g i ,g

•

)… depends almost surely ont on this
curve. Therefore, starting from an elementq(g

•

) overg . in Q, we use the parallel transport for th
connection¹G and we deduce a curveqt(g) over l t„g i ,g

•

)….
Let us introduce another condition overg

•

. It is (t1
G)21POj (G), a small neighborhood ofG.

If this condition is satisfied, we have a slicegj (g
•

) of Q which depends smoothly ong
•

. Of
course this dependance is only local. However, it is the restriction of a smooth application
takes its values in the smooth manifoldPfinR

d8, by imbeddingM into Rd andG into Rd8. As in the
first part, we can regularize the indicator function ofB(g i ,d)ù$(t1

G)21POj (G)%. The indicator
function of the first event is regularized as in the first part. The indicator function of the se
event can be easily regularized, because it depends only on (t1

G). In particular, we can find a
sequence of smooth functionsGi , j with support in the eventB(g i ,d)ù$(t1

G)21POj (G)% which
tends simply to the indicator function of this event and with support in this event.
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Let gk be a family of elements ofLfinG such that the set of open ballsB(gk ,d) for the uniform
distance constitutes a cover ofLfinG. We have a cover ofQ by the set ofgj (g

•

)g for g
PB(g i ,d)ù$(t1

G)21POj (G)% andgPB(gk ,d).
In order to simplify the exposure, we will call only by one parameteri this family of subsets

Qi of Q.
We will define a set of transition functionsr i , j which will define a formal circle bundleQ̃

over Q.
This means that almost surely ingPB(g i ,d)ù$(t1

G)21POi%, for all gPB(gi ,d), we have
almost surely the following properties:

r i , jr j ,i51 ~3.38!

over QiùQj and overQiùQjùQk

r i , jr j ,krk,i51. ~3.39!

The topological spaceQ̃ is not defined, because these transition functions are only almost s
defined over the basisLM. But this system will allow us to define another system of transit
functionsr i , j over OiùOj for a suitable coverOi of LM. It is a cover ofL(M ) modulo a set of
measure 0 and it satisfies almost surely

r i , jPL̃finG, ~3.40!

r i , jr j ,i51 ~3.41!

over OiùOj and

r i , jr j ,krk,i51 ~3.42!

over OiùOjùOk .
Let us suppose that this last point is satisfied. Let us suppose that there is a unitary re

tation Spin ofL̃finG, which is a Hilbert space~see Ref. 26 and 1!. The transition functions allow
to define the space of measurable sections of the bundle Spin.

Definition III.2: Let c i be a system of random variables overOi with value in Spin. This
system defines a section of the formal bundle Spin overLM if over OiùOj :

c j5r j ,ic i . ~3.43!

If c i is an element of Spin overOi , we will define its normic i i2, which is compatible with the
transition functions. Namely the representation ofL̃finG over Spin is supposed unitary.

Definition III.3: The space ofLp sections of Spin is the space of measurable sectionsc such
that

iiciiLp,`. ~3.44!

Let „g
•

,gi(g
•

)g… be inQi . There is a distinguished path joiningg to gj , the center of the ball
for the uniform distance inLfinG which constitutes the vertical part ofQi . After this, there is a
distinguished path joiningg

•

to g i , the center of the ball in the basisLM which constitutes the
basical part ofQi . We parallel transport by¹Ggi(g

•

)gi to g̃i(g
•

)gi , which is overg i . The
elementg̃i(g

•

)gi depends smoothly ong
•

. The main problem is thatg̃i(g
•

)gi is notgi(g i)gi . In
order to be able to choose a nice distinguished curve joining these two elements overg i , we have
to impose another condition overQi . The elementg̃i(g

•

)gi in the fiber ofg i remains in a small
tubular neighborhood ofPfinG. This can be done if we assume, for instance, that the process o
holonomyt1

G over the distinguished path joiningg to g i remains in a small tubular neighborhoo
of PfinG. We use the fact thatQ is simply connected. There is a distinguished pathl i ,Q(q) joining
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q in Qi to qbasein Q, a reference element ofQ. When we have arrived atgi(g i)gi , we go by a
deterministic path toqbase, a reference element inQ. This path depends smoothly onq. In the fiber
direction, it depends smoothly onq in the traditional sense. In the basis direction, it depe
smoothly onq in the generalized sense of Ref. 5 or 18.

Let us choose a distinguished surface bounded by the loop constituted ofl i ,Q(q) and of
l j ,Q(q) if qPQiùQj . We should be able to integrateFQ over this distinguished surface by usin
the theory of stochastic integrals.

Let us recall some results of the first part. There is a distinguished path joiningp„l i ,Q,t(q)… to
p„l j ,Q,t(q)… for t smaller than the time which is used in order to joing̃i(g

•

)(gi) to gi(g i)(gi). We
parallel transportl i ,Q,t(q) over this distinguished path, and we find at the end overp„l j ,Q,t(q)… a

curve l̃ j ,Q,t(q). Moreover, there is a deterministic path joining„g i ,gi(g i)(gi)… to „g j ,gj (g j )
3(gj )…. Namely,Qfin is supposed simply connected. Therefore, we get a surface whose bou
differs of the l j ,Q,t(q) and the path joining„g i ,gi(g i)gi… and „g j ,gj (g j )gj… by a loop inLfinG.
We take any vertical surfacel u,v(g

•

) in Lfin(G) bounded by this loop. We get a surfaceBi , j (q) in
Q bounded by the loop constituted ofl i ,Q,t(q) and of l j ,Q,t(q). Namely we can fill in the triangle
constituted of the path joiningqbase to g i , gi(g i)gi , the path joining „g i ,gi(g i)(gi)… to
„g j ,gj (g j )gj… by a surface, becauseQfin is simply connected.

In the integral ofFQ over Bi , j (q), there are two parts:

~i! The part involved with integral in the basis. Sincec(Â,Â) is a stochastic integral, and sinc
we have perturbedn by a Chen form, this contribution can be treated as in the first pa

~ii ! The part which is involved with the fiber integration, which is a traditional integration, d
not involve any stochastic integration. In particular, we can takel u,v(g

•

) arbitrary: since
FQ is integral, it does not change the value of the transition function.

Since we can takel u,v(g) arbitrary, this shows us that (g,g)→r i , j is smooth in (g
•

,g). The
transition functionr i , j has a similar shape as in the first part. As a matter of fact, we are wor
over Q instead of overL(M ). The derivative ing is in the normal sense for the Hilbert manifo
LfinG, and the derivative ing is in the general sense of Ref. 18. In particular, for almost allg

•

,
g→r i , j (g,g) is smooth. We localize the smoothness assumption by using a regularized vers
the indicator function ofQi . It is a regularization in the Sobolev sense ing

•

, and a regularization
in the normal sense ingPLfin(G). In order to do this operation, we have chosen the sliceg
→gi(g

•

). The regularization of a tubular neighborhood ofPfinG is performed as in the first part
It is not clear that we get a smooth function when we compose withg̃i(g

•

), but it has a derivative
in the generalized sense which is locally integrable.

In particular, if „g,gi(g
•

)…PQi , and if we consider a polygonal approximationg
•

n of g
•

,
„gn,gi(gn)g…PQi for n big enough. We get a transition functionr i , j (g

n,g) which tends to
r i , j (g•

,g) ~see Ref. 31! almost surely.
But over finite energy path, we have~3.38! and~3.39! surely, if we do the same procedure

construct the transition functions. In particular, it is true forr i , j (g
n). We deduce that~3.38! and

~3.39! are almost surely true when we consider a fixedg. But r i , j depends in a smooth way ofg
in the fiber. The topological spaceLfinG has a countable dense set of elements. We deduce
~3.38! and ~3.39! are almost surely true in the following sense: it is almost surely ing

•

over
p(Qi)ùp(Qj ), for all qPp21(g) in QiùQj , that we have~3.38!. There is the same statement f
~3.39!.

Let us now state~3.40!–~3.42!. We are working overQ̃fin . Since there is an action ofL̃finG

which preserves the projectionp̃, it is enough to find local slices ofQ̃fin over LfinM .
It is possible to find such slices for the continuous loop space.
The chartOi,LM is defined by the three following conditions:

~i! g
•

is closed of a given energy curveg i .
~ii ! (t1

G)21(g) is in a small neighborhood ofG.
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~iii ! The parallel transport for¹G of gi(g
•

) over the distinguished curve given in the first pa
which joinsg

•

to g i is in a small tubular neighborhood ofLfinG for the uniform distance.

Over Oi , we can find a formal sliceq̃i(g•

) of the formal line bundleQ̃. Namely the parallel
transport ofgi(g) over the distinguished curve joiningg i to g remains in a small neighborhood o
LfinG. There is, sinceQfin is simply connected, a distinguished curve joiningqbasePQ to
„g,gi(g)…. We will denote it byqi ,.(g) and we putq̃i(g)5„qi ,(g),1….

Let us work overOiùOj . Let us show that almost surely

„qi ,.~g
•
!,1…5„qj ,.~g

•
!,1…r j ,i~g

•
!. ~3.45!

The quantityr j ,iPL̃finG has an action given by~3.35!.
The quantityqi ,1(g) is the pathgt

i
„(t1

G)… overg
•

andqj ,1(g) is the pathgt
j
„(t1

G)21
… overg

•

.
Moreover,t1

G over Oi remains in a small neighborhood ofG andt1
G over Oj remains in a small

ball of G. There is, therefore, a distinguished path inLfinG, smooth int1
G joining gt

i
„(t1

G)21
… to

gt
i
„(t1

G)21
… by right multiplication. Moreover, this path remains in a small tubular neighborh

of LfinG. Let us call it l j ,i ,1(g•

). Since it remains in a small neighborhood ofLfinG, we can find
a path l j ,i ,t(g•

) joining the unit path inLfinG to l j ,i ,1(g•

), and which is smooth ing. Let us
compute by the rule~3.35! and ~3.36! the quantity

„qj ,.~g!,1…„l j ,i ,.~g!,1…5„qj ,.~g!l j ,i ,.~g!,a j ,i…. ~3.46!

We have to find a distinguished suitable surface which depends on a nice way ofg
•

. Its vertices
are given by „qj ,0(g),qj ,0(g) l j ,i ,1(g),qj ,1(g) l j ,i ,1(g)…. Its edges are given by
„qj ,0(g) l j ,i ,s(g),qj ,s(g) l j ,i ,1(g),qj ,s(g) l j ,i ,s(g)…, the last one being circled in the opposite sen
We do as before in order to produce this surface by filling in first the loop over the basisLM as it
was done in the first part, and afterwards by using the connection¹G and using the third condition
in the definition of Oi . We use the parallel transport over the natural path join
pqj ,0(g•

) l j ,i ,s(g•

) to pqj ,s(g•

) l j ,i ,s(g•

). An extra loop inLfinG appears. We find an arbitrar
surface inLfinG whose boundary is this extra loop. Two parts in the integral ofFQ over the global
surface are obtained. The basic part leads to a nonanticipative stochastic integral. The fibe
a traditional integral and is smooth. Namely, the surface filling in the extra loop which appe
LfinG can be chosen arbitrarily. We deduce thata j ,i is smooth. More precisely,GiGja j ,i belongs
locally to all the Sobolev spaces, whereGi is a regularization of the indicator function of the sam
type of the previous regularizations.

We conclude that

~qj ,.,1!~ l j ,i ,. ,b j ,i ![~qi ,.,1!, ~3.47!

where theb j ,i are smooth in the previous sense. Namely, we have to identify„qi ,.(g•

),1… to
„qj ,.l j ,i ,(g

•

),b i , j…. We have to find a nice surface which joinsqi ,.(g•

) to qj ,.(g•

) l j ,i ,.(g•

) where
we can integrateFQ by using the theory of stochastic integrals. As in the first part, there
distinguished surface bounded by the loopp„qi ,.(g) to p(qj ,.(g•

) l j ,i ,.(g•

)…. We parallel transport
qi ,t(g•

) over the path joiningp„qi ,t(g•

)… to p„qj ,t(g•

)…. We findq̃ j ,t(g•

). But q̃ j ,1(g•

) is different
from qj (g•

), but it differs by a loop inLfinG. An arbitrary surface inLfinG is bounded by this
loop, because the third condition is checked in the definition ofOi .

We get a global random surface overQ. They are two parts in the integral ofFQ over this
surface. The basic part leads to a nonanticipative stochastic integral. The fiber part is a trad
integral, which is smooth. Namely, the surface bounded by the extra loop which arises inLfinG
can be chosen arbitrarily.

Moreover, ifgPOi , gnPOi for a polygonal approximation ofg. r i , j (g
n) tends almost surely

to r i , j (g). Since overQ̃fin the r i , j are transition functions, we have~3.41! and ~3.42! surely for
r i , j (g

n); ~3.41! and ~3.42! are true almost surely forr i , j (g•

).
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Remark: If we look at the formalism of the Definition I.2, we have immediatelygj ,i

5(g.
j
„(t1G)21

…)21g.
i
„(t1

G)21
…, andr j ,i5( l j ,i ,b j ,i) checks clearly the condition of Definition I.2
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33J. M. Bismut,Mécanique Ale´atoire, Lecture Notes in Mathematics 866.~Springer, Berlin, 1981!.
34P. Malliavin, Stochastic Analysis~Springer, Berlin, 1997!.
35S. Kobayashi and S. Nomizu,Foundations of Differential Geometry. I.~Interscience, New York, 1969!.
36J. Norris, ‘‘Covariant stochastic calculus and applications to heat kernels,’’ P.T.R.F.94, 525–541~1993!.
37M. K. Murray, ‘‘Another construction of the central extension of the loop group,’’ C.M.P.116, 73–80~1988!.
                                                                                                                



ndi–

of a
d to
-

eous
tors

-called

ormal
ng
ning.

m the
ed

f the
lation.

e
stem

f. 8 to
a line

re a

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 1 JANUARY 1999

                    
A canonical realization of the BMS algebra
G. Longhia) and M. Materassi
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A canonical realization of the BMS~Bondi–Metzner–Sachs! algebra is given on
the phase space of the classical real Klein–Gordon field. By assuming the finiteness
of the generators of the Poincare´ group, it is shown that a countable set of con-
served quantities exists~supertranslations!; this set transforms under a particular
Lorentz representation, which is uniquely determined by the requirement of having
an invariant four-dimensional subspace, which corresponds to the Poincare´ trans-
lations. This Lorentz representation is infinite-dimensional, nonunitary, reducible
and indecomposable. Its representation space is studied in some detail. It deter-
mines the structure constants of the infinite-dimensional canonical algebra of the
Poincare´ generators together with the infinite set of the new conserved quantities. It
is shown that this algebra is isomorphic with that of the BMS group. ©1999
American Institute of Physics.@S0022-2488~99!00301-1#

I. INTRODUCTION

Our purpose in this paper is to give a canonical realization of the algebra of the Bo
Metzner–Sachs~BMS! group1 on the phase space of the real classical Klein–Gordon field.

The BMS group arises in general relativity as the asymptotic symmetry at null infinity
space–time describing an isolated~radiating! gravitational source. Such space–time is expecte
become flat at null infinity,2 and to exhibit the Poincare´ group as the group of asymptotic sym
metry.

While an asymptotic symmetry exists, its group is not the Poincare´ group. It is a larger group
containing the Poincare´ group as a subgroup, and is a semidirect product of the homogen
Lorentz group with an infinite-dimensional Abelian group. Among the infinitely many genera
of this Abelian group there are the generators of translations; the remaining are the so
supertranslations.

The idea of asymptotic flatness was formalized by Penrose by a process of conf
compactification;3 by means of this process a boundary~scri! was added to space–time, consisti
of end points of null geodesics. In this way the notion of flatness acquired an intrinsic mea

The asymptotic symmetry at null infinity has been studied by several authors. Apart fro
classic papers1 we also quote some review articles.4 Here we only mention some points discuss
in the literature on this argument.

One problem with the BMS group is due to the presence of infinitely many copies o
homogeneous Lorentz group, obtained from one another by conjugation with a supertrans
This happens even in the case of the Poincare´ group, but the spin Casimir of the Poincare´ group
is not invariant under such a conjugation.5 This causes difficulties in the definition of a uniqu
Poincare´ group, and, by consequence, in the definition of the angular momentum of the sy6

~see, however, Ref. 7!.
The unitary and irreducible representations of the BMS group have been studied in Re

give a possible interpretation of this group as a fundamental group of elementary particles,
of research no longer pursued.

There is a situation analogous to that of null infinity in the case of spatial infinity, whe
similar ~bigger! asymptotic symmetry arises.9

a!Electronic mail: longhi@fi.infn.it
4800022-2488/99/40(1)/480/21/$15.00 © 1999 American Institute of Physics
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More recently the classical approach to null infinity was criticized,10 and it was shown that a
more general asymptotic expansion for the metric should be used~polyhomogeneous expansion!.
Nevertheless, the group of asymptotic symmetry at null infinity is still the BMS group.

In view of the role played by the BMS group in general relativity it seems of interest to s
that its algebra can be canonically realized in terms of conserved quantities of a real cla
Klein–Gordon field. While this field has been chosen for its simplicity we expect that a sim
analysis could be done for any other classical field. In particular, we will give explicitly
underlying infinite-dimensional representation of the Lorentz algebra, which determines the
ture constants of the BMS algebra. Indeed we will show that, besides the total energy-mom
Pm of the Klein–Gordon field, it is possible to define a countable set of other conserved quan
with vanishing Poisson brackets withPm and among themselves. This new set of conser
quantities is given in terms of a countable set of functions on momentum space, which a
basis for an infinite-dimensional representation of the Lorentz group, which is nonunitary, r
ible and indecomposable.

The structure of this representation function space is the same as that of the translatio
supertranslations of the BMS group. We show that the Poisson algebra of the conserved qu
built from these functions and the generators of the Lorentz group is the same as that of th
group. So we call these conserved quantities the generators of supertranslations.

The action of the Lorentz generators on the supertranslations defines a set of structu
stants of the BMS algebra,which are the matrix elementsof the infinite-dimensional representa
tion of the Lorentz group. The action of the supertranslations on the field is nonlocal. Nevert
it defines, as in the case ofPm, a canonical transformation on the field.

In Sec. II we recall some definitions about the Klein–Gordon field and define the Lapl
Beltrami operator on the mass hyperboloid. The eigenfunctions of this operator are studied
III and, in Sec. IV, the infinite representation of the Lorentz algebra is studied in some deta
Sec. V the Poisson algebra of the generators of supertranslations is given and it is shown t
isomorphic with the algebra of the BMS group.

The definitions and notations for the Klein–Gordon field are given in Appendix A. In App
dix B we discuss the eigenfunction problem for the Laplace–Beltrami operator on the
hyperboloid. Moreover, we study in some detail the representation of the Lorentz group, wh
the basis for the definition of the supertranslation generators.

II. THE KLEIN–GORDON FIELD AND THE LAPLACE–BELTRAMI OPERATOR

The notations and definitions for the real Klein–Gordon fieldF(x,t) are given in Appendix
A. For eachtPR the field F(x,t) will be supposed to belong, together with its spatial a
temporal derivatives, toL2(R3), that is

~F~•,t !,Ḟ ~•,t !!PH1~R3!3L2~R3!, ~2.1!

whereḞ5 ]F/]t and whereH1(R3) is theW2
1(R3) Sobolev space.11 This implies the existence o

the total energy–momentum,

Pm5E d3xF Ḟ~x,t !]mF~x,t !2
1

2
hm0~]nF~x,t !]nF~x,t !2m2F2~x,t !!G , ~2.2!

or, in terms of the Fourier coefficients of the fieldF,

Pm5E d̃k kmā~k!a~k!, ~2.3!

where the measured̃k is defined in Appendix A andk05v(k). The energy–momentumPm is
time-like and future oriented.
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Apart from the existence of a well defined total momentumPm, we require the existence o
the generators of the Lorentz group. This implies a more stringent condition onF, or ona(k). We
require the additional condition:“a(k)PL2(R3). From Eq. ~2.3!, with m50, we have that
a(k)PL2(R3); with this additional condition we have thata(k) is continuous and that has
vanishing limit whenukz→`.12

The scalar fieldF(x), wherex[(x,t), transforms under a Poincare´ transformationU(L,a)
as

~U~L,a!F!~x!5F~L21~x2a!!. ~2.4!

This induces the transformation ona(k),

~U~L,a!a!~k!5a~L21k!ei ~k•a!. ~2.5!

In this last equation the notationL21k has the meaningL
•n
i kn,i 51,2,3, where k0

5Am21k2.
The canonical action of the Poincare´ generators ona(k) is given by~see Ref. 11!

$Pm,a~k!%5 ikma~k!, ~2.6!

$M 8mn,a~k!%5Dmna~k!, $M 8mn,ā~k!%5Dmnā~k!, ~2.7!

whereM 8mn is defined in Eq.~A21! and

Dmn5~hm
i kn2hn

i km!
]

]ki
. ~2.8!

The differential operatorsDmn satisfy the algebra

@Dmn ,Drl#5hmrDnl1hnlDmr2hmlDnr2hnrDml . ~2.9!

We can now work with the fielda(k) and its complex conjugateā(k), which are defined on
the mass hyperboloid. This is a Riemannian manifold which will be calledH3

1, following the
notations of Ref. 13, where such manifolds are studied.

Indeed, if we defineH3
1 as the inclusionf of the submanifoldq22m250 with q0.0 in the

Minkowski spaceM4 ~with coordinatesqm), with f defined by

f :$ki%→$qm%, ~2.10!

with

q05Am21k2 and qi5ki ~ i 51,2,3!, ~2.11!

we get for the induced metricĥ,

ĥ5 f * h, ~2.12!

the following expression:

ĥ5ĥ i j dki dkj , ~2.13!

with

ĥ i j 5
1

v2~k!
kikj2d i j ~ i , j 51,2,3!. ~2.14!
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The inverse of the matrix$ĥ i j % is

ĥ i j 52S d i j 1
kikj

m2 D ; ~2.15!

its determinant is

uĥu5det$ĥ i j %52
m2

v2~k!
; ~2.16!

and its eigenvalues are21,21,211 k2/v2(k) .
So the metricĥ is proper Riemannian. The manifoldH3

1 is a space-like surface since i
normal is

nm[S v~k!

m
,

k

mD[
km

m
, n251, ~2.17!

and has constant negative scalar curvature, as can be shown by explicit calculation.
The only invariant second order differential operator onH3

1 is the Laplace–Beltrami operato
D ~no invariant differential operator of first order exists!:

D52
1

Auĥu

]

]ki
ĥ i jAuĥu

]

]kj
, ~2.18!

whereuĥu5det$ĥ i j %.
Explicitly, this operator is

D5
v~k!

m

]

]kiS d i j 1
kikj

m2 D m

v~k!

]

]kj
, ~2.19!

or

D5F“21
2

m2
k–¹1

1

m2
~k–¹!2G . ~2.20!

This operator is invariant under a Lorentz transformationL,

ki→k8 i5L j
i kj1L0

i Am21k2. ~2.21!

The operatorD is formally self-adjoint with respect to the invariant measured̃k. It is an
elliptic operator and has the property

Dkm5
3

m2 km. ~2.22!

Let us define

D52m2D13, ~2.23!

so that

Dkm50. ~2.24!
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When explicitly written~see the following Section! the equation

D f ~k!50, ~2.25!

is an equation which can be separated in spherical coordinates. The radial equation ha
regular singularities in the complex plane ofz52 k2/m2, which are in21,0,̀ , so it is a hyper-
geometric equation. The four functionskm are a subset of the solutions of Eq.~2.25!, with the
characteristic exponentsl 50,1 in the neighborhood of the point 0@k05v(k) has the exponen
l 50 andk has the exponentl 51#. In the neighborhood of the point at infinity the characteris
exponents are11 and23. So we may expect that an infinite set of solutions could have the s
asymptotic behavior likekm, whenuku→`; we will see in the next Section that this is indeed t
case and that there is an infinite set of solutions of Eq.~2.25! which gives a set of well defined
integrals, when we put them in place ofkm in Eq. ~2.3!.

III. THE EIGENFUNCTIONS OF THE LAPLACE–BELTRAMI OPERATOR

The Laplace–Beltrami operatorD of Eqs.~2.18! and~2.20! was studied in a series of pape
by Raczka, Limic, and Niederle,13 where it is calledD(H3

1) @see Eq.~5.10! in the first reference of
Ref. 13#. There it is shown thatD has no discrete spectrum, but only a continuous one, and
basis of its generalized eigenfunctions is determined.

D can be identified with one of the Casimir operators of the Lorentz group, whose Lie al
is defined in terms of the differential operators

l mn5 iD mn , ~3.1!

with Dmn as in Eq.~2.8!.
To make contact with the notations used by Naimark in his book14 we put

~3.2!
Li5 l i , Ki52 l 0i ,

l i52 1
2 e i jk l jk ~ i , j ,k51,2,3! ~3.2!

~in Naimark’s notations:
~3.3!

H35L3 ; H65L65L16 iL 2 ;

F35K3 ; F65K65K16 iK 2). ~3.3!

These operators satisfy the Lorentz algebra

@Li ,L j #5 i e i jkLk , @Ki ,L j #5 i e i jkKk , @Ki ,K j #52 i e i jkLk . ~3.4!

Two invariant operators can be defined usingL andK ,

J15L–K , J25uK u22uL u2, ~3.5!

and these are the two Casimir operators of the Lorentz group.
The operatorsL andK can be written as

L52 ik`“, K5 iv~k!“, ~3.6!

so

J152@k`“v~k!#•“, J25m2¹212~k–“!1~k–“!2. ~3.7!

v(k) has a gradient which is parallel tok, soJ150. We are left with one Casimir only,
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J25m2D. ~3.8!

In terms ofl mn we have

D5 1
2 l mnl mn, emnrll mnl rl50, ~3.9!

and of course we have

@D,Dmn#50, ~3.10!

where the operatorD is defined in Eq.~2.23!.
If we denotel the eigenvalue of2m2D, the relation with Naimark’s notations14 is given by

l52~ko
21c221!, koc50, ~3.11!

whereko andc are the eigenvalues of two operatorsD andD8 defined in the quoted reference
~3.12!

Dueigenvalue522~ko
21c221!,

D8ueigenvalue524ikoc.

If we choose

ko50, c5 iL, ~3.13!

we get

l511L2P@1,1`!, ~3.14!

corresponding to the representations of the Lorentz group of the principal series, withko50,
which are unitary; see Ref. 14.

The zero modes of the operatorD of Eq. ~2.23! correspond to

l523. ~3.15!

This value ofl corresponds to a nonunitary representation of the Lorentz group, whic
reducible but not completely reducible~indecomposable! as it will be shown later. In Appendix B
we give the details of the determination of this representation. Let us show here the expres
the boostK3 and its action on the representationl523. From Eqs.~3.1!, ~3.2! and~2.8! we get

l i j 52e i jkLk5 i ~xi] j2xj] i !, l 0 j52K j52 iA11x2] j , ~3.16!

where

x5
k

m
. ~3.17!

From these expressions we get

K35 iA11r 2S cosu
]

]r
2

sinu

r

]

]u D , ~3.18!

in the spherical coordinates (r ,u,f) of x.
D becomes
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D52m2D1352Dux13, ~3.19!

where

Dux5F ~11r 2!
]2

]r 2
1S 2

r
13r D ]

]r
2

J2

r 2G , ~3.20!

andJ25L2 as usual.
The eigenfunctions of2Dux correspond tolP@1,1`), or LP@0,1`) as a limit from the

upper half-plane of the complex plane ofL. They are given in Ref. 13@also see Eqs.~B2! and
~B3!#

ul,l ,m~r ,u,f!5Nl lv1,l,l ,m
~o! 5Nl l r

lFS l 111 iL

2
,
l 112 iL

2
; l 1

3

2
;2r 2DYl ,m~u,f!, ~3.21!

whereF is the hypergeometric function, with the three parameters ofF(a,b;g;2r 2) satisfying
the relation

a1b1 1
2 5g, ~3.22!

and wherel 50,1,2,. . . , andumu< l .
The normalization factorNl l is

Nl l5
2p

mAL
UG~~ l 122 iL!/2!G~~ l 112 iL!/2!

G~ iL!G~ l 1 ~3/2!!
U, ~3.23!

for LP@0,̀ ).
With this normalizationul,l ,m is an orthonormal set with respect to the scalar produc

L2(d̃k),

E d̃k ūl lm~r ,u,f!ul8,l 8,m8~r ,u,f!5d l l 8dmm8d~L2L8!. ~3.24!

This basis is complete inL2(d̃k), that is

(
l>0

(
umu< l

E
1

`

dl ul,l ,m~r ,u,f!ūl,l ,m~r 8,u8,f8!5V~k!d3~k2k8!. ~3.25!

The action of the Lorentz generators on the basis$v1,l,l ,m
(o) % is given in Appendix B, subsection

2.
For lP@1,1`), as shown in Ref. 13, the representation of the Lorentz group on these

is unitary. This interval forl corresponds to the continuous spectrum ofD.
We are interested in the casel523, which corresponds to a pure imaginaryL @see Eq.

~3.14!#, with Im L.0. In this case the normalization factorNl,l becomes meaningless, and th
functions$v1,l,l ,m

(o) % are no more normalizable.
Following the discussion of Appendix B the only set of solutions of Eq.~2.25! which we will

take into account in the following is the set$v1,l,l ,m
(o) %, with l523.

The action ofK3 on v1,l,l ,m
(o) is

K3v1,l,l ,m
~o! 52 i

~ l 111 iL!~ l 112 iL!

2l 13
Cl 11,mv1,l,l 11,m

~o! 11 i ~2l 11!Cl ,mv1,l,l 21,m
~o! ,

~3.26!
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as given in Eq.~B32!.
The action ofK6 is given in Eq.~B33!, where the dependence onl of the coefficients in the

r.h.s. is determined by the action ofK3 in Eq. ~3.26! through Eq.~4.8!.
From this equation we see that, for complex values ofL in the upper half-plane, the first term

in the r.h.s. of Eq.~3.26! vanishes for

L5 i ~ l 11!. ~3.27!

We may conclude that theonly representationwith an invariant subspace of dimension 4
the representation with

L52i , or l523. ~3.28!

In the next section we will study in more detail this representation.

IV. THE REPRESENTATION l523

In this section we will study in some detail the representationl523. ForL52i let us define

wl ,m~r ,u,f!5v23,l ,m
~o! ~r ,u,f!. ~4.1!

From Eq.~3.26! we have the action ofK3 on wl ,m :

K3wl ,m52 i
~ l 21!~ l 13!

~2l 13!
Cl 11,mwl 11,m11 i ~2l 11!Cl ,mwl 21,m , ~4.2!

where the coefficientsCl ,m are defined in Eq.~B30!, and where the values ofumu in the right hand
side are always limited byl in the first term and byl 21 in the second term.

Explicitly wl ,m(x) is given by

wl ,m~r ,u,f!5r lFS l 21

2
,
l 13

2
; l 1

3

2
;2r 2DYl ,m~u,f!, ~4.3!

wherer , u, andf are the spherical coordinates ofx5 k/m.
Observe that forl 50,1,

w0,05A11r 2Y0,05
v~k!

m
Y0,0, w1,m5rY1,m5

uku
m

Y1,m , ~4.4!

which are the components of the 4-vectorkm/m in the spherical basis, with the Minkowsk
diagonal metric given by

h̃5
4pm2

3
~3,21,21,21!, ~4.5!

where (l ,m)5(0,0),(1,21),(1,0),(1,21) and

(
l 50,1

(
umu< l

w̄l ,mh̃ lm,lmwl ,m[w̄•h̃•w5m2. ~4.6!

It is important to observe that all the functionswl ,m have the same asymptotic behavior
uku→`. In other words we have an infinite sequence of zero modes of the operatorD, all with the
same asymptotic behavior askm. This fact is explicitly shown by Eq.~B14!.

The subspace spanned by the componentsl 50,1 of wl ,m is invariant under the action of the
generators of the Lorentz group. Indeed, from Eq.~4.2!, we have
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K3w0,05
i

A3
w1,0, K3w1,m5 iA3dm,0w0,0. ~4.7!

Moreover, since

K656@K3 ,L6#, ~4.8!

and sinceL6 does not modify the value ofl , even the action ofK6 leaves the subspacel 50,1
invariant.

It is the factorl 21 in the r.h.s. of Eq.~4.2! which is responsible for this fact. There are n
other values ofL, in the upper half of its complex plane, which could provide an invari
subspace of the same dimension. If we chooseL5 in, as in Eq.~3.27!, with ann integer.0, we
have an invariant subspace with a dimension which is determined by the maximum valuel ,
which is equal ton21, as we can see from Eq.~3.26!. In conclusion, the valuel523, or L
52i , is determined by the requirement of the existence of an invariant subspace of dimen

The representation whose basis is$wl ,m% is reducible, but not decomposable~not completely
reducible!. That it is reducible is clear, since the matrix ofK3 , determined by Eq.~3.26!, is block
triangular. Indeed, if we define

K3wl ,m5wl 8,m~K3! l 8,l , ~4.9!

we have

~K3!2,150, ~4.10!

but

~K3!1,2Þ0. ~4.11!

Now, a representation like this is decomposable if there exists a similarity transform
defined by a matrixS of the form

S 1 Y

0 1D , ~4.12!

transforming all the generators of the Lorentz groupl mn in a block diagonal form; see Ref. 15.
The matrixY has four rows and infinitely many columns and, of course, it must be nonz

It should similarly transform in a block diagonal form also the matrix ofL2, which is already in
block diagonal form. This is clearly impossible. So the representation is indecomposable.

V. THE SUPERTRANSLATIONS

The presence of a whole series of zero modes of the operatorD, with the same asymptotic
behavior asuku→`, allows us to define the following set of integrals:

Pl ,m5E d̃k wl ,m~k!ā~k!a~k!, ~5.1!

where

P̄l ,m5~21!mPl ,2m , ~5.2!

and where the functionswl ,m are given in Eq.~4.3!.
As shown in Appendix B@see Eqs.~B14! and ~B22!# all these integrals are well defined.
The canonical action of the generators of the Lorentz groupMmn on thePl ,m can be obtained

from Eqs.~2.6! and ~2.7!; since from Eq.~2.8! we have
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Di j 5S ki
]

]kj
2kj

]

]ki D 5 i e i jkLk , D0 j5v~k!
]

]kj
52 iK j , ~5.3!

with the definitions~3.1! and ~3.2!, we get

$Mi , j ,Pl ,m%52 i e i jk Pl 8,m8~Lk! l 8,m8; l ,m , ~5.4!

$M0,j ,Pl ,m%5 iPl 8,m8~K j ! l 8,m8; l ,m . ~5.5!

In these equations the matricesiLki andiK j i are those given in Eqs.~B25!, ~B37! and~B38!,
and correspond to the representationl523 of the Lorentz algebra.

Moreover, we have

$Pl ,m ,Pl 8,m8%50. ~5.6!

For l 50,1 thePl ,m are the spherical components ofPm.
Equations~5.4!, ~5.5! and~5.6! show that this algebra is infinite-dimensional, that the Abel

subalgebra of the$Pl ,m% is a normal subalgebra, and that the factor algebra is isomorphic to
Lorentz algebra.

In order to show that this algebra is the same as that of the BMS group, we simply redefi
Pl ,m with

P̂l ,m5n l Pl ,m , ~5.7!

with n l satisfying the recurrence relation

n l 115
2l 13

l 13
n l , ~5.8!

or

n l5
~2l 11!!!

~ l 12!!
2n0 . ~5.9!

By defining

Rz5 iK 3 , R65 iK 6 , Lz85 iL z , ~5.10!

we get exactly the algebra given by Sachs5 @see in this reference Eqs.~IV.19! and ~IV.20!#.
As shown by Sachs,5 the four-dimensional subgroup of translations (Pl ,m with l 50,1) is

unique. On the other hand the homogeneous Lorentz group is not similarly unique. This is
the fact that copies of the Lorentz group can be obtained by a conjugation with an arb
supertranslation, whose role is here played by the quantitiesPl ,m ,l>2.

Indeed, let us define the following transformation of the Lorentz generators:

M 8 i , j→M 8 i , j1a$Pl ,m ,M 8 i , j%5M 8 i , j1 iae i jk Pl 8,m8~Lk! l 8,m8; l ,m , ~5.11!

M 80,j→M 80,j1a$Pl ,m ,M 80,j%5M 80,j2 iaPl 8,m8~L j ! l 8,m8; l ,m , ~5.12!

wherea is an arbitrary real parameter, and Eqs.~5.4!, ~5.5! were used.
For a fixed infinitesimal transformation~5.11!, ~5.12!, getting the same r.h.s. terms:

eaPl ,m* M 8 i , j5M 8 i , j1 iae i jk Pl 8,m8~Lk! l 8,m8; l ,m , ~5.13!

eaPl ,m* M 80,j5M 80,j2 iaPl 8,m8~L j ! l 8,m8; l ,m . ~5.14!
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In these equations the* operation is defined by

eA* B5 (
n>0

1

n!
DA

nB, DA5$A,•%. ~5.15!

This transformation corresponds to a conjugation of the Lorentz algebra with an arb
fixed supertranslation. It can be verified that the transformed algebra is again the Lorentz a

As a consequence, the Casimir operator of the Poincare´ group given by the square of th
Pauli–Lubanski four-vector, which is invariant under the transformation~5.13! and ~5.14! when
l 50,1, will in general, change.5

The canonical action of a fixed supertranslation on the field is determined by

$Pl ,m ,a~k!%5 iwl ,m~k!a~k!, $Pl ,m ,ā~k!%52 iwl ,m~k!ā~k!, ~5.16!

which, for l 50,1, reduces to~2.6!, written in spherical coordinates.
SincePl ,m is not real (P̄l ,m5(21)mPl ,2m), it induces two different canonical transform

tions on the fieldF, determined by its real and its imaginary part,

Pl ,m5Rl ,m1 i I l ,m , ~5.17!

where

$Rl ,m ,a~k!%5 i Re~wl ,m~k!!a~k!, $Rl ,m ,ā~k!%52 i Re~wl ,m~k!!ā~k!, ~5.18!

and

$I l ,m ,a~k!%5 i Im~wl ,m~k!!a~k!, $I l ,m ,ā~k!%52 i Im~wl ,m~k!!ā~k!. ~5.19!

Again these can be exponentiated for a fixed supertranslation, for instance,

eaRl ,ma~k!5eia Rewl ,m~k!a~k!, eaRl ,mā~k!5e2 ia Rewl ,m~k!ā~k!, ~5.20!

and the analogous expressions forI l ,m .
Equation~5.20! defines a canonical transformation of the field, since the canonical Po

brackets~A16! are invariant under such a transformation.
This transformation is nonlocal in the fieldF(x,t). It is a particular case of a linear transfo

mation,

~F,P!→~F8,P8!, ~5.21!

realized as an integral transformation of the convolution type. Indeed,a(k) belongs toL2(R3),
and so is a tempered distribution, and the exponentials exp(i Rewl,m) and exp(i Im wl,m) are tem-
pered distributions too. Moreover, the convolution product between their Fourier transfor
well defined. Indeed, the functionswl ,m(k), being the solutions of a homogeneous elliptic eq
tion, are infinitely differentiable.16 They and all their derivatives are polynomially bounded, due
the bound~B14!. So, the functionswl ,m(k) and their exponential exp(i Rewl,m), exp(i Im wl,m), are
multipliers inS8(R3), the space of tempered distributions onR3.17 This implies that their Fourier
transforms are convolutes,18 that is, their convolution exists with any tempered distribution.
conclusion, we may write the relation among (F,P) and (F8,P8) as

F8~x,t !5E d3x8@ f ~x2x8!F~x8,t !1g~x2x8!P~x8,t !#,

~5.22!

P8~x,t !5E d3x8@h~x2x8!F~x8,t !1k~x2x8!P~x8,t !#,
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where the distributionsf , g andh are defined by

f ~x!5E d̃k v~k!~eia Rewl ,m~k!1 ik–x1c.c.!, g~x!5 i E d̃k~eia Rewl ,m~k!1 ik–x2c.c.!,

~5.23!

h~x!52 i E d̃k v2~k!~eia Rewl ,m~k!1 ik–x2c.c.!, k~x!5 f ~x!,

where c.c. means the complex conjugated. It is easily seen that the condition

E d3y@ f ~x2y!k~x82y!2g~x2y!h~x82y!#5d3~x2x8!, ~5.24!

which must be satisfied if the transformation~5.22! has to be canonical, holds.
The transformation induced byI l ,m is the same with the replacement Rewl,m→Im wl,m.
The transformation~5.22! changes the initial configuration of the field determined by

functionsa(k), to a new one, determined by the functionsa8(k)5exp(ia Re(wl,m(k)))a(k). As
we have seen, this transformation can change the spin content of the field, whenl>2.

As a conclusion we collect Eqs.~5.4!, ~5.5! and ~5.6!, which give the Poisson algebra of th
BMS group,

$M 8mn,Pl ,m%5Pl 8,m8~M 8mn! l 8,m8; l ,m , $Pl ,m ,Pl 8,m8%50, ~5.25!

where, as given by Eqs.~5.4! and ~5.5!,

~M 8 i j ! l 8,m8; l ,m52 i e i jk~Lk! l 8,m8; l ,m , ~M 80 j ! l 8,m8; l ,m5 i ~K j ! l 8,m8; l ,m , ~5.26!

with the matrix elements ofLk and ofK j given in Eqs.~B25!, ~B37! and ~B38!.

VI. CONCLUSIONS

Following our initial purpose, we have found a Poisson algebra isomorphic to the
algebra, realized on the phase space of a real classical Klein–Gordon field.

The structure constants of this algebra are given by the matrix elements of an in
dimensional representation of the Lorentz group, which is nonunitary, reducible and indeco
able. We have given an explicit basis of functions for this representation, which are not no
izable in the sense of anL2 space with Lorentz invariant measure, but for which we give
asymptotic bound.

The requirement of the existence of a four-dimensional invariant subspace selects this
sentation almost uniquely among all the possible representations of the Lorentz group.

Thus, we have shown that it is possible to realize the BMS algebra outside the g
relativity context, in which it was originally discovered. This fact suggests a more general ro
the BMS group.

As it is well known, the BMS group is the semidirect product of the Lorentz group with
finite set of translations and the infinite set of supertranslations. In the general relativity ca
the basis of physical arguments, the vanishing of the supertranslations is required.5,4 In the case of
the same algebra realized in terms of the Klein–Gordon field this requirement should be a
restriction on the possible field configurations, which could not have a clear justification.

As we have observed in the Introduction, we may expect that a similar analysis cou
worked out for other classical massive fields. Something similar should also happen for
mass field, by performing a harmonic analysis on thekmkm50 cone, where the Laplace–Beltram
operator changes significantly.19

The existence of the supertranslations in the context of the Klein–Gordon field theory
byproduct of a larger study on the search of a canonical set of collective and relative variab
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a classical relativistic field, playing a role analogous to the center of mass and relative varia
a nonrelativistic system of particles. This study will be the argument of a forthcoming pape
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APPENDIX A: NOTATIONS FOR THE CLASSICAL REAL KLEIN–GORDON FIELD

We list in this appendix the various definitions concerning the real Klein–Gordon field.
will put c5\51, and the metric signature is (1;2,2,2).

The Lagrangian and the Lagrangian density are

L5E dtL, L5
1

2
~]mF ]mF2m2F2!, ~A1!

wherem50,1,2,3, and

F̄ 5F. ~A2!

The conjugate momentum and the equation of motion are

P~x!5Ḟ~x![]oF~x!, ~h1m2!F~x!50, ~A3!

and the generators of the Poincare´ group are
~A4!

Pm5E d3x j0m~x!,

Mmn5E d3x~xm j 0n2xn j 0m!.

The canonical Poisson brackets are~see Ref. 11!

$F~x,x0!,P~x8,x0!%5d3~x2x8!, ~A5!

with the other Poisson brackets vanishing.
The Poincare´ algebra is

$Pm,Pn%50, ~A6!

$Mmn,Pr%5Pmhnr2Pnhmr, ~A7!

$Mmn,M rl%5Mmlhnr1hmlM nr2Mmrhnl2hmrM nl. ~A8!

The Fourier expansion of the field is

F~x,t !5E d̃k@a~k!e2 i ~k•x!1ā~k!ei ~k•x!#, ~A9!

where c.c. means the complex conjugate, and (•) is the usual Lorentz invariant scalar produ
between four-vectors, and~we use the notations of Ref. 20!
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d̃k5
d3k

V~k!
, V~k!5~2p!32v~k!,

k[$ki% ~ i 51,2,3!, ki52ki , ~A10!

v~k!5ko5Ak21m2.

If we denote withF̂(k,t) the Fourier transform of the field, with respect to the measured3k,
then

F~x,t !5E d3k F̂~k,t !eik–x, ~A11!

with

F̂
¯

~k,t !5F̂~2k,t !, ~A12!

and

a~k!5
1

2
V~k!eiv~k!tF F̂~k,t !1

i

v~k!
F̂
˙

~k,t !G . ~A13!

From this we have the bound

ua~k!u2<~2p!6@k2uF̂~k,t !u21uF̂
˙

~k,t !u2#. ~A14!

Since we have assumed thatF(x,•), Ḟ(x,•) and“F(x,•) are functions inL2(R3), from the
Parseval identity we get thata(k)PL2(R3).

This implies the existence ofPm, but not of Mmn. This last will be assured if we assum
“a(k)PL2(R3). Soa(k) will go to zero asuku→`.

The conjugate momentum is

P~x!52 i E d̃k v~k!@a~k!e2 i ~k•x!2ā~k!ei ~k•x!#. ~A15!

The Poisson brackets for the Fourier coefficients are

$a~k!,ā~k8!%52 iV~k!d3~k2k8!, ~A16!

with the other Poisson brackets vanishing.
The Fourier coefficients in terms of the field are given by

a~k!5E d3x ei ~k•x!@v~k!F~x!1 iP~x!#. ~A17!

In terms of the Fourier coefficients the Poincare´ generators are the following:

Pm5E d̃k kmā~k!a~k!, ~A18!

Mi j 52 i E d̃k ā~k!S ki
]

]kj
2kj

]

]ki D a~k!5M̄ i j , ~A19!
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M0 j5tPj2 i E d̃k ā~k!v~k!
]

]kj
a~k!52M jo5M̄0 j . ~A20!

We define

M 80 j52 i E d̃k ā~k!v~k!
]

]kj
a~k!, M 8 i j 5Mi j , ~A21!

whereM 8 i j and M 80 j have the same Poisson algebra asMi j and M0 j , and will be used as the
Lorentz generators.

APPENDIX B: THE EIGENFUNCTIONS OF THE LAPLACE–BELTRAMI OPERATOR AND
THE ACTION OF THE LORENTZ GENERATORS

1. The eigenfunctions of the Laplace–Beltrami operator

The eigenfunctions of the continuous spectrum of the Laplace–Beltrami operator, corres
ing to lP@1,̀ ), have been studied in Ref. 13. However, we are also interested in the
normalizable solutions of the equation,

~2Dux2l!vl,l ,m50, ~B1!

for other values ofl.
A fundamental system of solutions, in the neighborhood of the origin, that is forr .0, of Eq.

~B1! in spherical coordinates, is

v1,l,l ,m
~o! ~r !5u1,l,l

~o! ~r !Yl ,m~u,f!, v2,l,l ,m
~o! ~r !5u2,l,l

~o! ~r !Yl ,m~u,f!, ~B2!

wherer 5 uku/m, Yl ,m are the spherical harmonics as defined in Ref. 21, and

u1,l,l
~o! ~r !5r lFS l 111 iL

2
,
l 112 iL

2
; l 1

3

2
;2r 2D ,

~B3!

u2,l,l
~o! ~r !5r 2 l 21FS 2

l 1 iL

2
,2

l 2 iL

2
;
1

2
2 l ;2r 2D ,

~u2,l,l
~o! ~r !5u1,l,2 l 21

~o! ~r !!, ~B4!

whereF is the hypergeometric function.
The relation betweenl andL is given byl511L2, with Im L>0, as in Sec. III.
A fundamental system in the neighborhood of the point at infiniter .` is

v1,l,l ,m
~`! ~r !5u1,l,l

~`! ~r !Yl ,m~u,f!, v2,l,l ,m
~`! ~r !5u2,l,l

~`! ~r !Yl ,m~u,f!, ~B5!

where

u1,l,l
~`! ~r !5r 212 iLFS l 111 iL

2
,2

l 2 iL

2
;11 iL;2

1

r 2D ,

~B6!

u2,l,l
~`! ~r !5r 211 iLFS l 112 iL

2
,2

l 1 iL

2
;12 iL;2

1

r 2D .
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For r>0 no other singular points are met. For the argumentz521, the hypergeometric serie
is absolutely convergent, since the coefficients ofF(a,b;g;z) satisfy the condition@see Eq.
~3.22!#

a1b2g52 1
2 . ~B7!

If iL is a positive integer, the solutionu1,l,l
(`) (r ) requires a modification of the expressio

given in Eq.~B6!. However, since we are only interested in the solutionu1,l,l
(o) (r ) for Im L>0,

here we do not give the necessary modification.
We are interested in the normalization properties of these solutions in the neighborhood

points 0 and̀ , with respect to the invariant measure,

d̃r 5
d3r

A11r 2
. ~B8!

The solutionv1,l,l ,m
(o) is regular and normalizable in the neighborhood of the origin. T

solutionv2,l,l ,m
(o) on the other hand is normalizable in the neighborhood of origin forl 50,1 only.

We will discard this solution, even in the casel 50,1, since under the action of the Loren
generators it will be transformed into a solution with a different value ofl , thus becoming
non-normalizable in the neighborhood of origin. See also the discussion at the end of sub
2.

The solutionu1,l,l
(o) can be analytically continued tor .`, and, for a generic value ofL, has

an asymptotic expansion which is a linear combination of the two powers ofr @see Eq. 2.10~2! of
Ref. 22#,

r 212 iL, r 211 iL, ~B9!

and, for a realL, is normalizable in the sense of the continuous spectrum.
For real values ofLP@0,̀ ), v1,l,l ,m

(o) is an eigenfunction of the operatorD, see Ref. 13,
belonging to the continuous spectrum.

In the casel523, that isL52i , we must use another asymptotic expansion. In general
L5ni, with an n integer, we must use the expansion given in Eq. 2.10~7! of Ref. 22; for L
52i and for r→` we get

u1,23,l
~o! .r 1O~r 21!. ~B10!

So, this solution is no more normalizable at`, but only at 0.
The other solution atr .` has the behavior

u2,23,l
~o! .r 1O~r 21!, for l 50,1; ~B11!

u2,23,l
~o! .r 1O~r 23!, for l>2, ~B12!

and is singular at the origin forl .0. So it is not normalizable atr .`.
As for the second fundamental system given in Eqs.~B5! and ~B6! they are linear combina

tions of the first set, since they can be obtained by analytic continuation using well k
relations. The solutionu1,l,l

(`) has, forr .`, the asymptotic behavior

r 211Im L2 i ReL, ~B13!

and, for ImL>0, is not normalizable.
The second solutionu2,l,l ,m

(`) is instead normalizable forr .`.
The solutionswl ,m5v1,23,l ,m

(o) satisfy the following inequality:
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uwl ,m~k!u<A2l 11

4p
A11r 2Ml , ~B14!

where

Ml5
G~ l 1 ~3/2!!G~2!

G~~ l /2! 12!G~ l /2!
, if l>2,

~B15!
Ml51, if l 50,1.

Indeed, since

uYl ,m~u,f!u<A2l 11

4p
, ~B16!

and

ul~r !5r lFS l 21

2
,
l 13

2
; l 1

3

2
;2r 2D5r l~11r 2!~12 l !/2FS l 21

2
,

l

2
; l 1

3

2
;

r 2

11r 2D , ~B17!

using Eq. 2.9~3! of Ref. 22, and the bounds

0<
r 2

11r 2
,1, ~B18!

uF~a,b;g;x!u<F~a,b;g;1!5
G~g2a2b!G~g!

G~g2a!G~g2b!
, ~B19!

where the last holds ifa,b,g.0 andg2a2b.0, we have from Eq.~B17!,

uul~r !u<r l~11r 2!~12 l !/2)
G~2!G~ l 1 ~3/2!!

G~~ l /2! 12!G~~ l 13!/2!
. ~B20!

Now

r l~11r 2!~12 l !/2<A11r 2, ~B21!

and collecting the results we get the inequality~B14! for l>2.
For l 50,1 the last hypergeometric function in Eq.~B17! is equal to 1, and we get th

inequality ~B14! for l 50,1.
The inequality~B14! for wl ,m implies the existence of the integralsPl ,m defined in Eq.~5.1!.

Indeed,

uPl ,mu<E d̃kuwl ,m~k!uā~k!a~k!<A2l 11

4p
Ml

P0

m
. ~B22!

So, if P0 exists, all the integralsPl ,m will similarly exist.

2. The action of the Lorentz generators

Let us determine the action of the generators of the Lorentz group on the solutionsv (o).
The explicit expression of the generators is
                                                                                                                



497J. Math. Phys., Vol. 40, No. 1, January 1999 G. Longhi and M. Materassi

                    
L352 i
]

]f
, L65L16 iL 25e6 ifS 6

]

]u
1 i cotu

]

]f D ,

K35 iA11r 2S cosu
]

]r
2

sinu

r

]

]u D , ~B23!

K65 iA11r 2e6 ifS sinu
]

]r
1

cosu

r

]

]u
6

i

r sinu

]

]f D .

They satisfy the algebra

@L1 ,L2#52L3 , @L3 ,L6#56L6 ,

@K1 ,K2#522L3 , @K3 ,K6#57L6 ,
~B24!

@K3 ,L3#50, @K3 ,L6#56K6 ,

@L3 ,K6#56K6 , @K6 ,L6#50.

The action ofL3 andL6 is the usual one,

L3v ..,l,l ,m5mv ..,l,l ,m ,
~B25!

L6v ..,l,l ,m5Al ~ l 11!2m~m61! v ..,l,l ,m61 .

For the action ofK3 andK6 we will use the following formulas:

d

dr
F~al ,bl ;cl ;2r 2!52

r

2A11r 2

~2al !~2bl !

cl
F~al 11 ,bl 11 ;cl 11 ;2r 2!, ~B26!

d

dr
@r lF~al ,bl ;cl ;2r 2!#5~2l 11!

r l 21

A11r 2
F~al 21 ,bl 21 ;cl 21 ;2r 2!

2~ l 11!r l 21F~al ,bl ;cl ;2r 2!, ~B27!

whereF(al ,bl ;cl ;2r 2) is the hypergeometric function and where, see Eq.~3.22!,

al1bl1
1
2 5cl . ~B28!

Equation~B26! can be obtained by using Eqs. 2.11~10! and 2.8~20! of Ref. 22, and Eq.~B27!
using Eqs. 2.8~27! and 2.11~10! of the same reference.

Moreover, we will use the properties of the spherical harmonics,21

cosu Yl ,m~u,f!5Cl 11,mYl 11,m~u,f!1Cl ,mYl 21,m~u,f!, ~B29!

where

Cl ,m5A ~ l 2m!~ l 1m!

~2l 21!~2l 11!
, ~B30!

and
                                                                                                                



498 J. Math. Phys., Vol. 40, No. 1, January 1999 G. Longhi and M. Materassi

                    
sinu
]

]u
Yl ,m~u,f!5 l cosu Yl ,m~u,f!2A~2l 11!~ l 22m2!

~2l 21!
Yl 21,m~u,f!. ~B31!

With these relations we get

K3v1,l,l ,m
~o! 52 i

~ l 111 iL!~ l 112 iL!

~2l 13!
Cl 11,mv1,l,l 11,m

~o! 1 i ~2l 11!Cl ,mv1,l,l 21,m
~o! , ~B32!

and

K6v1,l,l ,m
~o! 56 i F ~ l 111 iL!~ l 112 iL!

~2l 13!
A~ l 116m!~ l 126m!

~2l 11!~2l 13!
v1,l,l 11,m61

~o!

1~2l 11!A~ l 7m!~ l 7m21!

~2l 21!~2l 11!
v1,l,l 21,m61

~o! G . ~B33!

For the solutionv2,l,l ,m we get similarly

K3v2,l,l ,m
~o! 51 i

~ l 1 iL!~ l 2 iL!

~2l 21!
Cl ,mv2,l,l 21,m

~o! 2 i ~2l 11!Cl 11,mv2,l,l 11,m
~o! , ~B34!

and

K6v2,l,l ,m
~o! 56 i F ~ l 1 iL!~ l 2 iL!

~2l 21!
A~ l 7m!~ l 217m!

~2l 21!~2l 11!
v2,l,l 21,m61

~o!

1~2l 11!A~ l 116m!~ l 126m!

~2l 11!~2l 13!
v2,l,l 11,m61

~o! G . ~B35!

If we put L52i we get for

wl ,m5v1,23,l ,m
~o! , wl ,m8 5v2,23,l ,m

~o! , ~B36!

K3wl ,m52 i
~ l 21!~ l 13!

~2l 13!
Cl 11,mwl 11,m1 i ~2l 11!Cl ,mwl 21,m , ~B37!

K6wl ,m56 i F ~ l 21!~ l 13!

~2l 13!
A~ l 116m!~ l 126m!

~2l 11!~2l 13!
wl 11,m61

1~2l 11!A~ l 7m!~ l 7m21!

~2l 21!~2l 11!
wl 21,m61G . ~B38!

K3wl ,m8 51 i
~ l 22!~ l 12!

~2l 21!
Cl ,mwl 21,m8 2 i ~2l 11!Cl 11,mwl 11,m8 , ~B39!

K6wl ,m8 56 i F ~ l 22!~ l 12!

~2l 21!
A~ l 7m!~ l 217m!

~2l 21!~2l 11!
wl 21,m618

1~2l 11!A~ l 116m!~ l 126m!

~2l 11!~2l 13!
wl 11,m618 G . ~B40!

In the previous formulas, the terms on the right hand side with the functionwl ,m with l
negative or withumu. l are to be considered zero.
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Referring to Eq.~B37! and ~B38!, observe that the representation subspace correspondi
the values ofl 50,1 is an invariant subspace. This is due to the factor (l 21).

Similarly, looking at Eq.~B39! and ~B40!, we see that the subspace corresponding to
valuesl>2 is invariant.

Let us define the matrices corresponding to the representationswl ,m andwl ,m8 ,

Mwl ,m5wl 8,m8~M ! l 8,m8; l ,m , Mwl ,m8 5wl 8,m8
8 ~M 8! l 8,m8; l ,m , ~B41!

whereM is any one of the Lorentz generators.
If we define the new bases,

ŵl ,m5Nlwl ,m , and ŵl ,m8 5Nl8wl ,m8 , ~B42!

with

Nl5Nl85
1

A2l 11
, ~B43!

we get for the new matrices

~M̂ ! l 8,m8; l ,m5
Nl

Nl 8

~M ! l 8,m8; l ,m , ~B44!

~M̂ 8! l 8,m8; l ,m5
Nl

Nl 8

~M 8! l 8,m8; l ,m , ~B45!

the relation

~M̂ 8!†5M̂ . ~B46!

That is, the representationŵl ,m8 is the adjoint of the representationŵl ,m .14
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15M. Naimark and A. Stern,Théorie des Repre´sentations Des Groupes (MIR, Moscow, 1979).
16W. Rudin,Functional Analysis~McGraw-Hill, New York, 1991!, Chap. 8.
17I. M. Gel’fand and G. E. Shilov,Generalized Functions~Academic, New York, 1968!, Vol. II, Chap. II.
18The same reference as in Ref. 17, Chap. III.
19See the second paper in Ref. 13.
20C. Itzykson and J. B. Zuber,Quantum Field Theory~McGraw-Hill, New York, 1980!, Chap. 3.
21A. Messiah,Quantum Mechanics~North-Holland, New York, 1961!, Vol. I, Appendix B.
22A. Erdélyi et al., Higher Transcendental Functions~Krieger, 1953, reprint edition 1985!, Vol. I.
                                                                                                                



in

senta-

of their
modest

e
atake
rms of

en

nerate
have

and the
within

ralized

the
he
MA
nkin
s of

any
of the
ough
ebras

of the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 1 JANUARY 1999

                    
Involutive automorphisms and Iwasawa decomposition
of some hyperbolic Kac–Moody algebras

K. C. Pati, D. Parashar, and R. S. Kaushala)
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The involutive automorphisms of hyperbolic Kac–Moody algebras are computed
from Satake diagrams of these algebras which are then used to furnish a general
procedure of their Iwasawa decomposition. In particularÂ1

(1) and Â2
(1) are consid-

ered as representative examples to illustrate the efficacy of the underlying treat-
ment. © 1999 American Institute of Physics.@S0022-2488~99!01501-7#

I. INTRODUCTION

It is now widely accepted that the study of infinite dimensional Lie algebras1,2 and more
particularly the hyperbolic version of Kac–Moody algebras3,4 has played an outstanding role
the realms of string theory~with special reference to the over extended exceptional algebraE10!,
duality properties of supersymmetric gauge theories,5 and two-dimensional field theories.6 This
lends sufficient credence to the desirability of studying the classification theory and repre
tions of hyperbolic Kac–Moody algebras. While the Dynkin diagrams7 and root spaces8–12of such
algebras have already been exhaustively investigated and classified, a complete analysis
representations has not yet been achieved to that extent. We shall, therefore, make a
attempt to address this problem in the present communication.

Here we carry out the Iwasawa decomposition9 of the hyperbolic Kac–Moody algebras. Th
involutive automorphisms required for such a decomposition are determined from the S
diagrams of these algebras. In addition, these diagrams are capable of providing the real fo
Lie algebras13–15and their supersymmetric extensions.16 In a recent work, this technique has be
exploited to obtain the involutive automorphisms of affine Kac–Moody algebras17–19 and
superalgebras.20 Here we shall expound that the same technique can be employed to ge
involutive automorphisms of hyperbolic Kac–Moody algebras once their Satake diagrams
been constructed. The essential ingredients entering the method comprise the root system
associated Dynkin diagrams which eventually lead to the construction of Satake diagrams
the framework of a standard prescription outlined earlier.

Before embarking on a systematic analysis, it is prudent to emphasize that the gene
Kac–Moody algebras~GKMA ! differ from the finite simple Lie algebras~FSLA! or the affine
Kac–Moody algebras~AKMA ! in terms of their Cartan matrices. While the determinant of
Cartan matrix is positive for FSLA and zero for AKMA, it can be anything for the GKMA. T
hyperbolic Kac–Moody algebras are those types of GKMA which fall back to the case of AK
or FSLA on deletion of any one simple root from their Dynkin diagrams. Fortunately, the Dy
diagrams7 of all such algebras are known. It is instructive to distinguish between two type
hyperbolic Kac–Moody algebras, namely,~i! the strictly hyperbolic one which yields only FSLA
Dynkin diagrams on deletion of any one vertex, with maximum allowed rank being 4 and~ii ! the
hyperbolic one whose Dynkin diagram reverts to those of FSLA or AKMA on deletion of
vertex, with the maximum allowed rank being 10 in this case. However, note must be taken
fact that there is no hyperbolic Kac–Moody algebra of rank larger than 10. Furthermore, th
there are infinitely many hyperbolic Kac–Moody algebras of rank 2, the number of these alg
of rank from 3 to 10 is necessarily finite. However, for Iwasawa decomposition19 we restrict
ourselves to only those types of hyperbolic Kac–Moody algebras which are extensions

a!UGC Research Scientist.
5010022-2488/99/40(1)/501/10/$15.00 © 1999 American Institute of Physics
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affine algebras by a basic representation, since the root system of these types of algebra
complicated than their other counterparts.

The outline for the construction of Satake diagrams of the hyperbolic Kac–Moody alg
are briefly delineated in Sec. II. All possible Satake diagrams ofÂ1

(1) andÂ2
(1) along with their root

automorphisms are computed in detail and listed in Tables I and II, respectively. Section
devoted to a quick resume of the procedure for obtaining the Iwasawa decomposition with
present context. The explicit construction of this decomposition is then carried out for the h
bolic Kac–Moody algebrasÂ1

(1) and Â2
(1) . Section IV contains a few concluding remarks.

II. HYPERBOLIC KAC–MOODY ALGEBRAS AND SATAKE DIAGRAMS

We commence this section by taking a look at the hyperbolic Kac–Moody algebrasĜ which
are extensions of affine algebrasG by a basic representation and the construction of the Sa
diagrams. Let (ai j ), i , j 50,1,...,r , be the Cartan matrix ofG andea i

, e2a i
, ha i

be the generators
associated with the simple rootsa i . By convention, the roota0 is the extended root of the affin
algebraG and the remaining rootsa j , ( j 51,...,r ) are those of the associated finite simple L
algebra. We can extendG by a derivationd which commutes with Cartan generatorsha i

and

@d,ea i
#52d i ,0ea i

, @d,e2a i
#5d i ,0e2a i

. The Cartan matrixâ of the extension ofG is defined by

âi j 5ai j for i , j 50,1,...,r , âi ,215â21,i52d i ,0 . The algebraĜ is thus of rank (r 11). The root
a21 is usually referred to as the overextended root. The algebraĜ can be defined as the algeb
generated by the elements$ea i

, e2a i
, ha i

, i 521,0,1,...,r % with relations

@ha i
,ha j

#50, @ea i
,e2a j

#5d i j ha i
, @e6a j

,hi #5ai j e6a j
,

~2.1!
~ad ea i

!12a i j ea j
5~ad e2a i

!12ai j e2a i
50, iÞ j .

We can now associate to each simple root system a Dynkin diagram, the details of which
found in Ref. 7. The construction of Satake diagrams for hyperbolic Kac–Moody algeb
achieved with the help of the following prescription.

Let R be a root system of hyperbolic Kac–Moody algebra. ForaPR, let ā5a2s(a), where
s is the involutive automorphisms of roota. Let us introduceR25$āuāÞ0,aPR% and R0

5$aPRuā50%. If B2 ~resp.B! denotes the basis ofR2 ~resp.R! andB0 a basis ofR0 thenB
5BùR0 . If B25B\B05$a i% andB05$b l%, then it can be shown that

2s~a i !5ap~ i !1(
l

h i l b l , ~2.2!

where p is the involutive permutation of$21,0,1,...,r % and h i l are non-negative integers. W
should note thats(b l)5b l and a1s(a)¹R;aPR. We can now associate withB its Satake
diagrams. In the Dynkin diagram ofB denote the rootsa i by the usual white circless and roots
b l by the black circlesd. If p( i )5 j , then it is indicated by

Satake diagrams determine the involution ofR uniquely. As an illustration, we restrict ourselves
the consideration of two examplesÂ1

(1) and Â2
(1) .

A. Satake diagrams of Â 1
„1…

The Cartan matrix ofÂ1
(1) is

F 2 22 0

22 2 21

0 21 2
G .
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The three simple roots ofÂ1
(1) area1 , a0 , anda21 . The possible Satake diagrams ofÂ1

(1) along
with their root automorphisms are represented in Table I.

B. Satake diagrams of Â 2
„1…

The Cartan matrix ofÂ2
(1) is

F 2 21 21 0

21 2 21 0

21 21 2 21

0 0 21 2

G
and the four simple roots ofÂ2

(1) are a1 , a2 , a0 , and a21 , where a05d2(a11a2). The
possible Satake diagrams ofÂ2

(1) along with their root automorphisms can be read from Table

III. IWASAWA DECOMPOSITION OF HYPERBOLIC KAC–MOODY ALGEBRAS

The notion of direct determination of Iwasawa decomposition of Lie algebras is now exten
to the case of hyperbolic Kac–Moody algebras. LetG be a real hyperbolic Kac–Moody algebra
generated from its compact real formĜk by an involutive automorphism defined with respect t
the Cartan subalgebrah of Ĝc , whereĜc is the complexification ofĜ. The following commuta-
tion relations are satisfied by the elements ofĜc :

@ea ,h#5a~h!ea , hPh, aPD,

@ea ,eb#5H Nabea1b if a1b is a root

0 otherwise,
~3.1!

@ea ,e2a#5ha ,haPh.

Here D denotes the set of roots ofĜc w.r.t. h and the Killing form is defined byB(ea ,e2a)
521. Here a(h)5B(h,ha). The compact real formĜk may be taken to consist ofiha , a
5a21 , a0 , a1 ,...,a r and (ea1e2a), i (ea2e2a);aPD. Let k be the maximal compact sub-
algebra ofĜ defined in such a way thataPk if aPĜ andsa5a. Let p be the subspace such tha
aPp if aPĜc andsa52a. Thus,k andp are given by

k5$ iha ,a5a21 ,a0 ,a1 ,...,a r and ~ea1e2a!,i ~ea2e2a!;auexp a~h!511%, ~3.2!

TABLE I. Satake diagrams and involutive automorphisms ofÂ1
(1) .

Satake diagrams ofÂ1
(1) Involutive automorphisms
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p5$ i ~ea1e2a!,~ea2e2a!;auexp a~h!521%. ~3.3!

Let a be the maximal Abelian subalgebra ofp with dimensionumi u andm be the centralizer
of a in k. Thus, a may be taken to have a basis consisting of the elements of the formi (ea

1e2a). Let RA denote the set of positive rootsa that appear in this way ina. Similarly, m may
be taken to have a basis consisting of the elements of the form (ea1e2a), with a set of positive
rootsa appearing this way inm, being denoted byRM , together possibly with some elements
hùĜ. If h9PhùĜ is a member ofm, then a(h9)50;aPRAøRM . Complexification ofa
% m together with the derivationd8 gives a Cartan subalgebrah8 of Ĝc with basis
H218 ,H08 ,H18 ,...,d8. Now there exists an inner automorphismV: h8→h, i.e.,

H j5VHj8 , where V5)
a

Va , aPD. ~3.4!

Let D1 be the set of positive roots, then

ha5 (
j 521

r

bj~a!H j . ~3.5!

Thus,aPD1 iff bj (a).0, wherej is the least index such thatbj (a)Þ0. The positive roots can
be again divided into the following classes:

~ i! D1
15$auaPD1, a~h!Þa~VsV21h!;hPh%, ~3.6!

TABLE II. Satake diagrams and involutive automorphisms ofÂ2
(1) .

Satake diagrams ofÃ
1(1)

Involutive automorphism
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~ ii ! D2
15$auaPD1, a~h!5a~VsV21h!;hPh%. ~3.7!

Let the subalgebrañ be spanned by the elementsV21ea for aPD1
1 andn5ñùĜc , whereñ and

n are the nilpotent subalgebras ofĜc andĜ, respectively. Thus the Iwasawa decomposition ofĜ
is given by

Ĝ5k% a% n. ~3.8!

A. Iwasawa decomposition of Â 1
„1…

Let us consider the involutive automorphisms ofÂ1
(1) determined by any one of the Satak

diagrams, say~ii !, of Table I. The simple root automorphisms are given by

a~a1!5a1 , 2s~a0!5a012a1 , 2s~a21!5a21 . ~3.9!

The positive roots ofÂ1
(1) are given by

D5$n1a211n2a11~n221!a0 , where n150,1,...,~n221!; n1a211~n221!a1

1n2a0 ,n1a211n2~a11a0!, where n150,1,...,n2 and n2PZ%. ~3.10!

We can apply the simple root automorphisms to find out the automorphisms of other roots a
see that the positive roots can be separated into categories, i.e.,

exp a~h!511 for a5n1a211n2a11~n221!a0 , ~3.11!

exp a~h!521 for a5 Hn1a211~n221!a11n2a0

n1a211n2~a11a0!
. ~3.12!

Thus, forÂ1
(1) , k andp are given by

k5$ iha for a5a21 ,a0 ,a1 and ~ea1e2a!, i ~ea2e2a! for a given by Eq. ~3.11!%,

~3.13!

p5$ i ~ea1e2a!,~ea2e2a! for a given by Eq. ~3.12!%. ~3.14!

We now select a maximal Abelian subalgebraa which is one-dimensional and may be chosen
have a basis element

H218 5 i ~ea0
2e2a0

!. ~3.15!

In fact, we may also choosei (ea21
2e2a21

) as a basis element ofa. But we shall see that later o
it will pose a problem while calculating the elements of nilpotent subalgebrañ because of the fac
that the a21 string containingn1a211(n221)a11n2a0 or n1a211n2(a11a0) or n1a21

1n2a11(n221)a0 can have a large number of roots up to infinity. So, now we haveRA

5$a0% andRM is empty.m is two-dimensional and its basis elements are given by

2 iH 085 iha11a0
, 2 iH 185 ih2a2112a01a1

. ~3.16!

Note thatH218 ,H08 ,H18 together with scaling elementd8 are the elements of the Cartan subalge
h8. The inner automorphism ofÂ1

(1) is given by the expression

Va0
5exp@ad$ iaa0

~ea0
2e2a0

!%#, ~3.17!
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where

aa0
5

p

@8~a0 ,a0!#1/2. ~3.18!

Applying this to the Cartan subalgebrah8 of Â1
(1) we obtain

H2152221/2ha0
, H052~ha1

1ha0
!, H152~2ha21

12ha0
1ha1

!. ~3.19!

With respect to this Cartan subalgebra, the set of positive roots is given by

D15$n1a211n2a11~n221!a0;n1 ,n1a211~n221!a11n2a0 for n1.2,

2~n1a211~n221!a11n2a0! for n1<2,

n1a211n2~a11a0! for n1Þ0,

2~n1a211n2~a11a0!! for n150%. ~3.20!

Now D1
1 andD2

1 can be written down as

D2
15$n21~a11a0!,2a211~n221!a11n2a0%. ~3.21!

D1
15$n1a211n2a11~n221!a0 ,n1a211~n221!a11n2a0 for n1.2,

2~n1a211~n221!a11n2a0! for n1,2,

n1a211n2~a11a0! for n1Þ0%. ~3.22!

The elements ofñ are determined by the structuresVa0

21ea , whereaPD1
1 . These are given by

Va0

21en1a211n2~a11a0!52 i221/2Aen1a211n2a11~n211!a0
1 i221/2Ben1a211n2a11~n221!a0

,

Va0

21en1a211n2a11~n221!a0
5 1

2en1a211n2a11~n221!a0
1 i221/2Ben1a211n2~a11a0!

1 1
2ABen1a211n2a11~n211!a0

,

~3.23!
Va0

21en1a211~n221!a11n2a0
5 1

2en1a211~n221!a11n2a0
2 i221/2Cen1a211~n221!~a11a0!

1 1
2CDen1a211~n221!a11~n222!a0

,

Va0

21e2~n1a211~n221!a11n2a0!5
1
2e2~n1a211~n221!a11n2a0!1 i221/2Ee2~n1a211~n221!~a11a0!!

1 1
2EFe2~n1a211~n221!a11~n222!a0! ,

where

A5sgnNa08n1a211n2~a11a0! ,

B5sgnN2a08n1a211n2~a11a0! ,

C5sgnNa08n1a211~n221!~a11a0! ,

D5sgnN2a08n1a211~n221!~a11a0! ,
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E5sgnN2a082~n1a211~n221!~a11a0!! ,

F5sgnNa082~n1a211~n221!~a11a0!! . ~3.24!

Now n can be calculated fromñ and its elements are given by

2 i221/2A@en1a211n2a11~n211!a0
1e2~n1a211n2a11~n211!a0!#

1 i221/2B@en1a211n2a11~n221!a0
1e2~n1a211n2a11~n221!a0!#,

1
2@en1a211n2a11~n221!a0

1e2~n1a211n2a11~n221!a0!#

1 i221/2B@en1a211n2~a11a0!1e2~n1a211n2~a11a0!!#

1 1
2AB@en1a211n2a11~n211!a0

1e2~n1a211n2a11~n211!a0!#,

1
2@en1a211~n221!a11n2a0

1e2~n1a211~n221!a11n2a0!#

2 i221/2C@en1a211~n221!~a11a0!1e2~n1a211~n221!~a11a0!!#

1 1
2CD@en1a211~n221!a11~n222!a0

1e2~n1a211~n221!a11~n222!a0!#,

i

2
@en1a211~n221!a11n2a0

2e2~n1a211~n221!a11n2a0!#

2221/2E@en1a211~n221!~a11a0!2e2~n1a211~n221!~a11a0!!#

1 1
2EF@en1a211~n221!a11~n222!a0

2e2~n1a211~n221!a11~n222!a0!#. ~3.25!

The required Iwasawa decomposition is then written as

Â1
~1!5k % a% n, ~3.26!

wherek, a, andn are given by Eqs.~3.13!, ~3.15!, and~3.25!, respectively.

B. Iwasawa decomposition of Â 2
„1…

As a second example, we consider the involutive automorphism ofÂ2
(1) determined by the

Satake diagrams, say~iv!, of Table II. The basic root automorphisms are given by

s~a1!5a1 , s~a2!5a2 ,
~3.27!

2s~a0!5a012a112a2 , 2s~a21!5a21 .

The above equations can be written as

s~a1!5a1 , s~a2!5a2 ,
~3.28!

2s~d2a12a2!5d1a11a2 , 2s~a21!5a21 .

The positive roots ofÂ2
(1) are given by

D5$n1a216a11n2d, n1a216a21n2d, n1a216~a11a2!1n2d,

n1a211n2d, where n150,1, ...,n2 and n2PZ1%. ~3.29!
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We can apply the simple root automorphisms to find out the automorphisms of other roots
is easy to see that

exp a~h!511 for a5a1 ,a2 , n1a211a11n2d, n1a211a21n2d,

n1a211~a11a2!1n2d, ~3.30!

exp a~h!521 for a5a21 ,a0 , n1a212a11n2d,

n1a212a21n2d, n1a212~a11a2!1n2d,n2d1n1a21 . ~3.31!

Thus, forÂ2
(1) , k andp are given by

k5$ iha for a5a21 ,a0 ,a1 ,a2 and ~ea1e2a!,i ~ea2e2a! for a given by Eq. ~3.30!%,
~3.32!

p5$ i ~ea1e2a!,~ea2e2a! for a given by Eq. ~3.31!%. ~3.33!

Again in an analogous manner, we select a maximal Abelian subalgebraa and we see thata is
one-dimensional. Its basis element is given by

H218 5 i ~ea1e2a! for a52a21md. ~3.34!

So, we haveRA5$2a21md% andRM is empty,m is three-dimensional and its basis elements
given by

2 iH 085 i @ha21~m1n!d12ha11~m1n!d#,

~3.35!
2 iH 185 ih ~m1n!d , 2 iH 285 i ~ha21

1mha2
!.

The elementsH218 ,H08 ,H18 ,H28 together with scaling elementd8 form the Cartan subalgebrah8.
Defining the inner automorphism ofÂ2

(1) as

V5V2a21nd5exp@ad$a2a21nd~e2a21nd2ea21nd!%#, ~3.36!

where

a2a21nd5
p

tn@8~a2 ,a2!#1/2, ~3.37!

and applying to the Cartan subalgebrah8, we obtain

H21521/2h2a21~m1n!d ,

H052~ha21~m1n!d12ha11~m1n!d!,

H152h~m1n!d ,

H252ha21
2

m

2
ha2

. ~3.38!

The set of positive roots w.r.t. this Cartan subalgebra is given by
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D15$~n1a211a11~m1n!d!,~n1a212a11~m1n!d! for mn1Þ0,

2~n1a212a11~m1n!d! for mn150,

~n1a211a21~m1n!d! for mn1>2,

2~n1a211a21~m1n!d! for mn150,1,

~n1a212a21~m1n!d!,~n1a211a11a21~m1n!d! for mn1>2,

2~n1a211a11a21~m1n!d! for mn150,1,

~n1a212a12a21~m1n!d!,~n1a211~m1n!d! for mn1Þ0,

2~n1a211~m1n!d! for mn150%. ~3.39!

The setsD1
1 andD2

1 can similarly be written as

D2
15$~n1a211a11~m1n!d! for mn151,

~n1a212a21~m1n!d! for mn152,

~n1a212a12a21~m1n!d! for mn152,

2~n1a211~m1n!d! for mn150%, ~3.40!

and

D1
15D1/D2

1 . ~3.41!

As before, forÂ2
(1) the elements ofñ are given byV21ea , whereaPD1

1 . These structures can b
calculated explicitly by applying the properties of inner automorphisms. For example, the ele
V21en1a211a11(m1n)d is given by

V21en1a211a11~m1n!d5
1

11t2n en1a211a11~m1n!d

1
1

11t2n @sgnN2a28n1a211a11a2
#en1a211a11a21~m12n!d . ~3.42!

The elements ofn can be known by considering the elementsñùG̃ as before. The required
Iwasawa decomposition is then written as

Â2
~1!5k % a% n. ~3.43!

IV. CONCLUDING REMARKS

The present work has concerned itself with the application of the powerful techniqu
Satake diagrams to the case of hyperbolic Kac–Moody algebras with special emphasis
Iwasawa decomposition of these algebras. The involutive automorphisms for the corresp
Satake diagrams of these algebras are determined in a rather unambiguous manner. It is p
to stress that the Iwasawa decomposition readily leads to Langlands decomposition from w
is straightforward to obtain parabolic subalgebras necessary for constructing induced repr
tions. Since the Satake diagrams have been previously exploited to classify the real forms
algebras,13–15 Lie superalgebras,16 and Z graded semisimple algebras,21 it would indeed be pos-
sible to extend the method to classify the real forms of all hyperbolic Kac–Moody algebras
have, however, not endeavored to discuss this aspect in this communication but expect t
into it in the future.
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The two examplesÂ1
(1) and Â2

(1) of the hyperbolic Kac–Moody algebras are typical illustr
tions of the working scheme and the general framework of the Satake diagrams. In prin
however, one can construct Satake diagrams for all hyperbolic Kac–Moody algebras which
indeed be a stupendous effort. We take the example ofG(3), which is not an extension of the
affine Kac–Moody algebras and compute the Satake diagrams and the corresponding roo
morphisms displayed in Table III so as to have a glimpse into the pragmatic way in whic
technique has been appropriately tailored for these algebras.
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Application to the stratified wave equation

David W. Pravica
Department of Mathematics, East Carolina University, Greenville, North Carolina 27858

~Received 14 March 1997; accepted for publication 19 September 1998!

The plane-stratified wave equation (] t
21H)c50 with H52c(y)2¹z

2 is studied,
wherez5x% y, xPRk, yPR1 anduc(y)2c`u→0 asuyu→`. Solutions to such an
equation are solved for the propagation of waves through a layered medium and
can include waves which propagate in thex-directions only~i.e., trapped modes!.
This leads to a consideration of the pseudo-differential wave equation (] t

2

1v(2Dx))c50 such that the dispersion relationv(j2) is analytic and satisfies
c1<v8(j2)<c2 for c* .0. Uniform propagation estimates like
* uxu<utuaE(UtP6f0)dkx<Ca,b(11utu)2b*E(f0)dkx are obtained whereUt is the
evolution group,P6 are projection operators onto the Hilbert space of initial con-
ditions fPH andE(•) is the local energy density. In special cases scattering of
trapped modes off a local perturbation satisfies the causality estimate
iP1rL

j SP2rL
k i<Cnr2n for eachn,1/2. HereP1rL

j (P2rL
k ) are remote outgoing/

detector~incoming/transmitter! projections for thejth ~kth! trapped mode. Also
LbR1 is compact, so the projections localize onto formally-incoming~eventually-
outgoing! states. ©1999 American Institute of Physics.
@S0022-2488~99!02601-8#

I. INTRODUCTION

The inhomogeneous-media wave equation1 ~in symmetric form2,3! in Rn is,
~1!

2] t
2c5Kpc, Kp[2cp~z!¹z

2cp~z!1Vp~z!,

c~z,t50!5c1~z!, ] tc~z,t50!5c2~z!,

where the dependent variables are bounded above and below, i.e.,

0,ep<cp~z!<cp
M, 0<Vp~z!<Vp

M . ~2!

SinceKp is a positive self-adjoint operator, we can rewrite~1! as a Schro¨dinger equation,

i ] tS f1

f2
D 5 i S 0 AKp

2AKp 0
D S f1

f2
D , S f1

f2
D

t50

5S AKpc1

c2
D , ~3!

where the solution to the corresponding wave equation isc5(1/AKp)f1 . This form allows us to
work on a vector-Hilbert spaceH5L 2(Rn,dnz) %L 2(Rn,dnz). By Stone’s Theorem, Eq.~3!
defines a unitary evolution groupUt

p onH and this solves the wave equation~1! under conditions
~2!.

Now suppose that the space variables decompose asz5x% yPRk
% R1 and that there are

bounded functions of they-variablec(y)>e.0,V(y)>0 so that,

max$uc~y!2cp~z!u, uV~y!2Vp~z!u%→0, as uzu→`.

Then Eq.~1! is a perturbation of the plane-stratified wave equation,
5110022-2488/99/40(1)/511/17/$15.00 © 1999 American Institute of Physics
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2] t
2c5Kc, K[2c~y!¹z

2c~y!1V~y!. ~4!

By writing Eq. ~4! in the form of ~3! we can define thefree evolution groupUt which is also
defined onH as a family of unitary operators. Taking the Fourier transform of Eq.~4! in the
x-variable gives the reduced wave equation,

2] t
2ĉj5Ky

jĉj , Ky
j[2c~y!]y

2c~y!1j2c2~y!1V~y!, ~5!

which operates on functions inL 2(Rk,dkj) ^L 2(R1,dy). The corresponding wave equation d
composes into afree part associated withscont(Ky

j), the continuous spectrum ofKy
j , and a

trapped partassociated withspp(Ky
j), the pure point spectrum ofKy

j . This latter set is defined by
the eigenvalue equation,

Ky
jĉj5v~j2!ĉj , E

R1
uĉj~y!u2dy51. ~6!

Hereĉj(y)PL 2(R1,dy) are normalized eigenmodes of the reduced stratified system. From~6! a
family of eigenvalues are obtained$v j (j

2)% along with associatedthresholds$j j% and eigenfunc-

tions$ĉj
j% so thatv j (j

2) andĉ j
j are locally analytic foruju.j j . We can now define thejth-mode

subspaceas,

Hj[closureH c~x,y!5E
uju.j j

eix•j f ~j!ĉj
j ~y!dkjU f PL 2~Rk!J .

On initial statesc1 ,c2PHj the stratified wave equation~4! becomes,

2] t
2c j5v j~2Dx!c

j , c j~x,y,0!5c1~x,y!, ] tc
j~x,y,0!5c2~x,y!, ~7!

which is a pseudo-differential wave equation onRk. Solutions to~7! c j (x,y,t) can be expressed
using Fourier transforms. We will call themtrappedor channeled modessince they propagate in
the x-directions only.4

To study~1! using the asymptotics of~4! we construct the scattering operator,

S[V2* V1 , V6[s2 lim
t→6`

Ut
pU2t . ~8!

Next, we introduce a class of projection operatorsPL for LbR1, so that;fPH,

ix1~ urua2uxu!PrLfi<CLuru2bifi , ~9!

for 0,a<1 and someb.0. Herex1(s)51 for s.0 and 0 otherwise. Property~9! implies that
PrL localizes states outside a ball of radiusurua, leaving a small polynomial tail inside the bal
For each modal subspaceHj it is possible to define orthogonal projectionsPL

j satisfying~9!. By
taking the perspective thatPL projects onto outgoing scattering states~andP2L onto incoming
states! we can ask whether perturbations cause a leakage of incoming into outgoing modes
the scattering process. In particular,causality estimatesof the form,

iP1rL
j SP2rL

k i<Cn /rn, ~10!

are obtained, for eachnP(0,1/2). We say that ‘‘asymptotically, incoming channeled modes
not effect outgoing states.’’ HereLbR1[(0,̀ ) is a compact set, so forr.0,P1rL

k projects onto
outgoing states which are formally-incoming and similarlyP2rL

j projects onto incoming state
which are eventually-outgoing. Also, due to the difficulty of this problem, we only cons
strictly positive thresholdsj j.0 in a media with a single layer. Extensions are possible to
thresholdsj j>0 and to many cases of multi-layered media.
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Inequality ~10! is a type of cluster property in time, which was introduced by Taylor.5 Our

analysis usesx•¹̂x the formal-time operatororiginally used by Lavine6 and expanded upon b
Mourre.7 For further history on this approach see the work of Perry.8 Though the phase spac
techniques which we use are standard,9 there has been little work on the behavior near thresho
For stratified media problems, restrictions on energy-decay are due mainly to thresholds a
due to dispersion. Hence our main goal is to obtain uniform-energy-propagation estimate
then to use these estimates to obtain properties like~10!. We refer to Ref. 10 for a discussion o
other properties ofS which are obtainable through phase space analysis.

In this paper we have chosen to study the wave equation because working with a v
Hilbert space allows us to define aglobal time operator. In the special case that the thresh
vanishesj j50, that there is no dispersionv j950, that the dimension is odd and the perturbat
is compactly supported, Lax and Phillips have shown thatP1rSP2r50, i.e., the system iscom-
pletely causal.11 Our analysis applies to noncompact perturbations in any dimension so we
only show that the scattering operator isweaklycausal. For further discussion about the effects
dispersion on causality, we suggest consulting the work of Nussenzveig.12

The paper is organized as follows. In the next section we review the theory of wave equ
as needed for this work. Section III then begins with an explicit definition of the projec
operatorsPL and a presentation of important properties. The section ends with a series of P
sitions intended to justify the terminology incoming/outgoing. Finally in Sec. IV we conside
scattering operator for the stratified wave equation and obtain causality estimates of the form~10!.
Some calculations are left for the Appendix.

II. PRELIMINARIES

We begin with a discussion of the wave equation which also applies to the dispersive ca
us rewrite~7! as a system,

i ] tS c

] tc
D 5 i S 0 1

2v j~2Dx! 0D S c

] tc
D , S c

] tc
D

~ t50!

5S c1

c2
D . ~11!

For each channel define thespectral thresholdst j>0, wheret j
25v j (j j

2). Then,

Domain~v j !5@j j
2 ,`!, Range~v j !5@t j

2 ,`!.

Energyof the solution to~11! is, for h5v2

E~c0 ,c1 ;t ![E
Rk

~ uh~ u¹xu!cu21u] tcu2!dkx5E
Rk
E~c!dkx, ~12!

where thelocal-energy densityat time t is defined,

E~c!5US 1

2Dx
v~2Dx! D 1/2

¹xcU2

1u] tcu2. ~13!

This agrees with the usual notion of local-energy density whenv(•) is a homogeneous functio
of degree one. The total energyE is a conserved quantity and functions with finite energy defi
the Hilbert space on which we will work.

In this paper we suppose thatc(y) andV(y) satisfy one of the following conditions:
~C1! ~a! V,cPC ` and'gb.0 so thatiegbuyuV(y)i`1iegbuyu(c(y)2c`)i`,`;
~b! V(y) and c(y) are finitely-piecewise constant, withV(y) and c(y)2c` compactly sup-

ported.
Then we have the following important result due to the work of Klaus and Simon.13
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Theorem 2.1: Suppose that~C1! ~a! or ~b! hold. Then'$v j (j
2)% a sequence of nondegen

erate negative eigenvalues of~6! which are locally analytic foruju.j j and continuous foruju
>j j . Furthermore,'c* ,e* ,l * strictly positive constants, so that,

~i! c1<v8(j2)<c2 for all uju>j j ;
~ii ! uj2(l 21)v j

( l )(j2)u<c3 for all j2.j j
21e` and l< l ` ;

~iii ! If t j.0 andj j.0, then limj→j
t j

1u(j22j j
2)e jv ( l )(j2)u<c4 for all l< j ;

otherwise, ift j5j j50 then limj→01uj2(l 21)v ( l )(j2)u<c5 for all l< l j .

Now defineh(j)[(v(j2))1/2 where we abuse notation by writingj5uju and by ignoring the
j-index, i.e.,v[v j ,h[hj ,jt[j j , etc. Then, to generalize our results, suppose thath(j) has the
following properties, which are weaker than actually required,

~P1! Domain(h)5@jt ,`), Range(h)5@t,`), t5h(jt);
~P2! 'c* ,e` ,l `.0, so that

~a! c1<h8(j)<c2 for all j>jt ;
~b! hPC l `(jt1e` ,`) and uj ( l 21)h( l )(j)u<c3 for all j.jt1e` and l< l ` ;

~P3! 'et ,l t.0, so that
if t.0 andjt.0 then limj→j

t
1u(j2jt)

eth( l )(j)u<c4 for all l< l t ;

otherwise, ift5jt50 then limj→01uj l 21h( l )(j)u<c4 for all l< l t .

Now denotef15hc, f25] tc. Then the wave equation~11! has the alternate form,

i ] tS f1

f2
D 5 i S 0 h~ u¹xu!

2h~ u¹xu! 0 D S f1

f2
D , S f1

f2
D

~ t50!

5S h~ u¹xu!c1

c2
D . ~14!

Evolution is unitary on the Hilbert space,

Ht[Ht %Ht ,

Ht[E
[ t2,`)

2Dx L 2~Rk,dkx!5closureH c~x!5E
uju.jt

eix•j f ~j!dkjU f PL 2~Rk!J ,

whereEL
K is the spectral measure of a self-adjoint operatorK on the setL. The norm ofHt is the

sum ofL 2-norms which is equivalent to the energy in~12!. Furthermore, the system in~14! can
be diagonalized by defining,

f65~1/2!1/2~f17 if2!5~1/2!1/2~h~ u¹xu!c7 i ] tc!. ~15!

Then it is clear that,

E~c0 ,c1!5if1i21if2i25if1i21if2i2.

To solve the dispersive wave equation~14! we introduce the Fourier transform onRk,

Fxc~jm!5VkE
Rk

ei ~x•m!jc~x!dkx,

for mPSk21 andVk[(2p)2k/2. Making the extension,

h~2j!52h~j!, Dt[Domain~h!5~2`,2jt#ø@jt ,`!,

allows ~14! to be rewritten as,

i ] t f ~j,m;t !52h~j! f ~j,m;t !, on L 2~D t ^ Sk21,ujuk21djdm!,
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where, in terms of solutions to~14! and the notation of~15!, we define,

f ~j,m;t ![~Fxf6!~j,m;t !, for jPDt and 6j>0.

In this way the wave equation becomes first order. A study of this equation in the case thah(j)
is a homogeneous function of degree 1 withjt50 was carried out in Ref. 11, Sec. VI. We als
refer to Ref. 14 for a detailed discussion ofdomains of definition.

In this paper, instead of usingFx , we work with the transformation,

F hc~q,m!5VkHk~q!E
Rk

ei ~x•m!h21~q!c~x!dkx,

where the dispersion weight factor is defined as,

Hk~q!5
uh21~q!u~k21!/2

Ah8~h21~q!!
,

for qPst. Herest[(2`,2t#ø@t,`) and in this case Eq.~14! becomes,

i ] tg~q,m;t !52qg~q,m;t !, on L 2~st ^ Sk21,dq dm!,

whereg(q,m;t)[(F hfsgn(q))(q,m;t). Finally, applying the inverse 1-d Fourier transform,

~F 1
21g!~s![V1E

st

e2 isqg~q!dq, sPR,

gives the one-dimensional wave equation,

] tk~s,m,t !52]sk~s,m,t !, on L 2~R,ds;N!, N[L 2~Sk21,dm!. ~16!

The s-variable is conjugate to2 i ]s , ~i.e., i @2 i ]s ,s#51) and the solution of~16! is k(s,m,t)
5k0(s2t,m), which is just translation to the right in thes-variable for some initial condition
function k0(•,•). The solution to~11! is c(x,t)5@h(u¹xu)#21f(x,t), which can be an equiva
lence class of functions ift50 ~see discussions in Refs. 1 and Ref. 15!. Here,

f~x,t !5Vk11E
st ^S k21

e2 ix•mh21~q!Hk~q!S E
2`

`

eisqk0~s2t,m!dsD dq dm,

and the Lax–Phillips transformation of the initial data are,

k0~s,m![LP~c0 ,c1!~s,m!

5]sR~c0!~s,m!2R~c1!~s,m!

5Vk11E
st

e2 isq̄Hk~ q̄!S E
Rk

eix̄•mh21~ q̄!sgn~ q̄!@ q̄c0~ x̄!2 ic1~ x̄!#dkx̄D dq̄.

R(•) is called the Radon transformation and it is used to define the projection operatorsP6
LP on

H so that,

LP~P6
LP~c0 ,c1!!~s,m!5x6~s!LP~c0 ,c1!~s,m!.

Here x6(s)51 for s:0 respectively and 0 otherwise. The spacesD6
LP[P6

LPH are called
outgoing/incomingin the sense of Lax–Phillips. LetUt be the unitary group which solves~14! on
Ht . ThenD6

LP have the well known properties,
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~i! UtD6
LP,D6

LP , t:0; ~ii ! ù
tPR

UtD6
LP5$0%; ~iii ! ù

tPR
UtD6

LP5H, ~17!

which follow from the Weyl relations, which hold due to the translation representation of~16!.
The difficulty in studying the wave equation in this form is that iftÞ0 then the variables does not
act like simple differentiation under Fourier transform. In fact,

F1~sk0~•,m!!~q!5V1E
2`

`

eisqsk0~s,m!ds5~ i ]q1d~q2t!2d~q1t!!F1~sk0~•,m!!~q!,

soP6
LP aret-dependent. However ift50 thenF1 :s→ i ]q as operators. Thus Lax–Phillips theo

only applies to thet50 case, i.e., systems with uniform multiplicity.11,15

III. ENERGY REPRESENTATION

In this section we introduce projection operatorsP6 for the dispersive wave equation withou
using the Radon transform. This leads to a decomposition of the initial condition space
D65P6Ht . These outgoing and incoming spaces agree with the Lax–Phillips definition o
t50 andk is odd. Propagation estimates are obtained for elements inD1 . Corresponding results
hold forD2 .

Definef* 05f* (t50)PHt . We also use the notations, forqPR,1

q̂[sgn~q!, ^q&[~11q2!1/2,

v̂q5
1

A2
S 1

i q̂
D , f q̂5

1

A2
~f12 i q̂f2!5 v̂q

TS f1

f2
D ,

@see~15!#. Then returning to~14!, the solution of the wave equation is given by,

S f1

f2
D ~ t !5UtS f10

f20
D

[S cosht sinht

2sinht coshtD S f10

f20
D

5
1

A2
S eihtf101e2 ihtf20

ieihtf102 ie2 ihtf20
D

5
Vk

2

A2
E

st ^S k21
ei ~qt2x•mh21~q!!Hk

2~q!S E
Rk

eix̄•mh21~q!S f q̂0

i q̂f q̂0
D dkx̄D dq dm.

~18!

Let xL(s) be the characteristic function of the setL,R and denotex6(s)[xR1(6s). Then with
g[q̂(k11)/2 for k odd andt50, andg51 otherwise, definePL so that,

PLS f10

f20
D 5VkE

st ^S k21
e2 ix•mh21~q!Hk~q!F hFPLS f10

f20
D Gdq dm

[VkE
R^S k21

e2 ix•mh21~qp!Hk~qp!v̂p~gxL~2 i ]p!g!v̂p
TSF hf10

F hf20
D dp dm, ~19!
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where we use the change of variablesp5q2tq̂P(2`,`) and define the quantityqp[p1t p̂
Pst . HerePL[xL(A h) whereA h is a self-adjoint extension~see the work of Nagy16! of the
following symmetric operator:

A h[ i S 0 Ah

2Ah 0D , on D~A h!5$fPD 2~Ah!,HtuF hf~6t!50%,

Ah[
1

4i

1

Ah8~ u¹xu!
~¹̂x•x1x•¹̂x!

1

Ah8~ u¹xu!
.

For L5(a,b),R1, r.0, we use the notations,

P1rL[P~ra,rb! , P2rL[P~2rb,2ra! , P6r[P6[r,`) , P65P60[P6R1.

To demonstrate thatD6[P6Ht are orthogonal spaces, we prove in the Appendix,
Lemma 3.1:The operatorsP6 are complementary-orthogonal projections. In particu

P1P250, P11P251, P6* 5P6 .
We also consider the following in the Appendix:
Claim 3.2:Let Ut be the unitary group defined in~18! onHt . Then for anyt>0 properties

~ii ! and ~iii ! of Lax–Phillips hold. Furthermore,

~i!8 ~a! P7Ut→
s

0 and UtP6→
w

0 as t→6`;

~b! ~12P1t!UtP150 for t5~np/t! if t.0,nPN and ;t.0 if t50.

Remark:Property~i! in ~17! can be restated asP7UtP650,;t:0. Lax and Phillips also
discuss the operatorZ(t)[(12P1r)Ut

p(12P2r), whereUt
p is the evolution group of a com

pactly perturbed system. IfiZ(t)i→0 as t→` then the perturbed system will have unifor
energy-decay properties. For the problem studied here, property~i!8 only says thatZ(t) vanishes
strongly, even if there is no perturbation.

The claim is established from estimates of the form,

ix1~cm8 ut6rua2uxu!UtP6rLf0i2<
C~a,b,L!

~11ut6ru!b
if0i2, t:0, r.0. ~20!

If 'a>0,b.0,L#R1 so that ~20! holds ;f0PHt then it is called auniform-energy-
propagation estimate. Note that uniformity refers to the absence of momentum cutoff function
eitherf0 or Ut .

Discussion:Equation~20! is not just a propagation estimate. Fort50 and L compact, it
shows thatP1rLHt are outgoing states, which were once incoming. SimilarlyP2rLHt consists
of incoming states which are eventually outgoing. These propagation estimates allow us to r
strict notions of incoming/outgoing with an energy-density estimate. Ift50 and the dimension is
odd, then localization is nearly exponential, but ift.0 one can only localize the energy in spa
in terms of inverse powers ofr.

We now present our main results for system~14! under conditions~P1!-~P3!, concentrating on
the L5R1 case and considering only outgoing projections.

Proposition 3.3:Suppose thatk is odd,t50, N[min$l` ,lt%21.(k11)/2 anda,1. Then for
b[2N2ak21 andt,r.0 the estimate,

E x1~cm8 ut1rua2uxu!E~UtP1rf0!dkx<Ca,b~11ut1ru!2bE~f0!, ~21!
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holds for anyf0PHt . If a51 then for eachcm8 ,cm there is aC.0 so that~21! holds.
Furthermore, ifh(j)5cmj ~i.e., homogeneous of degree one! then we can takeC50 for anya
<1, cm8 ,cm .

Remark:The last statement is Huygen’s~energy! principle which holds for oddk>1.
Proof: We extend the methods of Theorem 2.6.1 in Ref. 8 by introducing a scaling argu

For anyB@1 define the symmetric functions,

G~q!512G~q/B!, where G~q!5H 0, uqu<1

1, uqu>2
, qG8~q!>0, GPC `~R!.

Then the left-hand side of~21!, can be written, forr50, cm8 51, a,1 and eacht.0,

E
uxu<ta

E~UtP1f0!dkx<2iG~ u¹xu/B!P1f0i212takVol~S k21! sup
uxu<ta

E~UtG~ u¹xu!P1f0!.

The first term on the right-hand side vanishes asB→`. As for the last term, first note that
2 i ]q is a self-adjoint operator onL 2(R1,dq). Thus the Weyl relations hold,

eiqtes]q5e2 istes]qeiqt⇔eiqtxL~2 i ]q!5xL1t~2 i ]q!eiqt. ~22!

Now, applying expression~19!, then~18! and definition~13!, gives,

E~UtG~ u¹xu!P1f0!

[ES UtVkE
R^S k21

e2 ix•mh21~qp!G~h21~qp!!Hk~qp!v̂p~gx1~2 i ]p!g!v̂p
TF hf0dp dm D

[
Vk

2

A2
US ¹̂x 0

0 1
D E

st ^S k21
ei ~qt2x•mh21~q!!G~h21~q!!Hk~q!v̂q

3~gx1~2 i ]q!g!v̂q
TF hf0dq dmU2

[
Vk

2

2 U E dq dmei ~qt2x•mh21!G+h21HkS 2 i q̂

i q̂
D ~gx1g!v̂q

TF hf0U2

. ~23!

Consider the linear case whereq5h(j)5cmj andt50. We then use self-adjointness ofi ]q on
L 2(R,dq), relation~22! and the Schwartz inequality to bound~23! by,

Vk
2E dq dmux~2`,2t !~2 i ]q!e2 ix•mq/cmG~q/cm!gq̂uqu~k21!/2u23E dq dmugeiqtF hf0u2.

Next, by the Parseval equality we obtain an upper bound of,

Vol~Sk21!sup
m
E

2`

2tU E
22B

2B

e2 iq~s1x•m/cm!G~q/cm!q~k21!/2dqU2

ds32E~f0!.

Hence'C* .0 so that applying integration by partsM-times gives a larger upper bound,

CkE~f0!sup
m
E

2`

2tU E
22B

2B S i

s1x•m/cm
D M

@]q
Me2 iq~s1x•m/cm!#G~q/cm!q~k21!/2dqU2

ds

<Ck,ME~f0!E
2`

2t

~ usu2uxu/cm!22MdsS E
22B

2B

u]q
MG~q/cm!q~k21!/2udqD 2

, ~24!
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from which we can easily conclude that,

sup
uxu<ta

E~UtG~ u¹xu!P1f0!<Ck,M ,at22M11~2B!22M1k11E~f0!. ~25!

Hence asB→` ~for M sufficiently large! the right-hand side of~25! vanishes for each fixedt.
Replacingt with t1r at appropriate points verifies the last statement of Proposition 3.3.

Remark:All remaining computations required in this section are modifications of the ste
~23!–~25!. Repetitions will be kept to a minimum.

Next, in case thath(j)5q is nonlinear andt50, let us define the phase function,

w0~q!5sq1x•mh21~q!5sh~j!1x•mj,

and the operators,

L[
i

w08~q!
]q , L* [2 i

w09~q!

~w08~q!!2
1

i

w08~q!
]q ,

or, using the change of variables identities 15h8(j)]qh21(q) and]q5(h8)21]j ,

L* [ i
x•mh9/h8

~sh81x•m!2
1

i

sh81x•m
]j .

For s<2t and uxu<(cm8 /cm)t, ~24! gives,

U E
22B

2B

e2 iw0~q!~L* !NG~h21~q!!gq̂Hk~q!dqU< CN

~ usu2cm8 t/cm!NE22B

2B

^q&2N1~k21!/2dq, ~26!

whereCN is finite due to the smoothness conditions~P2! and~P3!. The right-hand side of~26! has
a finite limit asB→` if N2(k21)/2.1. Integrating forsP(2`,2t) completes the proof for
r50. Ther.0 cases are similarly obtained. h

For the remaining results of this section, considerL5(a,b) with 0<a,b and defined52 if
b,` or d51 if b5`.

Proposition 3.4: Suppose thatk>1 ~even or odd!, t.0 and min$l` ,lt%>2. For eacha
,d/k with a<1 andb[d2ak.0, 'C.0 so that~20! holds for allf0PH.

Proof: We change the previous proof by defining, forA.t andB@A,

G~q!5GA~q!1G`~q!,

GA~q!5G~qt /At!~12G~q/ct!!, G`~q!5~12G~q/B!!G~q/ct!, ~27!

qt[q2t, At[A2t, ct[11t.

Using theG(q) partition on the left-hand side of~20! gives, fort.0 andh[h(u¹xu),

E
uxu<ta

uUtPLf0u2dkx<2i~12G~~h2t!/At!!PLf0i212iG~h/B!PLf0i2

1Ctak sup
uxu<ta

uUtGA~h!PLf0u21C8tak sup
uxu<ta

uUtG`~h!PLf0u2. ~28!

The G`(h) and G(h/B) terms can be handled as in the previous Proposition. However, sint
.0, we cannot use~22!. Define the time-dependent phase function and operator,
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w t~q![~s2t !q1x•mh21~q!5~s2t !h~j!1x•mj, Lt[
i

w t8~q!
]q .

For theGA term in ~28! use integration by parts only once, i.e.,M51 in ~24!. Then,

xL~s!E
A

2ct
uLt*GA~q!Hk~q!udq<

Ck,txL~s!

cmus2tu2uxu
1

Ck,t8 xL~s!i~j22jt
2!h9i`

~cmus2tu2uxu!2
. ~29!

Thus, integrating insPR, gives the following estimate, analogous to~25!:

sup
uxu<ta

uUtGA~ u¹xu!P1Lf0u2<Ck,t,L

1

~cmt2ta!d
if0i2.

Returning to~28! it is clear that forak,d one obtains an estimate independent ofA, except for
the first term on the right-hand side. This term vanishes asA→t1. The same computations hol
if we replaceta with ut1rua andL with rL. The result is complete. h

Proposition 3.5:Suppose thatk>1, t50 and min$l` ,lt%>21k/2. Then, for anya<1 with
b.0, whereb(a)[(12a)k1(d21)2(11(21)k)/2, 'C.0 so that~20! holds.

Proof: The difficulty in these cases is that even whenl t5` integration by parts can be use
only M[ dk/2e ~least integer greater thank/2) times, due to the singularity ofq(k21)/2. To prove
this, return to~29! with t50 andq5h(j)5cmj. Then givenN< dk/2e, 'CN so that,

U E
A

2ct
~L* !NGA~q!q~k21!/2dqU2

<
CN

~cmus2tu2uxu!2N
.

Now we may proceed as in the proof of Proposition 3.4. The case of nonlinearh(j) is handled
similarly. We omit the details. h

Remark:The difference between~20! and ~21! is unimportant for our study of the scatterin
matrix since the energy norms are equivalent ift.0. It will be convenient in the next section t
use the estimates in~20!.

IV. SCATTERING THEORY FOR TRAPPED WAVES

A. Plane stratified media

We now apply the results of Sec. III to the study of time-asymptotic solutions for the p
stratified wave equation. Recall thatz5x% yPRk3R1.

A typical trapped mode for system~4! has initial conditions of the form,

f* ~x,y!5VkE
Rk

e2 ix•j f ~j!ĉj
j ~y!dkj, ~30!

for appropriatef PL 2(Rk) and with ĉj
j defined in~6!. Using theF h-transform on~6! gives the

new eigenvalue equation,

Hy
qc̃ j~q,y!5q2c̃ j~q,y!, c̃ j~q,y![F hF x

21ĉj
j ,

~31!
Hy

q[F hK~F h!215F h~Fx!
21Ky

jFx~F h!21.

In this case the initial conditions will take the form,

f* ~x,y!5VkE
st ^ Sk21

e2 ix•mh21~q!g~q,m!c̃ j~q,y!Hk~q!dq dm, ~32!
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for appropriategPL 2(st3S k21). Now, for any Borel setS#@t j
2 ,`), we definePj@S# to be the

projection onto thev j eigenspace ofS. Explicitly, if E$l%
K is the spectral projection ofK onto the

eigenvaluel, we have,

Pj@S#f~x,y![E
uju2Pv j

21
~S!

S E
$v j ~j2!%

Ky
j

f D ~x,y!dkj

5VkE
uju2Pv j

21
~S!

e2 ix•jĉj
j ~y!S E

R1
ĉj

j ~ ȳ!Fxf~j,ȳ!dȳD dkj.

We use the notationsPj[Pj@t j ,`) andPt[ % j P
j . Then thetrapped spaceis defined,

Ht[PtH% PtH[PtH, ~33!

whereH[H%H andH[L 2(Rk11,dkxdy). Thespace of free statesis,

Hf[PfH% PfH[PfH, ~34!

wherePf5(12Pt). The full Hilbert space of initial conditionsfor thestratified wave equationis
thusH5Hf

%Ht, which is the standard decomposition.2,4

The theory of Sec. III is now used to further decomposeHt by introducing,

PL
j f~x,y![VkE

st ^ Sk21
e2 ix•mhj

21
~q!c̃ j~q,y!Hk~q!v̂qxL~2 i ]q!

3S E
R1

c̃ j~q,ȳ!v̂q
TF hf~q,ȳ!dȳD dq dm. ~35!

Lemma 4.1:For eachj PN, P6
j are complementary-orthogonal projections onHj .

The proof is similar to that of Lemma 3.1 so the details are not repeated.

Now to proceed, detailed properties ofc̃(q,y) are needed. Thus we consider the special c
of a stratified operator with single layer, which is an example of~C1!~b! in Sec. II;

~C2! Assume thatV(y)50. Furthermore, suppose'c* ,R* with 0,cm,c` so thatc(y)
5cm for R1,y,R2 andc(y)5c` otherwise.

If R152R252R for R.0 andj is even, the normalized eigenstates of~31! are,

c̃ j~q,y!5Nj~q!H ~1/c`!cos~gjR!exp@2 f j~ uyu2R!#, uyu.R

~1/cm!cos~gjy!, uyu,R
, ~36!

where theq-dependent quantities are,

f j[Av j
21~q2!2q2/c`

2 , gj[Aq2/cm
2 2v j

21~q2!,
~37!

Nj~q![F ~ f jc`
2 !21 cos2~gjR!12~gjcm

2 !21E
0

gjR

cos2 u duG21/2

,

and the thresholds aret j5 j p/RAcm
222c`

22. The dispersion relations satisfy,

cmf j5c`gj tan~gjR!, f j
21gj

25q2~cm
222c`

22!,

which ensure the existence of analytic neighborhoods forv j
21(q2) aroundt j and` so that,

f j5 (
k51

`

ak~q22t j
2!k, gj5~ j 11!p/2R1 (

k51

`

bkq
2k,
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respectively. Similar expressions hold for the oddj modes. Using these explicit expressions
now obtain propagation estimates for outgoing trapped states withL5(a,b), where 0,a,b and
with d52 for b,`, or with d51 for b5` ~as defined in Sec. III!. The corresponding resul
holds for incoming states.

Proposition 4.2:Let ~C2! hold and suppose thatt j.0. Then for eacha,d/k with a,1 and
b[d2ak.0, 'C so that;c0PH,

ix1~ ut1rua2uzu!UtP1rL
j c0i2<C~11ut1ru!2bic0i2, t.0. ~38!

If t j50 then for eacha,1, b[d2a, 'C.0 so that~38! holds.
Proof: We sketch the essential details. Setr51. Then, proceeding as in~27! and~28!, we can

bound the left-hand side of~38! with,

E
y52ta

ta E
uxu<utua

uUtP1L
j c0u2dkxdy<2E

Rk11
u~12G~h~ u¹xu!!!P1L

j c0u2dkx dy

12E
y52ta

ta E
uxu<utua

uUtG~h~ u¹xu!!P1L
j c0u2dkx dy.

~39!

The first term on the right-hand side vanishes asA→t j
1, B→`. For the second term we decom

pose they-integration into oscillatory and exponential parts as defined in~36!. In the oscillatory
region uyu,R integration by parts gives,

E
2R

R

sup
m

sup
uxu<ta

E
2b

2aH U E
A

2ct
eic t~c t9~c t8!221~c t8!21]q!GAHkN~q!dqU2

1U E
ct

2B

eic t~c t9~c t8!221~c t8!21]q! dk/2eGBHkN~q!dqU2J ds dy, ~40!

where the phase function is defined, suppressing thej index,

w t[tq2sq2x•mh21~q!6g~q!y, w t85t2s2x•m~h21!86g8y. ~41!

By analyticity of f , g, andN, the integral in~40! is bounded byCt2d.
In the exponential regionR,uyu,ta we modify the previous expression by integratinguyu

from R→ta and replacingN(q) with N(q)exp(2f(uyu2R)). In the phase function~41! set y
5R. We may now proceed as above except for terms of the form,

E
R

taU E
ct

2B

eiw tG ~k1!Hk
~k2!N~k3!]q

k4e2 f ~y2R!dqU2

dy<(
l 51

k4 S E
0

f ~ ta2R!
u2le22uduDCl ,

which are clearly bounded. Here(ki5 dk/2e. This leads to at2d bound. Whent j50 then theHk

function improves the bounds fork>2 nearA. We omit the details. h

B. Perturbed stratified media

As an application to scattering theory, consider the perturbed system~1!, where the dependen
variables satisfy, in addition to~2!,

~C3! Vp ,cpPC 4 and'gp.1/2 so that for̂ z&[(11uzu2)1/2,

i^z&2gp~Vp~z!2V~y!!i`1i^z&2gp~cp~z!2c~y!!i`,`.
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Let F[F (u,v)PC`(R1) be a uniformly bounded positive function with support on (u,v), 0
,u,v,`. The following is a consequence of the work in Ref. 2. See also Ref. 15 for fu
discussion of operator-smoothness and Ref. 3 for similar energy estimates.

Lemma 4.3:Suppose the systems in~4! and~1! satisfy~C1! and~C3!, respectively. Then the
following energy-decay estimate holds:

E
2`

`

i^z&2g#Ut
#F~K#!c0iH

2 dt<Cic0iH
2 , ~42!

for g#.1/2 andg#5g0 or gp ,Ut
#5Ut or Ut

p andK#5K or Kp, respectively.
The scattering operatorS in ~8! is defined in terms of the wave operatorsV6 which, by

Cook’s method, have the alternative representations,

V6511 i E
0

6`

Ut
pVU2tdt. ~43!

HereV is a matrix operator with localness properties~shown in the Appendix!,
Lemma 4.4:Under conditions~C1! and ~C3!, with F[F (u,v) , the operators,

VF~K !^z&m, ^z&mF~Kp!V,

^z&2gF~Kp!VF~K !^z&2~gp2g!, ^z&2g~F~Kp!2F~K !!^z&2~g2gp!,

are bounded for each 0,u,v,` andm<gp and 0<g<gp . If cp(z)5c(y), i.e., Kp2K5Vp

2V, then the same holds forv5`.
Using theH-decomposition into free and trapped states, we obtain, with obvious interp

tion,

S5PfSPf1PfSPt1PtSPf1PtSPt.

The paper is completed with the following:
Main Theorem 4.5: The scattering operatorS exists, given conditions~C1! and ~C3!. Fur-

thermore, for nondegenerate trapped modes with positive thresholdst j ,tk.0 and any finiteu
.max$tj ,tk%, v.u, 'n,Cn.0 so that,

iP1r
j SF~u,v !~K !P2r

k i<Cn /rn. ~44!

If ~C2! andcp(z)5c(y) hold, i.e.,Kp2K5Vp , then the uniform causality estimate in~10! holds.
Furthermore, if condition~C3! holds for all gp.1/2, then for eachn,1/2 a finite constantCn

exists so that~10! holds.
Proof: The existence ofS follows directly from completeness of the wave operatorsV6 . The

latter holds by observing that for anyfPF(Kp)H, cPF(K)H, with F[F (u,v) ,

U K f,E
0

`

Ut
pVU2tdtcL U<CFifiici ,

using Lemmas 4.3 and 4.4. ThusV6 in ~43! are densely defined onH. By a similar argument the
adjoints are densely defined. Since the wave operators are all bounded linear operators, a s
e/3 argument verifies completeness foru50, v5`.

Inequality~44! requires propagation estimates like those in~38!. Due to the momentum cutof
function F (u,v) we can proceed as in Proposition 4.2 and use local analyticity of eigenstate17 to
show that for eachM.0 andcm8 ,cm ,'CM so that,

ix1~cm8 ut1ru2uzu!UtF~K !P1r
j c0i2<CM~11ut1ru!2Mic0i2, t.0. ~45!
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Choose anyf,cPH and letG35F(K). Also defineG0[G(K) andGp[G(Kp). Then~44! is
obtained by considering,

^f,P1r
j G0V2* GpV1G0P2r

k c&5^f,P1r
j G0GpG0P2r

k c&1C1ifi E
0

`

i^z&2gpU2tG0P2r
k cidt

1C2E
0

`

i^z&2gpUt
pG0P1r

j fidtici .

The last two terms are bounded by inverse powers ofr due to ~45!. For the first term on the
right-hand side, writeGp5(Gp2G0)1G0 , and note that Lemma 4.4 and Eq.~45! combine to
handle the difference of operators. Ifj Þk then theG0 term vanishes. Else, we need to establ
the following causality estimate~in the Appendix!,

Lemma 4.6:Let P
*
j be the projections defined in~35! onH. Then for anyFPC 0

`(R1) and
;M.0,'C* .0, so that,

iP6
j F~K !P7r

j i<CM ,F /rM.

Finally we show~10!, assuming that~C3! holds for all gp.1/(2a). Remaining results are
obtained similarly. Fort j<tk consider the decomposition ofP1rL

j SP2rL
k ,

P1rL
j xkV1* @~12P2

k !V2P2rL
k #1@P1rL

j xkV1* P2
k #V2P2rL

k , ~46!

for xk[x [ tk ,`)(K). Write the@ • • • # factor in the first term as,

~12P2
k !V2P2rL

k 5~12P2
k !P2rL

k 1 i E
0

2`

~12P2
k !Ut

pVU2tP2rL
k dt.

The first term on the right-hand side is clearly 0. As for the second term, we use Lemmas 4
4.4 and consider, for anycPH,

E
0

2`

i^z&2gpU2tP2rL
k ci2dt<ici2E

0

2`

i^z&2gpx1~ uzu2ut2rua!i`
2 dt

1E
0

2`

ix1~ ut2rua2uzu!U2tP2rL
k ci2dt

<ici2~C1 /r~2agp!211C2 /rd2ak21!.

SinceLbR1 is compact,d52. Hence fora arbitrarily small andgp large we obtain a nearly
r21/2 bound for the norm of the first term in~46!.

Finally, if t j,tk then the termP1rL
j xkV1* P2

k in ~46! has a stronger bound than the o
above, even forL5(a,`), a.0. This completes the Theorem. h

V. CONCLUSION

In this paper we introduced incoming/outgoing projection operators and obtained un
decay estimates for solutions of the wave equation with initial conditions in the correspo
subspaces. These estimates allowed us to study the scattering operator for the perturbed-
wave equation. The concept of strict causality for the system is replaced by a causality es
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APPENDIX

Proof of Lemma 3.1:Due to the details involved, we only consider the special caseh(j)
5j andg51. However we allowt>0 in order to demonstrate how one canbridge the energy
gap. Let f* ,c* PHt be arbitrary.

Idempotentcy:We showP1
2 5P1 using definition~3.2!. That P2

2 5P2 follows similarly.
Compute,

P1
2 f5P1~F h!21v̂q~x1~2 i ]q!!v̂q

TF hf

5~F h!21v̂ rx1~1/2!~F h~F h!212 i r̂F h~F h!21i q̂ !x1v̂q
TF hf

5~F h!21v̂ rx1
2 v̂q

TF hf5P1f,

where we use the fact thatF h(F h)215d(r 2q) andx1
2 5x1 .

Self-adjointness:SinceP6 are bounded operators, we need only show the symmetric p
erty. Using Fubini’s theorem and thed-function properties we calculate,

^c,P1f&5VkE
st ^ Sk21

~F hc!* v̂q~gx1~2 i ]q!g!v̂q
TF hfdqdm.

Then, since2 i ]q is a self-adjoint operator onL 2(st ^S k21,dqdm), so isx1(2 i ]q).
To complete the Lemma note thatx1(2s)5x2(s), x1x250, x11x251, etc. h

Proof of Claim 3.2:From ~3.3! it is clear that for eachR.0, ast→`, ix1(R2uxu)UtP1i
→0 and this, along with its corresponding adjoint expression, verifies~i!8~a!. For ~i!8 ~b!, choose
any fPH and observe that using~3.5! gives,

~12P1t!UtP1f5E dqdme2 ix•mh21~q!Hk~q!v̂q~12x1t!e
iqtx1~ v̂q

TF hf!

5E dqdmei ~~q1tq̂!t2x•mh21~q!!Hk~q!v̂q@x2ei tq̂tx1#~ v̂q
TF hf!.

The factor in@ • • • # vanishes identically iftt5np for t>0, nPN.
Property~ii ! follows immediately from~i!8~b!. For ~iii ! we approximate anyfPH by a state

in øUtD1 . In particular, consider,

if2UtP1U2tfi5i~12P1!U2tfi5iP2U2tfi .

The right-hand side vanishes ast→2` by ~i!8~a!. h

Proof of Lemma 4.4:The perturbed matrix operator is,

V[S 0 AK2AKp

AKp2AK 0
D .

To study this quantity, we use Kato’s square root formula,

AK2AKp5E
0

`
Av

1

Kp1v
~K2Kp!

1

K1v
dv. ~A1!

Similarly we can reduce the study ofF(K)2F(Kp) to that ofK2Kp ~see the discussion in Sec
VI of Ref. 2!. Here we only consider the integrand on the right-hand side of~A1!. A simple
computation gives,

K2Kp5~12cp /c!K2Kp~12c/cp!2Vcp /c1Vpc/cp .
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Now, for L5K or Kp denoteF[F (u,v)(L) where 0<F<1. In the casecpÞc we have the obvious
bounds,

I K

K1v
F~K !I

`

5I Kp

Kp1v
F~Kp!I

`

<
v

u1v
.

If cp5c ~but VpÞV) then these bounds will not be required, hencev5` is allowed.
To verify the first two bounds in Lemma 4.4, we seek to prove,

I ^z&2mF~L !
Ld

L1v
^z&mI<

Cm

v11
, d50, 1,

whered51 requiresv,`. Herem>0 but we consider only them51 case. The result is clear fo
m50 and the following techniques apply for any integerm. Interpolation obtains this bound fo
all mPR. The remaining bounds in Lemma 4.4 are obtained similarly.

Define the smooth cutoff functions$Gi% so thatF5G05G1
25G2

45etc. Then using a partition
of Rn, homogeneous of degree 0 inuzu near`, it is sufficient to consider, for anyzjPR, 1< j
<k11, nPN with G* 5G* (L) and i 5A21,

Gn21~L1v!21~zj1 i !2~zj1 i !Gn21~L1v!21

5Gn~L1v!21@Gn ,zj #2Gn~L1v!21@L,zj #~L1v!21Gn

1@Gn ,zj #~L1v!21Gn . ~A2!

For the middle term on the right-hand side of~A2!, we evaluate for 1< l<k,

@K,xl #522c2~y!]xl
, @Kp,xl #522cp~z!]xl

cp~z!,

@K,y#522c]yc, @Kp,y#522cp]yc
p.

Thus for anyfPH, using the Schwartz inequality,

i@L,zj #~L1v!21Gifi2<4~cp
M !2i~L1v!21Gi iifi2<C~v11!21ifi2.

We are left to consider the remaining terms in~A2!. DefineR[(L11)21 andJn5(L11)2Gn if
v,` or Jn5(L11)2(12Gn) if v5`. Then,

@Gn ,zj #5RJn@R,zj #1R@Jn ,zj #R1@R,zj #JnR.

To bound the middle term on the right-hand side it is standard to use the Fourier transformĴn of
Jn and write,

R@Jn ,zj #R5E
0

`

Ĵn~s!E
0

s

eiL ~s2r !R@L,zj #Re2 iLr dr ds.

This is clearly a bounded operator. Iteration of these techniques verifies the result. h

Proof of Lemma 4.6:For brevity we only consider theh(q)5cmq,t50 case. Compute,
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iP1
j F~K !P2r

j fi25E
Rk

~P1
j FP2r

j f!* ~P1
j FP2r

j f!dkx

5E
Rk11F ER3S k21

ei ~x•v/cm!r c̃ j~r ,y!ur u~k21!/2v̂ r*

3~gx2~2 i ] r !F~r 2!xr~2 i ] r !g* !

3S E
R1

c̃ j~r ,ȳ!~ v̂ r
T!* ~F hf!* dȳD dr dvG~c.c.!dkx dy

5E
R3S k21

ur uk21@ v̂ r* ~gx2Fxrg* !~ v̂ r
T!* ~F hf!* #~c.c.!dr dv

<2ix2Fxriop
2 ifi2,

where c.c. means complex conjugate of the previously bracketed factor. Now, sinF

PC0
`(R1), we can writeF(r 2)5*2`

` e2 irsĜ(s)ds for someĜPS(R). Then, using~3.5!,

ix2Fxrci25E
R3S k21U E2`

2r

e2 irsĜ~s!x~r,2s!~2 i ] r !c~r ,v!dsU2

ur uk21dr dv

<E ur uk21drdvF E
2`

2r

^s&M11uĜ~s!u2dsE
2`

2r

^t&2~M11!ux~r,2t !c~r ,v!u2dtG
<CE

2`

2r

^t&2~M11!S E ur uk21dr dvux~r,2t !c~r ,v!u2Ddt<C8r2Mici2.

These details easily extend to the case of nonlinearh(q). h
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Poisson–Lie structures on infinite-dimensional jet groups
and quantum groups related to them

Ognyan Stoyanova)

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
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We study the problem of classifying all Poisson–Lie structures on the groupG` of
formal diffeomorphisms of the real lineR1 which leave the origin fixed, as well
as the extended group of diffeomorphismsG0`.G` whose action onR1 does
not necessarily fix the origin. A complete local classification of all Poisson–Lie
structures on the groupsG` and G0` is given. This includes a classification of
all Lie-bialgebra structures on the Lie algebraG` of G` , which we prove to be
all of the coboundary type, and a classification of all Lie-bialgebra strucutures
on the Lie algebraG0` ~the Witt algebra! of G0` which also turned out to be all
of the coboundary type. A large class of Poisson structures on the spaceVl

of l-densities on the real line is found such thatVl becomes a homogeneous
Poisson space under the action of the Poisson–Lie groupG` . We construct a series
of quantum semigroups whose quasiclassical limits are finite-dimensional Poisson–
Lie quotient groups ofG` andG0` . © 1999 American Institute of Physics.
@S0022-2488~99!00201-7#

I. INTRODUCTION

Quantum groups have been introduced in Refs. 1,2 as deformations of universal enve
algebras of Lie groups and of the algebra of functions on Poisson–Lie groups.3 The latter are Lie
groups equipped with Poisson structures compatible with the group structure~from where the term
Poisson–Lie group originates!. In this approach to constructing quantum groups the first step
analyze the existence of Poisson–Lie structures on the corresponding Lie group. The ques
classifying all Poisson–Lie structures on a given Lie group~provided any exist! has been posed
originally by Drinfel’d and Belavin.4–6 In the same paper they give a complete solution for
case of finite-dimensional complex~semi!simple Lie groups. The problem, in general, is ve
difficult. It has been solved for some other groups in low dimensions. Let us give a list of gr
for which the solution of the classification problem is known to us at present:~a! Finite dimen-
sional complex~semi!simple Lie groups;4 ~b! the groupsGL(2,R), SL(2,R), GL(1u1);7,8 ~c! the
3-dimensional Heisenberg group,9 and some unipotent subgroups ofGL(n,R) in various
dimensions;10 ~d! the group of affine transformations of the lineA f f(1); ~e! the group of motions
of R13R1; ~f! the Lorentz group considered as a realification ofSL(2,C).11

Note that all the groups mentioned above arefinite-dimensional, and the only infiniteseries
for which the classification has been completed arecomplexnot real groups.

With this paper we initiate a program of study of Poisson–Lie structures for the impo
case of the group of~formal! diffeomorphismsFDi f f (Rn). One of our principal results is the
complete solution of the classification problem for the casen51. Namely, in the work presente
here we study the problem of local classification~up to a local change of coordinates! of all the
Poisson–Lie structures on the groupG`5FDi f f (R1) of formal diffeomorphisms of the real line
R1 which leave the origin fixed, as well as the full group of diffeomorphismsG0`

5FDi f f 0(R1).G` ~considered as a formal group! whose action onR1 does not necessarily fix
the origin.

a!Electronic mail: stoyanov@math.rutgers.edu, Tel:~732! 445-6587, Fax:~732! 445-5530.
5280022-2488/99/40(1)/528/55/$15.00 © 1999 American Institute of Physics
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The existence of Poisson–Lie structures onG` and G0` is far from being obvious. For
instance, sinceG` is a projective limit of groups of finite jets~cf. Sec. III!, if we consider the
group of 3-jets leaving the origin fixed, then there exists a Poisson–Lie structure on this gr12

which can not be extended toG` . Even though the above groups are infinite-dimensional,
prisingly, the classification problem has a complete solution. There exist countably many is
phism classes of Poisson–Lie structures onG` and G0` , labeled by integersdPN→Z1 and
dPN→Z1ø$21%, respectively. The isomorphism classes under the actions ofG0` andG` are
explicitly described.

Let @u°x(u)5x01x1u1x2u21•••#PG0` be a formal diffeomorphism. The coordina
ring R@@x## of G0` is countably generated. Letx5(x0 ,x1 , . . . ) be aformal point ofG0` , where
x1 is assumed to be invertible. For anyf ,gPR@@x## a Poisson–Lie bracket,$,%:R@@x##
^ R@@x##→R@@x##, is defined as

$ f ,g%~x!ªv i j ~x!
] f

]xi

]g

]xj
, ~1!

where summation over repeated indices is understood. Herev i j 5$xi ,xj%PR@@x##, i , j PZ1 are
the components of a~formal! tensor that satisfy the infinite system of differential equations~the
Jacobi identities!:

v i j

]vkl

]xi
1v ik

]v l j

]xi
1v i l

]v jk

]xi
50, ~2!

and the infinite system of functional equations@v is required to be a~group! 1-cocycle!#,

v i j ~z!5vkl ~x!
]zi

]xk

]zj

]xl
1vkl ~y!

]zi

]yk

]zj

]yl
, ~3!

wherezi5Fi (x,y), i 50,1,2, . . . , describe the formal group law24 induced by the substitution o
formal power seriesz(u)5x(y(u)). We introduceV(u,v;x)ª( i , j 51

` v i j (x)uiv j , a generating
series for the bracketsv i j . The multiplicativity ~3! of the Poisson brackets is equivalent
V(u,v;x) satisfying the following functional equation~Lemma IV.1!:

V~u,v;xy!5V~y~u!,y~v !;x!1V~u,v;y!x8~y~u!!x8~y~v !!. ~4!

Here x8 denotes the derivative ofx with respect to its argument. The general solution of t
equation is~Theorem IV.1!

V~u,v;x!5w~u,v !x8~u!x8~v !2w~x~u!,x~v !!, ~5!

wherew(u,v)52w(v,u)PR@@u,v## is a formal series inu,v, and satisfies the following func
tional partial differential equation~Lemma IV.2!:

w~u,v !@]uw~w,u!1]vw~w,v !#1w~v,w!@]vw~u,v !1]ww~u,w!#

1w~w,u!@]ww~v,w!1]uw~v,u!#50. ~6!

This equation is equivalent to the Jacobi identities~2! and is a functional realization of th
Classical Yang–Baxter Equation~Sec. VI!. We show thatG` acts on the space of solutions of~6!.
Further, we explicitly describe the moduli space of solutions and show that it is isomorph
Z1ø$21%. By choosing the representativew̃(u,v)5uv(vd2ud), dPZ1ø$21%, of each isomor-
phism class of solutions we obtain explicit formulas for the Poisson–Lie brackets. For ed
PN this gives rise to the Poisson–Lie tensor,
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v i j ~x!5~ i 2d! jx jxi 2d2 i ~ j 2d!xixj 2d1xi (
(k51

d11sk5 j

xs1
. . . xsd11

2xj (
(k51

d11sk5 i

xs1
. . . xsd11

,

~7!

wherei , j PZ1 . Whend521 we have the tensor

v i j ~x!5 i ~ j 11!xixj 112~ i 11! jx i 11xj2xid j
01xjd i

0 , i , j PZ1 . ~8!

The class of the trivial Poisson–Lie bracket corresponds tod50.
As we can see from the above formulas, the Poisson structures onG0` andG` are given by

polynomials of arbitrary degree, extending the existing list of known linear~Kirillov–Kostant
brackets on the dual of a Lie algebra!, quadratic~coming from solutions of CYBE for finite-
dimensional groups!,13 and cubic~Toda lattice!14 Poisson brackets. They give a series of nontriv
examples of infinite-dimensional Poisson manifolds.

The classification problem can be studied also on the level of Lie algebras. The Lie alg
of the groupsG0` andG` are the Witt algebra,

G0`5spank$ei u@ei ,ej #5~ i 2 j !ei 1 j ,i , j >21%, where k5R or C,

and its principal subalgebraG`5spank$ei u@ei ,ej #5( i 2 j )ei 1 j ,i>0%. We prove that there is a
one-to-one correspondence between the Poisson–Lie structures onG` and the Lie-bialgebra struc
tures onG` ~Sec. VI!. The latter are shown to beall of the coboundary type~Theorem V.2!. All
Lie-bialgebra structures onG0` are also of the coboundary type~Theorem V.1!, they are all
classified, and there is a one-to-one correspondence between them and an explicitly listed
of the Poisson–Lie structures onG0` . Thus, a complete classification of all Lie-bialgebra stru
tures on the Witt algebraG0` and its principal subalgebraG` is obtained. The result is that ever
Lie-bialgebra structure onG` andG0` is induced by a Lie-bialgebra structure on a 2-dimensio
subalgebra generated by$e0 ,ed% wheredPN anddPNø$21%, respectively.

The study of Poisson homogeneous spaces under the action of Poisson–Lie groups is a
of its own right. In this paper we construct a class of Poisson homogeneous spaces for the
G` . With a fixed Poisson–Lie structure the groupG` acts naturally~by substitution! on the
modulesVl5R@@u##(du)l of l-densities on the line. Each Poisson–Lie structure on the gr
G` induces a family of Poisson structures onVl such thatVl becomes a homogeneous Poiss
G`-space. Namely, the following theorem holds.

Theorem I.1: For everylPR and y(u)(du)lPVl the following family of Poisson structure
on Vl :

$y~u!,y~v !%5f~u,v !y8~u!y8~v !1l]uf~u,v !y~u!y8~v !

1l]vf~u,v !y8~u!y~v !1l2
]2

]u ]v
f~u,v !y~u!y~v !, ~9!

makes the action G̀3Vl→Vl Poisson. Heref(u,v)52f(v,u), andf(u,v) satisfies the func-
tional partial differential equation (6).

Finally, we address the quantization problem for the Poisson–Lie brackets. We const
series of finitely generated noncommutative noncocommutative bialgebras~quantum semigroups!
whose quasi-classical limits are finite-dimensional Poisson–Lie quotient groups ofG` andG0` .
These are constructed by a formal deformation of the product of the coordinate ring ofG` . The
Poisson–Lie structures on these finite-dimensional groups are restrictions of the Poisson-Lie
tures onG` andG0` , that is, restrictions of the families of brackets~7! to the finite-dimensional
quotient groupsGn5G` modun11 of n-jets. It is easy to show that the restriction is a well defin
Poisson map. All such finite-dimensional Poisson–Lie groups ford<5 and n<7 have been
quantized. Below we give an example of such quantization for the cased51 and n54. The
corresponding Poisson brackets onG4 are
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$x1 ,x2%5x1
32x1

2,

$x1 ,x3%52x2~x1
22x1!,

$x2 ,x3%5~3x12x1
2!x31x2

2~2x124!,

$x1 ,x4%5x3~2x1
223x1!1x2

2x1 ,

$x2 ,x4%5x4~4x12x1
2!1x3x2~2x126!,

$x3 ,x4%5x4x2~822x1!1x3x2
21x3

2~2x129!.

Their quantization is described by the following theorem.
Theorem I.2: Let X5$x1 ,x2 ,x3 ,x4% be a set of four generators and let^X& be the associative

semigroup with an identity generated by X. Consider an idealIh generated by the following set o
relations inC@@h##^X&:

x1x25x2x11h~x1
32x1

2!,

x1x35x3x11h~2x2x1
222x2x1!1h2~2x1

423x1
31x1

2!,

x2x35x3x21h~3x3x12x3x1
212x2

2x124x2
2!1h2~3x2x1

223x2x1!1h3~222C3!~x1
52x1

2!,

x1x45x4x11h~23x3x112x3x1
21x2

2x1!

1h2x2~3x128x1
215x1

3!1h3@~5x1
5212x1

417x1
3!1C3~x1

52x1
2!#,

x2x45x4x21h~4x4x12x4x1
212x3x2x126x3x21x2

3!1h2~3x2
2x1

2210x2
2x1

112x2
2112x3x1

222x3x1
3215x3x1!1h3x2@~912C3!x1217x1

216x1
31~525C3!x1

4#

1h4@~22222C3!x1
21~2414C3!x1

31~218118C3!x1
51C4~x1

62x1
2!#,

x3x45x4x31h~8x4x222x4x2x11x3x2
229x3

212x3
2x1!

1h2@x3x2~2x1
2116x1224!1x4~27x1

2116x1!#

1h3@~10210C3!x2
2x1

31~2918C3!x2
21~2515C3!x3x1

4116x3x1
22~619C3!x3x1#

1h4@~829C322C4!x2x11~28C319!x2x1
2

1~10210C3!x2x1
41~2C4218118C3!x2x1

5#

1h5@~C412C322!x1
21~424C32C4!x1

61~2C322!x1
51C5~x1

72x1
2!#,

where C3 ,C4 ,C5PC are arbitrary parameters. Then the semigroup quotient alge
C@@h##^X&/Ih is a bialgebra (quantum semigroup), denoted G4uh

1 , with a comultiplication (in-
duced by the group multiplication) defined by
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Dx15x1^ x1 ,

Dx25x1^ x21x2^ x1
2,

Dx35x1^ x31x2^ x1x21x2^ x2x11x3^ x1
3,

Dx45x1^ x41x2^ x1x31x2^ x2
21x2^ x3x11x3^ x1

2x21x3^ x1x2x11x3^ x2x1
21x4^ x1

4 .

Moreover, the algebraC@@h##^X&/Ih has a Poincare´–Birkhoff–Witt basis.
This is a 3-parameter family of quantum semigroups andthe quantization is exact. That is, it

is not a quantization modulo h6. Simply, no terms of higher order inh arise. This is due to the fac
that the algebras under consideration are graded. On the generators the degree is de
deg(xi)5 i 21 and h has degree deg(h)5d (d51in the above case!. Quantizations of other
brackets are described in Sec. IX. The combinatorial nature of the coefficients of the nonco
tative polynomials in the above relations remains a mystery.

The paper is organized as follows. In Sec. II we recall the basic concepts related
Poisson–Lie theory and formulate the fundamental theorem of Drinfel’d relating Poisson
groups and Lie-bialgebras. In Sec. III we introduce the infinite-dimensional groupG` and a
smooth structure on it. In Sec. IV we find a class of Poisson–Lie structures onG` . In Sec. V we
find all bialgebra structures on the Lie algebrasG0` andG` and show that they are all cobound
aries. In Sec. VI we show that there is a one-to-one correspondence between the Lie-bia
structures onG` and the Poisson–Lie structures found onG` , and prove that the latter give
complete list of all Poisson–Lie structures onG` . In Sec. VII we classify all Poisson–Lie
structures onG0` . Section VIII is devoted to elements of representation theory for the Poiss
Lie groupG` on the homogeneous spacesVl . In Sec. IX we describe a series of finitely generat
quantum semigroups. These we believe to be precursors of quantizations ofG` andG0` which are
presently unknown.

II. POISSON–LIE THEORY

In this section we review the basic objects to be studied: Poisson manifolds, Poisso
groups, Lie bialgebras, and some basic results about them.

Let M be a finite-dimensional smooth manifold. A Poisson structure~bracket! onM is a
bilinear map$,%:C`(M)3C`(M)→C`(M), which makesC`(M) a Lie algebra, and is a
derivation with respect to each argument. That is, there exists a sectionvP`2TM , whereTM is
the tangent bundle ofM, such that for anyf ,g,hPC`(M) we have (f ,g)°$ f ,g%5^v,d f
`dg&, and

~i! $$ f ,g%,h%1$$g,h%, f %1$$h, f %,g%50 ~Jacobi identity!;
~ii ! $ f ,gh%5$ f ,g%h1$ f ,h%g ~derivation property!;
~iii ! $ f ,g%52$g, f % ~antisymmetry!,

where^,& denotes the natural pairing between`2TM and`2TM* , whereTM* is the tangent bundle
of M. The second property,~ii !, amounts to compatibility between the Lie algebra struct
defined by$,% and the multiplication inC`(M). In local coordinates,

$ f ,g%~x!5v i j ~x!
] f

]xi

]g

]xj
,

wherevx5v i j (x)(]/]xi)`]/]xjP`2Tx is a bi-vector field at the pointxPM, and$]/]xi% is a
basis of the tangent spaceTx at xPM in the local coordinates (xi).

Here and throughout this text a summation is understood over repeated nonfixed i
unless stated otherwise. Note also that our convention about the position of indices of ten
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the opposite to the standard one. Namely, all contravariant~covariant! tensors have lower~upper!
indices. We found this notation more convenient when working with power series, and hop
it will not create confusion.

The Jacobi identity~i! is equivalent to the following system of equations for the compone
v i j (x)52v j i (x):

v i j

]vkl

]xi
1v ik

]v l j

]xi
1v i l

]v jk

]xi
50. ~10!

Definition II.1 ~Poisson Manifold!:15 A Poisson manifold is a smooth manifold with a Poiss
structure.

A smooth mapF:M1→M2, of two Poisson manifoldsM1 andM2, is said to bePoissonif
F* ($g,h%M2

)5$F* (g),F* (h)%M1
, for all g,hPC`(M2), where (F* (g))(x)ªg(F(x)), for any

xPM1, and$,%M1
, $,%M2

are the Poisson brackets onM1 andM2, respectively. Thus, the abov
condition is equivalent to$g,h%M2

+F5$g+F,h+F%M1
.

If M1 andM2 are two Poisson manifolds with Poisson structuresv1P`2TM1
and v2

P`2TM2
, respectively, we define the direct product Poisson structure onM13M2 as

v13v2ªv131113v2 , ~11!

which is a map :̀ 2TM1
% `2TM2

�`2TM13M2
. Here the spaceC`(M13M2) is identified

with the spaceC`(M1) ^ C`(M2) @the reason being that a Poisson structure onC`(M1

3M2) is uniquely defined by the one onC`(M1) ^ C`(M2)] under appropriate completion o
the tensor product. In more detail, for any functionf PC`(M13M2), and for eachxPM1 and
yPM2 let us define the functionsf x onM2 and f y onM1 as follows:

f x~y!5 f ~x,y! and f y~x!5 f ~x,y!.

Then ~11! means

$ f 1 , f 2%M13M2
~x,y!5$ f 1

x , f 2
x%M2

~y!1$ f 1
y , f 2

y%M1
~x!,

for any two functionsf 1 , f 2PC`(M13M2).
Definition II.2 ~Poisson–Lie group!:16 Let G be a Lie group. Letv be a Poisson structure on

G. The pair(G,v) is said to be a Poisson–Lie group if the multiplication map m:G3G→G is
Poisson, where the manifold G3G is equipped with the direct product Poisson structurev3v.

Let Lx :G→G andRx :G→G be the left and right actions ofG on itself defined byy°xy and
y°yx, respectively, wherex,yPG. Then for any two functionsf 1 , f 2PC`(G) the compatibility
between the product Poisson structure onG3G introduced by~11! and the Poisson structure o
G can be written as

$ f 1 , f 2%G~xy!5m* ~$ f 1 , f 2%G!~x,y!

5$m* f 1 ,m* f 2%G3G~x,y!

5$~m* f 1!x,~m* f 2!x%G~y!1$~m* f 1!y,~m* f 2!y%G~x!

5$ f 1+Lx , f 2+Lx%G~y!1$ f 1+Ry , f 2+Ry%G~x!.

If ( Lx)* y and (Ry)* x are the tangent maps toLx andRy evaluated at the pointsy andx, respec-
tively, we deduce

vxy5~Lx!* yvy1~Ry!* xvx . ~12!

In local coordinates,
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v i j ~z!5vkl~x!
]zi

]xk

]zj

]xl
1vkl ~y!

]zi

]yk

]zj

]yl
, ~13!

wherez5xy.
If ePG is the identity ofG, then~12! yields 2ve5ve . Thereforeve50. This implies thatv

is not a symplectic structure since the rank ofv at the identity ofG is zero, and we are dealin
with more general Poisson manifolds.

Locally, ~10! and ~13! are the defining equations of a Poisson–Lie group.
Remark II.1: In the definitions above all manifolds were finite-dimensional (M, respectively,

the group G!. To extend these to the infinite-dimensional case, one needs two objects: TM and
C`(M). Since we shall study infinite-dimensional groups in this text, the infinite-dimens
aspects will be addressed at the moment they are introduced.

We now proceed with the definition of a Lie-bialgebra and formulate a theorem~again due to
Drinfel’d! relating the concept of a Lie-bialgebra to the concept of a Poisson–Lie group.

Definition II.3: A Lie-bialgebraG is a Lie algebraG equipped with a coalgebra mapa:G
→G`G such thata is a 1-cocycle ofG with values in theG-module`2G, whereG acts on`2G
by means of the adjoint representation, anda satisfies the co-Jacobi identity. Thus,(G,a) is a Lie
bialgebra iff

~ i ! t+a52a,

~ i i ! a~@X,Y# !5adXa~Y!2adYa~X!, X,YPG,

~ i i i ! @1^ 1^ 11~t ^ 1!~1^ t!1~1^ t!~t ^ 1!#~1^ a!+a50,

wheret is the transposition mapt:G^G→G^G defined byt(a^ b)5b^ a, for any a,bPG.
This definition encompasses the case whenG is infinite-dimensional. Condition~ii ! means that

a is a 1-cocycle in the Chevalley–Eilenberg cohomology of Lie algebras. Therefore we will
to ~ii ! as the 1-cocycle condition in the sequel. In the case whena5da0 is a 1-coboundary,
a(X)5adXr , wherer PG`G is a 0-cochain, which is referred to as the classicalr-matrix.17

Let $ei% be a basis ofG and let us writea in this basis asa(en)5a i j
n ei`ej . Let Cn

i j be the
structure constants ofG defining the Lie structure onG by @ei ,ej #5Cn

i j en . Property~i! in the
definition of a implies thata i j

n 52a j i
n . Then the equation~iii ! written in terms ofa i j

n becomes

a i j
n a sp

j 1ap j
n a is

j 1as j
n api

j 50. ~14!

Similarly, equation~ii ! expressed in terms ofa i j
n and the structure constantsCn

i j of G becomes

Cn
i j akl

n 5aml
j Ck

im1akm
j Cl

im2aml
i Ck

jm2akm
i Cl

jm . ~15!

Thus, these two systems of equations,~14! and ~15!, plus the Jacobi identity for the structur
constants of the Lie algebraG,

Cm
i j Cn

mk1Cm
jkCn

mi1Cm
kiCn

m j50, ~16!

define a Lie-bialgebra structure onG. We have the following result.
Theorem II.1:16 The category of connected, simply connected finite dimensional Poisson–Lie

groups is equivalent to the category of finite-dimensional Lie-bialgebras.
For a proof see, for example, Refs. 18,19. We complete this section by proving a prope

~finite-dimensional! Poisson–Lie groups, which is usually assumed to be part of the definitio
Theorem II.2: Let G be a Poisson–Lie group. Then the mapw:G→G defined by

w(x)5x21 is an anti-Poisson map.
Proof: We prove the statement in a neighborhood of the identity element ofG. Let zi

5zi(x,y), for i 51, . . . ,n, be the coordinate functions ofz5xy. After solving zi5zi(x,y) with
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respect to the coordinates ofy we have yi5yi(x,z). We differentiate the identitiesyi

[yi(x,z(x,y)), for i 51, . . . ,n, with respect toyk for eachk51, . . . ,n to obtain

d i
k5

]yi

]zl
U

~x,z!

]zl

]yk
U

~x,y!

. ~17!

Let w:G→G be the map defined byw(x)5x21, which is given in coordinates by the func
tionsw i5w i(x). Then we have 05zi(x,w(x)), for i 51, . . . ,n. We differentiate this identity with
respect toxk to obtain

05
]zl

]xk
U

~x,w~x!!

1
]zi

]yl
U

~x,w~x!!

]w l

]xk
. ~18!

After multiplying both sides of~13! by ]ym /]zi u(x,z) ]yn /]zj u(x,z) and summing overi , j we get

]ym

]zi
U

~x,z!

]yn

]zj
U

~x,z!

v i j ~z!5
]ym

]zi
U

~x,z!

]yn

]zj
U

~x,z!

vkl~x!
]zi

]xk

]zj

]xl
1vmn~y!, ~19!

where we have used~17!.
We now setz5e5xw(x) in ~19!, and obtain

05
]ym

]zi
U

~x,e!

]yn

]zj
U

~x,e!

vkl~x!
]zi

]xk
U

~x,w~x!!

]zj

]xl
U

~x,w~x!!

1vmn~w~x!!.

After using ~18! the above equality becomes equivalent to

05
]ym

]zi
U

~x,e!

]yn

]zj
U

~x,e!

vkl~x!
]zi

]yp
U

~x,w~x!!

]wp

]xk

]zj

]ys
U

~x,w~x!!

]ws

]xl
1vmn~w~x!!.

Now using again~17! as

d i
k5

]yi

]zl
U

~x,e!

]zl

]yk
U

~x,w~x!!

,

we finally conclude that

vmn~w~x!!52vkl~x!
]wm

]xk

]wn

]xl
.

h

In the following sections we will adapt the above given definitions for the case whereG will
stand for the infinite-dimensional groupsFDi f f (R1) andFDi f f 0(R1). We will show that theo-
rems analogous to Theorem II.1 and Theorem II.2 above also hold in this case.

III. THE GROUP OF INFINITE-JETS G` AND ITS LIE ALGEBRA

Let G`5$x5(x1 ,x2 , . . . )PR`uxÞ0%,R` be a subset of the set of infinite sequences of r
numbers.~We may adopt a purely formal point of view and take sequences of letters~indetermi-
nates! which we interpret as generators of an algebra of ‘‘functions’’ on the group. This is do
Sec. VI where the group of diffeomorphisms of the line is treated as a formal group. For the
of diffeomorphisms fixing a point, discussed in this section, both points of view are possible
they lead to the same results, since our treatment is mostly algebraic in nature.! For eachx
PG` consider the formal power series,x(u)5( i 51

` xiu
i , in the variableu. This defines a bijective

map from G` into the group of`-jets, maps fromR1→R1 at 0PR1, as follows. Define a
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multiplication m` :G`3G`→G` on G` induced by the substitution of formal power series. F
any x,yPG` define xyPG` by (xy)(u)ªx(y(u)). The induced multiplication makesG` a
group with an identitye5(1,0,0, . . . ). That is, e:R1→R1 is the identity map,e(u)5u. The
associativity of multiplication is implied by the associativity of substitution of power series
coordinatesz(u)5(xy)(u)5( i 51

` ziu
i gives

zk5(
i 51

k

xi (
~(a51

i j a!5k

yj 1
. . . yj i

. ~20!

The first several formulas are given below:

z15x1y1 ,

z25x1y21x2y1
2,

z35x1y31x22y1y21x3y1
3,

z45x1y41x2~y2
212y1y3!1x33y1

2y21x4y1
4,

A

zn5x1yn1xny1
n1yn212y1x21xn21~n21!y1

n22y21O~,n21!, n.3,

A

The group so obtained is the group of formal diffeomorphisms (`-jets! of the line, leaving the
origin fixed. It can be viewed as a projective limit of a family of finite-dimensional Lie gro
with a smooth structure introduced as follows. Consider the family of Lie groups and
(Gn ,pn11,n)nPN , where Gn5Rn\Mn and Mn5$ (x1 , . . . ,xn)PRnux150 %. The multiplication
mn :Gn3Gn→Gn is induced by substitution (XnYn)(u)5Xn(Yn(u)) modun11, whereXn andYn

are polynomials inu of degreen. That is, the groupGn is an open subset ofRn, that carries the
structure of a finite-dimensionalC` manifold modeled onRn. The mapspn11,n :Gn11→Gn

defined by pn11,n(x1 , . . . ,xn11)5(x1 , . . . ,xn) are homomorphisms, i.e.,pn11,n+mn115mn

+(pn11,n3pn11,n).20 This follows from the definition of pn11,n and ~20!. The family
(Gn ,pn11,n)nPN has a projective limit (G` ,(p`,n)nPN), whereG`5$xPR`ux1Þ0% is an open
subset of R`. The maps p`,n :G`→Gn are defined by p`,n(x1 , . . . ,xn ,xn11 , . . . )
5(x1 , . . . ,xn). Obviously, these maps satisfyp`,n5pn11,n+p`,n11, and are homomorphisms
p`,n+m`5mn+(p`,n3p`,n), wherem` :G`3G`→G` is defined by~20!.

Let us consider now the family of spaces and maps (C`(Gn),pn,n11* )nPN , where the maps
pn,n11* :C`(Gn)→C`(Gn11) are defined by (pn,n11* ( f ))(x1 , . . . ,xn ,xn11)5 f (x1 , . . . ,xn), for
any f PC`(Gn). Then the above family has an inductive limit (C`(G`),pn,`* ), where
pn,`* :C`(Gn)→C`(G`) is defined by ((pn,`* )( f ))(x)5 f (x1 , . . . ,xn) for any xPG` and f
PC`(Gn). Thus, by definition, the spaceC`(G`) of smooth functions onG` is the space of
smooth functions~of finite number of variables! on R`, restricted toR`\M , where M5$x
PR`ux150%.

One can define the Lie algebra ofG` in different ways. Probably the most efficient one is
the Lie algebra of derivations~smooth vector fields! of the algebraC`(G`). These are of the form

X5(
i 51

`

v i

]

]xi
, v iPC`~G`!. ~21!
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Note that if f PC`(G`), then X( f )5( i 51
n v i(] f /]xi) is a finite sum, for somenPN, since f

depends only upon a finite number of variables. We also haveX( f )PC`(G`). Every automor-
phismw:G`→G` acts on the space of derivations by (w* X)5(w

*
21)Xw* , and onC`(G`) it acts

by (w* f )(x)5 f (w(x)). Since the functionsf PC`(G`) are functions of a finite number of vari
ables it is enough to describe the mapw* on vector fields restricted toC`(Gn) for eachnPN.

Lemma III.1: The set$Xn%n>1 of left-invariant vector fields on G̀is given by

Xn5(
i 51

`

ix i

]

]xi 1n21
. ~22!

Proof: From ~20! the mapy°xy is given by

zn5~xy!n5x1yn1y1
nxn1 (

i 52

n21

xi (
~(a51

i j a)5n

yj 1
. . . yj i

, for each n>1. ~23!

The matrix of the tangent to the map defined by~23! is ]zn /]ymuy5e . The only terms in

(
i 52

n21

xi (
~(a51

i j a!5n

yj 1
. . . yj i

, for each n>1,

that will contribute to the tangent map are the ones for which the productyj 1
•••yj i

has exactly
( i 21) multiples equal toy1 and the one remaining equal toyj a

for somea, 2<a< i . There are

exactly (i 21
i )5 i terms of this form. Therefore we rewrite~23! as

zn5(
i 51

n

ixi y1
i 21yn2 i 111 . . . ,

where the dots indicate terms that do not contribute to]zn /]ymuy5e . Hence,

]zn

]ym
U

y5e

5(
i 51

n

ixid n2 i 11
m 5~n2m11!xn2m11 .

If $]/]yi% is a basis of vector fields at the identity, then

S w*
]

]ym
D

x

5(
i 51

n
]zi

]ym
U

y5e

]

]xi
5 (

i 5m

n

~ i 2m11!xi 2m11

]

]xi
5 (

i 51

n2m11

ix i

]

]xi 1m21
.

Therefore for each nPN, the set of vector fields $Xk%k51
n , where Xk

5( i 51
n2k11ix i(]/]xi 1k21), for 1<k<n, forms a basis of left-invariant vector fields onGn . The

set $Xn%n>1, where Xn5( i 51
` ix i(]/]xi 1n21), forms a basis of left-invariant vector fields o

G` . h

Lemma III.2: Every smooth vector field on G` is generated by the set$Xn%n>1 of left-
invariant vector fields (22) on G̀.

Proof: Let Y5( i 51
` v i(]/]xi) be a smooth vector field onG` . We define inductively the

following sequence of smooth vector fields. Let

Y15Y2
v1

x1
X15Y2c1X1 , where c1ª

v1

x1
,

Y25Y12c2X2 , where c2ª
1

x1
~v222x2c1!,
                                                                                                                



oduce
al

nd
his

d?
struc-

r

s turn

538 J. Math. Phys., Vol. 40, No. 1, January 1999 Ognyan Stoyanov

                    
A ~24!

Yn5Yn212cnXn , where cnª
1

x1
S vn2(

i 52

n

ixicn2 i 11D ,

A

Summing up the firstn equalities in~24! we getY5( i 51
n c iXi1Yn . By constructionYn is such

that YnuC`(Gn)50, for anynPN. Hence,Y5( i 51
` c iXi . h

We now show that$Xn%n>1 forms a Lie subalgebra of the Lie algebra of vector fields onG`

with a Lie bracket given by

@Xn ,Xm#5~n2m!Xn1m21 . ~25!

For that we compute the commutator of two left-invariant vector fieldsXn

5( i 51
` ix i (]/]xi 1n21) andXm5( j 51

` jx j (]/]xj 1m21):

@Xn ,Xm#5(
i 51

`

(
j 51

`

ix i j d i 1n21
j ]

]xj 1m21
2(

i 51

`

(
j 51

`

jx j id j 1n21
i ]

]xi 1n21

5(
i 51

`

ix i~ i 1n21!
]

]xi 1n1m22
2(

j 51

`

jx j~ j 1m21!
]

]xj 1n1m22

5~n2m!(
i 51

`

ix i

]

]xi 1n1m22
5~n2m!Xn1m21 . ~26!

To make correspondence with the more familiar notation we shift the indices by 1, and intr
enªXn11. Then@en ,em#5(n2m)en1m , for all n,m>0. The algebra so obtained is the maxim
subalgebra of the Witt algebra.

Let us assume now thatGn are equipped with Poisson–Lie structures$,%n :C`(Gn)
3C`(Gn)→C`(Gn). It is natural to require that the projection mapspn11,n :Gn11→Gn are
Poisson, i.e.,pn11,n* ($ f ,g%n)5$pn11,n* ( f ),pn11,n* (g)%n11, where, as above, (pn11,n* ( f ))(x)
ª f (pn11,n(x)) for every f PC`(Gn) andxPGn11.

For a smooth bivector fieldv on G` @that is, a rank 2 skew-symmetric tensor such thatv i j

PC`(G`) and vx5v i j (x) (]/]xi)`(]/]xj )] let us assume that a map$,%:C`(G`)3C`(G`)
→C`(G`) gives a Poisson–Lie structure onG` defined by$ f ,g%(x)5v i j (x)(] f /]xi)(]g/]xj )
for any f ,gPC`(G`). Then it is also natural to require that the mapsp`,n are Poisson. That is, we
want the conditionpn,`* ($ f ,g%n)5$pn,`* ( f ),pn,`* (g)% to be satisfied, for anyf ,gPC`(Gn). One
defines (G` ,$,%,(p`,n)nPN) to be the projective limit of the family of Poisson–Lie groups a
maps (Gn ,$,%n ,pn11,n)nPN . Later it will be clear that for the Poisson–Lie groups studied in t
text these conditions are automatically satisfied.

Are there any Poisson–Lie structures onG`? If such structures exist, can they be classifie
Also, since for any finiten there is a one-to-one correspondence between the Poisson–Lie
tures onGn and the Lie-bialgebra structures on the Lie algebraGn of Gn , one is led to inquire if
there are any Lie-bialgebra structures on the Lie algebraG` of G` . The same questions exist fo
the groupG0` of formal diffeomorphisms of the line without fixed points and its Lie algebraG0` ,
which is the Witt algebra. It turns out that all these questions can be fully answered. Let u
our attention to the groupG` first.
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IV. POISSON–LIE STRUCTURES ON G`

In this section we study Poisson–Lie structures on the groupG` . It turns out that there exists
a large class of such structures, which can be described explicitly. In the next two sectio
prove that, in fact, this class exhausts all Poisson–Lie structures onG` .

We recall the definition of a Poisson–Lie structure on the groupG` . It is defined as a
skew-symmetric map$,%:C`(G`)3C`(G`)→C`(G`) which is multiplicative, is a derivation in
both arguments, and satisfies the Jacobi identity. The derivation property implies that the
bi-vector fieldvP`2TG` given locally byvx5v i j (x)(]/]xi)`]/]xj , wherev i j PC`(G`) are
smooth functions onG` . Then for every f ,gPC`(G`) we have $ f ,g%(x)5v i j (x)(] f /]xi)
3(]g/]xj ). Note that on the right-hand side~r.h.s.! we have in effect a finite sum since th
functions f and g depend only upon a finite number of arguments. In particular,$Xi ,Xj%5v i j ,
whereXi , i PN, are the coordinate functions ofxPG` , i.e. ,Xi(x)5xi . Similarly, the 1-cocycle
equation~13! for v i j is given by

v i j ~xy!5vkl~x!
]zi

]xk

]zj

]xl
1vkl~y!

]zi

]yk

]zj

]yl
. ~27!

Here again the sums on the right-hand-side are finite, since for everynPN we have zn

5zn(x1 , . . . ,xn ;y1 , . . . ,yn). The same is true for the sums in the Jacobi identity~10! in terms of
the functionsv i j .

Let us introduce the formal seriesX(u)ª( i 51
` X iu

i . Thenx(u)5X(u)(x)5( i 51
` xiu

i . Define
the formal seriesV(u,v;X)ª( i , j 51

` v i j u
iv j . ThusV(u,v;X ) is a generating series for the brac

etsv i j . Evaluating atxPG` we haveV(u,v;x)5( i , j 51
` v i j (x)uiv j .

Lemma IV.1: In terms ofV the cocycle condition (27) assumes the form

V~u,v;z!5V~y~u!,y~v !;x!1V~u,v;y!x8~y~u!!x8~y~v !!, z~u!5x~y~u!!. ~28!

Proof: Recall thatz(u)5x(y(u))5( i 51
` xi@y(u)# i5( i 51

` ziu
i , wherezi5(xy) i . From the last

formula we obtain that

]z~u!

]xk
5@y~u!#k S 5(

i 51

`
]zi

]xk
ui D ,

and

]z~u!

]yk
5(

i 51

`

ix iu
k@y~u!# i 215uk(

i 51

`

ix i@y~u!# i 215ukx8~y~u!! S 5(
i 51

`
]zi

]yk
ui D .

Herex8(u) denotes the derivative ofx(u) with respect to its argumentu. If we multiply both sides
of Eq. ~27! by uiv j and sum overi and j we obtain

(
i , j 51

`

v i j ~z!uiv j5 (
k,l 51

`

vkl~x!(
i 51

`
]zi

]xk
ui (

j 51

`
]zj

]xl
v j1 (

k,l 51

`

vkl~y!(
i 51

`
]zi

]yk
ui (

j 51

`
]zj

]yl
v j

5 (
k,l 51

`

vkl~x!@y~u!#k@y~v !# l1x8~y~u!!x8~y~v !! (
k,l 51

`

vkl~y!ukv l .

Now, using the definition ofV we finally obtain that

V~u,v;z!5V~y~u!,y~v !;x!1V~u,v;y!x8~y~u!!x8~y~v !!.

Notice also that both sides of the above equation are divisible by uv. h
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Equation~28! has a large class of solutionsV(u,v;x). Namely, we have the following theo
rem.

Theorem IV.1: For any w5w(u,v) with the properties
(i) w(u,v) is divisible by u andv;
(ii) w(u,v)52w(v,u),
we have the following solution of~28!:

V~u,v;x!5w~u,v !x8~u!x8~v !2w~x~u!,x~v !!. ~29!

Proof: Indeed, in terms of~29!, the left-hand side of Eq.~28! reads as

V~u,v;z!5w~u,v !z8~u!z8~v !2w~z~u!,z~v !!

5w~u,v !x8~y~u!!y8~u!x8~y~v !!y8~v !2w~z~u!,z~v !!.

The right-hand side of~28! gives

V~y~u!,y~v !;x!1V~u,v;y!x8~y~u!!x8~y~v !!

5w~y~u!,y~v !!x8~y~u!!x8~y~v !!2w~z~u!,z~v !!

1w~u,v !x8~y~u!!y8~u!x8~y~v !!y8~v !2w~y~u!,y~v !!x8~y~u!!x8~y~v !!.

Comparing both sides we obtain an identity.
The condition ~ii ! is equivalent toV(u,v;X)52V(v,u;X) which on the other hand is

equivalent to the skew-symmetry of thev i j ’s.
The condition~i! is needed since, as noticed above,V(u,v;x) is divisible byuv. This requires

that the r.h.s. of~29! is divisible byuv. From the definition ofx(u) it is clear thatx8(u)x8(v) is
not divisible byuv. It begins with a termx1

212x1x2(u1v)1•••. Suppose thatw(u,v) is not
divisible by uv. Then w(x(u),x(v)) is also not divisible byuv, and so is the difference
w(u,v)z8(u)z8(v)2w(z(u),z(v)), as an easy analysis shows. h

Next, we would like to find out for which classes ofw ’s the Jacobi identity is satisfied. Thi
will be an important step in the solution of the problem of classifying all possible Lie–Poi
structures onG` . For this we use the following technical tool.

Let U5$u1 ,u2 , . . . % be a countably infinite set of indeterminates. Consider the ring of for
power seriesC`(G`)@@U## in U over the algebraC`(G`) defined as the inductive limit of the
rings $C`(G`)@@u1 , . . . ,un##%nPN . Then the map$,%:C`(G`)3C`(G`)→C`(G`) induces a
map$,%:C`(G`)@@U##3C`(G`)@@U##→C`(G`)@@U##. In particular, we have

$X~u!,X~v !%5 (
i , j 51

`

$Xi ,X j%u
iv j5V~u,v;X!,

whereu5ui andv5uj for someui ,ujPU. Then the Jacobi identities~10!, in terms of generating
series, can be put together in a single equation,

$X~w!,$X~u!,X~v !%%1$X~u!,$X~v !,X~w!%%1$X~v !,$X~w!,X~u!%%50, ~30!

for any u,v,wPU. On the other hand, we have
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$X~w!,$X~u!,X~v !%%5$X~w!,w~u,v !X8~u!X8~v !2w~X~u!,X~v !%

5w~u,v !@$X~w!,X8~u!%X8~v !1$X~w!,X8~v !%X8~u!#

2]1w~X~u!,X~v !!$X~w!,X~u!%

2]2w~X~u!,X~v !!$X~w!,X~v !%,

where]1 denotes the derivative with respect to the first argument and]2 is the derivative with
respect to the second argument. Also

$X~w!,X8~u!%5]u$X~w!,X~u!%

5]uw~w,u!X8~w!X8~u!1w~w,u!X8~w!X9~u!1]2w~X~w!,X~u!!X8~u!,

and we have similar formulas coming from the remaining two terms in~30! with w,u,v cyclicly
permuted.

Lemma IV.2: The solution (29) satisfies the Jacobi identity (30) iffw(u,v) satisfies the fol-
lowing functional partial differential equation:

w~u,v !@]uw~w,u!1]vw~w,v !#1w~v,w!@]vw~u,v !1]ww~u,w!#

1w~w,u!@]ww~v,w!1]uw~v,u!#50. ~31!

Proof: After substituting~29! into ~30!, using the formulas derived above, and collecti
terms we obtain

~w~u,v !@]uw~w,v !1]vw~w,v !#1cyclic~u,v,w!!X8~w!X8~u!X8~v !

1~w~X~v !,X~u!!@]2w~X~w!,X~v !!1]2w~X~w!,X~u!!#1cyclic~u,v,w!!50.

~32!

Let us defineF(w,u,v) by

F~w,u,v !ªw~u,v !@]uw~w,u!1]vw~w,v !#

1w~v,w!@]vw~u,v !1]ww~u,w!#1w~w,u!@]ww~v,w!1]uw~v,u!#.

It is easily verified thatF(w,u,v) is antisymmetric with respect to each pair of its arguments.
exampleF(w,u,v)52F(u,w,v). After evaluation atx ~32! becomes

F~x~w!,x~u!,x~v !!5x8~w!x8~u!x8~v !F~w,u,v !.

This equation is satisfied for everyx(u). In particular, it is true forx(u)5lu, wherelÞ0. In this
case the above equation is equivalent toF(lw,lu,lv)5l3F(w,u,v). In other wordsF is
homogeneous of degree 3. But the only homogeneous functionF(w,u,v) of degree 3 which is
also antisymmetric with respect to each pair of its arguments isF50. Therefore the statement o
the Lemma follows. Note that the last equation shows that the group of formal diffeomorp
acts on the space of solutions of~31!, since it is invariant under this action. h

Theorem IV.2: The map x°x21 is an anti-Poisson map.

Proof: Let X̄(u) denote the inverse ofX(u). Then we have the identities

X̄~X~u!!5u, and X~X̄~u!!5u,

as well as~following from them!

X̄8~X~u!!X8~u!51, and X8~X̄~u!!X̄8~u!51.
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On the other hand we have

05$u,X~v !%5$X̄~X~u!!,X~v !%5$X̄~w!,X~v !%uw5X~u!1X̄8~w!uw5X~u!$X~u!,X~v !%.

Therefore,

$X~v !,X̄~w!%uw5X~u!5X̄8~w!uw5X~u!$X~u!,X~v !%. ~33!

Also, we have the following chain of identities:

05$v,X̄~w!%uw5X~u!5$X̄~X~v !!,X̄~w!%uw5X~u!

5$X̄~s!,X̄~w!%us5X~v !,w5X~u!

1X̄8~s!us5X~v !$X~v !,X̄~w!%uw5X~u! .

Using ~29! and ~33!, the last identity can be rewritten as

05w~X~v !,X~u!!X̄8~X~v !!X̄8~X~u!!2w~v,u!

1X̄ 8~X~v !!X̄8~X~u!!@w~u,v !X8~u!X8~v !2w~X ~u!,X~v !!#

5$X̄~s!,X̄~w!%us5X~v !,w5X~u!1w~u,v !2X̄8~w!X̄8~s!w~w,s!.

Thus,

$X̄~w!,X̄~s!%52@X̄8~w!X̄8~s!w~w,s!2w~X̄~w!,X̄~s!!#,

and the proof is finished. h

In order to classifyall Poisson–Lie structures onG` one has, in particular, to classify a
solutions of the functional partial differential equation~31!. The main result of this section i
formulated below.

Theorem IV.3: The moduli space of solutions of (31) is parametrized byN, that is, the space
of isomorphism classes of solutions of (31) under the action of the formal group of diffeo
phisms of the line is isomorphic to the set of natural numbers.

Proof: Let F(u,v,w) be the left-hand side of~31! as defined above. Forw5v1e we expand
F(u,v,v1e) near the diagonal,

F~u,v,v1e!5
]F

]wU
w5v

e1
1

2

]2F

]w2U
w5v

e21••• .

ThusF(u,v,w)50 is equivalent to the infinite system]F/]w uw5v50, ]2F/]w2uw5v50, . . . .
However, using the fact that the equationF(u,v,w)50 is gauge invariant under the action ofG`

to find all of its solutions, it is enough to find all gauge invariant solutions of]F/]w uw5v50.
Indeed, letS be the space of solutions ofF(u,v,w)50 and S8 be the space of solutions o
]F/]wuw5v50. Clearly, S,S8. Thus, restrictingS8 to the subspaceSinv8 of gauge invariant
solutions we can recover the spaceS of solutions of the original equation. As we shall see bel
Sinv8 ,S and since we also haveS,Sinv8 we shall obtain thatS5Sinv8 . We now set out to findSinv8 .
We have

]F

]wU
w5v

5w~u,v !]v]uw~v,u!12 f ~v !]vw~u,v !1]vw~v,u!@ f ~v !1]uw~v,u!#1w~v,u!g~v !50,
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wheref (v)ª]2w(v,v), g(v)5]2
2w(v,v) and we used the fact that]1]2w(v,v)50. Here]1 and

]2 denote the derivatives with respect of the first and second arguments. This equation is e
lent to

f ~v !]vw~u,v !2g~v !w~u,v !5w~u,v !]u]vw~u,v !2]vw~u,v !]uw~u,v !. ~34!

We note that the right-hand side is symmetric with respect tou andv. This implies that

f ~v !]vw~u,v !2g~v !w~u,v !52 f ~u!]uw~u,v !1g~u!w~u,v !. ~35!

Since w(u,v)52w(v,u), this also implies thatw(u,v)5(u2v)nc(u,v), where c(u,v)
5c(v,u), and some oddnPN. From

]vw~u,v !5~u2v !n21@2n]vc~u,v !2~u2v !]vc~u,v !#,

and the definition off (v)5]vw(u,v)uu5v we obtain that

f ~v !5H 2c~v,v !, if n51,

0, if n.1.
~36!

Further, from

]v
2w~u,v !5~u2v !n22@2n~n21!c~u,v !22~u2v !]vc~u,v !1~u2v !2]v

2c~u,v !#,

and the definition ofg(v)5]v
2w(u,v)uu5v follows that g50, if n.2. If n52 we haveg(v)

522c(v,v) but then Eq.~35! together with~36! imply that g(u)52g(v), which impliesg
50. If n51 we haveg(v)522]2c(v,v)52]1c(v,v)2]2c(v,v)5 f 8(v). Thus,

g~v !5H f 8~v !, if n51,

0, if n.1.
~37!

Let us assume thatn.1. Then Eq.~34! implies that

w~u,v !]u]vw~u,v !5]vw~u,v !]uw~u,v !,

which after integration leads tow(u,v)5exp(*C1(v)dv1C2(u)), where C1(v)Pk@@v## and
C2(u)Pk@@u## are formal power series. This is in clear contradiction withw(u,v)52w(v,u).
Thereforen51 andw(u,v) has a zero of order 1 on the diagonal. Thus, from~35! we have

2@ f 8~v !w2 f ~v !]vw#5@ f 8~u!w2 f ~u!]uw#,

or equivalently,

2]vS f ~v !

w D5]uS f ~u!

w D .

This implies that there is a formal Laurent seriesu(u,v) such that

f ~u!

w~u,v !
5]vu~u,v !,

f ~v !

w~u,v !
52]uu~u,v !,

from where we obtain
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f ~v !
]u

]v
1 f ~u!

]u

]u
50. ~38!

The general solution of~38! is given byu(u,v)5z(F(u)2F(v)), whereF(u)5*du/ f (u) is a
formal Laurent series andz(t) is a formal Laurent series in one variable. Thus,

w~u,v !52
1

F8~u!F8~v !z8~F~u!2F~v !!
52

h~F~u!2F~v !!

F8~u!F8~v !
, ~39!

whereh(u)51/z8(u). Let u°x(u) be a formal diffeomorphism such thatF(x(u))5u. Then the
general solution~39! of ]wF(u,v,w)uw5v50 transforms tow(u,v)52h(u2v). To find the
spaceSinv8 of invariant solutions of]wF(u,v,w)uw5v50 we substitute back into~34! which leads
to

2h~u2v !h9~u2v !1h8~0!h8~u2v !2h8~u2v !250, ~40!

where we used the fact thath(2u)52h(u), which, in particular, implies thath(0)50
5h9(0). Theonly nontrivial solution of~40! is h(u)5h8(0)u. Thus, the spaceSinv8 is described
by all

w~u,v !5
F~v !2F~u!

F8~u!F8~v !
. ~41!

By direct substitution one checks that this solution satisfies~31! and thus we have alsoSinv8 ,S.
Therefore all solutions of~31! are described by~41!. Let

F~u!5 (
n52d

`

Cnun5C2d

1

ud
1C2d11

1

ud21
1•••,

whered.0 or d,0. ~By a formal diffeomorphism we can always remove the constant te!
From F8(u)51/f (u) and thatw(u,v) is divisible byuv it follows that d.0 for the groupG` .
Let x(u) be a formal diffeomorphism, such thatF(u)5x(u)2d. Then the solution~41! transforms
to

w̃~u,v !5
1

d2
ud11vd11~v2d2u2d!5

1

d2
uv~vd2ud!. ~42!

For eachdPZ1 this gives a representative of an isomorphism class of solutions of~31!. For each
dPN formula ~29! gives rise to the Poisson–Lie tensor,

v i j ~x!5~ i 2d! jx jxi 2d2 i ~ j 2d!xixj 2d1xi (
(k51

d11sk5 j

xs1
. . . xsd11

2xj (
(k51

d11sk5 i

xs1
. . . xsd11

,

~43!

wherei , j PZ1 , describing a class of Poisson–Lie structures onG` . h

We shall give a more detailed description of the Poisson–Lie structures onG` in the general
position. For this, we use the following equivalent formulation of the last theorem.19

Theorem IV.4: For each dPN, and any formal power series fd(u),gd(u) such that
f d8(u)gd(u)2 f d(u)gd8(u)52dl1,d11f d(u), wherel1,d11Þ0 is an arbitrary parameter, and fd

has a zero of order d11 at u50, there is a solution of (31) given by the series
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wd~u,v !5
1

l1,d11
@ f d ~u!gd~v !2 f d~v !gd~u!#.

The set of all solutions of (31) is described in this way.
In more detail this means the following. Let us writew(u,v)5(lmnu

mvnPk@@u,v##. Let

M5$~m1 ,m2 , . . . !um iPk,i PN%

be the set of all sequences with elements in the fieldk.
Thenall Poisson–Lie structures onG` are described as follows. For eachdPN and

there is a Poisson–Lie structure onG` given by

$xi ,xj%5 (
p51

i

(
q51

j

pxpqxql i 2p11,j 2q112 (
p51

i

(
q51

j

lpq (
(k51

p r k5 i

xr 1
. . . xr p (

( l 51
q sl5 j

xs1
. . . xsq

,

~44!

where

lmn5
1

md11
@mmld11,n2mnld11,m#,;m,n>1.

Clearly lmn52lnm and we implicitly assume the convention thatlmn50 wheneverm,1 or
n,1. Here,ld11,n are given by rational functionsld11,n5 f n(md11 , . . . ,md1n) for n>1, which
are computed by the following recursive formula:

ld11,n52
1

~d2n11!md11
Fdmd11mn1d2 (

s51

n21

~n1d22s11!mn1d2s11ls,d11G , ~45!

wherel1,d115md11. The sequences fromMd are ‘‘almost arbitrary’’ in the sense that there
precisely onerelation between the numbersmn :

dmd11m2d1112~d21!m2dl1,d1112~d22!m2d21l2,d111•••12md12ld,d1150, ~46!

which are otherwise subject to no other restrictions. Here

l1,d115md11 ,

l2,d115 f 2~md11 ,md12!5
1

12d
md12 ,

l3,d115 f 3~md11 ,md12 ,md13!5
2

22d
md131

d

~d21!~d22!

~md12!2

md11
,

A

ld21,d115 f d21~md11 ,md12 , . . . ,m2d21!,

ld,d115 f d~md11 ,md12 , . . . ,m2d!,
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where the functionsf 2 , f 3 , . . . ,f d are rational inmd11 and polynomial inmd12 , . . . ,m2d . Thus,
the above relation involves onlyd11 elements of the sequenceMd . Namely, the elements
md11 ,md12 , . . . ,m2d11.

For example, to each sequence,

there correspond the Poisson–Lie brackets~43!. We compute below a set of solutions obtained
an appropriate diffeomorphism from~42!. The elements of this set are labeled by the sequen

~47!

Lemma IV.3: For each dPN\$1%, if l1n5(l1,d12)n2d21/(l1,d11)n2d22, for every n>d
11, it follows that ln,d1150, for every n>d11, and ln,d1152 @1/(d
21)]@(l1,d12)n21/(l1,d11)n22], for all n such that2<n<d.

Proof: From ~45! we have

ln,d115
1

~d2n11!l1,d11
Fd

~l1,d11!n21

~l1,d11!n23
2 (

s51

n21

~n1d22s11!
~l1,d12!n2s

~l1,d11!n2s21
ls,d11G .

~48!

For n52 we obtain

l2,d115
1

~d2n11!l1,d11
@dl1,d11l1, d122~d11!l1,d12l1,d11#52

1

d21
l1,d12 .

Let as assume now thatlk,d1152@1/(d21)#@(l1,d12)k21/(l1,d11)k22# for all k, such that 2
<k<n21,d. We will now prove that this relation is true fork5n<d. Indeed, we have

ln,d115
1

~d2n11!l1,d11
Fd

~l1,d12!n21

~l1,d11!n23
1

1

d21(
s51

n21

~n1d22s11!
~l1,d12!n2s

~l1,d11!n2s21
ls,d11G

5
1

~d2n11!F2~n21!1
1

d21
~n22!~n1d11!2

2

d21S n~n21!

2
21D G~l1,d12!n21

~l1,d11!n22

52
1

d21

~l1,d12!n21

~l1,d11!n22
.

This proves the second part of the lemma. Ifn5d11, then the l.h.s. of~48! is zero. We check
for the consistency of whether the r.h.s. is zero. Indeed, the expression in the brackets rea

2d1
1

d21(
s52

d

2~d2s11!5
1

d21F2d21d12~d11!~d21!22S d~d11!

2
21D G50.

Now, we check whether the statement is true forld12,d11. From ~48! one has

ld12,d1152F2~d11!1
1

d21(
s52

d

~2d1322s!G ~l1,d12!d11

~l1,d11!d

52
1

d21F2d2111~d21!~2d13!22S d~d11!

2
21D G~l1,d12!d11

~l1,d11!d
50.
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We use again an inductive argument. We assume thatlk,d1150 for all k such thatd11<k<n
21, and we aim to show that this impliesln,d1150. With these assumptions from~48! we have

ln,d115
1

~d2n1 !Fd
~l1,d12!n21

~l1,d11!n22
2(

s51

d

~n1d22s11!
~l1,d12!n2s

~l1,d11!n22
ls,d11G

5
1

~d2n11!F2~n21!1
1

d21(
s52

d

~n1d22s11!G ~l1,d12!n21

~l1,d11!n22

5
1

~d2n11!~d21!F2~n21!~d21!1~d21!~n1d11!

22S d~d11!

2
21D G~l1,d12!n21

~l1,d11!n22
50.

This concludes the proof of the lemma. h

Theorem IV.5: For every d>2 and lªl1,d12 /l1,d11 the formal power series,

wd,l~u,v !5
1

~d21!~12lu!~12lv !
$~d21!uv~vd2ud!1l du2 v2~ud212vd21!%, ~49!

is a solution of (31). It is a one-parameter extension of the solutionw(u,v)5uv(vd2ud), for
every d>2, which we obtain back from (49) by settingl50.

Proof: With the assumptions of Lemma IV.3 we have

f d~u!5 (
n5d11

`

l1nun5 (
n5d11

`
~l1,d12!n2d21

~l1,d11!n2d22
un5l1,d11ud11(

n50

` S l1,d12

l1,d11
uD n

5
l1,d11

12lu
ud11,

and

gd~u,v !52 (
n51

d

ln,d11un52l1,d11u1
1

d21(
n52

d
~l1,d12!n21

~l1,d11!n22
un

52l1,d11u1
1

d21
l1,d12u2F12~lu!d21

12lu G
5

l1,d11

~d21!~12lu!
@dlu22u~d211~lu!d!#.

By Theorem IV.4 we obtain

wd,l~u,v !5
1

l1,d11
@ f d ~u!gd~v !2 f d~v !gd~u!#

5
1

~d21!~12lu!~12lv !
$vd11@2ldu21u~d211~lu!d!#

2ud11@2ldv21v~d211~lv !d!#%

5
1

~d21!~12lu!~12lv !
$~d21!uv~vd2ud!1ldu2v2~ud212vd21!%

5
F~v !2F~u!

F8~u!F8~v !
,
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whereF(u)52(1/d)u2d1@l/(d21)#u2d11. h

Remark IV.1: One can obtain the solutionw(u,v)5uv(v2u), which gives the Poisson–Lie
structure for d51 in Theorem IV.3, from (49) in the following way. Rewriting (49) as

wd,l~u,v !5
uv~vd2ud!

~12lu!~12lv !
1

l du2 v2

~12lu!~12lv !

ud212vd21

d21
,

we pass to the limit d→1 and then setl50.
Summarizing, we showed the existence of countably infinite classes of Poisson–Lie stru

on the groupG` . In the following two sections we shall show that this family of classes exha
all such possible structures onG` .

V. BIALGEBRA STRUCTURES ON THE WITT ALGEBRA G0` AND ITS PRINCIPAL
SUBALGEBRA G`

In this section we use completely elementary methods to compute the Shevalley–Eile

cohomology groupsH1(G0` ,G0``̂G0`) andH1(G` ,G``̂ G`) with coefficients in the completion
of the tensor product under the natural grading induced from the gradings onG0` andG` . We
show that both groups are trivial. Thus, we find all 1-cocycles on the Lie algebraG0` ~the Witt
algebra!, and all 1-cocycles on the Lie algebraG` of the groupG` . All of them are coboundaries
and they are all explicitly enumerated. The algebrasG0` andG` are taken overR ~or C).

Let $ei5ui 11(d/du)% i>21 be the canonical basis of the Lie algebraG0` ~the Witt algebra!.
We recall that the Lie algebra structure onG0` is defined by

@en ,em#5~n2m!en1m , n,m>21.

To find the 1-cocycles we turn to the 1-cocycle equation,

a~@en ,em# !5en .a~em!2em .a~en!,

which we rewrite as

~n2m!a~en1m!5en .a~em!2em .a~en!, n,m>21. ~50!

Let a(en)5( i , j 521
` a i j

n ei`ejPG0``̂G0`5 % k% i 1 j 5kG0i`G0 j , where G0i is the 1-
dimensional subspace ofG0` generated byei . Then ~50! is equivalent to the following infinite
system of linear equations:

~n2m!a i j
n1m5~2n2 i !a i 2n, j

m 1~2n2 j !a i , j 2n
m 2~2m2 i !a i 2m, j

n 2~2m2 j !a i , j 2m
n , ~51!

wheren,m,i , j >21. Therefore, to find all 1-cocycles, one has to describe all solutions of
system.

Theorem V.1: All 1-cocycles on the Lie algebraG0` are coboundaries.
Proof: We observe that~51! consists of two independent subsystems. Namely, one fora i j

n ’s
with nÞ i 1 j and the other fora i j

n ’s with n5 i 1 j .
Setm50 in ~51!. @Note that~51! is invariant with respect tom→n, n→m.# Then from~51!

we deduce that

~n2 i 2 j !a i j
n 5~2n2 i !a i 2n, j

0 1~2n2 j !a i , j 2n
0 , for every n,i , j >21. ~52!

~a! In casenÞ i 1 j we obtain from~52! immediately the solution of the first subsystem,

a i j
n 5

~2n2 i !

~n2 i 2 j !
a i 2n, j

0 1
~2n2 j !

~n2 i 2 j !
a i , j 2n

0 .
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This means that the coalgebra structure constantsa i j
n , wherenÞ i 1 j , are given in terms ofa i j

0 ,
i , j PZ1 , which are arbitrary.

~b! The casen5 i 1 j requires a more thorough analysis. Setj 5n1m2 i in ~51!. Then we
have

~n2m!a i ,n1m2 i
n1m 5~2n2 i !a i 2n,m1n2 i

m 1~n2m1 i !a i ,m2 i
m

2~2m2 i !a i 2m,n1m2 i
n 2~m2n1 i !a i ,n2 i

n , ~53!

wheren,m,i>21. It turns out that it is enough to investigate~53! for a few values ofm and i in
order to obtain a complete set of reccurence relations sufficient to find the general soluti
a i ,n2 i

n . First we setm50 in ~53!. This implies that 05(2n2 i )a i 2n,n2 i
0 1(n1 i )a i ,2 i

0 , for every
i ,n>21. In particular, if n5 i we obtain 05 ia2 i ,i

0 , for every i>21, sincea0,0
0 50 by the

antisymmetry ofa i j
n (52a j i

n ). Thereforea2 i ,i
0 50, for every i>21. Setm5215 i in ~53! to

obtain

~n11!a21,n
n21 5~2n11!a212n,n

21 1na21,0
21 1a0,n

n 1~n12!a21,n11
n . ~54!

Then we have the following lemma.
Lemma V.1: One hasa21,n11

n 5@1/(n12)(@n(n11)/2#a0,21
21 2( i 51

n a0,i
i ), for every n>1.

Proof: For n521,0, ~54! is identically satisfied. Forn51 we have from ~54!:
2a21,1

0 5a21,0
21 1a0,1

1 13a21,2
1 , where we used thata22,1

21 50. From this it follows thata21,2
1

5 1
3@a0,21

21 2a0,1
1 #, Assume thata21,k11

k 5@1/(k12)#(@k(k11)/2#a0,21
21 2( i 51

k a0,i
i ), for all k,

such that 1<k<n21. Then from~54!, using the induction hypothesis we have

a21,n11
n 5

1

~n12!
@na0,21

21 2a0,n
n 1~n11!a21,n

n21 #

5
1

~n12!Fna0,21
21 2a0,n

n 1
n~n21!

2
a0,21

21 2 (
i 51

n21

a0,i
i G

5
1

~n12!Fn~n11!

2
a0,21

21 2(
i 51

n

a0,i
i G . h

Lemma V.2: One hasa0,2
2 5a0,1

1 2a0,21
21 , and a1,n21

n 5@(n11)/2# @2a0,21
21 1a0,n21

n21 2a0,n
n #,

for every n>3.
Proof: From ~53!, after settingm521,i 50, we obtain

~n11!a0,n21
n21 52na2n,n21

21 1~n11!a0,21
21 12a1,n21

n 1~n11!a0,n
n . ~55!

For n521,0,1,~55! is identically satisfied. Next, forn52 we obtain from~55! that

a0,2
2 5a0,1

1 2a0,21
21 , ~56!

sincea22,1
21 50. Finally, sincea2n,n21

21 50 for n>2, we obtain from~55! the second assertion o
the Lemma. h

Lemma V.3: The formulaa2,n22
n 5@n(n11)/6#@a0,n22

n22 22a0,n21
n21 1a0,n

n # is valid for every n
>5.

Proof: In ~53! setm521, i 51. Then we have

~n11!a1,n22
n21 5~2n21!a12n,n22

21 13a2,n22
n 1na1,n21

n .
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For n521,0 this formula yields trivial identitites. Forn51 we obtain that 3a21,2
1 5a0,21

21

2a0,1
1 (52a0,2

2 ). The casen52 reduces to formula~56!, andn53 yields the identity 053a2,1
3

13a1,2
3 . For n54 we obtain the relation

5a1,2
3 54a1,3

4 . ~57!

If n>5, thena12n,n22
21 50, and using Lemma V.2 we obtain that

a2,n22
n 5

1

3
@~n11!a1,n22

n21 2na1,n21
n #

5
1

3Fn~n11!

2
~2a0,21

21 1a0,n22
n22 2a0,n21

n21 !2
n~n11!

2
~2a0,21

21 1a0,n21
n21 2a0,n

n !G
5

n~n11!

6
@a0,n22

n22 22a0,n21
n21 1a0,n

n #. h

The result obtained in Lemma V.3 is suggestive in finding a general formula fora i ,n2 i
n ~that

is, a i j
n with n5 i 1 j ) in terms ofa0,n

n , . . . ,a0,n2 i
n2 i , for every i>2 andn> i 13.

Lemma V.4: For every i>2 and n> i 13 the following formula is valid:

a i ,n2 i
n 5

1

i 11 S n11
i D (

k50

i S i
kD ~21! i 2ka0,n2k

n2k . ~58!

Proof: We use an induction ini . For i 52 the statetment is true by Lemma V.3. Assume t
~58! is true for all a j ,n2 j

n , where 2< j < i . We now proceed in proving that it is true forj 5 i
11 and alln> i 14. Settingm521 in ~53! and using thati>2 andn> i 13 we obtain

~n11!a i ,n2 i 21
n21 2~n112 i !a i ,n2 i

n 5~ i 12!a i 11,n2 i 21
n . ~59!

Then we use the induction hypothesis in the left-hand side of~59! and deduce that

a i 11,n2 i 21
n 5

1

i 12F ~n11!

i 11 S n
i D (k50

i S i
kD ~21! i 2ka0,n2k21

n2k21

2
~n112 i !

i 11 S n11
i D (

k50

i S i
kD ~21! i 2ka0,n2k

n2k G
5

1

i 12 S n11
i 11 D F (

k50

i S i
kD ~21! i 2ka0,n2k21

n2k21 2 (
k50

i S i
kD ~21! i 2ka0,n2k

n2k G
5

1

i 12 S n11
i 11 D F (

k51

i 11 S i
k21D ~21! i 2k11a0,n2k

n2k 1 (
k50

i S i
kD ~21! i 2k11a0,n2k

n2k G
5

1

i 12 S n11
i 11 D F (

k51

i F S i
k21D1S i

kD G~21! i 2k11a0,n2k
n2k 1a0,n2 i 21

n2 i 21 1~21! i 11a0,n
n G

5
1

i 12 S n11
i 11 D (

k50

i 11 S i 11
k D ~21! i 112ka0,n2k

n2k ,

which concludes the proof. It is also an immediate corollary that the relation~57! is identically
satisfied. h

Let m51,i 521 in ~53!. Then we have
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~n21!a21,n12
n11 5~2n11!a212n,n12

1 1~n22!a21,2
1 1na21,n11

n . ~60!

For n521 ~60! yieldsa21,2
1 5 1

3(a0,21
21 2a0,1

1 ). Forn50,1, it is identically satisfied. Forn52, we
obtain the relation

a21,4
3 52a21,3

2 . ~61!

Continuing further we have

2a21,5
4 5a21,2

1 13a21,4
3 ~n53!,

3a21,6
5 52a21,2

1 14a21,5
4 ~n54!,

A

which, as we shall see later, are all identically satisfied.
Lemma V.5: The following formula is valid for every n>2:

a0,n
n 5an~a0,1

1 2a0,21
21 !,

where a251, a353, and the coefficients an , (n>4) are computed by the recursive formula

an115
2n

~n21!~n12!
1

2~n11!

~n12!
an2

~n11!~n22!

~n21!~n12!
an21 ,

which is valid for all n>3.
Proof: For n52 the statement is true according to formula~56!. In order to computea3 we

use the relation~61! and Lemma V.2. From Lemma V.1 we have

a21,3
2 5 1

2 @2a0,21
21 2a0,1

1 #, and a21,4
3 5 1

5 @7a0,21
21 22a0,1

1 2a0,3
3 #.

Then from~61! it follows that a0,3
3 53(a0,1

1 2a0,21
21 ). After settingm51,i 51 in ~53! one obtains

~n21!a1,n
n1152na0,1

1 2a0,n
n 1~n22!a1,n21

n , for n>3, ~62!

sincea12n,n
1 50, for n>3. Next, we use Lemma V.2 to write formulas for

a1,n21
n 5

~n11!

2
@2a0,21

21 1a0,n11
n11 2a0,n

n # and a1,n
n115

~n12!

2
@2a0,21

21 1a0,n
n 2a0,n11

n11 #.

Substituting the above formulas into~62! we obtain, after some algebra, that

a0,n11
n11 5

2n

~n21!~n12!
~a0,1

1 2a0,21
21 !1

2~n11!

~n12!
a0,n

n 2
~n11!~n22!

~n21!~n12!
a0,n21

n21 , for all n>3.

~63!

Now, we make an induction hypothesis. Namely, we assume that for allk, 2<k<n, it is true that
a0,k

k 5ak(a0,1
1 2a0,21

21 ), for someak . Then from~63! it follows that a0,n11
n11 5an11(a0,1

1 2a0,21
21 ),

where

an115
2n

~n21!~n12!
1

2~n11!

~n12!
an2

~n11!~n22!

~n21!~n12!
an21 .

The first several coefficients are:a251, a353, a455, a55 64
9 , a65 28

3 , a75 451
45 , . . . . This con-

cludes the proof. h

Corollary V.1: From LemmaV.4 and LemmaV.5 it follows that
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a i ,n2 i
n 5

1

i 11 S n11
i D (

k50

i S i
kD ~21! i 2kan2k~a0,1

1 2a0,21
21 !,

for every i>2 and n> i 13.
Lemma V.6: One has the following relation:a0,21

21 5a0,1
1 .

Proof: In ~53! setm50,i 521. Then one has

~n22!a21,n13
n12 5~2n11!a212n,n13

2 1~n23!a21,3
2 1~n21!a21,n11

n . ~64!

For n521 we obtain from~64! that 23a21,2
1 52a0,2

2 24a21,3
2 22a21,0

21 , which, after using
Lemma V.1, turns into an identity. Forn50 we have an identity. Forn51 we obtain2a21,4

3

522a21,3
2 , which leads to an identity after using Lemma V.1 and Lemma V.5. The casen52

leads to an identity. Forn53 we obtain the nontrivial relation

a21,6
5 52a21,4

3 . ~65!

We use now Lemma V.1 and Lemma V.5 to reduce both sides of the relation~65! which leads to

1

7F15a0,21
21 2(

i 51

5

a0,i
i G5

2

5F6a0,21
21 2(

i 51

3

a0,i
i G ,

1

7F15a0,21
21 2a0,1

1 2S 113151
64

9 D ~a0,1
1 2a0,21

21 !G5
2

5
@6a0,21

21 2a0,1
1 2~113!~a0,1

1 2a0,21
21 !#,

40

9
a0,21

21 2
22

9
a0,1

1 54a0,21
21 22a0,1

1 ,

a0,21
21 5a0,1

1 .

This concludes the proof. h

Immediately several corollaries follow.
Corollary V.2: One hasa0,n

n 50, for all n>2.
Corollary V.3: One obtains thata21,n11

n 5@1/(n12)#(@n(n11)/2#a0,21
21 2a0,1

1 )5@(n
21)/2#a0,1

1 , for all n>21.
Corollary V.4: One hasa i ,n2 i

n 50, for all i >2 and n> i 13.
Corollary V.5: One hasa1,n21

n 52@(n11)/2#a0,1
1 , for all n>3.

In the above formulasa0,1
1 is arbitrary. As a result we are now able to write a formula for t

general solution of~50!. Namely,

a~en!5 (
i , j 521

`

a i j
n ei`ej

5 (
i , j 521,i 1 j Þn

`

a i j
n ei`ej1 (

i , j 521,i 1 j 5n

`

a i j
n ei`ej

5 (
i , j 521,i 1 j Þn

` F ~2n2 i !

~n2 i 2 j !
a i 2n, j

0 1
~2n2 j !

~n2 i 2 j !
a i , j 2n

0 Gei`ej1 (
i 521

`

a i ,n2 i
n ei`en2 i

5en .S 2 (
i , j 521,i 1 j Þ0

`
1

~ i 1 j !
a i j

0 ei`ej D 1a21,n11
n e21`en11

1a0,n
n e0`en1a1,n21

n e1`en21
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5en .S 2 (
i , j 521,i 1 j Þ0

`
1

~ i 1 j !
a i j

0 ei`ej1
1

2
a0,1

1 ~11dn,61!e21`e1D , for all n>21.

This shows that the general solution of~50! is a coboundary. The proof of Theorem V.1
completed. h

With a different technique it has been obtained in Ref. 21 that the first cohomology oG0`

with coefficients in the ordinary tensor product is trivial. This result follows from Theorem V.
which it is a special case.

We now proceed with describing all bialgebra structures on the Lie algebraG` of the group
G` . The problem now is to describe all solutions of

~n2m!a~en1m!5en .a~em!2em .a~en!, for all n,m>0. ~66!

Equation~66! is now equivalent to the following infinite system of equations for the coalge
structure constantsa i j

n :

~n2m!a i j
n1m5~2n2 i !a i 2n, j

m 1~2n2 j !a i , j 2n
m 2~2m2 i !a i 2m, j

n 2~2m2 j !a i , j 2m
n , ~67!

wheren,m,i , j >0.
Theorem V.2: All 1-cocycles on the Lie algebraG` are coboundaries.
Proof: The begining of the argument is similar to the one in the proof of Theorem

Namely, the system of equations~67! is split into two completely independent systems. One
the structure constantsa i j

n with nÞ i 1 j , and one for the structure constantsa i j
n with n5 i 1 j . In

the first case, after settingm50 in ~67! we obtain

~n2 i 2 j !a i j
n 5~2n2 i !a i 2n, j

0 1~2n2 j !a i , j 2n
0 , for every n,i , j >0.

SincenÞ i 1 j we obtain that

a i j
n 5

~2n2 i !

~n2 i 2 j !
a i 2n, j

0 1
~2n2 j !

~n2 i 2 j !
a i , j 2n

0 ,

i.e., the coalgebra structure constantsa i j
n , wherenÞ i 1 j , are expressed in terms ofa i j

0 , i , j >0,
which are arbitrary.

We now turn to the second case, which requires a more detailed analysis. The sys
equations for the coalgebra structure constantsa i j

n with n5 i 1 j is obtained from~67! by setting
j 5n1m2 i :

~n2m!a i ,n1m2 i
n1m 5~2n2 i !a i 2n,m1n2 i

m 1~n2m1 i !a i ,m2 i
m

2~2m2 i !a i 2m,n1m2 i
n 2~m2n1 i !a i ,n2 i

n , ~68!

wheren,m,i>0.
Again we split the rest of the proof into lemmas.
Lemma V.7: One hasa0,n

n 5na0,1
1 , for all n>0.

Proof: After settingm51,i 50 in ~68! one obtainsa0,n11
n11 5a0,1

1 1a0,n
n , sincena2n,n11

1 50
for all n>0. A simple inductive argument now leads toa0,n

n 5na0,1
1 , for all n>0. h

Lemma V.8: One hasa1,n
n1152(n12)a0,1

1 for all n>2.
Proof: Setm51,i 51 in ~68!. Then one has

~n21!a1,n
n115~2n21!a12n,n

1 22na0,1
1 1~n22!a1,n21

n . ~69!

We investigate~69! for small values ofn. For n50,1 one obtains identities. Forn52 we obtain
the first nontrivial relation. Namely,a1,2

3 524a0,1
1 . Clearly, sincea12n,n

1 50 for all n>2, ~69! is
equivalent to
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~n21!a1,n
n11522na0,1

1 1~n22!a1,n21
n ,

for all n>2. Again, an induction argument leads toa1,n
n1152(n12)a0,1

1 , for all n>2. h

Lemma V.9: One hasa i ,n
n1 i52(n12i )a0,1

1 1 @3(12 i 2)/(n2 i )# a0,1
1 for all n>1, and all i

>1, and nÞ i .
Proof: Setm5 i in ~68! to obtain

~n2 i !a i ,n
n1 i5~2n2 i !a i 2n,n

i 1na i ,0
i 2 ia0,n

n 1~n22i !a i ,n2 i
n . ~70!

After using Lemma V.7,~70! reduces to

~n2 i !a i ,n
n1 i522nia0,1

1 1~n22i !a i ,n2 i
n . ~71!

If we setn5 i in ~71! it reduces further to 2ia0,i
i 52i 2a0,1

1 , from where foriÞ0 it is equivalent to
the assertion of Lemma V.7. LetnÞ i . Then the general solution of~71! is given by

a i ,n
n1 i52~n12i !a0,1

1 1 f ~n,i !, ~72!

where f (n,i ) satisfies the equation (n2 i ) f (n,i )5(n22i ) f (n2 i ,i ). If we define a(n,i )ª(n
2 i ) f (n,i ) then this equation is equivalent toa(n,i )5a(n2 i ,i ). From here it follows that
a(n,i )5a( i ), that is,a is independent ofn. Therefore the general solution~72! is given by

a i ,n
n1 i52~n12i !a0,1

1 1
a~ i !

~n2 i !
. ~73!

Our next goal is to determine the parametersa( i ), for all i>2. From the conclusion of Lemma
V.7 we know thata(1)50. Setn51 in ~73!. This yieldsa i ,1

i 1152(112i )a0,1
1 1a( i )/(12 i ).

Using the result of Lemma V.7, this leads to the equations2(112i )a0,1
1 1a( i )/(12 i )5( i

12)a0,1
1 , for all i>2, from where, solving fora( i ), we obtaina( i )53(12 i 2)a0,1

1 , for all i
>2. Therefore,a i ,n

n1 i52(n12i )a0,1
1 1@3(12 i 2)/(n2 i )#a0,1

1 , for all n>1, and alli>1, andn
Þ i . h

Quite similarly as in the case of the Witt algebra the following observation helps to com
the argument.

Lemma V.10: One hasa0,1
1 50.

Proof: Setm52,i 51 in ~68! to obtain

~n22!a1,n11
n12 5~2n21!a12n,n11

2 1~n23!a1,n21
n . ~74!

We investigate~74! for small values ofn. For n50 it yields an identity. Forn51 it gives
2a1,2

3 5a0,2
2 22a1,0

1 54a0,1
1 , a fact we learned from Lemma V.9. Forn52 it yields a trivial

identity. Forn53 it givesa1,4
5 50. But from Lemma V.8 we havea1,4

5 526a0,1
1 , a clear contra-

diction. Therefore we conclude thata0,1
1 50, which is what we set out to show. h

The following two corollaries are direct consequences of the last result and the prec
lemmas.

Corollary V.6: One hasa0,n
n 50, for all n>1.

Corollary V.7: One hasa i ,n
n1 i50 for all n,i>1.

Thus, all coalgebra structure constantsa i j
n 50, whenevern5 i 1 j . Therefore the general so

lution of ~66! is described by
                                                                                                                



e

s.

555J. Math. Phys., Vol. 40, No. 1, January 1999 Ognyan Stoyanov

                    
a~en!5 (
i , j 50

`

a i j
n ei`ej5 (

i , j 50,i 1 j Þn

`

a i j
n ei`ej

5 (
i , j 50,i 1 j Þn

` F ~2n2 i !

~n2 i 2 j !
a i 2n, j

0 1
~2n2 j !

~n2 i 2 j !
a i , j 2n

0 Gei`ej

5en .S 2 (
i , j 50,i 1 j Þ0

` 1

~ i 1 j !
a i j

0 ei`ej D .

This shows that forG` all 1-cocycles are coboundaries. h

VI. THE GROUP G` AND THE R-MATRIX

In this section we describe the correspondence between the solution

V~u,v;x!5w~u,v !x8~u!x8~v !2w~x~u!,x~v !! ~75!

of the cocycle equation and the classicalr-matrix onG` .17 We prove that there is a one-to-on
correspondence between the Poisson–Lie structures onG` and ther-matrices onG` . This estab-
lishes the classification of Poisson–Lie~Lie-bialgebra! structures for the groupG` and its Lie
algebraG` . In the next section we extend this result to the groupG0` and its Lie algebraG0` . Let
en5un11(d/du), n50,1,2, . . . , be thecanonical basis ofG` . We write the classicalr-matrix
~taking values in the completed tensor product! as

l5 (
m,n50

`

lm11,n11um11
d

du
`vn11

d

dv
5w~u,v !

d

du
`

d

dv
P`̃2G` ,

wherew(u,v)5(m,n51
` lmnu

mvn, andlmn52lnm . If a is a 1-cocycle, then

~da!~el ,em!5el .a~em!2em•a~el !2a~@el ,em# !50,

whered is the coboundary operator in the Chevalley–Eilenberg cohomology of Lie algebra
In Sec. V we proved that all 1-cocyclesa are coboundaries. Thus,a5dl. Let us define

^l,l&ªF(u,v,w)(d/du)`d/dv`d/dwP`̃3G as

^l,l&ª@l12,l13#1@l12,l23#1@l13,l23#,

where

@l12,l13#ª@w~u,v !]uw~u,w!2w~u,w!]uw~u,v !#
d

du
`

d

dv
`

d

dw
,

@l12,l23#ª@w~u,v !]vw~v,w!2w~v,w!]vw~u,v !#
d

du
`

d

dv
`

d

dw
,

@l13,l23#ª@w~u,w!]ww~v,w!2w~v,w!]ww~u,w!#
d

du
`

d

dv
`

d

dw
.

Therefore, we have

^l,l&5$w~u,v !@]uw~u,w!1]vw~v,w!#1cyclic~u,v,w!%
d

du
`

d

dv
`

d

dw
.
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Thena satisfies the co-Jacobi identity, that is,a defines a Lie-bialgebra structure onG, if and only
if ^l,l& is G`-invariant with respect to the adjoint action ofG` on itself.1 Let f (u)(d/du)PG` be
an arbitrary element, wheref (u)PC@@u## is a formal power series. Then adG`-invariance implies

that f (u)
d

du
.^l,l&50. This is equivalent to the following equation:

f ~u!
]F

]u
1 f ~v !

]F

]v
1 f ~w!

]F

]w
5~ f 8~u!1 f 8~v !1 f 8~w!!F~u,v,w! . ~76!

Lemma VI.1: The subspace of adG`-invariants in`̃3G` is empty.
Proof: Let e05u(d/du). Then from~76! it follows that e0 .^l,l&50 is equivalent to

u
]F

]u
1v

]F

]v
1w

]F

]w
53F~u,v,w!. ~77!

Thus,F(u,v,w) is homogeneous of degree 3. ButF(u,v,w) is antisymmetric with respect of all
of its arguments. The onlyF(u,v,w) with both of the above properties isF(u,v,w)50. We
conclude that all Lie-bialgebra structures onG` are given by solutions of the classical Yang
Baxter equation. h

Remark VI.1: It is immediately clear that the above argument can be extended to the ca
the Witt algebraG0` with basis un11(d/du), where n521,0,2, . . . , and the double-sided Witt
algebra with basis un11(d/du), nPZ. Therefore, all bialgebra structures for these algebras a
also obtained as solutions of the Classical Yang–Baxter equation.

Now, we turn our attention to the Poisson brackets on the group, written in local coordin
by writing V(u,v;x) in components. In order to do this we shall need the formula

x~u!n5 (
s151

`

xs1
us1 . . . (

sn51

`

xsn
usn5 (

s151

`

. . . (
sn51

`

xs1
. . . xsn

us11 . . . 1sn

5(
i 5n

` S (
~(k51

n sk!5 i

xs1
. . . xsnD ui .

Then we have

V~u,v;x!5w~u,v !x8~u!x8~v !2w~x~u!,x~v !!

5 (
p,q51

`

lpqu
pvq(

i 51

`

ix iu
i 21(

j 51

`

jx jv
j 21

2 (
p,q51

`

lpq(
i 5p

` S (
~(k51

p r k!5 i

xr 1
. . . xr pD ui (

j 5q

` S (
~( l 51

q sl !5 j

xs1
. . . xsqD v j

5 (
p,q51

`

(
i 5p

`

(
j 5q

` S l i 2p11,j 2q11pxpqxq

2lpq (
~(k51

p r k!5 i

xr 1
. . . xr p (

~( l 51
q sl !5 j

xs1
. . . xsqD uiv j

5 (
i , j 51

` F (p51

i

(
q51

j S l i 2p11,j 2q11pxpqxq
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2lpq (
~(k51

p r k!5 i

xr 1
. . . xr p (

~( l 51
q sl !5 j

xs1
. . . xsqD Guiv j .

Therefore for$xi ,xj%5v i j (x) we obtain

v i j ~x!5 (
p51

i

(
q51

j

pxpqxql i 2p11,j 2q11

2 (
p51

i

(
q51

j

lpqS (
~(k51

p r k!5 i

xr 1
. . . xr p (

~( l 51
q sl !5 j

xs1
. . . xsqD . ~78!

Before we continue further, let us deduce the following useful formulas:

]

]xn
(

~(k51
p r k!5 i

xr 1
. . . xr p

5 (
~(k51

p r k!5 i
S (

l 51

p

xr 1
. . . d r l

n . . . xr pD
5(

l 51

p S (
~(k51

p r k!5 i

xr 1
. . . d r l

n . . . xr pD
5p (

~(k51
p21r k!5 i 2n

xr 1
. . . xr p21

,

as well as

(
~(k51

p21r k!5 i 2n

xr 1
. . . xr p21

ue5 (
~(k51

p21r k!5 i 2n

d r 1

1 . . . d r p21

1 5d i 2n
p21 ,

S ]

]xn
(

~(k51
p r k!5 i

xr 1
. . . xr pD U

e

5pd i 2n
p21 . ~79!

Differentiating ~78! with respect toxn we obtain

]v i j

]xn
U

x

5 (
p51

i

(
q51

j

~pdp
nqxql i 2p11,j 2q111pxpdq

nql i 2p11,j 2q11!

2 (
p51

i

(
q51

j F p (
~(k51

p21r k!5 i 2n

xr 1
. . . xr p21 (

~( l 51
q sl !5 j

xs1
. . . xsqGlpq

2 (
p51

i

(
q51

j Fq (
~(k51

p r k!5 i

xr 1
. . . xr p (

~( l 51
q21sk!5 j 2n

xs1
. . . xsq21Glpq .

From the above formula we have~keeping in mind thatxpue5dp
1)

b i j
n
ª

]v i j

]xn
U

e

5 (
p51

i

pdp
nl i 2p11,j1 (

q51

j

qdq
nl i , j 2q112 (

p51

i

(
q51

j

lpq@pd i 2n11
p d j

q1qd i
pd j 2n11

q #

5~2n2 i 21!l i 2n11,j1~2n2 j 21!l i , j 2n11 . ~80!

Using this correspondence we can now prove the following theorem.
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Theorem VI.1: There is a one-to-one correspondence between the coboundary Lie-bialg
structures onG` given byl and the Poisson–Lie structures of the type (75) on G̀. Since all Lie
bialgebra structures onG` are given byl (cf. Theorem V.1), Theorem IV.3 gives a classificat
of all solutions of the classical Yang–Baxter equation forG` .

Proof: Recall thatvmn satisfy the infinite system of functional equations~13!:

vmn~z!5vkl~x!
]zm

]xk

]zn

]xl
1vkl~y!

]zm

]yk

]zn

]yl
, where x,yPG` , ~81!

andzn5zn(x,y) is given by

zn5(
i 51

n

xi (
~(a51

i j a!5n

yj 1
. . . yj i

. ~82!

From ~82! it follows that

]zi

]yk
U

y5e

5~ i 2k11!xi 2k11 and
]zi

]xk
U

y5e

5d i
k .

Let us fix nPN and consider a subsystem of the system of equations~81! for all v i j with 1
< i , j <n. After differentiating~81! with respect toyj , for eachj such that 1< j <n, and setting
y5e we deduce thatvmn satisfy the following inhomogeneous system of linear partial differen
equations:

(
i 5 j

n

~ i 112 j !xi 112 j

]vmn

]xi
5vm112 j ,n~x!~m112 j !1vm,n112 j~x!~n112 j !

1 (
k51

m

(
l 51

n

bkl
j ~m112k!~n112 l !xm112kxn112 l , ~83!

for 1< j <n, and wherebkl
j 5]vkl /]yj uy5e .

The method of proof is as follows. Letbkl
j be given by~80!. For eachnPN the general

solution of ~83! is a linear combination of the general solution of the homogeneous syste
equations,

(
i 5 j

n

~ i 112 j !xi 112 j

]vmn

]xi
5vm112 j ,n~x!~m112 j !1vm,n112 j~x!~n112 j !, ~84!

and a particular solution of the inhomogeneous system~83!. We now show that for eachnPN and
1<m,n the system~83! has a unique solution by demonstrating that the only solution of
homogeneous system is the zero solution. Therefore, since every solution of the system o
tional equations~81! is a solution of the system of partial differential equations~83! it follows that
the class of solutions of~81! found in Sec. IV exhausts all its possible solutions. We shall pr
this by induction applied in several steps. Recall that

vmn~e!50, for every n,mPN, ~85!

and thatvmn50 whenevern,1 or m,1.
~i! For n51 there is nothing to prove. Letn52. Then from~84! we obtain

x1

]v12

]x1
53v12. ~86!
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The general solution of this equation isv12(x)5Cx1
3 , whereC is an arbitrary constant. From~85!

it follows thatC50. Thereforev12(x)50 is the only solution of~86!. Let n53. Then from~84!
we obtain

x1

]v13

]x1
12x2

]v13

]x2
54v13, x1

]v13

]x2
50. ~87!

From~87! it follows thatv13(x)5v13(x1). We deduce thatv13(x)5Cx1
5, and from~85! it follows

thatC50, and thusv13(x)50. Let us assume now thatv1k(x)50 for 2<k<n21. From~84! we
have

(
i 5 j

n

~ i 112 j !xi 112 j

]v1n

]xi
5v22 j ,n~x!~22 j !1v1,n112 j~x!~n112 j !, for 1< j <n,

which implies

(
i 51

n

ixi

]v1n

]xi
5~n11!v1n~x!, ~88!

(
i 5 j

n

~ i 112 j !xi 112 j

]v1n

]xi
50, for 2< j <n, ~89!

after using the induction hypothesis:v1k(x)50 for 2<k<n21. Then from~88! follows that
v1n(x1) satisfies

x1

]v1n

]x1
5~n11!v1n . ~90!

From ~90! we have thatv1n(x)5Cx1
n11 for an arbitrary constantC. Applying again~85! we

conclude thatv1n(x)50. Thereforev1n(x)50 for everynPN.
~ii ! Let m52 and n53. Then from~84! we have the following homogeneous system

partial differential equations forv23:

x1

]v23

]x1
12x2

]v23

]x2
13x3

]v23

]x3
55v23,

x1

]v23

]x2
12x2

]v23

]x3
5v1350,

x1

]v23

]x3
52v1250.

Arguing in a similar manner as above we obtain thatv23(x)50. Let us assume thatv2k(x)50 for
all k such that 3<k<n21. We now prove thatv2n(x)50. From~84! we have

(
i 5 j

n

~ i 112 j !xi 112 j

]v2n

]xi
5v32 j ,n~x!~32 j !1v2,n112 j~x!~n112 j !, for 1< j <n. ~91!

After using the induction hypothesis and the already proved fact thatv1n50, for everynPN, ~91!
yields
                                                                                                                



:

n

of

560 J. Math. Phys., Vol. 40, No. 1, January 1999 Ognyan Stoyanov

                    
(
i 51

n

ixi

]v2n

]xi
5~n12!v2n~x!, ~92!

(
i 5 j

n

~ i 112 j !xi 112 j

]v2n

]xi
50, for 2< j <n. ~93!

Therefore from~93! and~92! it follows that v2n(x)5v2n(x1)5Cx1
n12, and imposing~85! again

we obtain thatv2n(x1)50. Thusv2n(x)50 for everynPN.
~iii ! Assume now thatvsn50 for all s such that 1<s<m21, for somem>2 and alln.s.

We will prove thatvmn50 for all n>m. Let n5m11. From~84! we have

(
i 5 j

m11

~ i 112 j !xi 112 j

]vm,m11

]xi
5vm112 j ,n~x!~m112 j !1vm,m122 j~x!~m122 j !,

for 1< j <m11. ~94!

We apply now the induction hypothesis and deduce from~94! the following system of equations

(
i 51

m11

ix i

]vm,m11

]xi
5~2m11!vm,m11~x!, ~95!

(
i 5 j

m11

~ i 112 j !xi 112 j

]vm,m11

]xi
50, for 2< j <m11. ~96!

From ~96! it follows that vm,m11(x)5vm,m11(x1), and from ~95! we deduce thatvm,m11(x)
must satisfy

x1

]vm,m11

]x1
5~2m11!vm,m11 .

The solution of the above equation isvm,m11(x)5Cx1
2m11, whereC is an arbitrary constant. The

from vm,m11(e)5C50 we obtain thatvm,m11(x)50. Finally, we assume thatvmk50 for all k
such thatm11<k<n21, and we prove it fork5n. Indeed, from~84!, after applying the induc-
tion hypothesis, we obtain

(
i 51

n

ixi

]vmn

]xi
5~m1n!vmn~x!, ~97!

(
i 5 j

n

~ i 112 j !xi 112 j

]vmn

]xi
50, for 2< j <n. ~98!

Again, from ~98! it follows that vmn(x)5vmn(x1), and thatvmn(x) must satisfy

x1

]vmn

]x1
5~m1n!vmn .

From here we conclude thatvmn(x)5Cx1
m1n for an arbitrary constantC. But the requirement

vmn(e)50 fixes the value of this constant to beC50. Thereforevmn(x)50.
Thus, we showed that for everym,nPN the only solution of~84! is the zero solution.

Therefore the system of partial differential equations~83! has a unique solution. The existence
the solution follows from the existence of the solution of the system of functional equations~81!
of which ~83! is a consequence. Thus, the structure constantsbkl

j of the Lie-bialgebraG` , as given
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by ~80!, determine uniquely all Poisson–Lie structures on the groupG` . The proof of Theorem
VI.1 is completed. h

We conclude this section by writing an explicit formula for the family of Lie-bialgeb
structures arising from the family of Poisson–Lie structures obtained in Theorem IV.3, as w
the more general one-parameter family, obtained from it by an action of a formal diffeomorp
group element, ford>1. An elegant way to do this is by deriving a formula for the Lie-bialge
structures onG` in terms of generating series and solutions of

w~u,v !@]uw~w,u!1]vw~w,v !#1cyclic~u,v,w!50.

Let us defineAn(u,v) as

An~u,v !ª
]

]xn
V~u,v;X!U

e

5 (
i , j 51

`

a i j
n uiv j .

Then we have the following lemma.
Lemma IV.2: The generating seriesAn(u,v) is given by

An~u,v !5nw~u,v !~un211vn21!2@un]uw~u,v !1vn]vw~u,v !#.

Proof: We use formula~75! and the following facts. Ifx(u)5( i 51
` xiu

i then X8(u)ux
5( i 51

` ix iu
i 21⇒X8(u)ue51, and also (]/]xn)X8(u)ux5( i 51

` id i
nui 215nun21. From this it fol-

lows that

]

]xn
@X8~u!X8~v !#ux5nun21x8~v !1nvn21x8~u!⇒ ]

]xn
@X8~u!X8~v !#ue5n~un211vn21!.

Finally we have

]

]xn
w~X~u!,X~v !!U

e

5
]X~u!

]xn
]1w~X~u!,X~v !!U

e

1
]X~v !

]xn
]2w~X~u!,X~v !!U

e

5un]uw~u,v !1vn]vw~u,v !.

In the above equality we used that]X(u)/]xnue5un. h

Proposition VI.1: (Michaelis,22 Taft23): For each dPN the family of Poisson–Lie structures
(75) given bywd(u,v)5uv(vd2ud) gives rise to the following family of Lie-bialgebra structure
on G` :

a~en!52ned`en22~n2d!e0`ed1n ~n>0!,

where$en5un11(d/du)%nPZ1
is a canonical basis forG` .

Proof: The generating seriesAn,d in this case is

An,d~u,v !5n@uvd112vud11#~un211vn21!2$un@vd112~d11!vud#1vn@~d11!uvd2ud11#%

5~n21!unvd112~n21!vnud111~n2d21!uvn1d2~n2d21!vun1d

5$~n21!@d i
nd j

d112d j
nd i

d11#1~n2d21!@d i
1d j

d1n2d j
1d i

d1n#%uiv j

5 (
i , j 51

`

a i j ud
n uiv j ,

where
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a i j ud
n 5$~n21!@d i

nd j
d112d j

nd i
d11#1~n2d21!@d i

1d j
d1n2d j

1d i
d1n#%.

Therefore

ad~en!5a i j ud
n ei`ej5~n21!@en`ed112ed11`en#1~n2d21!@e1`ed1n2ed1n`e1#

52~n21!en`ed1112~n2d21!e1`en1d ,

and after shifting indices by 1 we obtain

ad~en!522ned`en12~n2d!e0`en1d , for every nPZ1 .

This concludes the proof. h

Proposition VI.2: For every d>2 the family of Poisson–Lie structures described by (49) give
rise to the following family of Lie-bialgebra structures onG` :

ad,l~en!52 (
i 5d1n

`

~2n2 i !l i 2~n1d!e0`ei22n(
i 5d

`

l i 2dei`en

1
2

d21 (
i 5d1n

`

(
j 51

d21

~2n2 i !l i 1 j 2~n1d!ei`ej

1
2

d21(i 5d

`

(
j 5n11

d1n21

~2n2 j !l i 1 j 2~n1d!ei`ej , ~99!

for every nPZ1 .
Proof: Let ad,l(en)5a i j ud

n ei`ej , where$en%n>1 is a basis ofG` , and

a i j ud
n 5~2n2 i 21!l i 2n11,j1~2n2 j 21!l i , j 2n11 , for every n,i , j PN.

With the assumptions of Lemma IV.3 and Theorem VI.5 we have

l i j 5
1

l1,d11
@l1ild11,j2l1 jld11,i #,

where

ln,d1150, for every n>d11,

ln,d1152
1

d21

~l1,d12!n21

~l1,d11!n22
52

1

d21
l1,d11ln21, for 2<n<d, ~100!

l1n5
~l1,d12!n2d21

~l1,d11!n2d22
5l1,d11ln2d21, for every n>d11,

and where we have introducedlªl1,d12 /l1,d11. Then

ad,l~en!5@~2n2 i 21!l i 2n11,j1~2n2 j 21!l i , j 2n11#ei`ej

5
1

l1,d11
$~2n2 i 21!@l1,i 2n11ld11,j2l1 jld11,i 2n11#

1~2n2 j 21!@l1ild11,j 2n112l1,j 2n11ld11,i #%ei`ej
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5
1

l1,d11
H (

i 5d1n

`

(
j 51

d

~2n2 i 21!l1,i 2n11ld11,jei`ej

2 (
i 5n

d1n21

(
j 5d11

`

~2n2 i 21!l1 jld11,i 2n11ei`ej

1 (
i 5d11

`

(
j 5n

d1n21

~2n2 j 21!l1ild11,j 2n11ei`ej

2(
i 51

d

(
j 5d1n

`

~2n2 j 21!l1,j 2n11ld11,iei`ej J
5

1

l1,d11
H (

i 5d1n

`

(
j 52

d

~2n2 i 21!l1,i 2n11ld11,jei`ej

1ld11,1 (
i 5d1n

`

~2n2 i 21!l1,i 2n11ei`e1

2 (
i 5n11

d1n21

(
j 5d11

`

~2n2 i 21!l1 jld11,i 2n11ei`ej

2ld11,1 (
j 5d11

`

~n21!l1 jen`ej1 (
i 5d11

`

(
j 5n11

d1n21

~2n2 j 21!l1ild11,j 2n11ei`ej

1ld11,1 (
i 5d11

`

~n21!l1iei`en2(
i 52

d

(
j 5d1n

`

~2n2 j 21!l1,j 2n11ld11,iei`ej

2ld11,1 (
j 5d1n

`

~2n2 j 21!l1,j 2n11e1`ej J
5

1

l1,d11
H 2 (

i 5d1n

`

(
j 52

d

~2n2 i 21!l1,i 2n11ld11,jei`ej

12 (
i 5d11

`

(
j 5n11

d1n21

~2n2 j 21!l1ild11,j 2n11ei`ej

12l1,d11 (
i 5d1n

`

~2n2 i 21!l1,i 2n11e1`ei22l1,d11 (
i 5d11

`

~n21!l1iei`enJ
5l1,d11H 2

d21 (
i 5d1n

`

(
j 52

d

~2n2 i 21!l i 1 j 2~n1d11!ei`ej

1
2

d21 (
i 5d11

`

(
j 5n11

d1n21

~2n2 j 21!l i 1 j 2~n1d11!ei`ej

12 (
i 5d1n

`

~2n2 i 21!l i 2~n1d!e1`ei22 (
i 5d11

`

~n21!l i 2~d11!ei`enJ ,

where we used formulas~100! to obtain the last equality. Hence, after normalizing by the quot
l1,d11Þ0 and shifting indices by 1 we obtain~99!. h
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Remark VI.2: One can show directly thatad,l satisfies the co-Jacobi identity. The r.h.s.

(99) is an element of the completed tensor productG` ^̂G` .24

VII. THE GROUP G0` AND POISSON–LIE STRUCTURES ON IT

In this section we study the groupG0` of which G` is a subgroup. We classify all Poisson
Lie structures onG0` .

Let X5$xi% i PZ1
be a countable set of indeterminates. Letk@@X## be the ring of formal power

series overX without a constant term with the standard multiplication. Herek is a commutative
field assumed to be of characteristic zero. LetY5$yi% i PZ1

be a second set of indeterminates, a
k@@Y## be the corresponding ring of formal power series overY. Consider the formal groupG0`

defined by a formal group lawF5(Fi) i PZ1

25,24 in a countably infinite number of variables, whe
FiPk@@X,Y## for every i PZ1 , induced by a substitution of formal power series in one varia
Let x(u)5( i 50

` xiu
iPk@@X##@@u## andy(u)5( i 50

` yiu
iPk@@Y##@@u## be elements in the rings o

formal power series with a constant term in the variableu over the ringsk@@X## and k@@Y##,
respectively. The multiplication of formal power series in the variableu is defined again as the
substitution:

~xy!~u!5x~y~u!!5(
i 50

`

xi~y~u!! i5(
i 50

`

xiF y0
i 1(

j 51

` S (
~(a51

i sa!5 j

ys1
. . . ysi D uj G

5(
i 50

`

xiy0
i 1(

i 51

`

xi (
j 51

` S (
~(a51

i sa!5 j

ys1
. . . ysi D uj

5(
i 50

`

xiy0
i 1(

j 51

` S (
i 51

`

xi (
~(a51

i sa!5 j

ys1
. . . ysi D uj . ~101!

Therefore from~101! we obtain

F0~X,Y!5(
i 50

`

xiy0
i , ~102!

F j~X,Y!5(
i 51

`

xi (
~(a51

i sa!5 j

ys1
. . . ysi

, for every j >1. ~103!

This is a model of the group of diffeomorphisms ofR1 not necessarily leaving the pointu50
fixed. The identity here ise5(0,1,0,0, . . . ). Formulas~102! and ~103! have the following inter-
pretation. The ringk@@X## is naturally graded. Namely, let us introduce a degreeuu:X→Z1 defined
on the generators byuxi uª i . We extend it to monomials asuxi 1

. . . xi n
u5 i 11•••1 i n . The grad-

ing on k@@X## and k@@Y## induces a grading onk@@X,Y## in an obvious way. ThenFi(X,Y)
5(nf n(X,Y), where eachf n(X,Y) is a finite linear combination of monomials of degreen.
Clearly G` , if viewed as a formal group, is a subgroup ofG0` . We define a Poisson structur
vx5v i j (x)]/]xi`]/]xj on the groupG0` as a bi-derivationvx :k@@X## ^ k@@X##→k@@X##,
wherev i j (x)52v j i (x)Pk@@X##, satisfying the Jacobi identity. The methods developed in a
lyzing the Poisson–Lie structures onG` apply without major changes to the case ofG0` , but
with two important differences. Namely, Theorem IV.1 still holds withV(u,v;X) defined as
V(u,v;X)ª( i , j 50

` v i j u
iv j , but in the solution of the cocycle equation,

V~u,v;x!5w~u,v !x8~u!x8~v !2w~x~u!,x~v !! , ~104!
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w(u,v) does not have to be divisible byuv. Thus, this condition is dropped. This change affe
the analysis of the space of solutions of the equation

w~u,v !@]uw~w,u!1]vw~w,v !#1cyclic~u,v,w!50. ~105!

Namely, the general solution of~105! is given by

w~u,v !5
F~v !2F~u!

F8~u!F8~v !
, ~106!

where

F~u!5 (
n52d

`

Cnun5C2d

1

ud
1C2d11

1

ud21
1•••,

is a formal Laurent series andd.0 or d,0. Since on the other handF8(u)5 1/ f (u), where
f (u)PR@@u## is a formal power series, the only negative value ofd can bed521.

We found that the solution~104! corresponds to a cocycleG0` →G0` `̂G0` that is a
coboundary. We showed that all cocycles onG0` are coboundaries. This allows us to comple
their classification.

Theorem VII.1: The moduli space of solutions of (105) is parametrized byNø$21%, that is,
the space of isomorphism classes of solutions of (105) under the action of the formal gro
diffeomorphisms of the line is isomorphic to the countable setNø$21%.

For d521 formula ~42! yields w(u,v)5u2v. This solution yields in coordinates th
Poisson–Lie tensor,

v i j ~x!5 i ~ j 11!xixj 112~ i 11! jx i 11xj2xid j
01xjd i

0 , i , j PZ1 . ~107!

Proposition VII.1: The functions
(i) w(u,v)5u2v, and
(ii) w(u,v)5elu2elv, wherel is an arbitrary parameter,
are the only solutions of (105) of the formw(u,v)5a(u)2a(v).
The proof is straightforward. The Poisson–Lie tensor that corresponds to~ii ! is

v i j ~x!5~ j 11!xj 11(
p50

i 11
pxp

~ i 2p11!!
2~ i 11!xi 11(

q50

j 11
qxq

~ j 2q11!!

2d j
0(

p50

i
1

p! (
r 11•••1r p5 i

xr 1
. . . xr p

1d i
0(

q50

j
1

q! (
r 11•••1r q5 j

xr 1
. . . xr q

.

We conclude this section with a useful reformulation of Theorem VII.1.19

Theorem VII.2: All solutions of (105) fall into the following two classes:
(a) The first class is given by Theorem IV.4.
(b) The second class is given by

w~u,v !5
1

l01
@ f ~u!g~v !2 f ~v !g~u!#, ~108!

wherel01Þ0, for any formal power series f(u) and g(u) satisfying the relation

f 8~u!g~u!2 f ~u!g8~u!5l01g~u!22l02f ~u!. ~109!
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Here, l01 and l02 are arbitrary parameters withl01 being subject to the above restriction:l01

Þ0.

VIII. ELEMENTS OF REPRESENTATION THEORY

Let G be a Poisson–Lie group andv̄ be a Poisson–Lie structure onG. Let V be a space on
which G acts, that is, there is a mapG3V→V. Such a space is called aG-space. Assume thatV
is equipped with a Poisson structurev. Recall the following definition.26

Definition VIII.1: The action of G on V is called Poisson if the map G3V→V is Poisson.
Here G3V is equipped with the product Poisson structure.

In this section we study the following problem. Suppose that we are given the Poisso
group G` . Consider the spaceVl5$x(u)(du)lux(u)5( i 50

` xiu
i%, lPR. The spaceVl is the

space ofl-densities~Jacobians! over the real line. The groupG` acts naturally onVl . Let y
PG` andx(u)(du)lPVl . Then the action ofG` on Vl is defined by

x~u!~du!l°x~y~u!!~y8~u!!l~du!l,

wherey(u)5( i 51
` yiu

i , and

~y8~u!!l5S (
i 51

`

iy iu
i 21D l

5S y11(
i 52

`

iy iu
i 21D l

5y1
lS 11(

i 52

`

i
yi

y1
ui 21D l

5y1
lF11

l

1!(i 52

`

i
yi

y1
ui 211

l~l21!

2! S (
i 52

`

i
yi

y1
ui 21D 2

1 . . . G .

Are there Poisson structures on the spaceVl such that the above action ofG` on Vl is a
Poisson action? In other words, is there a Poisson strucuturev on Vl such that the mapG`

3Vl→Vl is a Poisson map? Here againG`3Vl is equipped with the product Poisson structu
Let y(u)5( i 51

` yiu
iPG` , and x(u)(du)lPVl . Let us definezl(u)ªx(y(u))@y8(u)#l

5( i 50
` ziu

i , wherezi5zi(x,y;l) are the coordinates ofzl . If we also introduce the notation
J(u)ªy8(u)5( i 51

` iy iu
i 21, we have

x~u!~du!l°x~y~u!!~y8~u!!l~du!l5x~y~u!!~J~u!!l~du!l

5zl~u!~du!l5(
i 50

`

xi~y~u!! iS (
i 51

`

iy iu
i 21D l

~du!l.

Defining z(u)ªx(y(u)) and using the definitionzl(u)5x(y(u))@J(u)#l we deduce that
zl8(u)5z8(u)(J(u))l1z(u)@(J(u))l#8, where8 stands for the derivative with respect tou.

An argument analogous to the argument given in Sec. I implies that the mapG`3Vl→Vl is
Poisson if and only if

v i j ~z!5vkl~x!
]zi

]xk

]zj

]xl
1v̄kl~y!

]zi

]yk

]zj

]yl
. ~110!

Herev i j (x)5$xi ,xj% andv̄ i j (y)5$yi ,yj%, where$xi% i PZ1
and$yi% i PZ1

are the coordinates onVl

and G` , respectively. Also, let us introduce in a manner similar to the one used in Sec.
generating series for the Poisson strucutures onVl asV(u,v;X)ª( i , j 50

` v i j u
iv j .

Lemma VIII.1: The multiplicativity condition (110) is equivalent to the following functio
equation:
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V~u,v;zl!5V~y~u!,y~v !;x!~J~u!!l~J~v !!l1V̄~u,v;y!z8~u!~J~u!!l21z8~v !~J~v !!l21

1l ]uV̄~u,v;y!z~u!~J~u!!l21z8~v !~J~v !!l21

1l ]vV̄~u,v;y!z8~u!~J~u!!l21z~v !~J~v !!l21

1l2 ]u,v
2 V̄~u,v;y!z~u!~J~u!!l21z~v !~J~v !!l21. ~111!

Here V̄ stands for the generating series of the Poisson–Lie strucutures on G̀.
Proof: Multiplying both sides of Eq.~110! by uiv j , summing overi and j, and using the

definition of V we obtain

V~u,v;zl!5vkl~x!
]zl

]xk

]zl

]xl
1v̄kl~y!

]zl

]yk

]zl

]yl
. ~112!

On the other hand, the following formulas are valid:

]zl

]xk
5S (

j 51

`

yju
j D kS (

i 51

`

iy iu
i 21D l

5@y~u!#k@J~u!#l,

]zl

]yk
5F(

i 50

`

ix iS (
j 51

`

yju
j D i 21

ukG S (
i 51

`

iy iu
i 21D l

1F(
i 50

`

xiS (
j 51

`

yju
j D i GlS (

i 51

`

iy iu
i 21D l21

kuk21

5x8~y~u!!~J~u!!luk1lx~y~u!!@J~u!#l21kuk21

5z8~u!@J~u!#l21uk1lzl~u!@J~u!#21kuk21.

Therefore Eq.~112! takes the form

V~u,v;zl!5V~y~u!,y~v !;x!~J~u!!l~J~v !!l1v̄kl~y!@z8~u!~J~u!!l21uk

1lz~u!~J~u!!l21kuk21#

3@z8~v !~J~v !!l21v l1lz~v !~J~v !!l21lv l 21#

5V~y~u!,y~v !;x!~J~u!!l~J~v !!l

1v̄kl~y!z8~u!~J~u!!l21ukz8~v !~J~v !!l21v l

1v̄kl~y!lz~u!~J~u!!l21kuk21z8~v !~J~v !!l21v l

1v̄kl~y!z8~u!~J~u!!l21uklz~v !~J~v !!l21lv l 21

1l2v̄kl~y!z~u!~J~u!!l21kuk21z~v !~J~v !!l21lv l 21

5V~y~u!,y~v !;x!~J~u!!l~J~v !!l

1V̄~u,v;y!z8~u!~J~u!!l21z8~v !~J~v !!l21

1l]uV̄~u,v;y!z~u!~J~u!!l21z8~v !~J~v !!l21

1l]vV̄~u,v;y!z8~u!~J~u!!l21z~v !~J~v !!l21
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1l2]u,v
2 V̄~u,v;y!z~u!~J~u!!l21z~v !~J~v !!l21.

This concludes the proof of the Lemma. h

In the above formulasV̄ is given by~cf. Sec. IV!

V̄~u,v;y!5w~u,v !y8~u!y8~v !2w~y~u!,y~v !!, ~113!

wherew(u,v) satisfies the equation

w~u,v !@]uw~w,u!1]vw~w,v !#1cyclic~u,v,w!50. ~114!

In other words,w(u,v) is given byw(u,v)5 f (u)g(v)2 f (v)g(u) ~cf. Sec. IV!, where the func-
tions f andg satisfy the relation

f 8~u!g~u!2 f ~u!g8~u!5a f 8~u!1bg8~u!~⇒ f 9~u!g~u!2 f ~u!g9~u!5a f 9~u!1bg9~u!!.

~115!

Here,a andb are arbitrary constants.

Theorem VIII.1: If w(u,v) satisfies Eq. (114) andV̄ is defined by (113) one has the follow
ing solution of (111):

V~u,v;x!5w~u,v !x8~u!x8~v !1l ]uw~u,v !x~u!x8~v !1l ]vw~u,v !x8~u!x~v !

1l2 ]u,v
2 w~u,v !x~u!x~v !. ~116!

Proof: Using formula~113! in the r.h.s. of Eq.~111! we obtain

r.h.s.5V~y~u!,y~v !;x!~J~u!!l~J~v !!l1w~u,v !z8~u!z8~v !~J~u!!l~J~v !!l

2w~y~u!,y~v !!z8~u!z8~v !~J~u!!l21~J~v !!l211l ]uw~u,v !zl~u!z8~v !~J~v !!l

1w~u,v !z~u!z8~v !@~J~u!!l#8~J~v !!l2l ]1w~y~u!,y~v !!zl~u!z8~v !~J~v !!l21

1l ]vw~u,v !zl~v !z8~u!~J~u!!l1w~u,v !z8~u!z~v !@~J~v !!l#8~J~u!!l

2l ]2w~y~u!,y~v !!zl~v !z8~u!~J~u!!l211l2 ]u,v
2 w~u,v !zl~u!zl~v !

1l ]uw~u,v !zl~u!z~v !@~J~v !!l#81l ]vw~u,v !zl~v !z~u!@~J~u!!l#8

1w~u,v !z~u!z~v !@~J~u!!l#8@~J~v !!l#82l2 ]1,2
2 w~y~u!,y~v !!zl~u!zl~v !.

Above we used the formulas

]uV̄~u,v;y!5]uw~u,v !J~u!J~v !1w~u,v !J8~u!J~v !2]1w~y~u!,y~v !!J~u!,

]vV̄~u,v;y!5]vw~u,v !J~u!J~v !1w~u,v !J~u!J8~v !2]2w~y~u!,y~v !!J~v !.

For the l.h.s. of Eq.~111! we have

l.h.s.5w~u,v !zl8~u!zl8~v !1l ]uw~u,v !zl~u!zl8~v !1l ]vw~u,v !zl8~u!zl~v !

1l2 ]u,v
2 w~u,v !zl~u!zl~v !

5w~u,v !$z8~u!~J~u!!l1z~u!@~J~u!!l#8%$z8~v !~J~v !!l1z~v !@~J~v !!l#8%

1remaining terms

5w~u,v !z8~u!z8~v !~J~u!!l~J~v !!l1w~u,v !z8~u!z~v !~J~u!!l@~J~v !!l#8
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1w~u,v !z~u!z8~v !~J~v !!l@~J~u!!l#81w~u,v !z~u!z~v !@~J~u!!l#8@~J~v !!l#8

1l ]uw~u,v !zl~u!z8~v !~J~v !!l1l ]uw~u,v !zl~u!z~v !@~J~v !!l#8

1l ]vw~u,v !zl~v !z8~u!~J~u!!l1l ]vw~u,v !zl~v !z~u!@~J~u!!l#8

1l2 ]u,v
2 w~u,v !zl~u!zl~v !.

On the other hand, we also have

V~y~u!,y~v !;x!~J~u!!l~J~v !!l5w~y~u!,y~v !!z8~u!z8~v !~J~u!!l21~J~v !!l21

1l ]1w~y~u!,y~v !!zl~u!z8~v !~J~v !!l21

1l ]2w~y~u!,y~v !!zl~v !z8~u!~J~u!!l21

1l2 ]1,2
2 w~y~u!,y~v !!zl~u!zl~v !.

After comparing the terms on the l.h.s. and the r.h.s. of Eq.~111! we obtain an identity. This
concludes the proof of the Theorem. h

Remark VIII.1: Notice that forlÞ0 we can not have an inhomogeneous term of the fo

w̄(x(u),x(v)) in (116). Had it been the case it would impose onw̄(u,v) the condition of being a
homogeneous function of degree 1 in both arguments. In order to satisfy the equation

w̄(u,v) must have the propertyw̄(zl(u),zl(v))5w̄(z(u)(J(u))l,z(v)(J(v))l)5w̄(z(u),z(v))
3((J(u))l(J(v))l). But sincew̄(u,v) must be also antisymmetric it follows that the only functi

with these properties isw̄50. On the contrary, forl50 we have a solution of (111) of the form

V~u,v;x!5w~u,v !x8~u!x8~v !2w̄~x~u!,x~v !!,

where the functionw̄ has the propertyw̄(u,v)52w̄(v,u). The Jacobi identity forV then implies

that w̄ must satisfy (114).
Next, we come to the following fact.
Theorem VIII.2: If w(u,v) satisfies (114) then the solution (116) satisfies the Jacobi iden

thus yielding a class of Poisson structures on Vl for which the action of G̀ on Vl is a Poisson
action.

Proof: We shall use again the bracket$X(u),X(v)%ª( i , j 50
` $Xi ,X j%u

iv j introduced in Sec.
IV. Then we have

$X~u!,X~v !%5w~u,v !X8~u!X8~v !1l ]uw~u,v !X~u!X8~v !

1l ]vw~u,v !X8~u!X~v !1l2 ]u,v
2 w~u,v !X~u!X~v !,

as well as

]u$X~u!,X~v !%5]vw~u,v !X8~u!X8~v !1w~u,v !X8~u!X9~v !1l2 ]u,v
2 w~u,v !X~u!X8~v !

1l ]uw~u,v !X~u!X9~v !1l ]v
2w~u,v !X8~u!X~v !1l ]vw~u,v !X8~u!X8~v !

1l2 ]u,v2
3 w~u,v !X~u!X~v !1l2 ]u,v

2 w~u,v !X~u!X8~v !.

The Jacobi identity$X(w),$X(u),X(v)%%1cyclic(u,v,w)50 is equivalent to the following
equation:A1B1C1D50. Here,
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A5w~u,v !$X~w!,X8~u!X8~v !%1cyclic~u,v,w!

5w~u,v !@]u$X~w!,X~u!%X8~v !1]v$X~w!,X~v !%X8~u!#1cyclic~u,v,w!,

B5l ]uw~u,v !$X~w!,X~u!X8~v !%1cyclic~u,v,w!

5l ]uw~u,v !@$X~w!,X~u!%X8~v !1]v$X~w!,X~v !%X~u!#1cyclic~u,v,w!,

C5l ]vw~u,v !$X~w!,X8~u!X~v !%1cyclic~u,v,w!

5l ]vw~u,v !@]u$X~w!,X~u!%X~v !1$X~w!,X~v !%X8~u!#1cyclic~u,v,w!,

D5l2 ]u,v
2 w~u,v !$X~w!,X~u!X~v !%1cyclic~u,v,w!

5l2 ]u,v
2 w~u,v !@$X~w!,X~u!%X~v !1$X~w!,X~v !%X~u!#1cyclic~u,v,w!.

For the expressions in the square brackets for each term we therefore obtain

A85]uw~w,u!X8~w!X8~u!X8~v !1w~w,u!X8~w!X9~u!X8~v !

1l ]w,u
2 w~w,u!X~w!X8~u!X8~v !1l ]ww~w,u!X~w!X9~u!X8~v !

1l ]u
2w~w,u!X8~w!X~u!X8~v !1l ]uw~w,u!X8~w!X8~u!X8~v !

1l2 ]w,u2
3 w~w,u!X~w!X~u!X8~v !1l2 ]w,u

2 w~w,u!X~w!X8~u!X8~v !

1]vw~w,v !X8~w!X8~u!X8~v !1w~w,v !X8~w!X8~u!X 9~v !

1l ]w,v
2 w~w,v !X~w!X8~u!X8~v !1l ]ww~w,v !X~w!X8~u!X 9~v !

1l ]v
2w~w,v !X8~w!X8~u!X~v !1l ]vw~w,v !X8~w!X8~u!X8~v !

1l2 ]w,v2
3 w~w,v !X~w!X8~u!X~v !1l2 ]w,v

2 w~w,v !X~w!X8~u!X8~v !,

B85w~w,u!X8~w!X8~u!X8~v !1l ]ww~w,u!X~w!X8~u!X8~v !

1l ]uw~w,u!X8~w!X~u!X8~v !1l2 ]w,u
2 w~w,u!X~w!X~u!X8~v !

1]vw~w,v !X8~w!X~u!X8~v !1w~w,v !X8~w!X~u!X 9~v !

1l ]w,v
2 w~w,v !X~w!X~u!X8~v !1l ]ww~w,v !X~w!X~u!X 9~v !

1l ]v
2w~w,v !X8~w!X~u!X~v !1l ]vw~w,v !X8~w!X~u!X8~v !

1l2 ]w,v2
3 w~w,v !X~w!X~u!X~v !1l2 ]w,v

2 w~w,v !X~w!X~u!X8~v !,

C85]uw~w,u!X8~w!X8~u!X~v !1w~w,u!X8~w!X 9~u!X~v !1l ]w,u
2 w~w,u!X~w!X8~u!X~v !

1l ]ww~w,u!X~w!X 9~u!X~v !1l ]u
2w~w,u!X8~w!X~u!X~v !

1l ]uw~w,u!X8~w!X8~u!X~v !1l2 ]w,u2
3 w~w,u!X~w!X~u!X~v !

1l2 ]w,u
2 w~w,u!X~w!X8~u!X~v !1w~w,v !X8~w!X8~u!X8~v !

1l ]ww~w,v !X~w!X8~u!X8~v !1l ]w,v
2 w~w,v !X~w!X8~u!X~v !

1l ]vw~w,v !X8~w!X8~u!X~v !,
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D85w~w,u!X8~w!X8~u!X~v !1l ]ww~w,u!X~w!X8~u!X~v !1l ]uw~w,u!X8~w!X~u!X~v !

1l2 ]w,u
2 w~w,u!X~w!X~u!X~v !1w~w,v !X8~w!X~u!X8~v !

1l ]ww~w,v !X~w!X~u!X8~v !1l ]vw~w,v !X8~w!X~u!X~v !

1l2 ]w,v
2 w~w,u!X~w!X~u!X~v !.

In what follows, we shall study the four terms in the Jacobi identity written as

A5w~u,v !A81cyclic~u,v,w!, B5l]uw~u,v !B81cyclic~u,v,w!,

C5l]vw~u,v !C81cyclic~u,v,w!, D5l2]u,v
2 w~u,v !D81cyclic~u,v,w!.

We split the analysis of the Jacobi identity into seven steps~A!–~G!.
~A! Terms proportional toX8X8X8. From them we obtain~after cyclicly permuting the argu

ments of some of them!:

$w~u,v !@]uw~w,u!1]vw~w,v !#1cyclic~u,v,w!%X8~w!X8~u!X8~v !.

But from ~114! it follows that the above term is zero.
~B! Terms proportional toXX 9X8 cancel each other out after cyclic permutation.
~C! Terms proportional toXX 9X cancel each other out after cyclic permutation.
~D! Terms proportional toXXX give

l3@]uw~u,v !]w,v2
3 w~w,v !1]vw~u,v !]w,u2

3 w~w,u!1cyclic~u,v,w!#X~w!X~u!X~v !

1l4@]u,v
2 w~u,v !~]w,u

2 w~w,u!1]w,v
2 w~w,v !!1cyclic~u,v,w!#X~w!X~u!X~v !.

Since w(u,v) is a solution of ~114! the results obtained in Sec. IV showed thatw(u,v)
5 f (u)g(v)2 f (v)g(u), wheref andg satisfy ~115!. Therefore thel3-term becomes

l3$@ f 8~u!g~v !2 f ~v !g8~u!#@ f 8~w!g9~v !2 f 9~v !g8~w!#1@ f ~u!g8~v !2 f 8~v !g~u!#

3@ f 8~w!g9~u!2 f 9~u!g8~w!#1cyclic~u,v,w!%X~w!X~u!X~v !,

and thel4-term assumes the form

l4$@ f 8~u!g8~v !2 f 8~v !g8~u!#@ f 8~w!g8~u!2 f 8~u!g8~w!

1 f 8~w!g8~v !2 f 8~v !g8~w!#1cyclic~u,v,w!%X~w!X~u!X~v !.

Using the identities f 8(u)g(u)2 f (u)g8(u)5a f 8(u)1bg8(u)(⇒ f 9(u)g(u)2 f (u)g9(u)
5a f 9(u)1bg9(u)) one easily shows that both terms proportional tol3 andl4, respectively, are
identically zero.

~E! Terms proportional toXXX8 give

l2@w~u,v !]w,u2
3 w~w,u!1w~v,w!]u,w2

3 w~u,w!1]uw~u,v !]w,v
2 w~w,v !1]ww~w,u!]u

2w~v,u!

1]uw~w,u!]w
2 w~v,w!1]ww~v,w!]u,v

2 w~u,v !#X~w!X~u!X8~v !1cyclic~u,v,w!.

The expression in the square brackets becomes identically zero after using~115! in a similar way
as in ~D!. Also we have a term proportional tol3 which reads as
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l3@]uw~u,v !]w,u
2 w~w,u!1]uw~u,v !]w,v

2 w~w,v !1]ww~v,w!]u,v
2 w~u,v !

1]ww~v,w!]u,w
2 w~u,w!1]ww~v,w!]w,u

2 w~w,u!1]uw~u,v !]v,w
2 w~v,w!

1]ww~w,v !]u,v
2 w~u,v !1]uw~v,u!]w,u

2 w~w,u!#X~w!X~u!X8~v !1cyclic~u,v,w!,

which is identically zero.
~F! Terms proportional toXX8X8 give

l@w~u,v !]w,u
2 w~w,u!1w~w,u!]w

2 w~v,w!1w~u,v !]w,v
2 w~w,v !1w~v,w!]w

2 w~u,w!

1]ww~w,u!]uw~v,u!1]ww~v,w!]vw~u,v !#X~w!X8~u!X8~v !1cyclic~u,v,w!.

The expression in the square brackets can be shown to be identically zero after using~115! in a
similar way as in~D! and ~E!.

The other two terms of the same form are

l2@w~u,v !]w,u
2 w~w,u!1w~u,v !]w,v

2 w~w,v !

1w~v,u!]w,u
2 w~w,u!1w~u,v !]w,v

2 w~v,w!#X~w!X8~u!X8~v !1cyclic~u,v,w!,

which is identically zero, and

l2@]ww~w,u!]uw~u,v !1]ww~w,u!]ww~v,w!1]ww~w,u!]uw~v,u!1]ww~v,w!]vw~u,v !

1]vw~u,v !]ww~w,v !1]ww~v,w!]ww~u,w!#X~w!X8~u!X8~v !1cyclic~u,v,w!,

which is again identically zero.
~G! Terms proportional toX8X 9X8 cancel each other.
Thus all terms have been covered and the proof of Theorem VIII.2 is completed. h

As a result of Theorem VIII.1 and Theorem VIII.2 for each Poisson–Lie structure onG`

defined by a functionw satisfying the equation~114! there exists a Poisson structure onVl for
which the action ofG` is Poisson. Thus we obtain a series of representationsVw,l of the Poisson–
Lie groupG` in the Poisson spacesVl .

IX. QUANTIZATION

This section is devoted to the quantization of some of the Poisson–Lie structures on the
G` when restricted to the finite-dimensional quotient-groupsGn5G` modun11. We shall con-
struct explicitly families of finitely generated quantum~semi!groups. Their quasi-classical limit
are the finite-dimensional Poisson–Lie groups endowed with Poisson–Lie structures, whi
restrictions of the Poisson–Lie structures on the groupG` , and belong to the countable famil
obtained in Theorem IV.3. We shall consider quotient-groupsGn , for n>4 ~cf. Sec. III!. In this
aproach to quantization we shall start from the quasi-classical limits, that is, the correspo
Poisson–Lie groups, and reconstruct from this data their quantum counterparts. This quan
procedure amounts to deformation quantization of the Poisson algebraA of C` functions on the
corresponding finite-dimensional Poisson–Lie groups to a noncommutative noncocommu
bialgebraAh such thatAh /hAh>A. The second postulate of quantization requires that the de
mation be ‘‘flat,’’ that is, the dimension ofAh as ak@@h##-module, for a fieldk of characteristic
zero, be the same as the dimension ofA as ak-module. For the general philosophy underlying t
method we refer the reader to Refs. 1 and 27.

~i! Let X5$xi% i PN be a set of indeterminates. Let us introduce a grading on the algebrak@X#,
wherek denotes the ground field~assumed to be of characteristic zero!, by assigning a degree
~denoteduu) to each of the generatorsxi of k@X# by the following definition:uxi u5 i 21, for every
i PN. We extend it on monomials byuABu5uAu1uBu, for every two monomialsA,B.
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As we have mentioned above, in this section we shall be concerned with the quanti
problem for the countable family of Poisson–Lie structures on the groupG` , found in Sec. IV,
the formulas for which we now recall:

$xi ,xj%5~ i 2d! jx jxi 2d2 i ~ j 2d!xixj 2d1xi (
~(k51

d11sk!5 j

xs1
. . . xsd11

2xj (
~(k51

d11sk!5 i

xs1
. . . xsd11

,

~117!

for all dPN. It is clear from the right-hand side of~117! that for eachdPN the degree of the
bracket$xi ,xj% is given by

u$xi ,xj%u5uxi u1uxj u2d5 i 1 j 2d22.

~ii ! Let X5$xi% i PN be a set of indeterminates and let^X& be a free associative semigroup wi
identity onX. Let k@@h##^X& be the semigroup algebra of^X& over the ring of formal power serie
k@@h## in the parameterh. Herek is assumed to be a field of characteristic zero. Consider the
of relations

Rh5$xixj2xjxi5 f i j uh~x!u i , j PN%,

where f i j uh(x) are polynomials inxi with coefficients ink@@h##, such thatf i j u050. Let Ih be the
ideal generated byRh . DefineAhªk@@h##^X&/Ih , and define a grading onk^X& as was done in
~i!.

The following is the first postulate of quantization. As explained earlier we require
Ah /hAh>k^X&, that is,

@xi ,xj #5h$xi ,xj%1O~h2!.

Here@xi ,xj #5xixj2xjxi , and the product is the product inAh . In other words, we would like to
recover the Poisson–Lie bracket onG` ~or the quotient groupsGn5G` modun11) in the quasi-
classical limith→0. This also means that forh→0 we should have

f i j uh~x!5h$xi ,xj%1O~h2!.

After computing the degree of the right-hand side of the above equalityuh$xi ,xj%u5uhu
1u$xi ,xj%u5uhu1 i 1 j 2d22, we deduce that for eachdPN the parameterh must have degree
uhu5d, sinceu@xi ,xj #u5 i 1 j 22.

~iii ! Consider the semigroup algebrak@@h##^X& of ^X& over the ringk@@h##. For eachdPN
consider the set of relations

R h
d5$xixj5xjxi1 f i j uh

d ~x!u i , j , for i , j PN%, ~118!

where f i j uh
d (x)Pk@@h##^X& are linear combinations of monomialshnxi 1

n1 . . . xi k

nk such that i 1

. . . . . i k and nd1(s51
k ns( i s21)5 i 1 j 2d22. We shall say that these monomials are in c

nonical form. Thusf i j uh
d (x) are linear combinations of monomials in canonical form. Recall

following definition.
Definition IX.1: The semigroup algebra k@@h##^X& has a Poincare´–Birkhoff–Witt (PBW)

property if every monomial AP^X& can be reduced to a unique expression as a linear comb
tion of monomials in canonical form using the set of relations (118) independently of the cho
a reduction procedure.

We shall use a version of the result known as the Diamond Lemma,28,29 applicable here,
which allows us to prove the PBW property, by only proving it for the monomials with so ca
‘‘overlap’’ ambiguities.28
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Definition IX.2: For each dPN a quantum semigroup G̀uh
d is defined as follows. As a ‘‘quan

tum space’’ G̀ uh
d is defined by its quotient semigroup algebraA h

d
ªk@@h##^X&/I h

d , where
I h

d,k@@h##^X& is the ideal generated by the set of relations (118), and we require that in
quasi-classical limit@xi ,xj #5h$xi ,xj%1O(h2), one obtains the Poisson algebra of functions
the Poisson-Lie group G̀d defined by (117). The multiplication of formal power series in o
variable under the operation of substitution(xy)(u)5x(y(u)), where x(u)5( i 51

` xiu
i , and

y(u)5( i 51
` yiu

i , induces a comultiplication mapD:A h
d→A h

d
^A h

d , which is defined on the gen
erators by

D~xn!5(
i 51

n

xi ^ (
(a51

i j a5n

xj 1
. . . xj i

, nPN, ~119!

and is required to be an algebra homomorphism. Also, one defines a counit map:A h
d

→k@@h## by

c~xi !5d i
1 , i PN. ~120!

All tensor products are over k@@h##. This endowsA h
d with a structure of a bialgebra and the

quantum semigroup G̀uh
d is defined to be the bialgebraA h

d , if, in addition, k@@h##^X& has the
PBW basis described above.

Does such an object exist? We do not know yet. However, if we consider the Poisso
quotient groupsGn

d5G`
d mod un11, for n<7, then there exist quantum objects that satisfy

above definition for small values ofd, d<5, and whose quasi-classical limits are the Poisson–
groupsGn

d . The definition of the finitely generated quantum semigroupsGnuh
d is the same as the

definition above withI h
d being an ideal generated by a finite set of relationsR h

d . Their defining
semigroup algebras turn out to have other interesting properties. We shall describe in more
the construction of the quantum semigroupG5uh

2 , while omitting parts of the construction tha
consist of lengthy and tedious calculations, and we shall state the results for the quantum
groupsG4uh

1 andG5uh
3 without entering into the details of the calculations. The construction of

last two mimics exactly the construction ofG5uh
2 .

Let G5
25G`

2 mod un11, for n>5, be the finite-dimensional~dim 5 5, d52) Poisson–Lie
group with a Poisson–Lie structure defined by

$xi ,xj%5~ i 22! jx jxi 222 i ~ j 22!xixj 221xi (
s11s21s35 j

xs1
xs2

xs3
2xj (

s11s21s35 i
xs1

xs2
xs3

.

The above formulas are obtained from~117! with d52, and we adopt the convention thatxi

50 wheneveri ,1. In more detail, we have

$x1 ,x2%50,

$x1 ,x3%52x1
21x1

4 ,

$x2 ,x3%5x2~x1
322x1!,

$x1 ,x4%5x2~3x1
322x1!,

$x2 ,x4%5x2
2~3x1

324!,

$x3 ,x4%5x4~4x12x1
3!1x3x2~3x1

226!,

$x1 ,x5%5x3~3x1
323x1!13x2

2x1
2 ,
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$x2 ,x5%53x2
3x11x3x2~3x1

226!,

$x3 ,x5%5x5~5x12x1
3!1x3

2~3x1
229!13x3x2

2x1 ,

$x4 ,x5%5x5x2~1023x1
2!1x4x3~3x1

2212!13x4x2
2x1 .

Theorem IX.1: Let X5$xi%1< i<5 be a set of indeterminates and let^X& be the associative
semigroup with identity generated by X. Consider an idealI h

2 generated by the set of relationsR h
2

in k@@h##^X&:

x1x25x2x1 ,

x1x35x3x11h~2x1
21x1

4!,

x2x35x3x21hx2~x1
322x1!,

x1x45x4x11hx2~3x1
322x1!,

x2x45x4x21hx2
2~3x1

324!,

x3x45x4x31h@x4~4x12x1
3!1x3x2~3x1

226!#12h2x2x1 ,

x1x55x5x11h@x3~3x1
323x1!13x2

2x1
2#1h2S 26x1

41
9

2
x1

61
3

2
x1

2D ,

x2x55x5x21h@3x2
3x11x3x2~3x1

226!#1h2x2S 6x129x1
31

9

2
x1

5D ,

x3x55x5x31h@x5~5x12x1
3!1x3

2~3x1
229!13x3x2

2x1#1h2x3S 2
15

2
x116x1

31
3

2
x1

5D
1h3C~x1

82x1
2!,

x4x55x5x41h@x5x2~1023x1
2!1x4x3~3x1

2212!13x4x2
2x1#

1h2Fx4S 224x119x1
31

3

2
x1

5D16x3x2G1h3x2@2~612C!x113Cx1
7#,

where CPk is an arbitrary parameter. Then the semigroup quotient algebra k@@h##^&/I h
2 defines

a quantum semigroup G5uh
2 in the sense of Definition IX.2 with a comultiplication defined by (11

Namely,

Dx15x1^ x1 ,

Dx25x1^ x21x2^ x1
2,

Dx35x1^ x31x2^ x1x21x2^ x2x11x3^ x1
3, ~121!

Dx45x1^ x41x2^ x1x31x2^ x2
21x2^ x3x11x3^ x1

2x21x3^ x1x2x11x3^ x2x1
21x4^ x1

4,
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Dx55x1^ x51x2^ x1x41x2^ x2x31x2^ x3x21x2x4x11x3x1
2x31x3^ x1x2

2

1x3^ x1x3x11x3^ x2x1x21x3^ x2
2x11x3^ x3x1

21x4^ x1
3x2

1x4^ x1
2x2x11x4^ x1x2x1

21x4^ x2x1
31x5^ x1

4 .

Moreover, the semigroup algebra k@@h##^X& has the Poincare´–Birkhoff–Witt property.
Proof: The proof is constructive. We look for a set of relationsR h

2 in k@@h##^X& in the
following form:

x1x25x2x1 ,

x1x35x3x11h~2x1
21x1

4!,

x2x35x3x21hx2~x1
322x1!,

x1x45x4x11hx2~3x1
322x1!,

x2x45x4x21hx2
2~3x1

324!1h2f 1~x1!,

x3x45x4x31h@x4~4x12x1
3!1x3x2~3x1

226!#1h2x2f 2~x1!,

x1x55x5x11h@x3~3x1
323x1!13x2

2x1
2#1h2f 3~x1!,

x2x55x5x21h@x3x2~3x1
226!13x2

3x1#1h2x2f 4~x1!,

x3x55x5x31h@x5~5x12x1
3!1x3

2~3x1
229!13x3x2

2x1#1h2@x3f 5~x1!1x2
2f 6~x1!#1h3f 7~x1!,

x4x55x5x41h@x5x2~1023x1
2!1x4x3~3x1

2212!13x4x2
2x1#

1h2@x4f 8~x1!1x3x2f 9~x1!1x2
3f 10~x1!#1h3x2f 11~x1!, ~122!

where $ f i(x)%1< i<11 is a set of arbitrary polynomials. Since the degree ofh is uhu52 and the
degree ofx1 is ux1u50 this is the most general form of the set of relations that one can have,
that their quasi-classical limit gives the Poisson–Lie structure onG5

2.
We now requirek@@h##^X&/I h

2 to be a bialgebra, that is, thatD be an algebra homomorphism
This leads to some restrictions on the polynomialsf i(x). Using the formulas for comultiplication
~121! one can see that the first four relations are compatible with the coalgebra structure
obtains functional equations forf i(x) from the remaining six relations after a reduction to
canonical form. We shall analyze first the equations that arise from terms of orderh2.

~a! The compatibility with comultiplication induces that

D~x2x4!5D~x4x2!1h~24Dx2
213D~x2

2x1
2!!1h2f 1~Dx1!.

After reducing both sides of this relation to a canonical form, using the comultiplication form
~121!, we obtain the following linear functional equation forf 1(x): 2 f 1(x1^ x1)1x1

2
^ f 1(x1)

1x1
6

^ f 1(x1)50. From now on since all equations for the unknownsf i will depend only on the
variablex1 we shall use the notationxªx1. Therefore we have

2 f 1~x^ x!1x2
^ f 1~x!1x6

^ f 1~x!50.

The most general solution of the above equation is

f 1~x!5C1~x62x2!,
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whereC1Pk is an arbitrary constant. There are no terms of higher order inh that arise in the
analysis of this relation. We move on to the next.

~b! Again after reducing to a canonical form both sides of

D~x3x4!5D~x4x3!1h~D~4x4x1!2D~x4x1
3!2D~6x3x2!1D~3x3x2x1

2!!1h2D~x2f 2~x1!!,

we obtain two equations. One of them arises from a term proportional tox2^ 1, that is, we have
a term of the form

~x2^ 1!@2 f 2~x1^ x1!1~222C1!x1^ x11 f 2~x1! ^ x1
51~2212C1!x1^ x1

5#,

which does not cancel. It leads to the equation

2 f 2~x^ x!1~222C1!x^ x1 f 2~x! ^ x51~2212C1!x^ x550. ~123!

The term proportional to 1̂ x2 leads to

2 f 2~x^ x!1x^ f 2~x!22C1x^ x512C1x5
^ x550. ~124!

Solving ~123! and ~124! together we obtain

f 2~x!5~222C1!x12C1x5.

There are no terms of higher order inh arising from this relation.
At this stage of the calculation we check whether the PBW property is satisfied in the s

gebra ofk@@h##^X& generated by the set$x1 ,x2 ,x3 ,x4% and subject to the first six relations o
~122!. By direct calculation, using the Diamond Lemma, one shows that the monomialx2x3x4 can
be reduced to a unique canonical form if and only ifC150. The other possible monomials of thre
variables have a unique canonical form. Therefore we obtain that

f 1~x!50 and f 2~x!52x.

~c! From the next relation one has

D~x1x5!5D~x5x1!1h~23D~x3x1!13D~x2
2x1

2!13D~x3x1
3!!1h2f 3~Dx1!;

after a reduction to a canonical form one is lead to the equation

2 f 3~x^ x!1x2
^ f 3~x!16x2

^ x41x6
^ f 3~x!26x4

^ x426x2
^ x616x4

^ x650.

The most general solution of the above equation is given by

f 3~x!56x226x41C2~x62x2!,

whereC2Pk is an arbitrary constant. There are no terms of orderh3 or higher that arise after the
reduction to a canonical form of thisabove relation.

~d! The analysis of the next relation,

D~x2x5!5D~x5x2!1h~26D~x3x2!13D~x2
3x1!13D~x3x2x1

2!!1h2D~x2f 4~x1!!,

leads to two equations. The first one is

2 f 4~x^ x!1~1522C2!x^ x1 f 4~x! ^ x529x3
^ x31~21512C2!x^ x519x3

^ x550,

~125!

and comes from a term proportional toh2x2^ 1. The second equation comes from a term prop
tional to h2(1^ x2) and reads as
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2 f 4~x^ x!1x^ f 4~x!19x^ x329x3
^ x32C2x^ x51C2x5

^ x550. ~126!

Solving together~125! and ~126! one obtains

f 4~x!5~1522C2!x29x31C2x5. ~127!

There are no terms of higher order inh that do not cancel after the reduction to a canonical fo
~e! We move on to the next relation which gives

D~x3x5!5D~x5x3!1hD~5x5x129x3
213x3x2

2x113x3
2x1

22x5x1
3!

1h2D@x3f 5~x1!1x2
2f 6~x1!#1h3D f 7~x1!.

Terms of orderh2 give rise to five functional equations which we now describe.
~i! A term proportional tox3^ 1 gives rise to

2 f 5~x^ x!1~623C2!x^ x1 f 5~x! ^ x516x3
^ x326x3

^ x51~2613C2!x^ x550,
~128!

and a term prortional to 1̂x3 gives rise to the equation

2 f 5~x^ x!1x^ f 5~x!26x^ x316x3
^ x31~32C2!x^ x51~231C2!x5

^ x550. ~129!

Solving ~128! and ~129! together we obtain forf 5,

f 5~x!5~623C2!x16x31~231C2!x5.

~ii ! Terms proportional tox2
2

^ 1 and 1̂ x2
2 give rise to another two functional equations:

2 f 6~x^ x!1x4
^ f 6~x!50, ~130!

and

2 f 6~x^ x!11^ f 6~x!50, ~131!

respectively. The only solution that satisfies both~130! and ~131! is

f 6~x!50. ~132!

~iii ! The last term from the terms of orderh2 is a term proportional tox2^ x2 which gives rise
to the following equation forf 5 and f 6:

22 f 5~x^ x!1~1226C2!x^ x22~x^ x! f 6~x^ x!112x3
^ x31~2612C2!x5

^ x550.
~133!

After substituting the solutionsf 5(x) and~132! into ~133! we obtain that it is satisfied identically
There is one term of orderh3 that arises which gives rise to

x2
^ f 7~x!1 f 7~x! ^ x82 f 7~x^ x!50. ~134!

The most general solution of~134! is given by

f 7~x!5C3~x82x2!,

whereC3Pk is an arbitrary constant. No terms of higher order inh arise.
~f! The last relation to be analyzed is
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D~x4x5!5D~x5x4!1hD~10x5x2212x4x313x4x2
2x113x4x3x1

223x5x2x1
2!

1h2D@x4f 8~x1!1x3x2f 9~x1!1x2
3f 10~x1!#1h3D~x2f 11~x1!!.

After reducing to a canonical form both sides of the above relation we obtain ten terms of ordh2

that do not cancel and two terms of orderh3. We analyze first the terms of orderh2.
~i! Two terms proportional tox4^ 1 and 1̂ x4 give rise to the following two equations:

2 f 8~x^ x!1~2624C2!x^ x1 f 8~x! ^ x519x3
^ x31~614C2!x^ x529x3

^ x550,
~135!

2 f 8~x^ x!1x^ f 8~x!29x^ x319x3
^ x31~32C2!x^ x51~231C2!x5

^ x550. ~136!

The most general solution of~135! and ~136! is

f 8~x!5~2624C2!x19x31~231C2!x5. ~137!

~ii ! Terms proportional tox3x2^ 1 and 1̂ x3x2 give rise to the equations

6~1^ 1!2 f 9~x^ x!26~1^ x4!1 f 9~x! ^ x450, ~138!

2 f 9~x^ x!11^ f 9~x!50. ~139!

The solution of the system~138! and ~139! is

f 9~x!56. ~140!

~iii ! A term proportional tox3^ x2 gives rise to

23 f 8~x^ x!1~212212C2!x^ x2~x^ x! f 9~x^ x!127x3
^ x31~2913C2!x5

^ x550.
~141!

After substituting~137! and~140! into ~141! it yields an identity. Similarly the term proportiona
to x2^ x3 leads to an identity.

~iv! Two terms proportional tox2
3

^ 1 and 1̂ x2
3 lead to the equations

2 f 10~x^ x!1 f 10~x! ^ x350, ~142!

1^ f 10~x!2~x^ 1! f 10~x^ x!50. ~143!

The only solution of~142! and ~143! solved together is

f 10~x!50. ~144!

~v! The terms proportional tox2^ x2
2 andx2

2
^ x2 give rise to

2 f 8~x^ x!1~624C2!x^ x22~x^ x! f 9~x^ x!

23~x2
^ x2! f 10~x^ x!19x3

^ x31~231C2!x5
^ x550, ~145!

and

12~1^ 1!22 f 9~x^ x!23~x^ x! f 10~x^ x!50, ~146!

which are identically satisfied. This becomes obvious after substituting~137!, ~140!, and~144! into
~145! and~146!. The two terms of orderh3 are proportional tox2^ 1 and 1̂ x2 and give rise to

2 f 11~x^ x!1~322C222C3!x^ x1 f 11~x! ^ x1~2312C212C3!x^ x750, ~147!
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2 f 11~x^ x!1x^ f 11~x!23C3x^ x713C3x7
^ x750, ~148!

respectively. The most general solution of~147! and ~148! is

f 11~x!5~322C222C3!x13C3x7.

We need one last step in order to complete the construction. We would like to find wheth
so obtained set of relations define an algebra with the PBW property. After lengthy and te
calculation one shows that the requirement that the monomialsx1x3x5, x1x4x5, x2x4x5, and
x3x4x5 can be reduced to a unique canonical form imposes the following single equation o
arbitrary constantC2:

2912C250.

The monomialx1x2x5 is reducible to a canonical form without imposing any conditions. T
C25 9

2. If we introduceCªC3 we obtain the statement of the Theorem. This concludes
proof. h

Remark IX.1: Notice that our construction yields a one-parameter family of quantum s
groups G5uh

2uC parametrized by C. Theorem I.2 describes a family of quantum semigroups pa
etrized by even more parameters.

Let G4
15G`

1 mod un11, for n>4, be the finite-dimensional~dim 5 4, d51) Poisson–Lie
group with a Poisson–Lie structure defined by

$xi ,xj%5~ i 21! jx jxi 212 i ~ j 21!xixj 211xi (
s11s25 j

xs1
xs2

2xj (
s11s25 i

xs1
xs2

.

The explicit formulas for the Poisson brackets were given in the Introduction and their qua
tion was described by Theorem I.2.

Remark IX.2: The proof of Theorem I.2 goes along the same lines as the proof of Th
IX.1, that is, it is constructive. In the course of the construction five arbitrary const
C1 ,C2 ,C3 ,C4 ,C5 appear in solving the corresponding functional equations. The requiremen
the existence of a PBW basis fixes two of them. Namely, C151 and C25222C3. Thus we obtain
a 3-parameter family of quantum semigroups G4uh

1uC3 ,C4 ,C5 .
Finally we describe a third quantum semigroup arising after the quantization of the Po

algebra of functions on the finite-dimensional~dim 5 5, d53) Poisson–Lie groupG5
3. The

Poisson–Lie structure onG5
3 is given by

$xi ,xj%5~ i 23! jx jxi 232 i ~ j 23!xixj 231xi (
s11s21s31s45 j

xs1
xs2

xs3
xs4

2xj (
s11s21s31s45 i

xs1
xs2

xs3
xs4

.

The above formulas are obtained again from~117! with d53. Writing them explicitly we have

$x1 ,x2%50,

$x1 ,x3%50,

$x2 ,x3%50,

$x1 ,x4%5x1
52x1

2,

$x2 ,x4%5x2~x1
422x1!,
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$x3 ,x4%5x3~x1
423x1!,

$x1 ,x5%5x2~4x1
422x1!,

$x2 ,x5%5x2
2~4x1

424!,

$x3 ,x5%5x3x2~4x1
326!,

$x4 ,x5%5x4x2~4x1
328!1x5~5x12x1

4!.

Then we have our last theorem.
Theorem IX.2: Let X5$xi%1< i<5 be a set and let̂ X& be the associative semigrou

with identity generated by X. Consider an idealI h
3 generated by the set of relationsR h

3 in
k@@h##^X&:

x1x25x2x1 ,

x1x35x3x1 ,

x2x35x3x2 ,

x1x45x4x11h~x1
52x1

2!,

x2x45x4x21hx2~x1
422x1!,

x3x45x4x31hx3~x1
423x1!,

x1x55x5x11hx2~4x1
422x1!,

x2x55x5x21hx2
2~4x1

424!,

x3x55x5x31hx3x2~4x1
326!,

x4x55x5x41h@x4x2~4x1
328!1x5~5x12x1

4!#1h23x2x1 .

Then the semigroup quotient algebra k@@h##^X&/I h
3 defines a quantum semigroup G5uh

3 in the
sense of Definition IX.2 with a comultiplication defined by (121), and the semigroup alg
k@@h##^X& has the Poincare´–Birkhoff–Witt property.

Remark IX.3: The proof is again constructive. Note that no arbitrary parameters aris
dimension 5 for d53. Arbitrary parameters arise in higher dimensions though. We have b
able to construct all quantum semigroups Gnuh

d for n<7 and d<5. However, we refrain from
describing more examples here.
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Functional versus canonical quantization of a nonlocal
massive vector-gauge theory

R. Amorima) and J. Barcelos-Netob)
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RJ 21945-970, Caixa Postal 68528, Brazil
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It has been shown in literature that a possible mechanism of mass generation for
gauge fields is through a topological coupling of vector and tensor fields. After
integrating over the tensor degrees of freedom, one arrives at an effective massive
theory that, although gauge invariant, is nonlocal. Here we quantize this nonlocal
resulting theory both by path integral and canonical procedures. This system can be
considered as equivalent to one with an infinite number of time derivatives and
consequently an infinite number of momenta. This means that the use of the ca-
nonical formalism deserves some care. We show the consistency of the formalism
we use in the canonical procedure by showing that the obtained propagators are the
same as those of the~Lagrangian! path integral approach. The problem of nonlo-
cality appears in the obtainment of the spectrum of the theory. This fact becomes
very transparent when we list the infinite number of commutators involving the
fields and their velocities. ©1999 American Institute of Physics.
@S0022-2488~99!03501-X#

I. INTRODUCTION

It is widely accepted that the forces of nature are described by gauge theories. These t
are characterized by the gauge symmetries which are related to massless fields. However
times it is necessary that these fields become massful, as occurs, for instance, in the cas
Salam–Weinberg theory. Nowadays, it has also been widely accepted that spontaneous sy
breaking together with the Higgs mechanism is the most probable explanation for the origin
acquisition of mass by gauge fields. However, if this is actually true, the Higgs bosons mus
in nature. The point is that there is no precise theoretical prediction on the mass scale wher
fields could be found and experiments until now have shown no evidence about them.

In this way, alternative mechanisms of mass generation for gauge fields that do not spo
is well established and that do not contain Higgs bosons are welcome. This might be the c
vector–tensor gauge theories,1 where vector and tensor fields are coupled in a topological way
means of a kind of Chern–Simons term. The general idea of this mechanism resides
following: Tensor gauge fields2 are antisymmetric quantities and consequently inD54 they
exhibit six degrees of freedom. By virtue of the massless condition, the number of degre
freedom goes down to four. Since the gauge parameter is a vector quantity, this number wo
zero if all of its components were independent. This is nonetheless the case because the s
reducible~which means that the gauge transformations are not all independent! and we mention
that the final number of physical degrees of freedom is one. It is precisely this degree of fre
that can be absorbed by the vector gauge field in the vector–tensor gauge theory in o
acquire mass.1,3 This peculiar structure of constraints involving tensor gauge theories implies
quantization as well as its non-Abelian formulation deserve some care and a reasonable am
work has been done on these subjects.4–7

a!Electronic mail: amorim@if.ufrj.br
b!Electronic mail: barcelos@if.ufrj.br
5850022-2488/99/40(2)/585/16/$15.00 © 1999 American Institute of Physics
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Usually, the treatment of the vector–tensor gauge theory is carried out with both vecto
tensor fields placed together and just at the end the integration over the tensor field is done i
to obtain the effective result for the vector theory. This procedure usually hides an imp
aspect of this effective theory, that is, its nonlocality. We mention that it is equivalent to a th
with an infinite number of higher derivative terms and, consequently, an infinite number o
menta also.

It is not our purpose here to advocate if a vector–tensor gauge theory with topolo
coupling is more suitable to explain the mass generation than the usual spontaneous sy
breaking together with the Higgs mechanism. Our intention in the present paper is to stu
quantization of a massive vector gauge field directly by means of the nonlocal effe
Lagrangian.8 We do it both by path integral, where we use a Lagrangian formulation, as well a
the canonical approach. This is the subject of Secs. II and III, respectively. We would like a
add that the non-Abelian formulation for the vector tensor gauge theory is not a simple task
is so because the non-Abelian version loses the reducibility condition unless we consider t
Maxwell stress tensor is zero.6 Another possibility is to introduce a kind of Stuckelberg field, th
disappears in the Abelian limit, in order to keep the same number of degrees of freedom i
sectors~Abelian and non-Abelian! of the theory.7 We shall consider only the Abelian case in th
paper. We left Sec. IV for some concluding remarks and include four appendices to present
of some calculations.

II. BRIEF REVIEW OF THE VECTOR–TENSOR GAUGE THEORY AND THE PATH
INTEGRAL QUANTIZATION OF THE EFFECTIVE VECTOR THEORY

The Abelian theory for vector and tensor fields coupled in a topological way is describe
the Lagrangian density:1

L52
1

4
FmnFmn1

1

12
HmnrHmnr1

m

2
emnrlBmnFrl , ~2.1!

whereFmn andHmnr are totally antisymmetric tensors written in terms of the potentialsAm and
Bmn ~also antisymmetric! through the stress tensors

Fmn5]mAn2]nAm , ~2.2!

Hmnr5]mBnr1]rBmn1]nBrm . ~2.3!

In expression~2.1!, emnrl is the totally antisymmetric symbol andm is a mass parameter. It is eas
to see, by using the~coupled! Euler–Lagrange equations forAm andBmn, as well as the Jacob
identity, thatFmn satisfy a massive Klein–Gordon equation, with a mass parameterm.1

We observe that the Lagrangian~2.1! is invariant under the gauge transformations

dAm5]mL, ~2.4!

dBmn5]mLn2]nLm, ~2.5!

whereL andLm are~before fixing the gauge! generic functions of space–time. This is a reducib
theory, which means that not all the gauge transformations above are independent. In fac
choose the gauge parameterLm as the gradient of some scalarV we have thatBmn does not
change under the gauge transformation~2.5!.

Functionally integrating over the antisymmetric tensor fieldBmn we get, after a convenien
gauge fixing procedure, the effective action3

S0@Am#52
1

4 E d4x FmnS 11
m2

h
DFmn. ~2.6!
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The action~2.6!, although nonlocal, is gauge invariant. It is important to emphasize that
theory is renormalizable, a characteristic that is lost when a mass term is directly put by h
in the Proca theory.

Let us calculate the~covariant! propagator for the fieldAm . We opt to use a Lagrangia
formulation in order to avoid the problem of the infinite number of momenta. Let us use
Batalin–Vilkovisky ~BV! formalism.5,9 The nonminimum BV action can be written as

S5S01E dx~Am* ]mc1bc̄* !, ~2.7!

where theAm* and the pair (c* ,c̄* ) are, respectively, the antifields of the gauge fieldAm and of the
ghosts (c,c̄). The auxiliary fieldb was introduced in order to fix the gauge in a covariant w
This can be done, for instance, with the aid of the gauge-fixing fermion functional

C5E dx c̄~2ab1]mAm!, ~2.8!

with a being a parameter. The vacuum functional is defined by5,9

ZC5E @dAm#@dc̄#@dc#@db#@dAm* #@dc̄* #@dc* #dFf* 2
dC

df Gexp$ iS%. ~2.9!

The actionS is given by ~2.7! and f is generically referring to gauge and ghost fields. Af
functionally integrating over the antifields as well as over the auxiliary fieldb, we arrive at

S̄@J#5E d4xF2
1

4
FmnS 11

m2

h
DFmn2]mc̄]mc1

1

2a
~]mAm!21JmAmG , ~2.10!

where we have introduced an external sourceJm in order to calculate the propagator. This can
directly obtained by a straightforward calculation. The result, written in momentum space,

Kmn52
1

k21m2 Fhmn1S a21

k2 1
m2

k4 D kmknG . ~2.11!

We notice that there is actually a mass pole atk0
25kW21m2.

In Sec. III we are going to see how this and other features appear in terms of a can
quantization procedure.

III. CANONICAL QUANTIZATION

Let us consider the Lagrangian for vector fields of Eq.~2.10!,

L52
1

4
FmnS 11

m2

h
DFmn2

1

2a
~]mAm!2. ~3.1!

To implement the process of canonical quantization for such system, it is necessary to obt
canonical momenta. So, we have to isolate the time derivatives from the nonlocal operatorh21.
We then conveniently write

1

h
52~¹22] t

2!2152
1

¹22
] t

2

¹42
] t

4

¹62¯ . ~3.2!

As one observes, the system described by~3.1! is effectively a system with an infinite numbe
of time derivatives and consequently it contains an infinite number of momenta.10,11 A practical
way of obtaining the momentum expressions is to consider the variation of the action by fixin
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fields and their velocities at just one of the extreme times, say,dAm(xW ,t0)505dȦm(xW ,t0)
5dÄm(xW ,t0)5¯ . After some algebraic calculation, we get~please, see Appendix A!

dE
t0

t

dtE d3xW L5E
t0

t

dtE d3xW F S 11
m2

h
D ]mFmn1

1

a
]m]nAmGdAn2E d3xW F S 11

m2

h
DF0n

1
m2

2h

] i

¹2 Ḟ in1
1

a
]mAmh0nGdAn1

m2

2 E d3xW
1

h

]m

¹2 FmndȦn

2
m2

2 E d3xW
1

h
S 1

¹2 F0n1
] i

¹4 Ḟ inD dÄn1
m2

2 E d3xW
1

h

]m

¹4 FmndÂn1¯ .

~3.3!

The coefficient ofdAn in the first term is the equation of motion, namely,

S 11
m2

h
D ]mFmn1

1

a
]m]nAm50. ~3.4!

In the remaining terms, the coefficients ofdAn, dȦn, dÄn, etc., are the canonical momentu
conjugate toAn, Ȧn, Än, etc. Denoting these momenta bypn , pn

(1) , pn
(2) , etc., we have

pn52S 11
m2

h
DF0n2

m2

2h

] i

¹2 Ḟ in2
1

a
]mAmh0n ,

pn
~1!5

m2

2h

]m

¹2 Fmn ,

pn
~2!52

m2

2h

1

¹2 S F0n1
] i

¹2 Ḟ inD ,

~3.5!

pn
~3!5

m2

2h

]m

¹4 Fmn ,

pn
~4!52

m2

2h

1

¹4 S F0n1
] i

¹2 Ḟ inD ,

A.

Systems with higher derivatives have fields and their velocities as independent coord
For example, a system with two derivatives has its fields~denoting them generically byf! and
their velocitiesḟ as independent coordinates. If there are no constraints in the theory, the P
brackets~PB! are the bridge to the quantum commutator. Thus, we must have@f,ḟ#50. The
commutators that might not be zero are those~in this example with two derivatives! involving f
and ḟ with the higher derivativesf̈ and f̂.11

The problem that comes out in the system we are studying is that there is an infinite n
of time derivatives and it is not cleara priori which commutators are not zero. In order to try
figure them out we take the Lagrangian~3.1!, expanded int derivatives, until a certain limit orde
n and at the end we letn go to infinity. Let us then consider the expansion~3.2! until ] t

2, which
is the first nontrivial order,

L352
1

4
FmnFmn1

m2

4
FmnS 11

] t
2

¹2D 1

¹2 Fmn2
1

2a
~]mAm!2. ~3.6!
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The equation of motion and the momenta are given by

]mFmn2m2S 11
] t

2

¹2D ]m

¹2 Fmn1
1

a
]m]nAm50, ~3.7!

pn52F0n1m2S 11
] t

2

¹2D 1

¹2 F0n1
m2

2

] i] t

¹4 Fin2
1

a
h0n]mAm, ~3.8!

pn
~1!52

m2

2

]m

¹4 Fmn , ~3.9!

pn
~2!5

m2

2

1

¹4 F0n . ~3.10!

In this order, the phase-space coordinate is given by (Am ,pn) % (Ȧm ,p (1)n) % (Äm ,p (2)n). We
thus observe that relations~3.9! and~3.10! are constraints, as well as the zero component ofpn .
The fundamental nonvanishing PB are

$Am~xW ,t !,pn~yW ,t !%5dm
n d~xW2yW !,

$Ȧm~xW ,t !,p~1!n~yW ,t !%5dm
n d~xW2yW !, ~3.11!

$Äm~xW ,t !,p~2!n~yW ,t !%5dm
n d~xW2yW !.

In order to calculate the PB matrix of the constraints, it is convenient to develop them sepa
all the velocities. The result is

T05p01S 1

a
1

m2

2¹2D Ȧ01
m2

2¹4 ] i Äi1
1

a
] iA

i , ~3.12!

Tn
~1!5pn

~1!2
m2

2¹4 @¹2An1dn
0] i Ȧ

i2dn
i ~Äi2] i Ȧ02] i] jA

j !#, ~3.13!

Tn
~2!5pn

~2!1dn
i m2

2¹4 ~] iA02Ȧi !. ~3.14!

We observe that the last constraint forn50 becomesT0
(2)5p0

(2) . We also observe that the othe
constraints do not containÄ0 and consequently the PB matrix for the constraints above will
singular~in fact, Ä0 does not play any role in the theory!. Thus, instead of the constraint~3.14!, we
take

Ti
~2!5p i

~2!1
m2

2¹4 ~] iA02Ȧi !. ~3.15!

The PB matrix of the constraints reads
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S5S 0 m2d0
nS 1

a
1

1

¹2D m2
] j

¹4

2m2dm
0 S 1

a
1

1

¹2D 2m2~dm
0 hkn1dm

k h0n!
]k

¹4 m2dm
j 1

¹4

m2
]1

¹4 2m2d i
n

1

¹4 0

D d~xW2yW !. ~3.16!

Since this matrix involves space and time indices separately, the calculation of its inve
requires some care. The details of the calculation are presented in Appendix B. The result r

S215S 0 2ad0
n a] j

adm
0 2a~dm

0 dk
n]k1dm

k d0
n]k! 2dm

k S dk
j ¹4

m22a]k]
j D

a] i dk
nS d i

k ¹4

m22a]k] i D 0
D d~xW2yW !. ~3.17!

With this inverse, we directly obtain the following Dirac brackets~DB!:12

$Ȧm~xW ,t !,An~yW ,t !%D5adm
0 d0

nd~xW2yW !,
~3.18!

$Äm~xW ,t !,An~yW ,t !%D5adm
i d0

n] id~xW2yW !.

The bracket$Âm ,An% is obtained from$pm ,An%. The result is

$Âm~xW ,t !,An~yW ,t !%52dm
n

¹4

m2 d~xW2yW !. ~3.19!

The commutators follow directly from expressions~3.18! and ~3.19!, i.e.,

@Ȧm~xW ,t !,An~yW ,t !#5 iadm
0 d0

nd~xW2yW !,

@Äm~xW ,t !,An~yW ,t !#5 iadm
i d0

n] id~xW2yW !, ~3.20!

@Âm~xW ,t !,An~yW ,t !#52 idm
n

¹4

m2 d~xW2yW !.

It might be opportune and instructive to call our attention to the following fact. We notice th
from the first commutator above we get@Ȧi(xW ,t),Aj (yW ,t)#50. Since there is no dependence of this
result with the mass parameterm, it may appear that there is a conflict with the limit case when
m→0, where the Maxwell theory is obtained. We know that this commutator is not zero in t
Maxwell theory. What happens is that in the limit ofm→0, the structure of constraints is not the
same as in the massful case, and consequently, the results we obtain in one sector cannot b
in the other. We find it important to explain this point with detail in order to reinforce th
formalism we are using. We use Appendix C to do this.

Let us now consider the propagator calculation. One can directly show by using the p
integral formalism that the propagator corresponds to the inverse of the operator that appea
the equation of motion. Considering~3.7!, we have

H hmnF12S 11
] t

2

¹2D m2

¹2Gh1F 1

a
211S 11

] t
2

¹2D m2

¹2G]m]nJ An50. ~3.21!
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This means that the propagator must satisfy the equation

H hmnF12S 11
] t

2

¹2D m2

¹2Gh1F 1

a
211S 11

] t
2

¹2D m2

¹2G]m]nJ T~An~x!Ar~x8!!5 idm
r d~xW2xW8!.

~3.22!

If what we have done until now is consistent, that is to say, if the quantization is embodied
commutators~3.20!, the expression~3.22! ought to be verified. In fact, after a hard algebra
calculation, we show that this actually occurs~see Appendix D for some details!.

Let us now consider the Lagrangian with the next term of the expansion ofh21,

L452
1

4
FmnFmn1

m2

4
FmnS 11

] t
2

¹2 1
] t

4

¹4D 1

¹2 Fmn2
1

2a
~]mAm!2. ~3.23!

Proceeding as before we obtain the equation of motion

]mFmn2m2S 11
] t

2

¹2 1
] t

4

¹4D ]m

¹2 Fmn1
1

a
]m]nAm50 ~3.24!

and the momentum expressions

pn52F0n1m2S 11
] t

2

¹2 1
] t

4

¹4D 1

¹2 F0n1
m2

2 S 11
] t

2

¹2D ] i] t

¹4 Fin2
1

a
h0n]mAm,

pn
~1!52

m2

2 S 11
] t

2

¹2D ]m

¹4 Fmn , pn
~2!5

m2

2 S 11
] t

2

¹2D 1

¹4 F0n1
m2

2

] t]
i

¹6 Fin , ~3.25!

pn
~3!52

m2

2¹6 ]mFmn , pn
~4!5

m2

2¹6 F0n .

The set of independent constraints is now given by

T05p01
1

a
] iA

i1S m2

2¹2 1
1

a D Ȧ01
m2

2

] i

¹4 Äi1
m2

2¹4 Â01
m2

2

] i

¹6 Ä̈ i ,

Tm
~1!5pm

~1!2
m2

2¹2 S Am1dm
i ] i] j

¹2 Aj D2
m2

2
dm

0 ] i

¹4 Ȧi2
m2

2
dm

i ] i

¹4 Ȧ02
m2

2
dm

0 1

¹4 Ä0

2
m2

2
dm

i ] i] j

¹6 Äj2
m2

2
dm

0 ] i

¹6 Âi2
m2

2
dm

i ] i

¹6 Â01
m2

2
dm

i 1

¹6 Ä̈ i ,

Ti
~2!5p i

~2!1
m2

2

] i

¹4 A01
m2

2

] i] j

¹6 Ȧj1
m2

2

] i

¹4 Ä02
m2

2¹6 Âi , ~3.26!

Ti
~3!5p i

~3!2
m2

2¹4 Ai2
m2

2

] i] j

¹6 Aj2
m2

2

] i

¹6 Ȧ01
m2

2¹6 Äi ,

Ti
~4!5p i

~4!1
m2

2

] i

¹6 A02
m2

2¹6 Ȧi ,

where, as before, velocities were conveniently separated. In the last constraint, we ha
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considered the indexm50 because there is no other term involvingÄ̈ 0 . We have not also
considered the zero components ofTm

(2) and Tm
(3) because these components do not consti

independent constraints.
With these constraints, we calculate the DB involving fields and their velocities, in the

way we have done in the previous approximation. The quantization of the present approxim
is expressed by the following commutators:

@Ȧm~xW ,t !,An~yW ,t !#5 iadm
0 d0

nd~xW2yW !,

@Äm~xW ,t !,An~yW ,t !#5 iadm
k d0

n]kd~xW2yW !,
~3.27!

@Âm~xW ,t !,An~yW ,t !#50, @ Ä̈ m~xW ,t !,An~yW ,t !#50,

@ A
~v !

m~xW ,t !,An~yW ,t !#52 idm
n

¹6

m2 d~xW2yW !,

where A
(v)

m stands for five time derivatives overAm . Using the commutators above, one can a
show that the propagator satisfies a similar relation like~3.23! with the operator that appears in th
equation of motion~3.25!. This shows that the commutators above are also consistent relat

Now it is not difficult to infer the commutator relations when all the terms of the oper
h21 are taken into account. These are given by

@Ȧm~xW ,t !,An~yW ,t !#5 iadm
0 d0

nd~xW2yW !,

@Äm~xW ,t !,An~yW ,t !#5 iadm
k d0

n]kd~xW2yW !,

@Âm~xW ,t !,An~yW ,t !#50,

@ Ä̈ m~xW ,t !,An~yW ,t !#50, ~3.28!

@ A
~v !

m~xW ,t !,An~yW ,t !#50,

A

lim
n→`

~@ A
~2n21!

m~xW ,t !,An~yW ,t !# !52 idm
n

¹2n

m2 d~xW2yW !.

We see in this way that the canonical structure, despite its nonlocality, is perfectly cons
with the functional procedure, generating propagators for the vectorial theory which displa
presence of a massive field. To develop the theory furthermore, trying to construct the Fock
by introducing creation and annihilation operators for the vectorial fields, this seems to be
trivial. This is so because there is no way, ifm does not vanish, to avoid a canonical depende
between the vectorial field and its derivative of order 2n21, in the limit whenn goes to infinity.
We may say that the set of equations~3.28! shows us where the nonlocability problem appears
the process of quantization of these theories.

IV. CONCLUSION

In this work we have considered the quantization of a nonlocal massive vector gauge inv
field theory, which can be effectively obtained from a vector–tensor theory with topolo
coupling. We have quantized this nonlocal system first by using the BV Lagrangian func
formalism, where the propagator could be obtained without major problems. After that, we
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considered its canonical quantization, where the nonlocalibility becomes a more difficult pro
to be circumvented. The nonlocalibility manifests itself through the canonical independen
commutator level, between the gauge field and its derivative of ordern, in the limit whenn goes
to infinity. We have shown, however, that a systematic use of the canonical quantization pro
order by order permitted us to generate the same Greens functions as those obtained f
functional formalism. On the other hand, the Fock space structure seems difficult to be disp
due to the odd canonical structure generated by the system. As it would be expected, wh
mass parameter goes to zero, the tensor and vector sector of the theory decouple, and
effective vector theory new constraints arise as a consequence of this limit. We have also
in the Appendix C that a careful analysis of these constraints leads to a canonical structure
identical to the usual massless gauge theory.

We could argue about the functional Hamiltonian quantization, due to Batalin, Fradkin
Vilkovisky ~BFV!,13 of this nonlocal system. The use of this formalism here appears to
nontrivial task. Even with the procedure of how to circumvent the infinity number of momenta
still have an additional problem because velocities have to be considered as independent ca
coordinates in higher derivative systems. Consequently, it is necessary to distinguish in the
tonian path integral formalism what is a time derivative of a coordinate and what is an indepe
coordinate itself.14 This problem is presently under study and possible results shall be rep
elsewhere.15
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APPENDIX A: OBTAINMENT OF EQ. „3.3…

Considering the Lagrangian~3.1!, we have for a general variation of the corresponding act

dE
t0

t

dtE d3xW L52E
t0

t

dtE d3xW F1

2
]mdAnS 11

m2

h
DFmn1

1

2
FmnS 11

m2

h
D ]mdAn

1
1

a
~]mAm!]ndAnG . ~A1!

Let us consider each term of the above expression in a separate way. The development of
term leads to

2
1

2 E
t0

t

dtE d3xW ]mdAnS 11
m2

h
DFmn

52
1

2 E
t0

t

dtE d3xW H ]mFdAnS 11
m2

h
DFmnG2dAnS 11

m2

h
D ]mFmnJ

52
1

2 E d3xW dAnS 11
m2

h
DF0n1

1

2 E
t0

t

dtE d3xW dAnS 11
m2

h
D ]mFmn. ~A2!

For the second term, we have
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2
1

2 E
t0

t

dtE d3xW FmnS 11
m2

h
D ]mdAn

52
1

2 E
t0

t

dtE d3xW H ]mFFmnS 11
m2

h
D dAnG2]mFmnS 11

m2

h
D dAnJ

52
1

2 E d3xW F0nS 11
m2

h
D dAn1

1

2 E
t0

t

dtE d3xW ]mFmnS 11
m2

h
D dAn

52
1

2 E d3xW F0ndAn1
1

2 E
t0

t

dtE d3xW ]mFmndAn1
m2

2 E d3xW F0nS 1

¹2 1
] t

2

¹4 1¯ D dAn

2
m2

2 E
t0

t

dtE d3xW]mFmnS 1

¹2 1
] t

2

¹4 1¯ D dAn, ~A3!

where we have used the expansion~3.2!. We observe that in the last term of Eq.~A3!, there is an
integration over time and an infinite number of time derivatives acting overdAn. It is necessary to
use some care to deal with these terms. Let us consider some of them separately,

2
m2

2 E
t0

t

dtE d3xW ]mFmn

] t
2

¹4 dAn

52
m2

2 E
t0

t

dtE d3xW H ] tF ]m

¹4 Fmn] t]AnG2
] t]

m

¹4 Fmn] tdAnJ
52

m2

2 E d3xW
]m

¹4 FmndȦn1
m2

2 E
t0

t

dtE d3xW H ] tF] t]
m

¹4 FmndAnG2
] t

2]m

¹4 FmndAnJ
52

m2

2 E d3xW
]m

¹4 FmndȦn1
m2

2 E d3xW
]m

¹4 ḞmndAn2
m2

2 E
t0

t

dtE d3xW
]m

¹4 F̈mndAn.

~A4!

In a similar way, we would have for the next term

2
m2

2 E
t0

t

dtE d3xW ]mFmn

] t
4

¹6 dAn

52
m2

2 E d3xW
]m

¹6 FmndÂn1
m2

2 E d3xW
]m

¹6 ḞmndÄn2
m2

2 E d3xW
]m

¹6 F̈mndȦn

1
m2

2 E d3xW
]m

¹6 F̂mndAn2
m2

2 E
t0

t

dtE d3xW
] t

4

¹6 ]mFmndAn, ~A5!

and so on. Introducing these results into the initial expression~A3!, we obtain
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2
1

2 E
t0

t

dtE d3xW FmnS 11
m2

h
D ]mdAn

5
1

2 E
t0

t

dtE d3 xW S 11
m2

h
D ]mFmndAn

1
1

2 E d3xW S 2F0n1m2
1

¹2 F0n1m2
]m

¹4 Ḟmn1¯ D dAn

2
m2

2 E d3xW S ]m

¹4 Fmn1
]m

¹6 F̈mn1
]m

¹8 F̈̈ mn1¯ D dȦn

1
m2

2 E d3xW S 1

¹4 F0n1
]m

¹6 Ḟmn1
]m

¹8 F̂mn1¯ D dÄn

2
m2

2 E d3xW S ]m

¹6 Fmn1
]m

¹8 F̈mn1
]m

¹10 F̈̈ mn1¯ D dÂn1¯ . ~A6!

We notice in the expression above that some terms can be put together to reobtain the n
operatorh21. For example,

1

¹2 F0n1
]m

¹4 Ḟmn1
]m

¹6 F̂mn1¯5S 1

¹2 1
] t

2

¹4 1¯ DF0n1S 1

¹4 1
] t

2

¹6 1¯ D ] i Ḟ in

52
1

h
F0n2

1

¹2

] i

h
Ḟ in , ~A7!

]m

¹4 Fmn1
]m

¹6 F̈mn1
]m

¹8 F̈̈ mn1¯52
1

¹2

]m

h
Fmn ~A8!

and so on. Using these results into~A6!, we obtain the final form of the second term of~A1!,

2
1

2 E
t0

t

dtE d3xWFmnS 11
m2

h
D ]mdAn

5
1

2 E
t0

t

dtE d3xW S 11
m2

h
D ]mFmndAn

2
1

2 E d3xW F S 11
m2

h
DF0n1

m2

¹2

] i

h
FinGdAn1

m2

2 E d3xW
1

¹2

]m

h
FmndȦn

2
m2

2 E d3xW S 1

¹2

1

h
F0n1

1

¹4

] i

h
Ḟ inD dÄn

1
m2

2 E d3xW
1

¹4

]m

h
FmndÂn1¯ . ~A9!

We finally consider the last term of expression~A1!,
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2
1

a E
t0

t

dtE d3xW ]mAm]ndAn52
1

a E
t0

t

dtE d3xW @]n~]mAmdAn!2]n]mAmAn#

52
1

a E d3xW ]mAmdA01
1

a E
t0

t

dtE d3xW]n]mAmdAn.

~A10!

Introducing the results given by expressions~A2!, ~A9! and~A10! into the initial expression~A1!,
Eq. ~3.3! is obtained.

APPENDIX B: CALCULATION OF THE INVERSE OF THE MATRIX „3.16…

First we notice that matrix~3.16! has the following block structure:

S5S ~131! ~134! ~133!

~431! ~434! ~433!

~331! ~334! ~333!
D . ~B1!

Of course, since the inverseS21 has the same block structure, we consider it is generically g
by

S215S A Br Ck

Dn En
r Fn

k

Gj H j
r I j

k
D . ~B2!

We then must have

E d3yW S~xW ,yW !S21~yW2zW !5S 1 0 0

0 dm
r 0

0 0 d j
k
D d~xW2zW !. ~B3!

The combination of Eqs.~3.16!, ~B2!, and~B3! gives us the following set of equations~after
integrating over the intermediary variableyW and summing on mudding indices!:

S m2

¹2 1
1

a DD01
m2

¹4 ] jGj5d~xW2zW !,

S m2

¹2 1
1

a DE0
r1

m2

¹4 ] jH j
r50, ~B4!

S m2

¹2 1
1

a DF0
k1

m2

¹4 ] j I j
k50,
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dm
0 S m2

¹2 1
1

a DA1dm
0 m2

¹4 ] jD
j1dm

j m2

¹4 ] jD
02dm

j m2

¹4 Gj50,

dm
0 S m2

¹2 1
1

a DBr1dm
0 m2

¹4 ] jEj
r1dm

j m2

¹4 ] jE0
r2dm

j m2

¹4 H j
r5dm

r d~xW2 ȳ!, ~B5!

dm
0 S m2

¹2 1
1

a DCk1dm
0 m2

¹4 ] jF j
k1dm

j m2

¹4 ] jF0
k2dm

j m2

¹4 I j
k50,

] iA2Di50,

] iB
r2Ei

r50, ~B6!

] iC
k2Fi

k5
¹4

m2 d i
kd~xW2zW !,

S m2

¹2 1
1

a DA1
m2

¹4 ] jD j50,

S m2

¹2 1
1

a DB01
m2

¹4 ] jEj
052d~xW2zW !,

S m2

¹2 1
1

a DBk1
m2

¹4 ] jEj
k50,

S m2

¹2 1
1

a DCk1
m2

¹4 ] jF j
k50,

~B7!
] iE0

02Hi
050,

] iE0
k2Hi

k52
¹4

m2 d i
kd~xW2zW !,

] iD02Gi50,

] iF0
k2I i

k50.

The inverseS21 is obtained by solving these equations. This is just a matter of algebraic work
the solution is

A50,

B052ad~xW2zW !,

Bk50,

Ck5a]kd~xW2zW !,

D05ad~xW2zW !,

Di50,
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E0
050,

Ei
052a] id~xW2zW !,

~B8!
E0

k52a]kd~xW2zW !,

Ei
k50,

F0
k50,

Fi
k5S a] i]

k2d i
k ¹4

m2D d~xW2zW !,

Gj5a] jd~xW2zW !,

H j
050,

H j
k52S a] j]

k2d j
k ¹4

m2D d~xW2zW !,

I j
k50.

These are the elements of the matrixS21 given by ~3.17!.

APPENDIX C: LIMIT m˜0 OF EXPRESSION „3.5…

When we take the limitm→0 in expressions~3.5!, we get the following expressions for th
momenta:

pn52F0n2
1

a
h0n]mAm,

~C1!
pn

~1!50.

The remaining momenta~which are all zero! do not make sense to be considered because in
limit m→0 the system does not have infinite derivatives anymore. We observe that relation~C1!
are constraints. So, the commutators cannot come from the PB ofAm andȦn, that is actually zero,
but from the Dirac one. Let us calculate the DB ofAm andȦn . First, we need the PB matrix of th
constraints. We denote these constraints by

T1m5pm1F0m1
1

a
h0m]nAn,

~C2!
T2m5pm

~1! .

Thus,

~Smn!5S $T1
m ,T1

n% $T1
m ,T2

n%

$T2
m ,T1

n% $T2
m ,T2

n%
D 5S 0 1

21 0D S hmn1
12a

a
h0mh0nD d~xW2yW !. ~C3!

To calculate the DB we need the inverse of the matrix above. This is given by
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~Smn!215S 0 21

1 0 D ~hmn1~a21!h0mh0n!d~xW2yW !. ~C4!

Now, the DB can be directly calculated. The result is

$Am~xW ,t !,Ȧn~yW ,t !%52~dm
n 1~a21!h0md0

n!d~xW2yW !. ~C5!

The commutator betweenAi andȦj can be directly obtained from the DB above and it is actua
nonzero whenm→0, which makes consistent the procedure we are developing.

APPENDIX D: VERIFICATION OF THE IDENTITY „3.22…

Considering that

T~An~x!Ar~x8!!5u~ t2t8!An~x!Ar~x8!1u~ t82t !Ar~x8!An~x! ~D1!

and using the commutators given by expression~3.20! we can obtain the following relations:

]2

]t2 T~An~x!Ar~x8!!5 iad0
nh0rd~x2x8!1T~Än~x!Ar~x8!!,

¹2T~An~x!Ar~x8!!5T~¹2An~x!Ar~x8!!,

hT~An~x!Ar~x8!!5 iad0
nh0rd~x2x8!1T~hAn~x!Ar~x8!!,

1

¹2 hT~An~x!Ar~x8!!5 iad0
nh0r

1

¹2 d~x2x8!1TS 1

¹2 hAn~x!Ar~x8! D , ~D2!

] t
2

¹2 hT~An~x!Ar~x8!!5 i Fad0
nh0r

1

¹2 h1ahn id0
r

] t] i

¹2 2hnr
¹2

m2Gd~x2x8!

1TS ] t
2

¹2 hAn~x!Ar~x8! D ,

]m]nT~An~x!Ar~x8!!5 iadm
0 d0

rd~x2x8!1T~]m]nAn~x!Ar~x8!!,

]m]n] t
2

¹4 T~An~x!Ar~x8!!5 i Fadm
0 d0

r
] t

2

¹4 1adm
i d0

r
] i] t

¹4 2dm
0 d0

r
1

m22adm
0 d0

r
1

¹2Gd~x2x8!

1TS ]m]n] t
2

¹4 An~x!Ar~x8! D .

Using the relations above in the left-hand side of Eq.~3.22! we can show that the identity i
actually satisfied.

1E. Cremmer and J. Scherk, Nucl. Phys. B72, 117~1974!; see also, T. J. Allen, M. J. Bowick, and A. Lahiri, Mod. Phy
Lett. A 6, 559 ~1991!.

2M. Kalb and P. Ramond, Phys. Rev. D9, 2273~1974!.
3R. Amorim and J. Barcelos-Neto, Mod. Phys. Lett. A10, 917 ~1995!.
4R. K. Kaul, Phys. Rev. D18, 1127~1978!; C. R. Hagen,ibid. 19, 2367~1979!; V. O. Rivelles and L. Sandoval, Rev
Bras. Fis.21, 274~1991!; A. Lahiri, Mod. Phys. Lett. A8, 2403~1993!; J. Barcelos-Neto and M. B. D. Silva, Int. J. Mod
Phys. A10, 3759~1995!; Mod. Phys. Lett. A11, 515 ~1996!.

5See also M. Henneaux and C. Teitelboim,Quantization of Gauge Systems~Princeton University Press, Princeton, 1992!;
J. Gomis, J. Parı´s, and S. Samuel, Phys. Rep.259, 1 ~1995!, and references therein.

6D. Z. Freedam and P. K. Townsend, Nucl. Phys. B177, 282 ~1981!.
                                                                                                                



text that

e-

,

600 J. Math. Phys., Vol. 40, No. 2, February 1999 R. Amorim and J. Barcelos-Neto

                    
7J. Barcelos-Neto, A. Cabo, and M. B. D. Silva, Z. Phys. C72, 34 ~1996!; A. Lahiri, Phys. Rev. D55, 5045~1997!; D.
S. Hwang and C.-Y. Lee, J. Math. Phys.38, 30 ~1997!.

8We mention that quantization of nonlocal theories has been carried out by other authors, but not in the same con
will be presented here. See, for example, E. C. Marino and R. L. P. G. Amaral, J. Phys. A25, 5183~1992!; D. G. Barci,
L. E. Oxman, and M. Rocca, Int. J. Mod. Phys. A11, 2111~1996!.

9I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B102, 27 ~1981!; Phys. Rev. D28, 2567~1983!.
10For a detailed discussion on systems with higher derivatives, see D. Musik,Degenerate Systems in Generalized M

chanics~preprint! ~Publ. Inst. Math., Beogrado, 1992!, and references therein.
11J. Barcelos-Neto and N. R. F. Braga, Mod. Phys. Lett. A4, 2195~1989!.
12P. A. M. Dirac, Can. J. Math.2, 129 ~1950!; Lectures on Quantum Mechanics~Yeshiva University Press, New York

1964!.
13G. A. Vilkovisky, Phys. Lett.55B, 224~1975!; I. A. Batalin and G. A. Vilkovisky,ibid. 69B, 309~1977!; E. S. Fradkin

and T. E. Fradkina,ibid. 72B, 343 ~1978!.
14J. Barcelos-Neto and C. P. Natividade, Z. Phys. C51, 313 ~1991!.
15R. Amorim and J. Barcelos-Neto~unpublished!.
                                                                                                                



hlieder

ing

e

s that

lds of a

riant,

the

ered in

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 2 FEBRUARY 1999

                    
Modular groups of quantum fields in thermal states
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For a quantum field in a thermal equilibrium state we discuss the group generated
by time translations and the modular action associated with an algebra invariant
under half-sided translations. The modular flows corresponding to the algebras of
the forward light cone and a space-like wedge admit a simple geometric description
in two-dimensional models that factorize in light-cone coordinates. At large dis-
tances from the domain boundary compared to the inverse temperature, the flow
pattern is essentially the same as time translations, whereas the zero temperature
results are approximately reproduced close to the edge of the wedge and the apex of
the cone. For each domain there is also a one-parameter group with a positive
generator, for which the thermal state is a ground state. Formally, this may be
regarded as a certain converse of the Unruh effect. ©1999 American Institute of
Physics.@S0022-2488~99!01002-6#

I. INTRODUCTION

Algebraic quantum field theory in the sense of Araki, Haag, and Kastler1 is concerned with
von Neumann algebrasM~O! of observables localized in space time domainsO, together with
statesv on these algebras satisfying some physical selection criterion. Due to the Reeh–Sc
property of quantum field theory,2 one may associate with certain regionsO and statesv the
Tomita–Takesaki modular objectsDO,v and JO,v .3,4 The positive operatorDO,v generates a
one-parameter group adDO,v

it of automorphisms ofM~O!, and the conjugation adJO,v defined
by the antiunitaryJO,v mapsM~O! onto its commutant on the GNS Hilbert space correspond
to v.

Important structural properties of the theory are encoded in the modular objects~see, e.g.,
Refs. 5, 6! but an explicit description ofDO,v

it and JO,v has so far only been obtained in th
following cases withv a vacuum state.

~a! O is a space-like wedge and the local algebras are generated by Wightman field
transform covariantly with a finite-dimensional representation of the Lorentz group.7,8

~b! O is a forward light cone andM~O! is generated by a massless, noninteracting field.9

~c! O is a double cone andM~O! is generated by conformally covariant fields.10

~d! O is a space-like wedge and the local algebras are generated by generalized free fie
certain type that break Lorentz covariance.11

In case~a!, the modular group is the group of Lorentz boosts that leave the wedge inva
and the conjugation is the PCT operator~combined with a rotation!. Cases~b! and ~c! can be
reduced to case~a! by a conformal mapping onto the wedge of the forward light cone and
double cone, respectively. In~b! the modular group is the dilation group, and in~c! it consists of
the conformal transformations that leave the double cone invariant. In the examples consid

a!Electronic mail: yngvason@Thor.thp.univie.ac.at
6010022-2488/99/40(2)/601/24/$15.00 © 1999 American Institute of Physics
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~d!, the action of the modular group is, in general, nonlocal, i.e., an algebraM(O1) with O1 a
bounded subset of the wedge need not be mapped into anM(O2) with O2 bounded.

A key to a general understanding of possible geometric interpretations of modular gro
the interplay between the modular action and certain subgroups of the space–time translat
Ref. 12 it was shown that the modular group of a space-like wedge in a vacuum state acts
translation group like the Lorentz boosts that leave the wedge invariant. Subsequ
Wiesbrock13 introduced the concept of a half-sided modular inclusion and proved a certain
verse of the results of Ref. 12, namely, that the two-dimensional translation group can be
ered from the modular groups of the wedge and some of its translates.

In this paper we want to investigate the modular groups whenv is a thermodynamic equilib-
rium state~KMS state! rather than a vacuum state. In Sec. II we discuss the generalizations
results of Ref. 12 to KMS states. We investigate the commutation relations between the
translations and the modular group in a KMS state for any domain that is mapped into itself
half-sided time translations. Using the results of Ref. 6 we prove that the time translation
modular action together give rise to a representation of the abstract Lie group genera
one-dimensional dilations and translations. The important observation that half-sided m
actions always lead to a representation of this group was first made by Wiesbrock.13,14We express
all its one-parameter subgroups in terms of the translations and the modular group. Of pa
interest is a subgroup with a positive generator. This group acts on the global observable a
for positive values of the group parameter.

The group relations alone do not determine the modular action and the group with a po
generator, but they put definite restrictions on the possible disclocalization of observables
group actions. More precisely, ifN denotes the observable algebra of a domain invariant un
half-sided translations andN(t) its time translate byt, then the modular groupDN

iu of N transforms
N(t) intoN„w(u,t)… with a certain functionw(u,t). Likewise, the group with a positive generat
transformsN(t) intoN„c(t,t)…, wherec is another function oft and the group parametert. The
precise statements are given in Theorem 2.1. We also discuss the action ofDN

iu on individual
observables inN(t) for t large and show that, in a sense made precise in Theorems 2.2 an
this action approximates a time translation by2bu as t/b→`.

In Sec. III we consider two-dimensional~2-D! models that factorize in the light-cone coord
nates. Applying the results of the previous section to the algebras on each of the light ray
obtains a geometric description of the actions of the groups associated with the forward ligh
and a space-like wedge. In the case of the forward light cone, the algebra of a translated lig
is mapped into another such algebra. An analogous statement holds for the wedge. Th
patterns are illustrated in Figs. 1 and 2. Close to the apex of the light cone and the edge
wedge the action of the modular flow is essentially the same as for the zero temperature ca
dilations for the forward light cone and Lorentz boosts for the wedge. On the other hand, a
distances from the domain boundary compared to the inverse temperature the modular fl
proaches the dynamical flow, i.e., the time translations.

The one-parameter unitary group with a positive generator associated with the forward
cone, which in the limiting case of zero temperature reduces to time translations, approxima
dynamical flow close to the apex of the light cone. It corresponds everywhere to a decel
movement toward the origin in the space variable~Fig. 3!. Formally at least, this may be regarde
as a reverse Unruh effect:15–17 In the latter the vacuum appears as a KMS state with respect
dynamics that accelerates points toward light-like infinity; here a KMS state appears as a v
state with respect to a dynamics that moves points from light-like infinity toward the origi
space.

For the wedge there is also a unitary group with a positive generator, which has the KMS
as a ground state. This group operates on the observables for a restricted parameter r
approximates the time translations close to the space axis and light-like translations far awa
the space axis. The action of this group is illustrated in Fig. 4. This action may also be inter
as a kind of reverse Unruh effect, because here the acceleration is away from the wedge, w
in the usual Unruh effect the acceleration points in the direction of the wedge.
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In Sec. IV we compute explicitly the modular groups and the groups with a positive gene
for a quasifree KMS state on the Weyl algebra of a generalized free field in 2-D space tim
factorizes in light-cone coordinates. For a field of minimal scaling dimension one obta
strengthening of the general results of the previous section on the group actions: A local a
M~O! with O a double cone is transformed into an algebra of the same kind. For fields of h
scaling dimension, however, double cone localization may get lost under the group actio
only a localization in a translated light cone or wedge remains.

II. THE GROUP GENERATED BY TRANSLATIONS AND THE MODULAR ACTION

Let (A,a t) be aC* -dynamical system andB a subalgebra, such that

a tB,B, for t>0. ~2.1!

Suppose, furthermore, that the algebraø tPRa tB is norm dense inA. Let v be a KMS state18 for
the dynamical system (A,a t) at inverse temperatureb and denote byp the corresponding GNS
representation ofA with cyclic vectorV, and byT(t) the unitary implementation ofa t on the
GNS Hilbert spaceH. PutM5p(A)9 andN5p(B)9.

Because of the analyticity properties of the time translations in a KMS state, the vectoV is
separating forM and hence also forN. Moreover,V is cyclic forM ~by definition!, and since
ø tPRa tB is dense inA it follows by a Reeh–Schlieder-type argument thatV is also cyclic forN.

Let DM andJM be the modular objects corresponding toV andM. We have

DM
is 5T~2bs!, ~2.2!

where the sign is a consequence of different conventions in physics and mathematics:A
PM the expressionT(t)AV has an analytic continuation into the stripS(0,b/2), where

S~a,b!ª$zPC:a,Im z,b%, ~2.3!

FIG. 1. The modular flow in the forward light cone. The unit is inverse temperature,b.
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while DM
is AV has an analytic continuation intoS(21/2,0), by the sign convention in modula

theory. SinceJMDM
1/2AV5A* V, it follows from ~2.2! that

T~ t1 ib!AV5JMT~ t !A* V. ~2.4!

By assumption~2.1!, we have

T~ t !NT~2t !,N, for t>0, ~2.5!

i.e., we are in the situation of a half-sided translation in the sense of Ref. 12. Because of~2.2! we
are also in the situation of a half-sided modular inclusion in the sense of Wiesbrock,13 i.e.,

DM
is NDM

2 is,N, for s<0. ~2.6!

If T(t) had a positive generator, then~2.5! would imply the well-known relations12 betweenT(t)
and the modular groupDN

iu . In a KMS state, however, the spectrum of the Hamiltonian is
whole real axis and the analysis of Ref. 12 has to be generalized. The main results
generalization are stated in Eqs.~2.20!, ~2.29!, and~2.31! below.

We start with a heuristic discussion of the consequences of~2.6!, similar to that in Ref. 13.
This discussion disregards questions of domains of unbounded operators, but it leads qui
the commutation relations betweenDM

is and DN
iu stated in Ref. 14. A rigorous proof of thes

relations follows from the results of Ref. 6 and will be given after the discussion.
SinceN,M, it follows by standard arguments thatDN>DM , and this, domain question

aside, implies that

Gª log DN2 log DM ~2.7!

FIG. 2. The modular flow in a space-like wedge.
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is a non-negative operator, because log is an operator monotone function. Equations~2.1!, ~2.2!,
~2.6!, and the Trotter product formula now lead to

eitGNe2 itG,N, for t>0. ~2.8!

PuttingU(t)ªexp(itG), Eq. ~2.8! andG>0 imply12

DN
iuU~t!DN

2 iu5U~e22put!, ~2.9!

for all t, uPR. Hence, we obtain a unitary representation of the two-parameter Lie groupG with
elements (t,u)PR2 and the composition law

~t,u!+~t8,u8!5~t1e22put8,u1u8!. ~2.10!

The representationU(t,u) corresponding to~2.9! is

U~t,u!ªeitGDN
iu . ~2.11!

The groupG defined by~2.10! is the semidirect product ofR with itself and is the unique
two-dimensional non-Abelian Lie group~‘‘ ax1b group’’!. Some of its properties are discussed
Ref. 19.

For a discussion of the one-parameter subgroups and the Lie algebra ofG, it is convenient to
realize the group in terms of 232 matrices:

~t,u!↔S 1 t

0 1D •S e22pu 0

0 1D 5S e22pu t

0 1D . ~2.12!

It is straightforward to determine the one-parameter subgroups,r °g(r ) of G. These have the
form

FIG. 3. The flow ofGV1(t) within the forward light cone. The whole pattern is invariant under translations in thx0

direction.
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ga,b~r !5S ear b

a
~ear21!

0 1
D , ~2.13!

with a,bPR. In the half-plane (t,e22pu)PR3R1 , these correspond to straight lines throu
~0,1!. The infinitesimal generator ofga,b(r ) is

ĝa,b5
d

dr
ga,b~r !U

r 50

5S a b

0 0D . ~2.14!

The groupDN
iu corresponds toa522p, b50; the group exp(itG) to a50, b51. Since the

generator ofDM
is is logDN2G, this one-parameter group corresponds toa522p, b521.

Denoting for short the one-parameter subgroups ofG in these three cases bygN(u), gpos(t), and
gM(s), respectively, we have

gN~u!5S e22pu 0

0 1D , gpos~t!5S 1 t

0 1D , gM~s!5S e22ps 1

2p
~e22ps21!

0 1
D .

~2.15!

One verifies the relation

gN~u!•gM~s!5gM„F~u,s!…•gN~2F~u,s!1s1u!, ~2.16!

with

FIG. 4. The flow ofGW(t) in a space-like wedge. The whole pattern is invariant under translations in thex1 direction.
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F~u,s!52
1

2p
log$11e22pu~e22ps21!%, ~2.17!

provided

11e22pu~e22ps21!.0, ~2.18!

which is always fulfilled fors<0. The relation corresponding to~2.16! for the modular groupsDN
iu

andDM
is is

DN
iu
•DM

is 5DM
iF~u,s!

•DN
i~2F~u,s!1s1u! . ~2.19!

This relation also appears in Ref. 14; our heuristic discussion has brought its group theo
origin into focus.

In terms of the original translation groupT(t) we can, because of~2.2!, write ~2.19!, as

DN
iu
•T~ t !•DN

2 iu5TS b

2p
log$11e22pu~e2pt/b21!% D •DN

i~1/2p!log$11e22pu~e2pt/b21!%2 i~ t/b! .

~2.20!

In the limit b→` we recover the Bisognano–Wichmann result,

DN
iu
•T~ t !•DN

2 iu5T~e22put !. ~2.21!

The one-parameter groupsga,b(r ) can be expressed in terms ofgM(s) andgN(u):

ga,b~r !5gM„s~r !…•gN„u~r !…5gN„u~2r !…•gM„s~2r !…, ~2.22!

with

s~r !52
1

2p
logH 11

2pb

a
~ear21!J ,

u~r !52s~r !2
a

2p
r . ~2.23!

Specializing toa50, b51 we obtain, forr .21/(2p),

gpos~t!5gM„2~2p!21 log~112pt!…•gN„~2p!21 log~112pt!…, ~2.24!

and hence

U~t!5DM
2~ i/2p!log~112pr !

•DN
~ i/2p!log~112pr !5DN

2~ i/2p!log~122pt!
•DM

~ i/2p!log~122pt! . ~2.25!

The first representation can be used fort.21/(2p), the second one fort,1/(2p).
The groupgN(u) operates ongpos(t) according to

gN~u!gpos~t!gN~2u!5gpos„exp~22pu!t…, ~2.26!

which is just the abstract form of the basic relation~2.9!. This is a special case of the gener
relation

ga,b~r !gpos~t!ga,b~2r !5gpos„exp~ar !t…. ~2.27!

For a522p, b521, i.e.,gM , the corresponding relation for the unitary groups on Hilbert sp
is
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DM
is U~t!DM

2 is5U„exp~22ps!t…, ~2.28!

which also follows directly from~2.25! and ~2.19!. We note in passing that~2.28! may be inter-
preted as an ‘‘Anosov relation’’ that leads to exponential clustering of matrix elements of the
translationsT(t)5DM

2 it/b in states of the formAV with A in a dense subalgebra ofM.20

Defining G(t)ªU(t/b) we have, by~2.25!,

G~t!5TS b

2p
log$11~2pt/b!% D •DN

~ i/2p!log$11~2pt/b!%

5DN
2~ i/2p!log$12~2pt/b!%

•TS 2
b

2p
log$12~2pt/b!% D , ~2.29!

where the first equality is valid fort.2b/(2p) and the second fort,b/(2p). Evidently,
G(t)→T(t) for b→`, and

G/b5H1
1

b
log DN , ~2.30!

tends in this limit to the HamiltonianH, which in the vacuum representation is>0.
The relation~2.28! means that

T~ t !G~t!T~2t !5G„exp~2pt/b!t…. ~2.31!

By ~2.8! and our assumption thatø ta tB is norm dense inA ~and henceø ad T(t)N weakly
dense inM!, we may thus conclude that

ad G~t!M,M, for all t>0. ~2.32!

A rigorous proof of the relations~2.19! and~2.25! @and hence of~2.20!, ~2.29!, and~2.31!# can
be obtained by applying Theorems A and B in Ref. 6 to the operator-valued functions,

V~v !5DM
2 ivDN

iv , ~2.33!

andW(w)5V„v(w)…, where

v~w!5
1

2p
log~11e2pw!. ~2.34!

The functionV(v) has a bounded analytic continuation into the stripS(0,1/2) with continuous
boundary values, and satisfies the relation

VS v1
i

2D5JMV~v !JN , ~2.35!

for vPR. Moreover, adV(v) mapsN into N for v>0 and the commutantN 8 into N 8 for v
<0. By ~2.35! it follows that adV(v1 i/2) mapsN 8 into N 8 for all v.

In order to apply Theorem B in Ref. 6 we have to map the stripS(0,1/2) biholomorphically
onto itself in such a way thatR is mapped ontoR1 and R1 i/2 onto (R1 i/2)øR2 . The map
~2.34! accomplishes this. It has a singularity atw5 i/2, but as remarked in Ref. 6 such a singular
is harmless.

@The reason is as follows: Theorem B in Ref. 6 is based on the edge-of-the-wedge the
applied to matrix elements of the operator-valued function,

~u,w!°DN
iuW~w!DN

2 iu . ~2.36!
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These matrix elements have bounded analytic continuations, which are continuous at the bo
of their domain with the possible exception of points withw5 i/2. By the dominated convergenc
theorem and the boundedness of~2.36! this piecewise continuity is sufficient to ensure coinciden
of boundary values in the sense of distributions. The edge-of-the-wedge theorem then i
analyticity in the coincidence region, so continuity in the points withw5 i/2 holdsa fortiori.#

Theorem B in Ref. 6 leads to the general relations

DN
iuW~w!DN

2 iu5W~w2u! ~2.37!

and

JNW~w!JN5WS w1
i

2D . ~2.38!

Eq. ~2.37! is precisely~2.19! in case~2.18! holds, but note that~2.37! is true for allu,wPR. As
noted by Wiesbrock~Refs. 13, 14! these relations imply thatDN

iu and DM
is generate a unitary

representation of the Lie groupG. The infinitesimal generators logDN and logDM , together with
their real linear combinations, are thus essentially self adjoint on a common core. The rep
tation U(t) of the one-parameter subgroupgpos(t) fulfills, together withDN

iu , the relation~2.9!
~because of the corresponding relation inG!, and this implies, by Ref. 21, thatU(t)5exp(itG)
with G>0. Hence, the starting point of the heuristic discussion is rigorously justified.

The following theorem summarizes the main conclusions of the preceding discussio
states, in addition, the most important consequence of the relations~2.20!, ~2.29!, and~2.31! for
the present investigation, namely the action of the groupG on translates ofN.

Theorem 2.1:Let (A,a t) be a C* -dynamical system andB a subalgebra such thata tB,B
for t>0 andø ta tB is norm dense inA. In the GNS representation defined by a KMS state onA
at inverse temperatureb letM andN denote the weak closures ofp(A) andp(B), respectively,
and T(t)5exp(itH) the unitary group implementinga t . Denotead T(t)N5N(t). Then

(i) The translations T(t) and the modular groupDN
iu , defined byN and the KMS state vector

fulfill the relation (2.20). We have

ad DN
iuN~ t !5N„w~u,t !…, ~2.39!

with

w~u,t !5
b

2p
log$11e22pu~e2pt/b21!%, ~2.40!

for all u, t, satisfying

11e22pu~e2pt/b21!.0. ~2.41!

In particular,

ad DN
iuM,M, ~2.42!

for all u>0, and

N5 ù
u>0

ad DN
iuM. ~2.43!

(ii) The operator G5bH1 log DN is non-negative and essentially self-adjoint on a comm
core of H andlog DN . The one parameter groupG(t)5exp(itG/b) is given by (2.29) and the
groupsG(t) and T(t) satisfy (2.31). We have
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ad G~t!N~ t !5N„c~u,t !…, ~2.44!

with

c~t,t !5t1
b

2p
logH 11

2pt

b
e22pt/bJ , ~2.45!

for all t, t satisfying

11
2pt

b
e22pt/b,0. ~2.46!

In particular,

ad G~t!M,M and adG~t!N,N, ~2.47!

for t>0, and

N5ad G~b/2p!M. ~2.48!

Proof: As already noted, the key relations~2.20!, ~2.29!, and~2.31!, and the self-adjointnes
and positivity of G are a rigorous consequence of the Theorems in Refs. 6, 21, 13,
14. Equations~2.39! and ~2.44! follow directly from ~2.20! and ~2.29! and the fact that
w„2u,w(u,t)…5t, c„2t,c(t,t)…5t for (u,t) and (t,t), satisfying ~2.41! and ~2.46!, respec-
tively. Equations~2.42!, ~2.43!, ~2.47!, and~2.48! are simple consequences of~2.39! and ~2.44!,
sinceø t ad T(t)N is dense inM.

As a last topic in this section we discuss the relation between the translation groupT(t) and
the modular groupDN

iu . SinceT(2bu)5DM
iu , one may expect that the actions ofT(2bu) and

DN
iu approximately coincide on elements that have been translated far intoN, so that ‘‘boundary

effects’’ are negligible. That this intuition is indeed solidly founded is the content of the next
theorems. The first concerns certain matrix elements of the unitary groups, and gives an e
for the rate of the convergence. The second is about strong convergence of Hilbert space
and operators, but the error estimates are less explicit.

Theorem 2.2: If APN(t) and BPN 8, the following estimate holds for t.0 and all u:

u~BV,DN
iuAV!2„BV,T~2bu!AV…u<2M minH uexp~2pu!21u

exp~2pt/b!21
,1J , ~2.49!

with

M5max$iAViiBVi ,iA* ViiB* Vi%. ~2.50!

Proof: Consider the two functions

F1~u!5„BV,DN
2 iuT~2bu!AV… and F2~u!5„A* V,T~bu!DN

iuB* V…. ~2.51!

Theorem A in Ref. 6 implies thatDN
2 iuT(2bu) has a bounded analytic continuation into the st

S(2 1
2,0). It follows that F1 has an analytic continuation intoS(2 1

2,0), andF2 into S(0,1
2).

Moreover, by continuity of the unitary groups,F6 is continuous on the real axis.
Denoting jM5ad JM , jN5ad JN we obtain

F1S u2
i

2D5„BV,JN DN
2 iuT~2bu!JMAV…5„DN

2 iuT~2bu! jM~A!V, jN~B!V…,
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F2S u1
i

2D5„A* V,JMT~bu!DN
iuJN B* V…5„T~bu!DN

iujN~B* !V, jM~A* !V….

In particular,F6 is continuous atu6 i/2, uPR, and jN(B* )PN and jM(A* )PM8 implies

F1S u2
i

2D5F2S u1
i

2D . ~2.52!

Moreover, sinceT(2s)AT(s)PN for s,t, we have

F1~u!5F2~u!, for u,t/b. ~2.53!

Hence,F1 andF2 have a common analytic continuation to a periodic function,F, with the period
i and cuts@ t/b,`)1 in, nPZ. This function is majorized by

M5max$iAViiBVi ,iA* ViiB* Vi%. ~2.54!

The functionF(z)2F(0) vanishes atz5 in, nPZ, and is bounded by 2M . Therefore,

G~z!5
F~z!2F~0!

exp~2pz!21

is analytic and bounded in the same domain asF. Along the cuts we haveuG(z)u
<2M „exp(2pt/b)21…21. By the maximum modulus principle this estimate holds everywhere,
thus

u„BV,DN
2 iuT~2bu!AV…2~BV,AV!u<2M

uexp~2pu!21u
exp~2pt/b!21

. ~2.55!

This estimate blows up fort→0, but the left-hand side is trivially bounded by 2M for all real u
and t. ReplacingBPN 8 by adDN

2 iuBPN 8 does not changeM, so ~2.55! gives the desired
estimate~2.49!.

Theorem 2.3: (i) For every APM and Hilbert space vectorC,

lim
t→`

iDN
iuA~ t !C2T~2bu!A~ t !Ci50, ~2.56!

with A(t)5ad T(t)A. The convergence is uniform on half-sided u intervals I5(2`,u0#, u0

,`.
(ii) For every A in a dense subalgebra ofM,

lim
t→`

iad DN
iuA~ t !2ad T~2bu!A~ t !i50, ~2.57!

with uniform convergence on half-sided u intervals.
Proof: From ~2.48!, ~2.2!, and~2.31!, it follows that

DN
iu5G~b/2p!T~2bu!G~2b/2p!5T~2bu!G„~exp~2pu!21!b/2p…. ~2.58!

Hence, using~2.31! again,

ad DN
iuA~ t !2ad T~2bu!A~ t !5ad T~ t2bu!@ad G„exp~22pt/b!~u!…A2A#, ~2.59!

with h(u)5„exp(2pu)21…b/2p. Now ~i! follows from the strong convergence ofG~t! to 1 ast
→0, because supuPI uh(u)u,` for I 5(2`,u0#.
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For generalAPM, iad G(t)A2Ai need not converge to zero ast→0. However, on ele-
ments of the formAg5*g(t)ad G(t)A dt with g continuous of compact support, this conve
gence holds. Moreover, ifg is continuously differentiable, then~2.59! implies

iad DN
iuAg~ t !2ad T~2bu!Ag~ t !i<iAi•idg/dti1sup

uPI
uh~u!u•e22pt/b. ~2.60!

By ~2.44! such regularized elements are dense inM if the support ofg is sufficiently small,
andAg→A weakly if g tends to a delta function.

III. TWO-DIMENSIONAL MODELS

The general results of the preceding setting were formulated for aC* -dynamical system
(A,a t) and a subalgebraB, invariant under half-sided shifts bya t . We shall now be more specifi
and consider a quasilocal algebraA generated by a local netO°A(O) of C* -algebras andB
5A(O0) with O0 a domain invariant under half-sided translations in thet direction. In the
representationp generated by a KMS statev, we denotep„A(O)…9 byM~O! andp(A)9 byM,
as before.

Equations~2.39! and ~2.44! describe the action of the modular andG groups associated with
N5M(O0) on the translated algebrasM(O01te), wheree is the unit vector in thet direction.
We now want to investigate how the groups associated withM(O0) act on the algebras of mor
general domains thanO01te, in particular,O01x, with x an arbitrary vector in space–time
While a general answer to this question appears difficult, the previous results lead directl
description of the action in the case of two-dimensional theories that factorize in the light
variables.

We start by considering local nets in two-dimensional space time depending only on
light-cone variable, i.e., nets on a light ray. Withx0 the time andx1 the space coordinate ofx
PR2, the light-cone variables arexR5x01x1 andxL5x02x1. We consider either one of them
and denote it simply byx. Note that translations in timet5x0 are equivalent to translations inx.
A local algebra corresponding to anx interval I ,R is denoted byM(I ). Local commutativity
means thatM(I 1) andM(I 2) commute ifI 1ùI 25B.

We denote the modular group for the algebraM(R1) by D1
iu and the corresponding grou

with the positive generatorG1 /b5H1(1/b)log D1 by G1(t). We shall also consider the alge
bra of the negative half-axis,M(R2), with modular groupD2

iu and the positive operatorG2 /b
5H1(1/b)log D2 , which generates the groupG2(t)5exp(itG2 /b). Note that adG2(t) maps
M(R2) into itself for t<0.

By Eq. ~2.39!, we have

ad D1
iuM~@x,`@!5M~@w1~u,x!,`@!, ~3.1!

with

w1~u,x!5
b

2p
log$11e22pu~e2px/b21!%, ~3.2!

for all x, uPR, such that

11exp~22pu!@exp~2px/b!21#.0. ~3.3!

Note that ~3.2! is just the function~2.40!. We denote it here byw1 because there is a
analogous result forM(R2):

ad D2
iuM~ #2`,x]) 5M~ #2`,w2~u,x!]), ~3.4!

with
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w2~u,x!52w1~2u,2x!, ~3.5!

for

11exp~2pu!@exp~22px/b!21#.0. ~3.6!

Likewise, from Eq.~2.44!,

ad G1~t!M~@x,`@!5M~@c1~t,x!,`@!, ~3.7!

with

c1~t,x!5x1
b

2p
logH 11

2pt

b
e22px/bJ , ~3.8!

for

11~2pt/b!exp~22px/b!.0, ~3.9!

and

ad G2~t!M~ #2`,x]) 5M„] 2`,c2~u,x!] …, ~3.10!

with

c2~t,x!52c1~2t,2x!, ~3.11!

for

12~2pt/b!exp~2px/b!.0. ~3.12!

We now turn to models in two space–time dimensions that can be written as a tensor p
of one-dimensional models in the light-cone variables,xR5x01x1 andxL5x02x1. For a domain
I L3I R,R2 with I L and I R intervals on thexL andxR axis, respectively, the local algebra is th

M~ I L3I R!5M~ I L! ^M~ I R!. ~3.13!

Here^ is the von Neumann tensor product, andI °M(I ) is a local net of von Neumann algebra
over R. ~For simplicity of notation we take identical nets on both axes.! In particular, we are
interested in the algebras of the forward light cone,

M~V1!5M~R1! ^M~R1!, ~3.14!

and the right wedge

M~W!5M~R2! ^M~R1!. ~3.15!

The modular groups for these algebras and a factorizing KMS statev ^ v, wherev is a KMS state
for the algebra on a light ray, are

DV1
iu

5D1
iu

^ D1
iu ~3.16!

and

DW
iu5D2

iu
^ D1

iu . ~3.17!
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If xPR2, we denote the translated light coneV11x by Vx
1 and the translated wedgeW1x by

Wx . From Eqs.~3.1! and ~3.5!, we obtain
Theorem 3.1:

ad DV1
iu M~Vx

1!5M~VwV1~u,x!
1 !, ~3.18!

with

wV1~u,x!5„w1~u,xL!,w1~u,xR!…, ~3.19!

for uPR andxPR2 such that (3.3) holds for x5xL and x5xR. If u>0, thenad DV1
iu M(Vx

1),M
for all xPR2, and if xPV1, thenad DV1

iu M(Vx
1),M(V1) for all u.

Likewise,

ad DW
iuM~Wx!5M~WwW~u,x!!, ~3.20!

with

wW~u,x!5„w2~u,xL!,w1~u,xR!…, ~3.21!

for uPR and xPR2 such that (3.3) holds for x5xR and (3.6) for x5xL. If xPW, then
ad DW

iuM(Wx),M(W) for all u.
The flow lines ofwV1 andwW within the respective domains are shown in Figs. 1–2.
It is evident from the figures that the character of the modular flow depends of the dis

from the boundary of the domain considered~forward light cone or wedge!. The natural unit of
length is here the reciprocal temperature,b. Consider first the modular group of the forward lig
coneV1. In terms of the original space time coordinatesx05(xR1xL)/2 andx15(xR2xL)/2 the
map ~3.19! takes (x0 ,x1) to (x80,x81) with

x805x02bu1RV1
0

~x,u!, x815x11RV1
1

~x,u!, ~3.22!

where

RV1
0

~x,u!5~b/4p!log$~11e22p~xR2bu!/b2e22pxR/b!~11e22p~xL2bu!/b2e22pxL/b!%
~3.23!

and

RV1
1

~x,u!5~b/4p!logH 11e22p~xR2bu!/b2e22pxR/b

11e22p~xL2bu!/b2e22pxL/bJ . ~3.24!

Far from the domain boundary, i.e., forxR, xL, xR2bu, andxL2bu large compared tob, the
termsRV1

0 andRV1
1 are exponentially small, andcV1(•,u) is essentially the same as translation

time by 2bu in accord with Theorems 2.2 and 2.3. On the other hand, close to the apex
light cone~compared tob!, the action is essentially the same as forb5`, i.e., dilation by the
factor exp(22pu). The deviation from a dilation is of the order (uxu/b)2.

For the wedgeW the formulas corresponding to~3.22!–~3.24! are

x805x02bu1RW
0 ~x,u!, x815x11RW

1 ~x,u!, ~3.25!

with

RW
0 ~x,u!5~b/4p!logH 11e22p~xR2bu!2e22pxR/b

11e2p~xL2bu!/b2e2pxL/b J ~3.26!
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and

RW
1 ~x,u!5~b/4p!log$~11e22p~xR2bu!2e22pxR/b!~11e2p~xL2bu!/b2e2pxL/b!%. ~3.27!

Note that the wedge is characterized byxR>0 andxL<0. Again, the modular action coincide
essentially with time translations far from the domain boundary. Near the edge of the wedg
coordinatexR is scaled by exp(22pu) andxL is scaled by exp(2pu), up to terms of order (uxu/b)2.
This corresponds to a Lorentz boost, i.e., the modular action at temperature zero.

From G6(t) we can form the one-parameter unitary groups,

t°G6~t! ^ G6~t!, ~3.28!

on the tensor product Hilbert space. These groups have the positive generatoH
1(1/b)log D6,6 , whereD6,65D6 ^ 111^ D6 is the modular operator ofM(R63R6). They
correspond, respectively, to the forward and backward light cone~11 and22! and the left and
the right wedge~12 and21!. All four groups converge to the time translations asb→`.

The group associated with the forward light cone is

GV1~t!5G1~t! ^ G1~t!. ~3.29!

By ~2.44! we have the following theorem.
Theorem 3.2: If xPR2 and

t.2b~2p!21 min$e2pxL/b,e2pxR/b%, ~3.30!

then

ad GV1~t!M~Vx
1!5M~VcV1~t,x!

1 !, ~3.31!

with

cV1~t,x!5„c1~t,xL!,c1~t,xR!…. ~3.32!

If

t.2b~2p!21~min$e2pxL/b,e2pxR/b%21!, ~3.33!

then

ad GV1~t!M~Vx
1!,M~V1!. ~3.34!

The group associated with the right wedge,

GW~t!5G2~t! ^ G1~t!, ~3.35!

does not induce half-sided translations on the wedge algebra, but it nevertheless acts geom
for a restricted parameter range. In fact, by Eqs.~3.7! and~3.10! we have the following theorem

Theorem 3.3: If xPR2 and

2b~2p!21e2pxR/b,t,b~2p!21e22pxL/b, ~3.36!

then

ad GW~t!M~Wx!5M~WcW~t,x!!, ~3.37!

with
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cW~t,x!5„c2~t,xL!,c1~t,xR!…. ~3.38!

If

2b~2p!21~e2pxR/b21!,t,b~2p!21~e22pxL/b21!, ~3.39!

then

ad GW~t!M~Wx!,M~W!. ~3.40!

The flows of cV1 and cW are shown in Figs. 3 and 4. The groupsGV1(t) and GW(t),
approximate the time translations close to the tip of the light cone and the edge of the w
respectively. Indeed,cV1 maps (x0,x1) to (x80,x81) with

x805x01t@exp~22pxR!1exp~22pxL!#/21O~t2/b! ~3.41!

and

x815x11t@exp~22pxR!2exp~22pxL!#/21O~t2/b!. ~3.42!

For xR andxL both close to zero, this is close tox805x01t, x815x1. More interesting, however
is the behavior ofGV1(t) far from the apex of the cone. From Fig. 3 one sees clearly that the
corresponds to a decelerated motion toward the origin of space. More quantitatively, the ve
v5dx81/dx80 is

v52tanh~2px81/b!, ~3.43!

and this differential equation has the general solution

x80~x81!52~b/2p!log„sinh~2px81/b!…1C, ~3.44!

whereC is an arbitrary constant. The path through the origin,x8150, corresponds formally to
C52`. The flow pattern is invariant under a shift in the time direction, in accord with~2.31!.

As already mentioned in the Introduction, this flow brings points that start out with
velocity of light at infinity gradually to rest. Formally we have the reverse of an Unruh effec
the generator of the flow of the observables is positive, with the KMS state vector as a g
state. Measured in terms of the parametert, it takesb/2p t units for points to reach the forwar
light cone from infinity. Thet parameter along the path through the origin is related to the
time t by

t5~b/2p!log~112pt/b!, i.e., t5~b/2p!„exp~2pt/b!21…. ~3.45!

Thet unit is calibrated in such a way that thet andt scales coincide precisely where the path h
the apex of the light cone. According to Eq.~2.31!, a different calibration corresponds simply
a shift of the cone in the time direction. It is clear from~3.45! that thet parameter is ‘‘slower’’
than t, in the sense thatdt/dt,1, for a point on the path outside the light cone (t,0), and
‘‘faster’’ than t, i.e., dt/dt.1, inside the light cone (t.0).

For cW the equations corresponding to~3.41! and ~3.42! are

x805x01t@exp~22pxR!1exp~2pxL!#/21O~t2/b! ~3.46!

and

x815x11t@exp~22pxR!2exp~2pxL!#/21O~t2/b!, ~3.47!

and the velocity is
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v52tanh~2px80/b!. ~3.48!

Thus, the velocity is small close to the space axis, but approaches61 far away from the space
axis. The explicit solution of~3.48! is

x81~x80!52~b/2p!log„cosh~2px80/b!…1C. ~3.49!

This flow is invariant under a translation in thex1 direction. Here the situation is different from th
light cone, since not all paths pass through the wedge, and those who do stay in the wedge
a finite t interval; cf. Eq.~3.39!. The group even moves localized observables out of the glo
observable algebra in finite ‘‘t time,’’ cf. Eq. ~3.36!. The direction of acceleration is in th
opposite wedge here, whereas in the usual Unruh effect it points in the direction of the wed
this sense, here we also have a kind of reverse of the situation in the Unruh effect.

For the path passing through the origin, thet parameter is related tot5x0 by

t5
b

4p
log

11~2pt/b!

12~2pt/b!
, i.e. t5

b

2p
tanh

2pt

b
. ~3.50!

The relation to the proper timetp along the path is

t5
b

2p
sin

2ptp

b
, ~3.51!

i.e., up to a slight deformationt is essentially the proper time. We have

dt/dtp5cos
2ptp

b
5„12~2pt/b!2

…

1/2, ~3.52!

so ‘‘t time’’ is everywhere slower thantp except at the origin~calibration point!, where both
scales coincide witht. A change of scale corresponds to a translation of the wedge along thx1

axis because of~2.31!.
Above, we have described the actions of the modular- andG groups in terms of the space tim

coordinates (xL,xR) and also in terms of (x0,x1). The simplest description is obtained in y
another coordinate system, which is related to the others by a nonlinear transformation.x
PR define

j656~b/2p!„exp~62px/b!21…. ~3.53!

The range ofj1 is ]2b/2p,`@ and the range ofj2 is ]2`,b/2p@ . With x5xL and x5xR,
respectively, we thus obtain the four coordinates,j1

L , j2
L , j1

R , andj2
R . In the case of the forward

light cone we pick (j1
L ,j1

R ) and in the case of the right wedge (j2
L ,j1

R ) as a curvilinear coordi-
nate system on Minkowski space. In these coordinates the transformations~3.19!, ~3.21! for the
groups associated with the forward light coneV1 become

~j1
L ,j1

R !°e22pu~j1
L ,j1

R !, ~j1
L ,j1

R !°~j1
L ,j1

R !1t~1,1!, ~3.54!

and the corresponding transformations~3.32! and ~3.38! for the right wedgeW are

~j2
L ,j1

R !°~e2puj2
L ,e22puj1

R !, ~j2
L ,j1

R !°~j2
L ,j1

R !1t~1,1!. ~3.55!

Analogous formulas hold for the backward cone and the left wedge. Hence, in thej coordinates
the transformations have exactly the same form for allb, including the vacuum case,b5`.

The four coordinate systems (j6
L ,j6

R ) can be put together by defining

~ j̃L,j̃R!5~b/2p!~e~xL!~exp„e~xL!2pxL/b…21!,e~xR!~exp„e~xR!2pxR/b…21!, ~3.56!
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with e(x)51 for x>0 and21 for x,0. This transformation is once continuously differentiab
but second derivatives have a discontinuity on the light cone. The lines corresponding to th
of the G groups of the four domains~the forward and backward cones and the two wedges! pass
continuously through the boundaries between the domains, although the groups themselvenot
merge to a single one-parameter unitary group on the Hilbert space.

The transformation~3.56! is of the form (xL,xR)°„f (xL), f (xR)… with f an order preserving
bijective mapR→R. Hence, it is a causal transformation on two-dimensional space–time, i.
takes light cones into light cones. Such nonlinear causal maps on Minkowski space exist o
two space–time dimensions.

Finally, we remark that all results of this section hold for general 2-D theories, provide
state satisfies a KMS condition with respect to both light-cone coordinates,xL andxR. For fac-
torizing states, this holds automatically as a consequence of the KMS condition with respect
time direction. A general proof of a KMS condition with respect to light-like translations se
out of reach, however, even if one involves the relativistic KMS condition.22

IV. EXPLICIT REALIZATIONS OF MODULAR GROUPS

In this section we compute explicitly the modular andG groups for generalized free fields o
a light ray and the corresponding tensor product models onR2. In these examples it is possible t
discuss the action of the groups on the algebras of double cones and not only of translated f
cones and wedges.

The Weyl algebra of a generalized free Bose field on a light ray is generated by ele
W( f ), with f a real-valued Schwartz test function onR, satisfying the following relations:

W~ f !* 5W~2 f ! ~4.1!

and

W~ f !W~g!5e2K~ f ,g!/2W~ f 1g!, ~4.2!

with

K~ f ,g!5E
2`

`

pQ~p2! f̃ ~2p!,g̃~p!dp, ~4.3!

whereQ(p2) is a non-negative polynomial that characterizes the field~see Ref. 11!. Here f̃ (p)
5(1/2p)*exp(2ipx) f (x)dx is the Fourier transform off. The kernel ofK of K, defined by
K( f ,g)5*K(y2x) f (x)g(y)dx dy, is

K~y2x!5M ~2 id/dy!d~y2x!, ~4.4!

with M (p)5pQ(p2), soW( f ) andW(g) commute iff andg have disjoint supports.
Translations in time are equivalent to translations along the light ray and are represen

automorphisms of the Weyl algebra,

a t„W~ f !…5W„f ~•2t !…. ~4.5!

A quasifree KMS statev at inverse temperatureb is defined on the Weyl algebra by

v„W~ f !…5exp„2v2~ f , f !…, ~4.6!

wherev2 is given by a positive definite kernelW2(y2x) ~two-point function! that is analytic in
the stripS(0,b), and satisfies

W2~j!2W2~2j!5K~j!, ~4.7!
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for real j, together with the KMS condition

W2~j1 ib!5W2~2j!. ~4.8!

It is straightforward to show that these conditions fixW2 ~up to normalization!; its Fourier
transform is

W̃2~p!5
pQ~p2!

12e2bp . ~4.9!

The Fourier transform of the meromorphic function„12exp(2bp)…21 is seen to be
lim«→01

(2p ib)21
„exp(b212pj1i«)21…21 by contour integration. The Fourier transform

~4.9! for generalQ follows by differentiation. In particular, we have forQ[1, i.e., a field of
scaling dimension 1,

W2~j!5 lim
«→01

1

b2

1

S sinh
p~j1 i«!

b D 2 , ~4.10!

and forQ a polynomial of degreen,

W2~j!5 lim
«→01

PS cosh
pj

b
,sinh

pj

b D
S sinh

p~j1 i«!

b D 2n12 , ~4.11!

where P is a polynomial in two variables. We shall restrict ourselves to the case thatQ(p2)
5p2n, i.e., a field of a definite scaling dimension (n11), in order not to mix the effects comin
from the nonzero temperature with those due to inhomogeneous polynomialsQ ~see Ref. 11 for
the latter!.

Denoting the Weyl operators corresponding toQ(p2)5p2n by W(n)( f ), it is clear from~4.3!
that we may identify

W~n!~ f !5W~0!~ inf ~n!!, ~4.12!

where f (n) is thenth derivative off, and from~4.9! we see also that a KMS state for anyn is the
same as the KMS state forn50 restricted to the operatorsW(0)( inf (n)). This will allow us to
reduce everything to the simplest case,n50.

Let p be the GNS representation defined by the KMS state~4.6! on the Weyl algebra of the
W(0)( f )’s. If I ,R is an interval, bounded or unbounded, we defineM(n)(I ) to be the von
Neumann algebra generated byp„W(n)( f )… with supp f ,I . Because of the identification dis
cussed above, these algebras are for alln realized on the same Hilbert space.

By exactly the same arguments as in Ref. 11, Sec. III, one proves the following.
4.1 Lemma: If I is an unbounded interval, thenM(n)(I )[M(I ) is independent of n. If I is

bounded with a nonempty interior, thenM(m)(I ) is a proper subalgebra ofM(n)(I ) for m.n.
This lemma implies, in particular, that the modular operatorD1 corresponding to the half-line

R1 is the same for alln.
The main result about the modular action is the following
Theorem 4.2:Let v be the quasifree KMS state (4.6) andp the corresponding representatio

of the Weyl algebra for n50. The modular group ofM(R1) defined byv has the form

D1
iup„W~0!~ f !…D1

2 iu5p„W~0!~du
~0! f !…, ~4.13!

with

du
~0! f ~x!5 f S b

2p
log$11e2pu~e2px/b21!% D , ~4.14!
                                                                                                                



in

f

of
bra if

,
on

e

ion,

620 J. Math. Phys., Vol. 40, No. 2, February 1999 H. J. Borchers and J. Yngvason

                    
for supp f ,R1 .
Remark 1:It is understood that if suppf ,R1 , then alsodu

(0)f (x)50 for all x,0.
Remark 2:The cyclic vectorV corresponding tov has the Reeh–Schlieder property,

particular, it is cyclic forM(R1). Hence,~4.13! with supp f ,R1 , together withD1
it V5V,

already fixesD1
it as a unitary group on the GNS Hilbert space. ButD1

iup„W(0)( f )…D1
2 iu is, of

course, a well-defined operator on the Hilbert space for allf of compact support, and, in fact, i
u>0, then~4.13! and~4.14! hold for functions with support outside ofR1 with the understanding
that ~4.14! is zero when the argument of the logarithm is<0. This is a simple consequence
~3.1!–~3.3!. If u,0, however, the transformed operator only belongs to the observable alge
condition ~3.3! holds on the support off.

Proof of Theorem 4.2:The formula~4.14! is motivated by Eq.~2.20!. In order to show that it
is the correct formula for the modular action, we have to check the following properties ofdu

(0) :
~i! du

(0) maps the space of test functions with support inR1 into itself; ~ii ! the group property, i.e.
du

(0)+du8
0

5du1u8
(0) ; ~iii ! the unitary ofdu

(0) in the scalar product defined by the two point functi
~4.10!; ~iv! the KMS condition: For real test functionsf and g with support inR1 the function
u°v2( f ,du

(0)g) has an analytic continuation into the stripS(21,0) and

v2~ f ,du2 i
~0! g!5v2~du

~0!g, f !.

Property~i! is obvious from the definition, and~ii ! and ~iii ! are straightforward calculations. W
now check the KMS condition. Put

L~u,x!ª
b

2p
log$11e2pu~e2px/b21!%. ~4.15!

SinceL„u,L(2u,y)…5y ~group property!, we have

v2~ f ,du
~0!g!5E E W2„L~2u,y!2x…

]L~2u,y!

]y
f ~x!g~y!dx dy. ~4.16!

Using the addition formula for hyperbolic functions, we compute, for the two-point funct
~4.10!:

W2„L~2u,y!2x…]L~2u,y!/]y

5
1

4b2 @sinh„pL~2u,y!/b…cosh~px/b!2cosh„pL~2u,y!/b…

3sinh~px/b!1 i«#22
]L~2u,y!

]y

5
1

16b2 @$~11e22pu~e2py/b21!!1/21„11e22pu~e2py/b21!…21/2%cosh~px/b!

2$„11e22pu~e2py/b21!…1/21„11e22pu~e2py/b21!…21/2%

3sinh~px/b!1 i«#22
e22pue2py/b

e22pu~e2py/b21!11

5
1

16b2 @$e22pu~e2py/b21!%cosh~px/b!2$21e22pu~e2py/b21!%

3sinh~px/b!1 i«#22e22pue2py/b

5
e2py/b

16b2 @e2pu~e2py/b21!@cosh~px/b!2sinh~px/b!#2epu2 sinh~px/b!1 i«#22.
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For x,y.0, e2pu comes with a positive factor andepu with a negative one. For«.0, the total
expression is therefore analytic inu in the stripS(21,0), and this analyticity is preserved in th
limit «→01 after smearing inx and y, with test functions with support inR1 . The boundary
value atu2 i , uPR is

e2py/b

16b2 @epu2 sinh~px/b!2e2pu~e2py/b21!@cosh~px/b!2sinh~px/b!#1 i«#22.

This is preciselyW2„x2L(2u,y)…]L(2u,y)/]y ~by the same computation!. Hence, the KMS
condition is verified.

The representation of the groupG1(t)5exp(itG1 /b) with the positive generatorG1 /b
5H1(1/b)log D1 now follows immediately from Eqs.~2.25! and ~4.13!–~4.14!:

Theorem 4.3:For t>0 and all f

G1~t!p„W~0!~ f !…G1~2t!5p„W~0!~gt
~0! f !… ~4.17!

with

gt
~0! f ~x!5 f S x1

b

2p
logH 12

2pt

b
e22px/bJ D . ~4.18!

Remark:It is understood thatgt
(0)f (x)50 if the argument of the logarithm is<0, i.e., if x

<2b/(2p)log(2pt/b). Note that if t>b/(2p), then suppgt
(0)f ,R1 for any f of compact

support.
By ~4.12! we obtain as a corollary of Theorems 4.2 and 4.3, the following.
Theorem 4.4:For n.0 the action ofad D1

iu and ad G1(t) on W(n)( f ) with supp f ,R1 is

D1
iup~W~n!~ f !!D1

2 iu5p„W~n!~du
~n! f !…, ~4.19!

with

du
~n! f ~x!5E

0

x

dx1E
0

x1
¯E

0

xn21
dxn du

~0! f ~n!~xn!, ~4.20!

and, for t>0,

G1~t!p„W~n!~ f !…G1~2t!5p„W~n!~gt
~n! f !…, ~4.21!

with

gt
~n! f ~x!5E

0

x

dx1E
0

x1
¯E

0

xn21
dxn gt

~0! f ~n!~xn!. ~4.22!

Remark.It should be noted thatdu
(n) f is, in general, no longer a test function ifn.0, for it

may behave likexn21 for x→`. However, it belongs to the Hilbert space defined by the two-po
function, and hence the Weyl operators are well defined. The same applies togt

(n) f .
Next, we investigate the localization properties of the modular groups. We recall from Le

4.1 that for an unbounded interval@x,`@ the algebrasM(n)(@x,`@)[M(@x,`@) are independen
of n. Hence, the general result~3.1! applies. For the algebras corresponding to bounded interv
we have the following theorem.

Theorem 4.5: For 2`,x,y,` and u andt restricted according to (3.3), (3.5) (3.9)
(3.12),

ad D1
iuM~0!~ @x,y# !5M~0!

„@w1~u,x!,w1~u,y!#…, ~4.23!
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and

ad G1~t!M~0!~ @x,y# !5M~0!
„@c1~t,x!,c1~t,y!#…. ~4.24!

For n.0 a local algebraM(n)(@x,y#) is not mapped into anM(n)(I ) with bounded I.
Proof: For fixed u and t the mapsx°w1(u,x) and x°c1(t,x) are one to one forx

satisfying ~3.3! and ~3.9!, respectively, and the inverse maps correspond tou→2u and
t→2t. From ~3.14! it is clear that f has its support in@x,y#, iff du

(0)f has its support in
@w1(u,x),w1(u,y)# iff gt

(0)f has its support in@c1(t,x),c1(t,y)#. Hence~4.23! and ~4.24!
follows directly from Theorems 4.2 and 4.3.

To show the dislocalization forn.0 we note first that neitherdu
(0)f (n) nor gt

(0)f (n) is a
derivative of a function with compact support~except forf [0!. This is easily seen by considerin
the Fourier transforms of these functions, divided byp; the 1/p singularity is not compensated b
the derivatives because of the nonlinear variable transformations, and analyticity is lost. Co
now a bounded intervalI and a functiong such thatg(n11) vanishes onI. ThenW(0)(g) belongs
to the commutant ofM(n)(I ). If W(n)(du

(n) f )5W(0)(du
(0)f (n)) would belong toM(n)(I ), then it

would commute withW(0)(g), which means that

E du
~0! f ~n!~x!g8~x!dx50.

This must, in particular, hold for allg with g8[1 on I because suchg fulfill g(n11)50 on I for
n.0. Hence

E
I
du

~0! f ~n!~x!dx50. ~4.25!

By isotony this should also hold for all larger intervals, and hencedu
(0)f (n) would be a derivative

of a function of compact support. As remarked above, this is not the case, and we h
contradiction to the assumption thatW(n)(du

(n) f ) belongs toM(n)(I ) with I bounded. By the same
argumentW(n)(gt

(n) f ) does not belong toM(n)(I ).
Remark 1:In terms of the field operatorsF (n)(x), defined by

p„W~n!~ f !…5expS iE F~n!~x! f ~x!dxD , ~4.26!

Eqs.~3.13! and ~3.17! say that

D1
iuF~0!~x!D1

2 iu5F~0!
„w1~u,x!…

]w1~u,x!

]x
~4.27!

and

G1~t!F~0!~x!G1~2t!5F~0!~c1~t,x!!
]c1~t,x!

]x
. ~4.28!

In particular, we have

D1
iuF~0!~0!D1

2 iu5e22puF~0!~0! ~4.29!

and

G1~t!F~0!~0!G1~2t!5„11~2pt/b!…21F~0!~~b/2p!log„11~2pt/b!…!. ~4.30!
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~Although the field is only an operator-valued distribution, these equations have a rigorous
ing in terms of quadratic forms.! Conversely,~3.33! and ~3.34!, together with Eqs.~2.20! and
~2.26!, imply ~3.31! and~3.32!. Forn.0, however, adD1

iu is a nonlocal transformation of the fiel
operators by Theorem 4.4. For instance, we have

D1
iuF~1!~0!D1

2 iu5e22puF~1!~0!2~2p/b!e24puE
0

`

F~1!~x!dx. ~4.31!

This shows clearly that there is more to the transformation law for the fields than Eqs.~2.20! and
~2.29! alone.

If M(R1) is replaced byM(R2), the previous results apply with appropriate changes
signs; cf.~3.5!.

Forming tensor product algebras as in~3.13!, we obtain generalized free fields on tw
dimensional space–time and KMS states that factorize in the light-cone variables. In the c
the field with lowest scaling dimension, i.e.,n50, the double cone algebrasM(0)(I L3I R), with
I L ,I R bounded intervals, are again mapped into algebras of double cones. The flow lines o
1–4 describe in this case not only the movement of the apex of a forward light cone or the
of a wedge, but also the movement of the double cones.

For fields of higher scaling dimension, i.e.,n.0, however, double cone algebras are after
transformation no longer localized in double cones within the netM(n). They are still localized in
double cones within the netM(0)(•), becauseM(n)(•) is a subnet ofM(0)(•).

V. CONCLUSIONS

In a KMS state at inverse temperatureb the time translations coincide~up to a sign and
scaling byb! with the modular group of the global observable algebra. From this fact, and
general theory of half-sided modular inclusions, algebraic relations between time translatio
the modular groups for certain domains of space–time can be derived. The action of the m
groups on observables localized inside these domains far from the boundary is approxi
given by the time translations. In two-dimensional models and states that satisfy a KMS con
with respect to light-like translations~in particular, models that factorize in the light-cone coo
dinates!, a geometric interpretation can be given of the action of the modular groups o
forward light cone and a space-like wedge on observable algebras localized in translated d
of the same type. This action can be studied in detail in simple free field models. Besid
modular groups, the theory also leads to one-parameter groups with positive generators, fo
the KMS state is a ground state. The actions of these groups for the forward cone and the
can also be described geometrically and interpreted, at least formally, as a kind of a reverse
effect.
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Frank Burgbachera)

Fakultät für Physik, Universita¨t Konstanz, Fach M674, D-78457 Konstanz, Germany

Claus Lämmerzahlb)

Fakultät für Physik, Universita¨t Konstanz, Fach M674, D-78457 Konstanz, Germany
and Laboratoire de Physique des Lasers, Institut Galile´e, Universite´ Paris 13,
F—93430 Villetaneuse, France

Alfredo Maciasc)

Departamento de Fı´sica, Universidad Auto´noma Metropolitana—Iztapalapa,
Apartado Postal 55-534, C.P. 09340, Me´xico, D.F., México
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The Schro¨dinger equation in higher dimensions is considered. It consists of the
kinetic energy part given by the corresponding Laplace operator, and a term de-
scribing the interaction with the electrostatic field of a point charge. From
Rutherford-type scattering experiments one can conclude that the potential of a
point charge is;1/r irrespective of the dimension of the space where the experi-
ment is carried through. Also the structure of the kinetic energy is unchanged in
higher dimensions so that one is lead to the result that there exist stable atoms in
higher spatial dimensionsd>4. The solutions and energy eigenvalues to this
Schrödinger equation in higher dimensions are presented. As a consequence, the
dimensionality of space can be read off from the spectral scheme of atoms: The
three-dimensionality of space is a consequence of the existence of the Lyman
series. Another consequence is that the Maxwell equations in higher dimensions
must be modified in order to have the 1/r -potential as solution for a point charge.
© 1999 American Institute of Physics.@S0022-2488~99!00502-2#

I. INTRODUCTION

The idea of extra space–time dimensions continues to pervade current attempts to un
fundamental forces, but in ways somewhat different from that originally envisaged. A mo
perspective on the role of internal dimensions in physics comes mainly from the super
theory, which is the most promising candidate for a unified field theory. The appearance of
space–time dimensions at high energy scales is a generic feature of string theory. Typicall
extra dimensions remain compactified at the Planck scale, but it is possible for new dimens
have an effect below the Planck scale. In particular, large-radius compactification scheme
recently been discussed in a number of theoretical and phenomenological contexts.1,2 Similarly,
the effects of extra dimensions below the Planck scale have played a role in understand
strong-coupling behavior of string theory.3 Even the old pioneer Kaluza–Klein theory is embe
ded in a super-string theory; their states persist as a subset of the full string spectrum. Ho
string theory comes to rescue and ensures correct high-energy behavior.4 Then, we can regard this
theory as an effective ‘‘medium’’ energy model coming from finite string field theories. There
the study of different higher-dimensional models is of importance for the understanding of
general theories.

One of the most interesting questions addressed to the higher-dimensional approach
cerns the stability of atoms in higher spatial dimensions, i.e.,d.3. These investigations starte

a!Electronic mail: frank.burgbacher@uni-konstanz.de
b!Electronic mail: claus.laemmerzahl@uni-konstanz.de
c!Electronic mail: amac@xanum.uam.mx
6250022-2488/99/40(2)/625/10/$15.00 © 1999 American Institute of Physics
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with the well-known paper of Ehrenfest5 and has inspired many additional interesting investi
tions. For reviews see Refs. 6 and 7, and for a recent paper on this problem see Ref. 8 wh
dimensionality of space–time has been related to physical phenomena which are acces
experiment.

According to the analysis of Ehrenfest, see also Ref. 9, there are statements in all pape
in higher dimensions it is not possible to have stable atoms. It is one of our purposes in this
to show that it is indeed possible to havestable atoms in higher dimensions. The main point is that
first the kinetic energy in the Schro¨dinger has the usual form described by thed-dimensional
Laplacian and that the electrostatic interaction in the Schro¨dinger equation has the same for
irrespective of the spatial dimension. This of course leads to modified Maxwell equations in h
dimensions. While the main characteristics of these new Maxwell equations in higher dime
remains the same as compared with the Maxwell equations in three dimensions~the solutions have
the same structure and the force between charges is the same as in three dimensions!, these
modified Maxwell equations do not lead to a Gaussian law for charges. This may sound s
but the results of scattering experiments, the stability of atoms in higher dimensions, an
structure of the force between charges is certainly of more basic physical content.

A second point in our paper is that the spectra of atoms are influenced by the spatial d
sion. That means, as we shall show, that wecan decide from a spectroscopic experiment
dimension of our configuration space. To be more concrete, the ratio of the frequencies of t
distinguished spectral lines leads to a number from which we uniquely infer the t
dimensionality of our space. If this ratio gives a different number we would be led to fou
another number of spatial dimensions.

The most important starting point of our investigation is the structure of the Schro¨dinger
equation in higher dimensions. One way which fixes the kinetic part of the Schro¨dinger equation
is the quantization scheme arising from the Hamilton–Jacobi equation of a point mass whic
in higher dimensions has the usual formE5p2/2m1V, whereV is some potential energy. In
addition, also from a constructive axiomatic scheme~see, for example, Refs. 8 or 10! one gets a
Dirac equation in higher dimensions which nonrelativistic limit11 necessarily possesses a kine
term which is proportional to the Laplace operator. Therefore, any modification of this term w
need a modification of the quantization scheme as well as a violation of fundamental prop
~like unique evolution, superposition principle, finite propagation speed, etc., see, for exa
Ref. 10! of single particle quantum systems. Since these modifications obviously changes p
drastically we do not change the structure of the usual kinetic term.

As far as the potential energy term is concerned we use results from scattering experim
fix its form. Indeed, since the results of Rutherford-type scattering experiments are independ
the spatial dimension, we can unambiguously conclude from the experimental data, that
dimensiond the potential must be of the form;1/r . This is of course consistent with the analys
of Ref. 5 that atoms with the usual kinetic energy coupled to a modified potential of the
;/r d22 are not stable~the exponentd22 is due to the requirement that Gauss’ law should be
valid in higher dimensions!. Since our result for the electrostatic potential is not compatible w
a Gaussian law for electrostatics, we conclude that we have to modify the structure of Max
equations in higher dimensions.

Consequently, we take as general ansatz for the Hamilton operator for the hydrogen a
higher dimensions,

H5
p2

2m
1V~r !, ~1!

whereV(r ) is the spherically symmetric potential given by

V~r !5
a

r
. ~2!
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In comparison to other work on the problem of physics in higher dimensions, we do
consider the usual physical laws like the Maxwell equations~see, for example, Refs. 12 and 13! or
the Schro¨dinger equation or Newton’s field equations~see Ref. 5!, or the Einstein equations~see
Refs. 14–16! to be valid in higher dimensions and discuss physical implications of the solut
Instead, we start with generalphysicalproperties of the class of phenomena under considera
and then try to get information of the structure of the physical laws. In general, these equati
higher dimensions are very different from the equations in three dimensions describing the
effects. An interesting approach,17 which is in the line of our reasoning, is based on the cau
structure of space–time events. It deduces the four-dimensionality of space–time from a
axioms which do not use the notion of a differentiable manifold or of the dimensionality. Ano
approach having some similarities to our reasoning is given in Ref. 18 where it is shown th
a gravitational theory based on a quadratic Lagrangian the usual Newtonian limit and Huy
principle is valid only if this theory if formulated in six space–time dimensions. In Ref. 8, a
general approach to a generalized Dirac equation in arbitrary dimensions has been used
dimensions of space–time has been inferred from the propagation of helicity states and fro
validity of Huygen’s principle. In this work we do not consider the fractal dimension; see
example, Ref. 19.

In earlier work5–7 it has been shown that there are no stable hydrogen atoms in h
dimensions. Essential for that was the assumption that also in higher dimensions Max
equations were assumed to be valid leading to a potential of a point charge of the form;1/r d22

whered is the spatial dimension. In our approach we do not assume the usual Maxwell equ
to be valid. We only use the results of scattering experiments to get information about the po
of a point charge. We use this potential in Sec. III in order to solve the hydrogen atom and
show that even in higher dimensions there are stable atoms. However, from the comparison
calculated spectrum with the observational data we are able to determine in Sec. IV the d
sionality of our space. In Sec. V we present the full set of modified Maxwell equations in ord
show that even our potential violating Gauss’ law is part of a consistent set of equations gov
electrodynamical phenomena in a higher dimension. Though being nonlocal in general, th
still Lorentz-covariant.

II. THE POTENTIAL OF A POINT CHARGE IN HIGHER DIMENSIONS

The electrostatic potential of the atomic nucleus which we assume to be pointlike, c
determined by means of scattering processes. Indeed, using the scattering ofa-particles at gold
atoms, Rutherford was able to deduce that the electrostatic potential within an atom is the
lomb potential. We will show that this procedure and this result is true independent of the u
lying spatial dimensions. This can be seen already from the fact that the classical trajecto
point charge in a 1/r potential does not depend on the spatial dimension so that the rel
between the deflection angle and the potential also remains the same.

Starting with~1,2!, conventional quantum mechanics gives the asymptotics of scattered w
according to

u1~rW !5
1

~2p!d/2 S eikW rW1 f kW~eW !
eikr

r ~d21!/2D , ~3!

with eW5rW/r . This can be shown by calculating the Green’s function in the energy represen

G~rW,rW8!5
1

~2p\!d lim
e→01

E e~ i /\!~rW2rW8!•pW

E01 i e2p2/2m
ddp

which results in a position dependence of the form;urW2rW8u2(d22) with factors depending on the
dimensiond and an integration over a spherical Bessel function. The scattering amplitude is
given by
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f kW~eW !;E e2 ikeW rW8V~rW8!u1~rW8!ddx8, ~4!

whereeW5rW/r . In the Born approximation we have

f kW~eW !;E ei ~kW2qW !rWV~rW !ddx. ~5!

In a scattering experiment the measured quantity is the differential cross sections(eW ,kW0)
which is related to the scattering amplitude by

s~eW ,kW0!5u f kW0
~eW !u2. ~6!

This is a relation which is independent of the dimension of the underlying space. In the
approximation there is a one-to-one correspondence between the differential cross section
potential V(rW). Therefore, by analyzing the standard Rutherford-type experiments we
uniquely conclude that a point charge, or the nucleus of a hydrogen atom, possess a pote
the form;r 21, independent of the spatial dimension.

III. THE HYDROGEN ATOM IN HIGHER DIMENSIONS

We start with the Hamilton operator~1! in the external spherically symmetric potential~2!
which gives, in position representation,

@D2f1e#c5c, ~7!

where we introduced the abbreviations

f~r !5
2m

\2 V~r !, ~8!

e5
2m

\2 E. ~9!

The following calculations are analogous to that in three dimensions. Also, in a higher dime
we can separate the Laplace operator into a radial and an angular part:

D5R̂2
1

r 2 L̂, ~10!

where we introduced

R̂5
]2

]r 2 1
d21

r

]

]r
,

~11!
L̂5L̂~Q2 ,...,Qn!.

With the corresponding ansatz,

c5R~r !Y~Q2 ,...,Qd!, ~12!

we get from the Schro¨dinger equation ind dimensions,
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r 2

R
R̂R1r 2~e2f!5

1

Y
L̂Y5 l ~ l 1d22!. ~13!

Y(Q2 ,...,Qd) represents the spherical harmonics ind dimensions. They are eigenstates of t
angular momentum operatorL̂ with the eigenvaluesl ( l 1d22). Thus we get for the radial part o
the wave function,

F ]2

]r 2 1
d21

r

]

]r
1e2f2

l ~ l 1d22!

r 2 GR50. ~14!

We introduce

r 85
r

r 0
, 2e5

1

r 0
2 , a85

2ma

\2

r 0

2
, ~15!

and assume for the potential the form

f~r 8!r 0
252

a8

r 8
. ~16!

We also introduce a new variablef (r 8) through

R5e2~1/2!r 8r 8g f ~r 8!, ~17!

and get an equation for the functionf:

05r
d2f ~r 8!

dr82 1@2g1d212r #
d f~r 8!

dr8

1Fg~g1d22!2 l ~ l 1d22!

r 8
1

a8

r 8
2

2g1d21

2
G f ~r 8!. ~18!

This equation is valid for arbitraryd. In order to solve this equation we specify the value ofg by
the requirement that the term;1/r 8 should vanish:

g~g1d22!2 l ~ l 1d22!50. ~19!

This gives the two possibilities

g15 l , ~20!

g252~ l 1d22!, ~21!

and from~18!,

z f92@q2z# f 82b f 50, ~22!

with

qª6~2l 1d22!11, bª
6~2l 1d22!11

2
2a8. ~23!

Equation~22! is the confluent hypergeometric differential equation with the solution20
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f ~b,q,z!5 (
n50

`
~b1n!!q!

b! ~q1n!!

zn

n!
, ~24!

which is appropriate for our problem.
It is clear that, in order to get no infinite terms,q is not allowed to be a negative intege

qÞ21,22,... . Therefore we cannot use the solution~21!. In addition, if the sum does no

terminate, then the solution diverges for larger faster than exp(12r8) which leads to non-
normalizable solutions. The condition for a termination of the sum isbPZ2, or

b5 l 1
d21

2
2a852k, kPN. ~25!

Here a8 is connected with the energy eigenvalues~1,8,15!. Therefore we get for the energ
eigenvaluesE,

E5
2ma2

\2

1

a82 52
2ma2

\2

1

„l 1@~d21!/2#1k…2
52Ry

1

n2 5:En , ~26!

where the principal quantum numbern is given by the series

n5
d21

2
,

d21

2
11,

d21

2
12,

d21

2
13,... . ~27!

We also introduced the Rydberg constantRy which, in general, may depend througha on the
dimensiond. In the cased53 we recover the usual expressions. Note that, in general, the
cipal quantum numbern must not be an integer.

Consequently, we have shown that for a potential of the form;1/r even in higher dimensions
there is a lowest energy level, that is, there are stable atoms.

IV. THE INFLUENCE OF THE DIMENSION ON THE SPECTRUM

We discuss now the spectrum of stable hydrogen atoms in higher dimensions. It is cle
the spectrum depends on the dimensiond. An interesting question is whether this dependence
accessible to observations. In an experiment only the difference of two energy eigenvalue

DEn8,n5En82En , n8.n, ~28!

can be measured. For a fixedn one gets an atomic series which now depends on the dimensid.
In three dimensionsd53 one gets forn51 the Lyman series, forn52 the Balmer series, for
n53 the Paschen series, etc. In 4 dimension, for example, according to~27! it is not possible to
haven51, so that in this case there is no Lyman series. Ind56 dimensions there is also n
Balmer series.

However, since the Rydberg constant Ry may depend on the dimensiond in an unknown way,
we are not able to draw any conclusions about the dimensionality of space from testing the
spectral series. Therefore we are forced to restrict ourselves to the ratio of two energy diffe
which is also independent of any unit conventions. In our case it is enough to take the ratio
difference between the three lowest energy levels of one series characterized byn:

D~n!5
DEn12,n

DEn11,n

5
4~11n!3

~21n!2~112n!
. ~29!
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Because this functionD(n) is one-to-one, the value ofD(n) uniquely characterizes the corre

sponding series. For the first few values we getD(0)51, D( 1
2)5 27

2551.08,D(1)5 32
2751.18519,

D( 3
2)5 125

98 51.275,D(2)5 27
2051.35,D( 5

2)5 343
24351.41152, etc.

Therefore we have the following experimental method at hand in order to determin
dimensionality of our space: We consider that series which belongs to the lowest energy
From this series we take the two highest frequency spectral lines and calculate the ratio. Thi
the valueD(nmin). From this value we can calculate the correspondingnmin and, using~27!, the
dimensiond52nmin11 of our space. Here we used that in each dimension the lowest s
contains only transitions withl 5k50.

We know from spectroscopy of the hydrogen atom that the two spectral lines coming
transitions to the lowest energy level have~see, for example, Ref. 21! 1215.67 Å and 1025.73 Å
so thatD(nmin)51216/102651.18518. A comparison with the values ofD(n) shows that this
implies nmin51, and from Eq.~27! that d53. Therefore we haveproven by a spectroscopi
experiment that our space is three-dimensional. In other words, because we know the spectrum
the hydrogen atom we are able to determine the dimensionality of space.

We want to stress once more that it is not the stability of the atom which one may u
argument in favor of three spatial dimensions. In our approach the stability of atoms is secu
any dimension. It is only the structure of the spectral series which leads us to the conclusio
space is three-dimensional.

V. MAXWELL EQUATIONS IN HIGHER DIMENSIONS

We have seen that the electric potential of a point charge in the Schro¨dinger equation in higher
dimensions must be of the formU;1/r independent of the dimensiond. Since the usual Laplacian
has the same form in any dimension, the above potential cannot be a solution of the P
equation ind.3 dimensions. However, we show that it is indeed possible to present a cons
set of equations governing the electromagnetic phenomena in higher dimensions which viol
fundamental principle of electrodynamics and, in addition, possesses the above electrostat
tions for a point charge. Of course, the structure of the Maxwell equations will be not the sa
in three dimensions.

In order to determine the structure of the stationary Maxwell equation for the electric field
use results of Riesz distributions, see, for example, Refs. 22, 23. In doing so we first defi
distribution

Glª

e2 iplG@~d/2!2l#r 2l2d

4lpd/2G~l!
, ~30!

wherer as usual is the distancer 25( i 51
d xi

2. The properties of these distributionsGl are given by
the composition law

Gm* Gl5Gl1m , ~31!

and an explicit representation in the case of negative integers,

Gk5D2kd, k50,21,22,..., ~32!

whereD is again the Laplace operator in an arbitrary dimension,d the usual Dirac delta distribu
tion, and the star* the convolution operation.

We formally introduce operatorsD̄l by

D̄l
ªG2l , ~33!

so that the following composition law holds:
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D̄m* Gl5Gl2m . ~34!

An important special case is given bym5l:

D̄m* Gm5d. ~35!

This means thatGm is a Green’s function corresponding to the operatorD̄m* .
Now we come back to our problem of finding the field equations which are required to po

the solution;r 21 in any dimensiond. That means that we require in any dimensionGm;1/r
which impliesm5(d21)/2. Consequently,

D̄~d21!/2* G~d21!/25d, ~36!

or

D̄~d21!/2*
1

r
5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D d. ~37!

This means that the equation for the electric potential, or the generalized Poisson equation
as

~D̄~d21!/2* f!~x!5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D r~x!, ~38!

wherer(x) is the charge density ind dimensions. The operatorD̄ (d21)/2 replaces the Laplacian in
three dimensions. In general, this operator is no differential operator.

We briefly discuss this new form of the Poisson equation in electrostatics.

~1! It is possible to reformulate the field equation for the potentialf in terms of the electric field
strengthE52“f. For doing so we use~31! and ~32!:

D̄~d21!/2* f5~D̄* D̄~d23!/2!* f5Dd* ~D̄~d23!/2* f!5d* ~D̄~d23!/2* df!5~D̄~d23!/2*“•E!,
~39!

so that we get as field equation for the electric field strength,

~~D̄~d23!/2*“ !•E!~x!5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D r~x!. ~40!

~2! The force between two charges still has the same form as in 3 dimensions, namf
;q1q2 /r 2.

~3! For all charge densitiesr(x) the solution for the potential looks as usual, i.e., 1/r * r.
~4! In odd dimensionsd51,3,5,..., the above equation reduces via~31! and~32! to a differential

equation:

D̄~d21!/2*
1

r
5d* D~d21!/2

1

r
5D~d21!/2

1

r
5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 D d. ~41!

For a three-dimensional space,d53, we get the usual Laplace equationDf(x)524pr(x)
and in a five-dimensional space we getD2f(x)5(4p)2r(x).

~5! In even dimensions, the operatorD̄ (d21)/2 is no differential operator but instead a pseud
differential operator. Therefore the corresponding field equations are pseudo-differenti
erator equations. These operators are nonlocal.~Indeed, differential operators are the on
local operators acting linearly and surjective onC`; see Ref. 24. For a physical discussio
see, for example, Ref. 25.!

~6! An essential difference to the usual properties of the electric field in 3 dimensions is tha
the Gauss’ law is no longer valid. This is easy to see by integrating the fundamental so
r 21 in an arbitrary dimension over the surface of a sphere with radiusR:

E E•dA5E
R
“

1

r
• r̂Rd21dV5~4p!~d21!/2e@ ip~d21!/2#GS d21

2 DRd23, ~42!
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wherer̂ is the unit vector in radial direction anddV is the surface element ind dimensions.
The result depends on the radius of the sphere so that indeed Gauss’ law does not ho
only in three spatial dimensions that the quantityE which plays the role of a force on
charged particle, is also that quantity which integral over the area enclosing a volume
the total charge which acts as source ofE ~the field strengthE is defined by means of the forc
acting on a charged particle; whether this quantity obeys a law like Gauss’ law is a de
property which holds in three dimensions!.
However, Gauss’ law is valid for a quantity deduced fromE, namely forE5D̄ (d23)/2E:

“•E5~4p!~d21!/2eip@~d21!/2#GS d21

2 D r~x!⇔ R E•dA5~4p!~d21!/2eip@~d21!/2#Q,

~43!
whereQ5*Vr(x)ddx is the charge contained in the volumeV.

It is also straightforward to give the full set of Maxwell’s equations such that their static
give the Poisson equation discussed above: Since the covariant generalization of the L
operatorD is given by the d’Alambert operator , the covariant generalization of Poisson
equation is (d21)/2* f5(4p)(d21)/2eip@(d21)/2#G((d21)/2)r. We complete the quantities to co
variant 4-vectors, namely the 4-potentialAa and the 4-currentj a. Then we have, using the sam
methods as above,

j a5 ~d21!/2* Aa5~ * ~d23!/2!* Aa5 d* ~ ~d23!/2* Aa!5d* ~ ~d23!/2* Aa!

5 ~d23!/2* ]bFba5: ]̄bFba, ~44!

where we defined a generalized partial derivative]̄bª
(d23)/2* ]b and, as usual, the Maxwe

field strengthFab5]aAb2]bAa . We also used the Lorentz condition]aAa50. By construction,
these generalization of Maxwell’s equations is covariant. Also current conservation is fulfilled
even spatial dimensions these equations are nonlocal.

To sum up: despite the fact that the mathematical structure of the equation determini
electric potential from a given charge density changes dramatically when compared wi
three-dimensional case, the physical content does not change. The solution has the same f
the force between charges is the same as in three dimensions. Only Gauss’ law loses its m
However, we think that the specific expression for the force between charged particles a
stability of atoms are of more basic physical importance than the validity of Gauss’ law.

VI. SUMMARY AND DISCUSSION

To sum up, we have shown the following.

~1! From Rutherford-type experiments we can conclude that the potential of the point cha
any spatial dimension must be;1/r .

~2! This potential leads to stable atoms in higher dimensions.
~3! The dimensionality enters the atomic spectra thus making it possible to infer uniquely

atomic spectra the three dimensionality of space.
~4! That the Maxwell equations have to be modified in higher dimensions in order to a

solutions of the form 1/r , leading to nonlocal equations in even spatial dimensions.

In the case that one uses the usual Maxwell equations in higher dimensions the hydroge
is proven to be not stable. This has been related to the fact that orbits of classical bodie
potential derived from the usual Poisson equation in higher dimensions are not stable, a
small perturbations of the circular orbit leads the body to fall into the central body or to leav
system. Consequently, if one wants to enlarge the above reasoning to the case of New
mechanics, one has to require stable orbits, which gives the 1/r potential for gravity also in higher
dimensions. This forces one to modify the Poisson equation for the Newtonian potential
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same way as the Poisson equation for the electrostatic potential in Sec. V. That means, in
dimension d the field equation for the Newtonian potentialU(x) must be of the form
(D̄ (d21)/2* U)(x)5(4p)(d21)/2eip(d21)/2G((d21)/2)r(x), wherer(x) is the mass density. As a
consequence, also Einstein’s equations should be modified in higher dimensions.

In conclusion, we want to say that our or similar considerations do not rule out the poss
of unifying physics in higher dimensions; we just restrict, from observations, the direct phy
applicability of dynamical equations to three spatial dimensions.
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Implementation of an iterative map in the construction
of „quasi …periodic instantons: Chaotic aspects and
discontinuous rotation numbers
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An iterative map of the unit disk in the complex plane is used to explore certain
aspects of self-dual, four-dimensional gauge fields~quasi!periodic in the Euclidean
time. These fields are characterized by two topological numbers and contain stan-
dard instantons and monopoles as different limits. The iterations do not correspond
directly to a discretized time evolution of the gauge fields. They are implemented in
an indirect fashion. First, (t,r ,u,f) being the standard coordinates, the~r,t! half-
plane is mapped on the unit disk in an appropriate way. This provides an~r,t!
parametrization ofZ0 , the starting point of the iterations and makes the iterates
increasingly complex functions ofr and t. These are then incorporated as building
blocks in the generating function of the fields. We explain in what sense and to
what extent some remarkable features of our map~indicated in the title! are thus
carried over into thecontinuoustime development of the fields. Special features for
quasiperiodicity are studied. Spinor solutions and propagators are discussed from
the point of view of the mapping. Several possible generalizations are indicated.
Some broader topics are also discussed. ©1999 American Institute of Physics.
@S0022-2488~99!03802-5#

I. INTRODUCTION

An iterative map of the unit disk centered at the origin of the complex plane is studied i
Appendix. The motivation is that it can be implemented fruitfully in the study of a hierarch
four-dimensional, self-dual,~quasi!periodic gauge fields. Fields with spherical symmetry inR3 are
mostly used to illustrate our approach. More general possibilities are indicated at the end~Sec.
VI !. Such fields have been studied previously in a series of papers1–8 which contains references t
other sources. Here we reformulate them from the point of view of the iterative map. This b
remarkable new aspects to light.

Our gauge fields are~quasi!periodic in Euclidean time. The basic ingredient~one may say the
generating function! for the spherically symmetric fields is a holomorphic functiong(r 1 i t )
satisfying certain constraints~Sec. II! in the ~r,t! half-plane (r>0). Here (t,r ,u,f) are the stan-
dard coordinates. The functiong can have several factors~or nonfactorized terms! each with its
own period int. When all the periods are mutually commensurable the lowest common multip
the component periods is the overall one. This is the periodic case. When at least one
component periods is incommensurable with some others, one has, by definition, quasiperio

As is well known, fields periodic in Euclidean time provide one possible approach to
theory at finite temperature. Our explicit constructions are such that even an infinitesimal c
in one single parameter~determining one of the component periods! can make a periodic solution
quasiperiodic and vice versa. So they are considered in a parallel fashion.

The map studied in the Appendix is

a!Electronic mail: chakra@cpth.polytechnique.fr; also at: Laboratoire Propre du CNRS UPR A.0014.
6350022-2488/99/40(2)/635/39/$15.00 © 1999 American Institute of Physics
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Zp115
ap1Zp

āp1Zp
21 , uZ0u<1, 0,uapu,1. ~1!

Note the inverse (Zp
21) in the denominator. Possible choices ofap are discussed in the Appendix

For implementing the map in the construction of the gauge fields the crucial step is a suitabl~r,t!
parametrization of Z0 . The two choices considered are

Z05e2k~r 1 i t ! ~k.0!, ~2!

and

Z05
( l 51

n l l
2~ekl ~r 1 i t 2 icl !21!21

( l 51
n l l

2~12e2kl ~r 1 i t 2 icl !!21 ~3!

with real parameters (l,k,c) and

kn.k~n21!.¯.k2.k1.0.

The uses of~2! will be amply illustrated~Secs. II, III, and the Appendix!. The choice~3! is
particularly suited to the construction of spinor solutions~Sec. IV!. It can be shown to satisfy al
the necessary constraints.

With Z0 thus chosen one can set~Sec. II! the generating function of the gauge fields to b

g5S )
j 51

n

Zpj

~ j !D , ~4!

where different sets of parameters are associated with each factor.
The iterations do not correspond to a discretized time evolution of the fields.At each step one

has a different action~Sec. II!, a different system. But the~r,t! parametrization ofZ0
( j ) will provide

the key to the usefulness of the iterations. Aspj increases,g becomes a more and more comp
cated function of~r,t!. But the fact that such complications are introduced in a very spe
fashion stepwise makes some remarkable properties readily accessible. Some crucial prop
each blockZpj

( j ) as a whole are delivered directly. To give this statement explicit content let us

at the two most striking features of our map.@Up to Sec. IV,~2! will usually be referred to directly
for simplicity. This is not an essential restriction.#

(1) For r 50 ~the circumference of the unit disk! Zp for any p, is a phase, the angle denote
by cp , and ~1! becomes a circle map. This map~see the Appendix! satisfies all the criteria for
being chaotic~Ref. 9, Def.8.5, p. 50!. These are as follows:

~a! a sensitive dependence on initial data, encoded by a positive characteristic index;
~b! a dense set of periodic points;
~c! transitivity.
Moreover this phase and its derivatives provide the coefficients of a series expansionr of

Z or g ~the Appendix!.
Suppose now, that as a consequence of~a!, namely the positive index, at a certain levell of

iterations the difference

c l~c01dc0!2c l~c0!

is appreciably large even for a smalldc0 ~consideringc l as a function of its initial datumc0).
Due to our parametrization this means

c l~ t1dt !2c l~ t !

is large even for smalldt.
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Through~4!, the result above, for each factorj, is injected into the time evolution of the fields
This leads to sensitive time dependence.~See, however, the remarks in Sec. VII.!

The overall phase ofg ~for any r! does not contribute directly to the action density, expre
ible in terms ofgḡ and its derivatives~Sec. II!. But the amplitude at each order of iteratio
involves the phases of the lower ones~the Appendix!. Moreover the phaseis directly involved in
the power series expansion inr.

The phase can be studied directly and analogously for any value ofr ~inside the disk!. The
emphasis on the phase atr 50 is due to two factors.

~a! The relative simplicity forr 50 permits a transparent derivation of the crucial propertie
~b! For spherical symmetry, in our ansatz, the time dependence is damped exponential

increasingr ~going toward the center of the disk!. Hence a small sphere around the origin
R3 is the most suitable domain for studying the time evolution. The leading term o
action density for smallr is given explicitly ~Sec. II! to display the role of the iterated
phases.

(2) We do not ignore, however, other remarkable features associated with certain valuer
away from the spatial origin~the choice of the parametersa andk determines how far away o
how close!. These are the domains on which theZ( j )’s can vanish and hence alsog. They lead to
discontinuous rotation numbers associated to the phases~the Appendix!. So far as the zeros ofg
can be located their cumulative effects lead to staircaselike patterns. An example is given
II.

The rotation numbers areasymptoticquantities@n→` in ~A58!#. Hence, discontinuities can
arise even if we are dealing with well-behaved, integrable action densities.

In Ref. 10 it is emphasized~p. 20!, in the context of standard circle maps, thatdiscontinuous
rotation numbers can arise forsmoothmaps. Here they arise in the context of ‘‘annular’’ maps~the
Appendix! when the annulus can become a disk. It is also closely related to the central prope
our map that after each iteration ‘‘on the average’’ the phase turns twice as fast~the Appendix!.

In Sec. II the construction of the periodic fields is reformulated, with respect to our prev
papers, in order to display prominently the role of the iterative map. The self-dual solution
characterized bytwo topological integers. One is ‘‘instantonlike’’ (PT) and the other is ‘‘mono-
polelike’’ ~q!. Their remarkable combined role in index theorems withR33S1 as the base mani
fold for periodic fields2,4,6,7 are recapitulated in the context of explicit construction of spin
solutions~Sec. IV!.

Some special features of quasiperiodic fields are studied in Sec. III. For periodic backgr
a finite number of normalizable, zero-mass spinor solutions are obtained by imposing on
~anti!periodic boundary conditions int ~Sec. IV!. For quasiperiodic backgrounds the numb
cannot thus be limited, unless rational approximations of the component periods are cons
Nevertheless, the spinor solutions are constructed in a way that works for both classes. T
~not realized here! is to study the effect on the spinors ofseveralmutually incommensurable
periods in the background field.

For some particularly simple systems the possible effects of quasiperiodic kicks have
studied by several authors with different conclusions.~See Ref. 11, and sources cited therein.!

In a more general context~quasiperiodic state withk frequencies and a quasiperiodic attrac
for the valuem5m0 of a continuous bifurcation parameter! the situation has been summed up
follows ~Ref. 12, p. 631!:

‘‘For k>3, strange attractors and positive characteristic exponent may be present form arbi-
trarily close tom0 .’’

We provide~though only for zero mass and Euclidean signature! exact, explicit solutions for
spinors in four dimensions in a gauge field background that can bring into play an arb
number of mutually incommensurable periods. This can provide an interesting starting po
further investigations.

Our iterations can also be implemented in propagators~Sec. V!. This can lead to a systemati
semiclassical development for our classes of background.
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Several directions are indicated~Sec. VI! for possible generalizations of our study. The po
sibilities mentioned are—breaking spherical symmetry, magnetic chargeq>1, gauge group
SU(N) with N.2 and the use of hyperbolic coordinates.

After presenting our formalism in full, certain general questions are taken up in the con
ing remarks~Sec. VII!.

II. A CLASS OF PERIODIC SELF-DUAL GAUGE FIELDS

The class we consider, to start with, has spherical symmetry inR3 and periodicity in Euclid-
ean time. The gauge group is SU~2!. Let (t,r ,u,f) be the standard time and radial coordina
with

ds25dt21dr21r 2~du21~sinu!2df2!.

Let (s r ,su ,sf) denote the projections of the Pauli matrices, respectively, on the direc
indicated. The gauge potentials are given by

Ar6 iAt56 i ~] r6 i ] t!z
s r

2
, ~5!

Au6 i ~sinu!21Af56 i ~ez21!S su6 isf

2 D , ~6!

where

ez5
r

~12gḡ!
~~] r

21] t
2!~gḡ!!1/2. ~7!

Hereg is a holomorphic functiong(r 1 i t ) in the ~r,t! half-plane (r>0), postulated to satisfy the
following properties:

~1! gḡ511O(r ) for r→0,
~2! g has no poles forr>0,
~3! g falls exponentially asr→` ~giving a constant logarithmic derivative!,
~4! g is periodic int.

We start with strict periodicity. Quasiperiodicity will be defined and studied in Sec. III.
previous studies of periodic instantons~Refs. 1–8! will be reformulated below to display at eac
stage the role of the iterative map~the Appendix!.

A. First iteration: From monopoles to periodic instantons

The simplest choice satisfying all the constraints is evidently

g5e2k~r 1 i t ! ~k.0!. ~8!

But now gḡ has no time dependence and from~7!

ez5
kr

sinhkr
.

One obtains the famous self-dual BPS monopole with the magnetic topological winding nu

q51.

Here we have, of course, the Euclidean version,At replacing the Higgs field.
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In ~8! g is preciselyZ0 , the initial point of the iterative map studied in the Appendix. App
one iteration. Then

g5
a01e2k~r 1 i t !

ā01ek~r 1 i t ! . ~9!

There is a spectacular change.One now has an authentic periodic solution characterized bytwo
topological integers.

~1! The magnetic number remains unchanged since asr→` there is no essential change in th
configuration. One has still the~monopolelike! number

q51.

~2! A second~instantonlike! topological integerPT is now given by the total actionST over
one period (T52pk21) divided by 8p2. One defines

8p2PT54pE
0

T

dtE
0

`

dr~] r
21] t

2!v, ~10!

where

v5
1

2
e2z1 lnS 12gḡ

r D ,

~] r
21] t

2!v5
1

2
~] r

21] t
2!~e2z22z!5

1

2
~] r

21] t
2!e2z1

1

r 2 ~12e2z!. ~11!

For ~9! one obtains

PT52.

The computation of the action will be given below in a form particularly suited to
purpose. But first let us introduce a more general form ofg.

In ~8! set, assumingk to be sufficiently large,

k5(
j 51

n

kj ~kj.0!.

At this stage thekj ’s are supposed to be mutually commensurate. Thus, in evident notation

g5)
j 51

n

gj
~0!5)

j 51

n

e2kj ~r 1 i t !.

Now apply one iteration to each factor giving

g5)
j 51

n

gj
~1!5)

j 51

n S a0
~ j !1e2kj ~r 1 i t !

ā0
~ j !1ekj ~r 1 i t ! D . ~12!

In the notation of the Appendix,

gj
~1!5Z1

~ j ! .

Each factor now has its own period,
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Tj52pkj
21. ~13!

Since thekj ’s are mutually commensurate one can set

kj5 k̂
Pj

Qj
, ~14!

wherePj ,Qj are integers without common factor. Thus there is an overall period

T5
2p

k̂
S )

j
Qj D . ~15!

We now compute the total action overT. Using ~10! and Stokes’ theorem with the bounda
indicated by the limits, one obtains

ST54pE
d

R

dr@] tv#0
T14pE

0

T

dt@] rv#d
R ~d→0,R→`!. ~16!

The first integral vanishes due to periodicity. In the second one, nonzero contributions com
from the limit r→0. These can be evaluated by using standard integrals.3,4 But the very first step
(p50) of our study (the Appendix) of the circle map and the small-r expansion furnishe
result directly.

From ~12! and ~A38! as r→0,

gḡ5112S (
j

dc1
~ j !

dt D r 12S (
j

dc1
~ j !

dt D 2

r 21O~r 3!, ~17!

where

e2 ic1
~ j !

5S a0
~ j !1e2 ik j t

ā0
~ j !1eik j t D . ~18!

From ~A19! as

kj t5c0
~ j !→c0

~ j !12p, c1
~ j !→c1

~ j !14p. ~19!

Insertingv of ~10! in ~16! and using~17!, the only nonzero contributions are seen to co
from

lim
r→0

S ] r lnS 12gḡ

r D D5(
j

dc1
~ j !

dt
. ~20!

Hence, in terms of the previous definitions, one obtains quite simply

ST54pS 4p(
j 51

n
T

Tj
D 58pTS (

j 51

n

kj D 58p22S)
j

Qj D S (
j 51

n
Pj

Qj
D . ~21!

Hence,

PT52S (
j 51

n
T

Tj
D . ~22!
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Since each (T/Tj ) is an integer,PT is an even integer. Odd indices can be obtained throug
simple modification described below.

B. Comments on the limiting values a0
„ j …50, 61

In general, the parametersa will be assumed to satisfy 0,uau,1. The limits indicated are
associated with monopoles and standard aperiodic instantons. The following points are
noted.

~1! For

a0
~ j !50, c1

~ j !52kj t. ~23!

This limit, consistent with~19!, can be taken smoothly. For alla0
( j )50 one has a static monopole

But having determined beforehand eachTj and T, if this limit is takena posteriori one obtains
~formally! ~22! in the simplest fashion.

~2! For

a0
~ j !51, c1

~ j !5kj t. ~24!

As compared to~23! there is a rescaling by12. @The choice21 in ~24! implies no essential change#
If say, only

a0
~1!51

one obtains, instead of~22!,

PT5
T

T1
12S (

j 52

n
T

Tj
D . ~25!

Now PT can be odd. Consider, for example,

g5S 1
2~11e!1e2k~r 1 i t !

1
2~11e!1ek~r 1 i t ! D )

j 51

n S aj1e2k~r 1 i t !

ā j1ek~r 1 i t ! D . ~26!

For

e521, PT52n12; e51, PT52n11. ~27!

~3! For eachj, taking the combined limit

kj→0, a0
~ j !5211kjbj ~bj1b̄ j.0!, ~28!

one obtains from~12!

g5)
j 51

n S bj2~r 1 i t !

b̄ j1~r 1 i t !
D . ~29!

This is Witten’s multi-instanton solution13 with centers on the time axis and total action onR4,

S58p2~n21!. ~30!

The magnetic charge is lost in this limit.
To sum up,g as given by~12!, combines instantonlike and monopolelike aspects. It is a m

general construction containing them as limits. As an expression of this double role such pe
self-dual configurations are characterized by the presence oftwo topological integers: one instan
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tonlike (PT) and one monopolelike~q!. The combined role of these two in the index theorems w
be discussed later~Sec. VI!. So far, though,PT can range through the entire spectrum of intege
q is restricted to unity. This restriction can be removed~Sec. VI!.

Finally, we just mention that concerning the rotation numbers defined in the Appendix
result ~A59! implies for ~12!, which hasn factors, a staircaselike pattern withn steps. It was
pointed in Sec. I that jumps in the rotation numbers can arise though the action density re
smooth. We illustrate this explicitly for the simplest nontrivial case. Let

g5S a1e2k~r 1 i t !

ā1ek~r 1 i t ! D . ~31!

Here the crucial value ofr corresponding to~A59! is

e2kr5a. ~32!

But now from ~7!,

e2z5~kr !2~~sinhkr !222~12a2!~coshkr1a cost !22!. ~33!

Inserting~33! in ~10! one obtains a smooth action density.
The results~A39! and ~A40! can be used to study the time dependence of the action de

in a small sphere aroundr 50. We defer the discussion to be able to include higher iterations
quasiperiodicity.

C. Higher iterations

For higher iterations one stays within the class of~quasi!periodic instantons with unit mag
netic charge. But various interesting properties arise or are accentuated as the configura
comes more complex. Some crucial features are presented below.

A generalization of the ansatz~12! is automaticallyimplemented. One more iteration on~9!
gives @see~A62!#

g5Z25Z0
22S a01Z0

ā01Z0
21D S m11Z0

m̄11Z0
21D S m21Z0

m̄21Z0
21D , ~34!

where

m65 1
2~~a01ā0a1!6~~a01ā0a1!224a1!1/2!.

The factorZ0
22 ~i.e., e2k(r 1 i t )) is an increasingexponential inr, thoughZ2 as a whole falls as

e2kr. This aspect is generalized by setting@compare~12!#

g5el ~r 1 i t !)
j 51

n S a0
~ j !1e2kj ~r 1 i t !

ā0
~ j !1ekj ~r 1 i t ! D ~35!

with

l ,S (
j 51

n

kj D .

The total action, instead of~21!, is now ~assumingl is so chosen that the overall period is stillT!

ST54pTS 2(
j 51

n

kj2 l D . ~36!
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Thus one has a lower action with the same number of parametersa. In ~34! the factorZ0
22 lowers

ST ~andPT) to give

~8p2!21ST5PT52~321!54. ~37!

D. Effect on rotation numbers

The rotation numbers are defined and discussed in the Appendix@~A58!–~A65!#. In the course
of time evolution of the gauge field generated by~34!, g can vanish for

e2kr5ua0u,um1u,um2u, ~38!

thoughum1u andum2u may coincide toua1u1/2. Thus thoughST is doubled, the number of zeros a
here~generically! tripled.

Let r 1,r 2,r 3 be the three distinct roots of~38! in r and letV2 denote the rotation numbe
after the second iteration. Then~A59! is generalized as follows:

V2

V0
54,

7

2
,3,

5

2
,2,

3

2
,1, ~39!

respectively, for

r ,r 1 , r 5r 1 , r 1,r ,r 2 , r 5r 2 , r 2,r ,r 3 , r 5r 3 , r .r 3 .

Cumulative effects of higher iterations will increase the number of steps. One can fac
Zp12 in terms ofZp analogously to~34!. But rather than repeating such steps our aim is to sh
how the results of the Appendix can lead directly to remarkable properties. An example
different direction, follows.

E. Action density near the spatial origin

Let us explore the role of the iterations in the action density in a small sphere about the
where the intricate interplay of~quasi!periodic pulsations are least affected by exponential da
ing with increasingr. We generalize~12! by setting

g5)
j 51

n

Zpj

~ j ! , ~40!

whereZpj

( j ) is e2kj (r 1 i t ) iteratedpj times. For eachpj51 one obtains~12!. The doubling after each

iteration of the contribution of each factor to the total action has to be taken into account. A s
particular case is given by~37!. The general result is evident on noting how~A19! generalizes~19!
and hence the derivation of~21!. For ~40! one obtains, instead of~21!,

ST58pTS (
j 51

n

2~pj 21!kj D . ~41!

As the action increases, the ‘‘weight’’ of that particular field configuration in path integ
diminishes. Hence the interest of an extra factor, as in~35!, bringing down the action as far a
possible for a given period, as in~36!. Having obtained the total action let us now take a close lo
at a small sphere aroundr 50. Using the results obtained in~A38!, ~A39!, and~A40! one obtains
after simplifications for~40!,

e2z5
r 2

~12gḡ!2 ~~] r
21] t

2!~gḡ!!512
2

3
G tr

21O~r 3!, ~42!
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where

G t5
1
2C

21~C̈/C!2 3
2~Ċ/C!2, ~43!

C5(
j 51

n

ċpj

~ j ![Ċ. ~44!

Here the dots denote time derivatives andcpj

( j ) is the phase of thej th factor~for r 50) in ~40!. This

leads, forv given by ~10!, to

~] r
21] t

2!v5 4
3G tr

21O~r 3!. ~45!

The total action overR3 and a periodT is given by~41!. Let S(r ) denote the action, at any instan
t, integrated over a small sphere of radiusr about the origin. Then

S~r !54pE
0

r

dr~] r
21] t

2!v5S 4

3
G t

2DVr1¯ , ~46!

where~the dots indicating higher powers ofr!

Vr5
4
3pr 3.

The leading term, logically, is proportional to the volume of the sphere.@This is rendered
possible by the zero coefficient of the term linear inr in ~42!.#

In ~43! G t has an interesting structure. There is a ‘‘kinetic’’ term,

1
2C

25 1
2Ċ

2

and theSchwarzian derivativeof C. For the simplest case@one factor withp51 in ~40!# using
~A17!, with

a5ua0u, x5c02a0 , c05kt,

C5Ċ52k
11a cosx

11a212a cosx
[2k

X

Y
.

Hence

C̈

C
2

3

2
S Ċ

C
D 2

5k2a~12a2!S cosx1a~sinx!2S 3

2
X211Y21D D ~XY!21. ~47!

This changes sign at points determined by the choice ofa0 . But for all a0 , it is positive~negative!
for x50(p), respectively. For the general case~40! the very complex structure implied by~43!
determines the time dependence.

III. QUASIPERIODICITY

So far we have been considering strict periodicity, having just mentioned that the comp
periodsTj need not necessarily be commensurate. We now take a closer look at this poss

As an example let (k2 ,k3 ,...,kn) in ~12! be all mutually commensurate as in~14! but not with
k1 . @This relatively simple case will suffice to exhibit some remarkable features. It is possib
consider several incommensurate periods. One can also start withZ0 given by ~3! rather than by
~2!.#
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Let T̂ be the common overall period for (T2 ,T3 ,...,Tn), but not for T1 . One can take
successive rational approximations of (T̂/T1),

S T̂

T1
D

~appr!

5
N1

N2
, ~48!

N1 ,N2 being integers without common factors. Then

T5N2T̂

is the overall period at that approximation. As the approximation is improved,N1 ,N2 ,T all
increase without limit.~Since there is no exact period, improving the approximation one tend
cover the entire time axis.! One can keep in mind the famous example of successive rati
approximations of the ‘‘golden mean’’

G5 1
2~A521!

using the Fibonacci sequence. But our considerations will not be limited to any such par
case. For thel th approximation, in evident notations, the action over the periodT( l ) is

Sl516p2S T~ l !

T1
1(

j 52

n
T~ l !

Tj
D . ~49!

As l→` so doT( l ) andSl . One can now consider the limiting form of the action per unit tim
or the ‘‘normalized’’ action

SN5S Sl

T~ l !D
l→`

. ~50!

This gives acontinuous index, a positive real number, not an integer. The possible mathema
significance ofSN has been discussed elsewhere.4,7 The magnetic indexq doesnot vary in the
successive stages described above. As one approaches the asymptoticS2 in R3 the exponential
damping of time dependences give the same static configuration at each stage, namely tha
monopole. Hence ourquasiperiodic instantons are characterized, not by two topological integ
but by one positive real number(SN) and one integer~q!. For the class of solutions unde
considerationq51. More general possibilities are indicated in Sec. VI.

So far we have been looking at quasiperiodic solutions from the point of view of succe
approximations. Let us now look at someexactconsequences of the postulated incommensura
ity.

In the case considered before, consider the Poincare´ sections of the factorg1 ~corresponding
to the periodT1) for

t5t01nT ~n50,1,2,...!.

One obtains

g1~n!5e2 i2a1
ua1u1e2k1~r 1 i ~ t01nT!!1 ia1

ua1u1ek1~r 1 i ~ t01nT!!2 ia1
. ~51!

We simplify notations by setting

a5ua1u5a1eia1, k15k, kv5kt02a1 ,
                                                                                                                



can

ing

646 J. Math. Phys., Vol. 40, No. 2, February 1999 A. Chakrabarti

                    
X~n!5ei2a1g1~n!5
a1Fn

a1Fn
21 ,

where

Fn5e2k~r 1 iv1 inT!5e2k~r 1 iv!2 i2pnd, dÞ
N1

N2
~N1 ,N2 integers!.

The irrationality ofd is the basic quasiperiodicity postulate.Now

X~n1p!5
a1Fn1p

a1Fn1p
21 5

a1Fne2 i2ppd

a1Fn
21ei2ppd . ~52!

We show that if the parameters (r ,t0 ,k,a,n,p,d) are fine-tuned,X may come backjust once
to an initial value but no more~not even twice!. From ~52!,

Fn
21ei2ppda~12X~n1p!!Fn2ei4ppdX~n1p!50. ~53!

Eliminating Fn from the equations for threedistinct integer values ofp say,

p5p1 ,p2 ,p3 ,

one of which may be zero, one has as a necessary constraint the vanishing determinant

detU1 a~12Xn1p1!ei2pp1d 2Xn1p1ei4pp1d

1 a~12Xn1p2!ei2pp2d 2Xn1p2ei4pp2d

1 a~12Xn1p3!ei2pp3d 2Xn1p3ei4pp3d
U50. ~54!

For, say,

X~n1p1!5X~n1p2!5X~n1p3!5X ~55!

this reduces to

X~12X!ei ~p11p21p3!2pd~~12ei ~p12p2!2pd!~12ei ~p22p3!2pd!~12ei ~p32p1!2pd!!50. ~56!

The coefficient ofX(12X) cannot vanish due to our quasiperiodicity postulate. Neither
X(n1p) be zero or unity for three distinct values ofp. That would imply, for example forX51,

Fn
25ei4ppjd

for three different values ofpj and so on. Hence the constraint~55! cannot be satisfied. SoX(n)

cannot come back twiceexactlyto a previous value. There is, however, no restriction concern
repeated very close approaches.

Let us now look at the conditions necessary for asingle return, namely,

X~n1p!5X~n!.

From ~52! this is seen to imply

~Fne2 ippd!212l~Fne2 ippd!1150, ~57!

where

l5a21 cosppd.
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Hence,

Fn5eippd~2l6Al221!. ~58!

Case~1!: (ulu<1)
Let l5cosh ~h real!. Then

Fn5e2k~r 1 iv!2 i2pnd52ei ~ppd6h!. ~59!

This impliesr 50 and

e2 i ~kt02a11p~2n1p!d6h!521. ~60!

~The 6 sign implies one or the other. They do not hold simultaneously.!
Case~2!: (ulu.1)
Let l5cothz ~z real!. Then, retaining the solution leading to a real value ofr,

Fn52~ tanh~z/2!!eippd ~61!

and

e2kr5utanh~z/2!u, e2 i ~kt02a11p~2n1p!d!561. ~62!

It should be noted thatX(n1p)5X(n) does not imply a periodic situation. In the solution
aboven is not arbitrary for a givenp. One can indeed show that given the foregoing situatio

X~n12p!ÞX~n1p!5X~n!

consistently with the impossibility of~55!. In this context the ambiguity of sign of the inverse m
~expressingFn in terms ofXn) plays an interesting role. But we will not present such details h

Let us note one more point.The action density and the rotation numbers now involve mutu
incommensurable numbers.It would be interesting to study in detail the time evolution of t
coefficient~43!

G t5
1
2C

21~C̈/C!2 3
2~Ċ/C!2, ~63!

C5(
j 51

n

ċpj

~ j ![Ċ ~64!

with three or more incommensurable periods~namely,kj ’s at the origin of thec j ’s! varying the
parametersa. Our purpose in leaving the periodT andV0 in ~A58! is now evident. In general one
will have, to start with, incommensurableV0

( j )’s corresponding to different factors ofg. For the
simple case considered above~only k1 incommensurable with the rest and withFn corresponding
to a section ofZ0

(1)) one has

V0
~1!52pd,

d being irrational. The cumulative effects of several irrational numbers have to be taken
account in a more general case.

The different roles of rational and irrational rotation numbers are well known.9,10 Here the
rotations of the phases are considered in the context of annular maps~the Appendix!. The ‘‘av-
erage’’ doubling of the phase~sufficiently near the origin! for each iteration is also specific to ou
case. Though we have demonstrated the existence of striking discontinuities, the role
rotation number remains to be explored.
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IV. INDEX THEOREMS AND SPINOR SOLUTIONS

Again we start with the periodic case, deferring a discussion of quasiperiodicity. For pe
gauge fields the base manifold isR33S1 rather thanR4 or S4. The index theorems have to tak
into account the boundary effects induced byS1. This has been discussed elsewhere.4,6,7 Here we
just mention that the number of zero modes of spinors in periodic backgrounds characteri
two topological integers (PT ,q). 5PT2q for periodic spinors of isospin12 ~see Refs. 2 and 4!,
54PT22q for periodic spinors of isospin 1~see Ref. 7!, 5PT for antiperiodic spinors of isospin
1
2 ~see Ref. 6!.

~The background is, of course, still periodic for antiperiodic spinors.! We construct below the
spinor solutions in a more general and systematic fashion than in the previous papers.
facilitated by introducing a gauge transformation leading from the Witten-type gauge introd
in ~5! and ~6! to a ~quasi!periodic generalization of ’t Hooft or Jackiw–Nohl–Rebbi~JNR! type
solutions.2,4,6,7Two historical references for the standard~aperiodic! solutions are Refs. 13 and 14

A. Gauge transformation

We start withAm given by ~5! and ~6! and gauge transform by

G~r ,t !5e2 id~r ,t !sr /2,

where

eid5S 12g

12ḡD S ~] r2 i ] t!g

~] r1 i ] t!ḡ
D 1/2

. ~65!

One obtains

Am8 5G21AmG2 iG21]mG5smn]n ln S,

wheres105s235s1 ~cyclic!, and

S5
1

2r S 11g

12g
1

11ḡ

12ḡD5
1

r

~12gḡ!

~12g!~12ḡ!
~66!

satisfying, since (] r1 i ] t)g505(] r2 i ] t)ḡ,

hS5S ] t
21] r

21
2

r
] r DS50. ~67!

Thus we have obtained the famous ansatz leading to ’t Hooft or JNR solutions. But here it is
implemented in the context of magnetically charged~quasi!periodic solutions rather than that o
standard aperiodic instantons.

The poles ofS play an essential role in the construction of spinor solutions.The passage from
g to S maintains contact with the iterative map implemented for g. But this raises the problem o
displaying in an additive form the poles ofS. The roots ofg51 are not, in general, explicitly
available. Generally there are 2n roots for ~12!, all for r 50. The particular case, with (0,a
,1) and

g5S a1e2~r 1 i t !

a1e~r 1 i t ! D n

is fully treated in Ref. 7. We display some typical features of the passage fromg to S through
simple examples, motivating the generalization to follow.
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(1) For g5e2k(rit ),

11g

12g
5coth

1

2
k~r 1 i t !,

~68!

S5
1

2r S coth
1

2
k~r 1 i t !1coth

1

2
k~r 2 i t ! D5 (

l 52`

`
1

k2

1

r 21~ t2k212p l !2 .

This is the periodic form of the BPS monopole, gauge equivalent with the still better-known
form. The action over one period (T52p/k) can be considered, quite formally, to be 8p2 ~or
PT51). @See the comments following~8! and ~23!.#

(2) For, with (0,a,1),

g5S a1e2k~r 1 i t !

a1ek~r 1 i t ! D , PT52,

and

11g

12g
5

11a

2
coth

1

2
k~r 1 i t !1

12a

2
coth

1

2
k~r 1 i t 2 ipk21!. ~69!

(3) For

g5e2k~r 1 i t !S a1e2k~r 1 i t !

a1ek~r 1 i t ! D ,

PT53 @ the simplest case of~26! and ~27!#

and

11g

12g
5l1

2 coth
1

2
k~r 1 i t !1l2

2 coth
1

2
k~r 1 i t 2 ick21!1l3

2 coth
1

2
k~r 1 i t 1 ick21!, ~70!

where

cosc52
11a

2
, l1

25
11a

31a
, l2

25l3
25

1

31a
.

For our normalization a general consequence is

(
i

l i
251.

The number of coth terms in (11g)/(12g) givesPT if each one has the same period, sayT
anddistinct singularities. A term with period (T/m) contributesm units toPT .

(4) Once the roots ofg51 are obtained the residues at the poles give thel’s. But this is not
strictly necessary for constructing the spinor solutions.

Consider a case with two different periods (2pk21,pk21), namely (0,a,1) and

g5S a1e2k~r 1 i t !

a1ek~r 1 i t ! D S a1e22k~r 1 i t !

a1e2k~r 1 i t ! D .

Now
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PT5212.256, q51. ~71!

The zeros ofg ~and hence the jumps in rotation numbers! correspond to

e2kr5a,Aa.

It is sufficient to note thatg51 for

r 50, eit561,S 2
1

2
6 i
)

2 D ,S 12a

2
6 iA12S 12a

2 D 2D .

One can then construct (PT2q)55 periodic andPT56 antiperiodic spinor solutions. The explic
solutions will follow.

More generally, using real parametersap at each iteration one obtains some simplificatio
Thus, for example, iteratingg as a whole~with 0,ap,1).

gp115
ap1gp

ap1gp
21 , ~72!

and

11gp11

12gp11
52S 11ap

2 S 11gp

12gp
D1

12ap

2 S 12gp

11gp
D D . ~73!

Hencegp1151 for gp561, consistently with the doubling of the periodic action. For re
a0 , a1 , and

g05e2k~r 1 i t !,

g251 for r 50; sin
kt

2
50, cos

kt

2
50, 6A12a0

2
.

B. Generalization of Z0 and g

Having noted the relation between the structures ofg andS one can now invert the procedure
Start with

S5
1

2r (
l 51

n

l l
2S coth

1

2
kl~r 1 i t 2 ic l !1coth

1

2
kl~r 2 i t 1 ic l ! D ~74!

5
1

2r S 11g

12g
1

11ḡ

12ḡD , ~75!

where convenient conventions are

(
l 51

n

l l
251, kn.kn21.¯.k2.k1.0.

Now

g5
( l 51

n l l
2~ekl ~r 1 i t 2 icl !21!21

( l 51
n l l

2~12e2kl ~r 1 i t 2 icl !!21 . ~76!
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Thus we have motivated the parametrization~3! of Z0 ~hereg!. One can verify that~76! satisfies
all the constraints listed below~7!. In particular,g is a phase forr 50 and drops ase2k1r as r
becomes large.The major interest is that now, even in presence of an arbitrary number of diffe
periods (different k’s) g is directly adapted to the construction of spinor solutions to follow.The
S of ~74! can easily be generalized to break spherical symmetry. But we defer such conside
to Sec. VI.

To give a better idea of the relation of~76! to the previous factorized form we consider aga
some simple examples. Different subclasses of the previous form will be found already
simplest examples of~76!.

We setn52; c15c250 and we use below oftenl1
21l2

251.
(1) For k15k25k,

g5e2k~r 1 i t !.

More generally, for allk’s and allc’s equal one has the monopole solution.
(2) For k15k, k252k,

g5
l1

21e2k~r 1 i t !

l1
21ek~r 1 i t ! .

(3) For k15k, k253k,

g5ek~r 1 i t !S a1e2k~r 1 i t !

ā1ek~r 1 i t ! D S ā1e2k~r 1 i t !

a1ek~r 1 i t ! D ,

wherea5 1
2(l1

21 il1A42l1
2) (aā5l1

2,1).
(4) For k152k, k253k,

g5S a11e2k~r 1 i t !

ā11ek~r 1 i t ! D S a21e2k~r 1 i t !

ā21ek~r 1 i t ! D ,

where, respectively, for

1.l1
2. 1

4, a15ā25 1
2~11 iA4l1

221!;

1
4.l1

2.0, a15ā15 1
2~11A124l1

2!;

a25ā25 1
2~12A124l1

2!;

l1
25 1

4, a15a25 1
2.

For special values of the k’s and the c’s in (76) some poles can coincide, diminishing PT

accordingly.The preceding examples, apart from leading to simple factorized expressionsg
also illustrate this point. One degeneracy~the common pole forr 50, sinkt50) diminishesPT by
1 in each case. This is consistently incorporated in the factorized forms ofg. Thus fork152k,
k253k one obtainsPT54 instead of 5. We will assume, in general, that the choice of param
in S imply distinct poles.

Spinor solutions for zero mass were constructed2 directly in Witten-type gauge. But since th
counting of the number of zero modes~and hence comparison with the index theorems! is more
transparent in the ’t Hooft- or JNR-type gauge, we start by generalizing~74! as follows. Let

Am5smn]n ln S,

where, withe561,
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S5
1

2
~11e!1

1

2r (
j 51

n

l j
2S coth

1

2
kj~r 1 i t 2 ic j !1coth

1

2
kj~r 2 i t 1 ic j ! D

5
1

2
~11e!1(

j 51

n

(
l 52`

`
l j

2

kj
2

1

r 21~ t2kj
212p l !2 . ~77!

The role ofe is interesting concerning the index theorems. Fore51, one has a ’t Hooft-like form.
It can be shown that on the asymptotic sphere inR3 one now has a dipole like configuration rath
than a monopole.~See the discussion in Ref. 6 and the sources cited there.! Hence for

e51, q50,

while for

e521, q51.

However, forboth values (e561), the periodic action is the same. For an overall perioT
and integersnj such that

Tj52pkj
21, T52pk21, kj5njk, ST58p2(

j
nj . ~78!

This can be seen as a limiting case of the familiar~’t Hooft and JNR! solutions as follows. Star
by retaining in~77! the poles covering an intervalNT. Define, in evident notations,

ST5~N21SNT!N→` .

The value ofSNT is given by the very well-known results for the ’t Hooft and JNR solutio
leading to

ST5
8p2

N S N(
j

nj2~12e!/2D
N→`

58p2(
j 51

n

nj .

Thus for the periodic case, in contrast with the aperiodic one, the change frome521 to e51
does not increase PT by 1 but diminishes q by1. Forn51, one has quite a special case. Then
e521, one has a static monopole gauge transformed to a periodic form, whereas fore51 the
periodicity is authentic butq50.

C. Spinor solutions

Having thoroughly prepared the ground, we at last introduce the spinors. Here we cons2,6

only isospin

I 5 1
2

~see Ref. 7 forI 51). We consider only zero mass spinors.
For our conventions only upper~positive! helicity spinors have normalizable solution. Sep

rating this helicity (CU) the Dirac equation reduces to

ām~ i ]m2Am!CU50,

where

ām5~t0 ,i tW !, am5~t0 ,2 i tW !.
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~We denote space–time Pauli matrices bytm and those in the isospace bysm .) The isospin
components are separated as

CU5UCU
~1 !

CU
~2 !U, I 3CU

~6 !56
1

2
CU

~6 ! .

Set

CU
~6 !5S1/2Ua6

b6
U

and define

u5 1
2~x31 ix0!, ū5 1

2~x32 ix0!,

v5 1
2~x11 ix2!, v̄5 1

2~x12 ix2!.

Formally, the solutions are given~see Ref. 6 and the sources cited therein! by

a15]v~S21H !, b152]u~S21H !,

a252] ū~S21H !, b252] v̄~S21H !,

where

hH5~]u] ū1]v] v̄!H50.

Normalizablesolutions are obtained by matching the poles ofH with the zeros ofS21. From~77!
it is evident that there are an infinite number of such possible choices ofH. A finite number is
obtained by imposing suitable boundary conditions relatingCU(t) and CU(t1T), T52pK21

being the period.
For periodic spinors satisfying

CU~ t !5CU~ t1T!

set

Hmj
5

1

2r S coth
1

2
K~r 1 i ~ t2cj !2 i2pkj

21mj !1coth
1

2
K~r 2 i ~ t2cj !1 i2pkj

21mj ! D ~79!

with Tj52pkj
21 and

mj51,2,...,nj , kj5njK ~ j 51,2,...,n!.

These provide all the normalizable zero modes. The total number is

S (
j 51

n

nj D . ~80!

But they are not all necessarily independent since

1

nj
(

mj 51

nj

coth
1

2
K~r 6 i ~ t2cj22pkj

21mj !!5coth
1

2
kj~r 6 i ~ t2cj !!. ~81!

~This is probably most easily derived via the logarithmic derivative of the well-known pro
formula for sinhnx.) Hence
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(
j

nj
21l j

2S (
mj

Hmj D 5S2
1

2
~11e!. ~82!

Thus fore521, in an evident notation,

(
j

nj
21l j

2S (
mj

CU
~mj !D 50. ~83!

There is no such constraint fore51. Moreover, forboth cases (e561), as explained before

PT5S (
j 51

n

nj D .

Thus in both cases, consistent with the index theorems stated at the beginning of this sect
number of zero modes5PT2q.

Here q is limited to zero and one. But, on the other hand, we have done much more
counting the number of possible solutions. They have been obtained explicitly. One can
study, to take only one example, the time evolution of such spinor densities.

For antiperiodicspinors~in periodic backgrounds!

CU~ t !52CU~ t1T!

and the correct choice6 for H turns out to be

Hmj
5

1

2r S cosech
1

2
K~r 1 i ~ t2cj !2 i2pkj

21mj !1cosech
1

2
K~r 2 i ~ t2cj !1 i2pkj

21mj ! D .

~84!

The linear constraint~83! is now absent even forq51 (e521). There is no ‘‘magnetic defect,’’
no subtraction ofq, and one obtains~consistently with the result stated at the beginning of t
section but now via explicit constructions!

number of zero modes5PT .

Static configurations can be considered as a limiting case of periodic ones~infinite period! but
not of antiperiodic ones. The Dirac modes in a monopole background that introduce theq sub-
traction as a boundary effect are not relevant for antiperiodic spinors.

D. Spinors in quasiperiodic backgrounds

Consider now the case where in~77! thek’s arenot all mutually commensurable. Generalizin
the approximation~48! to several component irrational ratios one may construct~anti!periodic
spinor solutions at each level of rational approximation. As this approximation is improvePT

~approx! and hence the number of spinor modes will diverge. There being no exact period f
gauge field one cannot limit the number of spinor modes by imposing~anti!periodic boundary
conditions as before.But our previous solutions provide a subset of ‘‘typical’’ ones which per
a comparative study of timeevolution of spinors in periodic and quasiperiodic backgrounds
spectively. Consider, for example, the subset~periodic and antiperiodic, respectively, for a pe
odic background! corresponding to

H j
~1 !5

1

2r S coth
1

2
kj~r 1 i t 2 ic j !1coth

1

2
kj~r 2 i t 1 ic j ! D , ~85!
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H j
~2 !5

1

2r S cosech
1

2
kj~r 1 i t 2 ic j !1cosech

1

2
kj~r 2 i t 1 ic j ! D . ~86!

Suppose we start with mutually commensurablek’s and then vary some of them~infinitesimally or
more! to introduce incommensurability and quasiperiodicity.H j

(6) will continue to give solutions,
normalizable over any rationally approximated period or over unit time@analogously to~50!#. One
can express the spinor densities

~CU
~6 !!†CU

~6 ! , ~CU
~6 !!†tWCU

~6 !

in terms ofa6 , b6 , andS. One can implement the constraints due to the harmonic propertyS
and theH’s and~for our present case! those due to spherical symmetry. Then it might be rewa
ing to follow the time evolution of the densities for different values~small or some other crucia
ones! of r, particularly when there are three or more incommensurablek’s. Such a study is,
however, entirely beyond the scope of this paper.

Let us finally note that starting with~76! asg0 and iterating with real parameters as in~72!,
namely,

gp115
ap1gp

ap1gp
21 ,

the roots ofg051 will form a subset of those ofgp51. Hence defining

Sp5
1

2r S 11gp

12gp
1

11ḡp

12ḡp
D ~87!

and still retaining the explicit expressions~85!, ~86! for H j
(6) obtained forS0 , one obtains an

interesting subset of spinor modes for the background corresponding toSp , for both cases~peri-
odic and quasiperiodic!. At the level of g0 the space–time dependence can already be q
complex. With iterations this will become much more so. But we will still have explicit soluti
whose evolutions can be studied.

Note that our spinor solutions~except periodic ones forq50) fall off exponentially for large
r. For antiperiodic ones this is more evident. But though the leading term~for q51) in (H j /S) is
constant for periodic spinors, the presence of derivatives introduce again exponential dampi
q50 periodic spinor densities fall off asr 24. We have already studied the action density of
gauge fields near the origin~Sec. II!. One can now study our ‘‘exponentially confined’’ fermio
densities near the origin in such backgrounds.

V. PROPAGATORS

For the gauge field backgrounds considered in the preceding sections the propagat
massless, isospin12 fields were given in Ref. 3. For periodic backgrounds the~anti!periodic propa-
gators were presented in explicitly summed up, closed forms.Our iterative map can be imple
mented in themthrough the functionsg(ḡ) corresponding to the pointsx andy of the propagator
D(x,y). We recapitulate briefly the results of Ref. 3, where other sources are cited.

Define

t5x0 ,t85y0 , r 5AxW2, r 85AyW 2,

s r5
sW •xW

r
, s r 85

sW •yW

r 8
,

G5
11g~r 1 i t !

12g~r 1 i t !
, G85

11g~r 81 i t 8!

12g~r 81 i t 8!
,
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S5
1

2r
~G1Ḡ!, S85

1

2r 8
~G81Ḡ8!,

and

2 i2F~r ,t;r 8,t8!5
~12s r !~11s r 8!

~ t2t8!1 i ~r 2r 8!
~G2G8!2

~11s r !~12s r 8!

~ t2t8!2 i ~r 2r 8!
~Ḡ2Ḡ8!

1
~12s r !~12s r 8!

~ t2t8!1 i ~r 1r 8!
~G1Ḡ8!2

~11s r !~11s r 8!

~ t2t8!2 i ~r 1r 8!
~Ḡ1G8!. ~88!

Let unprimed fields (Am) correspond tox and primed ones (Am8 ) to y. Let

D̃~x,y!5S21/2
F

4p2~x2y!2 S821/2 ~89!

and

Dm5~]m1 iAm!~]m1 iAm!.

Then

2D2D̃~x,y!5d4~x2y!. ~90!

ThusD̃ gives theaperiodicpropagator for massless scalar fields. ForG(G8) periodic int(t8) with
a periodT, say, theperiodic and theantiperiodicpropagators are, respectively, defined to be

D1~x,y!5 (
n52`

`

D̃~x01nT,xW ;y0 ,yW !, ~91!

D2~x,y!5 (
n52`

`

~21!nD̃~x01nT,xW ;y0 ,yW !. ~92!

Define

V15~ t2t8!1 i uxW2yW u, V25~ t2t8!2 i uxW2yW u,
~93!

V3~e,e8!5~ t2t8!1 i ~er 1e8r 8!, ~e,e8561!,

and

S1~e,e8!5
p

T

S ~V22V3!cotS p

T
V1D1cyclicD

~V12V2!~V22V3!~V32V1!
,

~94!

S2~e,e8!5
p

T

S ~V22V3!cosecS p

T
V1D1cyclicD

~V12V2!~V22V3!~V32V1!
.

@The indices (e,e8) are implicit in V3 on the right-hand sides.# Then one obtains3
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D6~x,y!5
i ~SS8!21/2

8p2 S ~G2G8!S6~1,21!~12s r !~11s r 8!

2~Ḡ2Ḡ8!S6~21,1!~11s r !~12s r 8!

1~G1Ḡ8!S6~1,1!~12s r !~12s r 8!

2~Ḡ1G8!S6~21,21!~11s r !~11s r 8!

D . ~95!

The propagator for spinors is obtained now through a standard prescription15 as

~g•D~x!D~x,y!~11g5!/21D~x,y!g•DQ ~y!~12g5!/2!,

whereD can beD̃,D1 , or D2.
All that has been assumed is thatg ~at x,y or at any other point! satisfies the properties liste

under~7!. Thusg can involve an arbitrary number of iterations. Whenx andy are both close to the
origin, G andG8 will exhibit strongly and simultaneously the consequences of the chaotic as
studied in the Appendix.~See the remarks in Sec. VII!. For a quasiperiodic background one c
consider the aperiodicD̃ or D6 for some adequate rational approximation.

VI. GENERALIZATIONS

Only brief indications will be given below concerning some possible generalizations.

A. Beyond spherical symmetry for q 50,1

One can generalize~66! and ~77! as follows. Let

Am5smn]n ln S,

where, withe561,

S5
1

2
~11e!1 (

m51

M
1

2r m
~Gm1Ḡm! ~96!

andGm(r m1 i t ) is a holomorphic function with

r m5uxW2xWmu.

Choosing

Gm5
11gm

12gm
, ~97!

where gm is now given by~40! with the origin translated toxWm , iterations can be introduce
independently for each center. One can have a ‘‘gas’’~dilute or dense! of ~quasi!periodic instan-
tons. In Ref. 7 spinors were studied in such a background without iterations. One can also s
generalizing~76! including shifts of origin, starting for themth term with

gm
~0!5

( l 51
nm l l ,m

2 ~ekl ,m~r m1 i t 2 icl ,m!21!21

( l 51
nm l l ,m

2 ~12e2kl ,m~r m1 i t 2 icl ,m!!21 . ~98!

Then one may apply iterations independently for eachm. As explained in Sec. IV a subset o
spinor solutions can readily be obtained.

B. q>1; spherical symmetry necessarily broken

The ansatz~77! @or ~96!# is not suitable for generalizing beyondq.1. This is one of our
reasons for starting with~7!. The general formulation of linear pairs16 can thus be applied
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specifically1,4 to ~quasi!periodic fields for constructing higherq solutions. Details can be found i
those papers. Here we just indicate where iterations can be implemented.

For q52, one starts withtwo functions

g15P j 51
n S aj1e2kj ~R1 i t !

ā j1ekj ~R1 i t ! D ,

~99!

g25P j 51
n S bj1e2kj ~R̄1 i t !

b̄ j1ekj ~R̄1 i t ! D ,

where, with realc,

R5~r 22c22 i2cr cosu!1/2,

R̄5~r 22c21 i2cr cosu!1/2,

implying an imaginary translation~ic! parallel to thez axis. For the solutions to be regular th
parameters (c,aj ,bj ) have to satisfy constraints.1,4 More generally one starts withq functionsg
for chargeq. Iterations can be implemented for these functions. But one must then verify care
the regularity constraints afterwards. That, presumably, would be difficult.

C. Gauge group SU „N…

Self-dual,~quasi!periodic solutions for arbitraryN were presented in Ref. 5. Again we on
indicate, in the simplest case forN.2, namely, SU~3!, how theg functions~which can be iterated!
appear in the class of solutions obtained. The details of the generalized ansatz5 will not be
reproduced here.

For SU~3! we just note that, instead of one functionez, as in~5!, ~6!, and~7!, one needs two,

e2b15d1P21~r 2~] r
21] t

2!~gḡ!!21~~p32p2!~gḡ!p11cyclic!,
~100!

e2b25d2P21~r 2~] r
21] t

2!~gḡ!!21~~p32p2!~gḡ!22p11cyclic!,

whered1 ,d2 are constants~given in Ref. 5!,

P5~p22p1!~p32p1!~p32p2!

and (p1 ,p2 ,p3) are rational numbers satisfying

p1,p2,p3 , p11p21p353.

To avoid certain problems concerning branch points~explained in Ref. 5! we set

g5S )
j 51

n S aj1e2kj ~r 1 i t !

ā j1ekj ~r 1 i t ! D D Q

such thatQpi ( i 51,2,3) are integers.
Iterations can be introduced separately for the factors ofg or for g as a whole. One can als

useg of ~76! as a starting point.
For higher values ofN a set ofN21 independent parametersp enters into the solutions.5 For

N.2 a single magnetic winding number is no longer sufficient for characterizing the asym
configurations inR3. This is one reason for an increasing number of parameters.
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D. Use of hyperbolic coordinates

The uses of the coordinate transformation

~r 1 i t !5tanh1
2~r1 i t!

in the construction of instantons or the so-called hyperbolic monopoles were studied in a se
papers.~Apart from Ref. 17 they are all summarized in Ref. 18—a review article.! The metric is

ds25dt21dr21r 2~du21~sinu!2df2!

5~coshr1cost!22~dt21dr21~sinhr!2~du21~sinu!2df2!!. ~101!

In Refs. 17 and 18t-static solutions@depending on~r,t! throughr# were considered. In Refs. 2 an
4 we indicated the passage from thet-periodic to thet-periodic solutions. One can replace in~6!
the subscripts~r,t! by ~r,t!, respectively, and set

ez5
sinhr

~12gḡ!
~~]r

21]t
2!~gḡ!!1/2 ~102!

and, for example,

g5)
j 51

n S aj1e2kj ~r1 i t!

ā j1ekj ~r1 i t! D . ~103!

The action is evaluated in Ref. 2. To avoid irregularities at

r50, t56p

thek’s in ~103! have to be integers.@The role of the conformal factor in~101! is crucial concerning
this point.18# This is a restriction. But the formalism is more general in the following sense
simple rescaling

r5lr 8, t5lt8, At5l21At8 , Ar5l21At8

gives back the previous formalism, in the limitl→0, with

ds8254l22 ds25dt821dr821r 82~du21~sinu!2df2!.

The restriction on thek’s can be lifted after the scaling limit is taken.
But let us consider the situation without any such rescaling. As it stands,g in ~103! has

already a quite special type of~r,t! dependence via~r,t!. After several iterations one can have
very complex~r,t! dependence, say for the action density. But the situation can still be stu
relatively simply using~r,t!.

The coordinate transformation introduced maps the~r,t! half-plane on the strip

0<r,`, 2p<t<p.

More generally one can consider our solutions in the context of three noncompact and one
pact dimension, all with the same signature. IfT is the period associated with the last one then
condition concerning integer values, saynj of kj , is to be generalized tokj5(2pnj )/T assuring
single-valued solutions. One can also consider the possibility of embedding our solutions int
subspaces of higher dimensional spaces.
                                                                                                                



of this
g

t of the
er.

t its
fully

of the
omes
e
in
r of
back.

h fields
quately
tions,

ir exis-
t this
ient
logy
ompe-

h. In
uthors
r ex-
f
fing
ered in

es we

kable
spects

s
irely
nd

itherto

percon-

t but

ak
urable
, dully
s and

660 J. Math. Phys., Vol. 40, No. 2, February 1999 A. Chakrabarti

                    
VII. REMARKS

Chaos in gauge theories is a popular topic. Many authors have studied various aspects
domain. A convenient reference is,19 a book devoted to this field with a long bibliography. Amon
more recent papers one may note Ref. 20, again citing many sources. Compared to mos
above-mentioned studies, ours is more modest in one respect but more ambitious in anoth

We have shown~the Appendix! that our iterative map, though simple, is a chaotic one. Bu
implementation up to any given order does not automatically render our field configurations
chaotic. The precise way in which the implemented iterations influence the time evolution
gauge field has been pointed out in Sec. I. When the configuration is strictly periodic it c
back, by definition, to its initial state after each periodT. But the sensitive time dependenc
discussed in Sec. I implies that any quantity~such as the action density at a given point or with
a small volume! can fluctuate, within a single period, more and more with higher numbe
iterations and in a more complex fashion. It can wander far and waywardly before coming
When the configuration is quasiperiodic it does not return repeatedly to an initial state~Sec. III!,
though arbitrarily close approaches are possible. How should one precisely characterize suc
with increasingly sensitive time dependence generated by iterations? We have not ade
explored the implications, the consequences of the two most striking features of our solu
namely sensitive time dependence and jumps in rotation numbers. We have exhibited the
tence. A more thorough exploration can probably indicate a satisfactory characterization. A
stage, after a ‘‘large’’ number of iterations, ‘‘at the edge of chaos’’ might be a conven
description~though precaution is necessary due to broad, fashionable uses of this termino!.
Sufficiently accurate numerical studies can help in understanding. But that is beyond the c
tence of the present author.

Having noted the limitations, one may now note the positive qualities of our approac
order to be able to apply techniques developed for one-dimensional dynamical systems a
frequently consider gauge fields depending, effectively, on one coordinate only. Thus, fo
ample, one studies time evolutions of fields homogeneous in space~Refs. 21, 20, and a number o
papers cited in Ref. 19!. In Ref. 22 the static problem is reduced to the one-dimensional Duf
equation and then time dependence is introduced as a perturbation. It is known that, consid
full generality, Yang–Mills fields are nonintegrable~Ref. 19 and sources cited therein!. The fully
chaotic aspects are then related to this nonintegrability.

Our approach, one may say, is antithetic to the preceding one. The intriguing featur
exhibit via the mapping arise in fully integrable~explicitly solved! self-dual configurations. We
start with solutions, found in our previous papers, which have a whole range of remar
properties, quite apart from those revealed in the present study. They combine topological a
of standard instantons and monopoles and are characterized by two topological number~both
integers for periodic solutions!. Instead of considering solitonic and chaotic aspects to be ent
incompatible~and leaving it at that! we have tried to explore, using our mapping, how close a
with what possible limitations, they can be brought together. This has revealed probably h
unsuspected possibilities.

Quark confinement has been studied using approaches as different as that of a dual su
ductor and that of random fields~see Chap. 11 of Ref. 19!. Our spinors~except for one subclass!
provide explicit solutions damped exponentially away from the origin. This is not confinemen
is worth noting. It should also be noted that this dampingincreaseswith the temperature~with
some typical frequencyK, inverse of the period!, while confinement is usually supposed to bre
down at a sufficiently high temperature. Spinors in backgrounds with several incommens
frequencies should be further explored for a better understanding. Rather than being fully
chaotic they might provide a terrain favorable to genesis of rewardingly complex pattern
structures.

Periodic instantons have been considered from the beginning23–25to be of particular interest in
the study of gauge fields at finite temperatures. Our more general solutions~as noted in Sec. I!
show very clearly that strict periodicity involves extremely fine tuning of a set of parameters~the
k’s!. Irrationals being dense on the real line, infinitesimal shifts in one or morek’s can make a
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periodic solution quasiperiodic and vice versa. Since such solutions exist it would be quite
cial to consider periodic solutions exclusively. Numerically, as is well known, it is a delicate
to distinguish between commensurable and incommensurable cases. But since their mathe
properties are strikingly different, can one understand better the significance of the role of
periodicity in the context of finite temperature? In a realistic situation the temperature cann
absolutely steady. A suitably chosen interval covering small fluctuations of a roughly s
temperature would cover a continuum of frequencies. Slowly varying temperatures would
need different considerations. Though such aspects might be worth considering, we ha
simple adequate answer concerning the role of quasiperiodicity in the context of finite tem
tures. We have studied quasiperiodicity for the light they shed on topological aspects a
possibilities formally engendered by the presence of several incommensurable periods
background.

We have obtained the propagators for~quasi!periodic backgrounds in particularly convenie
forms, where one can implement an arbitrary number of our iterations. One can next
compute the fluctuation determinants. Then one can start to carry over the consequence
chaotic features of our mapping into quantum domains through semiclassical developme
would be interesting to see in what fashion and to what extent such features can thus seep t

Our spinor solutions are limited to zero mass and to the gauge group SU~2!. But they, along
with the propagator for spinor fields~Sec. V!, can provide a starting point, exploiting the full rang
of our self-dual solutions, for the study of quarks in a finite temperature gluon background

In the context of ADHMN26–29 and Nahm’s formalism30 for calorons~periodic instantons!
recently solutions have been obtained with nontrivial holonomy and Polyakov loop.31–34 The
explicit solution has zero total magnetic charge. A limiting static form with magnetic charge
also been obtained.35 We have exhibited the role of nonzero magnetic charge in periodic ins
tons concerning index theorems and linear modes with implied consequences of the ‘‘ma
defect’’ for the moduli space.
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APPENDIX: ITERATIVE MAP

An iterative map of the unit disk is presented and some of its properties are studied. In
we indicate how this mapping is implemented in the construction of~quasi!periodic gauge fields
and with what consequences. See also the remarks in Sec. VII.

1. The map

Let Zp be a point in the unit disk, centered at the origin, in the complex plane. Conside
map, with 0,uapu,1,

Zp115
ap1Zp

āp1Zp
21 5Zp

ap1Zp

11āpZp
. ~A1!

For 0<uZpu<1 one obtains 0<uZp11u<1.
The inverse power in the denominator (Zp

21) leads to properties quit different from those
the standard Mo¨bius-type maps. The most evident difference is that here zero is a fixed poin
there are other profound differences. To take just one example, the Schwarzian derivative~iden-
tically zero for Möbius maps! makes an interesting contribution in the action density near
spatial origin~Sec. II!. One may set

ap5ap215¯5a05a.

A more general possibility is
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ap5 f ~ap21! ~A2!

with f so chosen as to guarantee 0,uapu,1 for 0,ua0u,1. An interesting example off will be
given below. But the explicit form off will usually be unspecified, leaving room for eventu
different convenient choices.

The crucial role of a suitable~r,t! parametrization is emphasized in Sec. I. For the choice~2!,
c0 being the phase ofZ0 ,

Z05uZ0ue2 ic05e2k~r 1 i t ! ~k.0,r>0,2`,t,`!. ~A3!

For the gauge fields we are finally interested in the space–time dependence.But in the
Appendix (r,t) should be considered as convenient notations defining

lnuZ0u52kr, c05kt. ~A4!

If ~3! is chosen forZ0 , some different notation, say (kr̂,kt̂), would be more appropriate. W
will, however, continue to use in the Appendix~r,t! as in~A4!, hoping that no confusion can aris
Moreover some of our comments will refer specifically to~2! or ~A3!.

Define

Zp5uZpue2 icp, ap5uapue2 iap, xp5cp2ap .

Then from~A1!,

uZp11ue2 i ~cp1122ap!5uZpue2 ixp
uapu1uZpue2 ixp

11uapuuZpue2 ixp
. ~A5!

2. Moduli

One has

uZp11u25uZpu2
uapu21uZpu212uapuuZpucosxp

11uapu2uZpu212uapuuZpucosxp
[uZpu2uZ̃pu2, ~A6!

where

~12uZ̃pu2!5
~12uapu2!~12uZpu2!

11uapu2uZpu212uapuuZpucosxp
>0. ~A7!

Thus for

uZpu50,1,,1, uZp11u50,1,,uZpu,

respectively.
Hence not only is zero a fixed point, but the circumference of the disk (uZ0u51 or r 50) is

stable as a whole leading to circle maps to be studied in detail soon. For the inverse map, b
roots of the quadratic

ZP
2 1~ap2āpZp11!Zp5Zp11 ~A8!

must correspond to 0,uZpu,1 for 0,uZp11u,1. ~For uZpu>1,uZ̃pu>1, and henceuZp11u>1.)
These roots coincide for

Zp1152S ap

āp
D S 12A12uapu2

11A12uapu2
D ~A9!
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to

Zp52S ap

11A12uapu2
D . ~A10!

Thus starting withuZ0u,1 ~or r .0), uZu moves away under iterations toward the attractive fix
point (Z50). Generically two values ofZp ~which may coincide! are mapped on aZp11 with a
lesser modulus. But instead of a stepwise migration toward the fixed point zero, the latter mi
reached abruptly due to the following feature.

3. Zeros

One hasZp1150 for

Zp50

and for

Zp52ap .

The second possibility is worth further study. As will be seen later, the more general con
uZpu5uapu provides crucial domains of discontinuities of rotation numbers associated to
phases. Moreover

Zp5Zp21

ap211Zp21

11āp21Zp21
52ap

furnishes an interesting context for exploring the consequences of different choices forf in ap

5 f (ap21). One has

S Zp21

Aap
D 2

12lpS Zp21

Aap
D 1150, ~A11!

where

lp5~2Aap!21~ap211apāp21!.

Hence

Zp215Aap~2lp6Alp
221!.

The two roots coincide toZp2157Aap for lp561 or

Aap56~ āp21!21~12A12uap21u2!. ~A12!

Denoting, with realmp ,

ap5~ tanhmp!e2 iap, ~A13!

~A12! gives

tanhmp5~ tanh1
2 mp21!2, ap52ap21 .

This is an example of the choice off assuring special properties~here double zeros!. For com-
parison note that choosing, for allp,
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ap5āp5a ~0,a,1!

~A14!
lp5 1

2 Aa~11a!5cosz

say,z being real. Now~A11! gives

Zp2152Aae7 i z. ~A15!

4. Circle map on the circumference „chaotic aspects …

For uZ0u51, ~i.e., r 50), for all p,

uZpu51.

For the phasescp , using the notations of~A5!, one has the circle map

e2 icp115
ap1e2 icp

āp1eicp
5e2 i2ap

uapu1e2 ixp

uapu1eixp
. ~A16!

Hence

dcp11

dcp
52S 11uapucosxp

11uapu212uapucosxp
D511

~12uapu2!

~12uapu!214uapu~cos~xp/2!!2.1. ~A17!

Thuscp11 is monotonic~increasing! in cp and

e2 i ~cp1122ap!51 for xp50,p,2p

521 for cosxp52uapu, sinxp56A12uapu2. ~A18!

Hence as

cp→cp12p, cp11→cp1114p. ~A19!

@This result also follows from an approach analogous to the one leading to~A52! for uZ0u
.ua0u, since hereuZpu51.uapu. But the foregoing instructive one follows the rotations in mo
detail.# The result~A19! is fundamental in computing the actions of the gauge fields after it
tions ~Sec. II!. But here we concentrate on another aspect.

It is well-known ~Ref. 9, p. 50 and also p. 18! that the apparently very simple circle map

up1152up ,
dup11

dup
52 ~A20!

is chaotic. It satisfies all the requisite conditions, the most important one being a strong sens
to initial conditions~here in the form of expansiveness with index ln 2). Our example~A16! will
be seen to satisfy the same conditions, but in a more subtle fashion. In fact, our case c
~A20! as a particularly simple limit (ap50). ‘‘On average’’cp11 turns twice as fast ascp . But
the rate is less than twice in one domain and just sufficiently more than twice in the comple
tary one to compensate.

For

cosxp561, vp[
dcp11

dcp
5

2

16uapu
~A21!

and for
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cosxp52uapu, vp52.

The complementary domains are

1>cosxp.2uapu, ~vp,2!,

21<cosxp,2uapu ~vp.2!.

As uapu→1 the first domain increases, but so doesvp in the other to compensate~becoming very
high near cosxp521).

After p iterations~with c05kt)

dcp

dc0
5

1

k

dcp

dt
5 )

j 50

p21

v j5 )
j 50

p21 S 2~11uaj ucosx j !

11uaj u212uaj ucosx j
D ~A22!

and

d2cp

dc0
2 5

1

k2

d2cp

dt2
5

dcp

dc0
S (

j 50

p21

Vj S dc j

dc0
D D , ~A23!

where

Vj5
~12uaj u2!uaj usinx j

~11uaj ucosx j !~11uaj u212uaj ucosx j !
.

In ~A22! each factorv j.1. But due to the factor sinxj in Vj the terms in~A23! can change
sign.

The sensitive dependence on initial data should be evident from the preceding analysis.
us formulate it more precisely in terms of acharacteristic index. For ~A20! the index is evidently
ln 2.9 This is recovered in our case in the limit of eachaj50. For ~A16! it depends on the
sequence (a0 ,a1 ,...). But it has a positive lower bound.In ~A22! replacing eachv j by its upper
and lower bound, respectively,

)
j 50

N21 S 2

12uaj u
D>

dcN

dc0
> )

j 50

N21 S 2

11uaj u
D.1. ~A24!

Setting for simplicity alluaj u5uau, the characteristic indexl satisfies

lnS 2

12uau D>l> lnS 2

11uau D.0. ~A25!

More generally (2/16uau) should be considered as the geometric means of the correspo
products in~A24!.

For a map to be chaotic it must have a dense set of periodic points.9 For ~A20! the periodic
points are given by9

un52nu5u12kp or u5
2kp

2n21
, ~A26!

wherek is an integer and

0<k<2n21.
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This is the situation for alla’s zero in~A16!. But for ~A16! one cannot obtain as simply a gener
formula. One can, however, proceed stepwise to show how the periodic points remain den
are shifted as the parametersa increase from zero. For simplicity consider allap’s equal and real.
Then

e2 icp115
a1e2 icp

a1eicp

gives

cp1152cp22~a sincp2 1
2a

2 sin 2cp1¯ !. ~A27!

Thus

cn52nc02aS (
l 51

n

2l sin 2n2 lc0D 1O~a2!. ~A28!

Hence up toO(a) the periodic points are given by

c5
2kp

2n21
1aS1 , ~A29!

where

S15S 2n

2n21D S (
l 51

n

22n1 l sin 2n2 l S 2kp

2n21D D ,S 2n

2n21D S (
l 51

n

22n1 l D 52.

Thus the dense set~A26! is shifted as shown above. One may now iterate to higher powersa
and find an analogous situation. We cannot produce a general solution for~A16! in a closed form,
but the smooth continuity with~A26! is clear enough.

A third criterion for chaoticity9 is topological transitivity. This is satisfied by~A16! as obvi-
ously as by~A20!. Our preceding analysis of rotations makes it evident that their effects ca
remain confined in one particular segment of a circle.

Thus all three criteria for being chaotic are satisfied by our map.

5. Series expansion near the circumference „small r…

For the gauge field configurations principally considered in this paper the time depende
exponentially damped asr increases. So the~quasi!periodic time evolution is best studied fo
small r. For our mapping this corresponds to a domain near the circumference at a distan
2e2kr).

Let cp continueto denote the value of the phase forr 50 and let

Zp5e2 icp~11Cp
~1!r 1Cp

~2!r 21¯ !, ~A30!

where theC’s can becomplexsince ther dependence of the total phase is included in them. T
expansion~A30! is general, but particularly useful for smallr due to evident reasons.~In this
subsection only,cp denotes not the total phase but a part. The notationcp

(0) would have been more
consistent. But this simplification, leaving room for other indices to come, should not c
confusion.!

Supressing the index p temporarilyand using the holomorphy condition

~] r1 i ] t!Z50 ~A31!

one obtains
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C~1!12C~2!r 13C~3!r 21¯52
dc

dt
~11C~1!r 1C~2!r 21¯ !2 i S dC~1!

dt
r 1

dC~2!

dt
r 21¯ D .

~A32!

Thus

C~1!52
dc

dt

and, for l .1,

lC ~ l !5C~1!C~ l 21!2 i
dC~ l 21!

dt
. ~A33!

The general solution is

C~ l !5
eic

l ! S 2 i
d

dtD
l

~e2 ic!. ~A34!

This expansion displays precisely how the chaotic properties of the circle map for the
are carried over throughc and its derivatives in the coefficients.

The result~A34! is compact and elegant. But separate explicit expressions for the total p
and the amplitude ofZ are useful for the gauge fields. We give the first few terms of thr
expansion for both. The coefficients (c ( l ),Bl) will now all be real. One obtains, keeping terms u
to O(r 4),

Z5e2 ic~11C1r 1C2r 21C3r 31C4r 4!5e2 i ~c~0!1c~2!r 21c~4!r 4!~11B1r 1B2r 21B3r 31B4r 4!.

~A35!

The coefficientsc (1) andc (3) turn out to be zero and one obtains, in terms of theC’s given before,

c~2!5
i

2
~C~2!2C̄~2!!,

~A36!

c~4!5
i

2 S ~C~4!2C̄~4!!2
1

2
~~C~2!!22~C̄~2!!2! D ,

and

B15C~1!,

B25 1
2~C~2!1C̄~2!!,

~A37!
B35 1

2~C~3!1C̄~3!!,

B45 1
2~C~4!1C̄~4!!2 1

8~~C~2!!21~C̄~2!!2!.

One may also note that

ZZ̄511D1r 1D2r 21D3r 31D4r 41O~r 5!, ~A38!

where

D152C~1!,
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D252~C~1!!2,
~A39!

D35
4

3
~C~1!!32

1

3

d2

dt2
C~1!,

D45
2

3 S ~C~1!!42C~1!
d2

dt2
C~1!D .

Higher order terms can be evaluated stepwise. These results hold, of course, for anyp. If the
product of several factors (ZpZ8p8¯) is considered, one has the same expansion with

C~1!52
d

dt
~cp1c8p81¯ !. ~A40!

Consistency with this constraint is a useful check on the numerical coefficients obtained a
The notation indicates that for each factor the sequence of the parametersa, the periods involved,
and also the order of iterations can be different. The results~A39! yield the leading term in the
action density near the spatial origin~Sec. II!.

6. Annular maps and rotation numbers

We have studied some interesting properties of our map on the circumference of the un
and nearby (r 50, r !1). One can continue an analogous study away from the edge. But we
concentrate on a different class of remarkable features associated to specific values ofr as it
increases.

For uZu51 the iterations affect only the phase giving a circle map. ForuZu,1 the amplitude
also changes. It diminishes and becomes a function of the phases of the previous step
domain of variation ofZ ~as a function of these phases! becomes an annulus, which can, crucial
become a disk. To emphasize this aspect we use the term ‘‘annular map.’’ The rotation nu
to be defined will be associated to the phases. We are fundamentally interested in variat
functions of the phase ofZ0 as the latter moves on a circle of radiuse2kr. This provides, most
directly through~2!, the link with the time evolution of gauge fields.

From ~A5! and ~A6!, with the notations defined there (xp5cp2ap ,...)

uZp11u25uZpu2
uapu21uZpu212uapuuZpucosxp

11uapu2uZpu212uapuuZpucosxp
~A41!

and

cp115cp1
i

2
~ ln f 11 ln f 2!12ap , ~A42!

where

f 15S uapu1uZpue2 ixp

uapu1uZpueixp D , f 25S 11uapuuZpueixp

11uapuuZpue2 ixpD .

In particular, forp50 with Z05e2k(r 1 i t ),

uZ1u25e22kr
ua0u21e22kr12ua0ue2kr cosx0

11ua0u2e22kr12ua0ue2kr cosx0
. ~A43!

For fixed r, this can be shown to be a monotonic increasing function of cosx0. One obtains
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uZ1umax5uZ0uS ua0u1uZ0u
11ua0uuZ0u D , ~A44!

uZ1umin5uZ0uS ua0u2uZ0u
12ua0uuZ0u D . ~A45!

The width of the annulus is

W15uZ1umax2uZ1umin .

For uZ0u.ua0u,

W152ua0uuZ0uS 12uZ0u2

12~ ua0uuZ0u!2D . ~A46!

For uZ0u,ua0u,

W152uZ0u2S 12ua0u2

12~ ua0uuZ0u!2D . ~A47!

For uZ0u5ua0u, the annulus becomes a diskwith

uZ1umin50

and

W15
2ua0u2

11ua0u2
. ~A48!

As uZ1u touches zero the phase ofZ1 becomes undefined with crucial consequences. We will st
them now.

Our aim is to compare the rates of rotation ofc0 andc1 for the following domains ofuZ0u
5e2kr:

uZ0u.ua0u, uZ0u5ua0u,

and

uZ0u,ua0u.

For uZpu51(.uapu) we have already seen@~A16!–~A21!# that on the averagecp11 turns
twice as fast ascp . In particular,c1 turns twice as fast asc0 . This result will be seen to hold
more generally foruZ0u.ua0u. But discontinuities appear asuZ0u comes down toua0u and crosses
over. We will demonstrate this now.

Let us examine~A42! for p50 and in particular the term lnf1. For uZ0u.ua0u the real part of
(ua0u1uZ0ue2 ix0) can vanish and change sign.This feature is absent in f2 since always
uapuuZpu,1. So the term lnf1 has to be treated carefully to keep track of additive contribution
c0 rotates~t increases!. It is convenient to proceed as follows. For

uZ0u.ua0u,
~A49!

f 15e2 i2x0S 11
ua0u
uZ0u

eix0

11
ua0u
uZ0u

e2 ix0
D .
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For

uZ0u5ua0u, f 15e2 ix0. ~A50!

For

uZ0u,ua0u,
~A51!

f 15S 11
uZ0u
ua0u

e2 ix0

11
uZ0u
ua0u

eix0
D .

Hence for the three domains, respectively,

c152c01L~1 ! , c15 3
2 c01L~0! , c15c01L~2 ! , ~A52!

where one can now safely consider that

Ld~c012p!5Ld~c0! ~d51,0,2 !. ~A53!

Hence forc0→c012np there are no cumulative, additive contributions fromLd giving a
supplementary term proportional ton ~as does the first term proportional toc0). The discontinuity
involved for c1 at uZ0u5ua0u is now explicit.

In view of the crucial role of this result we present an alternative approach, closely follow
the argument for the circle map@~A18!–~A21!# but generalizing it for alluZ0u.ua0u. ~This also
generalizes the arguments for chaoticity on the circumference for the interior of the disk.!

It is sufficient to consider one single term (f 1) as follows. Define

e2 ib5
ua0u1uZ0ue2 ix0

ua0u1uZ0ueix0
~A54!

when

db

dc0
5

2uZ0u~ uZ0u1ua0ucosx0!

~ ua0u21uZ0u212ua0uuZ0ucosx0!
.

Hence foruZ0u.ua0u one has strict monotonicity with

db

dc0
.0 ~A55!

but not for uZ0u,ua0u. For the exceptional valueuZ0u5ua0u one has simply

e2 ib5e2 ix0. ~A56!

For uZ0u.ua0u along with strict monotonicity one has

e2 ib521 for cosx052
ua0u
uZ0u

,sinx056A12
ua0u2

uZ0u2,

~A57!
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e2 ib51 for cosx050,p,2p.

Hence, as for the circle map, ‘‘on the average’’b turns twice as fast asc0 . This corresponds to
the factor 2 in the first equation of~A52!, namely,

c152c01L~1 ! .

Now suppose we consider the Poincare´ sections for

tn5t1nT ~n50,1,2,...!

with some suitably chosen periodT. The ‘‘rotation number’’ forc0(5kt) is defined in terms of

c0
~n!5ktn

as

V05~n21~c0
~n!2c0!!n→`5kT. ~A58!

~We reserve the term ‘‘winding number’’ for the magnetic chargeq of the gauge fields.! Here, of
course, it would have been natural to set

T52pk21

or, rescaling, obtain an integer~say, unit! value forV0 . But we keepT unspecified here since fo
the gauge fields there will be the simultaneous presence of different periodic building blocks
with its own period, which may even be mutually incommensurable.~See Sec. III.! Now, similarly
defining the rotation numberV1 for c1 , one obtains from~A52! and ~A53!

V152V0 for e2kr.ua0u, V15 3
2 V0 for e2kr5ua0u, V15V0 for e2kr,ua0u.

~A59!

Hence there is a step discontinuity atr 52k21 lnua0u. Let us further examine how this implie
sensitive dependence on small differences in the value of a parameter. Let c1

(6) andĉ1 denote the
values ofc1 , respectively, for

uZ0u5ua0u~16e!, ua0u.

Heree!1. From~A42! with p50, up to O~e!, one obtains

c1
~6 !5ĉ16eS 1

2
tan

x0

2
2

ua0u2 sinx0

11ua0u412ua0u2 sinx0
D . ~A60!

But such a development is valid if not onlye!1 but also e tan(x0/2)!1. Even if one starts with
a suitably small value of the latter, the constraint will be violated asx0 approaches the value
(2N11)p. Near such values one may proceed as follows. The contribution to2 i2(c1

(1)

2c1
(2)) from the term lnf1 in ~A42! is

lnS S 11eix01e

11e2 ix01e D S 11e2 ix02e

11eix02e D D5 lnS cos~x0/2!2 i ~e/2!sin~x0/2!

cos~x0/2!1 i ~e/2!sin~x0/2! D . ~A61!

For x05(2N11)p this is no longer proportional toe but becomes ln(21). The additive contri-
bution at each turn gives a difference (c1

(1)2c1
(2)) consistent with~A59!.
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So far we have analyzed the effect of the passageZ0→Z1 . For the next step, write

Z25S a11Z1

ā11Z1
21D 5Z0

22S a01Z0

ā01Z0
21D S m11Z0

m̄11Z0
21D S m21Z0

m̄21Z0
21D , ~A62!

where@compare~A11! and the discussion that follows#

m65Aa1~l06Al0
221! ~A63!

with

l05
a01ā0a1

2Aa1

.

One sees that for studyingV2 ~the rotation number associated to the phasec2 of Z2) one should
extend the previous considerations tothreespherical shells

uZ0u5ua0u, um1u, um2u, ~A64!

where

um1uum2u5ua1u.

One may get special features corresponding to a possible double zero whenum1u and um2u
coincide toAua1u. The number of possibilities continue to increase with each iteration. Generi
the process is systematic, but roots can coincide leading to special features. The cumulative
of the jumps give more and more elaborate staircaselike patterns~Sec. II!.

Considering (uZpu,cp) as independent variables one may carry out a similar analysis fo
step Zp→Zp11 ~for p.0). One then obtains formally, like~A52! with the L’s satisfying the
criterion ~A53!,

cp1152cp1L~1 !
~p! ,

cp115 3
2cp1L~0!

~p! , ~A65!

cp115cp1L~2 !
~p! ,

respectively, for

uZpu.uapu, uZpu5uapu, uZpu,uapu.

But it should be clearly noted that forp>1 all uZpu ’s are time dependent even for the choice~2!
for Z0 . For the choice~3! evenuZ0u is time dependent. The formal steps of the iterations and t
consequences in the context of the mapping do not depend on the parametrization ofZ0 ~provided
it satisfiesZ0,1). But when the time evolution is studied in the context of the gauge fields m
depends evidently on the initial choice.
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The osp~1,2!-covariant Lagrangian quantization of general gauge theories is formu-
lated which applies also to massive fields. The formalism generalizes the Sp~2!-
covariant Batalin–Lavrov–Tyuˇtin ~BLT! approach and guarantees symplectic in-
variance of the quantized action. The dependence of the generating functional of
Green’s functions on the choice of gauge in the massive case disappears in the limit
m→0. Ward identities related to osp~1,2! symmetry are derived. Massive gauge
theories with closed algebra are studied as an example. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01802-2#

I. INTRODUCTION

Recently, a general method for quantizing gauge theories in the Lagrangian formalis
been proposed1–3 which is based on extended Becchi–Rouet–Stora–Tyutin~BRST! symmetry,
i.e., simultaneous invariance under both BRST and antiBRST transformations. It is charac

by a quantum action functionalS5S(fA,fAa* ,f̄A) depending on, besides the dynamical fiel

fA5(Ai ,Ba0,Ca0a0), also on related antifields~or external sources! fAa* ,f̄A , whereAi , Ba0 and
Ca0a0 are the gauge, the auxiliary and the~anti!ghost fields, respectively, and botha and a0

indicate members of Sp~2! doublets. To guarantee their~anti!BRST symmetry the actionS ~and
the related gauge fixed extended actionSext! is required to satisfy two master equations which a
generated by two nilpotent, anticommuting differential operators,D̄a. The method applies to
irreducible as well as reducible, complete gauge theories with either open or closed gauge a
~The condition of irreducibility requires the generators of the gauge transformations to be lin
independent at the stationary point of the classical action, and the condition of comple
requires the degeneracy of the Hessian of the classical actionScl(A) to be solely due to its gaug
invariance.4,5!

Although this formalism is seemingly manifest Sp~2!-covariant among the solutions of th
master equations, there are both Sp~2!-symmetric and Sp~2!-nonsymmetric ones. The symmetr
solutions may be singled out by the explicit requirement of invariance under Sp~2! transformations
by additional master equations whose generating differential operatorsD̄a (a50,1,2) are re-
lated to the generators of the symplectic group Sp~2!. The algebra of these operators may
chosen to obey the orthosymplectic~super!algebra osp~1,2!. ~Actually, its even part is the algebr
sl~2! generating the special linear transformations, but due to their isomorphism to the a
sp~2! we will speak about symplectic transformations.! Moreover, if also massive fields should b
considered to circumvent possible infrared singularities occurring in the process of subtr
ultraviolet divergences, without breaking the extended BRST symmetry, then this algebra a

a!Electronic mail: geyer@rz.uni-leipzig.de
6740022-2488/99/40(2)/674/25/$15.00 © 1999 American Institute of Physics
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necessarily. Let us also mention that the osp~1,2! superalgebra occurs in many problems whe
N51 superconformal symmetry is involved; e.g., in the minimalN51 superconformal models
this symmetry appears in the light-cone approach to two-dimensional supergravity.6 It is also of
interest in this respect that topological osp~1,2!/osp~1,2! coset theories can be used to describe
noncritical Ramond–Neveu–Schwarz superstrings.7

The goal of the present paper will be to generalize the BLT quantization procedure to an
one being osp~1,2!-covariant. For the sake of simplicity we restrict ourselves to the cas
irreducible~or zero-stage! complete gauge theories and thereby we follow very closely the e
sition of Ref. 1.~The extension toL-stage reducible theories will be dealt with in a succeed
paper.19! We also used the condensed notation introduced by DeWitt8 and conventions adopted i
Ref. 1; if not otherwise specified, derivatives with respect to the antifields are the~usual! left ones
and that with respect to the fields are right ones. Left derivatives with respect to the field
labeled by the subscriptL, for example,dL /dfA denotes the left derivative with respect to th
fields fA.

The paper is organized as follows. In Sec. II we shortly review the standard Sp~2!-covariant
approach and point out how it will be generalized to the osp~1,2!-covariant quantization proce
dure. As a consequence of the enlarged algebra a canonical definition of the ghost n
~Faddeev–Popov charge! is obtained. Furthermore, to be able to express this algebra thr
operator identities and to get nontrivial solutions of the generating equations it is necess
enlarge the set of antifields. In Sec. III the explicit construction of generating differential oper
fulfilling the osp~1,2! algebra is outlined, starting with the approximation of the actionSm at
lowest order in\ which is assumed to be linear with respect to the antifields. In Sec. IV the g
dependence of the generating functional of Green’s functions is studied and corresponding
identities are derived. It is shown that the mass terms destroy gauge independence of theS-matrix.
In Sec. V we consider massive theories with closed gauge algebra, thereby extending the s
given in Ref. 1.

II. GENERAL STRUCTURE OF osp „1,2…-COVARIANT QUANTIZATION OF IRREDUCIBLE
GAUGE THEORIES

Let us consider a set of gauge~as well as matter! fields Ai with Grassmann paritye(Ai)
5e i for which the classical actionScl(A) is assumed to be invariant under the gauge transfor
tions

dAi5Ra0

i ja0, Scl,iRa0

i 50, ~1!

whereja0 are the parameters of these transformations andRa0

i (A) are the gauge generators havin

Grassmann paritye(ja0)5ea0
ande(Ra0

i )5e i1ea0
, respectively; by definitionX, j5dX/dAj . ~In

the following an additional label 0 is put on the indicesa0 anda0 to prepare the notation for late
generalizations to reducible gauge theories.! We assume the set of generatorsRa0

i to be linearly

independent and complete. The~open! algebra of generators has the general form1

Ra0 , j
i Rb0

j 2~21!ea0
eb0Rb0 , j

i Ra0

j 52Rg0

i Fa0b0

g0 2Ma0b0

i j Scl, j , ~2!

where Fa0b0

g0 (A), in general, are field-dependent structure functions andMa0b0

i j (A) obeys the

graded antisymmetry conditions

Ma0b0

i j 52~21!e ie jMa0b0

j i 52~21!ea0
eb0Mb0a0

i j . ~3!

Theories whose generators satisfy Eqs.~2! and ~3! are called general gauge theories. In the c
Ma0b0

i j 50 the algebra is closed.

The total configuration space of fieldsfA and their Grassmann parities are
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fA5~Ai ,Ba0,Ca0a0!, d~fA![eA5~e i ,ea0
,ea0

11!;

here, the auxiliary fieldsBa0 are Sp~2!-scalar whereas the~anti!ghostsCa0a0 transform as a
Sp~2!-doublet. Moreover, for each fieldfA one introduces two sets of antifields, a Sp~2!-doublet
and a Sp~2!-singlet ~with respect toa!:

fAa* 5~Aia* ,Ba0a* ,Ca0aa0
* !, e~fAa* !5eA11, f̄A5~Āi ,B̄a0

,C̄a0a0
!, e~f̄A!5eA .

Raising and lowering of Sp~2!-indices is obtained by the invariant tensor of the group,

eab5S 0 1

21 0D , eacecb5d b
a .

Let us point to the fact that in the Sp~2!-approach the internal Sp~2! index a0 of the third
component is a dummy one, i.e., it is not affected by operations being introduced by the p
approach.

Let us now shortly review the Sp~2!-covariant quantization scheme. The basic object is
bosonic actionS5S(fA,fAa* ,f̄A) satisfying the extended quantum master equations~i.e., the
generating equations with respect to the extended BRST symmetry!

D̄a exp$~ i /\!S%50, D̄a5Da1~ i /\!Va, ~4!

where the odd~second-order! differential operatorsD̄a possess the important properties of nilp
tency and~relative! anticommutativity:

$D̄a,D̄b%50. ~5!

The solution of~4! is sought as a power series in Planck’s constant\:

S5 (
n50

`

\nS~n! ,

with the boundary conditionSuf
a* 5f̄5\505Scl(A).

To remove the degeneracy of the actionS a gauge has to be introduced with the followin
properties: First, it should lift the degeneracy infA and, second, it should retain Eqs.~4!, thereby
providing the extended BRST symmetry also for the gauge fixed action denoted bySext

5Sext(f
A,fAa* ,f̄A). Introducing the gauge-fixing Sp~2!-invariant bosonic functionalF5F(fA)

the actionSext is defined by

exp$~ i /\!Sext%5Û~F !exp$~ i /\!S%,

where the operatorÛ(F) has the general form

Û~F !5exp$~\/ i !T̂~F !%, T̂~F !5 1
2 eab$D̄

b,@D̄a,F#%.

Here,T̂(F) has been chosen such that, by virtue of~5!, it commutes withD̄a,

@D̄a,T̂~F !#50;

henceSext obeys also Eqs.~4!:

D̄a exp$~ i /\!Sext%50.
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Let us now briefly state the essential modifications of the Sp~2!-formalism to obtain the
osp~1,2!-covariant quantization of an irreducible complete theory of massive fields whose a
Sm depends on the massm as a further parameter. First, in addition to them-extended generalized
quantum master equations

D̄m
a exp$~ i /\!Sm%50, D̄m

a 5Da1~ i /\!Vm
a , ~6!

which ensure~anti!BRST invariance, the actionSm is required to satisfy the generating equation
Sp~2!-invariance, too:

D̄a exp$~ i /\!Sm%50, D̄a5Da1~ i /\!Va , ~7!

whereD̄m
a andD̄a are odd and even~second-order! differential operators, respectively~for explicit

expressions see Sec. III below!.
As long asmÞ0 the operatorsD̄m

a are neither nilpotent nor do they anticommute amo
themselves; instead, together with the operatorsD̄a they generate a superalgebra isomorphic
osp~1,2! ~see Appendix A!:

@D̄a ,D̄b#5~ i /\!eab
gD̄g , ~8!

@D̄a ,D̄m
a #5~ i /\!D̄m

b ~sa!b
a, ~9!

$D̄m
a ,D̄m

b %5~ i /\!m2~sa!abD̄a , ~10!

where the Sp~2!-indices are raised or lowered corresponding to

~sa!ab5eac~sa!c
b5~sa!a

ce
cb5eac~sa!cde

ab, ~sa!a
b52~sa!b

a .

Here, the matricessa (a50,1,2) generate the group of special linear transformations:

sasb5gab1
1

2
eabgsg, sa5gabsb , Tr~sasb!52gab , gab5S 1 0 0

0 0 2

0 2 0
D , gagggb5db

a ,

eabg being the antisymmetric tensor,e01251 @all relations containing the matricessa hold for
any representation written below Eqs.~8!–~10!#. Notice that sl(2,R), the even part of osp~1,2!, is
isomorphic to sp(2,R). From~10! it is obvious that, if and only if the actionSm is Sp~2!-invariant,
it can be~anti!BRST-invariant as well. For the generatorssa we may choose the representatio

s05t3 , s652t652 1
2 ~t16 i t2!, ~11!

whereta (a51,2,3) are the Pauli matrices.
In order that the~anti!commutation relations~8!–~10! are consistent, the structure constan

eab
g, (sa)b

a and (sa)ab on the right-hand side of these relations must and, in fact, will o
certain conditions which follow from the~graded! Jacobi identities. The requirement that the set
these identities, namely

@D̄a ,@D̄b ,D̄g##1@D̄b ,@D̄g ,D̄a##1@D̄g ,@D̄a ,D̄b##50,

@D̄a ,@D̄b ,D̄m
a ##2@D̄b ,@D̄a ,D̄m

a ##2@@D̄a ,D̄b#,D̄m
a #50,

$D̄m
a ,@D̄a ,D̄m

b #%1$D̄m
b ,@D̄a ,D̄m

a #%1@$D̄m
a ,D̄m

b %,D̄a#50,
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@D̄m
a ,$D̄m

b ,D̄m
c %#1@D̄m

b ,$D̄m
c ,D̄m

a %#1@D̄m
c ,$D̄m

a ,D̄m
b %#50,

be fulfilled is equivalent to the demand that in the adjoint representation ofD̄a and D̄m
a ,

D̄a5S Ra 0

0 Sa
D , D̄m

a 5mS 0 Ua

Ta 0 D ,

the matricesRa andSa should form a representation of the~even! subalgebra sl~2! of osp~1,2!.
The elements of these matrices are

~Ra!b
g5eba

g, ~Sa!a
b5~sa!a

b, ~Ta!b
a5 i ~sa!b

a, ~Ua!a
b52 i ~sa!ab.

Therefore, we have the following conditions:~I! the matricesRa form the adjoint representation o
sl~2! and~II ! the matricesSa form the fundamental representation of this algebra;~III ! the matrix
elements (Ta)b

a and (Ua)a
b @which do not form a representation of sl~2! because of the differen

indices# are numerical invariants under sl~2!,

~Ta!b
gega

b5~sa!b
c~Ta!c

b2~Tc!b
b~sa!c

a, eab
g~Ua!g

b5~sa!a
c~Uc!b

b2~Ua!b
c~sa!c

b;

and ~IV ! there holds the cyclic identity,

~sa!ab~sa!c
d1cyclic perm~a,b,c!50,

which restricts the possible representationsD̄m
a of the algebra sl~2! spanned byD̄a ~in general, not

every ordinary Lie algebra can be extended to a superalgebra!.
Let us notice that by invoking osp~1,2!-symmetry the notion of ghost number will be a natu

property of the superalgebra~8!–~10!. Indeed, from~8! and ~9! we observe the relations

~\/ i !@D̄0 ,D̄6#562D̄6 , ~\/ i !@D̄0 ,D̄m
a #5D̄m

b ~s0!b
a,

showing that (\/ i )D̄05Dgh is the Faddeev–Popov operator whose eigenvaluesgh(X) define the
ghost numbers of the corresponding quantitiesX of the theory in question, i.e., (@Dgh ,X#
2gh(X)X)exp$(i/\)Sm%50.

However, insisting on osp~1,2!-symmetry this approach brings in a fundamentally new asp
Namely, in order to express the superalgebra~8!–~10! by operator identities and to get nontrivia
solutions of the generating equations~6! and~7! one is forced to enlarge the set of antifields. Mo
precisely, because the~anti!ghost fieldsCa0a0 as well as their related antifields transform und
Sp~2! in a nontrivial way one has to introduce additional sources,

hA5~Di ,Ea0
,Fa0a0

!, e~hA!5eA .

Let us remark thatDi always could be set equal to zero~here alsoEa0
has been introduced onl

for the sake of completeness and formal analogy to other fields—it could be chosen equal t
too!. For irreducible theoriesFa0a0

is necessary in order to close the extended BRST algebra.@For
L-stage reducible theories both sourcesFasua0¯as

andEasua0¯as
(s50,...,L) are necessary in orde

to close the extended BRST algebra with respect to the more general space of auxilia
~anti!ghost fieldsBasaua1¯as

* , Casaua0¯as
* , B̄asua1¯as

, C̄asua0¯as
.#

In order to set up the gauge fixing, the new generalized gauge fixed quantum actionSm,ext

5Sm,ext(f
A,fAa* ,f̄A ,hA) will be introduced according to

exp$~ i /\!Sm,ext%5Ûm~F !exp$~ i /\!Sm%, ~12!

where the operatorÛm(F) has to be chosen as
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Ûm~F !5exp$~\/ i !T̂m~F !%, T̄m~F !5 1
2 eab$D̄m

b ,@D̄m
a ,F#%1~ i /\!2m2F, ~13!

F5F(fA) being the gauge fixing functional. Then, by virtue of~9! and~10!, one establishes the
relations

@D̄m
a ,T̄m~F !#5 1

2 ~ i /\!m2~sa!a
b@D̄m

b ,@D̄a,F## ~14!

and

@D̄a ,T̂m~F !#5 1
2 eab$D̄m

b ,@D̄m
a ,@D̄a ,F##%1~ i /\!2m2@D̄a ,F#. ~15!

RestrictingF to be a Sp~2! scalar by imposing

@D̄a ,F#Sm50, ~16!

it can be verified by using the explicit expressions ofD̄m
a and D̄a that the commutators

@D̄m
a ,Ûm(F)#exp$(i/\)Sm%50 and@D̄a ,Ûm(F)#exp$(i/\)Sm%50 vanish on the subspace of admi

sible actionsSm ~the proof of this statement will be postponed to Sec. III!. Hence, the gauge fixed
actionSm,ext satisfies Eqs.~6! and ~7! as well,

D̄m
a exp$~ i /\!Sm,ext%50, D̄a exp$~ i /\!Sm,ext%50. ~17!

Here, some remarks are in order. The operatorD̄m
a is a nonlinear one; to be able to express t

superalgebra~8!–~10! through operator identities the operatorD̄a must be a nonlinear operato
too. Therefore, it is not possible to impose the strong operator equation@D̄a ,F#50 except for the
particular caseF5F(Ai) where @D̄a ,F# vanishes identically, rather it must be replaced by
weaker condition@D̄a ,F#Sm50. As a consequence, in order to prove thatSm,ext possesses the
same symmetry properties asSm one needs the explicit realization of the operatorsD̄m

a and D̄a .
In this way the Sp~2!-covariant approach is generalized to another one based on the su

gebra osp~1,2!. Moreover, in this approach one can introduce a massm ~which is necessary at leas
intermediately in the process of BPHZL renormalization! without breaking the extended BRS
symmetry.

III. EXPLICIT CONSTRUCTION OF THE OPERATORS OF osp „1,2…-ALGEBRA

After having stated the general structure of the osp~1,2! quantization procedure being a
obvious extension of Sp~2! quantization we have to find an operational realization of the gen
operators just introduced. Thereby we proceed in such away that all formulas hold als
reducible gauge theories, except for the definition of the operator (P1)Ab

Ba introduced below which
has to be generalized. The explicit expressions for the operatorsD̄m

a and D̄a in the generating
equations~6! and~7! will be determined in two steps: First we construct a functionalS̄m ~at lowest
order of\! which is linear with respect to the antifields and is invariant under both~anti!BRST-
and Sp~2! transformations; later on we generalize to the case of nonlinear dependence
corresponding~linear! symmetry operators being denoted bysm

a andda are required to fulfill the
osp~1,2!-superalgebra:

@da ,db#5eab
gdg , @da ,sm

a #5sm
b ~sa!b

a, $sm
a ,sm

b %52m2~sa!abda .

Let us make forS̄m the following ansatz:

S̄m5Scl1WX , WX5~ 1
2 eabsm

b sm
a 1m2!X, ~18!
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whereX is assumed to be the following Sp~2!-scalar~in fact the only one we are able to build u
linear in the antifields!,

X5f̄AfA, daX50.

Then, by virtue of

sm
c ~ 1

2 eabsm
b sm

a 1m2!5 1
2 m2~sa!c

dsm
d da , @da , 1

2 eabsm
b sm

a 1m2#50,

it follows that S̄m is both~anti!BRST- and Sp~2!-invariant,sm
a S̄m50 anddaS̄m50. Thereby, it is

taken into account that due to gauge invariance~1! of Scl(A) it holds sm
a Scl(A)50 with sm

a Ai

5Ra0

i Ca0a ~here, the action ofsm
a —and also ofda—on the auxiliary and~anti!ghost fields is

irrelevant and already left open!.
The strategy to define the operatorsD̄m

a 5Da1( i /\)Vm
a , D̄a5Da1( i /\)Va is governed by a

specific realization of the~anti!BRST- and Sp~2!-transformations of the antifields~extending the
standard definitions of Ref. 1!. Therefore, let us decomposesm

a andda into a component acting on
the fields and another one acting on the antifields as follows:

sm
a 5~sm

a fA!
dL

dfA 1Vm
a , da5~dafA!

dL

dfA 1Va .

The action ofVm
a andVa on f̄A , fAa* andhA are uniquely defined by

Vm
a f̄A5eabfAb* , Vaf̄A5f̄B~sa!A

B ,

Vm
a fAb* 5m2~P1!Ab

Baf̄B2db
ahA , VafAa* 5fAb* ~sa!b

a1fBa* ~sa!B
A , ~19!

Vm
a hA52m2eab~P2!Ab

BcfBc* , VahA5hB~sa!B
A ,

where the following abbreviations are used:

~P2!Ab
Ba[~P1!Ab

Ba2~P1!A
Bdb

a1dA
Bdb

a , ~P1!A
B[da

b~P1!Ab
Ba , ~sa!BA[~sa!b

a~P1!Ab
Ba .

Here, we introduced the matrix

~P1!Ab
Ba[5

d j
i db

a for A5 i ,B5 j ,

da0

b0db
a for A5a0 ,B5b0 ,

2da0

b0Sa0b
b0a for A5a0a0 ,B5b0b0 ,

0 otherwise,

where the symmetrizerSa0b
b0a is defined as

Sa0b
b0a

[ 1
2

]

]Xa0

]

]Xb XaXb05 1
2 ~db

adb0

a01da0

a db
b0!,

Xa being independent bosonic variables.
The matrices (P2)A

B[db
a(P2)Ab

Ba and (sa)B
A act nontrivially on the components of the~anti!

fields having an internal~dummy! Sp~2! index. For example,

~P2!A
Bf̄B5~0,0,2C̄a0a0

!, f̄B~sa!B
A5~0,0,C̄a0c~sa!c

a0
!.
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Therefore,Va acts only on the~anti!ghost part of the antifields, andVm
a is partly of that kind. Of

course, we could have used also a componentwise notation, however, then the equations w
less easy to survey@a componentwise notation of the transformations~19! is given in Appendix E#.

In order to prove that the transformations~19! obey the osp~1,2!-superalgebra

@Va ,Vb#5eab
gVg , @Va ,Vm

a #5Vm
b ~sa!b

a, $Vm
a ,Vm

b %52m2~sa!abVa , ~20!

one needs the following two equalities:

ead~P1!Ad
Bb1ebd~P1!Ad

Ba52~sa!ab~sa!B
A ,

ead~P1!Ac
Bb1ebd~P1!Ac

Ba2~sa!ab~sa!e
c~P2!Ae

Bd52~sa!ab~~sa!d
cdA

B1dc
d~sa!B

A!,

or, equivalently,

eaddc
b1ebddc

a52~sa!ab~sa!d
c , ~21!

~sa!ab~~sa!b0
cda0

d 1dc
b0~sa!d

a0
!5~sa!ab~~sa!d

cda0

b01dc
d~sa!b0

a0
!, ~22!

and the relation (P2)Cd
Ab(P1)Ba

Cd50.
Then from~18! one gets forS̄m the expression

S̄m5Scl1~hA2 1
2 m2~P1!A

Bf̄B!fA2~sm
a fA!fAa* 1f̄A~ 1

2 eabsm
b sm

a 1m2!fA. ~23!

Now, the symmetry properties ofS̄m with respect to~anti!BRST- and Sp~2!-transformations
may be expressed by the following set of equations:

1
2 ~S̄m ,S̄m!a1Vm

a S̄m50, 1
2 $S̄m ,S̄m%a1VaS̄m50; ~24!

here the extended antibrackets (F,G)a, introduced for the first time in Ref. 1, define an od
graded and$F,G%a a new even-graded algebraic structure on the space of fields and antifield~see
Appendix B!:

~F,G!a5
dF

dfA

dG

dfAa*
2~21!~e~F !11!~e~G!11!

dG

dfA

dF

dfAa*
~25!

and

$F,G%a5~sa!B
AS dF

dfA

dG

dhB
1~21!e~F !e~G!

dG

dfA

dF

dhB
D , ~26!

and, in accordance with~19!, the first-order differential operatorsVm
a andVa are given by

Vm
a 5eabfAb*

d

df̄A

2hA

d

dfAa*
1m2~P1!Ab

Baf̄B

d

dfAb*
2m2eab~P2!Ab

BcfBc*
d

dhA

~27!

and

Va5f̄B~sa!B
A

d

df̄A

1~fAb* ~sa!b
a1fBa* ~sa!B

A!
d

dfAa*
1hB~sa!B

A

d

dhA

. ~28!

We also introduce the second-order differential operatorsDa andDa whose structure is extracte
from ~25! and ~26!:
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Da5~21!eA
dL

dfA

d

dfAa*
, Da5~21!eA~sa!B

A
dL

dfA

d

dhB
. ~29!

Let us now consider the general case where the actionSm is assumed to appear in the form
a series expansion in powers of\ which may depend also nonlinear on the antifields. This ac
will be required to satisfy the following set of quantum master equations~see Appendix C!:

1
2 ~Sm ,Sm!a1Vm

a Sm5 i\DaSm , 1
2 $Sm ,Sm%a1VaSm5 i\DaSm , ~30!

or, equivalently,

D̄m
a exp$~ i /\!Sm%50, D̄a exp$~ i /\!Sm%50. ~31!

Furthermore, by an explicit calculation it can be verified thatD̄m
a 5Da1( i /\)Vm

a and D̄a5Da

1( i /\)Va obey the osp~1,2!-superalgebra~8!–~10!.
In order to lift the degeneracy ofSm we follow the general gauge-fixing procedure sugges

by ~12! and ~13!. Let us introduce the gauge fixed action

exp$~ i /\!Sm,ext%5Ûm~F !exp$~ i /\!Sm%, ~32!

where the operatorÛm(F)5exp$(i/\)T̂m(F)% is defined according to the formula~13!. If the gauge-
fixing functional is assumed to depend only on the fields,F5F(fA), then one gets

Ûm~F !5expH dF

dfA S d

df̄A

2
1

2
m2~P2!B

A d

dhB
D 2~\/ i !

1

2
eab

d

dfAa*

d2F

dfAdfB

d

dfBb*
1~ i /\!m2FJ .

~33!

Let us prove thatSm,ext obeys the generating equations~30! and~31! as well. Clearly, sinceD̄m
a ,

D̄a and Ûm(F) do not commute with each other, this proof will be more involved than in
Sp~2!-approach. This is due to the fact that, looking back at~14! and ~15!, neither

@D̄m
a ,T̂m~F !#5 1

2 ~ i /\!m2~sa!a
b@D̄m

b ,@D̄a ,F##

nor

@D̄a ,T̂m~F !#5 1
2 eab$D̄m

b ,@D̄m
a ,@D̄a ,F##%1~ i /\!2m2@D̄a ,F#

does vanish, since due to the nonlinearity ofD̄a one cannot require the strong conditio

@D̄a ,F#50. However, a direct verification shows thatT̂m(F) commutes with any term on th
right-hand side of both previous relations, i.e., it holds

@ T̂m~F !,@D̄m
a ,T̂m~F !##50, @ T̂m~F !,@D̄a ,T̂m~F !##50.

Then, by the help of these relations one obtains

@D̄m
a ,Ûm~F !#5~\/ i !Ûm~F !@D̄m

a ,T̂m~F !#, @D̄a ,Ûm~F !#5~\/ i !Ûm~F !@D̄a ,T̂m~F !#.

Let us require@see~16!#

@D̄a ,F#Sm[~sa!B
A

dF

dfA

dSm

dhB
50, ~sa!B

A
dF

dfA fB50. ~34!
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Then, taking into account thatSm solves the generating equations~31!, it is easily seen that

@D̄m
a ,Ûm(F)# and @D̄a ,Ûm(F)# vanish after acting on exp$(i/\)Sm%:

@D̄m
a ,Ûm~F !#exp$~ i /\!Sm%50, @D̄a ,Ûm~F !#exp$~ i /\!Sm%50.

Summarizing, we have the results

D̄m
a exp$~ i /\!Sm,ext%50, D̄a exp$~ i /\!Sm,ext%50, ~35!

i.e., the gauge-fixed actionSm,ext satisfies the same generating equations~30! and ~31! as Sm ,
which is indeed what we intended to prove.

Finally, let us return to the requirement~34! and discuss how it can be fulfilled. If we
differentiate Eqs.~30! with respect tohA , we get

Qm
a S dSm

dhA
2fAD50, QaS dSm

dhA
2fAD50, ~36!

where the operatorsQm
a andQa are defined by the formulas

Qm
a X[~Sm ,X!a2 i\D̄m

a X, QaX[$Sm ,X%a2 i\D̄aX, ~37!

with arbitrary functionalX. These operators possess the properties

@Qa ,Qb#5eab
gQg , @Qa ,Qm

a #5Qm
b ~sa!b

a, $Qm
a ,Qm

b %52m2~sa!abQa . ~38!

The equations~36! suggest that the restriction onSm to be linear inhA seems to be the natura
solution of the requirement~34!, namely

dSm

dhA
5fA. ~39!

Then, the second equation in~30! simplifies into

~sa!B
A

dSm

dfA fB1VaSm50,

sincesa are traceless. Although the restriction~39! seems to be a particular but not the gene
case it should be preferred to all other solutions since, due to its linearity, it can be realized f
~renormalized! actionSm ~see also Appendix D!.

IV. WARD IDENTITIES, GENERATING FUNCTIONALS AND GAUGE „IN…DEPENDENCE

Next, we turn to the question of gauge independence of physical quantities, especially
S-matrix. In discussing this question it is convenient to study first the symmetry properties o
vacuum functional,

Zm~0!5E dfA exp$~ i /\!Sm,eff%, ~40!

whereSm,eff(f
A)5Sm,ext(f

A,fAa* ,f̄A ,hA)uf
a* 5f̄5h50 . It can be represented in the form

Zm~0!5E dfAdhAdfAa* dpAadf̄AdlAd~hA!exp$~ i /\!~Sm,ext2WX!% ~41!

with
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WX5~hA2 1
2 m2~P1!A

Bf̄B!fA2fAa* pAa2f̄A~lA2 1
2 m2~P2!B

AfB!, ~42!

where we have extended the space of variables by introducing the auxiliary fieldspAa andlA. It
is straightforward to check thatWX can be cast into the form~42!. Indeed, performing in~41! first
of all the integrations overlA andpAa, which yields the delta-functionsd(f̄A) andd(fAa* ), and,
after that, carrying out the integrations overf̄A , fAa* andhA one gets the expression~40!.

SincehA for mÞ0 transforms nontrivially under osp~1,2! we expressd(hA) by

d~hA!5E dzA exp$~ i /\!hAzA%

and change within~41! the integration variablesfA and lA according tofA→fA1zA and lA

→lA1(1/2)m2((P2)B
A2(P1)B

A)zB. Then, forZm(0) this yields

Zm~0!5E dfAdhAdzAdfAa* dpAadf̄AdlA exp$~ i /\!~Sm,ext
z 2WX!%, ~43!

whereSm,ext
z is obtained fromSm,ext by performing the replacementfA→fA1zA. At this stage we

remark that (fA,pAa,lA) and (f̄A ,fAa* ,hA) constitute the components of the superfield a
superantifield, respectively, of the superfield quantization scheme;9 here we changed the notatio
JA→hA relative to Ref. 9. Of course, the formalism introduced here may be written in that
also.

The termWX may be cast into the osp~1,2!-invariant form

WX5 1
2 eab~Vm

b ~Vm
a X2XUm

a !1~Vm
a X2XUm

a !Um
b !1m2X,

where

X5f̄AfA, VaX1XUa50,

with Vm
a and Va , whose action onf̄A , fAa* , hA are already defined in~19!, satisfying the

osp~1,2!-superalgebra~20!, and the action ofUm
a andUa on fA, pAa, lA andzA being defined

according to

fAUm
a 5pAa, fAUa5fB~sa!B

A,

pAbUm
a 5eablA1m2eac~P1!Bc

AbfB, pAaUa5pAb~sa!b
a1pBa~sa!B

A,
~44!

lAUm
a 5m2~P2!Bb

AapBb, lAUa5lB~sa!B
A,

zAUm
a 50, zAUa5zB~sa!B

A.

Here,Um
a andUa are defined as right derivatives, in contrast toVm

a andVa , which was defined as
left ones. In order to prove that the transformations~44! obey the osp~1,2!-superalgebra

@Ua ,Ub#52eab
gUg , @Ua ,Um

a #52Um
b ~sa!b

a, $Um
a ,Um

b %5m2~sa!abUa , ~45!

one needs the following two equalities:

ead~P1!Ad
Bb1ebd~P1!Ad

Ba5~sa!ab~sa!A
B,

ead~P2!Ac
Bb1ebd~P2!Ac

Ba2~sa!ab~sa!e
c~P1!Ae

Bd5~sa!ab~~sa!c
dd A

B1d c
d~sa!A

B!,
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and the relation (P2)Cd
Ab(P1)Ba

Cd50. It is easily seen that both equalities are equivalent to~21! and
~22!, too.

Inserting into~43! the relations~32! and ~33! and integrating by parts yields

Zm~0!5E dfAdhAdzAdfAa* dp Aadf̄AdlA exp$~ i /\!~Sm
z 1WF

z 2WX!% ~46!

with the following expression forWF :

WF52
dF

dfA S lA1
1

2
m2~P1!B

AfBD2
1

2
eabp

Aa
d2F

dfAdfB pBb1m2F, ~47!

which may be recast into the osp~1,2!-invariant form

WF5F~ 1
2 eabUm

b Um
a 1m2!, FUa50.

~Again, Sm
z andWF

z are obtained fromSm andWF , respectively, by carrying out the replaceme
fA→fA1zA.!

Let us now introduce the combined~first-order! differential operators

Lm
a X[Vm

a X2~21!e~X!XUm
a , LaX[VaX1XUa ,

X being an arbitrary functional, whereUm
a andUa , in accordance with~44!, are defined by

Um
a 5

d

dfA pAa1
d

dp Ab eablA1
d

dp Ab m2eac~P1!Bc
AbfB1

d

dlA m2~P2!Bb
AapBb

and

Ua5
d

dfA fB~sa!B
A1

d

dlA lB~sa!B
A1

d

dpAa ~pAb~sa!b
a1pBa~sa!B

A!1
d

dzA zB~sa!B
A;

here, the derivatives with respect tofA, pAb, lA andzA are right ones@Vm
a andVa are already

defined in~27! and ~28!#. Then, by virtue of~20! and ~45!, it follows thatLm
a andLa satisfy the

osp~1,2!-superalgebra

@La ,Lb#5eab
gLg , @La ,Lm

a #5Lm
b ~sa!b

a, $Lm
a ,Lm

b %52m2~sa!abLa .

Hence, it holds

Lm
c ~ 1

2 eabLm
b Lm

a 1m2!5 1
2 m2~sa!c

dLm
d La , @La , 1

2 eabLm
b Lm

a 1m2#50. ~48!

We assert now that~46! is invariant under the following~global! transformations@thereby, one
has to make use of the first equation in~30! and ~48!, respectively#:

dmfA5fAUm
a ma , dmzA50, dmf̄A5maVm

a f̄A ,

dmp Ab5p AbUm
a ma , dmfAb* 5maVm

a fAb* 1ma~Sm
z ,fAb* !a, ~49!

dmlA5lAUm
a ma , dmhA5maVm

a hA ,

wherema , e(ma)51, is a Sp~2!-doublet of constant anticommuting parameters. The transfor
tions ~49! realize them-extended BRST symmetry in the space of variablesfA, f̄A , fAa* , hA ,
pAa, lA andzA.
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Moreover, it is straightforward to check that~46! is also invariant under the following trans
formations@where one has to make use of the second equation in~30! and ~48!, respectively#:

dfA5fAUaua, dzA5zAUaua, df̄A5uaVaf̄A ,

dpAb5pAbUaua, dfAb* 5uaVafAb* , ~50!

dlA5lAUaua, dhA5uaVahA1ua$Sm
z ,hA%a ,

whereua, e(ua)50, are constant commuting parameters. The transformations~50! realize the
Sp ~2!-symmetry in the space of variablesfA, f̄A , fAa* , hA , pAa, lA andzA.

In principle, for a general gauge functionalF, ma may be assumed to depend on all the
variablesfA, f̄A , fAa* , hA , pAa, lA and zA. As long asF depends only on the fields it i
sufficient for ma to depend onfA and pAa only. Then the symmetry of the vacuum function
Zm(0) with respect to the transformations~49! permits the study of the question whether t
mass-dependent terms of the action violate the independence of theS-matrix on the choice of the
gauge.

Indeed, let us change the gauge-fixing functionalF(f)→F(f)1dF(f). Then the gauge-
fixing term WF changes according to

WF→WF1dF5WF1WdF , WdF5dF~f!~ 1
2 eabUm

b Um
a 1m2!. ~51!

Now, performing in~46! the transformations~49!, we choose

ma5ma~f,p![2~ i /\! 1
2 eabdF~f!Um

b .

This induces the factor exp(maUm
a ) in the integration measure. Combining its exponent withWF

leads to

WF→WF1~\/ i !maUm
a 5WF2 1

2 eabdF~f!Um
b Um

a 5WF2WdF1m2dF~f!.

By comparison with~51! we see that the mass termm2F in WF violates the independence of th
vacuum functionalZm(0) on the choice of the gauge. This result, together with the equivale
theorem,10 is sufficient to prove that the same is true also for theS-matrix.

One may try to compensate this undesired termm2dF(f) by means of an additional chang
of variables. But this change should not destroy the form of the action arrived at in the pre
stage. However, an additional change of variables leads to a Berezinian which is equal
becausesa are traceless. Therefore, the unwanted term could never be compensated.

Finally, we shall derive the Ward identities for the extended BRST-and the Sp~2!-symmetries.
To begin with, let us introduce the generating functional of the Green’s functions:

Zm~JA ;fAa* ,f̄A ,hA!5E dfA exp$~ i /\!~Sm,ext~fA,fAa* ,f̄A ,hA!1JAfA!%. ~52!

If we multiply Eqs.~35! from the left by exp$(i/\)JAfA% and integrate overfA we get

E dfA exp$~ i /\!JAfA%D̄m
a exp$~ i /\!Sm,ext~fA,fAa* ,f̄A ,hA!%50,

E dfA exp$~ i /\!JAfA%D̄a exp$~ i /\!Sm,ext~fA,fAa* ,f̄A ,hA!%50.

Now, integrating by parts and assuming the integrated expressions to vanish, we can rew
resulting equalities with the help of the definition~52! as
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S JA

d

dfAa*
2Vm

a DZm50, S ~sa!B
AJA

d

dhB
2VaDZm50,

which are the Ward identities for the generating functional of Green’s functions.
Introducing as usual the generating functional of the vertex functions,

Gm~fA;fAa* ,f̄A ,hA!5~\/ i !ln Zm~JA ;fAa* ,f̄A ,hA!2JAfA,

fA5~\/ i !
d ln Zm~JA ;fAa* ,f̄A ,hA!

dJA
,

we obtain

1
2 ~Gm ,Gm!a1Vm

a Gm50, 1
2 $Gm ,Gm%a1VaGm50. ~53!

For Yang–Mills theories the first identities in~53! are the Slavnov–Taylor identities of the e
tended BRST symmetries. Furthermore, choosing forsa the representation~11!, the second iden-
tities in ~53! express fora50 the ghost number conservation and, in Yang–Mills theories,
a5(1,2) the Delduc–Sorella identities of the Sp~2!-symmetry.11

V. MASSIVE THEORIES WITH A CLOSED GAUGE ALGEBRA

To illustrate the formalism of the osp~1,2!-quantization developed here, we consider irred
ible massive gauge theories with a closed algebra. Such theories are characterized by the fa
that, because ofMa0b0

i j 50, the algebra of generators, Eq.~2!, reduce to

Ra0 , j
i Rb0

j 2Rb0 , j
i Ra0

j 52Rg0

i Fa0b0

g0 ; ~54!

for the sake of simplicity we assume throughout this and the succeeding section that theAi are
bosonic fields, and, second, thatRa0

i has no zero modes~contrary to the case of reducible the

ries!, i.e., any equation of the formRa0

i Xa050 has only the trivial solutionXa050. Then, in the

case of field-dependent structure functions, the Jacobi identity looks like

Fh0a0

d0 Fb0g0

h0 2Ra0

i Fb0g0 ,i
d0 1cyclic perm~a0 ,b0 ,g0!50. ~55!

We shall restrict ourselves to consider only solutions of Eqs.~24! being linear in the antifields
fAa* , f̄A andhA . Such solutions can be cast into the form@see Eq.~18!#

S̄m5Scl1~ 1
2 eabsm

b sm
a 1m2!X,

with X5ĀiA
i1B̄a0

Ba01C̄a0cC
a0c. A realization of the ~anti!BRST- and the Sp~2!-

transformations of the antifields already has been given~see Appendix E!. Thus, we are left with
the exercise to determine the corresponding transformations for the fieldsAi , Ba0 andCa0c. Let us
briefly look at the derivation of these transformations. Imposing the osp~1,2!-superalgebra

@da ,db#5eab
gdg , @da ,sm

a #5sm
b ~sa!b

a, $sm
a ,sm

b %52m2~sa!abda , ~56!

on the gauge fieldsAi , due todaAi50, this yields$sm
a ,sm

b %Ai50. Then, with

sm
a Ai5Ra0

i Ca0a, ~57!

by virtue of ~54!, we find
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Ra0

i ~sm
a Ca0b1sm

b Ca0a1Fb0g0

a0 Cb0aCg0b!50.

Because theRa0

i are irreducible the general solution of this equation is given by

sm
a Ca0b5eabBa02 1

2 Fb0g0

a0 Cb0aCg0b. ~58!

Imposing the superalgebra~56! on the ~anti!ghost fieldsCa0c and taking into accountdaCa0b

5Ca0c(sa)c
b it gives $sm

a ,sm
b %Ca0c52m2(sa)abCa0d(sa)d

c. The right-hand side of this restric
tion can be rewritten by means of the relations (sa)d

c5edee
f c(sa)e

f and (sa)ab(sa)e
f

52(eaed f
b1ebed f

a) as $sm
a ,sm

b %Ca0c52m2(eacCa0b1ebcCa0a). Then, with ~58!, by virtue of
~55!, we obtain

$ebc~sm
a Ba01m2Ca0a2 1

2 Fb0g0

a0 Bb0Cg0a!

1 1
4 ~Fh0b0

a0 Fg0d0

h0 1Fh0d0

a0 Fb0g0

h0 22Rb0

i Fg0d0 ,i
a0 !Cb0aCg0bCd0c%1sym~a↔b!50,

where sym(a↔b) means symmetrization with respect to the indicesa andb.
The general solution of this equation reads

sm
a Ba052m2Ca0a1 1

2 Fb0g0

a0 Bb0Cg0a1 1
12 ecd~Fh0b0

a0 Fg0d0

h0 12Rb0

i Fg0d0 ,i
a0 !Cg0aCd0cCb0d.

~59!

For the particular casem50 the transformations~57!–~59! were already obtained earlier in Re
12.

Note that, due to~56!, the only nonzero variation ofAi is of the form

1
2 eabsm

b sm
a Ai5Ra0

i Ba01 1
2 eabRa0 , j

i Rb0

j Cb0bCa0a; ~60!

for the corresponding variations ofCa0c andBa0 one gets

1
2 eabsm

b sm
a Ca0c5 1

2 m2Ca0c2Fb0g0

a0 Bb0Cg0c2 1
6 eab~Fh0b0

a0 Fg0d0

h0 12Rb0

i Fg0d0 ,i
a0 !Cg0cCd0aCb0b,

~61!

1
2 eabsm

b sm
a Ba052m2Ba0. ~62!

The relations~55!–~62! specify the transformations of the osp~1,2!-symmetry for gauge theorie
with a closed algebra. Substituting these expressions into

S̄m5Scl1Aia* ~sm
a Ai !1Ba0a* ~sm

a Ba0!2Ca0ac* ~sm
a Ca0c!1~Fa0c2 1

2 m2C̄a0c!C
a0c

1Āi~
1
2 eabsm

b sm
a Ai !1B̄a0

~ 1
2 eabsm

b sm
a Ba0!1C̄a0c~

1
2 eabsm

b sm
a Ca0c!, ~63!

Fa0c being the only nonvanishing component ofhA , a direct verification shows that the resultin
actionSm satisfies Eqs.~24! identically.

Finally, let us determine the gauge-fixed actionSm,eff in ~40! for the class of minimal gauge
F depending only onAi andCa0c. Inserting into~46! for Sm the action~63! and performing the
integration over antifields and auxiliary fields we are led to the following expression forSm,eff ~at
the lowest order of\! in the vacuum functional:

Zm~0!5E dAidBa0dCa0c exp$~ i /\!Sm,eff%, Sm,eff5Scl1WF ,
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whereWF is given by

WF5m2F1
1

2
eabS dF

dAi sm
b sm

a Ai1
1

2
eab

dF

dCa0c sm
b sm

a Ca0cD
2

1

2
eabS sm

a Ai
d2F

dAidAj sm
b Aj1sm

a Ca0c
d2F

dCa0cdCb0d sm
b Cb0dD .

Again, this gauge-fixing termWF can be rewritten as

WF5~ 1
2 eabsm

b sm
a 1m2!F,

showing that the actionSm,eff is, in fact, osp~1,2!-invariant and that the method of gauge fixin
proposed in Sec. III will actually lift the degeneracy of the classical gauge-invariant action. A
been shown recently,13 in the particular case of Yang–Mills theoriesSm,eff coincides with the
gauge-fixed action in the massive Curci–Ferrari model14 in the Delbourgo–Jarvis gauge.15 The
classical actionSYM is invariant under the non-Abelian gauge transformations

dAm
a5Dm

abub~x!, Dm
ab[dab]m2FabgAm

g ,

whereFabg are the totally antisymmetric structure constants. As before, the osp~1,2!-invariance of
the gauge-fixed action

Sm,eff5SYM1~ 1
2 eabsm

b sm
a 1m2!F, F5 1

2 ~Am
aAma1jecdC

acCad!,

wherej is the gauge parameter, is assured by construction. Using

sm
a Am

a5Dm
abCba,

sm
a Cab5eabBa2 1

2 FabgCbaCgb,

sm
a Ba52m2Caa1 1

2 FabgBbCga1 1
12 ecdF

ahbFhgdCgaCdcCbd,

for the gauge-fixing terms one gets

1
4 eabsm

b sm
a ~Am

aAma!5Am
a]mBa1 1

2 eab~]mCab!Dm
abCba,

1
4 eabecdsm

b sm
a ~CacCad!5 1

2 m2ecdC
acCad1BaBa2 1

24 eabecdF
habFhgdCaaCbcCgbCdd.

The elimination ofBa can be performed by Gaussian integration; it provides the gauge-fixing
1/2j21(]mAm

a)2 and, in addition, among other interactions quartic~anti!ghost terms. This shows
that the degeneracy of the classical action is indeed removed.

Concluding, we shall emphasize that, up to now, we have ignored the important qu
whether the action~63! is the general solution of Eqs.~24!, i.e., being stable against perturbation
Unfortunately, this is not the case, because the fieldsAi , Ba0, Ca0c and the antifieldsĀi , B̄a0

,

C̄a0c have the same quantum numbers and hence mix under renormalization. Therefore,
confronted with the complicated problem how the action~63! must be changed in order to ensu
the required stability. To attack this problem one is forced to introduce within~63! the antifields
in a nonlinear manner~see Ref. 13!; however, then the corresponding altered action canno
expressed in such simple form as in~63!. The solution of that problem has been given for
particular case in Ref. 13; a general proof will be given in another paper.16
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VI. CONCLUDING REMARKS

We have proved the possibility of a consistent generalization of the Sp~2! quantization scheme
based on the orthosymplectic superalgebra osp~1,2!. Introducing mass terms into the theory, whic
do not break the extended BRST symmetry, the quantum master equations of the Sp~2!-symmetry
must be satisfied in order to fulfill the corresponding equations of the extended BRST sym
To ensure Sp~2!-invariance of the theory also in the massless case, then, besides of the re
ment of extended BRST symmetry the actionS must be subjected to the requirement of Sp~2!-
symmetry explicitly. An open problem is the general proof, analogous to Refs. 1 and
existence theorems, i.e., absence of anomalies of the theory.

Finally, let us give some remarks concerning the renormalization of the theory. In Ref.
problem was discussed rather formally; thereby the standard hypothesis on the existenc
regularization respecting the Ward identities for the extended BRST symmetries had be
cepted.

On the other hand, there is a well-established renormalization scheme, incidentally the
general one known until now, namely the Bogoliubov–Parasiuˇk–Hepp–Zimmermann–
Lowenstein~BPHZL! scheme,17 which does not need any regularization. Moreover, the renorm
ized quantum action principles, which sum up all properties of the renormalized perturb
series, were first established using the BPHZL renormalization scheme~they were rederived in
different other schemes confirming their character as general theorems in renormalization
independent of the renormalization scheme!. These theorems are extremely powerful and suf
for discussing the most useful identities among renormalized Green’s functions, such as
identities or their generalizations describing gauge invariance~e.g., the existence proofs for gen
erating equations established in Refs. 1 and 2 could be proven also by means of the
principles without any reference to a given renormalization and regularization scheme!. Further-
more, within the BPHZL scheme it is possible to perform renormalization when we are conc
with massless theories. If massless fields are involved, ultraviolet subtractions would ge
drastic spurious infrared divergences. Lowenstein and Zimmermann introduced a more in
subtraction procedure which is free of spurious infrared divergences. In order to avoid
divergences one has to introduce a massm2(s21)2 with s being an additional infrared subtractio
parameter. Then, the disease that ultraviolet subtractions lead to nonintegrable infrared sin
ties is cured by performing ultraviolet subtractions and extra infrared subtractions with resp
(s21). It had been proven rigorously thats51 defines the renormalized massless theory; i.e.,
introduction of the massm2(12s)2 does not lead to a contradictory massive theory. Of cou
mass terms softly violate the gauge dependence of theS-matrix so that, after performing renor
malization, one may take the massless limits51.

Of course, this renormalization scheme could be applied also in the Sp~2!-approach, but then
the introduction of mass terms would violate the extended BRST symmetries. On the other
using the osp~1,2!-approach, it is possible to introduce mass terms~at the stage of gauge fixing! in
such a way that the Ward identities of the extended BRST symmetries will not be vio
provided the Ward identity of the Sp~2!-symmetry is fulfilled to all orders of perturbation theor
Besides, we can use the quantum action principles to get rigorous statements without any
ence to a given renormalization and regularization scheme.

Obviously, the osp~1,2!-covariant frame of quantization can be formulated within the sup
field approach9 without much effort. On the other hand, the generalization of the formalism to
case ofL-stage reducible theories analogous to Ref. 2 will be more involved.
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APPENDIX A: SUPERALGEBRA osp „1,2…

The ~anti!commutation relations of the superalgebra osp~1,2! in the Cartan–Weyl basis rea
~see Ref. 18!

@L0 ,L6#56L6 , @L1 ,L2#52L0 , ~A1!

@L0 ,R6#56 1
2 R6 , @L6 ,R7#52R6 , @L6 ,R6#50, ~A2!

$R6 ,R6%56 1
2 L6 , $R1 ,R2%5 1

2 L0 , ~A3!

and for the fundamental representation these generators are given by

L05S 1
2 0 0

0 2 1
2 0

0 0 0
D , L15S 0 1 0

0 0 0

0 0 0
D , L25S 0 0 0

1 0 0

0 0 0
D ,

R15S 0 0 1
2

0 0 0

0 1
2 0

D , R25S 0 0 0

0 0 2 1
2

1
2 0 0

D .

The superalgebra~8!–~10! is obtained by the following identifications:

~\/ i !D̄052L0 , ~\/ i !D̄65L6 , ~\/ i !D̄m
1 52mR1 , ~\/ i !D̄m

2 52mR2 ;

so the relations~A1!–~A3! may be written instead as follows (a50,1,2):

@D̄a ,D̄b#5~ i /\!eab
gD̄g , ~A4!

@D̄a ,D̄m
a #5~ i /\!D̄m

b ~sa!b
a, ~A5!

$D̄m
a ,D̄m

b %5~ i /\!m2~sa!abD̄a, ~A6!

sa generating the group of special linear transformations with the sl~2! algebra:

sasb5gab1 1
2 eabbsg, sa5gabsb , Tr~sasgb!52gab ,

gab5S 1 0 0

0 0 2

0 2 0
D , gagggb5db

a ,

eabg being the antisymmetric tensor,e01251. Then, from~A5!, the following realization ofsa

is obtained,

~s1!a
b5S 0 21

0 0 D , ~s2!a
b5S 0 0

21 0D , ~s0!a
b5S 1 0

0 21D ,

and by raising the first index according to (sa)ab5eac(sa)c
b we get

~s1!ab5S 0 0

0 1D , ~s2!ab5S 21 0

0 0D , ~s0!ab5S 0 21

21 0 D .
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The quadratic Casimir operator is given byC251/2eabD̄m
b D̄m

a 1m2D̄aD̄a .

APPENDIX B: PROPERTIES OF THE BRACKETS

From the definitions~25!, ~26! and ~29! it follows

e~$F,G%a!5e~F !1e~G!, $F,G%a5$G,F%a~21!e~F !e~G!,

e~~F,G!a!5e~F !1e~G!11, ~F,G!a52~G,F !a~21!~e~F !11!~e~G!11!,

i.e., $F,G%a((F,G)a) defines an even~odd! graded bracket, and

Da~FG!5~DaF !G1F~DaG!1$F,G%a , ~B1!

Da~FG!5~DaF !G1F~DaG!~21!e~F !1~F,G!a~21!e~F !, ~B2!

where the last two relations may be understood as the definitions of the new brackets$F,G%a and
the extended antibrackets (F,G)a introduced in Ref. 1, respectively. Furthermore, it holds

$F,GH%a5$F,G%aH1G$F,H%a~21!e~F !e~G!,

~F,GH!a5~F,G!aH1G~F,H !a~21!~e~F !11!e~G!,

i.e., both brackets act on the algebra of functions under multiplications.
Let us now briefly state the properties of the new brackets$F,G%a and (F,G)a. Applying the

following identities@their validity is verified by means of~29!#

@Da ,Db#50, $Da,Db%50, @Da ,Da#50 ~B3!

of the operatorsDa andDa to a product of two functionsFG and making use of~B1! and ~B2!,
one gets

D [a$F,G%b]5$D [aF,G%b]1$F,D [aG%b] ,

D$a~F,G!b%5~D$aF,G!b%1~F,D$aG!b%~21!e~F !11,

Da~F,G!a2Da$F,G%a~21!e~F !5~DaF,G!a1~F,DaG!a2$DaF,G%a~21!e~F !2$F,DaG%a ,

where the square~curly! bracket indicates antisymmetrization~symmetrization! in the indicesa
and b ~a and b!, respectively. Next, applying the relations~B3! to a product of three functions
FGH by means of simple but cumbersome calculations, one arrives at the following Jacobi
tities satisfied by the two brackets:

$$F,G% [a ,H%b]~21!e~F !e~H !1cyclic~F,G,H ![0, ~B4!

~~F,G!$a,H !b%~21!~e~F !11!~e~H !11!1cyclic~F,G,H ![0, ~B5!

~$~F,G!a,H%a2~$F,G%a ,H !a~21!e~G!!~21!e~F !~e~H !11!1cyclic~F,G,H ![0. ~B6!

Furthermore, one needs the operatorsVa and Vm
a , Eqs. ~27! and ~28!, to obey the osp~1,2!-

superalgebra:

@Va ,Vb#5eab
gVg , $Vm

a ,Vm
b %52m2~sa!abVa , @Va ,Vm

a #5Vm
b ~sa!b

a. ~B7!

Applying the identities@their validity is established by means of Eqs.~27!–~29!#

@Da ,Vb#1@Va ,Db#5eab
gDg ,
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$Da,Vm
b %1$Vm

a ,Db%52m2~sa!abDa , ~B8!

@Da ,Vm
a #1@Va ,Da#5Db~sa!b

a

to a product of two functionsFG, one can establish the following relations which define the ac
of the operatorsVa andVm

a upon the brackets,

V[a$F,G%b]5eab
g$F,G%g1$V[aF,G%b]1$F,V[aG%b] ,

Vm
$a~F,G!b%52m2~sa!ab$F,G%a1~Vm

$aF,G!b%1~F,Vm
$aG!b%~21!e~F !11,

Va~F,G!a2Vm
a $F,G%a~21!e~F !5~F,G!b~sa!b

a1~VaF,G!a1~F,VaG!a

2$Vm
a F,G%a~21!e~F !2$F,Vm

a G%a ,

where, as before, square~curly! bracket means antisymmetrization~symmetrization! in the indices
a andb ~a andb!, respectively.

Note that the properties~B7! of Vm
a and Va are inherited by the the operatorsD̄m

a 5Da

1( i /\)Vm
a and D̄a5Da1( i /\)Va @see Eqs.~8!–~10!#, due to the properties~B3! and ~B8!.

Finally, let us specifyF5G5H[S to be any bosonic functionalS, e(S)50. Then, the Jacob
identities simplify into

$$S,S% [a ,S%b][0, ~~S,S!$a,S!b%[0, $~S,S!a,S%a2~$S,S%a ,S!a[0. ~B9!

For the action of the operatorsDa , Da and Va , Vm
a upon the brackets$S,S%a and (S,S)a one

becomes

1
2 D [a$S,S%b]5$D [aS,S%b] ,

1
2 D$a~S,S!b%5~D$aS,S!b%, ~B10!

1
2 ~Da~S,S!a2Da$S,S%a!5~DaS,S!a2$DaS,S%a

and

1
2 V[a$S,S%b]5$V[aS,S%b]1

1
2 eab

g$S,S%g ,

1
2 Vm

$a~S,S!b%5~Vm
$aS,S!b%2 1

2 m2~sa!ab$S,S%a , ~B11!

1
2 ~Va~S,S!a2Vm

a $S,S%a!5~VaS,S!a2$Vm
a S,S%a1 1

2 ~S,S!b~sa!b
a.

APPENDIX C: COMPATIBILITY PROOF FOR GENERATING EQUATIONS

A solution S̄m of the generating equations~24! at the lowest-order approximation has be
constructed in~23!:

1
2 ~S̄m ,S̄m!a1Vm

a S̄m50, 1
2 $S̄m ,S̄m%a1VaS̄m50. ~C1!

Let us prove that the generalization~30! of these equations at any order of\, namely,

1
2 ~Sm ,Sm!a1Vm

a Sm1~\/ i !DaSm50, 1
2 $Sm ,Sm%a1VaSm1~\/ i !DaSm50, ~C2!

for the full quantum action
                                                                                                                



obi

694 J. Math. Phys., Vol. 40, No. 2, February 1999 Geyer, Lavrov, and Mülsch

                    
Sm5S̄m1 (
n51

`

\nSm~n! ,

is compatible with the algebraic properties of the brackets (Sm ,Sm)a and$Sm ,Sm%a ~see Appendix
B!.

Suppose that functionalsSm(k) , k<n, have been found obeying Eqs.~C2! up to and including
the nth order in\. Then for the (n11)th order the following equations should be satisfied:

Q̄m
a Sm~n11!5Ym~n11!

a , Q̄aSm~n11!5Ya~n11! , ~C3!

whereQ̄m
a andQ̄a are the lowest-order approximations of the operators~37!,

Q̄m
a X[~S̄m ,X!a1Vm

a X, Q̄aX[$S̄m ,X%a1VaX, ~C4!

X being an arbitrary functional. By virtue of Eqs.~C1! the operatorsQ̄m
a and Q̄a obey the

osp~1,2!-superalgebra:

@Q̄a ,Q̄b#5eab
gQ̄g , @Q̄a ,Q̄m

a #5Q̄m
b ~sa!b

a, $Q̄m
a ,Q̄m

b %52m2~sa!abQ̄a . ~C5!

The functionalsYm(n11)
a andYa(n11) in Eqs.~C3! have the following form:

Ym~n11!
a 5 iDaSm~n!2

1

2 (
k51

n

~Sm~n112k! ,Sm~k!!
a,

Ya~n11!5 iDaSm~n!2
1

2 (
k51

n

$Sm~n112k! ,Sm~k!%a .

In order to ensure that Eqs.~C3! are compatible with the osp~1,2!-superalgebra~85!, it is
necessary that the following relations hold:

Q̄aYb~n11!2Q̄bYa~n11!5eab
gYg~n11! ,

Q̄m
a Ym~n11!

b 1Q̄m
b Ym~n11!

a 52m2~sa!abYa~n11! , ~C6!

Q̄aYm~n11!
a 2Q̄m

a Ya~n11!5Ym~n11!
b ~sa!b

a.

Let us show that the relations~C6! indeed are satisfied. To begin with, we consider the Jac
identity $Sm ,$Sm ,Sm% [a%b][0, Eqs.~B9!. By virtue of the algebraic properties~B10! and~B11! of
$Sm ,Sm%a , the left-hand side of this identity can be rewritten as

$Sm , 1
2 $Sm ,Sm% [a%b][~Sm , 1

2 $Sm ,Sm% [a1V[aSm1~\/ i !D [aSm%b]2$Sm ,V[aSm1~\/ i !D [aSm%b]

5$Sm , 1
2 $Sm ,Sm% [a1V[aSm1~\/ i !D [aSm%b]

2V[a~ 1
2 $Sm ,Sm%b]1Vb]Sm1~\/ i !Db]Sm!2~\/ i !D [a~ 1

2 $Sm ,Sm%b]

1Vb]Sm1~\/ i !Db]Sm!1eab
g~ 1

2 $Sm ,Sm%g1VgSm1~\/ i !DgSm!. ~C7!

Considering the generating equation~C2! in the (n11)th order in\,

1
2 $Sm ,Sm%a1VaSm1~\/ i !DaSm5\n11~Q̄aSm~n11!2Ya~n11!!1O~\n12!,

then for the equality~C7! in the (n11)th order one gets
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Q̄[b~Q̄a]Sm~n11!2Ya] ~n11!!1eab
g~Q̄gSm~n11!2Yg~n11!!50, ~C8!

where the definition~C4! of the operatorQ̄a has been used. Taking into account the proper
~C5! of Q̄a we conclude from~C8! that the first relation~C6! is fulfilled. In the same way, using
the Jacobi identities (Sm ,(Sm ,Sm) $a)b%[0 and $Sm ,(Sm ,Sm)a%a2(Sm ,$Sm ,Sm%a)a[0, Eqs.
~B9!, it can be verified that also the remaining relations~C6! are fulfilled, thus establishing the
compatibility of Eqs.~C3!. Obviously, by virtue of~C5!, the equations~C6! are solved by

Ym~n11!
a 5Q̄m

a Xm~n11! , Ya~n11!5Q̄aXm~n11! , ~C9!

with arbitrary functionalXm(n11) . Here, we do not check that any solution of~C6! has the form
~C9!, which means that the theory is anomaly free; in order to check that, one can ado
methods of Refs. 1 and 3. ChoosingSm(n11)5Xm(n11) the generating equations~C2! are satisfied
up to and including the (n11)th order in\ and we can proceed by induction.

APPENDIX D: NATURAL TRANSFORMATIONS OF SOLUTIONS OF THE GENERATING
EQUATIONS

In this Appendix we study transformations that allow one to consider the characteristic
trariness of a solution of the generating equations. These transformations convert any loca
tion Sm of Eqs.~30! into another local solutionS̃m of the same equations. For that reason let
introduce an interpolating functionalSm(z), 0<z<1, whereSm(1)[S̃m is the solution we are
looking for and whereSm(0)[Sm . This functional is required to satisfy the generating equati

1
2 ~Sm~z!,Sm~z!!a2 i\D̄m

a Sm~z!50, 1
2 $Sm~z!,Sm~z!%a2 i\D̄aSm~z!50. ~D1!

Differentiating Eqs.~90! with respect toz for ]Sm(z)/]z one gets the conditions

Qm
a ~z!

]

]z
Sm~z!50, Qa~z!

]

]z
Sm~z!50, ~D2!

where the operatorsQm
a (z) andQa(z), analogous to~37!, are defined by

Qm
a ~z!X[~Sm~z!,X!a2 i\D̄mX, Qa~z!X[$Sm~z!,X%a2 i\D̄aX,

X being an arbitrary functional. Hence, analogous to~38!, we have

@Qa~z!,Qb~z!#5eab
gQg~z!,

@Qa~z!,Qm
a ~z!#5Qm

b ~z!~sa!b
a,

$Qm
a ~z!,Qm

b ~z!%52m2~sa!abQa~z!.

Let us make for]Sm(z)/]z the following ansatz:

]

]z
Sm~z!5Ŵm~z!Y, Ŵm~z![

1

2
eabQm

b ~z!Qm
a ~z!1m2, ~D3!

with Y5Y(fA,f̄A ,fAa* ,hA) an arbitrary local Sp~2!-scalar. Then, by virtue of

Qm
a ~z!Ŵm~z!5 1

2 m2~sa!a
bQm

b ~z!Qa~z!, Qa~z!Ŵm~z!5Ŵm~z!Qa~z!,

the ~consistency! conditions~D2! are fulfilled provided it holds that
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Qa~z!Y50, ~sa!B
A

dY

dfA fB1VaY50. ~D4!

The equations

Qm
a ~z!S dSm~z!

dhA
2fAD50, QaS dSm~z!

dhA
2fAD50,

which are obtained from~D1! after differentiating with respect tohA , and

Qa~z!Y5~sa!B
AS dSm~z!

dfA

dY

dhB
1

dY

dfA S dSm~z!

dhB
2fBD2 i\DaYD50

suggest that the natural solution of the requirement~D3! is @see~39!#

dSm~z!

dhA
5fA,

dY

dhA
50, ~D5!

i.e., thatSm(z) is linear inhA and thatY5Y(fA,f̄A ,fAa* ) must be independent ofhA . Then, as
a consequence of the restrictions~D5!, the second equation in~D1! becomes

~sa!B
A

dSm~z!

dfA fB1VaSm~z!50. ~D6!

The integration of Eq.~D3! leads to

exp$~ i /\!Sm~z!%5Ûm~zY!exp$~ i /\!Sm%,

Ûm~zY!5exp$~\/ i !T̂m~zY!%, T̂m~zY!5 1
2 eab$D̄m

b ,@D̄m
a ,zY#%1~ i /\!2m2zY.

From this transformation, by virtue of

F D̄m
a ,

d

dhA
2fAG50, F D̄a ,

d

dhA
2fAG50, FY,

d

dhA
2fAG50,

it follows that imposing the conditions~D5! for z50 is sufficient to ensure their validity also fo
0,z<1, so thatSm(z) indeed solves the first equation in~D1! and Eq.~D6!. Moreover, it is seen
that the gauge~12! itself is introduced through the use of a special transformation of this k
namely by choosingY5F(fA) andz51.

For the iterative solution of Eq.~D3! in the form of a series expansion in powers ofz one gets

Sm~z!5 (
n50

`

znSm
~n! , Sm

~0![Sm ,

~n11!Sm
~n11!5

1

2
eabH (

k50

n

~Sm
~k! ,~Sm

~n2k! ,Y!a!b1~\/ i !~Sm
~n! ,D̄m

a Y!b1~\/ i !D̄m
b ~Sm

~n! ,Y!a

1~\/ i !2dn,0D̄m
b D̄m

a YJ 1dn,0m
2Y, n>0,

which shows that if bothSm andY are local functions, thenSm(z) is a local function as well.
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APPENDIX E: COMPONENTWISE NOTATION OF THE TRANSFORMATIONS „19…

In componentwise notation the extended BRST- and Sp~2!-transformations~19! of the anti-
fields read as follows~Di andEa0

have been put equal to zero!:

Vm
a Āi5eabAib* , VaĀi50,

Vm
a Aib* 5m2db

aĀi , VaAib* 5Aid* ~sa!d
b ,

Vm
a B̄a0

5eabBa0b* , VaB̄a0
50,

Vm
a Ba0b* 5m2db

aB̄a0
, VaBa0b* 5Ba0d* ~sa!d

b , ~D7!

Vm
a C̄a0c5eabCa0bc* , VaC̄a0c5C̄a0d~sa!d

c ,

Vm
a Fa0c5m2eab~Ca0bc* 2Ca0cb* !, Va0c5Fa0d~sa!d

c ,

Vm
a Ca0bc* 5m2~db

aC̄a0c1dc
aC̄a0b!2db

aFa0c , VaCa0bc* 5Ca0dc* ~sa!d
b1Ca0bd* ~sa!d

c ,

where the additional antifieldFa0c has to be introduced in order to obey the osp~1,2!-superalgebra
~C7! ~see Appendix B!. Let us stress that expressing this algebra through operator identitie
stronger restriction than satisfying this algebra by the help of~anti!BRST transformations~D7!,
which could be also realized without introducingFa0c , namely by choosingCa0ab* 5Ca0ba* .

The componentwise notation of the operatorsVm
a ,Va andDa,Da is given by@see~27!–~29!#

Vm
a 5eabAib*

d

dĀi

1m2Āi

d

dAia*
1eabBa0b*

d

dB̄a0

1m2B̄a0
d

dBa0a*
1eabCa0bc*

d

dC̄a0c

1m2C̄a0cS d

dCa0ac*
1

d

dCa0ca* D 2Fa0c

d

dCa0ac*
1m2eab~Ca0bc* 2Ca0cb* !

d

dFa0c

,

Va5Aid* ~sa!d
b

d

dAib*
1Ba0d* ~sa!d

b

d

dBa0b*
1C̄a0d~sa!d

c

d

dC̄a0c

1~Ca0dc* ~sa!d
b1Ca0bd* ~sa!d

c!
d

dCa0bc*
1Fa0d~sa!d

c

d

dFa0c

,

and

Da5~21!e i
dL

dAi

d

dAia*
1~21!ea0

dL

dBa0

d

dBa0a*
1~21!ea0

11
dL

dCa0c

d

dCa0ac*
,

Da5~21!ea0
11~sa!d

c
dL

dCa0c

d

dFa0d
.

Then, it can be verified thatVm
a ,Va andDa,Da fulfill the ~anti!commutation relations~B3!, ~B7!

and ~B5! ~see Appendix B!.
                                                                                                                



.

.

ies

698 J. Math. Phys., Vol. 40, No. 2, February 1999 Geyer, Lavrov, and Mülsch
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Constructive inversion of energy trajectories in quantum
mechanics

Richard L. Hall
Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Boulevard West, Montre´al, Québec H3G 1M8, Canada
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We suppose that the ground-state eigenvalueE5F(v) of the Schro¨dinger Hamil-
tonianH52D1v f (x) in one dimension is known for all values of the coupling
v.0. The potential shapef (x) is assumed to be symmetric, bounded below, and
monotone increasing forx.0. A fast algorithm is devised which allows the poten-
tial shapef (x) to be reconstructed from the energy trajectoryF(v). Three ex-
amples are discussed in detail: a shifted power-potential, the exponential potential,
and the sech-squared potential are each reconstructed from their known exact en-
ergy trajectories. ©1999 American Institute of Physics.
@S0022-2488~99!01202-5#

I. INTRODUCTION

This paper is concerned with what may be called ‘‘geometric spectral inversion.’’ We sup
that a discrete eigenvalueE5F(v) of the Schro¨dinger Hamiltonian

H52D1v f ~x! ~1.1!

is known for all sufficiently large values of the coupling parameterv.0 and we try to use this
data to reconstruct the potential shapef. The usual ‘‘forward’’ problem would be: given the
potential ~shape! f (x), find the energy trajectoryF(v); the problem we now consider is th
inverse of thisF→ f .

This problem must at once be distinguished from the ‘‘inverse problem in the cou
constant’’ discussed, for example, by Chadan and Sabatier.1 In this latter problem, the discrete pa
of the ‘‘input data’’ is a set$v i% of values of the coupling constant that all yield the identic
energy eigenvalueE. The indexi might typically represent the number of nodes in the correspo
ing eigenfunction. In contrast, for the problem discussed in the present paper,i is kept fixed and
the input data is the graph (F(v),v), where the coupling parameter has any valuev.vc , andvc

is the critical value ofv for the support of a discrete eigenvalue withi nodes. We shall mainly
discuss the bottom of the spectrumi 50 in this paper. However, on the basis of results we h
obtained for the inversion~IWKB ! of the Wentzel–Kramers–Brillouin~WKB! approximation,2

there is good reason to believe that constructive inversion may also be possible starting fro
discrete eigenvalue trajectoryFi(v), i .0. In fact, perhaps not surprisingly, IWKB yields bett
results starting from higher trajectories; moreover, they become asymptotically exact as the
value index is increased without limit.

By making suitable assumptions concerning the class of potential shapes, theoretical p
has already been made with this inversion problem.3–5 The most important assumptions that w
retain throughout the present paper are thatf (x) is symmetric, monotone increasing forx.0, and
bounded below; consequently the minimum value isf (0). Weassume that our spectral data, t
energy trajectoryF(v), derives from a potential shapef (x) with these features. We hav
discussed3 how two potential shapesf 1 and f 2 can cross over and still preserve spectral order
F1,F2 . It is known4 that lowest pointf (0) of f is given by the limit
6990022-2488/99/40(2)/699/9/$15.00 © 1999 American Institute of Physics
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f ~0!5 lim
v→`

F~v !

v
. ~1.2!

We have proved4 that a potential shapef has a finite flat portion (f 8(x)50) in its graph starting
at x50 if and only if the mean kinetic energy is bounded. That is to say,s5F(v)2vF8(v)
,K, for some positive numberK. More specifically, the sizeb of this patch can be estimated from
F by means of the inequality

s<K⇒ f ~x!5 f ~0!, uxu<b, and b5
p

2
K21/2. ~1.3!

The monotonicity of the potential, which allows us to prove results like this, also yields the
Concentration Lemma:4

q~v !5E
2a

a

c2~x,v !dx.
f ~a!2F8~v !

f ~a!2 f ~0!
→1, v→`, ~1.4!

wherec(x,v) is the normalized eigenfunction satisfyingHc5F(v)c. More importantly, per-
haps, ifF(v) derives from a symmetric monotone potential shapef which is bounded below, then
f is uniquelydetermined.5 The significance of this result can be appreciated more clearly u
consideration of an example. Suppose the bottom of the spectrum ofH is given byF(v)5Av,
what is f? It is well known, of course, thatf (x)5x2→F0(v)5Av; but are there any others? Ar
scaling arguments reversible? A possible source of disquiet for anyone who ponders such
tions is the uncountable number of~unsymmetric! perturbations6 of the harmonic oscillator all of
which have the identical spectrum to that of the unperturbed oscillatorf (x)5x2.

If, in addition to symmetry and monotonicity, we also assume that a potential shapef 1(x)
vanishes at infinity and thatf 1(x) has area, then a given trajectory functionF1(v) corresponding
to f 1(x) can be ‘‘scaled’’5 to a standard form in which the new functionF(v)5aF1(bv)
corresponds to a potential shapef (x) with area22 and minimum valuef (0)521. Thus square-
well potentials, which of course are completely determined by depth and area, are imme
invertible; moreover it is known that, amongst all standard potentials, the square-well is ‘‘ex
al’’ for it has the lowest possible energy trajectory. In Ref. 5 an approximate variational inve
method is developed; it is also demonstrated constructively that all separable potentials are
ible. However, these results and additional constraints are not used in the present paper.
potential has area 2A, we first assumed, during our early attempts at numerical inversion, th
would be very useful to determineA from F(v) and then appropriately constrain the inversi
process. However, the area constraint did not turn out to be useful. Thus the numerical met
have established for constructingf (x) from F(v) does not depend on the use of this constra
and is therefore not limited to the reconstruction of potentials which vanish at infinity and ha
area.

Much of numerical analysis assumes that errors arising from arithmetic computations o
the computation of elementary functions is negligibly small. The errors usually studied in
are those that arise from the discrete representation of continuous objects such as funct
from operations on them, such as derivatives or integrals. In this paper we shall take this s
tion of numerical problems to a higher level. We shall assume that we have a numerical m
for solving the eigenvalue problem in theforward direction f (x)→F(v) that is reliable and may
be considered for our purposes to be essentially error free. Our main emphasis will be
design of an effective algorithm for the inverse problemassumingthat the forward problem is
numerically soluble. The forward problem is essential to our methods because we shall n
know not only the given exact energy trajectoryF(v) but also, at each stage of the reconstructi
what eigenvalue a partly reconstructed potential generates. This line of thought immed
indicates that we shall also need a way of temporarily extrapolating a partly reconstructed
tial to all x.
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Our constructive inversion algorithm hinges on the assumed symmetry and monotonic
f (x). This allows us to start the reconstruction off (x) at x50, and sequentially increasex. In Sec.
II it is shown how numerical estimates can be made for the shape of the potential nearx50, that
is for x,b, whereb is a parameter of the algorithm. In Sec. III we explore the implications of
potential’s monotonicity for the ‘‘tail’’ of the wave function. In Sec. IV we establish a numer
representation for the form of the unknown potential forx.b and construct our inversion algo
rithm. In Sec. V the algorithm is applied to three test problems.

II. THE RECONSTRUCTION OF f „x … NEAR x 50

Since the energy trajectoryF(v) which we are given is assumed to arise from a symme
monotone potential, and since the spectrum generated by the potential is invariant unde
along thex-axis, we may assume without loss of generality that the minimum value of
potential occurs atx50. We now investigate the behavior ofF(v), either analytically or numeri-
cally, for large values ofv. The purpose is to establish a value for the starting pointx5b.0 of
our inversion algorithm and the shape of the potential in the intervalxP@0,b#. First of all, the
minimum value f (0) of the potential is provided by the limit~1.2!. Now, if the mean kinetic
energys5(c,2Dc)5F(v)2vF8(v) is found to be bounded above by a positive numberK, then
we know4 that the potential shapef (x) satisfiesf (x)5 f (0), xP@0,b#, whereb is given by~1.3!.
In this case we have a value forb and also the shapef (x) inside the interval@0,b#.

If the mean potential energys is ~or appears numerically to be! unbounded, then we adop
another strategy: we modelf (x) as a shifted power potential nearx50. Since we never knowf (x)
exactly, we shall need another symbol for the approximation we are currently using forf (x). We
choose this to beg(x) and we suppose that the bottom of the spectrum of2D1vg(x) is given by
G(v). The goal is to adjustg(x) until G(v) is close to the givenF(v). Thus we write

f ~x!'g~x!5 f ~0!1Axq, xP@0,b#. ~2.1!

Therefore we have three positive parameters to determine,b, A, andq. We first suppose thatg(x)
has the form~2.1! for all x>0. We now choose a ‘‘large’’ valuev1 of v. This is related to the late
choice ofb by a bootstrap argument; the idea is that we choosev1 so large that the turning poin
determined by

cxx~x,v1!/c~x,v1!5v1f ~x!2F~v !50 ~2.2!

is equal tob. The concentration lemma guarantees that this is possible. By scaling argumen
have

G~v !5 f ~0!v1E~q!~vA!2/~21q!, ~2.3!

whereE(q) is the bottom of the spectrum of the pure-power Hamiltonian2D1uxuq. We now
‘‘fit’’ G(v) to F(v) by the equationsG(v1)5F(v1) and G(2v1)5F(2v1) which yield the
estimate forq given by

h5
2

21q
5

log~F~2v1!22v1f ~0!!2 log~F~v1!2v1f ~0!!

log~2!
. ~2.4!

ThusA is given by

A5~~F~v1!2v1f ~0!!/E~q!!1/h/v1 . ~2.5!

We chooseb to be equal to the turning point corresponding to the model potentialg(x) with the
smaller value ofv, that is to say so thatf (0)1Abq5F(v1)/v1 , or
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b5S F~v1!2v1f ~0!

Av1
D 1/q

. ~2.6!

Thus we have determined the three parameters which define the potential modelg(x) for xP
@2b,b#.

III. THE TAIL OF THE WAVE FUNCTION

Let us suppose that the ground-state wave function isc(x,v). Thus the turning point
cxx(x,v)50 occurs for a givenv when

x5xt~v !5 f 21~R~v !!, R~v !5S F~v !

v D . ~3.1!

The concentration lemma~1.4! quantifies the tendency of the wave function to become, as
couplingv is increased, progressively more concentrated on the patch@2c,c#, wherex5c is the
point ~perhaps zero! wheref (x) first starts to increase. This allows us to think in terms of the w
function having a ‘‘tail.’’ We think of a symmetric potential as having been determined frox
50 up to the current pointx. The question we now ask is: what value ofv should we use to
determine howf (x), or, more particularly, ourapproximation g(x) for f (x), continues beyond the
current point. We have found that a good choice is to choosev so that the turning pointxt(v)
5x/2, or some other similar fixed fractions,1 of the currentx value. The algorithm seems to b
insensitive to this choice. Sinceg(x) has been constructed up to the current point, andF(v) is
known, the value ofv required follows by inverting~3.1!. It has been proven4 that R(v) is
monotone and therefore invertible. Hence we have the following general recipe forv:

v5R21~g~sx!!, s5 1
2. ~3.2!

Since we can only determine Schro¨dinger eigenvalues ofH52D1vg(x) if the potential is
defined for allx, we must have a policy about temporarily extendingg(x). We have tried many
possibilities and found the simplest and most effective method is to extendg(x) in a straight line,
with the slope to be determined.

In Fig. 1 we illustrate the ideas just discussed for the case of the sech-squared potenti
inset graph shows the sech-squared potential perturbed fromx5xa by five straight line extensions
meanwhile the main graph shows the corresponding set of five wave functions which agr
0<x<xa and then continue with different ‘‘tails’’ dictated by the corresponding potential ex
sions. The value of the couplingv is the value that makes the turning point of the wave funct
occur atx5xa/2. This figure illustrates the sort of graphical study that has lead to the algor
described in this paper.

IV. THE INVERSION ALGORITHM

We must first define the ‘‘current’’ approximationg(x) for the potentialf (x) sought. For
values ofx less thanb, g(x) is defined either as the horizontal linef (x)5 f (0) or as the shifted
power potential~2.1!. For values ofx greater thanb, the x-axis is divided into steps of lengthh.
Thus the ‘‘current’’ value ofx would be of the formx5xk5b1kh, wherek is a positive integer.
The idea is thatg(xk) is determined sequentially andg(x) is interpolated linearly between thexk

points. We suppose that$g(xk)% have already been determined up tok and we need to findy
5g(xk11). For x>xk we let

g~x!5g~xk!1~y2g~xk!!
x2xk

h
. ~4.1!

If, from a study ofF(v), the underlying potentialf (x) has been shown5 to be bounded above, i
is convenient to rescaleF(v) so that it corresponds to a potential shapef (x) which vanishes at
                                                                                                                



ave

ng

e
y

o a

703J. Math. Phys., Vol. 40, No. 2, February 1999 Richard L. Hall

                    
infinity. In this case it is slightly more efficient to modify~4.1! so that for largex the straight-line
extrapolation ofg(x) is ‘‘cut’’ to zero instead of becoming positive. In either case we now h
for the current pointxk an approximate potentialg(x) parametrized by the ‘‘next’’ valuey
5g(xk11). The task of the inversion algorithm is simply to choose this value ofy.

Let us suppose that, for given values ofk and y, the bottom of the spectrum ofH52D
1vg(x) is given by G(v,k,y), then the inversion algorithm may be stated in the followi
succinct form in whichs,1 is a fixed parameter. Findy such that

vg~sxk!5F~v !5G~v,k,y!; then g~xk11!5y. ~4.2!

The value ofv is first chosen so that the turning point of the wave function generated byg occurs
at sxk ; after this, the value ofy is chosen so thatG ‘‘fits’’ F for this value ofv. The value of the
parameters chosen for the examples discussed in Sec. V below iss5 1

2. The idea behind this
choice can best be understood from a study of Fig. 1. The value of the couplingv must be such
that the current value ofx for which y is sought is in the ‘‘tail’’ of the corresponding wav
function; that is to say, the turning pointsx should be beforex, but not too far away. Fortunatel
the inversion algorithm seems to be insensitive to the choice ofs.

FIG. 1. The potentialf (x)52sech2(x) is perturbed fromx5xa by straight-line segments. Each segment leads t
perturbation in the tail of the corresponding wave function. The couplingv is chosen so thatxa5xt/2, wherext is the
turning point of the wave function.
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V. THREE EXAMPLES

The first example we consider is the unbounded potential whose shapef (x) and correspond-
ing exact energy trajectoryF(v) are given by the$f,F% pair

f ~x!5211uxu3/2↔F~v !52v1E~3/2!v4/7, ~5.1!

whereE(3/2) is the bottom of the spectrum ofH52D1uxu3/2 and has the approximate valu
E(3/2)'1.001184. Applying the inversion algorithm toF(v) we obtain the reconstructed pote
tial shown in Fig. 2. We first setv15104 and find that the initial shape is determined~as described
in Sec. II! to be 211x1.5 for x,b50.072. For larger values ofx the step size is chosen to b
h50.05 and 40 iterations are performed by the inversion algorithm. The results are plot
hexagons on top of the exact potential shape shown as a smooth curve. This entire comp
takes less than 20 s with a program written in C11 running on a 200 MHz Pentium Pro.

The following two examples are bounded potentials both having a large-x limit zero, lowest
point f (0)521, and area22. The exponential potential7,8 has the$f,F% pair

f ~x!52e2uxu↔J2uEu1/28 ~2v1/2!50[E5F~v !, ~5.2!

whereJn8(x) is the derivative of the Bessel function of the first kind of ordern. For the sech-
squared potential8 we have

f ~x!52sech2~x!↔F~v !52@~v1 1
4!

1/22 1
2#

2. ~5.3!

In Fig. 3 the two energy trajectories are plotted. Since the twopotentialshave the lowest value21
and area22 it follows5 that the corresponding trajectories both have the formF(v)'2v2 for
small v and they both satisfy the large-v limit lim v→`(F(v)/v)521. Thus the differences be
tween the potential shapes is somehow encoded in the fine differences between these two
energy curves for intermediate values ofv; It is the task of our inversion theory to decode th

FIG. 2. Constructive inversion of the energy trajectoryF(v) for the shifted power potentialf (x)5211uxu3/2. For x
<b50.072, the algorithm correctly generates the modelf (x); for larger values ofx, in steps of sizeh50.05, the hexagons
indicate the reconstructed values for the potentialf (x), shown exactly as a smooth curve. The unnormalized w
functions are also shown.
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information and reveal the underlying potential shape. If we apply the inversion algorithm to
two problems we obtain the results shown in Figs. 4 and 5. The parameters used are exa
same as for the first problem described above. The time taken to perform the inversions is
less than 20 s if we discount, in the case of the exponential potential, the extra time ta
computeF(v) itself.

FIG. 3. The ground-state energy trajectoriesF(v) for the exponential potential~E! and the sech-squared potential~S!. For
smallv, F(v)'2v2; for largev, limv→`(F(v)/v)521. The shapes of the underlying potentials are buried in the de
of F(v) for intermediate values ofv.

FIG. 4. Constructive inversion of the energy trajectoryF(v) for the exponential potentialf (x)52exp(x). For x<b
50.048, the algorithm correctly generates the modelf (x)5211uxu; for larger values ofx, in steps of sizeh50.05, the
hexagons indicate the reconstructed values for the potentialf (x), shown exactly as a smooth curve. The unnormaliz
wave functions are also shown.
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VI. CONCLUSION

Once we suspect~or know! that an energy trajectoryF(v) is derived from a potential shap
f (x), it is certainly possible in principle to model the potential discretely asg(x) and then findg
approximately by a least-squares fit ofG(v) to F(v). Such a ‘‘brute force’’ method would not be
easy or fast, even for problems in one dimension. In terms of the reconstructions presented
paper, one would have to consider minimizing a function of the form( i 51

40 uG(v i ;Y)2F(v i)u2,
where the vectorY represents the 40 values ofg(xk) to be determined. We have found that su
a function ofY has very erratic behavior unless the starting point can be chosen quite close
critical point.

The purpose of the approach discussed in this paper is however not so much to d
efficiency as with understanding. The method we have found is intimately linked to the
properties of the problem; the implications of monotonicity, the relation between the positi
the turning point of the wave function and the value ofv, and the tail behavior. The effectivene
of the resulting algorithm stems from its systematic use of all this information. If a potential s
f (x) is symmetric butnot monotonic~on the half-axis!, then for large values of the couplingv the
problem will necessarily split into regimes that become more and more isolated asv increases.
The situation could become arbitrarily complicated, perhaps involving resonances, and we h
idea at present whether reconstructionF→ f would in principle be possible in the general case

If the potential were unimodal and monotonic away from the minimum point, we do n
present know what might be the spectral inheritance of the additional property of the symme
f (x). Is there nonuniqueness in this case? Could a symmetric potential be constructed that
have the same energy trajectoryF(v) as that of a given nonsymmetrical unimodal potential sh
f (x)? Many interesting questions such as this which are simple to pose nevertheless ap
present to be very difficult to answer.

In our earlier papers on this topic we discussed some suggestions for applications of thi
of spectral inversion. The situations that are most strongly suggestive are those such
screened-Coulomb potentials used in atomic physics where the coupling varies with the
number. In such a caseFn(v) or, more accurately, pairdifferencesbetween such functions, woul

FIG. 5. Constructive inversion of the energy trajectoryF(v) for the sech-squared potentialf (x)52sech2(x). For x<b
50.1, the algorithm correctly generates the modelf (x)5211x2; for larger values ofx, in steps of sizeh50.05, the
hexagons indicate the reconstructed values for the potentialf (x), shown exactly as a smooth curve. The unnormaliz
wave functions are also shown.
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only be known at certain isolated points. Now that an effective form of constructive inversi
available, it will be possible to consider this more physically important type of application.
other approach which has not yet been applied to geometric spectral inversion is via c
theory. Rabitzet al.9,10 have successfully used ideas from control theory to reconstruct mole
potentials from sets of data that are directly measurable. This is the ultimate goal of the p
work on geometric spectral inversion.
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Potentials for which the corresponding Schro¨dinger equation is maximally super-
integrable in three-dimensional Euclidean space are studied. The quadratic algebra
which is associated with each of these potentials is constructed and the bound state
wave functions are computed in the separable coordinates. ©1999 American
Institute of Physics.@S0022-2488~99!02602-X#

I. INTRODUCTION

The present paper continues our study of the systems withhidden symmetryor so-called
superintegrablesystems in spaces with constant curvature.

The best known systems of this kind in three-dimensional Euclidean space are the ha
oscillator and Kepler–Coulomb problems, which have many special properties distinct from
spherically symmetric potentials. These include the phenomena of separation of variables
Hamilton–Jacobi and Schro¨dinger equations in more than one orthogonal coordinate system
the existence of integrals of motion in addition to the total angular momentumL2. In particular for
the isotropic oscillator there is the Demkov tensorDik5pipk1v2xixk ,1 and, in the case of the
Kepler–Coulomb problem, the Pauli–Runge–Lenz vectorA51/2(@L3p#2@p3L #)2r /ur u. Both
these systems possess five functionally independent integrals of motion.2,3 The first systematic
search for all potentials for which the Schro¨dinger equation admits separation of variables in t
or more coordinate systems was begun by Smorodinsky and Winternitz with co-workers in
4–6 and continued by Evans in Refs. 3 and 7. They found all such systems in two- and
dimensional flat space and introduced the notion ofsuperintegrability. In general, a physica
system inN dimensions is calledminimally superintegrable if it has 2N22 integrals of motion,
andmaximallysuperintegrable if it has 2N21 integral of motions. There are five known max
mally ~and some minimally! superintegrable potentials listed in Refs. 3, 8, and 10 and investig
from different points of view in the last decade.8–13 Note also that superintegrable potentials
spaces of constant curvature were introduced in Refs. 14–16.

In previous articles17–19we have looked at potentials in two-dimensional Euclidean space
the two-dimensional sphere and hyperboloid, for which the Schro¨dinger equation is maximally
superintegrable. In this article we extend this study to the case of three-dimensional Euc
space. As previously seen in the case of two dimensions, some of these potentials~see Table I!
admit bound state or finite solutions and it is these to which we draw attention in this artic

The basic equation that we investigate is of course the Schro¨dinger equation (\5m51)

HC52
1

2
DC1V~x,y,z!C52

1

2 S ]2

]x2 1
]2

]y2 1
]2

]z2DC1V~x,y,z!C5EC. ~1!

The idea is to find solutions of this equation via a separation of variables ansatz
7080022-2488/99/40(2)/708/18/$15.00 © 1999 American Institute of Physics
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C5)
j 51

3

c j~uj !

for some suitable orthogonal coordinatesuj ~see Table II!.
In Secs. II–IV we consider three maximally superintegrable potentials~see Table I! and use

the Niven-type~or Bethe20! ansatz for constructing the solution of the Schro¨dinger equation in
coordinates such as spheroidal, sphero-conical, and ellipsoidal~see Table II!. In addition we
discuss the extension to the quadratic algebras that were in evidence in the case of two dim
and see what their implications may be.

Section V is devoted to the calculation of interbasis expansion coefficients for theV3 potential
between spherical and parabolic bases.

II. GENERALIZED ISOTROPIC OSCILLATOR

The first potential~see Table I! on our list of three is

V1~x,y,z!5
v2

2
~x21y21z2!1

1

2
F ~k1

22 1
4!

x2 1
~k2

22 1
4!

y2 1
~k3

22 1
4!

z2 G , ~2!

where the constantki>
1
2. For ki5

1
2 we have the ordinary isotropic oscillator potential. T

corresponding Schro¨dinger equation admits solutions via a separation of variables in eight c
dinate systems: Cartesian, spherical, sphero-conical, cylindrical polar, cylindrical elliptic, p
and oblate spheroidal, and ellipsoidal. We summarize the bound state solutions in each ca

Before considering various coordinate systems we note that a basis for the symmet
Schrödinger’s equation with the potential~2! consists of the six operators:

TABLE I. The three-dimensional maximally superintegrable potentials.

PotentialV(x,y,z) Separating coordinates

V15
v2

2
~x21y21z2!1Sk1

22
1
4

x2 1
k2

22
1
4

y2 1
k3

22
1
4

z2 D
Cartesian
Spherical
Cylindrical polar
Cylindrical elliptic
Sphero-conical
Oblate spheroidal
Prolate spheroidal
Ellipsoidal

V25
v2

2
~x21y214z2!1

1

2
Sk1

22
1
4

x2 1
k2

22
1
4

y2 D Cartesian
Cylindrical polar
Cylindrical parabolic
Cylindrical elliptic
Parabolic

V352
a

Ax21y21z2
1

1

2
S k1

22
1
4

x2 1
k2

22
1
4

y2 D Spheroidal-conical
Spherical
Parabolic
Prolate spheroidal II
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TABLE II. Systems of coordinate in three-dimensional Euclidean space.

Coordinate system Coordinates

I. Cartesian x,y,z
x,y,zPR

II. Cylindrical polar x5r cosw, y5r sinw, z
r.0, wP@0,2p)

III. Cylindrical elliptic
zPR, e1,m1,e2,m2

x25
~m12e1!~m22e1!

~e22e1!
, y25

~m12e2!~m22e2!

~e12e2!
, z

IV. Cylindrical parabolic x,y5jh, z5
1
2(j22h2)

j,xPR, h>0

V. Spherical x5r cosu cosw, y5r sinu sinw, z5r cosu
r .0, uP@0,p#, wP@0,2p)

VI. Prolate spheroidal
e1,u1,e2,u2 , wP@0,2p)

x25
~u12e2!~u22e2!

~e12e2!
cos2 w,

y25
~u12e2!~u22e2!

~e12e2!
sin2 w,

z25
~u12e1!~u22e1!

~e22e1!

VII. Oblate spheroidal
e1,u1,e2,u2 , wP@0,2p)

x25
~u12e1!~u22e1!

~e22e1!
cos2 w,

y25
~u12e1!~u22e1!

~e22e1!
sin2 w,

z25
~u12e2!~u22e2!

~e12e2!

VIII. Sphero-conical
r>0, e1,r1,e2,r2,e3

x25r2
~r12e1!~r22e1!

~e12e2!~e12e3!
,

y25r2
~r12e2!~r22e2!

~e22e1!~e22e3!
,

z25r2
~r12e3!~r22e3!

~e32e2!~e32e1!

IX. Parabolic x5jh cosw, y5jh sinw, z5
1
2(j22h2)

j,h>0, wP@0,2p)

X. Ellipsoidal
a1,u1,a2,u2,a3,u3

x25
~u12a1!~u22a1!~u32a1!

~a32a1!~a22a1!
,

y25
~u12a2!~u22a2!~u32a2!

~a12a2!~a32a2!
,

z25
~u12a3!~u22a3!~u32a3!

~a12a3!~a22a3!

XI. Paraboloidal 0,h1,a2,h2

,a3,h3
x25

~h12a3!~h22a3!~h32a3!

~a32a2!
,

y25
~h12a2!~h22a2!~h32a2!

~a22a3!
,

z25
1
2(h11h21h32a22a3)
                                                                                                                



as

tic
re rela-
f these

r the
of the

711J. Math. Phys., Vol. 40, No. 2, February 1999 Kalnins et al.

                    
Mi52Dii 2
ki

22 1
4

xi
2 , 2H5M11M21M3 , ~3!

Ji j 5Li j
2 2S ki

22
1

4D xj
2

xi
22S kj

22
1

4D xi
2

xj
22

1

2
, i , j 51,2,3, ~4!

whereLi j 5xi]xj
2xj]xi

, Dii 52]xi

2 1v2xi
2 is a diagonal components of the Demkov tensor1 and

we have the notationx15x, x25y, x35z.
The commutators of the operators~3! and ~4! can be closed to form a quadratic algebra

follows:

@Mi , M j #50, @Mi , Jjk#50, @Mi , Ji j #5Qi j 5Q@ i j # , @Ji j , Jik#5R@ i jk #5R,

whereQi j is totally antisymmetric and the totally antisymmetric quantityR@ i jk # is denoted byR.
Further commutators are calculated to be

@Mi , Qjk#50, @Mi , Qi j #54$Mi ,M j%116Ji j , @Mi , R#54$Mk ,Ji j %24$M j ,Jik%,

@Ji j , Qi j #54$Mi ,Ji j %24$M j ,Ji j %28~kj
221!Mi18~ki

221!M j ,

@Ji j , Qik#54$Mi ,Jjk%24$M j ,Jik%,

@Ji j , R#54$Ji j ,Jjk%24$Ji j ,Jik%28~ki
221!Jjk18~kj

221!Jik ,

where$A,B%5AB1BA. The expression for the commutators of theQ andR are

@Qi j , Qik#54$Mi ,Qjk%, @Qi j , R#524$Ji j ,Qik%24$Ji j ,Qjk%.

All the commutators of the operatorsMi , Jmn , Qpq , andR can be expressed in terms of quadra
symmetric products of themselves. The algebra, therefore, is closed quadratically. There a
tions between the symmetric products of the generators of this algebra. The exhaustive list o
is as follows:

Qi j
2 5 8

3$Ji j ,Mi ,M j%1 64
3 $Mi ,M j%116v2Ji j

2 216~12kj
2!Mi

2

216~12ki
2!M j

22 128
3 v2Ji j 264v2~12ki

2!~12kj
2!,

$Qi j ,Qik%5 8
3$Ji j ,Mi ,Mk%1 8

3$Jik ,Mi ,M j%2 8
3$Jjk ,Mi ,Mi%

132v2~12ki
2!$Ji j ,Jik%232~12ki

2!M jMk264v2~12ki
2!Jjk ,

$Qi j ,R%5 8
3$Ji j ,Ji j ,Mk%2 8

3$Ji j ,Jik ,M j%2 8
3$Ji j ,Jjk ,Mi%2 64

3 $Ji j ,Mk%2 64
3 $Jik ,M j%

2 64
3 $Jjk ,Mi%116~12ki

2!$Jjk ,M j%116~12kj
2!$Jik ,Mi%264~12ki

2!~12kj
2!Mk ,

R252 4
3$Ji j ,Jik ,Jjk%1 64

3 $Ji j ,Jik%1 64
3 $Ji j ,Jjk%1 64

3 $Jik ,Jjk%216~12kk
2!Ji j

2

216~12kj
2!Jik

2 216~12ki
2!Jjk

2 1 128
3 ~12kk

2!Ji j

1 128
3 ~12kj

2!Jik1 128
3 ~12ki

2!Jjk164~12ki
2!~12kj

2!~12kk
2!,

where$A,B,C%5ABC1CAB1BCA. Note that only five operators from~3! and ~4! are func-
tionally independent,7 and for all the coordinate systems that provide separable solutions fo
Schrödinger equation the operators characterizing the separation are always combinations
Mi andJi j .
                                                                                                                



the

tential
upple-

der
re
ut

l
bound

712 J. Math. Phys., Vol. 40, No. 2, February 1999 Kalnins et al.

                    
In the limiting caseki5
1
2, we obtain a quadratic algebra, too. In this case

Qi j 52~Li j Di j 1Di j Li j !, R5$Lik ,$Li j ,Lk j%%,

and instead of operators$Mi ,Ji j ,Qi j ,R% we can consider as a basis for the symmetries
Demkov tensorDi j , and the components of orbital momentum,Li j . In this regard we arrive at the
Lie algebra corresponding to the symmetries of the isotropic oscillator.1

Of all the coordinate systems for which separation is possible, in the case of this po
there are only five which are not essentially a Euclidean two-space coordinate system s
mented by an additional Cartesian coordinatez. Such coordinate systems we do not consi
further here and the corresponding solutions of the Schro¨dinger equation and invariant algebra a
given in our previous paper17 ~see also Refs. 3 and 8!. For the remaining systems we now work o
bound state solutions and their corresponding symmetry characterization.

A. Oblate spheroidal basis

Let us consider what we call oblate spheroidal coordinates~see Table II!. If we write these
coordinates in the form

x5x8 cosw, y5x8 sinw, z5y8, ~5!

and putC5(x8)21/2F, the Schro¨dinger equation~1! with potential~2! assumes the form

]2F

]x82 1
]2F

]y82 1F2E2v2~x821y82!1
1

x82 S ]2

]w22
k1

22 1
4

cos2 w
2

k2
22 1

4

sin2 w
D 1

1

4x822
k2

32 1
4

y82 GF50.

If we now write

F5L~x8,y8!Y~w!,

the w dependence can be extracted by requiring that

F ]2

]w22
k1

22 1
4

cos2 w
2

k2
22 1

4

sin2 w
GY~w!52M2Y~w!. ~6!

The orthonormal solution of Eq.~6! for wP@0,p/2# has the following form:

Ym
~k1 ,k2!

~w!5A2~2m1k11k211!m!G~m1k11k211!

G~m1k111!G~m1k211!

3~cosw!k111/2~sinw!k211/2Pm
~k1 ,k2!

~cos 2w!, ~7!

wherePn
(a,b)(z) is a Jacobi polynomial and the separation constant quantizes as

M52m1k11k211, m50,1,2,... . ~8!

The remaining equation for the functionL(x8,y8) is

H ]2

]x82 1
]2

]y82 1F2E2v2~x821y82!2
k3

22 1
4

y82 2
M22 1

4

x82 G J L~x8,y8!50.

This is exactly the equation we have already found~see Ref. 17! in the case of two-dimensiona
Euclidean space in elliptic coordinates. In terms of the original Cartesian coordinates the
state solutions have the form
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Lnm
k3 ~x,y,z!5e2~v/2!~x21y21z2!~x21y2!m1~k11k211!/2zk311/2)

i 51

n S x21y2

u i2e1
1

z2

u i2e2
21D , ~9!

where theu i satisfy of the system ofn nonlinear equations

M11

u i2e1
1

k311

u i2e2
1(

j Þ i

n
2

u i2u j
2v50.

We note that this prescription does correctly give a separable solution by noting the identi

x21y2

u2e1
1

z2

u2e2
2152

~u12u!~u22u!

~u2e1!~u2e2!
.

The energyE is quantized according to

E5v~2n1M1k313!5v~2N1k11k21k313!, ~10!

whereN5n1m is the principal quantum number.
Consider the Schro¨dinger equation in the spheroidal separable coordinates (u1 ,u2 ,w). After

the substitutionC5c1(u1)c2(u2)Y(w), the separation equations are

d2c~u!

du2 1
1

2 S 2

u2e1
1

1

u2e2
D dc~u!

du
1

1

4
H 2Eu2v2~u2e1!~u2e2!1l

~u2e1!~u2e2!
1

~e22e1!M2

~u2e1!2~u2e2!

1
~e12e2!~k3

22 1
4!

~u2e1!~u2e2!2J c~u!50, ~11!

whereu5u1 ,u2 andl is the oblate spheroidal separation constant. The operator whose eigen
is l is

L15
u2~u12e1!~u12e2!

u12u2
H ]2

]u1
2 1

1

2 F 2

u12e1
1

1

u12e2
G ]

]u1
J 2

u1~u22e1!~u22e2!

u12u2

3H ]2

]u2
2 1

1

2 F 2

u22e1
1

1

u22e2
G ]

]u2
J 1

1

4
Fv2~e2e22u1u2!1

M2~e12e2!

~u12e1!~u22e1!

3~u11u22e1!1
~k3

22 1
4!~e22e1!

~u12e2!~u22e2!
~u11u22e2!G

5J131J231J121~e12e2!M32e2H2~k1
21k2

21k3
2!1 3

4 ~12!

with eigenvalues

l524e2(
i

n
M11

u i2e1
24e1(

i

n
k311

u i2e2
22@~e11e2!1~e1k31e2M !#v2~k1

21k2
21k3

2!1
3

4
, ~13!

and the second operator which characterizes the separation of variables in these coordina

L2C5~J122k1
22k2

211!C52M2C. ~14!

To close this paragraph let us note that in the limit (e22e1)→0 and (e22e1)→` the oblate
spheroidal coordinates are changed into spherical and cylindrical polar coordinates, respec8

Correspondingly, the oblate spheroidal bases transform to spherical and cylindrical polar o
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B. Prolate spheroidal basis

For prolate coordinates the description is almost exactly the same. All that is esse
involved is the interchange ofe1 ande2 .

C. Ellipsoidal basis

For ellipsoidal coordinates~see Table II! we proceed as follows. We consider the Schro¨dinger
equation in Cartesian coordinates,

S ]2C

]x2 1
]2C

]y2 1
]2C

]z2 D1F2E2v2~x21y21z2!2
~k1

22 1
4!

x2 2
~k2

22 1
4!

y2 1
~k3

22 1
4!

z2 GC50.

If we now write

C~x,y,z!5e2v~x21y21z2!x2k111y2k211z2k311F~x,y,z!,

the equation forF becomes

F ]2

]x2 1
]2

]y2 1
]2

]z2 1
2k111

x

]

]x
1

2k211

y

]

]y
1

2k311

z
]z22vS x

]

]x
1y

]

]y
1z

]

]zD
22v~k11k21k313!GC522EC.

To obtain the appropriate finite solutions we can make use of the identity

x2

u2e1
1

y2

u2e2
1

z2

u2e3
2152

~u12u!~u22u!~u32u!

~u2e1!~u2e2!~u2e3!

and write

F~x,y,z!5)
j 51

N S x2

u j2e1
1

y2

u j2e2
1

z2

u j2e3
21D , ~15!

where

k111

u i2e1
1

k211

u i2e2
1

k311

u i2e3
1(

j Þ i

N
2

u i2u j
2v50

and the energy levelE is given by Eq.~10!.
Writing the Schro¨dinger equation in terms of the ellipsoidal coordinatesui and using the

identities

E[(
i 51

3 Ei
2

P iÞ j~ui2uj !
, ~x21y21z2![(

i 51

3
P~ui !

P iÞ j~ui2uj !
,

F ~k1
22 1

4!

x2 1
~k2

22 1
4!

y2 1
~k3

22 1
4!

z2 G[(
i 51

3
A~ui !

P iÞ j~ui2uj !
,

whereP(ui)5(ui2a1)(ui2a2)(ui2a3) and @aik[(ai2ak)# and
                                                                                                                



l

s, we

715J. Math. Phys., Vol. 40, No. 2, February 1999 Kalnins et al.

                    
A~u!5a31a21

~k1
22 1

4!

u2a1
1a12a32

~k2
22 1

4!

u2a2
1a13a23

~k1
22 1

4!

u2a3
,

we arrive at the following equation:

(
i 51

3
1

P iÞ j~ui2uj !
H 4AP~ui !

]

]ui
AP~ui !

]

]ui
12Eui

22v2P~ui !2A~ui !J C50,

which, after the substitutionC5c1(u1)c2(u2)c3(u3) and the introduction of the ellipsoida
constantsl1 andl2 , is divided into three identical differential equations

AP~u!
d

du
AP~u!

dc

du
1

1

4
F2Eu22v2P~u!1l1u2l22

~k1
22 1

4!

~u2a1!
~a32a1!~a22a1!

2
~k2

22 1
4!

~u2a2!
~a12a2!~a32a2!2

~k3
22 1

4!

~u2a3!
~a12a3!~a22a3!Gc50,

whereu5u1 ,u2 ,u3 . The operators that specify the eigenvaluesl1 andl2 are

L15J121J231J231~a21a3!M11~a21a1!M31~a11a3!M22~k1
21k2

21k3
2!1 3

4

and

L25a3J121a2J131a1J231a2a3M11a2a1M31a1a3M2

2k1
2~a31a22a1!2k2

2~a11a32a2!2k3
2~a11a22a3!1 3

4~a11a21a3!,

respectively. In terms of the zerosu j the eigenvalues of these operators are

l1522@k2~a11a3!1k1~a21a3!1k3~a11a2!24~a11a21a3!#v22~k11k21k3!

3~k11k21k311!2 9
214F(

i 51

N

a2

~k211!

~u i2a2!
1(

i 51

N

a1

~k111!

~u i2a1!
1(

i 51

N

a3

~k311!

~u i2a3!G ~16!

and

l252 1
2~a11a21a3!22v@a2a3~k111!1a2a1~k311!1a1a3~k211!#2a1~k21k311!2

2a2~k11k311!22a3~k21k111!2

24F(
i 51

N

a3a1

~k211!

~u i2a2!
1(

i 51

N

a3a2

~k111!

~u i2a1!
1(

i 51

N

a2a1

~k311!

~u i2a3!G . ~17!

D. Spherical and sphero-conical bases

For spherical-type coordinates there are two possibilities.
If we choose coordinates in Euclidean space accordingly,

x5rs1 , y5rs2 , z5rs3 , ~18!

wheres1
21s2

21s3
251, and put the wave function in the form

C5R~r !S~r1 ,r2!, ~19!

where r1 ,r2 are the spherical or sphero-conical coordinates, after separation of variable
arrive at two equations,
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d2R

dr2 1
2

r

dR

dr
1F2E2v2r 22

J~J11!

r 2 GR50, ~20!

H L121L231L131FJ~J11!2
~k1

22 1
4!

s1
2 2

~k2
22 1

4!

s2
2 2

~k3
22 1

4!

s3
2 G J S50, ~21!

whereJ is the spherical separation constant.
~1! In the spherical coordinates~see Table II! the wave functionS(r1 ,r2) has the separable

form

S~q,w!5Z~q!Ym
~k1 ,k2!

~w!,

whereYm
(k1 ,k2)(w) is given by formula~7!. This leads to the equation forZ:

1

sinq

d

dq
sinq

dZ

dq
1FJ~J11!2

M2

sin2 q
2

k3
22 1

4

cos2 q
GZ50, M52m1k11k211.

The solution of the above equation is~see Ref. 8!

Z~u!5A2@2~m1 l 11!1k11k21k3# l !G~ l 12m1k11k21k312!

G~ l 1k311!G~ l 12m121k11k2!

3~cosu!1/21k3~sinu!MPl
~M ,k3!

~cos 2u!, l PN, ~22!

and for a spherical separation constant we get

J52l 1M1k31 1
252l 12m1k11k21k31 3

2. ~23!

~2! If we choose the sphero-conical coordinates on the sphere~see Table II!, the solution of
the equation~21! has the form

S~r1 ,r2!5 )
l 51

3

s
l

kl 11/2)
j 51

n S s1
2

u j2e1
1

s2
2

u j2e2
1

s3
2

u j2e3
D , ~24!

and the spherical separation constant is quantized according to Eq.~23! where n5 l 1m. This
achieves a separation of variables solution because of the identity

s1
2

u j2e1
1

s2
2

u j2e2
1

s3
2

u j2e3
5

~r12u j !~r22u j !

~u j2e1!~u j2e2!~u j2e3!

and the Niven equations

k111

u i2e1
1

k211

u i2e2
1

k311

u i2e3
1(

j Þ i

q
2

u i2u j
50.

The functionsS(r1 ,r2) have the separable form

S~r1 ,r2!5B1~r1!B2~r2!, ~25!

and the separation equations are@P(r)5(r2e1)(r2e2)(r2e3)#
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AP~r!
d

dr
AP~r!

dB

dr
1

1

4
Fl2J~J11!2

~k1
22 1

4!

~r2e1!
~e12e2!~e12e3!2

~k2
22 1

4!

~r2e2!
~e22e1!~e22e3!

2
~k3

22 1
4!

~r2e3!
~e32e2!~e32e1!GB50, ~26!

whereB5B1 ,B2 according asr5r1 ,r2 , respectively. The sphero-conical wave functions sati
the eigenfunction equations

~J121J131J23!S5@~k1
21k2

21k3
2!2~2q121k11k21k3!22 1

2#S ~27!

~e1J231e2J131e3J12!S

5@k1
2~e21e32e1!1k2

2~e11e32e2!1k3
2~e11e22e3!2 3

4~e11e21e3!2l#S,

~28!

where

l52@k1~e21e3!1k2~e11e3!1k3~e21e1!1e3k1k21e2k1k31e1k3k2#1 3
2 ~e11e21e3!

24Fe2e3(
i 51

n
k111

u i2e1
1e1e3(

i 51

n
k211

u i2e2
1e2e1(

i 51

n
k311

u i2e3
G . ~29!

Let us now go to the radial equation~20!. This equation is very reminiscent of the radi
equation for the three-dimensional harmonic oscillator except that the orbital quantum numbl is
replaced by 2l 12m1k11k21k31 3

2. The orthonormal solution of the radial equation~20!, in
terms of Laguerre polynomialsLn

a(x), is

RnrJ
~r !5A 2v3/2nr !

G~nr12l 12m1k11k21k313!
~Avr !J expS 2

v

2
r 2DLnr

J11/2~vr 2!, ~30!

and the energy spectrum is given by formula~10! where thenr50,1,2,... is the radial quantum
number and the principal quantum number now isN5(nr1n)5(nr1 l 1m).

III. GENERALIZED ANISOTROPIC OSCILLATOR

The second potential~see Table I! is

V2~x,y,z!5
v2

2
~x21y214z2!1

1

2
Fk1

22 1
4

x2 1
k2

22 1
4

y2 G . ~31!

The corresponding Schro¨dinger equation has separable solutions in five coordinate systems:
tesian coordinates, cylindrical polar coordinates, cylindrical elliptic coordinates, cylindrical
bolic coordinates, and parabolic coordinates. It is the last of these that gives interestin
solutions. The first four coordinate systems are of cylindrical type and can be deduced from
we already know for Euclidean two-dimensional space~see Refs. 8 and 17!. Before considering
the bound state solutions in the case of the parabolic coordinate system we consider the qu
algebra of second-order symmetry operators which are associated with this potential. A ba
these operators is

M15]x
22v2x21

k1
22 1

4

x2 , M25]y
22v2y22

k2
22 1

4

y2 , P5]z
224v2z2, ~32!
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L5L12
2 2S k1

22
1

4D y2

x2 2S k2
22

1

4D x2

y22
1

2
, ~33!

S152
1

2
~pxL131L13px!1zS v2x22

k1
22 1

4

x2 D ,

S252
1

2
~pyL231L23py!1zS v2y22

k2
22 1

4

x2 D , ~34!

wherepx,y5]x,y .
The relations that define the quadratic algebra are obtained by exhaustive commutatio

nonzero commutators of the above basis are

@M1 , L#5@L, M2#5Q, @L, S1#5@S2 , L#5B, @Mi , Si #5Ai , @P, Si #52Ai .

Further nonzero commutators withQ are

@Mi , Q#5@Q, M2#54$M1 ,M2%116v2L, @S1 , Q#5@Q, S2#54$M1 ,M2%,

@L, Q#54$M1 ,L%24$M2 ,L%116~12k1
2!M1216~12k2

2!M2 ;

nonzero commutators withAi are

@Mi , Ai #516v2Si , @L, A1#5@A2 , L#54$M1 ,S2%24$M2 ,S1%, @P, Ai #5216v2Si ,

@Si , Ai #5$Mi ,Mi%22$Mi ,P%18v2~12ki
2!, @Si , Aj #5$Mi ,M j%14v2L;

and nonzero commutators withB are

@M1 , B#524$M2 ,S1%, @M2 , B#524$M1 ,B%, @P, B#54$M2 ,S1%24$M1 ,S2%,

@L, B#524$L,S1%14$L,S2%216~12k2
2!S1116~12k1

2!S2 ,

@S1 , B#5$L,M1%22$L,P%24$S1 ,S2%24~12k1
2!M2 ,

@B, S2#5$L,M2%22$L,P%24$S1 ,S2%24~12k2
2!M1 .

The remaining nonzero commutators are

@Q, Ai #524$Mi ,Aj%, @Q, B#524$L,A1%24$L,A2%, @A1 , A2#54v2Q,

@A1 , B#5$M1 ,Q%24$S1 ,A2%, @B, A2#5$M2 ,Q%24$S2 ,A1%.

There are also various relations among the generators of our quadratic algebra:

$M1 ,B%5$L,A1%2$S1 ,Q%24~12k1
2!A2 ,

$M2 ,B%52$L,A2%2$S2 ,Q%14~12k2
2!A1 ,

$P,Q%52$S1 ,A2%22$S2 ,A1%, $M1 ,A2%2$M2 ,A1%24v2B50,

Q25 8
3$L,M1 ,M2%18v2$L,L%216~12k1

2!M1
2216~12k2

2!M2
2

1 64
3 $M1 ,M2%2 128

3 v2L2128v2~12k1
2!~12k2

2!,
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$Q,A1%5 8
3$M1 ,M2 ,S1%2 8

3$M1 ,M1 ,S2%116v2$L,S1%264~12k1
2!S2 ,

$Q,A2%52 8
3$M1 ,M2 ,S2%1 8

3$M2 ,M2 ,S1%216v2$L,S2%164~12k2
2!S1 ,

$Q,B%52 8
3$M2 ,L,S1%2 8

3$M1 ,L,S2%116~12k1
2!$M2 ,S2%

116~12k2
2!$M1 ,S1%2 64

3 $M1 ,S2%2 64
3 $M2 ,S1%,

A1
25 2

3$M1 ,M1 ,P%18v2$S1 ,S1%116v2~12k1
2!P232v2M1 ,

$A1 ,A2%5 4
3$M1 ,M2 ,P%116v2$S1 ,S2%18v2$L,P%,

$A1 ,B%5 8
3$M1 ,S1 ,S2%2 8

3$M2 ,S1 ,S1%1 4
3$M1 ,L,P%1 32

3 $M1 ,M2%28~12k1
2!$M1 ,P%2 64

3 v2L,

$A2 ,B%52 8
3$M2 ,S2 ,S1%1 8

3$M1 ,S2 ,S2%2 4
3$M2 ,L,P%

2 32
3 $M1 ,M2%18~12k2

2!$M2 ,P%1 64
3 v2L,

B25 8
3$L,S1 ,S2%1 2

3$L,L,P%1 64
3 $S1 ,S2%216~12k1

2!S2
2216~12k2

2!S1
2

1 16
3 $L,M1%2 16

3 $L,P%1 32
3 ~12k2

2!M11 32
3 ~12k1

2!M2216~12k1
2!~12k2

2!P.

This completes the nonzero relations for the quadratic algebra and the associated relations
the generators. For the last coordinate system in our list we develop the bound state solut

Parabolic basis

The Schro¨dinger equation in Cartesian coordinates with this potential has the form

S ]2C

]x2 1
]2C

]y2 1
]2C

]z2 D1F2E2v2~x21y214z2!2
~k1

22 1
4!

x2 1
~k2

22 1
4!

y2 GC50.

If we choose the coordinates (x8,y8,w) according formula~6! and the wave functionC in the
form

C~x8,y8,w!5~x8!21/2L~x8,y8!Ym
~k1 ,k2!

~w!, m50,1,...,

whereYm
(k1 ,k2)(w) is given by~7!, then the equation for the functionL(x8,y8) is

F ]2

]x82 1
]2

]y822v2~x8214y82!2
~M22 1

4!

x82 12EGL~x8,y8!50.

This just the problem whose solution has been found~see Ref. 1! in the case of two-dimensiona
Euclidean space. If now we write

L~x,y,z!5e2~v/2!~x21y2!2vz2
~x21y2!~k2/211/4!P~x,y!,

where

P~x,y!5)
j 51

n S x21y2

u j
2 12z2u j

2D ,

then thel j satisfy
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4~l11!

u l
2 1(

iÞ l

n
4

u l
2 2u i

222vu l
2 50

and energyE quantizes according to

E5v~2n1M12!5v~2N1k11k213!, ~35!

where the principal quantum numberN5n1m. This method of solution is based on the ident

x21y2

u2 12z2u25
~j22u2!~h21u2!

u2 .

In fact, the separation equations inj andh for solution of the Schro¨dinger equation

C~j,h,w!5X1~j!X2~h!Ym
~k1 ,k2!

~w!

have the form

F d2

dr2 1
1

r

d

dr
1S 2Er22v2r62

M2

r2 1eb D GX~r!50, ~36!

wheree51 if r5j and21 if r5h, andb is the parabolic separation constant. By eliminating
energyE from Eqs.~36! we produce the operator, the eigenvalues of which isb:

L5
1

j21h2 S j2

h

]

]h
h

]

]h
2

h2

j

]

]j
j

]

]j D1v2j2h2~j22h2!2
j22h2

j2h2 S ]2

]w22
k1

22 1
4

cos2 w
2

k2
22 1

4

sin2 w
D .

~37!

In Cartesian coordinates the operatorL can be written as

L5zF ]2

]x2 1
]2

]y2 1v2~x21y2!2
k1

22 1
4

x2 2
k2

22 1
4

y2 G2
]

]z S x
]

]x
1y

]

]y
21D ,

and thus the parabolic basis satisfies two eigenvalue equations

LC5~k1
21k2

22M221!C, LC52~S11S2!C5bC,

where operatorsL, S1,2 are given by formulas~33! and ~34! and the eigenvalueb is

b522~M21!)
j 51

n

u j
2S (

k51

n

uk
22D . ~38!

IV. GENERALIZED KEPLER–COULOMB SYSTEM

The third potential we consider is

V3~x,y,z!52
a

Ax21y21z2
1

1

2
Fk1

22 1
4

x2 1
k2

22 1
4

y2 G . ~39!

The corresponding Schro¨dinger equation has the form

S ]2C

]x2 1
]2C

]y2 1
]2C

]z2 D1F2E1
2a

Ax21y21z2
2S k1

22 1
4

x2 1
k2

22 1
4

y2 D GC50.
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This equation admits separable solutions in the four coordinate systems: spherical, sphero
prolate spheroidal, and parabolic.

The second-order symmetries of the corresponding Schro¨dinger equation are

J235L23
2 2S k2

22
1

4D z2

y22
1

2
, J135L13

2 2S k1
22

1

4D z2

x22
1

2
,

J125L12
2 2S k2

22
1

4D x2

y22S k1
22

1

4D y2

x2 2
1

2
, ~40!

L52
1

2
@$px ,L13%1$py ,L23%#1

az

Ax21y21z2
2zS k1

22 1
4

x2 1
k2

22 1
4

y2 D . ~41!

These symmetry operators do not appear to close under repeated commutation. One
subalgebra that is quadratically closed is that generated by the elementsJ12, J13, andJ23. The
closure relations can be readily deduced from the algebra given for the first potential wi
proviso thatk35 1

2.

A. Spherical and sphero-conical bases

If we use polar coordinates according to~18! and write the wave functionC in the separable
form C5R(r )S(r1 ,r2), then the separable equations are

d2R

dr
1

2

r

dR

dr
1F2E1

2a

r
2

J~J11!

r 2 GR50, ~42!

H L121L231L131FJ~J11!2
~k1

22 1
4!

s1
2 2

~k2
22 1

4!

s2
2 G J S50. ~43!

~1! In the spherical coordinates, choosing the wave functionS(r1 ,r2) according to

S~q,w!5Z~q!Ym
~k1 ,k2!

~w!, m50,1,2,...,

whereYm
(k1 ,k2)(w) is given by formula~7!, we go to the equation forZ:

1

sinq

d

dq
sinq

dZ

dq
1FJ~J11!2

M2

sin2 q GZ50, M52m1k11k211.

The orthonormal solution of the above equation forqP@0,p# is

Z~q!5
2M

Ap
A~2l 12M11!l !

2G~ l 12M11!
GS M1

1

2D ~sinq!MCl
M11/2~cosq!, ~44!

wherel PN andCn
l(x) is a Gegenbauer polynomial.21 The spherical separation constant is giv

by

J5 l 1M5 l 12m1k11k211. ~45!

~2! The solution of the Schro¨dinger equation~43! in sphero-conical coordinates follows from
what we have done before in Sec. II D, part~2!. If we write S(r1 ,r2) as

S~r1 ,r2!5s3
e )

l 51

2

s
l

kl 11/2)
j 51

n S s1
2

u j2e1
1

s2
2

u j2e2
1

s3
2

u j2e3
D ,
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wheree50,1 then the zeros satisfy the Niven equations

k111

u i2e1
1

k211

u i2e2
1

e1 1
2

u i2e3
1(

j Þ i

n
2

u i2u j
50.

The functionsS(r1 ,r2) satisfy the eigenfunction equations

~J121J131J23!S5@~k1
21k2

2!2~2q1 3
21k11k21e!22 7

4#S, ~46!

~e1J231e2J131e3J12!S5@~e22e1!~k1
22k2

2!1e3~k1
21k2

221!2 1
2~e11e2!2l#S, ~47!

where the sphero-conical separation constantl is

l522@k1~e21e3!1k2~e11e3!1~e2 1
2!~e21e1!1e3k1k21~e2k11e1k2!~e2 1

2!#

2
3

2
~e11e21e3!24Fe2e3(

i 51

n
k111

u i2e1
1e1e3(

i 51

n
k211

u i2e2
1e2e1(

i 51

n e1 1
2

u i2e3
G . ~48!

Finally, let us consider the radial equation~42!. The introduction of~45! into ~42! leads to

d2R

dr
1

2

r

dR

dr
1F2E1

2a

r
2

~ l 12m1k11k211!~ l 12m1k11k212!

r 2 GR50,

which is the radial equation for the Coulomb problem, except the orbital quantum numbel is
replaced here by (l 12m1k11k211). The bound state solution of Eq.~43! is

RNJ~r !5
2~a!3/2

N2 AG~N1J11!

~N2J21!! S 2ar

N D J e2ar /N

G~2J11! 1F1S 2N1J11;2J12;
2ar

N D
and the energy spectrum given by

E52
a2

N2 , N5nr1J1152m1nr1 l 1k11k212, nr50,1,2,... .

B. Parabolic and prolate spheroidal bases

The remaining solutions for which separation of variables is possible can be best obser
writing the Schro¨dinger equation in parabolic coordinates. If we do this and choose solution
the form

C5S~j,h!~jh!21/2Ym
~k1 ,k2!

~w!, m50,1,2,..., ~49!

whereYm
(k1 ,k2)(w) is given by formula~7!, we find that the Schro¨dinger equation has the reduce

form

]2S

]j2 1
]2S

]h2 1F2E~j21h2!1S M22
1

4D S 1

j2 1
1

h2D14a GS50.

This is clearly recognizable as solvable via separation of variables in parabolic coordinatesj and
h. The separable solution for the wave functionS(j,h) is

S~j,h!5
&~a!3/2

N2 ~jh!21/2f n1

M ~j! f n2

M ~h!, n1,2PN, M52m1k11k211, ~50!
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where

f n
M~x!5AG~n11M11!

n1!

e2~a/2N!x2

G~M11! S ax2

N D M /2

1F1S 2n1 ;M11;
ax2

N D ~51!

andN5n11n21M115n11n212m1k11k212.
It is also interesting to observe that we could contemplate anE-dependent algebra of secon

order symmetries acting on the functionsH(j,h). Indeed, a basis for such symmetries is

P15]j
21S M22

1

4D 1

j2 12Ej2, P25]n
21S M22

1

4D 1

h2 12Eh2,

M5~j]h2h]j!
22S M22

1

4D S j2

h2 1
h2

j2 D2
1

2
.

The corresponding closure relations can be deduced from those given for the first potentia
Apart from the symbols this has the same form as was dealt with in two dimensions.

now regardj and h as Cartesian coordinates, separation is also possible in polar and elli
coordinates. The case of polar coordinates has essentially been done above. The case o
coordinates can be done by the standard prescription. This is achieved by looking for soluti
the form

S~j,h!5e2A22E~x21y21z2!~x21y2!~1/2!~M11/2!)
j 51

s SAx21y21z21z

um2e1
1

Ax21y21z22z

um2e1
21D ,

where we have written the solutions in the coordinate representation.~Recall that j2

5Ax21y21z21z andh25Ax21y21z22z.! With

j5A~u12e1!~u22e1!

~e22e1!
, h5A~u12e2!~u22e2!

~e12e2!
,

wheree1,u1,e2,u2 , the choice of Cartesian coordinates that is appropriate in this case

x5
1

e22e1
AF S e22e1

2 D 2

2S u12
e21e1

2 D 2GF S u22
e21e1

2 D 2

2S e22e1

2 D 2Gcosw,

y5
1

e22e1
AF S e22e1

2 D 2

2S u12
e21e1

2 D 2GF S u22
e21e1

2 D 2

2S e22e1

2 D 2Gsinw,

z5
1

e22e1
F S u12

e21e1

2 D S u22
e21e1

2 D1S e22e1

2 D 2G .
This corresponds to the choice of prolate spheroidal coordinates of type II.22,8

V. INTERBASIS EXPANSION

According to the principles of quantum mechanics the solutions of the same Schro¨dinger
equation in the different separable coordinate systems for a given value of energyE are connected
by unitary transformations or interbasis expansions. For example, we examine here the
calculation of the interbasis expansion between the spherical and parabolic wave functio
potentialV3 . We have
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Cn1 ,n2 ,m~j,h,w!5 (
l 50

n11n2

Wn1n2m
l ~k1 ,k2!Cnr lm

~r ,q,w!. ~52!

wherenr1 l 5n11n2 . For calculation of the coefficients of interbasis expansion in~52! we may
use the ‘‘asymptotic method,’’18,22which is the following. Writing the parabolic wave function o
the left-hand side of~52! in spherical coordinates (r ,q,w) accordingly,

j25r ~11cosq!, h25r ~12cosq!,

eliminating the functionYm
(k1 ,k2)(w) on both sides of~52!, and using the formula

1F1~2n;a;x!;
G~a!

G~a1n!
~2x!n

for x arbitrary large, we see that the expansion~52! yields an equation which depends only on t
variableq. Then, by using the orthogonality relations for the functionsZlm(q) in the quantum
numberl, we arrive at the following expression for interbasis expansions coefficients:

Wn1n2m
l ~k1 ,k2!5~21! l

G~M11/2!

2n11n211Ap

3A ~2l 12M11!G~n11n21 l 12M12!~n11n22 l !! l !

G~ l 12M11!G~n11M11!G~n11M11!~n1!! ~n2!!

3E
0

p

~11cosq!n11M~12cosq!n21MCl
M11/2~q!sinq dq,

M52m1k11k211. ~53!

By using the Rodrigues formula for the Gegenbauer polynomials21

Cn
l~x!5

~21! l

l !

ApG~ l 12l!

2l 12l21G~l!G~ l 1l11/2!
~12x2!2l11/2

dl

dxl ~12x2! l 1l21/2

and comparing~53! with the integral representation for the Clebsch–Gordan coefficients of the
group SU~2! ~Ref. 23!,

Caa;bb
cg 5da1b,gA ~2c11!~J11!! ~J22c!! ~c1g!!

~J22a!! ~J22b!! ~a2a!! ~a1a!! ~b2b!! ~b1b!! ~c2g!!

~21!a2c1b

2J11

3E
21

1

~12x!a2a~11x!b2b
dc2g

dxc2g @~12x!J22a~11x!J22b#dx

with J5a1b1c, we obtain

Wn1n2m
l ~k1 ,k2!5~21!n2Caa;ab

c,a1b ,

a5
n11n212m1k11k211

2
, c5 l 12m1k11k211, ~54!

a5
n12n212m1k11k211

2
, b5

n22n112m1k11k211

2
.
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Since the parameters in~54! in general are not integers or half-integers, the coefficients of in
basis expansion~51! may be considered as analytic continuation, for real values of their a
ments, of the SU~2! Clebsch–Gordan coefficients. Note also that the inverse expansion of~52!
follows from the orthonormality of SU~2! Clebsch–Gordan coefficients.
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A quantum algebra invariant integrable closed spin 1 chain is introduced and ana-
lyzed in detail. The Bethe ansatz equations as well as the energy eigenvalues of the
model are obtained. The highest weight property of the Bethe vectors with respect
to Uq(sl(2)) is proved. © 1999 American Institute of Physics.
@S0022-2488~98!01512-6#

I. INTRODUCTION

The quantum inverse scattering method~QISM! has proved to be a powerful procedure in t
analysis of one-dimensional integrable quantum chains or two-dimensional lattice models
tistical mechanics~e.g., see Ref. 1!. Central to this formalism is the Yang–Baxter equation who
solutions are sufficient to guarantee integrability of the associated model. The advent of qu
algebras2,3 provided a systematic treatment for obtaining solutions of the Yang–Baxter equ
However, the most common approach to the QISM, which was to impose periodic bou
conditions, was quickly realized to be incompatible with the quantum algebra symmetry o
model. Several authors were able to overcome this problem by working with a model on an
chain.4–8 This practice made the Bethe ansatz solutions of such models more difficult and in
instances only postulated solutions are available.9

More recently, it has been demonstrated that it is in fact possible to construct closed
models with preservation of quantum algebra symmetry.10–13Significantly, theUq(sl(2)) invari-
ant closed spin1

2 XXZ model was shown to be connected with a lattice quantization of
Liouville model.14 The algebraic Bethe ansatz solutions of such models showed that the c
chain quantum algebra invariant case was not fraught with the same difficulties that were fa
the instances of open chains. The existence of such symmetry makes available results suc
highest weight property of the Bethe states for the fundamental representation ofUq(sl(n)), and
furthermore a characterization of ‘‘good’’ and ‘‘bad’’ states in terms ofq-dimensions whenq
takes values of roots of unity.15 Initially, just quantum algebra invariant closed chains of t
Hecke algebra type were analyzed. It was subsequently shown16 that a more general formulatio
existed.

Here we wish to expand on the knowledge of closed chain quantum algebra invariant m
by undertaking a detailed study of theUq(sl(2)) invariant spin 1 model. Integrable spin 1 mode
built from aUq(sl(2)) invariantR-matrix have already been the subject of some analysis.17,18Our
study of the closed chainUq(sl(2)) invariant spin 1 model exposes new mathematical aspects
present in the previously studied models;10–12viz. the model is not of Hecke algebra type and it
an example of a higher spin system where the most natural approach to the Bethe ansatz
is to use a transfer matrix defined on an auxiliary space different from the local quantum
We then find the eigenvalues of the transfer matrix whose auxiliary space is isomorphic
local quantum space following the method of Babujian and Tsvelick.19 The need to use two
transfer matrices defined on different auxiliary spaces means working with more than one so

a!Electronic mail: jrl@maths.uq.oz.au
b!Electronic mail: angela@if.ufrgs.br
c!Electronic mail: karowski@physik.fu-berlin.de
7260022-2488/99/40(2)/726/10/$15.00 © 1999 American Institute of Physics
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of the Yang–Baxter equation. Throughout we will follow the notation of19,20 in distinguishing the
spaces on which the various operators act. Specifically, we use the symbols to denote action on
the spin1

2 space ands for action on the spin 1 space.
The paper is organized as follows. In Sec. II we define some basic quantities, e.g.,R matrices,

monodromy, and transfer matrices. A quantum algebra invariant closed spin-1 chain is intro
and its relation with one of the transfer matrices is presented. In Sec. III the system is an
through a combination of the techniques developed to handle with quantum algebra inv
closed chains10 and higher-spin chains18 and the Bethe ansatz equations as well as the en
eigenvalues of the model are obtained. In Sec. IV we show that the Bethe vectors are h
weight vectors with respect toUq(sl(2)). We also argue that use of theUq(sl(2)) generators
allows use to generate a complete set of states for the model. A summary of our main res
presented in Sec. V.

II. THE MODEL

We begin by recalling theR-matrix for the spin-12 chain

~1!

with

ssa5xq2
1

xq
, ssb5x2

1

x
, ssc15xS q2

1

qD , ssc25
1

x S q2
1

qD , ~2!

which acts in the tensor product of two two-dimensional auxiliary spacesC2
^ C2. Abovea1 , a2

(b1 andb2) are column~row! indices running from 1 to 2.
For the spin-1 chain theR-matrix is given by21,22

5
1

ssg 1
ssg 0 0 u 0 0 0 u 0 0 0

0 ssa 0 u ssc2 0 0 u 0 0 0

0 0 ssb u 0 ssd2 0 u sse2 0 0

— — — — — — — — —

0 ssc1 0 u ssa 0 0 u 0 0 0

0 0 ssd1 u 0 ssf 0 u ssd2 0 0

0 0 0 u 0 0 ssa u 0 ssc2 0

— — — — — — — — —

0 0 sse1 u 0 ssd1 0 u ssb 0 0

0 0 0 u 0 0 ssc1 u 0 ssa 0

0 0 0 u 0 0 0 u 0 0 ssg

2 , ~3!

where
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ssg5xq22
1

xq2 , ssa5x2
1

x
, ssb5S x2

1

xD S x22q2

x2q221D ,

ssc25
1

x ssc, ssc15x ssc, ssc,5S q22
1

q2D , ssf 5ssa1sse,

~4!

ssd25
1

x ssd, ssd15x ssd, ssd5S xq

x2q221D S x2
1

xD S q22
1

q2D ,

sse25
1

x2 sse, sse15x2
sse, sse5S xq

x2q221D S q2
1

qD S q22
1

q2D ,

and it acts inC3
^ C3, with C3 a three-dimensional auxiliary space.

For later convenience we also introduce anR-matrix which acts onC2
^ C3 ~Ref. 22!

~5!

where

ssa5xq3/22
1

xq3/2, ssb5xq1/22
1

xq1/2, ssc5
x

q1/22
q1/2

x
, ssd25

1

x ssd,

~6!

ssd15x ssd, ssd5AS q2
1

qD S q22
1

q2D .

TheseR-matrices satisfy the following properties:
~i! Yang–Baxter equations

Ra8b8
a9b9~x/y!Rag8

a8g9~x!Rbg
b8g8~y!5Rb8g8

b9g9~y!Ra8g
a9g8~x!Rab

a8b8~x/y!. ~7!

~ii ! Generalized Cherednik reflection property23

Ra8b8
ab

~x!~R21!gd
a8b8~y21!5Ra8b8

ab
~y!~R21!gd

a8b8~x21!. ~8!

~iii ! Crossing unitarity24

~Rt1!a8b8
ab

~xh!Ka9
a8~~R21! t1!g 8d

a9b8~x!~K21!g
g85dg

add
b , ~9!

wheret1 denotes matrix transposition in the first space,h is a crossing parameter andK5Kt is the
crossing matrix. Explicit forms forK are given below. We remark that Eq.~8! is the natural
generalization of Cherednik’s reflection property to the case where theR-matrix acts on two
nonisomorphic spaces.

Let us now introduce the ‘‘doubled’’ monodromy matrixssU
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~10!

which acts in the tensor product of a three-dimensional auxiliary space and a quantum spC3

^ C3L and can be regarded as a 333 matrix of matrices acting in the quantum space

ssU k
l ~x!5S ssU 1

1
ssU 2

1
ssU 3

1

ssU 1
2

ssU 2
2

ssU 3
2

ssU 1
3

ssU 2
3

ssU 3
3
D . ~11!

Above the constantssR-matrix is defined as

~12!

For later convenience we also define the auxiliary doubled monodromy matrix

~13!

where ssR2 corresponds to the leading term in the limit of the matrixssR
21(x) for x→0,

analogously tossR2 @see Eq.~12!#. It acts onC2
^ C3L and can be represented as a 232 matrix in

the auxiliary space whose entries are matrices acting in the quantum space

ssUa
b~x!5S A B

C DD . ~14!

Using Eqs.~7! and ~8! we can prove that the following Yang–Baxter equations are fulfilled:

ssRa8b8
ab

~y/x! ssUg8
b8~x! ssR2d8a

a8g8
ssUd

d8~y!

5ssUa8
a

~y! ssR1
d8b8
a8b

ssUg8
b8~x! ss~R21!dg

d8g8~x/y!, ~15!

ssRa8 i 8
a i

~y/x! ssU j 8
i 8~x! ssR2b8 j

a8 j 8
ssUb

b8~y!5ssUa8
a

~y! ssR
1

b8 i 8
a8 i

ssU j 8
i 8~x! ss~R21!b j

b8 j 8~x/y!,
~16!

ssRa8 i 8
a i

~y/x! ssU j 8
i 8~x! ssR2b8 j

a8 j 8
ssUb

b8~y!5ssUa8
a

~y! ssR
1

b8 i 8
a8 i

ssU j 8
i 8~x! ss~R21!b j

b8 j 8~x/y!.
~17!

Above we have defined~for R-matrices acting on any two spaces!

R15 lim
x→`

R~x!.

For later use we also define

R25 lim
x→0

R~x!.
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Equation~16! is depicted graphically below. Similar graphical representations apply for
~15! and ~17! but will not be presented.

Finally, the spin-1 transfer matrix is constructed by taking the spin-1 Markov trace o
monodromy matrix~10! in the auxiliary space

~18!

where

sK5S q2

1

q22
D . ~19!

By using Eqs.~9! and ~17! it can be shown that this transfer matrix forms a commuting fam
i.e., it commutes for different spectral parameters. A quantum algebra invariant spin-1XXZHamil-
tonian with closed boundary conditions will be obtained later from it. However, in orde
diagonalize it, the usual algebraic Bethe ansatz scheme which applies to monodromy m
whose auxiliary space is the fundamental representation cannot be adopted. As in other
spin chains18,20,25–27this problem can be solved by introducing an auxiliary spin-1

2 transfer matrix

ssT which commutes with the spin-1 transfer matrixssT. This spin-12 auxiliary transfer matrix is
constructed using the auxiliaryssR(x) ~5! and doubled monodromyssU(x) ~13! matrices and is
given by

~20!

with

sK5S q

q21D . ~21!

Using Eqs.~9! and ~16! we can also show that the above transfer matrices commute

@ssT~x!,ssT~y!#50. ~22!

Therefore, we can simultaneously diagonalizessT and ssT which will be presented in the nex
section.
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A quantum algebra invariant closed spin-1 Hamiltonian can be defined through

H5ssT 8~x! ssT21~x!ux51 , ~23!

where the prime indicates differentiation with respect to the variablex. This yields~see Ref. 16 for
details about this general construction!

H5 (
n51

L21

hn1h0 , ~24!

where

hn}Jn .Jn112~Jn .Jn11!21
~q2q21!2

2
@Jn

zJn11
z 1~Jn

z!21~Jn11
z !22~Jn

zJn11
z !2#

2~q1/22q21/2!2@~Jn
xJn11

x 1Jn
yJn11

y !Jn
zJn11

z 1Jn
zJn11

z ~Jn
xJn11

x 1Jn
yJn11

y !#, ~25!

andJn are spin-1 generators ofsl(2). Theboundary termh0 is given by

~26!

with

ssR̂n$b%
6$g%51b1

g1 ^ 1b2

g2 ^¯^ ssR
6

bn11bn

gngn11 ^¯1bL

gL , n51,2,...,L21. ~27!

In Eq. ~24! L is the number of lattice sites. The operatorsH, hn andR̂n
6 (n51,2,...,L21) act on

the ‘‘quantum space’’C3L ~for simplicity, we omit the quantum space indices and write them o
whenever necessary!. The model is periodic in the sense that the operatorG21 mapshn into hn21

G21hnG5hn21 , n52,...L21, ~28!

andh1 into h0

G21h1G5GhL21G21. ~29!

The quantum algebra invariance of such a construction is discussed in Ref. 16.

III. BETHE ANSATZ METHOD

In this section we solve the eigenvalue problem of the transfer matrix

ssTC5~q2
ssU1

11ssU2
21q22

ssU3
3!C5ssLC, ~30!

@and consequently that of the Hamiltonian~24!# through a combination of the techniques dev
oped to handle with quantum group invariant closed chains10 and higher-spin chains.18 First, from
the fact that Eq.~22! is satisfied,ssT and ssT have a common set of eigenvectors, which can
determined by applying the algebraic Bethe ansatz method tossT ~20!. Following Babujian,20 the
vectorC can be written as

C5B~x1!B~x2!¯B~xM !F, ~31!

whereF is the reference state defined by the equation

CF50,

whose solution isF5 ^ i 51
L u1& i . It is an eigenstate ofA andD

A~x!F5q3L/2F,
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D~x!F5q2L/2 ssc~1/x!L

ssa~1/x!L F. ~32!

Next we applyA(x) and D(x) to C ~31!, push them through all theB8s using the following
commutation rules derived from the Yang–Baxter relation~15!:

A~x!B~y!5
1

q
ssa~x/y!

ssb~x/y!
B~y!A~x!2

1

q
ssc2~x/y!

ssb~x/y!
B~x!A~y!2

q21/q

q
B~x!D~y!,

D~x!B~y!5q
ssa~y/x!

ssb~y/x!
B~y!D~x!2q

ssc2~y/x!

ssb~y/x!
B~x!D~y!, ~33!

and apply them to the reference stateF using Eq.~32!. From the first terms of the r.h.s. of Eq.~32!
we get the ‘‘wanted’’ contributions, while the other terms originate the ‘‘unwanted’’ terms, s
they can never give a vector proportional toC

A~x!C5q3L/22M)
i 51

M
ssa~x/xi !

ssb~x/xi !
C1u.t.,

D~x!C5q2L/21M ssc~1/x!L

ssa~1/x!L )
i 51

M
ssa~xi /x!

ssb~xi /x!
C1u.t. ~34!

The cancellation of all unwanted terms ensure thatC, as given by~31! is an eigenstate of the
transfer matrixssT(x) ~20! and this indeed happens if the Bethe ansatz equations~BAE! hold

q2~11L2M !S ssa~1/xk!

ssc~1/xk!
D L

)
i 51

M
ssa~xk /xi !

ssb~xk /xi !

ssb~xi /xk!

ssa~xi /xk!
521, k51,...,M . ~35!

Note that these equations are much simpler than those obtained for the quantum group in
spin-1 chain with open boundary conditions~see Ref. 18!. Also in the limit q→1 we recover the
BAE for the usual periodic case.20

Let us now find the eigenvalues ofssT(x) by acting with this transfer matrix onC ~31!,
according to~30!. For this purpose we need the commutation relations betweenssU1

1(x), ssU2
2(x),

ssU3
3(x), andssU2

1(y) and their action on the reference stateF. Rewriting the Yang–Baxter equa
tion ~16! we can find the following relations:

ssUa8
a

~y! ssR
1

b i 8
a8 i

ssU j
i 8~x!5ssRa8 i 8

a i
~y/x! ssU j 8

i 8~x! ssR2b8 j 9
a8 j 8

ssUb9
b8~y! ssRb j

b9 j 9~x/y!, ~36!

which yield the commutation rules

ssU1
1~x!B~y!5

1

q2
ssa~x/y!

ssc~x/y!
B~y! ssU1

1~x!2
1

q
ssd2~x/y!

ssc~x/y! ssU2
1~x!A~y!

2
1

q
AS 12

1

q2D S q22
1

q2D S ssU2
1~x!D~y!1

ssd2~x/y!

ssc~x/y! ssU3
1~x!C~y! D ,

ssU2
2~x!B~y!5

ssa~y/x! ssa~x/y!

ssb~y/x! ssb~x/y!
B~y! ssU2

2~x!2
ssd2~y/x!

ssb~y/x! ssU2
1~x!D~y!

2
ssd2~x/y!

ssb~x/y! S 1

q ssU3
2~x!A~y!1q

ssd2~y/x!

ssb~y/x! ssU3
1~x!C~y! D

2AS 12
1

q2D S q22
1

q2D ssU3
2~x!D~y!,
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ssU3
3~x!B~y!5q2 ssa~y/x!

ssc~y/x!
B~y! ssU3

3~x!2q2 ssd2~y/x!

ssc~y/x! ssU3
2~x!D~y!. ~37!

We also observe that

ssU1
1~x!F5F, ssU2

2~x!F5q22L
ssa~1/x!LF, ssU3

3~x!F5q24L
ssb~1/x!LF. ~38!

Then applying the transfer matrixssT on the vectorC ~31! and using Eqs.~36! and~38! we get the
eigenvalues ofssT

ssL~x!5q222M)
i 51

M
ssa~x/xi !

ssc~x/xi !
1q22L

ssa~1/x!L)
i 51

M
ssa~x/xi ! ssa~xi /x!

ssb~x/xi ! ssb~xi /x!

1q2~M22L21!
ssb~1/x!L)

i 51

M
ssa~xi /x!

ssc~xi /x!
. ~39!

We have obtained~39! by taking into account only the first terms on the r.h.s. of Eq.~36!. All
other terms generate unwanted contributions and the condition of their equality to zero yiel
BAE ~35!. A simpler way to recover the BAE from~39! is by demanding that the eigenvalu

ssL(x) ~39! has no poles atx5q61/2xi , sincessT is an analytic function inx. Finally, we obtain
the eigenvalues of the Hamiltonian~24! from ~23! and ~39!

E5(
i 51

M
22~q22q22!

~xi
21q21/22xiq

1/2!~xi
21q3/22xiq

23/2!
. ~40!

In the rational limitq→1, this expression reduces to that obtained by Babujian20 for the usual
periodic case~with appropriate rescaling!.

IV. HIGHEST WEIGHT PROPERTY

In this section we show that the Bethe vectors are highest weight vectors with resp
Uq(sl(2)). Webegin by writing

ssR
15S q1/2h 0

q21/2~q2q21!e q21/2hD ,

ssR25S q21/2h 2q1/2~q2q21! f

0 q1/2h D , ~41!

whereh, e, f are thesl(2) generators in the spin-1 representation. Next, defining the con
auxiliary monodromy matrix as

ssUa
2b5 lim

x→0
ssUa

b~x!5~ssR2!a8 j 8
b j

~ssR
1!a i

a8 j 8 , ~42!

we have from~41!

C25q21/2~q2q21!q21/2he. ~43!

The Bethe vectors~31! are highest weight vectors if

C2C50. ~44!

This can be proven by observing that from the Yang–Baxter algebra~15! we can obtain the
following relation:

C2B~x!5B~x!C21~12q22!~A~x!D22D2D~x!!, ~45!
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which, using the fact thatC2F50, allows us to write

C2C5(
i 51

M

YiWiF ~46!

where

Wi5B~x1!B~x2!¯B~xi 21!B~xi 11!¯B~xM !. ~47!

The Yi can be computed using Eqs.~32! and ~33! which yield

Yi5~12q22!q3/2L
ssa~1/xi !

L)
j Þ i

M

q21 ssa~xi /xj !

ssb~xi /xj !
2~12q22!q2L/2

ssc~1/xi !
L)

j Þ i

M

q
ssa~xj /xi !

ssb~xj /xi !
.

~48!

Because of the BAE~35!, each of the coefficientsYi vanishes which implies

C2C50.

It immediately follows that each of the Bethe states are highest weight states. By usin
Uq(sl(2)) lowering operatorf we obtain additional states which will also be eigenstates of
transfer matrix because of the quantum symmetry of the model.

For generic values of the deformation parameterq it is well known that the dimensions an
weight spectrum of the finite dimensional irreducible representations ofUq(sl(2)) are in 1-1
correspondence with those ofsl(2). Since it is known26,28 in the q51 case that the Bethe state
combined with thesl(2) symmetry give a complete set of states for the model, it should
possible to prove, using methods developed in Ref. 29, that this is also true for the
described above.

V. CONCLUSIONS

We have solved a quantum algebra invariant integrable closed spin-1 chain by an alg
Bethe ansatz approach. Particularly eigenstates of the model were constructed and their
eigenvalues evaluated. A proof of the highest weight property of the Bethe vectors with resp
Uq(sl(2)) wasalso presented. A natural extension of this work would be to generalize the re
of the spin-1 chain to corresponding chains of arbitrary spins.

ACKNOWLEDGMENTS

J.L. is supported by an Australian Research Council Postdoctoral Fellowship. A.F. woul
to thank H. M. Babujian for useful discussions and the Institute fu¨r Theoretische Physik—FUB fo
its kind hospitality. She also thanks DAAD—Deutscher Akademischer Austauschdiens
FAPERGS—Fundac¸ão de Amparo a` Pesquisa do Estado do Rio Grande do Sul for finan
support.

1V. E. Korepin, A. G. Izergin, and N. M. Bogoliubov,Quantum Inverse Scattering Method, Correlation Functions a
Algebraic Bethe Ansatz~Cambridge University Press, Cambridge, 1993!.

2M. Jimbo, Lett. Math. Phys.10, 63 ~1985!.
3V. G. Drinfeld, Proc. Int. Cong. Math. 798~Berkeley, 1986!.
4C. Destri and H. J. De Vega, Nucl. Phys. B361, 361 ~1992!; 374, 692 ~1992!.
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Two supersymmetric classical mechanical systems are discussed. Concrete realiza-
tions are obtained by supposing that the dynamical variables take values in the
Grassmann algebraB2 with two generators. The equations of motion are explicitly
solved, and the action of the supergroup on the space of solutions is elucidated. The
Lie algebra of the supergroup is the even part of the tensor productB2^G, where
G is the super Lie algebra of supersymmetries and time translations. For each
system, the solutions with zero energy need to be constructed separately. For these
Bogomolny-type solutions, the orbit of the supergroup is smaller than in the generic
case. ©1999 American Institute of Physics.@S0022-2488~99!03302-2#

I. INTRODUCTION

Supersymmetry is one of the most powerful ideas in theoretical physics, combining bo
and fermionic fields into a unified framework. Most supersymmetric theories are defined
Lagrangian, from which the classical field equations are derived. However the meaning
fermionic fields in such equations is not always clear, because they need to be anticomm
Moreover, there are usually sources for the bosonic fields which are bilinear in the ferm
fields, and such sources are not ordinary functions. So an interpretation of the bosonic fie
ordinary functions fails in supersymmetric theories. It is mathematically consistent to treat bo
and fermionic fields as ordinary functions, as in classical QED or QCD, but such a trea
cannot be supersymmetric.

It might be thought that only the quantized versions of supersymmetric theories really
sense. This is not so. The formalism for making sense of classical supersymmetric theo
readily available, but perhaps not sufficiently appreciated by theoretical physicists. As emph
by De Witt,1 and also by Freund,2 fields in a supersymmetric field theory must take their value
a Grassmann algebraB. B is the direct sum of an even partBe and an odd partBo . The bosonic
fields are valued inBe , and the fermionic fields inBo . It is necessary to decide which algebraB
to work with. B can have a finite number,n, of generators, or an infinite number, and the cont
of the classical theory will depend on the choice. Withn generators, a scalar bosonic field
represented by 2n21 ordinary functions, and by an infinite number ifB is infinitely generated. This
is rather daunting, and it is not clear what all these functions might mean physically. Howeve
shall choosen52 in what follows, and the resulting equations are quite manageable.~The choice
n51 leads to trivial equations.! Choosingn to be as small as possible means that the theory, w
including fermions, is as close as possible to the underlying classical, purely bosonic, theor
sometimes argued that choosingn to be finite leads to ambiguities or contradictions. The argum
is connected with Green’s functions and quantization. In a classical context there appear to
problems—at least, we encounter no problems in the models discussed here, except on
matter which is dealt with in Sec. II.

Our aim is to present concrete examples of classical supersymmetric theories, and to so
equations of motion. Rather than considering a genuine field theory, we shall simplify matte
considering supersymmetric mechanical models, whose dynamical variables depend only o
Mechanical models, with bosonic and fermionic dynamical variables taking values in a Grass

a!Electronic mail: N.S.Manton@damtp.cam.ac.uk
7360022-2488/99/40(2)/736/15/$15.00 © 1999 American Institute of Physics
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algebra, were investigated by Casalbuoni3 and by Berezin and Marinov,4 although not solved
except in very simple cases. Supersymmetry constrains the structure of such models. The d
cal variables, taken together, define a point in a supermanifold, which traces out a curve a
varies. The mathematically rigorous treatment of the geometry of dynamical systems in
manifolds is tricky, and there is more than one point of view. For discussions of functions
their derivatives on a supermanifold, and of the topology and geometry of supermanifold
reader may turn to a number of papers, e.g. Refs. 5 and 6, as well as Ref. 1. We will n
supermanifold theory in any significant way here.

We analyze two supersymmetric mechanical models below. We present the Lagrangia
equations of motion, their symmetries, and the associated conserved quantities, and procee
the explicit form of the general solution of the equations of motion. We believe that this ha
been done before. The possibility of constructing general solutions of the nonlinear co
ordinary differential equations~ODEs! shows the power of the supersymmetry of these mod
From the super Lie algebra of supersymmetries and time translations we construct, in a st
way, a genuine Lie algebra of infinitesimal symmetries, which generates a genuine Lie gro
symmetries of the dynamics—the supergroup. Technically, ifn is finite, the supergroup is thenth
skeleton of the full supergroup. The solutions depend on a number of constants of integratio
we comment on the extent to which, whenn52, the supergroup relates solutions with differe
values of these constants.

For each of these models, the solutions with zero energy need to be constructed in
dently. Here, one of the bosonic equations of motion reduces to a first-order Bogomolny
equation.7 The solution space is still acted on by the supergroup, but the orbit is of lower di
sion than in the generic case. This feature of Bogomolny equations is not unfamiliar, bu
complete solution of the equations of motion, including the fermionic variables, is perhaps n

Section II discusses theN52 supersymmetric mechanics of a particle moving in one dim
sion, subject to a potential. The model is a variant of the one whose quantized versio
analyzed by Witten.8 Section III is concerned with the zero energy, Bogomolny case. Sectio
discusses theN51 supersymmetric mechanics of a particle moving in one dimension. Again
model is a variant of the standard one, as the Lagrangian depends on a constant odd param
conclude in Sec. V with some comments on the analysis, and on potential generalizations
work.

II. N52 SUPERSYMMETRIC MECHANICS

Consider the followingN52 supersymmetric Lagrangian~Refs. 8, 1—Sec. 5.7!:

L5 1
2ẋ

21 1
2U~x!21 1

2ċ1c12 1
2ċ2c21U8~x!c1c2 , ~2.1!

where the dynamical variablesx, c1 , andc2 take values in an arbitrary Grassmann algebraB.
This describes the supersymmetric mechanics of a particle moving in one dimension in a po
2U2. x(t) is bosonic~i.e., commuting! andc1(t) andc2(t) are fermionic~i.e., anticommuting!
variables. Thusx is valued inBe , whereasc1 andc2 are valued inBo . Any function ofx, e.g.,
U(x), commutes withx. Such functions are defined as polynomials or power series with
coefficients. IfU(x)5xp, with p a positive integer, thenU8(x)5pxp21, with the obvious exten-
sion to polynomials and power series. An overdot denotes the derivative with respect to timt. ẋ

commutes withx, and similarly,ċ1 andċ2 anticommute with bothc1 andc2 ; hence the dynam-
ics is classical, rather than quantized. Note that the termsċ1c1 and ċ2c2 are not total time
derivatives.

The LagrangianL may be obtained by dimensional reduction of the 111-dimensionalN
51 supersymmetric field theory with Lagrangian density

L5
1

2
]1F]2F2

1

2
U~F!21

i

2
c1]2c11

i

2
c2]1c21 i

dU

dF
c1c2 , ~2.2!
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where]1 and]2 are the standard light cone derivatives. By assuming that all fields are inde
dent of the spatial coordinate, then absorbing certain factors ofAi , etc., in the fields and potentia
and finally writingF asx, we recover the expression~2.1!. The density~2.2! is real in a certain
sense,1 but for our purposes the manifestly real expression~2.1! is a more convenient Lagrangia
to discuss.

To obtain the equations of motion we calculate the formal variationDL due to variationsDx,
Dc1 , and Dc2 . We combineD ẋ, Dċ1 , and Dċ2 into total time derivative terms, which ar
ignored, then moveDx, Dc1 , andDc2 to the left in each term. The result is

DL5Dx~2 ẍ1UU81U9c1c2!1Dc1~2ċ11U8c2!1Dc2~ ċ22U8c1!, ~2.3!

so the equations of motion are

ẍ5UU81U9c1c2 , ~2.4a!

ċ15U8c2 , ~2.4b!

ċ25U8c1 . ~2.4c!

There is a possible ambiguity here.DL should be zero for allDx in Be and allDc1 , Dc2 in
Bo . If B has an infinity of generators, this implies Eqs.~2.4!. However, ifB hasn generators, then
the coefficients ofDc1 andDc2 need not be zero, but could be an element of highest degreeB,
with arbitrary time dependence. This possibility can be excluded by careful definition of
derivatives.9 More trivially, below we shall assume thatn is even (n52), and then this possibility
is excluded because these coefficients are constrained to be odd.

There are two supersymmetry operatorsQ andQ̃. Together withd/dt they are a basis for a
super Lie algebra over the real numbers with nontrivial relations

Q 25
d

dt
, Q̃ 252

d

dt
, QQ̃1Q̃Q50. ~2.5!

Formally, the algebra has a representation on the dynamical variables

Qx5c1 , Qc15 ẋ, Qc25U, ~2.6a!

Q̃x5c2 , Q̃c252 ẋ, Q̃c152U, ~2.6b!

with d/dt acting in the obvious way. This ‘‘on-shell’’ representation requires that the equa
ċ15U8c2 and ċ25U8c1 are satisfied, so that, e.g.,Q 2c25QU5U8(Qx)5U8c15ċ2 . Q, Q̃,
andd/dt are all symmetries of the Lagrangian, providedQ and Q̃ are treated as antiderivation
@an extra minus sign in the Leibniz rule whenQ or Q̃ goes past a fermionic variable, e.g
Q(c1c2)5(Qc1)c22c1Qc25 ẋc22c1U#. Now although the actions ofQ and Q̃ given by
~2.6! make formal sense, they cannot be regarded as variations of the dynamical variab
bosonic variable cannot be varied by a fermionic one. Moreover, the vague requirement th
coefficients ofQ and Q̃ should be anticommuting, common in the literature, is not sufficien
precise. However, genuine variations are obtained by taking the coefficients ofQ and Q̃ to be
arbitrary infinitesimal elements ofBo , and the coefficient ofd/dt to be an infinitesimal element o
Be .

The super Lie algebra over the real numbers becomes an ordinary Lie algebra if the
cients lie inB, as above. This construction is, in fact, well known.2,10 If one takes a super Lie
algebraG and tensors it with a Grassmann algebra of coefficientsB, and keeps just the even pa

~B^G !e5~Be^Ge! % ~Bo^Go!, ~2.7!
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then this is an ordinary Lie algebra over the reals, if the bracket is defined by

@b1g1 ,b2g2#5b1b2@g1 ,g2#~21! ub2uug1u, ~2.8!

where u u denotes the grade~0 for even elements, 1 for odd!, and @g1 , g2# is the bracket in the
super Lie algebra. The Lie group generated by this Lie algebra is the supergroup, and
concrete symmetry group of our mechanical system.

Thus, the variations of the dynamical quantities generated by the supersymmetry operQ
are

dx5hc1 , dc15h ẋ, dc25hU, ~2.9!

whereh is an arbitrary infinitesimal constant inBo . It is easily shown that the variation of th
LagrangianL is a total time-derivative

dL5h
d

dt S 1

2
ẋc11

1

2
Uc2D ~2.10!

using U̇5U8ẋ. The usual Noether method gives the conserved supersymmetry charge

Q5 ẋc12Uc2 . ~2.11!

The conservation ofQ is easily verified using the equations of motion:

Q̇5 ẍc11 ẋċ12U8ẋc22Uċ25UU8c11U9c1c2c11 ẋU8c22U8ẋc22UU8c150
~2.12!

sincec1c2c152c1c1c250. The variations generated by the second supersymmetry operaQ̃
are

d̃x5hc2 , d̃c252h ẋ, d̃c152hU, ~2.13!

and lead to the conserved supersymmetry charge

Q̃5 ẋc22Uc1 . ~2.14!

The supersymmetries relate different solutions of the equations of motion. To see this
sider the linearized variations of Eqs.~2.4!,

~D¨x!5~UU8!8Dx1U-Dxc1c21U9Dc1c21U9c1Dc2 , ~2.15a!

~Ḋc1!5U9Dxc21U8Dc2 , ~2.15b!

~Ḋc2!5U9Dxc11U8Dc1 , ~2.15c!

and assume thatx, c1 , andc2 satisfy ~2.4!. The linear equations~2.15! are satisfied by setting
D5d or D5 d̃, and using the variations defined in~2.9! and ~2.13!. Later, we shall see more
concretely, and not just in the linearized approximation, how supersymmetry relates dif
solutions.

Since the Lagrangian~2.1! does not depend explicitly on time, we expect a conserved ene
associated with time translation symmetry. This symmetry is defined by the infinitesimal v
tions

Dx5h ẋ, Dc15hċ1 , Dc25hċ2 , ~2.16!
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whereh is now an arbitrary infinitesimal element ofBe . The energy is

H5 1
2ẋ

22 1
2U

22U8c1c2 , ~2.17!

and its conservation is easily checked using the equations of motion.
In simple cases, it is possible to solve the equations of motion for any choice of the G

mann algebraB, and without explicit reference toB. An example is whenU(x)5vx, with v a
real constant, soU85v andU950, and the equations simplify. This is the analog of the sup
symmetric harmonic oscillator, discussed and solved by De Witt,1 but in our case the potential i
inverted. The solution can be expressed in terms of initial data as

x~ t !5x~0!coshvt1
1

v
ẋ~0!sinhvt, ~2.18a!

c1~ t !5c1~0!coshvt1c2~0!sinhvt, ~2.18b!

c2~ t !5c2~0!coshvt1c1~0!sinhvt. ~2.18c!

We have not been able to solve the equations of motion~2.4! for generalU(x) and an
arbitrary choice of the Grassmann algebraB, and in particular forB having an infinity of genera-
tors. It would be interesting to do so. IfB has just one generator, then the equations are ra
trivial, becausec1c2 vanishes. So the simplest nontrivial case, which we discuss from here o
whereB is generated by just two elementsa,b satisfying

a250, b250, ab1ba50. ~2.19!

A basis for the algebra is$1,a,b,ab%, and it follows from~2.19! that (ab)250. There is a matrix
realization of these relations, although we will not use it. Let$gm:1<m<4% denote Dirac matri-
ces in four Euclidean dimensions, and seta5g11 ig2, b5g31 ig4.

Let us write the dynamical variables in component form as

x~ t !5x0~ t !1x1~ t !ab, ~2.20a!

c1~ t !5a1~ t !a1b1~ t !b, ~2.20b!

c2~ t !5a2~ t !a1b2~ t !b, ~2.20c!

wherex0 ,x1 ,a1 ,b1 ,a2 ,b2 are ordinary functions of time. The ‘‘body,’’x0(t), can be regarded a
classical, but its partnerx1(t) is a less familiar quantity.

Any positive power ofx now has the truncated expansion

xn5x0
n1nx0

n21x1ab, ~2.21!

which extends to an arbitrary function ofx as

U~x!5U~x0!1U8~x0!x1ab, ~2.22!

whereU8(x0) denotes the usual derivative ofU(x0) with respect tox0 . Henceforth, if the argu-
ment ofU and its derivatives is not shown, it isx0 , with x0 itself a function oft. The Lagrangian
is the even functionL5L01L1ab, where

L05 1
2ẋ0

21 1
2U

2, ~2.23a!

L15 ẋ0ẋ11UU8x11ȧ1b12ȧ2b21U8~a1b22a2b1!. ~2.23b!

Substituting~2.20! into ~2.4!, we obtain the equations of motion for the components
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ẍ05UU8, ~2.24a!

ẍ15~UU8!8x11U9~a1b22a2b1!, ~2.24b!

ȧ15U8a2 , ~2.24c!

ȧ25U8a1 , ~2.24d!

ḃ15U8b2 , ~2.24e!

ḃ25U8b1 . ~2.24f!

These equations can also be derived as the variational equations ofL0 and L1 . In fact, surpris-
ingly, they can all be derived fromL1 alone, as the equation of motion forx0 , obtained fromL0 ,
is the same as the equation obtained fromL1 by varyingx1 .

There are a host of symmetries and conservation laws associated with the component
the system. WithB generated bya andb, the supergroup is six dimensional, its Lie algebra hav
basis elements

Qa5aQ, Qb5bQ, Q̃a5aQ̃, Q̃b5bQ̃,
d

dt
,

d̃

dt
5ab

d

dt
, ~2.25!

whered/dt is the usual time derivative andd/dt˜ we call the mini-time-derivative. Almost all thes
generators commute, except that

@Qa ,Qb#522
d̃

dt
, @Q̃a ,Q̃b#52

d̃

dt
. ~2.26!

Note that the signs in~2.26! are consistent with~2.8!.
Following ~2.9!, we define two variationsda anddb , generated byQa andQb , by

dax5eac1 , dac15ea ẋ, dac25eaU~x!, ~2.27!

wheree is infinitesimal and real, anddb similarly by replacinga by b. In components, the first o
these variations becomes

da~x01x1ab!5eb1ab ~2.28!

sodax050 anddax15eb1 . Similarly, by expanding out, we find the complete set of compon
variations

dax15eb1 , daa15e ẋ0 , daa25eU, ~2.29a!

dbx152ea1 , dbb15e ẋ0 , dbb25eU, ~2.29b!

with all other variations, e.g.,dba1 , vanishing. The generatorsQ̃a and Q̃b lead similarly to the
two independent sets of variations

d̃ax15eb2 , d̃aa152eU, d̃aa252e ẋ0 , ~2.30a!

d̃bx152ea2 , d̃bb152eU, d̃bb252e ẋ0 . ~2.30b!

x0 , and henceL0 , is unchanged by all these variations.
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It is easy to verify that all four sets of variationsda , db , d̃a , d̃b are Noether symmetries o
the LagrangianL1 , giving total time derivatives. For example,

daL15e~ ẋ0ḃ11UU8b11 ẍ0b12U8ẋ0b21U8~ ẋ0b22Ub1!!5e
d

dt
~ ẋ0b1!. ~2.31!

In the usual way, we obtain the conserved Noether charges

Qa5 ẋ0b12Ub2 , ~2.32a!

Qb52 ẋ0a11Ua2 , ~2.32b!

Q̃a5 ẋ0b22Ub1 , ~2.32c!

Q̃b52 ẋ0a21Ua1 , ~2.32d!

and may verify their conservation using the equations of motion~2.24!. Of course, these charge
are just the components of the supersymmetry charges we found earlier, although with
switched, namely

Q52Qba1Qab, ~2.33a!

Q̃52Q̃ba1Q̃ab. ~2.33b!

Both L0 andL1 are invariant under ordinary time translations, leading to the conservation o
energies

H05 1
2ẋ0

22 1
2U

2, ~2.34a!

H15 ẋ0ẋ12UU8x12U8~a1b22a2b1!. ~2.34b!

The conserved energy we found earlier isH5H01H1ab.
There is a further symmetry, the mini-time-translation symmetry. The variations generat

d/dt˜ are

Dx5eab ẋ, Dc15eabċ1 , Dc25eabċ2 , ~2.35!

with e real. Expanding out in components, we find a single nonzero variation

Dx15e ẋ0 . ~2.36!

The associated variation ofL1 is the total time derivative

DL15e~ ẋ0ẍ01UU8ẋ0!5e
d

dt S 1

2
ẋ0

21
1

2
U2D , ~2.37!

and the conserved quantity is

1
2ẋ0

22 1
2U

2, ~2.38!

which is H0 . So we see that the equations of motion and both conserved energies, and a
components of the supersymmetry charges, can be derived fromL1 .

This exhausts the infinitesimal action of the supergroup, but there are yet more symm
which mix the functionsa1 ,a2 ,b1 ,b2 . The combined variations
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Da15eb1 , Da25eb2 ~2.39!

leaveL1 invariant, as do the variations

Db15ea1 , Db25ea2 . ~2.40!

Finally, L1 is invariant under

Da15ea2 , Da25ea1 , Db15eb2 , Db25eb1 . ~2.41!

These symmetries imply that

Ra5b1
22b2

2, ~2.42a!

Rb5a1
22a2

2, ~2.42b!

R5a1b22a2b1 ~2.42c!

are all conserved. The conservation ofR can also be understood from the symmetry of the origi
LagrangianL under the infinitesimal variations

Dc15ec2 , Dc25ec1 ~2.43!

with e real, which implies the conservation ofc1c2 .
We turn now to the solution of the coupled equations~2.24!. We start with the equation fo

x0 . This is the classical equation of the model without fermionic variables. It has the first int

ẋ0
22U252E, ~2.44!

whereH05E is the conserved energy, hence

ẋ05~2E1U2!1/2. ~2.45!

The solution in integral form is

E
X0

x0 dx08

~2E1U~x08!2!1/2
5t, ~2.46!

wherex05X0 at t50.
Given x0(t), and henceU8(x0(t)), we can solve the linear equations fora1 , a2 , b1 , b2 .

Of course, one solution is that these four functions all vanish. The supersymmetry vari
~2.29! and ~2.30! suggest the solution

a15l ẋ01mU, ~2.47a!

a25lU1m ẋ0 , ~2.47b!

b15s ẋ01tU, ~2.47c!

b25sU1t ẋ0 , ~2.47d!

wherel,m,s,t are arbitrary real constants, andU denotesU(x0(t)). These functions do satisfy th
equations of motion, e.g.,

ȧ15l ẍ01mU8ẋ05lUU81mU8ẋ05U8a2 , ~2.48!
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and the presence of four constants implies that~2.47! is the general solution. The value of th
conserved supersymmetry charge componentQa is

Qa5 ẋ0b12Ub25s~ ẋ0
22U2!52Es, ~2.49!

and similarly Qb522El, Q̃a52Et, and Q̃b522Em. The R charges take the valuesRa

52E(s22t2), Rb52E(l22m2), and R52E(lt2ms). There is a problem, however, ifE
50, for then

ẋ056U ~2.50!

and the expressions~2.47! depend on only two arbitrary constants. Equation~2.50! is the Bogo-
molny equation for this system. We postpone discussion of the general solution in this case
III.

The remaining equation forx1 is the inhomogeneous linear equation

ẍ15~UU8!8x112E~lt2ms!U9, ~2.51!

where we have substituted the conserved value ofR5a1b22a2b1 . The supersymmetry transfor
mations and the mini-time-translation suggest that solutions can be constructed fromU andẋ0 . It
may be verified, using~2.24a! and ~2.44!, that a particular integral of~2.51! is

x15~lt2ms!U. ~2.52!

A solution of the homogeneous equationẍ15(UU8)8x1 is x15 ẋ05(2E1U2)1/2, since
d3x0 /dt35d(UU8)/dt5(UU8)8ẋ0 . A second solution must satisfyẋ1ẋ02x1ẍ05C for some
constant~Wronskian! C. Write x15 f (t) ẋ0 . Thenf must satisfyḟ 5C/ ẋ0

2, so

d f

dx0
5

C

ẋ0
3 5

C

~2E1U2!3/2, ~2.53!

and hence the second solution is

x15C~2E1U2!1/2E
X0

x0~ t ! dx08

~2E1U~x08!2!3/2
. ~2.54!

The complete solution of~2.51! is therefore

x15~lt2ms!U1C1~2E1U2!1/21C2~2E1U2!1/2E
X0

x0~ t ! dx08

~2E1U~x08!2!3/2
. ~2.55!

The value of the energy constantH1 is C2 .
We have therefore found the general solution of the equations of motion~2.24!, in terms of

eight constants of integrationX0 ,E,l,m,s,t,C1 ,C2 . Although the potential2U(x0)2 is nega-
tive, the motion can be a bounded nonlinear oscillation if the minimum of the potential is
and occurs at finitex0 , and if 2E is negative but greater than this minimum. The motion
unbounded ifE is positive.

From the infinitesimal action of the supergroup on the dynamical variables, one can fi
action on the constants of integration of the general solution. For example, a mini-time-trans
changesC1 , and has no other effect. It is clear that the supergroup has six-dimensional orb
the space of solutions. OnlyE andC2 are invariant.
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III. ZERO ENERGY SOLUTIONS

When the energyE50, the method described above does not give the general solution o
equations of motion~2.24!. For this value ofE,

ẋ0
22U250, ~3.1!

so x0 satisfies the first-order Bogomolny equation

ẋ056U. ~3.2!

For either choice of sign,ẋ0 andU are no longer independent functions of time, so the express
~2.47! depend effectively on only two arbitrary constants, and are no longer the general so

For simplicity, let us choose the upper sign in~3.2!. The lower sign choice is essentially th
same, and corresponds to a time reversal. Then the solution of~3.2! is

E
X0

x0 dx08

U~x08!
5t. ~3.3!

To find the general solution of the equations fora1 ,a2 ,b1 ,b2 , it helps to consider the limit
E→0 of the solution given earlier. Note that for small nonzeroE,

ẋ05~2E1U2!1/25U1
E

U
1O~E2!. ~3.4!

A suitable linear combination ofẋ0 andU is proportional to 1/U in the limit E→0. We therefore
try

a15
l

U
1mU. ~3.5!

Then

ȧ152
l

U2 U8ẋ01mU8ẋ05U8S 2
l

U
1mU D ~3.6!

if ẋ05U. Thusa252l/U1mU gives a solution of~2.24c!, and it is easily checked that~2.24d!
is also satisfied. Similarly we can solve Eqs.~2.24e! and ~2.24f!. So the general solution of Eqs
~2.24c!–~2.24f! is

a15
l

U
1mU, a252

l

U
1mU,

~3.7!

b15
s

U
1tU, b252

s

U
1tU,

wherel,m,s,t are arbitrary constants.
The constants of the motion take the following values:

Qa52Q̃a52s, 2Qb5Q̃b52l,
~3.8!

Ra52st, Rb52lm, R52~lt2ms!.

These values are generally nonzero because of the careful way the limitE→0 was taken, even
though previously these quantities were proportional toE.
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The remaining equation forx1 also needs special treatment. This equation is

ẍ15~UU8!8x11RU9, ~3.9!

whereR is the constant given in~3.8!. The previous solution had a particular integral proportio
to U, and one homogeneous solution proportional toẋ0 . WhenE50, andẋ05U, one homoge-
neous solution is stillU. But a new particular integral is required. Again the limiting proced
suggests that this should be proportional to 1/U, and this is correct. Finding a second homog
neous solution is as before, but withE50. The result is that the general solution of~3.9! is

x152
R

2U
1C1U1C2UE

X0

x0~ t ! dx08

U~x08!3
, ~3.10!

whereC1 andC2 are arbitrary constants.H15C2 , as before.
Note that in the zero energy, Bogomolny case, the orbits of the supergroup on the sp

solutions are four dimensional, rather than six dimensional. Only the coefficients ofU in ~3.7! and
~3.10! can be varied by the group action. This is consistent with the observation that the s
symmetry generatorQ1Q̃ produces no variation at all whenẋ05U anda1 , a2 , b1 , b2 , x1 all
vanish.

A further observation is the following. Suppose the fermionic variablesc1 andc2 take values
obtained by acting with the supergroup, starting from zero. In other wordsl5s50, and the terms
proportional to 1/U are absent. Then all the constants~3.8! are zero, and in particular there is n
inhomogeneous term in the equation forx1 . So x1 can be zero, although it need not be. In th
kind of solution the fermions have no backreaction at all on the bosonic variablesx0 andx1 . It is
perhaps rather generally true for Bogomolny-type solutions in supersymmetric theories th
fermions may have no backreaction on the bosons.

IV. N51 SUPERSYMMETRIC MECHANICS

Another example of a solvable supersymmetric mechanical model is that of a particle m
in one dimension withN51 supersymmetry~sometimes referred to asN5 1

2 supersymmetry!.3,11

The supersymmetry algebra is simply

Q 25
d

dt
. ~4.1!

The dynamical variables are a bosonic variablex(t) and a single fermionic variablec(t), taking
values inBe andBo , respectively. The Lagrangian is

L5 1
2ẋ

21 1
2ċc1aU~x!c. ~4.2!

a is an odd constant, an element ofBo . It is necessary fora to be odd, andL even, otherwise the
equations of motion are inconsistent. This model is a variant of the usual nontrivialN51 super-
symmetric mechanical models. Normally, such a model has two or more fermionic variab12

Here, one of these is replaced by the odd constanta.
Taking the variation ofL, ignoring total time derivatives, and shifting the variations to the l

gives

DL52Dx~ ẍ2aU8c!2Dc~ċ1aU !. ~4.3!

DL is required to vanish for anyDx in Be andDc in Bo , so the equations of motion are

ẍ5aU8c, ~4.4a!
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ċ52aU. ~4.4b!

As before, there is no ambiguity, providedB has an even number or an infinite number
generators. Note that Eqs.~4.4! are consistent, because both sides of~4.4a! are inBe , and both
sides of~4.4b! in Bo .

The formal action of the supersymmetry operatorQ on the dynamical variables is

Qx5c, Qc5 ẋ, ~4.5!

so ~4.1! is satisfied. Genuine variations of the dynamical variables are

dx5hc, dc5h ẋ, ~4.6!

whereh is an arbitrary infinitesimal odd constant. The corresponding variation ofL is

dL5h~ 1
2ẋċ1 1

2ẍc2aUẋ!. ~4.7!

Let us introduceV(x), satisfyingV85U. Then we can writedL as a total time derivative

dL5h
d

dt S 1

2
ẋc2aVD . ~4.8!

HenceL is supersymmetric, and the conserved supersymmetry charge is

Q5 ẋc1aV. ~4.9!

Using standard arguments, we also obtain the energy

H5 1
2ẋ

22aUc. ~4.10!

Its conservation follows from the equations of motion, together witha250.
We may again obtain a concrete realization of this model by supposing that the Gras

algebraB is B2 , with just two generators. Without loss of generality we may suppose thata is one
of these generators, and that the other isb. The algebra is then identical to that in Sec. II. Note th
if B had only one generator, thenac would be zero, and the model would become trivial.

We write the component expansion of the dynamical variables as

x~ t !5x0~ t !1x1~ t !ab, ~4.11a!

c~ t !5a~ t !a1b~ t !b, ~4.11b!

where x0 , x1 , a, b are ordinary functions. The Lagrangian has the expansionL5L01L1ab,
where

L05 1
2ẋ0

2, ~4.12a!

L15 ẋ0ẋ11 1
2ȧb2 1

2ḃa1U~x0!b. ~4.12b!

The equations of motion become

ẍ050, ~4.13a!

ẍ15U8~x0!b, ~4.13b!

ȧ52U~x0!, ~4.13c!
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ḃ50. ~4.13d!

These can be obtained as the components of Eqs.~4.4!. They are also the variational equation
obtained fromL1 andL0 , and, as before,L0 is redundant.

Equations~4.13! imply the conservation of

Qa5 ẋ0a1V~x0!, ~4.14a!

Qb5 ẋ0b, ~4.14b!

H05 1
2ẋ0

2, ~4.14c!

H15 ẋ0ẋ12U~x0!b, ~4.14d!

and these are the components ofQ andH.
It is straightforward to solve Eqs.~4.13!, starting with

x05lt1m, b5n, ~4.15!

wherel,m,n are arbitrary constants. The energyH0 is 1
2l

2. We now regardQa as a constant of
integration, obtaining

a5
Qa

l
2

1

l
V~lt1m! ~4.16!

as the solution of~4.13c!. Finally, treatingH1 similarly, we have

ẋ15
H1

l
1

n

l
U~lt1m! ~4.17!

so

x15
H1

l
t1X11

n

l2 V~lt1m!, ~4.18!

whereX1 is a constant. The general solution of the model involves six arbitrary constantsl, m, n,
Qa , H1 , X1 .

Let us now clarify how the supergroup acts in this model. The Lie algebra of the super
is obtained from the supersymmetry and time translation operators by taking coefficients inBo and
Be , respectively. It therefore has basis

Qa5aQ, Qb5bQ,
d

dt
,

d̃

dt
5ab

d

dt
. ~4.19!

The only nontrivial bracket is

@Qa ,Qb#522
d̃

dt
. ~4.20!

Acting with Qa andQb , we obtain from~4.5! two independent supersymmetry variations

dax5eac, dac5ea ẋ, ~4.21a!

dbx5ebc, dbc5eb ẋ, ~4.21b!
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wheree is now infinitesimal and real. Writingx andc in terms of components, we find

dax15eb, daa5e ẋ0 , ~4.22a!

dbx152ea, dbb5e ẋ0 , ~4.22b!

with all other variations vanishing. These are symmetries ofL1 , and trivially of L0 . In addition
there is symmetry under an infinitesimal time translation of all the dynamical quantities. Fin

there is symmetry under the mini-time-translation, with generatord/dt˜ . As before, an infinitesima
mini-time-translation is

Dx15e ẋ0 ~4.23!

with e real.
By considering how the supergroup generators act on the solutions of this model, we s

with the supergroup we may independently varym, n, Qa , X1 , but not the constants defining th
energyl andH1 . The orbits of the supergroup are therefore four dimensional, in general.

The solution as we have presented it does not make sense ifl50. This is the zero energy
Bogomolny case. IfH050 then ẋ050, so x0 takes a constant valuem, henceU and U8 take
constant valuesU(m) andU8(m). The general solution is then easily found to be

x05m, b5n, ~4.24a!

a52U~m!~ t2t0!, ~4.24b!

x15 1
2U8~m!nt21rt 1X1 , ~4.24c!

where m, n, t0 , r, X1 are constants of integration. The second energy constant isH1

52U(m)n. Supersymmetry transformations and time translations change the constantsr, X1 ,
and t0 . However, unlike in theH0Þ0 case, Eq.~4.22b! implies that the value ofb cannot be
changed, and the orbits of the supergroup are three dimensional rather than four dimensio

V. CONCLUSIONS

We have presented two supersymmetric classical mechanical models. By supposing t
dynamical variables take values in the Grassmann algebraB2 with two generators, we have
deconstructed the models into component form and obtained equations of motion which
explicitly solved. These equations are the variational equations of a LagrangianL1 of nonstandard
form, and in each case, the ‘‘body’’ variablex0 obeys a classical equation unaffected by t
fermionic variables. The supergroup, which is a genuine Lie group, generated from the sup
algebra of supersymmetries and time translations by tensoring withB2 , acts on the space o
solutions.

One could ask how the solutions would look if the dynamical variables were reconstr
from their components, so as to beB2 valued, or further combined into supermanifold dynami
variables. At first sight there is only a slight gain in elegance, but this needs more careful
It is also of interest to know whether the equations remain solvable ifB is a larger algebra.

The model discussed in Sec. IV involved an odd constanta. Possibly, Grassmann-value
constants are of use in other supersymmetric models. For example, it might be possible in
‘‘brane’’ models to have a nonreal cosmological constant.

One of the motivations for this work was to better understand the solitons that occur in
supersymmetric field theories. These are solutions of the classical field equations, with the
onic fields set equal to zero. They usually also satisfy first-order Bogomolny equations. It w
be much more satisfactory if they could be regarded as special cases of solutions whe
fermionic fields are nonzero. Our mechanical models suggest that the ‘‘body’’ fields of the s
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will be unaffected by the fermionic fields. But the general solutions will involve nonzero fe
onic fields coupled to the soliton, and in addition there can be nonzero bosonic fields with v
in the even, nonreal part of the Grassmann algebra.

The connection between the classical models discussed here and their quantized ver
also worth exploring. The Heisenberg equations of the quantized theory may be formally the
as the equations that we have solved, butx,ẋ andc,ċ need to obey canonical commutation a
anticommutation relations, respectively. It would be interesting to know whether the ge
classical solution describes a suitable limit of a quantum state.
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Stochastic quantum geometry within a „111… manifold:
A basic construction

Steven D. Millera)

University of Strathclyde, Glasgow, Scotland, United Kingdom

~Received 13 April 1998; accepted for publication 3 September 1998!

A bounded, globally hyperbolic, space–time manifoldM2 with topology I (t)
^ R is presented as a simple classical, deterministic, geometry, with ADM~111!
slicing via a lapse function and shift vectors. The Cauchy development is then
equivalent to the evolution of a spatial Riemann 1-metricb(x,0)→b(x,t) for a
bounded spatial intervalI (t)5@0,l # such thatx2x8,5 l for all x,x8P(t) for all
tPR. The 1-metric is considered a parametrized, stochastically fluctuating variable
$b(x,t)%PRiemm(I ) for some critical~microscopic! correlation scalel, where
Riemm(I ) is the space of all 1-metrics onI. If the metric fluctuations are con-
strained by a scale-dependent probability kernel or density distribution on@0,1#,
then a Fokker–Planck equation can be developed for the Cauchy evolution of the
kernel. The stationary~Cauchy invariant! equilibrium limit solution is obtained.
The equilibrium limit correlationŝb(x,t)b(x8,t)& at second order derived from
the stochastic model, can be directly identified with the general, well-known form
of the metric two-point~equal time! correlations obtained from linearized general
relativity treated as a quantum field theory. The metric diffusion coefficients of the
stochastic model are then correctly identified. The uncertainty relationldb.5 l *
for nonzero metric fluctuationsdb, emerges from the solution and is a necessary
condition for the kernel to be constrained on@0,1#. The 1-metric fluctuations are
exponentially damped or amplified as the spatial intervalI 5@0,l # is expanded or
contracted with respect to the Planck lengthl * . © 1999 American Institute of
Physics.
@S0022-2488~99!01601-1#

I. INTRODUCTION

The essential idea behind stochastic quantization schemes is to reformulate quantum m
ics or quantum field theory as the thermal-equilibrium limits of a hypothetical stoch
process.1–3 One might consider this as a third approach to quantization, in addition to the sta
canonical and path integral methods. The purpose of this stochastic interpretation is to fi
unknown physical origins of quantum fluctuations by replacing or reformulating quantum the
with theories based on classical stochastic dynamics. Then-point equal time correlation or Green’
function of quantum field theory are identified with the thermal equilibrium correlations of
stochastic process. The stochastic interpretation has its roots in the formal similarity betwe
linear Schro¨dinger equation and the linear diffusion equation for Brownian particles. The Sc¨-
dinger equation is essentially a diffusion equation in imaginary time withD5\/2m playing the
role of a diffusion coefficient that vanishes for classical~large! m. Both Bohm and Nelson4,5

formulated stochastic interpretations of quantum mechanics in real time. Bohm attemp
replace quantum mechanics with a classical stochastic dynamics via hidden variables. The t
of Bohm and Nelson remain interesting from the point of view of assigning a stochastic inte
tation to quantum fluctuations. A major development in stochastic quantization is due to Par
Wu,1–3 which gives quantum mechanics as a thermal equilibrium limit of a hypothetical stoch

a!Correspondence address: 142 Cameron Drive, Kilmarnock KA3 7PL, Scotland, United Kingdom. Electronic
101551.1243@Compuserve.com
7510022-2488/99/40(2)/751/15/$15.00 © 1999 American Institute of Physics
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process. Unlike Nelson’s approach in real time, the Parisi–Wu scheme is formulated with r
to a fictitious time variable rather than ordinary time. Both theories are based on a Mark
process of the Weiner type with Gaussian white noise. Here, ad-dimensional quantum system
equivalent to a (d11)-dimensional classical system with random, stochastic fluctuations. The
time variable is treated as a computational convenience with no direct physical content. The
formulations of quantum mechanics and quantum field theory have so far utilized imaginary
or Euclidean manifolds via Wick rotations in order to have better defined path integrals
theories of Bohm and Nelson are formulated in ordinary real time and recently some author
also formulated viable stochastic quantum mechanical approaches in terms of ordinary Mink
space coordinates, keeping real time within the formalism.6–8 These theories demonstrate that t
use of imaginary time or Euclidean manifolds is not inevitable. Despite success in dealing
quantum fields and gauge theories and the emergence of results not obtainable via conve
methods, stochastic interpretations have not fully been applied to the problem of the quant
of gravity and geometry. It is possible that the stochastic method may also have the poten
extend the scope of quantum gravity and geometry.

The current approaches to quantum gravity and quantum geometry are~i! canonical quantum
gravity and the developments involving loop space and Ashtekar variables;9–12 ~ii ! the Euclidean
path integral approaches;13 and~iii ! superstring theory and M~atrix! theory.14–16Despite progress
unresolved mathematical, technical, and conceptual difficulties remain. It is extremely diffic
construct any self-consistent interpretation of quantum gravity. A review of the current statu
difficulties can be found in Ref. 17. Despite these ongoing problems, key physical concepts
identified, which lie at the heart of quantized gravity and geometry. These are metric fluctu
and the existence of a lower length scale truncation ofl * 5(G\/c3)1/2510233 cm, the Planck
length. Beyond this scale, the deterministic, geometrical structure of space–time is lost. Th
model-independent feature of quantum gravity and many different arguments give rise t
same conclusion.18 In classical general relativity, thed-dimensional space–time manifoldMd is
pseudo-Riemannian, generally globally hyperbolic,10 and is assumedC2 differentiable with a
casual, Lorentzian metric structureguv(x)5guv(x,t). The manifold is smooth and continuou
down to zero length scales, with the existence of infinitesimal differential limits on space and
such thatdxu→0. However, as pointed out in Ref. 19, all known physical systems pos
inherent noise at some critical length scale with the manifestation of fluctuation-correlatio
havior. If a vacuum space–time manifoldM4 with metricguv(x), describing a static gravitationa
field is itself considered as a fundamental physical system, the solutionsguv(x) of the vacuum
Einstein equations (Ruv50) should exhibit ‘‘geometric noise’’ or a strong fluctuation-correlati
behavior at a critical length scale or correlation length, of the order of the Planck scale.

Wheeler20,21 originally introduced the concept of geometrodynamics or space–time qua
‘‘foam’’ and demonstrated that geometry itself must fluctuate near the Planck length, as exh
by quantum mechanical fluctuations in the metric tensor itself of order^g&;( l * / l ), wherel is the
spatial resolution. Clearly forl . l * , the fluctuationŝg& rapidly vanish and can be ignored sinc
^g&;10220, even on the nuclear scale. This suggests that asl→ l * , gravity exhibits a strongly
coupled fluctuating phase~the foam! on which there are no correlations on a large scale.
lengthl * seems to play a role in space–time geometry similar to the role played byc in relativistic
mechanics.18 One can get closer and closer toc but never reach it; there are no velocities beyo
c. Similarly, for any geometric variationdx5ux2x8u, one can get arbitrarily close tol * , but the
uncertainty relationdx.5 l * strictly holds; there are no distances belowl * .

I propose that stochastic analysis may be a viable mathematical framework within wh
interpret and formulate descriptions of basic features of metric fluctuations, discretization
foam structure in geometry and gravity. Rumpf22 presented a basic stochastic treatment for
gravitational field using real time. Most recently, Moffat19 has considered treating the gravitation
field stochastically. For strong metric fluctuations, it is shown, via stochastic Raychaudhu
Langevin equations, how caustic singularities in space–time structure can potentially be a
for congruences of converging geodesics and collapsing stars. This illustrates the potentia
interpretation. In this paper, the emphasis is on the conceptual issues, and future potentia
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than intricate technical subtleties, focusing on well-established key physical consequen
quantum geometry~metric fluctuations and Planck length truncation!. It is felt, however, that the
points addressed here are a necessary prerequisite toward mature stochastic models of
geometry.

II. VACUUM QUANTUM FLUCTUATIONS IN SCALAR FIELD THEORY AND LINEARIZED
EINSTEIN GRAVITY

We briefly consider scalar quantum field theory on a flat manifold (M4,hab) and estimate the
typical magnitude of a quantum fluctuation when a massless spin-0 scalar fieldw(x) is probed at
a physical length scalel, on a local inertial frame. The result can then be extended to linear
Einstein gravity for massless spin-2 fields. These basic and heuristic aspects of quantum fie
be adequate in the form presented and useful later when we come to consider the equ
correlations. Scalar field theory is paradigmatic and well known, so for our purposes we will
only the key expressions. The Hamiltonian isH5 1

2* d3x@(dw(x,t)/dt)21(“w)2#. The free field
equation ishw(x)50. Quantizing, the functional Schro¨dinger equation is23 i\ ] tC„w(x),t)…
5HC„w(x),t)…. The quantum field theoretic stateC@w(x),t#5C@w(x,t)#5C@w(x)# is a func-
tion of real timetPR, but a functional of the fieldw~x!. By comparison and analogy with th
ordinary quantum mechanical simple harmonic oscillator, the ground state or vacuum func
for the quantum field theory is immediately of the form

C0[w~x,t#;expF2
1

2\
* d3x w~x!~2¹2!1/2w~x!Gexp@2 iE0 /\#. ~2.1!

Here (2¹2)1/2 is the formal square root of (2¹2), and is interpreted as a pseudodifferent
operator. If we take a Fourier transformF@¹2#52k2 thenF@(2¹2)1/2#5iki . The ground state
energyE5 1

2\ tr (2¹2)1/2 is formally infinite. However, this is of no concern: the key feature
that the ground state wave functional is peaked at“w50.

Suppose now the scalar fieldw~x! is probed at a scalel. We define the correlation function o
two-point function aŝ w(y)w(x)&5^C0uw(y)w(x)uC0&. We also define an object@Dw# l as

@Dw# l5@^w~x8!w~x&#1/2
l 5ux2x8u . ~2.2!

This is the quantum fluctuation probed at distancel 5ux2x8u. The correlator iŝ w(x8)w(x)&
2^w(x8)&^w(x)&, but at the lower-energy length scales, one can take the correlations to be
so that̂ w(x8)w(x)&2^w(x)&^w(x8)&;e for infinitesimal~but nonzero! e. Then~2.2! is justified.
The best way to determine@Dw# l is to move to momentum spacew~k! so that

w~x!5E d3k

2p3 w~k!exp~ ik–x!. ~2.3!

Then the vacuum wave functional isC0@w(k)# is

C0@w~k!#;expF2
1

2\ E d3x

2p2 kw~k!2G , ~2.4!

and the momentum two-point function is^w(k)w(k)&5@\(2p)3/k1#d3(k12k2). The position
two-point correlator then follows from the inverse Fourier transform:

^w~x8!w~x!&5E d3k

2p3

\

k
exp@ ik~x2x8!#5

2\

~2p!3ux2x8u2 . ~2.5!

Hence @Dw# l5(2\)1/2/2p l;A\/ l , where l 5ux2x8u. Quantum fluctuations therefore only be
come significant on small physical scalesl. The characteristic size of the quantum fluctuationsDw
about the average fieldw depend on the physical length scalel being probed. Vacuum fluctuation
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in the gravitational field can be estimated in a similar manner and we can make use of Eq~2.5!.
The linearized Einstein–Hilbert actionSLEH for gravity coupled to matter follows from expandin
the Ricci scalar to second order24 with gab(x)5hab(x)1gab(x):

SLEH52
l

32p l
*
2 E d4x gab~x!hgab~x!1E d4x gab~x!FQab2

1

2
QhabG1O~g2!. ~2.6!

The field equations are~gauge fixed! linear wave equations for a massless spin-2 fieldg:

hgab~x!52
16p l

*
2

\ FQab2
1

2
QhabG1O~g2! ~2.7!

or hgab(x)50 in vacuum. These equations have a simple retarded potential and plane
solutions of the tensor formgab(x)5Hab exp(iSmkmxm) for m51–3, describing massless spin
gravitons with two polarization states. Since the linearized Einstein action is quadraticg,
quantization proceeds in analogy with the scalar field. This leads to two-point correlation fun
^g(x)g(x8)&, ^gab(x)g(x8)&, and ^gab(x)gcd(x8)&. If we set Quv50, we can calculate the
trace–trace correlator̂g(x)g(x8)& using ~2.6! from the scalar field case so that^g(x)g(x8)&
5(16p l

*
2 /\)^w(x)w(x8)&. The scalar correlation contains the essential quantitative and qu

tive features. Then, at equal times,

^g~x8,t !g~x,t !&5
16p l

*
2

\

2\

~2p!2ux2x8u2
5S 8

p D l
*
2

ux2x8u2 . ~2.8!

When we probe geometry at a distancel, the vacuum quantum metric fluctuations@Dg# l are

@Dg# l5@^g~x,t !g~x8,t !&#1/2
l 5ux2x8u;^g~x,t !&;~ l * / l !, ~2.9!

or @Dg# l 5(8/p)1/2( l * / l ). These become significant only as we approach the Planck le
l→ l * and rapidly damp out asl increases, even at the nuclear scale, wherel * / l;10220.

III. THE ADM „311… AND „111… SLICING OF SPACE–TIME

Let (Md,gab) be a generic, globally hyperbolicd-dimensional space–time; then (Md,guv) is
stably casual and permits a foliation of (d21)-dimensional space-like hypersurfaces$S%. A global
time functiont[R can be chosen such that each (d21)-geometry of constanttPR is a space-like
Cauchy surfaceS with parametrizationS(t). The ~fixed! topology of the space–time is the
Md;R3S. A point pPM4 can be locally represented asx5(x,t) where xPS(t) and x
5(x1 ,x2 ,...,xd21) and tPR. A crucial feature of global hyperbolicity is that it permits a we
defined initial value ~Cauchy! problem for the Green’s function or two-point propagato
$G(x,x8)% or ^w(x)w(x8)& in classical and quantum field theory, such as in~2.6!. Solutions of the
massless wave equations for scalars, photons, and gravitons~hw50, hAa50, or hgab50) must
vanish outside the forward light cone.25

Given d54, for example, then explicitly, the ADM~311! decomposition of the 4-geometr
„M4,guv(x,t)… consists of the following geometric data26

~i! The induced fundamental form or Riemmann 3-metrichi j (x,t) on each S(t), for
i , j 51,2,3 andxPS(t) andtPR. This is the intrinsic geometry of the 3-space andhi j is positive
definite.

~ii ! The manner in which eachS is embedded in (M4,guv). This is ascertained once we a
able to compute the spatial part of the covariant derivative of the normaln to S(t). If “

is the four-dimensional connection of (M4,guv), one can define the extrinsic curvature tens
Ki j [2“ jni , so that symmetric Ki j require symmetric “. Alternatively,
Ki j [2 1

2(Lnh) i j , whereLn is the Lie derivative along the normal toS(t).
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~iii ! The manner in which the coordinates are propagated. One defines the vector (N,Ni)
5(N,N1,N2,N3)dt connecting (xi ,t)5(x,t) with the point (xi ,t1dt)5(x,t1dt).

Given the surfacex05t and surfacex05t1dt, the quantityN dt5dt defines a displacemen
normal to surfacex05t. Here,N is the lapse function andNi are the shift vectors. TheNi dt yield
the displacement from the point (t,xi) to the base of the normal tox05t through (t1dt,xi). The
full metric can be expressed as

ds25guv dxu dxv

5hi j ~dxi1Ni dt!~dxi1Nj dt!2N2 dt dt

52~N22NiN
i !dt21Ni~dxi dt1dt dxi !1hi j dxi dxj . ~3.1!

Then g0052(N22NiN
i), gi05g0i5Ni , gi j 5hi j , and Ki j 5(2] thi j 1Ni ; j1Nj ; i). The ‘‘gauge

choice’’ Ni50 eliminates the off-diagonal components, so that

ds252N2 dt21hi j dxi dxj . ~3.2!

The Cauchy evolution fromS~0! to S(t) can be interpreted as the change of Riemmann 3-me
from hi j (x,0) to hi j (x,t) so thathi j is the dynamical variable. This is the motivation for Ham
tonian general relativity and~pre-Ashtekhar! canonical quantum gravity. We are primarily inte
ested in the induced Riemmann metrichi j (x,t) on S(t) and setN5const. For the 3-geometry,

ds25hi j ~x,t !dxi dxj5h11~x,y,z,t !dx21h22~x,y,z,t !dy21h33~x,y,z,t !dz2. ~3.3!

Given S, one denotes26 by Riemm~S! the space of RiemannianC` metricshi j on S, andDiff~S!,
the group of diffeomorphisms onS. If fPDiff~S! thenf:S→S, and the groupDiff~S! preserves
the metric structure. Ifhi j PRiemm(S) andfPDiff~S! thenf* h„f(x),t)…5h(x,t) for xPS and
tPR, where f* is the pullback off. The groupDiff~S! acts as a transformation group o
Riemm~S!. Its action maps (f,h) to f* h for all bPRiemm~S! andfPDiff~S!. Displacementsds2

are preserved. The space of all orbits ofDiff~S! is S~S!:

S~S!5Riemm~S!/Diff~S!. ~3.4!

The spaceS~S! is ~Wheeler’s! superspace.26 Hence, for allhPRiemm(S), one considers all
metrics derived fromh, by the group elementsfPDiff~S!. If two 3-metricsh andh8 are on the
same orbit, then there isf of S such thatf* h5h8, so thath andh8 are isometric. Superspac
S~S! is then the set of geometries ofS that are equivalence classes of isometric Riemann
metrics.

To make the analysis as clear and simple as possible, we can letd52, giving a ~111!-
dimensional manifold with topologyM25I (t)3R, so thatI (t) for any tPR is an interval and
xPI (t). This still embodies the essential features we wish to elucidate. The~111! decomposition
procedure of the metricgab5(g00,b) is as before:

ds25b~x,t !dx22N2 dt2, ~3.5!

so that along the one-dimensional spatial manifoldI (t), we have(3)ds25b(x,t)dx2. TheI (t) can
be a closed interval or a circleS1. For a bounded interval,I (t)5@0,l #.R so that for anyx,x8
PI (t); then ux2x8umax5l or ux2x8u, l . The spatial metricb is then simply a scalar function
b(x,t) for any xPI (t) and tPR and b(x,t8)5b(x,t) for all t8, tPR. The groupDiff(I ) or
Diff„I (t)… is the group of diffeomorphisms on the intervalI (t) andRiemm(I ) is the space of all
metrics b(x,t) on I (t) for all xPI (t) and tPR, with fPDiff(I ). As before,f* b(f(x),t)
5b(x,t) and a ‘‘superspace’’ of 1-metricsS (I )5Riemm(I )/Diff(I ).

All known physical systems possess noise at some critical length scalel with emergence of
correlation–fluctuation behavior. For example, in Ref. 27, it is suggested that Einstein’s equ
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are macroscopic ‘‘state equations,’’ arising from such a deeper microsubstructure of the cl
geometry itself. In the same way, a homogeneous gas with macroscopic temperature and p
is comprised of discrete atoms. Linearized Einstein gravity treated as a quantum field theo@see
Eq. ~2.10!#, suggests that forx,x8PI (t) with ux2x8u,5 l and tPR, ^b(x,t)b8(x8,t)&
;( l * / l )2 at equal time. Correlations emerge asl→ l * , so, depending onl, the 1-metricb(x,t)
can evolve from a fixed, deterministic variableb into a randomly fluctuating~stochastic! variable
such thatb→^b&. Essentially, a simple quantum~111! space–time will be interpreted as a cla
sical space–time subject to random stochastic fluctuations~in real timetPR). This first requires
a reasonable metric fluctuation probability interpretation and measure on the bounded real i
I (t)5@0,l #.

IV. PARAMETRIZED STOCHASTIC FLUCTUATIONS OF THE RIEMANN 1-METRIC

The functionb(x,t) is redefined as a random, stochastic variable that appears or evolv
being deterministic under specific conditions. Following Refs. 27–29, we briefly addres
general theory of random variables and then apply the formalism to the Riemmann 1-m
function b(x,t) for the ~111! manifold M2 with xPI (t) and tPR. If V is a generic set then a
s-algebraF on V is a familyF of subsets ofV with the following properties:~i! BPF; ~ii ! if
APF thenAcomPF, whereAcom5V/A is the complement ofA in V; ~iii ! if A1 ,A2 ,...,PF then

A5 ø
i 51

`

AiPF. ~4.1!

The pair ~V,F! is the measurable space. A probability measureP on ~V,F! is a function
P:F→@0,1# such that~a! P~B!50 andP~V!51 ~b! for A1 ,A2 ,...,PF and for $Ai% i→1 disjoint
~i.e., AiùAj5B if iÞ j ); then

P~ø
i

Ai !5(
i
P~Ai !. ~4.2!

The triplet~V,F,P! is the probability space. The subsetsSof V that belong toF areF-measurable
sets. In the probability interpretation, these sets are called events, and we use the interp
P(S)5‘‘probability that eventS occurs.’’ If P(S)51, then the probability is absolute or dete
ministic. A random variableQ is Q:V→Rn. A generic, stochastic process in time$Qt% tPR is a
parametrized collection of random variables, defined on~V,F,P! and assuming values inRn. For
example, the process may depend on two variables (t,v) on ~V^R! so that (t,v)→Q(t,v) from
~R3V! ontoRn. As t evolves, thenQ(t,v) is a random Brownian path. For a random variableQ
on @0,̀ ! or R, the distribution functionF of Q is F(q)5P@Q,5q#, with 0,5F,51;
limq→0 F(q)→0; limq→` F(q)51. The variableQ has the densityp(q) if

F~q!5E
0

q

p~v !dv, ;q, ~4.3!

and the expectationE @q# is

E @q#5E
R
qp~q!dq. ~4.4!

If the stochastic process$Q(v,t)% is identified with $b(x,t)% for bPRiemm„I (t)…,R and x
PI (t) and tPR, then

$b~x,t !%5$b1~x1 ,t1!,b2~x2 ,t2!,...,bk~xk ,tk!,...% ~4.5!
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is the set of parametrized, random metric fluctuations or Brownian paths about an initial
ministic metricb(x,t) with xPI (t), tPR, and $x1 ,x2 ,...,xk ,...%PI (t)5@0,l # and Cauchy de-
velopment t,t1,t2,¯,tk,¯ . These metric fluctuations all lie on the same orbitS(I )
5Riemm(I )/Diff(I ). For the classical~111! manifold, b(x,t) is deterministic so thatb(x,t)
5b(x,t1)5b(x,t2)5¯ is a deterministic sample path generated by the Cauchy developm
The density for the fluctuating metric is a functional ofb(x,t), so that we identifyp(q) with
Kvb(x,t) b . The differential variation in b(x,t) is then simply db(x,t)5]k]xb(x,t)dx
1] tb(x,t)dt. For classical, determinstic geometry, the first term is zero so thatdb(x,t)
5] tb(x,t)dt. The Kvb(x,t) b is a scalar on@0,1# and normalized. Note the notationv¯b, for
functionals ofb(x,t). The density or kernelKvb(x,t) b is normalized on@0,1# as

E
Riemm~ I !.R

Kvb~x,t !bdb~x,t !51, ~4.6!

for all xPI (t) and tPR. The kernelKvb(x,t) b and the normalization is invariant underf
PDiff(I ), in thatf* Kv l :b(f(x),t) b5Kv l :b(x,t) b . SinceI (t)5@0,l #, we can include the depen
dence onl via the notationKv l :b(x,t) b so thatK→1 and is deterministic for somel→ l c . The
normalization and expectationsE @b(x,t)#[^b(x,t)& and E @Cvb(x,t) b#[^Cvb(x,t) b& for a
functionalCvb(x,t) b are defined as~at a giventPR)

E
Riemm~ I !

Kv l :b~x,t !bdb~x,t !51, ~4.7a!

E @b~x,t !#5E
Riemm~ I !

b~x,t !Kv l :b~x,t !bdb~x,t !, ~4.7b!

E @Cvb~x,t !b#5E
Riemm~ I !

Cvb~x,t !bKv l :b~x,t !bdb~x,t !. ~4.7c!

The expectations are taken as invariant under the group actionfPDiff(I ). If the kernel
Kv l :b(x,t) b is invariant under all time shifts or Cauchy developmentI (t)→I (t1dt)→I (t
12dt)→¯, then K is stationary over the Cauchy evolution. If a fluctuating metric has va
b8(x,t) for x8PI (t8) and t8PR and valueb(x,t) for xPI (t) and tPR with t.t8, then the
transition kernel isKv l :b(x,t)ub8(x8,t8) b . Of course,I (t8)5I (t)5@0,l # and ux2x8u,5 l . For
the smooth, classical, deterministic~111! geometry, we always haveKv l :b(x,t)ub8(x8,t8) b50
and Kv@ l :b8(x8,t)ub8(x8,t8) b51. GivenfPDiff(I ), we take it to hold thatK and expressions
derived fromK are invariant under the action off for all xPI (t) andtPR. At some microlength
scalel, the transition kernal is defined on@0,1# for the parametrized stochastic process$b(x,t)% for
all xPI (t) and tPR.

V. CAUCHY EVOLUTION OF THE KERNEL: DERIVATION OF A FOKKER–PLANCK
EQUATION

The quantum fluctuations inI (t) will be modeled as a stochastic Weiner–Markov process30,31

in real timetPR on the~111! Lorentzian manifoldM2. Quantum fluctuations of conventiona
fields ~scalars and gauge! are considered a Markov–Weiner process in Refs. 1–3 so this shou
viable for the metric, at least within a linear or quadratic approximation. A Markov process h
memory of its past for a given present so that only the initial data is required for prediction o
future evolution. This fits in nicely with the notion of classical deterministic Cauchy developm
for a finite time into the future. For data on a general spacelike surfaceS~0! at t50, the state at
S(t) can be ascertained. ForS(t)5I (t) and for initial stochastic probabilityKv l :b(x,t) b for x
PI (t) and tPR, only the future probability can be deduced from an iterative Chapm
Kolmogorov integral. Ast→`, we are interested in the stationary or~thermal! equilibrium limit
solution and its associated correlations.
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Let b8(x8,t) be the scalar classical metric component atx8PI (t) andtPR, which fluctuates
to b(x)5b8(x8,t)1db5b(x8,t1dt) at t5t1dt for small Cauchy variationdt or I (t)→I (t
1dt). At a length scalel, the transition probability kernel on@0,1# would be denotedKv l :b(x,t
1dt)ub8(x8,t) b . The Cauchy evolution is also smooth since we take it thatdt.t* , the Planck
time. Since the fluctuations are taken to be Markovian, then in the limit of infinitesimal Ca
variationdt, the Kolmogorov integral is

Kv l :b~x,t1dt !b5E db8~x8!Kv l :b~x,t1dt !ub8~x8,t !bKv l :b8~x8,t !b . ~5.1!

The integral is understood to be over the space of all metrics onI. Given that we have the initia
data that the metric has the valueb8(x,t) with respect tox8PI (t), then we predict the future
probability with respect toI (t1dt), that the metric randomly fluctuates to someb(x,t1dt); the
past values with respect toI (t2dt) are considered irrelevant to the future evolution. All Browni
sample paths or histories are equivalent. Classically, Eq.~4.1! reduces to 05~0!3~1!, for a clas-
sical metric componentb8(x8,t) that has no fluctuations. The purely deterministic Cauchy e
lution or sample path isb8(x8,t)→b8(x8,t1dt)5b8(x8,t), since the Cauchy development
built into the Riemann 1-metricb(x,t). Of course, one cannot guarantee that both diffeomorph
invariance and the Markov assumption are not lost at the Planck length, however, it will be
that they still hold very near the scale.

Given Kv l :b(x,t1dt) b in the limit of infinitesimaldt, one can define thesth-order~diffu-
sion! functionalsDsv l :b8(x8,t) b . This is always possible30,31 for a generic Weiner–Markov pro
cess$K% on @0,1# obeying~5.1!:

Dsv l :b~x8,t !b5@s~s21!~s22!¯#21~dt !21u

3E Kv l :b~x,t1dt !ub8~x8,t !bS )
j 51

s

ub j (xj2b8(x8)u D db(x). ~5.2!

Let G:R→R or G:Riemm(I )→R, be a functional ofb(x,t) at sometPR so thatGvb(x) b
5Gvb(x,t) b . The parametrized, stochastic, random 1-metrics areb j (xj ,t), for all xjPI (t) and
tPR. The functional Taylor expansion ofGvb(x) b with respect toGvb8(x8) b is

Gvb~x!b5Gvb8~x8!b1 (
s51

`

@s! #21S )
j

s

ub j~xj !2b8~x8!u
d

db j~xj !
D Gvb8~x8!b . ~5.3!

The functional derivatives onI (t) for xjPI (t) are defined as

)
j 51

1
d

db j~xj !
5

d

db1~x1!
, ~5.4a!

)
j 51

2
d

db j~xj !
5

d2

db1~x1!db2~x2!
, ~5.4b!

)
j 51

3
d

db j~xj !
5

d3

db1~x1!db2~x2!db3~x3!
. ~5.4c!

For example, second-order 3-metric functional derivatives]2/]hi j ]hkl occur in the Wheeler–
DeWitt equation for the wave functionC@h,f# of the universe.26,32 To second order, the expan
sion of Gvb(x) b is
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Gvb~x!b5Gvb8~x8!b1~b1~x1!2b8~x8!!
d

db1~x1!
Gvb8~x8!b

1
1

2
~„b1~x1!2b8~x8!…!~„b2~x2!2b8~x8!…!

d2

db1~x1!db2~x2!
Gvb8~x8!b1¯ .

~5.5!

We can derive a stochastic integrodifferential equation for the functional expectation^Gvb(x) b&
to all orders ins, and from this equation derive moment relations to any order. Multiply Eq.~5.1!
by Gvb(x) b and integrate overdb(x). TheGvb(x) b can be placed under the integral* db8(x8)
and then replace by the right-hand side of the Taylor series expansion~5.3! for G@b(x)#:

^Gvb~x!b& t1dt[^Gvb~x,t1dt !b&

5E db~x!Gvb^x!bKv l :b~x,t1dt !b

5E E FGvb8(x8) b1 (
s51

` S S )
j 51

s

ub j (xj )2b8(x8,t)u D
3S )

j 51

s
d

db j (xj )
D Gvb8(x8) b D G

3Kv l :b~x,t1dt !ub8~x8,t !bKv l :b8~x8,t !bdb~x!db8~x8!. ~5.6!

Using the normalization* Kv l :b(x,t1dt)ub8(x8,t) bdb8(x8)51 and Eq.~5.2! for Dsv l :b(x,t) b
gives a simpler expression:

^Gvb~x!b& t1dt5^Gvb~x!b& t1@dt# (
s51

` F E db8~x8!Kv l :b8~x8,t !b

3S )
j 51

s
d

db j~xj !
@Gvb8~x8!bD j v l :b8~x8,t !b# D G . ~5.7!

Note that^Gvb(x) b& t[^Gvb(x,t) b&. Since^Gvb(x) b& t1dt2^Gvb(x) b& t5dt ] t^Gvb(x) b&, the
differential equation satisfied by the functional expectation^Gvb(x) b& to all orders ins over the
Cauchy evolution ofb(x,t)5b(x) is

]^Gvb~x!b&
]t

5 (
s51

` K Ds~ l !S )
j 51

s
d

db j~xj !
Gvb~x!b D L

5 K D1~ l !
d

db1~x1!
Gvb~x!b L 1 K D2~ l !

d2

db1~x1!db2~x2!
Gvb~x!b L 1¯ .

~5.8!

In the equilibrium limit] t^Gvb(x) b&50. The functionalDsv l :b(x,t) b is taken as homogeneou
over all xPI (t) and tPR. The fundamental nature of the fluctuations in geometry should
equivalent within any small region anywhere in the universe and for any time. Hence,Ds( l )
5const andDs( l )→0 asl increases beyond the fluctuation–correlation length scale. The co
cients should depend only on the relative positionsl 5x2x8 or length scale of the fluctuations
and not on the location of the fluctuation itself.

Let xj5x1 ,x2 ,x3PI (t). If we set Gvb1(x,t) b5b1(x1 ,t) then Gvb(x,t) b
5b1(x1 ,t)b2(x2 ,t) and Gvb(x,t) b5b1(x1 ,t)b2(x2 ,t)b3(x3 ,t)¯ in Eq. ~4.8! we obtain mo-
ment relations to any orders:

] t^b1~x1 ,t !&52^D1~ l !&5D1~ l !, ~5.9a!
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] t^b1~x1 ,t !b2~x2 ,t !&52^b2~x2 ,t !D1~ l !&1^D2~ l !&, ~5.9b!

and so on. To second order, the coefficientD15D1( l ) is a ‘‘drift’’ while D2( l ) is a ‘‘diffusion.’’
It is now possible to derive differential equations to all orders for$Kv : lb(x,t) b% at length

scalel, where 0,K,1, and deduce the functional dependence onl. If we take the expectation o
the DiracD functionalG@b(xj )#5D@b(x)2b j (xj )#, then

^Gvb j~xj !b&5^D@b~x!2b j~xj !#&

[^D@b j~xj !2b~x!#&

5E Gvb j~xj !bD@b~x!2b j~xj !#db j~xj !5Gv l :b~x,t !b . ~5.10!

Note that we use the notation ‘‘D @b(x)2b j (xj )# ’’ here to denote the DiracD function rather than
the conventional ‘‘d@b(x)2b j (xj )# ’’ in order to avoid potential confusion with differential metri
variationsdb. If this choice is inserted into Eq.~5.8!,

]

]t
^@D~b~xj !2b~x!!#&

[] tKv l :b~x,t !b

5 (
s51

` FDs~ l !S )
j 51

s E db j~xj !
d

db j~xj !
D@b~x!2b j~xj !#Kv l :b~x,t !b D G

5E D1~ l !E db1~x1!
d

db1~x1!
D@b~x!2b1~x1!#Kv l :b~x,t !#

1D2~ l !E db1~x1!E db2~x2!
d2

db1~x1!db2~x2!

3D@b~x!2b1~x1!#D@b~x!2b2~x2!#Kv l :b~x,t !b1¯ . ~5.11!

Integrating ~by parts! and using the filter properties ofD@b(x)2b j (xj )# gives a differential
equation forKv l :b(x,t) b to all perturbation orders ins:

]

]t
Kv l :b~x,t !b5 (

s51

`

Ds~ l !S )
s51

s
d

db j~xj !
Kv l :b~x,t !b D 52 f Kv l :b~x,t !b . ~5.12!

The equation can be expressed as

]

]t
Kv l :b~x,t !b5 f Kv l :b~x,t !b5 (

s51

`

f sKv l :b~x,t !b , ~5.13!

where the functional differential operatorf is defined by the infinite expansion:

f 5 (
s51

`

Ds~ l !S )
j 51

s
d

db j~xj !
D 5 (

s51

`

f s . ~5.14!

Expanding out Eq.~5.12! in powers ofs gives
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]

]t
Kv l :b~x,t !b5S (

s51

`

f sDKv l :b~x,t !b

5D1~ l !
d

db1~x1!
Kv : l :b~x,t !b1D2~ l !

d2

db1~x1!db2~x2!
Kv l :b~x,t !b1¯ .

~5.15!

If we truncate the expansion at orders52 in ~5.15!, we then obtain linear~Fokker–Planck!
equations for kernels$Kv l :b(x,t) b%.

VI. THE EQUILIBRIUM LIMIT SOLUTION AND ITS CORRELATIONS

Stationary or equilibrium solutionsKEv l :b(x) b remain invariant under Cauchy developme
I (t8)→I (t) for all t.t8PR andxPI . We also require that (] tK)50. One can also find the ful
time-dependent solution and take the limitt→` to obtain the equilibrium, stationary solutionKE

as Kv l :b(x,t) b5exp(ft)KEv l :b(x) b . The main idea behind stochastic quantization is to iden
the ~thermal! equilibrium or stationary correlations of a stochastic model with the equal
n-point Green’s functions or correlations of the corresponding quantum theory. The stati
Fokker–Planck equation for the Cauchy-invariant fluctuation processes$K% in the geometryI (t)
for all tPR is then

S D1~ l !
d

db1~x1!
KEv l :b~x!b1D2~ l !

d2

db1~x1!db2~x2!
KEv l :b~x!b D50. ~6.1!

In the equilibrium limit, any functionalGvb(x) b satisfies Eq.~5.8!, with ] tGvb(x) b50,

K D1~ l !
d

db1~x1!
Gv l :b~x!b L 1 K D2~ l !

d2

db1~x1!db2~x2!
Gv l :b~x!b L 50. ~6.2!

Given a generic functional derivatived/dq(x), there exists the trivial vanishing integra
* dq(x)@d/dq(x)#50. It will be useful to express the stationary Fokker–Planck equation~6.1! in
the equivalent form

E db1~x1!D1~ l !S d

db1~x1! DKEv l :b~x!b1E db1~x1!E db2~x2!D2~ l !

3S d2

db1~x1!db2~x2! DKEv l :b~x!b50. ~6.3!

The equilibrium solution is easily found to be

KEv l :b~x!b5S D1~ l !

D2~ l ! DexpF2S D1~ l !

D2~ l ! Db~x!G , ~6.4a!

KEv l :db~x!b5S D1~ l !

D2~ l ! DexpF2S D1~ l !

D2~ l ! D db~x!G , ~6.4b!

where db(x)[b(x)2b j (xj ) for any xPI and xjPI with ux2x8u,5 l . As D1( l )→0 and
D2( l )→0 by appropriately varying the resolution or interval boundaryl sinceI 5@0,l #, the fluc-
tuation distribution vanishes, so there is zero probability of a fluctuation to anyb j (xj ) away from
the classical deterministic valueb(x). The fluctuations decay exponentially so the probability
large fluctuations should diminish rapidly, at a scale determined by the ratio„D1( l )/D2( l )…. When
the functional derivative ofKEv l :b(x) b is taken with respect tod/db1(x1) or d/db2(x2) for
x,x1 ,x2PI , the exponent brings down delta functions, since
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S d

db1~x1! Db~x!5D@b~x!2b1~x1!#5D@b1~x1!2b~x!#, ~6.5a!

S d

db2~x2! Db~x!5D@b~x!2b2~x2!#5D@b2~x2!2b~x!#, ~6.5b!

since the DiracD function is symmetrical.
Hence,

D1~ l !
d

db1~x1!
KEv l :b~x,t !b52

@D1~ l !#3

@D2~ l !#2 S d

db1~x1! Db~x!expF2
D1

D2
b~x!G

52
@D1~ l !#3

@D2~ l !#2 D@b~x!2b1~x1!#expF2
D1~ l !

D2~ l !
b~x!G . ~6.6!

Similarly,

D2~ l !S d2

db1~x1!db2~x2! DKEv l :b~x!b

5
@D1~ l !#3

@D2~ l !#2 D[b~x!2b1~x1!]D@b~x!2b2~x2!#expF2
D1~ l !

D2~ l !
b~x!G . ~6.7!

The equilibrium Fokker–Planck equation~6.3! then becomes

05E db1~x1!D@b~x!2b1~x1!#expF2
D1~ l !

D2~ l !
b~x!G

1E db1~x1!E db2~x2!D@b~x!2b1~x1!#D@b~x!2b2~x2!#expF2
D1~ l !

D2~ l !
b~x!G , ~6.8!

which is satisfied since

E db1~x1!D@b~x!2b1~x1!#51, ~6.9a!

E db1~x2!D@b~x!2b2~x2!#51. ~6.9b!

This is compatible with Eq.~5.10!. Using this Cauchy-invariant or equilibrium solutionKE , one
can calculate the correlations^b(x)& and ^b1(x1)b2(x2)& in order to deduce the drift and diffu
sion coefficientsD1( l ) andD2( l ). A generic correlationC125^w1w2& in field theory or statistical
mechanics, generally has a scale dependence andC12 falls off as a power law or exponentia
C12;x2v exp(2x/j) for distances large in comparison to the correlation lengthj. For linearized
general relativity treated as a quantum field theory, Eq.~2.9! gives equal time correlations
A@^b(x1)b(x2)&#5(8/p)( l * ux22x1u21) or ^b1(x1)b2(x2)&;( l * / l )2, where l * is the Planck
length. Using ~6.4a!, the expectations E @b(x)#[^b(x)& and E @b1(x1)b2(x2)#
[^b1(x1)b2(x2)& are derived from the equilibrium solution

^b~x!&5
D1~ l !

D2~ l ! E b~x!expF2
D1~ l !

D2~ l !
b~x!Gdb~x!, ~6.10a!
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^b1~x1!b2~x2!&5
@D1~ l !#2

@D2~ l !#2 E E b1~x1!b2~x2!expF2
D1~ l !

D2~ l !
b1~x1!G

3expF2
D1~ l !

D2~ l !
b2~x2!Gdb1~x1!db2~x2!. ~6.10b!

The form of the integral is straightforward:*D
`q(x)exp@2aq(x)#dq(x)5(1/a2) for fixed x, where

a5@D1( l )/D2( l )#. Hence,

^b~x!&5
D1~ l !

D2~ l ! S D2~ l !

D1~ l ! D
2

5S D2~ l !

D1~ l ! D , ~6.11a!

^b1~x1!b2~x2!&5S D1~ l !

D2~ l ! D
2S D2~ l !

D1~ l ! D
3

5S D2~ l !

D1~ l ! D
2

. ~6.11b!

The correlations in the stationary, equilibrium limit of the stochastic model can be compared
the equal time correlations estimated from the linearized Einstein theory@see ~2.8! and ~2.9!#
treated as a quantum field theory:^b1(x1)b2(x2)&;( l * / l )2, wherel 5x12x2 . Both results are
derived at second order, which in the stochastic model was tantamount to truncation ats52 to
yield a Fokker–Planck equation. One has„D2( l )/D1( l )…25( l * / l )2, which is satisfied if we have
D1( l )5( l * / l ) andD2( l )5( l * / l )2. The maximum allowed spatial fluctuations of orderux2x8u
5 l within I diminish rapidly as the resolutionl is increased and the corresponding diffusi
coefficientD2( l );( l * / l )2 vanishes along with the drift coefficentD1( l );( l * / l ). Note, even on
the nuclear scale, that we have (l * / l );10220. The equilibrium kernel is

KEv l :db~x!b5
l

l *
expF2

l

l *
db~x!G . ~6.12!

This rapidly damps to zero forl @ l * . For a real probability on@0,1# we require

0<
l

l *
expF2

l

l *
db~x!G,1. ~6.13!

Clearly, (l / l * ).0 is always satisfied and exp@2(l/l* )db(x)#,5(l* /l),51 if l 5 l * is a lower
bound, such thatI→I * 5@0,l * #. This gives the uncertainty relationldb(x).5 l * or db(x).
5( l * / l ). The fluctuations rapidly vanish forl @ l * and the kernel is defined on@0,1# only if l .
5 l * . For l @ l * , the probabiity has a sharp peak atdb50. The expansion or contraction of th
spatial interval@0,l # then damps or amplifies the fluctuations in the 1-metric. Asl is reduced
toward l * , the smooth intervalI 5@0,l # becomes increasingly ‘‘fuzzy’’ and the continuous, d
terministic geometry is lost. Also, asl gets very near tol * , higher-order correlations emerg
between three (x1 ,x2 ,x3)PI or more points~s.52! within I, with Ds( l );( l * / l )s. Equation
~5.8! is a linear approximation to orders52. This situation is somewhat analogous to the kine
theory of a gas. As the densityr increases, the probability for a larger number of molecules
collide at the same point increases. The expansion parameter is the densityr;(1/V);(1/l 3) or
r;(1/l ) for a one-dimensional gas. For the fluctuations in geometry, the expansion param
similarly Ds( l );( l * / l )s. However, in the classical limit asl @1p or \→0, then l * 5(G\)1/2

→0 and allDs( l )→0 and soKEvb(x) b→0. Correlations to all orders vanish and the geome
returns to being deterministic at all length scales.

Interestingly, a similar mathematical structure to~6.12! can be obtained for a fluctuatio
amplitude in standard Euclidean path integral quantum gravity. Padmanabhan33,34has deduced the
existence of a minimum length within quantum gravity, where the conformal factor is quan
Beginning with a conformally flat metricguv5@11f(x)2#huv , the Euclidean path integral ove
the conformal fluctuationf is
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E Df expS 2
i

l
*
2 E d4x huv “uf “vf D , ~6.14!

which can be evaluated in a closed form. The resulting amplitude for a measurement
conformal fluctuation having valuef is

A~f!5S l

l *
D 1/4

expS 2S l

l *
D 2

f2D . ~6.15!

This amplitude behaves in a very similar way to the probability in~5.6! and damps out forl
@ l * .

VII. CONCLUSIONS

A basic stochastic construction has been presented to describe Planck scale fluctuation
geometry of a simple globally hyperbolic~111! manifold. The emphasis has been on the conc
tual issues and potential of such an approach rather than on technical subtleties, but the sc
mathematically self-consistent and makes contact with basic physical features of metric fl
tions and quantum geometry. The second-order stationary equilibrium solution of the Fo
Planck equation derived from the construction makes contact with the quantum field the
predictions for metric fluctuations and equal time correlations in linearized general relativity
predicted that probabilities for~linear! stochastic metric component fluctuations on the inter
@0,l # diminish exponentially with a scale dependencel @ l * . As l increases abovel * , the second-
order solution illustrates that the spatial geometry evolves from being smooth and determin
stochastic or noisy, with a maxima at the Planck length. This is the so-called quantum ‘‘fo
structure. Away from the Planck length, the spatial geometry returns to a smooth and determ
condition. Clearly, there are many highly nontrivial technical issues that arise in any approa
a quantum interpretation of space–time or gravitation. These include problems in defining g
path measures and the potential for ill-defined expressions. However, the point of view pre
is that a basic construction of this kind, with the emergence of a well-known and exp
physical consequence of quantum gravity and geometry, is a necessary prerequisite t
detailed approaches, which may have the potential to extend the scope of quantum geom
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Coherent states suitable for the description of molecular rotations are developed
and their connection to similar coherent states in the literature are explored. In
particular their quasiclassical properties are developed. The use of such coherent
states in time-dependent electron nuclear dynamics studies of molecular collision
processes is discussed. ©1999 American Institute of Physics.
@S0022-2488~99!04602-2#

I. INTRODUCTION

Coherent states~CS! are a set of elements$um&% of a Hilbert spaceH. All CS share two
properties in common:1

~1! continuity, i.e., the statesum& are continuous functions1 of a parameter setm,

lim
m→m0

um&5um0&, ~1!

~2! resolution of the identity, i.e., there exists a positive measuredm1>0 for which

15E dm1um&^mu. ~2!

There exists a weaker formulation of the second property which will allow a larger class of1

(28) The closed linear span of$um&% is the Hilbert spaceH. This means that any state vector in th
Hilbert space may be represented as a~possibly infinite! linear sum of CS.1 Such CS may satisfy
a resolution of the identity with an indefinite measuredm6 ,

15E dm6um&^mu. ~3!

Both in the stronger and the weaker definitions, the CS form a nonorthogonal overcomple
There are a great variety of CS known and used in various areas of physics. For probl

molecular physics and in chemistry the canonical CS2,1 also referred to as Glauber states3 are
commonly used.4 These states$ua&% are associated with the harmonic oscillator Hamilton
Hvib5\v(a†a1 1

2), wherev is the angular frequency. The harmonic oscillator creation opera
can be expressed as

a†5
1

&
SAmv

\
x̂2

i

Am\v
p̂D ~4!

in terms of the self-adjoint operators of positionx̂ and momentump̂, wherem is the oscillator
mass. The complex parametera can be expressed in terms of the real parameters of ave
positionxa5^aux̂ua& and average momentumpa5^au p̂ua& as
7660022-2488/99/40(2)/766/21/$15.00 © 1999 American Institute of Physics
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a5
1

&
SAmv

\
xa2

i

Am\v
paD . ~5!

An expansion in terms of harmonic oscillator stationary states$un&, n50,1,...% exists,

ua&5expS 2
1

2
uau2D (

n50

`
an

An!
un&5expS 2

1

2
uau2Dexp~aa†!u0&, ~6!

from which the resolution of the identity is readily proven with the positive measure

dm1~a!5
1

p
d Read Im a. ~7!

The spin coherent states$ub&%, with a complex parameterb, constitute another example of C
used in molecular physics.1 These states are associated with the total spin angular mome
SW 5(Sx Sy Sz) and an expansion in terms of spin eigenstates$uSM&, S50,1/2,1,...;M5S,
S21,...2S% exists,

ub&5 (
M52S

S A ~2S!!

~S2M !! ~S1M !! F bS1M

~11ubu2!sG uSM&5
1

~11ubu2!s exp~bS1!uS 2S&, ~8!

whereS65Sx6 iSy . The resolution of the identity exists with the positive measure

dm1~b!5
2S12

p~11ubu2!2 d Rebd Im b. ~9!

It suffices here to mention as a third example the fermion CS,1 also known as the Thoules
determinant.5,6 These CS are used, e.g., in the description of many-electron systems.4 For N
electrons in a basis of rankK>N the normalized Thouless CS$uz&% can be expressed as

uz&5det~ I 1z†z!21/2expF (
h51

N

(
p5N11

K

zphbp
†bhG uC0&, ~10!

wherez denotes the set of complex parameters$zph%, thebi
† andbi are the fermion creation an

annihilation operators, respectively, and where

uC0&5)
i 51

N

bi
†uvac&. ~11!

The resolution of the identity exists with the positive measure

dm1~z!5h det~ I 1z†z!2Kd2z, ~12!

where

d2z5
1

p )
ph

d Rezphd Im zph , ~13!

and

h5
1!2!¯K!

1!2!¯~K2J!!1!2!¯J!
. ~14!
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A set of coherent states may be related to a particular Lie group. Rasetti7 and Solomon8 have
made seminal contributions to the theory of group-related CS. Perelomov9 introduced a systematic
procedure for the construction of such group-related CS. For instance, the canonical CS
harmonic oscillator are related to the Weyl group, the spin CS to the special unitary group S~2!,
and the Thouless CS to the unitary group U~K!. There are, however, important CS that are n
group related. The construction of coherent states requires a portion of mathematical intui

II. QUASICLASSICAL COHERENT STATES

A prominent property of many CS is their quasiclassical dynamics. A stateuc& is said to be
quasiclassical when the evolution of average position, momenta, and energy,

xqc5^cux̂uc&, pqc5^cu p̂uc&, Hqc5^cuĤuc&, ~15!

satisfy classical Hamilton equations, i.e.,

ẋqc5
]Hqc

]xqc
, ṗqc52

]Hqc

]pqc
. ~16!

In other words, the average position and momentum of the quasiclassical state evolve in t
the position and momentum of their classical analogs. One should note that the definitio
quasiclassical state does not demand the semiclassical limit\→0 to be invoked. Neither is there
a priori any guarantee that a quasiclassical state even exists for a given Hamiltonian. Ehre
theorem10 offers a means to investigate the quasiclassical property, i.e., the equations

i\
d

dt
^cux̂uc&5^cu@ x̂,Ĥ#uc&,

~17!

i\
d

dt
^cu p̂uc&5^cu@ p̂,Ĥ#uc&

should reduce to the classical ones of Eq.~16! for the stateuc& to be quasiclassical.
In this manner it is straightforward to show that the canonical CS of Eq.~6! are quasiclassical

In particular,

^aux̂ua&5xa~ t !5A2\

mv
Re@a exp~2 ivt !#,

~18!
^au p̂ua&5pa~ t !5A2m\v Im@a exp~2 ivt !#

and the total energy using the harmonic oscillator Hamiltonian is

Ea[Hqc5^auHvibua&5\vuau21
\v

2
5Ec

a1
\v

2
, ~19!

where

Ec
a5

1

2m
pa

21
1

2
mv2xa

2 ~20!

is the classical energy of the harmonic oscillator. This particular set of CS satisfies the min
uncertainty relation

Dxa~ t !Dpa~ t !5\/2, ~21!
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where the widthsDxa(t) andDpa(t) are

Dxa~ t !5Dxa5A \

2mv
, Dpa~ t !5Dpa5Am\v

2
. ~22!

The coordinate representation of the canonical CS is

ca~x,t !5^xua~ t !&5exp~ iua~ t !!S mv

p\ D 1/4

exp~2 ivt !expS 2S x2xa

2Dxa
D 2DexpS ipa~ t !x

\ D ,

~23!

whereua(t) is a global phase. The spin CS, Eq.~8!, are quasiclassical with respect to a Ham
tonian describing the spin dynamics under a time-dependent magnetic field.11,1 Minimum uncer-
tainty conditions are also known for this CS.11,1 There are CS that do not exhibit the quasiclassi
property. The Thouless CS is not a quasiclassical state. However, it is possible to obtain cla
like equations for the Thouless parameters via the time-dependent variational pri
~TDVP!.4,12

III. ELECTRON NUCLEAR DYNAMICS AND COHERENT STATES

In this section, we make the connection between the CS and the electron nuclear dy
~END! theory.13,4,12The END wave function4 is

CEND~ t !5
1

Nnucl
Fnucl@R~ t !,P~ t !# f el@z~ t !,R~ t !#expF i

\
gEND~ t !G , ~24!

wheregEND(t) is the total phase. At the simplest level of approximation the nuclear partFnucl is
the product of Gaussian wave packets of positionsR(t) and momentaP(t),

Fnucl~X;R,P!5)
k51

nucl

exp~2ak@Xk2Rk~ t !#21 iPk~ t !•@Xk2Rk~ t !# !, ~25!

and the electronic partf el@zph(t),R(t),#5uz& is the fermion~Thouless! CS shown above. The ver
role of the fermion CS is to provide a nonredundant and continuous parametrization of the s
determinant electronic wave function. It should be noted that the total system END wave fu
is given in the laboratory frame and includes translational and overall rotational motion. Usin
approximateCEND(t) and the TDVP a set of classical Hamilton-like equations are obtained fo
Thouless parametersz(t) andz* (t).13,14,4,12In order to obtain the proper END equations for th
level of approximation the quantum mechanical Lagrangian is first obtained in the limit of
width nuclear Gaussian wave packets. This approach leads to a classical treatment of the
that retains the nonadiabatic electron–nuclear coupling terms. This approximation may
scribed as full, nonlinear time-dependent Hartree–Fock~TDHF! for electrons and narrow wav
packet nuclei.

The time propagation of a molecular system undergoing a reaction may produce a
product fragments. One important aim of molecular reaction dynamics is to predict the distrib
of products over rovibrational states. The treatment of such a reactive process at the simple
level of approximation leads to a fragment in some electronic state with its system of n
vibrating and rotating as a classical object. It has been demonstrated how the END represe
of the nuclear part of such a fragment under very general conditions factors as

Fnucl@X;R~ t !,P~ t !#'F0FvibF rot . ~26!

Viewing this wave function, even in the narrow wave packet limit, as an evolving state
representing this state in terms of suitable CS makes possible ana posteriori quantum state
resolution of the nuclear dynamics. In this way we adopt the approximate labeling of pr
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states in terms of vibrational~harmonic oscillator! quantum numbers and rotational~rigid rotor!
quantum numbers. Obviously, more ambitious CS could be attempted, but this level of so
cation seems reasonable for low energy reactive collisions.

Thea posteriorivibrational analysis in terms of harmonic oscillator CS has been outlined~see
Ref. 12! and applied to obtain vibrationally resolved differential cross sections for proton c
sions with hydrogen molecules at 30 eV,15 in excellent agreement with experiment. A correspon
ing analysis for a quasiclassical treatment of the rotational dynamics is an interesting prospe
the necessary development is discussed in this paper.

IV. ROTATIONAL COHERENT STATES

The term rotational CS denotes those CS which are quasiclassical with a field-free
Hamiltonian. It is important to emphasize that the previously discussed spin CS is not a rota
CS by virtue of the preceding definition. Most of the rotational CS known in the literature ste
some way from the spin CS. Except for one case discussed below,16 the majority of the rotational
CS concerns the description of the linear rotor.

The first known rotational CS were derived by Atkins and Dobson.17 The Atkins–Dobson CS
are group generated by the Schwinger boson operators of the angular momentum,18 have a posi-
tive measure, and can in principle be applied to linear rotors. An interesting and more
contribution to the theory of rotational CS was made by Janssen,16,1 who constructed rotational CS
for the general asymmetric rotor. Janssen CS$uxyz&% can be expressed as

uxyz&5 (
IMK

JIMK~x,y,z!uIMK &, ~27!

where uIMK&; I 50,1
2,1,...; M, K50,6 1

2,...6I are the integer~boson! and half-integer~fermion!
rotational states associated with the asymmetric rotor Hamiltonian,x, y, andz the CS parameters
andJIMK(x,y,z) a set of coefficients. Janssen CS are not group generated and have an ind
measure. These CS satisfy quasiclassical dynamical equations when evolved by the asym
rotor Hamiltonian in the Hilbert space spanned by the statesuIMK&. An interesting feature is tha
the Janssen CS are identical to the Atkins–Dobson CS in the limit of the linear rotor. The pr
that identity involves a proper reparametrization of Janssen CS. Both sets of CS have the p
of mixing half-integer and integer quantum numbers. Therefore, they are not directly useful f
discussion of molecular rotational spectra for which a corresponding development in terms o
integer quantum numbers is necessary.

Similar developments were published by Bhaumiket al., but again for the case of the linea
rotor statesuIMK 50&. A review of some rotational CS for linear rotors was published by Fo
et al.19 This study discusses the Atkins–Dobson CS among many others but misses tho
Janssen and Bhaumiket al. More importantly, new CS generated by the SO(3)^ R5 group are
developed there to study diatomic molecules in the presence of an electromagnetic field.

In this section we introduce a new set of rotational CS following closely the definitio
Janssen. Only integer quantum numbers are used for these CS and their quasiclassical be
analyzed.

A. Rotor Hamiltonian

The pure rotor Hamiltonian for a molecular system can be written as20

Ĥ rot5
L̂x

2

2Ax
1

L̂y
2

2Ay
1

L̂z
2

2Az
, ~28!

whereAi ( i 5x,y,z) are the moments of inertia andL̂ i the body-fixed components of the orbit
angular momentum. Please note that from here on\51. The analogous space-fixed compone
of orbital angular momentum areĴi and the following relations hold (Ĵ25L̂2):
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@ Ĵi ,Ĵ j #5 i e i j l Ĵl , @ L̂ i ,L̂ j #52 i e i j l L̂ l ~29!

and

@ Ĵi ,L̂k#5@ L̂2,L̂z#5@ Ĵ2,Ĵz#50, ~30!

wheree ikl are the components of the Levi–Civita tensor. Note the so-called anomalous co
tation relationship20 of the L̂ i components. As a result of these commutation relationships, t
exists a complete set of rotor eigenstatesuIMK& so that

L̂2uIMK &5I ~ I 11!uIMK &, I 50,1,2,...,

L̂zuIMK &5KuIMK &, K50,61,...,6I , ~31!

ĴzuIMK &5M uIMK &, M50,61,...,6I .

These rotor eigenstates in angular representation are

^f,u,xuIMK &5F2I 11

8p2 G1/2

DMK
I* ~f,u,x!, ~32!

whereDMK
I (f,u,x) are elements of a rotation matrix~Wigner D functions!.20

It follows from the above commutator relations that the rotational Hamiltonian satisfies

@Ĥ rot ,Ĵi #50, @Ĥ rot ,Ĵ
2#50. ~33!

The Hamiltonian eigenfunctionsC IM
a must satisfy

Ĥ rotC IM
a 5Erot

a C IM
a ,

Ĵ2C IM
a 5I ~ I 11!C IM

a , I 50,1,2,..., ~34!

ĴzC IM
a 5MC IM

a , M50,61,...,6I ,

where the superscripta is an additional label of a particular rotational eigenstate. Another se
relations implied by the above commutation relations is

@Ĥ rot ,L̂ i #5 i(
j

e i jk

2Ak
~ L̂ j L̂k1L̂kL̂ j !. ~35!

The C IM
a eigenfunctions are expressed in the symmetric rotor basis as

C IM
a 5(

K
cK

IM auIMK &, ~36!

where the coefficientscK
IM a are to be determined.

In the special case of a spherical rotorA5Ax5Ay5Az ~e.g., CH4 and SF6), the eigenvalue
problem simplifies to

Ĥ rot5
L̂2

2A
5

Ĵ2

2A
, C IM

a 5C IM 5uIMK &, Erot
IM a5Erot

I 5
I ~ I 11!

2A
. ~37!
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In the case of a prolate symmetric rotor, the moments of inertia satisfyAx<Ay5Az ~e.g., CH3Cl
and PCl5). The eigenvalue problem then becomes

Ĥ rot5
L̂2

2Az
1S 1

2Ax
2

1

2Az
D L̂z

2,

C IM
a 5C IM 5uIMK &, ~38!

Erot
IM a5Erot

IM 5
I ~ I 11!

2Az
1S 1

2Ax
2

1

2Az
DK2.

The equivalent expressions for the case of an oblate symmetric rotorAx5Ay<Az ~e.g., CHCl3 and
C6H6) can be obtained by interchanging theAx with the Az in the last equations. The case of th
linear rotor ~e.g., all diatomics, CO2, and C2H2) is obtained as theAx50 limit of the prolate
symmetric case. Then

Ĥ rot5
Ĵ2

2A
, C IM

a 5C IM 5uIM 0&,

~39!

Erot
IM a5Erot

I 5
I ~ I 11!

2A
, ^u,fuIM 0&5YIM ~u,f!,

where theYIM (u,f) are the spherical harmonics.20 Finally, in the case of an asymmetric roto
with the moments of inertia satisfyingAx<Ay<Az ~e.g., CH2H2), the eigenfunctionsC IM

a keep
their linear combination form, and thecK

IM a coefficients must be specifically calculated.

B. Groups

Although the set of CS under construction is not group related in the Perelomov sense
of course, connected to the rotation groups. Specifically, the statesuIMK& span the irreducible
representations of the semidirect product of SO~3!^SO~3! with an Abelian group. The generator
of the first SO~3! group are theL̂ i , referring to the molecule-fixed frame, while those of t
second one are theĴi referring to the space-fixed frame. The generators of the Abelian g

R(2l11)2 belong to a family of tensor operatorsT̂mn
l (l50,1

2,1,32,...; m,n50,6 1
2,...,6l). We

select the tensors withl51 in order to limit the CS to integer rotational quantum numbers. Th
tensor operators commute among themselves, i.e.,

@ T̂mn
l ,T̂m8n8

l
#50 ~40!

and satisfy the relations

T̂mn
l†5~21!n2mT̂2m2n

l , ~41!

and

(
m

T̂mn
l† T̂mn8

l
5dnn8 , (

n
T̂mn

l† T̂m8n
l

5dmm8 . ~42!

In addition to the commutation relations among these tensor operators we need the ones w
SO~3! generators in Eq.~29! and the relations~30!,

@ L̂z ,T̂mn
l #5nT̂mn

l , @ Ĵz ,T̂mn
l #5mT̂mn

l , ~43!
                                                                                                                



l

the
her

773J. Math. Phys., Vol. 40, No. 2, February 1999 Morales, Deumens, and Öhrn

                    
as well as

@ L̂6 ,T̂mn
l #5@l~l11!2n~n71!#1/2T̂mn7l

l ,
~44!

@ Ĵ6 ,T̂mn
l #5@l~l11!2m~m61!#1/2T̂m6ln

l ,

where

L̂65L̂x7 i L̂ y , Ĵ65 Ĵx6 i Ĵy . ~45!

The rotation matrix elementsDmn
l (a,b,g), (l50,1

2,1,32,...; m,n50,6 1
2,...,6l) are a real-

ization of theT̂mn
l operators and define their action on the statesuIMK&. Here it suffices to know

that

T̂2121
1 uI 2I 2I &5S 2I 11

2I 13D 1/2

uI 11 2I 21 2I 21&. ~46!

C. Construction of coherent states

The straightforward application of Perelemov’s prescription9 would make the set of rotationa
coherent states be

X~x,c!Z~z,v!Y~ymn
1 !u000&, ~47!

where theX(x,c) andZ(z,v) operators are two parametrizations of the SO~3! group

X~x,c!5NXexJ1e2x* J2e2 icJz,
~48!

Z~z,v!5NZezL1e2z* L2e2 ivLz,

with the real parameters 0<c<2p, 0<v<2p, and the complex parametersx (2`<Rex<`,
2`<Im x<`) andz (2`<Rez<`, 2`<Im z<`), respectively.NX andNZ denote normaliza-
tion constants. The unitary operatorY(ymn

1 ) is a general element of the Abelian groupR9 gener-
ated by the tensor operatorsTmn

1 , i.e.,

Y~ymn
1 !5expS (

m,n
ymv

1 Tmn
1 D ~49!

with the complex parametersymn
1 (2`<Reymn

1 <`, 2`<Im ymn
1 <`) satisfying ymn

1 5
(21)m2v11y2m2n

1* . This mode of construction combines two spin CS with CS belonging to
abelian groupR9. This produces a set of CS of some complexity, which will not be furt
analyzed.

Instead, in analogy with the Janssen’s approach,16 we propose the simpler construction

uxyz&5exp@2 1
2yy* ~11xx* !2~11zz* !2#exJ1ezL1 exp@y f~ Î !T2121

1 #u000&, ~50!

where the parametery relates to the above discussion such thaty5y2121
1 . The functionf ( Î ) is

f ~ Î !5A~2Î 21 Î !/~2Î 21!, ~51!

where the operatorÎ is defined by~compare Ref. 16!

Î uIMK &5I uIMK &. ~52!
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The effect of thef ( Î ) function is to generate a desired Poisson distribution by canceling s
factors occurring in Eq.~46!. The operatorÎ can be expressed in terms of the Schwinger bo
operators, but in the present context it can be seen as a purely formal construct that se
simplify some expressions. Note the subtle differences in the normalization factor and in the
exponential operator in comparison to those in Ref. 16. It follows straightforwardly that

exp~y f~ Î !T̂2121
1 !u000&5 (

I 50,1,...

`
~y f~ Î !T̂2121

1 ! I

I !
u000&5 (

I 50,1,...

`
yI

AI !
uI 2I 2I & ~53!

and that

ezL̂1uI 2I 2I &5 (
n50

`
zn

n!
L̂1

n uI 2I 2I &

5 (
n50

2I
zn

n!
$2I ~2I 21!¯@2I 2~n21!#%1/2~n! !1/2uI 2I 2I 1n&

5 (
K52I

I
z~ I 1K !

@~ I 1K !! #1/2F ~2I !!

~ I 2K !! G
1/2

uI 2IK &, ~54!

wheren5I 1K has been used from the second to the third line. By changingM to K, andL̂1 to

Ĵ1 , the analogous expansion ofexĴ1uI 2I 2I & is obtained. These results make possible the
lowing expression for the CS:

uxyz&5exp@2 1
2 yy* ~11xx* !2~11zz* !2#

3 (
IMK

H @~2I !! #2

~ I 1M !! ~ I 2M !! ~ I 1K !! ~ I 2K !! J 1/2x~ I 1M !yIz~ I 1K !

~ I ! !1/2 uIMK &. ~55!

Each member in this set of CS is normalized to unity since

^xyzuxyz&5exp@2yy* ~11xx* !2~11zz* !2#

3 (
IMK

@~2I !! #2

~ I 1M !! ~ I 2M !! ~ I 1K !! ~ I 2K !!

~xx* !~ I 1M !~yy* ! I~zz* !~ I 1K !

I !

5exp@2yy* ~11xx* !2~11zz* !2#(
I 50

`
~yy* ! I

I !

3 (
M52I

I
~2I !! ~xx* !~ I 1M !

~ I 1M !! ~ I 2M !! (
K52I

I
~2I !! ~zz* !~ I 1K !

~ I 1K !! ~ I 2K !!

5exp@2yy* ~11xx* !2~11zz* !2#(
I 50

`
@~yy* !~11xx* !2~11zz* !2# I

I !
51, ~56!

where the power expansions, such as

~11zz* !2I5 (
K52I

I
~2I !!

~ I 1K !! ~ I 2K !!
~zz* ! I 1K ~57!
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have been used. It is noteworthy that we now have a Poisson distribution in the variableyy* (1
1xx* )2(11zz* )2. In addition, the overlap̂x8y8z8uxyz& between two different members of th
set of CS is

^x8y8z8uxyz&5exp@2 1
2yy* ~11xx* !2~11zz* !2#exp@2 1

2y8y8* ~11x8x8* !2~11z8z8* !2#

3exp@yy8* ~11xx8* !2~11zz8* !2#, ~58!

which can be obtained in an analogous manner showing the general nonorthogonality of the
Because of their construction, the$uxyz&% states satisfy the condition Eq.~1! for CS. In order to

verify whether these CS satisfy the stronger or the weaker formulation of the second conditio
need to construct a proper measuredm. Using the measure of Ref. 16 as a guide we obtain

dm6~x,y,z!5
1

p3 $4@~11xx* !~11zz* !#4~yy* !228@~11xx* !~11zz* !#2yy* 11%dx dy dz,

~59!

where

dx5d Rexd Im x, dy5d Reyd Im y, dz5d Rezd Im z ~60!

so that

E dm6~x,y,z!uxyz&^xyzu5 (
IMK

uIMK &^IMK u51. ~61!

Then, it follows immediately@see Eq.~55!# that

uIMK &5E dm6~x,y,z!expF2
1

2
yy* ~11xx* !2~11zz* !2Gx* I 1My* Iz* I 1K

3H @~2I !! #2

I ! ~ I 1M !! ~ I 2M !! ~ I 1K !! ~ I 2K !! J 1/2

uxyz&. ~62!

Note that both the CS from Ref. 16 and the present ones satisfy the weaker version of the
condition for CS, because the measure of neither is positive.

D. Coherent state operator averages

In order to develop the dynamics related to the rotational CS certain operator averages n
be determined. Evaluation of the necessary integrals involves using some properties of th
mial power expansion and the Poisson distribution. The final results are as follows:

^ Î &5yy* ~11xx* !2~11zz* !25z, ~63!

^L̂x&5
z1z*

11zz*
z, ^L̂y&5

i ~z* 2z!

11zz*
z, ^L̂z&5

~zz* 21!

11zz*
z, ~64!

^L̂ i
2&5H z

2
1^L̂ i&

2F11
1

2zG if z.0,

0 if z50,

~65!

^L̂ i L̂ j1L̂ j L̂ i&5H 2^L̂ i&^L̂ j&F11
1

2z G if z.0,

0 if z50,

~66!
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whereiÞ j , and the notation̂¯&5^xyzu¯uxyz& is used. By changingL̂ i to Ĵi , andz to x* in the
above expressions, the averages of the components ofĴ are obtained. The integral^xyzu Î uxyz&
turns out to be slightly different from that of Ref. 16. However, the functionality of the first-o
averages with respect to that basic integral remains essentially the same and real diffe
appear in the second-order averages.

Uncertainty relationships for the CS can be derived by combining the well-kn
relationship10

~DL̂ i !
2~DL̂ j !

2> 1
4u^L̂k&u2 ~ iÞ j Þk!, ~67!

where

~DL̂ i !
25^L̂ i

2&2^L̂ i&
2, ~68!

with Eqs.~64! and ~65! to obtain

~DLi !
2~DL j !

25H 1

4
F11

^L̂ i&
2

z2 GF11
^L̂ j&

2

z2 Gz2 if z,0

0 if z50.

~69!

Note that in the special case of^L̂ i&5^L̂ j&50, z.0 the uncertainty relationship is minimized fo
that pair of components, i.e., (DL̂ i)

2(DL̂ j )
25 1

4u^L̂k&u2, (iÞ j Þk).

E. Reparametrization

For the purpose of physical interpretation a new parametrization of the CS is introduced
parameters related to the spin CS, i.e.,x andz, are changed by adopting the stereographic pro
tion onto a plane18

x5e2 ia cot
b

2
, z5e1 ig cot

d

2
, ~70!

where 0<a,g<2p, and 0<b,d<p. The remaining parametery is expressed as

y5z1/2sin2
b

2
sin2

d

2
ei ~a2g2e!, ~71!

where 0<z<` and 0<e<2p. In terms of these new parameters one finds

xx* 5cot2
b

2
, zz* 5cot2

d

2
, 11xx* 5cosec2

b

2
,

~72!

11zz* 5cosec2
d

2
, yy* 5z sin4

b

2
sin4

d

2
, yy* ~11xx* !2~11zz* !25z,

and
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uxyz&5uabgdez&

5expS 2
z

2D (
IMK

H @~2I !! #2

~ I 1K !! ~ I 2K !! ~ I 1M !! ~ I 2M !! J 1/2Fe2 iM a cosI 1MS b

2 D sinI 2MS b

2 D G
3Fe1 iKg cosI 1MS d

2D sinI 2KS d

2De2 i I eG z1/2

AI !
uIMK &

5expS 2
z

2D (
IMK

DMI
I ~a,b,0!DKI

I ~2g,d,e!
z1/2

AI !
uIMK &, ~73!

where the definition of the rotational matricesDMK
I 18,20 has been used.

We write

^abgdezu Î uabgdez&[^ Î &5z ~74!

and similarly

^L̂x&5z cosg sind, ^Ĵx&5z cosa sinb,

^L̂y&5z sing sind, ^Ĵy&5z sina sinb, ~75!

^L̂z&5z cosd, ^Ĵz&5z cosb,

and

^L̂2&5^ Ĵ2&5z~z12!. ~76!

From these expressions, it follows that the parameterz is the angular momentum modulus, th
pairs of anglesg,d, anda,b are the azimuthal and the polar angle of the^L̂ & and^Ĵ& vectors in the
body-fixed and the space-fixed frame, respectively. The anglee is associated with the relativ
orientation of the body-fixed and the space-fixed frames. Finally, the probabilityPIMK(z,b,d) to
find the rotational stateuIMK& in the CS is

PIMK~z,b,d!5H @~2I !! #2

~ I 1K !! ~ I 2K !! ~ I 1M !! ~ I 2M !! J Fcos2~ I 1M !
b

2
sin2~ I 2M !

b

2 G
3Fcos2~ I 1K !

d

2
sin2~ I 2K !

d

2 Gexp~2z!
z I

I !

5H @~2I !! #2

~ I 1K !! ~ I 2K !! ~ I 1M !! ~ I 2M !! J p~ I 1M !~12p!~ I 2M !

3q~ I 1K !~12q!~ I 2M ! exp~2z!
z I

I !
, ~77!

wherep5cos2 d andq5cos2 b. Note thatPIMK(z,b,d) combines binomial distributions inp and
q, and a Poisson distribution inz. The result

(
I 50,1,...,

`

(
M52I

I

(
K52I

I

PIMK~z,b,d!51 ~78!

is readily obtained. Alternatively, one can write
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PIMK~z,b,d!5uDMI
I ~a,b,0!u2uDKI

I ~2g,d,e!u2
z I

I !
exp~2z!

5@dMI
I ~b!#2@dKI

I ~d!#2
z I

I !
exp~2z!. ~79!

This probability exhibits more detail than is commonly needed and when used in the calcula
suitableS-matrix elements averaging procedures will wash out the excessive details.

F. Coherent state dynamics

Applying Ehrenfest’s theorem to the operatorsL̂ i for i 5x,y,z, i.e.,

d

dt
^L̂ i&52 i ^@Ĥ rot ,L̂ i #&5K (

j
« i jk

1

2Ak
~ L̂ j L̂k1L̂kL̂ j !L , ~80!

for z.0 results in@see Eq.~66!#

d

dt
^L̂x&5^L̂y&^L̂z&S 11

1

2z D S 1

Az
2

1

Ay
D ,

d

dt
^L̂y&5^L̂z&^L̂x&S 11

1

2z D S 1

Az
2

1

Ax
D , ~81!

d

dt
^L̂z&5^L̂x&^L̂y&S 11

1

2z D S 1

Ax
2

1

Ay
D ,

and forz50,

d

dt
^L̂ i&50, i 5x,y,z. ~82!

The quasiclassical rotation vector or angular velocityv is then defined with components

v i5H 1

Ai

z1 1
2

z
^L̂ i&, z.0

0, z50.

~83!

The quasiclassical nature of this rotation vector is evident from

v̇x5
vyvz

Ax
~Ay2Az!,

v̇y5
vxvz

Ay
~Ax2Az!, ~84!

v̇z5
vxvy

Az
~Ax2Ay!,

which are the classical Euler equations for the motion of a rigid body without torque.21 It follows
that the rotation vectorvW behaves exactly as that of a classical rigid body with the same mom
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of inertia when the CS are propagated by the Schro¨dinger equation with the Hamiltonian of Eq
~28!. This is analogous to the classical motion Eq.~18! of the harmonic oscillator CS Eq.~6!.

However, the definition of the rotation vectorv in Eq. ~83! differs from the definition

v i5
1

Ai
^L̂ i& ~85!

by Janssen,16 which corresponds exactly to the classical definition21

v i5
1

Ai
Li . ~86!

This means that for the Janssen all-spin rotational CS the expectation values of the a
momentaL̂ i are quasiclassical variables, whereas they are not for our integer-only rotationa
Inspection of Eq.~83! reveals that the variables

L i5H z1 1
2

z
^L̂ i&, z.0

0, z50,

~87!

are quasiclassical. This difference requires some explanation, which, as will be shown, is
found in the Heisenberg uncertainty principle.

The proportionality factor (z1 1
2)/z between the quasiclassical variables and the expecta

values ofL̂ i is a constant of the motion related to the total angular momentum. The limit of
angular momentum tending to zero is equivalent toz→0 @Eq. ~76!#. This means that for the
Janssen all-spin CS

v25vx
21vy

21vz
2<

1

Ax
~^L̂x&

21^L̂y&
21^L̂z&

2!<
z2

Ax
, ~88!

where we have used the conventionAz>Ay>Ax . From this it follows thatv2→0 when the
angular momentum is decreased to zero and the CS are ‘‘spinning down.’’ In contrast, the
calculation for the integer-only CS shows that

1

Ax
S z1

1

2D 2

>v2>
1

Az
S z1

1

2D 2

~89!

and, thus, as the angular momentum decreases toward zero these CS keep ‘‘spinning’’ w
angular momentum of12 in units of\, i.e., the zero angular momentum state cannot be reache
continuously decreasing the value of the angular momentum.

This result is related to the uncertainty principle. The orientation of the rigid body in term
the Euler angles with decreasing angular momentum cannot be determined precisely, neit
the rotation vector being the time derivative of the orientation. As a result the integer-only
which are the appropriate ones to describe rotating bodies, yield a finite lower bound to the
of the angular velocity as the angular momentum decreases. Thus, since the angular v
cannot decrease below a certain value, one cannot assume that the orientation can chang
arbitrarily small amount in a given time interval. It is noteworthy that apart from the lower bo
Eq. ~89! in the rotation vector length the motion is completely classical. The lower bound ten
zero for increasing moments of inertia indicating that this effect is not present for macros
bodies.

The remaining question is why the Janssen all-spin CS do not exhibit this finite lower b
on the angular velocity vector. The answer lies in the fact that half-integer spin systems
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angular momenta that do not correspond to any position coordinate. As a result they a
possess an uncertainty of1

2\ in the orientation part of the total angular momentum even when
value tends to zero. For such CS the attempt to precisely define the angular momentum orie
does not introduce additional constraints allowing the angular velocityv to decrease to zero whe
the total angular momentum does.

V. APPLICATIONS

The rotational CS can with advantage be applied to spectroscopic analysis of mol
processes. For instance, the harmonic oscillator CS have been employed to successfully pre
distribution of reaction products over vibrational quantum states.22 The role of the CS in this
analysis was to allow a detaileda posterioriquantum level analysis of calculations on a react
molecular system that only employed essentially classical trajectories. This procedure res
great savings of computer time and thus increases the range of studies to quite complex ch
reactions.

Because rotations and vibrations are intimately coupled in molecular systems, such ana
most successful when both kinds of motion are treated on an equal footing. This is accomp
by combining the canonical CS and the integer-only rotational CS developed here. The theo
be applied without difficulties to general molecular fragments and it is straightforward to stu
general asymmetric rotor. However, in order to avoid inessential technicalities we describe
section how the theory applies to a diatomic molecule, which can be thought of as a linear

A. Linear rotor CS

By selecting the body-fixedz axis of a diatomic molecule (Ax5Ay , Az50) as that of the
molecular bond, the component of the angular momentum vectorL̂ in that direction vanishes at a
times (K50). In that case, the rotational statesuIMK& become the eigenstates of the linear rot
i.e., the spherical harmonicsYIM (u,w), see Eq.~39!. Furthermore, insertingvz50 into Eq.~84!
makes the other two components ofv in the body-fixed frame constant as well. This implies th
thez parameter does not vary in time, its specific value being dependent on the orientation
x and they axes in the body-fixed frame. The CS of Eq.~55! then become

^uwuxy&diat5exp@2 1
2yy* ~11xx* !2#(

IM
H ~2I !!

~ I 1M !! ~ I 2M !! J 1/2x~ I 1M !yI

AI !
YIM ~u,w!, ~90!

where the superfluous terms inzI 1K have been omitted. Alternatively, these CS can be repar
etrized so that

^uwuxy&diat5^uwuabz&diat

5expS 2
z

2D(
IM

H ~2I !!

~ I 1M !! ~ I 2M !! J 1/2Fe2 iM a cosI 1M
b

2
sinI 2M

b

2 G z I /2

AI !
YIM ~u,w!

5expS 2
z

2D(
IM

DMI
I ~a,b,0!

z I /2

AI !
YIM ~u,w!. ~91!

When the CS are prepared with the vector^abzuĴuabz& normal to thexy plane ~i.e., with
^abzuJxuabz&5^abzuJyuabz&50) it holds that the initial value ofb is 0, or p. Consider the
caseb50. Then,

^uwu00z&diat5expS 2
z

2D(
I

z I /2

AI !
YII ~u,w!, ~92!
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where the anglea has been arbitrarily set to zero. The CS time evolution ofu0b(t)z&diat from that
initial condition, is

^uwu0b~ t !z&diat5^uwuexp~2 iĤ t !u00z&diat

5^uwuexpS 2
z

2D(
I

z I /2

AI !
expF2 i

I ~ I 11!

2A
t GYII ~u,w!,

5expS 2
z

2D(
I

z I /2

AI !
YII ~u,w2v I t !, ~93!

whereĤ is the diatomic Hamiltonian,A the moment of inertia, and

v I5
~ I 11!

2A
. ~94!

In the last line of Eq.~93!, the explicit form23

YI 6I~u,w!5~21! I
1

2I I ! S ~2I 11!!

4p D 1/2

sinI u exp~ i I w! ~95!

has been used. From Eqs.~93! and~95!, it is easy to see that the rotational CS peak symmetric
aroundu5p/2 ~i.e., the maximum lies in thexy plane! throughout the evolution. The shape of th
rotational CS with respect to the anglew is more difficult to describe analytically. For largez
values, the superposition of the spherical harmonics given by Eq.~93! is sharply peaked aroun
I 5I max;z. When this holds, the sum overI can be approximated by an integration. The evaluat
of that integral by the stationary phase method24 reveals that the CS peak around the valuef
5fmax where

fmax~ t !;
~ I max1

1
2!

A
t;

~z1 1
2!

A
t;vzt. ~96!

This implies that when the total angular momentum is high the peak’s center moves wi
constant angular velocityvz along the equator of theu,w sphere. The general properties of th
diatomic rotational CS can be easily derived form this example prepared withb50. If the rotation
R̂(a,b,0) is applied tou00z&diat then the general diatomic rotational CS, Eq.~91!, are recovered

^uwuabz&diat5^uwuR̂~a,b,0!u00z&diat

5expS 2
z

2D(
IM

DMI
I ~a,b,0!

z I /2

AI !
YIM ~u,w!

5expS 2
z

2D(
I

z I /2

AI !
YII ~u8,w8!, ~97!

where the properties of the spherical harmonics have been applied and where the anglesu8 andw8
are given with respect to the rotated space-fixed frame. The rotation transforms the

^abzuĴuabz& from thez direction of the space-fixed frame to the~a,b! direction, in accordance
with Eq. ~75!. The final expression in Eq.~97! is formally identical to the nonrotated CS in Eq
~92!. The properties ofuabz&diat are the same as those ofu00z&diat but now referred to a plane
normal to the vector̂abzuĴuabz&.
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No closed form expression is known for the rotational CS Eq.~55! or Eq. ~90!. However, in
Sec. V B a wave function for a diatomic molecule is constructed that clarifies the CS and m
their structure more explicit.

B. The diatom END wave function

For purposes of interpretation in terms of CS we rewrite the END wave function in
center-of-mass~c.m.! frame. The actual END propagation is always done in the space-fi
laboratory frame, but the analysis of reagents~at the initial time! and products~at the final time!
is better done in the c.m. frame of each fragment. The END wave function for each fragm
the narrow wave packet limit for the nuclei and with a Thouless determinant5 for the electrons
takes the form

CEND~X,x,t !5Fnucl@X;R~ t !,P~ t !# f el@x;z~ t !,R~ t !#exp@ igEND~ t !#, ~98!

when there no longer exist any overlaps or exchange terms between fragments. For the ca
diatomic fragment the nuclear part consists of two generalized frozen Gaussian wave pac

Fnucl~X;R,P!5
1

Nnucl
)
k51

2

expH 2ak@Xk2Rk~ t !#21
i

\
Pk~ t !•@Xk2Rk~ t !#J . ~99!

The electronic partf el@z(t),R(t)# is a Thouless single determinant wave function. The total ph
gEND(t) is the quantum mechanical action

gEND~ t !5E
0

t

ds L@R~s!,P~s!,z~s!#, ~100!

in terms of the END quantum LagrangianL(R,P,z).
The Gaussian wave packets have finite width, 1/ak , explicitly defined as those of canonica

CS @compare Eqs.~22! and ~23!#. The SC limit of zero width then yields the simplest EN
approximation.

The transformation to the c.m. coordinates is using Jacobi coordinates, i.e.,

X05
1

M
~m1X11m2X2!, x5X22X1, ~101!

with a similar transformation of the average nuclear positions

R0~ t !5
1

M
@m1R1~ t !1m2R2~ t !#,

~102!
r ~ t !5R2~ t !2R1~ t !,

and withM5m11m2 the total mass. This transformation results in the product of two inde
dent Gaussian wave packets:

Fnucl~X;R,P!5F0~X0;R0,P0!F int~x;r ,p! ~103!

only if the condition:v15v25v is imposed. Then it follows that

F0~X0;R0,P0!5
1

N0
exp$2a0@X02R0~ t !#21 iP0~ t !•@X02R0~ t !#%, ~104!

and
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F int~x;r ,p!5
1

Nint
exp$2am@x2r ~ t !#21 ip~ t !•@x2r ~ t !#%. ~105!

Here, the new momentum parameters are

P0~ t !5P1~ t !1P2~ t ! ~106!

and

p~ t !5m~Ṙ22Ṙ1!5m ṙ , ~107!

respectively, wherem is the reduced mass. The transformed exponents turn out to be

a05
Mv

2
~108!

and

am5
mv

2
, ~109!

in units of 1/\. The electronic part of the wave function, being a function of relative nuc
positions only, is not be affected by this transformation. A similar partition of the total p
means that

gEND~ t !5g0~ t !1g int~ t !, ~110!

where g0(t) contains only the nuclear c.m. variables andg int(t) the internal nuclear variable
along with the electronic parameters.

The c.m. part is a Gaussian with a trivial time evolution. This part together with its p
g0(t) can be totally separated from the rest leaving the internal END wave function

C int
END~ t !5F int@r ~ t !,p~ t !# f el@z~ t !,r ~ t !#exp@ ig int~ t !#. ~111!

The internal wave function is now split into a vibrational and a rotational part. Because o
coupling of rotations and vibrations in molecules this separation must be approximate. Dex
5xn andr5rm, wheren andm are unit vectors. For a vibrating molecule rotating with rotati
vectorv we write the momentum

p5m ṙ5pvm1mbv3m, ~112!

with pv the vibrational part of the momentum parallel to the axis of the molecule andb the
equilibrium bond length. The END evolution of the molecule is described through the param
r (t), p(t), andz(t) only. When the coupling of rotation and vibration is neglected the rota
vector is constant yielding the angular momentum

L5Av5mb2v. ~113!

The exponent ofF int(x;r ,p) in Eq. ~105! becomes

2am@x2r #21 ip•@x2r #52am~x2r !222amr ~x2r !n•~n2m!

2amr 2~n2m!21 i ~x2r !pvm•n1 imb~x2r !~v3m!•n

1 irp vm~n2m!1 imbr~v3m!•~n2m!. ~114!

Introducing the anglesh betweenn andm andj betweenv3m andn yields
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2am~x2r !222amr ~x2r !~12cosh!22amr 2~12cosh!,
~115!

i ~x2r !pv cosh1 imbv~x2r !cosj2 irp v~12cosh!1 imbvr cosj.

Since x and r are close the angleh is small and so isp/22j. Using these facts in an orde
analysis consideringx2r as small, omitting terms of third order or higher in the real part, and
second order or higher in the imaginary part, and leaving out the coupling term result in

2am~x2r !222amr 2~12cosh!,
~116!

1 i ~x2r !pv1 imvbr cosj.

Replacingr in the angular part by the equilibrium bond distanceb, using Eq.~109! for am , and
expressingh andj in terms of the polar coordinatesu,w of x in the laboratory frame using obviou
right spherical triangles produces a vibrational and a rotational factor

F int~x,u,w;r ,0,0!'Fvib~x;r !F rot~u,w;0,0!, ~117!

with

Fvib~x;r !5
1

Nvib
expF2

mv

2
~x2r !21 ipv~x2r !G ~118!

and

F rot~u,w!5
1

Nrot
exp@2mvb2~12sinu cosw!1 imvb2 sinu sinw#

5
1

Nrot
exp@2mvb2~12sinueiw!#. ~119!

The general case is obtained by rotatingv to the orientationa,b in the laboratory frame.
Identification of the CS parameterz can be accomplished by evaluation of the expectat

values ofĴ and its square with respect to the END wave function Eq.~99!,

Fnucl5F0F int5F0FvibF rot . ~120!

One finds easily that

^Ĵx&5mvb2 sinb cosa,

^Ĵy&5mvb2 sinb sina, ~121!

^Ĵz&5mvb2 cosb,

and that

^Ĵx
2&5^Ĵx&

21Axxv, ^Ĵy
2&5^Ĵy&

21Ayyv, ^Ĵz
2&5^Ĵz&

21Azzv. ~122!

Using the result

Tr~A!52mb2, ~123!

it follows that
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^Ĵ2&5^Ĵ&212mb2v5mvb2~mvb212!5z~z12!, ~124!

such that the CS parameterz may be identified with the total nuclear angular momentummvb2 of
the diatomic molecule in units of\.

The expansion of the rotational factor of the END wave function Eq.~119!

F rot~u,w;0,0!5
1

Nrot
exp~2z!(

I

~z sinueiw! I

I !
~125!

should be compared to the CS Eq.~93! using Eq.~95!

^uwu00z&diat5exp~2z/2!(
I

S ~2I 11!!!

4p~2I !!! D 1/2~2z1/2sinueiw! I

AI !
. ~126!

The two series have the same structure for the argumentsu andw, but consecutive terms in the C
series decrease less rapidly as functions ofI.

Even though the two functions are not identical the rotational CS are useful for final
analysis. That the vibrational CS match the vibrational part of the END wave function i
course, not surprising as the END wave function is built from Gaussians with the appro
widths. The CS, because of their nature, retain shape during evolution. Thus, the choice o
a Gaussian shape for the END wave function ensures that also the shape of the rotationa
persists during evolution. Our analysis has shown that the average orientation and the width
those of the rotational CS. Furthermore, the END wave function by the TDVP constructi
limited to the dynamics of average values, which are the internal vibrational coordinate
orientation of the body fixed frame. It then makes sense to replace the factors of the END
function by their CS counterparts with the matching parameters, including the time evo
generated by the END wave function. This procedure is the recommended one to usea
posterioriquantum state analysis even when the END evolution has been done for the case
width Gaussians, i.e., classical nuclei. Thus, since it is now established that the END nuclea
function for low excitations can to a good approximation be represented as a product of vibra
and rotational CS, the expressions in Eqs.~6! and ~79! can be used to compute probabilities f
vibrational and rotational eigenstates, and, thus, providea posteriori quantum vibrational and
rotational resolution of cross sections obtained from classical trajectory calculations.

VI. CONCLUSION

The canonical CS have countless applications. First derived by Schro¨dinger2 and later ana-
lyzed by many1 these CS display remarkable properties. One of the most useful properties
context of molecular processes is the quasiclassical evolution. Janssen16 constructed all-spin rota
tional CS that evolve quasiclassically. Involving both integer and half-integer spins these CS
not seen much application to physical systems. Our work establishes that integer-only rot
CS can be constructed that exhibit quasiclassical dynamics. A notable property of the intege
rotational CS is the nonzero minimum angular velocity attained as the angular momentu
creases to zero. The Janssen construction does not follow Perelomov’s prescription of cons
group-related CS. The metric of these CS for the resolution of the identity is nondefinite. The
that the construction of Atkins and Dobson17 employs Perelomov’s prescription for the case of t
symmetric rotor CS, that it coincides with the Janssen construction restricted to symmetric
and that these have a positive definite measure, make it plausible that there exists CS
suitable Perelomov construction with a positive measure for both the all-spin CS and the in
only CS.

It is known that the canonical CS remain quasiclassical in the presence of a time-dep
linear external field. We have not investigated whether this holds true also for the rotation
when subjected to some external torque.
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In this paper we have concentrated on extracting probabilities for rotational quantum lev
molecules from nuclear trajectory calculations of molecular processes. This application is
both for dynamics involving predetermined potential energy surfaces as well as for direct
diabatic approaches such as END.
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Gauge theories with graded differential Lie algebras
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Augustusplatz 10/11, D-04109 Leipzig, Germany

~Received 17 November 1997; accepted for publication 30 September 1998!

We present a mathematical framework of gauge theories that is based upon a
skew-adjoint Lie algebra and a generalized Dirac operator, both acting on a Hilbert
space. ©1999 American Institute of Physics.@S0022-2488~99!02201-X#

I. INTRODUCTION

In this article the author’s previous article,1 in which we proposed a mathematical calcul
towards gauge field theories based upon graded differential Lie algebras is made more p
Given a skew-adjoint Lie algebrag, a representationp of g on a Hilbert spaceh0 as well as an
~unbounded! operatorD and a grading operatorG on h0, we developed a scheme providin
connection and curvature forms to build physical actions. The general part of our expositio
on a very formal level; we worked with unbounded operators~even the splitting of a bounded i
two unbounded operators! without specification of the domain.

In the present article, we correct this shortcoming. The idea is to introduce a second H
spaceh1, which is the domain of the unbounded operatorD. Now, D is a linear continuous
operator fromh1 to h0, and the just mentioned splitting involves continuous operators o
Moreover, the awkward connection theory in the previous paper is resolved in a strict alg
description in terms of normalizers of graded Lie algebras. Finally, our construction of the
versal graded differential Lie algebra is considerably simplified~thanks to a hint by Schmu¨dgen!.

The scope of our framework is the construction of Yang–Mills–Higgs models in noncom
tative geometry.2 The standard procedure3,4 starts from spectral triples with real structure5,6 and is
limited to the standard model.7 The hope is8 that the replacement of the unital associati
* -algebra in the prior Connes–Lott prescription9 by a skew-adjoint Lie algebra admits represe
tations general enough to construct grand unified theories. For a realization of this strate
Refs. 10–12. We discuss the relation to the axiomatic formulation6 of noncommutative geometry
in the last section.

II. THE ALGEBRAIC SETTING

Let g be a skew-adjoint Lie algebra,a* 52a for all aPg. Let h0 ,h1 be Hilbert spaces, where
h1 is dense inh0. Denoting byB(h0) andB(h1) the algebras of linear continuous operators onh0

and h1, respectively, we defineBªB(h0)ùB(h1). The vector space of linear continuous ma
pings from h1 to h0 is denoted byL. Let p be a representation ofg in B. Let DPL be a
generalized Dirac operator with respect top(g). This means thatD has an extension to a sel
adjoint operator onh0, that @D,p(a)#PL even belongs toB for any aPg and that the resolven
of D is compact. Finally, letGPB be a grading operator, i.e.,G2 is the identity on bothh0 andh1,
@G,p(a)#50 on bothh0 ,h1 for anyaPg andDG1GD50 onh1 extends to 0 onh0. This setting
was calledL-cycle in Ref. 1, referring to aLie-algebraic version of aK-cycle, the former name2,9

for spectral triple.5,6

The standard example of this setting (g,h0 ,h1 ,D,p,G) is

a!Present address: Centre de Physique The´orique, CNRS-Luminy, Case 907, F-13288 Marseille, France. Electronic m
raimar@cpt.univ-mrs.fr or raimar.wulkenhaar@itp.uni-leipzig.de
7870022-2488/99/40(2)/787/8/$15.00 © 1999 American Institute of Physics

                                                                                                                



n spin
re
re

ra

bra

ts a

788 J. Math. Phys., Vol. 40, No. 2, February 1999 Raimar Wulkenhaar

                    
g5C`~X! ^ a, h05L2~S! ^ CF,

h15W1
2~S! ^ CF, D5 i]” ^ 1F1g ^M,

p5 id^ p̂, G5g ^ Ĝ.

Here,C`(X) denotes the algebra of real-valued smooth functions on a compact Riemannia
manifold X, a is a skew-adjoint matrix Lie algebra,L2(S) denotes the Hilbert space of squa
integrable sections of the spinor bundleS over X, W1

2(S) denotes the Sobolev space of squa
integrable sections ofS with a generalized first derivative, i]” is the Dirac operator of the spin
connection,g is the grading operator onL2(S) anti-commuting with i]” , p̂ is a representation ofa

in MFC and Ĝ a grading operator onMFC commuting withp̂(a) and anti-commuting withM
PMFC.

III. THE UNIVERSAL GRADED DIFFERENTIAL LIE ALGEBRA V

For g being a real Lie algebra we consider the real vector spaceg25g3g, with the linear
operations given byl1(a1 ,a2)1l2(a3 ,a4)5(l1a11l2a3 ,l1a21l2a4), for aiPg and l iPR.
Let T be the tensor algebra ofg2, equipped with theN–grading structure deg((a,0))50 and
deg((0,a))51, and linear extension to higher degrees, deg(t1^ t2)5deg(t1)1deg(t2), for t iPT.
Defining Tn5$tPT:deg(t)5n%, we haveT5 % nPNTn and Tk

^ Tl,Tk1 l . We regardT as a
graded Lie algebra with graded commutator given by@ tk,t l #ªtk

^ t l2(21)kl t l
^ tk, for tnPTn.

Let Ṽ5 % nPNṼn5( @g2,@•••@g2,g2#•••## be theN-graded Lie subalgebra ofT ~due to the
graded Jacobi identity! given by the set of sums of repeated commutators of elements ofg2. Let I 8
be the vector subspace ofṼ of sums of elements of the following type:

@~a,0!,~b,0!#2~@a,b#,0!, @~a,0!,~0,b!#1@~0,a!,~b,0!#2~0,@a,b# !, ~2!

for a,bPg. The first part extends the Lie algebra structure ofg to the first component ofg2 and the
second part plays the roˆle of a Leibniz rule, see below. Obviously,IªI 81@g2,I 8#

1@g2,@g2,I 8##1¯ is an N-graded ideal ofṼ, so thatVª% nPNVn, Vn
ªṼn/(I ùVn) is an

N-graded Lie algebra.
On T we define recursively a graded differential as anR-linear mapd:Tn→Tn11 by

d~a,0!5~0,a!, d~0,a!50, ~3!

d~~a,0! ^ t !5d~a,0! ^ t1~a,0! ^ dt, d~~0,a! ^ t !52~0,a! ^ dt,

for aPg and tPT. One easily verifiesd250 on T and the graded Leibniz ruled(tk
^ t l)5dtk

^ t l1(21)ktk
^ dtl , for tnPTn. Thus,d defined by~3! is a graded differential of the tensor algeb

T and of the graded Lie algebraT as well,d@ tk,t l #5@dtk,t l #1(21)k@ tk,dtl #.
Due todg2,g2 we conclude thatd is also a graded differential of the graded Lie subalge

Ṽ,T. Moreover, one easily checksdI8,I 8, giving dI,I . Therefore, (V , @ ,# , d) is a graded

differential Lie algebra, with the graded differentiald given byd(Ã1I )ªdÃ1I , for ÃPṼ.
We extend the involution* :a°2a on g to an involution ofT by (a,0)* 52(a,0), (0,a)*

52(0,a) and (t1^ t2)* 5t2* ^ t1* , giving @ tk,t l #* 52(21)kl@ tk* ,t l* #. Clearly, this involution
extends toV. The identitya52a* yields vk* 52(21)k(k21)/2vk, for anyvkPVk.

The graded differential Lie algebraV is universal in the following sense.
Proposition 1: LetL5 % nPNLn be anN-graded Lie algebra with graded differentiald such

that
(i) L05p(g) for a surjective homomorphismp of Lie algebras,
(ii) L is generated byp(g) and dp(g) as the set of repeated commutators. Then there exis
differential ideal IL,V fulfilling L>V/I L .

Proof: Define a linear surjective mappingp:V→L by
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p~~a,0!!5p~a!, p~dv!5d~p~v!!, p~@v,ṽ# !ª@p~v!,p~ṽ !#,

for aPg andv,ṽPV. Because ofd kerp,kerp, I L5kerp is the desired differential ideal ofV.
h

IV. THE GRADED DIFFERENTIAL LIE ALGEBRA VD

Using the grading operatorG we define onL andB aZ2-grading structure, the even subspac
carry the subscript 0 and the odd subspaces the subscript 1. Then, the graded com
@ . , . #g :Li3Bj→L( i 1 j ) mod 2 is defined by

@Ai ,Bj #gªAi+Bj2~21! i j Bj +Ai[2~21! i j @Bj ,Ai #g , ~4!

whereBjPBj andAiPLi . If AiPBi then @ . , . #g mapsh1 to h1 andh0 to h0.
Using the elementsp andD of our setting we define a linear mappingp:V→B by

p~~a,0!!ªp~a!, p~~0,a!!ª@2 iD,p~a!#g ,
~5!

p~@vk,v l # !ª@p~vk!,p~v l !#g ,

for aPg and vnPVn. The self-adjointness ofD on h0 implies thatp is involutive, p(v* )
5(p(v))* .

Note thatp(V) is not a gradeddifferential Lie algebra. The standard procedure to constr
such an object is to defineJ5kerp1dkerp,V. It is easy to show thatJ is a graded differential
ideal of V, providing the graded differential Lie algebra,

VD5 %
nPN

VD
n , VD

n
ªVn/J n>p~Vn!/p~J n!, ~6!

whereJ n5JùVn. One hasVD
0 >p(V0)[p(g) and VD

1 >p(V1). By construction, the differ-
ential d on VD is given byd(p(vn)1p(J n))ªp(dvn)1p(J n11), for vnPVn.

It is very useful to consider an extension of the second formula of~5!, p(d(a,0))
ª@2 iD,p((a,0))#g , to higher degrees:

p~dvn!5@2 iD,p~vn!#g1s~vn!, vnPVn. ~7!

It turns out1 that s:V→L is a linear mapping recursively given by

s~~a,0!!50, s~~0,a!!5@D,@D,p~a!#g#g ,
~8!

s~@vk,v l # !5@s~vk!,p~v l !#g1~21!k@p~vk!,s~v l !#g .

Equation~7! has an important consequence: PuttingvnPkerp we get

p~J n11!5$s~vn!:vnPVnùkerp%. ~9!

The point is thats(V) can be computed from the last equation~8! onces(V1) is known. Then
one can computep(J) and obtains with~7! an explicit formula for the differential onVD .

V. CONNECTIONS

We define the graded normalizerNL(p(V)) of p(V) in L, its vector subspaceH compatible
with p(J) and the graded centralizerC of p(V) in L by
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NL
k ~p~V!!5$hkPLk mod 2: hk has$skew-adjoint

self-adjoint % extension fork~k21!
2 $even

odd %,

@hk,p~vn!#gPp~Vk1n!;vnPVn ,;nPN %, ~10!

H k5$hkPNL
k ~p~V!!:@hk,p~ j n!#gPp~J k1n!; j nPJ n %,

C k5$ckPNL
k ~p~V!!:@ck,p~v!#g50;vPV %.

Here, the linear continuous operator@hk,p(vn)#g :h1→h0 must have its image even in the su
spaceh1,h0 and must have an extension to a linear continuous operator onh0. For each degree
n we have the following system of inclusions:

L . H n . p~Vn! . p~J n!

ø ù

C n B , L
. ~11!

The graded Jacobi identity and Leibniz rule define the structure of a graded differential Lie a
on Ĥ5 % nPN Ĥn, with Ĥn5H n/(C n1p(J n)):

@@hk1C k1p~J k! , h l1C l1p~J l !#g , p~vn!1p~J n!#g

ª@hk,@h l ,p~vn!#g#g2~21!kl@h l ,@hk,p~vn!#g#g1p~J k1 l 1n! ,
~12!

@d~hk1C k1p~J k!! , p~vn!1p~J n!#g

ªp + d + p21~@hk,p~vn!#g!2~21!k@hk,p~dvn!#g1p~J k1n11! ,

for hnPH n andvnPVn.
The lesson is thatp(V) and its idealp(J) give rise not only to the graded differential Li

algebraVD but also toĤ, both being natural. It turns out that it is the differential Lie algebraĤ
which occurs in our connection theory

Definition 2: Within our setting, a connection¹ and its associated covariant derivativeD are
defined by
(i) DPL1 with a self-adjoint extension,
(ii) ¹:VD

n→VD
n11 is linear,

(iii) ¹(p(vn)1p(J n))5@2 iD,p(vn)#g1s(vn)1p(J n11), vnPVn.
The operator¹2:VD

n→VD
n12 is called the curvature of the connection.

This definition states that the covariant derivativeD generalizes the operatorD of the setting
and the connection¹ generalizes the differentiald. In particular, bothD and¹ are related via the
same equation~iii ! asD andd are according to~7!.

Proposition 3: Any connection/covariant derivative has the form¹5d1@r1C 1 , •#g andD
5D1 ir, for rPH 1. The curvature is¹25@u, •#, with u5dr̂1 1

2@ r̂,r̂ #gPĤ2, wherer̂5r1C 1

PĤ1.
Proof: There is a canonical pair of connection/covariant derivative given by¹5d andD

5D. If ( ¹ (1),D (1)) and (¹ (2),D (2)) are two pairs of connections/covariant derivatives, we
from ~iii !,

~¹~1!2¹~2!!~p~vn!1p~J n!!5@¹h
~1!2¹h

~2! ,p~vn!#g1p~J n11!.

This means thatrª¹h
(1)2¹h

(2)PH 1 is a concrete representative and¹ (1)2¹ (2)5@ r̂, •#g , where
r̂5r1C 1PĤ1. The formula foru is a direct consequence of~12!. h
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VI. GAUGE TRANSFORMATIONS

The exponential mapping defines a unitary group

UªH )
a51

N

exp~va!: exp~va!ª1B1 (
k51

`
1

k!
~va!k , vaPH 0ùB ,dva2@2 iD,va#PC 1J . ~13!

Due to exp(v)Aexp(2v)5A1(k51
` 1

k!
(@v,@v, . . . ,@v,A#•••##)k , where ()k containsk commutators of

APL with v, we have a natural degree-preserving representation Ad ofU on H, Adu(hn)
5uhnu* PH n, for hnPH n anduPU.

Definition 4: In our setting, the gauge group is the groupU defined in (13). Gauge transfor
mations of the connection and the covariant derivative are given by

¹°¹8ªAdu¹Adu* , D°D8ªuDu* , uPU.

Note that the consistency relation~iii ! in Definition 2 reduces on the infinitesimal level to th
conditiondva2@2 iD,va#PC 1 in ~13!. The gauge transformation of the curvature form reads
u°u85Aduu.

VII. PHYSICAL ACTION

We borrow the integration calculus introduced by Connes to noncommutative geometry2,5 and
summarize the main results. LetEn be the eigenvalues of the compact operator~compactness was
assumed in the setting! uDu215(DD* )21/2 on h0, arranged in decreasing order. Here, the fin
dimensional kernel ofD is not relevant so thatE1,`. The K-cycle (h0 ,D) over theC* -algebra
B(h0) is called d1-summable if(n51

N En5O( (n51
N n21/d ). Equivalently, the partial sum of the

first N eigenvalues ofuDu2d has~at most! a logarithmic divergence asN→` so thatuDu2d belongs
to the ~two-sided! Dixmier trace class idealL (1,̀ )(h0). Therefore,f uDu2dPL (1,̀ )(h0) for any
f PB(h0), and the Dixmier trace provides forf .0 a linear functional f °Trv( f uDu2d)
5Limv(1/lnN)(n51

N mnPR1. Here,mn are the eigenvalues off uDu2d and the limit Limv involves
an appropriate limiting procedurev. The Dixmier trace fulfills Trv( f uDu2d)5Trv(u f u* uDu2d),
for unitary uPB(h0).

Let u0* :h0→h1 be the uniquely determined adjoint of a representativeu0 :h1→h0 of the
curvature formuPĤ2. It follows that u0u0* PB(h0) so that we propose the following definitio
for the physical action.

Definition 5: The bosonic action SB and the fermionic action SF of the connection¹ and
covariant derivativeD are given by

SB~¹!ª min
j2PC 21p~J 2!

Trv~~u01 j2!~u01 j2!* uDu2d!,

~14!
SF~c,D!ª^c,Dc&h0

, cPh1 ,

where^,&h0
is the scalar product on h0.

The bosonic actionSB is independent of the choice of the representativeu0. Thus, we can take
the canonical dependence of the gauge potentialr,

u05$2 iD,r%1 1
2$r,r%1s+p21~r!,

wheres + p21 is supposed to be extended fromp(V1) to H 1. It is unique up to elements o
C 21p(J 2). Since the Dixmier trace is positive, the element j0

2PC 21p(J 2) at which the mini-
mum in ~14! is attained is the unique solution of the equation

Trv~~u01 j 0
2!~ j 2!* uDu2d!50, ; j 2PC 21p~J 2!.
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It is clear that the action~14! is invariant under gauge transformations,

¹°Adu¹Adu* , D→uDu* , c°uc, uPU. ~15!

Note that our gauge group as defined in~13! is always connected, which means that we have
access to ‘‘big’’ gauge transformations. Note further that there exist Lie groups having the
Lie algebra. In that case there will exist fermion multipletsc which can be regarded as multiple
of different Lie groups. For the bosonic sector only the Lie algebra is important, so one can
the pathological situation of a model with identical particle contents and identical interaction
different gauge groups. We consider such gauge theories as identical.

VIII. REMARKS ON THE STANDARD EXAMPLE

Recall ~5! that the general form of an elementt1Pp(V1) is

t15 (
a,z>0

@p~aa
z !,@¯@p~aa

1 !,@2 iD,p~aa
0 !##¯##, aa

i Pg. ~16!

For aa
i 5 f a

i
^ âa

i PC`(X) ^ a we get with~1!,

t15 (
a,z>0

~ f a
z
••• f a

1]” ~ f a
0 ! ^ p̂~@ âa

z ,@¯@ âa
1 ,âa

0 #¯## !

1 f a
z
¯ f a

1 f a
0g^ @p̂~ âa

z !,@¯@p̂~ âa
1 !,@2 iM,p̂~ âa

0 !##¯##). ~17!

Let us first assume thata is semisimple. In this case the two lines in~17! are independent. The firs
line belongs toL1

^ p̂(a), because the gamma matrices occurring in]” provide a 1-form basis. In
physical terminology, these Lie algebra-valued 1-forms are Yang–Mills fields acting via
representation id̂ p̂ on the fermions. In the second line of~17! we splitM into generators of
irreducible representations ofa, tensorized by generation matrices. Obviously, these irreduc
representations are spanned after taking the commutators withp̂(âa

i ). Thus, the second line o
~17! contains sums of function-valued representations of the matrix Lie algebra~times g and
generation matrices!, which are physically interpreted as Higgs fields. In other words, the pr
type t1 of a connection form~5gauge potential! describes representations of both Yang–Mi
and Higgs fields on the fermionic Hilbert space.

From a physical point of view, this is a more satisfactory picture than the usual noncom
tative geometrical construction of Yang–Mills–Higgs models.3,4 Namely, descending from
Connes’ noncommutative geometry2,5,6 there is only a limited set of Higgs multiplets possible13

Admissible Higgs multiplets are tensor productsn^m* of fundamental representations~and their
complex conjugate! n,m of simple gauge groups, where the adjoint representation never oc
This rules out7 the construction of interesting physical models. In our framework there are no
restrictions and — depending on the choice ofM andh — Higgs fields in any representation o
a Lie group are possible. Thus, a much larger class of physical models can be constructe

The treatment of Abelian factorsa9,a in our approach is somewhat tricky. One remarks t
in the first line of~17! only the (z50)-component ofa9 survives. The consequence is that line
independence of the two lines in~17! is not automatic. Thus, to avoid pathologies, we nee
condition1 betweenM and the representations ofa to assure independence. Theu(1)-part of the
standard model is admissible in this sense.

The second consequence of the missing (z.0)-components in the first line is that the spac
time 1-form part of Abelian factors int1 is a total differential]” ( f 0

0)PdL0,L1. This seems to be
a disaster at first sight for the description of Abelian Yang–Mills fields. However, our ga
potential lives in the bigger spaceH 1.p(V1). Always, if there is a partdL0

^ p(a9) in p(V1)
there is a partL1

^ p(a9) in H 1. There can be even further contributions fromH 1 to the gauge
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potential, which are difficult to control, in general. Fortunately, it turns out1 that after imposing a
locality condition for the connection~which is equivalent to saying thatr commutes with func-
tions!, possible additionalH 1-degrees of freedom are either of the Yang–Mills type or the Hi
type.

This framework of gauge field theories was successfully applied to formulate the sta
model,10 the flipped SU~5!3U~1!-grand unification11 and SO~10!-grand unification.12 It is not
possible to describe pure electrodynamics. The reason is that in the Abelian case the cu
form uÞ0 commutes with all elements ofp(V). Hence, it belongs to the graded centralizerC 2

and is projected away in the bosonic action~14!.

IX. DO THE AXIOMS OF NONCOMMUTATIVE GEOMETRY EXTEND TO THE LIE
ALGEBRAIC SETTING?

The present status of noncommutative geometry is that this theory is governed by
axioms.6 In the commutative case, these axioms provide the algebraic description of classic
manifolds. The question now is whether or not our Lie algebraic version, which is in close an
with the prior Connes–Lott formulation9 of noncommutative geometry, can also be brought i
contact with Connes’ axioms. We list and discuss below the axioms in their form they would
in terms of Lie algebras.

~1! Dimension:uDu21 is an infinitesimal of order 1/d, i.e., the eigenvalues En of uDu21 grow as
n21/d, where d is an even natural number.

~3! Smoothness: For any aPg, both a and@D,a# belong to the domain ofdm, where d(.)
ª@ uDu,•#.

The axioms~1! and ~3! can be directly transferred to the Lie algebraic setting. We can
treat the odd-dimensional case as the grading operatorG is essential to detect the sign for th
graded commutator.

~4! Orientability: Connes requires theZ2-grading operatorG to be the image underp of a
Hochschild d-cycle. We are not going to touch the extension of Hochschild homology t
algebras, but even a requirement such asGPp(Vd) is problematic. For the standard examp
we have the decompositionG5g^ Ĝ, and the comparison with the general form1 of p(Vd)
yields thatĜ has to be the image underp̂ of the non-Abelian part ofa. In all models we have
studied so far this is not the case. It seems to be impossible to maintain orientability i
framework. The grading operatorG, which commutes withp(g) and anti-commutes withD,
is an extra piece which has no relation with orientability.

~7! Reality: There exists an antilinear isometry J:hi→hi such that@p(a),Jp(b)J21#50 for all
a,bPg, J25e, JD5DJ and JG5e8GJ, with e5(21)d~d12!/8 and e85(21)d/2.

~2! First order: @@D,p(a)#,Jp(b)J21#50 for all a,bPg.
Both axioms~7! and~2! can be trivially fulfilled as soon as an antilinear involutionI on hi

is available. It suffices to define

JªS 0 e I21

I 0 D , hi°S hi

hi
D , D°S D 0

0 IDI21D ,

p~a!°S p~a! 0

0 0D , G°S G 0

0 e8IGI21D .

The question is whether there are nontrivial real structures which also satisfy the other a
The existence of the real structureJ ~Tomita’s involution! is a central piece of Connes’ theory
It has proved very useful in understanding the commuting electroweak and strong sec
the standard model. The same idea could be applied to our formulation of the sta
model.10 For other gauge theories,11,12however, a nontrivial real structureJ seems to be rathe
disturbing as it requires the fermions to sit in~generalized! adjoint representations. To achiev
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this one had to add auxiliaryu~1!-factors, which is in contradiction to the grand unificatio
philosophy.

~5! Finiteness and absolute continuity:Connes requiresh`5ùmdomain(Dm) to be a finite pro-
jective module. Thus, our task would be to define the notion of a finite projective module
a Lie algebrag and the Lie analogs of theK-groups. We are not aware of these structures,
without them it is impossible to talk about generalizations of the index pairing ofD with the
K-groups and of the following.

~6! Poincaréduality.

In conclusion, our Lie algebraic version of noncommutative geometry is not a possible
eralization of classical spin manifolds, or at least there is a lot to do to derive the Lie analo
standard algebraic structures. Our approach provides a powerful tool to build gauge field th
with spontaneous symmetry breaking; the price for this achievement is the lost of any conta
spin manifolds.
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A general model is proposed for constrained dynamical systems on a symplectic
manifold which covers, among others, the description of Lagrangian and Hamil-
tonian systems with nonholonomic constraints and the canonical description of
mechanical systems with a singular Lagrangian. The reduction properties of these
systems in the presence of symmetry are investigated within this general frame-
work. © 1999 American Institute of Physics.@S0022-2488~99!00902-0#

I. INTRODUCTION

In this paper, we propose a general model for constrained Hamiltonian systems on a sy
tic manifold, providing a unified setting for the description of various types of mechanical sys
with constraints. Special attention is then paid to aspects concerning symmetry and reduct
the class of systems under consideration.

The constraints encountered in classical mechanics can be classified, roughly speakin
two different categories, which may be labeled as ‘‘internal constraints’’ and‘‘external
straints,’’ respectively. Internal constraints are those that find their origin in the degeneracy
Lagrangian describing a certain system, which prevents a straightforward transition to an e
lent Hamiltonian formulation. This type of constraint usually reflects the presence of ‘‘gau
degrees of freedom, and is, in fact, more relevant to relativistic mechanics and field theor
standard treatment of degenerate~or singular! Lagrangian systems is based on the Dira
Bergmann constraint analysis~see, e.g., Ref. 1!. An intrinsic geometric formulation and genera
zation of this theory is provided by the so-called presymplectic constraint algorithm, develop
Gotay and Nester.2–4 A different approach to singular Lagrangian systems, advocated by T
zyjew, consists in treating them as implicit dynamical systems~see, e.g., Ref. 5!.

External constraints refer to those physical constraints which are imposed on a given s
from outside. Here we can make a further distinction between~time-independent or time
dependent! holonomic and nonholonomic, one-sided and two-sided constraints. Holonomic
straints are restrictions on the admissible configurations~i.e., ‘‘positions’’! of the system under
consideration, whereas nonholonomic constraints depend on the velocities in an essential w

a!Senior Research Associate at the Fund for Scientific Research—Flanders, Belgium.
Electronic mail: frans.cantrijn@rug.ac.be

b!Electronic mail: mdeleon@fresno.csic.es
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they can not be integrated to relations depending on the position variables only. The protot
nonholonomic constraints are the conditions for ‘‘rolling without slipping.’’ For the purpose
this paper, we restrict our attention to the case of systems with two-sided, time-indepe
nonholonomic constraints.~For a geometric approach to systems with one-sided constraints, w
are analytically expressed by inequalities, we refer to Refs. 6, 7.! The classical approach t
nonholonomic mechanical systems is based on the method of Lagrange multipliers~see, e.g., Ref.
8 for a comprehensive treatment!. The fundamental work of Vershik and Faddeev9,10 has marked
the beginning of a period of intensive research on nonholonomic systems within the rea
geometric mechanics: see, for instance, Refs. 11–14 for a more detailed bibliography. In p
lar, the relevance of these studies for the further development of control theory has re
attracted a lot of attention~see, e.g., Refs. 15, 16, and references therein!. We note, in passing, tha
nonholonomic systems have also been treated as implicit dynamical systems by Ibortet al.11

In spite of the difference in the ‘‘physical’’ nature of the constraints, it turns out that
geometrical models adopted for describing systems with either internal or external const
have many aspects in common. Indeed, in the canonical treatment of degenerate systems
as in the Lagrangian and Hamiltonian treatment of nonholonomic systems, the search for
tent equations of motion eventually leads to a framework consisting of the following ingred
a symplectic manifold (P,v), a smooth functionH on P, a submanifoldM of P, and a distri-
bution F along M ~i.e., a subbundle of the restricted tangent bundleTPuM). Depending on the
case,P hereby represents the velocity phase spaceTQ or the momentum phase spaceT* Q of the
system under consideration, with underlying configuration spaceQ, andv is either the Poincare´–
Cartan 2-form onTQ, induced by a regular Lagrangian, or the canonical symplectic form
T* Q. In the case of degenerate systems,M is the ‘‘final constraint submanifold’’ generated by th
appropriate constraint algorithm, andF coincides either withTM or with the tangent bundle of a
larger submanifold containingM ~the primary constraint submanifold!. H denotes the energy
function or the~extended! Hamiltonian. In the case of a nonholonomic system,M simply denotes
the constraint submanifold defined by the given external constraints, and the distributionF is
characterized by the property that its annihilator is the co-distribution generated by the re
forces, induced by the constraints. The problem then consists in finding a vector field oP,
generated byH, which is tangent toM and compatible, in an appropriate sense, with the dis
bution F.

In the present paper we will take the above ingredients as building stones for construc
general model for constrained dynamical systems in a symplectic setting. This model can b
in particular, as a unifying model for the description of degenerate systems as well as of me
cal systems with nonholonomic constraints. Our main goal then is to study the geometry o
systems in the presence of symmetry. Guided by various recent treatments of nonholo
systems with symmetry~cf. Refs. 17, 15, 12, 18, 19!, we will discuss in some detail the reductio
problem for general constrained Hamiltonian systems with symmetry.

The scheme of this paper is as follows. In the next section we briefly recall some aspe
the geometrical approach to singular Lagrangian systems and to systems with nonholo
constraints. In Sec. III we then propose a general model for constrained systems and inve
the existence and uniqueness conditions for the dynamics. In Sec. IV we deal with the prob
solving the dynamics. In Sec. V, we introduce symmetry into our model and present some g
reduction results. After putting forward a classification of constrained systems with symm
inspired on the one introduced by Blochet al.15 for nonholonomic systems, we describe som
further reduction results for each class separately in Sec. VI. Finally, in Sec. VII we illustrat
obtained results on some particular cases.

Throughout this paper, we work in the category of smooth~i.e.,C`) objects. For convenience
we will usually not make a notational distinction between a~vector! bundle over a manifold and
the ring of its smooth sections, i.e., ifF denotes a vector bundle over a manifoldN ~for instance,
a subbundle ofTN), thenXPF simply means thatX:N→F is a section ofF. The sole exception
to this rule will be the occasional use of the notationX(N) for the ring of smooth vector fields on
N.
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II. EQUATIONS OF MOTION OF CONSTRAINED LAGRANGIAN SYSTEMS

Consider a smooth, finite dimensional manifoldQ, with local coordinates denoted by (qA).
As is well known, the tangent bundleTQ of Q, with canonical projectiontQ :TQ→Q, is
equipped with a dilation vector fieldD, i.e., the so-called Liouville vector field, and a canonic
type ~1,1! tensor fieldS, called the vertical endomorphism, which determines the almost tan
structure ofTQ. In the natural bundle coordinates (qA,vA) of TQ these objects read as

D5vA
]

]vA , S5
]

]vA ^ dqA.

Given a Lagrangian onTQ, i.e., a smooth functionL:TQ→R, one can define the correspondin
Poincare´–Cartan 1- and 2-formsuL andvL , respectively, and the energy functionEL , according
to

uL5S* ~dL!, vL52duL , EL5D~L !2L,

with S* denoting the action ofS on 1-forms. In geometrical terms, the equations of motion for
Lagrangian system with LagrangianL can then be expressed by

i ZvL5dEL . ~1!

If L is regular, that is, if the Hessian matrix (]2L/]vA]vB) is nondegenerate everywhere, thenvL

is a symplectic form. In that case~1! admits a unique solution forZ, which we will denote byGL ,
and which is usually called the Euler–Lagrange vector field corresponding toL. In particular,GL

is a second order differential equation field~SODE, for short!, that is, S(GL)5D. The base
integral curvesqA(t) of GL ~i.e., the projections of its integral curves ontoQ) verify the Euler–
Lagrange equations,

d

dt S ]L

]q̇AD2
]L

]qA 50. ~2!

For later use, we recall that the symplectic formvL , corresponding to a regular Lagrangia
induces two bundle isomorphisms~‘‘musical mappings’’! [L :T(TQ)→T* (TQ) and
]L :T* (TQ)→T(TQ), where[L(X)5 i XvL and]L5[L

21 .

A. Singular Lagrangian systems

A Lagrangian~system! is called singular, or degenerate, if the Hessian matrix (]2L/]vA]vB)
is singular. In such a case, the equation of motion~1!, in general, does not have a solution, and
a solution exists, it will not be unique. If the Poincare´–Cartan 2-formvL corresponding to a
singular Lagrangian has constant rank and, hence,vL happens to be a presymplectic form, one c
apply the so-called presymplectic constraint algorithm, developed by Gotay and Nester~see, e.g.,
Refs. 2, 3!. This algorithm generates a descending sequence of constraint submanifolds
under the appropriate conditions, converges to a closed immersed submanifoldPf of TQ ~the
‘‘final constraint submanifold’’! on which there exist consistent equations of motion for the gi
system. More precisely, it follows by construction that the equation

~ i ZvL2dEL! uPf
50 ~3!

admits at least one solutionZ which is everywhere tangent toPf . In addition, one can always find
a submanifold ofPf on which there exists a unique solutionZ which also verifies the SODE
condition ~cf. Ref. 4!. For quantization purposes, however, it is more convenient to develop
analysis of a degenerate Lagrangian system on an ambient symplectic space. This can be a
by passing to an appropriate Hamiltonian formulation.
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Let us recall that, given a LagrangianL, the Legendre map Leg:TQ→T* Q is a fibered
mapping overQ, which is locally written as

Leg~qA,vA!5~qA,pA!,

wherepA5]L/]vA. If vQ denotes the canonical symplectic form onT* Q, we have Leg* vQ

5vL ~see, e.g., Ref. 20!. Hence,L is regular if and only if Leg is a local diffeomorphism, andL
is said to be hyperregular if Leg is a global diffeomorphism. For a singular Lagrangian sys
is not possible, in general, to obtain a consistent Hamiltonian description. Let us assume, ho
that L is almost-regular, i.e.,M15Leg(TQ) is a submanifold ofT* Q and Leg is a submersion
onto M1 with connected fibers. In that case, the energy functionEL projects onto a function
h1 :M1→R which is uniquely determined byh1+Leg15EL , where Leg1 simply stands for the
‘‘restriction’’ of Leg, regarded as a mapping fromTQ onto M1 . If we now denote byv1 the
pull-back ofvQ to M1 , then the equation

i Xv15dh1 , ~4!

is precisely the Hamiltonian counterpart of Eq.~1!.
Starting from~4!, one can again apply the presymplectic constraint algorithm which, in

the given problem is consistent, leads to a nonempty final constraint submanifoldM f such that the
equation

~ i Xv12dh1! uM f
50 ~5!

admits well-defined solutions. This approach yields a global version of the classical D
Bergmann theory for constrained systems.1 Let ‘‘'’’ denote the symplectic orthogonal with re
spect to the canonical symplectic formvQ . Then, if X is an arbitrary solution of~5!, all other
solutions will be of the formX1Y, with YPTMfùTM1

' .
A simple argument shows that, for almost regular Lagrangians, the Lagrangian and the H

tonian formulations are fully equivalent~see Refs. 2, 3!. In particular, the final constraint sub
manifolds on both sides are connected via the Legendre transformation, in the sense that th
induces a fibration Legf :Pf→M f . WheneverZ is a projectable solution of~3!, its projection onto
M f yields a solution of~5! and, conversely, given a solutionX of ~5!, any vector fieldZ on Pf

which projects ontoX satisfies~3!.
A geometric constraint algorithm, closely related to the Gotay–Nester approach, is th

developed by Hinds21 ~see also Ref. 2 for a brief discussion!. Again starting from~4!, this algo-
rithm generates a descending sequence of constraint submanifolds. In the favorable ca
algorithm stabilizes at a final constraint submanifold which, for simplicity, we will denote a
by M f . It is important to point out that, in general, thisM f will be different from the final
constraint submanifold obtained by the presymplectic constraint algorithm. In principle,
algorithms start to diverge from each other after the second step. This is due to the fact tha
Hinds algorithm, at each step, possibly new constraints are generated by imposing cons
conditions on the equations of motion induced on the previous constraint submanifold by a
back procedure. In the presymplectic constraint algorithm, on the other hand, the consi
conditions are imposed on the equations obtained by taking the restriction of~4! to the successive
constraint submanifolds. The equations of motion obtained through Hinds’ algorithm ca
written as

i Xv f5dhf , ~6!

with v f andhf denoting the pull-back toM f of v1 andh1 , respectively. Given a solutionX of this
equation, it follows thatX1Y is also a solution for anyYPTMfùTMf

' . Note that~6! is an
equation induced on the final constraint submanifold, i.e., it expresses an equality of 1-for
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M f , whereas~5! represents an equality of 1-forms onM1 , restricted to points of the correspond
ing M f . This indeed reflects the difference in spirit between both algorithms, as described a

Following Dirac,1 the constraints produced in the course of the constraint analysis ca
classified in two different ways. On the one hand, depending on the order of appearance, th
primary, secondary,~tertiary, etc.,! constraints. On the other hand, there is the more signific
distinction between first and second class constraints. In physics, it is customary to assume
first class constraints~primary, secondary,...! are generators of gauge transformations, i.e., tra
formations that do not change the physical state of the system~see, e.g., Refs. 22, 23!. This
property is automatically verified when applying Hinds’ algorithm. In the Gotay–Nester appro
all primary first class constraints generate gauge transformations but, in general, this need
the case for all subsequent~secondary,...! first class constraints~see Ref. 2 for more details!. From
a physical point of view, therefore, it may be argued that~6! is in better agreement with th
‘‘standard’’ interpretation of gauge transformations than~5!.

We will now recast the equations~5! and ~6! into a form which better serves our purpos
Taking an arbitrary extensionH1 :T* Q→R of the Hamiltonianh1 :M1→R, it follows that ~5! is
formally equivalent to

~ i XvQ2dH1! uM f
P~TM1

o! uM f
, XuM f

PTMf , ~7!

whereTM1
o is the annihilator ofTM1 in T* T* Q. Locally, these conditions precisely generate t

equations of motion ensuing from the classical Dirac–Bergmann constraint analysis. Like
taking an arbitrary extensionH f of hf to T* Q, ~6! can be rewritten in terms of the canonic
symplectic form as follows:

~ i XvQ2dHf ! uM f
PTMf

o , XuM f
PTMf , ~8!

where it should be emphasized again that, for the same system, the constraint submanifoldM f in
~7! and ~8!, in general, need not be the same.

B. Nonholonomic Lagrangian systems

In this section, we start by considering a regular Lagrangian system with LagrangianL:TQ
→R, subjected to a set of nonholonomic constraints which are linear in the velocities, i.e.
can be~locally! represented by a set of independent functions of the formf iªm iA(q)vA, for 1
< i<m. We can describe this nonholonomic Lagrangian system in geometrical terms as fo
The constraint equationsf i50 define a (n2m)-dimensional distributionD on then-dimensional
configuration manifoldQ. We denote its total space byD, which is a (2n2m)-dimensional
submanifold ofTQ: the constraint submanifold. For simplicity we always assume in the sequ
thattQ(D)5Q, i.e., the constraints are ‘‘purely kinematical’’ in the sense that they do not imp
restrictions on the allowable positions. The motions of the system are forced to take placeD,
and this requires the introduction of some~unknown! ‘‘reaction forces.’’ In de Leo´n et al.,24 an
intrinsic expression for the equations of motion was obtained, which we will describe below

First of all, we define a distributionD v on TQ by prescribing its annihilator as a subbundle
T* TQ which, along the constraint submanifoldD, represents the bundle of reaction forces. Mo
precisely, given a set of independent 1-forms$m i ;1< i<m% on Q, which locally generate the
annihilatorD o of D, we put

~D v!o5^m i
v&,

wherem i
v denotes the vertical lift of the 1-formm i to TQ ~see Ref. 20!. A direct computation

reveals thatD v is, in fact, globally defined. Note, in passing, that withm i5m iA dqA, the given
constraint functionsf i are precisely the evaluation maps of these 1-forms.

Next, it can then be shown that the equations of motion for such a nonholonomic mech
system are given by
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~ i XvL2dEL! uDP~D v!o, XuDPTD. ~9!

It should be pointed out that each solution of~9! ~if there exists one! is automatically a SODE
along D. This implies that, in local coordinates, the integral curves ofX on D are of the form
(qA(t),q̇A(t)), whereby theqA(t) are solutions of the system of differential equations

d

dt S ]L

]q̇AD2
]L

]qA 5l im iA , ~10!

together with the constraint equationsm iA(q)q̇A50, and where thel i are Lagrange multipliers.
We will now describe a procedure which permits us to decide under what condition~9!

admits a solution and, if these conditions are fulfilled, to obtain a solution by projection o
Euler–Lagrange vector field of the corresponding unconstrained system.

Applying the isomorphism]L to the co-distribution (D v)o we obtain the symplectic orthogo
nal complement~with respect tovL) of D v, i.e., ]L((D v)o)5(D v)'. Obviously, dim(D v)' is
equal to the number of independent constraints. We will say that the given nonholonomic s
satisfies thecompatibility conditionif TxDù(D x

v)'5$0% at each pointxPD. In such a case
taking into account that dim(D x

v)'5m, we have a direct sum decomposition,

Tx~TQ!5TxD % ~D x
v!', xPD,

which, in turn, gives rise to two complementary projectors, say

Px :Tx~TQ!→TxD, Qx :Tx~TQ!→~D x
v!'.

A direct calculation shows thatGL,D5P(GL uD
) is a solution of~9!. Moreover, one can easily show

that this solution is necessarily unique.24 The procedure just described is essentially equivalen
the classical one based on the use of Lagrange multipliers.

If the nonholonomic system does not verify the compatibility condition, that
TxDù(D x

v)'Þ$0% at some pointsxPD, we can develop a constraint algorithm which is ve
similar to the one described above for singular Lagrangians~cf. Ref. 24!. Under the appropriate
conditions, this algorithm determines a final constraint submanifoldD f on which there exist
consistent equations of motion for the given constrained problem. More precisely, the algo
guarantees the existence of well-defined solutionsX of the system

~ i XvL2dEL! uD f
P~D v!o, XuD f

PTDf ~11!

~see Ref. 24 for details!. Again, it turns out that a solution of~11! is a SODE alongD f .
The previous analysis of nonholonomic systems can be further extended to the case wh

addition, the Lagrangian happens to be singular~see Refs. 25, 26!. To fix the ideas, let us assum
that L is almost regular, and that ker~Leg!* ,D c, whereD c denotes the tangent or complete l
of D to TQ, i.e.,D c is the distribution onTQ whose annihilator is given by (D c)o5^m i

v ,m i
c&.

The nonholonomic mechanical system (L,D) is then also said to be almost regular. Under the
assumptions, the following is proved in Ref. 25~using the notations of the previous subsectio!:

• D̄5Leg(D) is a submanifold ofM15Leg(TQ), and the restriction LeguD :D→D̄ is a sur-
jective submersion whose fiber at a pointxPD̄ is precisely given by Leg21(x).

• If $m i% is a basis ofD o, then (D v̄)o5^pQ* m i& defines a distributionD̄ v̄ on T* Q, where

pQ :T* Q→Q is the canonical projection. By construction, the distributionsD v andD̄ v̄ are
Leg-related.

• Let D̄ 1
v̄ be the distribution onM1 , the annihilator of which is the co-distribution obtained

taking the pull-back toM1 of the forms generating (D̄ v̄)o. The system
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~iYv12dh1!uD̄P~D̄ 1
v̄!o, YuD̄PTD̄, ~12!

is then equivalent to the system

~iXvL2dEL!uDP~D v!o, XuDPTD,

whereh1 is the projection ofEL ontoM1 . Indeed, one can develop a constraint algorithm
both systems such that, at each stage, the respective constraint submanifoldsDk andD̄k are
Leg-related, that is, Leg(Dk)5D̄k . Moreover, withD f and D̄ f denoting the final constrain
submanifolds, one can show that the Legendre map induces a surjective subm
Legf :D f→D̄ f which projects solutions onto solutions.

In particular, when applying the constraint algorithm to~12! we end up with the dynamica
equation,

~ i Yv12dh1! uD̄ f
P~D̄ 1

v̄!o, YuD̄ f
PTD̄f , ~13!

which, by construction, admits well-defined solutionsY. Finally, as in the treatment of~free!
singular Lagrangian systems, discussed in the previous subsection, one can prove the
equivalence of~13! with

~ i YvQ2dH! uD̄ f
P~D̄ v̄ùTM1!o, YuD̄ f

PTD̄f , ~14!

whereH:T* Q→R is an arbitrary extension ofh1 .
Remark II.1: In the previous discussion we have confined ourselves to the case of

nonholonomic constraints. Much of the above, however, applies equally well to the case of
or even nonlinear constraints. For instance, for a regular Lagrangian system, subjected to
ear, nonholonomic constraints, described by a submanifoldM of the tangent bundleTQ, the
equations of motion are again of the form~9!, with the vector subbundleD being replaced byM
and (D v)o by the co-distributionS* ((TM)o) ~see, e.g., Refs. 27, 28!.

III. A GENERAL FRAMEWORK FOR CONSTRAINED SYSTEMS

When looking at the systems~7!, ~8!, ~9!, ~11! and~14!, we see that, in spite of the differenc
in ~physical! origin and interpretation, they all have a similar geometrical structure. This pro
us to introduce the following general model for constrained dynamical systems within a sym
tic setting.

Consider a symplectic manifold (P,v), a smooth functionH:P→R ~the Hamiltonian!, an
embedded submanifoldM of P ~the constraint submanifold! and a distributionF on P alongM ,
i.e., F is a vector subbundle ofTPuM . We are then interested in the following problem: find
smooth sectionX of the restricted tangent bundleTPuM→M , such that

~ i Xv2dH! uMPFo, XPTM, ~15!

with Fo the annihilator ofF in T* PuM . In particular,X then defines a vector field onM . It is clear
that ~7!, ~8!, ~9!, ~11! and ~14! belong to the class of problems described by~15!. ~We thereby
ignore the technicality that in the treatment of singular Lagrangian systems, the final con
submanifold, in principle, may be an immersed rather than an embedded submanifold.!

In what follows we will denote by[:TP→T* P,X° i Xv and]5[21:T* P→TP, the bundle
isomorphisms overP induced by the symplectic formv.

We now first study the problem of the existence and uniqueness of solutions of the
strained system~15!.

Proposition III.1: (i) (Existence) The system (15) admits a solution if and only if
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dH~x!P~FxùTxM
'!o,

at each point xPM .
(ii) (Uniqueness) If (15) has a solution, then it is unique if and only if

F'ùTM50.

Proof: ~i! If X is a solution of~15! then, sinceX(M ),TM, we havei Xv uMP(TM')o, from
which it follows that

dHuMPFo1~TM'!o5~FùTM'!o.

Conversely, assume thatdHuMPFo1(TM')o. Then,dHuM2bP(TM')o for somebPFo. Since
[(TM)5(TM')o, we deduce that there exists a vector fieldX satisfying~15!.

~ii ! Now, let X andX8 be two solutions of~15!. Then

X2X8PF'ùTM.

Hence, if a solution exists, it will be unique if and only ifF'ùTM50. Q.E.D.
Note that the existence condition can be equivalently expressed as

XHuMPTM1F',

whereXH denotes the~unconstrained! Hamiltonian vector field on (P,v) with HamiltonianH.
Hence, any solutionX of ~15! is of the form

X5XHuM1Z, ~16!

for some ZPF'. An interesting special case occurs when rankF5dim M or, equivalently,
dim Fx5dim TxM for all xPM .

Corollary III.2: If rankF5dim M , then the condition F'ùTM50 implies both the existenc
and uniqueness of a solution of (15).

Proof: A simple algebraic argument shows that, under the given assumptions,TPuM5F'

% TM. Taking the symplectic complements of both sides, we find that 05FùTM' and, hence,
T* PuM5(FùTM')o. The result now readily follows from the previous Proposition. Q.E

Under the conditions of the Corollary,~15! is a constrained Hamiltonian system in the sen
of Marle,19 who has studied such systems in the more general setting of Poisson manifold

Let us now check the existence and uniqueness conditions for the examples discusse
previous section. For the nonholonomic system~9!, with a regular Lagrangian, we have (P,v)
5(TQ,vL), M5D and F5D v. The compatibility condition introduced for such a system p
cisely coincides with the unicity condition from Proposition 3.1. Since a simple countin
dimensions shows that rankD v5dim D, it follows from the above Corollary that a compatib
nonholonomic system indeed admits a unique solution. For the other cases~7!, ~8!, ~11! and~14!,
we note that the equations of motion are obtained after applying a constraint algorithm. The
is precisely conceived so as to guarantee the existence of a consistent solution, i.e., in thes
the existence condition of Proposition 3.1 holds by construction. The uniqueness condition
ever, need not be satisfied: in general, there will be ‘‘gauge degrees of freedom.’’

Returning to the general model~15!, it is important to point out that if the system admits
solution X, it need not be true, in general, that~the restriction of! H is a first integral ofX. In
classical mechanics, for instance, it is well known that imposing nonholonomic constraints
conservative mechanical system may destroy the conservation of energy~see, e.g., Ref. 19!. An
additional assumption on the nature of the constraints therefore is needed to ensure the co
tion of energy. For a Lagrangian system subject to general~i.e., not necessarily linear! nonholo-
nomic constraints, a sufficient condition for the energyEL to be conserved is that the constrain
are ‘‘homogeneous,’’ which, in geometrical terms, means that the dilation vector fieldD should be
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tangent to the constraint submanifold~see Refs. 27, 28, where the less appropriate denomina
‘‘ideal constraints’’ was used instead of homogeneous constraints!. In the case of linear con
straints, this condition is always fulfilled.

Remark III.3:If ~15! admits no solution, then it is possible to develop a constraint algori
which, at least in case the given problem is consistent, will lead to a final constraint subma
M f on which there exist a well-defined dynamics. The system to be considered then reads

~ i Xv2dH! uM f
PFo, XuM f

PTMf , ~17!

which is again of the same type as~15!. By construction this system now has well-defin
solutions. Therefore, without loss of generality, we will henceforth always assume that the
tence condition of Proposition 3.1 is satisfied

IV. SOLVING THE DYNAMICS

Given a constrained system of the form~15! for which condition~i! of Proposition 3.1 holds,
we will now indicate how one can explicitly construct a~local! solution for the dynamics.

Let XH again denote the ‘‘unconstrained’’ Hamiltonian system on (P,v), corresponding to
the HamiltonianH. Take a local basis$m i ;1< i<m% of Fo, and let$Fa ;1<a<s% be an inde-
pendent set of constraint functions which locally defineM . Denote byZi the symplectic gradien
of m i , that is,[(Zi)5m i . Then,F' is locally generated by the vector fieldsZi and, according to
~16!, any solutionX of ~15! can be written as

X5XH1l iZi ,

where thel i are Lagrange multipliers which can be determined from the tangency conditio

05X~Fa! uM5XH~Fa! uM1l iZi~Fa! uM , ;a.

Indeed, the existence condition for solutions of~15!, in particular, implies that this system o
equations can be solved for thel i , i.e., onM we have

rank~Zi~Fa!!5rank~Zi~Fa!;2XH~Fa!!.

Of course, the solution for thel i need not be unique.
Next, let us assume that both conditions of Proposition 3.1 are satisfied, so that the s

admits a unique solution. Our goal now is to construct a projection operator which allows
deduce the constrained dynamics from the unconstrained dynamicsXH .

From the assumptionF'ùTM50 it readily follows that for eachxPM , dim Fx
'

<codim TxM , i.e., m5corankF<codim M5s. We can now distinguish the following two
cases.
Assume m5s.

A simple dimensional argument shows that

TPuM5TM % F'.

Therefore, there exist two complementary projectorsP:TPuM→TM andQ:TPuM→F' and it is
straightforward to check thatP(XH) is a solution of~15!. Using the above notations, a loc
expression forP is given by

P5Id2C i j Zi ^ dF j ,

where (C i j ) is the inverse of the regular matrix (Ci j ), with Ci j 5Zj (F i). Hence we obtain

P~XH!5XH2C i j XH~F j !Zi . ~18!
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Assume m,s.

In this case, we have

TM % F' TPuM ,

with two complementary projectorsP :TM % F'→TM andQ:TM % F'→F'. From the existence
condition it easily follows thatXHuMPTM % F'. As above, the projectionP(XH) then provides
the unique solution of the constrained dynamics.

The matrices (Zi(Fa)) and (Zi(Fa);2XH(Fa)), with (1< i<m;1<a<s), both have maxi-
mal rank m. To obtain an explicit~local! description forP(XH) we only need to selectm
independent rows from the matrix (Zi(Fa)). Without loss of generality, we may assume these
be the firstm rows (1<a<m), so that we recover~18!.

Remark IV.1:Recently, various authors have pointed out that the dynamics of nonholon
systems can be conveniently described in terms of a ‘‘pseudo-Poisson’’ bracket~see, e.g., Refs
18, 29, 30!. On the other hand, in Refs. 31, 25, a unified treatment of constrained systems ha
been proposed in terms of Dirac brackets. The relation between these various bracket app
has been discussed in Cantrijnet al.32 It is rather straightforward to see that these bracket form
lations of constrained dynamics can be extended to the general model for constrained s
considered in this paper, but we will not further enter into this matter here.

In the next three sections we wish to investigate the effect of symmetry on the dynam
constrained systems of type~15!. In particular, we will describe various reduction schemes
such systems. The subsequent analysis remains close in spirit to some related treatm
nonholonomic systems with symmetry~see, for instance, Refs. 33, 17, 15, 27, 34, 19, 35!.

V. SYMMETRY AND REDUCTION

Consider a constrained system of the form~15! and let there be a given symplectic actio
F:G3P→P of a Lie groupG on the symplectic manifold (P,v), such that the submanifoldM ,
the Hamiltonian functionH and the vector subbundleF areG-invariant. For simplicity we will
always assume that this action is free and proper. For eachgPG and xPP we put F(g,x)
5Fg(x)5gx. The infinitesimal generator~fundamental vector field! corresponding tojPg, with
g the Lie algebra ofG, will be denoted byjP . By assumption we thus have for allgPG,

• Fg* (H)5H+Fg5H;

• Fg(M )#M ;

• TFg(Fx)5FFg(x) , for all xPM .

If ~15! admits a solutionX, it is routine to verify thatFg* X will also be a solution for each
gPG. This still means that at each pointxPM , Fg* X(x)2X(x)PFx

'ùTxM . In particular, in
case~15! has a unique solution, the latter will beG-invariant.

In discussing the reduction of aG-invariant solution of~15! we will proceed in two stages
First, we will show that the above assumptions already allow us to construct a Poisson red
Next, upon invoking an additional hypothesis, we will establish a kind of symplectic reductio
the sense of the one derived by Bates and S´niatycki17 for nonholonomic Hamiltonian systems.

(i) Poisson reduction.Since the actionF is free and proper, the orbit spaceP̄5P/G is a
differentiable manifold andr:P→ P̄ is a principal bundle overP̄ with structure groupG, whereby
r denotes the natural projection. Moreover,F being a symplectic action, it is, in particular,
Poisson action with respect to the natural Poisson structure induced byv on P, i.e., it leaves the
corresponding Poisson tensor fieldL on P invariant. It is known that the orbit spaceP̄ then admits
a unique Poisson structure such that the projectionr becomes a Poisson map~see, e.g., Ref. 36!.
The corresponding Poisson tensor fieldL̄ on P̄ is unambiguously determined by

L̄~d f̄ ,dḡ!~ ȳ!5L~r* d f̄ ,r* dḡ!~y!,
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for all f̄ ,ḡPC`( P̄) and yPr21( ȳ). Let ]̄:T* P̄→TP̄ be the linear bundle map induced byL̄
according to

^]̄~ ā !,b̄&5L̄ ȳ~ ā,b̄ !,

for all ȳP P̄ and ā,b̄PTȳ
* P̄.

The HamiltonianH being G-invariant, it induces a functionH̄ on P̄. Moreover,M is also
assumed to beG-invariant and, clearly, theG-action induced byF on M will still be free and
proper. Thus, the quotient manifoldM̄5M /G is a smooth submanifold ofP̄. Finally, we note that
the G-invariance ofF also implies theG-invariance ofF'. For eachx̄PM̄ we put (F') x̄

5Tr(Fx
') for some xPr21( x̄)(,M ). This definition is independent of the choice ofx

Pr21( x̄). We then put

F'5ø x̄PM̄~F'! x̄ ,

which defines a generalized distribution onP̄ alongM̄ . In principle, the bundleF' need not have
constant rank. Assume now that there exists aG-invariant solutionX of ~15!. As pointed out
above, this will automatically be the case if the equation admits a unique solution. ThenX is
projectable ontoM̄ and its projectionX̄ verifies

X̄P]̄~dH̄!1F',

that is,

X̄5XH̄uM̄1Z̄,

for someZ̄PF', with XH̄5]̄(dH̄). Indeed, according to~16! we can always writeX in the form
X5XH1Z, with ZPF'. The symmetry assumptions already guarantee the projectability o
Hamiltonian vector fieldXH . Therefore, ifX is G-invariant,Z is alsoG-invariant and its projec-
tion ontoM̄ is a section ofF'.

Next, we will show that under an additional condition, the reduced dynamicsX̄ can be
expressed in terms of a 2-form defined on a vector subbundle ofTP̄uM̄ . The analysis closely
follows the one developed in Ref. 17~see also Ref. 34!.

(ii) Bates–Śniatycki reduction.In what follows, we assume that there exists aG-invariant
solution X of ~15! such thatXPF. Recall that the latter assumption, in particular, implies t
X(H)50.

Remark V.1:For the mechanical systems considered in Sec. II, the condition that the
strained dynamics should belong to the distributionF is not at all restrictive. Indeed, for~7! and
~8! we have that every solutionX automatically belongs toF since, in those cases,TM,F. In the
case of~9! and~11!, the property thatXPF is a consequence of the fact thatX is a SODE. Finally,
for ~14!, the condition will be satisfied if the solutionY on D̄ f is the projection of a SODE along
a submanifold ofD f . It is known that one can always find such a submanifold and suc
solution.25

In the sequel, we will denote byV the subbundle ofTP whose fibers are the tangent spaces
theG-orbits, i.e.,Vx5Tx(Gx) or, equivalently,V5ker Tr. Note thatVx,TxM for all xPM , i.e.,
VuM,TM. For simplicity, we will also usually writeV, instead ofVuM , when referring to its
restriction toM ~the precise meaning should be clear from the context!.

We now define a~generalized! vector subbundleU of TPuM , whose fiber atxPM is given by

Ux5$vPFxùTxM /v~v,j̃ !50, for all j̃PVxùFx%. ~19!
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In general, this bundle need not be of constant rank, i.e., it determines a generalized distribu
P along M . In the sequel, however, we will always tacitly assume thatU is a genuine vector
bundle overM , although much of the analysis also holds in the more general situation. Note
U5(FùTM)ù(VùF)', where (VùF)' is the v-complement ofVùF in TPuM . It is readily
seen thatU is G-invariant and, hence, projects onto a subbundleŪ of TP̄uM̄ . Let us now denote
by vU the restriction ofv to U. Clearly,vU is alsoG-invariant and since, moreover,i j̃vU50 for
all j̃PVùU, the 2-formvU pushes down to a 2-formv Ū on Ū ~i.e., v Ū only acts on vectors
belonging toŪ). Similarly, the restriction ofdH to U, denoted bydUH, pushes down to a 1-form
dŪH̄ on Ū, which is simply the restriction ofdH̄ to Ū. Note that neitherv Ū nor dŪH̄ are genuine
differential forms onM̄ ; they are exterior forms on a vector bundle overM̄ , with smooth depen-
dence on the base point.

Proposition V.2: Let X be a G-invariant solution of (15) such that, in addition, X belongs

F. Then, the projection X̄of X onto M̄ is a section of Ūsatisfying the equation

i X̄v Ū5dŪH̄.

Proof: Essentially, all that remains to be checked is thatX is a section ofU. Along M , the
given solutionX verifies

i Xv5dH1b,

with bPFo. H being G-invariant, it follows that for any sectionj̃ of VùF, dH( j̃)50. Since,
obviously, we also haveb( j̃)50, we may indeed conclude thatXPU. Consequently, the follow-
ing relation holds alongM :

i XvU5dUH.

The remainder of the proof now readily follows from the symmetry assumptions and from
previous considerations. Q.E.D

It is important to observe that, in general, the 2-formv Ū may be degenerate. However, in th
case of a mechanical system with linear nonholonomic constraints, for instance, one can pro
v Ū is nondegenerate, such that (Ū,v Ū) becomes a symplectic vector bundle overM̄ ~see Ref. 17!.
The reduced dynamics is then uniquely determined by the equation mentioned in the pr
Proposition.

In the next section, we will identify three distinguished classes of constrained systems
symmetry, which will be analyzed in some more detail.

VI. A CLASSIFICATION OF CONSTRAINED SYSTEMS WITH SYMMETRY

We again consider a constrained system~15! with symmetry, as described in the previou
section. Recall thatV5ker Tr. For each infinitesimal generatorjP of the given group action on
P, corresponding to somejPg, the restriction toM is precisely the infinitesimal generatorjM of
the induced action onM . If jM is a section ofVùF, we will call it a horizontal symmetry of the
given constrained system~see also Refs. 17, 15!. The following classification, which is inspired o
the one introduced by Blochet al.15 for mechanical systems with linear or affine nonholonom
constraints, reflects the various possible ways the subspacesVx andFx may intersect.

~i! The purely kinematic case:VxùFx5$0% andTxM5Vx1(FxùTxM ), for all xPM .
~ii ! The case of horizontal symmetries:VxùFx5Vx , for all xPM , which is equivalent to

Vx,Fx , for all xPM .
~iii ! The general case:$0% VxùFx Vx , for all xPM .
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A. The purely kinematic case

Suppose thatVxùFx5$0% and TxM5Vx1(FxùTxM ), for all xPM . This implies that
TxM5Vx% (FxùTxM ). In other words, observing that in this caseU5FùTM, we haveTM
5VuM % U. SinceU is G-invariant, this decomposition defines a principal connectionG on the
principal G-bundler uM :M→M̄ , with horizontal subspaceUx at xPM . Note, in passing, thatU
here represents a vector bundle of constant rank. In what follows we letX denote a fixed
G-invariant solution of~15! which, moreover, belongs toF. In particular, this means thatX is
horizontal, i.e.,XPU.

Denote byh:TM→U andv:TM→V the horizontal and vertical projectors associated with
decompositionTM5VuM % U. The curvature ofG is the tensor field of type~1,2! on M , given by

R5 1
2 @h,h#,

where@ , # denotes the Nijenhuis bracket of type~1,1! tensor fields. Taking into account that in th
present caseŪ5TM̄, and applying the method developed in Sec. V, we obtain onM̄ a 2-formv̄

~which is now a genuine differential form onM̄ ) and a functionH̄ such that the projectionX̄ of
X verifies

i X̄v̄5dH̄. ~20!

It should be pointed out that the reduced 2-formv̄ in general need not be closed. We will sho
however, that in case the given 2-formv on P is exact, one can construct a reduced equat
equivalent to~20!, but now in terms of a closed 2-form onM̄ .

Assumev5du for some 1-formu on P. Denote byu8 the 1-form onM defined byu8
5 j M* u, wherej M :M�P is the canonical inclusion. By means of the given solutionX of ~15! we
can construct a 1-formaX on M as follows:

aX5 i X~h* du82dh* u8!, ~21!

with the usual convention that, for an arbitraryp-form b, h* b is the p-form defined by the
prescriptionh* b(X1 ,...,Xp)5b(h(X1),...,h(Xp)).

Lemma VI.1: We have that

aX~Y!5v~Y!~u8~X!!2u8~R~X,Y!!1u8~h@X,v~Y!# !,

for all YPX(M ).
Proof: Indeed, for anyYPX(M ) we easily find

aX~Y!5 i X~h* du82dh* u8!~Y!

5hX~u8~hY!!2hY~u8~hX!!2u8@hX,hY#2X~u8~hY!!1Y~u8~hX!!1u8~h@X,Y# !

5vY~u8~X!!2u8~R~X,Y!!1u8~h@X,vY# !,

taking into account thatX is horizontal. Q.E.D.
Proposition VI.2: Assume, in addition, that the given actionF leavesu invariant. Then, the

1-formsh* u8 and aX are projectable. Moreover, the projection X¯ of X, which is a solution of
(20), also satisfies the equation

i X̄ dū8h5dH̄2aX, ~22!

whereū8h and aX are the projections of the 1-formsh* u8 and aX , respectively.
Proof: We divide the proof in three parts:~i! the r-projectability of h* u8; ~ii ! the

r-projectability ofaX ; ~iii ! the derivation of the reduced equation of motion~22!.
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~i! Let jM be the fundamental vector field onM induced by an arbitrary elementjPg. One
can readily see thati jM

h* u850. We now show that alsoi jM
d(h* u8)50. Observe that for all

X8PX(M ) we have

i jM
~dh* u8!~X8!5jM~u8~hX8!!1u8~h@jM ,X8# !.

Thus, forX8 vertical, i.e.,X8PV, we obtaini jM
(dh* u8)(X8)50. Suppose now thatX8 is hori-

zontal, i.e.,X8PU. Taking into account theG-invariance ofu8 we deduce that

05jM~u8~X8!!2u8~@jM ,X8# !.

Herewith we obtain

i jM
~dh* u8!~X8!5u8~@jM ,X8#2h@jM ,X8# !5u8~v@jM ,X8# !50,

sinceX8 is horizontal.
Summarizing, we have shown that each fundamental vector field of theG-action onM is a

characteristic vector field ofh* u8 and, hence, the latter is ar-projectable 1-form.
~ii ! To prove the projectability ofaX we first note that

i jM
aX5 i jM

i X~h* du82dh* u8!52 i jM
i X~dh * u8!50,

where the last equality follows by a similar argument as above, taking into account that the
X is horizontal.

Next, we prove thati jM
daX50. For this it suffices to show thati jM

daX vanishes when acting

on infinitesimal generators and on horizontal lifts of vector fields onM̄ . Using the previous
property, i.e.,aX(jM)50, a straightforward calculation shows that for allX8PX(M ):

~ i jM
daX!~X8!5jM~aX~X8!!2X8~aX~jM !!2aX~@jM ,X8# !5jM~aX~X8!!2aX~@jM ,X8# !.

From this we immediately deduce that ifX8 is a fundamental vector field of the group actio
i jM

daX(X8)50. On the other hand, ifX8 is the horizontal lift of a vector fieldY on M̄ , i.e.,
X85Yh, we obtain, using Lemma VI.1 and the fact that the functionu8(R(X,Yh)) is G-invariant,

~ i jM
daX!~Yh!5jM~aX~Yh!!52jM~u8~R~X,Yh!!!50.

~iii ! Recall thatX satisfies an equation of the formi X du5dH1b, for somebPFo. Putting
H85 j M* (5H uM) andb85 j M* b, and taking into account thatX is tangent toM , we can take the
pull-back of this equation toM :

i X du85dH81b8.

SinceX is horizontal, i.e.,hX5X, it follows that h* ( i X du8)5 i Xh* du8. Furthermore,H ~and,
henceH8) being G-invariant, we haveh* dH85dH8 and, finally, it is also readily seen tha
h* b850. The horizontal projection of the equation of motion onM therefore becomes

i Xh* du85dH8.

In view of the definition of the 1-formaX , we then obtain

i X dh* u85 i Xh* du82aX5dH82aX .

All terms in this equation are projectable ontoM̄ and the reduced equation is indeed given by~22!.
Q.E.D.
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Proposition 6.2 describes a situation where a constrained Hamiltonian system~15! with sym-
metry, admits a reduction to an unconstrained system~22!, but with an additional ‘‘nonconserva
tive force’’ represented byaX. It is interesting to observe that, by construction, the 1-formaX

satisfies

i XaX50.

We now briefly comment on the problem of reconstructing the dynamics onM from the reduced
dynamics onM̄ in the case where~15! admits a unique solutionX. Suppose the flow of the
reduced systemX̄ is known. In order to recover flow of the constrained dynamics onM , one can
first lift the integral curves ofX̄ to M by means of the horizontal lift operation associated with
principal connectionG. The integral curves ofX are then obtained by ‘‘shifting’’ these lifted
curves along the fibres ofr uM . This second step can be implemented in the standard way.37,38

Finally, we can summarize the situation in the case of purely kinematic constraints i
following diagram:

B. The case of horizontal symmetries

The assumption now is thatVxùFx5Vx , for all xPM or, equivalently,VuM,F. In particular,
every infinitesimal generator of the given group action then yields a horizontal symmet
defined at the beginning of this section. Note also that an unconstrained Hamiltonian syste
symmetry can be regarded as a special subcase of this case, since we then haveM5P, F5TP
and, obviously,V,TP.

For the further analysis of this case we assume, in addition, that the given symplectic
F on P is a Hamiltonian action, in the sense that it admits an Ad* -equivariant momentum map
J:P→g* , such that for alljPg, i jP

v5d^J,j&. Let mPg* be a regular value ofJ, and suppose
that the isotropy groupGm acts freely and properly on the level setJ21(m). It is known~see Refs.
37, 36! that under these conditions (Pm5J21(m)/Gm ,vm) is a symplectic manifold, wherevm is
the 2-form defined by

pm* vm5 j m* v,

with pm :J21(m)→Pm the canonical projection andj m :J21(m)�P the natural inclusion.
With jP again denoting the infinitesimal generator of the group action onP, corresponding to

an elementjPg, it follows from the definition of the momentum mapping thatjP5XJj
, where

Jj(x)5J(x)(j) for all xPP. Taking into account that, by assumption,VuM,F, we find that for
any solutionX of ~15!, along the constraint submanifoldM ,

X~Jj!50,
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i.e., the components of the momentum mapping are conserved quantities for the cons
dynamics. This is a version of Noether’s theorem for constrained systems.~For the case of
mechanical systems with nonholonomic constraints, see in this respect also Refs. 15, 39,!

Imposing a condition of clean intersection ofM and J21(m), we have that M 8
5MùJ21(m) is a submanifold ofJ21(m) which isGm-invariant. Passing to the quotient we the
obtain a submanifoldMm5M 8/Gm of Pm . Next, we can define a distributionF8 on P alongM 8
by putting

Fx8
8 5Tx8~J21~m!!ùFx8 , ;x8PM 8,

and we now make the further simplifying assumption thatF8 has constant rank. It is obvious tha
F8 is a Gm-invariant subbundle ofTPuM8 and, hence, it projects onto a subbundleFm of TPm

alongMm . Finally, since the restriction of the HamiltonianH to J21(m) is alsoGm-invariant, it
induces a functionHm on Pm .

Theorem VI.3: Suppose that X is a G-invariant solution of (15). Then, X induces a vect
field Xm on Mm , such that

~ i Xm
vm2dHm! uMm

PFm
o , XmPTMm . ~23!

Proof: First of all, notice thatX85XuM8 is everywhere tangent toM 8, since bothJ21(m) and
M are invariant submanifolds ofX. Pulling back~15! to J21(m), we find thatX8 satisfies an
equation of the form

~ i X8 j m* v2d~H+ j m!! uM85b

for some sectionb of F8o. Since X is G-invariant, and taking account the other symme
assumptions, it follows that bothX8 andb areGm-equivariant sections ofTM8 andF8o, respec-
tively. Moreover, from the fact that we are dealing with horizontal symmetries we may dedu
particular, that for alljPgm (5the Lie algebra ofGm), (jP) uM8 is a section ofF8. Therefore,b
projects onto a section ofFm

o . Using a standard argument, it now readily follows thatX8 projects
onto a vector field onMm for which ~23! holds. Q.E.D.

In the case of horizontal symmetries we have thus proved that, under the appropriate a
tions, the given constrained problem on (P,v) reduces to a constrained problem on (Pm ,vm).

As far as the reconstruction of the original constrained dynamics from the reduced dyn
is concerned, we observe that, unlike in the purely kinematic case, we now first have to se
arbitrary connection on the principalGm-bundle M 8→Mm . This connection will enable us to
subsequently lift the integral curves of the reduced system fromMm to M 8. The reconstruction of
the flow of X then further proceeds as in the previous case.

The following diagram illustrates the situation in the case of horizontal symmetries. No
passing that, modulo the appropriate embeddings, one may identifyMm with M̄ùPm where, as
before,M̄5M /G.
                                                                                                                



n

Bloch

rves of

we

ank.

mic

811J. Math. Phys., Vol. 40, No. 2, February 1999 Cantrijn et al.

                    
C. The general case

We now consider the case where, atxPM , $0%ÞVxùFxÞVx . Assuming again that the give
action ofG on P is Hamiltonian, with momentum mapJ, it is no longer true thatJ is a conserved
quantity for the constrained dynamics. However, extending a procedure developed by
et al.15 for nonholonomic mechanical systems~see also Ref. 40!, we will derive an equation which
describes the evolution of some components of the momentum map along the integral cu
the constrained system.

For eachxPM , we put

gx5$jPgujM~x!PFx%,

and

Sx5$jM~x!ujPgx%,

i.e., Sx5VxùFx . Recall thatjM is just the restriction ofjP to theG-invariant submanifoldM .
We have thatgx andSx are vector subspaces ofg andTxM (,TxP), respectively. Putting

gF5 q
xPM

gx, SF5 q
xPM

Sx,

where we use the symbol ‘‘q’’ to denote the disjoint union of the respective vector spaces,
obtain two ~‘‘generalized’’! vector bundles overM , with corresponding natural projectionsgF

→M :jPgx°x and SF→M :jM(x)°x. In general, these bundles need not have constant r
However, for the subsequent discussion we make the simplifying assumption thatgF andSF are
genuine vector bundles overM , the fibers of which have constant dimension~independent of the
base point!. The given action being a free action, the mappinggF→SF:jPgx°jM(x) then defines
a smooth vector bundle isomorphism.

Suppose now that the symplectic formv is exact, sayv5du, and that theG-action leavesu
invariant. In such a case there always exists a well-defined momentum mappingJ:P→g* such
that

^J~x!,j&52~ux!~jP~x!!, ;xPP, ;jPg

~see, e.g., Ref. 37!. Herewith we can define a smooth sectionJ(c):M→(gF)* of the dual bundle
(gF)* as follows:

J~c!~x!:gx→R, J~c!~x!~j!5^J~x!,j&.

We may callJ(c) the ‘‘constrained momentum map.’’ In Ref. 15, which deals with nonholono
mechanical systems, this map was denoted byJnhc. Given a smooth sectionj̄ of the vector bundle
gF, we can then define a smooth functionJ

j̄

(c)
on M according to

J
j̄

~c!
5^J~c!,j̄&.

In addition, we can construct a vector fieldJ on M by putting

J~x!5~ j̄~x!!M~x!, ;xPM .

Denoting the Lie derivative operator with respect toJ asLJ , we have the following interesting
result.

Theorem VI.4: Let X be an arbitrary solution of (15). For any smooth sectionj̄ of gF we then
have
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X~J
j̄

~c!
!52~LJu!~X!. ~24!

Proof: SinceJ takes values inF, it follows from ~15! that, alongM ,

i Ji Xv2 i J dH50.

From the above definitions we further deduce thatJ
j̄

(c)
52 i J( j M* u), with j M :M�P again denot-

ing the inclusion map. A straightforward computation then gives

X~J
j̄

~c!
!52 i X diJ~ j M* u!52 i XLJ~ j M* u!1 i Xi J~ j M* v!52LJi X~ j M* u!1 i [J,X]~ j M* u!2J~H+ j M !.

Since H is G-invariant, it follows from the definition ofJ that J(H+ j M)50. Herewith, the
previous relation immediately reduces to~24! ~with a slight abuse of notation!. Q.E.D.

Note that for the above result we do not have to requireX to beG-invariant. Equation~24! is
called the momentum equationfor the given constrained system. In the case of linear nonh
nomic constraints we precisely recover the result established by Blochet al.15

Suppose again thatX is a solution of~15! and let j̄ be a constant section ofgF, i.e., j̄(x)
5j0Pg for all xPM . We may then identify the corresponding vector fieldJ with the infinitesi-
mal generatorjM

0 and, clearly,J
j̄

(c)
5(Jj0) uM . Moreover, by construction,jM

0 is a horizontal
symmetry. The momentum equation~24! then leads to

X~J
j̄

~c!
!5X~Jj0! uM50,

i.e., we have obtained a conserved quantity ofX associated with the horizontal symmetryjM
0 .

This is again a manifestation of Noether’s theorem for constrained systems~cf. the previous
subsection!.

In the next section we will apply some of the previous results to the case of a sin
Lagrangian system and to a Lagrangian system with linear nonholonomic constraints indu
a principal connection.

VII. APPLICATIONS

A. Singular Lagrangian systems

Consider a system described by a singular Lagrangian functionL:TQ→R such thatvL is
presymplectic. We assume that a Lie groupG acts freely and properly on the configuratio
manifoldQ and thatL is invariant under the lifted action ofG on TQ. It then easily follows that
both vL and EL are alsoG-invariant. In addition, we know that the lifted action ofG on T* Q
leaves invariant the Liouville 1-formuQ and, hence, also the canonical symplectic formvQ5
2duQ ~see, e.g., Ref. 37!. From all this, one can subsequently deduce that the Legendre ma
is G-equivariant and that the constraint submanifolds generated by the presymplectic con
algorithm, both on the Lagrangian and on the Hamiltonian side, areG-invariant. In particular, the
final constraint submanifoldM f in T* Q is G-invariant.

Let us now consider the constrained equations of motion~7! where, for simplicity, we writeH
instead ofH1 , i.e.,

~ i XvQ2dH! uM f
PTM1

o , XuM f
PTMf .

SinceM f is G-invariant, it follows thatVuM f
,TMf#TM15F and, hence, we are in the case

horizontal symmetries. Moreover, the lifted symplectic action ofG on T* Q admits an equivarian
momentum mapJ and so we can apply the reduction procedure described in subsection
Given a regular valuem of J, it is easy to check that the reduced system then becomes

~ i Xm
vm2dHm! u~M f !m

P~T~M1!m!o, XmPT~M f !m ,
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whereby we observe that

~T~M1!m!o,~T~M f !m!o.

Suppose, on the other hand, we would have started from the description of the given cons
system in terms of~8!, again denoting the extended Hamiltonian byH, i.e.,

~ i XvQ2dH! uM f
PTMf

o , XuM f
PTMf . ~25!

Under the given assumptions, the final constraint submanifoldM f , generated through Hinds
algorithm, will also beG-invariant such thatVuM f

,F5TMf , i.e., we are again in the case o
horizontal symmetries. Given a regular valuem of the momentum mapJ, it is easy to check tha
we now have

~TMf !m
o 5~T~M f !m!o,

where, assuming clean intersection ofM f and J21(m), (M f)m5(M fùJ21(m))/Gm and
(TMf)m5(TJ21(m)ùTMf)/Gm . If ~25! admits aG-invariant solutionX, it follows from Theo-
rem 6.3 that the reduced dynamics will satisfy the constrained system

~ i Xm
vm2dHm! u~M f !m

P~T~M f !m!o, XmPT~M f !m . ~26!

We now have the following diagram:

Notice that, according to Proposition 3.1, the reduced system~26! admits a unique solution if and
only if T(M f)m

'ùT(M f)m50, which implies that (M f)m is a symplectic submanifold of (T* Q)m .
In that case we have the direct sum decomposition

T~~T* Q!m! u~M f !m
5T~M f !m % T~M f !m

'

and we can construct the unique solution of~26! in the following way. LetXHm
denote the

Hamiltonian vector field on ((T* Q)m ,vm), corresponding toHm . The reductionXm of X is then
obtained by first taking the restriction ofXHm

to (M f)m , and then projecting it ontoT(M f)m .
Example:Consider the singular Lagrangian functionL:TR6→R given by

L5m2~ ẋ2
21 ẏ2

2!1m3~ ẋ3
21 ẏ3

2!1 ẏ2x22 ẋ2y21 ẏ3x32 ẋ3y32x1
22y1

22x2
22y2

22x3
22y3

2 ,

with coordinates (x1 ,y1 ,x2 ,y2 ,x3 ,y3 ,ẋ1 ,ẏ1 ,ẋ2 ,ẏ2 ,ẋ3 ,ẏ3) on TR6. Here m2 and m3 are con-
stants. The above Lagrangian is a particular case of those considered by Capri and Kobaya41,42

~see also Ref. 43!. This type of Lagrangian occurs in some models of field theories couple
external fields.

When passing to the Hamiltonian side, we obtain the following two primary constraintsf1

5px1
50 andf25py1

50 which determine the constraint submanifoldM1 . The 2-formv1 is
given in local coordinates (x1,y1,x2,y2,x3,y3,px2

,py2
,px3

,py3
) on M1 by
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v15dx2∧dpx21dy2∧dpy21dx3∧dpx31dy3∧dpy3,

which is presymplectic, with

ker v15 K ]

]x1
,

]

]y1
L .

The energy functionEL projects onto the functionh1 on M1 given by

h15
1

4m2
~~px2

1y2!21~py2
2x2!2!1

1

4m3
~~px3

1y3!21~py3
2x3!2!

1~x1!21~y1!21~x2!21~y2!21~x3!21~y3!2.

Consistency of the constraintsf1 andf2 leads to the secondary constraints

f35x150, f45y150,

and the constraint submanifoldM2 determined by the vanishing of the constraintsf i , 1< i<4,
turns out to be the final constraint submanifold, i.e.,M25M f . We note, in passing, that in thi
case the final constraint submanifolds generated by the Gotay–Nester algorithm and the
algorithm, coincide.

Consider the functionH on T* Q with coordinate expression equal to that ofh1 . ~In fact, one
might take any arbitrary extension ofh1 which coincides with the latter onM f ; for instance:H̃
5H1l1f11l2f2 for some arbitrary functionsl i). Note also that

TMf
'5K ]

]x1
,

]

]y1
,

]

]px1

,
]

]py1
L .

The constrained equations of motion~8!, i.e.,

i XvQ2dHPTMf
o , XPTMf , ~27!

admit a unique solution sinceTMfùTMf
'50.

The initial system admits nongauge symmetries which are rotations on the configu
space. The action

F:T23R6→R6,

whereT2 is the two-dimensional torus, is given by

F~~u2 ,u3!3~x1,y1,x2,y2,x3,y3!!5~x1 ,y1 ,x2 sin u21y2 cosu2 ,x2 cosu2

2y2 sin u2 ,x3 sin u31y3 cosu3 ,x3 cosu32y3 sin u3!.

The infinitesimal generators of this action are

K xi

]

]yi
2yi

]

]xi
L , 2< i<3.

The infinitesimal generators of the lifted action toT* Q are

K xi

]

]yi
2yi

]

]xi
1pxi

]

]pyi

2pyi

]

]pxi
L , 2< i<3.
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This lifted action is symplectic and preserves the HamiltonianH. Moreover, the manifoldM f is
alsoT2-invariant.

According to our classification of constrained systems, we are in the case of horizonta
metries, since at each pointxPM f ,

Vxù~FxùTxM f !5Vx ,

becauseF5TMf .
Consider the equivariant momentum mapJ:T* Q→R2 given by

J~x1 ,y1 ,x2 ,y2 ,x3 ,y3 ;px1
,py1

,px2
,py2

,px3
,py3

!5~x2py2
2y2px2

,x3py3
2y3px3

!.

For any regular valuem5(m1 ,m2), applying the cotangent bundle reduction, we have t
J21(m)/(T2)m is a differentiable manifold equipped with a symplectic 2-formvm . Denote byHm

the projection ofH uJ21(m) , and by (M f)m the projection ofM fùJ21(m), with projection map
pm :J21m→J21(m)/(T2)m . Then, from Theorem 6.3 it follows that the solution of system~27!
projects onto the solution of the system

~ i Xm
vm2dHm! u~M f !m

P~T~M f !m!o, XmPT~M f !m .

By taking polar coordinates onM f , i.e., (r 2 ,w2 ,r 3 ,w3 ;pr 2
,pw2

,pr 3
,pw3

), we have that
J21(m)ùM f is the (T2)m-invariant submanifold ofM f determined by

pw2
5m1 and pw3

5m2 .

Passing to the quotient we find that (M f)m is a four-dimensional submanifold ofJ21(m)/(T2)m ,
with induced coordinates (r 2 ,r 3 ;pr 2

,pr 3
) and equipped with the symplectic form

~vM f
!m5dr2∧dpr 2

1dr3∧dpr 3
.

B. Nonholonomic Lagrangian systems

We again consider an action of a Lie groupG on a manifoldQ, and letL:TQ→R be a regular
Lagrangian which isG-invariant. The lifted action ofG on the symplectic manifold (TQ,vL) is
then Hamiltonian. We assume that the Lagrangian system is subjected to some linear no
nomic constraints, described by a distributionD on Q, such that the resulting nonholonom
system verifies the compatibility condition~cf. Sec. II B! and such that, in addition, the vecto
subbundleD of TQ, spanned byD, is G-invariant. The constrained equations then read~cf. ~9!!

i XvL2dELP~D v!o, XuDPTD. ~28!

We now consider an interesting special subcase of the purely kinematic case, namely, a~gener-
alized! Čaplygin system. For a system of Cˇ aplygin type, the configuration manifoldQ is a prin-
cipal G-bundlep:Q→Q/G, and the constraints are given by the horizontal subspaces of a
cipal connectionG on p ~see Refs. 12, 24!.

Under the above conditions, one can easily see that there exists a well-defined Lagr
function L* :T(Q/G)→R, given by

L* ~Y!5L~~Yh!q!,

for anyYPTy(Q/G), whereqPQ is an arbitrary point in the fiber overyPQ/G andYh denotes
the horizontal lift ofY with respect toG.

A direct computation shows that, with the notations introduced in Sec. V,VùD v50. More-
over, we haveU5D vùTD, andU is symplectic with respect tovL . Therefore we deduce tha
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TD5V% U.

Thus, a Čaplygin system fits indeed very nice in the purely kinematic case. Moreover, one
prove thatD̄5D/G>T(Q/G) and ĒL5EL* .

We have seen that the compatibility condition,

~D v!'ùTD50,

ensures the existence of a unique solutionX5GL,D of ~28! which, moreover, is a SODE. Notic
that GL,D can be obtained by projecting the unconstrained Euler–Lagrange vector fieldGL by
means of the first projector associated with the decomposition,

T~TQ! uD5TD% ~D v!'.

SincevL52duL , the reduced equation becomes

i X̄vL* 5dEL* 2aGL,D
,

whereaGL,D
is the projection of the 1-formaGL,D

, defined by~21!. Observe that

i ḠaGL,D
50,

for any SODEḠ on T(Q/G). This implies thataGL,D
is a 1-form of gyroscopic type.

Example VII.1: The vertical rolling disk.Consider a rolling disk of radiusR constrained to
remain vertical on a horizontal plane. The standard coordinates of the configuration spR
3S13S1 are: the Cartesian coordinatesx,y of the center of mass, the angleu1 between the
tangent of the disk at the point of contact and thex-axis and the angleu2 determined by some
diameter of the disk and the vertical.

The dynamics of this mechanical system is described by the following:

~i! the regular Lagrangian:

L5 1
2 ~mẋ21mẏ21I1u̇1

21I2u̇2
2!,

wherem is the mass, andI 1 ,I 2 are moments of inertia;
~ii ! the nonholonomic constraints:

f15ẋ2~Rcosu1!u̇250, f25 ẏ2~R sinu1!u̇250.

The Poincare´–Cartan 2-form of the LagrangianL is

vL5m dx∧dẋ1m dy∧dẏ1I 1 du1∧du̇11I 2 du2∧du̇2 ,

so that the Euler–Lagrange vector field of the free~i.e., unconstrained system! is

GL5 ẋ
]

]x
1 ẏ

]

]y
1 u̇1

]

]u1
1 u̇2

]

]u2
.

Consider the groupG5R2 and its trivial action by translations onQ:

F:G3Q→Q

~r ,s!3~x,y,u1 ,u2!°~x1r ,y1s,u1 ,u2!.

If we consider the lifted actionF1 of F to TQ, given by (F1)g5TFg , then the infinitesimal
generators of this action are
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V5 K ]

]x
,

]

]yL .

One easily verifies that the constraint submanifoldD, determined byf1 ,f2 , is invariant with
respect toF1. Choose local coordinates (x,y,u1 ,u2 ,u̇1 ,u̇2) on D. In these coordinates we fin
that the distributionU on D is generated by the vector fields:

U5K ]

]u1

,
]

]u2

,R cosu1

]

]x
1R sin u1

]

]y
1

]

]u̇2

,
]

]u̇1
L ,

and we readily have thatVuD,TD andVuD % U5TD, i.e., we are in the purely kinematic case.
fact, noting thatr:Q→S13S1 is a principal bundle, with structure groupG5R2, andD is the
horizontal subbundle of a principal connection, we see that the given system is a Cˇ aplygin system.
Following the above analysis we then obtain

L* 5 1
2 ~ I 1u̇1

21~mR21I 2!u̇2
2!,

vL* 5I 1 du1∧du̇11~mR21I 2!du2∧du̇2 .

In this particular case the gyroscopic 1-formaGL,D
50 and then the 2-formv Ū is closed and

v Ū5vL* .

Example VII.2: The two-wheeled carriage.The configuration space of the two-wheeled c
riage isQ5R23S13T2 with coordinates (x,y,w,C1 ,C2) ~see, e.g., Ref. 24 for more details!.

This system is determined by the following data:

~i! A regular LagrangianL,

L5 1
2 m~ẋ21ẏ2!1m0lẇ~ẏ cosw2ẋ sinw!1 1

2 Iẇ21 1
2 C~Ċ1

21Ċ2
2!;

~i! and the nonholonomic constraints,

f15ẋ1
a cosw

2
Ċ11

a cosw

2
Ċ2,

f25ẏ1
a sinw

2
Ċ11

a sinw

2
Ċ2,

f35ẇ1
a

2r
Ċ12

a

2r
Ċ2.

These constraints are linear in the velocities and determine a distributionD on Q whose annihi-
lator is generated by the 1-forms,

m15dx1
a cosw

2
dC11

a cosw

2
dC2 ,

m25dy1
a sin w

2
dC11

a sin w

2
dC2 ,

f35dw1
a

2r
dC12

a

2r
dC2 .

Consider the group of Euclidean motions in the plane,G5R23S1, with its standard action on
Q:
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F:G3Q→Q,

~r ,s,u!3~x,y,w,C1 ,C2!°~r 1x cosu2y sin u,s1x sin u1y cosu,u1w,C1 ,C2!,

whose infinitesimal generators are

K ]

]x
,

]

]y
,2y

]

]x
1x

]

]y
1

]

]w L .

Observe that the distributionD is G-invariant and, hence, also the constraint submanifoldD is
preserved, that is, for allxPD andgPG, TFg(x)PD.

Taking (x,y,w,C1 ,C2 ,Ċ1 ,Ċ2) as coordinates onD, we have that the pull-backvD of the
Poincare´–Cartan 2-formvL to D is

vD5S 2
am cosw

2
1

am sin w

2
Ċ11

am0l sin w

2r Ddx∧dĊ1

1S 2
am cosw

2
1

am sin w

2
Ċ22

am0l sin w

2r Ddx∧dĊ2

1S 2
am sin w

2
2

am cosw

2
Ċ22

am0l cosw

2r Ddy∧dĊ1

1S 2
am sin w

2
2

am cosw

2
Ċ21

am0l cosw

2r Ddy∧dĊ2

1
am0l sin w

2r
~Ċ12Ċ2!dy∧dw1

am0l cosw

2r
~Ċ12Ċ2!dx∧dw

2
aI

2r
dw∧dĊ11

aI

2r
dw∧dĊ21CdC1∧dĊ11CdC2∧dĊ2 .

A basis ofU5D vùTD is given by the vectors fields

K ]

]Ċ1

,
]

]Ċ2

,
]

]C1

2
a

2
cosw

]

]x
2

a

2
sin w

]

]y
2

a

2r

]

]w
,

]

]C2

2
a

2
cosw

]

]x
2

a

2
sin w

]

]y
1

a

2r

]

]wL .

Observe again thatD/G can be identified with the spaceT(Q/G). The projected 2-formv Ū is

v Ū52
a3

4r 2 m0l ~Ċ12Ċ2!dC1∧dC21S ma2

4
1

Ia2

4r 2 1CDdC1∧dĊ1

1S ma2

4
1

Ia2

4r 2 1CDdC2∧dĊ21S ma2

4
2

Ia2

4r 2DdC1∧dĊ2

1S ma2

4
2

Ia2

4r 2DdC2∧dĊ1 .

This 2-form v Ū is an almost symplectic form, that is, it is nondegenerate but not closed.
solution of the dynamics after the reduction procedure is given by
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i X̄v Ū5dEL* ,

whereL* :T(T2)→R is defined by

L* ~C1 ,C2 ,Ċ1 ,Ċ2!5
1

8
ma2~Ċ11Ċ2!21

Ia2

8r 2 ~Ċ22Ċ1!21
1

2
C~Ċ1

21Ċ2
2!.

Alternatively, it is possible to find an equation in terms of a symplectic 2-form, but with
additional gyroscopic type 1-form:

i X̄vL* 5dEL* 1aGL,D
,

where

aGL,D
5

m0la3

4r 2 ~Ċ22Ċ1!Ċ2 dC12
m0la3

4r 2 ~Ċ22Ċ1!Ċ1 dC2 .
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Gauge-invariant variationally trivial problems on T *M
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A classification of variationally trivial Lagrangians onT* M which are invariant
under the Lie algebra of infinitesimal gauge transformations of the principal bundle
p:M3U(1)→M , is given. A characterization of Lagrangian densities onT* M
which are invariant under the Lie algebra of all infinitesimal automorphisms of
M3U(1) is also obtained. ©1999 American Institute of Physics.
@S0022-2488~99!02202-1#

I. INTRODUCTION

In the theory of the electromagnetic field, the notion of gauge invariance plays an imp
role. Given a space–timeM, a gauge potential is a differential one-formv on the manifoldM.
Moreover, the cotangent bundleT* M can be identified in a natural way with the bundle
connections of the space of phase factorsp:P5M3U(1)→M . The automorphisms of the bundl
P inducing the identity overM are the gauge transformations. The infinitesimal gauge trans
mations~that is, the gauge algebra ofP, denoted gauP! are thep-vertical U~1!-invariant vector
fields onP. The flow of a vector field in gauP induces a one-parameter family of automorphis
of P. Automorphisms act on connections by pulling back connection forms. Taking the deriv

of this representation we thus obtain a Lie algebra representationX°X̃, from the gauge algebra
of P into the vector fields ofT* M . It is a well-known fact that gauge invariance corresponds
invariance under this representation. More precisely, a Lagrangian densityLvn , wherevn is a
volume form onM andL is a differentiable function onJ1(T* M ), is said to be gauge invarian

if for every XPgauP we haveLX̃(1)(Lvn)50, whereX̃(1) is the natural lifting ofX̃ to the one-jet

bundle. AsX̃(1) is p-vertical the above condition simply says thatX̃(1)(L)50. Gauge-invariant
Lagrangians are classified by the so-called geometric formulation of Utiyama’s theorem~see, e.g.,
Refs. 1–4!.

In this paper we first classify Lagrangian densities which are not only gauge invariant bu
invariant under the full Lie algebra of infinitesimal automorphisms ofP ~not necessarily
p-vertical!, which is denoted by autP. Note that gauP is an Abelian ideal in autP and
autP/gauP>X(M ). Theorem 3 states that there is no autP-invariant Lagrangian density ifn
5dim M is odd, and each autP-invariant Lagrangian density is proportional to the Pfaffian ifn
5dim M is even. An immediate consequence is that every autP-invariant Lagrangian density is
variationally trivial. Hence invariance under the full Lie algebra of infinitesimal automorphis
a too strong condition in order to be of variational interest. This poses the problem of determ
all gauge-invariant Lagrangians which are also variationally trivial. This is achieved in the se
part of the paper. These Lagrangians admit a natural geometric interpretation in terms of
vector fields on the ground manifold~Theorem 6!. In this way we also obtain a criterion for tw
gauge-invariant LagrangiansL,L8 to be variationally equivalent.

a!Electronic mail: mcastri@mat.ucm.es
b!Electronic mail: jaime@iec.csic.es
8210022-2488/99/40(2)/821/9/$15.00 © 1999 American Institute of Physics
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II. PRELIMINARIES

A. The bundle M3U„1…

Given aC` manifold M of dimensionn, let us consider the trivial bundlep:P5M3U(1)
→M . The bundle of connections ofp can be identified with the cotangent bundlep:T* M
→M . In fact, every connection form onM3U(1) can be uniquely written asvG5(du1p* v)
^ A, wherev is an arbitrary one-form onM, u is the angle coordinate on U~1!, andA stands for
the standard basis of the Lie algebrau~1!; that is,A is the invariant vector field on U~1! corre-
sponding to the homomorphismR→U(1), t°exp(tA). Let (U;q1,...,qn) be a coordinate open
domain inM. A vector fieldX on P is U~1!-invariant if and only if it can be written as

X5 f i~q1,...,qn!
]

]qi 1g~q1,...,qn!V, f i ,gPC`~U !, ~1!

whereV is the fundamental vector field onP defined byA. Note that each U~1!-invariant vector
field X on P is p-projectable and its projection is given by

p* X5 f i~q1,...,qn!
]

]qi .

In particular,X is p-vertical ~and hence it is a gauge vector field! if and only if f i50. We think of
the Lie algebra of U~1!-invariant vector fields as being the infinitesimal automorphisms of
principal bundleP and we denote it by autP. Gauge vector fields are an Abelian ideal in autP,
and we have an exact sequence of Lie algebras

0→gauP→autP→
p

*
X~M !→0. ~2!

In fact, autP is the semidirect sum of gauP and X(M ). We denote by
(p21(U);q1,...,qn,p1 ,...,pn) the coordinate system induced on the cotangent bundle. Tha
w5pi(w)(dqi)x , for every covectorwPTx* M .

B. The basic representation

Automorphisms of a principal bundle act on connections in a natural way~Ref. 5, Sec. II,
Preposition 6.1!. The induced representation of the Lie algebra autP into the vector fields of the
cotangent bundle is then given by~Ref. 2, Sec. III B!

X̃5 f i
]

]qi 2S ]g

]qi 1
] f h

]qi phD ]

]pi
, ~3!

where the local expression ofXPautP is given by formula~1!. In particular, for gauge vecto
fields we have

X̃52
]g

]qi

]

]pi
, XPgauP. ~4!

We remark that in this caseX̃ is the Hamiltonian vector field associated with the functiong with
respect to the canonical symplectic formdqi∧dpi .

C. Jet prolongation

Let p1 :J1(T* M )→M be the first jet prolongation of the cotangent bundle. Each coordi
open domain (U;q1,...,qn) in M induces a system of coordinates (qi ,pi ;pi , j ), i , j 51,...,n, in
p1

21(U)#J1(T* M ), where (p21(U);qi ,pi) is the coordinate system induced on the cotang
bundle, which are defined by
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pi , j~ j x
1v!5

]~pi+v!

]qj ~x!, i , j 51,...,n.

From the general formulas for jet prolongation for everyXPautP we obtain

X̃~1!5 f i
]

]qi 2S ]g

]qi 1
f h

]qi phD ]

]pi
2S ]2g

]qi]qj 1
f h

]qi ph, j1
] f h

]qj pi ,h1
]2f h

]qi]qj phD ]

]pi , j
, ~5!

which is the jet prolongation of the algebra of infinitesimal automorphisms.

D. Lie derivative with respect to a multivector field

We recall ~cf. Ref. 6; Ref. 7—p. 79! that a decomposable multivector fieldx5X1∧...∧Xk

P∧kX(M ), induces aC`(M )-linear graded endomorphismi x :V ˙ (M )→V ˙ (M ) of degree2k
by setting

i xv r5 i X1
+...+ i Xk

v rPV r 2k~M !, v rPV r~M !. ~6!

For an arbitrary multivector fieldx we can definei x by extending the above formula by linearit
Then the Lie derivativeLx :V ˙ (M )→V ˙ (M ) with respect toxP∧kX(M ) is given by the for-
mula

Lx5 i x+d2~21!kd+ i x5@ i x ,d#. ~7!

We remark thatLx is a graded operator of degree2k11.

III. INVARIANT LAGRANGIANS

A. Gauge invariance

A Lagrangian functionL:J1(T* M )→R is said to be gauge invariant if

X̃~1!~L!50, ;XPgauP.

As the structure group is Abelian the Utiyama theorem states that a Lagrangian is gauge in
if and only if it can be written as

L5L̄+V,

whereV:J1(T* M )→∧2T* M is the mapping given byV( j x
1v)5(dv)x andL̄:∧2T* M→R is an

arbitrary differentiable function~cf. Ref. 1!. Let us introduce coordinates on the bund
p2 :∧2T* M→M . For every two-covectorw2P∧2Tx* M we set

w25pi j ~w2!~dqi∧dqj !x , i , j .

Then, (qi ,pi j ) is a coordinate system onp2
21(U). We setpi j 52pji for i> j . With respect to

these coordinates the equations ofV are

pi j +V5pi , j2pj ,i . ~8!

Hence gauge-invariant Lagrangians can be locally written as

L5L̄~qh,pi , j2pj ,i !.
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B. aut P-invariance

Let us assume thatM is oriented by a volume formvn . A Lagrangian densityLvn , L
PC`(J1(T* M )), is said to be invariant under the Lie algebra of all infinitesimal automorphi
of P ~in short, autP-invariant! if

LX̃~1!~Lvn!50, ;XPautP.

As LX̃(1)(Lvn)5(X̃(1)(L))vn1L div(p*X)vn50, where the divergence is taken with respect
vn , the invariance condition is equivalent to the following:

X̃~1!~L!1L div~p* X!50, ;XPautP.

Remark: Unlike the case of gauge-invariant Lagrangians, there are no autP-invariant
Lagrangians except for constant functions. This is easily seen from formula~5!. In fact, assume
that the LagrangianL is autP-invariant; i.e.,X̃(1)(L)50, ;XPautP. Taking f i51, g50 in ~1!
we obtain]L/]qi50; taking f i50, g5qi , we obtain]L/]pi50; finally, the choicef i50, g
5qiqj yields ]L/]pi , j50. In the next theorem we classify the autP-invariant Lagrangian densi
ties.

Lemma 1: Let N be a differentiable manifold. If fPC`(Rk3N) satisfies f5( i 51
k xi(] f /

]xi), then] f /]xiPC`(N), 1< i<k.
Proof: From the property in the statement we obtainf (tx,y)5t f (x,y), ;tPR,

;xPRn, ;yPN. Hence t f (x,y)5 f (tx,y)5( i 51
k txi(] f /]xi)(tx,y) and then, f (x,y)

5( i 51
k xi(] f /]xi)(tx,y). Letting t50, we havef (x,y)5( i 51

k xi(] f /]xi)(0,y) and taking deriva-
tives with respect toxj , we conclude. h

Lemma 2: If fPC`(∧2T* Rn) satisfies

f 5(
j 51

n

pi j ~] f /]pi j !, 1< i<n, ~9!

then,

~1! If n is odd, then f50.
~2! If n is even, then f is a polynomial of the forml i 1i 2¯ i n21i npi 1i 2

¯pi n21i n
, with

$ i 1 ,i 2 ,...,i n21 ,i n%5$1,2,...,n21,n%, wherel i 1i 2¯ i n21i nPC`(Rn).

Proof: We proceed by induction onn. If n52, thenf 5p12(] f /]p12). Hencef is proportional
to p12. If n53, then fori 51, we havef 5p12(] f /]p12)1p13(] f /]p13) and fori 52 we also have
f 5p21(] f /]p21)1p23(] f /]p23). By virtue of Lemma 1 the functions] f /]p12, ] f /]p13 do not
depend onp12, p13 and ] f /]p2152] f /]p12, ] f /]p23 do not depend onp23. Accordingly,
] f /]p12 is a constant. Similarly,] f /]p13 is also a constant. By comparing the above two expr
sions off we conclude that] f /]p2350 and the same occurs for the other variables.

Assumen.3. We setf i
j5] f /]pi j . For i 51,...,n, we havef 5pi j f i

j and from Lemma 1 we
can conclude] f i

j /]pik50. In particular,] f 1
j /]p1k50 and ] f 1

j /]pjk52] f 1
j /]pjk50. In other

words, f 1
j does not depend onpik for i 51,j , 1<k<n. Next, we prove thatf 1

j also satisfies~9! in
∧2T* Rn22. In fact, for i .1, we have

f 5pik

] f

]pik
5pik

]

]pik
~p1 j f 1

j !52pi1f 1
i 1pikp1 j

] f 1
j

]pik
,

and taking derivatives with respect top1l , with lÞ i , we obtain

f 1
l 5 (

k51

n

pik

] f 1
l

]pik
.
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Consequently, we can apply the induction hypothesis thus concluding. h

Theorem 3: We have

~1! If the dimension of M is even, saydim M52m, then up to a multiplicative constant, th
uniqueautP-invariant Lagrangian density on T* M is (P f+V)v2m , wherePf:∧2T* M→R is
the Pfaffian function, i.e.,

Pf~w2!v2m5w2∧...
~m

∧w2 .

~2! If the dimension of M is odd, then zero is the uniqueautP-invariant Lagrangian density.

Proof: Let (U;q1,...,qn) be a coordinate open domain such thatvn5dq1∧¯∧dqn. Let us
consider an autP-invariant Lagrangian densityLvn . In particular,L is gauge invariant. Hence
from Utiyama’s theorem we haveL5L̄+V, whereL̄:∧2T* M→R is an arbitrary differentiable
function, or elseL5L̄(qh,pi , j2pj ,i), locally. Consequently we only need to impose invarian
under the vector fields such thatg50. We have

05X̃~1!L1L div~p* X!5 f i
]L
]qi 2S ] f h

]qi ph, j1
] f h

]qj pi ,h1
]2f h

]qi]qj phD ]L
]pi , j

1L
] f i

]qi .

Let us fix an indexb51,...,n. If we take f a5dab, 1<a<n, then we obtain

]L
]qi 50, 1< i<n. ~10!

If we take f a5dabqb, 1<a<n, then we obtain

L5pi , j

]L
]]pi , j

1pj ,i

]L
]pj ,i

, 1< i<n. ~11!

Finally, if we fix another indexcÞb, and takef a5dabqc, 1<a<n, we obtain

pi , j

]L
]pk, j

1pj ,i

]L
]pj ,k

50, i ,k51,...,n, iÞk. ~12!

Taking into account that

]L
]pi , j

5
]L̄
]pi j

+V,

and thatV is surjective, Eqs.~10!–~12! can be rewritten as

]L̄
]qi 50, 1< i<n. ~13!

L̄dhi5ph j

]L̄
]pi j

, h,i 51,...,n. ~14!

Letting h5 i in ~14!, from Lemma 2 we deduce thatL̄ vanishes ifn is odd and ifn is even then
L̄ is a polynomial,

L̄5l i 1i 2¯ i n21i npi 1i 2
¯pi n21i n

, ~15!
                                                                                                                



p of

n

e

e

of
r
.

; that

826 J. Math. Phys., Vol. 40, No. 2, February 1999 M. Castrillón López and J. M. Masqué

                    
where i 1 ,...,i n is a permutation of 1,...,n, andl i 1i 2¯ i n21i n are constants due to~13!. If we take
hÞ i in ~14! we obtain

ph j

]L̄
]pi j

50. ~16!

Taking derivatives with respect tophk in ~16! we have

]L̄
]pi j

1ph j

]2L̄
]phk]pi j

50,

and taking derivatives with respect tophl in the above equation, we have

]2L̄
]phl]pik

1
]2L̄

]phk]pil
50, ~17!

as the third partial derivative with respect tophl ,phk ,pil vanishes by virtue of~15!. Equation~17!
tells us thatl i 1 ,...,k,...,l ,...,i n1l i 1 ,...,l ,...,k,...,i n50, and since the transpositions generate the grou
permutations we obtain

lp~1!,...,p~n!5~sgnp!l1,...,n,

for every permutationp of 1,...,n, and the result follows from the very definition of the Pfaffia
@cf. Ref. 8 formula~4.12!, p. 66; Ref. 5, Sec. XII#. h

Remark:Once the functionL is known to be a polynomial of degreem, the above result can
be also obtained from~Ref. 9, Theorem 2.6.2!, taking into account the remark below.

Remark:Let p:P→M be an arbitrary principal U~1!-bundle and let us denote byp:C(P)
→M the bundle of connections ofP ~see, e.g., Ref. 10!. As in the case of the trivial bundle, w
can introduce coordinates (qi ,pj ) on the bundleC(P). Then, it is not difficult to see that the
manifold J1(C(P)) is endowed with a canonical horizontal two-form locally given byh5(pi , j

2pj ,i)dqi∧dqj . This form enjoys the following characteristic property. IfsG :M→C(P) is the
section ofp induced from a connectionG on P, thenp* ( j 1sG)* h5VG , the curvature form of the
given connection. Because of this, the formh can be called the universal Chern form of lin
bundles.

Taking into account the above observation, it is worth mentioning that the first item
Theorem 3 can be interpreted by saying that the only autP-invariant Lagrangian densities fo
connections onP are constant multiples of them-fold wedge product of the universal Chern form

IV. VARIATIONALLY TRIVIAL LAGRANGIANS

A Lagrangian densityLvn , LPC`(J1(T* M )), is said to be variationally trivial if every
differential one-form is a solution to the Euler–Lagrange equations of the given Lagrangian
is, for every differential formv defined on a neighborhood of a pointxPM we have

]L
]pi

~ j x
1v!2

]

]qk S ]L
]pi ,k

+ j 1v D ~x!50. ~18!

Proposition 4: A Lagrangian densityLvn on T* M is variationally trivial if and only if the
following partial differential equations hold true:

]2L
]pi ,h]pj ,k

1
]2L

]pi ,k]pj ,h
50, ;h,i , j ,k51,...,n, ~19!
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]L
]pi

5
]2L

]qk]pi ,k
1

]2L
]pj]pi ,k

pj ,k , ; i 51,...,n. ~20!

Proof: Expanding Eq.~18! we obtain

]L
]pi

~ j x
1v!5

]2L
]qk]pi ,k

~ j x
1v!1

]2L
]pj]pi ,k

~ j x
1v!

] f j

]qk ~x!1
]2L

]pj ,h]pi ,k
~ j x

1v!
]2f j

]qh]qk ~x!,

where v5 f jdqj . Once the one-jet ofv at x has been fixed, the second partial derivativ
(]2f j /]qh]qk)(x) can be arbitrarily taken. Hence Eq.~19! follows and also Eq.~20!. h

Notation 5: Given a multivector fieldxkPG(M ,∧2kTM) of even degree 2k, we denote by
x̄k :∧2T* M→R the function given by

x̄k~w2!5 i xk
~w2∧...

(k

∧w2!, w2P∧
2

T* M ,

wherei x is the total insertion operator~cf. Sec. II D!.
Theorem 6: A gauge-invariant Lagrangian densityLvn on T* M is variationally trivial if and

only L can be written as follows:

L5x̄+V,

whereV:J1(T* M )→∧2T* M is the curvature mapping~see Sec. III A! and

x̄5 (
k50

@n/2#

x̄k ,

xk being a multivector field of degree2k, such that Lxk
vn50 ~cf. Sec. II D!.

Proof: As Lvn is gauge invariant according to Utiyama’s theorem~Sec. III A! we have

L5L̄+V,

whereL̄ is an arbitrary differentiable function on∧2T* M . AsL must also be variationally trivial,
the above composition should satisfy Eqs.~19! and~20!. Taking into account the equations ofV
@see formula~8!# we have

]2L̄
]pihpjk

+V1
]2L̄

]pik]pjh
+V50, ;h,i , j ,k51,...,n,

and

]2L̄
]qk]pik

+V50, ; i 51,...,n,

as]L/]pi , ]2L/]pj]pi ,k vanish forL does not depend onpi . SinceV is a surjective mapping we
obtain the corresponding equations forL̄ on the bundle∧2T* M , i.e.,

]2L̄
]pih]pjk

1
]2L̄

]pik]pjh
50, ;h,i , j ,k51,...,n, ~21!

]2L̄
]qk]pik

50, ; i 51,...,n. ~22!
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From ~21! we obtain]2L̄/]pih
2 50. Hence for each variablepih we haveL̄5a1bpih , wherea,b

are differentiable functions depending onqj and the rest of the variablespkl . By recurrence we
conclude thatL̄ is a polynomial in the variablespih with coefficients inC`(M ); that is,

L̄5(
k

f i 1¯ i 2kpi 1i 2
¯pi 2k21i 2k

, f i 1¯ i 2kPC`~M !. ~23!

For k5h, from ~21! we conclude that the functionsf i 1¯ i 2k with a repeated index, must vanish. F
arbitrary indices, Eq.~21! tells us thatf i 1 ,...,j ,...,l ,...,i 2k1 f i 1 ,...,l ,...,j ,...,i 2k50. Hence

f i p~1! ,...,i p~2k!5~sgnp! f i 1 ,...,i 2k,

for every permutationp of 1,...,2k, and therefore

L̄5 (
k50

@n/2#

(
i 1,¯, i 2k

(
pPG2k

~sgnp! f i 1 ,...,i 2kpi p~1!i p~2!
¯pi p~2k21!i p~2k!

.

HenceL̄5x̄5(k50
@n/2# x̄k , where

xk5~21!~2
2k

!2k (
i 1,¯, i 2k

f i 1 ,...,i 2k
]

]qi 1
∧¯∧

]

]qi 2k
.

Let us check that Eq.~22! implies that each multivector fieldxk is divergence free. Let
(U;q1,...,qn) be a coordinate open domain such thatvn5dq1∧¯∧dqn. By using the formula~7!
in Sec. II D, we have

ck~Lxk
vn!5~21!k11 (

i 1,¯, i 2k

d~ f i 1 ,...,i 2ki ]/]qi1∧¯∧]/]qi2k~dq1∧¯∧dqn!!

52 (
i 1,¯, i 2k

~21! i 11¯1 i 2kd~ f i 1 ,...,i 2kdqj 1∧¯∧dqj n22k!,

where ck5(21)(2
2k)22k and j 1,¯, j n22k is the complementary subset ofi 1,¯, i 2k in

$1,...,n%. Hence

ck~Lxk
vn!52 (

i 1,¯, i 2k

~21! i 11¯1 i 2k(
a

] f i 1 ,...,i 2k

]qa dqa∧dqj 1∧¯∧dqj n22k.

If j 0,¯, j n22k is the complementary subset ofi 2,¯, i 2k in $1,...,n%, then the coefficient of
dqj 0∧dqj 1∧¯∧dqi n22k in the above formula is

~21! i 21¯1 i 2k(
a

] f a,i 2 ,...,i 2k

]qa ,

where for ~not necessarily increasing! pairwise different indicesi 1 ,...,i 2k we have setf i 1 ,...,i 2k

5(sgnp)fp(i1),...,p(i2k), p being the unique permutation of the set$ i 1 ,...,i 2k% such thatp( i 1),¯

,p( i 2k). Accordingly,Lxk
vn50 if and only if

(
a

] f a,i 2 ,...,i 2k

]qa 50. ~24!

Moreover, from the formula~23! we have
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]2L̄
]qa]pj a

5 (
k50

@n/2#
] f i 1 ,...,i 2k

]qa

]pi 1i 2
¯pi 2k21i 2k

]pj a
5 (

k50

@n/2#

k
] f j ,a,i 3¯ i 2k

]qa pi 3i 4
¯pi 2k21i 2k

.

Hence the formula~22! holds true if and only if

(
a

] f j ,a,i 3¯ i 2k

]qa 50,

which is equivalent to~24!, thus finishing the proof of the theorem. h

Corollary 7: EveryautP-invariant Lagrangian density on T* M is variationally trivial.
Proof: If dim M is odd, the result is trivial as in odd dimensions every autP-invariant La-

grangian density vanishes by virtue of Theorem 3. Assume dimM5n52m. In this case, on a
coordinate system such thatvn5dq1∧¯∧dqn, as a simple calculation shows we haveP f
5x̄m , where

xm5~21!~2
n
!

]

]q1 ∧¯∧
]

]qn ,

andLxm
vn50 obviously. h
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On the geometric structure of thermodynamics
M. Chen
Vanier College, 821 Ste. Croix Avenue, St. Laurent, Quebec H4L 3X9, Canada
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In this paper we consider symmetry transformations of the generalized entropy
function that preserve the Gibbs one-form~Gibbs relation!. We show that this
symmetry consideration naturally leads to the geometric structure of thermodynam-
ics in terms of contact geometry. We also construct an example based on the van
der Waals’ fluid to illustrate the method discussed in the paper. ©1999 American
Institute of Physics.@S0022-2488~99!03102-3#

I. INTRODUCTION

It is well known that Legendre transformations play an important role in equilibrium ther
dynamics~ET!.1 In 1973 Hermann2 suggested that ET might be reformulated in a geome
setting in terms of a contact manifoldM. Since then several geometric theories of ET have b
proposed in the past.3 Recently Mrugalaet al.4 further investigated the applications of conta
geometry to ET, where thermodynamic processes were considered as the flows of a vector
TM, the tangent bundle ofM. The work of Mrugalaet al. was modified and extended to irrever
ible thermodynamics by Chen and Tseng.5 In this paper we reexamine the symmetry property
the second law of thermodynamics and show that this symmetry consideration naturally giv
to the intrinsic geometric structure of thermodynamics.

Consider a system of molecules inr components contained in a volumeV, where no chemical
reactions take place. LetE be the total internal energy of the system,Ni be the number of
molecules of speciesi, P be the hydrostatic pressure, andm i be the chemical potential correspon
ing to Ni . In ET the work one-formdW is given bydW52PdV1( im i dNi . In order to consider
irreversible processes we enlarge the set of conserved variables (E,V,Ni) by including the non-
conserved variablesF i

a , whereF i
a denotes the various generalized fluxes such as the mass

heat flux, etc.6 Thus, $E,V,Ni ,F i
a ; i 51,2,...,r ; a51,2,...,k% is the set of global thermodynami

variables. Note that the indexa represents the different kinds of fluxes. For simplicity we den
$E,V,Ni ,F i

a% by (x1,x2,...,xn)5(x1,x̂), wherexi is a differentiable function of timet. Let Bn be
the thermodynamic space with coordinate coverx. The work one-form for a dissipative system ca
be written as

dW52PdV1(
i

m i dNi2(
i ,a

Xi
a dF i

a , ~1!

where Xi
a is the generalized potential conjugate to the generalized fluxesF i

a .6 Hereafter we
assume thatP, m i , and Xi

a are functions ofx of classC1 on an open set ofBn with compact
support. These functions are the constitutive relations based on phenomenological conside

The global formulation of the first law can be expressed as

DE5DW1DQ1DQd , ~2!

while the second law can be expressed as7

V∧dV50, ~3a!

DQd>0. ~3b!
8300022-2488/99/40(2)/830/8/$15.00 © 1999 American Institute of Physics
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HereV5dE2dW andDQ represents the net amount of heat exchanged between the syste
its surroundings, whileDQd represents the change of dissipative energy associated with irre
ible processes. We assume thatDQd is semipositive definite and vanishes only at thermodyna
equilibrium. It should be noticed thatDQ and DQd cannot be considered as one-forms in t
vector space∧(Bn) of differential forms inBn , while V5dE2dW is a one-form in∧1(Bn).8

Let g be a closed path inBn . It can be proved that the second law formulated in~3a! and~3b!
is equivalent to Clausius’ inequality9

E
g
T21 dQ<0,

as well as Kelvin’s principle.10

Denote $2P,m i ,2Xi
a ; i 51,2,...,r ; a51,2,...,k% by (w2 ,w3 ,...,wn). Then the work one-

form dW can be rewritten as

dW5(
j >2

wj~x! dxj , ~4!

and the one-formV5dE2dW as

V5dE2dW5dx12(
j >2

wj~x! dxj . ~5!

It can be shown that the Caratheodory inaccessibility condition~3a! ~or Frobenius integrability
condition11! is equivalent to the Maxwell relations] jwk5]kwj for j ,k>2.7 Consequently, there
exists aC2 functionH defined inBn such thatwj52] jH, j >2. The functionH is closely related
to the generalized Helmholtz potential function5 which can be obtained by solving the Pfaffia
equationV50. Hence we consider the following equation;

dx15(
j >2

wj~x! dxj , x1~0!5u, ~6!

whereu is a real number. Fixâ5(a2,...,an) and setx̂5ât. By assumptionwj is aC1 function in
an open subset ofBn with compact support. According to the theory of ordinary differen
equations, ~6! has a unique solution curvex15F̂(t,u,â) such that x1(0)5u. Since x1

5F̂(at,u,a21a) also satisfies~6!,

x15F̂~ t,u,â!5F̂~at,u,a21a!

is the unique solution of~6!. Setat51 and denoteF̂(1,u,ât)5F(u,ât). Then

x15F~u,ât !, x1~0!5F~u,0!5u.

The solution of~6! depends continuously on the initial value ofu. In order to obtain the solution
surface of the Pfaffian equationV50, we consideru as well asât as a new set of coordinat
variables in a neighborhood~nbd! U of the origin ~u50, ât50!. Without loss of generality we
denote the new variablesât by x̂* . Let (u,x̂* ) be an arbitrary point inU and letD be an open
subset ofBn . DefineG:U→D by G(u,x̂* )5(x1,x̂) wherex15F(u,x̂), x̂5 x̂* . Since the deter-
minant of the Jacobian matrix ofG does not vanish at the origin, by the inverse function theor
there exists an open subsetU1,U containing the origin, such thatGuU1 has an inverse which is
a C1 function defined onV5G(U1) containingG(0)50PV. This inverse function is given by

G21~x!5„f ~x!,x̂…5~u,x̂!,
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that is, u5 f (x) if and only if x15F(u,x̂). We now identifyH52F so thatwj5] jF, j >2.
Therefore

V5dx12(
j >2

wj~x! dxj5~]uF !du1(
j >2

~] jF2wj ! dxj5~]uF ! du,

where ]uF5]F/]u. Since (]uF)(x)Þ0, we havedu5@(]uF)(x)#21V. If we identify (]uF)
3(x) as the thermodynamic temperatureT in absolute temperature scale, andu5S5 f (x) as the
generalized entropy function, then

V5TdS5dE1PdV2(
i

m i dNi1(
i ,a

Xi
a dF i

a ~7!

is the generalized Gibbs one-form~Gibbs relation!.
In the next section we consider symmetry transformations of the generalized entropy s

u5S5 f (x) that preserve the contact condition specified by the Gibbs one-form~7!.

II. INVARIANCE OF THE SECOND LAW

From a mathematical point of view it is evident that Caratheodory’s inaccessibility cond
~3a! is equivalent to the Gibbs one-form~7!. Thus we consider the symmetry transformations
the generalized entropy surface that preserve the one-form~7!. Let (x,u)PBn3R1 and consider
the transformations

x* 5F~x,u!, u* 5G~x,u!, ~8!

whereG andF5(F1 ,...,Fn) are differentiable functions. Furthermore, we assume that the tr
formation (x,u)→(x* ,u* ) is one-to-one. By~8! u5 f (x) becomesu* 5 f * (x* ,u* ), wheref * is
a C1 function. Denotey5(y1 ,...,yn), y* 5(y1* ,...,yn* ), andyi5] i f , yi* 5] i* f * , where] i , ]u ,
] i , ] i* , and]u* are partial differentiation operators with respect to the variablesxi , u, yi , (x* ) i ,
andu* , respectively. Now~8! preserves the contact condition

du* 5(
i

yi* d~x* ! i5yi* d~x* ! i ,

if and only if

~DiF !uj* 5DiG, Di5] i1yi]u . ~9!

Here we have adopted the summation convention over repeated indices. Let

A5FD1F1 ¯ D1Fn

] ]

DnF1 ¯ DnFn

G
and assume thatA is invertible. Then~9! can be rewritten as

F y1*
]

yn*
G5A21FD1G

]

DnG
G . ~10!

Thus ~8! and ~10! lead to the following extended transformation (x,u,y)→(x* ,u* ,y* ) given by

x* 5F~x,u!, u* 5G~x,u!, y* 5H~x,u,y!. ~11!
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Suppose the transformations in~11! define a one-parameter Lie group of transformations

~x* ! i5Fi~x,u;«!, u* 5G~x,u;«!, yi* 5Hi~x,u,y;«!. ~12!

Consider the infinitesimal transformations of~12!:

~x* ! i5xi1j i~x,u!«1O~«2!,

u* 5u1h~x,u!«1O~«2!, ~13!

yi* 5yi1h i~x,u,y!«1O~«2!.

According to~10! and ~13! the infinitesimal generatorX of ~13! can be obtained easily as12

X5j i~x,u!] i1h~x,u!]u1h i~x,u,y!] i ~14!

with

h i5Dih2~Dij
j !yj5~] i1yi]u!g, ~15!

whereg5h2yjj
j is aC1 function of~x,u,y!. Hence~3a! is invariant under~13! if and only if ~15!

is satisfied. We conclude this section with a discussion on Legendre transformations in ET1 Let
u5 f (x) and consider the following transformations:

xi* 5Fi~x,u,y!, u* 5G~x,u,y!, yi* 5Hi~x,u,y!. ~16!

In order to preserve the one-formdu* 5yi* d(x* ) i , yi* must satisfy the conditions

DkG5~DkF
i !yi* , ]kG5~]kFi !yi* . ~17!

Now let

u* 5G~x,u,y!52u1(
i 51

m

yix
i , m<n,

~18!
x* 5F~x,u,y!5~y1 ,...,ym ,xm11,...,xn!, m<n.

By ~17! we have

yi* 5 H xi , i 51,2,...,m,
2ym1 i , i 51,2,...,n2m. ~19!

Define the transformationr: R2n11→R2n11 by

r~x,u,y!5~x* ,u* ,y* !,

wherex* , u* andy* are given by~18! and ~19!. Let v5du2yidxi andv* 5du* 2yi* d(x* ) i .
Furthermore, letr* be the pull back ofr. Thenr* v* 52v andr25I ~identity!. Hencer is a
partial Legendre involution. Define

L5$~x,u,y!PR2n11uu5 f ~x!,yi5] i f %

and

L* 5$~x* ,u* ,y* !PR2n11uu* 5 f * ~x* !,yi* 5] i* f * %.
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Then L* 5rL. Therefore~3a! is invariant underr. Notice thatL represents the fundament
equation of state in ET.

The discussions presented in this section can be reformulated in a more geometric se
terms of contact geometry. This will be discussed in the next section.

III. CONTACT GEOMETRY IN THERMODYNAMICS

In the previous section we considered the symmetry transformations of the generaliz
tropy surface that preserved the inaccessibility condition of Caratheodory. We also discuss
partial Legendre involutions in ET. These discussions naturally lead to the basic conc
contact geometry we now elucidate. Although some of our discussions in the following ov
somewhat with the work of Mrugalaet al.,4 our approach is different. It further clarifies an
supplements the work presented in Ref. 4.

Let Bn be the thermodynamic space with coordinate coverx5(E,V,Ni ,F i
a)

5(x1,x2,...,xn), and letG5R3Bn with coordinate cover (u,x)5(S,x), whereu5S5 f (x) is the
generalized entropy function of classC1 on Bn . Denote the conjugate variables ofx by y
5(T21,PT21,2m iT

21,Xi
aT21)5(y1 ,y2 ,...,yn) so thatyi5] f . ConsiderM5G3Bn with coor-

dinate cover~u,x,y! whereu,x,yare independent variables. Define the one-formv5du2yidxi in
M. For every xPBn the vector space Dx5$vPTxM u^w(x),v(x)&5wiv

i50;w(x)
5wi(x)dxi ,v(x)5v i(x)] i% is called the contact hyperplane toM at x. Sincev∧(dv)nÞ0 and
v∧(dv)n1150, the one-formv defines a nondegenerate hyperplane distributionx→Dx , where
Dx is the kernel ofv. This distribution of the hyperplanes~field of hyperplanes! is called the
contact structure ofM. If l is a nowhere vanishing function onM, then lv defines the same
contact structure ofM. The differentiable manifoldM equipped with such a one-formv is called
a contact manifold.13 Thus M is a (2n11)-dimensional manifold which can be identified asM
5T* (Bn)3R, whereT* (Bn) is the contangent bundle ofBn .

Notice thatM can also be identified with the one-jet spaceJ1(Bn ,R) from Bn into R, which
is a vector bundle with baseBn . The fiber atxPBn is R3T* (Bn). The jet j x

1f is the pair
„f (x),d f(x)… and the canonical projectionp:M→Bn is the mappingj x

1f→x. A section ofM is a
mapping s:Bn→M such thatp+s(x)5x for every xPBn . Hence the mappingj 1f :x→ j x

1f
5„f (x),d f(x)… defines a global section ofM such that (j 1f )* v50. The image ofBn under j 1f
is the one-graph spaceL given by

L5$~u,x,y!PM uu5 f ~x!,yi5] i f %, ~20!

which is ann-dimensional Legendre submanifold ofM. Therefore, the generalized entropy surfa
u5 f (x) can be used to define a Legendre submanifold withy5(T21,PT21,2m iT

21,Xi
aT21) as

the conjugate variables of the thermodynamics variablesx, and Gibbs one-form~7! can be utilized
to define the contact one-formv in M.

Next we consider the transformations in~13! as transformations in the contact manifoldM. To
this end we leth2yij

i5g. Thenj i52] ig. In view of ~14! and~15! the infinitesimal generato
X of ~13! can be expressed as

X5j i~x,u!] i1h~x,u!]u1h i~x,u,y!] i

5g]u1$2~yj]
jg!]u1~yi]ug!] i1@~] ig!] i2~] ig!] i #%

5Xv1XH , ~21!

with Xv5g]u andXH given in the curly bracket.
SupposeX̂5v i] i and u5u idxi . An inner multiplication betweenX̂ and u is defined by

X̂↵u5 i (X̂)u5v iu i . Thus] i↵dxj5d i
j . The following results can be easily verified:

i ~Xv!v5g, i ~Xv!dv50, ~22a!
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i ~XH!v50, i ~XH!dv5 i ~x!dv52Dg, ~22b!

whereDg5dg2@ i (Xu)dg#v, Xu5]u . ThusXvPkerv andXHPkerdv where kerdv is a vec-
tor bundle generated byXu . ThereforeX is a vector field in the tangent bundleTM and the
decomposition ofX into a vertical componentXv and a horizontal componentXH is unique.

The infinitesimal generatorX generates a one-parameter group of transformationsrt5T(t)
5eiXt:M→M in ~12! with «5t. Let L(X) be the Lie derivative associated withX. Then

L~X!v5 i ~X!dv1di~X!v5~]ug!v5lv. ~23!

Hence the contact ideal generated byv is invariant underrt . Since (f ,d f )→( f * ,d f* ) underrt

and the graph ofj 1f is a Legendre submanifold ofM, thus a Legendre submanifoldL is carried
into another Legendre submanifoldL* by rt . By assumption the dissipative energyDQd is
semipositive definite for any irreversible process~independent ofrt!; the second law formulated
in ~3a! and ~3b! is therefore invariant under the contact transformations generated byX.

It should be noticed that the construction of the vector fieldX in ~21! depends on an arbitrar
function g(x,u,y) defined onM, such that,j i(x,u)52] ig, h(x,u)5g1yij

i(x,u) and h i5(] i

1yi]u)g. In fact, there is a one-to-one correspondence between aC1 functiong defined onK with
the properties specified above and the vector fieldXPTM. This one-to-one correspondence giv
rise to an isomorphismc from the Lie algebra of vector fields inTM onto the vector space o
real-valued functions onM, whose Lie algebra structure is defined by the Jacobi bra
@g1 ,g2#5 i (@Xg1

,Xg2
#)v.

OnceX is determined, the flows ofX are governed by the following equations:

du

dt
5h~x,u!,

dxi

dt
5j i~x,u!,

dyi

dt
5h i~x,u,y!. ~24!

Consider the projection of the flow equations onL:

du

dtU
L

5h„x, f ~x!…5~] i f !
dxi

dt U
L

5~] i f !j i
„x, f ~x!….

This implies thatg5h2yij
i vanishes onL. Conversely ifguL50, then the flows ofX lie on L.

ThusXL5j i(x,u)] i1h(x,u)]u is the projection ofX on L, while X is the lift of XL from TL to
TM.

For an illustration of this argument we conclude this paper with an example on the va
Waals fluid with constant heat capacity in ET. Letx15E, x25V, y15]1f 5T21, y25]2f
5PT21, x5(x1,x2), andy5(y1 ,y2), where the entropy functionS is given by

u5S5 f ~x1,x2!5
3

2
R lnS x11

a

x2D1R ln~x22b!2F3

2
R ln cv1R ln RG . ~25!

HereR is the gas constant andcv is the specific heat at constant volume.
A vector fieldXL on the entropy surface can be written as

XL5h~x,u!]u1j1~x,u!]11j2~x,u!]2

with h(x,u)5R/(x22b), j15a/(x2)2, andj251, wherea, b are constants. This vector field i
constructed such thati (XL)u50, u5du2yidxi . Next we lift XL to the contact manifoldM with
coordinate cover (x1,x2,u,y1 ,y2). Define the scalar-valued functiong by

g~x1,x2,u,y1 ,y2!5h~x,u!2y1j1~x,u!2y2j2~x,u!.

Then
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h15~]11y1]u!g50

and

h25~]21y2]u!g52
R

~x22b!2 1
2ay1

~x2!3 .

Consequently, the vector fieldX can be written as

X5h]u1j i] i1h i]
i ,

which yields the following flow equations:

dx1

dt
5j1~x,u!5

a

~x2!2 ,
dx2

dt
51,

dy1

dt
5h1~x,u,y!50,

dy2

dt
5h2~x,u,y!52

R

~x22b!2 1
2ay1

~x2!3 ,

du

dt
5h~x,u!5

R

x22b
.

We now solve these flow equations. First,dx2/dt51. We setx25t. Thendx15@a/(x2)2#dx2. So
x152a/x21c1 or x11a/x25c1 . Next, dy1 /dt50. Thus, y15T215const. Let c153RT/2.
Theny15]1f 5T215 3

2R(x11a/x2)21, which yields the constitutive relation

x15E5
3RT

2
2

a

V
.

The equation fory2 has the solutiony25R/(x22b)2ay1 /(x2)21c2 . If we setc250, we imme-
diately obtain the second constitutive relation

y25PT215]2f 5
R

x22b
2

3R

2 S x11
a

x2D 21 a

~x2!2

or

S P1
a

V2D ~V2b!5RT.

The equation foru can be rewritten as

du5
R

x22b
dx25~]1f !dx11~]2f !dx2

5
3R

2 S x11
a

x2D 21

dx11F R

x22b
2

3R

2 S x11
a

x2D 21 a

~x2!2Gdx2, ~26!

which yields the solution given by~25!. Furthermore, we can show thatg vanishes on the entrop
surfaceu5S5 f (x1,x2).14

This example shows that the flows ofX give rise to the constitutive relations. We remark th
this example is different from the one given in Ref. 4, which describes an unphysical system
the results there depend on an unbounded continuous parameter. Further, it is incompreh
that the equation of states for an ideal gas can be transformed into those of a real gas th
sequence of contact transformationsrt as stated in Ref. 4.
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Finally, it is interesting to note that for some model equations describing irreversible
cesses, the dynamical equations of the thermodynamic variables can be embedded in the
the vector fieldX.15
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Green’s function of the Fokker–Planck equation: General
formula of frequency expansion

Toru Miyazawaa)

Department of Physics, Gakushuin University, Tokyo 171-8588, Japan

~Received 28 April 1998; accepted for publication 12 November 1998!

The one-variable Fokker–Planck equation is studied in its general form by means
of an algebraic method. An expression of the Green’s function is derived as an
expansion in powers of the square root of frequency. The expansion coefficient of
arbitrary order is expressed as a functional of the potential in terms of integrals.
© 1999 American Institute of Physics.@S0022-2488~99!03402-7#

I. INTRODUCTION

In this paper we study the one-variable Fokker–Planck equation describing the Bro
motion of a particle in an external potential. It has the form1

]

]t
P~x;t !5

]2

]x2 P~x;t !22
]

]x
@ f ~x!P~x;t !#, ~1.1!

f ~x!52
1

2

d

dx
V~x!, ~1.2!

whereP(x;t) denotes the probability density of the particle, andV(x) is the external potential
This equation is a fundamental equation describing fluctuations in nonequilibrium pheno
and it is of considerable importance in various fields of physics.

The Green’s function plays the most important role in diffusion problems. We define
Green’s functionG(x,x8;t) as the solution of~1.1! satisfying the initial conditionP(x;t50)
5d(x2x8). It can be interpreted as the transition probability, i.e., the probability densit
finding the particle at positionx at timet under the condition that it was initially at positionx8. Let
G(x,x8;v) denote the Fourier–Laplace transform ofG(x,x8;t) with respect to time:

G~x,x8;v!5E
0

`

eivtG~x,x8;t !dt. ~1.3!

If the potentialV(x) is anx-independent constant, the Green’s function has the well-known f

G~x,x8;t !5
1

A4pt
e2~x2x8!2/~4t !, ~1.4!

and, correspondingly,

G~x,x8;v!5
i

2k
eikux2x8u, ~1.5!

wherek is defined by

a!Electronic mail: toru.miyazawa@gakushuin.ac.jp
8380022-2488/99/40(2)/838/19/$15.00 © 1999 American Institute of Physics
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k25 iv, Im k>0. ~1.6!

We are going to studyG(x,x8;v) for generalV(x). For the time being, let us assume th
bothV(1`)[ limx→1` V(x) andV(2`)[ limx→2` V(x) are finite, and thatV(x) tends to these
limits sufficiently fast.~We also discuss other cases later.! The Green’s function can be express
as a power series in terms ofk as

G~x,x8;v!5
i

2k
e2V~x!@p01 ikp11~ ik!2p21~ ik!3p31¯#. ~1.7!

~The expansion coefficientspi depend onx andx8. We have singled out the factore2V(x) so as to
make pi more symmetric.! By Fourier transforming this expression, we can obtain a largt
expansion ofG(x,x8;t). Thus, the power-series expression~1.7! is important for analyzing the
long-time behavior.~See the Appendix for a more detailed description.! The main objective in this
paper is to derive an expression of the expansion coefficientpi for general orderi. It is expressed
as a functional ofV(x) in terms of integrals involvingV(x).

A method for calculatingpi was discussed in a previous work.2 However, only an algorithm
for calculation was given there, and, in practice, only the first few terms of expansion cou
calculated by that method. In the present paper we use a different, more sophisticated meth
derive a more explicit formula for the expansion coefficient of arbitrary order.

It is well known that the Fokker–Planck equation~1.1! is equivalent to the Schro¨dinger
equation with the potentialVS(x)[@ f (x)#21 f 8(x). It has been customary to study the Fokke
Planck equation by transforming it into the Schro¨dinger equation, for which various methods
solution are available. The method developed in this paper is different from any existing m
for solving the Schro¨dinger equation. So we may apply this new method to problems describe
the Schro¨dinger equation as well. The frequency expansion formula derived here provid
general and systematical method for the analysis of quantum-mechanical problems in th
energy region.

We use as our starting point an algebraic expression of the Green’s function, which
derived in a previous paper.3 We review this expression in Sec. II. Sections III and IV are devo
to mathematical preliminaries. Section V contains the main result of the present paper. An e
sion for the coefficients of expansion is derived here. In Sec. VI we discuss some proper
these expansion coefficients. In Sec. VII the power series expansion is studied in relation
behavior of the potential at infinity.

II. ALGEBRAIC EXPRESSION

Here we review the algebraic expression of the Green’s function, which is the starting
for the analysis in the present paper. Only the result is shown here. The derivation is given
3.

We consider a set of operatorsJ6 , J3 , andQ6 satisfying the following commutation rela
tions:

@J3 , J1#5J1 , @J3 , J2#52J2 , @J1 , J2#52J3 , ~2.1a!

and

@J3 , Q1#5 1
2Q1 , @J1 , Q1#50, @J2 , Q1#5Q2 ,

@J3 , Q2#52 1
2Q2 , @J1 , Q2#5Q1 , @J2 , Q2#50, ~2.1b!

$Q1 , Q1%522J1 , $Q2 , Q2%52J2 , $Q1 , Q2%52J3 ,
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where @A, B#5AB2BA and $A,B%5AB1BA. These operators constitute a Lie superalgeb4

that is called OSp~1/2!. ~Note that this superalgebra has no relation to the well-known ‘‘sup
symmetiric’’ structure5 of the Fokker–Planck equation.! As can be seen from~2.1a!, the operators
J3 , J1 , andJ2 are generators of SU~2! @or its complex form SL~2,C!#. As usual, we also use th
notation

J15~J11J2!/2, J252 i ~J12J2!/2. ~2.2!

The operatorsJ6 , J3 , and Q6 act on vectors belonging to a certain representation space.
define an inner product in the representation space, which we denote by~¯ ,¯!. We require that
it should have the following properties:

~F,J3C!5~J3F,C!, ~F,J6C!52~J7F,C!, ~F,Q6C!5~Q7F,C!, ~2.3!

whereC andF are arbitrary vectors. As an inner product, it should also satisfy

~C,c1F11c2F2!5c1~C,F1!1c2~C,F2!, ~C,F!5~F,C!* , ~2.4!

but the condition of positive definiteness is not necessary.
We let C0 denote the lowest state, which is the vector annihilated byQ2 :

Q2C050. ~2.5!

We define the evolution operatorU(x,x8) as the solution of

]

]x
U~x,x8!5@2ikJ322 f ~x!J1#U~x,x8!, ~2.6!

with the initial conditionU(x5x8)51 ~identity operator!. Here f (x) is the function that appear
in the Fokker–Planck equation~1.1!, andk is the complex number defined by~1.6!. The operator
U(x,x8) depends onk, though we do not write it explicitly.

With these definitions, we can express the Green’s function of the Fokker–Planck equa

G~x,x8;v!5
g0

2

„C0 ,U~`,x!~Q11Q2!U~x,x8!~Q11Q2!U~x8,2`!C0…

~C0 ,U~`,2`!J3C0!
, ~2.7!

with

g0[
i

2k
e2@V~x!2V~x8!#/2. ~2.8!

@In this paper we assumex>x8 without loss of generality. The expression forx8>x is obtained by
interchangingx andx8 in ~2.7!.# Equation~2.7! holds in any representation as long as~2.1!, ~2.3!,
~2.5!, and ~2.6! are satisfied. We can obtain various expressions for the Green’s functio
writing ~2.7! in specific representations.

III. REPRESENTATION OF SL „2,C…

Equation~2.7! is a purely algebraic expression; the operatorsJ3 , J6 , andQ6 in ~2.6! and
~2.7! can be any operators as long as the commutation relations~2.1! are satisfied. We can obtai
a specific expression for the Green’s function by choosing a specific form of these operato
wish to obtain the power series expression~1.7! by writing ~2.7! in an appropriate representatio
Here and in the next section we make technical preparations for this purpose.~The method we use
here is an extension of the techniques employed in Ref. 6 for studying the scattering coeffic!
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Let us first focus our attention onJ3 and J6 , leaving Q6 aside for the time being. We
consider a realization of the commutation relations~2.1a! in terms of differential operators of th
form

J3
~n!5

n

2
coshw1sinhw

]

]w
,

~3.1!

J6
~n!57

n

2
sinhw1~17coshw!

]

]w
,

wheren is a real parameter. These operators act on functions ofw, which we assume to be
complex variable; namely, the representation space is the space of analytic functions ofw. The
background of~3.1!, as well as the meaning ofw, is explained in Ref. 6. However, for our prese
purpose it it not necessary to be concerned about the meaning of~3.1!. Here it suffices to note only
that the operators~3.1! with arbitraryn indeed satisfy the commutation relations~2.1a!. In terms
of J1 andJ2 these expressions read as

J1
~n!5

]

]w
, J2

~n!5 i
n

2
sinhw1 i coshw

]

]w
, J3

~n!5
n

2
coshw1sinhw

]

]w
. ~3.2!

Also, let us remark that~3.1! can be rewritten as

J3
~n!52S cosh

w

2
sinh

w

2 D 12n/2 ]

]w S cosh
w

2
sinh

w

2 D n/2

, ~3.3a!

J1
~n!522S sinh

w

2 D 22n ]

]w S sinh
w

2 D n

, J2
~n!52S cosh

w

2 D 22n ]

]w S cosh
w

2 D n

. ~3.3b!

We define the functionu0
(n)(w) as

u0
~n!~w![S cosh

w

2 D 2n

. ~3.4!

From ~3.3b! we find thatu0
(n) is the lowest state in the representation space satisfying

J2
~n!u0

~n!50. ~3.5!

Substituting~3.4! into ~3.3a!, we obtain

J3
~n!u0

~n!5
n

2
u0

~n! . ~3.6!

This relation means that the quantity2n/2 corresponds to the spin. Thus, the numbern serves as
a label of the representation. In this paper we deal with infinite-dimensional representation
n>0.

We construct the basisun
(n) (n50,1,2,...) by repeatedly applyingJ1

(n) to the lowest state:

un
~n!~w![~21!n

1

n!
~J1

~n!!nu0
~n!~w!5S n1n21

n D S cosh
w

2 D 2nS tanh
w

2 D n

, ~3.7!

where the binomial coefficient is defined as

S n1n21
n D[

n~n11!¯~n1n21!

n!
. ~3.8!
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@For n50 we have (0
n21)51.# We define the inner product between basis states as

~um
~n! ,un

~n!!~n![S n1n21
n D dmn . ~3.9!

@The meaning of the basis~3.7! and the inner product~3.9! is also explained in Ref. 6.# By
rescaling the basis as

cn
~n![

1

AS n1n21
n D

un
~n! , ~3.10!

we can rewrite~3.9! as

~cm
~n! ,cn

~n!!~n!5dmn . ~3.11!

The inner product of arbitrary two states is determined by~3.11! with the property of linearity
~2.4!.

We let A† denote the adjoint ofA, satisfying

~A†f1 ,f2!~n!5~f1 ,Af2!~n!, ~3.12!

for arbitraryf1 andf2 . It is easy to show that the basis states satisfy

J3
~n!cn

~n!5S n

2
1nDcn

~n! , ~3.13a!

J1
~n!cn

~n!52A~n1n!~n11!cn11
~n! , J2

~n!cn
~n!5A~n1n21!ncn21

~n! . ~3.13b!

From ~3.13! and ~3.11! it is obvious that

~J3
~n!!†5J3

~n! , ~J6
~n!!†52J7

~n! . ~3.14!

For an operatorA we define its kernelAK as

AK~w1 ,w2* ![ (
n50

`

@Acn
~n!~w1!#@cn

~n!~w2!#* . ~3.15!

@Strictly speaking, the expressionAcn
(n)(w1) should read as (Acn

(n))(w1).# By using the complete-
ness of the basis, we can rewrite~3.15! as

AK~w1 ,w2* !5 (
m50

`

(
n50

`

cm
~n!~w1!~cm

~n! ,Acn
~n!!~n!@cn

~n!~w2!#*

5 (
m50

`

(
n50

`

cm
~n!~w1!~A†cm

~n! ,cn
~n!!~n!@cn

~n!~w2!#*

5 (
n50

`

cn
~n!~w1!@A†cn

~n!~w2!#* . ~3.16!

The kernel of the identity operator is obtained as
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I K
~n!~w1 ,w2* !5 (

n50

`

cn
~n!~w1!@cn

~n!~w2!#* 5FcoshS w12w2*

2 D G2n

, ~3.17!

where we have used~3.10!, ~3.7!, and the formula(n (n
n1n21)xn5(12x)2n. We also define the

operatorAQ , which operates to the left, as

f~w!AQ [~A†!* f~w!. ~3.18!

@Here the asterisk means that we take complex conjugate of scalars included in the opera
example, from~3.2! we have (J2

(n))* 52J2
(n) . Note thatw is not replaced byw* .#

For the convenience of notation, we shall hereafter writew andw8 in place ofw1 andw2* .
The kernel of identity is written as

I K
~n!~w,w8!5FcoshS w2w8

2 D G2n

. ~3.19!

From ~3.15!, ~3.16!, and~3.17! it follows that

AK~w,w8!5AIK
~n!~w,w8!5I K

~n!~w,w8!AQ 8, ~3.20!

whereA8 is the operator obtained fromA by replacingw with w8. Here we are assuming that th
differential operatorA acts onw and not onw8; similarly, AQ 8 acts onw8 and not onw.

Matrix elements of an operatorA can be easily obtained from its kernelAK . In particular,
sincec0(0)51 andcn(0)50 (nÞ0), from the first line of~3.16! we find

~c0
~n! ,Ac0

~n!!~n!5AK~w5w850!. ~3.21!

Corresponding to~2.6!, we define the evolution operator restricted within SL~2,C! as the
solution of

]

]x
U ~n!~x,x8!5@2ikJ3

~n!22 f ~x!J1
~n!#U ~n!~x,x8!, U ~n!~x5x8!51, ~3.22!

with J1
(n) andJ3

(n) given by~3.2!. Just likeJ1
(n) andJ3

(n) , this U (n)(x,x8) is a differential operator
that acts on functions ofw. @Note that the operatorU (n) represents an element of the SL~2,C! Lie
group.# Here we make a position-dependent shift of the variable,

w→W[w1V~x!, ~3.23!

and expressU (n)(x,x8) in terms ofW rather thanw. Under~3.23! the partial derivatives change a

]

]x
→

]

]x
1

dV

dx

]

]W
5

]

]x
22 f ~x!

]

]W
,

]

]w
→

]

]W
, ~3.24!

and so~3.22! becomes

]

]x
U ~n!~x,x8!5 ik@e2V~x!Ĵ1

~n!1eV~x!Ĵ2
~n!#U ~n!~x,x8!, U ~n!~x5x8!51, ~3.25!

where

Ĵ1
~n![eWS n

2
1

]

]WD , Ĵ2
~n![e2WS n

2
2

]

]WD . ~3.26!
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Let us remark thatĴ1 andĴ2 , together withĴ3[]/]W, satisfy the commutation relations~2.1a!.
SinceĴ6

(n)5e6V(x)(J3
(n)7 iJ2

(n)), from ~3.14! we find

~ Ĵ6
~n!!†5 Ĵ6

~n! . ~3.27!

The solution of~3.25! is obtained as6

U ~n!~x,x8!5 (
n50

`

~ ik!n (
$si561%

@s1 ,...,sn#x8
x Ĵ2sn

~n!
¯ Ĵ2s1

~n! , ~3.28!

where we have introduced the notation

@s1 ,s2 ,...,sn#x8
x [E ¯E

x8<y1<y2<¯<yn<x
dy1¯dyn expF(

i 51

n

siV~yi !G ~si561!.

~3.29!

The second summation in~3.28! is overs1561, s2561,...,sn561. HereĴ2s
(n) stands forĴ2

(n) and
Ĵ1

(n) for s511 ands521, respectively.~Note thatĴ2s
(n) with s521 is not Ĵ1

(n) .! The term of
ordern50 in ~3.28! should be understood as the identity operator. The integrations in~3.29! are
carried out in the interval (x8,x) with the restrictionyi 21<yi<yi 11 .

It is easy to check that the operatorU (n) given by ~3.28! indeed satisfies~3.25!. The expres-
sion~3.28! is the expansion of the evolution operator in powers ofk. The coefficients of expansion
are expressed in terms of integrals defined by~3.29!. We shall see later that the expansio
coefficientspi of the Green’s function@see Eq.~1.7!# can be expressed in terms of integrals of t
form ~3.29!, too.

Let us consider the kernel of the evolution operator. According to~3.20! we may write

UK
~n!5U ~n!~x,x8!I K

~n!~w,w8!5U ~n!~x,x8!FcoshS w2w8

2 D G2n

. ~3.30!

Since the expression~3.28! @with ~3.26!# is written in terms ofW, it is natural to expressUK
(n) as

a function ofW rather thanw. The evolution operatorU (n)(x2 ,x1) transfers the position fromx1

to x2 ; so the position-dependent shift~3.23! implies W5w1V(x1) before the operation o
U (n)(x2 ,x1), andW5w1V(x2) after the operation. Therefore, the variablew in the expression
cosh@(w2w8)/2# in Eq. ~3.30! is to be replaced byW2V(x8), since thisw is a quantity before the
operation ofU (n)(x,x8). If we defineW8[w81V(x8), then~3.30! becomes

UK
~n!~x,x8;W,W8!5U ~n!~x,x8!FcoshS W2W8

2 D G2n

. ~3.31!

Substituting~3.28! into ~3.31!, we can expressUK
(n) in terms ofW andW8, where

W5w1V~x!, W85w81V~x8!. ~3.32!

Now we haveW5w1V(x) @not W5w1V(x8)#, since thisW is a quantity obtained after th
operation ofU (n)(x,x8). By using the last expression of~3.20!, we can also write

UK
~n!~x,x8;W,W8!5FcoshS W2W8

2 D G2n

UQ 8~n!~x,x8!, ~3.33!

where
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UQ 8~n!~x,x8!5 (
n50

`

~ ik!n (
$si561%

@s1 ,...,sn#x8
x ĴQ 2sn

8~n!
¯ ĴQ 2s1

8~n! . ~3.34!

From ~3.27! and the definition~3.18!, we can see that the operatorsĴQ 68
(n) act as

g~W8!ĴQ 68
~n!5 Ĵ68

~n!g~W8!, ~3.35!

for arbitraryg(W8).
Matrix elements of the evolution operator can be obtained fromUK

(n) . SinceUK
(n) is now

expressed as a function ofW andW8, Eq. ~3.21! reads as

„c0
~n! ,U ~n!~x,x8!c0

~n!
…

~n!5UK
~n!
„x,x8;W5V~x!,W85V~x8!…. ~3.36!

IV. EXTENSION TO SUPERALGEBRA

Now let us extend the arguments of the previous section to the superalgebra, takin
accountQ1 and Q2 in addition toJ3 and J6 . The operatorsQ1 and Q2 raises and lowers
respectively, the value of the spin by1

2. In the previous section we labeled the representation b
numbern, and, as explained below Eq.~3.6!, the spin corresponds to2n/2. SoQ6 changes the
value ofn by one. We can construct a representation of the superalgebra~2.1! by putting together
two representations of the SL~2,C! algebra, with labelsn andn11. The operatorsJ3 , J6 , andQ6

can be expressed in the form of 232 matrices as

Ja
~n,n11!5S Ja

~n! 0

0 Ja
~n11!D ~a51,2,3, or 6 !, ~4.1a!

Q1
~n,n11!5S 0 n1/2sinh~w/2!

2@n1/2sinh~w/2!#21J1
~n! 0 D , ~4.1b!

Q2
~n,n11!5S 0 n1/2cosh~w/2!

@n1/2cosh~w/2!#21J2
~n! 0 D , ~4.1c!

whereJa
(n) are the operators defined by~3.1!. It is easy to check by direct calculation that th

operators~4.1! satisfy the commutation relations~2.1!. From now on we work with the represen
tation given by~4.1!. Although we shall hereafter drop the representation label (n,n11), it should
not be forgotten that these expressions depend onn. We writeJ andQ instead ofJ andQ in order
to stress that they are 232 matrices of the form~4.1!.

Now the representation space consists of two-component column vectors, where eac
ponent is an analytic function ofw. The basisCn (n50,1,2,...) is given by

C2m5S cm
~n!

0 D , C2m115S 0
cm

~n11!D ~m50,1,2,...!, ~4.2!

with cm defined by~3.10! and~3.7!. From~3.5! it is obvious thatC0 is the lowest state satisfying
Q2C050.

We define the inner product between basis vectors as

~Cm ,Cn!5dmn . ~4.3!

Then it follows that the inner product of arbitrary two vectorsFa5(a2

a1) andFb5(b2

b1) is

~Fa ,Fb!5~a1 ,b1!~n!1~a2 ,b2!~n11!, ~4.4!
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with (¯ ,¯)(n) defined by~3.11!. We letA† denote the adjoint ofA, satisfying

~A†Fa ,Fb!5~Fa ,AFb!. ~4.5!

Since we have

Q1C2m5An1mC2m11 , Q1C2m215AmC2m ,

Q2C2m115An1mC2m , Q2C2m5AmC2m21 , ~4.6!

J3C2m5S n

2
1mDC2m , J3C2m115S n11

2
1mDC2m11 ,

it is obvious that

~J3!†5J3 , ~J6!†52J7 , ~Q6!†5Q7 , ~4.7!

where we have also used (Q6)257J6 . Thus, the inner product defined by~4.3! satisfies the
requirements~2.3!.

Let us make some definitions parallel to the ones in the last section. The kernel of a32
operator matrixA is defined as

AK~w1 ,w2* ![(
n

@ACn~w1!#@Cn~w2!#* T5(
n

Cn~w1!@A†Cn~w2!#* T. ~4.8!

HereT denotes transposition; (Cn)* T is a two-component row vector, and soAK is a 232 matrix.
As before, we shall writew andw8 in place ofw1 andw2* . It is easy to see that the kernel of th
identity operator is

IK~w,w8!5S I K
~n!~w,w8! 0

0 I K
~n11!~w,w8!

D , ~4.9!

with I K
(n) given by ~3.19!. We defineAQ by

FTAQ [@~A†!* F#T. ~4.10!

@Note that (A†)* ÞAT, since the components ofA are differential operators.# As an extension of
~3.20!, we have

AK~w,w8!5AIK~w,w8!5IK~w,w8!AQ 8, ~4.11!

whereA8 is the operator obtained fromA by replacingw with w8. Once again, let us notice tha
the operatorA acts onw and not onw8, whereasAQ 8 acts onw8 and not onw. Corresponding to
~3.21!, we have

~C0 ,AC0!5~AK!11~w5w850!, ~4.12!

where (AK)11 denotes the upper-left component of the 232 matrix AK .
The evolution operatorU, which is the solution of

]

]x
U~x,x8!5@2ikJ322 f ~x!J1#U~x,x8!, U~x5x8!5S 1 0

0 1D , ~4.13!

is simply obtained as
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U5S U ~n! 0

0 U ~n11!D . ~4.14!

Now we are ready to write out the expression~2.7! in our representation given by~4.1!.

V. POWER SERIES EXPRESSION

We define

S~x,x8;z,z8![U~z,x!~Q11Q2!U~x,x8!~Q11Q2!U~x8,z8!, ~5.1!

whereQ6 andU are the 232 operator matrices introduced in the last section. The relation~4.11!
gives the kernel ofS as

SK~x,x8;z,z8;w,w8!5S~x,x8;z,z8!IK~w,w8!. ~5.2!

We let S0 denote the upper-left component of the matrixSK :

S0[~SK!11. ~5.3!

Now let us write Eq.~2.7! in the representation~4.1!. We can express it in terms ofS as

G~x,x8!5
g0

2

~C0 ,S~x,x8;`,2`!C0!

~C0 ,U~`,2`!J3C0!
5

g0

n

~C0 ,S~x,x8;`,2`!C0!

~C0 ,U~`,2`!C0!
, ~5.4!

where we have usedJ3C05(n/2)C0 . @Here and hereafterG(x,x8) stands forG(x,x8;v).# More
precisely, Eq.~5.4! means

G~x,x8!5 lim
z→`

z8→2`

g0

n

~C0 ,S~x,x8;z,z8!C0!

~C0 ,U~z,z8!C0!
. ~5.5!

From ~4.14!, ~4.2!, and~4.4! we have

~C0 ,UC0!5~c0
~n! ,U ~n!c0

~n!!~n!. ~5.6!

It can be shown that7

~c0
~n! ,U ~n!c0

~n!!~n!5@~c0
~1! ,U ~1!c0

~1!!~1!#n, ~5.7!

and hence

lim
n→0

~C0 ,UC0!5 lim
n→0

~c0
~n! ,U ~n!c0

~n!!~n!51. ~5.8!

Since~5.5! holds for anyn, we may take the limitn→0 in ~5.5!. We obtain

G~x,x8!5 lim
z→`

z8→2`

lim
n→0

g0

n
„C0 ,S~x,x8;z,z8!C0…5 lim

z→`
z8→2`

lim
n→0

g0

n
S0~x,x8;z,z8;w5w850!,

~5.9!

where we have used~4.12! and ~5.3!. By using~4.11!, we can write~5.2! as

SK5U~z,x!~Q11Q2!U~x,x8!~Q11Q2!U~x8,z8!IK~w,w8!

5U~z,x!~Q11Q2!U~x,x8!~Q11Q2!IK~w,w8!UQ 8~x8,z8!, ~5.10!
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where

UQ 85S UQ 8~n! 0

0 UQ 8~n11!D . ~5.11!

Adding ~4.1b! and ~4.1c!, we have

Q11Q25S 0 n1/2ew/2

n21/2ew/2S n12
]

]wD 0 D . ~5.12!

From ~3.19!, we can easily see that

S n12
]

]wD I K
~n!5ne~w82w!/2I K

~n11! . ~5.13!

Therefore, from~5.12! and ~4.9! we find

~Q11Q2!IK5S 0 n1/2ew/2I K
~n11!

n1/2ew8/2I K
~n11! 0 D . ~5.14!

Substituting~4.14!, ~5.11!, ~5.12!, and ~5.14! into the last expression of~5.10!, we obtain the
upper-left component ofSK as

S05nU ~n!~z,x!ew/2U ~n11!~x,x8!I K
~n11!~w,w8!ew8/2UQ 8~n!~x8,z8!. ~5.15!

It is convenient to change the variables from (w,w8) to (W,W8), as we did forUK in Sec. III,
and express everything in terms ofW andW8 rather thanw andw8. Using ~3.30! we can write
~5.15! in the form

S05nU ~n!~z,x!ew/2UK
~n11!~x,x8;W,W8!ew8/2UQ 8~n!~x8,z8!

5nU ~n!~z,x!e@W2V~x!#/2UK
~n11!~x,x8;W,W8!e@W82V~x8!#/2UQ 8~n!~x8,z8!. ~5.16!

Substituting~3.31! and ~3.33! gives

S05ne2@V~x!1V~x8!#/2U ~n!~z,x!eW/2U ~n11!~x,x8!S 1

cosh@~W2W8!/2# D
n11

eW8/2UQ 8~n!~x8,z8!

5ne2@V~x!1V~x8!#/2U ~n!~z,x!eW/2 S 1

cosh@~W2W8!/2# D
n11

UQ 8~n11!~x,x8!eW8/2UQ 8~n!~x8,z8!.

~5.17!

The operatorsU andUQ 8 are expressed in terms ofW andW8 as ~3.28! and ~3.34!. Substituting
them into ~5.17!, we obtainS0 as a function ofW and W8. As mentioned before, the operato
U (n)(z,x) transfers the position fromx to z. So we haveW5w1V(z) after the operation of
U (n)(z,x). Similarly, we haveW85w81V(z8) after the operation ofUQ 8(n)(x8,z8). Therefore, in
the final expression ofS0(x,x8;z,z8), the relation between (W,W8) and (w,w8) is

W5w1V~z!, W85w81V~z8!. ~5.18!

Now ~5.9! reads as
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G~x,x8!5 lim
z→`

z8→2`

lim
n→0

g0

n
S0„x,x8;z,z8;W5V~z!,W85V~z8!…. ~5.19!

We define

Ḡ~x,x8;z,z8;W,W8!5 lim
n→0

g0

n
S0~x,x8;z,z8;W,W8!. ~5.20!

This Ḡ can be interpreted as a generalized form of the Green’s functionG(x,x8), and hence we

may deal withḠ instead ofG. The original Green’s function is recovered as

G~x,x8!5Ḡ„x,x8;`,2`;V~`!,V~2`!…. ~5.21!

As a matter of fact, it can be shown thatḠ(x,x8,z,z8;W,W8) is the Green’s function for the
Fokker-Planck equation with the potentialV(x) replaced by

V̄~x!5H W8
V~x!

W

~x,z8!,
~z8,x,z!,

~z,x!.
~5.22!

For a detailed explanation on this interpretation, see Ref. 6.

We obtainḠ by substituting~5.17! into ~5.20!. The factorn cancels out, and so we can s
n50 in the rest of the expression. As a result, we have

Ḡ~x,x8;z,z8;W,W8!5
i

2k
e2V~x!U ~0!~z,x!eW/2U ~1!~x,x8!

1

cosh@~W2W8!/2#
eW8/2UQ 8~0!~x8,z8!

5
i

2k
e2V~x!U ~0!~z,x!eW/2

1

cosh@~W2W8!/2#
UQ 8~1!~x,x8!eW8/2UQ 8~0!~x8,z8!.

~5.23!

Substituting~3.28! and ~3.34! into ~5.23!, we obtain

Ḡ5
i

2k
e2V~x! (

n1 ,n2 ,n350

`

(
$ai ,bi ,ci561%

~ ik!n11n21n3C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z , ~5.24!

where

C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

5 Ĵ2cn3

~0!
¯ Ĵ2c1

~0! eW/2Ĵ2bn2

~1!
¯ Ĵ2b1

~1!
1

cosh@~W2W8!/2#
eW8/2ĴQ 2an1

8~0!
¯ ĴQ 2a1

8~0!

5 Ĵ2cn3

~0!
¯ Ĵ2c1

~0! eW/2
1

cosh@~W2W8!/2#
ĴQ 2bn2

8~1!
¯ ĴQ 2b1

8~1!eW8/2ĴQ 2an1

8~0!
¯ ĴQ 2a1

8~0! . ~5.25!
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The second summation in~5.24! is overa1561, a2561,...,an1
561, and so on. Forn150, the

expression@a1 ,...,an1
#z8

x8 in ~5.24! is replaced by 1, and the corresponding product of operato
~5.25! is interpreted as the identity operator~and similarly for the casesn250 andn350!. Using
~3.35! we can rewrite~5.25! as

C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

5 Ĵ2cn3

~0!
¯ Ĵ2c1

~0! eW/2Ĵ2bn2

~1!
¯ Ĵ2b1

~1! Ĵ2a1
8~0!

¯ Ĵ2an1

8~0! eW8/2
1

cosh@~W2W8!/2#

5 Ĵ2a1
8~0!

¯ Ĵ2an1

8~0! eW8/2Ĵ2b1
8~1!

¯ Ĵ2bn2

8~1! Ĵ2cn3

~0!
¯ Ĵ2c1

~0! eW/2
1

cosh@~W2W8!/2#
, ~5.26!

although~5.25! is more transparent in structure. The expression~5.24! with ~5.25! is the power
series expansion of the Green’s function in terms ofk; thus, we have achieved our main purpos

It is also possible to express the coefficientsC entirely in terms ofĴ, without ĴQ8 or Ĵ8. Let us
assumen1Þ0. It can be shown that8

Ĵ2a1
8~0!Ĵ2a2

8~0!
¯ Ĵ2an1

8~0! tanh@~W2W8!/2#

5 Ĵ2an1

~2!
¯ Ĵ2a2

~2! Ĵ2a1

~2! tanh@~W2W8!/2#1 Ĵ2an1

~2!
¯ Ĵ2a2

~2! a1e2a1W. ~5.27!

Since

Ĵ68
~0!

eW8/2

cosh@~W2W8!/2#
52eW/2Ĵ68

~0! tanh@~W2W8!/2#, ~5.28!

from ~5.26! and ~5.27! we obtain

C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

5 Ĵ2cn3

~0!
¯ Ĵ2c1

~0! eW/2Ĵ2bn2

~1!
¯ Ĵ2b1

~1! eW/2Ĵ2an1

~2!
¯ Ĵ2a2

~2! $2a1e2a1W2 Ĵ2a1

~2! tanh@~W2W8!/2#%.

~5.29!

For n150 we have simply

C~ ;b1 ,...,bn2
;c1 ,...,cn3

!5 Ĵ2cn3

~0!
¯ Ĵ2c1

~0! eW/2Ĵ2bn2

~1!
¯ Ĵ2b1

~1! eW8/2
1

cosh@~W2W8!/2#
. ~5.30!

VI. PROPERTIES OF THE EXPANSION COEFFICIENTS

From ~5.25!, we can easily see that

C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
,1 !52e2W

]

]W
C~a1 ,...,an1

;b1 ,...,bn2
;c1 ,...,cn3

!,

C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
,2 !5eW

]

]W
C~a1 ,...,an1

;b1 ,...,bn2
;c1 ,...,cn3

!,

~6.1!

C~a1 ,...,an1
;b1 ,...,bn2

,1; !5e2WS 12
]

]WDC~a1 ,...,an1
;b1 ,...,bn2

; !,
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C~a1 ,...,an1
;b1 ,...,bn2

,2; !5eW
]

]W
C~a1 ,...,an1

;b1 ,...,bn2
; !,

where we have written ‘‘1’’ and ‘‘ 2’’ in place of ‘‘ 11’’ and ‘‘ 21’’ for simplicity. Here
C(a1 ,...,an1

;b1 ,...,bn2
;) denotes the coefficients forn350. Similarly, we have

C~1,...;...;...!52e2W8
]

]W8
C~ ...;...;...!,

C~2,...;...;...!5eW8
]

]W8
C~ ...;...;...!,

~6.2!

C~ ;1,...;...!5e2W8S 12
]

]W8DC~ ;...;...!,

C~ ;2,...;...!5eW8
]

]W8
C~ ;...;...!,

whereC(;...;...) stands for the coefficients withn150. The coefficient forn15n25n350 is

C~ ;; !5
e~W1W8!/2

cosh@~W2W8!/2#
5

2

e2W1e2W8
. ~6.3!

We can calculate the coefficientsC(a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
) by using the relations~6.1!

and ~6.2!, starting from~6.3!. It is evident that these coefficients have the left–right symmetr

C~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
;W,W8!5C~cn3

,...,c1 ;bn2
,...,b1 ;an1

,...,a1 ;W8,W!, ~6.4!

where we have written out the dependence onW andW8 explicitly. It is also obvious that

C~ ...;...;...,1 !52e22WC~ ...;...;...,2 ! ~6.5a!

and

C~1,...;...;...!52e22W8C~2,...;...;...!. ~6.5b!

Finally, from ~6.1! and ~6.2! it follows that

C~ ...,2;...;...!5C~ ...;2,...;...!, C~ ...;...,2;...!5C~ ...;...;2,...!. ~6.6!

Namely, a minus sign can pass through a semicolon.~This does not hold for a plus sign.!
Now let us write down the first few terms of the expansion~5.24! explicitly. We define the

notation

@a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
#[@a1 ,...,an1

#z8
x8@b1 ,...,bn2

#x8
x

@c1 ,...,cn3
#x

z . ~6.7!

If n150, the quantity@a1 ,...,an1
#z8

x8 on the right-hand side should be interpreted as unity,

similarly for n250 or n350; for example,@1; ;2#5@1#z8
x8@2#x

z and@ ;12;#5@12#x8
x . Using

this notation, we can write

Ḡ~x,x8;z,z8;W,W8!5
i

2k
e2V~x!@ p̄01 ik p̄11~ ik!2p̄21~ ik!3p̄31¯#, ~6.8!
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with

p̄05C~ ;; !5
2

e2W1e2W8
, ~6.9a!

p̄15C~2;; !@2;;#1C~ ;2; !@ ;2;#1C~ ;;2 !@ ;;2#

1C~1;; !@1;;#1C~ ;1; !@ ;1;#1C~ ;;1 !@ ;;1#

5
p̄0

2

2
$@2#z8

x81@2#x8
x

1@2#x
z2e22W8@1#z8

x81e2W2W8@1#x8
x

2e22W@1#x
z%, ~6.9b!

p̄25
p̄0

3

2
S @22;;#1@2;2;#1@2;;2#1@ ;22;#1@ ;2;2#1@ ;;22#2e22W8$@12;;#

1@1;2;#1@1;;2#%2e22W$@ ;;21#1@ ;2;1#1@2;;1#%2
e2W2e2W8

2
e2W$@2;1;#

1@ ;21;#%1
e2W2e2W8

2
e2W8$@ ;1;2#1@ ;12;#%1e2W2W8$@21;;#1@ ;;12#%

2e2W23W8@11;;#2e2W823W@ ;;11#1
e2W2e2W8

2
e2W22W8@1;1;#

2
e2W2e2W8

2
e2W822W@ ;1;1#1e22W22W8$@1;;1#1@ ;11;#% D . ~6.9c!

For example, the coefficient of@;21;# in ~6.9c! has been calculated by using~6.1! as

C~ ;21; !5e2WS 12
]

]WDC~ ;2; !

5e2WS 12
]

]WDeW
]

]W
C~ ;; !

5e2WS 12
]

]WDeW
]

]W
p̄052

1

4
e2W~e2W2e2W8! p̄0

3. ~6.10!

In such a calculation, it is convenient to use the property

S eW
]

]WD n

p̄05
n!

2n p̄0
n11, ~6.11!

which can be easily proved.

VII. THE LIMITING PROCESS

The original Green’s functionG(x,x8) is obtained fromḠ(x,x8;z,z8;W,W8) given by~5.24!
by taking the limitz→`, z8→2`, W→V(`), andW8→V(2`). @We are assuming that bot
V(`) andV(2`) are finite.# Accordingly, the expansion coefficientsp0 , p1 , p2 ,... @Eq. ~1.7!#
are obtained fromp̄0 , p̄1 , p̄2 ,... @Eq. ~6.8!# in this limit. This is not a trivial matter since the
power series expansion is not necessarily commutable with the limiting process. We have to
sure that the coefficientsp̄i thus obtained are indeed finite.
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Let us look at the coefficientp̄1 given by ~6.9b!. The integrals@2#z8
x8 , @2#x

z , @1#z8
x8 , and

@1#x
z all diverge in the limit z8→2`, z→1`. However, if we first setW5V(`), W8

5V(2`) and then take the limitz8→2`, z→1`, the divergence is canceled. Indeed, we ha

lim
z8→2`

~@2#z8
x82e22V~2`!@1#z8

x8!52e2V~2`!E
2`

x8
sinh@V~2`!2V~y8!#dy8, ~7.1a!

lim
z→1`

~@2#x
z2e22V~`!@1#x

z!52e2V~`!E
x

`

sinh@V~`!2V~y!#dy, ~7.1b!

and these integrals are finite as long as the potentialV(x) converges toV(`) and V(2`)
sufficiently fast atx→6`. This cancellation of divergence takes place at every order of ex
sion on account of the properties~6.5a! and ~6.5b!. We define

^2,a2 ,a3 ,...,an1
#2`

x8 [@2,a2 ,a3 ,...,an1
#2`

x8 2e22V~2`!@1,a2 ,a3 ...,an1
#2`

x8

52e2V~2`!E ¯E
2`<y1<¯<yn1

<x8
dy1¯dyn1

3sinh@V~2`!2V~y1!#expS (
i 52

n1

aiV~yi !D , ~7.2!

and

@c1 ,c2 ,...,cn321 ,2&x
`[@c1 ,c2 ,...,cn321 ,2#x

`2e22V~`!@c1 ,c2 ,...,cn321 ,1#x
`

52e2V~`!E ¯E
x<y1<¯<yn3

<`
dy1¯dyn3

3sinh@V~`!2V~yn3
!#expS (

i 51

n321

ciV~yi !D . ~7.3!

@For n151 andn351, we let^2#2`
x8 and@2&x

` stand for the integrals~7.1a! and ~7.1b!, respec-
tively.# We obtain the expansion coefficientpn as

pn~x,x8!5 lim
z→1`
z8→2`

p̄n„x,x8;z,z8;W5V~`!,W85V~2`!…, ~7.4!

andpn can be expressed in terms of finite integrals of the form~7.2! and~7.3!. We can also write
~7.4! as

pn~x,x8!5 lim
z→1`
z8→2`

p̄n„x,x8;z,z8;W5V~z!,W85V~z8!…, ~7.5!

but we cannot letz→` andz8→2` beforeW→V(`) andW8→V(2`).
In the same way as~6.7!, let us use the notation

^2,a2 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn321 ,2&

[^2,a2 ,...,an1
#2`

x8 @b1 ,...,bn2
#x8

x
@c1 ,...,cn321 ,2&x

` . ~7.6!
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We also use this notation forn150, where^;...;...&[@ ...#x8
x

@ ...&x
` , and similarly forn350. For

example,̂ 22;;&5^22#2`
x8 and ^;1;2&5@1#x8

x
@2&x

` . With this notation, we can obtainp0 ,
p1 , p2 ,..., from p̄0 , p̄1 , p̄2 ,..., shown in~6.9! by replacingW andW8 by V(`) andV(2`),
removing the terms witha1511 or cn3

511, and replacing@...;...;...# by ^...;...;...&. Namely, we
have

p05
2

e2V1e2V8
, ~7.7a!

p15
p0

2

2
$^2;;&1^;2;&1^;;2&1e2V2V8^;1;&%, ~7.7b!

p25
p0

3

2
S ^22;;&1^2;2;&1^2;;2&1^;22;&1^;2;2&1^;;22&

2
e2V2e2V8

2
e2V$^2;1;&1^;21;&%1

e2V2e2V8

2
e2V8$^;1;2&1^;12;&%

1e2V2V8$^21;;&1^;;12&%1e22V22V8^;11;& D , ~7.7c!

whereV[V(`) andV8[V(2`).
Until now we have been assuming that bothV(1`) and V(2`) are finite. However, this

formalism is also applicable to some other cases. Let us first consider the case whereV(1`) is
finite andV(2`)51`. In this case we can also use~7.4! to obtain the coefficientspi . Namely,
we let W8→1` in p̄i before taking the limit z8→2`. Using the notation@A;B;C&
[@A#2`

x8 @B#x8
x

@C&x
` , we can write

p052eV~`!, p152e2V~`!~@2;;&1@ ;2;&1@ ;;2&!, ~7.8a!

p254e3V~`!~@22;;&1@2;2;&1@2;;2&1@ ;22;&1@ ;2;2&1@ ;;22&!

22eV~`!~@2;1;&1@ ;21;&!. ~7.8b!

The integrals in these expressions are finite ifV(x) diverges atx→2` faster than loguxu. Simi-
larly, if V(1`) is finite andV(2`)52`, we may first letW8→2` and thenz8→2`. We
have

p050, p1522@1;;&, ~7.9a!

p2524e2V~`!@11;;&22e2V~`!@1;1;&. ~7.9b!

Expressions for the casesV(1`)56` with V(2`) finite can be obtained in the same way.
The expressions become still simpler ifV(1`)51` andV(2`)52`. We can obtainpi

by taking the limitW→1`, W8→2` in p̄i and then lettingz→`, z8→2`. It is easy to see
that pn50 for n even. We have

p1522@1;;#, ~7.10a!

p352@1;1;2#12@1;12;#14@11;;2#14@11;2;#14@112;;#, ~7.10b!

and so on.@Here we are using the notation~6.7! with z852` and z5`.# The caseV(1`)
52`, V(2`)51` can be treated similarly.
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The casesV(1`)51` with V(2`)51` and V(1`)52` with V(2`)52` need
special care. The expansion coefficientspi for these cases cannot be obtained simply by taking
limit of p̄i . In particular, for the caseV(1`)51` with V(2`)51`, the power series expan
sion of the Green’s function begins with a term of order 1/k2, not 1/k as in ~1.7!. Extending the
formalism of the present paper to such cases is an interesting problem, and it will be dis
elsewhere.

VIII. CONCLUSION

In this paper we derived an expression for the power series expansion of the Green’s fu
Our main result is~5.24! with ~5.25!. This is only a basic expression, and we may further study
structure of the expansion coefficients starting from~5.25!. By doing so we can derive mor
practically useful expressions, and investigate various properties of the Green’s function.

APPENDIX: LONG TIME BEHAVIOR OF THE GREEN’S FUNCTION

The small-v behavior~and the long-time behavior! of the Green’s function depends much o
the behavior of the potentialV(x) at x→1` andx→2`. We consider the following three case
for the behavior atx→1`:

V~1`!5finite, V~1`!51`, V~1`!52`,

whereV(1`) stands for limx→` V(x). We assume that the potential either converges to a fi
limit sufficiently fast or diverges sufficiently fast.~If the potential is a function that converges
diverges slowly, the Green’s function may show a singular behavior.9 However, here we do no
discuss such cases.! Similarly, we consider the three cases forx→2`:

V~2`!5finite, V~2`!51`, V~2`!52`.

In all, there are nine cases, as shown in Table I. The Green’s function behaves at smallv as10

G~x,x8;v!5
C21

k
1C01C1k1C2k21¯ , cases~i!, ~ii !, and ~ii 8!, ~A1!

5C01C1k1C2k21C3k31¯ , cases~iii ! and ~ iii 8!, ~A2!

5
C22

k2 1C01C2k21C4k41¯ , case~iv!, ~A3!

5C01C2k21C4k41C6k61¯ , cases~v!, ~v8!, and ~vi!,
~A4!

wherek is defined by~1.6!.
The long-time behavior is also classified according to~A1!–~A4! above. The expressions~A1!

and ~A2! correspond to the cases where the eigenvalue spectrum of the Fokker–Planck o
~or the ‘‘energy’’ spectrum! is continuous. By Fourier transforming~A1! or ~A2!, we obtain the

TABLE I. Classification of the behavior ofV(x) at infinity.

V(1`)5finite V(1`)51` V(1`)52`

V(2`)5finite i ii iii
V(2`)51` ii 8 iv v
V(2`)52` iii 8 v8 vi
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2rge-t expression ofG(x,x8;t) as an expansion in powers of 1/t. ~The contribution comes only
from odd powers ofk.! For ~A1! the power series begins with thet21/2 term, and for~A2! it begins
with t23/2. Thus,G(x,x8;t) shows a power-law decay for larget.

On the other hand,~A3! and~A4! correspond to the cases of a discrete spectrum~at least in the
low-energy region!. In these casesG(x,x8;v) does not include odd powers ofk, and hence
G(x,x8;t) does not contain a part that falls off with a power law. The long-time behavior of
Green’s function is determined by low-lying eigenvalues, andG(x,x8;t) decays exponentially for
larget. The eigenvalues correspond to the poles ofG(x,x8;v). ~See Refs. 6 and 11 for a metho
for the calculation of the eigenvalues.!

1H. Risken,The Fokker–Planck Equation~Springer-Verlag, Berlin, 1984!.
2T. Miyazawa, J. Math. Phys.34, 1587~1993!.
3T. Miyazawa, J. Math. Phys.36, 5643~1995!.
4R. Slansky, inLes Houches, Session XLIV, 1985, edited by P. Ramond and R. Stora~North-Holland, Amsterdam, 1987!,
p. 533; P. G. O. Freund,Introduction to Supersymmetry~Cambridge University Press, Cambridge, 1986!.

5E. Witten, Nucl. Phys. B185, 513 ~1981!; M. Bernstein and L. S. Brown, Phys. Rev. Lett.52, 1933 ~1984!; H. R.
Jausliln, J. Phys. A21, 2337~1988!.

6T. Miyazawa, J. Math. Phys.39, 2035~1998!.
7See Ref. 6. The quantityt(z,z8)5(c0

(1) ,U (1)(z,z8)c0
(1))(1) is defined there as the transmission coefficient for the inter

(z8,z).
8This relation can be derived by comparing Eqs.~11.30c! and ~11.30d! of Ref. 6. ~The symbolĴ in this reference
corresponds toJ in the present paper.!

9T. Miyazawa, J. Math. Phys.33, 2428~1992!.
10T. Miyazawa, Phys. Rev. A39, 1447~1989!.
11T. Miyazawa, J. Phys. A25, 2359~1992!.
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The Camassa–Holm equation as a geodesic flow
on the diffeomorphism group

Shinar Kouranbaevaa)

Department of Mathematics, University of California, Santa Cruz, California 95064

~Received 23 July 1998; accepted for publication 2 November 1998!

Misiolek @J. Geom. Phys.24, 203–208~1998!# has shown that the Camassa–Holm
equation is a geodesic flow on the Bott–Virasoro group. In this paper it is shown
that the Camassa–Holm equation for the casek50 is the geodesic spray of the
weak Riemannian metric on the diffeomorphism group of the line or the circle
obtained by right translating theH1 inner product over the entire group. This paper
uses the right-trivialization technique to rigorously verify that the Euler–Poincare´
theory for Lie groups can be applied to diffeomorphism groups. The observation
made in this paper has led to physically meaningful generalizations of the CH-
equation to higher dimensional manifolds. ©1999 American Institute of Physics.
@S0022-2488~99!02102-7#

I. INTRODUCTION

Camassa and Holm1,2 derived a new completely integrable dispersive shallow water equa
that is bi-Hamiltonian and thus possesses an infinite number of conservation laws in invo
The Camassa–Holm~CH! equation is obtained by using an asymptotic expansion directly in
Hamiltonian for Euler’s equations in the shallow water regime. Camassa and Holm1 also have the
formal Lie–Poisson derivation of the equation. Below, another remarkable property of the
equation is shown. Namely, the CH-equation can be realized as a geodesic equation on
mannian manifold on which the methods of infinite-dimensional geometry can be applied
geodesic nature of the CH-equation enables one to transfer the problem from the equatio
problem of finding geodesics on the diffeomorphism group. This idea was first rigorously ca
out by Ebin and Marsden3 for the Euler equations. They have shown that the Euler equation
geodesic equations for the right-invariantL2 metric on the group of volume-preserving diffeomo
phisms.

Section II illustrates the main result by formally applying the Euler–Poincare´ theory for Lie
groups to a continuum mechanical system. Section III verifies the legitimacy of the applicati
addition, Sec. III contains independent results on the Riemannian geometry of aC1-manifold
which is also a topological group withC1 right translation. Using the right-trivialization tech
nique, a global Christoffel map is introduced, and formulas are derived for the spray an
Levi–Civita connection similar to the finite-dimensional case. The method is inspired by
theory of affine connections on parallelizable manifolds developed by Marsden, Ratiu
Raugel.4 At the end of Sec. III, a version of the Euler–Poincare´ theorem for a diffeomorphism
group is verified. Section IV utilizes the results of Sec. III to demonstrate that the CH-equat
a geodesic flow of the right-invariant metric on the diffeomorphism group ofR or of the circle.
Section V addresses uniqueness and existence issues for solutions of the CH-equation. O
tions made in this paper haven-dimensional generalizations to the volume-preserving diffeom
phism group of a Riemannian manifold which lead to a new class of models for mean hyd
namic motion. See Ref. 5 for application of this to numerous fluids models, such as tho
geophysics, and see Ref. 6 for the development of the geometry and curvature of vo
preserving diffeomorphism groups with right-invariantH1 metric. For Riemannian manifolds with

a!Electronic mail: shinar@cats.ucsc.edu
8570022-2488/99/40(2)/857/12/$15.00 © 1999 American Institute of Physics
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boundary, new subgroups of the diffeomorphism group have been established which give
remarkable theorems on the limit of zero viscosity. See Ref. 7 for a detailed account.

II. FORMAL DERIVATION

In this section we illustrate the main result of the paper byformally applying the pure Euler–
Poincare´ theorem on the right-invariant Lagrangians on Lie groups~see Ref. 8, and reference
therein! to the case of the diffeomorphism group of a certain Sobolev classHs, s. 3

2. The diffeo-
morphism group isnot a Lie group~left translation and inversion are not smooth, only continuo
whereas right translation is smooth!, and the pure Euler–Poincare´ theorem strictly does not apply
However, we will demonstrate in the following sections that the formal derivation given in
section can be rigorously justified using standard trivialization techniques.

Let M be the flat circleS1 or the real lineR. Diff s(M )[D s denotes the diffeomorphism grou
of M of some given Sobolev class. The caseM5S1 corresponds to periodic boundary condition
For the caseM5R, the chosen Sobolev space automatically imposes appropriate decay h
eses at infinity. Under these boundary conditions, Diffs(M ) is a smooth infinite-dimensiona
manifold and a topological group relative to the induced manifold topology.X(M ) denotes the
vector fields onM of the same differentiability class. Formally, this is theright Lie algebra of
Diff s(M ), e.g., the standard left Lie algebra bracket isminus the usual Lie bracket for vecto
fields. Foru,vPX(M ) the adjoint action of the Lie algebra on itself is given by

aduv5@u,v#.

Consider theH1 inner product onX(M ) and define a weak Riemannian metric on the wh
groupD s by right-translation of the given inner product on the Lie algebra. The correspon
quadratic form defines a right-invariant Lagrangian on Diffs(M ) whose restriction to the Lie
algebraX(M ) is equal to the square of theH1 norm:

l ~u!5
1

2EM
~u21ux

2!dx. ~1!

Next, one defines adu* the adjoint of adu with respect to theH1 inner product, that is, foru,v,w
PX(M )

^adu* w,v&H15^w,@u,v#&H1.

Also, for a functionl :X(M )→R, define the functional derivatived l /duPX(M ) with respect
to the given metric by

K d l

du
,v L

H1

5d l ~u!•v for vPX~M !.

Assuming the existence of adu* for eachuPX(M ), we can formally write the Euler–Poincar´
equations

d

dt

d l

du
52adu*

d l

du
.

After computing adu* andd l /du ~for the computations see Sec. IV! the Euler–Poincare´ equations
yield the Camassa–Holm equation

ut2uxxt523uux12uxuxx1uuxxx . ~2!

The above observation motivates one to develop a theory to perform the procedure.
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III. RIEMANNIAN GEOMETRY OF PARTIAL LIE GROUPS

A. Review of definitions

In what follows, the general structure needed is that of aC1-manifold G which is also a
topological group in the induced manifold topology, and it is assumed that only the right tra
tion is C1. We call such a groupG a partial Lie group. Below we review the notations used in
paper. The proofs for the stated formulas can be found in the standard texts such as Spiva9 Let
G be a manifold equipped with a metriĉ•,•&. Let pG :TG→G and pTG :TTG→TG be the
tangent bundle projections and denote byV5kerTpG the vertical subbundle ofTTG. The con-
nector K:TTG→TG is given by

K~TY•X!5¹XY,

for X,YPX(G) the Lie algebra of vector fields and¹ the Levi-Civita connection coming from a
metric.

A vector UPTTG is calledhorizontal if UPkerK; H5kerK is a subbundle ofTTG called
thehorizontal subbundleof the connection and we have the decompositionTTG5H % V overTG
with the projectionpTG . Then thehorizontal lift of wPTgG to Tv(TG), vPTgG, is defined as

horv w5~TvpGuHv!21~w!.

The horizontal lift operator horv :TgG→Hv is an isomorphism for allvPTG and locally,

horv w5bi
]

]xi 2G jk
i bjak

]

]v i ,

wherev5ai]/]xi andw5bi]/]xi .
The spray S:TG→TTG is by definition the Lagrangian vector field of the energy functi

E(v)5L(v)5 1
2^v,v&, i.e.,

iSvL5dE,

wherevL is the symplectic form onTG, andiS denotes the interior product~for more details refer
to Foundations of Mechanics10!. Locally,

S~v !5ai
]

]xi 2G jk
i ajak

]

]v i ,

wherev5ai]/]xi , and notice that by definition, we have the useful identity

S~v !5horv v. ~3!

Let g(t) be a smooth curve inG and letġ(t) be its tangent vector field. IfY is another vector
field, define thecovariant derivativeof Y alongg(t) by

DY

dt
5¹ ġ~ t !Y.

If the covariant derivative ofY is zero,Y is said to be parallel alongg(t). It follows from the
definition of a connector thatTY(ġ(t))PH if and only if DY/dt50. Locally for a given curve
g(t) this equation becomes a linear system of ordinary differential equations

dYi~ t !

dt
1G jk

i ġ j~ t !Yk~ t !50.
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A curve g(t) is called thegeodesicof a connection¹, if ġ(t) is parallel alongg(t), i.e., if

¹ ġ~ t !ġ~ t !50.

Locally, this is a second-order differential equation

g̈i~ t !1G jk
i ġ j~ t !ġk~ t !50.

B. The Levi–Civita connection and the spray for a right-invariant metric on G

Let G be aC1-manifold which is a topological group withC1 right translation. Assume tha
G admits a right-invariant metric. There is a vector bundle isomorphism called the right tr
ization map

r:TG→G3G,

v°~g,TgRg21•v !.

ThenTr:TTG→T(G3G) mapsTTG isomorphically ontoTG3G3G. We can further trivialize
via r3 id

TTG →
~r3 id !+Tr

G3G3G3G.

Note the isomorphic image of the vertical subbundle ofTTG is equal toG3O3G3G, the
projection being onto the first and third factors. To keep the base points in the first two facto
apply the involution map

s:G3G3G3G→G3G3G3G,

~g,X,Y,Z!°~g,Y,X,Z!.

Then the image of the vertical bundleV of TTG equalsG3G3O3G with the projection being on
the first two factors. Therefore, the isomorphism we are working with is

TTG →
s+~r3 id !+Tr

G3G3G3G.

A given metric gives rise to the Levi–Civita connection which determines the horizo
bundle. We wish to express it in the trivializationr, which in turn helps us to find the spray
Define the continuousR-bilinear mapgg :G3G→G depending smoothly ong by

r~~¹XY!~g!!5~g,dȲ~g!•X~g!1gg~X̄~g!,Ȳ~g!!!, ~4!

where

r~X~g!!5~g,X̄~g!!, X,YPX~G!.

Recall that a connection in a finite-dimensional case in coordinates is given by

S~X!5Xi
]

]gi 2G jk
i XjXk

]

]ġi
,

and

~¹XY! i5XjY, j
i 1G jk

i XjXk.
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Defineg5G jk
i XjXk]/]ġi , then

~¹XY! i5XjY, j
i 1g i . ~5!

Observe that formulas~4! and ~5! are analogous.
Let g(t) be a curve inG with g(0)5g, ġ(0)5w, andvPTgG. There exists a curvev(t)

PTG such that

v~0!5v, pG~v~ t !!5g~ t !,
Dv~ t !

dt
50. ~6!

Therefore,Tv(t)•ġ(t) is horizontal; i.e. the tangent vector fielddv/dt of v(t) is always horizon-
tal. Thereforev̇(0)5horv w, the horizontal lift ofw5ġ(0)PTgG to Tv(TG). If

r~v~ t !!5~g~ t !,j~ t !!, r~v !5~g,j!,

r~ ġ~ t !!5~g~ t !,z~ t !!, r~w!5~g,z!,

thenv(0)5v in the trivialization readsj~0!5j, and the base projection condition is automatica
satisfied. By the definition of a covariant derivative and the chain rule, we find that

rS Dv
dt D5~g~ t !,dj~ t !•ġ~ t !1gg~ t !~z~ t !,j~ t !!!5S g~ t !,

dj

dt
1gg~ t !~z~ t !,j~ t !! D ,

so that (g(t),j(t)) is parallel alongg(t) in G3G relative to the push-forward connection byr if
and only if

dj

dt
1gg~ t !~z~ t !,j~ t !!50, j~0!5j. ~7!

Equation~7! enables us to compute the horizontal lift of (g,z) to T(g,j)(G3G) and hence the
spray using~3!. Let us compute horv w5 v̇(0) in the trivialization given byr. We have that

~s+~r3 id !+Tr!~ v̇~0!!5s+~r3 id !S d

dt U
t50

~r+v !~ t ! D
5s+~r3 id !S ġ~0!,j~0!,

dj~ t !

dt U
t50

D
5s~g~0!,z~0!,j~0!,2gg~0!~z~0!,j~0!!!5~g,j,z,2gg~z,j!!.

Therefore,

hor~g,j!~g,z!5~g,j,z,2gg~z,j!!

and the spray of the Levi–Civita connection in its right trivialization is given by

S̄~g,j!5hor~g,j!~g,j!5~g,j,j,2gg~j,j!!. ~8!

Applying (r213 id)+s21 we can express the right trivialization of the spray as

S̄~g,j!5~TeRg•j,j,2gg~j,j!!, ~9!

whereX(g)5TeRg•j is the right-invariant vector field onG associated with a Lie algebra eleme
j. It follows that
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S~v !5Tr21+S̄+r~v !. ~10!

Given a vector bundleE over G, we shall denote byE the collection of all smooth section
s:G→E such thatp+s5 idG . Let E5G3G, then the conditionp+s5 idG implies that

E5$s:G→G u s is smooth%.

If r(X(g))5(g,X̄(g)), define the map¹̄:X~G!3E→E via

~¹̄Xs!~g!5Tgs•X~g!1gg~X̄~g!,s~g!!.

It is straightforward to check that¹̄ is a vector bundle connection. Therefore, a bilinear mapgg

defines the vector bundle connection¹̄:X(G)3E→E. Moreover whengg is defined as in~4!, the
push-forward byr of the Levi–Civita connection is equal to

r~¹XY~g!!5~g,¹̄XY~g!!,

and therefore,

¹XY~g!5TeRg~¹̄XȲ~g!!.

Conclusion 1: If for a given connection¹ we think of the mapgg :TeG3TeG→TeG as a gen-

eralized Christoffel map of the push-forward connection¹̄ under the right trivialization mapr,
then we have the formula

¹XY~g!5r21~dȲ~g!•X~g!1gg~X̄~g!,Ȳ~g!!!.

If in addition we restrict ourselves to the Levi–Civita connection coming from a given metric o
G, we have the formula for the spray using the Christoffel map

S~X~G!!5Tr21~X~g!,X̄~g!,2gg~X̄~g!,Ȳ~g!!!.

The above two formulas are analogous to the finite-dimensional formulas and they are gl
defined on G.

Notice we have not used the right-invariance condition, these conclusions are true fo
metric onG. However, our results below will depend heavily on the right-invariance of the me

Proposition III.1: Let G be aC1-manifold which is a topological group withC1 right trans-
lation. Suppose thatG admits a right-invariant metric. Then the spray of the corresponding
grangianL(v)5 1

2^v,v&g is given by

S~v !5Tr21+S̄+r~v !,

where

S̄~g,j!5~TeRg•j,j,2B~j,j!! ~11!

and

B:TeG3TeG→TeG

is defined implicitly by
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^B~z,j!,h&5^z,@j,h#&, j,h,zPTeG. ~12!

Remark:There is an assumption in the proposition that the operatorB exists.
Remark:For the case of Lie groups, the proof of this result can be found in Ref. 10.

operatorB was introduced by Arnold.11 The above proposition is more general as it cov
diffeomorphism groups which are of a great interest in hydrodynamics.

Proof: To verify ~11! we need to calculate the Christoffel mapgg(j,j) in ~9!.
Sincer is a diffeomorphism, we can push-forward the symplectic formvL on TG to define

the symplectic formvs5r* vL ~the superscripts stands for ‘‘spatial’’ because the right trivial
ization gives rise to spatial coordinates in applications!. It can be checked that the push-forward
the sprayS on TG is the Lagrangian vector field expressed in space coordinates andr* S5S̄;
consequently,

iS̄vs5d~r* E!. ~13!

To calculate the left-hand side recall the following formula~see Ref. 10!:

vs~g,j!~~v,z!,~w,h!!52^z,TgRg21~w!&e1^h,TgRg21~v !&e2^j,@TgRg21~v !,TgRg21~w!#&e .

By this formula we have that

vs~g,j!~~TeRg•j,2gg~j,j!!,~w,h!!52^2gg~j,j!,TgRg21~w!&e1^h,j&e

2^j,@j,TgRg21~w!#&e . ~14!

Since the metric is right-invariant, it follows that

E+r21~g,j!5 1
2 ^TeRg•j,TeRg•j&g5 1

2 ^j,j&e .

Therefore the right-hand side of~13! is equal to

d~E+r21!~g,j!•~w,h!5^j,h&e . ~15!

From ~13!, ~14!, and~15! we may conclude that the value ofgg(j,j) does not depend on the bas
point g. Moreover, its value is defined by the following relationship:

^g~j,j!,z&e5^j,@j,z#&e for j,zPTeG.

From the definition~22! of the operatorB it follows thatg(j,j)5B(j,j), and hence~11! is true.
It is known that 2B(j,j)5(¹Xj

Xj)(e) , where Xj(g)5TeRg•j ~see Arnold,11 Bao and
Ratiu12!. Thus, for right-invariant vector fields, we also have that

S̄~g,j!5~Xj~g!,j,~¹Xj
Xj!~e!!.

Conclusion 2: Given a right-invariant metric on G, we can find its geodesic equations by findi
the spray. The above formulas show that the spray is completely defined by either the ope
or the value of the Levi–Civita connection at the identity.

See the remark in Sec. V.
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C. The Euler–Poincare´ equations

The Euler–Poincare´ equations are the fundamental result about geodesic flow on an arb
Lie group. See, for example, Theorem 13.8.3 in Marsden and Ratiu8 or Appendix 2 in Arnold.13

Herein, this result is proven for diffeomorphism groups, the configuration space for ideal
dynamics. The idea of studying geodesics on diffeomorphism groups in order to do hydrod
ics is due to Arnold.11

In order to establish our notation, let us recall some results from Refs. 3 and 14.s
.n/2 andM a compact manifold without boundary, we may define the SobolevHs maps fromM
into M . Let D s(M )5$hPHs(M ,M )uh is bijective andh21PHs(M ,M )%. If s.n/211, then
D s(M ) is open inHs(M ,M ) and hence is a manifold. Note thatD s is not a Lie group, but rathe
a topological group. However, like a Lie group,D s has an exponential map which associates
every tangent vector at the identity a one-parameter subgroup ofD s. Such a tangent vector is a
Hs vector field onM and the one-parameter subgroup is its flow. Ifp:TM→M is the canonical
projection, one forms the Hilbert space

ThD s5$V:M→TMuV is Hs and p+V5h%,

the tangent space athPD s. An elementV of the tangent space athPD s is called a vector space
over h.

Theorem III.1: Assume thatD s(M ) is equipped with a metriĉ•,•& that is invariant under
right translations. Also assume that there exists the operator B:X(M )3X(M )→X(M ) defined
by the identity

^B~w,u!,v&5^w,@u,v#& for u,v,wPX~M !.

Then a curve t→h(t) in D s is a geodesic of this metric if and only u(t)5Th(t)Rh(t)21ḣ(t)
5ḣ(t)+h21(t) satisfies

du

dt
52B~u,u!. ~16!

Proof: By proposition~III.1! the sprayS is given by

S~V!5Tr21~V,V+h21,2B~V+h21,V+h21!! for VPThD s. ~17!

In this case the groupG5D s and the algebraG5X(M ). Let us computeTr21:

r21:G3G→TG,

~h,u!°u+h,

T~h,u!r
21:ThD s3G→Tu+h~TG!.

Let (h(t),u(t)) be a curve inD s3X(M ) such that (h(0),u(0))5(h,u) and (ḣ(0),u̇(0))
5(V,w), then

T~h,u!r
21

•~V,w!5
d

dtU
t50

r21~h~ t !,u~ t !!5
d

dtU
t50

u~ t !+h~ t !5w+h1Tu+V.

Therefore,

S~V!52B~V+h21,V+h21!+h1T~V+h21!+V,

or
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S~V!+h2152B~V+h21,V+h21!1T~V+h21!+~V+h21!. ~18!

For an integral curveVtPTh(t)D s(M ), its pullback ut5Vt+h t
21 is a curve inTeD s(M ) that

consists ofHs-vector fields onM . Then the spray equation,

dVt

dt
5S~Vt!, ~19!

is equivalent to

d

dt
~ut+h t!5S~Vt!,

or
~20!

dut

dt
5S~Vt!+h t

212Tut+ut52B~ut ,ut!1Tut+ut2Tut+ut52B~ut ,ut!.

h

IV. CAMASSA–HOLM EQUATION AS A GEODESIC FLOW

Henceforth, the subscriptt will denote the partial derivative with respect tot. We shall apply
the general results obtained in Sec. III to the CH-equation~2!. For periodic boundary conditions
the configuration space isG5D s(S1) with Lie algebraG5X(S1) of the same differentiability
class. One may also consider~2! on R with the appropriate decay conditions at infinity guarante
by the Sobolev classHs. Formal computations are identical in both cases and, hence, ma
treated simultaneously. Consider theH1 inner product onG given by

^u,v&15E ~uv1uxvx!dx,

where the integral may either be taken overS1 or R. Camassa and Holm2 have shown that the
Lagrangian for the CH-equation~2! is given by the square of theH1 norm ~1!.

Given an inner product on a Lie algebra, we can define a metric on allTD s by right transla-
tion so that forV,WPThD s,

^V,W&h5^ThRh21•V,ThRh21•W& id

5^V+h21,W+h21&1

5E @~V+h21!~W+h21!1~V+h21!x~W+h21!x#dx. ~21!

This metric is right-invariant by definition and it defines the extended Lagrangian

L~V!5 1
2^V,V&h .

The main result of this section is
Theorem IV.1: Let t→h(t) be a curve in the diffeomorphism groupD s starting at the

identity. Thenh(t) is a geodesic of the metric (21) if and only if the time-dependent vector

u(t)5ḣ(t)+h21(t) satisfies the CH-equation (2).
Proof: By the theorem~III.1!, the geodesic equations for the metric~21! are equivalent to

~16!. From the definition of the operatorB, we have that
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^B~w,u!,v&5^w,@u,v#&5E ~2uvx1uxv !w1~2uvx1uxv !xwx dx

5E ~uxw1~uw!x!v2wxx~2uvx1uxv ! dx

5E ~2uxw22uxwxx1uwx2uwxxx! v dx

5E ~2ux~12]x
2!w1u~12]2!wx!v dx.

Furthermore,

^B~w,u!,v&5E ~B~w,u!v1B~w,u!xvx! dx5E ~~12]2!B~w,u!!v dx,

and hence the formula for the operatorB is

B~w,u!5~12]2!21~2ux~12]2!w1u~12]2!wx!. ~22!

Observe that the mapv°(12]2)v is a smooth map fromHs to Hs22. The product~not the
composition! of Hs functions isHs again. Also (12]2)21 is an isomorphism fromHs22 to Hs.
Therefore~22! explicitly shows that the operatorB:TD s3TD s→TD s has no derivative loss
Now we obtain the Euler–Poincare´ equation:

]u

]t
52B~u,u!52~12]2!21~2uxu1uux22uxuxx2uuxxx!

52~12]2!21~3uux22uxuxx2uuxxx!.

This completes the proof that the geodesic equations for the metric coming from theH1 inner
product on the Lie algebra of vector fieldsG are equivalent to the CH-equation~2!.

Remark:The Lie-algebra bracket@u,v# on X(M ) is minus the Jacobi–Lie bracket~for an
explanation refer to Marsden and Ratiu,8 Chap. 9!. h

~a! Alternative derivation.Below, we begin to compute the geodesic equations for the m
~21! by calculating the spray of the corresponding Lagrangian. Camassa and Holm2 have shown
that the CH-equation can be expressed in the integral form

ut1uux52~12]2!21]~u21 1
2 ux

2!52E e2ux2yuS uuy1
1

2
uyuyyD dy.

Equation~18! together with the fact thatTu+u is simply uux in one dimension shows that th
spray is equal to

S~V!52~12]2!21]~~V+h21!21 1
2 ~V+h21!x

2!+h. ~23!

Letting u5V+h21 verifies the claim.
Remark.Herein, we have established that the spray~23! does not have derivative loss, an

hence is a continuous operator fromHs into Hs. In fact, the spray~23! is actually smooth and this
fact follows from arguments in Theorem 3.3 in Shkoller6 as well as Theorem 4.2 in Ref. 7. See t
remark in Sec. V.
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V. DISCUSSION

We would like to emphasize that we built a right invariant metric onD s by taking theH1

inner product on the tangent space at the identity and right-translating it over the whole
This does not coincide with theusual H1 metric on each fiberThD s; see the remark afte
Theorem 4.1 in Ref. 7. To illustrate the difference of two approaches let us compare the geo
of the L2 metric with the right-invariantL2 metric in the one-dimensional case.

A curve h(t)PD s is a geodesic of theL2-metric if and only if the corresponding spatia
velocity field

u5V+h21

satisfies Burger’s equation:

ut1uux50. ~24!

The corresponding Euler–Lagrange equations for the material velocityV5ḣ are given by

Vt50.

The spray of this metric is equal to zero and hence smooth; however, as the metric is no
invariant, the Euler–Poincare´ theorem does not apply.

For the right-invariantL2 metric the Euler–Poincare´ equations are given by

ut13uux50. ~25!

The corresponding Euler–Lagrange equations are given by

hXV̇12VVX50,

wherehX is the Jacobian ofh, andX denotes the material coordinate of the fluid particle. T
spray in this case is given by

S~h,V!52
2

hX
VVX . ~26!

Since there is a loss of derivatives, the spray is not smooth~cf. Remark 3.5 in Shkoller6!.
As we see from the above calculations, the two equations in the spatial velocities diffe

in a scalar coefficient multiplying the derivative term, however, the corresponding spray
completely different.

Remark:We note that Eq.~23! for the geodesic spray of the right-invariantH1 metric on
either S1 or R has no derivative loss and hence shows that the CH-equation is an ord
differential equation on the groupD s. Thus, existence and uniqueness of solutions to~2! may be
obtained by standard Picard iteration argument in the event thatS is locally Lipschitz.

Lemmas 3.1 and 3.2 of Shkoller6 show thatS is C1, and hence the result follows. See Refs
and 6 for the well-posedness of the geodesic flow of the diffeomorphism groups onn-dimensional
Riemannian manifolds.

It would be interesting to study the Lagrangian stability of the CH-equation, and this req
analysis of the curvature operator. Misiolek15 has computed the sectional curvature ofD s(S1).
Shkoller6 has obtained an explicit form for theH1 covariant derivative¹̃1 on volume-preserving
diffeomorphism groups and has proved that the weak curvature tensor of¹̃1 is a bounded trilinear
operator in theHs topology. We would like to explore these type of estimates on the full diff
morphism group of the circle, as well as investigate the role of generalized flows in pe
dynamics. Regarding peakon dynamics, there is the paper of Alberet al.16
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Large smoke rings with concentrated vorticity
Carlo Marchioroa)
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In this paper we study an incompressible inviscid fluid when the initial vorticity is
sharply concentrated inN disjoint regions. This problem has been well studied
when a planar symmetry is present, i.e., the fluid moves inR2. In this case we
know that, when the diameters of each region supporting the vorticity is very
small, the time evolution of the fluid is quite well described by a dynamical system
with finite degrees of freedom called the ‘‘point vortex model.’’ In particular the
connection between this model and the Euler equation has been proved rigorously
ass→0. In the present paper we discuss the ‘‘stability’’ of the point vortex model
with respect to a particular small perturbation of the planar symmetry. More pre-
cisely we consider a fluid moving inR3 with a cylindrical symmetry without swirl
in which each vortex is no longer a straight tube, but a vorticity ring. We prove that
large annuli of radiir's2b for anyb.0 remain ‘‘localized’’ and hence we obtain
the point vortex model ass→0. © 1999 American Institute of Physics.
@S0022-2488~99!02701-2#

I. INTRODUCTION

In the present paper we study the time evolution of an incompressible inviscid fluid whe
initial vorticity is concentrated inN small disjoint regions of space. This problem is well stud
when a planar symmetry is present, i.e., the fluid moves inR2. In this case we can approximate th
time evolution of the flow by using a model with finite degrees of freedom, called the ‘‘p
vortex system,’’ which reads

ẋi52
1

2p (
j 51,j Þ i

N

aj¹ i
' lnuxi2xj u, xi~0!5xi , i 51,...,N, ~1.1!

where

¹ i
'[~]yi

,2]xi
!, xi[~xi ,yi !PR2. ~1.2!

The N real constantsai are called ‘‘charges’’ or ‘‘intensities’’ of the vortices.
This model was introduced in the 19th century1–4 and widely studied in many papers.5–12One

of the more interesting applications is related to the so-called ‘‘vortex method,’’ a mean field
introduced by Chorin to investigate fluids with a weak viscosity13 and generalized to an invisci
flow by many authors.~On the system~1.1!, the vortex method and related topics there is a w
literature. We quote here some main papers1–35and we suggest for more detailed references to
for instance, Ref. 33!. This limit corresponds toN going to ` and each ‘‘charge’’ going to 0.
Another possible connection exists;N and the ‘‘charges’’ remain fixed and the diameter of t
region supporting the vorticity goes to zero. This limit has been rigorously studied in27–35 and in
particular the following result called ‘‘localization’’33–35has been proved. Let the initial vorticit
be concentrated inN small disjoint regionsL i(0) of diameters, then, for any fixed time, the time

a!Electronic mail: marchioro@axcasp.caspur.it
8690022-2488/99/40(2)/869/15/$15.00 © 1999 American Institute of Physics
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evolved vorticity remains concentrated inN small disjoint regionsL i(t) of diameterd such that
d→0 ass→0. This property provides the main tool for proving the connection between the E
flow and the point vortex model.

In the present paper we discuss the same problem in the presence of a small perturba
the planar symmetry. It would be more interesting to deform each vortex tube independ
Asymptotic results have been obtained in this direction~see Ref. 36, and references quoted in!, but
the task to obtain rigorous results appears too hard. So we consider a common curvature
bation. More precisely, we consider a fluid moving inR3 and with a cylindrical symmetry withou
swirl ~see Sec. II!. In this case the analog of the straight vortex tubes become rings of vorticity~the
so-called ‘‘smoke ring’’!. We considerN smoke rings of mean radiusr i'r 0 , transversal section
of diameters and nonzero intensity. Whenr 0 is bounded ands→0, they move with an infinite
speed proportional to lns. The case of one vortex ring of intensity proportional to ln21 s has been
studied and it has been proven that ass→0 the smoke ring moves with a constant speed.37 ~For
more results on a single vortex ring see for instance Refs. 38–43, and the reference th!
Heuristically in this limit many vortex rings do not interact. Whenr 0 grows the system can hav
some nontrivial limit. Whenr 0'u ln su the fluid ‘‘converges’’~formally! to a dynamical system
studied in a recent paper.44 When r 0 increases, it is reasonable to expect that withsomedepen-
dence ofr 0 on s we obtain the point vortex model. The main result of the present paper is tha
dependence isvery weakin such a way that the two limits (r 0→`,s→0) are almost independen
In fact in the next section we prove that whenr 0's2b for any b.0 the solutions of the Eule
Equation remain ‘‘localized’’ and converge as a measure to the system~1.1!. We remark that the
validity of this result for anyb means essentially that the point vortex model is ‘‘stable’’ w
respect of such curvature perturbations.

It is interesting also to obtain the ‘‘stability’’ of the point vortex model with respect to
viscosity perturbation. This problem has been studied in the planar case Refs. 45,46.

In the next section we give the exact statement of the problem studied in the present
The proof is quite similar to the planar case, but it differs by an essential point: the intera
between the fluid particles differs from the one of the planar case because of a term in the
function. This term is similar to an external field already studied in other papers but, unfortun
it is not Lipschitz, while in the planar case the smoothness of the field was essential. So we
some improvements and for completeness we prefer to sketch here the whole proof.

II. STATEMENTS AND PROOFS

We consider an incompressible inviscid fluid of unitary density moving inR3. The Euler
equation reads

] tu1~u–“ !u52“p, ~2.1!

“–u50 ~2.2!

with the initial and the boundary conditions. Hereu5u(x,t) denotes the velocity field andp
5p(x,t) the pressure.

In the present paper we assume that the velocityu decays at infinity.
We introduce the vorticityv as

v5¹`u. ~2.3!

We can reconstruct the velocity field by means on the vorticityv as

u~x,t !52
1

4p E
R3

dy
~x2y!`v~y,t !

ux2yu3
. ~2.4!

We introduce cylindrical coordinates (z,r ,u) and we suppose that the initial velocity field
axisymmetric without swirl, i.e.,
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u~x,t !5~uz~z,r ,t !,ur~z,r ,t !,0!. ~2.5!

We observe that the time evolution conserves the symmetry and Eqs.~2.1!, ~2.2!, ~2.3! be-
come

v5¹`u5~0,0,vu!5~0,0,]zur2] ruz!, ~2.6!

] tvu1~uz]z1ur] r !au2
urvu

r
50, ~2.7!

]z~ruz!1] r~rur !50. ~2.8!

From now on we denotevu by v. We want to study the system when no strong property
regularity is assumed on the initial data, and so we consider a weak formulation of the
equation. A first one follows from the observation that Eq.~2.7! means the conservation during th
motion of the quantityv/r ,

v~z~0!,r ~0!,0!

r ~0!
5

v~z~ t !,r ~ t !,t !

r ~ t !
, ~2.9!

wherez(t) andr (t) are the time evolution ofr (0) andr (0) according to the velocity field given
by Eq. ~2.4!, i.e.,

ż5uz , ṙ 5ur . ~2.10!

Equations~2.4!, ~2.9!, ~2.10! give a weak formulation of the Euler equation. Another equi
lent weak formulation is given by a~formal! integration by parts of~2.7!,

] tv t@ f #5v t@uz]zf 1ur] r f 1] t f #, ~2.11!

where f 5 f (z,r ,t) is a bounded smooth test function and

v t@ f #5E
2`

`

dzE
0

`

dr f v. ~2.12!

From Eq.~2.4! we obtain

uz~z,r ,t !52
1

2p
E

2`

`

dz8E
0

`

r 8 dr8E
0

p

du
v~z8,r 8,t !~r cosu2r 8!

@~z2z8!21~r 2r 8!212rr 8~12cosu!#3/2,

~2.13!

ur~z,r ,t !5
1

2p
E

2`

`

dz8E
0

`

r 8 dr8E
0

p

du
v~z8,r 8,t !~z2z8!cosu

@~z2z8!21~r 2r 8!212rr 8~12cosu!#3/2.

~2.14!

We now introduce a change of variables

z5x, r 5r 01y; x5~x,y!, ~2.15!

wherer 0 will be precise in the sequel.
In the proofs discussed later on it is useful to outline the difference between the velocity

given by Eqs.~2.13!, ~2.14! and the planar case in which

u0~x,t !5E K ~x2x8!v~x8,t !dx8, ~2.16!
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where

K ~x!5S 2
1

2p

y

uxu2
,

1

2p

x

uxu2D . ~2.17!

We write the velocity field as

u~x,t !5E ~K ~x2x8!1D~x,x8!!v~x8,t !dx8, ~2.18!

where the previous equation is a definition ofD.
We consider initial data of the form

vs~x,0!5(
i 51

N

vs,i~x,0!, ~2.19!

wherevs,i(x,0) is a function with a definite sign supported in a regionLs,i such that

Ls,i[suppvs,i,S~xi us!, ~2.20!

where

~xi ,yi !Þ~xj ,yj ! if iÞ j
~2.21!

s, 1
2 min
i , j i Þ j

„~xi2xj !
21~yi2yj !

2
…

1/2

and consequently

S~xi us!ùS~xj us!50” if iÞ j . ~2.22!

HereS~xus! denotes a disk of center~x! and radiuss.
We assume that initially

uvs,i~x,0!u<Ms2g, 0,M,`, 2<g,`, ~2.23!

and

E
2`

`

dxE
2r 0

`

dy vs,i~x,0!5ai , ~2.24!

whereaiPR, i 51,...,N, andai is called the ‘‘intensity of thei-annulus of vorticity.’’
We study now the time evolution of the Euler equation with the initial conditions~2.19! when

s becomes very small andr 0 becomes very large,

r 05consts2b, ~2.25!

where from now on const denotes a constant independent ofs.
Depending on the size ofb, we have different behavior of the solutions ass→0: if r 0

5const the velocity field~2.13! and ~2.14! is unbounded and so the problem has no meaning
r 05constulog su we obtain, in a formal way, a dynamical system widely studied in Ref. 44, ir 0

is given by Eq.~2.25! we obtain the point vortex model as we will see in this section.
Theorem 2.1: Let assumption (2.25) hold and denote byvs(x,t) the time evolution of

vs(x,0) according to the Euler equation. Then, for any fixed T.0 and for anya,min~1
3,b/3!:

(1) There exists C(a,T) such that for 0<t<T
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suppvs,i~x,t !,S~xi~ t !ud!, ~2.26!

where

d5C~a,T!sa, ~2.27!

andxi(t) is the solution of the ordinary system (1.1) provided that such a solution exists up
time T.

(2) For any continuous bounded function f(x),

E dx vs,i~x,t ! f ~x!→(
i 51

N

ai f ~xi~ t !! as s→0. ~2.28!

Proposition~1! states that the blobs of vorticity remain concentrated until timeT. Proposition
~2! states that

vs~x,t !→(
i 51

N

aid~xi~ t !! as s→0 ~2.29!

weakly in the sense of the measures, whered~•! denotes the Dirac measure. This last statem
gives a rigorous justication of the point vortex model as a limit of large annuli.

We remark that the singular nature of the right-hand side of Eq.~1.1!, diverging when two
vortices are close, does not guarantee the existence of the solution of Eq.~1.1! for every time. In
many cases~for instance, for allai.0) collapses are forbidden by the first integrals of motion,
there are cases in which singularities happen. However it can be proved that the collap
exceptional.28 We can say that Theorem 2.1 holds up to the timeT for which the solution of Eq.
~1.1! exists.

Proof: The proof is similar to that studied in Refs. 32,34, but the nonregularity of the in
action in the cylindrical case imposes some improvements and hence, for completeness, we
it wholly.

Initially the blobs of vorticity are disjoint. We follow the evolution of one of them. Its cen
of vorticity moves under the action of the curvature of the annulus and of the other vortice
simulate the influence of the other vortices by an external field and we study in details the
evolution of a single annulus of vorticity under a suitable external field. We will prove~in the next
Theorem! that it remains concentrated. Finally it is easy to obtain from this result the proo
Theorem 2.1.

We consider a single blob of unitary vorticity moving in an external, divergence-free,
formly bounded, time dependent vector field satisfying the Lipschitz condition velocity
F(x,t),

uF~x,t !2F~y,t !u<Lux2yu, L.0. ~2.30!

Equation~2.10! becomes

ẋ~ t !5u~x,t !1F~x,t ! ~2.31!

while Eqs.~2.9!, ~2.4! remain unchanged. The Euler equation in weak form reads also

v̇@ f #5v@~u1F!•¹ f #1v@] t f #. ~2.32!

We prove proposition~1! of Theorem 2.1 for this particular evolution. Define the center
vorticity of the blob as

Bs~ t !5E xvs~x,t !dx. ~2.33!
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Theorem 2.2:Suppose that

E vs~x,0!dx51, ~2.34!

suppvs~x,0!,S~x* us!, ~2.35!

and

uvs~x,0!u<consts2g 2<g,`. ~2.36!

Then, for any fixed T.0 and for anya,min~1
3,b/3!

(1) there exists C(a,T) such that for 0<t<T,

suppvs~x,t !,S~B~ t !ud!, ~2.37!

where

d5C~a,T!sa ~2.38!

and B(t) is the solution of the ordinary system

Ḃ~ t !5F~B~ t !,t ! B~0!5x* . ~2.39!

Moreover,

uBs~ t !2B~ t !u→0 as s→0 uniformly in tP[0,T], at least assb8 ~2.40!

for any b8,b.
Proof: The difficulty of the proof arises from the singularity of the kernelK1D which forces

a fluid particle to rotate with a very large velocity around the center of vorticity. To overcome
difficulty we study the motion of the center of vorticity, which turn out to be more regular than
motion of a given fluid particle. Moreover we control the spreading of the vorticity around
center of vorticity by using the moment of inertia, which is almost conserved during the mo
However, as we will see, this control is not enough and it must be improved to acheive the

Theorem 2.2 states an asymptotic result ass→0 and hence without lack of generality we ca
suppose thats!1.

The more difficult case arises forb small and so in the proof we suppose, without lack
generality, thatb,1.

We start supposing they existyM , ym , independent ofs such thatuyMu,`, uymu,`, and up
to time t, O<t<T, the support of the vorticity remains bounded,

suppv~x~ t !,t !,$xuym<y<yM%. ~2.41!

At the end of this section we shall prove that this hypothesis is fulfilled.
We remark that the vorticity remains constant during the motion,

E vs~x~ t !,t !dx5E vs~x~0!,0!dx51 ~2.42!

as we can see by using Eq.~2.11!.
We introduce the moment of inertiaI s(t) with respect ofBs(t),

I s~ t !5E vs~x,t !~x2Bs~ t !!2dx ~2.43!
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and we study the growth in time ofBs(t) and I s(t). By using the Euler equation, we have

Ḃs~ t !5E dx@u~x,t !1F~x,t !#vs~x,t !, ~2.44!

İ s~ t !52E dx$~x2Bs~ t !!•~u~x,t !1F~x,t !!2~x2Bs~ t !!•Ḃs~ t !%vs~x,t !

52E dx vs~x,t !~x2Bs~ t !!•S u~x,t !2E dx8 vs~x8,t !u~x8,t ! D
12E dx vs~x,t !~x2Bs~ t !!•S F~x,t !2E dx8 vs~x8,t !F~x8,t ! D . ~2.45!

We study in detail Eq.~2.45!. The terms withF can be easily bounded by using the Lipsch
condition, the Cauchy–Schwarz inequality and the remark that

E dx vs~x,t !~x2Bs~ t !!•~F~Bs~ t !,t !2F~x8,t !!50. ~2.46!

We obtain

U2E dx vs~x,t !~x2Bs~ t !!•S F~x,t !2E dx8 vs~x8,t !F~x8,t ! DU
5U2E dx vs~x,t !~x2Bs~ t !!•E dx8 vs~x8,t !@F~x,t !2F~x8,t !#U<2LI s~ t !.

~2.47!

To evaluate the terms inu we use the following two properties discussed in the Appendix:

U E dx u~x,t !vs~x,t !U<constsb lnusu<constsb8 for any b8,b, ~2.48!

U E dx vs~x,t !~x2Bs~ t !!•u~x,t !U<constsb8I s
1/2 for any b8,b. ~2.49!

In conclusion,

u İ s~ t !u<2LI s~ t !1constsb8I s
1/2 ~2.50!

and then

I s~ t !<consts2b8. ~2.51!

The next steps to obtain Eq.~2.40! are similar to that used in Ref. 32 to obtain Eq.~3.16! and we
omit them.

We have obtained Eq.~2.51!, which says that the main part of the vorticity is concentra
around the center of vorticity.A priori small filaments of vorticity could go far away. We want
prove that this not the case and the support of the vorticity remains concentrated around the
For this purpose we study the radial part of the velocity field near the boundary of the supp
the vorticity and we prove that the difference between this field and the velocity field acting o
center of the vortex vanishes ass→0. So, the particle paths cannot go far apart fromBs . The
radial field is essentially due to three terms; the velocity produced by the external field
velocity produced by the particles near the center of the vortex and the velocity produced
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particle near the boundary. The first contribution is easily controlled by the Lipschitz cond
the second contribution vanishes as the vorticity is sharply concentrated, and the third contr
needs more care and vanishes after an iterative procedure, which is given in the sequel.

We study the growth in time of the distance of the particle inxPsuppv(x,t) farthest from
Bs ,

U~u~x,t !1F~x,t !2Ḃs~ t !!•
x2Bs~ t !

ux2Bs~ t !uU
<UF~x,t !2E dy vs~y,t !F~y,t !U1US u~x,t !2E dy vs~y,t !u~y,t ! D • x2Bs~ t !

ux2Bs~ t !uU
<U E dy vs~y,t !~F~x,t !2F~y,t !!U1Uu~x,t !•

~x2Bs~ t !!

ux2Bs~ t !u U1constsb8. ~2.52!

The first contribution due to the external field can be controlled by using the Lipschitz cond

U E dy vs(y,t)(F(x,t)2F(y,t)U<constR, ~2.53!

where

R[ux2Bs~ t !u. ~2.54!

We study now the other terms,

U~x2Bs~ t !!

ux2Bs~ t !u
•u~x,t !U5U(x2Bs(t))

ux2Bs(t)u
•(u0(x,t)1(u(x,t)2u0(x,t))U, ~2.55!

whereu0(x,t) is the planar velocity field defined in Eq.~2.16!. The last term can be bounded b
using the following equation:

u~u~x,t !2u0~x,t !!u<constsb8, ~2.56!

a consequence of the estimates of the Appendix.
We evaluate the termu(x2Bs(t))/ux2Bs(t)u•u0(x,t)u. We divide the circleS(Bs(t),R) into

many different annuli,

S~Bs~ t !uR!5 (
k51

k*

@S~Bs~ t !uak!2S~Bs~ t !uak21!#ø@S~Bs~ t !uR!2S~Bs~ t !uak* !#,

~2.57!

where

a050, a15sb8, ak52ak21 . ~2.58!

We choosek* such thatak* 11<R andak* 12.R.
The radial velocity can be expressed by the sum of the contribution obtained whe

particles are contained in each annulus,
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~x2Bs~ t !!

ux2Bs~ t !u
•E

@S~Bs~ t !uak!2S~Bs~ t !uak21!#
K ~x2x8!vs~x8,t !dx8

5
~x2Bs~ t !!

ux2Bs~ t !u
•E

@S~Bs~ t !uak!2S~Bs~ t !uak21!#
K ~x2Bs~ t !!vs~x8,t !dx8

1
~x2Bs~ t !!

ux2Bs~ t !u
•E

@S~Bs~ t !uak!2S~Bs~ t !uak21!#
~K ~x2x8!2K ~x2Bs~ t !!!vs~x8,t !dx8.

~2.59!

The first term in the right-hand side of Eq.~2.59! vanishes because ofx–K (x)50. Moreover by
the explicit form ofK ~x!, we have

uK ~x2x8!2K ~x!u,const
r

uxu~ uxu2r!
if ux8u,r,uxu. ~2.60!

Hence

~x2Bs~ t !!

ux2Bs~ t !u
•E

@S~Bs~ t !uak!2S~Bs~ t !uak21!#
(K ~x2x8!2K ~x2Bs~ t !!)vs~x8,t !dx8

,const
ak

R~R2ak!
E

@S~Bs~ t !uak!2S~Bs~ t !uak21!#
vs~x8,t !dx8. ~2.61!

The last integral can be bounded byI s(t). In fact it is obvious that

I s~ t !>r 2mt~r !, ~2.62!

where

mt~r !5E
R22S~Bs~ t !ur !

vs~x8,t !dx8. ~2.63!

Equation~2.51! implies

mt~r !<consts2b8r 22. ~2.64!

Hence

E
@S~Bs~ t !uak!2S~Bs~ t !uak21!#

vs~x8,t !dx8,const
s2b8

ak21
2 , k.1. ~2.65!

We put Eq.~2.65! in Eq. ~2.61! and we obtain

~x2Bs~ t !!

ux2Bs~ t !u
•E

S~Bs~ t !uak* !
K ~x2x8!vs~x8,t !dx8,const

s2b8

R2 . ~2.66!

Now we prove that the vorticity mass close to the boundary of the support is very small and
can produce a very weak velocity field.

To control the vorticity flux we introduce for anyR.0 the following non-negative function
GRPC`(R2), r→GR(r ) depending only onur u, defined as
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GR~r !5H 1 if ur u.2R

0 if ur u,R
~2.67!

such that for someC1.0,

u¹GR~r !u,
C1

R
~2.68!

u¹GR~r !2¹GR~r 8!u,
C1

R2 ur2r 8u. ~2.69!

We define the quantity

m t~R!5E GR~x2Bs~ t !!vs~x,t !dx. ~2.70!

We choosem t(R) as a measure of the localization ofvs(x,t) around Bs(t). In fact if
suppvs(x,t),S(Bs(t)uR), thenm t(R)50. We evaluate its time derivative by using Eq.~2.11!,

ṁ t~R!5E dx ¹GR~x2Bs~ t !!•~u~x,t !1F~x,t !!2Ḃs~ t !)vs~x,t !

5E dx ¹GR~x2Bs~ t !!vs~x,t !•E dx8 K ~x2x8!vs~x8,t !

1E dx ¹GR~x2Bs~ t !!vs~x,t !•E dx8 D~x2x8!vs~x8,t !

2E dx ¹GR~x2Bs~ t !!•E dx8 u~x8,t !vs~x8,t !

1E dx ¹GR~x2Bs~ t !!vs~x,t !•F S F~x,t !2E dx8 F~x8,t ! Dvs~x8,t !G . ~2.71!

We estimate the first term in the right-hand side of Eq.~2.71!. By the antisymmetry ofK , it can
be written as

1

2 E E dx dx8~¹GR~x2Bs~ t !!2¹GR~x82Bs~ t !!•K ~x2x8!vs~x,t !vs~x8,t !. ~2.72!

To estimate this term forR5sb82n21, we split the integration domain in the following sets:

Th5$~x,x8!ux¹S~Bs~ t !uR!, x8P~S~Bs~ t !uah!2S~Bs~ t !uah21!! if h,n, ~2.73!

Th5$~x,x8!ux¹S~Bs~ t !uR!, x8¹S~Bs~ t !uah21! if h5n, ~2.74!

Sh5$~x,x8!ux8¹S~Bs~ t !uR!, xP~S~Bs~ t !uah!2S~Bs~ t !uah21! if h,n, ~2.75!

Sh5$~x,x8!ux8¹S~Bs~ t !uR!, x¹S~Bs~ t !uah21! if h5n. ~2.76!

Remark that the integrand in Eq.~2.72! vanishes in the complement oføh51
n (ThøSh).

Thanks to the identities¹GR(x2Bs(t))•K (x2Bs(t))50 and¹GR(x82Bs(t))50 if x8
P(S(Bs(t)uah)2S(Bs(t)uah21), h,n, the contribution to the integral due toTh , h,n is
bounded by
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U E dxE
S~Bs(t)uah)2S(Bs(t)uah21)

dx8¹GR(x2Bs(t))

•~K ~x2x8!2K ~x2Bs~ t !!!vs~x,t !vs~x8,t ! U. ~2.77!

We now use Eq.~2.68!, the fact that¹GR(x2Bs(t))50 if ux2Bs(t)u,R, and we obtain the
bound

~2.72!,const
mt~R!

R S const
s2b8

R2 1 (
h52

n21
ah

R~R2ah!

s2b8

ah21
2 D ,const

sb8

R3 mt~R!. ~2.78!

To estimate the contribution due toTn , we use the obvious inequalityuK (x)u<uxu21, Eq. ~2.69!
and the bound

u~¹GR~x!2¹GR~x8!!•K ~x2x8!u,
const

R2 . ~2.79!

We obtain this contribution smaller than const (s2b8/R4)mt(R). We can handle in the same way th
term with Sh . We study now the second term in the right-hand side of Eq.~2.71! that is smaller
than

constsb8

R
mt~R! ~2.80!

as a consequence of estimates of the Appendix.
By using Eq.~2.48! the third term is smaller than

const
sb8

R
mt~R!. ~2.81!

Finally we study the last term in Eq.~2.71!. We consider two cases; eitherux82Bs(t)u.R or
ux82Bs(t)u<R. In the first case,

U E dx ¹GR~x2Bs~ t !!vs~x,t !E dx8~F~x,t !2F~x8,t !!vs~x8,t !U,constuuFuu`
s2b8

R3 mt~R!.

~2.82!

In the second case, by using the Lipschitz condition,

U E dx ¹GR~x2Bs~ t !!vs~x,t !E dx8~F~x,t !2F~x8,t !!vs~x8,t !U,constmt~R!. ~2.83!

In conclusion, we have

ṁ t~R!<A~R!mt~R!, ~2.84!

where

A~R!5const
sb8

R3 1const
s2b8

R4 1const. ~2.85!

We observe now that
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mt~R!<m tS R

2 D . ~2.86!

We put Eq.~2.86! in the integral form of Eq.~2.85! and we obtain

m t~R!<m0~R!1A~R!E
0

t

m t1S R

2 Ddt1 . ~2.87!

We start an iterative procedure

m t~R!<m0~R!1A~R!E
0

t

m t1S R

2 Ddt1

<m0~R!1A~R!t1A~R!A~R/2!E
0

t

dt1E
0

t1
m t2S R

4 Ddt2 ~2.88!

and so on.

We start fromR5constsa, wherea,min(1
3,s

b8/3). We iterate Eq.~2.84! n times, wheren is
chosen such thatn→` ass→0 and in the same timeA(R22k) is bounded for any positive intege
k<n andm0(R22n)50. We choose

n5Integer part of F2
123a

4
log2 sb8G . ~2.89!

Then

R22n5consts@b8~11a!#/4 ~2.90!

and

A~R22k!<const ~2.91!

for any positive integerk<n. Hence aftern iterations we have

mt~R!<
~const!n

n!
→0 faster than any power ins. ~2.92!

In conclusion we have proven that the vorticity mass becomes very small near the boundary
support. We bound the velocity field produced by it,

U E
S~Bs~ t !uR!2S~Bs~ t !uak* !

dx8~K ~x2x8!1D~x,x8!!vs~x8,t !U
<constU E

S~Bs~ t !uR!2S~Bs~ t !uak* !
dx8ux2x8u21vs~x8,t !U. ~2.93!

The integrand is monotonically unbounded asx→x8 and so the maximum of the integral
obtained when we rearrange the vorticity mass as closed as possible to the singularity,

U E
S~Bs~ t !uR!2S~Bs~ t !uak* !

dx8ux2x8u21vs~x8,t !U<consts2gU E
S~Ouh

dx8ux8u21, ~2.94!

whereO denotes the origin andh is such that
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Ms2gph25mt~ak* !. ~2.95!

By using Eq.~2.92! we have that

U E
S~Bs~ t !uR!2S~Bs~ t !uak* !

dx8ux2x8u21vs~x8,t !U→0 faster than any power. ~2.96!

We are now able to bound the radial velocity of a particle at a distanceR from Bs(t). We sum the
partial bounds we have obtained and we have

Ṙ<constR1const
sb8

R2 1terms smaller than any power ins when R.constsa.

~2.97!

Hence forR.constsa the last two terms in the right-hand side of Eq.~2.97! are neglectable and
this differential inequality gives bound~2.37! by using the Gronwall Lemma. h

We return to the proof of Theorem 2.1. It is similar to that of the planar case and we
sketch it. We denoteRm the minimal distance between point vortices evolving via Eq.~1.1! and
we chooses!Rm . Initially the vortices are separeted and we study one vortex. We simulat
influence of other vortices on it as an external fields. We observe that actually the other vo
produce a velocity field depending ons but this dependence is very small. Moreover each vor
moves in a bounded region of the space and so assumption~2.41! is satisfied. Then, it is easy t
prove the convergence stated in Theorem 2.1. h
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APPENDIX

We will use the following two integralsI 1 and I 2 :

I 15E
0

p

du
cosu

@a212~12cosu!#3/25E
0

p

du

cos
u

2
1S cosu2cos

u

2D
Fa214S sin

u

2D 2G3/2 . ~A1!

The first term is easily computed,

E
0

p

du

cos
u

2

Fa214S sin
u

2D 2G3/25
2

a2~a214!1/2. ~A2!

The remaining terms are less divergent for smalla ~see the study ofI 2) and so, for smalla, I 1

'a22,
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I 25E
0

p

du
~12cosu!

@a212~12cosu!#3/2

5E
0

p

du

2S sin
u

2D 2

cos
u

2
1F12cosu22S sin

u

2D 2

cos
u

2G
Fa214S sin

u

2D 2G3/2 . ~A3!

The first term is easily computed

E
0

p

du

2S sin
u

2D 2

cos
u

2

Fa214S sin
u

2D 2G3/252
1

~a214!1/21
1

2
ln@21~a214!1/2#2

1

2
ln a. ~A4!

The other terms for smalla are bounded and soI 2'2 1
2 ln a.

We are now able to obtain the bound~2.48!. We use definition~2.18! and we study separatel
terms withK and withD. The term withK vanishes as we can easily prove, writing explicitely E
~2.48!, interchangingx andx8 and using the antisymmetry ofK . We evaluate the term withD. We
use the explicit form ofu, we take the leading term ins21, and we obtain by using the previou
eximates onI 1 and I 2 a bound of the form,

~2.48!<constsb1constsbEEEdx dx8 vs~x,t !vs~x8,t !~constsb1u lnux2x8uu!. ~A5!

To give a bound to the last integral we use the assumption~2.36!, we perform a symmetrica
rearrangement on the vorticity around the point (x,y), that is we concentrate the vorticity in a dis
centered in the singularity (x,y) having a radiush such that the total vorticity is preserved, i.e
(M /sg)ph251. We perform the integral in the polar coordinate and it is smaller t
const lns2b. We put this bound in Eq.~A5! and we obtain the bound~2.48! @and in the same time
Eq. ~2.56!#.

Equation~2.49! is obtained in the same way. In addition, in this case in the last step we
the Cauchy-Schwarz inequality.
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Three new exact periodic solutions of the complex Ginzburg–Landau equation are
obtained in terms of the Weierstrass elliptic function`. Furthermore, the new
periodic solutions and other shock solutions appear as their bounded limits~along
the real axis! for particular relationships between the coefficients in the equation. In
the general case, bounded limits are nothing but the already known pulse, hole, and
shock solutions. It is also shown that the shapes of the solutions are quite different
from the shape of the usual envelope wave solution. In particular, the spatial struc-
ture of the new bounded periodic solutions varies in time, while the pulse solution
may exhibit breather-like behavior. ©1999 American Institute of Physics.
@S0022-2488~99!02302-6#

I. INTRODUCTION

Most of the mathematical work in the realm of nonlinear phenomena refers to integ
equations and their exact solutions, particularly periodic. Among the recently developed g
methods, the algebro-geometrical approach may be used in an efficient way to find such so
Not only the numerical realization and graphical representation of the solution is provided b
method, but also multiphase quasiperiodic solutions as well as purely periodic ones m
represented using the algebrogeometrical approach, as illustrated in Ref. 1.

It is only recently that due to significant progress achieved in the study of patterns and
in nonequilibrium, dissipative systems the need appeared of the study of equations noninte
by means of the Inverse Scattering Transform Method~ISTM!. A paradigmatic case is the com
plex Ginzburg–Landau equation~CGLE!.

iut1puxx1quuu2u5igu, ~1!

where the constant coefficients arep5pr1ipi , q5qr1iqi , with pj , qjÞ0, (u,p,q)PC, gPR.
The subscriptst andx denote temporal and spatial derivatives, respectively. This equation ap
in the description of a large variety of physical phenomena,2,3 ~and references therein!. Here we
concentrate on obtainingexactsolutions of~1!. Moreover, we shall not study anydegeneraciesof
CGLE, corresponding to vanishing of any ofpj , qj , or g, because these cases are already stud
in the literature~see Refs. 4 and 5 and references therein!. Exact solutions usually appear as
result of some balance between the significant terms in the equation. In particular, CGL~1!,
besides nonlinear (qr uuu2u) and dispersive (pruxx) terms, contains nonlinear saturation (qi uuu2u)
and diffusion (piuxx) terms, as well as the linear growth term (gu); thus solitary wave and shock
are possible solutions of~1!. Exact solutions may describe not only the propagation
8840022-2488/99/40(2)/884/13/$15.00 © 1999 American Institute of Physics
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nonlinear waves but also spatially localized structures of permanent shape that may be of
to experimenters.6–8 Finally, the knowledge of particular exact solutions may be useful w
numerically exploring unsteady processes governed by Eq.~1!.

As the CGLE~1! is nonintegrable, only particularexactsolutions may be obtained. To fin
such solutions variousdirect methods seem promising. Indeed, the pulse solution of~1! with
nonzero coefficientswas obtained in Ref. 9 using a special ansatz, while the shock-wave sol
was found in Ref. 10 by direct integration. A modified Hirota bilinear method has been appli
Ref. 11, and three exact solutions, pulse, hole, and shock solution, respectively, were
Further, the development of a movable critical points analysis or Painleve´ analysis12 led to direct
methods based on the nature of the poles of the solution~see, e.g., Refs. 5, 13, and referenc
therein!. However, neither the application of the truncated Painleve´ expansions13 nor another
extension of the Painleve´ analysis proposed in Ref. 5, have led to new exact solutions of
CGLE. Moreover, no bounded periodic solutions of~1! have been found other than usual ha
monic wave solution or the so-called phase winding solution.14

Particular periodic solutions of nonintegrable equations may be obtained using direct me
based either on the application of a suitable change of variables bringing equations under s
those possessing already known exact periodic solutions or by using an appropriate ansatz
solution. In order to construct the ansatz, a clue may come from the Painleve´ analysis, which is
based, in particular, on looking for solutions whose movable critical points are poles only. T
fore the use of elliptic functions in the ansatz is rather natural because they are the most g
functions having such singular points. However, complications appear due to the need of u
the ansatzfour theta functions; see, e.g., Ref. 15, orthreeJacobi elliptic functions; see, e.g., Re
16. The possibility exists to look for solutions using justoneWeierstrass elliptic functioǹ .17,18

The paper is organized as follows. In Sec. II a procedure is proposed to obtain exact so
using the Weierstrass elliptic̀ function. A transformation of CGLE~1! into two coupled equa-
tions for the amplitude and the phase parts of the solution is provided in Sec. III, and possib
of their decoupling are found. In Sec. IV, the procedure introduced in Sec. II is applied to o
exact solutions in terms of the Weierstrass elliptic function for the amplitude and the p
equations. Three new solutions are obtained. It is shown in Sec. V that their periodic and loc
limits bounded along the real axis may be represented in terms of Jacobi elliptic function
hyperbolic functions. The profiles of these bounded solutions are studied in Sec. VI in or
clarify the role of the phase part of the solution on its qualitative behavior. In Sec. VII
summarize our results.

II. WEIERSTRASS ELLIPTIC FUNCTION AS A TOOL FOR OBTAINING EXACT
SOLUTIONS

According to its definition,19 the Weierstrass function is analytical in the complex plane ot
than in points where it has double poles. It obeys the equation

$`8~z!%254`32g2`2g3 , ~2!

whereg2 andg3 are constants. Any derivative of the function` can be written by means of itself
Further, anyelliptic function fmay be expressed using̀and its first derivative as

f 5A~` !1B~` !`8, ~3!

whereA andB are rational functions with respect tò.19 Depending on the ratio betweeng2 and
g3 , the Weierstrass function may be bounded or unbounded inside the domain under stud
bounded periodic solutions are more conveniently expressed by writing them in terms
Jacobi elliptic functions cn, sn, and dn, which are bounded along the real axis. For this purpo
relationship between the Weierstrass function and the Jacobi functions is used as a special
~3!. Indeed, the familiar link is obtained in Ref. 19, but using the singular function sn22,

`~z,g2 ,g3!5e31~e12e3!sn22~Ae12e3z,k!. ~4!
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However, following the method introduced in Ref. 19, one can check that

`~z,g2 ,g3!5e22~e22e3!cn2~Ae12e3z,k!, ~5!

connects the Weierstrass function with the Jacobi function cn, regular along the real axis
k5A(e22e3)/(e12e3) is the modulus of the Jacobian elliptic function, whilet5em (m
51,2,3,e3<e2<e1) are the real roots of the cubic equation,

4t32g2t2g350. ~6!

Expressing these results in terms of an appropriate choice of parameters, thewave number
k5Ae12e3 and the Jacobian elliptic modulusk, we have

e15
22k2

3
k2, e25

2k221

3
k2, e352

11k2

3
k2,

~7!

g25 8
3k

4~12k21k4!, g35
4

27
k6~k211!~22k2!~122k2!.

The localized solutions appear in the limitk→1 of the Jacobi elliptic functions.
Recently, the Weierstrass function was used for finding periodic solutions by applyin

spectral theory for the La´me equation with elliptic potentials,20 and some exact solutions hav
been obtained for the coupled nonlinear Schro¨dinger equations~CNLSEs! at high symmetry. This
method can only be applied to integrable nonlinear equations admitting Lax pairs represen

As the CGLE is known to exhibit chaotic behavior, it is not integrable. However, e
solutions may be found, even for nonintegrable equations using the Weierstrass elliptic func`.
For instance, Samsonov17,18 obtained some exact solutions of the Korteweg-de Vries–Burg
equation, the Gardner equation, the Hunter–Shroulle equation, and the FitzHugh–Nagumo
tion. He provided the relevant set of transformations bringing a wide class of second-orde
linear ordinary differential equations to just Eq.~2!. Moreover, the use of~3! was proposed in Ref
18 to construct the ansatz for direct substitution in the equation under study. Recently variou
exact periodic solutions have been obtained in Ref. 21 for CNLSEs forarbitrary values of the
coefficients, when CNLSEs are nonintegrable, and for two dissipative–dispersive equation
pearing in convective problems.22,23Comparing these results with others, based on the use of
functions15 or Jacobi functions,16 we see that the algebra is drastically simplified when the an
for the solution demands onlyone Weierstrass function instead offour theta functions orthree
Jacobi elliptic functions. Only self-similar or traveling wave solutions may be found using
method.

The ansatz for the possible solution may be constructed using the information about the
of the solution. The Painleve´ analysis,12,13 as well as the nature of the poles of the Weierstr
function, ought to be taken into account.21–23 However, any poles may be modeled by means
various expressions in terms of the Weierstrass function, and the problem of selecting th
‘‘efficient’’ expression is far from being solved.

An alternative is to try to transform the equation under study to the Weierstrass equati~2!
or, more generally, to Painleve´-type equations. This procedure is far from simple, especially
dissipative nonlinear equations. As mentioned, earlier some progress has been achieved
direction in Ref. 18. However, the transformations proposed in Ref. 18 look rather inconve
when searching for a solution in closed form. Here we propose a different approach. We r
consideration to second-order ordinary differential equations. Consider the equation

y91y82Q1~y!1y8Q2~y!1Q3~y!50, ~8!
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where Qi are rational functions with respect toy. The standard reduction of this autonomo
equation,y85AF(y), yields an ‘‘irrational’’ and nonautonomous equation forF. Therefore, ob-
taining a solution of Eq.~8! is unlikely. In order to overcome this problem we propose
following alternative transformation:

y5A1v1A2v8/v1A3 , v85AF~v !, ~9!

whereAi are constants. After substitution of~9! into the equation~8!, we get

R1~v,F !1AF~v !R2~v,F !50, ~10!

where bothR1 and R2 are polynomials inv and F and its first- and second-order derivative
Equating to zeroR1 andR2 separately, one can find for this overdetermined system the solu
for F, polynomial inv. Then the solution fory ~9! may be obtained by direct integration.

III. TRANSFORMATIONS OF THE CGLE

First, we decompose the solutionu(x,t) in its amplitude,y, and phase,u, both real,

u5y~z!eiu, ~11!

wherez5x2ct, u5u(z,t). Substituting~11! into ~1! and equating to zero the real and imagina
parts, we get fory andz[uz ,

pryzz2pi~2yzz1yzz!2pryz21cyz2by1qry
350, ~12!

piyzz1pr~2yzz1yzz!2piyz22cyz2gy1qiy
350, ~13!

whereu t[b5const(t). A further simplification of Eqs.~12!, ~13! may be achieved if we assum
that F5y2 andC5y2z. Then~12!, ~13! become

2FFzz2Fz
22a1FFz1a2FC24C22a3F21a4F350, ~14!

Cz2b1Fz2b2C1b3F1b4F250, ~15!

with

a15
2pic

l 1
, a25

4prc

l 1
, a35

4~prb1pig!

l 1
, a45

4l 3

l 1
,

b15
a2

8
, b25

a1

2
, b35

pib2prg

l 1
, b45

l 2

l 1
,

l 15pr
21pi

2, l 25prqi2piqr , l 35prqr1piqi .

Equation~14! is quadratic algebraicfor C, but substitution of the expression forC into Eq.
~15! results in a very complicated equation forF. On the other hand, the form of Eq.~15! provides
conditions for Eqs.~14! and ~15! to be solved separately. Indeed, in the nonlinear Schro¨dinger
equation~NLSE! limit, pi5qi5g50, Eq.~15! is integrated, givingC5b1F1C, C5const. Two
possibilities exist when~15! is solved for the functionC if the coefficients of the CGLE do no
vanish; either

~A.1! C5C, if c50, l 250, b350;

or
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~A.2! C5b1F, if l 250, b1b25b3 .

Otherwise we have to deal with Eqs.~14! and ~15! together.
Let us now use Painleve´ analysis to the equations to learn about the poles of the solution

the general case. Assume that possible solutions of the equations~14!, ~15! have a pole atz
5z0 . Then solutions can be sought near that point as a Laurent series:

F5
r k

~z2z0!k 1
r k21

~z2z0!k21 1¯ , C5
hm

~z2z0!m 1
hm21

~z2z0!m21 1¯ , ~16!

with bothk andm real. The order of the pole may be found by substituting the series~16! into the
equations~14!, ~15! and comparing the leading-order terms. When the leading-order nonl
term and the leading-order derivative term are in balance, then from Eq.~15! we have the condi-
tion m115k, which used in Eq.~14! yieldsk52, m53. Then, for subsequent action we assu

~B! C5AFz1BF1S,

with A, B, andS parameters yet to be determined.
In cases~A.1!, ~A.2! we deal with only one equation~14! for just one unknownF, while in

case~B! Eq. ~15! is not satisfied for arbitraryF, and we need to solve an overdetermined sys
of two equations for only one unknown.

IV. EXACT SOLUTIONS OF THE EQUATIONS „14… AND „15… IN TERMS OF THE
WEIERSTRASS ELLIPTIC FUNCTION

A. Case „A.1…

Consider case~A.1! with Eq. ~15! satisfied identically for an arbitrary functionF. Substituting
C5C into Eq. ~14!, we get.

2FFzz2Fz
224C22

4b

pr
F21

4qr

pr
F350, ~17!

where the conditionsc50 andb5prg/pi have been used. Using the procedure introduced in S
II, one obtains from Eq.~10! thatR2[0, and the solution of equationR150 is written through the
Weierstrass elliptic functioǹ (z,g2 ,g3) as

F5Q`1G, ~18!

with Q522pr /qr , andG52g/qi . The parameterg2 is free, whileC andg3 obey the relation-
ship

4C2

Q2 54S G

QD 3

2g2S G

QD1g3 . ~19!

Depending on the relationship betweeng2 andg3 , the solution~18! describes either bounde
or unbounded periodic solutions.19 Localized limits yield, respectively, either a solitary wav
solution or a localized discontinuous solution.

B. Case „A.2…

Equation~15! is again satisfied identically. SubstitutingC5b1F into Eq. ~14!, we obtain

2FFzz2Fz
22a1FFz1~a2b124b1

22a3!F21a4F350. ~20!
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The equation~20! belongs to the class of~8!. Then, replacing in~9! y with F and substituting
the transformation into our equation, we obtain an equation of the form~10!. Then the conditions
R150, R250 allow us to assume the polynomial functional form forF, and finally yields

F5A`1
B`z

`1C
1S, ~21!

with

A52
2pr

qr
, B5

piprc

3qr l 1
, C52

pi
2c2

108l 1
2 , S52

5pi
2prc

2

54qr l 1
2 , c25

36g l 1
2

pi~pi
229l 1!

,

~22!
g2512C2, 4C32g2C1g350.

It follows from ~22! that the solution~21! bounded along the real axis corresponds only to
solitary wave solution. Other possibilities are either localized or periodic discontinuities.

C. Case „B…

We have an overdetermined system of two equations. Using the ansatz~B! from Sec. IV B,
Eq. ~15! reduces to

Fzz1a0Fz1a1F1a2F21a350, ~23!

with

a05
B2b12Ab2

A
, a15

b32Bb2

A
, a25

b4

A
, a352

Sb2

A
.

Equation~23! is the ODE reduction of the Korteweg–de Vries–Burgers equation~KdVBE!,
which is the dynamical system underlying a Helmholtz–Thompson oscillator.24–26 Its exact solu-
tion is17

F56a0
2/~25a2!exp~22a0z/5!`@exp~2a0z/5!1z0,0,g3#,

where z0 and g3 are free parameters. Unfortunately, additional conditions are needed fo
existence of this solution, such asa350 anda156a0

2/25.
Another solution can be obtained using the procedure from Sec. II. Thus, using~9!, we get

from the conditionsR150 andR250 that again the solution forF is a third-order polynomial,
hence

F5M`1
N`z

`1C
1R, ~24!

with the parameters defined by either

~B.1! M526/a2 , N523a0 /~5a2!, R5a0
2/~50a2!2a1 /~2a2!, g2512C2,

g358C3, C52a0
2/300, if a35a1

2/~4a2!29a0
4/~625a2!;

or

~B.2! M526/a2 , N50, R52a1 /~2a2!, g25a1
2/122a2a3/3, g3-free, if a050.

Using the ansatz~B! and Eq.~23!, Eq. ~14! becomes
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Fz
21b0FFz1b1Fz1b21b3F1b4F21b5F350, ~25!

with

b05
16B2a2

8A
, b15

8AS

114A2 , b25
4S2

114A2 , b35
S~8AB2a12a2A!

A~114A2!
,

b45
2b31a3A2a2AB2a1B14B2

A~114A2!
, b55

2b42a4

A~114A2!
.

Substituting~24! into ~25! for case~B.1!, we get

A5~23l 36AD !/~4l 2!, D58l 2
219l 3

2, B5c~3pr24Api !/~6l 1!,

with either
~B.1.a!

S50, c252
36g l 1

2

pi~8l 11pr
2!

, b5
prg~pr

2210l 1!

pi~8l 11pr
2!

; ~26!

or
~B.1.b!

S5
6cpi~ l 222Al3!

l 2@ l 2~2pi
219pr

2124Apipr !13Al3~4pi
229pr

2!#
,

c25
36l 1

2~2Al32 l 2!g

pi@ l 2~2pi
219pr

2124Apipr !13Al3~4pi
229pr

2!#
,

b5
pr

pi
g1

2pi13Apr

6Al1
c2. ~27!

The second possibility is realized when the coefficients of the CGLE satisfy either

9~12 l 2!l 3
252l 2~32 l 2!,

or

3l 2l 3@ l 3~135pr
2236pi

2!288l 2pipr #1A@8l 2pipr~26l 21135l 3!

1135l 3
2~4pi

229pr
2!12l 2

2l 3~56pi
2299pr

2!] 50.

For case~B.2!, we get

A5~23l 36AD !/~4l 2!, D58l 2
219l 3

2, B50, S50, c50, a350, g35a1
3/212,

with

b5
~pr24Api24A2pr !g

pi14Apr24A2pi
.

These results have been obtained using theMATHEMATICA package.27 Again, for both cases
~B.1! and~B.2! the relationships betweeng2 andg3 ensure the existence of only a localized~not
periodic! limit of the solution~24! bounded along the real axis.
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V. BOUNDED SOLUTIONS OF THE CGLE

Using solutions~18!, ~21!, and~24!, one can obtain solutions~11! of the CGLE~1! in terms
of the Weierstrass function. Let us concentrate on solutionsu ~11! bounded along the real axis. A
representation of these particular cases is better done in terms of Jacobi elliptic functions us
relationship~5!. Further, we need to change the parameter set according to~7!. Thus, from~19!
and ~6! we obtain for the case~A.1!,

C252Q2~H12e1!~H12e2!~H12e3!, ~28!

with H1[2G/Q. ForC50 the possibilities areG52Qem (m51,2,3). More generally,H1 may
lie in eitherI 1[(2`,e3# or I 2[(e2 ,e1), where the right-hand side of Eq.~28! is positive. Then
for I 1 , we getH15c32d2, d5d(C), and

u5A2
2qr

pr
@k2k2 sn2~kz,k!1d2#expiu, ~29!

with

u5
prg

pi
t2

prCP@w,n,k#

2qrd
2k

2u0 , k252
3

11k2 S g

3pi
1d2D , ~30!

P@w,n,k# is the elliptic integral of the third kind, sinw5sn(kz,k), andn52k2k2/d2.
Similarly, for I 2 we assume thatH15e12d1

2, 0<d1
2<k1

2(12k2), d15d1(C). The solution is

u5A2qr

pr
$k1

2 dn2~k1z,k!2d1
2%expiu, ~31!

with

u5
prg

pi
t1

prCP@w,n1 ,k#

2qr~k1
22d1

2!k1
2u0 , k1

25
3

22k2 S g

3pi
1d1

2D , n15
k2k1

2

k1
22d1

2 . ~32!

The only bounded limit corresponds to the case~A.2!, namely, a shock-type solution,

u5A2
2pr

qr
k@11tanh~kz!#expi~bt1b1z2u0!, ~33!

with

b5
prg~pi

2210l 1!

pi~26l 11pr
2!

, k5
pic

6l 1
, c is defined by ~22!.

We get for both possibilities~B.1.a! and ~B.1.b! the only bounded shock-type solution:

u5A2
6Al1

l 2
k@12tanh~kz!#expiu, ~34!

with k5a0/10, while foru we obtain
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u5bt1Bz12A lnHA2
6Al1

l 2
k@12tanh~kz!#J

1SS 1

4@12tanh~kz!#2 1
1

4@12tanh~kz!#
1

1

8
lnU11tanh~kz!

12tanh~kz!
U D ,

where the parametersS, c, andb are defined by either~26! or ~27!. A solution for the case~B.1!
yields the shock solution obtained in Ref. 11.

In case~B.2! the bounded limit of our general solution~24! is either thepulsesolution,

u5A6Al1
l 2

k cosh21~kz!expiu, ~35!

with

k252
g

2~pi14Apr24A2pi !
,

or thehole solution,

u5A2
6Al1

l 2
k tanh~kz!expiu, ~36!

with

k25
g

pi14Apr24A2pi

in agreement with the results found in Ref. 11.

VI. ANALYSIS OF WAVE PROFILES

Strictly speaking, only the solution~33! for the case~A.2! is a ‘‘genuine’’ envelope wave
similar to thebright soliton of the NLSE. Other solutions have an amplitude-dependent phasu.
Let us begin by considering the new periodic wave solutions~29! and ~31!. Because of their
similar behavior we shall study in detail~31! only. The first derivative of its real part with respe
to x, v5(Reu)x is

v5
Z

y
sinFu1arcsinS y yx

Z D G , ~37!

with

y5A2qr

pr
@k1

2 dn2~k1z,k!2d1
2#, Z5Ay2yx

21C2. ~38!

WhenC50, the zeros of the first derivative~37! are defined by the zeros of the functionyx

and correspond to the zeros of the Jacobi functions cn and sn. Their positions do not cha
time, and foru we have harmonic temporal oscillations of the spatially periodic state define
the amplitude parts of the solutions~31!. However, the situation changes dramatically whenC
Þ0. In this caseZ never vanishes, and the zeros of the first derivative are defined by the ze
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the sin function only, whose position varies in time. A typical situation is shown in Fig. 1. Fi
1~a! shows a structure with four spatially repeated parts. During half of the time period the s
of these parts vary, and we get in Fig. 1~d! a profile that is practically the mirror image to Fig. 1~a!.
Qualitatively, this evolution does not depend upon the value of the modulusk of Jacobi functions.

FIG. 1. Evolution of the periodic solution~31! Reu vs x for times t5mpip/(3prg), 0,m,3 with k50.9, d150.5. ~a!
m50, ~b! m51, ~c! m52, ~d! m53.
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Consider now the case~B.2! for pulse or hole solutions. In particular, the first derivative f
the real part of~35! is

~Reu!x5A6Al1~114A2!

l 2
k2 cosh21~kz!tanh~kz!sinFu2arctanS 1

2AD G . ~39!

Thus, from~39! it follows that additional zeros of the first derivative may appear if

k.A l 2

6Al1
expS arctan@1/~2A!#

2A D . ~40!

FIG. 2. Evolution of the pulse solution~35! Reu vs x for times t5mp/b, 0,m,8. ~a! m50; ~b! m51, ~c! m52, ~d!
m54, ~e! m55, ~f! m56, ~g! m57, ~h! m58.
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The evolution of the real part of the solution~35! is illustrated in Fig. 2. Again, we see tha
two initial maxima in Fig. 2~a! disappear, Fig. 2~e!; then an initial minimum atz50 is changed
into a maximum, while two minima arise, Figs. 2~f!–2~h!. Therefore, our solution is breather-like
If ~40! is not satisfied, there is a pulse solution whose spatial behavior is determined b
function cosh21 (kz), only with one extremum atz50. A similar situation occurs for the hole
solution ~36!.

The evolution of the solution in case~B.1! depends upon the relationship betweenb, A, B, and
S in the phaseu. However, due to the dependence upon the hyperbolic tangent function
significant alterations can only occur in the narrow area,ukzu!1. Thus, no qualitatively new
solutions are found relative to the usual envelope wave.

VII. CONCLUSIONS

New exact generalperiodic solutions of the complex Ginzburg–Landau equation~1!, ~18!,
~21!, and ~24!, are obtained in terms of the Weierstrass elliptic function. Among their spe
limits, we found newexact periodicsolutions to the CGLEbounded along the real axis. Their
existence requires additional but nontrivial restrictions on the coefficients of the equation. Ac
ingly, only a suitable balance between all significant terms in the CGLE is required in order
a periodic solution. We also found a new shock solution~34!, with parameters defined by~27!. All
bounded solutions early found in Ref. 11 by the modified Hirota method are found als
particular limits of the Weierstrass function solutions.

The role of the amplitude dependence in the phase of the solutions has been studied. Th
of the solution may strongly differ from the usual envelope solution. In particular, a pulse sol
exhibits breather-like behavior. Also, a temporal change in the spatial structure occurs f
bounded periodic solutions.
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Similarity reduction for a class of algebraically special
perfect fluids
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Ulmgasse 11, A-8501 Lieboch, Austria
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For a class of perfect fluids first considered by Wainwright@Int. J. Theor. Phys.10,
39 ~1974!#, a complete symmetry analysis of the field equations is performed. The
results are used for a symmetry reduction of the field equations and the construction
of ~new! similarity solutions. ©1999 American Institute of Physics.
@S0022-2488~99!02501-3#

I. INTRODUCTION

In 1974, Wainwright1 considered a special class of algebraically special perfect fluids
which the multiple null eigenvectork is geodesic, twist free, shear free, but expanding. They t
generalize the vacuum Robinson–Trautman solutions and contain them as a limiting case.
able to reduce the field equations to one or two partial differential equations in three indepe
variables~given in Sec. II!. Up to now only very few solutions of these differential equations h
been found; one has been given by Wainwright1 himself, two others are contained in Kramer2 and
Drauschke.3

Here we give a complete symmetry analysis of these equations~Sec. III!. The Lie-point-
symmetries turn out to show a richer structure than one might have guessed. We then use
perform a one- or twofold similarity reduction of the field equations~Sec. IV!; the resulting
ordinary differential equations are listed in the Appendix. In Sec. V, we solve some of
equations and find several new classes of solutions. The results are discussed in Sec. VI.

II. THE METRICS AND DIFFERENTIAL EQUATIONS

The metrics and field equations as given by Wainwright1 divide into two classes. The firs
metric and the associated field equations read

ds252e~r 221!P22~z,z̄,u!dz dz̄22du dr22H~z,z̄,r ,u!du2,

H52r ]u ln P1eK/22e~r 221!S b23mE dr

~r 221!2D2ec,

~1!
P2]z]z̄K1P2]u]u~P22!16em]u ln P12c~K22c!50,

with K52P2]z]z̄ ln P, cm50, c~c12b!50, e561

~e has to be chosen such that the metric has the correct signature!, where four-velocityui , pressure
p and mass densitym are given by

ui dxi5@2ec~r 221!22H#21/2~2dr2ec~r 221!du!,

a!Electronic mail: ste@tpi.uni-jena.de
8970022-2488/99/40(2)/897/12/$15.00 © 1999 American Institute of Physics
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p5
2

~r 221!2 S r ]u ln P1ec2
e

2
K D2

2eb

r 221
~3r 222!

2
2em

r 221 F r

r 221
1~3r 222!E dr

~r 221!2G , ~2!

m2p5
4eb

r 221
~3r 221!1

4ec

r 221
1

4em

r 221 F r

r 221
1~3r 221!E dr

~r 221!2G .
For c50, the constantb appearing~via H! in the line element does not enter the main fie

equation~the fourth-order equation forP!; the addition of a term 2be(r 221)du2 to the metric is
always possible. This transformation is a generalized Kerr–Schild transformation, i.e., a tra
mation of the formg̃ab5gab12H0kakb . This property is in fact an extra symmetry of Einstein
equations.

If one performs a coordinate transformation

r 5 r̃ /l, P5 P̃/l, u5ũl, ~3!

in metric~1!, followed by the limitl→0 ~andb50), one arrives at the Robinson–Trautman cla
of vacuum solutions. For largerr, so thate51, and regularP andK, pressure and mass densi
approachm52p56b, i.e., vacuum forb50. In general there will be singularities atr 251.

The second metric and the associated field equations are given by

ds252erP22~z,z̄,u!dz dz̄22du dr22H~z,z̄,r ,u!du2,

H52r ]u ln P2era2ebr ln er 2H0~z,z̄,u!, ~4!

2P2]z]z̄ ln P2e]u ln P5b, 2]z]z̄H
01e]u~H0P22!50,

with

uu dxi52~22H !21/2 dr,

p5r 21~ 1
2 ]u ln P22eb2 1

2ea!1 1
2 r 22H02 1

2 ebr21 ln er , ~5!

m2p52er 21~2b1a!12ebr21 ln er .

The termsH01era appearing~via H! in the line element do not enter the main field equat
for P; they again represent a generalized Kerr–Schild transformation. From the two differ
equations the~nonlinear! equation forP is the more difficult one, and we will concentrate on
symmetries; the~linear! equation forH0 may or may not share these symmetries. The ex
symmetry due to linearity of the field equation forH0 offers the possibility of adding arbitrary
solutionsH0, i.e., performing Kerr–Schild transformation. For larger ~and regularP andK!, these
metrics approach vacuum (m5p50). Note that the four-velocity is timelike only forH,0, but
then the coordinater is necessarily timelike, too.

For both metrics, dust solutions and solutions of Petrov typeIII or N are not possible.

III. THE SYMMETRIES AND SUBALGEBRAS

A. The symmetries

The result of the symmetry analysis is that the following generatorsXa can occur as symme
tries of the differential equation~s! for the functionP @h(z) is an arbitrary function#.

Case I:Metric ~1! with c505m, metric ~4! with b50:
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X15h~z!]z1h̄~ z̄ !] z̄1 1
2 @h81h̄8#P]P ,

~6!
X25]u , X3

15u]u2 1
2 P]P .

Case II: Metric ~1! with c50, mÞ0, a[3em, metric ~4! with bÞ0, a[2eb:

X15h~z!]z1h̄~ z̄ !] z̄1 1
2 @h81h̄8#P]P ,

~7!
X25]u , X3

25eau]u2 1
2 aeauP]P .

Case III: Metric ~1! with cÞ0, m50:

X15h~z!]z1h̄~ z̄ !] z̄1 1
2 @h81h̄8#P]P , X25]u . ~8!

@X3
1 is the limit a→0 of (X3

22X2)/a.]
Since it is known that the only symmetries of Einstein’s field equations are those corres

ing to coordinate transformations and scalings, one would in general also expect that the s
ized field equations given above will admit only these symmetries—from experience in
subcases of Einstein’s equations one knows that additional symmetries are rare. The sym
X1 and X2 fit into this picture: they correspond to the still existing coordinate freedom in
metrics and lead to Killing vectors. The occurrence of the symmetriesX3

1 andX3
2 is a surprise. For

~4! with b50, X3
1 corresponds to a scaling combined with a Kerr–Schild transformation; in

other cases they are new symmetries. Their existence will lead to a richer structure than on
have guessed.

The finite transformations belonging to the generators listed above are

X1 : z̃5h~z!, ũ5u, P̃5uh,zuP,

X2 : z̃5z, ũ5u1«, P̃5P,
~9!

X3
1: z̃5z, ũ5ue«, P̃5Pe2«/2,

X3
2: z̃5z, ũ52

1

a
ln~e2au2a«!, P̃5~12a«eau!1/2P,

« being the group parameter. These transformations can—and will—be used to simplify g
tors and metrics.

Obviously the cases I and II are the most interesting ones. Since the symmetry red
mainly depends on the structure of the Lie algebra, we will discuss the different subalgebr
the corresponding similarity variables for these two cases in the next sections, and only the
we return to the field equations and their solutions.

B. The nonequivalent one-dimensional subalgebras and their similarity variables

By choosing suitable coordinates, one can always makeh(z)5 i . With that choice the fol-
lowing one-dimensional algebras can occur:

Case Symmetry Similarity variables

I Y15 i (]z2 z̄) P,u,x5z1 z̄
Y25]u P,z,z̄

Y35u]u2
1
2 P]P

w5PAu,z,z̄

Y45 i (]z2]z̄)1]u P,z5u1 i z,z̄
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Y55 i ~]z2]z̄!1u]u2
1
2 P]P

w5PAu, z5uei z, z̄

II Y15 i (]z2]z̄) P,u,x5z1 z̄
Y25]u P,z,z̄
Y35eau~]u2 ~a/2! P]P! w5Peau/2,z,z̄
Y45 i (]z2]z̄)1]u P,z5u1 i z,z̄
Y55 i ~]z2]z̄!1eau~]u2 ~a/2! P]P! w5Peau/2, z5 i z2e2au/a

III Y15 i (]z2]z̄) P,u,x5z1 z̄
Y25]u P,z,z̄
Y45 i (]z2]z̄)1]u P,z5u1 i z,z̄

These generators are essentially different in that they cannot be transformed into each o
group transformations.

For the two metrics~with their subcases!, a similarity reduction will thus lead to 23 partia
differential equations in two independent variables.

C. The nonequivalent two-dimensional subalgebras and their similarity variables

In each case, one can start with one of the normal forms@X1 ,X2#5X1 or @X1 ,X2#50 of a
two-dimensional algebra, then take forX1 one of the five different normal formsYa given in the
tables and determine the possible different structures ofX2 . The results is the following lists.

Case Symmmetries Similarity variables

I.1 i (]z2]z̄), ]z1]z̄ P,u
I.2 i (]z2]z̄), ]z1]z̄22]u P,u1z1 z̄

I.3 i (]z2]z̄), ]z1]z̄1u]u2
1
2 P]P PAu, ue2(z1 z̄)/2

I.4 i (]z2]z̄), z]z1 z̄] z̄1P]P P/(z1 z̄),u

I.5 i (]z2]z̄), z]z1 z̄] z̄1P]P1c1(u]u2
1
2 P]P) Pu(A22)/2A, (z1 z̄)u21/A

I.6 i (]z2]z̄), ]u1z]z1 z̄] z̄1P]P Pe2u, (z1 z̄)e2u

I.7 i (]z2]z̄), ]u P,z1 z̄

I.8 i (]z2]z̄), u]u2
1
2 P]P PAu, z1 z̄

I.9 ]u , u]u2
1
2 P]P (z,z̄; no P !!

I.10 ]u , i (]z2]z̄)1u]u2
1
2 P]P Pe2 i (z2 z̄)/4, z1 z̄

I.11 i (]z2]z̄)1]u , z]z1 z̄] z̄1
1
2 P]P1u]u

P/Az1 z̄,
2u1 i ~z2 z̄ !

z1 z̄

Case Symmetries Similarity variable

II.1 i (]z2]z̄), ]z1]z̄ P,u

II.2 i (]z2]z̄), ]z1]z̄22]u P,u1z1 z̄

II.3 i (]z2]z̄), ]z1]z̄1eau(]u2 (a/2) P]P) Peau/2, z1 z̄12e2au/a

II.4 i (]z2]z̄), z]z1 z̄] z̄1P]P P/(z1 z̄),u

II.5 i (]z2]z̄), z]z1 z̄] z̄1P]P1eau(]u2 (a/2) P]P)
P exp@au/21e2au/a# ,

a ln(z1z̄)1e2au

II.6 i (]z2]z̄), A]u1z]z1 z̄] z̄1P]P Pe2u/A, (z1 z̄)e2u/A
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II.7 i (]z2]z̄), ]u P,z1 z̄
II.8 i (]z2]z̄), eau(]u2 (a/2) P]P) Peau/2, z1 z̄

II.9 ]u , eau(]u2 (a/2) P]P) (z,z̄; no P !!

II.10 eau(]u2 (a/2) P]P), i (]z2]z̄)1]u

i (]z2]z̄)1eau(]u2 (a/2) P]P), Pea@2u1 i (z2 z̄)#/4, z1z

II.11 z]z1 z̄] z̄1P]P2 (1/a) ]u

Peau/2

Az1 z̄

,
i ~z2 z̄ !22e2au/a

z1 z̄

Case Symmetries Similarity variables

III.1 i (]z2]z̄), ]z1]z̄ P,u
III.2 i (]z2]z̄), ]z1]z̄22]u P,u1z1 z̄
III.3 i (]z2]z̄), z]z1 z̄] z̄1P]P P/(z1 z̄),u
III.4 i (]z2]z̄), z]z̄1 z̄]z1P]P1A]u Pe2u/A, (z1 z̄)e2u/A

III.5 i (]z2]z̄), ]u P,z1 z̄

D. The nonequivalent three-dimensional subalgebras with a G3 acting on V2 „in the
space of variables …

Due to the generatorsX5h(z)]z1h̄( z̄)]z̄1 1
2h81h̄8]P]P there are also two three-dimension

algebras with two-dimensional orbits, namely@ i (]z2]z̄),]z1]z̄ ,i (z]z2 z̄] z̄)#, with similarity
variablesP andu, and@ i (]z2]z̄),z]z1 z̄] z̄1P]P ,i (z2]z2 z̄2]z̄)1 i (z2 z̄)P]P#, with similarity
variablesP/(z1 z̄) andu. Both have two-dimensional subalgebras and are thus special cas
the types already considered. The algebra@ i (]z2]z̄),cosz]z1cosz̄]z̄ ,i(sin z]z2sin z̄]z̄)# ~two-
dimensional representation of the rotation group! is not a symmetry of the field equations.

IV. THE REDUCED FIELD EQUATIONS

For each of the five subcases of the two field equations~1! and ~4! one can perform the
standard symmetry reduction, using the appropriate five~or three! nonequivalent symmetries o
Cases I–III given in Section III A~one assumes a functional relationship between the th
similarity variables exists in each case, e.g., of the formP5e2au/2f (z,z̄) for Case I,Y3). We will
not give a list of all the resulting 23 partial differential equations in two independent varia
they are relatively easy to obtain~see Rainer4!—but of course nonlinear, and in most cases
solution can be found only when atwofold similarity reduction has been performed. Using t
nonequivalent two-dimensional subalgebras given in Sec. III C, such a twofold reduction wil
to a set of 45 ordinary differential equations~not all of them are different!. They are given in the
Appendix.

V. SOLUTIONS AND METRICS

Of course, not all the differential equations given in the Appendix could be solved. S
could, but then one has to be aware that different solutionsP may give rise to the same metric
~metrics of the same constant curvatureK may appear in different disguises, etc.!. Since in all
cases two of the~at most! three symmetries are related to Killing vectors, a solution obtained
a twofold reduction will admit at least one Killing vector, and the following classes of metrics
occur:

~1! Space–times with aG3 on V2 ~spherical, pseudospherical and plane symmetry!.
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~2! Space–times with one or two Killing vectors.
~3! Space–times without symmetries~e.g., solutions of~4! with H0Þ0 which are related by a

generalized Kerr–Schild transformation to a background withH050 admitting symmetries!,
see the remarks following Eqs.~2! and ~5!.

For each of the two metrics, we will treat the first two of these three classes now in turn
do not intend to discuss the linear differential equation forH0, i.e., 2]z]z̄H

01e]u(H0P22)50;
for most of the functionsP given below, many solutionsH0 of this linear equation could be found

A. Space–times with a G3 on V2

As we will show, this high symmetry will occur if thez- z̄ space has constant curvatureK

5K(u); space–time necessarily inherits this symmetry from thez- z̄ space. This subcase cove
all field equations obtained by reductions using the algebras I.1, I.4, II.1, II.4, III.1 and III.3
metrics~1!, and I.7, I.10, II.7, II.8 and II.10 for the metric~4!, and is contained as a special ca
in several of the other reductions. We will not start from any of these particular cases, but
the field equations directly.

For constant curvatureK5K(u) it is known that the metric functionP is of the form

P5h~u!zz̄1b~u!z1b̄~u!z̄1d~u!, K52~hd2bb̄!, ~10!

see Krameret al.5

In case of the metric~1!, the field equation reads

P2]u]u~P22!16em]u ln P12c~K22c!50, cm50. ~11!

Inserting here the above representation ofP and equating to zero the coefficients of the differe
powers ofz and z̄, one obtains

hh923h8223emhh85c~K22c!h2,

bb923b8223embb85c~K22c!b2,

dd923d8223emdd85c~K22c!d2,
~12!

bh91b9h26h8b823em~bh!852c~K22c!hb,

bd91b9d26d8b823em~bd!852c~K22c!dh,

hd91h9d1bb̄91b9b̄26~h8d81b8b̄8!

23em~hd1bb̄!852c~K22c!~dh1bb̄!.

Eliminating the second derivatives in last three equations by means of the first three gives

~ ln h!85~ ln b!85~ ln d!8, ~13!

i.e., the coefficientsh, b andd depend onu only by a common factor, andP has the form

P25h21~u!~11kzz̄/2!2, K~u!5k/h~u!, k50,61 ~14!

@note that for this choice ofP other normal forms of the symmetry generators may apply, e
i (z]z2 z̄] z̄) instead ofi (]z2]z̄)]. With this result, the field equation~11! yields

h21]u]u~h!23emh8/h12c~k/h22c!50. ~15!
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Depending on the different possible values ofm andc, we thus arrive at the metrics

ds252e~r 221!
h~u!dz dz̄

~11kzz̄/2!2
22du dr22H~r ,u!du2,

H5
1

2
rh8/h2

1

2
ek/h2e~r 221!S b23mE dr

~r 221!2D2ec,

~16!

h~u!5Au1B for m50, c50,

with h~u!5A1Be3emu for mÞ0, c50,

h~u!5A sinh~2cu1B!1k/2c for m50, c522b.

In case of the metric~4!, K5K(u) leads to

K~u!2e]u ln P5b, ~17!

which together with~10! again gives~14!. The corresponding metrics are

ds252er
h~u!dz dz̄

~11kzz̄/2!2
22du dr22H~z,z̄,r ,u!du2,

H5 1
2 rh8/h2era2ebr ln er 2H0~z,z̄,u!,

~18!

2]z]z̄H
01e~11kzz̄/2!22]u~hH0!50,

with
h~u!52eku1A for b50

h~u!5Ae2beu1k/b for bÞ0.

The metrics~16! and~18! exhaust the space–times withK5K(u); they admit aG3 on V2 @for
metric ~18!: if H0 is chosen appropriately#: they are spherically, or pseudospherically, or pla
symmetric. Contained here is the solutionk505b found by Wainwright.1

B. Space–times with at most two Killing vectors I: The case 2 P2zz̄K 50, K ,zÞ0

The only explicitly known class of functionsP(z,z̄,u) which obey the condition 2P2]z]z̄K
50, K ,zÞ0 is given by

P5@ f ~z! ,z f̄ ~ z̄ ! ,z̄#
21/2@ f ~z,u!1 f̄ ~ z̄,u!#3/2, K523~ f 1 f̄ !, ~19!

where f (z,u) is an arbitrary function; it has been found in the search for Robinson–Trau
vacuumsolutions of the Petrov type III~see Krameret al.,5 Chap. 24!. Since the field equations
obtained by a reduction of the metric~1! using the algebras I.7, I.8, II.7 and II.8 satis
2P2]z]z̄K50, K ,zÞ0, their available~new! solutions contain subcases of~19!. They read:
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ds252e~r 221!
h~u!dz dz̄

~z1 z̄ !3
22du dr22H du2,

2H5r
h8~u!

h~u!
2

3e~z1 z̄ !

h~u!
12e~r 221!Fb23mE dr

~r 221!2G , ~20!

h5Au1B for m50, h5Ae3emu1B for mÞ0.

These solutions admit a Killing vectori (]z2]z̄) and may thus be called axially symmetric.

C. Space–times with at most two Killing vectors II: The case 2 P2zz̄KÞ0

Of course we tried to solve as many of the reduced field equations as possible in this
general case, but because of the shear amount of equations we did not attack all of them wit
obstinacy. We could not find solutions in the cases I.3, I.5, I.6, I.10, I.11, II.5, II.6, II.11, III.2
III.6 of Eq. ~1!, and in the cases I.3, I.6, I.11, II.5, II.6 and II.11 of Eq.~4!. The following solutions
have been obtained~or rediscovered!.

Metric ~1! with 2P2]z]z̄KÞ0:

ds25
~12r 2!

2ec Fdw2

4w
1wew dw2G22du dr2ec~r 212w13!du2,

Case III.5: P22~z1 z̄ !52ew12w/2c, w85&we11w/2. @Kramer ~1984!2# ~21!

ds252e
r 221

P2~z!
dz dz̄22du dr22H du2,

Case I.2: P2~z!5~e2Az12BeAz1B22A2!e2Az/4A2,

z5z1 z̄1u, c505m @Drauschke~1997!4#, ~22!

Case II.2: P2~z!5e3emu~e2Az12BeAz1B22A2!e2Az/4A2,

z5z1 z̄12e23emu/3em, c50, mÞ0.

Metric ~4! with 2P2]z]z̄KÞ0:

ds252erP22~z!dz dz̄22du dr22H~z,z̄,r ,u!du2,

Case I.2: P25exp~Az!1e/2, z5z1 z̄1u, b50,

Case III.3: P25e22ebu@exp~Az!21#/A; z5z1 z̄1ee22ebu/b, bÞ0,
                                                                                                                



ration,
tions

ations,
some

ua-

pecial
ionary
r case
a sym-
admit

y dif-
l

iven in
were
hat
s with

t be
phere.

e
nd, the

rre-

for the

ation.
.g., an
of the
t able

inson–

905J. Math. Phys., Vol. 40, No. 2, February 1999 A. Rainer and H. Stephani

                    
Case II.11: P25 1
2 @Be24ebu2b~z1 z̄ !2#, bÞ0. ~23!

Except for the indicated rediscoveries, these solutions are new.

VI. CONCLUSIONS

When we started, we were aware of the few known solutions of the class under conside
which all had at least one Killing vector. We set a goal of making a thorough search for solu
with symmetries, using the standard techniques of the symmetry analysis of differential equ
and hoped to find one or the other new solution. What we finally found was a surprise in
aspects~not all of them being positive!.

First of all, it is known that the only Lie-point-symmetries admitted by Einstein’s field eq
tions correspond to coordinate transformations and scalings~leading to Killing or homothetic
vectors in the similarity reduction!. A restriction to a special class of solutions~here: algebraically
special, etc.! may enlarge the group of admitted symmetries. But the experience from other s
classes, e.g., from the algebraically special vacuum solutions, or axially symmetric stat
perfect fluids, showed that this rarely happens. So it was rather unexpected that in ou
additional symmetries also showed up. This result should encourage people to always try
metry analysis when asking for solutions! As a side result we found that these metrics
generalized Kerr–Schild transformations.

Connected with these additional symmetries was the huge number of different ordinar
ferential equations we obtained by the symmetry reduction~23 partial, or 45 ordinary differentia
equations, the latter ones being given in the Appendix!. This made it practically impossible to
make a detailed analysis of each of them. So we concentrated on a few simple classes.

The first class are the solutions where the curvatureK of the z- z̄ space is a~possibly time-
dependent! constant. The field equations then imply that the metrics admit aG3 on V2 , i.e., they
are of spherical, pseudospherical, or plane symmetry. The general solution for this case is g
~16! and~18!. Many solutions with this symmetry are known from other approaches, but they
usually found and given in comoving~and non-null! coordinates. Since an inspection shows t
our solutions have nonzero shear, they do not belong to the best-known class of solution
vanishing shear and are probably new. As in most spherically~pseudospherically, plane! symmet-
ric perfect fluids, a surface of vanishing pressure will exist, but the four-velocity will no
tangent to this surface so that it cannot serve as the outer boundary of a finite perfect fluid s
But since for larger pressure and mass density approach zero~if b50), these solutions may b
interpreted as approximate models for outer regions of an extended source. On the other ha
interior regions (r 2,1) may serve as inhomogeneous cosmological models.

The second class~20! has been constructed by using the only known solution of the co
sponding vacuum Robinson–Trautman class. The rest of the solutions, given in~21!–~23!, could
be found because of the simplicity of the reduced field equations for these cases. Except
subcases due to Refs. 3 and 4, they are new.

Unfortunately, none of these last new solutions admits a convincing physical interpret
Technically this is due to the fact that we did not start from any physical assumption as, e
equation of state or special properties of the four velocity, but made a mathematical study
field equations and tried to fill in the physics at a later stage. More specifically, we were no
to find examples where, e.g., there is a regular surface with vanishing pressurep which could serve
as a model of an isolated source. So the hope of finding some interior solutions for the Rob
Trautman vacuum solutions was not fulfilled.
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APPENDIX: LISTS OF REDUCED FIELD EQUATIONS

We here give the lists of the ordinary differential equations which result from the
equations~1! and ~4! after a twofold similarity reduction. In each of the five lists, we give t
original field equation and then label the resulting equations using the tables of nonequi
two-dimensional subalgebras.

1. Field equation „1…, c 505m: zz̄K 1uu„P22
…50, K[2P2zz̄ ln P

Case P K Field equation

I.1 P(u) 0 (P22)950

I.2 P(z1 z̄1u) 2P2(ln P)9 K91(P22)950

I.3
f (z)/Au,

z[ue2(z1 z̄)/2 z f2@z(ln f )8] 8/2u 2u(zK8)8116(f 22)818z( f 22)950

I.4 (z1 z̄) f (u) 22 f 2 ( f 22)950

I.5
u(22A)/2Af (z),

z[(z1 z̄)u21/A 2 f 2(ln f )9/u
A2uK91z2( f 22)91(52A)z( f 22)8

12(22A) f 2250

I.6
euf (z),

z[(z1 z̄)e2u 2 f 2(ln f )9 K9z2( f 22)915z( f 22)814 f 2250

I.7 P(z1 z̄) 2P2(ln P)9 K950

I.8 f (z1 z̄)/Au 2 f 2(ln f )9/u K950

I.10 ei (z2 z̄)/4f (z1 z̄)
2ei (z2 z̄)/2w,
w[ f 2(ln f )9

4w91w50

I.11

@(z1 z̄) f (z)#1/2,

z[
u1i~z2z̄!/2

z1z

(z1 z̄)21w,

w[ f [2z(ln f )8211(z21
1
4)(ln f )9]

@214z]z1(z21
1
4)]z]z#w1( f 21)9

50

2. Field equation „1…, c 50, mÞ0: a53em: P2zz̄K 1P2uu„P22
…16em u ln P50

Case P K Field equation

II.1 P(u) 0 P2(P22)912a(ln P)850

II.2 P(z1 z̄1u) 2P2(ln P)9 P2@K91(P22)9#12a(ln P)850

II.3 e2~a/2!uf S z1 z̄1
2

a
e2auD 2e2auf 2(ln f )9 f 2(ln f )912( f 22)950

II.4 (z1 z̄) f (u) 22 f 2 f 2( f 22)912a( ln f )850

II.5
expS2 a

2
u2

1

a
e2auDf~z!,

z[(z1 z̄)exp(e2au/a)

2e2auf 2(ln f )9
eauf 2K91z2f 2( f 22)9

210z(ln f )81450

II.6
eu/Af (z),
z[(z1 z̄)e2u/A 2 f 2(ln f )9

K91@(z]z)
21(41aA)z]z

1412aA] f 2250

II.7 P(z1 z̄) 2P2(ln P)9 K950

II.8 e2au/2f (z1 z̄) 2e2auf 2(ln f )9 K950
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II.10 exp$2(a/2)@u1(i/2)(z2z̄)#% f(z1z̄)
2 exp(2a$@u1

1
2 (z2z̄)#%)w,

w[ f 2(ln f )9
w91a2w/250

II.11

@(z1 z̄)e2auf (z)#1/2,

z[
i~z2z̄!22e2au/a

z1z̄

(z1 z̄)21e2auw,
w[ f @2z(ln f )8

1(z211)(ln f )921]

@(z211)w#914( f 21)950

3. Field equation „1…, cÞ0, m 50: P2zz̄K 1P2uu„P22
…12c „K 22c …50

Case P K Field equation

III.1 P(u) 0 P2(P22)950

III.2 P(z1 z̄1u) 2P2(ln P)9 P2@K91(P22)9#12c(K22c)50

III.3 (z1 z̄) f (u) 22 f 2 f 2( f 22)924c( f 21c)50

III.4
eu/Af (z),

z[(z1 z̄)e21/A 2 f 2(ln f )9
A2f 2K91z2f 2( f 22)915z f2( f 22)8

1412A2c(K22c)50

III.5 P(z1 z̄) 2P2(ln P)9 P2K914c(K22c)50

4. Field equation „4…, b 50: 2P2zz̄ ln P5eu ln P

Case P K Field equation

I.1 P(u) 0 (ln P)850

I.2 P(z1 z̄1u) 2P2(ln P)9 K2e(ln P)850

I.3
f (z)/Au

z[ue2(z1 z̄)/2 z f2@z(ln f )8#8/2u 2uK22ez(ln f )81e50

I.4 (z1 z̄) f (u) 22 f 2 K5e(ln f )8

I.5
u(22A)/2Af (z),

z[(z1 z̄)u21/A 2 f 2(ln f )9/u
4A f2(ln f )912ez(ln f )8
5 (22A)e

II.6 euf (z),z[(z1 z̄)e2u 2 f 2(ln f )9 K1ez(ln f )85e

I.7 P(z1 z̄) 2P2(ln P)9 K50

I.8 f (z1 z̄)/Au 2 f 2(ln f )9/u 2uK1e50

I.10 ei (z2 z̄)/4f (z1 z̄) 2ei (z2 z̄)/2f 2(ln f )9 K50

I.11

@(z1 z̄) f (z)#1/2,

z[
u1i~z2z̄!/2

z1 z̄

w/(z1 z̄),

w[f@2z~ln f !8
1 (z21

1
4)(lnf)921)]

2K(z1 z̄)5e(ln f )8
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5. Field equation „4…, bÞ0, a52eb : 2P2zz̄ ln P2eu ln P5b

Case P K Field equation

II.1 P(u) 0 (ln P)852eb

II.2 P(z1 z̄1u) 2P2(ln P)9 K2e(ln P)85b

II.3 e2~a/2!uf ~z1 z̄1 ~2/a! e2au! 2e2auf 2(ln f )9
f 2(ln f )91e(ln f )8

50

II.4 (z1 z̄) f (u) 22 f 2 K2e(ln f )85b

II.5
exp(2 (a/2) u2 (1/a) e2au)f(z),
z[(z1 z̄)exp(1/a e2au)

2e2auf 2(ln f )9
2 f 2(ln f )9

1e z(ln f )85e

II.6 eu/Af (z), z[(z1 z̄)e2u/A 2 f 2(ln f )9
AK1ez(ln f )8

5Ab1e

II.7 P(z1 z̄) 2P2(ln P)9 K5b

II.8 e2au/2f (z1 z̄) 2e2auf 2(ln f )9 K50

II.10 exp$2 (a/2) @u1(i/2) (z2z̄)#%f(z1z̄)
2e$2a@u1

1
2 (z2 z̄)#%w,

w[ f 2(ln f)8
K50

II.11

@(z1 z̄)e2auf (z)#1/2,

z[
i~z2z̄!22e2au/a

z1z̄

(z1 z̄)21e2auw,

w[ f @2z(ln f )81(z211)
3(ln f )921]

f @2z(ln f )82e(ln f )8
1(z211)(ln f )921]50

1J. Wainwright, ‘‘Algebraically special fluid space–times with hypersurface-orthogonal shearfree rays,’’ Int. J. Theor.
Phys.10, 39 ~1974!.
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We introduce a proposal to modify Einstein’s equations by embedding them in a
larger symmetric hyperbolic system. The additional dynamical variables of the
modified system are essentially first integrals of the original constraints. The ex-
tended system of equations reproduces the usual dynamics on the constraint surface
of general relativity, and therefore naturally includes the solutions to Einstein grav-
ity. The main feature of this extended system is that, at least for a linearized version
of it, the constraint surface is an attractor of the time evolution. This feature sug-
gests that this system may be a useful alternative to Einstein’s equations when
obtaining numerical solutions to full, nonlinear gravity. ©1999 American Insti-
tute of Physics.@S0022-2488~99!03002-9#

I. INTRODUCTION

Over the past decade, computer power has increased to the point that simulations of tw
even three-dimensional general relativity are now feasible. These simulations, which assum
or no symmetry of their generic field configurations, at first seemed to represent straightfo
generalizations of simpler one-dimensional calculations. However, attempts to perform the
dimensional simulations have revealed a variety of unexpected features which limit ac
simulations to a rather short time interval. One such feature, which is believed to be a
source of numerical error, is that numerical time evolution generates a rapidly growing vio
of the constraint equations. In this paper, we propose a system of dynamical equations whe
evolution naturally remains close to the constraint surface. Although the most obvious appli
of this approach is to numerical simulations, it may prove useful in other branches of ge
relativity as well.

As is well known analytically, the time evolution predicted by the exact Einstein equatio
such that the constraint equations are satisfied on each time slice when they are satisfied
initial data. Geometrically, the evolution vector field is tangential to the constraint subman
implying that solutions to the complete set of equations are insensitive to properties of the
lution field in the vicinity of the constraint surface. In discrete approximations, on the other h

a!Electronic mail: simo@mayu.physics.duq.edu
9090022-2488/99/40(2)/909/15/$15.00 © 1999 American Institute of Physics
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the notion of tangency is approximate, as is that of the constraint surface itself. As a conseq
the numerical evolution becomes sensitive to possible instabilities of the constraint subma
and numerical solutions are, in general, carried away from it exponentially fast with time. Ev
case one were able to construct a code whose discretized vector field were exactly tange
discretized version of the constraint submanifold, the same problem would be likely to ari
numerical errors on the initial data would prevent a start of the time integration exactly o
constraint submanifold.

As demonstrated in Ref. 1, evolution schemes can be constructed in such a way th
violation of the constraints has the same convergence order as the scheme itself. This pr
which is in the meantime a standard requirement for evolution schemes, implies that the ch
an appropriately fine grid is sufficient to satisfy the constraint equations at any given time
arbitrary accuracy. However, since the violation of the constraints grows very quickly with
the utility of grid refinements to reduce constraint violations is very limited, especially in two-
three-dimensional calculations.

In the so-called constrained evolution schemes one attempts to solve this problem by is
two sets of variables in Einstein’s equations. One uses evolution equations to evolve one
determines the variables of the other set by solving constraint equations on each time slic
method has frequently been used in one-dimensional simulations where, on the one hand, it
to split the variables into dynamical and longitudinal ones, and where, on the other han
constraint equations are ordinary differential equations along a spacelike direction. Howe
two- and three-dimensional simulations with spacelike hypersurfaces as time surfaces, the
character of the constraint equations makes it expensive in computer time to solve the con
equations on each time slice~not to mention the problems arising in the treatment of the g
boundaries!. Furthermore, this approach does not guarantee that the complete set of Ein
equations is solved. Since only a subset of the variables is determined by evolution equ
some of these equations remain unused. The problem is, therefore, shifted to the preserv
the unused evolution equations, which, as shown in Ref. 2, is a problem of similar nature.

In order to guarantee a good approximation to the complete set of field equations,
therefore, necessary to analyze the behavior of the evolution vector field in a whole neighbo
of the constraint submanifold. Away from the constraint submanifold the evolution field is
uniquely determined as field configurations violating the constraint equations are physical
relevant. Hence, the evolution vector field can be modified in an arbitrary way, as long
values on the constraint submanifold remain unchanged, and as long as the modified field
ues to be strongly hyperbolic, so that the Cauchy problem is well posed in a whole neighbo
of the constraint surface.

Of particular interest are modified equations for which the constraint submanifold is as
totically stable, because for equations with this feature, sufficiently accurate codes are expe
generate solutions which remain close to the constraint surface, and which, therefore,
represent improved approximations to Einstein’s equations.

Modifications of the evolution vector field have previously been studied. However, in gen
these preserve the time reversal symmetry of Einstein’s equations, which implies that mo
tions of this type cannot have the desired properties. Time reversal symmetry implies that
evolution field is such that a solution to some initial data in a neighborhood of the cons
submanifold approaches the constraint submanifold during time evolution, then the solution
time reversed initial data will asymptotically be carried away from this submanifold. Thus, w
out a modification of Einstein’s equations which breaks the time reversal symmetry, the be
can expect to achieve is a set of equations for which the constraint submanifold is stable, b
asymptotically stable. However, stability of the undiscretized equations is not sufficient fo
merical simulations, since spurious solutions to the discretized equations can grow very r
even for stable systems. To eliminate the impact of such solutions, it is, therefore, necessa
the constraint manifold is an attractor for the time evolution.

The above-mentioned modifications of Einstein’s equations are, in general, obtained
cluding dynamical quantities which are proportional to the constraint expressions. An alter
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argument showing that extensions of this type cannot lead to an asymptotically stable con
surface is the following: Since the constraint equations are of the same order as the ev
equations, their inclusion affects mainly the principal part of the evolution equations, whenc
freedom remaining after requiring that these terms do not destroy strong hyperbolicity is
limited. Thus, such extensions ensure that the problem is the well posed, but not the asym
stability. This can only be obtained either via modifications of the lower order terms o
addition of higher~second! order terms, that is, by including damping or diffusion terms.

In Sec. II, we propose a modification of Einstein’s equations which includes new dyna
terms proportional to certain first integrals of the constraint expressions, rather than to th
straints themselves. The dissipation, that is, the time asymmetry, is not of the diffusive typ
is built into the definition of these integrals.~One could also introduce diffusive dissipation, b
this would significantly reduce the allowed maximal time step in explicit discretization schem!

We show that the Cauchy problem for the resulting new system, which we call thel-system,
is locally well posed.~The name is a remnant of the way the system was originally guesse
Brodbeck and Hu¨bner, namely by a formal application of Lagrangian multiplier techniques.! We
also prove that if the constraints are initially satisfied, and if their first integrals initially van
then thel-system provides solutions to Einstein’s equations. Moreover, for initial data sets fo
l-system, which are sufficiently close to the constraint submanifold and sufficiently close to
respectively, we suspect that the solutions asymptotically tend to solutions to Einstein’s equ

In Sec. III, we give support to our expectation by proving that the linearized extended sy
is asymptotically stable, thus showing that in the linearized case, the constraint submani
indeed an attractor for thel-system. In Sec. IV, we discuss further expectations in connection
our proposal.

II. THE l-SYSTEM

In this section we spell out our proposal for a modification of Einstein’s equations wit
asymptotically stable constraint submanifold. For definiteness, we choose the symmetric
bolic system introduced by Frittelli and Reula in Ref. 3, which corresponds to the param
a5b521 in Ref. 4. Although the full equations~with the nonprincipal part terms added! are
given in Ref. 5, we repeat them for completeness.

In the version of Einstein’s vacuum equations chosen, the system is given by the followi
of dynamical equations~where Latin indices run from 1 to 3!:

ḣi j 5Nnhi j
,n1QAh~2Pi j 2Phi j !22hn( iNj )

,n , ~1!

Ṁ i j
k5NnMi j

k,n1QAh~Pi j
,k22dk

( i Pj )n
,n!1QAh~ 3

2P
i j Mk2PMi j

k1Q21Pi j Q,k

22dk
( i@hj )qhmrhnsP

mnMrs
q22M j )p

nPmnhprn1 3
2P

j )nMn2 1
2h

j )nPMn# !

1hi j Nn
,nk2hn( iNj )

,nk22N( i
,nM j )n

k1Nm
,kM

i j
m , ~2!

Ṗi j 5NnPi j
,n1QAh~hmnMi j

m,n22hn( iM j )k
k,n!1QAh~4hnph

m( iM j )n
kM

kp
m

2hikhjnhrphsqM
rs

kM
pq

n1 1
2h

ikhjnMkMn12Mnk
kM

i j
n22Mik

nM jn
k22hmnh

kpMim
kM

jn
p

22hn( iM j )k
kMn1Mi j

nhnkMk2Q21@hikhjnQ,kn12Mk( i
nhj )nQ,k2Mi j

mhmkQ,k

2hi j ~hknQ,kn12Mkm
mQ,k!#12PikhknP

n j2 3
2PPi j 1hi j ~ 1

2P
22hmrhnsP

mnPrs!!

22Pk( iNj )
,k . ~3!

Here,hi j is the inverse intrinsic metric of the spacelike hypersurfacesS t , Pi j
ªki j 2hi j k denotes

a linear combination of the extrinsic curvatureki j of the slice and its tracek, andMi j
kª

1
2(h

i j
,k
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2hijhrsh
rs

,k) represents a linear combination of spatial derivatives of the inverse intrinsic m
The functionsP andMk are abbreviations forhi j P

i j andhi j M
i j

k , respectively, andQ andNi are
arbitrarily given functions fixing the gauge degrees of freedom.

This evolution system is symmetric hyperbolic with respect to the inner product

^h1
i j ,P1

i j ,M1 k
i j uHeuh2

i j ,P2
i j ,M2 k

i j &ªE
S t

$eimejnh̄1
i j h2

mn1eimejnP̄1
i j P2

mn1eimejneklM̄1 k
i j M2 l

mn%dS,

~4!

whereei j denotes an Euclidean flat metric on the hypersurfaceS t . It is completed by the follow-
ing set of constraints equations:

C50, Ci50, Ci j
k50, ~5!

where

C[2Mkn
n,k1hpqM

pk
nMqn

k2Mkq
qMk1 1

4h
knMkMn2 1

2hmnhrsh
pqMmr

pMns
q

2 1
2hmnhrsP

mrPns1 1
4P

2, ~6!

Ci[Pik
,k22hmnM

im
kP

nk2 1
2h

ikPMk1hmnhpqh
ikMmp

kP
nq1 3

2P
ikMk , ~7!

Ci j
k[2Mi j

k2hi j hpqM
pq

k2hi j
,k . ~8!

The first two constraints are the scalar and the vector constraint of Einstein’s equations,
the time–time and time–space components of the Einstein tensor for a given 311 decomposition
of space–time. The third is the statement that the tensorMi j

k is a linear combination of spatia
derivatives of the three-metric.

To solve the initial value problem of general relativity in this approach, one prescribe
initial data set (h0

i j ,P0
i j ,M0 k

i j ) at t50 which satisfies the constraints’ equations and subseque
solves the above evolution equations. Symmetric hyperbolicity of the evolution system im
that a unique local solution does exist.

By taking a time derivative of Eqs.~6!–~8! and using~1!–~3! to eliminate time derivatives in
favor of spatial derivatives, the following evolution equations for the constraints are obtain

Ċ5NnC,n13QAhCk
,k1¯ , ~9!

Ċi5NnCi
,n1QAh~hikC,k1hrsCik

@r ,k#s1hishklhmnCmn
@s,k# l !1¯ , ~10!

Ċi j
k5NnCi j

k,n22QAh~2dk
( iCj )2hi j hklCl !1¯ , ~11!

where the ellipses ‘‘̄ ’’ represent undifferentiated terms which are linear in the constraint qu
tities and at least linear in the variablesPi j andMi j

k .
Since Eq.~10! is of second order in spatial derivatives, we introduce a further constrain4

Ci j
klª2Mi j

@k,l #12Mi j
[kM l ] . ~12!

~One could also consider the constraintCi
j[Cik

jk , which still makes the constraint system sym
metric hyperbolic and produces a smaller number of extra fields.! By taking a time derivative of
~12!, we obtain

Ċi j
kl5NnCi j

kl,n22QAh~dk
( iCj )

,l2d l
( iCj )

,k!1¯ , ~13!

and by plugging~12! into ~10!, we see that the evolution equation forCi can be rewritten as
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Ċi5NnCi
,n1QAh~hikC,k1hrsCik

rk,s!1¯ . ~14!

The constraint quantitiesC, Ci , Ci j
k , and Ci j

kl thus propagate according to the first-ord
system of equations consisting of~9!, ~11!, and ~13!–~14!, which is symmetric hyperbolic with
respect to the following inner product:

^C1 ,C1
i ,C1 k

i j ,C1 kl
i j uHCuC2 ,C2

i ,C2 k
i j ,C2 kl

i j &ªE
S t
H 1

3
C̄1C21ei j C̄1

i C2
j 1ei j ekle

rsC̄1 r
ik C2 s

j l

1
1

4
eimejnekpelqC̄1 kl

i j C2 pq
mn J dS. ~15!

The uniqueness of the solutions to this system implies that if the constraints are initially sat
then the exact evolution equations preserve them. When, as in numerical simulations, th
straint variables initially are not precisely zero, then the corresponding solution is, in ge
carried away from the constraint surface during time evolution. However, since the evo
equations for the constraint variables are symmetric hyperbolic, the violation of the cons
becomes smaller when the constraints initially are satisfied with better accuracy.

In order to obtain a system with an asymptotically stable constraint submanifold, we pr
a modification of Einstein’s equations, which is inspired by the behavior of dissipative sys
where a transient eventually is dissipated away as the system settles down. We extend th
dynamical variables by considering the following ‘‘time integrals’’ of the constraint variable

l̇5a0C2b0l, ~16!

l̇ i5a1Ci2b1l i , ~17!

l̇ i j
k5a3Ci j

k2b3l i j
k , ~18!

l̇ i j
kl5a4Ci j

kl2b4l i j
kl , ~19!

where the tensor-valuedl-variables are assumed to have the same symmetries as the corres
ing C-variables, and wherea iÞ0 andb i.0 are constants.

Equations~16!–~19! represent evolution equations for thel-variables which in terms of the
fundamental variables (hi j ,Pi j ,Mi j

k) are given by

l̇5a0~2Mkn
n,k1hpqM

pk
nMqn

k2Mkq
qMk1 1

4h
knMkMn!2b0l, ~20!

l̇ i5a1~Pik
,k22hmnM

im
kP

nk2 1
2h

ikPMk!2b1l i , ~21!

l̇ i j
k5a3~2Mi j

k2hi j hrsM
rs

k2hi j
,k!2b3l i j

k , ~22!

l̇ i j
kl5a4~2Mi j

@k,l #12Mi j
[kM l ] !2b4l i j

kl . ~23!

In the present form, the combined system~1!–~3!, ~20!–~23! is not symmetric hyperbolic, since
Eqs.~20!–~23! involve spatial derivatives of the variables (hi j ,Pi j ,Mi j

k), whereas Eqs.~1!–~3! do
not containl-variables at all. However, by adding terms containing first derivatives of
l-variables it is possible to bring the system~1!–~3!, ~20!–~23! into a symmetric hyperbolic form

ḣi j 5a3hmnl i j
m,n1Nnhi j

,n1source terms, ~24!

Ṁ i j
k52a4hlml i j

kl,m2a0dk
( ihj ) ll ,l1NnMi j

k,n1QAh~Pi j
,k22dk

( i Pj )n
,n!1source terms,

~25!
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Ṗi j 5a2hl ( il j )
,l1NnPi j

,n1QAh~hmnMi j
m,n22hn( iM j )k

k,n!1source terms. ~26!

By construction, the ‘‘l-system’’ ~20!–~26! is symmetric hyperbolic with respect to the inn
product

^h1
i j ,P1

i j ,M1 k
i j ,l1 ,l1

i ,l1 k
i j ,l1 kl

i j uHE
l uh2

i j ,P2
i j ,M2 k

i j ,l2 ,l2
i ,l2 k

i j ,l2 kl
i j &

ªE
S t

$eimejnh̄1
i j h2

mn1eimejnP̄1
i j P2

mn1eimejneklM̄1 k
i j M2

mn
11l̄1l21ei j l̄1

i l2
j

1eipejqekrl̄1 k
i j l2 r

pq1eipejqekrelsl̄1 kl
i j l2 rs

pq %dS. ~27!

The initial data for this purely dynamical set of equations consists of arbitrary functions

~h0
i j ,P0

i j ,M0 k
i j ,l0 ,l0

i ,l0 k
i j ,l0 kl

i j !. ~28!

However, the dynamical degrees of freedom are extended by 40l-variables.
Clearly, for an arbitrary solution to Einstein’s equations, (hE

i j ,PE
i j ,ME k

i j ), the embedded field
configuration (hi j ,Pi j ,Mi j

k ,l,l i ,l i j
k ,l i j

kl)ª(hE
i j ,PE

i j ,ME k
i j ,0,0,0,0) is a solution to the

l-system. Conversely, every solution to thel-system with vanishingl-variables is also a solution
to Einstein’s equations. Due to this property, and since the solutions to thel-system are unique
the l-system naturally reproduces the dynamics on the constraint submanifold of general r
ity.

Note that if the constraints are initially not satisfied, then, even when thel-variables initially
vanish, thel-variables would pick up a nonzero value during time evolution. Hence, solution
thel-system corresponding to such initial data sets would not represent solutions to the co
set of Einstein’s equations. In fact, they would not even solve the evolution equations of g
relativity. However, for constraint- andl-variables which initially are sufficiently close to zero
we suspect that the solutions asymptotically approach solutions to the Einstein equations.
III, we give analytical evidence that this conjecture could be true.

The system is by no means uniquely ‘‘extended,’’ since one could still add nonprin
~undifferentiated! terms, as long as they vanish whenl5l i5l i j

k5l i j
kl50. Such terms might be

useful in order to treat the strongly nonlinear regime. Of particular interest might be to choo
coefficientsa i andb i , which control the damping in thel-equations, to be quadratic functions
the basic variables (hi j ,Pi j ,Mi j

k), so that the damping becomes stronger at points where
nonlinearities intensify.

It is fairly easy to implement similar schemes for alternative symmetric hyperbolic sys
for the Einstein equations, as well as for symmetric hyperbolic systems for other theories
constraints, like, for instance, Yang–Mills theories. The strategy is the same: One writes equ
with damping for first integrals of the constraints and modifies the evolution equations suc
the extended system becomes symmetric hyperbolic. This can always be achieved, beca
inclusion of the new equations modifies an off-diagonal sector of the principal symbol mat

III. ASYMPTOTIC STABILITY OF THE CONSTRAINT PROPAGATION

The inclusion of thel-terms into ~1!–~3! affects, in turn, the evolution of the constrai
quantitiesC, Ci , Ci j

k , andCi j
kl . Recalculating the time derivative of these, and using~24!–~26!,

yields the constraint evolution equations for the new system,

Ċ5NnC,n13QAhCk
,k22a4hmnlkl

km,nl12a0hmnl ,mn1¯ , ~29!

Ċi5NnCi
,n1QAh~hikC,k1hrsCik

rk,s!1a1hm(nl i )
,mn1¯ , ~30!
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Ċi j
k5NnCi j

k,n22QAh~2dk
( iCj )2hi j hklC

l !12a3hmnl i j
m,nk

12a4hmn~2l i j
km,n2hi j hrsl

rs
km,n!2a0~2d ( i

kh
j ) ll ,l2hi j l ,k!1¯ , ~31!

Ċi j
kl5NnCi j

kl,n22QAh~dk
( iCj )

,l2d l
( iCj )

,k!12a4~hmnl i j
km,nl2hmnl i j

lm,nk!

2a0~dk
( ihj )ml ,ml1d l

( ihj )ml ,mk!1¯ . ~32!

Again the ellipses ‘‘...’’ represent undifferentiated terms that are linear in the constraint quan
and at least linear in (Pi j ,Mi j

k).
The propagation of the constraints is ruled by the system of equations consisting of~16!–~19!

and ~29!–~32!, which determines whether or not the constraints asymptotically ‘‘decay’’ to z
The crucial feature of this system is that the right-hand side also contains nonprincipal
Roughly speaking, the operator on the right-hand side amplifies constraint violations if the m
representing its action on periodic functions has any eigenvalue with a positive real part. O
other hand, if all the eigenvalues have a negative real part, the operator induces an asy
decay of these violations.

Instead of attacking the full nonlinear problem as stated, which represents a problem
beyond the scope of present analytical techniques, we consider the linear regime of g
relativity. That is, we restrict attention to three-metrics of the formhi j 5ei j 1eg i j with ei j 5d i j

and e!1. This implies that the variables (Pi j ,Mi j
k) are of first order ine, as are the constrain

quantities (C,Ci ,Ci j
k ,Ci j

kl) and the variables (l,l i ,l i j
k ,l i j

kl). Thus, the terms represented by t
ellipses ‘‘̄ ’’ in Eqs. ~29!–~32! are of second order ine and shall be neglected. Without loss
generality, we restrict the following arguments to the case where the gauge source functionsQ and
Ni are constant. All arguments that follow refer to this linearized regime.

Although we lack a proof for the nonlinear case, the following considerations provide
lytical evidence for the asymptotic stability of the constraint propagation, in particular sinc
full evolution equations are quasilinear.

For, as we believe, purely technical reasons, we adopt the following choice of coeffic
b05b15b35b4[b.0 anda45()/2)a0 .

Theorem 1: With the above assumptions, the constraint submanifold of the linearized
stein equations is an asymptotically stable submanifold for the solutions to the linea
l-extended Einstein equations.

We partition the proof of this theorem in several lemmas: We first show that the initial v
problem is well posed and that the solutions stay bounded with time. Thus, it is possible to
Laplace transformation techniques, which reduce the problem to the study of the eigenfrequ
of the system. For these frequencies, we show that the real part is nonpositive, only appr
zero as the wave number goes to zero, and does so quadratically. Then stability follows
estimates in Ref. 6.

Without loss of generality, we expand the linearized dynamical fields in Fourier integra
the the following form:

l~x,t !5E l̂~k,t !exp~ ik•x!d3k, ~33!

l i~x,t !5E l̂ i~k,t !exp~ ik•x!d3k, ~34!

] ~35!

Ci j
k~x,t !5E Ĉi j

k~k,t !exp~ ik•x!d3k, ~36!
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Ci j
kl~x,t !5E Ĉi j

kl~k,t !exp~ ik•x!d3k, ~37!

wherek•xªkix
i .

In terms of the Fourier transformed variables, Eqs.~29!–~32! and ~16!–~19! reduce to the
system of ordinary differential equations given by

l̂
˙

52bl̂1a0Ĉ, ~38!

l̂
˙ i52bl̂ i1a1Ĉi , ~39!

l̂
˙ i j

kl52bl̂ i j
kl1
)

2
a0Ĉi j

kl , ~40!

Ĉ˙5 iknNnĈ13iQkmĈm1)a0l̂ rl
rmkmkl22a0l̂knkn , ~41!

Ĉ˙5 iknNnĈi1 iQ~ki Ĉ1kr Ĉin
rn!2 1

2a1~knknl̂ i1kiknl̂n!, ~42!

Ċ̂i j
kl5 iknNnĈi j

kl22iQ~dk
( i Ĉj )kl2d l

( i Ĉj )kk!2)a0~ l̂ i j
krk

rkl2l̂ i j
lr k

rkk!

1a0l̂~dk
( ikj )kl2d l

( ikj )kk!, ~43!

and

l̂
˙ i j

k52bl̂ i j
k1a3Ĉi j

k , ~44!

Ĉ˙ i j
k5 iknNnĈi j

k2a3l̂ i j
mkmkk1Ŝi j

k , ~45!

where

Ŝi j
kª22Q~2dk

( i Ĉj )2d i j Ĉk!2a0~2d ( i
kk

j )2hi j kk!l̂1)a0km~2l̂ i j
km2hi j hrsl̂

rs
km!. ~46!

This system of equations naturally splits up in two subsystems, since Eqs.~38!–~42! couple to
Eqs.~44! and~45! only via the ‘‘source’’ term in~45!. In the following, we will first establish tha
the solutions to the subsystem~38!–~42!, and hence the coupling term in~45!, asymptotically
decay to zero. In a second step, we consider this coupling as a given, decaying source, and
the asymptotic behavior of solutions to the subsystem~44!–~45!.

Lemma 1: LetH be the space of the Fourier transformedl̂ i j
klPL2, and letD,H be the

subspace defined byl̂ i j
ksk

s50. ThenD is invariant under time evolution, and the trivial solutio

l̂ i j
kl50 is asymptotically stable for the evolution restricted toD.

Proof: Multiplying Eq. ~40! by km , antisymmetrizing, and using thatĈi j
[klkm]5M̂ i j

[kklkm]

50, we obtain

l̂
˙ i j

[klkm]52bl̂ i j
[klkm] . ~47!

Next we note that for a functionl̂ i j
kl in H, the component (l̂ i j

kl)
i in D is given by (l̂ i j

kl)
i

5â i j kre rkl , whereâ i j 5l̂ i j
[klkr ]e

klr /(6k2). Equation~47! is, therefore, equivalent to

~ l̂
˙ i j

kl!
i52b~l̂ i j

kl!
i, ~48!
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which proves lemma 1.
By direct inspection of the evolution equations, it follows that the equation for the compo

of l̂ i j
kl in the subspaceD decouples. It is, therefore, sufficient to concentrate on the evolutio

the spaceCFl % CFC which comprises those functions (l̂,l̂ i ,l̂ i j
kl ,Ĉ,Ĉi ,Ĉi j

kl)PL2 for which

l̂ i j
klPD'. Here,D' denotes theL2 complement ofD in H, which, as easily seen, is spanned

the elementsl̂ i j
klPL2 satisfying l̂ i j

[klkm]50. ~For functionsl̂ i j
kl in D only the components

alongkm are nontrivial,l̂ i j
kl522k[ l l̂

i j
k]mkm/k2. This can be seen by solvingl̂ i j

[klkm]50, and

by using the antisymmetry in the lower indices ofl̂ i j
kl .! Since for the constraint variableĈi j

kl ,

the same property is fulfilled,Ĉi j
[klkm]50, this shows that the spacesCFl andCFC are naturally

isomorphic,CFl'CFC5:CF.
To simplify the notation, and to display the structure of the evolution equations consid

more transparently, let us introduce the following operatorE acting on functionsv[(v,v i ,v i j
kl) in

CF:

E~v![~E~v!,Ei~v!,Ei j
kl~v!!, ~49!

where

E~v![)a0v rl
rmkmkl22a0vknkn , ~50!

Ei~v![2 1
2a1~v iknkn1vnkikn!, ~51!

Ei j
kl~v![2)a0~v i j

knk
nkl2v i j

lnknkk!1a0v~dk
( ikj )kl2d l

( ikj )kk!. ~52!

Taking advantage of these definitions, the evolution system~38!–~43! restricted to the subspac
CF% CF can be rewritten as

d

dt S l

CD5S 2S G

E iAD S l

CD5:PS l

CD , ~53!

whereS andG are diagonal matrices determined by the parametersb anda i , respectively, and
whereA is an operator of the formAmkm .

In a next step, we show that the operatorePt is bounded with respect to a suitably chos
norm. To this end, we first establish the following:

Lemma 2: The operator Hlª2G21HcE considered as a matrix-valued field on the Fouri
space R3 is symmetric and coercive with respect to the inner product^u,v&ªūv1ei j ū

iv j

1eipejqekrelsūi j
klv

pq
rs . That is, ^u,Hlv&5^Hlu,v& for all u,vPCF, and there exists a constan

c.0 such that̂ u,Hlu&>ck2(u,u) for all uPCF.
Proof: We have

^u,G21HcE~v!&2^G21HcE~u!,v&

5
1

3a0
ū~22a0vknkn1)a0vkl

kmkmkl !1
1

a1
ūi S 2

a1

2
~v j knkn1kjv lkl ! Dei j

1
1

2)a0

eimejnekpelqūi j
kl~22)a0vmn

psk
skq12a0vdm

pknkq!

2
1

3a0
v~22a0ūknkn1)a0ūkl

kmkmkl !2
1

a1
v i S 2

a1

2
~ ū jknkn1kj ūlkl ! Dei j
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1
1

2)a0

eimejnekpelqv i j
kl~22)a0ūmn

psk
skq12a0ūdm

pknkq!50.

The remaining part of the proof is given in Appendix A, where we show thatHl is coercitive with
constantc51/4.

With the help of lemma 2, it is now easy to prove
Lemma 3: The matrix-valued fieldsP6 ,

P1ªS S 0

0 0D , P2ªS 0 G

E iAD , ~54!

are Hermitian, respectively, anti-Hermitian with respect to the inner product

^~l1 ,C1!,HT~l2 ,C2!&ª^l1 ,Hll2&1^C1 ,HcC2&. ~55!

Proof: SinceS5bI , the statement forP1 is trivially true. The antisymmetry ofP follows
directly from lemma 2, and the symmetry ofA with respect toHc .

Taking advantage of lemma 3, we now obtain the following important estimate for the
eratorP5P11P2 :

HTP1P†HT5HlS1SHl522bHl<22b 1
4knkn<0, ~56!

where, for any Hermitian matrixM , the inequalityM<0 meanŝ v,Mv &<0 for all v. ~Clearly,
there are other possible choices of the operatorsS which lead to the same inequality. Here we ha
restricted ourselves to the simplest possibility, but for practical applications, alternative ch
might be better suited.!

The symmetry and coercivity of the operatorHl imply thatHl can be used to define a scal
product on a~dense! subspaceD(CF) of the Hilbert spaceCF,7 which, in turn, shows that the
operatorHT5Hc1Hl gives rises to a scalar product onCF%D(CF). ~In physical space, the
relevant function space equipped with the norm corresponding to the above scalar product
similar to the Sobolev spaceH0

1.!
As is well known~see, for instance, Ref. 7!, the estimate~56! implies that for allt.0, the

operatorePt is bounded with respect to the norm defined byHT . Hence, the initial value problem
for the system considered is well posed. Moreover, all solutions with initial data which
bounded with respect to this norm remain bounded for all positive times. Thus Laplace tra
mation techniques can be applied,7 and the relevant questions are thesign of the real part of the
eigenvalues ofP, and how fast they approach zero as the wave numberk5Akiki goes to zero.
Hence, the proof is reduced to the eigenvalue problem for the operatorP,

PS ls

Cs
D5sS ls

Cs
D . ~57!

Then we have the following:
Lemma 4: The eigenvalues of the above system have a nonpositive real part and furthe

there exist positive constants c1 and w1 such that

R~s!<2c1

k2

w11k2 ~58!

for all wave vectors ki .
Proof: From thel-rows of the eigenvalue equation, we get

Cs5~s1b!G21ls . ~59!
                                                                                                                



t of
e wave

r the

ecay
be

space

n-

y

l

919J. Math. Phys., Vol. 40, No. 2, February 1999 Brodbeck et al.

                    
Using this in theC-rows, we next obtain

~E1~s1b!~2sI1 iA!G21!ls50. ~60!

Multiplying Eq. ~60! by 2(G21)†Hc from the left and subsequently contracting withls , we find
the following second-order equation for the eigenvalues:

^ls ,Hlls&1~s1b!~s^ls ,~G21!†HcG21ls&2 i ^ls ,~G21!†HcAG21ls&!50. ~61!

The established properties of the involved operators imply that

c~ki
0!k2

ª

^ls ,Hlls&

^ls ,~G21!†HcG21ls&
~62!

is positive forkiÞ0, and that

b~ki
0!kª

^ls ,~G21!†HcAG21ls&

^ls ,~G21!†HcG21ls&
~63!

is real, whereki
0 denotes the unit vector in the direction ofki , andk is the norm ofki . Thus we

have for each direction ofki

~s1b!~s2 ibk!1ck250 ~64!

with b, b, c real andb, c positive. For this equation we prove in Appendix B that the real par
the roots satisfies the desired inequality, which establishes the result for each direction of th
vectorki . Using the maximal values of2c1k2/(w11k2) on the two-sphere of directions ofki ,
we obtain the final inequality.

With this bound on the decay constants, it is now easy to prove asymptotic stability fo
subsystem~38!–~43!. Splitting the set of solutions into a part with frequencies withk,1, and
another withk>1, the above bound tells us that the solutions of the higher frequency part d
faster than exp(2c1t/(w111)), while the decay of the solutions of the low frequency part can
estimated as in Ref. 6, lemma 1 and 2 of Sec. III#.

We now turn our attention to the second set of equations, given by~44! and~45!, and establish
the following:

Lemma 5: LetH3 be the space of the Fourier transformed(l̂ i j
k ,Ĉi j

k)PL2. ThenH3 is

invariant under time evolution, and the trivial solution(l̂ i j
k ,Ĉi j

k)50 is asymptotically stable for
the evolution restricted toH3 .

Proof: In a first step, we discuss the equation for the component of a solution in the sub

D3ª$~ l̂ i j
k ,Ĉi j

k!PL2ul̂ i j
mkm5Ĉi j

mkm50%. ~65!

Taking advantage of Eqs.~8!, ~12!, and~44!, we obtain

l̂
˙ i j

[kkl ]52bl̂ i j
[kkl ]1a3Ĉi j

[kkl ] , ~66!

iĈ i j
[kkl ]5Ĉi j

kl2
1
2d

i j dmnĈ
mn

kl , ~67!

which implies that the spaceD3 is invariant under time evolution. As already shown, the co

straint variableĈi j
kl asymptotically decays to zero. The dynamics inD3 is, therefore, described b

a system of ordinary differential equations of the formu̇52u1 f , wheref is a given source with
f→0 ast→`. Since any solution to this system satisfiesu→0 ast→`, it follows that solutions
in D3 decay with time.@For a proof, chooseT such thatf (t),e/2 for all t.T. Since the genera
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solution to the above system is given byu(t)5e2t(u(0)1*0
t et̃ f ( t̃ )d t̃), it follows that u(t)

<e2t(u(0)1*0
Tet̃ f ( t̃ )d t̃2eeT/2)1e/2. Hence, for a sufficiently large timet0.T, the absolute

value of the first term becomes smaller thane/2, which impliesuu(t)u,e for all t.t0 .#
It remains to discuss the complementary subspaceD3

' ,

D3
'5$~l i j

k ,Ĉi j
k!PL2ul̂ i j

[kkl ]5Ĉi j
[kkl ]50%. ~68!

For the component of a solution in this subspace, we find

d

dt S l3

C3
D5S 2b a3

2a3k2 ikmNmD S l3

C3
D2S 0

Fi j kk
D , ~69!

where (l3 ,C3)ª(l̂ i j
k ,Ĉi j

k)
'PD3

' , and whereF̂ i j kk is a shorthand for the perpendicular com

ponent of the source termŜi j
k , F̂ i j 5Ŝi j

mkm/k2. Thus, as expected, the subspaceD3 is invariant as
well.

SinceP̂i j and consequentlyĈi /uku5 P̂imkm /uku are contained inL2, Eq. ~46! implies that the

same is true forF̂ i j , F̂ i j PL2. Furthermore, the real part of the eigenvalues of the system~69! can,
as in lemma 4, be estimated by the inequality~58!, albeit for different constants. Adopting
similar reasoning as in the previous discussion, and applying lemmas 1 and 2 of Ref. 6
system, it follows that solutions inD3

' also decay with time.
This completes the proof of lemma 5 and hence the proof of our main result.

IV. CONCLUSIONS

In the present paper we have shown that an arbitrary system of symmetric hyperbolic
tion equations with constraints admits extensions to symmetric hyperbolic systems which
duce the original dynamics on the embedded constraint submanifold. We have given ana
evidence that the class of extensions proposed is sufficiently rich to contain systems for wh
embedded constraint submanifold is an attractor of the time evolution. For the Einstein equ
we have constructed an extended evolution system for which, at least in the linearized ca
property is fulfilled.

It is natural to expect that, by making use of techniques developed in Ref. 6, the results p
for the linearized Einstein equations can be generalized to the regime of nonlinear genera
tivity describing space–times in the vicinity of Minkowski space. However, to establish sim
results for more extended regions of the phase space of general relativity is well beyond the
of present analytic techniques.

Numerical experiences with the Navier–Stokes equations for incompressible fluids sho
asymptotic stability of the constraint submanifold is essential for accurate results.8 For this system,
techniques with a very similar effect have been used to include the incompressibility cons
into the evolution equations. On the basis of this observation, and the results establish
linearized gravity, we suspect that the extensions of Einstein’s equations constructed could
interest when obtaining numerical solutions to general relativity. Numerical experiments te
aspects of this conjecture are in progress.
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APPENDIX A: PROOF OF COERCIVITY

In this Appendix we show that

^u,Hlu&> 1
4knkn ~A1!

for unitary u satisfyingui j
rs5u( i j )

@rs# andui j
[ rskl ]50, as needed for Lemma 2. We treat this

the problem of extremizing the quadratic function ofu on the left-hand side of~A1! under the
constraint condition̂u,u&51.

From ~50!–~52!, we obtain

^u,Hlu&1tknkn~12^u,u&!5 2
3k

nknuū1 1
2k

nknui ūi1
1
2u

iki ūnkn1ui j
rsk

sūi j
rmkm2

)

3
ūui j

isk
skj

2
1

)
uūi j

isksk
j1tknkn~12uū2uiūi2ui j

rsūi j
rs!, ~A2!

wheret is a Lagrange multiplier and where indices are raised and lowered withei j . To simplify
the algebra, we choose a basis in whichkn5(0,0,k). Thenui j

rs50, except whens53. Hence,

F~u,t![^u,Hlu&1tknkn~12^u,u&!

5k2S 2
3uū1 1

2u
iūi1

1
2u

3ū31ui j
r3ūi j

r32
1

)
ūui3

i32
1

)
uūi3

i3

1t~12uū2uiūi2ui j
rsūi j

rs!D . ~A3!

The functionF(u,t) is extremized at points~u,t! where

]F

]u
1

]F

]ū
50, ~A4!

]F

]u
2

]F

]ū
50, ~A5!

]F

]t
50. ~A6!

Equation~A6! is the requirement thatu has unit length. Equations~A4! and ~A5! constitute a
homogeneous linear system of equations for the real and imaginary parts ofu. Sinceu cannot
vanish, the determinant of the linear system has to vanish. Up to numerical factors, this is gi

~2t21!13~t21!2~t2 1
6!. ~A7!

As easily verified,t51 yields the following minimal value ofF(u,t) @when evaluated at unitu
such that~A4!–~A5! are satisfied#:

F~umin,1!5 1
4k

2, ~A8!

from which ~A1! follows. The other extreme values ofF(u,t) are (5/3)k2 and (1/2)k2 for t51/
6,1/2.
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APPENDIX B: ON THE PROOF OF LEMMA 4

In this Appendix we prove that the rootss6 of the polynomial

P~s!5s21s~b2 ibk!1ck2 ~B1!

are subject to the inequality

R~s6!<2c1

k2

w11k2 , ~B2!

wherec15bc/(b214c) andw15b2/(b214c). As in the body of the text, it is assumed that t
parameters ofP are real, and thatb andc are strictly positive.

To begin with, let us rewrite the polynomialP, and the above estimate in terms of suitab
rescaled parameter. Defining

s̃5s/b, k̃52kAb214c/b, b̃5b/Ab214c, ~B3!

and dropping tildes, we obtain for the polynomial

P/b25s21s~12 ibk!1~12b2!k2/4. ~B4!

The estimate for the roots in terms of the scaled parameters assumes the form

R~s6!<2
g2

4

k2

11k2 , ~B5!

whereg2
ª12b2P(0,1#.

As easily verified, the roots of the scaled polynomial satisfy

max$R~2s1!,R~2s2!%5211uRA12k212ibku. ~B6!

It is, therefore, sufficient to show that

uRA12k212ibku<12
g2

2

k2

11k2 . ~B7!

To give a proof of this inequality, we first evaluate the identity

2uRAzu25uzu1R~z! ~B8!

for zª12k212ibk,

2uRAzu25A~12k2!214b2k21~12k2!5A~11k2!224g2k22~11k2!12.

Hence,

uRAzu2511~11k2!$A124g2k2/~11k2!221%/2<12g2
k2

11k2 , ~B9!

where we have used the estimateA12x<12x/2, which holds forx<1. Taking advantage of the
latter estimate once again, it follows that

uRAzu<12
g2

2

k2

11k2 , ~B10!
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which completes the proof of our claim.
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Gravitating brane systems: Some general theorems
K. A. Bronnikova)

Centre for Gravitation and Fundamental Metrology,
VNIIMS, 3-1 M. Ulyanovoy St., Moscow 117313, Russia

~Received 4 August 1998; accepted for publication 9 September 1998!

Multidimensional gravity interacting with intersecting electric and magnetic
p-branes is considered for fields depending on a single variable. Some general
features of the system behavior are revealed without solving the field equations.
Thus, essential asymptotic properties of isotropic cosmologies are indicated for
different signs of spatial curvature; a no-hair-type theorem and a single-time theo-
rem for black holes are proved~the latter makes sense in models with multiple time
coordinates!. The validity of the general observations is verified for a class of exact
solutions known for the cases when certain vectors, built from the input parameters
of the model, are either orthogonal in minisuperspace, or form mutually orthogonal
subsystems. From the nonexistence of Lorentzian wormholes, a universal restric-
tion is obtained, applicable to orthogonal or block-orthogonal subsystems of any
p-brane system. ©1999 American Institute of Physics.@S0022-2488~99!01402-4#

I. INTRODUCTION

In the weak field limits of the bosonic sectors of supergravities,1 superstring and M-theory
their generalizations and modifications,2–6 there naturally appear multiple self-gravitating sca
dilatonic fields and antisymmetric forms, associated withp-branes.

This paper continues the studies of such models on the basis of a general action, s~1!,
without fixing the total space-time dimensionD or other input parameters,7–16 thus to a large
extent abstracting from the details of specific underlying models, but with a hope to predict
features of new models, unformulated by now. We will here deal with the one-variable sec
the model, where all fields depend on a single coordinate: time in cosmological models, a
coordinate in spherically symmetric models, etc. In this case the model reduces to a Tod
dynamical system in minisuperspace, see~15!, ~16!.

Much work has been devoted to searches for exact solutions and their subsequent a
Thus, in Ref. 15 the most general one-variable solution was presented for the case when
vectorsYs in the target space, built from the input parameters of the model, form an orthog
system~OS!. This solution describes a set of intersecting electrically and magnetically cha
p-branes and generalized many previously found ones, beginning with Schwarzschil
Reissner-Nordstro¨m and ending with dilatonic and some more specialp-brane solutions~see Refs,
4, 16–19, and references therein!. The OS solution was further generalized20 to models whereYs

forms a block-orthogonal system~BOS!. The OS solution is recovered when each block cons
of a single vector. Other families of exact solutions have been found for cases whenYs forms the
bases of integrable Toda models, see Refs. 14, 19, 21, and references therein. Many solut
known beyond the one-variable sector~see Ref. 22, and references therein!.

The exact solutions have disclosed many features of interest of physically relevant co
rations, such as cosmological models and black holes. The generality of these features r
however, questionable, since the equations of motion can be solved exactly only for s
~though numerous! choices of the input parameters. To have an idea of what can and what c
be expected from yet unknown solutions, it makes sense to try to extract some information d
from the equations. Such an attempt is undertaken here.

a!Electronic mail: kb@rgs.mccme.ru
9240022-2488/99/40(2)/924/15/$15.00 © 1999 American Institute of Physics
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It appears possible to reveal some important properties ofp-brane cosmologies, namely, th
nature of asymptotics for different signs of spatial curvature. For spherically symmetric con
rations, among other results, two theorems about black holes~BHs! are proved: a ‘‘no-hair theo-
rem,’’ that a BH is incompatible with the so-called quasiscalarF-forms ~see~5!!, and a ‘‘single-
time theorem,’’ that even in spaces with multiple times a black hole may only exist wit
unique, one-dimensional~physical! time.

One more general observation is20 the absence of spherically symmetric Lorentzian wor
holes under the requirement that all the fields bear positive energy, just as in conventional g
relativity. On the other hand, for the known families@OS and BOS~Ref. 20!# of exact solutions
one can deduce necessary and sufficient conditions under which a specific solution desc
wormhole, no matter, Lorentzian or Euclidean. Combined, these results lead to a universal
tion upon the input parameters of the model, valid for any brane system which has an OS o
subsystem~Theorems 4 and 4a, already announced20 in a slightly different form!. Having been
obtained on the basis of specific exact solutions, this restriction still applies to systems for
solutions are yet to be found.

The paper is organized as follows. The introductory Sec. II describes the model and a c
nient Toda-type representation of its one-variable sector, in line with our previous papers. S
III is devoted to general properties of cosmological and spherically symmetricp-brane configu-
rations. Section IV gives a brief description of the OS and BOS solutions, necessary for obt
the above-mentioned universal restriction. The latter is formulated in Sec. V. Section VI co
some concluding remarks, in particular, on the use of different conformal frames.

II. THE MODEL: MINISUPERSPACE REPRESENTATION

The starting point is, as in Refs. 10–15, the model action forD-dimensional gravity with
several scalar dilatonic fieldswa and antisymmetricns-forms Fs :

S5
1

2k2EMdDzAugu H R@g#2dabg
MN]Mwa]Nwb2(

sPS

hs

ns!
e2lsaw

a
Fs

2J , ~1!

in a ~pseudo-!Riemannian manifoldM5Ru3M03¯3Mn with the metric

ds25gMNdzMdzN5we2a~u!du21(
i 50

n

e2b i ~u!dsi
2 , w561, ~2!

whereu is a selected coordinate ranging inRu#R; gi5dsi
2 are metrics ondi-dimensional factor

spacesMi of arbitrary signatures« i5sign gi ; ugu5udet gMNu and similarly for subspaces;Fs
2

5Fs, M1 . . . Mns
F

s

M1 . . . Mns ; lsa are coupling constants;hs561 ~to be specified later!; sPS, a

PA, whereS andA are some finite sets. AllMi ,i .0 are assumed to be Ricci-flat, whileM0 is
allowed to be a space of constant curvatureK050, 61.

In the one-variable sector,wa5wa(u). The set of indicesS5$s% in ~1! will be used to jointly
describe essentiallyu-dependent electric (FeI) and magnetic (FmI) F-forms, to be associated with
different subsetsI 5$ i 1 ,¯,i k% ( i 1, . . . , i k) of the set of numbers labelling the factor spac
$ i %5I 05$0, . . . ,n%. Thus one can write

S5$s%5$eIs%ø$mIs%. ~3!

A given F-form may have several essentially~nonpermutatively! different components, both elec
tric and magnetic; such a situation is sometimes called ‘‘compositep-branes.’’18,23

For convenience, we will nevertheless treat essentially different components of the
F-form as individual~‘‘elementary’’! F-forms. A subsequent reformulation to the composite
satz is straightforward.
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So, by construction, nonzero components ofFeI carry coordinate indices ofu and the sub-

spacesMi ,i PI , those ofFmI — the indices ofMi ,i P Ī 5
def

I 0\I since a magnetic form is built a
a form dual to a possible electric one. Therefore

neI5rankFeI5d~ I !11, nmI5rankFmI5D2rankFeI5d~ Ī !, ~4!

whered(I )5( i PIdi are the dimensions of the subspacesMI5Mi 1
3¯3Mi k

.
Several electric and/or magnetic forms~with maybe different coupling constantslsa) can be

associated with the sameI and are then labeled by different values ofs. ~The indexs by I is,
however, sometimes omitted when this cannot cause confusion.!

This problem setting covers various classes of models: isotropic and anisotropic cos
gies whereu is a timelike coordinate andw521; static models with various spatial symm
tries ~spherical, planar, pseudospherical, cylindrical, toroidal!, whereu is a spatial coordinate
w511, and time is selected amongMi ; and Euclidean models with similar symmetries
models with a Euclidean ‘‘external’’ space-time, where alsow511.

A simple analysis shows that a positive energy density2Tt
t of the fieldsFs is achieved in all

Lorentzian models with the signature (211¯1) if one chooses in~1!, as usual,hs51 for all
s. In more general models, with arbitrary« i , the requirement2Tt

t.0 is fulfilled if

heI52«~ I !« t~ I !, hmI52«~ Ī !« t~ Ī ! ~5!

«~ I !5
def

)
i PI

« i , « t~ I !5H 1, Rt,MI ,

21 otherwise,
~6!

whereRt is the time axis. If« t(I )51, we are dealing with a genuine electric or magnetic fie
while otherwise theF-form behaves as an effective scalar or pseudoscalar in the physical
space. The latter happens, in particular, in isotropic cosmologies and their Euclidean count
where the time coordinate isu andRt5Ru, unrelated to any subsetI . F-forms with « t(I )521
will be calledquasiscalar.

Example: Consider a spherically symmetric configuration, withD56, M5R03R13S2

3R43R5 , where the coordinate indices 0, 1, 4, 5, refer to time, radius and two extra dimen
2 and 3 to the spherical angles, respectively; thusR05Rt andR15Ru . Then, for rankF53, the
componentF015 is electric, I °(0,5); F234 is magnetic,I °(0,5); F145 is electric quasiscalar
I °(4,5); F023 is magnetic quasiscalar,I °(4,5), where the figures in parentheses are coordin
indices of the respective subspacesMI .

Let us now, as in Ref. 24 and many later papers, choose the harmonicu coordinate
(¹M¹Mu50), such that

a~u!5(
i 50

n

dib
i[d0b01s1~u!, s1~u!5

def

(
i 51

n

dib
i . ~7!

The Maxwell-type equations due to~1! for the F-forms are easily integrated, giving

FeI
uM1 . . . Md~ I !5QeIe

22a22l̄eIw̄«M1 . . . Md~ I !/AugI u, QeI5const, ~8!

FmI, M1 . . . Md~ Ī !
5QmI«M1 . . . Md~ Ī !

AugĪ u, QmI5const, ~9!

whereugI u5) i PI ugi u, Qs are charges and overbars replace summing ina. In what follows we will
restrict the setS5$s% to suchs that the chargesQsÞ0.

Consequently, at the r.h.s. of the Einstein equations due to~1!, RM
N 2 1

2dM
N R5TM

N , the energy-
momentum tensor~EMT! TM

N takes the form
                                                                                                                



-

nd is

n

927J. Math. Phys., Vol. 40, No. 2, February 1999 K. A. Bronnikov

                    
e2aTM
N 52

w

2(
s

esQs
2e2s~ I !22xsl̄sw̄diag~11,@1# I ,@21# Ī !1

w

2
~ ẇa!2diag~11,@21# I 0

!, ~10!

where the first place on the diagonal belongs tou and the symbol@ f #J means that the quantityf is

repeated along the diagonal for all indices referring toMj , j PJ; s(I )5
def

( i PIdib
i ; the sign factors

es andxs are

eeI52heI«~ I !, emI5whmI«~ Ī !; xeI511, xmI521, ~11!

so thatxs distinguishes electric and magnetic forms.
Let us suppose, as is usually~and reasonably! done inp-brane studies, thatneither of Is such

that QsÞ0 contains the index 0, that is, neither of the branes ‘‘lives’’ in the subspaceM0 ,
interpreted as the external space or its subspace.~This means that, e.g., in the spherically sym
metric case there is no electric or magnetic field along a coordinate sphereM05Sd0.! Then each
constituent EMT and hence the total EMT possess the propertyTu

u1Tz
z50 if z belongs toM0 . As

a result, the corresponding combination of the Einstein equations has a Liouville form a
integrated:

ä2b̈05wK0~d021!2e2a22b0
50,

~12!

eb02a5~d021!S~wK0 ,k,u!,

wherek is an integration constant~IC! and we have introduced the notation

S~1,h,t !5H h21sinhht, h.0,

t, h50,

h21sin ht, h,0;

S~21,h,t !5h21coshht, h.0; ~13!

S~0,h,t !5eht, hPR.

Another IC is suppressed by properly choosing the origin of theu coordinate.

With ~12! the D-dimensional line element may be written in the form (d̄5
def

d021)

ds25
e22s1 /d̄

@ d̄S~wK0 ,k,u!#2/d̄F w du2

@ d̄S~wK0 ,k,u!#2
1ds0

2G1(
i 51

n

e2b i
dsi

2 . ~14!

Let us treat the remaining set of unknownsb i(u),wa(u) as a real-valued vector functio
xA(u) ~so that$A%5$1, . . . ,n%øA) in an (n1uAu)-dimensional vector spaceV ~target space!.
The field equations forb i andwa can be derived from the Toda-type Lagrangian

L5GABẋAẋB2VQ~y![(
i 51

n

~ ḃ i !21
ṡ1

2

d021
1dabẇ

aẇb2VQ~y!,

~15!

VQ~y!52(
s

esQs
2e2ys,

with the ‘‘energy’’ constraint
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E5GABẋAẋB1VQ~y!5
d0

d021
K, K5H k2sign k, wK051;

k2, wK050,21,
~16!

where the ICk has appeared in~12!. The nondegenerate symmetric matrix

~GAB!5S didj /d̄1did i j 0

0 dab
D ~17!

defines a positive-definite metric inV; the functionsys(u) are defined as scalar products:

ys5s~ I s!2xsl̄sw̄[Ys,AxA, ~Ys,A!5~did i I s
, 2xslsa!, ~18!

whered i I 51 if i PI andd i I 50 otherwise. The contravariant components and scalar produc
the vectorsYs are found using the matrixGAB inverse toGAB :

~GAB!5S d i j /di21/D̄ 0

0 dabD , ~Ys
A!5S d i I 2

d~ I !

D̄
, 2xslsaD ; ~19!

Ys,AYs8
A[YsYs85d~ I sùI s8!2

d~ I s!d~ I s8!

D̄
1xsxs8l̄sl̄s8 , D̄5D22. ~20!

The equations of motion in terms ofYs read

ẍA5(
s

qsYs
Ae2ys, qs5

def

esQs
2 . ~21!

III. GENERAL PROPERTIES OF THE BRANE SYSTEMS

The positive energy requirement~5! that fixes the input signshs , can be written as follows for
Lorentzian models using the notations~11!:

es5« t~ I s!. ~22!

The corresponding requirement for Euclidean models is obtained by applying the conven
Wick rotation to Lorentzian cosmologies. This rotation of the timet changesw but preserves allhs

as well as«(I ) sinceRt,”MI , ;I . Then by~11!, eeI remain invariable whileemI change. This
distinction between electric and magnetic forms is also connected with the property of the d
transformation to change the sign of the EMT in Euclidean models.25,26

Table I shows the sign factorswK0 andes5sign qs for F-forms in different classes of model
under the above positive energy requirement.

In what follows, we restrict ourselves to the model described in Sec. II with the sign fa
specified in Table I, unless specially indicated.

TABLE I. Sign factorswK0 andes for different kinds of models.

Cosmology Static spaces Euclidean
w521 w511 w511

es

wK0 2K0 K0 K0

Electric none 11 none
Magnetic none 11 none
Electric quasiscalar 21 21 21
Magnetic quasiscalar 21 21 11
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One general statement, to be taken into account in the subsequent proofs, can be formu
a lemma:

Lemma 1: At any regular point of the space-time, for all aPA and sPS,

e22a~ẇa!2,`, e22a12ys,`. ~23!

Indeed, regularity implies finite values of all curvature invariants, includingR and RM
N RN

M ; by
virtue of the Einstein equations, one must haveTM

N TN
M,`. SinceTM

N has a block-diagonal struc
ture, the latter invariant can be written as a sum of squares, where each summand must
finite, including (Tt

t)2. The componentTt
t is in turn, due to~22!, a sum of negative-definite terms

corresponding to scalar fieldswa and F-forms Fs . Therefore every such term must be finit
leading to~23!.

A. Isotropic cosmology

Table I shows that in isotropic cosmologies, whenu is a time coordinate andM0 is identified
with the physical space~conventionallyd053), es521: there are only quasiscalar forms since
true electric or magnetic field would violate the spatial isotropy.

The logarithm of the extra-dimension volume factor,s1 , by virtue of~21! obeys the equation

s̈152
d021

D22(
s

d~ I s!Qs
2e2ys, ~24!

whences̈1,0. So this volume factor cannot have a minimum and, moreover, if it tends to a
valuees10 asu→6`, at other values ofu it is smaller thanes10. This feature is unfavorable fo
obtaining models with the so-called dynamical compactification, where the size of extra d
sions decreases to microscopic scales in the course of the evolution.

Next, due toes521, both terms in the expression~16! for E are positive-definite, so tha
nontrivial solutions correspond tok.0. The range ofu is R for K050,11 and~without loss of
generality! u.0 for K0521. By ~13! and ~14!, the model asymptotics are characterized
follows.

For any K0 , at the asymptoticu→1` the total volume factored0b01s1 ~which, by ~7!,
coincides withea) tends to zero. Although separately the physical scale factora(u)5eb0 and the
‘‘internal’’ one, es1, may have various limits, the behavior ofea indicates that this asymptotic i
singular. Moreover, since asymptoticallya;cu, c5const,0, the proper timet5*eadu,`: the
singularity occurs at a finite proper time.

For K0511 the other asymptoticu→2` is like the one just described, due to the symme
of the function coshku in ~13!. Thus closed models evolve in a finite proper time interval betw
two singularities where the total volume of the Universe tends to zero.

For K050, the asymptoticu→2` corresponds to an infinitely growing total volume fact
ea while the proper timet is also infinite. In the special case whens1→s105const, the physical
scale factora obeys the lawa;utu1/d0.

For K0521 the second asymptotic isu→0, and this is a regular point of the equations
motion ~21! determiningxA. So the metric behavior is~now in the general case! governed by the
function S(1,k,u)'u in ~14!, while all eb i

, i .0 and consequentlys1 tend to finite limits. As
u→0,

ea;u2121/d̄, utu;u21/d̄→`, a~ t !5eb0
;utu, ~25!

corresponding to linear expansion or contraction of the physical space.
Finally, Eq.~16! with VQ.0 implies that allẋA are bounded above, hencexA(u) are finite for

all finite u and cannot create a singularity. Therefore the above description of the asympto
quite general and applies to all isotropic cosmologies in the field model under consideratio
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It should be noted, however, that this discussion concerns the model behavior i
D-dimensional Einstein conformal frame, in which the action~1! was postulated. See furthe
comments in Sec. VI. One can add that after reduction to 11d0 physical dimensions, one obtain
cosmology with a set of interacting massless scalar fields, so that the (11d0)-metric can be
written explicitly: in the (11d0)-dimensional Einstein frame it corresponds to the well-kno
solutions with ultrastiff matter.

B. Static spherical symmetry: General observations

In static, spherically symmetric models, whereu is a radial coordinate,w511,M05Sd0,
K0511, among otherMi there should be a one-dimensional subspace, say,M1 , which may be
identified with time:«1521. The sign factorwK0 in ~12! is 11, while es is, due to~22!, 11 for
normal electric and magnetic formsFI and21 for quasiscalar ones.

By construction, see Eqs.~13!, ~14!, spatial infinity corresponds tou50 ~where the usual
‘‘area function’’ eb0

;u1/d̄) and, without loss of generality, the range ofu is

0,u,umax, ~26!

whereumax is either1`, or the smallest value ofu where the fields lose regularity.
The experience of dealing with particular models belonging to the class~1! indicates that a

generic spherically symmetric solution exhibits a naked singularity. Possible exceptions can~i!
black holes~BHs!, ~ii ! wormholes~WHs! or wormhole-like objects with a neck and a seco
nonsingular asymptotic,~iii ! configurations with a regular center~a soliton-like object, which
might be expected for an interacting field system! and, finally,~iv! a situation where the coordinat
patch we use is incomplete, terminates at a regular sphereu5umax ~which may be even infinitely
remote in our static frame of reference!, and a possible continuation may reveal either a singu
ity, or one of the opportunities~i!–~iii !.

One can show, however, that for our model only the BH opportunity is viable. Loren
WHs do not exist according to Ref. 20~see also Sec. V!, while variants~iii ! and~iv! are ruled out
by the following theorem:

Theorem 1: The model specified in Sec. II does not admit solutions describing a s
spherically symmetric configuration (a) with a regular center or (b) where u5umax corresponds
to a regular surface such thatM0 is a sphere of finite radius.

Proof: ~a! A regular center implies local flatness of the metric at someu5u* , whereeb0

50, while otherb i remain finite. One easily shows that with Ref. 14 it may happen only w
k50, u* 5umax5` ~otherwise the correct radius-to-circumference ratio for small circles aro
the center cannot be achieved!.Then due to~7!, sinceus1u,`,

eb0
;u1/~d021!, ea;u2d0 /~d021! as u→`. ~27!

On the other hand, the EMT regularity requirement27 ~see Lemma 1! leads touwu,` asu→`.
Therefore at such a center theF-forms behave like free fields exhibiting~see~8!–~10!! a singu-
larity, with infinite values of the EMT invariants. Item~a! is proved.

The assumption„b… means that bothb0 ands1 are finite atu5umax. This cannot happen a
umax,` since there would be no reason to stop at this value ofu; and atumax5` this means that
S(1,k,`),`, contrary to the definition~13!.

C. Black holes: No-hair and single-time theorems

We see that the only positive-energy Lorentzian spherically symmetric configurations w
naked singularities are BHs. BH solutions of various models belonging to the class~1! have been
studied in numerous recent papers~see Refs. 3, 15, and 18, and references therein!. However,
exact solutions have been~and probably can be! only obtained for a small subset of the whole s
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of models ~1!, whereas some general properties of BH solutions may be discovered w
solving the equations. Two such properties, having the form of restrictions generalizing th
viously observed properties of specific solutions,15,20 are proved here.

In what follows, we will call ahorizona nonsingular surfaceu5u* inM where some scale
factorseb i

50 ~corresponding to possibly multiple time coordinates!, while otherb i remain finite.
A BH solution is a static, spherically symmetric solution containing a horizon. These wor
definitions, though incomplete, are sufficient for our purposes.

An immediate observation is
Lemma 2: BH solutions can only exist for k>0 and the horizon is then at u5`.
Indeed, at a horizon, the functions1 defined in~7! tends to2` along with a part of its

constituents, another part remaining finite. According to~14!, to obtain a finite value ofb0, one
has then to require thatS(1,k,u* )51`, which by ~13! is only possible whenk>0 and u*
5`.

Another result applies to BHs in manifoldsM with several time coordinates, as suggested
some recent unification models~see Refs. 5, 28, and references therein!. If there is another time
coordinate, some branes can evolve with it. The following theorem shows, however, that
framework, even in a space-time with multiple times, a BH can only exist with its unique
ferred, physical time, while other times are not distinguished by the metric behavior from
spatial coordinates.

Theorem 2 „Single-Time Theorem…: Any BH solution with k.0 contains precisely one
coordinate t such that gtt50 at the horizon.

Proof: Suppose thatu5` is a horizon where someeb i→0, i PI t#(I 0\0). As follows from
~7!, at the asymptoticu→` one hasa→2` and, moreover, the finiteness ofb0 means~see~14!!
that a;2ku. On the other hand, the condition~24! holds only if for all F-forms, at most,

e2ys5O~e22ku!. ~28!

The equations of motion~21! then show that, asu→`,

ẋA52cA1o~1!, cA5const, ~29!

whereci.0 for i PI t andci50 for otherA.
In the constraint~16!, the potentialVQ(u) →

u→`
0 due to~29!, therefore

GABcAcB5
d0

d021
. ~30!

The asymptotic ofa and the condition~7! show that, simultaneously,

(
i PI t

dic
i5k, ~31!

so thatci<k. From ~30! with ~31! and ~17! it follows

(
i PI t

dic
i25k2. ~32!

Combined, Eqs.~31! and ~32! lead to

(
i PI t

dic
i~k2ci !50, ~33!
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which is compatible with~32! for 0<ci<k only when the sum consists of one term, to be labe
i 51, such thatd151 andc15k. This proves the theorem.

One more theorem shows that BH solutions can contain only true electromagneticF-forms
rather than quasiscalar ones.

Theorem 3 „No-Hair Theorem…: All F-forms in aBH solution with k.0 possess the prop
erty d1I s

51, where the number i51 refers to the time axis.

The proof rests on Lemma 1, which, applied toF-forms, leads again to~28!. Now, according
to Theorem 2, at a horizon (u→`) only b1→2`, while other b i are finite. As is directly
verified,~28! holds in the cased1I s

51 ~for true electromagnetic forms!, while for quasiscalar ones
one has finite limits foreys, leading to infiniteness of the corresponding EMT constituent.

Remark 1:The regularity of the scalar fields,xA5wa, at u→` was not required in the
conditions of Theorems 2 and 3; fork.0 it follows from ~23!. Under the additional requiremen
wa,` asu→`, Theorem 3 is easily proved fork50 as well.

Remark 2:For k50 we have no Theorem 2; moreover, Theorem 3 is not proved fork50
without assumingwa,`. Nevertheless, for BH solutions withk50 obtainable as a limit of one
with k.0, the statements of both theorems remain valid.~For known exact BH solutions,k50
corresponds to the extreme limit of minimal mass for given charges.! Meanwhile, the existence o
exceptional BH solutions withk50, nonzero quasiscalar forms and/or multi-time horizons is
ruled out by our study; such solutions may perhaps exist with infinite limits of scalar fields
balance the infinity ofe2a in the EMT of F-forms.

Remark 3:If there are BH solutions, there are also others, where the scale factor sho
a zero value is associated, instead of physical time, with one of the extra coordinates~such
solutions are obtained from BH ones by simple re-denoting!. One thus finds the so-called T-hole
where crossing a horizon leads to changing the signature of the external, physical space
(2111•••) to (2211•••). Possible properties of such objects are discussed in more d
elsewhere17,29within the frames of dilaton gravity, but the considerations thereof are valid as
for the more general model~1!. Theorems 2 and 3 are valid for T-holes after proper
formulation.

IV. SOME EXACT SOLUTIONS

A. Orthogonal systems „OS…

The field equations are entirely integrated if allYs are mutually orthogonal inV, that is,

YsYs85dss8 /Ns
2 , 1/Ns

25d~ I !@12d~ I !/D̄#1l̄s
2.0. ~34!

Then the functions ys(u) obey the decoupled Liouville equationsÿs5bse
2ys, with

bs5
def

esQs
2/Ns

2 , whence

e2ys~u!5AubsuS~es ,hs ,u1us!, ~35!

where hs and us are ICs and the functionS(.,.,.) hasbeen defined in~13!. For the sought
functionsxA(u)5(b i ,wa) we then obtain:

xA~u!5(
s

Ns
2Ys

Ays~u!1cAu1cA, ~36!

where the vectors of ICsc andc are orthogonal to allYs : cAYs,A5cAYs,A50, or

cidid i I s
2caxslsa50, cidid i I s

2caxslsa50. ~37!

The solution is general for the properly chosen input parameters; the number of indepe
charges equals the number ofF-forms.
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B. Block-orthogonal systems „BOS…

Suppose now20 that the setS splits into several nonintersecting nonempty subsets,

S5ø
v

Sv , uSvu5m~v!, ~38!

such that the vectorsYm(v) (m(v)PSv) form mutually orthogonal subspacesVv in V:

Ym~v!Yn~v8!50, vÞv8. ~39!

Suppose, further, that, for each fixedv, all Yn ~wheren5n(v)) are linearly independent and th
charge factorsqn5enQn

2Þ0 satisfy the set of linear algebraic equations

~Yn2Yn8!Zv50, Zv5
def

(
mPSv

qmYm , ~40!

for each pair (n,n8). Then the functionyv(u)5
def

Ym(v),AxA is the same for allmPSv and satisfies
the Liouville equationÿv5bve2yv. As a result, we obtain a solution to the equations of moti
generalizing~35!, ~36!:

e2yv5AubvuS~sign bv ,hv ,u1uv!, ~41!

xA5(
v

Nv
2 Yv

Ayv~u!1cAu1cA, ~42!

wherehv anduv are ICs; the constantscA andcA satisfy the same orthogonality relations~38! as
for OS, that is, the vectorsc andc are orthogonal to each individualYs , even if it is a member of
a BOS subsystem. We have used the notations

bv5Yn~v!Zv ; Yv5Zvq̂v ; Nv
225Yv

2 5
bv

q̂v

; q̂v5 (
mPSv

qm . ~43!

Here bv is nonzero and independent ofn(v)PSv due to ~40!; moreover, q̂vÞ0 since q̂v

5Zv
2 /bv while the nonzero vectorZv is determined up to extension by~40!.
The linear independence ofYm(v) thus guarantees that Eqs.~40! yield qm(v) for a given

subsystem up to a common factor. Therefore, unlike the OS solution, the BOS one is spec
number of independent charges coincides withu$v%u, the number of subsystems; however, we th
gain exact solutions for more general sets of input parameters, e.g., a one-charge solution
obtained for actually an arbitrary configuration of branes with linearly independentYm ~except
possible cases when the solution of~40! leads to at least one zero charge!.

When m51, we have a single vectorYv5Ys orthogonal to all others, with the normNv
22

5Ns
22 , and the charge factor isbv5bs . Thus single branes and BOS subsystems are represe

in a unified way, and the OS solution is a special case (m(v)51,;v) of the BOS one.
The metric has the form~14!, where the functions1 is

s152
d021

D22(
v

Nv
2 yv~u! (

mPSv

qm

q̂v

d~ I m!1u(
i 51

n

ci1(
i 51

n

ci . ~44!

For OS (v°s) the sum inm reduces tod(I s). The ‘‘conserved energy’’~16! is

E5(
v

Nv
2 hv

2 sign hv1cAcA5
d0

d021
K . ~45!
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In the special casem52, Y1
25Y2

2, one easily obtainsb15b2 , as was shown in Ref. 13 for
singleF-form. By definition ofbs that means not onlyQ1

25Q2
2, but also a coincidence of the sig

factors signbs5es . For instance, in spherical symmetry, theF-fields must be either both tru
electric/magnetic ones (signbs51), or both quasiscalar ones (signbs521).

C. On cosmological and black-hole solutions

There is a large number of exact cosmological solutions to special cases of the model~1!, see
Refs. 12, 21, 30, and references therein. It can be seen that the description of Sec. III A~which is
certainly confirmed by exact solutions! actually exhausts all general features of the model, si
other details, such as, e.g., the particular behavior of the physical scale factora(t), depend on the
choice of integration constants.

BHs are obtained as special spherically symmetric solutions whenhv.0, umax5`. The
functionsb i ( i 50,2, . . . ,n) andwa remain finite asu→` under the following constraints on th
ICs:

hv5k, ;v; cA5k(
v

Nv
2 Yv

A2kd 1
A , ~46!

whereA51 corresponds toi 51 ~time!, d151 ~according to Theorem 2!. The constraint~45! then
holds automatically.

The subfamily~46! exhausts all BH solutions under OS or BOS assumptions, excep
extreme casek50; extreme BHs are obtained by subsequently passing to the limitk→0. One can
notice that exceptional extreme BH solutions, whose possibility was mentioned in Sec. III C
not found in this way.

General explicit forms of the OS and BOS BH solutions have been presented in Refs. 1
20, respectively. The BH properties stated in Theorems 2 and 3 are confirmed for the OS an
solutions and, moreover, have been first observed15,20 for these solutions.

V. WORMHOLES

A. Wormhole existence conditions

Wormhole-like configurations which can appear as special OS or BOS solutions, ha
infinite ‘‘external radius’’eb0(u) at both endsu6 of theu range and are regular between them;
b i(u6) ( i .0) and wa(u6) are finite. This happens whenk,0 and the solution behavior i
governed by the function sinku ~so thatu250 andu15p/uku) and is possible if the first positive
zero of the function sin@uhsu(u2us)# is greater thanp/uku for any s such thaths,0 ~see Fig. 1!.

In the cosmological setting, this behavior would correspond to nonsingular, bouncing m
which are, however, absent according to Sec. III A~due tok.0). The static and Euclidean case
are nota priori excluded.

As is evident from Fig. 1, any WH solution is characterized byuku.uhvu for all hv which are
negative. Due to~45!, for k,0 at least somehv should be negative as well. Furthermore, fork
,0 andhv,0 it is necessary to havewK051 andbv.0, respectively.

Table I shows that WHs can exist in static or Euclidean models only with spherical rathe
pseudospherical or planar symmetry. In cosmology we have no fields capable to give negahs

or hv , which again confirms the absence of nonsingular ‘‘bounced’’ models. In static sphe
symmetry the necessaryF-forms are true electric and magnetic ones. In Euclidean models, m
netic quasiscalar forms are needed.

Supposek,0. Since in~45! c2>0, the requirementuku.uhsu means that

(
$v: hv,0%

Nv
2 .

d0

d021
. ~47!
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This inequality is not onlynecessary, but alsosufficientfor the existence of WHs with given inpu
parameters:di and the vectorsYs . Indeed, putcA50 and turn to zero the chargesQm(v) in all
subsystems withq̂v,0 ~note that, by~43!, sign q̂v5signb v .) Choose allhv to be negative and
equal, then due to~47! uhvu,uku. It is now an easy matter to choose the ICsuv in such a way that
sin@uhvu(u1uv)#.0 on the whole segment@0,p/uku#, and this results in a WH solution.

B. Lorentzian wormholes and a universal restriction for brane systems

In general relativity static31 and even dynamic32 traversable WHs are known to violate the nu
energy condition. It can be verified20 that, under the present positive energy requirement,
model~1! after reduction tod012 dimensions by integrating out allMi ,i .1 and a transition to
the Einstein conformal frame, reduces to general relativity with a set of material fields whose
satisfies the null energy condition, which rules out static WHs. On the other hand, given a
WH in D dimensions as described in the previous subsection, it would also appear as a sta
in (d012)-dimensional Einstein frame since the relevant conformal factor~the volume factor of
extra dimensions! is everywhere finite and nonzero. We have to conclude that static WHs
absent in our model.

This means in turn that the sufficient condition~47! must be violated, and a properly formu
lated opposite inequality must hold. We arrive at the following theorem for brane systems h
an orthogonal subsystem:

Theorem 4: Consider a vector spaceV, with a scalar product defined by the metric~17!,
where diPN, i 50, . . . ,n, d0.1, d151, D̄5( i 50

n di21, and a set of nonzero vectorsYs ,sPS,
defined in~18! (I s#$1, . . . ,n%, xslsaPR). Let there be a subsetS',S such thatYsYs850 for
sÞs8, s,s8PS' . Then the following inequality holds:

(
sPS'

d1I s
Ns

2<
d0

d021
, or for lsa50,

~48!

(
sPS'

d1I sFd~ I s!S 12
d~ I s!

D22D G21

<
d0

d021
.

FIG. 1. A wormhole configuration; qualitative picture.
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The factord1I s
in ~48! excludes quasiscalars. ForS'5S the theorem has been already prov

by the above reasoning. If there areYs¹S' , their influence can be ruled out by turning to zero t
corresponding chargesQs , and then, as before, assuming the contrary of~48!, we immediately
obtain a Lorentzian WH solution.

Comment:The formulation of Theorem 4 does not mentionF-forms, time, or any other
physical entities and is actually of purely geometric~or even combinatorial! nature. From the
combinatorial viewpoint it is essential that in the setI 05$0, . . . ,n% there is a distinguished
number, in our case 1, withd151, included in all subsetsI s entering into the sum. Our proof
however, rests on physically motivated analytical considerations.

A similar theorem for a brane system with a BOS subsystem is readily obtained:
Theorem 4a: Consider the model described in Sec. II, under the conditions specified i

first sentence of Theorem 4. Let there be a subsetS8,S such that the vectorsYs ,sPS8 form a
block-orthogonal system with respect to the metric~17!. Then the following inequality holds fo
sPS8:

(
$v: q̂v.0%

Nv
2 <

d0

d021
, ~49!

where q̂v and Nv
2 are defined in~43! and, for all qs included in the sum,es5sign qs521

12d1I s
.

According to the latter condition,es depends on the inclusion or noninclusion of the dist
guished one-dimensional factor spaceM1 (5Rt in Lorentzian models! into the world volume of
specific BOS members. Thus, unlike the OS case, the sum may includeF-forms with differentes ,
but in such a way that the combined factorq̂v5(mPvqm be positive for eachv.

VI. CONCLUDING REMARKS

~1! Some general restrictions on the behavior of brane systems described by the act~1!
have been obtained, independent of specific space-time symmetry and signature: cosm
asymptotics, some BH properties and a universal restriction on the parameters of possible o
nal or block-orthogonal subsystems~Theorems 4 and 4a!.

Throughout the paper, theD-dimensional Einstein~D-E! conformal frame was used, althoug
in such a general setting of the problem there is no evident reason to prefer one frame or a
For any specific underlying theory that leads to~1! in a weak field limit, two conformal frames ar
physically distinguished: one where the theory is originally formulated and another, providin
validity of the weak equivalence principle~or geodesic motion! for ordinary matter in 4 dimen-
sions; the latter depends on how fermions are introduced in the underlying theory.17,33,34The first
one should be used when discussing such issues as singularities or topology of a model, et~what
happens as a matter of fact!, while the second one, the so-called atomic system of measurem
is necessary for formulating observational predictions~what we see!. They are, generally speaking
different.

Among the present results, however, only cosmological ones are conformal frame-dep
if different frames are connected by exponentials of the internal scale factorsb i and dilatonic
fields wa. Indeed, such factors, being regular everywhere including horizons and asymp
cannot change the BH or WH nature of a given metric.~The only exceptions are hypothet
exceptional extreme BH solutions mentioned in Remark 2.!

The conclusions of Sec. III A on cosmological asymptotics are directly applicable to the
formulated in the outset in the D-E frame, like the weak-field bosonic sector ofD511 supergrav-
ity following from M-theory,3 where the action~truncated by neglecting the Chern-Simons ter!
has the form~1! with a single antisymmetric 4-form and no scalar fields.

~2! Unlike Lorentzian ones, Euclidean WHs~EWHs! are not ruled out, and the reason
~taking, say, OS solutions as an example! that, when selecting theF-forms ~branes! for WH
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construction, in the Euclidean case we are no more restricted toI s containing a distinguished
number, connected withRt, while nowRt5Ru. So there is a wider choice ofI s able to givehs

,0 and to fulfill the WH necessary and sufficient condition~47!.
As seen from Table I, EWHs corresponding to~1!, if any, may be built only with the aid of

magnetic formsFs , though the existence of electric forms in a WH solution is not excluded
The situation is well exemplified forD511 supergravity. Indeed, the orthogonality conditio

~34! are satisfied by 2-branes,d(I s)53, and 5-branes,d(I s)56, if the intersection rules hold:

d~3ù3!51, d~3ù6!52, d~6ù6!54. ~50!

~the notations are evident!; for all F-forms Ns
251/2. In particular, withd052 or d053 and other

di51, there is a maximal OS of seven 2-branes,12,15

a: 123,

b: 147,

c: 156,

d: 345,

e: 246,

f : 257,

g: 367,

~51!

where the figures 1, . . . ,7label one-dimensional factor spaces, and for static models ‘‘1’’ refer
the time axisRt. Only three of theseI s (a,b,c) have d1I s

51, i.e., describe true electric o

magnetic fields in a static space-time. Lorentzian WHs are absent since~47! requires(sNs
2.2 for

d052 and.3/2 for d053.
In the Euclidean case we can have as many as 7 magnetic 2-branes, each withNs

251/2, and
WHs are easily found. Though, the latter is true if one considersFmI of rank 7. If one remains
restricted, as usual, toFs of rank 4,3 then for magnetic formsd(I )56, and EWHs cannot be
obtained. In other words, OS and BOS solutions do not lead to EWHs in standard 11-dimen
supergravity. Examples of EWHs have been found20 for D512 theory.6

By construction, classical EWHs possess finite actions and are related to possible qu
tunneling processes. Explicit expressions for their action and throat radii in the case of sym
WHs described by OS and BOS solutions, have been calculated20 explicitly in a general form for
WHs which are symmetric with respect to their throats.

~3! The present conclusions rest on the positive energy requirement that seems quite
as long as we deal with classical fields. Thus, in particular, the well-known singularity theore
general relativity actually work as well in multidimensionalp-brane cosmology. Meanwhile, th
low energy limit of the unification theories is believed to work at scales from Planckia
subatomic and in the early universe where quantum effects of both gravity and material field
be of importance~e.g., the Casimir effect due to compactification of extra dimensions!, and a
classical treatment is only a tentative, though necessary, stage in studying such systems. O
mention some papers discussing the relevant quantum effects: the Wheeler-DeWitt equa
p-branes14,21 and the Casimir effect in cosmology.35 Some nonquantum effects able to preven
cosmological singularity are discussed by Kaloperet al.30 and Gasperini;36 see also reference
therein. All such effects necessarily violate the usual energy requirements and can therefore
traversable Lorentzian wormholes.
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Nonlinear realizations of the diffeomorphism group
in metric-affine gauge theory of gravity
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The action of diffeomorphisms on coupled metric and spinor fields on a world
manifoldX is interpreted in terms of nonlinear realizations of the group GL˜1(4,R),
the universal twofold covering group of the general linear group GL1(4,R), on the
quotient manifold„GL̃1(4,R)3V…/SL(2,C), where SL(2,C) is the spin group and
V is the spinor space. By using nonlinear realizations the connection of a metric-
affine world manifold couples naturally to standard spinor fields. This enables us
not to exceed the scope of usual spinor models as in the case in which infinite-
dimensional representations of GL˜1(4,R) are considered. As an application, by
starting from the familiar Lagrangian for spin-1/2 models and using the nonlinear
realization method, a Lagrangian density for spinor fields which has GL˜1(4,R) as
invariance group is constructed. The total Lagrangian density is obtained by adding
the Lagrangian of the metric-affine gravity. The energy-momentum current associ-
ated with every vector field on the world manifoldX is calculated explicitly. It turns
out that spinor fields do not contribute to the corresponding superpotential, which
takes a form similar to that obtained by Komar. ©1999 American Institute of
Physics.@S0022-2488~99!01902-7#

I. INTRODUCTION

As is well known,1 the classical theory of general relativity, especially when the tetrad
proach is used, can be reformulated in terms of nonlinear realizations2 of the general linear group
GL~4,R!. This description is particularly well suited in gauge gravitation theory if one reg
general covariance as a spontaneously violated symmetry because of the presence of spin
the gravitational~metric! field being regarded as a Higgs field.3

More recently, a framework has been introduced to deal with dynamical gravitational fie
the presence of spinor fields.4,5 For each gravitational field there is a distinct spinor bund
Therefore the configuration space of coupled gravitational and spinor fields can be conve
represented as the total spaceS of the composite fiber bundle

S→S→X, ~1!

where S→X is the configuration space of gravitational fields on the world manifoldX and S
→S is a vector bundle with structure group the spin group SL~2,C!. Given a gravitational field
h:X→S, the restriction ofS→S to h(X),S is exactly the space of spinors forh.

In this paper we show that this framework has the structure of a gauge theory wit
structure group, the universal twofold covering group

z:GL̃1~4,R!→GL1~4,R! ~2!

of the general linear group GL1(4,R), acting nonlinearly on the quotient

„GL̃1~4,R!3V…/SL~2,C!. ~3!
9390022-2488/99/40(2)/939/16/$15.00 © 1999 American Institute of Physics
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Here V is the spinor space and the quotient is defined by choosing a spinor representa
SL(2,C) in V. Note that~3! is the total space of the fiber bundle associated with the princ
bundle

GL̃1~4,R!→GL̃1~4,R!/SL~2,C!.

In particular, we prove that the composite fiber bundle~1! can be regarded as a fiber bund
associated with a GL˜1(4,R)-principal bundle, its typical fiber being exactly the quotie
„GL̃1(4,R)3V…/SL(2,C) on which GL̃1(4,R) acts nonlinearly on the left.

In the gauging of GL˜1(4,R) by using nonlinear realizations, the connection of a metric-af
world manifold is naturally coupled to standard fermionic matter. Alternatively, one can con
spinor representations of GL˜1(4,R)6,7 which, however, are infinite dimensional@the only finite-
dimensional linear representations of GL˜1(4,R) are those obtained from representations
GL1(4,R) via composition with the covering map~2!#. Elements of these representations a
called world spinors and the corresponding field theory has been already developed~see Ref. 6 and
references therein!.

Under suitable topological conditions onX, every diffeomorphismw:X→X can be lifted to a
diffeomorphismwS :S→S which preserves the composite fiber bundle structure~1!, but in general
this action yields only a projective representation of the diffeomorphism groupD(X). Here we
calculate explicitly the infinitesimal version of this action. More precisely, for every vector
t :X→TX on X we find the expression of its natural lifttS :S→TSon S. This vector field projects
onto a vector fieldtS on S and, of course, ontot. Note that, since only the normal subgrou
D0(X) of diffeomorphisms which are homotopic to the identity is involved at the infinitesi
level, the associationt °tS yields a true representation, and not just a projective one.

As an application, starting with the familiar Lagrangian density for spin-1/2 models and u
the nonlinear realization method, we construct a LagrangianLM which has GL̃1(4,R) as invari-
ance group and in which the spinor fields are coupled with the torsion of the linear connect
X. Then the total Lagrangian densityL5LM1LMAG , whereLMAG is the Lagrangian density o
the metric-affine gravitation theory, is invariant under the action of the diffeomorphism g
D(X) on the total configuration spaceC3XS. HereC→X is the fiber bundle of linear connection
on X. Hence, for every vector fieldt on X, the Lie derivative ofL with respect to the lifttCS of
t on C3XS vanishes identically, and therefore the corresponding energy-momentum curr
conserved. It turns out that spinor fields do not contribute at all to the energy-momentum
potential, which takes the form of the generalized Komar superpotential in the metric-affine t
of gravity.8

The ideas and results are arranged as follows. In Sec. II we describe how the sym
reduction scheme used in gauge gravitation theory can be extended to general gauge theor
can be done by introducing fields~Higgs fields! transforming nonlinearly under the action of th
gauge group. In Sec. III we set our notations and review the main concepts related t
structures on a four-manifold. In Sec. IV we deal with the problems of constructing a confi
tion bundle of coupled metric and spinor fields and defining a covariant derivative of its sec
In Sec. V we concentrate on the action of the diffeomorphism groupD(X) on the coupled
metric-spinor configuration space. Section VI is devoted to the example sketched abov
appendix is added to describe the general approach to differential conservation laws in Lagr
field theory.

Throughout the paper manifolds are real, finite dimensional, Hausdorff, second cou
~hence paracompact!, and connected.

II. SPONTANEOUS SYMMETRY BREAKING

In this section we illustrate the general description of spontaneously broken symmetr
gauge theories where matter fields admit only exact symmetry transformations.9,10
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In classical field theory the spontaneous symmetry breaking is described by classical
fields. If the gauge theory is formulated on a principal bundleP→X, the necessary condition fo
spontaneous symmetry breaking is the reduction of the structure groupG ~the group whose
realizations are required! of this principal bundle to the closed subgroupH of exact symmetries.
Higgs fields are then represented by global sectionsh of the fiber bundle

S5P/H→X.

This is aP-associated bundle with the typical fiberG/H on which the structure groupG acts
naturally on the left.

As is well known~see Ref. 11, p. 57!, the set of Higgs fieldsh is in one-to-one correspondenc
with the set of reducedH-principal subbundlesPh of P. Given such a subbundlePh, let

Yh5~Ph3V!/H→X ~4!

be an associated fiber bundle with a typical fiberV carrying a linear representation of the subgro
H. Its sections describe matter fields in the presence of the Higgs fieldh.

Let us now consider the composite fiber bundles

P→S→X ~5!

and

Y→S→X, ~6!

where

P→S ~7!

is a principal bundle with the structure groupH and

Y5~P3V!/H→S ~8!

is a fiber bundle associated with it. Given a Higgs fieldh and the corresponding fiber bundle~4!,
it is easily seen that this latter is canonically isomorphic with the subbundle of the composite
bundle ~6! given by the restriction ofY→S to h(X),S. It follows that there is one-to-one
correspondence between pairs (h,ch), formed by a matter fieldch in the presence of the Higg
field h, and sectionsc:X→Y of the composite fiber bundle~6!.

We regardY as the configuration space for coupled Higgs and matter fields in gauge th
with spontaneously broken symmetries.

Note that for different Higgs fieldsh andh8 we have different bundlesYh andYh8, and there
is no natural way of identifying these bundles. In other words, the fiber bundleY→S is not in
general the fibered product of the configuration space of Higgs fieldsS and some typical matte
bundle. Essentially, this is due to the fact that matter fields admit only exact symmetry tra
mations. More precisely, there is no representation of the groupG in V that restricts to the given
representation ofH in V. In fact, the following result holds.

Proposition 1: Let the linear representation of H in V be the restriction of a representatio
G in V. Then the fiber bundle (8) is canonically isomorphic with the pull-back bundleS3X(P
3V)/G.

Proof: It is readily verified that the map defined by

~p,v !H°„pH,~p,v !G…, ;pPP, vPV,

is an isomorphism ofY onto S3X(P3V)/G, overS. h

Let us now specify the transformation laws for Higgs and matter fields. Every automorp
f of the principal bundlep:P→X @a diffeomorphismf:P→P such thatf(pg)5f(p)g for
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every pPP, gPG# defines diffeomorphismsfS :S→S and w:X→X such that the following
diagram commutes:

Sincef is also an automorphism of the principal bundleP→S, it defines an automorphismfY of
the associated bundle~8! according to the law

~p,v !H°~f~p!,v !H, ;pPP, vPV.

We have the following commutative diagram:

Remark 1:Given a pair (h,ch) formed by a Higgs fieldh and a sectionch of the fiber bundle
~4!, the automorphismfY defined above takes this pair into (h8,ch8), whereh85fS+h+w21 is
the transformed Higgs field andch8 is the section ofYh8→X uniquely determined byh8 and the
sectionc85fY+c+w21. Herec:X→Y is the section corresponding to (h,ch) under the corre-
spondence described above.

Having specified the transformation laws for the fields, we now have to define the cov
derivatives of field systems on composite fiber bundles. We assume that the Lie algebrag of G is
the direct sum

g5h% m

of the Lie algebrah of the subgroupH and a subspacem,g such that

ad~H !~m!,m,

where ad is the adjoint representation.
Let v:P→g be a connection form onP. Then theh-componentvh of v is a connection form

on theH-principal bundleP→S, whereas them-componentvm is a tensorial form of type~ad,m!
on P→S.11 For every Higgs fieldh, the pull-back ofvh on Ph is a connection form on the
reduced subbundlePh→X. Moreover, the pull-back ofvm on Ph coincides with the covarian
derivative ofh with respect tov. It gives the obstruction forv to reduce to a connection onPh.

The connection formvh induces a connectionA:Y→J1YS on the associated bundle~8!. Here
J1YS denotes the first jet prolongation of this bundle. If the total spaceY is provided with adapted
coordinates (xm,sp,yi), where (xm,sp) are bundle coordinates on the fiber bundleS→X, thenA
reads locally
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A5dxm
^ S ]

]xm 1I ~Am! i
j y

j
]

]yi D1dsp
^ S ]

]sp 1I ~Ap! i
j y

j
]

]yi D ,

whereAm andAp are the connection parameters ofvh ~which are opposite in sign to the gaug
potentials! andI (•) i

j are the Lie algebra representation matrices of the given representationH.
Let us consider the jet manifoldsJ1S of S→X, J1YS of Y→S andJ1Y of Y→X, with the

corresponding coordinates

~xm,sp,sm
p !, ~xm,sp,yi ,ỹm

i ,yp
i !, ~xm,sp,yi ,sm

p ,ym
i !.

Then there exists the canonical morphism

r:J1S3
S

J1YS→J1Y,

r~ j x
1h, j h~x!

1 g!5 j x
1~g+h!, ym

i +r5 ỹm
i 1yp

i sm
p ,

whereg andh are sections of the fiber bundlesY→S andS→X, respectively. Using the com
position

r+A:J1S3SY→J1Y,

ym
i +r+A5I ~Am1Apsm

p ! i
j y

j ,

and the affine structure of the fiber bundleJ1Y→Y, one obtains the first-order differential operat

D:J1Y→T* X^ VYS ,
~9!

D5dxl
^ @ym

i 2I ~Am1Apsm
p ! i

j y
j #

]

]yi .

HereVYS denotes the vertical tangent bundle ofY→S.
The operator~9! has the following property. Given a Higgs fieldh, the restriction

Dh :J1Yh→T* X^ VYh,

Dh5dxm
^ @ym

i 2I ~Am1Ap]mhp! i
j y

j #
]

]yi ,

of D to Yh is the familiar covariant derivative relative to the principal connection

Ah5dxm
^ F ]

]xm 1I ~Am1Ap]mhp! i
j y

j
]

]yi G
on the fiber bundle~4!.

One can useD in order to construct Lagrangians on the jet manifoldJ1Y of the configuration
spaceY which are invariant under automorphisms of theG-principal bundleP→X, starting from
any Lagrangian which is invariant under the subgroupH. A G-invariant quadratic term invm can
be added if the Higgs fields have to propagate like the matter fields.

Let us now consider theH-principal bundleG→G/H and its associated bundle (G3V)/H
→G/H. The groupG acts on (G3V)/H on the left as follows. For everyaPG, the left trans-
lation La of G ~sendinggPG into agPG! is an automorphism of the principal bundleG
→G/H, over the diffeomorphismL̄a of the quotient spaceG/H which takes a cosetgH into the
cosetagH. HenceLa induces the automorphism
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La :~g,v !H°~ag,v !H

of the associated bundle (G3V)/H→G/H, over the diffeomorphismL̄a .
The group action ofG on the quotient space (G3V)/H can be regarded as a nonline

realization ofG on the objects of physical interest, which are used as parameters or coordina
the quotientG/H, and on all other~matter! fields. To see this, note that by using a~local! gauge
s of the principal bundleG→G/H, one can write

as~gH!5s~agH!h~gH,a!, ;a,gPG,

whereh(•,a) is a function ofG/H into the subgroupH. This relation defines implicitly the group
action L̄a on G/H by the formula

s~agH!5as~gH!h~gH,a!21,

but it also defines the functionh. This functions governs the behavior of the matter fields under
action ofG by the law:

vPV°h~gH,a!vPV.

Going back to the framework based on composite fiber bundles and their automorphism
key remark which relates this framework to the nonlinear realization method is formulated
following proposition.

Proposition 2: The composite fiber bundle (6) can be regarded as a fiber bundle with s
ture group G and typical fiber(G3V)/H. In fact, (P3V)/H can be identified with the total spac
of the fiber bundle„P3(G3V)/H…/G→X associated with P→X [the group action of G on the
typical fiber (G3V)/H being that described above] as follows. An element

„p,~g,v !H…GP„P3~G3V!/H…/G, pPP, gPG, vPV,

is mapped into the element

~pg,v !HP~P3V!/H.

Note that in addition to the fiber bundle structure overX, „P3(G3V)/H…/G is provided also
with a natural structure of fibration overS. It is easily seen that this structure is preserved un
the above identification with (P3V)/H.

III. SPIN STRUCTURES

Hereafter, by a world manifoldX we mean a noncompact, parallelizable four-dimensio
manifold with a given orientation.

Remark 2:In classical field theory, if cosmological models are not considered, the w
manifoldX is assumed to satisfy accepted rules of causality.12 A compact manifold does not hav
these properties because every Lorentz metric on it generates closed timelike curves. On th
hand, on a noncompact four-dimensional manifoldX a Lorentz metric can always be chosen as
give no closed timelike curves~see Ref. 13, p. 168!. Moreover, given such a Lorentz metricX
admits a spin structure if and only if it is parallelizable.14

A Lorentz metrich on the world manifoldX is a section of the fiber bundle

S5LX/SO0~1,3!→X, ~10!

wherep:LX→X is the GL1(4,R)-principal bundle of oriented linear coframes onX and SO0(1,3)
denotes the proper Lorentz group. As is well known,~10! is aLX-associated fiber bundle with th
typical fiber GL1(4,R)/SO0(1,3).

Given a chart (U,xm) on X, every elementj5$ja%Pp21(U),LX takes the form
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ja5ja
mdxm,

where the matrixja
m belongs to GL1(4,R). Hence the coframe bundleLX can be provided with

bundle coordinates

~xm,ja
m!,

whereja
m denotes the inverse matrix ofja

m . In these coordinates, the canonical right action
the structure group GL1(4,R) on LX reads

ja
m°jb

mgb
a , ;gb

aPGL1~4,R!.

For subsequent purposes, we also introduce coordinates onLX adapted to the composit
fibration

LX→S→X ~11!

as follows. Every elementja
m of GL1(4,R) in some suitable neighborhood of the identity eleme

may be written as

ja
m5^j&b

m@j#b
a ,

where@j#b
a is an element of SO0(1,3) and^j&b

m is pseudo-symmetric, that is,

^j&a
mhmb5^j&b

mhma .

It follows that the pseudo-symmetric matricessa
m form a local coordinate system on the quotie

manifold GL1(4,R)/SO0(1,3), and hence

~xm,sa
m,la

b!,

where la
b are elements of the proper Lorentz group, are suitable bundle coordinates oLX

adapted to the composite fibration~11!.
By the way, note that the SO0(1,3)-principal fiber bundleLX→S admits the~local! gauge

j̄→^j&a
mdxm, ~12!

wherej̄ denotes the coset ofj.
Every metric fieldh determines the tetrad functions

ha
m~x!5sa

m+h~x!,

which are related to the metric functionsgmn(x) by the well-known relation

gmn~x!5ha
m~x!hb

n~x!hab. ~13!

Here

hab5diag ~1,21,21,21!

is the Minkowski metric written with respect to an orthonormal basis$ea% of the Minkowski space
M.

Coming to spinors, let us briefly introduce our notations~see Refs. 15 and 16 for a gener
description of the Clifford algebra techniques!. Let C1,3 be the complex Clifford algebra generate
by elements ofM. The spinor spaceV is defined to be a minimal left ideal ofC1,3 on which this
algebra acts on the left. We denote by
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g:M ^ V→V, g~ea!5ga ~14!

the representation of elements of the Minkowski spaceM by g-matrices inV.
The Clifford groupG1,3 comprises all invertible elementsl̃ of the real Clifford algebraR1,3

such that the corresponding inner automorphisms induce Lorentz transformations o
Minkowski spaceM, that is,

l̃el̃215l~e!, ;ePM , ~15!

with lPO(1,3). The representation~14! satisfies the following equivariance property:

g~le^ l̃v !5l̃g~e^ v !, ;l̃PG1,3, ePM , vPV.

Since the action~15! of the Clifford group on the Minkowski spaceM is not effective, one usually
considers the pin subgroup Pin~1,3! of G1,3. The even part of Pin~1,3! is the spin group
Spin~1,3!. The restriction of the map~15! to the identity component

Spin0~1,3!.SL~2,C!

of Spin~1,3! yields the well-known twofold universal covering group

z0 :SL~2,C!→SO0~1,3!

of the proper Lorentz group. The spin group SL~2,C! acts on the spinor spaceV by the generators

I ab5 1
4@ga , gb#, ~16!

induced by the generators

Lab
c
d5da

chdb2db
chda ~17!

of the Lie algebra of SO0(1,3).
Let LhX denote the SO0(1,3)-principal subbundle of the coframe bundleLX corresponding to

the metric fieldh:X→S. In order to define spinor fields in the presence ofh, we have first to give
a h-spin structure onX, i.e., an SL~2,C!-principal bundleLhX̃→X and a principal bundle mor
phism

zh :LhX̃→LhX ~18!

over X.16 Spinor fields in the presence of the metric fieldh are sections of the vector bundle

Sh5~LhX̃3V!/SL~2,C!→X

associated withLhX̃ via the spinor representation of SL~2,C! in the spinor spaceV.

IV. CONFIGURATION MANIFOLDS

If one considers theories in which the Lorentz metrics are dynamical variables as well
spinor fields, one has to take into account deformations of the spin structure as a consequ
deformations of the metric. This dependence on the metric can be taken into account by int
ing a double cover of the coframe bundle~see also Refs. 4 and 5!.

As is well known, the group GL1(4,R) is not simply connected. Its first homotopy group is17

p1„GL~4,R!…5p1„SO~4!…5Z2 .
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Therefore GL1(4,R) admits the universal twofold covering group~2! as to make commutative th
diagram18

Here ĩ and i are the inclusion morphisms.
In order to apply the procedure outlined in Sec. II, the first step is that of choosing

subgroupH to G5GL̃1(4,R) from which the quotientG/H can be formed. We takeH to be the
spin group SL~2,C!. The choice of this subgroup, along with its known representations, enab
to define group actions of GL˜1(4,R) on half-integer as well as integer spinor fields. As a sec
step we take a prolongation (LX̃,z) of LX to GL̃1(4,R), i.e., a GL̃1(4,R)-principal bundleLX̃
→X and a principal bundle morphism

z5LX̃→LX

over X.
Note that the quotient manifoldLX̃/SL(2,C) can be identified withS5LX/SO0(1,3). This is

a straightforward consequence of the diffeomorphism

GL̃1~4,R!/SL~2,C!>GL1~4,R!/SO0~1,3!

between their typical fibers. Therefore the following diagram commutes:

Let us consider the composite fiber bundle

LX̃→S→X

and the composite spinor bundle

S→S→X, ~19!

where

S5~LX̃3V!/SL~2,C!→S

is the fiber bundle associated with the SL~2,C!-principal bundleLX̃→S. In accordance with Sec
II, Scan be regarded as the configuration space of coupled metric and spinor fields. Given a
field h, the restriction of the spinor bundleS→S to h(X),S is canonically isomorphic with the
spinor bundleSh associated with theh-spin structure defined by the following commutative d
gram:
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Remark 3:Given a metric fieldh, one can show4 that the topological obstructions to th
existence of a prolongation (LX̃,z) are the same as the obstructions to the existence of ah-spin
structure. Moreover, the set of equivalence classes of prolongations ofLX is in one-to-one corre-
spondence with the set of equivalence classes ofh-spin structures.

Let us now define a covariant derivative on the configuration spaceS. To begin with, recall
that there is one-to-one correspondence between principal connections onLX̃→X and principal
connections on the coframe bundleLX→X ~linear connections onX!. If v:TLX→gl(4,R) is a
connection form onLX, the corresponding connection formṽ:TLX̃→ g̃l(4,R) on LX̃ is defined by
the composition

ṽ5~z8!21+~z* v!,

wherez8: g̃l(4,R)→gl(4,R) is the Lie algebra isomorphism induced byz.
As is readily seen, the Lie algebra of the general linear group GL~4,R! is the direct sum

gl~4,R!5so0~1,3! % m

of the Lie algebraso0(1,3) of the Lorentz group and a subspacem,gl(4,R) such that

ad„SO0~1,3!…~m!,m,

where ad is the adjoint representation. Then~see Sec. II! the so0(1,3)-componentv8 of a con-
nection formv on LX is a principal connection onLX̃→S, whereas them-componentvm is a
tensorial form of type~ad,m! on the same fiber bundle. The local expressions ofv, v8, andvm

with respect to the bundle coordinates (xm,ja
m) of LX are given respectively by

va
b5ja

m~djb
m2Km

najb
ndxa!,

v@ab#5 1
2~ja

mhbc2jb
mhac!~djc

m2Km
najc

ndxa!,

v~ab!5 1
2~ja

mhbc1jb
mhac!~djc

m2Km
najc

ndxa!,

where the connection parametersKm
na are local functions onX.

The pull-back ofv8 with respect to the gauge~12! yields the following expression for its
connection parameters in the bundle coordinates (xm,sa

m) on S:

Aab
a5 1

2~sa
mhbc2sb

mhac!Km
nasc

n,

Aabc
m52 1

2~sa
mhbc2sb

mhac!.

It follows that the differential operator~9! reads

D:J1S→T* X^

S

S,

~20!

D5dxa
^ Fya

i 2
1

4
~sa

nhbc2sb
nhac!~Kn

masc
m2sc

n
,a!I ab

i
j y

j G ]

]yi ,

where (xm,sa
m,yi) denote bundle coordinates onS and I ab

i
j are the Lie algebra representatio

matrices~16! of the given representation of SL~2,C!.
Starting from any SL~2,C!-invariant Lagrangian and using the differential operator~20!, one

can construct Lagrangians which are invariant under automorphisms of the GL˜1(4,R)-principal
bundle LX̃→X. For example, the familiar Dirac Lagrangian for spin-1/2 models leads to
following Lagrangian defined on the configuration spaceC3XS:
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LM :C3
X

J1S→∧
4

T* X, LM5LMd4x,

~21!

LM5
i

2 H yi* ~g0ga! i
jFya

j 2
1

4
~sa

nhbc2sb
nhac!~kn

masc
m2sc

n
,a!I ab

j
ky

kG
2Fyia* 2

1

4
~sa

nhbc2sb
nhac!~kn

masc
m2sc

n
,a!yk* I ab* k

i G~g0ga! i
j y

j J
3det~sa

m!2myi* ~g0! i
j y

j det~sa
m!.

Here * denotes complex conjugation,ga5gasa
a and C→X is the fiber bundle of principa

connections onLX. Its total space is the quotient19

C5J1LX/GL1~4,R!,

with bundle coordinates denoted by

~xm,km
na!. ~22!

It is easily verified thatLM satisfies the following relations:

]LM

]ka
bm

1
]LM

]ka
mb

50, ~23!

]LM

]ka
nm

5
]LM

]sa
a

,n
sa

m. ~24!

Note that, by virtue of~23!, the Lagrangian density~21! depends only on the torsion of the line
connection onX.

V. SPIN AND INFINITESIMAL DIFFEOMORPHISMS

In this section we define a morphism of the Lie algebraJ(X) of vector fields on the world
manifold X into the Lie algebraJ(S) of vector fields on the configuration spaceS of coupled
metric and spinor fields.

Every orientation-preserving diffeomorphismw of the world manifoldX lifts naturally to an
automorphismŵ of the coframe bundleLX defined by

ŵ~j!5$ja+Tf21%, ;jPLX. ~25!

We denote bywS the unique diffeomorphism ofS such that the following diagram commute

It follows that, given a one-parameter group of orientation-preserving diffeomorphismsw t of X

generated by a vector fieldt:X→TX, the lift ŵ t of w t to the coframe bundle generates
GL1(4,R)-invariant vector fieldt̂ which is projectable onto a vector fieldtS on S and this, in
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turn, ontot :

Sincez:LX̃→LX is a covering space, there exists a natural lift ofŵ t to a one-parameter grou
of automorphismsw̃ t of the principal bundleLX̃→X and, hence, to a one-parameter group
automorphisms of the configuration spaceS of coupled metric and spinor fields given by

@ j̃,v#°@w̃ t~ j̃ !,v#, ; j̃PLX̃, vPV,

where@ j̃,v# is the coset of the element (j̃,v). As a result, one obtains a vector fieldtS on Ssuch
that the following diagram commutes:

Let us find the expression of the vector fieldtS in the bundle coordinates (xm,sa
m,yi) of S.

We start from the local expression of the automorphism~25! in the bundle chart (xm,ja
m) of LX:

ŵ:~xm,ja
m!°S fm~x!,

]fm

]xn ja
nD .

Now, given a gauges:W,S→LX of the principal bundleLX→S, one can write

ŵ+s~ j̄ !5„s+wS~ j̄ !…h~ j̄ !,

wherej̄ is the coset ofj andh is a function ofW into SO0(1,3). In particular, ifs is the gauge~12!

the expression ofŵ reads

ŵ:~xm,sa
m,la

b!°S fm~x!,
]fm

]xn sb
n~h21!b

a ,ha
cl

c
bD . ~26!

Let t5tm]/]xm be a vector field onX. Then, from~26!, one finds the following expression for th
vector fieldt̂ on LX:

t̂5tm
]

]xm 1S ]tm

]xn sa
n2sb

mtb
aD ]

]sa
m 1

1

2
tabeab , ~27!

whereta
b(xm,sa

m) is a function taking values intoso0(1,3). Latin indices are lowered and raise
with the Minkowski metrichab andeab52eba are the right invariant vector fields on SO0(1,3)
corresponding to the basis~17! of so0(1,3) given by
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eab5
1

2
~da

chdb2db
chda!l

d
k

]

]lc
k
.

Consequently, the coordinate expression of the vector fieldtS on S reads

tS5tm
]

]xm 1S ]tm

]xn sa
n2sb

mtb
aD ]

]sa
m 1

1

2
tabS I ab

i
j y

j
]

]yi 1yj* I ab* j
i

]

]yi*
D .

Given an orientation-preserving diffeomorphismw of X, the equivariance ofŵ @with respect to
the right action of GL1(4,R) on LX# implies that the jet extensionj 1ŵ:J1LX→J1LX goes to the
quotientC5J1LX/GL1(4,R), defining in this way an automorphismwC :C→C overw. It follows
that every vector fieldt5tm]m on X can be naturally lifted to a vector fieldtC on C, whose
expression with respect to the coordinates~22! is

tC5tm]m1~]bntm2km
ba]nta2km

an]bta1ka
bn]atm!

]

]km
bn

or, using the compact notationyA5km
bn ,

tC5tm]m1~u m
Abn]bntm1u b

Am]mtb!
]

]yA .

Later, we shall denote by

tCS5tC1tS :C3
X

S→T~C3
X

S!

the vector field on the configuration spaceC3
X

S which is the sum of the vector fieldstC andtS .

VI. APPLICATIONS

Let us consider the Lagrangian density

L5LM1LMAG :J1~C3
X

S!→∧
4

T* X,

whereLM is the Lagrangian density~21! and

LMAG5LMAGd4x,

LMAG5sa
bsb

mhabRa
bam det~sa

m!

is the Lagrangian density of the metric-affine theory of gravity. Here

Ra
bnm5ka

bn,m2ka
bm,n1ka

snks
bm2ka

smks
bn

is the curvature tensor. Note that

]LMAG /]ka
bm,n[pa

bmn52pa
bnm, ~28!

]LMAG /]ka
bm5ps

bmnks
an2pa

smnkb
sn . ~29!

By construction, the Lagrangian densitiesLM andLMAG are invariant under the action of th
diffeomorphism groupD(X). Hence they obey the relations
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L t̄CS
LM50, L t̄CS

LMAG50, ;tPJ~X!, ~30!

which lead to conserved energy-momentum currents. Let us analyze these currents. Fo
vector fieldtPJ(X), one obtains the current~see the Appendix!

Vm~L,t!5
]LMAG

]ym
A ~u a

Abg]bgta1u b
Aa]atb2ya

Ata!1
]LM

]sc
a

,m
~sc

b]bta2sa
ata

c2sc
a

,btb!

1
]LM

]ym
i S 1

2
tabI ab

i
j y

j2ya
i taD1

]LM

]yim*
S 1

2
tabyj* I * ab

j
i2yia* taD1tm~LMAG1LM !.

~31!

By explicit calculation, one readily verifies that the term

2
]LM

]sc
a

,m
sa

ata
c1

1

2

]LM

]ym
i tabI ab

i
j y

j1
1

2

]LM

]yim*
tabyj* I * ab

j
i ,

corresponding to an ‘‘internal’’ transformation, vanishes identically. Therefore the current~31!
reduces to

Vm~L,t!5
]LMAG

]ym
A ~u a

Abg]bgta1u b
Aa]atb2ya

Ata!1
]LM

]sc
a

,m
~sc

b]bta2sc
a

,btb!

2
]LM

]ym
i ya

i ta2
]LM

]yim*
yia* ta1tm~LMAG1LM !. ~32!

Due to the arbitrariness of the functionsta, the relations~30! imply the equalities

dm
aLMAG1sa

a
]LMAG

]sa
m 1u m

Aa ]LMAG

]yA 1dbu m
Aa ]LMAG

]yb
A 2ym

A ]LMAG

]ya
A 50, ~33!

and

dm
aLM1sa

a
]LM

]sa
m 1sa

a
,b

]LM

]sa
m

,b
2sa

b
,m

]LM

]sa
b

,a
1u m

Aa ]LM

]yA 2ym
i ]LM

]ya
i 2yim*

]LM

]yia*
50.

~34!

Substituting the terms

dm
aLMAG2ym

A ]LMAG

]ya
A

and

dm
aLM2sa

b
,m

]LM

]sa
b

,a
2ym

i ]LM

]ya
i 2yim*

]LM

]yia*

from ~33! and~34! into ~32! and using the relations~23!, ~24!, ~28!, and~29!, the currentVm(L,t)
takes the superpotential form

Vm~L,t!'dbUbm~L,t!,

where
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Ubm~L,t!5pn
kbm~¹ktn1Tn

akta!. ~35!

Here¹ is the covariant derivative with respect to the connectionv andT is its torsion.
Since

pn
kbm5~sa

ksb
mhabdn

b2sa
ksb

bhabdn
m! det ~sa

m!,

~35! can be regarded as a generalized Komar superpotential, in the sense that if the connev
has vanishing torsion and nonmetricity, then~35! coincides with the well-known Koma
expression.20
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APPENDIX: LAGRANGIAN CONSERVATION LAWS

In this Appendix, the basic features of Lagrangian field theory in jet bundle terms are b
introduced.21,22

Classical fields are represented by sections of a fiber bundleY→X and their dynamics is
described by means of jet manifolds. The first jet prolongation ofY→X is denoted byJ1Y. Given
bundle coordinates (xm,yi) on Y ~1<m<m5dimX, 1< i<n,m1n5dimY!, the induced coor-
dinates onJ1Y are denoted by (xl,yi ,ym

i ) and the vector fields along these coordinate directi
are written~in compact notation! as (]m ,] i ,] i

m).
A ~projectable! vector field

u:Y→TY, u5um~x!]m1ui~x,y!] i ,

on Y ~an infinitesimal transformation of both the field and the base manifold variablesyi andxm,
respectively! can be lifted to a~projectable! vector fieldū on J1Y:

ū:J1Y→TJ1Y, ū5um]m1ui] i1um
i ] i

m , um
i 5dmui2yn

i ]mun. ~A1!

Here

dm5]m1ym
j ] j1¯

is the total derivative with respect toxm.
Let

L:J1Y→∧
m

T* X,

L5L~xm,yi ,ym
i !dmx, dmx5dx1∧¯∧dxm,

be a first-order Lagrangian density. Given a vector fieldu:Y→TY, the corresponding current i
defined to be

V~L,u!:J1Y→ ∧
m21

T* X, V~L,u!5Vm~L,u!]m4dmx,

Vm~L,u!5] i
mL~ui2yn

i un!1umL.

By computing the Lie derivativeL ūL of the Lagrangian densityL with respect to the vector field
~A1!, one finds the relation
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LūL'dmVm~L,u!dmx, ~A2!

where the symbol' stands for an equality valid on solutions of the field equations.
It follows that if the vector fieldu is an infinitesimal symmetry transformation of the Lagran

ian densityL, i.e.,

L ūL50,

then ~A2! yields the differential conservation law

dmVm~L,u!'0.
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Split structures in general relativity and the Kaluza–Klein
theories

V. D. Gladusha) and R. A. Konoplya
Department of Physics, Dnepropetrovsk State University,
per. Nauchny 13, Dnepropetrovsk, 320625 Ukraine

~Received 4 May 1998; accepted for publication 26 October 1998!

We construct a general approach to the decomposition of the tangent bundle of
pseudo-Riemannian manifolds into direct sums of subbundles, and the associated
decomposition of geometric objects. An invariant structureHr defined as a set ofr
projection operators is used to induce decomposition of the geometric objects into
those of the corresponding subbundles. We define the main geometric objects char-
acterizing decomposition. Invariant nonholonomic generalizations of the Gauss–
Codazzi–Ricci’s relations have been obtained. All the known types of decomposi-
tion ~used in the theory of frames of reference, in the Hamiltonian formulation for
gravity, in the Cauchy problem, in the theory of stationary spaces, and so on!
follow from the present work as special cases when fixing a basis and dimensions
of subbundles, and parametrization of a basis of decomposition. Various methods
of decomposition have been applied here for the unified multidimensional Kaluza–
Klein theory and for relativistic configurations of a perfect fluid. Discussing an
invariant form of the equations of motion we have found the invariant equilibrium
conditions and their 311 decomposed form. The formulation of the conservation
law for the curl has been obtained in the invariant form. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01502-9#

I. INTRODUCTION

Most approaches and formalisms in General Relativity as well as in the multidimens
Unified Theories are connected with decomposition of spaces into direct sums of subspac
the associated decomposition of geometrical objects. It means that in addition to the usua
tures~differentiable structure, the metric structure, and so on! one should introduce asplit struc-
turewhich induces the decomposition of manifolds. This extra structure determines decompo
of all objects and structures defined on a manifold. Among the varieties of formalism of de
position are the methods aimed to describe frames of reference and observable quantitie
theory of gravity. Similar methods have gained the wide acceptance in a great number of
lems. Some of these problems are the canonical formalism for gravitational waves, the C
problem in General Relativity, construction of the Unified Theory of interacting fields, quan
tion of the gravitational field, the tetradic formalism, the Newman–Penrose formalism, the t
of stationary and axisymmetric gravitational fields, the multidimensional and four-dimens
cosmologies.

Mathematicians and physicists developed methods of decomposition starting mainly
their intrinsic interests. It often took place independently and parallely, so that sometimes the
advances were overlooked and then refound.

The early stage of the development of mathematical technique for decomposition cou
seen in the classical theory of hypersurfaces, and in the theory ofn-dimensional surfaces imbed
ded in then-dimensional Riemannian manifold.1 Then, in the history of split methods, we ca
distinguish several ways. In mathematics, at the classical stage, there were constructed co

a!Electronic mail: gladush@ff.dsu.dp.ua
9550022-2488/99/40(2)/955/25/$15.00 © 1999 American Institute of Physics
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techniques for nonholonomic spaces and subspaces.2,3 Owing to the use of the coordinate langua
such methods were rather cumbersome. In Physics split methods were induced by attem
create the Unified Theory of fields, and, in particular, by appearance of the Kaluza–
theory.4,5 This led to construction of a 411 split method for a five-dimensional manifold and ga
an impulse to study multidimensional Kaluza–Klein theories and multidimensi
cosmologies6–9 ~see also references in Ref. 9!.

Another physical branch of split methods was developed much more later than the or
works on a 411 split were. This branch has begun, apparently, with the work by Echart10 and has
been completed in the papers.11–16 There have been constructed~311!, ~212!, ~11112! coordi-
nate split methods and their special cases~see Ref. 17, and references therein!.

The other independent direction to construct a split of spaces in General Relativity is
nected with the questions of convenience of mathematical representation of the Einstein eq
and with the study of these equations’ structure. This branch is brought about by nee
construction of the canonical formalism,18 of various projection formalisms in the theory of th
stationary and axisymmetric gravitational fields19–21and for the positing of the Cauchy problem
General Relativity.22

Unfortunately, many of the works mentioned above, which have already become classic
different and often inassociated approaches. Moreover a coordinate language applied ther
cially in early works, makes it almost impossible to calculate the Einstein equations for
forms of the metric.

A new stage of development of split methods is based on modern differential geometr23,24

Its invariant language has become a working one in General Relativity.25 It is not only a natural
language for geometry in the whole, but also a convenient approach to calculations. Obt
formulas is reduced, the formulas themselves become universal, and all the calculations ca
be made by computer.

The invariant split method was considered in Ref. 26 but without any connection with
previous works on a split. Objects introduced formally in this work have no clear geome
meaning. One of us proposed the general invariant method of an (n1m) split for pseudo-
Riemannian manifolds.27–30 Most of the approaches in this field were unified in the works,27–30

and the objects introduced there have clear physical and geometrical meaning. For special c
~114!, ~113!, ~212!, (n14) splits, in the coordinate representation, these objects reduc
known physical characteristics of a system.8–16

Multidimensional cosmologies and the Unified Theories imply that a manifold shoul
decomposed into more than two submanifolds. That is one reason why a split of a ma
requires the most general representation.

The theory of (n11n21¯1nr) decomposition of a pseudo-Riemannian manifold into thr
nonholonomic orthogonal subbundlesSa of a dimensionna (a51,2, . . . ,r ) has been constructe
in the present work~n5n11n21¯1nr is a dimension of a manifold!. The (n1m) and (n
11) forms of invariant decomposition have been obtained as consequences. Choosing t
jection operators and gauges of a basis of decomposition we construct various special case
applications of this method are considered. Let us emphasize that we do not refer to probl
global geometry, but use its invariant formulations to construct decomposition of spaces into
sums of subspaces.

Note, that the theory of structures mentioned above has found its further mathematical
opment, and now is widely known in differential geometry under the name ‘‘almost pro
structure.’’26 The latter can be treated from a ‘‘G-structure’’ point of view31 ~see also Ref. 32, and
references therein!. We will follow a more natural approach and use the term ‘‘a split structur
which is, in our opinion, more in the spirit of physical conceptions aroused in General Rela
when dealing with~311!, ~212!, ~11112! decomposition of space–time.

The plan of the paper is as follows. In Sec. II we introduce the necessary notations u
differential geometry, and the main definition of the theory,a split structureon a pseudo-
Riemannian manifold. Then we introduce the metrics and connections induced on the corre
ing subbundles as well as the main associated geometrical objects on the subbundles; the
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of extrinsic curvature and of extrinsic torsion, analogies of the Ricci coefficients of rotation
the curvature tensor. The invariant nonholonomic generalization of the Gauss–Codazzi–
relations has been found as various projections of the curvature tensor into every possib
bundle~see Appendix A!.

In Sec. III the special case of the invariant split structurer 52 ~when we deal with two
subbundles only! is considered. In this case the generalized coefficients of rotation disappear
the curvature tensor, thereby the final formulas become much simpler. In Sec. IV the inv
formulas in the (n11) split form complete the scheme of the invariant split for a pseu
Riemannian manifold. Further, for any concrete calculations, we must fix projection operat

In Sec. V we, for illustration, briefly consider the (n1m) and (n11) coordinate decompo
sition of the manifold with respect to the natural basis$]m ,dxn%. In Sec. VI the method of (n
1m) decomposition is constructed with respect to an adopted basis. All the relations obtai
Sec. VI are basic ones for the other variants of decomposition in this paper. The final formu~in
Appendices B and C! can be used as an algorithm to compute the Ricci tensor, the Riem
tensor, the scalar curvature, and the corresponding Lagrangians.

In Sec. VII we define the canonical parametrization of a basis of decomposition. There
been obtained the main geometric objects with respect to this basis. Various well known s
cases, which follow from this parametrization, are discussed in the section. Connection
relations among them are analyzed.

In Sec. VIII we obtain the decomposition induced by a given family of surfaces. In Sec. IX
consider the decomposition induced by a group of isometries. On the basis of this section’s
we construct the Lagrangian of the unified multidimensional Kaluza–Klein theory~Sec. X!. This
decomposition, apart from everything else, serves as a methodical illustration of the possib
of the present method for physical theories.

Finally Sec. XI deals with the theory of configurations of a perfect fluid. Using the~311!
canonical parametrization, one can define a one-form of the entalphy and a two-form of th
We have obtained the invariant equations of motion for a perfect fluid. The conservation la
the curl of an isentropic perfect fluid has been obtained in the invariant form. For this
rotating in the stationary gravitational field, we have also deduced the equilibrium condition
constructed its Lagrangian.

In this work we considered a torsion-free pseudo-Riemannian manifold only, nonetheles
approach can be used without principal changes for theories of gravity with nonzero torsio
see further development of the present theme in the possible expanding of the invariant d
position to supergravity theories. We, mostly, used notations and definitions of the works.23–25

II. A SPLIT STRUCTURE ON A PSEUDO-RIEMANNIAN MANIFOLD

Let M be a pseudo-Riemannian manifold with the metricg; T(M )5øpPMTp and T* (M )
5øpPMTp* are the tangent and cotangent bundles overM, whereTp andTp* are the corresponding
fibers over a pointp of M. The objectsX,Y,Z,...PT(M ) anda,b,v,d fPT* (M ) denote contra-
variant and covariant vector fields~d is an exterior differential!. We shall denote byv(X) an inner
product of a one-formv and vectorX. The scalar product of two vectorsX,Y, and two formsa,b
is determined by the metricg,

X•[~X,Y![g~X,Y!; ^a,b&[g21~a,b!, ~2.1!

whereg21 is the inverse of the metricg.
We need to note that for each vector fieldYPT(M ) a dual one-formv is determined uniquely

by v(X)5g(X,Y), ;XPT(M ). From now on we just will writev5g(.,Y). Then the inverse of
the metricg is given by

g21~v,a!5g21~g~ .,Y!,a!5a~Y!, ;YPT~M !, ;aPT* ~M !, ~2.2!

so thatY5g21(.,w).
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A linear operatorL on T(M ) is a tensor of type~1,1! which acts according to the relatio
L•X[L(X)PT(M ), ;XPT(M ). Then

~LT
•v!~X!5~v•L !~X![v~L~X!!, ;XPT~M !, ~2.3!

whereLT is a transpose of an operatorL.
The product of two linear operatorsL•H is defined by

~L•H !•X5L•~H•X!PT~M !, ;XPT~M !. ~2.4!

An operatorH is called a symmetric one if

~H•X,Y!5~X,H•Y!, ;X,YPT~M !. ~2.5!

We have to introduce the new notation,a split, which denotes decomposition into direct sum
Therefore we shall say thata split structureHr is introduced onM if the r linear symmetric
operatorsHa (a51,2,...,r ) of a constant rank with the properties

Ha
•Hb5dabHb; (

a51

r

Ha5I , ~2.6!

whereI is the unit operator~I •X5I , ;XPT(M )!, are defined onT(M ).
Now we introduce the notations

Sp
a[Im Hp

a ; ~Sa* !p[Im~Hp
a!T; na5dimSp

a5dim~Sa* !p , ~2.7!

where ImHp
a is an image of an operatorHa at a pointp of M, i.e., Sp

a5$XpPTpuHa
•Xp5Xp%. It

is important that owing to constancy of a rank of the operatorHa, dimensionna does not depend
on a pointp of M.

From the definitions presented here we can obtain the decomposition of the tange
cotangent spaces,

Tp5 %
a51

r

Sp
a ; Tp* 5 %

a51

r

~Sa* !p ; dimTp5dimTp* 5 (
a51

r

na , ~2.8!

where the sign% denotes the direct sum. Thus the tensors$Ha% are the projection operators, whic
bring about decomposition of the fibersTp , Tp* into ther local subspacesSp

a and (Sa* )p , respec-
tively. By the same way, the bundlesT(M ) and T* (M ) are decomposed into the (n11n21¯

1nr) subbundlesSa, Sa* , so that

T~M !5 %
a51

r

Sa; T* ~M !5 %
a51

r

Sa* ; Sa5 ø
pPM

Sp
a ; Sa* 5 ø

pPM
~Sa* !p . ~2.9!

Then arbitrary vectors, covectors, and metrics are decomposed according to the schem

X5 (
a51

r

Xa, a5 (
a51

r

aa , g5 (
a51

r

ga, g215 (
a51

r

ga
21, ~2.10!

where

Xa5Ha
•Xa5Ha

•X; Hb
•Xa50; Xa

•Xb50; ~aÞb!, ~2.11!

aa5aa•Ha5a•Ha; aa•Hb50; aa~Xb!50 ~aÞb!,
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ga~Xa,Ya![g~Xa,Ya!; ga
21~aa ,ba![g21~aa ,ba!, ~2.12!

;Xa,YaPSa, ;aa ,baPSa* .

In these relations$ga% are the metrics induced on the subbundles$Sa% of the tangent bundle
T(M ). Using this scheme we can obtain the decomposition of more complex tensors. We a
that all objects with indicesa,b,... aredefined on the associated subbundlesSa,Sb,... .

Let ¹ be an affine~symmetric and compatible withg! connection such that

¹XY2¹YX5@X,Y#, X~Y•Z!5Z•¹XY1Y•¹XZ, ~2.13!

where @X,Y#5XY2YX is the Lie bracket of two vector fieldsX and Y, ¹XY is the covariant
derivative ofY in the directionX. A consequence of this is that

2Z•¹XY5X~Y•Z!1Y~Z•X!2Z~X•Y!1Z•@X,Y#1Y•@Z,X#2X•@Y,Z#. ~2.14!

Then the covariant derivative¹XT of a tensorT of type ~s,r!, wheres50,1 with respect toX
is defined by

~¹XT!~Y1 ,...,Yr !5¹X~T~Y1 ,...,Yr !!2(
i 51

r

T~Y1 ,...,Yi 21 ,¹XYi ,Yi 11 ,...,Yr !. ~2.15!

The Lie derivativeLXT of a tensorT with respect to a vectorX and the exterior derivative of an
r-form V are given by

~LXT!~Y1 ,...,Yr !5LX~T~Y1 ,...,Yr !!2(
i 51

r

T~Y1 ,...,Yi 21 ,LXYi ,Yi 11 ,...,Yr !,

~dV!~Y0 ,Y1 ,...,Yr !5(
i 50

r

~21! iYi~V~Y0 ,...,Ŷi ,...,Yr !!

1 (
0< i , j <r

~21! i 1 jV~@Yi ,Yj #,Y0 ,...,Ŷi ,...,Ŷj ,...,Yr !, ~2.16!

whereLXY5@X,Y#, LXw5¹Xw5(dw)(X)5Xw for any scalar functionw; the symbolˆ means
that the associated term is omitted.

The curvature tensor is defined by the formula

R~X,Y!Z5~¹X¹Y2¹Y¹X2¹@X,Y#!Z. ~2.17!

Using a split structureHr , the decomposition of¹ is easily set up,

¹XY5 (
a,b,c51

r

¹Xb
a Yc, ;X,YPT~M !. ~2.18!

In this sum we can distinguish the five different sorts of objects$¹Xa
a Ya, ¹Xb

a Yb, ¹Xa
a Yb, ¹Xb

a Ya,
¹Xb

a Yc% (aÞbÞc), which complete the whole of the projected connections. In particular, in
sum the objects

¹Xa
a Ya[Ha

•¹XaYa, ;Xa,YaPSa ~a51,2,...,r ! ~2.19!

define connections$¹a% induced on the subbundles$Sa%. The object

¹Xb
a Yb[Ha

•¹XbYb[2Ba~Xb,Yb!, ;Xb,YbPSb ~2.20!
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is the tensor of extrinsic nonholonomicity of the subbundleSb. One can think that the objects

¹Xb
a Yc[Ha

•¹XbYc[2Qa~Xb,Yc![2Qbc
a ~Xb,Yc!, ;aÞbÞc ~2.21!

define the generalization of the Ricci’s coefficients of rotationgbc
a .34 In the general case they giv

the objects of rotationQbc
a of the subbundlesSb, Sc in thena-dimensional directionSa. The other

components can be expressed in terms of the introduced objects and the Lie derivativeLXbYc

projected into every possible subbundleSa (aÞbÞc). Thus, the components¹Xa
a Yb[Ha

•¹XaYb and¹Xb
a Ya[Ha

•¹XbYa satisfy the relations

Za
•¹Xa

a Yb5Yb
•Bb~Xa,Za! ~aÞb!, ~2.22!

Za
•¹Xb

a Ya5Za
•La~Xb,Ya!1Xb

•Bb~Ya,Za!, ~2.23!

where

La~Xb,Yc!5@Xb,Yc#a[Ha
•@Xb,Yc#[LXb

a Yc ~aÞbÞc!. ~2.24!

Taking into account the relation~2.14! and the definition~2.21! we have

2Za
•Qa~Xb,Yc!5Xb

•Lb~Yc,Za!2Za
•La~Xb,Yc!2Yc

•Lc~Za,Xb!.

The tensor of extrinsic nonholonomicity can be expressed as the sum of symmetri
antisymmetric parts

Ba~Xb,Yb!5Sa~Xb,Yb!1Aa~Xb,Yb!, ~2.25!

whereSa(Xb,Yb) andAa(Xb,Yb) define the tensors of extrinsic curvature and extrinsic torsion
subbundleSb in the direction of the subbundleSa. For these objects one can obtain the relatio

2Za
•Sa~Xb,Yb!5~LZagb!~Xb,Yb!, ~2.26!

2Aa~Xb,Yb!52@Xb,Yb#a[2Ha
•@Xb,Yb#. ~2.27!

It can easily be shown that a connection¹a induced on the subbundleSa will be symmetric and
compatible with the metricga. The projecting of the curvature tensor into the subbund
Sa,Sb,... gives us the nonholonomic generalizations of the Gauss–Codazzi–Ricci’s equa
Using the definitions~2.10!–~2.12!, ~2.17!–~2.27! one can obtain all the necessary projections
the curvature tensor~for more details see Appendix A!.

III. INVARIANT n 1m DECOMPOSITION OF A PSEUDO-REIMANNIAN MANIFOLD

If r 52, then there are only two subbundlesS8 andS9 of the tangent bundleT(M ) and the
previous formulas become much simpler. Owing to the importance of this case it was de
worthwhile to consider the split structure independently from Sec. II.29,30

Let H8 be a linear idempotent symmetric operator of a constant rank with the property

H8•H85H8. ~3.1!

We shall say thatH8 definesa (n1m) split structureon M if

dim ImH85n; dim KerH85m; dim M5n1m, ~3.2!

where KerH8 is a kernel of the operatorH8. SinceH8 is defined, thereby we define the opera
H9 such that
                                                                                                                



-

t

ms

e

961J. Math. Phys., Vol. 40, No. 2, February 1999 V. Gladush and R. A. Konoplya

                    
H9•H95H9; H9•H85H8•H950; H81H95I . ~3.3!

ThereforeH8 andH9 are the projection operators which determine the split structureH2 on M due
to the definition~2.6!. We have

T~M !5S8% S9; S85 ø
pPM

Sp8 ; Sp85Im Hp8 ; S95 ø
pPM

Sp9 ; Sp95KerHp8 ; ~3.4!

X5X81X9; g5g81g9; g215~g8!211~g9!21;

X85H8•X; X95H9•X; X8•X950;

g8~X8,Y8!5g~X8,Y8!; g9~X9,Y9!5g~X9,Y9!. ~3.5!

A connection¹ is decomposed into the following components: a connection onS8, and the tensor
of extrinsic nonholonomicity of the subbundleS8, respectively,

¹X8
8 Y85H8•¹X8Y8, ~3.6!

B9~X8,Y8!52¹X9 ,Y852H9•¹X8Y8. ~3.7!

Other components of¹ can be expressed in terms of the components~3.6!, ~3.7! and the Lie
derivatives of two vector fields

X8•¹Y8
8 Z95Z9•B9~Y8,X8!, ~3.8!

X8•¹Y9
8 Z85X8•LY9Z81Y9•B9~Z8,X8!. ~3.9!

The rest of the components of¹ $¹X9
9 Y9, ¹X9

8 Y9, ¹X9
9 Y8, ¹X8

9 Y9% may be written out by substi
tuting X8,Y8,B8,H8,... for X9,Y9,B9,H9,... andvice versa in formulas~3.6!–~3.9!. This com-
pletes the set of all the eight possible projections of the connection.

The tensorB9 may be expressed as the sum of its symmetric and antisymmetric parts,

B9~X8,Y8!5S9~X8,Y8!1A9~X8,Y8!, ~3.10!

2Z9•S9~X8,Y8!5~LZ9g8!~X8,Y8!; 2A9~X8,Y8!52H9•@X8,Y8#, ~3.11!

whereS9 and A9 are the tensors of extrinsic curvature and torsion, respectively. IfA950, the
subbundleS8 will be holonomic. It means that the subbundleS8 is the union of the tangen
bundles of anm-parameter family ofn-dimensional surfaces$Mn(q),M %, where q5$ci%
PD,Rm parametrizes the surfacesMn(q), andD is some range of parametersci ( i 51,2,...,m) in
Rm, that isS85øqPDT(Mn(q)). This implies that a covector basis of locally exact one-for
$dxi% exists on the dual subbundle (S9)* , so that each of the surfaces of$Mn(q)% is the inter-
section of hypersurfacesxi5ci ( i 51,2,...,m) for some values ofciPD.

Using the definition of the curvature tensor~2.17! one can find every possible projection of th
curvature tensor

R~X8,Y8!Z8•V85R8~X8,Y8!Z8•V81B9~X8,Z8!•B9~Y8,V8!

2B9~Y8,Z8!•B9~X8,V8!12A9~X8,Y8!•B9~Z8,V8!; ~3.12!

R~X8,Y8!Z8•V95V9•$~¹Y9 ,B9!~X8,Z8!2~¹X9 ,B9!~Y8,Z8!%12Z8•B8~A9~X8,Y8!,V9!;
~3.13!
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R~X8,Y9!Z8•V95~Z8•~¹X8
8 B8!1^X8•B8,Z8•B8&!~Y9,V9!

1~V9•~¹Y9
9 B9!1^Y9•B9,V9•B9&!~X8,Z8!; ~3.14!

R8 is the curvature tensor of the subbundleS8

R8~X8,Y8!Z8[$¹X8
8 ¹Y8

8 2¹Y8
8 ¹X8

8 2¹
@X8,Y8#8
8 12LA9~X8,Y8!

8 %Z8, ;X8,Y8,Z8PS8,
~3.15!

whereL8 is the Lie derivative projected into the subbundleS8 (LX8Y[H8•LXY). This definition
of the curvature tensor, introduced in the works,28–30 is the invariant generalization of that intro
duced in coordinate form in Refs. 11–13 by analogy with Ref. 2. Note that the latter term in~3.15!
is necessary in order that the differential curvature operatorR8(X8,Y8) on S8 be a linear multi-
plicative one, or, in other words,R8 be a tensor of type~1,3! on the nonholonomic subbundleS8.
In a similar fashion this concerns the general case ofHr split structure@see Appendix A,~A6! for
Ra(Xa,Ya)Za#.

The following expression, with the fixed vectorsX8,Z8,Y9,V9,

~^Y9•B9,V9•B9&!~X8,Z8![^Y9•B9~X8,.!,V9•B9~ .,Z8!&

defines the scalar product of the two one-formsa[Y9•B9(X8,.) andb[V9•B9(.,Z8) according
to ~2.1! by the metric (g8)21. The covariant derivatives of the tensorB8 are given by

~¹X8
8 B8!~Y9,Z9!5¹X8

8 ~B8~Y9,Z9!!2B8~¹X8
9 Y9,Z9!2B8~Y9,¹X8

9 Z9!, ~3.16!

~¹X9
8 B8!~Y9,Z9!5¹X9

8 ~B8~Y9,Z9!!2B8~¹X9
9 Y9,Z9!2B8~Y9,¹X9

9 Z9!. ~3.17!

The relations~3.12!–~3.14! are nonholonomic analogs of the well-known Gauss–Codaz
Ricci’s equations. Other nontrivial projections of the curvature tensor may be written out usin
substitution ‘‘8’’ for ‘‘ 9’’ and vice versa.

In the special case of the coordinate representation of~311! and ~212! decomposition, the
objects introduced above give us the known tensors,11–16which have clear physical and geomet
cal meaning.

Let us note that the objects, presented in the work26 may be expressed in terms of the
tensors. For example, the torsion tensor introduced there as the Nijenhuis tensor24 proved to be
equal

SH8~X,Y![@X,Y8#81@X8,Y#82@X8,Y8#2@X,Y#852A8~X9,Y9!12A9~X8,Y8!

and the tensorsTXY andQXY of the work26 are given by

TXY[¹X8
9 Y81¹X8

8 Y952B9~X8,Y8!1g21~Y9•B9~X8,.!,.!,

QXY[¹X9
8 Y91¹X9

9 Y852B8~X9,Y9!1g21~Y8•B8~X9,.!,.!.

They have not any simple interpretation even in the classical case of the hypersurfaces inM.

IV. AN INVARIANT „n 11… SPLIT STRUCTURE ON A PSEUDO-RIEMANNIAN MANIFOLD

In this section we give the invariant generalization of (n11) decomposition of spaces~the
monad method13,15! as a special case of (n1m) decomposition whenm51.

Let u be a vector field~field of a monad! on M such thatu•u5e561. It gives a one-formv
and projection operators uniquely by the formulas

v~X!5eu•X, ;XPT~M !, ~4.1!
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H95u^ v; H85I 2H9. ~4.2!

The operators satisfy all the necessary relations~3.1!–~3.3! when S9 is a one-dimensional sub
bundle (m51). The tensor product is denoted by ‘‘^.’’

Thus, defining vector or covector fields,u or v, respectively, we, thereby, induce an (n11)
split structure onM. For any vector fieldX and metricg, this implies

X5X81v~X!u, g5g81ev ^ v, g215~g8!211eu^ u. ~4.3!

Hence it is apparent thatX95v(X)u is collinear tou. The metricsg95ev ^ v, (g9)215eu^ u
and g8, (g8)21 are the metrics on the subbundlesS9,S* 9 and S8,S* 8, correspondingly. A
connection¹ has the following components:

¹X8Y85¹X8
8 Y82B~X8,Y8!u; ¹uu5¹u8u52B8~u,u![F, ~4.4!

where B(X8,Y8)5v(B9(X8,Y8)). The latter equation in~4.4! follows from the formulau•u
5e561. If we consider a congruence of curves for which the vectoru is the tangent vector, then
F is the first curvature of this congruence. The tensorB of type ~0,2! is the tensor of extrinsic
nonholonomicity of the subbundleS8 and can be written as the sum of its symmetric and a
symmetric parts,

B~X8,Y8!52v~¹X8
9 Y8!5eS~X8,Y8!1A~X8,Y8!, ~4.5!

whereS(X8,Y8)5ev(S9(X8,Y8)), A(X8,Y8)5v(A9(X8,Y8)), and

2S~X8,Y8!5~Lug8!~X8,Y8!; 2A~X8,Y8!5~dv!~X8,Y8! ~4.6!

are the tensors of extrinsic curvature and extrinsic torsion of the subbundleS8.
The components of the curvature tensor in an (n11) decomposed form lead to the gener

ized Gauss–Codazzi–Ricci’s equations,

R~X8,Y8!Z8•V85R8~X8,Y8!Z8•V81e@2A~X8,Y8!B~Z8,V8!

1B~X8,Z8!B~Y8,V8!2B~Y8,Z8!~X8,V8!#, ~4.7!

R~X8,Y8!Z8•u522A~X8,Y8!F•Z81e@~¹Y8B!~X8,Z8!2~¹X8B!~Y8,Z8!#, ~4.8!

R~X8,u!Y8•u52Y8•¹X8
8 F1e~F•X8!~F•Y8!1~eLuB2^B,BT&!~X8,Y8!, ~4.9!

where the curvature tensor of the subbundleS8 ~see Ref. 27! is given by

R8~X8,Y8!Z8[$¹X8
8 ¹Y8

8 2¹Y8
8 ¹X8

8 2¹
@X8,Y8#8
8 12A~X8,Y8!Lu8%Z8. ~4.10!

It is to be noted that for tensors of an arbitrary type the projection operators are constructed
tensor product of the operators~4.2! and their transposes. If one does no more than (n11)
decomposition of objects only from the Cartan algebra of exterior forms onM then the universal
invariant construction of the projection operators is feasible~see, for example, Ref. 33 for th
~311! decomposition!.

V. „n 1m … DECOMPOSITION OF A PSEUDO-RIEMANNIAN MANIFOLD IN A
COORDINATE FORM

In order to obtain a coordinate form of the invariant objects it is necessary to choose c
nate covector and vector bases$]m5]/]xm%, $dxm% in the domain U of some map
xm (m,n,r,...51,2,...,n,n11,...,n1m). Then we can find all the relations given above w
respect to this basis, i.e., in covariant form.
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Thus in the case of an (n1m) decomposition one has

H85hm8
n]n ^ dxm5hm8

n]n8^ d8xm; ]m8 [hm8
n]n , d8xm[hn8

mdxn,

H95hm9
n]n ^ dxm5hm9

n]n9^ d9xm; ]m9 [hm9
n]n , d9xm[hn9

mdxn,

hm8
nhr8

m5hr8
n ; hm9

nhr9
m5hr9

n ; hm8
nhr9

m50; hm8
n1hm9

n5dm
n , ~5.1!

g5g81g95gmn8 d8xm
^ d8xn1gmn9 d9xm

^ d9xn,

gmn[]m•]n5gmn8 1gmn9 ; gmn8 5hm8
rhn8

sgrs gmn9 5hm9
rhn9

sgrs . ~5.2!

Further, introducing the definitions

@]m8 ,]n8#8[lm8n8
r8 ]r8 ; @]m8 ,]n9#8[lm8n9

r8 ]r8 ; @]m9 ,]n9#8[22Am9n9
r8 ]r8 , ~5.3!

¹]
m8

8 ]n8[Lm8n8
r8 ]r8 ; B8[Bm9n9

r8 ]r8^ d9xm
^ d9xn; ~5.4!

one has

Lm8n8
r8 5d8xr~¹]

m8
]n8!; Bm9n9

r8 5dx8r~¹]
m9
]n9!5Sm9n9

r8 1Am9n9
r8 , ~5.5!

2Am9n9
r8 5hm9

vhn9
g~hg,v8r 2hv,g8r !; 2Sr8m9n95]r8gmn9 1gms9 ln9r8

s9 1gsn9 lm9r8
s9 . ~5.6!

Herehg[]h/]xg; m8,n8,r8,...,m9,n9,r9,...51,2,...,n,n11,...,n1m. The indices ‘‘8’’ and ‘‘ 9’’
indicate that the corresponding objects are associated with the subbundlesS8 and S9, respec-
tively. From the previous formulas it follows that there are the objects which are associated

both subbundlesS8 and S9. For instance, the tensor of extrinsic nonholonomicityBm9n9
r8 is a

contravariant vector on the subbundleS8, and a covariant tensor of rank 2 on the subbundleS9.
The other necessary objects can be found by substituting ‘‘8’’ for ‘‘ 9’’ and vice versa. Using

these formulas we can obtain the Gauss–Codazzi–Ricci’s equations in terms of the intro
objects. Ifn5m52, our treatment is reduced to the dyadic formalism~see Ref. 16!.

In the case of an (n11) split structure~see Sec. IV!, we haveu5um]m , (m,n51,2,...,n,n
11), and

umum5e561, hm9
n5eumun, hm8

n5dm
n 2eumun,

gmn5eumun1gmn8 ; gmn5eumun1g8mn, ~5.7!

gmn8 5hm8
ahn8

bgab ; g8mn5ha8
mhb8

ngab, ~5.8!

]m8 5hm8
n]n ; @]m8 ,]n8#5eAmnu; @]m8 ,u#52Fmu, ~5.9!

2Amn5h,m8
rh,n8

s~ur,s2us,r!; Fm5~um,n2un,m!un; 2Smn5Lugmn8 . ~5.10!

Replacing all the objects in~4.7!–~4.9! by these relations we can find the components of
curvature tensor. Furthermore if we consider the~311! decomposition of a relativistic space
time, our formalism is reduced to the monad method,11–15 and to his special gauges. In this ca
abstract geometrical objects will have an explicit physical meaning. So, one can think ofAmn as
the local angular velocity tensor of the frame of reference. The first curvature vector o
congruenceFm determines the acceleration of the reference body in a given point, andSmn is the
rate of strain tensor.17
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VI. „n 1m … DECOMPOSITION WITH RESPECT TO AN ADOPTED BASIS

To find all the relations considered above in an (n1m) decomposed form for some fixed bas
is a question of great significance for applications. The coordinate form of (n1m) decomposition
considered in Sec. V is rather cumbersome, and the objects themselves prove to be singu
of the reasons of this is that the range of indicesm8,m9,... is redundant. Therefore it is mor
convenient for applications to choose the adopted bases of (n1m) decomposition which will
eliminate such redundancy. One’s choice of one basis or another is dictated by a physica
tion, requirements of an interpretation of results, or just by the necessity to use the most co
able way of calculation. We shall present here the invariant relations of Sec. III with respect
adopted basis of decomposition. Note that in such a form the formulas will be quite feasib
any concrete basis of decomposition. All the known types of decomposition~for torsion free
theories! can be obtained as special cases of the present formalism by choosing the corresp
bases. In an (n1m) decomposed form our method is essentially useful for calculation of
Riemann tensor, the Ricci tensor, and the curvature scalar by computer.

We shall now consider two adopted dual bases of decomposition; a vector one$Em%
5$Ea ,Ei% on T(M ), and a covector basis$um%5$ua,u i% on T* (M ), whereEbPS8[Sn, Ei

PS9[Sm; uaPS* 8[S* n; u iPS* 9[S* m. According to~3.4!–~3.5! we have

ua~Eb!5db
a , ua~Ej !50; u i~Eb!50; u i~Ek!5dk

i , ~6.1!

Eb•Ek50, ^ua,u i&50. ~6.2!

It should be emphasized that the indicesa,b,c,... andi , j ,k,... indicate the subbundlesSn,S* n

andSm,S* m, respectively. With respect to the basis$Em%, $um% one has

H85Ea^ ua; H95Ei ^ u i ; g5g81g95gabu
a

^ ub1hiku i
^ uk, ~6.3!

where gab5Ea•Eb and hik5Ei•Ek are the components of the metricsg8,g9 induced on the
subbundlesSn andSm.

Then we introduce the definitions

¹Ea
8 Eb5Lab

c Ec ; ¹Ei
9 Ej5Li j

k Ek ;

~6.4!
B8~Ei ,Ek!5Bik

a Ea ; B9~Ea ,Eb!5Bab
i Ei ,

@Ea ,Eb#85lab
c Ec ; @Ei ,Ej #95l i j

k Ek ;
~6.5!

@Ea ,Ei #85lai
b Eb ; @Ei ,Ea#95l ia

k Ek ,

whereLab
c andL jl

i are the coefficients of connections¹8 induced onSn and¹9 induced onSm.
Similarly Bik

c and Bab
i are the coefficients of the tensors of extrinsic nonholonomicity of

subbundlesSm andSn, respectively. Using the identity~2.14! one can find

Lab
c 5Dab

c 1gab
c ; L jk

i 5D jk
i 1g jk

i ;

Bik
a 5Sik

a 1Aik
a ; Bab

i 5Sab
i 1Aab

i , ~6.6!

where

2Dcab5Eagbc1Ebgac2Ecgab ; 2gcab5lcab1lbca2labc , ~6.7!

2Saik5~LEa
g9!~Ei ,Ek!5Eahik1l ika1lkia ;

~6.8!
2Aik

a 5~dua!~Ei ,Ek!; 2Aaik52Ea•@Ei ,Ek#.
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The coefficientsAiab ,Siab ,g i jk ,D i jk , unwritten here, can be obtained from~6.7!–~6.8! by the
replacement (a,b,c,...↔ i , j ,k,...). Adhering to this style here and below we shall write a
discuss only those relations which can not be found by the change of indices. We should r
also that the indicesa,b,c,... areraised and lowered by the metricsgab andgab . The curvature
tensor and its contractions are presented in Appendix B.

In the special case of (n11) decomposition, i.e., whenm51 one has adopted bases$Em%
5$Ea ,E%, $um%5$ua,u%, (a,b51,2,...,n), so that

ua~Eb!5da
b ; ua~E!505u~Ea!;

~6.9!
u~E!51; E•Ea50; E•E[eN2,

where $Ea%PSn; uaPS* n and EPS1; uPS* 1. In this case the projectorsH85Ea^ ua and
H95E^ u induce the decomposition of the metric

g5g81g95gabu
a

^ ub1eN2u ^ u. ~6.10!

Then using the relations~6.4!–~6.8!, ~B1!–~B9!, when i 5 j 5k51 or ~4.4!–~5.1! when u
5N21E, v5Nu we can find all the necessary relations in the (n11) decomposed form in an
adopted basis. Thus, from~4.4! it follows that

F5N22~G2~E logN!E!; G5¹EE. ~6.11!

The tensor of extrinsic nonholonomicity of the subbundleSn can be written in the form

B~Ea ,Eb!5eSab1Aab[eN21Bab ; 2Bab52Dab1Fab , ~6.12!

where

Sab5N21Dab ; 2Dab5~LEg8!~Ea ,Eb!5Egab1Ea•@Eb ,E#1Eb•@Ea ,E#;
~6.13!

2Aab5eN21Fab ; Fab5eN2~du!~Ea ,Eb!52E•@Ea ,Eb#.

Acting in the same way as in the previous sections we can find the generalized Gauss–Co
Ricci’s equations~see Appendix C!.

VII. CANONICAL PARAMETRIZATION OF AN „n 1m … SPLIT STRUCTURE AND ITS
SPECIAL CASES

The relations of Sec. VI are invariant under the transformation of adopted bases,

ua5Lb
aeb; u l5Lk

l ek; Ea5~L21!a
beb ; Ei5~L21! i

kek , ~7.1!

where$Lb
a% and $Li

k% are (n3n) and (m3m) nonsingular matrices, and$(L21)a
b% and $(L21) i

k%
are their inverse matrices. Using this property of invariance one can choose, without lo
generality, the simplest basis of decomposition which is useful for applications.

For this purpose we consider the expansion of the covector basis onS* m in the domainU of
definition of the mapxm (m51,2,...,n,n11,...,n1m), i.e., u i5um

i dxm. Due to the fact that the
rank of then3(n1m) matrix $um

i % is equal ton, there is an (m3m) nonsingular matrix$uk
i % as

a box in $um
i %. Then the covectorsu i can be written in the form,u i5uk

i dxk1ua
i dxa5Lk

i (dxk

1Na
kdxa)[Lk

i ek, whereLk
i 5uk

i , Na
k5(L21) i

kua
i . Thus the covector basisu i goes over into the

new covector basisekPS* m. The vector basis onSn can be written similarly asEa5Ea
m]m . From

the condition of dualityek(Ea)50 it follows that Ea5(L21)a
b(]b2Nb

k]k)[(L21)a
beb , where

(L21)a
b5Ea

b . Thereby we defined the new vector basisebPSn. The other vector and covecto
bases~eiPSm and eaPS* n, respectively! are defined by the condition of duality up to (n•m)
functionsBi

a . As a result one obtains the following parametrization of the basis of decompos
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ea5dxa1Bi
aeiPS* n; ea5]a2Na

i ] iPSn;
~7.2!

ei5dxi1Na
i dxaPS* m; ei5] i2Bi

aeaPSm.

We shall call this parametrization the canonical one.
If one follows similar procedure beginning with the covector basisuaPS* n, one will obtain

the other canonical parametrization of (n1m) decomposition,

ea5dxa1Ai
adxiPS* n; ea5]a2Ma

kekPSn;
~7.3!

ei5dxi1Ma
i eaPS* m; ek5]k2Ak

a]aPSm.

When some metricg is fixed onM, the functionsBi
a ~or Ma

i ! can be found from the condition o
orthogonality~6.2! in terms ofgmn andNa

i ~or Ak
b!. If, otherwise, we fixBi

a ~or Ma
i !, then we can

obtain the metric for both cases according to~6.3!:

g5gab~dxa1Bi
aei ! ^ ~dxc1Bk

cek!1hikei
^ ek,

~7.4!
g5gabe

a
^ eb1hik~ei1Ma

i ea! ^ ~ek1Mb
keb!.

With respect to the canonically parametrized basis~7.2!, the objects~6.6!–~6.8! and the Lie
bracket of the basic vector fields have the form

lab
c 522Bi

cAab
i ; l i j

k 5~Bi
aej2Bj

aei !Na
k ;

lai
c 52eaBi

c12Aab
k Bi

bBk
c1Na,i

k Bk
c ; l ia

k 522Aac
k Bi

c2Na,i
k ,

~7.5!
2Aab

i 5ebNa
i 2eaNb

i ; 2Ai j
a 5eiBj

a2ejBi
a2l i j

k Bk
a ,

2Saik5~Lea
h!~ei ,ek!; 2Siab5~Lei

g!~ea ,eb!,

whereg5gabe
a

^ eb andh5hikei
^ ek. Here all the geometrical characteristics are expresse

terms of the functionshi j ,gab ,Bi
a ,Nb

k and their derivatives. Substituting the objects~7.5! for those
used in~B2!–~B8! we can obtain the Riemann tensor, the Ricci tensor and the scalar curvat
an (n1m) decomposed form with respect to the canonically parametrized basis~7.2!. All the
relations for the parametrization~7.3! are found from~7.5! by the substitution~a,b↔ i , j ; Bi

a

→Ma
i , Na

i→Ai
a!.

In the case of (n11) decomposition both types of parametrizations should be consid
independently. Thus for the~311! monad method there are two kinds of canonical parametr
tions ~with respect to local coordinates$xm%5$t,xi%! determined by

e05] t2Ni] i5Nu; e05dt1Bie
i5N21v;

~7.6!
ei5] i2Bie0 ; ei5dxi1Nidt,

and

e05] t2Miei5Vu; e05dt1Aidxi5V21v;
~7.7!

ei5] i2Ai] i ; ek5dxk1Mke0,

whereu is a monad vector,v is a one-form of time such thatv(u)51.
The first set of bases~7.6! is the generalization of the well-known ADM parametrization.18 In

this case the metric has the form
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ds25N2~dt1Bje
j !22hikeiek, ~ei5dxi1Nidt!. ~7.8!

The second set of bases~7.7! implies that the metric is given by

ds25V2~e0!22hik~dxi1Mie0!~dxk1Mke0!, ~7.9!

wheree05dt1Ajdxj .
The latter parametrization is the generalization of those often used when describing sta

spaces. It is worth emphasizing that the redundant ‘‘degrees of freedom’’ of the metrics~7.8!–
~7.9! may be used to fix a frame of reference or to simplify the Einstein equations. In the th
of stationary configurations, representation~7.9! is useful for examining of solutions, for which
flux of matter and the timelike Killing’s vectors are noncollinear~so-called skew solutions21!.

If Bj vanishes the metric~7.8! goes over into the standard ADM parametrization,

ds25N2dt22hik~dxi1Nidt!~dxk1Nkdt!. ~7.10!

WhenMk vanishes, the metric~7.9! has the form

ds25V2~dt1Ajdxj !22hikdxidxk. ~7.11!

This parametrization is often used when describing stationary spaces. If we takeNi50 or Aj

50 for the metrics~7.10! and ~7.11!, respectively, then in both cases we have

ds25g00dt22hikdxidxk. ~7.12!

This kind of decomposition corresponds to a trivial case whenS3 is a family of hypersurfaces
where each of the hypersurfaces is orthogonal to the curvesxi5const. This decomposition is
invariant under the transformations

t5t~ t8!, xi5xi~x8k!. ~7.13!

The three-dimensional part of these transformations acts uniformly on all the hypersurfaces
we shall start, otherwise, from three-dimensional transformations~7.13! which can be extended to
the gauge ones by supposing that they depend on time, i.e.,

t5t~ t8!, xi5xi~ t8,x8k!. ~7.14!

These transformations, under which the hypersurfacest5const remain unchanged, have be
called the kinemetric ones.12 In order that the decomposition of the metric be invariant w
respect to~7.14! we must ‘‘make longer’’ the time derivative] t→] t2Ni] i ~simultaneously we
take dxi→dxi1Nidt! by using the gauge vectorNi . Thus it leads to the kinemetric method o
decomposition,12 which coincides with the ADM representation.18

Similarly extending the transformations of time we obtain the chronometric transformati11

t5t~ t8,xk8!, xi5xi~x8k!. ~7.15!

It is obvious that the transformations~7.15! do not change the congruence of world linesxi

5const. According to Zelmanov11 these transformations have been taken as a basis for the
nition of the frame of reference. ‘‘Making longer’’ the time differentialdt→dt1Aidxi ~herewith
] i→] i2Ai] t! we obtain the chronometric method of decomposition. The transformations~7.15!
and ~7.14! are the complements of one another and form together the general covariant tra
mationsxm5xm(x8n).

Further generalizations of~7.10! and ~7.11! lead to various parametrizations of the mon
method. Thus, making longerdt, dt→dt1Bie

i (] i→] i2Bie0) one has the canonical paramet
zation ~7.6!, ~7.8!. Making longer] t , ] t→] t2Miei (dxk→dxk1Mke0) one obtains the othe
canonical parametrization~7.7!, ~7.9! of the monad method forM4. ‘‘Lengthening’’ as referred to
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is connected with an extension of the admissible transformations, which are not coordina
basic ones. The generalization~7.8! of the ADM parametrization is invariant under the transfo
mations

ẽk5a i
kei , h̃i j 5a i

ma j
nhmn , B̃j5a j

kBk . ~7.16!

If we write the inverse of the metric~7.9!,

~]s!
25V22~] t2Miei !

22hikeiek , ~7.17!

then it easily can be seen that the metric~7.9! is invariant under the transformations

ẽi5b i
kek , h̃i j 5bm

i bn
j hmn, M̃ i5bk

i Mk. ~7.18!

In ~7.16!, ~7.18!, $ak
i % and$bk

i % are nonsingular matrices depending on a pointp of M. From this
we can clearly see the role of the parametrizations~7.8!, ~7.9! as such generalizations of th
kinemetric and chronometric methods that the corresponding metrics admit nonholonomic
formations of spatial vector and covector bases~7.16! and ~7.18!, respectively.

VIII. DECOMPOSITION INDUCED BY A FAMILY OF SURFACES

Let $Mm,M % be ann-parameter family ofm-dimensional surfaces. One may think of the
surfaces as intersections of the hypersurfacesxa5const, i.e.,Mm5ùa$x

a5const%. It is obvious
that such a family induces (n1m) decomposition ofM. Indeed, there exists the vector basisei

5] i on T(M ), (i 5n11,...,n1m), because of holonomicity of theMm itself. As a consequence o
it, the covector basis on the dual toT(Mm) subbundlesS* n is a set of one-forms$ea5dxa%. The
corresponding dual bases to the bases$ei% and$ea% are determined up to (n•m) functionsNa

i such
that

ea5dxaPS* n, ea5]a2Na
i ] iPSn,

~8.1!
ei5dxi1Na

i dxaPS* m, ei5] iPSm.

The functionsNa
i are expressed in terms of the components of the metricg by using the condition

of orthogonalityea•ei50. Thus the projection operators and the metric have the form

H85~]a2Na
i ] i ! ^ dxa, H95]k^ ~dxk1Na

kdxa!, ~8.2!

g5gabdxa
^ dxb1hik~dxi1Nc

i dxc! ^ ~dxk1Nd
kdxd!. ~8.3!

From the form of the metric~8.3! it can be seen that here we used the special case of cano
parametrization of (n1m) decomposition~7.2! whenBi

a vanishes. In this case the formulas~7.5!
become much simpler. Thus, one finds

lab
c 50; l i j

k 50; lai
c 50; l ia

k 52Na,i
k ; Ai j

a 50; ~8.4!

2Siab5gab,i ; 2Aab
i 5ebNa

i 2eaNb
i , ~8.5!

2Saik5hik,a2hik,lNa
l 2hlkNa,i

l 2hil Na,k
l , ~8.6!

2Lcab52Dcab5eagbc1ebgca1ecgab , ~8.7!

2Li jk52D i jk5hi j ,k2hik, j2hjk,i . ~8.8!
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The partial derivatives with respect to coordinatesxi andxa are denoted here byi anda, respec-
tively. Then, according to~B2!–~B8!, one can find the curvature tensor and its contractions.

IX. DECOMPOSITION INDUCED BY A GROUP OF ISOMETRIES

Let M assume to a nontransitive group of isometriesGn with the n linearly independent
Killing’s vectors $ja%, which satisfy the relations

@ja ,jb#5Cab
d jd ~a,b,d51,2,...,n!, ~9.1!

where theCab
d are the structure constants and obey the Jacobi identityC[ab

c Cd]c
f 50 and the

conditionCab
c 1Cba

c 50. In addition, the metricg satisfies the Killing’s equations,

~Lja
g!~X,Y!5ja~X•Y!2@ja ,X#•Y2X•@ja ,Y#50, ;X,YPT~M !. ~9.2!

The groupGn decomposesM into a family ofm-codimensional surfaces$Mn%,M , on which
Gn is simply transitive~$Mn% are invariant manifolds!. Thus, we can say that the groupGn

induces (n1m) decomposition ofM into the m-parameter family ofn-dimensional surfaces o
transitivity. Then the subbundleSn5øT(Mn) is a union of the tangent bundles of the fami
$Mn%, andSm is a union of all them-dimensional directions, which are tangent toM and orthogo-
nal to T(Mn).

Now we shall start in the same way as in the previous section. Thus one may think
surfacesMn as an intersection of the invariant hypersurfaces$xi5const%, i.e., Mm5ù i$x

i

5const%, (i 5n11,...,n1m). Moreover, one hasdxi(ja)5jaxi50. This is obvious that the in-
variant differential one-formsdxi can be chosen as a covector basis on the subbundlesS* m. Then
there exists the vector basis$]a%PT(Mn), so thatdxi(]a)50 andja5j (a)

b ]b . Having extended
these bases to the ‘‘complete ones,’’$dxi%→$dxm%5$dxa,dxi%PT* (M ) and $]a%→$]m%
5$]a ,] i%PT(M ), wheredxm(]n)5dn

m and @ja ,] i #50, we can define one-formsva such that

va~jb!5db
a ; va~] i !50; L] i

va50, ~9.3!

Lja
vb52Cad

b vd; 2dva5Cbd
a vb∧vd. ~9.4!

Let us now introduce an auxiliary definition. We shall say that a split structureH2 is compatible
with a group of isometries if the conditions of invariance ofH2 are satisfied, i.e., if

Lja
H850, Lja

H950, ~a51,2,...,n!. ~9.5!

Using ~6.3! and ~9.1! one can easily verify that for the other vector and covector bases$Ek%
PSm and$ua%PS* n we have, respectively,

Lja
ub52Cad

b ud; Lja
Ek50. ~9.6!

To concretize the basis of decomposition we takeua5um
a dxm andEi5Ei

m]m . Then the conditions
of duality ua(jb)5db

a , ua(Ei)50, dxk(Ei)5d i
k determine these bases up to (n•m) functionsAi

a .
As a result the basis of (n1m) decomposition has the form

jaPSn; ea5va1Ai
adxiPS* n,

~9.7!
ei5] i2Ai

ajaPSm; dxkPS* m, @ja ,ei #50.

The projection operators and the metric can be written as

H85ja^ ~va1Ai
adxi !; H95~] i2Ai

aja! ^ dxi , ~9.8!
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g5g81g95gab~va1Ai
adxi ! ^ ~vb1Aj

bdxj !1hkldxk
^ dxl . ~9.9!

From the Killing’s equations one finds

jagbc2Cab
d gdc2Cac

d gbd50; jaAi
b2Cad

b Ai
d50; jahik50. ~9.10!

Using these equations we obtain the main geometrical objects

A9~ja ,jb!50; 2A8~ei ,ek![Fik
a ja ,

Fik
a 5Ak,i

a 2Ai ,k
a 1Cbd

a Ak
bAi

d ,

S8~ei ,ek!50; 2ei•S9~ea ,eb![2Siab5eigab , ~9.11!

2Labc5Ccab1Cbca1Cacb ;

2Li jk52D i jk5ejhik1ekhi j 2eihjk .

In the end, from relations~B2!–~B8! we can find the curvature tensor, the Ricci tensor, and sc
curvature~see Appendix D!. Whenm50 we come to the case of homogeneous spaces.

X. LAGRANGIANS OF THE UNIFIED MULTIDIMENSIONAL KALUZA–KLEIN THEORIES

The mathematical model we shall use for spaces of the unified theories is the totality
following objects:~a! a connected (41n)-dimensional pseudo-RiemannianC` manifold M41n

with a nonsingular metricg on it; ~b! an n-parameter compact group of isometriesGn on M41n

with linearly independent Killing’s vectorsjaPT(M41n) for which the structure constantsCbd
a

satisfy the conditionCad
a 50, (a,b,d54,5,...,n13).

The physical space–timeV4[M41n/Mn is the quotient spaceM41n with respect to the
invariant manifoldsMn of the groupGn. TheV4 is described by the componentshik of the metric
h, by the set of gauge fieldsAi

b and by the multipletn(n11)/2 of scalar fieldswab[2gab . All
these tensors are obtained under the (41n) decomposition ofM41n ~see Sec. IX!. The true
physical configuration is described not by a single set of fields$hik ,Aj

b ,wcd%, but by a whole
equivalence class of such sets; each of them corresponds to some point of the orbitGn. The
signature of the metricg is defined by two conditions; first, the metrich is a Lorentz one, and
second, the energy density is positive for obtained Lagrangian of fields$Aj

b ,wcd%. In addition, the
metricg satisfies the (41n)-dimensional variational Hilbert principle for the functionalS@g#, i.e.,

dS@g#5dH 2
1

4pV E R~41n!V~41n!J 50, ~10.1!

whereR(41n) is the curvature scalar onM (41n), the (41n)-form V (41n) is the volume measure
on M41n, andV is then-dimensional invariant volume ofMn,

V5E
Mn

v4∧v4∧¯∧v41n[E
Mn

V~n!. ~10.2!

The conditionsCab
a 50 follow from the requirement that the volume measureV (n) must be

invariant. They are necessary for compatibility of the variational Hilbert principle and hom
neity of Mn with respect to the group of isometriesGn. This restricts the admissible variations
fields Lja

dg50 in ~10.1!. ~The similar situation may be found in the theory of homogene
models of cosmology.35,36!

Using the formulas of Sec. IX and Appendix D for the metricg in the (n14) decomposed
form
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g5hikdxi
^ dxk2wab~va1Am

a dxm! ^ ~vb1An
bdxn! ~10.3!

and omitting a divergence of some vector, we obtain

S~41n!@g#5S@wab ,Ai
a ,hjk#5E

V4
A2hLd4x. ~10.4!

The Lagrangian density is

A2hL52
1

4p
Auhwu H R~4!1

1

4
wabFi j

a Fbi j1~wabwcd2wacwbd!hikDiwabDkwcd1U~wab!J ,

~10.5!

where

U~wab!5 1
2w

cdCbc
a ~Cad

b 1 1
2wapw

bqCqd
p !, ~10.6!

and

Diwab5wab,i2T~Ai !a
dwdb2T~Ai !b

dwad ~10.7!

is the gauge-invariant derivative. The componentsT(A)b
a[Cbd

a Ad of the matrixT(A) realize the
adjoint representation of the groupGn:@T(A),T(B)#5T(@A,B#), A5Aaja , B5Baja . The La-
grangian of this kind~but with the second derivatives of the fieldswab! has been obtained in Re
37.

Whenn51 the Lagrangian~10.5! reduces to the Lagrangian of the five-dimensional Kaluz
Klein theory.27 In the static case of spherical symmetry fromn51 it follows the Lagrangian of the
simple dynamic system. Its equations can be integrated by the separation of variables
corresponding Hamilton–Jacobi equation. In such a way the solution for the interacting s
electromagnetic, and gravitational fields was obtained in Ref. 38 within the framework o
united five-dimensional Kaluza–Klein theory.

XI. RELATIVISTIC CONFIGURATIONS OF A PERFECT FLUID

Let us consider space–timeM4 with the metricg in the (311) decomposed form

g5V2e0
^ e02hikei

^ ek, g215V22e0^ e02hikei ^ ek , ~11.1!

whereg21 is the inverse of the metricg. For the time being, we require the basis of decomposit
to be an adopted abstract one~i.e., not concretized!. Let the source of the gravitational fiel
described by the metric~11.1! be a perfect fluid with the field of 4-velocitiesu5V21e05d/ds
which is tangent to the flow linesxm5xm(s). Herewith the mass densityr obeys the conservation
law,

div~ru![~¹em
ru!~em!5V21h21/2Le0

9 ~rh1/2!50, ~11.2!

whereLe0
9 is the Lie derivative with respect to the basis$ei%:Le0

9 Ah5 1
2Ahhik(Le0

h)(ei ,ek). The

equation of motion for the fluid follows from the relation,

div T[~¹em
T!~em,.!50. ~11.3!

The energy-momentum tensorT is

T5mV22e0^ e01Phikei ^ ek , ~11.4!

wherem is the energy density of the fluid,P is the pressure. Using the thermodynamic relatio
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dH5Tds1r21dP, H5~m1P!r21, ~11.5!

one finds the equations of motion

~div T!~e0!5rTV21uS52rV21dS/ds50, ~11.6!

~div T!~ei !5hik~dP2rHLuv!~ek!50. ~11.7!

Here we use the following notations:H is the enthalpy,S is the entropy,T is the temperature, and
v is the covector of the 4-velocity of the fluid~v5Ve0, v(u)51!. We introduce ‘‘the one-form
of the enthalpyu’’ and ‘‘the two-form of the curlV’’ by

u5Hv5HVe0, V5du. ~11.8!

Then the equations of motion~11.6!, ~11.7! can be expressed as

Le0
u5d~HV!2VTdS. ~11.9!

Using the formulaLe0
5 i e0

d1die0
, where the operatori e0

is defined by the relation (i e0
V)(Y)

5V(e0 ,Y), ;YPT(M4), we obtain one more form of the equations of motion

i e0
V52VTdS. ~11.10!

The condition of integrability of these relations leads to the equations of motion for the cur
perfect fluid

Le0
V52d~TV!∧dS. ~11.11!

In the special caseS5const a perfect fluid is isentropic so that the equations for ‘‘the one-form
the enthalpy’’~11.9! and ‘‘the two-form of the curl’’~11.10!, ~11.11! are reduced to the relation

Le0
u5d~HV!, ~11.12!

i e0
V50, Le0

V50. ~11.13!

It is to be noted that the last equation in~11.13! is the condition of integrability of the equatio
~11.12!. Moreover we may regard this condition as an invariant formulation of the theore39

which states that the two-form of the curlV is constant along the world lines of particles of a
isentropic perfect fluid. From the first relation in~11.13! it follows that V is singular, i.e.,
V(e0 ,X)50, ;XPT(M4), and therefore ‘‘completely spatial.’’ This implies

V5(
i , j

V i j e
i∧ej ; V∧V5du∧du50. ~11.14!

Since in general caseu∧duÞ0, then according to the theorem Darboux~see, for example, Ref
23! it follows that there exists such functionsj, h, z that u5dj1hdz. This representation ha
been used in Ref. 40 to construct a number of families of solutions of the Einstein equatio
an isentropic perfect fluid.

Now we shall consider the stationary spaces of General Relativity with a timelike Killi
vector] t . Then the equations~11.6!, ~11.7!, as well as their consequences~11.9!–~11.13!, go over
into the equilibrium conditions of a perfect fluid. For an isentropic stationary flow they a
completely three-dimensional formulation. Indeed, in this case one has

L] t
g50, L] t

em50, @] t ,em#50. ~11.15!
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Then using the parametrization of decomposition~7.7! we deduce that the function
V,Ai ,Mk,hik as well asr,m,P,H, do not depend on time. We define the vectorM and covector
A on the subbundlesS9[S3 by

M5Mi] i , A5Akdxk. ~11.16!

In terms of M and A the conservation law for mass~11.2! is transformed into the three
dimensional equation of continuity of the flow lines

div~3!~rM ![~¹ei
rM !~ei !5h21/2LM~rh1/2!50. ~11.17!

WhenS5const the condition~11.9! may be rewritten in the three-dimensional form as well

i MdA52d log~HV!; M ~HV!50. ~11.18!

From now on the objects and operations are defined in the three-dimensional manifoldt5const
with respect to the bases$] i% and $dxk%. For example,dA5(1/2)Fikdxi∧dxk, whereFik5Ak,i

2Ai ,k . The equilibrium condition~11.18! may be expressed in the form

LMA5d$A~M !2 log~HV!% ~11.19!

showing that the one-formLMA is exact. Hence, as the condition of integrability one obtains
conservation three-dimensional theorem for the curldA along the three-dimensional flow lines
i.e.,

LMdA50. ~11.20!

In the case of parametrization~7.6! for the stationary spaces the functionsV, Bi , Nk, hjk do
not depend on time either. By analogy with~11.19! one has

LNB52d log~HV!, ~11.21!

where

N5Ni] i , B5Bkdxk. ~11.22!

The condition of integrability gives the conservation theorem for the curl ofB

LNdB50. ~11.23!

If one of the two objectsA and M in ~11.19! ~or N and B in ~11.21!! vanishes then the
equilibrium condition of an isentropic perfect fluid has the simple form

HV5V~m1p!/r5k, ~11.24!

wherek is the constant. Thus the Lagrangian of an isentropic perfect fluid in equilibrium is

Lm[2VAhP5~kr2mV!Ah5@k2~11e!V#rAh, ~11.25!

wheree5e(r) is the internal energy of the fluid andm5r(11e).
As was noted above, the parametrizations~7.6!, ~7.7! have spurious degrees of freedom.

means that the vectorM or covectorA in ~7.7! can be chosen arbitrarily, by using addition
physical reasons. Therefore we have a right to introduce the potential of rotationC1 by the
formula

LMA5d~ logC1!. ~11.26!
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Then the equilibrium condition~11.19! is written as a relation for potentials

C1HV5C1 exp~AiM
i !, C15const ~11.27!

and actually gives us the integral of motion. In another case of the parametrization the equil
condition ~7.6! can be expressed in the form

LNB5d~ logC2!, C2HV5C25const. ~11.28!

Thus the potentialsC1 andC2 are different from each other by the exponential factor exp(AiM
i).
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APPENDIX A: THE GENERALIZED GAUSS–CODAZZI–RICCI’S EQUATIONS

Replacing all the connections in the definition of the curvature tensor~2.17! by their ‘‘split
representatives’’~2.18!–~2.21! we have obtained the invariant nonholonomic generalization
the Gauss–Codazzi–Ricci’s equations,

R~Xa,Ya!Za
•Va5Ra~Xa,Ya!Za

•Va1 (
cÞa

$2Ac~Xa,Ya!•Bc~Za,Va!

1Bc~Ya,Va!•Bc~Xa,Za!2Bc~Xa,Va!•Bc~Ya,Za!%, ~A1!

R~Xa,Ya!Za
•Vb5Vb

•$~¹Ya
b Bb!~Xa,Za!2~¹Xa

b Bb!~Ya,Za!%

12Za
•Ba~Ab~Xa,Ya!,Vb!1 (

cÞa,b
$2Za

•Qa~Ac~Xa,Ya!,Vb!

1Bc~Xa,Za!•Qc~Ya,Vb!2Bc~Ya,Za!•Qc~Xa,Vb!%, ~A2!

R~Xa,Yb!Za
•Vb5~Za

•~¹Xa
a Ba!1^Xa

•Ba,Za
•Ba&!~Yb,Vb!1~Vb

•~¹Yb
b Bb!

1^Yb
•Bb,Vb

•Bb&!~Xa,Za!1 (
cÞa,b

$Bc~Xa,Za!•Bc~Yb,Vb!

2Qc~Xa,Vb!•Qc~Yb,Za!1Vb
•Qb~Lc~Xa,Yb!,Za!%, ~A3!

R~Xa,Yb!Za
•Vd5Vd

•$~¹Yb
d Bd!~Xa,Za!2~¹Xa

d Qd!~Yb,Za!

2Bd~Yb,Bb~Xr
a ,Za!!%1Za

•$Ba~Yb,Qb~Xa,Vd!!

2Ba~Ld~Xa,Yb!,Vd!%1~^Yb
•Bb,Vd

•Bd&!~Xa,Za!

2~^Xa,Ba,Vd
•Qd&!~Yb,Za!2 (

cÞa,b,d
$Za

•Qa~Lc~Xa,Yb!,Vd!

2Bc~Xa,Za!•Qc~Yb,Vd!1Qc~Xa,Vd!•Qc~Yb,Za!%, ~A4!
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R~Xa,Yb!Zc
•Vd5Vd

•$~¹Yb
d Qd!~Xa,Zc!2~¹Xa

d Qd!~Yb,Zc!%

1Bd~Xa,Qa~Yb,Zc!!2Bd~Yb,Qb~Xa,Zc!!1Bd~Lc~Xa,Yb!,Zc!%

1Zc
•$Bc~Yb,Qb~Xa,Vd!!2Bc~Xa,Qa~Yb,Vd!!

2Qc~Lc~Xa,Yb!,Vd!%1~^Yb
•Bb,Vd

•Qd&!~Xa,Zc!

2~^Xa
•Ba,Vd

•Qd&!~Yb,Zc!1 (
f Þa,b,c,d

$Qf~Yb,Vd!•Qf~Xa,Zc!

2Qf~Yb,Zc!•Qf~Xa,Vd!1Vd
•Qd~L f~Xa,Yb!,Zc!%. ~A5!

In the formula~A1! the curvature tensorRa of the subbundle(a, introduced in Ref. 30, is

Ra~Xa,Ya!Za[H ¹Xa
a ¹Ya

a
2¹Ya

a ¹Xa
a

2¹
@Xa,Ya#a
a

12(
cÞa
LAc~Xa,Ya!

a J Za. ~A6!

The covariant derivatives of the valuesBd andQd are given by

~¹Xa
b Bb!~Ya,Za!5¹Xa

b
~Bb~Ya,Za!!2Bb~¹Xa

a Ya,Za!2Bb~Ya,¹Xa
a Za!, ~A7!

~¹Xb
d Bb!~Ya,Za!5¹Xb

d
~Bd~Ya,Za!!2Bd~¹Xb

a Ya,Za!2Bd~Ya,¹Xb
a Za!, ~A8!

~¹Xa
d Qd!~Yb,Zc!5¹Xa

d
~Qd~Yb,Zc!!2Qd~¹Xa

b Yb,Zc!2Qd~Yb,¹Xa
c Zc!. ~A9!

We also used the definition

~^Yb
•Bb,Vd

•Qd&!~Xa,Zc![^Yb
•Bb~Xa,.!,Vd

•Qd~ .,Zc!&. ~A10!

When fixing the vectorsXa, Yb, Vd, Zc, the definition ~A10! gives us the scalar produc
^aba,bdc& of one-forms

aba[Yb
•Bb~Xa,.!, bdc[Vd

•Qd~ .,Zc!.

When na51 (a51,2,...,r ), i.e., when all the subbundles are one-dimensional, the relat
obtained here reduce to ther-dimensional variant of the tetradic method’s formulas.34

APPENDIX B: COMPONENTS OF THE CURVATURE TENSOR WITH RESPECT TO AN
ADOPTED BASIS FOR „n 1m … DECOMPOSITION

Due to the definitions

$Em%5$Ea ,Ei%; R~Em ,En!Er•Es5Rsrmn ; R~Em ,En!Er5Rrmn
s Es , ~B1!

the generalized Gauss–Codazzi–Ricci’s equations~3.12!–~3.15! have the form

Rabcd5Rabcd
~n! 12A.cd

i Biba1B.cb
i Bida1B.db

i Bica , ~B2!

Ribcd5Bicbud2Bidbuc12A.cd
k Bbki1B.db

k ~Bcik2lkic!2B.cb
k ~Bdik2lkid!, ~B3!

Ribc j5Bb ji uc2Bicbu j2Bb jkBci.
k2BicdBjb.

d1Bbkil . jc
k 1Bb jkl .ic

k 1Bidbl .c j
d 1Bicdl .b j

d , ~B4!

where the curvature tensor of the subbundleSn is defined by its componentsRabcd
(n) according to

R~n!a
bcd5EcLdb

a 2EdLcb
a 1Ldb

f Lc f
a 2Lcb

f Ld f
a 2lcd

f L f b
a 12A.cd

i lbi
a ~B5!
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~and similarly for the replacementn→m anda,b,c,...↔ i , j ,k,...!. Then the components of th
Ricci tensor and the curvature scalar have the form

Rbd5Rbd
~n!2Bdbu i

i 2Sbud12Aad
i Aib.

a12SiadSia
b2Sb

i j Sdi j1Abi jAd
i j

2SiB.db
i 2B.da

i l .bi
a 2B.ab

i l .di
a , ~B6!

Ria5Bia.ub
b 1Bai.uk

k 2Si ua2Sau i22Sik
b Sab

k 26Aik
b Aab

k 1Sk~Baik2lkia!

1Sb~Biab2lbai!1Bab
k lki.

b1Bik
b lba.

k , ~B7!

R5R~n!52Si
u i2SiSi2Sab

i Si ..
ab2Aab

i Ai ..
ab1R~m!22Sua

a 2SaSa2Si j
a Sa.

i j 2Ai j
a Aa..

i j , ~B8!

where Si5Sab
i gab, Sa5Sik

a hik. The signs ‘‘u i ’’ and ‘‘ ua’’ denote the covariant derivative with
respect to the connectionsLmn

k andLbc
a in the directions of the vectorsEi andEa , respectively.

For example,

Bicbud5EdBicb2BiabLdc
a 2BicaLdb

a ~a,b,c↔ i , j ,k!. ~B9!

The other components of the Ricci tensor and the curvature tensor can be found from~B2!–~B7!
by the formal substitutiona,b,c,... for i , j ,k,... andotherwise.

APPENDIX C: COMPONENTS OF THE CURVATURE TENSOR WITH RESPECT TO AN
ADOPTED BASIS FOR „n 11… DECOMPOSITION

The generalized Gauss–Codazzi–Ricci’s equations for the metric~6.10! with respect to the
basis~6.9! have the form,

Rabcd5Rabcd
~n! 1eN22~BcbBda2BdbBca1FcdBba!, ~C1!

Rn11,bcd5N$~N21Bcb! ud2~N21Bdb! uc%2eN22GbFcd , ~C2!

Rn11,bc,n115NLE~N21Bcb!2BcaBb.
a1eN22GbGc2N2~N22Gb! uc , ~C3!

Rbd5Rbd
~n!2eN22@NLE~N21Bdb!1DBdb1 1

2FbaFd.
a22DbaDd.

a#1e~N22Gb! ud2N24GbGd ,
~C4!

Rn11,a5N@~N21Ba.
b! ub2Ea~N21D !#2eN21FabG

b, ~C5!

Rn11,n1152NE~N21D !2DabD
ab1 1

4FabF
ab1N2~N22Ga! ua2eN22GaGa, ~C6!

R5R~n!22eN21E~N21D !2eN22~D21DabD
ab1 1

4FabF
ab!12e~N22Ga! ua22N24GaGa,

~C7!

R~n!a
bcd5EcLdb

a 2EdLcb
a 1Ldb

f Lc f
a 2Lcb

f Ld f
a 2lcd

f L f b
a 1eN22Fcdlb

a , ~C8!

wherelb
a5ua(@Eb ,E#) andR(n)5gbdRbd

(n) ; Rbd
(n)5R(n)a

bad .

APPENDIX D: COMPONENTS OF THE CURVATURE TENSOR FOR A DECOMPOSITION
INDUCED BY A GROUP OF ISOMETRIES

The curvature tensor and its contractions with respect to the basis~9.7! for the metric~9.9!
have the form,

Rdcab
~m1n!5Rdcab

~n! 1Sic[aSb]d
i , ~D1!
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Ricab
~m1n!5Sc[a

k Fb]ki1SicdC.ba
d 12Sid[ag .b]c

d , ~D2!

Rickb
~m1n!52Sibc;k1SibdSkc.

d1 1
4Fck jFbi.

j2 1
2g .bc

d Fdki , ~D3!

Ra jkl
~m1n!5Fa j@ l ;k#1Fb j [kSl ]a

b1FbklSja
b , ~D4!

Ri jkl
~m1n!5Ri jkl

~m!1 1
2Fai[kF .l ] j

a 2 1
2Fai jFkl

a , ~D5!

Rjlk
~m!i52e[kD l ] j

i 12D j [ l
m Dk]m

i , R.cab
~n!d52gq.[a

d gb]c.
q2C..c

qdgaqb , ~D6!

Rab
~m1n!5Rab

~n!2Sab; i
i 2Sab

i Si12Si
acSib

c1 1
4Fai jFb

i j , ~D7!

Rai
~m1n!5 1

2Fai;k
k 1 1

2FailS
l1C.ba

d Sid
b 2Cbd

b Sia
d , ~D8!

Rik
~m1n!5Rik

~m!2S~ i ;k!2SiabSk
ab1 1

2Fai jF ..k
a j , ~D9!

R~m1n!5R~n!1R~m!22Si
; i2SiSi2SiabSiab2 1

4Fi j
a Fa

i j . ~D10!

HereR(m)5hikRik
(m) ; Rik

(m)5Rilk
(m) l , andR(n)5gbdRbd

(n) ; Rbd
(n)5Rbad

(n)a . The covariant derivative in
the direction of the vectorek with respect to the connectionD jk

i is denoted by ‘‘;k.’’
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Quantifying excitations of quasinormal mode systems
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Computations of the strong field generation of gravitational waves by black hole
processes produces waveforms that are dominated by quasinormal~QN! ringing, a
damped oscillation characteristic of the black hole. We describe here the math-
ematical problem of quantifying the QN content of the waveforms generated. This
is done in several steps:~i! We develop the mathematics of QN systems that are
complete~in a sense to be defined! and show that there is a quantity, the ‘‘excita-
tion coefficient,’’ that appears to have the properties needed to quantify QN con-
tent.~ii ! We show that incomplete systems can~at least sometimes! be converted to
physically equivalent complete systems. Most notably, we give a rigorous proof of
completeness for a specific modified model problem.~iii ! We evaluate the excita-
tion coefficient for the model problem, and demonstrate that the excitation coeffi-
cient is of limited utility. We finish by discussing the general question of quantifi-
cation of QN excitations, and offer a few speculations about unavoidable
differences between normal mode and QNM systems. ©1999 American Institute
of Physics.@S0022-2488~99!03201-6#

I. INTRODUCTION AND OUTLINE

Essentially all computations of the generation of gravitational waves by strong field black
processes produce a gravitational wave with the shape of a damped sinusoid.1 The oscillation
period and damping time depend only on the parameters of the black hole, and not on the m
of excitation. The meaning of the complex frequency of this damped oscillation is now
understood. A single frequency perturbation outside the hole can satisfy the natural ra
boundary conditions~radiation into the black hole and outward to infinity! only if the frequency is
one of the discrete set of frequencies, called quasinormal~hereafter QN! frequencies. The leas
damped of these complex frequencies is what dominates the appearance of computed wav

QN excitations are relevant, in principle, to most or all systems with radiative boun
conditions. Stellar models, for example, have short periods for nonradial oscillations drive
fluid pressures, and long damping times of these fluid oscillations due to the weak emiss
gravitational waves. The motions of the stellar fluid can be studied with radiation damping om
~e.g., with the use of Newtonian gravitation theory, or post-Newtonian theory! and the weak
radiation can be added, after the fact. When the radiative coupling is ‘‘turned off’’ the proble
the oscillation of a perfect fluid stellar model can be analyzed in normal modes2,3 and one can find
the radiated energy coming from each separate oscillation frequency, and can decomp
radiative power into that fraction assigned to each frequency.

The situation is dramatically different for black holes, which have only a single time s
~For a nonrotating hole this is 2GM/c3 whereG is the universal gravitational constant,c is the
speed of light, andM is the mass of the hole.! The period and damping time are therefore of t
same order and there is no meaningful way of turning off the damping for black hole oscilla
there is no underlying normal mode system. This suggests that there may be no clear
specifying ‘‘how much QN ringing’’ of some particular black hole QN frequency is containe
an emitted waveform. This suggestion is made plausible by the mathematical origins of n
9800022-2488/99/40(2)/980/31/$15.00 © 1999 American Institute of Physics
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modes and QN modes. The properties and usefulness of normal modes are closely relate
fact that they are eigensolutions to a self adjoint problem. QN modes, on the other han
eigensolutions of a problem that is not self adjoint. But the dominance of QN frequenci
computed waveforms is so robust that it seems that the strength of QN ringingmustbe quantifi-
able, or at least that mathematical sense must be made of the question.

In this paper we try to make mathematical sense of quantification. In attempting this we
upon parallels with normal modes systems. By the ‘‘excitation’’ of a mode we mean, in paral
excitation in normal modes systems, an index of the contribution that each mode makes
overall waveform and to the energy. To develop a description of QN excitation we start w
viewpoint that a meaningful and rigorous quantification is very implausible unless the QN sy
is, in some sense, complete. We then follow a three step process. First, in Sec. II, we defi
posit the existence of QN systems that are complete~in a sense to be defined!. We then point out
difficulties in quantifying excitation in a complete QN system. We construct a particular mea
the ‘‘excitation coefficient,’’ that overcomes these difficulties, and is closely related to the
scription of the excitation of normal modes.

Our next step is to prove the existence of complete QN systems and relate the mathem
black hole processes to complete systems. This step, carried out in Sec. III, requires a
lengthy discussion of ‘‘induced completeness.’’ Though this discussion is not directly relat
the problem of QN excitation, it is a necessary step~and is interesting in its own right!. The
discussion in Sec. III shows that completeness can be induced. That is, an incomplete QN
can be changed with a modification that satisfies two criteria:~i! The effect of the modification can
be made arbitrarily weak. More specifically, the modification can be made small enough s
the waveform that evolves from any initial conditions is arbitrarily close to the waveform evol
with no modification.~ii ! No matter how weak the modification is, the modified QN system
complete. Our demonstration in Sec. III does not consist of a general theory for such mo
tions; a conjecture about the general conditions has been given by Younget al.4 ~though their
definition of completeness is somewhat different from ours!. Here we will sacrifice generality and
direct astrophysical relevance for specificity and rigor. We present the details of a specific m
We will start with a model, the ‘‘TDP,’’ with only a single conjugate pair of QN frequencies,
modify it to the ‘‘spiked TDP,’’ a model with an infinite QN spectrum. In the Appendix we g
a rigorous proof of completeness of the spiked TDP~i.e., that under specified circumstances t
outgoing waveform is a convergent sum of components at quasinormal frequencies!. Numerical
results are shown in Sec. III to demonstrate the negligible effect of the modification, a
demonstrate the pattern of convergence of sums of single frequency excitations.

Having established that completeness can be induced~at least in one model problem!, we
return, in Sec. IV, to the question of measuring the excitation of QN modes and, in particu
the excitation coefficient, introduced in Sec. II. We demonstrate, with a few examples, tha
formal measure of excitation does not generally give a useful quantification. The failure o
measure is discussed along with a broader discussion of differences between QN and norm
systems, and conjectures about mathematical properties of QN systems.

II. COMPLETE QN SYSTEMS

A. Definition of QN frequencies

For definiteness we will limit considerations to solutions of the equation,

]2C

]x2 2
]2C

]t2 2V~x!C50. ~1!

Such an equation describes the dynamics of many mechanical systems, and the evolu
multipole perturbations~scalar, electromagnetic, or gravitational! of spherically symmetric
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~Schwarzschild! black holes.5–7 Perturbations of rotating~Kerr! holes,7 on the other hand, canno
be reduced to radial-time equations. QN oscillations are single frequency solutions of the
C(t,r )5c(x)exp(ivt) and hence are solutions of the equation

]2C

]x2 1@v22V~x!#C50. ~2!

We assume that the domain ofx includesx5`, and that the nature of the potentialV(x) is
such that a ‘‘radiative boundary condition’’ can be defined atx→`. A clear example is a potentia
with support ofV(x) only for x less than somexmax. In this case the boundary condition is th
c(x)}exp(2ivx) for x.xmax.

For potentials that do not vanish, but fall off sufficiently fast asx→`, the more genera
radiative boundary condition for real frequencies will be that for largex, the solution forc(x)
have the form exp(2ivx)F(v,x), with F→constant, asx→`. This condition is not quite sufficien
if v has a positive imaginary part; see Ref. 8 for a complete discussion. In short, the so
satisfying a radiative boundary condition for complexv can be regarded as an analytical contin
ation of a solution satisfying a radiative boundary condition for realv.

The boundary condition at the other end of of thex domain may be a standard Sturm
Liouville boundary condition~e.g.,C50 at x50! or may be a radiative boundary condition
x→2`. For spherically symmetric black holes, the range ofx extends from2` to `, with 2`
representing the black hole horizon.8,9 The potentials fall off exponentially inx asx→2` and as
const/x2, asx→`. Radiative boundary conditions are imposed both atx→2` andx→`, corre-
sponding to radiation moving inward through the black hole horizon, and outward towards s
infinity.

QN frequencies are the eigenvaluesv5vQN to the problem defined by~2! for radiative
boundary conditions of the type just discussed. Due to the boundary conditions, this prob
generally not of the Sturm–Liouville type and the usual features of eigenvalues of a St
Liouville problem are absent. In particular, the QN frequenciesvQN are generally not real. A
positive imaginary part indicates an exponential decrease with time. A negative imaginar
would indicate an instability; no frequencies with negative imaginary parts have been foun
black hole QN systems.

It is clear that QN frequencies must occur in conjugate pairs. IfvQN is a solution to the
eigenproblem corresponding tocQN , then2vQN* is also a solution corresponding tocQN* . We
will use a tilde (̃ ) to denote the conjugate relationship of QN frequencies. Thus the conjuga

QN frequenyv7 is v 7̃ , that isv 7̃52v7* .

B. Definition of completeness

We will choose to give a rather specific meaning to a complete system of QN modes
Cauchy data for~1! consists ofc0 and ċ0 , the initial value ofC and of its time derivative,

c0~x![C~ t,x!u t50 , ċ0~x![]C~ t,x!/]tu t50 . ~3!

We consider an intervalx2,x,x1 in the domain ofx and we consider Cauchy data att50 for ~1!
which has support only in this interval. We then consider the solutionsC to ~1! for such data, and
we focus attention on the value of this solution atxobs, a particular value ofx satisfyingxobs

.x1 . This corresponds to the physical situation of an observer atxobsdetecting radiation resulting
from an initial disturbance located at some distance from her. The ‘‘observed waveform’’ th
focus on is then

f ~ t ![C~xobs,t !. ~4!

As shown in Fig. 1, there will, in general, be a minimum valuetmin of t, such that the pointxobs,t
is influenced by the evolved Cauchy data. That is, fort,tmin , the area between the past direct
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characteristics fromt,xobs intersects thet50 hypersurface outside the support of the Cauchy d
We are interested inf (t) only for t>tmin . The physical interpretation of this is that we a
considering only the waveform generated by the Cauchy data.

We take a complete QN system to be one which satisfies the following criteria.

• The solutions to the QN eigenvalue problem form a discrete spectrum and can be ar
in order of increasinguR(vn)u.

• We consider only Cauchy data that
–has support only within a compact region@x2 ,x1#,
–belongs to a specific continuity classCp, wherep depends on the nature of the problem
–results in a waveform which is square integrable fromt5tmin to `.

• For such Cauchy data, the waveformf (t) that evolves from any such allowed Cauchy da
can be written as

f~t!5(
n

aneivnt. ~5!

Herean is thenth coefficient in the sum over QN modes. Sincef (t) is a function ofxobs, the
an coefficients are also functions ofxobs, but we shall not explicitly exhibit this dependenc
The summation in~5! is in order of increasinguR(vn)u, and the convergence is uniform fo
t.tmin .

It is important to note that our view of completeness is rather different from other pos
meanings of the term. In particular, our choice of the meaning of completeness has n
directly to do with thex-dependence of the single frequency solutions and with the questio
whether these solutions can be used to span acceptable Cauchy data. Our meaning of co
ness, then, is rather different from that of Younget al.4 It also differs from the concept o
completeness used by Husain and Price10 and by Beyer,2 and Beyer and Schmidt,3 but is closely
related to the completeness used by Beyer11 in his work on the Po¨schl–Teller potential.12

C. Function space and inner product

In accordance with our definition of completeness, our vector space is the space of al
tions f (t), t>tmin that can evolve from acceptable Cauchy data. Our class of acceptable C
data will always be chosen so thatf (t) is square integrable fromt5tmin to `. On this space of
functions we define an inner product to be

f •g[E
tmin

`

f * ~ t !g~ t !dt. ~6!

We could, of course, include a weight functionW(t2tmin) in the integral defining the inne
product, but the time translational symmetry of the background suggests thatW should be con-
stant. The choice in Eq.~6!, furthermore, means thatf • f is the time integral of the square of th

FIG. 1. Propagation of initial data to the observation locationxobs defining the waveformf (t).
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wave function, a measure closely related to the energy content of a wave.~For black hole pro-
cesses, the connection with gravitational wave power will be made explicit presently.! Our as-
sumption of completeness above means that the functions exp(ivQNt), while not elements of our
function space themselves, span this function space in the sense of~5!; we will therefore consider
them a basis. For a functionf (t) in our space we can use the inner product to compute anothe
of coefficientsan by

an[~eivnt!• f ~ t !5E
tmin

`

e2 ivn* t f ~ t !dt. ~7!

The following relations for the coefficients of conjugate modes are straightforward to verify

ak̃5~ak!* , ak̃5~ak!* . ~8!

Since the convergence is uniform by hypothesis, we can integrate term by term in the
of-modes expression for the norm off to find

E
tmin

`

u f ~ t !u2 dt5E
tmin

` S (
n

aneivntD *
f ~ t !dt5(

n
~an!* an . ~9!

The final sum in~9! is real, as it must be, since for anyk, the sum (ak)* ak1(ak̃)* ak̃ is real.
In most physical problems the radiated power is the square of the time derivative o

waveform. If atxobs our wave function evolving from the initial data isf (t)[c(xobs,t). If f (tmin)
vanishes~i.e., if the waveform starts continuously! then this type of energy can be evaluated a

E
tmin

`

u f ~ ṫ !u2 dt5(
n

~vn* !2~an!* an . ~10!

As in ~9! the reality of the sum is guaranteed by the relations of conjugate coefficients in~8!.
Since we have an inner product, we have an equivalence between vectors and dual ve

our function space and we can define a set of covariant basis functionsfm(t) by the property
fm(t)•eivnt5dnm . If follows from Eq. ~7! that thean are the expansion coefficients forf (t) with
respect to the covariant basis functionsfn. We shall henceforth refer toan andan , respectively,
as the contravariant and covariant coefficients off (t). The components of the metric, in th
function space, with respect to the QN basis, are

~eivnt!•~eivkt!5E
tmin

`

eit ~vk2vn* ! dt[Gnk . ~11!

It should be noted thatG is a Hermitian matrix, but it is not diagonal, i.e., the QN oscillations
not orthogonal. The metric coefficients can be used, in principle, to relatean andan . The expres-
sion for f (t) in Eq. ~5! can be substituted in Eq.~7!. Since the convergence in Eq.~5! is uniform,
we can integrate term by term and get

an5(
k

Gnka
k. ~12!

SinceGnk is not diagonal, the covariant basis vectors, i.e., the basis vectors dual toeivnt, are
mixtures of theeivnt functions ~usually involving all of them!. An indication of the unfamiliar
problems this produces can be seen in the following rough argument. Let us suppose that w
a waveform that in some sense is ‘‘almost pure’’~say! seventh mode. That is, suppose thatf (t)

'a7eiv7t1a7̃eiv 7̃t. ~We are supposing that this relationship is only approximate since it wil
general, be impossible to excite a truly pure single frequency mode with smooth, compact
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data.! This waveform, for which~almost! the only contravariant coefficients area7 anda7̃, will
have contravariant coefficientsan for all n. A waveform that is a pure~or almost pure! single
mode excitation in one sense is therefore not a single mode excitation in another. This pr
some of the problems in quantifying the excitation of a mode, and we will return to this po
the end of Sec. IV.

It is possible, of course, to use Gram–Schmidt orthogonalization to find basis functions
are orthogonal according to the inner product of~6!. The resulting basis functions will not~except
for one of them! correspond to single frequency excitations, and do not seem to be of inter

D. Intuitive insights; the excitation coefficient

Some rough considerations of model problems suggest the intuitive basis for some
mathematical difficulties to appear below, and point to a possible approach to quantifying e
tion. The most obvious difficulty is the ‘‘time shift’’ problem. We imagine a configuration l
that pictured in Fig. 2: A potential with compact support and two sets of Cauchy data (a) and (b).
The two Cauchy data sets are localized and are identical except that set (b) is shifted to the left,
to smallerx, by some finite displacementDx. The support of neither Cauchy data set overlaps
support of the potential. In this case it is clear that the waveform generated from the two cas
be identical except that the waveform from (b) will be shifted to later times, relative to that fo
(a), by an amountDt5Dx. Each contravariant coefficient will therefore be larger in the (b)

waveform than in the (a) waveform. The conjugate pair of contravariant coefficients$a7,a7̃% will,
for example, be larger by exp@(Iv7)Dt# for (b) than for (a), though the excitation is physically
identical. The analogous difficulty does not arise for normal modes; since they are not damp
time delay only causes a phase shift. The trend is opposite for the covariant coefficients$a7 ,a7̃%.
As defined in~7! $a7 ,a7̃% will be smaller for (b), since exp(2iv7* t) ~or exp(2iv

7̃
* t)! are smaller

by exp@(2Iv7)Dt# at the later times during which the (b) waveform has support. Therefore
neither the coefficientsak nor ak alone can provide a useful measure for the excitation of a
mode.

Any useful measure of excitationmustgive the same result for the two waveforms in Fig.
We take advantage of the opposite tendencies of the contravariant and covariant coefficient
a time shift to define a quantity that is the same for both waveforms, the ‘‘excitation coeffic
Ak for the kth QN mode:

Ak[~ak!* ak1~ak̃!* ak̃. ~13!

We conjecture that these excitation coefficients, or quantities constructed from them~sums of
excitation coefficients, functions of excitation coefficients, etc.!, or quantities very closely relate
~see the energy excitation coefficient, below!, are the only relevant mathematical objects in t
vector space that are unaffected by the time shifts, and have the additional properties t
outline in the following.

FIG. 2. Initial data shifted in location produces identical waveforms shifted in time.
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In addition to the insensitivity of the excitation coefficient to time shifts of waveforms,
excitation coefficient has another important and relevant property@cf. Eq. ~9!#:

E
tmin

`

u f ~ t !u2dt5(
k

Ak , ~14!

where the sum is over conjugate pairs. The excitation coefficients of the complete set o
modes sums to the norm of the waveform. We can define a quantity closely related toAk :

Ek[~vk* !2~ak!* ak1~vk!
2~ak̃!* ak̃. ~15!

We shall refer to theEk as the energy excitation coefficient. According to~10!, the sum over
conjugate pairs of these coefficients gives the norm ofḟ . The summation properties of theAk and
the Ek are important in clarifying what we mean by the ‘‘excitation’’ we are attempting
quantify. These coefficients appear to tell us the contribution made by each mode to a mea
the waveform. In the case of black hole perturbations it turns out that it is possible to ma
even more direct connection. Iff (t) is a solution of the Zerilli equation6 for even parity pertur-
bations, then the integral on the left of~10! is proportional to the radiated energy andEk has the
appearance of the energy in thekth mode. Iff (t) is a solution of the Regge–Wheeler equation5 for
odd parity perturbations, then the integral in Eq.~9! is the energy andAk has the appearance of th
energy in thekth mode.

The possibility of quantification with the excitation coefficient~or energy excitation coeffi-
cient! will be a central focus, of Sec. IV, but before we begin specific computations, there
few more possibly useful insights that can be found from intuitive considerations. For one
it is interesting that the two sets of coefficients can be related to two different aspects of an e
wave. The contravariant coefficients, telling us how much of a certain mode must be add
order to get the waveform, can be considered a ‘‘theoretical’’ coefficient. For a given wave
the projection operation on the waveform defined by~7! can be considered to give the ‘‘exper
mental’’ excitation coefficient.

Simple considerations can also produce insights into the nature of the metric matrixGnk

defined in~11!. Consider the signal produced by some Cauchy data, and let the vectorā denote the
contravariant coefficients of the resulting waveform with respect to the QN mode basis. L
vector of covariant coefficients be given byaI , so thataI 5Gā. Now consider the same Cauch
data, shifted to the left byDx. The new contravariant and covariant coefficient vectors will
given by: a! k5exp(2ivkDx)āk and aĨ k5exp ivk)Dx)aIk . Taking the standard linear algebra norm
we haveia! i5ai āi and iaĨ i5biaI i , wherea.1 andb,1.

The exact magnitude ofa depends on the distribution of the contravariant coefficients and
shift Dx. In fact, we can always make the shift large enough so thata@1. In the same way, we
can ensure thatb!1. Assuming that the metric matrixG has a minimum eigenvalueemin and a
maximum eigenvalueemax, we then find

emin<
iaĨ i

ia! 5i 5
b

a

iaI i
i āi !

iaI i
i āi <emax. ~16!

SinceG is an infinite dimensional matrix there need not be a maximum or a minimum eigenv
For the model problem introduced in Sec. III, we will give numerical evidence, in Sec. IV B,
the ratio of maximum and minimum eigenvalues diverges. TheG matrix therefore is in some
sense singular.

We now make the additional assumption that we have constructed Cauchy data such t
waveform consists almost exclusively of ringing in a single QN mode.~In the specific example
discussed in the following sections, this will be possible for the fundamental mode usin
arbitrarily short ‘‘burst’’ of initial data.! Let us modify the example of Fig. 2, by reducing the si
of Cauchy data (b) by a factor exp(Iv1)Dx, so that once the response to the (b) data starts it is
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identical to that of the (a) response at the same time. This situation is shown in Fig. 3 in w
the responsef (t) is the same in both plots fort>ts5Dt. Now let us suppose that the waveform
are dominated by ringing of the fundamental mode, and thatf (t) consists only of ringing of the
fundamental mode. The difference between the two responses is a sum of QN modes wh

the appearance of truncated fundamental mode ringing, but which hasa15a1̃50 in its mode sum.
The timets can, in principle, be made arbitrarily long, so the truncation in the difference curve
be made arbitrarily late. We then have a sum of modes that looks arbitrarily close to fundam
mode ringing, but containing no fundamental mode. This suggests that the fundamental mo
‘‘almost’’ be built as a superposition of the modes other than the fundamental mode, and th
modes are ‘‘almost’’ linearly dependent. We will discuss this further, based on numerical re
in Sec. IV C.

Again, this suggests that the infinite metric matrixGnk is in some sense ‘‘almost’’ singular. A
physical insight can be associated with this nature of the metric: SinceGnk is ‘‘almost singular’’
it is ‘‘almost noninvertible.’’ This means that there are difficulties in finding the contravar
coefficients from the covariant coefficients, since this requires the inverse ofGnk . The implication
of this is possibly of pragmatic importance: the near singularity makes it difficult to find
‘‘theoretical’’ coefficients from the ‘‘experimental’’ ones.

III. INDUCED COMPLETENESS

A. Small change

Our approach to quantification of excitation is based on the idea of complete QN syste
is important to demonstrate that complete QN systems exist and to have an example of a
in which we can compute excitation coefficients. We must also deal with a more specific
The QN modes of potentials for black hole problems do not form a complete set; bot
Regge–Wheeler potential, which describes perturbations of a Schwarzschild black hole, a
Pöschl–Teller potential,12 which has been used as an approximation to the black hole potent13

have quasinormal mode sets which cannot completely describe the waveform resulting fr
initial perturbation. An important question is what the relevance is to black hole processes,
quantification based on an assumption of complete systems. The details of this section are
what disjoint from the main goal of the paper: quantification of QN excitation, but are a nece
step in developing our approach.~They are also rather interesting in their own right!!

The key idea in developing a demonstrably complete QN system, and in showing its rele
to black holes, is ‘‘induced completeness.’’ It has been argued4 that for the problem defined by~2!,
the eigenmodes will be complete if there are two values ofx at whichV(x) is not C`. If this is
true, it appears that the black hole potentials can be modified in such a way that complete

FIG. 3. Oscillations produced by shifting and scaling initial data.
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QN oscillations is induced, while the effect on other aspects of the problem—in particular o
evolution of Cauchy data—is kept arbitrarily small. In this section we explore induced comp
ness.

It is not our purpose here to look into the generality of induced completeness. Rather, we
to have a specific example of a complete QN system with which to explore the questi
quantifiability of QN excitations. We will therefore focus on a very specific model that cont
most of the flavor of black hole potentials, but is simple enough to allow rather straightfor
analysis and a proof of completeness.

We use the fact that~2! can be solved with elementary functions in the case that the pote
has the form of a truncated centrifugal potential,

VTCP~x!5 H0, x,x0 ,
l ~ l 11!/x2, x>x0 , ~17!

wherel is an integer. It gives a good representation of the sharp cutoff of the black hole pot
asx→2` and the approximate asymptotic form of the black hole potential atx→`. It differs
from the true black hole potential in the details of thex→` potential that give rise to the
power-law late time tails of black hole waveforms. These tails almost certainly are an obsta
an analysis of QN excitation, and a modification of the potential to eliminate these tails
already been made in work on QN excitation.

We will hereafter consider only the casel 51, to be called the ‘‘truncated dipole potential
~TDP!. An example of the simplicity of the TDP problem is that it has only a single pair of
frequencies:v15(11 i )/2x0 andv 1̃5(211 i )/2x0 ~see Sec. 1 of Appendix A!. There are severa
ways in which we could try to induce completeness into this problem. We have studied bo
addition of a small step~with discontinuities! to the TDP and the addition of a delta function. Th
delta function has the disadvantage of its distributional nature, but it offers the advanta
considerable simplicity as compared with the step. We have found no significant ‘‘pract
difference between the results~QN locations, convergence of QN sums! between the two ex-
amples, so we will describe here completeness induced with a delta function. The total pote
this case will be called the ‘‘spiked truncated dipole potential’’~STDP! and is given by

VSTDP~x!5VTDP~x!1Vdd~x2xd!, ~18!

whereVTDP(x) is the l 51 form of the potential in~17!.
We first establish that the influence on the evolution of initial data can be made arbit

small. To do this we choose the Cauchy data, att50, to be given by

c05sinS 2p
x2x2

x12x2
D ~x2<x8<x1!,

~19!
ċ052]c0 /]x,

with x1<x0 , so that the initial data has the form of one full cycle of a sine wave, located to
left of the potential, traveling to the right.~This Cauchy data is chosen for convenience in de
onstrating mathematical points; it has no justification as initial data for gravitational waves
produced in the neighborhood of a black hole.!

For the results to be shown here and in following sections, we choosex051, x151, x2

525, andxd510, andxobs5120. For this choice ofx1 andx2 , the sine has a wavelength, 6, th
is roughly half that of the QN oscillation of the TDP. This allows us to see similar, but dis
guishable signs in the evolved waveform of the propagation of the Cauchy data and o
oscillation.

Figure 4 shows the time evolution of the Cauchy data for the original TDP and for the
with an addedd-function with different amplitudes ranging fromVd51 to Vd51026. The wave-
forms are followed out to times at which they have decreased in magnitude from the maxim
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a factor of;10215, at which point numerical error obscures the results. Even for the largest v
of Vd , the influence of the delta function on evolution is visible in the linear plot only after
change the scale forf (t) at t5131. To see the effects more clearly we also plot the logarithm
u f (t)u for a longer observation time, showing several interesting features. For all but the la
amplitude of the delta function (Vd51) the waveform after the first few oscillations consists on
of QN ringing, with the characteristic distanceDt5uRv7up52px052p between zeros off (t).
For Vd51023, the effect of the delta function shows up only as a phase shift after the the
four, or so, full cycles of oscillation. The effect of the smallest delta function amplitudeVd

51026 is smaller by two orders of magnitude than that forVd51023, and too small to be see
even in the logarithmic plot of Fig. 4.

These results make it clear that any reasonable measure of the influence of the delta fu
such as the integral of the square deviation from the TDP waveform, is tiny and decrease
decreasingVd . We will accept these numerical results as a sufficient demonstration of this p
and will not attempt an analytic proof of this point.

B. QN spectra

Although the influence of a small delta function on the evolution of Cauchy data is neglig
the influence on the spectrum of QN frequencies is profound. The method of computing th
frequencies for the STDP is outlined in Appendix A. The results of the computation are pres
in Fig. 5 for the same potentials considered in Fig. 4.

The original TDP has only one pair of QN frequencies at (611 i )/2. With an added
d-function, an entirely new set of modes appear. Note that the real parts of the additional fre

FIG. 4. Time evolution for initial data incident on the TDP and on the TDP with an addedd-function. Left: linear plot,
right: logarithmic plot.

FIG. 5. Quasinormal frequencies for the TDP with an additionald-function atxd510.
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cies seem to be unbounded. The asymptotic spacingR(vn)52p/10 of the real parts of the
frequencies is shown in Sec. 3 of Appendix A to correspond to the length of the ‘‘cavity’’ bou
by x0 and thed-function: L[xd2x0510. The imaginary parts are shown in Appendix A
increase as the logarithm of the real part.

When Vd becomes sufficiently small, one of the QN frequencies approaches the valu
1 i )/2x0 of the ‘‘native’’ QN frequency, that of the original, TDP. This can be seen more cle
in Fig. 6, which shows the ‘‘path’’ of this QN frequency in the complex plane for values ofVd

varying in steps of 1/2 fromVd51 to Vd;1026. As Vd decreases, the imaginary parts of t
additional frequencies increase, moving them away from the native one, eventually leading
very distinct subsets of QN frequencies.

It might seem that it is an obvious necessity for the QN spectrum to have a mode ap
mately at the location of the native mode, since the evolution of Cauchy data is only sl
affected. This turns out not to be true, however, for other ways of inducing app
completeness.14 Cutting off the TDP potential at some very large value ofx, for example, has a
negligible effect on the evolution of Cauchy data, and it also produces an unbounded
additional QN frequencies. However, the spectrum of QN frequencies turns out to conta
frequency near the location of the native mode.

C. Complete sums

We now develop the connection between the Cauchy datac0 and ċ0 and the coefficients of
QN oscillations~i.e., the contravariant componentsan in the case of complete QN bases!. Here we
simply outline how coefficients associated with QN basis functions are computed in gene
Appendix B a proof of completeness of sums with these coefficients will be given for the ca
the spiked TDP, and of Cauchy data meeting certain criteria. One of the criteria will be com
support for the Cauchy data, and we will assume from the outset thatc0 andċ0 vanish outside the
interval x2,x,x1 .

The QN coefficients are found by starting with a Laplace transform,

ĉ~s,x!5E
0

`

e2stC~ t,x!dt. ~20!

~The connection between the Laplace variables and the Fourierv used in Appendix A and mos
of the paper is through the correspondences↔ iv.! The transformed wave equation reads as

]ĉ~s,x!/]x22@s21V~x!#ĉ~s,x!5J~s,x!, ~21!

FIG. 6. ‘‘Path’’ of the original quasinormal frequency of the TDP as the amplitude of the additionald-function is
decreased.
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in which the sourceJ(s,x) is determined by the Cauchy data:

J~s,x!52ċ0~x!2sc0~x!. ~22!

A solution can be found in the form

ĉ~s,x!5E
x2

x1
G~s,x,x8!J~s,x8!dx8. ~23!

Here the Green’s function can be constructed from the homogeneous solutionsf 2(s,x) and
f 2(s,x) of the wave equation~21!:

G~s,x,x8!5
1

W~s! H f 2~s,x8! f 1~s,x! ~x8,x!,

f 2~s,x! f 1~s,x8! ~x8.x!,
~24!

whereW(s), the Wronskian off 2 and f 1 , is independent ofx andx8.
We will assume that the potential falls off quickly enough atx→6` so that homogeneou

solutionsf 2 and f 1 can be found with the property

f 2~s,x!;esx~11O ~1/uxu!!, as x→2` and f 1~s,x!;e2sx~11O ~1/uxu!!, as x→`.
~25!

This condition is satisfied for black hole potentials and for the TDP.
Once we have found a solution of the Laplace transformed wave equation, we can reco

a solution of the time-dependent wave equation by applying the inverse Laplace transform

C~ t,x!5
1

2p i EG
estĉ~s,x!ds, ~26!

whereG denotes the path of integration, which lies parallel to and just to the right of the imag
axis.

Figure 7 illustrates features in the complexs plane. There may be poles and essential sin
larities, drawn as3’s, and there may be a branch point, like that shown ats50 in the figure. The
contourG can be closed with the addition of a single arc to the left ifĉ(s,x) is a single valued

FIG. 7. Closing the contour for integration in the complexs plane. The curveG is the original contour of integration. It can
be closed by the addition of an arc at infinity. If there is a branch point at the origin, as shown, then a branch cut
drawn froms50 to s52`, and the contour shown can be drawn.
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function ofs to the left ofG. If there are branch points then a path like that shown in Fig. 7 m
be used. The Green’s function for the Regge–Wheeler potential has a branch point ats50, while
the TDP and the STDP do not.

The integral forĉ may then be evaluated as

C~ t,x!5( Res~estĉ~s,x!,sj !1
1

2p i ECestĉ~s,x!ds, ~27!

where the first term is the sum of residues at the singularities inside the completed contou
second term represents contributions to the integral from arcs at`, and along branch cuts. In th
case of the spiked TDP there is no branch cut, and the arc at` makes no contributions, so we ar
left only with the first term, a sum of oscillations at discrete frequenciessj that correspond to
singularities ofĉ(s,x). From ~23! and ~24! we see that singularities inĉ(s,x) must either be
singularities of the homogeneous solutionsf 1 , f 2 or zeros of the Wronskian. For any finites we
can find homogeneous solutionsf 1 and f 2 of ~21!; therefore, singularities in the Green’s functio
can occur only at zeros ofW(s), and the residues in~27! must be taken at these zeros. But t
vanishing ofW(s) at sj means thatf 1} f 2 at sj , and hence thatsj is a QN frequency.8

If, as in the case of the sTDP, the only contributions to~27! occur in the sum, then we are le
with

C~ t,x!5( Res~estĉ~s,x!,sj !, ~28!

where the sum is over QN frequencies.
We now assume that the zeros ofW(s) are all first order, so that

W~s!5
dW

ds U
s5sj

~s2sj !1O @~s2sj !
2#. ~29!

For x.x1 ~i.e., for x to the right of the region in which the Cauchy data have support! we have,
from ~24!, that

G~s,x,x8!5
f 2~sj ,x8! f 1~sj ,x!

dW/dsusj
~s2sj !

1O ~s2sj !
0, ~30!

and hence, from~23!, the residues ofĉ at sj is

Resĉ~s,x!5
esj t f 1~sj ,x!

dW/dsusj

E
x2

x1
J~sj ,x8! f 2~sj ,x8!dx8. ~31!

Finally, the sum over the QN basis functions can be written as

C~ t,x!5( bjuj~ t,x!, ~32!

where

uj~ t,x!5 f 1~sj ,x!esj t ~33!

and

bj52
1

dW/dsu~sj !
E ~ ċ0~x8!1sjc0~x8!! f 2~sj ,x8!dx8. ~34!
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The waveform atxobs.x1 is then given by~5! with

iv j5sj , aj5bj f 1~sj ,xobs!. ~35!

This prescription has been applied to the spiked TDP, and the sine wave Cauchy dat
our standard choice of parameter values,x051, xd510. Notice that our choicex2525 in ~19!
satisfies the criterion in the convergence proof that the continuous, but nonsmooth, Cauch
have support only forx.x022/3(xd2x0)525. For this potential and these Cauchy data,
functionsc0(x), ċ0(x) and f 2(sj ,x) are trigonometric or exponential functions, so the integra
~34! is elementary. Once the QN frequencies,v j , and the factorsdW/dsuv j

have been computed
~as described in Appendix A!, the coefficients are easily evaluated. The figures below show
result of using these coefficients in sums of the form~5!.

Figure 8 shows the computed result for time evolution of the Cauchy data in the cas
Vd51. This is compared along with mode sums for an increasing number of terms, upN
510 001 terms. Figure 9 shows the same plots in the case thatVd51026. In order to avoid
cluttering the picture, we do not plot the values of the mode sums when they are far from h
converged. These figures illustrate the fact that the mode sum converge faster for a
d-function. Also, for the smallerd-function, the mode sum converges more rapidly at later tim
with convergence ‘‘sweeping down’’ from late to early times.

For a better view of the differences between the mode sums and the time evolved
functions, Fig. 10 shows the logarithmic difference~evolved waveform versus mode sum! for
Vd51026.

Some of the systematics shown in these figures can be heuristically understood. The c
gence in theVd51 case is similar to that of a Fourier series~equally rapid at different times! since

FIG. 8. Values of the mode sum for a different number of termsN, compared to the waveform resulting from integratin
the time-dependent wave equation (Vd51).

FIG. 9. Values of the mode sum for a different number of termsN, compared to the waveform resulting from integratin
the time-dependent wave equation (Vd51026).
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the QN frequencies, in this case, with small imaginary parts, are similar to the real frequenc
a Fourier series. On the other hand, forVd51026, the damping of the additional~i.e., non-native!
modes is much stronger and increases faster withN. Any error that originates from cutting off the
mode sum after a finite number of terms can be regarded as being composed of modes w
strong damping; these modes are very large at early time.

We point out here an interesting technical feature of these results. The mode sums
accurate at later times that the differences shown in Fig. 10 forN510 001, is actually dominated
after t'122, by the numerical truncation error in computing the evolved waveform. A sm
time step in numerical evolution can improve the numerical accuracy of the computed wave
and can move to a slightly larger time the point at which the evolution versus sum differen
dominated by the numerical errors in the evolution.

IV. QUANTIFYING EXCITATION

A. The excitation coefficient

We now return to the question of how to quantify the excitation of QN oscillation. In Se
we defined the excitation coefficientAk for a QN oscillation in a complete QN system. Due to t
time shift problem, we argued that the excitation coefficient seems the only plausible indica
the QN content of a waveform. In Sec. III we have seen that, at least in the particular exam
the TDP, completeness can be induced in an incomplete system to create one that is ‘‘phy
equivalent,’’ i.e., differs negligibly in the evolution of Cauchy data. We can now ask whethe
least for the model problem at hand, we can use the excitation coefficients of the com
system to quantify the QN oscillation in the original~‘‘native’’ ! system.

It is worth emphasizing that the TDP is a particularly simple starting point for these co
erations, since it has only a single conjugate pair of native QN modes. The sine wave data w
used in the previous sections is also convenient since it produces a waveform~see Fig. 4! which
clearly contains QN ringing, but contains significant oscillation at a different frequencyv
52p/6).

The results of computations with this model are presented in Table I. Results are sho
the spiked TDP for different values ofVd and for the standard Cauchy data, a right moving s
wave initially extending over the interval@25,1#. For comparison, a shifted sine wave, initially
@28,22#, was also computed in the caseVd51026. Also included are results for the smoo
TDP, and for the Zerilli equation with the Regge–Wheeler potential with initial data corresp
ing the the Close Limit technique for black hole collisions.15

The table presents values of excitation coefficientsA1[a1(a1)* 1(a1)* (a1) and the energy

excitation coefficientsE1[(v1* )2(a1)* a11(v1)2(a1̃)* a1̃, introduced in~13! and ~15!. In each
case the QN frequencyv1 is taken to be that eigenfrequency which corresponds to the na
mode in the limitVd→0; that is,v1 always lies on the path in the complex plane shown in F

FIG. 10. Logarithmic differenceD f between the values of the mode sum for a different number of terms and the wave
resulting from integrating the time-dependent wave equation (Vd51026).
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6. For small values ofVd this QN frequency is close to the native QN frequency (611 i )/2. The
waveform norm and the total energy are computed from waveforms obtained by explicit num
integration of the wave equation~1!. Also included are estimates for the numerical uncertaintie
the results.

The norm and total energy can be computed from Eq.~9!, or directly from the waveform.
Similarly, the covariant coefficient may be computed from the contravariant ones, using Eq~12!,
or from the waveform via Eq.~7!. Even the contravariant coefficients can be obtained from
waveform itself, using an asymptotic fit as it approaches a pure QN oscillation at the least d
QN frequency, instead of the residues of the Green’s function through Eqs.~34! and ~35!. The
waveform itself, in turn, can be obtained by direct numerical integration of the wave equatio
by using the mode sum as in Eq.~5!. We have checked these alternatives for obtaining
quantities listed in the table; they result in essentially the same values as the route we hav
here.

We first notice that the values for the excitation coefficients are identical, within the nume
errors, for the original initial data~sine wave over the interval@25,1#! and the shifted initial data
~over the interval@28,22#!. This confirms our earlier argument that the excitation coefficients
have defined are independent of a translation of the initial data or, correspondingly, to a tim
of the evolved waveform.

It is important to realize that there are different ways to compute the quantities in the
and several of them do not depend on the complete set of modes. The waveform and energ
of course, require only the waveform, but all coefficients can also be computed entirely fro
waveform itself. The least damped QN frequency can be inferred from the asymptotic late
behavior, as can the contravariant coefficient for the least damped mode.@See~5!.# Of the cases
we study the least damped mode always corresponds to the native mode except for theVd51
model.~See Fig. 5.! Once the QN frequency is known the covariant coefficient can be comp
directly from the integral in~7! and, with the contravariant coefficient known, the excitation a
energy coefficients can then be found from~13! and~15!. Since the quantities in the table can b
computed from waveforms, we can compute them for the smooth TDP. In this case we d
have a complete set of modes, but that is irrelevant to the procedure for computation.~It turns out,
in fact, that the simplicity of the smooth TDP and the sine wave data allows a closed form so
for the waveform, and for the norms and coefficients. This closed form solution has been use
the values for the smooth TDP can be found for the table to an essentially arbitrary precis!

The numbers in the table make it clear that the results for the smooth TDP are theVd→0 limit
of the spiked TDP. This is obvious from a computational point of view, since all results ca
computed from the waveform, and theVd→0 waveform approaches the smooth TDP wavefor
From another point of view, however, this result is interesting and important. It means that w
compute the excitation coefficient independent of the method with which completeness is in
Put another way, it means that we can compute the excitation coefficient for a small complet
inducing change, independent of the nature of the change. This conclusion, in fact, is crucia

TABLE I. Excitation coefficients and norms for the spiked TDP QN system and for black holes in the close
approximation.

V(x) Vd Initial data A1 E1 u f u2 u ḟ u2

STDP 1023 Sine @25,1# 240 85461 223 81061 19 24667 27 404612
STDP 1026 Sine @25,1# 257 93361 5 804.760.1 19 24667 27 404612
STDP 1026 Sine @28,22# 257 93461 5 804.560.3 19 24667 27 404612
STDP 1027 Sine @25,1# 257 87961 5 811.960.1
STDP 1028 Sine @25,1# 257 87361 5 812.660.1
STDP 1029 Sine @25,1# 257 87361 5 812.660.1
TDP – Sine@25,1# 257 872.8 . . . 5812.64 . . . 19248.0 . . . 27415.5 . . .

Zerilli – Close Limit 10.69931024 5.56631024
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possible importance of the excitation coefficient. We could not use the excitation coefficie
characterize an excitation of a physical system if the value of the coefficient depended o
choice of a modification of that physical system.

The table also gives a value for the excitation coefficient for the gravitational radiation
duced, in the close limit approximation,14 by the head on collision of two equal mass nonrotat
holes. In this case the QN spectrum is infinite, but the QN oscillations are not complete
excitation coefficient given is for the least damped of the QN oscillations, a frequency that ap
to dominate the waveform produced.

Up to this point we have noted that computations with the model problem illustrate
confirm the features of the excitation coefficient that made it an attractive candidate fo
quantification of the excitation of QN oscillations. Table I, however, also makes it unlikely tha
excitation is ausefulindex of QN oscillation. For the small-d spiked TDP the excitation coefficien
is negative, and is larger~by a factor;3! in magnitude than the norm. Note that we cannot ign
this ‘‘wrong’’ sign, and simply keep the large magnitude as an indication of a strong QN pres
Due to relation~9! we must conclude that the sum of all the other QN oscillations~those unrelated
to the native QN mode! must be greater~by a factor;4! than the norm. For the close limi
waveform the excitation coefficient is roughly twice the size of the norm off and hence the sum
of excitation coefficients of all other QN oscillations~if the system were made complete som
how! would be negative.

As a possible alternative to the excitation coefficient we have also computed the e

excitation coefficient, as defined in~15!. The results listed forE1 and the norm ofḟ , however, do
not make this any more attractive as a measure of QN excitation.

At this point, we also note that the excitation coefficientA1 is not related to the norm of the
QN mode contribution corresponding to the first pair of modes, i.e., ofb1u11(b1u1)* . Similarly,
the energy excitation coefficientE1 is no measure for the energy of this QN mode contributio

It is, of course, impossible to prove that something like quantifying QN excitations cann
done in a mathematically acceptable way. Despite this, and perhaps to provoke further wo~by
others!! we are tempted to offer the following very tentative conclusion: Consider the follow
three conditions, which allow a mathematically meaningful as well as a useful measure of
tation; they are all satisfied for normal mode systems.

• The measure of excitation is independent of a simple shift of the wave form~i.e., a shift in
space of the initial data, corresponding to a shift in time for the time evolved wavefor!.

• Excitation strength can be quantified individually for any number of modes, with the
vidual excitations adding up to the total norm of the waveform.

• The measure of excitation is useful for quantifying the excitation in a comparative wa
particular, it always lies between 0% and 100%.

We conjecture: There is no quantification of QN oscillations of the waveform, based o
algebra of the function space of QN oscillations, which satisfies all three of these criteria.

The excitation coefficients we are defining in this paper satisfy the first two conditions, bu
the third one.~In Table I we see that the excitation coefficient can be negative and can be g
than 100%.! One might regard these two conditions as related to mathematical properties
QN mode system, while the third one is of a more practical significance. We are curr
investigating another technique to quantify excitations, with a measure that satisfies the fir
third criteria, but not the second one. This measure may turn out to be of some practical utili
is not as closely related to the mathematics of the function space as are the present conside
A description of this work will be published elsewhere.

Our conjecture is based specifically on the appearance of the excitation coefficient as th
quantity in that function space that solves the ‘‘time shift’’ problem, and on the observed fa
of the excitation coefficient to be ‘‘useful.’’ It is also based, less specifically, on our belief
there are differences between normal mode and QN systems that cannot be bridged. F
                                                                                                                



is not
at the
nly the

tion of
equen-
Fig.

ful
ng the
pler

por-
uchy
he
ce of
ation
f step

d the
s
ense
’

QN
l now
ought
o not

e this

e

log
ension
matic,

997J. Math. Phys., Vol. 40, No. 2, February 1999 H.-P. Nollert and R. H. Price

                    
reason we speculate that inducing completeness, while it is mathematically interesting,
likely to lead to useful tools for understanding the underlying native system. The reason is th
spectrum of added QN frequencies is unrelated to the native system and characterizes o
method used to induce the completeness. We, in fact, are willing to extrapolate in the direc
this speculation. We conjecture that in a complete QN spectrum which has a dense set of fr
cies, and a small number of ‘‘isolated’’ frequencies, like the spectrum of the spiked TDPs in
5, it is useful to modify the system toremovecompleteness, in order to get a more use
understanding and a simplified method of analysis. The obvious example of this is removi
d functions from the spiked TDP problem in order to get a physically equivalent, but sim
incomplete system.

A very similar point of view is that in a QN spectrum, not all frequencies are equally im
tant. Some will actually be evident in waveforms produced in the evolution of generic Ca
data; others will not. For the small-d spectra of Fig. 5, the ‘‘interesting’’ QN frequencies are t
isolated ones near (11 i )/2. In theVd51 case, on the other hand, there is again the appearan
QN ringing in the waveform, but the spectrum contains no isolated frequency. A similar situ
was found in a study where the Regge–Wheeler potential was replaced by a series o
potentials.14 More generally, one should ask the following: If one has only the spectrum an
associated quantities~e.g., the metric matrix!, is there a way of identifying which QN frequencie
are ‘‘important’’ in the sense of really characterizing the evolution of Cauchy data? In this s
we are asking a question related to ‘‘to what extent are~some! QN modes like normal modes?’
since normal modesdo characterize the system in which they arise.

B. Condition number of the metric matrix

The metric matrix~11! would appear to be a likely place to find a way of characterizing a
system without regard to specific waveforms produced by specific Cauchy data. We wil
discuss some numerical results which confirm the intuitive insight we had gained by doing th
experiments on specific Cauchy data in Sec. II D. Studying the metric matrix directly, we d
need to refer to specific initial data any more, as we had to do before.

We first note the singular nature of the infinite metric matrix in two cases. To characteriz
singular property we truncate the set of QN functions, keeping only the firstD. We then compute
the condition numberR ~ratio of maximum to minimum eigenvalue! for the D dimensional
subspace. The condition number as a function ofDsub is plotted in Fig. 11 for two cases: th
spiked TDP and the QN spectrum of Schwarzschild black holes~the QN modes of the Zerilli or
Regge–Wheeler potentials!. For the spiked TDP the approximately straight line in the log–
plot suggests that the condition number increases roughly as the twelfth power of the dim
Dsub of the subspace. For the black hole QN spectrum the increase is even more dra
suggesting perhaps a ‘‘more singular’’ metric for this incomplete QN spectrum.

FIG. 11. The condition numberR for the metric matrix for a truncated subspace of dimensionDsub, spanned by the first
Dsub QN basis functions. Results are shown for both the spiked TDP (Vd51026) and the Regge–Wheeler potential.
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C. Angles between basis functions

In Sec. II we introduced covariant basis functionsfm(t) with the definitionfm(t)•eivnt

5dmn . If the basis functionseivnt were orthogonal we would have thatfn(t) and eivnt are
‘‘parallel,’’ that is, fn(t)}eivnt. It is plausible that such statements as ‘‘this wave is dominated
oscillation at the fundamental QN frequency’’ are most meaningful if the covariant and co
variant basis vectors are nearly ‘‘parallel.’’ To measure the extent to whichf j (t) andeiv j t fail to
be proportional we can introduce an anglea j between them, defined by

cos~a j !5
f j~ t !•eiv j t

if j~ t !i ieiv j ti 5
1

AGj j G
j j

, ~36!

where Gi j is the matrix inverse ofGi j . The components of the infinite matrixGi j cannot be
computed, so again we truncate a subspace by keeping only the firstDsubvectors, and we compute
the angles in that subspace with~36!. Results are shown in Fig. 12 for the spiked TDP withVd

51026. The value of cos(aj) is shown for several QN modes as a function ofDsub, the dimension
at which the subspace is truncated. Figure 13 shows cos(aj) for the black hole QN spectrum. In
Fig. 12, the decrease of cos(a1), corresponding to the native mode, is much slower than that of
additional modes. One might speculate that this is related to the fact that the native mode i
characteristic of the system than the additional ones. No such clear distinction can be seen
13 for the case of the Regge–Wheeler potential. However, the angles increase much faster
more highly damped modes as well, which might again indicate that the fundamental,
damped mode is more characteristic of the system than the more strongly damped ones.

FIG. 12. Cosine of angles between several contravariant and covariant basis vectors, as a function of the dimen
subspace spanned byDsub QN modes of the spiked TDP withVd51026.

FIG. 13. Cosine of angles between several contravariant and covariant basis vectors, as a function of the dimen
subspace spanned byDsub QN modes of the Regge–Wheeler potential.
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APPENDIX A: FINDING QUASINORMAL FREQUENCIES OF THE TDP
AND OF THE SPIKED TDP

1. The unmodified TDP

The TDP is defined as

V~x!5 H0, x,x0 ,
l~l11!/x2, x>x0, ~A1!

wherel is an integer. We look only atl 51, but the procedure can easily be extended for lar
values ofl . Also, we will generally letx051.

The domain of the wave equation is naturally divided into two regions.
I. x,x0 . In this region, the potential vanishes, and therefore the wave equation has th

trivial solutions:

c I1~x!5e1 ivx, ~A2!

c I2~x!5e2 ivx. ~A3!

II. x>x0 . For integer values ofl , the solutions are given by finite sums. Forl 51, we have

c II1~x!5e1 ivxS 12
1

ivxD , ~A4!

c II2~x!5e2 ivxS 11
1

ivxD . ~A5!

Obviously, the solutions satisfying the required boundary conditions at negative and po
infinity are

c2~x!5c I1~x! ~x,x0!, ~A6!

c1~x!5c II2~x! ~x>x0!. ~A7!

In general, of course,c2(x) will be a linear combination ofc II1(x) andc II2(x) for x>x0 ,
and c1(x) a combination ofc I1(x) and c I2(x) for x,x0 . A quasinormal mode is a solutio
where both boundary conditions are satisfied simultaneously, i.e.,c2(x)5c1(x). The easiest
way to find out if this is the case is to comparec2(x) and c1(x), as defined in~A6!, at x
5x0 . Strictly speaking,c2(x) is not defined atx5x0 . However, any solution of the wav
equation will have to be continuous, and have a continuous first derivative, atx5x0 . It is there-
fore permissible to use the left limit ofc2(x) and ofc28 (x) asx→x02, and compare them with
the values ofc1(x) andc18 (x) at x5x0 .

The comparison is done using the Wronskian determinant ofc2(x) andc1(x):
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W@c2 ,c1#~x0!5c2~x0!c18 ~x0!2c28 ~x0!c1~x0!

522iv2
2

x0
2

1

ivx0
2 . ~A8!

Solving the equationW@c2 ,c1#(x0)50 for v yields the quasinormal frequencies

v5
611 i

2x0
. ~A9!

Therefore, forl 51, there is only one pair of quasinormal frequencies.

2. QN frequencies of the spiked TDP

We define the ‘‘spiked’’ potential as

V̄~x!5V~x!1Vdd~x2xd!. ~A10!

We now have to distinguish three areas.
I. x,x0 . This region is identical to region I for the unmodified potential, with the same se

two solutions.
IIa. x0<x<xd . Again, there are two linearly independent solutions:

c IIa1~x!5e1 ivxS 12
1

ivxD , ~A11!

c IIa2~x!5e2 ivxS 11
1

ivxD . ~A12!

IIb. x.xd . The two linearly independent solutions are

c IIb1~x!5e1 ivxS 12
1

ivxD , ~A13!

c IIb2~x!5e2 ivxS 11
1

ivxD . ~A14!

In our notation the functionc IIb2(x), for example, refers to the solution in all regions that,
region IIb, has the functional form shown in Eq.~A14!.

Due to thed-function separating regions IIa and IIb, the solutionsc IIa2(x) andc IIb2(x) are not
the same. Rather,c IIb2(x) will be a linear combination ofc IIa1(x) andc IIa2(x) in region IIa:

c IIb2~x!5p1c IIa1~x!1p2c IIa2~x!. ~A15!

Once again, the solutions

c2~x!5c I1~x! ~x,x0!, ~A16!

c1~x!5c IIb2~x! ~x>xd!, ~A17!

satisfy the boundary conditions at negative and positive infinity. However, in order to com
solutions atx5x0 , we now have to determine the representation ofc IIb2(x) in region IIa, i.e., we
need to know the coefficients for the linear combination~A15!.

These coefficients can be determined using the junction conditions for any solutionc(x) of
the wave equation across thed-function.
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~1! c(x) must be continuous atxd .
~2! The derivativec8(x) must have a discontinuity given by

c8~xd
1!2c8~xd

2!5Vdc~xd!. ~A18!

The second condition is obtained by integrating the wave equation fromx5xd2e to x5xd1e,
letting e→0, and using the first condition.

Usingc IIb2 for c8(xd
1) and Eq.~A15! for c8(xd

2), we can solve these conditions forp1 and
p2 . We obtain

p15Vd

@c IIa2~xd!#2

W112
, ~A19!

p2512Vd

c IIa1~xd!c IIa2~xd!

W112
, ~A20!

whereW1125W@c IIa1 ,c IIa2#522iv.
Therefore,

W@c2 ,c1#~x0!5W@c I1 ,c IIb2#~x0!5p1W@c I1 ,c IIa1#~x0!1p2W@c I1 ,c IIa2#~x0!

5R11Vd~R21R3e22ivL!, ~A21!

whereL5xd2x0 , andW@c I1 ,c IIa1#(x0)5e2ivx0/( ivx0
2), and thus

R15W@c I1 ,c IIa2#~x0!522iv2
2

x0
2

1

ivx0
2 , ~A22!

R252
c IIa1~xd!c IIa2~xd!

W112
W@c I1 ,c IIa2#~x0!52S 12

1

~ ivxd!2D S 11
1

ivx0
1

1

2~ ivx0!2D ,

~A23!

R35e2ivL
c IIa2~xd!2

W112
W@c I1 ,c IIa1#~x0!52

1

2~ ivx0!2 S 11
1

ivxd
D 2

. ~A24!

The quasinormal frequencies of the spiked TDP can now be computed numerically by s
ing for roots of the equation

W@c2 ,c1#~x0!50. ~A25!

3. Asymptotic approximation for the QN frequencies of the spiked TDP

It is possible to find an asymptotic formula for the QN frequencies under the assumptio
the absolute value of the frequency becomes large. We start by assuming that in~A25!, we have
uvx0u@1 anduvxdu@1. The condition for QN frequencies can then be written as

2ivx01O ~@vx!#0)1VdF11O ~@vx!#21)1
e22ivL

2~ ivx0!2 ~11O ~@vx!#21!)G50, ~A26!

wherex is the minimum ofx0 andxd . It is clear that foruvxu@1 there can be solutions only i

2iv1Vd

1

2~ ivx0!2 e22ivL'0, ~A27!
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and we use this approximation to find an iterative solution for the QN frequencies. We sta
taking the cube root of

e22ivL52
4~ iv!3x0

2

Vd
~A28!

to write

e~22/3!ivRLe~2/3!v ILeiD52S 4x0
2

Vd
D ~1/3!

iv[2Aiv, ~A29!

whereD5 j 2
3p, j 50,1,2.

Taking the absolute values on both sides gives

e~2/3!v IL5Auvu. ~A30!

With v[vR1 iv I this last relation already shows thatv I!uvu'vR is required for a QN fre-
quency.

Using ~A30! to rewrite ~A29! we find

cosS 2

3
LvR1D D2 i sinS 2

3
LvR1D D52 i

v

uvu
. ~A31!

We now make the approximationv I'0, i.e.,v'vR'uvu, leading to

cosS 2

3
LvR1D D50, sinS 2

3
LvR1D D51, ~A32!

2

3
LvR5

p

2
12Np2

2

3
j p, N50,1,. . . ; j 50,1,2, ~A33!

or, equivalently,

~vR!n5
1

L S 3p

4
1np D , n50,1,. . . . ~A34!

An approximation forv I is then obtained by using~A30!:

~v I !n5
3

2

1

L
~ ln A1 ln vR!. ~A35!

The approximate solutions of~A34! and ~A35! can now be iteratively improved. We rewrit
~A25! as

e22ivL52
R11VdR2

VdR3
5:R~v!5R~vR ,v I !, ~A36!

and take absolute values to get

e2v IL5uRu, ~A37!

v I5
lnuRu
2L

. ~A38!
                                                                                                                



nd the

piked
tegral

g to
ve-
h

1003J. Math. Phys., Vol. 40, No. 2, February 1999 H.-P. Nollert and R. H. Price

                    
With these inserted in~A36! we arrive at

cos~2vRL !52
R~R!

uRu
, sin~2vRL !5

I~R!

uRu
. ~A39!

This can be used as an iterative method to find thepth iteration from the (p21)th approximation,
as follows:

cos~2~vR!pL !52
R~R~~vR!p21,~v I !

p21!!

uR~~vR!p21,~v I !
p21!u

, sin~2~vR!pL !5
I~R~ . . . !!

uR~ . . . !u
, ~A40!

and

~v I !
p5

lnuR~~vR!p,~v I !
p21!u

2L
. ~A41!

This iterative solution can be started withanyvalue ofn in the zeroth approximation of~A34! and
~A35!, and the iteration converges to the exact solution. The iteration cannot be used to fi
native QN frequency of the smooth TDP sinceVd50 in that case.

APPENDIX B: PROOF OF CONVERGENCE

A proof is given here of the convergence of the sum of quasinormal excitations for the s
TDP under appropriate restrictions on the Cauchy data. To do this we start by defining the in

I ~d1![E F~s!ds[
1

2p i E s2f~s!es~d11d2!

D~s!
ds. ~B1!

HereD(s) is defined to be

D~s![P1~s!1e2sLs3P2~s!, ~B2!

in which P1 andP2 are polynomials of finite order in 1/s:

P1~s![A11B1 /s1..., P2~s![A21B2 /s1... . ~B3!

The path of integration in the complexs plane is along the vertical axis, from2 i` to 1 i`. For
R(s)<0 the functionf(s) is required to have the property that for some real constantsKf andp,

uf~s!u,
Kf

usup . ~B4!

~This condition will be related below to restrictions on acceptable Cauchy data.! The constants
appearing in~B1! are taken to satisfy the following conditions:~i! The ratioA1 /A2 is real and
positive.~ii ! L, d1 andd2 are real and nonnegative, and 2L.d2 . ~iii ! The constantp appearing in
~B4! must be large enough that

p1
3d2

2L
22.0. ~B5!

The roots ofD are denotedsk . ~They represent, of course, the QN frequencies accordin
the usual correspondences↔ iv.! Since they must occur in complex conjugate pairs it is con
nient here to use the notations1 ,s21 ,s2 ,s22 ,..., with s6k indicating the corresponding roots wit
positive and negative imaginary parts.

What we will prove is that under the conditions stated aboveI (d1) can be written as
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I ~d1!5 (
k52`

k51`

a~k!eskd1, ~B6!

where

a~k![sk
2f~sk!e

skd2/~dD/ds!us5sk
. ~B7!

The convergence of the sum in~B6! is not uniform atd1→0, but is uniform for any interval ofd1

bounded away from 0. We give the details of the relationship to the physical problem of Se
after we prove the main result above. The proof is organized with a set of lemmas.

Lemma 1:Let sn
mid5sn1 ip/2L and letHn be the horizontal path~as shown in Fig. 14! in the

s plane from the imaginarys axis to the pointsn
mid . Let

IHn
[E

Hn

F~s!ds ~B8!

be the integral ofF(s) on this path, thenN can be chosen so that, forn.N,

uIHn
u<const3n22p2~3d2/2L !. ~B9!

Proof: The discussion of the roots of the spiked TDP Wronskian in Appendix A can
applied to the roots ofD. For largen, then dependence of the roots takes the form

I~sn!5np/L1const1..., ~B10!

R~sn!52~3/2L !ln~n!1const1... . ~B11!

It follows that a constant can be chosen so thatusnu.const3n, and henceuf(s)u,2pK/np, for
some constantK independent ofn. SinceR(s)<0 on Hn andd1 is non-negative, we have tha
uesd1u<1. With s5sn1 ip/2L1s and with s running from2R(sn) to 0 on the pathHn , the
integral must satisfy

uIHn
u<

K

np22 U E
0

2R~sn! ds

D~s!U, ~B12!

whereD(s)[e2sd2D(s). On Hn we have that

e2Ls52e2Lsne2Ls, ~B13!

FIG. 14. Contour for proving convergence for the spiked TDP oscillations.
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andD(s) can be written as

D~s!5P1~sn!e2 iI~s!d2@e2R~s!d2R11e2Lse2R~s!d2R2#, ~B14!

where

R15
P1~s!

P1~sn!
, R25

s3P2~s!

sn
3P2~sn!

. ~B15!

For n larger than someN we can make bothR1 andR2 arbitrarily close to unity. Forn.N it
follows that the magnitude of the sum in square brackets in~B14! must be larger than the secon
term, and hence

uD~s!u.uP1~sn!ue2Lse2R~s!d2uR2u. ~B16!

By choosingN large enough we can makeuP1(sn)u anduR2u larger thann-independent constants
so that

uD~s!u.const3e2Lse2R~s!d25const3e2Lse2R~sn!d2e2sd2. ~B17!

We have then that

uIHn
u<

K8

np22 eR~sn!d2U E
0

2R~sn!

es~d222L ! dsU
,

K8

np22 eR~sn!d2U 1

2L2d2
U. ~B18!

It follows from ~B10! that we can choose a constant so thatueR(sn)d2u,const/n(3d2/2L), and there-
fore that

uIHn
u<

const

np1~3d2/2L !22 , ~B19!

which was to be proven. A similar proof shows that the same result applies touIH2n
u.

Lemma 2:On the arcGn from sn
mid to s2n

mid with usu5usn
midu, the magnitude ofD(s) is larger

than some constant that is independent ofn.
Proof: We write

D~s!5P1~s!@11F~s!#, ~B20!

where

F~s![e2sLs3P2~s!/P1~s!. ~B21!

We must show thatu11Fu is bounded from below by ann-independent constant. We recall th
sn

mid5sn1 ip/2L and thatF(sn)521, so that

F~sn
mid![S sn

mid

sn
D 3 P2~sn

mid!

P2~sn!

P1~sn!

P1~sn
mid!

. ~B22!

For n larger than someNmin we have thatF(sn
mid) is arbitrarily close to unity, so that

F~sn
mid!511l, ~B23!

andNmin can be chosen large enough to makeulu arbitrarily small.
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On the arcGn we write F(s) as

F~s!5e2sLs3~A2 /A1!@11r~s!#. ~B24!

By choosingNmin sufficiently large, we can bound the magnitude ofr to be less than an arbitrarily
small n-independent constant. Fors on the arcGn , we now writes as

s5Rnieiu, ~B25!

whereRn[usn
midu andu is the counterclockwise angle from the positive imaginarys axis to the

point s on Gn . We denote byun the angle tosn
mid , so thatsn

mid[Rnieiun and we writeu[un

1du. In terms of this notation we have

F~s!5F0F1~du!F2~du!, ~B26!

where

F0[~11l!~11r~s!!/~11r~sn
mid!!, ~B27!

F1[e2iLRn@cos~un1du!2cos~un!#e3idu, ~B28!

F2[e2LRn@sin~un!2sin~un1du!#. ~B29!

The complex phase ofF(s) is near zero ats5sn
mid , and decreases ass moves counterclockwise

along the arcGn . We use the expressions above to find at what valuedu* of du the phase ofF
first becomes2p/2. We note thatuF1u51 and on the top half of the arcF2<1. The value ofdu*
is given by

2LRn@cos~un1du* !2cos~un!#13du* 1z~un1du* !52p/2, ~B30!

wherez~u! is the phase ofF0 . We note that

ucos~un1du* !2cos~un!u.sin~un!du* .

From ~B10! we know that sinun decreases withn as ln(n)/n, andRn increases asn. Thus, the first
term in ~B30! is larger than the second by a factor that increases as ln(n). The third term, thez
term, decreases with increasingn, and we can bound it to be smaller than an arbitrarily sm
constant by choosingNmin sufficiently large. From these considerations it follows that we c
chooseNmin large enough that the magnitude of the first term in~B30! is larger than, say 2/3, o
the magnitude of the left hand side, and hencedu* satisfies

2LRn@cos~un!2cos~un1du* !#.p/3. ~B31!

Let us also takeNmin large enough so thatun1du* ,p/4. In that case we have

sin~un1du* !2sin~un!

cos~un!2cos~un1du* !
.1. ~B32!

From this it follows that 2LRn@sin(un1du* )2sin(un)#.p/3, and henceF2,e2p/3. Since the
deviation of uF0u from unity is arbitrarily small, let us useuF0u,ep/12 and conclude thatuFu
,e2p/4 at the point alongGn at which F first becomes purely imaginary. Asdu increases, the
magnitude ofF continues to decrease. It follows that for every point along the top of the ar

u11Fu.12e2p/4. ~B33!

A similar analysis starting ats2n shows that~B33! holds also for the bottom half of the arc.
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Lemma 3:On the arcGn from sn
mid to s2n

mid with usu5usn
midu, the integral,

IGn
~d1![

1

2p i E s2f~s!es~d11d2!

D~s!
ds, ~B34!

satisfies

uIGn
~d1!u,

const

np1~3d2 /L !22 , ~B35!

where the constant is independent ofn.
Proof: On Gn we have thatR(s)<R(sn), so that

uesd2u<ueR~sn!d2u, ~B36!

and, for some constant, the right hand side of~B36! is less than const/n(3d2/2L). We have seen tha
uDu is bounded from below onGn . With the bound onuf(s)u from ~B4!, we have then that

uIGn
~d1!u,

const

np1~3d2/2L !22 EGn

eR~s!d1udsu. ~B37!

Since the integrand is everywhere non-negative, we have that

E
Gn

eR~s!d1udsu,E
arc

eR~s!d1udsu, ~B38!

where the arc is the half circle withusu5usn
midu5Rn in the left half plane. But, the integral alon

the half circle is

E
arc

eR~s!d1udsu5RnE
0

p

e2d1Rn sin udu52RnE
0

p/2

e2d1Rn sin udu

,RnE
0

p/2

e22d1Rnu/pdu5
p

d1
~12e2d1Rn!. ~B39!

This completes the proof of the lemma.
Proof of main result:We defineCn as the integration path on the imaginarys axis from

iI(s2n)2 ip/2L to iI(sn)1 ip/2L, and we define

In~d1![E
Cn

F~s!ds. ~B40!

We letIn,closed(d1) be the integral on the closed path consisting ofCn , of Gn , of Hn and ofH2n

traced backwards. From the lemmas above we have

uIn~d1!2In,closed~d1!u,uIGn
~d1!u1uIHn

~d1!u1uIH2n
~d1!u,

const

np1~3d2/2L !22 . ~B41!

The integral on the closed path is 2ip times the sum of the residues inside the path,

In,closed~d1!5(
2n

n

a~k!eskd1, ~B42!
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wherea(k) is the residue ofs2f(s)esd2/D at s5sk . Since the only singularities of the integrand
the finites plane are simple poles at the roots ofD(s), thesea(k) coefficients are those defined i
~B7!. We have then

UI n~d1!2(
2n

n

a~k!eskd1U, const

np1~3d2/2L !22 , ~B43!

and our main result follows from the fact thatI (d1) is the limit of I n(d1) asn→`.
We now turn to the role played by the Cauchy data. In the Green’s function solution fo

waveform@see the discussion following~21!#, a function ofs appears representing the integral
the product off 2(s,x) and the combinationJ(x,s)[2ċ0(x)2sc0(x). In the case of the TDP o
spiked TDP,f 2(s,x)5esx. Let us suppose that the support of the Cauchy data is confined t
regionx2,x,x1. The Cauchy data then enters thes integral through the function

J ~s![E
x2

x1
J~x,s!esxdx. ~B44!

If the initial waveformc0(x) satisfies

U dp11

dxp11 c0~x!U,b0 , ~B45!

then from integration by parts, we have

E
x2

x1
esxc0~x!dx52

1

s E
x2

x1
esx

d

dx
@c0~x!#dx ~B46!

5...6
1

sp11 E
x2

x1
esx

dp11

dxp11 @c0~x!#dx ~B47!

5...6
1

sp11 esx2E
x2

x1
es~x2x2!

dp11

dxp11 @c0~x!#dx. ~B48!

For R(s)<0 the factores(x2x2) in the last integral is<1, so that

Ue2sx2E
x2

x1
esxc0~x!dxU,ub0~x12x2!u

usup11 . ~B49!

If, in addition to the constraint in~B45! we have that thepth derivative ofċ0(x) is bounded, then
by a very similar argument we can show thatf(s), defined ase2sx2J (s), satisfies

uf~s!u,
const

usup . ~B50!

We can now apply the above mathematical results to the Green’s function integral from
III. The waveform is given by the following integral along the imaginarys axis:

c~ t,x!5
1

2ip E es~ t2x!J ~s!

W~s!
ds, ~B51!

whereW(s) is given in~A21!–~A24! and has the formW(s)5s22e22sLD(s) in which D(s) is a
special case of~B2! and ~B3!. We can therefore rewrite the solution as
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c~ t,x!5
1

2ip E s2es~ t2x1x212L !f~s!

D~s!
ds. ~B52!

The above proof requires thatp, d1 , d2 , andL satisfy the inequalities that follow~B4!. The
details of the proof show that the rate of convergence depends on these parameters. In pa
on the value ofg[p1(3d2/2L)22. A small value of this parameter means slow convergen
We can now relate the details of the proof to the examples presented in Sec. III, and exam
interesting nature of the convergence of the series given there. We start by noting that a s
forward computation off(s)[e2sx2J (s), for the Cauchy data of~19!, shows thatp51. Com-
paring ~B1! and ~B52! we see that

d11d25t2x1x212L5t2x1x12x11x212L. ~B53!

An ‘‘obvious’’ choice is to taked15t2x1x1 , the retarded time from the start of the reception
signals from the Cauchy data. At anyx this is the equivalent oft2tmin . With this choice we are
left with d25x22x112L. ~Note that 2L2d25x12x2 is positive, as required in the proof.! The
value ofg for this choice is given by

g[p1
3d2

2L
225223

x12x2

2L
. ~B54!

In our examples, we choosex12x2 , the range of support of the Cauchy data, to be 6 and we h
L59, sog is unity. Suppose, though, that we had chosenx151 ~as in our standard sine wave da
of Sec. III! but had decreased the value ofx2 below our standard choice,25. The details of the
proof show that convergence would require more terms for a given level of accuracy and th
series would fail to converge forx2<11. This limit can be extended if we use initial data with o
or more continuous derivatives, i.e., ifp.1. This rather unusual feature was, in fact, exactly w
was observed in numerical experiments.

We point out next that Lemma 3 shows that convergence is not uniform ind1 . As d1 gets
smaller, more terms in the series are needed. With our choice ofd1 to bet2tmin , this implies that
the convergence of our QN series in~B6! is not uniform ast2tmin→0, contradicting our claims of
uniform convergence made following~5!. But note that we can choosed1[t2tmin11, so that
convergenceis uniform for t.tmin . In this case we haveg5223(x12x211)/2L. For both our
sine wave Cauchy data thisg has a numerical value of 5/6, and the series is convergent. It is c
that there is an interaction between the allowed range of the Cauchy data, and the ranget for
which the QN series converges. By moving the left edge of the support of the Cauchy data
left by some amountd, we increase by 3d/(2L) the value oft at which the series first converge
It should also be noted that the dependence ond1 explains why the QN series converge mo
quickly at early times than at late, a feature evident in Fig. 9.

1The following references contain examples of QN ringing in a variety of contexts, and contain references to furthe
C. V. Vishveshwara, Nature~London! 227, 936~1970!; W. H. Press, Astrophys. J.170, L105 ~1971!; S. L. Detweiler and
E. Szedenits, Jr.,ibid. 231, 211 ~1979!; C. T. Cunningham, R. H. Price, and V. Moncrief,ibid. 236, 674 ~1980!; K.
Oohara, Prog. Theor. Phys.71, 738 ~1984!; R. F. Stark and T. Piran, Phys. Rev. Lett.55, 891 ~1985!; 56, 97~E! ~1986!;
A. M. Abrahams and C. R. Evans, Phys. Rev. D46, R4117~1992!; P. Anninos, D. Hobill, E. Seidel, L. Smarr, an
W.-M. Suen,71, 2851~1993!; R. Gleiser, C. Nicasio, R. H. Price, and J. Pullin, Class. Quantum Grav.13, L117 ~1996!.
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4815–4825~1995!.
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3778–3791~1996!.
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A recursive method for the construction of irreducible
representations of the orthogonal group O „n …

Nir Barneaa)

ECT* , European Centre for Theoretical Studies in Nuclear Physics and Related Areas,
Strada delle Tabarelle 286, 1-38050 Villazzano, Trento, Italy

~Received 18 May 1998; accepted for publication 8 July 1998!

An algorithm for the construction of O(n) Gel’fand–Zetlin states in an invariant
vector space is developed. The states are calculated recursively using a new type of
coefficient of fractional parentage. These coefficients are the eigenvectors of the
Gel’fand invariants. It is shown that the calculation of the Gel’fand invariants’
matrix elements can be reduced to the evaluation of a single generator at each step.
This algorithm provides a new approach to the calculation of the Clebsh–Gordon
coefficients and isoscalar factors for the orthogonal group and can be applied to
construct a basis function with well-defined orthogonal symmetry for physical sys-
tems where separation between collective motions and intrinsic motions, associated
with the group O(n), is of interest. ©1999 American Institute of Physics.
@S0022-2488~99!01702-8#

I. INTRODUCTION

A few years ago Novoselsky, Katriel, and Gilmore~NKG!1 developed a new algorithm for th
construction of irreducible representations~ irreps! of the symmetric group. In their approach the
used the canonical nature of the group subgroup chain of the symmetric groups,Sn.Sn21

.•••.S2.S1, and formulated a recursive algorithm in which one starts with basis functions
belong to the irreps ofS1, then transforms this basis into new basis functions that belon
well-defined irreps ofS2. These basis functions are then symmetrized with respect toS3, and so
on. After n21 recurrence steps one gets basis functions that belong to well-defined irreps
symmetric groupSn and are characterized by the Yamanouchi symbols. Assuming that
functions with well-definedSn21 symmetry have already been constructed, NKG have shown
the eigenvalues of the transposition class-sum operator uniquely identify the irreps of sym
group Sn , and, therefore, the eigenvectors are the new basis functions which belong to
defined irreps ofSn . The key point in this algorithm is that the calculation of the matrix eleme
of the transposition class-sum operator can be reduced to the calculation of the matrix elem
the transposition (n,n21). The algorithm has been successfully applied for a number of m
ematical and physical problems, such as the calculation of coefficients of fractional parent
theL2S coupling scheme1 and the evaluation of the inner product and the outer product isos
factors of the symmetric group.2 It was also applied for constructing harmonic oscillator nons
rious states3 and hyperspherical states4 with definite permutational symmetry. In all these app
cations thesamebasic algorithm has been employed using the appropriate realization o
transposition (n,n21) and the invariant subspaces. Comparing it with other symmetriza
methods the NKG algorithm was proven to be very suitable for numerical calculations.

In the current work we present a generalization of the NKG algorithm for a canonical cha
Lie groups. This paper is devoted to the orthogonal group O(n) because of its importance i
physics.5 However, the results may be applied with minor necessary changes to the unitary
as well.

The orthogonal group O(n) is the set of all linear transformations in then-dimensional real

a!Electronic mail: barnea@ect.unitn.it
10110022-2488/99/40(2)/1011/12/$15.00 © 1999 American Institute of Physics
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Euclidean space which conserve the quadratic form, i.e., the sum over all the squares
coordinates. This group is actually the set of alln3n real orthogonal matrices with determina
61 @For the special case where the determinant of these matrices is only11 we obtain the specia
orthogonal group SO(n).# The irreducible representations of this group are well known. T
analog of the Yamanouchi symbol for O(n) is the Gel’fand–Zetlin~GZ! pattern6,7 which provides
an elegant way for labeling the states in a definite O(n) irrep in terms of the canonical grou
subgroup chain O(n).O(n21).•••.O(3).O(2).

The orthogonal group and the GZ basis play already an important role in the theor
microscopic approach to nuclear collective models8,9. A problem of 3n degrees of freedom ofn
nucleons can be described by 9 collective degrees of freedom and 3n29 internal degrees o
freedom which may be associated with the manifold O(n21)/O(n24). Looking for wave func-
tions with a definite irrep of a dynamical group Sp(6n), where Sp(6)3O(n21) is one of its
subgroups, Moshinsky10 has noted that the collective effects can be introduced by the cons
that then-body wave function is restricted to a given irrep of the orthogonal group O(n21).
Moshinsky and Quesene have shown in Ref. 11 that the irrep of the group O(n21) determines
that of the groupSp(6) and thus these two groups are ‘‘complementary.’’ Therefore, some o
microscopic collective models of the nuclei are related to theSp(6) group and others to the
O(n21) group.

Another physical application for the GZ states and the O(n) group-subgroup chain, arises i
a few body calculations where one tries to constructn-body basis functions with definite permu
tational symmetry. The symmetric groupSn is a subgroup of the orthogonal group O(n21).
Knowing that, Surkov12 suggested many years ago to use the orthogonal group as an interm
step in the construction of symmetric hyperspherical states. In his work, Surkov construc
first, four-body hyperspherical states, of power 4 or less, that belong to well defined irreps o~3!
and then reduced these states into irreps of the symmetric groupS4. The main difficulty in
applying these ideas to physics is the problem of constructing basis functions which belon
definite GZ state. This problem was a great obstacle in the development of the orthogonal
approach to then-body problem10,13,14and in further development of Surkov’s approach.

Recently Barnea and Novoselsky5 have extended the NKG method for the calculation
hyperspherical states with definite O(n21) GZ pattern. This states where later symmetrized us
the original NKG method for the evaluation of the O(n21)↓Sn coefficients of fractional parent
age. The new computational algorithm was applied for the construction of states with arb
permutational symmetry and found to be substantially more efficient than the original one. I
work,5 we used the second-order Casimir operator to separate the O(n) irreps. However, unlike
the transposition class-sum operator the eigenvalues of the second-order Casimir operatorn)
are degenerate, i.e., they have different irreps with the same eigenvalue, for instance, the
(4,0) and (3,3) of O(4) have the same eigenvalue 24. The usual method to remove this
eracy is to use higher-order Casimir operators, also known as the Gel’fand invariants. In th
of the orthogonal group one should use only the forth-, sixth-, ..., i.e., the even-order ope
since the eigenvalues of the (2k11)th-order operator can be written as a function of the eig
values of the second-, forth-,. . . ,2k-th order operators. However, the Gel’fand operators invo
a sum over products of generators and their evaluation is an unpleasant task in practice. Th
we were forced to use the Gram–Schmidt procedure in order to remove the degeneracy.

In this paper we present a method which overcome this difficulty, and reduce the eval
of the Gel’fand invariants to the evaluation of a single generator at each recurrence step. In
to overcome this difficulty we follow Edwards15 who has shown that themth order Gel’fand
invariant can be related with the trace of themth power of a suitably defined operatorP. Using
this idea, the calculation of the Gel’fand invariants is reduced to evaluation of the matrix ele
of a single generator, namelyXk,k21 at each step. Unlike Ref. 5, which was dedicated for
specific case of the hyperspherical basis function, in this work we present general derivation
recursive algorithm for constructing O(n) Gel’fand–Zetlin states in terms of orthogonal parenta
coefficients, opcs. This algorithm can be applied for the efficient construction ofn-body states as
well as for the calculation of the Clebsh–Gordon coefficients and the outer product iso
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factors of the orthogonal group. Its application for the unitary group is straightforward. The
differences that come along with the application of the method to various problems ar
identification of the invariant subspaces and the realization of the generators.

The algorithm proceeds as follows:

~i! After (k21) recurrence steps the O(n) invariant space is reduced into O(k) invariant
subspaces, each correspond to a single O(k) irrep. Every subspace is spanned by t
appropriate GZ states.

~ii ! The even-order Gel’fand invariants, i.e., the second-order Casimir operator, the forth
Casimir operator, etc., of the group O(k11) are diagonalized in this basis. The operat
are diagonalized one by one until all the irreps are uniquely identified.

~iii ! After the diagonalization of the appropriate matrices:

~1! The eigenvalues identify the irrep of the relevant group to which the eigenvector belong
~2! the eigenvectors are the O(k)→O(k11) transformation coefficients. These are the orthogo

parentage coefficients, opcs.

~iv! If k11 is an even number, we diagonalize the generatorXk,k11 in the highest weight O(k)
state, in order to distinguish the two SO(k11) irreps in O(k11).

We start this paper by reviewing the concept of parentage coefficients in view of its role i
algorithm; we also define the orthogonal parentage coefficients, opcs, and their propertie
Gel’fand invariants and Edwards method for their evaluation are then presented in Sec. III. I
IV we derive the recurrence relation for the calculation of theP operator and then present in Se
V the evaluation of the Gel’fand invariants in terms of the generatorXn,n21. The O(k11)
Gel’fand invariants do not mix states from different O(k) irreps since they commute with all th
generators of O(k). Therefore, different O(k) states enter into the O(k11) irrep with arbitrary
phase. The procedure used to solve this problem is also discussed in Sec. V. A full and sys
presentation of the algorithm presented above is given in Sec. VI.

II. THE ORTHOGONAL PARENTAGE COEFFICIENTS

The rank,r , of the Lie algebra associated with the Lie group O(k) is given by r 5@k/2#.
Therefore the irreducible representations~irreps! of the orthogonal group O(k), lk , are labeled by
lk5(lk,1 ,lk,2 , . . . ,lk,r). The values oflk, j are positive and either all integers or half-integers.
the casek52r , the O(k) representations (lk,1 ,lk,2 , . . . ,lk,r) splits into the two SO(k) irreps
(lk,1 ,lk,2 , . . . ,lk,r) and (lk,1 ,lk,2 , . . . ,2lk,r) if lk,rÞ0, while for lk,r50 or oddk the irreps
of O(k) are irreducible under SO(k). In what follows we shall be working with the group SO(k),
remembering the connection between its irreps and the irreps of O(k). The basis vectors of an
irrep lk are completely specified by the Gel’fand-Zetlin5 states,Lk . These states,Lk , are labeled
by the canonical chain of subgroups SO(k).SO(k21).•••.SO(3).SO(2), or Lk

5@lklk21 • • • l2#, and are restricted according to the following rules, given by Gel’fand
Zetlin,6 lk, j>lk21,j>ulk, j 11u andlk, j>ulk21,j u.

The purpose of this paper is to present a recursive method to transform a given
$ua&,a51, . . . ,dim(Vp)%, of an O(n) invariant vector spaceVp into the Gel’fand–Zetlin basis
i.e., we are looking for the transformation

uLk
pak&5 (

a151

dim~Vp!

U
L

k
pak ,a1

~k! ua1&. ~1!

Hereak is the degeneracy of the SO(k) irrep lk in Vp ,a15a, U(k) is an unitary matrix and the
superscriptp is used to denote the vectors inVp , the primary space~we are going to introduce
another, secondary vector space in the next section!. The main idea in the recursive method is
presentU(k) as a product of a sequence of block diagonal matrices$C(m),m52, . . . ,k%, where
C(m), the step transformation matrix, is used to transform the O(m21) GZ states into O(m) states,
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uLm
p am&5 (

am21

C
l

m
p am ,am21

~m!Lm21
p

uLm21
p am21&. ~2!

The step transformation matrixC(m) is block diagonal sinceLm
p 5@lm

p ,Lm21
p # and it doesn’t alter

the value ofLm21
p . Therefore, we can see that

U
L

k
pak ,a1

~k!
5 (

ak21 ,ak22 , . . . ,a2

C
l

k
pak ,ak21

~k!Lk21
p

C
l

k22
p ak21 ,ak22

~k21!Lk22
p

•••C
l

2
pa2 ,a1

~2! . ~3!

The orthogonal parentage coefficients, opcs, are the matrix elements of the step transfor

matrix C
l

m
p am ,am21

(m)Lm21
p

. The opcs, defined in Eq.~2! satisfy, the orthogonality relation

(
am21

C
l

m
p am ,am21

~m!Lm21
p

* C
l8m

p a
m8 ,am21

~m!Lm21
p

5dl8m
p ,l

m
p da

m8 ,am
, ~4!

which follows from the orthogonality of themth step basis states. The opcs also satisfy
completeness relation

(
lm

p ,am

C
l

m
p am ,am21

~m!Lm21
p

* C
l

m
p am ,a

m218

~m!Lm21
p

5da
m218 ,am21

. ~5!

As an example, letVp be the invariant subspace created by the outer product of two irrep
O(n), i.e.,Vp5ln

1
^ ln

2 . In this case the matrix elements of the transformation matrixU(k), which
transforms the outer product subspaceln

1
^ ln

2 into the GZ statesln
p are just the O(n) Clebsh–

Gordon coefficients, and the opcs are the O(n) isoscalar factors.

III. THE O„n … GENERATORS AND THE P OPERATOR

Let Xi j be the generators of the group O(n) in the primary invariant vector space,Vp ,
satisfying the following commutation relations:

@Xi j ,Xkl#52 i ~d jkXil 1d i l Xjk2d ikXjl 2d j l Xik!. ~6!

The set of operators, namely the Gel’fand invariants for O(n), defined by

I k~Xi j !5 (
i 1 ,i 2 , . . . ,i k

n

Xi 1i 2
Xi 2i 3

. . . Xi ki 1
, ~7!

are a set of Casimir operators for O(n), which commute with the algebra generators, i.
@ I k(Xi j ),Xi 1i 2

#50 for i 1 ,i 251, . . . ,n. The eigenvalue ofI k(Xi j ) corresponding to a given irrep o
O(n) or SO(n), presented byln , can be written in the following way:15

I kuln
5(

i 51

n

~qi !
kP j 51 j Þ i

n qj2qi111e j i

qj2qi
, ~8!

where

e j i 5H 2d j ,n112 i for n52r ,

d j ,n112 i2d i ,r 11 for n52r 11,
~9!

and theqi ’s are given by the following expressions: fori 51, . . . ,r 5@(n/2)#,

qi5ln,i1n2 i 21, ~10!
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for i 5n2r 11, . . . ,n,

qi52ln,n112 i1n2 i , ~11!

and if n is an odd number, then

q~n11!/25r . ~12!

The spectra of the Gel’fand invariants can be used to uniquely identify the irreps of O(n). It turns
out16 that the invariant operatorsI k(Xi j ) with odd k are not independent and can be expresse
terms of theI 2 j (Xi j ) operators with 2j ,k. However, the Gel’fand operatorsI k(Xi j ) with evenk
are invariant to reflection and therefore they can’t be used to split an O(n) irrep into the proper
SO(n) irreps. Following Edwards15 we introduce a second invariant vector space,Vs , taken to be
the carrier space of the fundamental representation 1n5(1,0,. . . ,0) and denote byEi j the gen-
erators of O(n) on Vs . We may now define a representation on the tensor product carrier s
V5Vs^ Vp by the generatorsGi j 5Ei j ^ 111^ Xi j . Consider now the operatorPn in Vs^ Vp ,
defined by

Pn5
1

2(i j
n

Ei j ^ Xi j . ~13!

We shall see that thekth-order Gel’fand invariant can be identified with the trace of (Pn)k. Pn

commutes with the generatorsGi j as can be seen from the identity

I 2~Gi j !5~Ei j ^ 111^ Xi j !~Ei j ^ 111^ Xi j !5I 2~Ei j ! ^ 114Pn11^ I 2~Xi j !. ~14!

We may choose a basis forVs such that the generators of O(n) have matrix elements:

^auEi j ub&5d iad j b2d j ad ib . ~15!

If we denote byua& the set of basis vectors ofVp , then by writingua;a& for ua& ^ ua& we have

^a;auPnub;b&5^auXabub&. ~16!

Then

^a;au~Pn!kub;b&5 (
a1 . . . ak21

(
a1 . . . ak21

^a;auPnua1 ;a1&

3^a1 ;a1uPnua2 ;a2& . . . ^ak21 ;ak21uPnub;b&

5 (
a1 . . . ak21

(
a1 . . . ak21

^auXaa1
ua1&^a1uXa1a2

ua2& . . . ^ak21uXak21bub&

5 (
a1 . . . ak21

^auXaa1
Xa1a2

. . . Xak21bub& . ~17!

Thus,

(
a

^a;au~Pn!kua;b&5 (
aa1 . . . ak21

^auXaa1
Xa1a2

. . . Xak21aub&5^auI k~Xi j !ub&. ~18!

It should be noted that this result is independent of the choice of basis forVs , as we use the trace
operator in this space.
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IV. THE RECURRENCE RELATIONS FOR Pn

In this section the general algorithm for the construction of the GZ states is given. First
assume the existence of a complete set of basis vectors,uLn21

p an21&, for the primary space,Vp .
These states are characterized by the SO(n21) GZ states and byan21, the degeneracy of the
SO(n21) irrep ln21

p in Vp . Our aim is to transform this basis vectors into basis vectors
belong to well-defined irreps of the group SO(n). The actual transformation will take place b
diagonalization of the Gel’fand invariants, Eq.~7!, one by one until all the O(n) irreps are
completely determined. The procedure for reducing the O(n) irreps into the proper SO(n) irreps
will be presented below. The common eigenvectors ofI k ,$k52,4, . . . ,n% are simply the step
transformation matrixC(n) for SO(n21)→O(n), whose elements are the opcs. As we have s
in the previous section, the calculation of the matrix elements of the Gel’fand invariants is eq
lent to the calculation of the matrix elements of the operatorPn in the tensor product spaceV. The
operatorPn presented in Sec. III, Eq.~13!, can be rewritten as

Pn5Pn211 (
i 51

n21

Eni ^ Xni . ~19!

Since Pn commutes with the generators of O(n) in the tensor product carrier spaceV, the set
P2 ,P3 , . . . ,Pn forms a set of mutually commuting operators. More than that,Pn is a block
diagonal and does not mix vectors that belong to different irreps of SO(k) for k,n. Denoting by
uLn21

s & the basis vectors ofVs , we can use the SO(n21) Clebsch–Gordan coefficients to co
struct basis vectors of irreducible representations in the tensor product space:

u~ln21
s ;ln21

p an21!Ln21&5 (
Ln22

s
Ln22

p
S ln21

s ln21
p ln21

Ln22
s Ln22

p Ln22
D uln21

s Ln22
s & ^ uln21

p Ln22
p an21&.

~20!

In principle there might be multiplicity of the representationln21 in the tensor product spac
1n21^ ln21

p . However, as can be seen in Appendix A, as far as we are concerned there is n
problem. These vectors, Eq.~20!, are eigenvectors of the second-order Casimir operators inVp ,Vs

and inV. Therefore, as a result of Eq.~14! they are eigenvectors ofPn21 as well,

^~ln21
s ;ln21

p !Ln21an21uPn21u~l8n21
s ;l8n21

p !Ln218 an218 &

5dLn21L
n218 dl

n21
s ,l8n21

s dl
n21
p ,l8n21

p dan21 ,a
n218

1
4 @ I 2u~ln21!2I 2u~ln21

p !2I 2u~ln21
s !# .

~21!

The second term on the right-hand side of Eq.~19! can be evaluated recalling the fact that
elementgi ,n21 always exists in SO(n21) such thatEn,i ^ Xn,i5gi ,n21

21 (En,n21^ Xn,n21)gi ,n21.
Therefore the matrix element of the second term in~19! is

(
i 51

n21

^~ln21
s ;ln21

p !Ln21an21uEn,i ^ Xn,i u~l8n21
s ;l8n21

p !Ln218 an218 &

5dLn21L
n218 (

i 51

n21

^~ln21
s ;ln21

p !Ln21an21ugi ,n21
21 ~En,n21

^ Xn,n21!gi ,n21u~l8n21
s ;l8n21

p !Ln21an218 &. ~22!

The dLn21L
n218 term on the rhs of Eq.~22! results from the fact thatPn is a scalar operator with

respect to O(n21) in V. Replacing thegi ,n21 operators by their representation matric

D
L ,L8

(ln21)
(gi ,n21) we obtain the following expression for the matrix element~22!:
n22 n22
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(
i 51

n21

^~ln21
s ;ln21

p !Ln21an21uEn,i ^ Xn,i u~l8n21
s ;l8n21

p !Ln218 an218 &

5dLn21L
n218 (

i 51

n21

(
Ln229

D
Ln22 ,L

n229

~ln21!
~gi ,n21

21 !D
L

n229 ,Ln22

~ln21!
~gi ,n21!

3^~ln21
s ;ln21

p !ln21Ln229 an21uEn,n21^ Xn,n21u~l8n21
s ;l8n21

p !ln21Ln229 an218 &. ~23!

Deriving Eq. ~23! we used the fact that the operatorsXn,n21 and En,n21 commute with the
generators of O(n22) and therefore the matrix element on the right-hand side is diagonal
respect to the O(n22) GZ statesLn229 . Since the matrix element is independent ofLn22, we can
equivalently sum Eq.~23! on Ln22 and divide byuln21u, the dimension of the SO(n21) irrep
ln21, to get

(
i 51

n21

^~ln21
s ;ln21

p !Ln21an21uEn,i ^ Xn,i u~l8n21
s ;l8n21

p !Ln218 an218 &

5dLn21L
n218

n21

uln21u (
Ln229

^~ln21
s ;ln21

p !ln21Ln229 an21uEn,n21

^ Xn,n21u~l8n21
s ;l8n21

p !ln21Ln229 an218 & . ~24!

Using Eqs.~15! and ~20! and noting that in the fundamental representation

un&5@ln51n ,ln2150n21 ,Ln225@0n22##,
~25!

un21&5@ln51n ,ln2151n21 ,Ln225@0n22##

@here 1n stands for the fundamental representation of O(n) and 0n stands for the scalar represe
tation#, the matrix element on the rhs of Eq.~24! takes the following form:

^~ln21
s ;ln21

p !ln21Ln229 an21uEn,n21^ Xn,n21u~l8n21
s ;l8n21

p !ln21Ln229 an218 &

5~dl
n21
s ,0n21

dl8n21
s ,1n21

2dl
n21
s ,1n21

dl8n21
s ,0n21

!

3S ln21
s ln21

p ln21

@0n22# Ln22
p Ln229

D * S l8n21
s l8n21

p ln21

@0n22# Ln22
p Ln229

D
3^ln21

p Ln22
p an21uXn,n21ul8n21

p Ln22
p an218 &. ~26!

Summing up the results of Eqs.~19! and~26! we get the expression for the matrix elements ofPn ,

^~ln21
s ;ln21

p !Ln21an21uPnu~l8n21
s ;l8n21

p !Ln218 an218 &

5dLn21L
n218 H 1

4
@ I 2~ln21!2I 2~ln21

p !2I 2~ln21
s !#dl

n21
s ,l8n21

s dl
n21
p ,l8n21

p dan21 ,a
n218

1
n21

uln21u (
Ln229

^ln21
p Ln229 an21uXn,n21ul8n21

p Ln229 an218 &

3F S 1n21 l8n21
p ln21

@0n22# Ln229 Ln229
D dl

n21
p ,ln21

2S 1n21 ln21
p ln21

@0n22# Ln229 Ln229
D *

dl8n21
p ,ln21G J .

~27!
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The SO(n) CG coefficients needed in Eq.~27! were explicitly evaluated by Pang and Hecht17 and
are given in the appendix. Therefore the calculation ofPn is reduced to the calculation ofXn,n21

at each recurrence step. It is assumed that we know how to evaluate the matrix elements
generatorXn,n21 between bra and ket states that belong to the original basis, i.e.,$ua1&,a1

51, . . . ,dim(Vp)%, of the primary invariant subspaceVp . Then using the transformation matri
U(n21) defined in Eq.~1!, we get the following expression

^ln21
p Ln22

p an21uXn,n21ul8n21
p Ln22

p an218 &

5 (
a1 ,a1851

dim~Vp!

U [ l
n21
p L

n22
p ]an21 ,a1

~n21!*
U [ l8n21

p L
n22
p ]a

n218 ,a
18

~n21!
^a1uXn,n21ua18&, ~28!

for the matrix element ofXn,n21. While applying this algorithm to the construction of hype
spherical or harmonic oscillator GZ functions we know how to evaluate the matrix elemen
this generator between bra and ket states that belong to the set of basis states obtained b
last recurrence step. If this is the case we can save a lot of computation time and com
memory, skip the calculation of the transformation matrixU(n21), and write

^ln21
p Ln22

p an21uXn,n21ul8n21
p Ln22

p an218 &

5 (
an22 ,an228

C
l

n21
p an21 ,a1

~n21!Ln22
p *

C
l8n21

p a
n218 ,a

18

~n21!Ln22
p

^Ln22
p an22uXn,n21uLn22

p an228 &. ~29!

As an example, letVp be again the invariant subspace created by the outer product of two i
of O(n), i.e.,Vp5ln

1
^ ln

2 . The basis states obtained aftern22 recurrence steps are labeled in th
example byuln

1ln
2(ln21

1 ;ln21
2 )Ln21&. Since the generatorXn,n2151^ Xn,n21

1 1Xn,n21
2

^ 1 com-
mutes with the generators of O(n22) its matrix elements are independent of the O(n23) GZ
states.

V. THE CALCULATION OF THE OPCS

So far we have seen that the calculation of the Gel’fand invariants can be reduced
calculation of the operatorPn and that ofPn can be reduced to the calculation of the genera
Xn,n21 in each recurrence step. By simultaneous diagonalization of the Gel’fand invariants w
construct states which belong to a well defined O(n) irreps. The eigenvectors of these invarian
are just the opcs of the SO(n21)↑O(n) induced representation up to a phase factor. The ma
elements of the Gel’fand invariants can be easily evaluated using Eqs.~18! and ~20!:

^Ln21
p an21uI kuL8n21

p an218 &

5dL
n21
p L8n21

p H ^~0n21 ;ln21
p !Ln21

p an21u~Pn!ku~0n21 ;ln21
p !Ln21

p an218 &

1 (
Ln22

s
(

Ln21
S 1n21 ln21

p ln21

Ln21
s Ln22

p Ln22
D * S 1n21 ln21

p ln21

Ln21
s Ln22

p Ln22
D

3^~1n21 ;ln21
p !Ln21an21u~Pn!ku~1n21 ;ln21

p !Ln21an218 &J . ~30!

In deriving Eqs~30! we have used the fact that the fundamental representationln51n contains
only the O(n21) irreps 0n21 and 1n21. Furthermore, the Clebsch–Gordan coefficient for 0n21 is
1. SinceI k commutes withXi , j it is diagonal with respect toLn21

p , and we can sum Eq.~30! on
Ln22

p and use the orthogonality properties of the Clebsch–Gordan coefficients to obtain
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^Ln21
p an21uI kuLn21

p an218 &5^~0n21 ;ln21
p !Ln21

p an21u~Pn!ku~0n21 ;ln21
p !Ln21

p an218 &1
1

uln21
p u

3 (
Ln21

^~1n21 ;ln21
p !Ln21an21u~Pn!ku~1n21 ;ln21

p !Ln21an218 &.

~31!

Thus, we can see that at each recurrence step, once we know the matrix elements of the g
Xn,n21, we can calculatePn and then take itskth power to get the matrix elements of the Gel’fan
invariants. The calculation of (Pn)k can be done by simply inserting a complete set of sta
between each power ofPn . After the diagonalization ofI k$k52,4, . . . ,n%, we get states tha
belong to well-defined irreps of O(n).

Whenn is even we would like to split the O(n) irreps into SO(n) irreps. For this purpose, fo
each O(n) irrep we discard all the opcs but those originated from the highest weight SO(n21)
irrep, ln21

p 5(ln,1
p ,ln,2

p , . . . ,ln,h
p ), (h5@(n21)/2#). The generatorXn,n21 is then diagonalized

in the space of the highest weight SO(n22) irrep ln22
p 5(ln,1

p ,ln,2
p , . . . ,ln,h8

p ), (h85@(n

22)/2#). The possible eigenvalues ofXn,n21 are6l
n

n
2

p
. The rest of the opcs will be recalculate

using the procedure presented below for ensuring consistent phase of the opcs.
When states with a given SO(n) irrep ln

p can be obtained from more then one SO(n21) irrep
ln21

p , our procedure leaves the relative phases of these states undetermined, since the d
ization is performed for each SO(n21) irrep separately and the statesuln21

p Ln22
p an21& enter the

calculation in pairs. However from the works of Gel’fand and Zetlin6 or Pang and Hecht17 such
states should be related as

^ln
pL8n21

p anuXn,n21uln
pLn21

p an&5dL
n228 ,Ln22

Fn~ln
p ,l8n21

p ,ln21
p ,ln22

p !, ~32!

whereFn , given in Appendix B, is zero unlessln218 5ln21 or l8n21,i5ln21,i6d i , j . By expand-
ing both sides of Eq.~32! in terms of the opcs and using the orthogonality of the opcs, Eq.~4!, we
obtain

C
l

n
pan ,a

n218

~n!l8n21
p

Ln22
p

5
1

Fn~ln
p ,l8n21

p ,ln21
p ,ln22

p !

3 (
an21

^l8n21
p Ln22

p an218 uXn,n21uln21
p Ln22

p an21&Cl
n
pan ,an21

~n!ln21
p

Ln22
p

. ~33!

This relation yields the orthogonal parentage coefficientsl8n21
p →ln

p in terms of theln21
p →ln

p

orthogonal parentage coefficients. In conclusion, whenever the SO(n) irrep ln
p originates from

more than one SO(n21) irrep we keep after diagonalization only the set of orthogonal paren
coefficients that originate from one particular irrepln21

p of SO(n21). The orthogonal parentag
coefficients that originate from other SO(n21) irreps are constructed from the relation~33!.

VI. THE COMPUTATIONAL ALGORITHM

In the previous sections we described the recursive method for the construction of O(n) GZ
states by diagonalization of the Casimir operatorsI k . Starting from basis states that belong
well-defined irreps of SO(n21) we may adopt the following procedure to carry out our algorit
systematically:

~i! Pick an irrepl̃n21
p of SO(n), consider all the possible irrepsln21 that can be obtained
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from l̃n21
p by the outer product 1n21^ l̃n21

p . The possibleln21 irreps are ln21,j

5ln21,j
p and the irreps given byln21,j5ln21,j

p 6d i j that obey the GZ restrictionsln21,j

>uln21,j 11u.
~ii ! For every irrepln21 construct all the states~20! with ln21

s 51n21 or 0n21 and the appro-
priate irrepsln21

p of SO(n21).
~iii ! Use Eq.~27! to evaluate the matrix elements of the operatorPn for each invariant subspac

defined byln21.
~iv! Calculate the matrix elements of the Gel’fand invariantsI k ,k52,4, . . . ,n by taking thekth

power ofPn , using Eq.~31!.
~v! Evaluate the SO(n21)↑O(n) opcs by diagonalizing of the Gel’fand invariants,I k ,k

52,4,. . . , one by oneuntil all the O(n) irreps are completely determined.
~vi! For each O(n) irrep ln

p keep the opcs for the highest weight SO(n21) irrep in ln
p , i.e.,

ln21
p 5(ln,1

p ,ln,2
p , . . . ,ln,h

p ), (h5@(n21)/2#), and discard all the rest.
~vii ! If n is even, split each O(n) irrep into the appropriate SO(n) irreps: for each O(n) irrep

diagonalize the generatorXn,n21 in the space of highest weight states, takingln22
p

5(ln,1
p ,ln,2

p , . . . ,ln,h8
p ), (h85@(n22)/2#).

~viii ! Regenerate the discarded opcs, with consistent phases, using Eq.~33! successively.
~ix! Pick another SO(n21) irrep and repeat the process. Continue for all the SO(n21) irreps.

It should be noted that if the invariant subspace is not too large, it is much more efficient to
the calculated matrix elements ofPn instead of regenerating them for each irrepl̃n21

p of SO(n).

VII. CONCLUSIONS

A new method for the construction of O(n) Gel’fand–Zetlin states has been developed. T
states are evaluated in terms of the given basis functions using the orthogonal parentage
cients, opcs. The orthogonal parentage coefficients are calculated by diagonalization
Gel’fand invariants. A crucial point is that it is sufficient to evaluate the matrix elements o
generatorXn,n21 at each step. The construction of O(n) Gel’fand Zetlin states is importan
primarily for systems with approximate O(n) symmetry such as the general many-body the
where collective states are restricted to definite irrep of O(n), or in the construction of states wit
definite permutational symmetry as the symmetry groupSn is a subgroup of O(n21). The recur-
sive method described in this paper for the orthogonal group is closely related to the m
developed few years ago by Novoselsky, Katriel, and Gilmore1,3,4 for the calculation of the
symmetry group cfps. This method may be applied to the harmonic oscillator or hypersph
harmonic bases as well as for the calculation of outer product isoscalar factors of the orth
group.
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APPENDIX A: CLEBSCH GORDON COEFFICIENTS

The O(n) CG coefficients needed in Eq.~27! are the generalized CG coefficients for th
Kronecker productu1n@0n21#& ^ ulnLn21&. This coefficients where explicitly evaluated by Pa
and Hecht.17 It is evident that these coefficients do not depend on the value ofLn22, thus we can
write:

S 1n ln8 ln

@0n21# Ln21 Ln21
D 5S 1n ln8 ln

@0n21# ln21 ln21
D . ~A1!

The nonzero CG coefficients are given below by
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S 1n ~ln,1 , . . . ,ln, j11, . . . ,ln,h ,ln,h11! ~ln,1 , . . . ,ln, j , . . . ,ln,h ,ln,h11!

@0n21# ~ln21,1, . . . ,ln21,j , . . . ,ln21,h! ~ln21,1, . . . ,ln21,j , . . . ,ln21,h!
D

5U)
i 51

h
~ln, j2ln21,i1 i 2 j 11!~ln, j1ln21,i1n2 i 2 j !

~ln, j2ln,i1 i 2 j 11!~ln, j1ln,i1n2 i 2 j ! U
1
2

, ~A2!

S 1n ~ln,1 , . . . ,ln, j , . . . ,ln,h! ~ln,1 , . . . ,ln, j , . . . ,ln,h!

@0n21# ~ln21,1, . . . ,ln21,j , . . . ,ln21,h! ~ln21,1, . . . ,ln21,j , . . . ,ln21,h!
D

5~2h122n!)
i 51

h
~ln21,i1h2 i !

~ln,i1h2 i !
. ~A3!

Hereh5@(n21)/2#, and for oddn (n52h11) ln,h1150 in Eq. ~A2!. The expression for the
CG coefficients forln, j21 are the same, replacingln, j by ln, j21 on the rhs of Eq.~A2!.

APPENDIX B: MATRIX ELEMENTS OF Xn,n 21

The matrix elements of the generatorXn,n21 between GZ states have been given at first
Gel’fand and Zetlin6 and were rederived later by Pang and Hecht.17 For the sake of brevity we will
denote the matrix elements ofXn,n21 by Fn :

^lnLn218 uXn,n21ulnLn21&5dL
n228 ,Ln22

Fn~ln ,ln218 ,ln21 ,ln22!. ~B1!

HereFn is zero unlessln218 5ln21 or l8n21,i5ln21,i6d i , j . Following the notation of Pang an
Hecht17 we shall definetn,i5ln,i1@(n11)/2#2 i and obtain for oddn (52k11) the following
expressions:

Fn~ln ,ln218 1d i , j ,ln21 ,ln22!

5
1

2UPa51
k21 ~ t2k21,a2t2k, j21!~ t2k21,a1t2k, j !Pb51

k ~ t2k11,b2t2k, j21!~ t2k11,b1t2k, j !

PaÞ j
k ~ t2k,a

2 2t2k, j
2 !~ t2k,a

2 2~ t2k, j11!2!
U1/2

.

~B2!

For evenn (52k) the diagonal matrix element is given by

Fn~ln ,ln21 ,ln21 ,ln22!5 i
Pa51

k21 t2k22,aPb51
k t2k,b

Pa51
k21 t2k21,a~ t2k21,a21!

~B3!

and the nondiagonal matrix element is

Fn~ln ,ln211d i , j ,ln21 ,ln22!

5U Pa51
k21 ~ t2k22,a

2 2t2k21,j
2 !Pb51

k ~ t2k,b
2 2t2k21,j

2 !

t2k21,j
2 ~4t2k21,j

2 21!PaÞ j
k21~ t2k21,a

2 2t2k21,j
2 !@~ t2k21,a21!22t2k21,j

2 #
U1/2

. ~B4!

Note that fork51 there are undefined products in Eqs.~B2!–~B4! ~for example,Pa51
k21 ). These

products are equal to 1 in this case.
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Deformations of global symmetries in the extended
antifield formalism

Friedemann Brandta)

Institut für Theoretische Physik, Universita¨t Hannover, Appelstraße 2,
D-30167 Hannover, Germany

~Received 11 June 1998; accepted for publication 11 November 1998!

It is outlined how deformations of field theoretical rigid symmetries can be con-
structed and classified by cohomological means in the extended antifield formalism.
Special attention is devoted to deformations referring only to a subset of the rigid
symmetries of a given model and leading to a nontrivial extension of the graded Lie
algebra associated with that subset. The method is illustrated for aD54, N52
supersymmetric model where the central extension of the supersymmetry algebra
emerges via a deformation. Deformations of gauge fixed actions with a BRST
symmetry are discussed too and illustrated by the Curci–Ferrari model. ©1999
American Institute of Physics.@S0022-2488~99!02802-9#

I. INTRODUCTION

A problem often met in field theory is to what degree a given action functional ca
nontrivially deformed while keeping some of its symmetries. A particularly interesting issu
whether the symmetry transformations themselves can be deformed in a nontrivial way
whether there are simultaneous deformations of the action and its symmetries.

Deformations of this sort can be studied systematically by cohomological methods in the
of Gerstenhaber’s approach to deformation theory.1 This was first described in Ref. 2~see also
Refs. 3 and 4! for gauge symmetries in the framework of the standard antifield formalism.5–7 The
inclusion of rigid (5global) symmetries was roughly sketched more recently in Ref. 8 within
extended antifield formalism. The aim of this work is to develop the latter approach more
oughly, with special attention to deformations which are required to maintain only~a deformed
version of! a subsetof the rigid symmetries of a given model.

The restriction to a subset of the rigid symmetries is a typical situation, as often it is ne
possible nor desirable to keep all the rigid symmetries when deforming a field theory becau
may constrain the sought deformations too much. We shall thus base the deformation theor
extended antifield formalism which involves only a ‘‘closed’’ subset of rigid symmetries.
‘‘closure’’ of the subset requires that the graded commutator algebra of the rigid symmetries
study closes in the soft~field theoretical! sense, i.e., up to gauge transformations and on-s
trivial symmetries.~In order to set up the extended antifield formalism, it may be necessa
include also ‘‘symmetries of higher order.’’8,9! In other words, a closed subset of rigid symmetr
forms a subalgebra~in the soft sense! of the graded commutator algebra of all the rigid symm
tries.

When one applies the extended antifield formalism to study deformations of such a sub
rigid symmetries, one may encounter a ‘‘subtlety.’’ Namely, a deformation may turn a subs
rigid symmetries which is closed in the soft sense into an open one. That is, it can happen t
deformed commutator algebra involves symmetries which did not occur in the undeformed
These additional symmetries are not ‘‘new’’ ones which are introduced through the deform
Rather, they are present already in the original~undeformed! model. The subtlety is that usually
is not clear from the outset which additional symmetries of the original model can show up

a!Electronic mail: brandt@itp.uni-hannover.de
10230022-2488/99/40(2)/1023/18/$15.00 © 1999 American Institute of Physics
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deformed commutator algebra. In particular, this may depend on the deformation itself.
Hence, the property of a subset of rigid symmetries to be a closed one is not nece

preserved by deformations. This is actually an interesting phenomenon as it is related to
sions of the~graded! Lie algebra associated with the commutator algebra of the subset of
symmetries under study. Important examples are central extensions of extended supersy
algebras.10 As an illustration, we shall discuss a simple four-dimensionalN52 supersymmetric
model for a hypermultiplet11,12 where the central extension of the supersymmetry algebra a
indeed via a deformation of the model.

The antifield formalism serves in this context as a tool that allows one to formulate
deformation theory conveniently in cohomological terms. Ghost fields are not dynamical in
approach~in particular, they are not paired with antighost fields!, in contrast to their counterpart
in the quantum field theoretical context. Nevertheless, the formalism applies also to gauge
action functionals which contain dynamical ghost and antighost fields. This application ju
quires a slight change of the point of view as compared to the one familiar from quantum
theory. Namely, the gauge fixed action simply takes the role of a classical action. According
dynamical ghost and antighost fields occurring in the gauge fixed action are counted amo
classical fields, and the Becchi–Rouet–Stora–Tyutin~BRST! symmetry of the gauge fixed actio
counts among the rigid symmetries. In particular this allows one to investigate deformations
BRST symmetry after fixing the gauge. We shall discuss and illustrate this particular applic
in some detail in the Curci–Ferrari model.13–15

The paper has been organized as follows. Section II summarizes basic properties of glo
local symmetries in Lagrangian field theory which are used later on. Then the extended an
formalism and the construction and properties of the extended BRST differential are briefl
viewed in Secs. III and IV. The systematic approach to the deformation problem is describ
Sec. V. Sections VI and VII contain the examples mentioned above, i.e., the hypermultip
N52 supersymmetry and the Curci–Ferrari model. The paper is ended with some conc
remarks in Sec. VIII.

II. GLOBAL AND LOCAL SYMMETRIES

We shall first briefly summarize the definition and some properties of continuous rigid
gauge symmetries in Lagrangian field theories, following the presumably most popular app
based on the action~alternatively one can define rigid and gauge symmetries on the level o
field equations, via conserved currents and Noether identities respectively!. We shall thus conside
Lagrangian field theories which derive from an action functional for a set of fieldsf i(x),

Sclass@f#5E dnxL~x,@f#!, ~2.1!

whereL(x,@f#) is a Lagrangian constructed of the fields and their partial derivatives.$Here and
in the following, @f# denotes collectively dependence on the fields and on their derivative
more precise mathematical terms,f i ,]mf i ,]m]nf i ,... are to beunderstood as local coordinates
a jet space, andf i(x) as sections of the jet bundle over ann-dimensional base manifold~‘‘space–
time’’ ! with local coordinatesxm (m51, . . . ,n). The arguments ofL(x,@f#) indicate that the
Lagrangian may~but, of course, need not! depend explicitly on thexm.% The field equations
~equations of motion! derive via the variational principle fromSclass, i.e., they are the correspond
ing Euler–Lagrange equations.

A continuous rigid symmetry of an action~2.1! is generated by transformations of the fiel
with a constant infinitesimal parameter«,

f i→f̃ i5f i1« Gi~x,@f#!, «5const, ~2.2!

such thatL(x,@f̃#) differs from L(x,@f#) to first order in« at most by a total derivative,
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L~x,@f̃# !5L~x,@f#!1«]mkm~x,@f#!1O~«2!. ~2.3!

A gauge symmetry of an action~2.1! is defined similarly, with the important difference that
involves, instead of a constant parameter, an additional fieldl5l(x) ~i.e., a field which does no
occur in the Lagrangian!. It is generated by infinitesimal transformations of the form

f i→f̃ i5f i1 (
k>0

r im1 . . . mk~x,@f#!]m1
¯]mk

l ~2.4!

such thatL(x,@f̃#) andL(x,@f#) differ to first order inl at most by a total derivative,

L~x,@f̃# !5L~x,@f#!1]mhm~x,@f,l#!1O~l2!. ~2.5!

This invariance condition must hold for an unconstrained fieldl, i.e., it must neither impose a
differential equation forl, nor determinel in terms of the fieldsf i and their derivatives@other-
wisel would turn into a function of thexm, f i and their derivatives and thus~2.4! would reduce
to a rigid symmetry of the form~2.2!#.

Now, the above standard definitions do not yet characterize symmetries satisfactorily f
purpose. An important ingredient, underplayed in many textbooks, is still missing: the distin
between trivial and nontrivial symmetries. For instance, consider transformations~2.2! and ~2.4!
with

Gi~x,@f#!5Ei j ~x,@f#!
]̂L

]̂f j
, ~2.6!

(
k>0

r im1 . . . mk~x,@f#!]m1
¯]mk

l5Ei j ~x,@f,l#!
]̂L

]̂f j
, ~2.7!

where]̂L/ ]̂f i is the Euler–Lagrange derivative of the Lagrangian with respect tof i ,

]̂L

]̂f i
5

]L

]f i
2]m

]L

]~]mf i !
1¯ , ~2.8!

andEi j are any functions which are only required to be graded antisymmetric in their indic

Ei j 5~2 !e ie j 11Eji , ~2.9!

wheree i is the Grassmann parity off i . It is easily verified that~2.6! and ~2.7! give rigid and
gauge symmetries, satisfying~2.3! and ~2.5!, respectively, for any choice ofEi j fulfilling ~2.9!.
Such symmetries are examples of trivial symmetries which may be called ‘‘on-shell trivial
metries’’ ~the terminology reflects that the symmetry transformations vanish for every soluti
the field equations, as the latter read]̂L/ ]̂f i50). More general trivial symmetries of this type a
obtained from ~2.6! and ~2.7! when Ei j are differential operators of the formEi j

5(ei j m1 . . . mk]m1
¯]mk

with properties generalizing~2.9! appropriately.
In addition to on-shell trivial symmetries, there is a second type of trivial rigid symm

whenever the action possesses a true gauge symmetry, i.e., a gauge symmetry which
on-shell trivial. Indeed, in that case the action has automatically infinitely many further
symmetries which are to be considered as trivial too, even though they are not on-shell
These additional trivial rigid symmetries arise from nontrivial gauge transformations~2.4! by
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replacingl with « f (x,@f#) there, wheref (x,@f#) is any function of the fields and their deriva
tives. Indeed, as~2.5! holds for anyl, such a replacement results in a transformation~2.2!
satisfying~2.3! with

Gi~x,@f#!5 (
k>0

r i m1 . . . mk~x,@f#!]m1
¯]mk

f ~x,@f#!. ~2.10!

Hence, every action has infinitely many trivial gauge and rigid symmetries. Gauge and
symmetries are therefore best defined asequivalence classeswhere two symmetries are calle
equivalent when they differ by a trivial symmetry~and by irrelevant redefinitions of the respecti
« andl, i.e., by multiplications of« andl with arbitrary constants and field dependent functio
respectively!. @Clearly, two symmetries differing only through such redefinitions are to be ide
fied, as~2.3! and~2.5! must hold for arbitrary constant parameters« and unconstrained fieldsl.#
One can then introduce the concept of a basis of symmetries, containing one representative
nontrivial equivalence class. We shall characterize such bases for the gauge and rigid sym
through operations$da% and $Da%, respectively, which are related to symmetry transformati
~2.2! and ~2.4! according to

daf i5Ra
i ~x,@f#![(

k>0
r a

i m1 . . . mk~x,@f#!]m1
¯]mk

, ~2.11!

Daf i5Ga
i ~x,@f#!. ~2.12!

As the graded commutator of two infinitesimal symmetry transformations is automati
again an infinitesimal symmetry transformation~due to the derivation property of infinitesima
transformations!, there is always a graded commutator algebra associated with such bases
ever, due to the presence of trivial symmetries, this graded commutator algebra is in gen
quotient algebra because, in general, the graded commutator of two elements of the basis
expressed in terms of elements of the same basis only up to trivial symmetries. In particul
general form of the graded commutator of any two elements of a basis of infinitesimal
symmetry transformations is thus

†Da ,Db‡f
i5 f ab

c Dcf
i1Ra

i f ab
a ~x,@f#!1Eab

i j ~x,@f#!
]̂L

]̂f j
, ~2.13!

where the graded commutator of two objectsA and B is defined by means of their Grassma
paritiese(A) ande(B) through

†A,B‡5AB2~2 !e~A!e~B!BA. ~2.14!

In ~2.13!, f ab
c are constant coefficients which are the structure constants of a graded Lie alge~as

a consequence of† †Da ,Db‡,Dc‡1cyclic50), while f ab
a (x,@f#) andEab

i j (x,@f#) are, in general,
field-dependent functions and operators appearing in trivial rigid symmetries as described
cf. ~2.10! and ~2.6!.

III. EXTENDED ANTIFIELD FORMALISM

We shall now recall the basic features of the extended antifield formalism and fix our no
and conventions. For simplicity, we shall concentrate on the case that the gauge transforma~if
any! are irreducible and that only ordinary rigid symmetries are present or needed, but no
symmetries of higher order in the terminology of Ref. 8. The general case is a straightfo
extension of this one. As mentioned already, the extended antifield formalism can be esta
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for any closed subset of rigid symmetries.8 When higher-order rigid symmetries are absent
closed subset is simply a subset$DaI % of a basis$Da% of nontrivial rigid symmetries such that, i
the notation of the previous section,

$Da%5$DaI ,D â%, f ab
ĉ 50 ;aI ,bI ,ĉ. ~3.1!

Here f ab
ĉ 50 requires that the graded commutator algebra of theDaI is a subalgebra of~2.13! in the

‘‘soft’’ sense, i.e., with respect to the quotient structure ‘‘modulo trivial rigid symmetries.’’
The fields and antifields of the standard antifield formalism are denoted byFA andFA* where

$FA% contains the ‘‘classical’’ fieldsf i , i.e., the fields occurring in the ‘‘classical’’ action~2.1!
under study, and the ghost fieldsCa corresponding to the nontrivial gauge symmetries of t
action.~As mentioned in the Introduction, the ‘‘classical’’ action may be actually a gauged fi
one. Ghost and antighost fields occurring in such an action count among thef i and must not be
confused with theCa. See Sec. VII for an example.! The extended antifield formalism, restricte
to the subset$DaI %, contains in addition constant~‘‘global’’ ! ghostsjaI for eachDaI . These global
ghosts have ghost number 1 and Grassmann parity opposite to the corresponding rigid sym
It is also very convenient~though not necessary in principle! to accompany eachjaI with a
constant antifieldjaI* . The latter has ghost number (22) and Grassmann parity opposite tojaI . In
particular, this allows one to set up the extended antifield formalism through an extended
equation of the form

~S,S!50, ~3.2!

where~ , ! is an extended antibracket defined by

~X,Y!5
]RX

]jaI

]LY

]jaI*
2

]RX

]jaI*
]LY

]jaI 1E dnxF dRX

dFA~x!

dLY

dFA* ~x!
2

dRX

dFA* ~x!

dLY

dFA~x!G . ~3.3!

Here superscriptsR and L indicate right and left derivatives, respectively. The extended a
bracket is defined in the space of local functionals of the form

G@F,F* ,j#1MaI ~j!jaI* , ~3.4!

whereG@F,F* ,j# is the space–time integral of a local function of the fields and antifields w
may depend on the global ghosts but not on the global antifields, andMaI (j) is a polynomial in the
global ghosts@note:MaI (j)jaI* does not involve a space–time integration#. The solutionS of the
extended master equation is a functional with ghost number 0 of the form~3.4!. It contains the
classical action, and encodes its gauge symmetries and the subset$DaI % of its rigid symmetries, as
well as the graded commutator algebra of these symmetries. In addition one often imposesS
be real. One then needs consistent conventions for complex conjugation. We denote co
conjugation by a bar, and use the convention~familiar from supersymmetry, see, e.g., Ref. 16! that
complex conjugation of products involves a sign factor depending on the Grassmann parit

~XY!5~2 !eXeYX̄Ȳ. ~3.5!

The complex conjugate of an antifieldF* equals minus the antifield of the complex conjugate
F ~independently of the Grassmann parity ofF!,

~F* !52~F̄ !* ;FP$FA,jaI %. ~3.6!

For instance, with these conventions, the antifield of a real field is purely imaginary.
To describe and computeS, it is useful to expand it in the antifield number~agh!. The latter

vanishes for the fields, and equals minus the ghost number for the antifields,
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aghf i5aghCa5aghjaI 50,
~3.7!

aghf i* 51, aghCa* 5aghjaI* 52.

The expansion ofS is denoted by

S5 (
k>0

Sk , aghSk5k. ~3.8!

HereS0 is the classical action,

S05Sclass@f#. ~3.9!

S1 encodes both the gauge transformations and the subset of the rigid symmetries under

S152E dnx~Ra
i Ca1jaI DaI f

i !f i* , ~3.10!

where we used the notation of the previous section.S2 encodes the graded commutator algebra
the gauge symmetries and the subset of rigid symmetries under study, and thus, in particu
subalgebra of~2.13! referring to$DaI %,

S25
1

2
jbI jaI f̃ ab

cI jcI* 1E dnx jbI jaI ~ 1
2 f̃ ab

a Ca* 1 1
4 f i* Ẽab

i j f j* 1¯ !, ~3.11!

where f̃ ab
cI , f̃ ab

a , Ẽab
i j coincide with f ab

cI , f ab
a , Eab

i j in ~2.13! up to signs which follow from the

formulas@e.g., f̃ ab
cI 5(2)ebI 11f ab

cI whereebI is the Grassmann parity ofDbI ]. The nonwritten terms
in ~3.11! encode analogously the graded commutator algebra of the gauge symmetries, and
gauge symmetries with theDaI . Higher termsSk (k.2) in the expansion ofS reflect consistency
relations following from the graded commutator algebra. The solution of the extended m
equation encodes thus the complete algebraic structure of the gauge and rigid symmetrie
study. In particular, the piece in (S,S)50 which is linear inj* yields

f [ab
eI f cI ]eI

dI 50, ~3.12!

where @¯# indicates graded antisymmetrization. Equation~3.12! is the Jacobi identity for the
structure constants of a graded Lie algebra and reflects again that the commutator algebr
DaI constitutes a subalgebra of~2.13! in the soft sense. Of course, in general this commuta
algebra is not a true graded Lie algebra, but still a graded Lie algebra in the soft sense.

IV. EXTENDED BRST AND KOSZUL–TATE DIFFERENTIAL

The extended antifield formalism outlined in the previous section implies the existence
nilpotent antiderivation which generalizes the standard BRST differential so as to incorporat
symmetries. We call this antiderivation extended BRST differential and denote it bys. It is
defined in the space of local functionals of the form~3.4! via the extended antibracket through

sX5~S,X!. ~4.1!

With this definition,s squares to zero (5 is ‘‘nilpotent’’ !,

s~XY!5~sX!Y1~2 !eXX~sY!, s250. ~4.2!

Furthermore,s is a real differential ifS is a real functional. Ass is Grassmann odd, this mean
due to~3.5!,
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~sX!5~2 !eXsX̄. ~4.3!

It is useful to expands in the antifield number. The structure ofS implies that the expansion ofs
starts with a pieced that has antifield number21 ~i.e.,d lowers the antifield number by one unit!,

s5d1g1(
i>1

si , aghd521,, aghg50, aghsi5 i . ~4.4!

The nilpotency ofs implies anticommutation relations between the pieces in this decompos

d250, †d,g‡50, g21†d,s1‡50, . . . . ~4.5!

Hered is the extension of the field theoretical Koszul–Tate differential.6,17,18It acts nontrivi-
ally only on the antifields, and coincides onFA* with the standard Koszul–Tate differential, whi
djaI* is an integrated local functional associated with the corresponding rigid symmetry,

dFA5djaI 50, df i* 5
]̂RL

]̂f i

~4.6!

dCa* 5Ra
i †f i* , djaI* 5~2 !eaIE dnx~DaI f

i !f i* ,

whereRa
i † is the operator adjoint toRa

i ~its precise definition, which includes a sign depending
the Grassmann parity, follows from the formulas!.

Hered is a nilpotent antiderivation by~4.5!. It therefore establishes the cohomological grou
Hk(d) at antifield numberk in the space of local functionals~3.4!. By construction,d is acyclic at
all positive antifield numbers@Hk(d).0 ;k.0# whenS encodesall the gauge and rigid sym
metries~of first and higher order!.8 In contrast, when only a subset of the rigid symmetries
included,Hk(d) corresponds at positive antifield numberk to the remaining rigid symmetries o
order k and is represented by functionals that would be of the formMâ(j)dj â

* if all the rigid
symmetries had been included. Hence,H1(d) is represented by functionals

Mâ~j!E dnx~D âf i !f i* . ~4.7!

V. DEFORMATION THEORY

The extended antifield formalism allows one to describe deformations of a given mode
some of its symmetries as deformations of the solution of the extended master equation alo
lines of Ref. 2. However, as anticipated in the Introduction, a deformation does not neces
preserve the property that the selected subset of symmetries is a closed one. Therefo
deformation itself may make it necessary to enlarge the subset of symmetries one has start
In this section we describe how to cope with this phenomenon within a systematic approach
deformation problem.

The starting point is a solution(0)S of the extended master equation which encodes
original ~undeformed! classical action, its gauge symmetries and a closed subset$(0)DaI % of its
rigid symmetries. The basic idea is to seek a continuous deformation of this solution of the

S5 S
~0!

1g S
~1!

1g2 S
~2!

1¯ , ~5.1!

whereg is the deformation parameter. This problem is analyzed ‘‘perturbatively’’ by expan
(S,S)50 in g,
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~ S
~0!

, S
~0!

!50, ~5.2!

~ S
~0!

, S
~1!

!50, ~5.3!

~ S
~1!

, S
~1!

!12~ S
~0!

, S
~2!

!50, ~5.4!

]

Equation~5.2! is satisfied by assumption. In order to discuss the subsequent equations, on
now be tempted to adopt the arguments valid for deformations preserving only the gauge
metries, as given in Ref. 2. One would then conclude from~5.3! that (1)S must be invariant unde
the undeformed extended BRST differential(0)s, as the latter is generated by the antibracket w
(0)S @see~4.1!#. Furthermore one can assume without loss of generality that(1)S is nontrivial in the
cohomology of(0)s, because otherwise it can be removed through local field redefinitions a
redefinitions of the gauge and rigid symmetry transformations by adding trivial symmetries
follows from standard arguments which parallel those for deformations of gauge symmetrie~see,
e.g., Ref. 3! and are not repeated here. In this way one would conclude that(1)S represents a
nontrivial cohomology class ofH0((0)s), the cohomology of(0)s at ghost number 0 in the spac
of local functionals~3.4!. However, this kind of reasoning overlooks that(0)s encodes only a
subset of the rigid symmetries and may thus be extended, if necessary.

In order to discuss this possibility, we analyze~5.3! and the subsequent equations mo
carefully by expanding them in the antifield number. To this end we denote the decomposit
(n)S by

S
~n!

5 (
k>0

S
~n!

k , aghS
~n!

k5k. ~5.5!

The interpretation of the various terms in this expansion follows from the general discuss
Sec. III: (n)S0 is the deformation of the original classical action at ordern in g, (n)S1 encodes the
nth-order deformations of the symmetry transformations under study,(n)S2 yields thenth-order
deformation of the graded commutator algebra of these symmetries, etc. Using the expan
(0)s in the antifield number as in~4.4!, Eq. ~5.3! decomposes into

g
~0!

S
~1!

01 d
~0!

S
~1!

150, ~5.6!

s
~0!

1 S
~1!

01 g
~0!

S
~1!

11 d
~0!

S
~1!

250, ~5.7!

]

Equation ~5.6! requires(1)S0 to be invariant on-shellunder the undeformed gauge and rig
symmetries under study, where ‘‘on-shell’’ refers to the undeformed equations of motion. T
so because the undeformed symmetries under study and the original equations of mot
encoded in(0)g and (0)d, respectively. Let us assume we have found a solution to~5.6!. The
possible need for an enhancement of the subset of rigid symmetries under study arises for
time in the next step, i.e., when seeking a solution of~5.7!. To see this we act with(0)g on ~5.6!.
Using the anticommutation relations~4.5! for (0)s, we infer that the functionalW1 defined by

W15 s
~0!

1 S
~1!

01 g
~0!

S
~1!

1 ~5.8!

is (0)d-closed,
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d
~0!

W150. ~5.9!

Now, ~5.7! requires thatW1 be (0)d-exact. Equation~5.9! is thus a necessary condition for th
existence of a solution to~5.7!. However, it is not sufficient in general when(0)s encodes only a
subset of the rigid symmetries~see Sec. IV!.

The question at this stage is therefore: can it happen thatW1 contains a rigid symmetry of the
original action which is not contained in the closed subset of symmetries one has started wit
answer to this question is affirmative, as we shall illustrate explicitly in the next sections. H
asW1 has antifield number 1, it may contain contributions of the form~4.7!. Furthermore,W1 has
ghost number 1. Its general form is thus

W15
1

2
~2 !eaI 1e ĉ f

~1!

ab
ĉ jbI jaI E dnx~ D

~0!

ĉf
i !f i* 2 d

~0!

~¯ !. ~5.10!

Recall that(0)D ĉ denotes a rigid symmetry of(0)S0 that is not contained in$(0)DaI %. If such
symmetries occur inW1 , i.e., if there are nonvanishing coefficients(1)f ab

ĉ , the subset of rigid
symmetries under study needs to be enlarged by including these symmetries in order to
~5.7!. Of course, this requires one first of all to construct a new solution(0)S of the extended
master equation which incorporates the additional symmetries, too, and then to reexamin
~5.6! and ~5.7! as(0)s gets extended.

Let us assume now that Eqs.~5.6! and ~5.7! have been solved. Then there are no furth
obstructions to a solution of Eq.~5.3! if higher-order symmetries are absent, i.e., all the equati
subsequent to~5.7! can be solved without further ado because then(0)d is acyclic at all antifield
numbers exceeding 1. In contrast, if there are higher-order symmetries, it cannot be exclu
principle that some of them show up at a certain stage and must be included, too.

Once one has solved~5.3!, one has to analyze~5.4! and the subsequent equations. Now, o
has ((0)S,((1)S,(1)S))50 as a consequence of~5.3!, thanks to the Jacobi identity for the extend
antibracket. ((1)S,(1)S) has ghost number 1 and is thus a cocycle inH1((0)s). This is a necessary
condition for the existence of a solution to~5.4! but, in general, it is not sufficient because~5.4!
requires that ((1)S,(1)S) be (0)s-exact. Therefore~5.4! may obstruct deformations throug
H1((0)s). Note, however, that some of the cohomology classes inH1((0)s) will originate from
rigid symmetries that have not been included so far. These classes are represented by(0)s-invariant
extensions of functionals of the form~4.7! and their analogs for higher-order rigid symmetries~if
any!. Such classes can be removed by further extending the subset of rigid symmetries. W
therefore refer to them as ‘‘spurious anomalies,’’ and call the other classes ‘‘true anoma
@The term ‘‘anomaly’’ is~ab!used here because these obstructions parallel those to the Slav
Taylor identity through gauge anomalies in quantum field theory. Indeed, the Slavnov–T
identity can be cast in the form of the master equation19,20 and the gauge anomalies represe
BRST cohomology classes at ghost number 1.21# These two kinds of anomalies show up
different antifield numbers.@I have not found an example where ((1)S,(1)S) contains spurious
anomalies. On the other hand, I have neither found a general argument which exclud
occurrence of spurious anomalies. Hence, the question whether or not such anomalies ca
occur in ((1)S,(1)S) is actually still open.# Using the expansion

~ S
~1!

, S
~1!

!522(
k>0

Ak , aghAk5k, ~5.11!

~5.4! decomposes into

A05 g
~0!

S
~2!

01 d
~0!

S
~2!

1, ~5.12!
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A15 s
~0!

1 S
~2!

01 g
~0!

S
~2!

11 d
~0!

S
~2!

0 , ~5.13!

]

True anomalies can show up only inA0 through contributions that are weakly (5on-shell)
(0)g-closed but not weakly(0)g-exact. They can thus obstruct~5.12!. In contrast, spurious anoma
lies would show up in theAk with k.0, and thus in~5.13! and the equations subsequent to
Thereby spurious anomalies stemming from rigid symmetries of orderk would show up inAk . In
particular, when higher-order rigid symmetries are absent, actually onlyA1 can give rise to
spurious anomalies through terms of the form~4.7! with ghost number 1. Analogously one an
lyzes the equations subsequent to~5.4! and infers that they can obstruct the deformation in
same way throughH1((0)s).

To summarize, the extended antifield formalism permits a systematic analysis of deform
preserving certain rigid symmetries in addition to the gauge symmetries in a manner which is
similar to the deformation theory2 based on the standard antifield formalism. The main differe
is that the deformation itself may force one to enlarge the subset of rigid symmetries on
started with. It should be clear from the above discussion that, in general, one cannot predic
the outset which symmetries need to be included in addition to those one has started with b
that may depend on the solution to~5.6!.

A deformation which requires the enlargement of an originally closed subset of symm
results in a deformed symmetry algebra. For instance,~5.10! would yield

S
~1!

25 1
2~2 !ebI 11jbI jaI f

~1!

ab
ĉ j ĉ

* 1¯ . ~5.14!

This shows that the graded commutator algebra of theDaI ~i.e., of the deformed transformations!

would not close anymore in the soft sense but involve theD ĉ . The (1)f ab
ĉ are the corresponding

structure constants of the deformed graded Lie algebra to first order.

VI. CENTRAL CHARGE OF THE N52 HYPERMULTIPLET

As an illustration, we shall now treat anN52 supersymmetric model for a Fayet–Sohni
hypermultiplet11,12 in flat four-dimensional spacetime. The multiplet contains two comp
Lorentz-scalar fieldsw i ( i 51,2) and two complex Weyl-spinor fieldsxa,ca (a51,2). ~We use
conventions with a Minkowski metrichmn5diag(1,2,2,2) as in Ref. 22 which differ only
through signs from those in Ref. 16!. As the basis of the classical fields we use these fields
their complex conjugates~equivalently we could have chosen, for instance, the real and imagi
parts of the fields!,

$f%5$w i ,w̄ i ,xa,x̄ ȧ,ca,c̄ ȧ%,

wherew̄ i , x̄ and c̄ are complex conjugate tow i , x andc, respectively,

w̄ i5w i , x̄ ȧ5xa, c̄ ȧ5ca.

The position of the index ofw̄ i indicates that it transforms contragrediently tow i under the
SU~2!-automorphism group ofN52 supersymmetry@ i refers to the fundamental representation
this SU~2!#. Undotted and dotted spinor indices distinguish the (1/2,0) and (0,1/2) represent
of the Lorentz group@resp., of its covering group SL~2,C!#.

Our starting point is the action

S
~0!

05E d4x@]mw i]mw̄ i2
1
2 ~x]” x̄1x̄]”x1c]” c̄1c̄]”c!#, ~6.1!
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where

]”aȧ5saȧ
m ]m .

The action(0)S0 is among others invariant under rigidN52 supersymmetry transformation
(0)Da

i , (0)Dȧ i given by

f w j w̄ j xb
x̄ḃ cb

c̄ḃ

D
(0)

a
if

e i j xa d j
i ca 0 2 i]”a

ḃw̄ i 0 2 i]”a
ḃw i

D
(0)

ȧ if
d i

j c̄ ȧ
2e i j x̄ ȧ i]” ȧ

bw i 0 2 i]” ȧ
bw̄ i 0

~6.2!

where indicesi are raised and lowered with the rules

Xi5e i j Xj , Xi5e i j X
j , e i j 52e j i , e i j 52e j i , e125e2151.

We consider the following subset of rigid symmetries, containing the supersymmetry transf
tions and the spacetime translations,

$ D
~0!

aI %[$ D
~0!

a
i , D

~0!

ȧ i ,]m%. ~6.3!

The graded commutator algebra of these symmetries reads

†D
~0!

a
i , D

~0!

ȧ j‡'2 id j
i ]”aȧ , †D

~0!

aI , D
~0!

bI ‡'0 otherwise, ~6.4!

where' denotes equality up to on-shell trivial symmetries. Equation~6.4! is indeed theN52
supersymmetry algebra without central charge~on-shell!. The action has no gauge symmetrie
Therefore, it has no higher-order symmetries either.23 This implies the existence of a solution t
the extended master equation which encodes only the symmetries~6.3! and their graded commu
tator algebra. This solution, which was computed first in Ref. 24, reads

S
~0!

5 S
~0!

01 S
~0!

11 S
~0!

2 ,

S
~0!

152E d4x(
f

~j i
a D

~0!

a
if1 j̄ ȧ i D

~0!

ȧ if1jm]mf!f* , ~6.5!

S
~0!

252 ij is
mj̄ ijm* 1E d4x@ x̄* j̄ ij ix* 1c̄* j̄ ij ic* 1 1

2 j ij
i x̄* c̄* 1 1

2 j̄ i j̄ ic* x* #,

where

$f* %5$w i* ,w̄ i* ,xa* ,x̄ ȧ
* ,ca* ,c̄ ȧ

* %.

The supersymmetry ghostsj i
a and j̄ ȧ i are Grassmann even and the translation ghostsjm are

Grassmann odd. The ghosts and antifields have the reality properties

j̄ ȧ i5j i
a, jm5jm, j̄ ȧ i

* 52ja
i* , jm* 52jm* ,

w̄ i* 52w i* , x̄ ȧ
* 52xa* , c̄ ȧ

* 52ca* .
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The first term in(0)S2 contains the structure constants of the supersymmetry algebra~6.4!, while
the contributions which are quadratic in the antifields reflect that the symmetry algebra close
on-shell.

We now study deformations of the above model along the lines of the previous secti
solution to~5.6! which introduces mass terms for the fermions is easily found. Namely,

S
~1!

05E d4x@m1xc1m̄1x̄c̄1 1
2 ~m2xx1m̄2x̄x̄1m3cc1m̄3c̄c̄ !# ~6.6!

is supersymmetric on-shell and translation invariant for any choice of complex mass para
m1 , m2 andm3 and therefore yields a solution to~5.6!. The corresponding functional(1)S1 is

S
~1!

15E d4x@m1~ w̄ i x̄* j̄ i2w i c̄* j̄ i !2m̄1~ w̄ ij ic* 1w ij ix* !

2m2w i x̄* j̄ i2m̄2w̄ ij ix* 1m3w̄ i c̄* j̄ i2m̄3w ij ic* #. ~6.7!

Next we calculate the functionalW1 in ~5.8!. The result is

s
~0!

1 S
~1!

01 g
~0!

S
~1!

15
1

2
j̄ i j̄ iE d4x@~2m1w j1m3w̄ j !w j* 1w̄ j* ~m1w̄ j2m2w j !

2~m1x1m3c!x* 1x̄* ~m1x̄2m2c̄ !

1~m1c1m2x!c* 1c̄* ~2m1c̄1m3x̄ !#1c.c., ~6.8!

where c.c. denotes complex conjugation. Equation~6.8! has the form of the first term in~5.10!,
i.e., it brings in an additional symmetry. This symmetry is part of a rigid SU~2!-invariance of the
action~6.1!. Indeed, as the functional~6.8! is (0)d-invariant for any choice ofm1 , m2 andm3 , the
parts in~6.8! involving m1 , m2 andm3 , respectively, correspond to independent symmetrie
the action~6.1!. These symmetries form an SU~2! under which (w1,w̄1), (w2,w̄2), ~x,c! and
(c̄,x̄) transform as doublets~i.e., in the fundamental representation! and which commutes with
the supersymmetry transformations~6.2!. However, in contrast to the undeformed action, t
first-order deformation~6.6! is not invariant under the full SU~2! but it is still invariant under a
U~1! subgroup thereof generated by the transformations in~6.8!. Hence, the deformation break
the SU~2! but preserves this U~1! subgroup.~An analogous phenomenon was observed in Ref.
within the construction of supergravity couplings for hypermultiplets.!

We thus have to enlarge the subset of symmetries~6.3! by this U~1!. It turns out that this
suffices in order to construct a deformed solution of the extended master equation. We sh
further discuss the computation and spell out the solution only for the casem25m350. Using
m5gm1 (g being the deformation parameter in the notation of the previous section!, the deformed
solution reads then

S5S01S11S2 , ~6.9!

S05 S
~0!

01E d4x~mxc1m̄x̄c̄2mm̄w i w̄ i !, ~6.10!
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S15E d4xF2(
f

~j i
a D

~0!

a
if1 j̄ ȧ i D

~0!

ȧ if1jm]mf!f*

1 ijU~1!~w iw i* 2w̄ i w̄
i* 1xx* 2x̄* x̄2cc* 1c̄* c̄ !

1m~ w̄ i x̄* j̄ i2w i c̄* j̄ i !2m̄~ w̄ ij ic* 1w ij ix* !G , ~6.11!

S25 S
~0!

21
i

2
~mj̄ i j̄ i1m̄j ij

i !jU~1!
* , ~6.12!

with (0)S2 as in ~6.5!. HerejU(1) and jU(1)* are the global ghost and antifield of the rigid U~1!
symmetry obtained from~6.8! in the casem25m350 (jU(1) is real and Grassmann odd,jU(1)* is
purely imaginary and Grassmann even!.

Equation~6.10! is the deformed classical action. Apart from the original action~6.1! and its
first-order deformation~6.6! ~in the casem25m350), it contains also a mass term for th
Lorentz-scalar fields which arises at second order in the deformation parameter.

Equation~6.11! contains the deformed supersymmetry transformations, the rigid U~1! trans-
formations, and the space–time translations. The deformed supersymmetry and the U~1! transfor-
mations are

f w j w̄ j xb
x̄ḃ cb

c̄ḃ

Da
if e i j xa d j

i ca m̄da
bw i

2 i]”a
ḃw̄ i m̄da

bw̄ i
2 i]”a

ḃw i

Dȧ if d i
j c̄ ȧ

2e i j x̄ ȧ i]” ȧ
bw i 2mdȧ

ḃw̄ i
2 i]” ȧ

bw̄ i mdȧ
ḃw i

DU(1)f 2 iw j iw̄ j 2 ixb
ix̄ ḃ icb

2 ic̄ ḃ

~6.13!

Equation~6.12! encodes the graded commutator algebra of the deformed symmetry tra
mations. TheN52 supersymmetry algebra has become extended by the U~1! through the defor-
mation. The nonvanishing graded commutators are

†Da
i ,Dȧ j‡'2 i d j

i ]”aȧ ,

†Da
i , Db

j
‡' im̄e i j eabDU~1! , ~6.14!

†Dȧ i ,Dḃ j‡'2 ime i j eȧḃDU~1! ,

where' now denotes equality up to transformations which are trivial on-shell in the defor
model ~i.e., these transformations involve the deformed equations of motion!.

Remark:The above results hold analogously in a formulation of the hypermultiplet with
standard auxiliary fields used already in Refs. 11 and 12. In that approach one sometime
duces an ‘‘off-shell central charge’’ in order to close the commutator algebra of the supersy
tries, the central charge and the space–time translations off-shell. However, in the massles
that central charge is trivial on-shell and thus not to be accompanied by global ghosts. In co
the massive~deformed! model involves again a ‘‘true’’ central charge that does not vanish
shell.
                                                                                                                



con-

of

ads by
nd one
ted to

s ap-
ase of
l

xed

elds
Lie

by

-

nd

1036 J. Math. Phys., Vol. 40, No. 2, February 1999 Friedemann Brandt

                    
VII. CURCI–FERRARI MODEL

A particular case of a rigid symmetry is the BRST symmetry of a gauge fixed action
structed in the standard way from a solution to the usual master equation.5–7 Deformations of a
gauge fixed action may be obtained in two ways:~i! one constructs first consistent deformations
the underlying gauge theory along the lines of Ref. 2 and fixes the gauge afterwards, or~ii ! one
investigates directly deformations of the gauge fixed model and its BRST symmetry.

These two approaches are not equivalent in general. In particular, the first approach le
construction to an on-shell nilpotent BRST symmetry of the standard type, whereas the seco
may destroy the nilpotency property and is not physically acceptable in general. This is rela
the different properties of the BRST cohomology before and after gauge fixing26 ~cf. also the
remark at the end of this section!, and is now to be discussed for the Curci–Ferrari model13–15 in
the framework of the extended antifield formalism. The loss of nilpotency emerges in thi
proach as a deformation of the BRST algebra along the lines of Sec. V. In the particular c
the Curci–Ferrari model, the deformed action has even thesameBRST symmetry as the origina
one, but in the deformed model that symmetry does not square weakly to zero anymore~as the
equations of motion change!. Rather, it squares into a different nontrivial rigid symmetry.

We consider four-dimensional non-Abelian Yang–Mills theory with the following gauge fi
action,

S
~0!

05E d4x TrF1

4
FmnFmn1

1

2a
~]mAm!22

1

2
B~]mDm1Dm]m!C1

ae2

4
B2C2G , ~7.1!

where a is the gauge fixing parameter,e is the gauge coupling constant, andAm5Am
i t i , Fmn

5Fmn
i t i , C5Cit i andB5Bit i are the Lie algebra valued gauge fields, field strengths, ghost fi

and antighost fields, respectively ($t i% denotes an appropriate matrix representation of the
algebra of the gauge group normalized such that Tr(t i t j )52d i j ), andDmC is defined by

DmC5]mC1e~AmC2CAm!. ~7.2!

$The gauge fixed action~7.1! arises in the standard manner from a ‘‘minimal’’ solutionSmin of the
usual master equation as follows. First one adds toSmin the ‘‘nonminimal’’ term *d4x Tr
(2HB* ) where theHi are Nakanishi–Lautrup auxiliary fields. Then one shifts the antifields
FA*→FA* 1dLC/dFA where C is the ‘‘gauge fixing fermion’’ C@F#5*d4x Tr@(a/2)(BH
1eB2C)2B]mAm#. Finally one eliminates theHi by their algebraic equations of motion.% The
action ~7.1! is invariant under the rigid BRST transformations

DbrsAm5DmC, DbrsC52eC2, DbrsB5
1

a
]mAm2

e

2
~BC1CB!. ~7.3!

These transformations are nilpotent on-shell,

~Dbrs!
25 1

2†Dbrs,Dbrs‡'0. ~7.4!

More precisely,Dbrs is strictly nilpotent onAm
i andCi , but squares into an on-shell trivial sym

metry onBi ,

~Dbrs!
2Am

i 5~Dbrs!
2Ci50, ~Dbrs!

2Bi5
1

a
d i j

dL S
~0!

0

dBj . ~7.5!

We shall now apply the extended antifield formalism to the gauge fixed action~7.1! and the BRST
symmetry~7.3!. In this approach~7.1! plays the role of the classical action, i.e., the ghost a
antighost fieldsC and B are viewed as Grassmann odd ‘‘classical’’ fields (C is real,B purely
imaginary!,
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$f%5$Am
i ,Bi ,Ci%.

Accordingly, we assign antifield number 1 toAi
m* , Bi* and Ci* . Furthermore, we introduce

Grassmann even global ghostjbrs for the BRST symmetry~7.3!.
That is, in this case we consider a subset of rigid symmetries containing only one ele

namelyDbrs:

$ D
~0!

aI %5$Dbrs%. ~7.6!

The corresponding graded commutator algebra~2.13! is just ~7.5!. As the gauge fixed action~7.1!
has no gauge symmetry and thus no higher-order rigid symmetry either, a corresponding s
of the extended master equation exists. This solution coincides, of course, with the gaug
solution of the master equation obtained in the standard antifield formalism, except that no
global ghostjbrs appears,

S
~0!

5 S
~0!

01 S
~0!

11 S
~0!

2 ,

S
~0!

15jbrsE d4x TrFAm* DmC1eC2C* 2H 1

a
]mAm2

e

2
~BC1CB!J B* G , ~7.7!

S
~0!

25
1

2a
jbrs

2 E d4x Tr~B* B* !,

where we have usedAm* 52d i j Ai
m* t j , etc. The presence of the term quadratic inB* reflects that

the algebra closes onBi only on-shell@see~7.5!#. The ‘‘extended’’ BRST differential(0)s, con-
structed from(0)S as in Eq.~4.1!, coincides with the usual gauge fixed BRST operator for
action~7.1!, except that nowjbrs occurs. It is strictly nilpotent, in contrast toDbrs, and acts on the
fields by

s
~0!

Am5jbrsDmC, s
~0!

C52jbrseC2,
~7.8!

s
~0!

B5jbrsF 1

a
]mAm2

e

2
~BC1CB!G2

1

a
jbrs

2 B* .

We shall now discuss the deformation of the action~7.1! through the Curci–Ferrari mass ter

S
~1!

05E d4x TrF1

2
AmAm1aBCG . ~7.9!

This term is off-shell invariant under the transformations~7.3! and thus yields a solution to Eq
~5.6! with

S
~1!

150. ~7.10!

The functionalW1 in Eq. ~5.8! reads in this case

s
~0!

1 S
~1!

052jbrs
2 E d4x Tr~B* C!. ~7.11!

This has the form of the first term in Eq.~5.10! and contains an additional nontrivial rigi
symmetry of the gauge fixed action~7.1!, namely,
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DaddB5C, DaddAm5DaddC50. ~7.12!

Hence, in order to construct a deformed solution of the extended master equation with(1)S0 as in
~7.9!, we mustinclude this symmetry. It is straightforward to verify that this yields the followi
deformed solution of the extended master equation,

S5S01S11S2 , S05 S
~0!

01g S
~1!

0 ,
~7.13!

S152E d4x(
f

~jbrsDbrsf1jaddDaddf!f* ,

S25 S
~0!

21gjbrs
2 jadd* .

with (0)S2 as in ~7.7!. The last term reflects that the graded commutator algebra ofDbrs andDadd

reads in the deformed model

~Dbrs!
2'gDadd, †Dbrs,Dadd‡50, ~7.14!

where' now denotes on-shell equality in the deformed model, i.e., for the equations of m
following from (0)S01g (1)S0 . Notice thatDbrs is still a symmetry of the deformed model, withou
having been deformed. Nevertheless it is not nilpotent anymore on-shell because the equa
motion have changed.

Remarks:~a! In order to avoid possible confusion, we stress that the BRST cohomolo
before and after gauge fixing are always isomorphic~provided all the antifields are kept!. What
changes, however, when the gauge fixed action is treated as a classical one, are the assign
antifield numbers and the corresponding concept of weak (5on-shell) equality~as the ghost fields
count now among the classical fields!. As a consequence, it isnot true that each local functiona
with vanishing antifield number which is on-shellDbrs-invariant can be extended to a cocycle
(0)s ~this is just the phenomenon discussed in Ref. 26, but in the language used here!. The
Curci–Ferrari mass term~7.9! illustrates exactly this phenomenon: itcannotbe extended so as t
be (0)s-closed, although it isDbrs-invariant. As a consequence,Dbrs is not nilpotent anymore
on-shell in the deformed model.

~b! The Curci–Ferrari model illustrates a general fact: a deformation of a gauge fixed a
which destroys the on-shell nilpotency ofDbrs ~or a deformation thereof! cannotreflect a consis-
tent deformation of the gauge symmetry in the sense of Ref. 2 because such consistent d
tions result by their very construction in an on-shell nilpotentDbrs after gauge fixing.

~c! Of course,~7.13! yields via~4.1! a strictly nilpotent operator which incorporates bothDbrs

andDadd. However, this nilpotent operator cannot cure the unitarity problems of the Curci–Fe
model discussed in Refs. 14 and 15 becauseDadd does not impose additional conditions that m
select physical states. Indeed, as it is just the square ofDbrs ~on-shell!, a state that is annihilated b
Dbrs ~resp. by its quantum version! is automatically also annihilated byDadd. For the same reason
a state that isDadd-exact is also in the image ofDbrs.

VIII. CONCLUSION

We have outlined how continuous deformations of an action functional, its gauge symm
and a closed subset of its rigid symmetries can be analyzed systematically in the extended a
formalism. The procedure is very similar to the study of continuous deformations of action
their gauge symmetries described in Ref. 2. The main difference is that the deformation itse
make it necessary to enlarge the particular subset of rigid symmetries one has started wit
happens when the commutator algebra of the deformed version of the originally considered
of symmetries does not close anymore in the soft sense~i.e., modulo gauge transformations an
on-shell trivial symmetries! and thus results in a deformation of the symmetry algebra.
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It is, however, not always clear from the outset which additional symmetries can occur
deformed commutator algebra. This subtlety can be mastered when one proceeds as desc
Sec. V, using an expansion in the antifield number. In this approach one first seeks functio
the classical fields that are ‘‘weakly’’ (5on-shell) invariant under the symmetries under stu
The method then provides automatically the additional symmetries which need to be inc
This has been illustrated for the hypermultiplet of four-dimensionalN52 supersymmetry where
the central extension of theN52 supersymmetry algebra emerges via the deformation o
massless model to a massive one. The central extension turns out to be a surviving generat
SU~2! symmetry of the massless action broken by the deformation. In this case it depends
mass parameters, i.e., on the deformation itself, how the SU~2! is broken and which generato
becomes the central extension.

We have also illustrated, for the Curci–Ferrari model, how deformations of a gauge
action and its BRST symmetry can be analyzed within this approach. The BRST symmetry i
treated in the same manner as other rigid symmetries, too, while the gauge fixed action is
as a classical one. However, such deformations do not correspond necessarily to consisten
mations of the gauge symmetries in the sense of Ref. 2, and are therefore not always phy
acceptable. In particular, it can happen that there are deformations of a gauge fixed action
are BRST invariant but nevertheless inconsistent because the BRST symmetry does not sq
zero on-shell anymore in the deformed model. The Curci–Ferrari model illustrates exactl
phenomenon. Hence, a necessary condition for a deformation of a gauge fixed action t
consistent one is the on-shell nilpotency of the BRST symmetry of the deformed action.

Finally, I remark that the procedure outlined in Sec. V can be extended analogously
case that only a subset of the gauge symmetries is included. However, from the physical p
view this extension is mainly of academic interest and was therefore not discussed here.
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In an arbitrary Lorentzian manifold we provide a description for the construction of
null surfaces and their associated singularities, via solutions of the Eikonal equa-
tion. In particular, we study the singularities of the past light-cones from points on
null infinity, the future light-cones from arbitrary interior points and the intersection
of these with null infinity and unifying relationships between the different singu-
larities. The starting point for this work is the assumption of a known family of
solutions to the Eikonal equation. The work is based on the standard theory of
singularities of smooth maps by Arnold and his colleagues. Though the work is
intended to stand on its own, it can be thought of as being closely related to the
recently developed null surface reformulation of GR. ©1999 American Institute
of Physics.@S0022-2488~99!01302-X#

I. INTRODUCTION

In a recent work1 we studied properties of solutions of the flat-space–time Eikonal equa
namely,

hab]aS]bS50,

whose level ‘‘surfaces’’@S5S(xa)5const.#, are, by definition, null~or characteristic! three-
surfaces. These level surfaces, called by Arnold2,3 ‘‘big wave fronts,’’ can have self-intersection
and need not be smooth everywhere. In particular we were concerned with finding the a
form ~described parametrically! of the general solution to the equation, studying its level surfa
and the ‘‘small~two-dimensional! wave fronts,’’~i.e., the intersection of a three surface with a b
wave front! and then analyzing some of the resulting structures; the caustics of the full so
~three-dimensional!, the singularities of the big wave front~two-dimensional!, and the singularities
of the ‘‘small wave fronts’’~one-dimensional!. These singularities are defined, respectively, by
intersection of a big wave front and the small wave front with the caustic surface. A sp
application of these ideas was to the study of 2-parameter families of solutions to the E
equation from which it was possible to see an alternative analytic treatment of the structure
singularities. This latter point of view plays an important role in a recent reformulation of
known as the null surface formulation.4,5

In the present paper, we extend the ideas from the Minkowski case to,1 first to arbitrary
Lorentzian space–times and then specialize them to asymptotically flat space–times. Th
two main reasons for doing this:~1! We want to understand in detail the structure of light-con
in the large, i.e., globally, in arbitrary space–times which are of great relevance to the g
theory of gravitational lensing and~2! a recent reformulation of GR in terms of families o
10410022-2488/99/40(2)/1041/16/$15.00 © 1999 American Institute of Physics
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characteristic surfaces requires a deeper understanding of the singularities of the big an
wave fronts.

In Sec. II, we will show how from any arbitrary, but given, two parameter family of soluti
of the curved-space Eikonal equation, any arbitrary characteristic surface can be construc

This construction will, in Sec. III, be specialized to an asymptotically flat space–time w
the two-parameter family is chosen in a special way; namely, they are the family of past
cones from all the points on null infinity,I1. Directly in terms of this fiducial family we can
express any characteristic surface and in particular, we can express the light-cone,Cx , of any
interior pointxa. Of particular interest is the singularity structure of the cones,Cx , which can be
analyzed in terms of the variables of the fiducial family.

In Sec. IV, we will study the particular class of small wave fronts~two-dimensional! defined
by the intersection of the three-dimensional cones,Cx , with the null surfaceI1, i.e., the so-called
light-cone cutsc(xa) of I1. In particular we will be interested in finding~via Arnold’s theory of
Lagrange and Legendre maps2,3,6,7! the appropriate tools and variables to describe the singular
of these light-cone cuts.

Finally in Sec. V, we return to an issue that we deliberately postponed. We took, in Se
a fiducial family of solutions of the Eikonal and used them to study the singularities of o
characteristic surfaces but we avoided any discussion of the singularities of the fiducial f
itself. The reason for the postponement is that this discussion is more complicated and d
than the earlier ones and uses, in addition, different techniques; namely the equations of g
deviation.

The present work is partially intended to fill in the details of an earlier brief work in
Twistor Newsletter~TN43, 1997!, where we anticipated some of these results.

II. SOLUTIONS OF THE EIKONAL EQUATION IN CURVED SPACE

In this section we will treat the Eikonal equation in a general curved Lorentzian space–
(g,M), i.e.,

gab~xa!]aS]bS50 ~1!

and show how, if a special class of solutions is known,anysolution can be easily constructed. A
important special case of this will be the construction of any single characteristic surface,
level surface ofsome S, ‘‘a big wave front.’’

The difficult task~and it is very difficult, where perturbation techniques must be relied on! is
to produce this special class. Specifically, the special class will be a two-parameter fam
solutions,S05Z(xa,z,z̄) where the parameters are the complex stereographic coordinates o
sphere,S2, and the null covector,pa5]aZ(xa,z,z̄) ranges over the entire light-cone at each po
xa as (z,z̄) ranges overS2. Later, in asymptotically flat space–times, we will make a uniq
choice of this family.

Now assuming that an allowableZ(xa,z,z̄) is known we can produce an arbitrary solution
the following fashion:8 first, we rescaleZ with a constantb and add toZ an arbitrary function, at
least once differentiable, of (b,z,z̄) and then extremize it with respect to the (b,z,z̄), i.e., we
have

S5bZ~xa,z,z̄ !2h~b,z,z̄ ! ~2!

with

b]zZ2]zh50, b]z̄Z2]z̄h50, Z2]b h50. ~3!

For the simplicity of the immediate discussion~though the issue is an important one!, we
assume that the latter three equations can be solved for the (b,z,z̄) as functions of thexa, i.e.,
with
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~b,z,z̄ !5~B~xa!,Y~xa!,Ȳ~xa!!, ~4!

then on substitution back into Eq.~2!, the resulting function ofxa also satisfies the Eikona
equation. To see this we have, from~3! that

]aS5b]aZ1~Z2]bh!]b/]xa1~b]zZ2]zh!]z/]xa1~b]z̄Z2]z̄h!]z̄/]xa5b]aZ, ~5!

which satisfies the Eikonal equation, by the assumption onZ.
The important issue of how to deal with the case when Eq.~3! cannot be solved for (b,z,z̄)

is discussed later in this section.
Though we will not go into the proof one can show that given arbitrary Cauchy data,SC(xi)

for the Eikonal equation, i.e., a function of three arguments, then it determines the fun
h(b,z,z̄). The construction, thus, allows for the general solution to the Eikonal equation.

Remark 1:Since the functionh(b,z,z̄) determines a single solutionS* (xa) of the Eikonal
equation~i.e., a one parameter family of characteristic surfaces! by replacing theh(b,z,z̄) by the
function h(b,z,z̄;h,h̄) the above construction then produces a two-parameter family of solu
of the Eikonal equation,S* 5Z* (xa,h,h̄). We thus have that from any special two-parame
family, Z we can construct any other two parameter family that could also be used as the
cial’’ family.

We now specialize the construction so that we can obtain any single characteristic sur
be given byS5u5constant; Eqs.~2! and ~3! are replaced by the specialization,b51,

S5Z~xa,z,z̄ !2h~z,z̄ !5u, ~6!

]zZ2]zh50, ]z̄Z2]z̄h50. ~7!

Assuming that Eq.~7! can be solved for

~z,z̄ !5~Y~xa!,Ȳ~xa!!, ~8!

that any characteristic surface can be obtained by a judicious choice ofh(z,z̄) can be seen from
the argument that if we begin with any spacelike two-surface,G, parametrized by the same (z,z̄),
i.e., given by

xa5x0
a~z,z̄ !, ~9!

we can choose

h~z,z̄ !5Z~x0
a~z,z̄ !,z,z̄ !. ~10!

The resulting characteristic surface.S50, is formed by the null normals toG and since any
characteristic surface is formed by the null normals to some two-surface we have prove
contention.

Actually, in general, there are lower dimensional regions where Eqs.~7! cannot be solved for
the (z,z̄) pair. These regions~three dimensional! define the caustics of the solution. The interse
tion of these caustic regions with any particular level surface ofS ~big wave front!, i.e., with u
5S5const defines the ‘‘big wave front’’ singularities7 of Arnold. The intersection ofu5S with
a generic three-surface,~e.g., a constant time surface! defines a ‘‘small wave front’’ while the
intersection of the ‘‘small wave front’’ with the caustic three-surface, defines the ‘‘small w
front’’ singularities. Though for precise usage we should only refer to the full three dimens
caustic region as the ‘‘caustics,’’ we, however, will take the liberty of referring to the singular
of either the big or small wave front as the ‘‘caustics.’’
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These caustic regions~or on the big or small wave front singularities! which are characterized
by the inability to solve for the (z,z̄) are simply determined from the implicit function theorem
by the condition

D̂[U ]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z2

]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z]z̄

]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z]z̄

]2~Z~xa,z,z̄ !2h~z,z̄ !!

]z̄2

U50, ~11!

a condition that will later play a basic role.
To determine the solutionS, there is an alternative to solving Eqs.~7! for the (z,z̄) that is

often more desirable and can be used even whenD̂50. Equations~6! and ~7! can be considered
as defining families of three different 3-surfaces parametrized by the (z,z̄) pair. Their intersection
defines a family of curves~parametrized by the (z,z̄)! that are the null geodesics that rule the lev
surfaces ofu5S. The equations can always be solved in the following manner: of the fouxa

there will be a subset of three of them~sayxi! and the fourth one, sayx* such that

xi5Xi~x* ,u,z,z̄ !, ~12!

which are the null geodesics themselves. They define, parametrically, the level surfaceu
5S.

An alternative treatment of the null geodesics, Eq.~12!, is to introduce a geodesic paramet
~not in general an affine parameter! by

r 5~11zz̄ !2
]2

]z]z̄
~Z2h!, ~13!

which, with Eqs.~6! and ~7!, can be solved for

xa5Xa~r ,u,z,z̄ ! ~14!

yielding the parametric description of the null geodesics ruling the level surfaces ofS. Unfortu-
nately this description can break down at the caustics ofSwherer sometimes becomes infinite.
nevertheless is a means of treating the geodesics almost everywhere.

Remark 2: The description we have given here for the construction of solutions to the E
equation involves the construction of envelopes of tangent lines to the original two-para

family of solutions Z(xa,z,z̄) to form the S(xa). This description and the treatment of the caust
is an example of V. I. Arnold’s theory of generating families.2,7

III. EIKONAL EQUATION IN ASYMPTOTICALLY FLAT SPACE–TIMES

Before the introduction of a special or fiducial family of null surfacesS05Z(xa,z,z̄), we
begin with a brief discussion of asymptotically flat space–times. These space–times a
conformal rescaling of the space–time metric bringing null infinity~the end points of all future-
directed null geodesics! into a finite region thereby defining a~null boundary! for the space–time.
Though we will not be using the conformal rescaling explicitly, we will however use the lang
of the conformal boundary. The boundary, referred to asI1, can be attained by limiting proce
dures in the unrescaled space–time. The boundary, which is a null three surface with to
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R3S2 can be given coordinates (u,z,z̄), with u on theR part and the complex stereograph

coordinates (z,z̄) on theS2 which label the null generators~geodesics! of I1. It is this structure
that we will use to obtain the fiducial family of null surfaces.

For eachgenerator ofI1, i.e., for (z,z̄)5(z0 ,z̄0)5constant, we choose the one parame
family of past null coneshaving their apexes on that generator. This yields the special solutio
the Eikonal equation,u5Z(xa,z0 ,z̄0). Doing the same for each generator defines for us
unique fiducial family of solutions.S0[u5Z(xa,z,z̄), the past cones of each point ofI1. We
emphasize that we are describing these null surfaces in the language of the con
compactification—in the language of the physical space–time they describe the family
asymptotic plane waves and in the case of flat space theyare the family ofall plane waves. As the
concepts described here are conformally invariant, the choice of language is at our discre

Our special family of solutions

u5Z~xa,z,z̄ ! ~15!

has the two important dual meanings:~1! As we just mentioned for fixed point. (u,z,z̄), on I1,
asxa varies, it defines the past cone of the point and~2! for a fixed value of thexa, as (z,z̄) are
varied over theS2, u5Z defines a two-surface onI1, the end points of all the null geodesic
leavingxa. This two-surface is referred to as thelight-cone cutof the pointxa and is denoted by
c(xa). The functionZ(xa,z,z̄) will be referred to as thelight-cone cut function.

Both meanings tou5Z(xa,z,z̄) play a fundamental role in the remainder of this work. T
actual determination ofu5Z(xa,z,z̄) is quite difficult and up to the present, depends on per
bation arguments that have not yet been completed. We nevertheless will assume that the f
Z(xa,z,z̄) is known; we then study several consequences of this knowledge.

Remark 3: Though we will not be concerned with it here, we mention that the Z(xa,z,z̄) codes
all conformal information of the space–time metric4,5,9and in fact determines a conformal metri

Furthermore Z(xa,z,z̄), with a scalar functionV(xa,z,z̄) that acts as a conformal factor, can b
used as the basic variables, replacing the metric, in a reformulation of the Einstein equation.4,5,9

Our goal here is somewhat simpler~though some of the calculations themselves are
simple!; we want to study the structure of the singular regions of different surfaces. First, we
show how to construct from theZ(xa,z,z̄), using the techniques of the previous section, the en
light coneCx0

of an arbitrary interior pointx0
a and then study its singularities. The light-cone c

c(x0
a) is the intersection ofCx0

with I1, defining a small wave front; its singularities will then b
studied. Finally we return to and study the singular regions of the fiducial family of null surfa
defined by the light-cone cut function,Z(xa,z,z̄) itself.

We first define, in the case of asymptotically flat spaces, several variables that play an
tant later role. Instead of using the notation of]z and]z̄ for the (z,z̄) derivatives, we make use o
the edth notation, e.g.,ZZ5(11zz̄)]zZ. ZZpZ5(11zz̄)2]z]z̄Z or Z2Z5]z$(11zz̄)2]zZ%, etc.
We then have by direct calculation from theZ(xa,z,z̄),

~1! v[ZZ, v̄[ZZ, the tangent directions to the light-cone cuts,

~2! L[Z2Z, L̄[Zp2Z, ‘‘accelerations’’ along the~ z̄,z! constant curves,

~3! R[ZZpZ extrinsic curvature of the light-cone cuts. ~16!

Using this notation, the determination of the caustics, i.e., the vanishing of the determinD̂
from Eq. ~11! is equivalent, using Eq.~7!, to
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D[UZ2@Z~xa,z,z̄ !2h~z,z̄ !# ZZp@Z~xa,z,z̄ !2h~z,z̄ !#

ZZp@Z~xa,z,z̄ !2h~z,z̄ !# Zp2@Z~xa,z,z̄ !2h~z,z̄ !#
U50. ~17!

IV. LIGHT-CONES AND THEIR SINGULARITIES

In this section we consider the future light-cone of a pointx0
a , namely, the set of all~future

directed! null geodesics that pass throughx0
a . As a three-surface in the four-dimensional spac

time, the light-cones in general have singularities that are caused by the focusing effect
space–time curvature. These singularities are characterized by the vanishing of the ge
deviation vector associated with neighboring geodesics on the light-cone and are what w
been referring to as the caustics of the null surface. It is our purpose here to first find
light-cones and then describe their singularities in terms of the light-cone cut function,Z(xa,z,z̄).

As we pointed out earlier~Sec. II!, given a two-parameter family of solutions to the Eikon
equation,Z(xa,z,z̄), any characteristic surface can be constructed by adding a term that de
only on the parameters (z,z̄); i.e.,

S~xa,z,z̄ !5Z~xa,z,z̄ !2h~z,z̄ !

and extremizing with respect to the two parameters. If we choose

h~z,z̄ !5Z~x0
a ,z,z̄ ![Z0~z,z̄ !, ~18!

then the level surface obtained from

S505Z~xa,z,z̄ !2Z~x0
a ,z,z̄ ! ~19!

with the extremal conditions

Z@Z~xa,z,z̄ !2Z~x0
a ,z,z̄ !#50,

~20!
Zp@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#50,

describes the light-cone from the pointx0
a . To see this, we first remember that this construct

yields characteristic surfaces, then we see that the surface does go through the pointxa5x0
a and

coincides onI1, with the light-cone cut ofx0
a . Finally if we take its gradient, i.e.,

]aSux5x0
5]a@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#ux5x0
5]aZ~xa,z,z̄ !ux5x0

[pa~x0
a ,z,z̄ !, ~21!

we see that it ranges over the entire light-cone atx0
a .

A Caveat:We have assumed that the cut function,u5Z(xa,z,z̄), for fixed xa is a single
valued function onI1. In fact, in general, this is not true; most often there will be regions onI1

where it will be multivalued and it must be given as several different ‘‘sheets’’ in different (z,z̄)
patches. Though this does not present obstacles in principle, it does present technical difficu
implementation. Then Eqs.~19! and~20! must be repeated on the different sheets. A way to av
this difficulty is to describe the light-cone cut function and the light-cone cut itself parametric
i.e., to write it asu5U(xa,l,l̄) andz5G(xa,l,l̄) with single-valued functions. For simplicity o
presentation we will, for the moment, continue to treat the cut function as if it were single va

If, to the set of Eqs.~19! and ~20!, we add, from Eq.~13!, the equation

r 5~11zz̄ !2
]2

]z]z̄
~Z2Z0![ZZp~Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !!, ~22!
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they implicitly define all the null geodesics of the light-coneCx0
, i.e., they determine

xa5Xa~x0
a ,r ,z,z̄ !. ~23!

If the geodesic goes fromx0
a to I1 without encountering a caustic thenr goes from 0 to infinity

along that geodesic; if however it does encounter a caustic beforeI1, r then becomes infinite
beforeI1.

The location of the caustics ofCx0
~or the conjugate points tox0

a! is given by the vanishing of

D from Eq. ~17!, with h5Z(x0
a ,z,z̄);

D[UZ2@Z~xa,z,z̄ !2Z~x0
a ,z,z̄ !# ZZp@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#

ZZp@Z~xa,z,z̄ !2Z~x0
a ,z,z̄ !# Zp2@Z~xa,z,z̄ !2Z~x0

a ,z,z̄ !#
U50, ~24!

or, with definitions~16!,

D5~L2L0!~L̄2L̄0!2~R2R0!250. ~25!

We have thus been able to express the location of the caustics of an arbitrary light-cone in
of derivatives of the cut functionZ(xa,z,z̄). Given a fixed pointx0

a and a particular null geodesi
~labeled by (z,z̄)!, the curvature and ‘‘acceleration’’ of its light-cone cut is given
(R0(x0

a ,z,z̄),L0(x0
a ,z,z̄)) while for an arbitrary point along that geodesic it would

(R(xa,z,z̄),L(xa,z,z̄)). D which begins as zero atr 50, does not vanish any other place along
geodesic that does not encounter a caustic but does go to zero at the caustic. There are
geodesics (z,z̄)c which meet the caustic onI1. For this limiting case, it is difficult to study the
behavior of Eq.~25! sinceL⇒0 andR⇒`, the flat-space limits, which applies here since t
pointsxa nearI1 are in the very weak field region andR0 andL0 are infinite~see next section!.
Other techniques for this study are needed.~See Fig. 1, the light-cone with the crossovers a
cusps.!

V. THE LIGHT-CONE CUTS AND THEIR SINGULARITIES

As we saw earlier, the cut function,u5Z(xa,z,z̄) has the dual meaning of being the pa
light-cones of the points (u,z,z̄) of I1 and representing the light-cone cut of an interior point,xa.
Fixing the interior pointxa5x0

a , we studied, in the last section, its light-cone and saw that
could locate its caustics but as the caustics approachedI1 difficulties developed. We wish to
study the singularities of the light-cone cuts by an alternative method.

First of all, if we assume thatall the null geodesics leavingx0
a arrive atI1 without encoun-

tering a caustic then the cut function,u5Z(xa,z,z̄), will describe a single-valued smoot
2-surface onI1. If however some did encounter caustics then the cut-surface will only be p
wise smooth and will have, in general, self-intersections. The appropriate way to describe t
is not through the cut function but instead via the mapping of the space of null directions ax0

a ,
i.e., atS2(x0

a), coordinatized by (l,l̄), ontoI1. It would be given by the relations

~u,z,z̄ !5~U~x0
a ,l,l̄ !,G~x0

a ,l,l̄ !,Ḡ~x0
a ,l,l̄ !!, ~26!

which are just the ‘‘end-points’’ or boundary points of the null geodesics originating atx0
a in the

(l,l̄) directions.~If the (l,l̄)⇒(z,z̄) were invertible, then one would have the smooth caseu

5U(x0
a ,l,l̄)5Z(x0

a ,z,z̄).!
To obtain a clearer picture the light-cone cut can, in some sense, be thought of as an in

late ‘‘small wave front.’’ The ‘‘early’’ wave fronts on the future lightcone ofx0
a are smooth

deformations of spheres, but they may become singular at sufficiently late times, from the fo
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due to curvature. Therefore, light-cone cuts of~early! points in space–time are generically singu
two-surfaces in three-dimensions, and they must exhibit the standard stable singularities, th
ridges, and swallowtails. In this view, for a fixed pointx0

a , a singularity in the light-cone cu
would be a conjugate point tox0

a . Generically, because singularities of two-surfaces lie on cur
the singularities of a light-cone cut would single out a one-parameter set (z(s),z̄(s)) of null
geodesics in the future light-cone for which the apex is a focal point.

Because Eq.~26! arises from the Hamiltonian evolutions~null geodesic flow! the map is a
Legendre map and we can use the general theory of Legendre submanifolds and Legendre
Arnold and his colleagues in order to have a description of the location of the singularities
light-cone cuts.3,6 A two-dimensional surface in a three-manifold which is obtained by a Lege
map can always be represented as the projection of a smooth 2-surface~a Legendre submanifold!
in a five-dimensional space, with the singularities located by the singularities of the projecti
other words, there exists a way to ‘‘unfold’’ a singular surface by adding two dimensions t
space where the surface lives. In this view, one of the three original dimensions~theu coordinate
of I1! is singled out from the remaining two-dimensional space; the two-dimensions, (z,z̄), are to
be considered as a configuration space. The two added dimensions consist of the two-dime
cotangent space over the configuration space. Thus the enlarged five-dimensional space o
our surfaces ‘‘unfold’’ consists of points (z,z̄,pz ,pz̄ ,u), a contact bundle over the sphere. It
preferable to usereal coordinates, and later translate the results in terms of our complex co
nates. Thus, in the following we assume that we have real coordinates (q1,q2) on the sphere,

FIG. 1. The future light-cone and light-cone cut of a pointx0 .
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which can be taken to be the real and imaginary parts ofz, and their corresponding momenta
(p1 ,p2).

A smooth ‘‘unfolding’’ is generically represented in terms of a smooth generating func
G(q1,p2). The points (q1,q2,p1 ,p2 ,u) that lie on such unfolding are given by

q252
]G~q1,p2!

]p2
, ~27a!

p15
]G~q1,p2!

]q1 , ~27b!

u5G~q1,p2!1p2q2, ~27c!

and arbitrary values forq1 andp2 . This is the expression of a two-dimensional surface withi
five-dimensional space, parametrized by (q1,p2).

Remark 4: Note that from the general theory, there must be an invertible relationship be

the parametrization(q1,p2) of the Legendre submanifold and the directions(l,l̄).
A projection of this surface down to the space (q1,q2,u) is parametrically represented by

map (q1,p2)→(q1,q2(q1,p2),u(q1,p2) which breaks down at points where the Jacobian ma

I ]q1

]q1

]q1

]p2

]q2

]q1

]q2

]p2

]u

]q1

]u

]p2

I 5I 1 0

2
]2G

]q1]p2
2

]2G

]p2
2

]G

]q12p2

]2G

]q1]p2
2p2

]2G

]p2
2

I ~28!

drops rank, from 2 to 1 or 0. The drop in rank takes place where the three 232 determinants
vanish, namely, where

]2G

]p2
2 50, ~29!

p2

]2G

]p2
2 50, ~30!

]G

]q1

]2G

]p2
2 50. ~31!

Clearly all three equations can be satisfied if and only if

K~q1,p2![
]2G~q1,p2!

]p2
2 50. ~32!

Thus Eq.~32! locates the curveK(q1,p2)50 in the (q1,p2) parameter space and hence, v
Eqs.~27a! and~27c!, it locates the singular points on the surface. Equation~32! also expresses th
location of points where Eq.~27a! fails to be invertible; namely, if we think of Eq.~27a! as
implicitly defining p25h(q1,q2), thenh fails to be differentiable there.~From the drop in rank, it
is straightforward to see that]h/]q2 blows up. See Eq.~39a! below.!

In order to translate this treatment into our complex notation, we pass from (q1,q2) to the
complex coordinatesz5 1

2(q
11 iq2) and reinterpret
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u5G~xa,q1,h~q1,q2!!1q2h~q1,q2!

as our cut functionu5Z(xa,z,z̄), wherexa are fixed parameters and play no role in the discuss
of this section. We can then express Eq.~32! in terms of derivatives ofZ in the following manner.

Beginning with the functionL[Z2Z, we express it parametrically in terms of (q1,p2),

L52~11zz̄ !z̄
]Z

]z
1~11zz̄ !2

]2Z

]z2 , ~33!

where

]

]z
5

]

]q1U
q2

2 i
]

]q2U
q1

. ~34!

Carrying through the calculation, which involves several implicit differentiations, we first arriv

v5~11zz̄ !S ]G

]q12 ip2D , v̄5~11zz̄ !S ]G

]q1 1 ip2D , ~35!

where

z5
1

2 S q12 i
]G

]p2
D , z̄5

1

2 S q11 i
]G

]p2
D . ~36!

Then

L52z̄v1~11zz̄ !2H ]2G

]~q1!22S ]2G

]q1]p2
2 i D 2S ]2G

]p2
2 D 21J . ~37!

Similarly, we obtain a parametric expression forR[ZpZZ5(11zz̄)2(]2Z/]z]z̄) in the form

R5~11zz̄ !2H ]2G

]~q1!22S 11S ]2G

]q1]p2
D 2D S ]2G

]p2
2 D 21J . ~38!

In deriving ~37! and ~38!, the following were needed:

]h

]q1 52
]2G

]q1]p2
S ]2G

]p2
2 D 21

,
]h

]q2 52S ]2G

]p2
2 D 21

, ~39!

which are obtained by taking derivatives]/]q1uq2 and]/]q2uq1 of Eq. ~27a!.
From ~37! and~38! we can see that bothL andR diverge at points where Eq.~32! is satisfied,

and only at those points, sinceG is assumed to be smooth. Therefore, we can locate the sing
points ~a curve!, (z(s),z̄(s)) of light-cone cuts by either of the conditions,

P~x0
a ,z,z̄ ![

1

ZpZZ~x0
a ,z,z̄ !

50, ~40!

L~x0
a ,z,z̄ ![

1

Z2Z~x0
a ,z,z̄ !

50 ~41!

for given values ofx0
a .
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We interpret this result as follows. The light-cone cut represents a wave front that ha
gressed out to infinity, tracing the future light-cone of the pointx0

a . For a class of pointsx0
a ~at

least sufficiently early!, the wave front starts out spherical, but there is a time at which it beco
self-intersecting. Late wave fronts have singularities which represent the location of points
jugate tox0

a . When the wave front reaches infinity, the points conjugate to the apex lie at in
and form the singularities of the light-cone cut~See Fig. 2, for a smooth light-cone cut and Fig.
for a generic light-cone cut with cusp ridges and swallowtails.!

Finally note that the vanishing ofP(x0
a ,z,z̄) andL(x0

a ,z,z̄) are not inconsistent with Eq.~25!
of the previous section where asI1 is approached.L→0. R→` and theL0→` andR0→`.

VI. SINGULARITIES OF THE PAST LIGHT-CONES FROM I1

Up to this point we have simply assumed that we had the three parameter family o
surfaces~or equivalently the two parameter family of solutions to the Eikonal equation! that we
called the fiducial family or the light-cone cut function, namely,u5Z(xa,z,z̄), with (u,z,z̄)
constant. We never raised the issue of the location of their singularities until now. The reaso
that, to locate them, requires a different technique, namely the use of pairs of geodesic de
vectors ~Jacobi fields! and their associated area element. It will be the vanishing of the
element~obtained from the Jacobi fields! along a geodesic that locates the singularities. We be
by returning to certain structures obtainable from the light-cone cut functionZ(xa,z,z̄) that were
defined earlier; namely,

u5Z~xa,z,z̄ !, ~42!

which represents the past light-cones from all points onI1,

v5ZZ~xa,z,z̄ !, v̄5ZpZ~xa,z,z̄ !, ~43!

FIG. 2. A regular light-cone cut.

FIG. 3. A singular light-cone cut, showing cusp ridges and swallowtails.
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which label the null geodesics leaving the point (u,z,z̄) of I1. From the compactified point o
view they are the~stereographic! angles labeling the directions from the past light-cone while fr
the physical space point of view they are the ‘‘distance’’ between the asymptotic parallel g
sics,

R5ZpZZ~xa,z,z̄ !, ~44!

which defines an ‘‘optical distance’’ or geodesic parameter~not affine! along the geodesics
(u,v,v̄)5const. As we mentioned earlier, geometricallyR is a curvature of the cut.

Using the notation

u i5u i~xa,z,z̄ ![~u,v,v̄,R!, with ~ i 50,1,2,1!, ~45!

Eq. ~45! can be interpreted either as a coordinate transformation,u i⇔xa, for every fixed value of
the two parameters (z,z̄) or simply as the introduction of four scalar functions parametrized by
(z,z̄). We will make extensive use of the transformation interpretation though care must be
in the regions where the Jacobian either vanishes or diverges. One might even expect t
troublesome region will be where the~big! wave front singularities develop.

In generic space–times, the presence of the curvature, Weyl or Ricci-type, has afocusing
effect on parallel beams of light.10 Thus, generically, two neighboring null geodesics in o
asymptotically parallel congruences meet at some point, which means that our coordinate
breaks down by assigning two different labels to the same space–time point.

We will describe two alternative approaches to the region of breakdown.

~1! We can calculate the Jacobian of Eq.~45! most easily by returning to the description of the c
functionZ by the generating function,G(xa,q1,p2) of the previous section,Z5G1q2p2 . By
a completely straightforward calculation~using MATHEMATICA to calculate the determinant!
we find that

U]ui

]xaU}S]2G~xa,q1,p2!

]p2
2 D21

, ~46!

U]xa

]uiU}S]2G~xa,q1,p2!

p2
2 D ~47!

so that the Jacobian breaks down precisely at the comparable point where the light-co
had its singularities.

Remark 5: In the previous section we saw that for fixed xa, but varying the(z,z̄), the

functions R(xa,z,z) and L(xa,z,z̄) both diverged at the singularities of the light-cone cut. W

can now see that for fixed(z,z̄) but varying the point xa along a null geodesic, the same functio
diverge at the caustic of the past light-cone.
~2! In the second approach, we derive an explicit algebraic condition to locate these regio

finding the points where a geodesic deviation vector vanishes. Our present derivation
great measure a reinterpretation of an earlier derivation due to Kozameh and Newm11

reproduced here in current notation in order to maintain the unity of the present work.

By ~in principle! inverting Eq.~45! we obtain

xa5Xa~u i ,z,z̄ !5Xa~u,v,v̄,R,z,z̄ !, ~48!

which for fixed values of (u,z,z̄) is the parametric form of the past cone ofI1 and for fixed
values of (u,v,v̄,z,z̄) it is the parametric form for the null geodesics on the cone each labele
(v,v̄).
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Of prime importance to us are the connecting vectors to the null geodesics that are on th
null cone. Two connecting vectors~from which all others can be constructed! are given by

Ma5
]Xa

]v
, M̄a5

]Xa

]v̄
. ~49!

We are interested in the areaA constructed fromMa andM̄a. Taking a pair of~complex! spacelike
unit vectorsma andm̄a ~gabm

amb50, gabm̄
am̄b50, gabm̄

amb521!, that are parallel transporte
along the null geodesics.Ma andM̄a can be written as

Ma5jma1h̄m̄a, M̄a5 j̄m̄a1hma, ~50!

so that the ‘‘area’’ form is

M [aM̄b]5~jj̄2hh̄!m[am̄b][Am[am̄b] . ~51!

From this we see that

A2[~gabM
aM̄b!22~gabM

aMb!~gabM̄
aM̄b![~M•M̄ !22~M•M !~M̄•M̄ !. ~52!

Our task~which requires a bit of preparation! is to express theM•M̄ andM•M in terms of
Z(xa,z,z̄) and its derivatives. We choose the one-form basis

ua
i []au i5~]aZ,]av,]av̄,]aR![~ua

0,ua
1 ,ua

2 ,ua
1! ~53!

and the dual vectors

u i
a5~u0

a ,u1
a ,u2

a ,u1
a!5~]Xa/]u,]Xa/]v,]Xa/]v̄,]Xa/]R! ~54!

which satisfy

u i
aua

j 5d i
j , u i

auc
i 5dc

a . ~55!

From the one-form basisua
i , using the space–time metric,gab, one can express the dual basis s

by

u i
a5gacuc

j h j i or uc
i 5gacu j

ah i j , ~56!

where

h i j 5u i
au j

cgac , h i j 5u a
i u c

j gac. ~57!

Returning to the computation of the area, we have for the tangent vector to the geodesics

u1
a[La5]Xa/]R, ~58!

and from the geodesic deviation vectors,Ma5]Xa/]v5u1
a andM̄a5]Xa/]v̄5u2

a that

M•M̄5h12 , M•M5h11 , M̄•M̄5h22 . ~59!

Remark 6: Note that la[V2La is the affine parametrized tangent vector to the geodesics.
(Eq. (63) below for the definition ofV.]

The calculation of the threeh’s though lengthy, is fairly straightforward; It is found from th
inverse ofh i j @i.e., from the second version of Eq.~57!#. The components ofh i j are found by
beginning with
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h005ua
0uc

0gac5gac]aZ]cZ50 ~60!

which vanishes by definition. By applying the operatorsZ and Zp several times to Eq.~60! one
finds4 for the relevant components ofh i j @see Eq.~16! for definitions#

h0050, ~61!

h0150, h0250, ~62!

h01[V25gac]aZZZp~]cZ!5gac]aZ]cR, ~63!

h1152V2LaZ2~]aZ!52V2La]aL52V2]L/]R, ~64!

h2252V2LaZp2~]aZ!52V2La]aL̄52V2]L̄/]R, ~65!

h2152V2, ~66!

which in turn leads to

M•M5h1152
1

V2S 12
]L

]R

]L̄

]R
D , ~67!

M•M̄5h1252

]L̄

]R

V2S 12
]L

]R

]L̄

]R
D . ~68!

The area then is

A25
1

V4S 12
]L

]R

]L̄

]R
D . ~69!

This expression forA tells us several things; first of all to keepA real we must have the inequalit

U]L

]RU<1, ~70!

and we learn thatV must diverge at the singularity given byA50.
We have thus learned in this section that the singularities of the past light-cones fromI1 can

be characterized by one of several methods:

~1! Using the generating functionG(xa,q1,p2), the singularities are given by the vanishing of t
Jacobian of the transformation~45!, i.e., by

]2G~xa,q1,p2!

]p2
2 50. ~71!

~2! This, in turn, tells us~from the previous section! that bothR(xa,z,z̄) andL(xa,z,z̄) diverge
as the singularities are approached.
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~3! From the geodesic deviation argument

V→` ~72!

as the singularity is approached.
~4! From Eqs.~69! and~70! we learn thatu]L/]Ru must be bounded but we can not see wha

its behavior is as the singularity is approached. However on the basis of several exa
e.g., Ref. 1, whereu]L/]Ru→1 it appears to be reasonable to expect that this result migh
true in general. If so, then we would have that@12(]L/]R)(]L̄/]R)#→0 as the singularity
is approached. In turn, from Eq.~69!, we would gain some information about how fast bothV

and @12(]L/]R)(]L̄/]R)# approach their limits.~See Fig. 4, a past light-cone fromI1.!

VII. SUMMARY AND CONCLUSIONS

In this work we have studied the kinematics or general structure of several different clas
surfaces~associated with surface forming null geodesic congruences! in asymptotically flat
Lorentzian space–times, namely, the future light cones of interior points,Cx ; the intersection of
Cx with I1, i.e., the light-cone cuts,c(xa); and the past light-cones from points (u,z,z̄) on I1.

These surfaces, which in general have singularities, are closely related to each ot
particular there is a close association between their singularities. As was pointed out earl
the future light conesCx0

with an apexx0
a that is sufficiently early in time, the small wave fron

begin spherical but as they evolve they become self-intersecting and develop singularitie~the
stable one being cusp ridges and swallowtails6! which represent the conjugate points tox0

a . The
limit, in the asymptotic future, of these small wave fronts is the light-cone cutc(x0

a); the singu-
larities of c(x0

a) being the points conjugate to the apex. They are also the intersection o
singularities ofCx0

with I1 ~see Figs. 1, 2, and 3.!

Alternatively ~an example of the reciprocity theorem of Penrose and Sachs11,12!, the singu-
larities of light-cone cuts must be related to the singularities of the past light cones from po
infinity. The singularities of light-cone cuts are interpreted as singling out the null geod
leavingI1 which are conjugate to or focus atx0

a . These null geodesic belong to two congruenc
of interest to us. First, they belong to the future light cone of the pointx0

a , and second, they belon
to the past light cone of the point (u,z,z̄) of I1 reached by the first set. The light-cone c
function, with the vanishing of eitherP(xa,z,z̄) or L(xa,z,z̄), locate both the singularities of th
light-cone cut and the interior points conjugate to points onI1 ~see Fig. 4!.

Most of the kinematic issues raised here are, we believe, now reasonably well understo$It
still would be of considerable interest to determine the behavior of@12(]L/]R)(]L̄/]R)#, in the
neighborhood of the caustics.% Our interest now is to apply these kinematic insights to the stud

FIG. 4. The foliation of space–time by past light-cones from points at null infinity.
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null surfaces~specifically, light-cones! in vacuum Einstein spaces. Though there is a formalism4,5

in which the Einstein equations have been rewritten as differential equations for the cut fun
Z(xa,z,z̄) andV(xa,z,z̄) ~aside from some very special cases!, the equations have been difficu
to deal with because of the difficulty of treating the caustics, which are ubiquitous. We fee
the situation has changed; we now know how to identify the presence of the caustics in te
both R and L. $The reason for our interest in the term@12(]L/]R)(]L̄/]R)# is that it arises
frequently in denominators of the field equations and we would like to know if it always ten
zero at a caustic.% We have also realized that it probably will be very advantageous to use
representation ofZ(xa,z,z̄) by

Z~xa,z,z̄ !5G~xa,q1,p2!1q2p2 ~73!

with q252]G/]p2 , z51/2(q11 iq2) ~see Secs. V and VI!. Our immediate goals are first to fin
the behavior of@12(]L/]R)(]L̄/]R)# near caustics and then rewrite the field equations in te
of the G(xa,q1,p2) rather thanZ(xa,z,z̄).
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Cauchy noise and affiliated stochastic processes
Piotr Garbaczewski
Institute of Physics, Pedagogical University, PL 65-069, Zielona Go´ra, Poland
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By departing from the previous attempt@Phys. Rev. E51, 4114~1995!# we give a
detailed construction of conditional and perturbed Markov processes, under the
assumption that the Cauchy law of probability replaces the Gaussian law~appro-
priate for the Wiener process! as the model of primordial noise. All considered
processes are regarded as probabilistic solutions of the so-called Schro¨dinger inter-
polation problem, whose validity is thus extended to the jump-type processes and
their step process approximants. ©1999 American Institute of Physics.
@S0022-2488~99!00302-3#

I. INTRODUCTION

Probabilistic solutions of the so-called Schro¨dinger boundary data problem1,2 are known to
yield a unique Markovian interpolation between any two strictly positive probability dens
designed to form the input–output statistics data~possibly phenomenological! for a certain dy-
namical process, taking place in a finite-time interval. The key problem, if one attempts to r
struct themost likely~Markovian! dynamics, is to select the jointly continuous in space variab
positive and contractive semigroup kernel. That issue was analyzed before in a num
publications.1–8

In the framework of the Schro¨dinger problem the choice of the integral kernel is arbitra
except for the strict positivity~cf., however, Ref. 8! and continuity demand. It is thus rather natu
to ask for the most general stochastic interpolation, that is admitted under the above prem

First of all, the concept of Gaussian noise, regarded as a stochastic analog of the mec
‘‘state of rest’’ and traditionally linked with a Wiener process, can be extended to all infin
divisible probability laws via the Le´vy–Khintchine formula. It expands our framework from
continuous diffusion processes to jump-type or combined diffusion–jump propagation scen5

as appropriate mathematical models of the primordial ‘‘free noise’’~this particular viewpoint is a
novelty in the physics literature, where the Gaussian approach is dominant!.

The next natural step in the analysis is to account for typical perturbations of any
process, according to the pattern of the Feynman–Kac formula, hence in terms of per
semigroups, where an appropriate generator~replacing the Laplacian! is additively modified by a
suitable potential.9,10 The additive perturbation choice stems from the fact3,6,7 that basic stochastic
processes of the nonequilibrium statistical physics~like, e.g., the Smoluchowski diffusion pro
cesses! involve perturbed Feynman–Kac kernels as building blocks of transition probability
sities. We expect that an analogous feature~which is an artefact of the implicit Girsanov
Cameron–Martin measure change formula!, is valid for non-Gaussian stochastic processes,
e.g., Ref. 5 for explicit quantum mechanical motivations.

By referring to a physical terminology, let us consider Hamiltonians~semigroup generators!
of the form H5F( p̂), where p̂52 i¹ stands for the momentum operator and for2`,k
,1`, F5F(k) is a real valued, bounded from below, locally integrable function. Here,\5c

a!Permanent address: Institute of Theoretical Physics, University of Wrocław, PL 50-204 Wrocław, Poland.
10570022-2488/99/40(2)/1057/17/$15.00 © 1999 American Institute of Physics
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51. We simplify further discussion by considering processes in one spatial dimension~this limi-
tation can be removed cf. the Remark closing Sec. III of the paper!.

We easily learn that for timest>0 there holds

@exp~2tH !# f ~x!5@exp~2tF~p!! f̂ ~p!#~~x!, ~1!

where the superscript~ denotes the inverse Fourier transform andf̂ stands for the Fourier
transform off.

Let us setkt5(1/A2p)@exp(2tF(p))#~, then the action of exp(2tH) can be given in terms o
a convolution: exp(2tH)f5f*kt , where (f * g)(x)ª*Rg(x2z) f (z)dz.

We are interested in thoseF(p) which give rise to positivity preserving semigroups: ifF(p)
satisfies the Le´vy–Khintchine formula, thenkt is a positive measure for allt>0. Let us concen-
trate on the integral part of the Le´vy–Khintchine formula, which is responsible for arbitra
stochastic jump features:

F~p!52E
2`

1`Fexp~ ipy!212
ipy

11y2Gn~dy!, ~2!

wheren(dy) stands for the so-called Le´vy measure.
There are not many explicit examples~analytic formulas for probability densities! for pro-

cesses governed by~2!, except possibly for the so-called stable probability laws. Nowadays,
potential physical meaning gains recognition in various contexts ranging from determi
~chaos! implementations of anomalous transport, anomalous diffusion studies in nonequilib
statistical physics, through stochastic interpretation of nonlinear field equations and relat
Hamiltonian problems in quantum theory, to investigations of the early evolution~inhomogeneity
issue! of the Universe cf. Refs. 5, 11–20.

The best known example of the stable law is provided by the classic Cauchy density
will be our reference model below. Let us focus our attention on that selected choice fo
characteristic exponentF(p), namely:F0(p)5upu which is the Cauchy process generator. T
semigroup generatorH0 is a pseudodifferential operator. The associated kernelkt in view of the
‘‘free noise’’ restriction ~no potentials at the moment! is a transition density of the jump-typ
~Lévy! process, determined by the corresponding Le´vy measuren(dy)5(1/p)(dy/y2). It is in-
structive to notice that a pseudodifferential analog of the Fokker–Planck equation holds
F0(p)⇒] tr̄(x,t)52u¹ur̄(x,t). This evolution rule gives rise to the Cauchy process probab
density r(x,t)5(1/p)@ t/(t21x2)# and the corresponding space–time homogeneous trans
density~e.g., the semigroup kernel in this free propagation case!.

Our principal goal in the present paper is to generalize this observation to encompa
additive perturbations by physically motivated potentials and construct the related Markov
cesses. It is nota priori obvious that perturbed processes preserve the generic~jump-type! sample
path properties of the unperturbed~the Cauchy ‘‘free noise’’! process. In addition, the physica
intuition demands that an approximation of the jump-type process in terms of traditional
processes should be generally possible which, is certainly not obvious. Those obstacles ar
come by giving a characterization of the affiliated Markovian jump-type processes in term
approximating~convergent! families of stepprocesses, that solve a suitable version of the Sc¨-
dinger interpolation problem. The construction is based on the Feynman–Kac formula fo
turbed semigroups, with strictly positive and jointly continuous kernel functions.

Our demonstration explicitly pertains to the Cauchy process and its relatives, albeit the
niques and major statements may be extended to a broader class of Le´vy processes and thei
perturbed versions cf. Refs. 5, 11–13, and 14–18 for related mathematical and physical co
tions, including the numerical simulation issue, Ref. 20, with its inherent cutoffs~generic lower
bound for the jump size!.
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II. THE CAUCHY PROCESS AND ITS CONDITIONAL RELATIVES

We consider Markovian propagation scenarios so remaining within the well establ
framework, where the input–output statistics data are provided in terms of two strictly po
boundary densitiesr(x,0) andr(x,T), T.0. In addition, a bivariate transition probability densi
is given in a specific factorized form:m(x,y)5 f (x)k(x,0,y,T)g(y), with marginals:

E
R
m~x,y!dy5r~x,0!, E

R
m~x,y!dx5r~y,T!. ~3!

Here, f (x), g(y) are thea priori unknown functions, to come out as strictly positive solutions
the integral system of equations~3!, provided that in addition to the density boundary data
have in handany strictly positive, jointly continuous in space variablesfunction k(x,0,y,T).
Additionally, we impose a restriction thatk(x,0,y,T) represents a certain strongly continuo
dynamical semigroup kernelk(y,s,x,t), 0<s<t,T, while given at the time interval borders:
secures the Markov property of the sought for stochastic process.

Under those circumstances,6 once we define functions

u~x,t !5E dy k~x,t,y,T!g~y!, u* ~y,s!5E dx k~x,0,y,s! f ~x! ~4!

there exists a transition density

p~y,s,x,t !5k~y,s,x,t !
u~x,t !

u~y,s!
, ~5!

which implements a Markovian propagation of the probability density

r~x,t !5u~x,t !u* ~x,t !, r~x,t !5E p~y,s,x,t !r~y,s!dy ~6!

between the prescribed boundary data.
For a given semigroup which is characterized by its generator~Hamiltonian!, the kernel

k(y,s,x,t) and the emerging transition probability densityp(y,s,x,t) are unique in view of the
uniqueness of solutionsf (x), g(y) ~cf. Theorem 3.2 in Ref. 2!. For Markov processes, the know
edge of the transition probability densityp(y,s,x,t) for all intermediate times 0<s,t<T suffices
for the derivation of all other relevant characteristics.

At this point, let us make a definite choice of the kernel function, namely, that of the Ca
kernel:

k~y,s,x,t !5
1

p

t2s

~ t2s!21~x2y!2
. ~7!

We have:
Theorem 1:
~a! p(y,s,x,t) defined by Eqs.~5! and~7! is a Markov transition kernel, that is~weak limit in

below!

E
R
p~y,s,x,t !dx51, limt↓sp~y,s,x,t !5dy~x!,

E
R
p~y,t1 ,z,t2!p~z,t2 ,x,t3!dz5p~y,t1,x,t3!
                                                                                                                



o-

eads

in

ns:

r-

sure

1060 J. Math. Phys., Vol. 40, No. 2, February 1999 P. Garbaczewski and R. Olkiewicz

                    
for all 0<t1,t2,t3<T, with dy standing for the Dirac delta.
~b! r(x,t), Eq. ~6!, is a probability distribution interpolating betweenr0 andrT :

E
R
r~x,t !dx51, r~x,0!5r0~x!,r~x,T!5rT~x!.

~c! The processXt having p(y,s,x,t) as the transition kernel is a Markov interpolating pr
cess:

E
R
p~y,s,x,t !r~y,s!dy5r~x,t !

for all 0<s,t<T.
Proof: See, e.g., Refs. 5 and 6.
Let us notice that the processXt is obtained from the Cauchy processXt

C by means of a
multiplicative transformation of transition function. Clearly,a t

s5@u(Xt
C ,t)/u(Xs

C ,s)# is a multi-
plicative functional of Xt

C such that its average with respect to the Cauchy process r
*a t

s(v)Px
C(dv)51 for any 0<s<t<T and anyxPR, see, e.g., Ref. 21. Howevera t

s is not
homogeneous and, even worse, not contracting~in fact, not even bounded!. We cannot bea priori
sure that the generic sample path properties of the Cauchy process can be attributed toXt as well.
In particular, an approximation ofXt in terms of jump processes with a finite number of jumps
a finite time interval is by no means obvious and needs a demonstration~to be given in below!.

To this end, let us first notice thatu* andu satisfy the conjugate pseudodifferential equatio

] tu* 52u¹uu* , ] tu5u¹uu, ~8!

where the operatoru¹u acts as follows:

u¹u f ~x!52
1

p E
R
F f ~x1y!2 f ~x!2

y¹ f ~x!

11y2 G dy

y2 . ~9!

Let us define a new operatoru¹ue by

u¹ue f ~x!52
1

p E
uyu.e

@ f ~x1y!2 f ~x!#
dy

y2 ~10!

and, accordingly,

] tu*
e 52u¹ueu*

e , ] tu
e5u¹ueue, ~11!

with u
*
e (x,0)5u* (x,0), ue(x,T)5u(x,T) chosen to coincide with the respective initial and te

minal data for solutions of Eq.~8!.
Furthermore, let

qe~x!5
1

p
x I

e
c~x!

1

x2 , ~12!

whereI e
c5@2e,e#c5$xPR:uxu.e% andxA is an indicator function of a setA.

We have:
Theorem 2: Let us define the Poisson transition kernel corresponding to the mea

qe(x)dx:

ke~x,t !5FexpS 2
2t

ep D GFd0~x!1tqe~x!1
t2

2!
~qe* qe!~x!1¯ G .
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Then, functions,

u
*
e ~x,t !5E

R
ke~x2y,t !u* ~y,0!dy,

ue~x,t !5E
R
ke~x2y,T2t !u~y,T!dy,

solve Eq.~11!.
Proof: The transition function in the above is called the Poisson transition kernel follow

the terminology of Ref. 21. We haveu
*
e (x,0)5*Rd0(x2y)u* (y,0)dy5u* (x,0) and

] tu*
e ~x,t !5E

R
@] tke~x2y,t !#u* ~y,0!dy,

where

] tke~x,t !52
2

pe
ke~x,t !1FexpS 2

2t

e D G@qe~x!1t~qe* qe!~x!1¯#.

Consequently,

@] tke~•,t !* u* ~•,0!#~x!52
2

pe
u
*
e ~x,t !1F FexpS 2

2t

e D Gqe* S d01tqe1
t2

2!
qe* qe1¯ D * u* G~x!

52
2

pe
u
*
e ~x,t !1@qe* u

*
e ~•,t !#~x!

52
2

pe
u
*
e ~x,t !1E

R
qe~y!u

*
e ~x2y,t !dy.

But, there holds

E
R
qe~y!u

*
e ~x2y,t !dy5

1

p E
uyu.e

u
*
e ~x2y,t !

dy

y2 5
1

p E
uyu.e

u
*
e ~x1y,t !

dy

y2

and, in view of the obvious identity

2

pe
u
*
e ~x,t !5

1

p E
uyu.e

u
*
e ~x,t !

dy

y2 ,

we finally arrive at

] tu*
e ~x,t !5

1

p E
uyu.e

@u
*
e ~x1y,t !2u

*
e ~x,t !#

dy

y2 52u¹ueu*
e ~x,t !.

An analogous line of arguments follows with respect toue(x,t), which completes the proof.
A random process with a Poisson transition function belongs to the class of so-calle

processes,21,22 that is jump processes with no accumulation points of jumps in a finite t
interval: The number of jumps is finite on each finite time interval. We have:

Lemma 1:The Markov processYt
e given by the transition functionke(x,t) is a step process

with a characteristic function:

Fe~p,t !5exp~2t@ q̂e~0!2q̂e~p!# !,
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whereq̂e(p) is the Fourier transform ofqe(x).
Proof: We need to evaluate the characteristic function of the transition kernel, that is,

Fe~p,t !5expS 2
2t

pe D •E
2`

1`

@exp~2 ipx!#Fd0~x!1tqe~x!1
t2

2!
~qe* qe!~x!1...Gdx

5expS 2
2t

pe D •F11tq̂e~p!1
t2

2!
~ q̂~p!!21¯ G5expF2

2t

pe
1tq̂e~p!G .

In view of q̂e(0)52/pe, the Lemma holds true.
As a technical warm up we shall now prove that the Cauchy process is the limit~in distribu-

tions! of a one-parameter family of step processesYt
e . We touch here an important issue of limi

~convergence! of jump processes,23–25and there are many types of the pertinent convergence.
example, it is known thatYt

e tends to the Cauchy process in probability; Ref. 23, while ma
modern techniques refer to the weak convergence of probability measures, Ref. 25!. Also, typical
proofs refer only to processes with stationary independent increments, while we cannot r
this limitation in the presence of perturbations.

Lemma 2:There holds: lime→0 Fe(p,t)5c(p,t), wherec(p,t) is the Cauchy characteristi
function c(p,t)5exp(2tupu). Moreover, the limit is uniform for alltP@0,T#.

Proof: Let us evaluateq̂e(p):

q̂e~p!5
1

p E
2`

1`

exp~ ipx!•q̂e~x!dx5
1

p E
uxu.e

exp~ ipx!•
dx

x2 5
2

p E
e

` cos~px!21

x2 dx1
2

pe
.

Consequently,

Fe~p,t !5expF2
2t

p E
e

` 12cos~px!

x2 dxG .
In view of

lim
e→0

E
e

` 12cos~px!

x2 dx5
upup

2
,

we arrive at

lim
e→0

Fe~p,t !5expF2
2t

p
•

upup
2 G5exp~2tupu!.

The proof is completed.
Clearly, u¹ue is a well-defined semigroup generator for the step processYt

e . Let us recall that
sample paths of a step process have only a finite number of jumps in each finite time interv
between jumps the sample path is constant.22 The limiting Cauchy process belongs to the categ
of jump-type processes, where apart from the long jumps-tail~no fixed bound can be imposed o
their length! that implies the nonexistence of moments of the probability measure, sample pa
the Cauchy process may have an infinite number of jumps of arbitrarily small size. By ge
arguments, pertaining to the spaceDE@0,̀ ) of right continuous functions with left limits~cadlag!,
both in the finite and infinite time interval the number of jumps is at most countable.23,26 It is also
useful to recall that on a finite time interval there can be at most finitely many pointstP@0,T# at
which the jump size exceeds a given positive number. In view of that, suptP@0,T#uYt

eu,`. Obvi-
ously, there is no fixed upper bound for the size of jumps~except for being finite!, since a
stochastically continuous process with independent increments having, with probability
jumps exceeding a certain constantC, would possess all moments.22
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Now, we shall pass to a slightly more involved demonstration that a well-defined fami
Markov processesXt

e ~in fact, step ones! can be constructed, such that the processXt of Theorem
1 can be approximated~in the sense of suitable convergence! to an arbitrary degree of accurac

Here, we are motivated by a heuristic analysis carried out in our earlier paper.5 There, we
found that after neglecting ‘‘small jumps,’’ the time evolution of the resultant probability den
r̄e5ueu

*
e may be written as

] tr̄e~A,t !5E
R
qe~ t,x,A!r̄e~x,t !dx1^v&A~ t !E

uyu.e

y

11y2 dn~y!, ~13!

where^v&A5*Ar̄e(x,t)@¹ ln(ue/u
*
e )(x,t)#dx. The measuredn is symmetric around the point$0%,

hence the second term cancels, and we arrive at

] tr̄e~A,t !5E
R
qe~ t,x,A!r̄e~x,t !dx, ~14!

where the so-called jump intensity reads

qe~ t,y,A!5E
uyu.e

ue~y1x,t !

ue~y,t !
@xA~x1y!2xA~y!#dn~x! ~15!

andue(x,t) comes out as a solution of the second pseudodifferential equation in the formula~11!.
Let us define@cf. Eq. ~12!#

he~ t,y!5E
2`

1` ue~x1y,t !

ue~y,t !
qe~x!dx ~16!

and

he~ t,y,x!5
ue~x,t !

ue~y,t !
qe~x2y!. ~17!

Then, clearly the jump intensity~14! takes the form

qe~ t,y,A!5E
A
he~ t,y,x!dx2he~ t,y!xA~y!. ~18!

With those notations, we have:
Lemma 3:If the functiong(y) @cf. Eq. ~4!# is uniformly bounded, thenhe(t,y,x) is a density

of a finite measure andhe(t,y)5*Rhe(t,y,x)dx.
Proof: By our assumption,g(y)<M for all yPR. Because ofue(x,t)5*Rke(T2t,x

2y)g(y)dy, we have a bound

ue~x,t !<ME
R
ke~T2t,x2y!dy5M .

Hence

E
2`

1`

he~ t,y,x!dx5E
2`

1` ue~x,t !

ue~y,t !
qe~x2y!dx5he~ t,y!

and
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he~ t,y!<
M

ue~y,t !

2

e
.

It is also clear thathe(t,y,x)>0, which completes the proof.
Let us defineh̄e(t,y,A)52he(t,y)xA(y)1*Ahe(t,y,x)dx. It is obvious thath̄e is a charge

~that is a real-valued measure with the propertyh̄e(t,y,R)50).22

We shall show that there exists astepprocess corresponding to the chargeh̄e .
To this end let us first prove:
Lemma 4:For any Borel setA,R, the functiont→*Ahe(t,y,x)dx is continuous int, uni-

formly in A.
Proof: We have the following estimate@cf. Eq. ~18! and Lemma 3#:

U E
A
he~ t,y,x!dx2E

A
he~ t0 ,y,x!dxU

5U E
A

ue~y1x,t !

ue~y,t !
qe~x!dx2E

A

ue~y1x,t0!

ue~y,t0!
qe~x!dxU

<U E
AùKc

Fue~y1x,t !

ue~y,t !
2

ue~y1x,t0!

ue~y,t ! Gqe~x!dxU1U E
AùK

Fue~y1x,t !

ue~y,t !
2

ue~y1x,t0!

ue~y,t ! Gqe~x!dxU
1U E

A
Fue~y1x,t0!

ue~y,t !
2

ue~y1x,t0!

ue~y,t0! Gqe~x!dxU,
whereK is a compact set whileKc is its complement.

Let us denote the summandsA1 ,A2 ,A3 , respectively. For the first summand we have

A1<
1

ue~y,t !
supxPR~ue~x,t !1ue~x,t0!!E

Kc
qe~x!dx.

But

supxPRue~x,t !5supxPRE
R
ke~T2t,x2y!g~y!dy<M supxPRE

R
ke~T2t,x2y!dy5M .

By defining N(y)5suptP@ t0 ,t011# @1/ue(y,t)# and adjusting the compact setK so that
*Kcqe(x)dx<d/3MN(y), we arrive atA1<d/3.

With the second summand,A2 , we proceed as follows:

A25U E
AùK

Fue~x,t !

ue~y,t !
2

ue~x,t0!

ue~y,t ! Gqe~y2x!dxU<N~y!supxPKuue~x,t !2ue~x,t0!u
2

pe
.

By choosing t so close tot0 that supxPKuue(x,t)2ue(x,t0)u<pde/6N(y), we get A2<d/3.
Analogously withA3 :

A3<U 1

ue~y,t !
2

1

ue~y,t0!
U2 supxPRue~x,t0!

2

pe
<

4

pe
MN2~y!uue~y,t0!2ue~y,t !u,

where by takingt such thatuue(y,t0)2ue(y,t)u<pde/12MN2(y) we shall getA3<d/3. The
overall bound is thusd, and the Lemma is proved.

As a byproduct of the above demonstration, we realize that the functiont→he(t,x,A) is
continuous int uniformly on compact sets. As a consequence, see, e.g., Theorem 4 in Ch
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Sec. 7 of Ref. 22, there exists a stochastically continuous Markov processXt
e with continuous from

the right sample paths. Moreover, for anysP@0,T#, yPR andA,R, there holds

limt↓s
pe~y,s,A,t !2xA~y!

t2s
5h̄e~s,y,A!, ~19!

wherepe(y,s,A,t) is the transition kernel of the processXt
e .

There follows:
Theorem 3: The transition probability density ofXt

e reads:

pe~y,s,x,t !5ke~ t2s,x2y!
ue~x,t !

ue~y,s!

and is a solution of the first Kolmogorov equation:

]spe~y,s,x,t !52E
R
pe~z,s,x,t !h̄e~s,y,z!dz.

Proof: We must demonstrate that Eq.~19! is valid for the just introduced transition densi
~compare, e.g., also Theorem 1!, i.e., there holds

limt↓s
1

t2s Fke~ t2s,x2y!
ue~x,t !

ue~y,s!
2dy~x!G5h̄e~s,y,x!.

To this end, let us notice~adding and subtracting the same summand! that

h̄e~s,y,x!5
ue~x,s!

ue~y,s!
limt↓s

1

t2s
@ke~ t2s,x2y!2dy~x!#

1
dy~x!

ue~y,s!
limt↓s

1

t2s
@ue~x,t !2ue~y,s!#

5
ue~x,s!

ue~y,s! Fqe~x2y!2
2

pe
dy~x!G1

dy~x!

ue~y,s!
limt↓s

1

t2s
@ue~x,t !2ue~y,s!#.

To evaluate the second term, let us take a continuous and bounded functiona(x) and consider

limt↓sE
R

dy~x!

ue~y,s!

1

t2s
@ue~x,t !2ue~y,s!#a~x!dx

5 limt↓s
a~y!

ue~y,s!

1

t2s
@ue~y,t !2ue~y,s!#5

a~y!

ue~y,s!
]su

e~y,s!.

So, the second term converges weakly to

dy~x!

ue~y,s!
]su

e~y,s!.

We know that

]su
e~y,s!5u¹ueue~y,s!52E

R
@ue~y1z,s!2ue~y,s!#qe~z!dz.

Consequently,
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]su
e~y,s!

ue~y,s!
52E

R

]e~y1z,s!

ue~y,s!
qe~z!dz1

2

pe
5

2

pe
2he~s,y!

and thus

limt↓s
1

t2s
@pe~y,s,x,t !2dy~x!#5

ue~x,s!

ue~y,s!
qe~x2y!2

2

pe
dy~x!1

2

pe
dy~x!2he~s,y!dy~x!

5he~s,y,x!2he~s,y!dy~x!

5h̄e~s,y,x!.

The first part of our Theorem is proved, and we can pass to its second part.
To check the validity of the Kolmogorov equation, we shall begin from

]spe~y,s,x,t !5@]ske~ t2s,x2y!#
ue~x,t !

ue~y,s!
2pe~y,s,x,t !

]su
e~y,s!

ue~y,s!
.

But

]ske~ t2s,x2y!52@qe* ke~ t2s,• !#~x2y!1ke~x2y!
2

pe

and

]su
e~y,s!

ue~y,s!
5

2

pe
2he~s,y!,

which leads to

]sp~y,s,x,t !52@qe* ke~ t2s,• !#~x2y!
ue~x,t !

ue~y,s!
1

2

pe
pe~y,s,x,t !

2
2

pe
pe~y,s,x,t !1pe~y,s,x,t !he~s,y!

52
ue~x,t !

ue~y,s!
E

R
qe~x2y2z!ke~ t2s,z!dz1pe~y,s,x,t !E

R

ue~x1y,s!

ue~y,s!
qe~x!dx.

On the other hand,

2E
R
pe~z,s,x,t !h̄~s,y,z!dz52E

R
ke~ t2s,x2z!

ue~x,t !

ue~z,s! F ue~z,s!

ue~y,s!
qe~z2y!2dy~z!he~s,y!Gdz

52
ue~x,t !

ue~y,s!
E

R
ke~ t2s,x2z!qe~z2y!dz1pe~y,s,x,t !he~s,y!.

Since we know thathe(s,y)5*R@ue(x1y,s)/ue(y,s)#qe(x)dx, the assertion~e.g., the validity of
the first Kolmogorov equation! follows.

Corollary 1: Xt
e is a step process.

Proof: It suffices to check thatpe(y,s,R,t)51 ~cf. Ref. 22!. Since

pe~y,s,R,t !5E
R
pe~y,s,x,t !dx5E

R
ke~ t2s,x2y!

ue~x,t !

ue~y,s!
dx
                                                                                                                



y

e study
es are
ervation
e

ng

. II. Let
d

1067J. Math. Phys., Vol. 40, No. 2, February 1999 P. Garbaczewski and R. Olkiewicz

                    
and, by Theorem 2,

E
R
ke~ t2s,x2y!ue~x,t !dx5ue~y,s!

the Corollary holds true.
All previous considerations can be finally summarized by showing that the familyXl

e of step
processes consistently approximates~converges to! the processXt . Indeed, we have:

Theorem 4: The limit

lime↓0Xt
e5Xt

holds true in distributions and uniformly intP@0,T#. Moreover, the transition probability densit
pe converges pointwise top whene↓0.

Proof: The probability density of the processXt
e equalsre(x,t)5u

*
e (x,t)ue(x,t) and that of

the processXt is given by r(x,t)5u* (x,t)u(x,t). But, u
*
e (x,t)5*R ke(t,x2y) f (y)dy and

ke(t,x2y) converges weakly to the Cauchy kernelk(t,x2y), uniformly in t. Consequently
lime↓0 u

*
e (x,t)5u* (x,t) also uniformly in tP@0,T#. The same holds true forue(x,t), and the

first assertion follows.
The second statement follows from the fact thatke(t,x) tends to the Cauchy kernelk(t,x) ~see

Lemma 2! whene↓0.
As stated before, considerations of the present section were mostly a preparation to th

of perturbed problems. However, it is useful to mention that the conditional Cauchy process
covered by the developed scheme. In fact, we can here adjust to the Cauchy noise an obs
previously utilized in the context of the Wiener noise.2,6,5The pertinent density can be given in th
following form:

r~x,t !5
k~y0 ,t0 ,x,t !k~x,t,zT ,T!

k~y0 ,t0 ,zT ,T!
~20!

with y0 ,zTPR and 0,t0,t,T. All previous considerations directly apply to the interpolati
process supported by this density. See also a discussion of Le´vy bridges~while specialized to the
Cauchy context! in Ref. 27.

III. PERTURBATIONS OF THE CAUCHY NOISE

We are motivated by the strategy of Refs. 6 and 5 and the techniques developed in Sec
us address the problem analogous to that of Eq.~11!, but now in reference to a perturbe
semigroup:11

] tu* 52u¹uu* 2Vu* , ] tu5u¹uu1Vu, ~21!

whereV is a measurable function such that:

~a! for all xPR, V(x)>0,
~b! for each compact setK,R there existsCK such that for allxPK, V is locally bounded

V(x)<CK .

ThenV is locally integrable and for any compactK we have

limt↓0 supxPR Ex
CH E

0

t

xK~Xs
C!V~Xs

C!dsJ 50. ~22!

As a consequence, there holds
Lemma 5:If 1<r<p<` and t.0, then the operatorsTt

V defined by
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~Tt
Vf !~x!5Ex

CH f ~Xt
C!expF2E

0

t

V~Xs
C!dsG J

are bounded fromLr(R) into Lp(R). Moreover, for eachr P@1,̀ # and f PLr(R), Tt
Vf is a

bounded and continuous function.
Proof: See, e.g., Ref. 11, Proposition III.1.
Let us notice that for the ultimate construction of the~forward, see Refs. 3, 6, and 7! Markov

process we utilize only the second equation~21! @cf. also Eq.~11!#, although both equations~21!
are indispensable for the Schro¨dinger problem solution.

We shall use another identity proved by Carmona,11 namely:
Lemma 6:For any real-valuedf ,gPL2(R) there holds

E
R
dx f~x!Ex

CH g~Xt
C!expF2E

0

t

V~Xs
C!dsG J 5E

R
dx g~x!Ex

CH f ~Xt
C!expF2E

0

t

V~Xs
C!dsG J .

Proof: See also Eq.~III.9! in Ref. 11.
We need to prove thatTt

V is an integral operator. To this end, a direct transfer of Simo
arguments, cf. Ref. 28, originally with respect to the Laplace differential operator, i.e., the
of the Dunford–Pettis theorem~see pp. 450 in Ref. 28! and Lemma 5, gives rise to:

Lemma 7:For anypP@1,̀ # and f PLp(R) there holds

~Tt
Vf !~x!5E

R
kt

V~x,y! f ~y!dy,

wherekt
V(x,y)>0 almost everywhere and, forq such that 1/q11/p51, the kernel satisfies

supxPRF E
R
@kt

V~x,y!#qdyG1/q

,`.

Proof: See also Theorem A.1.1 and Corollary A.1.2 in Ref. 28.
Notice that by puttingp51 and thusq5` we obtain thatkt

V(x,y)PL`(R2).
Our ultimate goal is to utilizekt

V(x,y) in the context of the Schro¨dinger boundary data an
interpolation problem, Refs. 2 and 6, hence suitable properties of the kernel must be estab
For our purposes, the joint continuity and positivity of the kernel is essential.

Lemma 8: kt
V(x,y) is jointly continuous in~x,y!.

Proof: We begin from demonstrating thatkt
V(x,y)5kt

V(y,x) almost everywhere. By Lemma
6, we have

E E
R2

dx dy f~x!kt
V~x,y!g~y!5E E

R2
dx dyg~x!kt

V~x,y! f ~y!,

hence

E E
R2

dx dy f~x!g~y!@kt
V~x,y!2kt

V~y,x!#50

for all f ,gPL2(R)ùL1(R).
The same holds true for all finite combinations( i , j ai j f i(x)gj (y). Therefore**R2@kt

V(x,y)
2kt

V(y,x)# f (x,y)dx dy50 for all f (x,y) from a dense subset ofL1(R2). BecauseL`(R2) is the
dual space toL1(R2), we conclude thatkt

V(x,y)5kt
V(y,x) almost everywhere.

Let us exploit the semigroup property ofkt
V(x,y):
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kt
V~x,y!5E

R
kt/2

V ~x,w!kt/2
V ~w,y!dw.

For eachy, w→kt/2
V (w,y)PL`(R) so, by Lemma 5,kt

V(x,y) is continuous inx. By the symmetry,
kt

V(x,y) is separately continuous inx andy.
Let us consider a sequence (xn ,yn)→(x,y). Then:

ukt
V~xn ,yn!2kt

V~x0 ,y0!u<U E E
R2

dw dz@kt/3
V ~xn ,w!2kt/3

V ~x0 ,w!#kt/3
V ~w,z!kt/3

V ~z,yn!U
1U E E

R2
dw dzkt/3

V ~x0 ,w!kt/3
V ~w,z!@kt/3

V ~z,yn!2kt/3
V ~x,y!#U

5U E
R
dw@kt/3

V ~xn ,w!2kt/3
V ~x0 ,w!#k2t/3

V ~w,yn!U
1ukt

V~x0 ,yn!2kt
V~x0 ,y0!u.

Because of

ik2t/3
V ~•,yn!iL`,C

for all yn , knowing that supnkt/3
V (xn ,w) exists and is integrable with respect tow, by the Lebesgue

dominated convergence theorem the first summand tends to zero. Hence,kt
V(x,y) is jointly con-

tinuous in~x,y!.
Lemma 9: kt

V(x,y) is strictly positive.
Proof: Because for the Cauchy process we have20 ~more general estimates of the growth

random walks and Le´vy processes can be found in Ref. 29!:

Ex
C$sup0<s<tuXs

Cu.n%<3 sup0<s<tEx
CH uXs

Cu.
n

3J
and

sup0<s<tEx
CH uXs

Cu.
n

3J 5Ex
CH uXt

Cu.
n

3J 512
2

p
arctanS n

3t D
there follows:

limn→` Ex
C$sup0<s<t uXs

Cu.n%50.

This property will be used below.
Let 0,d,1, then:

E
y2d

y1d
dy kt

V~x,y!5Ex
CH x@y2d,y1d#~Xt

C!expF2E
0

t

V~Xs
C!dsG J .

By the previously deduced property, for fixedx andy, we can choose a compact set@2n,n# such
that

Ex
C$V~ t,@y2d,y1d#!

~0,x! ~n!%.
1

2 E
y2d

y1d
kt~x,y!dy,

where
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V~ t,@y2d,y1d#!
~0,x! ~n!5$v:v~0!5x,v~ t !P@y2d,y1d#;sP@0,t#⇒v~s!P@2n,n#%

andkt(x,y) is the Cauchy kernel. Hence

E
y2d

y1d
dy kt

V~x,y!>E
V~n!

expF2E
0

t

V~Xs
C!dsGdPx

C~v!>
1

2
exp~2cnt !•E

y2d

y1d
kt~x,y!dy,

wherecn5supxP@2n,n#V(x).
Becausekt

V(x,y) is continuous andd was arbitrary, we get

kt
V~x,y!> 1

2 exp~2cnt !•kt~x,y!.

The assertion of Lemma 9 is thus valid.
Lemmas 8 and 9 provide us with a strictly positive and jointly continuous in space vari

kernel, which can be directly exploited for the analysis of the Schro¨dinger interpolation problem
as exemplified by Eqs.~3!–~6!, see also Refs. 2, 3, and 6. Indeed, letr0(x) andrT(x) be strictly
positive densities. Then, the Markov processXt

V characterized by the transition probability de
sity:

pV~y,s,x,t !5kt2s
V ~x,y!

u~x,t !

u~y,s!
~23!

and the density of distributions

r~x,t !5u* ~x,t !u~x,t !,

where

u* ~x,t !5E
R
kt

V~x,y! f ~y!dy, u* ~y,t !5E
R
kT2t

V ~x,y!g~x!dx

is precisely that interpolating Markov process to which Theorem 1 extends its validity, whe
perturbed semigroup kernel replaces the Cauchy kernel.

Clearly, for all 0<s<t<T we have

u* ~x,t !5E
R
kt2s

V ~x,y!u* ~y,s!dy, u~y,s!5E
R
kt2s

V ~x,y!u~x,t !dx ~24!

and that suffices for the Theorem 1 to hold true in the present case as well.
Following the strategy of Sec. II, we shall investigate an issue of approximating the pert

Cauchy process~set by Lemmas 8 and 9 and Theorem 1! by means of step processes.
Let us first invoke the step processYt

e of Lemma 1. It corresponds to the unperturbed ge
eratoru¹ue . To account for a perturbation and the involved perturbed semigroup, let us con
a multiplicative, homogeneous, and contracting functional:

a t
s~v!5expF2E

s

t

V~Yt
e~v!!dtG ~25!

of the processYt
e , for times 0<s<t<T.

We recall that the processYt
e is a step process obtained from the Cauchy process by neg

ing ‘‘small jumps’’ ~the e cutoff!.
We shall associate with the multiplicative functional~25! the processYt

e,V and prove that
under additional restrictions on the potentialV, the pertinent perturbed process is also a s
process.
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Theorem 5: Let 0<V(x)<M for all xPR. The transition function:

pe,V~ t,x,G!5Ex
eH xG~Yt

e!expF2E
0

t

V~Ys
e!dsG J

determines the step processYt
e,V .

Proof: By Theorem 3.8 of Ref. 21 a sufficient condition for the existence of a Markovian
processYt

e,V is that its transition function obeys

limt↓0 pe,V~ t,x,$x%!51

uniformly in xPR.
Let us chooset1.0 so that 12d<exp(2Mt1) is secured. In view of

exp~2Mt !<expF2E
0

t

V~Ys
e~v!!dsG<1

for all v, we have for allt,t1 the following estimate:

~12d!pe~ t,x,G!<pe,V~ t,x,G!<pe~ t,x,G!.

On the other hand, there existst2 such that for allt,t2 ,

pe~ t,x,$x%!>12d

is valid for all xPR.
Hence, for allt,min(t1,t2) we get

~12d!2<pe,V~ t,x,$x%!<1.

Becaused is arbitrary, after takingd→0, the assertion follows.
From the formula pe,V(t,x,G)<pe(t,x,G) we conclude that the transition functio

pe,V(t,x,G) is absolutely continuous with respect to the Lebesgue measure, and hence pos
densityke,V(t,x,y).

A new processXt
e,V can be defined by considering a multiplicative transformation of

processYt
e,V by means of

as
t 5

ue~Yt
e,V ,t !

ue~Ys
e,V ,s!

, ~26!

whereue is a positive solution of] tu
e5u¹ueue1Vue.

The transition probability density ofXt
e,V reads

pe,V~s,y,t,x!5ke,V~ t2s,y,x!
ue~x,t !

ue~y,s!
~27!

and by repeating arguments mimicking those of Sec. II, one can show that the perturbe
processXt

e,V converges in distribution to the perturbed Cauchy processXt
V , whene→0, uniformly

in tP@0,T#.
A concise summary of all mathematical arguments of Secs. II and III, reads:
Corollary 2:

~a! The Schro¨dinger boundary-data and interpolation problem~3!–~6! admits a class of unique
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solutions in terms of Markov stochastic processes, for each concrete choice o
~Feynman–Kac! kernel function that is determined by the Cauchy generator plus a loc
bounded, positive and measurable potential function.

~b! The pertinent processes are of the jump-type and arise as suitable limits ofstepprocesses. In
particular, the uniform in timetP@0,T# convergence in distribution to the perturbed Cauc
processXt

V is established, when the potential function is bounded.

Proof: To settle ~a!, the strictly positive and continuous Feynman–Kac kernel function
necessary. Theorem 1 refers to the Cauchy process, and its conditional relatives. Lemmas
refer to the perturbed Cauchy process.

The step-process approximations and their convergence to the corresponding jump-typ
cesses are established in Theorems 2 through 4 in case of the Cauchy and conditional
processes. Theorem 5 together with Eqs.~26! and ~27! are the key ingredients for th
convergence-in-distribution argument.

Remark 1:The developed techniques can be used to investigate the existence issue~including
that of the step process approximation! of more general jump-type processes, in particular th
related to the quantum evolution with relativistic Hamiltonians.5,30

Remark 2:In the present paper, to simplify calculations and to make formulas more tran
ent, we have considered processes associated with the Cauchy generator~and thus with the
a-stable symmetric process as a major tool! in space dimension 1. A glance at the construction
solutions of the Schro¨dinger problem makes clear that the previous limitations are inessentia
fact, we could consider anyaP(0,2)-symmetric stable processes onRn, for arbitraryn>1, and
secure the strict positivity and joint continuity in space variables of the corresponding tran
density. Such properties forn>2 and for potentials from the Kato classKn,a were established in
a very recent publication, Ref. 31, Theorems 3.3 and 3.5. However, an issue of sampl
properties and of step-process approximations must be settled separately.
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Howe duality for the quantum groups Uqu„m,n …, Uqu„M…
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A dual pair is defined to be a pair of mutually centralizing subgroups of the real
symplectic group. Let (G,G8) be a dual pair of reductive groups in whichG is also
compact and consider the decomposition of the metaplectic representation of the
symplectic group intoGG8-irreducibles. Each such irreducible is a tensor product
of an irreducible ofG with one ofG8, and it turns out there is a bijective corre-
spondence between them, a particular irreducible ofG only occurring with a par-
ticular one ofG8 and vice versa. This so-called Howe duality is here generalized to
the quantum group case (Uqu(m,n),Uqu(M )) for q not a root of unity. A meta-
plectic representation for this dual pair is given in terms of theq-oscillator algebra
and aUqu(m,n)3Uqu(M )-covariant Heisenberg–Weyl algebra is also constructed
and realized on Fock space. The heart of the proof lies in showing thatUqu(m,n)
andUqu(M ) are essentially mutual commutants on Fock space. The duality follows
using the compactness ofUqu(M ). The proof is independent of the classical theory.
As a consequence, given any two unitary highest weight representations of a quan-
tum pseudo-unitary group~which arise from the restriction of a metaplectic repre-
sentation!, the decomposition of their tensor product is the same as in the classical
case. ©1999 American Institute of Physics.@S0022-2488~98!02511-0#

I. INTRODUCTION

The metaplectic or oscillator representation of the real symplectic group first arose i
quantum field theory work of Shale and Segal.1 Let W(n) denote the real Heisenberg–We
algebra generated by creation and annihilation operators,ai

1 , aj ( i , j 51,...,n), satisfying the
standard canonical commutation relations with\51,

@ai ,aj #5@ai
1 ,aj

1#50, @ai ,aj
1#5d i j

and with real form (ai)* 5ai
1 , (ai

1)* 5ai .
The complex symplectic Lie algebra sp(2n,C) may be realized as the complex span of t

symmetrized quadratic expressions

aiaj , 1
2~aiaj

11aj
1ai !, ai

1aj
1 ,

with the Lie bracket defined as the commutator. The real form ofW(n) picks out the real
symplectic algebra, sp(2n,R). The Fock space action ofW(n) then gives a unitary, infinite
dimensional representation of the real symplectic Lie algebra, the infinitesimal version o
metaplectic representation.

It turns out that this exponentiates to a projective representation of the real symplectic
Sp(2n,R), only becoming single valued on the twofold covering group, the metaplectic grou
is an exact analog of the spin representation of the orthogonal group. At the group leve
exists a cleaner abstract definition of the metaplectic representation as the set of intert
operators of equivalent~by Stone–von Neumann theorem! representations of the Heisenbe
group. We shall resist the temptation to give any details~see Refs. 2, 3!, since we shall deal with
quantum groups at the enveloping algebra level where the infinitesimal version is more su

Further investigation of the metaplectic representation, its restriction to subgroups an
tensor products of representations so obtained, subsequently appeared in the literature, for e
~Ref. 4!. In particular, since we may identifyR2(m1n).Cm1n such that the symplectic form is th
10740022-2488/99/40(2)/1074/13/$15.00 © 1999 American Institute of Physics
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imaginary part of a pseudo-Hermitian form on the complex space, we see
U(m,n),Sp(2(m1n),R). The pseudo-unitary group therefore has a metaplectic represen
given by restriction. TheM-fold tensor product of this was decomposed in Ref. 5, where
irreducibles were all shown to be unitary with highest weight. It was also conjectured and s
quently proved in Ref. 6 that in fact all such representations appear in such a decomposit
someM. Such results were encompassed and extended by Roger Howe’s theory of dual p7–9

A dual pair, (G,G8), is a pair of subgroups of the real symplectic group which are mu
centralizers. In the case that both groups are reductive we speak of a reductive dual pair
proved the following theorem.

Theorem 1: Let (G,G8) be a reductive dual pair with G compact and let their correspond
Lie algebras beg, g8 respectively. The invariants inW(n) under the adjoint action of G (and
hence which commute with G) are generated by (the image of)g8.

It follows that we have the decomposition of the metaplecticm into GG8 irreducibles,

muGG85 % r i ^ r i8 , ~1!

wherer i and r i8 are irreducible representations of G and G8 respectively. Furthermore, there i
a bijective correspondence, r i only occurring withr i8 and vice versa. j

The construction of dual pairs is straightforward by decomposing the underlying real
plectic vector space. Many families of dual pairs exist, the reductive ones having
classified.8–10 Indeed every classical group arises as the member of some dual pair~ignoring
centers and connected components!.

For example, letV.Cm1n be a pseudo-Hermitian of type~m,n! and W.CM be Hermitian.
Then V^ W is pseudo-Hermitian with respect to the natural product form, and thus U(m,n),
U(M ),U(mM,nM). Since U(mM,nM),Sp(2(m1n)M ,R), as we saw earlier, a dual pair
obtained

U~m,n!,U~M !,Sp~2~m1n!M ,R!. ~2!

Furthermore, the restriction of the action of Sp(2(m1n)M ,R) to the subgroup U(m,n) is just the
M-fold tensor product of its own metaplectic, that is, coming from restriction of the metaplec
Sp(2(m1n),R). The duality theory then allows one to study the decomposition of this te
product representation,~as studied in Refs. 5 and 6!, in terms of the dually paired groups U(M ).
The precise theorem is given in Ref. 8, Theorem 4.6.

It is an analog of Theorem 1 for the quantum groupsUqu(m,n),Uqu(M ) which we shall
prove. As a consequence we shall also deduce an analog of Theorem 4.6 of Ref. 8, refe
above.

Our motivations are several. First, from a mathematical point of view it would be desirab
extend the scope of the duality as far as it will go; by giving more and more examples we
shed light on a deeper underlying theory. There have already been several examples of
which go beyond the scope of Theorem 1; for nonreductive groups,10 super cases,7 and modular
representations.11 In Refs. 12 and 13 independent proofs of duality were given for the pai
quantum unitary groups (Uqu(2),Uqu(3)). Reference 14 extends these results to the family
compact quantum unitary groups, (Uqu(m),Uqu(M )).

For quantum groups withq a root of unity some genuinely new representation theory occ
which appears to have similarities to the modular representations in the classical case. T
ample of duality for modular representations,11 suggests that some remnant of duality may ex
Our goals presently are more modest, however, only dealing withq a nonroot of unity.

After some preliminary definitions and conventions, we recall the metaplectic represen
of the quantum symplectic group and construct a new representation of the quantum p
unitary group in Sec. IV. Using the fact that the classical action of U(m,n),Sp(2(m1n)M ,R) is
the M-fold tensor action, we construct in Sec. V the dual pair of quantum gro
Uqu(m,n),Uqu(M ) and their action on Fock space.

This action of the dual pair gives an adjoint action on the endomorphism algebra of
space, and thus on the Heisenberg–Weyl algebra. Section VI is concerned with the constru
a deformed Heisenberg–Weyl algebra which transforms nicely under this action; a so-
covariant algebra. The heart of the proof of duality is to show that the dual pair are esse
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mutual commutants in this algebra, which we do using theq analog of the Schur–Weyl duality
between the general linear and symmetric groups. The duality correspondence is then d
from the compactness ofUqu(M ).

From the duality, as in the classical case, the Clebsch–Gordan theory for the unitary h
weight representations which occur in tensor products of the metaplectic ofUqu(m,n) ~classically
this is all unitary highest weight representations! is controlled by the theory forUqu(M ) as M
varies. Since the finite dimensional representation theory for quantum groups is the same a
classical case~generically! we can conclude, as we might expect, that the decomposition of te
products of the unitary highest weight representations ofUqu(m,n) ~occurring in tensor products
of the metaplectic! is basically the same as in the classical case. For example, we shall get a h
on the ladder representations ofUqsu(2,2) which can be thought of as a quantum version of
conformal group.

It is worth noting that although one might expect that there is a duality for other pai
quantum groups, the constructions used in the given proof do not always work; for exam
covariant Heisenberg–Weyl algebra for the dual pair (Uqo(m),Uqsp(2n,R)) cannot be con-
structed in the same way.

The proof given is independent of the classical theory and thus may provide a model
proof of some duality in the root of unity cases. Certainly some of the constructions can s
made.

II. QUANTUM GROUP CONVENTIONS

We shall assume throughout thatq is a nonzero complex number which is not a root of uni
First some standard notation,

@n#q5
qn2q2n

q2q21 , @n#q! 5@n#q@n21#q ...@1#q , Fmn G
q

5
@m#q!

@n#q! @m2n#q!
.

Let ai j be a symmetrizable Cartan matrix and putqi5qdi, wheredi is the least positive intege
such thatdiai j is symmetric.
Uqg is defined to be the unital, associative algebra overC generated by$e6 i ,ki

61/2% i 51
n21 subject

to

@ki
61,kj

61#5@ki
71,kj

71#50, kie6 j ki
215qi

6ai j e6 j ,

@ei ,e2 j #5d i j

ki2ki
21

qi2qi
21 ,

(
k50

12ai j

~21!kF12ai j

k G
q
~e6 i !

ke6 j~e6 i !
12ai j 2k50, iÞ j ,

D~e6 i !5e6 i ^ ki
~1/2!1ki

2~1/2!
^ e6 i , D~ki

6~1/2!!5ki
6~1/2!

^ ki
6~1/2! ,

S~e6 i !52qi
61e6 i , S~ki

6~1/2!!5ki
7~1/2! ,

whereS is the antipode andD the coproduct.
With the Cartan matrix of typesA andC we obtain the quantum special linear and symplec

groups, respectively. ForqPR\$0,61% the real forms~1! Uqsu(m,n) and~2! Uqsp(2n,R) may be
defined by the*-structures: ~1! ki* 5ki for all i 51,...,n21, e6 i* 5e7 i for i 51,...,m21,m
11,...,m1n21 ande6m* 52e7m and~2! ki* 5ki for all i 51,...,n, e6 i* 5e7 i for i 51,...,n21, and
e6n* 52e7n . The quantum general linear group may be defined by adjoining group-like, ce
elementske

61 to the special linear group. To defineUqu(m,n) we put (ke
61)* 5ke

61.
If RPUqg^Uqg is the universalR-matrix of a QUE algebra with fundamental representat

r, then we letR5(r ^ r)R. Denote the flip operator byP, setR̂5PR, Ř5RP and useR̂21 and
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Ř21 as shorthand for (R̂)21 and (Ř)21, respectively. The standard notationR̂i j denotes an
operator on a tensor product space acting asR̂ in the i th and j th factors, and the identity else
where.

In the particular case thatg5sl(n,C) ~or u(n))

R5(
iÞ j

Ei
i ^ Ej

j1q(
i

Ei
i ^ Ei

i1~q2q21!(
i , j

Ei
j ^ Ej

i ,

whereEi
j are the standard matrices with 1 in thei j th place and zeros elsewhere. The matrixR̂

satisfies

~R̂2q!~R̂1q21!50. ~3!

The Artin braid group,Bp, is generated by$t i% i 51
p21 subject to

t it i 11t i5t i 11t it i 11 , t it j5t jt i , u i 2 j u<2,

and the Hecke algebra,Hq
p , is the quotient by

~t i2q!~t i1q21!50 i 51,...,p21.

The following analog of the Schur–Weyl duality,15–17 will be used later.
Theorem 2: The matrices Rˆ

i ( i 11) for i 51,...,p21 provide a representation of the Heck
algebra Hq

p by t i→R̂i ( i 11) on the spacê pV, where V is the space on which the fundamen
representation ofUqu(n) is realized. Furthermore, inEnd(^ pV) the Hecke algebra andUqu(n)
generate mutual commutants. j

III. q-OSCILLATOR ALGEBRA

Define the deformed orq-oscillator algebra,Wq(n),18–20 to be the unital, associative algeb
over C generated byAi , Ai

1 andn i
61 for i 51,...,n, subject to

AiAi
12q61Ai

1Ai5n i
72, n i

61Ai
15q61/2Ai

1n i
61, n i

61Ai5q71/2Ain i
61,

and with $Ai ,Ai
1 ,n i

61% commuting with$Aj ,Aj
1 ,n j

61% for iÞ j . The real form is given forq
PR\$0,61% by the*-structureA* 5A1, (A1)* 5A, and (n i

61)* 5n i
61. ~In some definitions only

one of the relations betweenA andA1 is assumed but both hold in the following Fock represe
tation anyway.!

Let V be a vacuum vector,AiV50 for all i 51,...,n. Introduce the shorthand notation

A1~s!5~Ai
1!s1...~An

1!sn, z~s!5A1~s!V.

Proposition 3: There is a unitary action ofWq(n) on Fock space given by

Ai
1z~s!5z~s1ei !, Aiz~s!5@si #qz~s2ei !, n i

61z~s!5q6~si /2!z~s!,

with the inner product, unique up to normalization,

^z~s!,z~ t!&5ds,t@s1#q!...@sn#q!.
j

IV. METAPLECTIC REPRESENTATIONS

An explicit infinitesimal metaplectic or oscillator representation for the quantum sympl
group was given in Ref. 20.~A more implicit version was also given in Ref. 21 which gave t
generatorsL of Ref. 22 in terms of a covariant Heisenberg–Weyl algebra. However, as
pointed out there, the approach did not allow one to give explicit expressions for the full ge
tors L61.)

Proposition 4: For qPR\$0,61% there is an algebra* -homomorphism
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m:Uqsp~2n,R!→Wq~n!,

determined for i51,...,n by

m~ei !5H Ai
1Ai 11

21

q1q21 ~An
1!2, m~ki

1/2!5H n in i 11
21 i ,n

q1/2nn
2 i 5n

.

The Fock space representation ofWq(n) therefore induces a unitary representation
Uqsp(2n,R). j

Since classically U(m,n) is a subgroup of Sp(2(m1n),R) it inherits a metaplectic represen
tation. In the quantum case this is still true for the compact quantum unitary group whic
nicely as a Hopf* -subalgebra in the quantum symplectic group. It is not as obvious how a ge
quantum pseudo-unitary group will sit inside the symplectic group so we give an indepe
definition of the representation, but one which coincides with the restriction in the classical
The proof is straightforward.

Proposition 5: For qPR\$0,61% there is a* -homomorphism,

m:Uqu~m,n!→Wq~m1n!,

determined for i51,...,m1n21 by

m~ei !5H Ai
1Ai 11

2Am
1Am11

1

2AiAi 11
1

, m~ki
1/2!5H n in i 11

21 i ,m

q1/2nmnm11 i 5m

n i 11n i
21 i .m

,

and withm(ke
61)5(n1

2...nm
2 nm11

22 ...nm1n
22 )61.

The Fock space representation ofWq(n) therefore induces a unitary representation
Uqsp(2n,R). j

Note that the image ofUqu(m,n) is still a * -subalgebra of the image ofUqsp(2(m1n),R).
The dual representationm* is given bym* (h)5(m(S(h)))* for all hPUqu(m,n). In the case

n50 we normalize this to obtain the equivalent representationm8.m* given by

m8~ei !5AiAi 11
1 , m8~ki

1/2!5n i 11n i
21, i 51,...,m21.

V. DUAL PAIR Uqu„m,n …, Uqu„M…

For the construction of dual pairs in the classical case one can decompose the und
symplectic vector space and so rely on the groups being defined by their fundamental rep
tations. This is no longer true in the quantum case and there are considerable difficulties in
to construct quantum dual pairs inside the quantum symplectic group~or alternatively starting with
a deformed dual pair and trying to construct a deformed symplectic group around them!. We shall
not address these problems further here~see Refs. 12, 14!, and so avoid giving a definition of a
dual pair in the quantum case.

Instead we use the fact that the action of the pseudo-unitary group U(m,n),Sp(2(m
1n)M ,R) obtained by restriction of the metaplectic of Sp(2(m1n)M ,R) is just theM-fold
tensor action of its own metaplectic. The action of the dually paired U(M ),Sp(2(m1n)M ,R) is
^

mm ^ ^
nm* . We can therefore define the action of the dual pair without reference to the

plectic group at all. A slightly modified version of this works in the quantum case.
Denote the generators ofUqu(m,n) by $e6 i ,ki

6(1/2) ,ke
61% i 51

m1n21 and those ofUqu(M ) by
$E6I ,KI

6(1/2) ,Ke
61% I 51

M21.
Proposition 6: There exists a* -algebra homomorphism,

Uqu~m,n! ^Uqu~M !→Wq~~m1n!M !.

The unitary action ofWq((m1n)M ) on Fock space gives an action of the dual pair such that
q→1 we obtain the classical metaplectic representation.
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Proof: Denote the metaplectic representations ofUqu(m,n) andUqu(M ) by m (m,n) andmM ,
respectively, so we have*-algebra homomorphisms intoq-oscillator algebras

m~m,n! :Uqu~m,n!→Wq~m1n!, mM :Uqu~M !→Wq~M !.

The tensor product representationŝMm (m,n) and ^
mmM ^ ^

nmM8 can be regarded as*-
homomorphisms intoWq((m1n)M ) by using the algebra isomorphisms

Wq~~m1n!M !. ^
MWq~m1n!. ^

m1nWq~M !.

It remains to be proven that these actions ofUqu(m,n) andUqu(M ) commute. The relations
between the Cartan subalgebra ofUqu(m,n) ~generated by theK’s! with Uqu(M ) are trivial, and
vice versa. The remaining relations can be proven directly for the generators. However,
work can be saved by noting that the actions of the maximal compact subgroups of each p
the degree and are in fact subrepresentations of the tensor algebra of the fundamental rep
tion. It is therefore sufficient to check that their actions commute onV(m1n)

^ VM, the fundamental
representation of the dual pair. Finally one may prove directly that

@em ,E6I #5@e2m ,E6I #50, I 51,...M21.
j

Note that the image of the dual pair still forms a*-subalgebra of the image ofUqsp(2(m
1n)M ,R). Also, the centralUqu(1)’s of each member are mapped to the same image; this
be expected since in the classical case the central U~1! lies in the intersection of the dual pa
inside the symplectic group.

VI. DUAL PAIR-COVARIANT HEISENBERG–WEYL ALGEBRAS

An algebra is said to be covariant with respect to the action of a Hopf algebra if the m
plication intertwines with this action. A deformation of the Heisenberg–Weyl algebra whic
covariant with respect to the action of some quantum group will therefore be referred to
covariant Heisenberg–Weyl algebra.

The most familiar examples are theUqu(n)-covariance of Ref. 23 andUqo(n)-covariance
discussed in Ref. 24. In Ref. 14 theUqu(n)-covariance is extended to the fu
Uqsp(2n,R)-covariance. Using the braided theory as presented in Ref. 25 we can rega
Pusz–Woronowicz algebra as aUqsp(2n,R) braided vector space, and thus take braided ten
products of it. In this way we could construct a Heisenberg–Weyl algebra which is covarian
respect to the action of one member of the dual pair.~We should also be able to use a braid
exponential to obtain Weyl-type relations, that is, exponentiated canonical commutation rela!

However, we can actually do slightly better for this dual pair and consider a deformati
the Heisenberg–Weyl algebra which is covariant under the joint action of the pairUqu(m,n),
Uqu(M ). This is a generalization of theUqu(m) ^Uqu(M )-covariance considered in Refs. 26 an
27 and also Ref. 14.

Proposition 7: The algebraWAA((m,n),M ) with generators$v i I ,uiI % for i 51,...,m1n and
I 51,...,M satisfying the relations

v1v2~ r̂ 21R̂21!50, ~ ř 21Ř21!v* 1v* 250, ~4!

v* 1v22v2r 21R21v* 15I , ~5!

is Uqgl(m1n,C) ^Uqgl(M ,C)-covariant, has the same Poincare´ series as the classica
Heisenberg–Weyl algebra, and is a* -algebra with respect to

v i I* 5 H v i I i 51,...,m
2v i I i 5m11,...,m1n.

Before giving the proof we explain the notation. The subscriptAA refers to the Cartan-type o
Uqgl(m1n,C) ^Uqgl(M ,C) ~which defines the braided or quasitensor category within which
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work!. The R-matrices ofUqgl(m1n,C) andUqgl(M ,C) ~or their corresponding real forms! will
be denoted byr andR, respectively, and thus that of the product will ber 13R24, though we shall
generally suppress the subscripts.

((m,n),M ) is used to distinguish the real form ofWAA we are considering, for compatabilit
with Uqu(m,n) ^Uqu(M ). In the future we shall simply use the notationWAA since the real form
shall be understood.

Let V5V(m1n)
^ VM denote the fundamental representation~space! of the dual pair, andV*

its dual. Then theq-analogs of the symmetric algebras will be denotedSAA(V) and SAA(V* ),
respectively.

The coordinate free notation in the relations is standard, see, for example, Ref. 25.v is thought
of as a row vector with entriesv i I , v* a column vector with entriesv i I ; v15v^ 1 andv251
^ v. The R-matricesr and R lie in a tensor product of matrix spaces and the coordinate
notation is simply matrix and vector notation.

Proof: Let $v i I % be a basis forV with respect to which the representing matrices take
standard form, and let$v i I % be the dual basis ofV* . We wish to consider covariant algebra
generated by these. The construction of such algebras is discussed for example in Ref. 25

By analogy with the classical case, we would like thev i I to generate a deformation of th
symmetric algebra. Consideration of the eigenvalues and eigenspaces ofr̂ R̂, r̂ R̂21 and r̂ 21R̂,
using~3!, leads to the relations~4!. One can similarly construct a symmetric algebra from the d
basisv i I .

It also follows from

~ r̂ R̂11!~ r̂ R̂2121!50

that this algebra is a braided vector space as defined in Ref. 25, with respect to the braid
r̂ R̂. This allows us to define the cross-relations~5! by braided differentiation; see also~Refs. 28,
14!.

It is straightforward to check~using Bergmann’s diamond lemma as applied in Ref. 29! that
the Poincare´ series~graded dimensions! of SAA(V) and SAA(V* ) are the same as the classic
symmetric algebras. It then follows from the Wick ordering property given in the next propos
that the Poincare´ series ofWAA is the same as that of the classical Heisenberg–Weyl algebrj

In order to be able to define a Fock representation ofWAA we need to check that it is a Wic
algebra;28 in other words the relations must allow us to order any expression such that the
hilation operators lie to the right of any creation operators. With foresight we define

aiI
15 H v i I

q~ i 1I 212m!v i I , aiI 5H v i I i<m

2q~ i 1I 212m!v i I i .m
, ~6!

so thataiI* 5aiI
1 for all ~iI !.

Proposition 8:WAA is a Wick algebra.
Proof: We wish to prove that any expression can be reordered so that all thea’s lie to the right

of all the a1’s. By induction it is sufficient to prove that all the expressionsaiI ajJ
1 may be so

ordered.
There are four cases to consider, depending on the values ofi, and j. In casesi , j <m or i

<m, j .m or i .m, j <m, the explicit relations obtained from~4! and~5! may be used directly to
give the result.

In the final casei , j .m we need to invert the last relation by multiplying by the mat
(r 21

t2 )21(R21
t2 )21, where t2 denotes transposition in the second factor, and we useR21

t2 to mean

(R21)
t2. Explicitly (R21

t2 )21 is given by

(
iÞ j

Ei
i ^ Ej

j1q21(
i

Ei
i ^ Ei

i1~q212q!(
i . j

q22~ i 2 j !Ei
j ^ Ei

j .

Some of the terms obtained by this inversion will still not be ordered, but may then be orde
previously, and the result follows.
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Note that our choice of factors in defining the creation and annihilation operators was
that in the expressions for reorderingaiI aiI

1 , the constant term which appears will simply be 1j

Now we can construct a Fock representation in the usual way by considering the existe
a vacuum vectorV which is killed by the annihilation operators,aiI V50 for all ~iI !.

Define an ordering of the double indices by (i I ),( jJ) if i , j or (i 5 j and I ,J). The Fock
space may then be built on the vacuum by the creation operators; we shall use the sho
notation

a1~s!5~a11
1 !s11...~am1nM

1 !sm1nM, a~s!5~a1~s!!* ,

where the ordering on the right-hand side of the first equation is as given above.
Lemma 9:Let sjJ50 for all ( jJ)<( i I ). Then

aiI a
1~s!V50,

~a~s!!a1~s!V5~s11!q21!...~smM!q21! ~sm111!q!...~sm1nM!q!V,

where the second q-integer is defined to be

~n!q5
12q22n

12q22 .

Proof: The first is a direct consequence of the relations. The second may be proved
induction on( i I siI using the first. j

Proposition 10: There is up to normalization a unique inner product such that the F
representation is a* -representation; explicitly

~a1~s!ua1~ t!!5ds,t~s11!q21!...~smM!q21! ~sm111!q!...~sm1nM!q!.

It is irreducible, faithful, and unitary for qPR\$0,61% ~i.e., the inner product is positive definite!.
Proof: The inner product follows from the previous lemma.
To prove that the representation is irreducible assume thatW is an invariant subspace and l

( rbrx(r ) be any nonzero vector inW. Define an ordering onN(m1n)M by s.r if for some iI ,
siI .r iI and for all jJ, i I we havesjJ5r jJ . Defines to be the maximum element of$r ubrÞ0%.
Then

a~s!(
r

brx~r !5bs~s11!q21!...~smM!q21! ~sm111!q!...~sm1nM!q!V.

This is nonzero ifq is a nonroot of unity. The result then follows from the fact thatV is a
generating vector for the module.

For the representation to be faithful we consider

(
s,t

as,ta
1~s!a~ t!x~r !50,

for all r . If we let t0 be the leastt such thatas,tÞ0 then we deduce thatas,t0
50 and by an

inductive argument that allas,t50, hence the result.
For unitarity it is sufficient to note that forqPR\$0,61%, (n)q.0 for all nPN. j

In summary, we have an abstract* -algebra,WAA , which is acted on covariantly by the dua
pair such that the generators transform as the fundamental and dual representations. In a
we have actions of bothWAA and the dual pair on Fock space. There is therefore a second a
of the dual pair onWAA using the adjoint representation. Recall that ifH is a Hopf algebra acting
on a vector spaceV, then there is an associated adjoint action ofH on End(V) given by

h~a!5(
~h!

h~1!aS~h~2!!, for all hPH,aPEnd~V!, ~7!
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whereD(h)5( (h)h
(1)

^ h(2), and where we suppress the representationV.
We would like these actions to coincide, as in the classical case.
Proposition 11: LetUqu(m,n) ^Uqu(M ) act on the image ofWAA on Fock space using the

adjoint action. Then the images ofv i I and v i I still transform as the basis of the fundamental a
dual representations~or in other words form the components of tensor operators for the fun
mental and dual representations!.

Proof: First, note thatv115a11
1 5A11

1 q(1/2)N11 on Fock space. One can also easily check
rectly that it is a highest weight vector for the fundamental representation under the adjoint
of the dual pair. Similarlyv115a115q(1/2)N11A11 is a lowest weight vector for the dual represe
tation. We can now setṽ115v11, ṽ115v11 and from this starting point construct operatorsṽ i I and
ṽ i I by applying the generators of the dual pair in the adjoint action. Bases for the fundament
dual are assured by considering the classical limit and the finite dimensional representation
of quantum groups at nonroots of unity. We may then defineãiI

1 andãiI by the same formulas a
before,~6!, only with tildes on each element.

The operatorsṽ i I must satisfy the same relations asv i I since they are constructed to transfor
in the same way. In addition, an easy induction shows that

ã1~s!V5c~s!A1~s!V,

for some constantc(s). It follows by a dimensional argument that in factṽ i I cannot satisfy any
extra relations to those ofv i I . By applying the*-structure this is true ofṽ i I also.

The action ofãiI
1 andãiI on ã1(s)V will be the same~under the obvious identification! asaiI

1

andaiI on a1(s)V since their Fock actions are completely determined by the relations and th
that the vacuum is killed by the annihilation operators. By identifying the basesa1(s)V, ã1(s)V
andc(s)A1(s)V we can finally conclude that

ãiI
15aiI

1 , ãiI 5aiI .

j

VII. DUALITY FOR „Uqu„m,n …,Uqu„M……

The essential point to show is that the algebra of elements inWAA which commute with the
action ofUqu(M ) on Fock space, are actually generated by the image of elements ofUqu(m,n).
The proof of duality follows easily from this result by using the compactness ofUqu(M ) and the
density ofWAA on Fock space.

Recall that an invariant,a, of a general Hopf algebra,H, with counit e, is an object which
transforms according to

h~a!5e~h!a, ;hPH. ~8!

With this definition, we may begin with the following theorem as proved in Ref. 30.
Theorem 12: Let a Hopf algebraH and an algebraA act on some vector space V, thenH

acts onA in the adjoint action. TheH invariants are just those elements ofA which commute with
H on V. j

The elements inWAA with which Uqu(M ) commutes are therefore just the invariants un
the q-adjoint action. LetV denote the fundamental representation of the dual pair,V* its dual.
Now, there exists aUqu(M )-module isomorphism

WAA.SAA~V! ^ SAA~V* !,T~V! ^ T~V* !,

with the q-adjoint action onWAA and the tensor action on the others. So now we need only
for invariants inT(V) ^ T(V* ) and restrict them toWAA using the identification withSAA(V)
^ SAA(V* ). SinceUqu(M ) preserves the natural grading, a general invariant will be a sum
homogeneous invariants and furthermore, by considering the action of the centralUqu(1) we may
restrict our search tô pV^ ^

pV* . Now this question is answered by theq-Schur–Weyl theorem,
Theorem 2. It then remains to show that these invariants~restricted to the Weyl algebra! are
generated by the quadratic ones and that the quadratic invariants lie in the image ofUqu(m,n).
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Theorem 13: TheUqu(M )-invariants inWAA are generated by the quadratic invariant
Furthermore, these quadratic invariants lie inside the image ofUqu(m,n).

Proof: As outlined above, we need only look for invariants in^
pV^ ^

pV* .End(^ pV) and
applying Theorem 12 we see that the required invariants are those elements of End(^

pV) which
commute with the action ofUqu(M ). However, these are given by Theorem 2,

(
I

t~v i 1I 1
^ v i 2I 2

^¯^ v i pI p
! ^ ~v j pI p^¯^ v j 1I 1!,

wheret is any element of the Hecke algebra,$v i I % and$v i I % are bases forV andV* , respectively.
The restriction of these toSAA(V) ^ SAA(V* ) may then be identified with the elements

(
I

t~v i 1I 1
v i 2I 2

¯v i pI p
!~v j pI p

¯v j 1I 1!,

ofWAA ~abusing notation!. Now using the fact that the indicesi 1 ,...,i p and j 1 ,...,j p are arbitrary
and the relations of thev i I , ~4!, we see in fact that all order 2p invariants can be written as linea
combinations of

(
I

~v i 1I 1
v i 2I 2

¯v i pI p
!~v j pI p

¯v j 1I 1!.

We now wish to show that all such invariants are generated by the quadratic invar
( Iv i I v

j I , for which we use induction on the order of the invariant. Trivially the quadratic inv
ants themselves are quadratic, and for the induction hypothesis we assume that all invari
order 2(p21) or less are generated by quadratic ones. Now the general invariant above c
suggestively rewritten

(
I

S v i 1I 1
v i 2I 2

¯v i p21I p21S (I p

v i pI p
v j pI pD v j p21I p21

¯v j 1I 1D ,

so that if we can drag the quadratic term in the middle through to the right hand side to pr
a sum of products of order 2 and order 2(p21) invariants plus a sum of lower order invariant
then we are done. This boils down to the following lemma.

Lemma 14: There exist constantsa iub
jkv (which may be determined), such that

S (
I

v i I v
j I D vkK5 (

u,v,b
a iub

jkvvuKS (
I

vvIv
bID 2(

b
a iub

jkuvbK.

Proof:

S (
I

v i I v
j I D vkK5 (

I ,a,b,A,B
v i I ~~ ř !21

ab
jk ŘAB

IK vaAvbB!

5 (
I ,a,b,A,B

~ ř !21
ab
jk R̂AB

IK S (
u,v,U,V

~r 21
t2 !21

uv
ai ~R21

t2 !21
UV
AI ~vuUvvV2dv

udV
U! D vbB

5 (
a,b,B,u,v

~ ř !21
ab
jk ~r 21

t2 !21
uv
ai ~vuKvvBvbB2dv

u!vbK,

where the first two lines come from the relations of the algebra,~4! and ~5!, and the third uses
(Ř)AB

IK 5(R21
t2 )AI

KB . The result follows. j

For the last part, we note that from the defining relations and the action on the basis, o
prove that
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(
I

v1Iv
1I5(

I
q2(J,IN1J~N1I !q215S (

I
N1I D

q21

,

where NiI is the number operator,NiI x(s)5siI x(s), and since (( IN1I)q21 is in the image of
Uqu(m,n), so is( Iv1Iv

1I . It now follows by simple induction that all quadratic invariants lie
the image ofUqu(m,n) since we can construct them from( Iv1Iv

1I using the adjoint action of
Uqu(m,n).

This completes the proof of the theorem. j

To conclude the duality theory, we need a technical lemma which uses the Haar meas
the dual quantum group. For general reference see Ref. 17.

Define (Fq
1G,* ) to be the Hopf* -subalgebra of the Hopf dual ofUqg generated by the matrix

elements of finite dimensional representations of type 1.~A finite dimensional representation i
said to be of type 1 if the weightw haswi5q(a i ,l) for lPP1.) Let * denote the Haar measur
of (Fq

1G,* ). Let the coaction of (Fq
1G,* ) onWAA be denotedd so thatd:WAA→WAA^Fq

1G.
Lemma 15: LetA denote those operators inWAA which commute with the action ofUqu(M )

on SAA(V).
There exists a unique projectionp:WAA→A ofWAA ontoA, which satisfies the conditiona

expectation property,

~ABp!p5ApBp, ;A,BPWAA ,

and such that if U is a finite dimensionalUqu(M )-invariant subspace of Fock space and
PWAA leaves U invariant and commutes withUqu(M ) on U, then

ApuU5AuU .

Proof: Classically we would defineAp5*Gdg ad(g)(A). Since we have quantum analogs
the adjoint action and the Haar measure we can make essentially the same definition.

Define

Ap5S 1^ E D dA, APWAA .

It is clear that the projection is onto since ifA is invariant,Ap5A,

Ap5S 1^ E D dA5S 1^ E D ~A^ 1!5A.

We also have~suppressing the unit map!

dAp5dS S 1^ E D dAD5S 1^ 1^ E D ~d ^ 1!dA5S 1^ 1^ E D ~1^ D!dA5S 1^ E D dA5Ap
^ 1.

Therefore,Ap is invariant by definition and so commutes with the action ofUqu(M ) by Theorem
12.

We also have the conditional expectation,

~ABp!p5S 1^ E D d~ABp!5S 1^ E D ~dA!~Bp
^ 1!5ApBp.

Finally, assumeU is a finite dimensionalUqu(M ) andA-invariant subspace on which the tw
commute. For any uPU,

~dA!u5Au^ 1,

since this is just the dual of the statement thatA is invariant under theUqu(M )-action when
restricted toU, using the nondegeneracy of the Hopf pairing. It follows that
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Apu5F S 1^ E D ~dA!Gu5S 1^ E D ~Au^ 1!5Au.

j

Theorem 16: Let q be a nonroot of unity. The decomposition of the joint metaplectic act
Uqu(M ), Uqu(m,n) is of the form

m. %
i

r i ^ r i8 ,

wherer i andr i8 are irreducible representations ofUqu(M ) andUqu(m,n), respectively. Further-
more, there is bijection between these representations such thatr i only occurs withr i8 and vice
versa; this is the duality correspondence.

Proof: Let P denote the polynomial subspace on which the dual pair act. With respect t
Uqu(M ) action there will be an isotypic decomposition

P. %
i 50

`

I i .

By irreducibility,WAA is dense on the representation space, so the restriction to any finite d
sional subspace will be the full endomorphism algebra. The isotypic componentsI i are a direct
sum ofUqu(M )-invariant finite dimensional spaces. On any invariant finite dimensional subs
U,I i , the full commutant ofUqu(M ) in End(U) will just be the restriction ofUqu(m,n) to U by
Lemma 15. Then the double commutant theorem says thatU is an irreducible representation und
the action ofUqu(M ) ^Uqu(m,n). SinceU was arbitrarily large, however, this must also hold f
I i , and soI i5Vi ^ Vi8 , whereVi andVi8 are the spaces on whichr i andr i8 act, where these are
irreducible representations ofUqu(M ) andUqu(m,n), respectively. It also follows by the lemm
that for anyiÞ j there exists an elementXPUqu(m,n) which is 0 onI i but nonzero onI j . Thus
we obtain the duality correspondence. j

As an immediate consequence of the duality, we see that certain aspects of the Cle
Gordon theory ofUqu(m,n) can be addressed by looking atUqu(M ). For example, we give the
quantum analog of Theorem 4.6 of Ref. 8. Letr1 and r2 be irreducible representations o
Uqu(m,n) which arise in the decomposition of̂ Mm (m,n) and ^

Nm (m,n) , respectively, where
m (m,n) is the metaplectic representation ofUqu(m,n). We wish to consider the decomposition
r1^ r2 into irreducibles.

Theorem 17: Letr1 ,r2 be as above then the duality theory allows one to associate to them
representationsr18 andr28 of Uqu(M ) andUqu(N), respectively. Ifr3 is an irreducible represen-
tation of Uqu(m,n) occurring in r1^ r2 , then its multiplicity in that space is the same as t
multiplicity of the irreducibleUqu(M ) ^Uqu(N)-module occurring inr38 , wherer38 , is the irre-
ducible representation ofUqu(M1N) associated tor3 via duality.

Proof: Note first that the representation space of^
Mm (m,n) is acted on byUqu(M ) and that

furthermore,Uqu(m,n) andUqu(M ) form a dual pair; similarly forUqu(N) andUqu(M1N).
The result follows by applying the duality theory forUqu(m,n) when paired withUqu(M ),

Uqu(N), andUqu(M1N). j
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Singularities at the tip of a plane angular sector
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Solutions of the Helmholtz and Laplace equations in three dimensions which van-
ish, or have vanishing normal derivative on an angular sector of opening angleb,
are considered. The solutions are required to be functions of distance from the tip
of the sector multiplied by functions of the angular coordinates. The angular func-
tions are eigenfunctions of the Laplace–Beltrami operator on the unit sphere, which
vanish or have vanishing normal derivative, on a great circle arc of lengthb. It is
shown that the Dirichlet eigenvalues are nondecreasing functions ofb, and the
Neumann eigenvalues are nonincreasing. Furthermore, each Dirichlet eigenvalue of
a sector of angleb is a Neumann eigenvalue of a sector of angle 2p2b and
conversely. The eigenvalues forb50, p, and 2p are found explicitly. These results
lead to a qualitative description of the eigenvalues as functions ofb. The eigenval-
ues determine the singular behavior of the solutions at the tip. ©1999 American
Institute of Physics.@S0022-2488~99!02002-2#

I. INTRODUCTION

We consider two boundary value problems inR3 for the Helmholtz equation:

~D1k2!u50, x¹Sb , u~x!50, xPSb , ~1.1D!

~D1k2!u50, x¹Sb1
, ]nu~x!50, xPSb . ~1.1N!

HereSb is a plane angular sector of opening angleb, 0<b<2p, andk is a real constant. We cal
~1.1D! the Dirichlet problem and~1.1N! the Neumann problem, and we seek solutions of
product form

u~x!5k2n j n~kr !U~u,w!, kÞ0,
~1.2!

u~x!5r nU~u,w!, k50.

The spherical Bessel functionj n(kr) tends to (kr)n as kr tends to zero, so both expressions
~1.2! behave liker n nearr 50. Thus the exponentn determines the behavior ofu at the tip of the
plane angular sector, so it is important in scattering from objects with such tips. Therefor
shall study the values ofn and their dependence uponb.

Upon using~1.2! in ~1.1! we find thatn is an eigenvalue andU is the corresponding eigen
function of one of the following problems:

BU1n~n11!U50, ~u,w!¹Cb , U50, ~u,w!PCb , ~1.3D!

BU1n~n11!U50, ~u,w!¹Cb , ]nU50, ~u,w!PCb . ~1.3N!

In ~1.3!, B is the Laplace–Beltrami operator on the unit sphere andCb is the great circle arc of
lengthb in which the plane angular sectorSb intersects the unit sphere.

a!Electronic mail: keller@math.stanford.edu
10870022-2488/99/40(2)/1087/6/$15.00 © 1999 American Institute of Physics
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To describe our results we writen j5D j (b) andn j5Nj (b) for the j th Dirichlet and Neumann
eigenvalue, respectively,j 51,2,... . In Sec. II we shall prove the following theorems:

Theorem 1:

~a! D j (b) is a nondecreasing function ofb, j 51,2,... .
~b! Nj (b) is a nonincreasing function ofb, j 51,2,... .

Theorem 2: Every Dirichlet eigenvalueD j (b) is equal to some Neumann eigenval
Nj 8(2p2b), and conversely:D j (b)5Nj 8(2p2b).

Note that Theorem 2 and either part of Theorem 1 implies the other part of Theorem 1. In
III, Theorem 3, we giveD j (b) andNj (b) for all j andb50, p, and 2p. In Theorem 2] of Sec.
IV, we give the relation between the values ofj and j 8 which appear in Theorem 2.

The preceding results enable us to determine the qualitative behavior of all the eigenva
functions ofb, as we shall show in Figs. 1 and 2. Therefore they supplement the numerical r
obtained for the first few eigenvalues by Kraus and Levine,1 Blume and Kirchner,2 Blume and
Kahl,3 De Smedt and Van Bladel,4,5 Boersma,6 and Abawiet al.7 Kraus and Levine1 reduced~1.3!
to two problems for two Lame´ ordinary differential equations by separation of variables in sphe
conal coordinates. Boersma6 proved the special case of Theorem 2 forj 51 and j 852, and we
make use of his idea to prove it in general. Abawiet al.7 proved that for 0,b,p, D j (b) lies
between an integern and n11/2 when the eigenfunction is even andNj (b) lies betweenm
11/2 andm when the eigenfunction is odd, wherem is an integer. These results follow from ou
Theorems 1 and 3. They also derived largej asymptotic formulas forD j (b) andNj (b).

FIG. 1. Sketch of the Dirichlet eigenvaluesD j (b) as functions ofb. At b50, D j (0)5n with multiplicity 2n11. Of them,

n remain constant asb increases, andn11 increase. Thesen11 all equaln1
1
2 at b5p and all equaln11 at b52p.
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II. PROOFS OF THEOREMS 1 AND 2

To prove Theorem 1 we recall that each eigenvalue is determined by the Courant mi
principle. For the Dirichlet problem, the admissible functions must vanish on the arcCb . Since
this arc increases withb, the class of admissible functions decreases asb increases. Therefore, th
mimimax does not decrease asb increases, which proves part~a!.

For the Neumann problem, the boundary condition is a natural condition, so it does not r
the admissible functions. In fact, the admissible functions may be discontinuous acrossCb , so as
b increases, the class of admissible functions increases. Therefore, the minimax does not i
asb increases, which proves part~b!, and completes the proof of Theorem 1.

To prove Theorem 2 we suppose that the plane angular sector lies in the planez50. The
operatorD in ~1.1! is even inz. Therefore the even and odd parts of each solutionu of ~1.1! are
also solutions of~1.1!, so we can consider only even and odd solutions. Letv j

D(b) be an even
eigenfunction of~1.1D! corresponding to the eigenvalueD j (b). Then the normal derivative o
v j

D(b) vanishes in the complementary sectorS2p2b . Therefore the odd function (sgnz)vj
D(b) has

vanishing normal derivative on both sides ofS2p2b . Furthermore it is continuous acrossSb

because it vanishes there, and its normal derivative is continuous acrossSb becausev j
D(b) is

even. Thus (sgnz)vj
D(b) is a solution of~1.1N! with S2p2b instead ofSb and with the eigenvalue

n5D j (b). ThereforeD j (b) is also a Neumann eigenvalue ofS2p2b , say Nj 8(2p2b). Thus
D j (b)5Nj 8(2p2b). On the other hand, ifv j 8

N (2p2b) is an odd eigenfunction of~1.1N! with
eigenvalueNj 8(2p2b) then (sgnz)vj8

N(2p2b) is a solution of~1.1D! with Sb instead ofS2p2b

and with eigenvalueNj 8(2p2b). ThereforeNj 8(2p2b) is a Dirichlet eigenvalue ofSb , say
D j (b), soNj 8(2p2b)5D j (b).

FIG. 2. Sketch of the Neumann eigenvaluesNj (b) as functions ofb. At b52p, Nj (2p)5n with multiplicity 2n12. Of

them,n11 remain constant andn11 increase asb decreases. The increasingn11 all equaln1
1
2 at b5p and all equal

n11 at b50. There the multiplicity ofNj (0)5n11 is 2(n11)11. According to Theorem 2, Figs. 1 and 2 are mirr
images of one another about the vertical lineb5p. For eachn, the numbers of constant eigenvalues differ by one.
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We have now shown that every Dirichlet eigenvalueD j (b) with an even eigenfunction is
equal to some Neumann eigenvalueNj (2p2b) with an odd eigenfunction, and conversely. Ne
we consider a Dirichlet eigenvalueD j (b) with an odd eigenfunction. Such an eigenfunction m
vanish on the entire planez50. Therefore it is a Dirichlet eigenfunction ofSb with eigenvalue
D j (b) for every value ofb in the interval 0<b<2p. In particular,D j (b) is a Dirichlet eigen-
value for b52p. In Theorem 3, we shall show that every such eigenvalue is also a non
Neumann eigenvalue forb52p, and also for every value ofb in 0<b<2p, with the corre-
sponding eigenfunction being even. In the same way we can show that every Neumann eige
Nj 8(2p2b) with an even eigenfunction is also a Dirichlet eigenvalueD j (b) with an odd eigen-
function. This completes the proof of Theorem 2.

III. EIGENVALUES AND EIGENFUNCTIONS FOR b50,p,2p

Now we shall determine the solutions of~1.3! explicitly by separation of variables in spheric
polar coordinates for three special anglesb50,p,2p. For b50, the boundary conditions ar
irrelevant, as can be shown by reformulating each problem in variational form. The conseq
is that for both problems the eigenfunctions and eigenvalues are exactly those for the full s
which are just the spherical harmonics:

Ynm
e ~u,w!5Pn

m~cosu!cosmw, n5n, m50,1,...,n, n50,1,2,...,
~3.1!

Ynm
o ~u,w!5Pn

m~cosu!sinmw, n5n, m51,...,n, n51,2,... .

Thus the multiplicity of the eigenvaluen is 2n11. To find thej th eigenvaluesD j (0) andNj (0),
we count the number of eigenvalues less thann with their multiplicities. This is just the sum o
2n811 from n850 to n85n21, which is exactlyn2. Therefore we have

D j~0!5Nj~0!5n, j 5n21m, m51,...,2n11, n50,1,2,... . ~3.2!

To solve~1.3! for b52p, we assume that the plane angular sector is the planez50 so that
the great circleC2p is the circleu5p/2. The solutions of~1.3D! are those spherical harmonic
~3.1! which vanish onu5p/2, and they are just the ones for whichPn

m(cosu) is an odd function
of cosu. Similarly the solutions of~1.3N! are those solutions~3.1! for which Pn

m(cosu) is an even
function of cosu. SincePn

m(2cosu)5(21)n1mPn
m(cosu), the eigenfunctionYnm

e or Ynm
o is an odd

or even function of cosu depending on whethern1m is odd or even. It follows thatn of theYnm

are odd andn11 are even. Therefore for~1.3D!, n5n with multiplicity n, while for ~1.3N!, n
5n with multiplicity n11. Thus counting the eigenvalues less thann we find

D j~2p!5n, j 5
n22n

2
1m, m51,2,...,n, n51,2,..., ~3.3!

Nj~2p!5n, j 5
n21n

2
1m, m51,...,n11, n50,1,2,... . ~3.4!

When b5p the plane angular sector is a half-plane that we choose to be the half-plaw
50, which is alsow52p. Then the Dirichlet eigenfunctions are spherical harmonics that va
at w50 andw52p. They are

Ũnm
o ~u,w!5Pn21/2

2m11/2~cosu!sin~m2 1
2!w, n5n2 1

2

Unm
o ~u,w!5Pn

m~cosu!sinmw, n5n
J m51,2,...,n,

n51,2,... . ~3.5!

Thus each of the two eigenvaluesn5n and n5n2 1
2 has multiplicity n for n51,2,... . Upon

counting the number of eigenvalues less thann2 1
2 with their multiplicities, we getn(n21), while

the number less thann is n2. Thus we have
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D j~p!5n2 1
2,

D j~p!5n,

j 5n~n21!1m
j 5n21m,J m51,2,...,n

n51,2,... . ~3.6!

The Neumann eigenfunctions forb5p are

Ũnm
e ~u,w!5Pn21/2

2m11/2~cosu!cos~m2 1
2!w, n5n2 1

2, m51,...,n, n51,2,...,

Unm
e ~u,w!5Pn

m~cosu!cosmw, n5n, m50,1,...,n, n50,1,... . ~3.7!

For n50,1,2,... there is an eigenvaluen5n with multiplicity n11, while for n51,2,... there is an
eigenvaluen5n2 1

2 with multiplicity n. Counting leads to

Nj~p!5n2 1
2, j 5n21m, m51,2,...,n, n51,2,...5n,

Nj~p!5n, j 5n~n11!1m, m51,2,...,n11, n50,1,2,... . ~3.8!

We shall summarize the preceding results as a theorem.
Theorem 3„a…: The eigenvaluesD j (0) andNj (0) are given by~3.2! and the corresponding

eigenfunctions are given by~3.1!.
„b…: The eigenvaluesD j (p) andNj (p) are given by~3.6! and ~3.8!, respectively, while the

corresponding eigenfunctions are given by~3.5! and~3.7!, respectively. The plane angular sect
is the half-planew50 andw52p.

„c…: The eigenvaluesD j (2p) andNj (2p) are given by~3.3! and~3.4!, respectively, while the
corresponding eigenfunctions are given by~3.1! with n1m odd for D j (2p) andn1m even for
Nj (2p). The plane angular sector is the planeu5p/2.

We note that the Dirichlet and Neumann eigenfunctions and eigenvalues forb52p are also
eigenfunctions and eigenvalues for any value ofb in 0<b<2p. This is so because they vanis
or have vanishing normal derivative on the whole planeu5p/2. Therefore they satisfy the dif
ferential equation and boundary conditions~1.3D! or ~1.3N!, respectively. Of course they are n
all the eigenfunctions and eigenvalues. We shall state this as a corollary.

Corollary: Each eigenvalueD j (2p)5n with multiplicity n andNj (2p)5n with multiplicity
n11 is an eigenvalue with the same multiplicity, for every value ofb in 0<b<2p. It is not
necessarily thej th one unlessb52p.

It is also possible to calculate the derivative with respect tob of each eigenvalue atb
50,p, and 2p. One way to do this is to use the Lame´ ordinary differential equations obtained b
Kraus and Levine,1 which simplify at these values ofb to the equations for Legendre function
and for trigonometric functions. Another way is to use the method of Ward and Keller,8 which
treats strong localized perturbations of eigenvalue problems, including perturbations of b
aries.

We have applied the latter method to calculate the derivative of the lowest Dirichlet e
value atb5p, and we have obtained

D18~p!5
1

2p
. ~3.9!

This is just the slope of the straight line in the plane ofb and D1(b) through the three points
@0,D1(0)50#, @p,D1(p)5 1

2#, and@2p,D1(2p)51#.
We also find

Dm~n21!1m8 ~p!Þ0, m51

Dm~n21!1m8 ~p!50, m52,3,...,n. ~3.10!
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IV. CONCLUSION

Now we shall use our theorems and corollary to describe the overall behavior of the e
values as functions ofb. Let us begin with the Dirichlet eigenvaluesD j (b) ~See Fig. 1.! Theorem
3~a! shows via~3.2! that atb50 each integern>0 is an eigenvalue with multiplicity 2n11. The
corollary shows that of the 2n11 eigenvalues equal ton, n of them remain constant asb increases
from 0 to 2p. The othern11 are nondecreasing functions ofb according to Theorem 1~a!. At
b5p thesen11 eigenvalues have increased to the value (n11)2 1

25n1 1
2, as shown by Theo-

rem 3~b! via ~3.6! with n replaced byn11. At b52p thesen11 eigenvalues have increased
the valuen11, as Theorem 3~c! shows, via~3.3! with n replaced byn11.

Figure 2 displays the Neumann eigenvaluesNj (b) as functions ofb. Theorem 3~a! shows via
~3.2! that at b50 each integern>0 is an eigenvalue with multiplicity 2n11. The corollary
shows thatn11 of them remain equal ton asb increases. Theorem 1~b! shows that the remaining
n of them are nonincreasing functions ofb. In Fig. 2, the 2n11 eigenvalues which equaln11 at
b50 are shown. Of them,n12 remain constant andn11 decrease asb increases, reaching th
valuen1 1

2 at b5p andn at b52p.
Theorem 2 implies that Figs. 1 and 2 are mirror images of one another about the vertic

b5p. The multiplicity of the constant eigenvalues, i.e., those independent ofb, is greater by one
in Fig. 2 than it is in Fig. 1. By using Figs. 1 and 2 we can determine the value ofj 8 corresponding
to j in Theorem 2. We can express the result as the following more precise form of Theore
Theorem 2 #„a…: For n>0 ands51,2,...,n21,

Dn21n1s~b!5N~n11!21s~2p2b!.

„b…: For n>1,

n5Dn211~b!5Dn212~b!5¯5Dn21n~b!

5N~n11!22n~2p2b!5¯5N~n11!221~2p2b!

5N~n11!2~2p2b!.
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A method of solving the eikonal equation, in either flat or curved space–times, with
arbitrary Cauchy data, is extended to the case of data given on a characteristic
surface. We find a beautiful relationship between the Cauchy and characteristic data
for the same solution, namely they are related by a Legendre transformation. From
the resulting solutions, we study and describe the wave-front singularities that are
associated with their level surfaces~the characteristic surfaces or ‘‘big wave
fronts’’!. © 1999 American Institute of Physics.@S0022-2488~99!03301-0#

I. INTRODUCTION

The high frequency limit of the wave equation is given by the eikonal equation, written i
arbitrary space–time as

gab~xa!]aS~xa!]bS~xa!50, ~1!

where thexa5(xi ,t) are any local coordinates, andgab(xa) is the metric of the given space–time
The level surfaces of a solution of Eq.~1!, S(xa)5const~which need not be smooth every plac
and could have self-intersections!, are three-dimensional characteristic surfaces~the ‘‘big wave
fronts’’ in the terminology of Arnold1!, and the sectionst5constant of these surfaces are t
two-dimensional~‘‘small’’ ! wave fronts. The vector fieldl a5gab]bS is tangent to the null geo
desic that generate the characteristic surfaces.

In flat space–time the eikonal equation becomes

hab]aS]bS5~] tS!22~]xS!22~]yS!22~]zS!250. ~2!

In Sec. II we review the method2 to give a general solution of the eikonal equation in fl
space–time adapted to appropriate Cauchy data given att5t0 . In Sec. III we modify the method
so that the eikonal equation is solved with arbitrarycharacteristicdata given at null infinity. The
relation between both methods is studied in Sec. IV where we find that the Cauchy and c
teristic data are related by a Legendre transformation. The wave-front singularities of the
surfaces of the resulting solutions are described parametrically in Sec. V and finally the ge
zation of our results to asymptotically flat spaces–times is given in Sec. VI.

II. SOLUTIONS OF THE EIKONAL EQUATION

From the point of view of the theory of partial differential equation, the eikonal equation
homogeneous first-order nonlinear partial differential equation; there exists a solutionS* , called
the ‘‘complete integral,’’ depending on three arbitrary constants,3 e.g., in flat space–time the
function

S* ~xi ,t,a i !5xia i2t( ~a i !
2 ~3!

is easily seen to satisfy~2!.
Remark 1: The fact that the equation is homogeneous plays no role in this section, but w

crucial in the generalization to characteristic data.
10930022-2488/99/40(2)/1093/10/$15.00 © 1999 American Institute of Physics
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Remark 2: From now on we will treat the problem of the eikonal in flat space; we leav
discussion of general space–times to the end.

It is possible to generate a ‘‘general integral,’’ i.e., a solution of the eikonal equation dep
ing on an arbitrary function, by means of the following procedure: First, define the fun
S** (xi ,t,a i) of the coordinates and the free parametersa i as

S** ~xi ,t,a i ![S* ~xi ,t,a i !2H~a i !, ~4!

whereH(a i) is any function of thea i ’s.
Next, think of thea i ’s as functions of the space–time points obtained from the follow

conditions:

]S** /]a i5]S* /]a i2]H/]a i50. ~5!

Equation~5! determine the space–time dependence of thea i ’s @a i5Ai(x
i ,t)# given that

U]2S** ~xi ,t,a i !

]a i]a j
UÞ0. ~6!

This condition can fail in lower dimensional regions called the caustics. This issue will be ret
to in Sec. V.

Substitutinga i5Ai(x
i ,t) into Eq. ~4! we eliminate thea i , and obtain

S** ~xi ,t !5S* ~xi ,t,Ai~xi ,t !!2H~Ai~xi ,t !!. ~7!

It is easy to verify that, because of the condition~5!,

]aS** 5]aS* , ~8!

which means thatS** (xi ,t) is a new solution of the eikonal equation~1! determined by an
arbitrary functionH. We can determine the free functionH so that the solution~7! satisfies initial
Cauchy data att5t0 . We denote the Cauchy data bySCauchy(x

i). Conditions~5! imply that att
5t0 , a i5]SCauchy/]xi . Inverting these relations we obtainxi5Xi(a i), and replacing them in~7!
at t5t0 we find the sought for relation:

H~a i !5S* ~Xi~a i !,t0 ,a i !2SCauchy~Xi~a i !!. ~9!

This last equation relates the arbitrary functionH(a i) with the Cauchy data,SCauchy(x
i), at t

5t0 and allows us to construct solutions of the eikonal equation in flat space–time for any
data.

We now change the set of thea i ’s for new parameters that are more appropriate to the st
of asymptotically flat spaces and we rewrite our previous equations in terms of them. A com
integral of the eikonal equation, Eq.~1!, can be written in terms of new parameters (b,z,z̄) as

S* ~xa,b,z,z̄ !5bxal a~z,z̄ !, ~10!

where

l a~z,z̄ !5
1

A2~11zz̄ !
~~11zz̄ !,~z1 z̄ !,2 i ~z2 z̄ !,~zz̄21!! ~11!

is the null covector pointing in the (z,z̄) direction. The (z,z̄) are the stereographic coordinat
that parametrize the sphere of null directions.

From ~10! and ~11!, we get the relations between the new parameters (b,z,z̄), and the old
a’s:
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a15
b

A2

z1 z̄

11zz̄
, a252 i

b

A2

z2 z̄

11zz̄
, a35

b

A2

zz̄21

11zz̄2 , ~12!

and

b5A2( a i
2. ~13!

In terms of the new parameters Eq.~4! reads:

S** ~xa,b,z,z̄ !5bxal a~z,z̄ !2H~b,z,z̄ !, ~14!

whereH(b,z,z̄) is an arbitrary function that will be determined by the initial conditions. Con
tions ~5! on (b,z,z̄) become

xal a~z,z̄ !2
]H

]b
~b,z,z̄ !uz,z̄50, ~15!

bxama~z,z̄ !2ðH~b,z,z̄ !ub50, ~16!

bxam̄a~z,z̄ !2ð̄H~b,z,z̄ !ub50. ~17!

Remark 3: We have replaced the derivatives with respect toz and z̄, respectively, by

ð5~11zz̄ !
]

]z
, ð̄5~11zz̄ !

]

]z̄
,

and used the fact that ðla(z,z̄)5ma and ðð̄l a5na2 l a where ( l a ,na ,ma ,m̄a) form a null
Minkowski space tetrad for each(z,z̄).

The functionH(b,z,z̄) can be determined by means of the same procedure using the c
tions a i5]SCauchy/]xi at t5t0 and relations~12! to obtain thexi5Xi(b,z,z̄), and finally rewrit-
ing ~9!

H~b,z,z̄ !5S* ~Xi~b,z,z̄ !,t0 ,b,z,z̄ !2SCauchy~Xi~b,z,z̄ !!.

III. CHARACTERISTIC DATA FOR THE EIKONAL EQUATION

The eikonal equation, being hyperbolic, admits a characteristic formulation. Even thoug
results of this section can be applied to any characteristic hypersurface in Minkowski, in flat
~as in any asymptotically simple space–time! there are two preferred characteristic surfac
namely future and past null infinity, respectively. In the following we will formulate the cha
teristic problem in terms of data given at future null infinity,I1. I1 has the topology ofS2

3R; we choose Bondi coordinates on it, namely (z,z̄) on theS2 and the retarded timeuB along
R. In an analogous manner as for the Cauchy problem, the characteristic data at future null
will be defined by a function of (uB ,z,z̄):

Scharacteristic5L~uB ,z,z̄ !. ~18!

The goal of this section is to develop a method to construct solutions of the eikonal equ
geometrically adapted to the characteristic data, Eq.~18!, at I1.

Remark 4: In asymptotically flat space–times, in the neighborhood of future null infinity,I1,
there is a preferred class of coordinates referred to as Bondi coordinates. Given a Bondi s
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(uB ,z,z̄) at I1, a new system4 (u,z,z̄) can be defined by(u,z,z̄)5(L(uB ,z,z̄),z,z̄). The
characteristic data, (18), can be thought of as being generated by this coordinate change
senting a one parameter family of arbitrary u5constslices ofI1.

In flat space–times we can define a two parameter family of null surfaces by

S* 5xal a~z,z̄ !. ~19!

As was pointed out in Ref. 2, Eq.~19! has a dual interpretation. For (z,z̄) kept constant, its
level surfaces define null planes intersecting the time axis at a time equal the value ofS* and with
its direction given by (z,z̄); on the other hand, for a fixed value ofxa it represents the light cone
cut atI1 of the space–time pointxa in the interior, i.e., it represents the intersection of the n
cone fromxa with I1.

We can think of the characteristic data~18! geometrically, as defining a one parameter fam
of cuts atI1 in terms ofu5L(uB ,z,z̄)5const.@It is assumed that this can be inverted so that
cuts are given byuB5L21(u5const,z,z̄).] With this point of view, we construct a solution of th
eikonal equation~1! @corresponding to the characteristic dataL(uB ,z,z̄)], such that the family of
null surfaces in the interior are defined by the null geodesics normal to the family of cuts at in
given byL(uB ,z,z̄)5const. In order to do so we will generalize the method of Sec. II.

Defining

S** ~xa,z,z̄ !5L~S* ,z,z̄ !5L~xal a~z,z̄ !,z,z̄ !, ~20!

we see immediately that it is a solution of the eikonal equation depending on two free param
@Note the duplication of notation which arises from the different meanings to the same o
S* 5uB5xal a(z,z̄).] By putting the requirement onz and z̄ that ðS** 5ð̄S** 50, i.e.,

L̇~S* ,z,z̄ !xama~z,z̄ !1ðL~S* ,z,z̄ !50,
~21!

L̇~S* ,z,z̄ !xam̄a~z,z̄ !1ð̄L~S* ,z,z̄ !50,

whereL̇[]S8L. we can solve forz and z̄ in terms ofxa, i.e., Eq.~21! gives us

z5G~xa! ~22!

and

z̄5Ḡ~xa!, ~23!

except at the caustics when5

U ð2S** ðð̄S**

ðð̄S** ð̄2S**
U50. ~24!

This issue will be discussed in Sec. V.
Finally replacing (z,z̄) in ~20! and differentiating we find

]aS** ~xa,G~xa!,Ḡ~xa!!5L̇ l a~G~xa!,Ḡ~xa!!. ~25!

Therefore, the function

S** ~xa,G~xa!,Ḡ~xa!! ~26!

satisfies the eikonal equation, and by construction~20! it is adapted to the characteristic da
defined by the functionL(uB ,z,z̄) at I 1. The null normals to level surfaces
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S** ~xa,G~xa!,Ḡ~xa!!5const ~27!

are normal to the cutsL(uB ,z,z̄)5const. atI 1. Note that the fact thatS** (xa) is a new solution
of the eikonal equation is a consequence of property of the eikonal equation of being ho
neous in]aS.

IV. RELATION BETWEEN THE CAUCHY AND CHARACTERISTIC CONSTRUCTIONS

In this section we give the connection between the two methods of construction. Earli
showed how to relate the Cauchy data,SCauchy(x

t), with the arbitrary functionH(b,z,z̄) of Sec.
II, so that any solution of the eikonal equation can be cast in the form of Eq.~14!. Therefore, there
must be a relationship of the characteristic construction to the construction via Cauchy da
hence a relationship between the functionsL(xal a(z,z̄),z,z̄) andH(b,z,z̄).

We first note that though in both methods there is an arbitrary function of three variabl
the characteristic method there appear only two parameters (z,z̄) while in the Cauchy method
there are the three (b,z,z̄).

We can reduce the three to two by solving Eq.~15!,

xal a~z,z̄ !2
]H

]b
~b,z,z̄ !50, ~28!

for b5b(xal a ,z,z̄) or changing notation and usinguB5xal a , we haveb5b(uB ,z,z̄). Now
thinking of ~28! as an implicit relation defining eitheruB5U(b,z,z̄)[(]H/]b)(b,z,z̄) or b
5b(uB ,z,z̄). Note that if we treatH as a function of (uB ,z,z̄), i.e.,H5H(b(uB ,z,z̄),z,z̄) then

Ḣ[]uB
Huz,z̄5

]H

]b
~b,z,z̄ !ḃ ~29!

or

ḃ5
Ḣ

]H/]b
. ~30!

We replaceb5b(uB ,z,z̄) into the two conditions, Eqs.~16! and ~17!, obtaining

b~uB ,z,z̄ !xama~z,z̄ !2ðH~b~uB ,z,z̄ !,z,z̄ !ub50,
~31!

b~uB ,z,z̄ !xam̄a~z,z̄ !2ð̄H~b~uB ,z,z̄ !,z,z̄ !ub50,

which appear similar to Eq.~21!, namely:

L̇~uB ,z,z̄ !xama~z,z̄ !1ðL~uB ,z,z̄ !uuB
50,

~32!
L̇~uB ,z,z̄ !xam̄a~z,z̄ !1ð̄L~uB ,z,z̄ !uuB

50.

We explicitly write ub anduuB
in the ð operators to mean that the angular derivatives are ta

keepingb or uB constant, respectively; alsoL̇ means]uB
Luz,z̄ for any L(uB ,z,z̄).

Remark 5: As we mentioned earlier, Eqs.~31! or ~32! implicitly define z5G(xa) and z̄
5Ḡ(xa) everywhere except at the caustics. They can be approached in a limiting fashion.

Given an arbitrary functionF(b,z,z̄) andb(uB ,z,z̄) there is the following relation betwee
differential operators,
                                                                                                                



t

e
ion
is that

l equa-
at

1098 J. Math. Phys., Vol. 40, No. 2, February 1999 E. T. Newman and A. Perez

                    
ðF~b,z,z̄ !ub5ðF~b,z,z̄ !uuB
2~]F/]b!~b,z,z̄ !ðbuuB

,

~33!
ð̄F~b,z,z̄ !ub5ð̄F~b,z,z̄ !uuB

2~]F/]b!~b,z,z̄ !ð̄buuB
.

Using these relations to replace the ð andð̄ derivative operators atb constant by operators a
uB constant in~32! we obtain:

bxama~z,z̄ !2ðH~b,z,z̄ !uuB
1~]H/]b!~b,z,z̄ !ðbuuB

50,

~34!
bxam̄a~z,z̄ !2ð̄H~b,z,z̄ !uuB

1~]H/]b!~b,z,z̄ !ð̄buuB
50.

Applying relations~33! to the functionF5uB5xal a(z,z̄), thought of asuB5U(b,z,z̄), via
the following steps:

ðF~b,z,z̄ !ub5ð~xal a!5xama , ~35!

ðF~b,z,z̄ !uu5ðuuu50, ~36!

~]F/]b!ðbuuB
5~]u/]b!ðbuuB

5ḃ21ðbuuB
, ~37!

we get the following important equation:

ḃxama52ðbuuB
. ~38!

Finally inserting this relation, with Eq.~30!, into ~34! we obtain

bxama~z,z̄ !2ðH~b,z,z̄ !uuB
2Ḣxama~z,z̄ !50,

~39!
bxam̄a~z,z̄ !2ð̄H~b,z,z̄ !uuB

2Ḣxam̄a~z,z̄ !50,

which can be rewritten as

ð~uBb2H !uuB
1

]

]uB
~uBb2H !xama~z,z̄ !50,

~40!

ð̄~uBb2H !uuB
1

]

]uB
~uBb2H !xam̄a~z,z̄ !50.

Comparing Eq.~40! with ~32! we see that they are identical when we set

L~uB ,z,z̄ !5uBb~uB ,z,z̄ !2H~b~uB ,z,z̄ !,z,z̄ !. ~41!

From Eq.~28! we also have that

uB5]H/]b, b5]L/]uB . ~42!

We see that the two data functionsL(uB ,z,z̄) and H(b,z,z̄) are related by the Legendr
transformation, Eqs.~41! and~42!. We have finally arrived at a very simple and beautiful relat
between the two methods. An essential property of the eikonal equation for this relationship
it is homogeneous in]aS.

V. PARAMETRIC DESCRIPTION OF THE WAVE FRONTS

Using the methods described above we can construct a general solution of the eikona
tion either for the Cauchy or the~corresponding! characteristic data. In Sec. IV we showed th
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they are simply related by a Legendre transformation in the variablesuB andb. Once we have the
solution of the eikonal equation we can study the geometry of its wave fronts. In particular w
interested in the description of the singularities developed by them, namely, its caustics.

A key step in both methods consists of expressing the free parameters, e.g., (b,z,z̄), con-
tained in the formalism as functions of the space–time points,xa. In many cases the problem o
inverting Eqs.~15!–~17! or Eq. ~21! in order to get either (z,z̄) or (b,z,z̄) as functions of the
space–time coordinatesxa, can be a formidable task and at times impossible. However, it is
absolutely necessary, since it is possible to give a parametric description of the null su
defined by Eq.~14! or Eq. ~26!, respectively.~We follow the path given in Ref. 2 for the case o
the stationary eikonal equation!.

In the Cauchy case we have three parameters (z,z̄,b) in the initial data for the eikona
equation. See Eq.~14!. We introduce the new parameterr together with (z,z̄,b) by means of the
following equation:

r 5b21ðð̄S** 5xa~na2 l a!2b21ðð̄H~b,z,z̄ !ub ~43!

and the previous equations;

xal a~z,z̄ !2
]H

]b
~b,z,z̄ !uz,z̄50,

bxama~z,z̄ !2ðH~b,z,z̄ !50, bxam̄a~z,z̄ !2ð̄H~b,z,z̄ !50. ~44!

The four equations~44! and~43! can be solved for the coordinatesxa in terms of (b,r ,z,z̄),
using the orthonormality of the null tetrad:

xa5
]H

]b
~ l a1na!2S r 2

ðð̄H

b
D l a2

ð̄H

b
ma2

ðH

b
m̄a. ~45!

Equation~45! is not very convenient for the analysis of the wave fronts because the para
b does not have a simple geometric meaning related with the null surfaces. On the other h
we know, the level surfaces ofS** 5u5const in Eq.~14! define the null surfaces in which we ar
interested. Therefore, a sensible parametrization will be the one that replaces theb with the
parameteru defined by

u5bxal a2H~b,z,z̄ !5L~xal a ,z,z̄ !. ~46!

Constant values ofu label the characteristic surfaces themselves and are different thauB

5xal a . By changing the parameterb in favor of u we are switching to the characteristic descr
tion which provides a better framework to study the dynamics of the wave fronts.

Remark 6: Note that r[b21ðð̄S** 5b21ðð̄u defines an affine parameter along the n
geodesics that rule the characteristic surfaces u5const.

Instead of performing the transformation from the ‘‘Cauchy parametrization’’ to the new
(u,r ,z,z̄) we take a shortcut, and start directly with the characteristic approach. Using the no
of the previous sections for the characteristic problem the new parameters are determined
previous equations:

u5u~xa!5L~xal a ,z,z̄ !, ~47!

L̇~xal a ,z,z̄ !xama~z,z̄ !1ðL~xal a ,z,z̄ !50
~48!

L̇~xal a ,z,z̄ !xam̄a~z,z̄ !1ð̄L~xal a ,z,z̄ !50,
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and the new one defined byr 5L̇21ðð̄S** yielding

r 5xa~na2 l a!1
ð̄L̇

L̇
xama1

ðL̇

L̇
xam̄a1

L̈

L̇
xaxbmam̄b1

ðð̄L

L̇
. ~49!

The coordinatesxa can be written in terms of the four parametersu, r, z, and z̄ as

xa5uB~ l a1na!1~r 1ð̄F1F̄Ḟ!l a2F̄ma2Fm̄a, ~50!

where
F[2ðL/L̇, ~51!

and the functionuB[xal a is written in terms of the parametersu, z, and z̄ implicitly by u
5L(xal a ,z,z̄), i.e., xal a5L21(u,z,z̄). (L21 denotes the inversefunctionof L.!

Treating Eq.~50! as a coordinate transformation between the natural coordinates asso
with the solution, i.e., the (u,z,z̄,r ), and the standard space–time coordinatesxa, the transforma-
tion breaks down when its Jacobian vanishes. This is a three surface in the space–time; the
set associated with the solution.

After a lengthy calculation we find that this occurs when

J5
]~ t,x,y,z!

]~u,r ,z,z̄ !
5r 22s0s̄050, ~52!

where

s05ðF1FḞ. ~53!

This is equivalent to Eq.~3.1! of Ref. 4.
There is a simple geometric interpretation of Eqs.~52! and ~53!; the shear functions of the

congruence of null geodesics that generate the surfacesu5constant, with the affine parameterr,
is given by6

s5
s0

r 22s0s̄0 .

Therefore, the vanishing of the Jacobian~52! implies that the shear of the congruence diverg
We regain the expression defining caustics from Ref. 2 in the stationary case, namely,

r 22ð2Lð̄2L50, ~54!

sinces05ð2L.
The form of the metric tensor in the new coordinates is

ds25hab dxa dxb

52
du

L̇
H dr1duS 11ðF̄̇1FF̄̈

L̇
D 1dz̄S ðs̄01Fṡ̄02Ḟs̄01 F̄̇r

P
D

1dzS ð̄s01F̄ṡ02 F̄̇s1Ḟr

P
D J 2

2r

P2 ~s0dz21s̄0dz̄2!22~r 21s0s̄0!
dz dz̄

P2 , ~55!

where P511zz̄. This line element, corresponding to shearing nonstationary null coordin
defined by Eq.~50! reduces to the one given in Ref. 2 in the stationary regime. As pointed o
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this reference it might be of interest to use Eq.~55! as a background metric in linearized gravi
for higher order pertubations in problems where gravitational radiation is important.

VI. THE EIKONAL EQUATION IN ASYMPTOTICALLY FLAT SPACE–TIMES

In a straightforward manner all our results can be generalized to the case of arbitrary c
space–times, and the proofs of all the relations above follow basically the same path. W
assume that there is given a system of local coordinatesxa in an arbitrary curved space–time an
a two parameter family~sphere’s worth! of solutions of the eikonal equation, i.e.,Z(xa,z,z̄) such
that

gab~xa!]aZ~xa,z,z̄ !]bZ~xa,z,z̄ !50, ~56!

such that its~null! gradient sweeps out the light cone atxa as (z,z̄) range over the sphere.
Such characteristic functionsS5Z(xa,z,z̄) are one of the main variables of the null surfa

formulation of general relativity; they contain all the conformal information of the space–tim7

In the special case of asymptotically flat space–timesZ(xa,z,z̄) can be interpreted either as th
light cone cut ofI 1 of the point with coordinatesxa, or as the past light cone of a point atI 1

with coordinates (u,z,z̄).7

We take the complete solutionbZ(xa,z,z̄), and define, in an analogous manner to the fla
space construction,

u5S** ~xa,b,z,z̄ !5bZ~xa,z,z̄ !2H~b,z,z̄ !. ~57!

On Eq.~57! we impose the conditions, equivalent to~15!, ~16!, and~17!, namely,

]S**

]b
5Z~xa,z,z̄ !2

]H~b,z,z̄ !

]b
50, ~58!

ðS** 5bðZ~xa,z,z̄ !2ðH~b,z,z̄ !50, ~59!

ð̄S** 5bð̄Z~xa,z,z̄ !2ð̄H~b,z,z̄ !50, ~60!

and solve for (b,z,z̄) @as noted earlier, this is always possible, aside from lower dimensi
~caustic! regions which can be approached in a limiting fashion# in terms of thexa.

When these are resubstituted into Eq.~57!, S** then becomes a new solution of the eikon
equation since

]aS** 5b]aZ. ~61!

As in the flat case, we can determine the arbitrary functionH(b,z,z̄) in terms of correspond-
ing data given on a Cauchy surfaceS. Suppose that we are given a coordinate system (t,xi) such
that t5t0 corresponds to our Cauchy surface, together with suitable Cauchy dataSCauchy(x

i) on
S. A needed generalization of the relationshipa i5]SCauchy/]xi from Sec. II is

]SCauchy~xi !

]xi 2
b]Z~xi ,t0 ,z,z̄ !

]xi 50, ~62!

which is to be considered as three equations for the determination ofxi in terms of (b,z,z̄), i.e.,
xi5Xi(b,z,z̄). When these are inserted into Eq.~57! at t5t0 we obtain

H~b,z,z̄ !5bZ~Xi~b,z,z̄ !,t0 ,z,z̄ !2SCauchy~Xi~b,z,z̄ !!,

in analogy to the results of Sec. II.
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The characteristic formulation from Sec. III is even simpler. Starting with any func
L(uB ,z,z̄) defined onI1, we obtain a solution to the eikonal equation with the characteristic
given by

u5S** ~xa,z,z̄ !5L~Z~xa,z,z̄ !,z,z̄ !, ~63!

where (z,z̄) are functions of the coordinatesxa such that the equivalent to Eq.~21! holds, i.e.,
when

ðS** 5L̇ðZ~xa,z,z̄ !2ðL~Z,z,z̄ !50, ~64!

ð̄S** 5L̇ð̄Z~xa,z,z̄ !2ð̄L~Z,z,z̄ !50. ~65!

Again the relationship betweenH(b,z,z̄) andL(u,z,z̄) is given by the Legendre transforma
tion

L~Z,z,z̄ !5Zb~Z,z,z̄ !2H~b~Z,z,z̄ !,z,z̄ !, ~66!

with

Z5]H/]b, b5]L/]Z. ~67!

VII. CONCLUSION

We have generalized the results of Ref. 2 concerning solutions of the flat-space e
equation. We saw two different means of giving data and solving the eikonal equation
Cauchy, and the characteristic formulation. Each one leads to different methods. The two m
are beautifully related by a Legendre transformation, Eqs.~41! and~42!. Moreover, all our results
can be generalized to the case of curved space–times. The characteristic formulation appea
better for the study of the dynamics of the wave fronts. By means of a suitable parameter
we could describe the caustics in the wave fronts, and find a simple geometric interpreta
terms of the shears of the null congruence generating the wave fronts.
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Application of geometric probability techniques
to the evaluation of interaction energies arising
from a general radial potential
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A formalism is developed for using geometric probability techniques to evaluate
interaction energies arising from a general radial potentialV(r 12), where r 12

5ur22r1u. The integrals that arise in calculating these energies can be separated
into a radial piece that depends onr 12 and a nonradial piece that describes the
geometry of the system, including the density distribution. We show that all geo-
metric information can be encoded into a ‘‘radial density function’’G(r 12;r1 ,r2),
which depends onr 12 and the densitiesr1 and r2 of two interacting regions.
G(r 12;r1 ,r2) is calculated explicitly for several geometries and is then used to
evaluate interaction energies for several cases of interest. Our results find applica-
tion in elementary particle, nuclear, and atomic physics. ©1999 American Insti-
tute of Physics.@S0022-2488~99!00102-4#

I. INTRODUCTION

In many areas of physics, integrals of the form

U5E d3r 1 d3r 2 r~r1!r~r2!V~ ur12r2u! ~1.1!

are encountered, which typically describe the self-energy of a system with density profiler~r ! in
the presence of a two-body central potentialV(ur12r2u). A familiar example of such an integra
arises in the calculation of the electrostatic self-energy of a spherical charge distribution~e.g., a
nucleus! due to the Coulomb potentialVC(ur12r2u),

VC~ ur12r2u!5
e0

2

ur12r2u
, ~1.2!

wheree0 is the electric charge (e0
2> 1

137). For a simple potential such asVC(ur12r2u), the integral
in Eq. ~1.1! can be evaluated directly, by expanding 1/ur12r2u in terms of Legendre polynomials
However, for some types of potentials, evaluatingU in this way can be extremely tedious. A
example of current interest1,2 is the self-energy of a nucleus or a neutron star arising fr
neutrino–antineutrino (n2 n̄) exchange. In this case the analog ofVC in Eq. ~1.2! for the neutron–
neutron (n2n) potential in a neutron star arising fromn2 n̄ exchange is3–5

Vnn~ ur12r2u!5
GF

2an
2

4p3ur12r2u5
, ~1.3!

whereGF is the weak Fermi constant, andan52 1
2 the coupling constant describing the streng

of then2n interaction. One of the difficulties that arises in evaluatingU, starting from Eq.~1.3!,

a!Present address: Department of Physics, University of California—Berkeley, Berkeley, California 94720.
b!Present address: Department of Natural Sciences, Longwood College, Farmville, Virginia 23909.
11030022-2488/99/40(2)/1103/10/$15.00 © 1999 American Institute of Physics
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is that the integral is well defined only if the neutron–neutron hard core interaction is used
off the lower limit of integration whenur12r2u,r c>0.5310213 cm. However, since this con
straint applies tor 215ur12r2u5r 12, and not tor 15ur1u or r 25ur2u separately, the integration
region in Eq.~1.1! implied by this constraint is somewhat complicated. As we discuss in d
below, the evaluation of integrals involving potentials such asVnn(r 12), and other potentials a
well, can be greatly facilitated using geometric probability techniques. By use of these techn
the six-dimensional integral in Eq.~1.1! can be replaced by a one-dimensional integral in
variable r 12, which can be easily integrated in all cases of interest. The geometric proba
techniques are especially useful whenr(r1) is radially varying (r(r1)5r(ur1u)).

It is helpful to introduce the formalism of geometric probability by first considering
electrostatic~Coulomb! energy of a uniform spherical charge distribution of radiusR. Direct
evaluation of the six-dimensional integral in Eq.~1.1! yields

UC5
6

5

e0
2

R
. ~1.4!

For a spherically symmetric distribution containingZ charges there areZ(Z21)/2 possible pairs,
and hence the total Coulomb energyWC of such a distribution is

WC5
Z~Z21!

2
UC5

3

5
Z~Z21!

e0
2

R
, ~1.5!

which is the standard result.6,7

In contrast to the preceding derivation, which begins with a six-dimensional integral
formalism of integral geometry expressesUC immediately as a one-dimensional integral. For a
function g(r 12), its average valuêg& taken over a uniform spherical volume of radiusR is

^g&5E
0

2R

dr12 P3~r 12!g~r 12!, ~1.6!

where

E
0

2R

dr12 P3~r 12!51. ~1.7!

The functionP3(r 12) denotes the normalized probability density for finding two points rando
chosen in a uniform three-dimensional sphere to be a distancer 12 apart. The functional form of
P3(r 12) has been obtained previously by a number of authors,8–13

P3~r 12!5
3r 12

2

R3 F12
3

2 S r 12

2RD1
1

2 S r 12

2RD 3G . ~1.8!

Using Eq.~1.8!, UC is given by

UC5^e0
2/r 12&5E

0

2R

dr12S 3r 12
2

R3 D F12
3

2 S r 12

2RD1
1

2 S r 12

2RD 3G S e0
2

r 12
D 5

6

5

e0
2

R
, ~1.9!

in agreement with Eq.~1.4!. The utility of the geometric probability formalism becomes mo
evident when one attempts to evaluateUnn5^Vnn(r 12)& using Eq.~1.3!,

Unn5
GF

2an
2

4p3 E
r c

2R

dr12@h~r c ,R!P3~r 12!#
1

r 12
5

. ~1.10!
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In Eq. ~1.10! h(r c ,R) is a constant that ensures thatP3(r 12) is appropriately normalized in the
interval 2R>r 12>r c , and is given by

h~r c ,R!5~128sc
318sc

422sc
6!21, ~1.11!

wheresc5r c/2R. It follows from Eq.~1.11! that h(0,R)51, as expected. Combining Eqs.~1.10!
and ~1.11! then gives immediately,

Unn5
3

8p3

GF
2an

2

\c

1

R3r c
2 S 12

r c

2RD 3

h~r c ,R!. ~1.12!

For a sphere containingN particles, the total energyWnn is then given by

Wnn5
N~N21!

2
Unn5

3

16p3 N~N21!
GF

2an
2

\c

1

R3r c
2 S 12

r c

2RD 3

h~r c ,R!. ~1.13!

To evaluatêg& in Eq. ~1.6! for a particular geometry, one must first determine the functio
form of P3(r 12) appropriate to that geometry. In practice, it would be of great value to k
P(r )[P3(r 12) for different ~nonconstant! density distributions, as well as for other geometries.
this paper we address the former problem, by developing a general framework for calcu
P(r ) for geometries with variable density. We illustrate this approach in Sec. II by first reder
~in a much simpler way! the result for a sphere of constant density given in Eq.~1.8!. We then
obtainP(r ) for a sphere with a Gaussian density distribution. In Sec. III we apply our forma
to geometries that can be used to calculate the interaction energy between microscopic obje
to a generalized two-body interaction potential. One example is the van der Waals interac

II. GENERAL FORMALISM

A. The radial density function

Returning to Eq.~1.1!, we introduce the change of variables,

r125r22r1 ,
~2.1!

d3r 125d3r 2 ,

so that

U5E dr12F r 12
2 E dV12E d3r 1 r1~r1!r2~r121r1!GV~r 12!,

[E dr12 G~r 12;r1 ,r2!V~r 12!, ~2.2!

where r 125ur22r1u. The ‘‘radial density function’’G(r 12;r1 ,r2) is the generalization of the
probability functionP3(r 12) in Eq. ~1.8!. G(r 12;r1 ,r2) incorporates all the geometric informatio
about the densitiesr1(r1) andr2(r2) and the geometry, but is independent ofV(r 12).

B. Geometry with spherical symmetry

The first case we consider is when bothr1(r1) andr2(r2) exhibit spherical symmetry abou
a common origin, so thatr15r1(ur1u) andr25r2(ur2u) about this origin. From Eq.~2.2! we can
then write

G~r 12;r1 ,r2!5r 12
2 E d3r 1E dV12 r1~r 1!r2~ ur121r1u!. ~2.3!
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Sincer(r 1) andr2(ur121r1u)5r(r 2) are independent ofdV1 anddf12, we can integrate ove
these variables immediately to give

G~r 12;r1 ,r2!5r 12
2 E

0

`

dr1 4pr 1
2r1~r 1!E

0

p

du12 2p sin u12r2~ ur121r1u!. ~2.4!

Note that the upper limit of integration forr 1 can always be taken to be infinite, even for a fin
spherical mass distribution, sincer1(r 1) can be defined to be zero forr 1.R. Using the law of
cosines, we have

2cosu125
r 12

2 1r 1
22r 2

2

2r 1r 12
. ~2.5!

Sincer 12 and r 1 are the independent variables of integration in Eq.~2.3!, it follows that cosu12

depends only onr 2 for fixed values ofr 12 and r 1 . Thus,

sin u12 du125
2r 2

r 1r 12
dr2 . ~2.6!

Combining Eqs.~2.6! and ~2.4! then gives

G~r 12;r1 ,r2!58p2r 12E
0

`

dr1 r 1r1~r 1!E
ur 122r 1u

r 121r 1
dr2 r 2r2~r 2!. ~2.7!

As an application of Eq.~2.7! we recalculate the Coulomb energy of a sphere of radiusR and
constant density 1/V, where the density is normalized so that its integral over the spherical vo
is unity. Since the integral in Eq.~2.7! is symmetric in the interchange ofr 1 andr 2 , we can write

Gsphere~r 12;r1 ,r2!516p2r 12E
r 12/2

`

dr1 r 1r~r 1!E
ur 122r 1u

r 1
dr2 r 2r~r 2!. ~2.8!

The lower limit on ther 1 integration follows by noting that whenr 25r 1 the triangle formed by
the vectorsr1 , r2 , andr12 is isosceles, and hence by the triangle inequality 2r 1.r 12. From Eq.
~2.8! we have

Gsphere~r 12;r1 ,r2!5
16p2r 12

V2 E
r 12/2

R

dr1 r 1E
ur 122r 1u

r 1
dr2 r 25

3r 12
2

R3 F12
3

2 S r 12

2RD1
1

2 S r 12

2RD 3G ,
~2.9!

in agreement with the expression forP3(r 12) in Eq. ~1.8!. The expression for the Coulomb energ
of a sphere of charge then follows immediately from Eq.~1.9!. Having demonstrated that th
present formalism correctly reproduces the classical results for a sphere of constant dens
turn in the next section to a problem that has not been considered previously in the literatu
distribution of points in a sphere with a Gaussian density variation.

III. RADIAL DENSITY FUNCTION FOR A GAUSSIAN DISTRIBUTION

We derive in this section the radial density function for a spherically symmetric distributio
matter centered at the origin, whose density varies as

r~r !5Ae2r 2/R0
2
, ~3.1!

whereA andR0 are constants, andr is measured from the origin. If we normalizer(r ) so that its
integral over all space is unity, then
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A5R0
23p23/2. ~3.2!

Combining Eqs.~3.1! and ~2.8!, we find

G~r 12;r1 ,r2![G~r 12;r!58p2A2r 12E
0

`

dr1r 1e2r 1
2/R0

2E
ur 122r 1u

r 121r 1
dr2r 2e2r 2

2/R0
2
. ~3.3!

Carrying out the integration with respect tor 2 , we find

G~r 12;r!54p2A2R0
2r 12e

2r 12
2 /R0

2E
0

`

dr1r 1e22r 1
2/R0

2
@e22r 12r 1 /R0

2
2e2r 12r 1 /R0

2
#. ~3.4!

The integration with respect tor 1 can then be performed by completing the square, which gi

G~r 12;r!54p2A2R0
2r 12e

2r 12
2 /2R0

2E
0

`

dr1 r 1$exp@22~r 12r 12/2!2/R0
2#2exp@22~r 11r 12/2!2/R0

2#%

54p2A2R0
2r 12e

2r 12/2R0
2F1

2
Ap

2
r 12R0G . ~3.5!

Combining Eqs.~3.2! and ~3.5! yields the final result,

G~r 12;r!5A2

p

r 12
2

R0
3 e2r 12

2 /2R0
2
. ~3.6!

G(r 12;r) is shown in Fig. 1 and is normalized to unity over the interval@0,̀ #. When the lower
limit of integration is replaced byr c , G(r 12;r) must be divided by the constantC(r c ,R0) to be
properly normalized, where

C~r c ,R0!5E
r c

`

dr12 G~r 12;r!>12A2

p

r c
3

3R0
3

. ~3.7!

FIG. 1. The plot ofP(r )[G(r ;r) in Eq. ~3.6! as a function ofr 5r 12 ~solid line!. For comparison the functionP3(r ) in
Eq. ~1.8! is also shown~dashed line!.
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We note that forr 12
2 /R0

2!1,G(r 12;r) can be approximated by

G~r 12;r!>A2

p

r 12
2

R0
3

, ~3.8!

which agrees~up to an overall constant! with the results for a uniform sphere given in Eqs.~1.8!
and ~2.9!. This agreement conforms to our intuition that whenr 12 is small compared toR0 , a
spherically symmetric Gaussian distribution will look like that of a sphere with an approxim
constant local density.

The result in Eq.~3.6! can be applied immediately to calculate both the Coulomb energy
the neutrino-exchange energy of a matter distribution with the Gaussian density profile giv
Eq. ~3.1!. The Coulomb energyWC is then given by

WC5
Z~Z21!

2 K e2

r 12
L 5

Z~Z21!

2 E
0

`

dr12S e2

r 12
D3

r 12
2

R0
3 A2

p
e2r 12

2 /2R0
2
5

1

A2p

Z~Z21!e2

R0
.

~3.9!

As noted in the Introduction, geometric probability techniques are particularly useful when e
ating expressions where the nucleon–nucleon hard core radiusr c appears, as in the integral fo
Unn in Eq. ~1.10!. From Eq.~3.6! we have, for a Gaussian density distribution ofN neutrons,

Wnn5
N~N21!

2 K GF
2an

2

4p3r 12
5 L 5

N~N21!

2C~r c ,R0!
E

r c

`

dr12S GF
2an

2

4p3r 12
5 D r 12

2

R0
3
A2

p
e2r 12

2 /2R0
2
. ~3.10!

Evaluation of the integral in Eq.~3.10! yields

Wnn5
GF

2an
2

8p3

N~N21!

C~r c ,R0! H 1

A2p

e2r c
2/R0

2

r c
2R0

3
1

1

2
Ap

2

1

R0
5 F2 i 1

1

p
EiS 2r c

2

2R0
5 D G J ,

~3.11!

Ei~z!5PE
2z

` ~21!

tet dt,

whereP denotes the principal value integration. We note that the quantity in square brackets
~3.11! is real, as henceWnn is real as well. As can be seen from Eq.~3.11!, by usingG(r 12;r) in
Eq. ~3.6! we obtain an exact closed-form expression forWnn for the case of a Gaussian densi
distribution. By way of contrast, the conventional approach would lead to an infinite serie
pression forWnn . We complete this discussion by noting that forr c /R0!1 we can write

E
r c

`

dr
G~r ;r!

r 5 >
2

Ap

1

r c
2R0

3
, ~3.12!

and, hence,

Wnn>
GF

2an
2N~N21!

8&p7/2

1

r c
2R0

3
. ~3.13!

As expected from Eq.~1.13!, Wnn;1/r c
2 when r c /R0!1 for the Gaussian distribution, just as

the case of the uniform sphere.
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IV. INTERACTION BETWEEN SOURCES

A. General formalism

In the previous section we have focused on calculating the radial density fun
G(r 12;r1 ,r2) needed to evaluate the self-energy of a spherically symmetric matter distributio
this section we calculate the analogous expressions forG(r 12;r1 ,r2), which characterize the
interaction of two different matter distributions in volumesv1 andv2 , respectively. In particular,
we generalize the calculations of Israelachvili14 to allow any two-body radial potential. Thes
results are of interest in the field of tribology, specifically in calculating interaction forces
energies due to van der Waals-type forces. This technique has been used to study the
interaction between an Atomic Force Microscopy~AFM! probe tip and a flat sample.15

Returning to Eq.~2.3!, we can rewrite the expression forG(r 12;r1 ,r2) in the form

G~r 12;r1 ,r2!5r 12
2 E dV12E d3r 1 r1~r1!r2~r121r1!

5E d3r 1 r1~r1!H r 12
2 E dV12 r2~r2!J . ~4.1!

In Eq. ~4.1! we have interchanged the order of the integrations, and have used Eq.~2.1! to replace
r121r1 by r2 . In this section we deal with the situation in whichr i(r i) are given by

r i~r i !5H r i , when r iPv i ,

0, otherwise.
~4.2!

For illustrative purposes we taker1 andr2 to be constants, so that

G~r 12;r1 ,r2!5r1r2E
v1

d3r 1H r 12
2 E

4p
dV12J [r1r2E

v1

d3r 1 S~r 12,r1!. ~4.3!

S(r 12,r1) can be viewed as the surface area formed by the intersection of a sphere cent
r150 ~in the volumev1) and having radiusr 12, with the second volumev2 . Several examples
will serve to clarify the application of Eq.~4.3!.

B. Point to sphere

Herev1 is a point having an infinitesimal volumedt, so that Eq.~4.3! becomes

G~r 12;r1 ,r2!5~r1 dt!r2S~r 12,r1!. ~4.4!

If v2 is a sphere of radiusR, then, from Fig. 2,

R25r 12
2 1r 222rr 12 cosu0 , ~4.5!

wherer is the distance from the point to the center of the spherical distributionv2 . It follows that

S~r 12,r1!52pr 12
2 E

0

u0
sin u12du125p

r 12

r
@R22~r 2r 12!

2#. ~4.6!

Combining Eqs.~4.4! and ~4.6! then gives

G~r 12;r1 ,r2!5~r1dt!r2H p
r 12

r
@R22~r 2r 12!

2#J . ~4.7!
                                                                                                                



face of

e

itrary

only

in

1110 J. Math. Phys., Vol. 40, No. 2, February 1999 Schleef et al.

                    
Equation~4.7! can be checked by noting that whenr 5R, G(r 12;r1 ,r2) describes the distribution
of distances between two points in a sphere, given that one of these points lies on the sur
the sphere. The latter distribution has been derived by Parry,16 and it is straightforward to show
that Eq.~4.7! agrees with this result whenr 5R. When combined with Eq.~2.3!, Eq. ~4.7! allows
the interaction energyU to be calculated for an arbitrary two-body potentialV(r 12) ~e.g., Cou-
lomb, Yukawa, van der Waals, etc.!.

C. Point to half-space

This geometry is very similar to the point-to-sphere case, except thatv2 is now an infinite
half-space separated by a distancer from an external point. For this geometry, cosu0 is given by

cosu05
r

r 12
, ~4.8!

and hence

S~r 12,r1!52pr 12
2 ~12cosu0!52pr 12~r 122r !. ~4.9!

Combining Eqs.~4.4! and ~4.9!, the radial density function is given by

G~r 12;r1 ,r2!5~r1 dt!r2$2pr 12~r 122r !%. ~4.10!

As in the previous case, the expression in Eq.~4.10! can be checked by noting that whenr 50,
G(r 12;r1 ,r2) becomes proportional tor 12

2 , which is the expected result for an infinit
half-space.16

D. Arbitrary volume to half-space

We can apply the previous result to compute the radial density function for an arb
volume v1 , in the presence of an infinite half-space. From Eq.~4.9! we see thatS(r 12,r1)
depends only on the distancex of a volume element from the boundary, and hence we need
specify the expression for the cross sectionA(x) of v1 as a function ofx. Then, from Eq.~4.10!
we have

G~r 12;r1 ,r2!52pr1r2E
0

r 12
dx~r 122x!A~x!. ~4.11!

FIG. 2. The representation of the point-to-sphere geometry.R is the radius of the sphere, whose center is a distancer from
the external point.G(r 12 ;r1 ,r2) is calculated as a function of the distancer 12 between the external point and a point
the sphere.
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If v1 is a sphere of radiusR whose center is a distancer from the boundary of the half-space, the
from Fig. 3,

A~x!5H 0, x<r2R,

p@R22~r2x!2#, r2R<x<r1R,

0, x>r1R.

~4.12!

Correspondingly, the density function is divided into three regions:G(r 12;r1 ,r2)50 if
r 12<(r 2R), and

G~r 12;r1 ,r2!5H p2

6
r1r2r 12~r 2R2r 12!

3~r 122r 23R!, r 2R<r 12<r 1R,

8p2

3
r1r2r 12R

3~r 122r !, r 1R<r 12.

~4.13!

The results in Eq.~4.13! are useful in Atomic Force Microscopy since they can be used to ana
the interaction of a general AFM probe tip interacting with a flat sample.

V. CONCLUSIONS

The discussion in the Introduction illustrates the power of geometric probability techniqu
demonstrating how a six-dimensional integral can be immediately reduced to a straightfo
one-dimensional problem. In practice, this facilitates the evaluation of interaction energies s
Unn in Eq. ~1.10!, which would be extremely difficult to treat otherwise, due to the presence or c .
We have extended the classical results of Refs. 8–13 to calculate for the first time the
density functions for a Gaussian density profile, and for two regions of different shapes inter
with each other. These results can be applied to a wide variety of physical systems, as w
discuss elsewhere.
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We list a series of corrections to equations appearing in Ref. 1. None of the following a
the content of the article. Equation (mI) in the set of Eqs.~1! is missing a factor12. The correct
equation reads as

~mI ! ðV5 1
2 W~L,1!V. ~1!

On p. 6399, the expression forQ given in between Eqs.~1! and~2! is incorrect by an overall
minus sign. The correct expression reads as

Q[
1

4q
L̄,11L,111

3

8q2 ~q,1!22
1

4q
q,11 . ~2!

There is a typo in the first line of Eq.~71! for the Green function. The correct expression rea
as

K̄2,0
1 5

def
2

1
4p

~11 z̄h!2~ h̄2 z̄ !

~11zz̄ !~11hh̄!~h2z!

52
1

4p
m•m̂̄ m• l̂ l •m̂

l • l̂ l •n̂
. ~3!

On p. 6404, the expressions fors and s̄ given by Eqs.~32! are mismatched. The correc
expressions are

s̄5
h̄2

A
DS j̄

h̄ D , s5
h2

A
DS j

h D . ~4!

On p. 6405, the expression forr given by ~44! is incorrect. The correct expression reads

r5 1
2 D ln~V2Aq!. ~5!

1S. Frittelli, E. T. Newman, and C. N. Kozameh, ‘‘On the dynamics of characteristic surfaces,’’ J. Math. Phy36,
6397–6416~1995!.
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We list a series of corrections to equations appearing in Ref. 1. None of the following a
the content of the article. Equations~14b! and~14d! have misprints. The correct equations read

~12l1l1* !Tj
15~]* l j1l0d j

21l1d j
11l2l j* !1l1~]l j* 1l0* d j

11l2* d j
11l1* l j !, ~1!

~12l1l1* !Tj*
15~]l j* 1l0* d j

11l2* d j
11l1* l j !1l1* ~]* l j1l0d j

21l1d j
11l2l j* !. ~2!

Equations~24! have missing parentheses and misprints. The correct equations read as

]* g012]g02[0, ~3!

]* ~g111g01l1!2]~g121g01![0, ]* ~g121g01!2]~g221g01l1* ![0, ~4!

]* ~g111g2 il i !2]~g121g1 il i* ![0. ~5!

Equations~26a! and ~26b!. A factor 1
2 is missing from both. The correct equations read as

W~12 1
4 l1l1* !52~ 1

2 ]* l12T1
12 1

2 l1$
1
2 ]l1* 2T1*

1%!, ~6!

W* ~12 1
4 l1l1* !52~ 1

2 ]l1* 2T1*
12 1

2 l1* $ 1
2 ]* l12T1

1%!. ~7!

Equations~28!. There are wrong signs and complex conjugations. The correct equations re

g0050, g015V2, g015g0250, ~8!

g115V2
„]* ~W2T1

1!1W* ~W2T1
1!…2g12T2*

12g11T1*
12g11T1*

1, ~9!

g115V2~W2T1
1!, g125V2~W* 2T1*

1!, ~10!

g1152V2l1 , g1252V2, g2252V2l1* . ~11!

1S. Frittelli, C. N. Kozameh, and E. T. Newman, ‘‘Lorentzian metrics from characteristic surfaces,’’ J. Math. Phy36,
4975–4983~1995!.
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We list a series of corrections to equations appearing in Ref. 1. None of the following a
the content of the article. On p. 4991, the expression given forg11 in Eq. ~2.22! contains two
typos. The correct expression should read as

g11522g011ð̄g112gab ðZ,a ðL̄,b. ~1!

On p. 4993, in the text of theRemark, one undisplayed equation is wrong. In the paper it re
as“bG524k“a(Ta

b2 1
4d

a
bT). The correct equation should read as

“bG5k “bT. ~2!

On p. 4996, there are incorrect signs in the expression of the vectorl a . The correct expres-
sion should read as

l a5
1

&~11zz̄ !
„~11zz̄ !,2~z1 z̄ !,i ~z2 z̄ !,~12zz̄ !…. ~3!

On p. 4998, the expression for the metric componentg11 in Eqs. ~A1! contains a typo. The
correct expression reads as

g115222 1
2ð̄

2L,11ðL̄,25222 1
2ð

2L̄,11ð̄L,1 . ~4!

On p. 5000, the expression forQ given by ~A8! is incorrect by an overall minus sign. Th
correct expression reads as

Q5
1

4q
DL̄1DL11

3

8q2 ~Dq!22
1

4q
D2q. ~5!

In Appendix B, there is a typo on theT1
i given by Eq.~B4!. The correct expression for theTi

1

reads as

qTi
15$L, iL̄,11ðL̄, i1L̄2d i

11L̄,0d i
122d i

2%L,11ð̄L, i1L,2L̄, i1L,0d i
21L1d i

122d i
1 .

~6!
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We list a series of corrections to equations appearing in Ref. 1. None of the following a
the content of the article. On p. 5007 and 5018, Eq.~8! contains a sign mistake. The corre
equation~8! should read as

n85n1 1
4 ]aja . ~1!

On p. 5011, the expressions for the metric componentsf 11 and f 00 in Eqs. ~24! and ~25!
contain a typo. The correct expressions read as

f 1152 1
2 ð̄2L11ðL̄252 1

2 ð2L̄11ð̄L1 , ~2!

f 0052 1
2 ð̄2L11ðL̄252 1

2 ð2L̄11ð̄L1 . ~3!

On p. 5015, in the text of the 18th line, one undisplayed expression is wrong. In the pa
reads asUsing (27) to eliminate ðL2 on the left . . . .The correct expression should read asUsing
(27) to eliminate ðL1 on the left . . .

On p. 5016, a sequence of four displayed equations contain mistaken factors. The
equation~48! should read as

2
1

4
ð3L̄15ð̄s,013ð̄ ÈR

]2 ðn dR̃23ðn2
3

2
ð2 ð̄n. ~4!

The displayed equation immediately below~48! should read as

ð̄2L052 1
4 ð̄ ð3L̄12 1

4 ðð̄3L112ð̄ ðn1ðð̄ð ð̄n. ~5!

The correct equation~49! should read as

ð̄2L05ð̄2s,01ð2s̄,013ð̄2 ÈR

]2 ðn dR̃13ð2 ÈR

]1 ð̄n dR̃24ð̄ ðn22ð̄ð2 ð̄n. ~6!

Finally, the correct lightcone cut equation~50! should read as

ð̄2 ð2Z5ð2s1ð2s̄1EuS 3ð̄2 ÈR

]2 ðn dR̃13ð2 ÈR

]1ð̄n dR̃24ð̄ðn 22ð̄ð2 ð̄n D dũ. ~7!

1S. Frittelli, C. N. Kozameh, and E. T. Newman, ‘‘Linearized Einstein theory via null surfaces,’’ J. Math. Phys36,
5005–5022~1995!.
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In this paper, we construct an analytical solution of the one-dimensional spinless
Salpeter equation with a Coulomb potential supplemented by a hard core interac-
tion, which keeps the particle in thex positive region. ©1999 American Institute
of Physics.@S0022-2488~99!02003-4#

I. INTRODUCTION

A simple relativistic version of the Schro¨dinger equation is the Spinless Salpeter Equat
~SSE!. For the one-dimensional case we have

A2dx
21m2C~x!5~E2V~x!!C~x!, ~1!

wherem is the mass of the particle,V(x) is the potential interaction,E the eigenenergy of the
stationary stateC(x),dx

25d2/dx252p2 and p is the relative momentum of the particle (\5c
51). p andx are conjugate variables. The differential operator of the Schro¨dinger equation is well
defined because it is a second derivative. To solve a physical problem, we must just so
ordinary eigenvalue differential equation. The situation is more complicated with the SSE be
the associated differential operator is a nonlocal one. Its action cannot be calculated directl
its operator form. Indeed, its action on a functionf (x) is known only if f (x) is an eigenfunction
of the operatordx

2. In this case we obtain

A2dx
21m2f ~x!5A2a1m2f ~x!, ~2!

wherea is the corresponding eigenvalue ofdx
2. That is why we need first to rewrite the SSE in

a form easier to handle. Since the operator is a nonlocal one, this form could be an in
equation. This have been done for the three-dimensional case in Refs. 1, 2. We pres
one-dimensional corresponding form in the next section. With the method used to obtain this
it is possible to rewrite the SSE as an integro-differential equation~see Ref. 2 for the three
dimensional case!. But the kernel is really complicated and the resulting equation seems to be
difficult to treat. We will use, here, another method to obtain the solution of the equation.

To solve the relativistic Coulomb problem we do not solve any differential equation.
calculate the action of the square-root operator on the functionsxne2bx. Because the result is
analytical and because the wave functions of the Coulomb problem with a hard core inter
are an exponential multiplied by a polynomial, which is also the form of the Schro¨dinger and
Klein–Gordon wave functions, a complete solution of Eq.~1!, with V(x)}1/x andx.0, can be
found.

The paper is organized as follow. In Sec. II, we give some useful mathematical re
concerning the square-root operator. In Sec. III, we solve the one-dimensional Coulomb pr

a!Electronic mail: fabian.brau@umh.ac.be
11190022-2488/99/40(3)/1119/8/$15.00 © 1999 American Institute of Physics
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with a hard core interaction. In Sec. IV, we compare our results to those obtained wit
Schrödinger equation3–6 and with the Klein–Gordon equation.7,8 At last, we give our conclusion
in Sec. V.

II. MATHEMATICAL FRAMEWORK

In this section we give some results concerning the square-root operator which we use t
the Coulomb problem supplemented by a hard core interaction.

A. Integral representation of the square-root operator

To obtain the integral representation of the square-root operator we use the Fourier tra
of the one-dimensional delta function. We have

A2dx
21m2C~x!5

1

2p E
2`

1`E
2`

1`

dpdqAp21m2e2 i ~q2x!pC~q!. ~3!

Extracting the operator2dx
21m2 and integrating over the momentump ~see Ref. 1! we obtain

A2dx
21m2C~x!5

1

p
~2dx

21m2!E
2`

1`

dqK0~muq2xu!C~q!

5
1

p
~2dx

21m2!E
0

1`

dqK0~mq!@C~x1q!1C~x2q!#, ~4!

whereK0(x) is the modified Bessel function of order 0~Ref. 9, p. 952!.

B. Invariant space functions of the one-dimensional square-root operator

In this section we calculate the action of the square-root operator on the functionsxne2bx. We
obtain that the result is equal to a polynomial of ordern, Mn(m,b,x), multiplied by the same
exponential. Thus, the space of functionsPn(x)e2bx is the invariant space functions of th
operator. Using formula~4! we have

A2dx
21m2xne2bx5

1

p
~2dx

21m2!e2bxE
0

1`

dqK0~mq!@~x1q!ne2bq1~x2q!nebq#. ~5!

This leads to~Ref. 9, p. 712!

A2dx
21m2xne2bx5

1

Ap
~2dx

21m2!e2bx(
k50

n S n
kDGk~m,b!xn2k. ~6!

The coefficientsGk(m,b) are given by

Gk~m,b!5
G~k11!2

G~k13/2! S 1

~m1b!k11 FS k11,1/2;k13/2;2
m2b

m1b D1~2 !k~b→2b! D , ~7!

whereF(a,b;g;x) is the hypergeometric function~Ref. 9, p. 1039!. Performing the derivation in
Eq. ~6! and rearranging the obtained relation, we have

A2dx
21m2xne2bx5

1

Ap
e2bx(

k50

n S n
kD $~m22b2!Gk~m,b!

12bkGk21~m,b!2k~k21!Gk22~m,b!%xn2k. ~8!
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It is possible to write the coefficientsGk(m,b) into a more useful form. This form will allow us
to find a recursion relation between the coefficientsGk(m,b) and to simplify the expression~8!.
We will be able to construct the polynomial,Mn(m,b,x), for each value ofn. We have the
relation ~Ref. 10, p. 562!

F~a,1/2;a11/2;2x!5G~a11/2!
x~122a!/4

A11x
P21/2

1/22aS 12x

11xD , ~9!

with x.0. The functionsPn
m(x) are the associated Legendre functions forx real anduxu,1. With

this relation, we find that

Gk21~m,b!5
G~k!2

A2m~m22b2!~2k21!/4
@P21/2

1/22k~b/m!1~2 !k21P21/2
1/22k~2b/m!#. ~10!

Now, using the recursion relation of the associated Legendre functions~Ref. 9, p. 1005!,

Pn
m12~x!522~m11!

x

A12x2
Pn

m11~x!1~m2n!~m1n11!Pn
m~x!, ~11!

and the explicit expression ofP21/2
21/2(x) andP21/2

1/2 (x) ~Ref. 9, p. 1008!, we can write the following
relations:

Gk12~m,b!5
1

m22b2 @~k11!2Gk~m,b!2~2k13!bGk11~m,b!#, ~12!

with

G0~m,b!5A p

m22b2, ~13!

G1~m,b!52
Apb

~m22b2!3/2. ~14!

At last, one can find, using Eq.~12!, that the general coefficient of the sum of Eq.~8! becomes

Fk,n~m,b!5
1

Ap
S n
kD @bGk21~m,b!2~k21!Gk22~m,b!#, with k>1. ~15!

And with this form, a recursion relation forFk,n(m,b) can be easily found. Thus, to conclude th
section, we are able now to rewrite Eq.~8! into a simple form:

A2dx
21m2xne2bx5Mn~m,b,x!e2bx5F (

k50

n

Fk,n~m,b!xn2kGe2bx, ~16!

F0,n~m,b!5Am22b2, ~17!

F1,n~m,b!5
nb

Am22b2
, ~18!

Fk12,n~m,b!5
n2k21

~k12!~m22b2!
@~k21!~n2k!Fk,n~m,b!2~2k11!bFk11,n~m,b!#, ~19!
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Fk,n115
n11

n112k
Fk,n . ~20!

We can see that we obtain the expected relation@from Eq.~2!# for n50. And thus we see that we
must haveb,m. With the relations~17!–~20! the polynomialMn(m,b,x) is completely defined
and we can construct it for each value ofn. This result will allow us to find, with few calculations
the solution of the one-dimensional relativistic Coulomb problem with a hard core interaction
give below the polynomials, as an example, forn50→4,

M0~m,b,x!5S, ~21!

M1~m,b,x!5Sx1
b

S
, ~22!

M2~m,b,x!5Sx21
2b

S
x2

m2

S3 , ~23!

M3~m,b,x!5Sx31
3b

S
x22

3m2

S3 x1
3m2b

S5 , ~24!

M4~m,b,x!5Sx41
4b

S
x32

6m2

S3 x21
12m2b

S5 x2
3m2

S7 ~m214b2!, ~25!

with

S5Am22b2. ~26!

Note that these last relations can be simply checked by acting the square-root operator o
side of Eq.~16!. For n51, we see that we have an identity if we use the relation forn50. Now,
knowing these two relations we see that the relation forn52 is also an identity, and so on for eac
value ofn.

III. THE ONE-DIMENSIONAL RELATIVISTIC COULOMB PROBLEM WITH A HARD CORE
INTERACTION

The equation to solve is

A2dx
21m2C~x!5S E1

k

x DC~x!. ~27!

We just consider here the casex.0 ~we will discuss after the extension to the wholex axis!.
Physically this means that we have a hard core interaction forx<0. Then the wave functions wil
possess the following asymptotic behavior:C(x)50 for x<0 and forx51`. Suppose that the
wave functions have the following form:

C~x!}(
k51

n

gk,nxke2bx, for x.0 and n51,2,...,

~28!
C~x!50 for x<0.

We do not consider the normalization of the functions here. Thus, replacing Eq.~28! into Eq.~27!
and using Eq.~16!, we obtain
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(
k51

n

gk,n(
p50

k

Fp,k~m,b!xk2p5E(
k51

n

gk,nxk1k(
k51

n

gk,nxk21. ~29!

Now equaling order by order we will determine the solution. The term of ordern gives

E5F0,n~m,b!5Am22b2. ~30!

From the term of ordern21, we have

k5F1,n~m,b!, ~31!

which leads to

b5
km

nA11~k/n!2
. ~32!

We can remark that we have as well the necessary relationb,m. We are now already able to
determine the energy spectrum. Using Eq.~30! and Eq.~32! we have

E5
m

A11~k/n!2
. ~33!

To obtain a complete solution, we must now find all thegk,n , and prove that the system o
equations which gives these quantities always has a solution. Obviously we can fixgn,n51. We
see that the term of ordern2 j determines the coefficientgn2 j 11,n if the previousgk,n are known.
Beginning with the term of ordern22, we obtain directlygn21,n . And now we can getgn22,n

from the term of ordern23. The independent term will fix the last factorg1,n . Thus, we have a
triangular system ofn21 algebraic equations withn21 unknowns. This system will alway
possess a solution if the determinant of the coefficient matrix is non-null. As this is a trian
matrix, the determinant is the product of the diagonal elements. The expression of these el
is k2F1,n2 j (m,b) which is equal toj b/S. These quantities are always non-null sincej .0. The
general form ofgk,n is obtained from the term of ordern2 j 21. We have

gn2 j ,n5
S

j b (
k50

j 21

gn2k,nF j 2k11,n2k~m,b!. ~34!

We can inverse the summation to finally obtain

gn2 j ,n5 (
p150

j 21

(
p250

p121

... (
pj 50

pj 2121

F̃~n,p1 , j !F̃~n,p2 ,p1!...F̃~n,pj ,pj 21!, ~35!

with

F̃~n,k, j !5
S

j b
F j 2k11,n2k~m,b!. ~36!

For the summation in Eq.~35!, we must use the following rule: If in a summation overpa , a

being arbitrary, the boundpa2121 is negative, all theF̃(n,k, j ) containing the indicespb>a are
equal to 1. With the formula~35!, we are able to construct the wave functions for the Coulo
problem with a hard core interaction. As an example we give the three first wave functions

C~x!}xQn~m,k,x!e2bx, ~37!
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with b given by Eq.~32!, and

Q1~m,k,x!51, ~38!

Q2~m,k,x!5x2
m2

S2b
, ~39!

Q3~m,k,x!5x22
3m2

S2b
x1

3m2

2b2S4 ~b21m2!, ~40!

with Sdefined by Eq.~26!. Again, we can perform a simple verification by putting these soluti
into Eq. ~27! and using Eq.~16!.

Contrary to the Schro¨dinger or Klein–Gordon equation, the extension of the solution to
wholex axis is really more complicated. We can try to use exp(2buxu) instead of exp(2bx) in our
solution. But the situation is quite more difficult. Indeed, the construction of the solution
based on the fact that exp(2bx) was an eigenfunction of the square-root operator and that
invariant space functions of this operator wasPn(x)exp(2bx), wherePn(x) is a polynomial of
ordern. But it is easy to show, with Eq.~4!, that

A2dx
21m2 exp~2muxu!5

2m

p
K0~muxu!. ~41!

This is non-null, as this is the case in the Eq.~16!. Thus, exp(2buxu) is not an eigenfunction of the
square-root operator andPn(x)exp(2buxu) is not an invariant space function of this operator. So
seems that the pure Coulomb problem has quite different solutions for the wave function
certainly for the spectrum.

IV. DISCUSSION

The one-dimensional Coulomb problem has been treated by many authors,
nonrelativistically3–6 and relativistically.7,8 But in these works the wholex axis is considered. As
a consequence, the ground state gives some difficulties.

In the nonrelativistic case the solution is

C~x!5x exp~2kmuxu/n!Ln21
~1! ~2kmuxu/n!, ~42!

E5m2
mk2

2n2 , with n51,2,... . ~43!

But we see that forn51, the wave function has a node at the origin. So this is not the w
function for the ground state. In fact, it is found to be infinitely bounded and the wave functi
a delta function.3,8

In the Klein–Gordon case the solution is

C~x!5xS exp~2buxu/2!Ln21
~g! ~buxu!, ~44!

E5mYA11
k2

~n211S!2, ~45!

with

b52mk/A~n211S!21k2, with n51,2,..., ~46!

and
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S5 1
2 ~11g!5 1

2 ~16A124k2!. ~47!

Thus, we see that we have two distinct solutions according the sign forS. Actually, the spectrum
with the minus sign forS is not acceptable. Indeed, a reason is that, forn51, when we perform the
limit k→0, we obtainE50. This means that the particle is still bounded when the interac
vanishes. Thus, the problem for the ground state persists~see Ref. 8 for a complete discussion!.

In this paper we do not consider the wholex axis and we have no problem with the groun
state. We consider a hard core interaction, forx<0, which givesC(x)50 in this region. Thus,
x exp(2bx) is the wave function for the ground state. Actually the purpose of these work w
solve a particular kind of differential equations with a difficult to handle nonlocal operator. Ind
any analytical solutions are known for the spinless Salpeter equation. Thus, we do not disc
problem of the ground state of the one-dimensional Coulomb problem. In Sec. III, we have s
that the extension to the wholex axis is not easy. Moreover, the ground state problem co
persist.

To compare our result to the results of previous works, we can consider the Schro¨dinger and
the Klein–Gordon equation for the Coulomb potential supplemented by a hard core intera
The spectra and the wave functions remain unchanged but the ground state problem has
peared. In the three cases we have the same kind of wave functions: an exponential~with different
arguments! multiplied by a polynomial~with different coefficients!. For the spectrum we have, i
the limit of smallk,

ESch5mS 12
k2

2n2D , ~48!

EKG5mS 12
k2

2n22
k4

n3 1
3k4

8n4D , ~49!

ESal5mS 12
k2

2n2 1
3k4

8n4D . ~50!

Thus we see that in the expansion of the Salpeter spectrum the term inn3 is missing compared to
the Klein–Gordon spectrum. So the difference between these two spectra is rather importa
an electron in an electromagnetic Coulomb potential, the splitting is about 1023 eV.

Another characteristic of the spinless Salpeter spectrum is thatk can grow up without limit.
This could come from the fact that we have another kinetic operator than in the Klein–Go
equation and that the result could be quite different. But the main explanation is certainly th
do not solve the real Coulomb problem and that this spectrum could be different contrary
Klein–Gordon equation, which keeps the same spectrum in both cases. Indeed, for the SS
exists a limit value fork in three dimensions.11

V. CONCLUSION

The purpose of this work was to find an analytical solution of a particular kind of differe
equations containing a nonlocal differential operator. The equation considered in this pap
one-dimensional spinless Salpeter equation~SSE!, is a simple relativistic version of the one
dimensional Schro¨dinger equation. The SSE is not a marginal equation. For three dimensions
equation comes from the Bethe–Salpeter equation~Refs. 12, 13, p. 297!, which gives the correct
description of bound states of two particles. Moreover, despite the presence of a so pa
operator, the SSE is often used in the potential models~see, for instance, Refs. 14–20!, which give
a phenomenological description of hadrons.

To find this analytical solution, we calculate, in Sec. II B, the action of the square
operator on a polynomial multiplied by an exponential and we show that this constitute
invariant space functions of this operator. To be able to perform this calculation, we have
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structed, in Sec. II A, an integral representation of the square-root operator. In Sec. III, we
obtained, without solving any differential equation, a complete solution of the SSE with a
lomb potential and a hard core interaction. This last interaction is introduced to keep the p
in the x positive region. We remark that the SSE wave functions have the same form tha
Schrödinger and the Klein–Gordon wave functions. We remark also that the splitting betwee
SSE and the Klein–Gordon spectrum is rather important. Indeed, it is of the same order of th
relativistic correction given by these two equations.
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An unexpected and very accurate scaling invariance of the Casimir energy of the
piecewise uniform relativistic string is pointed out. The string consists of 2N pieces
of equal length, of alternating type I/type II material, endowed with different ten-
sions and mass densities but adjusted such that the velocity of transverse sound
equalsc. If EN(x) denotes the Casimir energy as a function of the tension ratiox
5TI /TII , it turns out that the ratiof N(x)5EN(x)/EN(0), which lies between zero
and one, will be practicallyindependentof N for integersN>2. Physical implica-
tions of this scaling invariance are discussed. Finite temperature theory is also
considered. ©1999 American Institute of Physics.@S0022-2488~99!02902-3#

I. INTRODUCTION

The purpose of the present paper is to discuss a rather unexpected scaling property
Casimir energy for a piecewise uniform, relativistic string executing planar oscillations in its
plane. Both the zero temperature and the finite temperature theory will be considered.

First, some background material about the system: The string is taken to consist of 2N pieces
of equal length, of alternating type I and type II material, and it is relativistic in the sense tha
velocity of transverse sound is equal to the velocity of light. Figure 1 shows a sketch of the
in the case whenN56 ~for clarity the thickness of the string is drawn finite in the figure!. The
center of mass of the string lies at rest. The total length of the string isL.

The piecewise uniform string model in its simplest version was introduced by Brevik
Nielsen in 1990,1 and the model has since then been analyzed from various points of view.2–10The
particular case of a 2N-piece string was considered in Refs. 4, 7, and 10. In Ref. 7, a gen
formula for the Casimir energyEN(x) was derived,x meaning the ratio between the tensionsTI

andTII in the two kinds of material,

x5
TI

TII
. ~1!

a!Electronic mail: Iver.H.Brevik@mtf.ntnu.no
b!Electronic mail: eli@zeta.ecm.ub.es, elizalde@ieec.fcr.es
c!Electronic mail: Roger.Sollie@iku.sintef.no
d!Electronic mail: Jan.B.Aarseth@mtf.ntnu.no
11270022-2488/99/40(3)/1127/9/$15.00 © 1999 American Institute of Physics
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The formula reads, at zero temperature,

EN~x!5
N

2pL E
0

`

lnU2~12a2!N2@l1
N ~ iq !1l2

N ~ iq !#

4 sinh2~Nq/2!
Udq. ~2!

Herea is defined as

a5
12x

11x
~3!

andl6 are the eigenvalues, for complex argumentsiq, of the dispersion equation. Explicitly,

l6~ iq !5coshq2a26@~coshq2a2!22~12a2!2#1/2. ~4!

We are now able to explain more closely the scaling property mentioned above: the C
energy, which is defined as the zero-point energy for the composite string minus the zero
energy for the uniform string, turns out to be always nonpositive. And for a given value o
integerN, EN(x) becomes more negative the more the ratiox deviates from unity.@Note that the
casex51 corresponds to a uniform string, so thatEN(1)50.#

Since the theory is invariant under the substitutionx→1/x, we can limit ourselves to the cas
x<1. The minimum energy for a given value ofN is thusEN(0). In Ref. 7 the exact result in this
case was calculated to be

EN~0!52
p

6L
~N221!. ~5!

Figure 2, which is equivalent to Fig. 4 in Ref. 7, shows how the ratiof N(x), defined as

f N~x!5
EN~x!

EN~0!
, ~6!

FIG. 1. Sketch of the composite 2N string, whenN56.
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varies withx, for some different values ofN (N52,3,4,...,10). It is seen that the various curv
collapse in practice into a single curve. This is the scaling property. It means that for anyx and
N>2 the Casimir energy, relative to the minimum obtainable energy, is to a very high acc
independent ofN.

This result—which is so far a property following from the numerics—is rather unexpecte
would be desirable to examine the issue more closely. This is the theme of the present pap
problem is two-faceted. On the mathematical side one may ask: can we give at least a
derivation of the scaling invariance in analytical terms? Moreover, can we give effective ana
expressions which reproduce the scaling invariance with satisfactory accuracy? And, on the
cal side: what is the physical interpretation of the scaling invariance? Will it be possible to g
least a partial physical understanding ofwhy the scaling invariance exists? These issues are
merely of academic interest. The composite string model as such is quite an attractive mo
two-dimensional quantum field theory in general. Moreover, the model may be of intere
connection with cosmology also, in string theories of the early universe.

II. POWER EXPANSIONS: PRELIMINARY REMARKS

From a mathematical viewpoint the simplest way of approach is to make some kind of p
expansion of the integrand in Eq.~2!. Numerically, it turns out that the scaling property becom
more pronounced the larger the value ofN is. WhenN is large, obviouslye2Nq!1 except in the
limit q→0. It accordingly becomes natural, as a first approach, to adopt

z5e2q ~7!

as an expansion parameter, keeping terms of orderzN21 while neglecting terms of orderzN and
higher.

As a simple illustration, let us putN53, and expandl6 up to relative orderz2. From Eq.~4!
we have

l15z21@122a2z1a2~22a2!z2#, ~8!

l25~12a2!2z@112a2z1a2~5a222!z2# ~9!

@it is useful to note thatl1l25(12a2)2#. That means, when expanding the integrand in Eq.~2!
to orderz2 we can neglectl2

N . We get

FIG. 2. The Casimir energyf N(x)5EN(x)/EN(0) versus tension ratiox5TI /TII , for N52,3,4,...,10. The various curve
collapse in practice into a single curve.
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lnU2~12a2!N2@l1
N ~ iq !1l2

N ~ iq !#

4 sinh2~Nq/2!
U522Na2zF12S 12

3

2
a2D z1O ~z2!G . ~10!

Using this expansion in Eq.~2! and replacingEN(0) with 2pN2/(6L) we get as a first
approximation

f N~x!.
3a2

p2 S 11
3

2
a2D . ~11!

This simple formula is actually quite useful. While derived for the caseN53, it may tenta-
tively be applied for higher values ofN also. This assumes, of course, that terms of orderz3 can
be neglected also whenN.3. We cannot expect high accuracy in this way, but note from Eq.~11!
its most important property: it isindependentof N. That is, we trace already on the present sim
level of investigation the mentioned scaling invariance.

Consider some numerics of Eq.~11!: for x51 ~uniform string! the formula givesf N(0)51 as
it should, and forx50.5, for instance, the formula givesf N(0.5).0.039 40 instead of the ‘‘exact’’
result f 3(0.5)50.047 72 calculated numerically from Eqs.~2! and ~5! with N53. In the limit x
→0(a→1), Eq.~11! yields f N(0).0.760 instead off N(0)51 as it should. As expected it is th
limit x→0 which is critical here; it is in this case that the inaccuracy of the formula~11! is largest.

It is to be observed that the caseN51 is an exceptional case: for a relativistic string co
posed of two pieces of equal length the Casimir energy iszero, irrespective of the value ofx:1

E1~x!50. ~12!

One may imagine now to continue the expansion technique inz further, with the aim to
increase the accuracy. We have actually done this, by means of the Mathematica and the
analytic programs, and have managed to expand the integrand of Eq.~2! up to the 12th order inz,
within a reasonable computer time. The resulting expressions are complicated and will n
given here. It turns out, in fact, at least to moderate orders inz, that insufficient accuracy will be
obtained in this way. For instance, if we chooseN57 and expand the integrand of Eq.~11! up to
orderzN215z6, we find that the power expansion forf 7(x) yields the result 2.806~instead of 1!
in the limit x→0. That is, the accuracy actually becomes poorer than in the simple case cons
above. Some reflection shows that this kind of behavior should not be so unexpected after
expansion procedure which employsz5e2q as the smallness parameter is good for large value
q, but becomes poorer in the region of smallq. And it is precisely in the last-mentioned region th
the magnitude of the integral of Eq.~2! is largest.

Although the accuracy can be improved by going to very high orders inz, it becomes clear
that the present simple expansion procedure of the integrand of Eq.~2! in powers ofz is not the
most economic way of handling the integral. In the next section we shall turn to another
ematical method, which is numerically very accurate and which, moreover, helps us to con
a simple,analytic, expression forf N(x).

III. MORE ACCURATE NUMERICS. ANALYTICAL REPRESENTATIONS

It is both numerically and analytically advantageous to solve the integral~2! by an accurate
numerical method, without relying simply on ‘‘black box’’ routines. To obtain a better con
over the integrand in the whole integration domain, we shall first use the parameterz5e2q to
expressf N(x) ~for N>2) as an integral overz from 0 to 1:

f N~x!5E
0

1

I N~x,z!dz. ~13!

Here
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I N~x,z!5
23N

p2~N221!z
lnU2~12a2!NzN2@~zl1!N1~zl2!N#22N

~12zN!2 U. ~14!

It turns out that analytic solutions are, in fact, achievable, for small values ofN and some
special values ofx. We give two examples, both evaluated by means of Maple: the first is fx
5322& (a51/&), the second is forx5 1

3 (a5 1
2). The exact results are

f 2~322& !5 1
4, f 2~ 1

3!5 1
9, f 4~322& !5 23

90

~note that these cases correspond to a four-piece, and an eight-piece, string!.
In looking for analytic solutions of~14!, we may use the fact that (z21)2 is a factor both in

the numerator and the denominator. In the denominator we get: (zN21)2/(z21)25(zN21

1zN221¯1z11)2 giving the following expression for the integral of the denominator:

3N

p2~N221!
E

0

1 ln~zN211zN221¯1z11!2

z
dz5

1

N11
. ~15!

We are then left with integrating the numerator of~14! divided by (z21)2. Note that the numera
tor simplifies considerably fora51/AN. We give two examples: first forN53 and a51/)
which means thatx522), the second example is forN55 anda51/A5 which means thatx
5(32A5)/2. The exact results are

f 3~22) !5 5
32 ,

f 5S 1

2
~32A5! D5

1

8 F31
5

p2 S 2 arctanS 4

3D22p DarctanS 1

2D22R dilog S 2314i

5 D G50.0 897 261.

Consider now the numerics. It is important to get control over the integrand in Eq.~13! at the
pointsz50 andz51. At first sight, one might conclude from the expression~14! that these points
are singular points. However, a closer scrutiny shows that they are regular. Now, num
integration routines are, in general, classified into closed and open routines, where the
routines make use of the endpoints~here z50 and 1! while the open routines approach the
points but do not use them explicitly. In our case it turned out that even modern openFORTRAN

routines~such asDQAGSfrom QUADPACK! ran into problems when approachingz50 andz51. By
means of analytic Taylor expansions around these points we managed, however, to fi
following exact expressions atz50 and 1:

I N~x,0!5
6N2a2

p2~N221!
, ~16!

I N~x,1!52
3N

p2~N11!
ln~12a2!. ~17!

In the critical limit x→0(a→1) it is seen thatI N(x,1) diverges logarithmically; this is neverthe
less compatible with the integrand itself being finite,f N(x→0)51. Moreover, the limitN→` is
seen to correspond to the simple expressions

I `~x,0!5
6a2

p2 , I `~x,1!52
3

p2 ln~12a2!. ~18!
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Armed with the expressions~16! and ~17! at the endpoints it becomes easy now to calcul
f N(x). Our calculations were done with theFORTRAN routineDQAGS ~double precision!. It turned
out to be possible to continue the calculations up to very highN values~about 4000!, which for
practical purposes is equivalent to infinity.

Table I shows some results forf N(x) versusx, calculated forN52, 10, and 100. Higher
values ofN, up to N54000, gave the same answers asN5100, to the accuracy shown. Th
scaling invariance is seen to be so accurate that a usual graphical representation off N(x), such as
Fig. 2, is unable to distinguish between the various curves. As a further check of the num
calculation, we wrote a separate program in Maple exploiting the possibility that this lang
offers to setN5` directly. The values forf `(x) calculated in this way were compared with tho
calculated above forN54000, and were found to agree to a very high accuracy~to 7, or 8, digits!.

It is now of interest to ask: is it possible to represent the numerical results calculated
with analytic formulas, to a satisfactory accuracy? The answer turns out to be yes, an
formulas become actually surprisingly simple. Let us start from the ansatz

f N~x!→ f ~x!5~12xb!c, ~19!

whereb andc are constants. The expression~19! implies that the magnitudes of the logarithms
f (x) and (12xb) are predicted to be proportional. Figure 3 shows the outcome of one of our
the ordinateu ln f(x)u, which is calculated numerically, is compared with the abscissau ln(12xb)u for

TABLE I. Numerical results forf N(x) versusx, for some representative
values ofN.

x N52 N510 N5100

0.02 0.6742 0.6833 0.6837
0.10 0.3721 0.3814 0.3818
0.20 0.2158 0.2224 0.2227
0.40 0.0795 0.0823 0.0824
0.80 0.00 502 0.00 521 0.00 522
0.90 0.00 112 0.00 117 0.00 117

FIG. 3. Dependence of lnuf(x)u, calculated numerically, uponu ln(12xb)u when b50.35 and 0.40. The approximativ
linearity is evident.
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b50.35 and 0.40. The suggested linearity of the curve is seen to be verified quite accu
although there is a weak change in slope aroundx50.45. Numerical trials show that the simp
form

f ~x!5~12Ax!5/2 ~20!

is a useful approximation when 0,x,0.45. This form is intended to hold for all values ofN.
We can analyze this behavior one step further, by considering the particular caseN52. Then

we have from Eq.~13!

f 2~x!52
2

p2 E
0

1

lnU~11z!224a2z

~11z!2 U dz

z
. ~21!

After some trials using Maple, we arrived at the following series expansion inx:

f 2~x!512
8

p
Ax1

16

p2 x1
8

3p
x3/22

32

3p2 x22
8

5p
x5/21

368

45p2 x3

1
8

7p
x7/22

704

105p2 x42
8

9p
x9/21

9008

1575p2 x51
8

11p
x11/21¯ . ~22!

This type of series is called a Puisseux series in mathematics. It is analogous to a Taylor ser
is more accurate the smaller the value ofx is. For x50.2 the error is 0.015%; forx50.3 it is
0.27%. Forx>0.35 the error becomes larger than 1%. Let us expand Eq.~22! aroundx50:

f 2~x!5122.55Ax11.62x, ~23!

and similarly expand the empirical Eq.~20!:

f 2~x!512 5
2Ax1 15

8 x.122.5Ax11.875x. ~24!

That is, we see from here the mathematical reason behind the structure of Eq.~20!.

IV. ON THE PHYSICAL INTERPRETATION

The obvious question is now: what is the physical interpretation of the calculated sc
invariance?

Let us first remind ourselves about the main features of the string model: it is relativistic
sense that the transverse sound velocity equalsc; it consists of 2N pieces of alternating type I/II
material but of equal length; and it is described by small amplitude wave theory since the c
tion that the transverse elastic force be continuous at the junctions is expressed asT]c/]s
5continuous~c denotes the displacement,s the length coordinate!.

Assume now that there exists such a string somewhere in the universe~it is most natural to
think about the early universe!, and assume that it is possible to make use of zero temper
theory in the quantum mechanical sense. The Casimir energy of the string is caused entirel
inhomogeneity. There are two factors contributing to this: the tension ratiox, and the integerN. It
is natural to expect that a string, originally starting out with the Casimir energyEN(x)(,0),
wishes to make this energy as low as possible. This can be done while maintainingN constant, if
the tension ratio is made extreme,x→0. The string’s energy becomes then lowered toEN(0)
5 f 21(x)EN(x)52(p/6L)(N221), where the scaling invariance is being accounted for. Fina
the string may divide itself into a large number of pieces, implying a quadratic negative d
gence whenN→`, EN(0)→2(p/6L)N2.

The finite temperature case is more difficult to interpret~see Appendix!, all the time that the
Casimir energy in the case of extreme tension ratio is diverging,EN

T(0)→2` for N.1, due to the
classical contribution. It will not be further commented upon here.
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Inhomogeneous strings of the type considered here have not been observed in nat
mentioned, its most probable application seems to lie within cosmology. Perhaps particle p
can be a possible application also: it is rather striking to observe how closely the above rela
theory is formally related to the electrodynamic~or gluo-dynamic! theory of a field propagating in
a medium whose~color! permitivity e and permeabilitym satisfy the conditionem51. See, for
instance, Lee’s model of the exterior hadronic vacuum.11
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APPENDIX A: THE CASE OF FINITE TEMPERATURES

The formulation of the theory when the string is situated in a thermal bath of temperaturT is
done by replacing the integral over imaginary frequenciesj5qN/L by a sum over discrete
Matsubara frequencies,j→jn52pnkBT, with n an integer andkB Boltzmann’s constant. Refer
ring to Eq.~2! we make the replacementq→qn5Ljn /N. The general substitution to be made
finite temperature quantum field theory is

E
0

`

dj→2pkBT(
n50

`

8, ~A1!

where the prime means that the termn50 is taken with half weight. The finite temperatu
Casimir energy becomes7

EN
T~x!5kBT(

n50

`

8 lnU2~12a2!N2@l1
N ~ iqn!1l2

N ~ iqn!#

4 sinh2~Nqn/2!
U. ~A2!

This formal expression holds for all integersN.
In the special caseN51 we get, since

l1~ iqn!2l2~ iqn!52~coshqn2a2!, ~A3!

that

E1
T~x!50 ~A4!

for all x. Thus, a two-piece string composed of two equal parts will also, for finite tempera
have zero Casimir energy. The behavior is just as forT50; cf. Eq. ~12!.

Of particular interest is the limitx→0, i.e., the critical case corresponding to minimu
Casimir energy. According to Eq.~1.4! we then have

l1~ iqn!→4 sinh2S qn

2 D , l2~ iqn!→0, ~A5!

so that from Eq.~A2! we get

EN
T~0!52kBT(

n50

`

8 lnU2N sinhN~qn/2!

2 sinh~Nqn/2!
U. ~A6!

For N51 we recover the result~A4!, but for N.1 the expression~A6! actually diverges. This
result would not be easy to anticipate beforehand. The divergence is caused by then50 term, i.e.,
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by the lowest of all Matsubara frequencies. Low Matsubara frequencies are generally ass
with the classical limit and are not related to quantum mechanics. It is noticeable that it is ju
limit that is responsible for the divergence of~A6!.

Some further insight can be obtained if we separate out then50 contribution to the genera
expression~A2!. To this end we treatqn as a small analytic variable, and expand

coshqn2a25~12a2!F11

1
2qn

2

12a2 1O~qn
4!G , ~A7!

implying

u2~12a2!N2l1
N ~ iqn!2l2

N ~ iqn!u5~12a2!N21N2qn
2 ~A8!

to the leading order. From Eq.~A2! we then get the expression

EN
T~x!5kBTFN21

2
ln~12a2!1 (

n51

`

lnU2~12a2!N2l1
N ~ iqn!2l2

N ~ iqn!

4 sinh2~Nqn/2!
UG , ~A9!

in which the classical,n50, contribution is explicit in the first term. IfN51 andx arbitrary, we
recover the result~A4!. If x→0 andN.1, we obtainEN

T(0)→2`, in accordance with Eq.~A6!.
It is helpful to compare the expressions~A9! and ~17!. In both cases, the term ln(12a2)

appears. Expression~17! holds for z51, i.e., q52 ln z50, which means zero frequency. Whe
x→0 the expression is diverging. As we have seen, this divergence does not lead to an
energyEN(0) because the divergence is suppressed by theintegration over q in Eq. ~2!. In the
finite temperature case the integration is replaced by a Matsubarasumin which the zero tempera
ture term will have to appear explicit. This illustrates whyEN

T(0) is diverging, whileEN(0) stays
finite.

Generally speaking, the precise meaning of the ‘‘high temperature’’ limit ought to be m
clear. There aretwo characteristic frequencies in this system, viz. a thermal frequencyvT

5kBT, and a geometric frequency which may be defined asvgeom51/L. The high-temperature
limit should be defined by the inequalityvT /vgeom@1, which impliesNqn5Ljn@1 for all N
>1. In this case the classicaln50 term gives the dominant contribution to the Casimir ener
and we obtain from~A9!

EN
T→`~x!5

N21

2
kBT ln~12a2!. ~A10!

We mention finally for completeness that we have in this Appendix considered the Ca
energy itself, not the fractional energy relative to the casex→0. To construct a fractional quantit
f N

T(x), analogously to Eq.~6!, would be meaningless sinceEN
T(0) is infinite.
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We make a numerical study of the classical solutions of the combined system
consisting of the Georgi–Glashow model and the SO~3! gauged Skyrme model.
Both monopole-Skyrmion and dyon-Skyrmion solutions are found. A new bifurca-
tion is shown to occur in the gauged Skyrmion solution sector. ©1999 American
Institute of Physics.@S0022-2488~99!04302-9#

I. INTRODUCTION

Monopole-Skyrmion solitons can be important in a semiclassical study of
Callan–Rubakov1,2 mechanism for catalyzing proton decay. Indeed, the first such approach
made by Callan and Witten3 where the U~1! gauged Skyrmion was coupled to the electromagn
field of a monopole. Here, we study the classical soliton solutions of a model which incorpo
the full non-Abelian monopole field and the corresponding gauged Skyrmion, described
SO~3! gauged Skyrme model interacting with the Georgi–Glashow~GG! model through the gauge
field. The solutions we study include both monopole-Skyrmions and dyon-Skyrmions.

There are two 311 dimensional SO~3! gauge field models which support static soliton so
tions. One is the GG model which supports the well-known monopole,4 and the other is the
SU(2)L1R , or vector, gauged Skyrme model5,6 which also supports SO~3! gauged Skyrmions. In
addition to the monopole, the GG model supports also dyon solutions7 which in addition to the
magnetic charge carry an electric charge as well. The topological stability of the monopole
from the magnetic charge, which is descended from the second Chern–Pontryagin charge
the topological charge of the gauged Skyrmion is the degree of the map.

Combining these two models, we have a new system whose topological charge is a sum
respective charges, and it can reasonably be expected that this system also supports sta
energy solitons. Note that in this case the local SO~3! symmetry is broken down to U~1! via the
Higgs mechanism, in contrast to the SO~3! gauged Skyrme model on its own, in which case t
local SO~3! symmetry is not broken at all and three massless gauge bosons survive. I
preliminary investigation, this is precisely what we have done. Using numerical method
verify that such solutions exist. Moreover, we have sought and found both monopole-Sky
and dyon-Skyrmion solutions, and studied some of their properties. The combined system su
solutions also with zero monopole charge, unit baryon charge, as well as with unit mon
charge, zero baryon charge.

Even though this is a self-contained numerical study of the classical solutions allud
above, it is in order to put it into context both in the background of previous work involving
gauging of the Skyrme model,8 and, from the viewpoint of its potential physical relevance.

The Skyrme model was gauged by Witten in Ref. 9, and others, e.g., in Ref. 10. These
were carried out in the context of current algebra results, and were not concerned wi
solitonic aspects of the gauged Skyrmion. That was done subsequently by many autho
11360022-2488/99/40(3)/1136/17/$15.00 © 1999 American Institute of Physics
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e.g., Ref. 11, where gauged Skyrme solitons were studied with the aim of explaining th
energy properties of Hadrons. Also in the context of electroweak theory, which can be regar
a gauged Skyrme model in the limit of very high Higgs mass, Rubakov12 and Eilamet al.13

considered the static classical solutions of the SUL gauged Skyrme model. In all these cases, th
is no topological lower bound and the classical solutions are metastable, but for certain va
the parameters in one of these models12,13 a stable branch of solitons appears as a resul
catastrophic behavior. The advantage of the gauging used in Refs. 12 and 13 is that th
divergence of the topological current does not vanish but equals the local chiral anoma14,15

which can present itself as a mechanism for Baryon number violation as explained in Ref.
In the context of Baryon number violation, there is an older mechanism suggeste

Rubakov1 and by Callan2 where monopole-~left-handed massless! fermion interactions lead to
fermion number nonconservation. The mechanism involves the fluctuations of the electric fi
the presence of the magnetic field of the monopole, giving rise to nonzero chiral anoma
hence fermion number violation. This was shown for the case of massless~left-handed! fermions,
by scattering with the monopole, which describes a high energy process. The approxim
techniques employed1,2 are neither perturbation theoretic nor semiclassical. To describe a
energy process such as a decay, it would be more appropriate to deal with a process
susceptible to semiclassical analysis. To this end, Callan and Witten3 replaced the massless fe
mions by the Skyrme soliton,8 interacting with the~Abelian! magnetic field of the monopole
While they3 did not seek to demonstrate the existence of a U~1! gauged Skyrmion, this is implicit
in their work and has recently been verified numerically.16 In the background of this it is hope
that the present work, which sets out to find the monopole-Skyrmion and dyon-Skyrmion
tions, would be of concrete usefulness to a semiclassical method of describing baryon n
decay. In particular the dyon-Skyrmion excites a nonzero classical quantity for the chiral ano
which can lead to chirality breaking as pointed out long ago by Marciano and Pagels.17

In Sec. II we present the model and give the topological lower bounds on the static ener
Sec. III we give the static spherically symmetric fields and the field equations in the static
Sections IV and V deal, respectively, with the results of the numerical analysis of theA050 and
A0Þ0 cases. Section V in particular, includes an in-depth analysis of the Julia-Zee dyon.7 In Secs.
IV and V, we also give an account of the SO~3! gauged Skyrmion studied previously in Ref.
because these solutions play a certain technical role in the construction of dyon-Skyrmion
tions in Sec. V. We summarize and discuss our results in Sec. VI.

II. THE MODEL

The model under consideration is the combination of the Georgi–Glashow~GG! model and of
the SO~3! gauged O~4! ~Skyrme! model studied previously in Refs. 5 and 6. We state the
grangian of each of these models separately, defined in four-dimensional Minkowski space
being normalized properly so that the value of the energy of the static soliton in each cas
above its own topological lower bound. The static solutions in question satisfy the E
Lagrange equations of the static energy density functional, which is the static Hamiltonian
temporal gauge. In the GG case, this is the ’tHooft–Polyakov4 monopole, while in the latter cas
it is the soliton studied in Refs. 5 and 6.

The GG model is described by

LGG52 1
4l0

4uFmn
a u21 1

2l1
4uDmFau22 1

4l2
4~h22uFau2!2, ~1!

Fmn
a 5]mAn

a2]nAm
a1eabgAm

bAn
g , DmFa5]mFa1eabgAm

bFg. ~2!

The late Greek indicesm, n,... label the Minkowski space vectors, while the early Greek indicea,
b, ...51,2,3 label the elements of the algebra of the gauge group SO~3!. The Latin lettersa, b,
...51,2,3,4 so thata5(a,4) are reserved for the O~4! Skyrme model. In Eq.~1! the constanth is
the vacuum expectation value~VEV! of the Higgs field and like the latter has the inverse dime
sion of a length. The constantsl0 , l1 , andl2 are all dimensionless.
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The SO~3! gauged Skyrme model is described by

LO~4!52 1
4k0

4uFmn
a u21 1

2k1
2uDmfau22 1

8k2
4uD [mfaDn]f

bu2, ~3!

Dmfa5]mfa1eabgAm
bfg, Dmf45]mf4, ~4!

with fafa1f4f451.
The constantsk0 andk2 are dimensionless and the constantk1 has dimension of an invers

length. The reason we keep all the coupling constants arbitrary in Eqs.~1! and ~3! will appear
soon.

When we consider the static Hamiltonians corresponding to the Lagrangians above
temporal gauge, i.e.,A050, we can write the following topological identities:

E dr HGG>4phl0
2l1

2M , ~5!

HGG5 1
4l0

4uF jk
a u21 1

2l1
4uD jF

au21 1
4l2

4~h22uFau2!2, ~6!

where the integerM, representing the index of the mappingFa(xW ), is the monopole topologica
charge. Similarly6

E dr HO~4!>12p2k1k2
2

1

2A119S k2

k0
D 4

T, ~7!

HO~4!5
1
4k0

4uF jk
a u21 1

2k1
2uD jf

au21 1
8k2

4uD [ jf
aDk]f

bu2, ~8!

where the integerT, representing the index of the mappingfa(xW ), is the Skyrmion topological
charge. In the Skyrme description of hadrons,T is identified with the baryon number.

In the following we will consider also the equations resulting from the superposition o
two Lagrangians Eqs.~1! and ~3!

Lm5LGG1LO~4! . ~9!

The finite energy configurations of this mixed Lagrangian are characterized by the cou
integersM, T. Classical solutions corresponding to the two different topological excitations
then be constructed, they correspond to the configuration with minimal energy in a classM, T.

In order to normalize the fields conventionally, we have to choose

l0
25

1

e
cos~u!, k0

25
1

e
sin~u!, l1

451, ~10!

wheree denotes the gauge coupling constant. With the choiceu5p/4, the topological inequality
relatingHm to the class of solutions of indexesM, T reads

E dr Hm>
4ph

e S 1

&
M1

3p

2
A jk

1118k
TD , ~11!

where

l5
l2

4

e2
, j5

1

h2
k1

2, k5e2k2
4. ~12!
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In Eq. ~12!, l is defined for later convenience. Note that the topological lower bound Eq.~11! can
be refined by an optimal value of the mixing angleu, depending on the parametersl1 , l2 , k1 ,
k2 . To achieve this it is necessary to solve a complicated nonlinear equation, which we sh
pursue here.

III. STATIC SPHERICALLY SYMMETRIC EQUATIONS

The classical equations corresponding to Eqs.~1!, ~3!, and~9! are in general intractable. W
will restrict our search of solutions to the static and spherically symmetric case. If we choo
employ the temporal gauge in the static limit, the Euler–Lagrange equations will reduce
variational equations arising from the static Hamiltonians pertaining to the Lagrangians Eq~1!
and~3!. The latter would be bounded from below by the monopole charge and the baryon nu
densities, respectively. Hence the solutions to the classical equations of each of these static
tonians, separately, can describe the ’tHooft–Polyakov monopole4 and the soliton of the SO~3!
gauged Skyrme model.5,6 The Euler–Lagrange equations of the Hamiltonian of the combi
static system, i.e., GG-Skyrme, in the temporal gauge also supports soliton solutions sin
Hamiltonian is again bounded from below by the two topological charges Eq.~11!. This is one of
the problems studied in the present work yielding the monopole-Skyrmion solitons.

If instead of employing the temporal gauge we proceed like Julia and Zee7 and solve the
Euler–Lagrange equations pertaining to the Lagrangian Eq.~9! defined on Minkowski space in th
static limit, the resulting solutions of the GG-Skyrme system describe the dyon-Skyrmion. T
the other problem studied in this work. As in the case of the dyon7 on its own, we shall restrict
ourselves to the spherically symmetric solutions only.~In this case the classical equations simpl
sufficiently to become tractable. To our knowledge the only dyon solutions known are the s
cally symmetric Julia–Zee7 dyons.!

The spherically symmetric ansatz employed is

Ai
a5

a~r !21

r
e iabx̂b, A0

a5ehg~r !x̂a, ~13!

Fa5hh~r !x̂a, ~14!

fa5sin f ~r !x̂a, f45cosf ~r !. ~15!

Notice that the functionsa(r ), h(r ), g(r ), and f (r ) are dimensionless. We find it useful t
introduce a dimensionless radial variable

x5MWr , MW[eh. ~16!

Substituting the ansatz Eqs.~13!–~15! into the static limit of the Lagrangian Eq.~9!, leads to
the following one-dimensional~radial! Lagrangian densityLm , defined by

E Lm dx5E Lm dr5E12E2 ~17!

with

Ep[
4p

e
hẼp5

4p

e
hE dxEp , p51,2, ~18!

E15 1
2x

2~g8!21a2g2, ~19!
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E25~a8!21
~a221!2

2x2 1
1

2
x2~h8!21a2h21

l

4
x2~h221!2

1
j

2
@x2~ f 8!212a2 sin2 f #1ka2 sin2 f F ~ f 8!21a2

sin2 f

2x2 G , ~20!

where we have separated the contributionE1 due to the electric field and the prime denotes
derivative with respect tox. The total energy is given by

E5
4p

e
hẼ5

4p

e
h~Ẽ11Ẽ2!. ~21!

The static classical equations corresponding to the Lagrangian densityLm , in the spherically
symmetric ansatz, turn out to be equivalent to the equations obtained by varying the eff
one-dimensional density@see Eqs.~19! and~20!# E12E2 with respect to the radial functionsa, g,
h, and f. These equations are obtained straightforwardly and we do not list them here. We
however, that for each function the corresponding variational equation can be solved trivia
setting this function to zero.

It will be useful to present their asymptotic forms in thex@1 region, to facilitate subsequen
explanations. They are, in order of the variations ofa, g, h, andf:

a95aS a221

x2 1h22g21j sin2 f 1¯ D , ~22!

~x2g8!852ga2, ~23!

~x2h8!85h~2a21lx2~h221!!, ~24!

~x2f 8!852a2 sin f cosf 1o~k/j!. ~25!

@Note that Eqs.~23!, ~24! are exact.#
Following Ref. 7, we define the energy of a configuration byE5E11E2 , which coincides

with the volume integral of the static Hamiltonian obtained in the usual way from the g
invariant stress tensor. The topological lower bound forE2 follows immediately from Eqs.~5!, ~7!,
and ~11!.

IV. NUMERICAL RESULTS, CASE A 050

We first discuss the classical solutions in absence of the electric field, i.e., withg(x)50.
Equation ~23! is trivially solved and we are left with a system of three nonlinear differen
equations. Only the partE2 of the action is relevant in this case. In the following, we w
conveniently denote the valueẼ2 of the solution with givenM andT by

EMT~l,j,k!. ~26!

We now describe the four cases withM<1 and T<1, namely~M50, T50!, ~M51, T50!,
~M50, T51!, and ~M51, T51!. All but the third of these, namely that characterized by
topological charge~M50, T51!, are solutions of Eqs.~22!, ~24!, and ~25!, arising from the
variation of Eq.~20!. The third one on the other hand is described by the solutions of the S~3!
gauged Skyrme model,5,6 which are described by Eqs.~22! and~25! arising from the variation of
the functional~20! with the Higgs functionh(r ) and the coupling of the Higgs potentiall both set
equal to zero. The reason for including this field configuration in Sec. IV C below is that it
become useful for the construction of some solutions in Sec. V, and, because we have gi
enhanced numerical study of it.
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A. Case M50, T50

This corresponds to the class of the vacuum which is not spherically symmetric. It has
energy

E00~l,j,k!50. ~27!

B. Case M51, T50

This case corresponds to the celebrated SU~2! magnetic monopole.4 SinceT50, it has f (r )
50; as a consequence, the parametersj andk are irrelevant for this case. The boundary con
tions and asymptotic behavior of the functionsa,h read

a~0!51, h~0!50, ~28!

a~x!.Ae2x, h~x!.12Be2A2lx ~x→`!, ~29!

whereA,B,Fare constants. The values of the energy of the monopole solution were compute
ago18 ~our numerics fully reproduces these values!; the energy increases monotonically withl as
demonstrated in Table I.

In the Bogomol’nyi limit, l50, the energy coincides with the topological lower bound,
~omitting the parametersj andk!,

E10~l!>E10~0!51. ~30!

The solution, the Prasad–Sommerfield monopole, is expressed in terms of elementary func19

Its behavior near the origin is given by Eq.~28! but, for x→`, we have

a~x!.xe2x, h~x!.121/x, ~31!

instead of Eq.~29!.

C. Case M50, T51

The classical solutions considered in this case excite only the gauge and Skyrme fields d
of freedom; the Higgs field is identically vanishing. The static equations describe the ga
Skyrmion studied in Ref. 6; Eq.~23! is trivial sinceh(r )50. The classical energy is compute
from Eq. ~20! and makes sense only ifl50 ~in fact, since the Higgs field is zero, the Higg
potential plays no role!. The topological lower bound reads

E01~l50,j,k!>
3p

2

Ajk

A119k
. ~32!

TABLE I. The energies of the monopole, the monopole-Skyrmion, and the
gauged Skyrmion for several values of the Higgs coupling constantl.

l Monopole
Monopole-Skyrmion

~j51, k50.4!
Gauged Skyrmion

~j51, k50.4!

0.0 1.000 3.450 2.98
0.05 1.106 3.470 ¯

0.10 1.138 3.480 ¯

0.20 1.180 3.490 ¯

0.40 1.220 3.510 ¯

0.60 1.250 3.520 ¯

0.80 1.270 3.530 ¯

1.00 1.290 3.536 ¯
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Due to the vanishing Higgs field, the parameterj can be changed by a rescaling of the rad
variablex and it will be set equal to one. Comparison of the energies of the gauged Skyrmio
of the monopole is demonstrated in Table I and Fig. 1.

Let us now come to the detailed discussion of the solutions in the regionk'0.8. For com-
pleteness, it is useful to summarize the possible boundary conditions available for the g
Skyrmion. At the originx50 the behavior of the radial functions is uniquely determined by
condition of continuity of the fields at the origin:

a~x!511A1x21o~x3!, f ~x!5p1F1x1o~x2!. ~33!

In contrast, in thex@1 asymptotic region, several conditions are consistent with the finitene
the energy. Classical solutions of the equations have been obtained6 with the two following sets

type A: a'12
A

x
, f '

F

x2
, ~34!

type B: a'
A

xa , f '
F

x
, ~35!

wherea[(A4F22321)/2.
The following results were obtained in Ref. 6. For small values ofk, the solution is of type A,

its energy increases monotonically fromE50 ~for k50! and the branch~say branch A! stops at
a critical valuek5kA

cr'0.8091. For large values ofk ~in fact for k.kB
cr'0.69122! the solution is

of type B. We call this branch B. By using arguments of catastrophe theory,13 one can reasonably
expect the occurrence of a third branch of solutions on the intervalkP@kB

cr ,kA
cr#, as was explained

in Ref. 6.
A third branch indeed exists. The solutions on this branch obey the condition of type A

therefore we refer to it as branch A˜ . The energies of the three branches of solutions are dep
in Fig. 2. The branches A and A˜ terminate atk5kA

cr, forming a cusp catastrophy. The transitio
of the profile of the solutions from branch A to branch A˜ is smooth.

In contrast, when the limitk→kB
cr is considered, the solutions of the branch A˜ approach the

limit of branch B in a subtle way. For instance, the valuexm for which the functiona(x) has a
minimum ~say am! tends to infinity, whileam tends to zero. For values ofk close tok1 , the
solutions of branches A˜ and B coincide on a large interval ofx ~typically on xP@0,107# for k

FIG. 1. The energies Eq.~26! of the monopole~line a!, of the monopole-Skyrmion~line c! ~for l51, j51! and the energy
of the gauged Skyrmion~line b! as functions ofk.
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50.6914! and deviate from each other for larger values ofx. In the limit k→kB
cr this interval

becomes infinitely large and the two solutions deviate at infinity. This can clearly be seen
Fig. 3. A similar demonstration can be made for the functionf (x), namely that near the critica
point kB

cr these functions for the two solutions on branches B and A˜ also coincide. We do no
display the graphs analogous to Fig. 3 in this case. The behavior of the solutions is f
illustrated by Figs. 4 and 5 where we plot respectively the value ofF1 @defined in Eq.~33!# for the
three branches and the value ofa as a function ofk.

Figure 2 furnishes a simple interpretation of the three solutions. To discuss it, we intro
kAB

cr as the value ofk where the energy of the branches A and B coincide (kAB
cr '0.785). On the

interval kP@kB
cr ,kAB

cr # the solution on branch A constitutes the absolute minimum of the en
functionalE2 , while the one on branch B is a local minimum. The solution on the branch A˜ is a
sphaleron corresponding to a saddle point which represents the energy barrier between
minima. The situation is similar on the intervalkP@kAB

cr ,kA
cr#; the absolute~respectively, local!

minimum energy configuration is then on branch B~respectively, A!. As k approaches the critica
valuekB

cr the local minimum of branch B approaches the sattle point of branch A˜ . At the critical

FIG. 2. The energy of the gauged Skyrmion as a function ofk in the region of the phase transition. The branches A, A˜ are
represented by the solid line and branch B by the dashed line.

FIG. 3. The~logarithm of the! function a(x) on the two branches B and A˜ on a logarithmic scale for several values ofk
approaching the critical valuekB

cr.
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k both coincide and form an inflection point. Fork,kB
cr this point is no longer an extremum an

the solutions of branches B and A˜ cease to exist. The global minimum of branch A is then the o
extremum and only branch A solutions exist. The same scenario applies at the other critica
kA

cr where the solutions of branches A and A˜ stop to exist and only branch B solutions exist.

D. Case M51, T51

It is natural to call this solution the ‘‘monopole-Skyrmion.’’ The three functionsa, h, f are
nontrivial and obey the following boundary conditions atx50 and asx→`, respectively,

a~0!51, h~0!50, f ~0!5p, ~36!

a~x!.Ae2x, h~x!.12Be2A2lx, f ~x!.
F

x
, ~37!

FIG. 4. The quantityF1 defined in Eq.~33! is plotted as a function ofk for the branches A, A˜ ~the solid line! and for the
branch B~the dashed line!.

FIG. 5. The quantities ln(F21) and ln(a) @defined in Eq.~35!# are plotted as functions of the parameter ln(k2kB
cr).
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whereA, BandF are constants. In contrast to the case of the gauged Skyrmion solution,6 the finite
energy condition leads to a unique asymptotic behavior of the solution.

The energy of the solution is given in Table I for several values ofl ~for j51 andk50.4!,
indicating that the energy of the monopole-Skyrmion varies rather slightly withl. The corre-
sponding lower bound inequality reads

E11~l,j,k!>
1

&
1

3p

2

Ajk

A1118k
. ~38!

Table I and Fig. 1 further exhibit a comparison between the energies of the monopol
monopole-Skyrmion, and the gauged Skyrmion.

In Sec. IV C, we exposed the properties of the SO~3! gauged Skyrme model and depicted t
bifurcations occurring in Fig. 2. The monopole-Skyrmion solution studied in this section is
expected to feature similar bifurcations, but this is not seen from Fig. 1.~Indeed, for that range o
parameters, theM50, T51 solution also does not feature the bifurcations present in Fig. 2.! We
have checked that for the value of the parameterj51, there occur no bifurcations for all values o
the parameterk. On the other hand, if we change the values of the parameterj, then we would
expect that similar bifurcations as in Fig. 2 will manifest themselves also for the mono
Skyrmion. Since the main interest in the latter is the unwinding of the baryon number i
presence of the monopole, and since any bifurcations analogous to those in Fig. 2 would
branches of the solution with the same (T51) baryon number, we eschew a detailed discussio
these in the present work.

E. General properties

We have constructed numerically the three nontrivial topological solitons above for num
values of the coupling constantsl, j, k and computed their energies. In order to give an idea
the relative magnitudes for the different classes, let us choosel50, j51, k50.4, then

E0050, E1051.0, E01'2.98, E11'3.45. ~39!

Note that the monopole energy satisfies the topological lower bound.
The behavior of the solutions in the limitk→0, with l,j fixed, was carefully analyzed. Ou

numerical analysis strongly supports the following formula:

lim
k→0

EM1~l,j,k!5EM0~l,j,0! for M50,1 ~40!

as illustrated by Fig. 1. Indeed, in the limitk→0, the functionsa(r ),h(r ) representing the
solutions of theM5T51 sector approach the profile of the monopole solution~i.e., M51, T
50!. At the same time, the functionf (r ) is more and more peaked atr 50 ~in particular
limk→0 f 8(0)5`! and tends to zero ifrÞ0.

This result demonstrates in particular that the coupling of the Skyrmion to a monopole c
stabilize the Skyrmion; the Skyrme term is necessary to guarantee a localized structure toT
51 soliton.

The same phenomenon occurs with the branch of the gauged Skyrmion~M50, T51!.6 The
energy in this limit tends to zero, namely to the energy of the vacuum (M5T50).

A remark should be made concerning the interpretation of the monopole-Skyrmion as a
system of a monopole with magnetic chargeM and a gauged Skyrmion with baryon numberT.
Consider a monopole located in a regionUm centered at a pointxm and a gauged Skyrmion
located in a regionUSk centered at a pointxSk far away from each other. Then the Skyrmion fie
and the corresponding gauge field will vanish outside the regionUSk. Consequently,Um contains
a pure monopole, consisting of a gauge field and a Higgs field. OutsideUm the gauge field will
vanish, however, the Higgs field does not vanish. Instead it will be equal to its VEV^F&vac. In the
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regionUSk containing the Skyrmion the nonzero Higgs field is still present and we have to a
for interaction with the gauge field,uD j^F&vac

a u2. The Higgs vacuum is a constant far away fro
the monopole and generates masses for the gauge fields. Furthermore, the Higgs vacuum
the rotational symmetry. Consequently, the gauged Skyrmion solutions in the presence of
stant Higgs field will no longer possess spherical symmetry. In addition, it might be expecte
the electromagnetic flux will not vanish. If we impose the condition for the Higgs vacuum tha
interaction with the gauge field has to vanish,D j^F&vac

a 5eabgAj
b^F&vac

g 50, then we will find that
the gauge field has to be parallel to the Higgs vacuum in isospace. This also breaks the sp
symmetry.

To conclude, the interpretation of the monopole-Skyrmions as a bound state of a sphe
symmetric monopole and a spherically symmetric gauged Skyrmion seems to be misleadi

V. NUMERICAL RESULTS, CASE A 0Þ0

In order to obtain a nontrivial functiong(x) from Eq. ~23!, a nonvanishing asymptotic value
sayq, for this function has to be imposed.7 In the asymptotic regionx@1 Eq. ~23! is satisfied by

g~x!5q2
c1

x
1o~x22!, ~41!

whereq,c1 are constants andq plays a major role in the construction. The equations, together
the finite energy condition require 0<q<1, which can be seen as follows. In Eq.~22! the Higgs
field and the dyon field contributions,h2(x)2g2(x), generate asymptotically the mass ter
m(a)

2 512q2 for the gauge field functiona(x). For q.1, m(a)
2 becomes negative and leads to

oscillating functiona(x) in the asymptotic region. Consequently, the terma2g2 in Eq. ~17! is not
integrable and no dyon solution exists forq.1.

The electric charge, as defined in Ref. 7, is directly related to the constantc1 :

Q5
1

4ph E FW •FW 0idSi[
1

e
Q̃ ~42!

5
1

4p E S r 2
dg

dr D ur→` sinududf5
1

e
c1 , ~43!

having used the ansatz~13!–~14! and Eq.~41!.
Another very interesting quantity is the chiral anomaly due to the dyon-Skyrmion so

whose classical solutions will be studied numerically. The anomaly equation for the chiral c
is

dQ5

dt
5

e2

8p2 E dxEi•Bi52
e2

8p2 4p@g~r !~a~r !21!# r 50
` 5

e2

2p
q, ~44!

having used the ansatz~13!–~14! and Eq.~41!. We now discuss the solutions by adopting the sa
presentation as in Sec. IV. Again, in addition to the two types of solutions characterized b
nontrivial charges~M51, T50!, and ~M51, T51!, we include the field configurations corre
sponding to~M50, T50!, which is the dyonlike solution to the SO~3! gauged Skyrme model,5,6

which as it happens in this case turns out to be the trivial field configuration.

A. Case M51, T50

The solutions are the dyons of Julia and Zee.7 Here we present an in-depth analysis of th
solution. The limitl50 corresponds to the Prasad–Sommerfield dyon19 ~PS dyon!. It is worth
analyzing this case separately because the solution can be computed analytically and it pro
good check of our numerical routines.
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1. Case l50

The profile of the radial functions of the PS dyon reads19

a~x!5
cx

sinh~cx!
, ~45!

g~x!5
cq

A12q2 S cothcx2
1

cxD , ~46!

h~x!5
c

A12q2 S cothcx2
1

cxD , ~47!

and the PS monopole is recovered forq50. Our parameterq is related tog of Ref. 19, byq
5tanh(g). We have chosen the arbitrary scale in the PS solutionc5A12q2 so that the asymptotic
value of the Higgs field functionh(x) of the PS solution given above be equal to 1, since we
also studying the dyons for thel.0 case where the asymptotic value ofh(x) equals 1. The
charge and energy of the PS dyon are given by

Q̃5
q

A12q2
, Ẽ5

1

A12q2
, ~48!

Ẽ15
q2

2A12q2
, Ẽ25S 12

1

2
q2D 1

A12q2
'11

1

8
q41o~q6!, ~49!

where the dimensionless quantitiesẼ, Ẽp and Q̃ are defined in Eqs.~21!, ~18! and ~42!, respec-
tively.

For small values ofq the ‘‘magnetic’’ contribution to the energy,E2 , varies slightly withq,
accounting for the feedback of the electric charge on the classical magnetic energy. We wou
to stress that our numerical results are in full agreement with these exact formulas.

The dependence of the chargeQ̃ of the PS dyon as a function ofq is represented in Fig. 6
~curve a!. Similarly we have reported in Fig. 7~curve a! the energyẼ of the PS dyon as a function
of Q̃. Clearly the energy and the charge of the PS dyon can be arbitrarily large whenq→1.

2. Case lÞ0

For the dyon solution, the boundary conditions for the functiong(x) can be read from Eq
~41!, and those of the functionsa(x), h(x) from Eqs.~28! and ~29!, with the exception of the
behavior of the functiona(x) in the x@1 region, which now takes the form

a~x!.Ae2A12q2x. ~50!

Our analysis demonstrates that the energy of the dyon obeys a Bogomol’nyi inequalityẼ(l,Q)
.Ẽ(0,0)51. The main distinguishing feature of thelÞ0 dyon versus the PS dyon is that i
electric charge and its classical energy are bounded forqP@0,1#.

This phenomenon appears clearly in Figs. 6 and 7, respectively, where the quantitiesQ̃ as a
function ofq, andẼ as a function ofQ̃, are plotted forl50.5. More generally, it appears that th
electric charge of the dyon constructed with a given value of the parameterq decreases whenl
increases. The three bullets on Fig. 7 represent the data given in Ref. 7; according to our nu
results they should lie on lineb. Our numerical results therefore slightly disagree with Ref. 7
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The star on lineb of Fig. 7 indicates the maximal accessible charge of the dyon solution
a fixed value ofl. This contrasts with linea which asymptotically tends to infinity, in agreeme
with Eqs.~48! and~49!. The solutions with maximal electric charge and energy correspond to
caseq51 which we discuss next.

3. Case q51

In the limit q51 in Eq.~41! Eq. ~22! ceases to impose the exponential decay Eq.~50! for the
function a(x); we have instead

a~x!.Ae2A8c1x for x→`, ~51!

wherec1 is defined in Eq.~41!.

FIG. 6. The values of the electric chargeQ̃ as a function of the parameterq. The solid lines represent the dyon forl
50 ~line a! and l50.5 ~line b!. The dashed lines represent the dyon-Skyrmion (j51) for l50, k50.4 ~line c!, l
50.5, k50.4 ~line d! andl50, k51 ~line e!.

FIG. 7. The values of the energyẼ as a function of the parameterQ̃. The solid lines represent the dyon forl50 ~line a!
andl50.5 ~line b!. The dashed lines represent the dyon-Skyrmion (j51) for l50, k50.4 ~line c!, l50.5,k50.4 ~line
d! andl50, k51 ~line e!. The stars depict the points where the solution has maximal finite charge. The bullets corre
to the data of Ref. 7.
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Fixing lÞ0, the electric charge~and similarly the classical energy! of the dyon cannot excee
a critical value, sayQcr(l). This quantity is plotted againstl in Fig. 8 ~solid line!.

B. Case M50, T51

No finite energy dyonlike solutions supporting a nonvanishing~non-Abelian! electric field can
be found in this case. Due to the absence of the Higgs field (h50), Eq.~22! leads to an oscillating
asymptotic behavior ofa(x). The terma2g2 in the energy Eq.~17! cannot therefore be integrated

C. Case M51, T51

The boundary conditions compatible with a finite energy solution in this case are identi
Eqs. ~36!, ~37! and ~41!. It is possible to construct the dyon-Skyrmion solutions. The dy
Skyrmion display many features of the dyons, discussed at length above. These featu
illustrated by Figs. 6 and 7~dashed curves c, d and e! and by Fig. 8~the dashed line!. In addition
we illustrate the dependence of the energy on the Skyrme coupling constantk in Fig. 9 ~the dashed
line! for q50.5 andl50. The energy is an increasing function ofk. In the limit of vanishingk

FIG. 8. The value of the critical chargeQcr as a function ofl. The solid line refers to the dyon solution. The dashed l
refers to the dyon-Skyrmion solution forj51 andk50.4.

FIG. 9. The energies of the dyon-Skyrmions withq51 ~the solid line! and q50.5 ~the dashed line! as functions of
k(l50, j51). The vertical dotted line indicates the critical value ofk.
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the energy of the dyon-Skyrmion converges to the energy of the dyon-monopole. This c
compared with the behavior of the energy of the monopole-Skyrmion, shown~for l51! in Fig. 1,
where for vanishingk the energy tends to the energy of the monopole. For our considera
leading to our conclusions in Fig. 9, we have chosenq50.5 as a typical value in the allowed rang
0<q<1. We expect that our results, summarized by the dashed curve in Fig. 9, are typical f
allowed value ofq, and also for any value of the Higgs coupling constantl, except in the
important case ofl50 andq51. The dyon-Skyrmion characterized by the boundary valuq
51 in the l50 model has peculiar and interesting properties which we analyze in the
paragraphs.

For l50 the solutions of Eqs.~23! and ~24! are proportional to each other. Assuming th
h51 at infinity, the proportionality constant is given byq, Eq. ~41!. Thus forq51 the functions
h(r ) and g(r ) are identical. In this special caseh2(r ) and g2(r ) cancel each other in Eq.~22!.
Consequently, Eqs.~22! and~25! reduce to the field equation of the gauged Skyrme model~Sec.
IV C!, and can be solved independently ofh(r ), g(r ).

The solutions of these equations are now given by the branch B solutions of the g
Skyrme model. Once a solution for the functiona(r ) is found the equations for the functionsh(r )
andg(r ) can be solved. Recalling that the branch B solutions exist for allk>kB

cr, we expect the
existence of the dyon-Skyrmion solution for the same range of coupling constantsk. However, not
all of these solutions are finite energy solutions. This can be seen easily by inspecting the
HamiltonianE5E11E2 given in Eqs.~19! and ~20!, where the contributions from the function
h(r ) andg(r ) do not cancel. The asymptotic behavior of these terms is dominated bya2(r )h2(r ),
a2(r )g2(r ). Using the boundary conditionsh(`)51, g(`)51, and the asymptotic form of the
function a(r ), Eq. ~35!, these terms behave like'A2(k)/x2a(k) for large x, wherea~k! is a
function determined numerically. Thus the integration of these terms will give finite contribu
only if a(k).1/2. This restricts the range of the coupling constantk to k1/2

cr ,k,`, wherek1/2
cr

is defined bya(k1/2
cr )51/2. Forj51 we findk1/2

cr 50.7652.
In Fig. 9 we show the dependence of the energy on the coupling constantk for q51 ~the solid

line! and forq50.5 ~the dashed line!. ~For q,1, as stated above, solutions exist for all values
k, the energy is a monotonic function ofk, and the limitk→0 the energy approaches the ener
of the dyon solution.! For q51 the energy is an increasing function ofk for large values ofk only.
It has a minimum atk51.21. Ask approaches its critical valuek1/2

cr the energy becomes increa
ingly large and diverges atk5k1/2

cr .
The chargeQ̃ of the solutions is determined by the asymptotic behavior of the functiong(r ),

Eq. ~43!. Solving Eq.~23! for largex we find the following expressions for the charge:

Q̃55
lim
x→`

S c12
2A2

2a21
x2~2a21!D for a.

1

2

lim
x→`

~2A2 ln~x!! for a5 1
2

lim
x→`

S 2
2A2

2a21
x2~2a21!D for a,

1

2
.

~52!

Thus solutions with finite charge exist only fora.1/2, i.e., for the same range of the couplin
constantk where finite energy solutions exist.

In Fig. 6 we show the dependence of the charge on the parameterq for k50.4 andk51.0.
For k50.4 (,k1/2

cr ) there is no finite charge solution forq51. Consequently, the charge as
function ofq diverges asq approaches the value 1. In contrast, fork51 (.k1/2

cr ) the solution with
q51 exists and the charge is finite for all values ofqP@0,1#.

In Fig. 7 the energy as a function of the charge is shown fork50.4 andk51.0. For k
50.4 (,k1/2

cr ) the energy and the charge can take arbitrarily large values. In this case the e
is a monotonically increasing function of the charge with no end point. Fork51 (.k1/2

cr ) the
                                                                                                                



y and
l

eld

two

l sub-
ptotic
pole-

in the

static

c
Z
ional
these
ifferen-
-

d to
e
ound
tuation

last
s
ential

he JZ
rgy of
of the

t, as
duces

aling

S limit

ling
the
gy

1151J. Math. Phys., Vol. 40, No. 3, March 1999 Brihaye, Kleihaus, and Tchrakian

                    
energy is again a monotonically increasing function of the charge. However, only finite energ
charge solutions exist for this value ofk. Thus the graph of the functionẼ(Q̃) ends at the maxima
value of the charge.

VI. SUMMARY AND DISCUSSION

We have found monopole-Skyrmion and dyon-Skyrmion solutions to an SO~3! gauged Higgs
and O~4! sigma~Skyrme! model, in which both scalar matter fields interact with the gauge fi
but not with each other. The Higgs field is an isovector, like in the GG model, while theS3 valued
~sigma! field is gauged according to the prescription used in Refs. 5 and 6.

In the A0
a50 gauge the static Hamiltonian is bounded from below by the sum of the

topological charge densities, the monopole charge, and the degree of the map of theS3 field on
R3 . Thus the imposition of spherical symmetry reduces the system to a one-dimensiona
system, and the resulting differential equations are first integrated analytically in the asym
regions and then numerically. This yielded the monopole-Skyrmion. In addition to the mono
Skyrmion solutions, we have made an enhanced numerical study of the SO~3! gauged Skyrmion,
because these solutions are instrumental in constructing some of the dyon-Skyrmions given
following paragraph.

In the A0
aÞ0 gauge, the Euler–Lagrange equations arising from the variation of the

Hamiltonian density do not yield a soliton with nonvanishingA0
a and hence haveE0

a50. Instead,
the variational equations arising from the~non-positive-definite! Lagrangian density in the stati
limit support spherically symmetric solutions withEi

aÞ0. This is also what happens with the J
dyon. There,7 in spite of the nonpositive definiteness of the functional subjected to the variat
principle, it happens that after taking the static limit and imposing spherical symmetry,
equations reduce to a set of consistent, i.e., not overdetermined, set of coupled ordinary d
tial equations. Their solutions support a nonvanishingA0

a field. These ordinary differential equa
tions also result from the variation of a certain one-dimensional~radial! functional which, in
contrast to the one-dimensional energy functional, is not positive definite.

In the light of the surprisingly successful outcome for the JZ dyon, we were motivate
address the same question for the SO~3! gauged O~4! model.5,6 Subjecting the Lagrangian to th
variational principle and then taking the static limit and imposing spherical symmetry, we f
that this also led to a consistent set of coupled ordinary differential equations. The same si
obtains with the composite model of this paper, and it is the dyonlike solitons of these
equations which yielded the dyon-Skyrmion. Concerning the SO~3! gauged Skyrme model on it
own, while its equations of motion reduce to a consistent set of coupled ordinary differ
equations, their solutions support only vanishing electric field.

As a byproduct of our study of the dyon-Skyrmion, we made a detailed reanalysis of t
dyon refining our understanding of the latter. Namely exploring the dependence of the ene
the dyon on its electric charge shows that the dyon energy is always higher than the energy
PS monopole, extending the Bogomol’nyi identity available for monopole.

An important result of the numerical analysis of the monopole-Skyrmion solution is tha
the coupling strength of the Skyrme term is shrunk down to zero the monopole-Skyrmion re
to the monopole, as depicted in Fig. 1. Thus the monopole does not stabilize the SO~3! gauged
sigma model without a Skyrme term, something that is not prohibited by the Derrick sc
requirement.

Perhaps the most interesting aspect of the dyon-Skyrmion occurs for the model in the P
(l50) in the special case where the boundary valueq of the functiong(r ) parametrizingA0

a

equals 1. In this case, the equations governing the functionsa(r ) ~parametrizing the gauge field!
and the functionf (r ) ~governing the Skyrme field! decouple from the fieldsh(r ) ~parametrizing
the Higgs field! andg(r ). As a consequence the solutions for the functionsa(r ) and f (r ) are just
the~branch B of the! gauged-Skyrmion solutions and exist only for values of the Skyrme coup
constant larger than a critical valuekB

cr, as seen from Fig. 2. However, when the integrations of
Higgs field functionh(r ) and of the dyon functiong(r ) are taken into account, then finite ener
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solution only exists if the Skyrme coupling constant is larger than the critical valuek1/2
cr .kB

cr, see
Fig. 9. The energy of the solution at this critical value is found to become infinite and for lo
values of the Skyrme coupling constant no finite energy solution exists. The time rate of cha
the chiral charge Eq.~44! is equal to the integer 1~up to normalization! for all values of the
Skyrme coupling constantk down to the critical valuek1/2

cr , below which no finite energy solu
tions exist. We hope that this result may prove relevant to the semiclassical description of
pole catalysis of Fermion number nonconservation. If for example it could be argued th
dyon-Skyrmion favored by Nature is the solution to the system Eq.~9! in the PS limit, with the
asymptotic constantq51, i.e., for which the quantitydQ5 /dt is an integer~up to normalization!,
then it would follow that below the critical valuek1/2

cr there will be noQ5 violating rate. We intend
to return to this question in the near future.
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In this paper we are concerned with the existence of solutions to the compressible
Heisenberg chain equations. By the vanishing viscosity method we prove that this
system admits at least one measure-valued solution. ©1999 American Institute of
Physics.@S0022-2488~98!03212-5#

I. INTRODUCTION

In 1982, Fivez1 revisited the 1D classical compressible Heisenberg chain described b
Hamiltonian

H5(
i 51

N

Pi
2/2m1

a

2 (
i 51

N21

~xi 112xi !
22J (

i 51

N21

Z i•Z i 112« (
i 51

N21

~xi 112xi !Z i•Z i 11

considered earlier by Cieplak and Turski in 1980 wherexi is the displacement of the magnetic io
from equilibrium, without spin–phonon coupling,a is the spring constant and«5Jx . In the
continuum limit, which corresponds to long-wavelength excitations, the equations of motio
duced by Fivez read as

mḧ5aḧ1
«

2

]

]x
~Z8!2, ~I.1!

Ż5
]

]x
$~J1«h8!Z3Z8%, ~I.2!

whereZ(x,t)5(Z1(x,t),Z2(x,t),Z3(x,t))PR3 and the substitutionxi→h(x,t), Z i→Z(x,t) has
been made, a dot denotes derivation with respect tot, a prime with respect tox. Fivez tried the
solution of the form Z5$sinu cosw,sinu sinw,cosu%, h5ax1 f (u) where u(x,t)5u(u),
w(x,t)5w̄(u)1Vt with u5x2ct ~the lattice and spin wave are assumed to travel at the s
velocity c).

Equation~I.1! now becomes

~mc22a! f 95
«

2

]

]x
~Z8!2,

with boundary condition

f 8~2`!50, Z8~2`!50, Z3~2`!51.

By integration, one has
11530022-2488/99/40(3)/1153/10/$15.00 © 1999 American Institute of Physics
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~mc22a! f 85
«

2
~Z8!2,

~Z8!25u821sin2 uw82.

Hence Fivez derived the following compressible Heisenberg chain equation:

Zt5~G~Zx!Z3Zx!x , ~I.3!

in which G(j)5A1Buju2 with A5J1«a, B5(«2/2)(mc22a), wheremc2.a.
The solitons of~I.3! were given by Magyari in Ref. 2. Equation~I.3! with B50 called

inhomogeneous Heisenberg chain equations was derived by Balakrishnan in 1982 in Ref. 3
B50, A5g(x) is some given function, the existence and uniqueness of the smooth soluti
~I.3! ~the Cauchy problem! were obtained in Ref. 4 (g(x)[1) and in Ref. 5 (g(x)[” constant!.

From the mathematical point of view,~I.3! is a strongly degenerate and strongly coup
parabolic system with strong nonlinearity; thus it is kind of important and hard to discuss e
tionary equations.

In this paper, for simplicity, we shall assumeA,B are positive constants. We intend to esta
lish the existence of measure-valued solution to the following periodic initial value problem

Zt5~G~Zx!Z3Zx!x , xPR1, tPR1 , ~I.4!

Z~x,0!5Z0~x!, Z~x1D,t !5Z~x2D,t !, uZ0~x!u[1, xPR1, ~I.5!

whereD.0 is a constant.
To this aim, we use the vanishing viscosity method. Consider the viscosity problem

Zt5«~G~Zx!Zx!x1~G~Zx!Z3Zx!x , xPR1, tPR1 , ~I.6!

Z~x,0!5Z0~x!, Z~x1D,t !5Z~x2D,t !, uZ0~x!u[1, xPR1. ~I.7!

We first prove that problem~I.6!–~I.7! admits at least one global weak solution, and then give
a priori estimates for such solutions uniformly in« to get the existence of the measure-valu
solution to~I.4!–~I.5! by letting «→0.

Equations~I.4! and~I.6! are evolutionaryp-Laplace like equations but with a ‘‘3’’ term. This
term gives rise to difficulties in the discussions. We first prove that problem~I.6!–~I.7! is solvable
in the spaceL`(0,̀ ;W1,4(V))ùL2(0,̀ ;H2(V)) when« is fixed ~by the difference method!, then
we give thea priori estimates uniformly in«. We note that these uniform estimates do not all
us to get the weak solution to~I.4!–~I.5! because of the nonlinearity and the cross product. He
we can only obtain the measure-valued solution.

II. «>0: GLOBAL WEAK SOLUTION

To get the existence of the local solution of~I.6!–~I.7!, we apply the difference method. W
need the following well known lemmas. In the sequel, we denoteV5(2D,D).

Lemma II.1 (Ref. 4): Let q, r be real numbers and j, m be integers such that
1<q,r<`, 0< j ,m. If uPWm,r(V)ùLq(V), then

iD juip<Ciuiq
12aiDmui r

a ,

wherei•ip5i•iLp(V) , p>1, j /m<a<1 and

1

p
2 j 5

12a

q
1aS 1

r
2mD , V,R1.
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Lemma II.2 (Ref. 6): Let p be real number and j, m be integers such that
2<p<`, 0< j ,m. Then

id juhip<Ciuhi2
12aS idmuhi21

iuhi2

~2D !mD a

,

where uh5$uj5u(xj )u j 50,1,2, . . . ,J%, xj5 jh, h52D/J, a5(1/m)( j 11/221/p),

idkuhip5S (
i 50

J2k UD1
k ui

hk Up

hD 1/p

.

Lemma II.3 (Ref. 6): Let uh5$uj u j 50,61,62, . . . ,6J, . . . %, vh5$v j u j 50,61,62, . . . ,
6J, . . . % such that uj 1J5uj , v j 1J5v j . We have

~ i! (
j 50

J21

ujD1v j52(
j 51

J

v jD2uj ,

~ ii ! (
j 51

J

ujD1D2v j52 (
j 50

J21

D1ujD1v j ,

~ iii ! D1~ujv j !5uj 11D1v j1v jD1uj ,

~ iv! D2~ujv j !5ujD2v j1v j 21D2uj ,

~v! D2~uj3v j !5uj3D2v j1D2uj3v j 21 ,

whereD1 , D2 denote the forward and backward differences respectively.
We use the difference method to prove the local existence of solution of~I.6!–~I.7!. For

simplicity, we let«51. We establish the following difference-differential equation:

dZ j

dt
5

D2S GS D1Z j

h DD1Z j

h D
h

1

D2S Z j3GS D1Z j

h DD1Z j

h D
h

, ~II.1!

Z j u t505Z0 j5Z0~ jh !, ~II.2!

Z j 1J5Z j , ~II.3!

where j 50,61, . . . ,6J, . . . , h52D/J, J.0.
It is clear that the initial value problem of ordinary differential equation~II.1!–~II.3! admits a

local smooth solution. We shall give some estimates uniformly inh for such a solution, and then
get the local solution to problems~I.6!–~I.7!. In this section we always denote the solution
~II.1!–~II.3! by Z j .

Lemma II.4: IfZ0(x)PW1,4(V), there are constants T0.0,C.0 independent of h such tha

sup
0<t<T0

~ iZh~ t !i21idZh~ t !i21idZh~ t !i4!<C, ~II.4!

E
0

tE
V

id2Zh~ t !i2<C. ~II.5!

Proof: Multiplying ~II.1! by Z jh and summing fromj 51 to J, we have
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1

2

d

dt (
j 51

J

uZ j u2h52 (
j 50

J21

GS D1Z j

h D UD1Z j

h U2

h1 (
j 50

J21 S Z j3GS D1Z j

h DD1Z j

h D • D1Z j

h
h

52 (
j 50

J21 S A1BUD1Z j

h U2D UD1Z j

h U2

h.

Therefore, we have

1

2

d

dt
iZhi2

21AidZhi2
21BidZhi4

450. ~II.6!

It follows from ~II.1! that

dD1Z j

dt
5

D1D2S GS D1Z j

h DD1Z j

h D
h

1

D1D2S Z j3GS D1Z j

h DD1Z j

h D
h

.

Multiply this equation byG(D1Z j )/h)(D1Z j /h) and summing fromj 50 to j 5J21 to give

(
j 50

J21

GS D1Z j

h DD1Z j

h

dD1Z j

dt
5 (

j 50

J21 D1D2S GS D1Z j

h DD1Z j

h D
h

GS D1Z j

h DD1Z j

h

1 (
j 50

J21 D1D2S Z j3GS D1Z j

h DD1Z j

h D
h

GS D1Z j

h DD1Z j

h

52(
j 51

J UD2S GS D1Z j

h DD1Z j

h D
h

U2

h

2(
j 51

J D2S Z j3GS D1Z j

h DD1Z j

h D
h

D2S GS D1Z j

h DD1Z j

h D
h

h.

~II.7!

We claim

(
j 51

J D2S Z j3GS D1Z j

h DD1Z j

h D
h

D2S GS D1Z j

h DD1Z j

h D
h

h50. ~II.8!

In fact, we have from Lemma II.3~v! that

(
j 51

J D2S Z j3GS D1Z j

h DD1Z j

h D
h

D2S GS D1Z j

h DD1Z j

h D
h

h

5(
j 51

J S D2Z j

h
3GS D1Z j 21

h DD1Z j 21

h D D2S GS D1Z j

h DD1Z j

h D
h

h
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5(
j 51

J S D1Z j 21

h
3GS D1Z j 21

h DD1Z j 21

h DD2S GS D1Z j

h DD1Z j

h D
h

h50,

sincea3a50, (a3b)•b50 andD2Z j5D1Z j 21 . The claim is proved.
We have from~II.7!–~II.8! that

1

2
A

d

dt (
j 50

J21 UD1Z j

h U2

h1
1

4
B

d

dt (
j 50

J21 UD1Z j

h U4

h1(
j 51

J UD2S GS D1Z j

h DD1Z j

h D
h

U2

h50. ~II.9!

However, it follows from the definition ofG(j) and Lemma II.3 that

UD2S GS D1Z j

h DD1Z j

h D
h

U2

5UGS D1Z j

h DD1D2Z j

h2
1B

D1Z j 21

h

D2S UD1Z j

h U2D
h

U 2

5UGS D1Z j

h DD1D2Z j

h2

1B
D1Z j 21

h
•S D1Z j

h

D1D2Z j

h2
1

D1Z j 21

h

D1D2Z j

h2 D U2

5G2S D1Z j

h DUD1D2Z j

h2 U2

1B2UD1Z j 21

h U2UD1Z j

h

D1D2Z j

h2
1

D1Z j 21

h

D1D2Z j

h2 U2

12BGS D1Z j

h DD1D2Z j

h2

•

D1Z j 21

h S D1Z j

h
•

D1D2Z j

h2
1

D1Z j 21

h
•

D1D2Z j

h2 D
5G2S D1Z j

h DUD1D2Z j

h2 U2

1B2UD1Z j 21

h U2UD1Z j

h

D1D2Z j

h2
1

D1Z j 21

h

D1D2Z j

h2 U2

12BGS D1Z j

h DUD1D2Z j

h2
•

D1Z j 21

h U2

12BGS D1Z j

h D S D1D2Z j

h2
•

D1Z j 21

h D S D1D2Z j

h2
•

D1Z j

h D .

~II.10!

Since
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G2S D1Z j

h DUD1D2Z j

h2 U2

5S A212ABUD1Z j

h U2

1B2UD1Z j

h U4DUD1D2Z j

h2 U2

, ~II.11!

and

U2BGS D1Z j

h D S D1D2Z j

h2
•

D1Z j 21

h D S D1D2Z j

h2
•

D1Z j

h D U
<BGS D1Z j

h D S UD1D2Z j

h2
•

D1Z j 21

h U2

1UD1D2Z j

h2
•

D1Z j

h U2D
5BGS D1Z j

h DUD1D2Z j

h2
•

D1Z j 21

h U2

1S ABUD1Z j

h U2

1B2UD1Z j

h U4DUD1D2Z j

h2 U2

,

~II.12!

we have from~II.9!–~II.12! that

A
d

dt (
j 50

J21 UD1Z j

h U2

h1
1

2
B

d

dt (
j 50

J21 UD1Z j

h U4

h1A2(
j 51

J UD1D2Z j

h2 U2

h

1AB(
j 51

J UD1Z j

h U2UD1D2Z j

h2 U2

h1B(
j 51

J

GS D1Z j

h DUD1D2Z j

h2

D1Z j 21

h U2

h

1B2(
j 51

J UD1Z j 21

h U2UD1Z j

h

D1D2Z j

h2
1

D1Z j 21

h

D1D2Z j

h2 U2

h<0. ~II.13!

This inequality combined with~II.6! leads to

d

dt
~ iZhi2

21idZhi2
21idZhi4

4!1iZhi2
21idZhi2

21idZhi4
41id2Zhi2

2<0. ~II.14!

Inequality ~II.14! combined with Gronwall inequality implies that there exist constantsT0 ,C.0
independent ofh such that

iZh~ t !i21idZh~ t !i21idZh~ t !i4
4<C, ;tP@0,T0#,

E
0

T0
id2Zh~ t !i2

2<C.

Lemma II.4 is proved. h

Corollary II.1: Under the conditions in Lemma II.4, we have, for some constant C inde
dent of h,

sup
0<t<T0 ;1< j <J

uZ j u<C. ~II.15!

Now we have the local existence of the solution to~I.6!–~I.7!.
Theorem II.1: Let «51, Z0(x)PW1,4(V). Then (I.6)–(I.7) admits a local solutionZ(x,t) in

@0,T0# in the space

Z~x,t !PL`~0,T0 ;W1,4~V!!ùL2~0,T0 ;H2~V!!, ~II.16!
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and the following estimates hold:

sup
0<t<T0 ;xPV

uZu<C, ~II.17!

iZ~ t !i21iZx~ t !i21iZxi4
4<C, ;tP@0,T0#, ~II.18!

E
0

T0
iZxx~ t !i2

2<C. ~II.19!

In order to prove the global existence, we need the following a priori estimates for the so
of ~I.6!–~I.7!.

Lemma II.5: Let «51, Z0(x)PW1,4(V), T.0 and Z(x,t)PL`(0,T;W1,4(V))
ùL2(0,T;H2(V)) is a solution of (I.6)–(I.7). Then the following estimates hold:

sup
0<t<T;1< j <J

uZu<C, ~II.20!

iZ~ t !i21iZx~ t !i21iZxi4
4<C, ;tP@0,T#, ~II.21!

E
0

T

iZxx~ t !i2
2<C. ~II.22!

Proof: Multiplying ~I.6! by Z(x,t) and integrating it overV, we get

1

2

d

dt
iZ~•,t !i2

21AiZxi2
21BiZxi4

450. ~II.23!

Differentiating ~I.6! with respect tox and then testing it byG(Zx)Zx , one has

G~Zx!ZxZxt5~G~Zx!Zx!xxG~Zx!Zx1~G~Zx!Z3Zx!xxG~Zx!Zx .

Integrating this equation by parts, we have

A

2

d

dt
iZxi2

21
B

4

d

dt
iZxi4

41E
V

u~G~Zx!Zx!xu252E
V

~G~Zx!Z3Zx!x~G~Zx!Zx!x

which implies

1

2
A

d

dt
iZxi2

21
1

4
B

d

dt
iZxi4

41E
V

u~G~Zx!Zx!xu250. ~II.24!

Since

u~G~Zx!Zx!xu25uG~Zx!Zxx12B~Zx•Zxx!Zxu25G2~Zx!uZxxu214B2u~Zx•Zxx!Zxu2

14BG~Zx!uZx•Zxxu2>A2uZxxu2,

whereC depends only oniZ0iW1,4(V) , it follows from ~II.24! that

1

2
A

d

dt
iZxi2

21
1

4
B

d

dt
iZxi4

41A2E
V

uZxxu2<0.

Putting this inequality and~II.23! together, we get from the Gronwall inequality that~II.21! and
~II.22! hold. ~II.20! can be derived from these inequalities. Lemma II.5 is proved. h
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Now, we can use the extension method to give a global solution. Repeating for general«, we
have the following.

Theorem II.2: Let «.0 be fixed andZ0PW1,4(V). Then problem (I.6)–(I.7) admits a global
solutionZ«(x,t) in the space

Z«~x,t !PL`~0,̀ ;W1,4~V!!ùL2~0,̀ ;H2~V!!, ~II.25!

and the following estimates hold:

sup
0<t,`;xPV

uZ«~x,t !u<C1 , ~II.26!

iZ«~ t !i21iZ«x~ t !i21iZ«x~ t !i4
4<C1 , ;tP@0,̀ !, ~II.27!

iZ«tiL4/3~0,̀ ;W21,4/3~V!!<C1 , ~II.28!

E
0

`

iZ«xx~ t !i2
2<C« , ~II.29!

where C1 depends only oniZ0iW1,4(V) .
Remark:The fact thatC1 is independent of« can be seen from the proof of Lemma II. 5, b

C« depends on«.

III. MEASURE–VALUED SOLUTION TO THE STRONGLY DEGENERATE EQUATIONS

Since we can only get the uniform estimates~in «) ~II.26!–~II.28! for the solutions of the
viscosity equations~I.6! and these estimates are not enough to obtain the weak solutio
~I.4!–~I.5!, we apply the notion of the measure-valued solution as in Ref. 7.

DenoteM5C1 whereC1 is given in Theorem II.2 which depends only oniZ0iW1,4(V) . Let
Z «5(Z« ,Z«x), t(j)5Bu(j4 ,j5 ,j6)u2(j1 ,j2 ,j3)3(j4 ,j5 ,j6):(R3ù$u(j1 ,j2 ,j3)u<M %)3R3

→R3. ThenZ « is uniformly bounded inL4(Q)6 whereQ5V3(0,T)PR2 and

ut~j!u<CM~11uju!3,;jP~R3ù$u~j1 ,j2 ,j3!u<M %!3R3.

The following Lemma can be proved by the same method as in Ref. 7.
Lemma III.1: Let Q,R2 be a bounded open set. LetZ «n be uniformly bounded in L4(Q)6.

Then there exists a subsequence, still denoted byZ «n, and a measure-valued functionn such that
for all t:(R3ù$u(j1 ,j2 ,j3)u<M %)3R3→R3 satisfying for some q.0 the growth condition

ut~j!u<C~11uju!3, ;jP~R3ù$u~j1 ,j2 ,j3!u<M %!3R3,

we have

t~Z «n!⇀ t̄ weakly in Lr~Q!,

t̄~y!5,ny ,t.a.e.yPQ,

provided that

1,r<
4

3
.

Proof: It suffices to verify the condition~2.7! of Theorem 2.1 of Ref. 7. Taking the Youn
function C(u)5ur , we have
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E
Q

C~tuZ «nu!5E
Q

uZ «nur<CrE
Q

~11uZ «nu!3r ,

and the last term is uniformly bounded~with respect to n! if 3 r<4. The lower boundr .1 follows
from the properties of Orlicz functions, namely from lims→`C(s)/s5`. h

Definition: A pair (Z,n) is called a measure-valued solution of~I.4!–~I.5! if

ZPL`~0,̀ ;W1,4~V!!, ~III.1!

nPLv
`~Q;Prob~R6!!, ~III.2!

and if for anywPD(2`,T;Cper
` (V)) there holds

E
Q

Z0w5E
Q

Zw t2AE
Q

wxZ3Zx2E
Q

wxE
R6

t~l!dn t,x~l!dx dt, ~III.3!

wheret is defined as above,Q5V3(0,T).
Theorem III.1: Let Z0PW1,4(V). Then problem (I.4)–(I.5) admits a measure-valued solu

tion.
Proof: It follows from Lemma III.1 that there exists a subsequenceZ «n and a measure-value

function n such that

t~Z «n!⇀ t̄ weakly in Lr~Q!, 1,r<
4

3
, ~III.4!

t̄~x,t !5^n t,x ,t&, a.e.~x,t !PQ. ~III.5!

To finish the proof, we only need to prove, for some subsequenceZ«n
, that

E
Q

Z«ntw→2E
Q

Ztw1E
V

Z0w~x,0!, ~III.6!

E
Q

~Z«n
3Z«nx!wx→E

Q
~Z3Zx!wx , ~III.7!

Zx
i 5E

R6
l i 13dn t,x~l!, a.e.~x,t !PQ, i 51,2,3. ~III.8!

In view of ~II.27!, we have for some subsequenceZ«n
that

Z«n
⇀Z weakly in Lr~0,T;L2~V!!, ;r .1 ~III.9!

Z«nx⇀Zx weakly in Lr~0,T;L4~V!!, ;r .1. ~III.10!

To prove~III.6!, we takewPD(2`,T;Cper
` (V)) to give

E
0

TE
V

Z«ntw52E
0

TE
V

Z«n
w t1E

V
Z0~x!w~x,0!→2E

0

TE
V

Zw t1E
V

Z0~x!w~x,0!;

this proves~III.6!.
Now we prove~III.7!. It follows from ~II.27! and~II.28! thatZ«n

is uniformly bounded in the
space
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$v:vPLr~0,T;Wper
1,4~V!!,v tPL4/3~0,T;~W1,4~V!!* !%, ~III.11!

for any r .1. SinceWper
1,4(V)��Lr(V)�(W1,4(V))* , applying an Aubin–Lions Lemma7 with

X05Wper
1,4(V), X5Lr(V), X15(W1,4(V))* , a5r (r .1), b54/3, we know that the space de

fined in ~III.11! is compactly imbedded intoLr(0,T;Lr(V)), that is,

Z«n
→Z strongly in Lr~0,T;Lr~V!!. ~III.12!

Since

E
Q

~~Z«n
3Z«nx!wx2~Z3Zx!wx!5E

Q
(~Z«n

2Z…3Z«nx!wx1E
Q

~Z3„Z«nx2Zx!)wx5I 11I 2 ,

it follows from ~II.26! and ~III.10! that

I 2→0 as n→`,

and it follows from~II.27! and ~III.12! that

uI 1u<S E
0

TE
V

uZ«n
2Zu4D 1/4S E

0

TE
V

uwxu4D 1/4S E
0

TE
V

uZ«nxu2D 1/2

<CS E
0

TE
V

uZ«n
2Zu4D 1/4

→0 as n→`.

The proof of~III.7! is complete.
Since Lemma III.1 is true for allt, if we let t5Id, then forr 54, q51, ;cPL4/3(Q), we

have forZ «n5(Z«n
,Z«nx) that

E
Q
Z «nc dx dt→E

Q
cE

R6
ldn t,x~l!dx dt.

However,Z«n
→Z strongly inLr(Q) andZ«nx⇀Zx in L4(Q), we know

Zx
i 5E

R6
l i 13n t,x~l!, a.e.~x,t !PQ, i 51,2,3.

This verifies~III.8!. h

Remark:Since the estimates obtained in section II are independent ofD, we get by letting
D→` that the Cauchy problem of~I.4! admits a solution in L`(R1 ;W1,4(R1))
ùL2(R1 ;H2(R1)).
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Rectangular well as perturbation
Mariusz Dudek, Stefan Giller,a) and Piotr Milczarskib)

Theoretical Physics Department II, University of Ło´dź,
Pomorska 149/153, 90-236 Ło´dź, Poland

~Received 13 March 1998; accepted for publication 10 November 1998!

We discuss a finite rectangular well of a depthl2 as a perturbation for the infinite
one with l as a perturbation parameter. In particular, we consider a behavior of
energy levels in the well as functions of complexl. It is found that all the levels of
the same parity are defined on infinitely sheeted Riemann surfaces whose topologi-
cal structures are described in detail. These structures differ considerably from
those found in models investigated earlier. It is shown that perturbation series for
all the levels converge what is in a contrast with the known results of Bender and
Wu. The last property is shown to hold also for the infinite rectangular well with
the Dirac delta barrier as a perturbation considered earlier by Ushveridze. ©1999
American Institute of Physics.@S0022-2488~99!03103-5#

I. INTRODUCTION

Since the papers of Bender and Wu1 we have known why the perturbation series were,
general, divergent. We have known also that in many cases investigations of perturbation
could be reduced to the investigations of the corresponding semiclassical series.2 It was also
realized that the divergent perturbation series could be summed and one of the summation
ods applied here was very often the Borel one.2,3

One of the byproducts of these investigations was a discovery of so called level crossin
of the fact that in the case of confining polynomial potentials all the discrete energy levels
produce or only groups of them are no longer isolated of each other if considered as functi
a perturbation parameter.1,3–6 Being a little bit more precise, the latter statement means that
levels inside each group appear as branches of ramified functions of the perturbation par
considered as a complex variable. It means, in particular, that each energy level belongin
group considered as a function of a real perturbation parameter can be analytically continu
the complex plane of the parameter so that any energy level of the group can be reached
analytic continuation procedure of some arbitrary chosen level belonging to the group. This
also that the complex plane of the perturbation parameter converts rather into some~more or less!
complicated Riemann surface.

It is also well known7 that it is an existing symmetry group of the Hamiltonian conside
which is completely responsible for a decay of the energy spectrum into disjoint~with respect to
analytic continuation! groups of them. Therefore, a degree of complication of respective Riem
surfaces on which the energy levels are defined can give us information about an existence
relevant symmetry group, i.e., the more levels appear as branches defined on respective s
the same Riemann surface the less rich a relevant symmetry group has to be. In particula
corresponding Riemann surfaces are all finitely sheeted~i.e., if there are finite numbers of energ
levels attached to each of them! then they have to be defined by some algebraic conditions rela
energies and a perturbation parameter, with the conditions being a clear sign of the existenc
underlying symmetry group.7

There are only a few examples of the analysis described above in the case when the r
Riemann surface is infinitely sheeted.1,6,8 The analysis performed is more or less numerical. T

a!Electronic mail: sgiller@krysia.uni.lodz.pl
b!Electronic mail: jezykmil@krysia.uni.lodz.pl
11630022-2488/99/40(3)/1163/17/$15.00 © 1999 American Institute of Physics
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is mostly because it is very difficult to find an example of potential providing us with a clo
functional form of the quantization condition being simultaneously sufficiently simple to per
an analysis in a ‘‘classical,’’ non-numerical way. According to these investigations a Riem
surface topology corresponding to a given perturbation parameter, i.e., loci of its branch
seems to be still mysterious and depending on a parameter chosen so needing still further

In this paper we will consider a possibly simple but not a trivial example of a Hamilto
provided by the familiar rectangular well of a finite height which allows us for such a clas
analysis. As a perturbation parameter in this example we will choose its heightV5l2.0; strictly
speaking the square root of it. The perturbed potential is then the infinite rectangular we
proached whenV21→0.

There are several basic properties which differ the case of the finite rectangular well fro
ones considered earlier. First it is just a finite number of energy levels existing for a givenl but
varying with l so that a potentially infinite number of levels can appear whenl21→0. The
remaining properties are enumerated as points 2, 4 and 5. below.

The rectangular well is not an analytical potential and as such it provides us also w
nonanalytical quantization condition. However, an analytical extension of the latter into com
values of the quantities considered is possible and results of the relevant analysis are the
ing.

1. The system of energy levels of the well decays into two disjoint families~of different
parities! with the levels inside each of the group being analytical continuations of each other
respect to the perturbation parameter.

2. The perturbation series for each level is convergent to the level itself, i.e., the pro
which is quite opposite to that of Bender and Wu for the unharmonic oscillator case. As suc
are trivially Borel summable.

3. The Riemann surfaces for both the groups of levels are infinitely sheeted and their b
point structures can be understood by some simple properties of both the quantization con

4. The energy level poles existing in the complex momentum plane corresponding to th
are accompanied by poles which do not represent discrete nor resonant parts of the energ
trum @in particular, because resonances are absent in the case of the finite rectangular we
pendently of whether the latter is a real well~for reall! or is a rectangular barrier~for imaginary
l!#. These second sort of poles we shall call pseudoenergy levels.

5. The level crossing which happens forreal l is not between two real energies but ju
between an energy and its pseudoenergy partner.

We will reconsider also an example of a numerical analysis performed earlier by Ushve8

to show that its ‘‘classical’’ analysis is possible in its full size confirming the main results of
author mentioned but completed them with such an important conclusion as a convergence
perturbation series corresponding to the weak and the strong couplings to the Dirac delta
bation used in the example.

Another goal of our investigations was to look for rules governing distributions of en
level branch points on the perturbation parameter Riemann surface. It has been demonstr
Ushveridze8 that one can predict an existence of energy level crossing as well as arrang
crossing to join more than two levels but as in the case of the anharmonic potential1 distributions
of the corresponding branch points seemed to be unpredictable prior to direct calculations

Our main conclusion in this respect is similar. Indeed, such distributions of branch poi
rather strongly model~potential! dependent although it can happen that some properties of t
distributions can be drawn just by an inspection of properties of investigated potentials. How
in this way only some crude procedure can be formulated to predict their presence or abse
some domains of the underlying Riemann surface~see also Ref. 2!.

II. FINITE RECTANGULAR WELL AS A PERTURBATION
A. Analytic properties of energy levels as functions of perturbation parameter

A finite rectangular well as a perturbation sounds a little bit exotic but it can be consider
such for the infinite will in the same way as, for example, a finite potential well:
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1

2

v2

a2 S 12
1

cosh~ax! D ~1!

is a perturbation for the harmonic one, i.e., we get the latter from~1! for a→0.
In the case of a finite rectangular potential given by

V~x!5H V~.0!, for uxu.1,

0, for uxu,1,
~2!

a perturbation parameter can be chosen to bel25V which together with the rescaled energ
E/V[z2 leads us to the following quantization conditions:9

lucosfu5f, z5ucosfu, tanf.0, for positive parity levels;
~3!

lusinfu5f, z5usinfu, tanf,0; for negative parity levels.

All ~positive! solutionsfk(l), k51,2, . . . , toEqs.~3! are represented picturesquely in Fig. 1
given by the points of intersections of the straight linef/l with the right arcs ofusin(f)u and
ucos(f)u functions. The corresponding solutions for energy levels are then obtained asEk(l)
5l2z2(fk(l)). It is just a dependence ofEk’s on l as a complex parameter which is the ma
interest of this paper.

To investigate this dependence it is, however, necessary to make an analytical continua
the conditions~3! into the complexl. Such a continuation of Eqs.~3! is possible when dropping
the absolute value marks in~3!, which provides us with following analytic conditions:

l cosf5f, z5cosf, for 0<f< 1
2p ~mod 2p!;

l cosf52f, z52cosf, for p<f< 3
2p ~mod 2p!;

~4!
l sinf5f, z5sinf, for 1

2p<f<p ~mod 2p);

lsinf52f, z52sinf, for 3
2p<f<2p ~mod 2p)

equivalent to~3! for positivef.
According to~4! the energy spectrum for the potential~2! is formally divided into four groups.

Each group contains every fourth member of the spectrum, starting fromE1
1 , E3

1 , E2
2 , E4

2

energy levels in the corresponding group. The energy levels in the groups are defined
conditions~4! in the order mentioned.

FIG. 1. Thef angles chosen by the quantization conditions~3!.
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Dropping further the restrictions for the ranges of changingf in the conditions~4! we get
fully analytical quantization conditions but describing rather different spectra with respe
which our original ones are only parts of them. This is, however, the necessary price for in
gating the complex analytical dependence of energy levels onl.

Let us observe, however, that for both the parity levels it is enough to continue analyt
only the first of the corresponding conditions~4! depriving them of the corresponding restrictio
for f ~i.e., f can now take any complex value in these conditions!. This is because correspondin
solutionsf6(l) to the first conditions generate solutionsf6(2l) to the second ones.@In fact,
for the even parity both the solutions almost coincide sincef1(2l)52f1(l)].

Therefore we see that all energy levels of both parities:Ek
1(l)5l2 cos2 fk

1(l)5(fk
1(l))2 and

Ek
2(l)5l2 sin2 fk

2(l)5(fk
2(l))2 can be obtained by solving only the first conditions~4! of the

corresponding parities and performing analytic continuations inl from its positive to its negative
values.

We shall analyze first the even parity group determining the ground state energy leve
analysis of the odd parity case is quite similar.

1. Even parity energy spectrum case

Making in the first of the conditions~4! a change of variableeif5s we get instead

l152
2is ln s

s211
, z15

1

2S s1
1

s D . ~5!

Since a dependence ofz1 on s as given by~5! is rather simple then to get the correspondi
dependence ofz1 on l it is necessary to invert the dependence of the latter variable ons as given
by ~5!. To do this one needs to know the following:

10 The Riemann surface structure forl1(s);
20 The loci of all zeros ofl18(s) on the surface; and
30 A pattern of lines Rel15const and Iml15const on the surface.

As it follows from ~5! the Riemann surface structure forl1(s) is determined by
a. The logarithmic branch point ats50; and
b. A pair of simple poles ats56 i located on every sheet the latter being generated in

infinite number by the logarithm.
Zeros ofl18(s) are determined by the following equation:

ln s5
s211

s221
. ~6!

Putting eif1y5s (s is now an arbitrary complex number on the surface! and assuming tha
f,yÞ0 we transform~6! into

sin 2f

2f
52

sinh 2y

2y
, cos 2f52

sinh 2y

2y
1cosh 2y, ~7!

f, yÞ0,

from which it follows that all zeros ofl18(s) have to lie on the circleusu51 and/or on the rea
half axisf50. Therefore the corresponding conditions for them are

cotf52f, ln s5
s211

s221
, ~8!
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where in the last equations is real and positive.
Solutions to the first of Eqs.~8! ~in fact, infinitely many of them! are given therefore as th

intersection points of the functions cotf and 2f. The form of the condition can be easil
identified as the one for the straight linef/l of Fig. 1 to be tangent to cosf. Therefore the points
have to lie close tof52kp ones,k51,2, . . . , on theleft to them, and close tof5kp, k5
21,23, . . . , on theright to the latter.

Two real solutions to the second of Eqs.~8! are placed on both the sides ofs51 at s1

'3.32 and ats1
21'0.301.

Let us note that the points on the unit circle atf5kp,k521,12,23,14, . . . , and thepoint
s51 are all the physical ‘‘thresholds’’ for successive appearing of the corresponding even
energy levels according to changingl from zero to infinity. There is a temptation to understa
the zeros provided by the conditions~8! as a shifting of these thresholds from their real physi
positions mentioned to their actual ones because of the approximations which the ana
conditions~8! effectively are to our rectangular well quantization problem. This shifting of thre
olds remains in a deep relation to analytical properties of reflection and transmission coeffi
of the corresponding scattering problem arising when energy is higher thanl2. We shall discuss
this relation below.

Although the solutions to the condition~8! cannot be considered as thresholds for any r
energy spectrum case~this is excluded by the absence of the energy level degeneracy in 1-dim!
we shall consider them as such for convenience and call them pseudothresholds.

Thus the solutions to the first of the conditions~8! are the pseudothresholds for the ener
levels lying inside the potential above the ground state one. These pseudothresholds as w
mentioned earlier coincide with results of demanding for the linef/l in Fig. 1 to be tangent to
cosf. The latter demand is just the lower limit forl above which the real solutions for the high
energy levels can exist.

Both the solutions ats1 and s1
21 between whichl1(s) is pure imaginary are then th

corresponding limits for the ground state energy levelE1
1 to be a real quantity. However, fo

E1
1(l) as well as for the higher energies the condition to be real is not enough to represent

physical level. The sufficient conditions will be discussed below in Sec. II B.
A pattern of the lines Rel15Im l150 is sketched on Fig. 2 together with the positions

all singular points ofl1(s). Since all zeros ofl18(s) are simple they result as square ro
branch point singularities ofs(l) on its l-Riemann surface. A consequence of this is a perp
dicular crossing of two lines Iml150 as well as the corresponding two lines Rel150 in every
such zero. All the lines Iml150 emanating outside the unit circle run to infinity on the cor
sponding sheets of thes-Riemann surface parallel to the line Res50. These emanating inside th
circle have to cross the logarithmic branch point ats50 being tangent at this point to the lin

FIG. 2. The ‘‘first’’ sheet of thes-Riemann surface corresponding tol1(s).
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Res50. The remaining lines Iml150 coincide with all semicircles of the unit circle lyin
between the poles ats56 i on every logarithmic sheet of thes-Riemann surface.

The l-Riemann surface on which the inverse functions1(l) is defined is now easy to
construct. It is also an infinitely sheeted surface. Its first sheet is a map of the dashed area
2 and is shown in Fig. 3~a!. This is the sheet on which the ground state energy level is defined
for l changing along the real axis of the sheet or along a segment@l1 ,2l1#[
@2l1(s1),l1(s1

21)# on the imaginary axis where the corresponding energyE1
1 is real. On the

rest of the sheet the energy is complex.
There are two cuts on the sheet emanating of the two complex conjugate imaginary b

points atl15l1(s1)52l1(s1
21) and running to infinity along its imaginary axis. The functio

s1(l) is holomorphic on the sheet approaching6 i for l escaping to the infinity on the right o
on the left half planes of the sheet, respectively.

The second sheet corresponds to the second energy level. This sheet can be achi
crossing~in any direction! one of the two cuts described above. Despite these two latter cuts
are another two square root branch points on the sheet lying on the real axis atl56l2

5l1(e7 if2)57f2 /cosf2. The energy levelE2
1 is given by the values ofl changing on both

the sides of the real axis from the real branch points mentioned up to the corresponding infi
On thes-Riemann surface of Fig. 2 these ranges of changingl correspond to varyings along the
two left unit semicircles between the poles ats56 i .

There is still an additional branch point on the discussed sheet atl50 which is also presen
at all the other sheets except the first one. It is a common picture of the points50 and all the
infinity points of thes-Riemann surface of Fig. 2. Therefore this point gives rise to an infi
branching ofs1(l) around it.

Starting from the third energy level, every one of the levels is represented on two diff
sheets which can communicate with themselves by the branch point atl50. Each of these two
sheets belongs to two different families of them the latter being generated by the two branch
of the second sheet atl56l2 @see Fig. 3~b!#. One of these two families corresponds to mapp
of the s-Riemann surface of Fig. 2 into thel one in the clockwise direction moving around th
logarithmic branch point ofl1(s) at s50. The second family of sheets in the correspond
mapping in the opposite direction.

FIG. 3. The few firstl-Riemann surface sheets fors1(l)(E1(l)).
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Let us analyze the family generated by the branch point atl5l2. The other family is a twin
picture of this one obtained by a transformationl→2l.

Going aroundl2 through the cutA2 /B2̄ we find ourselves on the sheet shown in Fig. 3~c!.
There is an additional cut on the sheet generated by the branch point atl5l35l1(e2 if3)
52f3 /cosf3. The branch point opens the possibility for the fourth and the fifth energy leve
appear. The ranges of the energy levelsE3

1 andE4
1 are shown on the figure.

To achieve a sheet corresponding to a pairE5
1 , E6

1 of the levels we have to cross the c
A3 /B3̄ in Fig. 3~c! ~in any direction!. The sheet is shown in Fig. 3~d! together with corresponding
ranges for the energies.

A full structure of the considered family of sheets of thel-Riemann surface is now obvious
The nth sheet, n53,4, . . . , contains three branch points lying atl50, l5ln21

52fn21 /cosfn21 and atl5ln52fn /cosfn . Each of the last two branch points opens a p
of energy levels:E2n24

1 , E2n23
1 andE2n22

1 , E2n21
1 , respectively, the levels in each pair lying o

different sheets.
And inversely, the energy levels appear on every sheet in pairs. A 2n11th sheet correspond

ing to energy levelsE4n21
1 , E4n

1 , n51,2, . . . ~see Fig. 4! is cut by two cuts:B2n /Ā2n beginning
at l5l2n52f2n /cosf2n.0 and opening the levelE4n21

1 and B2n11 /Ā2n11 beginning atl
5l2n1152f2n11 /cosf2n11,0 and opening the levelE4n

1 . Both the cuts end atl50. A corre-
sponding sheet for the levelsE4n11

1 , E4n12
1 is cut from l2n11 to 0 and from 0 tol5l2n12

52f2n12 /cosf2n12.0 with the latter branch point opening the second of the considered le
~see Fig. 4!. Note also that a pairE4n21

1 , E4n
1 is determined by the crossing linef/l with 4n

21th and 4nth arcs ofucosfu of Fig. 1, respectively, and a pairE4n11
1 , E4n12

1 with the arcs
4n11th, 4n12th correspondingly. This is why the members of each such a pair have to app
the same limit whenl→1`.

The structure of the second family of sheets generated by the branch point atl52l2 is
obtained by an inversion:l→2l from the first one discussed above.

2. Odd parity energy spectrum case

Making in the third of the conditions~4! a change of variables5eif we get the condition in
the form:

l25
2s ln s

s221
, z25

1

2i S s2
1

s D . ~9!

It follows from ~9! thatl2(s) is a meromorphic function ofs on thes-Riemann surface with the
logarithmic branch point ats50 and with simple poles ats561 on every logarithmic shee
except the first one where the pole ats51 is absent. The surface is shown in Fig. 5 where the li
Im l2(s)50 are also shown schematically. Zeros ofl28(s) are distributed in this case onl

FIG. 4. The general structure ofl-Riemann surface sheets fors1(l)(E1(l)).
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on the unit circle usu51 at the points51 on the first sheet and at pointss5eifk with
fk(52f2k.0) satisfying the conditionf6k5tanf6k , k52, . . . , on theremaining sheets so
that the first two of the latter singular points lie on the second sheet of Fig. 5.

On the other hand, the inverse functions2(l) is holomorphic on thel-Riemann surface with
branch points atl51 and atlk5l2(eifk) which are images of zeros ofl28(s).

The spectrum is opened with the levelE2
2(l) which belongs to the odd parity spectrum of th

rectangular well contrary to the next levelE3
2(l) which does not.

An interesting property ofE2
2(l) is a singularity which it has to have atl50, i.e., the level

E2
2(l) as a function ofl is not bounded from below at this point. This conclusion follows fro

an observation that although the pointl51 is a branch one fors2(l) @below whichs2(l) has
two values:s ands21 for everyl, 0<l<1] it is not as such for the levelE2

2(l). On the other
hand, E2

2(l)(52 ln2s) for 0,l,1 (0,s,1}) is real and negative. Therefore a pseud
threshold for the latter appears to be at the pointl50 at whichE2

2(l) becomes infinitely large and
negative. Here again we want to stress, however, that the reality ofE2

2(l) does not mean auto
matically, its existence as a real physical energy level~see a discussion below, Sec. II C! and, in
fact, in the case consideredE2

2(l) disappears as a physical level belowl5p/2 as it follows from
Fig. 1.

Properties of the remaining levels are the following.
The levelE3

2(l) starts with a pseudothresholdE3
2(eif1). A sheet on which both the level

vary is shown in Fig. 6. It emerges as a map of an area of Fig. 5. lying between the real ha
s>0 and the line Iml2(s)50 crossing the points5eif1. The map is provided byl2(s).

FIG. 5. The ‘‘first’’ sheet of thes-Riemann surface corresponding tol2(s).

FIG. 6. The sheet of thel-Riemann surface corresponding to the levelE2
2(l) and its pseudolevelcompartnerE3

2(l).
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The second sheet and all the next ones are arranged in a very similar way to the corresp
sheets in the even parity energy level case. To achieve the second sheet on which the levelsE4

2(l)
andE5

2(l) are defined, we should cross a cutA2 /B2̄ of Fig. 6 in any direction close to the branc
point l15l2(eif1)5f1 /sinf1,0. The point opens the levelE4

2(l) on the sheet for2},l
,l1. There is a second branch point on the sheet atl5l25f2 /sinf2.0, opening the level
E5

2(l) for l2,l,1}. The sheet emerges as a map of an area of Fig. 5 lying between
successive lines Iml2(s)50, the first one crossing the singular points15eif1 and the next one
crossing the unit circle ats25eif2.

All the next sheets appear as maps of successive areas bounded by the corresponding
the lines Iml2(s)50 crossing the successive singular pointssk5eifk, k52,3, . . . , in the di-
rection of an increasing argument ofs. However, contrary to the even parity case maps of
negative argument sheets of thes-Riemann surface do not produce additional~twin in forms!
sheets on thel-Riemann surface, which corresponds to the absence of relevant right cut o
first sheet of the latter surface. It means that the complex conjugated positive and negativ
ment sheets of thes-Riemann surface map into the same sheets of thel-Riemann surface for the
odd energy functionE2(l).

B. Relation between analytical properties of energy levels and analytical properties of
transmission coefficient

It is a standard result of the 1-dim quantum mechanics that energy levels of bound sta
simple poles for a transmission coefficient of the corresponding 1-dim scattering problem.9 These
poles have to occupy the positions on the positive imaginary axis of the complex mome
corresponding to an infinite motion. In fact, this last property is the main criterion for selectin
real bound state energies from the whole set of poles the transmission coefficient can hav

Since the analysis of the analytical quantization conditions of the previous section provid
with a variety of the solutions which all have to be poles for a transmission coefficient, th
select out those of them which are the physical bound state levels we have to discuss roles
by them in the corresponding transmission coefficient.

We shall give to our considerations a standard formulation shifting all energy levels
2l2 so that the infinite motion takes place forE.0 with the momentumk5AE outside the well
and with the momentumk85(k21l2)1/2 inside it ~the bottom of the well is now atV52l2, of
course!. Then the reflection~R! and transmission~T! coefficients for the case are the following

T~k!5
kk8e22ik

~k cosk82 ik8 sink8!~k8 cosk82 ik sink8!
,

~10!

R~k!5
il2 sin 2k8

2kk8
T~k!.

It is seen from~10! that T ~andR as well! as a function of complexk is meromorphic with
their poles coinciding with roots of theT-denominator. Clearly these poles occupy exactly
positions of energy levels in thek-plane we have found in the previous paragraphs. The den
nator factorization in~10! occurs due to the reflection symmetry of the potential well. In particu
the first denominator factor in~10! corresponds to the odd parity levels and the second to the
ones.

We can separate the investigations of the levels of different parities~according to what we
have done earlier! by considering instead of the coefficients~10! two pairs of the following ones:

T1~k!5
k

k8 cosk82 ik sink8
, R1~k!5

il cosk8

k
T1~k!,
~11!
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T2~k!5
k

k cosk82 ik8 sink8
, R2~k!5

il sink8

k
T2~k!.

Of course, the two above pairs of coefficients correspond now to two different potential w
V1(x,l) and V2(x,l), respectively, which can be reconstructed with the help of the inv
scattering method.10

Let us consider first a pole structure of thek-plane corresponding to the even parity case. T
corresponding analysis of the odd one is analogous.

This structure is shown in Fig. 7 and follows from an observation thatf l
1(l) as anlth

analytical solution to the first of the conditions~4! defines a pole ofT1(k) on the k-plane at
kl

1(l)5 ilsinfl
1(l).

According to our earlier observation together with solutions we have for a givenl.0, we
have to consider also the ones we have for2l.

There is a finite numberm (ufm
1(6l)u<mp<l) of solutions to~4! for which f l

1(6l) are
real and6lsinfm

1(6l).0. Poles corresponding to these solutions@including the one for the
ground state~for l 51)# are distributed on the segment (0,il) of the positive imaginary axis and
represent the physical bound states of the potentialV1(x,l).

There are alsom-1 real solutions to~4!, but with 6lsinfm
1(6l),0 generating in this way

poles lying in thek-plane on the segment (0,2 il) ~i.e., below the real axis of the plane!. There-
fore the latter which we call pseudoenergy levels cannot represent the bound states inV1(x,l).
These poles appear as branch partners of the previous ones~except the ground state partner whic
does not exist! which therefore can coincide with the latter at the corresponding pseudothres
l5l l ~see Figs. 3–4!. However, loci of these pseudothresholds in thek-plane are just below the
real axis not contradicting therefore the physical level nondegeneracy theorem. According
previous notation~see Figs. 3–4! these 2m21 poles arek1

1(l), (k2
1(l),k3

1(l)), (k4
1(l),

k5
1(l)), . . . , (k2m22

1 (l),k2m21
1 (l)) where the branch partners are paired and the poles with

indices represent the physical levels~lie above the real axis!.
Finally, there are infinitely many poles ofT1(k,l) lying below the real axis of thek-plane on

both sides of the imaginary one and symmetrically with respect to it@due to the relationkl(l)
52kl* (l* ) considered for reall# but outside of it with finite distances between any two of the

FIG. 7. Thek-plane of the transmission coefficientT1(k).
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and because of this distributed up to infinity. These are, of course, the poles (k2l 22
1 (l),k2l 21

1 (l)),
l 5m11,m12, . . . .

If l varies through real positive values increasing all the poles lying outside the seg
(2 il,il) move towards it and a symmetric pair of them (k2l 22

1 (l),k2l 21
1 (l)) achieves the

segment just forl approachingl l a value being a corresponding pseudothreshold for the p
While achieving the segment the pair disjoints again with its memberk2l 21

1 (l) moving upwards
of the imaginary axis and with the memberk2l 22

1 (l) moving downwards. The first one cross
eventually the real axis becoming a bound state whilst the second one does it never, beco
pseudoenergy level.

The above description works for every pair of the pole partners except the one correspo
to the ground state energy which is single. This for real positivel @as well as for the negative on
due to a relationkl(l)5kl(2l)) valid for anyl# is above the realk-axis and thus represents th
ground state energy. However, for imaginaryl(s), when 0,s,1 or 1,s,1}, E1

1(l)5l2 is
real ~and, of course, negative! but k1

1(l) has a negative imaginary part and thereforeE1
1(l)

cannot represent a bound state. This fits well our intuition, since for imaginaryl the rectangular
well become rather a rectangular barrier excluding, of course, any bound state.

A similar analysis of the odd parity levels corresponding to the potentialV2(x,l) leads us to
the following conclusions.

For a givenl.0 and mp<l poles: k2
2(l), (k3

2(2l),k4
2(2l)), (k5

2(l),k6
2(l)), (k7

2

(2l),k8
2(2l)), . . . , (k2m21

2 ((21)m21l),k2m
2 ((21)m21l)) lie in the segment (2 il,il) whilst

the remaining ones (k2l 21
2 ((21)l 21l),k2l

2((21)l 21l)), l 5m11,m12, . . . , lie outside the seg-
ment, below the real axis and symmetrically with respect to the imaginary axis.

A behavior of all the paired poles withl varying along the positive real axis is exactly th
same as in the even parity level case. Only the polek2

2(l) seems to differ with this respect i
comparison withk1

2(l) escaping to infinity along the negative imaginary axis whenl→01 .
However, if one considers a behavior of the levels rather as functions ofs for s→01 ~or for
s→1}) on the corresponding first sheets of Figs. 5 and 2, respectively~this corresponds tol
→01 for the odd level but describes a little bit more complex path for the even one en
however, atl50) then one can find that both the levels behave identically.

C. Perturbation series for energy levels and their summability

Since the finite rectangular well considered is a perturbation for the infinite rectangula
whenl22→0 then the corresponding energy levels of the former should approach in this lim
corresponding levels of the latter potential. It is interesting that with the previous consider
we are able to conclude that all the corresponding perturbation series expansions are con
The corresponding conclusions are, in fact, obvious for all the energy levels higher tha
ground state one. To show this let us consider a pair of levelsE4n11

1 , E4n12
1 lying on the 2n

12th sheet shown in Fig. 4, with the levelE4n11
1 belonging to the even spectrum of the fini

rectangular well. A functionE1(l)5l2z2(l) being a holomorphic extension of both the leve
considered is holomorphic on the 2n12th sheet outside any closed contourC containing the
branch pointsl50, l2n11 and l2n12 inside ~see Fig. 4!. For l→` on the sheetE1(l)
;E4n11

1 (l);p2(8n11)2/4 and therefore according to the Cauchy theorem we get forE1(l),

E1~l!5
~~8n11!p!2

4
2

1

2p i RC

E1~l8!

l82l
dl8. ~12!

It follows from ~12! that the series

~~8n11!p!2

4
1 (

k>0

a2n11,k

lk11
,

with
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a2n11,k5
~21!k

2p i R
C
E1~l!lk dl, ~13!

which is the perturbative one for theE4n11
1 (l) level is convergent to the level forulu

.ul2n12u, i.e., for all l’s just above its pseudothreshold.
For the ground state energy levelE1

1(l) an analogous conclusion can be obtained by con
ering instead the cut pattern shown in Fig. 3~a! the one when the upper and the lower left c
boundaries in the figure are rotated by6p, respectively, providing us with a sheet arrang
according to Fig. 8. It follows from the figure that the perturbative series forE1

1(l) is obtained
from ~12! by putting theren51 andC5C8 with its convergence radius given by max(ul1u,ul2u).

The same conclusions can be drawn for the perturbative series constructed for the odd
energy levels, applying exactly the same technique of considerations as we did in the case
even parity levels. The series constructed for a levelEn

2(l) is therefore convergent forulu
sufficiently large on the sheet on which the level is defined.

III. DIRAC DELTA BARRIER AS PERTURBATION

A second example of a perturbation which can be analyzed analytically is provided b
Dirac delta barrier introduced into the infinite rectangular well, i.e., it is given by

V~x,g!52gd~x!, uxu,1 c~61!50, ~14!

wherec(x) is a wave function for the case. A role of a perturbation parameter is played byg. For
g50 we get a problem of the energy spectrum in the infinite rectangular well, i.e., an asym
limit of any energy levelEn(g) of the potential~14! is just a corresponding levelEn of the
rectangular well. In the limitg→1` we get instead two infinite rectangular wells with the half
the size of the well we started with for which their energy spectra should coincide with
corresponding limit ofEn(g). This is not unexpected. What is interesting in this example is
fact that every even parity level of the potential~14! is a branch of some ramified functionE(g)
considered as a function of complexg ~odd parity energy levels decouple ofg and therefore
coincide with the odd ones of the infinite rectangular well!.8

The last property makes to some extent the considered case similar to the previou
However, there is one considerable difference between them. This is that the existence of
even energy levelsEn(g) does not depend ong, i.e., each level exists for anyg, including g
50. Therefore, we cannot expect on ag-Riemann surfaceRg of E(g) the real branch points to

FIG. 8. The cut structure of the sheet on which the perturbative series forE1
1(l) is studied.
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appear having meanings of pseudothresholds for the levelsEn(g). On the other hand, there ar
branch points onRg @as they have to be becauseE(g) is a ramified function# which are complex
but which physical meaning seems to be a puzzle.

Nevertheless, there is also a property of the considered case which is a copy of the
sponding one for the finite rectangular well. Namely, the perturbative series for evenEn(g) are all
convergent. All these follow from the quantization condition for even energy levels:

k cotk52g, k5AE. ~15!

The condition~15! definesg as a meromorphic function ofk with simple poles on thek-plane at
k5rp, r 561,62, . . . . Therefore, an inversion of the relation~15! will be easy if we know
positions of zeros ofg8(k) in the k-plane. These positions are determined by~15! and by the
following condition:

g21g1k250. ~16!

Both the last equations are equivalent to

sin 2k52k, g52k cotk. ~17!

The first of Eqs.~17! has a solution fork50 and an infinite number of complex solutions
the k-plane ~i.e., ImkÞ0 for all these solutions! with the property that ifkl , l 51,2, . . . , is a
solution to it then2kl , kl* and2kl* are also. It is easy to show that for largel Im kl increases as
ln l and Rekl as lp.8 A corresponding pattern of lines Reg5const, taking into account the
distribution of singular points described above is shown in Fig. 9. The pattern allows for an
construction of ag-Riemann surfaceRg for an inverse functionk(g). Namely, we can arrange cut
on Rg in such a way as to map anlth dashed area of Fig. 9 into a sheet ofRg corresponding toEl th
even energy level of the potential considered. This is shown in Fig. 11.

Becauseg(k) is a symmetric function ofk, i.e., g(k)5g(2k) with the singular point atk
50 @i.e.,g8(0)50] its inverse functionk(g) is defined on the Riemann surfaceRg which consists
of two twin systems of sheets joined by a single cut beginning atg521 and running to2`.
These two systems of sheets are maps of the right and the leftk-half planes of Fig. 9, respectively
The two sheets opening the systems and joined by the cut described above are the ones o
the ground state energy level is defined, taking the same values in the corresponding point

FIG. 9. The pattern of lines Reg(k)5const and Img(g)5const forg(k)52k cotk.
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sheets. This is becauseE(g)5k2(g). Therefore, forE(g) the point g521 on the first sheet
considered is not a branch one and we can consider only one of the two systems of
corresponding, for example to Rek>0 what is assumed from now on.

In accordance with the results of Ushveridze,8 all singular points ofE(g) lie on the first sheet
corresponding to the ground state energy level of the potential~11!. The sheet is an image of a
area which completes the dashed ones of Fig. 9 to the full rightk-half plane and is sketched in Fig
10.

As it has been already explained earlier on thelth sheet on which thelth energy levelEl(g)
is defined, there is a unique pair of complex conjugated branch points atgl(5g(kl)) and ḡl by
which the level contacts with the ground state one~see Fig. 11!. The level is holomorphic on its
sheet atg50 and approaches@( l 11)p#2 or (lp)2 for g→` in the half planes Reg.Regl or
Reg,Regl , respectively.

Because of the holomorphicity ofEl(g) at g50 its perturbative series with respect tog
converges inside the circleugu5ugl u.

For largeg, however, we have to consider together withEl(g) also its neighborEl 11(g) for
which its limit for g in the half plane Reg,Regl is the same as forEl(g) in the half plane
Reg.Regl . A common sheet for both the levels is shown in Fig. 12. It is obvious that we
apply here the Cauchy integral technique to show the convergence of the asymptotic ser
El(g) and forEl 11(g) for large g withugu.ugl 11u, l 51,2, . . . .

The corresponding statement for the ground state energy level perturbation series is a
for ugu.ug1u.

FIG. 10. The cut structure of theg-Riemann surface for k~g! determining the surface.

FIG. 11. Theg-Riemann surface forlth energy level of the infinite rectangular well with the Dirac delta barrier.
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IV. DISCUSSION AND CONCLUSIONS

The model of the finite rectangular well which we have considered provided us with se
properties, differing it from the previous ones.

First it was a number of energy levels varying with a perturbation parameter thus chan
quality of the levels of being real to becoming only potential ones.

Secondly, it was the existence of the pseudoenergy levels in the model the main role of
was just to allow the level crossing phenomenon to appear.

It was also an easiness of predictions of the pseudothreshold distribution as a part of
level crossing loci. The latter property followed, however, from the simplicity of the quantiza
conditions for the case as illustrated by Fig. 1. In fact, the remaining three branch points, th
for the ground state level atl56 i and the logarithmic one for all the levels atl50, could be
identified only by detailed calculations.

Finally, it was the convergence of the perturbation series for largel and for all the levels. This
property could not be deduced prior to the detailed knowledge of thel-Riemann surface topology
just because for imaginaryl ~no matter small or large! the rectangular well became the rectangu
barrier, suggesting rather a possibility for the perturbation series to be divergent in these dire
because of a repelling character of the barrier. However, the repulsion of the rectangular
appears to be not enough strong to destroy the convergence of the perturbation series.

The property of the perturbation series to be convergent was shared also by the corresp
series constructed for the levels in the infinite rectangular well perturbed by the Dirac delta b

In general, there is a question about the possibilities to predict some basic propert
analytical dependence of energy levels on a parameter considered as the perturbation one
any detailed calculation, i.e., relying only on some general properties of the potential g
Obviously, such qualitative predictions are possible in some simpler cases. There are, ho
also many traps and puzzles which one can meet trying to proceed in this way.

Consider, for example, the case of the potential~1!. Its properties remind many of those of th
finite rectangular well if we considerl5a22 as a perturbation parameter~an obvious choice afte
a rescalingx→a21x in the corresponding Schro¨dinger equation!.

First, a corresponding quantization condition is given by a nonalgebraic dependence be
energyE andl which can be readily continued to complexl.11 We can expect thereforeE(l) to
be defined on infinitly sheeted Riemann surfaces for both the parities.

Secondly, a number of its energy level depends on its actual height~equal tolv2/2) and
therefore the levels of this well should have real and positive thresholds as their branch poin
therefore should be accompanied by the corresponding pseudolevels.

Third, its levels approach the ones of the harmonic oscillator whenl→1`.
Next, changingl→2l in ~1! we find that the spectrum of the finite well~1! is transformed

into the corresponding spectrum of the infinite well defined by cos(ax), the latter arising from
cosh(ax) after the transformation. The spectrum of this infinite well approaches again the
monic one whenl→1` ~after the above change of sign ofl!. On the other hand, whenl→0
each level of the considered infinite well goes to infinity~since the well becomes infinitely
narrow!, i.e., E(l) has to have a singularity atl50 for each level. However, such a singulari

FIG. 12. The cut structure of the sheet on which the perturbative series forEl(g) is studied.
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should not be detected on the sheet on which the ground state level of the finite well is repre
since this level vanishes~amounts to zero! at l50. This suggests that both the families of leve
are distributed on different sheets.

Finally, using the standard analysis2 to establish the maximal sectors of analyticity ofE(l),
one can find that for each level sheet in the finite well caseuarglu in such a sector does not excee
p/2 and for the level sheets in the infinite well case the latter value is not exceeded byuargl
2pu, which means that in both the cases there are singularities on both the positive and n
imaginary half axes for each level sheet.

It seems that the above qualitative analysis is all this that can be concluded not invo
oneself into a further detailed analysis of the exact quantization condition corresponding
case. The latter condition, however, is complicated enough11 to allow only a numerical approach
In particular, having the above conclusions it is not possible to say whether the correspo
perturbation series both for the levels in the finite well and in the infinite one are converge
asymptotic only. The last properties are determined uniquely in the case considered by a
bution of singularities on the imaginary axis of each level sheet and whether there is a
number of them on the axis~the perturbation series on such a sheet converges then! or they are
distributed on the axis up to infinity~the series is asymptotic! cannot be inferred without a detaile
analysis of the quantization condition.

In the considered case the singularities lying on the imaginary axes of the level shee
certainly the branch points forE(l) and describe the way the different levels can communic
with themselves by analytical continuations. If there is a finite number of such branch poin
the axis then the level attached to the sheet can contact directly with only a finite number o
levels.~The remaining levels can be achieved in such a case via the former reached directly! This
is the case of the finite rectangular well and the Dirac delta barrier in the infinite well consid
in this paper.

In the case of an infinite number of the branch points, the directly contacted levels ar
infinite in number. This is the case of the anharmonic oscillator of Bender and Wu.

Unfortunately, we could not find some visible and general criterion allowing us to ju
between any of these two possibilities prior to any detailed calculations of the distribution of
singularities.

The following ‘‘small’’ modification of the previous example show us, however, that
qualitative analysis as demonstrated above can be misleading if not supported by the d
calculations.

Namely, let us substitute cosh(ax) in the potential~1! by its square cosh2(ax). No doubt one
can repeat all the previous reasonings also in this case with the identical conclusions. Ho
the case is known to be integrable,11–14 i.e., its corresponding quantization condition, is obtain
as an algebraical equation forE(l) which can be easily solved to give

En~l!5S n1
1

2DA~v\!21
\4

4l2
2S n1

1

2D 2 \2

2l
2

\2

8l
,

~18!

l>ln5
\

v
An~n11!,n50,1, . . . ,

whereln , n50,1, . . . , arethresholds below which the corresponding energiesEn(l) become
unphysical.

It is seen from~18! that E(l) for the case considered enjoys all the properties postul
earlier for the energy levels of the potential~1! except the following two of them: 10 that it is
defined on the infinitely sheetedl-Riemann surface~s!, and 20 that there are branch points~thresh-
olds! on the positive real half axes and the corresponding pseudoenergy levels. The lack
latter two properties follows, of course, as a result of decoupling from each other of all the
sheets so that each level is defined on a separate double sheeted Riemann surface.
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It is still worth noting that as it follows from~18! for eachn, n50,1, . . . , thelevelsEn
f in(l)

andEn
in f(l) corresponding to the finite and infinite wells, respectively, are defined on the

double sheeted Riemann surfaceRn . The first of the levels is defined on the positive real half a
of the first sheet ofRn , whilst the second—on the negative real one of the second sheet oRn .
The levelEn(l) branches at the pointsl56ı\/(2v). The ground state level of the finite well i
finite ~vanishes! at l50 whilst all the remaining ones~for both the wells! have a simple pole a
this point on their sheets. Of course, the convergence of the corresponding perturbation se
the levels considered whenl is close to infinity is a trivial conclusion from~18!.

We can conclude therefore that generally the analytical properties of energy levels cons
above show that they depend strongly on the model used. Crossing of levels considered
main cause for the presence of branch points in the dependence of levels on a chosen pert
parameter seems to be as obvious as puzzled in most of the models. In particular, these
distributions of branch points in investigated models which does not seem to be covered by
universal rules. Needless to say it is just this distribution which decides whether the corresp
pertubation series are convergent or only asymptotic. Both the latter statements are true
both the cases of potentials investigated in this paper. In particular, the existence of pseudo
old branch points cannot be considered as a universal rule as it is shown by the formula~18!. On
the other hand, the case of the Diracd-function barrier in the infinite rectangular well demo
strates the unpredictibility of the branch point distributions prior to the detailed calculations

It is worth mentioning in this context, however, that there is a group of ‘‘perturbed’’ poten
~depending on a ‘‘large’’ perturbation parameter! for which one can predict with the certainty th
for some families of their energy levels the corresponding perturbation series have to be c
gent. Namely, these are so called quasi exactly solvable potentials mentioned in the Introdu7

For them, both the corresponding families of energy levels and the perturbation parameters
algebraic equations so that these families are defined on finite sheeted Riemann surface
perturbation parameter and therefore there can be only a finite number of singular points
levels on the surface. Because of that the corresponding perturbation series have to be con

In general, however, it seems that both a large variety of different parameters which wer
as perturbation ones in the models considered so far and the models themselves do not allo
formulate some common rules covering the distributions of branch points and giving them i
way some common sense.

Nevertheless, guided by a detailed knowledge of a considered potential and a corresp
quantization condition as well as by a meaning and a role some particular perturbation par
of the potential can play in it, we can in many cases predict qualitatively much of the a
dependence of the levels on the perturbative parameter prior to detailed calculations.
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A braided interpretation of fractional supersymmetry
in higher dimensions

R. S. Dunnea)

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, United Kingdom

~Received 19 March 1997; accepted for publication 10 March 1998!

A many variableq-calculus is introduced using the formalism of braided covector
algebras. Its properties are discussed in detail and related to fractional supersym-
metry when certain of its deformation parameters are roots of unity. The special
cases of two-dimensional supersymmetry and fractional supersymmetry are devel-
oped in detail. ©1999 American Institute of Physics.@S0022-2488~98!01806-4#

I. INTRODUCTION

In four recent papers1–4 the properties of the braided line,5,6 when its deformation paramete
is a root of unity, were discussed. Most notably, these studies led to a novel understand
one-dimensional supersymmetry and fractional supersymmetry.7–9 Our aim in the present paper i
to extend these results to the many variable case. In order to do this we construct a many v
genericq, generalized Grassmann algebra using the formalism of braided covector alge5,6

with suitableR andR8 matrices. Within the framework provided by this formalism the constr
tion of the corresponding many variable leftq-calculus is straightforward. After a little furthe
work the corresponding rightq-calculus is also obtained.

In this many variable case it is convenient to generalize the graded brackets used in Re
a pair of braided brackets~left and right!, which we introduce in Sec. II. This change has seve
in general useful, consequences. In particular, left and right differentiation and integration be
truly distinct, rather than being the same thing induced by different algebraic operators as w
case in Ref. 2. There are well-defined and simple commutation relations between all of
operations. Another advantage over the approach of Ref. 2 is that the conditions which gov
commutation relations of noncommuting constants are built into the many variable algebra,
they are no longer additional constraints. In contrast to the situation with graded bracke
conditions necessary in order that left and right differentiation be induced are compatib
consequence of this is that we can now work quite generally with both left and
differentiation/integration, rather than being restricted to one or the other, as was the ca
graded-bracket-basedq-calculus.

In Sec. III we take theqa→q̃a limit ~q̃a is a root of unity! of the many variableq-calculus,
and obtain many variable analogs of the structures and decompositions seen in Refs. 2–4
set of commutation relations between the different algebraic elements, derivatives, and inte
also given. At the end of Sec. III the braided Hopf structure of both the coordinates an
derivatives is given, as well as the duality between them. Further details of this duality, as w
an alternative discussion of the braided line Hopf algebra~at genericq and atq a root of unity! are
give in the Appendix.

Section IV deals with the case of two-dimensional supersymmetry. This plays an imp
role in superstring theory,10 in which it corresponds to supersymmetry on the world sheet of
string. The full two-dimensional supersymmetry algebra and transformations are recovere
all of the transformation properties of the bosonic spacetime variablesx and t emerge as conse
quences of their definition as different combinations of theqa→21 limits of two braided line
coordinates$ua% (a51,2). Together these two braided lines make up a braided plane, but we
that this is not the braided/quantum plane which is usually encountered in the literature.5,6 In the
limit, translations within this braided plane induce supersymmetry transformations ofx and t.

a!Electronic mail: r.s.dunne@damtp.cam.ac.uk
11800022-2488/99/40(3)/1180/17/$15.00 © 1999 American Institute of Physics
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Furthermore, once the Lorentz transformations ofu1 andu2 are specified, those ofx andt follow
automatically. The results are in agreement with the standard version of the two-dimen
super-Poincare´ transformation.

Section V extends the results of Sec. IV to the case ofmixedfractional supersymmetry in two
dimensions. The word mixed is used to indicate that the deformation parameters of th
braided plane coordinates on which the fractional supersymmetry is based are not necess
the same root of unity. All of the algebraic and transformation properties are worked out, a
in the supersymmetric case, spacetime Lorentz transformations are induced by suitable tr
mations of the braided plane coordinates. We are thus able to introduce full two-dimen
mixed fractional super-Poincare´ transformations. Finally we extend the arguments of Ref. 2 c
cerning the Berezin integral to the two-dimensional case.

II. q -CALCULUS FOR AN ARBITRARY NUMBER OF VARIABLES

In this section we develop theq-calculus associated withr generalized Grassmannian var
ables. This calculus can be viewed as a particular example of the braided differential ca
described in Refs. 5 and 6 and we present it from this point of view.

Given any matrixR12PMr ^ Mr which satisfies the quantum Yang–Baxter equation,

R12R13R235R23R13R12, ~1!

as well as an associated matrixR128 PMr ^ Mr satisfying

R12R13R238 5R238 R13R12, R23R13R128 5R128 R13R23, ~2!

R21R128 5R128 R21, ~3!

~PR11!~PR821!50, ~4!

where P is the permutation matrix, we can define a braided covector algebra5,6 with elements
$xi ,1%. This has a braided Hopf algebraic structure given by

x1x25x2x1R128 , i.e., xixj5xcxbR8 i j
bc ,

Dxi5xi ^ 111^ xi , e~xi !50, ~5!

S~xi !52xi , C12~x1^ x2!5x2^ x1R12,

as well asD(1)51^ 1, e(1)51, S(1)51, C12(1^ xi)5xi ^ 1, C12(xi ^ 1)51^ xi . It is conve-
nient to use the notationw5x^ 1, x51^ x so that the$wi% satisfy the same algebra as the$xi%.
In this notation6 the coproductD above is just

Dx5w1x, ~6!

and the braidingC12 is equivalent to the following braid statistics betweenx andw:

x1w25w2x1R12, i.e., xiwj5wcxbRi j
bc . ~7!

The notation~6! suggests that we regard the coproduct as generating left translations w
the braided covector space, and motivates its alternative namecoaddition.5,6 No additional infor-
mation is needed to construct the corresponding braided left differential calculus. The left d
tives form a braided vector algebra, with commutation relations given by

] l1] l25R128 ] l2] l1 , ~8!

and the cross relations giving their action on the covectors are

] l1x22x2R21] l15d12. ~9!
                                                                                                                



ves.

hese
do so
he left

einter-

right

ts,

ng

1182 J. Math. Phys., Vol. 40, No. 3, March 1999 R. S. Dunne

                    
The reason for the form of the second of these relations is that along with~7! it implies that
@w1] l1 ,x2#5d12w1 , so thatw1] l1 can be viewed as the generator of the left translation~6!.
Equation~9! can be viewed as giving the braiding between the covectors and their derivati11

To see this we identify

C12
21~] l1^ x2!5x2^ R21] l1 , ~10!

so that we can rewrite~9! as

] l1x22•C12
21~] l1^ x2!5d12. ~11!

It is not difficult to extend this formalism so that it includes right derivatives, and since t
play an important role in supersymmetric and fractional supersymmetric theories, we will
explicitly. Among themselves the right derivatives have the same commutation relations as t
derivatives, and thus also form a braided vector algebra so that

] r1] r25R128 ] r2] r1 . ~12!

To find the cross relations between these derivatives and the covectors we must first r
pret D as the generator of a right shifts. We can do this by writing

Dx5x1y, ~13!

where we have introduced the alternative notationx5x^ 1 andy51^ x. From the braidingC12

given by ~5! we obtain the braid statistics

y1x25x2y1R12. ~14!

In order for the right derivatives to generate the translation~13! they must satisfy@y1] r1 ,x2#
5d12. In combination with the braid statistics~14! this implies that

y1] r1x22y1x2R12
21] r15d12y1 , ~15!

from which it is clear that suitable cross relations are

] r1x22x2R12
21] r15d12. ~16!

As in the case of left derivatives we can interpret this as giving the braiding between the
derivatives and the covectors. Thus by identifying

C21~] r1^ x2!5x2^ R12
21] r1 , ~17!

we can rewrite~16! as

] r1x22•C21~] r1^ x2!5d12. ~18!

Relationships~11! and ~18! motivate the introduction of bilinear left and right braided bracke

@A,B#L :5AB2•C12
21~A^ B!,

~19!

@A,B#R :5AB2•C21~A^ B!.

The bilinearity follows from the bilinearity ofC. This bracket is well defined on products as lo
as we remember the expansion rule for the braiding. From Ref. 12 this is

C~AB^ C!5~1^ • !~C ^ 1!~A^ C~B^ C!!,
~20!

C~A^ BC!5~•^ 1!~1^ C!~C~A^ B! ^ C!.
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Note that~as one would expect! C12
21 andC21 expand in the same way. Using these brackets

can define left and right differentiation as follows:

S d

dx1
D

L

f :5@] l1 , f #L ,

~21!

S d

dx1
D

R

f :5@] r1 , f #R .

Here f 5 f $xi%. We will provide a specific example shortly. We are now able to introduce
generalized Grassmann algebra, which we define as the braided covector algebra in whichR and
R8 are the followingr dimensional matrices:

R128 5W12, R125W121~Q121!d125T12, ~22!

the coordinate form of which is:

R8ab
i j 5vabd a

i d b
j , Rab

i j 5~vab1~qa21!dab!d a
i d b

j 5tabd a
i d b

j . ~23!

Herevba5vab
21 so thatvaa51, vabÞ0, andqaÞ0. It follows directly from the fact thatR

and R8 are diagonal that~1!–~3! are satisfied. To show that~4! is also satisfied we expand
explicitly,

~PR11!~PR821!5R21R128 1R218 1R2121

5~W211~Q221!d21!W121W212W212~Q221!d2121

511~Q221!d212~Q221!d212150. ~24!

Putting thisR8 into ~5! we obtain the defining algebra ofr generalized Grassmann variables,

uaub5u ju ivabd a
i d b

j , ~25!

which is equivalent to

@ua ,ub#vab50. ~26!

For left shifts we use the notationua51^ ua andea5ua^ 1. From~7! we obtain

uaeb2e ju id a
i d b

j t i j 50, ~27!

which is equivalent to

@ea ,ub# t
ba
2150. ~28!

For the corresponding derivativesDLa we obtain from~8! and~9! the following commutation and
cross relations:

@DLa ,DLb#vab
50,

~29!

@DLa ,ub# tba
5dab .

For right shifts we use the notationua5ua^ 1 andha51^ ua . Then from~14! we obtain

@ha ,ub# tab
50, ~30!

while ~12! and ~16! give us
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@DRa ,DRb#vab
50,

~31!

@DRa ,ub# t
ab
215dab .

These derivatives are generated by the left and right braided brackets, thus from~19!,

S d

dua
D

L

ub5@DLa ,ub#L5@DLa ,ub# tba
5dab ,

~32!

S d

dua
D

R

ub5@DRa ,ub#R5@DRa ,ub# t
ab
215dab .

As an example of differentiation induced by the braided brackets~19! we consider the case o
r 52, and functionsf (u1 ,u2) which can be expanded as positive power series of the form

f ~u1 ,u2!5 (
l ,m50

`

Cl ,mu 1
l u 2

m . ~33!

Then using definitions~21! we find that

S d

du1
D

L

f ~u1 ,u2!5@DL1 , f ~u1 ,u2!#L5FDL1 , (
l ,m50

`

Cl ,mu 1
l u 2

mG
L

5 (
l ,m50

`

Cl ,m@DL1 ,u 1
l u 2

m#q
1
l t

21
m

5 (
l ,m50

`

@ l 11#q1
Cl 11,mu 1

l u 2
m . ~34!

Similarly, for right differentiation we find

S d

du i
D

R

f ~u1 ,u2!5@DR1 , f ~u1 ,u2!#R5 (
l ,m50

`

@ l 11#q
1
21Cl 11,mu 1

l u 2
m . ~35!

More generally theCl ,m can be functions ofu j wherej Þ1,2. This does not affect the result o
the above differentiation, but of course the explicit form given in the third line of~34! is no longer
valid. In fact, since foraÞb, tab5tba5vab , we have forC5C(u j ) with j Þ i ,

@DLi ,C#L5@DLi ,C#qci
50,

~36!

@DRi ,C#R5@DRi ,C#qci
50,

which are the braided bracket analogs of~3.10! and~3.11!. Note that unlike in the graded bracke
case considered in Ref. 2 these conditions are not additional constraints onC, but instead follow
directly from our definition of the many variableq-calculus. Note also that the conditions f
induced left and right differentiation are compatible, so that in the many variable case, wo
with braided brackets, it is not necessary to choose between these. Another difference betw
graded bracket induced derivatives of Ref. 2 and the braided bracket induced derivatives
present paper is that in the latter caseDRa appears on the left of the braided bracket. O
consequence of this is that hereDRa has a different normalization. In the many variable case,
with the new normalization, the number and shift operators are as follows:

Na5 (
m50

`
~12~qa!m21!

@m#qa

u a
m

D La
m 5 (

m50

`
~12~qa!12m!

@m#q
a
21

u a
m

D Ra
m , ~37!
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qa
kNa5 (

m50

`
1

@m#qa

S )
l 51

m21

~qa
k2qa

l !D u a
m

D La
m ,

~38!

qa
2kNa5 (

m50

`
1

@m#q
a
21

S )
l 51

m21

~qa
2k2qa

2 l !D u a
m

D Ra
m ,

GLa5expq
a
21~eaDLa!, GRa5expqa

~haDRa!. ~39!

These satisfy

@Na ,ub#5dabua , @Na ,DLb#52dabDLb , @Na ,DRb#52dabDRb , ~40!

GLaubGLa
215dabea1ub , GRaubGRa

215ub1dabha . ~41!

Using the identityDLaua2uaDLa5qa
Na which follows from~38!, it is clear that with the braided

bracket normalization the relationship between the left and right algebraic derivatives is

DRa5qa
2NaDLa . ~42!

It follows immediately from this and~29! or ~31! that

@DRa ,DLb# tab
50. ~43!

Another consequence of this change of normalization is that theQa andDa are related by

Qa5DLa , Da5DRa . ~44!

Left and right integrals13 can also be introduced. As in the one-dimensional case thes
defined so as to invert the effect of the corresponding derivatives. Another important advant
the switch to braided brackets is that the left and right integrals are truly distinct, and that the
simple and well-defined commutation relations among these as well as between them a
derivatives. Specifically, the left integrals are defined by

E ~dua!Lu a
m5

u a
m11

@m11#qa

, ~45!

and the right integrals by

E ~dua!Ru a
m5

u a
m11

@m11#q
a
21

. ~46!

To integrate functions of many variables we also need the cross relations

F E ~dua!L ,ubG
vab

5F E ~dua!R ,ubG
vab

50, ~47!

which hold foraÞb. It is also straightforward to show, for example by comparing

S d

dua
D

L
E ~dua!Ru a

m5
@m11#qa

@m11#q
a
21

u a
m , ~48!

with
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E ~dua!RS d

dua
D

L

u a
m5

@m#qa

@m#q
a
21

u a
m , ~49!

that the commutation relations between differentiation and integration are as follows:

F S d

dua
D

L

,E ~dub!LG
vba

50, F S d

dua
D

L

,E ~dub!RG
tba

50,

~50!

F S d

dua
D

R

,E ~dub!RG
vba

50, F S d

dua
D

R

,E ~dub!LG
t
ab
21

50.

By similar methods we also find

F E ~dua!L ,E ~dub!LG
vab

50, F E ~dua!R ,E ~dub!RG
vab

50, F E ~dua!R ,E ~dub!LG
tab

50,

~51!

which are the integral analogs of~29!, ~31!, and~43!.

III. GENERALIZED GRASSMANN CALCULUS AT q a A ROOT OF UNITY

One of the central results of Ref. 2 was that ifq̃a is a primitivenath root of unity, andza , ]za

are defined by

za5 lim
qa→q̃a

~ua!na

@na#qa
!

, ]za
5D La

na 52~21!naD Ra
na , ~52!

in which ~42! has been used, and it is assumed that (ua)na→0 asqa→q̃a in such a way thatza is
well defined in this limit, then

@]za
,za#51. ~53!

Using these definitions and the results of Sec. IV B it is easy to establish the full commu
relations in the limit asqa→q̃a ~note that this limit need not be taken for alla!. Whenqa→q̃a and
qb→q̃b we find from ~26!, ~29!, and~53! that

@]za
,zb#~ tba!nanb5dab , @za ,zb#~vab!nanb50, @]za

,]zb
#~vab!nanb50. ~54!

This clearly reduces to ordinary calculus if (vba)
nanb51. It will often be sensible to make thi

choice. It also follows from~29!, ~31!, and~52! that

@DLa ,zb#~ tba!nb5dab

~ub!nb21

@nb21#qb
!

,

~55!

@DRa ,zb#~ tab!2nb52~21!nbdab

~ub!nb21

@nb21#q
b
21!

,

and that

@DLa ,]zb
#~vab!nb50, @DRa ,]zb

#~vab!nb50, @]zb
,ua#~ tab!nb50. ~56!

Note that~55! and~56! hold even whenqa is not a root of unity, as long asqb is. Following
Ref. 2 we can, whenqa is a root of unity, expand the algebraictotal derivativesDLa andDRa by
using the algebraic partial derivatives]ua

anddua
. These satisfy
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~]ua
!na5~dua

!na50, @dua
,]ub

# tab
50,

~57!

@]ua
,]ub

#vab
50, @dua

,dub
#vab

50,

as well as

@]ua
,ub# tba

5dab , @]ua
,zb#~ tba!nb50, @]ua

,]zb#~ tba!2nb50,
~58!

@dua
,ub#~ tab!215dab , @dua

,zb#~ tab!2nb50, @dua
,]zb

#~ tab!nb50.

So that if we expandDLa andDRb as follows:

DLa5]ua
1

u a
na21

@na21#qa
!

]za
,

~59!

DRa5dua
2~21!na

u a
na21

@na21#q
a
21!

]za
,

then ~54! and ~55! are implied by~57!–~59!.
If we note the identity

lim
qa→q̃a

u a
rna1p

@rna1p#qa

5
za

r u p

r ! @p#!
, ~60!

then we can take the limit of~45! and ~46! to obtain

E ~dua!Lza
r u a

p5~12dp,n21!
za

r u a
p11

@p11#qa

1dp,n21@na21#qa
!

za
r 11u a

p

~r 11!
,

~61!

E ~dua!Rza
r u a

p5~12dp,n21!
za

r u a
p11

@p11#q
a
21

2~21!nadp,n21@na21#q
a
21!

za
r 11u a

p

~r 11!
.

In analogy with the introduction of partial derivatives, we introduce the following ‘‘partia
integrals:

E duaza
r u a

p5~12dp,n21!
za

r u a
p11

@p11#qa

,

E duaza
r u a

p5~12dp,n21!
za

r u a
p11

@p11#q
a
21

, ~62!

E dzaza
r u a

p5
za

r 11u a
p

~r 11!
.

Using these and~61! we can write

E ~dua!L5E dua1
]na21

]na21ua
E dza ,

~63!

E ~dua!R5E dua2~21!na
d na21

d na21ua
E dza ,

which are the integral analogs of~59!. We also note the identities
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E ~dua!L
n5E dza , E ~dua!R

n52~21!naE dza , E du a
n5E du a

n50. ~64!

We conclude this section with some comments on the braided Hopf structure of the ge
ized Grassmann algebra and the dual algebra of derivatives asqa→q̃a . For an alternative deriva
tion of ~52! as well as a derivation of the duality properties in the single variable case se
Appendix. The results of the Appendix are easily extended to the many variable case, and w
the results below. For genericqa the braided Hopf structure ofua , which follows directly from~5!
is as follows:

Dua5ua^ 111^ ua , e~ua!50, S~u a
m!5qm~m21!/2~2ua!m. ~65!

Whenqa→q̃a it follows directly from this and~52! that in addition to~65!, which holds as in the
generic case, we have the following braided Hopf structure forza :

Dza5za^ 111^ za1 (
m51

na21 u a
m

^ u a
na2m

@m#qa
! @na2m#qa

!
,

e~za!50, S~za!52za . ~66!

In the dual Hopf algebra with elementsDLa , the braided Hopf structure is as follows:

DDLa5DLa^ 111^ DLa ,

e~DLa!50, S~DLa!5qm~m21!/2~2DLa!m. ~67!

The duality is given by the inner product

^DLa ,ub&5dab , ~68!

which satisfies/is extended to products by all of the usual identities~see the Appendix!—Eq. ~A8!.
Whenqa→q̃a the Hopf structure is extended to include

D]za5]za^ 111^ ]za , e~]za!50, S~]za!52]za. ~69!

In this case the duality is given by

^DLa ,ub&5dab , ^]za ,zb&5dab , ^]za ,ub&50, ^DLa ,zb&50, ~70!

which follow directly from~52! and~68!. Note that we could equally well have worked withDRa ,
the only advantage of usingDLa being that we avoid the factors of (21)na11 which would arise
due to~52!.

IV. THE BRAIDED INTERPRETATION OF TWO-DIMENSIONAL SUSY

We can use the work in the previous sections to extend our new interpretation of supe
metry ~SUSY! to the two-dimensional case. This is of great interest in physics since it is relat
world sheet supersymmetry in superstring theory. The most interesting new feature in two d
sions is the presence of Lorentz transformations. We consider a two-dimensional gene
Grassmann algebra$ua%, a51,2, and its associated calculus, examining first the case ofq15q2

5v125q. We begin bydefining

pm52 1
2DLa~gmg0!abDLb ,

~71!

xm5 lim
q→21

i

@2#q
ua~g0gm!abub .
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Here m50,1 andg05s2 , g15 is1 , wheresa are the usual Pauli matrices, so that we a
working in the Majorana–Weyl basis for the Dirac gamma matrices. Note that other than
implied by the right-hand side, no transformation properties are assigned topm and xm . Since
g0gm is diagonal, the above can be written as

x05 i ~z11z2!, p052 1
2~]z1

1]z2
!,

~72!

x15 i ~z12z2!, p15 1
2~]z1

2]z2
!,

from which, using~54!, it is clear that

@pm ,xn#52 igmn , @pm ,pn#50, @xm ,xn#50. ~73!

Heregmn5diag$1,21% so that$pm% and $xm% behave just like the quantized momenta and co
dinates of two-dimensional spacetime. To establish their transformation properties, we proc
follows. Under a translation

ua→ea1ua , ~74!

we find from ~71! that the coordinates$xm% transform as follows:

xm→ lim
q→21

i

@2#q
~ea1ua!~g0gm!ab~eb1ub!

5 lim
q→21

i

@2#q
ua~g0gm!abub

1 lim
q→21

i

@2#q
ea~g0gm!abeb1 i ea~g0gm!abub5xm1xm8 1 i ea~g0gm!abub . ~75!

Together~74! and~75! constitute the usual two-dimensional SUSY transformation,10 only now we
can see that just as the$xm% are defined by~71! in terms of the$ua%, the $xm8 % are defined by

xm8 5 lim
q→21

i

@2#q
ea~g0gm!abeb , ~76!

which is the same as~71! but with ua replaced byea . In the notation of generalized Grassma
calculus, the infinitesimal generators of the translation~74! areeaDLa . On the other hand, in the
usual SUSY notation, this transformation is generated by the superchargeQa , and thus~as ex-
pected! we can make the identification

DLa5Qa . ~77!

Using this we can write the definition~71! of pm as

pm52 1
2Qa~gmg0!abQb , ~78!

which can easily be inverted to yield

$Qa ,Qb%522~g0gm!abp
m, ~79!

wherepm5gmnpm . Along with @pm ,pn#50 from ~73!, this is just the two-dimensional supersym
metry algebra in its usual form. The usual superspace realization of this algebra can be obta
using ~59! and ~71!. We find

Qa5DLa5]ua
1ua]za

5]ua
2~g0gm!abubpm. ~80!
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The covariant derivativesDa from two-dimensional SUSY also arise naturally in theq→21 limit
of two-dimensionalq-calculus. To see this, we write down their usual superspace realizatio

Da5]ua
1~g0gm!abubpm. ~81!

Then, using~38! and ~57!

]ua
5~21!Nadua

5~DLaua2uaDLa!dua
5~]ua

ua2ua]ua
!dua

5dua
, ~82!

we can write this as

Da5dua
1~g0gm!abubpm, ~83!

and thus from~59! and ~71! we have

Da5DRa . ~84!

These satisfy

$Da ,Db%52~g0gm!abp
m. ~85!

The cross relations$Da ,Qb%50 follow directly from ~43!. Thus the supercharges and covaria
derivatives used in two-dimensional supersymmetry, correspond, respectively, to the left an
total derivatives in theqa→21 limit of two-dimensionalq-calculus.

In two-dimensional SUSY, the Grassmann variablesua transform as the components of
Lorentz spinor,

ua→Sabub , ~86!

where

Sab5S expS f

2 D 0

0 expS 2f

2 D D . ~87!

Due to~71!, the transformation properties of the coordinates$xm% are entirely determined by
those of theua . To find these explicitly we first note that

g0
25S 1 0

0 1D , g0g15S 1 0

0 21D , ~88!

so that

Sg0
2ST5S exp f 0

0 exp~2f!
D 5g0

2 coshf1g0g1 sinh f,

~89!

Sg0g1ST5S exp f 0

0 2exp~2f!
D 5g0

2 sinh f1g0g1 coshf.

Now from ~71! and~86!, we find that under a Lorentz transformation the coordinates$xm% behave
as follows:

xm→ lim
q→21

i

@2#q
ubSab~g0gm!abScdud5 lim

q→21

i

@2#q
uaLm

n ~g0gn!abub5Lm
n xn , ~90!

in which from ~89! Lm
n has the form
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Lm
n 5S coshf sinh f

sinh f coshf D , ~91!

so we have shown that, as expected, the coordinates$xm% transform like the components of
covariant Lorentz vector. Note thatxm :5gmnxn also has the expected transformation propert
i.e., the$xm% transform like the components of a contravariant Lorentz vector

x8m5~Ln
m!21xn, ~92!

so that the lengthxmxm is invariant. Note also that from$DLa ,ub%5dab and ~86! it follows that
under a Lorentz transformationDLa→DLbSba

21, and that through definition~71!, this leads to the
correct transformation properties for the$pm%. By combining the translation and Lorentz tran
formation above, we can consider the effect on the coordinates$xm% of a general super-Poincar´
transformation ofu :

ua→ea1Sabub . ~93!

Under such a transformation we have, from~71!

xm→ lim
q→21

i

@2#q
~ea1Sabub!2

5 lim
q→21

i

@2#q
ea~g0gm!abeb

1 lim
q→21

i

@2#q
ubSab~g0gm!acScdud1 i ea~g0gm!abSbcuc , ~94!

which by ~75! and ~90! reduces to

xm→xm8 1Lm
n xn1 i ea~g0gm!abSbcuc , ~95!

which is in exact agreement with the usual super-Poincare´ transformation of$xm%.
Although it seems reasonable to expect that there is an analogous interpretation of

Poincare´ transformations in higher dimensions, based on~71! or some similar relationship, and
is indeed straightforward to construct higher dimensional algebras with supersymmetric pro
using our techniques, the generalization of our work in this section tod.2 is a nontrivial prob-
lem, and at present it remains unsolved.

V. MIXED FSUSY IN TWO DIMENSIONS

Using ~72! it is clear that in terms of$ua% and$za% the general super-Poincare´ transformation
~95! of the coordinates$xm% which follows from ~93! takes on the following simple form:

z1→z1 exp f1z181e1u1 exp~f/2!,
~96!

z2→z2 exp~2f!1z281e2u2 exp~2f/2!.

The fact that the pairs$z1 ,u1% and $z2 ,u2% are not mixed by this transformation has the con
quence that in this basis the generalization to fractional supersymmetry~FSUSY! is straightfor-
ward. To construct the most general two-dimensional FSUSY, we consider a two-dimen
q-calculus in the limit asqi→q̃i , and choosev12 so thatv12

n15v12
n251. We have included the

n1Þn2 case, and for this reason refer to our construction asmixedFSUSY. A suitable definition
for Sab in the Lorentz transformationua→Sabub of mixed anyonic spinors, such asua is
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Sab5S expS f

n1
D 0

0 expS 2f

n2
D D . ~97!

As we will see, this ensures that$xm% transform as the components of a Lorentz vector. Un
a mixed anyonic Poincare´ transformation

ua→ea1Sabub , ~98!

it follows from ~52! that z1 andz2 transform as follows:

z1→z1 exp f1z181 (
m51

n121 e1
mu 1

n12m

@n12m#q1
! @m#q1

!
expS ~n12m!f

n1
D ,

~99!

z2→z2 exp~2f!1z181 (
m51

n221 e2
mu 2

n22m

@n22m#q2
! @m#q2

!
expS ~m2n2!f

n2
D .

To make contact with the usual spacetime coordinates$xm% we note that as in thena5nb52 case
z1z2 is invariant under a pure Lorentz transformation (e15e250). Thus we havez1z2}x0

22x1
2.

In fact the definitions ofx0 andx1 in terms ofz1 andz2 are

x05F~z11z2!, p052
i

2F
~]z1

1]z2
!,

~100!

x15F~z12z2!, p15
i

2F
~]z1

2]z2
!,

with F5 i for evenn as in~72! andF51 for oddn. These factors correspond to those relatint
to z in Refs. 1–4 and ensure the reality ofpm and xm . From ~54! it follows that the operators
defined by~100! satisfy ~73! as in the supersymmetric case covered in Sec. IV. After a l
algebra we obtain the mixed anyonic transformation of the$xm% coordinates,

xm→xm8 1Lm
n xn1 (

a,b51

2

(
m51

na21 Fea
m~g0gm!ab~Sbcuc!

na2m

@na2m#qa
! @m#qa

!
. ~101!

HereLm
n is the same as in~91!. The fractional supercharge and covariant derivative are also

to deduce. From~59! and ~100! we find

Qa5DLa5]ua
1

u a
na21

@na21#qa
!

]za5]ua
1

iF

@nb21#qb
!

~g0gm!abub
nb21pm, ~102!

and

Da5DRa5dua
2~21!na

u a
na21

@na21#q
a
21!

]za5dua
2

iF ~21!na

@nb21#q
b
21!

~g0gm!abub
nb21pm. ~103!

The algebraic~left! integral of a functionf (z1 ,z2 ,u1 ,u2) on two-dimensional fractional super
space is

E ~du2!LE ~du1!L f ~z1 ,z2 ,u1 ,u2!. ~104!
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Note that this integral would change by an overall multiplicative factor if we reversed the ord
*(du2)L and*(du1)L , so that in writing down~104!, we have made a choice of convention. Th
integral can be expanded using~61! to yield

E du2E du1f 1E du2

]n121

]n121u1
E dz1f 1

]n221

]n221u2
E dz2E du1f

1
]n221

]n221u2

]n121

]n121u1
E dz2E dz1f . ~105!

To obtain a numerical measure from this algebraic integral we now make use of an arg
similar to that given in Ref. 2.u1 andu2 are nilpotent and thus all of their eigenvalues are ze
On the other hand, the bosonic limits denoted byz1 and z2 are non-nilpotent and thus do hav
nonzero eigenvalues. After integration, the first three terms in~105! always involveu1 or u2 raised
to some nonzero power, whereas the last term involvesz1 andz2 only. Any numerical measure
based on the integral~105! must be based on its eigenvalues in some representation. Conseq
only the last term contributes and thus the first three can be dropped. It is convenient at thi
to introduce a fractional Berezin integral as in Ref. 2,

E ~dua!Ber5
]na21

]na21ua
. ~106!

The resulting numerical integral measure on two-dimensional fractional superspace can n
written as

I ~ f !5E dz2dz1~du2!Ber~du1!Ber f ~z1 ,z2 ,u1 ,u2!. ~107!

If we expandf as a power series

f ~z1 ,z2 ,u1 ,u2!5 (
m150

n121

(
m250

n221

Cm1 ,m2
~z1 ,z2!

u 1
m1

@m1#q1
!

u 2
m2

@m2#q2
!

, ~108!

then ~107! reduces to

I ~ f !5E dz2dz1Cn121,n221~z1 ,z2!. ~109!

Note that up to a constant Jacobian factor this is equal to

E dx0dx1Cn121,n221~z1 ,z2!, ~110!

which, for n52, is just the integral which arises in supersymmetric field theories involving
space and one time dimension.
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APPENDIX

The results of Refs. 1–4 can also be derived from a different and in some ways math
cally nicer point of view. Our work here uses a technique similar to that employed by G. I. Lu
in his work on the properties of deformed universal enveloping algebras with deformation p
eter equal to a root of unity.14,15To the best of our knowledge this is the first time such a techni
                                                                                                                



ra

1194 J. Math. Phys., Vol. 40, No. 3, March 1999 R. S. Dunne

                    
has been applied to a braided object. Let us begin by introducing the braided Hopf algebA,
which we define for allq. This has elements$u (m)%, m50,1,2,...,̀ with u (0)51, and relations

u~m!u~p!5
@m1p#q!

@m#q! @p#q!
u~m1p!, ~A1!

as well as

Du~m!5(
r 50

m

u~m2r !
^ u~r !, e~u~m!!5dm,0 , ~A2!

S~u~m!!5~21!mqm~m21!/2u~m!.

The braiding is given by

c~u~m!
^ u~s!!5qmsu~m!

^ u~s!, ~A3!

so that

~u~r !
^ u~m!!~u~s!

^ u~s!!5qmsu~r !u~s!
^ u~m!u~ t !. ~A4!

We also defineK the braided Hopf algebra dual toA as follows. This has elements$D L
(m)%,

m50,1,2,...,̀ with D L
(0)51, and relations

D L
~m!

D L
~p!5D L

~m1p! , ~A5!

as well as

DD L
~m!5(

r 50

m
@m#q!

@r #q! @m2r #q!
D L

~m2r !
^ D L

~r ! ,

e~D L
~m!!5dm,0 , ~A6!

S~D L
~m!!5~21!mqm~m21!/2D L

~m! .

The braiding is given by

c~D L
~m!

^ D L
~s!!5qmsD L

~m!
^ D L

~s! . ~A7!

These two braided Hopf algebras are dual in the sense that there is a bilinear map^,&: A

^ K ° the complex plane, such that

^a,xy&5^Da,x^ y&, ^ab,x&5^a^ b,Dx&, ^1,x&5eK~x!,

^a,1&5eA~a!, ^S~a!,x&5^a,S~x!&. ~A8!

Specifically, in this case we have

^u~m!,D L
~p!&5dmp , ~A9!

the compatibility of which with~A8! is easy to verify. We now consider the cases of genericq and
q a root of unity separately.

~i! Genericq or q51. From~A1! it follows that

u~m!5
u~1!u~m21!

@m#q
5

u~1!2u~m22!

@m#q@m21#q
5

~u~1!!m

@m#q!
, ~A10!

and similarly
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D L
~m!5~D L

~1!!m. ~A11!

Consequently, at genericq the braided Hopf algebraA and its dualK are both finite
dimensional, each containing the identity, and only one other element. If we defineu5u (1) and
DL5D L

(1) then we can write the genericq braided Hopf structure as follows. ForA we have

Du5u ^ 111^ u, e~u!50, S~u!52u, ~A12!

which recovers the braided line at genericq, and forK we have

DDL5DL ^ 111^ DL , e~DL!50, S~DL!52DL . ~A13!

The duality simplifies to

^u,DL&51, ~A14!

and is extended to products via~A8!. By comparing~A12! and~A13! with one of Refs. 5, 6, 16 we
are able to identify both the braided Hopf algebraA and its dualK with the braided line when
q is not a root of unity.

~ii ! q a primitive nth root of unity. As in the genericq case we can use~A1! to obtain

u~p!5
~u~1!!p

@p#q!
, ~A15!

but since@n#q50 this only works forp50,1,...,n21. However we are able to write

u~rn1p!5u~rn !u~p! lim
q→e

@rn#q! @p#q!

@rn1p#q!
5u~rn !u~p!, ~A16!

wherer>0 and 0<p<n21. Also using~A1! we find that

u~rn !5u~n!u~~r 21!n! lim
q→e

@~r 21!n#q! @n#q!

@rn#q!
5

u~n!u~~r 21!n!

r
. ~A17!

Iterating we finally obtain

u~rn !5
~u~n!!r

r !
, ~A18!

so that

u~rn1p!5
~u~n!!ru~p!

r !
. ~A19!

Similarly, for the dual we find that

D L
~rn1p!5~D L

~n!!rD L
~p! . ~A20!

Thus whenq is a root of unity (qÞ1) the braided Hopf algebraA is finite dimensional, having
two independent elementsu (1) and u (n) besides the identity. The dualK is also finite dimen-
sional, but it has only one independent elementD L

(1) besides the identity. It is convenient to defin

u5u~1!, z5u~n!, DL5D L
~1! , ]z5D L

~n! . ~A21!

Using this notation, the algebraic relations~A1! reduce to@u,z#50 andun50, and the braided
Hopf structure~A2! reduces to

Du5u ^ 111^ u, e~u!50, S~u!52u, ~A22!
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and

Dz5z^ 111^ z1 (
m51

n21
um

^ un2m

@n2m#q! @m#q!
,

e~z!50, S~z!52z. ~A23!

The braided Hopf structure of the dualK is given by

DDL5DL ^ 111^ DL , e~DL!50, S~DL!52DL , ~A24!

which, using]z5D L
n , implies the following braided Hopf structure for]z ;

D]z5]z^ 111^ ]z , e~]z!50, S~]z!52]z.

The duality~A9! now takes on the form

^zrup,D L
r 8n1p8&5^zrup,]z

r
D L

p8&5d r ,r 8dp,p8r ! @p#q!, ~A26!

so that in particular

^u,DL&51, ^z,]z&51. ~A27!

Thus whenq is a root of unityA coincides with the braided Hopf algebra which was associa
in previous work with a limit of the braided line as its deformation parameter goes to a ro
unity. Using this approach we have also obtained the braided Hopf structure of the dual and
of the duality whenq is a root of unity~this is an alternative form of the braided line whenq is
a root of unity!. Note also that theu part of A forms a braided sub-Hopf algebra, but that thez
part does not.

The advantage of the approach adopted here is that it enables us to restrict the taking o
to purely numerical quantities, for which they are manifestly well defined. In this Appendix
have worked with left derivativesDL only, but we could equally well have chosen right deriv
tives DR , for which a closely analogous treatment exists.

The relationship between the work in this Appendix and the work of Refs. 14 and 15 sug
that the latter might also have a physical interpretation in terms of supersymmetry and frac
supersymmetry. This idea will be developed further in Ref. 17.
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On spectral properties of Harper-like models
D. J. L. Herrmanna) and T. Janssen
Theoretische Fysica, Katholieke Universiteit Nijmegen,
Postbus 9010, 6500 GL Nijmegen, The Netherlands

~Received 16 March 1998; accepted for publication 12 August 1998!

We study spectral properties of Harper-like models by algebraic and combinatorial
methods and derive sufficient conditions for the existence of spectral gaps with
qualitative estimates. For this class the Chambers relation holds and we obtain an
analytic expression for the representation dependent part. Models corresponding to
the rectangular and triangular lattice are studied. In the second case we show that
one class of spectral gaps is open for magnetic fields with ‘‘rational magnetic flux
per unit cell.’’ A quantitative estimate for the gap widths is given for the aniso-
tropic case and for ‘‘irrational magnetic flux’’ fulfilling some Liouville condition
the spectrum is a Cantor set. ©1999 American Institute of Physics.
@S0022-2488~99!03401-5#

I. INTRODUCTION

Spectral properties of Hamiltonians describing charged particles on a two-dimensiona~2D!
lattice with an external magnetic field perpendicular to the lattice play a crucial role in variou
problems of physical interest,1 for the quantum Hall effect see also Ref. 2. In his famous w
Hofstadter3 found for the square lattice case a puzzling nesting structure of the spectra for ra
values of the magnetic strength and gave some formal rules for the self-similarity of this so-
Hofstadter butterfly. This model has been investigated in several papers and rigorous res
spectral gaps, measures and other properties have been obtained, see Refs. 4–6 for mor
However, less is known about the analogous model on the triangular lattice, first discuss
Claro and Wannier.7 It describes the situation in a crystal with hexagonal symmetry and sim
behavior of the spectra has been observed.8,9 We generalize a method used by Choiet al.10 for the
square lattice case and derive, under some mild extra conditions, a quantitative estimate
gap widths of the class of Hamiltonians discussed below. In the case of the triangular lattic
leads to an explicit estimate for one class of spectral gaps.

The behavior of a Bloch electron in an external magnetic field is usually described
tight-binding approximation. Without electron–electron interaction and with nearest-neighb
teraction only one obtains the following Hamiltonian for the square lattice:

HsqC~k,l !5eih1~k,l !C~k11,l !1e2 ih1~k21,l !C~k21,l !

1eih2~k,l !C~k,l 11!1e2 ih2~k,l 21!C~k,l 21!, ~1!

whereh1,2(k,l ) denotes the line integral of the vector potential of the external magnetic field
(k,l ) to (k11,l ) and from (k,l ) to (k,l 11), respectively ~the compensating gaug
transformation11!. Since the magnetic field is uniform, we have the constraint

h1~k,l !1h2~k11,l !2h1~k,l 11!2h2~k,l !52p
F

F0
[u,

a!Electronic mail: danielh@sci.kun.nl
11970022-2488/99/40(3)/1197/18/$15.00 © 1999 American Institute of Physics
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where F is the flux through the unit cell andF05hc/e. Using Landau’s gaugeh1(k,l )50,
h2(k,l )5uk and the separation ansatzC(k,l )5eib lg(k) we derive the well-known Harper equa
tion

g~k11!1g~k21!12 cos~2puk1b!g~k!5Eg~k!.

In the mathematical literature the corresponding operator is called the~discrete! almost-Mathieu
operator.

Let us describeHsq in a more algebraic way by introducing the magnetic translat
operators12

UC~k,l !5eih1~k,l !C~k11,l !,
~2!

VC~k,l !5eih2~k,l !C~k,l 11!,

which obey the Heisenberg commutation relationUV5e2p iuVU. So we can write the Hamil-
tonian of~1! asHsq5U1U* 1V1V* . In fact, ~2! can be seen as a representation of the rota
algebra

A~u!5H(
2`

`

aklv
kulUakl rapidly decreasingJ ,

generated by two abstract unitariesu andv satisfying

uv5exp@2p iu#vu ~3!

first introduced for purely mathematical reasons.
Let us introduce some convenient notation for products of the unitariesu and v. These

operators may be viewed as Weyl operatorsw(m), mPZ2 for discrete position and momentum
where the flux plays the role of the Planck constant.13

w~1,0!5u, w~0,1!5v,

w~m1n!5g2s~m,n!w~m!w~n! ~m,nPZ2!, ~4!

g5exp@ ipu#,

wheres denotes the standard discrete symplectic form,s(m,n)5m1n22m2n1 . The adjoint op-
eration is simply expressed as

w~n!* 5w~n!215w~2n!. ~5!

We study the following family of Hamiltonians~self-adjoint operators!:

Hc5 (
mPD

cmw~m! ~6!

with D5$~0,61!,~61,0!,~61,61!% andcm* 5c2mPC.
The article is organized as follows. Section II is devoted to the expansion coefficien

powers ofHc with respect to the Weyl operators~4!, since they play a crucial role in ou
treatment. Actually, all interpretations and results of this section extend to more general H
tonians. In Sec. III we studyHc as element of the rotation algebraA(u) and the behavior of
spectral properties depending onu. In Sec. IV we discuss the model with next nearest-neigh
interaction on the rectangular lattice and the model with nearest-neighbor interaction on t
angular lattice in a unified view. This is followed by some concluding remarks.
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II. EXPANSION COEFFICIENTS

The expansion coefficients of powers ofHc with respect to the Weyl operators can be seen
a generalization of the binomial coefficients, leading to a geometric interpretation of them
derive an analytic expression for the expansion coefficients.

A. Definition and symmetries

The well-known binomial coefficient has many different enumerative, geometric and
braic meanings. Newton’s binomial formula is one way to define it,

~a1b!n5 (
k50

n S n
kDakbn2k,

wherea andb commute. Straightforward generalization yields to the multinomial coefficien
‘‘ q analog’’ of the binomial coefficient first appeared in the literature in Ref. 14. DenoteZ@u,v,g#
the ring generated by elementsu, v andg with relations15

uv5g2vu, gu5ug, gv5vg,

then the ‘‘q-binomial coefficient’’ is uniquely defined by

~u1v !n5 (
k50

n S n
kD

g

ukvn2k,

where (k
n)g is an element inZ@g# ~5the center ofZ@u,v,g#). For theq-binomial coefficient a

formula is known.10,16 However, less is known about theq-multinomial coefficient or other sorts
of generalizations.

The expansion coefficients for powers ofu1u211v1v21 lie also inZ@g# and can be seen a
a generalization of theq-binomial coefficients. This idea extends to any~self-adjoint! elementH
in the ~finite! span of$w(n)unPZ2%. The expansion coefficient (n;k)H for the kth power ofH is
uniquely defined by

H k5S (
nPZ2

cnw~n!D k

5 (
nPZ2

~n;k!Hw~n!, ~7!

where (n;k)H again belongs toZ@g#. The second sum is also finite, since only a finite numbe
(n;k)H are nonzero.

We are especially interested in the expansion coefficients for the powers ofHc defined in~6!.
In the following we restrict ourselves to this class and suppress the dependence onHc whenever
there is no ambiguity.

Writing Hc
k11 asHc

kHc andHcHc
k with coefficients (n;k11) and (n;k) we get two ‘‘con-

jugated’’ recurrence relations

~n;k11!5 (
mPD

cmgs~n,m!~n2m;k!5 (
mPD

cmg2s~n,m!~n2m;k! ~8!

with initial condition (n;0)5dn .
Proposition 2.1: LetHc be defined by (6). Then(n;k) is a polynomial in cm with real

coefficients and therefore(n;k)Hc
5(2n;k)Hc

holds, particularly (n;k)Hc
5(2n;k)Hc

PR for

cmPDPR.
Proof: Since we have the real initial condition (n;0)5dn and the recurrence relation

~n;k11!5 (
mPD

cm~gs~n,m!1g2s~n,m!!/2~n2m;k!, ~9!
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obtained from~8!, we get by induction that (n;k) is a polynomial incm with real coefficients. The
second property follows from~5! and the self-adjointness ofHc ,

(
nPZ2

~n;k!w~n!5Hc
k5~Hc

k!* 5 (
nPZ2

~2n;k!w~n!. h

Remark:The HamiltonianHc for a particle on a lattice in a homogeneous magnetic field
real coefficientscm . For HamiltoniansHc with additional symmetries in the parameterscm we get
further relations for the coefficients (n;k)Hc

.
Proposition 2.2: LetFPGL(2,Z). If c is such that for all mPD,cm5s21cF(m) holds, then

(n;k)Hc
5sk(F(n);k)Hc

.
A symmetry ofHc gives rise to such an automorphism. For example in the square lattice

the rotation byp/2 induces ((n1 ,n2);k)5((2n2 ,n1);k).

B. Geometric interpretation

Each coefficient (n;k) may be identified with a weighted sum of all paths from~0,0! to
(n1 ,n2) in Z2 in exactlyk steps belonging toD— now regarded as a set of steps. This can be s
in the following way. If one expands the productHc

k each summand may be mapped on a path
lengthk starting at~0,0! by identifyingw(m) with the stepmPD. This is obviously a one to one
mapping between the summands ofHc

k and the setDk5$paths of lengthk starting at~0,0! with
steps inD only%.

Further one can extend the map fromDk to the summands in the following way. Every pa
of lengthk with steps only inD is mapped on a summand ofHc such that two paths have the sam
image if and only if they differ by a translation. We index a summand by its~up to the translation!
unique pathv, i.e.,Sv . Let the pathv be composable withv, i.e., the end point ofv agrees with
the starting point ofv and let us denote the composition byv+v. Then we haveSvSv5Sv+v and
Sv

215Sv21. Therefore the map is a groupoid homomorphism with the composition of two pat
groupoid structure in the domain and the usual multiplication in the range. Next we defin
standard pathrn from ~0,0! to (n1 ,n2) as the unique path of lengthun1u1un2u changing its
direction only at the vertex (n1,0). Let Dk(n)5$vPDkuv and rn

21 are composable%. Since
w(n)5g2n1n2Srn

, the coefficient (n;k) can be written as

~n;k!5gn1n2 (
vPDk~n!

Sr
n
21Sv5gn1n2 (

vPDk~n!
Sr

n
21+v .

For a pathv let c̃v5PmPD cm
m(v) , wherem(v) is the number of steps of sortm in v. Then we

define the weight of a closed paths by c̃sg2A(s), where the oriented areaA(s) enclosed bys is
defined byA(s)5*s x dy. The motivation for this definition is, that every path from~0,0! to
(n1 ,n2) can be transformed into the standard pathrn by interchanging steps, reducing consecut
forward and backward steps and splitting the steps~61,61! into ~61,0! and~0,61!. Every action

gives a factor, such that in the endSv5 c̃r
n
21+vg2A(rn

21
+v)Srn

holds, i.e.,

Proposition 2.3:(n;k) is equal to the weighted sum over all pathsv in Dk(n) as follows

~n;k!5 c̃rn
gn1n2 (

vPDk~n!
Svn

Sr
n
215g n1n2 (

vPDk~n!
c̃vg2A~rn

21
+v !.

Proof: For k50 the agreement is obvious. Further one verifies that the weighted sum of
defined above fulfill the same recurrence relation as (n;k), see~8!. Therefore, by induction ove
k the proof is complete. h
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C. An analytic expression for „n ;k …

The recurrence relation~8! involves two degrees of freedom and has complex coefficient
seems that there exists no canonical way in the literature to solve it. We make some k
discrete Fourier transform in such a way that the new coefficients obey a recurrence rela
which one~out of two! degree of freedom is constant. This leads to a closed formula for
expansion coefficients.

Let mPD. We define the~partial! ‘‘Fourier transform’’ in directionm by

@d;k#~v,m!5 (
^m,n&5d

gs~m,n!~v1d!/^m,m&~n;k!, ~10!

wheres is the symplectic form of~4! and the sum runs overn. If g is aqth root of unity, then the
inverse of this transformation is given by

~n;k!5
1

2q E
0

2q

g2s~m,n!~v1^m,n&!/^m,m&@^m,n&;k#~v,m!dv ~11!

and by continuous prolongation otherwise. Actually, for a givenk, the integral can be replaced b
a finite sum. The ‘‘Fourier-transformed’’ coefficients fulfill a recurrence relation induced by~8!.
Fix vPZ, mPD, then we get

@d;k11#5 (
^m,n&5d

gs~m,n!~v1d!/^m,m& (
mPD

cmg2s~m,n2m!~n2m;k!

5 ((
mPD

^m,n&5d

cmg@s~m,n!~v1d!2^m,m&s~m,n2m!1s~m,m!~d2^m,m&!#/^m,m&~n2m;k!

5 ((
mPD

^m,n&5d

cmgs~m,m!@v12d2^m,m&#/^m,m&1s~m,n2m!@v1d2^m,m&#/^m,m&~n2m;k!

5 (
mPD

cmgs~m,m!@v12d2^m,m&#/^m,m&@d2^m,m&;k#, ~12!

where we first used the recurrence relation~8! and second the identitŷm,m&m5^m,m&m
1^ms ,m&ms with ms5(m2 ,2m1) and therefore

s~^m,m&m,n2m!5^m,m&s~m,n2m!2s~m,m!~d2^m,m&!.

Obviously, v is constant in the recurrence relation~12!. The initial condition transforms to
@d;0#5dd , hence it is independent of the ‘‘frequency’’v. Notice that̂ m,m& have values only in
$0,61,62%. Therefore the recurrence relation has at most five terms and is solved by using th
picture. We will do this form5~1,0!. Let Pd

k
ª$vP$21,0,1%ku( lv l5d%, then

@d;k#~v,m!5 (
vPPd

k
)
l 51

k

av~ l !5^ed ,Ake0&

with av( l )ªã(t,v l)ªc(v l ,1)g
v12t2v l1c(v l ,21)g

2(v12t2v l )1c(v l ,0) and t5(s51
l vs , where all

cm50 for m¹D. In the last expressionA is the tridiagonal matrixAts5ã(t,t2s) anded denote
the canonical basis vectors inl 2(Z). The inverse Fourier transform~11! leads to an involved bu
analytic expression for (n;k), see also the Appendix.
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III. ON SPECTRAL PROPERTIES OF Hc

The spectral properties ofHc depend strongly onu ~i.e., on the magnetic flux!. For rationalu
the spectrum is the union of a finite number of closed intervals. Whether these interva
separated by a gap for arbitrary rationalu, is the subject of Sec. III A. We reformulate th
question in algebraic words and give an answer in terms of the generalized binomial coeffi
Then we show that the quantitative estimate of the gap widths in the rational case impli
Cantor set property for some irrational values ofu.

A. Rational magnetic flux

Let us recall some elementary properties of the (C* -) algebraA(u), defined in Sec. I. LetT
denote the unit circle in the complex plane. There exists a canonical actionz→fz of T2 on A(u),
such thatfz(u)5z1 u andfz(v)5z2v. Any element ofA(u) fixed byf is a scalar multiple of the
identity id. There is a unique tracial statet of A(u) invariant underf. This yields to a noncom-
mutative differential structure and by analogyA(u) is called the noncommutative torus, for furth
properties see Ref. 17.

If u is rational,u5p/q with p and q relative prime integers, then there is an irreducib
representation P of A(p/q) on Cq such that Pv is the cyclic shift and Pu
5diag(1,g2,...,g2q22). It is not difficult to see, that every irreducible representation ofA(p/q) is
unitarily equivalent toPz5Pfz for somezPT2, and that two such representationsPz andP z̃ are
unitarily equivalent if, and only if,z̃i5g2nizi for somenPIq5$0,1,...,q21%2. @Sinceuq andvq

are central inA(p/q) if g2q51, the image ofA(p/q) in any irreducible representation is linear
spanned byq2 monomialsw(n), nPIq defined in Sec. II. Hence the representation is at mos
dimensionq. Because of the commutation relation~3! vuv215g2u we have the property, that i
z1PT is an eigenvalue ofu then so isg2z1 . Hence there must be a basis in which the image ou
is z1Pu, and then, after changing the basis element by a phase factor, the image ofv is z2Pv, as
desired.#

The roles ofu and v are completely symmetric, the corresponding bases are relate
discrete Fourier transform.13 Let w(n) be defined by~4! in Sec. I.

Lemma 3.1:$Pzw(n)%nPIq
form a basis ofPzA(p/q)>Mq(C).

Proof: Without loss of generality we may assumez15z251. Since the representatio
PA(p/q) has dimensionq, we have to prove the linear independence of$Pw(n)%nPIq

only.
Let anPC such that (nPIq

anPw(n)50 holds, then all its matrix elements (d,d
1s(mod q)) are zero (0<d,s<q21), i.e.,

05 (
nPIq

ang2n1n212n1dd~s2n2!5 (
n150

q21

a~n1 ,s!g
n1~2d1s!.

Hence we are left with

05 (
d50

q21

g2dt (
n150

q21

a~n1 ,s!g
n1~2d1s!

5 (
n150

q21

a~n1 ,s!g
n1s(

d50

q21

g2d~n12t !

5 (
n150

q21

a~n1 ,s!g
n1sqd~n12t !5a~ t,s!g

tsq

and therefore allan are zero. h

The spectrum ofHc @in A(u)] is of course the union of the images ofHc in a complete set of
irreducible representations ofA(u). With the representations for rationalu above we have
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Spec~Hc!5 ø
zPT2

Spec~PzHc!

and for finite dimension, the spectra are determined by the characteristic polynomials. FHc

defined in~6! these polynomials behave nicely as a function of the irreducible representatio
the case of the square lattice Hamiltonian this was first observed in Ref. 18, and afterwa
several other cases similar behavior has also been observed~see Refs. 8 and 13!.

Theorem 3.2: Let u5p/q, p and q being relative prime integers. Then the characteris
polynomialchz of PzHc as a function of zPT2:z→chz(•) fulfills the Chambers relation18

chz~x!5 f ~x!2h~z!, ~13!

where f(x)5a01a1x1...1aqxq, h(z)5(mPDbmzqm and zqm5z1
qm1z2

qm2. The coefficients are
given by

bm5~21!pq~qm;q!5~21!pqcm
q for mP$21,1%2,

bm5~qm;q!52«qTq~cm/2«! for mP$~61,0!,~0,61!%

with «5Ac(m11m2 ,m21m1)c(m12m2 ,m22m1) and Tq is the Chebyshev polynomial of degree q. Fu

ther the ak fulfill

(
k50

q

ak~n;k!Hc
50 for ini`,q. ~14!

Note thatbm is also well defined at«50 by continuous prolongation.
Proof: Using the properties of the rotation algebraA(u), the characteristic polynomial can b

written

chz~x!5det~x id2PzHc!5detS x id2 (
mPD

cmzmPw~m! D .

First observe, because of chz(x)5chzg2n(x), where zg2n5(z1g2n1,z2g2n2), the characteristic
polynomial has only powers of the formzqn, nPZ2. Since the determinant is homogeneous
degreeq and any entry is of the formt0x1(mPD tmzm, chz(x) is a Laurent polynomial inz1 , z2

and x with max$degz1
,degz2

%1degx<q, where deg* is the degree with respect to the variab
Hence the dependence onx andz splits

chz~x!5 f ~x!2h~z!5 (
k50

q

akx
k2 (

mPD
bmzqm.

Now we calculate the coefficients. The mapz→chz(PzHc) extends uniquely to an analytic func
tion C2\$0%→Mq(C):z→(nPZ2 dnzn, which is zero foruz1u5uz2u51 and hence everywhere. I
other wordsdn50, for everynPZ2. Since

chz~PzHc!5 (
k50

q

akPzHc
k2h~z!Pzid

5 (
k50

q

ak (
nPZ2

~n;k!Pzw~n!2 (
mPD

bmzqmPzid

5 (
nPZ2

(
k50

q

ak~n;k!znPw~n!2 (
mPD

bmzqmP id,
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the vanishing of thedn’s imply for mPD

05 (
k50

q

ak~qm;k!Pw~qm!2bmP id5~21!pqm1m2~qm;q!P id2bmP id,

and 05(k50
q ak(n;k) Pw(n), for ini`,q. RememberPw(qm)5(21)pqm1m2P id, for mPD

andaq51 by the very definition of chz(x) and (n;k)50 for ini`.k.
Since allPw(n)Þ0, we obtain~14!. The value ofbm5(21)pqm1m2(qm;k) is calculated in

the Appendix. h

Remark:By the above argument, the coefficients (n;q) vanish fornPZ2$qmumPD% with
ini`5q as already calculated in the Appendix.

For the doubly discrete quantum pendulum the above expression has been derived in
employing a different method. The Chambers relation~13! is crucial to prove the existence an
estimate the size of the spectral gaps, since it reduces the problem to a finite-dimensiona
value problem.

Theorem 3.3:The spectrum ofHcPA(p/q) consists of q disjoint bands if and only if

inf
zPT2

$ua2buuaÞbPSpec~PzHc!%.0. ~15!

Further this is a lower bound for the gap widths.
Proof: By the Chambers relation~13! we know that the spectrum ofHc is the preimage of the

interval @hmin ,hmax#5$h(z)uzPT2% under the polynomialf (x) of degreeq, i.e., it is the union ofq
bands. They are disjoint if and only if the spectrum ofPzHc is not degenerate for the represe
tation corresponding tohmin and hmax. By continuity of z→Pz these representations are n
degenerate if and only if~15! holds. Obviously infzPT2$ua2buuaÞbPSpec(PzHc)% is also an
optimal lower bound for the gap widths. h

This also proves the following Corollary.
Corollary 3.4: The spectrum ofHcPA(p/q) can only be degenerate in representationsPz

corresponding to extreme values of h(z) and if it is not degenerate, then the infimum (15)
reached for every z8PT2 with h(z8)5maxh(z) or for every z9PT2 with h(z9)5min h(z).

For the almost Mathieu operator, Choiet al.10 used an elegant method to obtain an estim
for ~15!. We employ and generalize it.

Lemma 3.5: Let B be a self-adjoint operator in a complex Hilbert space of dimension q.
every eigenvalue of B is simple if and only ifig(B)iÞ0 for every monic polynomial g of degre
q21. A lower bound for the difference of two (different) eigenvalues of B is given by

ua2bu>
inf$ig~B!i%
~2iBi !q22 ,

where the infimum is taken over the set of monic polynomials g of degree q21.
Proof: A monic polynomial of degreeq21 can be written as

g~x!5 )
j 51

q21

~x2% j !,

where % jPC are the roots ofg. Denote byk1<k2<¯<kq the eigenvalues ofB with each
eigenvalue counted according to its multiplicity. As a consequence of the spectral theore
spectrum ofg(B) is given by the 1<k<q valuesP j 51

q21(kk2% j ). Sinceg(B) is normal we have

ig~B!i5 max
1<k<q

H )
j 51

q21

ukk2% j uJ
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and thereforeig(B)i50 if and only if $k1 ,k2 ,...,kq%,$%1 ,%2 ,...,%q21%. Hence, if at least one
eigenvalue ofB is not simple then there exists one monic polynomialg of degreeq21 with
g(B)50. On the other hand, if all eigenvalues ofB are simple, obviously
$k1 ,k2 ,...,kq%,$%1 ,%2 ,...,%q21% can never happen.

Let NÞM P $1,...,q%. With uk i2k j u<2iBi we get for the monic polynomialgN(x)
5P j 51,j ÞN

q (x2k j )

igN~B!i5 max
1<k<q

H )
j 51,j ÞN

q

ukk2k j uJ
5 )

j 51,j ÞN

q

ukN2k j u

5ukN2kMu )
j 51

j ÞN,M

q

ukN2k j u<ukN2kMu~2iBi !q22

by applying the spectral theorem and using thatgN(B) is normal. Therefore inf$ig(B)i% over all
monic polynomials of degreeq21 fulfill the inequality of the lemma.

Now we are left with the following situation. Letg be an arbitrary monic polynomialg(x)
5a01a1x1¯1aq21xq21 of degreeq21. Then a lower bound ofig(PzHc)i leads to a lower
bound for the spectral gaps ofHc . By Corollary 3.4 we need only to consider representationsPz ,
whereh(z) has a global extremum.

First we give an argument forg(PzHc)Þ0. Suppose that there exists such ag with
g(PzHc)[0. This means that the system of linear equations, arising from the coefficients o
basis (w(n))nPIq

05 (
mPZ2

(
k50

q21

zqmgqs~n,m!1q2m1m2~n2qm;k!ak

5 (
mPD1

(
k50

q21

zqm~21!ps~n,m!1pqm1m2~n2qm;k!ak , ~16!

with zqm5z1
qm1z2

qm2 andD15$0,1%2 has a nontrivial solution (a0 ,..,aq21).19 Whenever a non-
trivial solution exists, there is at least one withaq2151 @since g(x)ux5PzHc

50⇒g(x)(x
2b)ux5PzHc

50].
Henceg(PzHc)Þ0 if we find a linear combination (a l) of the equations (16)n such that

U(
l 51

s

a l (
mPD1

(
k50

q21

zqm~21!ps~n,m!2pqm1m2~nl2qm;k!akU>1 ~17!

holds. Moreover, such a linear combination already gives a lower bound forig(PzHc)i .
Lemma 3.6: Letu5p/q with p and q relative prime integers and zPT2. Suppose there exist

a linear combinationa l(z), such that (17) holds for any arbitrary monic polynomial g of degr
q21, then the eigenvalues ofPzHc are not degenerate and a lower bound for the distan
between two of them is given by

~2q22siPzHciq22ia~z!i`!21,

where s is the number of nonzero coefficientsa l(z) and ia(z)i` its supremum.
Proof: We calculate a lower bound forig(PzHc)i and then apply Lemma 3.5. For a give

linear combination (a l) of Eq. ~16! and fixedz we have
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I(
l 51

s

a lw~2nl !I<(
l 51

s

ua l uiw~2nl !i<siai` .

Since iPzw(n)i>ATr (Pzw(n))5dnq21 for every nPIq , we have with t :5ps(n,m)
2pqm1m2 ,

ig~PzHc!iiai`s>ig~PzHc!i I(
l 51

s

a lPzw~2nl !I
>I (

nPIq
(

mPD1

(
k50

q21

zqm~21!tak~n2qm;k!Pzw~n!(
l 51

s

a lPzw~2nl !I
>q21UTr S (

k50

q21

(
l 51

s

a l (
mPD1

zqm~21!tak~nl2qm;k!Pzw~0!DU
>U(

k50

q21

(
l 51

s

a l (
mPD1

zqm~21!tak~nl2qm;k!U.
Under the assumption of the Lemma the last term is greater than 1 and therefore we ob
estimate forig(PzHc)i . By Lemma 3.5 the spectrum ofPzHc is not degenerate and two eige
values are separated at least by h

~2q22siPzHciq22ia~z!i`!21.

Because of the Chambers relation~13! the spectrum ofHc is the union of theq bands@l1 ,m1#,
@m2 ,l2#, @l3 ,m3#,... wherel1<m1<m2<l2<... is the spectrum ofPzHc with h(z) maximal
and withh(z) minimal, respectively. Thus the spectral gaps can be divided into two classes
corresponding to the maximum and the other to the minimum ofh(z). An estimate for the gap
widths in such a class can be calculated in the corresponding representation. Therefore by
3.6 the following Theorem holds.

Theorem 3.7: Let u5p/q with p and q relative prime integers. Suppose for zPT2 with
h(z)5minz8h(z8) or h(z)5maxz8h(z8) there exists a linear combinationa l , such that (17) holds
for z and any arbitrary monic polynomial g of degree q21, then the spectral gaps of the corre
sponding class are open and are at least of size

~2q22siPzHciq22ia~z!i`!21, ~18!

where s is the number of nonzero coefficientsa l and iai` its supremum.
At first sight it seems difficult to find such a linear combinationa l(z), since thean are

arbitrary except foraq-151 and the ‘‘behavior’’ of coefficients (n;k) is complex. Moreover, this
has to be done for every ‘‘periodic length’’qPN. A solution is provided in many cases as follow

Theorem 3.8:Let u5p/q with p and q relative prime integers andHc with cmPR. Then for
every zPT2 with zm

2qÞ1, (qm2m;q21)Hc
Þ0 and m5(1,0) or (0,1), there exists a linear

combinationa l(z) of two equations such that (17) holds and

ia~z!i`5u~12zm
2q!~qm2m;q21!Hc

u21.

Proof: First let m5(1,0) andz1
2qÞ1. Because of Proposition 2.1 we have (n;k)5(2n;k).

Therefore Eq.~16! with n5m andn5(q21)m, respectively, leads to

05 (
k50

q21

~m;k!ak1z1
q~qm2m;q21!aq21 ,
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05 (
k50

q21

z1
q~m;k!ak1~qm2m;q21!aq21 .

Taking a (q21,0)51/(12z1
2q)(qm2m;q21) and a (1,0)52z1

qa (q21,0) , we obtain such a linea
combination.

If z2
2qÞ1 we repeat the above argument form5(0,1). h

The coefficients (qm2m;q21) are given by a straightforward calculation. Form5(1,0) the
partial Fourier transformed coefficient@q21;q21# (m,v) is given by @q;q# (m,v) /(c(10)

1c(11)g
v211c(121)g

2v11), where@q;q# (m,v) has been calculated in the Appendix. The inve
Fourier transformation leads then to (qm2m;q21), thereby several cases depending onc have to
be distinguished.

B. Quantitative continuity of the spectrum

The spectral gap boundaries of a normal element inA(u) are continuous in the Hausdor
metric as a function of the magnetic field.20 For a large class of them even more qualitati
properties have been proved. It was first shown in Ref. 10 that the spectral gap boundaries
almost Mathieu operator is Ho¨lder continuous with exponent 1/3. This result was extended in R
21 to a larger class and improved to the Ho¨lder exponent 1/2, which is optimal in view of th
semiclassical analysis as pointed out in Ref. 22. Therein Lipshitz continuity of the spectrum
proven for elements in certain ‘‘Sobolev classes’’ ofA(u). The Lipshitz constant depends on th
width of the corresponding spectral gap and diverges near values ofu for which the gap closes
For the almost Mathieu operator more about the continuity and measure of its spectrum is k
see, e.g., Ref. 5 and references therein. Following Ref. 10, we use the quantitative contin
conclude from spectral gaps for rational values ofu to a possibly large class of irrational value

The result in Ref. 21 does not cover all HamiltoniansHc , though the extension to it is
possible.23 We will state the result only. Letf :R→R and h:R→C continuous differentiable
2p-periodic functions. Foru, bPR and hn5h(2pun2b), f n5 f (2pun2b) define a Jacobi
matrix by

~H f ,h
u,bf!~n!5h̄n11f~n11!1 f nf~n!1hnf~n21!

and denote the union of spectraøbPRSpec(H f ,h
u,b) by s f h(u).

Theorem 3.9:Let f, h as above and Mf h52p(2ih8i`1i f 8i`). Then the Hausdorff distanc
betweens f h(u) and s f h(u8), with u,u8PR is bounded by

Dist~s f h~u!,s f h~u8!!<2A5ihi`M f huu2u8u1M f huu2u8u.

For suitablef andh, the spectrum ofHc is given bys f h(u) as follows. LetbPR andPb be the
representation ofA(u) in l 2(Z) taking u into the twosided shift andv into the operator of
multiplication by the functions→exp 2p i (su1b). The direct integral of these representations
faithful, and so

SpecHc~u!5 ø
bPR

SpecPbHc~u!.

For convenience writehu
b for PbHc(u). @SinceA(u) is simple ifu is irrational, for anyb, Pb is

faithful and SpecHc5Spechu
b , in that case. In any case, the set of representat

$(Ad M y)Pb ;yPT,bPR%, where M y denotes the multiplication operators→ys, is invariant
under the canonical actionf of T2 on A(u), and so the proper idealùb ker Pb of A(u) is
invariant under this action. If this ideal were nonzero, it would contain a positive element
underF ~sinceT2 is compact!, which would be a nonzero scalar, and the ideal would be al
A(u). This showsùbkerPb50 as desired.#
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Corollary 3.10: Foru,u8PR,

Dist~SpecHc~u!,SpecHc~u8!)<4c̃A5puu2u8u14p c̃uu2u8u,

with c̃5uc(1,1)u1uc(1,21)u1max(uc(1,0)u,uc(0,1)u).
Proof: Obviously hu

b is a Jacobi matrix of the formH f ,h
u,b with estimatesihi`<uc(1,1)u

1uc(1,21)u1uc(1,0)u andM f h<4p(uc(1,1)u1uc(1,21)u1uc(0,1)u). Substitution of these values into th
inequality of Theorem 3.9 completes the proof. h

C. On spectral gaps for certain Liouville numbers

In this section we prove the existence of the spectral gaps for irrationalu under the condition
that this is true for all rational numbers in a neighborhood ofu. This argument works only for
irrational numbers, which are sufficiently well approximated by the rationales, i.e., some Lio
numbers.

Theorem 3.11: Let I be an open interval, such that for every p/qPI all q 21 gaps in the
spectrum ofHcPA(p/q) are at least of size sI(q)PR1 with p and q relative prime integers. If fo
uPI an arbitrarily large q exists withuu2p/qu<$34A5p c̃ 2%21sI(q)2, then all gaps of the
spectrum ofHcPA(u) are open.

Recall, c̃5uc(1,1)u1uc(1,21)u1max(uc(1,0)u,uc(0,1)u).
Proof: Fix «.0. Let bep/qPI , such thatuu2p/qu<min$@su(q)2/345p c̃2#;5«2/p%, then by

Theorem 3.9 we have

Dist~SpecHc~u!,SpecHc~p/q!)<4c̃A5puu2u8u14p c̃uu2u8u

<4c̃A5p~11«!Auu2u8u

<4/9~11«!su~q!.

Furthermore, Dist~SpecHc(u),SpecHc(u8))<4/9(11«)su(q) for any u8 betweenu and p/q.
Therefore, foruu2p/qu,min$@su(q)2/345p c̃2#;5«2/p% some part of a gap fromHcPA(p/q) is
contained in a gap fromHcPA(u8) and hence open. h

For those valuesu we obtain a topological description for SpecHc .
Corollary 3.12: Suppose the conditions of Theorem 3.11 hold, then the spectrum ofHc(u) is

a Cantor set for those irrational numbersu.
Proof: By Theorem 3.11 we have to prove that the gaps are dense in SpecHc(u). This would

follow from knowing that foru5p/qPI with (p,q)51, the gaps in SpecHc(u) are at most a
distance 12pcs /q apart, where we usedcs5supmPDucmu. With other words, the length of an
interval in the spectrum is at most 12pcs /q.

By the Weyl spectral variation inequality for Hermitian matrices~see Ref. 24!, the distance
between corresponding eigenvalues ofPzHc and P (1,1)Hc ~numbered in decreasing order! is at
most

iPzHc2P~1,1!Hci<2cs~ u12z1u1u12z2u1u12z1z2u1u12z1 /z2u!

<4cs~ u12exp~p i/q!u1u12exp~2p i/q!u!<12csp/q,

where we used that every irreducible representation is unitarily equivalent to one represe
Pz with 0<arg(z1), arg(z2)<p/q. Since each interval in SpecHc consists of a set of such corre
sponding eigenvalues, the length of any interval is at most 12csp/q. h

IV. MODEL DISCUSSION

In this section we investigate classes ofHc corresponding to tight-binding models on differe
lattices. In principle it is possible to calculate, for arbitrary parametersc, the critical point of the
representation depending on parth(z) of the Chambers relation~13! for everyu5p/q. However
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many cases have to be distinguished and therefore no good insight of the behavior is obtai
the following we make the substitutionz1→exp(ia/q), z2→exp(ib/q) and understandh as a
function of a andb.

A. Rectangular lattice

Consider a tight-binding model on a rectangular lattice with next-nearest-neighbor intera
The symmetry of a rectangular lattice and a homogenous magnetic field yields toH rec5Au
1Bv1C(ḡuv1guv* )1h.c. with A,B,CPR.

Without second neighbor interaction (C50), the model reduces to the well-known Harp
model ~see Sec. I!. It has been extensively studied by many authors. Results on the sp
measure, continuity of the gaps and Anderson localization are obtained with va
methods.4,21,22,25,10,20,5,6,26For ‘‘rational values’’ of the magnetic flux the existence and width
the spectral gaps have been proved, using different methods.25,10,26

We will derive an analytic expression for the characteristic polynomials~13! in terms of the
coefficients (n;k). Because of~14! we get

(
k5s

q21

~s,0;k!ak52~s,0;q!

and therefore

S a0

A
aq21

D 52~~s,0;k!!sk
21S ~0,0;q!

A
~q,0;q!

D .

The inverse exists, since it is an upper triangular matrix with diagonal elements of the forAs

Þ0. For lq odd all coefficientsal vanishes, since (s,0;k) vanish, if sk is odd. This also follows
from symmetry considerations. Obviously, we can derive for anyHc such a formula.

This fact can be used to derive an analytic expression for the density of states of the
Mathieu operator withA5B51. The integrated density of states is given by

N~E!5E
0

2pE
0

2p

da db Tr ~x@24,E#~pzHc!!, ~19!

wherex I is the characteristic function ofI PR and is expressed in terms of the density of sta
~DOS! g(m) at energym as

N~E!5E
24

E

dm g~m!.

Wannier, Obermair and Ray27 derived from~19! and the Chambers relation~13! that

g~m!5H 1

2p2q

d

dm
f ~m!K8~ 1

4 u f ~m!u! for u f ~m!u<4

0 otherwise,

where f (m) is given in the Chambers relation~13! and

K8~x!5F S p

2
,A12x2D5E

0

p/2

~12~12x2!sin2 y!21/2dy

is the complete elliptic integral of the first kind. Since we have computed the coefficients off (m)
analytically, this gives an analytic expression for the density of states.
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For nontrivial second neighbor interaction (21)rC the representation dependent part of t
Chambers relation is given by

1

4Cq h~a,b!5TqS A

2CD cosa1TqS B

2CD cosb1~21!~p1r!q cos~a!cos~b!.

Notice that changing the second neighbor coupling, the phase diagram is only rescaled and
fore we keepC in our discussion constant. The case (p1r)q odd can be derived from the eve
one by variable transformationa→a1p,b→b1p. In the following we assume (p1r)q even. Let
us describe the phase diagram for the critical point ofh with respect toA, B andC. First, the phase
diagram of the critical points ofh in terms ofa54CqTq(A/2C) andb54CqTq(B/2C) is given by
Fig. 1. Sincea andb are theqth Chebyshev polynomials inA andB, respectively, theA–B phase
diagram is easily derived from this one.

Consider a path in theA–B phase diagram withA running from2` to 1` andB constant.
The corresponding image of this path in thea–b phase diagram lies again on a straight li
parallel to thea axis andb54CqTq(B/2C). Recall, theq21 extrema of the Chebyshev polyno
mials have the value61 in the interval@21,1#. For q odd anduBu,2C the path forA,22C lies
in the region IV3 , then (22C,A,2C) oscillates exactlyq/2 times in region I. The path touche
the border of the neighbor region at the turning points of the oscillation. ForA.2C the path lies
in IV1 . For uBu.2C we have similar behavior. Therefore, up to this touching, the phase dia
in terms ofA and B is a homeomorphic image of Fig. 1. Forq even, the path lies on the sam
straight line and oscillates again exactlyq/2 times in the corresponding region, but will disappe
again to1`. Hence, forq even, regionsP1/2, IV3/4 and III2 do not appear in theA–B phase
diagram.

On such a path the width of the range ofh(a,b) oscillates and because of the Chamb
relation, this should be reflected on the total bandwidth of the spectrum. Numerical calcul
confirm this behavior, the roots ofTq(A/2C) correspond to the minima of the total bandwidth a
the extrema to the maxima, respectively. Recognize, thoughh(a,b) scales withCq, the spectrum
does not.

The critical points are listed in Table I. Consider region I, there are two minima and max
The maximum at~a,b!5~0,0! is global forTq(A/2C)1Tq(B/2C).0 and local otherwise. Simi-
larly, the minimum at~a,b!5~p,0! is global forTq(A/2C)2Tq(B/2C).0 and local otherwise.

B. Triangular lattice

The ~anisotropic! tight-binding Hamiltonian for a particle on the triangular lattice can
expressed as

FIG. 1. Phase diagram for the rectangular lattice:a54CqTq(A/2C) and b54CqTq(B/2C) and region I
5@24Cq,4Cq#2.
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Htri5A~u1u* !1B~v1v* !1Cg~vu1v* u* !. ~20!

The model can be generalized by introducing different fluxes in the two classes of triangles8 The
representation dependent part of the Chambers relation~13! is given by

h~a,b!52Aq cosa12Bq cosb1~21!pq2Cq cos~a1b!.

We describe the critical points ofh(a,b) only in the generic case 15(21)pq2Cq>2Aq, 2Bq

>0, all other cases can be derived from this one by suitable transformation ofa and b and
rescaling ofh(a,b). The critical points are listed in Table II and the phase diagram is show
Fig. 2. In region II an extra critical point ofh(a,b) appears, not being multiples ofp. The point
~1,1! in the phase diagram correspond to the case of hexagonal symmetry, so that the d
phases help to distinguish strongly and weakly anisotropic interaction for the triangular l
model. We call region II the ‘‘weakly anisotropic’’ triangular phase. Obviously, for fix
0,A,B,1 the phase depends on the magnetic fluxu5p/q. The sequence (Aq,Bq) converges to
~0,0!. For large enoughq the phase becomes in any case — exceptA5B<1 — strongly aniso-
tropic.

C. Weakly anisotropic triangular phase

In this section, we analyze for the weakly anisotropic triangular phase the gap structure
spectrum for the corresponding Hamiltonian. By applying the theory of Sec. III we show
existence of gaps for rational and certain irrational values of the magnetic flux per unit cel
convenience let in the followingC>A,B.0. SinceHtri has real coefficients in the sense
Proposition 2.1, the generalized coefficients (n;k)Htri

defined by~7! are real. Letg be an arbitrary
monic polynomial of degreeq21 with real coefficients.28 A lower bound for the spectral gaps o
HtriPA(p/q) is given by Theorem 3.6, if we find a linear combinationa l , such that~17! holds.

Theorem 4.1:For everyu5p/q with p and q relative prime integers and A,B,C in a wea
anisotropic phase the spectral gaps ofHtri corresponding to the minimum of h(z) if pq even and
to the maximum if pq odd, are open.

TABLE I. Critical points for the rectangular lattice model with next-nearest-neighbor interaction andpq even. e1

5Tq(A/2C)1Tq(B/2C), e25Tq(A/2C)2Tq(B/2C) and sad5saddle point.

~cosa,cosb!
Energy
in 4Cq I II 1/2 III 1/2 IV1 IV2 IV3 IV4

~1,1! e112 max sad max/min max max sad sad
~21,21! 2e112 max sad min/max sad sad max max
~21,1! 2e222 min max/min sad min sad sad min
~1,21! e222 min min/max sad sad min min sad
~2b,2a! 2ab sad — — — — — —

TABLE II. Critical points (a,b)P] 2p,p] 2 for the triangular lattice model with anisotropic nearest-neighbor interac
andwa5arccos(1/2a2b2)(b32b3a22ba2), wb5arccos(1/2a2b2)(a32a3b22ab2).

~a,b! Energy I II III

~0,0! a1b11 max max max
~p,0! 2a1b21 min loc min loc min
~0,p! a2b21 loc min loc min min
~p,p! 2a2b11 loc max loc max loc max
6(wa ,wb)

2
a21a2b21b2

2ab

— min —
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Proof: For pq even andA,B,C in a weakly anisotropic phase, i.e.,Aq.Bq/(Bq1Cq) and
Bq.Aq/(Aq1Cq) the minimum ofh(z) is reached atz5(exp(iwa /q),exp(iwb /q)), see Table II
and hence not a 2qth root of unity. Therefore one can apply Theorem 3.8 and gets with Theo
3.7 the following estimate for the gap widths:

maxS Ausin wau

22q24~11B/A1C/A!q22 ,
Busin vbu

22q24~11A/B1C/B!q22D .0.

For pq odd the proof is after rescaling ofh(z) analogous. h

Remark:Because of the Chambers relation~13! one of two consecutive gaps in the spectru
corresponds tohmin and the other tohmax. Therefore Theorem 4.1 implies that at least one of t
consecutive gaps is open.

As already mentioned above only thoseHtri with 0,A5B<C stay in the weakly anisotropic
phase for any rational value ofu. In this case the following Corollary is a direct consequence
Theorem 4.1.

Corollary 4.2: For everyu5p/q with p and q relative prime integers and0,A5B<C the
spectral gaps ofHtri corresponding to the minimum of h(z) if pq even and to the maximum if p
odd, are open and have length at least

A42~A/C!2qAq21

22q25~2A1C!q22 .

Proof: Since sinwa5A12(A/C)2q/4 the estimate follows from the one in the proof of The
rem 4.1. h

The analysis of the spectra for rational values of the magnetic flux per unit cell above do
yield all conditions needed in Theorem 3.11 and particularly Corollary 3.12. But looking a
proof again we see that nevertheless Corollary 3.12 holds.

Theorem 4.3:Let 0,A/C5k<1, then for all uPR with uu2p/qu<k2q22/A5p24q21232q,
for arbitrarily large q, the spectrum ofHtri(u) is a Cantor set.

Proof: Supposeu fulfills the Liouville condition of the theorem. Takep andq. For pq even
the gaps of SpecHc(p/q) corresponding to the minimum ofh(z) are by Corollary 4.2 at least o
sizekq22A/22q253q22. Since between such two gaps lies exactly one gap~possibly degenerated!
corresponding to the maximum ofh(z), one gap of two consecutive gaps is at least of the s
above. This is also true forpq odd. This fact induces analogous to the proof of Theorem 3
that there are at leastb(q21)/2c open gaps in the spectrum ofHtri(u) for every suchp/q. For
deducing that the gaps in SpecHc(u) are dense the proof of Corollary 3.12 have to be altere

FIG. 2. Phase diagram for the triangular lattice, witha5Aq, b5Bq andb,a/(11a) in region I,a,b/(11b) in region
III.
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one point only. The estimate for the length of any interval in SpecHtri for u8 rational is altered by
a factor 2. h

V. CONCLUDING REMARKS

We have presented a derivation for an estimate of the gap widths in the spectrum
Hamiltonians investigated here~6!, using an algebraic and combinatorial approach. The Cham
relation extends to this class of Hamiltonians and its explicit form is described in term
generalized binomial coefficients. Rather little is known about such kind of coefficients, espe
the analytic formula for them~11! seems to be a new result. In the way the Chambers relatio
derived, one easily gets conditions under which a general self-adjoint element inA(u) fulfills the
Chambers relation. So one recognizes that the class of Hamiltonians~6! contains essentially the
most general type of Hamiltonians fulfilling the Chambers relation. A limitation of this metho
given by the fact that the estimates derived for the spectral gaps vanish for critical points th
multiples of p. Numerical calculations suggest that, for arbitrary rational magnetic field
interaction, occasional ‘‘gap closing’’ occurs. So it is unlikely that the existence of a much
general estimate can be derived within this approach. However, we know from the derive
mate that this occasional ‘‘gap closing’’ can only occur if the relative location of the critical po
are multiples ofp or the generalized binomial coefficient in the estimate vanishes.
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APPENDIX

Since the coefficients of the form (qm;q) appear in the Chambers relation in Sec. III, w
calculate them here using formula~2!. Let m5(1,0), then

@q;q#~m,v!5)
k51

q

~c~1,0!1c~1,1!g
v12k211c~1,21!g

2v22k11!

5g2q~q122v!c~1,1!
q )

k51

q

~l12g2k!~l22g2k!

5g2q~q122v!c~1,1!
q ~l1

q21!~l2
q21!

5gq~q2v!c~1,21!
q 122q~c~1,0!1Ac~1,0!

2 24c~1,1!c~1,21!!
q

1gq~q1v!c~1,1!
q 122q~c~1,0!2Ac~1,0!

2 24c~1,1!c~1,21!!
q.

The inverse transformation leads to

~qm;q!5H 2«qTq~cm/2«! for «5Ac~1,1!c~1,21!Þ0

cm
q otherwise,

whereTq(x)5cosq arccosx51/2(x1Ax221)q11/2(x2Ax221)q denotes the Chebyshev poly
nomial of degreeq. Similarly we obtain an analogous expression for (qm;q) with m5(0,1). For
m5(61,61) the coefficients (qm;q) are given by (21)pqcm

q . Further we see that any othe
coefficient (n;q) with maxlunlu5q is zero.
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Weak coupling limit and removing an ultraviolet cutoff
for a Hamiltonian of particles interacting
with a quantized scalar field

Fumio Hiroshimaa),b)
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An interaction system consisting of particles and a quantized scalar field is consid-
ered. The Hamiltonian of the system is defined as a self-adjoint operator in a
Hilbert space. An ultraviolet cutoff is imposed on the Hamiltonian. A renormalized
Hamiltonian is defined by subtracting a renormalization term from the Hamiltonian.
Our aim in this paper is to remove the ultraviolet cutoff and take the weak coupling
limit simultaneouslyfor the renormalized Hamiltonian. By using a functional inte-
gral that contains a vector-valued stochastic integral, a Schro¨dinger Hamiltonian
with a many-body Coulomb potential~resp., Yukawa potential! is derived, if the
mass of the quantized scalar field is zero~resp., positive!. © 1999 American
Institute of Physics.@S0022-2488~99!00202-9#

I. INTRODUCTION

In this paper, we pursue the study of an interaction system consisting of an arbitrar
conserved number of particles and a quantized scalar field withnon-negative mass. An ultraviolet
cutoff is imposed on the quantized scalar field. The Hamiltonian of the system is defined
self-adjoint operator in a Hilbert space. A renormalized Hamiltonian is defined by subtract
renormalization term from the Hamiltonian. Our aim in this paper is ‘‘to remove the ultrav
cutoff and take weak coupling limitsimultaneously’’ ~we call it ‘‘WCL-RUV’’ for short ! for the
renormalized Hamiltonian. Then we derive a Schro¨dinger Hamiltonian with a many-body Cou
lomb potential~or Yukawa potential! in its WCL-RUV.

In Ref. 1, the author elaborates WCL-RUV for a model2 with a massivequantized scalar field
and shows that a Schro¨dinger Hamiltonian with a many-body Yukawa potential appears in
WCL-RUV ~also see Refs. 3–5!. In Ref. 1, it is crucial that the quantized scalar field has posi
mass. Our main purpose in this paper is to extend the result in Ref. 1 to the case whe
quantized scalar field has non-negative mass.

A mathematical formulation of the physical description of the interaction system is reduc
the theory of self-adjoint operators acting in the tensor productL̃ of two Hilbert spaces. The
statistics of the particles does not play any role. However, in this paper, we assume th
particles are fermions.~Naturally all the results extend to the case where the particles are bos!
Let Fb andFa be the Boson Fock space and the Fermion Fock space overL2(R3), respectively,

Fb[ %
N50

`

Ls
2~R3N!, Fa[ %

N50

`

Las
2 ~R3N!,

where Ls(R
3N) @resp., Las(R

3N)#, N>1, denotes the set of symmetric~resp., antisymmetric!
functions inL2(R3) andLs

2(R0)5Las
2 (R0)[C. Then

a!Electronic mail: hiro@mailcip.iam.uni-bonn.de
b!Permanent address: Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060

Electronic mail: f-hirosh@math.sci.hokudai.ac.jp
12150022-2488/99/40(3)/1215/22/$15.00 © 1999 American Institute of Physics
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L̃[Fa^Fb> %
Z50

`

H̃Z , H̃Z5Las
2 ~R3Z! ^Fb .

The numberZ counts the number of the particles. Leta(k), a†(k), b(k), andb†(k) be the formal
annihilation and creation operators inFb and the formal annihilation and creation operators inFa ,
respectively. Formally, we define

C~x!5
1

A~2p!3 E b~k!eikx dk, C†~x!5
1

A~2p!3 E b†~k!e2 ikx dk.

The HamiltonianH̃ of the system is explained as an operator acting in the Hilbert spacL̃.
Formally, H̃ has the following form@see~4.16! for rigorous definition#:

H̃5S E C†~x!S 2
1

2m
D DC~x!dxD ^ I 2gE C†~x!fF~x!C~x!dx1I ^ H̃b ,

whereD is the Laplacian inL2(R3), gPR a coupling constant,m.0 the mass of the particle
v(k)5Ak21m2, m>0, fF(x) a time-zero quantized scalar field inFb and

H̃b5E v~k!a†~k!a~k!dk.

The restriction ofH̃ to the sectorH̃Z , Z>1, has the form

H̃uH̃Z
5

1

2m
pZ

2
^ I 2g(

j 51

Z

fF~xj !1I ^ H̃bU
H̃Z

.

Here pZ5(p1,...,pZ), pj5(2 i (]/]x1
j ),2 i (]/]x2

j ),2 i (]/]x3
j )), j 51,...,Z. In Ref. 1, for each

fixed Z>1, the author defines a scaling HamiltonianH̃Z(L) in L̃Z5L2(R3Z) ^Fb by

H̃Z~L!5
1

2m
pZ

2
^ I 2LgH̃I

Z~La!1L2I ^ H̃b , L.0, a.0, ~1.1!

whereH̃I
Z(La) is defined by introducing an ultraviolet cutoff, which is parametrized by a par

eter La.0, in ( j 51
Z fF(xj ). In ~1.1!, in the case where we makeL’s in the coefficients ofI

^ H̃b andH̃I
Z(La) tend to infinity withLa in H̃I

Z(La) replaced by a fixed parameter, we call t
limit ‘‘weak coupling limit.’’ 6,7 Conversely, the case whereLa in H̃I

Z(La) tends to infinity with
the otherL’s replaced by fixed parameters corresponds to removing the ultraviolet cutoff.2 In Ref.
1, only in the case ofpositive massm.0, the author obtains the following~WCL-RUV!:

s2 lim
L→`

e2t„H̃Z~L!1V^ I 2g2ZE~La!…5e2t~Heff
Z

1V!
^ Pb , 0,a, 1

2 , ~1.2!

where the potentialV is infinitesimally small with respect topZ
2, E(La) a renormalization term

that goes to minus infinity asL→`, Pb the projection operator onto the closed subspace ge
ated by the vacuum vector inFb andHeff

Z is as follows:

Heff
Z 5

1

2m
pZ

22
g2

4p (
1< i , j <Z

e2muxi2xj u

uxi2xj u
, Z>2, m.0.
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@In Ref. 1, actually, the strong limit of the resolvent ofH̃Z(L)1VZ^ I 2g2ZE(La) is considered.#
In this paper, we consider WCL-RUV for the case of non-negative massm>0. We take the
Schrödinger representation,F, of Fb .8–10 The operators and spaces in the Schro¨dinger represen-
tation corresponding toH̃Z(L), H̃b , H̃I

Z(L), L̃, L̃Z , andH̃Z are denoted byHZ(L), Hb , HI
Z(L),

L, LZ , andHZ , respectively, in what follows.
The basic method presented here is as follows: In the massive case,m.0, the author in Ref.

1 introduces a unitary operator that separates a renormalization term and transforms the
tonianHZ(L) to an operator handled easily. Nevertheless, in the massless case,m50, we cannot
define such a unitary operator. To avoid this difficulty, we introduce a unitary operator wit
infrared cutoffK.0, which transforms the renormalized HamiltonianHZ(L)2gZE(La) to an
operatorHZ(K,L). We shall prove that, for sufficiently largeL.0, it is possible to construct a
functional integral representation ofe2tHZ(K,L). The functional integral representation gives
good way to analyze the strong limit ofe2tHZ(K,L) asL→`.

We organize this paper as follows. In Sec. II, we present the basic notation and facts. S
III is devoted to constructing a functional integral representation ofe2tH formal,

H formal5
1

2m
~pZ^ I 2A!21U1V^ I 1I ^ Hb , ~1.3!

whereA andU are defined in Sec. III. The operatorH formal is an abstract version ofHZ(K,L).
Section IV is the main section of this paper. In this section, we give the definition of the Ha
tonian H(V,L) of the system in the Schro¨dinger representation and analyze its WCL-RU
Theorem 4.11 is the main theorem in this paper. In Sec. V, we give some remarks.

II. SCHRÖDINGER REPRESENTATION

In this section we define basic notation and prepare some concepts on Schro¨dinger represen-
tation of a Boson Fock space and on a functional integral representation of a heat semigro
a Hilbert spaceH over C, we denote the scalar product by^ f ,g&H and the associated norm b
i f iH , where the scalar product is linear ing and antilinear inf. For a tempered distributionf, f̄

denotes the complex conjugate off and f̂ ~resp., f̌ ! the Fourier transform off ~resp., the inverse
Fourier transform off !. We denote the domain of an operatorA by D(A). We denote by
Cb

n(Rd;H) the set ofn times strongly continuously differentiable functions, together with boun
up ton times derivative, fromRd to a Hilbert spaceH andCb(Rd) the set of bounded continuou
functions onRd. Let Sr8(R

m) be the set of real tempered distributions onRm and define

H21/25H f PSr8~R
3!Ui f iH21/2

2 [E
R3

u f̂ ~k!u2

v~k!
dk,`J ,

W5H f PSr8~R
311!Ui f iW

2 [2E
R311

u f̂ ~k,k0!u2

v~k!21k0
2 dk dk0,`J .

For simplicity, we puti f iH21/2
5i f i21/2. Let $f( f )u f PH21/2% be the Gaussian mean zero ra

dom process indexed byH21/2 so that

E
Q

eif~ f ! dm5e2~1/4!i f i21/2
2

, f PH21/2,

where (Q,m) denotes a probability measure space. We regardf as the variable of the Gaussia
random processf( f ). Similarly, let $F( f )u f PW% be the Gaussian mean zero random proc
indexed byW on a probability measure space (QE ,mE) with
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E
QE

eiF~ f ! dmE5e2~1/4!i f iW
2

, f PW.

We setF5L2(Q,dm) andE5L2(QE ,dmE). The ‘‘Wick product’’ :f( f 1)¯f( f n): in F is de-
fined by recurrences as follows:

:f~ f !:5f~ f !,

:f~ f 1!¯f~ f n!:5f~ f 1!:f~ f 2!¯f~ f n!:2(
j 52

n
1

2
^ f 1 , f j&21/2:f~ f 2!¯f~ f j !̂¯f~ f n!: n>2,

wheref( f )̂ means the omission of the termf( f ). Set

G0~F!5C,

Gn~F!5L$:f~ f 1!¯f~ f n!:u f jPH21/2, j 51,...,n%, n>1.

HereL $¯% denotes the complex linear hull of the vectors in$¯% and$¯% the closure inF. Then
one sees that

F5 %
n50

`

Gn~F!.

‘‘The finite particle subspace’’ inF is defined by

F05 ø
N50

`

@ %
n50

N

Gn~F! %
n5N11

`

$0%#,

which is dense inF. Let T be a contraction linear operator fromH21/2 toW andh a non-negative
self-adjoint operator inH21/2. Then a linear operatorG(T) from F to E and a linear operato
dG(h) in F are defined by

G~T!VF5VE ,

G~T!:f~ f 1!¯f~ f n!ª:F~T f1!...F~T fn!:, f 1 ,...,f nPH21/2, n>1,

dG~h!VF50,

dG~h!:f~ f 1!¯f~ f n!ª(
j 51

n

:f~ f 1!¯f~h f j !¯f~ f n!:, f 1 ,...,f nPD~h!, n>1.

Here VF[1PF, VE[1PE. It is checked thatG(T) uniquely extends to a contraction linea
operator fromF to E. We denote its extension by the same symbol. Moreover, we see thatdG(h)
is essentially self-adjoint onF0 . We also denote its self-adjoint extension by the same symbol.
define a non-negative self-adjoint operatorṽ in H21/2 by

ṽ f̂ ~k!5v~k! f̂ ~k!, f PH21/2,

with D(ṽ)5$ f PH21/2uAv f̂ PL2(R3)%. The family of operatorsj t : H21/2→W, t>0, is defined
by

j t f 5d t ^ f , f PH21/2,
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whered t is the delta function with mass attPR. It is well known thatj t is isometry. We define
the family of isometriesJt and a non-negative self-adjoint operatorHb by

Jt5G~ j t!, t>0,

Hb5dG~ṽ!.

The following relation is crucial in the next section:

Jt* Js5e2ut2suHb, t,s.0. ~2.1!

We shall give a unitary equivalence betweenF andFb . Define V5$1,0,0,0,...%PFb . Let the
annihilation operator and the creation operator inFb denote bya( f ), f PL2(R3), and a†(g),g
PL2(R3), respectively, which satisfy the canonical commutation relations on a dense dom

@a~ f !,a†~g!#5^ f̄ ,g&L2~R3! , @a†~ f !,a†~g!#5@a~ f !,a~g!#50.

We define

fF~ f̂ !5
1

&
H a†S f̃̂

Av
D 1aS f̂

Av
D J ,

f̂

Av
PL2~R3!,

pF~ f̂ !5
i

&
$a†~Av f̃̂ !2a~Av f̂ !%, Av f̂ PL2~R3!.

Here g̃(k)5g(2k). Define a mapT from Fb to F by

TV5VF ,

T:fF~ f̂ 1!¯fF~ f̂ n!:V5:f~ f 1!¯f~ f n!:, f 1 ,...,f nPH21/2,

and extendT by linearity. Here the ‘‘Wick product’’ :fF( f 1)¯fF( f n): in Fb is defined by
moving all the creation operators to the left side and all the annihilation operators to the righ
without commutation relations. The operatorT uniquely extends to a unitary operator fromFb to
F. We denote its extension by the same symbol. We see that

T21f~ f̂ !T5fF~ f !, f PH21/2, T21HbT5H̃b . ~2.2!

Moreover,T implements the following unitary equivalence:

L̃>Fa^F[L.

The Hilbert spaceL can be decomposed as follows:

L5 %
Z50

`

HZ , HZ5Las
2 ~R3Z! ^F.

III. FUNCTIONAL INTEGRAL

In this section, we derive a functional integral representation of the heat semigroup gen
by self-adjoint operators in~1.3! acting in the Hilbert space,
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LZ[L2~R3Z! ^F>E
R3Z

%

F dx.

Throughout this section, we suppose thatA(x)5„A1(x),...,A3Z(x)… has the form

Am~x!5Pm~f„f m,1~x!…,...,f„f m,Mm
~x!…!1Am

0 ~x! ^ I , m51,...,3Z, ~3.1!

where Pm(y1 ,...,yMm
) is a real polynomial,f m, jPCb

2(R3Z;H21/2), and Am
0 PCb

2(R3Z;R). The

operatorH formal in ~1.3! is well defined onLZ
`5C0

`(R3Z) ^̂ @F0ùD(Hb)#, but it is not known

whetherLZ
` is a core forH formal or not. Here,^̂ denotes algebraic tensor product. Thus, it

possible forH formaluL
Z
` not to have a unique self-adjoint extension. Then we have to make it

which self-adjoint extensions we choose in consideration. We shall take the following strate
the beginning, we construct the family of contraction self-adjoint operators,Qs , s>0, from which
we derive a strongly continuous symmetric one-parameter contraction semigroup,Gt , t>0. Sec-
ond, we show that its generator,H00(A), i.e.,e2tH00(A)5Gt , which is a non-negative self-adjoin
operator, has the same action on the domainLZ

` as that of

H̃~A!5
1

2m
~pZ^ I 2A!2.

Next, we defineH0(A) by the quadratic form sum ofH00(A) and I ^ Hb :

H0~A!5H00~A!1̇I ^ Hb . ~3.2!

Finally, by using a diamagnetic inequality8,11 for e2tH0(A), we shall show that the following
self-adjoint operator can be defined:

H~A!5H0~A!1̇U1̇~V1 ^ I !2̇~V2 ^ I !, ~3.3!

whereU is a relatively form bounded operator with respect to

HF
Z5

1

2m
pZ

2
^ I 1I ^ Hb ,

with relative bound ,1 so that U(•) is an F-valued continuous function onR3Z, V1

PL loc
1 (R3Z) andV2 a relativelypZ

2 form bounded real multiplication operator. We adoptH(A) as
a mathematically rigorous definition of the formally defined HamiltonianH formal in ~1.3!. We shall
give a functional integral representation ofe2tH(A).

In what follows, for simplicity, we putm51. For eachx,yPR3Z, we define a unitary operato
on F by

U~x,y!5expH i

2
„A~x!1A~y!…~x2y!J .

Let ps(x) be a heat kernel, i.e., the integral kernel ofe2s„2(1/2)D… in L2(R3Z):

ps~x!5~2ps!2~3Z/2! expS 2
1

2s
uxu2D , s.0, xPR3Z.

We define the family of contraction self-adjoint operators$Qs%s>0 by Bochner integrals,
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~QsF !~x!5E
R3Z

ps~x2y!U~x,y!F~y!dy,

~Q0F !~x!5F~x!, FPLZ , xPR3Z.

Note thatQsF is weakly right continuous ats50, i.e.,

lim
s↓0

^QsF,G&LZ
5^F,G&LZ

, F,GPLZ . ~3.4!

We show the following key lemma.
Lemma 3.1: Let GPLZ and FPLZ

` . Then ^QsF,G& is differentiable at s.0 and right
differentiable at s50, with

lim
s↓0

K Qs2Q0

s
F,GL

LZ

52^H̃~A!F,G&LZ
. ~3.5!

Proof: We show an outline of a proof. Put

Am
~1!~x,y!5 (

n51

3Z S ]An~y!

]ym
~xn2yn!2„Am~x!1Am~y!…D ,

Am
~2!~x,y!5 (

n51

3Z S ]2An~y!

]ym
2 ~xn2yn!22

]Am~y!

]ym
D , m51,...,3Z.

By the Fubini theorem, one sees that

d

ds
^Qs ,F,G&LZ

5E
R3Z

ps~X!dXE
R3Z

G~x,x2X!dx,

where

G~x,y!5K U~x,y!
]2F~y!

]ym
2 ,G~x!L

F
12K U~x,y!Am

~1!~x,y!
]F~y!

]ym
,G~x!L

F

1^U~x,y!$Am
~1!~x,y!21Am

~2!~x,y!%F~y!,G~x!&F .

By a direct calculation, we show that

U E
R3Z

G~x,x2X!dxU<e11e2uXu1e3uXu2.

Heree1 ,e2 ,e3 are positive constants~see Ref. 8, Lemma 4.1 for details!. Hence, we have

lim
s↓0

E
R3Z

ps~X!dXE
R3Z

G~x,x2X!dx5E
R3Z

G~x,x!dx52^H̃~A!F,G&LZ
,

which, together with~3.4!, implies ~3.5!. The proof is complete. h

We fix probabilistic notation. Let (V,db) be a probability space for the 3Z-dimensional
Brownian motion„b(t)…t>05„bm(t)…t>0,m51,...,3Z . Put xm1bm(t)5vm(t), m51,...,3Z, andv(t)
5„v1(t),...,v3Z(t)…. We define measure spaces (Q̃,n) and (Q̃E ,nE) by
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Q̃5R3Z3V3Q, dn5dx^ db^ dm,

Q̃E5R3Z3V3QE , dnE5dx^ db^ dmE .

Lemma 3.2: For all t>0, the strong limit,

s2 lim
n→`

~Qt/2n!2n
[Gt ,

exists. Moreover, Gt is a strongly continuous symmetric one-parameter contraction semigrou
LZ and has the following functional integral representation:

^F,GtG&F5E
Q̃

dn F„v~ t !…G„v~0!…eiK̃ ~A,t !, F,GPLZ , ~3.6!

where

K̃~A,t !5 (
m5t

3Z E
0

t

Am„v~s!…dbm~s!1
1

2 (
m51

3Z E
0

t ]Am

]xm
„v~s!…ds[E

0

t

A„v~s!…+db~s!,

where*¯dbm(s) is anF-valued stochastic integral.
Proof: By the definition ofQt , one sees that

^F,~Qt/2n!2n
~Qs/2m!2m

G&LZ
5E

R3Z
dx^F„v~ t1s!…,eiK̃ m,n~A,t,s!G„v~0!…&L2~V;F! ,

whereL2(V;F) is the set ofF-valuedL2 functions onV and

2K̃m,n~A,t,s!5 (
k51

2m H AS vS sk

2mD D1AS vS s~k21!

2m D D J H vS sk

2mD2vS s~k21!

2m D J
1 (

k51

2n H AS vS tk

2n 1sD D1AS vS t~k21!

2n 1sD D J H vS tk

2n 1sD2vS t~k21!

2n 1sD J .

Since, by~3.1!, AmPCb
1(R3Z;F), m51,...,3Z, it is seen that

s2 lim
m→`

lim
n→`

K̃m,n~A,t,s!5K̃~A,t1s!,

in L2(V;F). Then we have, by the Lebesgue dominated convergence theorem,

lim
m→`

lim
n→`

^F,~Qt/2n!2n
~Qs/2m!2m

G&LZ
5E

Q̃
dn F„v~ t1s!…G„v~0!…eiK̃ ~A,t1s!.

Hence, it follows that (Qt/2n)2n
is a Cauchy sequence inLZ and s2 limn→`(Qt/2n)2n

has the
functional integral representation~3.6!. The semigroup property, and the strong continuity ofGt in
t can be checked by~3.6!. Thus, the proof is complete. h

Lemma 3.2 and Stone’s theorem yield that there exists a non-negative self-adjoint op
H00(A), so that

Gt5e2tH00~A!, t>0.

Lemma 3.3: The self-adjoint operator H00(A) is a self-adjoint extension of H˜ (A)uL
Z
`.
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Proof: Let FPD„H00(A)… andGPLZ
` . Then we see that, by Lemma 3.1,

K 1

t
~e2tH00~A!2I !G,F L

LZ

5 lim
n→`

K 1

t
$~Qt/2n!2n

2I %G,F L
LZ

5 lim
n→`

(
j 50

2n21
1

2n K 2n

t
$Qt/2n2I %G,~Qt/2n! jF L

LZ

52E
0

1

^H̃~A!G,e2tsH00~A!F&LZ
ds.

As t→0, we get

^G,H00~A!F&LZ
5^H̃~A!G,F&LZ

.

Thus, the proof is complete. h

Remark 3.4: Since the operator Hformal is defined on a larger domain thanLZ
` , one can extend

Lemma 3.3 to a larger domain. Actually, putting

MZ
`5$uPCb

1~R3Z;R!ui]kuiL2~R3Z!,`,uku<2% ^̂F0 ,

we also show that Lemmas 3.1 and 3.3 hold withLZ
` replaced byMZ

` .8

DefineH0(A) as ~3.2!. We state the main theorem in this section.
Theorem 3.5:Let Am(x)PD(Hb), m51,...,3Z, for all xPR3Z, and

sup
xPR3Z

iHbAm~x!iF,`. ~3.7!

Furthermore, we suppose that a multiplication operator U is a bounded operator onLZ and
U(•) is anF-valued continuous function onR3Z. Then, for F, GPLZ ,

^F,e2t~H0~A!1U !G&LZ
5E

Q̃E

dnE JtF„v~ t !…J0G„v~0!…eiK~A,t !e2E~U,t !, ~3.8!

where

K~A,t !5 (
m51

3Z E
0

t

JsAm„v~s!…dbm~s!1 (
m51

3Z
1

2 E
0

t

Js

]Am

]xm
„v~s!…ds[E

0

t

JsA~v~s!!+db~s!,

E~U,t !5E
0

t

JsU„v~s!…ds,

where*0
t ...dbm(s) is an E-valued stochastic integral.

Proof: By the strong Trotter product formula,12 we see that

^F,e2t~H0~A!1U !G&LZ
5 lim

n→`
^F,~e2~ t/2n!H00~A!e2~ t/2n!I ^ Hbe2~ t/2n!U!2n

G&LZ
[ lim

n→`

S2n.

Put t/2n5e. From the definition ofH00(A) and ~2.1!, it follows that
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~3.9!

whereJsJs* 5Es andxW j5(xj
1,...,xj

2k
)PR3Z•2k

, j 51,...,2n,

Pe~xW j !5pe~xj 21
2k

2xj
1!pe~xj

12xj
2!¯pe~xj

2k212xj
2k

!,

Ws~xW j !5expH i

2
Js(

l 51

2k

„A~xj
l 21!1A~xj

l !…~xj
l 212xj

l !J , xj
05xj 21

2k
, x0

2k
[x,

Us~xj
i !5exp„2eJsU~xj

i !….

By the Markov property ofEs ,10 one can neglectEs’s in ~3.9!. Then it holds that

S2n,2k5E
R3Z

dx^JtF„v~ t !…,e$ i ( j 50
2n21Jjt /2nKk~ j t /2n!2~ t/2n!( j 51

2n
Jjt /2nU„v~ j t /2n!…%J0G~x!&L2~V;E! ,

where

Kk~T!5
1

2 (
m51

2k H AS vS m

2k

t

2n 1TD D1AS vS ~m21!

2k

t

2n 1TD D J
3H vS m

2k

t

2n 1TD2vS ~m21!

2k

t

2n 1TD J , j 50,...,2n21.

As is seen in the proof of Lemma 3.2, sinceAm(•)PCb
2(R3Z,F), we have

lim
k→`

S2n,2k5E
R3Z

dx^JtF„v~ t !…,e$ i ( j 50
2n21K~ j t /2n!2~ t/2n!( j 51

2n
Jjt /2nU~v~ j t /2n!!%J0G~x!&L2~V;E! ,

where

K~T!5E
T

T1t/2n

JTA~v~s!!+db~s!.

SinceJs is isometry,~2.1! and ~3.7! implies that

iJsA~x!2Js8A~x!iF
2<2us2s8u sup

xPR3Z

iA~x!iFiHbA~x!iF, s,s8PR.
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Thus one sees that~see Ref. 8, Theorem 2.5 for details!

s2 lim
n→`

(
j 50

2n21

KS j t

2nD5E
0

t

JsA~v~s!!+db~s!

in L2(V;E). SinceJ.U(•) is anE-valued continuous function onR3R3Z, we have

lim
n→`

t

2n (
j 50

2n21

Jjt /2nUS vS j t

2nD D5E
0

t

JsU~v~s!!ds,

in L2(V;E). Hence, again by the Lebesgue dominated convergence theorem, we get the
result. h

Remark 3.6: It is enough to assume that Am(•)PCb
1(R3Z;F ), m51,...,3Z and (3.7) to define

theE-valued stochastic integral*0
t JsA„v(s)…+db(s). However, it is difficult to prove (3.8) unde

the above conditions. One of the reasons is that, since we do not know a concrete core for Hformal,
we cannot use a limiting argument. Thus, we need the additional condition thatm, j

PCb
2(R3Z;H21/2) and Am

0 PCb
2(R3Z;R), m51,...,3Z, j 51,...,Mm, which implies thatAm(•)

PCb
2(R3Z;F) to verify (3.8).
We consider an extension of Theorem 3.5 to a much more general multiplication operaU.

From Theorem 3.5 and the fact thatJt is positivity preserving, the following inequality follows

u^F,e2t~H0~A!1U !G&LZ
u<^uFu,e2t~HF

Z
1U !uGu&LZ

. ~3.10!

Let us define forGPLZ ,

sgnG~x!5H G~x!

uG~x!u
, uG~x!uÞ0,

0, otherwise.

Lemma 3.7: LetuUu be a multiplication operator that is HF
Z-form bounded with relative bound

e. ThenuUu is H0(A)-form bounded with relative bound<e.
Proof: SetG̃5sgn(e2tH0(A)G). PuttingF5G̃K, K>0, andU50 in ~3.10!, we have

^K,ue2tH0~A!Gu&LZ
<^K,e2tHF

Z
uGu&LZ

.

Hence, it follows that for a.e. (x,f)PR3Z3Q, ue2tH0(A)Gu(x,f)<(e2tHF
Z
uGu)(x,f). Then a

fundamental calculation shows that, forE.0,

u~H0~A!1E!21/2Gu~x,f!<~~HF
Z1E!21/2uGu!~x,f!, a.e. ~x,f!PR3Z3Q.

Hence, we have

sup
iGiLZ

51
iuUu1/2

„H0~A!1E…21/2GiLZ
< sup

iGiLZ
51

iuUu1/2~HF
Z1E!21/2uGu iLZ

.

Thus, the lemma follows. h

We define a class of multiplication operators inL2(R3Z).
Definition 3.8: We say that a multiplication operator WPM6(Z), Z>1, if W2 is relatively

form bounded with respect topZ
2 with relative bound,1 and W1PLloc

1 (R3Z), where W5W1

2W2 (W1 is the non-negative part of W and2W2 is the negative part of W). Moreover, we sa
that WPM6(Z) r if WPM6(Z) and W2 and W1 are reduced by the closed subspace Las

2 (R3Z)
in L2(R3Z), respectively.
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Theorem 3.9:Let U be an HF
Z-form bounded multiplication operator with relative bound,1

so that U(•) is an F-valued continuous function onR3Z, and VPM6(Z). Then Theorem 3.5

holds with H0(A)1U replaced by H0(A)1̇U1̇(V1 ^ I )2̇(V2 ^ I ).

Proof: First, we assume thatVPL`(R3Z). Then, by virtue of Lemma 3.7,H0(A)1̇U1V
^ I is a well-defined self-adjoint operator~Ref. 13 KLMN Theorem!. The strong Trotter produc
formula for forms and a limiting argument with respect toV yield ~3.8! with H0(A)1U replaced

by H0(A)1̇U1V^ I in the same way as the proof of Theorem 3.5. Next, for anyVPM6(Z),
defining

V1n5 HV1 ,
n,

V1,n,
otherwise, V2mHV21 ,

m,
V2,m,

otherwise,

one sees that~3.8! holds with H0(A)1U replaced byH0(A)1̇U1(V1n^ I )2(V2m^ I ). By
using convergence theorems for forms asn,m→` ~Ref. 8, Theorem 4.13; Ref. 14, Theorem 6.2!,
we get the desired result. h

We conclude this section with giving a typical example of functional integral representa
Let f 5( f 1 ,...,f 3Z) satisfy

f m

Av
PL2~R3!, f m~k!5 f m~2k!, m51,...,3Z. ~3.11!

We introduce a notationf̃ m(x) for x5(x1,...,xN)PR3Z as follows:

f̃ m~x!5
1

A~2p!3
~ f m~k!e2 ikx@~m/3!11#

!V, m51,..,3Z,

where@s# is the integer part ofs, the inverse Fourier transformationV is taken with respect to the
variable kPR3. Because of~3.11!, for eachxPR3Z, f̃ m(x)PH21/2. Thus, the multiplication
operatorf„ f̃ m(x)… is well defined and set

Am~ f !5Am~ f ~x!![f~ f̃ m~x!!.

PutA( f )5(A1( f ),...,A3Z( f )). Let %̂5(%̂1 ,...,%̂3Z), t̂5( t̂1 ,...,t̂3Z), andĥ5(ĥ1 ,...,ĥ3Z) sat-

isfy that %̂m(k)5%̂m(2k), t̂m(k)5 t̂m(2k) and ĥm(k)5ĥm(2k), and %̂m /(Av)n, ĥm /(Av)m,
t̂m /(Av) lPL2(R3), n,m521,0,1,2,l 51,2, m51,...,3Z. We fix %̂, t̂, andĥ. Define

H %̂,t̂,ĥ5
1

2m
„pZ^ I 2gA~ %̂ !…21a (

m51

3Z

Am~ t̂ !1b (
m51

3Z

Am~ĥ !21I ^ Hb ,

wherea, b, andg are real constants.
Theorem 3.10:Suppose that the absolute value of coupling constantsg andb are sufficiently

small. Then H%̂,t̂,ĥ is self-adjoint on D(HF
Z), bounded from below and essentially self-adjoint

any core for HF
Z . Moreover we have, for VPM6(Z),

^F,e2t~H%̂,t̂,ĥu~V1 ^ I !2̇~V2 ^ I !!G&LZ
5E

Q̃E

dnE JtF„v~ t/m!…J0G„v~0!…eK%̂,t̂,ĥ~ t !e2*0
t V~v~s!!ds,

~3.12!

where
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K%̂,t̂,ĥ~ t !5 (
m51

3Z H igFS E
0

t/m

j ms%̃̂m„v~s!…+dbm~s! D
2aFS E

0

t

j st̃̂m„v~s!…dsD 2bE
0

t

Jsf~h̃̂m„v~s!…!2dsJ .

Proof: For simplicity, we put i•iL2(R3)5i•i2 and H %̂,t̂,ĥ5HF
Z1HR1aHI1bHII in this

proof. Suppose thatVPCb(R3Z). Note that, forCPF0ùD(Hb
1/2),

if~ f !CiF <
1

& S 2I f̂

v
I

2

iHb
1/2CiF1I f̂

Av
I

2

iCiFD ,

i@~Hb1I !1/2,f~ f !#CiF <
1

&
S 1

2p E
0

` Al

~l11!2 dl D ~ i f̂ i2iHb
1/2CiF1iAv f̂ i2iCiF!.

By assumptionst̂m /v, t̂m /AvPL2(R3), one sees thatHI is infinitesimally small with respect to
I ^ Hb . Moreover, we see that, by the above inequalities, forCPD(HF

Z),

iHRCiLZ
< (

m51

3Z H g2S I %̂m

v
I

2
(

n521

2 I %̂m

~Av!nI
2

1I %̂m

Av
I

2

(
n51

2 I %̂m

~Av!nI
2
D 1ugu (

n521

2 I %̂m

~Av!nI
2
J

3i~HF
Z1I !CiLZ

3C1 ,

iHII CiLZ
< (

m51

3Z

ubuS I ĥm

v I
2

(
n521

2 I ĥm

~Av!nI
2

1I ĥm

Av
I

2

(
n51

2 I ĥm

~Av!nI
2
D i~HF

Z1I !CiLZ
3C2 ,

whereC1 and C2 are positive constants. Sinceg and b are sufficiently small, it holds thatHR

1aHI1bHII is relatively bounded with respect toHF
Z with relative bound,1. Hence, the

Kato–Rellich theorem13 yields thatH %̂,t̂,ĥ is self-adjoint onD(HF
Z), bounded from below and

essentially self-adjoint on any core forHF
Z . Next we prove~3.12!. We suppose thatvAv%̂m

PL2(R3). Then %̂m /Av, Av%̂m , vAv%̂mPL2(R3) implies that Am„%̂(•)…PCb
2(R3Z;F), and

Am„%̂(x)…PD(Hb) for xPR3Z, with supxPR3ZiHbAm„%̂(x)…iF,`, m51,2,...,3Z. Hence, noting
thatHI andHII are regarded asF-valued continuous functions onR3Z, by Theorem 3.5, one see
that

the right-hand side of~3.12!5^F,e2t~H0„gA~ %̂ !…u~aHI1bHII !1V^ I !G&LZ
.

SinceLZ
` is a core forH %̂,t̂,ĥ , by Lemma 3.3, we can see that

H0„gA~ %̂ !…1̇~aHI1bHII !1V^ I 5H %̂,t̂,ĥ1V^ I ,

as self-adjoint operators inLZ . Hence,~3.12! follows for such%̂ ’s. Let vAv%̂m¹L2(R3). We
find sequences%̂ (n)5(%̂1

(n) , ...,%̂3Z
(n)) so thatvAv%̂m

(n)PL2(R3) and

lim
n→`

I %̂m

~Av!m
2

%̂m
~n!

~Av!mI
2

50, m51,2,...,3Z, m52,1,0,21.

For sufficiently smallb andg, LZ
` is a common core forH %̂(n),t̂,ĥ1V^ I and

s2 lim
n→`

~H %̂~n!,t̂,ĥ1V^ I !C5~H %̂,t̂,ĥ1V^ I !C, CPLZ
` ,
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which implies that, onLZ ,

s2 lim
n→`

e2t~H%̂~n!,t̂,ĥ1V^ I !5e2t~H%̂,t̂,ĥ1V^ I !. ~3.13!

Since one sees that

IFS E
0

t

j s%̃̂m„v~s!…dbm~s!2E
0

t

j s%̂m
~n!̃
„v~s!…dbm~s! D I

L2~V;E!

2

<C3I %̂m

Av
2

%̂m
~n!

Av
I

2

2

,

IFS E
0

t

j s

] %̃̂m

]xm
„v~s!…ds2E

0

t

j s

]%̂m
~n!̃

]xm
„v~s!…dsD I

L2~V;E!

2

<C4iAv%̂m2Av%̂m
~n!i2

2,

whereC3 andC4 are positive constants, we have

s2 lim
n→`

K%̂~n!,t̂,ĥ~ t !5K%̂,t̂,ĥ~ t !,

in L2(V;E). Putting the right-hand side of~3.12! with r̂ replaced by%̂ (n) by I (n), we show that
I (n) converges to the right-hand side of~3.12! as n→`. Hence, we get~3.12! with V
PCb(R3Z). For anyVPM6(Z), by the same limiting argument as in Theorem 3.9, we get
desired result. h

IV. WCL-RUV FOR THE MODEL

In this section, our task is to define the HamiltonianH(V,L) of the system with non-negativ
massm>0 and a scaling parameterL.0 in the Schro¨dinger representation in a rigorous mann
Moreover, we investigate the WCL-RUV for the HamiltonianH(V,L). Set

JL~k!5 H1, uku,L,
0, otherwise.

For eachxPR3Z andK.0, put

J̃K
Z~x!5

1

A~2p!3 (
j 51

Z

„JK~k!e2 ikxj
)V,

~JLa!K,m
j ~x!5

1

A~2p!3
S JLa~k!„I 2JK~k!…e2 ikxj

km

v~k!
D V

, m51,2,3,j 51,...,Z,

where the inverse Fourier transformationV is taken with respect to the variablekPR3. An
operatorHZ(L), Z>1, acting inLZ is defined by

HZ~L!5
1

2m
pZ

2
^ I 2LgHI

Z~La!1L2I ^ Hb ,

where

HI
Z~La!5E

R3Z

%

f„J̃La
Z

~x!…dx, Z>1, a.0.

Proposition 4.1 (Ref. 2): For anyL.0, the operator HZ(L) is self-adjoint on D(HF
Z) and

bounded from below. Moreover, it is essentially self-adjoint on any core for HF
Z .

Set
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E~La!52
1

2~2p!3 E
R3

JLa~k!

v2~k!
dk,

pK5E
R3Z

%

TH pFS 1

A~2p!3 (
j 51

Z
JLa~ I 2JK!eikxj

v2 D J T21 dx.

We define a unitary operatorUK(L) on LZ with an infrared cutoffK.0 by

UK~L!5expS 2 i
g

L
pKD .

Here the symbolspF andT are defined in Sec. II.
Lemma 4.2: The unitary operatorUK(L) mapsLZ

` to D(HF
Z) with

UK~L!21
„HZ~L!2g2ZE~La!…UK~L!uL

Z
`

5
1

2m S pZ^ I 2
g

L
AK~L! D 2

1UK
Z~L!1L2I ^ HbU

L
Z
`
, ~4.1!

where

AK~L!5S E
R3Z

%

f„~JLa!K,1
1 ~x!…dx,E

R3Z

%

f„~JLa!K,2
1 ~x!…dx,...,E

R3Z

%

f„~JLa!K,3
Z ~x!…dxD ,

UK
Z~L!52gLHI

Z~K !1g2VK
Z~L! ^ I 2g2ZE~K !,

VK
Z~L!5VK

Z~L,x!52
1

2~2p!3 (
iÞ j

Z E
R3

JLa~k!„12JK~k!…e2 ik~xi2xj !

v2~k!
dk, Z>2, VK

1 ~L!50.

Proof: Note that†@2 i (]/]xm
j ) ^ I ,pK#,pK‡50, m51,2,3, j 51,...,N. Then~4.1! follows from

a direct calculation. h

Remark 4.3: Ifm.0, we can put K50 in pK . SinceJLa /vAv¹L2(R3), in the casem50,
we need to introduce the infrared cutoff K.0.

Since the right-hand side of~4.1! is closable, we denote the closed extension of the right-h
side of ~4.1! by HZ(K,L) and

HF
Z~L!5

1

2m
pZ

2
^ I 1L2I ^ Hb .

Define a symmetric operatorR(L,K) by

HZ~K,L!5HF
Z~L!1UK

Z~L!1R~L,K !.

Let

Vm
Z~x!52

1

4p (
1< i , j <Z

e2muxi2xj u

uxi2xj u
, VK

Z~x!52
1

2~2p!3 (
iÞ j

Z E
R3

JK~k!e2 ik~xi2xj !

v2~k!
dk,

VK
Zc~x!52

1

2~2p!3 (
iÞ j

Z E
R3

„I 2JK~k!…e2 ik~xi2xj !

v2~k!
dk, Z>2,

Vm
1 ~x!5VK

1 ~x!5VK
1c~x!50.

Note thatVK
Z1VK

Zc5Vm
Z andVK

Z is bounded.
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Lemma 4.4: For any e.0, there exist L0 and b(e).0 so that for all L.L0 ,
D(HF

Z),D„UK
Z(L)1R(L,K)…, and forCPD(HF

Z),

i~UK
Z~L!1R~L,K !!CiLZ

<eiHF
Z~L!CiLZ

1b~e!iCiLZ
.

Proof: From Ref. 1, Theorem 3.8~1!, it follows that, with constantb1(e)>0 andb2(e)>0,

i„g2VK
Z~L! ^ I 1R~L,K !…CiLZ

<eiHF
ZCiLZ

1b1~e!iCiLZ
,

i2gLHI
Z~K !CiLZ

<ei~ I ^ L2Hb!CiLZ
1b2~e!iCiLZ

.

Combining above two inequalities, we get the desired result. h

It follows from Lemma 4.4 that, for sufficiently largeL.0 and 0,a, 1
2, HZ(K,L) is

self-adjoint onD(HF
Z) and essentially self-adjoint on any core forHF

Z .
Lemma 4.5: Suppose that0,a, 1

2 and L is sufficiently large. ThenUK(L) maps
D„HZ(K,L)… onto D„HZ(L)…, with

UK~L!21e2tHZ~L!UK~L!5e2tHZ~K,L!, t>0. ~4.2!

Proof: Since L is sufficiently large,LZ
` is a core forHZ(K,L). Then the equality~4.1!

extends to the equality on the domainD„HZ(K,L)…. Then~4.2! follows. h

Lemma 4.6: For sufficiently largeL, e2tHZ(K,L) has a functional integral representation:

^F,e2tHZ~K,L!G&LZ
5E

Q̃E

dnE JL2tF„v~ t/m!…J0G„v~0!…eKL
Z

~ t !e2EL
Z

~ t !, ~4.3!

where

KL
Z ~ t !5gH i

L (
j 51

Z

(
m51

3

FS E
0

t/m

j mL2s~JLa!K,m
j

„v~s!…+dbm
j ~s! D 2LFS E

0

t

j L2sJ̃K„v~s!…dsD J ,

EL
Z ~ t !5g2E

0

t

~VK
Z
„L,v~s!…2ZE~K !!ds.

Proof: From Theorem 3.10,~4.3! follows. h

Theorem 4.7:Let 0,a, 1
2. Then

s2 lim
L→`

e2t„HZ~L!2g2ZE~La!…5e2t~~1/2m!pZ
2

1g2Vm
Z
…

^ Pb ,

where Pb denotes the projection operator onto the subspace$zVFuzPC%,F.
Before proving Theorem 4.7, we show some lemmas. We denote byS(Rm) the set of rapidly

decreasing infinitely many times differentiable functions onRm and define

F`5$F„f~ f 1!,...,f~ f m!…uFPS~Rm!, f jPH21/2, j 51,...,m,m>1%.

Lemma 4.8: Let0,a, 1
2 and Fl5eif( f l ), f lPH21/2, l 51,...,M . Suppose that0<t1,t2

,¯,tM<t and put FL
E(t)5ei ( l 51

M F( j L2t l
f l ). Then foru so that

E
V

u~b!2e22*0
t g2VK

Z
„v~s!…dsdb,`,

we have
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lim
L→`

E
V

db u~b!E
QE

dmE FL
E~ t !eKL

Z
~ t !5P l 51

M ^VF ,Fl&FE
V

db u~b!e2*0
t g2VK

Z
„v~s!…dse2g2ZE~K !.

~4.4!

Proof: For simplicity, we putm51 in this proof. Let Z>2. The case of Z51 is similarly
proved. The integral on the left-hand side~lhs! of ~4.4! is calculated as follows:

lhs of ~4.4!5 lim
L→`

E
V

u~b!exp$2 1
4 ~ I L2II L12i I II L!%db,

where

I L5I(
l 51

M

j L2t l
f l1(

j 51

Z

(
m51

3
g

L E
0

t

j L2s~JLa!K,m
j

„v~s!…+dbm
j ~s!I

W

2

,

II L5 ILgE
0

t

j L2sJ̃K
Z
„v~s!…dsI

W

2

,

III L5K (
l 51

M

j L2t l
f l1(

j 51

Z

(
m51

3
g

L E
0

t

j L2s~JLa!K,m
j

„v~s!…+dbm
j ~s!,2LgE

0

t

j L2sJ̃K
Z
„v~s!…dsL

W
.

We shall estimateI L ,II L ,III L separately. We see that

I L5I(
l 51

M

j L2t l
f l I
W

2

1I(
j 51

Z

(
m51

3
g

L E
0

t

j L2s~JLa!K,m
j

„v~s!…+dbm
j ~s!I

W

2

12RK (
l 51

M

j L2t l
f l ,(

j 51

Z

(
m51

3
g

L E
0

t

j L2s~JLa!K,m
j

„v~s!…+dbm
j ~s!L

W

2

5I L
~1!1I L

~2!12RI L
~3!.

Then one can see that, by the definition of the operatorj t ,

lim
L→`

I L
~1!5 lim

L→`
(

i , j 51

M

^ f i ,e2L2ut i2t j uv f j&21/25(
i 51

M

i f i i21/2
2 . ~4.5!

Moreover, we have

i j L2s~JLa!K,m
j

„v~s!…iW
2 <

S2

~2p!3 E
K

La

r dr ,

I j L2s

]~JLa!K,m
j

]xm
j „v~s!…I

W

2

<
S2

~2p!3 E
K

La

r 3 dr,

whereS2 denotes the volume of the two-dimensional sphere. Since 0,a, 1
2, it holds that

lim
L→`

E
V

dmI(
j 51

Z

(
m51

3
g

L E
0

t

j L2s~JLa!K,m
j

„v~s!…dbm
j ~s!I

W

2

5 lim
L→`

E
V

dm(
j 51

Z

(
m51

3
g2

L2 E
0

t

dsi j L2s~JLa!K,m
j ~v~s!!iW

2 < lim
L→`

3Ztg2S2

~2p!3

1

L2 E
K

La

r dr 50,
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moreover

lim
L→`

I(
j 51

Z

(
m51

3
g

L E
0

t

j L2s

]~JLa!K,m
j

]xm
j „v~s!…dsI

W

2

< lim
L→`

3Ztg2S2

~2p!3

1

L2 E
K

La

r 3 dr50.

Hence we have

lim
L→`

E
V

ue2~1/4!I L
~2!

21u2db50. ~4.6!

By ~4.5! and ~4.6!, we have

lim
L→`

E
V

ue2~1/4!I L
~3!

2I u2db50.

Consequently,

lim
L→`

E
V

e2~1/4!I Ldb5E
V

e2~1/4!( t51
M i f l i21/2

2
db. ~4.7!

Next, we considerII L , which is essential to derive aZ-body Coulomb~or Yukawa! potential.
Note thatj t f̂ (k,k0)5(1/A2p)e2 ik0t f̂ (k). Then

II L5L2
2g2

~2p!3 E
R33R

dk dk0

v2~k!1k0
2 U 1

A2p
E

0

t

e2 ik0L2s(
j 51

Z

JK~k!e2 ikv j ~s! dsU2

5
2g2

~2p!3 E
R3

JK~k!dkE
R

dk0

v2~k!1
k0

2

L4

U 1

A2p
E

0

t

e2 ik0s(
j 51

Z

e2 ikv j ~s! dsU2

.

By the Lebesgue dominated convergence theorem, one sees that

lim
L→`

II L5
2g2

~2p!3 E
R3

JK~k!dk

v2~k!
E

R
dk0U 1

A2p
E

0

t

e2 ik0s(
j 51

Z

e2 ikv j ~s! dsU2

5
2g2

~2p!3 E
R3

JK~k!dk

v2~k!
E

0

tU(
j 51

Z

e2 ikv j ~s!U2

ds

54H E
0

t

ds
g2

2~2p!3 (
iÞ j

Z E
R3

JK~k!e2 ik~v i ~s!2v j ~s!!

v2~k!
dk2g2ZE

0

t

ds E~K !J
524E

0

t

~g2VK
Z
„v~s!…1g2ZE~K !!ds. ~4.8!

Here, in the second equality in~4.8! we use that the Fourier transformation with respect tok0 is
unitary on L2(R3). Note thatII L is monotonously increasing asL→`. Finally, we consider
III L . From ~4.6! and ~4.8!, it follows that
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lim
L→`

III L5 lim
L→`

K (
l 51

M

j L2t l
f l ,2LgE

0

t

j L2sJ̃K„v~s!…dsL
W

5 lim
L→`

22Lg

A~2p!3 ER33R

dk dk0

A2p
(
l 51

M
eik0L2t l f̄̂ l~k!

v2~k!1k0
2 E

0

t ds

A2p
e2 iL2sk0JK~k!(

j 51

Z

e2 ikv j ~s!

5 lim
L→`

21

A~2p!3

g

L E
R3

dk(
l 51

M
e2L2ut l2suv~k! f̄̂ l~k!JK~k!

v~k!
E

0

t

(
j 51

Z

e2 ikv j ~s! ds.

Hence, by the Schwartz inequality,

lim
L→`

uIII Lu< lim
L→`

Zt

A~2p!3 (
l 51

M

i f l i21/2

g

L S E
R3

e22L2ut l2suv~k!
JK~k!

v~k!2 dkD 1/2

50. ~4.9!

Then by~4.7!, ~4.8!, and~4.9! and the assumption ofu, it holds that

lim
L→`

E
V

u~b!e2~1/4!~ I L2II L12i I II L! db5E
V

u~b!e2*0
t g2VK

Z
„v~s!…dse2g2ZE~K !e2~1/4!( l 51

M i f l i21/2
2

db.

Thus, the proof is complete. h

Lemma 4.9: Let0,a, 1
2 and u as in Lemma 4.8. Then, for F,GPF, we have

lim
L→`

E
V

db u~b!E
QE

dmE~JL2tF !~J0G!eKL~ t !5^F,PbG&FE
V

db u~b!e2*0
t g2VK

Z
„v~s!…dse2g2ZE~K !.

~4.10!

Proof: First we assume thatF,GPF` so that, withf PS(Rn), gPS(Rm),

F5
1

A~2p!n ERn
f̌ ~ t1 ,...,tn!ei ( j 51

n f~ f j !t j dt1¯dtn ,

G5
1

A~2p!m E
Rm

ǧ~s1 ,...,sm!ei ( j 51
m f~gj !sj ds1¯dsm .

Then from Lemma 4.8~4.10! follows. SinceF` is dense inF, one sees~4.10! for anyF,GPF by
an approximation argument. h

Proof of Theorem 4.7:Let Z>2. The case ofZ51 is similarly proved. It is seen that

s2 lim
L→`

UK~L!5I .

Hence, by Lemma 4.5, and uniform boundedness ofe2tHZ(K,L) ande2t„(1/2m)pZ
2

1g2Vm
Z )

^ Pb , it is
enough to show that for anyQ, CPC0

`(R3Z) ^̂F`,

lim
L→`

^Q,e2tHZ~K,L!C&LZ
5^Q,e2t„~1/2m!pZ

2
1g2Vm

Z
…

^ PbC&LZ
.

Let Q5u^ F, C5v ^ G, whereF andG have the same forms as those in the proof of Lemma
andu,vPC0

`(R3Z). Then

^Q,e2tHZ~K,L!C&LZ
5E

R3Z3V
dx dbu„v~ t/m!…v„v~0!…e2EL

Z
~ t !E

QE

dmE~JL2tF !~J0G!eKL
Z

~ t !.
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First we estimateEL
Z (t). Since

VK
Z~L,x1,...,xZ!52

1

2p2 (
1< i , j <Z

1

uxi2xj u EK

La r

r 21m2 sin~r uxi2xj u!dr,

using a contour integral, one can check that there existd1.0 andd2.0, which are independen
of L.0, so that

uVK
Z
„L,v~s!…u<d1uVm

Z
„v~s!…u1d2 , m>0. ~4.11!

Set

V05H ~x,b!PR3Z3VU E
0

t e2muv i ~s!2v j ~s!u

uv i~s!2v j~s!u
ds5`, iÞ j ,i , j 51,...,ZJ .

The measure ofV0 is zero. One can check that for (x,b)P@R3Z3V#\V0 ,

lim
L→`

VK
Z
„L,v~s!…5VK

Zc
„v~s!…,`, a.e.sP@0,t#. ~4.12!

Combining~4.11! and~4.12!, one can see that, for (x,b)P@R3Z3V#\V0 , by the Lebesgue domi
nated convergence theorem,

lim
L→`

E
0

t

ds VK
Z
„L,v~s!…5E

0

t

ds VK
Zc
„v~s!….

Hence, for almost everywhere (x,b)PR3Z3V,

lim
L→`

e2EL
Z

~ t !5e2*0
t g2VK

Zc
„v~s!…dseg2ZE~K !.

On the other hand, under the notation in the proof of Lemma 4.8, we see that

ueKL
Z

~ t !u<e~1/4!II L. ~4.13!

As is seen in the proof of Lemma 4.8, the right-hand side of~4.13! is monotonously increasing a
L→`. Hence we have, from the definition ofF andG,

U E
QE

dmE~JL2tF !~J0G!eKL
Z

~ t !U<U E
Rn1m

f̌ ~ t !ǧ~s!dt dsUe2*0
t g2VK

Z
„v~s!…dse2g2ZE~K !.

Then, by~4.11!, we have for almost everywhere (x,b)PR3Z3V,

Uu„v~ t/m!…v„v~0!…e2EL
Z

~ t !E
QE

dmE~JL2tF !~J0G!eKL
Z

~ t !U
<uu„v~ t/m!…v„v~0!…uCf ge2*0

t
~g2VK

Z
„v~s!…2d1uVm

Z
„v~s!…u2d2!ds, ~4.14!

whereCf g5u*Rn1mf̌ (t)ǧ(s)dt dsu. The right-hand side of~4.14! is integrable. By~4.10! and the
Lebesgue dominated convergence theorem, we have

lim
L→`

E
R3Z3V

dx dbu„v~ t/m!…v„v~0!…ue2EL
Z

~ t !2e2*0
t g2VK

Zc
„v~s!…dseg2ZE~K !u

3E
QE

dmE~JL2tF !~J0G!eKL
Z

~ t !50.
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While, by Lemma 4.9, we have

lim
L→`

E
R3Z3V

dx dbu„v~ t/m!…v„v~0!…e2*0
t g2VK

Zc
„v~s!…dseg2ZE~K !E

QE

dmE~JL2tF !~J0G!eKL
Z

~ t !

5E
R3Z3V

dx dbu„v~ t/m!…v„v~0!…e2*0
t g2Vm

Z
„v~s!…ds^F,PbG&F_.

Thus

lim
L→`

^Q,e2tHZ~K,L!C&LZ
5^u,e2t„~1/2m!pZ

2
1g2Vm

Z
…v&L2~R3Z!^F,PbG&F .

The proof is complete. h

Next, we study the interaction system consisting of the arbitrary but conserved numb
particles and the quantized scalar field.

Lemma 4.10: Suppose that VZPM6(Z) r , Z>1. Then HZ(L)1̇(VZ1 ^ I )2̇(VZ2 ^ I ) is re-
duced byHZ .

Proof: Let S be the projection operator fromL2(R3Z) onto Las
2 (R3Z). It is seen that

HZ~L!~S^ I !C5~S^ I !HZ~L!C, ~4.15!

where CPC0
`(R3Z) ^̂F0 . Since C0

`(R3Z) ^̂F0 is a core for HZ(L), ~4.15! also holds on

D„HZ(L)…. ThusHZ(L) is reduced byHZ . HenceHZ(L)1̇(VZ1 ^ I )2̇(VZ2 ^ I ) is also reduced
by HZ . h

For the set of potentialsV5$VZ%Z51
` with VZPM6(Z) r , Z>1, a scaling Hamiltonian

H(V,L) of the system and a self-adjoint operatorH`,V,Vm
in ^ Z51

` HZ are defined by

H~V,L![ %
Z51

`

@HZ~L!1̇~VZ1 ^ I !2̇~VZ2 ^ I !uHZ
#,

~4.16!

H`,V,Vm
[ %

Z51

` F 1

2m
pZ

21̇VZ12̇VZ21g2Vm
ZU

L
as
2 ~R3Z!

G .

Let Na be the number operator inFa , i.e.,

~NaC!Z5ZCZ , D~Na!5H C5$CZ%Z50
` U(

Z50

`

Z2iCZiLas~R
3Z!

2
,`J .

Since 2g2E(La)Na^ I is a non-negative self-adjoint operator and reduced by^ Z51
` Las

2 (R3Z)

[Fp, H(V,L)1̇„2g2E(La)NauFp
^ I … is well defined. We state the main theorem in this pap

Theorem 4.11:Let 0,a, 1
2 and V5$VZ%Z51

` with VZPM6(Z) r , Z>1. Then

s2 lim
L→`

e2t~H~V,L!1̇„2g2E~La!NauFp
^ I …!5e2tH`,V,Vm ^ Pb .

Proof: For C5(C0 ,C1 ,....)PL, it follows that, by Theorem 4.7 and the Lebesgue dom
nated convergence theorem,

s2 lim
L→`

e2t~H~V,L!1̇„2g2E~La!NauFp
^ I …!C5s2 lim

L→`
%
Z51

`

e2t„HZ~L!1̇~VZ1 ^ I !2̇~VZ2 ^ I !2g2ZE~La!…CZ

5 %
Z51

`

@e2t~~1/2m!pZ
2

1̇VZ12̇VZ21g2Vm
Z

!
^ Pb#CZ

5e2tH`,V,Vm ^ PbCZ .
Thus, the proof is complete. h
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V. CONCLUDING REMARKS

~1! Let VZ50, Z>1, in Theorem 4.11. Formally, we may write

H`,0,Vm
5E C†~x!S 2

1

2m
D DC~x!dx2

g2

4p E C†~x!C†~y!
e2mux2yu

ux2yu
C~y!C~x!dx dy.

~2! We can also investigate the WCL-RUV for models in the space dimensiond51,2. With-
out proofs, we only show results in the space dimensiond51,2 in Table I.
HereJ0 is the Bessel function:J0(x)5(n50

` @(21)n/n!G(n11)#(x/2)2n. Since, in the case wher
d51,2, each potentialVm

Z does not converge asm→0, we cannot expect to get their WCL-RUV
with m50.
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TABLE I.

Vm
Z(Z>2) E(La) m a

d53 2
1

4p
(1<i,j<Z

e2muxi2xju

uxi2xju
2

1

2~2p!3 *R3
JL

a~k!

k21m2 dk m>0 0,a,
1

2

d52 2
1

4p
(1<i<j<Z*0

`
rJ0~ruxi2xju!

r21m2 dr 2
1

2~2p!2 *R2
JL

a~k!

k21m2 dk m.0 0,a,
2

3

d51 2
1

4
(i,j51

Z
e2muxi2xju

m
0 m.0 0,a,1
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Uncertainty principle for proper time and mass
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We review Bohr’s reasoning in the Bohr–Einstein debate on the photon box ex-
periment. The essential point of his reasoning leads us to an uncertainty relation
between the proper time and the rest mass of the clock. It is shown that this
uncertainty relation can be derived if only we take the fundamental point of view
that the proper time should be included as a dynamic variable in the Lagrangian
describing the system of the clock. Some problems and some positive aspects of
our approach are then discussed. ©1999 American Institute of Physics.
@S0022-2488~99!02103-9#

I. INTRODUCTION

In various arguments about time, perhaps the most spectacular is the Einstein–Bohr de
the photon box experiment.1,2 Their concern in the debate was Heisenberg’s time–energy un
tainty relation. However, Bohr’s reasoning reveals, as shown in the following, an uncer
relation between the proper time and the rest mass of a clock. In fact, his essential poi
simply that the very act of weighing a clock, according to general relativity, interferes with the
of the clock.

In order to review Bohr’s reasoning, we consider an experiment in which we measure th
mass of a clock. We assume, of course, that the clock keeps its own proper time.

Following Einstein’s stratagem, we try to weigh the clock by suspending it with a spring.
is to say, if the spring stretches by the lengthl, we can calculate the massm of the clock from the
relation

kl5mg,

whereg is the gravitational acceleration andk is a constant characterizing the spring.
Assume that a scale is fixed to the spring support, and that we read the lengthl on it with an

accuracyDq. Then the determination ofl involves a minimum latitudeDp in the momentum of
the clock, related toDq by the equationDq Dp'h. Let t be the time interval in which we read th
length l. ~We should note thatt is measured by a clock other than the suspended clock.! Then we
cannot determine the force exerted by the gravitational field on the clock to a finer accurac
Dp/t. Therefore we cannot determine the massm to a finer accuracy thanDm given by the
relation

Dp

t
'g Dm. ~1!

Now, according to general relativity theory, a clock, when displaced in the direction o
gravitational force by an amountDq, changes its rate in such a way that its reading in the co
of a time intervalt differs by an amountDt given by the relation

a!Electronic mail: shuichi@edu.u-ryukyu.ac.jp
12370022-2488/99/40(3)/1237/9/$15.00 © 1999 American Institute of Physics
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Dt

t
5

g Dq

c2 . ~2!

By combining~1!, ~2! and the relationDq Dp'h, we see, therefore, that there is an uncertai
relation,

c2 Dm Dt'h ~3!

between the rest massm and the proper timet of the clock.
The relativistic redshift formula~2! was, of course, essential in Bohr’s reasoning above.

more essential it seems to be, however, the stronger the apprehension we feel that the unc
relation ~3! may fail if we can think of a weighing procedure not resorting to any interac
between the clock and the gravitational field. We check one such case in the following.

Assume that the clock has been brought to rest after being charged with an electric che,
and that a uniform electric fieldE is then switched on. After a short timet, we measure the
distance the clock has moved.~Again t is the time measured by a clock other than our clock in
electric field.! Then we can know the average velocityv of the clock by dividing the distance b
the value oft, and we can determine the massm of the clock by virtue of the formula

eE5m
v
t

.

Assume that the determination of the distance is made with a given accuracyDq. Then it
implies a minimum latitudeDp in the momentum of the clock, whereDq Dp'h. Hence, we
cannot determine the force exerted by the electric field on the clock to a finer accuracy thanDp/t.
Therefore, even when the velocityv is obtained, we cannot determine the massm to a finer
accuracy thanDm given by the relation

Dp

t
'Dm

v
t

, i.e. Dp'v Dm. ~4!

Now, according to special relativity theory, when a clock has a speedv, its ratet in the course
of a time intervalt is given by the relation

t5tA12~v/c!2. ~5!

On the other hand, the average velocityv has an uncertaintyDv given by the relation

t Dv'Dq.

Correspondingly, the clock has an uncertainty in its ratet of the orderDt given by

Dt5t•DA12~v/c!2'
v
c2 tDv'

v
c2 Dq. ~6!

By combining~4!, ~6!, and the relationDq Dp'h, we arrive, therefore, at the same uncertain
relation,

c2 Dm Dt'h,

as ~3! obtained by Bohr’s reasoning.
Thus, the uncertainty relation~3! has been confirmed for a weighing procedure that does

rely on any gravitational interaction. Moreover, in this case, the time-shift formula~5! played an
essential role in place of the relativistic redshift formula.
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Each of these formulas is, of course, one of the deepest and most important results i
tivistic theory. The fact that these important formulas play essential roles in deriving the u
tainty relation~3! lends some confidence as to its universality.

Our objective in this article is to show the following: The uncertainty relation~3! can be
derived satisfactorily only if we describe the system of the clock by using a Lagrangian
includes the proper time as a dynamic variable.

In the next section, selecting the simplest Lagrangian that is in accord with the abov
proach, we examine the Hamiltonian formalism of the clock. Our conclusion is that the rest e
can be considered the momentum conjugate to the proper time. In the third section, foll
Dirac’s procedure, we quantize the system of the clock, and we obtain the same unce
relation as~3!. Some comments then follow on our quantization.

II. LAGRANGIAN AND HAMILTONIAN FORMALISM

A gravitational fieldgmn and an electromagnetic fieldAm are assumed to be given, and w
consider our clock to be one material particle moving in those fields with electric chargee.

The Lagrangian that is generally used in such a case is the following:

L052mcA2gmn~x!ẋmẋn1eAm~x!ẋm,

wherexm (m50,1,2,3) are the variables and the overdot denotes the differential with resp
an arbitrary parameterl. It goes without saying thatm is the rest mass of the clock and thatc is
the speed of light.

We, however, cannot consider the proper timet a physical quantity if we describe the syste
by using the LagrangianL0 . On the other hand, it is clear that the proper time of a clock i
measurable physical quantity.~It is why a clock is so named.! Hence, we have to find anothe
Lagrangian that is in accord with the system of the clock.

Our first purpose in this section is to find a LagrangianL that satisfies the following condi
tions: ~1! The LagrangianL has the proper timet as a new variable, in addition toxm. ~2! The
motion equations for the variablesxm are invariant betweenL andL0 .

As a candidate, we consider the Lagrangian defined by

L5M ~ ṫ2A2gmn~x!ẋmẋn/c!1eAm~x!ẋm,

where the dynamic variables aret, M, andxm.
The Lagrange’s equations of motion are as follows:

Ṁ50, ~7!

ṫ5A2gmn~x!ẋmẋn/c, ~8!

d

dl FM

c

grmẋm

A2gmn~x!ẋmẋn
1eAr~x!G2

M

c

gmn,rẋmẋn

2A2gmnẋmẋn
2eAm,r~x!ẋm50. ~9!

The second equation~8! means that we can identify the variablet with the proper time of this
clock. Moreover, we havedt/dl.0, and therefore it is possible to change the differential w
respect tol to one with respect tot in the third equation~9!. As a result, we find that

d

dt FM

c2 grmẋm1eAr~x!G2
M

2c2 gmn,rẋmẋn2eAm,r~x!ẋm50,

where the overdot denotes the differential with respect tot. Rewriting this equation, we get
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M

c2 @ ẍr1Gr
mnẋmẋn#5e frmẋm , ~10!

whereGmn
r and f mn are defined by

Gr
mn5 1

2g
rs~2gmn,s1gns,m1gsm,n!, f mn5An,m2Am,n .

On the other hand, the motion equation derived from the original LagrangianL0 is

m@ ẍr1Gr
mnẋmẋn#5e frmẋm . ~11!

Equation~10! is just the same as Eq.~11! if we identify M with the constantmc2. Equation~7!
indicates that this identification is possible.

Thus, our first purpose has been achieved. Moreover, this LagrangianL is the simplest of
those that satisfy the above two conditions.

The second purpose in this section is to investigate, by using the LagrangianL, the conse-
quences of our assertion that the proper time should be considered a dynamic variable.

We note that it is possible to propose an argument without imposing any limitation o
fields gmn and Am . In such an argument, however, we have to handle the coordinate timx0

5ct as a dynamic variable, and then determine certain constraint conditions for the variab
discussion of such constraints is not essential for our purpose. We therefore assume for sim
hereafter that the fieldsgmn andAm are so-called static in the following sense:~1! The functions
gmn andAm depend on onlyx1, x2, x3. ~2! For i 51,2,3, we havegi0(5g0i)50.

Assuming the above conditions, we get

L5M ~ ṫ2Af ~x!22gi j ~x!ẋi ẋ j /c2!1ceA0~x!1eAi~x!ẋi ,

wheref is defined byg0052 f 2 ( f .0). The dynamic variables aret, M, xi ( i 51,2,3), and the
overdot denotes the differential with respect tot.

The momentum conjugate to those variables are given by

pt[
]L

]ṫ
5M , pM[

]L

]Ṁ
50

and

pi[
]L

] ẋi 5
M

c2

gi j ẋ
j

Af 22gjkẋj ẋk/c2
1eAi .

We have

H05ptṫ1pMṀ1pi ẋ
i2L5 fAM21c2gi j ~pi2eAi !~pj2eAj !2ceA0 .

If M is replaced bymc2, thenH0 is identical with the Hamiltonian that is derived from the origin
LagrangianL0 . In our case, however, there exist two constraints:

f1[M2pt50, f2[pM50.

Taking account of these constraints, we have to consider the total Hamiltonian:

H[H01u1f11u2f2 ,

whereu1 andu2 are Lagrange’s undetermined multipliers.
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The multipliersu1 andu2 are determined in the following manner:3 Poisson’s bracket off1

andf2 is

$f1 ,f2%51,

and therefore we have

ḟ15$f1 ,H%'u2 ,

ḟ25$f2 ,H%'2u12
f M

AM21c2gi j ~pi2eAi !~pj2eAj !
,

where the symbol ‘‘'’’ denotes the weak equality defined by the constraintsf15f250. Hence,
the consistency conditions

ḟ1'0 and ḟ2'0

require the multipliersu1 andu2 to be

u152
f M

AM21c2gi j ~pi2eAi !~pj2eAj !
and u250,

which give

H5H02
f M ~M2pt!

AM21c2gi j ~pi2eAi !~pj2eAj !
. ~12!

Hamilton’s canonical equations of motion are as follows:

ṫ5
]H

]pt
5

f M

AM21c2gi j ~pi2eAi !~pj2eAj !
,

ṗt52
]H

]t
50,

Ṁ5
]H

]pM
50,

ṗM52
]H

]M
'0,

ẋi5
]H

]pi
'

]H0

]pi
,

ṗi52
]H

]xi '2
]H0

]xi .

Defining a matrixWi j by

Wi j [$f i ,f j%5S 0 1

21 0D ,
                                                                                                                



s

ould
le like
m

dure,

tors
grable
l

1242 J. Math. Phys., Vol. 40, No. 3, March 1999 S. Kudaka and S. Matsumoto

                    
we can write Dirac’s bracket:

$A,B%D5$A,B%2 (
i , j 51

2

$A,f i%Wi j
21$f j ,B%5$A,B%1$A,f1%$f2 ,B%2$A,f2%$f1 ,B%.

We can easily calculate Dirac’s brackets between the canonical variables:

$t,pt%D5$t,M %D51, $xi ,pj%D5d i
j , the others50.

We are now in a position to be able to state our conclusions in this section.
It is easily shown that

f1 , f2 , T[t2pM , E[pt , xi , pi ~ i 51,2,3!

are canonical variables, and, therefore, the variablesT,E,xi ,pi ( i 51,2,3) can be interpreted a
canonical variables on the submanifold defined by the constraintsf15f250. We can show also
that

$A,B%D5
]A

]T

]B

]E
2

]A

]E

]B

]T
1(

i 51

3 S ]A

]xi

]B

]pi
2

]A

]pi

]B

]xi D ,

on the submanifold.
Since we have that

T5t and E5M ~5mc2!

on the submanifold defined byf15f250, it follows from the above that the rest energymc2 is
considered the momentum conjugate to the proper timet.

III. QUANTIZATION AND DISCUSSIONS

Thus, we have arrived at the following conclusion: If we accept the view that we sh
describe a clock by using a Lagrangian, which includes the proper time as a dynamic variab
the positionsxi , then we find that the rest energyE5mc2 turns out to be the general momentu
conjugate to the proper time, and thatt, E, xi , andpi are canonical variables of the system.

Sincet,E,xi ,pi are the canonical variables, if we quantize the system by Dirac’s proce
there are corresponding operators:

t̂, Ê, x̂i , p̂i ~ i 51,2,3!,

which satisfy the commutation relations

@ t̂,Ê#5@ x̂i ,p̂i #5 i\. ~13!

The relation@ t̂,Ê#5 i\ in ~13! leads us to the uncertainty relation,

c2 Dm Dt>\/2, ~14!

which was argued in the Introduction to this article.
Our quantization leads to some desirable results besides the uncertainty relation~14!, but at

the same time gives rise to some problems.
First, we should make some comment on the problems. In our quantization, the operat̂,

Ê, x̂i and p̂i ( i 51,2,3) can be represented in the Hilbert space composed of square inte
functions of t, x1, x2, and x3. In particular, the operatorÊ is represented by the differentia
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operator2 i\]/]t, and, therefore, the rest energyÊ cannot have any discrete spectrum. Furth
more, this Hilbert space includes some states in which the mean values ofÊ are negative.

The problems of the continuous mass spectrum and of the negative mass are inevitable
formulation. The authors cannot, at present, judge whether these characteristics are desi
not. These problems will be discussed in a subsequent paper from a rather different viewp

Second, we focus our attention on some positive aspects of our quantization. We r
ourselves, for simplicity, to the case in which the space–time metric is flat andAm50. Then the
Hamiltonian in~12! is rather simple and the Hamiltonian operator has the form

Ĥ[AÊ21c2p̂2.

~We omit, hereafter, the overcarets representing the operators, since there is no possib
misunderstanding.!

For the Heisenberg representation of the operatort,

t~ t !5eitH /\te2 i tH /\,

we find that

d

dt
t~ t !5

i

\
eitH /\@H,t#e2 i tH /\5

E

AE21c2p2
, ~15!

by virtue of

@t,H#5 i\
E

AE21c2p2
.

Hence, we have

t~ t !5
E

AE21c2p2
t1t. ~16!

We note that the last term of~15! is the operator that represents the time delay of the mov
clock.

We can, moreover, show that

d

dt
t~ t !25

E

AE21c2p2
t~ t !1t~ t !

E

AE21c2p2
52

E2

E21c2p2 t1F E

AE21c2p2
,tG

1

,

where we have used Eq.~16!, and where@A,B#1 denotes the anticommutator of operatorsA and
B. Integrating this, we have

t~ t !25
E2

E21c2p2 t21F E

AE21c2p2
,tG

1

t1t2.

Hence, the standard deviationDt(t) in a statec is given by

„Dt~ t !…2[^t~ t !2&2^t~ t !&25S K E2

E21c2p2L 2K E

AE21c2p2L 2D t21S K F E

AE21c2p2
,tG

1

L
22K E

2 2 2L ^t& D t1~^t2&2^t&2!, ~17!

AE 1c p

                                                                                                                



tor has
k is
rms in

all
e,
ct

int of

cs.
nd by
this

rder to
at the

nse by

stent
metric
asure-

ich we

eature

1244 J. Math. Phys., Vol. 40, No. 3, March 1999 S. Kudaka and S. Matsumoto

                    
where^A& denotes the mean value of an operatorA in the statec.
Here we must introduce some approximations: We assume that the Hamiltonian opera

a very sharp value~sayE! in the statec. This assumption seems to be natural since the cloc
moving as a free particle. Under this assumption, we can approximately estimate the two te
~17! in the following manner;

K E2

E21c2p2L 2K E

AE21c2p2L 2

'
1

E2 ~^E2&2^E&2!,

K F E

AE21c2p2
,tG

1

L 22K E

AE21c2p2L ^t&'
1

E ~^@E,t#1&22^E&^t&!. ~18!

On the other hand, the term̂@E,t#1&22^E&^t& in ~18! often vanishes, as it does in the case of
optimal simultaneous measurements ofE andt. ~We can easily check it by setting, for exampl
t5 i\]/]E andc5a Gaussian function ofE.! Taking this cancellation into account, we negle
the second term in~17!.

Thus, we have arrived at

„Dt~ t !…2'
1

E2 ~DE!2t21~Dt!2,

and, by virtue of the inequality

1

E2 ~DE!2t21~Dt!2>
2

E Dt DE t,

we finally have

„Dt~ t !…2>
\

E t, ~19!

where we have used the uncertainty relationDt DE>\/2 of ~14!.
When the motion of the clock is so slow that the value ofE is approximately equal tomc2,

then our inequality~19! has the form

„Dt~ t !…2>
\

mc2 t, ~20!

which exactly coincides with an inequality derived by Salecker and Wigner from another po
view @see Eq.~6! in Ref. 4#.

In conclusion, we should make some comment on the meaning of our results to physi
Bohr and Rosenfeld stressed the principle that every proper theory should provide in a

itself its own means for defining the quantities with which it deals. One of the key points
principle makes is that we should analyze the means of measuring those quantities in o
argue the consistency of a physical theory. In their case, they succeeded in showing th
definition of the standard quantization of electromagnetic field is consistent in the above se
discussing the means of measuring the classical electromagnetic field.5,6

Several authors have applied this principle to the theory of relativity to find a consi
quantization of the space–time geometry. The theory deals with such quantities as the
tensor, the curvature tensor, the covariant derivative, and connection coefficients. The me
ment of the distance between two events is most fundamental in the procedures by wh
measure these quantities. For this we require the concept of a clock,7,8 and the clock cannot be
independent of the various physical laws. Thus, if the above principle should be a general f
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of physical theory, a consistent formulation of the quantization of the space–time geometry s
have some inherent relation with various limitations on the accuracy of the clock resulting
the physical laws.

Various gedanken experiments on such limitations have been proposed and elaborated
some 50 years.4,7–16In many of them, however, the clock is assumed to have some structure,
which starting point the argument is developed. It seems uncertain therefore whether their
are universal or not. Moreover, different studies sometimes reach different conclusions. O
jective in the present paper was to propose an attempt to dispose of this ambiguity. We show
following: ~a! There is an uncertainty relation between the proper time and the rest mass of a
independent of its structure@see Eq.~3!#. ~b! A limitation on the accuracy of the clock is derive
from the uncertainty relation in a natural way@see Eqs.~19! and ~20!#.

The subject raised here has been argued, despite its importance, only at the level of t
experiments. The authors are uneasy with this situation, and think that the time has come to
it at a more positive level. We hope that the importance of this subject is recognized and th
example, the relation~20! is verified by experiment in the near future.

1A. Pais,‘Subtle is the Lord...’ The Science and the Life of Albert Einstein~Oxford University Press, Oxford, 1982!.
2M. Jammer,The Philosophy of Quantum Mechanics~Wiley, New York, 1974!.
3P. A. M. Dirac, Can. J. Math.2, 129 ~1950!; Proc. R. Soc. London, Ser. A246, 326 ~1958!.
4H. Salecker and E. P. Wigner, Phys. Rev.109, 571 ~1958!.
5N. Bohr and L. Rosenfeld, Mat. Fys. Medd. K. Dan. Vidensk. Selsk.12, XX ~1933!; Phys. Rev.78, 794 ~1950!.
6L. D. Landau and R. Peierls, Z. Phys.69, 56 ~1931!; in Collected Papers of Landau, edited by D. ter Haar~Gordon and
Breach, New York, 1965!, pp. 40–51.

7E. P. Wigner, Rev. Mod. Phys.29, 255 ~1957!.
8R. F. Marzke and J. A. Wheeler, inGravitation and Relativity, edited by H. Y. Chiu and W. F. Hoffman~Benjamin, New
York, 1964!.

9A. Peres and N. Rosen, Phys. Rev.118, 335 ~1960!.
10C. A. Mead, Phys. Rev.135, B849 ~1964!.
11F. Károlyházy, A. Frenkel, and B. Luka´cs, in Quantum Concepts in Space and Time, edited by R. Penrose and C. J

Isham~Clarendon, Oxford, 1986!.
12A. Charlesby, Radiat. Phys. Chem.33, 487 ~1989!.
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Path integral for the relativistic three-dimensional
Aharonov–Bohm–Coulomb system

De-Hone Lina)

Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
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The path integral for the relativistic three-dimensional spinless Aharonov–Bohm–
Coulomb system is solved, and the energy spectra are extracted from the resulting
amplitude. © 1999 American Institute of Physics.@S0022-2488~99!00403-X#

I. INTRODUCTION

With the help of Duru and Kleinert’s path-dependent time transformation,1 the list of solvable
path integrals has been extended to essentially all potential problems that possess a s
Schrödinger equation.2,3 Only recently has the technique been extended to relativistic pote
problems.2,4–9 In this paper, we perform the path integral of the relativistic particle in th
dimensions in the presence of both an infinitely thin Aharonov–Bohm magnetic field alongz
axis10 and a 1/r Coulomb potential centered at the origin~ABC system!. The energy spectra of th
system are extracted from the resulting amplitude.

II. THE RELATIVISTIC PATH INTEGRAL

Adding a vector potentialA(x) to Kleinert’s path integral for a relativistic particle in
potentialV(x),4 we find that the expression of the fixed-energy amplitude of a relativistic par
in external static electromagnetic fields is given by6

G~xb ,xa ;E!5
i\

2McE0

`

dLE Dr~l!F@r~l!#E DDx~l!e2AE /\, ~2.1!

with the action

AE5E
la

lb
dlF M

2r~l!
x82~l!2 i ~e/c!A„x…–x8~l!2r~l!

~E2V~x!!2

2Mc2
1r~l!

Mc2

2 G . ~2.2!

For the ABC system under consideration, the potential is

V~r !52e2/r , ~2.3!

and the vector potential reads as

Ai52g ] iw, ~2.4!

wheree is the charge andw is the azimuthal angle around the tube:

w~x!5arctan~x2 /x1!. ~2.5!

The associated magnetic field lines are confined to an infinitely thin tube along thez axis:

B352ge3 jk] j ]kw52g2pd~2!~x'!, ~2.6!

a!Electronic mail: d793314@phys.nthu.edu.tw
12460022-2488/99/40(3)/1246/9/$15.00 © 1999 American Institute of Physics
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wherex' is the transverse vectorx'[(x1 ,x2).
To obtain a tractable path integral for the potentialV(x), we have to regularize it via a

so-calledf transformation,2,5 which exchanges the path parameterl by a new ones:

dl5ds fl~xn! f r~xn21!, ~2.7!

wheref l(x) and f r(x) are invertible functions whose product is positive. The freedom in choo
f l ,r amounts to an invariance under path-dependent reparametrizations of the path paramel in
the fixed-energy amplitude of Eq.~2.1!.2 By this transformation, the (D11)-dimensional relativ-
istic fixed-energy amplitude for arbitrary time-independent potential turns into2,5,6

G~xb ,xa ;E!'
i\

2McE0

`

dS)
n51

N11 F E drn F~rn!G f l~xa! f r~xb!

~2p\eb
srbf l~xb! f r~xa!/M !D/2

3 )
n51

N F E
2`

` dDxn

~2p\en
srnf ~xn!/M !D/2GexpH 2

1

\
ANJ , ~2.8!

with the s-sliced action

AN5 (
n51

N11 F M ~xn2xn21!2

2en
srnf l~xn! f r~xn21!

2 i
e

c
A~xn!•~xn2xn21!2en

srnf l~xn! f r~xn21!
„E2V~xn!…2

2Mc2

1en
srnf l~xn! f r~xn21!

Mc2

2 G . ~2.9!

A family function that regulates the ABC system is

f l~x!5 f ~x!, f r~x!51, ~2.10!

whose product satisfiesf l(x) f r(x)5 f (x)5r . Thus, arrive at the amplitude

G~xb ,xa ;E!'
i\

2McE0

`

dS)
n51

N11 F E drn F~rn!G r a

~2p\eb
srbr b /M !3/2

3 )
n52

N11 F E
2`

` d3nxn

~2p\en
srnr n21 /M !3/2GexpH 2

1

\
ANJ , ~2.11!

where the action is

AN5 (
n51

N11 FM ~xn2xn21!2

2en
srnr n

2 i ~e/c!A~xn!•~xn2xn21!2en
srnr n

„E2V~xn!…2

2Mc2
1en

srnr n

Mc2

2 G .

~2.12!

In Eq. ~2.11!, we have changed the notation of the measure of integration, sincexn are Cartesian
coordinates and are certainly identical in the time-sliced expressions:2

)
n51

N F E
2`

`

dxnG5 )
n52

N11 F E
2`

`

dnxnG , ~2.13!
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where the integrals overnxn may be performed successively fromn5N down ton51. To apply
the Kustaanheimo–Stiefel~KS! transformation~e.g., Ref. 2!, we now incorporate the dumm
fourth dimension into the action by replacingx in the kinetic term by the four-vectorxW and
extending the kinetic action to

Akin
N 5 (

n51

N11
M

2

~xWn2xWn21!

en
srnr n

. ~2.14!

This is achieved by inserting the following trivial identity:

)
n51

N11 F E d~nx4!n

~2p\en
srnr n /M !1/2GexpH 2

1

\ (
n51

N11
M

2

~nxn
4!2

en
srnr n

J 51. ~2.15!

Hence the fixed-energy amplitude of the ABC system in three dimensions can be rewritten
four-dimensional path integral,

G~xb ,xa ;E!'
i\

2McE0

`

dS)
n51

N11 F E drn F~rn!G E dxa
4 r a

~2p\eb
srbr b /M !2

3 )
n52

N11 F E
2`

` d4nxn

~2p\en
srnr n21 /M !2GexpH 2

1

\
ANJ , ~2.16!

whereAN is the action of Eq.~2.12! in which the three-vectorsxn of the kinetic term are replace
by the four-vectorsxWn . With the help of the following approximation:

r a

~2p\eb
srbr b /M !2 )n52

N11 F E
2`

` d4nxn

~2p\en
srnr n21 /M !2G

'
1

r a

1

S 2p\eb
srb /M D 2

)
n52

N11 F E
2`

` d4nxn

~2p\en
srnr n /M !2G , ~2.17!

we arrive at

G~xb ,xa ;E!'
i\

2McE0

`

dS)
n51

N11 F E drn F~rn!G E dxa
4 1

r a

1

~2p\eb
srb /M !2

3 )
n52

N11 F E
2`

` d4nxn

~2p\en
srnr n /M !2GexpH 2

1

\ (
n51

N11

ANJ . ~2.18!

We now solve the ABC system by introducing the KS transformation,

S x1

x2

x3

D 5A~uW !S u1

u2

u3

u4

D , ~2.19!

with the 334 matrix
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A~uW !5S u3 u4 u1 u2

u4 2u3 2u2 u1

u1 u2 2u3 2u4
D . ~2.20!

The transformation mapsR4→R3, which means that the transformation is not one to one and
Jacobian exists. Since

r 5~u1!21~u2!21~u3!21~u4!2[~uW !2, ~2.21!

after replacing the Coulomb potentialV(r ) with 1/r in Eq. ~2.18!, the KS transformation certainly
transforms the potential termsr and 1/r in Eq. ~2.18! into harmonic inuW and 1/uW 2, respectively.
The mapping of the tangent vectorsdum into dxi is given by

S dx1

dx2

dx3

D 52S u3 u4 u1 u2

u4 2u3 2u2 u1

u1 u2 2u3 2u4
D S du1

du2

du3

du4

D . ~2.22!

To make the mapping unique, let us embed the tangent vector (dx1 ,dx2 ,dx3) into a fictitious
four-dimensional space and define a new, fourth componentdx4 by an additional fourth row in the
matrix, thereby extending Eq.~2.22! to the four-vector equation,

dxW52A~uW !duW . ~2.23!

The arrow on the top of thex indicates thatx has become a four-vector. For symmetry reasons,
434 matrix A(uW ) is chosen as

A~uW !5S u3 u4 u1 u2

u4 2u3 2u2 u1

u1 u2 2u3 2u4

u2 2u1 u4 2u3

D . ~2.24!

The transformation of the coordinate difference is given by

~nxn
i !254ūn

2~nun
i !2, ~2.25!

whereūn[(un1un21)/2. In the continuum limit, this amounts to

d4xn516un
2 d4un516r n d4un , ~2.26!

xW 8254uW 2uW 8254ruW 82. ~2.27!

The magnetic interaction under the KS transformation turns into

A~xn!•~xn2xn21!522g
xn

2nxn
12xn

1nxn
2

r n
2

522gFun
1nun

22un
2nun

1

~un
1!21~un

1!2
1

un
4nun

32un
3nun

4

~un
3!21~un

4!2 G . ~2.28!

We obtain a path integral equivalent to Eq.~2.16!,

G~xb ,xa ;E!5
i\

2McE0

`

dS eSEe2/\Mc2
G~uW b ,uW a ;S!, ~2.29!
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whereG(uW b ,uW a ;S) denotes thes-sliced amplitude,

)
n51

N11 F E drn F~rn!G 1

16E dxa
4

r a

1

~2p\eb
srb /m!2 )

n51

N F E
2`

` d4un

~2p\en
srn /m!2GexpH 2

1

\
ANJ ,

~2.30!

with the action

AN5 (
n51

N11 H m~nuW n!2

2en
srn

2 i ~e/c!~AW ~un!•nuW n!1en
srn

mv2uW n
2

2
2en

srn

\24a2

2muW n
2 J . ~2.31!

Here

m54M , v25
M2c42E2

4M2c2
, ~2.32!

and

AW ~un!•nuW n522gFun
1nun

22un
2nun

1

~un
1!21~un

1!2
1

un
4nun

32un
3nun

4

~un
3!21~un

4!2 G . ~2.33!

We now choose the gauger(s)51 in Eq. ~2.30!. This leads to the Duru–Kleinert transforme
action,

A5E
0

S

dsFmuW 82

2
22i ~e/c!~AW –uW 8!1

mv2uW 2

2
2

4\2a2

2muW 2
G . ~2.34!

It describes a particle, forgetting the magnetic interaction term for awhile, of massm54M
moving as a function of the ‘‘pseudotime’’s in a four-dimensional harmonic oscillator potential
frequency,

v25
M2c42E2

4M2c2
. ~2.35!

The oscillator possesses an additional attractive potential24\2a2/2muW 2, which is conveniently
parametrized in the form of a centrifugal barrier,

Vextra5\2
l extra
2

2muW 2
, ~2.36!

whose squared angular momentum has the negative valuel extra
2 [24a2, wherea denotes the

fine-structure constanta[e2/\c' 1
137.

There are nos-slicing corrections. This is ensured by the affine connection of the KS tr
formation, satisfying

Gm
ml5gmnei

l]mei
n50, ~2.37!

and the transverse gauge]mAm50.2,5 We now analyze the effect coming from the magne
interaction. Note that the system becomes separable likeR4→R23R2 if the centrifugal term is not
considered for awhile. Therefore the path integral inu space becomes two independent tw
dimensional AB plus a harmonic oscillator. This makes the path integral calculatio
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G(uW b ,uW a ;S) extremely simple. For each two-dimensional system, the derivatives in front ofw in
Eq. ~2.6! commute everywhere, except at the origin, where Stokes’ theorem yields

E d2u~]1]22]2]1!w5 R dw52p. ~2.38!

The magnetic flux through the tube is defined by the integral

F5E d2u B3 . ~2.39!

A comparison with Eq.~2.6! shows that the coupling constantg in Eq. ~2.4! is related to the
magnetic flux by

g5
F

4p
. ~2.40!

When insertingAi52g ] iw into Eq. ~2.34!, the interaction takes the form

Amag52\b0E
0

S

dsw8, ~2.41!

whereb0 is the dimensionless number,

b0[2
2eg

\c
. ~2.42!

The minus sign is a matter of convention. Since the particle orbits are present at all times
world lines in space–time can be considered as being closed at infinity, and the integral

n5
1

2pE0

S

dsw8 ~2.43!

is the topological invariant with integer values of the winding numbern. The magnetic interaction
is therefore a purely topological one, its value being

Amag52\b02pn. ~2.44!

After adding this to the action of Eq.~2.34! in the radial decomposition of the relativistic pa
integral,2,5,6 we rewrite the sum over the azimuthal quantum numbersm via Poisson’s summation
formula, and obtain

G~ub ,ua ;S!5E
2`

`

db
1

Aubua

G~ub ,ua ;S!b (
n52`

`
1

2p
ei ~b2b0!~wb12np2wa!. ~2.45!

Since the winding numbern is often not easy to measure experimentally, let us extract observ
consequences that are independent ofn. The sum over alln forcesb to be equal tob0 modulo an
arbitrary integer number. The result, for eachR2, is

G~ub ,ua ;S!5 (
k52`

`
1

Aubua

G~ub ,ua ;S!k1b0

1

2p
eik~wb2wa!. ~2.46!

Therefore we obtain the fixed-energy amplitude,
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G~xb ,xa ;E!5
i\

2McE0

`

dS eSEe2/\Mc2 1

16E dxa
4

r a
S mv

\ sinhvsD
2

3 (
k152`

`

(
k252`

`

eik1~w1,b2w1,a!eik2~w2,b2w2,a!expH 2
mv

2\
~s1,b

2 1s1,a
2 1s2,b

2

1s2,a
2 !cothvsJ I uk11b0uS m

\

vs1,bs1,a

sinhvs D I uk21b0uS m

\

vs2,bs2,a

sinhvs D , ~2.47!

where (s1 ,w1) and (s2 ,w2) are defined by

u15s1 sinw1 , u25s1 cosw1 , u35s2 cosw2 , u45s2 sinw2 . ~2.48!

In order to perform thexa
4 integration, we express (s1 ,w1 ,s2 ,w2) in terms of a three-dimensiona

spherical coordinate with an auxiliary angleg:

u15Arcos~u/2!cos@~w1g!/2#

u25Arcos~u/2!sin@~w1g!/2#

u35Arsin~u/2!cos@~w2g!/2#

u45Arsin~u/2!sin@~w2g!/2#

S 0<u<p

0<w<2p

0<g<4p
D , ~2.49!

and identify

s15Ar cos~u/2!, w15~w1g1p!/2, s25Ar sin~u/2!, w25~w2g!/2. ~2.50!

Then one can change thexa
4 integration into thega integration, whose result is easily represent

as the Kronecker deltadk1 ,k2
. Hence, one can carry outk2 summation and it finally becomes

G~xb ,xa ;E!5
i\

2Mc

M2v

p\2 (
k52`

`

eik~wb2wa!E
0

`

dy e2~Ee2/2v\Mc2!y
1

sinh2 y
e2 ~mv/2\! ~r b1r a!cothy

3I uk1b0uS mvAr br a

\ sinhy
cosub/2cosua/2D I uk1b0uS mvAr br a

\ sinhy
sinub/2sinua/2D ,

~2.51!

where we have defined the new variabley5vs. We now make use of the addition theorem, R
11, Vol. II, p. 99:

z

2
Jn~z sina sinb!Jm~z cosa cosb!

5~sina sinb!n~cosa cosb!m(
l 50

`

~21! l~m1n12l 11!
G~m1n1 l 11!G~n1 l 11!

l !G~m1 l 11!G2~n11!

3Jm1n1 l 11~z!2F1~2 l ,m1n1 l 11,n11;sin2 a!2F1~2 l ,m1n1 l 11,n11;sin2 b!,

~2.52!

and the relation between hypergeometric function and Jacobi polynomials,

Pl
~a,b!~z!5

G~a1 l 11!

G~a11!l ! 2F1S a1b1 l 11,2 l ;11a;
12z

2 D . ~2.53!
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We arrive at

G~xb ,xa ;E!5
i\

2Mc

M

2p\Ar br a
(

k52`

`

(
n50

`

eik~wb2wa!

3~cosub/2cosua/2! uk1b0u~sinub/2sinua/2! uk1b0u

3
n!G~n12uk1b0u11!~2n12uk1b0u11!

G2~n12uk1b0u11!

3H E
0

`

dy e2~Ee2/2v\Mc2!y
1

sinhy
e2 mv/2\ ~r b1r a!cothyI 2n12uk1b0u11S mvAr br a

\ sinhy D J
3Pn

~ uk1b0u,uk1b0u!
~cosub!Pn

~ uk1b0u,uk1b0u!
~cosua!. ~2.54!

At this place, the additional centrifugal barrier~2.36! is incorporated via the replacement12

~2n12uk1b0u11!→A~2n12uk1b0u11!224a2. ~2.55!

This integral can be calculated by employing the formula

E
0

`

dy
e2ny

sinhy
expF2

t

2
~za1zb!cothyG I mS tAzbza

sinhy D 5
G„~11m!/22n…

tAzbzaG~m11!
Wn,m/2~ tzb!M n,m/2~ tzb!,

~2.56!

with the range of validity

zb.za.0, Re@~11m!/22n#.0, Re~ t !.0,uargtu,p,

whereMm,n andWm,n are the Whittaker functions, we complete the integration of Eq.~2.54!, and
find the amplitude forr b.r a in the closed form

G~xb ,xa ;E!5
i\

2Mc

Mc

4pr br aAM2c42E2 (
k52`

`

(
n50

`

eik~wb2wa!

3~cosub/2 cosua/2! uk1b0u~sinub/2 sinua/2! uk1b0u n! ~2n12uk1b0u11!

G~n12uk1b0u11!

3
G~~1/2! 1 ~1/2!A~2n12uk1b0u11!224a22 ~Ea/AM2c42E2!!

G~A~2n12uk1b0u11!224a211!

3WEa/AM2c42E2,A~2n12uk1b0u11!224a2/2S 2

\c
AM2c42E2r bD

3MEa/AM2c42E2,A~2n12uk1b0u11!224a2/2S 2

\c
AM2c42E2r aD

3Pn
~ uk1b0u,uk1b0u!

~cosub!Pn
~ uk1b0u,uk1b0u!

~cosua!. ~2.57!

The energy spectra can be extracted from the poles. They are determined by

1

2
1

1

2
A~2n12uk1b0u11!224a22

Ea

AM2c42E2
52nr , nr50,1,2,... . ~2.58!
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Expanding this equation into a power ofa, we get

Enr ,n,k56Mc2H 12
1

2S a

nr1n1uk1b0u11D 2

2
a4

~nr1n1uk1b0u11!3

3F 1

2n12uk1b0u11
2

3

8~nr1n1uk1b0u11!G1O~a6!J ,

nr ,n50,1,2,3,... . ~2.59!

In the nonrelativistic limit, the spectra is in agreement with the result in Refs. 13–15. It is w
noting that if the flux is quantized, i.e., 4pg52p\c/e3 integer,uk1b0u is an integer and the
spectrum is that of the relativistic hydrogen atom. In this case, there is no Aharonov–Bohm

ACKNOWLEDGMENT

The author is grateful to Professor H. Kleinert for his critical reading and correcting o
manuscript.

1H. Duru and H. Kleinert, Phys. Lett. B84, 185 ~1979!; Fortschr. Phys.30, 401 ~1982!.
2For reviews, see H. Kleinert,Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, 2nd ed.~World
Scientific, Singapore, 1995!, and references therein.

3For reviews, see A. Inomata, H. Kuratsuji, and C. C. Gerry,Path Integrals and Coherent States of SU(2) and SU(1
~World Scientific, Singapore, 1992!, and references therein.

4H. Kleinert, Phys. Lett. A212, 15 ~1996!.
5D. H. Lin, J. Phys. A30, 3201~1997!; 30, 4365~1997!; 31, 7577~1998!; hep-th/9709152.
6D. H. Lin, J. Phys. A31, 4785~1998!; hep-th/9708144.
7B. Bentag, L. Chetouani, L. Guechi, and T. F. Hammann, Nuovo Cimento B111, 99 ~1996!.
8R. Ho and A. Inomata, Phys. Rev. Lett.53, 107 ~1984!.
9J. Gamboa and V. O. Rivelles, J. Phys. A24, L659 ~1991!.

10Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
11A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Higher Transcendental Functions~McGraw-Hill, New

York, 1985!, Vol. II.
12H. Kleinert, Phys. Lett. A116, 201 ~1986!.
13D. K. Park, S. K. Yoo, S. Y. Lee, J. R. Kahug, C. S. Park, E. S. Yim, and C. H. Lee, quant-ph/9705007v2.
14L. Chetouani, L. Guechi, and T. F. Hammann, J. Math. Phys.30, 655 ~1989!.
15M. Kibler and T. Negadi, Phys. Lett. A124, 42 ~1987!; Gh. E. Draganascu, C. Campigotto, and M. Kibler,ibid. 170, 339

~1992!.
                                                                                                                



m-
tus of

regard-

theory
. As

to have
al, but
mani-

etry,

i-
l

ies,
n

rpo-
he
asic

nd
nifold.
fact,

lds can

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 3 MARCH 1999

                    
Metric symmetries and spin asymmetries of Ricci-flat
Riemannian manifolds
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The Calabi–Yau and Joyce manifolds used in string andM-theory compactifica-
tions have no continuous groups of isometries, but they often have nontrivial dis-
crete~actually finite! isometry groups. Discrete isometries of nonsimply connected
Riemannian manifolds do not necessarily map spin structures into themselves,
however; thus, inconsistencies are possible if a spin connection is used to construct
the gauge vacuum. We consider this problem in detail and show how it may be
avoided. © 1999 American Institute of Physics.@S0022-2488~99!00103-6#

I. INTRODUCTION

The ‘‘duality revolution’’ in string andM theories1 has revealed that the large discrete sy
metry groups of these theories impose extremely powerful consistency conditions. The sta
some of these symmetries remains conjectural, however, and much remains to be clarified
ing themeaningof symmetry in the string context.

There is no doubt that the most comprehensible symmetries of any higher-dimensional
are thegeometricsymmetries of the underlying Riemannian and semi-Riemannian manifolds
we shall see, even these most familiar symmetries can give rise to surprises; it is beneficial
these complications under control before embarking on the analysis of the far more gener
much less well understood, duality symmetries. More generally, the Ricci-flat Riemannian
folds that are our primary concern here are of continuing interest in various applications~see, for
example, Ref. 2!, and one wishes to understand their geometry, particularly their spin geom3

as well as possible.
String and brane theories are often formulated on background manifolds of the formM4

3M , whereM4 is Minkowski space andM is a compact, locally irreducible, Riemannian, Ricc
flat, henceforth CLIRRF, manifold.~Recall thatM is said to be locally irreducible if its universa
Riemannian cover is irreducible, that is, not isometric to a product manifold.! Orientation-
preserving isometries ofM43M are symmetries of the corresponding physical theory.4 ~Notice,
however, that an orientation-preserving isometry ofM43M neednot be orientation-preserving
when restricted toM4 or to M. Since Minkowski space admits orientation-reversing isometr
this means that we must consider all isometries ofM, whether orientation preserving or orientatio
reversing.! The Poincare´ group of symmetries of a string or brane theory is, of course, inco
rated through the isometry group ofM4 . It is natural to ask whether the isometry group of t
internal manifoldM has a similarly profound significance. Here we encounter one of the b
properties of CLIRRF manifolds: their isometry groups are necessarilyfinite.5 Thus, there is a
remarkable contrast between the external manifoldM4 , which has a large group of isometries, a
the internal space, which has only a discrete symmetry group—despite being a vacuum ma
The message of ‘‘duality,’’ however, is that discrete symmetries are not to be neglected. In
we shall see that, precisely because they are discrete, the symmetries of CLIRRF manifo
behave in ways that are not possible for continuous groups of isometries.

a!Electronic mail: matmcinn@nus.edu.sg
12550022-2488/99/40(3)/1255/13/$15.00 © 1999 American Institute of Physics

                                                                                                                



tries to
Civita

ula-

inor
ct role

ion is

rane

metric
n

ormal

. The

y dire.
nism:
roup.
ected,
ell

nt to
with a

RRF
we
f these

points

by
linear

in

O(
d

1256 J. Math. Phys., Vol. 40, No. 3, March 1999 Brett McInnes

                    
In Riemannian geometry, the metric tensor is the basic object. One expects its symme
be communicated to the other structures defined by it, and this is indeed true of the Levi-´
connection and its curvature. We wish to ask, however, whether it is also true of thespin connec-
tion, the connection used to define derivatives of spinor fields.~This is a completely different
object to the Levi-Civita´ connection, of course, though for the purposes of strictly local calc
tions one often pretends that the spin connection is just the Levi-Civita´ connection referred to a
local orthonormal basis. See below!. This is an important question, not merely because sp
fields are so important in physics, but because the spin connection itself often plays a dire
in applications. Most notably, in heterotic string compactifications4 on Calabi–Yau manifolds, the
spin connection defines the gauge vacuum. This procedure~‘‘embedding the spin connection in
the gauge group’’! still plays an important role in string phenomenology.6 Our question can be
phrased as follows. Must ametric symmetryof a Riemannian manifold also be aspin symmetry?
That is, do isometries necessarily induce maps that preserve spin connections?

The answer to this question is usually yes. In particular, if the isometry group in quest
continuous~that is, associated with Killing vector fields in the familiar manner! or if the manifold
itself is simply connected, then~apart from minor technicalities to be discussed below! every
metric symmetry is a spin symmetry. The CLIRRF manifolds often used in string and b
theories—the Calabi–Yau4 and Joyce7 manifolds—often violateboth of these conditions, how-
ever, and so a further investigation is needed. We find that, in general, one must expect that
symmetries of nonsimply connected CLIRRF manifolds willnot be spin symmetries. The reaso
for this is that while an isometry must necessarily induce a map from the bundle of orthon
frames to itself, there is no reason to expect that a~discrete! isometry group will map a given spin
structure3 to itself. For, in general, a nonsimply connected Riemannian manifold will havemany
spin structures, and a discrete isometry group will tend to permute these.~In this discussion, we
have been tacitly assuming that the isometries in question are orientation preserving
orientation-reversing case is similar, though technically more complicated.!

The consequences of having a spin asymmetry in a string compactification are potentiall
For example, it would introduce a subtle inconsistency into the anomaly cancellation mecha
it would no longer make sense to speak of embedding ‘‘the’’ spin connection in the gauge g
Again, some Calabi–Yau manifolds have isometries with a definite physical meaning, conn
for example, with CP invariance.8 A spin asymmetry in this case would mean that CP is not w
defined when acting on fermionic fields.

The purpose of this work is to explain the methods of global differential geometry releva
the spin asymmetry problem, and to discuss how this problem may be avoided. We begin
rapid survey of the spin geometry of the known CLIRRF manifolds.

II. THE SPIN GEOMETRY OF CLIRRF MANIFOLDS OF NONGENERIC HOLONOMY

The only known way—and perhaps the only possible way—to obtain examples of CLI
manifolds is to constrain the linear holonomy group.9 Some caution is required here, because
are interested in nonsimply connected Riemannian manifolds, and the holonomy theory o
spaces is considerably more intricate than that of their simply connected counterparts.10,11 The
spin geometry is particularly delicate in this case, so we shall briefly summarize the main
here.

Recall5 that therestricted linear holonomy group of a Riemannian manifold is defined
parallel transport of vectors around contractible loops. This group, a subgroup of the full
holonomy group, is the one classified by the classical Berger theorem.9 A classification of the full
holonomy group, which is typically adisconnectedLie group, has yet to be given, except
special cases. We shall say that a Riemannian manifoldM is of nongenericlinear holonomy if its
restricted linear holonomy group is a proper subgroup of the special orthogonal group Sn),
where here and henceforthn denotes the~real! dimension ofM. Notice that such a manifold nee
not be orientable, since the full holonomy group may not be contained in SO(n). @Of course, it is
always a subgroup of O(n).#
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Now it is easy to prove that every CLIRRF manifold of nongeneric holonomy is a
manifold,3 provided that it is simply connected. It is important to note, however, that the corr
sponding statement is certainlyfalse in the nonsimply connected case: for example, Ya
theorem9 implies that there are Ricci-flat Ka¨hler metrics~which are therefore of nongeneric ho
lonomy! on the Enriques surfaces,12 but Rochlin’s theorem3 shows at once that these are not sp
manifolds. In fact, it is possible to prove that, in all dimensions that are a multiple of fou
CLIRRF manifold of nongeneric holonomy can be spin only if its fundamental group sati
certain extremely restrictive conditions. In other dimensions, however, the restrictions a
milder.

Theorem 1: Let M be a compact, locally irreducible, Riemannian, Ricci-flat manifold
nongeneric linear holonomy. Suppose that the real dimension ofM is not a multiple of four. Then
M is spin if and only if it is orientable.

Henceforth we shall concentrate on manifolds such thatn is not a multiple of four, and
particularly on the casesn56 andn57. The full linear holonomy groups oforientableCLIRRF
manifolds in these cases are, respectively, SU~3! and the exceptional groupG2 . By the above
theorem, these manifolds are always spin manifolds, whether they be simply connected or
fact, if they are not simply connected, they will typically~but not invariably! haveseveralspin
structures. The spin structures are counted3 by the cohomology groupH1(M ,Z2). For example,
Joyce13 gives examples of compact seven-dimensional manifolds of linear holonomyG2 and
fundamental group isomorphic toZ2 . Here H1(M ,Z2)5Z2 , and so these manifolds have tw
distinct spin structures. In general, we denote the spin structures overM by Spin( i )(M ), where the
superscript runs from one to the order ofH1(M ,Z2).

Each Spin( i ) (M ) is a Z2 principal bundle over SO(M ), a bundle of oriented orthonorma
frames overM. Now becauseM is, in the six-dimensional case, a Ka¨hler manifold, SO(M )
reduces5 to a sub-bundle, the bundle of unitary frames U(M ), with structural group U~3!. For each
i, Spin( i ) (M ) has a sub-bundle Spin( i )U(M ), which projects onto U(M ). The structural group of
Spin( i ) U(M ) is isomorphic to U~3!, since this is the subgroup of Spin~6! which projects onto the
U~3! subgroup of SO~6!. The existence of the bundles Spin( i ) U(M ) is the spin-geometric expres
sion of the fact thatM is a Kähler manifold.

For six-dimensional Calabi–Yau manifolds, the holonomy reduction theorem5 implies a fur-
ther reduction of U(M ) to an SU~3! sub-bundle, SU(M ). For eachi, Spin( i ) U(M ) has a sub-
bundle Spin( i ) SU(M ) that projects onto SU(M ). The structural group of Spin( i ) SU(M ) is the
disconnected groupZ23SU(3), this being the subgroup of Spin~6! that projects onto the SU~3!
subgroup of SO~6!. The existence of the bundles Spin( i ) SU(M ) is the spin-geometric expressio
of the fact thatM is a Ricci-flat Kähler manifold.

The Levi-Civitáconnection of such a manifold can be regarded as a one-formvL on SU(M ).
The projection Spin( i ) SU(M )→SU(M ) allows us to pull vL back to a one-formvD

( i ) on
Spin( i ) SU(M ), and, becauseZ23SU(3) and SU~3! have isomorphic Lie algebras,vD

( i ) defines a
connection on Spin( i ) SU(M ). This, in turn, defines connections, also denoted byvD

( i ) , on
Spin( i ) U(M ) and Spin( i ) (M ). These connections are called the Dirac orspin connectionson M:
notice that there is one spin connection for each spin structure. In seven dimensions the s
is similar: SO(M ) reduces to aG2 sub-bundleG2(M ), and each spin structure Spin( i )(M ) reduces
to a sub-bundle Spin( i ) G2(M ) with structural groupZ23G2 ; the Levi-Civitá connection of the
Joyce metric defines a spin connection on each spin structure.

In heterotic string compactifications,4 a spin connection is used to define anE8 gauge con-
figuration.~Strictly, the gauge group isE83E8 , but we can ignore the secondE8 .! The natural
way to interpret this is to suppose that the bundle representing theE8 vacuum configuration is
constructed byextendingthe structural group14 of Spin( i ) SU(M ), for some fixedi, from Z2

3SU(3) toE8 . In this way we represent Spin( i ) SU(M ) as a sub-bundle of the vacuumE8 bundle
E, and thenvD

( i ) defines anE8 connection onE ~by the push-forward!. This is the obvious globa
formulation of ‘‘embedding the spin connection in the gauge group.’’ But now we arrive a
crux: if this construction of the gauge vacuum is to be consistent with the known symmetr
string theory, we must show that isometries ofM induce mappings of Spin( i ) SU(M ) to itself.
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However, this is, in general, not the case. In order to address this problem, we need techniques
analyzing isometries of CLIRRF manifolds, and we now turn to these.

III. GLOBAL GEOMETRY OF ISOMETRIES OF CLIRRF MANIFOLDS

The most striking property of metric symmetries of CLIRRF manifolds is the fact that
corresponding groups are necessarilyfinite, like the symmetry groups of the Platonic solids.~One
can see the reason for this in a very rough, intuitive way by recalling that the Ricci tensor is a
of average sectional curvature, and that the latter controls geodesic deviation. The geo
emanating from a typical point of a CLIRRF manifold therefore cannot deviate in a cons
way, indicating that continuous symmetries are unlikely to be found.! A familiar consequence o
this absence of Killing vectors is the fact that the metrics of these spaces are not known exp
Surprisingly, however, this does not prevent an analysis of the isometry groups. For examp
M be a compact Ka¨hler manifold with a vanishing first Chern class,9 and letG be a finite group of
holomorphic or antiholomorphic diffeomorphisms ofM. Then it is possible to prove that ther
exists a Ricci-flat Ka¨hler metric onM with respect to whichG acts isometrically.9 The isometries
of these manifolds can thus be discussed quite explicitly, if need be.

CLIRRF manifolds of nongeneric holonomy have a second peculiarity, of equal importan
us. LetM be any Riemannian manifold, and letf :M→M be an isometry. If O(M ) is the bundle
of orthonormal frames5 over M, then f̃ , the natural lift of f, is an O(M ) bundle automorphism
defined by

f̃ ~u!j5 f * ~uj!,

where uPO(M ), jPRn ~with n5dim M !, uj is the tangent vector with componentsj with
respect tou, and f * is the differential off. For a generic~not necessarily orientable! M, O(M ) is
not reducible, and nothing more can be said. But ifM, for example, is a six-dimensional Calabi
Yau manifold, then O(M ) reduces to the SU~3! bundle SU(M ) and the Levi-Civita´ connectionvL

may be regarded as a connection on SU(M ). It is natural to ask whetherf̃ restricts to an auto-
morphism of SU(M )—this is related to the question raised at the end of the preceding section
answer, in general, is no. For while it is true that symmetries of the metric are also symmet
vL , this merely implies thatf̃ maps holonomy bundles5 to other holonomy bundles, not neces
sarily to themselves. Thus SU(M ) does not respect~all of! the symmetries ofM.

We can deal with this problem as follows. LetM be any Riemannian manifold, letG be a
group of isometries, and letP be a sub-bundle of O(M ) with a connection that induces th
Levi-Civitá connection on O(M ). We shall say thatP is minimal for G if G induces~through the
natural lifts! bundle automorphisms ofP, but not of any proper sub-bundle ofP. Our task is to
construct, for CLIRRF manifolds of nongeneric holonomy, the sub-bundles of O(M ) that are
minimal for a given group of isometries. Let us do this explicitly for the six- and sev
dimensional cases.

Let U~3! be regarded as a subgroup of SO~6! as usual, and let SUk(3), for anypositive integer
k, be the subgroup of U~3! consisting of all 333 unitary matricesA such that

@detA#k51.

This is, for allk.1, a disconnected group with SU~3! as an identity component. Next, let, for an
even n, un/2 denote the diagonaln3n matrix with the firstn/2 entries equal to11, and the
remainder equal to21. Conjugation byun/2 maps U(n/2), as a subgroup of SO(n), to itself, by
complex conjugation; therefore it is possible to define a group SUk* (3) by

SUk* ~3!5SUk~3!øSUk~3!•u3 .

This is a disconnected subgroup of O~6! with SU~3! as an identity component. Abstractly it i
@Z3k•SU(3)#’Z2 , where the dot denotes the local direct product, and the product withZ2 is
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semidirect. Thus, SUk* (3) has 2k connected components. Now, for a Calabi–Yau manifold, O(M )
is reducible to SU(M ), and so the structural group O~6! is reducible to any subgroup of O~6!
containing SU~3!. Hence we can find, for anyk, a sub-bundle of O(M ) with SUk(3) or SUk* (3)
as a structural group, and the Levi-Civita´ connection can be regarded as a connection on an
these bundles, which we denote by SUk(M ) and SUk* (M ), respectively. Similarly, for seven
manifolds of linear holonomyG2 , we set

G2* 5Z23G2 ,

whereZ2 , the center of O~7!, is generated by2I 7 , whereI 7 is the 737 identity matrix; and we
defineG2* (M ) as aG2* sub-bundle of O(M ) in the obvious way. The result we need is as follow

Theorem 2: Let M be a compact Riemannian six-manifold of linear holonomy SU~3!, or a
compact Riemannian seven-manifold of linear holonomyG2 , and letG be any group of isometries
of M. In the six-dimensional case, letG0 be the subgroup ofG generated by holomorphic isome
tries. If G5G0 , then there exists an integerk such that SUk(M ) is minimal for G, and there is a
homomorphism fromG0 onto Zk . If GÞG0 , then there exists an integerk such that SUk* (M ) is
minimal for G, and again there is a homomorphism fromG0 onto Zk . In the seven-dimensiona
case, the holonomy bundleG2(M ) is minimal for any orientation-preservingG, while G2* (M ) is
minimal for anyG containing an orientation-reversing isometry.

The proof will not be given here; see Ref. 15 for the relevant techniques.
This theorem marks the first step toward solving the problem raised at the end of S

namely, the fact that metric symmetries do not, in general, induce maps from Spin( i ) SU(M ) to
itself. For example, in the six-dimensional case, suppose thatG is generated by a single antiholo
morphic involution f. ~That is, f * anticommutes with the complex structure, andf 251, the
identity map.! Then G0 is trivial, so k51, and SU1* (M ) is minimal for G. Thus, if we replace
SU(M ) by SU1* (M ), we obtain a bundle thatis mapped into itself byG. But now we encounter
another problem, when we go to the level of spin and pin structures.

IV. SPIN SYMMETRIES AND ASYMMETRIES

In this section we introduce the concept ofspin asymmetries:that is, mapsf :M→M on a
Riemannian manifold that preserve the metric but not the spin structure. To see how
possible, letM be any six-dimensional orientable spin manifold. ThenM is also a pin manifold,
that is, the full bundle of orthonormal frames O(M ) has at least one nontrivial double cover th
is also a Pin~6! bundle overM. @Here Pin~6! is the usual3 double cover of O~6!.# The pin structures
can be expressed in terms of the spin structures in the following useful way. Let$ei%, i 51¯6
generate the Clifford algebra, and set

û35e4e5e6 ,

so thatû3 projects onto the O~6! matrix u3 introduced earlier. Clearly,û3 is an element of Pin~6!

but not of Spin~6!, and (û3)251. @In ten dimensions, we have (û5)2521, so the pin elemen
corresponding toun/2 need not be of order two. This point will arise again, below.# Now we have

Pin~6!5Spin~6!øSpin~6!• û3 ,

and one can prove that the pin structures overM can be expressed as

Pin~ i !~M !5Spin~ i !~M !øSpin~ i !~M !• û3 .

Spinors of typei on M are sections of associated bundles of Spin( i )(M ), the standard fibre
being the representation spaceV corresponding to a specified representationr of Spin~6!. A spinor
may therefore also be regarded as aV-valued functionc on Spin( i )(M ) satisfying c(sg)
5r(g21)c(s) for eachs in Spin( i )(M ) and eachg in Spin~6!. ‘‘Pinors’’ are defined in the obvious
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way. This way of thinking about spinors and pinors@as objects defined directly on Spin( i )(M ) or
Pin( i )(M )# makes it clear that an isometry ofM has a well-defined action on fermionic fields if an
only if it induces a bundle automorphism of Spin( i )(M ) or, in the orientation-reversing cas
Pin( i )(M ). Now for eachi, Spin( i )(M )• û3 is a principal bundle over SO(M )•u3 with structural
groupZ2 . The assumed orientability ofM means that O(M ) is the disjoint union of SO(M ) and
SO(M )•u3 ; if f is an orientation-reversing isometry ofM, then the natural liftf̃ maps SO(M ) to
SO(M )•u3 . Now theinduced bundle construction5 allows us to pull Spin( i )(M )• û3 back to aZ2

bundle, conventionally denotedf̃ 21
„Spin( i )(M )• û3…, over SO(M ). The construction also supplie

us with aZ2 bundle homomorphismf̂ ,

f̂ : f̃ 21
„Spin~ i !~M !• û3…→Spin~ i !~M !• û3 ,

covering f̃ :SO(M )→SO(M )•u3 . Clearly f̃ 21
„Spin( i )(M )• û3… is just a spin structure overM. If it

were possible to deformf continuously~through isometries! to the identity map, then we could tr
to argue thatf̃ 21

„Spin( i )(M )• û3… must be none other than Spin( i )(M ) itself. ~In fact, even in the
continuous case, there can be a slight complication if the group is not simply connected; b
problem can always be resolved by replacing the group by a suitable double cover.! But if the
isometry group ofM is finite, we cannot argue in this way: we have

f̃ 21
„Spin~ i !~M !• û3…5Spin~ j !~M !,

for some j that may or may not be equal toi. The map f̂ therefore sends Spin( j )(M ) to
Spin( i )(M )• û3 , and so it does not map Pin( j )(M ) into itself unless it so happens thati 5 j . We
conclude that, ifiÞ j , thenf disrupts the structure of Pin( i )(M ) and Pin( j )(M ): the very existence
of f is inconsistent with any gauge vacuum built from Pin( i )(M ) or Pin( j )(M ), and f has no
well-defined action on fermions of typei or j. Similarly, if f is an orientation-preserving isometr
that cannot be deformed through isometries to the identity, then we expect it to permut
structures rather than map them into themselves. This is the phenomenon of aspin asymmetry.
Such asymmetries have arisen, at least implicitly, in the spin geometry literature: for examp
G-spin theorem~see Ref. 3, p. 267! can be made to work only if one explicitlyassumesthat the
isometry in question maps a specific spin structure into itself. The question then arises as
one can verify this assumption.

In fact, for a generic Riemannian manifold, it is very difficult to do this; both the metric
the topology of O(M ) would have to be specified in great detail.The possible existence of sp
asymmetries should be considered very carefully in any physical theory involving nons
connected Riemannian manifolds. Spin asymmetries are particularly troublesome for CLIR
manifolds, since the metric cannot be given explicitly. We shall return to this problem in Sec
Let us first, however, consider the consequences if a metric symmetrydoeshappen to be a spin~or
pin! symmetry.

V. EMBEDDING THE SPIN CONNECTION IN THE GAUGE GROUP

As usual, we shall discuss the more complicated, orientation-reversing case. Suppose
that f is an orientation-reversing isometric involution of a six-dimensional Riemannian man
M, and suppose further that, for somei, we have

f̃ 21~Spin~ i !~M !• û3!5Spin~ i !~M !.

Thus, f can be a pin symmetry as well as a metric symmetry. As above, we have aZ2 bundle
homomorphismf̂ ,

f̂ :Spin~ i !~M !→Spin~ i !~M !• û3 ,
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covering f̃ :SO(M )→SO(M )•u3 . Now f̃ also defines a map from SO(M )•u3 to SO(M ), and if f
is to be a pin symmetry we must have

f̃ 21
„Spin~ i !~M !…5Spin~ i !~M !• û3 .

This gives us anotherZ2 bundle homomorphism, in this case from Spin( i )(M )• û3 to
Spin( i )(M ). Combining these, we obtain an automorphismf̂ :Pin( i )(M )→Pin( i )(M ). As defined,f̂
is only an automorphism of Pin( i )(M ) as aZ2 bundle over O(M ), not as a Pin~6! bundle overM.
However, using the fact thatf̃ is an automorphism of O(M ) as an O~6! bundle overM, we see that
f̂ (sg)56 f̂ (s)g for all s in Pin( i )(M ) and g in Pin~6!. If g is actually in Spin~6!, a continuity
argument rules out the minus sign, while ifg5 û3 , the minus can be consistently absorbed into
definition of f̂ . Thus,f does have a well-defined action on Pin( i )(M ) if there is no pin asymmetry
Finally, we have the commuting diagram shown, valid for this particular value ofi:

Pin~ i !~M ! →
f̂

Pin~ i !~M !

↓ ↓

O~M ! →
f̃

O~M !

↓ ↓

M →
f

M

.

Note that sincef is an involution, so~by the chain rule! is f̃ ; but from this we can deduce only tha
( f̂ )2561, where, as usual,21 denotes the automorphism of Pin( i )(M ) induced by the right action
of 21, the generator of the center of Pin~6!. If f is an antiholomorphic involution of a Calabi–Ya
manifold, corresponding4 to the CP operator in a heterotic string compactification, then ha
( f̂ )2521 would mean that CP is represented by an operator of order four rather than two
genericM it is difficult to resolve this ambiguity, but more can be said precisely whenM is a
CLIRRF manifold; see Theorem 3 below.

As f is a symmetry of the metric, it is also a symmetry of the Levi-Civita´ connection: we have
f̃ * vL5vL , where we regard5 the Levi-Civitáconnection as a one-form on O(M ). Now letp( i ) be
the canonical projectionp( i ):Pin( i )(M )→O(M ); then the spin connection isp( i )* vL5vD

( i ) , and
we have

f̂ * vD
~ i !5~p~ i !+ f̂ !* vL5~ f̃ +p~ i !!* vL5p~ i !* f̃ * vL5vD

~ i ! .

Thus, f̂ is indeed a symmetry of the spin connection.
We shall now use these ideas to give a rigorous formulation of ‘‘embedding the spin co

tion in the gauge group.’’4 It would be easy to ‘‘embed thelinear connection in the gauge
group’’—that is, to usevL to construct anE8 gauge vacuum. The only complication is that, ifM

is a Calabi–Yau manifold andf is an antiholomorphic isometric involution onM, then f̃ is not an
automorphism of SU(M ). But we saw in Sec. III that this problem can always be solved—in
case, by using the bundle SU1* (M ) instead of SU(M ). But here we wish to use aspinconnection
to construct the gauge vacuum.@In heterotic string compactifications, when the ‘‘holonom
group’’ SU~3! is embedded inE8 , this embedding is through a Spin~6! subgroup ofE8 , not
through SO~6!: therefore theE8 vacuum configuration is indeed constructed from some D
connectionvD

( i ) , andnot from the Levi-Civitáconnection directly.# Hence, we need to study a pi
bundle over SU1* (M ).

Recalling that SU1* (3) was defined as the subgroup of O~6! given by SU~3!øSU~3!•u3 , we
can define, for each spin structure, a sub-bundle of Pin( i )(M ) by
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Spin~ i !SU1* ~M !5Spin~ i ! SU~M !øSpin~ i ! SU~M !• û3 .

This is aZ23SU(3)’Z2 bundle overM, where the firstZ2 is $61%, and the second is$1,û3%. Just
as SU1* (M ) is the smallest sub-bundle of O(M ) on which f induces an automorphism, s
Spin( i ) SU1* (M ) is the smallest sub-bundle of Pin( i )(M ) on which f induces an automorphism—
provided, of course, that the spin asymmetry problem does not arise for this pin structure. T
if we havef̃ 21

„Spin( i )(M )• û3…5Spin( i )(M ) for somei, then the pin automorphismf̂ •Pin( i )(M )
→Pin( i )(M ) restricts to an automorphismf̂ :Spin( i ) SU1* (M )→Spin( i ) SU1* (M ). Regarding the
spin connectionvD

( i ) as a connection on Spin( i ) SU1* (M ) @which we can do, since the latter ha
Spin( i ) SU(M ) as a sub-bundle#, we havef̂ * vD

( i )5vD
( i ) . Thus, we have found a bundle on whic

the spin connection is well defined, and that is mapped into itself byf. @By considering
Spin( i ) SUk* (M ) for suitablek, we can deal with isometry groups containing both holomorphic
antiholomorphic maps.# Clearly, we must use Spin( i ) SU1* (M ) to construct a gauge vacuum co
sistent with the existence off.

To do this, note thatE8 contains a disconnected group16 of the form@SU~3!•E6#’Z2 , where
SU~3!•E65@SU~3!3E6#/Z3 , andZ2 is generated byg such that Ad~g! induces complex conju-
gation on SU~3!, together with an outer automorphism ofE6 . By choosing aZ2 subgroup of the
fixed point set of Ad~g! in E6 ~this subgroup is of nonzero rank, so this can be done! we obtain
Z23SU~3!’Z2 as a closed subgroup ofE8 . It follows that Spin( i ) SU1* (M ) can be extended14 to
an E8 bundleE over M. It is easy to see thatf̂ extends to an automorphism ofE, that the spin
connection extends to anE8 gauge connection onE, and that the extended objects satis
f̂ * vD

( i )5vD
( i ) . In short, the spin connection has been embedded in the gauge groupin a way that

is consistent with the symmetries of the theory. Similarly, if f has a physical interpretation in term
of the CP operator, then the latter has a well-defined action on fermionic fields.

In summary, then, the existence of isometries ofM poses no problems,providedthat there are
no spin asymmetries. Let us now consider how to ensure this.

VI. AVOIDING SPIN ASYMMETRIES ON CLIRRF MANIFOLDS

Let M be any CLIRRF manifold of nongeneric linear holonomy. There are, in general,
simple, practical ways of ensuring that every metric symmetry ofM is a spin symmetry.

The first approach is to apply nonisometric diffeomorphisms toM so that, in fact,M has no
nontrivial isometries. For a Calabi–Yau manifold represented as a projective variety, this is s
a matter of adjusting the coefficients of the defining equations in such a way thatM admits no
holomorphic or antiholomorphic self-maps.

A second, less brutal approach involves verifying thatM has only one spin structure: clearly
spin asymmetries are impossible in this case. It is quite easy to compute the number o
structures onM if the fundamental group,p1(M ), is known. First,p1(M ) must be Abelianized.
In the decomposition of the resulting group into finite cyclic factors, discard the factors of
order and replace each of the others byZ2 . The result isH1(M ,Z2), which counts the spin
structures overM. Clearly the spin structure is unique ifp1(M ) is of odd order; sometimes it is
also unique whenp1(M ) is of even order~because a group of even order can have an Abel
ization of odd order!. Usually, however,M will have several spin structures ifp1(M ) is of even
order.

If M does have several spin structures, we have a third approach based on the fol
observation. One of the most important properties of spin CLIRRF manifolds of nongeneric
holonomy is that they always satisfy,locally, the integrability conditions for the existence of
parallel ~covariant constant! spinor field. The existence of alocal parallel spinor, serving as a
supersymmetry generator, is essential in heterotic string phenomenology.4 While it can be argued
that it is not physically necessary to extend the local parallel spinor to aglobal field, it is natural
to ask whether this can indeed be done. One finds that local parallel spinors can alwa
extended globallyif M is simply connected; but ifM is not simply connected, one must askwhich
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spin structure is being used to make the extension. For, in fact, ifM has more than one spi
structure, there will always be spin structures that do not allow the extension to be made
given M, we shall describe a spin structure as a GPS spin structure if it admits a Global P
Spinor. The existence of GPS spin structures is of interest in its own right,17 but for our purposes
their importance derives from the fact that they behave well under the action of metric symm

Theorem 3: Let M be any CLIRRF spin manifold of nongeneric linear holonomy, and leG
be any group of isometries ofM. There exists a GPS spin structure onM such that eachf PG

induces an automorphismf̂ either on that spin structure or on the corresponding pin struct
Furthermore, the group generated by these automorphisms is isomorphic toG.

Proof: We give the proof in the case whereM is a six-dimensional Calabi–Yau manifold an
f is an antiholomorphic involution; the other cases are similar or easier.

Given any six-dimensional Ka¨hler spin manifoldM, we define

U* ~M !5U~M !øU~M !•u3 ,

a sub-bundle of O(M ) with structural group U* (3) defined in the obvious way. For each sp
structure, we have a spin bundle Spin( i ) U(M ) over U(M ), and similarly we set

Spin~ i ! U* ~M !5Spin~ i ! U~M !øSpin~ i ! U~M !• û3 .

Now SU~3! is a normal subgroup of U~3! @regarded as a subgroup of SO~6!#, so we can define a
canonical U~1! bundle overM by

K~M !5U~M !/SU~3!.

Similarly, SU~3! is normal in U~3! regarded as a subgroup of Spin~6!, so we can define, for eac
spin structure, aspin canonical bundle, by

Spin~ i ! K~M !5Spin~ i ! U~M !/SU~3!.

Again, SU~3! is actually normal in U* (3), so we candefine

K* ~M !5U* ~M !/SU~3!.

Spin~ i ! K* ~M !5Spin~ i ! U* ~M !/SU~3!.

These bundles decompose into connected components as follows:

K* ~M !5K~M !øK~M !•s3 ,

wheres3 is the SU~3! projection ofu3 , and

Spin~ i ! K* ~M !5Spin~ i ! K~M !øSpin~ i ! K~M !•ŝ3 ,

whereŝ3 is the SU~3! projection ofû3 . Note that (s3)25(ŝ3)251.
The point of passing to the SU~3! quotients of all of these structures is that whenM is a

Calabi–Yau manifold,K(M ) @unlike U(M )# is actually trivial .9 This allows us to describe th
spin canonical bundles and hence to analyze the behavior of the spin structures.

Now f is an antiholomorphic, orientation-reversing isometry, so its natural liftf̃ is a homo-
morphism of U~3! bundles,f̃ :U(M )→U(M )•u3 . Hence, it factors through the SU~3! projection
and defines a U~1! homomorphism, which we also denote byf̃ , from K(M ) to K(M )•s3 .
Similarly, the bundle homomorphismf̂ :Spin( j )U(M )→Spin( i ) U(M )• û3 defines a homomorphism
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f̂ :Spin( j ) K(M )→Spin( i ) K(M )•ŝ3 , with j Þ i , in general, of course. We obtain the commuti
diagram shown, where the vertical arrows correspond to theZ2 projectionp, and Spin( j ) K(M )
may be regarded as the pull-backf̃ 21

„Spin( i ) K(M )•ŝ3…,

Spin~ j ! K~M ! →
f̂

Spin~ i ! K~M !•ŝ3

↓ ↓p

K~M ! →
f̃

K~M !•s3

.

Now, while K(M ) is trivial over M, the same isnot true, in general, of the spin canonic
bundles. These last are constructed by recalling that they satisfy Spin( i ) K(M )/Z25K(M ). Typi-
cally, therefore, Spin( i ) K(M ) will take the form „M̄3U(1)…/Z2 , where M̄ is some nontrivial
double cover ofM and Z2 acts diagonally. In such a case, the holonomy group5 of the spin
connectionvD

( i ) will be isomorphic toZ23SU(3). @This is possible because this holonomy gro
must project onto thelinear holonomy group, which is SU~3!, of course.# The presence of theZ2

factor means that there are noncontractible loops onM such that a locally constant spinor revers
sign when parallel transported around those loops. Clearly, global parallel spinors can
defined in such a case. Conversely, the spin structure with a trivial spin canonical bund
SU~3! as holonomy group, and so it is a GPS spin structure. Fixi as the label for this spin
structure, and letf be a global cross section of Spin( i ) K(M ). Consider the mapf̄:M
→Spin( j ) K(M ), defined by

f̄:x→@ f̃ „p~f„f ~x!…•ŝ3!…,f„f ~x!…•ŝ3#,

for each xPM . Here we regard Spin( j ) K(M ) as the pull-back of Spin( i ) K(M )•ŝ3 , so that
elements of Spin( j ) K(M ) are represented5 as pairs@k,s# in K(M )3Spin( i ) K(M )•ŝ3 , such that
f̃ (k)5p(s). The projection for the pull-back, as a bundle overK(M ), is defined by@k,s#→k,
and since the mapx→ f̃ „p(f„f (x)…•ŝ3)… is a global cross section ofK(M ), we see thatf̄ is a
global cross section of Spin( j ) K(M ). Thus Spin( j )(M ) is the spin structure with a trivial spin
canonical bundle: that is,j 5 i , and sof induces a spin symmetry,f̂ :Spin( i )(M )→Spin( i )(M )
• û3 .

Our final task is to show that the group generated byf̂ is isomorphic to the group generate
by f: that is, we must show that (f̂ )251 rather than21. Recall from Sec. V thatf̂ restricts to a
map f̂ :Spin( i ) SU1* (M )→Spin( i ) SU1* (M ). In general, Spin( i ) SU(M ) is aZ23SU(3) bundle that
is not further reducible; but in the present case, since the spin holonomy group is S~3!,
Spin( i ) SU(M ) decomposes as a disjoint unionPø(2P), whereP is a holonomy bundle.5 There-
fore we have

f̂ ~P!56P• û3 ,

and so, since (û3)2511, we find that (f̂ )2P5P. That is, (f̂ )2 is an automorphism ofP. But then
if ( f̂ )2521, we conclude that SU~3!, the structural group ofP, contains a central element of orde
two. Since this is not the case, we conclude that (f̂ )2511. This completes the proof of Theorem
3.

Evidently Theorem 3 provides us,in the case where Mis a CLIRRFmanifold of nongeneric
linear holonomy, with another way of avoiding the spin asymmetry problem: if we insist that
local parallel spinors~corresponding, in the applications to string theory, to generators of l
supersymmetries! on such manifolds must be extended to global parallel spinors, then a
structure is automatically selected such that all metric symmetries become spin symmetr
practice, this is perhaps the easiest way to avoid spin asymmetries; but one should bear in m
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possibility that the other spin structures may play some physical role~perhaps in a path integral in
the quantum gravity context!, in which case spin asymmetries will have to be considered an

VII. IS CP A GAUGE SYMMETRY?

The realization18,19 that wormhole fluctuations can violate global discrete symmetries le
one to ask how these symmetries have survived into the relatively low-energy era. The
satisfactory answer20,21is that discrete symmetries are, in fact,gaugesymmetries. This works very
well for internal symmetries, but it is not easy to see what this proposal means in the case
charge-parity operator CP, which is partly a geometric, space–time symmetry. In heterotic
compactifications, CP can be completely geometric, since it corresponds to a combination
usual orientation-reversing isometry of Minkowski space with an antiholomorphic isometri
volution of a Calabi–Yau manifold.4 Nevertheless, Choiet al.8 have proposed that CP is a gau
symmetry, precisely in this context. As an application of the formalism developed above,
analyze the meaning of this proposal.

Let M be a six-dimensional Calabi–Yau manifold, and let Pin( i )(M ) be the GPS pin structure
discussed in the proof of Theorem 3, so that the antiholomorphic involutionf corresponding to CP
induces an automorphismf̂ :Pin( i )(M )→Pin( i )(M ) with ( f̂ )251. As in Sec. V, we use
Pin( i )(M ) to construct anE8 bundleE overM, and we regardf̂ as an automorphism ofE. Recall
that the spin connection defines a gauge connectionvD

( i ) on E, satisfying f̂ * vD
( i )5vD

( i ) . The point
to be emphasized here is that, because of the special way in which the gauge bundleE is con-
structed, CP has a natural interpretation asan automorphism of E that preserves the (vacuu
gauge connection.

As is well known, the nontriviality of the vacuum gauge connection breaksE8 to a subgroup.
The precise meaning of this statement is as follows. LetM be any Riemannian manifold, letG by
any group of isometries ofM, and letQ(M ,G,v) be any principalG bundle overM with a
connectionv. Following Fischer,22 we define thegeneralized gauge groupof this system as the
groupA(Q,G,v) consisting of all those automorphismsF:Q→Q such thatF induces an elemen
of G andF* v5v. The usual gauge group is the subgroup consisting of thoseF that cover the
identity isometry ofM. Notice that the gauge group is not, strictly speaking, a subgroup o
structural groupG; however, it is naturally isomorphic to such a subgroup, namely, the centra
of the holonomy group ofv. @In our case, withG5E8 , this centralizer is isomorphic either t
@U~1!3Spin~10!#/Z4 if the holonomy group of the spin connection isZ23SU(3), or toE6 if—as
is the case for the GPS spin structure—the spin holonomy group is SU~3!.#

The generalizedgauge group construction extends the usual gauge group by allowingF to
have some ‘‘horizontal’’ as well as ‘‘vertical’’ action on the gauge bundle. As long as the ind
action onM is isometric, this is a reasonable and natural extension of the gauge symmetry co
Furthermore, like the usual gauge group,A(Q,G,v) is naturally associated with a subgroup ofG.
Let P be any holonomy bundle5 of v in Q, and letF be any element ofA(Q,G,v); then F* v
5v implies thatF(P) is another holonomy bundle, and so we have

F~P!5Pa~F !,

for somea(F)PG. Let HA be the subgroup ofG generated by all elements of the forma(F): we
shall say thatHA is the subgroup ofG associated withA(Q,G,v). It is not difficult to show23 that
the subgroup ofG associated in this way withV(Q,v) @the normal subgroup ofA(Q,G,v)
consisting ofv-preserving, purely vertical automorphisms ofQ# contains the centralizer of th
holonomy group ofv, so this construction generalizes the usual isomorphism ofV(Q,v) with a
subgroup ofG.

The generalized gauge group construction seems ideally suited to the problem of ‘‘gau
CP. Unfortunately, for a generic bundleQ, this does not work well. Note first thatA(Q,G,v) is
defined as a group of automorphisms that induce some element ofG—but this is not to say tha
everyelement ofG is covered by some element ofA(Q,G,v). In general, this is not so. Even i
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G is completely covered byA(Q,G,v), the group structure ofA(Q,G,v) may not be reasonabl
from a physical point of view. For example, it would not be physically acceptable, in the s
case, for an element ofA(Q,G,v) representing CP to commute with every element ofE6 : in fact,
we should find thatA(Q,G,v) is a semidirect product ofE6 with a Z2 generated by an automor
phism covering CP. However, this willnot be the case for allQ. Finally, the subgroup ofG
associated withA(Q,G,v) may not contain an isomorphic copy of it, so that CP can fail
correspond to any element of the structural group.

Happily, ‘‘embedding the spin connection in the gauge group’’ eliminates all of these o
tions. This is the content of the following result, the proof of which is a straightforward applica
of Theorem 3 and will not be given here.

Theorem 4: Let M be a six-dimensional Calabi–Yau manifold, letf be an antiholomorphic
isometric involution onM, let Pin( i )(M ) be a GPS pin structure onM such thatf induces an
automorphismf̂ on Pin( i )(M ), and let E be theE8 bundle overM constructed by extending
Spin( i ) SU1*(M ) through@SU(3)•E6#’Z2 . If vD

( i ) is the extension of the Pin( i )(M ) spin connec-
tion to E, then the generalized gauge groupA(E,$1,f %,vD

( i )) covers $1,f %, and it is naturally
isomorphic to theE6’Z2 subgroup ofE8 .

In simple terms, f̂ is the same kind of mathematical objectas the usual gauge
transformations—namely, an automorphism ofE that preserves the vacuum gauge fields. It
therefore perfectly natural to unify it with the gauge group, and Theorem 4 asserts that i
behaves in a physically acceptable manner. In this sense, CP is indeed a gauge symmetpro-
vided that the spin connection is embedded in the gauge group, andprovidedthat we avoid spin
asymmetries.

VIII. CONCLUSION

Spin connections are deceptively simple objects. Locally, they can be regarded as n
more than the Levi-Civita´ connection referred to an orthonormal basis. Globally, however,
can give rise to several interesting pathologies: in particular, they can misbehave under the
of isometries. In view of their importance for applications, it is desirable to have techni
available for dealing with their global properties. A few such techniques have been introd
here, in the context of CLIRRF manifolds.

One of the surprising byproducts of our investigation has been the discovery that it do
always make sense to speak of ‘‘the’’ spin holonomy group of a CLIRRF spin manifold: a g
fixed Calabi–Yau or Joyce manifold can have two distinct spin holonomy groups. This leads
ask whether it is feasible to classify the spin holonomy groups of compact, locally irredu
Riemannian manifolds, after the manner of Berger’s classification of linear holonomy in
simply connected case.9 Our results in that direction will be reported elsewhere.
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Nonextensive Bose–Einstein condensation model
T. Michoela) and A. Verbeureb)

Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven,
Celestijnenlaan 200D, B-3001 Leuven, Belgium

~Received 26 November 1997; accepted for publication 3 November 1998!

The imperfect Boson gas supplemented with a gentle repulsive interaction is
completely solved. In particular, it is proved that it has nonextensive Bose–Einstein
condensation, i.e., there is condensation without macroscopic occupation of
the ground (k50) state level. ©1999 American Institute of Physics.
@S0022-2488~99!03902-X#

I. INTRODUCTION

The search for microscopic models of interacting bosons showing Bose–Einstein con
tion is an ever challenging problem. It is known that the phenomenon only appears for
dimensionsd>3.1 A general two-body interacting Bose system in a finite centered cubic
L,Rd, with volumeV5Ld, is given by a Hamiltonian,

HL5TL1UL , ~1!

where

TL5 (
kPL*

ekak* ak , ek5
uku2

2m
,

UL5
1

2V (
q,k,k8PL*

v~q!ak1q* ak82q
* ak8ak , a~x!5

1

AV
(

kPL*
ake

ik•x.

The a](x) are the Boson operators satisfying the commutation rules

@a~x!,a* ~y!#5d~x2y!, @a~x!,a~y!#50,

and

L* 5H k:k5
2p

L
n,nPZdJ .

We limit ourself to periodic boundary conditions.
Rigorous results on the existence of Bose–Einstein condensation are known for very s

potentialsv in ~1!, in particular, of course, forv50, the free Bose gas, and forv in thed-function
limit 2 or in the van der Waals limit.3 Another class of models that are treatable is this for which
Hamiltonian is a function of the number operatorsNk5ak* ak only. These models are called th
diagonal models.4 The Hamiltonian is a function of a set of mutually commuting operators wi
spectrum consisting of the integers. The operators can be considered as random variable
values in the integers. The equilibrium states are looked for among the measures minimiz

a!Aspirant van het Fonds voor Wetenschappelijk Onderzoek—Vlaanderen.
Electronic mail: tom.michoel@fys.kuleuven.ac.be

b!Electronic mail: andre.verbeure@fys.kuleuven.ac.be
12680022-2488/99/40(3)/1268/12/$15.00 © 1999 American Institute of Physics
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free energy. This method, developed in a series of papers~Ref. 4, and references therein!, opened
the possibility to derive rigorous results for so far unsolved interacting Bose gas models
method is a powerful application of the large deviation principle for quantum systems.

In this paper we derive some rigorous results for another diagonal model, inspired by R
where the pressure is computed. We are not using the large deviation technique of Ref. 4,
full quantum mechanical technology, in particular, correlation inequalities, in order to prov
existence of Bose–Einstein condensation. In Sec. II, we first rederive the result of Ref. 5, an
a concise, rigorous, and direct proof of the pressure formula. Some arguments of Ref.
translated into our situation. Our main contribution is in Sec. III, where we prove the occur
of Bose–Einstein condensation, and where we study in detail the type of condensation.

There exist different types of condensation. The best known is macroscopic occupation
ground state, but there is also so-called generalized condensation, when the number of p
distributed over a set of arbitrary small energies above the lowest energy level becomes
scopic, proportional to the volume. This notion has been put into a rigorous and workable fo
Ref. 7.

As far as our results are concerned, this notion of generalized condensation is crucia
prove that in our model generalized condensation occurs without macroscopic occupation
ground state. As far as we know, this is the first model of an interacting Bose gas for whic
type of condensation is found. The only existing result is for the free Bose gas, conside
special thermodynamic limit, not of the type of increasing, absorbing cubes.8,9

The result of Sec. III also allows us, using the technique of Ref. 10, to give an explicit
of the equilibrium states in the thermodynamic limit. One verifies that they are of the same ty
the equilibrium state of the imperfect Bose gas.

II. THE MODEL

In Ref. 5 Schro¨der considers a Bose gas contained in ad-dimensional (d>3) cubic box with
Dirichlet boundary conditions on two opposite faces and periodic boundary conditions o
remaining surface. This can be interpreted as the model of a Bose gas enclosed between t
walls at a macroscopic distance. An interaction term is introduced that behaves locally lik
mean field interaction. This gives rise to the following Hamiltonian:

HL5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
j PN

Ñj ,L
2 D , ~2!

where

L5H xPRd:2
L

2
<xi<

L

2
,i 51,...,d21;0<xd<LJ ;V5Ld,

L* 5
2p

L
Zd213

p

L
N, Nk,L5a* ~ f k,L!a~ f k,L!,

f k,L5S 2

VD 1/2

exp@ i ~k1x11¯1kd21xd21!#sin~kdxd!,

lPR1, Ñj ,L5 (
$kPL* :kd5~p/L ! j %

Nk,L ,

NL5 (
kPL*

Nk,L .
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Schröder shows that the grand-canonical pressure of this so-called local mean field
coincides with the grand-canonical pressure of the usual mean field model, or imperfect Bo
with Hamiltonian

HL
MF5 (

kPL*
ekNk,L1

l

V
NL

2 , ~3!

which is a soluble model.
From this result, Schro¨der concludes that his model exhibits a phase transition with the s

critical behavior as the imperfect Bose gas, although macroscopic occupation of the groun
may not occur, and opens the question of whether generalized condensation, as defined in
does take place.

We study a model of an interacting Bose gas that is inspired by Schro¨der’s model, but that
contains a nontrivial part of the self-interaction terms appearing in the general two-body rep
interaction~1!. More precisely, we consider a system of identical bosons in a centered cubi
LPRd, d>3, with volumeV5Ld, with periodic boundary conditions for the wave functions, a
described by the Hamiltonian

HL5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
kPL*

Nk,L
2 D , ~4!

where now

L* 5
2p

L
Zd, Nk,L5ak,L* ak,L ,

ak,L* 5
1

AV
E

L
dx eik•xa* ~x!,

lPR1, NL5 (
kPL*

Nk,L .

Our model can also be compared to the Huang–Yang–Luttinger model, rigorously studied i
11. Compared to our model, here the interaction termsNk,L

2 appear with a minus sign and ar
therefore attractive perturbations of the imperfect Bose gas. The attractive character enhan~see
Ref. 11! the condensation in the zero mode. The repulsive character of these terms in our
should make condensation in the zero mode more difficult. Heuristically one might expect th
model is a candidate for nonextensive Bose–Einstein condensation.

First we give a new proof, inspired by a proof in Ref. 6, of the main result of Schro¨der, i.e.,
the equality of the grand-canonical pressure of this model and the grand-canonical pressur
imperfect Bose gas. From this we can immediately prove that there is no macroscopic occu
of any single-particle state.

For everym in R, denote

HL~m!5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
kPL*

Nk,L
2 D 2mNL , ~5!

and

HL
MF~m!5 (

kPL*
ekNk,L1

l

V
NL

2 2mNL . ~6!
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For a<0, let

C a5$tPC b~Rd!: inf
kPRd

~ek2tk2a!.0%,

with C b(Rd) the space of continuous bounded functions onRd. For tPC a, let

HL
t1a5 (

kPL*
~ek2tk2a!Nk,L .

First, we prove the following.
Lemma 1:

1

bV
ln tr e2bHL~m!>

1

bV
ln tr e2bHL

t1a
2

1

V
vL

t1a
„HL~m!2HL

t1a
…, ~7!

with

vL
t1a~A!5

tr e2bHL
t1a

A

tr e2bHL
t1a .

Proof: The functionxP@0,1#° ln tr eC1xD, for C andD self-adjoint is convex. Hence, defin
the convex functionf on @0,1# by

f ~x!5 ln tr e2b„xHL~m!1~12x!HL
t1a

….

For all a,b in @0,1#, f (a)2 f (b)2(a2b) f 8(b)>0, in particular,

f ~1!> f ~0!1 f 8~0!,

which immediately yields the stated inequality. h

We can now prove a first result.
Theorem 1: The grand-canonical pressure at chemical potentialm,

p̃~m!5 lim
V→`

p̃L~m!5 lim
V→`

1

bV
ln tr e2bHL~m!,

exists for everym in R and is given by

p̃~m!5pMF~m!5 inf
a<0

S p~a!1
~m2a!2

4l D ,

with pMF(m) the grand-canonical pressure of the imperfect Bose gas at chemical potentialm and
p(a) the free-gas grand-canonical pressure at chemical potentiala.

@The expression forpMF(m) is computed in Ref. 3.#
Proof: Since for everymPR, HL(m)>HL

MF(m), we have

p̃L~m!<pL
MF~m!,

and hence

lim sup
V→`

p̃L~m!< lim
V→`

pL
MF~m!5pMF~m!.

To prove the lower bound, we make use of Lemma 1. Fora<0 andtPC a, let
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r~k;t,a!5
1

eb~ek2tk2a!21
.

Then

vL
t1a~Nk,L!5r~k;t,a!,

vL
t1a~Nk,LNk8,L!5r~k;t,a!r~k8;t,a!, if kÞk8,

vL
t1a~Nk,L

2 !5r~k;t,a!„2r~k;t,a!11….

We calculate the rhs of~7!. The first term gives

1

bV
ln tr e2bHL

t1a
52

1

bV (
kPL*

ln~12e2b~ek2tk2a!!.

To calculate (1/V)vL
t1a

„HL(m)…, we write

HL~m!5 (
kPL*

~ek2m!Nk,L1
l

V (
kPL*

(
k8ÞkPL*

Nk,LNk8,L1
3l

2V (
kPL*

Nk,L
2 ,

hence

1

V
vL

t1a
„HL~m!…5

1

V (
kPL*

~ek2m!r~k;t,a!1
l

V2 (
kPL*

(
k8ÞkPL*

r~k;t,a!r~k8;t,a!1
cV

V
,

where

cV5
3l

2V (
kPL*

r~k;t,a!„2r~k;t,a!11….

Also,

1

V
vL

t1a~HL
t1a!5

1

V (
kPL*

~ek2tk2a!r~k;t,a!.

Substituting all this in~7!, we get

p̃L~m!>2
1

bV (
kPL*

ln~12e2b~ek2tk2a!!1
1

V (
kPL*

~m2tk2a!r~k;t,a!

2
l

V2 (
kPL*

(
k8ÞkPL*

r~k;t,a!r~k8;t,a!2
cV

V
.

Sincer(k;t,a) andcV , for V large enough, are bounded

lim inf
V→`

p̃L~m!>2b21E
Rd

dk

~2p!d ln~12e2b~ek2tk2a!!

1E
Rd

dk

~2p!d ~m2tk2a!r~k;t,a!2lS E
Rd

dk

~2p!d r~k;t,a! D 2

. ~8!

For a<0 the free-gas pressure is given by
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p~a!52b21E
Rd

dk

~2p!d ln~12e2b~ek2a!!

and

p8~a!5E
Rd

dk

~2p!d

1

eb~ek2a!21
.

Also, let rc5p8(0) as usual.
First, consider the casem,2lrc . Takinga,0 andt50 in ~8! we get

lim inf
V→`

p̃L~m!>p~a!1~m2a!p8~a!2l„p8~a!…2. ~9!

For m,2lrc , sincep8(a) is increasing andp8(0)5rc , the equation

p8~a!5
m2a

2l

has a unique solutiona* ,0. Takinga5a* in ~9!, we get

lim inf
V→`

p̃L~m!>p~a* !1
~m2a* !2

4l
5 inf

a<0
H p~a!1

~m2a!2

4l J 5pMF~m!,

which proves the theorem form,2lrc .
Consider now the casem>2lrc . Takea50 and an appropriatet in ~8!:

lim inf
V→`

p̃L~m!>2b21E
Rd

dk

~2p!d ln~12e2b~ek2tk!!

1E
Rd

dk

~2p!d ~m2tk!r~k;t !2lS E
Rd

dk

~2p!d r~k;t ! D 2

, ~10!

with

r~k;t !5
1

eb~ek2tk!21
.

For all d.0, taketdPC 0 such that

td~k!50, uku.d.

Then

E
Rd

dk

~2p!d r~k;td!5E
uku<d

dk

~2p!d r~k;td!1E
uku.d

dk

~2p!d

1

ebek21
.

Letting d→0, the second term on the rhs converges torc . Taketd such that the first term on th
rhs converges tom/2l2rc as d→0. Such a sequence oftd’s can be constructed rigorously b
using the Approximation theorem proved in Ref. 12. It certainly means thattd→0 asd→0. Hence
we get

E
Rd

dk

~2p!d r~k;td!→
m

2l
,
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asd→0, and thus

lim inf
V→`

p̃L~m!>p~0!1
m2

4l
> inf

a<0
H p~a!1

~m2a!2

4l J 5pMF~m!,

so that the theorem is proved form>2lrc as well. h

From Theorem 1 we can immediately derive that there is no macroscopic occupation o
single-particle state, in particular, the following.

Theorem 2: For everye.0 and for V large enough, we have, for every kPL* :

1

V
vL~Nk,L!,e,

wherevL is the finite-volume Gibbs state of HL(m).
Proof: We have

ebVpL
MF

~m!5tr e2bHL
MF

~m!5tr~e2bHL~m!e~bl/2V!SkPL* Nk,L
2

!5vL~e~bl/2V!SkPL* Nk,L
2

!ebVp̃L~m!.

Hence,

pL
MF5 p̃L~m!1

1

bV
ln vL~e~bl/2V!SkPL* Nk,L

2
!.

By Theorem 1 we get

lim
V→`

1

bV
ln vL~e~bl/2V!SkPL* Nk,L

2
!50.

From the Jensen inequality, i.e., forF a convex function andv a normal state,

v„F~X!…>F~v~X!!,

we get

vL~e~bl/2V!SkPL* Nk,L
2

!>e~bl/2V!SkPL* vL~Nk,L
2

!,

or

0<
l

2V2 (
kPL*

vL~Nk,L
2 !<

1

bV
ln vL~e~bl/2V!SkPL* Nk,L

2
!.

Hence

lim
V→`

1

V2 (
kPL*

vL~Nk,L
2 !50.

Since for eachkPL* ,

0<S 1

V
vL~Nk,L! D 2

<
1

V2 vL~Nk,L
2 !<

1

V2 (
k8PL*

vL~Nk8,L
2

!,

we get the Theorem. h
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III. BOSE–EINSTEIN CONDENSATION

In Ref. 7 it is stressed that Bose condensation does not necessarily manifest itself thr
macroscopic occupation of a single-particle state~the ground state usually!, but that there are, in
fact, two good candidates for the concept of macroscopic occupation of the zero-kinetic e
state. Macroscopic occupation of the ground state is said to occur when the number of part
the ground state becomes proportional to the volume; generalized condensation is said t
when the number of particles whose energy levels lie in an arbitrary small band above
becomes proportional to the volume. Obviously, the first implies the second. However, the s
can occur without the first; this is called nonextensive condensation. The concept of gene
condensation was first introduced in Ref. 13. More precisely, we have the following.

~i! Macroscopic occupation of the ground state if the limit

lim
V→`

1

V
vL~N0,L!

exists and is strictly positive;~ii ! generalized condensation if the limit

lim
d→0

lim
V→`

1

V (
$kPL* :ek,d%

vL~Nk,L!

exists and is strictly positive;~iii ! nonextensive condensation if the limit

lim
V→`

1

V
vL~N0,L!50,

but nevertheless the limit

lim
d→0

lim
V→`

1

V (
$kPL* :ek,d%

vL~Nk,L!

exists and is strictly positive.
Examples of these different occurrences of Bose condensation in the free Bose gas, dep

on how the bulk limit is taken, can be found in Refs. 7–9.
As is proved in Theorem 2, there is no macroscopic occupation of the ground state

system. However, as we will show, there is generalized condensation. In other words, we
model for an interacting Bose gas displaying nonextensive condensation.

Our approach is based on Ref. 10, where the imperfect Bose gas is treated. The sy
given by the local HamiltonianHL , with periodic boundary conditions

HL5 (
kPL*

ekNk,L1
l

V S NL
2 1

1

2 (
kPL*

Nk,L
2 D 2mLNL , ~11!

as specified before, andmL is determined by the constant densityr.0 equation:

1

V
vL~NL!5r.

We study the equilibrium state of this system in the grand-canonical ensemble. Th
technique is the equivalence of the equilibrium condition or Gibbs statevL with the correlation
inequalities14,15
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bvL~X* @HL ,X# !>vL~X* X!ln
vL~X* X!

vL~XX* !
, ~12!

for all local observablesX belonging to the domain of@HL ,•#. In particular, we take forX
polynomials in the creation and annihilation operators. We prove the occurrence of nonext
condensation in this model, and follow closely the method used in Ref. 10.

Lemma 2:;k, j PL* :
(i)

bvLS 2ekNk,L1S mL2
2l

V
NLDNk,L2

l

V
Nk,L

2 1
3l

2V
Nk,LD>vL~Nk,L!ln

vL~Nk,L!

vL~Nk,L!11
;

~13!

(ii)

vLS S mL2
2l

V
NLDNk,LD<vLS e jNk,L1

4l

V
Nj ,LNk,L1

3l

2V
Nk,LD . ~14!

Proof: For (i), the result follows by takingX5ak in the correlation inequality~12!. One gets
(ii) by taking

X5ajNk,L
1/2 ,

in the inequality

vL~@X* ,@HL ,X## !>0,

which follows immediately from~12! by adding the correlation inequality forX and the complex
conjugate of the correlation inequality forX* . h

Lemma 3: For everyd.0, for every V and for every kPL* , uku>d,

vL~Nk,L!<
1

eck~L!21
1

4l

V
vL~Nj ,LNk,L!

1

12e2cd~L! ,

with

ck~L!5bS ek2
d2

8m
2

3l

V
,D ,

cd(L)5ck(L)u uku5d and jPL* , u j u<d/2.
Proof: Substitution of~14! in ~13!, changing the sign, and using the trivial boundvL(Nk,L

2 )
>0 we get

bS ek2e j2
3l

V DvL~Nk,L!2
4l

V
vL~Nj ,LNk,L!<vL~Nk,L!ln

vL~Nk,L!11

vL~Nk,L!
. ~15!

Taked.0 arbitrary,uku>d, andu j u<d/2.
Using e j<d2/8m, ~15! becomes

ck~L!vL~Nk,L!2
4l

V
vL~Nj ,LNk,L!<vL~Nk,L!ln

vL~Nk,L!11

vL~Nk,L!
.

The lemma now follows from convexity arguments on the rhs: we want to solve fort the inequal-
ity
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ct2b<t ln
t11

t
,

with c andb positive constants andtPR1. It follows that t<t2 , with t2 , satisfying

ct22b5t2 ln
t211

t2
.

One can write this ast<t11(t22t1), with

t15
1

ec21
.

Let f (t)5t ln(t11)/t, f is concave, hence

f ~ t2!2 f ~ t1!2~ t22t1! f 8~ t1!<0,

and

t22t1<b
1

t2e2c .

Substitute this into the inequalityt<t11(t22t1), one gets

t<
1

ec21
1b

1

12e2c .

Finally, useuku>d in the second term on the rhs to prove the lemma. h

Lemma 4: For everye.0, V large enough and jPL* :

1

V2 vL~NLNj ,L!,e.

Proof: ~13! gives

bvLS 2e jNj ,L1S mL2
2l

V
NLDNj ,L1

3l

2V
Nj ,LD>vL~Nj ,L!ln

vL~Nj ,L!

vL~Nj ,L!11
>21.

This can be rewritten in the form

2l

V2 vL~NLNj ,L!<
1

bV
1S mL1

3l

2V
2e j D 1

V
vL~Nj ,L!. ~16!

Taking X5aj in the inequality

vL~†X* ,@HL ,X#‡!>0,

gives

mL<2lr1e j1
4l

V
vL~Nj ,L!1

3l

2V
.

Putting this into~16! gives
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2l

V2 vL~NLNj ,L!<
1

bV
1S 2lr1

3l

V D 1

V
vL~Nj ,L!1

4l

V2 vL~Nj ,L!2.

Using Theorem 2 proves the lemma. h

We now prove the existence of generalized condensation in the thermodynamic limV
→`, taken with constant particle densityr.

Theorem 3: One has (i)

lim
d→0

lim
V→`

1

V (
$kPL* :uku,d%

vL~Nk,L!>r2E
Rd

dk

~2p!d

1

ebek21
;

(ii) for every r.0, there is abc such that for allb.bc :

0, lim
d→0

lim inf
V→`

1

V (
$kPL* :uku,d%

vL~Nk,L!< lim
d→0

lim sup
V→`

1

V (
$kPL* :uku,d%

vL~Nk,L!<r.

Proof: We have clearly

1

V (
$kPL* :uku,d%

vL~Nk,L!5r2
1

V (
$kPL* :uku>d%

vL~Nk,L!.

Applying Lemma 3 gives

1

V (
$kPL* :uku,d%

vL~Nk,L!>r2
1

V (
$kPL* :uku>d%

1

eck~L!21

2
4l

V2 (
$kPL* :uku>d%

vL~Nj ,LNk,L!
1

12e2cd~L! . ~17!

Takee.0 arbitrary, andV large enough such that Lemma 4 is satisfied. This implies that

1

V2 (
$kPL* :uku>d%

vL~Nj ,LNk,L!<
1

V2 vL~NLNj ,L!,e.

Hence takingV large enough, the second term on the rhs of~17! can be made arbitrarily close t

E
uku>d

dk

~2p!d

1

eb~ek2d2/8m!21
,

whereas the third term is made arbitrarily small.
Hence in the limitV→`, one gets

lim
V→`

1

V (
$kPL* :uku,d%

vL~Nk,L!>r2E
uku>d

dk

~2p!d

1

eb~ek2d2/8m!21
.

Now take the limitd→0 to get(i).
The function

b° f ~b!5E
Rd

dk

~2p!d

1

ebek21

is clearly decreasing inb.0 and, furthermore,f (b)→` for b→0, and f (b)→0 for b→`.
Hence, for everyr.0 there existsbc.0, defined by
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r5E
Rd

dk

~2p!d

1

ebcek21
.

Together with(i) this proves(ii) . h

Theorem 1 proves that the model~11! has the same pressure as the imperfect Bose
Theorems 2 and 3 prove that the model~11! shows a Bose–Einstein condensation exactly as
imperfect Bose gas, be it that the nature of the condensation is different. One aspect of this
the ground state (k50) condensation of the imperfect Bose gas is unstable against any arb
small repulsive perturbation of the type (g/V)(kPL* Nk,L

2 , for any g.0. The condensation be
comes nonextensive. However, on the level of the thermodynamics the models are similar

The natural question to ask is, whether the equilibrium states of the two models coincid
the imperfect Bose gas, this problem is solved, e.g., in Ref. 10. We are not going into the d
but the technique of Ref. 10 can also be used in order to solve rigorously the equilibrium
KMS—equations of our model. The result is that all equilibrium states are of the same type
ones of the imperfect Bose gas. In particular, the equilibrium states are also integrals over a
quasifree or generalized free states.

On the other hand, it is interesting to remark the following. Given this result, one migh
whether the variational principle of statistical mechanics, formulated in the thermodynamic
but restricted to the set of quasifree states, does also give the results of this paper, nam
existence of condensation and the equilibrium states. Performing this program, one remar
the particular type of condensation is not recovered by this method. Hence, for the time bein
only way to keep track of it is to follow closely the details of the thermodynamic limit, as is d
above. In this work we illustrate clearly that care must be taken of this limit and that stati
mechanics remains the theory of really handling the thermodynamic limit.
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It is argued that extended, reducible, and generalized supersymmetry~SUSY! are
common in many systems of standard nonrelativistic quantum mechanics. For ex-
ample, it is proved that a well-studied quantum mechanical system of a spin-1

2

particle interacting with constant and homogeneous magnetic field admits the
N54 SUSY and has the internal symmetry so~3,3!. Then an approach of energy
spectra of a SUSY nature is presented and developed. It is applied to a wide class
of systems described by the Schro¨dinger–Pauli equation admittingN53, N54,
andN55 SUSY. Some of these supersymmetries have a very peculiar property—
their supercharges are realized without usual fermionic variables. It is shown that
for them, the usual extensionN53 to N54 SUSY is no longer guaranteed.
© 1999 American Institute of Physics.@S0022-2488~99!00203-0#

I. INTRODUCTION

A beautiful and rich concept of supersymmetry~SUSY! has been introduced by sever
authors in various contexts~see Refs. 1 but also Refs. 2, where the idea of SUSY was formu
in a somewhat rudimental form!. Since that time it has played a more and more important rol
physics and mathematics, in general, and in modern particle physics and quantum mechan3 in
particular. This is due to the fact that SUSY presents a powerful tool for transforming boso
fermions, and vice versa, for formulating theories with nontrivial unification of space–time
internal symmetries, for formulating string theories and their most powerful dualities~refer, e.g.,
to Refs. 4–6!, for understanding the relations between spectra of different Hamiltonians as w
for explaining degeneracy of their spectra, for constructing exactly or quasiexactly solvabl
tems, for justifying formulations of initial and bound problems, etc.; see, e.g., surveys.4,7,8

In this work we shall concentrate on quantum mechanical systems since they provide a g
for testing the principal question: whether SUSY is realized in nature or not, free of the com
ties of field theories. Examples of such systems~like interaction of a spin-12 particle with the
Coulomb or constant and inhomogeneous magnetic field!, which admit exactN52 SUSY, are
well known9,10 ~see also Refs. 7, 8 and references therein!. Here we search for problems wit
extended~N53 andN54! SUSY.

In this connection let us remind you that the quantum mechanical models that includeN.2
supercharges were investigated, e.g., in Refs. 11, and examples of quantum mechanical
with extended SUSY were discussed in Refs. 12–16. In Refs. 17 the so-called ‘‘gener
SUSY’’ was proposed; it includes extended SUSY as a particular case. It was pointed out in
12–14 that some quantum mechanical models are invariant wrt reducible representations of
algebra; we will refer to the related symmetry as ‘‘reducible SUSY.’’

Of course it is interesting to search for physical systems that admit exact~especially extended

a!Electronic mail: niederle@fzu.cz
12800022-2488/99/40(3)/1280/14/$15.00 © 1999 American Institute of Physics
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reducible, or generalized! SUSY. First, they bring additional indications that SUSY is indeed
symmetry of nature, and second, for such systems we have standard methods for their ana
our disposal.

In fact, it will be shown in the present paper that the extended, reducible, and gener
SUSYs are common in many problems of standard nonrelativistic quantum mechanics. F
ample, we prove that the well-studied system of a spin-1

2 particle interacting with a constant an
homogeneous magnetic field, which can be described by the Schro¨dinger–Pauli equation, admit
N54 SUSY andN52 reducible SUSY as well.

In Sec. II we show that the extended, reducible, and generalized SUSY appear natura
wide class of problems of standard one-dimensional SUSY quantum mechanics. In Sec.
consider the quantum mechanical system of a spin-1

2 particle interacting with a constant an
homogeneous magnetic field and prove that it hasN54 extended SUSY. The reducible SUSY an
so~3,3! symmetry of this model are discussed in Sec. III C.

In Sec. IV we search for extended and reducible SUSY of the Schro¨dinger–Pauli equation for
a particle interacting with a static inhomogeneous magnetic field. We find a wide class of sy
admitting these supersymmetries and discuss briefly their physical consequences.

II. ADDITIONAL EXTENDED AND REDUCIBLE SUSY OF SUPERSYMMETRIC QUANTUM
MECHANICS

Supersymmetric quantum mechanical systems are described by the Schro¨dinger equation with
a matrix potential,3

Ĥc[ 1
2~p21W21s3W8!c5Ec, ~2.1!

wherep52 i (]/]x), W5W(x) is a superpotential,W85]W/]x, ands3 is the Pauli matrix of the
form

s35S 1 0

0 21D .

It is well known that Eq.~2.1! admits the following specific supersymmetries~supercharges!:

Q15
1

&
~s1p1s2W!, Q25

1

&
~s2p2s1W!, ~2.2!

which satisfy the superalgebra

$Qa ,Qb%52dabH, @Qa ,H#50, ~2.3!

wherea,b51,2 and@•,•# and $•,•% denote a commutator and anticommutator, respectively.
Let us demonstrate that, in addition to the transparentN52 SUSY, Eq.~2.1! admitsN53

extended SUSY provided the corresponding superpotentialW(x) is an even function ofx.
Proposition 1~Ref. 12!: Let W(2x)5W(x), then there exists the third supercharge,

Q35 is1RQ1 , ~2.4!

satisfying relations~2.3! for a51,2,3, together with operators~2.2!. HereR is defined by

Rc~x!5c~2x!. ~2.5!

Proof: The proposition can be proved by a simple direct calculation, taking into accoun
relations

@s1R,Q2#5$s1R,Q1%50, ~s1R!251.
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Thus, even the simplest SUSY model~2.1! can admit the extended SUSY generated by th
supercharges.

Another interesting possibility is connected with the fact that the representation of supe
bra ~2.2!, ~2.3! can be reducible. This occurs for the systems described by Eq.~2.1! with odd
superpotentials.

Proposition 2~Refs. 12,13!: Let W(2x)52W(x); then the representation~2.2! of superal-
gebra~2.3! is reducible.

Proof: For oddW(x) there exists an invariant operator, namely,

I 5s3R, ~2.6!

which commutes with any element of algebra~2.3!.
Using the mappingI→I 85UIU †, where

U5R12 is2R2 , R65 1
2~16R!, ~2.7!

the operator~2.6! is transformed to the diagonal matrix,

I 385s3 . ~2.8!

The corresponding transformed superchargesQa85UQaU8 and the HamiltonianH85UHU†

commute withs3 and thus are diagonal too:

Qa85S q1
a 0

0 q2
a D , Ĥ85S Ĥ1 0

0 Ĥ2

D , a51,2. ~2.9!

Here

q6
1 5 iRP6W, q6

2 56p2 iRW, H65 1
2~p21W26W8R!. ~2.10!

Thus, superchargesQa,a8 51,2, are expressed as the direct sum ofq1
a andq2

a Q.E.D.
Propositions 1 and 2 indicate how to find extended and reducible SUSY of realistic t

dimensional systems by first determining and then applying the appropriate involutivediscrete
symmetries~e.g., parities! of the system.

It is easy to see that the above-obtained extended and reducible supersymmetries im
existence of some generalized ones,17 i.e., supersymmetries satisfying the relations17

Q25Ĥ, $I a ,Q%50, I a
251, I aI b56I bI a , a51,2,..., ~2.11!

where all involutionsI a either commute among themselvesor anticommute.
Indeed, for even superpotentials there exist the anticommuting involutionsI 15s3 and

I 25s1R, which, together withQ5Q1 , satisfy relations~2.11!. In the case of odd superpotential
relations~2.11! are satisfied by superchargeQ equal toQ1 , together with the commuting involu
tions I 15s3 and I 25R ~compare with Refs. 17!.

In the systems analyzed later on we shall find their extended and reducible SUSY too.
ever, in contradistinction to the systems studied in the present section, the existence o
SUSYs will not imply the existence of the corresponding generalized SUSY.

III. SPIN-1
2 PARTICLE IN CONSTANT, HOMOGENEOUS MAGNETIC FIELD

A. Degeneracy of the spectrum of energy

Consider a quantum mechanical system consisting of the spin-1
2 charged particle interacting

with a constant and homogeneous magnetic field. In a nonrelativistic approximation, this sys
described by the Schro¨dinger–Pauli equation,
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2mEc5Ĥc, Ĥ5p22 1
2egs–H, ~3.1!

with

pa52 i
]

]xa
2eAa , a51,2,3, s5~s1 ,s2 ,s3!, g52, ~3.2a!

and

A15eHx2 , A25A350, eH5 i p3p5e~0,0,H !. ~3.2b!

Here sa are the Pauli matrices, andH is a constant characterizing the strength of the magn
field H.

The system~3.1! is exactly solvable.18 The corresponding eigenvalues of energyE ~Landau
levels! are given by

2mE52neH1p3
2, n50,1,2,... . ~3.3!

For anynÞ0 there exist two independent eigenfunctions~see, e.g., Ref. 19!:

c1,p1 ,p3
5exp~ ip1x11 ip3x3!exp~2y2/2!S Hn~y!

Hn21~y! D ,

~3.4!

c2,p1 ,p3
5exp~ ip1x11 ip3x3!exp~2y2/2!S Hn~y!

2Hn21~y! D ,

with Hn being Hermite polynomials,H2150 and

y5AeH̄x22
p1

AeH̄

. ~3.5!

For n50 the eigenfunctionsc1 andc2 coincide.
Thus, any energy levels~except the ground one! are two-fold degenerate due to theN52

SUSY of Eq. ~3.1!. Moreover, there exists the infinite degeneracy of any energy level du
independence ofE on p1 .18

In spite of the fact that symmetries and supersymmetries of Eq.~3.1! have been studied quit
intensively~see, e.g., Refs. 6–8, 20, 21!, we shall find a new, additional~extended! SUSY for this
equation.

Starting with~3.4! and taking into account the quadratic dependence of energyE on p3 and
independence ofE on p1 , we can write, for instance, six additional solutions corresponding to
same energy~3.3!, namely

c3,p1 ,p3
5c1,2p1 ,p3

, c4,p1 ,p3
5c1,2p1 ,2p3

, c5,p1 ,p3
5c1,p1 ,2p3

,

~3.6!
c6,p1 ,p3

5c2,2p1 ,p3
, c7,p1 ,p3

5c2,2p1 ,2p3
, c8,p1 ,p3

5c1,p1 ,2p3
.

A bit surprisingly, the corresponding eight-fold degeneracy of energy levels can be interpre
caused byN54 extended SUSYof the system~3.1!.

B. Extended SUSY

It is well known that whenever the gyromagnetic ratiog of the particle is equal to 2, Eq.~3.1!
admitsN52 SUSY.10 Here we demonstrate that this SUSY is reducible and that there exi
more extended, namely,N54 SUSY for ~3.1! in addition.
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A standard supercharge for Eq.~3.1! has the form4

Q15s–p, Q1
25Ĥ. ~3.7!

The remaining three additional supercharges can be constructed using the fact that~3.1! is invari-
ant wrt the following three discrete transformations:

c→ iR3c, c→CR1c, c→CR2c, ~3.8!

whereRa (a51,2,3) are the space reflection transformations,

Rac~x!5sauac~x!, uac~x!5c~r ax!. ~3.9a!

Here

r 1x5~2x1 ,x2 ,x3!, r 2x5~x1 ,2x2 ,x3!, r 3x5~x1 ,x2 ,2x3!, ~3.9b!

andC5 is2c, wherec is the operator of complex conjugation,

cc~x!5c* ~x!. ~3.10!

Note that operators defined in~3.8!–~3.10! satisfy the following relations:

$Ra ,s–p%5$Ra ,C%5$CR1 ,s–p%5$CR2 ,s–p%50,
~3.11!

Ra
252C251, a51,2,3.

Thus, using~3.7!, ~3.11! we can see that the operators

Q15s–p, Q25 iR3s–p, Q35CR1s–p, Q45CR2s–p ~3.12!

fulfill the following relations:

$Qk ,Ql%52gklĤ, @Qk ,Ĥ#50, ~3.13!

wherek,l 51,2,3,4,g115g2252g3352g4451; gkl50, kÞ l . In other words, operators~3.12! are
supercharges generating theN54 extended SUSY of Eq.~3.1!.

We notice that choosing the basis

Q̂15
1

&
~Q11Q3!, Q̂25

1

&
~Q21Q4!, Q̂1

†5
1

&
~Q12Q3!, Q̂2

†5
1

&
~Q22Q4!, ~3.14!

it is possible to represent the commutation and anticommutation relations~3.13! in a more familiar
form,

$Q̂a ,Q̂b%50, $Q̂a ,Q̂b
†%52dabĤ,

@Q̂a ,Ĥ#50, a,b,51,2.

Thus, we have proved that the well-knownN52 SUSY of Eq.~3.1! can be extended to
N54 SUSY, taking into account involutive symmetries~3.8!. Acting by supercharges~3.12! on
standard solutions~3.4! we obtain the set of eight linearly independent solutions~3.4!, ~3.6!. The
interpretation of the corresponding eight-fold degeneracy is given in the next section.
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C. Internal symmetries and reducible SUSY

A direct consequence of theN54 SUSY is a specific four-fold degeneracy of the correspo
ing nonground states.11 However, we have shown that system~3.1! has eight-fold degeneracy. Le
us demonstrate that this is due to the existence of a special internal symmetry algebra. This
appears as follows.

First, for any nonzero eigenvalueE of Hamiltonian~3.1! we can choose the following set o
symmetry operators:

S6k5
1

2AE
Qk , S655

1

2
R3 , Smn5@S6m ,S6n#. ~3.15!

HereQk andR3 are operators defined in~3.9!, ~3.12!, k51,2,3,4 andm,n51,2,3,4,5. However,
there exists an additional symmetry operator, namely, the operator

I 15 i ~s1p22s2p1!p3R3 , ~3.16!

which commutes with any of the operators~3.15!.
Thus, taking into account that operatorsS6n form the Clifford algebra

$2S6n,2S6m%52gmn , ~3.17!

with nonzero components ofgmn beingg115g2252g332g445g5551, we can easily find that the
symmetry operators~3.15! and ~3.16! satisfy the following commutation relations:

@Skl ,Smn#5gklSln1glnSkl2gknSlm2glmSkn , ~3.18a!

@Skl ,I 1#50 ~3.18b!

~with k,l ,m,n51,2,3,4,5,6 andg66521!, i.e., they form the central extension of Lie algeb
so(3,3) by I 1 .22 Its invariant operators are given by

C15 1
2SklS

kl[ 15
4 , C25 1

2SklS
lnSn fS

f k[ 315
16 ,

~3.19!

C35
1

6!
emnrslkS

mnSrsSlk[
1

8
R1R2 , C45I 1 .

Using ~3.11!, ~3.12! it is easy to show that the eigenvalues of operatorsC3 andC4 are6 1
8 and

6p3A2neH, respectively. Four possible combinations of these eigenvalues specify four ort
nal subspaces of the solutions of Eq.~3.1! for p3 andn different from zero. Thus, operators~3.15!
appear to realize a reducible representation ofso(3,3), namely, the direct sum of irreducibl

representations 2D( 1
2

1
2

1
2) % 2D( 1

2
1
2 2 1

2) of the algebra so~3,3!.23 The corresponding representatio
space is 16-dimensional overR, so effectively we have the eight-fold degeneracy over the field
complex numbers.

Restricting ourselves to linear symmetries~i.e., to those including no antilinear operator
complex conjugation!, N54 SUSY is reduced toN52 SUSY, which is generated by supe
chargesQ1 and Q2 specified in~3.12!. However, this SUSY is reducible since there exist tw
linear symmetries for~3.1!, namely,C3 andC4 ~3.19!, which are involutive up to constant factor
and commute with superchargesQ1 andQ2 :

@C3 ,Qa#5@ I 1 ,Qa#50, @ I 1 ,C3#50, a51,2. ~3.20!

Analogously, as in the proof of Proposition 2 we can diagonalizeC3 andC4 and reduce each o
superchargesQ1 , Q2 to a direct sum of four supercharges. This yields four invariant spacesF (a)

(a51,2,3,4) of superchargesQ1 andQ2 with basis elementsF1
(a) , F2

(a) , where
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F1
~1!5c1,p1 ,p3

1c1,2p1 ,p3
1 ic1,p1 ,2p3

1 ic1,2p1 ,2p3
,

~3.21!
F2

~1!5c2,p1 ,p3
1c2,2p1 ,p3

2 ic2,p1 ,2p3
2 ic2 ,2p1 ,2p3

;

F1
~2!5c1,p1 ,2p3

1c1,2p1 ,2p3
1 ic1,p1 ,p3

1 ic1,2p1 ,p3
,

~3.22!
F2

~2!5c2,p1 ,2p3
1c2,2p1 ,2p3

2 ic2,p1 ,p3
2 ic2,2p1 ,p3

;

F1
~3!52c1,p1 ,p3

1c1,2p1 ,p3
2 ic1,p1 ,2p3

1 ic1,2p1 ,2p3
,

~3.23!
F2

~3!52c2,p1 ,p3
1c2,2p1 ,p3

1 ic2,p1 ,2p3
2 ic2,2p1 ,2p3

;

F1
~4!52c1,p1 ,2p3

1c1,2p1 ,2p3
2 ic1,p1 ,p3

2 ic1,2p1 ,p3
,

~3.24!
F1

~4!52c2,p1 ,2p3
1c2,2p1 ,2p3

1 ic2,p1 ,p3
2 ic1,2p1 ,p3

;

wherec1,p1 ,p3
andc2,p1,p3

are functions defined in~3.4!.

IV. SPIN-1
2 PARTICLE IN A STATIC, NONHOMOGENEOUS MAGNETIC FIELD

A. Extended SUSY

In this section we shall show that the system of a spin-1
2 particle interacting with various

magnetic fields has extended SUSY too, provided the external magnetic field has definite p
Starting with reflections~3.9b! we find that the corresponding parity properties of vec

function A(x) ~3.2b! are of the form

A~r 1x!52r 1A~x!, A~r 2x!52r 2A~x!, and A~r 3x!5r 3A~x!. ~4.1!

Relations~4.1! are satisfied by a large class of potentials, which includes~3.2b! as a particular
case. For all such potentials the corresponding equation~3.1! is invariant wrt involutions~3.8!, and
so admits the extended SUSY generated by supercharges~3.12!. Moreover, Eq.~3.1! for g52 and
an arbitrary uniform magnetic field, i.e., the field

A15A1~x1 ,x2!, A25A2~x1 ,x2!, A350, ~4.2!

admits all internal symmetries described in Sec. III B, providedA~x! satisfies relations~4.1!.
Other systems with extended SUSY can be found by extending reflections~3.9b! to the

eight-dimensional group of involutions, i.e., by adding the transformations

r 12x5~2x1 ,2x2 ,x3!, r 31x5~2x1 ,x2 ,2x3!, r 23x5~x1 ,2x2 ,2x3!,
~4.3!

r 123x5~2x1 ,2x2 ,2x3!, Ix5x,

to reflections~3.9b!.
We notice thatr a (a51,2,3) andr 123 are reflections whiler ab (a,b51,2,3) are rotations.
Let us suppose now that the vector potentialA~x! has definite parities wrt a subset of tran

formations ~3.9b! and ~4.3!. All possible transformations for the vector potential with defin
parities wrt ~9.3b! and ~4.3!, which are compatible with the Lorentz gaugep–A50, can be
expressed as follows:

A~r abx!5r abA~x!, a,b,51,2,3, ~4.4a!

A~r ax!5r aA~x!, ~4.4b!
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A~r 123x!52A~x!, ~4.4c!

and

A~r abx!52r abA~x!, ~4.5a!

A~r ax!52r aA~x!, ~4.5b!

A~r 123x!5A~x!. ~4.5c!

It is easy to see that wheneverA~x! transforms according to one of the relations~4.4a!–~4.4c!
or ~4.5a!–~4.5c! ~for fixed values of indicesa,b! the equation~3.1! remains invariant wrt this
transformation providedc~x! cotransforms accordingly, i.e., via the relations

c~x!→ iRaRbc~x![Rabc~x!, ~4.6a!

c~x!→Rac~x!, ~4.6b!

c~x!→R1R2R3c~x![Rc~x!, ~4.6c!

or

c~x!→ is2cRac~x![CRabc~x!, ~4.7a!

c~x!→ is2cRac~x![CRac~x!, ~4.7b!

c~x!→ is2cRc~x![CRc~x!, ~4.7c!

respectively. HereRa andc are the operators introduced in~3.9!, ~3.10!.
Transformations~4.6b!–~4.7c! are involutions anticommuting withs–p, so yieldingN52

SUSY with supercharges given by

Q15s–p, Q25 iR̂s–p, ~4.8!

where R̂ denotes the relevant operators from~4.6b!–~4.7c! @i.e., for the symmetry~4.4b! the
operatorR̂5Ra8 , for ~4.4c! the operatorR̂5R, etc.#.

More complicated cases, in which the vectorA~x! has the definite transformation properti
wrt combined parities, can be discussed analogously. First, using the group properties of
tions ~3.9b!, ~4.3!, it is easy to show that wheneverA~x! has definite parities wrt two of thes
involutions, it has also the definite parity wrt their product. Requiring definite parities wrt var
triplets of involutions enumerated in~3.9b!, ~4.3!, we receive cases that are either equivalen
those with the definite transformation properties wrt doublets of parities or wrt all eight inv
tions ~3.9b!, ~4.3!.

If A~x! satisfies two compatible relations from~4.4! and ~4.5! simultaneously, then Eq.~3.1!
with g52 admitsN52 or N53 SUSY. All these nonequivalent possibilities are enumerate
the Appendix. Here we consider only one example, namely, when the vector potential h
property

A~r 1x!5r 1A~x!, A~r 2x!5r 2A~x!, ~4.9!

but has no definite parity wrt reflectionr 3 . The related supercharges are of the form

Q15s–p, Q25 iR1s–p, and Q35 iR2s–p. ~4.10!
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They satisfy relations~2.3! @where Ĥ is Hamiltonian~3.1!, a,b51,2,3# and thus generate th
symmetry algebra equal toN53 SUSY for the system. This SUSY causes a four-fold degene
of the corresponding~nonground! energy levels, since for any nonzeroE it yields the four-

dimensional representationD( 1
2

1
2) % D( 1

22 1
2) of the Lie algebraso(4) generated by

S4a5
1

2AE
Qa , Sab52 i @S4a ,S4b#. ~4.11!

The most extended,N54 andN55 SUSY appears in the cases for which the vector poten
has definite parities wrt all involutions~3.9b!, ~4.3!. In addition to ~4.1!, there are three more
possible transformation properties ofA~x!:

A~r ax!5A~x!, a51,2,3, ~4.12!

A~r ax!5A~x!, A~r bx!5A~x!, A~r cx!52A~x!,
~4.13!

aÞb, bÞc, cÞa, c is fixed,

and

A~r ax!52A~x!, a51,2,3. ~4.14!

They allow us to construct the corresponding supercharges, namely,

Q15 iR1s–p, Q25 iR2s–p, Q35 iR3s–p, Q45s–p; ~4.15!

Q05CRcs–p, Q15s–p, Q25 iRas–p, Q35 iRbs–p; ~4.16!

and

Q15CR1s–p, Q25CR2s–p, Q35CR3s–p, Q45CRs–p, Q55s–p, ~4.17!

for the cases~4.12!, ~4.13!, and~4.14!, respectively.
Operators~4.15! and Hamiltonian~3.1! satisfy relations~2.3! for a,b51,2,3,4 and thus gen

erateN54 extended SUSY. The corresponding internal symmetries reduce to the algebraso(5)
whose basis elements@constructed analogously to~4.11!# generate the four-dimensional irredu
ible representationD(1/2 1/2 1/2). Thus, for the system~3.1!, ~3.2a! we can expect a four-fold
degeneracy of nonground energy levels whenever the vector potential of an external field s
the relations~4.12!.

The operators in~4.16! and ~4.17! satisfy the relations~3.13! for g0052g1152g2252g33

51 and 2g1152g2252g335g445g5551, respectively, and thus generateN54 and N55
SUSY.

B. Reducible SUSY

In this section the involutions~4.6!, ~4.7! are used to find out reducible SUSY for system
described by the equations~3.1! with g52 and vector potentialsA~x!.

First, let us assume that the parity properties of the vector potential are specified by re
~4.12! and ~4.13!. Then the corresponding equation~3.1! admitsN54 SUSY. Moreover, there
exist the involutions

I 5R23 ~4.18!

and
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I ~c!5CRab , a,bÞc, ~4.19!

commuting with pairs of superchargesQ1 , Q2 from ~4.15! andQ0 , Q1 from ~4.16!, respectively,
so that the correspondingN52 SUSY is reducible.

If parities of the vector potential are specified by relations~4.14!, then there exists the invo
lution

I 5R23, ~4.20!

which commutes with a triplet of supercharges, namely, with superchargesQ1 , Q2 , andQ3 of
~4.16!. Consequently, the related equation~3.1! admitsN53 reducible SUSY.

If the vector potential satisfies all relations~4.1! then there exists the involution

I 5R12, ~4.21!

commuting with all four supercharges~3.12!, and so the corresponding system hasN54 reducible
SUSY.

Indeed, diagonalizing involutions~4.18!–~4.21!, the corresponding supercharges are tra
formed to block diagonal forms. For instance, for involutions~4.18! and supercharges~4.15!, we
obtain

I→UIU †5s3 , Qa→UQaU†5 1
2~11s3!Qa

11 1
2~12s3!Qa

2 , a51,2, ~4.22!

where

U5
1

&
~11s3I !, U†5

1

&
~12s3I !, ~4.23!

and

Q1
15~p12 ip2!u231p3 , Q2

15~ ip11p2!u11 ip3u123, ~4.24!

Q1
25~2p12 ip2!u232p3 , Q2

15~ ip12p2!u12 ip3u123, ~4.25!

with uab5uaub , u1235u1u2u3 , and operatorsua defined in~3.9a!.
The operators~4.23!, together with

Ĥ5Ĥ15p222e@H31~ iH 22H1!u23#, ~4.26!

form superalgebra~2.3!, while operators~4.24! satisfy ~2.3! with the Hamiltonian of the form

Ĥ5Ĥ25p212e@H32~H11 iH 2!u23#. ~4.27!

HereH1 , H2 , andH3 denote the components of the magnetic field strength.
The supercharges generating reducible SUSY for other systems described by~3.1! can be

diagonalized in a similar way. The explicit form of the corresponding transformation operat
given in the Appendix.

Let us note that supercharges~4.23!, ~4.24! depend on three variablesx1 ,x2 ,x3 and have a
very peculiar property: they include no fermionic variables.

V. DISCUSSION

In this article we have described the approach for a systematical study of quantum sy
whose symmetry group includes extended SUSY and whose degeneracy of energy spectra
SUSY nature.
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In Sec. IV, requiring definite parity properties of the vector potential, we find a numbe
quantum mechanical systems withN53, N54, andN55 SUSY.

It is necessary to stress that there exist a lot of realistic physical systems whose parities
required relations~4.1!, ~4.12!–~4.14!. In addition to the vector potential of the constant magne
field, given by relations~3.2b!, we present here as examples the potential of an infinite stra
conductor with the constant currentI directed along the third coordinate axis,

A15A250, A352
I

2p
ln~x1

21x2
2!, ~5.1!

superpositions of potentials~5.1! that are generated by two or four infinite straight conduct
shifted by distance 2b ~two neighbor currents have opposite directions!,

A15A250, A352
I

4p
lnF ~x12b!21x2

2

~x11b!21x2
2G , ~5.2!

A15A250, A352
I

4p
ln

@~x11b!21~x21b!2#@~x12b!1~x22b!2#

@~x11b!21~x22b!2#@~x12b!21~x21b!2#
, ~5.3!

and the magnetic octopole potential,16

A15
a2m

4p

x1~x22x2
2!

x7 , A25
a2m

4p

x2~x22x1
2!

x7 , A350. ~5.4!

Parities of potentials~5.1!, ~5.2!, ~5.3!, and~5.4! are given by relations~4.1!, ~4.13!, ~4.14!, and
~4.12!, respectively.

Moreover, analyzing various superpositions of magnetic dipole and straight conductor p
tials, it is possible to generate models of physical systems with any parity properties enum
in ~A1!–~A3!, ~A8!–~A12!.

The very existence of such systems presents a strong indication that the extended S
indeed realized in nature. Moreover, knowledge of extended SUSY for systems described
Schrödinger–Pauli equation enables us to predict the specific degeneracy of the corresp
energy levels. This degeneracy can be removed by adding a small symmetry-breaking ter
responding, e.g., to the interaction with a weak external electric field and thus experime
verified.

We did not discuss the question of whether the found extended SUSY is exact or broke
this end it is necessary to analyze degeneracy of the ground state of the considered syste
two-dimensional quantum systems, such an analysis was made in Refs. 24 and 25.

Our approach to extended SUSY can be compared with that using generalized SUSY17 when-
ever all supercharges of the considered systems are linear operators~i.e., not including complex
conjugation! and can be constructed starting with involutions satisfying~2.11!. Since for some of
our systems the corresponding supercharges include the antilinear operator of complex c
tion, the above-mentioned correspondence does not exist@in this case~2.11! does not hold#.
Consequently, our approach covers more general situations than the approach proposed in

It is well known thatN53 SUSY can always be extended to that ofN5426 for systems in
which SUSY is realized by Grassmanian variables. In our paper we show that such an ext
of odd N SUSY to even one is not guaranteed in general.

Analogous to the above-mentioned cases with time-independent magnetic fields, it is po
to search for systems with extended SUSY described by the Schro¨dinger–Pauli equation with a
time-dependent magnetic field. The case withN52 SUSY was discussed in Ref. 27.

We notice that our approach can be extended to the relativistic Dirac equation with a s
result ~for particular examples, see Refs. 13 and 14!. However, Dirac’s equation admits an e
tended SUSY also for the cases with external electric fields and scalar potentials.15
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Another intriguing problem is to generalize the above results for particles with spins. 1
2. This

can be done, e.g., in the framework of the weak SUSY approach.28
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APPENDIX: COMBINED PARITIES, SUPERCHARGES, AND EXPLICIT REDUCTIONS

Here explicit forms of supercharges are presented for the cases whenA~x! satisfies all possible
combinations of relations~4.6!, ~4.7!.

First, we shall consider systems withN52 SUSY. They correspond to the following pari
properties of the electromagnetic field:

A~r ax!5r aA~x!, A~r bcx!5r bcA~x!, ~A1!

A~r ax!52r aA~x!, A~r bcx!5r bcA~x!, ~A2!

and

A~r ax!52r aA~x!, A~r bcx!52r bcA~x!, ~A3!

whereb,cÞa, a is fixed.
The related supercharges have the form

Q15s–p, Q25 iRas–p, ~A4!

for parity properties~A1!, and

Q15s–p, Q25CRas–p, ~A5!

for the cases whenA~x! satisfies~A2! or ~A3!.
In all these cases the correspondingN52 SUSY is reducible. The involutions commutin

with supercharge~A4! and ~A5! have the form

I 15Rbc and I 25Rbc , I 35CRbc ,

respectively. Particular cases of these involutions are expressed in the formulas~4.18!–~4.21!.
The operators diagonalizing bothI 1 and I 2 have the form

U5
1

2
~12 is2!~11 is2u12!, for a53; U5

1

&
~11s3I 1!, for aÞ3, ~A6!

whereas the expressions for the operators diagonalizingI 3 are

U5U15 1
2~12 is2!~11 is2u23!, for a51,

U5U25 1
2~11C!~12 is1u31!, for a52, ~A7!

U5U35
1

&
~11s3I 3!, for a53.

Now we shall present systems withN53 SUSY. In addition to~4.11!, we have the following
nonequivalent combinations of parity properties:
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A~r 12x!5r 12A~x!, A~r 23x!5r 23A~x!,
~A8!

Q15R23s–p, Q25R31s–p, Q35R12s–p;

A~r ax!5r aA~x!, A~r bcx!52r bcA~x!,
~A9!

Q15 i s–p, Q25 iRas–p, Q35CRbcs–p;

A~r ax!52r aA~x!, A~r bx!52r bA~x!,
~A10!

Q05s–p, Q15CRas–p, Q25CRbs–p;

A~r ax!5r aA~x!, A~r bx!52r bA~x!,
~A11!

Q05CRbs–p, Q15s–p, Q25 iRas–p;

A~r abx!5r abA~x!; A~r bcx!52r bcA~x!,
~A12!

Q05 iRabs–p, Q15CRbcs–p, Q25CRacs–p.

The supercharges in~A8! satisfy the relations~2.3! for a,b51,2,3; the supercharges in~A9!,
~A10! and ~A11!, ~A12! satisfy the relations~3.13! for g1152g2252g3351 and 2g115g22

5g3351, respectively.
The supercharges in~A10! commute with the involutionRab and thus generate theN53

reducible SUSY. The superchargesQ1 and Q2 in ~A12! commute with this involution too and
generate theN52 reducible SUSY. The remaining supercharges, i.e., those in~A8!, ~A9!, and
~A11! are irreducible.
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Determination of Wigner distribution function
for the d-dimensional Coulomb problem
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In this work we present a theoretical study of thed-dimensional Coulomb problem
in quantum phase space. A coordinate transformation in hyperspherical space is
used that maps thed-dimensional Coulomb problem into theD-dimensional har-
monic oscillator and the Wigner distribution function for thed-dimensional Cou-
lomb problem is then obtained. This exactly soluble model can shed some light on
finite-size features of Wigner’s distribution, which will be a vital experience for
various dynamic problems. ©1999 American Institute of Physics.
@S0022-2488~99!03502-1#

I. INTRODUCTION

The problems associated with the Coulomb and harmonic oscillator problems,1,2 together with
the connection between the two in arbitrary dimensions, which has been studied from v
viewpoints,3–11have been discussed in detail by many authors. The purpose of this paper is t
advantage of the above connection in order to determine the Wigner distribution function f
d-dimensional Coulomb problem in quantum phase space.

The Wigner distribution function plays the central role in a reformulation of Schro¨dinger
quantum mechanics, the phase space picture of quantum mechanics, which describes s
functions in configuration space. In this picture both the position and momentum variablesc
numbers. In Sec. II the Schro¨dinger equation for thed-dimensional Coulomb problem and th
D-dimensional harmonic oscillator in hyperspherical coordinates are solved and their ene
genvalues and eigenfunctions are obtained. In Sec. III the Schro¨dinger equation for the
d-dimensional Coulomb problem is mapped onto theD-dimensional harmonic oscillator by
coordinate transformation in hyperspherical space and then the connection between energ
functions of these two systems are obtained. In Sec. IV by using the above connection, the e
Wigner phase space distribution function for thed-dimensional Coulomb problem is calculated

II. SOLUTION OF THE SCHRÖDINGER EQUATION FOR COULOMB AND HARMONIC
OSCILLATOR PROBLEMS IN ARBITRARY DIMENSIONS

The Schro¨dinger equation for thed-dimensional Coulomb problem is

S 2
\2

2m
¹d

22
e2

r Dc~r !5Ec~r !, ~1!

wherer is a d-dimensional position vector having Cartesian componentsx1 ,x2 ,...,xd with mag-
nitude r 5(( j 51

d xj
2)1/2 and the Laplacian¹d

2 given by

¹d
25(

j 51

d
]2

]xj
2 . ~2!

Because of the spherical symmetry of the problem it is convenient to introduce the hypersp
coordinates, which are defined as follows:12
12940022-2488/99/40(3)/1294/6/$15.00 © 1999 American Institute of Physics
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x15r cosu1 sinu2 ¯ sinud21 ,

x25r sinu1 sinu2 ¯ sinud21 ,

x35r cosu2 sinu3 ¯ sinud21 ,

]

~3!
xj5r cosu j 21 sinu j ¯ sinud21 ,

]

xd215r cosud22 sinud21 ,

xd5r cosud21 ,

whered52,3,..., 0<r<`, 0<u1<2p, 0<u j<p, and j 51,2,...,d21. As in three dimensions
we substitute the following in Eq.~1!:

c~r !5Rnl~r !Yl 1 ,l 2 ,...,l d21
~u1 ,u2 ,...,ud21!, ~4!

whereRnl(r ) is the radial wave function andYl 1 ,l 2 ,...,l d21
(u1 ,u2 ,...,ud21) is the generalized

spherical harmonics, in whichl d2150,1,2,...; l d2250,1,2,...,l d21 ; ...; l 250,1,2,...,l 3 ; l 152 l 2 ,
2 l 211,...,l 221,l 2 . We obtain the radial part of Schro¨dinger equation as

H 2
\2

2m F d2

dr2 1
d21

r

d

dr
2

l ~ l 1d22!

r 2 G2
e2

r JRnl~r !5ERnl~r !. ~5!

Equation~5! can be written as13

F d2

du2 1
d21

u

d

du
2

l ~ l 1d22!

u2 1
k

u
2

1

4Gf~u,d,n,l !50, ~6!

whereu5r /kr0 , r 05\2/2me2, k5n1 1
2(d23), l 50,1,2,...,n21, andn> l 11.

The energy eigenvaluesen and their corresponding eigenfunctionsf(u,d,n,l ) are given by

en52
e0

@n1 1
2~d23!#2

, ~7!

wheree05me4/2\2, and principle quantum numbern51,2,3,..., and

f~u;d,n,l !5c~d,n,l !e2u/2ulLn2 l 21
~2l 1d22!~u!, ~8!

with the normalization constant

c~d,n,l !5r 0
2d/2@n1 1

2~d23!#2~d11!/2@G~n21!#1/2@2G~n1 l 1d22!#21/2. ~9!

Note that the Laguerre polynomialsLn
(a) are those defined in handbooks on mathematical fu

tions and are not the more limitedLn1a
a often used in discussions of the hydrogen atom eig

functions.
In a similar way, the radial equation of theD-dimensional harmonic oscillator is given by12

H 2
\2

2m F d2

dR2 1
D21

R

d

dR
2

L~L1D22!

R2 G1
1

2
mv2R2JRnl~R!5ERnl~R!, ~10!
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which can be written as14

F d2

dU2 1
D21

U
2

L~L1D22!

U2 2U21K GF~U,D,N,L !50, ~11!

whereU5R/R0 , R05(mv/\)2, K52N1D, andN>L.
The energy eigenvaluesEN and their corresponding eigenfunctionsF(U,D,N,L) are given by

EN5 1
2\v~2N1D !, ~12!

F~U,D,N,L !5C~D,N,L !e2U2/2ULLN/22L/2
~L1D/221!~U2!, ~13!

with the normalization constant

C~D,N,L !5R0
2D/2F2GS N

2
2

L

2
11D G1/2FGS N

2
1

L

2
1

D

2 D G21/2

. ~14!

Having obtained the eigenfunctions for Coulomb and harmonic oscillator problems in arb
dimensions, Eqs.~8! and ~13!, we will, in Sec. III, set to link the two cases by writing th
d-dimensional Coulomb problem eigenfunctions in terms of theD-dimensional harmonic oscilla
tor eigenfunctions.

III. MAPPING OF THE COULOMB PROBLEM ONTO THE HARMONIC OSCILLATOR IN
ARBITRARY DIMENSIONS

The connection between the Coulomb and harmonic oscillator problems has been s
from various viewpoints and has been discussed in detail by many authors. The main point
section is the mapping of thed-dimensional Coulomb problem onto theD-dimensional harmonic
oscillator. The map taking Eq.~6! into Eq. ~11! is u5U2. The appropriate relation betwee
solutions of Eqs.~8! and ~13! when restrictingD, N, andL to integers is9

f~u,d,n,l !5LF~U,2d22,2n22,2l !, ~15!

where

L5$ 1
2 R0

2d22/r 0
d@n1 1

2 ~d23!# d11% 1/2. ~16!

The d- andn-dependent constantL arises becausef(u,d,n,l ) andF(U,D,N,L) are normalized
to unity in d andD dimensions, respectively. The identification Eq.~15! yields the solution

D52d22, N52n22, L52l . ~17!

It is a general feature of this mapping that the spectrum of thed-dimensional Coulomb
problem is related to half the spectrum of theD-dimensional harmonic oscillator for any eve
integerD. However, the quantities in Eq.~17! have parameter spaces that are further restricted
the properties chosen for this mapping. From Eq.~17!, we find that all states of thed-dimensional
Coulomb problem withn>1 and l>0, can be mapped onto the appropriate harmonic oscill
with N>0 andL>0, except ford51.

Now by using coordinates~3! and ignoring the constantL, we can write Eq.~15! in Cartesian
space as
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fN1 ,...,ND
5)

j 51

D

~a/Ap2NjNj ! !1/2e2~a2/2!xj
2
HNj

~axj !, ~18!

where HN(ax) is the Hermite polynomials of orderN, and a5(mv/\)1/2. Thus the
d-dimensional Coulomb problem wave function is expanded as a linear combination of s
harmonic oscillator wave functions in Hermite polynomials.

IV. THE WIGNER DISTRIBUTION FUNCTION FOR THE d-DIMENSIONAL COULOMB
PROBLEM

As the wave function plays the central role in the Schro¨dinger picture, the phase-space d
tribution function introduced by Wigner is the starting point in the phase-space picture of qua
mechanics. This distribution function is widely known as the Wigner function.

The Wigner function is constructed from the Schro¨dinger wave function. It is a function o
both position and momentum variables and ind-dimensional phase space is defined as15,16

W~x1 ,...,xd ,p1 ,...,pd ;t !5~p\!2dE
2`

`

¯E
2`

`

dy1¯dyd exp@2i ~p1y11¯1pdyd!/\#

3c* ~x11y1 ,...,xd1yd ;t !c~x12y1 ,...,xd2yd ;t !, ~19!

wherex1 ,...,xd are independent coordinates andp1 ,...,pd are conjugate momentum variables
d-dimensional phase space. By using the coordinates~3!, in the time-independentd-dimensional
Coulomb problem which is equivalent to theD-dimensional harmonic oscillator we have

W~x1 ,...,xD ,p1 ,...,pD!5~p\!2DE
2`

`

¯E
2`

`

dy1¯dyD exp@2i ~p1y11¯1pDyD!/\#

3f* ~x11y1 ,...,xD1yD!f~x12y1 ,...,xD2yD!, ~20!

wherep1 ,...,pD are conjugate momenta ofx1 ,...,xD , which satisfy the commutation relation
@xj ,pk#5 i\d jk , wherepj52 i\]/]xj and j ,k51,2,...,D.

Now the wave function~18! is substituted in Eq.~20! and after some manipulations and usi
HN(2x)5(21)NHN(x) we find

W~x1 ,...,xD ,p1 ,...,pD!5~p\!2Dp2D/2)
j 51

D
~21!Nj

2NjNj !
e2a2xj

2
1b j

2E
2`

`

dzj e2zj
2

3HNj
~zj1b j1axj !HNj

~zj1b j2axj !, ~21!

wherez5a(y2 ip/a2\) andb5 ip/a\. By taking advantage of the expression17

E
2`

`

dz e2z2
HN~z1b1ax!HN~z1b2ax!5Ap2NN!LN~2~a2x22b2!!, ~22!

whereLN is Laguerre polynomials, we have

WN1 ,...,ND
~r1 ,...,rD!5~p\!2D)

j 51

D

~21!Nj e2r j
2/2LNj

~r j
2!, ~23!

where dimensionless quantityr is defined byr5@2(a2x21p2/a2\2)#1/2.
Since
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r2

2
5

2

\v S p2

2m
1

1

2
mv2x2D5

2

\v
H~x,p!,

whereH(x,p) is the Hamiltonian of the harmonic oscillator,

WN1 ,...,ND
~r1 ,...,rD!5~p\!2D)

j 51

D

~21!Nj expF22

\v
H~r j !GLNj S 4

\v
H~r j ! D , ~24!

which is the desired result. The three-dimensional representation of this result has been o
by using a special mapping.18

For the ground state we have

W0,...,0~r1 ,...,rD!5~p\!2D exp@2 1
2~r11¯1rD!# ~25!

and for first excited state

W1,0,...,0~r1 ,...,rD!5~p\!2D~r1
221!exp@2 1

2~r1
21¯1rD

2 !#. ~26!

The ground state is positive everywhere in phase space. The first excited state is negativ
origin, but positive for sufficiently large values ofr11¯1rD and both become vanishingly sma
for very large values ofr11¯ ,rD . Even though the first excited state is negative around
origin, the probability density inx is always positive. The cross section of variations of the gro
and first excited states againstr is shown in Fig. 1.

In view of the fact that the expression represented in Eq.~24! is a distribution function, then
it is possible to calculate some physical and chemical quantities for the hydrogen atom as a
case of thed-dimensional Coulomb problem, using this function.

FIG. 1. Cross section of the Wigner distribution functionW(r) against r. Solid and dashed lines correspond
W0,...,0(r1 ,...,rD) andW1,0,...,0(r1 ,...,rD), respectively.W(r) is given in units of (p\)2D.
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Dynamical semigroups for interacting quantum
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R. Olkiewicz
Institute of Theoretical Physics, University of Wrocław,
Pl. Maxa Borna 9, PL-50-204 Wrocław, Poland

~Received 22 October 1997; accepted for publication 4 December 1998!

A mathematical framework for the completely positive semigroup coupling be-
tween classical and quantum systems is proposed. The coupling ensures a flow of
information from the quantum system to the classical one and the influence of the
classics on the dynamics of the quantum system in a dissipative way. The classical
evolution on average is modified by the expectation value of some quantum opera-
tor. Examples of a classical particle moving along a geodesic line in a curved space
interacting with the quantum system, and the coupling of a two state quantum
system to all pure states, are discussed. ©1999 American Institute of Physics.
@S0022-2488~99!00803-8#

I. INTRODUCTION

It is well known that using quantum mechanics one can analyze the behavior of electr
atoms, molecules, and solids. It is also successful in investigating properties of chemical rea
conductors, and many others. But the quantum dynamics based on the Schro¨dinger equation
makes it difficult to describe irreversible processes like measurements or interactions w
classical environment. Moreover, it seems to be impossible to apply quantum mechanics
plain the occurrence of quantum macroscopic effects, which are expressed solely in cl
terms. But the enthusiasm due to successes of quantum mechanics appeared to cover the l
completeness for many years.

The situation started to change when technological progress made it possible to make
ments with individual quantum systems. Because experimentalists see not the averages b
vidual samples, which are the next subject to averaging, the standard interpretation has b
insufficient. The importance of the concept of an event and an intrinsic incapability of qua
mechanics to deal with this concept have been stressed by many authors~Ref. 1 and references
therein!. Haag2,3 suggested the discreteness and irreversibility of an event in quantum theor
stressed that ‘‘transformation of possibilities into facts must be an essential ingredient which
be included in the fundamental formulation of the theory.’’

Recently a mathematically consistent description of the interaction between classica
quantum systems that permits the construction of a new model of quantum measurements h
proposed4–8 ~see also Refs. 9 and 10!. From the structural and mathematical point of view t
three most essential ingredients of the Blanchard and Jadczyk model are

~i! tensoring of a noncommutative quantum algebra of operators with a commutative cla
algebra of functions,

~ii ! renouncing pure states for density matrices and replacing Schro¨dinger unitary dynamics by
a completely positive one, and

~iii ! interpreting the continuous time evolution of statistical states in terms of a piece
deterministic random process on pure states.

In this model classical quantities become elements of the center of the total algebra. B
automorphisms of an algebra leave its center invariant, it was necessary to use completely p
semigroups to enable the transfer of information between the classical and quantum system
13000022-2488/99/40(3)/1300/17/$15.00 © 1999 American Institute of Physics
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the evolution of the quantum object becomes dissipative and the modification of the dynam
the classical system through some appropriate expectation value appears. With a given dy
semigroupTt we can associate a Markov–Feller process with values in the pure state space
total system in such a way thatTt(Px)5*P(t,x,dy)Py is satisfied. HerePx is a one-dimensiona
projector representing pure statex andP(t,x,dy) is the transition probability function of a desire
process. It consists of a mixture of deterministic motion with random jumps. In the case w
discrete classical system~a measuring apparatus! is coupled to a finite quantum system describ
by a matrix algebra it was shown in Ref. 11 that such a process exists and, moreover, con
the pure quantum case, that it is unique.

Clearly, the key point in the coupling is to construct a generator of a dynamical semigro
the total system. Recently, an example of such a generator of the interaction between a c
system and a quantum one has been introduced in Ref. 12. The classical system was rep
by an algebra of continuous functions on some symplectic manifoldM while the quantum system
was described by a von Neumann algebra acting in some separable Hilbert space. The ge
has been built out of the following data:

~a! a self-adjoint quantum operatorP̂,
~b! a connection between the points of the spectrum ofP̂ and shifts on a classical phase spa

M,
~c! a functionf :M3sp (P̂)→R responsible for a junction between the classical system and

quantum one.

Such a generator turned out to be suitable for a rigorous discussion of the supercond
quantum interference device~SQUID! -tank model, which consists of an electric oscillatory circ
coupled via a mutual inductance to a superconducting ring containing a weak link constricti
that system the oscillatory circuit acts as an external flux source for the SQUID ring, w
induces a screening current in the ring. This screening current is coupled back to the cl
circuit due to the mutual inductance. It results in the modification of the differential equatio
the classical harmonic oscillator by the expectation value of the superconducting screening
operator.

However, quite often, a quantum system is characterized by a semispectral measure o
homogeneous space, like in the generalized coherent state approach,13 or when we use the gener
alized systems of imprimitivity.14 In that case there is no particular self-adjoint operator wh
could be responsible for the coupling, but all quantum states can affect the classical syste
purpose of this paper is to provide a mathematical framework, which could be used to de
such a coupling. Although it is only a mathematical model, we hope the proposed scheme
applied to a large class of physical phenomena. The paper is organized as follows. In Sec
mathematical apparatus is presented. In Sec. III two examples are discussed. Concluding
are given in Sec. IV.

II. THE FRAMEWORK

At first we present the formal scheme of the classical-quantum coupling. Let us cons
classical systemC with a finite number of degrees of freedom. Its phase space is a symp
manifold (M ,v). The C* -algebraC0(M ) of continuous and vanishing at infinity functions re
resents complex observables of the system. Because it will be more convenient to consid
Neumann algebras we pass to the representation in the Hilbert spaceHc5L2(M ,B,m), whereB
is the Borels-algebra anddm is the unique Borel measure determined by the volume formvn,
n5dim M /2. We assume that the classical algebraAc equals toC0(M )95L`(M ,B,m). Statistical
states ofC are then normed and positive elements ofL1(M ,B,m). The time evolution ofC is
described by a flow onM, i.e., a mappingg:(t,x)→gt(x) such that

~a! g:R3M→M is smooth,
~b! for any t, gt is a diffeomorphism ofM, and
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~c! t→gt is a group homomorphism.

Its generator is a complete vector fieldX on M. It gives an ultraweakly continuous one
parameter group of automorphisms ofAc : f (x)→ f (gt

21x), xPM . Its generator we denote bydc .
Now we come to the quantum system. Let us consider a quantum particle moving

homogeneous configuration spaceQ5G/K, where G is a locally compact topological grou
which satisfies the second axiom of countability andK is a closed subgroup. We assume moreo
thatG andK are both unimodular. The quantum theory of such a system may be introduced
concept of generalized coherent states.13 Let (p,Hq) be a unitary irreducible representation ofG,
such that for everykPK,p(k)c05eia(k)c0 for some unit vectorc0PHq . It follows that for each
qPQ we have a one-dimensional projectorPq5up(g)c0&^c0p(g)u, where@g#5q. The quantum
algebraAq is defined as

Aq5 H E f ~q!Pq da~q!, f PCc~Q!J 9
5$Pq , qPQ%9.

If for any q8 the reproducing kernelq→K(q8,q) vanishes only on a set ofa-measure zero, we
show thatAq5L(Hq). To see this it is enough to prove that every one-dimensional projectorP on
Hq belongs toAq . Let

D5H (
i 51

m

zip~gi !c0 : mPN, ziPC, giPGJ .

Because the representationp is irreducible,c0 is cyclic andD is dense inHq . Let cn→c, where
cnPD with icni51 andP5uc&^cu, ici51. ThenPn5ucn&^cnu tends toP in the weak topol-
ogy. But for anynPN there is

Pn5 (
k,l

finite

z̄kzl up~gk!c0&^c0p~gl !u.

BecausePqkPql5K(qk ,ql)uqk&^ql u, thenPnPAq . HencePPAq , too, andAq5L(Hq).
In this case we can define a semispectral measure onQ by E(B)5*BPq da(q), whereB

PB(Q), the Borels-algebra onQ, andda is a unique~up to a positive constant! G-invariant and
s-finite Borel measure onQ. By a semispectral measure we understand a mapE:B(Q)
→L(Hq)1 such that for everycPHq andBPB(Q) the mapB→^c,E(B)c& is a positive mea-
sure. Although the description of a quantum system by coherent states is sufficient in many
for further applicationswe generalize this scheme and assume that the quantum algebra is
erated (as a von Neumann algebra) by an arbitrary semispectral measure dE on Q. Statistical
states of the quantum system are given by non-negative density matricesrPAq with Tr(r)51.
The time evolution of a quantum observableA is given byA→eitHAe2 i tH , whereH is a self-
adjoint operator affiliated toAq . Its generatori @H,•# we denote bydq . The requirement thatH
is affiliated to the algebraAq , which represents the quantum system, follows from the need
all its spectral projectors should belong toAq .

Let us now consider the joint system. For the total algebraAT we take the tensor produc
AT5Ac^Aq as von Neumann algebras onH̃5Hc^Hq . The set of states is equal to

ST5H r̃PAT* : r̃~x!PTr~Hq!1a.e. andE
M

Tr„r̃~x!…dm~x!51J .

The mean value ofÃPAT in a stater̃PST is given by

^Ã&r̃5E
M

dm~x!Tr@Ã~x!r̃~x!#.
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Now let us discuss the evolution of the total system. The total generator consists of three
dc^ id, id^ dq , and a superoperatorL which describes the interaction between the classical
the quantum system.

To constructL we assume the following:
~a! Let to every pointxPM correspond a finite and positive measurenxPM (G)5C0(G)*

such thatx→nx(G) is uniformly bounded and for every Borel setB,G the mapx→nx(B) is
Borel. The influence of the classical system on the quantum one is reflected by a madE

→d(nx* E) which changes a quantum observablef̂ 5* f (q)dE(q) to * f (q)d(nx* E)(q). We
assume that

'C.0;xPM;BPB~Q! and a~B!,` i~nx* E!~B!i<Ca~B!.

~b! Let to every pointqPQ corresponds a shift on the phase space. It will be responsible
an action of the quantum system on the classical one. By the shift we mean a morph
(M ,B,m), i.e., a bijective maphq :M→M such thathq and hq

21 are measurable and leave th
measuredm invariant. Moreover, we demand that for anyf PCc(M ) and anyxPM a mapping
q→ f (hq

21x) is Borel measurable. ThenUq :Hc→Hc ,(UqC)(x)5C(hq
21x) is a unitary operator.

Moreover,q→^ f 1 ,Uqf 2& is measurable for anyf 1 , f 2PCc(M ) and soq→Uq is weakly measur-
able.

At first we show thatnx* E is a semispectral measure onQ and so the condition from the poin
~a! is well defined. Letc1 ,c2PHq and

dEc1 ,c2
~q!5d^E~q!c1 ,c2&.

Let for f PC0(Q)

f~ f !5E
Q
E

G
f ~gq!dnx~g!dEc1 ,c2

~q!.

It is a continuous functional and so it determines the unique complex measure with finite var
nx* Ec1 ,c2

defined on the Borels-algebra B(Q). Because for everyBPB(Q)(c1 ,c2)
→(nx* Ec1 ,c2

)(B) is a positive and continuous sesquilinear form there is a bounded and po
operator (nx* E)(B) such thatB→^c,(nx* E)(B)c& is a positive measure.

In the following two propositions we introduce situations in which assumptioni(nx* E)
3(B)i<Ca(B) is satisfied.

Proposition 2.1: Let Q5G and da is a left-invariant Haar measure onG. If dnx

5 f (x,g)da(g), where f :M3G→R1 is a Borel function such that for everyxPM f (x,•)
PL1(G,da) and supx,g f (x,g)<C, then for every semispectral measuredE on G we have that
i(nx* E)(B)<CiE(G)ia(B), whereB is an arbitrary buta-finite Borel subset ofG.

Proof: Because (nx* E)(B) is a positive operator we have that

i~nx* E!~B!i5i~nx* E!1/2~B!i25 sup
ici51

^c,~nx* E!~B!c&5 sup
ici51

~nx* Ec,c!~B!.

However,

~nx* Ec,c!~B!5E
G

nx~Bg21!dEc,c~g!5E
G
E

B
f ~x,hg21!da~h!dEc,c~g!<CiE~G!ia~B!ici2.

h

Proposition 2.2:Let Q5G/K andda is theG-invariant measure onQ. If E(B) is given by
E(B)5*BP(q) da(q), whereP(q) is a projector andq→P(q) is weakly Borel measurable an
weakly a-integrable, theni(nx* E)(B)i<Ca(B) for every nxPM (G) such that supx nx(G)
<C.
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Proof: Now we have

~nx* Ec,c!~B!5E
G

Ec,c~g21B!dnx~g!5E
G
E

g21B
^c,P~q!c&da~q!dnx~g!

<ici2E
G

a~g21B!dnx~g!<Cici2a~B!,

and so the assertion follows. h

In the coherent state case we can describe more precisely the influence of the classical
onto the quantum one. Letf̂ 5* f (q)dE(q) be a quantum operator corresponding to a functiof.
A point xPM changes it to

f̂ x5E
Q

f ~q!d~nx* E!~q!.

Because

~nx* E!~B!5E
G

E~g21B!dnx~g!

and

E~g21B!5E
B
Pgq da~q!,

then

d~nx* E!~q!5S E
G

Pgq dnx~g! D da~q!.

However,Pgq5p(g)Pqp(g)* , hence

f̂ x5E
G

p~g! f̂ p~g!* dnx~g!.

If nx is a point measure, then we get just a unitary automorphism off̂ .
Let us begin the construction of the generatorL. We will need the following:
Lemma 2.3:The functionx→(nx* E)(B) is weakly Borel measurable for everyBPB(Q).
Proof: Let cPHq . Because of the polarization formula it is enough to consider the func

x→^c,(nx* E)(B)c&. However,

^c,~nx* E!~B!c&5~nx* Ec,c!~B!5E
G

Ec,c~g21B!dnx~g!5 lim
n→`

(
i 51

n

Ec,c~gi
21B!nx~Gi !.

BecauseGi is a Borel subset ofG and the functionx→nx(Gi) is Borel, the assertion follows.h

It is known that if a semispectral measuredE has the propertyiE(B)i<Ca(B) for a s-finite
measureda, then dE possesses an operator-valued density.14 Now we generalize this fact to a
family of semispectral measuresd(nx* E) and show the essential boundedness of the corresp
ing operator-valued density.

Theorem 2.4: There is a weakly Borel measurable functionṼ:M3Q→L(Hq)1 such that
supx,q iṼ(x,q)i<` and for everyxPM \N, whereN is a Borel subset ofm-measure zero,
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~nx* E!~B!5E
B
Ṽ~x,q!da~q!

in the weak sense. Moreover, any other suchṼ8 agrees withṼ m3a almost everywhere.
Proof: See Appendix A.
Corollary 2.5: From the Fubini theorem there is a Borel setQ0,Q such thata(Q0)50 and

the mapx→Ṽq(x)5Ṽ(x,q) is weakly Borel measurable for allqPQ\Q0 . Putting Ṽq50 for q

PQ0 we get a well-defined mapq→ṼqPAT for everyqPQ.
Proposition 2.6:supq iṼqi<` andq→Ṽq is weakly Borel measurable.
Proof: Only the second statement needs a proof. BecauseṼq is uniformly bounded, it is

enough to check it for simple tensorsC̃5c ^ C, wherecPHq andCPHc . If qPQ\Q0 , then

^c ^ C,Ṽq~c ^ C!&5E
M

dm~x!uC~x!u2^c,Ṽ~x,q!c&.

Again from the Fubini theorem,q→^c,Ṽ(x,q)c& is Borel for a.e. xPM , and so q

→*Mdm(x)uC(x)u2^c,Ṽ(x,q)c& is Borel, too. BecauseQ0 is a Borel set andṼq50 for q

PQ0 , soq→Ṽq is weakly Borel measurable for allq. h

Let Ũq5Uq^ 1 and let W̃q5Ũq•Ṽq . Clearly W̃q* ÃW̃qPAT and the mapq→W̃q* ÃW̃q is
weakly Borel measurable.

Now let Wn(Ã) be defined by

^C̃1 ,Wn~Ã!C̃2&5E
Qn

da~q!^C̃1 ,W̃q* ÃW̃qC̃2&, C̃1 ,C̃2PH̃,

whereQn
ªø i 51

i 5nQi and Qi are a-finite sets which coversQ. Qn is alsoa-finite. Because the
function q→^C̃1 ,W̃q* ÃW̃qC̃2& is Borel and uniformly bounded, the integral on the right-ha
side exists and defines a linear and bounded operator onH̃. As the weak limit of operators from
AT , Wn(Ã) also belongs toAT .

Proposition 2.7: W(Ã)5 limn→` Wn(Ã) exists and belongs toAT .
Proof: Let Ã be a positive operator. Then

W̃q* ÃW̃q<iÃiW̃q* W̃q5iÃiṼq
2.

However,Ṽq is positive soṼq
2<iṼqiṼq and

E
Qn

da~q!^C̃,W̃q* ÃW̃qC̃&<iÃi~sup
q

iṼqi !E
Qn

da~q!^C̃,ṼqC̃&

<CiÃi E
Qn

da~q!E
M

dm~x!^C̃~x!,Ṽ~x,q!C̃~x!&

5CiÃi E
M

dm~x!~nx* EC̃~x!,C̃~x!!~Qn!

<CiÃi E
M

dm~x!i~nx* E!~Q!i•iC̃~x!i2

<CiÃi~sup
x

i~nx* E!~Q!i !iC̃i2.
                                                                                                                



r.

itive

iscuss

sical
this
acuum
back-
ana-

back
in the

tion in
tivistic
ystem.
cation
sition

ely on

1306 J. Math. Phys., Vol. 40, No. 3, March 1999 R. Olkiewicz

                    
However,

i~nx* E!~Q!i5sup lim
ici51

~nx* Ec,c!~Q!5sup lim
ici51

E
G

Ec,c~Q!dnx~g!5iE~Q!inx~G!,

and supxnx(G)5C1 . Thus

E
Qn

da~q!^C̃,W̃q* ÃW̃qC̃&<CC1iÃi•iE~Q!i•iC̃i2.

So from the polarization formula we have that;C̃1 , C̃2PH̃ and ;ÃPAT , *Qda(q)
3^C̃1 ,W̃q* ÃW̃qC̃2& exists. This means thatWn(Ã) is weakly convergent toW(Ã) and thus
W(Ã)PAT . h

Now let us consider a*-linear mapW:AT→AT .
Lemma 2.8: Wis a completely positive and normal map.
Proof: See Appendix B.

Thus we have proved the following.
Theorem 2.9: Let L(Ã)5W(Ã)2 1

2$W(1̃),Ã%, where $•,•% stands for the anticommutato
ThenL is a bounded complete dissipation andL(1̃)50, where1̃ is the unit inAT . h

Remark:The adjoint ofL is a generator of a one-parameter semigroup of completely pos
and conservative maps ofST . Formally it can be written as

L* ~ r̃ !~x!5E
Q

da~q!Ṽq~x!r̃„hq
21~x!…Ṽq~x!2

1

2 H E
Q

da~q!Ṽq
2~x!,r̃~x!J .

III. APPLICATIONS

In this section we present two examples of a possible classical–quantum coupling and d
some of its properties.

Example 1:The first area of possible applications of the above formalism is the semiclas
theory of gravity, in which a classical gravitational field interacts with quantum matter. In
approach one studies the generalized Einstein’s equation which is modified by regularized v
expectation value of the energy-momentum tensor of matter-field operators. In the so-called
reaction problem the influence of particle creation on the dynamics of gravitational field is
lyzed. In Ref. 15 the effective equation for the evolution of a Bianchi type I metric with such
reaction was derived. It was also shown there that there is the dissipation of anisotropy
Bianchi type I universe through quantum effects. For a general discussion of the dissipa
semiclassical gravity, see Ref. 16. Here we present a simpler situation, in which a nonrela
classical particle moving along a geodesic line in a curved space interact with a quantum s
As the result we obtain a dissipative behavior of the quantum density matrix and the modifi
of the classical evolution on average through the expectation value of the quantum po
operator.

At first we describe the classical system. Let us consider a classical particle moving fre
the Lobatchevsky space:

Q5R3R15$~x1 ,x2!: x2.0%.

The phase space is the cotangent spaceM5T* Q with the canonical symplectic formv
5dp1∧dx11dp2∧dx2 . It leads to the Lebesgue’a measuredm5dx1dx2dp1dp2 on M. The time
evolution is governed by a complete vector fieldX on M:

X~xi ,pi !5 (
k51

2 F f k~xi ,pi !
]

]xk
1gk~xi ,pi !

]

]pk
G ,
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where f k(xi ,pi)5pk andg1(xi ,pi)52p1p2 /x2 , g2(xi ,pi)5(p2
22p1

2)/x2 . For simplicity we de-
note four parameters (x1 ,x2 ,p1 ,p2) by (xi ,pi). It gives the following second-order differentia
equations for the position coordinates:

ẍ15
2

x2
ẋ1ẋ2 ,

ẍ25
1

x2
@~ ẋ2!22~ ẋ1!2#.

Hence the classical particle moves on a geodesic line with respect to the metric

g5
1

x2
2 ~dx1^ dx11dx2^ dx2!.

To describe the quantum system we use the system of generalized coherent states.13 Let us
consider a quantum particle on the Lobatchevsky spaceQ. It is a homogeneous spaceQ
5SL(2,R)/U(1). Forsimplicity we take the first representation from the series (Hk ,pk), where

k51,3
2,2,... . That is,

Hq5 H f :i f i25E dm1~z!u f ~z!u2,`J ,

wheref is a holomorphic function in the unit complex discuzu,1 anddm15(1/p)dzdz̄. For q
5(x1 ,x2)PQ we have one-dimensional projectorsPq5uz&^zu, where

uz&5
12uzu2

~12 z̄z!2
and z5

12x21 ix1

11x22 ix1

.

The semispectral measureE(B), BPB(Q), is given byE(B)5*BPq da(q), whereda is the
unique SL~2,R! invariant measure onQ normalized in such a way that*QPq da(q)5I , the
identity operator. The quantum operator corresponding to a functionf on Q reads

f̂ 5E
Q

f ~q!dE~q!.

A self-adjoint operatorH onHq determines the time evolution in the standard way.
To define a generatorL of the total system we assume the following:

~i! ;m5(q,p)PM n (q,p)5de , wherede denotes the point measure concentrated in the n
tral element of the group SL~2,R!, and

~ii ! ;qPQ hq :M→M is given by (q8,p)→(q8,p1q).

Then Ṽ(m,q)5Pq and so

L~Ã!~m!5E
Q

da~q!PqÃ„hq~m!…Pq2Ã~m!,

L* ~ r̃ !~m!5E
Q

da~q!Pqr̃„hq
21~m!…Pq2 r̃~m!.

Let us derive the equation for the quantum density operatorr t5*M r̃ t(xi ,pi)dm:
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ṙ t5E
M

r8 t~xi ,pi !dm5E
M

@~dc
ad

^ 1!r̃ t~xi ,pi !1~1^ dq
ad!r̃ t~xi ,pi !1L* ~ r̃ t!~xi ,pi !#dm.

Here again we denote four parameters (x1 ,x2 ,p1 ,p2) by (xi ,pi). Because for simple tensorsf
^ r, fPL1(M ,dm) andrPTr(Hq), there is

E
m

~dc
ad

^ 1!~f ^ r!~xi ,pi !dm5rE
M

~dc
adf!~xi ,pi !dm5rE

M
f~xi ,pi !dc~ id !~xi ,pi !dm50

and

E
M

~1^ dq
ad!~f ^ r!~xi ,pi !dm5dq

adS rE
M

f~xi ,pi !dm D
and

r̃ t5 lim
m→`

(
i 51

m

f i~ t ! ^ r i~ t !

so

E
M

~dc
ad

^ 1!r̃ t~xi ,pi !dm50

and

E
M

~1^ dq
ad!r̃ t~xi ,pi !dm5dq

ad~r t!52 i @H, r t#.

Finally

E
M

~L* r̃ t!~xi ,pi !dm5E
M

dmE
Q

da~q!Pqr̃ t„hq
21~xi ,pi !…Pq2 r t .

Becausehq
21 leaves the measuredm invariant, by changing the order of integrals we get

E
M

~L* r̃ t!~xi ,pi !dm5E
Q

da~q!Pqr tPq2 r t .

Hence the time evolution equation forr t is modified by a dissipative factor

ṙ t52 i @H,r t#1E
Q

da~q!Pqr tPq2 r t .

To see how this dissipative part acts we assume now thatH50. Thus

Lq~r!5E
Q

PqrPq da~q!2r.

Let Tq(t) be the semigroup on Tr(Hq) generated byLq .
Theorem 3.1:Let Pn5un&^nu, whereun&(z)5An11zn, nPNø$0%, is an orthonormal base

in Hq . Then
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Tq~ t !~Pn!5 (
m50

`

P~ t,n,$m%!Pm ,

where

P~ t,n,$m%!5et~P2I !5e2t(
k50

`
tk

k!
Pk~n,$m%!

is the Poisson transition kernel with the probabilistic measure onNø$0% given by

P~n,$m%!5
2~n11!~m11!

~n1m11!~n1m12!~n1m13!
.

Here I (n,$m%)5dnm , P0(n,$m%)5dnm , and

Pk~n,$m%!5(
l 50

`

P~n,$ l %!Pk21~ l ,$m%!

for k>1.
Proof: BecauseTq(t)5etLq, it is enough to show that

Lq~Pn!5 (
m50

`

P~n,$m%!Pm2Pn .

To calculate the integral*PqPnPq da(q) we use the representation of the Lobatchevski spac
the Poincare´ disc with SL~2,R! replaced by SU~1,1!. Thus

da~q!→da~z!5
1

p

dzdz̄

~12uzu2!2 .

Let us observe that

PqPnPq5u^z,n&u2uz&^zu5~n11!~12uzu2!2uzu2nuz&^zu.

In the above we use the formula^z,n&5(12uzu2)un&(z).13 We show that*PqPnPq da(z) is also
diagonal in the$un&%0

` base. Indeed

K n1 ,E PqPnPqda~z!n2L 5E u^z,n&u2^n1 ,z&^z,n2&da~z!

5
~n11!A~n111!~n211!

p E ~12uzu2!2uzu2nzn2z̄n1 dzdz̄50.

On the other hand,

K m,E PqPnPqda~z!mL 5
~n11!~m11!

p E ~12uzu2!2uzu2~n1m!dzdz̄

5
~n11!~m11!

p E
0

1E
0

2p

~12r 2!2r 2~n1m!r df dr

5
2~n11!~m11!

~n1m11!~n1m12!~n1m13!
.

                                                                                                                



e

1310 J. Math. Phys., Vol. 40, No. 3, March 1999 R. Olkiewicz

                    
Hence

E PqPnPq da~z!5 (
m50

`

P~n,$m%!Pm ,

so the assertion follows. h

Now let us chooser̃ from some dense subset ofST $which is compactly supported in th
classical part and with the property that the commutator@H,r̃(xi ,pi)# belongs to the trace class%.
Let us define so-called collective classical coordinates

x̄k5Tr̃„r̃~xk^ 1!…5E
M

xk„Tr r̃~xi ,pi !…dm

and

p̄k5Tr̃„r̃~pk^ 1!…5E
M

pk„Tr r̃~xi ,pi !…dm

for k51,2. Their time evolution is given by

xG k5E
M

xk„Tr r8 t~xi ,pi !…dm5E
M

xk„Tr~dc
ad

^ 111^ dq
ad1L* !r̃ t~xi ,pi !…dm.

However,

E
M

xk Tr~dc
ad

^ 1!r̃ t~xi ,pi !dm5E
M

dc~xk!Tr r̃ t~xi ,pi !dm5E
M

pk Tr r̃ t~xi ,pi !dm5 p̄k ,

E
M

xk Tr~1^ dq
ad!r̃ t~xi ,pi !dm52 i E

M
xk Tr@H,r̃ t~xi ,pi !#dm50,

and

E
M

dm~xi ,pi !xk TrS E
Q

da~q!Pqr̃ t~xi ,pi2qi !PqD
5E

M
dm~xi ,pi8!xk TrS E

Q
da~q!PqD r̃ t~xi ,pi !5 x̄k ,

so xG k5 p̄k . In the same way we get that

E
M

pk Tr~dc
ad

^ 1!r̃ t~xi ,pi !dm5dc~pk!5gk~xi ,pi !,

E
M

pk Tr~1^ dq
ad!r̃ t~xi ,pi !dm50,

and
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E
M

dm~xi ,pi !pk TrS E
Q

da~q!Pqr̃ t~xi ,pi2qi !PqD
5E

M
dm~xi ,pi8!~pk1qk!TrS E

Q
da~q!Pqr̃ t~xi ,pi8! D

5 p̄k1E
M

dm~xi ,pi !TrS E
Q

qkPq da~q! D r̃ t~xi ,pi !.

Let us notice that the operator*QqkPq da(q) is the quantum position operatorq̂k . Thus

pG k5gk~xi ,pi !1Tr~ q̂kr t!,

wherer t5*M r̃ t(xi ,pi)dm is the quantum density operator. Hence the classical evolution is
turbed by the expectation value of the quantum position operator.

Example 2:In this example we describe a quantum system coupled to all one-dimens
projectors considered as a classical device. Such a model was discussed in Ref. 17 in con
with the question: how do we determine the state of an individual quantum system?

Let us consider pure spin 1/2 system. ThenHq5C2 andAq5M232(C). As the classical
phase space we take the space of all one-dimensional projectors onHq , that is,M5CP15S2, the
two-dimensional unit sphere. For anynPS2, that is,n5(n1 ,n2 ,n3), Sni

251, let us define

e~n!5
~ I 1s•n!

2
,

where s5$s i%, i 51,2,3, denote the Pauli matrices. It is clear thate(n) is a one-dimensiona
projector corresponding to a pointnPS2. On M there is the unique U~2! invariant measuredm
normalized tom(M )51. Let us notice thatAq5$e(n):nPS2%9 and thus a semispectral measu
connected with the quantum system is given byE(B)5*Be(n)dm(n) with the propertyE(S2)
5I /2. To present the coupling we assume that:

~i! ;nPS2 nn5de , the point measure at the neutral element of U~2!, and
~ii ! ;nPS2 hn :S2→S2 is the geodesic symmetry on the symmetric spaceS2

5U~2!/U~1!3U~1!.

Then Ṽn8(n)5e(n8) and so

L* ~ r̃ !~n!5E
S2

dm~n8!e~n8!r̃„n8~n!…e~n8!2
1

2
r̃~n!.

Since there is no classical evolution, the total generator reads

r8 t5~1^ dq
ad!r̃ t1L* ~ r̃ t!.

Let us derive the equation for the time evolution of the quantum density operator t

5*r̃ t(n)dm(n). At first we calculate the integral*e(n)e(n8)e(n)dm(n) for fixed projector
e(n8). Because

e~n!e~n8!e~n!5 1
2~11n8•n!e~n!,

it is enough to compute

E
S2

nie~n!dm~n!5E
S2

ni S I

2
1

s•n

2 Ddm~n!.
                                                                                                                



inning
ed to

ssical
ipative
antum

1312 J. Math. Phys., Vol. 40, No. 3, March 1999 R. Olkiewicz

                    
However,*ni dm(n)50 for all i 51, 2, 3 and*ninj dm(n)50 if iÞ j . Thus

E
S2

nie~n!dm~n!5
s i

2 E
S2

ni
2 dm~n!5

s i

6
,

and so

E
S2

e~n!e~n8!e~n!dm~n!5
1

6
„e~n8!1I ….

By linearity, we obtain that for everyAPM232 there is

E
S2

e~n!Ae~n!dm~n!5
1

6
„A1Tr~A!….

So,

E
S2

dm~n!E
S2

dm~n8!e~n8!r̃ t„n8~n!…e~n8!2
1

2 ES2
dm~n!r̃ t~n!

5E
S2

dm~n8!e~n8!r te~n8!2
1

2
r t

5
1

6
~ I 22r t!.

In the above we use the fact thatn8(n) does not change the measuredm. Thus

ṙ t5Lq~r t!52 i @H,r t#1 1
6~Tr r tI 22r t!.

We show that every density operator dissipates to the totally mixed stateI /2. At first we describe
Er the reversible andEo the irreversible part of the generatorLq .

Proposition 3.2:Let APM232 . Then

Lq~A!50⇔A5zI, zPC,

„Lq~A!5 ilA, lPR\$0%…⇔A50.

Proof: Direct calculations. h

HenceEr5zI. BecauseErùEo50 andEr % Eo5M232 , therefore

E05S z z1

z2 2zD .

However,~see Lemma 4.2 in Ref. 18! for APEo there is limt→` iTtAi50, whereTt denotes the
semigroup generated byLq . ThusT` is the projection fromM232 ontoEr , and so for any density
matrix r, T`(r)5I /2.

IV. CONCLUDING REMARKS

The presented framework starts with a phenomenological assumption. At the very beg
we divide the world into two parts: a classical and a quantum one, which are next assum
interact. The coupling ensures a flow of information from the quantum system to the cla
system and the influence of the classics on the dynamics of the quantum system in a diss
way. The classical evolution on average is perturbed by the expectation value of some qu
operator.
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In each practical use we can guess what constitutes events and forms a classical syste
we discuss two concrete models. However, this approach seems to be flexible enough to d
more general situations. It was shown in Ref. 19 that the spacelike asymptotic classical e
magnetic field is a superselection rule of the theory of a quantum particle carrying an e
charge, that is, each vector state from one superselection sector has the same asymptotic
magnetic field. Also, in Ref. 20 the question of whether the radiation field can generate mol
superselection rules was discussed. Hence some classical observables can be thought
fundamental part of the quantum theory. Although dealing with infinite classical systems re
some elements of the scheme to be clarified, we believe that the proposed model can
applied to such cases.

Finally, let us point out that the evolution equation for statistical states given by the dyna
semigroup encodes the behavior of individual samples. In the first example we showe
~assuming the quantum Hamiltonian is equal to zero! the evolution of a pure state is given by th
Poisson probability distribution. The stochastic process describing the evolution from the s
example was discussed in Ref. 17. A general construction of a piecewise deterministic p
associated to a dynamical semigroup of the coupled quantum and classical continuous s
was presented in Ref. 21. Those processes can provide a practical way for calculating n
that are needed in experiments. Such an algorithm, which generalize that of the quantum
Carlo method, was given in Ref. 22.
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APPENDIX A: PROOF OF THEOREM 2.4

Proof. Let $ek%1
` be an orthonormal basis inHq . Because for everyxPM

a~B!50⇒~nx* Ek,l !~B!5^ek ,~nx* E!~B!el&50,

there is a Borel anda-integrable functionf k,l(x,q) such that (nx* Ek,l)(B)5*Bf k,l(x,q)da(q) for
everyBPB(Q). At first we modify functionsf k,l . We have thatf k,lPL1

„Q,B(Q),da… and from
Lemma 3.5 the mapx→*Bf k,l(x,q)da(q) is Borel for everyBPB(Q). Moreover,Q, as a space
which satisfies the second axiom of countability, is a separable Borel space. So from the se
of representative lemma23 there is a Borel functionf k,l* :M3Q→C and a Borel setNk,l,M of
m-measure zero such that;xPM \Nk,l f k,l* (x,q)5 f k,l(x,q) a almost everywhere. LetN
5øk,lNk,l . Thenm(N)50 and;xPM \N fk,l* (x,q)5 f k,l(x,q) a a.e. for everyk, l PN.

Let U be a subspace ofHq generated by finite linear combinations ofek with coefficientszk

such that Rezk and Imzk are rational numbers. It is clear thatU is dense and countable. Letfx,q

be a sesquilinear form onU defined by

fx,q~v1 ,v2!5(
k,l

ȳkzl f k,l* ~x,q!, v15(
k

ykek , v25(
l

zlel .

Because for fixedvPU the function (x,q)→fx,q(v,v) is Borel, sets

Qv5$~x,q!:ufx,q~v,v !u<Civi2%,

Jv5$~x,q!:fx,q~v,v !>0%

are Borel subsets ofM3Q. ThusVª(ùvQv)ù(ùvJv) is also Borel. On this set the formfx,q

may be extended to a positive and bounded formf̄x,q on the wholeHq . It means that there is a
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function V:V→L(Hq)1 such that ;c1 ,c2PHq ^c1 ,V(x,q)c2&5f̄x,q(c1 ,c2& when (x,q)
PV. Now we show thatV is big enough, i.e., thatm3a(M3Q\V)50. Let vPU, i.e., v
5Sk51

n zkek . Then for everyxPM \N

E
Q

fx,q~v,v !da~q!5 (
k,l 51

n

z̄kzlE
Q

f k,l* ~x,q!da~q!

5 (
k,l 51

n

z̄kzlE
Q

f k,l~x,q!da~q!5~nx* Ev,v,!~Q!>0.

So there is a Borel subsetBx,v,Q such thata(Bx,v)50 and;qPQ\Bx,v fx,q(v,v)>0. More-
over, fora-finite BPB(Q) we have that

E
B
fx,q~v,v !da~q!5^v,~nx* E!~B!v&<Civi2a~B!.

Thus for everyQn @Q5øn51
` Qn and a(Qn)<`# there is a Borel subsetCx,n,v,Qn such that

a(Cx,n,v)50 and;qPQn\Cx,n,v fx,q(v,v)<Civi2. Let

Dx5 S ø
v

Bx,v Dø S ø
n

ø
v

Cx,n,v D .
Then a(Dx)50 and ;xPM \N;qPQ\Dx , fx,q is positive and bounded by constantC. Let
V05$(x,q):xPM \N,qPQ\Dx%. BecauseV0,V, then M3Q\V,M3Q\V0 . However, M
3Q\V is Borel, so from the Fubini theorem

m3a~M3Q\V!5E
M

a@~M3Q\V!x#dm~x!5E
M \N

a@~M3Q\V!x#dm~x!.

Because;xPM \N

~M3Q\V!x5$qPQ:~x,q!M3Q\V%,Dx ,

we have thata@(M3Q\V)x#<a(Dx)50 and som3a(M3Q\V)50. Let us define

Ṽ~x,q!5 HV~x,q!,
0 ,

~x,q!PV,
elsewhere.

It is clear that (x,q)→Ṽ(x,q) is weakly Borel measurable and supx,q iṼ(x,q)i<C. Moreover, for
everyxPM \N, BPB(Q), c1 ,c2PHq ,

E
B
^c1 ,Ṽ~x,q!c2&da~q!5E

B
f̄x,q~c1 ,c2!da~q!5^c1 ,~nx* E!~B!c2&.

Now we check the uniqueness ofṼ up to a set ofm3a measure zero. LetṼ8 be another map
which satisfies the thesis. So there is a Borel subsetN8,M such thatm(N8)50 and for every
xPM \N8

^c1 ,~nx* E!~B!c2&5E
B
^c1 ,Ṽ8~x,q!c2&da~q!.

BecauseṼ and Ṽ8 are both weakly Borel measurable, a set

Gv5$~x,q!:^v,Ṽ~x,q!v&Þ^v,Ṽ8~x,q!v&%
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is Borel for everyvPV. Let G5øvGv . It follows that quadratic formsv→^v,Ṽ(x,q)v& andv
→^v,Ṽ8(x,q)v& agree onM3Q\G. As they are both bounded the operator functionsṼ and Ṽ8
differ from each other only onG. Becausem(NøN8)50, we have that

m3a~G!5E
M

a~Gx!dm~x!5E
M \~NøN8!

a~Gx!dm~x!.

However,;xPM \(NøN8), Ṽ(x,q)5Ṽ8(x,q) a a.e. soa(Gx)50 andm3a(G)50. h

APPENDIX B: PROOF OF LEMMA 2.8

Proof. Wn is the weak limit of completely positive maps andW is the weak limit ofWn .
Because;kPN, W^ 1k , 1kPMk3k , is the weak limit of positive maps, for any positive opera
Â fromAT^ Mk3k W^ 1k(Â) is positive. To prove thatW is normal we have to show thatW is an
adjoint map of some boundedT:Tr(H̃)→Tr(H̃). Let r̃PTr(H̃)1 . There exists a basis$em% in H̃
such thatr̃5Sm51

` cmPm , wherePm is a projector ontoem . At first we show that

Tn~ r̃ !5E
Qn

da~q!W̃qr̃W̃q*

exists in Tr(H̃).
Because it exists inL(H̃)1 and

Sk5 (
m51

m5k

^em ,Tn~ r̃ !em&5 (
m51

m5k E
Qn

da~q!^em ,W̃qr̃W̃q* em&

<E
Qn

da~q!iW̃qr̃W̃q* iTr<a~Qn!~sup
q

iW̃qi2!i r̃iTr ,

so Tn( r̃)PTr(H̃)1 . Moreover,

E
Q

da~q!iW̃qr̃W̃q* iTr5E
Q

da~q! (
m51

`

^em ,W̃qr̃W̃q* em&

5E
Q
(

m51

`

i r̃1/2W̃q* emi2

5E
Q

da~q! (
m51

`

(
n51

`

u^r̃1/2W̃q* em ,en&u2.

However,r̃1/2W̃q* PHS(H̃). So, we get

E
Q

da~q! (
n51

`

(
m51

`

cnu^em ,W̃qen&u25E
Q

da~q! (
n51

`

cniW̃qeni2

5 (
n51

`

cnE
Q

da~q!iṼqeni2

5 (
n51

`

cnE
Q

da~q!^en ,Ṽq
2en&
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<C(
n51

`

cnE
Q

da~q!E
M

dm~x!^en~x!,Ṽ~x,q!en~x!&

5C(
n51

`

cnE
M

dm~x!^en~x!,~nx* E!~Q!en~x!&

<C~sup
x

i~nx* E!~Q!i !i r̃iTr

5CiE~q!i~sup
x

nx~G!!i r̃iTr5CC1iE~Q!i•i r̃iTr .

ThusT( r̃)5*Qda(q)W̃qr̃W̃q* PTr(H̃)1 and Tr„T( r̃)Ã…5Tr„r̃W(Ã)… for any ÃPAT . j
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Arithmetic properties of spectra produced by Farey
hierarchies of approximants

O. Radulescua) and T. Janssen
Institute of Theoretical Physics, Nijmegen University,
Postbus 9010, 6500 GL Nijmegen, The Netherlands

~Received 12 June 1998; accepted for publication 30 November 1998!

We discuss the consequences of the hierarchical nature of series of approximants of
aperiodic crystals on their diffraction patterns and spectra of elementary excita-
tions. We show how a linear form defined onZ3 can be used to order Bragg
reflections in diffraction patterns according to their amplitudes, and gaps in spectra
of elementary excitations according to their widths, for all the structures in the
hierarchy. Bragg peaks amplitudes and gap widths are projective functions on
P(Z3), recursively defined on 2D Farey sets~generalization of Farey series!.
© 1999 American Institute of Physics.@S0022-2488~99!00603-9#

I. INTRODUCTION

Several aperiodic ordered systems occurring in solid state physics, such as incomme
modulated structures, composite compounds, and quasicrystals, have complex phase d
containing also series of commensurate structures called approximants. It is possible to pa
one approximant to another in a series, by altering the chemical nature of the building units
changing the thermodynamic equilibrium parameters~temperature, composition, pressure!. In cer-
tain cases, approximants are dynamically selected nonequilibrium phases.

The series of approximants is hierarchical, members of this series having strong m
structural relations. The universality of the structural relations between approximants an
consequences of these relations on their physical properties can be understood if Farey se
used to index approximants. A short summary of the properties of the Farey series is gi
Appendix A. In this paper we discuss only one-dimensional~1D! structures, but our approac
could in principle be generalized to higher dimension as well.

Different approximants can be embedded in a Farey hierarchy~see Appendix A for precise
definitions!. For each rational numberp/q the corresponding approximant is called (p,q) com-
mensurate structure and the integer numbers (p,q) are called commensurability indices. Th
elementary step in constructing a Farey hierarchy is the mediant construction~well known for
Farey series!: the unit cell of an approximant with commensurability indices (p11p2 ,q11q2) is
obtained by concatenating the unit cells of two approximants with commensurability in
(p1 ,q1) and (p2 ,q2), respectively.

The periods of (p,q) commensurate structures obtained by concatenation have the ge
form Lp,q5a(bp1aq) ~see Appendix A!, and therefore their diffraction patterns consist
equidistant Bragg reflections with a distance 2p/Lp,q between consecutive reflections situated

kp,r ,q5
2pr

a~bp1aq!
. ~1!

The structure factorh(p,r ,q) for a reflection of wave vectorkp,r ,q is defined as the comple
amplitude of the reflection divided by the total number of atoms in the unit cell, which

a!Present address: IRC in Polymer Science and Technology, Department of Physics, University of Leeds, Leeds L
UK. Electronic mail: phyor@irc.leeds.ac.uk
13170022-2488/99/40(3)/1317/17/$15.00 © 1999 American Institute of Physics

                                                                                                                



e
rability
l line.
ucture
on
the
mants

in the
t
to
yed by

ectrons

using
two

s

nergy
ic
. The

1318 J. Math. Phys., Vol. 40, No. 3, March 1999 O. Radulescu and T. Janssen

                    
approximants generated by concatenation isnp,q5sp1tq ~Appendix A!. If for simplicity the
atomic scattering factor is considered equal to one for all atoms, thenh(p,r ,q)
5(1/np,q)( i 51

np,q exp (ikxi), xi being the atomic positions in the unit cell.

Let us define the family of complex functionsFp,q(z)5( i 51
np,qzxi /a. It follows

h~p,r ,q!5
1

sp1tq
Fp,q@exp~ ikp,r ,qa!#,

~2!
Fp11p2 ,q11q2

~z!5Fp1 ,q1
~z!1zbp11aq1Fp2 ,q2

~z!,

wheneverp1 /q1 ,p2 /q2 are Farey-consecutive.
Fp,q is uniquely defined by Eq.~2! for all p,q relatively prime and 0<p/q<1, onceF0,1(z)

andF1,1(z) are given.
At this level we may notice the occurrence ofZ3 in the problem. Bragg peaks for all th

structures in the hierarchy can be labeled with three integers, two being the commensu
indices and the third one indicating the position of the Bragg reflection along the reciproca
Equation~2! illustrates the special two indices recursion on Farey series satisfied by the str
factor. It is straightforward from Eq.~1! that positions of Bragg reflections are only depending
the ratiosp/q, r /q. From Eq.~2! it follows that the same holds for the structure factor, i.e., for
amplitude of Bragg peaks. Thus, Bragg reflections for the entire Farey hierarchy of approxi
are in correspondence with directions ofZ3, i.e., with points in the projective moduleP(Z3).

It is known that for crystals there is a connection between Bragg reflections and gaps
spectra of elementary excitations~electrons, phonons!. This is true more generally for almos
periodic structures generated by substitutions.1 We shall show that when the structure belongs
a Farey hierarchy, then gap widths obey a recursion having the same form as the one obe
the structure factor@Eq. ~2!#, with coefficientsa,b that may be different. But first of all let us
clear up the relation between Bragg reflections and gaps in 1D models for phonons and el
in crystals~periodic and aperiodic!. A review of these models can be found elsewhere.2

Energy of electrons in a 1D periodic crystal follows from the Schro¨dinger equation with
periodic potential:

~Ho1Vp,q!F5EF,

Ho52
\2¹2

2m
, ~3!

Vp,q~x1Lp,q!5Vp,q~x!.

In the nearly free electron approximation the electron energy spectrum is obtained by
degenerate first-order Rayleigh–Schro¨dinger perturbation theory in the space spanned by the
planar waves exp (6ikx). A gap of widthDp,r ,q52Ṽp,q(kp,r ,q) (Ṽp,q is the Fourier transform of
Vp,q) opens if 2k5kp,r ,q , for some Bragg wave vectorkp,r ,q . The energetic positions of the gap
are given, like the positions of the Bragg reflection, by a function ofp/q and r /q, Ep,r ,q

5\2kp,r ,q
2 /8m. The correspondence between Bragg reflections and gaps in the electron e

spectrum~within nearly free electron approximation! is 1–1 and, supposing that the period
potentialVp,q mimics the distribution of atoms, strong Bragg peaks correspond to wide gaps
origin of gaps is the Bragg reflection of planar waves on the periodic potentialVp,q .

Furthermore, for a Farey hierarchy of structuresVp,q obey

Vp11p2 ,q11q2
~x!5H Vp1 ,q1

~x!, xPUp1 ,q1
,

Vp2 ,q2
~x2Lp1 ,q1

!, xPUp2 ,q2
1Lp1 ,q1

.
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If we define the following family of complex functionsFp,q(z)5Ṽp,q(log(z)/ia), then the
absolute value ofFp,q is half the gap width, i.e.,uFp,q(exp (ikp,r,qa))u5uṼp,q(kp,r,q)u. The functions
Fp,q(z) obey exactly the same recursion~with the same values of the coefficientsa,b) as the
similar functions giving the structure factor@Eq. ~2!#.

Of course, the 1–1 correspondence between Bragg reflections and gaps in the spec
nearly free electrons is only an approximation. Actually, for periodic structures the number o
is finite and the number of Bragg reflections is infinite~the correspondence can be 1–1 only f
aperiodic, almost periodic structures!.

A different approximation is the discretized version of Eq.~3!:

HoFn1Vn
p,qFn5EFn ,

HoFn52Fn212Fn1112Fn , ~4!

Vn1q
p,q 5Vn

p,q .

This equation describes tight-binding electrons with modulated onsite potential2 but also pho-
non excitations for harmonic chains under influence of a periodic substrate potential~Frenkel–
Kontorova models3!.

In this case degenerate perturbation theory applies to the Bloch waves exp (6ikn) and the
origin of gaps is the Bragg reflection of Bloch waves on the superlattice potentialVp,q ~notice that
if one defines the translation operatorsTqFn5Fn1q , @Ho ,T1#50,@Vp,q,Tq#50, the above Bloch
waves are eigenvectors ofT1). There areq21 gaps, appearing at wave vectors obeyingk52k
1 (2pr /q)(mod 2p). Each gap is related to an infinite family$2pr /q12pn%nPZ of Bragg
reflections. The energetic positions of the gaps areEp,r ,q54 sin2 (2pr/q), while their widths are
Dp,r ,q5(1/q)uṼp,q(2pr /q)u, whereṼp,q(k)5(n50

q21Vn
p,q exp (ikn). We may notice the absence of

characteristic lengtha in the expression of the gap widths. The Euclidean metric occurring in
calculation of the structure factor becomes the graph metric along the chain of atomic
Tight-binding calculations for electrons or chain models for phonons assume instantaneous
gation of waves from one site to another. In this approximation the relation between amplitu
Bragg peaks and widths of gaps may be nonmonotonic.

The hierarchical properties of gap widths are a consequence of

Vn
p11p2 ,q11q25H Vn

p1 ,q1 , n50, . . . ,q121,

Vn2q1

p2 ,q2, n5q1 , . . . ,q11q2 .

DefiningFp,q(z)5Ṽp,q((1/i ) log (z)), thenDp,r ,q5(1/q)uFp,q(exp (2pr/q)i)u and the functions
Fp,q(z) obey similar recursions as the functions giving the structure factor@Eqs. ~2!, with a
51, b50, s50, t51]. a andb are now the coefficients characterizing the linear dependenc
the graph length of the unit cell~number of successive chain atoms in the unit cell! on the
commensurability indices (p,q). These are generally different from the values expressing
dependence of the Euclidean length on (p,q), occurring in the structure factor problem. F
Frenkel–Kontorova models the substrate is rigid with a fixed perioda, therefore the length of the
unit cell is pa (a50,b51), while the graph length scales asq (a51,b50).

A more complex Farey hierarchy is described by the double chain model. This mode
designed4 for the study of phonons in composite structures. The modulation is no longer dia
because there are two interacting harmonic subsystems. The double chain infinite-dime
dynamical matrix~second derivative of the configuration potential energy! acts as
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D~yn
~1! ,ym

~2!!5X2~yn11
~1! 1yn21

~1! !1yn
~1!S 21(

m
xn,mD 2(

m
xn,mym

~2! ,

2~ym11
~2! 1ym21

~2! !1ym
~2!S 21(

n
xn,mD 2(

n
xn,myn

~1!C. ~5!

The eigenvalues of the dynamical matrix form the phonon spectrum. We have shown4 that in
the case when the interaction between the two chains is harmonic and short range represe

xn,m5H x, m5 b nq

p
1

1

2 c ,
0, elsewhere,

the gap widths are given by the same type of recursion relations as in Eq.~2!, but with a51,b
51. The ‘‘effective’’ graph length of the unit cell scales likep1q.

According to these introductory remarks, amplitudes of Bragg peaks in the diffraction sp
and widths of gaps in the spectra of the elementary excitations of approximant structures b
ing to a Farey hierarchy are functions defined on the projective moduleP(Z3), i.e., on the set of
fractions having common denominator (p/q,r /q). These functions obey special recursion re
tionships, involving Farey series. The purpose of this paper is to study the properties of thes
of functions and to analyze their consequences for the spectral properties of approximants

The structure of this paper is the following. In the next section we introduce and discus
properties of Farey sets that are the 2D analog of Farey series. The Farey sets were used
and Oslund5 for the problem of simultaneous approximation of pairs of real numbers by pai
rational numbers of common denominator. We prove here a set of properties of Farey sets
direct extensions of properties of Farey series, and that are useful for our purpose and co
also used in other applications. In the third section we discuss a representation of rational n
that comes naturally out of the previous construction and has heuristic utility for many o
reasonings involving Farey series. In the fourth section we introduce functions that are hie
cally defined on Farey sets, and prove a theorem revealing their arithmetical structure. For
hierarchies of structures, widths of gaps in the spectra of elementary excitations and amplitu
Bragg peaks are functions hierarchically defined on Farey sets. In the last section we disc
consequences of this on the structure of spectra generated by Farey hierarchies of structu
proofs of properties and theorems can be found in Appendix B.

II. TWO-DIMENSIONAL FAREY SETS

The Farey seriesFn are included in the one-dimensional projective moduleP(Z2) that is
composed of all directions inZ2. The mapping (p,q)→p/q identifies P(Z2) with the set of
rational numbers extended by the point at infinityQ̂ªQø`.

Similarly, one may define a two-dimensional projective moduleP(Z3) consisting of all direc-
tions inZ3, and the mapping (p,r ,q)→(p/q,r /q) allows us to identifyP(Z3) with the set of pairs
of fractions$(p/q,r /q)ugcd@p,q,r #51,q>0% having a common denominator and such thatq is
positive andp,r ,q are relatively prime. As(p,r,q) and(-p,-r,-q) represent the same direction inZ3

we may conventionally imposeq>0. The logic of this convention will show up later. The abo
application also maps the surface of a sphere onto the plane~Fig. 1! and is known in cartography
under the name of gnomonic projection. This projection has the remarkable property of tran
ing geodesics~great circles! on the sphere into straight lines and proved its utility in airli
navigation, meteors maps in astronomy, and indexing of the Laue diagrams in x-ray crysta
phy. It has the disadvantage of not being conformal~it distorts angles!. The gnomonic projection
embedsP(Z3) in a Euclidean model of the projective plane,6 provided that the line at infinity is
considered as well. Forx5(p/q,r /q)PP(Z3) we denote the common denominator by den (x)
5q>0.
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A partial projection (p,r ,q)→(p/q,r ) has as imageP(Z2)3Z that can be identified to the
subset$(p/q,r /q)ugcd@p,q#51% of P(Z3) via the injection (p/q,r )→(p/q,r /q). By ‘‘abus de
langage’’ we shall denote this subset withP(Z2)3Z whenever confusion is not dangerous.

Definition 1: A direction inP(Z3) is the 1D projective moduleDh,k,lª$(p/q,r /q)uph1rk
1ql50%. It is the image via the gnomonic projection of a plane ofZ3 containing the origin, and
whose normal has indices (h,k,l). We shall refer to the indices (h,k,l), gcd[h,k,l]51, as the Miller
indices of the direction. An orientation is conventionally chosen, by imposing k>0.

Definition 2: The mediant of two points x15(p1 /q1 ,r 1 /q1),x25(p2 /q2 ,r 2 /q2) is defined as
x1% x2ª((p11p2) /(q11q2) ,(r 11r 2) /(q11q2)) (see also Ref. 5).

Example 1: In Fig. 2( 1
2,

1
2)5( 0

1,
1
1) % ( 1

1,
0
1), ( 2

3,
1
3)5( 1

2,
1
2) % ( 1

1,
0
1).

Definition 3: The external product of two points x15(p1 /q1 ,r 1 /q1),x25(p2 /q2 ,r 2 /q2),
gcd@p1 ,r 1 ,q1#51, gcd@p2 ,r 2 ,q2#51, q1 ,q2.0, is defined as the following vector ofZ3: x1

`x2ª(r 1q22q1r 2 ,q1p22p1q2 ,p1r 22r 1p2).
Remark 1:The external product of two different points along the same direction is an inte

multiple of (h,k,l ), the set of Miller indices of the direction. This clears up the conventio
choiceq>0 that was made in order to haveq1p22p1q2.0 and thusx1`x2 and (h,k,l ) to be in
the same direction as soon asp1 /q1,p2 /q2 .

FIG. 1. Gnomonic or ‘‘central’’ projection: a direction of indices@p,r ,q# of the lattice with origin in the center of the
sphere cuts the tangent plane in a point of coordinates (p/q,r /q).

FIG. 2. The 2D Farey set of order 8 in the Euclidean plane: dots are points ofF 8
(2,0) , while crosses mark the subsetF 8

(1,1) .
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The following theorem shows that the external product of two different points along the
direction ofP(Z3) takes all values integral multiples of (h,k,l ).

Theorem 4: For any xPP(Z3) along the directionDh,k,l of Miller indices (h,k,l), there is y
PDh,k,l such that x̀ y5(h,k,l ).

Definition 5: We call Farey set of order n inP(Z3) the setF n
(2,0)5$(p/q,r /q)ugcd@p,r ,q#

51,0< p/q<1,0< r /q<1,0,q<n%
Definition 6: We call Farey set of order n inP(Z2)3Z the setF n

(1,1)
ªF n

(2,0)ù@P(Z2)3Z#
5$(p/q,r /q)ugcd@p,q#51,0< p/q<1,0<r /q<1,0,q<n%

Remark 2:F n
(1,1) is a subset ofF n

(2,0) ~see Fig. 2!. F n
(1,1) andF n

(2,0) coincide along some
special directions, as shown by the following property.

Property 7: Dh,k,l5Dh,k,lù@P(Z2)3Z# iff k51. This is valid iff Dh,k,l contains two points
(p/q,r /q), (p1 /q1 ,r 1 /q1) such that

~i! gcd@p,q#51, gcd@p1 ,q1#51, and
~ii ! p1 /q1 and p/q are Farey consecutive, i.e., q1p2p1q51.

Definition 8: We call two points x15(p1 /q1 ,r 1 /q1),x25(p2 /q2 ,r 2 /q2) in P(Z3)ù@0,1#2

Farey-consecutive if they belong to a directionDh,k,l , being oriented such that x1`x2

5l(h,k,l ),l.0, and all the points x5(p/q,r /q) between them onDh,k,l obey q.max (q1,q2).
This definition is equivalent to the following:
Property 9: Two points x1 ,x2PP(Z3)ù@0,1#2 are Farey-consecutive iff for some n and f

some directionDh,k,l , x1 ,x2P@Dh,k,lùF n
(2,0)# andx1`x25l(h,k,l ),l.0 and there are no other

points ofF n
(2,0) between them alongDh,k,l .

The following properties are extensions of similar properties of Farey series.
Property 10: x15(p1 /q1 ,r 1 /q1) and x25(p2 /q2 ,r 2 /q2), x1 ,x2PP(Z3)ù@0,1#2 are Farey-

consecutive iff x1`x25(h,k,l ), where h,k,l are the Miller indices of the direction passing throu
them. In this case, r2 /(bp21aq2)2 r 1 /(bp11aq1)5(b l 2ah)/@(bp11aq1)(bp21aq2)#,
wherea,bPR.

Remark 3:The similar property of Farey series is:p1 /q1,p2 /q2 are Farey consecutive if
q1p22q2p151. ~Th. 2 of Neville,7 Th. 28 of Hardy and Wright,8 and Th. 10.2 of Hua.9!

Property 11: Two points x15(p1 /q1 ,r 1 /q1),x25(p2 /q2 ,r 2 /q2) on a segmentDh,k,lù@0,1#2

with k51 are Farey-consecutive iff p1 /q1 , p2 /q2 are Farey-consecutive.
Property 12: If x1 ,x2 ,x3PP(Z3)ù@0,1#2 are three collinear, Farey-consecutive points,2

being between x1 ,x3 ~i.e., x1`x25l(x2`x3),l.0), then x25x1% x3.
Remark 4:The similar property of Farey series is the following.
For three Farey-consecutive rationals, the one in the middle is the mediant of the othe

~Th. 29 in Hardy and Wright,8 and Th. 10.3 in Hua.9!
Property 13: The equation x5x1% x2 has a unique solution inDh,k,lù@0,1#2, with x1 ,x2

Farey-consecutive. x1 ,x2 are called right and left ascendants of x along the directionDh,k,l ,
respectively, and they satisfyx1`x5(h,k,l ), x`x25(h,k,l ).

Remark 5:The similar property of Farey series is the following.
The equationp1 /q1 % p2 /q2 5 p/q, with p1 /q1,p2 /q2 Farey-consecutive has an uniqu

solution. We callp1 /q1 and p2 /q2 left and right ascendant ofp/q, respectively.~This follows
from Th. 5 in Neville7 and Remarks 3,4.!

Example 2: In Fig. 2( 1
2,

1
2) and ( 1

1,
0
1) are the ascendants of( 2

3,
1
3) along the direction(1,1,

21).

III. FAREY GRAPH

Let us consider the subset$(p/q , 1/q)ugcd@p,q#51% of P(Z3), which can be identified toQ̂
via the mapping (p/q , 1/q)→ p/q. This representation of rational numbers10 has several usefu
properties that were the heuristic source of many of the results in this paper~see Fig. 3!:
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~i! The points representingFn are all those having coordinatesy>1/n in the plane of the
projection. Low denominator rationals have highy coordinate.

~ii ! The mediant construction has a simple geometrical interpretation.p1 /q1 % p2 /q2 is repre-
sented by the intersection of two lines, one connecting the point (p1 /q1 , 0/q1) to the point
(p2 /q2 , 1/q2), the second connecting the point (p2 /q2 , 0/q2) to the point (p1 /q1 , 1/q1).

~iii ! There is a simple way to see if two rationals are Farey-consecutive: check if all points
x-coordinate between thex-coordinates of the two tested points have lowery-coordinate
than any of they-coordinates of the tested points.

~iv! The left and right ascendants of a rationalp/q are the higher points, Farey-consecutive w
p/q to its left and right, respectively. For instance, the left ascendant of 1/2, or of 1/3 is
Descendants of two Farey-consecutive rationals are all the lower points in the diagram
x-coordinate in between.

~v! If p1 /q1 is the left ascendant ofp/q, thenxlnªpn
l /qn

l 5(p11np)/(q11nq) converges to
p/q in Q̂. This series is made of the left ascendant ofp/q and of all rational numbers tha
have as right ascendantp/q, all on a straight line in the diagram. We call this the series
left low convergents ofp/q in order to distinguish it from the finite series of convergen
to a rational number coming from the continuous fraction expansion. Low convergent
obey the property of convergents of being best approximants~i.e., p/q 2 pn

l /qn
l ,C/(qn

l )2

with lowestC), but they have denominators that can be greater thanq ~ continuous fraction
expansion convergents have all denominators smaller thanq). For instance the serie
0/1,1/3,2/5,3/7,4/9, . . . converges to 1/2 from the left. In the same way, ifp2 /q2 is the right
ascendant ofp/q, the series of right low convergentsxrnª(p21np)/(q21nq) converges
to p/q from the right. As an example, 1/1,2/3,3/5,4/7,5/9, . . . converges to 1/2 from the
right. Any other series converging top/q, and not containingp/q, are made of descendan
of xln ,xln11 or xrn ,xrn11 , performing worse approximation ofp/q than the low conver-
gents.

The last remark inspired a special reasoning scheme that we shall use throughout th
sections. Let us considerx5(p/q,r /q)PDh,k,lù(P(Z2)3Z), thus gcd@p,q#51,q.0.
(p1 /q1 ,r 1 /q1) and (p2 /q2 ,r 2 /q2) are the unique right and left ascendants ofx along the direc-
tion Dh,k,l , respectively.

FIG. 3. Farey undirected graph~upper part of it! in the representation (p/q,1/q): two vertices are connected by a segme
iff one is the ascendant of the other. The triangles made by edges of the graph perform the so-called Farey-tess
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Let us endowP(Z3) with the topology induced by the gnomonic projection. i.e., the weak
topology that makes the gnomonic projection continuous fromP(Z3) to R2 ~with the Euclidean
metric topology!.

The series xln
[h,k,l ]

ª(pn
l /qn

l ,r n
l /qn

l ),pn
l
ªp11np,qn

l
ªq11nq,r n

l
ªr 11nr, xrn

[h,k,l ]
ª(pn

r /
qn

r , r n
r /qn

r ),pn
r
ªp21np,qn

r
ªq21nq,r n

r
ªr 21nr, that we call series of left and right low conve

gents ofx alongDh,k,l , converge tox from the left and from the right along the directionDh,k,l ,
respectively. It is easy to check that all other series converging tox along Dh,k,l are made of
descendants ofxln

[h,k,l ] ,xln11
[h,k,l ] , or xrn

[h,k,l ] ,xrn11
[h,k,l ] . The following induction argument allows u

to extend results valid forxln
[h,k,l ] andxrn

[h,k,l ] to results valid for any series converging tox along
a direction with Miller indexk51.

Lemma 14: Let xnªpn /qn→ p/q where xn ,xn11 or xn11 ,xn are Farey-consecutive rationa
numbers for any n. DefineIrªFrù@xn ,xn11#. Let (P) be the property: f(x)5y1O(1/qn),
where f is an arbitrary real function and yPR. Suppose that

~i! xn ,xn11 obey (P).
~ii ! If all x PIr obey (P), then all xPIr 11 obey (P).

Then all xP@xn ,xn11#ùQ obey (P).
Remark 6:We shall usually apply Lemma 14 by first checking~i!, then checking the impli-

cation: if x8,x9P@xn ,xn11# are Farey-consecutive and obey (P), thenx8% x9 obeys(P). Accord-
ing to the hierarchical structure of Farey series this implies~ii !.

IV. PROJECTIVE FUNCTIONS AND RECURSION ON FAREY SETS

Definition 15: We call a function g:Z3→R projective if it is constant on directions containin
the origin g(p,q,r )5g(np,nq,nr). A projective function induces an application g:P(Z3)→R.

Let $Fp,q(z)up,qPZ,gcd@p,q#51,0<p/q<1% be a family of complex functions defined a
following:

Fp11p2 ,q11q2
~z!5Fp1 ,q1

~z!1zbp11aq1Fp2 ,q2
~z!, ~6!

wheneverp1 /q1 , p2 /q2 are Farey- consecutive inQ. Equation~6! definesFp,q(z) for all rational
numbers 0<p/q<1, gcd@p,q#51, providedF0,1(z) andF1,1(z) are known.

Using this family we define the following projective function onP(Z3):

h~p,r ,q!5
uFp* ,q* ~exp@2p ir * /~bp* 1aq* !#u

sp* 1tq*
, ~7!

wherep* 5p/gcd@p,q#,q* 5q/gcd@p,q#,r * 5r /gcd@p,q# (r * PQ is not necessarily an integer!.
We have seen in the Introduction that for a Farey hierarchy of structures the structure

at Bragg reflections and the widths of gaps in the spectra of elementary excitations are pro
functions defined onP(Z2)3Z ~see also Sec. V!, and obeying relation~2! @relation~7! represents
the natural extension of relation~2! to P(Z3)].

The following theorem represents our main result, stating an important property ofh(p,r ,q).
Theorem 16: For any projective function h obeying Eqs. (6) and (7) and for each direc

Dh,k,l5$(p/q,r /q)uph1rk1ql50% with Miller index k51, there is a projective function
eh,k,l(x) and a projective function fh,k,l(x) such that.

~i! h(x)5(11eh,k,l(x)) f h,k,l(x),xPDh,k,l .
~ii ! f h,k,l(x) is continuous onDh,k,l .
~iii ! limn→`supxP[P(Z2)3Z\F

n
(1,1)] ùDh,k,lù[0,1]2ueh,k,l(x)u50.

~iv! The limit in (iii) is more rapid for directionsDh,k,l for which Iªub l 2ahu is smaller.
Precisely, ifub l 82ah8u.ub l 2ahu, then
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0< lim
n→`

sup
xP[P~Z2!3Z\F n

~1,1!] ùDh,k,lù[0,1]2

eh,k,l~x!

sup
xP[P~Z2!3Z\F n

~1,1!] ùDh8,k8,l 8ù[0,1]2

eh8,k8,l 8~x!
,1.

In particular, eh,k,l(x)50 for directions with Miller indices satisfyingb l 2ah50.
~v! There iseo.0, such that for any x5(p/q , r /q)PP(Z2)3Z, and for any two directions

passing through x of Miller indices(h,k,l ) and (h8,k8,l 8), such thatub l 2ahu,ub l 82ah8u and
eh,k,l(x),eo we haveeh,k,l(x),eh8,k8,l 8(x), i.e., fh,k,l(x). f h8,k8,l 8(x).

The proof of Theorem 16 uses Lemma 14 and the following two lemmas:
Lemma 17: With the notations of Section III, if xln

[h,k,l ] , xrn
[h,k,l ] are the series of left and righ

low convergents of x alongDh,k,l with k51, then

h~xln
@h,k,l #!5h~x!/@11eh,k,l~x!#1OS 1

qn
l D ,

h~xrn
[h,k,l ] !5h~x!/@11eh,k,l~x!#1OS 1

qn
l D ,

where

eh,k,l~x!5H Up~b l 2ah!

bp1aq
/sinFp~b l 2ah!

bp1aq GU21, i f ub l 2ahu.0,

0, i f b l 2ah50,

and x5(p/q , r /q) is the unique representation of xPP(Z2)3Z with gcd@p,q#51,q.0.
Lemma 18: Consider the series of left and right low convergents of x alongDh,k,l , k51.

Consider the proposition (P1): h(z)5h(x)/@11eh,k,l(x)#1O(1/qn
l ). The following implication

(and the analogous statement for left low convergents) is valid: if (P1) is satisfied wh
5x8,x9 wherex8,x9 are any two Farey-consecutive points betweenxln

[h,k,l ] ,xln11
[h,k,l ] alongDh,k,l ,

then (P1) is also satisfied by zªx8% x9.

V. EXAMPLES AND CONCLUSIONS

We have shown that the amplitudes of the structure factor at Bragg reflections and the
of gaps ~in first order of Rayleigh-Schro¨dinger perturbation theory! in spectra of elementary
excitations of approximants forming a Farey hierarchy are given by projective functions r
sively defined onP(Z2)3Z.

Theorem 16 states that these functions are approximated with arbitrary precision by s
functions of the commensurability ratiop/q along special directions inP(Z3) @for which k51,
therefore common toP(Z3) and to P(Z2)3Z], when restricted to points that are ‘‘not ver
rational’’ i.e., they are outsideF n

(1,1) , with n big enough.
Furthermore, Lemma 17 provides an analytical formula of a projective function perfor

the smoothing of the projective functions giving the values of gap widths~reflection amplitudes!.
From point ~iv! of Theorem 16 it follows that the lines withk51 and smaller values ofI

5ub l 2ahu correspond to weaker fluctuations of the gap widths~amplitudes of reflections! with
respect to the smooth approximating function. The smallerI is, the weaker the fluctuations are

Point ~v! of Theorem 16 implies that when several directions intersect, the values o
smooth approximating functions are higher for the lines with smallest value ofub l 2ahu ~if we
ignore the tail oscillations of sinQ/Q). Thus smoother lines are also thicker.
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These results are very much related to what in dynamical system theory is called m
smoothing.11 When applied to spectral properties of Farey hierarchies of structures, it reve
simple arithmetic structure, that is, the consequence of the hierarchical construction rules.

Let us discuss here two examples:
The double-chain model.4

For a (p,q) commensurate double chain, and for small interchain coupling, the spectru
phonon excitations has@(p1q21)/2# gaps at the positions

E~p,r ,q!5 f 1S p

q
,
r

qD , r 51,2,. . . , b p1q21

2 c,
f 1~x,y!54 sin2 S p

y

x11D1x
x

x11
,

and the gap widths in first order of the interchain coupling constantx are

D~p,r ,q!5xf1S p

qDFp,q~exp@2p ir /~p1q!# !

p1q
,

f1~x!5x11/x,

whereFp,q obey Eq.~6! with a51,b51.
The values of the projective functionD(p,r ,q) has physical meaning only forgcd@p,q#

51 @thus, onP(Z2)3Z] and for r 51,2, . . . ,@(p1q21)/2#, where one has gaps.
It is customary to represent the spectra for different commensurability ratios as a plot v

p/q made of black vertical segments for bands and white vertical segments for gaps. This r
self-similar ‘‘Hofstadter-type’’ diagrams. In Fig. 4 black and white are reversed.

Figure 4 shows first~a! the values of the functionFp,q(exp@2pir /(p1q)#)/(p1q) on F 20
(1,1) ,

then~b! restricts them to the set$(p/q , r /q)ugcd@p,q#51,p<q,r 51,2, . . . ,b(p1q21)/2c%, and
applies the continuous transformations necessary to get the real positions and widths of th
The values ofI5ub l 2ahu are represented for several directionsDh,k,l with k51. As generally
stated by Theorem 16~v!, when two lines of gaps intersect, the line with smaller value ofn is
thicker. Also, as stated at point~iv! of Theorem 16, lines with smaller values ofn are smoother.

The Aubry repeated parabolas model.2 This model corresponds to the Hamiltonian in Eq.~4!
with Vn

p,q5x b np/q 1 1
2c.

Positions of gaps in the phonon spectrum are

E~p,r ,q!5 f 2S p

q
,
r

qD , r 51,2, . . . ,q21,

f 2~x,y!54 sin2 ~py!1xx,

and the gap widths in first order ofx are

D~p,r ,q!5v2
2x

Gp,q~exp@2p ir /q# !

q
,

whereGp,q obey Eq.~6! with a51,b50.
As for the double chain model, the functionD(p,r ,q) has physical meaning only fo

gcd@p,q#51 and forr 51,2, . . . ,q21.
Figure 5 shows first~a! the values of the functionGp,q(exp@2pir /q#)/q on F 20

(1,1) , then ~b!
restricts them to the set$(p/q , r /q)ugcd@p,q#51,p<q,r 51,2,. . . ,q21%, and applies the con
tinuous transformations necessary to get the real positions and widths of the gaps.
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The properties stated at points(iv) and(v) of Theorem 16 hold in this case as well as sho
by the values ofI5ub l 2ahu.

The transformation (p/q , r /q)→(12 p/q , r /q) transforms (h,k,l ) to (h,2k,2 l ) and ub l
2ahu to ub l 1ahu. This explains the symmetrical aspect of Fig. 5~when b50 and ub l 2ahu
5ub l 1ahu) and the absence of symmetry in Fig. 4~whenb51 andub l 2ahuÞub l 1ahu).

To summarize, here are the consequences of our results:

~i! For hierarchically defined 1D approximants, gaps in the phonon spectrum~or Bragg reflec-
tions in the diffraction pattern! are in one-to-one relation to subsets ofP(Z3) ~the set of
directions in a 3D lattice!. The gnomonic projection ofZ3 onto the plane maps the direc
tions of Z3 to gaps~or Bragg reflections! positions in the plot (p/q , r /q), wherer is the
integer index giving the position of gaps in the spectrum at fixed commensurability
p/q when arranged in increasing order of energy.

~ii ! The 2D planes ofZ3 ~containing the origin! with Miller indices (h,k,l ) project onto lines
connecting gaps~or Bragg reflections! that belong to spectra of different approximants a
whose widths~amplitudes! are not very different and can be approximated by a smo
function of the commensurability ratio.

FIG. 4. Positions and widths of gaps for the DCM model: a! havingP(Z2)3Z as support; b! real gap positions. The value
of I5ub l 2ahu are indicated for different lines of gaps.
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~iii ! The planes~lines in projection! with Miller indices k51 and smallest values ofIªub l
2ahu correspond to gaps~or Bragg reflections! whose widths~amplitudes! have weakest
fluctuations with respect to the smooth approximating function.

~iv! Along a given line, the worst approximation is for the most ‘‘rational’’ points (p/q , r /q) of
Z3, i.e., the ones having low denominatorq; the deviations relative to the smooth approx
mating function vanish for very irrational points (q→`).

~v! If we compare different lines, the smallerI is, the weaker the deviations with respect to t
approximating smooth function are. Smoother~weakly oscillating gaps widths, or Brag
reflections amplitudes! lines are also thicker~large gaps, intense reflections!.

~vi! The aspect of the ‘‘Hofstadter-type’’ diagrams is dictated by the values ofa andb, that
say which lines contain thicker and less fluctuating gaps~Bragg reflections!, by the restric-
tion on the possible values ofr ~only for the gap problem!, and by the smooth functionf
that deforms the lines. For the diffraction problem the values ofa andb are given by the
way the Euclidean length of the unit cell scales with the commensurability indicesp,q. For
the gap problem the same values depend on the topology of the couplings between
and express the way the ‘‘effective’’ graph length of the unit cell scales withp,q.

The above results show the universal, simple arithmetical structure of spectra of Farey

FIG. 5. Positions and widths of gaps for the Aubry model:~a! havingP(Z2)3Z as support;~b! real gap positions. The
values ofI5ub l 2ahu are indicated for different lines of gaps.
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archies of approximants and emphasize the importance of the geometry of numbers for s
properties of hierarchical structures. Because the results were obtained in first order
Rayleigh–Schro¨dinger perturbation theory and by using rather special recursions the range o
strict applicability is limited to 1D models of structures obtained by concatenation, in the lim
weak coupling. For strong coupling, nonlinear effects may destroy the universal structure
spectra in the following way: lines of narrow gaps with big values ofI5ub l 2ahu are strongly
sheared and may lose their individuality each time they cross lines of wider gaps that open
rapidly with the value of the coupling. The lines of wider gaps are more robust and they pre
their individuality and structure for higher values of the coupling. Nonperturbative approache
needed to solve the more complex details of the spectra in the case of strong coupling.

Our approach can be extended in several ways. One can imagine other types of Fare
archy than the one considered in this paper. For instance, approximant ground states
Frenkel–Kontorova model can be constructed by concatenation, but continuous deformation
unit cells should be applied at each step. In our definition of a Farey hierarchy we ignore
effect of this deformation. Also, the concatenation may be replaced by more general b
operations combining more than one copy of the unit cells. It would be also interesting to loo
higher dimensional extensions of these results. The generalization of the diffraction probl
higher dimension is almost straightforward, but the spectral problem is not trivial. Alread
one-dimensional models the possibility of obtaining simple recursions for the widths of the
relies on the topology of the couplings. It is possible to obtain these relations in all case
diagonal tight-binding models for electrons~obtained by concatenation, therefore with a finite
of values of the onsite potential! or for the problem of phonons in the repeated parabolas Fren
Kontorova model, but for nondiagonal models like the double-chain model the dynamical m
obeys simple recursions only in the special case of nearest-neighbor truncated coupling.4

The results presented here are also meant to be applied in material science. They pr
simple way to compare dynamical and spectral properties of approximants in homologous
For instance, urea inclusion compounds having channels filled with different types of cha
molecules were systematically studied for a long time.12 It has been shown that, depending on t
length of the included molecule, compounds with different host/guest ratio of periods ca
produced. Because the inclusion channels are linear, 1D hierarchical models and the above
sis could be useful in the study of the variety of dynamical properties of these compo
Another situation is represented by quasicrystalline alloys. Changing the stoichiometry
temperature, or simply changing the nonequilibrium preparation method, produce samples t
quasiperiodic or contain a rich variety of periodic approximants having hierarchical struc
relations between them. We would like to compare spectral properties of different approxim
Although quasicrystals are not 1D, 1D hierarchical models could be used to explain the very
features of spectra.13
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APPENDIX A: FAREY SERIES AND FAREY-HIERARCHIES OF STRUCTURES

The Farey series of ordern is the setFn5$ p/q up,qPZ,gcd@p,q#51,0<p<q<n% of frac-
tions in their lowest terms, arranged in an increasing order. Two rationals that are consecu
Fn , for some ordern, are called Farey-consecutive. Equivalently, two rationals 0<p1 /q1

,p2 /q2<1 are Farey-consecutive iff for allp/q between themq.max(q1,q2).
The construction of Farey series provides an automatic way to order all rational numbe

a hierarchy of increasingly dense discrete dissections of the continuum. A nice description
hierarchy can be found in Ref. 14. The hierarchical nature of the Farey series is emphasized
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mediant construction. The mediant of two rationalsp1 /q1 and p2 /q2 is p1 /q1 % p2 /q2ª(p1

1p2)/(q11q2). In order to obtain the elements ofFn11 one should add toFn all the mediants of
Farey-consecutive rationals~we shall call these mediants descendants! p1 /q1 , p2 /q2 PFn in Fn

such thatq11q25n11. In such a way, all rational numbers in the interval@0,1# can be obtained
from the two elements ofF1 , i.e., 0

1 and 1
1.

The structures of different approximants are related in a similar way. The longer perio
more complex unit cells of approximants that are at the bottom of the hierarchy can be obtai
concatenation of unit cells of approximants situated at previous levels of the hierarchy.

Let us call the Farey-hierarchy of structures a family$S%0< p/q <1 of sets of atomic coordi-
nates that have the following properties:

~i! Sp/q is obtained by the periodic repeat of the primitive unit cellUp,q . Sp/q5ønPZ(Up,q

1nLp,q), where Lp,q is the period. (p,q) and p/q are called commensurability indices an
commensurability ratio, respectively.

~ii ! The unit cells are obtained by concatenation, i.e.,

Up11p2 ,q11q2
5Up1 ,q1

ø~Up2 ,q2
1Lp1 ,q1

!, ~A1!

wherep1 /q1 , p2 /q2 are Farey-consecutive.
Like the Farey series, the entire familySp/q can be obtained by consecutive application of E

~A1! onceS0/1 andS1/1 are known.
It is easy to check that the unit cellUp,q containsnp,qª#Up,q5sp1tq discrete atomic

positions, and the period is of the formLp,q5a(bp1aq), where s5n1,12n0,1,t5n0,1, ab
5L1,12L0,1,aa5L0,1.

APPENDIX B: PROOFS

Proof of Theorem 4.Consider$a1 ,a2% a basis of the planePh,k,l of Miller indices (h,k,l ) of
Z3, Ph,k,lª$(p,r ,q)uph1rk1ql50%. x5(p,r ,q),gcd@p,r ,q#51 is in Ph,k,l , hencex5x1a1

1x2a2 , with gcd@x1 ,x2#51 ~because otherwisegcd@p,r ,q#.1). Then we can choosey
5y1a11y2a2 , with y1 ,y2 solution of the equationx1y22y1x251. $x,y% is obtained from
$a1 ,a2% by a unimodular transformation, therefore it is another basis ofPh,k,l . Because
gcd@h,k,l #51 there is a vectorz5(z1 ,z2 ,z3)PZ3 such thatz1h1z2k1z3l 51. Let us show that
$x,y,z% is a basis ofZ3. For any vectorv5(v1 ,v2 ,v3)PZ3 we havev1h1v2k1v3l 5n3PZ. Let
u5(u1 ,u2 ,u3)5v2n3z. It is easy to check thatu1h1u2k1u3l 50, thereforeuPPh,k,l and thus
v can be expressed asv5n1x1n2y1n3z. Because$x,y,z% is a basis ofZ3 the determinant made
of the components of the three vectors is equal to one~or can be made equal to one by changi
y into 2y). As x`y5n(h,k,l ), one can check that this meansn51. j

Proof of Property 9: If x1 ,x2PF n
(2,0) and any x5(p/q , r /q) between x1 ,x2 obeys

x /PF n
(2,0) , thenq.n>max(q1,q2). Conversely, letn5max(q1,q2), thusx1 ,x2PF n

(2,0) . Then for
any x5(p/q , r /q) betweenx1 ,x2 such thatq.max(q1,q2)5n it follows that xP” F n

(2,0) . j

Proof of Property 10:At least one of the indices (h,k,l ) is nonzero. Without restricting
generality we may supposek.0 ~the proof can be adapted to strictly negative indices as w!.
Becausel,k,q1 ,q2.0, x1`x25l(h,k,l ) implies p1 /q1,p2 /q2 . From Theorem 4 there is a
point x5(p/q , r /q) such thatx1`x5(h,k,l ), and such thatn2q1,q<n, i.e.,

p

q
2

p1

q1
5

k

q1q
.

We intend to show thatx25x. Suppose thatx2Þx. Then, asx1 , x2 are consecutive inF n
(2,0) , and

xPF n
(2,0) , p2 /q2,p/q. By adding term by term the inequalitiesp/q 2 p2 /q2 5(pq2

2p2q)/qq2 > k/qq2 , and p2 /q2 2 p1 /q1 5(p2q12p1q2)/q1q2 > k/q1q2 we obtain k/q1q
5 p/q 2 p1 /q1 >k(1/qq2 1 1/q1q2)5k(q1q1)/qq1q2.kn/q1q2q > k/q1q, contradiction. The
proof of the reciprocal property is like the proof of Theorem 1 of Neville.7
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Using x1`x25(h,k,l ), we find r 2 /(bp21aq2)2r 1 /(bp11aq1)5(b l 2ah)/@(bp1

1aq1)(bp21aq2)#. j

Proof of Property 12:The equivalence between Properties 10 and 12 is entirely analogo
the known proof8,9 for the Farey series. j

Proof of Property 13:Using Properties 12 and 10 it follows thatx5y1% y2 with y1 ,y2

Farey-consecutive is equivalent toy1 ,x andx,y2 andy1 ,y2 being Farey-consecutive and therefo
to having the following equations simultaneously satisfied:

x`y25~h,k,l !, ~B1!

y1`x5~h,k,l !, ~B2!

y1`y25~h,k,l !. ~B3!

The general solution of Eq.~B1! is of the formy25y01nx wherey0 is a particular solution
~its existence follows from Theorem 4!, that can be chosen to satisfy~i! 0,den(y0)<den(x).
Also n should satisfy~ii ! den(y0)1nden(x).0, otherwise the external product will have
change sign on readjustingden(y01nx) to be positive. Similarly, Eq.~B2! has the genera
solutiony152y01mx, wherem satisfies~iii ! 2den(y0)1mden(x).0. Then Eq.~B3! is satis-
fied providedm1n51, which impliesn<1. From ~i! and ~ii ! it follows that n>0, from ~iii ! it
follows thatm.0, thereforen50,m51 corresponds to the unique solution we are looking forj

Proof of Property 7:Supposek51. Consider anyp1 /q1 , p/q Farey-consecutive. Thenpq1

2p1q51, hence any rational numberp2 /q2 ,gcd@p2 ,q2#51 can be expressed asp2 /q25(mp1

1np)/(mq11nq). The lineDh,k,l passes through the points (p1 /q1 , r 1 /q1),(p/q , r /q) and in-
tersects the vertical linex5 p2 /q2 at ((mp11np)/(mq11nq),(mr11nr)/(mq11mq)), being
made entirely of points ofP(Z2)3Z.

Conversely, ifDh,k,l5Dh,k,lù@P(Z2)3Z# then necessarilykÞ0, because otherwise the dire
tion would be of the formD2q,0,p5$(op/oq , r /oq)ugcd@p,q#51% with fixed p,q and arbitrary
r ,o and it would contain points outsideP(Z2)3Z ~those withoÞ1). Let us now consider any two
Farey-consecutive rationalsp1 /q1 , p/q. BecausekÞ0, Dh,k,l intersects the linesx5 p1 /q1 and
x5 p/q at points that are inP(Z2)3Z by hypothesis, thus of the form (p/q , r /q),
(p1 /q1 , r 1 /q1). From Remark 3 and Property 10 it follows thatk51. j

Proof of Property 11:This follows from the fact that (p1 /q1 , r 1 /q1)`(p2 /q2 , r 2 /q2)
5(h,k,l ) with gcd@h,k,l #51, andk51, as soon asp2q12p1q251, i.e.,p1 /q1 ,p2 /q2 are Farey-
consecutive. j

Proof of Lemma 17:Becausepn
l /qn

l and p/q are Farey-consecutive for anyn, then

Fp
n
l ,q

n
l (z)5Fp

n21
l ,q

n21
l (z)1zbpn21

l
1aqn21

l
Fp,q(z). It follows

Fp
n
l ,q

n
l 5Fp1 ,q1

1zbp11aq1
zn~bp1aq!21

zbp1aq21
Fp,q . ~B4!

Let Fn
l
ª2pr n

l /(bpn
l 1aqn

l ). Using ~B4! it is easy to check that

h~xln
[h,k,l ] !5

usinn~bp1aq!Fn
l /2u

~bp1aq!Fn
l /2

uFp,q~exp~ iFn
l !!u

spn
l 1tqn

l 1OS 1

qn
l D

5
h~x!

11eh,k,l~x!
1OS 1

qn
l D . ~B5!

For the last equality we used (bp1aq)Fn
l /25pr 1p(b l 2ah)/(bpn

l 1aqn
l ), which is a

consequence of Property 10.
The part of the proof concerningxrn

[h,k,l ] is along the same lines. j
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Proof of Lemma 18:To simplify the proof, we assumed thata,b>0, but the other situations
may be analyzed in the same way.

The functionFp,q has the following form:

Fp,q~z!5 (
r 51

Np,q

ar
~p,q!zzr

~p,q!
, ~B6!

wherez1
(p,q),z2

(p,q),¯,zmax
(p,q) .

Let us show that for allp8/q8, pn
l /qn

l ,p8/q8,pn11
l /qn11

l we have

zmax
~p8,q8!5~bp81aq8!F11OS 1

qn
l D G . ~B7!

From Eq.~B4! it follows

z
max
~pn

l ,qn
l
!
5max@zmax

~p1 ,q1! ,zmax
~p,q!1b~p12p!1a~q12q!1n~bp1aq!#5n~bp1aq!1O~1!,

~B8!

meaning that~B7! holds forpn
l /qn

l (pn
l 5p11np, qn

l 5q1nq).
From Eq.~6! it follows, for any pn

l /qn
l < p8/q8,p9/q9 <pn11

l /qn11
l ,

zmax
~p81p9,q81q9!

b~p81p9!1a~q81q9!
5maxF zmax

~p8,q8!

b~p81p9!1a~q81q9!
,x1

zmax
~p9,q9!

bp91aq9
1x2G511OS 1

qn
l D ,

where x15(bp91aq9)/@b(p81p9)1a(q81q9#,x25(bp81aq8)/@b(p81p9)1a(q81q9#,
x11x251.

The last equality follows if we suppose thatzmax
(p8,q8) and zmax

(p9,q9) obey ~B7!. Lemma 14 and
Remark 6 end this part of the proof.

Let Fp8,q8ª2pr 8/(bp81aq8),Fp9,q9ª2pr 9/(bp91aq9). From Property 10 it follows

Fp8,q82Fp9,q95
2p~b l 2ah!

~bp81aq8!~bp91aq9!
. ~B9!

Using Equations~B7!, ~B6!, and~B9! it is easy to check that

uFp9,q9~expiFp8,q8!2Fp9,q9~expiFp9,q9!u<S (
r 51

Np9,q9

uar
p9,q9u D 2p~b l 2ah!

bp91aq9
F11OS 1

qn
l D G .

~B10!

Let us show that

(
r 51

Np8,q8

uar
p8,q8u,C~bp81aq8!F11OS 1

qn
l D G ~B11!

for any pn
l /qn

l < p8/q8 < pn11
l /qn11

l .

From Eq. ~B4! it follows that all ua
r

pn
l ,qn

l

u are less than a constantA and thatN p
n
l ,q

n
l

<Np1 ,q1
1nNp,q. It follows

S
r 51

N pn
l ,qn

l

ua
r

pn
l ,qn

l

u

bpn
l 1aqn

l
,A

N p
n
l ,q

n
l

bpn
l 1aqn

l
<

ANp,q

bp1aq F11OS 1

qn
l D G . ~B12!
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In a similar way we use Eq.~6! to show that if Eq.~B11! is fulfilled by both (p8,q8) and
(p9,q9) with pn

l /qn
l < p8/q8,p9/q9 <pn11

l /qn11
l then it is also fulfilled by (p81p9,q81q9).

Lemma 14 and Remark 6 conclude this part of the proof.
Using Eqs.~B10! and ~B11! we show that

uFp9,q9~expiFp8,q8!2Fp9,q9~expiFp9,q9!u<C8F11OS 1

qn
l D G ~B13!

and, in a similar way,

uFp81p9,q81q9~expiFp8,q8!2Fp81p9,q81q9~expiFp81p9,q81q9!u<C9F11OS 1

qn
l D G . ~B14!

From Eqs.~6!, ~B13!, ~B14! it follows that

hS p81p9

q81q9
,

r 81r 9

q81q9
D 5hS p8

q8
,
r 8

q8
D h11hS p9

q9
,
r 9

q9
D h21OS 1

qn
l D , ~B15!

where h15(sp81tq8)/@s(p81p9)1t(q81q9)#, h25(sp91tq9)/@s(p81p9)1t(q81q9)#, h1

1h251.
Becausex8,x9 satisfy ~P1! from Eq. ~B15! it follows that x8% x9 satisfies~P1!.
The proof forxrn

[h,k,l ] is along the same lines. j

Proof of Theorem 16:Along a directionDh,k,l with k51, h(x) @x5(p/q , r /q),gcd@p,q#
51# is a function ofp/q only and Lemma 14 applies in this case as well, proving together w
Lemmas 17 and 18 thath(xn)→ h(x)/@11eh,k,l(x)# for any seriesxnª(pn /qn , r n /qn) converg-
ing to x along Dh,k,l . In this caseeh,k,l(xn)→0 becausepn ,qn→`. Thus, f (xn)→ f (x), where
f (x)ªh(x)/@11eh,k,l(x)#, for any series converging tox along Dh,k,l , f being a continuous
function alongDh,k,l .

It is easy to check thateh,k,l(x) satisfies the conditions iii–v witheo51/yo21, yo being the
highest local maximum different from 1 of the functionusinQ/Qu. j
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On a trace formula of the Buslaev–Faddeev type
for a long-range potential

Alexei Rybkina)
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We propose an approach to obtaining new trace formulas of the Gel’fand–Levitan–
Buslaev–Faddeev type, valid for Hilbert–Schmidt perturbations. In this way we
obtain a new trace formula for Schro¨dinger operators on the half-line with long-
range potentials. ©1999 American Institute of Physics.
@S0022-2488~99!02703-6#

I. INTRODUCTION

The formulas we are concerned with first appeared in 1953 in the classic paper1 by Gel’fand
and Levitan, where the authors obtained some identities for the eigenvalues of a regular S
Liouville operator. A detailed account of trace formulas on finite intervals can be found in D
paper.2 These nice formulas relating the spectrum of an operator to certain characteristics
operator itself called trace formulas became a pattern to follow; and in 1957, Faddeev cons
a generalization for the case of a singular Sturm–Liouville operator, which obtained a full e
sition by Buslaev and Faddeev3 in 1960. Namely, they studied trace formulas for a self-adjo
Schrödinger operatorH in L2(0,̀ ):

H5H01v~x!, H052
d2

dx2 , u~0!50, ~1.1!

where the real-valued potentialv(x) is assumed to be continuous and short range@i.e., having the
first moment on~0,̀ !#. In particular, if, in addition,v8(x) is also continuous andv8(x) has a finite
limit as x→`, the following formula is valid:

(
n>0

ln1E
0

`S z~ t !2
1

2pAt
E

0

`

v~x!dxD dt52
1

4
v~0!, ~1.2!

where $ln% are eigenvalues ofH and z(t) is defined by the limiting phaseu by the formula
z(t)5p21u(At), t>0. Formula~1.2! is, in fact, the first formula in the chain of relations that c
be interpreted as expressions of regularized spectral traces of integer powers ofH in terms of the
potentialv(x), and its proof is based on Krein’s trace formula that for a pair of resolvent c
parable abstract operatorsH,H0 reads~see, e.g., Ref. 4! as

tr$~H2z!212~H02z!21%5E
2`

` d

dt
~ t2z!21z~ t !dt, Im zÞ0. ~1.3!

The real-valued functionz(t) is called the Krein spectral shift function of the pairH,H0 . It is
summable on~2`,`! with the weight (11t2)21, and for a pair~1.1! with a short-range potentia
v(x) the following relation holds:2

a!Electronic mail: ffavr@uaf.edu
13340022-2488/99/40(3)/1334/10/$15.00 © 1999 American Institute of Physics
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z~ t !52N~ t !, t,0; z~ t !5p21u~At !, t.0, ~1.4!

whereN(t) is the number of eigenvalues ofH lying to the left fromt. Note that the Gel’fand and
Levitan original proof of their trace relations does not make a use of~1.3!, and the connection
between the Gel’fand–Levitan and Krein trace formulas was rigorously justified only quit
cently in Ref. 5.

The Krein trace formula~1.3! gave a rise to a large number of papers dealing with key wo
trace formulas, Krein’s spectral shift function, the scattering matrix, etc.; too many to be
tioned. We refer the interested reader to the survey4 and recent papers,6–10 and the literature
therein. Note especially only papers6–8 by Gesztesy and Simon with coauthors, where the auth
obtain new trace formulas and systematically apply them to solving the inverse proble
Schrödinger operators.

It is quite natural to ask what kind of trace formulas are available when we go over
short-range potentials to long-range ones. For such pairsH,H0 the spectral shift function, in
general, does not exist and formula~1.3! is no longer valid. However, there are quite a fe
substantial trace formulas11–14serving long-range potentials, but none of them are quite simila
~1.2!. Our goal will just be finding a direct extension of~1.3! to the case of a long-range potentia
We obtain such a formula basing upon a generalization of~1.3! due to L. S. Koplienko,15 valid for
self-adjoint operatorsH,H0 (H5H01V), subject to the conditionVuH02 i u21/2 is a Hilbert–
Schmidt operator. Namely, for such a pairH,H0 , there is a unique~up to an additive constant!
real-valued functionh(t) summable on~2`,`! with the weight (11t2)2d, d. 1

2, such that
(Im zÞ0)

tr$~H2z!212~H02z!211V~H02z!22%52E
2`

` d2

dt2
~ t2z!21h~ t !dt. ~1.5!

We call the functionh(t) the regularized spectral shift function. If a pairH,H0 is defined by~1.1!
with v(x) twice differentiable, satisfying the condition

Udnv~x!

dxn U<Q~11x!2a2n; a.1/2, n50,1,2, ~1.6!

then the functionh(t) is differentiable and

h8~ t !52N~ t !, t,0; h8~ t !5p21u~At !, t.0, ~1.7!

whereN(t) is as above andu is the modified limiting phase defined from the asymptotics (Imk
50):

c~x,k!5A~k!sinS kx2E
0

x sin2 ks

k
v~s!ds2u~k! D 1o~1!, x→`, ~1.8!

of the solution to the following Cauchy problem:

Hc5k2c, c~0,k!50, c8~0,k!51.

II. SOME ASYMPTOTIC FORMULAS

In the sequel we will always assume thatH,H0 are defined by~1.1!, and for the time being
suppose that the potentialv(x) is four times continuously differentiable and finitely supported

Proposition 2.1: Let Rz ,Rz
0 be the resolvents of H,H0 respectively, then
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2
1

2p i R
uzu5R

z2 tr$Rz2Rz
01v~Rz

0!2%dz5
3

8
AR•E

0

`

v2~x!dx2
v2~0!

4
1oS 1

AR
D , R→`.

~2.1!

Proof: Due to our condition on the potential,Rz2Rz
0 is of the trace class, and we have

tr$Rz2Rz
01v~Rz

0!2%5tr$Rz2Rz
0%1tr$v~Rz

0!2%

52
d

dz
logM ~Az!1

d

dz
tr$v~Rz

0!%

5
d

dz
$tr$v~Rz

0!%2 logM ~Az!%, ImAz>0, ~2.2!

whereM (Az)5det(I1vRz
0) is the perturbation determinant of the pairH,H0 . Fix the branch of

logM(Az) so that logM(Az)→1, uzu→`; then,3 uniformly in z, ImAz>0, we have

logM ~Az!52 (
k51

4
qk

~2iAz!k
1oS 1

uzu2D , uzu→`, ~2.3!

where

q15E
0

`

v~x!dx, q25v~0!, q352v8~0!2E
0

`

v2~x!dx, q45v9~0!22v2~0!.

SinceRz
0 is an integral operator with the kernel

G~x,y;z!52
1

iAz
~eiAzux2yu2eiAz~x1y!!, ~2.4!

one can easily see that

tr$v~Rz
0!%52

1

2iAz
E

0

`

v~x!~12e2iAzx!dx, ImAz>0,

and integration by parts three times gives

tr$v~Rz
0!%52 (

k51

4
pk

~2iAz!k
1oS 1

uzu2D , uzu→`, ~2.5!

where p15q1 , pk5(21)kv (k22)(0), k52,3,4. Asymptotics~2.5! is obviously uniform inz,
ImAz>0, and, hence, plugging~2.3! and ~2.5! into ~2.2!, we obtain

z2 tr$Rz2Rz
01v~Rz

0!2%5
1

8 (
k50

2
~k12!~qk122pk12!

~2iAz!k
1oS 1

uzu3D , uzu→`.

This asymptotics is uniform inz, ImAz>0, and a straightforward computation leads to~2.1!.
Proposition 2.2: For the regularized spectral shift function we have

h~R!52
1

4p E
0

`

v2~x!dx•
1

AR
1OS 1

AR3D , R→`. ~2.6!
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Proof: As it follows from ~1.3!, ~1.5!,

h~R!52tr$vE0~R!%1E
2`

R

z~ t !dt, ~2.7!

whereE0 is the resolution of identity forH0 andz(t) is the spectral shift function ofH,H0 . We
calculate the asymptotics for each term of the right side of~2.7!. For the kernel ofE0 we have

E0~x,y;R!5
1

p S sinAR~x2y!

~x2y!
2

sinAR~x1y!

~x1y!
D .

Hence,

tr$vE0~R!%5
1

p E
0

`

v~x!SAR2
sin 2ARx

2x D dx

5
AR

p E
0

`

v~x!dx2
1

p E
0

`

v~x!
sin 2ARx

2x
dx

5
AR

p E
0

`

v~x!dx2
1

2p E
0

` v~x!2v~0!

x
sin 2ARx dx2

v~0!

2p E
0

` sin 2ARx

x
dx.

~2.8!

For the second integral we have

E
0

` v~x!2v~0!

x
sin 2ARx dx5

v8~0!

2

1

AR
1OS 1

AR3D , R→`. ~2.9!

Taking into account that

E
0

` sin 2ARx

x
dx5

p

2
,

for ~2.8! we get

tr$vE0~R!%5
AR

p E
0

`

v~x!dx2
v~0!

4
2

v8~0!

4p

1

AR
1OS 1

AR3D , R→`.

Represent the second term of~2.7! as follows:

E
2`

R

z~ t !dt5E
2`

0

z~ t !dt1E
0

R

z~ t !dt. ~2.10!

Using the asymptotic expansion forz(t),3

z~ t !5 (
k50

1
~21!kq2k11

~2At !k
1OS 1

At3D , t→`, ~2.11!

whereq’s are as in Proposition 2.1, and since by~1.4! z(t)52N(t), t,0, ~2.10! can be contin-
ued,
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5(
n

ln1E
0

RS z~ t !2
q1

2pAt
D dt1

q1

p E
0

R dt

2At

5(
n

ln1
q1

p
AR1E

0

`S z~ t !2
q1

2pAt
D dt2E

R

`S z~ t !2
q1

2pAt
D dt. ~2.12!

From the Buslaev–Faddeev trace formula~1.2!,

E
0

`S z~ t !2
q1

2pAt
D dt52(

n
ln2

v~0!

4
,

and ~2.12! can be continued,

5
q1

p
AR2

v~0!

4
2E

R

`S z~ t !2
q1

2pAt
D dt. ~2.13!

Estimate the integral in~2.13!. Taking into account~2.11!, we have

E
R

`S z~ t !2
q1

2pAt
D dt5E

R

`S z~ t !2
q1

2pAt
1

q3

8ptAt
D dt2

q3

8p E
R

` dt

tAt

52
q3

4pAR
1OS 1

AR3D . ~2.14!

Therefore

E
2`

R

z~ t !dt5
q1

p
AR2

v~0!

4
2

q3

4pAR
1OS 1

AR3D
5

AR

p E
0

`

v~x!dx2
v~0!

4
2

v8~0!1*0
`v2~x!dx

4p

1

AR
1OS 1

AR3D , R→`,

and, combining~2.9! and ~2.14!, we arrive at~2.6!.

III. THE TRACE FORMULA

In this section we state and prove the main result.
Theorem 3.1:Let a potentialv(x) be long range, such that

Udnv~x!

dxn U<Q~11x!2a2n; a.1/2, n50,1,2,3,4. ~3.1!

Then the following trace formula holds:

2(
n

ln
212E

0

`S h~ t !1
1

4pAt
•E

0

`

v2~x!dxD dt5
v2~0!

4
. ~3.2!

Proof: We prove ~3.2! first for potentials as in the previous section. Multiply~1.5! by
2(1/2p i )z2 and integrate the result along the contourCR

e 5$z:uzu5R,e<argz<2p2e% with a
sufficiently largeR:
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2
1

2p i ECR
e
z2 tr$Rz2Rz

01v~Rz
0!2%dz5

1

2p i ECR
e
dz•z2E

2`

` d2

dt2
~ t2z!21h~ t !dt. ~3.3!

Let e→0 and apply Proposition 2.1 and Lemma 4.1 to~3.2!. Taking into account~1.7!, we get

3

8
ARE

0

`

v2~x!dx2
v2~0!

4
1OS 1

AR
D 5(

n
ln

222E
0

R

h~ t !dt12Rh~R!2R2h8~R!. ~3.4!

Apply now Proposition 2.2 to the last two terms of~3.4!. Performing trivial simplifications and
letting R→`, one has

2(
n

ln
212E

0

`S h~ t !1
1

4pAt
•E

0

`

v2~x!dxD dt5
v2~0!

4
. ~3.5!

Now we need to drop the requirement of boundedness of suppv(x). Following Koplienko’s proof
of ~1.5!, let v(x) be subject to the condition of the theorem; we constructvn(x) such that
vn(x)5v(x), 0<x<n; vn(x)50, x>n, and forn<x<n11 we setvn(x) subject to

Udmvn~x!

dxm U<Qn2a; m50,1,2,3,4.

For suchvn(x) formula ~3.5! clearly holds. It can be derived from Ref. 15 thathn(t)→h(t) in
L1„(11x2)2a

… and hence inL1(0,a) for anya,`, saya52 maxuv(x)u. But for t>2 maxuv(x)u, it
follows from Lemma 4.2, Proposition 2.2, and the relationh8(t)52p21u(At), t.0, that

Uhn~ t !2~4p!21t21/2E
0

`

vn
2~x!dxU<C•t23/2,

with someC dependent only onQ, a in ~3.1!. The Lebesgue dominated convergence theorem
us pass to the limit in~3.5! asn→` and the theorem is proven.

Remark 3.2: Formula (3.1) can be included into a chain of trace formulas of higher orde
obtain these formulas we need to know more terms in asymptotics (2.6). We chose to pr
recipe of treating long-range potentials rather than completeness of the results.

Remark 3.3: We note that Theorem 3.1 can be proved under condition (1.6) with an add
condition onv9(x) of a Lipschitz’s type. This additional condition is essential and it is possibl
construct a potentialv(x) subject to (1.6) such that the integral in (3.2) is absolutely diverge
We plan to discuss this matter in detail elsewhere.

Remark 3.4: The way we obtained trace formulas of the Buslaev–Faddeev type for long-range
potentials can be easily adjusted to some other settings such as a Schrodinger operator
whole line or the three-dimensional case. We hope to return to this point elsewhere.

APPENDIX: AUXILIARY STATEMENTS

In proving Theorem 3.1 we made a use of the following two lemmas.
Lemma 4.1: Leth(t) be a real-valued function belonging to L1„(11t2)2ddt;(0,̀ )…, d. 1

2,
and let CR

e 5$z:uzu5R,e<argz<2p2e%. Then, for almost all R.0,

2
1

2p i
lim
e→0

E
CR

e
dz•z2E

0

` d2

dt2
~ t2z!21h~ t !dt52E

0

R

h~ t !dt22Rh~R!1R2h8~R!. ~A1!

Proof: Let a.R and consider the following expression:
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E
CR

e
dz•z2E

a

`

~ t2z!23
•h~ t !dt5E

a

`

dt•h~ t !E
CR

e
dz•z2~ t2z!23. ~A2!

Since

U E
CR

e
dz•z2~ t2z!23U<R2E

CR
e
udzu•ut2zu23<

2pR3

~a2R!3 ,

by the Lebesgue theorem, we can pass to the limit in~A2! ase→0:

lim
e→0

E
CR

e
dz•z2E

a

`

~ t2z!23
•h~ t !dt5E

a

`

dt•h~ t !E
CR

e
dz•z2~ t2z!2350, tPExtCR .

Denote

F~z!5E
0

a

~ t2z!21
•h~ t !dt.

The functionF(z) is clearly finite, and we have

E
CR

e
dz•z2E

0

a d2

dt2
~ t2z!21

•h~ t !dt5E
CR

e
dz•z2F9~z!5@z2F8~z!22zF~z!#C

R
e 12E

CR
e
F~z!dz.

~A3!

RepresentingF8(z) in the form

F8~z!52
h~a!

a2z
2

h~0!

z
1E

0

a

~ t2z!21
•h8~ t !dt,

we have

lim
e→0

@z2F8~z!22zF~z!#C
R
e 5R2H E

0

a

~ t2z1 i0!21
•h8~ t !dt2E

0

a

~ t2z2 i0!21
•h8~ t !dtJ

22RH E
0

a

~ t2z1 i0!21
•h~ t !dt2E

0

a

~ t2z2 i0!21
•h~ t !dtJ

522p i „R2h8~R!22Rh~R!… ~A4!

For the second term of the right side of~A3!, we get

2E
CR

e
F~z!dz52E

CR
e

dzE
0

a

~ t2z!21
•h~ t !dt

52E
0

a

dth~ t !E
CR

e
~ t2z!21 dz

522E
0

a

dt h~ t !@ log~Rei e2t !#C
R
e .

Since u@ log(Reie2t)#C
R
e u52uarctanRsine/(Rcose21)u<p and lime→0@ log(Reie2t)#C

R
e52pi, if t

,R, and 0, if t.R, we obtain
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2 lim
e→0

E
CR

e
F~z!dz522E

0

a

dt h~ t ! lim
e→0

@ log~Rei e2t !#C
R
e 524p i E

0

R

h~ t !dt. ~A5!

Let e→0. Plugging~A4!, ~A5! into ~A3!, we arrive at the conclusion of the lemma.
Lemma 4.2: Let a potentialv(x) satisfy

Udnv~x!

dxn U<Q~11x!2a2n; a.1/2, n50,1,2,3,4. ~A6!

Then, for the limiting phaseu(k) [defined by (1.8)], the following estimate holds:

Uu~k!2
1

8k3 E v2~x!dxU<Ck25, k>A2 maxuv~x!u, ~A7!

where C depends only on Q anda.
Proof: Throughout the proof we agree to denote byO(k2n) any expression whose absolu

value does not exceedCk2n with some constantC depending only onQ anda in condition~4.6!.
It is well known,15,16 that the equation2y91v(x)y5k2y, x>0, has a solution subject to

lim ei t~x,k! f ~x,k!51, x→`, t~x,k!5kx2E
0

x sin2 kt

k
v~ t !dt.

For k>A2 maxuv(x)u5k0, f (x,k) admits the representation17

f ~x,k!5
Ak

A4 k22v~x!
e2a~k!g~x,k!, ~A8!

where a(k)5 limx→`„u(x,k)2t(x,k)…, u(x,x)5*0
xAk22v(t)dt, and g(x,k) is the solution to

the integral equation,

g~x,k!5eiu~x,k!1E
x

`

sin$u~ t,k!2u~x,k!%R~ t,k!g~ t,k!dt, ~A9!

where

R~ t,k!52
v9~ t !

4$k22v~ t !%3/22
5

16

„v8~ t !…2

$k22v~ t !%5/2.

Under condition~A6! @even~1.6!#, Eq. ~A9! can be solved by iteration. We need two first iter
tions:

g0~x,k!5eiu~x,k!,

g1~x,k!5eiu~x,k!1E
x

`

sin$u~ t,k!2u~x,k!%R~ t,k!g0~ t,k!dt. ~A10!

Due to condition~A6!, for x>0, k>k0 , we have

ug~x,k!2g1~x,k!u<S E
0

`

uR~ t,k!udtD 2

5O~k26!,

and, in particular, forx50,

ug~0,k!2g1~0,k!u5O~k26!, ~A11!
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g1~0,k!511E
0

`

sinu~ t,k!R~ t,k!eiu~ t,k! dt. ~A12!

Since~Refs. 16 and 17!

u~k!5argf ~0,k!5argg~0,k!2a~k!, ~A13!

it is enough to take care of

Im g1~0,k!5E
0

` 12cos 2u~ t,k!

2
R~ t !dt

52
1

8 E0

` 12cos 2u~ t,k!

$k22v~ t !%3/2 v9~ t !dt2
5

16E0

` 12cos 2u~ t,k!

$k22v~ t !%5/2 „v8~ t !…2 dt.

The second integral is clearlyO(k25); for the first one, we have

2
1

8k3 E
0

`

v9~ t !dt1
1

8k3 E
0

`

v9~ t !cos 2u~ t,k!dt1O~k25!

5
v8~0!

8k3 1
1

16k4 E
0

` v9~ t !

Ak22v~ t !
d sin 2u~ t,k!1O~k25!.

Since „12k22v(t)…21/25O(k22), k>k0 , after integration by parts twice the last equation b
comes

v8~0!

8k3 2
1

16k4 E
0

`

v-~ t !cos 2u~ t,k!dt1O~k25!

5
v8~0!

8k3 1
v-~0!

32k5 1
1

32k5 E
0

`

v ~4!~ t !sin 2u~ t,k!dt1O~k25!5
v8~0!

8k3 1O~k25!.

Therefore

argg1~0,k!5Im logg1~0,k!5
v8~0!

8k3 1O~k25!. ~A14!

Let us now estimatea(k):

a~k!5 lim
x→`

„u~x,k!2t~x,k!…5 lim
x→`

H E
0

x
Ak22v~ t !dt2kx1E

0

x sin2 kt

k
v~ t !dtJ .

As one can easily observe, that fork>k0 ,

E
0

x
Ak22v~ t !dt5kx2

1

2k E0

x

v~ t !dt2
1

8k3 E
0

`

v2~ t !dt1O~k25!,

E
0

x sin2 kt

k
v~ t !dt5

1

2k E0

x

v~ t !dt1
v8~0!

8k3 1O~k25!.

Therefore
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a~k!5
v8~0!2*0

xv2~ t !dt

8k3 1O~k25!. ~A15!

Now, combining~A13!, ~A11!, ~A14!, and~A15!, we arrive at~A7!, and the lemma is proved.
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Toward quantum mathematics. I. From quantum set theory
to universal quantum mechanics

Karl-Georg Schlesingera)

Erwin Schrödinger Institute for Mathematical Physics,
Boltzmanngasse 9, 1090 Vienna, Austria

~Received 10 August 1998; accepted for publication 27 October 1998!

We develop the old idea of von Neumann of a set theory with an internal quantum
logic in a modern categorical guise@i.e., taking the objects of the categoryH of
~pre-!Hilbert spaces and linear maps as the sets of the basic level#. We will see that
in this way it is possible to clarify the relationship between categorification and
quantization and besides this to understand that in some sense a categorificational
approach to quantization is a discretized version of the one taken by noncommu-
tative geometry. The tower of higher categorifications will appear as the analog of
the von Neumann hierarchy of classical set theory~where by classical set theory,
we will understand the usual Zermelo–Fraenkel system!. Finally, we make a sug-
gestion of how to understand all the different categorifications as different realiza-
tions of one and the same abstract structure by viewing quantum mechanics as
universal in the sense of category theory. This gives the possibility to view ex-
tended topological quantum field theories purely as involving an abstract notion of
quantum mechanics plus representation theory without the need to enlarge the class
of kinematic structures of quantum systems on each step of categorification. In a
future part of the work we will apply the language developed here to deal especially
with the question of a categorification of the manifold notion. ©1999 American
Institute of Physics.@S0022-2488~99!03003-0#

I. INTRODUCTION

In recent years, the wordquantum, originating from physics, has found a rapidly increasi
number of occurrences in the mathematics literature. In this paper, we start from the histo
first use ofquantumto denote a mathematical structure, the quantum logic of Birkhoff and
Neumann presented in Ref. 1. But our aims are the modern quantum structures that we h
understand in a more unified way by taking a logic-based perspective. Beyond this, our goa
be able to extend quantization to more involved mathematical structures, especially to the n
ear graviton construction of twistor theory~Ref. 2!. Let us now be a little bit more precise abo
the aim and the content of the paper.

In 1936, Birkhoff and von Neumann suggested in Ref. 1 that the lattice of closed l
subspaces of a Hilbert space determines a nonclassical propositional calculus for quantum
in the same way the Boolean lattice on two symbols determines the propositional calcu
classical logic. Later von Neumann proposed that one should consider a quantum set
corresponding to quantum logic, as does conventional set theory to classical logic~see Ref. 3 and
the literature cited therein!. This idea is very intriguing for several reasons: First of all, set the
is the mathematical theory of the notion of pure objects. So, the question for a quantum set
is the question for a theory of pure quantum objects. This may sound strange to some b
quantum mechanics is believed to be just this theory. But there is no contradiction here. W
see that quantum set theory is in some sense just another view on quantum mechanics, al
where the machinery of set theory helps us to ask more refined questions on the object no

a!Electronic mail: schles@math.uni-wuppertal.de
13440022-2488/99/40(3)/1344/15/$15.00 © 1999 American Institute of Physics
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one is strongly convinced that there is a notion of mathematical object beyond any ph
experience and that set theory captures this notion, then there is, of course, no need to cha
theory on the advent of quantum mechanics. But if one is prepared to accept that even the a
object notion of set theory might just be distilled from our experience of physical objects~as von
Neumann believed!, we have to ask which object notion~and therefore set theory! the fundamental
theories of physics really determine. Just as we had to learn that geometry is as well a
physics as of mathematics, it might well turn out that logic and set theory are, too~a similar
standpoint is also taken by Deutsch in the closely related field of quantum computation
Ref. 4!.

Second, the idea that even set theory should be quantized—and not only geome
topology—has been around already for quite some time in the field of quantum gravity~see, e.g.,
Refs. 5, 6!. There is a simple argument supporting this view: In general relativity the set theo
structure is of immediate physical relevance. The points of space–time~i.e., the elements of the
underlying set! represent the physical events. In a diffeomorphism invariant theory this ha
meaning in the trivial sense of a point having four coordinate values, but a point has
identified as the intersection of the world lines of particles or by values of fields~e.g., by the null
cone structure and a conformal factor, as is done in twistor theory!. So, by the diffeomorphism
invariance of the theory, the set theoretic structure is intimately linked to something like col
processes of particles. For this reason, we should expect that this structure might become s
in a full fledged theory of quantum gravity.

We will use the language of category theory to deal with nonclassical set theory. In
sense categories can be thought of as generalizations of the classical set universeSet~the category
of sets and set theoretic functions!. For special categories—topoi and certain generalizati
thereof—this has been made precise, i.e., they have been shown to correspond to set theo
a nonclassical internal logic~see Ref. 7, which also gives an easy introduction to general cate
theory!. We consider the categoryH of complex ~pre-!Hilbert spaces and linear maps as t
~basic! quantum set universe.~Because there appear unbounded operators in quantum mech
we normally do not assume continuity of the maps inH. This sometimes causes technical pro
lems when dealing with certain subspaces defined by linear operators, because we do not e
closure properties then. In order to avoid these difficulties in a first approach to the ge
structures involved, we work with pre-Hilbert spaces instead of Hilbert spaces here.! ThoughH is
not a topos, we will see that it has properties similar to one. In spite of this, in doing mathem
in quantum set theory, we are not going to follow strictly the approach of topos theory of d
everything insideH, i.e., in terms of objects ofH. We will allow ourselves the freedom to consid
structures in quantum set theory as objects outside ofH, too, because this is just the way ordina
mathematics is done in practice. Of course, we can formulate classical mathematics larg
categorical language insideSet, but for the working mathematician this is not always the m
convenient way to conceive of the structure he is dealing with~unless he wants to transport th
structures to another category!. The question if at least in principle a reformulation totally insi
H is possible in quantum mathematics, too, is certainly an interesting one from the founda
viewpoint, but since our aim is to apply quantum set theory to problems in mathematical ph
we will not deal with it here~the differences ofH to a topos should one make ready to t
possibility that a reformulation might not be possible!. But we will use the idea that set theory
universal in the opposite way, namely, as a requirement saying that all structures we use c
be regarded as sets. This leads to an enlargement of quantum set theory beyondH, i.e., we regard
the objects ofH as some kind of basic level of set theory with other levels present, too.
approach allows us to keep the universality of set theory and the possibility to stay close
spirit of the working mathematician~and it will give some interesting results!.

Remark 1: Obviously, Hilbert spaces are not the true state spaces of quantum syste
contain redundant information. To avoid this, one one would have to go over to the proje
case. On the one hand, this would make some structural elements more straightforward
there would exist a true terminal object then; see below). On the other hand, Hilbert spaces
established themselves as the language of the working physicist because their linear struc
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very convenient in other respects. Since our main aim is to develop quantum set theory as
for mathematical physics, we stay to the convention used in this field and take the categorH as
our basic quantum sets.

Besides this, a reader comparing to other approaches to nonclassical set theories, s
keep in mind that—by using a categorical approach—like in topos theory, the subobject (in
of the membership) relation will become the fundamental one.

As we mentioned already at the beginning, our first aim is to understand the quantum
tures appearing in the modern literature from a more unified perspective. For the mode
proaches, the idea of categorification is central.~A categorification of an algebraic structure is
category with a similar structure. For example, the categorification of a module is a m
category, i.e., a category with a functorially given structure satisfying the module axioms
isomorphism. In addition, one normally needs so-calledcoherence conditionsfor an iterative
application of the axioms. For example, for a structure with associativity up to an isomorp
one needs an additional axiom stating that even four—not only three—factors can be rebra
which then suffices to guarantee that an arbitrary number of factors can be. See Ref. 8
details.! There is especially the idea that categorification is linked to quantization~see again Refs
8 and 9, 10!. We will see that we can make this correspondence precise in our logic-b
approach.

A more advanced goal is then to quantize more involved~nonalgebraic! mathematical struc-
tures like manifolds. Especially, we are interested in a quantization of Penrose’s nonlinear
tons. In Ref. 2, Penrose suggested to consider nonlinear gravitons as the one-particle sta
future quantum theory of gravity. Since the standard symmetric Fock space construction
applicable in this case, the proposal has not been put into a proper theory since then. It
therefore to be natural to explore the possibility if a different approach to quantization can le
a mathematical structure that is suitable for a second quantized~i.e., many-particle! theory of
nonlinear gravitons.

This work consists of two~possibly three! parts. In this paper we deal with the fundamenta
clarifying the relationship between categorification and quantization. The more involved ap
tions will follow in the forthcoming part~s!, where we will also compare the approach presen
here to the results in Ref. 11 on a quantization of the category of topological spaces and c
ous injections.

As the title indicates, we consider this as an approach toward a quantum mathematics
mathematical theory where all the ingredients~like logic and set theory! adhere to the rules o
quantum mechanics. We inserted the wordtoward in the title because we surely do not consid
the following results as the final word on the structure of a theory of quantum mathematics
only a try to explore the pathway that finally could lead to such a theory.

In closing the Introduction, let us now give a short overview of the content of the indivi
parts of the paper. In Sec. II, we investigate in which aspects the categoryH is similar to a topos.
We will find that there is no terminal object in a technical sense, but that the one-dimen
Hilbert spaceC for several purposes takes the role of it. We have some kind of exponentiatio
we have pullbacks though—if we use the tensor product to construct pullbacks~which is the
favorable approach from the standpoint of quantum mechanics!—we do not get universality but a
superposition of pullback structures. The same holds true for the case of the subobject clas
We will see that this is linked to the fact that quantum set theory may be understood as des
the observation of a quantum system by a quantum system and the iteration of this proce

In Sec. III, we go on to introduce the analogs of number systems in quantum set theor
start with the natural numbers that can be formulated in two different ways: Either internal~as an
object inH! as the universal infinite-dimensional Hilbert spaceN or external as the categoryHilb
of finite-dimensional Hilbert spaces and linear maps. Reals and complex numbers are then
as the self-adjoint operators, respectively, the whole operator algebra, onN.

Having introduced number systems, in the first part of Sec. IV, we deal with the anal
module structures. We then discuss the relevance of this for the categorifications appea
TQFTs. The rest of this section is devoted to presenting the quantum version of the von Ne
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hierarchy of classical set theory up to the level of the first infinite ordinal. Actually, we will
that there are two different but related hierarchies because there are two different set co
present in quantum set theory.

A unified view on all the different levels of quantum set theory is presented in Sec. V
considering quantum mechanics as universal in the sense of category theory, we understan
~higher! categorifications as different realizations of one and the same abstract structure. S
VI contains some concluding remarks. Finally, we should remark that often details of the
tures presented are not worked out precisely. For example, we use the concept of weakn and weak
v category, though the existence of a single concept of this form is still in the stadium of
~but there is hope that it will be established in the near future; see the literature cited below!. We
think that in a new subject like quantum set theory it is justified first to explore the ge
territory emerging and try to get a feeling for its general power and possible limits before sti
to the technical details.

II. THE TOPOS-LIKE STRUCTURE

In this section we will explore in which respect the categoryH of complex ~pre-!Hilbert
spaces and linear maps resembles a topos. Recall that a topos is a category that has a
object, pullbacks, exponentiation, and a subobject classifier~see Ref. 7!. We will consider the
existence of all of these structures inH, in turn, now.

A. Terminal objects

A terminal objectC of a categoryC is an object such that for any other objectD of C there is
one and only one arrow inC from D to C. Since there is no homomorphism set with one elem
in H ~because all the homomorphism sets have a linear structure themselves!, we do not have a
terminal object.

One could have the idea that maybe the question is wrongly posed. Since only the pro
~i.e., subspace! structure is relevant in quantum mechanics, we should really not look for s
element homomorphism sets but for one-dimensional ones. But even in this sense, we do n
a terminal object inH. Nevertheless, we will see below that the one-dimensional Hilbert spaC
~or, of course, any other one-dimensional Hilbert space! in some respects plays the role of
terminal object inH, though it is not one in a technical sense.~The reason why this works is tha
the true state spaces in quantum mechanics are the projective Hilbert spaces. In the cate
these spacesC is terminal.!

B. Pullbacks

A pullback for a pair of arrows,

is an objectd together with arrowsf 8,g8, making

commutative and satisfying that for any other objecte and arrowsh,j with this property there
exists precisely one arrow,
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k:e→d,

making

commutative.
Now, suppose

is given inH. Consider the direct sum and product Hilbert spacesV1% V2 andV1^ V2 and denote
in both cases by pr1, pr2 ‘‘projections’’ on the first and second component, respectively. Here,
put ‘‘projections’’ into quotation marks because in the tensor product case there exist no p
tions in the technical sense, of course. In this case, we mean the following: Fix a product b
the product space and use the linear extension of the projection onto components existing
basis. So, the construction we use is dependent on the additional structure of a fixed basis.
dependence is not relevant from the standpoint of quantum logics, since there is redundan
mation in the Hilbert space structure~see above!, and the remaining nonuniqueness is precis
described by the superposition structure below. Then

V15$vPV1% V2 , ~ f +pr1!~v !5~g+pr2!~v !%

and

V35$vPV1^ V2 , ~ f +pr1!~v !5~g+pr2!~v !%

are pre-Hilbert spaces and

~whereV8 stands for eitherV1 or V3) is commutative. For the case ofV1 the universality follows
directly from the properties of the direct sum. If we useV3 instead, it is easy to show that a ma
k exists, too, but it is not unique. We only get uniqueness on product elements because
general linear combination of product elements the application of pr1 and pr2 gives only the sum
of the projections of the individual product elements. As a consequence, the pullback struc
not universal in this case—we could shift the uniqueness from the product elements to othe
by using more general projections instead of pr1 and pr2—but we get a kind of superposition o
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pullback structures. The structure of this superposition—i.e., the nonuniqueness o
pullback—is determined by the projective structure ofV3 . We will call such a superposition o
pullback structures aquantum pullback.

Why do we care for these superposed structures at all and not simply restrict ourselves
true pullbacks defined via the direct sum. The reason is that from the standpoint of qu
mechanics, of course, the tensor product is the appropriate product to be used in the cateH.
Indeed, the fact that superpositions of structures occur in this case is a fundamental fea
quantum set theory. From the standpoint of the category theorist, the pullback is one of the
fundamental structures leading to a level raising in set theory, i.e., on applying a pullbac
climb up the ladder of the von Neumann hierarchy. We will understand below why this is re
to an occurrence of superpositions in a set theory with an internal quantum logic.

C. Exponentiation

A category with a product3 has exponentiation if for any pair of objectsa andb there is an
objectba and an arrow,

ev:ba3a→b

~called evaluation!, such that for any objectc and arrow

g:c3a→b,

there is a unique arrow

ĝ:c→ba,

making

commutative.
In the case ofH, take as a product the tensor product~the direct sum works correspondingly!

and define

WV5HomH~V,W!

and

ev:WV
^ V→W,

as the evaluation map.
Now, consider the following diagram:

whereU andg are supposed to be given. ForuPU definegu :V→W by

gu~v !5g~u^ v !,
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and letĝ(u)5gu . Then clearly the diagram above commutes. On the other hand, commuta
of the diagram implies

ev„ĝ~u! ^ v…5gu~v !,

i.e.,

ĝ~u!5gu ,

and therefore uniqueness ofĝ. So, H has a kind of exponentiation but not a true one in t
technical sense of topos theory because HomH(V,W) is not an object ofH. @This is only true if we
restrict to finite-dimensional spaces where HomH(V,W) can be identified withW^ V* .] But for
the reason explained above, we do not consider this as a serious drawback.

D. Subobject classifier

This is the most interesting part of the topos structure since it refers to the internal log
In a category with a terminal object 1, a subobject classifier is an objectV together with an

arrow,

true:1→V

~the name refers to the fact that it represents the truth value ‘‘true’’ whileV is the generalization
of the Boolen algebra on two symbols of ordinary set theory, i.e., giving all the possible
values! having the property that for each monomorphism,

f :a d,

there is precisely one arrow,

x f :d→V,

making

into a pullback square~observe thata→1 is unique by the fact that 1 is a terminal object!. Since
monomorphisms define subobjects, we can regardx f as the characteristic function of

f :a d

in d.
Since the definition of a subobject classifier involves the terminal object in an essentia

we cannot directly use the approach of topos theory.
In a topos the objectV has the role of representing the internal logic of the topos. ThougH

is not a topos, one suspects that the two-dimensional Hilbert spaceC2 should play a role similar to
that of V in a topos by representing the binary quantum logic. Since the Birkhoff and
Neumann paper,1 it has become customary to name as quantum logic every lattice of cl
subspaces of a Hilbert space~and there are even more general definitions used in the literat!.
But considering a general Hilbert subspace lattice as some kind of logic is just the qua
counterpart to interpreting a general Boolean algebra as logic, i.e., in doing this, one mixes
kind of classically incomplete knowledge with the linear subspace structure imposed by qu
mechanics. So, the quantum analog of the classical binary logic—where one has the m
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obtainable information—is the quantum binary logic represented by the subspaces ofC2 ~physi-
cally speaking, representing a quantum bit of information!. So, in consideringH in comparison to
Set, we should look atC2 as the analog of 25$0;1%.

As in Set, we choose a linear map,

true:C→C2,

as representing the truth value true. LetU be a subspace ofV in H with inclusion map

f :U V.

If the following diagram gives one of the possibilities in the superpositions of a quantum pul
square,

we call x a quantum characteristic function (qcf ). Here

C→C2

is the arrow true and the arrow

U→C

needs some extra comment: In a projective sense this arrow is unique, so, we may without
generality assume that for every spaceU a fixed choice of a map toC has been made.

As a consequence of the quantum pullback structure, we have again a superposition s
in the characteristic functions. Let us now discuss the relevance of this. Consider a quantum
described by a~pre-!Hilbert spaceV. The subobjects of it are then described by the linear s
spacesU of V if we take an external view, i.e., if we describe the quantum objectV as seen from
outside by a classical observer. This is the view normally taken in quantum mechanics
superposition structure of quantum characteristic functions means that we now do not descr
subobjects by the subspace lattice but by a kind of lattice of lattices where the structure
outer lattice is given by the projective structure ofU. This means we view the subobject questi
as seen from inside by the quantum objectU itself. From the quantum perspective, the question
the extension of a subobject~which is the one, one asks when building a characteristic funct!
again has a superposition of answers. If we would apply a pullback construction twice, we
get a lattice of lattices of lattices, and so on, on iterated application. So, in this sense quant
theory describes the observation of a quantum object by a quantum object and the iteration
process. The higher levels of quantum set theory therefore can be seen as refining the not
quantum object beyond the level of description from the perspective of a classical one. T
with questions in atomic physics, the higher levels of quantum set theory are surely not n
but in other fields like quantum cosmology or the theory of quantum computation these stru
could well be of interest. For instance, we can imagine a quantum computer observing a qu
system or the self-measurement of a quantum mechanical system. Questions of this ty
beginning to be touched in the field of quantum computation~see the article4 of Deutsch and the
work mentioned there!.

Finally, we should mention that the superposition structure of quantum set theory is
captured by the model theoretic approach of Takeuti~see Ref. 12!, but we prefer the category
theoretic approach because it makes the general scheme very transparent and allows us to
it to results in modern mathematical physics.
                                                                                                                



ce of

e
field

f.
on of

more,
c
ali-
same

al

m set

sk if
eloping

uct

be
al
selves

the

t and
l

with

t,

the
-
pts in
hes—

1352 J. Math. Phys., Vol. 40, No. 3, March 1999 Karl-Georg Schlesinger

                    
In conclusion,H closely resembles a topos, the main difference being the appearan
superpositions of structures~if one uses the tensor product to define pullbacks!. We could now use
the topos-like structure to develop propositional calculus and elementary set algebra inH, along
the lines this is done in topos theory~see Ref. 7!. We refrain here from doing so explicitly becaus
the results closely resemble the ones for set theory in the category of topological quantum
theories~though they are here often considerably more simple!, which is presented in detail in Re
13. The only point on elementary set theory we would like shortly to mention is the questi
extensionality.

The axiom of extensionality states that sets are described by their elements and nothing
i.e., two sets are equal if and only if they have the same elements~this is maybe the most basi
property of conventional set theory!. Stated for functions—and in this way leading to a gener
zation to category theory—this means that two functions are equal if they always give the
value. Since extensionality can already be violated in topos theory~see Ref. 7!, we have to ask the
question if it holds true inH. Suppose two parallel arrows,

f ,g:V¹W,

in H are given that are not equal, even in the sense of maps between projective spaces~which is
surely the degree of unequalness we should require!. Deciding them on an element in categoric
terms means we have to give a mapj from the terminal object~i.e., hereC! to V, such that

f + j Þg+ j .

But this is possible by takingj to be a map that assigns toC a subspace ofV, wheref andg differ.
The other direction is trivial anyway, so we have extensionality for the basic level of quantu
theory.

III. NUMBER SYSTEMS

Having seen thatH may be considered as a quantum set universe, it is natural next to a
we can find analogs of the usual number systems in quantum set theory. We start by dev
a concept of natural numbers.

Observe that we can equipSet with some additional structure: Taking the Cartesian prod
and the disjoint union of two sets as the product and sum onSet, respectively, makesSet into a rig
category~see Ref. 8, the wordrig is alluding to ring, the difference being that there need not
inverses with respect to the operation of addition!. Then the usual arithmetic on the natur
numbers is just the one induced by this category arithmetic, and the natural numbers them
may be defined by successively taking sums of a terminal object inSetwith itself. Especially, by
taking the sum of a terminal object with itself one time, we get an object isomorphic to
subobject classifier$0;1%, determining the internal logic ofSet.

Now, H may be considered a rig category, too, by equipping it with the tensor produc
direct sum of~pre-!Hilbert spaces. As we noticed, inH the spaceC plays the role of a termina
object, i.e., we get the spaceCn as the analog of the natural numbernPN. In Set, N is just defined
as being the target of an inclusion arrow for every natural number and by being minimal
respect to this property~minimality being defined by a factorization property for arrows!. In H
these requirements are fulfilled by an infinite-dimensional separable Hilbert spaceN.

Remark 2: Since all infinite-dimensional separable Hilbert spaces are unitarily equivalenN
may be considered as the universal infinite-dimensional separable Hilbert space.

Alternatively, we could identify the natural numbers with the finite sets, i.e., taking
categoryHilb of finite-dimensional Hilbert spaces as the analog ofN. Since finite sets are distin
guished from natural numbers only by isomorphisms, it is natural to identify the two conce
a categorical approach, i.e., to call every finite set a natural number. Both approac
considering the universal infinite-dimensional separable Hilbert space or the categoryHilb as the
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natural numbers—are fruitful, as we will see. To distinguish them, we will speak of theinternal
andexternal natural numbers, respectively, because in the latter case they are a subcategoryH
but not an object inH.

Remark 3: There is still another approach to natural numbers inH, namely trying to mimick
the definition of a so-called natural numbers object of topos theory (see Ref. 7). We do not
this approach explicitly here because in the case ofH it is a little bit clumsy and in the end lead
to consideringN as the natural numbers, too.

Let us now go on to consider an analog of the complex numbers~we use the internal natura
numbers for this!. Considered purely as a set, the complex numbers are isomorphic to the
functions fromN to N ~because they have the same cardinality!. In H this means that the purely se
theoretic structure should be given by the space of linear operators onN. Now, the complex
numbers are, of course, not only a set but they carry an algebraic structure of additio
multiplication. On

HomH~N,N !,

such a structure is naturally given by the sum and product of operators, so we take this. To b
to talk sensibly of complex numbers, one more structural element is needed, namely, an op
of taking real and imaginary parts~and thereby defining an operation of complex conjugation!. But
this again is possible in the operator algebra onN by taking the self-adjoint, respectively, ant
self-adjoint, part of an operator. So, the algebra of linear operators onN suggests itself as the
counterpart of the complex numbers. As a consequence, the self-adjoint operators onN take the
role of the reals.

Remark 4: The fact that the self-adjoint operators take the role of the reals in quantu
theory has also been noted in Refs. 12 and 14, but here it is a direct consequence of very
set theoretic and algebraic arguments.

That the self-adjoint operators appear as the reals ofH gives some justification for the practic
of physicists to put an overcaret on the symbols when they quantize the corresponding the
is therefore a first very slight confirmation to the hope that quantum set theory might be use
a tool for the quantization of physical systems. But only a very slight one, because we do n
a prescription for which equations between real numbers translate to the correspondin
between operators~and in which form, i.e., the factor ordering problem!. That not all equations
can translate is clear from the fact that quantization is proved not to be a functor~see Ref. 15!.

Remark 5: We can, of course, identify the natural numbers with the projection operator
the sum of two natural numbers with the sum of disjoint projection operators. In this way, we
an embedding of the natural numbers into the real ones, as we are used to from classical
ematics.

Observe that the separability of the Hilbert space is nearly automatic in this approach.
Remark 6: We did not care for analogs of negative numbers above, but these can, of c

be gained by applying the usual algebraic construction (see Ref. 16).
Remark 7: Considering set theory as universal, we should require that numbers are set

is a first example, where we get an enlargement of quantum set theory beyondH to operator
algebras (see Ref. 17 for a reference on their theory).

Considering the operator algebra on a separable Hilbert space as the analog of the c
numbers is just what is done in noncommutative geometry, where in this way one regard
commutativeC* algebras as the algebras of complex-valued functions on some quantum
~see Refs. 18, 19, the latter reference really gives a representation theorem for a special
C* algebras in terms of operator-valued functions on some discrete space!. In the spirit of alge-
braic geometry, one can then develop geometry on these algebras.

There is one more number concept in quantum set theory, namely, the algebraic operat
H inducing the ones onHilb . This is the analog of Cantor’s cardinal arithmetic in classical
theory.
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IV. MODULES, TOPOLOGICAL QUANTUM FIELD THEORY, AND THE VON NEUMANN
HIERARCHY

Having introduced analogs of the number systems, the next step is to consider module
these. We follow the approach based on the external natural numbers in this section bec
proves to be especially fruitful here. Let us start with finite-dimensional modules over the n
numbers. This is just a collection of tuples of natural numbers subject to the laws of additio
scalar multiplication, i.e., in the case of quantum set theory we get tuples of finite-dimens
Hilbert spaces subject to the mentioned laws. And since we use a categorical approach, we
only require these laws up to an isomorphism~so, we have to introduce coherence conditions
addition, to ensure that the iterative application of the laws is possible!. There immediately is a
concept of a map between tuples of finite-dimensional Hilbert spaces, namely, a tuple of
operators. So, a finite-dimensional module over the natural numbers in quantum set theory
understood as just what is called a finite-dimensional module category overHilb ~or a 2-vector
space in the terminology of Refs. 8 and 20!. The analog of general~not necessarily finite-
dimensional! modules over the natural numbers are then general module categories overHilb . In
the same spirit we can consider module categories overH.

The fact that modules over the natural numbers turn into module categories overHilb gives a
precise meaning to the connection between categorification and quantization discussed i
8–10. Categorification just means looking at the structure from the perspective of quantum
We have explicitly seen this for modules and for rings, but it extends to other algebraic struc
too. The reason is that having a module concept, we can easily discover the group~and then
monoid! concept by forgetting part of the structure or, alternatively, by considering symm
actions on the module. It turns out this way that monoids in quantum set theory are just mo
categories. In the same way we proceed to discover other algebraic structures. There is o
that should be specially mentioned here, namely, forgetting all of the operations of an alg
structure. This leads to the underlying sets in the classical case. Here we get general categ
this way, which is somewhat surprising because we already introduced a quantum set notio
is a feature of quantum set theory we already encountered in the case of number systems:
from different classical versions of one and the same concept, we may arrive at two differe
not necessarily equivalent concepts in quantum set theory.~Observe that even in topos theory th
already occurs, e.g., there the Cauchy and Dedekind reals do, in general, not agree; see!.
The quantum sets as objects ofH constitute the basic level of logically defined sets, i.e., sets
understood as realizing the logic in an extensional sense. The quantum sets as general ca
give the basic level of sets understood as carriers of algebraic structures in quantum set
Observe that the structures in the second case followed from the logically conceived sets b
quantization by categorification was a consequence of our logically minded approach. In th
e.g., in the early works of von Neumann, quantum sets were only considered from the l
perspective. We feel that it is a decisive prerequisite for applications of quantum set the
decide clearly between the two different set versions. In the sequel, we will term themquantum
logic setsand quantum algebraic sets, respectively, if it is not clear from the context whic
concept we refer to. We will see below that the link between categorification and quantiz
carries through even to the higher levels~in the sense of the von Neumann hierarchy! of quantum
set theory.

In the same way as for the case of categorifications, we see that the approach of nonc
tative geometry~where one uses the operator algebra onN as complex numbers! again means
viewing structures from the perspective of quantum logic but this time structures involving th
or complex numbers instead of the natural numbers~module categories overHilb ! or set algebra
~module categories overH!. So, quantum set theory clarifies the relationship between nonc
mutative geometry and categorifications. The latter in spirit gives a discretized version o
former one. This puts, especially, stress on the question for categorifications of manifolds b
manifolds in the case of noncommutative geometry are already known.

Categorifications are of special interest in the realm of~extended! topological quantum field
theories~see Ref. 8 and the literature cited therein!. ~Extended! n-dimensional topological quan
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tum field theories~TQFTs! are representations of the~extended! n-dimensional cobordism cat
egory in Hilb ~or a possibly higher categorification thereof in the extended case!. In quantum
mechanics, studying the quantum counterpart of a classical system means studying the
space representations of its algebraic description. TQFT shows that for very large system
the cobordism categories—this scheme has to be enlarged: We have to allow for representa
a module category~Hilb is the prototype of a module category! or even higher categorification
thereof~the question of giving a Hilbert space structure on such higher modules is dealt w
Refs. 8, 16 and 21!. Quantum set theory sheds new light on this enlargement of the scheme
have to allow for modules in quantum set theory instead of simple vector space structures
i.e., for the quantized version of the structures. We will now see that this view carries thr
even to the higher levels of categorification.

We have mentioned above that quantum set theory can be seen as describing the obs
of a quantum system by a quantum system and the iteration of this process. Since we ha
that categorification means quantization of a structure, one suspects that higher categorifi
should be linked to iterated quantization, i.e., to higher levels in the von Neumann hierarc
quantum set theory. This is indeed true.

Climbing up the von Neumann hierarchy in classical set theory involves the application o
power set operation. But there is another possibility of viewing the von Neumann hiera
namely, as incorporating the universality requirement of set theory: Higher-order structures
themselves be interpretable as sets. From a quantum perspective the most important stru
surely the module one, since it defines the superposition structure of quantum theory itself.
next higher level should be seen as given by quantized module structures, i.e., by module
ries. Remember that in Sec. I we have seen that in an internal view of quantum set theo
subspaces of a module are given by superpositions of subspace lattices. Therefore the po
approach, too, leads to a consideration of superposed module structures, as we do in a
category. It is then obvious how to proceed. We have to consider module structures over th
2-category of module categories~or better 2-Hilbert spaces! in the next step, i.e., weak modul
2-categories.~For the notions of higher category theory see, e.g., Ref. 22. The notion of a
n-category forn>4 has long not been precise, but there are now different approaches ava
see Refs. 23–26 and there is hope that they can be proved to be equivalent. We therefore f
to proceed as if there were a single coherent concept.! In general, sets of the next higher lev
correspond to the module structures of the foregoing one, i.e., the finite part of the quantu
Neumann hierarchy is given by the tower of weakn-categories~with a module and Hilbert spac
structure!. At the v level ~i.e., the level of the first infinite ordinal of classical set theory! we then
reach weakv categories.

Remark 8: The tower of weakv categories gives the von Neumann hierarchy of the quan
logic sets. The von Neumann hierarchy of the quantum algebraic sets is given by consi
categories inCat that are (weak) double categories (see Ref. 22), and proceeding in this wayi.e.,
we get the tower of weak n-tuple categories (we term the more general cubic version of
categories as n-tuple categories and the spherical version as n-categories). At thev level the
monoidal globular categories (MGCs) of Batanin appear (see Refs. 25 and 27). From the
spective of quantum set theory, the difference between the two types of higher categorifica
therefore due to the two different set concepts. It would therefore be interesting to see applic
of the cubic version in mathematical physics.

We could now develop analogs of number systems on each level of the von Neumann
archy, e.g., on the second level we could consider the weak 2-category of weak 2-Hilbert
as natural numbers. The module structure preserving functors on an infinite-dimensional 2-
space with a countable base are then a candidate for complex numbers, and we could g
consider categorifications of the algebraic structures appearing in noncommutative geomet~this
is highly nontrivial in detail, of course, but the general direction is clear!. We see a double role fo
categorification here: As we remarked above, on the first level it can be seen as a discrete
of the approach of noncommutative geometry. But since it is also the operation for climbing u
von Neumann hierarchy, on the higher levels the two approaches can be mixed. Neverthel
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whole von Neumann hierarchy of quantum logic sets is constructed in a discretized vers
quantum theory because we always consider analogs of modules over discrete rigs.

It is certainly an interesting task for future work to try to understand the analogs of the h
transfinite levels of the von Neumann hierarchy in quantum set theory. But for the mome
stop at thev level and in the next section try to understand what we have reached so far fr
still more unified perspective.

V. UNIVERSAL QUANTUM MECHANICS

We have seen in the last section that on quantizing the structure of quantum mechanic
~i.e., categorifying it!, we get module categories instead of vector spaces, in the next step we
to weak module 2-categories, and so on. But the notion of a module can be given an abstrac
by formulating it in purely arrow language. For example, the notion of an object with an ass
tive addition can be formulated in every monoidal categoryC with product^ as an objectC of C
together with a morphism,

f :C^ C→C,

making

commutative. To formulate the existence of a unit with respect tof, we have to use the unit with
respect tô . In this way we can define the notion of a ring inC and then a module structure ove
it. A module in the categoryCat then is just a module category over some ring category whi
usual module is one inSet. A 2-category with a module structure turns out to be a module
2-Cat, the category of 2-categories, and so on. There is one problem concerning this schem
get only the strict versions of the structures in this way~i.e., in the categorification the axioms o
the algebraic structure are satisfied precisely and not only up to an isomorphism!, e.g., we get a
2-category with a module structure and not a weak one. One can remedy this problem by
the following standpoint: Together with the categoryC one should specify what commutativity o
a diagram inC means. In the categoryCat, which is actually a 2-category, it should mea
commutativity up to natural transformations. In this way we could include the weak versio
the structures if there would not be the problem to specify the correct coherence conditions
attached. From an abstract point of view, we can see the coherence conditions as the requ
that the laws of the structure—here the module axioms—should be iteratively applicable
precise formulation of the conditions in a categoryC can then be a very nontrivial matter~as is
known from higher-order categorifications!, but it can be seen as belonging to precisely work
out the concrete structure realized inC and not to the abstract concept of the structure~where only
the existence of conditions giving coherence is required!.

We can therefore subsume all the different iteratively categorified structures~i.e., all the
different levels of quantum set theory! into one abstract structure concept by adding one additio
postulate to conventional quantum mechanics:

Postulate (universality of quantum mechanics).Quantum mechanics is universal in the sen
of category theory, i.e., we conceive of it as an abstract structure formulated in arrow lan
that can be concretely realized in every categoryC with a monoidal structure.

Remark 9: The work in Refs. 8, 16, and 21 on the categorification of the full Hilbert s
structure shows also a way to formulate this structure in the abstract setting.
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The postulate above may need some additional restriction in the sense that one has to b
specific about the ring~or rig! of scalars allowed. Certainly one should allow for the usual num
systems and their categorifications, but one is less sure, e.g., concerning thep-adic numbers,
though these now turn up from time to time in the physics literature.

A universality postulate for quantum mechanics frees one from the need to extend qu
mechanics to include axiomatic TQFT, i.e., we do not have to enlarge the class of kine
structures appearing for quantum systems with each level of categorification. If we acc
universality postulate, we have once and for all one fixed abstract structure that has realiza
different categoriesC. Just as we conclude from special properties of a group that we should
study its representations on an infinite-dimensional Hilbert space, we then have to conclud
the fact that we want to represent a weakn-category that we have to chooseC as the weak (n
11)-category of weakn-categories in this case. We want to call the abstract structure referr
by the postulate aboveuniversal quantum mechanics.

Besides the concrete arguments mentioned, the postulate is certainly appealing from
ciple perspective: Why should quantum mechanics be bound to the categorySet of classical
transfinite set theory? Do we not anyway believe that its principles are of an abstract alg
nature independent of a set-theoretic base?

From the perspective of quantum set theory the universality postulate means that w
describe all levels of it in a single unified way.

VI. CONCLUSION

In this paper, we introduced the language and developed the fundamentals of a quan
theory. We have seen that in this way we can understand the relationship between quantizat
categorification and see that, indeed, categorification is quantization in the sense of shiftin
nonclassical set theory. We also understand the relationship to the view taken by noncomm
geometry in this way. Finally, we presented a suggestion of how to view the different leve
quantum set theory~i.e., the different categorifications! from a unified perspective.

In the second part of the work we will use the now established language to deal espe
with the question of a categorification of the manifold notion.
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We consider the Manev potential, given by the sum between the inverse and the
inverse square of the distance, in an anisotropic space, i.e., such that the force acts
differently in each direction. Using McGehee coordinates, we blow up the collision
singularity, paste a collision manifold to the phase space, study the flow on and
near the collision manifold, and find a positive-measure set of collision orbits.
Besidesfrontal homothetic, frontal nonhomothetic,and spiraling collisions and
ejections, we put into the evidence the surprising class ofoscillatory collision and
ejection orbits. Using the infinity manifold, we further tackle capture and escape
solutions in the zero-energy case. By finding the connection orbits between equi-
libria and/or cycles at impact and at infinity, we describe a large class of capture-
collision and ejection-escape solutions. ©1999 American Institute of Physics.
@S0022-2488~99!01903-9#

I. INTRODUCTION

The type of anisotropic problems we tackle in this paper have been defined by Gutzwill1 in
the 1970s to find connections between classical and quantum mechanics. Gutzwiller con
the anisotropic Kepler problem, which was later extensively analyzed by Devaney2 and by Casasa
yas and Llibre.3 Here we add to these problems the anisotropic Manev two-body problem, w
we call for short theanisotropic Manev problem. As we will see, the system of differentia
equations describing it has some surprising properties, unlike any kind of isotropic or aniso
problems studied up to now.

The name Manev~or Maneff in French and German spelling! is connected to a gravitationa
model defined by a potential of the forma/r 1b/r 2, wherer is the distance between particles a
a,b.0 are constants.4 But this potential goes back to Newton, who first tackled it inPrincipia. In
Book I, Article IX, Proposition XLIV, Theorem XIV, Corollary 2, Newton claims that it leads
a precesionally ellipticorbit. He introduced this potential to explain the apsidal motion of
moon, for which he found no reasonable argument in the framework of the inverse-square
law. It seems that Newton was more interested in this type of potential than it has been prev
believed. ThePortsmouth Collectionof unpublished manuscripts contains several papers, wr
long after the publication ofPrincipia, dedicated to the understanding of this attraction force

In terms of a central-force problem, a precessionally elliptic orbit is one in which the pa
moves on an ellipse that rotates in its plane of motion. The determination of this trajectory o
as a problem in Goldstein’sClassical Mechanicstext. A formula for the solution is easy to obtai
and has been known for a long time, but its complete physical picture was only rec
understood5 by using McGehee transformations and the qualitative theory of dynamical sys
The advantage of Manev’s model over the Newtonian one is that it explains the perihelio
vance of the inner planets with the same accuracy as relativity.6

Combining Gutzwiller’s anisotropy with Manev’s potential, we were led to the anisotr
Manev problem, described by a nonintegrable system of differential equations. In this p
though far from obtaining a complete picture of the global flow, we settle some local and g
13590022-2488/99/40(3)/1359/17/$15.00 © 1999 American Institute of Physics
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questions and point out the main differences between this and the anisotropic Kepler proble
object of our endeavors is to describe the flow near collision in the general case, the main fe
of the global flow in the zero-energy case, and to provide the physical interpretation o
solutions we encounter.

In Sec. II we define the problem and obtain the equations of motion. Then, in Sec. III, w
into the evidence the symmetries and note that they are similar to those of the anisotropic
problem. In Sec. IV we blow up the singularities by using McGehee transformations and pa
the phase-space the so-called collision manifold, which is homeomorphic to a torus. Then w
out that the flow on the collision manifold is formed only by periodic orbits, except for the e
equilibria and the eight heteroclinic orbits that connect certain equilibria~see Fig. 1!. This shows
an important difference between this flow and that of the Kepler problems~isotropic and noniso-
tropic!, in which the orbits are always increasing with respect to one of the variables, giving
to heteroclinic orbits that connect the lower and upper equilibria of the collision manifold.
transitions vanish naturally both in the isotropic and nonisotropic Manev problems.

In Sec. V we study the flow near the collision manifold and obtain the first main result
shows a sensitive difference between the physical motion in the anisotropic Manev and K
problems. Using a first-return-map argument we prove that for each periodic orbit belonging
upper~lower! part of the collision manifold, there is a local two-dimensional analytic manifold
orbits ejecting from~tending to! it. The only periodic orbit for which both types of manifold
occur is the middle one, which separates the upper and lower set of periodic orbits. Phys
these manifolds correspond tospiraling collisions, i.e., solutions that eject from~tend to! a binary
collision such that the particles spiral around each other infinitely many times after~before!
contact; for these solutions the angular momentum is different from zero. This is like a ‘‘b
whole effect’’ ~or an ‘‘inverse black-whole effect’’ in case of ejections!, when the bodies do no
simply collide in a straightforward manner, but one is absorbed by the other towards collis
in whirlpool in whose center stands one of the bodies@see Fig. 3~b!#.

Other types of collision are given by those orbits that eject from~tend to! the equilibria. For
each upper~lower! equilibrium there is a local one-dimensional unstable~stable! analytic manifold
outside the collision manifold. Physically, these manifolds correspond tofrontal collisions, i.e.,
solutions that eject from~tend to! collision such that the orbits of the two bodies have a comm
tangent. But even in this class of orbits we distinguish betweenhomotheticand nonhomothetic
solutions. The homothetic ones move on straight lines, whereas the nonhomothetic ones
@see Fig. 3~a!#.

But the most interesting solutions are those that eject from~tend to! the periodic orbits around
the ‘‘bumps’’ of the collision manifold. Physically they correspond tooscillatory collisions; the
orbit oscillates with smaller and smaller amplitudes when tending to collision, without tendi
a definite direction, but remaining contained in a cone@see Fig. 3~c!#. This type of motion is unlike
any other one encountered in the up-to-now studied two-body problems, isotropic or aniso
It obviously arises due to the combination between the Manev potential and the anisotropy
space. It would be interesting to know if other types of potentials lead to such motions
anisotropic space.

In Sec. VI we study the flow of the zero-energy level of the phase space. To determin
asymptotic behavior of the motion at infinity we define the so-calledinfinity manifold, which
extends the phase space to contain infinity. Then we see that the flows on the zero-energ
fold and on the infinity manifold aregradientlike, which roughly means that they increase w
respect to one of the variables. We find out that the infinity manifold has also eight equilibria~see
Fig. 4! and show that there exist eight homothetic orbits connecting pairwise the lower an
upper equilibria of the collision manifold and the infinity manifold, respectively~see Fig. 5!.
Finally we describe the main features of the flow on the zero-energy manifold. We find conn
orbits between equilibria and/or cycles and give their physical interpretation in terms of ca
collision and ejection-escape orbits.
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II. EQUATIONS OF MOTION

Consider the two-degrees-of-freedom Hamiltonian system of ordinary differential equa
given by

H q̇5p
ṗ5¹W~q!, ~1!

whereq5(q1 ,q2) andp5(p1 ,p2) denote theconfigurationand themomentumcoordinates of a
physical system of two particles.W is a quasihomogeneous anisotropic potential, given by

W~q!5
1

Amq1
21q2

2
1

b

mq1
21q2

2 ,

where m.0 and b.0 are parameters. For example, in the astronomical applications o
classical Manev problem the parameterb is considered very small; of the order 10210. Equations
~1! define the motion of two particles of unit mass in an anisotropic space, i.e., a space in
the attraction forces act differently in every direction. The above potential defines the aniso
of the space as a function of the parameterm. If m,1, the attraction is the weakest in the directio
of the q1-axis and the strongest in that of theq2-axis, the situation being reversed ifm.1. If m
51, the space is isotropic and we are in the case of the classical Manev problem, whose
phase-space structure was completely described in Ref. 5; therefore we will not deal with i
Since both remaining cases have a weakest-force and a strongest-force direction, we can
without loss of generality, thatm.1.

The Hamiltonian function of the system~1! is given by

H~p~ t !,q~ t !!5~1/2!ip~ t !i22W~q~ t !!,

the sum of the kinetic and potential energies, which yields the integral of energy

H~p~ t !,q~ t !!5h. ~2!

However, since the force¹W is not central, the angular momentumL(t)5ip(t)3q(t)i is not an
integral of the system, as it is in the classical~isotropic! Manev problem~see Ref. 5!.

SinceW:R\$0%→R is real analytic, standard results of differential-equation theory guaran
for any initial data (q(0),p(0))P(R\$0%)3R, the existence and uniqueness of an analytic so
tion defined on a maximal interval@0,t* ), where 0,t* <`. If t* ,`, the solution is said to
experience asingularity.

A particular type of singularity, calledcollision, occurs whenq(t)→0 as t→t* . In fact, by
imitating the proof used in the classical Kepler problem,7 we can show that in the anisotrop
Manev problem all singularities are collisions. Solutions leading to collisions as well as
coming close to collisions are of particular interest because the whole qualitative structure
phase space depends on their behavior. We will study these solutions starting with Sec. I
next section is devoted to the study of symmetries.

III. SYMMETRIES

The symmetries in the anisotropic Manev problem are the same as in the anisotropic
problem~see Ref. 3!. The elements of the group̂S0 ,S1 ,S2&, generated byS0 , S1 , andS2 , map
solutions of the anisotropic Manev problem into solutions. The generating elements of this
of symmetries are given by the formulas

S0~q1 ,q2 ,p1 ,p2 ,t !5~q1 ,q2 ,2p1 ,2p2 ,2t !,

S1~q1 ,q2 ,p1 ,p2 ,t !5~q1 ,2q2 ,2p1 ,p2 ,2t !,
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S2~q1 ,q2 ,p1 ,p2 ,t !5~2q1 ,q2 ,p1 ,2p2 ,2t !.

Notice that the symmetryS0 implies the reversibility of the flow.
Invariant setsare those which remain invariant under the flow, i.e., if the initial condition

in an invariant set, then the whole solution is in this set. Like in Ref. 3, we can prove tha
above group of symmetries defines exactly two invariant planes for the anisotropic Manev
lem. These planes are

P15$~q1,0,p1,0!u~q1 ,p1!P~R\$0%!3R%,

P25$~0,q2,0,p2!u~q2 ,p2!P~R\$0%!3R%.

In each of these invariant planes the flow is given by a Hamiltonian system with one deg
freedom. ForP1 the Hamiltonian function isH1(q1 ,p1)5p1

2/221/Amuq1u2b/mq1
2, and forP2 it

is H2(q2 ,p2)5p2
2/221/uq2u2b/q2

2. The qualitative structure of the flow in each of these invari
planes is the same.

The phase plane is divided in two regions by the curvesp1
2/221/Amuq1u2b/mq1

250 and
p2

2/221/uq2u2b/q2
250, which represent the caseh50 for P1 andP2 , respectively, whereh is

the energy constant. The outside region consists of solutions withh.0, whereas the inside regio
is filled with curves representing solutions withh,0. Each curve in the positive-energy regio
follows an asymptote; this is eitherpi5A2h, if the curve belongs to the half-planepi.0, or pi

52A2h, if the curve is in the half-planepi,0.

IV. THE COLLISION MANIFOLD

In the study of collision and near-collision solutions it is helpful to transform the system~1!
using a method fully developed by McGehee.8 The idea of the method is to ‘‘blow-up’’ the
collision singularity, paste instead a manifold and extend the phase space to it. Of cours
manifold is fictitious, in the sense that the flow on it does not represent orbits that have
spondent in the physical reality. However, due to the continuity of the solutions with respe
initial data, knowing the flow on the collision manifold means to have information on ne
solutions, i.e., to know what the motion looks like near collision.

We first define the transformations of the dependent variables~phase space coordinates!,

H r 5iqi
u5arctan~q2 /q1!

y5 ṙ 5~q1p11q2p2!/iqi
x5r u̇5~q1p22q2p1!/iqi ,

and

H v5ry
u5rx,

and then consider a transformation of the independent variable~time!,

dt5r 22dt.

Composing these transformations, which are analytic diffeomorphisms in their respectiv
mains, the energy relation~2! becomes

u21v222rD21/222bD2152r 2h, ~3!

and the equations of motion~1! take the form
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H r 85rv
v852r 2h1rD21/2

u85u
u85~1/2!~m21!~rD23/212bD22!sin 2u,

~4!

whereD5m cos2 u1sin2 u. The new variables (r ,v,u,u)P(0,̀ )3R3S13R depend on the fic-
titious time t, so the prime here denotes differentiation with respect to the new indepe
variablet. Note that Eqs.~4! extend analytically tor 50.

The symmetriesS0 ,S1 ,S2 in the new coordinates are changed intoS̄0 , S̄1 , S̄2 , where

S̄0~r ,v,u,u,t!5~r ,2v,u,2u,2t!,

S̄1~r ,v,u,u,t!5~r ,2v,2u,u,2t!,

S̄2~r ,v,u,u,t!5~r ,2v,p2u,u,2t!.

Notice that the sets$(r ,v,u,u)ur 50% and $(r ,v,u,u)ur .0% are invariant manifolds for the
Eqs.~4!. The set

C5$~r ,vu,u!ur 50 and the energy relation~3! holds%

is called the collision-ejection manifold or simply the collision manifold. It replaces the se
singularities$(q,p)uq50% of the original system~1!, with a two-dimensional manifold in the spac
of the new variables. This two-manifold is embedded inR33S1 and is given by the equations

r 50 and u21v252bD21. ~5!

This shows thatC is homeomorphic to a torus.
From now on we will work on a fixedconstant energy surface,

E5$~r ,v,u,u!ur .0 and the energy relation~3! holds%.

The system~4! does not have singularities onEhøC. The flow onC is fictitious, in the sense tha
it has no physical meaning, but—due to the continuity of the solutions with respect to the
data—its structure gives information about the behavior of the nearby flow on constant e
manifolds, that is, information about collision and near-collision solutions.

The restriction of Eqs.~4! to C yields the system

H v850
u85u
u85b~m21!D22 sin 2u.

~6!

Sincev850, the solutions of~6! lie on the level curvesv5constant of the torusC. There are eight
equilibrium points~equilibria! for the system~4!. In the variables (r ,v,u,u), the first four of these
equilibria areA0

65(0,6A2b/m,0,0) andAp
6(0,6A2b/m,p,0). At these points the linearize

system has the matrix

F6A2b/m 0 0 0

1/Am 0 0 0

0 0 0 1

0 0 2b~m21!/m2 0

G ,
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the corresponding eigenvalues being real and taking the values,6A2b/m, 0, A2b(m21)/m, and
2A2b(m21)/m. The other four equilibria areA6p/2

6 5(0,6A2b,6p/2,0) and the linearized
system at these points is given by the matrix

F6A2b 0 0 0

1 0 0 0

0 0 0 1

0 0 2b~12m! 0

G ,

the corresponding eigenvalues being6A2b, 0, A2b(12m), and 2A2b(12m), where the6
sign corresponds to the upper index ofA. Sincem.1, the last two eigenvalues are purely imag
nary.

There are eightheteroclinicorbits ~i.e., orbits connecting two distinct equilibria! which lie in
the level setsv56A2b/m. All the other solutions are periodic~see Fig. 1!. Hence the structure o
the flow on the collision manifold is fairly simple but it differs from that of the anisotropic Kep
problem~compare with Ref. 3!.

Our next goal is to understand the flow and the physical behavior of the motion nea
collision manifold. We will see that the flow outside the collision manifold also differs drastic
from the flow of the anisotropic Kepler problem.

V. THE FLOW NEAR THE COLLISION MANIFOLD

For a fixed value ofh, the constant-energy surfaceEh is a three-dimensional manifold, invar
ant under the flow of the system~4! and whose boundary is the two-dimensional collision ma
fold C. All of this is embedded in the four-dimensional (r ,u,u,v)-space. Let us denote byPh the
periodic orbit onC havingv5h, i.e.,

Ph5$~r ,v,u,u!ur 5,v5h%.

Notice that for eachhP(A2b/m,A2b)ø(2A2b,2A2b/m) there are two periodic orbits whos
angular coordinateu varies in different domains~see Fig. 1!. However, as long as there is n
danger for confusion, we will denote each of them by the samePh .

Using this notation we can now prove the following result which summarizes the beh
close to the total collision manifold.

Theorem 5.1:On the collision manifold C the equilibria A0
6 and Ap

6 are saddles, whereas th
equilibria A6p/2

6 are centers. Outside the collision manifold the equilibria A0
1 , A6p/2

1 , and Ap
1

have a one-dimensional unstable analytic manifold, whereas the equilibria A0
2 , A6p/2

2 , and Ap
2

FIG. 1. The flow on the collision manifold, which shows that unlike the anisotropic Kepler problem, whose flo
gradient-like, the flow in the anisotropic Manev problem is formed by periodic orbits, four equilibria, and eight hetero
orbits.
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have a one-dimensional stable analytic manifold. Each periodic orbit Ph on C withv5h.0(v
5h,0) has a two-dimensional local unstable (stable) analytic manifold, while the periodic o
v50 has both a two-dimensional local unstable and a two-dimensional local stable manifo.

Physical interpretation. Before proceeding with the proof, we will give the physical interp
tation of the solutions described above. As we mentioned earlier, the orbits on the co
manifold have no physical meaning, so we will deal only with those existing outside the col
manifold. The solutions tending to~ejecting from! the equilibria represent collision~ejection!
orbits which have a common tangent at collision, here the limiting angular momentum o
solution is zero; we will call themfrontal collisions (ejections)or just frontal collisions, for short.

It is important to distinguish here between two types of frontal collisions~ejections!: the
homotheticand thenonhomotheticones. In the physical plane (q1 ,q2), the homothetic orbits
move on straight lines; on theq1 axis forAp

6 and on theq2 axis forA0
6 . The nonhomothetic one

have a different behavior. For example, there exist orbits ending atAp
2 that will pass first close to

A0
2 ~see Fig. 2!. In physical space such an orbit comes close to a collision@see Fig. 3~a!#, departs

from it, then returns to a collision from the negative part of theq1 axis, and such that the axis i
tangent to the orbit at the collision point~the origin of theq1q2 frame!. For h50 this kind of
solutions form a large class of collision orbits as we will see in Sec. VI.

Let us now describe the physical interpretation of orbits tending to~ejecting from! the cycles
of the collision manifold. Here we have to distinguish between two classes of solutions. Fir
those concerning the cycles for whichvP(2A2b/m,A2b/m). They represent collision~ejection!
orbits that spiral infinitely many times without tending to a definite direction. We will call th
spiraling collisions (ejections). The respective angular momentum is always different from z
In physical space they look like Fig. 3~b!.

The orbits concerning cycles on the ‘‘bumps,’’ for whichvP(2A2b,2A2b/m) or v
P(A2b/m,A2b), have an oscillatory behavior, therefore we will call themoscillatory collisions
(ejections). To understand this class of orbits, consider a cycle withvP(2A2b,2A2b/m) and
u.0. In Fig. 2, the intersection of the planeOvu ~i.e., u50) with this cycle corresponds to tw
values of the angular momentum~say u1 and u2 , symmetric with respect to theq2 axis!. The
angular momentumu of an orbit tending to this cycle will have, atu50, values smaller thanu1

and larger thanu2 . Since when the particle tends to collision,r tends to 0, the physical orbit wil
oscillate, as in Fig. 3~c! intersecting the linesON and OM corresponding tou1 and u2 . After
infinitely many oscillations outside the coneMON, the particle will collide with the origin. It is
remarkable to mention that oscillatory collisions do not occur in any of the Manev prob
Kepler problem, or anisotropic Kepler problem, so this unintuitive type of motion is characte
to the anisotropic Manev problem. It would be interesting to know if any other potentials le
such collisions in an anisotropic space.

Proof of Theorem 5.1: The part of the theorem concerning the equilibria is obvious from

FIG. 2. The flow of the anisotropic Manev problem can reach the collision manifold at the equilibria or at any
periodic orbits, unlike in the anisotropic Kepler problem in which the collision manifold can be reached only at equ
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study of the eigenvalues done at the end of the previous section, so we need to deal now on
the periodic solutionsPh . For this we will distinguish between two different cases. We will fi
deal with the periodic orbits that go around the whole collision-manifold torus, i.e., those pe
orbits with uhu,A2b/m, and then with the orbits circling only the ‘‘bumps’’ of the collisio
manifold, i.e., those for whichA2b/m,uhu,A2b. In each case we will construct thefirst return
mapand determine its qualitative behavior.

The first and second equations of~4! show that for small values ofr the variablev is
increasing. Also notice thatr is decreasing in the regionv,0 and is increasing in the regionv
.0.

We first consider the case when 0,h,A2b/m. Let us fix such anh and an initial value for
u(0)5u0 . Then, by the continuity of the flow, there is a neighborhoodV of (r ,v)5(0,h) in
@0,̀ )3R such that every solution with initial conditionsu(0)5u0 , (r 0 ,v0)PV, satisfiesh/2
,v(t), 1

2(h1A2b/m). For these solutions,u(t) can be treated as the independent variable, s
u85u anduÞ0 by shrinking the neighborhoodV if necessary. In this case system~4! is equiva-
lent to thenonautonomoussystem,

5
dr

du
5

r 8

u8
5

rv

A2r 2h12rD21/212bD212v2
,

dv
du

5
v8

u8
5

2r 2h1rD21/2

A2r 2h12rD21/212bD212v2
,

~7!

whereu(u) is recovered by using the energy relation~3!.
The solutions to~7! form an analytic function

C:V3~u02e,u012p1e!→R2, ~r 0 ,v0 ,u!°~r ~u!,v~u!!,

wherer (u) andv(u) are the solutions determined byr 0 , v0 , andu0 .
The first return mapc is analytic and can be written as

c~r 0 ,v0!5Fc1~r 0 ,v0!

c2~r 0 ,v0!G . ~8!

Of interest are the eigenvalues ofDc(r 0 ,v0). This matrix can be calculated from the variation
equations of system~7! along the periodic orbit. After some tedious computations we get
matrix

Dc~0,h!5F ]c1

]r
~0,h! 0

]c2

]r
~0,h! 1

G , ~9!

FIG. 3. Different types of collision orbits.~a! Nonhomothetic frontal collision;~b! spiralling collision; ~c! oscillatory
collision.
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where (]c1 /]r )(0,h) and (]c2 /]r )(0,h) remain to be determined. The zero entry ensures
the eigenvalues ofDcu(0,h) are 1 and (]c1 /]r )(0,h). To draw the desired conclusion, we need
estimate on (]c1 /]r )(0,h).

Now, the denominators in~7! are bounded onV3(u02e,u012p1e), so there exists an
M.0 such that

dr

du
>Mr ~u!v~u!>

Mh

2
r ~u!, ~10!

for uP@0,2p# and for all solutions (r (u),v(u)) starting inV. Integration with respect tou from
0 to 2p yields the inequality

c1~r 0 ,v0!>r 0eMpv0,

for all (r 0 ,v0)PV.
We further need the following Tauberian lemma: Iff (x)>Kx, where K is a constant, and

f (0)50, then f8(0)>K. The proof of this lemma is obvious sincef 8(0)5 limh→01@ f (h)
2 f (0)#/h5 limh→01@ f (h)/h#>K.

Fix now v0 . Then, sincec1(0,v0)5050•eMpv0, by the above Tauberian lemma the slope
the curver 0°c1(r 0 ,v0) at r 050 is greater than that ofr 0°eMpv0

•r 0 . This is equivalent to

]

]r
c1U

~0,v0!

>eMpv0.1, ~11!

the last inequality being true for all (r ,v)PV. Thus, the periodic orbitPh has a two-dimensiona
analytical unstable manifold of orbits that eject outsideC. The analyticity of these invarian
submanifolds follows if using a recent result by Cabre´ and Fontich~Theorem 4.1 in Ref. 9!. This
shows that the limiting behavior at collision depends analytically on the initial conditions. W
similar argument we can prove that for2A2b/m,h,0,

]c1

]r
~0,h!<eMhp,1, ~12!

and so the corresponding periodic orbitPh has a stable analytic manifold of orbits approaching
These orbits represent solutions in which a collision~or ejection! occurs as the particles spi
around each other, in contrast to the classical Newtonian case in which collisions are fronta
the particles asymptotically approach each other radially, following ultimately a definite direc

We will now see what happens in the caseh50. For this we will apply a generalization of
theorem due to Casasayas, Fontich, and Nunes.10

Let F5(F1 ,F2) be an analytic function from a neighborhood of~0,0! in R2 to R2, such that

~i! F(0,v)5(0,v),
~ii ! DF(0,0)5(c

1
1
0) with c.0,

~iii ! a5DrDvF1(0,0).0.

Then there exists stable and unstable manifolds of~0,0! which are, locally, graphs of analytic
functions, that is, Wloc

s (d)5$(ws(v),v)uvP(2d,0)% and Wloc
u (d)5$(wu(v),v)uvP(0,d)%, where

ws,u;(a/2c)v2. ~By Wloc
s and Wloc

u we have denoted thelocal stable manifoldand thelocal
unstable manifold, respectively.! At v50 the functionsws,u are only Lipschitz in general.

The proof of this result follows identically the one in Ref. 10, the only difference being
in that paper the value of the constantc equals 1. This more general result is obtained by a lin
transformation of coordinates. We will prove now that the conditions of this theorem are ful
by our first return mapc, which is also defined byv050 with a conveniently chosen domain.
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Now, the solutions starting at (r ,v)5(0,v0) are periodic, so~i! is clearly satisfied. Straight
forward computations in the variational equations of~7! show that

c5
]

]r
c2U

~0,0!

.0,

and from~11! and ~12! we know that

lim
v0→01

]

]r
c1U

~0,v0!

>1

and that

lim
v0→02

]

]r
c1U

~0,v0!

<1.

The analyticity ofc1 implies that the common limit should be 1, so~ii ! is fulfilled. For ~iii ! we
have

a5DrDvc1~0,0!5 lim
v0→01

Drc1~0,v0!2Drc1~0,2v0!

2v0
> lim

v0→01

eMpv02e2Mpv0

2v0
5Mp.0.

The second equality follows again by the analyticity ofc1 . This means that each of the tw
periodic orbitsPh with h50 have both a stable manifold of approaching orbits and an unst
manifold of ejecting orbits.

To complete the proof, let us now describe the flow near a periodic solutionPh with
A2b/m,h,A2b andu.0. ~The case withu,0 or 2A2b,h,2A2b/m is similar.! We start
by shifting the origin of the frame from 0 top/2 and change the variableu to a variablef. When
moving from 0 to 2p, the new angular variablef rotates around thev-axis, which now goes
throughAp/2

1 instead ofA0 ~see Fig. 4!, such that it allows us to describe only the periodic orb
Ph with v.A2b/m andu.0. This is done by defining the transformation

H u5w sinf,

u5
p

2
1w cosf.

With this transformation the system~4! changes to

FIG. 4. The flow on the infinity manifold.
                                                                                                                



it, we

e
as

ch
the
axis of

pre-
of the
itive

give

ifolds
ell as

1369J. Math. Phys., Vol. 40, No. 3, March 1999 Craig et al.

                    
H r 85rv,

v852r 2h1r D̃21/2,

f852sin2 f1~1/2!~m21!w21~r D̃23/212bD̃22!cosf sin~2w cosf!,

w85~1/2!~m21!~r D̃23/212bD̃22!sinf sin~2w cosf!1w sinf cosf,

~13!

and the energy relation becomes

w2 sin2 f1v222r D̃21/222bD̃2152r 2h, ~14!

whereD̃5m sin2(wcosf)1cos2(wcosf).
Now, proceed as in the other case. In an appropriate neighborhood of the periodic orb

havef8Þ0, so the nonautonomous system

H dr

df
5

r 8

f8
,

dw

df
5

v8

f8
,

is analytic in that neighborhood, where the energy relation~14! is used to recoverw ~the positive
root!. Using the same methods as before, the matrix

DF~0,h!5F ]F1

]r
~0,h! 0

]F2

]r
~0,h! 1

G ~15!

is the derivative of the Poincare´ mapF(r ,v) on the sectionf50. The right column is the sam
as in~9! because againr 8 andv8 are multiples ofr. Sincef8 is bounded, the same inequalities
the ones used for (dr/du) show that (]F1 /]r )(0,h).1 for A2b,h,A2b/m. So each periodic
solution with A2b,h,A2b/m has an unstable manifold of ejecting solutions. Similarly ea
solution with2A2b/m,h,2A2b has a stable manifold of approaching solutions, in which
angular momentum oscillates, and the particles stay within an acute angle from the weak
the force. This completes the proof of the theorem.

An obvious consequence of Theorem 5.1 is the following:
Corollary 5.2: The set of initial data leading to collisions has positive measure. More

cisely, the set of initial data leading to frontal collisions has zero measure, whereas each
sets of initial data leading to spiraling and oscillatory collisions, respectively, have pos
measure.

We will further consider the zero-energy manifold and in what remains of this paper will
a qualitative description of the flow in this particular case.

VI. THE ZERO-ENERGY MANIFOLD

In this section we will study the flow onE0 , i.e., the case of the zero energy level,h50, and
compare the flow on the collision manifold with the one on the so-calledinfinity manifold, which
we define below. In order to understand the global flow we will analyze the invariant subman
associated to the equilibrium points and to the periodic orbits on the collision manifold, as w
their connection orbits.

A. Infinity manifold and homothetic orbits

Let us start by describing a characteristic property of the flow onE0 . For this, we need the
following definition:11
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Definition 6.1:A flow is calledgradientlikewith respect to one of the coordinates, if eve
nonequilibrium solution increases on that coordinate.

With this definition we can now prove the following:
Lemma 6.2: The flow onE0 is gradientlike with respect to thev-coordinate.
Proof: For h50, the second equation in~4! shows thatv8.0 for all values ofu.
To study the asymptotic behavior at infinity, we will apply a suitable blow-up transforma

Since the potential is aquasihomogeneous function~i.e., the sum of homogeneous functions
different degrees12!, this transformation is slightly different from the one used in the case of
collision. This is because the term of degree21 predominates whent→`.

Taking h50 andr51/r , Eqs.~4! become

H r852rv,
v85r21D21/2,
u85u,
u85@~m21!/2#~r21D23/212bD22!sin 2u,

~16!

and the energy relation takes the form

r~u21v2!22D21/222brD2150. ~17!

Rescaling the velocities by using the transformationsv̄5r1/2v, ū5r1/2u, and rescaling the~in-
dependent! time variable by defining the transformationdt5r1/2ds, Eqs.~16! take the form

H ṙ52r v̄,

v̇̄52~1/2!v̄21D21/2,

u̇5ū,

u̇̄52~1/2!v̄ū1@~m21!/2#~D23/212brD22!sin 2u,

~18!

where the dot denotes differentiation with respect to the new~fictitious! time variables. In the new
coordinates the energy relation becomes

ū21 v̄222D21/222brD2150. ~19!

Analogously to the collision manifold, we define theinfinity manifold I,

I $~r,v̄,u,ū!ur50 and ū21 v̄252D21/2%,

which is also homeomorphic to a torus~see Fig. 4!.
The flow onI is given by

H v̇̄5~1/2!ū2,

u̇5ū,

u̇̄52~1/2!v̄ū1@~m21!/2#D23/2sin 2u.

~20!

As in the case of the collision manifold, the flow on the infinity manifold is fictitious in the se
that it has no physical meaning. But once again, using the continuity of the solutions with re
to the initial data, the structure of the flow on the infinity manifold will allow us to draw conc
sions about the behavior of the flow near infinity. Therefore, let us now study the flow onI.

There are eight equilibrium points on the infinity manifoldI, which, in the new
( v̄,u,ū)-coordinates, have the formB0

65(6A2m21/2,0,0), Bp
65(6A2m21/2,p,0), andB6p/2

6

5(6&,6p/2,0). We can now show that the flow onI is fairly simple.
Lemma 6.3: The flow on I is gradient like with respect to thev̄-coordinate.
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Proof: From the first equation of system~20! we see thatvG >0. If vG 50, then ū50, so vJ
5ūuG 50. But v̄̂5uG 21ūuJ 5uG 2, which is 0 only at the equilibria and is positive otherwise. Th
completes the proof.

We now define the notion of acentral configuration, a concept that plays an important ro
both in the Newtonian case as well as in the one considered here.

Definition 6.4:The configurationq0 is called central if¹W(q0) is parallel toq0 . An orbit
such that the position is a homothety toq0 is called a homothetic orbit.

The following proposition shows the existence of homothetic orbits in the anisotropic M
problem.

Proposition 6.5: There exist eight orbits connecting the respective equilibrium points o
collision manifold C to the ones on the infinity manifold I.

Proof: Recall that the equilibrium points are defined in each of the blow-up coordinate
tems, at collision and at infinity. This defines two different charts, carrying in each cas
corresponding time scales for the differential equations~see Fig. 5!.

In the chart containing the infinity manifoldI, the homothetic orbits are given by the equ
tions,

ṙ52r v̄, vG 52 1
2v̄

21m2~1/2!, if u50 or u5p, ū50,

ṙ52r v̄, vG 52 1
2v̄

211, if u56p/2, ū50.

In the chart containing the collision manifoldC, the homothetic orbits are given by th
equations

r 85rv, v85v22m2~1/2!r 22bm21, if u50 or u5p, u50,

r 85rv, v85v22r 22b, if u56p/2, u50.

FIG. 5. Homothetic orbits connecting the collision and the infinity manifolds.
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Using the energy relation and correspondingly changing the time scales, by straightfo
computation we see that the set of eight orbits described in the infinity-manifold chart is ide
to the eight orbits described in the collision-manifold chart. This completes the proof.

Remark:Notice that thea- and v-limits of the four homothetic orbits described above a
equilibrium points onC and I.

To describe the global flow in the zero-energy case, notice that, onE0 , the flow is gradient-
like with respect to thev coordinate, but it is gradient-like with respect tov̄ only on the infinity
manifold I, not onE0 . Moreover, the so-calledzero velocity curveis empty. This is easy to see, fo
the zero velocity curve is defined as the set of phase-space points for which the mom
coordinatep is zero in the energy relation~2!. In McGehee coordinates this corresponds to tak
v50 andu50 in the energy relation~3!.

Recall from Theorem 5.1 that for eachhÞ6A2b/m, the periodic orbitPh has, at least
locally, a two-dimensional stable~unstable! manifold if h,0 (h.0); if h50, thenP0 has both
a stable and an unstable two-dimensional submanifold. Also recall that, without loss of gene
we can takem.1.

Due to the gradient-like structure of the global flow onE0 , the invariant manifolds corre
sponding to periodic orbitsPh with h<0 cannot intersect invariant manifolds corresponding
periodic orbitsPh with h>0.

B. The local structure

Before going deeper into the global structure of the flow onE0 , we have to analyze the
hyperbolic character of the equilibrium points. The computations are set in McGehee coord
for the equilibrium points belonging to the total collision manifoldC and in infinity-blow-up
coordinates for those belonging to the infinity manifoldI.

We begin with McGehee coordinates. From the energy relation~3!, for h50 we obtain

r 5~1/2!~u21v2!D1/22bD21/2.

Substitutingr in the equations of motion~4! in McGehee coordinates, we obtain the system

H v85~1/2!~u21v2!2bD21,
u85u,
u85@~m21!/4#@~u21v2!D2112bD22#sin 2u.

~21!

The matrix of the attached linear system of variables (v,u,u), at the equilibrium pointsA0
6

5(6A2b/m,0,0) andAp
65(6A2b/m,p,0), is

F 6A2b/m 0 0

0 0 1

0 2b~m21!/m2 0
G ,

and has the eigenvaluesl156A2b/m, l25A2b(m21)/m, l352A2b(m21)/m, which, since
m.1, shows that these equilibrium points are hyperbolic. The equilibriaA0

2 and Ap
2 have a

two-dimensional stable manifold and a one-dimensional unstable manifold, whereas the eq
A0

1 andAp
1 have a one-dimensional stable manifold and a two-dimensional unstable manif

The matrix of the attached linear system of variables (v,u,u), at the equilibrium points
A6p/2

6 5(6A2b,6p/2,0) is

F 6A2b/m 0 0

0 0 1

0 22b~m21! 0
G ,
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with eigenvaluesl156A2b, l25 iA2b(m21), andl352 iA2b(m21). This is in agreemen
with the fact that these equilibria area- or v-limits of the corresponding homothetic orbits an
that the structure of the flow restricted to the collision manifold proves them to be center
these equilibrium points arenot hyperbolic.

We pass now to the infinity-blow-up coordinates. Forh50, the corresponding energy relatio
~19! is equivalent to

2rb5~ ū21 v̄2!D22D1/2.

Substitution ofr in Eqs.~18! gives

H vG 52~1/2!v̄21D21/2,

u̇5ū,
uG 52~1/2!v̄ū1@~m21!/2#@~ v̄21ū2!D212D23/2#sin 2u.

~22!

The matrix of the attached linear system of variables (v̄,u,ū) at the equilibrium pointsB0
6

5(6A2m21/2,0,0) andBp
65(6A2m21/2,p,0) is

F 7A2m21/2 0 0

0 0 1

0 ~m21!/m3/2 7~1/2!A2m21/2
G .

The eigenvalues of this matrix are

l157A2m21/2,

l257~4m!21/4/21~1/2!A~4m!21/214~m21!m23/2,

l357~4m!21/4/22~1/2!A~4m!21/214~m21!m23/2,

so the equilibria are hyperbolic. The equilibriaB0
2 andBp

2 have a one-dimensional stable man
fold and a two-dimensional unstable manifold, whereas the equilibriaB0

1 and Bp
1 have a two-

dimensional stable manifold and a one-dimensional unstable manifold.
Finally, the corresponding matrix of the linear system in variables (v̄,u,ū), at the equilibria

B6p/2
6 5(6&,6p/2,0), is

F 7& 0 0

0 0 1

0 12m 7&/2
G ,

with eigenvalues

l157&,

l257&/41~1/2!A9/224m,

l357&/42~1/2!A9/224m,

the sign7 being chosen with respect to the upper6 sign ofB. This shows that the equilibria ar
also hyperbolic. In factB6p/2

1 are sinks, whereasB6p/2
2 are sources. Like in the previous case, t

eigenvaluel1 corresponds to the homothetic orbit, while the others correspond to the flow
stricted to the infinity manifold.
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Thus, the behavior of our flow forr50 is in agreement with what we know about the flow
the total collision manifold for the anisotropic Kepler problem~see Ref. 3!.

Now that the local structure of the flow onE0 at the equilibria is understood, we can go furth
towards enhancing the global picture of the zero-energy case.

C. Qualitative aspects of the global flow

Using all the above information, we are now in a position to state and prove the main
in this section, which describes connecting orbits onE0 , offering the main qualitative features o
the flow on the zero-energy manifold. More precisely, we find all possible connections be
periodic orbits onC and equilibrium points.

Theorem 6.6:All the orbits tending to every lower cycle of the collision manifold (includ
the median one), must eject from a lower equilibrium of the infinity manifold; all the or
ejecting from every upper cycle of the collision manifold (including the median one) must te
an upper equilibrium of the infinity manifold. There does not exist orbits inE0 connecting cycles,
or cycles and equilibria, of the collision manifold. There does exist noncollision orbits inE0

connecting lower and upper equilibria of the infinity manifold.
Physical interpretation.Any zero-energy solution tending to a lower cycle must eject from

lower equilibrium of the infinity manifold. These solutions, calledcapture-collisionorbits, are
unbounded at time2` and end in a spiraling collision in finite time. Symmetrically, solutio
ejecting form an upper cycle must tend to an upper equilibrium of the infinity manifold. They
calledejection-escapeorbits, start from a spiraling ejection at a finite time and become unboun
at time1`. The next statement tells that there does not exist solutions that start from a co
~spiraling or frontal! at a finite time and end in a collision~spiraling or frontal! at a later finite
time. The last sentence states the existence of collisionless orbits that are unbounded at tim2`
and1`.

Proof: Recall that we have obtained a three-dimensional flow by eliminating the coordinr
from the energy relation and that the stable manifolds of the periodic orbitsPh are contained in
this compact three-dimensional manifold with boundaryCøE0øI . We will prove the existence o
connecting orbits between each cyclePh of the collision manifold and equilibria of the infinity
manifold. For this letPh , h<0, be a cycle and take any orbit belonging to the two-dimensio
local manifold of orbits tending toPh . Since the flow is gradient-like with respect to the variab
v on E0øI ~outside the collision manifold!, and there are no other equilibria or cycles belowPh

having an unstable manifold of positive dimension, the chosen orbit must come from one
lower equilibria of the infinity manifold. Using the reversibility of the flow, we can prove that
orbit starting asymptotically at a cyclePh , h>0, connects with the upper equilibria of the infini
manifold.

The nonexistence of orbits connecting cycles of the collision manifold and of orbits con
ing cycles with equilibria of the collision manifold, follows again from the gradient-like prope
of the flow and the nonexistence of unstable manifolds for the lower equilibria and the cyclePh

with h,0 and from the nonexistence of stable manifolds for the upper equilibria and the c
Ph with h.0. Also, because of the gradient-like property, there are no homoclinic connection
the cycles or the equilibria.

To prove the existence of orbits connecting lower and upper equilibria of the infinity m
fold, take an initial condition in the planev50 of E0 , close to, but outside the collision manifold
Due to the gradient-like property and the fact that the upper equilibria and cycles of the co
manifold have no stable manifolds, the corresponding orbit has to end at one of the uppe
libria of the infinity manifold. Using the same arguments, we can check that this orbit starts a
of the lower equilibria at infinity. This completes the proof of the theorem.

We have thus described the main features of the flow in the zero-energy case. Unfortu
at this point we have only a vague understanding about the behavior of orbits coming fro
tending to heteroclinic connections, so we still miss a complete foliation of the global flow o
zero-energy manifold.
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Nonholonomic constraints in time-dependent mechanics
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The constraint reaction force of ideal nonholonomic constraints in time-dependent
mechanics on a configuration bundleQ→R is obtained. Using the vertical exten-
sion of Hamiltonian formalism to the vertical tangent bundleVQ of Q→R, the
Hamiltonian of a nonholonomic constrained system is constructed. The present
setting is more general than the one usually considered in the literature on non-
holonomic mechanics. ©1999 American Institute of Physics.
@S0022-2488~99!01403-6#

I. INTRODUCTION

This work addresses the geometric theory of nonholonomic constraints in time-depe
mechanics. We refer the reader to Refs. 1–7 for the autonomous case. We follow the ap
based on the D’Alembert principle because the variational methods with Lagrange multiplie
not always appropriate to nonholonomic constraints~see Refs. 2, 5, 6, and 8!.

Let the jet manifoldJ1Q be a velocity phase space of time-dependent mechanics on a
figuration bundleQ→R. When studying mechanical systems with constraints, one usually re
sents nonholonomic constraints as distributions onQ or submanifolds of the jet manifoldJ1Q.8–10

In this paper the notion of nonholonomic constraint is generalized in such a way to in
codistributionsS or, accordingly, distributions Ann~S! on the jet manifoldJ1Q.11,12We study the
following problem. Letj be a second-order dynamic equation onQ andS a codistribution onJ1Q
whose annihilator Ann~S! is treated as a nonholonomic constraint. The goal is to find a dec
position,

j5 j̃1r , ~1!

wherej̃ is a second-order dynamic equation obeying the condition

j̃,Ann ~S!. ~2!

One can think ofj̃ as describing a mechanical system subject to the nonholonomic constraS,
while (2r ) is the constraint reaction acceleration. The decomposition~1!, however, is not unique
In the case of Newtonian systems, including nondegenerate Lagrangian systems, we ob
decomposition~1! which satisfies the D’Alembert principle for ideal nonholonomic constrai
We construct the Hamiltonian counterpart of the constrained equation of motion~2!. We show that
this can be seen as Hamilton equations in the framework of the vertical extension of Hamil
formalism to the configuration spaceVQ which is the vertical tangent bundle ofQ→R. This may
be a step towards the functional integral formulation of nonholonomic time-dependent mec
and its further quantization.

a!Electronic mail: mangiaro@camserv.unicam.it
b!Electronic mail: sard@grav.phys.msu.su
13760022-2488/99/40(3)/1376/15/$15.00 © 1999 American Institute of Physics

                                                                                                                



n and
ration

l

le

1377J. Math. Phys., Vol. 40, No. 3, March 1999 Giachetta, Mangiarotti, and Sardanashvily

                    
II. GEOMETRIC INTERLUDE

All manifolds throughout the paper are real, finite dimensional, second countable~hence,
paracompact!, and connected.

We refer the reader to Refs. 8, 9, and 11–15 for the geometric formulation of Lagrangia
Hamiltonian time-dependent mechanics. In accordance with this formulation, a configu
space of time-dependent mechanics is an (m11)-dimensional fiber bundleQ→R, coordinated by
(t,qi). Its baseR is treated as a time axis provided with the Cartesian coordinatet. With this
coordinate,R is equipped with the standard vector field] t and the standard one-formdt. For the
sake of convenience, we will also utilize the compact notationql, whereq05t. Obviously, any
fiber bundleQ→R is trivial, but it cannot be canonically identified to a productR3M in general.
Different trivializationsQ>R3M correspond to different reference frames.

The velocity phase space of time-dependent mechanics is the first-order jet manifoldJ1Q of
Q→R, coordinated by (t,qi ,qt

i). There is the canonical imbedding,

l:J1Q�TQ, ~ t,qi ,qt
i !°~ t,qi , ṫ51,q̇i5qt

i !, ~3!

of J1Q onto the affine subbundle of the tangent bundleTQ of Q which is modeled over the vertica
tangent bundleVQ of Q→R. From now on we will identify the jet manifoldJ1Q with its image
in TQ.

Similarly, we have the imbeddings,

J2Q�J1J1Q�TJ1Q,

~ t,qi ,qt
i ,qtt

i !°~ t,qi ,qt
i , ṫ51,q̇i5qt

i ,q̇t
i5qtt

i !,

where J2Q, coordinated by (ql,qt
i ,qtt

i ), is the second-order jet manifold of the fiber bund
Q→R. The affine bundleJ2Q→J1Q is modeled over the vertical tangent bundle,

VQJ1Q>J1Q3
Q

VQ, ~4!

of the affine jet bundleJ1Q→Q.
The jet manifoldJ1Q is provided with the canonical tangent-valued form,

v̂5u i
^ ] i

t ,

whereu i5dqi2qt
idt are the contact forms. We have the corresponding endomorphism,

v̂~] t!52qt
i] i

t , v̂~] i !5] i
t , v̂~] i

t!50,

of the tangent bundleTJ1Q and that

v̂~dt!50, v̂~dqi !50, v̂~dqt
i !5u i ,

of the cotangent bundleT* J1Q of J1Q. The nilpotent rulev̂250 holds.
Due to the imbeddings~3!, any connection,

G5dt^ ~] t1G i] i !,

on a fiber bundleQ→R can be identified with a nowhere vanishing horizontal vector field,

G5] t1G i] i , ~5!
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on Q which is the horizontal lift of the standard vector field] t on R by means ofG. Conversely,
any vector fieldG on Q such thatdtcG51 defines a connection onQ→R. Accordingly, the
covariant differential,

DG :J1Q→
Q

VQ, q̇i+DG5qt
i2G i ,

associated with a connectionG on Q→R, takes its values into the vertical tangent bundleVQ of
Q→R.

Remark: From the physical viewpoint, a connection~5! sets a reference frame. There
one-to-one correspondence between these connections and the equivalence classes of a
local constant trivializations of the fiber bundleQ→R, i.e., such that transition functionsqi

→q8 i of the corresponding bundle coordinates are independent oft, and G5] t with respect to
these coordinates.13–15 In particular, every trivialization ofQ defines a complete connectionG on
Q→R, and vice versa.

A connectionj on the jet bundleJ1Q→R is said to be holonomic if it is a section,

j5] t1qt
i] i1j i] i

t ,
~6!

dtcj51, j c v̂50,

of the holonomic subbundleJ2Q→J1Q of the affine jet bundleJ1J1Q→J1Q. Holonomic con-
nections~6! make up an affine space modeled over the linear space of vertical vector fields
affine jet bundleJ1Q→Q, i.e., which live inVQJ1Q. Every holonomic connectionj defines the
corresponding covariant differential on the jet manifoldJ1Q:

Dj :J2Q ——→
J1Q

VQJ1Q,VJ1Q,

~7!
q̇i+Dj50, q̇t

i+Dj5qtt
i 2j i ,

which takes its values into the vertical tangent bundleVQJ1Q of the affine jet bundleJ1Q→Q.
Any integral sectionc̄:R.()→J1Q for a holonomic connectionj is holonomic, i.e.,c̄5 ċ where
c is a curve inQ.

A second-order dynamic equation~or simply a dynamic equation! on a configuration bundle
Q→R is defined as the kernel,

qtt
i 5j i~ t,qj ,qt

j !, ~8!

of the covariant differential~7! for some holonomic connectionj on the jet bundleJ1Q→R.
Therefore, holonomic connections are also called dynamic equations. By a solution of the dy
equation~8! is meant a curvec in Q whose second-order jet prolongationc̈ lives in ~8!. Any
integral sectionc̄ for the holonomic connectionj is the jet prolongationċ of a solutionc of the
dynamic equation~8!, and vice versa.

III. NONHOLONOMIC CONSTRAINTS

Let S be ann-dimensional codistribution on the velocity phase spaceJ1Q. Its annihilator
Ann ~S! is treated as a nonholonomic constraint. Let the codistributionS be locally spanned by the
one-forms,

sa5s0
adt1si

adqi1 ṡi
adqt

i ,

on the jet manifoldJ1Q. Then a dynamic equationj̃ on the configuration bundleQ→R is said to
be compatible with the nonholonomic constraintS if
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sa~ j̃ !5 j̃ csa5s0
a1si

aqt
i1 ṡi

aj̃ i50.

This equation is algebraically solvable forn components ofj̃ iff the n3m matrix ṡi
a(ql,qt

i) has
everywhere maximal rankn<m. Therefore, we restrict our consideration to the nonholono
constraints, called admissible, such that dimS5dim v̂(S).

If a nonholonomic constraint is admissible, there exists a localm3n matrix ṡa
i (ql,qt

i) such
that

ṡa
i ṡi

b5da
b .

Then the local decomposition~1! of a dynamic equationj can be written in the form

j i5 j̃ i1 ṡa
i sa~j!. ~9!

The global decomposition~1! exists by virtue of the following lemma.
Lemma 1:The intersection

W5J2QùAnn ~S!

is an affine bundle overJ1Q, modeled over the vector bundle

W̄5VQJ1QùAnn ~S!.

Proof: W̄ consists of the vertical vectorsv i] i
tPVQJ1Q which fulfill the conditions

ṡi
a~ql,qt

j !v i50.

Since the nonholonomic constraintS is admissible, every fiber ofW̄ is of dimensionm2n, i.e.,W̄
is a vector bundle, whileW is an affine bundle.

The affine structure ofW→J1Q implies that it has a global sectionj̃.
To construct the global decomposition~1!, one usually performs a splitting of the vertic

tangent bundle,

VQJ1Q5W̄ %

J1Q

V, ~10!

and obtain the corresponding splitting of the second-order jet manifold,

J2Q5W %

J1Q

V. ~11!

HereV→J1Q should be interpreted as the bundle of possible constraint reaction accelerati
If an admissible nonholonomic constraintS is of dimensionn5m, a dynamic equationj is

decomposed in a unique fashion. Ifn,m, the decomposition~1! is not unique. Different variants
of this decomposition lead to different constraint reaction forces which, from the physical v
point, characterize different types of nonholonomic constraints. In next section, we will con
the decomposition of dynamic equations of Newtonian systems which corresponds to idea
holonomic constraints.

Now, let us consider some important examples of nonholonomic constraints.
Let N be a closed imbedded submanifold of the velocity phase spaceJ1Q, defined locally by

the equations

f a~ql,qt
i !50, a51,...,n,m.
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One can treatN as a nonholonomic constraint given by the codistributionS5Ann (TN) on
J1QuN . This codistribution is locally spanned by the one-forms

sa5d fa5] t f
adt1] j f

adqj1] j
t f adqt

j .

The nonholonomic constraintN is admissible iff the matrix (] j
t f a) is of maximal rankn. It follows

that N is a fibered submanifold of the affine jet bundleJ1Q→Q.
A nonholonomic constraintN is said to be linear if it is an affine subbundle of the affine

bundleJ1Q→Q. Locally, a linear constraintN is given by the equations

f a5 f 0
a~ql!1 f i

a~ql!qt
i50, ~12!

where the matrixf i
a is of maximal rank. A linear constraint is always admissible. SinceN is an

affine subbundle ofJ1Q→Q, it has a global sectionG ~5! which is a connection on the configu
ration bundleQ→R, called the constraint reference frame. Then, the connection coefficienG i

satisfy the equations

f 0
a~ql!1 f i

a~ql!G i50,

and hence the constraint equations~12! take the form

f i
a~ql!~qt

i2G i !50. ~13!

One can think ofq̇G
i 5qt

i2G i , satisfying the equation~13!, as virtual velocities relative to the
linear constraintN.

Let now a configuration spaceQ admit a composite fibrationQ→S→R, where

pQS :Q→S

is a fiber bundle, and let (t,s r ,qa) be coordinates onQ, compatible with this fibration. Given a
connection,

B5dt^ ~] t1Ba]a!1ds r
^ ~] r1Br

a]a!, ~14!

on the fiber bundleQ→S, we have the corresponding horizontal splitting of the tangent bu
TQ. Restricted to the jet manifoldJ1Q,TQ, this splitting reads

J1Q5B~pQS* J1S! %

Q
VSQ,

] t1s t
r] r1qt

a]a5@~] t1Ba]a!1s t
r~] r1Br

a]a!#1@qt
a2Ba2s t

rBr
a#]a ,

wherepQS* J1S is the pull-back of the affine jet bundleJ1S→S ontoQ. It is readily observed tha

N5B~pQS* J1S!

is an affine subbundle of the affine jet bundleJ1Q→Q, defined locally by the equations

qt
a2s t

rBr
a~ql!2Ba~ql!50.

This subbundle yields a linear nonholonomic constraint.16,17 The corresponding codistributionS
5Ann (TN) is locally spanned by the one-forms,

sa52~] tB
a1s t

r] tBr
a!dt2~]sB

a1s t
r]sBr

a!dss2~]bBa1s t
r]bBr

a!dqb1dqt
a2Br

ads t
r . ~15!

With the connection~14!, we also have the splitting of the vertical tangent bundleVQ of Q
→R and the corresponding splitting of the vertical tangent bundleVQJ1Q which reads
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VQJ1Q5W̄ %

J1Q

V,

~16!
ṡ t

r] r
t 1q̇t

a]a
t 5ṡ t

r~] r
t 1Br

a]a
t !1~ q̇t

a2Br
aṡ t

r !]a
t .

It is readily observed thatW̄uN consists of vertical vectors which are the annihilators of
codistribution~15!. The splitting~16! yields the corresponding splitting~11! of the second-order
jet manifoldJ2Q. Then we obtain the decomposition~1! of every dynamic equationj on J1Q as

j̃ r5j r , j̃a5ja2sa~j!.

IV. NEWTONIAN SYSTEMS WITH NONHOLONOMIC CONSTRAINTS

Let Q→R be a fiber bundle together with~i! a nondegenerate fiber metric,

m̂:J1Q→V* Q^

Q
V* Q, m̂5 1

2mi j d̄qi∨d̄qj ,

in the fiber bundleVQJ1Q→J1Q which satisfies the symmetry condition,

]k
t mi j 5] j

tmik , ~17!

and~ii ! a dynamic equationj ~6! on the jet bundleJ1Q→R, related to the fiber metricm̂ by the
compatibility condition,

2j cdmi j 1mik] j
tjk1mjk] i

tjk50. ~18!

The triple (Q,m̂,j) is called a Newtonian system andm̂ is named a mass metric.15 A Newtonian
system is said to be standard ifm̂ is the pull-back of a fiber metric in the vertical tangent bund
VQ in accordance with the isomorphism~4!. In this case,m̂ is independent of the velocity
coordinatesqt

i .
There are two main reasons in order to consider Newtonian systems. From the ph

viewpoint, with a mass metric, we can introduce the notion of an external force, defined
section of the vertical cotangent bundleVQ* J1Q→J1Q. Let (Q,m̂,j) be a Newtonian system an
F an external force. Then

jF
i 5j i1~m21! ikFk

is a dynamic equation, but the triple (Q,m̂,jF) is a Newtonian system only ifF possesses the
property

] i
tF j1] j

tFi50. ~19!

From the mathematical viewpoint, the equation

mik~qtt
k 2jk!50 ~20!

is the kernel of an Euler–Lagrange-type operator. By an appropriate choice of a mass metr
may hope to bring it into Lagrange equations. This is the well-known inverse problem in
dependent mechanics.

Here, we consider Newtonian systems because they provide the vertical tangent
VQJ1Q with a nondegenerate fiber metricm̂. Let us assume thatm̂ is a Riemannian metric. With
this metric, we immediately obtain the splitting~10!, whereV is the orthocomplement ofW̄. Then
the corresponding decomposition~9! takes the form11
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j i5 j̃ i1m̃abm
i j ṡj

asb~j!, ~21!

wherem̃ab is the inverse matrix of

m̃ab5 ṡi
aṡj

bmi j .

It is readily observed that the decomposition~21! satisfies the generalized D’Alembert prin
ciple. The constraint reaction acceleration,

2r i52m̃abm
i j ṡj

asb~j!, ~22!

is orthogonal to every element ofVQJ1QùAnn (S) with respect to the mass metricm̂. Since
elements ofVQJ1QùAnn (S) can be treated as the virtual accelerations relative to the nonh
nomic constraintS, the constraint reaction acceleration~22! characterizesS as an ideal constraint

The Gauss principle is also fulfilled as follows. Given a dynamic equationj and the above-
mentioned fiber metricm̂, let us define a positive functionG(w) on J2Q as

G~w!5m̂~j„p1
2~w!…2w,j„p1

2~w!…2w!,

G~ql,qt
i ,qtt

i !5mi j ~ql,qt
k!„j i~ql,qt

k!2qtt
i
…„j j~ql,qt

k!2qtt
j
….

We say thatiwi5G(w)1/2 is a norm ofwPJ2Q.
Proposition 2:Among all dynamic equations compatible with a nonholonomic constraint,

dynamic equationj̃ defined by the decomposition~21! is that of least norm.
Proof: Let z be another dynamic equation which takes its values intoW. Thenj̃2z,W̄ and

m̂~ j̃2z,j2 j̃ !50.

Hence, we obtain

izi5m̂~j2 j̃1 j̃2z,j2 j̃1 j̃2z!5i j̃i1m̂~ j̃2z,j̃2z!.

In the next section, we will show that, in the case of nondegenerate Lagrangian system
linear nonholonomic constraints, the decomposition~21! satisfies the traditional D’Alembert prin
ciple.

V. LAGRANGIAN SYSTEMS WITH NONHOLONOMIC CONSTRAINTS

Nondegenerate Lagrangian systems are particular Newtonian systems.
A Lagrangian is defined as a horizontal density,

L5Ldt, L:J1Q→R, ~23!

on the velocity phase spaceJ1Q. Here, we apply in a straightforward manner the first variatio
formula.13,15

Let us consider a projectable vector field

u5ut] t1ui] i , ut50,1,

on the configuration bundleQ→R and calculate the Lie derivative of the Lagrangian~23! along
the jet prolongation,

ū5ut] t1ui] i1dtu
i] i

t ,

of u, wheredt5] t1qt
i] i1¯ is the operator of formal derivative. We obtain
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L ūL5~ ūcdL!dt5~ut] t1ui] i1dtu
i] i

t!Ldt. ~24!

The first variational formula provides the following canonical decomposition of the Lie
rivative ~24! in accordance with the variational problem:

ūcdL5~ui2utqt
i !Ei1dt~ucHL!, ~25!

where

HL5 v̂~dL!1L5p idqi2~p iqt
i2L!dt ~26!

is the Poincare´–Cartan form and

EL :J2Q→V* Q,

EL5Eiu
i5~] i2dt] i

t!Lu i ~27!

is the Euler–Lagrange operator forL. We will use the notation

p i5] i
tL, p j i 5] j

t] i
tL.

A LagrangianL is called nondegenerate if detpjiÞ0 everywhere on the velocity phase spaceJ1Q.
The kernel KerEL,J2Q of the Euler–Lagrange operator~27! defines the system of second

order differential equations,

~] i2dt] i
t!L50, ~28!

on Q, called the Lagrange equations. Their solutions are~local! sectionc of the fiber bundleQ
→R whose second-order jet prolongationsc̈ live in ~28!.

A holonomic connection on the jet bundleJ1Q→R is said to be a Lagrangian connectionjL

for the LagrangianL if it takes its values in the kernel~28! of the Euler–Lagrange operatorEL .
Every Lagrangian connectionjL defines a dynamic equation on the configuration spaceQ whose
solutions are also solutions of the Lagrange equations~28!. If L is nondegenerate, the Lagrang
equation~28! can be algebraically solved for the second-order derivatives, and they are equi
to the dynamic equation,

qtt
i 5jL

i , jL
i 5~p21! i jEj1qtt

i , ~29!

called the Lagrange dynamic equation.
Every LagrangianL on the jet manifoldJ1Q yields the Legendre map,

L̂:J1Q→V* Q, pi+L̂5p i , ~30!

where (t,qi ,pi) are holonomic coordinates on the vertical cotangent bundleV* Q. As is well
known, the Legendre map~30! is a local diffeomorphism iffL is nondegenerate. A LagrangianL

is called hyperregular if the Legendre mapL̂ is a diffeomorphism.
The vertical tangent mapVL̂ to the Legendre mapL̂ reads

VL̂:VQJ1Q→VV* Q>V* Q3
Q

V* Q.

It yields the linear fibred morphismVQJ1Q→VQ* J1Q and the corresponding mapping,

J1Q→VQ* J1Q ^

J1Q

VQ* J1Q, mi j 5p i j . ~31!
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If a LagrangianL is nondegenerate, then~31! is a mass metric which satisfies the symme
condition ~17! and the compatibility condition~18! for the Lagrange dynamic equation~29!.

Thus, every nondegenerate LagrangianL defines a Newtonian system. Moreover, a non
generate Lagrangian system plus an external force which fulfills the condition~19! is also a
Newtonian system. Conversely, every standard Newtonian system can be seen as a Lag
system with the Lagrangian

L5 1
2mi j ~qt

i2G i !~qt
j2G j !dt, ~32!

whereG is a reference frame, plus an external force.
Given a nondegenerate LagrangianL with a Riemannian mass metricmi j 5p i j , let nowS be

an admissible nonholonomic constraint on the velocity phase spaceJ1Q. Since this is a particular
Newtonian system, we obtain the dynamic equation

qtt
i 5jL

i 2m̃abm
i j ṡj

a~ ṡk
bjL

k1sk
bqt

k1s0
b!,

~33!
jL

i 5mi j ~2] tp j2]kp jqt
k1] jL!,

which is compatible with the constraintS, treated as an ideal nonholonomic constraint. This is
Lagrange dynamic equation in the presence of the additional constraint reaction force

Fi52m̃abṡi
asb~jL!. ~34!

Let us consider the energy conservation law in the presence of this force.
The energy conservation law in Lagrangian time-dependent mechanics is deduced fro

first variational formula~25! when the vector fieldu5G is a reference frame. On the shellEi

50 ~28!, this formula leads to the weak identity,

L ḠL'2dt~p i q̇G
i 2L!, ~35!

whereq̇G
i 5qt

i2G i is a relative velocity and

TG5p i q̇G
i 2L ~36!

is the energy function with respect to the reference frameG.14,15,18In the presence of an externa
force F, i.e., on the shellEi52Fi , the weak identity~35! is modified as

L ḠL2q̇G
i Fi52dtTG .

It is readily observed that, if a nonholonomic constraint is linear andG is a constraint reference
frame, the constraint reaction force~34! does not contribute to the energy conservation law
follows that, in this case, the standard D’Alembert principle holds, while the equation~33! de-
scribes a motion in the presence of an ideal nonholonomic constraint in the spirit of this prin

The constrained equation of motion~33! is neither Lagrange equations nor a dynamic eq
tion of a Newtonian system. In Sec. VI, we aim to show that it can be seen as a part of Ha
equations in the framework of the Hamiltonian formalism extended to the configuration s
VQ.

VI. VERTICAL EXTENSION OF HAMILTONIAN FORMALISM

This section provides a brief exposition of Hamiltonian formalism of time-dependent mec
ics on a configuration bundleQ→R and its extension to the vertical configuration spaceVQ. We
consider this extension because any first-order dynamic equation on the momentum phas
V* Q can be seen as a Hamilton equation in the framework of the extended Hamiltonian fo
ism. This extension is also of interest in the path-integral formulation of mechanics.19,20
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Given a mechanical system on a configuration bundleQ→R, its momentum phase space
the vertical cotangent bundleV* Q of Q→R, equipped with the holonomic coordinates (t,qi ,pi

5q̇i).
13–15 The momentum phase spaceV* Q is endowed with the canonical exterior three-form

V5dpi∧dqi∧dt.

Let us consider the cotangent bundleT* Q of Q with the holonomic coordinates (t,qi ,p,pi).
It admits the canonical Liouville form

J5pdt1pidqi . ~37!

An exterior one-formH on the momentum phase spaceV* Q is called a Hamiltonian form if it is
the pull-back

H5h* J5pidqi2Hdt ~38!

of the Liouville form J ~37! by a sectionh of the fiber bundle

z:T* Q→V* Q. ~39!

Remark:With respect to a trivializationQ>R3M , the Hamiltonian form~38! is the well-
known integral invariant of Poincare´–Cartan, whereH is a Hamiltonian. The peculiarity of Hamil
tonian time-dependent mechanics issues from the fact that Hamiltonians are not scalar fu
under time-dependent transformations, but make up an affine space modeled over the linea
of functions onV* Q.

For instance, every connectionG on a configuration bundleQ→R is an affine section.

p+G52piG
i ,

of the fiber bundle~39!, and defines the Hamiltonian form

HG5pidqi2piG
idt.

It follows that any Hamiltonian form on the momentum phase spaceV* Q admits the splitting,

H5HG2H̃Gdt5pidqi2~piG
i1H̃G!dt,

whereG is a connection onQ→R and H̃G is a real function onV* Q, called the Hamiltonian
function. The following assertions are basic facts in the Hamiltonian formulation of t
dependent mechanics.14,15

Proposition 3:Every Hamiltonian formH on the momentum phase spaceV* Q defines the
associated Hamiltonian map,

Ĥ:V* Q→J1Q, qt
i+Ĥ5] iH.

Proposition 4:Given a Hamiltonian formH on the momentum phase spaceV* Q there exists
a unique connection

gH5] t1] iH] i2] iH] i ~40!

on V* Q→R, called a Hamiltonian connection, such that

gHcV5dH.

The kernel of the covariant differential of the Hamiltonian connection~40! defines the Hamil-
ton equations,
                                                                                                                



e. The

nt

ntum
ase

pace

1386 J. Math. Phys., Vol. 40, No. 3, March 1999 Giachetta, Mangiarotti, and Sardanashvily

                    
qt
i5] iH, ~41a!

pti52] iH, ~41b!

for the Hamiltonian formH. Their solutions are integral curves for the Hamiltonian connectiongH

~40!.
Now let us consider the vertical tangent bundleVQ of the fiber bundleQ→R, coordinated by

(t,qi ,q̇i). It can be seen as a new configuration space, called the vertical configuration spac
corresponding vertical momentum phase space is the vertical cotangent bundleV* VQ of VQ
→R. The vertical momentum phase spaceV* VQ is canonically isomorphic to the vertical tange
bundleVV* Q of the ordinary momentum phase spaceV* Q→R, coordinated by (t,qi ,pi ,q̇i ,ṗi).
It is easily seen from the transformation laws that (qi ,ṗi) and (q̇i ,pi) are canonically conjugate
pairs.

The vertical momentum phase spaceVV* Q is endowed with the canonical three-form,

VV5@dṗi∧dqi1dpi∧dq̇i #∧dt.

For the sake of brevity, one can writeVV5]VV, where]V5q̇i] i1 ṗi]
i is the vertical derivative.

The notions of a Hamiltonian connection, a Hamiltonian form, etc., on the vertical mome
phase spaceVV* Q>V* VQ are introduced similarly to those on the ordinary momentum ph
spaceV* Q. In particular, a Hamiltonian form onVV* Q reads

HV5 ṗidqi1pidq̇i2HVdt.

Since Hamiltonian forms are determined modulo exact forms and the functionpiq̇
i is globally

defined onVV* Q, we will write

HV5 ṗidqi2q̇idpi2HVdt. ~42!

The corresponding Hamilton equations read

g i5qt
i5 ]̇ iHV , ~43a!

g i5pti52 ]̇ iHV , ~43b!

ḡ i5q̇t
i5] iHV , ~43c!

ḡ i5 ṗti52] iHV , ~43d!

where

ḡ5] t1g i] i1g i]
i1ḡ i ]̇ i1ḡ i ]̇

i

is a Hamiltonian connection on the vertical momentum phase spaceVV* Q→R.
There is the following relation between Hamiltonian formalisms onV* Q andVV* Q.13,15Let

VT* Q be the vertical tangent bundle of the cotangent bundleT* Q→R equipped with holonomic
coordinates (t,qi ,pi ,p,q̇i ,ṗi ,ṗ) and endowed with the canonical form,

JV5 ṗdt1 ṗidqi2q̇idpi .

Proposition 5:Let gH be a Hamiltonian connection on the ordinary momentum phase s
V* Q→R for a Hamiltonian form,

H5h* J5pidqi2Hdt. ~44!
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Then the connection

VgH :VV* Q→VJ1V* Q>J1VV* Q,
~45!

VgH5] t1g i] i1g i]
i1]Vg i ]̇ i1]Vg i ]̇

i

on the vertical momentum phase spaceVV* Q→R is a Hamiltonian connection for the Hami
tonian form,

HV5~Vh!* JV5 ṗidqi2q̇idpi2]VHdt, ~46!

]VH5~ q̇i] i1 ṗi]
i !H, ~47!

whereVh:VV* Q→VT* Q is the vertical tangent map toh.
The corresponding Hamilton equations read

g i5 ]̇ iHV5] iH, ~48a!

g i52 ]̇ iHV52] iH, ~48b!

ḡ i5] iHV5]V] iH, ~48c!

ḡ i52] iHV52]V] iH. ~48d!

It is easily seen that the equations~48a! and ~48b! are exactly the Hamilton equations~41a! and
~41b! for the Hamiltonian formH.

Remark:In order to clarify the physical meaning of the Hamilton equations~48c! and ~48d!
let r (t) be a solution of the Hamilton equations~48a! and ~48b!. Let ṙ (t) be a Jacobi field, i.e.
r (t)1« ṙ (t) is also a solution of the same Hamilton equations modulo terms of order two«.
Then it is readily observed that the Jacobi fieldṙ (t) fulfills the Hamilton equations~48c! and
~48d!.

The following assertion plays a prominent role in the sequel.13,15

Proposition 6:Any connectiong on the momentum phase spaceV* Q→R gives rise to the
Hamiltonian connection,

g i5g i , g i5g i , ḡ i5 ṗ j]
ig j2q̇ j] ig j , ḡ i52 ṗ j] ig

j1q̇ j] ig j , ~49!

for the Hamiltonian form,

HV5 ṗi~dqi2g idt!2q̇i~dpi2g idt!5 ṗidqi2q̇idpi2~ ṗig
i2q̇ig i !dt,

on the vertical momentum phase spaceVV* Q.
In particular, if g is a Hamiltonian connection on the fiber bundleV* Q→R, then ~49! is

exactly the connectionVg ~45!.
It follows that every first-order dynamic equation on the momentum phase spaceV* Q can be

seen as the Hamilton equations~43a! and ~43b! for a suitable Hamiltonian form on the vertica
momentum phase space.

VII. HAMILTONIAN SYSTEMS WITH NONHOLONOMIC CONSTRAINTS

Let L be a hyperregular Lagrangian with a Riemannian mass metricm̂. In this case, Hamil-
tonian and Lagrangian formalisms of time-dependent mechanics are equivalent. There e
unique associated Hamiltonian formH ~38! on V* Q such that

Ĥ5L̂21, pi[p i„q
l,] jH~ql,pk!…, qt

i[] iH„ql,p j~ql,qt
k!…, ~50a!
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L+Ĥ[gHcH5pi]
iH2H. ~50b!

As an immediate consequence of~50a!, we haveJ1Ĥ5(J1L̂)21, where the jet prolongations o
the Hamiltonian and Legendre maps read

J1Ĥ:J1V* Q→J1J1Q, ~ql,qt
i ,q~ t !

i ,qtt
i !+J1Ĥ5~ql,] iH,qt

i ,dt]
iH!,

J1L̂:J1J1Q→J1V* Q, ~ql,pi ,qt
i ,pti !+J1L̂5~ql,p i ,q~ t !

i ,dtp i !.

Then, using~50a! and ~50b!, we obtain

gH5J1L̂+jL+Ĥ.

Let introduce the notationMi j 5] i] jH. There are the relations

Mik~mk j+Ĥ !5d j
i , mk j~Mik+L̂ !5d j

i , mi j 5p i j .

It follows that M is a fiber metric in the vertical tangent bundleVQV* Q of the fiber bundle
V* Q→Q.

Given a codistributionS on J1Q, let us consider the pull-back codistributionĤ* S on V* Q,
spanned locally by one-forms

ba5Ĥ* sa5~s0
a1 ṡj

a] t]
jH!dt1~si

a1 ṡj
a] i]

jH!dqi1 ṡi
aM i j dpj5b0

adt1b i
adqi1ḃaidpi .

This codistribution defines a nonholonomic constraint on the momentum phase spaceV* Q.
Given a Hamiltonian connectiongH ~40!, let us find its splitting

gH5g̃1q, ~51!

whereg̃ is a connection onV* Q→R which satisfies the condition

g̃,Ann~Ĥ* S!. ~52!

The connectiong̃ ~52! obviously defines a first-order dynamic equation on the momentum p
spaceV* Q which is compatible with the nonholonomic constraintĤ* S. The decomposition~51!
is not unique. Let us construct it as follows.

Given a Hamiltonian connectiongH , we consider the codistributionSH on V* Q, spanned
locally by the one-formsdqi2gH

i dt. Its annihilator Ann(SH) is an affine subbundle of the affin
jet bundleJ1V* Q→V* Q, modeled over the vertical tangent bundleVQV* Q. The Hamiltonian
connectiongH is a section of this subbundle. Let us take the intersection

W5Ann~SH!ùAnn~Ĥ* S!.

Lemma 7: Wis an affine bundle overV* Q, modeled over the vector bundle

W̄5VQV* QùAnn~Ĥ* S!.

Proof: The intersectionW̄ consists of elementsv5v i]
i of VQV* Q which fulfill the conditions

v i ḃ
ai50.

Since the nonholonomic constraintS is admissible and the matrixMi j is nondegenerate, ever
fiber of W̄ is of dimensionm2n, i.e., W̄ is a vector bundle, whileW is an affine bundle.

Then, using the fiber metricM in VQV* Q, we obtain the splitting
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VQV* Q5W̄%V,

whereV is the orthocomplement ofW̄, and the associated splitting

Ann~SH!5W%V.

The corresponding decomposition~51! reads

g̃5gH2M̃abMi j ḃ
aibb~gH!] j , ~53!

whereM̃ab is the inverse matrix of

M̃ab5ḃaiḃb jM i j .

The splitting~53! is the Hamiltonian counterpart of the splitting~21!. We have the relations

m̃ab5M̃ab+Ĥ, ba~gH!5sa~jL!+Ĥ,

and as a consequence

g̃5J1L+ j̃+Ĥ.

Remark:The above procedure can be extended in a straightforward manner to any sta
Newtonian system, seen as a Lagrangian system with the Lagrangian~32! and an external force
Following this procedure, one may also study a nonholonomic Hamiltonian system withou
pealing to its Lagrangian counterpart.

The connection~53! defines the system of first-order dynamic equations,

qt
i5] iH, pti52] iH2M̃abMi j ḃ

aibb~gH!, ~54!

on the momentum phase spaceV* Q, which are not Hamilton equations. Nevertheless, in acc
dance with Proposition 6, one can restate the constrained equations of motion~54! as the Hamilton
equations~48a! and ~48b! for the Hamiltonian form,

HV5 ṗidqi2q̇idpi2]VHdt2q̇i M̃ abM i j ḃ
aibb~gH!dt,

on the vertical momentum phase spaceVV* Q, where the last term can be written in brief a
(2]Vcq cV).

The Hamiltonian form of the constrained equations of motion may be important in conne
with the following speculations.

Given a Hamiltonian formHV ~42! on the vertical momentum phase spaceVV* Q, let us
consider the Lagrangian

LH5 ṗiqt
i2qG i pti2HV ~55!

on the first-order jet manifoldJ1VV* Q of the fiber bundleVV* Q→R. It is readily observed tha
the corresponding Lagrange equations are exactly the Hamilton equations~43a!–~43d! for the
Hamiltonian formHV . In particular, letH be a Hamiltonian form on an ordinary momentum pha
spaceV* Q andHV5]VH. In this case, the Lagrangian~55! reads

LH5 ṗi~qt
i2] iH!2q̇i~pti1] iH!.

It is easily seen that this Lagrangian vanishes on solutions of the Hamilton equations f
Hamiltonian form H. By this reason, it is applied to the functional integral formulation
mechanics.19,20
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An evolutionary equation in thermoelasticity of dipolar
bodies

Marin Marina)

Faculty of Mathematics, University of Brasov Str. Iuliu Mariu No. 50,
2200 Brasov, Romania
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In this paper we apply the theory of semigroups of operators in order to obtain the
existence and uniqueness of solutions for the mixed initial-boundary value prob-
lems in thermoelasticity of dipolar bodies. The continuous dependence of the so-
lutions upon initial data and supply terms is also proved. ©1999 American In-
stitute of Physics.@S0022-2488~99!03203-X#

I. INTRODUCTION

In recent years new continuous models of elastic bodies have been intensively studie
departure from classical theories begins with polar theories~see Refs. 1–3, for instance!.

The nonclassical~which include the theory of dipolar bodies! have found important applica
tions in a variety of fields. Crystals, composites, polymers, suspensions, blood, grids and m
systems can by considered as examples of media with microstructure. The domain of applic
of different non-classical theories of elastic media has been investigated in the paper.4 Many
aspects of these theories we can find in many new papers~see Refs. 5, 4, for instance!.

The deformation of a dipolar medium is described by the variables

ui5ui~X,t !,w jk5w jk~X,t !,~X,t !PB3@0,t0!,

whereui is the displacement field andw jk is the dipolar displacement field.
The theories of dipolar bodies are quite sufficient for a large number of solid mech

applications. Because the system of governing equations and conditions for the thermoelas
dipolar bodies is more complicated, it is necessarily a new approach for the boundary
problem in this context. In this paper we establish an existence and uniqueness result
solutions of the initial-boundary value problem in the context of the thermoelasticity of dip
bodies. In this paper we also investigate the continuous dependence upon the initial da
supply terms of the solutions of the above problem. An inhomogeneous and anisotropic
material is considered and the initial-boundary value problem is transformed in an abstrac
porally homogeneous evolutionary equation in a Hilbert space. By using the results of the
groups theory of linear operators, the existence, uniqueness and continuous dependence re
derived. The proof is given for the first boundary value problem, but the results are the same
boundary conditions are replaced by those from the second or the third problem.

II. NOTATIONS AND BASIC EQUATIONS

Let B be an open region of three-dimensional Euclidian space occupied by the refe
configuration of a dipolar body. We assume thatB is regular and we denote the closure ofB by B̄.
The boundary]B of B is closed and bounded. We use a fixed system of rectangular Cartesian
and adopt Cartesian tensor notation. Points inB are denoted byxj andtP@0,̀ ) is time. Also, the
spatial argument and the time argument of a function will be omitted when there is no likeli
of confusion. The usual summation and differentiation convection are employed: Latin subs

a!Electronic mail: m.marin@unitbv.ro
13910022-2488/99/40(3)/1391/9/$15.00 © 1999 American Institute of Physics
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are understood to range over the integers~1,2,3!; a summation over repeated subscripts is impl
and a subscript preceded by a comma denotes partial differentiation with respect to the
sponding Cartesian coordinate. We also use a superposed dot to denote the partial differe
with respect to time,t. In the following we consider the theory of thermoelasticity of dipo
bodies as it is established in the paper.6 For convention, the notations and terminology chosen
almost identical to those of Refs. 6 and 7.

The basic equations in that theory are as follows: the equations of motion:

~t i j 1s i j ! , j1%Fi5%üi ,

m i jk ,i1s jk1%Gjk5I krẅ j r ; ~1!

the equation of energy:

%T0ḣ5qi ,i1%r ;~x,t !PB3@0,̀ ! ~2!

the constitutive equations:

t i j 5Ci jmn«mn1Gi jmngmn1Fmnri jxmnr2Ei j u,

s i j 5Gi jmn«mn1Bi jmngmn1Di jmnrxmnr2Di j u,

m i jk5Fi jkmn«mn1Dmni jkgmn1Ai jkmnrxmnr2Fi jku, ~3!

%h5au1Ei j « i j 1Di j g i j 1Fi jkx i jk ,

qi5ki j u , j~x,t !PB3@0,̀ !

the geometric equations:

2« i j 5uj ,i1ui , j ,g i j 5uj ,i2w i j ,x i jk5w i j ,k . ~4!

In the above equations we have used the following notations:%—the constant reference densit
ui—the components of displacement;w jk—the components of dipolar displacemen
t i j ,s i j ,m i jk—the components of stress tensors;« i j ,g i j ,x i jk—the components of strain tensor
qi—the components of the heat conduction vector;h—the specific entropy;T0—the constant
reference temperature;u—the temperature variation measured from the reference temperaturT0 ;
Fi—the components of body force per unit mass;Gjk—the components of body couple force p
unit mass;r—the heat supply per unit mass and unit time;I i j —the components of inertia
Ci jmn ,Bi jmn , . . . ,a—the characteristic constants of the material and they are subject to the
metry conditions

Ci jmn5Cmni j5Ci jnm ,Bi jmn5Bmni j ,Gi jmn5Gi jnm ,

Fi jkmn5Fi jknm ,Ai jkmnr5Amnri jk ,Ei j 5Eji ,ki j 5kji . ~5!

The entropy production inequality implies that

ki j u iu j>0. ~6!

To the equations~1!–~5! we adjoin the following prescribed boundary conditions:

ui~xk ,t !50,w jk~xk ,t !50,u~xk ,t !50,~xk ,t !P]B3@0,̀ !, ~7!

and the initial conditions
                                                                                                                



y in

chanics
condi-

s

s

1393J. Math. Phys., Vol. 40, No. 3, March 1999 Marin Marin

                    
ui~xk,0!5ai~xk!,u̇i~xk,0!5bi~xk!,w jk~xk,0!5cjk~xk!,
~8!

ẇ jk~xk,0!5djk~xk!,u~xk,0!5u0~xk!,~xk!PB,

whereai ,bi ,cjk ,djk andu0 are prescribed functions. Introducing~3! and ~4! in ~1! and ~2!, we
obtain the following system:

%üi5@~Ci jmn1Gi jmn!un,m1~Gmni j1Bi jmn!~un,m2wmn!

1~Fmnri j1Di jmnr!wnr,m2~Ei j 1Di j !#u] , j1%Fi ,

I krẅ j r 5@Fi jkmnun,m1Dmni jk~un,m2wmn!1Ai jkmnrwnr,m2Fi jku# ,i

1Gjkmnum,n1Bjkmn~un,m2wmn!1D jkmnrwnr,m2D jku] 1%Gjk , ~9!

aT0u̇52T0@Ei j v j ,i1Di j ~v j ,i2c i j !1Fi jkc jk,i #1~ki j u , j ! ,i1%r ,

wherev i5u̇i ,c jk5ẇ jk .
By a solution of the mixed initial boundary value problem of the dipolar thermoelasticit

the cylinderV05B3@0,̀ ) we mean an ordered array (ui ,w jk ,u) which satisfies the system~9!
for all (x,t)PV0 , the boundary conditions~7! and the initial conditions~8!.

We shall use the following assumptions on the material properties:

~i! %.0,T0.0,I i j .0,a.0;

~ii ! ki j j ij j>k0j ij i ,k0.0,;j i ;

~iii ! Ci jmnj i j jmn12Gi jmnj i j hmn12Fmnri jj i j dmnr1Bi jmnh i j hmn

12Di jmnrh i j dmnr1Ai jkmnrd i jkdmnr

>a0~j i j j i j 1h i j h i j 1d i jkd i jk !,;h i j ,;d i jk ,;j i j 5j j i ,where a0.0.

The above assumptions are in agreement with the usual restrictions imposed in the me
of continua in order to obtain the existence and uniqueness of solutions. For instance, the
tion ~ii ! represents a considerable strengthening of the consequence~6! of the entropy production
inequality.

We shall use the vectorial notations

u5~ui !,v5~v i !,w5~w i j !,c5~c i j !,i , j 51,2,3.

Let us define

X5$W5~u,v,w,c,u!:uPH0
1,3~B!,vPH0,3~B!,

~10!
wPH0

1,9~B!,cPH0,9~B!,uPH0~B!%,

whereH0
m(B) andHm(B) are the familiar Sobolev spaces,~see Ref. 8!, and we used the notation

Hm,n(B)5@Hm(B)#n,H0
m,n(B)5@H0

m(B)#n.
We wish to transform our initial-boundary value problem, defined by~9!, ~7! and ~8! into a

temporally homogeneous abstract equation in the Hilbert spaceX. Thus, we define the operator
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AiW5v i ,

BiW5
1

%
@~Ci jmn1Gi jmn!um,n1~Gmni j1Bi jmn!gmn

1~Fmnri j1Di jmnr!wnr,m2~Ei j 1Di j !u# , j ,
~11!

Ci j W5c i j ,

D jkW5~ I ks!
21@Fi jsmnum,n1Dmni jsgmn1Ai jsmnrwnr,m2Fi jsu# ,i

1Gjkmnum,n1Bjkmngmn1D jkmnrwnr,m2D jku,

EW52
1

a
@Ei j v j ,i1Di j ~v j ,i2c i j !1Fi jkc jk,i #1

1

aT0
~ki j u , j ! ,i .

Let L be the operator

L5~AW ,BW,CW,DW,EW! ~12!

whereA5(Ai),B5(Bi),C5(Ci j ),D5(Di j ),i , j 51,2,3, with the domain

D5D~L!5$WPX:LWPX,v50,c50 on ]B%. ~13!

The closure ofD(L) is obviously the spaceX and henceD(L) is dense inX. D(L) is not empty;
it contains at least@C0

`(B)#25. Thus, we reduce the initial-boundary value problem~9!, ~7!, ~8! to
the abstract initial value problem on the Hilbert spaceX,

dW

dt
5LW1F~ t !,W~0!5W0 ,0<t<t0 , ~14!

where F(t)5(0,F,0,M ,r ),W05(a,b,c,d,u0),F5(Fi),G5(Gjk), a5(ai),b5(bi),c5(ci j ),d
5(di j ).

III. BASIC RESULTS

Let X* be the Hilbert spaceX equipped with the norm induced by the inner product,

^W,W̄&* 5E
B
@%v i v̄ i1I ksc jsc̄ jk1auū1Ci jmn« i j «̄mn

1Gi jmn~g i j «̄mn1ḡ i j «mn!1Fmnri j~« i j x̄mnr1 «̄ i j xmn!

1Bi jmng i j ḡmn1Di jmnr~g i j x̄mni1ḡ i j xmnr!1Ai jkmnrx i j x̄mnr#dV. ~15!

By taking into account the hypotheses~i!, ~ii !, ~iii ! we obtain

uWu
*
2 5^W,W&* 5E

B
@%v iv i1I ksc jsc jk1au21Ci jmn« i j «mn12Gi jmn« i j gmn

12Fmnri j« i j xmnr1Bi jmng i j gmn12Di jmnrg i j xmnr1Ai jkmnrx i jkxmnr]dV

>E
B
@%v iv i1I ksc jsc jk1au21a0~« i j « i j 1g i j g i j 1x i jkx i jk !#dV

>c1uWuX
2 . ~16!
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On the other hand, by using the first Korn inequality,~see Ref. 2!, and ~15!, we can prove that
uWu

*
2 <c2uWuX

2 such that, in view of~16!, we have

c1uWuX
2<uWu

*
2 <c2uWuX

2 ;

hence the normu•u* is a norm equivalent to the original norm inX.
Lemma 1: The operatorL is dissipative, that is,

^LW,W&* <0,;WPD~L!.

Proof: According to the relations~11! we have

^LW,W&* 5E
B
H v i@~Ci jmn1Gi jmn!um,n1~Gmni j1Bi jmn!gmn

1~Fmnri j1Di jmnr!wnr,m2~Ei j 1Di j !u# , j1c jk@Fi jkmnum,n1Dmni jkgmn

1Ai jkmnrwnr,m2Fi jku# ,i1c jk@Gjkmnum,n1Bjkmngmn

1D jkmnrwnr,m2D jku#1uF 1

T0
~ki j u , j ! ,i2Ei j v j ,i2Di j ~v j ,i2c i j !2Fi jkc jk,i G

1Ci jmnui , jvm,n1Gi jmn@ui , j~vn,m2cmn!1vn,m~uj ,i2w i j !#

1Fmnri j~ui , jcnr,m1v i , jwnr,m!1Bi jmn~uj ,i2w i j !~vn,m2wmn!

1Di jmnr@~uj ,i2w i j !cnr,m1~v j ,i2c i j !wnr,m#1Ai jkmnrw jk,icnr,mJ dV.

We now make use of the Green–Gauss formula and the boundary conditions~7!, such that it
results in

^LW,W&* 52
1

T0
E

B
ki j u ,iu , j dV. ~17!

On the basis of the inequality~iii !, from ~17! we obtain

^LW,W&* <2
k0

T0
E

B
u ,iu , j dV, ~18!

such that the proof of Lemma 1 is complete.
Lemma 2: The operatorL satisfies the range condition, that is,

R~lI 2L!5X,l.0. ~19!

Proof: Assume thatŴ5(û,v̂,ŵ,ĉ,û)PX. Then we must show that for allŴPX the equation

lW2LW5Ŵ ~20!

has at least a solutionW in D(L). By eliminating the functionsv i andc i in ~20!, we obtain the
following system of equations in the variablesui ,v i andu:
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Liv5l2ui2
1

%
@~Ci jmn1Gi jmn!um,n1~Gmni j1Bi jmn!gmn

1~Fmnri j1Di jmnr!wnr,m2~Ei j 1Di j !u# , j5gi ,

Lj 1k13v5l2w jk2~ I ks!
21@Fi jsmnum,n1Dmni jsgmn1Ai jsmnrwns,m2Fi jsu# ,i

1Bjkmngmn1D jkmnrwnr,m2D jku5gj 1k13 , ~21!

L13v5l2u2
1

aT0
~ki j u , j ! ,i2

1

a
@Ei j v j ,i1Di j ~v j ,i2c i j !1Fi jkc jk,i #5g13,

where

v5~u,w,u!,gi5lûi1 v̂ i ,gj 1k135lŵ jk1ĉ jk ,
~22!

g135 û1
1

a
@Ei j v̂ j ,i1Di j ~ v̂ j ,i2ĉ i j !1Fi jk ĉ jk,i #.

Let ^•,•& denote the conveniently weighted@L2(B)#13 inner product and consider the bilinea
form

Q@v,v̄#5^Lv,v̄ &5^~Liv,Lj 1k13v,L13v!,~ ūi ,w̄ jk ,ū !&

5E
B
F%ūiLiv1I ksc̄ jsLj 1k13v1

a

l
ūL13vGdV. ~23!

Using the Green–Gauss formula and the boundary conditions~7!, it results that

Q@v,v#5E
B
@%v iv i1I ksc jsc jk1au21Ci jmnui , jum,n

12Gi jmn~uj ,i2w i j !um,n12Fmnri j~uj ,i2w i j !wnr,m

1Bi jmn~uj ,i2w i j !~un,m2wmn!12Di jmnr~uj ,i2w i j !wnr,m

1Ai jkmnrw jk,iwnr,m#dV1
1

lT0
E

B
ki j u ,iu , jdV, ~24!

for any v5(u,w,u)PY,Y[H0
1,3(B)3H0

1,9(B)3H0
1(B).

Due to the hypotheses~i!, ~ii !, ~iii ! and the first Korn inequality, it follows that

Q@v,v#>C1uvuY
2 , for all v5~u,w,u!PY, ~25!

C1 is a positive, conveniently chosen, constant and the normuvuY is defined by

uvuY5u~u,w,u!uY5uuuH1~B!1uwuH1~B!1uuuH1~B! .

In the usual way, we can prove thatQ@v,v#<C1uvuY
2 , hence the bilinear formQ@v,v̄# deter-

mines a norm equivalent to the original norm inY. Since the bilinear formQ@v,v̄# is continuous
in Y3Y we deduce that there exists a linear bounded transformationT from Y into itself such that
we have

Q@v,v̄#5^v,Tv&Y , for any ~v,v̄ !PY3Y. ~26!

Since
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^v,Tv&Y5Q@v,v#>C1uvuY
2 , ~27!

we deduce that

uTvuY>C1uvuY ,vPY. ~28!

Let R(T) be the range ofT. The linear transformationT is one to one. We need to prove th
Tv50 implies thatv50. Indeed, if there isv0PY suchTv050, then~26! implies Q@v0 ,v0#
50, and then the inequality~25! proves thatv050. Therefore, there existsT21:R(T)→Y. Now
we prove thatR(T) is dense inY. We assume to the contrary that there isv0PY\R(T), 0v0

Þ0 such that̂ v0 ,Tv̄&Y50 for anyv̄PY. But from ~26! we deduce thatQ@v0 ,v0#50 such that
with the aid of~25! we deduce thatv050. This contradicts the initial assumptions and theref
we obtain thatR(T) is dense inY. So we can continueT21 to Y, such that

T21:Y→Y and uT21u<C1
21 .

Let z be in R(T) andv the only function inY such thatz5Tv. We define the functionalK by
K(z)5^g,v&. Obviously, we have

uK~z!u<uguH
0
21~B!uvuY<C1

21uguH
0
21~B!uzuY ,

and then we deduce thatK is a linear bounded functional defined overR(T) such that

uKu<C1
21uguH

0
21~B! .

We can continueK in the whole spaceY, in such a way that the continued functionalK shall have
the same norm. On the other hand, sinceY is a Hilbert space, the Riesz–Frechet theorem,~see Ref.
8!, proves that there exists a uniquevPY such that

K~ṽ !5^v,ṽ &Y , for any ṽPY; uvuY5uKu<C1
21uguH

0
21~B! . ~29!

If we chooseṽ5Tv̄, then from ~26! and ~29!, it follows that the uniquevPY satisfies the
equation

Q@v,v̄#5^g,ṽ &, for all v̄PY. ~30!

From the relations lui2ûi5v i ,lw i2ŵ jk5c jk and lu2 û5t, it follows that v
PH0

1,3(B),cPH0
1,9(B) andtPH0

1(B). Therefore we deduce thatW5(u,v,w,c,u) is in D(L) and
the proof of Lemma 2 is complete.

Theorem 1: The operatorL defined by the relations~12! generates a C0-semigroup of con-
tractions on X.

Proof: This result follows immediately from the Lummer–Phillips theorem,~see Ref. 9, for
instance!.

In order to study the existence and uniqueness of the solution for the inhomogeneous eq
~14!, we use the following result.

Theorem 2: LetL be the infinitesimal generator of a C0-contractive semigroup T(t) on X. If
F(s) is continuously differentiable on@0,t0#, then the initial value problem~14! has, for every
W0PD(L), the unique solution

W~ t !5T~ t !W01E
0

1

T~ t2s!F~s!ds,tP@0,t0#, ~31!
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such thatW(t)PC1(@0,t0#;X)ùC0(@0,t0#;D(L)).
On the basis of the above theorem, we deduce the following.
Theorem 3: Let us assume that the thermoelastic coefficients, which are continuously

entiable, satisfy the conditions (i), (ii), (iii). Moreover, we assume thatFPC1(@0,t0#;L2(B)),
MPC1(@0,t0#;L2(B)), r PC1(@0,t0#;L2(B)) and W05(a,b,c,d,u0)PD(L).

Then there exists an unique solution of the initial-boundary value problem~9!, ~7!, ~8! such
that

~u,u̇,w,ẇ,u!P@C1~@0,t0#;X!ùC0~@0,t0#;D~L!!#13.

The following theorem establish the continuous dependence of the solution of our problem
the initial data and supply terms. Let (ui ,w i ,u) be the difference of two solutions of the proble
defined by~9!, ~7!, ~8! but corresponding to the differences of the initial data and to the differe
of body forces, body couples and heat supplies,W05(a,b,c,d,u0), (F,M ,r ), respectively.

Theorem 4: Let us assume that the thermoelastic coefficients, which are continuously
entiable, satisfy the conditions (i), (ii), (iii). Moreover, we assume thatFPC1(@0,t0#;L2(B)),
MPC1(@0,t0#;L2(B)), r PC1(@0,t0#;L2(B)) and aPH1(B),bPH0(B), cPH1(B),dPH0(B)u
PH1(B).

If ( u,w,u) is the difference of two solutions of the problem~9!, ~7!, ~8! , then there exists a
positive constant M such that

uuuH1,3~B!1uu̇uH0,3~B!1uwuH1,9~B!1uw u̇H0,9~B!1uuuH0~B!

<M H uauH1,3~B!1ubuH0,3~B!1ucuH1,9~B!1uduH0,9~B!1uu0uH0~B!

1E
0

t

@ uF~s!uH0,3~B!1uG~s!uH0,9~B!1ur ~s!uH0~B!#dsJ . ~32!

Proof: On the basis of the equations~9!, ~7!, ~8! we can deduce the following identity:

E
B
@%u̇i u̇i1I ksẇ jsẇ jk1au21Ci jmnui , jum,n12Gi jnm~uj ,i2w i j !um,n

1Fmnri j~uj ,i2w i j !wnr,m1Bi jmn~uj ,i2w i j !~un,m2wmn!

12Di jmnr~uj ,i2w i j !wnr,m1Ai jkmnrw jk,iwnr,m]dV1E
B

1

lT0
ki j u ,iu , jdV

5E
B
@%ȧi ȧi1I ksċjsċ jk1a~u0!21Ci jmnai , jam,n12Gi jnm~aj ,i2ci j !am,n

12Fmnri j~aj ,i2ci j !cnr,m12Bi jmn~aj ,i2ci j !~an,m2cmn!

12Di jmnr~aj ,i2ci j !cnr,m1Ai jkmnrcjk,icnr,m#dV

12E
0

tE
B
FFiui1Gjkw jk1

1

T0
ruGdVds,sP@0,t0#. ~33!

By using the Schwarz’s inequality, the hypotheses~i!, ~ii !, ~iii ! and the first Korn’s inequality,
from the identity~33! we deduce a Gronwall inequality that demonstrates the estimate~32!.

Remark:A similar procedure can be used in the case when the boundary conditions~7! are
replaced by the other boundary conditions and the above results are still valid.
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Transfer matrices for scalar fields on curved spaces
E. Prodan
University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5508

~Received 13 August 1998; accepted for publication 23 November 1998!

We apply Nelson’s technique of constructing Euclidean fields to the case of clas-
sical scalar fields on curved spaces. It is shown how to construct a transfer matrix
and, for a class of metrics, the basic spectral properties of its generator are inves-
tigated. An application concerning the decoupling of two non-convex disjoint re-
gions is given. ©1999 American Institute of Physics.@S0022-2488~99!00703-3#

I. INTRODUCTION

We start our construction from the ideas comprised in Nelson’s axioms1 for scalar Euclidean–
Markoff quantum fields. Here, the Markoff property of certain projectors is one of the b
ingredients in defining the transfer matrix in which the generator is identified with the Hamilto
of Wightman quantum scalar field. We found that these ideas can be used in the same wa
nonquantum level. In the case of the scalar fields on Riemannian manifolds, for an arb
direction, we construct a propagator by using the Markoff property. In the stationary ca
becomes a semigroup which can be considered as the transfer matrix of the system and, fu
can be used in introducing a Hamiltonian. We will show that the propagator is exponen
bounded by using Agmon’s2 results in exponential decay of solutions of second-order elli
equations. An application concerning the decoupling~in the sense of Ref. 3! of two disjoint
nonconvex regions is given.

II. INTRODUCTORY DEFINITIONS AND RESULTS

Let us consider the Riemannian manifold (Rn11,g) and the Laplace–Beltrami operator on
D. For a point inRn11 we use the notation~t,x!. Let Em(t,x;s,y) be the kernel of (D1m2)21 on
L2(Rn11,Ag dt dx). As in Ref. 4, we will not consider the additional term16r. One defines the
spaceN,D8(Rn11), f PN if:

i f iN
2 5E

Rn11
E

Rn11
f̄ ~ t,x!Em~ t,x;s,y! f ~s,y!Ag~ t,x!Ag~s,y!dt dx ds dy,`, ~1!

and, for eachsPR, let Ns,D8(Rn) be the space:gPNs if

igiNs

2 5E
Rn

ḡ~x!Em~s,x;s,y!g~y!Ag~s,x!Ag~s,y!dx dy,`. ~2!

We will consider that, as in the Euclidean case, the spaceL2(Rn,dms),Ns , where dms(x)
5Ag(s,x) dnx and that it is dense inNs for eachsPR. Now, let Ês :Ns→L2(Rn,dms) be the
operator corresponding to the kernelEm(s,x;s,y). Then Ês

1/2 defines an isometry fromNs to
L2(Rn,dms) and let (Ês

1/2)†:L2(Rn,dms)→Ns be its adjoint. The following are true:

Ês
1/2+~Ês

1/2!†51L2~Rn,dms! and ~Ês
1/2!†+Ês

1/251Ns
. ~3!

With our assumptions,Ês
1/2(Ns)5L2(Rn,dms),Ns , the operatorÊs

1/2 is bounded onNs . More-
over, one can view (Ês)† as a dense defined unbounded operator onNs , in fact, it is the inverse
operator ofÊs .
14000022-2488/99/40(3)/1400/6/$15.00 © 1999 American Institute of Physics
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For sPR, let j s be the operatorj s :Ns→N, ( j sc)(t,x)5c(x)d(t2s) and j s* be its adjoint.
If L is a closed subset ofRn11 we denote byNL the subspace ofN which comprises all distri-
butions with support inL. The orthogonal projection ofN in NL will be denoted byeL . Following
Ref. 5 we have:

Proposition 1: The operators js are isometries and js* j s51Ns
, j s j s* 5es , where es denotes

the projector corresponding to the subset of Rn11, t5s.
Then we define the operators:

Us,s8 :Ns8→Ns , Us,s85 j s* + j s8 . ~4!

We will derive in the following thatUs,s8 are propagators in the sense of Ref. 6. This will follo
from the Markoff property of the projectorses .

Lemma 2: Let A, B, and C be closed subsets in Rn11 such that C separates A and B. The
eA+eC+eB5eA+eB .

Solution 3: This is the consequence of the fact that Em is the kernel of a local operator. The
proof is identical with that of Ref. 5.
The basics properties ofUs,s8 operators are stated in the following proposition.

Proposition 4: The family of operators Us,s8, s,s8PR has the following properties:
~1! Us,s8+Us8,s95Us,s9 ,
~2! Us,s51Ns

,
~3! iUs,s8i<1.

Solution 5:~1! Using the Markoff property we have:

es+es8+es95eses9⇔ j s+ j s* + j s8+ j s8
* + j s9+ j s9

* 5 j s+ j s* + j s9+ j s9
* . ~5!

By composition with js9 at the right, we have

j s+~ j s* + j s8+ j s8
* + j s92 j s* + j s9!50. ~6!

From the definition of Us,s8 and since js are isometries, we conclude Us,s8Us8,s95Us,s9 .
~2! It follows from proposition 1 and definition of Us,s8 .
~3! Because js* and js are isometries, the property results immediately.

III. EXPONENTIAL BOUNDS ON PROPAGATORS

To improve our estimates on the propagatorsUs,s8 we need a supplementary condition on t
metricg. We say that an applicationQ:Rn11→M (n11,n11) has stable positivity if there exist
e.0 such that for any applicationd:Rn11→M (n11,n11) with ud(x) i j u<e the matricesQ(x)
2d(x) are positively defined for anyxPRn11. The following result is a direct application o
Agmon theory2 of exponentially decay of solutions of elliptic second-order operators.

Proposition 6: If the metric g has stable positivity then for any fPNs8 :

E
T0

`

ds$evsiÊs
1/2+Us,s8 f iNs

%2,`, ~7!

providedv,m/Asupg11.
Solution 7: Starting from

^u,Us,s8 f &Ns
5^u,Ês+Us,s8 f &L2~Rn,dms!

5E
Rn

ū~x!F E
Rn

Em~s,x;s8,y! f ~y!dms8~y!Gdms~x! ~8!

for uPNs and fPNs8 , it follows thatw(s,x)5(Ês+Us,s8 f )(x) is a solution of
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~D1m2!w~s,x!50 ~9!

for s.s8. Let rm ~•;•! denote the distance corresponding to the metric gm5mg. The metric g
has stable positivity so, there is anePR1 such thatrm(s0 ,x0 ;s,x).(e/m)us2s0u. For V
5$(s,x):s.T0%, T0PR1 and for some positivel:

E
V

uw~s,x!u2e2lrm~T0 ,x0 ;s,x!Ag~s,x!ds dnx

5E
T0

`

ds^Ês+Us,s8 f ,Ês+Us,s8 f &L2~Rn,dms!e
2l~e/m!~s2T0!

,ct.E
T0

`

ds^Us,s8 f ,Ês+Us,s8 f &L2~Rn,dms!e
2l~e/m!~s2T0!

5ct.E
T0

`

dsiUs,s8 f iNs

2 e2l~e/m!~s2T0!,`. ~10!

So we are in the conditions of the main theorem of Ref. 2. It follows that:

E
V

ds dnxAg~s,x!uw~s,x!u2~m22g~¹h~s,x!,¹h~s,x!!!e2h~s,x!

<
2~112d!

d2 m2E
V\Vd

uw~s,x!u2e2h~s,x!Ag~s,x!dx, ~11!

where d is a positive number andVd5$(s,x)PV:rm((s,x),$`%).d%. Here

rm~~s,x!,$`%!5sup$rm~~s,x!,V\K !:K is a compact subset ofV%. ~12!

The function h is any function which satisfies the condition g(¹h(s,x),¹h(s,x)),m2. We
choose h(s,x)5vs with v,m/Asupg11. The above inequality becomes

E
V

ds dnxAg~s,x!uw~s,x!u2e2vs,
2~112d!

d2

m2

m22g11v2 E
V\Vd

ds dxAg~s,x!uw~s,x!u2e2vs.

~13!

If for any point (s,x)PV there is a geodesic which starts in(s,x) and ends in the hyperplan
s5T0 thenV\Vd,$(t,x):0,s<T% with T sufficiently large but finite. In conclusion,

E
V

ds dnxAg~s,x!uw~t,x!u2e2vs5E
T0

`

ds e2vs^Ês+Us,s8 f ,Ês+Us,s8 f &L2~Rn,ms!,`, ~14!

or

E
T0

`

ds e2vs^Ês+Us,s8 f ,Ês+Us,s8 f &L2~Rn,ms!,`, ~15!

which implies

E
T0

`

ds$evsiÊs
1/2+Us,s8 f iNs

%2,`. ~16!
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IV. THE STATIONARY CASE

We consider in this section that there is a coordinate system such that the metricg is inde-
pendent of the first coordinate. In this case, the spacesNs and the operatorsÊs

1/2 are identical and
will be denoted byN0 and Ê0

1/2, respectively. Thus, the operatorsUs,s8 are defined on the sam
Hilbert space and depend only on the differences2s8:Us,s85Us2s8 . The family of operators
$Ut%tPR1

forms a semigroup. Using the results about existence and properties of the genera
semigroups,7 we can obtain bounds directly on the transfer matrixUt .

Proposition 8: The semigroup$Ut%tPR1
is exponentially bounded:iUtiN0

,e2tv provided

v,m/Asupg11.
Solution 9: Because we have found estimates on Eˆ

0
1/2+Ut , we will consider the operators

Ũt5Ê0
1/2+Ut+(Ê0

1/2)†, well defined on L2(Rn,dm0). Using the fact that L2(Rn,dm0) is dense in N0
we can extend these operators by continuity on the space N0 . In this way we have built the

semigroup$Ũt%tPR1
which satisfies the estimates of the precedent section:

E
T0

`

dt$evtiŨtiN0
%2,`, ~17!

for some T0.0. So$Ũt%tPR1
is exponentially bounded and in consequence,7 if K̃ is its generator

(Ũt5e2tK̃) the resolvent set of K˜ satisfies:

$zPCuRezP~2`,v!%,r~K̃ !. ~18!

If K is the generator of$Ut%tPR1
then, onD(K) we have:

K5~Ê0
1/2!†+K̃+Ê0

1/2 ~19!

by using the reciprocal formula

Ut5~Ê0
1/2!†+Ũt+Ê0

1/2, ~20!

valid on N0 . If the operator

~Ê0
1/2!†+~K̃2z!21+Ê0

1/2 ~21!

is well defined, even on a dense subset of N0 , then K2z is inversable.
From ~20! it follows that, if (K̃2z)21 exists, then

~K̃2z!21~L2~Rn,dm0!!,L2~Rn,dm0!, ~22!

and in consequence (Ê0
1/2)†+(K̃2z)21+Ê0

1/2 is well defined on the entireN0. Will follow that
r(K̃),r(K) and this ends the proof.

If the metric is symmetric at transformationx1→2x1, the transfer matrix generator is sel
adjoint and it can be considered as the Hamiltonian of the scalar field.

V. APPLICATION

Our application is for the Euclidean case. The results concerning decoupling of diff
regions in quantum Euclidean fields are based primarily on estimates ofieL1

eL2
iN , whereL1 ,L2

are two disjoint regions. Let us consider the two dimensional case. The most difficult case is
L1 ,L2 are not convex and there is no possibility of drawing a straight line between the
subsets. We can sharpen the existent estimates5 for these cases by using the previous results. T
idea is to make a change of coordinates such that for the new coordinates, lines likes5ct.
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separate the two sets and they are as close as possible to the boundaries ofL1 ,L2 . Then we can
use the exponential bounds of the previous section to evaluateieL1

eL2
iN . More precisely:

Proposition 10: LetL1 ,L2 two regions in R2 such that the construction of the coordinates
to be possible (after a rotation if necessary). Then

iel1
+eL2

iN<e2mub2auminucosuu, ~23!

whereu and ub2au will be defined during the proof.
Solution 11: Let (t,x) denote the original coordinates in which the metric is diagonal.

g:R→R2 be a curve which separatesL1 ,L2 andg(0)5(t50,x50). We define a new coordinat
system (s,j) by

t~s,j!5s1g1~j!,
~24!

x~s,j!5g2~j!.

In the new coordinates, the metric is

g8~s,j!5S 1
dg1

dj

dg1

dj S dg1

dj D 2

1S dg2

dj D 2D ~25!

so we are in the conditions of the last section. Using the Markoff property,

ieL1
+eL2

iN5ieL1
+ea+eb+eL2

iN<iea+ebiN , ~26!

where the liness5a, s5b separateL1 and L2 exactly in the order they appear in the abov
relation (in the sense thats5a separatesL1 by s5b, etc.). Further,

i j a+ j a
†+ j b+ j b

† iN5i j a+Ua2b+ j b
† iN5iUa2biN0

. ~27!

The element(g8)11 is given by(g8)1151/cos2 u, whereu is the angle between the tangent to t
curveg and the x axis. Using the bounds of the last section we have

ieL1
+eL2

iN<e2mub2auminucosuu. ~28!

Performing first a rotation, one can choose the best values forub2au and minucosuu.

VI. CONCLUSIONS

Our primary goal was to define the transfer matrix for scalar fields on curved spaces a
investigate the basic spectral properties of its generator. Even though the generator is n
adjoint in the general case, this approach allows us to investigate this problem by using a
two new tools besides the methods of Green’s functions. One is the perturbations of hyp
tractive semigroups8 and the other is the adiabatic theorem.

Now it is straightforward to quantize the field by defining the Markoff field over the spacN.
For the stationary, symmetric at time reflection case~static!, we think that one now has al
elements to construct the physical field~for example that proposed in Ref. 4! by following the
Nelson reconstruction method and the holomorphic continuation of the transfer matrix. Note
according to the results of Ref. 6, the holomorphic continuation of the transfer matrix to rea
is still possible in the stationary case without symmetry at time reflection, as long as the spe
of the generator belongs to the real axis. Of course, one has to check that the results of
~systematized in Ref. 5!, which are the core of the reconstruction theorem, are still valid. For
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general case, we think that the adiabatic theorem, especially the adiabatic reduction theory10 may
play an important role in defining the physical quantum field by following Nelson’s approac

1E. Nelson, J. Funct. Anal.12, 97 ~1973!.
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Darboux transformation and solutions for an equation
in 211 dimensions
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Painlevéanalysis and the singular manifold method are the tools used in this paper
to perform a complete study of an equation in 211 dimensions. This procedure has
allowed us to obtain the Lax pair, Darboux transformation andt functions in such
a way that a plethora of different solutions with solitonic behavior can be con-
structed iteratively. ©1999 American Institute of Physics.
@S0022-2488~99!04202-4#

I. INTRODUCTION

Among the various approaches followed to study the behavior of nonlinear partial differe
equations~PDEs!, Painleve´ analysis has proved to be one of the most fruitful, providing
algorithmic procedure that affords a systematic way to deal with nonlinear PDEs. Despite t
has often been used merely as a test of integrability while other methods, as Hirota’s met
inverse scattering, have been used to obtain explicit solutions.

Our aim here is to show, for an equation in 211, that an approach based on Painleve´ tech-
niques, such as the singular manifold method~SMM!, can be successful in identifying many of th
properties of nonlinear PDEs~Bäcklund and Darboux transformations,t-functions, etc.! as well as
in constructing an iterative procedure to obtain multisolitonic solutions.

The subject of our study is the 211 PDE

05Vy2~uv!x ,

05lut1uxx22uV, ~1.1!

05lv t2vxx12vV.

The real version of this equation was obtained in Ref. 1 as a reduction of self-dual Y
Mills equations while the complex version appears in Ref. 2. The equation has the Pa´
property ~PP! as it has been shown by Radha and Lakshmanan3 ~real version! and Porsezian4

~complex version!. The bilinear method was applied in Ref. 3 to obtain some soliton and drom
solutions.

For l5 i and v5u* , Eq. ~1.1! is the expression proposed by Fokas in Ref. 5. This c
contains the nonlinear Schro¨dinger equation whenx5y.6

Recently,6 the author and her co-worker have shown that there is a Miura transform
between Eq.~1.1! and the generalized dispersive long wave equation.7,8

The plan of this paper is as follows: In Sec. II we shall apply the singular manifold meth
Eq. ~1.1!. Sections III, IV, and V are devoted to showing how the SMM allows us to determ
algorithmically the Lax pair as well as Darboux transformations andt-functions. In Sec. VI,
several solutions are constructed explicitly. We close with a list of conclusions.

a!Electronic mail: pilar@sonia.usal.es
14060022-2488/99/40(3)/1406/14/$15.00 © 1999 American Institute of Physics
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II. THE SINGULAR MANIFOLD METHOD

The equation under study in this paper is the real version of Eq.~1.1!, which reads

05my1uv,

05ut1uxx12umx , ~2.1!

05v t2vxx22vmx ,

where we have setl51 andV52mx .

A. Leading term analysis

To check the Painleve´ property9 for Eq. ~2.1!, we require a generalized Laurent expansion
the fields in terms of an arbitrary singularity manifold~depending on the initial data! x(x,y,t)
50. This expansion should be of the form10

u5(
j 50

`

ujx
j 2a, v5(

j 50

`

v jx
j 2b, m5(

j 50

`

mjx
j 2c. ~2.2!

By substituting Eq.~2.2! into Eq. ~2.1!, we have for the leading terms

a5b5c51, m05xx , u0v05xxxy . ~2.3!

Leading analysis is able to determine the product of the dominant termsu0v0 but not each
one independently, which means thatu andv are not good fields in which to apply the singulari
analysis because their dominant behavior is not well defined. However, for the fieldm, the leading
term m0 is well defined. This suggests that the ‘‘good field,’’ from the point of view of t
Painlevéanalysis, ism. Accordingly, our first aim will be to write Eq.~2.1! as a partial differential
equation only form. It is not difficult to check~see Appendix! that if we identify

mt5nx , ~2.4!

we can removeu andv from Eq. ~2.1! to obtain the PDE

05my
2~nyt2mxxxy!1mxy~ny

22mxy
2 !12my~mxymxxy2nynxy!24my

3mxx . ~2.5!

In Ref. 6, it has been shown that there is a Miura transformation between Eq.~2.5! and the
generalized long dispersive wave equation.7,8 This is why below we shall be referring, in the nex
to Eq. ~2.5! as MGLDW ~modified generalized long dispersive wave equation!. The study of this
equation for the fieldm will be the subject of the rest of this paper. Furthermore,u and v can
easily be obtained fromm as

u5Amye
*~ny/2my!dx, v52Amye

2*~ny/2my!dx, ~2.6!

as we show in a detailed manner in the Appendix

B. Truncated expansion: Auto-Ba ¨cklund transformations

As stated above, the singularity manifoldx is an arbitrary function depending on the initi
data. The SMM requires us to restrict ourselves to the particular cases of the singularity ma
for which the expansion~2.2! truncates at the constant level.11 In this case the singularity manifold
is not longer an arbitrary function because it is ‘‘determined’’ by the condition of truncation.
call it ‘‘singular manifold’’ and we shall usef to refer to it. Thus, the truncation of Eq.~2.2! is
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m85m1
fx

f
⇒n85n1

f t

f
, ~2.7!

where bothm and m8 are solutions of Eq.~2.5!. Accordingly, truncation of the Painleve´ series
adopts the form of an auto-Ba¨cklund transformation between two solutions of Eq.~2.5!.

C. Expression of the solutions in terms of the singular manifold

Substitution of Eq.~2.7! into Eq.~2.5! provides a polynomial inf. The way to proceed in the
SMM is to require that all the coefficients of this polynomial should be zero. The result shou

a! The expression ofm in terms off.
b! The equations to be satisfied byf.

For Eq. ~2.5!, the polynomial inf is rather complicated. We used MAPLE V to handle t
calculation. This allows us to obtain the derivatives ofm in terms of the singular manifold. The
result is

4mx5pt2vx2
v21w2

2
, ~2.8!

4ny52
~qx1qv !xpy2~qx1qv !pxy

q
14

~py1qpx!

q
my , ~2.9!

4my5
py

22~qx1qv !2

q
, ~2.10!

wherep,q,wyv are defined from the singular manifold as

v5
fxx

fx
, w5

f t

fx
5px , q5

fy

fx
. ~2.11!

D. Singular manifold equations

The equations to be satisfied by the singular manifoldf are not difficult to obtain:
• On one hand, there are some generic equations arising from the compatibility of the d

tions ~2.11!. These are

fxxt5f txx⇒v t5~wx1vw!x ,

fxxy5fyxx⇒vy5~qx1vq!x , ~2.12!

fyt5f ty⇒qt5wy1wqx2qwx .

• Also, there is an equation that is specific for Eq.~2.5! that can be determined by taking th
cross derivatives in Eqs.~2.8!–~2.10!. This equation is

pyt5qxxx1q~vxx2vvx!1pxpxy1S py
22qx

2

q D
x

. ~2.13!

The set~2.12! and ~2.13! forms the singular manifold equations.
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III. LAX PAIR AND SMM

It is unnecessary to talk about the importance of determining the Lax pair of a nonlinear
Nevertheless, in most cases it is determined by inspection. We shall see here that a no
advantage of Painleve´ analysis is that it allows us to determine the Lax pair in an algorith
way.12,13

A. Dominant terms in singular manifold equations

Returning to the singular manifold Eqs.~2.12! and ~2.13!, these can be considered to be
system of coupled nonlinear PDEs. We can, therefore, analyze their leading terms. This re
us to set

w;w0xa, v;v0xb, q;q0xc. ~3.1!

The balance of leading powers yields:

a5b521, c50, ~3.2!

which means that onlyw andv have an expansion in negative powers ofx. Thus, the Painleve´
expansion is only pertinent for them but not forq. Moreover, the leading analysis provides t
leading coefficientsw0yv0

w056xx , v05xx . ~3.3!

The6 sign ofw0 means that there are two possible Painleve´ expansions: The problem of system
with two Painleve´ branches has been extensively discussed in Refs. 12–15. The suggestion
author and co-worker is that, for this class of systems, it is necessary to consider both br
simultaneously by using two singular manifolds; one for each branch.

B. Eigenfunctions and the singular manifold

With this idea in mind, for the dominant terms ofw andv we can write

v5
cx

1

c1 1
cx

2

c2 , w5
cx

1

c12
cx

2

c2 , ~3.4!

where we have usedc1 for the singular manifold of the positive branch andc2 for the negative
one. As we will seen later on,c1 andc2 will be the eigenfunctions of the Lax pair and hereaf
we will designate them as eigenfunctions.

• Taking the derivatives of Eq.~3.4! with respect tot andy and using Eq.~2.12! to integrate
them inx, we can write

wx1wv5
c t

1

c1 1
c t

2

c2 , pt5
c t

1

c12
c t

2

c2 ~3.5!

and

qx1qv5
cy

1

c1 1
cy

2

c2 ,

py5
cy

1

c12
cy

2

c2 . ~3.6!

Expressions~3.4!–~3.6! allow usto write the logarithmic derivatives of the eigenfunctionsc1

and c2 in terms of the singular manifold as
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a15
cx

1

c1 5
v1w

2
, a25

cx
2

c2 5
v2w

2
, ~3.7!

b15
cy

1

c1 5
qx1qv1py

2
, b25

cy
2

c2 5
qx1qv2py

2
, ~3.8!

g15
c t

1

c1 5
wx1wv1pt

2
, g25

c t
2

c2 5
wx1wv2pt

2
, ~3.9!

a,byg have been introduced with the single purpose of simplifying later calculations.
• Conversely, the determination off from c1yc2 is not difficult taking into account Eq

~2.11!, which allows us integrate Eq.~3.4! with respect tox, which yields

fx5c1c2, ~3.10!

where the integration constant has been set at zero with no loss of generality~because the singula
manifold is defined except for a multiplicative constant!. The t derivative off can be obtained by
combining Eqs.~2.11!, ~3.4!, and~3.10! to obtain

f t5c2cx
12c1cx

2 , ~3.11!

and, similarly,fy arises from Eqs.~2.10!, ~2.11!, and~3.6! as

fy52
cy

1cy
2

my
. ~3.12!

Equations~3.10!–~3.12! allow us to constructf from c1 and c2. Accordingly, the total
correspondence between singular manifolds and eigenfunctions is explicitly constructed.

C. Linearization of the singular manifold equations: The Lax pair

We return to Eqs.~2.8!–~2.10!. These equations are the expression of the seminal solutiom
in terms of the singular manifold. At the same time, Eqs.~3.7!–~3.12! relate the singular manifold
to the eigenfunctions. The question is now: How can we expressm in terms ofc1 andc2?

• As a previous step, it is easy to see that Eq.~2.10! can be combined with Eq.~3.8!, yielding

my52
b1b2

q
⇒

cy
1cy

2

c1c2 52qmy , ~3.13!

which shows the coupling betweenc1 andc2.
• Let us return to Eq.~2.8!. To write this in terms of the eigenfunctions, we need to substi

v andpt from Eqs.~3.7! and ~3.9!

4mx52g122ax
122~a1!2, or 4mx522g222ax

222~a2!2.

Now, by substitutinga andg

05c t
12cxx

1 22mxc
1, or 05c t

21cxx
2 12mxc

2, ~3.14!

and this can be considered as the temporal part of the Lax pair.
• Finally, by combining it with Eqs.~3.7! and ~3.8!, Eq. ~2.9! can be written as

qny5@b1bx
22b2bx

1#1my@~b12b2!1q~a12a2!#. ~3.15!

If we useb1b252qmy anda11a25v to remove from Eq.~3.15! (b2,a2) or (b1,a1).
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ny52mxy12myS bx
1

b1 1a11
my

b1D , ny5mxy22myS bx
2

b2 1a21
my

b1D ,

or

~ny1mxy!cy
152my~cxy

1 1myc
1!, ~2ny1mxy!cy

252my~cxy
2 1myc

2!, ~3.16!

and this can be considered the spatial part of the Lax pair.
Thus, the SMM allows us to define two eigenfunctions,c1 andc2, such thatthe expression

of the truncated solutions in terms of these eigenfunctions is precisely the Lax pairEqs.~3.15! and
~3.16!.

IV. DARBOUX TRANSFORMATIONS

This section will be devoted to determining an algorithmic procedure for constructing
tions.

• We shall summarize the results obtained in the previous section: Letm be a solution of Eq.
~2.5!, andf1 a singular manifold for it. This singular manifold can be constructed by mean
two eigenfunctionsc1

1 andc1
2 through

f1x5c1
1c1

2 , myf1y52c1y
1 c1y

2 , f1t5c1
2c1x

1 2c1
1c1x

2 , ~4.1!

wherec1
1 andc1

2 satisfy the Lax pairs

05c1t
12c1xx

1 22mxc1
1 , 05c1t

21c1xx
2 12mxc1

2 ,

052myc1xy
1 2~mxy1ny!c1y

1 12my
2c1

1 , 052myc1xy
2 2~mxy2ny!c1y

2 12my
2c1

2 . ~4.2!

• According to Eq.~2.7!, the singular manifoldf1 allows us to define a new solutionm8

m85m1
f1x

f1
⇒n85n1

f1t

f1
, ~4.3!

whose Lax pairs will be

05c t8
12cxx8

122mx8c81, 05c t8
21cxx8

212mx8c82,

052my8cxy8
12~mxy8 1ny8!cy8

112my8
2c81, 052my8cxy8

22~mxy8 2ny8!cy8
212my8

2c82,
~4.4!

andc81 andc82 can be used to construct, form8, a singular manifoldf8 defined as

fx85c81c82, my8fy852cy8
1cy8

2 , f t85c82cx8
12c81cx8

2 . ~4.5!

A. Truncated expansion in the Lax pair

A Lax pair, such as Eq.~4.4!, is usually considered to be a linear system forc8, wherem8 is
the potential and hence the inverse scattering method can be applied.

A different interpretation12,16of Eq. ~4.4! is to consider it as a coupled ‘‘nonlinear’’ system
PDEs for the fieldsm8,n8,c81,c82. In this case, the singular manifold method can be applie
the Lax pair itself and the truncated expansion~4.3! for m andn should be combined with a simila
expansion forc81 andc82. In fact, this expansion could be written as

c815c2
11

c0
1

f1
, c815c2

21
c0

2

f1
,
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wherec0
1 ,c0

2 are the dominant terms. It is useful. For later calculations, it is useful to sec0
1

52c1
1V1, andc0

252c1
2V2. Therefore

c815c2
12c1

1
V1

f1
, c825c2

22c1
2

V2

f1
. ~4.6!

Substitution of the truncated expansions~4.3! and ~4.6! in the Lax pairs~4.4! provides the
following results~we used MAPLE for the calculations!:

• ~1! c2
1 andc2

2 are eigenfunctions form. Consequently, they satisfy Lax pairs such as

05c2t
12c2xx

1 22mxc2
1 , 05c2t

21c2xx
2 12mxc2

2 ,

052myc2xy
1 2~mxy1ny!c2y

1 12my
2c2

1 , 052myc2xy
2 2~mxy2ny!c2y

2 12my
2c2

2 . ~4.7!

• ~2! V1 andV2 are related to the eigenfunctions in the following way:

Vx
25c1

1c2
2 , myVy

252c1y
1 c2y

2 , V t
25c1x

1 c2
22c1

1c2x
2 , ~4.8!

Vx
15c2

1c1
2 , myVy

152c2y
1 c1y

2 , V t
15c2x

1 c1
22c2

1c1x
2 . ~4.9!

• To summarize: Two pairs of eigenfunctions (c1
1 ,c1

2),(c2
1 ,c2

2) for a solution~m,n! are
sufficient to construct the following transformation:,

m85m1
f1x

f1
, n85n1

f1t

f1
,

~4.10!

c815c2
12c1

1
V1

f1
, c825c2

22c1
2

V2

f1
,

wheref1 , V1, andV2 are related to the eigenfunction through Eqs.~4.1!, ~4.8!, and~4.9!.
Equation~4.10! is a transformation of potentials and eigenfunctions that leaves invarian

Lax pairs. It should, therefore, be considered aDarboux transformation.17

V. ITERATION OF THE SINGULAR MANIFOLD: t-FUNCTIONS

A well known method for obtaining multisolitonic solutions of PDEs is the bilinear Hir
method. Indeed, some solutions of Eq.~2.1! have been identified with this method.3 Let us address
ourselves to the task of establishing, by explicit construction, the relationship between the si
manifold and thet-functions of Hirota’s method.

• Equation~4.5! could be considered as a nonlinear system amongf8, c81 andc82. For this
system we can use the same criterion used in the previous section. It requires that the ex

c815c2
12c1

1
V1

f1
, c825c2

22c1
2

V2

f1
, ~5.1!

for c81 andc82 should be combined with a truncated expansion forf8.

f85f21
D

f1
. ~5.2!

It is not difficult to prove that the substitution of Eqs.~5.1! and ~5.2! into Eq. ~4.5! gives

D52V1V2, ~5.3!

while f2 is the singular manifold form related toc2
1 andc2

2 , which means
                                                                                                                



n

s

can be

tarting

,
or,

1413J. Math. Phys., Vol. 40, No. 3, March 1999 P. G. Estévez

                    
f2x5c2
1c2

2 ,

myf2y52c2y
1 c2y

2 , ~5.4!

f2t5c2
2c2x

1 2c2
1c2x

2 .

• As far as Eq.~5.2! defines a singular manifold form8, it can be used to obtain a new solutio

m95m81
fx8

f8
, n95n81

f t8

f8
, ~5.5!

which, combined with Eq.~4.3!, is

m95m1
tx

t
, n95n1

t t

t
, ~5.6!

where

t5f8f15f1f22V1V2. ~5.7!

In the previous section we have shown thatf1 ,f2 ,V1,V2 are obtained from the eigenfunction
(c1

1 ,c1
2),(c2

1 ,c2
2). Therefore,Eq. (5.7) affords the relationship betweent-functions, on one

hand, and singular manifolds, on the other hand.

VI. SOLUTIONS

From the previous results we can derive an iterative procedure to construct solutions. It
summarized as follows:

~1! Starting with a seminal solutionm, solve the Lax pairs~4.2! and ~4.8! to obtain
c1

1 ,c1
2 ,c2

1 ,c2
2 .

~2! Perform the integration of Eqs.~4.1!, ~4.8!, ~4.9!, and~5.4! to getf1 , V1, V2 andf2 :
Use Eq.~5.7! to constructt.

~3! Use Eq.~4.3! to obtain the solutionm8 for the first iteration and Eq.~5.5! for the second
onem9.

The easiest way to obtain explicit solutions is to apply the above explained procedure, s
with a trivial seminal solution. We shall use as seminal solutionsm5m0y and m50. From the
dependence ony of Eqs. ~4.1!, ~4.9!, ~4.10!, and ~5.4! it is that the behavior is totally different
depending on whethermy is zero or not and giving rise to line-soliton or dromion behavi
respectively.

A. Line solitons m 5v0y

• The easiest solutions of Eqs.~4.2! and ~4.7! are

c1
15expFa1

1x2
v0

a1
1 y1a1

12tG , c2
15expFa2

1x2
v0

a2
1 y1a2

12tG ,
~6.1!

c1
25expFa1

2x2
v0

a1
2 y2a1

22tG , c2
25expFa2

2x2
v0

a2
2 y2a2

22tG ,
wherea1

1 ,a1
2 ,a2

1ya2
2 are arbitrary constants.

• Integration of Eqs.~4.1!, ~4.8!, ~4.9!, and~5.4! affords
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f15
1

a1
11a1

2 ~b11c1
1c1

2!, V15
1

a2
11a1

2 ~c11c1
1c2

2!,

~6.2!

f25
1

a2
11a2

2 ~b21c2
1c2

2!, V25
1

a1
11a2

2 ~c21c2
1c1

2!,

whereb1 ,b2 ,c1yc2 are arbitrary constants.
• The first iteration provides the solution~Fig. 1!

my85c01]xy@ ln f1#, ~6.3!

and the second~Fig. 2!

my95v01]xy@ ln t#, ~6.4!

where

f15
b1

a1
11a1

2 ~11F1!. ~6.5!

t5f1f22V1V25
b1b2

~a1
11a1

2!~a2
11a2

2!
@11F11F21AF1F2#, ~6.6!

FIG. 1. Line soliton.

FIG. 2. Interaction of two line solitons.
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and

Fi~x,y,t !5expF ~ai
11ai

2!H x2
v0

ai
1ai

2 y1~ai
12ai

2!tJ 1w i G , ~6.7!

A5
~a2

12a1
1!~a2

22a1
2!

~a2
11a1

2!~a2
21a1

1!
, ~6.8!

andbi has been redefined as:bi5e2w i.
Particular case:Whena2

15a1
1 , or a2

25a1
2 , A50 and this is said to beresonant state.18

B. Dromions m 50

In this case Eqs.~4.1!, ~4.8!, ~4.9!, and~5.4! require that

c1y
1 c1y

2 5c2y
1 c2y

2 5c1y
1 c2y

2 5c2y
1 c1y

2 50.

Therefore, it is compulsory thatc1y
2 5c2y

2 50, or c1y
1 5c2y

1 50.
• If we choose the possibilityc1y

2 5c2y
2 50, then simple solutions of Eqs.~4.2! and ~4.7! are

c1
25ea1

2x2a1
22t, c1

15~ea1
1x1a1

12t!E1~y!5Q1
1~x,t !E1~y!,

~6.9!
c2

25ea2
2x2a2

22t, c2
15~ea2

1x1a2
12t!E2~y!5Q2

1~x,t !E2~y!,

wherea1
1 ,a1

2 ,a2
1 ,a2

2 are arbitrary constants whileEi are arbitrary functions ofy.
• We can now perform now the integration of Eqs.~4.1!, ~4.8!, ~4.9!, and~5.4! to obtain

f15
1

a1
11a1

2 ~E1Q1
1c1

21M1~y!!, V15
1

a2
11a1

2 ~E2c1
2Q2

11N1~y!!,

~6.10!

f25
1

a2
11a2

2 ~E2c2
2Q2

11M2~y!!, V25
1

a1
11a2

2 ~E1c2
2Q1

11N2~y!!.

N1, N2, andMi
1 are arbitrary functions ofy. The arbitrariness of the six functionsEi , Mi , Nj ,

and the four constantsai
1 ,ai

2 implies that there are many particular cases. We list some of th

1. 111 dromions

These can be obtained by choosing

Ei~y!511bie
ciy, Mi~y!511eciy, N* 5N250, ~6.11!

FIG. 3. One dromion.
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wherebi andci are arbitrary constants.
• The first and second iteration yield

my85]xy@ ln f1#, ~6.12!

my95]xy@ ln t#, ~6.13!

where

f15
1

a1
11a1

2 ~M11E1F1!, ~6.14!

t5f1f22V1V25
1

~a1
11a1

2!~a2
11a2

2!
@M1M21M1E2F21M2E1F11AE1E2F1F2#, ~6.15!

and

FIG. 4. ~a! Interaction of two dromions,t,0. ~b! Interaction of two dromions,t50. ~c! Interaction of two dromions,t.0.
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Fi~x,t !5exp@~ai
11ai

2!$x1~ai
12ai

2!t%#, ~6.16!

A5
~a2

12a1
1!~a2

22a1
2!

~a2
11a1

2!~a2
21a1

1!
. ~6.17!

The behavior of Eqs.~6.12! and ~6.13! are represented in Figs. 3 and 4, respectively.

2. 11n dromion

Dromions with several jumps in they direction can be obtained by choosing

Ei511(
j 51

n

bi j e
ci j y, Mi511(

j 51

n

eci j y.

The first iteration

my85]xy~ ln f1!,

describes a structure withn jumps located along they-direction, moving in thex-direction with
velocity a1

12a1
2 .

Figure 5 represents one of these structures withn52 andc11.0, c12,0.
Figure 6 corresponds ton53 andc11.0, c12.0, c13.0.
The solution that we have obtained in this section generalizes the solutions found in Re

means of the bilinear method.

VII. CONCLUSIONS

• A system of nonlinear PDEs proposed by different authors as one of the simplest equ
in 211 dimensions is studied from the point of view of the Painleve´ property. The dominant

FIG. 5. 211 dromion.

FIG. 6. 311 dromion.
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behavior indicates the best field to use Painleve´ analysis. On this basis, we rewrite the system
a PDE@Eq. ~2.5!# with only one field. This equation6 can be considered as the modified version
the generalized long dispersive wave equation.7 This is why we have call it MGLDW~modified
generalized long dispersive wave equation!.

• The singular manifold method was applied to MGLDW in Sec. II. The singular mani
equations, as well as the expression of the seminal field in terms of the singular manifold
obtained.

• In Sec. III, we linearized the singular manifold equations to obtain the Lax pair. The rel
between the singular manifold and the eigenfunctions of the Lax pair is constructed explic

• In Sec. IV the Lax pair was considered as a system of nonlinear coupled PDE. We a
the singular manifold method to the Lax pair itself. The bonus is the construction of Dar
transformations for MGLDW. Its transformations allow us to determine an iterative metho
obtaining solutions. The relation between this method and the Hirotat-functions is shown in Sec
V.

• Finally Sec. VI is devoted to the construction of solitonic solutions of MGLDW. A r
collection of solutions with different solitonic behavior appear depending on the seminal so
that we have chosen.

• We believe that the equation analyzed in depth in this paper is a good example of h
obtain maximum information about the equation using Painleve´ analysis and the singular manifol
method as the only tools.
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APPENDIX: COMPLEMENTARY CALCULATION

We first attempt to write

05ut1uxx12umx , ~A1!

05v t2vxx22vmx , ~A2!

05uv1my , ~A3!

as an equation for only one field
Taking u out of Eq.~A3! and substituting it into Eq.~A1!, we obtain

05
myt1mxxy

v
22mxy

vx

v2 1myS 2mx

v
2

v t

v22
vxx

v2 22
vx

2

v3D . ~A4!

Using Eq.~A2! into Eq. ~A4!, we also obtain

05mxxy1myt2S 2my

vx

v D
x

, ~A5!

which can easily be integrated by settingmt5nx , which yields

vx

v
5

mxy1ny

2my
. ~A6!

Substituting Eq.~A6! into Eq. ~A2!, we obtain
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v t

v
52mx1

mxxy1nxy

2my
2

mxy
2 2ny

2

4my
2 . ~A7!

Next, we calculate the identity (v t /v)x5(vx /v) t using Eqs.~A6! and~A7!, and finally we obtain
for m the equation

05mt2nx ~A8!

05my
2~nyt2mxxxy!1mxy~ny

22mxy
2 !12my~mxymxxy2nynxy!24my

3mxx . ~A9!

The integration of Eq.~A6! is

u5Amye
*~ny/2my!dx. ~A10!

And from Eq.~3.4! we finally obtain

v52Amye
*2~ny/2my!dx. ~A11!
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A general symmetry of the bilinear BKP hierarchy is studied in terms of tau func-
tions. We use this symmetry to define reductions of the BKP hierarchy, among
which new integrable systems can be found. The reductions are connected to con-
straints on the Lax operator as well as on the bilinear formulation. A class of
solutions for the reduced equations is derived. ©1999 American Institute of
Physics.@S0022-2488~99!02603-1#

I. INTRODUCTION

Many integrable nonlinear partial differential equations may be obtained as dimension
ductions of hierarchies of the KP~Kadomtsev–Petviashvili! type.1–4 In this paper, we turn our
attention to symmetry reductions of the 211-dimensional BKP hierarchy. Although reductions
this hierarchy were already introduced,1,2 it is important to realize that these authors did n
achieve a complete picture of those systems obtainable as reductions of the BKP hierarc
wish to argue that their inability to do so results from failing to identify a ‘‘general’’ symmetry
the BKP hierarchy.

Reductions may be defined in many different ways: by imposing a constraint on the
operator of the system, by imposing a symmetry constraint on the soliton field,... .1,5,6,4 Here we
shall reduce the BKP hierarchy by imposing a symmetry constraint on the bilinear equation
we shall implement a symmetry reduction on the level of the BKP tau function.

Typically, the KP hierarchy of 211-dimensional nlpde’s is defined with the help of a gene
~pseudodifferential! Lax operator, with which Lax equations and Zakharov–Shabat equation
written. The BKP hierarchy is obtained from this construction by imposing a certain conditio
this Lax operator, while at the same time fixing a subset of the time variables.7,8 The resulting
hierarchy of integrable 211-dimensional equations allows for its own tau function and for its o
accompanying bilinear formulation: the BKP bilinear identity. This identity is essential in
study of this hierarchy, as it provides its most concise formulation.

An important part of this paper is devoted to the study of certain ‘‘eigenfunction symmetr
of the BKP bilinear equations. Eigenfunctions are defined as the fields that solve the BKP
~Zakharov–Shabat! problem ~without necessarily having to solve the Lax eigenvalue proble!.
Eigenfunctions are useful in the study of the BKP hierarchy, as they can be used to cons
potential closely related to the symmetries of this hierarchy. The appropriate potential for the
hierarchy is, however, quite different from the one used in the KP hierarchy.9,10,4 It can, never-
theless, be defined using the KP eigenfunction potential. Making use of the BKP bilinear ide
it will be shown that any BKP eigenfunction potential generates a symmetry for the BKP h
chy and that this potential itself can be expressed as the ratio of two BKP tau functions.

The actual symmetry reductions are defined by imposing a relation between an elem
symmetryt tk

and this eigenfunction potential symmetry. Examples of the resulting system

a!igloris@vub.ac.be
14200022-2488/99/40(3)/1420/12/$15.00 © 1999 American Institute of Physics

                                                                                                                



in the
e KdV

on the
d an

. First

nction

d BKP
ns and

l

ns
a-

f
iscus-

1421J. Math. Phys., Vol. 40, No. 3, March 1999 I. Loris and R. Willox

                    
clude equations, which, as far as the authors were able to verify, did not yet appear
literature. In particular, as opposed to the discussion of Refs. 1, 2, in the present analysis th
equation is a mere special case of the 1-constrained BKP hierarchy.

Next, we investigate how such a symmetry reduction can be connected to a constraint
Lax operator. An additional bilinear identity for the constrained BKP hierarchy is derived an
alternative identity for thek-constrained BKP tau function is also found.

The last section of this paper is devoted to the solutions of the reduced BKP hierarchies
we briefly show how one may obtain the ‘‘Pfaffian’’-type tau functions11,12 for the ~unreduced!
BKP hierarchy. We investigate the form of the accompanying eigenfunctions and eigenfu
potentials. Next we decide which supplementary conditions need to be imposed on the~arbitrary!
functions appearing in these Pfaffian expressions in order for them to solve the constraine
equations. In this way solutions to these hierarchies are derived. Some examples of solito
rational-type solutions are given.

II. BKP HIERARCHY AND EIGENFUNCTION SYMMETRIES

The Kadomtsev–Petviashvili~KP! hierarchy is defined7,13 in terms of the pseudodifferentia
gauge operatorP[11w1]211w2]221¯ and the Lax operatorL[P ]P21[]1u2]21

1u3]221¯ . On the gauge operator one imposes Sato’s equationPtn
52(Ln)2P, implying

Ltn
5@Bn ,L# and Bn,tm

2Bm,tn
5@Bm ,Bn#,

for differential operatorsBn[(Ln)1(5( j 50
n bn, j]x

j ). These nonlinear partial differential equatio
@for the fieldsu2(t1 ,t2 ,...),u3(t1 ,t2 ,...),...# are the compatibility conditions of the linear equ
tions

Lc5lc, c tn
5Bnc,

satisfied by the wave functionc(t1 ,t2 ,...;l)[P(])exp(lt1 1l2t21¯).
The BKP hierarchy7 is obtained from this construction by imposing the condition

P* 5]P21]21, and henceL* ]1]L50, ~1!

at the expense of having to supress the evolutions with respect tot2 ,t4 ,... ~i.e., fix t25t45¯

50); the condition implies thatu352u2,x , u5522u4,x2u2,3x ,..., andhencebn,050 andBn1
50 ~for n odd!.

The defining relation~1! implies P ]21P* 5]21 and hence that one has Res]@P ]21P* ]m#
5d0m for mP$0,1,2,...%. Since, in general, one has~e.g., Ref. 14, p. 82!

Resl@lk21c~ t,l!~2]!m11c~ t,2l!#5Res]@P ]k21P* ]m11#, ;k,m; ~2!

this relation leads to the BKP bilinear identity„t5(t15x,t3 ,t5 ,...)…:7

Resl@l21c~ t,l!c~ t8,2l!#51, ;t,t8, ~3!

for BKP wave functions. This bilinear identity~3! is equivalent to the entire BKP hierarchy o
nonlinear partial differential equations, and as such is an important relation for our further d
sion.

One can show that there exists a ‘‘tau function’’t~t!, such that7

c~ t,l!5
t„t2e~l!…

t~ t!
expj~ t,l!, ~4!

with j(t,l)5(n50
` t2n11l2n11 and e(l)52(l21,l23/3,l25/5,...). The bilinear identity~3! can

now be written as
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Resl@l21t„t2e~l!…t„t81e~l!…expj~ t2t8,l!#5t~ t!t~ t8!. ~5!

This equation contains the Hirota bilinear equations for all the nonlinear partial differential e
tions in the BKP hierarchy. The lowest-order equation is

~9D1D525D1
3D325D3

21D1
6!t•t50, ~6!

whereDi the HirotaD operator with respect tot i .15

It is important to remark that the BKP tau function differs from the KP tau function:7 tBKP

5tKP(t25t45¯50)1/2.
In the rest of this section we shall concentrate on the notion of eigenfunctions and

connection to the symmetries of the BKP hierarchy. Eigenfunctions are solutions of the
equations:F tn

5BnF ~for n:1,3,5,...!. Adjoint eigenfunctions satisfy the adjoint linear equatio

F tn
* 52Bn* F* ~with n:1,3,5,...!. For example,

F t3
5B3F5F3x13u2Fx , F t3

* 5F3x* 13~u2F* !x , ~7!

with u252]x
2 logt. Remark that the wave functionsc(t,l) are special instances of eigenfun

tions. Furthermore, a constant is always a BKP eigenfunction.
In the BKP hierarchy, eigenfunctions and adjoint eigenfunctions are related: AsL*

52]L]21, we find thatBn* [(L* n)15(21)n(]Ln]21)1 . HenceBn* ]52Bn]2Bn,x ~n: odd!.
This relation implies that any eigenfunctionF gives rise to an adjoint eigenfunctionF* 5Fx .

In Refs. 16, 9 a KPeigenfunction potentialS(F,F* )5*xFF* was introduced for any pair o
eigenfunction and adjoint eigenfunction~see also Refs. 4, 10!. The derivatives of this potential ca
be expressed as a~bilinear! differential operator working onF and F* :] tn

S(F,F* )

5( j 51
n ( i 51

j (21)i 11(F* bn, j )( i 21)xF ( j 2 i )x . In the case of the KP hierarchy, this potential ge
erates a symmetry of this hierarchy.4 Here, we shall use it to derive some results concerning B
eigenfunctions. The first property is the following.

Property: If F is a BKP eigenfunction andF* 5Fx , then one has the following relation:

Resl@l21S„c~ t,l!,F* ~ t!…c~ t8,2l!#5F~ t!2F~ t8!. ~8!

Proof: Denote the residue in~8! by I (t,t8). From the definition of the potentialSand by using
the BKP bilinear identity~3!, one finds that] tn

] t
m8
I (t,t8)50. HenceI (t,t8)5 f (t)1g(t8). Since

S„c(t,l),F* (t)…5O(l21)expj(t,l), we have thatI (t,t85t)50; hence,I (t,t8)5 f (t)2 f (t8).
As f x(t)5]xI (t,t8)5F* (t)Resl@l21c(t,l)c(t8,2l)#5F* (t)5Fx(t) @in fact, f tn

(t)
5] tn

I (t,t8)5F tn
(t)#, one findsf 5F. h

RepresentingS(c(t,l),F* (t)) asK(t,l)expj(t,l) @with K(t,l)5O(l21)# and choosingt
2t85e(k), the relation~8! becomes

ReslFl21K~ t,l!
t~ t2e~k!1e~l!…

t~ t2e~k!… S 211
2

12l/kD G5F~ t!2F~ t2e~k!…,

or 2K(t,k)t(t)/t(t2e(k)…5F(t)2F(t2e(k)…. Hence, one finds the following expression f
the eigenfunction potentialS„c(t,l),F* (t)[Fx(t)…:

S„c~ t,l!,F* ~ t!…5 1
2~F~ t!2F„t2e~l!…!c~ t,l!. ~9!

The x derivative of this expression yields the relation

Fx~ t!1Fx(t2e~l!…5(F~ t!2F~ t2e~l!…!S ]x log
t~ t2e~l!…

t~ t!
1l D , ~10!
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which is, in fact, another way of expressing the linear problemF tn
5BnF (n:1,3,5,...); the reade

may easily verify that relation~10! atO(l22) corresponds to the linear equation~7!.
One may substitute relation~9! in Eq. ~8! and use the BKP bilinear identity~3! to find

Resl@l21F~ t2e~l!…c~ t,l!c~ t8,2l!#52F~ t8!2F~ t!. ~11!

This identity generates bilinear equations that represent the BKP linear equations (F5r/t):

Resl@l21r„t2e~l!…t„t81e~l!…expj~ t2t8,l!#52r~ t8!t~ t!2r~ t!t~ t8!, ~12!

or

(
j 50

`

pj~22y!pj~2D̃ !e( i yiDit•r52e( i yiDir•t2e( i yiDit•r,

with (n50
` pn(t)ln5expj(t,l) andD̃5(D1 ,D3/3,...). The simplest equation in this expression

the bilinear representation of Eq.~7!:

~D32D1
3!r•t50.

For the BKP hierarchy we introduce a new eigenfunction potential in terms of a pair of
eigenfunctionsF1 andF2 :

V~F1 ,F2!5S~F2 ,F1,x!2S~F1 ,F2,x!, ~13!

i.e.,

dV~F1 ,F2!5~F1,xF22F1F2,x!dx1@F1,3xF22F1F2,3x22F1,2xF2,x

12F1,xF2,2x13u2~F1,xF22F1F2,x!#dt31¯ . ~14!

The potential is only defined up to a possible constant of integration. It is clear thatV(F1 ,F2)
52V(F2 ,F1) and thatV(F,1)5F ~remember that 1 is an eigenfunction!, up to constants. In
particular, all properties that will be proven for the eigenfunction potentialV will also apply to the
eigenfunctions themselves.

As wave functions are special eigenfunctions, we may compute the corresponding eige
tion potential: from expression~9!, representation~4!, and definition~13!, one finds

V„c~ t,l!,c~ t,m!…5
l2m

l1m

t„t2e~l!2e~m!…

t
expj~ t,l!1j~ t,m!1C ~15!

~i.e. the BKP vertex operator7 acting ont! and taking limm→2l @with an appropriate choice o
integration constantC5C̃22l/(m1l)#, one has

V„c~ t,l!,c~ t,2l!…54 (
n:1,3,...

] tn
logtl2n12 (

n:1,3,...
ntnln1C̃. ~16!

For further reference, it is important to consider the effect of the shiftt→t6e(l) on a BKP
eigenfunction potential.

Property: Let V(t)[V(F1 ,F2); then

V„t6e~l!…5V~ t!1F1„t6e~l!…F2~ t!2F1~ t!F2„t6e~l!…. ~17!

Proof: By definition ~14!, we have

Vx„t2e~l!…5F1,x„t2e~l!…F2„t2e~l!…2F1„t2e~l!…F2,x„t2e~l!….
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The use of formula~10! in order to eliminateF1,x„t2e(l)… andF2,x„t2e(l)… yields

F2F1,x~ t!1F1~ t!S ]x log
t„t2e~l!…

t~ t!
1l D GF2„t2e~l!…2F1„t2e~l!…

3F2F2,x~ t!1F2~ t!S ]x log
t„t2e~l!…

t~ t!
1l D G .

Using formula~10! once more to eliminate the terms included in round brackets, we obtain

F1,x~ t!F2~ t!2F1~ t!F2,x~ t!1@F1„t2e~l!…F2~ t!2F1~ t!F2„t2e~l!…#x ,

which proves expression~17!. h

Next, we show that a BKP eigenfunction potential can always be completely express
terms of BKP tau functions.

Property: t̂[tV(F1 ,F2) is a BKP tau function:

Resl@l21t̂„t2e~l!…t̂„t81e~l!…expj~ t2t8,l!#5 t̂~ t!t̂~ t8!. ~18!

Proof: Using representation~4!, Eq. ~18! is equivalent to

Resl@l21c~ t,l!c~ t8,2l!V„t2e~l!…V„t81e~l!…#5V~ t!V~ t8!, ;t,t8

This relation may be proven by making use of relation~17!, the BKP bilinear identity~3!, and of
relation ~11! and its companion~l→2l and t↔t8!:

Resl@l21c~ t,l!c~ t8,2l!F„t81e~l!…#52F~ t!2F~ t8!,

and the additional relation

Resl@l21c~ t,l!c~ t8,2l!F i„t2e~l!…F j„t81e~l!…#

5F i~ t!F j~ t8!22V„F i~ t!,F j~ t!…12V„F i~ t8!,F j~ t8!…, ~19!

which is proven in the Appendix. h

This property shows that any eigenfunction potential can be written as the ratio of tw
functions, namely,V(F1 ,F2)5 t̂/t.

As the eigenfunction potentialV(F1 ,F2) is only defined up to an additive constant, we ha
as a consequence thattV(F1 ,F2)1Ct also satisfies the BKP bilinear identity. It then follow
from the above property thattV(F1 ,F2) is a symmetryfor Eq. ~5!, meaning thatt1C21tV
satisfies the BKP bilinear identity~5! up to first order inC21. For example, the eigenfunctio
potential~16! generates the translation symmetriest tn

and the gauge symmetriestnt.
Since any eigenfunctionF can be written as the eigenfunction potentialV(F,1)5F, it

follows from this property that the eigenfunctionF is also expressible asF5r/t, wherer is a
BKP tau function. It thus follows that the bilinear identity~12! constitutes a bilinear Ba¨cklund
transformation for the bilinear BKP hierarchy. It should be clear thattF is a symmetry for the
bilinear BKP equations.

III. REDUCTIONS

In this section we explore certain symmetry reductions of the BKP hierarchy. We then i
tigate the connection between these reductions and constraints on the BKP Lax operatorL. We
shall also derive a bilinear formulation of these constraints.

The k-constrained BKP hierarchy is defined by coupling the linear equations for a pa
eigenfunctionsF1 and F2 to the nonlinear equations of the BKP hierarchy by means of
constraint
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t tk
5tV~F1 ,F2! ~20!

~where k is a fixed odd integer!. Since both the left-hand side and the right-hand side of
condition are symmetries of the BKP bilinear identity, it induces a so-called symmetry redu
on this hierarchy.

As an example, let us consider the casek51. Denotingq5F1 , r 5F2 , it follows from Eq.
~7!, constraint~20! and the definition~14! that ~q,r! solves the system:

qt3
5q3x16~qxr 2qrx!qx ,

~21!
r t3

5r 3x16~qxr 2qrx!r x .

Setting r 5 1
2 ~a genuine eigenfunction!, one finds that the fieldqx satisfies the KdV equation

(qx,t3
5q4x16qxq2x). This last equation is the result that was already derived,1,2 but it should be

clear that it is merely a special case of the 1-constrained BKP system~21!. As a second example
we takek53 at which the constraint~20! yields the following system:

qt3
5q3x13uqx ,

r t3
5r 3x13urx , ~22!

ut3
52~q2xr 2qr2x!.

The special caser 5 1
2 ~qt3

5q3x13uqx , ut3
5q2x! was already given in Ref. 2. As far as th

authors could verify, neither of the systems~21! or ~22! has already been described in the liter
ture.

In order to establish a connection between the symmetry reduction~20! and constraints on the
Lax operatorL, we considerV(t)5V(F1 ,F2) and Ṽ(t)5V„c(t,l),c(t,2l)…. By virtue of
expression~16! for Ṽ(t), we may write the condition~20! as

Resl@lk21Ṽ~ t!#54V~ t!,

or, equivalently,

Resl@lk21 ] tn
Ṽ~ t!#54 ] tn

V~ t!, ;n:1,3,5,... . ~23!

At n51, this yields the relation

Resl@lk21
„cx~ t,l!c~ t,2l!2c~ t,l!cx~ t,2l!…#54~F1,xF22F1F2,x!. ~24!

Since Resl@ f (l)#5 1
2 Resl@ f (l)2 f (2l)#, this can be written as

Resl@lk21c~ t,l!cx~ t,2l!#52~F1F2,x2F1,xF2!.

The x derivative of relation~24! similarly yields:

Resl@lk21c~ t,l!c2x~ t,2l!#52~F1F2,2x2F1,2xF2!.

Combining relation~23! at n53 @bearing definition~14! in mind# and the secondx derivative of
relation ~24!, one finds

Resl@lk21c~ t,l!c3x~ t,2l!#52~F1F2,3x2F1,3xF2!.

In this way, it can be seen that~23! is equivalent to
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Resl@lk21c~ t,l!]m11c~ t,2l!#52~F1F2,~m11!x2F2F1,~m11!x!, ~25!

for m>21. @The casem521 follows from the definition~1!: (Lk)15Bk andBk150.# Keeping
relations~1! and ~2! in mind, one finds

Res]@Lk]m#52~21!m~F2F1,~m11!x2F1F2,~m11!x!.

Hence, the constraint~20! is equivalent to requiring that

Lk5Bk12(
n>1

~21!n~F1F2,nx2F2F1,nx!]
2n,

or to the following condition the BKP Lax operator:

Lk5Bk12F2 ]21F1,x22F1 ]21F2,x . ~26!

This form of reduction of the BKP hierarchy was already introduced in Refs. 1, 2. It was, how
limited to the caseF25 1

2. It is our feeling that imposing a constraint on the Lax operatorL to
reduce the BKP equation is conceptually less clear than using a symmetry constraint. Furthe
in the former case one must make sure that any constraints on the Lax operator do not vio
condition ~1!.

We may now easily derive a bilinear form for the constrained BKP hierarchies. Since
functions and eigenfunctions obey the same evolution,c tn

5Bnc andF i ,tn
5BnF i ( i :1,2), rela-

tion ~25! implies

Resl@lk21c~ t,l!c~ t8,2l!#52„F1~ t!F2~ t8!2F1~ t8!F2~ t!…, ;t,t8. ~27!

If we write the eigenfunctions and the wave functions in terms of tau functions~F15r1 /t and
F25r2 /t!, we find the following bilinear formulation of the constraint~20!:

Resl@lk21t„t2e~l!…t„t81e~l!…expj~ t2t8,l!#52„r1~ t!r2~ t8!2r1~ t8!r2~ t!….

In terms of Hirota operators, this yields

(
j 50

`

pj~2y!pj 1k~22D̃ !e( i yiDit•t52e( i yiDi~r1•r22r2•r1!,

which implies, e.g., thatD1 Dkt•t52D1r1•r2 @thex-derivative of~20!#. Hence, the bilinear form
of the system~21! is

~D32D1
3!r1•t50, ~D32D1

3!r2•t50, D1
2t•t52D1r1•r2 ,

with q5r1 /t and r 5r2 /t.
A last important result is the following: as the producttV(F1 ,F2) is a BKP tau function, the

symmetry reduction~20! implies the auxiliary bilinear identity

Resl@l21t tk
„t2e~l!…t tk

„t81e~l!…expj~ t2t8,l!#5t tk
~ t!t tk

~ t8!,

for a constrained BKP tau function: i.e., thetk derivative of a constrained BKP tau function
itself a BKP tau function.

IV. SOLUTIONS

In this section we discuss solutions of the constrained BKP hierarchies. The tau fun
corresponding to these solutions are expressed as ‘‘Pfaffians.’’ A Pfaffian is defined as the
root of the determinant of an antisymmetric matrix of even order; it is a polynomial in
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elements of this matrix. For example, the Pfaffians of a 232 and 434 antisymmetric matrixA
~with elementsai j 52aji ! are Pf(A)5a12 and Pf(A)5a12a342a13a241a14a23, respectively.

Solutions in Pfaffian form for the bilinear BKP equation~6! were first derived in Ref. 11
These solutions may be obtained for all the equations in the bilinear BKP hierarchy~5! by starting
from the well-known Grammian determinant solutionstKP5det@S(wi ,wj* )#1<i,j<2N @with w i ,tn
5w i ,nx andw i ,tn

* 5(21)n11w i ,nx* for n:1,2,3,...# of the KP hierarchy17,18and by using the fact tha

tBKP5tKP (t25t45¯50)1/2: Fixing t25t45¯50 and choosingw i5 f i and w j* 5 f j ,x , one
finds that S(w i ,w j* )5 1

2@ f i f j2V( f i , f j )#.12 The determinanttKP is now easily seen to equa
det@V(fi ,f j)#1<i,j<2N ~up to a multiplicative constant, which is irrelevant in our discussion!. The
square root of this determinant yields the following solution to the BKP bilinear hierarchy:

tBKP5Adet@V~ f i , f j !#1< i , j <2N[Pf~ f 1 , f 2 ,...,f 2N! ~28!

~with f i ,tn
5 f i ,nx for n:1,3,5,...!. The expression Pf(f 1 ,...,f 2N) has the form

V( f 1 , f 2)V( f 3 , f 4)¯V( f 2N21 , f 2N)2¯ @only containing potentials of the typeV( f i , f j . i)#. For
example, forN51 one finds the BKP tau functiont5V( f 1 , f 2), for N52 one finds the tau
function t5V( f 1 , f 2)V( f 3 , f 4)2V( f 1 , f 3)V( f 2 , f 4)1V( f 1 , f 4)V( f 2 , f 3).

The notation introduced in~28! allows us to express the properties of such Pfaffians m
easily: expression~28! is multilinear @i.e., Pf(...,f 1g,...)5Pf(...,f ,...)1Pf(...,g,...)# and al-
lows for the existence of expansion rules of the form Pf(f 1 ,...,f 2N)5( i 52

2N (21)i

3Pf( f 1 , f i)Pf( f 2 ,...,f\i ,...,f 2N).11

It also follows from the multilinearity that the derivative~w.r.t. any variable! is given by

]

]t
Pf~ f 1 ,...,f 2N!5(

i 51

2N

PfS f 1 ,...,
]

]t
f i ,...,f 2ND . ~29!

Before discussing the solutions of the constrained BKP equations, we need expressio
eigenfunctions and eigenfunction potentials that correspond to the above BKP tau function
start from the representationF5rKP/tKP of eigenfunctions in terms of KP tau functions. We u
the following expression for arKP, which can be seen to correspond to the abovetKP:17

rKP5detF S~w1 ,w1* ! ¯ S~w1 ,w2N* ! w1

] � ] ]

S~w2N ,w1* ! S~w2N ,w2N* ! w2N

2S~w,w1* ! ¯ 2S~w,w2N* ! 2w

G .

Let A be the antisymmetric matrix corresponding to the BKP tau function~28!: A
5@V( f i , f j )#1< i , j <2N , and introduce the two column vectorsf5( f 1 , f 2 ,...,f 2N) t and V
5„V( f 1 , f 2N11),...,V( f 2N , f 2N11)…t. Choosing againw i5 f i , w j* 5 f j ,x andw5 f 2N11 , we find

rKP5detF A f

Vt 2 f 2N11
G5Pf~A!PfF A V f

2Vt 0 f 2N11

2f t 2 f 2N11 0
G

~where we have ignored an unimportant multiplicative factor and used a Jacobi determ
identity!. Hence, there exist eigenfunctions of the form

F5
rKP

tKP
5

Pf~ f 1 , f 2 ,...,f 2N , f 2N11,1!

Pf~ f 1 , f 2 ,...,f 2N!
5

rBKP

tBKP
,
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with the understanding that hereV( f i ,1)[ f i ~no integration constants allowed! and f i ,tn
5 f i ,nx

with n:1,3,5,... . With this convention of Pf~...,1! one has, e.g., at N51: F
5Pf( f 1 , f 2 , f 3,1)/Pf(f 1 , f 2)[„V( f 1 , f 2) f 32V( f 1 , f 3) f 21 f 1V( f 2 , f 3)…/V( f 1 , f 2).

Special choices off 2N11 include f 2N1151, for which one recoversF51 and f 2N1150, for
which one finds

F5
Pf~ f 1 , f 2 ,...,f 2N21,1!

Pf~ f 1 , f 2 ,...,f 2N!
~30!

@in the latter case by choosingV( f 2N , f 2N1150)51 andV( f i , f 2N1150)50 for 1< i ,2N#.
The eigenfunction potential corresponding to the eigenfunctionsF1

5Pf( f 1 ,...,f 2N , f 2N11,1)/Pf(f 1 ,...,f 2N) and F25Pf( f 1 ,...,f 2N , f 2N12,1)/Pf(f 1 ,...,f 2N) can be
shown to take on the form

V~F1 ,F2!5
Pf~ f 1 ,...,f 2N , f 2N11 , f 2N12!

Pf~ f 1 ,...,f 2N!
. ~31!

This expression is obtained by proving thatVx5F1,xF22F1F2,x , with the help of the tech-
niques used in Ref. 11@in particular, by using relation~2.25! of Pfaffians in this reference#. The
expression~31! agrees with the fact that such a potential is always the ratio of two BKP
functions. Specifically, the eigenfunction potential corresponding to the eigenfunctionF1 in ~30!
is

V~F1 ,F2!5
Pf~ f 1 ,...,f 2N21 , f 2N12!

Pf~ f 1 ,...,f 2N!
. ~32!

In order to find a solution of the constrained BKP equations, we need to find a BKP
function and two eigenfunctions such that condition~20! is satisfied. In particular, we need to fin
a tau function such that itstk derivative is again a BKP tau function. From property~29!, we find
that

]

]tk
Pf~ f , f tk

,...,f ~2N21!tk
!5Pf~ f , f tk

,...,f ~2N22!tk
, f 2Ntk

!. ~33!

In the light of formula~32! and definition~20!, this formula tells us that we may choose t
k-constrained tau function ast5Pf( f , f tk

,...,f (2N21)tk
) with the corresponding eigenfunction

F15r1 /t F25r2 /t:

F15
r1

t
5

Pf~ f , f tk
...,f ~2N22!tk

,1!

Pf~ f , f tk
...,f ~2N21!tk

!
,

~34!

F25
r2

t
5

Pf~ f , f tk
...,f ~2N21!tk

, f 2Ntk
,1!

Pf~ f , f tk
...,f ~2N21!tk

!

~f tn
5 f nx n:1,3,5,...!. Here, some care should be taken with respect to the integration consta

the eigenfunction potentials: there areN(2N21) eigenfunction potentialsV( f it k
, f j t k

) in the
above constrained tau functiont. The potentials withi 1 j even should contain no integratio
constants@as formula~33! assumes, e.g., thatf x

22 f f 2x[]xV( f , f x)5V( f , f 2x)#. All potentials
V( f it k

, f j t k
) for fixed i 1 j odd are~for the same reason! connected. Hence, there are only 2N

21 independent integration constants in the above constrained BKP tau functiont ( i
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1j:1,3,...,4N23). In r2 there is one eigenfunction potential that does not appear int :
V( f (2N21)tk

, f 2Ntk
); it may contain an integration constant, but this only amounts toF2→F2

1cF1 @a transformation that leaves the constraint~20! invariant#.
For example, fork51 ~i.e., tk5x!, one may chooseN51, f 5x and find

F15
x

x1c
, F25

21

x1c
,

as an example of rational solutions of the systems~21!. Another rational solution can be found b
choosingf 5x3/61t3 :

F15
10~x316t3!

x5230x2t31c
, F25

x6260x3t316cx2720t3
2

6~x5230x2t31c!
.

The one-soliton solution of this system may be obtained by choosingN51 and f 5expj(t,p1)
1expj(t,p2). After some straightforward manipulations one finds~p15k11 ik2 , p25k12 ik2!:

F15
2k1

Ak2

cosu2

coshu1
, F25

k1

Ak2

sinu2

coshu1
,

with u15k1x1k1(k1
223k2

2)t31¯ and u25k2x1k2(3k1
22k2

2)t31¯ . One has F1,xF2

2F2F2,x5]x
2 logt5k1

2 sech2 u1.

V. CONCLUSIONS

In this paper we deal with a novel class of reductions of the BKP hierarchy and as such
reductions allow us to identify certain new integrable systems.

The central object in our discussion is the BKP eigenfunction potential. It was shown
expressible as a ratio of tau functions and to correspond to a~general! symmetry of the bilinear
BKP equations, i.e., for the equations the BKP tau functions satisfy.

The eigenfunction symmetry was then used to define dimensional reductions o
211-dimensional BKP equations. A link with constraints on the Lax operator was establishe
a simple bilinear formulation was derived. We wish to remark that in analogy to the reductio
the KP hierarchy one could consider a generalization of these reductions by using a s
eigenfunction potential symmetries in the symmetry reduction.

Finally, we believe it is worth emphasizing that our tau-function approach to symm
reductions has, besides a certain conceptual clarity, the additional virtue of allowing fo
straightforward derivation of a class of solutions to the reduced systems. In the present cas
solutions were easily expressed in terms of Pfaffians.
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APPENDIX: PROOF OF RELATION „19…

To prove relation~19! ~e.g., denotingF i asF1 andF j asF2!, we use the formula~9! for both
S„c(t,l),F1* (t)… andS„c(t8,2l),F2* (t8)…, together with the equation~8!:
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Resl@l21c~ t,l!c~ t8,2l!F i„t2e~l!…F j„t81e~l!…#

54 Resl@l21S„c~ t,l!,F1* ~ t!…S„c~ t8,2l!,F2* ~ t8!…#23F1~ t!F2~ t8!

12F1~ t!F2~ t!12F1~ t8!F2~ t8!. ~A1!

Let us denote the residue on the right-hand side byI (t,t8). We shall now try to compute
] tn

] t
m8
I (t,t8). As mentioned in Sec. II, the derivative ofS(c,F* ) is given by (Bn

5( j 50
n bn, j]x

j ):

] tn
S~c,F* !5(

j 51

n

(
i 51

j

~21! i 11~F* bn, j !~ i 21!xc~ j 2 i !x . ~A2!

Hence,] tn
] t

m8
I (t,t8) will have the form of an operator in the variablesx andx8 working on the

residue Resl@l21c(t,l)c(t8,2l)#. But, by virtue of the BKP bilinear identity~3!, all terms will
vanish except the ones without derivatives onc~t,l! and c(t8,2l). These correspond to th
terms withi 5 j in expression~A2!:

(
j 51

n

~21! j 11~F* bn, j !~ j 21!xc5c~Bn]x
21!* F* . ~A3!

As (Bn]x
21)* 52]x

21Bn* 5]21(Bn1Bn,x]
21) andF* 5Fx , we find that this equals

c]21~Bn1Bn,x]
21!]xF5cBnF5cF tn

. ~A4!

In this way we find that

] tn
] t

m8
I ~ t,t8!5F1,tn

~ t!F2,t
m8
~ t8!.

It follows that

I ~ t,t8!5F1~ t!F2~ t8!1 f ~ t!1g~ t8!,

for somef and g. As I (t,t85t)50 @sinceS„c(t,l),F* …5O(l21)expj(t,l), we haveg52 f
2F1F2 and henceI (t,t8)5F1(t)F2(t8)1 f (t)2 f (t8)2F1(t8)F2(t8)#. To find an expression
for f, we compute]zn

I (t2z,t1z)z50522 f tn
(t)22F1,tn

(t)F2(t) or, equivalently,

2Resl@l21Stn
„c~ t,l!,F1* ~ t!…S„c~ t,2l!,F2* ~ t!…#

1Resl@l21S„c~ t,l!,F1* ~ t!…Stn
„c~ t,2l!,F2* ~ t!…#.

Representing] tn
S(c,F* )5( i , j 50

n21 ai j c ixF jx* , we have

52 (
i , j 50

n21

ai j F1,jx* ~ t!Resl@l21 ]x
i c~ t,l!S„c~ t,2l!,F2* ~ t!…#

1 (
i , j 50

n21

ai j F2,jx* ~ t!Resl@l21S„c~ t,l!,F1* ~ t!…]x
i c~ t,2l!#.

These last residues equal„]x
j @F2(t8)2F2(t)#…t5t852F2,jx(t)1d j 0F2(t) and „]x8

j
@F1(t)

2F1(t8)#…t5t852F1,jx(t)1d j 0F1(t), respectively, by virtue of the relation~8!. Hence
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52 (
i , j 50

n21

ai j F1,jx* ~ t!„2F2,ix~ t!1d i0F2~ t!…1 (
i , j 50

n21

ai j F2,jx* ~ t!„2F1,ix~ t!1d i0F1~ t!…,

which—due to the reasoning that leads from~A3! to ~A4!—equals

Stn
~F2 ,F1* !2F2F1,tn

2Stn
~F1 ,F2* !1F1F2,tn

5] tn
V~F1 ,F2!2F2F1,tn

1F1F2,tn
.

Hence, we find that22 f tn
(t)22F1,tn

(t)F2(t)5] tn
V(F1 ,F2)2F2F1,tn

1F1F2,tn
or

f 52 1
2V~F1 ,F2!2 1

2F1F2 .

It then follows that

I ~ t,t8!5F1~ t!F2~ t8!2 1
2V„F1~ t!,F2~ t!…1 1

2V„F1~ t8!,F2~ t8!…2 1
2„F1~ t!F2~ t!

1F1~ t8!F2~ t8!…,

and thus~A1! becomes

Resl@l21c~ t,l!c~ t8,2l!F i„t2e~l!…F j~ t81e~l!…#

5F i~ t!F j~ t8!22V„F i~ t!,F j~ t!…12V„F i~ t8!,F j~ t8!….
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On dimension of the global attractor for damped nonlinear
wave equations
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In this paper, we obtain a more precise estimate of upper bound of the Hausdorff
dimension of the global attractor for damped nonlinear wave equations with the
Dirichlet boundary condition. The obtained Hausdorff dimension decreases as the
damping grows and is uniformly bounded for large damping, which conforms to
physical intuition. © 1999 American Institute of Physics.
@S0022-2488~99!04502-8#

I. INTRODUCTION

Consider the initial-boundary value problem of the damped nonlinear wave equation

utt1aut2Du1 f ~u!5g, xPV, t.0,

u~x,t !uxP]V50, t.0, ~1!

u~x,0!5u0~x!,
]u

]t
~x,0!5u1~x!, xPV,

whereu5u(x,t) is a real-valued function onV3@0,1`), V is an open bounded set ofRn with
a smooth boundary]V, gPL2(V), f (u)PC1(R;R),a.0.

Let G(s)5*0
s f (r )dr. We make the following assumptions on the functionsG(s) and f (s):

~i!

lim
usu→`

inf
G~s!

s2 >0. ~2!

~ii ! There exist two positive constantsc1.0, c2.0 such that

lim
usu→`

inf
s f~s!2c1G~s!

s2 >0, ~3!

and

u f 8~s!u<c2~11usug! with H 0<g,` when n51,2
0<g,2 when n53, ;sPR
g50 when n>4.

~4!

~iii ! There existsd1.0 and for everyM.0 there existsc85c8(M ) such that

a!Electronic mail: nic2601@pop.scuu.edu.cn
14320022-2488/99/40(3)/1432/7/$15.00 © 1999 American Institute of Physics
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u f 8~u1!2 f 8~u2!u<c8iu12u2id1,;u1 ,u2PH0
1~V!,iu1i<M ,iu2i<M , ~5!

whereu•u and i•i denote the norms ofL2(V), H0
1(V), respectively.

Two examples of Eq.~1! are the sine-Gordon equation@i.e., f (u)5sinu# and the equation of
relativistic quantum mechanics (f (u)5uuugu).

For the system~1! with conditions~2!–~5!, Temam1 showed that the continuous semigroup
mappingS(t):$u0 ,u1%°$u,ut%, for t>0 from E5H0

1(V)3L2(V) into itself, defined by system
~1! possesses a global attractor inE and gave an upper bound of the Hausdorff dimension
attractor, but this upper bound is directly proportional to the coefficienta of damping fora
>A2l1 and tends to infinity asa→1`, which is obviously not precise in the physical sen
wherel1.0 is the first eigenvalue of operator2D.

In this paper, we obtain a more strict upper bound of the Hausdorff dimension for the g
attractor by carefully estimating and splitting the positivity of the linear operator in the co
sponding evolution equation of the first order in time. The obtained Hausdorff dimensio
creases as the dampinga grows and is uniformly bounded for largea, which conforms to physica
intuition. The idea of using such a technique originates from Wang and Zhu.2 The main result is
the following theorem.

Theorem 1: If the function f(u) satisfies conditions (2)–(5), then for anya>a0.0, the
Hausdorff dimension dH of the global attractor for system (1) satisfies:

dH<minH lU l PN,
1

l (
j 51

l

l j
21<

2l1a2

k2Aa214l1~a1Aa214l1!
J

<minH lU l PN,
1

l (
j 51

l

l j
21<

2l1a0
2

k2Aa0
214l1~a01Aa0

214l1!
J , ~6!

where$l j% j PN :0,l1<l2<¯<lm<¯ , are the eigenvalues of operator2D with the Dirichlet
boundary condition onV and k5k(a0) is a positive constant.

Particularly, if the condition (4) isu f 8(u)u<k0 , then for anya.0,

dH<minH lU l PN,
1

l (
j 51

l

l j
21<

2l1a2

k0
2Aa214l1~a1Aa214l1!

J . ~7!

Obviously, the upper bound ofdH in ~6! is a decreasing function ofa and remains small for
large dampinga because

h~a!5
2l1a2

k2Aa214l1~a1Aa214l1!

increases asa grows and

lim
l→1`

1

l (
j 51

l

l j
2150, lim

a→1`

2l1a2

k2Aa214l1~a1Aa214l1!
5

l1

k2 .

II. PRELIMINARIES

For convenience, we omit statements of the existence and uniqueness of the solution~1!
which define a continuous semigroup of mapping

S~ t !:$u0 ,u1%°$u,ut% for t>0 ~8!
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from H0
1(V)3L2(V) ~or (H0

1(V)ùH2(V))3H0
1(V)) into itself. We also omite statements of th

existence of the global attractor for the semigroupS(t), t>0 ~see, e.g., Ref. 1 for details!.
It is known that the operatorA52D:D(A)5H0

1(V)ùH2(V)→L2(V) is a self-adjoint posi-
tive linear operator and its eigenvalues$l i% i PN satisfy

0,l1<l2<¯<lm<¯ , lm→1` as m→1`.

Let

E5H0
1~V!3L2~V!, E05D~A!3H0

1~V!,

~u,v !5E
V

uv dx, uuu5~u,u!1/2, ;u,vPL2~V!,

~~u,v !!5E
V

¹u•¹v dx, iui5~~u,u!!1/2, ;u,vPH0
1~V!,

~y1 ,y2!E5~~u1 ,u2!!1~v1 ,v2!, ;yi5~ui ,v i !
TPE, i 51,2,

uyuE5~y,y!E
1/2, ;y5~u,v !TPE

and

~y1 ,y2!E0
5~Au1 ,Au2!1~v1 ,v2!, ;yi5~ui ,v i !

TPE0 , i 51,2,

uyuE0
5~y,y!E0

1/2, ;y5~u,v !TPE0

denote the usual inner products and norms inL2(V), H0
1(V), E, andE0 , respectively.

It is convenient to reduce~1! to an evolution equation of the first order in time. Letw
5(u,v)T, v5u̇1eu, wheree is chosen as

e5
l1a

a214l1
, ~9!

then ~1! can be written as

ẇ1Lw5F~w!, w~0!5~u0 ,u11eu0!, ~10!

where

F~w!5S 0
2 f ~u!1gD , L5S eI 2I

A2e~a2e!I ~a2e!I
D . ~11!

It is easy to see that the semigroup

Se~ t !:~u0 ,u11eu0!T→~u~ t !,ut~ t !1eu~ t !!T, E→E~or E0→E0! ~12!

defined by~10! has the following relation withS(t):

Se~ t !5ReS~ t !R2e , ~13!

whereRe is an isomorphism ofE ~or E0):

Re :$u,v%→$u,v1eu%.
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Since the semigroup$S(t),t>0% defined by~1!–~8! possesses a global attractorb0,E0,E,1

by ~13!, $Se(t),t>0% also possesses a global attractorb5Reb0 . Moreover,b and b0 have the
same dimension. So we need consider the equivalent system~10! only. First, we give a property
concerning the positivity of the linear operatorL, which plays the center role in this article.

Lemma 1: For anyw5(u,v)TPE,

~Lw,w!E>suwuE
21

a

2
uvu2, ~14!

where

s5
l1a

Aa214l1~a1Aa214l1!
. ~15!

Proof: Since

~Lw,w!E2suwuE
22

a

2
uvu25~e2s!iui21S a

2
2e2s D uvu22e~a2e!~u,v !

>~e2s!iui21S a

2
2e2s D uvu22

ea

Al1

iui•uvu

and simple computation by~9! and ~15! shows

4~e2s!S a

2
2e2s D5

e2a2

l1
.

Thus, the proof is completed.
In this section, we supposea>a0.0, and we will show that the bounds of the global attrac

of system~10! in the spacesE andE0 depend on the constanta0 only.
We write Ḡ(u)5*VG(u)dx. Taking the inner product (•,•)E of ~10! with w5(u,v)T in

which v5ut1eu, we find

1

2

d

dt
@ uwuE

212Ḡ~u!#1~Lw,w!E1e~ f ~u!,u!5~g,v !. ~16!

By ~2!, ~3! and the Poincare´ inequality, there exist two positive constantsk1 ,k2>0 such that

Ḡ~u!1k1>2 1
4iui2, ;uPH0

1~V!, ~17!

~u, f ~u!!>c1Ḡ~u!2 1
4iui22k2 , ;uPH0

1~V!. ~18!

It is easy to see from~9! and ~15! that

s5
Aa214l1

a1Aa214l1

e,

i.e.,

1
2e,s,e. ~19!

Let
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y5uwuE
212Ḡ~u!12k1>by ~17!> 1

2uwuE
2>0. ~20!

By ~14!, ~16!, ~17! and ~18!,

d

dt
y1b1y<

1

a
ugu212e~c1k11k2!, ~21!

where

b15 1
2eu,u5min~1,2c1!5H 1 when c1> 1

2

2c1 when 0,c1, 1
2.

~22!

By the Gronwall inequality,~20! and ~21!,

uwuE
2<2y~ t !<2y~0!exp~2b1t !1S 4

aeu
ugu21

8~c1k11k2!

u D @12exp~2b1t !# ~23!

and

lim
t→1`

supuwuE
2<

4

aeu
ugu21

8~c1k11k2!

u
5M ~a!. ~24!

By ~24! and ~9!,

M ~a!5
4

u S a214l1

l1a2 12~c1k11k2! D .

SinceM (a) is a decreasing continuous function ofa on @a01`) and

lim
a→1`

M ~a!5
4

u S 1

l1
12~c1k11k2! D,1`,

so, there exists a positive constant

M05M0~a0!5
4

u S a0
214l1

l1a0
2 12~c1k11k2! D

such that

M ~a!<M0 , ;aP@a0 ,1`!. ~25!

We infer from~24! and~25! that the ball ofE, B05BE(0,2M0), centered at 0 of radius 2M0 ,
is an absorbing set inE for the semigroupSe(t), t>0. So, the global attractorb is included in the
bounded ballB0 . We also knew from Ref. 1 that if the set of all continuous and bounded funct
from R1 into the Hilbert spaceX is denoted byCb(R1 ,X), then any solutionw5(u,v)T in
Cb(R1 ,E) of system~10! belongs toCb(R1 ,E0), and the norm ofw in Cb(R1 ,E0) is majorized
by a bounded function ofu f u1uwuE independent of the parametera. Hence, the global attractorb
is included in a bounded ball inE0 which depends ona0 only, that is, there exists a consta
M15M1(a0).0 such that

uwuE0
5~ uAuu21uvu2!1/2<M1 , ;w5~u,v !TPb. ~26!
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III. PROOF OF THEOREM 1

To estimate the Hausdorff dimension of the global attractorb for ~10! in E, we consider the
first variation equation of~10!,

C852LC1F8~w!C, C~0!5~j,h!TPE, ~27!

whereC5(U,V)TPE, andw5(u,v)T is a solution of~10! and

F8~w!5S 0 0

2 f 8~u! 0D . ~28!

Lemma 2: The system (27) is a well-posed problem in E, the mapping Se(t) defined by (10) is
Fréchet differentiable on E for any t.0, its differential atw5(u0 ,u11eu0)T is the linear opera-
tor on E,(j,h)T°(U(t),V(t))T, where(U,V)T is the solution of (27).

Proof: It is a direct consequence of~13! and lemma VI.6.1 in Ref. 1.
Lemma 3: For any orthonormal family of elements of E,$(j j ,h j )

T% j 51
l , we have

(
j 51

l

uj j u2<(
j 51

l

l j
21. ~29!

Proof: See lemma VI.6.3. in Ref. 1.
Lemma 4: Consider the system (10). LetF denote a set of l vectors$F1 ,F2 ,...,F l% which are

orthonormal in E. If

sup
F,E

sup
wPb

(
i 51

l

~~2L1F8~w!!F i ,F i !E<0, ~30!

then the Hausdorff dimension of the global attractorb is less than or equal to l.
Proof: This is a direct consequence of theorem V.3.3, Eqs.~V.3.47!–~V.3.49! and identity

~VI.6.24! of Ref. 1.
Lemma 5: If the function f(u) satisfies the conditions (2), (3), (4), (5), then for anya>a0

.0, the Hausdorff dimension dH(b) of b for system (10) in E satisfies

dH~b!<minH lU l PN,
1

l (
j 51

l

l j
21<

2as

k2 J , ~31!

where k5k(a0) is a positive constant dependinga0 only.
Proof: Let l PN be fixed. Considerl solutionsC1 ,C2 ,...,C l of ~27!. At a given timet, let

Ql(t) denote the orthogonal projection inE onto the space spanned byC1 ,C2 ,...,C l . Let
F j (t)5(j j ,h j )

TPE, j 51,2,...,l , be an orthonormal basis of

Ql~t!E5span$C1~t!,C2~t!,...,C l~t!%.

From ~14! and uF j uE51, we have

2~LF j ,F j !E<2s2
a

2
uh j u2. ~32!

By ~26!,

uAuu<M1 , ;uPD~A!ùb5~H2~V!ùH0
1~V!!ùb. ~33!

By ~4!, ~33! and Sobolev embedding theorem, there exists a constantk5k(a0).0 ~which is
independent ofa! such that
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sup
uPD~A!ùb

u f 8~u!uC~H
0
1~V!,L2~V!!<k,1`. ~34!

Thus by~28! and ~34!,

~F8~w!F j ,F j !E5~2 f 8~u!j j ,h j !<kuj j u•uh j u<
k2

2a
uj j u21

a

2
uh j u2, ;w5~u,v !Pb. ~35!

Hence,

sup
wPb

(
i 51

l

~~2L1F8~w!!F i ,F i !E<by ~32! and ~35!

<2 ls1
k2

2a (
j 51

l

uj j u2

<by ~29!

<2
lk2

2a S 2as

k2 2
1

l (
j 51

l

l j
21D . ~36!

If

1

l (
j 51

l

l j
21<

2as

k2 ,

then by~36!,

sup
wPb

(
i 51

l

~~2L1F8~w!!F i ,F i !E<0.

By lemma 4, the proof is completed.
Combining with lemma 5 and~15!, we complete the proof of theorem 1.

1R. Témam, ‘‘Infinite-dimensional dynamical systems in mechanics and physics,’’Applied Mathematical Sciences, Vol.
68 ~Springer, New York, 1988!.

2G. Wang and S. Zhu, ‘‘On dimension of the global attractor for damped sine-Gordon equation,’’ J. Math. Phys.~to be
published!.
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Analytical study of fractionally charged solitons in a
one-dimensional trimerized electron–phonon system

Ryōen Shirasaki
Department of Physics, Faculty of Engineering, Yokohama National University,
79-5 Tokiwadai Hodogaya-ku, Yokohama 240-8501, Japan

Kaoru Iwano
Institute of Materials Structure Science, High Energy Accelerator Research Organization,
1-1 Oho, Tsukuba 305-0801, Japan

~Received 5 June 1998; accepted for publication 8 December 1998!

The fractionally charged solitons in a trimerized electron–phonon system are stud-
ied by both analytical and numerical methods. To make those methods possible, an
effective Lagrangian is derived by diagrammatic calculations. It is found that this
Lagrangian is similar to that derived by the so-called derivative expansion. Both the
phase and amplitude parts of the complex order parameter are included in the
Lagrangian, and here we particularly focus on the nonlinear coupling between
them. When the electron–phonon coupling is very weak, the aforementioned cou-
pling is also weak, and so the soliton is almost considered to be a pure phase soliton
with a constant amplitude. While, in the intermediate electron–phonon coupling
case, the two parts of the order parameter are nonlinearly coupled. As a result, the
soliton changes its pattern from that of a phase soliton to a strongly amplitude-
deformed one. Our both methods, i.e., the analytical and numerical ones, succeed in
giving such changes as gradual ones. Moreover, the coincidence of the two results
is also good at a quantitative level. ©1999 American Institute of Physics.
@S0022-2488~99!01703-X#

I. INTRODUCTION

The one-dimensional electron–phonon system is an interesting system to which many
retical and the experimental investigations are devoted. This is one of the most ideal sy
which bear nonlinear excitations such as solitons, polarons, and so on. They can be describ
well, for example, by the SSH model that was proposed by Suet al.1 This model contains the
electron–phonon interaction in addition to electron hopping and lattice vibrations. Takayamaet al.
proposed the TLM model, which is a continuum version of the SSH model in the half-filling
and makes the analytical study of nonlinear excitations possible.2

A simpler model for analytical study of the one-dimensional electron–phonon system
Fröhlich model.3 The difference from the SSH model is in the momentum dependence o
electron–phonon coupling. While the coupling depends on both the transfer momentum a
initial momentum in the SSH model, it is simply constant in this model. The model has
analyzed by many authors. For example, Horovitzet al. studied the dynamical equation of bo
the phase and the amplitude of the complex order parameter in the commensurate case, u
self-consistent equation between electron- and phonon-degrees of freedom given by the F¨hlich
model.4 They derived an effective Lagrangian which can be considered as the sine-Gordon m
and obtained the phase soliton solution. Grabowskiet al. solved the effective Lagrangia
numerically.5 The soliton of the sine-Gordon model was investigated in various systems.6 The
soliton appears as the spatial connection between the degenerate energy minimum point
cosine potential. In the electron–phonon system, the local density of electron charge is repre
by the spatial variation of the phase variable. The phase soliton in the trimerized syste
fractionally charges (62/3e).
14390022-2488/99/40(3)/1439/27/$15.00 © 1999 American Institute of Physics
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Iwanoet al. also investigated the Fro¨hlich model in the trimerized case using the Eilenberg
equation which had been formulated in the study of the superconductivity in strong-cou
cases.7 At a particular value for the coupling constantl, the Eilenberger equation has an exa
solution. They found that the coupling between the phase and the amplitude is non-neglig
cause a large distortion in the latter. Their result showed that the soliton in the commensura
away from the half-filling system should be considered as a complex in which the two degr
freedom are entangled rather than a simple phase soliton.

In the present paper, we study the fractionally charged soliton using the effective Lagra
of the trimerized system. We apply another method to derive the effective Lagrangian, whic
some differences from that given in Ref. 4. The solution is investigated classical mechan
using both an analytical perturbational calculation and a numerical calculation introducing a
tional functional. We will show that the fractionally charged soliton has a complicated beh
which is consistent with the result given by the preceding work.

II. THE FRÖLICH MODEL

A. General formalism for a trimerized electron–phonon system

The Hamiltonian of the one-dimensional Fro¨hlich system of lengthL5Na is given by

K5H2mNe5(
k,s

~ek2m!Ck,s
† Ck,s2

i

AN
(

q
(
k,s

g~bq1b2q
† !Ck1q,s

† Ck,s1(
q

vQbq
†bq . ~1!

The first term is the free electron part, wherem is the chemical potential, andNe is the total
number of electrons. Here we consider a tight-binding band of electrons as

ek52W coska. ~2!

This band is1
3 filled with electrons. The second term represents the electron–phonon cou

Since this is the Fro¨lich model, the coupling factorg is now constant with no momentum depe
dence. The last term is the free phonon term.vQ is the phonon frequency for the wave number
2kF , wherekF is the wave number of electron at the Fermi level.

Introducing the three component electronic fieldcs(x) and the lattice displacement operat
u(x) by

cs~x!5S fs
~1!~x!

fs
~2!~x!

fs
~3!~x!

D 5
1

AL
(

2kF<k,kF
S CkF1k,s

C2kF1k,s

C3kF1k,s

D eikx , ~3!

and

u~x!52
i

AN
(

2kF<q,kF

~b2kF1q
1b22kF2q

† !eiqx. ~4!

Equation~1! is rewritten as follows:

K5Hu1Hc2~ 1
21m!Ne , ~5!

with

Hu5
g2

2lpvFvQ
2 E ~ uu̇~x!u21vQ

2 uu~x!u2!, ~6!

and
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Hc5(
s
E dxcs

†~x!Hecs~x!, ~7!

where

He5S 2 ivF]x 0 0

0 ivF]x 0

0 0 WS 3

2
1

a2

2
]x

2D D 1gS 0 u~x! u* ~x!

u* ~x! 0 u~x!

u~x! u* ~x! 0
D . ~8!

Hu in Eq. ~5! is the contribution from the lattice elastic energy given by the last term of Eq.~1!.
In the case of the trimerized system, the Fermi level is nearly equal to2W/2. We takem as
2W/2. The parameters are defined by

l5
ag2

pvFvQ
, ~9!

and the Fermi velocity of electron is given by

vF5
)

2
Wa. ~10!

In the following of this section, we concentrate our mind to obtain an effective potential o
lattice dynamics, performing renormalizations of the three component electronic field. Firs
troducing a two-component electronic fieldfs(x), and the amplitudeD(x) and the phaseu(x) of
the phonon field by

fs~x!5S fs
~1!~x!

fs
~2!~x! D , ~11!

and

D~x!eiu~x!5gu~x!, ~12!

respectively.Hc is rewritten as

Hc52(
s

ivFE dxfs
†~x!]xs3fs~x!

1E dxfs
†~x!H D~x!S 0 eiu~x!

e2 iu~x! 0 D 2
2

3W
D~x!2S 1 e22iu~x!

e2iu~x! 1 D J fs~x!

1E dxS 2

3WU3W

2
fs

~3!~x!1D~x!~fs
~1!~x!eiu~x!1fs

~2!~x!e2 iu~x!!U2

1fs
~3!*

Wa2

2
]x

2fs
~3!~x! D .

~13!

Replacingfs
(3)(x) by ws(x)5fs

(3)(x)2@2D(x)/3W#(fs
(1)(x)eiu(x)1fs

(2)(x)e2 iu(x)), and using
thatfs

(3)(x) varies slowly in the scale of the correlation lengthj5vF /uDu, the third and the fourth
lines in the right-hand side of Eq.~13! are rewritten again as

E dxw~x!S 3W

2
1

Wa2

2
]x

2Dw~x!1OS DS a

j D 2K ]2

]~x/j!2L D . ~14!
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Equation~14! means that the influence ofD andu onfs
(3)(x) is sufficiently small. Then, we totally

neglect the contribution offs
(3)(x) in the following.

To estimate the effective potential from the Hamiltonian in Eq.~13!, we consider the partition
function, which is defined by

Z5E DurDui S)
s

Dfs
†DfsDe2*Ldt, ~15!

whereur andui are the real and imaginary parts of the fieldu(x), respectively. Then,L is written
as

L5LD
0 1Lf , ~16!

where

LD
0 5

1

2pvFlvQ
2 E dxH S ]D~x!

]t D 2

1D~x!2S ]u~x!

]t D 2

1vQ
2 D2~x!J , ~17!

and

Lf5(
s
E dxfs

†~x!
]fs~x!

]t
1(

s
E dxfs

†~x!@2 ivFs3]x#fs~x!

1(
s
E dxfs

†~x!H 2
2D~x!2

3W S 1 0

0 1D 1S 0 D~x!

D* ~x! 0 D J fs~x!. ~18!

Here]/~]t! is the derivatives with respect to the imaginary timet. A new fieldD(x) is introduced
by

D~x!5D~x!eiu~x!2
2

3W
D~x!2e22iu~x!. ~19!

Using the phase ofD(x), we can introduce the chiral transformation8

f̃s~x!5e2~ i/2!x~x!s3fs~x!, ~20!

wherex(x) is the phase of the complex variableD(x), namely,

D~x!5A~x!eix~x!, ~21!

with

A~x!5uD~x!u5AD~x!21S 2D~x!2

3W D 2

2
4

3W
D~x!3 cos 3u~x!. ~22!

Substituting Eq.~20! into Eq. ~18!, the Lagrangian for the scalar fieldsD(x), u(x), and the
electronic fieldf̃s is given by

L5LD
0 1L

f̃

0
1HI , ~23!

with

L
f̃

0
5(

s
E dxf̃s

†~x!
]f̃s~x!

]t
1(

s
E dxf̃s

†~x!@2 ivFs3]x#f̃s~x!, ~24!
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and

HI5(
s
E dxf̃s

†~x!H vF

2

]x~x!

]x
I 1 i

]x~x!

]t

s3

2
2

2

3W
D~x!2I 1A~x!s1J f̃s~x!. ~25!

In the path integration, the Jacobian](fs
† ,fs)/](f̃s

† ,f̃s) appears by the chiral transformatio
This factor is explained physically by Fujikawa.9 Let us consider the path integration at the ze
temperature. Introducing the external electromagnetic field (w,vFAx)5(2 iA0 ,A1), and the Eu-
clidian space-time (x0,x1)5(it,x/vF), the space and time derivatives are rewritten in the cov
ant forms as10

2 ivF

]

]x
→2 i~]11 ieA1!, ~26!

and

i
]

]t
→2~]01 ieA0!, ~27!

where] i denotes the differentiation with respect toxi . The Jacobian is obtained by the gau
invariant regularization of the divergent integrals.9,11 It is given by

]~fs
† ,fs!

]~f̃s
† ,f̃s!

5expS 2 i
e

2p
E

2`

` E
2`

`

x~x!F01~x!dx1dx0D , ~28!

where

F015
]A1

]x02
]A0

]x1 5 ivFE~x!, ~29!

is the electric field.
Therefore, taking care of the spin degeneracy, we should examine the partition funct

finite temperatures,

Z5E DurDuiDf̃s
†Df̃s expH e

p E
0

bE x~x!E~x!dxdt2E
0

b

LdtJ
5Z0K Tt expS e

p E
0

bE x~x!E~x!dxdt2E
0

b

HIdt D L , ~30!

where^¯& means a thermal average with respect to the unperturbed Lagrangian. MoreoverHI is
the perturbation term given by Eq.~25!, and Z0 is the partition function of the unperturbe
Lagrangian in which the influences of the external electromagnetic field and the electron–p
coupling are excluded.

Equation~30! suggests that2(e/p)(]x/]x) corresponds to the local charge density, and
dynamics of the order parameter involves variation of the charge distribution. This result wa
derived by the study of the charge- and spin-density-waves in a one-dimensional el
system.12

B. The effective potential

Equation~25! has some analogy with the Takayama–Lin–Liu–Maki~TLM ! model. Thes1

coupling term in Eq.~25! appears in the same manner with the electron-lattice coupling term i
TLM model, whereas thes3 and I coupling terms are peculiar to this model. The effect
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potential for the TLM model was derived by the derivative expansion of the electron G
function by Horovitset al.4 While, it is by our method derived by estimating the partition functi
of the TLM model, which comes back to the calculation of the connected loop diagrams
respect to the electron–phonon coupling.13 By a renormalization, the effective Lagrangian at t
zero temperature limit is given by

LR5
1

2pvFlvQ
2 E dx~Ḋ~x!21vQ

2 D~x!2!1
1

2pvF
E dxD~x!2 lnS U D~x!

2Le1/2U2D
1

1

pvF
E dxD~x!SA11g1

2

g1
sinh21 g121DD~x!

1 (
n53

`
1

n E dxE dx1¯E dxn21S )
j 51

n21

d~x2xj !D
3Dn~x,x1 ,...,xn21!h~x!S )

i 51

n21

h~xi !D , ~31!

where

h~x!5D~x!2D0 , ~32!

and

g152 i
vF

2D0

]

]x
. ~33!

HereDn(x,x1 ,...,xn21) is a function of derivatives with respect tox,...,xn21 , andL is the cut off
energy of the electron band.D0 is a half-width of the electron band gap at the Fermi level.

Comparing Eq.~25! and the TLM model, we find that the termf̃s
†(x)A(x)s1f̃s(x) has a

similar contribution to the coupling term between the phonon fieldD(x) and the electronic one in
the TLM model. Now, let us estimate the effective potential which is given by the renormaliz
of the electronic part Eqs.~24! and~25!. The terms in which the differentials of scalar fieldsD(x)
andu(x) do not appear are given by replacingD(x) with A(x), as

2
1

2pvF
E dxA~x!2S 2 lnUA~x!

2W̄
U21D , ~34!

whereW̄ is the energy cut off of the lowest electron band. The remainder in which the differen
directly appear, for example, the contribution which come from the second-order loop dia
~Figs. 1 and 2! is given by

FIG. 1. The loop diagrams which contribute to the effective potential for the lattice distortion. The continuou
represents an electron Green function and the solid circle corresponds to the vertex.
                                                                                                                



ntum
der of
e and
ian at

1445J. Math. Phys., Vol. 40, No. 3, March 1999 R. Shirasaki and K. Iwano

                    
2
1

pvF
E dxA~x!SA11g2

g
sinh21 g21DA~x!

2
1

pvF
E dxS 2D~x!2

3W
2

vF

2

]x~x!

]x D S sinh21 g

gA11g2D S 2D~x!2

3W
2

vF

2

]x~x!

]x D , ~35!

as shown in Appendix A. In the calculation, we drop the time-dependency of the mome
transfer, which corresponds to an adiabatic approximation. We omit small terms of the or
D2/W2 and contributions which come from higher-order derivatives with respect to the spac
the imaginary time than the second-order ones. Totally, the renormalized form of Lagrang
the zero temperature limit is

Leff5LD
0 2U, ~36!

where

U52
vF

4p
E dxS ]x~x!

]x
D 2

1
1

p
E dx

2D~x!2

3W

]x~x!

]x

2
1

2pvF
E dxA~x!2S 2 lnUA~x!

2W̄
U21D 2

1

pvF
E dxA~x!S g2

3
D A~x!. ~37!

The operatorg is given by Eq.~A19!. The partition function is rewritten as

Z5E DurDui expH e

p E
0

bE x~x!E~x!dxdt2E
0

b

Leff dtJ . ~38!

In Eq. ~38!, we takeT→0, i.e.,b51/T→`.

III. CHARGE-DENSITY-WAVE STATE

First, let us consider the charge-density-wave ground state. This is the case where

D~x!5D15const, ~39!

and

u~x!5u15const. ~40!

Substituting Eqs.~39! and~40! into Eq. ~37!, we can see that the energy minimum point (D1 ,u1)
satisfies the equation

05
1

l
1 lnUS A0

W D 2UF11
8D1

2

9W22
2D1

W
cos 3u1G , ~41!

and

FIG. 2. The second-order loop diagram. This diagram has a momentum transferq between the electron and the lattice.
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05sin 3u1 , ~42!

where

A0
25D1

21S 2D1
2

3W D 2

2
4D1

3

3W
cos 3u1 . ~43!

Then, using the solutiont of the equation

1

l
1S 112t1

8

9
t2D lnUt2S 11

2

3
t D 2U50, ~44!

u1 andD1 at the minimum point are given by

u15
np

3
, ~n561,63,...,6~2n11!,...!,

and

D15Wt. ~45!

In weak coupling cases, namely, at smalll, t is much smaller than 1. For further analysis, w
assume the following two conditions for the model:

~1! D(x) is much smaller thanW.
~2! The differentiation ofD(x) andu(x) with respect to the space variablex are quantities of the

order ofO(D1 /j0) andO(1/j0), respectively.

j0 is a correlation length which is written as

j05
vF

D1
. ~46!

Then, we can make approximations, that are,

A~x!2.D~x!22
4D~x!3

3W
cos 3u~x!, ~47!

A11g2

g
sinh21 g21.

1

3
g252

1

12S vF

D1
D 2 ]2

]x2 , ~48!

lnUA~x!

W U2

. lnUD~x!2

W2 U2 4D~x!

3W
cos 3u~x!, ~49!

and

]x~x!

]x
5

u~x!8S 11
2D~x!

3W
cos 3u~x!2

8D~x!2

9W2 D1
2D~x!8

3W
sin 3u~x!

S 12
2D~x!

3W D 2

2
4D~x!

3W
~cos 3u~x!21!

.u~x!8S 11
2D~x!

W
cos 3u~x! D1

2D~x!8

3W
sinu~x!. ~50!
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Using Eq.~45!, Eq. ~44! is rewritten as,

lnutu52
1

2l S 112t1
8

9
t2D 21

2 lnS 11
2

3
t D.e2

1

2l
2

2

3
t1O~ t2!. ~51!

Here, we introducee by

e5
t

l
5

D1

Wl
. ~52!

In Fig. 3, we plot e as the function ofl. In the weak coupling limit,t is nearly equal to
exp(21/2l), and the parametere approaches to zero as

e.
e2~1/2l!

l
→0. ~53!

As is seen in Fig. 3,e varies from 0 to 0.6 asl changes from 0 to 0.19.
Using Eq.~37! and Eqs.~47!–~52!, the total Lagrangian is given by

Leff5Leff
0 1tLeff

1 1O~ t2!, ~54!

where

Leff
0 5

1

2pvFlvQ
2 E dxḊ~x!21

1

2pvFlvQ
2 E dxH D~x!2u̇~x!21

lvQ
2 vF

2

2 S ]u~x!

]x D 2J
1

1

12pvF
S vF

D1
D 2E dxS ]D~x!

]x D 2

1
1

2pvF
E dxFD~x!2S lnUD~x!2

D1
2 U21D G

1
e

pvF
E dxD~x!2S 11

2D~x!

3D1
cos~3u~x!! D , ~55!

and

FIG. 3. Thel dependence ofe. It varies monotonically from 0 to 0.6 whenl changes from 0 to 0.2.
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Leff
1 5

1

2pvF
E dxS D~x!

D1
u̇~x!2 cos~3u~x!!1

1

3D1
sin~3u~x!!Ḋ~x!u̇~x! D

1
1

3pvF
S vF

D1
D 2E dxH D~x!2

D1
sin~3u~x!!S ]D~x!

]x D S ]u~x!

]x D2
2D~x!cos~3u~x!!

3D1
S ]D~x!

]x D 2J
1

vF

p E dxH D~x!

D1
cos~3u~x!!S ]u~x!

]x D 2

1
sin~3u~x!!

3D1
S ]u~x!

]x D S ]D~x!

]x D J
2

1

p E dx
2D~x!2

3D1
S ]u~x!

]x D1
2

3pvF
E dxD~x!2

2
2

3pvF
E dx

D~x!3

D1
cos~3u~x!!lnUD~x!2

D1
2 U. ~56!

Here it is expanded up to the first-order with respect tot5D1 /W. The derivatives with respect to
the imaginary time]/]t are denoted by dots. The part of the second and fifth lines in Eq.~55! is
the same as the sine-Gordon model. While, the first, the third, and the fourth lines in Eq.~55! give
a part which is related to the dynamics of the amplitude. The whole part ofLeff

1 and the last line
in Eq. ~55! can be considered as the interaction terms between the phaseu(x) and the amplitude
D(x). We can therefore say that Eq.~54! is an extended version of the sine-Gordon model.

Sincet in Eq. ~45! is much smaller than the unity, the variablex(x), which is given by Eqs.
~19! and ~21!, is nearly equal tou(x). At the energy minimum point, the variablex(x) gets the
same value asu(x).

The effective potential in Eq.~55! is also derived by Horovitzet al. In that derivation, they
considered a self-consistent equation of the order parameter including the lattice dynamic
model has the same interaction term as theirs except for the difference in the multiplying f
The other discrepancy which is found remarkably is that in the form of the derivative terms
model of Horovitzet al. contained terms with the derivatives (]D)2/D(x)2, which is given by the
expansion calculation of the electron Green function with respect to (]D(x))/D(x). On the other
hand, we have used perturbation calculation with respect toh(x)/D1 , ]h(x)/D1 , ]2h(x)/D1 ,...,
and so on. Then, the derivatives appear in the form of (]D(x))/D1 . This difference is important
whenD(x) deviates substantially fromD1 .

IV. SOLITON IN THE TRIMERIZED SYSTEM

A. Soliton solution

The Lagrangian in Eq.~55! bears soliton solutions connecting the degenerated minim
points of the cosine potential, namely,u(x)5(2n11)p/3 for integern. This corresponds to the
fractionally charged soliton. The soliton charge is determined by

E
2`

`

dxS 2
e

p

]x~x!

]x D52
e

p
~x~`!2x~2`!!. ~57!

Whenu(x) varies from2p/3 to p/3, or vice versa the variablex(x) varies by 2p/3 or 22p/3.
Then, these soliton carry72/3e charge.

Soliton solutions in electron–phonon systems were investigated using the
Hamiltonian.14 The solution discussed by that Hamiltonian contained only the dynamics o
phase. However, in the numerical calculation, it was shown that the fractionally charged s
had both the phase and amplitude degrees of freedom. For example, the soliton solution
SSH model was numerically discussed by Onoet al.15 The fractionally charged soliton in th
trimerized case was analyzed, and it was found that the distortion of the amplitude wa
accompanying. The soliton in the Fro¨lich model was also investigated both analytically a
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numerically.7,16 At a certain finite electron–phonon coupling, the soliton in the Fro¨lich model
showed a trajectory almost like a straight line in the complex plane of the variableu(x).

In the present section, the analytical form of the fractionally charged soliton is studie
rather general values of the electron–phonon coupling. We propose the particular method t
the reductive perturbational calculation possible.

Replacing the imaginary time with the real time, the effective Lagrangian in Eq.~55! gives
straightforwardly the dynamical equation

1

lvQ
2 ~D̈~x!2D~x!u̇~x!2!5

j0
2

6
D9~x!22D~x!lnUD~x!

D1
U22D~x!S D~x!

D1
cos 3u~x!11D e,

~58!

and

1

lvQ
2 S 2

Ḋ~x!D~x!u̇~x!

D1
2 1

D~x!2

D1
2 ü~x!D 5

j0
2

2
u9~x!12eS D~x!

D1
D 3

sin 3u~x!. ~59!

Equation~59! is the same as that of the sine-Gordon model, which has nonlinear excita
such as a soliton. The last term in the r.h.s. of Eq.~58! is considered as the coupling term betwe
u(x) andD(x), which causes the local distortion inD(x) influenced by the kink distortion in the
phase mode.

We will study the effect of the interaction term for various strengths of the electron–ph

coupling. Consider the stationally case,Ḋ(x)50, u̇(x)50. Introducing the space variableX in-
stead ofx as

X5
2A3e

j0
x, ~60!

the equations are rewritten as follows:

052D~x!lnUD~x!

D1
U1eH ]2D~x!

]X2 2D~x!S D~x!

D1
cos 3u~x!11D J , ~61!

and

05
]2~3u~x!!

]X2 1
D~x!3

D1
3 sin 3u~x!. ~62!

Sincee→0 asl becomes 0,e can be considered as the expansion parameter in the w
coupling case. The unperturbed equation forD(x) gives

D~x!5D15const. ~63!

Thus, the unperturbed equation foru(x) gives the sine-Gordon equation,

05
]2~3u~x!!

]X2 1sin 3u~x!. ~64!

Equation~64! has the soliton solution,

3u0~x!5p14 tan21~e6X!. ~65!

This represents a soliton connecting the energy minimum pointsu(x)5p/3 andu(x)5p.
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B. Perturbational expansion in the weak coupling limit

Starting from Eq.~65!, we make a perturbational calculation. From now on, we take the
sign in Eq.~65!. SinceD(x).0, we introduced(x) by

D~x!5D1ed~x!, ~66!

the functiond(x) is zero in the weak-coupling limit, namely,e50.
We introduce the deviation ofu(x) from u0(x) by

3u~x!53u0~x!12 tan21 v~x!, ~67!

wherev(x) is a function which is a zero ate50. Using Eq.~67!, the cosine and the sine ofu(x)
are given by

cos 3u~x!5cos 3u0~x!
12v2~x!

11v2~x!
2sin 3u0~x!

2v~x!

11v2~x!
, ~68!

and

sin 3u~x!5sin 3u0~x!
12v2~x!

11v2~x!
1cos 3u0~x!

2v~x!

11v2~x!
. ~69!

Substituting Eqs.~66!–~69! into Eqs.~61! and ~62!, we obtain

05e~]X
2d~x!1~]Xd~x!!2!2d~x!

2eS ed~x! cos~3u0~x!!
12v2~x!

11v2~x!
2ed~x! sin~3u0~x!!

2v~x!

11v2~x!
11D , ~70!

and

05]X
2~3u0~x!!12

]X
2v~x!

11v~x!22
4v~x!

~11v~x!2!2 ~]Xv~x!!21cos 3u 0~x!
2v~x!

11v~x!2 e3d~x!

1sin 3u 0~x!
12v~x!2

11v~x!2 e3d~x!, ~71!

where]X denotes the differential with respect toX. In the weak coupling limit, Eq.~71! becomes
Eq. ~64!.

In the weak-coupling cases, withl,0.13, we have

e,0.2. ~72!

Then, the ordinary perturbational method is applicable. We make expansions of the functiond(x)
andv(x) as

d~x!5ed1~x!1e2d2~x!1¯ , ~73!

and

v~x!5ev1~x!1e2v2~x!1¯ . ~74!

Comparing the first-order terms with respect toe, we obtain the first-order perturbational equ
tions,

052d1~x!2~11cos 3u0~x!!, ~75!
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and

052~]X
2v1~x!1v1~x!cos 3u0~x!!13d1~x!sin 3u0~x!. ~76!

The second-order terms with respect toe give the second-order equations,

05]X
2d1~x!2d2~x!2~d1~x!cos 3u0~x!22v1~x!sin 3u0~x!!, ~77!

and

05sin 3u0~x!~3d2~x!1 9
2d1~x!222v1~x!2!12]X

2v2~x!12~v2~x!13d1~x!v1~x!!cos 3u0~x!.
~78!

Substituting the unperturbed solution in Eq.~65! into Eq. ~75! and, using the relations

cos 3u0~x!5
2

cosh2 X
21, ~79!

and

sin 3u0~x!52
tanhX

coshX
, ~80!

we obtain

d1~x!52
2

cosh2 X
. ~81!

Using Eq.~81!, we can confirm from the direct substitution that the solution of Eq.~76! is given
by ~Appendix B!

v1~x!52
3

2

tanhX

coshX
. ~82!

Next, substituting Eqs.~79!, ~80!, ~81!, and~82! into Eq. ~77!, d2(x) is given by

d2~x!52
16

cosh2 X
1

22

cosh4 X
. ~83!

Using Eqs.~79!–~82!, we confirm from the direct substitution that the solution of Eq.~78! is given
by ~Appendix B!

v2~x!5
tanhX

coshX S 71

12

1

cosh2 X
2

85

24D . ~84!

Totally, v(x) is explicitly given up to the second order with respect toe by

d~x!52
2e116e2

cosh2 X
1

22e2

cosh4 X
1O~e3!, ~85!

and

v~x!5
tanhX

coshX S S 2
3

2
e2

85

24
e2D1

71

12
e2

1

cosh2 XD1O~e3!. ~86!
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In Fig. 4, we show the behaviors ofD(x) andu(x) as functions of the space variableX. For l
Þ0, the amplitude is slightly deformed around the soliton center. Asl becomes larger, the
distortion in the amplitude becomes larger, whereas the kink distortion of the phaseu(X) varies
little. The soliton width varies asj}1/(tAe) at smalll.

We plot trajectories of the soliton in the complex plane ofgu(x) in Fig. 5. Whenl is 0.1, the
distortion form ofu(x) is unusual. Sincel50.15 corresponds toe50.3, more than second-orde
terms give the same contribution as the first-order terms because the exponent 3d.3e in exp(3d)
of Eq. ~71! becomes the order of unity. It belongs to a case where the ordinary perturbation
proper for analyzing a soliton.

C. Solution for e>0.2

Let us consider the case where

0.2,e,0.6, ~87!

which corresponds to

0.13,l,0.19. ~88!

Because the ordinary reductive perturbational method is not suitable for the condition
~87!, a particular analytical method is necessary.

Considering Eqs.~67! and ~82!, u(x) is rewritten as follows:

FIG. 4. The spatial change of the order parameter in the soliton configuration obtained by the reductive pertur
method.~a! is D(x) and ~b! is u(x). They are obtained atl50.1 ~the solid line!, l50.12 ~the dotted line!, and l
50.13 ~the rough dotted line!.
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3u~x!.p12 tan21~eX1c!12 tan21~eX2c!1O~e2!, ~89!

where we introducec as the parameter which satisfies the condition,

c253e1O~e2!. ~90!

We apply a perturbational method using Eq.~89! as the unperturbed part. The deviationt(X)
should be introduced by

3u~x!5
3u0~X1c!13u0~X2c!

2
12 tan21 t~X!53u1~X!12 tan21 t~X!. ~91!

Then, the equation is rewritten as follows:

05e~]X
2d~X!1~]Xd~X!!2!

2d~X!2eH 11ed~X!S cos~3u1~X!!
12t2~X!

11t2~X!
2sin~3u1~X!!

2t~X!

11t2~X! D J ~92!

and

FIG. 5. The soliton configuration obtained by the reductive perturbational method. The order parameter is drawn
trajectory in a complex plane ofD(x)exp(iu(x)). The coupling constants are selected asl50.1 ~the solid line!, l
50.11 ~the broken line!, l50.12 ~the dotted line!, andl50.13 ~the rough dotted line!.
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05]X
2~3u1~X!!12

]X
2 t~X!

11t~X!22
4t~X!

~11t~X!2!2 ~]Xt~X!!2

1cos~3u1~X!!
2t~X!

11t~X!2 e3d~X!1sin 3u1~X!
12t~X!2

11t~X!2 e3d~X!. ~93!

Whene becomes larger than 0.3, 3d(X) in the exponential in Eq.~93! becomes larger than
unity. Thus, in stead ofe, we introduce a new expansion parameterq by

q5ee2e. ~94!

Because 3q,1 for 0,l<0.19,q is suitable as an expansion parameter. The previous param
e is given by the relation,

e5q1q21O~q3!. ~95!

Consider Eq.~92!, neglectingt(X). The first-order terms in Eq.~92! give the relation,

d~X!.2e~11cos 3u1~X!!5E. ~96!

Substituting Eq.~96! into Eq. ~92!, this relation is improved as

d~X!.e~]X
2E!2e$11eE cos 3u1~X!%. ~97!

Then, introducing a functionE(X) by

d~X!52e1eeE~X!~]X
2E~X!2cos 3u1~X!!, ~98!

that ofd(X), i.e., Eq.~92!, comes back to the equation ofE(X). ExpandingE(X) andt(X) by q
as

E~X!5qE1~X!1q2E2~X!1¯ , ~99!

and

t~X!5qt1~X!1q2t2~X!1¯ , ~100!

respectively. Moreover, using Eq.~98!, Eq. ~92! is also rewritten as follows:

05q2@2]X
2~cos 3u1~X!!1E1~X!cos 3u1~X!2]X

2E1~X!1~11cos 3u1~X!!cos 3u1~X!

12t1~X!cos~3u1~X!!sin~3u1~X!!#1O~q3!. ~101!

The second-order terms with respect toq in Eq. ~101! give the equation,

~2]X
21cos 3u1~X!!~E1~X!1cos 3u1~X!11!12t1~X!cos 3u1~X!sin 3u1~X!50. ~102!

Substituting Eqs.~99! and ~100! into Eq. ~93!, and making an expansion with respect toq, the
equation oft(X) is rewritten as follows:

05]X
2~3u1~X!!1sin 3u1~X!1q~2]X

2t1~X!12t1~X!cos 3u1~X!

23~11cos 3u1~X!!sin 3u1~X!!1q2@2]X
2t2~X!12t2~X!cos 3u1~X!

1$23E1~X!cos 3u1~X!12t1
2~X!]X

2~3u1~X!!26t1~X!~11cos 3u1~X!!13]X
2E1~X!

1 9
2~11cos 3u1~X!!223~11cos 3u1~X!!%sin 3u1~X!#1O~q3!. ~103!
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On the other hand, using Eqs.~64! and ~91!, we can see thatu1(X) satisfies the relations,

05]X
2~3u1~X!!1 1

2 sin~3u0~X1c!!1 1
2 sin~3u0~X2c!!

5]X
2~3u1~X!!1sin 3u1~X!$12tanh2 c~11cos~3u1~X!!!%. ~104!

Substituting Eq.~104! into Eq. ~103!, we can see that the zeroth- and the first-order terms in
~103! give the equation,

05q~2]X
2t1~X!12t1~X!cos 3u1~X!!1~ tanh2 c23q!~11cos 3u1~X!!sin 3u1~X!. ~105!

To keep the consistency between Eq.~89! and Eq.~105!, the first- and second-order terms wi
respect toq5O(e) in Eq. ~105! should cancel among themselves. Namely,

t1~X![0, ~106!

and

tanh2 c53q. ~107!

Equation~107! is consistent with Eq.~90!. The second-order terms with respect toq give the
equation,

052]X
2t2~X!12t2~X!cos~3u1~X!!1$23E1~X!cos~3u1~X!!13]X

2E1~X!

1 9
2~11cos~3u1~X!!!223~11cos~3u1~X!!!%sin~3u1~X!!. ~108!

Using Eq.~106!, Eq. ~102! becomes

E1~X!1cos 3u1~X!1150. ~109!

Then,E1(X) is given by

E1~X!52~11cos~3u1~X!!!52
2 cosh2 c

cosh2 X1sinh2 c
. ~110!

Using Eq.~109!, Eq. ~108! is rewritten as follows:

052]X
2 t2~X!12t2~X!cos~3u1~X!!

1@ 33
2 ~11cos~3u1~X!!!2218~11cos~3u1~X!!!#sin~3u1~X!!, ~111!

where we use

]X
2E1~X!.24~11cos 3u1~X!!13~11cos 3u1~X!!21O~3q!. ~112!

Now we are interested in a solution that describes the soliton configuration. Thereforet(X) should
be odd with respect to the soliton center. Since sin 3u1(X) is odd and cos 3u1(X) is even, we assume
that the solution takes a form of

t2~X!5 (
n51

`

an~cos 3u1~X!!n sin 3u1~X!. ~113!

Substituting Eq.~113! into Eq.~111! and equating the coefficients of (cos(3u1(X)))n sin(3u1(X)) on
both sides, the coefficientsan (n50,1,2,...) are determined as
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a05 1
12, a15 11

12, ~114!

and

an50 for n>2, ~115!

where we use the relation

]X
2@~cos 3u1~X!!n sin 3u1~X!#5~cos 3u1~X!!n21@2n~n21!1n~2n21!cos 3u1~X!

22~n11!2 cos2 3u1~X!

2~n11!~2n13!cos3 3u1~X!#sin 3u1~X!1O~3q!.

~116!

After all, D(X) and u(X) are solved correctly up to the second-order with respect toq,
namely,

D~X!5D1ed~X!, ~117!

and

3u~X!53u1~X!12 tan21 t~X!. ~118!

Here

d~X!52ee2q~11cos 3u1~X!!~cos 3u1~X!1q]X
2 cos 3u1~X!!2e, ~119!

and

t~X!5q2~ 1
121

11
12 cos 3u1~X!!sin 3u1~X!. ~120!

The phaseu1(X) is given by

3u1~X!5p12 tan21~exp~X1Atanh21 3q!!12 tan21~exp~X2Atanh21 3q!!. ~121!

In Fig. 6, we show the trajectory ofgu(x) for various values of electron–phonon coupling.
l.0.175, trajectory is almost like a straight line, Re(g•u(x)/D1)50.5. The trajectory enters into
the inner side of the straight line atl50.18.

Lastly, let us examine the soliton width. Introducing a trial function,

3u~x!53 tan21~) tanh~x/j1!!53 tan21S) tanhS j0

j1

X

2A3e
D D , ~122!

we determinej1 /j0 by applying the least square method to Eq.~118!. Using j1 /j0 , the soliton
width is given by

j15
j1

j0
•

vF

D1
5

j1

j0
•

)

2t
a. ~123!

In Fig. 7, j1 /j0 is plotted as a function ofl. j1 /j0 becomes minimum nearly atl.0.18,
whereas the soliton width Eq.~123! decreases monotonically when 0,l,0.19. The soliton width
at l50.175 is about 1.45vF /D1 .
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V. NUMERICAL SOLUTIONS

In this section, we try finding numerical solutions for the effective Lagrangian derived in
III. Since the space variable is continuous in this Lagrangian, we must discretize it in such

FIG. 6. The soliton configuration obtained by the perturbational calculation with Eq.~121! as the unperturbed part. Th
thick circular line isD(x)5D1 . The coupling constants are selected asl50.1 ~the broken line!, l50.12~the dotted line!,
l50.14~the rough dotted line!, l50.16~the thick broken line!, l50.175~the big dotted line!, andl50.19~the rough big
dotted line!.

FIG. 7. The quantityj1 defined by Eq.~122!. It is plotted as a function of the coupling constantl. The lengthj0 is defined
by Eq. ~46!.
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asx5Dml . In the following calculation, the meshDm is chosen to be small enough compared w
the soliton half-widthj. Actually, it is less than one-hundredth ofj, even in the case with the
shortest soliton width. Moreover, the system size should be large enough compared with th
length. Here we set it to be four times the largestj treated here.

We assume variational functional forms for the order parameters as

D~x!5D1A12 3
4d sech~x/j2!2, ~124!

and

3u~x!53 tan21~) tanh~x/j2!!1p, ~125!

wherej2 andd are determined so as to minimize the Hamiltonian. It should be remarked that
forms allow both types of solitons, namely, phase solitons and straight-line solitons, depend
j2 andd.

In Fig. 8, we show the optimized trajectories of the order parameter in the complex plan
is seen clearly, the order parameter changes its shape from a phase soliton type via a stra
to the one deformed in the inner direction. More specifically, the straight-line behavior is rea
aroundl50.175, which is very close to that obtained in the exact solution.7

Next, we turn attention to the spatial change of the above order parameter. In Fig. 9, w
the phase part in a weak-coupling case. Here two configurations are compared. One is th
mized solution atl50.11 and the other is the pure phase soliton described by a sine-Go
solution. They are very similar, and hence this means that our variational function is cor
chosen in the weak-coupling limit.

While, beyond the weak-coupling limit, we find some discrepancy. In Fig. 10 we show
relationship between the coupling constantl and the soliton width in the unit ofvF /D1 . At l
50.175, which is the aforementioned value that gives the straight-line shape, the soliton w
about 1.54vF /D1 . This value ofl is consistent with the result given by the analytical solutio
However the width is longer than the exact value, i.e., (2/))vF /D1.1.15vF /D1 .7 We think that
this discrepancy comes from the neglected terms in deriving the effective potential.

In the rest of this section, we briefly check whether the above solutions are realistic. Fir
discuss the straight-line soliton. Atl50.175, the soliton width is about 1.54vF /D1 . SincevF is
()/2)Wa in the present definition andD1 itself is calculated to be 0.104W,

j251.54vF /D151.54~)/2!Wa/0.104W512.8a. ~126!

FIG. 8. The trajectories of the soliton. They are numerically obtained using the variational function Eqs.~124! and~125!.
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Thus, this soliton width is much larger than the lattice constanta and is reasonable as a width
While, if the coupling is very small, the width is, for example, 2.38vF /D1 at l50.11. SinceD1 is
0.012W in this case,j2 is calculated in the same way to be about 174a. This value will be too
large to observe such a soliton as an intrinsic object.

VI. SUMMARY

We have investigated the fractionally charged soliton in the trimerized electron–phonon
tem. We have found by both analytical and numerical methods that, in addition to the kink
distortion in the phase mode, the soliton shows a peculiar distortion in the amplitude. The la
new in the sense that the ordinary sine-Gordon model does not describe it.

We have used the Fro¨hlich model. Renormalizing the electronic part by the loop expansio
the partition function, we have constructed the effective Lagrangian of the order paramete
can be applied to the investigation of the dynamics of both the amplitude and phase mo
should be remarked that this Lagrangian is the almost same as that derived by the analysi

FIG. 9. The spatial pattern of the order parameter. The broken line is a pure phase soliton and the solid line is the
configuration atl50.11.

FIG. 10. The quantityj2 defined by Eq.~125!. It is plotted as a function of the coupling constantl.
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self-consistent equation for the Fro¨hlich model.4 However, there are some discrepancies in
form of the derivative terms of the order parameter, and in the strength of the interaction
between the amplitude and phase modes.

Investigating the equations of the order parameter, we have found the analytical so
corresponding to the fractionally charged soliton. The solution is given by Eqs.~117!–~120!. In
the derivation, we have used the reductive perturbational method using the particular form
unperturbed solution Eq.~121!. The amplitude decreases around the soliton center. As
electron–phonon coupling becomes stronger, the distortion grows more and more. Atl50.175,
roughly speaking, the lattice distortion draws a straight-line in the complex plane. This beha
the same with the exact solution given by Iwanoet al.7

We have also analyzed the soliton solution numerically. In the calculation, the space va
is discretized and the variational functional forms are introduced. We have obtained the opt
trajectories of the order parameter. It has been shown that the order parameter changes i
from a phase-soliton type via a straight line to the one deformed in the inner direction. Aga
straight-line shape is realized nearly atl50.175, which is very close to that obtained in the ex
solution. As for the soliton width, both the methods give similar tendencies. The width
monotonically shortens asl decreases. However, if it is scaled byj0 , it shows a saturation aroun
l50.17– 0.18. We think that this is characteristic of the straight-line solution.

The above results show that, in the trimerized electron-phonon system, the interactio
tween the phase and amplitude modes induces the distortion in the amplitude of the soliton
the spatial form of the soliton deviates substantially from that of the phase soliton whe
electron–phonon coupling is not very weak.

It is important that the charge of the soliton is always the same, namely, fractional on
6 2

3e, irrespective of the spatial form. Thus, if we conceptually make it clear, we have two t
of fractionally charged solitons, namely, a pure phase soliton and a strongly amplitude-def
soliton, although both are related to each other by gradual changes. It of course depends
parameter of each realistic system which type is observed experimentally. We, however, a
the former might be difficult to observed, because it has a very large width more than one hu
times the lattice constant.

ACKNOWLEDGMENT

One of the authors~R.S.! would like to express his special thanks to Professor K. Sasak
fruitful discussions.

APPENDIX A: THE EFFECTIVE POTENTIAL

Here treat the main part of the Lagrangian concerning the lattice dynamics and stud
influence of the lattice distortion on the electrons. The expression of the Lagrangian is given
~13!. The partition function is given in Eq.~30!.

By the path integration overf̃s , the contribution from the electrons is renormalized to
effective potential. This estimation can be performed using a diagrammatic calculation. W
the summation over connected loop diagrams which are shown in Fig. 1.17,18 The solid line is
associated with the electron Green function. The solid circle corresponds to the vertex giv
HI . In the momentum space, the electron Green function is given by

G~0!~k; iv!ds,s852E
0

bE ^Ttf̃s~x,t!f̃s8
†

~x8,0!&e2 ik~x2x8!2 ivtdxdt5
ivI 1vFks3

~ iv!22~vFk!2 ds,s8 ,

~A1!

wheres denotes up or down of the spin orientation, andf̃s(x,t) is in the Heisenberg represent
tion,

f̃s~x,t!5exp~H
f̃

0
t!•f̃s~x!•exp~2H

f̃

0
t!. ~A2!
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H
f̃

0
is the electronic part of the unperturbed Hamiltonian. The vertex is given by, in the mome

space,

D~q!5
ivFq

2
x~q!I 2B~q!I 1A~q!s11 i

1

2

]x~q!

]t
s3 , ~A3!

whereA(q) andB(q) are the Fourier transforms ofA(x) and 2D(x)2/(3W), respectively. Rep-
resenting the summation of the diagrams in Fig. 1 asU, the partition function is approximately
given by

Z

Z0
5

E ~DurDui !expH e

p E E x~x!E~x!dxdt2E dt~LD
0 2U !J

E ~DurDui !expH 2E dtLD
0 J . ~A4!

First, let us consider the contribution from the static lattice displacement. The lattice disp
mentu(x) is given by

um5u0eiu1,

and

D~x!5gu05D1 , ~A5!

whereu0 andu1 is constant.D(x) is constant and takes the value,

D052
2D1

2

3W
I 1A0

2s1 ,

with

A0
25D1

2S 11
4D1

2

9W22
4D1

3W
cos 3u1D . ~A6!

Contribution to the effective potentialU coming from the static lattice displacement is given
the summation,

1

b
Tr (

n,s,v
E dxE dk

1

2pn
@D0G~0!~k; iv!#n

5
1

pb (
v

E dxE
2`

`

dk lnS S iv2
2D1

2

3W D 2

2~vFk!22A0
2

~ iv!22~vFk!2
D , ~A7!

where the summation with respect tov is taken over the Matsubara frequenciesv5T(2m
11)p, m being an integer. In the calculation, we use the relation,

Tr ln~aI2bs12cs3!5 ln det~aI2bs12cs3!5 ln~a22b22c2!. ~A8!

Taking the zero-temperature limit, the summation overv changes to the integration, i.e.,

1

b (
v,odd

f ~ iv!→
1

2p E dz f~ iz!, ~A9!

where f (a) is a function of a complex variablea. Using Eq.~A9! and the relation
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vF

2p E
2`

`

dk lnS ivFk2a

ivFk2bD5
1

2
~a2b!,

for

0<Arg~a!, Arg~b!<
p

2
, ~A10!

Eq. ~A7! is rewritten as

1

p
E dxE

2W̄

W

dzSAS z1 i
2D1

2

3W
D 2

1A0
22uzu D

52
1

2pvF
E dxH A0

2S lnU A0
2

~2W̄!2U21D 1
1

2
S 4D1

2

3W
D 2J , ~A11!

whereW̄ is the energy cut off of the lowest electron band. In the trimerized case, it isW̄5W/2.
The deviations ofD(x) andu(x) from D(x)5D1 andu(x)5u0 , respectively, give an extra

contribution to the effective potential. We define them ash(x)5D(x)2D0 and assume that th
time dependencies ofD(x) andu(x) are small enough. The contribution is given by,

2Tr
1

b (
n51

`

(
v,s

1

~2p!nn E dkE dq1¯E dqn21

3G~k; iv!h~q1!G~k1q1 ;iv!h~q22q1!G~k1q2 ;iv!h~q32q2!

3¯G~k1qn21 ;iv!h~2qn21!, ~A12!

whereG(k; iv) is the electron Green function in the stationary lattice distortion, which is

G~k; iv!5G~0!~k; iv!@12D0G~0!~k; iv!#215

S iv2
2D1

2

3W D I 1vFks31A0s1

S iv2
2D1

2

3W D 2

2~vFk!22A0
2

, ~A13!

andh(q) is the Fourier transform ofh(x), namely,

h~q!5E dxe2 iqxh~x!. ~A14!

The diagrams corresponding to Eq.~A12! are the same as those in Fig. 1, where the solid line
the solid circle correspond to the Green function Eq.~A13! and the vertexh(q), respectively.

Now, we introduce the notation,

h~q!5dA~q!s12dB~q!I 1 i
vFq

2
x~q!I 1 i

1

2

]x~q!

]t
s3 , ~A15!

where

dA~q!5E dxe2 iqx~A~x!2A0!,

and
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dB~q!5E dxe2 iqxS 2D~x!2

3W
2

2D1
2

3W D . ~A16!

Then, substituting Eq.~A14! into Eq. ~A12!, it becomes

2 (
n,v,s

1

2pnb E dxE dk Tr@G~k; iv!h~x!#n

5
1

pb (
v

E dxE
2`

`

dk

3 lnF S iv1
2D~x!2

3W
2

vF

2

]x

]x D 2

2S vFk1 i
1

2

]x

]t D 2

2A~x!2

S iv1
2D1

2

3W D 2

2~vFk!22A0
2

G
5

1

2pvF
E dxF1

2 S 4D1
2

3W D 2

2
1

2 S 4D~x!2

3W
2vF

]x~x!

]x D 2

1A~x!2S lnU~2W̄!2

A~x!2U11D 2A0
2S lnU~2W̄!2

A0
2 U11D G , ~A17!

where we use Eq.~A10!. In the calculation of Eq.~A17!, we drop theqi dependency of the Gree
function G(k1qi ; iv).

We can make the calculation of the loop diagrams more exactly. Consider the second
loop diagram with respecth(q) that is shown in Fig. 2. The second-order term is given as follo

2
1

2b~2p!2 Tr (
v,s

E
2`

`

dkE
2`

`

dqG~k1q; iv!h~q!G~k; iv!h~2q!

52
1

4p3vF
E

2`

`

d~vFk!E
2`

`

dqE
2W̄

W̄
dzH S A0

21S iz1
2D1

2

3W D 2

2vF
2k~k1q! D dA~q!dA~2q!

1S A0
21S iz1

2D1
2

3W D 2

1vF
2k~k1q! D S dB~q!2

ivFq

2
x~q! D S dB~2q!1

ivFq

2
x~2q! D

1S 2A0
21S iz1

2D1
2

3W D 2

1vF
2k~k1q! D S i

1

2

]x~q!

]t D S i
1

2

]x~2q!

]t D J
3F S iz1

2D1
2

3W D 2

2~vFk!22A0
2G21F S iz1

2D1
2

3W D 2

2~vF~k1q!!22A0
2G21

5
1

pvF
E dxdA~x!S lnU2W̄

A0
U2 A11g2

g
sinh21 g D dA~x!

2
1

pvF
E dxS dB~x!2

vF

2

]x~x!

]x D sinh21 g

gA11g2 S dB~x!2
vF

2

]x~x!

]x D , ~A18!

whereg is defined by

g52 i
vF

2D1

]

]x
. ~A19!
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In the calculation, the time dependency of the momentum transferq is ignored. It corresponds to
the adiabatic approximation. We can see easily that the contributions

1

2pvF
E dx~dA~x!!2S lnU2W̄

A0
U21D , ~A20!

and

2
1

pvF
E dxS dB~x!2

vF

2

]x~x!

]x D 2

, ~A21!

in the r.h.s. of Eq.~A18! are already included in Eq.~A17!. Then, the difference between Eq
~A18! and Eqs.~A20!–~A21! contributes to the effective potential. Adding it to Eq.~A17!, and
considering the total contribution to the effective potential,U is estimated as

U52
1

2pvF
E dxA2~x!S lnUA2~x!

W2 U21D
2

1

pvF
E dxA~x!SA11g2

g
sinh21 g21DA~x!

2
1

pvF
E dxS B~x!2

vF

2

]x~x!

]x D S sinh21 g

gA11g2D S B~x!2
vF

2

]x~x!

]x D . ~A22!

Lastly, expandingA11g2 and sinh21 g aroundg50 and neglecting higher-order terms wi
respect tog than the second-order ones, the effective potential Eq.~37! is obtained.

APPENDIX B: SOLUTIONS OF EQS. „76… AND „78…

Substituting Eq.~79! into Eq. ~76!, the equation ofv1(x) is rewritten as

]X
2v1~x!1v1~x!S 2

cosh2 X
21D2

3 tanhX

cosh3 X
50. ~B1!

Because tanhX/cosh3 X is the odd function,v1(x) should be odd with respect to the replaceme
x→2x. Then we can introduce parameterst1,n (n50,1,2,...) by

v1~x!5 (
m51

`

t1,m

tanhX

cosh2m11 X
. ~B2!

Substituting Eq. ~B2! into Eq. ~B1! and equating the coefficients of the functio
tanhX/cosh2m11 X on both sides, the parameters are determined by

t1,052 3
2, ~B3!

and

t1,m50, for positive integerm. ~B4!

The functionv1(x) is therefore given by

v1~x!523 tanhX/~2 coshX!. ~B5!

On the other hand, using Eqs.~81! and~B5!, the equation ofv2(x), namely, Eq.~78! is rewritten
as,
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]2v2~X!

]X2 1v2~X!S 2

cosh2 X
21D1

tanhX

2 cosh3 X S 213

cosh2 X
2123D50. ~B6!

Introducing parameterst2,m , we writev2(X) by

v2~x!5 (
m51

`

t2,m

tanhX

cosh2m11 X
. ~B7!

Substituting Eq.~B7! into Eq.~B6!, and setting each coefficient of the functions tanhX/cosh2m11 X
to zero, the parameterst2,m are determined as

t2,052 85
24, ~B8!

t2,15
71
12, ~B9!

and

t2,m50, for m>2. ~B10!

After all, the functionv2(x) is solved as

v2~x!52
85

24

tanhX

coshX
1

71

12

tanhX

cosh3 X
. ~B11!
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Classification and conformal symmetry
in three-dimensional space–times

G. S. Halla) and M. S. Capoccib)
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Aberdeen AB24 3UE, Scotland, United Kingdom
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Three-dimensional manifolds admitting Lorentz metrics are studied. The first part
of the paper gives a classification of the Ricci and curvature tensors and also of the
conformal~Schouten–Cotton–York! tensor. The second part of the paper investi-
gates Killing and conformal symmetry and also the nature of the zeros of the
associated vector fields. The maximum dimension of the Killing and conformal
algebras is calculated. A theorem regarding the reduction of the conformal algebra
to a Killing algebra of a conformally related metric is given. ©1999 American
Institute of Physics.@S0022-2488~99!01103-2#

I. INTRODUCTION

The recent interest in three-dimensional space–times together with the known usefulne
elegance of the various classification schemes in the four-dimensional space-time of gener
tivity suggest that a discussion of such schemes in the former may be useful.

Perhaps the most useful classification scheme in general relativity is the Petrov classifi
of the Weyl ~conformal! tensor. The ‘‘equivalent’’ Weyl tensor in three-dimensions is zero a
must be replaced by a tensor introduced by Schouten1 ~but often referred to as theCotton–York
tensor! which, like the Weyl tensor in four or more dimensions, is conformally invariant
which vanishes identically if and only if the metric is locally conformal to a flat metric. T
classification of this tensor will be dealt with in Sec. IV.

The vanishing of the Weyl tensor in three dimensions leads to a close relationship betwe
Ricci and Riemann tensors. This link is explored in Sec. III where these tensors are classifi
Segre type.

The final three sections of the paper deal with the study of conformal~including homothetic
and Killing! vector fields on a three-dimensional space–time. Some results regarding the na
zeros of such vectors fields are given and these are used to prove theorems on the ma
dimension of the conformal and related Lie algebras. A theorem concerning the reduction
conformal algebra to a Killing algebra with respect to a conformally related metric is obta
Section II contains some preliminary geometrical remarks about three-dimensional space–

II. THREE-DIMENSIONAL SPACE–TIMES

A three-dimensional space–time is a three-dimensional smooth paracompact connecte
fold M admitting a global smooth Lorentz metricg of signature~2,1,1!. The associated Rieman
and Ricci tensors are denoted by their respective componentsRabcd and Rab([Racb

c ) and a
covariant derivative arising from the Levi-Civita´ connection associated withg is denoted by a
semicolon. Round and square brackets denote the usual symmetrization and skew symmet
respectively.

Let mPM and let TmM denote the tangent space toM at m. Denote byLm the three-
dimensional vector space of skew symmetric tensors~bivectors! of either type~0,2! or ~2,0! at m
~there being no need to distinguish them for the present purposes because of the natural

a!Electronic mail: gsh@maths.aberdeen.ac.uk
b!Present address: 9 Victoria Street, Aylesbury, Buckinghamshire, HP20 1LZ, U.K.; electronic mail: michael@coex
14660022-2488/99/40(3)/1466/13/$15.00 © 1999 American Institute of Physics
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phism between them which arises from the metricg(m) at m and in components isFab°Fab). A
triplet ~l,n,x! of members ofTmM is called anull triad if the only nonvanishing inner product
between them arel ana5xaxa51 ~so that l and n are null andx spacelike!. A triplet x,y,t
PTmM is called anorthogonal triad if the only nonvanishing inner products between them
xaxa5yaya52tata51 ~so thatx andy are spacelike andt is timelike!. If 0ÞFPLm then its rank
is even and hence equal to 2. Thus all bivectors inLm aresimple, that is,FPLm can be written
asFab52p[aqb] for p,qPTmM . The two-dimensional subspace ofTmM spanned byp andq is
uniquely determined byF and called thebladeof F. A nonzero member ofLm can be classified
astimelike, null, or spacelikeaccording to whether its blade contains exactly two, exactly one
no null one-dimensional subspaces~directions!.

Let Sbe a nonzero symmetric type~0,2! tensor atm with componentsSab . The eigenvector–
eigenvalue problem (Sab2lgab)k

b50 at m for kPTmM andlPC leads to a classification forS
in terms of its Segre type. The details were given in Ref. 2 and based on the four-dimen
situation.3,4 All four Segre types$1,11%, $21%, $3%, and $zz̄1% are possible and their canonic
expressions in terms of a null triad~l,n,x! are, respectively,

Sab52a l (anb)1b~ l al b1nanb!1gxaxb , ~1!

Sab52a l (anb)1l l al b1bxaxb , ~2!

Sab52a l (anb)1 l (axb)1axaxb , ~3!

Sab52a l (anb)1b~ l al b2nanb!1gxaxb . ~4!

Here a,b,g,PR and g561. In ~1! the eigenvectors arel 6n and x with corresponding
eigenvaluesa6b andg. In ~2! the eigenvectors arel andx with respective eigenvaluesa andb
while in ~3! the eigenvector isl with eigenvaluea. In ~4!, which is the only case to admit nonre
eigenvalues,bÞ0 and the eigenvectors arel 6 in andx with respective eigenvaluesa6 ib andg.
The type$1,11% is the only one where timelike eigenvectors can occur and the associated~unique!
eigenvalue is represented by the first digit in the Segre symbol and is separated from the ot
a comma. The degeneracies of these Segre types~denoted by enclosing the appropriate dig
inside round brackets! are also possible. An alternative form for~1! in an orthogonal triad is

Sab5rzazb1gxaxb2dtatb , ~5!

wherer,dPR, &z5 l 1n, &t5 l 2n and soa1b5r anda2b5d.
In ~2! and~3! l spans the unique null eigendirection and in~1! there are no null eigendirection

unlessb50 ~type$~1,1!1%! in which case there are exactly two independent ones spanned byl and
n. There are no null eigendirections in~4!.

The bivectors inLm may also be classified according to Segre type. In fact in terms o
appropriate null triad a null bivector may be written as 2l [axb] and a timelike bivector as 2l [anb]

and their respective Segre types are$3% and $111% while, in terms of an appropriate orthogon
triad a spacelike bivector may be written as 2x[ayb] and its Segre type is then$zz̄1%. These
canonical forms~but not the Segre types! will be required later.

There is a convenient ‘‘duality’’ betweenTmM and Lm in a three-dimensional space–tim
achieved by using the alternating tensoreabc . Associated withkPTmM the bivectorFPLm

where Fab5eabck
c ~and thenk and F will be referred to as theduals of each other!. Thus a

bijective duality relation is established betweenTmM and Lm . From this correspondence on
finds Fabk

b50 and so this duality relation may be geometrically regarded as associating a~nec-
essarily simple! bivector with a vector~naturally scaled bye! perpendicular to its blade. Th
vector k lies in the blade ofF if and only if k ~and henceF! is null. From the mathematica
viewpoint it can be interpreted as a means of ‘‘identifying’’ a single tensor index with a s
symmetric pair of tensor indices. Like the duality operation in general relativity it will turn ou
be rather useful algebraically and in this respect one notes the relation
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eabceade52~dd
bde

c2dd
cde

b!. ~6!

It is remarked here that the above duality map betweenTmM andLm extends naturally to the
complexification of these vector spaces taking a complex vectorka to the complex bivector
eabck

c. This will be required in dealing with the possible occurrence of complex eigenvecto
a later section.

The Lorentz groupL in three-dimensions is the subgroup of GL~3,R! given by L5$A
PGL(3,R):AThA5h% whereh5diag(21,1,1) andAT is the transpose ofA. The groupL can, in
a natural way, be given the structure of a three-dimensional Lie group which is a Lie subgro
GL~3,R!. Let L0 be the identity component ofL and letl PTmM be null. The subgroupN( l ) of
L0 of null rotations about lis the subgroup ofL0 which preserves the direction ofl. It is a
two-dimensional Lie subgroup ofL0 described by its effect on a null triad~l,n,x! by

l ° l 85Al, x°x85x1bl, n°n85A21S n2bx2
b2

2
l D , ~7!

whereA,bPR, A.0. Under such a null rotationn may be transformed to any other null vector
m except a null vector proportional tol.

III. THE RIEMANN AND RICCI TENSORS

The vanishing of the Weyl tensor on a three-dimensional space–time means that the Ri
Riemann tensors are related by

Rabcd52Ra[cgd]b12Rb[dgc]a1Rga[dgc]b , ~8!

whereR[Rabg
ab is the Ricci scalar. As a consequence the Ricci tensor vanishes atmPM if and

only if the Riemann tensor vanishes atm.
Now construct the ‘‘double dual’’T of the Riemann tensor where, in components,

Te f5eabeRabcde
cd f. ~9!

ThusT is a second order tensor and is easily seen to be symmetric. The inverse relation~9!
can be found using~6! and is

Rabcd5
1
4eabeT

e fecd f . ~10!

Theorem 1: A vector k in TmM (or its complexification) is an eigenvector of T with eige
value aPC if and only if the bivector Fab5eabck

c in Lm (or its complexification) is an eigen
bivector of the Riemann tensor with eigenvalue2a/2PC.

Proof: Suppose thatTe fkf5age fkf5ake. Then~9! on premultiplying byeemn gives

eemne
abeRabcdF

cd5aeemnk
e. ~11!

Use of ~6! then reveals

RabcdF
cd52

a

2
Fab ~12!

and soF is an eigenbivector of the Riemann tensor with eigenvalue2a/2. The converse result is
similar and this completes the proof. h

Because of the close relationship betweenT and the Riemann tensor expressed in theorem
one is tempted to enquire about the relationship betweenT and the Ricci tensor. The answer
easily obtained by computingT in ~9! using ~8! and ~6!. One finds

Tab54~Rab2 1
2 Rgab! ~13!
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and soT is, up to a numerical factor, the Einstein tensor. The Bianchi identities for the Riem
tensor then reappear, through duality, in the identities

Ta
b

;b50. ~14!

It follows from ~13! that kPTmM ~or its complexification! is an eigenvector ofT if and only
if it is an eigenvector of the Ricci tensor and that, although the eigenvalues will in general d
any eigenvalue degeneracies will be preserved. From this remark and theorem 1 it is clear
algebraic structure ofT, of the Ricci tensor and of the Riemann tensor~regarded in the obvious
way as a linear map fromLm to itself! are the same in the sense that their Segre type~including
degeneracies! are identical.

Theorem 2: If M is a three-dimensional space–time and mPM then M may be algebraically
classified at m according to the Segre type of the Riemann tensor, the Ricci tensor, or the
dual of the Riemann tensor (the tensor T) at mPM . The Segre type obtained is independent
whichever of these tensors is used and is either$1,11%, $21%, $3%, $zz̄1%, or a degeneracy of one o
these types.

Proof: The proof follows from the preceding remarks and the material in Sec. II. h

Thus, as a corollary, one sees that every bivector inLm is an eigenbivector of the Rieman
tensor with the same eigenvalue if and only if every vector inTmM is an eigenvector of the Ricc
tensor with the same eigenvalue. HenceM is of constant curvature atm if and only if it is an
Einstein space atm. The link between the algebraic structure of the Riemann and Ricci ten
was given earlier.5

Recalling the elegant and useful Bel criteria which can be used in an alternative formu
of the Petrov classification in general relativity6,7 it is interesting to ask if one can reformulate th
classification in theorem 2 in terms of ‘‘canonical’’ null directions inTmM .

Theorem 3: Let M be a three-dimensional space–time, let mPM and let lPTmM be null.
Then at m:

~1! Rabl
al b50⇔ l [eRa]bc[dl f ] l

bl c50.
~2! Rabl

a5a l b(aPR)⇔Rabcdl
bl c5l l al d(lPR).

~3! Rabcdl
d5Fabl cÞ0 (where F is a null bivector inLm satisfying Fabl

b50) ⇔ the Ricci tensor
has Segre type$3% with eigenvector l and eigenvalue zero.

~4! Rabcdl
d50 (RabcdÞ0)⇔ the Ricci tensor has Segre type$~21!% with null eigenvector l and

eigenvalue zero.

Proof:

~1! If Rabl
al b50 then a contraction of~8! with l bl c reveals the desired condition on the Riema

tensor. Conversely, this latter condition means thatRabcdl
bl c52l (apd) where the Riemann

symmetries imply thatp satisfiesl apa50. A contraction over the indicesa andb then gives
Rabl

al b50.
~2! If Rabl

b5a l a then a contraction of~8! with l bl c reveals the given condition on the Rieman
tensor. Conversely, this latter condition impliesRabl

al b50 and then the same contraction
~8! yields Rabl

b5a l a .
~3! The condition on the Riemann tensor immediately implies thatRabl

b50 and thatRabcdF
cd

50 ~since F is null!. This latter condition implies thatTabl
b50 ~theorem 1! and, since

Rabl
b50, Eq. ~13! yields R50. Now construct a null triad~l,n,x! with Fab52l [axb] and

contract~8! with l dnb ~usingR50) to getRab52l (aqb) with l aqa50 andq}/ l . A comparison
with ~3! with a50 reveals the stated Segre type for the Ricci tensor. Conversely, writin
Ricci tensor as in~3! with a50 one finds thatR50 and a contraction of~8! with l d completes
the proof.

~4! Using the real null triad employed in the proof of part 3 the conditions on the Riemann te
show thatRabcdF

cd50 whereFab52l [axb] or Fab52l [anb] . Hence, from theorem 1,Tabl
b

50 andTabx
b50. BecauseRabcdÞ0 atm, TÞ0 atm and so from~1!–~4! T must have Segre
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type$~21!% with zero eigenvalue since if it had Segre type$1,11% @the only other type admitting
~at least! two independent real eigenvectors# it would vanish. ThusTab5m l al b (mPR) and
~13! reveals thatRab5(m/4)l al b and the result follows. Conversely, the latter expression
Rab used in~8! shows thatRabcdl

d50.

It is remarked here that, from the Segre theory and Eqs.~1!–~4! in Sec. II, the null direction
l in parts 3 and 4 of theorem 3 is unique and that at most two null directions could satis
conditions of part 2. What is less obvious is that there are at most four null directions satis
the conditions of part 1. To see this suppose that at least one such direction exists and is s
by l and construct a null triad~l,n,x! at m. Under a null rotation~7! n may be rotated ton8 and, by
a suitable choice ofb, to span any null direction atm other than that spanned byl. The equation
Rabn8an8b50 is then a polynomial inb of order less than or equal to three and the result follo
There may, of course, be no null directions satisfying condition 1 of theorem 3.

IV. THE SCHOUTEN–COTTON–YORK TENSORS

For a three-dimensional space–timeM consider the tensorR̄ with componentsRabc given in
any coordinate system by

Rabc52Ra@b;c#1
1
2R;[bgc]a5Rd

abc;d1 1
2R;[bgc]a . ~15!

This tensor has the properties

~1! Rabc52Racb ,
~2! Ra

ac50,
~3! R@abc#50,

and also the property that it isconformally invariantin the sense that it is unchanged if the met
g on M is changed to the metricesg on M for a smooth functions:M→R. FurtherR̄ vanishes on
some open neighborhoodU of m if and only if for some open neighborhoodV#U of m there
exists a flat metricg on V and a smooth functionr:V→R such that, onV,g5erg.1,8

To algebraically classifyR̄ at mPM one recalls the ‘‘duality identification’’ made in Sec.
betweenTmM andLm . Now the tensorR̄ may be thought of as a linear mapTmM→Lm given by
ka°Rabck

a. Thus with the above identificationR̄ gives rise to a linear mapTmM→TmM given
by

ka°Rabck
a°2 1

2e
bca~Rdbck

d!5Ya
dkd, ~16!

where

Yab52 1
2e

acdRb
cd ~17!

is theCotton–York tensor.8 The tensorY is easily seen to be trace-free from the third property
R̄ listed above and can also be shown to be symmetric by use of the Bianchi identity.8 Thus
Yab5Yba , Ya

a50 and~17! inverts to give

Ra
bc5edbcY

da. ~18!

This bijective correspondence betweenR̄ and Y suggests that a classification ofR̄ may be
achieved by a classification ofY similar to that given in Sec. II. It is noted here that, whileY

vanishes atm if and only if R̄ does, the tensorY is not conformally invariant.M will be called
conformally flatif R̄[0(⇔Y[0) on M.

Theorem 4: If M is a three-dimensional space–time the tensor Y may be classified at ea
mPM into four Segre types together with their degeneracies. They are$1,11%, $~1,1!1%, $1,~11!%,
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$~1,11!%, $21%, $~21!%, $3%, and $zz̄1%. The trace-free condition means that if the type is$~1,11!%
then Y50 at m and that if the type is$~21!% or $3% the eigenvalue is zero.

Proof: This follows immediately from~1!–~4! after imposing the trace-free condition. h

An alternative approach is to directly classify the tensorR̄ according to its canonical nul
directions and in the spirit of theorem 3 for the Riemann tensor. To achieve this first note
kPTmM then

Ya
bkb50⇔Rabck

a50, ~19a!

Ya
bkb5aka~aPR!⇔Rabck

akb50~⇔Rabck
akc50!. ~19b!

The proof of ~19a! is immediate from~16!. To prove~19b! let Gab5Rc
abkc . Then Ya

bkb

5aka and ~17! imply that eabcGbc}ka and hence thatGabk
b50. HenceRabck

akb50. Con-
versely,Rabck

akb50 implies thatGabk
b50 and hence thateabcGbc}ka. ThusYa

bkb}ka. The
results~19a! and ~19b! are independent of whetherk is null and are also true ifk is complex.
Hence they may be used as a reformulation of the classification in theorem 4. But it is inter
to consider the classification ofR̄ according to realnull vectorsk satisfying either~19a! or ~19b!
and to bear in mind@Eqs. ~1!–~4!# that there are at most two independent real null solutions
each of Eqs.~19a! and ~19b!. The following theorem results directly from theorem 4.

Theorem 5: Let M be a three-dimensional space–time, let mPM and suppose that R(̄m)
Þ0. Then

~1! There are exactly two independent null solutions of (19b) if and only if Y has Segre
$~1,1!1%.

~2! There is exactly one independent null solution of (19b) and no non-trivial null solution
(19a) if and only if Y has Segre type$21%.

~3! There is exactly one independent null solution of each of (19a) and (19b) if and only if Y
Segre type$~21!% or $3% (with eigenvalue necessarily equal to zero in each case).

~4! There is at most one nontrivial null solution of (19a).

Again one sees a similarity to the well known Bel criteria for the Weyl tensor of gen
relativity. The number of independentnull solutions forR̄(m)Þ0 of ~19a! is 0 or 1 and of~19b!
is 0, 1, or 2 and each can actually occur as~1!–~4! show. Also Eq.~16! and theorem 4 suggest tha
one thinks of the eigenvalues of the tensorY at mPM as being the equivalent, in a three
dimensional space–time, of the well known Petrov scalars in a four-dimensional space–tim
this point one may suggest a classification scheme forR̄ by using the same symbols as in th
Petrov case but with a prime attached~and an extra distinguishing suffix needed in two of t
types!. The types atm are, from theorem 4:

Type I 18 ~whenY(m) has Segre type$1,11% and, recalling the trace-free condition, two indepe
dent eigenvalues!,

Type I 28 ($zz̄1% and two independent eigenvalues!,
Type D18 ~$~1,1!1% and one independent eigenvalue!,
Type D28 ~$1,~11!% and one independent eigenvalue!,
Type II 8 ~$21% and one independent eigenvalue!,
Type N8 ~$~21!% and all eigenvalues zero!,
Type III 8 ~$3% and all eigenvalues zero!.

The relationship between each of these types and the corresponding Petrov type is cle
also important to note the geometry of this classification. If the type atm is I 18 then a unique
timelike direction and a unique pair of spacelike directions are determined atm by the eigenvector
structure. If the type atm is I 28 then a unique pair of null directions and a unique space
direction is determined atm. For type D18 ~respectively,D28) a unique timelike~respectively,
spacelike! two-space and a unique spacelike~respectively, timelike! direction are determined atm.
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For typesII 8, N8, andIII 8 a unique null and a unique spacelike direction are determined atm and
they are orthogonal. A similar geometric discussion can be given for the earlier classificatio
the Ricci and Riemann tensors.

V. CONFORMAL SYMMETRY ON A THREE-DIMENSIONAL SPACE–TIME

In this section conformal symmetry will be studied in the usual way by a discussio
conformal~including homothetic and Killing! vector fields on the three-dimensional space–ti
M. Further technical details may be found in Ref. 9.

A smooth vector fieldX on M is calledconformalif in any chart ofM

Xa;b5fgab1Fab~⇔LXg52fg!, ~20!

whereFab(52Fba) is the ~conformal! bivector ofX, f:M→R is smooth andL denotes a Lie
derivative. It is, in fact, sufficient to assume thatX is C3 for this implies thatX is smooth.10 A
conformal vector field is calledhomotheticif f is constant onM andKilling if f[0 on M. It is
calledproper homotheticif f[constantÞ0 andproper conformalif X is not homothetic. From
~20! it follows that

Fab;c5RabcdX
d22gc[bfa] , ~21!

f ;ab52Rc(aFb)
c22fLab2Lab;cX

c, ~22!

wherefa5f ;a andLab5Rab2 1
4Rgab . The sets of all conformal~respectively, homothetic, Kill-

ing! vector fields onM will be denoted byC ~respectively,H,K! so thatK#H#C and each ofK,
H, andC is a Lie algebra of smooth vector fields onM. If mPM the subset ofC ~respectively,
H,K! consisting of vector fields which vanish atm is denoted byCm ~respectively,Hm , Km) and
is a subalgebra ofC ~respectively,H,K!. If XPC and if the local diffeomorphisms ofM associated
with X in the usual way~see, e.g., Refs. 11 and 12! are denoted byc t then, for eachXPC,
X(m)50 if and only if c t(m)5m for appropriatet and such a pointm is referred to as either a
zero or a fixed pointof X. Such a zero ofX is called isometric if f(m)50 or homotheticif
f(m)Þ0. The subset ofCm consisting of all conformal vector fields onM for which m is an
isometric zero is denotedI m . ThusI m5$XPCm :f(m)50% and is a subalgebra ofCm andC. Any
conformal vector fieldX on M is uniquely determined by the valuesXa(m), X;b

a (m), andX;bc
a (m)

@or equivalently byXa(m), Fab(m), f(m), andfa(m)# at anymPM .
The study of conformal symmetry in the four-dimensional space–time of general relativ

facilitated by knowledge of what goes on at zeros of conformal vector fields13–16 and a similar
approach will be adopted here.

Theorem 6: Let M be a three-dimensional space–time and X a conformal vector field on M
Then

~1! LXRabc50,
~2! LXYa

b523fYa
b ~or, equivalently,LXYab52fYab),

~3! If Y does not vanish over a nonempty open subset of M and l is a null eigenvector fiel
thenLXl 5a l for some smooth functiona:M→R.

Proof: If one considers the smooth mapc t associated withX between open coordinate do
mainsU andc tU then a consideration of the pullbackc t

21* shows that this latter map preserv
g up to a scalarl(t) ~sinceX is conformal!. The conformal invariance ofR̄ now reveals that
c t

21* R̄5R̄ so that 1 follows. To establish 2, use of the standard Lie derivative formula tog
with the result thate ;d

abc50 gives

LXeabc523feabc1Habc, ~23!

whereH is a three-form onM satisfyingHabceabc50. HenceH50 and so
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LXYa
b5 1

2LX~ecadRbcd!523fYa
b . ~24!

For 3, if l is a null eigenvector field ofY then, from 2, so also isc t
21* l sincec t

21* preservesY
up to a scalarm(t). SinceY has finitely many independent null eigenvectors at any poinm
PM whereY(m)Þ0 it follows thatc t

21* l} l and 3 is proved. h

Theorem 7: Let M be a three-dimensional space–time, X(Ó0) a conformal vector field on M
and let mPM be an isometric zero of X. Then

~1! If the conformal bivector F also vanishes at m (so that X,f, and F all vanish at m) then R¯

(and hence Y) vanishes at m.
If on the other hand F(m)Þ0 then the blade of F is, for Y(m)Þ0, an eigenspace of Y(m) and
hence coincides with the two-space geometrically determined at m by the type of Y(m) as
discussed at the end of Sec. IV. In detail,

~2! If F (m) is spacelike, Y(m) is either zero or of Segre type$1,~11!% (type D28);
~3! If F (m) is timelike, Y(m) is either zero or of Segre type$~1,1!1% (type D18);
~4! If F (m) is null, Y(m) is either zero or of Segre type$~21!% with zero eigenvalue (type N8).

Proof: Under the conditions of 1, one hasXa(m)50, X;b
a (m)50. Then if one writes out~24!

in terms of covariant derivatives, covariantly differentiates, eliminates the bivector covarian
rivative using~21! and evaluates atm one finds

fbYad2~Yacf
c!gbd2~Yb

cfc!gad1Ybdfa523fYab . ~25!

The skew part of~25! over the indicesb and d when contracted withfa then gives
faYa[dfb]50 at m. Now fa(m)Þ0 ~otherwise the conditions of part 1 of the theorem wou
imply that X[0 on M! and sofa(M ) is an eigenvector ofY(m) with eigenvaluelPR, Yb

afb

5lfa at m. On substituting this into~25! and contracting withfd at m one obtains (fcfc)Yab

50 and so eitherY(m)50 or fa(m) is null. If Y(m)Þ0, fa(m) is null and the same substitutio
but now followed by a contraction withfb yieldslfafb50 atm and sol50. Equation~25! then
gives atm

fbYad1faYbd13fdYab50. ~26!

Now ~26! implies first thatYab5mfafb at m with mPR. A final substitution into~26! then
shows thatm50 and soY(m)50.

For the remainder of the proofF(m)Þ0 and it is noted that~24!, when evaluated atm, gives
the ‘‘commuting’’ relation

Fa
cY

c
b5Ya

cF
c
b . ~27!

For ~2! suppose thatF(m) is spacelike and so there exists an orthogonal triadx,y,t at m such
that, atm, Fab52nx[ayb] (0ÞnPR) andFabt

b50. Then a contraction of~27! with tb and using
the fact thatt is the unique solution, up to a scaling, of the equationFabt

b50 shows thatYb
atb

5ata (aPR) at m. So regardingY as a linear mapTmM→TmM in the usual way, this map
preserves the one-dimensional subspace ofTmM spanned byt and hence preserves its orthogon
complement spanned byx andy ~sincexata50 impliesYa

bxbta2atbxb50 and similarly fory!.
This latter subspace is the blade ofF and is positive definite. SinceY is symmetric this induced
linear action is diagonalizable overR and one may thus assume thatx andy above are eigenvec
tors of Y with respective eigenvaluesb,gPR. A contraction of~27! with xa then reveals thatb
5g and so the blade ofF(m) is an eigenspace ofY. Thus Y(m), if nonzero, had Segre typ
$1,~11!% ~i.e., typeD28) and canonical formYab5b(xaxb1yayb12tatb) at m ~sinceYa

a50⇒a
522b).

For ~3! supposeF(m) is timelike so there exists a null triadl,n,x at m such that, atm, Fab

52n l [anb] (0ÞnPR) and Fabx
b50. A contraction of~27! with xb then shows thatYa

bxb

5axa (aPR) at m and a contraction of~27! with l b and use of the fact that the eigendirection
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F(m) ~contracted over the second index ofF! spanned byl is the only one with eigenvaluen
reveals thatYb

al b5b l a (bPR) at m. Similarly one findsYa
bnb5gna (gPR) at m. Finally one

then sees thatb5Ya
bl bna5g and so the blade ofF(m) is an eigenspace ofY. Thus if Y(m) is

nonzero it has Segre type$~1,1!1% ~type D18) and canonical formYab5a( l (anb)2xaxb) at m.
For ~4! if F(m) is null a null triad l,n,x may be chosen atm such that, atm, Fab

52n l [axb] , (0ÞnPR). A contraction of~27! with l b shows thatYb
al b5a l a (aPR). Now re-

gardingY as a linear map onTmM one sees thatY preserves the null direction spanned byl and
hence, as before, its orthogonal subspace which is the blade ofF(m). ThusYa

bxb5b l a1gxa for
b,gPR. On substituting the information so far obtained into~27! one findsa5b5g50. Hence
Yabl

b5Yabx
b50 and so eitherY(m) is zero or of Segre type$~21!% ~typeN8) with canonical form

Yab} l al b . h

This theorem together with the classification scheme given in Sec. IV is a direct analo
similar theorem17,14,15in general relativity.

Theorem 8: Let M be a three-dimensional space–time, X(Ó0) a conformal vector field on M
and mPM a homothetic zero of X. Then all the eigenvalues of Y(m) vanish and either

~1! Y(m)50; or
~2! Y(m) has Segre type$~21!% (type N8) and a null triad l,n,x may be chosen at m such th

Yab56 l al b and Fab53f(m) l [anb] ; or
~3! Y(m) has Segre type$3% (type III8) and a null triad l,n,x may be chosen at m such th

Yab52l (axb) and Fab56f(m) l [anb] .

Proof: Regarding the eigenvalues ofY(m) the proof proceeds along similar lines to that
Refs. 13 and 14~see Ref. 18!. In fact, sinceLXgab52fgab andLXYab52fYab at m, it is easily
seen that ifvPTmM is an eigenvector ofY(m) with eigenvalueaPR ~so thatYabv

b5agabv
b at

m! then c t* v is an eigenvector ofY(m) with eigenvaluea exp(3f(m)t). Since there are finitely
many such eigenvalues,a50. A slight modification of this argument deals with the case wh
aPC and the first result in theorem 8 follows.

ThusY(m) is either zero or has Segre type$~21!% or $3%. If Y(m) has Segre type$~21!% then
there existsl PTmM with l null andYab56 l al b . Evaluating~24! at m gives

Ya
cF

c
b2Fa

cY
c
b523f~m!Ya

b ~28!

and substituting forYa
b at m givesFabl

b5a l a (aPR) at m. Substituting back into~28! then gives
a5 3

2f(m)Þ0. It follows thatF(m) is timelike andl may be extended to a null triad with th
desired conditions of part 2 of the theorem. For part 3 there exists a null triadl,n,x such that, atm,
Yab5 l (axb) . A substitution into~28! and contractions first withl a and then withxa show that
Fabl

b5m l a with m53f(m)Þ0 so thatF(m) is timelike. Another back substitution and appr
priate contractions show thatFabx

b50 and hence thatl and n span the blade ofF(m). This
completes the proof. h

It is of interest to note that in part 3 the triadl,n,x yielding the given expression forYab at m
is easily checked to be uniquely determined byY(m). In ~2!, however, there is a potential freedo
in the blade ofF(m) represented by the null rotationl ° l , n°n2bx2(b2/2)l and hence
l [anb]° l [anb]2bl [axb] . This allows for the possibility~theorem 7! of taking a linear combination
of X with a Killing vector field onM which vanishes atm. No such possibility exists in~3! as
theorem 7 shows.

Again one notes that this theorem together with the classification scheme in Sec. IV
direct analog of the corresponding result in general relativity.13,14 There is one final result~again
with a general relativistic analog!13,14 which is conveniently given here.

Theorem 9: Let M be a three-dimensional space–time, X(Ó0) a homothetic vector field on
M and mPM a zero of X.

If X is proper homothetic (and so m is necessarily a homothetic zero of X) all eigenvalu
the Ricci tensor at m are zero and, at m, either
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~1! The Ricci tensor vanishes; or
~2! The Ricci tensor has Segre type$~21!% with eigenvalue zero and a null triad l,n,x may b

chosen at m such that Rab56 l al b and Fab52f l [anb] ; or
~3! The Ricci tensor has Segre type$3% with eigenvalue zero and a null triad l,n,x may be chos

at m such that Rab52l (axb) and Fab54f l a[nb] .
If X is Killing (and so m is necessarily an isometric zero of X) then, at m, either

~4! The Ricci tensor is a multiple of the metric tensor (possibly zero); or
~5! The Ricci tensor has Segre type$1,~11!% and an orthogonal triad t,x,y may be chosen at

such that Rab5a(xaxb1yayb)2btatb and Fab52mx[ayb] , (a,b,mPR); or
~6! The Ricci tensor has Segre type$~1,1!1% and a null triad l,n,x may be chosen at m such th

Rab52a l (anb)1bxaxb and Fab52m l [anb] , (a,b,mPR); or
~7! The Ricci tensor has Segre type$~21!% and a null triad l,n,x may be chosen at m such th

Rab5a(2l (anb)1xaxb)6 l al b and Fab52m l [axb] , (a,b,mPR).

Proof: The proof follows in a way sufficiently similar to those for theorems 7 and 8 for it o
to be necessary to sketch it briefly. IfX is homothetic thenLXRab50 and when computed atm
this gives

2fRab1RacF
c
b1RbcF

c
a50. ~29!

If X is proper homothetic thenfÞ0 and the conditionLXRab50 reveals, as forY in theorem 8,
that each Ricci eigenvalue is zero atm. The proofs of parts 1–3 now follow from~29!. If X is
Killing, f50, then one considers the separate cases whenF(m) is spacelike, timelike and nul
substituting the appropriate canonical forms forF(m) into ~29! to obtain parts 4–7. Again one
notes that whenX is Killing ~and som is an isometric zero ofX! the blade ofF(m) is an
eigenspace of the Ricci tensor when the latter is nonzero atm ~cf. theorem 7! and hence one links
the geometry ofF at m with that of the canonical Ricci tensor type atm.

In the case whenX(Ó0) is Killing or homothetic andX(m)50 the possibilities for the tenso
Y at m are covered by theorems 7~parts 2–4! and 8. h

Theorem 10: Let M be a three-dimensional space–time, X a proper homothetic vector field

on M and mPM a zero of X. Then either Y(m) @and hence R̄(m)# is zero or the Ricci tensor (and
hence the Riemann tensor) vanishes at m.

Proof: The proof is immediate from theorem 8 and theorem 9 parts 1–3 because o
incompatibility of the values forF(m) if Y(m) and the Ricci tensor atm are nonzero. h

Let X be a conformal vector field on a three-dimensional space–timeM with a homothetic
zero atm. Then if Y(m)Þ0 it follows from theorem 8 that rankXa

;b(m)53. Hence, by the
implicit function theorem, the zero ofm at X is isolated. This result is not true for four
dimensional space–times, a counterexample being the well known plane wave metric.19,13 It is
also not true for three-dimensional space–times if the conditionY(m)Þ0 is dropped. This can be
seen by the following construction20 ~see also Refs. 13 and 19!.

With X as above, the only possibility ofm not being isolated@that is the rank ofXa
;b(m) is

less that 3# is, from theorems 8 and 9, whenY(m)50 and when the conditions of theorem 9~part
2! hold atm. In this case rankXa

;b52 and the conditionXa
;b(m)nb50 leads to a null geodesi

of zeros ofX with tangentn at m.20 The metric, locally aboutm, can then be written as20

ds25dx212 du dv1 f ~u!x2 du2 ~30!

for an arbitrary smooth functionf. This metric admits the covariantly constant covector fieldl a

5u;a and the Ricci tensor satisfiesRab52 f (u) l al b . It follows from ~15! that Y ~and R̄) are
identically zero and the curvature tensor vanishes identically if and only iff does.20 The vector
field with components (2v,0,x) is proper homothetic and its zeros are the null geodesicx5v
50. The bivectorF and constantf associated withX satisfy Fab52f l [anb] at these zeros and
wheren is a tangent to the corresponding null geodesic. A comparison with the four-dimens
case suggests referring to~30! as a three-dimensional plane wave and it serves as
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‘‘example’’ of theorem 10 whereY(m) and R̄(m) vanish. Another ‘‘example’’ of this theorem
arises from the metric given in a global chartv,u,x on R3 by21 ~see also Ref. 14!

ds25eux du dv1dx2. ~31!

This metric admits the proper homothetic vector fieldX with components (3v,2u,x) and a
Killing vector field ]/]v ~and in fact dimC52). The coordinate origin is an isolated zero ofX
and the only nonvanishing curvature and Ricci tensor components~up to symmetries! are

R12125
1

16u
2e2ux, R122352 1

4e
ux, R132352 1

8u
2eux,

~32!

R1252 1
4u

2eux, R2352 1
2, R3352 1

2u
2.

The Ricci tensor has Segre type$3% with zero eigenvalue at the zero~0,0,0! of X @see theorem
9 ~part 3!# and it is easily checked from~15! that R̄ ~and henceY! vanishes at this zero.

VI. THE DIMENSION OF THE CONFORMAL ALGEBRA

The Lie algebrasC, H, and K of conformal, homothetic, and Killing vector fields, respe
tively, on M described in the last section satisfy the well known results that dimC<10, dimH
<7, and dimK<6 with the optimum cases dimC510 ~respectively, dimH57, dimK56) aris-
ing if R̄[0, or equivalentlyY[0 onM ~respectively, ifM is flat orM has constant curvature!. In
this section the values of the dimensions of these algebras will be explored under less res
conditions. The technique used is based on a similar one in general relativity14,15 and depends
heavily on theorems 7–9. The general idea is that when dimC exceeds the dimension of any orb
generated byC, zeros of members ofC occur ~in that orbit!. The following theorem summarize
the present situation.

Theorem 11: Let M be a three-dimensional space–time and let mPM . Then

~1! If Y(m)Þ0(⇔R̄(m)Þ0) thendim I m<1 and dimCm<2.
~2! If Y is of type$~21!% (N8) at any point of M thendimC<5.
~3! If Y is of type$~1,1!1% (D18), type $1,~11!% (D28) or type $3% (III 8) at any point of M then

dimC<4.
~4! If Y is of type$21% (II 8), type $1,11% (I 18) or type $zz̄1% (I 28) at any point of M thendimC

<3.
~5! If Y is of type$~1,1!1% (D18), type $1,~11!% (D28) or type $~21!% (N8) at any point of M then

dimK<4.
~6! If dimK>5 then M has constant curvature.

Proof: For Y(m)Þ0 the setC(m), if not trivial, can ~by taking appropriate linear combina
tions! be spanned byk independent conformal vector fields such that at leastk21 of them havem
as an isometric zero. Ifk21.1 then again by taking linear combinations and using theorem 7
can findXPCm with fm50 andF(m)50 since all possible values ofF(m) are multiples of a
particular bivector. The same theorem then shows thatY(m)50. Thus if Y(m)Þ0 then dimI m

<1 andk5dimCm<2 since dimM53. It follows that dimC<5 or dimC<4 according asm is
a homothetic zero of at least one member ofC or not. Thus part 1 is proved and 2, 3, and 4 follo
from theorems 7 and 8. Next, since dimI m<1 and again taking linear combinations of membe
of K @and recalling that ifX is Killing and X(m)50, F(m)50 thenX[0 on M# part 5 follows
from theorems 7 and 8. Finally if dimK>5 then theorem 7 shows thatY[0 on M and theorem
9 ~parts 4–7! show thatRab}gab at eachmPM and hence~see after theorem 2! M has constant
curvature. This completes the proof. h
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The above theorem shows that the conformal algebraC satisfies dimC<5 provided thatY is
not identically zero onM. This result can, with a little more effort, be improved. The calculatio
are lengthy in places and so the proof will only be sketched with further details being availa
Ref. 18.

Theorem 12: Let M be a three-dimensional space–time which is not conformally flat. The
the conformal algebra C satisfiesdimC<4.

Proof: The previous theorem shows that dimC<5, so suppose that dimC55. The algebraC
leads to a ‘‘generalized’’ distributionD on M which associates withmPM the subspaceD(m)
5$X(m):XPC% of TpM . Since the dimension ofD(m) may vary withm one appeals to Her
mann’s generalization22 ~see also Ref. 9! of the Fröbenius theorem to obtain the existence
integral manifolds~orbits! associated withC through eachmPM and whose dimension equa
that ofDm at anym on the orbit. Now dimD(m)1dimCm5dimC55 and, from theorem 10~part
1!, dimCm<2 and so dimD(m)53 for eachmPM . A lengthy argument using the commutato
and Jacobi relations associated withC then shows thatY[0 on M18 and this contradiction com
pletes the proof. h

The results of this section can be taken a step further. The study of the conformal alge
any dimension possesses inherent difficulties due to its ‘‘nonlinearity’’~see Ref. 14 for a discus
sion of this point!. These difficulties do not arise for affine algebras~e.g., the Killing and homo-
thetic algebras!. An interesting approach to this problem was given in Ref. 23 and extended fu
in Ref. 24 and later in Ref. 15. These papers concerned general relativity and the essenti
roughly speaking, was to show that under certain conditions the conformal algebra could~locally!
be regarded as a Killing algebra with respect to a new metric which was conformally related
original one. In the case of a three-dimensional space–time a similar theorem can now be
One interesting feature of it is the reduced number of restricting clauses compared wi
corresponding four-dimensional result.15 The proof is based on the work in the last two sectio
and further details can be found in Ref. 18.

Theorem 13:Let M be a three-dimensional space–time with metric g. Suppose that the orbi
associated with the conformal algebra C of M have the same dimension n at each mPM and, if
n,3, the same type at each mPM @i.e. D(m) is always spacelike, always timelike, or always n
for all mPM #. Then for mPM either

~1! There exists an open neighborhood U of m and a smooth functions : U→R such that the
restrictions of members of C to U constitute a Lie algebra of Killing vector fields with res
to the metric esg; or

~2! There exists an open neighborhood V of m on which Y vanishes; or
~3! The orbits are two-dimensional and null, Cm5I m , dimCm51, and Y(m)50.
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A rigorous solution concept for geodesic and geodesic
deviation equations in impulsive gravitational waves

M. Kunzingera) and R. Steinbauerb)

Department of Mathematics, University of Vienna, Strudlhofg. 4,
Institute for Theoretical Physics, University of Vienna, Boltzmanng. 5,
A-1090 Wien, Austria
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The geodesic as well as the geodesic deviation equation for impulsive gravitational
waves involve highly singular products of distributions (ud,u2d,d2). A solution
concept for these equations based on embedding the distributional metric into the
Colombeau algebra of generalized functions is presented. Using a universal regu-
larization procedure we prove existence and uniqueness results and calculate the
distributional limits of these solutions explicitly. The obtained limits are regular-
ization independent and display the physically expected behavior. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!00903-2#

I. INTRODUCTION

Impulsivepp-waves~plane fronted gravitational waves with parallel rays! can be described by
a metric of the form1

ds25d~u! f ~x,y!du22dudv1dx21dy2, ~1!

where (u,v) and ~x,y! are a pair of null and~transverse! Cartesian coordinates, respectively, a
f denotes the profile function subject to the field equations. Hence the space–time is flat
where except for the null hypersurfaceu50, where it has ad-like pulse modeling a gravitationa
shock wave. Such geometries arise most naturally as ultrarelativistic limits of boosted blac
space–times of the Kerr–Newman family~as shown by various authors2–4! and multipole solu-
tions of the Weyl family.5 Also, they play an important role in particle scattering at the Pla
scale~see Ref. 6 and references therein!.

There have also been intrinsic descriptions of impulsivepp-waves, viz. by Penrose1 and by
Dray and t’Hooft,7 which essentially consist in glueing together two copies of Minkowski spa
time with a warp across the null hypersurfaceu50. Penrose also introduced a different coordin
system in which the components of the metric tensor are actually continuous. Howeve
transformation relating the coordinates used in~1! to these new ones is discontinuous~for the
general form of the transformation see Ref. 8! and therefore—strictly speaking—the differenti
structure of the manifold is changed. In this paper we stick to the original distributional for
the metric, motivated by the fact that physically, i.e., in the ultrarelativistic limit, the space–
arises that way~cf. the approaches of Refs. 9 and 10!. For recent work onpp-waves using the
continuous form of the metric, see Ref. 11.

We describe the geometry of impulsivepp-waves entirely in the distributional picture usin
the framework of Colombeau’s generalized functions, thereby generalizing previous work12 As
discussed there in detail, the geodesic as well as the geodesic deviation equation for im
pp-waves involve formally ill-defined products of distributions, due to the nonlinearity of
equations and the presence of the Diracd-function in the space–time metric. However, as was a
shown in Ref. 12, one can overcome these difficulties using a careful regularization proc
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which, while mathematically sound, corresponds to the physical idea of viewing the impu
wave as the limiting case of a sandwich wave of ever decreasing support but constant~integrated!
strength. More precisely, regularizing thed-distribution by a ‘‘modeld-net’’ @i.e., a netre(x)
ªe21r(xe21), where r is a smooth function with support contained in the interval@21,1#
satisfying *r51#, it was shown that the solutions to the smoothened equations po
regularization-independent weak limits. These distributional ‘‘solutions’’ fit perfectly into
physically expected picture showing that the geometry of impulsivepp-waves can be describe
consistently using the distributional form of the metric. The reliability of the results is guaran
by making use of regularization techniques instead of introducing ‘‘multiplication rules’’
Schwartz linear distribution theory~cf. the discussion at the end of Sec. 2 in Ref. 12 or Ref. 13
general remarks!.

However, the ‘‘solutions’’ obtained by this naive regularization procedure exhibit a m
ematically highly unsatisfactory feature.They do not obey the original distributional equation
~unless, again, one is willing to impose certain ‘‘multiplication rules’’!, as is common to such
situations. Hence—strictly speaking—this approach does not provide a reasonable solutio
cept for the equations under consideration. Such a notionis available in the nonlinear theory o
generalized functions14–16 due to J. F. Colombeau, where one has—loosely speaking—a rigo
system of bookkeeping on the regularizing sequences. Recently Hermann and Oberguggen17

~see also Ref. 18! studied systems of singular, nonlinear ordinary differential equations~ODEs! in
the Colombeau algebra. In this work we are going to use similar techniques to treat the ge
and geodesic deviation equation for impulsivepp-waves in the Colombeau algebra. Despite t
nonlinearities involved in these equations~which in principle could lead to trapping, blow-up o
reflection of solutions at the shock, cf. Ref. 17!, we are able to prove existence and uniquenes
geodesics crossing the shock hypersurface. We derive the~regularization independent! distribu-
tional limits of these solutions, making use of the notion of association~see Sec. II below! in the
algebra, thereby significantly generalizing the results of Ref. 12. In particular, the regularizat
the d-like wave profile will no longer be restricted to a ‘‘modeld-net’’ but belong to the larges
‘‘reasonable’’ class~cf. Definition 1 below!. Moreover, note that the regularization idependence
the results has the following important physical consequence: in the impulsive limit the geo
are totally independent of the particular shape of the sandwich wave. Hence the impulsive
‘‘totally forgets its seed’’~cf. also the results in Ref. 19!.

Finally, we discuss the case of a nonsmooth wave profilef and give an outlook to curren
research which allows us to fit our previous calculations into a manifestly covariant conce
Colomebeau algebras on manifolds.

II. MATHEMATICAL FRAMEWORK

A framework that allows consistent treatment of nonlinear operations with distributions a
the same time offers a well-developed theory of~linear and nonlinear! partial differential equa-
tions is provided by Colombeau’s theory of algebras of generalized functions~cf., e.g., Refs.
14–16 and 20!. To begin with, we give a short description of the algebra we are going to us
the sequel. Let

A0~Rn!5 HwPD~Rn!:E w~x!dx51J ,

Aq~Rn!5 HwPA0~Rn!:E w~x!xadx50,1<uau<qJ ~qPN!,

and set~for any V#Rn open!
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E~V!5$R:A0~Rn!3V→C:x→R~w,x!PC`~V!;wPA0~Rn!%,

EM~V!5$uPE~V!:;K,,V;aPN0
n'pPN0;wPAp~Rn!

'c.0'h.0 sup
xPK

u]au~w« ,x!u<c«2p~0,«,h!%,

N~V!5$uPE~V!:;K,,V;aPN0
n'pPN0'gPG;q>p;wPAq~Rn!

'c.0'h.0 sup
xPK

u]au~w« ,x!u<c«g~q!2p~0,«,h!%,

whereG5$g:N0→R1 :g strictly increasing, limn→`g(n)5`%. Derivation]a is carried out with
respect tox, while thew are treated as parameters. Also, forwPD(Rn), w«(x)5«2nw(x/«). Note
that w«→d in D8(Rn).

Elements ofEM(V) are called ofmoderate growth. With pointwise operationsEM(V) is a
differential algebra andN~V! is an ideal inEM(V). The quotient algebra

G~V!5EM~V!/N~V!

is called the Colombeau algebraover V#Rn. Elements ofG~V! will be denoted byR
5cl@(R(w,.))wPA0

# where (R(w,.))wPA0
is an arbitrary representative ofR ~again emphasizing

the fact that thew’s are viewed as parameters!.
For V5Rn the map

i:E8~V!→G~V!,

w→cl@~w* w!wPA0
#

~where * denotes convolution! is a linear embedding commuting with partial derivatives a
coinciding with the identical embeddingf→cl@( f )wPA0

# onD(Rn).
HereG is a fine sheaf of differential algebras onRn and there is a unique sheaf morphis

î:D8→G coinciding with i on everyE8(V) and renderingC`(V) a faithful subalgebra ofG~V!.
From the definitions it is clear that any element ofG~V! is uniquely determined by the values o
any representative onw« for wPAp with p arbitrarily large and« arbitrarily small ~i.e., by its
‘‘germ’’ !, a fact that turns out to be very helpful, e.g., in constructing solutions to differe
equations inG.

Inserting points into elements ofG(Rn) gives elements of the ring of generalized numb
C̄(n), defined asC̄(n)5E(n)/N(n), where

E~n!5$u:A0~Rn!→C:'pPN0;wPAp~Rn!'c.0'h.0uu~w«!u<c«2p~0,«,h!%,

N~n!5$u:A0~Rn!→C:'pPN0'gPG;q>p;wPAq~Rn!

'c.0'h.0uu~w«!u<c«g~q!2p~0,«,h!%.

Thus elements ofG(Rn) take values inC̄(n). Explicit dependence of the ring of constants onn can
be avoided by a more refined construction of the setsAq in the definition ofG ~see Ref. 20!.
Clearly,C�C̄ via the canonical embeddingc→cl@(c)wPA0

#.
Componentwise insertion ofRPG into a smooth functionf yields a well-defined elementf (R)

of G if f is slowly increasing, i.e., if all derivatives off are polynomially bounded. Moreover, ifR
is locally bounded, i.e., if it possesses a representative such thatR(w« ,.) is bounded uniformly in
« on compact sets@for wPAp(Rn), p large#, then f +R exists for any smoothf.
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Finally, we mention the notion ofassociationin G(V):R1 ,R2PG(V) are called associated t
each other (R1'R2) if there exists somepPN such thatR1(w« ,.)2R2(w« ,.)→0 in D8(V) as
«→0 for all wPAp(Rn). In particular, ifR2PD8(V), thenR2 is called the macroscopic aspe
~or distributional shadow! of R1 . Equality inD8 is reflected as equality in the sense of associat
in G, while equality inG is a stricter concept~for example, all powers of the Heaviside function a
distinct in the Colombeau algebra although they are associated with each other!.

III. EXACT SOLUTIONS OF GEODESIC AND GEODESIC DEVIATION EQUATIONS

As in Ref. 12 we consider the impulsivepp-wave metric

ds25 f ~xi !d~u!du22dudv1~dxi !2, ~2!

where f is a smooth function of the transverse coordinatesxi( i 51,2). Our aim is to derive
solutions to the corresponding geodesic and geodesic deviation equations in the Colombea
bra.

The general strategy for solving differential equations inG is to embed singularities~in our
case:d! into G which amounts to a regularization and then solve the corresponding regula
equations. In order to obtain general results we are therefore interested in imposing as few
tions as possible on the regularization ofd. The largest ‘‘reasonable’’ class of smooth regulariz
tions of d is given by nets (r«)«P(0,1) of smooth functionsr« satisfying

~a! supp~r«!→$0% ~«→0!,

~b! E r«~x!dx→1 ~«→0!, and

~c! 'h.0'C>0:E ur«~x!udx<C;«P~0,h!

~cf. the definition ofstrict delta netsin Ref. 16, Chap. 2.7!. @Note that sinceD is dense inL1

practically even discontinuous regularizations~e.g., boxes! are included.# Obviously any such ne
converges tod in distributions as«→0. To simplify notations it is often convenient to replace~a!
by

~a8! supp~r«!#@2«,«# ;«P~0,1!.

This motivates the following~cf. Ref. 17!
Definition 1:A generalized delta functionis an element D ofG(Rn) possessing a representa

tive (D(w,.))wPA0
such that'pPN0;wPAp(Rn)'h5h(w).0:

~ i! supp~D~w« ,.!!#@2«,«#;«P~0,h!,

~ ii ! E D~w« ,x!dx→1~«→0!,

~ iii ! 'C5C~w!.0 such thatE uD~w« ,x!udx<C;«P~0,h!.

The canonical embeddingR5i(d) of course falls into this class, but clearly there are ma
generalized delta functions that do not correspond to any distribution viai. Moreover, every
generalized delta function is associated tod, i.e., all generalized delta functions equald on the
distributional level. In a sense, they may be viewed as ‘‘delta distributions with a more re
microstructure’’~fixing the additional nonlinear properties of the singularity!.
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Again, condition~i! in Definition 1 has been chosen in order to avoid technicalities in
proofs of the following results, which, however, remain true if~i! is replaced by

~ i 8! supp~R~w« ,.!!→$0% ~«→0!.

Finally, we need the following technical preparation~which is actually a generalization of appe
dix A of Ref. 12!.

Lemma 1: Let g:Rn→Rn, h:R→Rn smooth and let(r«)«P(0,1) be a net of smooth function
satisfying(a8) and (c). For any x0 , ẋ0PRn and any«P(0,1) consider the system

ẍ«~ t !5g~x«~ t !!r«~ t !1h~ t ! ,

x«~21!5x0 , ~3!

ẋ«~21!5 ẋ0 .

Let b.0, M5*21
1 *21

s uh(r )udrds, I 5$xPRn:ux2x0u<b1uẋ0u1M % and a5min$b/(CigiL`(I)

1uẋ0u),1/2LC,1% with L a Lipschitz constant for g on I. Then (3) has a unique solution on«

5@21,a2«#. Consequently, for« sufficiently small, x« is globally defined and both x« and ẋ« are
bounded, uniformly in«, on compact sets.

Proof: The operatorf→A f ,

A f~ t !5x01 ẋ0~ t11!1E
21

t E
21

s

g~ f ~r !!r«~r !drds1E
21

t E
21

s

h~r !drds,

is a contraction on the complete metric space

$ f PC~J« ,Rn!:u f ~ t !2x0u<b1M1uẋ0u%.
h

Let us now turn to the geodesic equation for thepp-wave metric ~2!. Using u as an affine
parameter~which excludes trivial geodesics parallel to the shock! we obtain~cf. Ref. 12!

v̈~u!5 f ~xi~u!!ḋ~u!12] i f ~xi~u!!ẋi~u!d~u!,
~4!

ẍi~u!5 1
2] i f ~xi~u!!d~u!.

Since all operations appearing in~4! are well defined inG ~cf. the remarks following Theorem 1
below!, we may seek solutions of the corresponding initial value problem in the Colom
algebra by embeddingd(u) into G. In fact, it turns out that foranygeneralized delta function ther
exists a unique solution. Denoting the generalized functions corresponding toxi andv by capital
letters we state the following.

Theorem 1: Let DPG(R) be a generalized delta function, fPC`(R2) and let v0 , v̇0 , x0
i ,

ẋ0
i PR ( i 51,2). The initial value problem,

V̈~u!5 f ~Xi~u!!Ḋ~u!12] i f ~Xi~u!!Ẋi~u!D~u!,

Ẍi~u!5 1
2] i f ~Xi~u!!D~u!,

~5!
V~21!5v0 , Xi~21!5x0

i ,

V̇~21!5 v̇0 , Ẋi~21!5 ẋ0
i ,

has a unique locally bounded solution(V,X1,X2)PG(R)3.
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Note that we impose initial conditions inu521, i.e., ‘‘long before’’ the shock. Choosing
initial conditions at u50 would mean to start ‘‘at the shock,’’ which inevitably leads
regularization-dependent weak limits.

Proof: Existence:ChoosepPN as in Definition 1, fixwPAp(Rn) and let«,h(w). Then
componentwise we obtain the equations

V̈~w« ,u!5 f ~Xi~w« ,u!!Ḋ~w« ,u!12] i f ~Xi~w« ,u!!Ẋi~w« ,u!D~w« ,u!,

Ẍi~w« ,u!5 1
2] i f ~Xi~w« ,u!!D~w« ,u!,

~6!
V~w« ,21!5v0 , Xi~w« ,21!5x0

i ,

V̇~w« ,21!5 v̇0 , Ẋi~w« ,21!5x0
i .

According to Lemma 1, the second line of~6! has a unique globally defined solutionXi(w« ,.)
with the specified initial values. Inserting this into the first line and integrating we also obt
solutionV(w« ,.). From the boundedness properties ofXi(w« ,.) established in Lemma 1 and th
fact that (D(w,.))wPA0

PEM(R) it follows easily by induction that (Xi(w« ,.))wPA0
and

(V(w« ,.))wPA0
are moderate as well. Hence their respective classes inG~R! define solutions to

~5!.
Uniqueness:Suppose thatV15cl@(V1(w« ,.))wPA0

# andX1
i 5cl@(Xi(w« ,.))wPA0

# are locally
bounded solutions of~5! as well. On the level of representatives this means that there exisM
5cl@(M (w« ,.))wPA0

#, Ni5cl@(Ni(w« ,.))wPA0
#PN(R) andnxi, nẋi, nv , nv̇PN(1) with

V̈1~w« ,u!5 f ~X1
i ~w« ,u!!Ḋ~w« ,u!12] i f ~X1

i ~w« ,u!!Ẋ1
i ~w« ,u!D~w« ,u!1M ~w« ,u!,

Ẍ1
i ~w« ,u!5 1

2] i f ~X1
i ~w« ,u!!D~w« ,u!1Ni~w« ,u!,

~7!
V1~w« ,21!5v01nv~w«!, X1

i ~w« ,21!5x0
i 1nxi~w«!,

V̇1~w« ,21!5 v̇01nv̇~w«!, Ẋ1
i ~w« ,21!5 ẋ0

i 1nẋi~w«!.

We have to show that ((V2V1)(w« ,.))wPA0
and ((Xi2X1

i )(w« ,.))wPA0
belong to the ideal

N~R!. SinceNiPN(R) it follows that forp sufficiently large,« small andwPAp(R), Ni(w« ,.) is
bounded on compact sets, uniformly in«. Thus by Lemma 1 the same holds true forX1

i (w« ,.) and
its first derivative. From~7! we conclude

~Xi2X1
i !~w« ,u!52nxi~w«!2~u11!nẋi~w«!1

1

2 E21

u E
21

s

D~w« ,r !@] i f ~Xi~w« ,r !!

2] i f ~X1
i ~w« ,r !!#drds2E

21

u E
21

s

N~w« ,r !drds.

Hence;T.0'pPN0'gPG;q>p;wPAq(R)'C.0'h.0;«P(0,h);uP@2T,T#:

u~Xi2X1
i !~w« ,u!u<C«g~q!2p1

1

2 E21

u E
2r

u E
0

1

u¹] i f ~sXi~w« ,r !!

1~12s!X1
i ~w« ,r !)udsu~Xi2X1

i !~w« ,r !uuD~w« ,r !udsdr. ~8!

By the boundedness properties ofXi andX1
i and by~iii !, an application of Gronwall’s lemma to

the above inequality yields theN-estimates of order 0 for (Xi2X1
i ). A similar argument applies to

the first derivatives. The estimates of higher order then follow inductively from the differe
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equation, so ((Xi2X1
i )(w« ,.))wPA0

PN(R). Inserting this into the integral equation for (V

2V1), theN-estimates for (V2V1) also follow inductively. h

In the proof of Theorem 1 we have only made use of properties~i! and~iii ! of the generalized
delta functionD. On the other hand, property~ii ! will be essential for the explicit calculation o
distributional limits of the unique solution constructed in Theorem 1, cf. Sec. IV. Also, note
we did not have to impose any growth restrictions onf to obtain a well-defined elementf (Xi) of
G. This is of course due to the fact that any componentwise solution of the initial value pro
necessarily is bounded, uniformly in«, on compact sets~for « small!. Our next goal is an analysi
of the Jacobi equation for impulsivepp-waves in the framework of algebras of generalized fu
tions. As in Ref. 12 to keep formulas more transparent we make some simplifying assum
concerning geometry~namely axisymmetry! and initial conditions. Writingx5x1 andy5x2 we
suppose thatf depends exclusively on the two-radiusAx21y2 and work within the hypersurface
y50 ~corresponding to initial conditionsy0505 ẏ0!. Furthermore, we demandv0505 ẋ0 . As
was shown in Ref. 12, in this situation the Jacobi equation

D2Na

dt2
52Rbcd

a TbTdNc,

whereNa(u)5(Nu(u),Nv(u),Nx(u),Ny(u)) denotes the deviation vector field, takes the form

N̈v52@Nxf 8~x!d# ˙ 2Nxf 8~x!ḋ1@Nuf ~x!d# ¨ 2Nuf 9~x!ẋ2d2Nuf 8~x!ẍd,

N̈x5@Ṅuf 8~x!1 1
2N

xf 9~x!#d1 1
2 f 8~x!Nuḋ, ~9!

N̈y5N̈u50,

wherex is determined by~4!. Existence and uniqueness of solutions to the corresponding in
value problem in the Colombeau algebra is established in the following result where, for the
of brevity, we denote theG-functions corresponding toNa again byNa.

Theorem 2: Let DPG(R) be a generalized delta function, fPC`(R), na, ṅaPR4, and let X
denote the (unique) solution to system (5) with initial conditions and simplifications as disc
above. The initial value problem

N̈v52@Nxf 8~X!D# ˙ 2Nxf 8~X!Ḋ1@Nuf ~X!D# ¨ 2Nuf 9~X!Ẋ2D2Nuf 8~X!ẌD,

N̈x5@Ṅuf 8~X!1 1
2N

xf 9~X!#D1 1
2 f 8~X!NuḊ,

~10!
N̈y5N̈u50,

Na~21!5na, Ṅa~21!5ṅa.

has a unique solution NaPG(R)4.
Proof: Since the equations are linear in the components of the deviation field we are pro

with globally defined solutions on the level of representatives. The last two equations are a
trivial and so is the first one once we know that its right-hand side belongs toG~R!. Hence we are
left with the equation forNx which is of the formN̈(t)5 f 9(X(t))D(t)N(t)1H(t) with H in
G~R!. Using the boundedness properties ofX established in Lemma 1 theEM-bounds forNx easily
follow from Gronwall’s lemma.

Uniqueness is established along the same lines again using Gronwall-type argumentsh

In the above proof we have again only used properties~i! and ~iii ! of the generalized delta
function D.

To conclude this section we remark that unique solvability of the geodesic and geo
deviation equation for~2! is not confined to the case where the profile functionf is smooth. Indeed,
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it turns out that for a large class of generalized profile functions~those that are not ‘‘too singular’’!
Theorems 1 and 2 retain their validity. More precisely, we have to demand thatf belongs to the
algebra of temperedgeneralized functions15 to make sure that the compositionf (X) is well
defined and that¹¹ f is of L`-log-type17,18 to ensure existence and uniqueness of solutions to~5!
and~10!. However, to include many physically interesting examples~cf. Ref. 21!, one has to cut
out the worldline of the ultrarelativistic particle, i.e., thev-axis from the domain of definition~cf.
Ref. 22!.

IV. DISTRIBUTIONAL LIMITS

In this section we are going to calculate the distributional limits~or, in the terminology of
Colombeau theory, the associated distributions! of the unique solutions to the geodesic and ge
desic deviation equation constructed in Theorems 1 and 2. In Ref. 12 distributional limit
regularized versions of these equations have been calculated using a model delta net reg
tion. Translated into our current setting this amounts to using the particular generalized
functionD5i(d). Our aim is to extend the validity of the limit relations derived there to the c
of solutions in the Colombeau algebra and to generalized delta functions. At the same time w
be able to prove stronger convergence results in some cases.

Theorem 3: The unique solution(V,Xi) of the geodesic equation (5) satisfies the followi
association relations:

Xi'x0
i 1 ẋ0

i ~11u!1 1
2] i f ~x0

i 1 ẋ0
i !u1 , ~11!

V'v01 v̇0~11u!1 f ~x0
i 1 ẋ0

i !u~u!1] i f ~x0
i 1 ẋ0

i !~ ẋ0
i 1 1

4]
i f ~x0

i 1 ẋ0
i !!u1 . ~12!

In addition, if Xi5cl@(Xi(w,.))wPA0
#, then'pPN0 such that;wPAp

Xi~w« ,u!→x0
i 1 ẋ0

i ~11u!1 1
2] i f ~x0

i 1 ẋ0
i !u1 ~13!

for «→0, uniformly on compact subsets ofR.
Proof: ChoosepPN0 as in Definition 1 forD. Let wPAp and «,h(w). Since integrating

amounts to convolution with the Heaviside function, which is a continuous operation on
convolution algebra of distributions supported in a cone, in order to prove~11! it suffices to show
that

Ẍi~w« ,.!5 1
2] i f ~Xi~w« ,.!!D~w« ,.!→ 1

2] i f ~x0
i 1 ẋ0

i !d

in distributions. We first note thatX(w« ,«t)→x0
i 1 ẋ0

i uniformly as can be seen from the integr
equation forXi @cf. ~11! in Ref. 12#. Now if cPD(R), then

U E
2e

e

c~ t !] i f ~Xi~w« ,t !!D~w« ,t !dt2] i f ~x0
i 1 ẋ0

i !c~0!U
< sup

2e<t<e
uc~ t !] i f ~Xi~we ,t !!2] i f ~x0

i 1 ẋ0
i !c~0!u E

2e

e

uD~we ,t !udt

1E
2e

e

uD~we ,t !dt21u] i f ~x0
i 1 ẋ0

i !c~0!.

So the claim follows from properties~iii ! and ~ii ! of the generalized delta functionD. Since
Ẋi(w« ,t) is bounded on compact sets, uniformly in«, it follows that the family$Xi(w« ,t):«
P(0,1)% is locally equicontinuous. Hence Ascoli’s Theorem implies~13!. Concerning~12!, as
above it suffices to calculate the limit of
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V̈~w« ,u!5@ f ~Xi~w« ,u!!D~w« ,u!# ˙ 1] i f ~Xi~w« ,u!!Ẋi~w« ,u!D~w« ,u!,

whose first summand converges tof (x0
i 1 ẋ0

i ) ḋ by an argument similar to the one above. For t
second summand we have

and (* )→] i f (x0
i 1 ẋ0

i ) ẋ0
i d. Finally, since

E
2«

«

c~ t !] i f ~Xi~w« ,t !!D~w« ,t !E
2«

t

] i f ~Xi~w« ,s!!D~w« ,s!dsdt

2
1

2
] i f ~x0

i 1 ẋ0
i !2c~0!E

2«

«

D~w« ,t !dt→0,

the claim follows. h

In calculating distributional limits for the solution of the Jacobi equation to maintain
clarity of formulas, we shall make simplifying assumptions on the initial conditions, i.e.,

Na~21!5~0,0,0,0!,
~14!

Ṅa~21!5~a,b,0,0!.

Then we have the following.
Theorem 4: The unique solution of the geodesic deviation equation (10) satisfies the fo

ing association relations:

Nx' 1
2a f8~x0!~u11u~u!!, ~15!

Nv'b~11u!1a@ f ~x0!d~u!1 1
4 f 8~x0!2~u~u!1u1!#. ~16!

Proof: The general structure of this proof is ‘‘isomorphic’’ to the calculation of distributio
limits for the regularized Jacobi equation in Ref. 12. The main difference is that, for repres
tives of generalized delta functions, dominated convergence arguments are not applicable
makes the calculations more tedious. Nevertheless, using the uniform convergence ofXi(w« ,.)
established above, all steps carried out in Ref. 12 can be adapted to the present situa
demonstrated in the proof of Theorem 3. h

V. DISCUSSION AND OUTLOOK

In the previous section we have shown that the unique solutions to the geodesic and ge
deviation equation in the Colombeau algebra possess a physically reasonable macroscop~i.e.,
distributional! aspect: even within the natural maximal class of delta-regularizations~namely the
class of all generalized delta functions! the regularity of the equations is sufficiently high to ensu
distributional limits corresponding to physical expectations. More precisely, from the dist
tional point of view, the geodesics correspond to refracted, broken straight lines as sugges
the form of the metric. The scale of the jump and kink is given by the values off and its first
derivatives at the shock hypersurface, which can be traced back to the values at the initia
(u521), thereby precisely reproducing Penrose’s junction conditions.1 The distributional limit
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of the Jacobi field suffers a kink and jump in thex-direction as well as an additionald-pulse in the
v-direction, which may be understood from the form of the geodesics. For a more de
discussion, see Ref. 12.

Finally we make some comments on diffeomorphism invariance of our results. Wherea
fine sheaf of Colombeau algebras can be lifted to manifolds in a straightforward manne
action of a diffeomorphism does not commute with the canonical embeddingD8�G. The reason
for this is that convolution relies on the additive group structure ofRn and is therefore not
invariant under the action of diffeomorphisms. Note, however, that our calculations did not u
embedding via convolution and therefore are not affected by this defect.

A solution to the above mentioned problem was proposed in Ref. 23 using a modified
nition of the mollifier spacesAq . A key ingredient of this construction is that diffeomorphisms
on thew’s, introducing an implicitx dependence into the first slot of the Colombeau functio
R(w,x). Hence, to retain smoothx dependence ofR the concept of Silva differentiability was
used. Future work will be concerned with a simplified concept of Colombeau algebras on
folds using calculus in convenient vector spaces.24 A main goal of this line of research is t
provide a workable solution concept for singular differential equations on manifolds.
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Static Bondi energy in the teleparallel equivalent
of general relativity
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70.919-970 Brası´lia, DF, Brazil
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We consider Bondi’s radiating metric in the context of the teleparallel equivalent of
general relativity~TEGR!. This metric describes the asymptotic form of a radiating
solution of Einstein’s equations. The total gravitational energy for this solution can
be calculated by means of pseudotensors in the static case. In the nonstatic case,
Bondi defines themass aspect m(u), which describes the mass of an isolated
system. In this paper we express Bondi’s solution in asymptotically spherical 3
11 coordinates, not in radiation coordinates, and obtain Bondi’s energy in the
static limit by means of the expression for the gravitational energy in the frame-
work of the TEGR. We can either obtain the total energy or the energy inside a
large ~but finite! portion of a three-dimensional spacelike hypersurface, whose
boundary is far from the source. ©1999 American Institute of Physics.
@S0022-2488~99!03602-6#

I. INTRODUCTION

The concept of energy in general relativity is considerably more intricate than in any
branch of physics. Any physical phenomena, except gravitation, is defined and describe
specific space–time, which is usually the flat space–time. For these phenomena the con
energy can be intuitively conceived and mathematically realized. Generically, energy is
tribute of some physical system whose dynamics takes place on the space–time. Grav
however, acquires a distinct status because the dynamics of the gravitational field is the dy
of the space–time itself. Consequently, the definition of the gravitational energy is not str
forward.

The several attempts at defining the gravitational energy~pseudotensors, quasilocal energ
actions, and Hamiltonians with surface terms! all agree in predicting thetotal energy of asymp-
totically flat gravitational fields. Moreover, there seems to exist a predominant point of
according to which the gravitational energy is not localizable, i.e., that there does not e
gravitational energydensity. These are probably the only two features shared by the var
approaches, which are mostly based on the metric tensor. However, the very concept of a
hole lends support to the idea that gravitational energy is localizable. There is no process by
of which the gravitational mass inside a black hole can be made to vanish.

A detailed analysis of the structure of the pseudotensors shows that the~covariant! gravita-
tional energy–momentum tensor would have to be defined by means of the first derivative
metric tensor. But it is well known that it is not possible to write down a nontrivial covar
expression involving the first derivative of the metric, which captures the energy content o
field. However, it is possible to write down such covariant expressions with tetrads, and M” ller
noticed this fact long ago.1–3

The question of localizability of the gravitational energy can be discussed in the framewo
the teleparallel equivalent of general relativity~TEGR!,3–6 which is an alternative geometrica
formulation of Einstein’s general relativity. The action integral of the TEGR is constructed

a!Electronic mail: wadih@fis.unb.br
14900022-2488/99/40(3)/1490/14/$15.00 © 1999 American Institute of Physics
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tirely out of the torsion tensor. The analysis of the canonical structure of the TEGR7 indicates the
existence of a perfectly well-defined gravitational energy density. Such existence is possi
principle, because the TEGR is defined in terms of tetrad fields. The torsion tensor allow
construction of a total divergence that transforms as a scalar~energy! density. In the 311 formu-
lation of the TEGR, the integral form of the Hamiltonian constraint equationC50 can be written
as an energy equation of the type8

C5H2E50,

whereE is the gravitational energy defined by

Eg5
1

8pG E
V

d3x ] i~eTi !, ~1!

wheree5det(e(k)i), $e(k) i% are triads restricted to a three-dimensional spacelike hypersurfacS,
andTi is the trace of the torsion tensor:Ti5gikTk5gike( l ) jT( l ) jk , T( l ) jk5] je( l )k2]ke( l ) j . V is an
arbitrary three-dimensional volume of integration andG is the gravitational constant. This expre
sion is simple and powerful. It has been successfully applied to rotating black holes,9 de Sitter
space,10 and conical space–times.11 The definition of gravitational energy in the TEGR may not
intuitively clear, but it is supported by its mathematical simplicity and by the applications to
space–times listed above. The use of~1! requires only the construction of the triads$e(k) i% with
the appropriate boundary conditions, and that transform under theglobal SO~3! group.

The torsion tensor that appears in the Hamiltonian formulation of the TEGR is related t
antisymmetric component of the connectionG jk

i 5e(m) i ] je(m)k , whose curvature tensor is ident
cally vanishing. Such a connection defines a space with teleparallelism, or absolute parallel
elsefernparallelismus, according to Schouten.12

In this paper we investigate the energy of asymptotically flat gravitational waves, describ
Bondi’s radiating metric.13 Since the metric describes an isolated system, the application of~1! is
possible as it stands, provided we consider the metric in the 311 spherical coordinates (t,r ,u,f)
at spacelike infinity, for whicht5const defines a spacelike hypersurface. We note that the u
Cartesian~rectangular! coordinates in the asymptotic limit is necessary for the evaluation
pseudotensors out of this metric.

We recall that the Arnowitt–Deser–Misner~ADM ! energy14 is not suitable for the analysis o
gravitational radiation, because it gives thetotal energy of the space–time, both from the sou
and from the emitted radiation, whereas the Bondi energy evaluated at null infinity furnishes
the energy of the source, from which it is possible to derive the well-known formula for the
of mass.

The relevance of the definition~1! resides precisely in the fact that we can evaluate it o
large butfinite volumeV of the three-dimensional spacelike hypersurface, thereby not inclu
the emitted radiation outsideV. In view of the field equations~which are not considered here!, the
energy insideV turns out to be a decreasing function of time.

It is important to remark at this point that Bondi energy has been calculated in se
geometrical frameworks, by different approaches.15–19 A common feature of these approaches
that they yield thetotal energy of the field. In contrast, we will consider finite volumes
spacelike surfaces and obtain the energy contained within large spherical surfaces of radiur 0 up
to the 1/r 0 term.

In the next section we briefly describe the Lagrangian and Hamiltonian formulations o
TEGR. In Sec. III we compare our energy expression with Mo” ller’s expression. We show that bot
expressions agree for thetotal gravitational energy, but in spite of similarities they disagree wh
applied to finite volumes of the three-dimensional space. In Sec. IV we write Bondi’s met
(t,r ,u,f) coordinates at infinity and proceed to carry out the construction of triads for the s
like hypersurfacesS. There exists an infinite number of triads that lead to the metric restricte
the three-dimensional hypersurface. However, only two of them will be considered in deta
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Sec. V we calculate both the total energy of the field and the energy contained within a
sphere of radiusr 0 . The total energy obtained by means of~1!, in which case the integration i
made over the wholeS, agrees with the known result for the Bondi energy in thestaticcase. We
also obtain the expression for the energy contained within a surface of constant radiusr 0 in the
asymptotic region, where the metric coefficients may be determined.

Notation: spacetime indicesm,n,..., and local Lorentz indicesa,b,..., run from 0 to 3. In the
311 decomposition Latin indices from the middle of the alphabet indicate space indices ac
ing to m50,i , a5(0),(i ). The tetrad fieldea

m and the spin connectionvmab yield the usual
definitions of the torsion and curvature tensors:Ra

bmn5]mvn
a

b1vm
a

cvn
c
b2¯ , Ta

mn5]mea
n

1vm
a

beb
n2¯ . The flat space–time metric is fixed byh (0)(0)521.

II. THE TEGR

The Lagrangian density of the TEGR in empty spacetime is given by

L~e,v,l!52ke~ 1
4T

abcTabc1
1
2T

abcTbac2TaTa!1elabmnRabmn~v!, ~2!

wherek51/16pG, G is the gravitational constant;e5det(ea
m), labmn are Lagrange multipliers

andTa is the trace of the torsion tensor defined byTa5Tb
ba . The tetrad fieldeam and the spin

connectionvmab are completely independent field variables. The latter is enforced to satisf
condition of zero curvature. Therefore this Lagrangian formulation is in no way similar to
usual Palatini formulation, in which the spin connection is related to the tetrad field via
equations. Later on, we will introduce the tensorSabc , defined by

1
4T

abcTabc1
1
2T

abcTbac2TaTa[TabcSabc .

The equivalence of the TEGR with Einstein’s general relativity is based on the identity

eR~e,v!5eR~e!1e~ 1
4T

abcTabc1
1
2T

abcTbac2TaTa!22]m~eTm!, ~3!

which is obtained by just substituting the arbitrary spin connectionvmab50vmab(e)1Kmab in the
scalar curvature tensorR(e,v) on the left-hand side;0vmab(e) is the Levi-Civita connection and
Kmab5 1

2ea
leb

n(Tlmn1Tnlm2Tmnl) is the contorsion tensor. The vanishing ofRa
bmn(v), which

is one of the field equations derived from~2!, implies the equivalence of the scalar curvatu
R(e), constructed out ofea

m only, and the quadratic combination of the torsion tensor. It a
ensures that the field equation arising from the variation ofL with respect toea

m is strictly
equivalent to Einstein’s equations in tetrad form. LetdL/deam50 denote the field equation
satisfied byeam. It can be shown by explicit calculations that

dL

deam 5
1

2
eH Ram~e!2

1

2
eamR~e!J . ~4!

We refer the reader to Refs. 7 and 8 for additional details.
Throughout this section we will be interested in asymptotically flat space–times. The H

tonian formulation of the TEGR can be successfully implemented if we fix the gaugev0ab50
from the outset, since in this case the constraints~to be shown below! constitute afirst classset.7

The conditionv0ab50 is achieved by breaking the local Lorentz symmetry of~2!. We still make
use of the residual time-dependent gauge symmetry to fix the usual time gauge conditioe(k)

0

5e(0)i50. Because ofv0ab50, H does not depend onPkab, the momentum canonically conju
gated tovkab . Therefore arbitrary variations ofL5pq̇2H with respect toPkab yields v̇kab50.
Thus, in view ofv0ab50, vkab drops out from our considerations. The above gauge fixing ca
understood as the fixation of a reference frame.

As a consequence of the above gauge fixing, the canonical action integral obtained fro~2!
becomes8
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ATL5E d4x$P~ j !kė~ j !k2H%, ~5!

H5NC1NiCi1SmnP
mn1

1

8pG
]k~NeTk!1]k~P jkNj !. ~6!

N and Ni are the lapse and shift functions, andSmn52Snm are Lagrange multipliers. The
constraints are defined by

C5] j~2keTj !2keSki jTki j2
1

4ke S P i j P j i 2
1

2
P2D , ~7a!

Ck52e~ j !k ] iP
~ j !i2P~ j !iT~ j !ik , ~7b!

with e5det(e(j)k) and Ti5gike( j ) lT( j ) lk . We remark that~5! and ~6! are invariant under globa
SO~3! and general coordinate transformations.

If we assume the asymptotic behavior,

e~ j !k'h jk1 1
2hjk~ 1

r !, ~8!

for r→`, then, in view of the relation

1

8pG E d3x ] j~eTj !5
1

16pG E
S
dSk~] ihik2]khii ![EADM , ~9!

where the surface integral is evaluated forr→`, the integral form of the Hamiltonian constrain
C50 may be rewritten as

E d3xH keSki jTki j1
1

4ke S P i j P j i 2
1

2
P2D J 5EADM . ~10!

The integration is over the whole three-dimensional space. Given that] j (eTj ) is a scalar density,
from ~9! and~10! we define the gravitational energy density enclosed by a volumeV of the space
as

E5
1

8pG E
V
d3x ] j~eTj !. ~1!

It must be noted thatE depends only on the triadse(k) i restricted to a three-dimensional spaceli
hypersurface; the inverse quantitiese(k) i can be written in terms ofe(k) i . From the identity~4! we
observe that the dynamics of the triads does not depend onvmab . Therefore,Eg given above does
not depend on the fixation of any gauge forvmab . We briefly remark that the reference space t
defines the zero of energy has been discussed in Ref. 9.

We make now the important assumption that the general form of the canonical structure
TEGR is the same for any class of space–times, irrespective of the peculiarities of the latt~for
the de Sitter space,10 for example, there is anadditional term in the Hamiltonian constraintC!.
Therefore we assert that the integral form of the Hamiltonian constraint equation can be writ
C5H2E50 for any space–time, and that~1! represents the gravitational energy for arbitra
space–times with any topology.

Before closing this section, let us recall that Mu¨ller–Hoissen and Nitsch20 and Kopczyn´ski21

have shown that, in general, the theory defined by~2! faces difficulties with respect to the Cauch
problem. They have shown that, in general, six components of the torsion tensor are not
mined from the evolution of the initial data. On the other hand, the constraints of the th
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constitute a first class set provided we fix the six quantitiesv0ab50 before varying the action.7

This condition is mandatory and does not merely represent one particular gauge fixing
theory. Since the fixing ofv0ab yields a well-defined theory with first class constraints, we can
assert that the field configurations of the latter are gauge equivalent to configurations whos
evolution is not precisely determined. The requirement of local SO~3,1! symmetry plus the addi-
tion of labmnRabmn(v) in ~2! has the ultimate effect of discarding the connection. Although
have no proof, we believe that the two properties above~the failure of the Cauchy problem and th
fixation of v0ab50) are related to each other.

Constant rotations constitute a basic feature of the teleparallel geometry. Accordi
Mo” ller,2 in the framework of the absolute parallelism tetrad fields, together with the boun
conditions, uniquely determine atetrad lattice, apart from an arbitraryconstant rotation of the
tetrads in the lattice.

III. MO” LLER’S ENERGY EXPRESSION

Mo” ller carried out several investigations regarding the localizability of the gravitationa
ergy. He faced difficulties in establishing a covariant expression using the metric tensor2 and
because of this he arrived at an expression through the use of tetrads.2,3 According to Mo” ller, this
latter expression still has a difficulty in that it is not invariant underlocal Lorentz transformations
It is very instructive to compare expression~1! with Mo” ller’s expression. For the sake of th
comparison, we will put aside the difficulty regarding the noninvariance with respect to
Lorentz transformations.

Mo” ller presents an expression for the energy–momentum of the gravitational field. How
we will only consider the energy expression. Translating into our notation, Mo” ller’s energy reads
as

E52E d3x ]lU0
0l, ~11!

where the potential in the integrand is given by

Um
nl5

1

8pG
e@ean

“mea
l1~dm

n eal2dm
l ean!“sea

s#. ~12!

In contrast with the notation of the previous section, all geometrical quantities in Eqs.~11!–~15!
are four-dimensionalquantities. In~12!, “ represents the covariant derivative with respect to
Christoffel symbolsGmn

l .
Mo” ller’s energy can be first rewritten as

E5
1

8pG E d3x ] i~eeak
“kea

i !. ~13!

By means of the identity

“kea j5]kea j2Gk j
s eas[20vk

b
aeb j , ~14!

where0vmab is the Levi-Civita connection,

0vmab52 1
2e

c
m~Vabc2Vbac2Vcab!,

Vabc5ean~eb
m ]mec

n2ec
m ]meb

n!,

we can further rewrite expression~13! as
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E5
1

8pG E d3x ] i~eeaieb j 0v jab!. ~15!

Up to this point$eam% are tetrads of the four-dimensional space–time. In order to com
~15! with ~1! let us impose the time gaugee(0)

k5e( j )
050 and establish the 311 decomposition

of the tetrads as in Refs. 7 and 22. Then the integrand on the right-hand side of~15! can be
rewritten as

4e 4eai 4eb j 0v jab~4e!5Nee~m!ie~n! j 0v j ~m!~n!~e!2e~eaiNj2ea jNi !0v j ~0!~m! .

N andNi are the lapse and shift functions and$4eam% are tetrads of the four-dimensional spac
time. In terms of triads restricted to a three-dimensional spacelike surface we have

E5
1

8pG E d3x ] i@Nee~m!ie~n! j 0v j ~m!~n!2e~e~m!iNj2e~m! jNi !0v j ~0!~m!#. ~16a!

A comparison with~1! can now be made if we make use of theidentity23

] i~ee~m!ie~n! j 0v j ~m!~n!![] i~eTi !,

where the right-hand side above is the same as in~1!. Mo” ller energy can be finally written as

E5
1

8pG E d3x ] i@NeTi2e~e~m!iNj2e~m! jNi !0v j ~0!~m!!]. ~16b!

Recall that we are ignoringlocal Lorentz transformations.
Besides the appearance of extra terms involving0v j (0)(m) on the right-hand side of~16a! and

~16b!, there is also the crucial presence of the lapse functionN multiplying eTi . Therefore, even
for configurations of the gravitational field for which the second term on the right-hand sid
~16! does not contribute~if, say,Ni50, as for the Schwarzschild solution! expressions~1! and~16!
will lead to different results when applied to finite volumes of the three-dimensional sp
Moreover, because of the presence of the lapse function,~16! is not invariant under time reparam
etrizations:N8(x80)5(]x80/]x0)N(x0). Thus, for a finite volume of integration~16b! does not
remain invariant under this reparametrization.

In the Einstein–Cartan theory the connection0v j (0)(m) can be expressed in terms of th
momenta canonically conjugated toe(m) i . In the notation of Ref. 22 it is given by0v j (0)(m)

5(1/2e)(p (m) j2
1
2e(m) jp) @see Eq.~12! of Ref. 22#. In this context~16b! can be rewritten as

E5
1

8pG E d3x ] iFNeTi2
1

2
e~m!iNjp~m! j G .

The expression above is exactly the energy expression for the Einstein–Cartan theory@see Eq.
~21! of Ref. 22#, assuming that the gravitational energy is obtained from the integration of su
terms of the total Hamiltonian. This expression is also very similar to~i! the integral of the surface
terms in Eq.~6!, and ~ii ! the energy expression considered by Nester24 in the analysis of the
positivity of the gravitational energy@Eq. ~3.15! of Ref. 24#. All definitions of gravitational energy
considered above agree for the total gravitational energy.

IV. BONDI’S RADIATING METRIC AND THE ASSOCIATED TRIADS

Bondi’s metric is a not an exact solution of Einstein’s equations. It describes the asym
form of a radiating solution. In terms of radiation coordinates (u,r ,u,f), whereu is the retarded
time andr is the luminosity distance, Bondi’s radiating metric is written as
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ds252S V

r
e2b2U2r 2e2gDdu222e2b du dr22Ur 2e2g du du1r 2~e2g du21e22g sin2 u df2!.

~17!

The metric above is such that the surfaces for whichu5const are null hypersurfaces. Each n
radial ~light! ray is labeled by particular values ofu, u, andf. At spacelike infinityu takes the
standard formu5t2r . The four quantities appearing in~17!, V, U, b, andg, are functions ofu,
r, andu. Thus~17! displays axial symmetry. A more general form of this metric has been give
Sachs,25 who showed that the most general metric tensor describing asymptotically flat gr
tional waves depends on six functions of the coordinates.

The functions in~17! satisfy the following asymptotic behavior:

b52
c2

4r 2 1¯ , g5
c

r
1OS 1

r 3D 1¯ ,

V

r
512

2M

r
2

1

r 2 F]d

]u
1d cotu2S ]c

]u D 2

24cS ]c

]u D cotu2
1

2
c2~118 cot2 u!G1¯ ,

U5
1

r 2 S ]c

]u
12c cotu D1

1

r 3 S 2d13c
]c

]u
14c2 cotu D1¯ ,

whereM5M (u,u) andd5d(u,u) are related to the mass aspect and the dipole aspect, re
tively, and from the functionc(u,u) we define the news function]c(u,u)/]u.

The application of~1! to Bondi’s metric requires transforming it to coordinatest, r, u andf
for which t5const defines a spacelike hypersurface. Before proceeding, we recall that the a
of ~17! in t, x, y, z coordinates has already been performed by Goldberg,26 in the investigation of
the asymptotic invariants of gravitational radiation fields. Therefore, we carry out a coord
transformation such that the new timelike coordinate is given byt5u1r . We arrive at

ds252S V

r
e2b2U2r 2e2gDdt222Ur 2e2g dt du12Fe2bS V

r
21D2U2r 2e2gGdr dt

1Fe2bS 22
V

r D1U2r 2e2gGdr212Ur 2e2g dr du1r 2~e2g du21e22g sin2 u df2!.

~18!

Therefore the metric restricted to a three-dimensional spacelike hypersurface is given by

ds25Fe2bS 22
V

r D1U2r 2e2gGdr212Ur 2e2g dr du1r 2~e2g du21e22g sin2 u df2!. ~19!

We must consider triads that correspond to the metric above. The construction of tria
general, is a nontrivial step. If in a given coordinate system the metric tensor is diagonal, th
construction of triads is a relatively simple procedure. One must only make sure that the
satisfy the appropriate boundary conditions at infinity. Recall that in order to obtain expressi~9!
for the ADM energy the triads must have the appropriate asymptotic behavior given by Eq~8!.

The metric tensor~19! has an off-diagonal element, and this fact adds a bit of complicatio
the construction of triads. Nevertheless, we can immediately write down two sets of triad
lead to this metric. They are given by
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e~k!i5S A sinu cosf1B cosu cosf rC cosu cosf 2rD sinu sinf

A sinu sinf1B cosu sinf rC cosu sinf rD sinu cosf

A cosu2B sinu 2rC sinu 0
D , ~20!

where

A5ebA22
V

r
, ~21a!

B5rUeg, ~21b!

C5eg, ~21c!

D5e2g, ~21d!

and

e~k!i5S A8 sinu cosf rB8 cosu cosf1rC8 sinu cosf 2rD 8 sinu sinf

A8 sinu sinf rB8 cosu sinf1rC8 sinu sinf rD 8 sinu cosf

A8 cosu 2rB8 sinu1rC8 cosu 0
D , ~22!

where

A85Fe2bS 22
V

r D1U2r 2e2gG1/2

, ~23a!

B85
1

A8
eb1gA22

V

r
, ~23b!

C85
1

A8
Ure2g, ~23c!

D85e2g. ~23d!

It is easy to see that both~20! and ~22! yield the metric tensor~19! through the relation
e( i ) je( i )k5gjk . They are related by alocal SO~3! transformation.

Triads given by~20! and~22! are thesimplestsets of triads that satisfy the two basic requir
ments:~i! the triads must have the asymptotic behavior given by~8!; ~ii ! by making the physical
parameters of the metric vanish we must haveT(k) i j 50 everywhere. In the present case if w
makeM5d5c50, both~20! and ~22! acquire the form

e~k!i5S sinu cosf r cosu cosf 2r sinu sinf

sinu sinf r cosu sinf r sinu cosf

cosu 2r sinu 0
D . ~24!

In Cartesian coordinates the expression above can be reduced to the diagonal forme(k) i(x,y,z)
5d ik . The requirement~ii ! above is essentially equivalent to the establishment of a refer
space, as discussed in Ref. 9. Without the notion of a reference space we cannot define
tional energy. Note that by a suitable choice of a local SO~3! rotation we can make the flat spac
triad ~24! satisfy the requirement~i!, but not~ii !.

It is possible to show that~20! and ~22! are particular cases of an infinite set of triads th
satisfy both requirements above. It is given by
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e~k!i5S A sinu cosf1B cosu cosf rC cosu cosf1rD sinu cosf 2re2g sinu sinf

A sinu sinf1B cosu sinf rC cosu sinf1rD sinu sinf re2g sinu cosf

A cosu2B sinu 2rC sinu1rD cosu 0
D ,

~25!

with the following definitions:

A5Ae2b~22V/r !1U2r 2~e2g2b2!, B5bUr ,

C5Ae2g2d2U2r 2, D5dUr ,

whereb andd are arbitrary, dimensionless functions that must satisfy

b5Ae2g2d2U2r 21de2g1bA22V/r .

By makingd50 we obtain~20!, andb50 leads to~22!.
From the point of view of the TEGR, triads given by~20! and~22! are physically inequivalen

~that is, they are not gauge equivalent!, because we have seen that the Hamiltonian formula
established by Eq.~5! is not invariant under the local SO~3! group, but rather under the globa
SO~3!. In the TEGR, the torsion tensor describes the way in which the space–time is defo
The latter is thus considered as a continuum with microstructure.5 Therefore, the same spac
defined uniquely by the metric tensor, may be deformed in several ways, according to the m
in which one defines the triads. This is essentially the geometrical meaning of the noninva
of the TEGR under local SO~3! transformations.

In the Hamiltonian formulation of the TEGR, the basic geometrical field variable is the t
not the metric tensor. Any set of triads should be ruled out on physical grounds, i.e., if they
to incorrect physical statements concerning the energy content of the gravitational field.

In the next section we will obtain the expressions for the gravitational energy arising
~20! and ~22!. These expressions are quite different. Although the expression correspond
~20! is simpler, as we will see, we have no definite experimental evidence in favor of it.

V. GRAVITATIONAL RADIATION ENERGY

In this section we will apply expression~1! both to~20! and~22!. Since the two triads display
distinct geometrical properties, we expect to obtain different expressions for the energy d
(1/8p)] i(eTi) ~we will make the gravitational constantG51). Our analysis is meaningful only in
the asymptotic region of large values of the radial distance. However, we have no reason to
~20! and~22! to yield different expressions for thetotal energy of the field. In fact, as we will see
they yield the same~expected! expression.

As we mentioned earlier, the significance of the present approach to the analysis of g
tional radiation fields resides in the fact that we can evaluate the gravitational energy inside
but finite portion of a three-dimensional spacelike surface. In other words, by means of Gaus
~1! can be evaluated over a surface far from the source of radiation, in the asymptotic limit
the metric components are precisely determined. Specifically, we will evaluate~1! inside a large
sphere of radiusr 0 . The time evolution of the metric field will determine the time dependenc
this energy, and consequently the energy radiated out of it.

In order to calculateTi5gikgm je( l )mT( l ) jk we need the inverse metricgi j . In terms of the
definitions~21!, it is given by
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gi j 5S 1

A2 2
B

regA2 0

2
B

regA2

1

r 2e2g S 11
B2

A2D 0

0 0
1

r 2e22g sin2 u

D . ~26!

We will initially consider the set of triads given by~20!. In the following, a comma after a
field quantity indicates a derivative:A,1 andA,2 indicative derivative ofA with respect tor andu,
respectively. The torsion components for~20! are given by

T~1!125cosu cosf~C1rC ,12A2B,2!1sinu cosf~2A,21B!,

T~1!135sinu sinf~A2D2rD ,1!1cosu sinfB,

T~1!235sinu sinf~2rD ,2!1cosu sinf~rC2rD !,

T~2!125cosu sinf~C1rC ,12A2B,2!1sinu sinf~2A,21B!,

T~2!135sinu cosf~2A1D1rD ,1!1cosu cosf~2B!,

T~2!235sinu cosf~rD ,2!1cosu cosf~2rC1rD !,

T~3!125sinu~A1B,22C2rC ,1!1cosu~2A,21B!,

T~3!135T~3!2350.

Since we are interested in calculating the energy inside a surface of constant radius, oT1

will be considered. By Gauss’ law, the expression of this energy is given by

E5
1

8p E
S
du df eT1, ~27!

whereS is a surface of fixed radiusr 0 , assumed to be large as compared with the dimension of
source, and the determinante is given bye5r 2A sinu. After a long but otherwise straightforward
calculation, we arrive at

EI5
r 0

4 E
0

p

duH sinuFeg1e2g2
2

AG1
1

A

]

]u
~Ur sinu!J , ~28!

with A defined by~21a!. Let us note that the field quantities appearing in~28! are functions of
u5t2r : M5M (t2r ,u), c5c(t2r ,u), etc. Therefore, once these functions are known, one
explicitly calculate the variation ofEI with respect to the timet, however, only in the limit where
the metric components are precisely determined.

Unfortunately, the expansion ofEI up to terms in 1/r 0 , making use of the asymptotic behavio
of U, V, b, andg, yields no simple expression. It is given by

EI5
1

2 E0

p

du sinu M2
1

4r 0
E

0

p

du sinuF S ]c

]u D 2

14cS ]c

]u D cotu14c2 cot2 uG
2

1

4r 0
E

0

p

du M
]

]u FsinuS ]c

]u
12c cotu D G . ~29!
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In the calculation above we have assumed thatU(u)sinu5d(u)sinu50 whenu50 or p.
We observe thatEI yields Bondi energy in the limitr→` in the static case~i.e., whenM is

a function ofu only!, so thatEI is the total gravitational energy. However, in the nonstatic case
expression for the loss of mass due to gravitational radiation can be obtained from~29!. This is
one major result of our analysis.

Let us recall that Bondi’smass aspect m(u),

m~u!5
1

2 E0

p

du sinuM ~u,u!, ~30!

depends on the null foliation used. The mass aspectm(u) can be understood as a mass associa
to each null cone determined by the equationu5const. Since the limitr→` corresponds tou
→2` for finite t, we see once again that in this limitEI gives the total energy because
corresponds to the initial value of the Bondi energy.

We will consider next the second set of triads, Eq.~22!. The components of the torsion tens
resulting from the latter are given by

T~1!125cosu cosf~B81rB,182A8!1sinu cosf~C81rC,182A,28!,

T~1!135sinu sinf~A82D82rD ,18!,

T~1!235cosu sinf~rB82rD 8!1sinu sinf~rC82rD ,28!,

T~2!125cosu sinf~B81rB,182A8!1sinu sinf~C81rC,182A,28!,

T~2!1352sinu cosf~A82D82rD ,18!,

T~2!2352cosu cosf~rB82rD 8!2sinu cosf~rC82rD ,28!,

T~3!1252sinu~B81rB,182A8!1cosu~C81rC,182A,28!,

T~3!135T~3!2350.

As in the previous case, we are interested in calculating the energy in the interior of a surf
constant radiusr 0 . Therefore, only the knowledge ofT1 will be necessary. After a long calcula
tion, we first arrive at

eT152
r sinu

A H e22gFB8
]

]r
~rB8!1C8

]

]r
~rC8!2A8B82C8

]A8

]u G
1e2gF2A8e2g2r

]g

]r
e22g1e22gG J 2

rB sinu

A FC81
]g

]u
e2gG2

rB cosu

A
@B82e2g#,

~31!

where the primed quantities are given by~23!. It is not straightforward to put the expression abo
in a simplified form. After some rearrangements we can finally write the energy expression~27! as

EII 5
r 0

4 E
0

p

du
1

A H sinuFegA81e22gA8B8221e22g
]A8

]u
C82BC82Be2g

]g

]u G
2B cosu@B82e2g#J . ~32!
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Like Eq. ~28!, this expression represents the energy enclosed by a large spherical surface o
r 0 . Expanding the expression above up to the first power of 1/r 0 , we find

EII 5
1

2 E0

p

du M sinu2
1

4r 0
E

0

p

du sinuF3M21
5

2 S ]c

]u D 2

110cS ]c

]u D cotu18c2 cot2 u

2S ]M

]u D S ]c

]u
12c cotu D G2

1

4r 0
E

0

p

du cosuF2cS ]c

]u D14c2 cotuG . ~33!

We are again assumingU(u)sinu5d(u)sinu50 for u50, p.
We observe that in the limitr→`, EII also gives the total energy. As before, for a finite~but

sufficiently large! value ofr 0 we can compute the loss of mass due to gravitational radiation,
the functionsM andc are known in the asymptotic region.

VI. THE SELECTION OF TRIADS

In Sec. IV we obtained an infinite set of triads that yield the three-dimensional spac
section of Bondi’s metric, and in the previous section we considered in detail only the sim
constructions. Of course, simplicity is a major feature of physical systems, but we are rea
need of experimental evidence that leads to a definite description. We need actual realizat
the quantitiesM (r 2t,u), c(r 2t,u), d(r 2t,u) and experimental evidence on how the energy
radiated away in order to arrive simultaneously at the correct energy expression arising fro~27!
and at the definite expression ofe(k) i .

However, we can envisage two possible types of conditions on the triads that assoc
unique triad with the three-dimensional metric tensor.

The first condition regards the energy content of the gravitational field. If we stick to the
of view according to which physical systems in nature have a tendency to be in states of min
energy, then the correct triad for the spacelike section of Bondi’s metric is the one that mini
expression~27! for all possible constructions ofe(k) i . By means of this criterium we conside
triads given by~25!, or any further construction that complies with the two conditions state
Sec. IV, and ask which one yields the smaller value of energy contained within a surfa
constant radius, in similarity with the calculations of~29! and ~33!. Unfortunately, this analysis
cannot be carried out unlessM, c, andd are known.

Certainly one can ask whether only~27! should be minimized or the energy density should
everywhere a minimum. In the context of Bondi’s metric the latter possibility cannot be co
ered, because the metric is valid only in the asymptotic limit; but in the general case it is an
question that must be carefully addressed.

The second condition takes into account Eq.~8!: we require the triads to have the asympto
behavior determined by~8! with a symmetrictensorhjk5hk j . Again, one has to find out of~25!,
which realization ofe( i )k in Cartesian coordinates complies with this criterium. This condit
may be understood as arotational gauge condition. Note that, as it stands,hjk in Eq. ~8! is not
required to be symmetric@in Eq. ~9! only the symmetrical part contributes#. By explicit calcula-
tions we observe that neither~20! nor ~22! satisfy this second condition.

The two conditions above may not be mutually excluding. On the contrary, they may le
the same triad. The determination of the correct triad is certainly an essential and crucial is
the theory and will be further investigated elsewhere in the general case, with special atten
Bondi’s metric, in light of the conditions above.

We observed that both~29! and ~33! yield the same total energy. This is also the case if
carry out the calculations with a more complicated triad, whether belonging to~25! or not, which
is related to~20! or ~22! by a local SO~3! transformation with an appropriate asymptotic behav
Let us consider a local SO~3! transformation, given by

ẽ~k!
i~x!5L~k!

~ l !~x!e~ l !
i~x!. ~34!
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Under ~34! the energy expression~1! transforms as

Ẽ5E1
1

8p E
V
d3x ] i@egikL~ l !

~m!e
~m! j~e~n!k ] jL~ l !

~n!2e~n! j ]kL~ l !
n!#. ~35!

Expression~35! can be best analyzed if we consider an infinitesimal rotation. We assume th
the limit r→`, the SO~3! elements have the asymptotic behavior

L~k!
~ l !'d~ l !

~k!10v~k!
~ l !1

1v~k!
~ l !S 1

r D ,

such that0,1v (k)( l )520,1v ( l )(k) , and$0v (k)( l )% are constants. Taking into account~8!, it is easy to
see that when integrated over the whole three-dimensional space the integral on the right-ha
of ~35! reduces to a vanishing expression:

1

8p E
V→`

d3x~] i ] j
1v~ i !~ j !2] i ] i

1v~ j !~ j !!50.

Therefore we expect to find the same result for the total energy if we evaluate~27! out of any
element of the set of triads~25!.

VII. DISCUSSION

The application of the energy definition~1! for a given solution of Einstein’s equation
requires considering a foliation of the space–time in three-dimensional spacelike surface
metric for the spacelike section of Bondi’s radiating metric admits an infinite set of triads re
by local SO~3! transformations. In the present case, from this infinite set of triads we single
two of them. We have considered in detail the two ones that exhibit the simplest structu
spherical coordinates, and that~i! satisfy the asymptotic conditions given by~8!; ~ii ! reduce to the
reference space (T(k) i j 50 everywhere! if we make the physical parameters vanish:M5c5d
50.

The two sets of triads,~20! and~22!, describe the spacelike section of Bondi’s metric given
~19! and lead to the energy expressions~28! and ~32!, respectively. These expressions establ
distinct and quite definite physical predictions. They allow us to compute the energy radiated
the interior of a spherical surface of constant radiusr 0 . It would be a remarkable achievement
the TEGR if, on physical grounds, we could decide for one of them or even for an arb
element of~25!. In the TEGR the space~space–time! geometry is fundamentally described b
triads ~tetrads!. Unfortunately, we do not dispose of experimental information for taking suc
decision.

It is a very important result that thetotal energy due to both sets of triads@as well as from any
element of~25!# agrees exactly with the static Bondi energy, in which case the energy arises
the integration ofM5M (u). In fact, the definition of Bondi’smass aspectis basically motivated
by the fact that in the static case, and by investigating the asymptotic properties of the g
tional field, M (u) arises as the mass of an isolated system.

The final expressions~29! and ~33! support the consistency of the definition~1!, and the
relevance of the TEGR as a fundamental description of general relativity. However the p
analysis, which was developed on spacelike surfaces, has to be compared with the one r
carried out on null surfaces.27 Let us recall that in order to obtain the Hamiltonian formulati
given by~5!–~7! we imposed the time gauge condition. Therefore, the resulting geometry m
understood as athree-dimensionalteleparallel geometry, since the teleparallelism is restricted
the three-dimensional spacelike surface. On the other hand, in the Hamiltonian formulatio
veloped in Ref. 27, we have not fixed any particular tetrad component, and consequen
teleparallel geometry is reallyfour dimensional.
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In Ref. 27 the constraints also contain a total divergence, in similarity with~7a!, and may be
taken likewise to define the gravitational energy–momentum. Although it appears that the
metrical framework of Ref. 27 is better suited to the analysis of the Bondi–Sachs metric, we
that the energy expression arising there is considerably more complicated than~1!. Moreover, we
do not know yet whether the constraint algebra leads to a consistent Hamiltonian formu
~either on null or spacelike surfaces!. We also note that one Hamiltonian formulation cannot
reduced to the other by means of gauge fixing. Nature admits only one correct physical d
tion, and therefore either the three-dimensional or the four-dimensional teleparallel geom
the correct candidate for describing the energy properties of the gravitational field. All these
will be considered in the near future.
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A scalar field nonminimally coupled to gravity is studied in the canonical frame-
work, using self-dual variables. The corresponding constraints are first class and
polynomial. To identify the real sector of the theory, reality conditions are imple-
mented as second class constraints, leading to three real configurational degrees of
freedom per space point. Nevertheless, this realization makes nonpolynomial some
of the constraints. The original complex symplectic structure reduces to the ex-
pected real one, by using the appropriate Dirac brackets. For the sake of preserving
the simplicity of the constraints, an alternative method preventing the use of Dirac
brackets, is discussed. It consists of converting all second class constraints into first
class by adding extra variables. This strategy is implemented for the pure gravity
case. ©1999 American Institute of Physics.@S0022-2488~99!01102-0#

I. INTRODUCTION

The failure of using perturbation theory to quantize General Relativity~GR! has led to dif-
ferent approaches, like string theory and canonical quantization, which intend to define qu
gravity.1 Instead of incorporating the remaining fundamental interactions as the former, the
approach consists of just adopting standard quantum theory and classical GR. The spac
structure, on the other hand, seems to be sensible to the nonperturbative aspects model2,3

This is in itself a major motivation for studying canonical GR. Some success has been ac
within canonical quantum gravity since the late eighties, after the introduction, by Ashtekar,4 of a
set of complex canonical variables which greatly simplify the form of the constraints to whic
theory is reduced. The kernel of this algebra of constraints defines the space of physical s
the theory and some formal elements of it have been constructed.4

In spite of its simplicity, the constraints of GR in terms of Ashtekar variables describe
plex gravity. Ashtekar himself considered reducing to the real sector, through the introduct
an inner product designed to make Hermitian the physical operators. However, this strate
not worked up to now, except for some particular cases. Other alternatives have been prese
avoid the use of reality conditions, at the price of a more cumbersome form of the constraint
quantum mechanically, the situation seems tractable.3

a!Electronic mail: merced@fis.cinvestav.mx
b!Associate member of Abdus Salam-ICTP, Trieste, Italy. Electronic mail: hugo@xanum.uam.mx
c!Electronic mail: me@aurora.nuclecu.unam.mx
d!Electronic mail: vergara@nuclecu.unam.mx
15040022-2488/99/40(3)/1504/14/$15.00 © 1999 American Institute of Physics
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There still remains the possibility of keeping the self-dual canonical formalism and tryin
envisage how to select the real sector of the theory. Indeed this is possible, as it has been
for pure gravity in Ref. 5, at the classical level. Reality conditions are implemented as second
constraints. The present work is devoted to show how this result is also valid in the case of a
field nonminimally coupled to gravity.

The strategy followed in this paper is an extension of the pure gravity analysis of Ref.
incorporate a nonminimally coupled scalar field . It consists of five steps:~i! each complex
canonical variable is splitted into one real and one imaginary degrees of freedom;~ii ! then, every
real and imaginary part is regarded as a configuration variable. An extended phase space i
defined, where the corresponding momenta will arise directly from the action. Notice tha
definition of such momenta will produce primary constraints;~iii ! next, the reality conditions are
implemented upon the splitting, as additional primary constraints. The criterion being to rest
a real three-metric together with a real scalar field, during the whole evolution of the system~iv!
after imposing the conservation of the constraints, which amounts to obtaining all possibl
ondary constraints, a final classification of the full set into first and second class is performed
may require the redefinition of some of them; and finally,~v! the issue of how to deal with the
resulting set of second class constraints should be addressed. Since the use of Dirac brack
the first class constraints back to its Palatini canonical form, which is highly nonpolynomial,
alternatives should be tried.

A review of how to select the real sector in phase space of pure self-dual gravity is ma
Sec. II. It includes the result of converting all second class into first class constraints, by
ducing extra canonical variables. Thus, Dirac brackets are not used. Next, the extension
method to the case of the scalar field nonminimally coupled to gravity is described in Sec. II
polynomial form of the constraints for the complex theory is exhibited, as well as the whole
first and second class constraints describing the real sector of the theory. Finally, the last
contains some conclusions and perspectives. A possibility regarding how to avoid the use o
brackets to eliminate the second class constraints for the scalar field case is briefly discus
point on notation:Ẽai is considered here as a complex density inverse triad of weight one, w
ẽai is its real part. This is just the opposite convention of Ref. 5, but it has the advantag
adjusts to the rest of the literature.4 The number of over and under tildes represent the positiv
negative density weight~61, 62, etc.! respectively, unless it is obvious from the definition of t
different variables. In the case of thed( x̃,y) the tilde indicates it is a density of weight one in th
argumentx.

II. PURE GRAVITY

The Ashtekar complex canonical variables are:~i! Ẽai
ªẼEai, with Eai being the triad

(EaiEi
b
ªqab, qab is the spatial three-metric!, and a,b, . . .51,2,3 are spatial indices, wherea

i , j , . . .51,2,3 are SO~3! internal indices. Also,ẼªdetEb j with Eb j being the inverse ofEai. ~ii !
Aai is the three-dimensional projection of the self-dual connection,4 with associated covarian
derivativeDal i5]al i1e i jkAa

j lk and Fab
i
ª]aAb

i 2]bAa
i 1e jk

i Aj
aAb

k is the corresponding curva
ture. In terms of these variables, the self-dual action of canonical GR is given by

S5E dt d3x$2 iẼaiȦai2N> S52NaṼa2Ni G̃i%, ~1!

where

S5ªe i jk ẼaiẼb jFab
k , ṼaªẼj

bFab
j , G̃iªD aẼi

a , ~2!

are the constraints of the theory andN> ,Na,Ni are Lagrange multipliers. Such constraints are fi
class and polynomial in the phase space variables. Let us denote byR any of them and by$R% the
full set.
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Notice that having 18 complex phase space variables (Aai ,Ẽ
b j), together with 7 complex first

class constraints,$R%, leaves us with 2 complex configurational degrees of freedom. Then
order to recover the 2 real configurational degrees of freedom per point, further constrain
necessary. To this end, let us introduce the splitting

Ẽai5ẽai1 i Ẽai, Ab j5gb j2 iK b j . ~3!

From now on, all the above thirty six degrees of freedom are taken as configuration variab
the action~1!. Hence, the associated canonical momentaP lead to the primary constraintsFEai

5PEai ,Fg
ai5Pg

ai1 i ẽai, FK
ai5PK

ai1ẽai, Feai5Peai , which as a set is denoted by$F%. The
coordinates of the total phase space areYA5(ẽai,Ẽai ,g

ai,Kai ,Peai ,PEai ,Pg
ai ,Pai

K ).
The reduction of the complex phase space (Aai ,Ẽ

b j) to a real one is achieved by means of t
following reality conditions

cai
ª Ẽai50, xaiªgai2 f ai~ ẽ!50, ~4!

which are subsequently taken as additional primary constraints. The constraintscai enforces the
Ẽai to be real, and hence the corresponding three-metric. The constraintsxai ensures that, upon
evolution, Ẽai keeps being real. Using the compatibility condition between a real torsion
connection and the triad, the form off ai is chosen asf ai5

1
2@e> aie> c

j e j rs22e> a je> c
j e irs#ẽdr]dẽcs. Let us

observe thatxai is not polynomial inẽb j.
The full set of primary constraints is$$R%, c, x,$F%%, written in terms of the real variable

YA . The evolution of the primary constraints does not introduce additional constraints.
redefining Feai→F8eai5Feai1aaib jFg

b j1bai
b jxb j1haib jFK

b j , the Poisson brackets matrix fo
the subset$J%5$$F8%, c, x% reveals them as second class constraints. Besides having a s
form, it is a phase space independent, block diagonal matrix with non zero determinant.

To keep $R% as a first class set it is enough to redefine each element asR85R
1$FEb j ,R%cb j1$Fg

b j ,R%xb j1$F8eb j ,R%FK
b j2$FK

b j ,R%F8eb j , so that they have zero Poisso
brackets with the previous second class subset. This redefinition preserves the p
$R8,Q8%'0, for any pair of constraints in$R8%. In this way, there are no additional contribution
to the set of primary constraints$Y%ª$R8%ø$J%, which includes the reality conditions. Coun
ing the independent variables gives 2 real configurational degrees of freedom per space p
it should be for real GR.5

At this point Dirac’s program calls for the elimination of the second class constraints thr
the use of Dirac brackets. This, however, would yield a cumbersome form for the rema
constraints. One might avoid such treatment of the second class constraints by transformin
into first class constraints. To achieve this, by means of the Batalin-Tyutin procedure,6,7 one adds
a new canonical pair,$Qai,Pb j%5da

bd i
jd (3), per original couple of second class constraints, i.e.,

phase space is further enlarged with the new variablesCJ5(QE
ai ,Qgai ,Qe

ai ,PEai ,Pg
ai ,Peai). In

the present case, the set of first class constraints replacing the former second class set is

c̄ai
ª Ẽai1QE

ai , F̄EaiªPEai2PEai ,

x̄aiªgai2 f ai~ ẽ!1Qgai , F̄g
ai
ªPg

ai1 i ẽai2Pg
ai , ~5!

F̄K
ai
ªPK

ai1ẽai1Qe
ai , F̄8eaiªFeai1aaib jFg

b j1bai
b jxb j1haib jFK

b j2Peai ,

which reduces to the original set by settingQai505Pb j . Let us denote any of the constraints

~5! by J̄L . Any pair satisfies$J̄L ,J̄L8%50; i.e., the set~5! is first class. Next, it is necessary t
keep the set$R8% first class. This can be done by recalling that the Poisson brackets matrix a
the constraints$J% is independent of the phase space variables and by following the meth
Ref. 7. Thus, one redefinesR8 as
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R̄8[R8~Y2Ȳ!, ~6!

where

YA2ȲAªH ẽai2Qe
ai ,Ẽ ai1QE

ai ,gai1Qgai1Qe
b j d f ai

dẽb j
,Kai1Peai1 iQe

b j d f b j

dẽai
,

Peai2Peai2 iQgai1Pg
b j d f b j

dẽai
1Qe

b jS d2f ck

dẽaidẽb j
Fg

ck1 i
d2f ai

dẽckdẽb j
FK

ck1 i
d f b j

dẽaiD ,

PEai2PEai ,Pg
ai2Pg

ai2 iQe
ai ,PK

aiJ . ~7!

The set~6! is in involution with$J̄L%, i.e.,$R̄8,J̄L%50. Hence, the final whole set of constrain

is first class and contains an Abelian ideal:$J̄%. The non-Abelian sector is just given by$R̄8%. By
construction, this sector preserves the structure of the first class algebra among the elem

$R8%. Notice that the set$R% depends only on the configurational variables (ẽ,E,g,K). In this
way, the most involved modifications to$R8%, via Eq.~6!, come from the terms that are propo
tional to the second class constraints. It is worth emphasizing that all the nonpolynomiality

constraints$$R̄8%ø$J̄%% arises only through one function, which isf ai(ẽ), appearing in the
reality conditions~4!. Thus, one might think that a choice of~4! in a polynomial form would solve
this undesirable feature. However, as shown in Ref. 5, this not the case and one should lo
alternative approaches.

III. NONMINIMAL SELF-DUAL ECKG THEORY

The second order action with scalar field nonminimally coupled to gravity is given by

S@gab,f#5E
M

d4xHA2gR2
1

2
A2g~gab]af]bf1~m21jR!f2!J , ~8!

wherej is a dimensionless constant. The canonical analysis of this action has been develo
Ref. 8. In a first order formalism one can adopt instead

S@v8,e,f#5E
M

d4xH 1

2
eeI

aeJ
bV2R8ab

IJ @v8#2
1

2
e~eI

aebI]af]bf1m2f2!J ,

V2
ª12jf2. ~9!

As opposed to~8!, action~9! gives, upon variation with respect tov8a
IJ ,

v8a
IJ5va

IJ~e!1Ka
IJ , Ka

IJ5
1

2
~ea

I ebJ2ea
JebI!

1

V2
]bV2, ~10!

whereva
IJ(e) is the spin connection for pure gravity andKa

IJ is the contorsion supported by th
matter field.9 To construct a first order action equivalent to the second order action in~8!, it is
necessary to add the term2(3/4)(1/V2)eeI

aebI]aV2]bV2 to the action~9!. The corresponding
canonical analysis of the self-dual part of this modified action was studied in Ref. 10.
conclusion in that paper, at the Hamiltonian level, is that the resulting constraints are nonp
mial in the phase space variables. In the present work, the self-dual part of the action~9! is
studied. Our result is that polynomial constraints are obtained, as opposed to the case in R
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The system to be considered is described by the so called nonminimal self-dual Ein
Cartan–Klein–Gordon~ECKG! action

S@e,14A,f#5E d4xeH V21S IJ
ab14Fab

IJ ~14A!1
a

2
~eI

aebI]af]bf1m2f2!J ,

S IJ
ab
ª

1
2~eI

aeJ
b2eJ

aeI
b!, V2

ª11ajf2, ~11!

where the parametera is introduced only to allow a rescaling of the scalar fieldf. The value
a521 corresponds to the case usually found in the literature.8,10 14Fab

IJ (14A) is the curvature of
the self-dual connection14A.

Proceeding with the canonical analysis, the 311 decomposition of space-time gives

S5E dtE
S
d3xH N> V2F2

1

2
e i jk Ẽi

aẼj
bFabkG1~2 iV2Ẽi

a!L tAa
i J

1E dtE
S
d3x$~14A•t ! iDa~2 iV2Ẽi

a!1Nb~2 iV2Ẽi
a!Fab

i %

1
a

2 E dtE
S
d3xH N> Ẽi

aẼbi]af]bf2
1

N>
@Ltf2LNf#21N> ~s!2m2f2J . ~12!

In order to get~12! one performs the usual steps.4 Ẽi
a is the densitizied inverse triad field,Aa

i is the
three-dimensional projection of the self-dual full connection~gravity 1matter! and Fab

i is the
corresponding curvature given byFab

i 5]aAb
i 2]bAa

i 1e jk
i Aa

j Ab
k . (s)2 is the determinant of the

three-dimensional spatial metricqab , expressed as a function ofẼi
a ande i jk is the volume elemen

of the three-dimensional internal metricqi j 5diag(11,11,11). Both sets of indices run from 1 to
3.

From ~12! one finds the momentum variables associated with the gravitational and s
fields. They are given byp̃ i

a and p̃f , where

p̃ i
a
ª2 iV2Ẽi

a , p̃fª
dS

d~Ltf!
52

a

N>
@Ltf2LNf#. ~13!

Then, plugging~13! into ~12!, one arrives at

S5E dtE
S
d3x$p̃ i

aL tAa
i 1p̃fLtf2~N> * C5 1~14A•t ! i G̃i1NaṼa!%, ~14!

where

C5 ª2
1

2
~V2!2e i jkp̃ i

ap̃ j
bFabk1

a

2
V2p̃ i

ap̃bi]af]bf2
1

2a
~V2!3~p̃f!21

a

2
i ~detp̃ i

a!m2f2,

G̃iª2D ap̃ i
a , Ṽaª2p̃ i

bFba
i 1p̃f]af, ~15!

are the scalar, vector and Gauss constraints, respectively. In~14!, the Lagrange multiplierN> was
redefined toN> * 5N> /(V2)3. Note that the set of constraints~15! is polynomialin the phase space
variablesAa

i , p̃ i
a , f and p̃f , where the symplectic structure is given by

$Aa
i ~x!,p̃ j

b~y!%5da
bd j

i d3~x,ỹ!,

$f~x!,p̃f~y!%5d3~x,ỹ!. ~16!
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Let us compare the actions~1! and ~14!. We find the same number of constraints which, nev
theless, have extra terms containing the scalar field. Besides, the new momenta have contr
arising both from the scalar field and the gravity sector.

In order to count the number of degrees of freedom of the theory it is necessary to class
constraints in terms of their algebra. We find it convenient to use the smeared form o
constraints onS. If N> , Na andv i are arbitrary tensor fields, then one defines

C~N> !ªE
S
d3xN> C5 ~x!

5E
S
d3xN> H 2

1

2
~V2!2e i jkp̃ i

ap̃ j
bFabk1

a

2
V2p̃ i

ap̃bi]af]bf

2
1

2a
~V2!3~p̃f!21

a

2
i ~detp̃ i

a!m2f2J ,

C~N!:5E
S
d3xNaṼa~x!5E

S
d3xNa$2p̃ i

bFba
i 1p̃f]af%, ~17!

G~v !ªE
S
d3xv i G̃i~x!5E

S
d3xv i$2D ap̃ i

a%.

A combination of the vector and Gauss constraints yields the so calleddiffeomorphismsconstraint.
In terms of the vector fieldN, this constraint has the form

D~N!:5E
S
d3xNa@ Ṽa1Aa

i G̃i #~x!5E
S
d3xNa@2p̃ i

bFba
i 1Aa

i ~2D bp̃ i
b!#. ~18!

The following results are useful in dealing with the algebra of constraints

dC~N> !

dAc
l

52e l
i jDb~N> ~V2!2p̃ i

cp̃ j
b!,

dC~N> !

dp̃ l
c

5N> F2~V2!2e l jkp̃ j
aFcak1aV2p̃al]af]cf1S a

2
im2f2D

3S 3

3!
h
> abcp̃ j

ap̃k
be jkl D ,G

dG~v !

dAc
l

52v ie i l
k p̃k

c ,
dG~v !

dp̃ l
c

5D cv
l ,

dD~N!

dAc
l

52LNp̃ l
c ,

dD~N!

dp̃ l
c

51LNAc
l . ~19!

Then, by using~19!, the algebra of constraints turns out to be

$C~N> !,C~M> !%52D~K !1G~KaAa!,

$C~N> !,D~M !%52C~LMW N> !,

$C~N> !,G~v !%50,
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$D~N!,D~M !%5D~@N,M # !,

$D~N!,G~v !%5G~LNv !,

$G~w!,G~v !%5D~2@w,v# !. ~20!

In ~20!, the vector fieldK is defined byKa
ª(V2)4(p̃ i

ap̃bi)(N> ]bM> 2M> ]bN> ), while the commu-
tator of internal vectors is@w,v# i

ªe jk
i wjvk. Also, the commutator of spatial vectors is defined

@N,M #a
ªLNMa, as usual.

The set of constraints~20! is first class. The counting of degrees of freedom leads to:2(9)
12(1)22(7)56 phase space variables per point onS, which implies 3complexdegrees of
freedom: two for the gravitational field and one for the scalar field. To recover the real sec
the theory, i.e., threereal degrees of freedom per point, one has to supply additional constrain
the phase space variablesAa

i , p̃ i
a , f, p̃f . This is the subject of the following section.

IV. REAL DEGREES OF FREEDOM

The real sector of the theory is recovered by extending the corresponding steps develo
pure gravity in Ref. 5. To begin with, let us consider the action~14! in the explicit form

S5E dtE
S
d3x$~2 iV2Ẽi

a!L tAa
i 1p̃fLtf2~N> * C5 1~14A•t ! i G̃i1NaṼa!%, ~21!

where

C5 ª~V2!2S 2
1

2
e i jk D ~2 iV2Ẽi

a!~2 iV2Ẽj
b!Fabk1

a

2
V2~2 iV2Ẽi

a!~2 iV2Ẽbi!]af]bf

2
1

2a
~V2!3~p̃f!21

a

2
i ~2 iV2!3~detẼi

a!m2f2,

G̃iª2Da~2 iV2Ẽi
a!, ~22!

Ṽaª2~2 iV2Ẽi
b!Fba

i 1p̃f]af.

Step~i! in the construction consists of splitting each one of the fields involved in~22! into
their real and imaginary parts,

Ẽai5ẽai1 i Ẽai, Aai5Mai1 iVai , f5f11 if2 , p̃f5p̃11 i p̃2 . ~23!

Now the key point, implemented as part of step~ii !, is to promote each one of the real an
imaginary parts toindependentvariables, which implies that the enlarged phase space has@4
3914#580 degrees of freedom per point onS. Next, one has to determine the correspond
momenta, which results in the following constraints:

FEaiªPEai , FeaiªPeai , FM
ai
ªPM

ai1 iV1
2ẽai, FV

ai
ªPV

ai2V1
2ẽai,

Fp1
:5Pp1

, Fp2
:5Pp2

, Ff1
:5Pf1

2p̃1 , Ff2
:5Pf2

2 i p̃1 , ~24!

denoted generically byP. Note thatPM
ai andPf2

are purely imaginary, i.e., there are 40 prima
constraints arising from the definition of momenta. The corresponding symplectic structure

$Ẽai~x!,PEb j~y!%ªdb
ad j

i d3~ x̃,y!, $ẽai~x!,Peb j~y!%ªdb
ad j

i d3~ x̃,y!,
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$Mai~x!,PM
b j~y!%ªda

bd i
jd3~x,ỹ!, $Vai~x!,PV

b j~y!%ªda
bd i

jd3~x,ỹ!,

$f1~x!,Pf1
~y!%ªd3~x,ỹ!, $f2~x!,Pf2

~y!%ªd3~x,ỹ!,

$p̃1~x!,Pp1
~y!%ªd3~ x̃,y!, $p̃2~x!,Pp2

~y!%ªd3~ x̃,y!. ~25!

As for step~iii !, the reality conditions are chosen here as a generalization of~4!, i.e.,

CE
ai
ª Ẽai, CMaiªMai2Gai~ ẽ!1

1

2
e i j

k e> a
j ẽk

c 1

V1
2
]cV1

2 ,

Cf2
ªf2 , Cp2

ªp̃2 , ~26!

whereGai(e) is the three-dimensional spin connection. Again,CE
ai plays the role of enforcingẼai

to be real andCMai keepsẼai real upon evolution. The term1
2e i j

k e> a
j ẽk

c(1/V1
2)]cV1

2 is the real
contribution of matter to the full connectionAa

i : it is determined as the real term of the matt
contribution to the spatial part of1A, upon variation of~11!. Also, Cf2

,Cp2
constrain the scala

field, f, to the real sector. At this stage there are 60 primary constraints, 20 of which arise
the reality conditions~26!.

In the next step~iv!, it is necessary to preserve upon evolution the full set of primary c
straints~24! and ~26!. Before doing so, it is convenient to redefine some of them,Feai ,Ff1

and
Fp1

, as

Fe8ai~x!ªFeai~x!1laib j~x,z!FM
b j~z!1«ai

b j~x,z!CMb j~z!1qaib j~x,z!FV
b j~z!,

Fp1
8 ªFp1

2 iCf2
, ~27!

Ff1
8 ~x!ªFf1

~x!1Aai~x,z!FM
ai~z!1B ai~x,z!CMai~z!1Cai~x,z!FV

ai~z!,

where

laib j~x,y!52
dCMb j~y!

dẽai~x!
, «ai

b j~x,y!5 iV1
2~y!da

bd i
jd3~x,ỹ!,

qaib j~x,y!52 i
dCMb j~y!

dẽai~x!
,

Aai~x,y!52
dCMai~y!

df1~x!
, B ai~x,y!5 i

dV1
2~y!

df1~x!
ẽai~y!,

Cai~x,y!52 i
dCMai~y!

df1~x!
. ~28!

Here, the Einstein summation convention for dummy indices is extended to the continuous c
such a way that it includes an implicit three-dimensional integral for the repeatedz variable. Thus,
for instance, the termlaib j(x,z)FM

b j(z) means*Sd3zlaib j(x,z)FM
b j(z).
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As the first step in classifying the constraints into first and second class one comput
Poisson brackets of the constraintsFEai(x), CE

ai(x), FM
ai(x), CMai(x), Ff2

(x), Cf2
(x), Fp2

(x),

Cp2
(x), Ff1

8 (x), FV
ai(x), Fe8ai(x) and Fp1

8 (x). In the standard notation, the result can be e

pressed as

D5S A 0 0

0 B 0

0 0 C
D , ~29!

where

A5

FEb j~y! CE
b j~y! FM

b j~y! CMb j~y!

FEai~x! 0 2da
bd i

jd3~x,ỹ! 0 0

CE
ai~x! db

ad j
i d3~ x̃,y! 0 0 0

FM
ai~x! 0 0 0 2db

ad j
i d3~ x̃,y!

CMai~x! 0 0 da
bd i

jd3~x,ỹ! 0

, ~30!

B5

Ff2
~y! Cf2

~y! Fp2
~y! Cp2

~y!

Ff2
~x! 0 2d3~ x̃,y! 0 0

Cf2
~x! d3~x,ỹ! 0 0 0

Fp2
~x! 0 0 0 2d3~x,ỹ!

Cp2
~x! 0 0 d3~ x̃,y! 0

, ~31!

C5

Ff1
8 ~y! FV

b j~y! Fe8b j~y! Fp1
8 ~y!

Ff1
8 ~x! 0

dV1
2~y!

df1~x!
ẽb j~y! 0 2d3~ x̃,y!

FV
ai~x! 2

dV1
2~x!

df1~y!
ẽai~x! 0 2V1

2~x!db
ad j

i d3~ x̃,y! 0

Fe8ai~x! 0 V1
2~y!da

bd i
jd3~x,ỹ! 0 0

Fp1
8 ~x! d3~x,ỹ! 0 0 0

.

~32!

From the structure of the matrices~29!–~32! one concludes that the set of constraints aris
from the definition of the momenta, together with those which come from the reality condi
are second class. On the other hand, the original set of constraintsC5 , G̃i ,Ṽa , in the complex
theory, were the generators of the gauge symmetry of the system. To show that this pr
remains so in the present real theory, one begins by redefining them in such a way that the
zero Poisson brackets with the second class constraints. Then, it should be verified th
redefinition preserves the first class character of the algebra among them. Recall thatC5 , G̃i andṼa

depend only upon configuration variables~See~15! and~23!!. Denoting any of them byR, we find
that the appropriate redefinition is
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R8~x!ªR~x!1I b j~x,z!CMb j~z!1Nb j~x,z!FV
b j~z!1Ob j~x,z!Fe8b j~z!1Hb j~x,z!CE

b j~z!

1P~x,z!Cp2
~z!1Q~x,z!Cf2

~z!1R~x,z!Ff1
8 ~z!1S~x,z!Fp1

8 ~z!, ~33!

where

I ai~x,y!5$FM
ai~y!,R~x!%, Hai~x,y!5$FEai~y!,R~x!%,

Nai~x,y!52
1

V1
2~y!

$Fe8ai~y!,R~x!%, R~x,y!52$Fp1
8 ~y!,R~x!%,

Oai~x,y!5
1

V1
2~y!

F $FV
ai~y!,R~x!%1

dV1
2~y!

df1~z!
ẽai~y!$Fp1

8 ~z!,R~x!%G ,
P~x,y!5$Fp2

~y!,R~x!%, Q~x,y!5$Ff2
~y!,R~x!%,

S~x,y!5$Ff1
8 ~y!,R~x!%2

1

V1
2~z!

dV1
2~z!

df1~y!
ẽb j~z!$Fe8b j~z!,R~x!%.

~34!

The Poisson brackets between any pairQ8 andR8 is weakly zero. This can be shown by calc
lating

$Q8~x!,R8~y!%'$Q8~x!,R~y!%

52
1

V1
2~z!

$Fe8ai~z!,Q~x!%$FV
ai~z!,R~y!%1

1

V1
2~z!

$FV
ai~z!,Q~x!%

3$Fe8ai~z!,R~y!%2$Fp1
8 ~z!,Q~x!%$Ff1

8 ~z!,R~y!%1$Ff1
8 ~z!,Q~x!%

3$Fp1
8 ~z!,R~y!%1

1

V1
2~z!

dV1
2~z!

df1~v!
ẽai~z!$Fp1

8 ~v!,Q~x!%$Fe8ai~z!,R~y!%

2
1

V1
2~v!

dV1
2~v!

df1~z!
ẽai~v!$Fe8ai~v!,Q~x!%$Fp1

8 ~z!,R~y!%. ~35!

The above result was obtained by substituting~33! together with the fact thatQ(x), R(y),
CM ,CE ,Cp2

and Cf2
are independent of the momenta. Now, by using the explicit form

Fe8ai ,Ff1
8 andFp1

8 one finds, after a long~but otherwise direct! calculation

$Q8~x!,R8~y!%'2
1

V1
2~z!

$Feai~z!,Q~x!%$FV
ai~z!,R~y!%

1
1

V1
2~z!

$FV
ai~z!,Q~x!%$Feai~z!,R~y!%

2$Fp1
~z!,Q~x!%$Ff1

~z!,R~y!%1$Ff1
~z!,Q~x!%$Fp1

~z!,R~y!%

1
1

V1
2~z!

dV1
2~z!

df1~v!
ẽai~z!$Fp1

~v!,Q~x!%$Feai~z!,R~y!%
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2
1

V1
2~v!

dV1
2~v!

df1~z!
ẽai~v!$Feai~v!,Q~x!%$Fp1

~z!,R~y!%. ~36!

The above expression is most suitably calculated in terms of theoriginal complex phase spac
variables. The symplectic structure~16! yields

$Aa
i ~x!,Ẽj

b~y!%5H Aa
i ~x!,

i p̃ j
b~y!

V2~y!
J 5

i

V2~y!
da

bd j
i d3~x,ỹ!, ~37!

$Ẽi
a~x!,p̃f~y!%5H i p̃ i

a~x!

V2~x!
,p̃f~y!J 52

1

V2~x!
Ẽi

a~x!
dV2~x!

df~y!
. ~38!

Upon substitution of these expressions in~36! one obtains

$Q8~x!,R8~y!%'$Aa
i ~z!,Ẽj

b~v!%S dQ~x!

dAa
i ~z!

dR~y!

dẼi
b~z!

2
dQ~x!

dẼj
b~z!

dR~y!

dAa
i ~z!

D
1$f~z!,p̃f~v!%S dQ~x!

df~z!

dR~y!

dp̃f~z!
2

dQ~x!

dp̃f~z!

dR~y!

df~z! D
1H Ẽi

a~z!,$p̃f~v!%S dQ~x!

dẼi
a~z!

dR~y!

dp̃f~v!
2

dQ~x!

dp̃f~v!

dR~y!

dẼi
a~z!

D
'$Q~x!,R~y!%~A,p!,~f,pf!'0. ~39!

In the last line, the Poisson brackets are taken with respect to the original complex sym
structure~16!. Therefore, it has been shown that the Poisson brackets between any pair o
straints CM ’, Ṽ8, G̃8 are weakly zero.

Thus, the system is described by the following set of primary constraints:FEai(x), CE
ai(x),

FM
ai(x), CMai(x), Ff2

(x), Cf2
(x), Fp2

(x), Cp2
(x), Ff1

8 (x), FV
ai(x), Fe8ai(x), Fp1

8 (x), CM 8, Ṽ8
and G̃8. Now, following the Dirac method, the time conservation of the constraints is imp
using the Hamiltonian density

H5mEaiFEai1mai
E CE

ai1mai
MFM

ai1mMaiCMai1mf2Ff2
1nf2Cf2

1mp2Fp2
1np2Cp2

1mf1Ff1
8 1mai

V FV
ai1meaiFe8ai1mp1Fp1

8

1N> C5 81NaVa8̃1NiGi8̃, ~40!

where no three-dimensional integral is involved.

From Eqs.~33! and ~39! one finds that the Poisson brackets between CM 8, V8̃, G8̃ and H
5*Sd3xH(x) are weakly zero. Finally, since the set of constraintsFEai(x), CE

ai(x), FM
ai(x),

CMai(x), Ff2
(x), Cf2

(x), Fp2
(x) , Cp2

(x), Ff1
8 (x), FV

ai(x), Fe8ai(x) and Fp1
8 (x) is second

class, the Lagrange multipliersmE
ai

, mai
E ,mai

M ,mMai
, mf2, nf2, mp2, np2, mf1, mV

ai ,m
eai, mp1 are

determined, and shown to be zero. In other words, there are no secondary constraints and
Hamiltonian density is given by

HTotal5N> C5 81NaV8̃a1NiG8̃ i , ~41!

which is a combination of the first class constraints only.
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Now, let us count the physical degrees of freedom in terms of the real variables that we
introduced. Recall that the enlarged phase space, with configuration variables~23!, has dimension
239341234580 per space point. Since there are 6391631560 second class constraints~24!
and~26!, the partially reduced phase space has dimension 20. The corresponding partially re
symplectic structure can be obtained by using Dirac brackets. To this end, the inverse
second class constraints Poisson brackets matrix~29! is needed. Its calculation produces

D215S A21 0 0

0 B21 0

0 0 C21
D , ~42!

where

A215S 0 db
ad j

i d3~ x̃,y! 0 0

2da
bd i

jd3~x,ỹ! 0 0 0

0 0 0 da
bd i

jd3~x,ỹ!

0 0 2db
ad j

i d3~ x̃,y! 0

D , ~43!

B215S 0 d3~x,ỹ! 0 0

2d3~ x̃,y! 0 0 0

0 0 0 d3~ x̃,y!

0 0 2d3~x,ỹ! 0

D , ~44!

C21

51
0 0 0 d3~x,ỹ!

0 0
1

V1
2~y!

db
ad j

i d3~x,ỹ! 0

0 2
1

V1
2~x!

da
bd i

jd3~ x̃,y! 0 2
1

V1
2~x!

dV1
2~x!

df1~y!
eb j~x!

2d3~ x̃,y! 0
1

V1
2~y!

dV1
2~y!

df1~x!
eai~y! 0

2 .

~45!

The use of~42!–~45!, leads to

$ f ~x!,g~y!%* 51$ f ~x!,g~y!%

2$ f ~x!,FEai~z!%$CE
ai~z!,g~y!%1$ f ~x!,CE

ai~z!%$FEai~z!,g~y!%

2$ f ~x!,FM
ai~z!%$CMai~z!,g~y!%1$ f ~x!,CMai~z!%$FM

ai~z!,g~y!%

2$ f ~x!,Ff2
~z!%$Cf2

~z!,g~y!%1$ f ~x!,Cf2
~z!%$Ff2

~z!,g~y!%

2$ f ~x!,Fp2
~z!%$Cp2

~z!,g~y!%1$ f ~x!,Cp2
~z!%$Fp2

~z!,g~y!%

2$ f ~x!,Ff1
8 ~z!%$Fp1

8 ~z!,g~y!%1$ f ~x!,Fp1
8 ~z!%$Ff1

8 ~z!,g~y!%
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2$ f ~x!,FV
ai~z!%

1

V1
2~z!

$Fe8ai~z!,g~y!%1$ f ~x!,Fe8ai~z!%
1

V1
2~z!

$FV
ai~z!,g~y!%

2$ f ~x!,Fp1
8 ~z!%F 1

V1
2~w!

dV1
2~v!

df1~z!
eai~w!G $Fe8ai~w!,g~y!%

1$ f ~x!,Fe8ai~z!%F 1

V1
2~z!

dV1
2~z!

df1~v!
eai~z!G $Fp1

8 ~v!,g~y!%, ~46!

for the Dirac brackets of any two functionsf and g on the enlarged phase space. Finally, up
partial reduction, the canonical variables areVa

i , p j
b52V1

2ej
b , f1, p1 and the reduced symplecti

structure is just

$Va
i ~x!,p j

b~y!%* 5da
bd j

i d3~x,ỹ!,

$f1~x!,p1~y!%* 5d3~x,ỹ!. ~47!

In the same way as in the pure gravity case,5 the first class constraints~15! turn out to be either
purely real or purely imaginary in the above partially reduced phase space. Then, the ph
phase space has dimension 20223756, as expected for a real scalar field coupled to real grav

V. CONCLUSIONS AND PERSPECTIVES

Previous results yielding the identification in phase space of the real sector of pure co
gravity5 have been successfully extended in this work to incorporate the case of a scalar fiel
minimally coupled to gravity, starting from~complex! Ashtekar variables. This provides furthe
support for the general validity of the method proposed.

The procedure is as follows: the complex canonical variables are splitted into real and i
nary parts, each of which is taken as an independent new configuration variable. The corre
ing momenta are subsequently defined from the action, leading to primary constraints. Th
sector of the theory is next defined by introducing appropriate reality conditions in the for
additional primary constraints. This is possible because the original phase space has b
tended. The whole set of constraints is next classified into first and second class, after impos
conservation of the primary constraints upon evolution. Finally, one faces the problem of h
conveniently deal with the resulting second class constraints, which include the reality cond

The advantages of our approach are:~i! Reality conditions are incorporated as true seco
class constraints within the canonical description of an extended phase space, uniquely as
to each physical system.~ii ! It leads to the standard Dirac’s method of counting the real phys
degrees of freedom arising from an originally complex theory.~iii ! Although we start from a pair
of reality conditions~4!, only the first is truly an input, because the second condition appea
the consequence of demanding the conservation of the former upon evolution.

As opposed to Ref. 10, we have presented here a theory for a scalar field nonmin
coupled to gravity, leading to polynomial constraints, using Ashtekar variables. Unfortunatel
nonpolynomiality shows up after implementing the reality conditions, in the process of identi
the real sector of the theory. This happens either for the nonpolynomial form of the r
conditions ~26!, or for their polynomial realization. Recently, however, certain nonpolynom
constraints have been shown to be tractable in the quantum theory.3,11,12Interestingly enough, in
our case the whole nonpolynomiality is encoded in the single functionGai appearing in~26!. It
certainly remains an open problem to determine whether or not the results presented he
provide a tractable alternative to deal with the quantum situation.

The use of Dirac brackets, which is the standard way of eliminating the second class
straints, yields the expected real nonpolynomial form of the theory. For example, it leads
Palatini canonical form in the case of pure gravity.4 To explore an alternative preventing the u
                                                                                                                



set of
have
hich,
class

theory
of the
eed the
ed in
ire an

M–
t of

ost-

ravity at

l

1517J. Math. Phys., Vol. 40, No. 3, March 1999 Montesinos et al.

                    
of Dirac brackets in the pure gravity case, we have implemented the conversion of the full
second class constraints into a first class set, following the method of Ref. 7. Thus, we
rewritten pure real gravity as a theory involving an alternative set of first class constraints, w
for example, has not been previously done starting from the Palatini formulation with second
constraints. However, their physical meaning, together with their usefulness in a quantum
still needs to be clarified. The method of Ref. 7 works whenever the Poisson brackets matrix
original second class constraints is independent of the phase space variables. This is ind
case for pure gravity, but not for the scalar field nonminimally coupled to gravity consider
this work. Hence, the application of the same strategy to the latter theory would first requ
extension of the method in Ref. 7 .
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Within a framework of noncommutative geometry, we develop an analog of
~pseudo-! Riemannian geometry on finite and discrete sets. On a finite set, there is
a counterpart of the continuum metric tensor with a simple geometric interpretation.
The latter is based on a correspondence between first order differential calculi and
digraphs~the vertices of the latter are given by the elements of the finite set!.
Arrows originating from a vertex span its~co!tangent space. If the metric is to
measure length and angles at some point, it has to be taken as an element of the
left-linear tensor product of the space of 1-forms with itself, and not as an element
of the ~nonlocal! tensor product over the algebra of functions, as considered previ-
ously by several authors. It turns out that linear connections can always be extended
to this left tensor product, so that metric compatibility can be defined in the same
way as in continuum Riemannian geometry. In particular, in the case of the uni-
versal differential calculus on a finite set, the Euclidean geometry of polyhedra is
recovered from conditions of metric compatibility and vanishing torsion. In our
rather general framework~which also comprises structures which are far away from
continuum differential geometry!, there is, in general, nothing like a Ricci tensor or
a curvature scalar. Because of the nonlocality of tensor products~over the algebra
of functions! of forms, corresponding components~with respect to some module
basis! turn out to be rather nonlocal objects. But one can make use of the parallel
transport associated with a connection to ‘‘localize’’ such objects, and in certain
cases there is a distinguished way to achieve this. In particular, this leads to cova-
riant components of the curvature tensor which allow a contraction to a Ricci
tensor. Several examples are worked out to illustrate the procedure. Furthermore, in
the case of a differential calculus associated with a hypercubic lattice we propose a
new discrete analogue of the~vacuum! Einstein equations. ©1999 American
Institute of Physics.@S0022-2488~99!00303-5#

I. INTRODUCTION

In a series of papers1–5 we have developed a formalism of differential geometry on finite a
discrete sets with applications, in particular, to lattice gauge theory6 and discrete completely
integrable models.7

The most basic ‘‘differential geometric’’ structure on a discrete setM is a differential cal-
culus (V(M),d), whereV(M)5 % r>0V r(M) is an analog of the algebra of differential form
on a differentiable manifold and theC-linear map d:V r(M)→V r 11(M) generalizes the exterio
derivative. HereAªV0(M) is the algebra ofC-valued functions onM and noncommutativity
enters the stage via nontrivial commutation relations between functions and differentials@which
are elements ofV1(M)]. On a discrete set there are many choices of a~first order! differential

a!Electronic mail: fmuelle@gwdg.de
15180022-2488/99/40(3)/1518/31/$15.00 © 1999 American Institute of Physics
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calculus and it turned out3 that these amount to the selection of a digraph structure and
neighborhood relations on the discrete set.

Whereas the concept of a connection seems to be well understood in the framew
noncommutative geometry, this is not quite so for the concept of a metric. In Connes’ appro
noncommutative geometry,8 Riemannian geometry is encoded in a self-adjoint operator o
Hilbert space and recovered from it via a formula for the distance of two points. The dis
formula is then generalized to a more abstract setting, including the case of discrete sets~see also
Ref. 9 and references therein!. A major problem with this approach is that it is bound to~gener-
alizations of! positive definite metrics and thus at least not directly applicable to space–
geometry. The underlying philosophy of ‘‘spectral geometry,’’ namely that all geometrical
should be encoded in the spectrum of certain self-adjoint operators on a Hilbert space, is ce
very interesting but by no means compulsive.

In several papers~see Refs. 5, 10–12, for example! a metric in noncommutative geometry ha
been taken to be an element of the tensor product spaceV1(A) ^A V1(A) with certain properties.
Here V1(A) is the space of 1-forms of a differential calculus (V(A),d) over an associative
algebraA. This has just been a formal generalization of one of several, in classical differe
geometry equivalent, definitions of a metric tensor field, motivated by simplicity of the mathe
cal structure, but without a deeper, e.g., physical, substantiation. Even on the technical
serious problem showed up, namely, the extensibility of a~linear! connection onV1(A) to a
connection onV1(A) ^A V1(A), which is necessary in order to define metric compatibility o
linear connection~see Refs. 5, 13 for discussions and related references!.

Needless to say, generalizing another — classically equivalent — metric concept, one
not, in general, arrive at equivalent structures in the noncommutative geometric setting. I
motivated by previous work6,7 we recently investigated in more detail generalizations of
Hodge!-operator.14 The metric is recovered from (a,b)5!21(a!b) wherea,b are differential
1-forms. For a symmetric Hodge operator on a~noncommutative! differential calculus over a
commutativealgebraA, contact was made with a metric defined as an element,

gPV1~A! ^ LV1~A!, ~1.1!

and not as an element of the spaceV1(A) ^A V1(A). The tensor product̂ L satisfies

~ f a! ^ L~hb!5 f h~a ^ Lb!, ; f ,hPA, a,bPV~A!. ~1.2!

In the following we show that it is precisely the latter metric definition which directly reprodu
some familiar results indiscretegeometry and which allows us to develop discrete noncomm
tive geometry to a more satisfactory level. It should be noticed, however, that the tensor p
^ L and therefore the metric definition~1.1! does not generalize in an obvious way tononcom-
mutative algebrasA, at least as far as we can see. But in Ref. 14 we have generalize
associated Hodge operator to the general noncommutative framework.

In Sec. II we recall some basic definitions of noncommutative geometry. In Sec. II
concentrate on finite sets and introduce metrics and compatible linear connections on them.
IV we deal with a technical problem which has its origin in the nonlocality of the tensor pro
overA. In particular, the construction of a Ricci tensor is addressed in our framework. A
example of particular interest, the geometry of a hypercubic lattice is treated in Sec. V. In S
we deal with discrete surfaces of revolution. Some conclusions are collected in Sec. V
particular, we propose a new discrete version of the Einstein equations on a hypercubic la

II. PRELIMINARIES

In the first subsection we recall the definition of a differential calculus over an assoc
algebra. The second subsection contains the general definitions of linear connections, tors
curvature in the framework of noncommutative geometry.
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A. Differential calculi on associative algebras

Let A be an associative algebra overC with unit 1. A differential calculusover A is a
Z-graded associative algebra~over C),

V~A!5 %

r>0
V r~A!, ~2.1!

where the spacesV r(A) areA-bimodules andV0(A)5A. There is aC-linear map,

d : V r~A!→V r 11~A! ~2.2!

with the following properties:

d250, ~2.3!

d~ww8!5~dw!w81~21!rwdw8, ~2.4!

wherewPV r(A) and w8PV(A). The last relation is known as the~generalized! Leibniz rule.
One also requires1w5w15w for all elementswPV(A). The identity1151 then implies

d150. ~2.5!

Furthermore, we require that d generates the spacesV r(A) for r .0 in the sense thatV r(A)
5A dV r 21(A)A. The spaceV r(A), r .1 can then be identified with a quotient of ther-fold
tensor productV1(A) ^A¯^A V1(A) by some sub-bimodule.

B. Linear connections, torsion and curvature

Let (V(A),d) be a differential calculus over an associative algebraA. A linear ~left
A-module! connection is aC-linear map“ : V1(A)→V1(A) ^A V1(A) such that

“~ f a!5df ^A a1 f“a. ~2.6!

A linear connection extends to a map¹: V(A) ^A V1(A)→V(A) ^A V1(A) via

“~w^A a!5dw^A a1~21!rw“a, ;wPV r~A!, aPV1~A!. ~2.7!

The torsion of a linear connection“ is the mapQ : V1(A)→V2(A), given by

Q~a!ªda2p+“a, ~2.8!

wherep is the natural projectionV1(A) ^A V1(A)→V2(A). It satisfies

Q~ f a!5 f Q~a!. ~2.9!

The torsion extends to a mapQ : V(A) ^A V1(A)→V(A) via

Q~w^A a!ªd~wa!2p+“~w^A a!, ;wPV~A!, aPV1~A!, ~2.10!

wherep now denotes more generally the projectionV(A) ^A V1(A)→V(A). Then

Q~“a!5dp+“~a!2p+¹2~a!5d~da2Q~a!!1p+R~a!, ~2.11!

where we have introduced thecurvatureR of “ as the map

Rª2“

2, ~2.12!

which satisfies
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R~ f a!5 fR~a!. ~2.13!

We arrive at thefirst Bianchi identity,

d+Q1Q+“5p+R. ~2.14!

The second Bianchi identityis

~“R!~a!:5“~R~a!!2R~“a!52¹3a1¹3a50. ~2.15!

Example.For the universal differential calculus, we havep5 id on V1
^A V1 and there is a

unique linear connection with vanishing torsion given by“5d according to~2.8!. The curvature
of this linear connection vanishes. j

III. DIFFERENTIAL GEOMETRY ON FINITE SETS

In this section we collect some facts about differential calculi, vector fields and linear
nections on finite sets~see also Refs. 2–5, 15, 16!. We then consider metrics and elaborate on
metric compatibility condition for a linear connection.

A. First order differential calculi on a finite set

LetM be a finite set ofN elements andA the algebra of allC-valued functions on it.A is a
complex linear space with basisei , i 51, . . . ,N, whereei( j )5d j

i for i , j PM. These functions
satisfy the two identities,

eiej5d i j ej , (
i

ei51, ~3.1!

where1 is the constant function onM with value 1. In Ref. 3 it has been shown that first ord
differential calculi on a finite setM are in bijective correspondence with digraph structures
M. Given a digraph with a set of verticesM, we associate with an arrow from some pointi to
another pointj , denoted asi→ j in the following, an algebraic objectei j and define17

V1
ªspanC$e

i j u i→ j %. ~3.2!

This is turned into anA-bimodule via

eiekl5d ikekl, eklei5d l i ekl. ~3.3!

Let us introduce

r5(
k,l

ekl, ~3.4!

where the summation has to be restricted to thosek,l for which there is an arrow fromk to l in the
digraph. Then

df 5@r, f #, f PA ~3.5!

defines aC-linear map d :A→V1 which satisfies the Leibniz rule. If there is an arrow fromi to
j in the digraph, theneirej5ei j , otherwiseeirej50.

The subspace

V i
1
ªeiV1 ~3.6!
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is generated by the 1-formsei j corresponding to the arrows originating fromi in the digraph. It
may be regarded as the cotangent space ati PM. We have

V15 %

i PM
V i

1 . ~3.7!

The complete digraph where all pairs of points inM are connected by a pair of antiparall
arrows corresponds to the largest first order differential calculus onM, also known as theuni-
versalfirst order differential calculus since all other calculi can be obtained from it as a quo
with respect to some sub-bimodule.

There is a canonical commutative product inV1 which satisfies

a•df 5@a, f # ~3.8!

and

~ f a f 8!•~hbh8!5 f h~a•b! f 8h8, ; f , f 8,h,h8PA, a,bPV1. ~3.9!

More generally, this product exists for every first order differential calculus over a commut
algebra.18 In the case under consideration, it is given by

ei j •ekl5d ikd j l ei j . ~3.10!

The space of 1-formsV1 is free as a~left or right! A-module. A special leftA-module basis
is given by

r i
ª(

j
ej i , if reiÞ0, ~3.11!

since an arbitrary 1-formA can be written as

A5(
i , j

Ai j ei j 5(
i

Ai r i , ~3.12!

whereAi5( jAji e
j . Furthermore,( iAir

i50 implies, via multiplication withej from the left, that
Aji 50 and thusAi50.

B. Higher order differential forms on a finite set

Concatenation of the 1-formsei j leads to ther-forms

ei 0 . . . i r
ªei 0i 1ei 1i 2

¯ei r 21i r ~r .0!, ~3.13!

which can also be expressed as follows:

ei 0 . . . i r5ei 0rei 1r¯rei r. ~3.14!

They satisfy the simple relations

ei 0 . . . i rej 0 . . . j s5d i r j 0ei 0 . . . i r 21 j 0 . . . j s ~3.15!

and spanV r as a vector space overC. Using ~3.3!, this space is turned into anA-bimodule. The
exterior derivative d extends to higher orders via

dei5rei2eir, ~3.16!
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dr5r21(
i

eir2ei , ~3.17!

and the~graded! Leibniz rule ~2.4!. In particular, this leads to

dei j 5reirej2eir2ej1eirejr, ~3.18!

dei jk5reirejrek2eir2ejrek1eirejr2ek2eirejrekr. ~3.19!

Starting with the universal first order differential calculus onM, these formulas generate th
universal differential calculus~which is also known as theuniversal differential envelopeof A).
A smaller first order differential calculus~where some of theei j are missing! induces restrictions
on the spaces of higher order forms. A missing arrow fromi to some other pointj ~in the complete
digraph onM) meanseirej50. Acting with d on this equation, using~3.16! and~3.17!, leads to

i→” j ⇒ eir2ej50. ~3.20!

Each differential calculus is obtained from the universal one as a quotient with respect to
differential ideal. If the differential ideal is generated by ‘‘basic forms’’~3.13! only,19 then the
differential calculus is calledbasic.16 This class of differential calculi has been associated w
polyhedral representations of simplicial complexes.16

C. Vector fields on a finite set

Let X denote the dual ofV1 as a complex vector space. Let$] j i % be the basis ofX dual to
$ei j %. If ^,&0 denotes the duality contraction, then

^ei j ,]kl&05d l
idk

j . ~3.21!

X is turned into anA-bimodule by introducing the left and right actions

^a, f •X&0ª^a f ,X&0 , ^a,X• f &0ª^ f a,X&0 . ~3.22!

As a consequence,

ek
•] j i 5d j

k] j i , ] j i •ek5d i
k] j i . ~3.23!

An elementXPX can be uniquely decomposed as follows:

X5(
i→ j

X~ i ! j] j i ~3.24!

~where the summation runs over alli , j PM for which there is an arrow fromi to j in the digraph
associated withV1). Now we introduce a duality contraction^,& of V1 as a rightA-module and
X as a leftA-module by setting

^ei j ,X&ªei^ei j ,X&0 , ~3.25!

for all XPX. Then we have

^ f a,X•h&5 f ^a,X&h, ^a, f •X&5^a f ,X&. ~3.26!

The elements ofX become operators onA via

X~ f !ª^df ,X&. ~3.27!

Using the Leibniz rule for d, one proves
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X~ f h!5 f X~h!1~h•X!~ f !, ; f ,hPA. ~3.28!

Furthermore,

~X• f !~g!5X~g! f . ~3.29!

The duality contraction extends to the pair of spacesV ^A V1 andX^A V via

^w^A a,X^A w8&5w^a,X&w8. ~3.30!

The space

XiªXei5$X•ei uXPX% ~3.31!

may be regarded as the tangent space ati PM. It is dual to V i
1 with respect to the duality

contraction^,&0 . The set$] j i u j PM such thati→ j % is a basis ofXi which is dual to the basis
$ei j u j PM such thati→ j % of V i

1 .

D. Linear connections on a finite set

Let “: V1→V1
^A V1 be a~left A-module! linear connection. Using~2.6! and the properties

of r, one finds that

U~a!ªr ^A a2“a ~3.32!

is a leftA-homomorphismU : V1→V1
^A V1, i.e.,

U~ f a!5 fU~a!, ; f PA, aPV1. ~3.33!

We call U the parallel transportassociated with the linear connection“. In particular,~3.33!
implies U(ei j )5eiU(ei j ), and thus we have an expansion,

U~ei j !5(
k,l

U~ i ! j
kl eik

^A ekl5(
k

eik
^A (

l
U~ i ! j

kl ekl, ~3.34!

with constantsU( i ) j
kl . Via

eik°~eik!Ui j
ª(

l
U~ i !k

j l ejl , ~3.35!

for fixed i and j , the parallel transport defines a linear mapV i
1→V j

1 with associated matrixUi j .
Then we have

U~a!5(
i , j

ei j
^A @~eia!Ui j #. ~3.36!

Given a linear connection onV1, there is a dual connection20
“: X→X^A V1, such that

d^a,X&5^“a,X&1^a,“X& ~3.37!

~cf. Ref. 5, appendix B!. Using d̂ a,X&5@r,^a,X&# one proves that the dual parallel transpo
defined by

^a,U~X!&5^U~a!,X&, ~3.38!

acts as follows onX:
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U~X!ªX^A r1“X, ~3.39!

and satisfies

U~X• f !5U~X! f . ~3.40!

~3.34! leads to

U~] j i !5(
k,l

U~k! l
i j ] lk ^A eki. ~3.41!

The parallel transport~and thus also the connection! extends in an obvious way toV ^A V1 and
X^A V as graded left, respectively, rightV-homomorphisms, i.e.,

U~w^A a!5~21!rw^A U~a!, U~X^A w!5~21!rU~X! ^A w, ~3.42!

wherewPV r .
The mapXj→Xi dual to the parallel transport map with matrixUi j defined in~3.35! is given

by

]ki ° (
l

U~ j ! ik
l ] l j 5Ui j ~]ki!. ~3.43!

Now ~3.41! extends to

U~X!5(
i , j

Ui j ~X•ei ! ^A ei j . ~3.44!

We may introduce the curvature as the rightV-homomorphismR8: X^A V→X^A V de-
fined by

R85¹2. ~3.45!

Its dual R : V ^A V1→V ^A V1 is then given byR52¹2 in accordance with our genera
definition ~2.12!. We obtain

R~ei j !5: (
k,l ,m

R~ i ! j
klm eikl

^A elm5 (
k,l ,m

S (
n

U~ i ! j
knU~k!n

lm2U~ i ! j
lmDeikl

^A elm,

~3.46!

where it has been convenient to set

U~ i ! j
ikªdk

j . ~3.47!

We also have the following expression for the curvature:

R~a!5(
i , j ,k

ei jk
^A $~eia!@Ui j Ujk2Uik#%, ~3.48!

whereUi i
ª idV

i
1.

For the torsion we find

Q~ei j !52eir2ej1ei j r1(
k,l

U~ i ! j
kl eikl5(

k,l
~dk

j 2d l
j1U~ i ! j

kl! eikl . ~3.49!
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Example.In case of the universal differential calculus, the condition of vanishing torsion l
to

U~ i ! j
kl5d l

j2dk
j , ~3.50!

and thus fixes the linear connection completely.21 As mentioned in more generality in the examp
in Sec. II B, this connection is given by“5d and its curvature vanishes. j

E. Metrics and compatible linear connections on finite sets

Using

ei j
^ Lekl5ei j

^ Lekekl5ekei j
^ Lekl5dkiei j

^ Leil , ~3.51!

one finds that an elementgPV1
^ LV1 can be expressed as

g5(
i , j ,k

g~ i ! jk ei j
^ Leik, ~3.52!

with constantsg( i ) jk . This will be our candidate for ametric onM.22

Example 1:Consider a digraph embedded in Euclidean space such that the arrows are s
lines of Euclidean lengthl i j . Let q j ik denote the angle between arrows fromi to j and fromi to
k. Define23

g~ i ! j j 5 l i j
2 , g~ i ! jk5 l i j l ik cosq j ik . ~3.53!

In order to describe the geometry of a polygon~without orientation of its lines! embedded in
Euclidean space completely, in general, we need to associate it with asymmetricdigraph. A line
between two pointsi and j is then represented by a pair of antiparallel arrows, so thatei j andeji

are both present. Of course, we should imposel i j 5 l j i .24 j

In order to define the compatibility of a linear connection and a metric, we have to exten
connection, respectively, the mapU, to a map fromV1

^ LV1 to V1
^A V1

^ LV1. Let us define

U~a ^ Lb!ª•~U~a! ^ LU~b!!, ~3.54!

where a map

• : ~V1
^A V1! ^ L~V1

^A V1!→V1
^A ~V1

^ LV1! ~3.55!

is needed. Using the canonical product~3.10! in the space of 1-forms, such a map is given by

•~~a ^A b! ^ L~a8^A b8!!ª~a•a8! ^A ~b ^ Lb8!, ~3.56!

and, using~3.9!, we have

U~ f ~a ^ Lb!!5 fU~a ^ Lb!. ~3.57!

As a consequence,

¹~a ^ Lb!ªr ^A ~a ^ Lb!2U~a ^ Lb! ~3.58!

defines a~left A-module! connection onV1
^ LV1. The metric compatibilitycondition“g50

now amounts to

r ^A g5U~g!. ~3.59!

In terms of the matricesUi j introduced in Sec. III D, we have
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U~a ^ Lb!5(
i , j

ei j
^A $@~eia!Ui j # ^ L~eib!Ui j #%. ~3.60!

Lemma:Expressed in components,“g50 becomes

g~ i ! jk5(
m,n

g~ l !mnU~ l !m
i j U~ l !n

ik , ~3.61!

for all i ,l PM such thatl→ i ~i.e., there is an arrow froml to i in the digraph associated withV1).
Proof:

U~g!5 (
l ,m,n

g~ l !mn •~U~elm! ^ LU~eln!!

5 (
l ,m,n

g~ l !mn (
i , j ,k,p

U~ l !m
i j U~ l !n

pk •~~eli
^A ei j ! ^ L~elp

^A epk!!.

With

•~~eli
^A ei j ! ^ L~elp

^A epk!!5~eli •elp! ^A ~ei j
^ Lepk!5d ipeli

^A ~ei j
^ Lepk!,

this becomes

U~g!5 (
i , j ,k,l ,m,n

g~ l !mnU~ l !m
i j U~ l !n

ik eli
^A ~ei j

^ Leik!.

Using ~3.59!, the last expression must be equal to

r ^A g5 (
i , j ,k,l

g~ i ! jk eli
^A ~ei j

^ Leik!.

A comparison of the coefficients on both sides now leads to our formula. j

Example 2:Again, we consider the universal differential calculus onM. With the unique
torsion-free linear connection~3.50!, the metric compatibility condition reads as25

g~ i !kl5g~ j !kl1g~ j ! i i 2g~ j !ki2g~ j ! i l , i , j ,k,l PM. ~3.62!

Settingk5 j and l 5 j , respectively, we get

g~ i ! jk5g~ j ! i i 2g~ j ! ik , g~ i !k j5g~ j ! i i 2g~ j !ki , ~3.63!

which, in turn, implies

g~ i ! jk2g~ i !k j5g~ j !ki2g~ j ! ik ~3.64!

and

g~ i ! j j 5g~ j ! i i . ~3.65!

Furthermore, the last equation together with~3.62! leads to

2g~ i !kl2g~ i !k j2g~ i ! j l 52g~ j !kl2g~ j !ki2g~ j ! i l , ~3.66!

which for k5 l becomes

2g~ i !kk2g~ i !k j2g~ i ! jk52g~ j !kk2g~ j !ki2g~ j ! ik . ~3.67!
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Let us now consider the special case where all the componentsg( i ) j j are equal. Then~3.64! and
~3.67! lead to

g~ i !k j5g~ j ! ik . ~3.68!

With the help of~3.63! and ~3.65! we now obtain

g~ i ! j j 5g~ i ! jk1g~ i !k j . ~3.69!

Assuming in addition that the metric is symmetric@i.e., g( i ) jk5g( i )k j], we have

g~ i ! j j 52g~ i ! jk , ~3.70!

and we end up with a constant metric,

g~ i !5S a a/2 . . . a/2

a/2 � A

A � A

a/2 ¯ a/2 a

D , ; i PM. ~3.71!

Hence, there is a unique symmetricg for the universal differential calculus~associated with the
complete digraph! onM which is compatible with the~unique! torsion-free linear connection an
which has the property that allg( i ) j j are equal. Ifg( i ) j j is positive, we let it represent the squa
of the distance betweeni and j . The above requirement then means that all points are at e
distancel 5Aa and from the metric compatibility condition we recover the Euclidean geometr
the regular polyhedron.

More generally, specializing to the ‘‘Euclidean metric’’~3.53!, our metric compatibility con-
ditions ~3.62! become

l ik
2 5 l jk

2 1 l j i
2 22l j i l jk cos~q i jk !, ~3.72!

l ikl i l cos~qkil !5 l jkl j l cos~qk j l !1 l j i
2 2 l j i l jk cos~q i jk !2 l j i l j l cos~q i j l !, ~3.73!

which, in fact, reproduce well-known relations of Euclidean geometry. j

In terms of the matrices

g~ i !ª~g~ i ! jk!, ~3.74!

the metric compatibility condition takes the simple form

g~ j !5~Ui j ! tg~ i !Ui j , ~3.75!

where (Ui j ) t denotes the transpose of the matrixUi j . Hence, if there is an arrow fromi to j in the
digraph~i.e., i→ j ), theng( i ) determinesg( j ) via the parallel transport of a metric compatib
linear connection.

The metric compatibility condition implies that, for any closed pathi 0→ i 1→ . . .→ i r→ i 0 in
the digraph, the matrixHi 0 . . . i r

ªUi 0i 1Ui 1i 2
•••Ui r i 0 must be in the orthogonal group ofg( i 0). The

set of all matricesHi 0 . . . i r, r>1, forms the holonomy groupGH( i 0) at i 0PM.
Example 3:The three point complete digraph.

LetM5$1,2,3% with r5e121e131e211e231e311e32. We are dealing again with the univers
differential calculus so that there are no 2-form relations. Thenr25e1211e1231e1311e132

1e2121e2131e2311e2321e3121e3131e3211e323. The condition of vanishing torsion determine
the connection completely. We find
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U125S 21 21

0 1 D , U135S 0 1

21 21D , U235S 1 0

21 21D ,

~3.76!

U215S 21 21

0 1 D , U315S 21 21

1 0 D , U325S 1 0

21 21D .

It follows thatHi j 5I , the unit matrix, for alli→ j→ i . Furthermore, for all permutationsi , j ,k of
1,2,3 we findHi jk5Ui j UjkUki5I . This means that parallel transport does not depend on the
which is related to the fact that the curvature vanishes. If we choose metric components
point, then the metric components at the other points are determined via the metric compa
condition. We find

g~1!5S a b

b cD , g~2!5S a a2b

a2b a22b1cD , g~3!5S c c2b

c2b a22b1cD . ~3.77!

In particular, ifg(1)5g(2)5g(3) we are led to

g~ i !5bS 2 1

1 2D ~3.78!

@in accordance with~3.71!# which ~for b.0) describes an equilateral triangle. This may
considered as a simple model of a piece of a two-dimensional surface. j

Thinking about an inverse~or dual! of a metric tensor, as defined above, one is led to elem
hPX^ RX where^ R denotes theright-linear tensor product.h can be expressed as

h5(
i , j ,k

h~ i ! jk ] j i ^ R]ki , ~3.79!

with constantsh( i ) jk. The parallel transport~and thus also the connection! extends toX^ RX via

U~X^ RY!ª•~U~X! ^ RU~Y!! ~3.80!

and

•~~X^A a! ^ R~Y^A b!!ª~X^ RY! ^A ~a•b!. ~3.81!

Compatibility of h with a linear connection, i.e.,“h50, now reads as

U~h!5h^A r, ~3.82!

and, in components,

h~ i !rs5(
j ,k

h~ l ! jkU~ i !r
l j U~ i !s

lk , ~3.83!

provided thati→ l . In terms of the matricesh( i )ª(h( i ) jk), the metric compatibility condition
reads as

h~ i !5Ui j h~ j !~Ui j ! t. ~3.84!

Remark:Consider a differential calculus, associated with a symmetric digraph, a metricg and
a compatible linear connection. Ifg( i 0) is invertible at some pointi 0 , settingh( i 0)ªg( i 0)21

definesh via ~3.84! on the connected component of the digraph containingi 0 . Of course,h need
not be inverse tog at other points. j
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F. Metrics and compatible linear connections on a finite set with a basic differential
calculus

We consider abasicdifferential calculus~cf. Sec. III B!. The general torsion-free connectio
is then given by

U~ i ! j
kl5d l

j2dk
j 1u~ ikl ! j , ~3.85!

whereu( ikl ) jÞ0 only if eikl50.26 The metric compatibility condition now becomes

g~ j !kl5g~ i !kl2g~ i !k j2g~ i ! j l 1g~ i ! j j

1(
m,n

g~ i !mn @dk
m u~ i j l !n1d l

n u~ i jk !m1u~ i jk !m u~ i j l !n#

2(
m

@g~ i ! jm u~ i j l !m1g~ i !m j u~ i jk !m#, ~3.86!

for all i , j with i→ j .
Remark:Let us consider again the case of a Euclidean embedding space~cf. example 1 in Sec.

III E !. If all u( i jk ) l vanish, then~3.72! holds which is a familiar relation between the lengths a
angles of a Euclidean triangle. As shown in Ref. 27, in the triangulation of a curved spa
means of geodesic segments and in Riemann normal coordinates one has

2l i j l ik cosq j ik5 l ik
2 1 l i j

2 2 l jk
2 2 1

3 Rmanb Dxi j
m Dxi j

n Dxik
a Dxik

b 1O~e5!, ~3.87!

wheree is a typical length scale of the neighborhood in which the Riemann normal coordi
are defined, andxi

m are the Riemann normal coordinates of the vertexi . Obviously, from~3.86! we
can expect to get additional terms in~3.72!, related to curvature, only if we have nonvanishi
u( i jk ) l , that is if we have 2-form relations as in our next example. j

Example:A refined model for a piece of a two-dimensional surface is obtained from
considered in example 3 of Sec. III E by adding a fourth point to the triangle and joining it
all the vertices of the latter, but then discard the 2-forms corresponding to the base of the re
tetrahedron~or a pyramid with a triangle base!. Hence, we consider the complete digraph
M5$1,2,3,4%, but not the universal differential calculus since we impose the 2-form relatio

e1235e1325e2135e2315e3125e32150. ~3.88!

We assume that the matricesUi j have maximal rank and that

Hi j 5Ui j Uj i 5I . ~3.89!

The condition of vanishing torsion now leads to

U125S 21 211u1 21

0 11u2 0

0 u3 0
D , U135S 0 11v1 0

21 211v2 21

0 v3 1
D ,

U235S 11w1 0 0

211w2 21 21

w3 0 1
D , U145S 0 1 0

0 0 1

21 21 21
D , ~3.90!
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U245S 1 0 0

0 0 1

21 21 21
D , U345S 1 0 0

0 1 0

21 21 21
D ,

and for i , j we haveUj i 5(Ui j )21 according to~3.89!. Setting

g~4!5 l 2S 1 c b

c 1 a

b a 1
D ~3.91!

means that the edges of the triangles 4-1-2, 4-1-3, 4-2-3 have equal lengthl 415 l 425 l 435 l but
possibly different angles cosq1425c, cosq1435b, cosq2435a. Via g( i )5(U4i) tg(4)U4i for i
51,2,3 we obtain

g~1!5 l 2S 2~12c! 11a2b2c 12c

11a2b2c 2~12b! 12b

12c 12b 1
D ,

g~2!5 l 2S 2~12c! 12a1b2c 12c

12a1b2c 2~12a! 12a

12c 12a 1
D , ~3.92!

g~3!5 l 2S 2~12b! 12a2b1c 12b

12a2b1c 2~12a! 12a

12b 12a 1
D .

The remaining metric compatibility conditions now demand that

u25v15w1522, u152
bc2a

c221
, v252

bc2a

b221
, w252

ac2b

a221
~3.93!

and

u352
12a2b1c

11c
, v352

12a1b2c

11b
, w352

11a2b2c

11a
, ~3.94!

where we assumed thata,b,cÞ61. We should mention here thatu15¯5w350 is also a
solution. This parallel transport, which corresponds to the unique torsion-free connection
universal differential calculus on the set of four points, has vanishing curvature. This show
there isa priori no relation with the Regge curvature28 which is given at point 4 by 2p2q142

2q1432q243. We will return to this example in the next section~see example 5 there!. j

IV. TRANSFORMATIONS TO ‘‘LOCAL’’ TENSOR PRODUCTS AND COVARIANT
TENSOR COMPONENTS

As in the preceding section, we consider a finite setM and a differential calculusV ~over the
algebra of functions! onM. In ordinary~continuum! differential geometry, the tensor product^A
and the graded product in the space of differential forms are operations which take place o
same point. This is not so in the discrete framework under consideration. For example,ei j

^A ejk the first factor is an element ofV i
1 while the second factor belongs toV j

1 . In contrast, in
ei j

^ Leik both factors belong to the same cotangent space. As a consequence, the left com
of an element ofV1

^ LV1 transform covariantly under a change of module basis inV1 ~in
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contrast to the left, middle or right components of an element ofV1
^A V1). Covariant tensor

components are of particular interest because of the possibility to construct new tensors from
via contraction. For example, we would like to build a kind of Ricci tensor from the curva
componentsR( i ) j

klm in ~3.46!. The latter are not covariant, however. The indicesj and l ~or m)
live in different ~co!tangent spaces. In this section, we shall consider ways to modify or, m
precisely, to ‘‘localize’’ expressions in order to provide a remedy for this problem. What we
is tensor products which act over the same point and furthermore suitable transformation
tensor products overA to these ‘‘local’’ tensor products. Given a connection, we have the par
transports which enable us to move from one~co!tangent space to another and these should
expected as natural ingredients of the transformations we are looking for.

A map V1
^ LV1→V1

^A V1 is given by

k~a ^ Lb!ª(
i , j

~eiaej ! ^A @~eib!Ui j #. ~4.1!

In particular,

k~ei j
^ Leik!5(

l
U~ i !k

j l ei j
^A ejl . ~4.2!

k is a leftA-homomorphism and has the property29

k~r ^ Lb!5U~b!. ~4.3!

A map,

l1 : V1
^A V1→V1

^ LV1, ~4.4!

in the opposite direction is not so easily at hand in an explicit form, except in some special
like those listed below.

~i! If for all i→ j the transportUi j is invertible, we can define

l1~a ^A b!ª(
i , j

~eiaej ! ^ L@~ejb!~Ui j !21#. ~4.5!

Thenl15k21. This choice is considered in case of the oriented lattice structures treated in
V and VI.

~ii ! If the digraph associated withV1 is symmetric~i.e., a digraph wherei→ j ⇔ j→ i ) then we
may define30

l1~a ^A b!ª(
i , j

~eiaej ! ^ L@~ejb!Uj i #. ~4.6!

In the following we assume that a mapl1 is given, having the above examples in min
Moreover, we will also need a similar map,

l2 : V2
^A V1→V2

^ LV1 ~4.7!

~and furthermore a way to ‘‘localize’’ 2-forms; see below!. In our examples considered in Secs.
and VI, l1 induces such a mapl2 in a natural way.

Example 1:Let i→ j→k→ l andk→ i . For ei jkÞ0 we may define

l2~ei jk
^A ekl!ªei jk

^ L@~ekl!Uki#. ~4.8!

If also k→ j→ i , another choice is
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l28~ei jk
^A ekl!ªei jk

^ L@~ekl!Uk jUj i #. ~4.9!

The two choices forl2 can be different as long as the holonomy of the connection is not tri
Hence, in general, there are many different choices forl2 . j

Example 2:Let us now consider a differential calculus where the space of 1-forms is as
ated with a symmetric digraph and let us, moreover, assume that the differential calculus is
~cf. Sec. III B!. In this case,ei 0¯ i rÞ0 implies thati k→ i l for all 0<k,l<r ~cf. Ref. 16!. A natural
choice forl1 , l2 and generalizations thereof is then given by

l~ei 0¯ i r ^A ei r j !ªei 0¯ i r ^A @~ei r j !Ui r i 0#. ~4.10!
j

In the following we simply writel instead ofl1 or l2 .
Combiningk andp,

aùbªp+k~a ^ Lb! ~4.11!

determines a productV1
^ LV1→V2 which is leftA-linear and therefore satisfies

ei~aùb!5~eia!ù~eib!, ~4.12!

so thatù preserves ‘‘locality.’’ If (k+l)(kerp),kerp, the map

mªp+k+l+p21: V2→V2 ~4.13!

is well-defined and can be used to transform usual products of 1-forms~i.e., elements ofV2) to
ù-products.

Example 3:Let us again consider the case of a differential calculus associated with asym-
metric digraph. Using~4.6!, we get

k+l1~a ^A b!5(
i , j

~eiaej ! ^A @~ejb!Hj i #, ~4.14!

l1+k~a ^ Lb!5(
i , j

~eiaej ! ^ L@~eib!Hi j #, ~4.15!

with the holonomiesV i
1→V i

1 given byHi j . Then

m~ab!5(
i , j

~eiaej !ù@~ejb!Uj i #5(
i , j

~eia!@~ejb!Hj i #. ~4.16!

The 2-form relations are of the form

(
k

eik j50, if i→” j ~4.17!

~wherek runs over a subset ofM) and must be mapped to 0 bym. In terms of theù-product the
2-form relations then read as

(
k,l

U~k! j
i l eikùeil 50, if i→” j . ~4.18!

Using (ek j)Hki5:( l(H
ki) j

l ekl, the condition (k+l)(kerp),kerp amounts to
                                                                                                                



ve

rre-

nti-

l

re no

1534 J. Math. Phys., Vol. 40, No. 3, March 1999 A. Dimakis and F. Müller-Hoissen

                    
(
k

~Hki! j
l eikl50, ; l , ~4.19!

and thus induces restrictions on the connection, in general. j

Lemma:For a basic differential calculus (V,d) and a torsion-free linear connection, we ha

ei j ùei j 52(
k

ei jk ,

~4.20!
ei j ùeik5ei jk , if j Þk,

and the mapm defined in~4.13! with l from ~4.6! satisfies

m~ei j i !52(
k

ei j ùeik,

~4.21!
m~ei jk !5ei j ùeik, if iÞk.

Proof: ~4.20! follows from

ei j ùeik5(
m

U~ i !k
jm ei jm,

together with~3.85!. ~4.21! results from

m~ei jk !5ei j ù@ejkUj i #5ei j ù(
m

U~ j !k
im eim5ei j ù(

m
~dm

k 2d i
k!eim,

using again~3.85!. j

Now we have everything at hand to ‘‘localize’’ torsion and curvature and to define co
sponding covariant components as follows:

m+Q~ei j !5:(
k,l

Q~ i ! j
kl eikùeil , ~4.22!

~m ^ Lid!+l+R~ei j !5: (
k,l ,m

R̂~ i ! j
klm ~eil ùeim! ^ Leik. ~4.23!

As in ordinary differential geometry, aRicci tensorcan now be defined,

Ric~ i ! jkª(
l

R̂~ i ! l
j lk , Ric~ i ! jkª(

l
R̂~ i ! l

jkl . ~4.24!

There is also the contraction( l R̂( i ) l
l jk which in classical Riemannian geometry vanishes ide

cally. In the present framework its significance has still to be explored.
In order to construct a curvature scalar, we need an inverse ofg( i ). This need not exist at al

vertices of the digraph. There are examples whereg( i ) is even degenerate at all vertices.
Example 4:We continue our example 2. With the assumptions made there, there a

conditions on the connection~cf. example 3!. For the curvature we obtain

~m ^ Lid!+l+R~eim!5(
i , j ,k

ei j ù@ejkUj i # ^ L$~eim!@Ui j UjkUki2Hik#%, ~4.25!
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which for ei j ùeikÞ0 yields

R̂~ i !m
n jk5(

l
U~ j ! l

ik @Ui j Uj lUl i 2Hi l #m
n . ~4.26!

j

Example 5:We continue our example of Sec. III F and choosel as in ~4.10!. The relations
between the usual graded and theù-product are obtained from the above Lemma. In particul

e41ùe4152e4122e4132e414, e41ùe425e412 ~4.27!

and

e12ùe1350, e12ùe1252e1212e124, e12ùe145e124. ~4.28!

SinceHi j 5I , the mapm is well-defined. Then

m~e414!52e41ùe412e41ùe422e41ùe43, m~e412!5e41ùe42 ~4.29!

and

m~e123!5e12ùe1350, m~e121!52e12ùe122e12ùe14, m~e124!5e12ùe14. ~4.30!

The curvatureR̂( i ) jkª(R̂( i )m
n jk) at point 4 is given by

R̂~4!115R̂~4!225R̂~4!3350 ~4.31!

and

R̂~4!125R̂~4!215S 0 0 2~ac2b!/~c221!

0 0 2~bc2a!/~c221!

0 0 22
D ,

R̂~4!135R̂~4!315S 0 2~ab2c!/~b221! 0

0 22 0

0 2~bc2a!/~b221! 0
D , ~4.32!

R̂~4!235R̂~4!325S 22 0 0

2~ab2c!/~a221! 0 0

2~ac2b!/~a221! 0 0
D .

Furthermore, we haveR̂(1)225R̂(1)335R̂(1)4450,

R̂~1!245R̂~1!425S 0 2~bc2a!/~c221! 0

0 22 0

0 2~12a2b1c!/~c11! 0
D , ~4.33!

etc. and corresponding expressions for the curvature at the vertices 2 and 3. For the Ricci t
we find Ric(i )5Ric(i ),

Ric~4!52S 0 ~ac2b!/~a221! ~ab2c!/~a221!

~bc2a!/~b221! 0 ~ab2c!/~b221!

~bc2a!/~c221! ~ac2b!/~c221! 0
D , ~4.34!
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Ric~1!52S 0 ~12a1b2c!/~b11! ~bc2a!/~b221!

~12a2b1c!/~c11! 0 ~bc2a!/~c221!

0 0 0
D , ~4.35!

and corresponding expressions for Ric(j ), j 52,3. The resulting expression for the curvatu
scalar turns out to be rather complicated. In the special casea5b5c, we obtain

R~4!5(
i , j

g~4! i j Ric~4! i j 5
1

l 2

12a2

~a21!~a11!~2a11!
~4.36!

and

R~1!5R~2!5R~3!52
1

l 2

8a

~a11!~2a11!
. ~4.37!

j

The structures introduced in this section will also be exploited in the examples presen
the following two sections.

V. GEOMETRY OF THE ORIENTED LATTICE

In this section we chooseM5Zn5$a5(am)uamPZ,m51, . . . ,n% and consider the differ-
ential calculus with

eabÞ0 ⇔ b5a1m̂, for somem, ~5.1!

wherem̂ª(dm
n )PM. The corresponding graph is an oriented lattice inn dimensions, a finite par

of it is drawn in Fig. 1. Note that here we are dealing with aninfinite setM for which in the
formalism presented in the previous section in general technical problems associated with
sums arise. In the example under consideration we now sketch a transition to a formulation
then only makes reference to finitely generatedA-modules so that only finite sums appear and
is safe working on a purely algebraic level~see also Ref. 3!.

Each f PA can be written as a function of

xm
ª l m (

a
amea, ~5.2!

with l mPR. Its differential is then given by

FIG. 1. A finite part of the oriented lattice graph.
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df 5(
m

]1m f dxm, ~5.3!

where

~]1m f !~x!ª
1

l m
@ f ~x1m!2 f ~x!# ~5.4!

with m5 l mm̂. The 1-forms dxm constitute a basis ofV1 as a left~or right! A-module and satisfy
the following commutation relations with a function ofxm:

dxm f ~x!5 f ~x1m! dxm. ~5.5!

In particular, this implies

dxn•dxm5@dxm,xn#5 l mdmndxm ~5.6!

~cf. also Ref. 18! and, acting with d on the latter equation, leads to

dxm dxn1dxn dxm50. ~5.7!

The 1-formr introduced in~3.4! becomes

r5(
m

1

l m
dxm. ~5.8!

It satisfies dr50 andr250. Moreover, forwPV r we have

dw5rw2~21!rwr. ~5.9!

For a linear~left A-module! connection onV1 we write

“dxm52(
n

Gm
n ^A dxn, U~dxm!5(

n
Um

n ^A dxn. ~5.10!

Using ~3.32!, this leads to

Um
n5rdn

m1Gm
n5:(

s

1

l s
Um

sn dxs. ~5.11!

We shall require that lim$ l k%→0Usn
m 5dn

m . This assumption will be used below where we work o
continuum limits of curvature expressions.

The mapk introduced in Sec. IV is given by

k~dxm
^ Ldxn!5(

s
Un

ms dxm
^A dxs. ~5.12!

For the leftA-linear ù-product inV2 we now obtain

dxmùdxn5(
s

Un
ms dxmdxs. ~5.13!
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Under a change of coordinates, dxmùdxn transforms covariantly while dxmdxn does not. Not all of
the 2-forms dxmùdxn are independent, in particular, as a consequence of~5.7!. In the following
we derive the relations which they satisfy under the assumption thatk has an inverse which mean
that Um

n has an inverseVm
n5(s(1/l s)Vm

sn dxs in the sense that

(
s

Um
s•Vs

n5rdn
m5(

s
Vm

s•Us
n . ~5.14!

In terms of components this becomes

(
s

Um
as Vs

an5dn
m5(

s
Vm

as Us
an , ~5.15!

for all a. Now we have

dxmdxn5(
s

Vn
ms dxmùdxs. ~5.16!

We introduce

Wrs
mn
ªUn

mr Vm
rs , ~5.17!

which satisfies lim$ l k%→0Wrs
mn5ds

mdr
n and

(
k,l

Wkl
mn Wrs

kl5dr
mds

n . ~5.18!

As a consequence,

~P6!rs
mn
ª

1

2
~dr

mds
n 6Wrs

mn! ~5.19!

are projectors. In terms of theù-product, the 2-form relations~5.7! can now be expressed a
follows:

(
k,s

~P1!ks
mn dxkùdxs50. ~5.20!

This much more complicated form of the 2-form relations, as compared with~5.7!, is the price we
have to pay for the covariance. For a 2-formA5(m,n Amn dxmdxn5(m,n Âmn dxmùdxn we ob-
tain the implications

A50 ⇔ (
k,s

~P2!mn
ks Âks50 ~5.21!

and

Amn1Anm50 ⇔ (
k,s

~P1!mn
ks Âks50 ~5.22!

~sinceAmn5(r ÂmrUr
mn).

With the help of~5.11!, our general expression~2.8! for the torsion of a linear connectio
leads to
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Qm
ªQ~dxm!5(

n,r

1

l n
~Um

nr2dr
m! dxndxr5 (

n,r,s

1

l n
~Um

nr2dr
m!Vr

ns dxnùdxs. ~5.23!

Writing

Qm5
1

2(n,r
Qm

nr dxnùdxr, ~5.24!

where the coefficientsQm
nr are subject to

Qm
nr52(

k,l
Wnr

kl Qm
kl , ~5.25!

we are led to

Qm
nr5 (

k,l,s

1

l k
~dn

kdr
l2Wnr

kl!~Um
ks2ds

m!Vs
kl . ~5.26!

Example:If the torsion vanishes, we obtain

1

l n
~Um

nr2dr
m!5

1

l r
~Um

rn2dn
m!. ~5.27!

This is equivalent to the condition

Gm
nr5Gm

rn , ~5.28!

which is familar from continuum differential geometry. j

A metric tensor~in the sense of Sec. III! is given by

g5(
m,n

gmn dxm
^ Ldxn, ~5.29!

wheregmn is now assumed to be a nondegenerate symmetric matrix. The metric compat
condition“g50 with a linear connection“ leads to

g~x1l!mn5(
r,s

U~x!r
lm g~x!rs U~x!s

ln , ~5.30!

for all l. In matrix notation, this takes the form

g~x1l!5U~x!l
t g~x! U~x!l . ~5.31!

The continuum limit of this equation is obtained from the expansion

g̃mn1 l l~]lg̃mn1bmn!1O~ l m
2 !5(

r,s
~dm

r 1 l lGr
lm!grs~dn

s1 l lGs
ln!

5g̃mn1 l lS (
r

~G̃r
lm g̃rn1g̃mr G̃r

ln!1bmnD 1O~ l m
2 !,

~5.32!

where
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G̃m
snª lim

$ l l%→0

Gm
sn , g̃mnª lim

$ l l%→0

gmn , bmnª lim
$ l l%→0

]gmn

] l m
, ~5.33!

which we assume to exist.
Remark:The vector fields]1mPX are dual to the 1-forms dxm, i.e.,

^dxm,]1n&5dn
m . ~5.34!

The action ofX5(m]1m•Xm on functions is given by

X~ f !5^df ,X&5(
m

Xm ~]1m f !. ~5.35!

For the connection we haveU(X)5X^A r1¹X, and thus

U~]1m!5(
n

]1n ^A Un
m . ~5.36!

A dual metric tensor~cf. Sec. III! can be expressed as

h5(
m,n

]1m ^ R ]1n•hmn, ~5.37!

with componentshmnPA. The metric compatibility condition for a linear connection takes
form U(h)5h^A r. The latter leads to

h~x1l!mn5(
r,s

V~x!m
lr V~x!n

ls h~x!rs. ~5.38!

With hmn5gmn, wheregmn are the components of the matrix inverse to (gmn), we obtain the
metric tensor inverse tog. j

Let us now turn to the calculation of the curvature of a linear connection. We have

R~dxm!5(
n

S dGm
n1(

r
Gm

rGr
nD ^A dxn

5(
r,n

Um
r Ur

n ^A dxn

5 (
r,k,l,n

1

l kl l
U~x!m

kr U~x1k!r
ln dxkdxl

^A dxn

5
1

2 (
k,l,n

1

l kl l
@U~x!k U~x1k!l2U~x!l U~x1l!k#m

n dxkdxl
^A dxn. ~5.39!

With

R~dxm!5:
1

2 (
k,l,n

Rm
nkl dxkdxl

^A dxn, ~5.40!

whereRm
nkl52Rm

nlk , we thus have

Rm
nkl5

1

l kl l
@U~x!k U~x1k!l2U~x!l U~x1l!k#m

n . ~5.41!
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To obtain the tensorial components of the curvature, we need to transform^A into ^ L and the
dxkdxl into dxkùdxl. We achieve this withl5k21. First we note that

l~dxm
^A dxn!5(

r
V~x!n

mr dxm
^ Ldxr, ~5.42!

and therefore31

l~dxmdxn
^A dxr!5

1

2
dxmS (

l
V~x!r

nl dxn
^ LdxlD 2

1

2
dxnS (

l
V~x!r

ml dxm
^ LdxlD

5
1

2 (
l,s

$V~x!l
ms dxm~V~x!r

nldxn!2V~x!l
ns dxn~V~x!r

mldxm!% ^ Ldxs

5
1

2 (
s

@V~x1m!n V~x!m1V~x1n!m V~x!n#r
s ~dxmdxn! ^ Ldxs. ~5.43!

Applying this formula, we find

l+R~dxm!5
1

4 (
k,l,n

1

l kl l
@~U~x!k U~x1k!l2U~x!l U~x1l!k!

3~V~x1k!l V~x!k1V~x1l!k V~x!l!#m
n dxkdxl

^ Ldxn. ~5.44!

With

l+R~dxm!5:(
n

R̂m
n ^ Ldxn, ~5.45!

this leads to

R̂m
n5

1

4(k,l

1

l kl l
@H~x!kl2H~x!lk#m

n dxkdxl, ~5.46!

where

H~x!klªU~x!k U~x1k!l V~x1l!k V~x!l . ~5.47!

Expressing the 2-formsR̂m
n as follows:

R̂m
n5

1

2(r,s
R̂m

nrs dxrùdxs, ~5.48!

with tensorial coefficients subject to

R̂m
nrs52(

k,l
Wrs

kl R̂m
nkl , ~5.49!

we get

R̂m
nkl5

1

2(a
1

l kl a
@H~x!ka2H~x!ak#m

n V~x!a
kl . ~5.50!

The resulting Ricci tensors are
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Ricmn5
1

2(a,b

1

l al b
@H~x!ba2H~x!ab#b

m V~x!a
bn , ~5.51!

Ric̄mn5
1

2(a,b

1

l al n
@H~x!na2H~x!an#b

m V~x!a
nb , ~5.52!

from which one obtains the curvature scalarsR̂5gmn Ricmn and R̄̂5gmn Ricmn with the help of
the inversegmn of gmn .

In order to elaborate the continuum limit of the curvature tensor, we use the expansion

U~x!k5I 1 l kG̃k1
l k
2

2
@~ G̃k!21Bk#1O~ l 3!, ~5.53!

U~x1l!k5I 1 l kG̃k1 l kl l]lG̃k1
l k
2

2
@~ G̃k!21Bk#1O~ l 3!, ~5.54!

V~x!k5I 2 l kG̃k1
l k
2

2
@~ G̃k!22Bk#1O~ l 3!, ~5.55!

V~x1l!k5I 2 l kG̃k2 l kl l]lG̃k1
l k
2

2
@~ G̃k!22Bk#1O~ l 3!. ~5.56!

This leads to

H~x!kl5I 1 l kl l @]kG̃l1G̃k G̃l2]lG̃k1G̃l G̃k#1O~ l 3!, ~5.57!

so that

R̂m
nkl5]kG̃m

ln2]lG̃m
kn1G̃m

kr G̃r
ln2G̃m

lr G̃r
kn1O~ l !. ~5.58!

In this way we recover the continuum Riemann tensor in the limit$ l a%→0.
We have set up a formalism which assigns geometrical notions like metric, curvatur

Ricci tensor to a hypercubic lattice. In particular, one obtains a discrete counterpart of the E
~vacuum! equations in this way. Actually, there are several discrete Einstein equations depe
on our choice of Ricci tensor. The results of the following section suggest that the diffe
Ric2Ric is the appropriate object.

Remark:The mapsk and l extend to an arbitrary number of factors of the correspond
tensor products. We define

k~a1^ L¯^ La r !ª~ id^A k!@a1•U~a2^ L¯^ La r !#, ~5.59!

and correspondingly forl. These maps allow us to introduce covariant components of hi
order forms by expressing them in terms of

a1ù¯ùa rªp+k~a1^ L¯^ La r !. ~5.60!

Theser-forms satisfy very complicated relations which generalize~5.20! and involve the curva-
ture, in general. j

VI. DISCRETE SURFACES OF REVOLUTION

In terms of coordinatesq,w we consider the differential calculus determined by

dq f ~q,w!5 f ~q1 l ,w! dq, dw f ~q,w!5 f ~q,w1 l ! dw. ~6.1!
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This is just a special case of~5.5!. Via the rules of differential calculus it leads to

dqdq50, dqdw1dwdq50, dwdw50. ~6.2!

In contrast to the previous section, we interpret the coordinates as spherical coordinates
qP@0,p) andwP@0,2p). With l 5p/n, nPN, we obtain a discretization of the surface by fixin
one point on the surface and moving in steps of coordinate lengthl in q- andw-directions. For the
metric we make an ansatz,

g~q,w!5S 1 0

0 b2D , ~6.3!

whereb is a function ofq only. This models a surface of revolution~for example, a sphere as i
Fig. 2!.

Using Bªdiag(1,b), we haveg5BtB and the metric compatibility condition for the parall
transport takes the form

~BUq B̃21! t~BUq B̃21!5I , ~BUw B21! t~BUw B21!5I , ~6.4!

whereB̃ªdiag(1,b̃) and b̃(q)ªb(q1 l ). As a consequence of these equations,B̃Uq B21 and
BUw B21 are elements of the orthogonal group O~2!. In order to obtain the correct continuum
limit, we restrict them to be elements of SO~2!, the component of O~2! which contains the identity.
Then we have expressions

Uq5B21T~u!B̃, Uw5B21T~v !B, ~6.5!

whereu,v are arbitrary functions ofq andw and

T~x!5S cosx 2sinx

sinx cosx
D . ~6.6!

The metric compatibility condition now leads to

FIG. 2. Discretization of a sphere.
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Uq5S cosu 2b̃ sinu

~1/b!sinu ~ b̃/b!cosu
D , Uw5S cosv 2b sinv

~1/b!sinv cosv D , ~6.7!

and the condition of vanishing torsion becomes

b̃ sinu1cosv51, b̃ cosu2sinv5b. ~6.8!

These equations determineu andv completely in terms ofb and b̃. We find

cosu5
12p2

11p2 , sinu5
2p

11p2 , cosv5
11p222b̃p

11p2
, sinv5

b̃2b2~ b̃1b!p2

11p2
, ~6.9!

with

p5~2b̃6A4b̃22~ b̃22b2!2!/~b1b̃!2. ~6.10!

Only with the minus sign in the last expression we obtain the correct continuum limit~cf. Sec. V!
where liml→0Uq5 lim l→0Uw5I ~the unit matrix!. This choice will be made in the following. Th
inverse parallel transport matrices are given byVq5B̃21T(2u)B andVw5B21T(2v)B, so that

Vq5S cosu b sinu

2~1/b̃!sinu ~b/b̃!cosu
D , Vw5S cosv b sinv

2~1/b!sinv cosv D . ~6.11!

With l5k21 ~see Sec. IV!, we obtain, for the curvature,

l+R~dxm!5(
n

r m
n dqdw ^ Ldxn, ~6.12!

wherex15q,x25w and

rª
1

2l 2 @Uq~q,w!Uw~q1 l ,w!Vq~q,w1 l !Vw~q,w!

2Uw~q,w!Uq~q,w1 l !Vw~q1 l ,w!Vq~q,w!#

5
1

2l 2 B21@T~u!T~ ṽ !T~2u!T~2v !2T~v !T~u!T~2 ṽ !T~2u!#B

5
1

2l 2 B21@T~ ṽ2v !2T~v2 ṽ !#B5
1

l 2S 0 2b sin~ ṽ2v !

~1/b!sin~ ṽ2v ! 0
D , ~6.13!

with ṽ(q)ªv(q1 l ). Sinceu andv are functions ofb andb̃, they are functions ofq only. Using

dqdw5Vqq
w dqùdq1Vqw

w dqùdw, dwdq5Vwq
q dwùdq1Vww

q dqùdw ~6.14!

and rdqdw5 1
2 r (dqdw2dwdq), we find the curvature components

R̂qq52
sinu

b̃
r , R̂qw5

b cosu

b̃
r , R̂wq52~cosv !r , R̂ww52b~sinv !r , ~6.15!

whereR̂kl5(R̂m
nkl). We have the two Ricci tensors:
                                                                                                                



1545J. Math. Phys., Vol. 40, No. 3, March 1999 A. Dimakis and F. Müller-Hoissen

                    
Ric5
1

l 2S 2~1/b!cosv 2sinv

~b/b̃!sinu 2~b2/b̃!cosu
D sin~ ṽ2v !, ~6.16!

Ric5
1

l 2S ~1/b̃!cosu 2sinv

~b/b̃!sinu b cosv
D sin~ ṽ2v !, ~6.17!

and the combination

Ric̃ª
1

2
~Ric2Ric!52

1

2l 2S cosu

b̃
1

cosv
b D sin~ ṽ2v !g, ~6.18!

from which we obtain the curvature scalars32

R̂ªgmn Ricmn52
1

l 2S cosu

b̃
1

cosv
b D sin~ ṽ2v !, ~6.19!

R̄̂ªgmn Ricmn52R̂, ~6.20!

R̃ªgmn Ric̃mn5R̂. ~6.21!

Now ~6.18! becomes

Ric̃mn5
1

2
R̃ gmn . ~6.22!

This result clearly distinguishes the particular linear combination~6.18! of Ricci tensors.
In the following, we present expansions in powers ofl and consider the continuum limitl

→0. We shall allow an explicit dependence ofb on l , i.e.,b(q,l )5b0(q)1b1(q) l 1O( l 2). Then

Gq5
1

l
~Uq2I !5S 0 0

0 b08/b0
D 1S 0 2~b08

2/2!

b08
2/2b0

2 ~2b181b09!/2b02b1b08/b0
2D l 1O~ l 2!,

~6.23!

Gw5
1

l
~Uw2I !

5S 0 2b0b08

b08/b0 0
D 1S 2b08

2/2 2@b1b081b0b181b0b09/2#

~2b181b09!/2b02b1b08/b0
2 2b08

2/2
D l 1O~ l 2!,

whereb8 denotes the derivative ofb with respect toq. For the curvature, we findR̂qq5O( l 2) and

R̂qw5S 0 2b0b09

b09/b0 0
D 1S 0 ~2b11b08!b092b0~b191b0-!

2@~b11b08!b09/b0
22~b191b0-!/b0# 0

D l

1O~ l 2!,

R̂wq5S 0 b0b08

2b09/b0 0
D 1S 0 b1b091b0~b191b0-!

2@b1b092b0~b191b0-!#/b0
2 0

D l 1O~ l 2!,

~6.24!
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R̂ww5S 0 b0
2b08b09

2b08b09 0
D l 1O~ l 2!.

The Ricci tensors have the following expansions:

Ric5S 2b09/b0 0

0 2b0b09
D 1S @b1b092b0~b191b0-!#/b0

2 2b08b09

0 ~2b11b08!b092b0~b191b0-!
D l 1O~ l 2!,

~6.25!

Ric5S b09/b0 0

0 b0b09
D 1S 2~b11b08!b09/b0

21~b191b0-!/b0 2b08b09

0 b1b091b0~b191b0-!
D l 1O~ l 2!,

~6.26!

Ric̃5F2
b09

b0
1

2b1b091b08b0922b0~b191b0-!

2b0
2

l 1O~ l 2!Gg0 , ~6.27!

whereg0ªdiag(1,b0
2). For the curvature scalar we obtain

R̂52
2b09

b0
1

2b1b091b08b0922b0~b191b0-!

b0
2

l 1O~ l 2!. ~6.28!

Example: In ordinary continuum differential geometry, the standard geometry of the
sphere is obtained withb(q)5sinq. With this choice, we get

R̂521 l cotq1O~ l 2! ~6.29!

in the discrete framework and in the limitl→0 we recover the continuum resultR̂52. To first
order, there is a dependence of the curvature scalar onq. With the refined choiceb(q,l )
5@11q l /41O( l 2)# sinq, we get

R̂521O~ l 2!. ~6.30!

j

Our discrete version of curvature describesfinite distances on a space in contrast to infinite
mal distances as expressed by tangent vectors in continuum differential geometry. This mea
the metric components in the case under consideration have to be expected to depend
discretization~which should be regarded as a discretization of a chart!, i.e., onl in the case under
consideration. We still have to understand how, for example, spherical symmetry can be f
lated in our framework. Then, we should be able to determine a spherically symmetric me
a suitable discrete counterpart of the Riemannian metric of the~continuum! sphere. Furthermore
it remains to be seen how this is related to the metric with constant curvature scalar, approx
in the above example.

VII. CONCLUSIONS

Within a framework of noncommutative geometry, we have presented a formalism of dis
Riemannian geometry which is very much analogous to continuum Riemannian geometry.

Whereas the general formalism of noncommutative geometry suggests to consider a~gener-
alized! metric tensor as an element ofV1

^A V1, in this paper it was taken to be an element
V1

^ LV1 since a simple geometric meaning can be assigned to its components~with respect to the
canonical basisei j of V1; cf. Sec. III!.33
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The compatibility condition“g50 for a metric and a linear connection on a finite set, wh
expressed in terms of parallel transport matrices, leads to relations~cf. Sec. III E! which are in
complete accordance with what one should expect on the basis of a reformulation of
compatibility in terms of parallel transport in~continuum! differential geometry.

An important role in ordinary differential geometry and especially in General Relativit
played by the Ricci tensor and the curvature scalar. There is no generalization of these ten
the general framework of noncommutative geometry. In the case of a discrete set, we con
this problem in some detail in Sec. IV and showed that, with certain restrictions on the differ
calculus~and thus the links between the points of the set!, satisfactory candidates for discre
counterparts of the continuum Ricci tensor and curvature scalar do exist. The examples tre
Secs. IV–VI demonstrate how our definitions work. It should be quite evident by now that ge
definitions can hardly be expected since in noncommutative geometry, and already with a
mutative algebraA, we are dealing with a huge variety of structures of which only few should
expected to be close~in some sense! to continuum differential geometry.

In the last two sections we have developed discrete differential geometry on a hype
lattice. Since we were able to construct a Ricci tensor and a curvature scalar in this case, d
counterparts of the~vacuum! Einstein equations are obtained. The results of the last sec
suggest to choose the following version:

Ric̃mn2 1
2R̃gmn50. ~7.1!

On the left hand side we have tensor components in the sense that they transform cova
under a change of module basis in the space of 1-forms. It is straightforward to include m
fields in this scheme. The ‘‘discrete gravity’’ theory which we propose here is very different
earlier approaches which were either based on Regge calculus,28 other simplicial complex
structures,34 or on a certain reformulation of gravity as a gauge theory.35 The correspondence
between first order differential calculi on discrete sets and digraphs relates our formalism
spin network approach to~quantum! gravity ~see Ref. 36, in particular!, at least on a basic leve
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Contractions of Lie algebras and separation of variables.
The n -dimensional sphere
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Inönü–Wigner contractions from the rotation groupO(n11) to the Euclidean
group E(n) are used to relate the separation of variables in Laplace–Beltrami
operators onn-dimensional spheres and Euclidean spaces, respectively. In this
article we consider all subgroup type coordinates corresponding to different chains
of subgroups ofO(n11) andE(n), respectively. In particular, the contractions
relate the graphical formalism of ‘‘trees’’ on spheres to the ‘‘clusters’’ on Euclid-
ean spaces~introduced in this article!. The contractions are considered analytically
on several levels: the vector fields realizing the Lie algebras, the complete sets of
commuting operators characterizing separable coordinate systems, the coordinate
systems themselves and the separated eigenfunctions. ©1999 American Institute
of Physics.@S0022-2488~99!04102-X#

I. INTRODUCTION

Our purpose in this article is to use Lie algebra contractions to relate the separati
variables in Helmholtz equations onn-dimensional spheresSn and on the Euclidean spacesEn .
An earlier article1 was devoted to the casen52. It was shown that spherical coordinates onS2 can
be contracted either to polar or Cartesian ones onE2 . Elliptic coordinates onS2 were contracted
to elliptic, parabolic and Cartesian ones onE2 .

The more complicated case of contractions from a two-dimensional Lorentzian hyperb
H2 to E2 has also been studied.2

Here we are interested in the case ofSn for arbitraryn, but will only consider the simples
types of coordinates, the so-called subgroup type coordinates.3–8 For Sn these are polyspherica
coordinates introduced by Vilenkin9,10 and described by the ‘‘method of trees.’’9–13 Trees, or
‘‘clusters’’ can, of course, also be introduced to describe subgroup type coordinates inEn , and we
shall show how ‘‘trees’’ onSn are related to ‘‘clusters’’ onEn via the group contractionO(n
11)→E(n).

At least two definitions of Lie algebra contractions exist in the literature. The original Ino¨nü–
Wigner contractions14–16 can be viewed as singular changes of bases. The more recent ‘‘g
contractions’’17–23 are obtained as deformations of the original Lie algebra via modification
the commutation relations, preserving a given grading of the Lie algebra. In many cases,
not all, the two concepts are equivalent.23 In particular, the contractions considered in this arti
are simultaneously Ino¨nü–Wigner andZ2-graded ones.

Our main tool for dealing with contractions is the concept of ‘‘analytic contractions,’’ alre
introduced in Ref. 1. The generators of the original Lie algebra, in our caseo(n11), are written
as differential operators, involving the contraction parameters, in our case the radiusR of the
sphere. The parametrization must be such that in the contraction limit, in which theo(n11)

a!Electronic mail: WINTERN@CRM.UMONTREAL.CA
15490022-2488/99/40(3)/1549/25/$15.00 © 1999 American Institute of Physics
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algebra contracts to thee(n) one, the generators themselves as differential operators, contrac
generators ofe(n).

As a motivation for this study we mention, first of all, the theory of special functions. Ind
contractions relate two different groups and their homogeneous spaces. They relate se
coordinates in these two spaces, the separated equations and their solutions. The contract
thus, in particular, provide asymptotic formulas and other relations between special functio

Other applications concern the relations between integrable systems in different spa
particular, on spheresSn and Euclidean spacesEn . Indeed, each separable system can be exten
by adding a potential that allows separation. The corresponding Hamiltonian systems w
integrable both onSn andEn , since they will also haven integrals of motion in involution. Again,
the contractions relate theSn andEn integrable systems and their solutions.

In Sec. II we review some known results on the method of trees forSn .9–13 We introduce
O(n) subgroup diagrams and relate them to the tree diagrams. Section III is devoted
separation of variables in Euclidean spacesEn . We introduceE(n) subgroup diagrams,En ‘‘clus-
ter’’ diagrams, and relate the two. Beltrami coordinates are used in Sec. IV to introduce the
of the sphere into the expressions for the elements of theo(n11) Lie algebras. This provides th
tools for an analytical realization of the Lie algebra contractiono(n11)→e(n). The contraction
of the coordinate systems and the complete sets of commuting operators is presented in
Finally, the asymptotic formulas representing contractions of the solutions of the Lap
Beltrami equation onSn to those of the Helmholtz equation onEn are presented in Sec. VI.

II. SUBGROUP TYPE COORDINATES AND THE METHOD OF TREES

A. Subgroups of Lie groups and separable coordinates

We shall make use of an algebraic approach to separating variables in Helmholtz~and
Hamilton–Jacobi! equations in Riemannian and pseudo-Riemannian spaces that are homog
spaces for some Lie groupG.3–8

The equation that we are interested in can be written as

DLBC5EC, DLB5
1

Ag

]

]j i Aggi j
]

]j j , g5udetgi j u, ~2.1!

where gi j is the metric tensor written in the considered coordinatesj i . The spaceM can be
identified with some factor spaceM;G/G0 , whereG0 is the isotropy group of the origin.

The separated solutions of Eq.~2.1! are simultaneous eigenfunctions of some complete se
n commuting operatorsYa ~including the Laplace–Beltrami operator!. We thus have

YaC5laC, C5)
i 51

n

C i~z i ;l1 ,l2 ,...,ln!. ~2.2!

The operatorsYa are second order operators in the enveloping algebra of the Lie algeb
the isometry groupG. Thus we have a Lie algebraL with basisL;$X1 ,...,XN% and put

Ya5Aik
a XiXk , @Ya ,Yb#50, Aik

a 5Aki
a ; a51,2,...,n. ~2.3!

The commuting sets of operators$Y1 ,...,Yn% can be classified into conjugacy classes un
the action of the groupG. Mutually conjugate sets provide equivalent systems of coordina
transformed amongst each other by the groupG.

A classification of the sets$Ya% provides a classification of coordinate systems. The esse
properties of the coordinate systems are related to properties of the operatorsYa . In particular,
ignorable coordinates24 j j ~i.e., coordinates that do not figure in the metric tensorgik) are asso-
ciated with operatorsYj that are squares of elements of the Lie algebra,
                                                                                                                



r

f

r
ain
ally

ist.

sub-

p type
or
type
tro-

rams
he

1551J. Math. Phys., Vol. 40, No. 3, March 1999 Izmest’ev et al.

                    
Yj5H (
k51

N

ajkXkJ 2

5
]2

]a j
2 . ~2.4!

Hence, maximal Abelian subalgebras25–31of the algebraL will provide maximal sets of ignorable
variables.

Particularly simple coordinate systems are obtained if all operatorsYa in a given set are eithe
squares of elements in the Lie algebraL, as in Eq.~2.4!, or Casimir operators of subalgebras ofL.
Such coordinate systems have been calledsubgroup type coordinates.6 Thus, consider a chain o
subalgebras,

L.L1.L2.¯.LM , ~2.5!

such that each subalgebraL j has at least one second order Casimir operator~second order operato
in the center of the enveloping algebra ofL j ). Subgroup type coordinates are obtained if the ch
of subalgebras providesn linearly independent second order operators. They will automatic
commute amongst each other.

In this article we restrict our attention to subgroup type coordinates on spheresSn and Eu-
clidean spacesEn . We mention that onS2 precisely two types of separable coordinates ex
Spherical coordinates are subgroup type, the subgroup chain beingO(3).O(2). Elliptic coordi-
nates are not of the subgroup type. OnS3 , six separable coordinate systems exist,6,32,33 two of
them of the subgroup type, corresponding to the chainO(4).O(3).O(2) and O(4).O(2)
^ O(2), respectively. ForE3 , three out of eleven separable coordinate systems are of the
group type: Cartesian, cylindrical and spherical.

A graphical method, called the ‘‘method of trees,’’ has been developed to treat subgrou
coordinates on real and complex spheres.9–13 We will reproduce some of the relevant results f
real spheresSn in the following subsection, and then extend them to analyze subgroup
coordinates onEn . Moreover, we will connect the tree diagrams with subgroup diagrams, in
duced below.

B. Subgroup type coordinates on Sn and the method of trees

Let us consider the Lie algebrao(n11) and use the standard basis of operators onSn :

Lik5~ui]k2uk] i !;

@Li j ,Lrs#52gjsLir 2gir L js1gjr Lis1gisL jr , 0< i ,k, j ,r ,s<n. ~2.6!

Let us now consider the defining representation ofo(n11) by matrices

XPR ~n11!~n11!, XT1X50, ~2.7!

acting on the spaceR (n11). Maximal reducibly imbedded subalgebras ofo(n11) will leave
some vector subspace ofR n invariant. All subalgebras of this type have the form

o~n11!.o~n1! % o~n2!, n11n25n11, n1>n2>2, or o~n11!.o~n!. ~2.8!

Maximal irreducibly imbedded subalgebras also exist, e.g.,u(n),o(2n) or g2,o(7), but they
will not be needed here.

Chains of mutually maximally imbedded subalgebras are obtained by further splittingo(n1)
ando(n2) into pairs of algebras, until we end the chain with one-dimensional subalgebraso(2)
@we drop all theo(1);$0% algebras#. We shall describe subalgebra chains by subalgebra diag
~or equivalently subgroup diagrams!. EachO(k) subgroup is represented by a circle with t
corresponding numberk in it. All subgroup diagrams of this type are shown in Fig. 1 forn<5.
Their recursive character is obvious: different subgroup diagrams for a givenO(n) correspond to
different flags of invariant subspaces ofR.
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The subgroup diagrams are closely related to the tree diagrams of Vilenkin,9,10 describing
polyspherical coordinates onSn . In Fig. 1 we associate a tree diagram with each subgr
diagram for 2<n<5. Families of different, but topologically equivalent, trees are associated
the same subgroup diagram. They are obtained either by permuting the end points, corresp
to the coordinates, or, equivalently, by rotating branches around branching points on the tr
different trees, including equivalent ones, are shown forS2 , S3 , S4 in Fig. 2.

The tree diagrams are best described in the original article9 and the book.13 Together with the
subgroup diagrams described above, they provide a tool for writing coordinates onSn , complete
sets of commuting operators and their eigenvalues and separated solutions of the He
equation.

Let us recall some basic facts here, using the example of a specific tree, namely that in
for S7 . In Fig. 3~a! we give the correspondingO(8) subgroup diagram. The actualS7 tree is in
Fig. 3~b!. Figures 3~c! and 3~d! refer to theE(7) group andE7 space~after contraction! and will
be used below.

Each end point on the tree of Fig. 3~b! corresponds to a Cartesian coordinate in the amb

FIG. 1. Subgroup and tree diagrams forSn .
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FIG. 2. Equivalent tree diagrams corresponding to one subgroup diagram forSn .
                                                                                                                



e

m the

h

1554 J. Math. Phys., Vol. 40, No. 3, March 1999 Izmest’ev et al.

                    
spaceR 8. At each branching point we introduce an angleu i . We move along the tree from th
ground upwards to a specific coordinateui . At each branching point we write cosua if we go to
the left, sinua if we go to the right. The polyspherical coordinates corresponding to Fig. 3~b! hence
are

u05R cosu1 cosu2 cosu3 , u45R sinu1 cosu5 cosu6 cosu7 ,

u15R cosu1 cosu2 sinu3 , u55R sinu1 cosu5 cosu6 ,sinu7 ,

u25R cosu1 sinu2 cosu4 , u65R sinu1 cosu5 sinu6 ,

u35R cosu1 sinu2 sinu4 , u75R sinu1 sinu5 .

~2.9!

The complete set of 7 commuting operators is also read off from the tree diagram, or fro
subgroup one. We have

Y35L01
2 , Y45L23

2 , Y75L45
2 , Y65L45

2 1L56
2 1L46

2 ,
~2.10!

Y25 (
0< i ,k<3

Lik
2 , Y55 (

4< i ,k<7
Lik

2 , Y15 (
0< i ,k<7

Lik
2 .

We see thatY3 , Y4 andY7 are Casimir operators ofo(2) algebras,Y6 of ano(3) one,Y2 andY5

correspond too(4) algebras andY1 is the originalo(8) Casimir operator. More generally, eac
circle in the subgroup chain provides the Casimir operator of the correspondingo(k) to the set
$Ya%.

FIG. 3. Examples: AnO(8) subgroup diagram~3a! and the correspondingS7 tree diagram~3b!. An E(7) subgroup
diagram~3c! and the correspondingE7 cluster diagram.
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To each branching point on the tree diagram, or each circle on the subgroup diagram, w
associate a quantum numberl j @see Fig. 3~b! for a specific case#. It will determine the eigenvalue
l of the correspondingo(k) invariant operator according to the formula

YjC5DLBC52 l j~ l j1k22!C, ~2.11!

wherek is the dimension of the ambient space above the corresponding vertex on the tre@the
samek as inO(k)]. The numbersl j are non-negative integers, labeling irreducible representat
of O(k) for k>3. Fork52, i.e., the groupO(2), wehavel j50,61,62, . . . .

C. The separated eigenfunctions for Sn

To specify the separated wave function,

C5Pk51
n Ck~uk!, ~2.12!

on Sn , we follow Refs. 9–13 and introduce four types of vertices, or ‘‘cells’’ on a tree,
illustrated in Fig. 4. The first row, diagrams 1a,...,1c, contains elementarySn cells. The second
row, 2a,...,2c containsEn cells, obtained after a contraction, and will be discussed below in
VI A. The dashed lines in row 1 will also be explained below. A circle on diagrams 1a,
denotes a ‘‘closed’’ end, i.e., one that leads to further branches. An open end~no circle! leads
directly to a coordinate. For example, in Fig. 3 anglesu3 , u4 andu7 correspond to cells of type
‘‘a,’’ u5 and u6 to cells of type ‘‘b8, ’’ and u1 , u2 to cells of type ‘‘c.’’ The angles in the
polyspheric coordinate systems satisfy

0<ua,2p, 0<ub<p, 2p/2<ub8<p/2, 0<uc<p/2. ~2.13!

The following numbers are associated with each cell:m, l , l b , l a are related to the separatio
constant corresponding to each vertex,Sa5number of vertices above vertexl a , Sb5number of
vertices above vertexl b . The numbersm, l , l b , l a are all integers, labeling representations of t
corresponding rotation subgroup in the chain, i.e., angular momentum type quantum numbe
have

D1c5n822, ~2.14!

wheren8 is the number of end pointsui connected to the vertexu j andc is the number of vertices
above and to the left of vertexub8 or uc .

FIG. 4. Elementary cells forSn ~diagrams 1a,...,1c! and their contractions toEn ones~diagrams 2a,...,2c!.
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Each vertex and each angleu i provides a ‘‘building block’’ C i(u i) for the wave function
C(u1 ,...,un) of Eq. ~2.12!. Specifically, we have the following.

~1! Cell of type a:

Cm~ua!5
1

A2p
eimua; m50,61,62,..., 0<ua,2p. ~2.15!

~2! Cell of type b:

Cn,lb
a ~ub!5Nn

a,a~sinub!
l bPn

~a,a!~cosub!,

n5 l 2 l b , a5 l b1
Sb

2
, n50,1,2,..., 0<ub<p, ~2.16!

wherePn
(a,b)(x) is a Jacobi polynomial.

~3! Cell of type b8:

Cn,la
b ~ub8!5Nn

b,b~cosub8!
l aPn

~b,b!~sinub8!;

n5 l 2 l a , b5 l a1
Sa

2
, n50,1,2,..., 2p/2<ub8<p/2. ~2.17!

~4! Cell of type c:

Cn,lb ,la
a,b ~uc!52~a1b!/211Nn

a,b~sinuc!
l b~cosuc!

l aPn
~a,b!~cos 2uc!;

n5
l 2 l a2 l b

2
, a5 l b1

Sb

2
, b5 l a1

Sa

2
, n50,1,2,..., 0<uc<p/2.

~2.18!

The normalization constants are

Nn
a,b5A~2n1a1b11!G~n1a1b11!n!

2a1b11G~n1a11!G~n1b11!
. ~2.19!

We mention that the wave functions~2.16! and ~2.17! can also be expressed in terms of Gege
bauer polynomials, using the formula34

Cn
l~x!5

G~2l1n!G~l11/2!

G~2l!G~l1n11/2!
Pn

~l21/2,l21/2!~x!. ~2.20!

III. SUBGROUP TYPE COORDINATES ON En AND CLUSTER DIAGRAMS

Let us now consider the Euclidean Lie algebrae(n), with a basis

Lik5xi]xk
2xk]xi

, pi5]xi
, i ,k51,2,...,n. ~3.1!

The commutation relations are, as in Eq.~2.6!, together with

@pj ,Lik#5d j i pk2d jkpi , @pi ,pk#50. ~3.2!

Subalgebra chains~2.5! will include Euclidean subalgebrase(k) and rotation subalgebraso(k). A
possible link in a subalgebra chain is
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e~n!.e~n1! % e~n2!, n11n25n, n1>n2>1. ~3.3!

The Casimir operator ofe(n) is

Dn5p1
21p2

21¯1pn
2 . ~3.4!

Hence, we haveDn5Dn1
1Dn2

in the chain and only one of the Euclidean subalgebras~3.3!
provides a new invariant operator, saye(n2). Alternatively, Dn1

and Dn2
can replaceDn . A

further possible link in a chain is

e~n!.o~n!, n>2, ~3.5!

whereo(n) will provide a new@with respect toe(n)] invariant operator.
As in the case of theO(n) group we will introduce diagrams for theE(n) group to illustrate

subgroup chains and subgroup type coordinate systems onEn Euclidean spaces. We shall us
rectangles~‘‘boxes’’ ! to denoteE(k) groups@or e(k) algebras# and circles to denoteO(k) groups
@or o(k) algebras#. As an example, we give all subgroup chains forE(n), 1<n<4 in Fig. 5.
Maximality requires that as we go from one level to a higher one, we obey the following ru

~1! From a rectangle representinge(n), we can go to two rectangles@see Eq.~3.3!#, repre-
sentinge(n1) % e(n2), with n11n25n, n1>n2>1, or to a circle@see Eq.~3.5!#, representing
o(n) ~the samen as in the rectangle!.

~2! From a circle representingo(n) we can go to two circles, representingo(n1) % o(n2),
n11n25n, n1>n2>2, or to one circle, representingo(n21), n>3.

Now let us consider subgroup type coordinates on the Euclidean spaceEn and introduce
diagrams to represent them. We shall call them ‘‘cluster diagrams’’ and they will consi
individual trees of theO(k) type with a tree ‘‘trunk’’ added, or isolated ‘‘trunks,’’ or of cluster
of trees with trunks and isolated trunks. TheEn cluster diagrams are simpler than theE(n)
subgroup diagrams, sinceE(k) subgroups that do not contribute new invariant operators will
omitted.

All clusters for En , 1<n<4, are also shown in Fig. 5. An isolated trunk corresponds t
Cartesian coordinate. A trunk with further branches above it corresponds to a radial coordr
satisfying 0<r ,`. The tree above the trunk is treated exactly as in the case of polysp
coordinates onSn spheres.

As an example let us consider the diagrams in Fig. 3~d!; the coordinates inE7 are

x15z, x45r 2 cosu5 cosu6 cosu7 ,

x25r 1 cosu4 , x55r 2 cosu5 cosu6 sinu7 ,

x35r 1 sinu4 , x65r 2 cosu5 sinu6 , x75r 2 sinu5 .

~3.6!

The prescriptions for writing the complete sets of commuting operators, eigenvalues and
functions are now quite simple.

To each tree trunk we associate anM -dimensional Laplace operator, whereM is the number
of end points~Cartesian coordinates! above the trunk. We also associate a numberkPR.0 with
each trunk. The corresponding radial eigenfunction@normalized to the delta function:d(k82k)] is

Ckl~r !5A k

r M22 Jl 1~M22!/2~kr !, M>2,

~3.7!

Ck~z!5
eikz

A2p
, M51.
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The angular part of the eigenfunctions is written following the rules forSn spheres, as are th
invariant operators and their eigenvalues.

For the example of Figs. 3~c!, 3~d!, the invariant operators are

Y15p1
2 , Y25p2

21p3
2 , Y35p4

21p5
21p6

21p7
2 , Y45L23

2 ,
~3.8!

Y55L45
2 , Y65L45

2 1L56
2 1L46

2 , Y75 (
4< i ,k<7

Lik
2 .

We note that the Laplace operator onE7 does not figure explicitly; it is equal to

D5(
i 51

7

pi
25Y11Y21Y3 . ~3.9!

FIG. 5. Subgroup chains forE(n) and cluster diagrams forEn .
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IV. CONTRACTIONS OF THE LIE ALGEBRA AND CASIMIR OPERATOR

Let us consider then-dimensional sphereSn :

u0
21 (

n51

n

un
25 (

m,n50

n

gmnumun5R2, R2.0, ~4.1!

FIG. 5. ~Continued.!
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whereum are Cartesian coordinates in the Euclidean ambient spaceEn11 and the metric tensor in
this case has the formgmn5diag(1,1,...,1). The isometry group isO(n11). We choose a stan
dard basisLm,n for the Lie algebrao(n11) as in Eq.~2.6!.

The Laplace–Beltrami operator onSn is

DLB5
1

R2 (
0<m,n<n

Lmn
2 . ~4.2!

We shall useR21 as the contraction parameter. To realize the contraction explicitly, le
introduce Beltrami coordinates on the sphereSn , putting

yi5R
ui

u0
5uiS 12

1

R2 (
k51

n

uk
2D 21/2

, i 51,2,3,. . . ,n. ~4.3!

The O(n11) generators then can be expressed as

L0i

R
[p i5pi1

yi

R2 (
k51

n

~ykpk!, ~4.4!

Lik[yipk2ykpi5yipk2ykp i ; i ,k51,2,...,n, ~4.5!

wherepi5]/]yi . The commutation relations now are

@Lik ,Lmn#5dkmLin1d inLkm2d imLkn2dknLim , ~4.6!

@p i ,Lk j#5d ikp j2d i j pk , @p i ,pk#5
Lik

R2 , ~4.7!

so that forR→` the o(n11) algebra contracts to the Euclideane(n) one. The Beltrami coordi-
natesyi ~4.3! contract to Cartesian coordinates onEn , and we have

yi→xi , p i→pi5
]

]xi
, ~4.8!

so that the rotation generatorsL0i go into the translationspi .
The o(n11) Laplace–Beltrami operator~2.1! contracts to thee(n) one:

DLB5(
i 51

n

p i
21 (

i ,k51

n Lik
2

2R2→D5p1
21p2

21¯1pn
2 . ~4.9!

V. CONTRACTION AND COORDINATE SYSTEMS. THE GRAPHICAL METHOD

A. General formulation

We have seen that all subgroup type coordinates on a sphereSn can be characterized by tre
diagrams. Similarly, there is a one-to-one correspondence between subgroup type coordina
Euclidean spaceEn and the cluster diagrams of Sec. IV.

We shall now introduce agraphical methodfor connecting the subgroup type coordina
systems onSn andEn and give the rules relating the coordinates, invariant operators, eigenv
and basis functions. The relations are asymptotic ones for the radius of the sphere satisfR
→` and one, or more, of the anglesu i satisfyingu i→0.

A generalSn tree diagram can be represented by Fig. 6~a!. One principal branch of the tre
goes from the ground to the point representing the coordinateu0 . The branches growing from thi
one can lead directly to a coordinateui , or they can branch further and lead to sets of coordina
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e.g.,$ul 11 ,ul 12 ,...,ul 1k%. Graphically the contractionR→` corresponds to the fact that we c
off the ground tou0 branch by the dashed line in Fig. 6~a!. The dashed line then becomes t
ground for the corresponding clusterEn diagram of Fig. 6~b! and the ambient space coordinat
(u0 ,u1 ,...,un) for Sn are replaced by the Cartesian coordinates (x1 ,x2 ,...,xn). The angles
u1 ,u2 ,...,u j that lead to branches cut-off by the dotted line satisfyu i→0 in the contraction and
are replaced by radial coordinatesr i , or Cartesian coordinatesxm ~if the surviving branch leads
directly to a single coordinate onSn andEn). We have

R→`, u i→0, R tanu i;R sinu i;Ru i→r i . ~5.1!

The individual trees in anEn cluster correspond toO(k) subgroups ofO(n) that survive the
contraction.

All contractions of coordinate systems forS1 , S2 , andS3 are illustrated in Fig. 7. Let us run
through the individual cases.

B. Contractions from S1 to E1

In the case of a one-dimensional sphere, i.e., a circle, we have only one diagram, name
1 of Fig. 7. In the original ambient space we have polar coordinates

u05R cosu, u15R sinu, ~5.2!

with 0<u,2p. The Beltrami coordinate satisfies

y15R tanu→x, ~5.3!

wherex is a Cartesian coordinate onE1 .

C. Contractions from S2 to E2

In the case of the two-dimensional sphereS2 we have two tree configurations and two typ
of coordinate contractions to consider, namely, No. 2 and No. 3 of Fig. 7.

FIG. 6. Contractions of tree diagrams into cluster ones forSn→En .
                                                                                                                



its

1562 J. Math. Phys., Vol. 40, No. 3, March 1999 Izmest’ev et al.

                    
For diagramNo. 2 we have

u05R cosu1 , u15R sinu1 cosu2 , u25R sinu1 sinu2 , ~5.4!

where 0<u1,p, 0<u2,2p. Introducing Beltrami coordinates and taking the appropriate lim
R→`, u1;r /R, we have

FIG. 7. Contractions of tree diagrams onSn into cluster ones onEn for 1<n<4.
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FIG. 7. ~Continued.!
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y15R tanu1 cosu2→x15r cosu2 , y25R tanu1 sinu2→x25r sinu2 . ~5.5!

The subgroup chainO(3).O(2) contracts to the Euclidean one:E(2).O(2); the O(2)
invariant and its eigenvaluesm survive the contractionL12

2 →L12
2 , m→m.

For diagramNo. 3 in Fig. 7 we have

u05R cosu1 cosu2 , u15R cosu1 sinu2 , u25R sinu1 , ~5.6!

FIG. 7. ~Continued.!
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and the Beltrami coordinates satisfy (R→`, u1;x1 /R, u2;x2 /R)

y15R tanu2→x1 , y25R
tanu1

cosu2
→x2 . ~5.7!

The subgroup chainO(3).O(2) contracts toE(2).E(1)^ E(1) and theO(2) subgroup invari-
ant undergoes a contraction,

Y1

R2 5
L01

2

R2 5p1
2→p1

2 . ~5.8!

D. Contractions from S3 to E3

Five types ofO(4) tree diagrams exist, but only four of them give different contractions
The diagramsNo. 4 and 48 on Fig. 7 correspond to spherical coordinates onS3 going into

spherical coordinates onE3 . For No. 4 the polyspherical coordinates are

FIG. 7. ~Continued.!
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u05R cosu1 , u15R sinu1 cosu2 ,
~5.9!

u25R sinu1 sinu2 cosu3 , u35R sinu1 sinu2 sinu3 .

The Beltrami coordinates satisfy (R→`, u1;r /R)

y15R tanu1 cosu2→x15r cosu2 ,

y25R tanu1 sinu2 cosu3→x25r sinu2 cosu3 , ~5.10!

y35R tanu1 sinu2 sinu3→x35r sinu2 sinu3 .

We haveO(4).O(3).O(2)→E(3).O(3).O(2) so that theO(3).O(2) subgroups and
their invariants survive:

Y15L25L12
2 1L13

2 1L23
2 →L2, Y25L23

2 →L23
2 . ~5.11!

The situation for diagram No. 48 is quite analogous.
The case No. 5 in Fig. 7 corresponds to spherical coordinates contracting to cylindrical

We have

u05R cosu1 cosu2 , u15R cosu1 sinu2 cosu3 ,
~5.12!

u25R cosu1 sinu2 sinu3 , u35R sinu1 .

For Beltrami coordinates (R→`, u2;r /R, u1;x3 /R) we obtain

y15R tanu2 cosu3→x15r cosu3 ,

y25R tanu2 sinu3→x25r sinu3 , ~5.13!

y35R
tanu1

cosu2
→x35z.

The subgroup chain contraction isO(4).O(3).O(2)→E(3).E(2)^ E(1).O(2) and the
subgroup invariants contract as

Y1

R2 5
1

R2 ~L01
2 1L02

2 1L12
2 !5p1

21p2
21

L12
2

R2→p1
21p2

2 , Y25L12
2 →L12

2 . ~5.14!

The diagram No. 6 in Fig. 7 corresponds to the contraction of spherical coordinates to
tesian ones. We have

u05R cosu1 cosu2 cosu3 , u15R cosu1 cosu2 sinu3 ,
~5.15!

u25R cosu1 sinu2 , u35R sinu1 .

For Beltrami coordinates after the contractionR→`, u3;x1 /R, u2;x2 /R, u1;x3 /R, we have

y15R tanu3→x1 , y25R
tanu2

cosu3
→x2 , y35R

tanu1

cosu2 cosu3
→x3 . ~5.16!

The subgroup chain undergoes the contractionO(4).O(3).O(2)→E(3).E(1)^ E(1)
^ E(1) and the subgroup invariants satisfy
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Y1

R2 5
1

R2 ~L01
2 1L02

2 1L12
2 !5p1

21p2
25

L12
2

R2→p1
21p2

2 ,
Y2

R2 5
L01

2

R2 5p1
2→p1

2 . ~5.17!

Finally the diagram No. 7 of Fig. 7 corresponds to polyspherical~or cylindrical! coordinates
on S3 contracting to cylindrical ones onE3 . We have

u05R cosu1 cosu2 , u15R cosu1 sinu2 ,
~5.18!

u25R sinu1 cosu3 , u35R sinu1 sinu3 .

For the Beltrami coordinates after the contractionR→`, u2;x1 /R, u1;r /R, we obtain

y15R tanu2→x1 ,

y25R tanu1

cosu3

cosu2
→x25r cosu3 , ~5.19!

y35R tanu1

sinu3

cosu2
→x35r sinu3 .

The subgroup chain satisfiesO(4).O(2)% O(2)→E(3).E(2)% E(1).O(2) so that for the
subgroup invariants we have

Y1

R2 5
L01

2

R2 5p1
2→p1

2 , Y25L23
2 →L23

2 . ~5.20!

VI. CONTRACTIONS OF BASIS FUNCTIONS

A. Contractions of functions corresponding to elementary cells

When we cut off the branches of a tree as in Fig. 6, the cutting line intersects an elem
cell ~see Fig. 4! at each branch. Each elementaryO(n11) cell then goes into an elementary trun
for E(n), as indicated by the lower row of diagrams in Fig. 4.

Let us now discuss the four cases in Fig. 4. The limiting procedure is always the s
namely,

u j;
r j

R
, l j;kR, R→`, j 5a,b,b8,c, ~6.1!

wherer j is the radius of the sphere that survives the contraction, i.e., corresponds to the cir
the right hand side of theO(n11) cell and on top of theE(n) trunk. Thus, forj 5a andj 5b8 we
haver j5x, a Cartesian coordinate. Similarly, we havel a5mPZ and alsol b5mPZ.

Let us now run through the individual cells in Fig. 4.

1. Cell 1a to 2a

Using Eqs.~2.15! and ~6.1! we have (R→`,m;kR,u;x/R)

lim
R→`

1

A2p
eimua5

1

A2p
eikx. ~6.2!

2. Cell 1b to 2b

The contribution to the separatedO(n11) basis function is given in Eq.~2.16!. Using the
formula for Jacobi polynomials in terms of the hypergeometric functions,34 we have
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Nl 2 l b

l b1Sb/2,l b1Sb/2
~sinub!

l bPl 2 l b

~ l b1Sb/2,l b1Sb/2!
~cosub!

5A~2l 1Sb11!~ l 1 l b1Sb!!

2~ l 2 l b!!

•

~sinub!
l b

2l b1Sb/2G~ l b1Sb/211! 2F1S 2 l 1 l b ,l 1 l b1Sb11;l b1
Sb

2
11;sin2

ub

2 D . ~6.3!

Now, using the asymptotic formulas for the hypergeometric andG functions (l;kR, ub;r /R),

lim
R→`

2F1S 2 l 1 l b ,l 1 l b1Sb11;l b1
Sb

2
11;sin2

ub

2 D50F1S l b1
Sb

2
11;2

k2r 2

4 D , ~6.4!

lim
uzu→`

G~z1a!

G~z1b!
5za2bS 11

1

2z
~a2b!~a1b21!1O~z22! D , ~6.5!

and the formula for the Bessel function,

Jn~z!5S z

2D n 1

G~n11! 0F1S n11;2
z2

4 D , ~6.6!

we obtain

lim
R→`

1

ARSb11
Nl 2 l b

l b1Sb/2,l b1Sb/2
~sinub!

l bPl 2 l b

~ l b1Sb/2,l b1Sb/2!
~cosub!5A k

r Sb
Jl b1Sb/2~kr !. ~6.7!

3. Cell 1b 8 to 2b 8

The contribution of this cell to theO(n11) separated basis function is given in Eq.~2.17!. In
order to take the contraction limit~6.1! we express the Jacobi polynomials in terms of hyperg
metric functions:34

Pn
~a,a!~x!5

22a

Ap

G~n1a11!

G~n12a11!

3H ~21!n/2
G~@n11#/21a!

G~n/211! 2F1S 2
n

2
,
n11

2
1a;

1

2
;x2D , n even,

~21!~n21!/2
G~n/21a11!

G~@n11#/2!
2x2F1S 2

n21

2
,
n12

2
1a;

3

2
;x2D , n odd.

~6.8!

In the limit R→` andub8;xn /R,l;kR,l a;pR, we have

lim
R→`

~21!~ l 2 l a!/2Nl 2 l a

l a1Sa/2,l a1Sa/2
~cosub8!

l aPl 2 l a

~ l a1Sa/2,l a1Sa/2!
~sinub8!

5A 2k

pkn
3H 0F1S 1

2
;

2kn
2xn

2

4 D ,

2 i ~knxn!0F1S 3

2
;

2kn
2xn

2

4 D ,

~6.9!
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wherek25p21kn
2 . The 0F1(x) hypergeometric functions in this case are expressible in term

sinknxn and cosknxn functions,34

0F1S 1

2
;

2kn
2xn

2

4 D 5cosknxn , 0F1S 3

2
;

2kn
2xn

2

4 D 5sinknxn , ~6.10!

and we finally have

lim
R→`

~21!~ l 2 l a!/2Nl 2 l a

l a1Sa/2,l a1Sa/2
~cosub8!

l aPl 2 l a

~ l a1Sa/2,l a1Sa/2!
~sinub8!5A 2k

pkn
H cos~knxn!

2 i sin~knxn!J .

~6.11!

4. Cell 1c to 2c

The relevant basis function is given in Eq.~2.18!. To take the limit~6.1!, l;kR, l a;kaR and
u;r /R, we use the equation expressing Jacobi polynomials in terms of hypergeometric func
and take the limit leading to Bessel functions:

lim
R→`

G~@ l 2 l a2 l b#/211!

G~@ l 2 l a1 l b1Sb#/211!
P

~ l 2 l a2 l b!/2
~ l b1Sb/2,l a1Sa/2!

~cos 2uc!

5 lim
R→`

1

G~ l b1Sb/211!2F1S 2
l 2 l a2 l b

2
,
l 1 l a1 l b1Sa1Sb

2
11;l b1

Sb

2
11;sin2 ucD

5
1

G~ l b1Sb/211! 0F1S l b1
Sb

2
11;2

kb
2r 2

4 D 5S 2

kbr D
l b1Sb/2

Jl b1Sb/2~kbr !, ~6.12!

whereka
21kb

25k2. The final result is

lim
R→`

2~ l a1Sa/21 l b1Sb/2!/211

ARSb11
N

~ l 2 l a2 l b!/2
l b1Sb/2,l a1Sa/2

~sinuc!
l b~cosuc!

l aP
~ l 2 l a2 l b!/2
~ l b1Sb/2,l a1Sa/2!

~cos 2uc!

5A2k

r Sb
Jl b1Sb/2~kbr !. ~6.13!

These contractions for basis functions of the elementary cells~1a,...,1c! determine the genera
contractions for hyperspherical functions corresponding to any tree for the sphereSn .

B. Examples

The contraction formulas for basis functions ofO(3) were given in Ref. 1. Here we apply th
general rules to give all differentS3 andS4 contraction diagrams in Fig. 7.

1. The S3 sphere

~1! Polyspherical to spherical coordinates@see Figs. 7~4!–7~48!# (R→`, J;kR),

lim
R→`

1

R
CJlm~u1 ,u2 ,u3!5Ak

r
Jl 11/2~kr !Ylm~u2 ,u3!, ~6.14!

whereYlm(u2 ,u3) is a spherical function onS2 .
~2! Polyspherical to cylindrical coordinates@see Fig. 7~5!# (R→`, J;kR, l;k3 /R),

lim
R→`

~21!~J2 l !/2

AR
CJlm~u1 ,u2 ,u3!5A kp

pk3
Jumu~pr !

eimu3

A2p
H cosk3z

2 i sink3zJ , ~6.15!
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wherek25k3
21p2.

~3! Polyspherical to Cartesian coordinates@see Fig. 7~6!# (R→`, J;k1R, l;k2 /R, m
;k3R)

lim
R→`

~21!~J2m!/2CJlm~u1 ,u2 ,u3!5A 2

pk1k3

eik1x

p H cosk2y cosk3z
2 i sink2y cosk3z
2 i cosk2y sink3z
2sink2y sink3z

J , ~6.16!

wherek25k1
21k2

21k3
2.

~4! Polyspherical~cylindrical! to cylindrical coordinates@see Fig. 7~7!# (R→`, J;kR, m
;k3R)

lim
R→`

1

AR
CJm1m2

~u1 ,u2 ,u3!5Ak

p
Jum2u~pr !eik3z

eim2u3

A2p
, ~6.17!

wherek25k3
21p2.

2. The S4 sphere

~1! Polyspherical to polyspherical coordinates@see Figs. 7~8!–7~8-!# (R→`, J;kR),

lim
R→`

1

AR3
CJl1l 2m~u1 ,u2 ,u3 ,u4!5

Ak

r
Jl 111~kr !C l 1l 2m~u2 ,u3 ,u4!, ~6.18!

whereC l 1l 2m(u2 ,u3 ,u4) is a hyperspherical function onS3 .
~2! Polyspherical to cylindrical coordinates@see Fig. 7~9!# (R→`, J;kR),

lim
R→`

1

AR3
CJlm1m2

~u1 ,u2 ,u3 ,u4!5
Ak

r
Jl 11~kr !C lm1m2

~u2 ,u3 ,u4!, ~6.19!

whereC lm1m2
(u2 ,u3 ,u4) is a hyperspherical function onS3 .

~3! Polyspherical to four-dimensional cylindrical coordinates in Fig. 7~10! @see also Fig.
7~108!# (R→`, J;kR, m1;k1R),

lim
R→`

1

R
CJlm1m2

~u1 ,u2 ,u3 ,u4!5A k

pr
eik1x1Jl 11/2~pr !Ylm2

~p/22u3 ,u4!, ~6.20!

whereYlm2
(p/22u3 ,u4) is a spherical function onS2 andk25k1

21p2.
~4! Polyspherical to four-dimensional cylindrical coordinates in Fig. 7~11! @see also Fig.

7~118!# (R→`, J;kR, l;k4R),

lim
R→`

~21!~J2 l 1!/2

R
CJl1l 2m~u1 ,u2 ,u3 ,u4!5A 2pk

pk4r
Jl 211/2~pr !Yl 2m~u3 ,u4!H cos~k4x4!

2 i sin~k4x4!J ,

~6.21!

whereYl 2m(u3 ,u4) is a spherical function onS2 andk25k4
21p2.

~5! Polyspherical to bipolar coordinates in Fig. 7~12! (R→`, J;kR, l;k1R),

lim
R→`

1

R
CJlm1m2

~u1 ,u2 ,u3 ,u4!5
A2kk1

2p
Jm1

~k1r 1!Jm2
~k2r 2!eim1u31 im2u4, ~6.22!
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wherek1
21k2

25k2.
~6! Polyspherical to double cylindrical coordinates in Fig. 7~13! @see also Fig. 7~138!# (R

→`, J;kR, l;k1R, m;k2R),

lim
R→`

~21!~ l 2m1!/2

AR
CJlm1m2

~u1 ,u2 ,u3 ,u4!5AkAk1
21k2

2

p3k2
eik1x1H cos~k2x2!

2 i sin~k2x2!J Jum2u~k3r !
eim2u4

A2p
,

~6.23!

wherek1
21k2

21k3
25k2.

~7! Polyspherical to double cylindrical coordinates in Fig. 7~14! (R→`, J;kR, l 1;k3R,
l 2;k1R),

lim
R→`

~21!~J2 l 2!/2

AR
CJl1l 2m~u1 ,u2 ,u3 ,u4!

5A2k1kAk1
21k2

2

p3k2k3
Jumu~k1r !eim2u4H cosk3x3 cosk4x4

2 i sink3x3 cosk4x4

2 i cosk3x3 sink4x4

2sink3x3 sink4x4

J , ~6.24!

wherek1
21k2

21k3
25k2.

~8! Polyspherical to Cartesian coordinates in Fig. 7~15! (R→`, J;kR, m;k1R, l 2;k2R,
l 1;k3R),

lim
R→`

~21!~J2m!/2CJl1l 2m~u1 ,u2 ,u3 ,u4!

5A8kAk1
21k2

2Ak1
21k2

21k3
2

p4k2k3k4
eik1x1

35
cosk2x2 cosk3x3 cosk4x4 ; 2 i sink2x2 cosk3x3 cosk4x4 ;

2 i cosk2x2 sink3x3 cosk4x4 ; 2sink2x2 sink3x3 cosk4x4 ;

2 i cosk2x2 cosk3x3 sink4x4 ; 2sink2x2 cosk3x3 sink4x4 ;

2cosk2x2 sink3x3 sink4x4 ; 2 i sink2x2 sink3x3 sink4x4 ;
6 , ~6.25!

wherek1
21k2

21k3
21k4

25k2.
As a final example, let us consider the contractionO(8)→E(7) for the coordinate systems o

Fig. 3. The contraction of theO(8) basis to theE(7) one in this case is (R→`, l 1;kR, l 2

;k2R, l 3;k1R):

lim
R→`

1

R2 C l 1l 2l 3l 4l 5l 6l 7
~u1 ,u2 ,u3 ,u4 ,u5 ,u6 ,u7!

5
Ak2k3

2pr 2
Ju l 4u~k2r 1!Jl 511~k3r 2!eik1x1eil 4u4Yl 5l 6l 7

~u5 ,u6 ,u7!. ~6.26!

VII. CONCLUSION

In our previous paper1 we studied contractions of all~i.e., both! coordinate systems onS2 to
all ~four! coordinate systems onE2 . Here we have presented all possible contractions of subg
type coordinate systems onSn to subgroup type ones onEn for n arbitrary. Moreover, we have
developed a graphical formalism illustrating these contractions.
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Contractions of ellipsoidal and parabaloidal coordinate systems will relate more ‘‘exo
special functions amongst each other. For instance, Lame´ polynomials and their generalization
will go into Mathieu functions, parabolic cylinder functions, spheroidal functions, etc. Wor
this direction is in progress.
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Highest weight irreducible representations of the Lie
superalgebra gl „1z`…

T. D. Paleva),b) and N. I. Stoilovaa),c)

Abdus Salam International Centre for Theoretical Physics, 34100 Trieste, Italy

~Received 27 May 1998; accepted for publication 27 August 1998!

Two classes of irreducible highest weight modules of the general linear Lie supe-
ralgebragl(1u`) are constructed. Within each module a basis is introduced and the
transformation relations of the basis under the action of the algebra generators are
written down. © 1999 American Institute of Physics.@S0022-2488~99!04402-3#

I. INTRODUCTION

We construct two classes of irreducible representations of the infinite-dimensional ge
linear Lie superalgebragl(1u`). Both of them are classes of highest weight representati
corresponding to two different orderings of the basis in the Cartan subalgebra. Related to th
convenient to definegl(1u`) in two different, but certainly equivalent ways. We denote them
gl0(1u`) andgl(`u1u`) ~see the end of Sec. I for the notation that follows!.

Definition 1: The Lie superalgebra gl0(1u`) is a complex linear space with a bas
$ei j % i , j PN . TheZ2-grading on gl0(1u`) is defined from the requirement that e1 j , ej 1 , j 52,3,...
are odd generators, whereas all other generators are even. The multiplicatio
([the supercommutator) v, b on gl0(1u`) is a linear extension of the relations:

vei j ,eklb5d jkeil 2~21!deg~ei j !deg~ekl!d i l ek j , i , j ,k,l PN. ~1!

As a basis in the Cartan subalgebraH0 we choose$eii % i PN with a natural order between th
generators:eii ,ej j , if i , j . ThenE0

15$ei j % i , j PN ~respectively,E0
25$ei j % i . j PN! are the positive

~respectively, the negative! root vectors and$ei ,i 11% i PN are the simple root vectors.
Definition 2: The Lie superalgebra gl(`u1u`) is a complex linear space with a bas

$Ei j % i , j PZ . The Z2-grading on gl(`u1u`) is defined from the requirement that E0 j , Ej 0 , 0Þ j
PZ are odd generators, whereas all other generators are even. The supercommutator on
gl(`u1u`) is a linear extension of the relations:

vEi j ,Eklb5d jkEil 2~21!deg~Ei j !deg~Ekl!d i l Ek j , i , j ,k,l PZ. ~2!

As a basis in the Cartan subalgebraH we choose$Eii % i PZ with a natural order between th
generators:Eii ,Ej j , if i , j . E15$Ei j % i , j PZ ~respectively,E25$Ei j % i . j PZ! are the positive
~respectively, the negative! root vectors ingl(`u1u`) and$Ei ,i 11% i PZ are the simple root vectors

Both algebras are isomorphic. In order to see this letg: Z→N be a bijective map, defined a

g~z!52uzu1u~z!PN, ;zPZ. ~3!

Then it is easy to verify that the mapw, which is a linear extension of the relations

w~Ei j !5eg~ i !,g~ j ! , i , j PZ, ~4!

a!Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria.
b!Electronic mail: tpalev@inrne.bas.bg
c!Electronic mail: stoilova@inrne.bas.bg
15740022-2488/99/40(3)/1574/21/$15.00 © 1999 American Institute of Physics
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is an isomorphism ofgl(`u1u`) on gl0(1u`). Therefore bothgl0(1u`) andgl(`u1u`) are two
different realizations of one and the same algebra, namelygl(1u`). Note thatw is a map ofH
ontoH0 ; it is not however a map ofE1 into E0

1 . For instance takeE21,0PE1. Thenw(E21,0)
5e21PE0

2 . Hence a highest weight representation ofgl(`u1u`) may not be a highest weigh
representation ofgl0(1u`).

The reasons for studying representations of this particular superalgebra, namelygl(1u`),
stem from physical considerations. Our motivation originates from an attempt to introduce
quantum statistics both in quantum mechanics1,2 ~in this case the superalgebras are fini
dimensional! and in quantum field theory~QFT!.3,4 In order to see where the connection to t
statistics comes from, we recall shortly the origin of the Lie superstatistics.

The starting point is based on the observation that anyn pairsb1
6 ,...,bn

6 of Bose creation and
annihilation operators~CAOs!, namely~below and throughout@x,y#5xy2yx, $x,y%5xy1yx!

@bi
2 ,bj

1#5d i j , @bi
2 ,bj

2#5@bi
1 ,bj

1#50, ~5!

considered as odd elements, generate a representation, the Bose representationr, of the Lie
superalgebra osp(1u2n)[B(0un).5 Denote byB1

6 ,...,Bn
6 those generators ofB(0un), which in

the Bose representation coincide with the Bose operators,r(Bi
6)5bi

6 . Similarly as the Chevalley
generators do, the operatorsB1

6 ,...,Bn
6 and the relations they satisfy, namely

@$Bi
j ,Bj

h%,Bk
e#5~e2j!d ikBj

h1~e2h!d jkBi
j , j,h,e56 or 61, ~6!

define uniquely the LSB(0un).5 The operatorsBi
6 are odd root vectors ofB(0un), whereas

$Bj
1 ,Bj

2% belong to the Cartan subalgebra. The operators~6! are known in quantum field theory
these are thepara-Bose operators, generalizing the statistics of the tensor fields.6 The important
conclusion is that the representation theory ofn pairs ofpara-Bose~pB! operators is equivalent to
the representation theory of the Lie superalgebraB(0un). Certainly in QFT the algebra isB(0u`),
it is infinite-dimensional.

The identification of thepara-Bose statistics with a well-known algebraic structure provide
natural background for further generalizations. In QFT the commutation relations betwee
CAOs are determined from the translation invariance of the field under consideration.7 In momen-
tum space the translation invariance of a scalar~or tensor! field C(x) is expressed as a commu
tator between the energy–momentumPm, m50,1,2,3 and the CAOsai

6 of C(x):

@Pm,ai
6#56ki

mai
6 , ~7!

where the indexi replaces all~continuous and discrete! indices of the field and

Pm5
1

2 (
j

kj
m$aj

1 ,aj
2%. ~8!

To quantize the field means, loosely speaking, to find solutions of Eqs.~7! and ~8!, where the
unknowns are the CAOsai

6 . The Bose operators~5! and their generalization, the pB operato
~6!, certainly satisfy~7!. By no means however they do not exhaust the set of the pos
solutions.

The first possibility for finding new solutions and hence for further generalization of
statistics stems from the observation that the commutation relations between the Cartan e
and the root vectors, in particular Eq.~7!, remain unaltered uponq deformations. The deforma
tions of the parastatistics along this line were studied in Refs. 8–11 and more generally in R

Another opportunity, closely related to the present paper, is based on the observatio
B(0un) belongs to the classB superalgebras in the classification of Kac.13 Therefore it is natural
to try to satisfy the quantization equations~7! and~8! with CAOs, generating superalgebras fro
the classesA, C, andD or generating other superalgebras from the classB. In Refs. 3 and 4 it was
shown that this is possible indeed. For charged tensor fields the main quantization condit~7!
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can be satisfied with CAOs, which generate the LSgl(`u1u`), namely a LS from the classA. Up
to now, however, this new statistics, theA superstatistics, did not achieve any further devel
ment. The reason is that so far the Fock spaces corresponding to theA superstatistics were no
constructed. Here we come to the relation between theA superstatistics and the present inves
gation. The Fock spaces are representation spaces ofgl(1u`). In order to study the physica
consequences of theA superstatistics in QFT one has to develop first the representation theo
gl(`u1u`) ~for charged scalar fields! and ofgl0(1u`) ~for neutral fields!. This is what we do in
the present paper. The reason to study only highest weight representations reflects the f
there should exist a state with a lowest energy, a vacuum, which turns out to be the highest
vector in the correspondinggl(1u`) module.

So far theA superstatistics was tested only in finite-dimensional cases, namely in the fra
a ~noncanonical! quantum mechanics. We have in mind the Wigner quantum systems, introd
in Refs. 1 and 2, which recently attracted some attention from different points of view.14–16These
systems possess quite unconventional physical features, properties which cannot be ach
the frame of the canonical quantum mechanics. The (n11)-particle WQS, based onsl(1/3n),17

exhibits a quarklike structure: the composite system occupies a small volume around the ce
mass and within it the geometry is noncommutative. The underlying statistics is a Haldane
sion statistics,18 a subject of considerable interest in condensed matter physics. The osp~3/2! WQS,
studied in Ref. 19, leads to a picture where two spinless point particles, curling around each
produce an orbital~internal angular! momentum 1/2. One can expect that also in QFT the
superstatistics could lead to new features.

In the literature one does not find many papers dealing with representations of in
dimensional simple Lie superalgebras.20,21 Implicitly, however, such algebras and their represe
tations were used in theoretical physics since the QFT was created. In the first place we h
mind the ordinary Fock spaceW1 of infinitely many pairs of Bose CAOs$bi

6% i PZ . As mentioned
above, the Bose operators are~representatives of! the odd generators ofB(0u`) and their Fock
spaceW1 is one particular irreducibleB(0u`) module. The Fock spacesWp of para-Bose opera-
tors $Bi

6% i PZ , corresponding to order of the parastatisticspPN,6 are also irreducible and in
equivalent to each otherB(0u`) modules. The Clifford construction in Ref. 21 is a generalizat
to the case when both bosons$bi

6% i PZ , considered as odd variables, and fermions$ f i
6% i PZ , which

are even generators, are involved. The assumption is that the bosons anticommute with
mions. Then anyn pairs of Bose CAOs andm pairs of Fermi CAOs generate~a representation of!
the Lie superalgebraB(mun).22 Therefore the Fock representation of$bi

6 , f i
6% i PZ is an irreducible

B(`u`) module. Its restriction togl(`u`) leads to a set of irreducible representations of t
superalgebra.

In the paper we essentially use results from the representation theory ofgl(1un). The finite-
dimensional irreducible modules~fidirmods! of the latter are, one can say, well understood.
character formula for all typical13 and atypical23 modules has been constructed. The dimension
all fidirmods are known.24,25 A basis, similar to the GZ basis ofgl(n), was defined and its
transformation under the action of the Chevalley generators was written down.26,27 The results
were even generalized to the quantum algebraUq@gl(1un)#.28 This is in contrast to the more
general case ofgl(mun) andUq@gl(m/n)#, where most of the above problems are still waiting
be solved although partial results do exist.29–33

The irreducible highest weight representations ofgl0(1u`), which we consider, are a gene
alization to the infinite-dimensional case of the finite-dimensional essentially typical repres
tions ofgl(1un) in the Gel’fand–Zetlin basis~GZ basis!. In order to see where the possibility fo
a generalization comes from we recall~Sec. II A! the way the Gel’fand–Zetlin basis wa
introduced.31 This basis is, however, inappropriate for a generalization to the case of hi
weight gl(`u1u`) modules. Therefore in Sec. II B we modify it, introducing a new basis, wh
we call a C basis. It is an analog of theC basis for gl` .34,35 Section III is devoted to the
irreduciblegl(1u`) modules. In Sec. III A we extend the Gel’fand–Zetlin basis to the infin
dimensional case and apply it togl0(1u`). The highest weight irreduciblegl(`u1u`) represen-
tations are defined in Sec. III B. They appear as a generalization of the essentially typical
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sentations ofgl(1un) in the C basis. The transformations of the basis under the action of
algebra generators are explicitly written down.

Throughout the paper we use the following notation:
LS, LSs Lie superalgebra, Lie superalgebras;
CAOs creation and annihilation operators;
fidirmod~s! finite-dimensional irreducible module~s!;
GZ basis Gel’fand–Zetlin basis;
N all positive integers;
Z all integers;
Z1 all non-negative integers;

Z25$0,1̄% the ring of all integers modulo 2;

C all complex numbers;

@p;q#5$p,p11,p12,...,q21,q%, if q2pPZ1 and @p;q#5B otherwise; ~9!

@m#k5@m1k ,m2k ,...,mkk#, where mikPC; ~10!

@M #2k1u5@M 2k,2k1u ,M 2k11,2k1u ,...,Mk211u,2k1u#, uP$0,1%, kPN; ~11!

l 1 j5m1 j11, l i j 52mi j 1 i 21, i P@2; j #; ~12!

L0,2k1u5M0,2k1u , uP$0,1%,

Li ,2k1u52Mi ,2k1u1 i 11, uP$0,1%, i P@2k;21#,
~13!

L j ,2k1u52M j ,2k1u1 j 21, uP$0,1%, j P@1;k211u#;

@m#[@m1 ,m2 ,...,mk ,...#5$mi umiPC,i PN%; ~14!

@M #[@ ...,M 2p ,...,M 21 ,M0 ,M1 ,...,Mq ,...#5$Mi uMiPC,i PZ%; ~15!

P~ j ,l !5 H1 for j > l
21 for j , l ; ~16!

Q~ j ,l !5 H1 for j . l
21 for j < l ; ~17!

u~ i !5 H1
0

for i>0
for i ,0. ~18!

II. FINITE-DIMENSIONAL ESSENTIALLY TYPICAL REPRESENTATIONS OF gl „1z2n …

As in the case ofgl(1u`) it is convenient to use two different notation for the finit
dimensional superalgebras from this class. In the first notationgl0(1uN) is the same as in Defi
nition 1, but the indicesi,j run from 1 toN11.

Thene11,e22,...,eN11,N11 is a basis in the Cartan subalgebraH0 . Denote bye1,...,eN11 the
dual basis,e i(ej j )5d j

i . The correspondence root vector↔ root reads:ei j↔e i2e j , iÞ j
51,...,N11; D05$e i2e j% iÞ j P@1;N11# is the root system;D1

0 5$e i2e j% i , j P@1;N11# and

p05$e12e2,e22e3,...,eN2eN11% ~19!

are the standard systems of positive roots and simple roots, respectively. The special linea
ralgebrasl0(1uN) is a subalgebra ofgl0(1uN) spanned by allgl0(1uN) root vectors and the
Cartan elementse111eii for all iÞ1.
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Similarly, gl(M u1uN) is the same as in Definition 2, buti , j 52M ,2M11,...,N and M ,N
PZ1 . In particular$Eii % i P@2M ;N# is a basis in the Cartan subalgebraH with $Ei% i P@2M ;N# its dual.
The simple root vectors are$Ei ,i 11% i P@2M ;N21# . Hence

p5$E2M2E2M11,E2M112E2M12,...,E212E0,E02E1,...,EN212EN% ~20!

is the system of simple roots.
We have written explicitly the systems~19! and ~20! in order to underline that they contai

different number of odd roots:p0 has only one,e12e2, whereas the odd roots inp are E21

2E0,E02E1. Therefore the systems of the simple roots ofsl0(1u2n) andsl(nu1un) are different,
despite the fact that these algebras are isomorphic. This property demonstrates one of the e
differences between the Lie algebras and the Lie superalgebras. For each simple Lie algeb
exists~up to a transformation from the Weyl group! only one system of simple roots. This is n
the case for the basic Lie superalgebras, where several inequivalent simple root systems c
general defined~for more details see Refs. 36–38!. As a result one and the same irreducib
gl(1u2n) module can be described with different signatures. We shall have to take this
account in the definition of theC basis.

A. GZ basis „Ref. 31…

Let V(@m#N11) be a highest weight finite-dimensional irreduciblegl0(1uN) module
~fidirmod! with a highest weight

@m#N11[@m1,N11 ,m2,N11 ,...,mN11,N11#[ (
i 51

N11

mi ,N11e i , ~21!

where

mj ,N11PC, j 51,...,N11, mi ,N112mi 11,N11PZ1 , i 52,3,...,N. ~22!

If xN11 is the highest weight vector inV(@m#N11), theneii xN115mi ,N11xN11 .
Consider the chain of subalgebras

gl0~1uN!.gl0~1uN21!.gl0~1uN22!.¯.gl0~1u2!.gl0~1u1!.gl0~1u0![gl0~1!.
~23!

ThenV(@m#N11) is said to be essentially typical, if it is completely reducible with respect to
one of the subalgebras in the chain~23!. Each essentially typical moduleV(@m#N11) carries a
typical representation13 of the special linear superalgebrasl0(1un), but the inverse is in genera
not true.

Set

l 1,N115m1,N1111, l i ,N1152mi ,N111 i 21, i 52,3,...,N11. ~24!

Proposition 1: (Ref. 31) The gl0(1uN) module V(@m#N11) is essentially typical if and only if

l 1,N11¹@ l 2,N11 ; l N11,N11#. ~25!

Let V(@m#N11) be an essentially typicalgl0(1uN) module and let

V~@m#N11!.V~@m#N!.V~@m#N21!.¯.V~@m#k11!.¯V~@m#2!.V~m11! ~26!

be a flag ofgl0(1uk) fidirmodsV(@m#k11), k50,1,2,...,N, where

@m#k11[@m1,k11 ,m2,k11 ,...,mk11,k11#[(
i 51

k11

mi ,k11e i ~27!
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is the signature ofV(@m#k11). In the ordered basis

e11,e22,... ,ek11,k11 ~28!

of the Cartan subalgebra ofgl0(1uk), mi ,k11 is the eigenvalue ofeii on the highest weight vecto
xk11PV(@m#k11),

eii xk115mi ,k11xk11 , i 51,...,k11. ~29!

Since we consider only essentially typical modules and the fidirmods ofgl0(1) are one dimen-
sional, the flag~26! defines a vectorum& in V(@m#N11). It turns out this vector is uniquely define
~up to, certainly, a multiplicative constant! by the signatures@m#N11 , @m#N ,...,@m#2 ,m11. There-
fore one can set

um&[F @m#N11

@m#N

]

@m#2

m11

G[F m1,N11 m2,N11 ¯ mN,N11 mN11,N11

m1,N m2,N ¯ mN,N

¯ ¯ ¯

m12 m22

m11

G . ~30!

The vectors~30!, corresponding to all possible flags~26!, constitute a basisG(@m#N11) in the
gl0(1uN) fidirmod V(@m#N11). This is the GZ basis introduced in Ref. 31@for the more genera
case ofgl(M /N)#.

Proposition 2: (Ref. 31) The GZ basisG(@m#N11) in the essentially typical module
V(@m#N11) is given by all tables (30) for which

(1) the numbers mi ,N11 , i 51,2,...,N11 are fixed for all tables and satisfy (22), (24), (25)

~2! m1i2m1,i 21[u i 21P$0,1%, i 52,3,...,N11, ~31!

~3! mi , j 112mi j PZ1 , mi j 2mi 11,j 11PZ1 , 2< i< j <N. ~32!

The transformations of the basisG(@m#N11) under gl0(1uN) are completely defined from th
action of the Chevalley generators

eii um&5S (
k51

i

mki2 (
k51

i 21

mk,i 21D um&, i 51,2,...,N11, ~33!

e12um&5u1um&~11! , e21um&5~12u1!~ l 122 l 22!um&2~1,1! , ~34!

ei ,i 11um&5u i~12u i 21!um&~1i !

1(
j 52

i S 2
Pk52

i 21 ~ l k,i 212 l j i 11!Pk52
i 11 ~ l k,i 112 l j i !

PkÞ j 52
i ~ l ki2 l j i !~ l ki2 l j i 11!

D 1/2

3
~ l 1i2 l j i !~ l 1i2 l j i 11!

~ l 1,i 112 l j i !~ l 1,i 212 l j i 11!
um&~ j i ! , i 52,...,N, ~35!

ei 11,i um&5u i 21~12u i !
Pk52

i 21 ~ l 1,i 112 l k,i 2121!Pk52
i 11 ~ l 1,i 112 l k,i 11!

Pk52
i ~ l 1,i 112 l ki21!~ l 1,i 112 l ki!

um&2~1,i !

1(
j 52

i S 2
Pk52

i 21 ~ l k,i 212 l j i !Pk52
i 11 ~ l k,i 112 l j i 21!

PkÞ j 52
i ~ l ki2 l j i 21!~ l ki2 l j i !

D 1/2

um&2~ j i ! , i 52,...,N, ~36!
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where l1 j5m1 j11, l i j 52mi j 1 i 21, iÞ1 and the tableum&6( i , j ) is obtained from the tableum&
by the replacement mi j→mi j 61.

If a vector from the right-hand side of~35! or ~36! does not belong to the module und
consideration, then the corresponding term is zero even if the coefficient in front is undefin
an equal number of factors in numerator and denominator are simultaneously equal to zer
should be canceled out.

The gl0(1uN) highest weight vectorxN11 in V(@m#N11) is a vector from the GZ basis

xN115um̂& for which mii 5mi ,i 115¯5mi ,N11 , i 51,2,...,N, ~37!

i.e.,

um̂&5F m1,N11 m2,N11 ¯ mN,N11 mN11,N11

m1,N11 m2,N11 ¯ mN,N11

¯ ¯ ¯

m1,N11 m2,N11

m1,N11

G . ~38!

In this case

eii um̂&5mi ,N11um̂&, i 51,2,...,N11, ek,k11um̂&50, k51,2,...,N. ~39!

B. C basis

Let Ei j , i , j 52n,2n11,...,n be the generators ofgl(nu1un). Define a sequence of subalg
bras

gl~ku1uk211u!5 lin env$Ei j u i , j P@2k;k211u#%;uP$0,1%, kP@12u;n#. ~40!

As an ordered basis in the Cartan subalgebra ofgl(ku1uk211u) take

E2k,2k ,E2k11,2k11 ,...,Ek211u,k211u . ~41!

Proposition 3: The mapw, which is a linear extension of the relations

w~Ei j !5eg~ i !,g~ j ! , i , j 52n,2n11,...,n, ~42!

is an isomorphism of gl(nu1un) on gl0(1u2n). Its restriction on gl(ku1uk211u) is an isomor-
phism of gl(ku1uk211u) on gl0(1u2k211u) for eachuP$0,1% and kP@12u;n#. The chain of
subalgebras

gl~nu1un!.gl~nu1un21!.gl~n21u1un21!.gl~n21u1un22!.¯

.gl~1u1u1!.gl~1u1!.gl~1!, ~43!

~gl(1u1u0)[gl(1u1), gl(0u1u0)[gl(1)! is transformed byw into the chain (23)

gl0~1u2n!.gl0~1u2n21!.gl0~1u2n22!.¯.gl0~1u2!.gl0~1u1!.gl0~1!. ~44!

The proof is straightforward.
The isomorphismw allows one to turn anygl0(1u2k211u) irreducible moduleV(@m#2k1u)

into a gl(ku1uk211u) module:

w~Ei j !x5eg~ i !,g~ j !x, ;xPV~@m#2k1u!. ~45!
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The relevant point for us is that eachV(@m#2k1u) can be labeled also with its highest weig
with respect togl(ku1uk211u). By definition it consists of the eigenvalues of the representat
of the Cartan generators~41!, namely

w~E2k,2k!, w~E2k11,2k11!,..., w~E22,22!, w~E21,21!,
~46!

w~E0,0!, w~E1,1!,..., w~Ek211u,k211u!

on thegl(ku1uk211u) highest weight vectory2k1uPV(@m#2k1u). The latter is defined from the
requirements

w~Ei j !y2k1u50, i , j 52k,2k11,...,k211u, ~47!

w~Eii !y2k1u5Mi ,2k1uy2k1u , i 52k,2k11,...,k211u. ~48!

Set

@M #2k1u[@M 2k,2k1u ,M 2k11,2k1u ,...,Mk211u,2k1u#. ~49!

The new signature@M #2k1u defines, as mentioned above, uniquelyV(@m#2k1u). Hence

V~@m#2k1u!5V~@M #2k1u!. ~50!

Consider now a GZ basis vectorum& corresponding to the flag

V~@m#2n11!.V~@m#2n!.V~@m#2n21!.¯.V~@m#2k1u!.¯V~@m#2!.V~m11!↔um&,
~51!

namely the vector~30! with N52n. In view of ~50! the same flag can be written as

V~@M #2n11!.V~@M #2n!.V~@M #2n21!.¯.V~@M #2k1u!.¯.V~@M #2!.V~M11! ~52!

and therefore the vector um& is completely defined by the signature
@M #2n11 ,@M #2n ,...,@M #2 ,M11. Therefore we can write any GZ basis vector~30! also in the form

uM &[3
M 2n,2n11 M 2n11,2n11 ¯ M 21,2n11 M 0,2n11 M 1,2n11 ¯ Mn21,2n11 Mn,2n11

M 2n,2n M 2n11,2n ¯ M 21,2n M 0,2n M 1,2n ¯ Mn21,2n

M 2n11,2n21 ¯ M 21,2n21 M 0,2n21 M 1,2n21 ¯ Mn21,2n21

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

M 21,3 M 03 M 13

M 21,2 M 02

M 01

4 . ~53!

Obviously ~30! ~with N52n! and ~53! are two different labelings for one and the same vec
um&[uM &. We call the basis, written in the notation~53!, a C basis in V(@M #2n11)
[V(@m#2n11) and denote it asG(@M #2n11).

In order to use effectively the basisG(@M #2n11) we need to determine all signature
@M #2k1u , namely to find the values of the entries in~53!. To this end we have to determine as
first step the highest weight vectory2k1u within eachgl(ku1uk211u) moduleV(@m#2k1u) in the
chain ~51! and subsequently, using~48!, to compute itsgl(ku1uk211u) signature@M #2k1u .

Proposition 4: The gl(ku1uk211u) highest weight vector y2k1u in V(@m#2k1u) @from the
chain (51)# is the GZ vectorum&2k1u , for which

m1,2r 1t1k2r 5m1,2k1u , ;tP$0,1%, r P@12t;k2t#, ~54!
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mr 2 j ,2k22 j 1t5mr ,2k1u , ;r P@32u;k11#, tP$0,1%, j P@12u;r 22#, ~55a!

mr 2 j ,2k22 j 1t5mr ,2k1u , ;r P@k12;2k#, tP$0,1%, j P@12u;2k2r 1t#. ~55b!

Proof: It is easy to verify that the conditions~54! are equivalent to

u2i 2151, i P@1;k#, ~56a!

u2i50, i P@1;k211u#, ~56b!

whereas the conditions~55! can be replaced by

l s,2i 112 l s,2i50, i P@1;k211u#, sP@2;2i #, ~57a!

l s11,2i2 l s,2i 212150, i P@2;k#, sP@2;2i 21#. ~57b!

We need to show that~47! holds fory2k1u5um&2k1u . It certainly suffices to verify it only for
the gl(ku1uk211u) simple root vectors, namely to prove that

w~E2 i ,2 i 11!um&2k1u50, i P@1;k#, ~58!

w~Ei ,i 11!um&2k1u50, i P@0;k221u#. ~59!

The validity of the latter follows from the observation thatw(E21,0)5e21, w(E01)
5@e12,e23#, w(E2 i ,2 i 11)5@e2i ,2i 21 ,e2i 21,2i 22#, i P@2;k#, w(Ei 21,i)5@e2i 21,2i ,e2i ,2i 11#, i
P@2;k211u# and Eqs.~34!–~36!. This completes the proof.

We are now ready to determine thegl(ku1uk211u) signature ofV(@m#2k1u) for any u
P$0,1% and kP@1;n#. Taking into account~54!, ~55!, and ~45! and using the transformatio
relation ~33!, one obtains

w~Eii !um&2k1u5e2u i u,2u i uum&2k1u5~mi 1k12,2k1u11!um&2k1u , i P@2k;21#, ~60a!

w~E00!um&2k1u5e11um&2k1u5~m1,2k1u2k!um&2k1u , ~60b!

w~Eii !um&2k1u5e2i 11,2i 11um&2k1u5mi 1k11,2k1uum&2k1u , i P@1;k211u#. ~60c!

Comparing~60! with the definition~48! we obtain thegl(ku1uk211u) signature@M #2k1u of
V(@m#2k1u):

Mi ,2k1u5mi 1k12,2k1u11, i P@2k;21#, ~61a!

M0,2k1u5m1,2k1u2k, ~61b!

Mi ,2k1u5mi 1k11,2k1u , i P@1,k211u#, ~61c!

M015m11. ~61d!

We have added the evident relation~61d! for completeness, since it is not contained in~61a!–
~61c!. The above relations hold for anyuP$0,1% andkP@1;n#. In particular,

Mi ,2n115mi 1n12,2n1111, i P@2n;21#, ~62a!

M0,2n115m1,2n112n, ~62b!

Mi ,2n115mi 1n11,2n11 , i P@1,n#. ~62c!
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The gl(nu1un) highest weight vectory2n11[uM̂ & is the one from ~53!, for which Mi , j

5Mi ,2n11 for any admissiblei and j:

3
M 2n,2n11 M 2n11,2n11 ¯ M 21,2n11 M0,2n11 M1,2n11 ¯ Mn21,2n11 Mn,2n11

M 2n,2n11 M 2n11,2n11 ¯ M 21,2n11 M0,2n11 M1,2n11 ¯ Mn21,2n11

M 2n11,2n11 ¯ M 21,2n11 M0,2n11 M1,2n11 ¯ Mn21,2n11

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

M 21,2n11 M0,2n11 M1,2n11

M 21,2n11 M0,2n11

M0,2n11

4 .

~63!

From ~31! and ~32! one derives the ‘‘in-betweenness conditions,’’ which define comple
the new basis~53!. The transformations of theC basis are most easily written in terms of th
following variables:

L0,2k1u5M0,2k1u ,

Li ,2k1u52Mi ,2k1u1 i 11, i P@2k;21#, ~64!

Li ,2k1u52Mi ,2k1u1 i 21, i P@1;k211u#.

We formulate the result as a proposition.
Proposition 5: The2n11-tuple @M #2n115@M 2n,2n11 ,M 2n11,2n11 ,...,Mn,2n11# is a signa-

ture of an essentially typical gl(nu1un) module V(@M #2n11) if and only if

M i ,2n11PC, i P@2n;n#, ~65a!

Mi ,2n112Mi 11,2n11PZ1 , i P@2n;22#ø@1;n21#, ~65b!

M 21,2n112M1,2n11PN, ~65c!

M0,2n115L0,2n11¹@L2n,2n11 ;Ln,2n11#. ~65d!

The C basisG(@M #2n11) in V(@M #2n11) consists of all tables (53) for which the labels

Mi ,2k1u , uP$0,1%, kP@12u;n#, i P@2k;k211u#, ~66!

take all possible values consistent with the‘‘ in-betweenness conditions’’

Mi ,2k112Mi ,2kPZ1 , kP@1;n#, i P@2k;21#ø@1;k21#, ~67a!

Mi ,2k212Mi ,2kPZ1 , kP@2;n#, i P@2k11;21#ø@1;k21#, ~67b!

Mi 21,2k2Mi ,2k21PZ1 , kP@2;n#, i P@2k11;21#ø@2;k21#, ~67c!

Mi 21,2k2Mi ,2k11PZ1 , kP@1;n#, i P@2k11;21#ø@2;k#, ~67d!

M 21,2k2M1,2k21PN, kP@2;n#, ~67e!

M 21,2k2M1,2k11PN, kP@1;n#, ~67f!
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M0,2k112M0,2k[c2kP$0,1%, kP@1;n#, ~67g!

M0,2k2M0,2k21[c2k21P$0,21%, kP@1;n#. ~67h!

The transformations of the C basis under the action of the inverse imagesw21(eii ),
w21(ei ,i 11), andw21(ei 11,i) of the gl0(1u2n) Chevalley generators follow from (33) to (36) an
(61), (62). The result reads@we write Ei j instead ofw(Ei j )#:

Eii uM &5S (
j 52u i u

u i u1u~ i !21

M j ,2u i u1u~ i !2 (
j 52u i u112u~ i !

u i u21

M j ,2u i u1u~ i !21D uM &, i P@2n;n#, ~68!

E0,21uM &5~11c1!uM &~0,1! , ~69!

E21,0uM &52c1~L0,22L21,2!uM &2~0,1! , ~70!

Ei 21,2 i uM &5~11c2i 21!~12c2i 22!uM &~0,2i 21!

1 (
j Þ052 i 11

i 21 S 2
PkÞ052 i 11

i 22 ~Lk,2i 222L j ,2i 2111!PkÞ052 i
i 21 ~Lk,2i2L j ,2i 2111!

PkÞ0,j ;k52 i 11
i 21 ~Lk,2i 212L j ,2i 21!~Lk,2i 212L j ,2i 2111!

D 1/2

3
~L0,2i 212L j ,2i 21!~L0,2i 212L j ,2i 2111!

~L0,2i2L j ,2i 2111!~L0,2i 222L j ,2i 2111!
uM &~ j ,2i 21! , i P@2;n#, ~71!

E2 i ,i uM &52c2ic2i 21uM &~0,2i !

1 (
j Þ052 i

i 21 S 2
PkÞ052 i 11

i 21 ~Lk,2i 212L j ,2i !PkÞ052 i
i ~Lk,2i 112L j ,2i !

PkÞ0,j ;k52 i
i 21 ~Lk,2i2L j ,2i !~Lk,2i2L j ,2i11!

D 1/2

3
~L0,2i2L j ,2i !~L0,2i2L j ,2i11!

~L0,2i 112L j ,2i !~L0,2i 212L j ,2i !
uM &~ j ,2i ! , i P@1;n#, ~72!

Ei ,2 i uM &5~11c2i 21!~12c2i !

3
PkÞ052 i 11

i 21 ~L0,2i 112Lk,2i 21!PkÞ052 i
i ~L0,2i 112Lk,2i 11!

PkÞ052 i
i 21 ~L0,2i 112Lk,2i21!~L0,2i 112Lk,2i !

uM &2~0,2i !

1 (
j Þ052 i

i 21 S 2
PkÞ052 i 11

i 21 ~Lk,2i 212L j ,2i21!PkÞ052 i
i ~Lk,2i 112L j ,2i21!

PkÞ0,j ;k52 i
i 21 ~Lk,2i2L j ,2i21!~Lk,2i2L j ,2i !

D 1/2

3uM &2~ j ,2i ! , i P@1;n#, ~73!

E2 i ,i 21uM &52c2i 22c2i 21

PkÞ052 i 11
i 22 ~L0,2i2Lk,2i 22!PkÞ052 i

i 21 ~L0,2i2Lk,2i !

PkÞ052 i 11
i 21 ~L0,2i2Lk,2i 21!~L0,2i2Lk,2i 2111!

uM &2~0,2i 21!

1 (
j Þ052 i 11

i 21 S 2
PkÞ052 i 11

i 22 ~Lk,2i 222L j ,2i 21!PkÞ052 i
i 21 ~Lk,2i2L j ,2i 21!

PkÞ0,j ;k52 i 11
i 21 ~Lk,2i 212L j ,2i 2121!~Lk,2i 212L j ,2i 21!

D 1/2

3uM &2~ j ,2i 21! , i P@2;n#. ~74!

We have written the transformation relations of theC basis under the action of generators, whi
are different from thegl(nu1un) Chevalley elements. These generators, however, define c
pletely all other generators. In this sense Eqs.~68!–~74! are complete. We shall use them in ord
to derive the transformations of thegl(`u1u`) irreducible modules under the action of the Che
alley generators.
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Remark:We are thankful to the referee for pointing out thatProposition 4can be proved also
without using the transformation relations~34!–~36!. To this end note@see Eqs.~58! and~59!# that
thegl(ku1uk211u) highest weight vectory2k1u[um&2k1uPV(@m#2k1u) is determined from the
requirement to be annihilated by the generators$w(E2 i ,2 i 11)u i P@1;k#%ø$w(Ei ,i 11)u i P@0;k
221u#%, i.e., by$e2k,2k22 ,e2k22,2k24 ,...,e42,e21,e13,e35,...,e2k12u23,2k12u21%. The roots, cor-
responding to the above root vectors, namely

p̂2k1u5$e2k2e2k22,e2k222e2k24,...,e42e2,e22e1,e12e3,e32e5,...,e2k12u232e2k12u21%
~75!

can be taken as a new system of simple roots ofgl(1u2k1u21) with a system of positive roots
D̂1

2k1u .
Let L2k1u[@m#2k1u[( i 51

2k1u mi ,2k1ue i be the standard signature~5the highest weight! of
V(@m#2k1u), namely the signature corresponding to the choice of simple roots

p2k1u5$e12e2,e22e3,...,e2k211u2e2k1u%. ~76!

Denote byD1
2k1u the system of positive roots corresponding to it. The problem is to determin

signature~5the highest weight! L̂2k1u of V(@m#2k1u) with respect toD̂1
2k1u . This problem can

be solved on the ground of results from Refs. 39 and 40. Given a subset of positive rootsD18 of
gl(1u2k1u21) and a simple rootaPD18 , one constructs a new system of positive rootsD19 by
a simplea reflection^a&:39,40

D19 5^a&~D18 !5H r a~D18 !

~D18 ø$2a%!\$a%
if a is even

if a is odd, ~77!

wherer a is an element from the Weyl group ofgl(1u2k1u21), corresponding toa.
If V2k1u is an essentially typicalgl(1u2k1u21) module with a highest weightl8, corre-

sponding toD18 , then the highest weight with respect toD19 is

l95r a~l8! if a is an even root, l95l82a if a is an odd root. ~78!

Let P i 51
N ^a i&5^a1&^a2&¯^aN&. Then

D̂1
2k1u5)

i 51

k

)
j 51

2i 21

^e j2e2i&D1
2k1u . ~79!

From ~77! to ~79! one derives that

L̂2k1u5 (
j 52

k11

~mj ,2k1u11!e2k22 j 141~m1,2k1u2k!e11 (
j 5k12

2k1u

mj ,2k1ue2 j 22k21, ~80!

i.e.,

e2k22i 14,2k22i 14um&2k1u5~mi ,2k1u11!um&2k1u , i P@2;k11#, ~81a!

e11um&2k1u5~m1,2k1u2k!um&2k1u , ~81b!

e2i 22k21,2i 22k21um&2k1u5mi ,2k1uum&2k1u , i P@k12;2k1u#. ~81c!

Equations~81! are the same as~60! ~written in somewhat different notation!. Hence one obtains
the gl(ku1uk1u21) signature as given in~61! and the highest weightum&2k1u corresponding to
it ~Proposition 4!.
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III. IRREDUCIBLE REPRESENTATIONS OF gl „1z`…

Here we construct representations ofgl0(1u`) andgl(`u1u`), which appear as a general
zation to the casen→` of the results obtained in Sec. III. In both cases the representations~or the
corresponding modules! are labeled with infinite sequences of~in general different! complex
numbers. Due to the isomorphismw @see~4!# eachgl0(1u`) module is also agl(`u1u`) module
and vice versa. Therefore we can also say that we describe below two classes of representa
the ‘‘abstract’’ Lie superalgebragl(1u`). For definiteness we refer to the class of representat
of gl0(1u`) as the Gel’fand–Zetlin~GZ! representations~Sec. III A!, whereas the representation
of gl(`u1u`) are said to beC representations.

A. Gel’fand–Zetlin representations

The extension of the results of Sec. II to the casen→` is rather evident. We collect the
results in a proposition.

Proposition 6: To each sequence of complex numbers

@m#[@m1 ,m2 ,...,mk ,...#[$mi umiPC,i PN%, ~82!

such that

mi2mi 11PZ1 , i 52,3,...,

l 1¹$ l 2 ,l 211,l 212,...%, ~83!

where

l 15m111, l i52mi1 i 21, i 52,3,..., ~84!

there corresponds an irreducible highest weight gl0(1u`) module V(@m#) with a signature (82).
The basisG(@m#) in V(@m#), which we call a GZ basis, consists of all tables

um)[3
m1 m2 ¯ mj ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

m1 j m2 j ¯ mj j

¯ ¯ ¯

¯ ¯ ¯

m12 m22

m11

4 [F @m#
]

@m# j

]

@m#2

m11

G , ~85!

characterized by an infinite number of coordinates

mi j , ; j PN, i 51,2,...,j , ~86!

which are consistent with the conditions:
(1) for each tableum! there exists a positive~depending onum!! integer N@ um)] PN such that

mi j 5mi , ; j .N@ um!], i 51,...,j , ~87!

(2) m1i2m1,i 21[u i 21P$0,1%, i 52,3,..., ~88!

(3) mi , j 112mi j PZ1 , mi j 2mi 11,j 11PZ1 , 2< i< j PN. ~89!

The transformation of the basis (85) is determined from the action of the Chevalley genera
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eii um)5S (
k51

i

mki2 (
k51

i 21

mk,i 21D um), i PN, ~90!

e12um)5u1um)11, e21um)5~12u1!~ l 122 l 22!um)2~1,1! , ~91!

ei ,i 11um)5u i~12u i 21!um) ~1i !

1(
j 52

i S 2
Pk52

i 21 ~ l k,i 212 l j i 11!Pk52
i 11 ~ l k,i 112 l j i !

PkÞ j 52
i ~ l ki2 l j i !~ l ki2 l j i 11!

D 1/2

3
~ l 1i2 l j i !~ l 1i2 l j i 11!

~ l 1,i 112 l j i !~ l 1,i 212 l j i 11!
um) ~ j i ! , i 52,3,..., ~92!

ei 11,i um)5u i 21~12u i !
Pk52

i 21 ~ l 1,i 112 l k,i 2121!Pk52
i 11 ~ l 1,i 112 l k,i 11!

Pk52
i ~ l 1,i 112 l ki21!~ l 1,i 112 l ki!

um)2~1,i !

1(
j 52

i S 2
Pk52

i 21 ~ l k,i 212 l j i !Pk52
i 11 ~ l k,i 112 l j i 21!

PkÞ j 52
i ~ l ki2 l j i 21!~ l ki2 l j i !

D 1/2

um)2~ j i ! , i 52,3,... . ~93!

The highest weight vectorum̂) is the one from (85) for which

mi j 5mi , ; j PN, i P1,2,...,j . ~94!

Proof: Let

um)[F @m#
]

@m#N11

]

@m#2

m11

GPG~@m# !. ~95!

Then
~i! @m#N11[@m1,N11 ,m2,N11 ,...,mN11,N11#, N51,2,..., is said to be the (N11)th signature of
um!;
~ii !

um)up~N11![F @m#
]

@m# j

]

@m#N12

G , um) low~N11![F @m#N11

]

@m# i

]

@m#2

m11

G ~96!

are said to be the (N11)th upper and the (N11)th lower part ofum!, respectively. Consider the
subalgebra

gl0~1uN!5$ei j u i , j 51,...,N11%,gl0~1u`!. ~97!

Observation 1:Let e be a gl0(1uN) generator or any polynomial ofgl0(1uN) generators.
Then, for anyum)PG(@m#), eum) is a linear combination of vectors fromG(@m#) with one and
same (N11)th upper partum)up(N11).

Denote by
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G~@m# i u i>N11!,G~@m# ! ~98!

the set of all vectors~85!, that have one and the same@m# i signatures, for alli>N11. Let

V~@m# i u i>N11!,V~@m# ! ~99!

be the linear span ofG(@m# i u i>N11). From ~90! to ~93! it follows that V(@m# i u i>N11) is
invariant with respect togl0(1uN). To each vectorum)PG(@m# i u i>N11) put in correspondence
its (N11)th lower part:

f ~ um!)5um) low~N11!, ;um)PG~@m# i u i>N11!. ~100!

Let

G~@m#N11!5$ f ~ um!!uum)PG~@m# i u i>N11!%. ~101!

Then f maps bijectivelyG(@m# i)u i>N11) on G(@m#N11). ObviouslyG(@m#N11) consists of all
GZ tables of an essentially typicalgl0(1uN) module with a signature@m#N11 . Define an action of
gl0(1uN) on um)PG(@m#N11) with the relations~33!–~36!. Then the linear envelopeV(@m#N11)
of G(@m#N11) is an essentially typicalgl0(1uN) module with a signature@m#N11 . After compar-
ing the relations~90!–~93! with ~33!–~36! and having in mindObservation 1we have:

Observation 2:The subspaceV(@m# i u i>N11),V(@m#) is an essentially typical finite-
dimensionalgl0(1uN) module with a signature@m#N11 and a GZ basisG(@m# i u i>N11).

Let ei j ,ekl be any two generators fromgl0(1u`) andum! be an arbitrary vector fromG(@m#).
Considerei j ,ekl as elements fromgl0(1uN),gl0(1u`), whereN11>max(i,j,k,l). Thenum! is a
vector from thegl0(1uN) fidirmod V(@m# i u i>N11),V(@m#) and therefore~Observation 2!

~ei j ekl2~21!deg~ei j !deg~ekl!eklei j !um)5~d jkeil 2~21!deg~ei j !deg~ekl!d l i ek j!um). ~102!

Therefore the linear spaceV(@m#) is a gl0(1u`) module.
Consider any two vectorsx,yPV(@m#),

x5(
i 51

p

a i umi), y5 (
i 5p11

q

a i umi), umi)PG~@m# !,

a iPC, i 51,...,q. ~103!

Let

Ñ5max$N@ umi !#u i 51,...,q%. ~104!

According to~87! all vectorsumi), i 51,...,q, have one and the samek21 signatures, for every
k21>Ñ. Therefore umi)PV(@m#k21uk21>Ñ),V(@m#). Hence x,yPV(@m#k21uk21>Ñ).
The spaceV(@m#k21uk21>Ñ) is agl0(1uÑ) fidirmod ~Observation 2! and, therefore, there exis
a polynomialP of the gl0(1uÑ) generators such thaty5Px. HenceV(@m#) is an irreducible
gl0(1u`) module.

Consider the vectorum̂)PG(@m#) @see~91!#. From Eqs.~90! to ~93! we have

eii um̂)5mi um̂), ; i PN, ~105!

and

ek,k11um̂)50, ;kPN. ~106!

Therefore the irreduciblegl0(1u`) moduleV(@m#) is a highest weight module with a signatur
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@m#[@m1 ,m2 ,...,mk ,...# ~107!

and a highest weight vectorum̂). This completes the proof.

B. C representations

Most of the preliminary work for constructing the representations ofgl(`u1u`) was done in
Sec. II B. It remains to give a precise definition of theC basis in the infinite-dimensional case an
to write down the transformation of the basis under the action of the Chevalley generators

Let

@M #[@ ...,M 2p ,...,M 21 ,M0 ,M1 ,M2 ,...#[$Mi% i PZ ~108!

be a sequence of complex numbers such that

Mi2Mi 11PZ1 , i P@2`;22#ø@1;`#, ~109a!

M 212M1PN, ~109b!

M01M1¹Z. ~109c!

Here and throughout

@2`;a#5$a,a21,a22,...,a2 i ,...%[$a2 i % i PZ1
, ~110!

@b;`#5$b,b11,b12,...,b1 i ,...%[$b1 i % i PZ1
. ~111!

A table uM!, consisting of infinitely many complex numbers

Mi ,2k1u21 , ;kPN, uP$0,1%, i 5@2k2u11;k21#, ~112!

will be called aC table, provided the following conditions hold.
~1! There exists a positive, depending onuM!, integerN@ uM )] such that

Mi ,2k1u215Mi , ;k.N@ uM !], uP$0,1%, i P@12u2k;k21#. ~113!

~2! The coordinatesMi ,2k1u21 , uP$0,1%, take all possible values

Mi ,2k1122u2Mi ,2kPZ1 , kP@11u;`#, i P@2k1u;21#ø@1;k21#, ~114a!

Mi 21,2k2Mi ,2k1122uPZ1 , kP@11u;`#, i P@2k11;21#ø@2;k2u#, ~114b!

M 21,2k2M1,2k1122uPN, kP@11u;`#, ~114c!

M0,2k112u2M0,2k2u[c2k2uP$0,122u%, kP@1;`#. ~114d!

Order the complex numbersMi ,2k1u21 , kPN, uP$0,1%, as in the table below
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uM )

[3
¯ M12u2k ¯ M 21 M0 M1 ¯ Mk21¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M12u2k,2k1u21 ¯ M 21,2k1u21 M0,2k1u21 M1,2k1u21 ¯ Mk21,2k1u21

¯ ¯ ¯ ¯ ¯ ¯

M 21,3 M03 M13

M 21,2 M02

M01

4 .

~115!

We are ready now to state our main and final result.
Proposition 7: To each sequence (108) [see also (109)] there corresponds an irredu

highest weight gl(`u1u`) module V(@M #) with a signature@M#. The basisG(@M #) in V(@M #)
consists of all C tables (115). The transformations of the basis under the action of the gl(`u1u`)
Chevalley generators read:

EkkuM )5S (
i 52uku

uku1u~k!21

Mi ,2uku1u~k!2 (
i 52uku112u~k!

uku21

Mi ,2uku1u~k!21D uM ), kPZ,

~116!

E0,21uM )5~11c1!uM ) ~01! , ~117!

E21,0uM )52c1~L0,22L21,2!uM )2~01! , ~118!

E01uM )52c2~112c1!uM ) ~0,2!
~01! 1~11c1!~2~L21,32L21,2!~L132L21,2!!1/2

3
~L022L21,2!~L022L21,211!

~L032L21,2!~L012L21,2!~L012L21,211!
uM ) ~21,2!

~01! , ~119!

E10uM )52~21!c1~12c2!
~L022L21,22c121!~L032L21,3!~L032L13!

~L032L21,221!~L032L21,2!
uM )2~02!

2~01!

2c1~2~L21,32L21,221!~L132L21,221!!1/2uM )2~21,2!
2~01! , ~120

Ek,k11uM )52c2k12~12c2k!~112c2k11!uM ) ~0,2k12!
~0,2k11!1 (

j Þ052k

k

c2k12c2k11

3S 2
P iÞ052k

k21 ~Li ,2k2L j ,2k1111!P iÞ052k21
k ~Li ,2k122L j ,2k1111!

P iÞ0,j ; i 52k
k ~Li ,2k112L j ,2k11!~Li ,2k112L j ,2k1111!

D 1/2

3
~L0,2k112L j ,2k11!~L0,2k112L j ,2k1111!

~L0,2k122L j ,2k1112!~L0,2k122L j ,2k1111!~L0,2k2L j ,2k1111!
uM ) ~0,2k12!

~ j ,2k11!

1 (
j Þ052k21

k

~11c2k11!~12c2k!

3S 2
P iÞ052k

k ~Li ,2k112L j ,2k12!P iÞ052k21
k11 ~Li ,2k132L j ,2k12!

P iÞ0,j ; i 52k21
k ~Li ,2k122L j ,2k12!~Li ,2k122L j ,2k1211!

D 1/2
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3
~L0,2k122L j ,2k12!~L0,2k122L j ,2k1211!

~L0,2k132L j ,2k12!~L0,2k112L j ,2k12!~L0,2k112L j ,2k1211!
uM ) ~ j ,2k12!

~0,2k11!

1 (
lÞ052k21

k

(
j Þ052k

k

Q~ j ,l !

3S 2
P iÞ0,j ; i 52k

k ~Li ,2k112Ll ,2k12!P iÞ052k21
k11 ~Li ,2k132Ll ,2k12!

P iÞ0,l ; i 52k21
k ~Li ,2k122Ll ,2k12!~Li ,2k122Ll ,2k1211!

D 1/2

3S P iÞ052k
k21 ~Li ,2k2L j ,2k1111!P iÞ0,l ; i 52k21

k ~Li ,2k122L j ,2k1111!

P iÞ0,j ; i 52k
k ~Li ,2k112L j ,2k11!~Li ,2k112L j ,2k1111!

D 1/2

3
~L0,2k122Ll ,2k12!~L0,2k122Ll ,2k1211!~L0,2k112L j ,2k11!~L0,2k112L j ,2k1111!

~L0,2k132Ll ,2k12!~L0,2k112Ll ,2k12!~L0,2k122L j ,2k1111!~L0,2k2L j ,2k1111!

3uM ) ~ l ,2k12!
~ j ,2k11! , kP@1;`#, ~121!

E2k11,2kuM )

52~11c2k21!c2k23~122c2k22!uM ) ~0,2k21!
~0,2k22!2 (

j Þ052k11

k22

~11c2k21!~12c2k22!

3S 2
P iÞ052k12

k22 ~Li ,2k232L j ,2k22!P iÞ052k11
k21 ~Li ,2k212L j ,2k22!

P iÞ0,j ; i 52k11
k22 ~Li ,2k222L j ,2k22!~Li ,2k222L j ,2k2211!

D 1/2

3
~L0,2k222L j ,2k22!~L0,2k222L j ,2k2211!

~L0,2k212L j ,2k22!~L0,2k212L j ,2k2211!~L0,2k232L j ,2k22!
uM ) ~0,2k21!

~ j ,2k22!

2 (
j Þ052k11

k21

c2k22c2k23

3S 2
P iÞ052k11

k22 ~Li ,2k222L j ,2k2111!P iÞ052k
k21 ~Li ,2k2L j ,2k2111!

P iÞ0,j ; i 52k11
k21 ~Li ,2k212L j ,2k21!~Li ,2k212L j ,2k2111!

D 1/2

3
~L0,2k212L j ,2k21!~L0,2k212L j ,2k2111!

~L0,2k2L j ,2k2111!~L0,2k222L j ,2k2111!~L0,2k222L j ,2k2112!
uM ) ~ j ,2k21!

~0,2k22!

1 (
lÞ052k11

k21

(
j Þ052k11

k22

P~ j ,l !

3S 2
P iÞ0,j ; i 52k11

k22 ~Li ,2k222Ll ,2k2111!P iÞ052k
k21 ~Li ,2k2Ll ,2k2111!

P iÞ0,l ; i 52k11
k21 ~Li ,2k212Ll ,2k21!~Li ,2k212Ll ,2k2111!

D 1/2

3S P iÞ052k12
k22 ~Li ,2k232L j ,2k22!P iÞ0,l ; i 52k11

k21 ~Li ,2k212L j ,2k22!

P iÞ0,j ; i 52k11
k22 ~Li ,2k222L j ,2k22!~Li ,2k222L j ,2k2211!

D 1/2

3
~L0,2k212Ll ,2k21!~L0,2k212Ll ,2k2111!~L0,2k222L j ,2k22!~L0,2k222L j ,2k2211!

~L0,2k2Ll ,2k2111!~L0,2k222Ll ,2k2111!~L0,2k212L j ,2k22!~L0,2k232L j ,2k22!

3uM ) ~ l ,2k21!
~ j ,2k22! , kP@2;`#, ~122!
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Ek11,kuM )52~21!c2k11c2k~12c2k12!

3
P iÞ052k

k21 ~L0,2k122Li ,2k2c2k1121!P iÞ052k21
k ~L0,2k122Li ,2k122c2k1121!

P iÞ052k
k ~L0,2k122Li ,2k112c2k1121!~L0,2k122Li ,2k112c2k11!

3
P iÞ052k

k ~L0,2k132Li ,2k11!P iÞ052k21
k11 ~L0,2k132Li ,2k13!

P iÞ052k21
k ~L0,2k132Li ,2k1221!~L0,2k132Li ,2k12!

uM )2~0,2k12!
2~0,2k11!

2 (
j Þ052k

k

~11c2k11!~12c2k12!

3S 2
P iÞ052k

k21 ~Li ,2k2L j ,2k11!P iÞ052k21
k ~Li ,2k122L j ,2k11!

P iÞ0,j ; i 52k
k ~Li ,2k112L j ,2k1121!~Li ,2k112L j ,2k11!

D 1/2

3
P iÞ0,j ; i 52k

k ~L0,2k132Li ,2k11!P iÞ052k21
k11 ~L0,2k132Li ,2k13!

P iÞ052k21
k ~L0,2k132Li ,2k1221!~L0,2k132Li ,2k12!

uM )2~0,2k12!
2~ j ,2k11!

2 (
j Þ052k21

k

c2kc2k11

3S 2
P iÞ052k

k ~Li ,2k112L j ,2k1221!P iÞ052k21
k11 ~Li ,2k132L j ,2k1221!

P iÞ0,j ; i 52k21
k ~Li ,2k122L j ,2k1221!~Li ,2k122L j ,2k12!

D 1/2

3
P iÞ0,j ; i 52k21

k ~L0,2k122Li ,2k12!P iÞ052k
k21 ~L0,2k122Li ,2k!

P iÞ052k
k ~L0,2k122Li ,2k11!~L0,2k122Li ,2k1111!

uM )2~ j ,2k12!
2~0,2k11!

1 (
lÞ052k21

k

(
j Þ052k

k

Q~ j ,l !

3S 2
P iÞ0,j ; i 52k

k ~Li ,2k112Ll ,2k1221!P iÞ052k21
k11 ~Li ,2k132Ll ,2k1221!

P iÞ0,l ; i 52k21
k ~Li ,2k122Ll ,2k1221!~Li ,2k122Ll ,2k12!

D 1/2

3S P iÞ052k
k21 ~Li ,2k2L j ,2k11!P iÞ0,l ; i 52k21

k ~Li ,2k122L j ,2k11!

P iÞ0,j ; i 52k
k ~Li ,2k112L j ,2k1121!~Li ,2k112L j ,2k11!

D 1/2

3uM )2~ j ,2k11!
2~ l ,2k12! , kP@1;`#, ~123!

E2k,2k11uM )52~21!c2k22~11c2k23!c2k21

3
P iÞ052k12

k22 ~L0,2k212Li ,2k232c2k22!P iÞ052k11
k21 ~L0,2k212Li ,2k212c2k22!

P iÞ052k11
k22 ~L0,2k212Li ,2k2221!~L0,2k212Li ,2k2222c2k22!

3
P iÞ052k11

k22 ~L0,2k2Li ,2k22!P iÞ052k
k21 ~L0,2k2Li ,2k!

P iÞ052k11
k21 ~L0,2k2Li ,2k21!~L0,2k2Li ,2k2111!

uM )2~0,2k21!
2~0,2k22!

1 (
j Þ052k11

k22

c2k22c2k21

3S 2
P iÞ052k12

k22 ~Li ,2k232L j ,2k2221!P iÞ052k11
k21 ~Li ,2k212L j ,2k2221!

P iÞ0,j ; i 52k11
k22 ~Li ,2k222L j ,2k2221!~Li ,2k222L j ,2k22!

D 1/2

3
P iÞ0,j ; i 52k11

k22 ~L0,2k2Li ,2k22!P iÞ052k
k21 ~L0,2k2Li ,2k!

P iÞ052k11
k21 ~L0,2k2Li ,2k21!~L0,2k2Li ,2k2111!

uM )2~0,2k21!
2~ j ,2k22!
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1 (
j Þ052k11

k21

~11c2k23!~12c2k22!

3S 2
P iÞ052k11

k22 ~Li ,2k222L j ,2k21!P iÞ052k
k21 ~Li ,2k2L j ,2k21!

P iÞ0,j ; i 52k11
k21 ~Li ,2k212L j ,2k2121!~Li ,2k212L j ,2k21!

D 1/2

3
P iÞ0,j ; i 52k11

k21 ~L0,2k212Li ,2k21!P iÞ052k12
k22 ~L0,2k212Li ,2k23!

P iÞ052k11
k22 ~L0,2k212Li ,2k2221!~L0,2k212Li ,2k22!

uM )2~ j ,2k21!
2~0,2k22!

1 (
lÞ052k11

k21

(
j Þ052k11

k22

P~ j ,l !

3S 2
P iÞ0,j ; i 52k11

k22 ~Li ,2k222Ll ,2k21!P iÞ052k
k21 ~Li ,2k2Ll ,2k21!

P iÞ0,l ; i 52k11
k21 ~Li ,2k212Ll ,2k2121!~Li ,2k212Ll ,2k21!

D 1/2

3S P iÞ052k12
k22 ~Li ,2k232L j ,2k2221!P iÞ0,l ; i 52k11

k21 ~Li ,2k212L j ,2k2221!

P iÞ0,j ; i 52k11
k22 ~Li ,2k222L j ,2k2221!~Li ,2k222L j ,2k22!

D 1/2

3uM )2~ l ,2k21!
2~ j ,2k22! , kP@2;`#. ~124!

The above transformation relations~116!–~124! were derived first forgl(nu1un) from ~68! to
~74! and the supercommutation relations. Therefore they give a representation ofgl(nu1un) for
any n. An essential requirement, when passing ton→`, is given with the condition~113!. It is
straightforward to check thatV(@M #) is invariant under the action of the generators. The res
the proof, which we skip, is rather similar to that of Proposition 6, although technically it is m
involved.

IV. CONCLUDING REMARKS

We have constructed two classes of highest weight irreps of the infinite-dimensiona
superalgebragl(1u`). It should be noted that the GZ representations are inequivalent to tC
representations. More than that: theC representations, being highest weight irreps ofgl(`u1u`),
are not highest weight representations ofgl0(1u`) and vice versa. Indeed, assume that
gl0(1u`) moduleV(@m#) is also a highest weightgl(`u1u`) module with a highest weight vecto
y. Theny has to be a highest weight vector of any of the subalgebrasgl(ku1uk211u). Hence
Eqs.~54! and ~55! have to hold for anyu50,1,kP@12u;`#. Thereforey¹V(@m#) @see~87!#.

Our primary interest in the present investigation is related to its eventual applications
generalization of the statistics in quantum field theory. From this point of view our results
however, very preliminary. The first observation in this respect is that the algebra~for definiteness!
gl(`u1u`) is not large enough. It does not contain important physical observables@like the
energy-momentum of the fieldPm, see~8!#, which are infinite linear combinations of the gener
tors of gl(`u1u`). In order to incorporate them one has to go to the completed central exte
a(`u1u`) of gl(`u1u`) in a way similar to that for the Lie algebragl` ~Ref. 41! or the Lie
superalgebragl`u` .20 This is only the first step. The next one will be to determine tho
gl(`u1u`) modulesV(@M #), which can be extended toa(`u1u`) modules.

The most important and perhaps the most difficult step will be to express the transform
of thegl(`u1u`) modules in terms of natural for the QFT variables, namely via the creation
the annihilation operatorsai

6 of gl(`u1u`), which are just its odd generators.4 This is, however,
not simple and, may not even be necessary in the general context of the representation theo
physical state spaces, the Fock spaces, have to satisfy several additional physical require42

In particular any such space has to be generated from the vacuum~the highest weight vector! by
polynomials of the creation operators, which are only a part of the negative root vectors
imposes considerable restriction on the physically admissible modules. Hence in the applic
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one has to select first the Fock spaces from allgl(`u1u`) modules and then study their transfo
mation properties under the action of the physically relevant operators, in particular of the C

An additional problem is related to the circumstance that in QFT the indices of the CAO
not elements form a countable set. Therefore as a test model one can try to consider fi
gl(`u1u`) statistics in the frame of a lattice quantum field theory or locking the field in a fi
volume.
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Generalized Lame´ functions. I. The elliptic case
S. N. M. Ruijsenaars
Centre for Mathematics and Computer Science, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands
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We present and study a class of functions associated with the two-particle quantum
relativistic Calogero–Moser system with elliptic interactions. The functions may be
viewed as joint eigenfunctions of two independent commuting analytic difference
operators, one of which is the defining quantum dynamics; The second one is
obtained by interchanging the step size and the imaginary period. The functions
depend on parameters that are dense in the natural parameter domain. In essence
they consist of products of Weierstrasss-functions and plane waves. The zeros of
thes-functions satisfy a constraint system encoding both Schro¨dinger equations at
once. © 1999 American Institute of Physics.@S0022-2488~99!02402-0#

I. INTRODUCTION

This paper is concerned with eigenfunctions of an analytic difference operator genera
the Lamédifferential operator,

Hnr52
d2

dx2 1g~g21!`~x!, ~1.1!

where ` is the Weierstrass̀ -function. The pertinent analytic difference operator~henceforth
ADO! can be taken to be

H rel5S s~x2 ibg!

s~x! D 1/2

TibS s~x1 ibg!

s~x! D 1/2

1~b→2b!, ~1.2!

wheres is the Weierstrasss-function. Here, the shift operatorTa is defined by

~Ta f !~x!5 f ~x2a!, aPC, ~1.3!

so that one has

H rel521b2Hnr1O~b4!, b→0. ~1.4!

The subscripts ‘‘nr’’ and ‘‘rel’’ in these formulas stand for ‘‘nonrelativistic’’ and ‘‘relativis
tic.’’ Indeed, the parameterb in the ADO ~1.2! may be viewed as 1/c, with c the speed of light.
Thus,~1.4! encodes the nonrelativistic limitc→`; cf. Ref. 1.

In our survey paper, Ref. 2, and lecture notes, Ref. 3, we have announced and describH rel

eigenfunctions for integer couplingg. These functions generalize theHnr eigenfunctions for
integerg in the form presented on pp. 572–574 of Ref. 4. In this paper we shall not only elab
on theg52,3,... H rel eigenfunctions from Subsection 6.3 in Ref. 3, but also obtain eigenfunc
for a dense set in the relevant parameter space. As we will detail, these functions are, in facjoint
eigenfunctions ofthreecommuting independent ADOs—a feature that generalizes symmetry pro
erties of the hyperbolic specialization described in Subsection 6.3 of Ref. 3.~In the elliptic case,
however, we were unable to find useful ‘‘dual operators’’—operatorsD acting on the spectra
variable in the eigenfunctions in such a way that the latter are alsoD-eigenfunctions with
x-dependent eigenvalues.!
15950022-2488/99/40(3)/1595/32/$15.00 © 1999 American Institute of Physics
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In this paper we shall not dwell on the integrable system context in which the above ope
arise. This setting is discussed at length in Refs. 2, 3, and is not necessary for understand
following. On the other hand, the ancestry of the operators at issue makes itself felt in the a
we emphasize: We are principally interested in real eigenvalues, and, more generally, in
features of the eigenfunctions that are important in promoting them to kernels of unitary ope
that serve to redefine the ADOs involved as bonafide self-adjoint Hilbert space operators. In
connection we recall that ADOs have highly nonunique eigenfunctions~compared to differential
and discrete difference operators!, so that quite novel problems and features arise in their rigor
definition as quantum dynamics.

Next, we mention that a close relativeS0 of the ADO H rel was already introduced by
Sklyanin,5,6 together with ADOs of a similar form. He obtained finite-dimensional representa
spaces for the resulting ADO algebra, spanned by very special eigenfunctions ofS0 . General
integer-g eigenfunctions ofS0 were recently presented in a related context by Krichever
Zabrodin.7 ~Roughly speaking, Sklyanin’s functions correspond to eigenfunctions at the
edges in the finite-gap integration picture expounded in Ref. 7—a viewpoint that is far rem
from our concerns in this paper.! For g.2 these functions have a rather different appearance f
the eigenfunctions already detailed in Ref. 3.

Subsequent to Refs. 3 and 7, Felder and Varchenko obtained integer-g eigenfunctions in a
form substantially equivalent to ours. They arrived at these eigenfunctions via their compreh
study of representations of elliptic quantum groups, tying them in with the ‘‘algebraic B
Ansatz’’ of the Russian school, and with Baxter’s work on theXYZ model. Their work—
inasmuch as it concerns the operatorH rel and its eigenfunctions8,9—has a quite different perspec
tive, emphasizing representation theoretic and algebro-geometric features.~See also a recent pape
by Hasegawa10 for yet another approach.!

Before summarizing our results, we would like to mention three forthcoming papers tha
closely related to the present one. First, we point out that hyperbolic and trigonometric sp
izations are studied in a sequel to this paper.11 In the latter regimes we can proceed much furth
since a second, far more explicit representation of the relevant eigenfunctions exists. The
obtained in these special contexts also illuminate various issues pertaining to the elliptic reg
which we restrict attention in this paper.

Second, the simplest nontrivial parameter choiceg52 will be reconsidered elsewhere.12 This
case admits an in-depth treatment that is independent of~and considerably simpler than! the
present paper and its sequel. Moreover, as a striking feature of this special case we dem
that in a certain scaling limit its eigenfunctions give rise to the well-known eigenfunctions o
quantized nonlinear Schro¨dinger equation~alias the delta-function gas!.

Third, our forthcoming conference contribution Ref. 13 reviews our findings regarding
eralized Lame´ functions and their specializations.

In order to sketch the results of the present paper, it is expedient to trade the Weie
s-function s(z;v,v8) for the function

s~r ,a;z![sS z;
p

2r
,
ia

2 Dexp~2hz2r /p!. ~1.5!

~Here and below, we use the elliptic function notation of Whittaker and Watson;4 we also use
some of the elliptic function lore collected in this reference.! The functions(z) is an entire odd
function with simple zeros in the lattice pointsZp/r 1 iZa. It is p/r -antiperiodic and obeys the
analytic difference equation~henceforth ADE!

s~z1 ia/2!

s~z2 ia/2!
52exp~22irz !. ~1.6!

Moreover, it satisfies
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lim
a→`

s~r ,a;z!5
sinrz

r
~uniformly on compacts!, ~1.7!

lim
r→0

s~r ,a;z!5
sinhpz/a

p/a
~uniformly on compacts!, ~1.8!

and the scaling relation

s~r /l,la;lz!5ls~r ,a;z!. ~1.9!

For later use we also note that iteration of the ADE ~1.6! yields

s~r ,a;z1 iLa !

s~r ,a;z!
5~2 !L exp~arL222irLz !, LPZ. ~1.10!

As a matter of fact, we have occasion to use twos-functions,

sd~z![s~r ,ad ;z!, d51,2. ~1.11!

This is because the functions we define and study are actually joint eigenfunctions of th
ADOs

Hd[e2brS sd~x2 ib !

sd~x! D 1/2

Tia2dS sd~x1 ib !

sd~x! D 1/2

1~ i→2 i !, d51,2. ~1.12!

In view of ~1.5!, each of these may be regarded as a multiple of the ADO H rel ~1.2! when one sets
b5a2dg. The constant up front is chosen such that we have the symmetry property

Hd~a1 ,a2 ,b!5Hd~a1 ,a2 ,a11a22b!. ~1.13!

@Use~1.6! to verify this.# Here and below, it is understood that the parameters belong to the el
parameter domain

E[$~r ,a1 ,a2 ,b!ur ,a1 ,a2.0,bPR%. ~1.14!

We begin by transformingHd to the form

Ad5e2br
sd~x2 ib !

sd~x!
Tia2d

1~ i→2 i !, d51,2, ~1.15!

where

Ad[w~x!21/2Hdw~x!1/2. ~1.16!

The weight functionw(r ,a1 ,a2 ,b;x) occurring here was introduced and studied in Ref. 14. I
a meromorphic solution to the two ADEs

w~x1 iad/2!

w~x2 iad/2!
5

s2d~x1 ib2 iad/2!

s2d~x2 ib1 iad/2!
•

s2d~x1 iad/2!

s2d~x2 iad/2!
, d51,2, ~1.17!

which is why ~1.16! entails~1.15!.
The point of the similarity transformation~1.16! is that the ADOs Ad ~1.15! have meromor-

phic coefficients. Thus, we may and will view them first as linear operators leaving the v
space

M[$F~x!uF meromorphic% ~1.18!
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invariant. ~We shall discuss Hilbert space aspects shortly.! In view of the ADE ~1.6!, the maps
A1 ,A2 :M→M commute. Now at this point it should be emphasized that there are a great
functionally independent ADOs commuting withA1 . ~For instance, when one multiplies the tw
coefficients ofA2 by distinct meromorphic functions with periodia2 , one obtains an ADO that
also commutes withA1 .! However, we are not aware of any general arguments guaranteein
existence of nontrivial joint eigenspaces forA1 and an independent ADO in its commutant.

Even so, we have found two linearly independent joint eigenfunctionsC(6x,y) of the
(a1↔a2)-symmetric pair (A1 ,A2), provided the parameters belong to a dense subsetD of the
parameter spaceE ~1.14!. ~Note both ADOs commute with parity.! The spectral variabley takes
values in an interval (K,`), whereK depends on the parameters. The eigenvaluesE1 andE2 are
real-valued, real-analytic functions, satisfying

Ed~y!;exp~a2dy!, Ed8~y!;a2d exp~a2dy!, d51,2, y→`, ~1.19!

and separating points on (K,`):

K,y1,y2⇒~E1~y1!,E2~y1!!Þ~E1~y2!,E2~y2!!. ~1.20!

The dense subsetD is defined by~3.33!–~3.35! below. For expository simplicity, however, w
shall summarize our results for a subset ofD, namely,

Dirr[$~r ,a1 ,a2 ,~N111!a12N2a2!PEua1 /a2¹Q,N1 ,N2PN%. ~1.21!

Since theb-values allowed here are dense inR for a1 /a2 irrational,Dirr is already dense inE.
Fixing (r ,a1 ,a2 ,b)PDirr , any joint eigenfunction ofA1 andA2 with eigenvaluesE1(y)

andE2(y), resp., is a linear combination ofC(x,y) andC(2x,y). @More precisely, we prove
that this holds true for all sufficiently largey; cf. Appendix B.# The latter are explicitly given by

C~x,y!5N )
j 52N1

N1 1

s2~x1 i ja 1!
• )

d51,2
)
j 51

Nd

s2d~x1zj
d~y!!

3exp@ irx ~2N1N21N11N211!1 ixy#, yP~K,`!. ~1.22!

The normalizing factorN depends on the parameters, but not onx andy. The ‘‘zero functions’’
z1

1 ,...,zN1

1 andz1
2 ,...,zN2

2 are functions from (K,`) to i (0,̀ ) that are real-analytic and such th

lim
y→`

zj
d~y!5 i ja d , j 51,...,Nd , d51,2. ~1.23!

These functions are determined as solutions to a certain constraint system. This system dep
the parameters in a quite complicated fashion, and for brevity we do not describe it here@It is
given by ~3.5!, ~3.10!, and~3.11!; cf. also Appendix A.#

In view of ~1.23!, the functionC(x,y) has asymptotics

C~x,y!;c~x!exp~ ixy!, y→`. ~1.24!

Here, thec-function reads

c~r ,a1 ,a2 ,~N111!a12N2a2 ;x!5N
Pk51

N2 s1~x1 ika2!

P j 50
N1 s2~x2 i ja 1!

expirx ~2N1N21N11N211!.

~1.25!

It is not obvious, but true, that the normalization constantN can be chosen such that
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c~r ,a1 ,a2 ,b;x!5
G~r ,a1 ,a2 ;x2 ib1 i ~a11a2!/2!

G~r ,a1 ,a2 ;x1 i ~a11a2!/2!
, ~1.26!

for parameters inE ~1.14!. Here, the functionG(r ,a1 ,a2 ;z) is the generalized elliptic gamm
function from Ref. 14, which is meromorphic inr , a1 , a2 , andz as long asa1r anda2r stay
in the right half plane. The weight and scattering functions introduced in Ref. 14 can be writt

w~x!5
1

c~x!c~2x!
, ~1.27!

u~x!52exp~22irx !
c~x!

c~2x!
. ~1.28!

@This easily follows from their definition in terms of theG-function; to check~1.28! one also
needs the defining ADEs of the latter; cf. Proposition III.8 in Ref. 14.# Thus, the joint eigenfunc-
tion

F~x,y!5w~x!1/2C~x,y! ~1.29!

of the ADOs H1 andH2 has plane wave asymptotics

F~x,y!;w~x!1/2c~x!exp~ ixy!5@2exp~2irx !u~x!#1/2exp~ ixy!, y→`. ~1.30!

The obvious question arising from these results is now the following: Are there meromo
joint eigenfunctionsC(x,y) for arbitrary parameters inE ~1.14! that depend continuously on th
parameters and are proportional toC(x,y) ~1.22! for parameters inDirr? ~SinceDirr is dense inE,
such an interpolation is unique up to scale factors depending ony and the parameters.! The point
is that the same question has an affirmative answer for thec-function, as we have just seen.

The answer to the joint eigenfunction question, however, may well be ‘‘No.’’ To see why,
need only note that when a sequence (r ,a1,n ,a2,n ,bn)PDirr converges to a point inE, then the
integersNd,n @cf. ~1.21!# typically go to`. Thus, the poles ofC(x,y) due to the first product in
~1.22! becomedenseon the lines Rex5kp/r,kPZ.

From this perspective our next result is quite surprising. To state it, we introduce the
function,

x~x,y![C~x,y!1C~2x,y!. ~1.31!

Now consider a rectangleuRexu,p/r,uIm xu,L. Fixing a1 , a2 , and a compactb-interval I , the
number of poles ofC(x,y) in the rectangle can be made arbitrarily large by choosing suit
bPI ; cf. the previous paragraph. By contrast, the number of poles ofx(x,y) in the rectangle is
bounded above by a finite number that depends only onL and I !

To explain why this is true, we write

x~x,y!5N )
j 52N1

N1 1

s2~x1 i ja 1!
@H~x,y!2H~2x,y!#, ~1.32!

whereH is the holomorphic function

H~x,y![ )
d51,2

)
j 51

Nd

s2d~x1zj
d~y!!•exp@ irx ~2N1N21N11N211!1 ixy#. ~1.33!

The crux is now that one has the identities
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H~ ik1a11 ik2a2 ,y!5H~2 ik1a12 ik2a2 ,y!, kdP$2Nd ,...,0,...,Nd%, d51,2.
~1.34!

Thus, poles ofx(x,y) on the imaginary axis can only occur for

x5 ik1a11 ik2a2 , k1P$2N1 ,...,0,...,N1%, uk2u.N2 , ~1.35!

and so the assertion in the previous paragraph readily follows.
Now it is clear from~1.22! that we have

C~x6p/r ,y!5exp~6 ipy/r !C~x,y!. ~1.36!

Thus,C(x,y) is p/r -periodic orp/r -antiperiodic wheny/r is an integer. Defining

xn~x![x~x,nr !, nr.K, nPN, ~1.37!

we therefore obtain a function that isp/r -periodic/antiperiodic forn even/odd.
As a consequence, there is no apparent obstruction to the existence of a meromorphi

polation for the functionsxn(x). However, if an explicit representation for an interpolation exis
it is most likely vastly different from~1.22!. Indeed, this is the case for the hyperbolic speciali
tion, where we have found an interpolation in terms of a natural generalization of Euler’s h
geometric function; cf. Ref. 3 and papers to appear.

Before turning to orthogonality issues, we point out a consequence of the quasi-perio
relations~1.36! that is of interest in itself, and that will be invoked later on. Recalling~1.3!, we can
rephrase~1.36! by saying thatC(x,y) is an eigenfunction of the ADOsT6p/r . Now this is true for
C(2x,y), too, but then we obtain different eigenvalues. On the other hand, when we intro
the ‘‘quasi-periodicity ADO,’’

Q[Tp/r1T2p/r , ~1.38!

then we obtain

~QC!~6x,y!5EQC~6x,y!, EQ[2 cos~py/r !. ~1.39!

Thus, as already mentioned above, the functionsC(6x,y) are, in fact, joint eigenfunctions o
three commuting independent ADOs A1 , A2 , andQ.

Next, we describe results concerning orthogonality of the functions

Fn~x![w~x!1/2xn~x!, nr.K, nPN, xP~0,p/r !, ~1.40!

in the Hilbert spaceL2((0,p/r ),dx). The weight functionw(x) is given by

w~r ,a1 ,a2 ,~N111!a12N2a2 ;x!5~2 !N11N211N22s2~x!2
P

6 j 51
N1 s2~x2 i ja 1!

P
6k51
N2 s1~x2 ika2!

;

~1.41!

cf. ~1.25! and~1.27!. It is non-negative for realx, and we take the positive square root in~1.40!.
Then the functionw(x)1/2,xP(0,p/r ), has an analytic continuation to an odd,p/r -antiperiodic
function that has no singularities for realx. The factors2(x) in the latter function cancels th
factor 1/s2(x) in ~1.22!, and the remaining poles do not meet the real axis~since a1 /a2 is
irrational!. HenceFn(x) ~1.40! extends to an odd function without singularities for realx, which
is p/r -periodic/-antiperiodic forn odd/even.

As a consequence, the functionsFn(x) are square-integrable on (0,p/r ). One of the principal
results of this paper is now that these functions arepairwise orthogonal, provided the parameter
belong to the region
                                                                                                                



ve

is

elong
t

e

rs

able to
s

. 2, 3;

else-

1601J. Math. Phys., Vol. 40, No. 3, March 1999 S. N. M. Ruijsenaars

                    
C[$~r ,a1 ,a2 ,b!PEu0,b,a11a2%. ~1.42!

To provide more perspective on this parameter restriction, we mention thatC coincides with the
parameter region for which theu-function has winding number 0 asx goes from 0 top/r .
Correspondingly, its logarithm has a rapidly convergent Fourier series. To be specific, we ha@cf.
Ref. 14~4.87!#

u~r ,a1 ,a2 ,b;x;.!5expS 2i (
j 51

` sinh~a12b!nr sinh~a22b!nr

n sinha1nr sinha2nr
sin 2nrxD . ~1.43!

For convergence of the series one needsuIm xu,d/2, with

d[a11a22ua12bu2ua22bu. ~1.44!

Thus, one getsd.0 iff the parameters belong toC ~1.42!. @Note that~1.43! exhibits symmetry
undera1↔a2 andb→a11a22b.#

Provided the parameters belong toC, the w-function admits a similar representation. It
expedient to write, first of all,

w~r ,a1 ,a2 ,b;x!5C2s2~x!s1~x!wr~x!. ~1.45!

Here we have introduced the reduced weight functionwr , and the positive constantC reads

C~r ,a1 ,a2!52r )
k51

`

@12exp~22kra1!#@a1→a2#; ~1.46!

cf. Ref. 14~5.41!. Then one has, from Ref. 14~5.54!,

wr~r ,a1 ,a2 ,b;x!5expS (
j 51

`
sinh~a11a222b!nr

n sinha1nr sinha2nr
cos 2nrxD . ~1.47!

Just as for~1.43!, the series converges in a strip containing the real axis iff the parameters b
to C. ~Note the strip width is larger than for theu-function whena1,b,a2 , say. Note also tha
w is symmetric undera1↔a2 , but not underb→a11a22b.!

Returning now to the Hilbert spaceL2((0,p/r ),dx), we continue by pointing out that th
restriction toC appears to be essential: For parameters outsideC, orthogonality is most likely
violated, in general. Whenever this is the case, there exists no reinterpretation of the ADOs Hd

~1.12! as symmetric Hilbert space operators whose domains include the eigenfunctionsFn and
whose action equals the obvious one.

By contrast, when we restrict the parameters toC, then we obtain self-adjoint operato
~denoted againH1 ,H2! on the closed subspace

H1~K !,H 1[L2~~0,p/r !,dx!, ~1.48!

spanned by the functionsFn ,n.K/r , by proceeding in the obvious way: We define

HdFn[Ed~nr !Fn , n.K/r , d51,2, ~1.49!

extend linearly, and then take the closure. Save for some special cases, we have not been
prove our expectation that the orthocomplement ofH1(K) is spanned by joint eigenfunction
Fn ,n50,1,...,@K/r #, of the ADOs Hd with real eigenvaluesEd(nr).

The functional-analytic problems involved in the above were discussed already in Refs
briefly, the Hilbert space theory of analytic difference operators~as opposed todiscretedifference
operators! is virtually nonexistent. Indeed, from the concrete examples we study here and
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where it is likely that no straightforward generalization of the standard lore concerning
adjointness and eigenfunction expansions for ordinary differential operators exists. Ro
speaking, our strategy is instead to exploit the properties of the explicit eigenfunctions to sol
orthogonality and self-adjointness problems simultaneously—with the above restrictions an
visos, however.

The results surveyed above are detailed in Secs. II–IV. Specifically, in Sec. II we re
attention to the caseb5ga1 ,g52,3,..., which we already briefly considered at the end of o
lecture notes.3 In this special case we need only appeal to the constraint system studied i
pendix A. This case has several other distinctive features compared to the general case.
ticular, the ‘‘nonrelativistic limit’’ a1↓0 can be handled, which gives rise to the integerg eigen-
functions of the Lame´ operator~1.1!.

The general case studied in Sec. III is more involved. Roughly speaking, we wind up wit
constraint systems of the type studied in Appendix A: one corresponding toN1 and the other to
N2 ; these two systems are coupled via the spectral variabley. In this way we can handle a dens
subsetD of E ~1.14! @which contains~1.21!#, but our knowledge about the analytic properties
the eigenfunctions neither suffices to deduce the existence of an interpolation~as discussed above!
nor enables us to say anything about the eigenfunctions of the Lame´ operator forg not equal to an
integer. @Observe that the latter can beformally obtained already via sequences inD irr ~1.21!.
SinceN1 and/orN2 must go to` in this limit, we are losing control of the eigenfunction limi
however.#

Section IV is mainly devoted to a study of self-adjointness and orthogonality questions
principal results have already been summarized above. Here we add that we find it conven
perform a second similarity transformation to ADOsB1 andB2 whose structure is quite close t
those of the ADOsA1 andA2 given by~1.15!. By contrast to the similarity~1.16!, however, this
second similarity does not admit an interpolation to all of the elliptic parameter domainE ~1.14!.
Even so,Ad andBd are sufficiently close to enable us to enlarge the parameter set for which
(A1 ,A2)-eigenfunctions@and hence (H1 ,H2)-eigenfunctions# can be found. The pertinent en
largement is somewhat involved; furthermore, the relation betweenAd and Bd may be quite
confusing on the first acquaintance. The last part of Sec. IV, where we detail the extension,
more easily understood for the hyperbolic specialization; cf. Ref. 11.

In Appendix A we handle the constraint system associated with the zero representation
one of the integersN1 ,N2 vanishes. More precisely, we study a more general system that exh
most ~but not all! of the relevant features of the former system.

In Appendix B we first collect some results on second order analytic difference equa
associated with the notion of a Casorati determinant. These well-known results are used to
Theorem B.1. Roughly speaking, this theorem says that the meromorphic functionsC(6x,y) are
a basis for the jointAd-eigenspace, provided the quotienta1 /a2 is irrational and the spectra
variabley is large enough.@In fact, we work with the similarity transformsBd and their holomor-
phic eigenfunctionsH(6x,y).#

II. EIGENFUNCTIONS FOR THE INTEGER-g CASE

In this section we choose

g5N1152,3,..., ~2.1!

in the ADO H rel ~1.2!, and accordingly obtain eigenfunctions reducing to the Lame´ functions for
b→0. @Pushing the shifts to the right in~1.2!, one sees that theg51 case is trivial, just as forHnr

~1.1!.# To ease the notation in this section, it is convenient to trade the parametersa1 , a2 , and
b in the ADOs ~1.12!–~1.16! for

a152 iv, a25a, b52 i ~N11!v, ~2.2!

and to work with suitable positive multiples of the ADOs ~1.15!.
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Specifically, we start from theA2-multiple

A[
s~x2~N11!v !

s~x!
Tv1~v→2v !, s~x![s~r ,a;x!, ~2.3!

and at first restrictv by requiring

2NvP i ~0,a!. ~2.4!

Substituting~2.2! in ~1.22!, we obtain~noteN250!

C~x,y!5N )
j 52N

N
1

s~x1 j v !
•)

j 51

N

s~x1zj~y!!•exp~xS!, ~2.5!

with

S[ ir ~N11!1 iy . ~2.6!

In the hyperbolic case (r 50) the existence of eigenfunctions of this form can be deduced
arbitrary y. This is because a second far more explicit form of the eigenfunctions exists in
case~cf. Ref. 2 and Sec. II in Ref. 11!, from which the existence of the factorized representat
~2.5! is readily deduced.

Staying with the elliptic case, one may view~2.5! as an Ansatz for the eigenvalue equati
AC5EC. Doing so, one readily verifies the identity

C~x,y!21~AC!~x,y!5E~S,z1 ,...,zN ;x!, ~2.7!

where

E[
1

s~x! S s~x1Nv !e2vS)
j 51

N
s~x2v1zj !

s~x1zj !
1~v→2v !D . ~2.8!

Obviously, the functionE is elliptic in x with periodsp/r ,ia, independently of the choice o
S,z1 ,...,zNPC. Choosing from now on the numbersz1 ,...,zN pairwise incongruent and incon
gruent to 0~modulo the period lattice!, the two summands ofE have simple poles atx[0,
2z1 ,...,2zN .

As a consequence, we obtain an eigenfunction whenever the residues at all of these
cancel.~Indeed, this entails thatE is constant.! Now for x50 we need

e2vS)
j 51

N

s~2v1zj !2~v→2v !50, ~2.9!

so that we must have

S5
1

2v
lnS )

j 51

N
s~zj2v !

s~zj1v ! D . ~2.10!

Substituting this in~2.8!, we now study whether the residues atx52zk can be made to cance
For this we clearly need

s~zk2Nv !)
j 51
j Þk

N

s~zj2zk2v !)
j 51

N

s~zj1v !2~v→2v !50, ~2.11!

wherek51,...,N.
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The system~2.11! of N equations forN unknownsz1 ,...,zN is a special case of the constrai
system mentioned in Sec. I. Introducing the function

f ~w!5s~vw!/v, s~z![s~r ,a;z!, ~2.12!

it can be rewritten as a concrete form of the system~A2!–~A3! studied in Appendix A. Thus we
obtain solutions

z15v1tv, zl5 lv1O~ t2!, dzl /dt5O~ t !, l 52,...,N, t→0, ~2.13!

to the equations~2.11! with k52,...,N.
Now for a general functionf (w) it would not follow that the solution~A8! to the system~A7!

also solves the larger system~A3!. Due to the ancestry of the special case~2.12! of the system,
however, we may deduce that one also hasF1(W(t))50. Indeed, inserting~2.13! and~2.10! in the
elliptic function E(S,z1 ,...,zN ;x), we obtain vanishing residues atx[0,2z2 ,...,2zN , so the
residues atx[2z1 must vanish, too.~Recall that a nonconstant elliptic function must have m
than one pole in a period cell.!

Consequently, the system~2.11! with k51,...,N admits a holomorphic solution curv
z1(t),...,zN(t) of the form ~2.13! for t near 0. Moreover, we may and will choosee.0 small
enough so that we have

zj~ t !P i ~0,̀ !, s~zj~ t !6v !Þ0, s~zj~ t !1Nv !Þ0, j 51,...,N, ~2.14!

for all tP(0,e). This ensures that

y~ t !52~N11!r 2
i

2v
lnS )

j 51

N
s~zj~ t !2v !

s~zj~ t !1v ! D ~2.15!

is a real-valued, real-analytic function on~0,e!. Moreover, since the functionE ~2.8! is
x-independent, we may choosex5Nv, yielding

E5m exp~2 ir v~N11!2 iyv !, m[
s~2Nv !

s~Nv ! )
j 51

N
s~~N21!v1zj !

s~Nv1zj !
. ~2.16!

Clearly,m(t) is holomorphic att50 and satisfies

m~ t !511tvS s8~Nv !

s~Nv !
2

s8~~N11!v !

s~~N11!v ! D1O~ t2!, t→0. ~2.17!

Next, we observe thaty8(t) is analytic in a neighborhood oft50 but for a simple pole at the
origin @cf. ~2.15!#:

y8~ t !52
i

2vt
1O~1!, t→0. ~2.18!

Eventually decreasinge, we can therefore ensure

y8~ t !,0, tP~0,e!. ~2.19!

Theny decreases monotonically from̀to Le2N21[K ast goes from 0 toe. Thus we may and
will trade the parametert for y.

To proceed, we observe that we have

d

dy
m~ t~y!!5m8~ t !~y8~ t !!21→0, y→`; ~2.20!
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cf. ~2.17! and ~2.18!. In view of ~2.16!, this entails

d

dy
E;2 iv exp~2 ir v~N11!2 iyv !, y→`. ~2.21!

~Recall thatf ;g stands forf /g→1.! To obtain the asymptotics ofE5E(y), we note that~2.15!
yields

y~ t !52~N11!r 2
i

2v
lnS tvs~v !

s~Nv !s~~N11!v ! D1O~ t !, t→0. ~2.22!

Combining this with~2.16! and ~2.17!, we readily deduce

E5exp~2 ivr ~N11!2 ivy!1cN exp~ ivr ~N11!1 ivy!1O~exp~3ivy!!, y→`,
~2.23!

with

cN[@s8~Nv !s~~N11!v !2s8~~N11!v !s~Nv !#/s~v !. ~2.24!

The results obtained thus far hold true whenv satisfies~2.4!. Indeed, this restriction guaran
tees first of all that the hypothesis~A6! in Theorem A.1 is satisfied; cf.~2.12!. But it also enables
us to ensure a well-defined eigenvalue formula~2.16!.

Let us now require, more generally,

vP i ~0,̀ !, kv¹ iNa, k51,...,2N. ~2.25!

Then we arrive at the same results as before, but for a subtle change: To guarantee the re
y for t near 0 we may have to chooset in an interval (2e,0). This eventual sign change depen
on the sign of the product in~2.15! for t near 0. In view of~2.13! this sign equals the sign o
vs(v)/s(Nv)s((N11)v); cf. also the asymptotics~2.22!.

Next, we introduce the ADO

Ã[~2 !N11e2i ~N11!rxTia1~ i→2 i !. ~2.26!

Using the iterated ADE ~1.10!, one infers thatÃ equals a positive multiple of the ADO A1 ~1.15!;
cf. ~2.2!. It is readily verified thatC(x,y) ~2.5! is an eigenfunction ofÃ, with the eigenvalue

Ẽ5expS 2ir (
j 51

N

zj~y!D eay1expS 22ir (
j 51

N

zj~y!D e22~N11!are2ay. ~2.27!

~Notice that this actually holds true for anarbitrary dependence ofzj on y.! Clearly, we have

Ẽ;exp~ iN~N11!rv !eay, dẼ/dy;a exp~ iN~N11!rv !eay, y→`. ~2.28!

In summary, we have arrived at joint eigenfunctions,

C~x,y!5N )
j 52N

N
1

s~x1 j v !
•)

j 51

N

s~x1zj !•expS x

2v
lnS )

j 51

N
s~zj2v !

s~zj1v ! D D , ~2.29!

of the two ADOs A ~2.3! andÃ ~2.26!, with eigenvaluesE ~2.16! andẼ ~2.27!, respectively, and
with yP(K,`) and parameters restricted solely by~2.25!. The functionsz1 ,...,zN are solutions to
the constraint system~2.11! of the form ~2.13!, and the solution curve parameterst and y are
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related via~2.15!. Since they-derivatives of both eigenvalues are positive fory large, an eventua
increase ofK ensures that the eigenvalue pair (E(y),Ẽ(y)) separates points on (K,`).

We proceed by obtaining the ‘‘nonrelativistic limit’’v→0 of the constraints~2.10!, ~2.11!
and eigenfunctions~2.29!. First, ~2.10! gives rise to

S52(
j 51

N
s8~zj !

s~zj !
. ~2.30!

Second, dividing~2.11! by v and takingv to 0 yields

N
s8~zk!

s~zk!
1(

j 51
j Þk

N
s8~zj2zk!

s~zj2zk!
2(

j 51

N
s8~zj !

s~zj !
50, k51,...,N. ~2.31!

Proceeding formally, we can also takev to 0 in the eigenfunction~2.29!, yielding the limit
function

C0~x,y!5N0s~x!22N21)
j 51

N

s~x1zj !exp@2xs8~zj !/s~zj !#, y52~N11!r 1 i (
j 51

N
s8~zj !

s~zj !
.

~2.32!

Now ~1.5! entails

s8~x!/s~x!5z~x!22hxr/p, ~2.33!

wherez is the Weierstrassz-function. Therefore, the functions~2.32! and constraints~2.30!, ~2.31!
amount to the Lame´ functions, and associated constraints, as specified by Whittaker and Wa
cf. p. 572 and p. 574, respectively, of Ref. 4. We do not have sufficient information on the so
curve to rigorously control the above limits, though.

Next, we derive a crucial property of the holomorphic function

HN~x![)
j 51

N

s~x1zj !•expS x

2v
lnS )

j 51

N
s~zj2v !

s~zj1v ! D D , ~2.34!

with z1 ,...,zN the above solutions to the constraint system~2.11!. We have suppressed th
y-dependence to prevent ambiguities in the next section. We can do so, since the propert
for arbitraryy; It reads

HN~kv !5HN~2kv !, k51,...,N. ~2.35!

~As will become clear later on, this algebraic property is a key ingredient in our orthogon
analysis.!

The only k-value for which~2.35! is immediate from~2.34! is k51. Indeed, in that case i
holds true forz1 ,...,zN having arbitraryy-dependence. In order to prove~2.35!, we exploit the
ADE

BHN5EHN , B[S )
j 52N

N

s~x1 j v !DAS )
j 52N

N

s~x1 j v !D 21

, ~2.36!

satisfied byHN ; cf. ~2.29!. Recalling~2.3!, we obtain

B5
s~x1Nv !

s~x!
Tv1~v→2v !, ~2.37!
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so this ADE can be written as

s~x1Nv !HN~x2v !1s~x2Nv !HN~x1v !5Es~x!HN~x!. ~2.38!

First, we putx50 in ~2.38!. Using the oddness ofs(x) and the restriction~2.25!, this yields
HN(2v)5HN(v). Now we proceed recursively. Assuming~2.35! for k51,...,l with l ,N, we
first substitutex5 lv in ~2.38! to obtain

s~~ l 1N!v !HN~~ l 21!v !1s~~ l 2N!v !HN~~ l 11!v !5Es~ lv !HN~ lv !. ~2.39!

Next, we putx52 lv and use the assumption and the oddness ofs(x) to get

s~~ l 2N!v !HN~2~ l 11!v !1s~~ l 1N!v !HN~~ l 21!v !5Es~ lv !HN~ lv !. ~2.40!

Comparing ~2.39! and ~2.40!, we obtainHN(kv)5HN(2kv) for k5 l 11, since s(( l 2N)v)
Þ0; cf. ~2.25!. Thus, the asserted identities~2.35! readily follow.

Besides their use in the orthogonality problem, the identities~2.35! have two further striking
consequences. First, consider the function~Casorati determinant!

CN~x![HN~x1v/2!HN~2x1v/2!2HN~x2v/2!HN~2x2v/2!. ~2.41!

Due to ~2.35!, it satisfies

CN~nv !50, n52N11/2,2N13/2,...,N21/2. ~2.42!

This is easily seen to entail the remarkably simple result

CN~x!5aN )
n52N11/2

N21/2

s~x2nv !, ~2.43!

whereaN does not depend onx. @Indeed, the quotient ofCN(x) and the product on the rhs i
elliptic with periodsp/r ,ia, and pole-free in view of~2.42!.#

Second, combining~2.35! and ~2.34!, one deduces

)
j 51

N
s~zj2kv !

s~zj1kv !
5)

j 51

N S s~zj2v !

s~zj1v ! D
k

, k52,...,N. ~2.44!

Thus, the asymptotics~2.13! can be rendered far more precise. Indeed, from~2.13! and~2.44! one
readily obtains

zl5 lv1dlvt l1O~ t l 12!, l 52,...,N, t→0, ~2.45!

where

dl[v l 21)
j 51

N
s~ j v1 lv !

s~ j v1v ! l •)
j 52

N

s~ j v2v ! l
•)

j 5 l
j Þ1

N
1

s~ j v2 lv !
, l 52,...,N. ~2.46!

Note that these coefficients are real and nonzero due to~2.25!. Moreover, one has

lim
v→0

dl5)
j 51

N j 1 l
~ j 11! l •)

j 52

N

~ j 21! l
•)

j 51
j Þ l

N 1
~ j 2 l !

, l 52,...,N. ~2.47!
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III. EIGENFUNCTIONS FOR A DENSE PARAMETER SET

In this section we take the ADOs A1 ,A2 ~1.15! with

b5~N111!a12N2a2 , N1 ,N2PN* , ~3.1!

as our starting point. Using the ADE ~1.10!, they can be rewritten as

A15~2 !N111 exp@a1r ~N111!N12a2r ~2N111!N2#

3S e2ir ~N111!x
s1~x1 iN2a2!

s1~x!
Tia2

1~ i→2 i ! D , ~3.2!

A25~2 !N2 exp@a2r ~N211!N22a1r ~2N211!~N111!#

3S e22irN 2x
s2~x2 i ~N111!a1!

s2~x!
Tia1

1~ i→2 i ! D . ~3.3!

In the hyperbolic case, the existence of joint eigenfunctions of the form

C~x,y!5N )
j 52N1

N1 1

s2~x1 i ja 1!
•)

j 51

N1

s2~x1zj
1~y!!•)

j 51

N2

s1~x1zj
2~y!!•exS, ~3.4!

with

S[ ir ~2N1N21N11N211!1 iy , ~3.5!

can be deduced for arbitraryy; cf. Sec. III in Ref. 11. In the elliptic case we view~3.4! as an
Ansatz for solving the ADEs

AdC5EdC, d51,2. ~3.6!

Correspondingly, we calculate the functions

C~x,y!21~AdC!~x,y!5Ed~S,z1,z2;x!, d51,2. ~3.7!

Using ~1.6!, this readily yields

Ed5ed

1

sd~x! S expS 2ir (
j 51

Nd

zj
dD sd~x1 iN2da2d!exp~2 ia2dS!

3)
j 51

N2d sd~x2 ia2d1zj
2d!

sd~x1zj
2d!

1~ i→2 i !D , d51,2, ~3.8!

with

ed[exp@adr ~Nd11!Nd2a2dr ~2N1N21N11N211!#. ~3.9!

Clearly, Ed is elliptic in x with periods p/r ,iad . From now on we choose the numbe
z1

2d ,...,zN2d

2d pairwise incongruent and incongruent to 0 modulo the period latticepr 21Z
1 iadZ, so that the summands have only simple poles.

It is expedient to study first one of these two elliptic functions. To minimize signs,
concentrate on the functionE2d and study if and when the residues at all of its poles can be m
to vanish, so as to obtain anA2d-eigenfunction with eigenvalueE2d . For x50 it suffices to
require
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S5
2r

ad
(
j 51

N2d

zj
2d1

1

2iad
lnS )

j 51

Nd s2d~zj
d2 iad!

s2d~zj
d1 iad!

D . ~3.10!

Substituting this inE2d , we require next

s2d~zk
d2 iNdad!)

j 51
j Þk

Nd

s2d~zj
d2zk

d2 iad!)
j 51

Nd

s2d~zj
d1 iad!2~ i→2 i !50, ~3.11!

wherek51,...,N2d . Whenever these requirements are met, we obtain vanishing residues
poles. Accordingly, the elliptic functionE2d reduces to a constant, and so we obtain
A2d-eigenfunction.

Introducing the function

f ~w!5s2d~ iadw!/ iad , ~3.12!

the constraint system~3.11! turns into a special case of the system studied in Appendix A. N
this special case arose already in the previous section. Requiring henceforth

kad¹Na2d , k51,...,2Nd , ~3.13!

we can therefore deduce the existence of solutionszj
d(td) to ~3.11! that are holomorphic att50

and satisfy

z1
d5 iad~11td!, zl

d5 iad~ l 1dd,l td
l !1O~ td

l 12!, l 52,...,Nd , td→0, ~3.14!

where

dd,l5~ iad! l 21)
j 51

Nd s2d~ i ~ j 1 l !ad!

s2d~ i ~ j 11!ad! l •)
j 52

Nd

s2d~ i ~ j 21!ad! l
•)

j 51
j Þ l

Nd 1

s2d~ i ~ j 2 l !ad!
. ~3.15!

Substituting these solutions, we deduce as before thatE2d does not depend onx. Taking, for
example,d51 in ~3.10!–~3.14!, we therefore obtain anA2-eigenfunction with eigenvalueE2 ,
independently of the choice ofz1

2 ,...,zN2

2 . But in order to obtain ajoint eigenfunction ofA1 and

A2 , the requirements~3.10!–~3.11! must be metsimultaneouslyfor d51 andd52.
This can be achieved as follows. Consider the functions

gd~ td![
2ir

a2d
(
j 51

Nd

zj
d2

1

2ad
lnS )

j 51

Nd s2d~zj
d2 iad!

s2d~zj
d1 iad!

D , d51,2, ~3.16!

where zd5zd(td) is the above solution to~3.11!. Letting td vary over (2ed,0) or (0,ed) ~the
choice being determined by positivity of the product!, the functionsgd :td °u are real-valued,
real-analytic, and monotone fored small enough, andu goes to` for td→0. Thus the inverse
functions hd :u°td are well defined foru varying over an intervalI d5(rd ,`), and they are
real-analytic and monotone onI d .

Letting now r5max(r1 ,r2), we may viewtd as a functionhd(u) on ~r,`!. Doing so, we
define@cf. ~3.5! and ~3.10!#

y~u![2r ~2N1N21N11N211!2
2ir

ad
(
j 51

N2d

zj
2d2

1

2ad
lnS )

j 51

Nd s2d~zj
d2 iad!

s2d~zj
d1 iad!

D
52r ~2N1N21N11N211!22ir (

d51,2

1

ad
(
j 51

N2d

zj
2d1u, ~3.17!
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wherezd5zd(hd(u)) and uP(r,`). Eventually increasingr, we deduce from~3.14! and holo-
morphy in td that y(u) is a real-analytic, increasing function on~r,`!, taking values in some
interval (K,`). Thus, we may and will viewu as a real-analytic function ofy on (K,`).

The upshot is that there exist real-analytic functions

~K,`!→ i ~0,̀ !, y°zl
d~hd~u~y!!!, l 51,...,Nd , d51,2 ~3.18!

@denoted once more byzl
d(y)#, such that~3.10! and~3.11! with k51,...,N2d are satisfied both for

d51 and ford52. As a result, we obtain a joint eigenfunctionC(x,y),yP(K,`), of the ADOs
A1 andA2 , as advertised. Eventually increasingK, we can ensure

sd~ iN2da2d1zj
2d~y!!Þ0, j 51,...,Nd , d51,2, ~3.19!

for all yP(K,`). Then we choosex5 iN2da2d in ~3.8!, yielding

Ed~y!5expFadr ~Nd11!Nd12ir (
j 51

Nd

zj
d~y!1a2dyG

3
s~2iN2da2d!

s~ iN2da2d! )
j 51

N2d sd~ i ~N2d21!a2d1zj
2d~y!!

sd~ iN2da2d1zj
2d~y!!

, d51,2. ~3.20!

Clearly, these functions are real-valued and real-analytic on (K,`).
They→` asymptotics ofEd is readily determined from the above. First, let us note that~3.5!

and ~3.10! entail

utdu5O~exp~22ady!!, y→`. ~3.21!

Now from ~3.14!, we deduce

Ed5exp~a2dy!~122adrt d1 ia2dd2dt2d1O~ t1
2 !1O~ t2

2 !!, y→`, ~3.22!

d2d[
sd8~ iN2da2d!

sd~ iN2da2d!
2

sd8~ i ~N2d11!a2d!

sd~ i ~N2d11!a2d!
. ~3.23!

Thus, we conclude

Ed~y!5exp~a2dy!~11O~exp@22 min~a1 ,a2!y# !!, y→`. ~3.24!

Moreover, one readily verifies that

d

dy
zl

d~y!→0, l 51,...,Nd , d51,2, y→`, ~3.25!

so that~3.20! entails

d

dy
Ed~y!;a2d exp~a2dy!, y→`. ~3.26!

From this large-y asymptotics we see thatEd(y) is an increasing function ofy for y sufficiently
large. Thus, eventually increasingK, we may and will assume that the eigenvalue pair separ
points on (K,`). @I.e., ~1.20! holds true.#

Summarizing, we have proved the existence of joint eigenfunctions when the parameteb is
given by~3.1! anda1 ,a2 are restricted by~3.13! with d51,2. Whenevera1 /a2 is irrational,
the restrictions~3.13! are obviously satisfied for allN1 ,N2PN. But ~3.13! is also compatible
with a1 /a2PQ and afinite number of (N1 ,N2)PN2. To be specific, letting
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a1 /a25n2 /n1 , n1 ,n2PN* , n1 ,n2 coprime, ~3.27!

one easily verifies that~3.13! with d51,2 is satisfied if and only if

NdPN, Nd,nd/2, d51,2. ~3.28!

Of course, for rationala1 /a2 there are infinitely many distinct pairs (N1 ,N2)PN2 yielding
the sameb. But the conditions~3.13! cannot be satisfied for more than one pair.~Indeed, assum-
ing, for instance, that

~M11!a12Na25~M 811!a12N8a2 , M.M 8.0, ~3.29!

one gets (M2M 8)a15(N2N8)a2 , so thatka1PNa2 for somekP$1,...,M21%.! This entails,
in particular, that all of the numbers (N111)a12N2a2 arising from ~3.27! and ~3.28! are
distinct.

Next, we consider the case

b5~N211!a22N1a1 , N1 ,N2PN* . ~3.30!

Clearly, this case can be handled in the same way as the case~3.1!. Specifically, we need only
interchange all subscripts1 and2 in various formulas, for example, in~3.2!–~3.4!. Combining
~3.4!, ~1.25!, ~1.27!, and their obvious counterparts for~3.30!, we obtain in both cases thesame
functionF(x,y) ~1.29!, namely,

F~x,y!5f~N! )
d51,2

)
j 51

Nd s2d~x1zj
d~y!!

@s2d~x1 i ja d!s2d~x2 i ja d!#1/2

3exp@ irx ~2N1N21N11N211!#exp~ ixy!. ~3.31!

@Here,f(N) is the phase of the normalization constantN; cf. ~1.24!–~1.29!; these quantities can
be explicitly calculated from Ref. 14, but we do not need them in the elliptic case—by contr
the hyperbolic case; cf. Sec. III in Ref. 11.# This coincidence is in agreement with the symme
property~1.13! of the ADOs H1 andH2 ~1.12!. Note also that in the rational case theb-values
obtained from~3.1! and ~3.30! are distinct, save for one special case, viz.,n1 ,n2 odd; N1

5@n1/2#,N25@n2/2#, both in ~3.1! and in ~3.30!.
In this section we have thus far excluded the special casesN250 and/orN150. But these

cases can be easily handled, too. Indeed, whenN1 andN2 both vanish, we may and will take

C~x,y!5N
1

s2d~x!
exp~ irx 1 ixy!, b5ad , d51,2, ~3.32!

and when one ofN1 andN2 equals 0, we can proceed just as in Sec. II. Clearly, the resu
functionF(x,y) ~1.29! is given by~3.31! in these special cases, too.

We now summarize and extend the above findings in the following theorem.
Theorem III.1: Fix parameters in the setD,E (1.14) defined by

b5~Na11!aa2N2aa2a , aP$1,2%, N1 ,N2PN, ~3.33!

ka1¹Na2 , k51,...,2N1 ~N1.0!, ~3.34!

ka2¹Na1 , k51,...,2N2 ~N2.0!. ~3.35!

Then there exists KPR such that for all yP(K,`) the following holds true.
~i! The above functions
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z1
1 ,...,zN1

1 ,z1
2 ,...,zN2

2 :~K,`!→ i ~0,̀ !, ~3.36!

are real-analytic solutions to the system of equations (3.5), (3.10), and (3.11)~whered51,2
and k51,...,N2d!; they satisfy (3.19) and have large-y asymptotics

zl
d~y!5 i la d1O~exp~22lady!!, l 51,...,Nd , d51,2, y→`. ~3.37!

~ii ! The ADOs H1 and H2 (1.12) have joint eigenfunctionsF(6x,y) given by (3.31), with
eigenvalues E1(y) and E2(y) given by (3.20).

~iii ! The eigenvalues are real-valued, real-analytic functions on(K,`) satisfying (3.24),
(3.26), and (1.20).

~iv! The ADOs A1 and A2 ~1.15! have joint eigenfunctionsC(6x,y) with eigenvalues
E1(y) and E2(y); explicitly,

C~x,y!5N )
j 52Na

Na 1

s2a~x1 i ja a!
•H~x,y!, ~3.38!

where

H~x,y![ )
d51,2

)
j 51

Nd

s2d~x1zj
d~y!!•exp@ irx ~2N1N21N11N211!1 ixy#. ~3.39!

~v! Setting

H ~`!~x,y![ )
d51,2

)
j 51

Nd

s2d~x1 i ja d!•exp@ irx ~2N1N21N11N211!1 ixy#, ~3.40!

one has

H~x,y!5H ~`!~x,y!1O~exp~22 min~a1 ,a2!y!!, y→`, ~3.41!

where the bound is uniform on x-compacts.
~vi! The poles on the imaginary axis of the function

x~x,y![C~x,y!1C~2x,y! ~3.42!

are simple and can be located only at the points

x5 ikaaa1 ik2aa2a , 6kaP$0,1,...,Na%, 6k2aP$N2a11,N2a12,...%. ~3.43!

Proof: We have already proved~i!–~iv!. The uniform large-y asymptotics~3.41! easily fol-
lows from ~3.37!. Thus, it remains to prove~vi!. To this end we begin by generalizing th
identities~2.35!. Specifically, we claim that the functionH(x,y) satisfies

H~ ik1a11 ik2a2 ,y!5H~2 ik1a12 ik2a2 ,y!, 6kdP$0,...,Nd%, d51,2. ~3.44!

To prove this claim, we use~1.10! and ~3.10! to write

H~ ik1a11 ik2a2 ,y!5p~k1 ,k2! )
d51,2

HNd

d ~ ikdad!, k1 ,k2PZ. ~3.45!

Here, we have introduced
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HNd

d ~x![)
j 51

Nd

s2d~x1zj
d!•expS x

2iad
lnS )

j 51

Nd s2d~zj
d2 iad!

s2d~zj
d1 iad!

D D , ~3.46!

and the prefactor reads

p~k1 ,k2!5 )
d51,2

~2 !Ndk2d exprNd~k2d
2 a2d12k1k2ad!. ~3.47!

Now in ~3.46! they-dependence occurs via thetd-dependence ofzj
d ; cf. ~3.18!. We may therefore

invoke our previous result~2.35! to deduce that our claim~3.44! holds true.~Note that p is
invariant under takingk1 ,k2→2k1 ,2k2 .!

We now exploit the identities~3.44! to locate the poles ofx(x,y) on the imaginary axis. The
product in~3.38! gives rise to poles at

x5 ikaaa1 ik2aa2a , 6kaP$0,...,Na%, k2aPZ. ~3.48!

In view of ~3.34! and~3.35!, all of these poles are simple. Now for6k2aP$0,...,N2a%, the poles
are matched by zeros ofH(x,y)2H(2x,y) due to~3.44!. Therefore, poles ofx on the imaginary
axis must be located at~3.43!. h

It is quite likely thatx(x,y) does have poles at the points~3.43!, i.e., no further cancellation
takes place. It is illuminating to rewrite these points as@cf. ~3.33!#

6 ix5b2a12a22kaaa2k2aa2a , kaP$0,...,Na%, k2aPN, ~3.49!

6 ix5kaaa1~N2a1k2a!a2a , kaP$0,...,Na%, k2aPN* . ~3.50!

Indeed, from this representation it is clear that whenb takes values in a bounded subset ofR, then
the number of poles in a rectangleuRexu,p/r,uIm xu,L is bounded above. Moreover, assumi
a1 /a2¹Q, the restrictions~3.34! and ~3.35! hold for arbitraryN1 ,N2PN* . Thus we may let
N1 ,N2→`, whilst keepingb bounded. Doing so, the points~3.50! diverge away, whereas th
points ~3.49! become

6 ix5b2a12a22k1a12k2a2 , k1 ,k2PN. ~3.51!

The latter limits illuminate the issue of arbitrary-b interpolations discussed already in Sec.
but, of course, they do not imply that an interpolation exists. For one thing, the two summan
x(x,y) have different Floquet multipliers exp(6ipy/r) underx→x1p/r unlessy equalsnr,n
PZ, so that generically no pole/zero cancellation occurs on the lines Rex5kp/r,kPZ* . Thus poles
get dense on these lines asN1 ,N2→`, and so a meromorphic interpolation is not likely to ex
for genericy.

Specializing, however, to

xn~x![x~x,nr !, nr.K, nPN, ~3.52!

we deduce

xn~x1p/r !5~2 !nxn~x!, ~3.53!

so no such obstruction occurs for these functions. But we have neither information conc
parameter continuity nor any uniform bounds available that would help in proving the existen
a meromorphic interpolation.

Before studying orthogonality properties of the functionsxn(x), we should consider the
contingency that the functionsC(x,y) andC(2x,y) are linearly dependent. Now they are man
festly not identically zero, and they have different Floquet multipliers unlessy equalsnr,nPZ, so
we need only study whether one can have
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)
d51,2

)
j 51

Nd s2d~x1zj
d~nr !!

s2d~x2zj
d~nr !!

5C exp@22irx ~2N1N21N11N2111n!#, ~3.54!

whereC is a nonzero constant. Clearly, this equality can only hold if the poles and zeros o
lhs cancel. Recalling the asymptotics~3.34! and ~3.35!, one readily infers that no cancellatio
takes place forn large enough.

For arbitrarynrP(K,`), however, we only know that we havezj
d(nr)P i (0,̀ ). ~Recall that

we have restrictedK such that this is the case.! Since the solution curve gets quite inaccessi
wheny moves away from̀ , it appears hard to exclude pole/zero cancellation, in general. In v
of the ADE ~1.10!, such a cancellation might be compatible with the rhs of~3.54!.

Now, even without this difficulty, we know next to nothing about theminimal K compatible
with the various restrictions we have imposed. Thus, we may just as well assume thatK is chosen
large enough so that for allyP(K,`) the functionsC(x,y) andC(2x,y) are linearly indepen-
dent, and we will do so from now on. Observe that this entails, in particular, that the func
xn(x) ~3.52! do not vanish identically.

We conclude this section with some observations concerning parameter symmetries. T
end we fix r ,a1 ,a2.0 and N1 ,N2PN such that~3.34! and ~3.35! hold true. Definingb1

[(N111)a12N2a2 , we then obtain a point (r ,a1 ,a2 ,b1)PD. Since the representation o
b1 is unique@recall the paragraph containing~3.29!#, we may defineF(r ,a1 ,a2 ,b1 ;x,y) by the
rhs of ~3.31!. Likewise, settingb2[(N211)a22N1a1 yields a point inD, and we may once
more defineF(r ,a1 ,a2 ,b2 ;x,y) by the rhs of~3.31!.

Proceeding in this way, we therefore obtain a well-defined functionF(r ,a1 ,a2 ,b;x,y) for
all points inD. A moment’s thought shows that this function obeys

F~r ,a1 ,a2 ,b;x,y!5F~r ,a1 ,a2 ,a11a22b;x,y!, ~3.55!

F~r ,a1 ,a2 ,b;x,y!5F~r ,a2 ,a1 ,b;x,y!. ~3.56!

Now the w-function w(r ,a1 ,a2 ,b;x) is symmetric undera1↔a2 , but not underb→a1

1a22b. Thus, setting

C~r ,a1 ,a2 ,b;x,y!5w~r ,a1 ,a2 ,b;x!21/2F~r ,a1 ,a2 ,b;x,y! ~3.57!

@cf. ~1.29!#, we are left with the symmetry

C~r ,a1 ,a2 ,b;x,y!5C~r ,a2 ,a1 ,b;x,y!. ~3.58!

Note that these symmetry properties for parameters inD have a bearing on eventual interpolatio
for parameters inE.

IV. ORTHOGONALITY AND SELF-ADJOINTNESS ISSUES

The functionsxn ~3.52! span an infinite-dimensional closed subspace

Hw~K !,Hw[L2~~0,p/r !,w~x!dx!. ~4.1!

The ADOs Ad give rise to densely defined operators inHw(K) ~denoted again byAd) by setting

Adxn[Ed~nr !xn , n.K/r , d51,2, ~4.2!

and extending linearly. The question of whether the operators thus obtained are sym
amounts to the question of whether the functionsxn are pairwise orthogonal. Indeed, orthogon
ity obviously entails symmetry, and symmetry entails orthogonality, since the eigenvalues a
and satisfy~1.20!.
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We are now going to prove symmetry of the operatorsAd ~and hence pairwise orthogonalit
of the functionsxn!, assuming that the parameters belong to the convergence regionC ~1.42!. This
restriction is equivalent to

~Nd11!ad.N2da2d , d51,2, ~4.3!

both whena51 and whena52 in ~3.33!.
Now when we work with the ADOs Ad ~1.15!, then the casesa51 and a52 cannot be

simultaneously handled, sinceA1 andA2 lack invariance under takingb→a11a22b; cf. also
~3.2! and~3.3!. This asymmetry arises from the similarity transformation~1.16!. Indeed, the ADOs
Hd ~1.12! are invariant; cf.~1.13!, but thew-function is not; cf.~1.45!–~1.47!.

On the other hand, we may just as well work with the ADOsH1 andH2 and eigenfunctions
Fn(x) ~1.40!, since~1.48! and~1.49! are unitarily equivalent to~4.1! and~4.2!. But this choice has
the drawback that square root branch points occur.

We shall therefore opt for a third unitarily equivalent setting that can be associated to p
eters inD. It gives rise to economic notation and meromorphic functions, and yields the
objects for the two choices ofa. Specifically, in view of~3.38! we may also consider the function

cn~x![H~x,nr !2H~2x,nr !, ~4.4!

which yield a closed subspace

Hŵ~K !,H ŵ[L2~~0,p/r !,ŵ~x!dx!, ~4.5!

with

ŵ~x![~2 !N11N211N 2 )
j 52Na

Na

s2a~x1 i ja a!22
•w~~Na11!aa2N2aa2a ;x!

51Y )
d51,2

)
6k51

Nd

s2d~x1 ikad!; ~4.6!

cf. ~1.41!. The associated ADOs/operators onHŵ(K) are then given by

Bd5pdS exp~22irN dx!
sd~x1 iN2da2d!

sd~x!
Tia2d

1~ i→2 i ! D , d51,2, ~4.7!

where the prefactor reads

pd[~2 !Nd exp@adr ~Nd11!Nd2a2dr ~2Nd11!~N2d11!#. ~4.8!

@Recall that~3.2! and ~3.3! hold for a51; cf. ~3.1!; the a52 counterparts are obtained b
interchanging all subscripts1 and2.#

Though the simplicity of this choice is already apparent, it should be emphasized th
weight functionŵ(x) does not have a continuous extension to parameters inE ~1.14!, by contrast
to w(x). This can be seen, e.g., as follows. FixN1 ,N2PN* , anda15aP(0,̀ ), and choose
b5(N111)a2N2a2 . Now let a2→qa with q a positive rational number. Thenŵ(x) ~4.6!
clearly has a well-defined limit. But there are infinitely manydistinct pairsk,l PN* yielding the
same bfor a2→qa @i.e., such thatka2 lqa equals (N111)a2N2qa#. Evidently, each of these
pairs yields a different limitingŵ(x).

Likewise, an interpolation obstruction is present for the ADOs Bd . @Choose, e.g.,N25N1

11 andq51 in the previous paragraph. From~4.7! one then sees that the limitingb50 ADOs
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depend onN1 ; cf. ~1.10!.# Of course, this leads one to expect that the joint eigenfunct
H(6x,y) cannot be interpolated either. In the hyperbolic context we show that this expectat
indeed fulfilled; cf. Sec. III in Ref. 11.

As long as we restrict attention to afixedchoice of parameters inD though, the third setting
just detailed is the simplest to study. We shall also use it in Appendix B, where we prove tha
meromorphic joint eigenfunctionM (x) with Bd-eigenvaluesEd(y),d51,2, must be a linear
combination ofH(x,y) andH(2x,y), provideda1 /a2 is irrational andyP(L,`) for someL
>K.

Returning now to the symmetry question, we begin by observing that the functionscn(x)
~4.4! are entire, odd, and 2p/r -periodic. Moreover, provideduku<N1 ,u l u<N2 , they have zeros
in the points

zkl[ ika11 i la 2 , k,l PZ, ~4.9!

@due to~3.44!#, and in the pointszkl1p/r ~since they are eitherp/r -periodic orp/r -antiperiodic!.
Let us now define the vector spaces

O0[$F~x! entire, odd, 2p/r -periodic%, ~4.10!

O1[$FPO0uF~zkl!50, F~zkl1p/r !50, uku<N1 ,u l u<N2%, ~4.11!

O2[$FPO0uF~zkl!50, F~zkl1p/r !50, kPZ,u l u<N2 , and uku<N1 ,l PZ%.
~4.12!

Clearly, we have

O2,O1,O0,Hŵ , ~4.13!

and

cnPO1 , n.K/r . ~4.14!

Next, we fix FPO0 and considerB1F. For N250 we haveB1FPO0 , but for N2.0 we
get

lim
x→0

s1~x!~B1F !~x!52p1s1~ iN2a2!F~2 ia2!, ~4.15!

where we used~4.7! and oddness ofF. Now the rhs does not vanish unlessF( ia2)50, so, in
general, (B1F)(x) has a pole atx50, entailingB1F¹Hŵ . AssumingFPO1 , however, we have
F( ia2)50 andF(p/r 1 ia2)50, so thatB1FPHŵ . More generally, this argument yields th
conclusion

BdO1,Hŵ , d51,2. ~4.16!

Therefore, the ADOs Bd give rise to Hilbert space operators

Bd
~ j ! :Oj→Hŵ , F~x!°~BdF !~x!, ~4.17!

whered51,2 and j 51,2.
It is not hard to see that these operators are densely defined. Indeed,O2 contains the subspac

Od[
sd~x!s2d~x!2

ŵ~x!
Pol~cosrx !, dP$1,2%, ~4.18!

where Pol(t) denotes the space of polynomials int, andOd is clearly dense inHŵ . The following
theorem makes clear why it is important to distinguish between the operatorsBd

(1) andBd
(2) .
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Theorem IV.1: The operators Bd
(2) are symmetric for all parameters inD; moreover, their

adjoints extend the operators Bd
(1) . The operators Bd

(1) are not symmetric for parameters inD\C,
whereas they are symmetric for parameters inDùC.

Proof: For convenience we choosed52; the cased51 can then be handled by interchan
ing the subscripts1 and2 in the following. To prove symmetry ofB2

(2) , it suffices to showI L

5I R , with

I L[E
0

p/r S exp~2irN 2x!
s2~x2 iN1a1!

s2~x!
F* ~x1 ia1!1~ i→2 i ! DG~x!ŵ~x!dx, ~4.19!

I R[E
0

p/r

F* ~x!S exp~22irN 2x!
s2~x1 iN1a1!

s2~x!
G~x2 ia1!1~ i→2 i ! D ŵ~x!dx, ~4.20!

where we takeF,GPO2 , and where we employ the notation

F* ~x![F~ x̄!. ~4.21!

In order to prove equality of these integrals, we introduce the function

I ~x![ŵ~x2e!exp~2irN 2~x2e!!
s2~x2e2 iN1a1!

s2~x2e!
F* ~x1e!G~x2e!, e[

ia1

2
.

~4.22!

From the definition~4.6! of ŵ(x) we deduce that we may rewriteI (x) as

I ~x!5ŵ~x1e!exp~22irN 2~x1e!!
s2~x1e1 iN1a1!

s2~x1e!
F* ~x1e!G~x2e!. ~4.23!

Now ŵ(x) is even ands2(x),F* (x) andG(x) are odd, so we have

I L2I R5E
0

p/r

~ I ~x1e!1I ~2x1e!2I ~x2e!2I ~2x2e!!dx

5E
2p/r

p/r

~ I ~x1e!2I ~x2e!!dx, e[ ia1/2. ~4.24!

Recalling F* and G are 2p/r -periodic and notingŵ is p/r -periodic, it follows thatI (x) is
2p/r -periodic. Thus the integral~4.24! vanishes~by Cauchy’s theorem! wheneverI (x) has no
poles in the stripuIm xu<a1/2. Now since we assumedF,GPO2 , the functionI (x) is, in fact,
entire. Thus we obtainI L5I R , and soB2

(2) is indeed symmetric.
Choosing nextF,GPO1 , we can proceed in the same way as before, but nowI (x) has poles,

in general. But when one ofF,G belongs toO2 , then one easily sees thatI (x) is still entire. Thus,
the domain ofB2

(2)* containsO1 , and the action ofB2
(2)* onO1 coincides with the action of the

ADO B2 . A moment’s thought now shows that this state of affairs holds true on a larger sub
thanO1 , so that the adjoint ofB2

(2) is a proper extension ofB2
(1) . ~One need not require entirenes

for instance.!
To prove the second assertion of the theorem, we determine the location of eventual p

I (x) for F,GPO1 . From~4.22! and~4.6! we infer that the poles ofI (x) are equal to the poles o
the function

J~x![S )
6k51

N2

s1~x2e1 ika2!D 21S )
n52N111/2

N121/2

s2~x1 ina1!D 21

F* ~x1e!G~x2e!.

~4.25!
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Let us first analyze the poles ofJ(x) on the imaginary axis, using the notation

pkn[ ika21 ina1 , kPZ, nPZ11/2. ~4.26!

The first product yields poles at the points

pkn , 6kP$1,...,N2%, nPZ11/2, ~4.27!

and the second one at

pkn , kPZ, 6nP$1/2,...,N121/2%. ~4.28!

Thus, the products yield double poles at

pkn , 6kP$1,...,N2%, 6nP$1/2,...,N121/2%, ~4.29!

and simple poles at

pkn , 6kP$0,N211,N212,...%, 6nP$1/2,...,N121/2%, ~4.30!

pkn , 6kP$1,...,N2%, 6nP$N111/2,N113/2,...%. ~4.31!

Now the functionF* (x1e)G(x2e) has double zeros at

pkn , 6kP$0,...,N2%, 6nP$1/2,...,N121/2%, ~4.32!

and simple zeros at

pkn , 6kP$0,...,N2%, 6n5N111/2. ~4.33!

Therefore, poles ofJ(x) can be located solely at the points

pkn , 6kP$N211,N212,...%, 6nP$1/2,...,N121/2%, ~4.34!

pkn , 6kP$1,...,N2%, 6nP$N113/2,N115/2,...%. ~4.35!

We proceed by proving that for parameters inDùC the latter points lie outside the stri
uIm xu<a1/2. Consider first~4.34!. Whenk andn have the same sign, it is immediate that the
points are outside the critical strip. Now letk.0 andn,0. Then we get

ka21na1>~N211!a22~N121/2!a1.a1/2, ~4.36!

due to~4.3!. Similarly, we haveka21na1,2a1/2 for k,0 andn.0. Next, consider~4.35!.
Taking k.0 andn,0, we now have

ka21na1<N2a22~N113/2!a1,2a1/2, ~4.37!

due to~4.3!; the other cases are then clear.
The upshot is that eventual poles ofJ(x) on the imaginary axis lie outsideuIm xu<a1/2. The

above analysis can be repeated for poles on the line Rex5p/r, yielding the same conclusion. Sinc
J(x) is 2p/r -periodic, we deduce the absence of poles in the critical strip. ThusI (x) has no poles
in the strip either, and so the integral~4.24! vanishes. Hence,B2

(1) is symmetric when~4.3! holds
true.

Finally, we choose parameters inD\C, so that~4.3! is violated. Thus, we either have (N2

11)a2,N1a1 or (N111)a1,N2a2 . In the first case we have

~N211!a22~N121/2!a1,a1/2, ~N211!a22a1/2.2a1/2, ~4.38!
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so at least one of the pointspN211,n ~4.34! is in the critical strip. In the second case we have

N2a22~N113/2!a1.2a1/2, ~4.39!

so at least one of the pointspN2 ,n ~4.35! is in the strip. In either case, the integral~4.24! does not
vanish, in general, since we are free to choose the values ofF and G in the pertinent points.
Therefore,B2

(1) is not symmetric for parameters outside the convergence regionC. h

Taking F5cn ,G5cm in the proof of this theorem, we clearly have

I L2I R5@E2~nr !2E2~mr!#~cn ,cm!. ~4.40!

For parameters inC we therefore conclude that@using ~1.20!#

~cn ,cm!50, n.m.K/r . ~4.41!

But for parameters outsideC we cannot prove that~4.41! is violated. The point is that the relevan
residue sum~s! might vanish.

We conjecture that this does not happen in general. More precisely, fixing parameters inD\C,
we expect that one can find a pairnÞm such that (cn ,cm)Þ0. Choosingb52aa , this conjec-
tured orthogonality breakdown can be explicitly verified foraa.a2a ~with aa¹Na2a/2) andall
pairsnÞm with n2m even. Indeed, in this special case the integral~4.24! with F5cn ,G5cm

equals a nonzero residue sum.@The resulting formula for (cn ,cm) amounts to the formula ob
tained by more direct means in Ref. 12, so we skip the details.#

Since the ADOs Bd and domainsOj are invariant under complex conjugation, the operat
Bd

( j ) admit self-adjoint extensions whenever they are symmetric. Fixing parameters inC, the
operatorsBd

(1) are most likely essentially self-adjoint, but the state of affairs forBd
(2) is quite

opaque to us. We add one observation on the self-adjoint extensions of the latter, ho
Whenever one chooses parameters outsideC and a pairnÞm with (cn ,cm)Þ0, any self-adjoint
extension ofBd

(2) has a domain to whichcn andcm may or may not belong, but if both function
belong to the domain, then the action of the extension on at least one of them cannot coincid
the Bd-action.@If it did coincide, one would deduce (cn ,cm)50, a contradiction.#

Let us now return to the subspaceHw(K) ~4.1! and operatorsAd ~4.2!. For parameters outsid
C, the operatorsAd are not symmetric whenever a pairnÞm exists for which (xn ,xm)Þ0. As
mentioned above, we believe that this is always the case. Choosing parameters inC, however,
~4.41! amounts to pairwise orthogonality of the functionsxn ,n.K/r , so that the operatorsAd are
symmetric, as announced. We also expect that for parameters inC the orthocomplement ofHw(K)
is spanned by joint eigenfunctionsx0 ,...,xM ,M5@K/r #, of the ADOs Ad with real eigenvalues.
~If so, the ADOs Ad are essentially self-adjoint on the linear span ofx0 ,x1 ,..., of course.!

We conclude this section by exploiting the ADOs Bd ~4.7! and their eigenfunctions
H(6x,y) ~3.39! in yet another way. Specifically, we use them to obtain and study joint ei
functions of the ADOs Ad(b) ~1.15! for b52N1a12N2a2 and for b5(N111)a11(N2

11)a2 . Here we haveN1 ,N2PN, anda1 ,a2 are restricted by~3.34! and ~3.35!.
Let us recall first that both forb5(N111)a12N2a2 and forb5(N211)a22N1a1 we

obtain thesameADOs Bd and eigenfunctionsH(6x,y). Thus, in both cases we may denote t
ADOs by Bd(N1 ,N2), and their eigenvalues and eigenfunctions byEd(N1 ,N2 ;y) and
HN1 ,N2

(6x,y). The key observation is now that we have the identities

Ad~2N1a12N2a2!5r dBd~N1 ,N2!, d51,2, ~4.42!

Ad~~N111!a11~N211!a2!5PN1 ,N2
~x!21r dBd~N1 ,N2!PN1 ,N2

~x!, d51,2,
~4.43!

where we have introduced
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r d[expa2dr ~2N111!~2N211!, d51,2, ~4.44!

PN1 ,N2
~x![ )

d51,2
)

j 52Nd

Nd

s2d~x1 i ja d!, N1 ,N2PN. ~4.45!

@Indeed, this can be verified directly from~1.15! and ~4.7! by using the ADE ~1.10!.#
As a result, we deduce

Ad~2N1a12N2a2!HN1 ,N2
~6x,y!5r dEd~N1 ,N2 ;y!HN1 ,N2

~6x,y!, ~4.46!

Ad~~N111!a11~N211!a2!PN1 ,N2
~x!21HN1 ,N2

~6x,y!

5r dEd~N1 ,N2 ;y!PN1 ,N2
~x!21HN1 ,N2

~6x,y!. ~4.47!

Thus, we obtain the joint eigenfunctions announced above. We claim that they→` asymptotics
of these new eigenfunctions and eigenvalues ties in with the asymptotics for the dense par
setD. ~Notice that the new parameters do not belong toD.! More precisely, we claim that this
holds true when we set

C~x,y![NHN1 ,N2
~x,y~N1 ,N2!!, b52N1a12N2a2 , ~4.48!

C~x,y![NPN1 ,N2
~x!21HN1 ,N2

~x,y~N1 ,N2!!, b5~N111!a11~N211!a2 ,
~4.49!

where

y~N1 ,N2![y2~2N111!~2N211!r , ~4.50!

so that the associated eigenvalues read

Ed~y!5r dEd~N1 ,N2 ;y~N1 ,N2!!, d51,2. ~4.51!

To prove this claim, we recall theH-asymptotics given by~3.40! and ~3.41!. It entails that
C(x,y) as just defined satisfies~1.24!, where thec-function reads

c~2N1a12N2a2 ;x!5N )
d51,2

)
j 51

Nd

s2d~x1 i ja d!•exp2 irx ~2N1N21N11N2!,

~4.52!

c~~N111!a11~N211!a2 ;x!5N )
d51,2

)
j 50

Nd 1

s2d~x2 i ja d!
•exp2 irx ~2N1N21N11N2!.

~4.53!

The point is now that this agrees with the interpolation~1.26! for a suitable choice ofN
5N(r ,a1 ,a2 ,b). ~This readily follows from Proposition III.8 in Ref. 14.! Similarly, the eigen-
values ~4.51! have once more they-asymptotics~1.19!, as is clear from the asymptotics o
Ed(N1 ,N2 ;y) and the definition~4.44! of r d .

It is easily checked that the new eigenfunctionsC(x,y) ~4.48! and ~4.49! also satisfy the
quasiperiodicity relations~1.36!. Thus, they are eigenfunctions of the ADO Q ~1.38! with eigen-
value 2 cos(py/r); cf. ~1.39!. Furthermore, choosinga1 /a2 irrational, the uniqueness result i
Appendix B applies. All of these findings are consistent with the existence of interpolating m
morphic joint (A1 ,A2 ,Q)-eigenfunctionsC(x,y) for parameters inE ~1.14!, but they show once
more that such an interpolation must have striking analyticity properties.

For instance, takingN15N250 in ~4.48!, we obtain
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C~x,y!5expixy, b50; ~4.54!

cf. ~3.39!, ~1.24!, and~1.26! with b50. Now when we fixa1 anda2 with a1 /a2 irrational, and
let the numberb[(N111)a12N2a2 converge to 0~by takingN1 ,N2→` in a suitable way!,
then the poles of the associated functionsC(x,y) ~1.22! become dense on the lines Imx
5kp/r,kPZ. It is fully unclear to us whether and how~suitabley-dependent multiples of! these
functions converge to the entire function~4.54! asb→0. But if a continuous interpolation can b
found, then the existence of this limit would be a corollary.

It should be noted that theb-values in~4.48! and ~4.49! are outside the orthogonality regio
C ~1.42!. Of course, ‘‘orthogonality’’ refers to the Hilbert spaceL2((0,p/r ),w(x)dx), with
w(x)5w(r ,a1 ,a2 ,b;x). Now from ~1.27!, ~4.52!, and~4.53! we have

w~2N1a12N2a2 ;x!5~2 !N11N2N22ŵN1 ,N2
~x!, ~4.55!

w~~N111!a11~N211!a2 ;x!5~2 !N11N2N22PN1 ,N2
~x!2ŵN1 ,N2

~x!, ~4.56!

whereŵN1 ,N2
(x) is given by ~4.6!. Therefore, the analysis embodied in Theorem IV.1 can

applied to theodd linear combinations,

zn~x![C~x,nr !2C~2x,nr !, nPN, nr.K1~2N111!~2N211!r , ~4.57!

to deduce orthogonality whenever~4.3! is satisfied.
For the even combinationsxn(x), though, this analysis renders it quite unlikely that orthog

nality holds true. In fact, for the trigonometric specialization withb52N1a1 ,N1.0, we prove
in Sec. IV of Ref. 11 that orthogonality is indeed violated. Thus, in the elliptic case this mus
be generically true.@Of course, the two cases whereN15N250, namelyb50 and b5a1

1a2 , are exceptional in this regard; cf.~4.54!; observe that they correspond to the boundary
C.#

Finally, we point out that the functionsF̃(x,y) ~1.29! for the newb-values (N111)a1

1(N211)a2 and2N1a12N2a2 are in essence equal to the functionsF(x,y) ~3.31! for the
b-values (N111)a12N2a2 and (N211)a22N1a1 . More precisely, we have

F̃~x,y!5xF~x,y~N1 ,N2!!, ~4.58!

wherex is a normalizing phase.@Indeed, this is readily verified by combining~4.48!, ~4.49! with
~4.55!, ~4.56!.#

This intimate relation@and also the formulas~4.42!–~4.51!, for that matter# can be understood
from a consideration of the ADOs Hd(b) given by ~1.12!. Indeed, it is straightforward to verify
that one has the identity

Hd~2N1a12N2a2!5r dHd~~N111!a12N2a2!, d51,2, ~4.59!

so the symmetry~1.13! also entails the identity

Hd~~N111!a11~N211!a2!5r dHd~~N111!a12N2a2!, d51,2. ~4.60!

This explains why~4.58! holds: the relevant ADOs areproportional.
More generally, a consideration of the zeros of the coefficients ofHd(b) shows that propor-

tionality of Hd(b1) andHd(b2) @for arbitrarya1 ,a2P(0,̀ )# not only holds forb25b1 ~trivially !
andb25a11a22b1 @cf. ~1.13!#, but also whenb1 is of the quite special form

2b15ka11 la2 , k,l PZ, ~4.61!

andb2 satisfies
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2b2P$ka11 la2 ,ka11~2 l 12!a2 ,~2k12!a11 la2 ,~2k12!a11~2 l 12!a2%.
~4.62!

Thus we are dealing with the casek,l P2Z for the b-values at issue.
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APPENDIX A: THE CONSTRAINT SYSTEM

Let f (w) be an entire, odd function satisfying

f ~w!5w1O~w3!, w→0. ~A1!

Fixing N>2, define functionsF1 ,...,FN by

Fk :CN→C, W° f ~wk2N!)
j 51
j Þk

N

f ~wk2wj11!)
j 51

N

f ~wj11!2~W→2W!. ~A2!

Then we have the following result concerning the system ofN equations:

Fk~W!50, k51,...,N, ~A3!

for N unknownsw1 ,...,wN .
Theorem A.1: The system (A3) admits the solution

W0[~1,2,...,N!, ~A4!

and the determinant of the functional matrix

~DF !kl[] lFk , k,l 51,...,N, ~A5!

vanishes for W5W0 . Assuming

f ~k!Þ0, k51,2,...,N11, ~A6!

the system of N21 equations

Fk~W!50, k52,...,N, ~A7!

for N unknowns w1 , . . . ,wN admits a unique solution of the form

W~ t !5~11t,w2~ t !, . . . ,wN~ t !!, ~A8!

near W0 , with wk(t) holomorphic at t50 and such that

wk~ t !5k1O~ t2!, wk8~ t !5O~ t !, t→0, k52,...,N. ~A9!

Moreover, assuming that f(w) is real-valued for real w, the functions wk(t) are real-valued for
tP(2e,e) and e small enough.

Proof: Letting W5W0 , the second term on the rhs of~A2! vanishes, sinceW0,151. The first
term vanishes fork5N, sinceW0,N5N. For k,N the first term vanishes too, sincef (wk2wj

11) yields a zero whenj 5k11. Thus,W0 solves the system~A3!.
Next, we calculate the functional matrix (DF)(W0). Due to the factorf (2w111) in the

second term on the rhs of~A2!, this term can only yield a nonvanishing contribution to] lFk(W0)
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for l 51, and then the partial]1 must act onf (2w111). Sincef (2wk1wj11) yields a zero for
k52,...,N and j 5k21, the second term only contributes to (]1F1)(W0). Specifically, using
f 8(0)51 @cf. ~A1!# we get

~]1F1!~W0!5 f ~12N!)
j 53

N

f ~2 j 12!)
j 51

N

f ~ j 11!1 f ~212N!)
j 52

N

f ~ j !)
j 52

N

f ~2 j 11!

5)
j 52

N

f ~2 j 11!)
j 52

N

f ~ j !•@ f ~N11!1 f ~212N!#50, ~A10!

since f is odd.
To calculate the remaining partials, we need only take the first term into account. Takin

k5N, the factorf (wN2N) yields a zero unlessl 5N. Thus, we get

~] lFN!~W0!50, l 51,...,N21, ~A11!

~]NFN!~W0!5 )
j 51

N21

f ~N112 j !)
j 51

N

f ~ j 11!5 f ~N11!)
k52

N

f ~k!2. ~A12!

Taking nextk,N, we get a zero forj 5k11 unless the pertinent factor is differentiated. Hen
we obtain

~] lFk!~W0!50, k,N, lÞk,k11, ~A13!

~]k11Fk!~W0!52 f ~k2N! )
j Þk,k11

f ~k2 j 11!)
j 51

N

f ~ j 11!, k,N, ~A14!

~]kFk!~W0!52~]k11Fk!~W0!, 1,k,N. ~A15!

Summarizing, the functional matrix is of the form

~DF !~W0!5S 0 2a1 0 ¯ 0 0

0 a2 2a2 ¯ 0 0

A A A � A A

0 0 0 ¯ aN21 2aN21

0 0 0 ¯ 0 aN

D , ~A16!

so its determinant vanishes.
From now on we assume~A6! holds true. Then we deduce that

a2 ,...,aNÞ0, ~A17!

so the principal minor with indices 2,...,N is nonzero. Therefore, the implicit function theore
guarantees a solution to the system~A7! with the asserted properties.@Note that~A9! amounts to
wk8(0)50, k52,...,N; these relations follow from the explicit formula~A16! via implicit differ-
entiation.# h

For a general functionf the solutionW(t) to ~A7! need not be a solution to~A3!, i.e., one has
F1(W(t))Þ0 for t near 0. On the other hand, wheneverf is such thatF1(W(t))50 for t near 0,
one readily deduces from the inverse function theorem that one must haveuDF(W(t))u50 for t
near 0.
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APPENDIX B: UNIQUENESS OF JOINT EIGENFUNCTIONS

As we have seen in Sec. IV, the joint eigenspace

V~y![$MPMuBdM5Ed~y!M ,d51,2%, ~B1!

with M given by ~1.18!, the ADOs Bd by ~4.7!, and their eigenvaluesEd(y) by ~3.20!, contains
the holomorphic functionsH(x,y) andH(2x,y), and hence all of their linear combinations. B
whena1 /a2 is rational, thenV(y) is infinite-dimensional. Indeed, lettinga15pa anda25qa
with p andq coprime integers, allmPM with period ia have periodsia1 and ia2 , too. Thus,
for any two multipliersm1 ,m2PM with period ia, we have

m1~x!H~x,y!1m2~x!H~2x,y!PV~y!. ~B2!

This entails dim (V(y))5`, as asserted.
By contrast, whena1 /a2 is irrational, thenV(y) is 2-dimensional fory sufficiently large.

This is the content of Theorem B.1 below. As a preparation for this theorem and its proof we
some well-known general features of the second order ADEs at issue in this paper; cf., fo
example, No¨rlund’s monograph.15

We start from an ADE of the form

f 1~x!M ~x1c!1 f 2~x!M ~x2c!5g~x!M ~x!, cPC* , ~B3!

where f 1 , f 2 ,gPM with f 1 , f 2Þ0, and where only solutionsMPM are considered. Le
M1 ,M2 be two solutions to~B3!. Then the Casorati determinant,

C~M1 ,M2 ;x![M1~x1c/2!M2~x2c/2!2M1~x2c/2!M2~x1c/2!, ~B4!

vanishes identically iffM1 /M2 belongs to the fieldFc of c-periodic meromorphic functions
Assuming from now onM1 /M2¹Fc , the function~B4! is a solution to the first order ADE

C~x1c/2!

C~x2c/2!
5

f 2~x!

f 1~x!
, ~B5!

as is readily verified.
Next, assumeM3(x) is a third solution to~B3!. Then one easily verifies the identity

M3~x!5m1~x!M2~x!2m2~x!M1~x!, ~B6!

with

mj~x![C~M j ,M3 ;x1c/2!/C~M1 ,M2 ;x1c/2!, j 51,2. ~B7!

Now quotients of Casorati determinants arec-periodic in view of the ADE ~B5!, so one has
m1 ,m2PFc . Conversely, any function of the form~B6! with m1 ,m2PFc solves~B3!. Whenever
two solutions exist whose Casorati determinant is not identically zero, the solution spa
therefore, 2-dimensional over the fieldFc of c-periodic meromorphic functions.

Consider now two ADEs of the form~B3!, with shift parameters

c15 ia1 , c25 ia2 , a1 ,a2.0. ~B8!

Assume that two joint solutions exist whose Casorati determinants w.r.t.c1 andc2 are nonzero.
Whena1 /a2PQ, then the joint solution space is infinite-dimensional, as we have already
above.~Here and from now on, the field of scalars is againC.! It may well be that fora1 /a2

irrational one can show that the assumptions just stated imply that the joint solution sp
2-dimensional, but we are not aware of a proof.
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For the concrete situation encountered in the main text, however, we haveexplicit solutions
available. We shall now exploit this to prove 2-dimensionality for the case at hand.

Theorem B.1: Assume a1 /a2¹Q. Then there exists L>K such that for all yP(L,`) the
joint eigenspaceV(y) (B1) is 2-dimensional with basis vectorsH(x,y) andH(2x,y).

Proof: Consider the quotient function

Q~x![H~x,y!/H~2x,y!, yP~K,`!. ~B9!

In view of ~3.39! and ~3.5!, it reads

Q~x!5 )
d51,2

)
j 51

Nd s2d~x1zj
d!

s2d~2x1zj
d!
•e2xS, S5 ir ~2N1N21N11N211!1 iy . ~B10!

Sincezj
dP i (0,̀ ), the functionQ(x) is analytic for RexP(0,p/r ). We claim that there existsL

>K such that for allyP(L,`) we have

lim
Im x→`

Q~x!50, RexP~0,p/r !. ~B11!

To prove this claim, we first note that the ADE ~1.10! entails the bound

Us~r ,a;x1z!

s~r ,a;x2z!
U<C expS 4r uzu

Im x

a D , RexP~0,p/r !, zP i ~0,̀ !, Im x→`. ~B12!

Therefore we have

uQ~x!u5O~exp@2~rh2y!Im x# !, RexP~0,p/r !, Im x→`, ~B13!

with

h[2S 1

a1
(
j 51

N2

uzj
2u1

1

a2
(
j 51

N1

uzj
1u D 22N1N22N12N221. ~B14!

Now the sums have finite limits asy→` @recall ~3.14!#, so there existsL>K such thatrh,y for
all yP(L,`). Hence, our claim follows.

Fixing yP(L,`), it now follows from ~B11! that Q(x) is neither ia1-periodic nor
ia2-periodic. Therefore, the Casorati determinants ofH(x,y) andH(2x,y) w.r.t. ia1 and ia2

are nonzero. LettingM (x)PV(y) ~B1!, we then have both

M ~x!5l1~x!H~x,y!1l2~x!H~2x,y!, ~B15!

with l1 ,l2PFia1
, and

M ~x!5m1~x!H~x,y!1m2~x!H~2x,y!, ~B16!

with m1 ,m2PFia2
.

Next, we combine~B15! and ~B16! to obtain

l2~x!2m2~x!5~m1~x!2l1~x!!Q~x!. ~B17!

Sincel1(x) andl2(x) are ia1-periodic meromorphic functions, they are analytic on the lin
Rex5rP@0,p/r #, save for finitely manyr. Similarly, m1(x) andm2(x) have this property. Now
let r0P(0,p/r ) be such thatl1 , l2 , m1 , andm2 are analytic on Rex5r0. By periodicity,l1

andm1 are bounded on this line, so~B11! and ~B17! entail
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lim
Im x→`

~l2~x!2m2~x!!50, Rex5r0P~0,p/r !. ~B18!

In particular, this implies that

lim
k→`

l2~r01 ika2!5m2~r0!, kPN. ~B19!

Thus far, we have not used our assumption thata1 /a2 is irrational. But now we can combine
this assumption with~B19! to deduce thatl2(x) equalsm2(r0) for Rex5r0 and so for allx.
@Indeed, the numbersr01 ika2 , k.N, are dense (modia1) in the intervalr01 i @0,a1) for
arbitraryNPN.# Consequently, we must havel2(x)5m2(x)5c2 andl1(x)5m1(x)5c1 . h
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Generalized Lame´ functions. II. Hyperbolic
and trigonometric specializations

S. N. M. Ruijsenaars
Centre for Mathematics and Computer Science, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands

~Received 24 April 1998; accepted for publication 17 September 1998!

In Part I@J. Math. Phys.40, 1595~1999!# we studied eigenfunctions of the quantum
dynamics that defines the two-particle relativistic Calogero–Moser system with
elliptic interaction. In the present paper we consider the same system with hyper-
bolic and trigonometric interactions. In these special regimes the eigenfunctions are
shown to admit an elementary representation that is far more explicit than the
‘‘zero representation’’ of Part I. In particular, the new representation can be ex-
ploited to prove that the hyperbolic eigenfunctions can be chosen to be symmetric
under interchanging position and momentum variables~self-duality!. In the trigo-
nometric case duality properties are derived, too, and several orthogonality and
completeness results are obtained. ©1999 American Institute of Physics.
@S0022-2488~99!02502-5#

I. INTRODUCTION

In the preceding paper1 ~henceforth denoted by I! we obtained and studied joint eigenfun
tions of two commuting analytic difference operators~ADOs! A1 andA2 @given by Eq.~1.15! of
I or I~1.15!#. The coefficients of these ADOs are, in essence, elliptic. More precisely, both ADOs
Ad have meromorphic coefficients with real periodp/r , r .0, and imaginary quasi-periodiad ,
ad.0, d51,2. In the present paper we study hyperbolic and trigonometric specializations o
operators and functions introduced in I, referring the reader to the Introduction of I for a de
tion of the context from which the pertinent operators arise, their connection to the Lame´ operator,
and literature dealing with the subject area involved.

On the one hand, the results obtained in this paper illuminate the elliptic regime, inasmu
various questions left open in I can be answered for the hyperbolic and trigonometric regim
the other hand, the special cases are of independent interest, and have some remarkable fe
longer present at the elliptic level. We study the hyperbolic case in Secs. II and III, the trig
metric one in Sec. IV. Though we begin each section by indicating how the zero representa
the eigenfunctions obtained in I can be adapted, we need not and will not use these results.
we reobtain the zero representation from a second one that is quite elementary and explici
generally, this paper is largely independent of I, especially as concerns the hyperbolic cas

We proceed by sketching our hyperbolic results, turning to trigonometric results toward
end of this Introduction. Forr 50 the commuting ADOs I~1.15! reduce to

Ad~b!5
sd~x2 ib !

sd~x!
Tia2d

1~ i→2 i !, d51,2, ~1.1!

where

~Ta f !~x!5 f ~x2a!, aPC. ~1.2!

Here and below, we use the notation

sd~x!5sinh~px/ad!, cd~x!5cosh~px/ad!, ed~x!5exp~px/ad!, d51,2. ~1.3!
16270022-2488/99/40(3)/1627/37/$15.00 © 1999 American Institute of Physics
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@We should point out that our hyperbolicsd-function differs from the hyperbolic specialization o
our elliptic sd-function by a factorad /p; cf. I~1.11! and I~1.8!. Though this may give rise to
confusion, we are opting for this abuse of notation in order to minimize clutter from consta#

Unless explicitly mentioned otherwise, we choose the parameters occurring here in th
perbolic domain

H[$~a1 ,a2 ,b!ua1 ,a2.0,bPR%. ~1.4!

This ensures that the Hamiltonians

Hd~b![S sd~x2 ib !

sd~x! D 1/2

Tia2dS sd~x1 ib !

sd~x! D 1/2

1~ i→2 i !, d51,2, ~1.5!

are formally self-adjoint. The latter are related to the ADOs Ad by the similarity

Hd5w~x!1/2Adw~x!21/2. ~1.6!

Here,w(a1 ,a2 ,b;x) is the hyperbolic weight function studied in Ref. 2; cf. also I~1.16!, I~1.17!.
Save for the functional-analytic results in Sec. IV of I, it is straightforward to specialize

results in I to the hyperbolic regime. As a matter of fact, considerable simplification occu
several places, in particular, in Appendix B of I, where uniqueness of joint eigenfunctio
studied.

The latter uniqueness results are the only ones needed, however. Indeed, we start
representation of the joint eigenfunctions that looks quite different from the zero represen
obtained in I. This new representation holds true for the dense subset ofH ~1.4! given by

Dhyp[$~a1 ,a2 ,b!ua1 ,a2.0,b5ka11 la2 ,k,l PZ%. ~1.7!

Thus no (k,l )-dependent restriction on (a1 ,a2) occurs, by contrast to the dense subsetD,Dhyp

that arises upon specializing the zero representation in I.
More is true: We could even allowa1 anda2 to be arbitrary numbers inC* . Similarly, x and

the spectral variablep may be chosen complex. Indeed, for a fixedb of the form ka11 la2 ,
k,l PZ, we obtain functionsMk,l(a1 ,a2 ;6x,p) that are one-valued analytic functions in all
their four arguments, and that satisfy the joint eigenfunction equations

AdM52cd~p!M , d51,2. ~1.8!

The variablep is related to the variabley used in I via

p5a1a2y/p. ~1.9!

This rescaling ensures that the eigenfunctions are symmetric under interchangingx and p ~self-
duality!. To be sure, this property is by no means evident from the explicit formulas—it is
quantum translation of a classical self-duality property that is not manifest either, cf. Ref. 3.
turns out, quantum self-duality boils down to some novel ‘‘q-identities’’ @viz., symmetry of the
coefficientsckl

(N)(q) given by ~2.2!–~2.5!#.
To provide more perspective on theb-restriction inDhyp ~1.7!, we would like to mention that

the even linear combination,

Rk,l~a1 ,a2 ;x,p!5Mk,l~a1 ,a2 ;x,p!1~x→2x!, ~1.10!

admits an interpolation to all parameters inH ~1.4!. To be specific, there exists a join
Ad-eigenfunctionR(a1 ,a2 ,b;x,p) that reduces toRk,l for b5ka11 la2 ; it is meromorphic inx
and p for fixed (a1 ,a2 ,b)PH and real-analytic onH for fixed x,p with Rex, RepÞ0. We
already detailed this function in Subsection 6.3 of our lecture notes, Ref. 4, and it will be fu
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studied elsewhere. It is quite unclear whether the odd combination admits interpolation, too.~If so,
it presumably has a quite different structure and weaker analyticity properties; cf. the per
discussion in I.!

Let us now describe the contents of Secs. II and III in some more detail. In Sec. II we
the special case where the coupling constant

g[b/a1 ~1.11!

takes integer values. More precisely, we only study the choices

b5~N11!a1 , NPN. ~1.12!

For this special case the hyperbolic eigenfunctions and several salient features thereof w
ready presented in our survey, Ref. 5, but detailed proofs were not given there. In Sec.
demonstrate various properties of an algebraic nature, but we relegate an account of orthog
and completeness properties to another occasion.

Specifically, the jointAd-eigenfunctions read

MN11,0~a1 ,a2 ;x,p![~2 i !N11@PN~x!PN~p!#21KN~x,p!, ~1.13!

with

PN~x![ )
j 52N

N

@2s2~x1 i ja 1!#, ~1.14!

KN~x,p![exp~ ipxp/a1a2! (
k,l 50

N

ckl
~N!~q!e2~~N22k!x1~N22l !p!. ~1.15!

Here, the coefficientsckl depend only onN and the phase factor

q[exp~ ipa1 /a2!. ~1.16!

Explicitly, they are Laurent polynomials inq with integer coefficients, given by~2.2!–~2.5!.
Equivalently, the functionKN(x,p) is a joint eigenfunction of the auxiliary ADOs

B25
s2~x1 iNa1!

s2~x!
Tia1

1~ i→2 i !, ~1.17!

B15~2 !NTia2
1~ i→2 i !, ~1.18!

obtained by similarity transforming the ADOs Ad((N11)a1) with PN(x). Observe that one o
the two eigenvalue equations, viz.,

B1KN~x,p!52c1~p!KN~x,p!, ~1.19!

is immediate from the structure~1.15! of KN , independently of the choice ofckl . With ~2.2!–~2.5!
in force, the second one~2.1! is proved in Theorem II.1, together with various other features
KN(x,p).

With these results at our disposal, we are in the position to make the connection
seemingly different joint eigenfunctions arising upon hyperbolic specialization of Sec. II
Moreover, several uniqueness aspects can be clarified by adapting Theorem B.1 in I to the
hand. Subsequently, we study the even combinationRN11,0(a1 ,a2 ;x,p) ~1.10! in Theorem II.2.
@It is denotedRN(x,p) for brevity.# In particular, we show that this jointAd-eigenfunction spe-
cializes to a polynomial inc2(x) for certain values ofp. These results will be exploited for th
trigonometric regime~Sec. IV!.
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The third and last theorem of Sec. II concerns the case of a rational quotienta1 /a2 . It throws
new light on the zero representation, and is also a crucial input for Sec. III.

In the latter section we obtain jointAd- andHd-eigenfunctions for arbitrary parameters inDhyp

~1.7!, but just as in Sec. II it is convenient to use an auxiliary pair of ADOs B1 ,B2 as a starting
point. These ADOs are defined forb of the form

b12[~N111!a12N2a2 , N1 ,N2PN, ~1.20!

by similarity transformingA1 ,A2 ~1.1! with PN1
(x) ~1.14!. Explicitly, this yields

Bd5~2 !Nd
sd~x1 iN2da2d!

sd~x!
Tia2d

1~ i→2 i !, d51,2. ~1.21!

@Note this reduces to~1.17!, ~1.18! for N15N, N250, andd52,1, as should be the case, o
course.#

Using the functionsKN(x,p) from Sec. II as building blocks, jointBd-eigenfunctions are
readily constructed. By virtue of~the hyperbolic specialization of! Theorem B.1 in I, the joint
Bd-eigenspace associated with eigenvalues 2cd(p) is two-dimensional fora1 /a2 irrational. Now
it is clear that theb-values~1.20! with a1 /a2 irrational already give rise to a dense subset of
hyperbolic parameter domainH ~1.4!. Moreover, the ADOs Bd ~1.21! may be reinterpreted a
specializations of the ADOs

Bd~b!5
sd~x2 id~b2a1!!

sd~x!
Tia2d

1~ i→2 i !, d51,2, ~1.22!

which are defined for all ofH. @By contrast, the elliptic generalizations I~4.7! do not admit a
continuous interpolation to the whole elliptic parameter domain.#

On the other hand, the jointBd-eigenfunctions exhibit an infinite-dimensional ambiguity a
ready for theb-valuesb12 ~1.20! andrational a1 /a2 . This provides an example demonstratin
that the absence of interpolation ambiguities cannot follow from general arguments~as one might
believe!. But the ambiguity exhibited by the jointBd-eigenfunctions does not occur for the joi
Hd- and Ad-eigenfunctions. Indeed, we show that for rationala1 /a2 the infinity of distinct
(k,l )PZ2 yielding the sameb5ka11 la2 gives rise to an infinity of distinct representations f
the samefunction.

In order to arrive at the latter conclusions, we need as technical input Theorem III.1, w
deals with the case of rationala1 /a2 . The joint Hd- and Ad-eigenfunctionsF(J;x,p) and
M (J;x,p) for arbitrary JPDhyp ~1.7! are further studied in Theorems III.2 and III.3, respe
tively; the meromorphic functionsMk,l(a1 ,a2 ;6x,p) mentioned above are equal t
M (a1 ,a2 ,b;6x,p) for b5ka11 la2 .

Let us now turn to the trigonometric regime, studied in Sec. IV. This arises from the el
regime by sending one of the two imaginary periodsia1 ,ia2 @cf. I~1.11!# to i`. We will takea2

to ` and tradea1 for a new parameterb. Of course, the real periodp/r is kept fixed. Thus, we
arrive at the trigonometric parameter domain

T[$~r ,b,b!ur ,b.0,bPR%. ~1.23!

Obviously, the elliptic ADOs H1 andA1 have no limits fora2→`. Therefore we are left
with

A~b!5
sinr ~x2 ib !

sinrx
Tib1~ i→2 i ! ~1.24!

and
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H~b!5S sinr ~x2 ib !

sinrx D 1/2

TibS sinr ~x1 ib !

sinrx D 1/2

1~ i→2 i !. ~1.25!

These ADOs are related by the similarity

A5w~x!21/2Hw~x!1/2, ~1.26!

with w(r ,b,b;x) the trigonometric weight function from Ref. 2. Now the parameterb is of the
form ka11 la2 , k,l PZ, for all of the eigenfunctions in I. Thus, we need to choosel 50 for b to
remain finite asa2→`. Accordingly, we only obtain eigenfunctions for theT-subset

Dtrig[$~r ,b,b!ur ,b.0,b5kb,kPZ%, ~1.27!

which is no longer dense. Just as in I, all of the pertinent functions are also eigenfunctions
quasi-periodicity ADO

Q[Tp/r1T2p/r . ~1.28!

Our trigonometric joint (A,Q)-eigenfunctions are obtained via analytic continuation of th
hyperbolic counterparts from Sec. II. Besides the zero representation obtained by specializin
II in paper I to the trigonometric regime, we therefore get a second, far more accessible,
sentation.

We begin Sec. IV by detailing the latter, and then clarify its relation to the zero represent
In the remainder of Sec. IV we deal with various functional-analytic aspects. Corresponding
spectral variable is discretized, and we wind up with Hilbert space eigenfunctions that are
tially q-Gegenbauer polynomials, withq5exp(22br). To our knowledge, our two representatio
are new even in this well-studied case.

By contrast to Secs. II, III, and the first part of Sec. IV, which are largely self-contained
remainder of Sec. IV involves various features and issues already encountered in Sec. IV
particular, the drastic simplification arising in the trigonometric case allows us to answer
questions that we left open in the elliptic setting. These questions can be studied by chook
negative in~1.27!.

II. THE HYPERBOLIC INTEGER-g CASE

The results of this section have already been summarized in some detail in the Introdu
and we will freely use the notation and operators introduced there.

We begin by recalling that in Sec. II of I we also restricted attention to the integerg case
~1.12!. Now when one replaces the functions(r ,a;x) from I by its hyperbolic counterpar
(a/p)sinh(px/a), then it is straightforward to adapt the arguments and results that can be fou
Sec. II of I. There is only one minor snag in the reasoning below I~2.13!: A nonconstant hyper-
bolic function may have one or no pole in a period strip; cf. the functions cotanh(x) and cosh(x).
The pertinent hyperbolic functionE(x) I~2.8!, however, hasfinite and equal limits for Rex
→6`. Therefore, the usual residue argument for elliptic functions can be easily adapt
exclude the presence of only one pole in the period strip.

The results of this section go far beyond those of Sec. II in I, however. The crux is tha
eigenfunctions and eigenvalues admit a simpler and much more explicit form in the hype
setting, without restrictions on the spectral variabley and the pertinent parameters. In particul
this enables us to shed more light on the ‘‘zero representation’’ I~2.34! of the eigenfunctions. As
will be shown, the latter structure of the eigenfunctions is a consequence of the eigenfu
representation employed in this section, but various features obtained below are invisible
I~2.34!. For example, the spectral variabley appears to be on a very different footing from th
variablex, whereas it will turn out thatx and the rescaled spectral variablep ~1.9! play symmetric
roles.
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We proceed by detailing the joint eigenfunctionsKN(x,p) ~1.15! of the ADOsB2 ~1.17! and
B1 ~1.18! with eigenvalues 2cd(p), d51,2. As already pointed out, the eigenvalue equat
~1.19! is satisfied irrespective of the choice ofckl . It will be shown later on, however, that th
coefficients are uniquely determined up to an overallq-dependent scale factor by requiring

B2KN~x,p!52c2~p!KN~x,p!, ~2.1!

and continuity inq.
In order to specifyckl , we introduceN-element subsetsI k

(N) of the 2N-element set
$2N,...,21,1,...,N%, as follows:

I k
~N![$2N,...,2N1k21,...,k11,...,N%, k50,...,N. ~2.2!

Now we put

skl
~N!~w![ (

i 1,..., i k

i mPI l
~N!

wi 11¯1 i k, ~2.3!

cl
~N!~w![ (

i 1,..., i l

i mPI 0
~N!

wi 11¯1 i l, ~2.4!

ckl
~N!~q![~2 !k1 lqN~N11!/2skl

~N!~q22!cl
~N!~q22!. ~2.5!

~Here, empty sums equal 1 by definition.! For later use we also introduce polynomials

Ql
~N!~u![(

k50

N

~2 !kskl
~N!~w!uk5 )

i PI l
~N!

~12wiu!. ~2.6!

With these definitions in place, we are going to prove that~2.1! holds true. Before doing so
however, we specify the casesN50,...,3, exemplifying the above notation:

~N50! c0051, ~2.7!

~N51! c005c115q, c015c1052q21, ~2.8!

~N52! c005c225q3, c025c205q23,
~2.9!

c015c105c125c2152q2q21, c115q51q31q231q25,

~N53! c005c335q6, c035c3052q26,

c025c205c135c3152 c̄3252 c̄2352 c̄0152 c̄10511q221q24, ~2.10!

c115c2252 c̄1252 c̄215q101q81q61112q2212q241q26.

Note that, more generally, the coefficients are Laurent polynomials inq with integer coefficients
for arbitraryNPN. The symmetry properties

ckl5clk5cN2k,N2 l5~2 !Nc̄N2k,l , k,l 50,...,N, ~2.11!

exhibited by these special cases are, in fact, valid for arbitraryN; they are equivalent to the
symmetry properties~2.13!–~2.15! in the following theorem.
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Theorem II.1: With ckl defined by (2.2)–(2.5), the function KN(x,p) (1.15) satisfies the ADE

s2~x1 iNa1!F~x2 ia1!1s2~x2 iNa1!F~x1 ia1!52s2~x!c2~p!F~x!. ~2.12!

It has the symmetry properties

KN~x,p!5KN~p,x!, ~2.13!

KN~x,p!5KN~2x,2p!, ~2.14!

KN~x,p!5~2 !NK̄N~2x,p!, x,pPR, ~2.15!

and satisfies

KN~x,idNa1!5~2i !N )
k5N11

2N

sin~pka1 /a2!, d51,2. ~2.16!

Now assume

ka1¹Na2 , k51,...,2N. ~2.17!

Then one has

KN~x,id~N2 l !a1!5 i NBl
~N!~c2~x!!, l 50,...,N, d51,2, ~2.18!

where Bl
(N)(u) is a polynomial of degree l and parity(2) l with real coefficients.

Proof: For N50 we have

K0~x,p!5exp~ ipxp/a1a2!, ~2.19!

and all assertions are immediate. AssumingNPN* from now on, we find it convenient to rewrit
KN(x,p) as

KN~x,p!5K0~x,p!e2~Nx1Np!SN~q;e2~22x!,e2~22p!!, ~2.20!

with

SN~q;r ,t !5 (
k,l 50

N

ckl
~N!~q!r kt l . ~2.21!

Now we fix NPN* and suppress the dependence onN wherever this does not give rise t
confusion.

We first view the general form~2.20!–~2.21! of K(x,p) as an Ansatz for solving the ADE
~2.12!, so as to arrive at a system of equations for the coefficientsckl . We then study this system
in its own right before proving that it is satisfied by the above coefficients~2.5!. The general
insights thus obtained will be crucial for later purposes.

Accordingly, we plug~2.20! into ~2.12!, and cancel factors to obtain

@qNe2~x!2q2Ne2~2x!#e2~p!q2NS~q2e2~22x!,e2~22p!!

1@q2Ne2~x!2qNe2~2x!#e2~2p!qNS~q22e2~22x!,e2~22p!!

5@e2~x!2e2~2x!#@e2~p!1e2~2p!#S~e2~22x!,e2~22p!!. ~2.22!

Multiplying by e2(2x2p) and using~2.21!, this can be rewritten as
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~12wNr ! (
k,l 50

N

cklw
2kr kt l1~12w2Nr !t (

k,l 50

N

cklw
kr kt l2~12r !~11t ! (

k,l 50

N

cklr
kt l50,

~2.23!
w[q225exp~22ipa1 /a2!.

Clearly, this is satisfied iff the coefficientsdmn of the monomialsr mtn, m,n50,...,N11, vanish.
The latter read

dmn5~12w2N1m21!cm21,n211~12wN2m11!cm21,n2~12wm!cm,n212~12w2m!cmn .

~2.24!

We now study the system of equationsdmn50 for the unknownsckl under the side conditions

ckl50, k,0, k.N, l ,0. ~2.25!

These conditions are obviously satisfied for the above coefficients, and they entaildmn50 for
m<0, m>N11, andn<21. ~This is because the first two terms in brackets vanish form5N
11 and the last two form50.) Thus, we wind up with the systemdmn50, wherem51,...,N,
nPN, for unknownsckl in the vertical half-stripk50,...,N, l PN.

To avoid degeneracies, we now fixa1 ,a2P(0,̀ ) such thata1 /a2¹Q. We claim that the
solution to the system is then uniquely determined, provided we prescribe the numbec0n

[bn , nPN, at the left boundary of the half-strip. To explain this, we observe that the sy
involves four lattice points on a plaquette. Thus, we can calculate successivelycmn

5c10,c20,...,cN0 ,c11,...cN1 ,c21,..., etc. @Indeed, sincewmÞ1 for mPZ* , the term (12w2m)
in ~2.24! is nonzero.# Hence our claim follows. In particular, there exists a uniquely determi
solution to the system when we choose boundary coefficients

bn[H ~2 !nw2N~N11!/4 (
1< i 1,¯, i n<N

wi 11¯1 i n, n50,...,N,

0, n.N,

~2.26!

in accordance with~2.2!–~2.5!.
The unicity of this solution will be crucial shortly, but we first prove that the unique solu

is actually given by~2.5!. Though this can be seen directly, it is somewhat simpler to recall
the solution property is equivalent to~2.23!, and to observe that~2.23! holds iff the coefficients of
the monomialstn, n50,...,N11, vanish. Withckl given by ~2.5!, the latter conditions can be
written as

~12wNr !bnQn~w21r !1~12w2Nr !bn21Qn21~wr !2~12r !@bnQn~r !1bn21Qn21~r !#50,

n50,...,N11, ~2.27!

since we have

bnQn~r !5 (
m50

N

cmnr
m, bn5c0n ; ~2.28!

cf. ~2.6!. The crux is that we may now cancel common factors in~2.27!, which yields a recurrence
relation for the boundary coefficients.

Specifically, taking firstn50 in ~2.27! and noting

Q0~r !5)
j 51

N

~12wjr !, ~2.29!
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we deduce that~2.27! is satisfied. Similarly,~2.27! is satisfied forn5N11. FornP$1,...,N% we
can cancel factors to obtain

bn~12wnr !~12w2N21r !1bn21~12wN11r !~12w2N1n21r !

2bn~12r !~12w2N1n21r !2bn21~12r !~12wnr !50. ~2.30!

Simplifying this, we can divide byw2N1n212wn to obtain

~12w2n!bn5~12wN2n11!bn21 . ~2.31!

Thus, it remains to show that the boundary coefficients~2.26! satisfy this recurrence relation.
In order to prove this, we write the recurrence as

~12w2n! (
1< i 1,¯, i n<N

wi 11¯1 i n1~12wN2n11! (
1< i 1,¯, i n21<N

wi 11¯1 i n2150,

n51,...,N. ~2.32!

Now we first handle the special casen5N. Then~2.32! reads

~12w2N!w11¯1N1~12w!w11¯1N~w211w221¯1w2N!50, ~2.33!

which is clearly true. Next, we use induction onN. Thus we assume~2.32! holds whenN is
replaced byN21. Then we need only prove~2.32! for nP$1,...,N21%. To this end we rewrite
the first term on the lhs, using the induction hypothesis:

~12w2n!S (
1< i 1,¯, i n<N21

wi 11¯1 i n1wN (
1< i 1,¯, i n21<N21

wi 11¯1 i n21D
52~12wN2n! (

1< i 1,¯, i n21<N21
wi 11¯1 i n211~wN2wN2n!

3 (
1< i 1,¯, i n21<N21

wi 11¯1 i n21

5~wN21! (
1< i 1,¯, i n21<N21

wi 11¯1 i n21. ~2.34!

Adding the second term, we obtain

wNS (
1< i 1,¯, i n21<N21

2 (
0< i 1,¯, i n21<N21

Dwi 11¯1 i n21

1S (
1< i 1,¯, i n21<N

2 (
1< i 1,¯, i n21<N21

Dwi 11¯1 i n21

52wN (
1< i 2,¯, i n21<N21

wi 21¯1 i n211wN (
1< i 1,¯, i n22<N21

wi 11¯1 i n2250,

~2.35!

and so~2.32! follows.
The upshot is thatK(x,p) satisfies the ADE ~2.12!. To prove the symmetry properties~2.13!–

~2.15!, we exploit the uniqueness of the solution to the systemdmn50 with side conditions~2.25!
and boundary condition~2.26!. First, let us note that~2.13! is equivalent to symmetry of the
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coefficient matrix; cf.~1.15!. Now it is clear from~2.2!–~2.5! that we havecm05c0m for m
50,...,N, so by uniqueness it suffices to show that the transposed matrix solves the systedmn

50, too.
In order to prove this, we use~2.26! to write the pertinent numbersdmn as

bm21~~2 !n21sn21,m21~12w2N1m21!1~2 !nsn,m21~12wN2m11!!

2bm~~2 !n21sn21,m~12wm!1~2 !nsnm~12w2m!!. ~2.36!

Now we deduce from the recurrence relation~2.31! that this expression vanishes iff

w2N1m21sn21,m211sn,m215snm1wmsn21,m . ~2.37!

From ~2.3! we see that this amounts to

w2N1m21 (
i 1,..., i n21

i lPI m21

wi 11¯1 i n211 (
i 1,..., i n
i lPI m21

wi 11¯1 i n

5 (
i 1,..., i n

i lPI m

wi 11¯1 i n1wm (
i 1,..., i n21

i lPI m

wi 11¯1 i n21. ~2.38!

A moment’s thought reveals that this is indeed true: both the lhs and rhs are equal to the

(
i 1,..., i n

i lP$2N,...,2N1m21,m,...,N%

wi 11¯1 i n. ~2.39!

Therefore, the self-duality relation~2.13! is now proved.
Next, we demonstrate~2.14! and ~2.15!. Since~2.14! follows by combining~2.15! with the

already proved symmetry property~2.13!, it suffices to show~2.15!. In view of ~1.15! this amounts
to ckl being equal to (2)Nc̄N2k,l , and since the coefficient matrix is symmetric we need o
show

ckl5~2 !Nc̄k,N2 l . ~2.40!

Now from ~2.3! we deduces̄k,N2 l5skl , and from~2.4! we have

c̄N2 l5 (
1< i 1,¯, i N2 l<N

w2~ i 11¯1 i N2 l !5w2~1121¯1N! (
1< j 1,¯, j l<N

wj 11¯ j l5qN~N11!cl .

~2.41!

Therefore,~2.40! is clear from~2.5!.
In summary, we have now proved thatK(x,p) ~1.15! satisfies ~2.12!–~2.15!, provided

a1 /a2¹Q. ~Recall that the restriction was needed to ensure uniqueness of the solution
coefficient system. To see why uniqueness breaks down otherwise, one need only insp
special case a15a2 .) Since the coefficientsckl(q) are Laurent polynomials inq
5exp(ipa1 /a2), the functionK(x,p) is well defined and continuous for alla1 ,a2P(0,̀ ).
Hence, it satisfies~2.12!–~2.15! for rationala1 /a2 , too.

We continue by proving~2.16!. From ~2.19!–~2.21! we have

K~x,2 iNa1!5e2~Nx!e2~Nx!q2N2

(
k,l 50

N

ckle2~22kx!q2lN. ~2.42!

Using ckl5clk and recalling~2.2!–~2.6!, this can be rewritten as
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K~x,2 iNa1!5e2~2Nx!q2N21N~N11!/2(
k50

N

~2 !kcke2~22kx!Qk~q2N!. ~2.43!

The key point is now thatQk(u) vanishes foru5q2N5w2N, unlessk5N. @Indeed,N belongs to
I k

(N) , save fork5N; cf. ~2.2!.# Hence we get

K~x,2 iNa1!5~2 !Nq2N22N~N11!/2QN~q2N!5 )
k5N11

2N

~qk2q2k!. ~2.44!

This amounts to~2.16! with d52. For d51 we use~2.14! to obtain

K~x,iNa1!5K~2x,2 iNa1!5K~x,2 iNa1!. ~2.45!

To prove the last assertion of the theorem, we note that by virtue of~2.13!, K(x,p) satisfies
the dual ADE

s2~p1 iNa1!K~x,p2 ia1!1s2~p2 iNa1!K~x,p1 ia1!52s2~p!c2~x!K~x,p!. ~2.46!

Substitutingp5 iNa1 , this yields

s2~2iNa1!K~x,i ~N21!a1!52s2~ iNa1!c2~x!K~x,iNa1!. ~2.47!

Assuming ~2.17! from now on, we haves2( ika1)Þ0 for k51,...,2N. From ~2.16! we then
deduce thatK(x,i (N21)a1) is a nonzero multiple ofc2(x). Putting nextp5 i (N21)a1 in the
dual ADE, we infer thatK(x,i (N22)a1) is of the formAc2(x)21B, with AÞ0, etc. This yields
~2.18! for d52, and then thed51 case follows from the evenness relation~2.14!. h

It should be noted that the self-duality property~2.13! entails that we have

B̂dKN~x,p!52cd~x!KN~x,p!, d51,2, ~2.48!

whereB̂d are the dual ADOs

B̂2[
s2~p1 iNa1!

s2~p!
T̂ia1

1~ i→2 i !, ~2.49!

B̂1[~2 !NT̂ia2
1~ i→2 i !, ~2.50!

with

~ T̂aG!~p![G~p2a!, aPC. ~2.51!

ThusKN(x,p) is a joint eigenfunction of four independent ADOs. @In fact, we already exploited
~2.48! with d52 in the above proof; cf.~2.46!.#

We continue by detailing the relation betweenKN(x,p) and the functionHN(x,y) from Sec.
II in I @cf. I~2.34!#, specialized to the hyperbolic context. Consider the two-variable polyno
SN(r ,t) ~2.21!. The coefficient oftN reads

(
k50

N

ckNr k5~2 !Nq2N~N11!/2QN~r !5~2 !Nq2N~N11!/2)
j 51

N

~12q2 j r !; ~2.52!

cf. ~2.6!. Similarly, the coefficient oft0 reads
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S~r ,0!5qN~N11!/2Q0~r !5qN~N11!/2)
j 51

N

~12q22 j r !. ~2.53!

Now we view S(r ,t) as a polynomial inr with t-dependent coefficients, recallingS(r ,t)
5S(t,r ). The coefficient ofr N is therefore given by the rhs of~2.52! with r→t. Assumingt
Þq22 j , j 51,...,N, from now on, it follows thatS(r ,t) is of degreeN in r and can be written as

S~r ,t !5q2N~N11!/2)
j 51

N

~12q2 j t !~r j2r !, ~2.54!

where the rootsr j depend onq and t. Likewise, ~2.53! entails

S~0,t !5qN~N11!/2)
j 51

N

~12q22 j t !. ~2.55!

Hence, puttingr 50 in ~2.54!, we deduce

)
j 51

N

r j5qN~N11!)
j 51

N
12q22 j t

12q2 j t
. ~2.56!

In particular, none of the roots vanishes, providedtÞq2 j , j 51,...,N. Moreover, from~2.53! we
infer that the rootr j may be chosen equal toq2 j for t50.

We now rewritet ase2(22p), so that~2.56! becomes

)
j 51

N

r j5)
j 51

N
s2~p1 i ja 1!

s2~p2 i ja 1!
. ~2.57!

Restricting attention to$Rep.0%, we may introduce~continuous! functionszj (p) by requiring

r j5e2~2zj !, zj~p!→ i ja 1 , p→`, j 51,...,N. ~2.58!

Then a routine calculation@using ~2.54!# yields

e2~Nx1Np!S~e2~22x!,e2~22p!!522N)
j 51

N

@s2~p1 i ja 1!s2~p2 i ja 1!#1/2s2~x1zj~p!!.

~2.59!

It should be emphasized that the above holds true for all positivea1 ,a2 . To establish contac
with Sec. II in I, however, we should require~2.17!; cf. I~2.25!. Then it easily follows that the
zeroszj (p) may be identified with the zeroszj (y) in loc. cit., with p andy related via~1.9!, and
that the relation toHN I~2.34!, reads

KN~x,p!5~4p/a2!N)
j 51

N

@s2~p1 i ja 1!s2~p2 i ja 1!#1/2
•HN~x,pp/a1a2!. ~2.60!

Moreover,~2.17! entailsnonconstancyin p for all of the zeroszj (p). @Indeed, the coefficientsdl

I~2.46! in the asymptotics I~2.45! are nonzero.# We will show later on thatp-independent zeros do
occur when~2.17! is violated; equivalently, the polynomialSN(r ,t) is not irreducible in that case

It is a remarkable consequence of~the hyperbolic specialization of! Sec. II in I that all of the
rootsr j lie on the unit circle fortP(0,e) ande small enough. ForN51 this remains true for all
tP(0,1# and alla1 ,a2P(0,̀ ); cf. ~2.56!. But already forN52,3 and suitablea1 ,a2 , the roots
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do not stay on the unit circle ast goes to 1. Hence, the functionszj (p) move off the imaginary
axis asp decreases from̀ to 0. This entails that the parameterK is indispensable when on
requires thezj to belong toi (0,̀ )—as we do inloc. cit.

To see the roots move off the unit circle forN52, one need only use~2.9! to calculate

S2~r ,1!5~q32q2q211q23!~11C2r 1r 2!, C2[q2121q22. ~2.61!

Since we haveC254 cos2(pa1 /a2), we getC2P(2,4) for a1P(0,a2/4) ~say!. Thus, the roots
@2C26(C2

224)1/2#/2 do not lie on the unit circle fora1 /a2,1/4. Likewise, forN53 one
readily calculates from~2.10!,

S3~r ,1!5@q62q42q22~q→q21!#@11C3~r 1r 2!1r 3#, C3[q412q21312q221q24.

~2.62!

For q→1 the roots therefore converge to those of the polynomial (11r )(118r 1r 2). From this
it easily follows that fora1 /a2 small enough~at least! two roots move off the unit circle asp↓0.

Next, we reconsider the formula I~2.43! for the Casorati determinant I~2.41!. In view of ~2.60!
and ~2.14! we may as well study

DN
1~x![KN~x1 ia1/2,p!KN~x2 ia1/2,2p!2~ i→2 i !. ~2.63!

Adapting the reasoning inloc. cit. to the present context, we obtain

DN
1~x!5bN~p! )

n52N11/2

N21/2

s2~x2 ina1!. ~2.64!

Indeed, the quotient ofDN
1(x) and the product on the rhs is hyperbolic with periodia2 and

pole-free. Since the quotient has finite limits for Rex→6`, it is x-independent.
Now the limit bN(p) of the quotient for Rex→` ~say! can be determined explicitly from

~1.15!; it reads

bN~p!522N@e2~2p!2e2~p!#S (
l 50

N

c0le2~~N22l !p!D ~p→2p!. ~2.65!

Using c0l5cl0 and ~2.4!–~2.6!, this can be rewritten as

bN~p!522N11s2~2p!qN~N11!Q0~e2~22p!!Q0~e2~2p!!

5~2 !N1124N11 )
j 52N

N

s2~p1 i ja 1!. ~2.66!

Recalling~2.60!, we deduce thataN in I~2.43! specializes to

aN5~2 !N112 sinh~a1y!, y5pp/a1a2 . ~2.67!

From ~2.66! we read off that the Casorati determinant of the solutionsKN(x,p) andKN(x,2p) to
the ADE ~2.12! vanishes identically iffp equalspjk[ i ja 11 ika2 with j 52N,...,N andkPZ.
For otherp-values it then follows that the meromorphic quotient functionKN(x,p)/KN(x,2p) is
not ia1-periodic ~cf. Appendix B in I!. Moreover, from~2.18! we obtain

KN~x,pjk!5e1~22kx!KN~x,2pjk!, j 52N,...,N, kPZ. ~2.68!

As should be the case, this yields ania1-periodic quotiente1(22kx) whenever the lhs does no
vanish identically.

Consider next the Casorati determinant
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DN
2~x![KN~x1 ia2/2,p!KN~x2 ia2/2,2p!2~ i→2 i !, ~2.69!

corresponding to the ADE ~1.19!. From ~2.19!–~2.21!, we obtain

DN
2~x!522s1~p!e2~2Nx!SN~q;2e2~22x!,e2~22p!!SN~q;2e2~22x!,e2~2p!!.

~2.70!

Thus,DN
2(x) vanishes forp5 i ja 1 , j PZ, and forp such thatKN(x,p)50 identically, while for

other p-values the quotientKN(x,p)/KN(x,2p) is not ia2-periodic. @Note that the functions
KN(x,6 i ja 1) are manifestly eitheria2-periodic oria2-antiperiodic, depending on the parity o
j .#

Restricting attention to RepÞ0, bothDN
1(x) andDN

2(x) are nonzero. Then the reasoning
the proof of Theorem B.1 in I applies with various simplifications. It leads to the conclusion
for a1 /a2¹Q and Rep.0 the joint eigenspace of the ADO pair (B1 ,B2) corresponding to
eigenvalues (2c1(p),2c2(p)) is two-dimensional, and spanned by the functionsKN(6x,p).

The result just arrived at amounts to a sharpening of Theorem B.1 in I for the hyper
integerg case. It entails, in particular, that fora1 /a2 irrational the coefficients in~2.21! must be
proportional to~2.5! whenever~2.1! holds true. Hence, the assertion in the sentence contai
~2.1! easily follows.

It is of interest to point out a second, closely related corollary. Recall that we showed i
proof of Theorem II.1 that the systemdmn50 with side conditions~2.25! and irrationala1 /a2

has a unique solutionckl for arbitrary boundary coefficientsc0n . We are now in the position to
deduce that this solution does not vanish for alll .N unlessthe boundary coefficients are propo
tional to bn ~2.26!—a surprising fact that we are unable to establish directly.

We continue by deriving some features of the joint eigenfunction

RN~x,p![~2 i !N11@KN~x,p!2KN~x,2p!#@PN~x!PN~p!#21, ~2.71!

of the ADOs A1 andA2 . Notice that this definition entails, in particular,

R0~x,p!5
sin~pxp/a1a2!

2s2~x!s2~p!
; ~2.72!

cf. ~2.19!.
Theorem II.2: The function RN(x,p) satisfies the ADE

s2~x2 i ~N11!a1!F~x2 ia1!1s2~x1 i ~N11!a1!F~x1 ia1!52s2~x!c2~p!F~x!.
~2.73!

It has the symmetry properties

RN~x,p!5RN~p,x!, ~2.74!

RN~x,p!5RN~2x,p!5RN~x,2p!, ~2.75!

RN~x,p!5RN~x,p!, x,pPR. ~2.76!

Now assume

a1 /a2¹Q. ~2.77!

Then one has

RN~x,6 i ~N11!a1!5 )
k5N11

2N11

@2 sin~pka1 /a2!#21. ~2.78!
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Moreover, one has

RN~x,id~N111 l !a1!5Gl
~N!~c2~x!!, l PN, d51,2, ~2.79!

where Gl
(N)(u) is a polynomial of degree l and parity(2) l with real coefficients.

Proof: The features~2.73!–~2.76! readily follow from Theorem II.1. Combining~2.73! and
~2.74! yields the dual ADE

s2~p2 i ~N11!a1!RN~x,p2 ia1!1~ i→2 i !52s2~p!c2~x!RN~x,p!. ~2.80!

Substitutingp5 i (N11)a1 , this reads

s2~2i ~N11!a1!RN~x,i ~N12!a1!52s2~ i ~N11!a1!c2~x!RN~x,i ~N11!a1!. ~2.81!

Assuming ~2.77! from now on, let us first take~2.78! for granted. Then~2.81! entails that
RN(x,i (N12)a1) is a nonzero real multiple ofc2(x). Taking nextp5 i (N12)a1 in ~2.80!, we
infer that RN(x,i (N13)a1) is of the formCc2(x)21D, with CPR* , DPR. More generally,
putting p5 i (N1 l )a1 , l PN* , yields a three-term recurrence relation with coefficients iniR* ,
and so the last assertion of the theorem easily follows.

It remains to prove~2.78!. Due to~2.71! this identity amounts to

KN~x,2 i ~N11!a1!2KN~x,i ~N11!a1!5~2 !N )
j 52N

N

~qje2~x!2q2 je2~2x!!)
l 51

N

~ql2q2 l !.

~2.82!

In view of ~1.15! and ~2.14!, the lhs can be written as

2(
k50

N

Lks2~~2k11!x!, ~2.83!

with

Lk[qN~N11!(
l 50

N

ckl
~N!~q!q22l ~N11!

5~2 !kq3N~N11!/2ck
~N!~q22! )

j PI k

~12q22 j
•q22~N11!!, k50,...,N. ~2.84!

@Here we usedckl5clk , ~2.5! and ~2.6!.#
On the other hand, we have

)
j 52N

N

~qje2~x!2q2 je2~2x!!5e2~~2N11!x! )
j 52N

N

~12q22 je2~22x!!

5e2~~2N11!x! (
m50

2N11

~2 !msme2~22mx!, ~2.85!

where

sm[ (
2N< j 1,¯, j m<N

q22~ j 11¯1 j m!, m50,...,2N11. ~2.86!

Now one easily sees thats2N112m5sm , so the rhs of~2.85! can be written as
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2(
k50

N

Rks2~~2k11!x!, Rk[~2 !N2ksN2k , k50,...,N. ~2.87!

Comparing, we deduce that~2.82! is equivalent to the identities

Lk5~2 !NRk)
l 51

N

~ql2q2 l !, k50,...,N. ~2.88!

We proceed by proving~2.88!. First, we takek5N. Then~2.84! yields @cf. ~2.2! and ~2.4!#

LN5~2 !NqN~N11!/2)
l 51

N

~12q22l !, ~2.89!

whereas~2.87! and ~2.86! imply RN51. Hence~2.88! holds true fork5N.
Next, we note that the recurrence relation~2.31! obtained in the proof of Theorem II.1 can b

rewritten as

~12w2k!ck
~N!~w!5~wN2k1121!ck21

~N! ~w!, k51,...,N; ~2.90!

cf. ~2.26! and ~2.4!. In view of ~2.84! and ~2.2!, this entails

Lk

Lk21
5

12wN2k11

12w2k •

12w2N1k21
•wN11

12wk
•wN11 5

wk2wN11

wk1N1121
, k51,...,N. ~2.91!

To conclude the proof of the theorem, it is therefore sufficient to show that the coefficienRk

satisfy the recurrence relation~2.91!, too. Due to~2.87! this amounts to the recurrence

sN2k

sN2k11
5

wk2wN11

12wk1N11 , k51,...,N. ~2.92!

To prove that~2.92! indeed holds, we observe that we may write~2.86! as

sm5w2m~N11! (
1< i 1,¯, i m<2N11

wi 11¯1 i m5w2m~N11!cm
~2N11!~w!. ~2.93!

Using ~2.90! with N→2N11, we therefore have

sm21

sm
5wN11

12w2m

w2N2m1221
, m51,...,2N11. ~2.94!

Puttingm5N2k11, this yields~2.92!, completing the proof. h

The polynomialsGl
(N) ~2.79! may be viewed as analytic continuations ofqt

2-Gegenbauer
polynomials withqtP(0,1) to q on the unit circle; cf.~1.16!. This will become clear from our
study of the trigonometric setting, which we undertake in Sec. IV. Indeed, the results embod
Theorems II.1 and II.2 have trigonometric corollaries that can be obtained rather easily.

Our next and last theorem in this section has no bearing on the trigonometric case. Ra
throws new light on the zero representation~2.59! and the restriction~2.17! corresponding to
I~2.25!. Moreover, the theorem plays a crucial role in Sec. III, where we handle the ge
hyperbolic case. It concerns the case of rationala1 /a2 , which we encode here as

a1 /a25s/r , s,r PN* , s,r coprime. ~2.95!
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Assuming~2.95!, the restriction~2.17! is satisfied iffN,r /2. Hence forN,r /2 all of the
zeroszj (p) on the rhs of~2.59! are p-dependent.@Recall the paragraph containing~2.60!.# Now
~2.59! was derived without restrictions ona1 , a2 , andN. In particular, it holds true for

L5M1mr, MPN, M<r 21, mPN* . ~2.96!

Our next result entails that in~2.59! we then have

zj~p!5 i ja 1 , j 5M11,...,L. ~2.97!

That is, these zeros arep-independent and therefore equal to their limits forp→`; cf. ~2.58!.
Moreover, forr .1 andMP@r /2,r 21#, one also has

zj~p!5 i ja 1 , j 5r 2M ,...,M . ~2.98!

The following theorem contains far more information than its easy corollaries just mentio
Note, however, that the prefactors in the formulas~2.99! and ~2.100! can be independently
checked when one takes~2.97! and ~2.98! for granted and uses~2.59!.

Theorem II.3: Fix a1 ,a2.0 such that (2.95) holds true, and assume (2.96). Then one

KL~x,p!5qL~L11!/2q2M ~M11!/2@4s2~rx !s2~rp !#mKM~x,p!. ~2.99!

Next, assume r.1 and MP@r /2,r 21#. Then one has

KM~x,p!5 )
j 5r 2M

M

@4q2 j s2~x1 i ja 1!s2~p1 i ja 1!#•KN~x,p!, N[r 212M . ~2.100!

Proof: Since the variables

q5exp~ ips/r !, w5exp~22ips/r ! ~2.101!

are fixed, we may as well suppress them. Our starting point is the identity

SN~u,t !5qN~N11!/2(
n50

N

~2t !ncn
~N!Qn

~N!~u!, ~2.102!

which easily follows from the above definitions@cf. ~2.21! and ~2.2!–~2.6!#. It entails that~2.99!
is equivalent to the relation

(
l 50

L

~2t ! lcl
~L !Ql

~L !~u!5~12ur !m~12t r !m(
k50

M

~2t !kck
~M !Qk

~M !~u!. ~2.103!

We prove~2.103! in several steps. First, we note the identity

)
l 5r11

r1r

~12wlu!512ur , rPZ. ~2.104!

Indeed, sinces and r are coprime, the numbersls, with r consecutive integersl , are distinct
modr . Thus~2.104! is a consequence of the identity

)
j 51

r

~12z ju!512ur , z[exp~22ip/r !, ~2.105!

whose proof is immediate.
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Second, we exploit~2.104! to relateQl
(L) for l of the form k1 j r with k50,...,M and j

50,...,m to Qk
(M ) . Specifically, from the definitions~2.6! and ~2.2!, we obtain

Qk1 j r
~L ! ~u!5 )

l 52L

2L1k1 j r 21

~12wlu!• )
l 5k1 j r 11

L

~12wlu!

5~12ur ! j )
l 52M

2M1k21

~12wlu!•~12ur !m2 j )
l 5k11

M

~12wlu!

5~12ur !mQk
~M !~u!, k50,...,M , j 50,...,m. ~2.106!

Third, we combine the special casek, j 50 of ~2.106!, which we rewrite as

Q0
~L !~u!5Q0

~M !~u!(
j 50

m

~2 ! j S m
j Dujr , ~2.107!

with the expansions

Q0
~L !~u!5(

l 50

L

cl
~L !~2u! l , Q0

~M !~u!5 (
k50

M

ck
~M !~2u!k, ~2.108!

which follow from ~2.3!–~2.6!. SinceQ0
(M )(u) has degreeM,r , this yields

cl
~L !50, l 5M11,...,r 21 ~modr !, ~2.109!

ck1 j r
~L ! 5~2 ! j r 1 j S m

j D ck
~M ! , k50,...,M , j 50,...,m. ~2.110!

Fourth, we use~2.109!, ~2.110!, and~2.106! to write

(
l 50

L

~2t ! lcl
~L !Ql

~L !~u!5 (
k50

M

(
j 50

m

~2t !k1 j r ck1 j r
~L ! Qk1 j r

~L ! ~u!

5~12ur !m(
k50

M

~2t !kck
~M !Qk

~M !~u!(
j 50

m

~2t r ! j S m
j D

5~12ur !m~12t r !m(
k50

M

~2t !kck
~M !Qk

~M !~u!. ~2.111!

This equals~2.103!, so ~2.99! follows.
To prove~2.100!, we begin by noting that when we write

Qj
~M !~u!5P~M !~u!Rj

~M !~u!, P~M !~u![ )
k5r 2M

M

~12wku!, ~2.112!

then Rj
(M )(u) is a polynomial of degreeN. Of course, this is plain from~2.6! for j 50,...,N,

independently of the value ofw. Since we havewr51 in the present case however, the remain
term Rj

(M )(u) is still a polynomial forj 5r 2M ,...,M .
From ~2.102! with N→M we now deduce thatSM(u,t) is the product ofP(M )(u) and a

polynomial inu and t. By self-duality~symmetry underu↔t) we then must have

SM~u,t !5P~M !~u!P~M !~ t !PN~u,t !, ~2.113!
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wherePN(u,t) is a polynomial of degreeN in u andt, symmetric under the interchange ofu and
t. Using ~2.113! to rewrite the lhs of~2.100!, it now follows from a straightforward calculatio
that ~2.100! amounts to

PN~u,t !5 )
j 5r 2M

M

qj
•SN~u,t !. ~2.114!

Next, we observe that~2.114! holds true for u5t50. @To check this, useSK(0,0)
5qK(K11)/2 and P(M )(0)51.# Thus, we need only show that the polynomialsPN and SN are
proportional. Switching back, this amounts to the quotient function

QN~x,p![KM~x,p!Y )
j 5r 2M

M

@s2~x1 i ja 1!s2~p1 i ja 1!# ~2.115!

being proportional toKN(x,p). We proceed by proving this, making suitable use of the first p
of the proof of Theorem II.1.

First, we note that sinceKM(x,p) satisfies the ADE ~2.12! with N→M , we must have

s2~x1 iMa1! )
j 5r 2M

M

s2~x1 i ~ j 21!a1!•QN~x2 ia1 ,p!

1s2~x2 iMa1! )
j 5r 2M

M

s2~x1 i ~ j 11!a1!•QN~x2 ia1 ,p!

52s2~x!c2~p! )
j 5r 2M

M

s2~x1 i ja 1!•QN~x,p!. ~2.116!

When we now divide this by the product on the rhs and use the identity

s2~x2 iMa1!s2~x1 i ~M11!a1!5s2~x1 i ~r 2M !a1!s2~x1 i ~M112r !a1!,
~2.117!

then we obtain

s2~x1 iNa1!QN~x2 ia1 ,p!1~ i→2 i !52s2~x!c2~p!QN~x,p!. ~2.118!

Second, we recall thatKN(x,p) also satisfies the ADE ~2.118!. Indeed, we used the general for
~2.20!–~2.21! of KN(x,p) as an Ansatz to arrive at the system of equationsdmn50 with side
conditions~2.25!, and then showed that the coefficients~2.5! solve this system. Now in view o
~2.113! QN(x,p) has the same general form asKN(x,p), except that the coefficients of th
monomials inPN(u,t) are as yet unknown. We do know, however, that the coefficient matr
symmetric.

Third, we reconsider the paragraph containing~2.26!. Choosinga1 /a2 irrational guaranteed
a unique solution for each set of boundary coefficientsbn , nPN. In the present case, howeve
a1 /a2 is rational, and we have a symmetric solutionc̃kl arising fromQN(x,p) on hand. The
remaining problem, then, is to show that the latter coefficients equal the symmetric coeffi
ckl

(N) occurring inKN(x,p), up to a common factor.
It is not hard to see that this is true. The key point is that we still havewmÞ1 for m

51,...,N. Hence asymmetricsolution to the system is uniquely determined up to an ove
factor. Indeed, starting from a givenc00, we can calculate successivelyc10,c20,...,cN0 , since
wmÞ1. But then the boundary coefficientsc0n are determined by symmetry. Therefore, the
maining coefficients can be successively calculated~again becausewmÞ1), entailing unique-
ness. h
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III. THE GENERAL HYPERBOLIC CASE

Just as in the special integerg case studied in Sec. II, it is easy to adapt our results for
general elliptic case~cf. Sec. III in I! to the hyperbolic regime. But the results from Sec. II c
actually be exploited to proceed considerably beyond the hyperbolic specialization of Sec. I
Indeed, we are going to obtain joint eigenfunctions for all parameters in the spaceDhyp ~1.7! and
for all pPC. Moreover, for parameters in the subsetD @defined by I~3.33!–I~3.35!#, the represen-
tation derived below is far more explicit than the zero representation I~3.39!.

We have occasion to make extensive use of the results obtained in Sec. II. To p
ambiguous notation, the functionKN(x,p) ~2.20! is henceforth denoted byKN(a1 ,a2 ;x,p). We
also needtwo ‘‘ q-variables,’’ viz.,

q1[exp~ ipa1 /a2!, q2[exp~ ipa2 /a1!. ~3.1!

Thusq ~1.16! is, from now on, denoted byq1 .
To ease the exposition, we restrict attention tob-values of the form~1.20! until further notice,

and, accordingly, study the auxiliary ADOs Bd ~1.21!. We now claim that the functions

KN1 ,N2
~a1 ,a2 ;x,p![exp~ ipxp/a1a2! )

d51,2
ed~Nd@x1p# !SNd

~qd ;e2d~22x!,e2d~22p!!

~3.2!

are joint Bd-eigenfunctions with eigenvalues 2cd(p). Given Theorem II.1, this is quite easil
verified: ForB2 we can use the identity

KN1 ,N2
~a1 ,a2 ;x,p!5KN1

~a1 ,a2 ;x,p!e1~N2@x1p# !SN2
~q2 ;e1~22x!,e1~22p!!,

~3.3!

whereas forB1 we can use

KN1 ,N2
~a1 ,a2 ;x,p!5KN2

~a2 ,a1 ;x,p!e2~N1@x1p# !SN1
~q1 ;e2~22x!,e2~22p!!.

~3.4!

The joint eigenfunction property just demonstrated holds true for arbitrarya1 ,a2.0. Re-
stricting a1 anda2 by I~3.34! and I~3.35!, respectively, we also obtain a jointBd-eigenfunction
H(x,y) I~3.39! in a quite different guise. Again, from Sec. II the connection between the
representations is easily established: One has

KN1 ,N2
~a1 ,a2 ;x,p!5 )

d51,2
S )

6 j 51

Nd 4p

a2d
sinh

p

a2d
~p1 i ja d!D 1/2

•H~x,pp/a1a2!. ~3.5!

@To see this, note first of all that I~3.17! becomesy5u in the hyperbolic case. Canceling the pla
waveK0(x,p) in the relation~2.60!, the resulting formula readily yields~3.5!.#

Next, we observe that the Casorati determinants

DN1 ,N2

d ~x![KN1 ,N2
~a1 ,a2 ;x1 iad/2,p!KN1 ,N2

~a1 ,a2 ;x2 iad/2,2p!2~ i→2 i !

~3.6!

can be explicitly determined from~2.63!–~2.66! by using~3.3!/~3.4! for d51/2. This yields

DN1 ,N2

d ~x!5~2 !Nd11 )
k52Nd

Nd

2s2d~p2 ikad!• )
l 52Nd11/2

Nd21/2

2s2d~x2 i la d!

•ed~2N2dx! )
a51,2

SN2d
~q2d ;2ed~22x!,ed~2ap!!, d51,2. ~3.7!
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Furthermore, it follows as before that the determinants do not vanish identically for RepÞ0.
Adapting Theorem B.1 in I, we infer that fora1 /a2 irrational and Rep.0 the functions
KN1 ,N2

(a1 ,a2 ;x,6p) form a basis for the joint eigenspace ofB1 and B2 corresponding to
eigenvalues 2c1(p) and 2c2(p), respectively.

Next, we recall from Sec. III in I that for points (a1 ,a2 ,b)PD there is at most one way to
write b as (N111)a12N2a2 with N1 ,N2PN @cf. the paragraph containing I~3.29!#. Returning
to the general casea1 ,a2.0, this is no longer true, of course. In particular, let us choose

a1

a2
5

n2

n1
, n1 ,n2PN* , n1 ,n2 coprime. ~3.8!

Then we may rewrite~1.20! as

b125~N1111mn1!a12~N21mn2!a2 , ~3.9!

wherem is an arbitrary integer.
ChoosingmPN, we now deduce from the identity~2.99! that we have

KN11mn1 ,N21mn2
~a1 ,a2 ;x,p!5hN1 ,N2

~m! )
d51,2

@4s2d~ndx!s2d~ndp!#m

•KN1 ,N2
~a1 ,a2 ;x,p!, ~3.10!

wherehP$61,6 i % is given by

hN1 ,N2
~m![~2 !mN1n21mN2n11m2n1n2

• i mn21mn1. ~3.11!

All of the functions on the rhs of~3.10! are manifestly independent, so we wind up with an infin
of joint eigenfunctions for the sameb-value!

We proceed by connecting the ambiguity just uncovered to the interpolation questio
cussed below I~4.8!. As we have seen there, we get distinct weight functionsŵ(x) for distinct
mPN; cf. I~4.6!. Moreover, in the elliptic case the ADOsBd also depend on the choice ofm. But
as we have already detailed in the Introduction, the hyperbolic counterparts~1.21! do admit the
continuous interpolationBd(b) ~1.22!. @A caveat is in order at this point: Forb of the form
(N211)a22N1a1 one would need adifferent interpolation. Specifically, one must takeb
→a11a22b on the rhs of~1.22! in that case.#

This fact leads to a remarkable conclusion of a general character that we wish to emp
before we discard the auxiliary ADOs Bd in favor of the ADOs Ad(b) ~1.1! and Hd(b) ~1.5!,
which are defined for arbitrary realb to begin with. Indeed, since the functions~3.10! are inde-
pendent for differentmPN, we may deduce that the commuting ADO pairBd(b) ~1.22! does not
admit joint eigenfunctions depending continuously on the parameters, already for param
a1 ,a2.0 andb of the form ~1.20!. @In virtue of the specialization of Theorem B.1 in I, th
ambiguity ~3.10! is inescapable.#

This shows by example that the existence of interpolations cannot follow from general
ments. It is all the more remarkable that for the ADOs Hd(b) ~1.5! @and hence forAd(b) ~1.1!,
too# the interpolation ambiguity disappears: The ambiguity in the jointBd-eigenfunctions is can-
celed by the ambiguity in the auxiliary weight functionŵ(x).

To detail this, we first introduce the renormalized weight function

ŵN1 ,N2
~a1 ,a2 ;x![1Y )

d51,2
)

6 j 51

Nd F2 sinh
p

a2d
~x1 i ja d!G . ~3.12!

@It differs from the hyperbolic specialization ofŵ(x) I~4.6! by a multiplicative constant.# With the
rationality assumption~3.8! in effect, it satisfies
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ŵN11mn1 ,N21mn2
~a1 ,a2 ;x!5 )

d51,2
@2s2d~ndx!#22m

•ŵN1 ,N2
~a1 ,a2 ;x!. ~3.13!

@Indeed, this comes down to the identity~2.104!.#
Consider now the functions

FN1 ,N2
~a1 ,a2 ;x,p!

[fN1 ,N2
@ŵN1 ,N2

~a1 ,a2 ;x!ŵN1 ,N2
~a1 ,a2 ;p!#1/2KN1 ,N2

~a1 ,a2 ;x,p!,
~3.14!

wheref is the phase

fN1 ,N2
[~2 i !2N1N21N11N211. ~3.15!

By construction, they are joint eigenfunctions of the ADOsHd((N111)a12N2a2) with eigen-
values 2cd(p). The phase satisfies

fN11mn1 ,N21mn2
5fN1 ,N2

h̄N1 ,N2
~m!, ~3.16!

so with ~3.8! in force one deduces the equality

FN11mn1 ,N21mn2
~a1 ,a2 ;x,p!5FN1 ,N2

~a1 ,a2 ;x,p!, mPN. ~3.17!

Hence the ambiguities cancel out, as announced.
It should be noted that the definition~3.14! preserves the symmetry underx↔p. Moreover, it

entails that we have

FN1 ,N2
~a1 ,a2 ;x,p!5F~x,pp/a1a2!, ~3.18!

whereF(x,y) is the hyperbolic specialization of I~3.31!. Indeed, equality up to phase follows v
~3.5!, so we need only verify that the phase of the normalization constantN in the c-function
I~1.25! equalsfN1 ,N2

~3.15!. Now from Proposition III.8 in Ref. 2 we easily calculate

c~a1 ,a2 ,~N111!a12N2a2 ;x!5fN1 ,N2

Pk51
N2 2s1~x1 ika2!

P j 50
N1 2s2~x2 i ja 1!

. ~3.19!

Hence the phasef~N! in I~3.31! indeed equals~3.15! in the hyperbolic case.~In fact, it is not hard
to see that this is still true in the elliptic case.!

Thus far we have assumedb-values of the form~1.20!. Let us next assumeb-values of the
form

b2152N1a11~N211!a2 , N1 ,N2PN. ~3.20!

Rewriting Hd(b) ~1.5! as

Hd~b!5S sd~x2 ib !sd~x1 ib2 ia2d!

sd~x!sd~x2 ia2d! D 1/2

Tia2d
1~ i→2 i !, d51,2, ~3.21!

we read off the symmetry property

Hd~b!5Hd~a11a22b!. ~3.22!
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Thus, we may and will choose as joint eigenfunctions ofH1(b21) andH2(b21) the functions
FN1 ,N2

(a1 ,a2 ;x,p) just defined.
More generally, we obtain the same ADO pair Hd(b) for the fourb-values in the set

BN1 ,N2
[$b12 ,b21 ,b22 ,b11%, ~3.23!

where we use the notation~1.20!, ~3.20!, and

b22[2N1a12N2a2 , b11[~N111!a11~N211!a2 . ~3.24!

@Once more, this can be read off from~3.21!.# But then we have

Hd~b!FN1 ,N2
~a1 ,a2 ;x,p!52cd~p!FN1 ,N2

~a1 ,a2 ;x,p!, bPBN1 ,N2
. ~3.25!

Hence, we have now constructed joint eigenfunctions for all parameters inDhyp ~1.7!, as adver-
tised in the Introduction.

But more can and should be said. In particular, for the rational case~3.8! we have shown the
absence of ambiguity for positivem in ~1.20!, but, of course, we can just as well choosem equal
to a negative integer. As long asN11mn1 andN21mn2 are non-negative, it is clear one sti
obtains ~3.17!. But when one of these integers becomes negative, the state of affairs is
unclear at this stage. The next theorem supplies, in particular, the information that will ena
to unambiguously define a jointHd-eigenfunctionF(a1 ,a2 ,b;x,p) for all (a1 ,a2 ,b) in Dhyp.
But it also yields additional information about the rational case~3.8! that is of interest in itself.

Theorem III.1: The function FN1 ,N2
(a1 ,a2 ;x,p) (3.14) satisfies

FN1 ,N2
~a1 ,a2 ;x,p!5FN2 ,N1

~a2 ,a1 ;x,p!. ~3.26!

Now assume (3.8). Fixing N1 ,N2PN, one has

FN11m1n1 ,N21m2n2
~a1 ,a2 ;x,p!5zN1 ,N2

~m1 ,m2!FN1 ,N2
~a1 ,a2 ;x,p!, ~3.27!

zN1 ,N2
~m1 ,m2![~2 !~m12m2!~N2n12N1n2!

• i ~m12m2![n22n11~m12m2!n1n2] , ~3.28!

where m1 and m2 are integers such that Nd1mdnd>0, d51,2. Moreover, choosing N1
P@0,n1/2), one has

FM1 ,N2
~a1 ,a2 ;x,p!5jN1 ,N2

FN1 ,N2
~a1 ,a2 ;x,p!, M 1[n1212N1 , ~3.29!

jN1 ,N2
[~2 !~n121!N21~n221!N1

• i n1n22n22n111. ~3.30!

Proof: The symmetry property~3.26! can be read off from the definitions~3.14!, ~3.15!,
~3.12!, and~3.2!. To prove~3.27!, we first note that~3.13! generalizes as

ŵN11m1n1 ,N21m2n2
~a1 ,a2 ;x!5 )

d51,2
@2s2d~ndx!#22md

•ŵN1 ,N2
~a1 ,a2 ;x!. ~3.31!

Second, we can use the identity~2.99! once more to generalize~3.10!. A straightforward calcu-
lation yields

KN11m1n1 ,N21m2n2
~a1 ,a2 ;x,p!

5hN1 ,N2
~m1 ,m2! )

d51,2
@4s2d~ndx!s2d~ndp!#md

•KN1 ,N2
~a1 ,a2 ;x,p!, ~3.32!
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hN1 ,N2
~m1 ,m2![~2 !m1N1n21m2N2n1

• i [m1n21m2n11~m1
2

1m2
2

!n1n2] . ~3.33!

Third, ~3.16! generalizes to

fN11m1n1 ,N21m2n2
5fN1 ,N2

zN1 ,N2
~m1 ,m2!h̄N1 ,N2

~m1 ,m2!. ~3.34!

Combining these relations, we obtain~3.27!.
In order to prove~3.29!, we note first

ŵM1 ,N2
~a1 ,a2 ;x!5 )

6 j 5N111

n1212N1

@2s2~x1 i ja 1!#21
•ŵN1 ,N2

~a1 ,a2 ;x!. ~3.35!

Second, we exploit~2.100! to write

KM1 ,N2
~a1 ,a2 ;x,p!5 )

j 5N111

n1212N1

@4q1
2 j s2~x1 i ja 1!s2~p1 i ja 1!#•KN1 ,N2

~a1 ,a2 ;x,p!.

~3.36!

Consider now the function

Q~x![
P j 5N111

n1212N1q1
2 j s2~x1 i ja 1!

@P
6 j 5N111
n1212N1s2~x1 i ja 1!#1/2. ~3.37!

From the identity

s2~x2 i ja 1!5~2 !n2s2~x1 i ~n12 j !a1!, ~3.38!

we deduce thatQ(x) equals a phase, so takingx→` we obtainQ(x)51. Hence~3.14! yields

FM1 ,N2
~a1 ,a2 ;x,p!5fM1 ,N2

f̄N1 ,N2 )
j 5N111

n1212N1

q1
j
•FN1 ,N2

~a1 ,a2 ;x,p!. ~3.39!

Calculating the phase yields the rhs of~3.30!, so ~3.29! follows. h

Still assuming~3.8!, this theorem shows that the vector space spanned by the func
FM1 ,M2

, M 1 ,M 2PN, is finite-dimensional: It is already spanned by the functionsFN1 ,N2
with

NdP@0,nd/2), d51,2. Indeed, all of the former functions are phase multiples of the latter
follows by combining~3.27!, ~3.29!, and~3.26!. This fact is in accordance with~but not implied
by! the relation

Hd~b1mn1a1!5Hd~b1mn2a2!5Hd~b!, mPZ, d51,2, ~3.40!

whose validity is clear from~3.21!.
More importantly, the theorem enables us to dispose of themPZ ambiguity in ~3.9! and its

b21-analog. Specifically, takingN1 ,N2PN, we set@recall ~1.20!, ~3.20!, and~3.24!#

F~a1 ,a2 ,b12 ;x,p![FN1 ,N2
~a1 ,a2 ;x,p!, ~3.41!

F~a1 ,a2 ,b21 ;x,p![FN1 ,N2
~a1 ,a2 ;x,p!, ~3.42!

F~a1 ,a2 ,b22 ;x,p![F̃N1 ,N2
~a1 ,a2 ;x,p!, ~3.43!

F~a1 ,a2 ,b11 ;x,p![F̃N1 ,N2
~a1 ,a2 ;x,p!, ~3.44!
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where

F̃N1 ,N2
~a1 ,a2 ;x,p![xN1 ,N2

FN1 ,N2
~a1 ,a2 ;x,p!, ~3.45!

xN1 ,N2
[~2 !N11N2

• i . ~3.46!

Of course, we are free to do so fora1 /a2¹Q, since then allb-valueska11 la2 , k,l PZ, are
distinct. But our task is now to show that for the rational case~3.8! the functionF(a1 ,a2 ,b;x,p)
is still well defined.

Now we have already seen that~3.41! by itself is a legitimate definition; cf.~3.17!. In view of
the symmetry property~3.26!, this is true for~3.42! as well. For~3.43! and ~3.44! to be well
defined by themselves, we should have

F̃N11mn1 ,N2
~a1 ,a2 ;x,p!5F̃N1 ,N21mn2

~a1 ,a2 ;x,p!, mPN. ~3.47!

Recalling~3.27!, we see that this amounts to

zN1 ,N2
~m,0!xN11mn1 ,N2

5zN1 ,N2
~0,m!xN1 ,N21mn2

, ~3.48!

which is easily verified. To prove the compatibility of~3.41! and ~3.43!, we need to show tha
whenM 1P@n1/2,n121#, then we have

FM1 ,N21n2
~a1 ,a2 ;x,p!5F̃N1 ,N2

~a1 ,a2 ;x,p!, N1[n1212M 1 . ~3.49!

Combining~3.27! and ~3.29!, we deduce that this amounts to the relation

zM1 ,N2
~0,1!jN1 ,N2

5xN1 ,N2
, M 15n1212N1 . ~3.50!

The phasexN1 ,N2
obeys this relation~indeed, it is defined such that it does!, so ~3.49! follows.

The remaining compatibilities can now be handled by using~3.26!. Thus, the functionF(J;x,p)
is well defined for all parametersJ5(a1 ,a2 ,b) in Dhyp ~1.7!.

We proceed by summarizing some salient features of the functionF(J;x,p).
Theorem III.2: For all JPDhyp the definition (3.41)–(3.44) gives rise to a well-defined

generically two-valued, analytic function F(J;x,p) with a meromorphic square. It satisfies

HdF~J;x,p!52cd~p!F~J;x,p!, d51,2, ~3.51!

and has parameter and variable symmetries

F~a1 ,a2 ,b;x,p!5F~a1 ,a2 ,a11a22b;x,p!, ~3.52!

F~a1 ,a2 ,b;x,p!5F~a2 ,a1 ,b;x,p!, ~3.53!

F~J;x,p!5F~J;p,x!, ~3.54!

F~J;x,p!5F~J;2x,2p!. ~3.55!

Now denote by Fr the function defined for x,p.0 by taking positive square roots in (3.14). Fo
a1 /a2¹Q this function has a real-analytic extension Fr to x,pPR, which satisfies

Fr~a1 ,a2 ,b;x,p!52Fr~a1 ,a2 ,b;2x,p!, b5b12 ,b21 , ~3.56!

Fr~a1 ,a2 ,b;x,p!5Fr~a1 ,a2 ,b;2x,p!, b5b22 ,b11 . ~3.57!
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Proof: It remains to prove~3.54!–~3.57!. By virtue of ~3.3! and~3.4!, the holomorphic func-
tion ~3.2! satisfies

KN1 ,N2
~a1 ,a2 ;x,p!5KN1 ,N2

~a1 ,a2 ;p,x!, ~3.58!

KN1 ,N2
~a1 ,a2 ;x,p!5KN1 ,N2

~a1 ,a2 ;2x,2p!, ~3.59!

KN1 ,N2
~a1 ,a2 ;x,p!5~2 !N11N2K̄N1 ,N2

~a1 ,a2 ;2x,p!, x,pPR. ~3.60!

@Recall ~2.13!–~2.15!.# In view of ~3.14!, this entails

FN1 ,N2
~a1 ,a2 ;x,p!5FN1 ,N2

~a1 ,a2 ;p,x!, ~3.61!

FN1 ,N2
~a1 ,a2 ;x,p!5FN1 ,N2

~a1 ,a2 ;2x,2p!, ~3.62!

so ~3.54! and ~3.55! follow. For a1 /a2 irrational, the auxiliary weight function~3.12! has a
real-analytic, positive, and even restriction toR, so ~3.56! and ~3.57! follow from ~3.60! and the
phase definitions~3.15! and ~3.46!. h

Of course, fora1 /a2 rational, the restrictionFr is still real-analytic forx,p.0. But in that
case the weight function~3.12! may have poles at the origin, so that ambiguities can arise fx
,0. ~Taking a real-analytic restriction toR and taking parameter limits need not commute;
mention the functionx°(x21e2)21/2 to exemplify this difficulty.!

Such square-root subtleties are not present for the meromorphic jointAd-eigenfunction

M ~J;x,p![@w~J;x!w~J;p!#21/2F~J;x,p!, JPDhyp, ~3.63!

which we study next. From Ref. 2 Eq.~5.21!, we have

w~a1 ,a2 ,k1a11k2a2 ;x!

5 )
d51,2

)
j 51

ukdu S F2 sinh
p

a2d
~x1 iad~ j d2u~kd!!!G@ i→2 i # D kd /ukdu

, kdPZ. ~3.64!

@Here,u(k)51 for k.0 andu(k)50 for k,0.# Using ~3.14! and ~3.41!–~3.46!, this yields the
explicit formulas

M ~a1 ,a2 ,ba,2a ;x,p!5~2 i !2N1N21N11N211@PNa
~aa ,a2a ;x!PNa

~aa ,a2a ;p!#21

•KN1 ,N2
~a1 ,a2 ;x,p!, a51,2, ~3.65!

M ~a1 ,a2 ,b22 ;x,p!5 i 2N1N21N11N2KN1 ,N2
~a1 ,a2 ;x,p!, ~3.66!

M ~a1 ,a2 ,b11 ;x,p!5 i 2N1N21N11N2F )
a51,2

PNa
~aa ,a2a ;x!PNa

~aa ,a2a ;p!G21

•KN1 ,N2
~a1 ,a2 ;x,p!, ~3.67!

where

PN~a1 ,a2 ;x![ )
j 52N

N F2 sinh
p

a2
~x1 i ja 1!G . ~3.68!

Theorem III.3: The meromorphic function M(J;x,p), JPDhyp ~1.7!, satisfies
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AdM ~J;x,p!52cd~p!M ~J;x,p!, d51,2, ~3.69!

and has parameter and variable symmetries

M ~a1 ,a2 ,b;x,p!5M ~a2 ,a1 ,b;x,p!, ~3.70!

M ~J;x,p!5M ~J;p,x!, ~3.71!

M ~J;x,p!5M ~J;2x,2p!, ~3.72!

M ~J;x,p!5M̄ ~J;2x,p!, x,pPR. ~3.73!

Proof: The asserted properties are clear from the definition ofM and from ~3.58!–~3.60!.
@Recall thatw(a1 ,a2 ,b;x) is symmetric undera1↔a2 .# h

We do not know whether the functionM (J;x,p) admits an interpolation to all of the hype
bolic parameter domainH ~1.4!. But for the even jointAd-eigenfunction,

R~J;x,p![M ~J;x,p!1M ~J;2x,p!, JPDhyp, ~3.74!

this is the case~see Ref. 4 and papers to appear!. Observe that the latter function already appea
in the integerg case: One has

R~a1 ,a2 ,~N11!a1 ;x,p!5RN~x,p!, ~3.75!

whereRN(x,p) is given by~2.71!. @To check this, use~3.65! with a51, N15N andN250.#
To conclude this section, let us add one more observation on the auxiliary ADOs Bd ~1.21!.

Since they are only defined forb of the form ~1.20!, we may specify theirb-dependence by
writing Bd(N1 ,N2). Comparing~1.21! and ~1.1!, we now deduce

Bd~N1 ,N2!5Ad~2N1a12N2a2!, d51,2. ~3.76!

This coincidence agrees with~3.66!. Indeed, the latter formula says that the jointAd(b)-
eigenfunctionM for b52N1a12N2a2 is proportional to the jointBd(N1 ,N2)-eigenfunction
KN1 ,N2

. ~See also the remarks at the end of Sec. IV in I, specialized to the hyperbolic cas!

IV. THE TRIGONOMETRIC SPECIALIZATION

At the end of the Introduction we have already delineated how various objects from
elliptic regime studied in I give rise to trigonometric counterparts. We will use the correspon
formulas~1.23!–~1.28! without further comment.

Until further notice, we restrict attention to the special choicek5N11PN* in ~1.27!. Then
the results in Sec. II of I can be readily specialized, giving rise to functionsC(6x,y) that are joint
eigenfunctions of

A5
sinr ~x2 i ~N11!b!

sinrx
Tib1~ i→2 i ! ~4.1!

@the ADO ~1.24! for b5(N11)b)# and Q ~1.28!. @Indeed, the relevant trigonometric functio
E(x) I~2.8! has finite and equal limits for Imx→6`, entailing constancy.#

Comparing the trigonometric ADO A ~4.1! to its hyperbolic counterpartA2((N11)a1) ~1.1!,
one sees they are related via the substitutions

a1→b, a2→p/ ir . ~4.2!
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Moreover, these substitutions turn the second hyperbolic ADO A1((N11)a1) ~1.1! into
(2)N11Q. Therefore, the jointAd((N11)a1)-eigenfunctions from Sec. II can be exploited
obtain (A,Q)-eigenfunctions.~The latter will be shown to be essentially equal to those aris
from the trigonometric specialization of Sec. II in I.!

Once more, we find it expedient to study first the pertinent eigenfunctions of the simi
transformed ADO

B[ )
j 52N

N

sinr ~x1 i j b!•A• )
j 52N

N

sinr ~x1 i j b!215
sinr ~x1 iNb!

sinrx
Tib1~ i→2 i !. ~4.3!

While translating our results from Sec. II to trigonometric analogs, we retain the spectral va
y from Sec. II in I. As will soon become clear, this can be achieved by combining the substitu
~4.2! with

pp/a2→b~y1~N11!r !. ~4.4!

Equivalently, we can anticipate the relation toloc. cit. by taking

p→byN / ir , ~4.5!

where we have set

yN[y1~N11!r . ~4.6!

With the above substitutions in the hyperbolic (B1 ,B2)-eigenfunctionsKN(a1 ,a2 ;x,p)
~1.15!, we obtain the trigonometric counterparts

LN~r ,b;x,y![KN~b,p/ ir ;x,byN / ir !. ~4.7!

More specifically, this yields

LN~x,y!5exp~ ixyN! (
k,l 50

N

ckl
~N!~qt!exp@ i ~N22k!rx1~N22l !byN#. ~4.8!

Here, we are using

qt[exp~2br !, ~4.9!

to avoid confusion with the phase factorq ~1.16!, and the coefficients are defined by~2.2!–~2.5!.
Notice that in the present case all of the coefficients are real numbers, so that~4.8! entails

LN~x,y!5LN~2x,y!, x,yPR. ~4.10!

In view of our hyperbolic result~2.1! ~proved in Theorem II.1!, we have

BLN~x,y!52 cosh~b@y1~N11!r # !LN~x,y!. ~4.11!

Also, ~1.19! translates into

QLN~x,y!522 cos~py/r !LN~x,y!. ~4.12!

@Just as~1.19!, this is immediate from~4.8!, of course.# Likewise, the dual eigenfunction prope
ties ~2.48!–~2.51! become

B̃LN~x,y!52 cos~rx !LN~x,y!, ~4.13!
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Q̃LN~x,y!5~2 !N2 cosh~px/b!LN~x,y!, ~4.14!

where

B̃[
sinh~b@y1~2N11!r # !

sinh~b@y1~N11!r # !
T̃r1

sinh~b@y1r # !

sinh~b@y1~N11!r # !
T̃2r , ~4.15!

Q̃[T̃ip/b1T̃2 ip/b , ~4.16!

with

~ T̃aG!~y![G~y2a!, aPC. ~4.17!

@Again, ~4.14! is plain from ~4.8!.#
We can deduce a few more salient features from Theorem II.1. First, combining~4.7! with

~2.14! and ~4.10!, we obtain

LN~x,2y22~N11!r !5L̄N~x,y!, x,yPR. ~4.18!

Second, from~4.7! and ~2.16! we infer

LN~x,2r !5LN~x,2~2N11!r !5~22!N )
k5N11

2N

sinh~kbr !. ~4.19!

Finally, ~4.7! and ~2.18! entail

LN~x,2~ l 11!r !5LN~x,2~2N112 l !r !5Cl
~N!~cos~rx !!, l 50,...,N. ~4.20!

Here,Cl
(N)(u) is a polynomial of degreel and parity (2) l . Moreover, this polynomial has rea

coefficients in view of~4.18!, and one has

BCl
~N!~cos~rx !!52 cosh~~N2 l !br !Cl

~N!~cos~rx !!, l 50,...,N, ~4.21!

due to~4.11!.
We proceed by obtaining the relation betweenLN(x,y) and the functionHN(x,y) I~2.34!,

specialized to the trigonometric context. To this end we exploit the arguments leading from~2.52!
to ~2.60!. Specifically, ~2.52! and ~2.53! remain true whenq is replaced byqt . Assuming t
Þqt

22 j , j 51,...,N, one obtains~2.54!–~2.56!. Hence the rootsr j (qt ,t) are nonzero fort
Þqt

2 j , j 51,...,N, andr j can be chosen equal toqt
2 j for t50.

In the case at hand, we needt5exp(22byN), which entails

)
j 51

N

r j5)
j 51

N
sinh~b@y1 j r # !

sinh~b@y1~N111 j !r # !
. ~4.22!

Therefore, restricting attention to$Rey.2r%, we may set

r j5exp~2irz j !, zj~y!→ i j b, y→`, j 51,...,N. ~4.23!

Now I~2.25! yields no restriction onb52 iv, sincea5` in the trigonometric regime. Hence
follows that the functionszj (y) thus defined may be identified with the zero functionszj (y) from
Sec. II of I and that the desired relation reads
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LN~x,y!5~4ir !N)
j 51

N

@sinh~b@y1 j r # !sinh~b@y1~N111 j !r # !#1/2
•HN~x,y!, yP~K,`!.

~4.24!

From the trigonometric specialization of I~2.45!–I~2.46! we also deduce that all of the zeroszj (y)
are nonconstant.

It follows from Sec. II of I that all of the zerosz1(y),...,zN(y) belong to i (0,̀ ) for y
P(R,`) andR large. ForN51 this is easily seen to be true for allyP(2r ,`); cf. ~4.22!. But
just as in the hyperbolic case, already forN52 and a suitable choice ofbr , the zeros move off the
imaginary axis asy decreases from̀ to 0, showing once more that the parameterK is necessary.

To see this phenomenon happen, we use~2.9! to calculate~notey50 corresponds tot5qt
6 for

N52)

S2~q;s,q6!5~q92q72q51q3!P2~q;s!, ~4.25!

P2~q;s![12~q41q2111q221q24!s1~q61q412q21212q221q241q26!s2.
~4.26!

Taking q→qt and letting qt↑1, one getsP2→125s110s2. Since the limit polynomial has
nonreal roots, it follows that the numbersz1(0),z2(0) are not purely imaginary forbr small
enough.@Recall that we needs5exp(22irx) in the present case.#

Next, we calculate the Casorati determinant

DN~x![LN~x1 ib/2,y!LN~2x1 ib/2,y!2~b→2b!. ~4.27!

The argument in Sec. II of I leading to I~2.43! is easily adapted, yielding

DN~x!5gN~y! )
n52N11/2

N21/2

sinr ~x1 inb!. ~4.28!

Using ~4.8! with Im x→`, we now obtain

gN~y!5~22i !2N@exp~2byN!2exp~byN!#

•S (
l 50

N

cNl
~N!~qt!exp@~N22l !byN# D S (

l 50

N

c0l
~N!~qt!exp@~N22l !byN# D . ~4.29!

From symmetry of the coefficients and~2.4!–~2.6! we then infer

gN~y!5~2 !N1122N11 sinh~byN!exp~2NbyN!~2 !NQN~e22byN!Q0~e22byN!

5224N11 )
j 51

2N11

sinh~by1 j br !. ~4.30!

In view of the relation~4.24!, it follows that in the trigonometric case the quantityaN in I~2.43!
becomes

aN5~2 !N112 sinh~by1~N11!br !. ~4.31!

From ~4.30! we read off thatLN(x,y)/LN(2x,y) is not ib-periodic in x, unlessy equalsyjk

[2 j r 1 ipk/b with j 51,...,2N11 andkPZ; in the latter case we readily obtain

LN~x,yjk!/LN~2x,yjk!5exp~22pkx/b!, j 51,...,2N11, kPZ. ~4.32!

@The formulas~4.27!–~4.32! should be compared to their hyperbolic counterparts~2.63!–~2.68!.#
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Restricting attention to meromorphicB-eigenfunctions, it follows that the eigenspace cor
sponding to the eigenvalue 2 cosh(b@y1(N11)r#) is two-dimensional over the field ofib-periodic
meromorphic functions, providedyÞyjk ; cf. Appendix B in I. ~It is not hard to see that fory
5yjk this is still true; note in this connection that one need only handle the casek50.) When we
insist on joint (B,Q)-eigenfunctions with eigenvalues (2 cosh(b@y1(N11)r#),22 cos(py/r)), we
still obtain an infinite-dimensional eigenspace, since we can allow multipliers from the fie
elliptic functions with periods (p/r ,ib).

Next, we turn to quantum-mechanical/functional-analytic properties of the operatorB and its
eigenfunctions. We begin by observing that the relation~4.24! can be used to defineHN(x,y) for
complexy with Rey.2r ~say!, and, in particular, fory5nr, nPN. ~We have already seen tha
K.0, in general, so this is a genuine extension.! We now study the functions

cn~x![H~x,nr !2H~2x,nr !, nPN, ~4.33!

in relation to the Hilbert space

H ŵ[L2~~0,p/r !,ŵ~x!dx!, ~4.34!

where

ŵ~x![ )
6n51

N
r

sinr ~x1 inb!
. ~4.35!

First, let us note that all of the functionscn(x) belong to the dense subspaceO1 I~4.11! ~with
N15N,N250, of course!. Indeed, from Sec. II of I we have

H~ ikb,y!5H~2 ikb,y!, uku<N. ~4.36!

@See the paragraph containing I~2.39!.# Moreover,cn(x) is p/r -periodic (p/r -antiperiodic! for n
odd ~even!. HencecnPO1 , as asserted.

Second, it is easily checked that the operatorB ~4.3! is symmetric onO1 . ~One need only
adapt the proof of Theorem IV.1 in I, which simplifies considerably in this case.! Now from ~4.11!
and ~4.24! one gets

Bcn52 cosh~@n1N11#br !cn , nPN, ~4.37!

so the functionscn are pairwise orthogonal.
Third, we combine~4.13!, ~4.15!, and ~4.24! to deduce thatcn(x) satisfies the recurrenc

relation

Cncn21~x!1Cn11cn11~x!52 cos~rx !cn~x!, nPN, ~4.38!

where

Cn[S sinh~@n12N11#br !

sinh~@n1N11#br !
•

sinh~nbr !

sinh~@n1N#br ! D
1/2

, nPN. ~4.39!

Now for N50 we have

H0~x,y!5expix~y1r !, cn~x!52i sin~n11!rx, Cn51, nPN. ~4.40!

For N.0 we haveC050, so we deduce from~4.38! thatc0(x) cannot vanish identically.@Indeed,
c050 would entail successivelyc150,c250,..., contradicting they→` asymptotics of
HN(x,y); cf. the specialization~4.46! of I~3.41!.# In fact, using the hyperbolic result~2.78!, the
function c0(x) will be explicitly determined below.

Fourth, we use~4.38! with N.0 to infer
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cn~x!/c0~x!5Gn~cosrx !, nPN, ~4.41!

where the functionsGn(u) are polynomials of degreen and parity (2)n with real coefficients. As
a consequence, the functionscn , nPN, are an orthogonal base for the Hilbert spaceHŵ ~4.34!.
Of course, this entails that the operatorB is essentially self-adjoint on the linear span
c0 ,c1 ,..., andhence onO1 , too. @For N50 the analogous conclusions are immediate fr
~4.40!.#

In the following theorem we summarize some of the above findings and add some new
In particular, we reinterpret the three-term recurrence~4.38! in terms of thediscretedifference
operator

D5S sinh~@n12N11#br !

sinh~@n1N11#br ! D 1/2

SS sinh~@n11#br !

sinh~@n1N11#br ! D
1/2

1h.c., ~4.42!

on the Hilbert spacel 2(N). Here,S is the right shift,

~S f !n[H 0, n50,

f n21 , n.0,
~4.43!

with f 5( f 0 , f 1 ,...)P l 2(N), and h.c. stands for hermitean conjugate. Clearly,D is a bounded
self-adjoint operator onl 2(N).

Theorem IV.1: The B-eigenfunctions$(r /2p)1/2cn(x)%n50
` are an orthonormal base forHŵ

(4.34). The self-adjoint operator D on l2(N) has a purely absolutely continuous spectrum
@22,2# with multiplicity one.

Proof: Setting

Nn[~cn ,cn!1/2, nPN, ~4.44!

it follows from the above that the functionsc0 /N0 ,c1 /N1 ,..., give rise to an isometric linea
mapU from Hŵ onto l 2(N). To prove that the normalization constants equal (2p/r )1/2, we first
show that they do not depend onn. Indeed, consider the inner product of the recurrence rela
~4.38! with cn11 . By virtue of orthogonality, this yields

Cn11Nn11
2 5~cn11~x!, 2 cos~rx !cn~x!!. ~4.45!

Now when we rewrite 2 cos(rx)cn11(x) by using~4.38! with n→n11, then we deduce that the rh
of ~4.45! equalsCn11Nn

2 . Hence we getNn115Nn , and so our assertion follows.~This argument
is probably not new, but we do not know a reference.!

Next, specializing I~3.41! to the trigonometric case, we obtain

H~x,y!5H ~`!~x,y!1O~e22by!, y→`, ~4.46!

uniformly on x-compacts, with

H ~`!~x,y!5)
j 51

N
sinr ~x1 i j b!

r
•eirx ~N11!eixy. ~4.47!

@This asymptotics can also be derived directly from~4.24! and~4.8!.# In view of ~4.33!, this entails

cn~x!5)
j 51

N
sinr ~x1 i j b!

r
•eirx ~N111n!2~x→2x!1O~e22nbr !, n→`, ~4.48!
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the bound being uniform forxP@0,p/r #. Since the inner product (cn ,cn) does not depend onn,
we can now calculate it by using~4.48! and takingn→`. Thus we obtain the norm formula
@recall ~4.35!#

~cn ,cn!52p/r , nPN, ~4.49!

and so the first assertion of the theorem follows.
Now ~4.38! says that (c0(x),c1(x),...) is an improper D-eigenfunction with eigenvalue

2 cosrx. More precisely, the unitary operatorU21: l 2(N)→Hŵ sets up a spectral representation f
D as multiplication by 2 cosrx onHŵ :

~U21DU f !~x!52 cos~rx ! f ~x!, f PHŵ . ~4.50!

Thus the second assertion is plain. h

We continue by determiningc0(x) explicitly. To this end we note that~4.24! and~4.7! entail

c0~x!5~4ir !2NDN~x!)
j 51

N

@sinh~ j br !sinh~@N111 j #br !#21/2, ~4.51!

where

DN~x![KN~b,p/ ir ;x,2 i ~N11!b!2KN~b,p/ ir ;2x,2 i ~N11!b!. ~4.52!

Now we use~2.14!, ~2.71!, and~2.78! to calculateDN(x). This yields

DN~x!5~2 !N23N11i )
n52N

N

sinr ~x1 inb!•)
j 51

N

sinh~ j br !, ~4.53!

so that

c0~x!5r ~2i /r !N11)
j 51

N S sinh~ j br !

sinh~@N111 j #br ! D
1/2

• )
n52N

N

sinr ~x1 inb!. ~4.54!

Comparing this explicit formula to~4.3!, we deduce

B5c0~x!21Ac0~x!. ~4.55!

In view of ~4.41!, this entails thatA ~4.1! can be viewed as a self-adjoint operator on the Hilb
space

H A[L2~~0,p/r !,uc0~x!u2ŵ~x!dx!, ~4.56!

yielding an orthonormal base of polynomials (r /2p)1/2Gn(cosrx); the A-eigenvalues read
2 cosh(@n1N11)br) @cf. ~4.37!#, and the polynomials are uniquely determined by the recurre
~4.38! andG0(u)51 ~save forN50; cf. below!.

As already pointed out in Ref. 5@cf. the paragraph in Ref. 5 containing Eq.~3.84!#, the
orthogonal polynomials thus obtained are not new: They areq-Gegenbauer polynomials genera
izing the integerg Gegenbauer polynomials arising from the trigonometric specialization of
Lamé operator I~1.1!. Theseq-Gegenbauer polynomials were studied in considerable deta
Askey and Ismail;6 their parameters are related to ours via

qAI5qt
25exp~22br !, bAI5exp~22gbr !, lAI5g. ~4.57!
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As far as we know, the two representations we have exploited to derive some imp
features of the integerg polynomialsare new. In this connection we should also point out that t
pertinent weight function integral is immediate from the above. Indeed, from~4.49! we have, in
particular, (c0 ,c0)52p/r . Hence~4.54! and ~4.35! yield the integral

1

2p E
0

p

dy siny )
n52N

N

sin~y1 ina!5
1

4N11 )
j 51

N
sinh~@N111 j #a!

sinh~ j a!
, NPN, a.0,

~4.58!

as a corollary.
In the remainder of this section we study the caseb5kb with 2kPN. Since we intend to

compare the insights obtained for these parameters to the state of affairs at the elliptic lev
follow the relevant part of Sec. IV in I@starting with the paragraph containing I~4.42!# to a large
extent. We first need some preparations, however.

First, in keeping with the notation adopted for the elliptic case, we denote
A((N11)b)-eigenfunctions corresponding toHN(x,y) by C(x,y). Thus, we have

C~x,y!5N )
j 52N

N

sinr ~x1 i j b!21
•HN~x,y!, b5~N11!b, ~4.59!

so that we get the asymptotics

C~x,y!;c~x!exp~ ixy!, y→`, ~4.60!

with

c~r ,b,~N11!b;x!5N )
j 50

N

sinr ~x2 i j b!21
•expi ~N11!rx. ~4.61!

~As before, the symbolN is used to denote normalization constants.!
Second, the trigonometricc-function occurring here equals, more generally,

c~r ,b,b;x!5
G~r ,b;2x2 ib/2!

G~r ,b;2x1 ib2 ib/2!
, ~4.62!

where G(r ,b;z) is the generalized trigonometric gamma function from Ref. 2; just as in
elliptic case, the weight and scattering functions are then given by I~1.27! and I~1.28!. @Compare
also I~1.24!–I~1.26! with ~4.60!–~4.62!.#

We are now prepared to follow our elliptic reasoning. DenotingB ~4.3! by B(N), and com-
paring this ADO to A(b) ~1.24!, we obtain

A~2Nb!5B~N!, NPN. ~4.63!

This equality is the trigonometric counterpart of the elliptic relation I~4.42! with N250 andd
52; the prefactorr 2 is absent here, since we omitted the prefactor exp(2br) occurring in
I~1.15!; cf. ~1.24!. ~As will be explained at the end of this section, in the trigonometric case
omission is not motivated solely by a desire to avoid clutter from constants.!

Due to ~4.63!, ~4.11!, and~4.24! we now have

A~2Nb!HN~6x,y!52 cosh~b@y1~N11!r # !HN~6x,y!, ~4.64!

which is the analog of I~4.46! with N250,d52. Similarly, I~4.48! and I~4.50! specialize to

C~x,y!5NHN~x,y2~2N11!r !, b52Nb, Rey.2Nr. ~4.65!
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@Note that ~4.24! and ~4.20! entail that C(x,y) becomessingular for y5(N1 j )r with 6 j
51,...,N.# This guarantees that~4.60! holds true, with

c~2Nb;x!5N)
j 51

N

sinr ~x1 i j b!•exp2 iNrx. ~4.66!

@This formula agrees with the pertinent specializations of I~4.52! and ~4.62!; cf. also Proposition
III.14 in Ref. 2.#

The upshot is that we have now obtained eigenfunctionsC(b;6x,y) of A(b) @and of Q
~1.28!, of course# for b5kb, kPZ. Denoting the eigenvalues byE(y), they have asymptotics

E~y!;ebreby, y→`, b5kb, kPZ, ~4.67!

in accord with I~1.19! for d52. @Recall that we omitted the factor exp(2br) in I~1.15! for the
trigonometric ADO ~1.24!.#

In contrast to the elliptic and hyperbolic cases, the subsetDtrig ~1.27! is not dense in the
trigonometric parameter domainT ~1.23!. Therefore, our results have no direct implications for t
existence and properties of joint (A(b),Q)-eigenfunctionsC(x,y) for arbitrarybPR. But we can
shed more light on the orthogonality question for the elliptic case by specializing to theb-values
2Nb, NPN, and studying the analogous trigonometric question. Then we are dealing wit
Hilbert space of square-integrable functions on (0,p/r ) w.r.t. the measurew(r ,b,2Nb;x)dx;
due to~4.66! and the relationw(x)51/c(x)c(2x), the weight function is proportional toŵ(x)
~4.35!, so we may as well useHŵ to study orthogonality.

First, we observe that due to~4.65! the functions

zk~x![C~x,kr !2C~2x,kr !, k>2N11, b52Nb, ~4.68!

are proportional to the functionsck22N21 given by~4.33!. Thus they yield an orthogonal base
eigenvectors ofA(2Nb). But in this case we can actually rule out that forN.0 the even
combinations

xk~x![C~x,kr !1C~2x,kr !, k>2N11, b52Nb, ~4.69!

are orthogonal inHŵ . This entails that the elliptic generalizations forb52Ndad ,Nd.0, are not
orthogonal as well@as announced below I~4.57!#. In the following theorem we prove not onl
nonorthogonality, but also an unexpected completeness property.

Theorem IV.2: For all NPN the functionsxk(x) (4.69) satisfy

A~2Nb!xk~x!52 cosh~@k2N#br !xk~x!, k>2N11. ~4.70!

Now let NPN* . Then the functions$xk(x)%k52N11
` are total, but not pairwise orthogonal in th

Hilbert spaceHŵ (4.34).
Proof: The first statement follows from~4.64! and~4.65!. In order to prove the second one, w

begin by noting that the functionsxk(x) satisfy the recurrence relation

Cnx2N1n~x!1Cn11x2N1n12~x!52 cos~rx !x2N1n11~x!, nPN, ~4.71!

with Cn given by ~4.39!. @Indeed, this follows in the same way as~4.38!.# SinceC050 andCn

.0 for all nPN* , this entails as before thatx2N11(x) is not identically 0 and that

x2N1n11~x!/x2N11~x!5Gn~cosrx !, nPN; ~4.72!

cf. ~4.41!.
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SinceGn(cosrx) is a polynomial of degreen in cosrx, it now follows from ~4.72! that the
linear span of the functionsx2N11 ,x2N12 ,..., isdense inHŵ . Thus, it remains to show that the
are not pairwise orthogonal. We now prove this by deriving a contradiction from the assum
of pairwise orthogonality.

Indeed, this assumption entails~by virtue of the reasoning in the proof of Theorem IV.1! that
the polynomials (r /2p)1/2Gn(cosrx) are an orthonormal base for the Hilbert space

H̃A[L2~~0,p/r !,uh0~x!u2ŵ~x!dx!, ~4.73!

where

h0~x![HN~x,0!1HN~2x,0!. ~4.74!

Since we have already proved that these polynomials have this property w.r.t. the Hilbert
HA ~4.56!, it easily follows thatuc0(x)u2 and uh0(x)u2 are equal forxP@0,p/r #. Now this
amounts to the real part ofH̄N(x,0)HN(2x,0) being 0 forxP@0,p/r #, so using~4.24! we infer
ReL̄N(x,0)LN(2x,0) vanishes forxP@0,p/r #. Recalling~4.10!, this entails Re(LN(x,0)2)50 for
real x. But an inspection of~4.8! reveals that the functionLN(x,0)2 is of the form
(m52

4N12am expimrx, with amPR. Thus, we inferLN(x,0) vanishes identically. Since this entai
c0(x)50, we finally arrive at the desired contradiction. h

The alert reader will have noted that we excluded the choiceN50 from consideration. Indeed
from ~4.65! and theN50 formula~4.40!, we haveC(x,y)5N expixy. Thus, the functionszk(x)
~4.68! and xk(x) ~4.69! are proportional to sinkrx and coskrx, respectively, withk51,2,... .
Moreover,Hŵ reduces toL2((0,p/r ),dx). Now, as before, the functionsz1 ,z2 ,..., are an or-
thogonal base. But clearly the functionsx1 ,x2 ,..., arealsopairwise orthogonal, and they arenot
complete inHŵ , since they are all orthogonal to the constant functions!

At first sight, this seems to contradict our previous reasoning. In fact, however, there
subtle, but decisive difference with the caseN.0: The pertinent recurrence coefficientsCn , n
PN, are equal to 1including C0 , whereasC0 vanishes forN.0 @cf. ~4.39!#. Hence it does not
follow that ~4.72! yields polynomials, and indeed the functions cos(n11)rx/cosrx are not polyno-
mials in cosrx.

We also observe that theN50 recurrence is obeyed both by the second-kind Tchebic
polynomials sin(n11)rx/sinrx and by the first-kind ones cosnrx, nPN. The lattercan be used to
defineA(0) as a self-adjoint operator onL2((0,p/r ),dx), whereas the former are equal to th
aboveqt

2-Gegenbauer polynomials forb5b @and as such were used to turnA(b) into a self-
adjoint operator onL2((0,p/r ),sin2(rx)dx)#.

To conclude this section, we present some more observations on the relation betwe
casesb5(N11)b andb52Nb. When we transform theA(b)-eigenfunctionsC(x,y) to func-
tions F(x,y) by using I~1.29! @with w(x) the trigonometricw-function w(r ,b,b;x)#, then the
functionsF̃(x,y) for the b-values2Nb are related to the functionsF(x,y) for the b-values (N
11)b via

F̃~x,y!5xF~x,y2~2N11!r !, Rey.2Nr, ~4.75!

with x a phase.@This follows by combining~4.59! and~4.65! with thec-function formulas~4.61!
and ~4.66!.#

This relation is in agreement with the identity

H~2b!5H~b1b!, ~4.76!

satisfied by the HamiltonianH(b) ~1.25!. We have omitted the factor exp(2br) present in the
elliptic counterpartH2 I~1.12!, since the symmetry property I~1.13! does not admit a trigonomet
ric specialization. Because we have done so, the symmetry property~4.76! appears instead. Not
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that this invariance property at the relativistic level turns intog→12g invariance at the nonrel
ativistic level; cf. I~1.1!. By contrast, the invariance property I~1.13! has no nonrelativistic coun
terpart.

Let us observe finally that—again in contrast to the elliptic case—the ADOsH(b1) andH(b2)
are proportional~in fact, equal! only when b25b1 and b252b11b. Of course, this easily
verified assertion assumes that we restrict attention toT ~1.23!, as we have done throughout th
section.
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On the reproducing kernel of the Segal-Bargmann space
Stephen Bruce Sontza)

Universidad Auto´noma Metropolitana-Iztapalapa, Col. Vicentina, Me´xico DF 09340,
Mexico

~Received 22 July 1998; accepted for publication 29 October 1998!

This article revolves around the properties on theLp scale of spaces of the integral
kernel operatorK whose kernel function is the reproducing kernel of the Segal-
Bargmann space. We find sufficient conditions onp and q for K to be a Hille-
Tamarkin~and hence compact! operator fromLp to Lq with respect to the standard
Gaussian measure as well as with respect to a weighted measure on the codomain
space. We also find sufficient conditions forK to be unbounded with respect to the
standard Gaussian measure. Finally we give sufficent conditions for a Toeplitz
operator to be Hille-Tamarkin on theLp scale of spaces with respect to both the
standard Gaussian measure and a weighted measure on the codomain space
© 1999 American Institute of Physics.@S0022-2488~99!02702-4#

I. INTRODUCTION

The Segal-Bargmann space has enjoyed a long history in mathematics and mathe
physics. Originally introduced by Fischer,1 it found its first use in physics in the early days
quantum mechanics by Fock2 and has since come to be recognized as a quantum mecha
version of the phase space of classical mechanics~see Ref. 3!. The aspects of this structur
relevant to mathematical physics were put on a rigorous basis by Segal~see Refs. 4 and 5! in the
infinite dimensional case, and by Bargmann6 in the finite dimensional case. This last artic
describes a transform, often call the Segal-Bargmann transform, associated with the
Bargmann space and with another space, sometimes called the configuration space or the¨-
dinger space. The reader should be warned that unfortunately the Segal-Bargmann space h
given a wide variety of appellations, including all combinations and permutations of the n
Bargmann, Fock, and Segal as well as the ‘‘complex wave representation.’’ Of course, the
Bargmann transform has suffered a similar fate, all of which makes literature searches pro
atical even in an age of computerized data bases. Moreover, in the field of white noise analy
S-transform is closely related to the Segal-Bargmann transform~see Ref. 7, p. 337!.

In this article, the role of the Segal-Bargmann transform is replaced completely by an
structure, the reproducing kernel function, or more precisely, its associated integral kernel
form. ~See Ref. 8 for a related analysis of the Segal-Bargmann transform itself.! Consequently, the
theory here is developed in the Segal-Bargmann space and other related Banach spaces
reference to the configuration space. Moreover, only the finite dimensional case is discusse
The reproducing kernel integral transform is a principal ingredient in the quantization sc
which assigns to a functionf, which can be thought of as a classical observable~if it is real
valued!, a corresponding operatorT(f) ~called a Toeplitz operator!, which can be thought of as
the corresponding quantum observable.

We now give a summary of this article. Precise definitions will be given in the next sec
We work with the Segal-Bargmann spaceHL2(Cn,mn) ~see Refs. 4–6! of holomorphic functions
on Cn that are square integrable with respect to a Gaussian measuremn . This space has a
reproducing kernel functionK(w,z), which in turn defines an integral kernel operator

K f ~w!ªE
Cn

dmn~z!K~w,z! f ~z!,

a!Electronic mail: sontz@xanum.uam.mx
16640022-2488/99/40(3)/1664/13/$15.00 © 1999 American Institute of Physics
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where f :Cn→C and wPCn. This integral operator is well defined for allf in Lp(Cn,mn) with
1,p<`. It is proved in Theorem 3.1 thatK is a compact~actually, Hille-Tamarkin! operator
from Lp(Cn,mn) to Lq(Cn,mn) for p8q,4 and that in this case

uuKuup→q<min~~12p8q/4!2n/q,~12p8q/4!2n/p8!,

wherep8 is the dual index ofp. Notep8q,4 impliesp.q. Next, calculations with test function
demonstrate thatuuKuup→q5` if p8q.4. Note p,q implies p8q.4. Also, p5qÞ2 implies
p8q.4. In Theorem 3.2 it is shown thatK is a compact~actually, again Hille-Tamarkin! operator
from Lp(Cn,mn) to Lq(Cn,nab) given only that 1,p<` and 1<q,` wherenab is the prob-
ability measure given bydnab(z)5cabexp(2ax22by2)dmn(z) and a and b are constants which
depend only onp andq. Herecab is a normalization constant. Some of the results of Theorem
can be derived as special cases of Theorem 3.2, but it is hoped that the present exposition
better how the ideas of Theorem 3.2 were formed. As is usual inLp analysis, most of the result
of this article depend in one way or other on Ho¨lder’s inequality, though interpolation theorem
are used as well.

The results presented in this article are applied in two ways. First, they are used in Th
3.3 to prove a sufficient condition for a Toeplitz operator to be Hille-Tamarkin fromLp(Cn,mn) to
Lq(Cn,mn) or to Lq(Cn,nab). A second application is a demonstration of a reverse log-Sob
inequality in the Segal-Bargmann space, which is proved in a subsequent article9 by the author.

The organization of the paper is as follows. The next section introduces the requisite d
tions and notation. Section III gives the statements of the theorems, while their proofs are gi
Sec. IV. Section V concludes with some comments and remaining open questions.

II. NOTATION AND DEFINITIONS

This section contains a review of notation and definitions. A reference for most of the no
used here for the Segal-Bargmann space is Bargmann’s article.6 For each integern>1, the
Segal-Bargmann spaceHL2(Cn,mn) ~see Refs. 4–6! is the Hilbert space of holomorphic function
f :Cn→C which are square integrable with respect to a Gaussian measure given by

dmn~z!ªp2nexp~2z* •z!dnxdny,

where for eachz5(z1 , . . . ,zn)PCn and w5(w1 , . . . ,wn)PCn we definez*ª(z1* ,...,zn* ) and
z•wªz1w11•••1znwn . Herednxdny is Lebesgue measure onCn andl* is the complex con-
jugate of the complex numberl. Also, we writez2

ªz•z for zPCn; this specializes tox2
ªx•x

for xPRn. Notice that

HL2~Cn,mn!5L2~Cn,mn!ùHn ,

whereL2(Cn,mn) is the space of all functionsf :Cn→C that are square integrable with respect
mn and whereHn is the space of all holomorphic functions fromCn to C. The reproducing kerne
K for the Segal-Bargmann space is given by

K~w,z!5exp~w•z* !,

wherew,zPCn. It is then well known~see Ref. 6! that K does indeed satisfy the reproducin
kernel property, namely, that

f ~w!5E
Cn

dmn~z!K~w,z! f ~z! ~2.1!

holds for allw in Cn and for all f in the Segal-Bargmann space. We can also define an inte
kernel operator, also denoted byK, associated with the reproducing kernel. Explicitly, we defi
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K f ~w!ªE
Cn

dmn~z!K~w,z! f ~z!, ~2.2!

where f :Cn→C is measurable andwPCn, provided that the integral exists. An application
Hölder’s inequality shows thatK f (w) is well defined for allw in Cn and for all f in Lp(Cn,mn)
when 1,p<`; K f is also a holomorphic function in this case. Then formula~2.1! says that
K f 5 f for all f in the Segal-Bargmann spaceHL2(Cn,mn). Moreover, it is well known thatK as
an operator defined in all ofL2(Cn,mn) is the orthogonal projection operator whose range
precisely the Segal-Bargmann spaceHL2(Cn,mn), which is a closed subspace ofL2(Cn,mn).

Some of the usual notation for Lebesgue spaces has already been used in the previou
graph. Here we review this. Whenever (X,m) is a measure space and 1<p<`, we denote the
usualLp norm of a measurable functionf :X→C by uu f uup or sometimes byuu f uuLp(m) if we need to
be more explicit. AlsoLp(X,m), or simplyLp, denotes the corresponding Banach space. IfB is a
linear map defined on a dense subspaceD of Lp(X,m) for 1<p<` such thatB f :Y→C is
measurable for everyf in D, where (Y,n) is also a measure space, then we define the ope
norm fromLp(X,m) to Lq(Y,n) where 1<q<` by

uuBuup→qªsup$uuB f uuLq~n! : f PD and uu f uuLp~m!51%.

It should be noted that this defines an element in@0,̀ #. Moreover, if this operator norm is a finit
number, thenB can be extended uniquely to a continuous linear map defined on all ofLp(X,m)
and with codomainLq(Y,n). Even though it is standard, the notationuu•uup→q is ambiguous
because it suppresses reference to the measure spaces as well as to their measures.
context should resolve this ambiguity, though sometimes clarifying comments will be added
text.

Suppose that (X,m) and (Y,n) are s-finite measure spaces. We say that any measur
function B:X3Y→C is a kernel function. Given such a kernel function, we define its associ
integral operator

B f~x!ªE
Y
dn~y!B~x,y! f ~y!,

where xPX and f :Y→C is measurable, provided that the integral exists. Here we follow
common convention, already used above, of using the same symbolB for the kernel function and
for its associated operator. We define the transpose kernel functionBT:Y3X→C by BT(y,x)
ªB(x,y) for all (y,x)PY3X. For given indicesp andq in @1,̀ #, we define the Hille-Tamarkin
norm ~see Refs. 10 and 11! of a kernel functionB by

uuuBuuup,qªuuBpuuLq~m! , ~2.3!

whereBp :X→C is defined by

Bp~x!ªuuB~x,• !uuLp8~n! ,

wherexPX andp8 is the usual dual index ofp. As in the case of the operator norm, the notati
uuu•uuup,q is ambiguous and precisely for the same reason, namely that the notation supp
reference to the measure spaces and to their measures. Context, sometimes including
comments, should again clarify the precise meaning. In the special case 1,p<` and 1<q
,`, the Hille-Tamarkin norm is given by the formula

uuuBuuup,q5H E
X
dm~x!S E

Y
dn~y!uB~x,y!up8D q/p8J 1/q

.
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Furthermore, whenp5q52, this norm becomes the Hilbert-Schmidt norm. Also one says tha
associated operator is a Hille-Tamarkin operator with respect top,q if its kernel function has a
finite Hille-Tamarkin norm forp,q. Here are some facts about the Hille-Tamarkin norm.~See Ref.
11 for proofs of these and other properties.! The notation and hypotheses continue to be th
already used in this section.

Proposition 2.1:uuBuup→q<uuuBuuup,q and uuBuup→q<uuuBTuuuq8,p8 .
Proposition 2.2:If uuuBuuup,q is finite and 1,p<` and 1<q,`, then the associated integra

operatorB is a compact operator fromLp(Y,n) to Lq(X,m).
Proposition 2.3: If p>q8, then uuuBuuup,q<uuuBTuuuq8,p8 . If p<q8, then uuuBuuup,q

>uuuBTuuuq8,p8 .
The proof of the first proposition is an application of Ho¨lder’s inequality, while the second i

proved by a limiting argument similar to that which shows that the Hilbert-Schmidt operator
compact. Since the set of all Hille-Tamarkin operators with respect top,q is a Banach space with
the Hille-Tamarkin norm, the first part of the first proposition implies that this Banach spa
contractively contained in the space of all bounded linear operators, while the second prop
says that this Banach space is a subspace of the space of all compact operators whenpÞ1 and
qÞ`. The third proposition is proved by Minkowski’s inequality for integrals. It tells us which
the two estimates in the first proposition is better. While this is an easy matter to decide
applications given here, this proposition shows what is happening in its full generality.

Finally, we define the Toeplitz operatorT(f) associated to a measurable functionf:Cn

→C by

~T~f! f !~w!ªK~f f !~w!5E
Cn

dmn~z!K~w,z!f~z! f ~z!, ~2.4!

wherewPCn and f :Cn→C is measurable provided that the integral exists. This differs from
usual definition in that there are no requirements thatf belong to a space of holomorphic function
nor thatf be bounded. Whenf is real valued, it can be interpreted as a physical observ
defined on the classical phase spaceCn, or equivalently,R2n. More details can be found in Refs
3 and 12, and references therein.

III. STATEMENT OF THEOREMS

Now we can state the results of this article. The first theorem describes some of tLp

mapping properties of the integral kernel operatorK.
Theorem 3.1: Let K denote the integral kernel operator associated to the reproducing k

function of the Segal-Bargmann spaceHL2(Cn,mn), as defined in~2.2!. Let p, p1, q, andq1 be
indices in@1,̀ #.
~i! If p>p1 andq<q1, thenuuKuup→q<uuKuup1→q1

.
~ii ! uuKuup→q>1.
~iii ! uuKuu2→251.
~iv! If p>2 andq<2, thenuuKuup→q51.
~v! K is a Hille-Tamarkin operator fromLp(Cn,mn) to Lq(Cn,mn) if and only if p8q,4 where
p8 is the dual index ofp. In this case,

1,uuuKuuup,q5~12p8q/4! .
2n/q .

In particular,uuuKuuu2,25`. ~Notice thatp8q,4 impliesp.q.!

~vi! If p8q,4, then K is a compact operator fromLp(Cn,mn) to Lq(Cn,mn) with uuKuup→q

<Apq , whereApqªmin((12p8q/4)2n/q,(12p8q/4)2n/p8).
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~vii ! If p8q,4, thenuuKuupt→qt
<Apq

t for all 0<t<1, wherept andqt are defined implicitly by

pt
215~12t !2211tp21 and qt

215~12t !2211tq21. ~3.1!

~viii ! If p8q.4, thenuuKuup→q5`. ~Notice thatp,q implies p8q.4. Also p5qÞ2 implies
p8q.4.!
~ix! If p8qÞ4, thenuuKuup→q5uuKuuq8→p8 .

It seems reasonable to conjecture thatuuKuup→q5uuKuuq8→p8 for the remaining casep8q54 as
well. The next theorem also concernsLp mapping properties of the integral kernel operatorK,
except that now a different measure~which implies a different norm! is used in the codomain
space.

Theorem 3.2: Let K denote the integral kernel operator associated to the reproducing k
function of the Segal-Bargmann space, as defined in~2.2!.
~i! If 1 ,p<` and 1<q,`, then there exist real numbersa and b such thatK is a Hille-
Tamarkin and compact operator fromLp(Cn,mn) to Lq(Cn,nab) where nab is the probability
measurednab(z)ªcabexp(2ax22by2)dmn(z). Herez5x1 iyPCn wherex,yPRn and where
the normalization constant iscab5(11a)n/2(11b)n/2. Explicitly, we haveuuKuup→q<uuuKuuup,q

,` and uuKuup→q<uuuKTuuuq8,p8,`, where

1,uuuKuuup,q5~~11a!~11b!~a112p8q/4!21~b112p8q/4!21!n/2q

and

1,uuuKTuuuq8,p85~~11a!~11b!~a112p8q/4!21~b112p8q/4!21!n/2p8,

and wherea andb satisfy

a.p8q/421 and b.p8q/421. ~3.2!

Notice that the operator norm as well as the Hille-Tamarkin norms are with respect to the m
mn in the domain space and the measurenab in the codomain space. Also, notice that the inequ
ties ~3.2! imply a.21 andb.21 so thatcab and hencenab are well-defined.
~ii ! If 1 ,p<` and 1<q,`, then K is a bounded linear operator fromLpt(Cn,mn) to
Lqt(Cn,nab

t ), where 0<t<1 and

dnab
t ~z!ªcab

tqt /qexpS 2
tqt

q
~ax21by2! Ddmn~z!

and pt and qt are defined above in~3.1! and a and b satisfy the inequalities~3.2! in part ~i!.
Explicitly, we have the estimate

uuKuupt→qt
<~min~ uuuKuuup,q ,uuuKTuuuq8,p8!! t,

whereuuuKuuup,q anduuuKTuuuq8,p8 are given in part~i!. Here the operator norm is with respect to t
measuremn in the domain space andnab

t in the codomain space. However, the Hille-Tamark
norms are with respect tomn in the domain space andnab in the codomain space.

As a particular case, we have the estimate

uu f uuLqt~n
ab
t !<Mtuu f uuLpt~mn! ~3.3!

for all f in the Segal-Bargmann space andM5min(uuuKuuup,q ,uuuKTuuuq8,p8).
Moreover,K is actually a Hille-Tamarkin operator with respect tomn in the domain space an

nab
t in the codomain space for 0,t<1.
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The division ofCn into two copies ofRn ~via the representationz5x1 iy) and the corre-
sponding introduction of the two constantsa andb is somewhat arbitrary. One could have divid
Cn into 2n summands with the introduction of 2n constants and have an analogous result.

The final theorem gives some sufficient conditions for a Toeplitz operator to be H
Tamarkin with respect to theLp scale of spaces. This is done with both the standard measure
the weighted measure in the codomain space.

Theorem 3.3: ~i! Suppose thatfPLr(Cn,mn) for some r .4/3. Supposep satisfiesp21

1r 21,3/4. Defines by s215p211r 21. Supposeq satisfiess8q,4. Then the Toeplitz operato
T(f) is a Hille-Tamarkin and hence compact operator fromLp(Cn,mn) to Lq(Cn,mn) with

uuT~f!uup→q<uuuT~f!uuup,q<uuuKuuus,quufuur5~12s8q/4!2n/quufuur,`.

~ii ! SupposefPLr(Cn,mn) for somer .1. Supposep satisfiesp211r 21,1. Defines by
s215p211r 21. Supposeq satisfies 1<q,`. Then the Toeplitz operatorT(f) is a Hille-
Tamarkin and hence compact operator fromLp(Cn,mn) to Lq(Cn,nab), wherenab is the prob-
ability measure given in part~i! of Theorem 3.2~wheres replacesp). Moreover,

uuT~f!uup→q<uuuT~f!uuup,q<uuuKuuus,quufuur

5~11a!n/2q~11b!n/2q~a112s8q/4!2n/2q~b112s8q/4!2n/2quufuur,`,

wherea andb satisfy inequality~3.2!, again withs replacingp.
It is an immediate consequence of this theorem that one obtains a compact operator w

same operator norm estimate when one restrictsT(f) to the holomorphic~or any other! subspace
of Lp.

IV. PROOFS OF THEOREMS

In this section the theorems are proved and some additional commentary on them is g
Proof of Theorem 3.1:

~i! If uuKuup1→q1
5`, the result is trivial. Otherwise, one uses Ho¨lder’s inequality to demonstrate

that we have contractive inclusions

i 1 :Lp~Cn,mn!→Lp1~Cn,mn!

and

i 2 :Lq1~Cn,mn!→Lq~Cn,mn!

for p>p1 and q1>q, wherei 1( f )ª f and i 2( f )ª f for f in the respective space. Since we c
factor K, we obtain

uuKuup→q5uu i 2Ki 1uup→q<uu i 2uuq1→quuKuup1→q1
uu i 1uup→p1

5uuKuup1→q1
.

Remark: I call this property of uuKuup→q the northwest propertysince the ordered pai
(p21,q21) is located to the upper left of the pair (p1

21 ,q1
21) in the unit square@0,1#3@0,1#. Here

one sets̀ 2150. The pair (p21,q21) is more convenient to use than the corresponding p
(p,q) because of interpolation theory, as we will see below. Obviously, this property also ho
general for integral kernel operators defined between probability~and even finite! measure spaces
In fact, only after completing a preliminary version of this article, did I become aware that
property is also known in the literature asextrapolation. ~See Ref. 13, page 14.! It is also conve-
nient to name the four quadrants of the unit square by their compass directions~northwest,
southwest, northeast, and southeast!. Each quadrant is understood to include the appropriate
of the boundary of the unit square, but to exclude the linesp215221 andq215221.
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~ii ! K151 where 1 denotes the function that is the constant 1. Sinceuu1uup51 for all 1<p
<`, the result follows.
~iii ! With the domainL2(Cn,mn), K is the orthogonal projection operator with range equa
the Segal-Bargmann space. Consequently,uuKuu2→251.
~iv! This follows immediately from parts~i!, ~ii !, and~iii !.
~v! We haveuuuKuuup,q5uuKpuuq , whereKp(w)5uuK(w,•)uup8 for all wPCn. If p51, then

Kp~w!5K1~w!5uuK~w,• !uu`5supzPCnuexp~w•z* !u5`

if wÞ0. So,uuuKuuu1,q5uuK1uuq5` for all 1<q<`. For 1,p<` andw5u1 iv with u,v in Rn,
we have

Kp~w!5H E
Cn

dnxdnyp2ne2x22y2
uew•z* up8J 1/p8

5exp~p8~u21v2!/4! ~4.1!

by doing the Gaussian integral explicitly. Ifq5`, then

uuuKuuup,q5uuKpuu`5supwPCnexp~p8~u21v2!/4!5`.

If 1<q,`, then by doing the Gaussian integral we have

uuuKuuup,q5uuKpuuq5H E
Cn

dnudnvp2ne2u22v2
ep8q~u21v2!/4J 1/q

5~12p8q/4!2n/q

if 1 2p8q/4.0. Moreover,uuuKuuup,q5uuKpuuq5` if 1 2p8q/4<0. Finally, since 12p8q/4,1,
we have that (12p8q/4)2n/q.1. This shows~v!.

Remark:Notice thatuuuKuuu2,25` follows as a special case of~v!. This says thatK is not a
Hilbert-Schmidt operator inL2(Cn,mn) even though it is bounded. Of course, we already kn
that K is an orthogonal projection operator inL2(Cn,mn) with infinite dimensional range, and s
it is not a compact operator, and hence not Hilbert-Schmidt.
~vi! This follows immediately from part~v! and Propositions 2.1 and 2.2 and from a calcu
tion, similar to that given in part~v!, which shows that forp8q,4 we have

uuKuup→q<uuuKTuuuq8,p85~12p8q/4!2n/p8.

Remarks:Part ~iv! says that the situation for the normuuKuup→q is trivial for all (p21,q21)
that are northwest of (221,221). The conditionp8q,4 includes all of those cases, but also allow
other values of (p21,q21). For instance,uuKuu4→q is finite for all 2,q,3 and (421,q21) lies
southwest of (221,221). Also, uuKuu8/5→q is finite for 1<q,3/2 and (5/8,q21) lies northeast of
(221,221). We can find pairs (p21,q21) as near as we like to (221,221) in the southwest or in
the northeast and such thatp8q,4. For example,p2152.0121 and q2152.00121 is one such
pair in the southwest. An example in the northeast isp2151.990521 and q2151.9921. Notice
that in all of these casesp.q and that the operator is compact. If we define the set

Gª$~p21,q21!P@0,1#3@0,1# : p8q,4%, ~4.2!

then the reflectionS in the diagonal linep211q2151 leavesG invariant as the following shows
Explicitly, S(x,y)5(12y,12x) for any (x,y) in R2 is the reflection in the linex1y51. The
transformation of Lebesgue indices corresponding toSsends (p,q) to (q8,p8) and soG is clearly
invariant underS. However, the Hille-Tamarkin norm isnot invariant under this transformation
Nonetheless, the estimate of the operator norm that we get in part~vi! from two Hille-Tamarkin
norms indeed is invariant underS. This result should be compared with that of part~ix!.
~vii ! This follows immediately from parts~iii ! and~vi! and the Riesz-Thorin interpolation theo
rem ~see Ref. 14! applied to the pairs (p,q) and (2,2). Notice that the estimate in~vi! behaves
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badly as (p21,q21) approaches (221,221), namely it approaches infinity. However, the estima
in part ~vii ! behaves well ast approaches zero~which implies that (pt

21 ,qt
21) approaches

(221,221) along a line segment!, namely it approaches 1, which is the value ofuuKuu2→2.
~viii ! The idea is to use a family of trial functions to estimateuuKuup→q from below. Define

g~z!5exp~~a1bi !•x1~c1di !•y!, ~4.3!

wherex, y, a, b, c, andd are inRn andz5x1 iy is in Cn. The following three computations the
consist of nothing more than evaluations of Gaussian integrals. We do these computations
case 1<p,` and 1<q,`. First, we have

uuguup5exp~p~a21c2!/4!.

Next, for w in Cn, we obtain

Kg~w!5exp$ 1
4 @2w•~a1bi2ci1d!1~a1bi !21~c1di !2#%.

And finally, we compute

uuKguuq5expH 1

4 S a22b21c22d21qF S ~a1d!

2 D 2

1S ~b2c!

2 D 2G D J .

Then a lower bound on the normuuKuup→q is given by

uuKguuq
uuguup

5expH 1

16
@aa21bb21ac21bd212q~ad2bc!#J ,

wherea541q24p andb5q24. The quadratic form in the square brackets on the right h
side here can be diagonalized in the pair of variablesa,d and separately in the pair of variable
b,c. The result is that the quadratic form has two distinct eigenvalues, each of multiplicity
They are denotedl1 andl2 where

l65~q22p!6~q214~p22!2!1/2.

Sincel1.l2 , the quadratic form has at least one positive eigenvalue if and only ifl1.0.
Moreover,l1.0 implies

supg

uuKguuq
uuguup

5`,

whereg in the supremum ranges over all functions of the above form~4.3!. It is straightforward to
show thatp8q.4 impliesl1.0. Hence,p8q.4 implies uuKuup→q5` if both 1<p,` and 1
<q,`. The caseq5` and 1<p,` is proved using the northwest property and the previo
result. The casep5` and 1<q,` is handled by takinga5c50 in the definition ofg so that

uuKguuq
uuguu`

5expH 1

16
~~q24!b21~q24!d2!J .

Thenp8q5q.4 impliesuuKuu`→q5`. Finally, the casep5q5` is demonstrated with the north
west property and the previous case. And so all cases of~viii ! have been shown.
~ix! By part ~viii !, this result is trivial if p8q.4. So, we assume thatp8q,4. In this case
uuuKuuup,q is finite by part~v!. We will use the characterization of the operator norm given by

uuKuup→q5sup$u~g,K f !u : uu f uup51 and uuguuq851%, ~4.4!
                                                                                                                



in the
r

y one

he first

-

ociated
omain
explicit

m

1672 J. Math. Phys., Vol. 40, No. 3, March 1999 Stephen Bruce Sontz

                    
where (g,K f ) denotes the usual duality pairing~without complex conjugation!. So, for uu f uup51
and uuguuq851, we have

~g,K f !5E
Cn

dmn~w!g~w!K f ~w!5E
Cn

dmn~w!g~w!E
Cn

dmn~z!K~w,z! f ~z!

5E
Cn

dmn~z! f ~z!E
Cn

dmn~w!ew•z* g~w!. ~4.5!

The interchange of integrals is justified by Fubini’s theorem for functions that are integrable
product space, since by two applications of Ho¨lder’s inequality and by Fubini’s theorem fo
non-negative functions we have

E
Cn3Cn

dmn~z!dmn~w!ug~w!K~w,z! f ~z!u<uu f uupuuguuq8uuuKuuup,q5uuuKuuup,q,`.

~As an aside, the reader should note that a calculation of the sort in the last line is the wa
proves Proposition 2.1.! But similarly

uuKuuq8→p85sup$u~ f ,Kg!u : uuguuq851 and uu f uup51% ~4.6!

and

~ f ,Kg!5E
Cn

dmn~w! f ~w!Kg~w!5E
Cn

dmn~w! f ~w!E
Cn

dmn~z!ew•z* g~z!

5E
Cn

dmn~z* ! f ~z* !E
Cn

dmn~w* !ew•z* g~w* ! ~4.7!

by a simple change of variables. But this change of variables leaves invariant the measuremn and
the classes of functionsf ~respectively,g) such thatuu f uup51 ~respectively,uuguuq851). So the
numbers which appear in Eq.~4.7! as f andg vary are the same as appear in~4.5!. So the result
follows from Eqs.~4.4! and ~4.6!. This completes the proof of part~ix! and of Theorem 3.1.h

We proceed next to the proof of the second theorem.
Proof of Theorem 3.2:

~i! We need to compute the Hille-Tamarkin norm ofK much as in part~v! of Theorem 3.1. Only
now we use a different measure in the codomain space, namelynab . However, the definition and
hence computation ofKp(w) in formula~4.1! does not change. So, for 1,p<` and 1<q,`, we
have

uuuKuuup,q5uuKpuuq5H E
Cn

dnudnvp2ncabe
2au22bv2

e2u22v2
ep8q~u21v2!/4J 1/q

5~~11a!~11b!~a112p8q/4!21~b112p8q/4!21!n/2q ~4.8!

provided thata.p8q/421 andb.p8q/421. Also, sincep8q.0, it follows that uuuKuuup,q.1.
Together with Propositions 2.1 and 2.2, this shows that the operator is compact and that t
formula in part~i! holds. The second formula follows by a similar calculation.

Remark:Notice that whenp8q/421,0 we can takea5b50 and so we recover one impli
cation in part~v! of Theorem 3.1 as a special case. Notice also that we can always selecta andb
so thata5b. In this case, we can think of the codomain space as being a Banach space ass
with a Segal-Bargmann space endowed with a Planck’s constant distinct from that of the d
space. See Ref. 15, pp. 138 and 168, for a presentation of the Segal-Bargmann space with
use of Planck’s constant. Actually, in the caseaÞb, we can think of the codomain as arising fro
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a generalized type of Segal-Bargmann space withtwo distinct values for Planck’s ‘‘constant.’
Also, in the casep51 or q5` it is straightforward to show that there is no Gaussian wei
factor for the codomain space such thatK is Hille-Tamarkin.

To prove part~ii ! of Theorem 3.2, we will again use interpolation theory, except that now
relevant result is a theorem due to Stein.16 Since it is not as well known as the Riesz-Thor
theorem, here is a statement of Stein’s theorem taken from Ref. 16 and transcribed in
notation of this article. First, recall that a simple function is a measurable functionf with a finite
rangeI such thatf 21( i ) has finite measure for every nonzeroi PI .

Theorem 4.1 „Stein…: Let (M ,n) and (N,m) be s-finite measure spaces. LetT be a linear
transformation defined on simple functions ofM to measurable functions onN. Suppose thatp0,
p1, q0, andq1 are in @1,̀ # and definept andqt implicitly by

pt
215~12t !p0

211tp1
21 and qt

215~12t !q0
211tq1

21

for 0<t<1. Suppose that for some measurable functionsk0 ,k1 :N→@0,̀ ) and u0 ,u1 :M
→@0,̀ ) and for all simplef :M→C one has

uu~T f !k0uuLq0~m!<M0uu f u0uuLp0~n! ~4.9!

and

uu~T f !k1uuLq1~m!<M1uu f u1uuLp1~n! ~4.10!

for someM0 andM1 in R. ~The right hand side of either of these inequalities may be infinite
somef .! Define new functionsktªk0

12tk1
t on N andutªu0

12tu1
t on M for 0<t<1. ThenT can be

extended uniquely to a linear transformation on all functionsf satisfyinguu f utuuLpt(n),` so that

uu~T f !ktuuLqt~m!<M0
12tM1

t uu f utuuLpt~n! . ~4.11!

To apply Stein’s theorem, we take the measure spaces (M ,n) and (N,m) to be (Cn,mn). Also,
we take the Lebesgue indices to bep15p, q15q and p05q052. Finally, we take the weigh
functions to bek05u05u151 and

k1~z!5cab
1/qexpS 2

1

q
~ax21by2! D , ~4.12!

wherea andb satisfy ~3.2!. Then it is easy to show that

uu~K f !k1uuLq~mn!5uuK f uuLq~nab! .

So, it follows from part~i! that

uu~K f !k1uuLq~mn!<M1uu f u1uuLp~mn! ,

whereM15min(uuuKuuup,q ,uuuKTuuuq8,p8). This shows that inequality~4.10! of Stein’s theorem holds
But we have

uu~K f !k0uuL2~mn!<uu f u0uuL2~mn!

sinceK is an orthogonal projection. This shows that inequality~4.9! of Stein’s theorem holds with
M051. So we conclude that inequality~4.11! of Stein’s theorem holds, that is to say, that f
0<t<1

uu~K f !ktuuLqt~mn!<M1
t uu f utuuLpt~mn! .
                                                                                                                



o

,

e

rpo-
es
s. The

1674 J. Math. Phys., Vol. 40, No. 3, March 1999 Stephen Bruce Sontz

                    
But ut51 and

kt~z!5k0
12t~z!k1

t ~z!5k1
t ~z!5cab

t/qexpS 2
t

q
~ax21by2! D ~4.13!

for all 0<t<1. Since it is easy to see that

uu~K f !ktuuLqt~mn!5uuK f uuLqt~n
ab
t !

we have that

uuK f uuLqt~n
ab
t !<M1

t uu f uuLpt~mn! ~4.14!

or in the notation of operator norms,

uuKuupt→qt
<M1

t

which is the estimate we had to show.
The particular case~3.3! follows immediately from~4.14! sinceK f 5 f for f in the Segal-

Bargmann space.
To show thatK is Hille-Tamarkin with respect tomn andnab

t we have to show, according t
part ~i!, that

tqt

q
a.pt8qt /421 and

tqt

q
b.pt8qt /421

hold for 0,t<1 given thata andb satisfy ~3.2!. ~Notice thatnab
t is in general a finite measure

but not a probability measure. Nonetheless, the criterion of part~i! applies.! To do this, it suffices
to show that

q

tqt
~pt8qt/421!<p8q/421, ~4.15!

since the right hand side of~4.15! is ,min(a,b) by ~3.2! andt.0. But a computation for the cas
1,p,` shows that

q

tqt
~pt8qt/421!5

q

4

2~21pt22t !

~p1pt22t !
21

and so it suffices to show that for 0,t<1 we have

2~21pt22t !

p1pt22t
<p85

p

p21
.

But this last inequality is trivial to verify. Sincep.1 by hypothesis, the remaining case isp
5`, which is also straightforward. This concludes the proof of Theorem 3.2. h

Remark:Notice that in part~ii !, the measure in the codomain space depends on the inte
lating parametert. Again, in the special casea5b, we can think of these interpolating measur
as being given by a continuous deformation of Planck’s constant between two extreme value
behavior of the estimate of the operator normuuKuup→q in part ~i! is highly erratic as (p,q)
approaches (2,2) because the parametersa andb depend onp andq, but only via the inequalities
~3.2! rather than in a functional manner. Worse yet, at (p,q)5(2,2), part~i! tells us thatK is a
Hille-Tamarkin operator but only if we picka.0 andb.0. Of course, we know thatK is actually
a bounded operator at (p,q)5(2,2) with a5b50, thoughnot a Hille-Tamarkin operator with
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a5b50. So the interpolation in part~ii ! gives us a better behaved estimate ofuuKuupt→qt
as t

→0 ~which implies that (pt
21 ,qt

21) approaches (221,221) along a line segment! since only one
choice of parametersa andb is used, namely that at the endpoint corresponding tot51.

Proof of Theorem 3.3: The two parts will be proved simultaneously. First notice that
hypotheses onr , p andq ensure that the rest of the assertions are non-vacuous and thatuuuKuuus,q

is finite. Next notice that according to its definition in~2.4!, T(f) is an integral kernel operato
with kernel functionK(w,z)f(z) for w,z in Cn. Since the relations215p211r 21 implies
p821 5s821 1r 21, we have for allw in Cn that

uuK~w,• !f~• !uup8<uuK~w,• !uus8uufuur ,

where the norms are with respect todmn(z). Next, we take theLq norm of both sides of the
previous inequality. We do this with respect todmn(w) for the first part of the theorem an
correspondingly with respect todna,b(w) for the second part. Using the definition~2.3! of the
Hille-Tamarkin norm, we obtainuuuT(f)uuup,q<uuuKuuus,quufuur . Together with Propositions 2.1
and 2.2 and the formulas for the Hille-Tamarkin norms in Theorems 3.1 and 3.2, this gives
results. This concludes the proof of Theorem 3.3. h

V. CONCLUDING REMARKS

The results of this article depend critically on the estimates that come from the Hille-Tam
norm. However, this norm is usually much stronger than the operator norm, which is to sa
estimates of Proposition 2.1 are often far from optimal. Despite this, the general situation
transformK with respect to theLp scale of spaces is revealed by this method. Specifically, if
define

Eª$~p21,q21! : p8q54%,

then for every (p21,q21) that is not inE, we have either thatK is compact~actually, Hille-
Tamarkin! from Lp to Lq or that uuKuup→q5`. For pairs (p21,q21) in E, it remains an open
problem to determineuuKuup→q , except in the casep5q52. It follows thatK, as a transform
from L2(Cn,mn) to itself is not the generic case on theLp scale of spaces~i.e., is neither Hille-
Tamarkin nor unbounded!. The Segal-Bargmann transform is also generically either H
Tamarkin or unbounded~see Ref. 8! and, in fact, this is a general property of a Gaussian inte
kernel operatorG defined between two Euclidean spaces, each endowed with a Gaussian me

Of course, the lack of sharpness in the operator norm estimate is a question of findin
constants and this is an open problem for all of the estimates given of operator norms by
Tamarkin norms in this article. It is perhaps interesting, in its own right, to know the value o
operator norm ofK restricted to the subspace of holomorphic functions ofLp(Cn,mn) with
codomainLq(Cn,mn) or Lq(Cn,nab). Moreover, the operator norm ofK from Lp(Cn,mn) to
Lq(Cn,mn) may obey a ‘‘one-infinity’’ law. This means that for every pair of indicesp andq in
@1,̀ # one would have eitheruuKuup→q51 or uuKuup→q5`. All of the results of this paper are
consistent with this possibility. Also, various calculations with Gaussian trial functions faile
contradict this possibility. But it remains an open question.

Some comments are in order about the rather nice paper by Lieb17 on Gaussian kernel integra
transforms, especially since his results have not been used here. At first reading, it might
that there is little overlap with the cases presented here and those found in Ref. 17, b
situation is more complicated. The fact that Lieb’s results are presented with respect to Leb
measure~instead of Gaussian measure as is done in this article! is no obstacle; it is well known
that there are Banach space isomorphisms~i.e., one-to-one, onto isometries! betweenLp(Cn,mn)
and Lp(Cn,dnxdny) for all p in @1,̀ #. Using these isomorphisms, one can easily translate
results of Lieb to the case of Gaussian measures. For example, using the lemma on p. 185
17, one can show thatK is a compact operator fromLp(Cn,mn) to Lq(Cn,mn) provided that
p8q,4. And one can even directly read off the estimateuuKuup→q<(12p8q/4)2n/q from the
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proof of this lemma, since Lieb uses implicitly the estimateuuBuup→q<uuuBuuup,q of Proposition 2.1.
~It should be remarked that the above Banach space isomorphisms preserve Hille-Tamarkin!
But the most interesting part of Ref. 17 is the determination of the maximizers, which in
context of Theorem 3.1 are those nonzerof in Lp(Cn,mn) such thatuuK f uuq5uuKuup→quu f uup , if
indeed suchf exist. However, Lieb’s results for maximizers apply only under certain hypothe
Either the situations described here do not fall directly under one of Lieb’s conditions or,
they do as in Theorem 3.2, the resulting algebraic calculations are quite complicated.

It should be commented that the technique of the Hille-Tamarkin norm works here be
these norms become Gaussian integrals, which can therefore be evaluated explicitly. This h
because the measures and the reproducing kernel function are Gaussian; consequently this
works as well in a more general Gaussian situation. See, for example, Ref. 8 where a
analysis of the Segal-Bargmann transform is given. It seems that the Hille-Tamarkin norm h
seen much use in classical analysis because for many commonly occurring integral operato
as convolutions with respect to Lebesgue measure or oscillatory integrals~for example, the Fourier
transformF), the Hille-Tamarkin norm is typically infinite. However, in this regard, note t
uuuFuuu1,̀ is finite and that the standard argument thatuuFuu1→` is finite can be expressed in th
terminology asuuFuu1→`<uuuFuuu1,̀ ,`.

The results of Theorem 3.3 depend on the fact that the Toeplitz operatorT(f) has a factor-
ization as a Hille-Tamarkin operator, namelyK, multiplied by a bounded operator, namely mu
tiplication by f which we denoteMf . It would be interesting to know what happens in conte
whereMf is more singular since it may be possible thatT(f) is bounded or compact, though no
Hille-Tamarkin, in such a case. Also it would be interesting to know whether the mapping
erties ofT(f) are stronger when its domain of definition is taken to be the subspace of holo
phic functions ofLp(Cn,mn).

Finally, the results of this article are exclusively for the case whenn, the dimension, is finite
and so it would be interesting to know what happens in the case of infinitely many dimens
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A reverse log-Sobolev inequality in the Segal-Bargmann
space

Stephen Bruce Sontza)

Universidad Auto´noma Metropolitana-Iztapalapa, Col. Vicentina, Me´xico DF 09340,
México

~Received 5 October 1998; accepted for publication 2 November 1998!

This article is based on recent results of the author on the properties of the repro-
ducing kernel of the Segal-Bargmann space. Those results are used here to dem-
onstrate a family of energy-entropy inequalities in the Segal-Bargmann space. In
some cases this is a log-Sobolev inequality while in other cases this is actually a
reverselog-Sobolev inequality, which means that the energy term is bounded above
by the entropy term, plus a norm term. This implies that in the Segal-Bargmann
space the entropy is finite if and only if the energy is finite. Applications of this
result to the Segal-Bargmann transform are given as well as a discussion of its
possible relation with reverse hypercontractivity. It should be noted that all of the
results of this article are proved without using hypercontractivity estimates.
© 1999 American Institute of Physics.@S0022-2488~99!03702-0#

I. INTRODUCTION

Suppose that (X,m) is a probability measure space and that we have a distinguished
negative quadratic form~say, a Dirichlet form! Q( f ) defined for all f PH whereH is a closed
subspace ofL2(X,m). One callsQ( f ) the energy off . Then a log-Sobolev inequality inH is an
inequality of the form

S~ f !<a1Q~ f !1a2uu f uu2
2

for constantsa1.0 anda2>0 for all f in H. HereS( f ) is the entropy off , to be defined later.
Such an inequality says that finite energy implies finite entropy. Such inequalities and
variants have played an important role in various fields of mathematics. The article1 by Gross is
the first systematic discussion of these inequalities. A later review article2 of his has references to
the literature before the date of that publication. One of the many recent references is Ref.
gives a far from complete guide to the extensive literature on log-Sobolev inequalities.

On the other hand, we have a related situation in the following definition which says that
entropy implies finite energy. We continue to use the hypotheses and notation introduced

Definition 1.1:An inequality of the form

Q~ f !<b1S~ f !1b2uu f uu2
2

with b1.0 andb2>0 andf in H is called a reverse log-Sobolev inequality.
In this article, I prove a parameterized family of inequalities involving energy and entrop

f in the Segal-Bargmann space of the form

~p212q21!S~ f !<
n

q
~a2 log~a112p8q/4!!uu f uu2

21
a

q
^ f ,N f&,

a!Electronic mail: sontz@xanum.uam.mx
16770022-2488/99/40(3)/1677/19/$15.00 © 1999 American Institute of Physics
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where 1,p<`, 1<q,`, a.p8q/421, ^ f ,N f& is the Dirichlet form associated to the energ
operatorN in the Segal-Bargmann space, andp8 is the dual index ofp. ~The parametern is a
dimension and will be specified later.! For some choices of the parameters, one gets a~regular!
log-Sobolev inequality. This is a result that has been established already various times
literature.~It was originally shown in Ref. 1, but also follows from a complex hypercontractiv
inequality shown in Refs. 4–8.! For other choices of the parameters, one gets a trivial inequ
that says that a non-positive quantity is bounded above by a positive quantity. But for
choices still, one gets a reverse log-Sobolev inequality in the Segal-Bargmann space. Th
form ~given by the method of this article! of the reverse log-Sobolev inequality is

^ f ,N f&<cS~ f !1nS 211c logS 4c2

~2c21!~c21! D D uu f uu2
2

for anyc.1. This result is based on an earlier work of the author in Ref. 9 which in turn dep
on an analysis of the reproducing kernel in the Segal-Bargmann space. Surprisingly, we obta
finite entropyS( f ) implies finite energŷ f ,N f&, for all f in the Segal-Bargmann space. That fin
energy implies finite entropy in the Segal-Bargmann space was already known by the abov
works.

The article is organized as follows. The next section reviews definitions and notation. S
III gives the statement of the theorem and its proof. In Secs. IV and V there are discussions
question of best possible constants and of the relation to reverse hypercontractivity. In S
some applications of the reverse log-Sobolev inequality to the Segal-Bargmann transfor
presented. In Sec. VII we conclude with comments and open questions.

II. NOTATION AND DEFINITIONS

We continue with the notation introduced in Ref. 9. We define the Segal-Bargmann
HL2(Cn,mn) ~see Refs. 10–12! for each integern>1 as the Hilbert space of holomorphic fun
tions f :Cn→C which are square integrable with respect to the Gaussian probability measu

dmn~z!ªp2n exp~2z* •z!dnxdny.

Here for everyz5(z1 , . . . ,zn)PCn andw5(w1 , . . . ,wn)PCn we definez*ª(z1* , . . . ,zn* )
and z•wªz1w11 . . . 1znwn, wherev* is the complex conjugate of the complex numberv.
Also, dnxdny denotes Lebesgue measure onCn. We write z2

ªz•z for zPCn as well. A special
case of this notation isx25x•x for xPRn. Moreover, we putuzu2

ªz* •z. We have

HL2~Cn,mn!5L2~Cn,mn!ùHn

whereL2(Cn,mn) is the space of all functionsf :Cn→C that are square integrable with respect
mn and whereHn is the space of all holomorphic functions fromCn to C.

Suppose (X,m) is a measure space and that 1<p<`. For a measurable functionf :X→C we
denote the usualLp norm of f by uu f uuLp(m) or sometimes byuu f uup if we do not need to be so
explicit. Also Lp(X,m) or simply Lp denotes the corresponding Banach space. We also writ

HLp~Cn,mn!5Lp~Cn,mn!ùHn

for the space of holomorphicLp functions. Moreoverp8 is the dual index ofp, namely,p21

1p82151.
Let (X,m) be a probability measure space. Then for any functionf in L2(X,m) define its

entropy by

S~ f !ªE
X
dmu f u2 logu f u22uu f uu2

2 loguu f uu2
2, ~2.1!
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where logr denotes the natural logarithm~basee) of the real numberr .0. We shall always use
the usual convention that 0 log 050. Then by Jensen’s inequality, one has thatS( f )>0 though
S( f )5` is a possibility. The entropy, like the standard deviation, is a measure of the degr
concentration of a function. It was first introduced by Shannon13 in information theory.

Next, ^ f ,N f& is the Dirichlet form in the Segal-Bargmann space associated to the
negative operatorN, known as the energy or number operator, which is given by

Nªz1

]

]z1
1¯1zn

]

]zn
.

The spectrum ofN is the set of all non-negative integers. The Dirichlet form^ f ,N f& is explicitly
defined forall functionsf in the Segal-Bargmann space by

^ f ,N f&ª(
k51

n UU ] f

]zk
UU

2

2

, ~2.2!

where, as usual,

]

]zk
5

1

2S ]

]xk
2 i

]

]yk
D .

Here we write the coordinatezk5xk1 iyk wherexk ,ykPR and i is the imaginary unit.

III. THE MAIN RESULT

Now we can state the result of this article which gives a parameterized family of en
entropy inequalities in the Segal-Bargmann space. Under some conditions these are log-S
inequalities but under others they are reverse log-Sobolev inequalities.

Theorem 3.1: For all f in the Segal-Bargmann spaceHL2(Cn,mn) satisfying f
PHL21e(Cn,mn) for somee.0 we have the inequality

~p212q21!S~ f !<
n

q
~a2 log~a112p8q/4!!uu f uu2

21
a

q
^ f ,N f& ~3.1!

for 1,p<`, 1<q,` and a.p8q/421 whereS( f ) is the entropy defined in Eq.~2.1! and
^ f ,N f& is the Dirichlet form defined in Eq.~2.2!. Moreover, this energy-entropy inequality~3.1!
holds for all f PHL2(Cn,mn) provided thatS( f ) is finite and 1,p<2 and 1<q<2 and a
.p8q/421.

In particular,S( f ),` if and only if ^ f ,N f&,` for all f in the Segal-Bargmann space.
The coefficient ofuu f uu2

2 in ~3.1! is always strictly positive. There are three qualitative
different cases for the other two coefficients in~3.1!.

Case 1: p21.q21. It follows that p8q/421.0 and soa.0. The coefficients ofS( f ) and
^ f ,N f& are positive, and so~3.1! is a ~regular! log-Sobolev inequality.

Case 2: p21<q21 and p8q/421>0. It follows thata.0 and so the coefficient ofS( f ) is
non-positive while the coefficient of̂f ,N f& is positive. So,~3.1! is trivially true.

Case 3: p8q/421,0. It follows thatp21,q21 so that the coefficient ofS( f ) is negative. In
this case we can takea with 0.a.p8q/421 so that the coefficient of̂f ,N f& is negative and so
~3.1! is a reverse log-Sobolev inequality.~Taking a>0, while valid, only yields a trivial inequal-
ity.!

Proof of Theorem 3.1:The proof of this theorem will be given in two passes. In the first p
some formulas will be derived in a nonrigorous way, but all the main ideas will be presented.
in the second pass, the gaps in the first pass will be filled in.

To start the first pass, we first recall some results proved in Ref. 9. There it is shown th
every f in the Segal-Bargmann spaceHL2(Cn,mn) one has the inequality
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uu f uuLqt~n
a
t !<Mtuu f uuLpt~mn! ~3.2!

for 0<t<1, 1,p<` and 1<q,` with the following notation. First,pt and qt are defined
implicitly by

pt
215~12t !2211tp21 and qt

215~12t !2211tq21 ~3.3!

for each 0<t<1. The measurena
t on Cn is defined by

dna
t ~z!ªca

tqt /q expS 2
taqt

q
uzu2Ddmn~z! ~3.4!

for zPCn and 0<t<1 wherecaª(11a)n anda satisfies

a.p8q/421. ~3.5!

Finally, M can be taken to be the smaller ofDn/q andDn/p8 where

Dª~a11!~a112p8q/4!21. ~3.6!

The results in this paragraph are obtained from part~ii ! of Theorem 3.2 of Ref. 9 by takinga
5b in the notation of that article. Notice that none of the results of Ref. 9~nor of the present
article! use hypercontractivity results. Rather the result~3.2! is based on interpolation theory.

Notice that fort50, the above inequality~3.2! becomes anequality with both sides being
uu f uuL2(mn) . This allows us to use a technique of Hirschman.14 This starts by fixing an elementf in
the Segal-Bargmann space as well as fixing the indicesp and q such that 1,p<` and 1<q
,`. Then one takes the derivative of both sides of the inequality~3.2! at t50 in order to generate
the new inequality

d

dt U
t501

uu f uuqt
<

d

dtU
t501

~Mtuu f uupt
!

which is to say

d

dt U
t501

uu f uuqt
<~ logM !uu f uu21

d

dtU
t501

uu f uupt
, ~3.7!

where we are only using the right hand derivative, since each side of the inequality~3.2! is a real
valued function oft where 0<t<1. Of course, in general the derivative is not an order preserv
operator; however, in this situation the right hand derivative att50 is order preserving because
the equality in ~3.2! at t50.

Naturally, this discussion is still at a formal level, since one must show that the rele
derivatives indeed exist. However, it is also clear at a formal level that the derivative of

c~r !ªE
Cn

dmn~z!u f ~z!ur ~3.8!

at r 52 is given by

c8~2!5E
Cn

dmn~z!u f ~z!u2 logu f ~z!u ~3.9!

since this is just differentiation under the integral sign. Using this formal result and the rul
elementary calculus, we get
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d

dt U
t501

uu f uupt
5

p8~0!S~ f !

4uu f uu2
~3.10!

whereS( f ) is the entropy off , given in Eq.~2.1!, andp8(0)54(2212p21) is the derivative at
t50 of p(t)ªpt . We do not intend to make~3.10! rigorous if uu f uu250. However, the inequality
~3.1! which we wish to prove is trivially true iff 50. So, hereafter, we consider only the casef
Þ0.

The derivative ofuu f uuqt
is more complicated because the measure used to compute this

also depends ont. Using the definition

kt~z!ªca
t/q expS 2

ta

q
uzu2D ~3.11!

for zPCn and 0<t<1 we have more specifically that

uu f uuqt
5uu f uuLqt~n

a
t !5uu f ktuuLqt~mn!5H E

Cn
dmn~z!~kt~z!u f ~z!u!qtJ 1/qt

.

It follows that

d

dt U
t501

uu f uuqt
5

q8~0!S~ f !

4uu f uu2
1

1

uu f uu2
E

Cn
dmn~z!

dkt

dt U
t501

u f ~z!u2 ~3.12!

by the rules of calculus again, a differentiation under the integral sign, and the seemingly in
ous, but sometimes false, statement that an integral of a sum of functions is the sum
integrals. Hereq8(0)54(2212q21) is the derivative att50 of q(t)ªqt . ~The notationq8(0)
introduced here, as well asp8(0) used earlier, has nothing to do with the dual index.! Substituting
in the derivative ofkt ,

d

dtU
t501

kt~z!5
d

dtU
t501

k1~z! t5 logk1~z!5
1

q
logca2

1

q
auzu2

which comes from Eq.~3.11!, one gets

d

dt U
t501

uu f uuqt
5

q8~0!S~ f !

4uu f uu2
1

n

q
uu f uu2 log~11a!2

a

quu f uu2
E

Cn
dmn~z!u f ~z!u2uzu2 ~3.13!

sinceca5(11a)n. Now we can use the formula

E
Cn

dmn~z!u f ~z!u2uzu25nuu f uu2
21^ f ,N f& ~3.14!

which comes from formula~3.17! of Bargmann’s article,14 and is proved there by using the Taylo
series expansion off . I will refer to ~3.14! as Bargmann’s identity. Herêf ,N f& is the Dirichlet
form defined in Eq.~2.2!. The formula~3.14! is valid for all f in the Segal-Bargmann space.
particular, one side of Eq.~3.14! is infinite if and only if the other side is infinite. One can thin
of ~3.14! as a consequence of the canonical commutation relations. In this regard, see part~vii ! of
Theorem 13.7 in Ref. 15. Using Bargmann’s identity~3.14! in Eq. ~3.13!, we get

d

dt U
t501

uu f uuqt
5

q8~0!S~ f !

4uu f uu2
1

n

q
uu f uu2 log~11a!2

an

q
uu f uu22

a

quu f uu2
^ f ,N f&. ~3.15!
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Substituting the valueM5Dn/q and the Eqs.~3.6!, ~3.10! and ~3.15! into inequality ~3.7! and
rearranging terms, some of which may possibly be infinite, we have

S q8~0!2p8~0!

4 DS~ f !<
n

q
~a2 log~a112p8q/4!!uu f uu2

21
a

q
^ f ,N f& ~3.16!

for any 1,p<` and 1<q,` and a.p8q/421. Substituting the formulas for the derivative
p8(0) andq8(0) into ~3.16! gives us precisely~3.1!. Of course, we could have takenM to be
Dn/p8 or simply equal to the optimal constant in the inequality~3.2!. The valueM5Dn/q was used
just to get a specific value for the coefficient of the norm term in~3.16!. The proof of the
assertation that the coefficient of the norm term is strictly positive is an exercise in eleme
calculus. Using the valueM5Dn/p8 gives a better bound if and only ifp211q21.1. But the
resulting coefficient of the norm term is still strictly positive by another elementary exercise

Before starting the second pass of the proof, here are some results which will be usef
Lemma 3.2:For the left side derivative atr 52 of c(r ), as defined in Eq.~3.8!, we have

c8~22!ª lim
h,0, h→0

c~21h!2c~2!

h
5E

Cn
dmn~z!u f ~z!u2 logu f ~z!u ~3.17!

for all f PL2(Cn,mn), where the equality includes the case where both sides are1`. For the right
side derivative we have

c8~21!ª lim
h.0, h→0

c~21h!2c~2!

h
5E

Cn
dmn~z!u f ~z!u2logu f ~z!u ~3.18!

for all f PL21e(Cn,mn) for somee.0 where the equality is between finite real numbers.
The proof of this lemma is an exercise using convexity arguments and the monotone c

gence theorem, and so will be left to the reader. Let us notice that this lemma implies thatS( f ) is
finite throughout the argument of the theorem. This is because we either have the hypothe
f PL21e(Cn,mn) for somee.0 ~in which case we have~3.18! which implies thatS( f ) is finite!
or we haveS( f ) finite by explicit hypothesis. This justifies the interchange of integral and
used to derive~3.12!, since the first term on the right hand side of~3.12! is finite. Moreover, this
implies that~3.10! is an equality between finite real numbers, provided that it is a valid equa
of course. But Lemma 3.2 also justifies~3.10!. To show this we note thatuu f uupt

5@c(pt)#1/pt,
wherec is defined in~3.8! and thatpt approaches 2 monotonically ast decreases to zero by th
definition ~3.3! of pt . If 1,p,2, thenpt increases monotonically to 2 and we use~3.17!. If 2
,p<`, thenpt decreases monotonically to 2, and we apply~3.18!, which is applicable since we
assume thatf is in HL21e(Cn,mn) for somee.0 when 2,p<`. In either case we have~3.10!
as a simple consequence. Ifp52, thenpt52 for all 0<t<1 implying p8(0)50 so that~3.10!
follows since each side is zero. This completes the justification of~3.10!. Notice that the assump
tions onf are what one expects from an examination of~3.2!. Specifically,~3.2! is trivial for any
f in the Segal-Bargmann space for whichuu f uupt

is infinite for all 0,t<1, and so one can no
calculate a useful~i.e., finite! derivative in such a case. To have a finite derivative, it is neces
that uu f uupt

,` for all tP(0,d# for some 0,d<1. If 1,p<2, then uu f uupt
<uu f uu2,` since 1

,pt<2. So we can taked51 in this case andf arbitrary in the Segal-Bargmann space. If 2,p
<`, then we use the hypothesis thatf PL21e(Cn,mn) for somee.0 which implies thatuu f uupt

<uu f uu21e,` whenever 2<pt<21e, which holds for alltP(0,d# for somed.0 sufficiently
small. So the above argument based on Lemma 3.2 shows that this necessary conditionf for
uu f uupt

to have a finite derivative is also sufficient if 2,p<`. If 1,p<2, we simply assume tha
the derivative is finite, or equivalently thatS( f ) is finite. In the next lemma we find anothe
consequence of the condition thatf is in HL21e(Cn,mn).

Lemma 3.3:The Dirichlet form^ f ,N f& is finite if f is in HL21e(Cn,mn) for somee.0.
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To show this we note that

nuu f uu2
21^ f ,N f&5E

Cn
dmn~z!u f ~z!u2uzu2<uu f uu2s

2 uuzuu2s8
2 ~3.19!

for any 1<s<`, by an application of Bargmann’s identity~3.14! and Hölder’s inequality. Here
by uuzuu2s8 we mean theL2s8 norm of the function that mapsz in Cn to uzu. By taking s51
1e/2 wheref is in L21e(Cn,mn) for somee.0, we haves.1 and sos8,`. But uuzuu2s8 is then
finite and so isuu f uu2s5uu f uu21e . So the right hand side of~3.19! is finite, implying that̂ f ,N f& is
finite. The inequality~3.19! shows the importance of the analyticity of the elements of the Se
Bargmann space; it says that if a function in the Segal-Bargmann space has a bit more integ
than just square integrability, then the function has finite energy. So~3.19! is a reverseSobolev
inequality. This result appears to be basically new, though the author has used it previously
16. This concludes the proof of Lemma 3.3.

Another basic result relating the quantities that we use in this theorem is the following le
Lemma 3.4:Finite energŷ f ,N f& implies finite entropyS( f ) for all f in the Segal-Bargmann

space.
This can be derived from the log-Sobolev inequalityS( f )<^ f ,N f& which follows from a

hypercontractivity result for the semigroup$e2tN% t>0 ~see Refs. 4–8!. ~A general reference for
log-Sobolev inequalities and hypercontractivity is the article1 by Gross.! Also, this lemma can be
derived directly from the log-Sobolev inequality proved in Ref. 1 for Euclidean space. One
only getsS( f )<2^ f ,N f&, but this is still sufficient to prove this lemma. However, hypercontr
tivity will not be used to derive any of the results of this article. So here is an elementary pro
the lemma.

First, for any f in the Segal-Bargmann space, one has the well known point-wise est
u f (z)u<uu f uu2 exp(uzu2/2) for all zPCn. This follows from the fundamental property of the repr
ducing kernel function and the Cauchy-Schwarz inequality~see Ref. 10!. Using this and Barg-
mann’s identity~3.14!, we then have for anyf in the Segal-Bargmann space that

S~ f !5E
Cn

dmn~z!u f ~z!u2 logS u f ~z!u2

uu f uu2
2 D<E

Cn
dmn~z!u f ~z!u2uzu25nuu f uu2

21^ f ,N f& ~3.20!

which shows that̂ f ,N f&,` implies thatS( f ),`. Notice that the log-Sobolev inequality~3.20!
is not as sharp as the log-Sobolev inequality given by the theory of hypercontractivity, but
serves our purpose here. This ends the proof of Lemma 3.4.

We now start the second pass of the proof of the theorem. The formula~3.12! now has to be
justified rigorously. We still must establish the interchange of integral and derivative

d

dt U
t501

E
Cn

dmn~z!~kt~z!u f ~z!u!qt5E
Cn

dmn~z!S 2u f ~z!u2
dkt

dt U
t501

1q8~0!u f ~z!u2 logu f ~z!u D ,

~3.21!

which is the only remaining step needed to justify~3.12!. Inverting the defining relation given in
Eq. ~3.3! for qt , we have that

t5
qt

212221

q212221

provided thatqÞ2. ~The caseq52 will be considered later.! Using this, and the relationkt(z)
5(k1(z)) t, one can write the integrand on the left hand side of Eq.~3.21! as

(kt(z)u f (z)u)qt5(k1(z) tu f (z)u)qt5~k1(z) ~~qt
21

2221!/~q212221!!u f (z)u!qt
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which leads us to define the function

h~r !ªE
Cn

dmn~z!~k1~z!~~r 212221!/~q212221!!u f ~z!u!r ~3.22!

for r P@1,̀ ). Notice thath(r )P@0,̀ #. So the left hand side of Eq.~3.21! is equal to

d

dt U
t501

h~q~ t !!5h8~26!q8~0!, ~3.23!

where the right side~respectively, left side! derivative ofh(r ) at r 52 is used ifq(t) is decreasing
~respectively, increasing! to 2 ast decreases to 0.~Because of its definition in~3.3!, the conver-
gence ofq(t) to 2 is monotone ast decreases to 0.) Notice that the integrand of the expres
~3.22! is a convex function ofr , so that we may use standard measure theory arguments as b
However, the details are a bit more complicated and so will be presented in full. But b
entering into the details of computingh8(26), notice thath itself depends onq, a and f . So the
following argument will be by cases which depend on the hypotheses satisfied byq, a and f .

Also, notice that we will prove the two sides of~3.21! are equal without yet knowing that the
are finite. On the right hand side there is no problem with the second term; it is integrable
S( f ) is finite. However, the first term, which includes an energy term when it is expanded
may well be1` or 2` as far as we know in this part of the argument. Similarly, the left ha
side of~3.21!, which is given again in~3.23!, may be1` or 2`. Thus as far as we knowh8(26)
may be1` or 2` as well. Only after completing this part of the argument will we be able
establish that in fact~3.21! is an equality between finite real numbers.

Before starting the cases, notice that sincef is always in the Segal-Bargmann space,h(2)
5uu f uu2

2 is finite. To compute the one-sided derivatives ofh(r ) at r 52, we start with the differ-
ence quotient

h~21h!2h~2!

h
5E

Cn
dmn~z!k1~z!aF ~k1~z!bu f ~z!u!21h2~k1~z!bu f ~z!u!2

h G ~3.24!

for hÞ0, wherea51/(q212221) andb52221/(q212221). The pointwise limit of the inte-
grand on the right hand side of~3.24!, ash→0, is

g~z!ªu f ~z!u2 logu f ~z!u1bu f ~z!u2 logk1~z!. ~3.25!

The goal is to prove thath8(26)5*Cndmn(z)g(z), and then use~3.23! to show ~3.21!, since
q8(0)g(z) is the integrand on the right hand side of~3.21!. Sincek1(z).0, the convergence of the
integrand of~3.24! to g(z) is monotone increasing ash↗0 ~i.e.,h,0, h→0), and it is monotone
decreasing ash↘0 ~i.e., h.0, h→0). The difference quotient in~3.24! is a finite number if and
only if the integrand on the right hand side of~3.24! is integrable if and only ifh(21h) is a finite
number. But by Ho¨lder’s inequality, we have

h~21h!5E
Cn

dmn~z!k1~z!hq/~q22!u f ~z!u21h

<uuk1
hq/~q22!uus8uu u f u21huus

5~ uuk1uuhqs8/~q22!!
hq/~q22!~ uu f uu~21h!s!

21h ~3.26!

for any 1<s<`.
Now we are ready to argue by cases. The reader should be aware that these cases ar

same as the three cases in the statement of the theorem. First, let us consider the case o
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side derivative ofh(r ) at r 52. Notice that this arises in the argument when we haveqt↗2, which
itself occurs exactly whenq,2. The idea is to use~3.26! to showh(21h),` for some21
<h,0 and apply the monotone convergence theorem, since the monotone increasing inte
in ~3.24! will then be uniformly bounded below by an integrable function for allh0P@h,0). For
each case, the condition imposed ona must be combined with the overall condition given in~3.5!.

Case A: q,2, a>0, a.p8q/421, f PHL2(Cn,mn).
We takes51. Then the first factor in~3.26! is finite sincea>0 while the second factor is

finite for all 21<h,0.
Case B: q,2, a.p8q/421, f PHL21e(Cn,mn) for somee.0.
Now we takes.1 and we use~3.26! for someh satisfying

2,~21h!s<21e. ~3.27!

It follows that uu f uu(21h)s<uu f uu21e and this makes the second factor on right hand side of~3.26!
finite. Therefore the right hand side of~3.26! will be finite if and only if uuk1uuhqs8/(q22) is finite.
So it remains to show that

E
Cn

dmn~z!k1~z!hqs8/~q22!,` ~3.28!

for someh,0 which also satisfies~3.27!. But by the definition~3.11! of k1(z), this last integral
is finite if and only if

11hs8a/~q22!.0 ~3.29!

which is equivalent to

a.~22q!/hs8 ~3.30!

sinceh,0 andq22,0. The lower bound here, namely (22q)/hs8, is negative and decreases
2` ash↗0 for any fixed s.1. So foruhu sufficiently small, this new lower bound ona is less
restrictive than~3.5! for any fixeds.1. Moreover, ifs is fixed so that 1,s<11e/2 ~says51
1e/2), then the inequality~3.27! is also satisfied for allh,0 with uhu sufficiently small.

Case C: q,2, a.q/221, a.p8q/421, f PHL2(Cn,mn).
Notice that the condition~3.27! can be weakened to (21h)s52. This still makes the secon

factor on the right hand side of~3.26! finite. The difference here is that nows is not fixed ash
approaches zero. However, the argument works for anyf PHL2(Cn,mn). Moreover, it turns out
that sinces8522/h the condition ona to make the first factor finite is then

a.q/221

which is independent ofh and is more restrictive than~3.5! if p.2. Under this new condition on
a, we then have Eq.~3.31!, which is now an equality between finite real numbers, or both s
are1`. Weakening~3.27! further to 1<(21h)s,2 leads to nothing new since the smaller val
of s implies a larger value ofs8, thereby making larger the first factor on the right hand side
~3.26!.

So it follows under Case A, B or C that

h8~22!5E
Cn

dmn~z!g~z! ~3.31!

which is a priori either an equality of real numbers, or both sides are1`. @Recall thatg(z) is
defined in~3.25!.#

Next, let us consider the right side derivative ofh(r ) at r 52. Notice that this case occurs i
the argument whenqt↘2, which happens precisely whenq.2. Now we wanth(21h) to be
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finite for someh.0 so that we can use the monotone convergence theorem for the mon
decreasing integrands in~3.24!, which will then be uniformly bounded above by an integrab
function for all h0P(0,h#. Of course, we can not solve (21h)s52 for s>1 andh.0, so we
need a bit more integrebility off to make the right hand side of~3.26! finite. Now we want to
satisfy (21h)s<21e for someh.0 ands>1, so that the second factor on the right hand side
~3.26! is finite.

Case D: q.2, a>0, a.p8q/421, f PHL21e(Cn,mn) for somee.0.
We takes51 so that the first factor on the right hand side of~3.26! is finite sincea>0, which

may be more restrictive than~3.5!.
Case E: q.2, a.p8q/421, f PHL21e(Cn,mn) for somee.0.
Now we chooses.1 so the first factor is finite on the right hand side of~3.26! if and only if

~3.29! holds as before, and this is again equivalent to~3.30!, except now becauseh.0 andq
22.0. Again, the lower bound (22q)/hs8 in ~3.30! is negative and decreases to2` ash↘0,
and the resulting condition ona is weaker than~3.5! for all h.0 with h sufficiently small. Also,
by fixing s with 1,s,11e/2, we can satisfy~3.27! for all h.0 with h sufficiently small.

So it follows for Cases D and E that

h8~21!5E
Cn

dm~z!g~z!

which is an equality between real numbers or both sides are2`.
The formula~3.21! must still be justified in the caseq52. But thenqt52 for all 0<t<1, and

so the integrand of the left hand side of~3.21! is

~kt~z!u f ~z!u!qt5k1~z!2tu f ~z!u2.

So the difference quotient used to compute the derivative on the left hand side of~3.21! is

E
Cn

dmn~z!S k1~z!2h21

h D u f ~z!u2 ~3.32!

for h.0. The pointwise limit of the integrand here ash↘0 is

~2 logk1~z!!u f ~z!u252u f ~z!u2
dkt

dt U
t501

and the convergence is monotone decreasing. This is the integrand on the right hand side o~3.21!
since q8(0)50 in this case. So to interchange the limit and the integral using the mono
convergence theorem, we need the integral in~3.32! to be finite for someh.0. This is equivalent
to the integrability ofk1(z)2hu f (z)u2. However, by Ho¨lder’s inequality

E
Cn

dmn~z!k1~z!2hu f ~z!u2<uuk1
2huus8uu u f u2uus5~ uuk1uu2hs8!

2h~ uu f uu2s!
2 ~3.33!

for any 1<s<`.
Case F: q52, a>0, a.p8q/421, f PHL2(Cn,mn).
Sincea>0, we takes51 in ~3.33! sincek1 is then bounded andf is in L2(Cn,mn).
Case G: q52, a.p8q/421, f PHL21e(Cn,mn) for somee.0.
Now we takes.1 satisfying 2s<21e. So uu f uu2s<uu f uu21e,`. To show the other factor in

~3.33! is finite is equivalent to showing

E
Cn

dmn~z!k1~z!2hs8,`
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and this is equivalent toa.2q/2hs8. But for s fixed ~and satisfying 1,s,11e/2), the limit of
the lower bound2q/2hs8 ash↘0 is 2`. So for allh.0 sufficiently small, this new restriction
on a is weaker than~3.5! and so we haveuuk1uu2hs8,` in this case, and it follows that~3.21! holds
in the caseq52, provideda satisfies~3.5!.

So it follows for Cases F and G that

h8~21!5E
Cn

dm~z!g~z!

which is an equality between real numbers or both sides are2`.
At this point of the argument, we have established~3.21! in the seven cases A through

described above, but with the possibility that the expression in~3.21! could be infinite. And~3.21!
in turn implies~3.12!, but again with the understanding that both sides of~3.12! could be1` or
2`.

Now we will show thatS( f ) finite implies that^ f ,N f& is finite for any f in the Segal-
Bargmann space. We take anyp andq satisfying 1,p<2, 1<q,2, andp8q,4. ~These condi-
tions are consistent and implyq21.p21.) Now we can apply Case C above, which is valid for
f in the Segal-Bargmann space, provided thata satisfies the two conditions specified in that ca
But p8q/421>q/221 sincep8>2 so thata must satisfy merely the one conditiona.p8q/4
21. This means we can~and do! pick a with a,0, this being possible sincep8q,4. Then the
inequality ~3.7! says

q8~0!S~ f !

4uu f uu2
1

1

uu f uu2
E

Cn
dmn~z!u f ~z!u2 logk1~z!<~ logM !uu f uu21

p8~0!S~ f !

4uu f uu2
~3.34!

using ~3.10! and ~3.12!. Since we are assuming thatS( f ) is finite this can be rewritten as

E
Cn

dmn~z!u f ~z!u2 logk1~z!<~ logM !uu f uu2
21~q212p21!S~ f ! ~3.35!

using the formulas for the derivativesp8(0) andq8(0). Now,

logk1~z!5
n

q
log~11a!2

a

q
uzu2

so that~3.35! becomes

S n

q
log~11a!2

na

q D uu f uu2
22

a

q
^ f ,N f&<~ logM !uu f uu2

21~q212p21!S~ f !

by an application of Bargmann’s identity~3.14!, and this is true even if̂f ,N f& is not assumed to
be finite, that is, even if~3.12! happened to be an equality between infinite quantities. In the
inequality the coefficient of̂ f ,N f& is positive sincea,0 while the coefficient ofS( f ) is positive
sinceq21.p21. SoS( f ) finite does implŷ f ,N f& finite for all f in the Segal-Bargmann space,
claimed.

The result of the last paragraph together with Lemma 3.4 establishes that the entropyS( f ) is
finite if and only if the energŷ f ,N f& is finite, this being the third assertion of the theorem.

We are now ready to prove the first assertion in the theorem. So we have by hypothes
f PHL21e(Cn,mn) for somee.0 and 1,p<` and 1<q,` anda.p8q/421. The assumption
on f implies that^ f ,N f& is finite as proved in Lemma 3.3. And this in turn implies thatS( f ) is
finite. We now apply Case B, Case E or Case G depending on the value ofq. This gives us~3.21!
and hence~3.12!. To arrive at~3.16! from ~3.12! now comes from simple substitution and th
rearrangement of terms, all of which are now known to be finite. This concludes the demons
of the first assertion of the theorem.
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We proceed to the second assertion in the theorem. Now the hypotheses are thatf is in the
Segal-Bargmann spaceHL2(Cn,mn), S( f ) is finite, a.p8q/421, 1,p<2 and 1<q<2. If 1
<q,2, we use Case C. Ifq52, we use Case F, which requires thata>0. But 1,p<2 andq
52 imply p8q/4215p8/221>0. So the hypothesisa.p8q/421 impliesa>0 and so Case F
does apply. This gives us~3.12!. SinceS( f ) is finite by hypothesis, we have that^ f ,N f& is finite
by the above argument. So we can rearrange terms to arrive at~3.16!.

Finally, the three cases in the statement of the theorem follow immediately from an ele
tary analysis of the coefficients of the energy and entropy terms. And this concludes the pr
the theorem. h

Cases A and D of the proof of this theorem were never used subsequently in that arg
They are included only for the sake of giving a complete analysis of all the possible cases
do not imply the inequality~3.1! in any case not already established.

The inequality~3.1! has two limiting cases, one when the coefficient of the entropy term
zero and the other when the coefficient of the energy term is zero. The coefficient of the e
being zero means thatp215q21 and~3.1! becomes trivial, as was already noted in Case 2 of
statement of the theorem. The coefficient of the energy being zero meansa50, and this implies
that p8q/421,a50 which in turn impliesp21,q21. So again~3.1! becomes trivial since the
left hand side is a non-positive quantity while the right hand side is non-negative. Howeve
leads one to ask if an inequality of the formBS( f )<uu f uu2

2 holds for all f in the Segal-Bargmann
space withB.0. The negative answer to this question is provided by considering the holomo
functions f l defined by

f l~z!ªexpSA2l•z

2
2

l2

4 D
wherelPRn and zPCn. These functions are in the Segal-Bargmann space. They also s
uu f luu251 andS( f l)5ulu2/2 by direct evaluation of the relevant Gaussian integrals. These f
tions also show that no inequality of the formCuu f uu2

2<S( f ) with C.0 holds for all f in the
Segal-Bargmann space. Essentially, this says thatS( f ) and uu f uu2

2 are inequivalent ways to gaug
the size off . This is to be expected;S( f ) measures the concentration of a state~that is,f satisfying
uu f uu251), and this concentration should be independent of the normalization off . The analogous
result in L2(Cn,mn) can be shown with characteristic functions, and so holds in quite g
generality. The above example shows that the result still holds in the rather ‘‘small’’ subs
HL2(Cn,mn). The exponential functionsf l also saturate the log-Sobolev inequalityS( f )
<^ f ,N f& in the Segal-Bargmann space, and I conjecture that modulo a multiplicative con
these are the only functions to do so.

IV. BEST CONSTANTS

While the best constants for the reverse log-Sobolev inequality are not yet known,
partial results are given in this section. These have the effect of showing what the best co
cannotbe, as well as what are the best constants given by the method of this article. Fir
define

gl~z!ª~12l2!n/4exp~lz2/2! ~4.1!

for 21,l,1 and zPCn. Then gl is holomorphic with uugluu251. So gl is in the Segal-
Bargmann spaceHL2(Cn,mn). Moreover, we can calculate

^gl ,Ngl&5
nl2

12l2

and
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S~gl!5
n

2
log~12l2!1

nl2

12l2
.

But we can also write this in the form

^gl ,Ngl&5S~gl!2
n

2
~ log~12l2!!uugluu2

2 . ~4.2!

However,2 log(12l2)→1` asulu increases to 1 so that there is no reverse log-Sobolev ineq
ity of the form

^ f ,N f&<cS~ f !1nbuu f uu2
2 ~4.3!

with c<1. Also, let us note in passing that the functionsgl show that the relationS( f )
5^ f ,N f& does not hold for allf in the Segal-Bargmann space.

Moreover, the reverse log-Sobolev inequality proved here can be brought into the fo
~4.3! for anyc.1 as the following argument shows. In this discussion we assume thatp8q,4 and
0.a.p8q/421, which is precisely the case of the reverse log-Sobolev inequality for~3.1!.
However, instead of analyzing~3.1!, this analysis will start from

~p212q21!S~ f !<
a

q
^ f ,N f&1nS a

q
1S 1

p8
2

1

qD log~a11!2
1

p8
log~a112p8q/4! D uu f uu2

2

which follows from ~3.7! by using the valueM5Dn/p8 instead ofM5Dn/q which was used to
derive~3.1!. This amounts to nothing more than a change in the coefficient of the norm term
this will give a better constant than~3.1!. First, write this in the form

^ f ,N f&<S q

aD ~p212q21!S~ f !1nS 211
q

aS 1

q
2

1

p8
D log~a11!1

q

ap8
log~a112p8q/4!D uu f uu2

2

by rearranging terms and multiplying by2q/a, which is positive. For fixedp andq, the coeffi-
cient of S( f ) is bounded below by

inf
0.a.p8q/421

S q

aD ~p212q21!5
4p224p24pq14q

4p224p2p2q
~4.4!

though the infimum is not achieved asa runs over its allowed interval. Next, it is easy to show th
the right hand side of~4.4! being>1 is equivalent to (p22)2>0, with the right hand side being
equal to 1 if and only ifp52. So the coefficient ofS( f ) is bounded below by 1, and it can b
made to approach 1 precisely in the casep52. So we now takep52 and keepq fixed so that the
standing assumptions becomeq,2 and 0.a.q/221. We then get

^ f ,N f&<a21~q/221!S~ f !1nS 211S 22q

2a D log~a11!1
q

2a
log~a112q/2! D uu f uu2

2,

where the coefficienta21(q/221) is greater than 1 and approaches 1 asa decreases toq/221
and approaches1` as a increases to 0. This means that we can realize~4.3! for any c.1 as
claimed. In fact, in~4.3! we can take

b5211S 22q

2a D log~a11!1
q

2a
log~a112q/2!.
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Notice that thenb→1` asa decreases toq/221. Now one would like to know the dependen
of the coefficientnb of the norm term as a function of the coefficientcªa21(q/221) of the
entropy term. Substitutinga5c21(q/221) we find that

b~q!5212c log~q/2211c!1c logc2S cq

22qD logS ~22q!~c21!

2c D
for c.1 and 1<q,2. By calculus, one verifies thatb(q) is a strictly increasing function for eac
fixed c.1 and for 1<q,2. @Hint: Showb9(q).0 andb8(1).0. This implies thatb8(q).0 for
q>1.] Soq51 minimizesb(q) and the minimum value is

b~1!5211c logS 4c2

~2c21!~c21! D .

The appearance of the non-zero norm term in~4.3! is a bit troublesome. For example, th
optimal form of the regular log-Sobolev inequality in the Segal-Bargmann space does no
such a term. Anyway, the best form obtainable by the method of this article is

^ f ,N f&<cS~ f !1nS 211c logS 4c2

~2c21!~c21! D D uu f uu2
2

for any c.1.
There is no point in optimizing~3.1! in the case that it is a log-Sobolev inequality, since t

coefficient of the norm term in~3.1! is positive, while the optimal log-Sobolev inequality in th
Segal-Bargmann space isS( f )<^ f ,N f&.

V. REVERSE HYPERCONTRACTIVITY

In Ref. 4, Carlen proves the hypercontractivity for the semigroup$e2tN% from HLp(Cn,mn) to

HLq(Cn,mn) for 0,p,q and t>0 provided thatt> 1
2 log(q/p). Here one definese2tNf (z)

ª f (e2tz) for z in Cn and f in HLp(Cn,mn) using the motivation that this formula for th
semigroup can be proved in the casep52 where one uses spectral theory to define the semigr
As remarked earlier, similar results are to be found in Refs. 5–8. However, Carlen also pro
result for e2tN when t is negative, using the same defining formula fore2tN. He shows that if
0,q,p and t. 1

2log(q/p), thene2tN is bounded fromHLp(Cn,mn) to HLq(Cn,mn) with norm
bounded above by (12e22tq/p)2n/q. This result is trivially true ift>0, since it is easy to show
thate2tN has norm 1 in that case. But for1

2 log(q/p),t,0, this is a new and interesting result. Th
question which we will address here is the relation of this reverse hypercontractivity result d
Carlen to the reverse log-Sobolev inequality of this article. Before proceeding, let us not
Carlen’s results include Lebesgue indices between 0 and 1, but in this article we only hav
Lebesgue indices between 1 and1` due to the limitations of interpolation theory. The followin
discussion will be limited to the latter case.

Define C(t,q,p,n) to be the supremum ofuue2tNf uuq where f :Cn→C is holomorphic and
uu f uup51. ThenC(t,q,p,n) could be infinite, though when it is finite it is just the above opera
norm. Using this notation Carlen’s result says that for 1,q<p

uue2tNf uuq<C~ t,q,p,n!uu f uup , ~5.1!

whereC(t,q,p,n) is finite, t. 1
2 log(q/p) and f is in HLp(Cn,mn). We useC(t,q,p,n) here and

not the estimate which Carlen derives, since his bound is not optimal. It remains an open pr
to find a formula forC(t,q,p,n) whenq,p. Suppose thatp.1 ande.0 are fixed. Suppose tha
s is a function mapping (2e,0# to (1,1`). Suppose thats satisfies these conditions:

~a! s~ t !,pe2t for 2e,t,0;
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~b! s~0!5p; ~5.2!

~c! s8~02! exists.

Heres8(02) denotes the left side derivative ofs(t) at t50. Then by condition~a! we can apply
~5.1! to get

uue2tNf uus~ t !<C~ t,s~ t !,p,n!uu f uup ~5.3!

for all tP(2e,0). Moreover,~5.3! is valid also fort50. In fact, it reduces to an equality fort
50, sinceC(0,s(0),p,n)51 by condition ~b!. Notice that it is in this step that one uses t
optimality of the constant C(t,q,p,n). If we use Carlen’s boundM (t,q,p,n)ª(1
2e22tq/p)2n/q instead, we find thatM (t,s(t),p,n) is undefined att50. Since the inequality
~5.3! becomes an equality at the right end-point of its interval of validity~namely att50), the
operation of taking the one-sided derivative at that end-point reverses the sense of the ine
giving

d

dt U
t502

uue2tNf uus~ t !>
d

dtU
t502

C~ t,s~ t !,p,n!uu f uup .

Proceeding here formally, we have

d

dt U
t502

uue2tNf uus~ t !5~p22s8~02!Sp~ f !2Rê f p ,N f&!uu f uup
p21,

wheref pª f u f up225sgn(f )u f up21 andSp( f )ªS(u f up/2). One can find sufficient conditions for thi
interchange of derivative and integral in Refs. 1 and 2. SinceC(t,s(t),p,n)>1 ~becausee2tN1
51 where 1 is the constant function! and C(0,s(0),p,n)51, we see that k
ª(d/dt)u t502C(t,s(t),p,n)<0. Moreover by conditions~a! and~b! of ~5.2!, s8(02)>2p, which
is positive. So we have shown

p22s8~02!Sp~ f !2Rê f p ,N f&>kuu f uup
p ,

which rearranges to

Rê f p ,N f&<p22s8~02!Sp~ f !2kuu f uup
p . ~5.4!

For p52, ~5.4! becomes the following reverse log-Sobolev inequality

^ f ,N f&< 1
4 s8~02!S~ f !2kuu f uu2

2 , ~5.5!

which motivates calling~5.4! an indexp reverse log-Sobolev inequality.
It seems now to be just a matter of arguing a bit more carefully to show that Carlen’s re

hypercontractivity result implies the reverse log-Sobolev inequality. But unfortunately this i
the case. First, note that there is an apparent contradiction between~5.5! and a result of Sec. IV.
This is because the above formal argument should work forany functions(t) satisfying the three
conditions in~5.2!. Let us consider the casep52. We can takes(t) so that it has first order contac
at t50 with the functionf(t)ª2e2t that majorizess(t). That is, we can picks(t) such that
s8(02)5f8(02)54. But then the coefficient ofS( f ) in ~5.5! is 1, and this seems to contradi
what we have already shown in Sec. IV. This would indeed be a contradiction if the norm te
~5.5! were finite. So, we can conclude that the coefficient of the norm term is not finite
equivalently, thatC(t,s(t),2,n) is not differentable from the left att50. This lack of smoothness
must be inherited from a lack of smoothness in the operator normC(t,q,2,n) sinces(t) is by
construction differentiable from the left att50. This means that at least one of the partial deri
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tives ]C/]t or ]C/]q does not exist when evaluated at the appropriate point. And this lac
smoothness in the operator norm then aborts any attempt to make rigorous the argument le
~5.5!, even in the ‘‘good’’ case whens8(02).4. One can actually see directly from spect
theory thatC(t,2,2,n)51 for t>0 andC(t,2,2,n)51` for t,0. And this shows that (]C/]t)
3(t,2,2,n) evaluated att502 does not exist.

The above argument also can not be made rigorous forp.2. Using the functionsgl from
~4.1! we have in general for reall satisfyingulu,min(2/p,1)

uugluup5~12l2!n/4~12p2l2/4!2n/2p,

Rê ~gl!p ,Ngl&5npl22n11~12l2!np/4~42p2l2!212n/2,

Sp~gl!5np2l22n~12l2!np/4~42p2l2!212n/2

1~n/2!~12l2!np/4~12p2l2/4!2n/2 log~12p2l2/4!,

so that

Rê ~gl!p ,Ngl&5~2/p!Sp~ f !2~n/p!~ log~12p2l2/4!!uugluup
p .

But 2(n/p)log(12p2l2/4)→1` as ulu increases to 2/p, which is less than 1 forp.2. This
shows that an indexp reverse log-Sobolev inequality of the form

Rê f ,N f&<cpSp~ f !1nbpuu f uup
p ~5.6!

cannot hold forcp<2/p. But by pickings(t) so that it has first order contact withc(t)ªpe2t at
t50, one sees that the coefficient of the entropy term in~5.4! can be made equal to 2/p. And so
we observe the same sort of near contradiction as in the casep52, and consequently the deriva
tion of ~5.4! fails.

However, it may be possible to make this argument rigorous in the casep,2. The above
construction does not invalidate~5.4! in this case, sinceulu can only increase to 1,2/p. So it
seems reasonable to conjecture that~5.4! holds forp,2 and that the above argument will esta
lish this provided one can show thatC(t,q,p,n) is differentiable in this case. If this is so, it migh
be possible then to prove the index 2 reverse log-Sobolev inequality by taking the limitp
increases to 2 of the indexp reverse log-Sobolev inequality.

The results of this section are a bit disappointing, since what at first looked like a straig
ward way of relating reverse hypercontractivity to the reverse log-Sobolev inequality ha
given us a positive result. Unfortunately, the usual method of smoothing out estimates by
interpolation theory is not available here in spaces of holomorphic functions. So, it still rema
open question whether an indexp reverse log-Sobolev inequality~5.6! holds in the Segal-
Bargmann space whenpÞ2.

VI. APPLICATIONS

The result of this article can be used to derive in a new way some results in Ref. 16
makes the nature of those results more transparent. Let us recall in this paragraph som
results from Refs. 10–12 expressed in the formulation of Ref. 16. One defines the configu
space~in the ground state representation! to beL2(Rn,nn) wherenn is the Gaussian probability
measure given by

dnn~x!ªp2n/2exp~2x2!dnx

for xPRn where dnx is Lebesgue measure onRn. Then the Segal-Bargmann transformA is
defined by
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A f~z!ªE
Rn

dnn~x!A~z,x! f ~x!

for zPCn and f :Rn→Cn measurable, provided that the integral converges absolutely. The k
function is defined byA(z,x)ªexp(2z2/21A2z•x) for zPCn and xPRn. Then by Hölder’s
inequality A f(z) is well-defined for everyz in Cn and for every elementf of Lp(Rn,nn) if 1
,p<`. Moreover,A mapsL2(Rn,nn) unitarily onto the Segal-Bargmann spaceHL2(Cn,mn),
and it furthermore intertwines the standard representations of the Heisenberg-Weyl group~expo-
nentiated canonical commutation relations! on the spacesL2(Rn,nn) and HL2(Cn,mn). In par-
ticular, A preserves the energy, which can be expressed in terms of the Dirichlet forms as

^c,N1c&5^Ac,NAc& ~6.1!

for all cPL2(Rn,nn) where

^c,N1c&ª
1

2(
j 51

n UU ]c

]xk
UU

L2~nn!

2

defines the Dirichlet form forall cPL2(Rn,nn). ~The factor of one-half in the previous definitio
corrects an error in Ref. 16.! Notice that one side of~6.1! is infinite if and only if the other side is
infinite.

Entropy also enters in the analysis of the Segal-Bargmann space via the Segal-Bar
transform, since that transform does not preserve entropy. One of the results from Ref. 16
restricts how the Segal-Bargmann transformA can change entropy is a Hirschman type inequa
~see Ref. 14! of the form

S~c!<c1S~Ac!1c2uucuu2
2 ~6.2!

with c1 and c2 being non-negative constants andc being in L2(Rn,nn). This inequality was
derived by studying theLp to Lq mapping properties ofA for (p,q) close to (2,2). Now it can be
proved simply by noting

S~c!<2^c,N1c&52^Ac,NAc&<2~a1S~Ac!1a2uuAcuu2
2!52a1S~Ac!12a2uucuu2

2,

where the first step is the log-Sobolev inequality inL2(Rn,nn) originally proved in Ref. 1, the nex
step is just~6.1!, the next step is the reverse log-Sobolev inequality in the Segal-Bargmann
and the last step is the unitarity ofA. In this proof, one still uses mapping properties ofA
~preservation of norm and energy!, but the energy-entropy properties pertain now to each sp
separately.

Another related fact about entropy in the Segal-Bargmann space is that there is no Hirs
type inequality of the form

S~Ac!<b1S~c!1b2uucuu2
2 ~6.3!

for all cPL2(Rn,nn) with b1 ,b2 non-negative constants. First, we can explicitly construct e
mentsc in L2(Rn,nn) with finite entropy and infinite energy. I claim that any suchc violates
~6.3!. This is because the right hand side of~6.3! is finite by construction. However, the left han
side of ~6.3! must be infinite. Otherwise we would haveS(Ac),` implying ^Ac,NAc&,` by
the reverse log-Sobolev inequality in the Segal-Bargmann space, and so^c,N1c&,` becauseA
preserves energy. But this contradicts the construction ofc with infinite energy. SoS(Ac)5`
follows and~6.3! fails. Notice again the failure of~6.3! follows from energy-entropy properties o
the individual spaces themselves plus the elementary properties thatA preserves norm and energ
If one is inclined to think in categorical terms, one can formulate the result that~6.3! is false as
saying that a certain commutative diagram cannot be constructed. This formulation is left
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interested reader. Also, using the functionsf l introduced at the very end of Sec. III, one can sh
that none of the other possible non-trivial forms of a Hirschman type inequality in the S
Bargmann space can be valid.

VII. CONCLUSION

The result of this article shows a remarkable relation between entropy and energy
Segal-Bargmann space. It seems reasonable to suppose that this comes about because the
in the Segal-Bargmann space are holomorphic functions, rather than just merely square-int
functions. For example, the proof here depends on the analysis of the reproducing kernel
9, and the existence of a reproducing kernel is a hallmark of Hilbert spaces of holomo
functions. It would be interesting therefore to investigate other Hilbert spaces of holomo
functions to see if a natural reverse log-Sobolev inequality can be demonstrated even th
regular log-Sobolev inequality might not hold.

The presence of the norm term in the reverse log-Sobolev inequality proved here may
optimal. It seems natural to conjecture that this term can be eliminated, and with it the
dependence on dimension in the coefficients of the inequality. This would then lead to an i
dimensional version of the reverse log-Sobolev inequality. In any event, it would be interest
know what is the exact relation of energy and entropy in the case of infinitely many dimen

Despite the results of Sec. V, there still might be another way of relating reverse hype
tractivity to the reverse log-Sobolev inequality. One might try to use the usual method of g
ating ~regular! hypercontractivity inequalities from~regular! log-Sobolev inequalities. Tha
method originated in Ref. 1 and has been modified in Ref. 5 for the holomorphic case. It is an
problem whether one can ‘‘turn around’’ the inequalities in that method to produce an argu
for the reverse inequalities. As noted before, it remains an open problem if there is an inp
reverse log-Sobolev inequality in the Segal-Bargmann space forpÞ2. Another open problem
from Sec. V is to determine the exact value of the operator normC(t,q,p,n) and hence whethe
it is differentiable att502 whenq,p.

The failure of the Hirschman type inequality~6.3! is due to the fact that the Segal-Bargma
transform of a function with finite entropy can be a function with infinite entropy. It remain
open problem to identify the image of the finite entropy functions under the Segal-Barg
transform.

Finally, the question of what are the best constants in the reverse log-Sobolev ineq
remains an open problem. Let me just note that this question is independent of whether th
term is really present or not.
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New approach to semiclassical analysis in mechanics
M. A. Alonsoa) and G. W. Forbesb)
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A new method is proposed for constructing approximate solutions to the Schro¨-
dinger equation. In place of the wave function, its Gaussian-windowed Fourier
transform is used as the fundamental entity. This allows an intuitively attractive
connection to be made with a family of classical trajectories and, at all times, the
wave function is inferred from the present state of these trajectories. The fact that
the connection between the wave function and the classical trajectories is consis-
tently constructed in phase space allows this method to be free of the limitations of
other methods. ©1999 American Institute of Physics.@S0022-2488~99!02803-0#

I. INTRODUCTION

While classical mechanics models the motion of a particle in terms of a well-defined tr
tory, quantum mechanics characterizes its evolution in a probabilistic fashion by means of a
function C(x,t) that satisfies the Schro¨dinger equation:

i\
]C

]t
~x,t !52

\2

2m
¹2C~x,t !1V~x,t !C~x,t !. ~1.1!

Here, m is the particle’s mass,V(x,t) is the potential, and\ is Planck’s constant. The spatia
probability density for the location of the particle at timet is thenuC(x,t)u2.

Except for some simple potentials, the determination of an exact solution of Eq.~1.1! given
some initial condition, sayC(x,t0), is generally a formidable task. Schemes to construct appr
mate solutions are therefore important. The so-calledsemiclassicalor quasiclassicalmethods offer
one such option that is essentially expressed in terms of the classical description of the pr
These methods are direct analogs of ray optics, and allow intuition of the classical macro
world to be applied to quantum mechanics. An invaluable review of hundreds of key papers
area was recently presented by Gutzwiller.1

In several of these methods, the wave function is associated with ann-parameter family of
classical trajectories, wheren is the number of spatial dimensions. Each of these trajecto
carries an associated weight or amplitude. At any given time, the position and momentum o
trajectory identify a point in phase space, and the locus of all these points is known a
Lagrange manifold. For simplicity, the methods described in this work are presented for
one-dimensional case (n51). The Lagrange manifold orphase space curveis then composed o
the points (x,p)5@X(j,t),P(j,t)#, wherej is the parameter that labels the trajectories. E
trajectory, and hence the phase space curve itself, evolves in time according to the classic

]X

]t
~j,t !5

P~j,t !

m
, ~1.2a!

]P

]t
~j,t !52

]V

]x
@X~j,t !,t#. ~1.2b!

a!Electronic mail: alonso@physics.mq.edu.au
b!Electronic mail: forbes@physics.mq.edu.au
16990022-2488/99/40(4)/1699/20/$15.00 © 1999 American Institute of Physics
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There are several alternative prescriptions for estimating the wave function from the cla
framework given by@X(j,t),P(j,t)# once it is supplemented by the relative weight of ea
trajectory, sayD(j) ~assumed for the moment to be independent oft!. Some of the well-known
methods are revisited in Sec. IX. The most direct of these estimates couples the spatial pro
density to the spatial density of the trajectories, that is,uC@X(j,t),t#u2}D(j)/X8(j,t), where the
prime denotes derivative with respect toj. This relation holds only while the phase space cu
corresponds to a single-valued function ofx @i.e., providedX8(j,t)Þ0 for all j#. However, asX
andP evolve according to Eqs.~1.2!, this condition is eventually violated in most cases, and
estimate then diverges at the so-calledcaustics@whereX8(j,t)50#.

Another possibility is first to estimate themomentum distribution, which is just the Fourier
transform ofC(x,t):

C̃~p,t !5
1

A2p\
E C~x,t !expS 2 i

xp

\ Ddx, ~1.3a!

C~x,t !5
1

A2p\
E C̃~p,t !expS i

xp

\ Ddp. ~1.3b!

Now, the probability density in momentum is coupled to the trajectory density in momentum

uC̃@P(j,t),t#u2}D(j)/P8(j,t). In this case, the phase space curve must be single valued inp, i.e.,
P8(j,t)Þ0 for all j. Again, in most applications, this condition is ultimately violated.

These conditions on the form of the phase space curve are evidently tied to the represe
that is used. Our aim is to state the connection between a wave function and an associate
space curve in a way that is not inherently coupled to a particular representation. This is sh
lead to a more robust semiclassical method that is based upon the concept of representing t
function as a phase space distribution by means of theGaussian-windowed Fourier transformatio
~GWFT! defined in Sec. II. The evolution equation for this phase space distribution is deriv
Sec. III. A form for the GWFT of a wave function is devised in Sec. IV so that the resu
localized around a prescribed curve in phase space. The properties of this construction are
in Sec. V and, in Sec. VI, it is shown that the result can readily be made to satisfy the evo
equation presented in Sec. III. The new estimate for the wave function is stated in Sec. VI
some criteria for its use are given in Sec. VIII. Section IX gives a comparison with re
methods. Finally, a summary of the new semiclassical method is given in Sec. X.

II. GAUSSIAN-WINDOWED FOURIER TRANSFORM

The GWFT ofC(x,t) is defined here as

G~x,p;t !5GWFT$C~x,t !%ª
1

A2p\
l 21/4E C~x8,t !expF2

~x82x!2

2l\
2

ip

\ S x82
x

2D Gdx8,

~2.1a!

where ‘‘ª’’ means ‘‘is defined to be equal to’’ andl determines the width of the Gaussia
window. The GWFT preserves its general form when expressed in terms ofC̃(p,t), as can be
seen upon substituting Eq.~1.3b! into ~2.1a!:

G~x,p;t !5
1

A2p\
l 1/4E C̃~p8,t !expF2

l

2\
~p82p!21

ix

\ S p82
p

2D Gdp8. ~2.1b!

The GWFT is linear in the wave function and, for the purposes to be considered here
gives it several advantages over other phase space distributions. For example, it is straight
to fully recoverC(x,t) or C̃(p,t) from G(x,p;t):
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C~x,t !5
1

A2p\
l 1/4E G~x,p;t !expS i

px

2\ Ddp, ~2.2a!

C̃~p,t !5
1

A2p\
l 21/4E G~x,p;t !expS 2 i

px

2\ Ddx. ~2.2b!

It is easily seen from either of Eqs.~2.1! that G(x,p;t) satisfies

S l
]

]x
2 i

]

]pDG~x,p;t !52
1

2\
~x2 i lp !G~x,p;t !. ~2.3!

Notice that, given Eq.~2.3!, the specification ofG along a curve is sufficient in principle to infe
its value over all of phase space. As a result,C itself is fully determined onceG is prescribed on
a curve. While this option turns out to be unworkable, in general, Eq.~2.3! has implications in any
work with the GWFT.

A useful insight into the structure ofuGu follows upon writing

G~x,p;t !5exp@g~x,p;t !1 if~x,p;t !#, ~2.4!

whereg andf are real functions. Two real-valued equations follow upon substituting Eq.~2.4!
into Eq. ~2.3!:

]g

]x
1

1

l

]f

]p
1

x

2\ l
50, ~2.5a!

]f

]x
2

1

l

]g

]p
2

p

2\
50. ~2.5b!

Equations~2.5! can now be decoupled by taking both thex andp derivatives of each of them, an
then eliminating the cross-derivative terms to find

S ]2

]x2 1
1

l 2

]2

]p2Dg~x,p;t !52
1

\ l
, ~2.6a!

S ]2

]x2 1
1

l 2

]2

]p2Df~x,p;t !50. ~2.6b!

Notice that Eqs.~2.6! involve the Laplacian operator in the scaled phase space with coordi
~x,lp!. From Eqs.~2.5! @especially through Eq.~2.6a!# it follows that if uGu is localized along a
curve—i.e., it has a ridge along which the first and second derivatives ofg are small—then the
transverse profile of the ridge in this scaled phase space is approximately a Gaussian o
A\ l .

III. TIME EVOLUTION EQUATION FOR THE GWFT

The time evolution equation forG can be found by taking the GWFT of both sides of E
~1.1!. From thep derivative of Eq.~2.1a!, it is easy to show that

GWFT$xC~x,t !%5X̂G~x,p;t !ªS x

2
1 i\

]

]pDG~x,p;t !, ~3.1!

whereX̂ is then the position operator forG and, more generally,
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GWFT$xnC~x,t !%5X̂nG~x,p;t !. ~3.2!

By using integration by parts, it can be seen that

GWFTH ]C

]x
~x,t !J 5

21

A2p\
l 21/4E C~x8,t !

]

]x8
expF2

~x82x!2

2l\
2

ip

\ S x82
x

2D Gdx8

5S 2
x

2l\
1

ip

\
1

i

l

]

]pDG~x,p;t !, ~3.3!

where Eq.~3.1! has been used in the last step. This result can be written in a more suggestiv
by using Eq.~2.3! to eliminate thep derivative and multiplying both sides by2 i\:

GWFTH 2 i\
]C

]x
~x,t !J 5 P̂G~x,p;t !ªS p

2
2 i\

]

]xDG~x,p;t !, ~3.4!

and, therefore,

GWFTH S 2 i\
]

]xD n

C~x,t !J 5 P̂nG~x,p;t !. ~3.5!

By using Eqs.~3.2! and~3.5!, the result of taking the GWFT of both sides of Eq.~1.1! can be
written as

i\
]G

]t
~x,p;t !5

1

2m
P̂2G~x,p;t !1V~X̂,t !G~x,p;t !, ~3.6!

whereV has been assumed to be analytic. This form of the Schro¨dinger equation turns out to b
ideally suited for semiclassical analysis, and enables a robust connection to the classical d

IV. CONSTRUCTING G BY USING A PHASE SPACE CURVE

As mentioned in the Introduction, several semiclassical methods have been derived fo
whereC(x,t) can be associated with a one-parameter family of classical trajectories, whic
any given time, is represented by a curve in phase space. However, this association is stra
ward only when the curve corresponds to a single-valued function ofx or p. This is a significant
limitation, and the objective of this section is to give a form for a wave function that ca
associated with a more general family of classical trajectories.

To begin, consider the GWFT of a Gaussian that has widthA\L and a linear phase propor
tional to P:

GWFTH expF2
~x2X!2

2\L
1 i

P

\ S x2
X

2 D G J 5
l 1/4AL

Al 1L
expF2

~x2X!2

2\~ l 1L!
2

lL~p2P!2

2\~ l 1L!

1 i
2~LxP2 lXp!1~ l 2L!~xp1XP!

2\~ l 1L! G
5

l 1/4AL

Al 1L
expF2

z2 l~zL2ZL!2ZL~z2 l2Z2 l !

2\~ l 1L! G ,
~4.1!

where the expression was simplified in the last step by using

zhªx1 ihp, ~4.2a!
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ZhªX1 ihP, ~4.2b!

for h either 2 l or L. The phase space distribution given in Eq.~4.1! is a Gaussian localized
around~X,P!, as shown in Fig. 1~a!.

A form of G that is localized around a curve in phase space described by@X(j),P(j)# can be
built by superimposing a weighted sequence of Gaussians of the form given in Eq.~4.1!:

GL~x,p!5
1

A2p\
E wL~j!gL~x,p;j!dj, ~4.3!

wherewL(j) is a weighting factor, and

gL~x,p;j!5
l 1/4AL

Al 1L
expH i

w~j!

\
2

z2 l@zL2ZL~j!#2ZL~j!@z2 l2Z2 l~j!#

2\~ l 1L! J . ~4.4!

The extra phasew~j!/\ in Eq. ~4.4! could have been incorporated intowL(j), but it is included
separately here for convenience.

The properties ofGL(x,p) can be discussed more easily in terms of the picture presente
Fig. 1~b!. With this, Eq.~4.3! associates a wave function to a curve in phase space by paintin
GWFT of the wave function using something analogous to a spray can that is traced ov
curve. The footprint of the spray can corresponds togL(x,p;j). IncreasingL gives a footprint that
is wider in x and narrower inp. One might then think that the form ofGL(x,p) would depend
strongly on L. However, it is possible to choosewL(j) to ensure thatGL is insensitive to
variations inL. This can be realized asymptotically when certain quantities turn out to be m
larger than\. The signature of the footprint then becomes effectively irrelevant in the contin
superposition. The weak dependence ofGL on L is of central importance, since it means that t
corresponding wavefunction depends on just the essential elements of the classical fram
namely the phase space curve and its weighting factor,wL(j).

In the construction proposed in Eq.~4.3!, uGLu is expected to take its largest values near
phase space curve.@Remember thatgL is largest atz2 l5Z2 l .# It is therefore required that this
superposition of Gaussians is constructive in the neighborhood of the curve. From Eq.~4.4!, thej
derivative ofgL is seen to be given by

]gL

]j
5F ~z2 l2Z2 l !

\~ l 1L!

]ZL

]j
1

1

2\~ l 1L! S ]ZL

]j
Z2 l2ZL

]Z2 l

]j D1
i

\

]w

]j GgL

5F ~z2 l2Z2 l !

\~ l 1L!

]ZL

]j
1

i

\ S ]w

]j
2

P

2

]X

]j
1

X

2

]P

]j D GgL . ~4.5!

FIG. 1. ~a! Dimensions in phase space of the Gaussian given in Eq.~4.1!. ~b! Construction of a wave function based o
painting its GWFT over a curve in phase space. The grey level in both~a! and~b! representsuG(x,p)u. This process uses
the Gaussian shown in~a! as the footprint of the notional spray can. Notice that the resulting ridge inuGu has a transverse
width that is essentially independent of the dimensions of the footprint.
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Under the assumption thatwL(j) does not vary significantly over the spread ofgL , constructive
interference occurs along the curve if]gL /]j50 atz2 l5Z2 l . It then follows from Eq.~4.5! that
w~j! must satisfy

]w

]j
~j!5

1

2 FP~j!
]X

]j
~j!2X~j!

]P

]j
~j!G , ~4.6!

and Eq.~4.5! then reduces to

]gL

]j
5

ZL8 D

\
gL , ~4.7!

whereDª(z2 l2Z2 l)/( l 1L), and the prime denotes a derivative with respect toj. Notice that
the right-hand side of Eq.~4.6! is independent ofL. Therefore,w could depend onL only through
an additive term that is independent ofj. This term is now taken to be absorbed bywL , so thatw
is then independent ofL.

It follows from Eqs.~4.3! and ~4.4! that

]GL

]L
~x,p!5

1

A2p\
E H ]wL

]L
1wLF l

2L~ l 1L!
1

D2

2\ G J gL~x,p;j!dj. ~4.8!

Notice that the second term inside the brackets on the right-hand side of Eq.~4.8! depends not
only on j but also onx and p, due to the factor ofD2. This dependence can be eliminated
repeatedly using Eq.~4.7! and integrating by parts:

]GL

]L
5

1

A2p\
H E F]wL

]L
1

lwL

2L~ l 1L!GgL dj2E ]

]j S wLD

2ZL8
DgL djJ

5
1

A2p\
E H ]wL

]L
1

wL

2L

X8

ZL8
1

\

2

]

]j F 1

ZL8

]

]j S wL

ZL8
D G J gL dj. ~4.9!

The only dependence onx andp in the final integrand of Eq.~4.9! is now within gL(x,p;j), so
like Eq. ~4.3!, Eq. ~4.9! is simply a superposition of Gaussians in phase space. More importa
integration by parts has now clarified the asymptotic significance of each of the terms; this d
is also used repeatedly below. Given the factor of\ on the third term inside the braces of Eq.~4.9!,
wL is now chosen to make the first two terms cancel in order to achieve the desired insens
This condition fixes the dependence ofwL(j) on L:

wL~j!5AD~j!ZL8 ~j!/L, ~4.10!

whereD is an arbitrary function ofj.
With this form for wL(j), GL can be estimated at the phase space curve by using the s

point method:2

GL@X~j0!,P~j0!#; l 1/4A D~j0!

Z2 l8 ~j0!
expF i

w~j0!

\ G . ~4.11!

As desired, this result is independent ofL and does not vanish as long asD(j0) is nonzero. The
asymptotic estimate ofGL can be found to decay as a Gaussian in any section that is transve
the curve.~The saddle point then corresponds to a complex value ofj.! Alternatively, it follows
from the discussion at the end of Sec. II that, sinceuGLu evidently has a ridge along the pha
space curve, it therefore has a transverse profile that is approximately Gaussian of widthA\ l in
the scaled phase space with coordinates~x,lp!.

By using Eqs.~4.10! and Eq.~4.9!, it is found that
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GL1dL~x,p!'GL~x,p!1dL
]GL

]L
~x,p!5

1

A2p\
E H wL~j!1dL

\

2
dwL~j!J gL~x,p;j!dj,

~4.12!

where

dwL~j!ª
1

AL

]

]j S 1

ZL8

]

]j
AD

ZL8
D . ~4.13!

Equation~4.12! states that, to first order, a change inL is equivalent to a change in the weightin
Given Eq. ~4.11!, it now follows that GL is not significantly affected by a changedL in L,
provideddL!u2wL /(\dwL)u for all j. If we requireGL to be insensitive to changes inL that are
of the order ofL itself, this condition becomes

UdwL~j!

wL~j!
U5U 1

ADZL8

]

]j S 1

ZL8

]

]j
AD

ZL8
DU!

1

\L
, for all j. ~4.14!

That is, as anticipated,GL is insensitive to changes inL provided \21 is sufficiently large
compared to the value of a particular expression involving the curve and its weight functio

V. INTERPRETATION OF THE INSENSITIVITY CONDITION

Condition~4.14! can be used to delineate an acceptable interval for the value ofL. Expanding
the derivatives and multiplying both sides by\L leads to

UF5ZL9
222ZL8 ZL-24

D8

D
ZL8 ZL9 1S 2

D9

D
2

D82

D2 DZL8
2G \L

4ZL8
4U!1, for all j. ~5.1!

@Remember thatZL(j)5X(j)1 iLP(j).# Notice that, asL→0, condition~5.1! is satisfied for all
j, except in the neighborhood of the values ofj for which X8(j)50. At these values, the left-han
side of condition~5.1! diverges—it isO(L23). Therefore, the points in the phase space cu
where the local tangent is parallel to thep axis @that is, whereX8(j)50#, fix a lower bound onL.
Alternatively, for largeL, condition ~5.1! is satisfied everywhere except in the neighborhood
the points where the local tangent to the phase space curve is parallel to thex axis, that is, where
P8(j)50. At these points the left-hand side of condition~5.1! diverges—it isO(L3). This then
fixes an upper bound forL. Since most phase space curves will have both vertical and horiz
segments, finite, nonzero values ofL must be used and the allowed interval evidently follo
from condition~5.1!.

The functionsX(j), P(j), w~j!, andD(j), can be reparametrized without affecting Eq.~4.3!
or condition~4.14!, provided the parametrization monotonically describes the phase space
If the relationship between the old and new parameters isj5R( ǰ), then the reparametrize
quantities areX̌( ǰ)ªX@R( ǰ)#, P̌( ǰ)ªP@R( ǰ)#, w̌( ǰ)ªw@R( ǰ)#, andĎ( ǰ)ªR8( ǰ)D@R( ǰ)#. A
simple geometrical interpretation of condition~4.14! follows upon choosing the special paramet
zation whereuŽL8 ( ǰ)u[AL for all ǰ. In this case,ŽL8 reduces toAL exp@ia(ǰ)#, where

a~ǰ !5arctanFL P̌8~ ǰ !

X̌8~ ǰ !
G . ~5.2!

Now, consider the scaled phase space (L21/2x,L1/2p), where both axes again have the sam
dimensions. Here,a( ǰ) corresponds to the angle between theL21/2x axis and the local tangent t
the scaled phase space curve~see Fig. 2!, andǰ corresponds to the arclength along the curve. W
this, condition~4.14! becomes
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1

4
U2

Ď9

Ď
2

Ď82

Ď2
23a8222i S a912a8

Ď8

Ď
D U!

1

\
, for all ǰ, ~5.3!

wherea8 and a9 correspond, respectively, to the local curvature and the rate of change o
curvature of the scaled phase space curve.

Condition~5.3! is satisfied when any segment of lengthA\ of the scaled phase space curve
sufficiently straight, and the relative variation inĎ is small over the segment. That is, it
sufficient to require each term in condition~5.3! to be small, and this leads to

ua8u!
1

A\
, ~5.4a!

ua9u!
1

\
, ~5.4b!

UĎ8

Ď
U!

1

A\
, ~5.4c!

UĎ9

Ď
U!

1

\
, for all ǰ. ~5.4d!

Notice that condition~5.4a! is consistent with what was said at the outset of this section: at po
whereP850, the curvature is given byL3/2P9/X82, so L must satisfyL!uX84/\P92u1/3, while
at points whereX850, the curvature isX9/(L3/2P82) so L must be chosen such tha
L@u\X92/P84u1/3. It is clear that, when the curvature of the phase space curve is sufficiently
these two inequalities can be incompatible. Nevertheless, this limitation of the semicla
method developed here turns out to be insignificant compared to the analogous limitations o
existing methods.

VI. TIME EVOLUTION

Each ofX, P, w, andD is now taken to be a function, not only ofj, but also of time. The goa
of this section is to show thatGL approximately satisfies the propagation equation given in
~3.6! when X and P are, respectively, the parametric position and momentum for a clas
trajectory, andw is simply related to the classical action for that trajectory.

From Eqs.~4.4!, ~4.6!, and~4.10!, the time derivatives ofgL andwL are

]gL

]t
5

i

\
S ẇ1

XṖ2ẊP

2
2 i ŻLD D gL , ~6.1a!

FIG. 2. At any point, labeled byj̆, along the scaled phase space curve,a is the angle between theL21/2x axis and the local
tangent to the curve, anda8 is the local curvature.
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]wL

]t
5S Ḋ

D
1

ŻL8

ZL8
D wL

2
, ~6.1b!

where the overdot denotes a derivative with respect tot andD is defined after Eq.~4.7!. It now
follows from Eq.~4.3! that

i\
]GL

]t
5

1

A2p\
E wLgLS 2ẇ1

ẊP2XṖ

2
1 i ŻLD1

i\

2

Ḋ

D
1

i\

2

ŻL8

ZL8
D dj. ~6.2!

Notice that the third term inside the parentheses on the right-hand side of Eq.~6.2! contains aD,
and therefore it depends onx and p. This dependence can be removed by using Eq.~4.7! and
integrating by parts as in Eq.~4.9!:

E wLŻL DgL dj52\E gL

]

]j S wLŻL

ZL8
D dj52\E wLgLF ŻL

wL

]

]j S wL

ZL8
D 1

ŻL8

ZL8
Gdj, ~6.3!

so Eq.~6.2! becomes

i\
]GL

]t
5

1

A2p\
E wLgLF2ẇ1

ẊP2XṖ

2
2 i\

ŻL

wL

]

]j S wL

ZL8
D 2

i\

2

ŻL8

ZL8
1

i\

2

Ḋ

DGdj. ~6.4!

From the definition ofP̂ in Eq. ~3.4!, it follows that

P̂2

2m
GL5

1

A2p\
E wLgLS P2

2m
1

\

2m~ l 1L!
1

iPD

2
2

D2

2mDdj. ~6.5!

Again, theD’s are now eliminated by using Eq.~4.7! and integrating by parts, giving

P̂2

2m
GL5

1

A2p\
E wLgLH P2

2m
2 i\

P

m

1

wL

]

]j S wL

ZL8
D 2

i\

2

P8

mZL8
2

\2

2m

1

wL

]

]j F 1

ZL8

]

]j S wL

ZL8
D G J dj.

~6.6!

Following similar steps, it is shown in Appendix A that

V~X̂,t !GL5
1

A2p\
E wLgLH V02\LFV1

1

wL

]

]j S wL

ZL8
D 1

V2

2

X8

ZL8
G

1~\L!2
ZL8

wL
FV2

2
]̂ZL

2 1
V3

6
~2b̂ ]̂ZL

1 ]̂ZL
b̂!1

V4

8
b̂2G wL

ZL8

1 (
n53

`

~\L!n(
j 50

n

V2n2 j (
k50

Snj D
ck

n, j
ZL8

wL
Pk

n, j~ ]̂ZL
,b̂ !

wL

ZL8
J dj, ~6.7!

whereVn5]nV/]xn evaluated atX(j,t), ]̂ZL
ªZL8

21]/]j, b̂ªX8/ZL8 , Pk
n, j ( ]̂ZL

,b̂) corresponds

to the kth permutation of the product ofj factors of ]̂ZL
and n2 j factors of b̂, and ck

n, j is a
numerical coefficient.

By substituting Eqs.~6.4!, ~6.6!, and~6.7! into Eq.~3.6!, the Schro¨dinger equation is found to
take the form
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E wL~j!gL~x,p;j!H S ẇ2
ẊP2XṖ

2
1

P2

2m
1V0D

2 i\F 1

wL
S P

m
2 iLV12ŻLD ]

]j S wL

ZL8
D 1

1

2ZL8

]

]j S P

m
2 iLV12ŻLD1

1

2

Ḋ

DG
1~\L!2

ZL8

wL
FV22~mL2!21

2
]̂ZL

2 1
V3

6
~2b̂ ]̂ZL

1 ]̂ZL
b̂!1

V4

8
b̂2G wL

ZL8

1 (
n53

`

~\L!n(
j 50

n

V2n2 j (
k50

Snj D
ck

n, j
ZL8

wL
Pk

n, j~ ]̂ZL
,b̂ !

wL

ZL8
J dj50. ~6.8!

The integral on the left-hand side of Eq.~6.8! must vanish for allx andp, and for anyl. Notice that
the only dependence on these parameters comes fromgL , and that, like Eqs.~4.3! and~4.9!, Eq.
~6.8! is just a weighted sum of the Gaussians. Equation~6.8! can evidently be satisfied by requi
ing the expression inside the braces to vanish. This is now realized by introducing three
straints:

2ẇ1
ẊP2XṖ

2
5

P2

2m
1V~X,t !, ~6.9a!

ŻL5Ẋ1 iL Ṗ5
P

m
2 iL

]V

]x
~X,t !, ~6.9b!

Ḋ

D
52 i\L2AZL8

D H @V22~mL2!21#]̂ZL

2 1
V3

3
~2b̂ ]̂ZL

1 ]̂ZL
b̂!1

V4

4
b̂2JAD

ZL8

22i (
n53

`

\n21Ln(
j 50

n

V2n2 j (
k50

Snj D
ck

n, jAZL8

D
Pk

n, j~ ]̂ZL
,b̂ !AD

ZL8
, ~6.9c!

where Eq.~4.10! was used in Eq.~6.9c!.
Notice that Eq.~6.9b! was chosen such that its real and imaginary parts correspond t

classical laws of motion@see Eqs.~1.2!#, so X(j,t) and P(j,t) can be identified as the positio
and momentum of the classical trajectory labeled byj. Also, Eq. ~6.9a! was chosen to be com
patible with Eq.~4.6!, since these two equations can be shown to lead to the same express
]2w/]j ]t. Further, if we writew as

w~j,t !5S~j,t !2
X~j,t !P~j,t !

2
, ~6.10!

then Eq.~6.9a! becomes

Ṡ~j,t !5
P2~j,t !

2m
2V@X~j,t !,t#, ~6.11!

where Eq.~1.2a! was used to eliminateẊ. The right-hand side of Eq.~6.11! is equal to the
Lagrangian for the trajectory, soS can be identified as the classical action. Upon substituting
~6.10! into Eq. ~4.6!, it follows thatS satisfies

]S

]j
~j,t !5P~j,t !

]X

]j
~j,t !, ~6.12!
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so S is also related to the area under the phase space curve, as shown in Fig. 3.

VII. SEMICLASSICAL ESTIMATE

Equation~6.9c! corresponds to the transport equation, which gives the time rate of chan
the weightingD along a trajectory. While Eqs.~6.9a! and~6.9b! do not contain\, Eq. ~6.9c! has
the form of a series in positive powers of\. UnlessV is a polynomial inx, this series is infinite.
In conventional semiclassical methods,\ is effectively regarded as a variable and\→0 then
underlies the asymptotic analysis. In this limit, Eq.~6.9c! states thatD is conserved for each
trajectory~i.e., Ḋ50), while Eqs.~6.9a! and~6.9b! remain unchanged. The form of the resultin
semiclassical estimate follows from Eqs.~4.3! and ~4.10!:

GL~x,p!5
1

A2p\L
E AD~j,t0!ZL8 ~j,t !gL~x,p;j,t !dj, ~7.1!

whereD has been frozen at the initial timet0 . The time interval over which this expression
valid can be estimated by using Eq.~6.9c!: after a time given by the inverse of the absolute va
of the right-hand side of Eq.~6.9c!, the local estimate ofG(x,p) around the phase space poi
@X(j,t),P(j,t)# is no longer expected to be accurate. In fact, Eq.~6.9c! gives a simple measure o
the local deterioration ofGL(x,p). It turns out that a suitable choice ofL can help extend the
validity of this estimate, and this is considered in Sec. VIII.

This approach allows a direct asymptotic estimate for any representation of the wave fun
For example, by substituting Eq.~7.1! into Eq. ~2.2a!, and using Eqs.~4.2!, ~4.4!, and~6.10!, the
associated estimate forC(x,t) is found to be

CL~x,t !5
1

A2p\L
E AD~j,t0!@X8~j,t !1 iLP8~j,t !#

3expH 2
@x2X~j,t !#2

2\L J expH i
S~j,t !1@x2X~j,t !#P~j,t !

\ J dj. ~7.2!

Notice that the superfluous parameterl is entirely absent from Eq.~7.2!. Also, provided condition
~4.14! is satisfied,CL(x,t) depends weakly onL. Alternatively, if Eq.~2.2b! is used in place of
Eq. ~2.2a! here, it is found that

C̃L~p,t !5
1

A2p\
E AD~j,t0!@X8~j,t !1 iLP8~j,t !#

3expH 2L
@p2P~j,t !#2

2\ J expH i
S~j,t !2pX~j,t !

\ J dj. ~7.3!

FIG. 3. S(j,t) corresponds to an area under the phase space curve.
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Again, this estimate does not depend onl, and has a weak dependence onL provided that
condition ~4.14! is satisfied. Further,C̃L(p,t) is precisely the Fourier transform ofCL(x,t). As
a result, it is easily shown that the mean square error is the same for these two estimates

An important consideration forCL(x,t) is that its norm is preserved in time. It is shown
Appendix B that* uCL(x,t)u2 dx'* uD(j,t0)udj. The weighting is therefore chosen to be no
malized by

E uD~j,t0!udj51. ~7.4!

VIII. CHOOSING L

It was mentioned in Sec. V that, for phase space curves that are multivalued in bothx or p, a
finite and nonzero value must be used forL. It was also anticipated in Sec. VII that a suitab
choice forL may extend the validity of the estimate. To see this, consider rewriting Eq.~6.9c! in
the form

Ḋ

D
52 i\H @L2V22m21#

1

ADZL8

]

]j S 1

ZL8

]

]j
AD

ZL8
D

1L2V3F X8

ZL8

1

ADZL8

]

]j
AD

ZL8
1

1

3ZL8

]

]j S X8

ZL8
D G1

L2V4

4 S X8

ZL8
D 2J 1O~\2!, ~8.1!

where we have concentrated on the terms that are first order in\. The expected time of validity of
the estimate is simply coupled to the modulus of the expression on the right-hand side of Eq~8.1!.
Notice that the first term inside the braces in Eq.~8.1! has a factor that precisely corresponds
dwL /wL @see Eqs.~4.10! and ~4.13!#, which was required to be small in order to achieve ins
sitivity to L. When this factor is expanded in the form shown in condition~5.1!, one can see tha
the first term inside the braces in Eq.~8.1! is O(L24) for L→0 at points whereX850, and it is
O(L4) for L→` at points whereP850. The rest of the expression in Eq.~8.1! is O(L0) and
O(L3), respectively. Therefore, for both extreme cases, the first term dominates the expr
inside the braces in Eq.~8.1!. The insensitivity condition is then useful for enhancing the valid
of the estimate.@In fact, the higher-order terms in Eq.~6.9c! are also kept from diverging by
choosingL to make the scaled phase space curve satisfy conditions analogous to condition~5.4!
over all derivatives.#

So far,L has been treated as a constant. It is important, however, to see how the equ
change whenL is a function of time.@It is also natural to considerL(j,t), but this is beyond the
scope of this work.# In fact, by using Eq.~4.12! it follows that the only change is the appearan

of an extra term of the formi\2 dwL L̇/(2wL) inside the brackets in Eq.~6.4!, and Eq.~8.1! then
becomes

Ḋ

D
52 i\H @L2V22m212 i L̇#

1

ADZL8

]

]j S 1

ZL8

]

]j
AD

ZL8
D

1L2V3F X8

ZL8

1

ADZL8

]

]j
AD

ZL8
1

1

3ZL8

]

]j S X8

ZL8
D G1

L2V4

4 S X8

ZL8
D 2J 1O~\2!. ~8.2!

Since Eqs.~6.9a! and~6.9b! remain unchanged, the form of the estimates given in Eqs.~7.1!–~7.3!
is preserved and they depend onL evaluated at the final time alone. That is, the history ofL
between the initial and final times turns out to be of no relevance for the estimates. The
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deterioration ofCL(x,t) is now measured by Eq.~8.2!. It follows that, for the purposes of arriving
at a validity measure, the value ofL should be chosen at all times by ensuring insensitivity for j
the current form of the phase space curve.

Finally, also notice thatL can be taken to be complex provided its real part is positive@so the
Gaussian in Eq.~4.1! remains localized#. The imaginary part ofL causes a shear in the footprin
Let L215l211 in21, where bothl andn are real, andl.0. Equation~7.2! can now be rewrit-
ten as

CL~x,t !5
1

A2p\l
expS 2 i

x2

2\n D E AD~j,t0!@X8~j,t !1 ilP8~j,t !#

3expH 2
@x2X~j,t !#2

2\l J expH i
S~j,t !1@x2X~j,t !#P~j,t !

\ J dj, ~8.3!

where

P~j,t !ªP~j,t !1n21X~j,t !, ~8.4a!

S~j,t !ªS~j,t !1n21
X2~j,t !

2
. ~8.4b!

Other than the chirp factor outside the integral, Eq.~8.3! has exactly the same form as Eq.~7.2!,
with L replaced byl. Notice from Eq.~8.4a! that the parametric plot of@X(j,t),P(j,t)# corre-
sponds to a sheared version of the phase space curve, where the degree of shearing is
n21. Also, it is easy to show from Eqs.~6.12! and ~8.4b! that

]S
]j

~j,t !5P~j,t !
]X

]j
~j,t !, ~8.5!

soS corresponds to the area under the sheared phase space curve.
The condition for insensitivity onL can now be stated as follows: the real and imaginary p

of L must be chosen such that the scaled and sheared phase space curve descr
@l21/2X(j,t),l1/2P(j,t)# must have, for allj, a curvature much smaller than\21/2, a rate of
change of curvature much smaller than\21, and first- and second-order rates of relative chang
weighting that are negligible within any segment of the curve of length\1/2. ComplexL therefore
gives an extra degree of freedom that can be used to satisfy the validity condition for the
classical estimate given here.

IX. CONNECTION WITH OTHER SEMICLASSICAL ESTIMATES

As mentioned in Sec. V, whenX8(j,t)Þ0 for all j, condition ~5.1! is satisfied forL→0.
When this limit is taken, the spread inp of the footprint shown in Fig. 1~a! grows asL21/2, and
the Gaussian in Eq.~7.2! together with theL21/2 factor approach a delta function. Therefore, t
integral, evaluated atx5X(j0 ,t), gives

CL→0@X~j0 ,t !,t#5AD~j0 ,t0! U]X

]j
~j0 ,t !U21/2

expF i
S~j0 ,t !

\
2 i

p

2
M G . ~9.1!

Here,M is an integer known as the Maslov index, which accounts for the phase accumula
the AZL8 factor in the integrand of Eq.~7.2! during propagation.@Notice that, sinceL→0, the
phase ofZL8 is an integer multiple ofp.# Equation~9.1! is precisely the conventional estima
mentioned in Sec. I, which is valid when the phase space curve is single valued inx. ~Notice that
the phase is now explicit.!
                                                                                                                



al

space

nal
e

ures of
n
corre-

.
e is
r

ace

he
m,

1712 J. Math. Phys., Vol. 40, No. 4, April 1999 M. A. Alonso and G. W. Forbes

                    
Equivalently, whenP8(j,t)Þ0 for all j, condition~5.1! is satisfied asL→`, which causes
the footprint’s spread inx to diverge asL1/2. This limit leads to a delta function inside the integr
in Eq. ~7.3!, which then gives

C̃L→`@P~j0 ,t !,t#5AD~j0 ,t0! U]P

]j
~j0 ,t !U21/2

expF i
S~j0 ,t !2X~j0 ,t !P~j0 ,t !

\
1 i

p

4
2 i

p

2
M̃ G ,
~9.2!

whereM̃ is the Maslov index for the momentum representation. Equation~9.2! corresponds to the
estimate of the momentum distribution also mentioned in Sec. I, and is valid for phase
curves that are single valued inp.

The estimate given in Eq.~7.2! is significantly more general and robust than the conventio
ones given in Eqs.~9.1! and~9.2!. This follows from the fact thatL can be chosen to reduce th
deterioration of the estimate, as measured byḊ. In particular, when the real part ofL is finite and
greater than zero,Ḋ remains finite sinceZL8 @whose inverse appears repeatedly in Eq.~8.1!# never
vanishes. For the two conventional estimates mentioned above, the corresponding meas
deterioration follow from the limitsL→0 andL→` of Eq. ~8.1!, respectively. It is easily see
than that the time derivative of the weighting function then diverges at the caustics of the
sponding representation.

Another conventional semiclassical estimate that follows directly as a special case of Eq~7.1!
is Maslov’s canonical operator method,3,4 which is used at times when the phase space curv
multivalued in bothx andp. @In such a case, neither Eq.~9.1! nor Eq.~9.2! can be used on thei
own.# To obtain this estimate, first define a series of switching functionsej (j), such that~i!
ej (j)51 for j inside the interval@j j

2 ,j j
1#, which corresponds to a segment of the phase sp

curve that is single valued in eitherx ~say, whenj is even! or p ~say, whenj is odd!, as shown in
Fig. 4; ~ii ! ej (j) switches smoothly from 0 to 1 inside the interval (j j 21

1 ,j j
2) and from 1 to 0

inside the interval (j j
1 ,j j 11

2 ), where the phase space curve must be single valued in bothx andp
for both these intervals;~iii ! ej (j)50 for all otherj; and ~iv! ( jej (j)[1 for all j. By inserting
( jej (j) into Eq. ~7.1!, this expression can then be written as

GL~x,p!5(
j

1

A2p\L
E AD j~j!ZL8 ~j,t !gL~x,p;j,t !dj, ~9.3!

where D j (j)ªej
2(j)D(j,t0), and L is such that Eq.~7.1! satisfies the insensitivity condition

~4.14!.
Each of the terms in the sum in Eq.~9.3! is now effectively an independent estimate of t

form given in Eq.~7.1!. In fact, the value ofL can now be varied independently for each ter
provided the associatedD j (j) satisfies condition~4.14!. It follows from conditions~5.4c! and
~5.4d! then, that the switching functions must themselves satisfy

FIG. 4. Segmentation of the phase space curve for Maslov’s method, whereX8(j,t)Þ0 for all jP@j2n
2 ,j2n

1 #, P8(j,t)
Þ0 for all jP@j2n11

2 ,j2n11
1 #, andX8(j,t)P8(j,t)Þ0 for all jP@j j

1 ,j j 11
2 #.
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Uěj8

ěj
U! 1

A\
, ~9.4a!

Uěj9

ěj
U! 1

\
, for ǰP~ ǰ j 21

1 ,ǰ j 11
2 !, ~9.4b!

where ěj ( ǰ)ªej@R( ǰ)# and R( ǰ j
6)5j j

6 . The switching intervals should therefore be made
wide as possible given the restriction that they are necessarily constrained between two a
caustics—X8(j,t)50 at one andP8(j,t)50 at the other. These requirements impose ad
constraints on the validity of Maslov’s method. This has been studied quantitatively~within the
optics context! elsewhere,5 where it is established that these are, in fact, the dominant limi
factors for this approach.@Of course, conditions~9.4! are necessarily violated within a neighbo
hood ofj j 21

1 andj j 11
2 , whereej (j) vanishes, but since the weighting is small there, any as

ciated errors are insignificant.#
To obtain an estimate forC(x,t), the even terms in Eq.~9.3! are substituted into Eq.~2.2a!,

and the odd ones are inserted into Eq.~2.2b! and inverse Fourier transformed according to E
~1.3b!. Since the even terms correspond to segments of the phase space curve that ar
valued in x, the associated integrals can be estimated, as in Eq.~9.1!, by letting L→0. The
resulting expressions~which are given in parametric form! are expressed explicitly as functions
x by evaluating them atj5J j (x,t)P(j j 21

1 ,j j 11
2 ), which is the solution ofX@J j (x,t),t#5x for

xP@X(j j 21
1 ,t),X(j j 11

2 ,t)#. Similarly, the integral overj for the odd terms can be estimated b
letting L→` as in Eq.~9.2!, since they correspond to segments that are single valued inp. The
result takes the form

CM~x,t !5(
n

e2n@J2n~x,t !#AD@J2n~x,t !,t0# U]J2n

]x
~x,t !U1/2

expH i
S@J2n~x,t !,t#

\
2 i

p

2
M2nJ

1
1

A2p\
(

n
E

j2n
1

j2n12
2

e2n11~j!AD~j,t0! U]P

]j
~j,t !U1/2

3expH i
S~j,t !1@x2X~j,t !#P~j,t !

\
1 i

p

4
2 i

p

2
M̃2n11J dj, ~9.5!

whereM2n and M̃2n11 are the Maslov indices for the corresponding segments. This is the
dard result from Maslov’s method and it is now seen to follow as a special case of Eq.~7.2!. It is
important to appreciate, however, that the dominant limitations on the validity ofCM ~i.e., the
switching errors! are avoided altogether by the new method.

The form of Eq.~7.2! also suggests a clear link to propagation schemes based on sum
Gaussian wave packets.6 The basic idea is that the initial wave function is decomposed into a
of Gaussians, and each of these is propagated independently. Similar ideas were conside
different context by Daubechies,7 who points out the clear link with the coherent states8 of
quantum electrodynamics. In these works, however, phase space acts only as a mathe
domain for field decomposition at a fixed time. This stands in contrast to the method deve
here, where the field is explicitly propagated in phase space itself. Further, as shown in Sec
L within a certain interval, the sum of Gaussians in Eq.~7.2! is effectively independent ofL. It
follows that the evolution of the individual Gaussians is irrelevant:L can simply be chosen suc
that it satisfies condition~4.14! at the final time alone.

This property of a sum of Gaussians was first noted by Heller,9 who realized that a sum o
propagated Gaussian beam elements may lead to a cancellation of the dominant errors with
element when their widths are frozen~i.e., there is then no beam waist!. This is precisely what we
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have now derived directly from Eq.~1.1! and, as a result, arrived at explicit validity condition
Further, we have shown in Sec. VIII that the beamwidths must actually be varied in tim
determine the validity of the final results.

Herman and Kluk10 justified Heller’s heuristic approach quite differently and, just as in
Gabor method11 that was further developed by Bastiaans,12 they end up with a sum over all o
phase space—not just over a curve. Kay recently introduced both an ansatz to generaliz
integral approaches13 and an empirical means to deal with the onset of chaos.14 Walton and
Manolopoulos15 have recently combined some of the strengths of these ideas. Howeve
foundation of all this work is the conventional asymptotic propagator as developed by
Vleck.16 This propagator takes the form of Eq.~9.1!, whose glaring limitations motivated thi
work. That is, unlike earlier semiclassical methods, the results developed here are derived d
from the Schro¨dinger equation and not from the fundamentally limited result given in Eq.~9.1!.
Nevertheless, these important contributions are clearly relevant to the method developed h

X. SUMMARY OF THE METHOD

Our semiclassical method for estimatingC(x,t) given the initial conditionC(x,t0) can be
summarized in the following three steps.

~I! Find a phase space curve and an associated weighting—i.e.,X(j,t0), P(j,t0), and
D(j,t0), so that the right-hand side of Eq.~7.2! matches this prescribed initial condition.@Recall
that S(j,t0) can be constructed from Eq.~6.12! evaluated att0 .#

~II ! Propagate the family of classical trajectories by using Eqs.~1.2!, and constructS(j,t) by
integrating Eq.~6.11!:

S~j,t !5S~j,t0!1E
t0

t H P2~j,t8!

2m
2V@X~j,t8!,t8#J dt8. ~10.1!

@Alternatively, S(j,t) can be found, to within a constant, directly fromX and P at t from the j
integral of Eq.~6.12!.#

~III ! Find the estimate forC(x,t), namely,CL(x,t), by using Eq.~7.2!, whereL is chosen
to satisfy condition~4.14! at t.

For a significant set of wave functions, the solution to Step~I! is straightforward. For example
when the amplitude ofC(x,t0) is slowly varying, a prescription for determiningX(j,t0),
P(j,t0), andD(j,t0) is given by

X~j,t0!5j, ~10.2a!

P~j,t0!5 \ ImH C8~j,t0!

C~j,t0! J , ~10.2b!

D~j,t0!5uC~j,t0!u2. ~10.2c!

Alternatively, when the amplitude ofC̃(p,t0) varies slowly, one can use

X~j,t0!52\ ImH C̃8~j,t0!

C̃~j,t0!
J , ~10.3a!

P~j,t0!5j, ~10.3b!

D~j,t0!5uC̃~j,t0!u2. ~10.3c!
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Of course,CL(x,t) may also accurately model wave functions for which the initial conditions
not fall into the categories considered above. A more general solution to the task outlined i
~I! is clearly a natural next step.

Finally, we comment that the simplicity of Eq.~7.2! means that the generalization to high
dimensions is straightforward. The estimate for a wave functionC(x,t), where x
5(x1 ,x2 ,...,xn), is given in terms of an associatedn-parameter family of trajectories by

CL21~x,t !5~2p\!2n/2E H D~j,t0!
]@L–X~j,t !1 iP~j,t !#

]~j! J 1/2

3expH 2
@x2X~j,t !#–L–@x2X~j,t !#

2\
1 i

S~j,t !1@x2X~j,t !#–P~j,t !

\ J dnj,

~10.4!

where j5(j1 ,j2 ,...,jn), L is a real, symmetricn3n matrix with positive eigenvalues, an
](Y)/](j) is a Jacobian determinant. This estimate is insensitive to changes inL when any patch
of radius \1/2 of the n-dimensional, scaled Lagrange manifold described by@L1/2

–X(j,t),
L21/2

–P(j,t)# is sufficiently flat, and the relative variations ofD(j,t0) over the patch are insig
nificant.

APPENDIX A: THE APPLICATION OF V„X̂,t … TO GL

From Eq.~4.3!, it follows that

V~X̂,t !GL5
1

A2p\
E wL~j,t !V~X̂,t !gL~x,p;j,t !dj

5
1

A2p\
E wL (

n50

`
Vn

n!
~X̂2X!ngL dj, ~A1!

whereVn5]nV/]xn evaluated atX(j,t). Our goal in this appendix is to rewrite Eq.~A1! in a
form where all of the dependence onx and p ~as well as onl! is contained withingL , and the
remaining weighting expression takes the form of a series in powers of\ that is consistent with an
asymptotic treatment.

From Eqs.~3.1!, ~4.4!, and~4.7!, it follows that

~X̂2X!gL5L DgL5\LZL8
21 ]gL

]j
5\L ]̂ZL

gL , ~A2!

whereDª(z2 l2Z2 l)/( l 1L) and ]̂ZL
ªZL8

21]/]j. Equation~A2! is now used to eliminate the

powers of (X̂2X) progressively from Eq.~A1!:

(
n50

`
Vn

n!
~X̂2X!ngL5V0gL1\LV1 ]̂ZL

gL1\L (
n52

`
Vn

n!
~X̂2X!n21 ]̂ZL

gL . ~A3!

The commutator between (X̂2X) and ]̂ZL
follows from

~X̂2X!]̂ZL
5

X8

ZL8
1 ]̂ZL

~X̂2X!5b̂1 ]̂ZL
~X̂2X!, ~A4!

whereb̂ªX8/ZL8 . Sinceb̂ commutes with (X̂2X) ~but not with ]̂ZL
), it follows that
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~X̂2X!m]̂ZL
5mb̂~X̂2X!m211 ]̂ZL

~X̂2X!m. ~A5!

Equations~A2! and ~A5! are used repeatedly in Eq.~A3! to find

(
n50

`
Vn

n!
~X̂2X!ngL5V0gL1\LV1 ]̂ZL

gL

1\L (
n52

`
Vn

n!
@~n21!b̂~X̂2X!n221 ]̂ZL

~X̂2X!n21#gL

5V0gL1\LV1 ]̂ZL
gL1\L

V2

2
b̂gL1~\L!2

V2

2
]̂ZL

2 gL

1~\L!2(
n53

`
Vn

n!
@~n21!b̂~X̂2X!n231 ]̂ZL

~X̂2X!n22#]̂ZL
gL . ~A6!

By repeating these steps, we ultimately obtain an expression of the form

(
n50

`
Vn

n!
~X̂2X!ngL5V0gL1\lFV1]̂ZL

1
V2

2
b̂ GgL

1~\L!2FV2

2
]̂ZL

2 1
V3

6
~2b̂ ]̂ZL

1 ]̂ZL
b̂!1

V4

8
b̂2GgL

1 (
n53

`

~\L!n(
j 50

n

V2n2 j (
k50

Snj D
ak

n, jPk
n, j~ ]̂ZL

,b̂ !gL , ~A7!

wherePk
n, j ( ]̂ZL

,b̂) corresponds to thekth permutation of the product ofj factors of ]̂ZL
and n

2 j factors ofb̂, andak
n, j is a numerical coefficient. The terms forn<2 have been written ou

explicitly here.
Remember that]̂ZL

contains aj derivative that acts over the whole expression to its rig
When Eq.~A7! is substituted into Eq.~A1!, these derivatives can be removed fromgL by repeat-
edly integrating by parts in the form

E BVmb̂h ]̂ZL
Â gL dj5E b̂h

B

ZL8
Vm

]

]j
~ÂgL!dj

52E ]

]j F b̂h
B

ZL8
VmG ÂgL dj

52E FVm]̂ZLS b̂h
B

ZL8
D 1Vm11b̂h11

B

ZL8
G~ZL8 ÂgL!dj. ~A8!

By substituting Eq.~A7! into Eq. ~A1! and using Eq.~A8! repeatedly, the desired result is foun
to be
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V~X̂,t !GL5
1

A2p\
E wLgLH V02\L

ZL8

wL
FV1]̂ZL

1
V2

2
b̂ G wL

ZL8

1~\L!2
ZL8

wL
FV2

2
]̂ZL

2 1
V3

6
~2b̂ ]̂ZL

1 ]̂ZL
b̂!1

V4

8
b̂2G wL

ZL8

1 (
n53

`

~\L!n(
j 50

n

V2n2 j (
k50

Snj D
ck

n, j
ZL8

wL
Pk

n, j~ ]̂ZL
,b̂ !

wL

ZL8
J dj. ~A9!

Notice that, as required, the term in braces is now a series in\, with all terms given explicitly
throughO(\2).

APPENDIX B: NORMALIZATION OF CL

By using Eq.~7.2!, the integral ofuCL(x,t)u2 over all x can be carried out in closed form
leaving

E uCL~x,t !u2 dx

5
1

2Ap\L
E E AD~j,t0!D* ~t,t0!@X8~j,t !1 iLP8~j,t !#@X8~t,t !2 iLP8~t,t !#

3expH i
S~j,t !2S~t,t !

\
1 i

@P~j,t !1P~t,t !#@X~j,t !2X~t,t !#

2\ J
3expH 2

@X~j,t !2X~t,t !#2

4\L
2L

@P~j,t !2P~t,t !#2

4\ J dj dt. ~B1!

Notice that the integrand of the right-hand side of Eq.~B1! is most significant whenj't. The
integral overt is now approximated by using the saddle point method: the exponent of Eq.~B1!
is expanded int aroundj up to second order, and the local variation of the amplitude factor in
square root is neglected. This leads to

E uCL~x,t !u2 dx'
1

2Ap\L
E E uD~j,t0!ZL8 ~j,t !uexpF2

uZL8 ~j,t !u2~t2j!2

4\L Gdj dt

5E uD~j,t0!udj. ~B2!
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Bounded Bose fields in 1 11 dimensions commuting
for space- and timelike distances
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We consider scalar Bose fieldsF in 111 dimensions which are bounded@i.e.,
F(F) is a bounded operator#, commute for space- and timelike distances, and are
dilation covariant with scaling dimensiond51,3,5,... . We show that their trun-
cated n-point-functionsWn

T are related to the truncated functionsVn
T of w(x)

5cd/2(x1) ^ cd/2(x2) via Wn
T5cnVn

T with cn.0. cd/2(x6) is a free chiral real
Fermi field of dimensiond/2 depending on the light cone coordinatesx65t6x.
This comes close to the conjecture that under the above assumptionsF is nothing
but a weighteds-product ofw5cd/2^ cd/2 . © 1999 American Institute of Phys-
ics. @S0022-2488~99!00104-8#

INTRODUCTION

From ordinary quantum mechanics onRd we are used to expecting that position and mom
tum operators are unbounded because of the Heisenberg commutation relations. The sam
for a relativistic quantum field theory ind11-dimensional space–time fulfilling canonical com
mutation relations. But the Wightman axioms1 for Bose fields do not ask explicitly for unbounde
field operators and, furthermore, in two-dimensional space–time there exist examples o
fields, such that the smeared field operatorsF(F) are bounded operators~‘‘bounded Bose
fields’’!.2 An especially simple class is constructed by tensor products of free chiral Fermi
depending on the light cone coordinatesx15x01x1 , respectivelyx25x02x1 , i.e., F(x)
5c1(x1) ^ c2(x2). Because of this construction they have the peculiar property to commut
only for spacelike but also for timelike distances. More complicated and therefore more inter
examples have been given by Rehren3 based on tensor products of vertex operators. Starting
a scalar bounded Bose fieldF which commutes for space- and timelike distances and whic
scale covariant, we try to prove the converse, namely we want to show thatF looks like an
s-product4—or a generalization thereof—of the above example given by Buchholz. In the ca
chiral field theories we were able to show5 that Bose fields are unbounded with the exception
c-number fields and that only free Fermi fields are bounded. The vertex operators conside
Rehren3 fulfill more general commutation relations and he characterized which of them
bounded.

I. ASSUMPTIONS AND RESULTS

We want to do relativistic quantum field theory in the framework given by Wightman.1 Our
assumptions are as follows:

a!Deceased.
17190022-2488/99/40(4)/1719/19/$15.00 © 1999 American Institute of Physics
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„A1… F is a scalar, neutral Bose field in 111-dimensional space–time.
„A2… F commutes not only for spacelike, but also for timelike distances. Written in light c

coordinatesx15t1x andx25t2x we have

@F~x!, F~y!#50 if ~y12x1!~y22x2!Þ0. ~1.1!

„A3… F is scale covariant.
Remark:Lorentz invariance together with scale covariance imply the existence of un

operatorsUl,m such that

FS lx1

mx2
D5

1

~lm!d/2 Ul,mFS x1

x2
DUl,m

† for all l,m.0, ~1.2!

andUl,mV5V whereV denotes the vacuum vector. Written with test functions this means

FS ~ f 1!l

~ f 2!m
D5

1

~lm!d/221 Ul,mFS f 1

f 2
DUl,m

† for all l,m.0, ~1.3!

if we define (f )l(x)ª f (x/l) for l.0. To fulfill space- and timelike commutativity, the allowe
scaling dimensionsd have to be integers fromN0 .

„A4… F is a bounded field, i.e., for every test functionFPS(R2) we have

F~F ! is a bounded operator with normiF~F !i,`, ~1.4!

and because the operatorsUl,m are unitary we get

iF~Fl,m!i5
1

~lm!d/221 iF~F !i for all l,m.0. ~1.5!

Remark:A nontrivial field which obviously fulfills the above assumptionsA is given by
w(x)ªc(x1) ^ c(x2) wherec is a free neutral chiral Fermi field of~half-integer!! scaling di-
mensiond/2. We shall discuss this example given by Buchholz in the next section.

Now we can formulate our main result:
Theorem: Let F fulfill the assumptionsA with scaling dimensiondPN, d odd. Then the

truncatedn-point functionsWn
T of the fieldF are proportional to the truncatedn-point functions

Vn
T of the just introduced fieldw5c ^ c, i.e., there exist positive numbersc2n such that

W2n
T ~F1 ,...,F2n!5c2nV2n

T ~F1 ,...,F2n! and W2n11
T [0. ~1.6!

Remark: If the sequence (c2nunPN) is of the form c2n5( ia i
2n ~a property which can be

tested by an infinite set of inequalities such asc2
2>c4 , and so on!, we can write the fieldF as a

weighteds-product of the fieldw.
Remark:We can slightly generalize our theorem by relaxing Lorentz invariance and s

covariance in the following way:

FS lx1

mx2
D5

1

ld1/2md2/2 Ul,mFS x1

x2
DUl,m

† for all l,m.0, ~1.7!

whered1 andd2 are both half-integer numbers. Ifd1.d2 , the field f̂ª]
2

d12d2f fulfills the
assumptions of our theorem. Therefore we have a candidate for all truncated functions an
easy to show their uniqueness.
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II. THE EXAMPLE GIVEN BY BUCHHOLZ

As remarked by Buchholz,2 a simple method to construct a bounded Bose field
111-dimensional space–time is the following:

Take two bounded chiral Fermi fields in the light cone coordinatesx1 , respx2 . Their tensor
product will define a bounded Bose field! But the class of bounded chiral Fermi fields coin
with free fields,5 i.e., their anticommutator is ac-number. Therefore letc denote a neutral chira
Fermi field with scaling dimensiondc5 1

2 fulfilling canonical anticommutation relations

$c~u!,c~v !%5d~v2u!1 for all u,vPR, ~2.1!

and bounded by

ic~ f !i<i f i2 for all f PS~R!. ~2.2!

The fieldw(x)ªc(x1) ^ c(x2) defines a bounded scalar Bose field of scaling dimensiod
51 and its commutation relations are

@w~x!, w~y!#5 1
2@c~x1!, c~y1!# ^ $c~x2!,c~y2!%1$c~x1!,c~y1!% ^

1
2@c~x2!,c~y2!#

~2.3!

5b~x1 ,y1!d~y22x2!1b~x2 ,y2!d~y12x1!50

if ~y12x1!~y22x2!Þ0 ~2.4!

i.e., w commutes not only for spacelike but also for timelike distances.
As a pedagogical exercise let us calculate the double commutator.

F FwS x1

x2
D ,wS y1

y2
D GwS z1

z2
D G5d~y22x2!H d~z12y1!wS x1

z2
D2d~z12x1!wS y1

z2
D J

1d~y12x1!H d~z22y2!wS z1

x2
D2d~z22x2!wS z1

y2
D J . ~2.5!

To get a scalar bounded Bose field with scaling dimensiond odd we start with a free neutra
chiral Fermi field of scaling dimensiond/2 given uniquely up to a constant bycd/2(u)
5] (d21)/2c(u).

In the following we fix d odd and denote the corresponding bounded Bose field byw, i.e.,
w5cd/2^ cd/2 . Many expressions can be written elegantly if we define

^ f g&ªE
R

f ~~d21!/2!~u!g~~d21!/2!~u! du for all f ,gPS~R!, ~2.6!

for example,$cd/2( f ),cd/2(g)%5^ f g&1. The commutator and the double commutator ofw written
with test functions are given by

FwS f 1

f 2
D ,wS g1

g2
D G5^ f 2g2&b~ f 1 ,g1!1^ f 1g1&b~ f 2 ,g2! ~2.7!

where

b~ f ,g!5 1
2@c~ f !,c~g!#, ~2.8!

respectively,
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F FwS f 1

f 2
D ,wS g1

g2
D GwS h1

h2
D G5^ f 2g2&H ^g1h1&wS f 1

h2
D2^ f 1h1&wS g1

h2
D J

1^ f 1g1&H ^g2h2&wS h1

f 2
D2^ f 2g2&wS h1

g2
D J . ~2.9!

Next we want to considers-products ofw5c ^ c, because with their help it is easy to outlin
and exemplify the proof of our theorem.

For fixed KPN and given sequenceaI 5(a1 ,...,aK), let waI be theK-fold s-product of the
fields w iªa iw, i.e., waI 5(a1w)s(a2w)s¯s(aKw) ~see Ref. 4 for details!.

From the very rules ofs-products we get immediately for a commutator

@waI ~x!,wbI ~y!#5~a1b1@w~x!,w~y!# !s¯s~aKbK@w~x!,w~y!# !

5@w~x!,w~y!#ab with ab5~a1b1 ,...,aKbK!, ~2.10!

respectively for a double commutator

F FwaI S f 1

f 2
D ,wbI S g1

g2
D GwgS h1

h2
D G5^ f 2g2&H ^g1h1&wdI S f 1

h2
D2^ f 1h1&wdI S g1

h2
D J

1^ f 1g1&H ^g2h2&wdI S h1

f 2
D2^ f 2g2&wdI S h1

g2
D J , ~2.11!

with dI 5abg
Later on we shall show in a general setting the analoga to these two equations as a s

point of our proof!
Starting fromF1ªFªwaI , respectivelyD2(x,y)ª@waI (x),waI (y)#5@w(x),w(y)#a2 , we de-

fine a sequence of field operatorsF2k215wa2k21 , resp. commutator functionsD2k(x,y)
ª@F2k21(x),F1(y)# for all kPN. Obviously we have

@F2k21~x!,F2l 21~y!#5D2~k1 l 21!~x,y! ~2.12!

and

F FF2k21S f 1

f 2
D ,F2l 21S g1

g2
D GF2m21S h1

h2
D G5^ f 2g2&H ^g1h1&FnS f 1

h2
D2^ f 1h1&FnS g1

h2
D J

1^ f 1g1&H ^g2h2&FnS h1

f 2
D2^ f 2g2&FnS h1

g2
D J
~2.13!

with n52(k1 l 1m)23.
Let Vn , resp.Wn , denote then-point functions ofw, resp. of thes-productwaI . Because the

underlying chiral Fermi field is a free field, all oddn-point functions have to vanish, i.e.,V2k21

[0[W2k21 and by the governing rules ofs-products we have for the even truncatedn-point
functions the relationW2n

T 5c2nV2n
T with c2n5( ia i

2n . From the sequence$F2k21ukPN% we can
reconstruct thecn without referring toaI as follows:

By using Eqs.~2.13! and ~2.12! we get for any (2n21)-fold commutator

@†¯@F~x1!,F~x2!#¯‡F~x2n!#;D2n ~sum of 22n22 terms!!. ~2.14!

By scaling covariance we have for the vacuum expectation values

„V,D2n~x,y!V…5c2n^@w~x!,w~y!#&. ~2.15!
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Because the algebraic relations~2.12!, ~2.13! and ~2.7!, ~2.9! have an identical structure we ge

~V,@†¯@F~x1!,F~x2!#¯‡F~x2n!#V!5c2n^@†¯@w~x1!,w~x2!#¯‡w~x2n!#&. ~2.16!

and this impliesW2n
T 5c2nV2n

T ! It is another task to reconstructaI , but in Sec. VI we shall describe
a very effective method for this job.

III. LEMMATA ON COMMUTATORS

In this section we want to exhibit the structure of commutators and double commutator
in the course of our proof we shall encounter not only the fieldF, but also new fields which live
in the same Hilbert space, are relatively local toF, and fulfill the assumptionsA.

Lemma 1:Let A1 andA2 be two fields with scaling dimensiond, relatively local toF, and
fulfilling the assumptionsA. For the commutator we have

@A1~x!, A2~y!#5~21!~d21!/2d~d21!~y22x2!B12
~1 !~x1 ,y1!

1~21!~d21!/2d~d21!~y12x1!B12
~2 !~x2 ,y2!. ~3.1!

Proof: ~a! From space- and timelike commutativity@A1(x), A2(y)#50 if ( y2x)2Þ0 and
scale covariance with dimensiond we get

@A1~x!, A2~y!#V~y12x1!d~y22x2!d[0. ~3.2!

By the Reeh–Schlieder theorem this implies

@A1~x!,A2~y!#5d~d21!~y22x2!B12
~1 !~x1 ,y1!1d~d21!~y12x1!B12

~2 !~x2 ,y2!

1 (
k50

d22 H d~k!~y22x2!Bk
~1 !S x1 ,y1 ,

x21y2

2 D
1d~k!~y12x1!Bk

~2 !S x2 ,y2 ,
x11y1

2 D J ~3.3!

and because of scale covariance the coefficientsBk
(1) , resp. Bk

(2) , have to depend on (x2

1y2)/2, resp. (x11y1)/2, too. The corresponding scaling dimension isd2k21.
~b! To prove Lemma 1 we have to get rid of the terms(k50

d22$¯%! These terms show up only
if d>2.

Let F(x)5 f 1(x1) f 2(x2) andG(y)5g1(y1)g2(y2) with

~i! suppf 1ùsuppg15B @This eliminates all terms with an upper index~2!!#
~ii ! suppg2#@21,1#.
~iii ! f 2PS(R) such thatf 2(x2)[1 on @21,1#.

To evaluate integrals of the form**B„(x21y2)/2…d (k)(y22x2) f 2(x2)g2(y2)dx2dy2 we in-
troduce new variablesu5(x21y2)/2 andj5y22x2 :

E E BS x21y2

2 D d~k!~y22x2! f 2~x2!g2~y2!dx2dy2

5E B~u!E d~k!~j ! f 2~u2j/2!g2~u1j/2!dj du

5E B~u!~2]j!
kf 2~u2j/2!g2~u1j/2!U

j50
du

5~2 1
2!

kB~]kg2! ~3.4!
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becausef 2[1 on the support ofg2 . Therefore, we have

@A1~F !, A2~G!#5 (
k50

d22 S 2
1

2D k

Bk
~1 !~ f 1 ,g1 ,]kg2!. ~3.5!

We remark that space- and timelike commutativity acts as a cutoff forf 2 . Therefore we can
replacef 2 by ( f 2)m(x2)5 f 2(x2 /m) with m>1. This does not change the commutator beca
we still have (f 2)m(x2)[1 if ux2u<1, i.e.,

@A1~F !, A2~G!#5@A1~F ~1,m!!, A2~G!# if m>1, ~3.6!

but for d.2 we know by our assumption~A4!

iAi~F ~1,m!!i5
1

~m!d/221 iAi~F !i→0 as m→` for i 51,2. ~3.7!

As a result of our assumptions we get

05 (
k50

d22 S 2
1

2D k

Bk
~1 !~ f 1 ,g1 ,]kg2!. ~3.8!

We can also interchange the roles off 2 and g2 , i.e., we putF̂(x)5 f 1(x1)g2(x2) and Ĝ(y)
5g1(y1) f 2(y2). Then as before we get for allm>1

@A1~ F̂ !, A2~Ĝ!#5 (
k50

d22 S 1

2D k

Bk
~1 !~ f 1 ,g1 ,]kg2!5@A1~ F̂ !, A2~Ĝ~1,m!!#, ~3.9!

and therefore the additional equation

05 (
k50

d22 S 1

2D k

Bk
~1 !~ f 1 ,g1 ,]kg2!. ~3.10!

Therefore, in the cased53 we have

B0
~1 !~ f 1 ,g1 ,g2!505B1

~1 !~ f 1 ,g1 ,]g2!, ~3.11!

which solves our task and ford55 we get the two equations

B0
~1 !~ f 1 ,g1 ,g2!1 1

4B2
~1 !~ f 1 ,g1 ,]2g2!50, ~3.12!

B1
~1 !~ f 1 ,g1 ,]g2!1 1

4B3
~1 !~ f 1 ,g1 ,]3g2!50. ~3.13!

To get more~and, in fact, sufficiently many! equations, we consider the modified commutat
@A1(x),A2(y)#(y22x2) l .

Let (Xmf 2)(x2)ªx2
mf 2(x2). Then

E E FA1S f 1

x2
D ,A2S g1

y2
D G~y22x2! l f 2~x2!g2~y2!dx2dy2

5 (
m50

l S l
mD ~21!mFA1S f 1

Xmf 2
D ,A2S g1

X l 2mg2
D G ~3.14!

but
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IAi S f 1

Xm~ f 2!m
D I5mmIAi S f 1

~Xmf 2!m
D I5

1

md/2212m IAi S f 1

Xmf 2
D I ——→

m→`

0 if 0<m,d/221,

~3.15!

and, therefore, as long asl ,d/221, all the commutators~3.14! vanish. Evaluating the correspond
ing rhs we get

05 (
k5 l>0

d22 S 2
1

2D k k!

~k2 l !!
Bk

~1 !~ f 1 ,g1 ,]k2 lg2!, ~3.16!

where we have used

]j
kj lh~j!uj505H 0, if l .k,

k!

~k2 l !!
]j

k2 lh~0!, if l<k,
~3.17!

andh is of the formh(j)5 f 2(u2j/2)g2(u1j/2). As before we can interchangef 2 andg2 and
end up with

05 (
k5 l>0

d22 S 1

2D k k!

~k2 l !!
Bk

~1 !~ f 1 ,g1 ,]k21g2!, ~3.18!

i.e., we get separate equations for even and oddk’s. For d odd we havel 50,1,...,(d23)/2, and
therefored21 independent equations for the coefficientsB0

(1) ,...,Bd22
(1) . In the cased55 the

possible values ofl are 0 and 1. So beside~3.12! and ~3.13! we get the two further equations,

B1
~1 !~ f 1 ,g1 ,g2!1 3

4B3
~1 !~ f 1 ,g1 ,]2g2!50, ~3.19!

B2
~1 !~ f 1 ,g1 ,]g2!50, ~3.20!

which altogether implyBk
(1)( f 1 ,g1 ,]kg2)50, k50,1,2,3,4.

Remark:Because the operatorsBk
(1)( f 1 ,g1 ,g2), k50,...,d22, have scaling dimensiond

2k21 wrt u, an equation likeBk
(1)( f 1 ,g1 ,]mg2)50 implies Bk

(1)( f 1 ,g1 ,g2)50 as can be
seen from the two-point function.

Now we interchange the coordinatesx1 ,y1 with x2 ,y2 . By analogous reasoning we ge
Bk

(2)( f 2 ,g2 ,]kg1)50, k50,1,2,3,4, as long as suppf 2ù suppg25B.
~c! Up to now we have shown

~3.21!

because part~b! of our proof relied heavily on the fact that eitherf 1 andg1 , or f 2 andg2 , have
disjoint supports!

In a first step we show form50,...,(d23)/2

lim
l→`

B12
~6 !

„Xm~ f !l ,g…505 lim
l→`

B12
~6 !

„f ,Xm~g!l…. ~3.22!

To prove this statement we start with
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@A1~x!, A2~y!#~y22x2!d215~d21!!d~y22x2!B12
~1 !~x1 ,y1!

1d~d21!~y12x1!B12
~2 !~x2 ,y2!~y22x2!d21

5 (
l 50

d21 S d21
l D ~21! l@x2

d212 lA1~x!,y2
l A2~y!#, ~3.23!

or, written with test functions,

E E FA1S f 1

x2
D ,A2S g1

y2
D G~y22x2!d21f 2~x2!g2~y2!dx2dy2

5 (
l 50

d21 S d21
l D ~21! lFA1S f 1

Xd212 l f 2
D , A2S g1

X lg2
D G

5~d21!! E f 2g2~u! duB12
~1 !~ f 1 ,g1!1~21!~d21!/2E f 1

~~d21!/2!g1
~~d21!/2!~u! du

3E E B12
~2 !~x,y!~y2x!d21f 2~x!g2~y! dxdy. ~3.24!

Therefore we have the bound

iB12
~1 !~ f 1 ,g1!i~d21!!U E f 2g2~u!duU< (

l 50

d21 S d21
l D I FA1S f 1

Xd212 l f 2
D , A2S g1

X lg2
D G I

1U E f 1
~~d21!/2!g1

~~d21!/2!~u!duU
3 I E E B12

~2 !~x,y!~y2x!d21f 2~x!g2~y! dxdyI .
~3.25!

Inserting Xm( f 1)l with m51,...,(d23)/2 instead off 1 , using bounds similar to~3.15!, and
doing the limitl→` gives

lim
l→`

B12
~1 !~Xm~ f 1!l ,g1!50.

The other equations of the statement~3.22! can be proven in an analogous way.
To show that all contact terms

BklS x11y1

2
,
x21y2

2 D for k,l 50,...,d22

have to vanish, we start from

@A1~x!,A2~y!#~y12x1!m1~y22x2!m2

for suitably chosen exponentsm1 , resp.m2 . Let us demonstrate this for the simplest cased
53:
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E E FA1S f 1

x D , A2S g1

y D G~y2x! f 2~x!g2~y!dxdy

5FA1S f 1

f 2
D , A2S g1

Xg2
D G2FA1S f 1

X f 2
D , A2S g1

g2
D G

5B12
~1 !~ f 1 ,g1!E ~ f 2g28 2 f 28 g2!~u!du2$B12

~2 !~ f 2 ,Xg2!2B12
~2 !~X f 2 ,g2!%

3E f 18 g18 ~u! du 2B01~ f 1g1 , f 2g2!1
1

2
B11~ f 1g18 2 f 18 g1 , f 2g2!.

By choosingg6PD(@21, 1# and f 6PS(R) with f (x)[1 on @21, 1# we get

52B01~g1 ,g2!1 1
2B11~g18 ,g2!. ~3.26!

Now we replacef 1 by ( f 1)l . For l→`, the lhs of~3.26! goes to zero and we have

052B01~g1 ,g2!1 1
2B11~g18 ,g2!, ~3.27!

but by interchangingf 1 with g1 we have also

052B01~g1 ,g2!2 1
2B11~g18 ,g2!, ~3.28!

and therefore

B01~g1 ,g2!505B11~g18 ,g2!. ~3.29!

Interchanging the1 and2 coordinates we get

B10~g1 ,g2!505B11~g1 ,g28 !. ~3.30!

Finally starting from

FA1S f 1

f 2
D , A2S g1

g2
D G52B12

~1 !~ f 1 ,g1!E f 28 g28 ~u!du2B12
~2 !~ f 2 ,g2!E f 18 g18 ~u! du

1B00~ f 1g1 , f 2g2!1 1
2 B01~ f 1g1 , f 28 g22 f 2g28 !

1 1
2 B10~ f 18 g12 f 1g18 , f 2g2!1 1

4 B11~ f 18 g12 f 1g18 , f 28 g22 f 2g28 !,

using the above methods, we end up with

B00~g1 ,g2!50. ~3.31!

For higher scaling dimensionsd the calculations are a little bit cumbersome but not difficult. T
finishes the proof of Lemma 1.

For the sequel it is convenient to write Lemma 1 in the form

@A1~F !,A2~G!#5^ f 2g2&B12
~1 !~ f 1 ,g1!1^ f 1g1&B12

~2 !~ f 2 ,g2! ~3.32!

with F5 f 1 ^ f 2 , G5g1 ^ g2 and ^fg& is given by definition~2.6!.
Lemma 2:Let Ai , i 51,2,3, be three fields with scaling dimensiond, relatively local toF, and

fulfilling the assumptionsA. For the double commutator we have
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@@A1~F !,A2~G!#A3~H !#5^ f 2g2&H ^g1h1&C1S f 1

h2
D2^ f 1h1&C2S g1

h2
D J

1^ f 1g1&H ^g2h2&C3S h1

f 2
D2^ f 2h2&C4S h1

g2
D J , ~3.33!

and the local fieldsCj fulfill the same assumptions as theAi .
Proof: ~a! From Lemma 1 we know

@@A1~F !,A2~G!#A3~H !#5^ f 2g2&@B12
~1 !~ f 1 ,g1!,A3~H !#1^ f 1g1&@B12

~2 !~ f 2 ,g2!,A3~H !#,
~3.34!

and by the Jacobi identity

5†@A1~F !, A3~H !#A2~G!‡1†@A3~H !, A2~G!#A1~F !‡

5^ f 2h2&@B13
~1 !~ f 1 ,h1!, A2~G!#1^ f 1h1&@B13

~2 !~ f 2 ,h2!, A2~G!#1^h2g2&

3@B32
~1 !~h1 ,g1!, A1~F !#1^h1g1&@B32

~2 !~h2 ,g2!, A1~F !#.

Therefore each term on the rhs of~3.34! does contain a factor̂ f 2g2&, resp. ^ f 1g1&,
combined with a factor out of the set$^ f 2h2&,^ f 1h1&,^g2h2&,^g1h1&%. On the other
hand, @B12

(1)( f 1 ,g1), A3(H)# no longer depends onf 2 and g2! So only the combinations
^ f 2g2&^ f 1h1& and ^ f 2g2&^g1h1& can show up. Therefore

†@A1~F !, A2~G!#A3~H !‡5^ f 2g2&H ^g1h1&C1S f 1

h2
D2^ f 1h1&C2S g1

h2
D J

1^ f 1g1&H ^g2h2&C3S h1

f 2
D2^ f 2h2&C4S h1

g2
D J . ~3.35!

~b! We can prepareC1(h2

f 1 ) in the following way:

We shift the test functionsf 2 , g2 , g1 , andh1 by a and in the limita→` we get

C1S f 1

h2
D5 lim

a→`
F FA1S f 1

$h2%a
D , A2S $g1%a

$g2%a
D GA3S $h1%a

h2
D G ~3.36!

because for fixedf 1 andh2

lim
a→`

^ f 1$h1%a&5 lim
a→`

E f 1
~~d21!/2!~u!h1

~~d21!/2!~u2a! du50,

and so on. The other operatorsCi can be prepared in an analogous manner. From this exp
representation it is easy to see that allCi(x) are local fields and fulfill assumptionA again. This
proves Lemma 2.

Corollary 3: If in Lemma 2 all three fieldsAi are equal, then the four fieldsCj are equal, too.
Proof: By Lemma 2 and the Jacobi identity we have

05†@A~F !, A~G!#A~H !‡1†@A~G!, A~H !#A~F !‡1†@A~H !, A~F !#A~G!‡

5^ f 2g2&^g1h1&$C12C4%S f 1

h2
D2^ f 2g2&^ f 1h1&$C22C3%S g1

h2
D

1^ f 1g1&^g2h2&$C32C2%S h1

f 2
D2^ f 1g1&^ f 2h2&$C42C3%S h1

g2
D
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1^g1h1&^ f 2h2&$C32C2%S f 1

g2
D1^g2h2&^ f 1h1&$C12C4%S g1

f 2
D .

By a suitable limit procedure we can pick out every one of the six terms in curly brackets
thereforeC15C25C35C4 .

IV. THE DEFINING SEQUENCE FOR MULTIPLE COMMUTATORS

Lemmas 1 and 2 together with the corollary enable us to calculate higher commutators
field F we started with.

Lemma 4:Let F fulfill the assumptions~A!. Then there exists a sequence of field operat

F1 ,F3 ,F5 ,...,F2k21 ,...,

and a sequence of commutator functions~bilocal operators!

D2 ,D4 ,D6 ,...,D2k ,...,

such that
~i! all F2k21 ,kPN, fulfill ~A! again and are relatively local toF;
~ii ! all D2k ,kPN, are of the form

D2k~F,G!5^ f 2g2&B2k
~1 !~ f 1 ,g1!1^ f 1g1&B2k

~2 !~ f 2 ,g2!, ~4.1!

and theD2k are antisymmetric, i.e.,D2k(F,G)52D2k(G,F);
~iii !

@F2k21~F !,F2l 21~G!#5D2~k1 l 21!~F,G!; ~4.2!

~iv!

@D2k~F,G!,F2l 21~H !#5^ f 2g2&^g1h1&F2~k1 l !21S f 1

h2
D2^ f 2g2&^ f 1h1&F2~k1 l !21S g1

h2
D

1^ f 1g1&^g2h2&F2~k1 l !21S h1

f 2
D2^ f 1g1&^ f 2h2&F2~k1 l !21S h1

g2
D .

~4.3!

Proof: We want to prove the lemma by an inductive definition of the two sequences.
~1! Let F1ªF and letD2(F,G)ª@F(F), F(G)#. The antisymmetry ofD2 is obvious.
~2! Assume we have defined up tonPN field operatorsF1 ,F3 ,...,F2n21 relatively local to

F and antisymmetric commutator functionsD2 ,D4 ,...,D2n with the following two properties:
~a!

@D2~m2k!~F,G!,F2k21~H !#5^ f 2g2&^g1h1&F2m21S f 1

h2
D2^ f 2g2&^ f 1h1&F2m21S g1

h2
D

1^ f 1g1&^g2h2&F2m21S h1

f 2
D2^ f 1g1&^ f 2h2&F2m21S h1

g2
D ,

~4.4!

~b!

@F2~m2k!21~F !,F2k21~G!#5D2m~F,G! ~4.5!

valid for all m<n andk51,...,m.
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~3! To defineF2n11 we proceed as follows.
~a! By Lemma 2 we know

@D2n~F,G!, F1~H !#5†@F2~n2k!~F !,F2k21~G!#F1~H !‡

5^ f 2g2&^g1h1&C1S f 1

h2
D2^ f 2g2&^ f 1h1&C2S g1

h2
D

1^ f 1g1&^g2h2&C3S h1

f 2
D2^ f 1g1&^ f 2h2&C4S h1

g2
D , ~4.6!

but the antisymmetryD2n(F,G)52D2n(G,F) implies C15C2 andC35C4 .
~b! Now we use the Jacobi identity

05†@F2~n2k!11~F !, F2k21~G!#F1~H !‡1†@F2k21~G!, F1~H !#F2~n2k!11~F !‡

1†@F1~H !, F2~n2k!11~F !#F2k21~G!‡

5@D2n~F,G!, F1~H !#1@D2k~G,H !, F2~n2k!11~F !#1@D2~n2k11!~H,F !, F2k21~G!#

~D2n ,D2k , and D2~n2k11! are antisymmetric by assumption!

5^ f 2g2&^g1h1&$C12D3%S f 1

h2
D2^ f 2g2&^ f 1h1&$C12E3%S g1

h2
D

1^ f 1g1&^g2h2&$C32D1%S h1

f 2
D2^ f 1g1&^ f 2h2&$C32E1%S h1

g2
D

1^g1h1&^ f 2h2&$D32E1%S f 1

g2
D1^g2h2&^ f 1h1&$D12E3%S g1

f 2
D ,

whereCi , Di , andEi are the field operators corresponding to the three commutators. As i
proof of Corollary 3 we must haveC15C35D15D35E15E35:F2n11 , and we take this as
definition of F2n11 . This proves~a! for the casem5n11.

~4! As the definition ofD2n12 we take

D2n12~F,G!5@F2n11~F !,F1~G!# ~4.7!

and, because of Lemma 1, this is meaningful and guarantees the right structure as given i~4.1!.
We still have to show the antisymmetry ofD2n12 and the relation

D2n12~F,G!5@F2~n2k!13~F !, F2k21~G!# for all k51,2,...,2n11.

From part~3! we know already

@D2k~F,G!, F2~n2k!11~H !#5^ f 2g2&^g1h1&F2n11S f 1

h2
D2^ f 2g2&^ f 1h1&F2n11S g1

h2
D

1^ f 1g1&^g2h2&F2n11S h1

f 2
D2^ f 1g1&^ f 2h2&F2n11S h1

g2
D ,

and therefore
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†@D2k~F,G!, F2~n2k!11~U !#F1~V!‡

5^ f 2g2&^g1u1&FF2n11S f 1

u2
D , F1~V!G2^ f 2g2&^ f 1u1&FF2n11S g1

u2
D , F1~V!G

1^ f 1g1&^g2u2&FF2n11S u1

f 2
D , F1~V!G2^ f 1g1&^ f 2u2&FF2n11S u1

g2
D , F1~V!G

5^ f 2g2&^g1u1&D2n12XS f 1

u2
D ,VC2^ f 2g2&^ f 1u1&D2n12XS g1

u2
D ,VC

1^ f 1g1&^g2u2&D2n12XS u1

f 2
D ,VC2^ f 1g1&^ f 2u2&D2n12XS u1

g2
D ,VC ~4.8!

and by the Jacobi identity

Let us denote@F2k11(F), F2(n2k)11(G)#5:D̂(F,G) for the moment. Then we can rewrite E
~4.8! as

@D2~n2k11!~V,U !,D2k~F,G!#5^ f 2g2&H ^g1u1&D2n12XS f 1

u2
D ,VC2^g1v1&D̂XS f 1

v2
D ,UC

2^ f 1u1&D2n12XS g1

u2
D ,VC1^ f 1v1&D̂XS g1

v2
D ,UCJ

1^ f 1g1&H ^g2u2&D2n12XS u1

f 2
D ,VC2^g2v2&D̂XS v1

f 2
D ,UC

2^ f 2u2&D2n12XS u1

g2
D ,VC1^ f 2v2&D̂XS v1

g2
D ,UCJ . ~4.9!

InterchangingU andV on the lhs of Eq.~4.9! gives an additional~2!sign, whereas on the rhs w
get

^ f 2g2&H ^g1v1&D2n12XS f 1

v2
D ,UC2^g1u1&D̂XS f 1

u2
D ,VC2^ f 1v1&D2n12XS g1

v2
D ,UC

1^ f 1u1&D̂XS g1

u2
D ,VCJ 1^ f 1g1&H ^g2v2&D2n12XS v1

f 2
D ,UC2^g2u2&D̂XS u1

f 2
D ,VC

2^ f 2v2&D2n12XS v1

g2
D ,UC1^ f 2u2&D̂XS u1

g2
D ,VCJ .

This can only be true if
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D̂~F,G![D2n12~F,G!. ~4.10!

This proves~b! for the casem5n11. The antisymmetry ofD2n12 is a consequence of~b! and can
be seen as follows:

D2n12~F,G!5@F2~n2k!11~F !, F2k11~G!#

but because of~b! we also have5@F2k11~F !,F2~n2k!11~G!#

52@F2~n2k!11~G!, F2k11~F !#

52D2n12~G,F !. ~4.11!

This shows that the inductive definition of the two sequencesF2k21 , resp.D2k , kPN, works and
gives all the properties as stated in Lemma 4.

Remark:In proving Eq.~4.9! we have shown as a side result

@D2k~V,U !,D2l~F,G!#5^ f 2g2&H ^g1u1&D2~k1 l !XS f 1

u2
D ,VC2^g1v1&D2~k1 l !XS f 1

v2
D ,UC

2^ f 1u1&D2~k1 l !XS g1

u2
D ,VC1^ f 1v1&D2~k1 l !XS g1

v2
D ,UCJ

1^ f 1g1&H ^g2u2&D2~k1 l !XS u1

f 2
D ,VC2^g2v2&D2~k1 l !XS v1

f 2
D ,UC

2^ f 2u2&D2~k1 l !XS u1

g2
D ,VC1^ f 2v2&D2~k1 l !XS v1

g2
D ,UCJ . ~4.12!

At first glance this looks quite asymmetric with respect to an interchange of (V,U) and~F,G!. But
this asymmetry disappears if we express everything in the bilocal operatorsB2i

(6)

@B2k
~1 !~V,U !, B2l

~1 !~F,G!#5^g1u1&B2~k1 l !
~1 ! ~ f 1 ,v1!2^g1v1&B2~k1 l !

~1 ! ~ f 1 ,u1!

2^ f 1u1&B2~k1 l !
~1 ! ~g1 ,v1!1^ f 1v1&B2~k1 l !

~1 ! ~g1 ,u1!, ~4.13!

and a similar relation forB2i
(2) .

Remark:From the definitions of the bilocal operatorsB2k
(6) and the field operatorsf2k11 it is

clear that all multiple commutators containing 2k, resp. 2k11, kPN, fieldsF are linear inB2k
(6) ,

resp.F2k11 , e.g.,

@F~F !, F~G!#5^ f 2g2&B2
~1 !~ f 1 ,g1!1^ f 1g1&B2

~2 !~ f 2 ,g2!

†@F~F !, F~G!#F~U !‡5^ f 2g2&^g1u1&F3S f 1

u2
D1¯ ~another 3 terms!

@†@F~F !, F~G!#F~U !‡F~V!#5^ f 2g2&^g1u1&^u2v2&B4
~1 !~ f 1 ,v1!1¯ ~another 7 terms!

†@F~F !, F~G!#¯F~W!‡5^ f 2g2&^g1u1&^u2v2&^v1w1&F5S f 1

w2
D

1¯ ~another 15 terms!.

V. THE TRUNCATED n-POINT FUNCTIONS

In this section we shall show that all truncatedn-point functions are fixed already by th
sequences of field operatorsF2k21 and of commutator functionsD2k . The idea is the following:

Let d be the scaling dimension of the fieldF under consideration. By assumption~A! d is an
odd number. Letw(x)5cd/2(x1) ^ cd/2(x2) as defined in Sec. II~Buchholz’ example!.
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Up to a factor, Lorentz invariance and scaling covariance together determine the on
two-point functions uniquely. But the scalar fieldsF2k21 , kPR, and w all have the scaling
dimensiond and therefore it is clear that for allkPN we have

„V,F2k21~F !V…50 ~one-point function!, ~5.1!

„V,D2k~F,G!V…5c2k„V0 ,@w~F !,w~G!#V0… ~ two-point function!, ~5.2!

and because of the special form ofD2k as given by~4.1!, Eq. ~5.2! is equivalent to

„V,B2k
~6 !~ f ,g!V…5c2k~V0 , 1

2@cd/2~ f !, cd/2~g!#V0!. ~5.3!

This fixes a sequencec2k , kPN, of real numbers.
Let Wn , resp.Vn , denote then-point functions of the fieldsF, resp.w.
Lemma 5:For the truncatedn-point functions we have

W2n21
T [0 and W2n

T 5c2nV2n
T , ~5.4!

and allc2n are positive.
Proof: ~a! The vacuum expectation value of a 2n-fold commutator vanishes because,

shown in the last section, this multiple commutator is linear in the fieldF2n21 and
„V,F2n21(F)V…50.

On the other hand, the vacuum expectation value of a multiple commutator containing an
number of fields is given by

~5.5!

i.e., all then-fold commutators of the fieldsF andw5cd/2^ cd/2 are linearly related.
~b! By the very definition of the truncatedn-point functions this implies

W2n
T ~†¯@F ~1!, F ~2!#,¯ , F ~2n!

‡!5c2nV2n
T ~†¯@F ~1!,F ~2!#,¯ ,F ~2n!

‡!. ~5.6!

As a consequence of the spectrum condition this linear relationship, valid for all (2n21)-fold
commutators, can be extended toW2n

T 5c2nV2n
T . To do this in a systematic way we write

W2n
T ~F1 ,...,F2n!5c2nV2n

T ~F1 ,...,F2n!1R2n
T ~F1 ,...,F2n! ~5.7!

andR2n
T fulfills again the spectrum condition. From Eq.~5.6! we already know

R2n
T ~@ ...@F1 , F2#,...,F2n# !50 ~5.8!

and we have to show

R2n
T ~F1 ,...,F2n![0. ~5.9!

We shall exemplify this for the case of the truncated two- and four-point functions:
For the test functionFPS(R2) we denote byF1 the part ofF which in momentum space i

supported inV̄1\$0%, i.e., ‘‘closed forward cone with the origin exempted.’’F2 is defined analo-
                                                                                                                



1734 J. Math. Phys., Vol. 40, No. 4, April 1999 Klaus Baumann

                    
gously as the part ofF which in momentum space is supported inV̄2\$0%, i.e., ‘‘closed backward
cone with the origin exempted.’’ By the spectrum condition we haveF(F)V5F(F1)V and
F(F2)V50.

We begin with the two-point function. We knowR2
T(@F,G#)50:

~5.10!

Next we consider the four-point function. We know

R4
T~@†@F1 ,F2#F3‡F4# !50 and R4

T~†@F1 ,F2#@F3 ,F4#‡!50. ~5.11!

where the second equation follows from the Jacobi identity.
~i!

R4
T~†@F1 ,F2#F3‡F4! 5

sp.c.

R4
T~†@F1 ,F2#F3‡F4

1!

5R4
T~@†@F1 ,F2#F3‡F4

1# !1R4
T~F4

1
†@F1 ,F2#F3‡!

50 by Eq. ~5.11! and spectrum condition, ~5.12!

and similarly alsoR4
T(F1†@F2 ,F3#F4‡)50.

~ii !

R4
T~@F1 ,F2#@F3 ,F4# ! 5

sp.c.

R4
T~@F1 ,F2#@F3 ,F4#1!

5R4
T~†@F1 ,F2#,@F3 ,F4#1

‡!1R4
T~@F3 ,F4#1@F1 ,F2# !

50 by Eq. ~5.11! and spectrum condition. ~5.13!

~iii !

~5.14!

and similarly alsoR4
T(F1F2@F3 ,F4#)50.

~iv!

R4
T~F1@F2 ,F3#F4! 5

sp.c.

R4
T~F1@F2 ,F3#F4

1!

5R4
T~F1†@F2 ,F3#F4

1
‡!1R4

T~F1F4
1@F2 ,F3# ! by Eq. ~5.12!

5R4
T~@F1F4

1#@F2 ,F3# !1R4
T~F4

1F1@F2 ,F3# !

50 by Eq. ~5.13! and spectrum condition. ~5.15!
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~v! From ~iii ! and ~iv! it follows

R4
T~F1F2F3F4! 5

sp.c.

R4
T~F1F2F3F4

1!

5R4
T~F1F2@F3 ,F4

1# !1R4
T~F1@F2F4

1#F3!1R4
T~@F1 ,F4

1#F2F3!

1R4
T~F4

1F1F2F3!

50 which proves our claim. ~5.16!

The proof ofR2n
T (F1 ,...,F2n)[0 for n.2 is tedious but by no means more complicated!

From W2n
T 5c2nV2n

T we get immediatelyc2n>0 because of positivity. If for somen.1 we
havec2n50, then allc2n[0 except possiblyc2 as well known. But thenc2 has to be 0, too,
because otherwiseF is a free field and this contradicts the assumption of boundedness! S
have shown Lemma 5.

VI. REDUCTION TO s-PRODUCTS?

Up to now we have shown that our fieldF with scaling dimensiondPN, d odd is related to
w5cd/2^ cd/2 via

W2n
T 5c2nV2n

T , W2n21
T [0[V2n21

T ,

whereWn , resp.Vn , denote the Wightman functions corresponding toF, resp.w. This looks quite
similar to ans-product ofw, but up to now we are not able to prove this conjecture. IfF were an
s-product ofw, then we would have

c2n5 (
k51

K

ak
2n if F5waI 5~a1w!s¯s~aKw!. ~6.1!

We are not able to determine a sequenceaI such thatF5waI but at least we can find a functio
r~a! such thatc2n5*Ra2n21r(a) da.
The construction goes as follows:

For the special real test functionsF5 f 1 ^ f 2 andG5g1 ^ g2 s.t. g2[ f 2 , ^ f 1g1&50 and
^ f 2

2 &515^g1
2 &, we get

~6.2!
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Taking the vacuum expectation value

~6.3!

defines the functions~g!.
Its Fourier transformedr(a)5*Re2 iags(g)dg/2p has the property

E
2`

`

a2n21r~a! da5E
2`

`

a2n21S E
2`

`

e2 iags~g!
dg

2p D da

interchangingda anddg

~6.4!

For thes-productF5waI and the above special test functionsF andG we get

e2 igF~G!F~F !eigF~G!5wa cos~ga!~F !1 i @w~F !,w~G!#a sin ~ga! , ~6.5!

the vacuum expectation value of which defines the function

s~g!5 i (
k51

K

ak sin ~gak! ~6.6!

and obviously its Fourier transformed

r~a!5 (
k51

K
ak

2
@d~a2ak!2d~a1ak!# ~6.7!

fulfills Eq. ~6.1! for thec2n and allows us to reconstruct the sequenceaI . Eachak is determined up
to a factor61. This nonuniqueness corresponds to a unitary transformation. Positivity imp
strong restrictions on the weight functionsr~a!, e.g., there are convincing arguments thatr~a!
cannot have a continuous part.

VII. OUTLOOK

Let us make some comments on the work we have done:
~1! We can only conjecture, but we have not fully succeeded in proving it, that every fieF

fulfilling our assumptionsA with scaling dimensiondPN, d odd, is ans-product, eventually with
infinitely many components, of the corresponding Buchholz fieldf5cd/2^ cd/2 .

~2! What happens if the scaling dimension ofF is an even natural number? We expect, in t
case, that bounded fields do not exist.

For the simplest case,d52, the commutator looks like
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@F~x!,F~y!#5d8~y22x2!B~1 !~x1 ,y1!1d8~y12x1!B~2 !~x2 ,y2!

1d~y22x2!B0
~1 !S x1 ,y1 ,

x21y2

2 D1d~y12x1!B0
~2 !S x2 ,y2 ,

x11y1

2 D ,

~7.1!

and we are not able to get rid of the second line, at least not with the methods used in Sec. I
same difficulty appears for higher evend’s. There are always two equations missing!

Nevertheless, let us explain why we think there is no bounded Bose field of dimensd
52 fulfilling our assumptions. Assume the second line in Eq.~7.1! to be absent. As in Sec. III we
get

@@F~x!,F~y!#F~z!#5d8~y22x2!H d8~z12y1!F3S x1

z2
D1d8~z12x1!F3S y1

z2
D J

1d8~y12x1!H d8~z22y2!F3S z1

x2
D1d8~z22x2!F3S z1

y2
D J ~7.2!

and so on. As a consequence, the Wightman functions have the following structure,

W2n21
T [0 and W2n

T 5c2nV2n
T ,

and all thec2n are positive. The Wightman functionsVn correspond now to the fieldw(x)
5w1(x1) ^ w1(x2), wherew1 is the free chiral Bose field of scaling dimension 1. But for a r
factorized test functionf 5 f 1 ^ f 2 we have

V2n
T ~ f ,...,f !5~2n21!!V2~ f , f !.0 and thereforeW2n

T ~ f ,...,f !.0,

too. This is incompatible with the boundedness ofF( f ) as can be easily seen from the chara
teristic functional

E~ f !5~V,eiF~ f !V!5exp(
n>1

~21!n

2n!
W2n

T ~ f ,...,f !, ~7.3!

becauseuE( il f )u is not bounded by exp$ulu•iF(f )i%. This is no proof, but just a strong an
plausible hint because we have neglected the second line in Eq.~7.1!! But perhaps these additiona
terms do not disturb the behavior too much.

~3! An important generalization in our opinion would be to give up strict covariance u
dilations. But this step requires new ideas to prove an analogon to our theorem.
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The Floquet analysis and noninteger higher harmonics
generation
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We consider here the exact solution of a nonrelativistic quantum system composed
of a two-level atom interacting with a laser with arbitrary large frequency and
intensity. We use the analogy of this system and a\/2-spin particle interacting with
a time-dependent magnetic field. A systematic use of the dynamical symmetry
underlying the physical system is made. Actually the Hamiltonian is a Hermitian
element of the SU~2! Lie Algebra. The exact Temporal Evolution Operator in terms
of a Generalized Displacement Operator of the group is constructed. It is possible
to develop a nonperturbative method that allows us to solve exactly the model for
any value of the relevant frequencies~Rabi, Laser, and Atom Frequencies! and in
so doing the usual Rotating Wave and Small Interaction approximations are unnec-
essary. The properties of periodicity of this model and the phenomenon of har-
monic generation are considered by using Floquet Analysis. We find that in addi-
tion to the so far well-known spectrum composed by odd harmonics, this model
generates another type of noninteger harmonics whose frequencies and amplitudes
are determined for any value of the relevant parameters of the system. ©1999
American Institute of Physics.@S0022-2488~99!02704-8#

I. INTRODUCTION

The monochromatic electric field of a very intense laser is the source of a variety of non
responses as it interacts with the matter fields, usually two- or three-level atoms. A particula
of interest in the last ten years has been the so-called higher harmonics generation: the app
of optical harmonics of various frequencies close to that of the laser pump. These harm
usually manifest themselves as radiation of the atoms with frequencies that are integer multi
the incident field. This effect has been thought to be extremely useful to generate furthe
beams of a shorter wavelength.1 The spectrum of such outgoing radiation is given by the Fou
transform of the atom dipole moment, which encompasses the available dipolar oscillations
which the energy can be interchanged. The ultimate reason for the appearance of these ha
is obviously the nonlinear response of the individual atoms to a strong pumping field. An ade
theoretical understanding requiresthe description of the interaction of the atom with the stro
external field. This has been usually achieved by solving the Schro¨dinger Equation~2!, with a
time-dependent oscillating potential. When the pumping field is not very strong one can use
conventional perturbation theory. However, as the intensity of the laser increases, pertu
methods are no longer reliable and a large body of literature has appeared to deal with the p
of interaction of the atom with very strong fields. The paper by Shirley3 has always been consid
ered the first step toward a reliable theory of atom–laser interaction for arbitrary large electr
magnetic fields. This approach was followed shortly after by Zel’dovich.4 A recent paper by

a!Electronic mail: cervero@rs6000.usal.es
17380022-2488/99/40(4)/1738/18/$15.00 © 1999 American Institute of Physics
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Compagno, Dietz, and Persico5 contains a set of recent references in the subject and we ad
the interested reader to this paper for a complete account of the current literature on the fi
strongly driven atoms. As a consequence of this interaction, a large variety of methods ha
used to actually solve the equations leading to a more or less accurate prediction of
harmonics generation. Numerical solutions of the Schro¨dinger Equation,2 time-dependent
~Hartree–Fock! iterative methods1,6 and treatments involving the analysis of two-level atoms7,8

As we shall heavily rely in this paper on various aspects of Floquet Analysis it is necess
mention that Floquet Theory has also been recently applied to high-order harmonic gene
with the same aim than ours but with different perspective.~See Refs. 9–11.!

However, without leaving the paradigm of the two-level atom, the properties of the S~2!
dynamical symmetry of the system can be used to build the exact Temporal Evolution Op
~TEO!,12 that in our opinion becomes the core of the problem, as this operator determines w
appropriated initial conditions on the state vector the instantaneous state of the atom and
relevant physical properties. Moreover, this method has an additional advantage, namely,
does not require any kind of approximate treatment such as the Rotating Wave, Weak Fi
Adiabatical Approximations.

This paper is organized as follows: In Sec. II we describe in detail the main features o
model: the relevant mathematical properties of its dynamical symmetry and the specific ap
tion of the method to this physical problem in order to build the exact Temporal Evolu
Operator. To identify this operator among the elements of the group one has to solve a firs
Riccati differential equation that can easily be linearized. Some transformations are conside
Sec. III, where an Invariant for the system is built and an exact solution in terms of a Taylor
is also found. In Sec. IV the relevant physical properties of the atom are described and com
to those of the Rotating Wave Approximation. We discuss in Secs. V and VI the properti
periodicity of this system by using Floquet Analysis. With these results in hand we can just
Sec. VII the composition of the harmonic spectrum of the instantaneous electric dipole mom
the atom that is described completely, and both the resulting frequencies and amplitudes
generated harmonics are discussed. Finally, Sec. VIII is one of conclusions and future prosp
pursuing this line of research.

II. THE PHYSICAL SYSTEM AND ITS DYNAMICAL SYMMETRY

Let us consider the physical system containing atwo-level atomand its electric dipole inter-
action with the coherent field of a laser. The external monochromatic field of frequencyv will be
treated classically and the possible amplification effects of the laser or spontaneous emissio
atom will be ignored. The system can be described by the Hamiltonian,13

H~ t !5\v0ub&^bu1\V0s~ t !cos~vt !@ ua&^bu1ub&^au#, ~2.1!

whereua& andub& are the atomic states whose energy is 0 and\v0 . Also, \V0 is the energy of the
interaction andV0 the Rabi frequency. Heres(t) denotes a dimensionless function of time th
describes a laser pulse. The introduction of the operatorsJ05J0

1 andJ1
15J2 ,

J05 1
2$ub&^bu2ua&^au%, J25ua&^bu, J15ub&^au, ~2.2!

with the commutation relations@J0 ,J6#56J6 and @J1 ,J2#52J0 allows the Hamiltonian to be
expressed as

H~ t !5\v0@ 1
21J0#1\V0s~ t !cos~vt !@J11J2#, ~2.3!

and one can identify this system with aj-spin particle interacting with a time-dependent magne
field. When the dynamical symmetry of this Hamiltonian is considered,H(t) can be seen as
Hermitian element of the triparametric Lie-Algebra SU~2!, whose properties14 will be considered
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in the full solution of the problem. The physical states~rays! of the atom can be obtained by actin
on the eigenstates ofJ0 with the Unitary Displacement Operator S(b) or S(h) whose fragmen-
tation properties are15

S~b!5exp$bJ12b* J2%5exp$hJ1%exp$dJ0%exp$2h* J2%5S~h!, ~2.4!

b5reif, h5tanreif, d5 log$11uhu2%. ~2.5!

Every Displacement Operator generates a unitary transformation of the algebra,

S~h!J1S1~h!5
1

11uhu2 @J112h* J02h* 2J2#, ~2.6!

S~h!J0S1~h!5
1

11uhu2 @2hJ11~12uhu2!J02h* J2#, ~2.7!

S~h!J2S1~h!5
1

11uhu2 @2h2J112hJ01J2#, ~2.8!

and a measure of the change with time of this operator can be given by the quantity

Ṡ~h!S1~h!5
1

11uhu2 @ḣJ11~ ḣh* 2hḣ* !J02ḣ* J2#. ~2.9!

The explicit form of theH(t) makes no reference to any specific representation of the algebra
therefore all properties of the physical system determined by the dynamical symmetry c
extended to any representation. In particular, we can generalize the treatment of the prob
describe anm-level-atominteraction with either Equidistant Levels or with an Electric Dipo
moment operator connecting only contiguous levels.

III. THE TEMPORAL EVOLUTION OPERATOR

The Temporal Evolution Operator that satisfies the Schro¨dinger equation,

i\U̇~ t !U1~ t !5H~ t !, U~0!51, ~3.1!

can be obtained by mapping exponentially a Hermitian element of the algebra. We expre
element by a Displacement Operator with arbitrary factorization as

U~ t !5expH 2 i
v0

2
tJ S@h~ t !#exp$ ih~ t !J0%, ~3.2!

and as a consequence of~3.1! and the properties of the algebra the following system of equat
must hold:

2 iV0s~ t !cos~vt !~11uhu2!5ḣ2 i ḣh, ~3.3!

2 iv0~11uhu2!5ḣh* 2hḣ* 1 i ḣ~12uhu2!. ~3.4!

Finally, it is easy to see that the explicit identification of the TEO requires the knowledge o
functions:h(t) real andh(t) complex, whose evolution imposed by the Schro¨dinger equation is
governed by the system of ordinary differential equations:

ḣ52 iV0s~ t !cos~vt !~12h2!2 iv0h, h~0!50, ~3.5!
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h~ t !52v0t12V0E
0

t

s~u!cos~vu!Re@h~u!#du. ~3.6!

The nonlinear first-order Riccati equation is the heart of the problem. If we know the com
function h(t), the solution of this Riccati equation, we can obtain the real functionh(t) by a
quadrature, and in terms of these functions all the remaining relevant properties of the s
This equation is exactly solvable in the following particular cases:~i! h52 i tan$(V0 /v)sin(vt)% if
the energy of the atom is negligible compared to the energy of the interaction (v0→0); ~ii ! h
50 in the reciprocal case (V0→0); and ~iii ! in the rotating wave approximation that will b
considered later.
In the general case and withv0Þ0 we consider the following transformations

(i) Conformal transformation:

h5
12j~ t !

11j~ t !
, ~3.7!

j̇52iV0s~ t !cos~vt !j1 i
v0

2
~12j2!, j~0!51. ~3.8!

The evolution of the new functionj(t) is governed by another Riccati equation with a const
coefficient for the nonlinear term. Therefore our system is equivalent to an atom with a
dependent oscillatingenergy, interacting with an external stationary electric field.

(ii) Linearization of the Riccati equation:The new nonlinear Riccati equation can be line
ized by introducing a new complex functionq(t):

j52
2i

v0

q̇

q
, ~3.9!

which must be a solution of thesecond-order linear differential equation,

q̈22iV0s~ t !cos~vt !q̇1
v0

2

4
q50, ~3.10!

q~0!51, q̇~0!5 i
v0

2
. ~3.11!

This last differential equation shows the equivalence between our system and a harmonic
tor subjected to viscous damping with an imaginary time-dependent coefficient. Introducing
variables given byq5reif andp5r 2ḟ, we can construct aninvariant of this system in the form

ṙ 21
p2

r 2 1
v0

2

4
r 25

v0
2

2
, ~3.12!

ṗ52s~ t !
V0

v0
cos~vt !r ṙ . ~3.13!

This invariant is reminiscent of the total energy of an isotropic two-dimensional oscill
One should emphasize that the existence of the invariant~3.12! is independent of the functions(t)
that governs the shape of the incident pulse of the external field. The analogy cannot be pus
far because in this system the ‘‘angular momentum’’ is not a conserved quantity.

If we introduceg5V0 /v, e5v0 /v, x5vt, and we useprimes to denoted/dx, the new
form of the linear equation~3.10! is
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q9~x!22igs~x!cosxq8~x!1
e2

4
q~x!50, ~3.14!

q~0!51, q8~0!5 i
e

2
, ~3.15!

which can be solved by applying theFrobenius Theoryin terms of apower series,

u~x!5 (
k50

`

Akx
k, v~x!5 (

k50

`

Bkx
k, A05B151, A15B050, ~3.16!

whose coefficientsAk andBk must satisfy the same following recurrence law:

Ak125
1

~k12!~k11! F2ig(
r 50

k11

ak112rArr 2
e2

4
AkG , ~3.17a!

Bk125
1

~k12!~k11! F2ig(
r 50

k11

ak112rBrr 2
e2

4
BkG , ~3.17b!

where theaj are the coefficients of the de Taylor series of the damping functions(x)cosx that in
the case of a square pulses(x)51 area2k5(21)k/(2k)!, a2k1150. Explicitly, the first terms of
these series are collected in Tables I and II. An important consequence of this procedure is
points of the real line are regular for the linear equation~3.14! that fully determines all physica
properties of the model, and according to the Frobenius theorem the functionsu(x) and v(x)
satisfyingu(0)5 v̇(0)51 andu̇(0)5v(0)50 area fundamental system of solutionsof the linear
differential equation. Theyconverge in the real line for all values of the parameters,16 although,

TABLE I. Taylor coefficients foru(x).

Order u(x)

0 1

1 0

2 2
e2

8

3 2 i
ge2

12

4 2
e2

384
@16g21e2#

5 i
ge2

480
@618g21e2#

6 2
e2

46 080
@576g21256g4148e2g21e4#

7 2 i
e2g

161 280
@80152e213e411216g2164e2g21256g4#

8
e2

10 321 920
@e6116 640g213328e2g2196e4g2

134 816g411280e2g414096g6#

9 i
e2g

11 612 160
@1121160e2134e41e6118 496g2

12144e2g2140e4g2114 080g41384e2g411024g6#

10 2
e2

3 715 891 200
@e81394 240g21155 904e2g2

110 880e4g21160e6g213 649 536g41286 720e2g4

13840e4g411 359 872g6128 672e2g6165 536g8#
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in general, this convergence could be very slow. The method reveals itself as an intrins
nonperturbative one, and it is valid regardless of the magnitude of the intensity of the cou
atom laser. In other words, the procedure is also applicable for arbitrarily intense strong field
can use these series to obtainq(t) andh(t) in the form

q~vt !5u~vt !1 i
v0

2
v~vt !, ~3.18!

h~vt !5
v0q~vt !12i q̇~vt !

v0q~vt !22i q̇~vt !
, ~3.19!

which define the general solution.

IV. THE PHYSICAL OBSERVABLES AND THE ROTATING WAVE APPROXIMATION

Once both previous equations have been solved we immediately knowh(t), and we can
obtainh(t) through a quadrature as well as all other physical quantities of interest. For inst
the natural evolution of the eigenstates of the free atom is given by

U~ t !ua&5
e2~ i /2!@h1v0t#

A11uhu2
$ua&1hub&%, ~4.1!

U~ t !ub&5
e~ i /2!@h2v0t#

A11uhu2
$2h* ua&1ub&%. ~4.2!

TABLE II. Taylor coefficients forv(x).

Order v(x)

0 0

1 1

2 ig

3 2
1
24

@16g21e2#

4 2 i
g

24
@218g21e2#

5
1

1920
@256g4149g2e21256g21e4#

6 i
g

5760
@16128e213e41640g2164e2g21256g4#

7 2
1

322 560
@e614096g211984e2g2196e4g2120 480g4

11280e2g414096g6#

8 2 i
g

322 560
@16164e2122e41e615824g211376e2g2

140e4g218960g41384e2g411024g6#

9
1

92 897 280
@e8165 536g2163 744e2g217424e4g2

1160e6g211 376 256g41194 560e2g413840e4g4

1917 504g6128 672e2g6165 536g8#

10 i
g

464 486 400
@25611856e211376e41200e615e8

1839 680g21363 008e2g2123 680e4g21320e6g2

13 956 736g41373 760e2g415376e4g411 376 256g6

132 768e2g6165 536g8#
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The normalized transition probabilities between states is also given by

Pab5Pba5
uhu2

11uhu2
5sin2ubu, ~4.3!

Paa5Pbb5
1

11uhu2 5cos2ubu. ~4.4!

The instantaneous population inversion (q5reif) is

W~ t !5Pab2Paa52
j1j*

11uju2 52
2

v0
r 2ḟ. ~4.5!

The instantaneous electric dipole moment takes the form

d~ t !52
\V0

E0

h1h*

11uhu2
52

\V0

E0
$r 221%, ~4.6!

and so we can identify the ‘‘angular moment’’ introduced above with the population inversion
conclude that the invariant describes the temporal evolution of the rescaled dipole momenD(t)
5r 221,

Ḋ21v0
2D21v0

2W25v0
2. ~4.7!

In the tridimensional subspace of the phase space of the system labeled by the coor
$Ḋ,D,W%, this equation of the invariant describes an ellipsoid with semiaxis$v0,1,1% and guar-
antees a bounded evolution of both the dipole moment and the population inversion for any
of the parameters. In particular, the dipole moment cannot be greater than\V0 /E0 and the
function q(t) must be bound as it verifies 0<r 5uqu<&.

Let us now consider the previous system in the traditional Rotating Wave Approximation
by ignoring fast oscillations of frequency$v1v0% that are much larger than$v2v0%. The
Hamiltonian of the system can now be written as

H~ t !5\v0~ 1
21J0!1 1

2 \V0~e2 ivtJ11eivtJ2!, ~4.8!

and the Riccati equation is now simplified to read as

ḣ52 i
V0

2
~e2 ivt2h2eivt!2 iv0h, h~0!50, ~4.9!

whose exact solution is

h~ t !52 i
e2 ivt sin~DT!

A11k2 cos~Dt !1 ik sin~Dt !
, ~4.10!

h~ t !52vt22 arctanH k

A11k2
tan~Dt !J , ~4.11!

k5
v02v

V0
, D5

V0

2
A11k2. ~4.12!
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When the frequenciesv andD are commensurable,~i.e., v/D5p/q, a rational number!, all the
physical states of the atom are cyclic. They return to thet50 situation after an evolution time
equal toT5(2P/D)q5(2P/v)p plus a phase exp$2ipp(11v0 /v)%. In this approximation, the
transition probabilities are expressed by the well-known formula:

Pab5Pba5
sin2~Dt !

11k2 , Pmax5
1

11k2 , t5
lp

2D
, ~4.13!

with a maximum value just in resonance. The population inversion can be written as

W~ t !52
k21cos~2Dt !

11k2 . ~4.14!

The quantityW(t) oscillates between its maximum and minimum values with frequency 2D. The
dipole moment is~ignoring spontaneous emission!

d~ t !522
\V0

E0

sin~Dt !

11k2 $A11k2 cos~Dt !sin~vt !1k sin~Dt !cos~vt !%, ~4.15!

and thus the Fourier transform of the dipole moment contains just oscillations of frequencie6v
and6~2D6v!. Only these frequencies can, in fact, be generated.

V. THE FLOQUET THEORY AND THE ATOM–LASER SYSTEM

The equivalent linear equation~3.14! with s(x)51 has periodic coefficients of period 2p and
Floquet analysis (Bloch Theorem)16,17can be applied. Note, however, that this analysis can als
applied to the case of nonconstant but periodics(x). Hereafter we shall concentrate just in th
s(x)51 case. Suppose that a pair of independent solutionsu(x) andv(x) of the equation have
been already built. The periodicity property of the coefficients leads to the fact that the tran
functionsu(x12p) andv(x12p) must be new solutions of the equation themselves and mus
expressed as a linear combination of the previous ones. Explicitly,

u~x12p!5u~2p!u~x!1u8~2p!v~x!, ~5.1!

v~x12p!5v~2p!u~x!1v8~2p!v~x!. ~5.2!

There exist solutions—theFloquet–Bloch functions q(x)—verifying theFloquet condition

q~x12p!5lq~x!, ~5.3!

wherel~g,e! is a complex number that depends on the specific values of the parameters
system and must be a solution of the algebraiccharacteristic equation:

l22@u~2p!1v8~2p!#l1150. ~5.4!

The allowed values ofl~g,e! must be constrained by the the invariariant~3.12!, which must be
a C number of unit modulus. Thereforel5e2ipn, and its argument is not single-valued, since
physical situations can be described as we restrict their values to the interval 0<n< 1

2.
The most general form of the Floquet functionq(x) is

q~x!5einxF~x!, F~x12p!5F~x! ~5.5!

beingF(x) a 2p-periodic function. The Floquet solutionq(x) must be bound for all values of th
parameters and for allx according to the condition obtained in the previous analysis. We
consider now two different cases.
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~a! Nondegenerate characteristic equation. When the characteristic equation has two differe
roots, two independent Floquet functionsq1(x) andq2(x) exist:

q1~x!5einxF1~x!, q2~x!5e2 inxF2~x!, ~5.6!

whereF6(x12p)5F6(x) are two linearly independent 2p-periodic functions, and the genera
solution can be expressed as

q~x!5AeinxF1~x!1Be2 inxF2~x!, ~5.7!

with constantsA andB depending on the initial conditions. It must pointed out that the gen
solution will not be itself a Floquet function ifABÞ0. Thus, we can conclude that ifnÞ0 there
are no 2p-periodic solutions. The general solution is not a Floquet function, but we can
particular Floquet solutions~quasiperiodic with period 2p! and those systems whose paramete
of the formn5m1 /m2 ~a rational number! are periodic. Its general solution is 2m2p periodic.

~b! Degenerate characteristic equation. When @u(2p)1v8(2p)#562, the characteristic
equation has only one double solutionl561, and there exists only one Floquet solution. Ho
ever, a pair of functionsq1(x) andq2(x) can be found, verifying Refs. 16 and 17:

q1~x12p!56q1~x!, q2~x12p!56@q1~x!1q2~x!#, ~5.8!

whose general form is

q1~x!5einxF1~x!, q2~x!5einxF x

2p
F1~x!1F2~x!G , ~5.9!

with n50 or 1
2 andF1(x) andF2(x) 2p periodic. The general solution must now be of the fo

q~x!5einxH AF1~x!1BF x

2p
F1~x!1F2~x!G J , ~5.10!

and we can conclude in this case that there will beparticular solutionsof periodic character (n
50) and of antiperiodic (n5 1

2) character, but the general solution isneither bound nor periodic.

VI. THE CONSTRUCTION OF THE FLOQUET FUNCTIONS

The explicit construction of the Floquet functions requires the previous knowledge o
characteristic exponentn. In order to findn we have to solve thecharacteristic equationplus the
values ofu(2p) and v8(2p). Nevertheless, the symmetry of Eq.~3.14! allows us to write the
following set of conditions:

u~x1p!5u~p!u* ~x!1u8~p!v* ~x!, ~6.1!

v~x1p!5v~p!u* ~x!1v8~p!v* ~x!, ~6.2!

sinceq(x1p) is a solution of the conjugate equation of~3.14!, provided thatq(x) is a solution of
~3.14! as well. One can reproduce the complete solution with the help of these functionsu(x) and
v8(x) defined in the closed neighbor@0,p# and then to obtain the Floquet exponent as

2 cos~2pn!5u~p!u* ~p!1u8~p!v* ~p!1v~p!u8* ~p!1v8~p!v8* ~p!. ~6.3!

These values, represented in Fig. 1, can be found either by numerical simulation
equation~3.14! or using the Taylor series~3.16! for these functions. In order to obtain the corr
spondent 2p-periodic functionwe have to solve the Ordinary Differential Equation:
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FIG. 1. Floquet exponents as a function of theg,e parameters.
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F912i ~n2g cosx!F81S e2

4
2n212gn cosxDF50. ~6.4!

Just for the nondegenerate case, we have to find the solutionsF6(x) corresponding to the two
possible values of the Floquet exponents6n. As the periodicity is actually guaranteed, the
functions can, in fact, be expressed as a usual Fourier superposition of harmonic componen
a frequency multiple of that laser:

F6~x!5 (
p52`

`

Fp
6eipx, F0

651. ~6.5!

When we introduce this superposition in the ODE, we find the following relationship betw
three consecutive coefficients:

2H e2

4g
2

~p6n!2

g J Fp
65~p6n21!Fp21

6 1~p6n11!Fp11
6 , ~6.6!

whose resolution requires the introduction of the relative amplitudes between contiguous ha
ics,

Gp
65

Fp
6

Fp21
6 , H2p

6 5
F2p

6

F2p11
6 , p>1, ~6.7!

that must verify

Gp
652

p6n21

Vp
61~p6n11!Gp11

6 , p>1, ~6.8!

H2p
6 5

p7n21

V2p
6 2~p7n11!H2p21

6 , p>1, ~6.9!

Vl
65

e2

4g
2

~ l 6n!2

g
. ~6.10!

These relationships determine every coefficient by acontinued fraction.7 The way to proceed is
the following. If the seriesGp and H2p have a finite limit, this must be zero. Therefore, if w
consider a value ofp5pmax sufficiently high, we can also assume that the correspondent t
Gp11 andH2p21 vanish. More precisely, what would vanish is the quantity6g/(p11). Thus,
all the previous terms can be calculated hereafter by using the recurrence relationship~6.5!–~6.7!.
Hence, all the coefficients are given by the quantities

Fp
65Gp

6Gp21
6 Cp22

6 ,...,G3
6G2

6G1
6 , ~6.11!

F2q
6 5H2q

6 H2q11
6 H2q12

6 ,...,H23
6 H22

6 H21
6 , ~6.12!

except the first one that remains undetermined and can be made equal to one (F0
651).

There exists an additional condition that so far has not been used, namely, the charac
equation among the coefficients for the valuep50:

2H e2

4g
2

n2

g J 5~6n21!H21
6 1~6n11!G1

6 , ~6.13!
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that must be considered acompatibility condition,18 that connects all the relevant parameters of
system:

F~g,e,n!50, ~6.14!

and can be used to find through an iterative process the characteristic exponent if it
unknown18 or to classify all systems with a fixed exponent. The results coincide with those of
1. In particular, whenn50 or 1

2, the equation~6.14! selects the parameters of those particu
systems that have a general periodic or antiperiodic solution and forces the physical s
described by our Hamiltonian to a truly periodical behavior.

All these properties allow us to establish an important relationship between the func
F1(x) andF2(x). It is easy to see that the following relations hold:

Gp
152H2p

2 , Gp
252H2p

1 . ~6.15!

As a consequence of these symmetries, one has to find the amplitudes of only one of t
functions because these coefficients verify

Fp
25~21!pF2p

1 , ~6.16!

andF6(x) can be expressed by series ofeven harmonicsandodd harmonicsof the laser accord-
ing to the expression

F1~x!5E~x!1O~x!, F2~x!5E* ~x!2O* ~x!, ~6.17!

where

E~x!5 (
p52`

`

F2pei2px, O~x!5 (
p52`

`

F2p11ei ~2p11!x, ~6.18!

and we have redefinedF j
15F j in order to simplify the notation. As soon as theFloquet functions

have been constructed, the functionq(x) is totally determined by using the physical initial co
ditions of the problem. The result is

q~x!5Aeinx@E~x!1O~x!#1Be2 inx@E* ~x!2O* ~x!#, ~6.19!

A5
1

S H ~c2d!S n1
e

2D1e2 f J , ~6.20!

B5
1

S H ~c1d!S n2
e

2D1e1 f J , ~6.21!

S52~ec2d f !12n~c22d2!, ~6.22!

wherec, d, e, andf are constants depending on the initial values of the Floquet functions and
derivatives,

c5 (
p52`

`

F2p , d5 (
p52`

`

F2p11 , ~6.23!

e52 (
p52`

`

pF2p , f 5 (
p52`

`

~2p11!F2p11 . ~6.24!
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We would like to emphasize at this point that these series are always convergent as they
spond to Fourier coefficients of regular periodic functions.

VII. FLOQUET ANALYSIS AND THE HARMONIC GENERATION

The interaction between the atom and the coherent field forces the atomic dipole to os
with frequencies that can be different of the external field. Thus, one can analyze the pheno
of higher harmonic generation, starting with the Fourier Transform of the instantaneous
moment of the atom. One has just to remember the relationship between this physical obs
and the complex functionq(x). It is quite clear that we can obtain its harmonic spectrum with
help of q(x). Alternatively, we can consider the equivalent system of equations, obtained
~3.12!–~3.13! and ~4.5!–~4.7!:

D91e2D52ge cosxW, D~0!50, D8~0!50, ~7.1!

W812
g

e
cosxD850, W~0!521, ~7.2!

which describes the dipole moment forced by the population inversion. This is the treatmen
in Ref. 7, where a stationary approximation of the problem is made and the instantaneous
moment of the atom is found in terms of a Fourier series built with a superposition ofonly odd
harmonicsof the frequency of the coherent field. The amplitude of the different harmonic
obtained using acontinued fraction7 totally equivalent to the one we have described abo
However, the stationary approximation becomes unnecessary if we can describe in an an
form the exact instantaneous dipole moment of the atom represented by its Fourier Tran
whose frequencies and amplitudes are totally known, as we have just done. An exact exp
would be

D~x!5~A21B2!(
s50

`

Ps cos~2sx!2112~A22B2!(
s50

`

I s cos@~2s11!x#

12AB(
s50

`

$Ts
1 cos@2~s1n!x#1Ts

2 cos@2~s2n!x#%, ~7.3!

whose coefficients are expressed in terms of the constants that we have just found:

P05 (
p52`

`

FpFp , T0
65

1

2 (
p52`

`

~F2pF22p2F2p11F22p21!, ~7.4!

Ps52 (
p52`

`

FpFp12s , s>1, ~7.5!

I s5 (
p52`

`

F2p~F2p12s111F2p22s21!, s>0, ~7.6!

Ts
65 (

p52`

`

~F2pF62s22p2F2p11F62s22p21!, s>1. ~7.7!

One could, in principle, work directly with the system~7.1!–~7.2!, basically because the
convergence of the series appearing inD(x) is faster than the series ofq(x). However, the
periodic character of the functionsD(x) and W(x) is still unknown asthere is no reason to
assume that the solution of a linear system of first-order differential equations with per
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time-dependent coefficients is actually periodic. In fact, only an adequate Floquet analysis~Bloch!
of the type that has been performed in Ref. 3 can give us a clear cut answer to this qu
According to our results the dipole moment must be described by a real function that must c
a purely 2p-periodic real function and another periodic function modulated by an expone
factor that contains the contribution due to the Floquet exponent. Let the primed coefficients
Fourier coefficients of the Dipole MomentD(x) that we have found using Eqs.~7.1! and ~7.2!.
This functionD(x) can be expressed in this notation as (T08

250)

D~x!5(
s50

`

$I s8 cos„~2s11!x…1Ts8
1 cos„2~s1n!x…1Ts8

2 cos„2~s2n!x…%. ~7.8!

This ansatz already contains the initial conditionD8(0)50 and the mathematical property co
cerning the fact that the system of equations itself cancels the even harmonics inD(x). Also, the
ansatz must yield the complete solution when the initial state has a good energy quantum n
of the noninteracting atom. This is due to the propertyD(t)5uqu221 that shifts just the even
harmonics in an amount 2n ~instead ofn, as one might have initially expected!. The same effect
could be interpreted as a split of the odd harmonics followed by a shift of one of these
amount6(122n), giving rise to a sort oftriplet associated to each odd harmonic, as can be seen
in Fig. 2.

The relationships between contiguous harmonicsLs5I s8/I s218 , Ls
65Ts8

6/Ts2186 must now
verify

Ls52
2s21

2s H e22~2s11!2

g2 1
~2s11!2

2s~s11!
1

2s13

2~s11!
Ls11J 21

, s>1, ~7.9!

Ls
652

s216n

2s2162n H e224~s6n!2

2g2 1
4~s6n!2

4~s6n!221
1

s116n

2s1162n
Ls11

6 J 21

, ~7.10!

and all these coefficients go overg2/4s2 for large values ofs and verifying the compatibility
condition,

e224n2

2g2 1
4n2

4n221
1

11n

112n
L1

11
12n

122n
L1

250, ~7.11!

that can be used to adjust the value ofn. Therefore, starting with a sufficiently high value ofs we
can calculate the ratiosLs5Ls

65g2/4s2, and using~7.9!–~7.10! we can go backward and calcu
late all the others. With all these ratios we find the coefficients:

I s85LsLs21Ls22Ls23,...,L3L2L1I 085DsI 08 , s>1, ~7.12!

Ls
65Ls

6Ls21
6 Ls22

6 Ls23
6 ,...,L3

6L2
6L1

6T08
15Ds

6T08
1 , ~7.13!

in terms of two of theseI 08 and T08
1 that can be considered as integration constants. Th

integration constants are fixed by using the initial conditionsD(0)50 andW(0)521. This leads
to the following set of algebraic equations:

C8I 081D8T08
150, ~7.14!

S e221

g2 2
1

2
2E81

3

2
L1D I 0824F8T08

152
2e

g
, ~7.15!

where
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C85(
s50

`

Ds , F85(
s50

` H 4~s1n!2

4~s1n!221
Ds

11
4~s2n!2

4~s2n!221
Ds

2J , ~7.16!

E85(
s51

`
~2s11!2

s~s11!
Ds , D85(

s50

`

$Ds
11Ds

2%. ~7.17!

Finally, we identify

Ps50, I s5I s8 , Ts
15Ts8

1 , Ts
25Ts8

2 , ~7.18!

as can easily be seen for any particular set of values of the parameters. The amplitude o
harmonic can be calculated either by~7.4!–~7.7! or ~7.8!–~7.17!.

TheFourier Spectrumso far described in the literature includes onlyoddharmonics. Accord-
ing to the results developed in this paper, the following composition of theFourier Spectrumboth
in frequencies and amplitudes emerges. Indeed,odd integer harmonicsmust necessarily be a

TABLE III. The Fourier spectrum of the electric dipole moment. The symbol* means amplitudes less than 1023. The
oscillations with a negative amplitude have an extra phase of exp$ip%.

Harmonic

Ampl. 103

g510
e510

n50.408 239 Harmonic

Ampl. 103

g56.63
e58.75

n520.305 808 Harmonic

Ampl. 103

g513.84
e58.75

n520.177 815

0.816 477 46.0882 0.611 616 16.3369 0.355 608 118.827
1 2533.334 1 2537.363 1 2490.609
1.183 523 26.6766 1.388 384 4.589 54 1.644 392 21.119
2.816 477 221.5989 2.611 616 215.5481 2.355 608 238.502
3 95.009 3 77.6123 3 118.355
3.183 523 25.318 95 3.388 384 * 3.644 392 26.957
4.816 477 38.5086 4.611 616 43.0009 4.355 608 59.346
5 229.3072 5 220.1898 5 250.194
5.183 523 1.713 39 5.388 384 * 5.644 392 3.467
6.816 477 280.3143 6.611 616 2112.965 6.3556 92.023
7 9.472 38 7 6.4594 7 25.127
8.816 477 155.391 8.611 616 247.75 8.355 608 150.416
9 * 9 * 9 211.635
9.183 523 * 9.388 384 * 9.644 392 1.522
10.816 477 2253.567 10.611 616 2378.329 10.355 608 2204.139
11 27.98646 11 24.495 26 * *
12.816 477 303.189 12.611 616 212.905 12.355 608 225.252
13 13.1326 13 4.478 63 13 7.713
14.816 477 2170.788 14.611 616 295.105 14.355 608 2165.436
15 29.369 89 15 4.226 36 15 212.023
16.816 477 133.787 16.611 616 121.305 16.355 608 11.485
17 24.784 48 17 1.5273 17 7.223
18.816 477 174.182 18.611 616 28.8898 18.355 608 135.262
19 8.852 01 19 * 19 4.534
20.816 477 208.911 20.611 616 4.734 98 20.355 608 293.463
21 9.399 26 21 * 21 28.745
22.816 477 107.257 22.611 616 * 22.355 608 2100.988
23 4.592 09 23 * 23 23.268
24.816 477 35.3672 24.611 616 * 24.355 608 65.533
25 1.465 41 25 * 25 6.890
26.816 477 8.5114 26.611 616 * 26.355 608 136.739
27 * 27 * 27 8.4032
28.816 477 1.594 98 28.611 616 * 28.355 608 100.711
29 * 29 * 29 5.421
30.816 477 * 30.611 616 * 30.355 608 47.464
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unavoidable ingredient of the spectrum, but it must also containnoninteger harmonicsthat can be
interpreted as theodd harmonics displaced an amount6(122n) fixed by theFloquet exponents
of the system. In both cases~integer and noninteger! the amplitude can be calculated by th
expressions~7.4!–~7.7! or alternatively~7.8!–~7.17!. We would like to emphasize that this resu
has arisen directly from the systematic use of the Floquet Analysis. An interesting questi

FIG. 2. Fourier spectra for different values of thee,g parameters.
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further research is whether a shift in the physical initial conditions may change this Fo
Spectrum that we have just described. Some preliminary calculations show us that if the
state of the atom is not an eigenstate of the energy, the formalism can be equally applied
prediction of the Spectrum, but the results show nontrivial changes, both in the amplitudes
the role played by the phases of the harmonics. Note that the formalism and hence the sp
depends only upon the full knowledge ofq(x).

A remaining question deals with the behavior of the spectrum in the limiting casesv0→0 and
v→0. In the first case, any of the equations~3.5! or ~3.10! lead to the same result. If the initia
state of the atom is an eigenstate of energy, the Dipole Moment vanishes and no outgoing
sion would be present. In the latter case, using Eq.~3.10! we obtain in this limit,

q~ t !5exp$ iV0t%5 cosSAV0
21

v0
2

4
t D 2 i

V02
v0

2

AV0
21

v0
2

4

sinSAV0
21

v0
2

4
t D 6 , ~7.19!

and the Dipole Moment takes the form in this case

D~ t !5uqu22152
v0V0

2S V0
21

v0
2

4 D H 12cosS 2AV0
21

v0
2

4
t D J , ~7.20!

that describes a spectrum given by a constant contribution and just one frequency of valu

2AV0
21

v0
2

4
, ~7.21!

which is the standard result.
In Table III and Fig. 2 we give the results obtained in acalculation of the Fourier Spectrum

of the atomic dipole moment based on the equations~7.4!–~7.8! and~7.8!–~7.17! for some values
of the parameters. Only the Fourier components with an amplitude larger than 1023 have been
included. In the casee5g510, the energy of the atom–laser interaction equals the energy o
atomic transition, and one needs ten photons of the laser to produce the transition. A first e
tion of theFloquet exponentwas made, starting from the values ofu(p), u8(p), v(p), v8(p)
arising from a simulation of the ODE~3.14!. The valuen50.408 202 was obtained. This value w
improved in the above described iterative process, yielding finally a value
n50.408 238 570 386 171 53. For this last numerical value thecompatibility conditions~6.13! and
~7.11!, are zero with numerical precision of one part in 1014. The values of the parameters do n
have to be integers, as it is also shown in Table III for the casese58.75,g56.63, ande58.75,
g513.84. The theoretically calculated Floquet exponents are20.305 808 224 854 750 90 an
20.177 814 603 653 674 38, respectively, fulfilling the compatibility conditions~6.13! and ~7.11!
also with an accuracy of one part in 1014.

VIII. CONCLUSIONS

The physical system composed by a two-level atom interacting with a coherent ex
electromagnetic field has anexact solution for all ratios between the relevant frequencies of
problem: Transition, Laser, and Rabi frequencies. It is possible tomake use of the dynamica
symmetry of the Hamiltonian to develop anonperturbative method that allows us to solve exac
the model. No approximations at all such as the Rotating Wave or Weak Field Approxima
have been made. The Schro¨dinger equation is equivalent to a Riccati differential equation wh
solution yields all the physical observables of the system. This Riccati equation can be line
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and becomes a linear second-order differential equation with periodic coefficients. This pe
character allows us to apply Floquet Theory for differential equations with periodic coefficien
order to describe the periodicity properties of the interacting atom. In particular, when the F
transform of the electric dipole moment of the atom is calculated and the problem of the H
Harmonics Generation is considered, qualitatively new and rather surprising conclusion
found. To the usual harmonic spectrum composed by harmonics labeled just byodd integers, one
should add a series of noninteger harmonics that heavily depend on the Floquet exponen
Fourier Spectrum was implicit in other contributions on the two-level model~see Ref. 5 and
references therein!, but is not yet fully understood. Finally, the present authors claim that the
harmonics need to be more carefully analyzed experimentally, as they seem to arise natural
a model that describes quite accurately the important effect of Higher Harmonic Generatio
any rate the Exact Solution for Strong Field Laser–Atom Interaction hereby presented is re
in its own right, since the Two-State Model can also be used for a large variety of Phy
Applications.

Note added in proof:A more detailed account of the numerical results hereby presen
including a general study for a wide range of the physical parameters as well as a careful n
cal analysis dealing with the limiting cases, will be the subject of a forthcoming publication
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We generalize the Birman–Schwinger method, and derive a general upper bound
on the number of bound states in theSwave for a spherically symmetric potential.
This general bound includes, of course, the Bargmann bound, but also leads, for
increasing~negative! potentials, to a Calogero–Cohn-type bound. Finally, we show
that for a large class among these potentials, one can obtain further improvements.
© 1999 American Institute of Physics.@S0022-2488~99!00804-X#

I. INTRODUCTION

The Birman–Schwinger method1,2 was invented in order to put the Lippmann–Schwing
equation of scattering theory3,4 on a firm basis within the framework of the Fredholm theory
integral equation inL2 spaces. Among many important results, it led to a general proof of
Bargmann bound on the number of bound states,5 without using the nodal theorem, which asse
that the number of bound states in each angular momentum state of a spherically sym
potential is equal to the number of nodes~zeros! of the regular solution of the reduced radi
Schrödinger equation at zero energy. The nodal theorem was used by Bargmann in his o
proof.5

The reduced radial Schro¨dinger equation at zero energy for thel th angular momentum stat
reads

w l9~r !5F l ~ l 11!

r 2 1V~r !Gw l~r !, w l~0!50. ~1!

The potential is assumed here to satisfy the integrability condition

E
0

`

r uV~r !udr,`, ~2!

which entails the self-adjointness of the Hamiltonian2(d2/dr2)1 l ( l 11)/r 21V(r ) in L2(0,̀ ),
and other good properties for a well-defined scattering theory.3,4 Combining the Schro¨dinger
equation and the boundary condition at the origin, one can write~1! as the Fredholm integra
equation3

w l~r !5r l 112
1

~2l 11!
E

0

`

r ,
l 11r .

2 lV~r 8!w l~r 8!dr8, ~3!

a!Laboratoires associe´s au Centre National de la Recherche Scientifique.
17560022-2488/99/40(4)/1756/8/$15.00 © 1999 American Institute of Physics
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where the symbolsr , and r . mean, respectively, minimum (r ,r 8) and maximum (r ,r 8). Here,
the Birman–Schwinger method is to multiply both sides of~3! by uV(r )u1/2, and write
c l5uV(r )u1/2w l . The equation forc l then has the kernel given by

Kl~r ,r 8!52
r ,

l 11r .
2 l

~2l 11!
uV~r !u1/2uV~r 8!u1/2

V~r 8!

uV~r 8!u
, ~4!

and it is easily seen that this kernel is indeed of Hilbert–Schmidt type, and has the trace

TraceKl~r ,r 8!52
1

2l 11 E0

`

r uV~r !usignV~r !dr, ~5!

which, by ~2!, is finite.
Now, if we write V5V11V2 , whereV1 is the positive part ofV:V15V(r )u@V(r )#, and

V2 its negative part defined similarly, we have, for the number of bound statesn1–4

n~V!<n~V2!.

An upper bound forn(V) is therefore given byn(V2). For V2 , the corresponding kernel~4! and
its trace~5! are now positive.Kl becomes a symmetric positive kernel, and its characteristic va
l j

(2) ~inverse of its eigenvalues! are all positive, and accumulate at infinity asj→` ~remember
that, for Hilbert–Schmidt kernels, the eigenvalues accumulate at the origin asj→`!. With V2 ,
these characteristic values are defined by

c l , j~r !5l j
~2 !E

0

` r ,
l 11r .

2 l

~2l 11!
uV2~r !u1/2uV2~r 8!u1/2c l , j~r 8!dr8. ~6!

That there are an infinity of eigenvalues comes from the fact that the kernel is not of
rank, unlessV2 is a finite sum ofd potentials. Looking differently, if we multiplyV2 by l, and
increasel from l50, the characteristic valuesl j

(2) are the values for which new bound stat
appear one by one at zero energy, the bottom of the continuum, and then move to the
become real bound states with negative energy as we increasel. That this is so follows from the
Feynman–Hellmann theorem for bound states~V is negative here!!4,6

]Ej
~2 !~l!

]l
<0, l>l j , Ej

~2 !~l j !50. ~7!

In all rigor, one must first consider the bound states below some negative energy,E<2e2, e
.0, consider the numberne(V) of these bound states, and then makee↓0 in order to find the total
number of bound states. As shown in Refs. 1, 4, and 6, one uses here the continuity th
which shows that one can take this limit for a large class of potentials. In the radial case, this
includes potentials satisfying~2!.

We are interested now in those characteristic valuesl j
(2) for V2 which are in the interval

@0, 1# because they give the total number of bound states ofV2 . Obviously

n~V2!< (
l j

~2 !<1

1

l j
~2 ! . ~8!

Therefore

nl~V!<nl~V2!< (
l j

~2 !<1

1

l j
~2 ! <(

j 51

`
1

l j
~2 ! 5TraceKl~V2!5

1

~2l 11!
E

0

`

r uV2udr, ~9!
                                                                                                                



t
a
tive

alid for
ving,
y

and

ive
d

w that,
race

lass of

g

r-
he

ite a

1758 J. Math. Phys., Vol. 40, No. 4, April 1999 Chadan, Kobayashi, and Lassaut

                    
which is the Bargmann bound. One can, of course, replaceV2 by V inside the integral in~9!, but
this makes the upper bound bigger, and is unnecessary. Notice that, in~9!, the finite sum is less
than the infinite sum if alll j

(2) are positive, which is the case here. The potentialV2 is negative,
and thereforelV2 cannot have bound states ifl also is negative.

The upper bound~9!, while it can be saturated by sums of delta-function potentials1–3

V~r !52(
1

n

gjd~r 2r j !, gj.0, ~10!

by adjustinggj and r j in order to get equality between the two sides of~9!, has several weak
points. The first is its bad behavior for strong attractive potentials. Indeed, if we replaceV2 by
lV2 , and makel→`, ~9! would suggest thatn(lV2) should grow likel, whereas we know tha
it actually grows likel1/2, as was shown some years ago.7,8 This weak point was improved by
new bound by Calogero9 and Cohn,10 who showed that, at least for the class of purely attrac
and increasing potentials, one has the bound, assuming of course the integral to be finite,

n0~V!<
2

p E
0

`

uV~r !u1/2dr, ~11a!

V,0, V8>0, V~`!50. ~11b!

Here also, one can show that one can make the left-hand side of~11a! as close to the
right-hand side as one wishes, with appropriate square-well potentials. The above bound, v
the S wave (l 50), and therefore for all higher angular momenta, has itself the defect of ha
contrary to~9!, no l dependence, and also contains the conditionV8>0. It has been shown recentl
that the conditionV8>0 can be relaxed to a large extent,11 and also that~11a! can be generalized
to l .0 with appropriatel dependence.12 Let us emphasize here that the proofs of Calogero
Cohn are both based on the nodal theorem mentioned earlier.

The second weak point of~9! is that it is not good for potentials having a strong repuls
~positive! part for, in such cases, the left-hand side of~9! may be much smaller than the right-han
side.

In the present paper, generalizing the Birman–Schwinger method, we are going to sho
first, for potentials satisfying~11b!, one can get a bound of the Calogero–Cohn type by the t
method given above, though with a slightly larger constant than 2/p as in~11a!, without using the
nodal theorem; and second, generalize this same bound, with an extra term, for a large c
negative potentials which may oscillate~no condition onV8!. Finally, we shall show that, for a
large class of potentials, one can also improve these new bounds further.

II. CALOGERO–COHN-TYPE BOUND

We consider here purely negative potentials satisfying~2!. As mentioned before, we are goin
to generalize the Birman–Schwinger method to obtain a more general bound than~9!, which
would contain, as a particular case, a Calogero–Cohn-type bound, of the form~11a!, but with the
constant 1 instead of 2/p in front of the integral. For the simplicity of algebra, we restrict ou
selves to the casel 50 ~Swave!, and leave the casel .0 for a forthcoming paper. In essence, t
Birman–Schwinger method relies on the Lippmann–Schwinger integral equation~3! in which the
inhomogeneous term is the regular solution for the free case, i.e., without the potentialV. How-
ever, this is not the only way of writing an integral equation for the full solution. One can wr
more general integral equation by writing the Hamiltonian as~remember that we considerl 50!

H[H01V52
d2

dr2 1V5S 2d2

dr2 1V0D1~V2V0![H̄01V̄, ~12!
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where we assume thatV0 satisfies also~2!. If we denote byw0 and x0 the regular and irreg-
ular solutions of H̄0c50, such that w0(0)50, w08(0)51, x0(0)51, lim r→0 rx08(r )
5 lim r→0 w0(r )x08(r )50, and Wronskian (w0 ,x0)[w08x02w0x0851, we have the integra
equation3

w~r !5w0~r !2E
0

`

w0~r ,!x0~r .!V̄~r 8!w~r 8!dr8, ~13!

as can be verified easily. Also, since we assumeV0 to satisfy~2!, the above equation is, as for~3!,
a good equation of the Fredholm type, with well-defined Fredholm determinants~numerator as
well as denominator!.3 One can again use the Birman–Schwinger method by multiplying b
sides of~13! by uV̄u1/2 in order to obtain anL2 kernel of Hilbert–Schmidt type with finite trace
Indeed, sinceV0 is supposed to satisfy~2!, we have the general bound3

uw0x0u<Ar ~14!

for all values ofr, with an appropriate finite constantA(.0). WhenV050, we get back, of
course,~3! for l 50. We shall assume henceforth that V0(r )>0. Let us now look at the homoge
neous integral equation which defines the characteristic valuesl̄ j which correspond to the thresh
olds in l̄ for having new bound states appearing at zero energy~V̄5V2V0 , V<0, V0>0, V̄
<0!:

w̄~r !52l̄E
0

`

w0~r ,!x0~r .!V̄~r 8!w̄~r 8!dr8 ~15!

and its corresponding differential equation

w̄9~r !5V0w̄~r !1l̄V̄w̄~r !. ~16!

We have to compare this equation with the original Schro¨dinger equation

w9~r !5lV~r !w~r !. ~17!

SinceV̄5V2V0 , we see that~16! and ~17! are identical forl̄5l51, as it should be. Now, if
V(r ) hasn bound states, this means that there aren characteristic valuesl j in the interval~0, 1#.
Therefore, there should exist alson values ofl̄ j in ~0, 1# since forl̄51, V01l̄V̄ hasn bound
states. There is a one-to-one correspondence betweenl j andl̄ j for j 51,2,...,n. Also, sinceV0 in
~16! was assumed to be positive, it is obvious, by comparingw j95l jVw j with w̄ j95V0w̄ j

1l̄ j V̄w̄ j5l̄ jVw̄ j1(12l̄ j )V0w̄ j , that we should havel̄ j.l j for j 51,2,...,n. This is simply
because, forj <n, the potential (12l̄ j )V0 in the last equation is repulsive. Forj .n, the reverse
is true:l j.l̄ j . These are all simple consequences of Sturm-type comparison theorems.15 Also, it
is obvious that we cannot have any negative characteristic valuesl̄ for ~16! since, forl̄,0, the
total potential there is positive. In any case, for getting an upper bound for the number of b
states ofV(r ), we can, as well, look at~15!, and use

n~V!< (
l̄ j<1

1

l̄ j

. ~18!

Proceeding as before, and remembering that, by hypotheses onV and V0 , we are dealing with
positive definite kernels, we get the general bound
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n~V!<2E
0

`

w0~r !x0~r !@V2V0#dr, V<0, V0>0, ~19!

which we are going now to exploit by making appropriate choices forV0 . Note that, if we take
V050, we havew05r , x051, and we get back the Bargmann bound.

Calogero–Cohn-type bound:Since V is assumed to be purely attractive, and we wish
obtain a Calogero–Cohn-type bound, we have also to assume, as they did, thatV8>0. The
appropriate choice ofV0 would here be

V052V2
d

dr
A2V~r !, V̄52V1

d

dr
A2V, ~20!

in V0 both parts are positive, and inV̄ both parts are negative. The Schro¨dinger equation for this
V0 reads now

S 2
d

dr
1A2V~r ! D S d

dr
1A2V~r ! Dc050. ~21!

It is easily seen that its solutionsw0 andx0 are given by

x0~r !5expS 2E
0

r
A2V~ t !dtD , ~22a!

w0~r !5expS 2E
0

r
A2V~u!duD E

0

r

expS 12E
0

t
A2V~u!duD dt, ~22b!

so that

w0~r !x0~r !5E
0

r

expF22E
t

r
A2V~u!duGdt. ~23!

Using this in~19!, and integrating by parts the term containingw0x0dA2V(r ), we get

n<E
0

`

~2V~r !!1/2dr, V<0, V8>0, ~24!

which is the desired result. Although~24! is not as good as~11a!, it contains its main feature
which is that, for the Calogero–Cohn type potentials, the upper bound ofn(lV) grows asl1/2 in
the limit of l becoming very large. But we did not use the nodal theorem.

More general bound:We can take, more generally,

V05W0
22W08 , ~25!

whereW0 is assumed to be positive and decreasing~non-increasing!. Proceeding as before, w
would then get

n<E
0

`

@W02~V1W0
2!w0x0#dr, ~26!

wherew0 , x0 , andw0x0 are given by formulas identical to~22a!, ~22b!, and~23! in which A2V
is replaced byW0 . Here, we have a formula in whichV is given, andW0 is arbitrary. One may
think of setting up a variational principle for findingW0 such that the integral in~26! is minimum.
Unfortunately, the Euler equation one gets has no solution.
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Oscillating negative potentials:Let us now first assume that the potential is of bound
variation. It is then known that such a function can be written as the difference of two positiv
monotone functions.13,14 Saying it differently,

V~r !5Ṽ1~r !1Ṽ2~r !, ~27!

whereṼ1 is positive,Ṽ2 is negative, and we haveṼ18 <0 andṼ28 >0. SinceV(`)50, we also
haveṼ6(`)50. We can now choose our previousV0 in ~25! to be

Ṽ052Ṽ22
d

dr
A2Ṽ2~>0!. ~28!

We would then get

n~V!<E
0

`

@ uṼ2u1/22~Ṽ1!w̃2x̃2#dr, ~29!

wherew̃2 andx̃2 are given by formulas similar to~22a! and~22b!. Remember that here V˜
1 and

Ṽ2 are not just simply the positive and negative parts of the potential.
The bound~29! is somehow a generalization of~24! to the case of oscillating potentials. Se

also Ref. 11 for the generalization of~11a! for another class of oscillating potentials, as w
mentioned earlier.

Remark:When the potential is not of bounded variation~too many oscillations around som
points, going to2` at r 50, etc.!, it can often be the limit of such functions. If this is the case, a
the limits Ṽ2 andṼ1 are such that the integrals on the right-hand side of~29! are finite, then~29!
is valid. Note also thatw̃2 andx̃2 are explicitly given by~22a! and~22b!. In conclusion, we have

Theorem: For negative potentials of total bounded variation on@0, `!, the number of bound
states in theSwave satisfies the inequality~29!. For negative potentials which satisfy~2!, and are
appropriate limits of potentials of bounded variation such that the two integrals on the right
side of ~29! are each finite, the bound also holds.

III. IMPROVING THE BOUND „24…

So far, we have been writing

n< (
L̄ j>1

L̄ j<(
all j

L̄ j , ~30!

whereL j51/l j are the eigenvalues of the positive kernels of our various integral equations
then have calculated the last sum by the trace of the kernels. One way to improve on this is
at the middle sum. More specifically, to write

n<(
all j

L̄ j2 (
L̄ j ,1

L̄ j ~31!

and then try to find a lower bound for the second sum in~31!, and use it there. If this can be don
one would then get an improvement of~30!.

We are going to show that this can be done, at least for a class of potentials defined as f
First, we have to remember that we had two sets of characteristic values,$l j% for the original
Schrödinger equation, and$l̄ j% for the modified equation. And we hadl̄ j,l j for j .n, that is,

L j,L̄ j,1, j .n. ~32!
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Therefore, we can replace the second sum on the right-hand side of~31! by (n11
` L j , and get still

an upper bound forn. Now, assume that the potentialV, which is purely attractive, satisfiesV8
>0. We make now the Liouville transformation15

r→Z5Z~r !5E
0

r
A2V~ t !dt,

~33a!
w̄~r !→c~Z!5@2V~r !#1/4w̄~r !ur 5r ~Z! ,

in the Schro¨dinger equation~16! with ~20!:

w̄95F ~2l̄21!V1~ l̄21!
d

dr
A2VG w̄. ~33b!

The change of variabler→Z is a good one-to-one andC2 mapping from @0, `! to @0,I
5*0

`A2V(r )dr,`#. It is easily seen that the Schro¨dinger equation~33b!, with w̄(0)50, is
transformed to15

c̈~Z!1~2l̄21!c~Z!5Ṽ~Z!c~Z!1~ l̄21!F ~A2V!8

2V Gc~Z!,

Ṽ~Z!5
F̈~Z!

F~Z!
, F~Z!5@2V~r !#1/4ur 5r ~Z! , ~34!

ZP@0,I #, c~0!50, I 5E
0

`
A2V~r !dr.

The Liouville transformation does not change, of course, anything essential: self-adjoin
of the new Hamiltonian is secured, and the characteristic valuesl̄ j , corresponding now to the
eigenvalues 2l̄ j21, remain the same. As for the boundary condition atZ5I , we have to remem-
ber that for bound states in ther variable, the boundary condition atr 5` is w̄81gw̄50, where
2g2 is the energy of the bound state.3 At zero energy, that is, at the thresholdsl̄ j , the condition
becomes simply3

w̄ j8~`!50, w̄ j~`!5finite constant. ~35!

SinceV(`)50, the boundary condition forc(Z) is then

c~ I !50. ~36!

We have therefore the Dirichlet boundary condition at both ends of the interval forc(Z).
For l̄.1, the second potential on the right-hand side of the differential equation~34! is

negative. Now, assume thatṼ(Z) in ~34! is also negative~attractive! everywhere in@0, I#. In the
presence of both potentials, we have the eigenvalues of~34!, 0,(2l̄121),(2l̄221),¯ . If
we neglect these negative potentials, we get the ‘‘free’’ eigenvalues

2l̄ j
~0!215

j 2p2

I 2 , j 51,2,... ~37!

and we know that 2l̄ j
(0)21.2l̄ j21 for j 5n11,... . Therefore, we have the bound
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(
j 5n11

`
1

l̄ j
~0!

< (
j 5n11

`
1

l̄ j

. ~38!

Using ~37! on the left-hand side here, we get the sum~and its minorant integral!

2I 2(
n11

`
1

I 21 j 2p2 >2I 2E
n11

` dx

I 21p2x2 . ~39!

Using this to minorize the left-hand side of~38!, we get (L̄ j5l̄ j
21)

(
j 5n11

`

L̄ j>
2I

p Fp22Arctg
p

I
~n11!G . ~40!

Using this now in~31!, and remembering the trace~24!, we get finally

n<
2I

p
ArctgFpI ~n11!G , ~41!

which we have to solve to get a bound forn. Starting withn<I , and iterating~41!, we end up, in
fact, with an upper boundn0 given by the solution of the equation

n<n05
2I

p
ArctgFpI ~n011!G , ~42!

which we have to solve forn0 . It can easily be seen that this bound is better than~24!, but yet not
as good as the Calogero–Cohn bound~11a!.

It is also easily seen that a sufficient condition forṼ(Z) to be purely attractive~<0! is that
@2V(r )#21/4 be a concave function ofr ~concave upward!!. Of course, for such potentials, we ca
also improve the Bargmann bound. In any case, we have

Theorem: For any negative potential which satisfies~2!, and is such thatG(r )
5@2V(r )#21/4 is a concave function~upward! of r, we have the upper boundn<n0 , wheren0 is
given by ~42!. Note that, if (2V)21/4 is concave, we haveV8>0.
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Energy levels of a quantal particle enclosed in N identical,
mirror symmetric wells of a periodic potential.
Numerical test of phase-integral formulas

Per Olof Fröman, Kilian Larsson, and Anders Hökback
Department of Theoretical Physics, University of Uppsala,
Box 803, S-751 08 Uppsala, Sweden

~Received 24 March 1998; accepted for publication 2 December 1998!

An interesting structure prevails for the energy levels of a quantal particle in a
periodic potential withN ~>2! mirror symmetric wells separated byN21 mirror
symmetric barriers, when the logarithmic derivative of the wave function is given
at corresponding~periodically and mirror symmetrically situated! points in the
barrier to the left of the first well and in the barrier to the right of theNth well. It
is shown that the quantization conditions that one obtains for these energy levels by
means of a careful and rigorous phase-integral treatment are capable of giving
extremely accurate results. The accuracy obtainable is demonstrated forN53 by
comparison with numerically exact results, which were obtained by means of the
extended version of the phase-amplitude method presented in an Appendix. In the
concluding section we summarize the results and point out unexpected features of
the energy spectrum and the wave functions. Two different boundary conditions,
commonly used in the theory of crystals, and closely related to the present inves-
tigation, are also discussed there. ©1999 American Institute of Physics.
@S0022-2488~99!02303-8#

I. INTRODUCTION

During several decades the solution of the one-dimensional Schro¨dinger equation has been th
subject of numerous studies, both analytical and numerical. In spite of this fact, there ar
problems of that kind, the solutions of which can give rise to new physical insight. One
problem concerns the energy levels of a quantal particle in a periodic potential subject to v
boundary conditions. Phase-integral formulas for the solution of this problem, derived by Fr¨man
and Fröman~unpublished! on the basis of results in Chaps. 1 and 5 of Ref. 1, reveal an intere
structure of the energy spectrum and unexpected properties of the wave functions. Since i
question of subtle effects, it seemed desirable to confirm the correctness of the phase-
formulas and to test their accuracy by numerical calculations. It thereby turned out tha
numerical phase-amplitude method,2–6 though very powerful, had to be further extended as
scribed in an Appendix. It is the purpose of this paper to present the phase-integral formulas
with results of numerical calculations for checking their accuracy, and to draw attention t
unexpected, and to our knowledge hitherto unknown, features of energy spectrum and
functions that are revealed by the formulas.

II. PHASE-INTEGRAL QUANTIZATION CONDITIONS

Consider the one-dimensional Schro¨dinger equation

d2c

dx2 1R~x!c50, ~2.1!

where, with obvious notations,
17640022-2488/99/40(4)/1764/16/$15.00 © 1999 American Institute of Physics
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R~x!5
2m

\2 @E2V~x!#. ~2.2!

The potentialV(x) is assumed to be periodic and to consist of broad wells separated by ba
that are assumed to be mirror symmetric. Letx0 be a point in a barrier, and letxN ~N>2, x0

,xN! be a point in another barrier such that betweenx0 and xN there areN wells separated by
N21 barriers; see Fig. 1. The pointsx0 andxN are assumed to be situated at the barrier maxi
Considering the wave functionc(x) in the intervalx0<x<xN , we impose the boundary cond
tions

c8~x0!/c~x0!5k0 , ~2.3a!

c8~xN!/c~xN!5kN . ~2.3b!

With the aid of the phase-integral approximation generated from an unspecified base fu
described by Fro¨man and Fro¨man in Chap. 1 of Ref. 1, and also presented briefly in our Appen
A, Fröman and Fro¨man ~unpublished! have derived quantization conditions for the problem d
scribed above.

For the case thatk05kN5k the energy levels are obtained from the two quantization co
tions

L5~s11/2!p2f̃2arcsin
cos~np/N!

@exp~2K !11#1/2,

s50,1,2,...; n51,...,N21, ~2.4a!

L5~s11/2!p2f̃1arctanS k2@11exp~22K !#1uq~x0!u2

k2@11exp~22K !#2uq~x0!u2 exp~2K ! D ,

s50,1,2,..., ~2.4b!

where~see Fig. 1!

FIG. 1. The figure showsV(x)2E as a function ofx, whereE is the energy of a quantal particle in a periodic potent
V(x) with N wells separated byN21 barriers. The pointsx0 andxN are the points where the boundary conditions~2.3a!
and~2.3b! are imposed on the wave function, and the pointsx1 ,...,xN21 correspond to the auxiliary pointsz1 ,...,zN21 that
are used in the numerical phase-amplitude method described in Appendix B of the present paper. In the figure the w
barriers are not mirror symmetric, although the treatment in this paper~except in the appendices! is restricted to the mirror
symmetric case.
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L5U E
~ tn219 !

~ tn8!
q~z!dzU, 1<n<N, ~2.5!

K5U E
~ tn8!

~ tn9!
q~z!dzU, 1<n<N21, ~2.6!

andf̃ is the function given by eq.~5.5.30!, with f replaced byf̃, l51 and ln(K̄0 /l) replaced by
lnuK̄0u, along with eqs.~5.5.25a–g!, ~5.4.21!, and~5.4.23! in Chap. 5 of Ref. 1. In~2.5!, as well as
in ~2.6!, the integral, with the limits of integration within parentheses, is a simplified notation
half of the corresponding contour integral along a closed contour encircling the two limi
integration; see pp. 90–91 in Ref. 1. For the first order of the phase-integral approximatio
equal to an ordinary integral between the two limits of integration. The quantization cond
~2.4a! has been derived under the assumption that the barriers are superdense, while the
zation condition~2.4b! has been derived under the assumption that the barriers are not
superdense but also thick. The accuracy of~2.4a! is expected to be greater than that of~2.4b!
except whenk approaches 0 or̀ . WhenK(.0) is sufficiently large compared to unity, one ca
neglect exp(22K) in ~2.4b!, getting

L5~s11/2!p2f̃1arctanS k21uq~x0!u2

k22uq~x0!u2
exp~2K ! D . ~2.4b8!

Numerical checks show that the accuracy of~2.4b8! is almost the same as that of~2.4b! even when
K is as small as 2.7. Whenk is equal to zero or infinity, one can unify the two quantizati
conditions~2.4a! and ~2.4b! into the single quantization condition

L5~s11/2!p2f̃2arcsin
cos~np/N!

@exp~2K !11#1/2,

s50,1,2,...,n50,...,N21 when k50, n51,...,N when k5`, ~2.7!

and for the validity of this quantization condition it is sufficient that the barriers are superd
Since the potential is mirror symmetric, and the pointsx0 and xN are situated in a mirror sym
metric way, the exact energy levels must be independent of the sign ofk in the case whenk0

5kN5k. The approximate energy levels obtained from the quantization conditions~2.4a! and
~2.4b!, as well as~2.4a! and ~2.4b8!, also possess this property. These quantization condit
reveal an unexpected property of the energy spectrum and the corresponding eigenfunctio
a given value of the quantum numbers, the condition~2.4a! yieldsN21 fine structure levels tha
depend onN but not onk, while the condition~2.4b!, as well as~2.4b8!, yields oneparticular level
that depends onk but not onN. For each one of theN21 nonparticularenergy levels any solution
of the differential equation~2.1! is an eigenfunction corresponding to a certain value ofk. For the
particular energy level there is a uniquely determined eigenfunction~except for a constant factor!;
it has the periodicity of the potential. When the absolute value ofk increases from zero to infinity
one sees from~2.4b! or ~2.4b8! that L2(s11/2)p1f̃ decreases monotonically, and assumes
uku50 the approximate valuep2exp(2K), then decreases slightly untiluku approaches
uq(x0)u@11exp(22K)#21/2, then decreases rapidly and assumes the valuep/2 whenuku is equal to
uq(x0)u@11exp(22K)#21/2, then continues to decrease rapidly, and finally decreases slowly
L2(s11/2)p1f̃ assumes the approximate value exp(2K) for uku5`. The decrease ofL2(s
11/2)p1f̃ from values slightly belowp to values slightly above 0 takes place in an interval
uku values arounduq(x0)u@11exp(22K)#21/2 that is small compared touq(x0)u.

For the case thatk052kN5k(.0) andN>3, and the barriers are superdense and thick,
energy levels are obtained from the quantization condition
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L5~s11/2!p2f̃2arcsinD, N>3, ~2.8!

whereD ~small to its absolute value! is obtained from the equation~Fröman and Fro¨man, unpub-
lished!

S D1
k

@exp~2K !11#1/2D )
m51

N21 S D2~21!s
cos~mp/N!

@exp~2K !11#1/2D
2

12k2

4@exp~2K !11# )
m51

N22 S D2~21!s
cos@mp/~N21!#

@exp~2K !11#1/2 D50, N>3, ~2.9!

where

k5
k2uq~x0!u
k1uq~x0!u

. ~2.10!

In the limit whenk→0 or k→` one obtains the quantization condition~2.7! from ~2.8!, ~2.9!, and
~2.10! by replacing in~2.9! m by n whens is even but byN2n whens is odd. In these limits~2.9!
is expected to give more accurate values ofD than for other values ofk. In the particular case
whenN53 the quantum numbers disappears from~2.9!, and this equation has the three roots

D15
~k218!1/22k

4@exp~2K !11#1/2 ~.0!, ~2.11a!

D252
k

2@exp~2K !11#1/2, ~2.11b!

D352
~k218!1/21k

4@exp~2K !11#1/2 ~,0!. ~2.11c!

It is easily seen that

D1.D2.D3 . ~2.12!

Whenk50 the rootD1 , when inserted into~2.8!, gives the particular state that one obtains fro
~2.7! for n50. Whenk5` the rootD3 , when inserted into~2.8!, gives the particular state that on
obtains from~2.7! for n5N53.

III. CHOICE OF POTENTIAL

To get information on the capability of the phase-integral quantization conditions presen
Sec. II to give accurate results it is convenient to choose the analytical expression for the po
V(x) to be physically reasonable and to contain some parameters, so that the shape of the p
can be changed. By solving then the eigenvalue problem numerically as well as by means
quantization conditions in Sec. II, and comparing the results thus obtained, one can ge
information on the accuracy of the phase-integral eigenvalues associated with potentials of v
shapes.

Our choice of potential is

V~x!5E0 (
n52`

1`

expF2S x2na

b D 2G . ~3.1!

When we introduce the dimensionless variable
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z5
x

b
~3.2!

and the dimensionless parameters

A5
2mE0b2

\2 , ~3.3a!

B5
2mE0b2

\2 , ~3.3b!

C5
a

b
, ~3.3c!

the Schro¨dinger equation~2.1! along with ~2.2! and ~3.1! becomes

d2c

dz2 1H A2B (
n52`

1`

exp@2~z2nC!2#J c50, ~3.4!

where we shall assume that

0,A,B, ~3.5a!

0,C. ~3.5b!

IV. NUMERICAL RESULTS

For a fixed value ofB and various values ofC we have calculated the eigenvaluesA of the
Schrödinger equation~3.4! by means of the quantization condition~2.7! with N53 andk5` for
such values ofs that K, defined by~2.6!, remains approximately constant. In the present sec
the variablex in Sec. II is, of course, replaced byz; cf. ~3.2!. We have made the calculations wit
f̃ in ~2.7! retained as well as replaced by zero. We have also calculated the corresponding
eigenvaluesAexact by means of the phase-amplitude method described in Appendix B of
present paper. The values of log10 uAexact2Au are shown for a fixed value ofB and for various
values ofC in each one of Figs. 2 and 3. The digits in these figures indicate the orders o
phase-integral approximation. When there is a circle around such a digit, the quantityAexact2A is

FIG. 2. In this figureN53, k05k35`, B550, n51, andK'2.7. In ~a!, wheref̃ in ~2.7! is retained, one obtains in the
ninth-order approximation errors that are almost the same as those of the seventh-order approximation but of oppo

In ~b!, wheref̃ in ~2.7! is replaced by zero, one obtains in the ninth-order approximation errors that are almost the
as those of the fifth-order approximation but of opposite sign. In both~a! and ~b! the quantum numbers in ~2.7! is s
512, 28, 60, 91, and 123~corresponding to five different values ofC!.
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positive; otherwiseAexact2A is negative. Each one of Figs. 2~a! and 3~a! shows the error when, in
~2.7!, f̃ is retained, while each one of Figs. 2~b! and 3~b! shows the error when, in~2.7!, f̃ is
replaced by zero. Since it is instructive to know how the wave function behaves for diff
values ofn, we have in Figs. 4 and 5 plotted the wave function~without caring about its normal
ization! for two different sets of values ofB, C, sand the different possible values ofn. Note that,
althoughs50, the wave function in Fig. 4~b!, as well as in Fig. 5~b!, has a node in the middle
potential well and is to its absolute value much smaller in this well than in the two adjacent w

For fixed values ofB and C and values ofk05k35k ranging from210 to 110 we have
calculated energy eigenvaluesA of the Schro¨dinger equation~3.4! by means of the numerically
exact phase-amplitude method presented in Appendix B. The results are presented in Fig

FIG. 3. In this figureN53, k05k35`, B550, n51, andK'7.1. In ~a!, wheref̃ in ~2.7! is retained, one obtains in the
eleventh- and thirteenth-orders approximation errors that are almost the same as those of the ninth-order approxim

of the same sign. In~b!, wheref̃ in ~2.7! is replaced by zero, one obtains in the 11th-order approximation errors tha
only slightly smaller than those of the ninth-order approximation but of opposite sign, and in the 13th-order approxi
one obtains errors that are almost the same as those of the ninth-order approximation but of opposite sign. In bot~a! and
~b! the quantum numbers in ~2.7! is s58, 20, 32, 44, 68, and 92~corresponding to six different values ofC!.

FIG. 4. In this figureN53, k05k35`, B550, C52.0034,s50, andK52.697 in the fifth order of the phase-integra
approximation. The classically allowed regions are 0.6,z,1.4, 2.6,z,3.4, and 4.6,z,5.4. In ~a! n51 and Aexact

541.939 237 827 890. In~b! n52 andAexact542.178 416 065 134. In~c! n53 andAexact542.312 438 121 360.
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WhenN53 andk052k35k.0 we have for a fixed value ofB and various values ofC and
k calculated the eigenvaluesA of the Schro¨dinger equation~3.4! by means of the quantizatio
condition~2.8! with f̃ retained and withD given by~2.11a! and~2.10! for such values ofs thatK,
defined by~2.6!, remains approximately constant. The phase-integral results thus obtained f
lowest fine structure level associated with the quantum numbers under consideration have bee
compared with the corresponding exact energy levels obtained by means of the numericall
phase-amplitude method presented in Appendix B. The absolute errors of the phase-integra
for the energy levels are presented graphically in Figs. 7 and 8. The digits in these figures in
the orders of the phase-integral approximation. When there is a circle around such a dig
quantityAexact2A is positive; otherwiseAexact2A is negative. By recalling that the quantizatio
conditions pertaining tok5k15k3 and tok5k152k3 are the same in the limitk→`, and by
comparing Fig. 2~a! with Fig. 7 and Fig. 3~a! with Fig. 8, and by comparing also a number
figures analogous to these figures, but not presented in the present paper, we have found t
for very large values ofk the figures may look quite different from those obtained in the limik
→`.

V. CONCLUSIONS

For every quantum numbers there are, in the case ofN(>2) wells andk05kN5k, in general
N fine structure levels. Among these levels there is aparticular one for which the energy is
affected by the value of the logarithmic derivativek, but not by the numberN of wells. The
eigenfunction of this level is uniquely determined~except for a constant factor!, and this eigen-
function has the same form in every well; only the amplitude is in general changed from one
to another. For the otherN21 nonparticular levels the energies are not affected by the value
the logarithmic derivativek, but by the numberN of wells. For each one of these levels eve
solution of the Schro¨dinger equation is periodic~except sometimes for a change of sign! over the
N wells. This unexpected behavior of the fine structure levels and the wave functions, whi
have verified forN53 ~see Fig. 6!, is to the best of our knowledge hitherto unknown. In cert

FIG. 5. In this figureN53, k05k35`, B550, C52.68055,s50, andK57.099 in the fifth order of the phase-integra
approximation. The classically allowed regions are 0.9,z,1.7, 3.6,z,4.4, and 6.3,z,7.1. In ~a! n51 and Aexact

522.845 113 870 188. In~b! n52 andAexact522.848 428 923 516. In~c! n53 andAexact522.850 090 112 763.
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FIG. 6. In this figureN53, k5k05k3, B550, andC532.6206. The figure shows the dependence onk of the energy
levels in two groups of fine structure levels which fork5` have the quantum numberss544 ands545 according to the
phase-integral quantization condition~2.7! with n51, 2, or 3. One more energy level is shown at the bottom of~a!. The
calculations have been performed by means of the numerically exact phase-amplitude method presented in App
but for k50 andk56` the energy levels can be characterized by the quantum numbern in ~2.7!. In ~a! the logarithmic
derivativek assumes values in a large interval~in principle from2` to 1`!. As mentioned above, the values ofn refer
to k56` or k50, but the values ofA in the figure refer tok5610. Note that the vertical axis in~a! is interrupted. In~b!
it is shown thatA changes rapidly in a comparatively small interval ofk-values. Note that the same eigenvaluesA for two
groups of fine structure levels are shown in~a! and~b! but that the scales of both horizontal and vertical axes differ stron
in ~a! and~b!. In ~c!, which is a magnification of a certain part of~b!, we show the four highest-lying energy levels of~a!
in a small interval ofk values aroundk525.17. These energy levels form in this interval ofk values a group offour
close-lying levels~two of which are extremely close lying!, which for k525.17 175 have the energiesA522.35 084,
22.23 703, 22.23 676, and 22.12 295. Note that the vertical axis in~c! is interrupted twice. The other energy levels of~a!
form for k525.17 175 a group ofthreestill more close-lying levels~two of which are extremely close lying! with the
energiesA521.32 385, 21.32 365, and 21.31 252. The two groups of energy levels are clearly separated from eac
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small intervals for the value of the logarithmic derivative in the boundary conditions there m
N11 instead of, in general,N close-lying energy levels. We have also verified this, at a curs
glance unexpected, feature of the energy spectrum; see Fig. 6. In a single-well potential th
function hass nodes in the well. It is, however, not common knowledge that in a multi-w
potential there may exceptionally be a well in which there ares11 nodes, if the absolute value o
the wave function is much smaller in that well than in the two adjacent wells. We have ve
this conclusion numerically forN53 ands50; see Figs. 4 and 5.

In the theory of crystals one uses boundary conditions implying either that the crys
enclosed in a potential box with infinitely high walls or~according to Born and von Ka´rmán! that
the wave function~defined in the whole infinitely large space! has the periodicity of the whole
crystal. For a one-dimensional crystal withN potential wells both these boundary conditions imp
that the quantization condition is@cf. ~2.7!#

FIG. 7. This figure has reference to the lowest fine structure level associated with the quantum numbers under consider-

ation and the case whenN53, k052k3 , B550, andK'2.7. The eigenvaluesA have been obtained from~2.8! with f̃
retained ands512, 28, 60, 91, and 123~corresponding to five different values ofC! along with~2.11a! and~2.10!. In ~a!
k052k351022. In ~b! k052k352. The errors of the fifth-order approximation are almost the same and of the same
as those of the third-order approximation. In~c! k052k3520. The third order of the phase-integral approximation
optimal, the fifth order being only slightly less accurate than the third order. In~d! k052k35100. The errors of the
seventh-order approximation are almost the same and of the same sign as those of the fifth-order approximatio~e!
k052k35104. The seventh order of the phase-integral approximation is optimal. The errors of the fifth order are
the same, but of opposite sign as those of the seventh-order approximation.
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L5~s11/2!p2f̃2arcsin
cos~np/N!

@exp~2K !11#1/2, ~5.1!

where for the boundary conditions associated with the potential box with infinitely high wallsn is
any integer such that 1<n<N, while for the boundary conditions of Born and von Ka´rmán 0
<n<N with n even whens is even andN2n even whens is odd. This shows the differenc
between the energy spectra associated with the two different boundary conditions in qu
When the crystal is enclosed in a potential box with infinitely high walls, the wave functio
uniquely determined~except for a constant normalization factor!. When the Born–von Ka´rmán

FIG. 8. This figure has reference to the lowest fine structure level associated with the quantum numbers under consider-

ation and the case whenN53, k052k3 , B550, andK'7.1. The eigenvaluesA have been obtained from~2.8! with f̃
retained ands58, 20, 44, 68, and 92~corresponding to five different values ofC! along with ~2.11a! and ~2.10!. In ~a!
k052k351022. In ~b! k052k352. The seventh order of the phase-integral approximation is optimal. The errors o
ninth order are only slightly larger than and of the same sign as those of the seventh order. In~c! k052k3520. The
seventh order of the phase-integral approximation is optimal, and the errors of the ninth order are slightly larger t
of the same sign as those of the seventh order. In~d! k052k35100. In ~e! k052k35104. The seventh order of the
phase-integral approximation is optimal, and the errors of the 11th-order approximation are almost the same an
same sign as those of the ninth-order approximation. As one should expect, this figure looks rather similar to Fig. 3~a!; see,
however, the comment at the end of Sec. IV.
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boundary condition is imposed, the wave function isuniquelydetermined~except for a constan
normalization factor! only for n50 andn5N, while everysolution of the Schro¨dinger equation
has the periodicity of the whole crystal when 1<n<N21. For both boundary conditions now
under consideration one finds, by comparing~2.4b! with ~5.1!, that the logarithmic derivative o
the wave function at the center of each barrier is equal to zero whenn50 but equal to infinity
whenn5N. The discussion in the beginning of the present section of the particular and no
ticular energy levels applies, of course, also when one imposes the two boundary condition
considered.
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APPENDIX A: PHASE-INTEGRAL APPROXIMATION GENERATED FROM AN
UNSPECIFIED BASE FUNCTION

For a detailed description of the phase-integral approximation generated from an unsp
base function we refer to Chap. 1 in Ref. 1. A brief description is given below.

Approximate, but often very accurate, solutions of the differential equation

d2c

dz2 1R~z!c50, ~A1!

whereR(z) is an analytic function, can be obtained by means of the arbitrary-order phase-in
approximation generated from an unspecified base function. In this approximation there a
an unspecified functionQ(z) called thebase function. This function is often chosen to be equal
R1/2(z), but in many physical problems it is important to use the possibility of choosingQ(z)
differently in order to achieve the result that the phase-integral approximation be valid clo
certain exceptional points~e.g., the origin in connection with the radial Schro¨dinger equation!,
where the approximation would fail, ifQ(z) were chosen to be equal toR1/2(z). The function
Q(z) is in general chosen such that it is approximately equal toR1/2(z) except possibly in the
neighborhood of the exceptional points.

To be able to write the phase-integral approximation in question in condensed form
introduces the new independent variable

z5Ez

Q~z! dz ~A2!

and the function

e05Q23/2~z!
d2

dz2 Q21/2~z!1
R~z!2Q2~z!

Q2~z!
. ~A3!

It can be shown that in a local region of the complexz plane where the absolute value ofe0 is
small, the differential equation~A1! has the approximate solutions

c~z!5q21/2~z! exp@6 iw~z!#, ~A4a!

w~z!5E
Z

z

q~z! dz, ~A4b!

where the lower limit of integrationZ is an unspecified constant, and the functionq(z), pertaining
to the phase-integral approximation of the order 2N11, is
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q~z!5 (
n50

N

q~2n11!~z!, ~A5a!

q~2n11!~z!5Q~z!Y2n , ~A5b!

with the first few functionsY2n given by

Y051, ~A6a!

Y25 1
2 e0 , ~A6b!

Y452
1

8
e0

22
1

8

d2e0

dz2 . ~A6c!

The choice of the functionQ(z) does not affect the expressions forY2n in terms of e0 and
derivatives ofe0 with respect toz, but only the expressions fore0 andz as functions ofz.

It is an essential advantage of the phase-integral approximation, briefly described a
versus the Carlini~JWKB! approximation in higher order that the former approximation conta
the unspecified base functionQ(z), which one can take advantage of in several ways. A criter
for the determination of the base function is that the functione0 be in some sense small in th
region of the complexz plane relevant for the problem under consideration. However, this c
rion does not determine the base functionQ(z) uniquely; it turns out that, within certain limits, th
results are not very sensitive to the choice ofQ(z), when the approximation is used in high
orders. An inconvenient, but possible, choice ofQ(z) introduces in the first-order approximatio
an unnecessarily large error that is, however, in general corrected already in the third
approximation. In many important cases the functionQ2(z) can be chosen to be identical toR(z).
In other important cases, for instance when one wants to include the immediate neighborh
a first- or second-order pole ofR(z) in the region of validity of the phase-integral approximatio
the functionQ2(z) is in general chosen to be similar toR(z) except in the neighborhood of th
pole. As regards a rather detailed discussion of the freedom that one has in the choice of th
function Q(z), we refer to Chap. 1 in Ref. 1.

APPENDIX B: EXTENSION OF THE PHASE-AMPLITUDE METHOD FOR ACCURATE
NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL SCHRÖ DINGER EQUATION

In this Appendix we present an extended version of the numerically exact phase-amp
method, initiated by Milne,2 Wilson,3 Young,4,5 and Wheeler,6 to apply to the accurate numerica
solution of the one-dimensional Schro¨dinger equation for a quantal particle in a potential cons
ing of N wells separated byN21 superdense barriers.

Consider the differential equation

d2c

dz2 1R~z!c50, ~B1!

where, for realz values,R(z) is positive inN regions that are separated byN21 regions in which
R(z) is negative. The boundary conditions are assumed to be

c8~z0!/c~z0!5k0 , ~B2a!

c8~zN!/c~zN!5kN , ~B2b!

wherez0 andzN(.z0) lie in regions whereR(z) is negative and are separated byN regions where
R(z) is positive andN21 regions whereR(z) is negative. We introduce in the regions whe
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R(z) is negative further pointsz1 ,...,zN21 such thatz0,z1,¯,zN21,zN . These points cor-
respond to the pointsx0 ,x1 ,...,xN21 , xN in Fig. 1. For the eigenvalue problem considered in
present paper, the potential is periodic in the region to the right ofx0 ~or z0! and to the left ofxN

~or zN!, but for the numerical phase-amplitude method to be described here this assumptio
not be introduced, nor need we here introduce any assumption concerning symmetry.

To solve the differential equation~B1! numerically we put

c5Fnq̂n
21/2~z!sinS E

zn21

z

q̂n~z!dzD 1Gnq̂n
21/2~z!cosS E

zn21

z

q̂n~z!dzD ,

zn21<z<zn , n51,...,N, ~B3!

whereFn and Gn are constants, andq̂n(z) is to be determined numerically as a nonoscillati
solution of theq equation

d2

dz2 q̂n
21/21R~z!q̂n

21/25q̂n
13/2, ~B4!

which one obtains by inserting~B3! into ~B1! and requiring that the resulting equation be satisfi
for all constant values ofFn andGn . In passing we remark that theq equation appears not onl
in the phase-amplitude method2–6 but also in connection with the Ermakov–Lewis invariant,7,8

which is discussed in Chap. 1 of Ref. 1; see also Ref. 9. The continuity ofc(z) andc8(z) at z
5zn , where 1<n<N21, gives the conditions

FnF q̂n
21/2~z!sinS E

zn21

z

q̂n~z!dzD G
z5zn

1GnF q̂n
21/2~z!cosS E

zn21

z

q̂n~z!dzD G
z5zn

5Fn11F q̂n11
21/2~z!sinS E

zn

z

q̂n11~z!dzD G
z5zn

1Gn11F q̂n11
21/2~z!cosS E

zn

z

q̂n11~z!dzD G
z5zn

~B5a!

and

FnH d

dzF q̂n
21/2~z!sinS E

zn21

z

q̂n~z!dzD G J
z5zn

1GnH d

dzF q̂n
21/2~z!cosS E

zn21

z

q̂n~z!dzD G J
z5zn

5Fn11H d

dzF q̂n11
21/2~z!sinS E

zn

z

q̂n11~z!dzD G J
z5zn

1Gn11H d

dzF q̂n11
21/2~z!cosS E

zn

z

q̂n11~z!dzD G J
z5zn

, ~B5b!

from which we obtain

Fn115
q̂n118 ~zn!/q̂n11

2 ~zn!2q̂n8~zn!/q̂n
2~zn!

2q̂n11
1/2 ~zn!q̂n

1/2~zn! FFn sinS E
zn21

zn
q̂n~z!dzD 1Gn cosS E

zn21

zn
q̂n~z!dzD G

1
q̂n

1/2~zn!

q̂n11
1/2 ~zn! FFn cosS E

zn21

zn
q̂n~z!dzD 2Gn sinS E

zn21

zn
q̂n~z!dzD G , n51,...,N21,

~B6a!
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and

Gn115
q̂n11

1/2 ~zn!

q̂n
1/2~zn! FFn sinS E

zn21

zn
q̂n~z!dzD 1Gn cosS E

zn21

zn
q̂n~z!dzD G , n51,...,N21.

~B6b!

The boundary conditions~B2a! and ~B2b! give

F1H d

dzF q̂1
21/2~z!sinS E

z0

z

q̂1~z!dzD G J
z5z0

1G1H d

dzF q̂1
21/2~z!cosS E

z0

z

q̂1~z!dzD G J
z5z0

5k0H F1F q̂1
21/2~z!sinS E

z0

z

q̂1~z!dzD G
z5z0

1G1F q̂1
21/2~z!cosS E

z0

z

q̂1~z!dzD G
z5z0

J
~B7a!

and

FNH d

dzF q̂N
21/2~z!sinS E

zN21

z

q̂N~z!dzD G J
z5zN

1GNH d

dzF q̂N
21/2~z!cosS E

zN21

z

q̂N~z!dzD G J
z5zN

5kNH FNF q̂N
21/2~z!sinS E

zN21

z

q̂N~z!dzD G
z5zN

1GNF q̂N
21/2~z!cosS E

zN21

z

q̂N~z!dzD G
z5zN

J .

~B7b!

From ~B7a! and ~B7b! we obtain

F15S k0

q̂1~z0!
1

q̂18~z0!

2@ q̂1~z0!#2DG1 ~B8a!

and

E
zN21

zN
q̂N~z!dz5 ŝp1arctan

FN2GN~kN /q̂N~zN!1q̂N8 ~zN!/2@ q̂N~zN!#2!

FN~kN /q̂N~zN!1q̂N8 ~zN!/2@ q̂N~zN!#2!1GN
, ~B8b!

whereŝ is an integer.
To determine the functionsq̂n(z) one starts the integration of the differential equation~B4! in

the middle of the actual potential well by using forq̂n(z) a phase-integral expression of conv
nient order. When the functionsq̂n(z), n51,...,N, have been calculated, we obtain from~B8a! F1

expressed in terms ofG1 or G1 expressed in terms ofF1 , and from~B6a! and~B6b! we succes-
sively obtainF2 ,G2 ;...;FN ,GN . By inserting the values ofFN andGN thus obtained into~B8b!,
we obtain a quantization condition from which the energy eigenvalues can be calculat
iteration.

There occur numerical difficulties when the potential is periodic and one tries to trea
particular fine structure level~corresponding to a given value ofŝ! by means of the genera
formulas that we have so far presented in this Appendix. One can overcome these difficul
noting that the wave function of theparticular fine structure level has the period of the potent
and thus can be obtained if one putsN51. Therefore we shall now give formulas that apply
N51.
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Particularization to the case when N51

WhenN51 we obtain from~B8a! and ~B8b!

E
z0

z1
q̂1~z!dz5 ŝp1arctan

~k0 /q̂1~z0!1q̂18~z0!/2@ q̂1~z0!#2!2~k1 /q̂1~z1!1q̂18~z1!/2@ q̂1~z1!#2!

~k0 /q̂1~z0!1q̂18~z0!/2@ q̂1~z0!#2!~k1 /q̂1~z1!1q̂18~z1!/2@ q̂1~z1!#2!11
.

~B9!

For the further particularization that the functionR(z) is mirror symmetric, that the pointsz0 and
z1 lie mirror symmetrically, and that the functionq̂1(z) is mirror symmetric@and henceq̂1(z0)
5q̂1(z1) and q̂18(z0)52q̂18(z1)#, the quantization condition~B9! simplifies to

E
z0

z1
q̂1~z!dz5 ŝp1arctan

~k02k1!q̂1~z0!1q̂18~z0!

~k01q̂18~z0!/2q̂1~z0!!~k12q̂18~z0!/2q̂1~z0!!1@ q̂1~z0!#2 . ~B10!

From ~B10! we obtain whenk15k0

E
z0

z1
q̂1~z!dz5 ŝp1arctan

q̂18~z0!

k0
22~ q̂18~z0!/2q̂1~z0!!21@ q̂1~z0!#2 , ~B11a!

and whenk152k0

E
z0

z1
q̂1~z!dz5 ŝp1arctan

2k0q̂1~z0!1q̂18~z0!

@ q̂1~z0!#22~k01q̂18~z0!/2q̂1~z0!!2 . ~B11b!

We shall now show how approximate phase-integral quantization conditions can be ob
from the numerically exact phase-amplitude quantization conditions~B11a! and~B11b!. When the
barriers are thick, and the phase of the base function is chosen conveniently, we have a
mately

q̂1~z0!52 iq1~z0!exp@22iw1~z0!#, ~B12!

where q1(z0) is the asymptotic phase integrand given by~A5a! and ~A5b!, and w1(z0) is the
corresponding asymptotic phase integral~A4b! with the constant lower limit of integration for th
first-order approximation chosen to lie at the right-hand turning pointt09 of the barrier in whichz0

is situated. When a higher-order approximation is used,w1(z0) is a related contour integral; se
Eq. ~4.3.3! in Ref. 1. Since the barrier in question is assumed to be mirror symmetric, withz0 lying
at its center,~B12! can be written as

q̂1~z0!5uq1~z0!uexp~2K !, ~B128!

with K given by ~2.6!. From ~B12! we obtain approximately

q̂18~z0!52 iq18~z0!exp@22iw1~z0!#12@2 iq1~z0!#2 exp@22iw1~z0!#

52@2 iq1~z0!#2 exp@22iw1~z0!#F11
iq18~z0!

2@q1~z0!#2G
'2@2 iq1~z0!#2 exp@22iw1~z0!#

52uq1~z0!u2 exp~2K ! ~B13!

and hence, with the aid of~B128!,

q̂18~z0!

2q̂1~z0!
'uq1~z0!u. ~B14!
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Inserting ~B128!, ~B13!, and ~B14! into ~B11a! and ~B11b!, respectively, and noting that th
barriers are assumed to be thick@exp(22K)!1#, we obtain theapproximatequantization condi-
tions

E
z0

z1
q̂1~z!dz5 ŝp1arctan

2 exp~2K !

uk0 /q1~z0!u2211exp~22K !

' ŝp1arctan
2 exp~2K !

uk0 /q1~z0!u221
, k15k0 , ~B15a!

and

E
z0

z1
q̂1~z!dz5 ŝp2arctan

2 exp~2K !@k0 /uq1~z0!u11#

@k0 /uq1~z0!u11#22exp~22K !

' ŝp2arctan
2 exp~2K !

uk0 /q1~z0!u11
, k152k0 , ~B15b!

respectively. The numerically exact functionq̂1(z) is approximately the same as the asympto
function q1(z) in the interior of the classically allowed region, butq̂1(z) differs essentially from
q1(z) in the classically forbidden regions; see~B128!. Putting

E
z0

z1
q̂1~z!dz5E

~ t09!

~ t18!
q1~z!dz1p/21f̃2exp~2K !, ~B16a!

ŝ5s11, ~B16b!

one can from~B15a! approximately obtain the phase-integral quantization condition~2.4b8!,
which is valid forN51 whenk15k05k, and one can from~B15b! approximately obtain

E
~ t09!

~ t18!
q1~z!dz5S s1

1

2Dp2f̃1
k0 /uq1~z0!u21

k0 /uq1~z0!u11
exp~2K !, ~B17!

which is the correct approximate phase-integral quantization condition when the barriers ar
andN51 andk152k0 . Because of the one-directional nature of the connection formulas,~B17!
is expected to be valid only whenk0>0.

1N. Fröman and P. O. Fro¨man,Phase-Integral Method Allowing Nearlying Transition Points, with adjoined papers by A.
Dzieciol, N. Fröman, P. O. Fro¨man, A. Hökback, S. Linnaeus, B. Lundborg, and E. Walles, Springer Tracts in Nat
Philosophy, edited by C. Truesdell~Springer-Verlag, New York, 1996!.
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Instability of a pseudo-relativistic model of matter
with self-generated magnetic field

Marcel Griesemera),b) and Christian Tix
Mathematik, Universita¨t Regensburg, D-93040 Regensburg, Germany

~Received 23 November 1998; accepted for publication 23 November 1998!

For a pseudo-relativistic model of matter, based on the no-pair Hamiltonian, we
prove that the inclusion of the interaction with the self-generated magnetic field
leads to instability for all positive values of the fine structure constant. This is true
no matter whether this interaction is accounted for by the Breit potential, by an
external magnetic field which is chosen to minimize the energy, or by the quantized
radiation field. © 1999 American Institute of Physics.@S0022-2488~99!01203-7#

I. INTRODUCTION

The stability of matter problem concerns the questions whether the minimal energy
system of particles is bounded from below~stability of the first kind!, and whether it is bounded
from below by a constant times the number of particles~stability of the second kind!. Stability of
the second kind for nonrelativistic quantum-mechanical electrons and nuclei was first pro
1967 by Dyson and Lenard.1,2 Since the new proofs of Lieb and Thirring, and Federbush in 1
stability of matter is a subject of ongoing interest dealing with more and more realistic mod
matter such as systems with a classical or quantized magnetic field included or with relat
electrons~see Ref. 3 and the references therein!. Stability with relativistic electrons is more subtl
because of the uniform 1/length scaling behavior of the energy, which holds for massless pa
~high particle–energy limit!. Then the minimal energy is either non-negative or equal2`, so that
stability of the second kind becomes equivalent to the statement that stability of the first kind
for any given number of particles. We simply call this stability henceforth.

This paper is about a pseudo-relativistic model of matter which is stable, but which bec
unstable when the electrons are allowed to interact with the self-generated magnetic fiel
self-generated magnetic field may be described using either an effective potential~the Breit-
potential!, an external magnetic field over which the energy is minimized, or the quantized r
tion field. In all these cases we find instability for all positive values of the fine-structure con
In contrast to most other models, where the collapse of the system, if it occurs, is due
attraction of electrons and nuclei4–7 ~there would be no collapse without this interaction!, the
instability here is due to the attraction of parallel currents.

The model we study is based on a pseudo-relativistic Hamiltonian sometimes calle
no-pair or Brown–Ravenhall Hamiltonian describingN relativistic electrons andK fixed nuclei
interacting via Coulomb potentials. The electrons are vectors in the positive energy subsp
the free Dirac operator and their kinetic energy is described by this operator. For a ph
justification of this model see the papers of Sucher,8,9 for applications of the model in computa
tional atomic physics and quantum chemistry; see Ishikawa and Koc10,11 and Pyykko¨.12 The
Brown–Ravenhall Hamiltonian yields stability for sufficiently small values of the fine-struc
constant and the charge of the nuclei,13–16,3there are further rigorous results concerning the vir
theorem17 and eigenvalue estimates.18

We are interested in the minimal energy of this model when it is corrected to account fo
interaction of the electrons with the self-generated magnetic field. This correction may be

a!Present address: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 352
b!Electronic mail: marcel@uab.math.edu
17800022-2488/99/40(4)/1780/12/$15.00 © 1999 American Institute of Physics
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for instance, by introducing a external magnetic field“3A to which the electrons are the
minimally coupled and whose field energy is added to the energy of the system. The fieldA is now
considered part of the system and hence the energy is to be minimized w.r.t.A as well. The
minimizing A for a given electronic state is the self-generated one~to avoid instability for trivial
reasons the gauge ofA has to be fixed!. The energy of this system is unbounded from below
Na3/2 is large,a being the fine structure constant, even if the vector potential is restricted to
a two parameter class$gA0(dx):g,dPR1% whereA0 is fixed and obeys a weak condition requ
ing not much more thanA0Ó0. This is our first main result. It extends a previous result of L
et al.3 and is reminiscent of the fact that a static nonvanishing classical magnetic field in Q
not regular, in the sense that the dressed electron–positron emission and absorption oper
not realize a representation of the CAR on the Fock space of the free field.19

Alternatively the energy-shift due to the self-generated magnetic field may approximate
taken into account by including the Breit-potential in the energy. The resulting model is uns
as well. That is, the energy is unbounded from below ifNa3/2 is large, no matter how smalla is.
This is our second main result. It concerns a Hamiltonian that is closely related the D
Coulomb–Breit or Dirac–Breit Hamiltonian, which is the bases for most calculations of rel
istic effects in many electron atoms.8,12 We mention that fora51/137 the energy is bounde
below if N<39 and unbounded below ifN>3.43107 ~Theorem 4 and Theorem 3!.

A third way of accounting for the self-generated field is to couple the electrons to the q
tized radiation field. From a simple argument using coherent states~Lemma 5! it follows that the
instability of this model is rather worse than the instability of the model first discussed.

As mentioned above the instability with the external magnetic field was previously foun
Lieb et al.3 Our result extends their result and our proof is simpler. The model with the B
interaction corresponds to the classical system described by the Darwin Hamiltonian, whic
been studied in the plasma physics literature~see Ref. 20 and the references therein!. This classical
model is thermodynamically unstable as well.21

In Secs. II, III, and IV we introduce the models with an external magnetic field, with
Breit-potential, and with quantized radiation field, and prove their instability~Theorem 1, Theo-
rem 3, and Lemma 5!. In Sec. III we also discuss dynamic nuclei for the model with Bre
potential. There is an appendix where numerical values for stability bounds onNa3/2 given in the
main text are computed.

II. INSTABILITY WITH CLASSICAL MAGNETIC FIELD

We begin with the model of matter with an external magnetic field. For simplicity,
electrons are assumed to be noninteracting, and no nuclei are present. We could just as w
a system of interacting electrons and static nuclei and would obtain essentially the same res~see
Remark 4 below!.

Consider a system ofN noninteracting electrons in the external magnetic field“3A. The
energy of this system is

EN~c,A!5K c, (
m51

N

Dm~A!cL 1
1

8p E u“3A~x!u2dx,

whereDm(A) is the Dirac operatorD(A)5a•(2 i“1a1/2A(x))1bm acting on them-th particle,
and the vectorc, describing the state of the electrons, belongs to the Hilbert space,

HN5 ∧
m51

N

L1L2~R3,C4!,

L15x~0,̀ !~D~A[0!!,
                                                                                                                



,
hat the

ot
ed

he

i with

d

,

n-

1782 J. Math. Phys., Vol. 40, No. 4, April 1999 M. Griesemer and C. Tix

                    
or rather the dense subspaceDN5HNùH1@(R33$1,...,4%)N#. That is, an electron is, by definition
a vector in the positive energy subspace of the free Dirac operator. We will always assume t
vector potentialA belongs to the classA defined by the properties

~ i ! “•A50,

~ i i ! A~x!→0, as uxu→`,

~ i i i ! E
R3

u“3Au2,`.

Notice thatHN is not invariant under multiplication with smooth functions, in particular, it is n
invariant under gauge transformations of the states. It follows that the minimal energy for fixA
is gauge-dependent. It can actually be driven to2` by a pure gauge transformation~see Remark
3 below!. To avoid this trivial instability we fixed the gauge ofA by imposing conditions~i! and
~ii !.

The constantsa.0 andm>0 in the definition ofD(A) are the fine-structure constant and t
mass of the electron, respectively. In our units\515c, so thata5e2 which is about 1/137
experimentally. We denote the Fourier transform of a functionf by f̂ or F( f ) and usep or k for
its argument rather thanx or y. Our first result is the following.

Theorem 1: SupposeAPA is such that Re@e•Â(p)#,0 in B(0,e) for someePR3 and e
.0. Then there exist a constant CA such that for alla.0, m>0 and N>CAa23/2,

inf
cPDN ,ici51,g,dPR1

EN~c,gA~dx!!52`.

Remarks:

1. It is sufficient thatAPAùL1 and *R3A(x)dxÞ0, sinceÂ is then continuous andÂ(0)Þ0.
Thus, we have instability for virtually all nonvanishingAPA.

2. The smallness ofNa3/2 is not only necessary but also sufficient for stability~see Ref. 3, Sec. 4!.
3. If the condition~ii ! that A vanishes at infinity~and thus the gauge fixing! is dropped there is

instability even forN51 and the theorem becomes trivial. In fact, forN51 and A(x)[a
Þ0, EN51(c,gA)5^c,D(0)c&1ga1/2a*c1(x)ac(x)dx which, as a function ofg, is un-
bounded from below for suitablecPL1L2(R3,C4).

4. The statement of the theorem also holds for the system of electrons and static nucle
energyEN(c,A)1a^c,Vcc& where

Vcª2(
m51

N

(
k51

K
Zk

uxm2Rku
1 (

m,n

N
1

uxm2xnu
1 (

k,s

K
ZkZs

uRk2Rsu
, ~1!

if both N and (k51
K Zk are bigger thanCAa23/2 and if the energy is, in addition, minimize

with respect to the pairwise distinct nuclear positionsRk . ~See the proof of Theorem 3.!
5. Quantizing the radiation field does not improve the stability of the system~see Sec. IV!.

The only way to restore stability we know is to replaceHN by theA-dependent Hilbert space

HN,A5 ∧
m51

N

x~0,̀ !~D~A!!L2~R3,C4!.

ObviouslyEN(c,A)>0 for cPHN,A . In fact, evenEN(c,A)1a^c,Vcc& is non-negative forZk

anda small enough.3

Proof of Theorem 1: We will only work with Slater determinants and the following represe
tation of one-particle orbitals. IfuPL2(R3;C2) then
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ĉ~p!5S E~p!1m

2E~p! D 1/2S u~p!

s•p

E~p!1m
u~p!D , ~2!

with E(p)5Ap21m2, is the Fourier transform of a vectorcPL1L2, and the map
u°c, L2(R3;C2)→L1L2(R3;C4) is unitary.

It suffices to consider the casem50 and find a Slater determinantc5c1∧¯∧cN andg, d
PR1 such thatEN(c,gA(dx)),0. In fact, by the scalingc°cd , A°Ad defined byum,d

5d23/2um(d21p) andAd(x)5dA(dx) we can then drive the energy withm.0 to 2` because
E(cd ,Ad ,m)5dE(c,A,m/d) andE(c,A,m/d)→E(c,A,m50) for d→`.

Choice ofc: Let Q be the unit cube$pPR3u0<pi<1%, u(p)5(xQ(p),0)T, and ePR3 an
arbitrary unit vector. Set

um~p!5u~p2lN1/3e2nm!, m51,...,N, ~3!

wherel is a positive constant to be chosen sufficiently large later on, and (nm)m51, . . . ,N,Z3 are
the N lattice sites nearest to the origin, i.e., maxm51, . . . ,Nunmu is minimal. We definec
5c1∧¯∧cN by

ĉm~p!5
1

&
S um~p!

s•vpum~p! D , vp5
p

upu
, ~4!

which is ~2! for m50. ThencPHN and ^cm ,cn&5^um ,un&5dmn . Notice that

up2lN1/3eu<N1/3, for all pPsupp~um!, ~5!

at least for largeN ~see the Appendix!, i.e., in Fourier space all electrons are localized in a b
with radiusN1/3 and a distance from the origin which is large compared to the radius~sincel will
be large!.

Sincec5c1∧¯∧cN andm50 we have

EN~c,A!5 (
m51

N

^cm ,u“ucm&1a1/2(
m51

N E Jm~x!A~x!dx1
1

8p E u“3A~x!u2dx, ~6!

whereJm(x)5cm* (x)acm(x). By definition ofcm ,

Ĵm~p!5
1

2
~2p!23/2E um* ~k2p!@s~vk•s!1~vk2p•s!s#um~k!dk. ~7!

Replace hereum by its defining expression and substitute (k2lN1/3e2nm)°k. Since
vk1lN1/3e1nm

→e asl→`, and sinceu has compact support, it follows thatĴm(p) converges to
the current

Ĵ0~p!5e~2p!22/3E u* ~k2p!u~k!dk, ~8!

asl→`. More precisely,uĴm(p)2 Ĵ0(p)u<Cl21uĴ0(p)u for l>l0 wherel0 andC are indepen-
dent ofm andN. From Ĵ0(p)upu21, Â(p)upuPL2, it follows that

E Ĵm* ~p!Â~p!dp5E Ĵ0* ~p!Â~p!dp1O~l21!, l→`. ~9!
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After a scalingA°Ad we may assume that Re@e•Â(p)#,0 in the support ofĴ0 rather than in
B(0,e), so that~9! is bounded from above by some2c1,0 for l>l0 wherec1 and l0 are
independent ofm andN. Observing finally that

^cm ,u“ucm&5E uĉm~p!u2upudp<~l11!N1/3, ~10!

for all m, we conclude that

EN~c,gA!<~l011!N4/32a1/2gNc11g2c25~l011!N4/32a
c1

2

4c2
N2,

which is negative forNa3/2 large enough. At the end we inserted the optimalg. h

The theorem has the obvious corollary.
Corollary 2: There is a constantC such that for alla.0, m>0 andN>Ca23/2,

inf
cPDN ,ici51;APA

EN~c,A!52`.

This result is due to Lieb, Siedentop, and Solovej.3

Remark: It is sufficient thatC51.43105 or thatN>3.43107 for a215137; see the Appen
dix.

To conclude this section we compute minAPAEN(c,A). This will provide a link to the insta-
bility with Breit-potential discussed in the next section. To exhibit theA-dependence, we write th
energy as

EN~c,A!5EN~c,A[0!1a1/2E J~x!A~x!1
1

8p E u“3A~x!u2dx,

whereJ~x! is the probability current density associated withc. Its functional dependence onc is
not crucial here. A straightforward computation shows that the Euler–Lagrange equation foA is
2DA54pa1/2JT where JT is the divergence-free—or transversal—part ofJ. Comparing this
equation with the Maxwell-equation forA in Coulomb gauge, which ishA54pa1/2JT , we find
that the minimizing magnetic field is the self-generated one up to effects of retardation. S
the Euler–Lagrange equation gives

min
APA
EN~c,A!5EN~c,A[0!2

a

2 E JT~x!JT~y!

ux2yu
dx dy. ~11!

III. INSTABILITY WITH BREIT-POTENTIAL

A. Static nuclei

We now consider a system ofN ~interacting! electrons in the external electric field ofK static
nuclei. There is no external magnetic field but a self-generated one which is approximate
counted for by the Breit-potential. The energy is now

EN~c,R!5K c,S (
m51

N

Dm1a~Vc2B!DcL , ~12!

where

B5 (
m,n

N
1

2uxm2xnu S (i
a i ,m ^ a i ,n1

am•~xm2xn! ^ an•~xm2xn!

uxm2xnu2 D , ~13!
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and Vc is the Coulomb potential defined in~1!. R denotes theK-tuple (R1 ,...,RK) of pairwise
different nuclear positions, andDm5Dm(A[0). As before,c belongs toDN,HN . The interac-
tion 2aB is usually derived from the corresponding interaction in the Darwin Hamiltonian by
quantizationp/m°a22 or from QED: treating the interactions of the electrons with the quanti
radiation field in second order perturbation theory leads to a shift of the bound state energy
approximately given by2a^c,Bc&.23 Important for our purpose is that

^c,Bc&1S self-energy &
exchange termsD5

1

2 E JT~x!JT~y!

ux2yu
dx dy, ~14!

for any Slater determinantc5c1∧¯∧cN of orthonormal functionscm ~see the proof of Theorem
3!.

We are interested in the lowest possible energy,

EN,K5 inf EN~c,R!,

where the infimum is taken over allcPDN with ici51 and allK-tuples (R1 ,...,RK) with Rj

ÞRk for j Þk. Our second main result is the following.
Theorem 3: There exists a constantC such that for alla.0, m>0, KPN and Z1 ,...,ZK

PR1 ,

EN,K52`,

wheneverN, (k51
K Zk>C max(a23/2,1). If (Zk

2>1 it suffices thatC553104 or—when a21

5137—that N5(k51
K Zk>3.43107.

Remarks:

1. Similar to Section I,Vc and hence the condition on(k51
K Zk may be dropped. Then there

instability for N>C max(a23/2,1). It is for completeness of the model that we keepVc in this
section.

2. WithoutB the energy is proven to be non-negative ifaZk<2/p for all k and if a<1/946 ~see
also Ref. 3!. One expects, however, stability, even foraZk<2(2/p1p/2)21,a<0.12,13,16

which would cover the atomic numbers of all known elements.

At least partly, this theorem can be understood from Corollary 2, Eq.~11! and Eq.~14!.
Proof of Theorem 3:To begin with, we prove~14!. Let c5c1∧¯∧cN with ^cm ,cn&

5dmn and let J(x)5(m51
N cm

1(x)acm(x) be the current density ofc. Note that ĴT,i(p)
5( j 51

3 (d i j 2pipj /p2) Ĵ j (p) and that

F
4p

p2 S d i j 2
pipj

p2 D5
1

2uxu S d i j 1
xixj

x2 D .

With B(x) defined by

B~x!5
1

2uxu (i , j a i S d i j 1
xixj

x2 Da j5
1

2uxu S (i
a i ^ a i1

a•x^ a•x

uxu2 D ,

it follows that

1

2 E JT~x!JT~y!

ux2yu
dx dy5

1

2 (
m,n

^cm ^ cn ,B~x2y!cm ^ cn&5^c,Bc&

1
1

2 (
m,n

^cm ^ cn ,B~x2y!cn ^ cm&, ~15!
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which is Eq.~14!. Similar as in the proof of Theorem 1 it suffices to consider the casem50 and
to find a Slater determinantc5c1∧¯∧cN and nuclear positionsR1 ,...,RK such thatEN(c,R)
,0.

Choice of the nuclear positions:A beautiful argument given in Ref. 3 shows that, aft
moving some electrons or nuclei far away from all others,

^c,Vcc&<e1
1

2N2 (
m,n

E ucm~x!u2ucn~y!u2

ux2yu
dx dy,

for suitably chosen nuclear positions. Here«.0 is the~arbitrary small! contribution of the par-
ticles moved away. The second term can be dropped if(k51

K Zk
2>1. We use the inequality ob

tained in Ref. 14 to estimate it from above, and find

^c,Vcc&<e1const
1

N (
m51

N

^cm ,Dcm&. ~16!

The numberN of remaining electrons obeysN,(Zk11 which is the reason for the assumptio
on (Zk . Of course, the choice of the nuclear positions depends onc, which has not been specifie
yet.

Define one-particle orbitalscm and currentsJm andJ0 exactly as in the proof of Theorem
with e being an arbitrary unit vector inR3. The convergenceĴm(p)→ Ĵ0(p) asl→` now implies
that

1

2 E JT~x!JT~y!

ux2yu
dx dy5N2F1

2 E J0,T~x!J0,T~y!

ux2yu
dx dy1O~l21!G>c2N2, ~17!

for l>l0 , wherel0 andc2.0 are independent ofN.
To estimate the sum of exchange- and self-energy terms in~15!, notice that

^cm ^ cn ,B~x2y!cn ^ cm&5E 4p

p2 uĴmn,T~p!u2 dp, ~18!

whereJmn(x)5cm* (x)acn(x). After writing Ĵmn(p) as an integral in Fourier space in terms ofum

andun similar as in~7!, it is easily seen, using the support properties ofum andun , that

uĴmn,T~p!u2<uĴmn~p!u2<3~2p!23x~ up1nm2nnu<) !. ~19!

TheN ballsB(nn ,)), n51,...,N all lie in the ballB(0,N1/3) and cover a given point, at most, sa
43564 times~replace the balls by cubes with side 2)!. Therefore~19! implies that

(
n51

N

uĴmn~p!u2<192~2p!23x~ up1nmu,N1/3!<
24

p3 x~ upu,2N1/3!,

which, in conjunction with~18!, gives

1

2 (
m,n

^cm ^ cn ,B~x2y!cn ^ cm&<
384

p
N4/3. ~20!

Rewriting the energy using~15! and inserting the estimates~16!, ~10!, ~17!, and~20! we arrive
at

EN~c,R!<c1~11a!N4/32c2aN2, c2.0,

which is negative forN.const max(a23/2,1). This proves the theorem.
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For smallN and smalla there is stability. A similar result for the energy in Sec. I was prov
in Ref. 3.

Theorem 4: Supposeã<1/94, maxk Zk<2/pã21 and N21<2(2/p1p/2)(a212ã21).
ThenEN,K>0. Insertingã51/94 anda51/137 we find stability forN<39 and maxZk<59.

Proof: Since B(x)<2/uxu on C4
^ C4 and 1/uxu<d21D on L1L2(R3;C4) where d52(2/p

1p/2),14 one has, by the symmetry property of the states inHN ,

B<
N21

d (
m51

N

Dm , on HN . ~21!

Furthermore,

Vc>2
1

ã (
m51

N

Dm , on HN , ~22!

for all ã.0 with ã maxZk<2/p andãq<1/47 by Ref. 6, where the numberq of spin states may
be set equal to 2.3 Inserting~21! and ~22! in the energy proves the theorem. h

B. Dynamic nuclei

Making the nuclei dynamical would improve stability if their kinetic energy were the o
term we added to~12!. However, if the nuclei are relativistic spin 1/2 particles like the electr
and if the Breit-potential couples all pairs of particles, taking their charges into account, the
instability will actually become worse.

Let us illustrate this for a system ofN electrons andK identical nuclei of spin 1/2 and atomi
numberZ.0. These nuclei are described by vectors in the positive energy subspace of th
Dirac operator with the massM.0 of the nuclei. To prove instability we adopt the strategy of
proof of Theorem 3 and thus assumeM50 andm50. As a trial-wave function we take

c5~c1∧¯∧cN! ^ ~f1∧¯∧fK!,

where cm is defined by Eqs.~3! and ~4! and fk is defined likeck , except thate and N are
replaced by2e and K, respectively. It follows that in the limitl→` we getN1K ~charge-!
currents, the nuclear ones being larger than the electronic ones by a factor ofZ but otherwise
identical. The Breit interaction thus gives a negative contribution to the energy of ordera(N
1ZK)2. While the parallel currents of theN1K particles add up, the opposite charges of
electrons and nuclei cancel themselves. In fact, forc defined as above,

^c,Vcc&< (
m,n

N E dx dy
ucm~x!u2ucn~y!u2

ux2yu
1Z2 (

k,s

K E dR1 dR2

ufk~R1!u2ufs~R2!u2

uR12R2u

2Z(
k51

K

(
m51

N E dx dR
ucm~x!u2ufk~R!u2

ux2Ru

5FN~N21!

2
1Z2

K~K21!

2
2NKZG~ I 1O~l21!!

5@~KZ2N!22KZ22N#~ I /21O~l21!!, ~23!

whereI is the limit of the above double integrals asl→`. Hence,̂ c,Vcc& is negative, e.g., if
KZ5N andl is large. To achieve this in the static case we had to choose the nuclear pos
properly. It is instructive to recall how this was done. The total energy is bounded from abo
c1(N4/31K4/3)2c2a(N1KZ)2, c2.0, for N5KZ and l large, and is therefore negative forN
5KZ large enough.
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IV. STABILITY AND INSTABILITY WITH QUANTIZED RADIATION FIELD

Instability for the model with a classical magnetic field implies instability for the model w
a quantized radiation field without UV-cutoff. In fact, for each classical magnetic field there
coherent state of photons which reproduces the classical field as far as the energy is conce
an UV-cutoff is introduced the relativistic scale invariance of the energy is broken and stabil
the first kind is restored. The lower bound depends on the cutoff and goes to2` as the cutoff is
removed.

The state of the system is now described by a vectorCPHN^F whereF denotes the bosonic
Fock-space overL2(R3) ^ C2, the factorC2 accounting for the two possible polarizations of t
transversal photons, and the total energy ofC is

EN
qed~C!5K C, (

m51

N

@am•~2 i“m1a1/2A~xm!!1bmm#CL 1^C,~1^ H f !C&,

H f5 (
l51

2 E dkukual
†~k!al~k!,

where

A~x!ª(
l51

2 E dk@el~k!eikx
^ al~k!1el~k!e2 ikx

^ al
†~k!#5:A1~x!1A1~x!*

is the quantized vector potential in the Coulomb gauge. The operatorsal(k) and al
†(k) are

creation and annihilation operators acting onF and obeying the CCR,

@al~k1!,am
† ~k2!#5dlmd~k12k2!, @al

#~k1!,am
# ~k2!#50,

whereal
]5al or al

† , and the two polarization vectorsel(k) are orthonormal and perpendicular
k for eachkPR3. We usedk as a short hand for (2p)23/2(2uku)21/2dk, and the subindex ofam ,
“m and bm indicates that these one-particle operators act on them-th particle. While we used
Gaussian units in Secs. II and III we now work with Heaviside Lorenz units.

Lemma 5:For eachAclPAùL2(R3) there exists a vectoruPF ~coherent state! such that

EN
qed~c ^ u!5EN~c,Acl!,

for all cPDN .
Proof: Pick AclPAùL2(R3) and definehl(k)5(uku/2)1/2el(k)•Âcl(k) so that Acl(x)

5Acl
1(x)1Acl

1(x)* with

Acl
1~x!5 (

l51

2 E dk hl~k!el~k!eikx. ~24!

Next, set

P~h!ª i (
l51

2 E dk@hl~k!al
†~k!2hl~k!al~k!#,

andQ5e2 iP(h)VPF. Q is called a coherent state, it is normalized, and, most importantly,
an eigenvector of all annihilation operators,

al~k!Q5hl~k!Q. ~25!

From ~24!, ~25!, and the definition ofhl(k) it follows that
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amA1~xm!c ^ Q5~amAcl
1~xm! ^ 1!c ^ Q

and

^Q,H fQ&5E dkuku(
l

uhl~k!u25
1

2 E dk k2uÂcl~k!u2.

Inserting this in the energy proves the theorem. h

If an ultraviolet cutoff is introduced in the field operatorA~x! then stability of the first kind is
restored for allN and a certain range of values fora andZk . This follows from Ref. 24, Lemma
I.5 and Ref. 3, Theorem 1.
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APPENDIX: NUMERICAL ESTIMATES

To obtain the numerical values for the constants in Corollary 2 and Theorem 3 we follo
proof of Theorem 3 up to a few modifications, and explicitly evaluate the constants in this p

The main modifications are that the two-spinoru is now defined in terms of the~normalized!
characteristic function of the ball with radius 1/2 contained in the unit cube$pu0<pi<1% and that
the 4-spinorsc2m21 are defined in terms of thec2m’s by interchanging the components ofu, while
n2m21 runs over theN/2 or—if N is odd—the (N11)/2 lattice sites ofZ3 closest to the origin. The
balls simplify the computation ofĴ0(p) and the double occupationn2m215n2m reduces the kinetic
energy. To begin with, we note that then unit cubes of the latticeZ3 which are closest to the
origin, all fit in a ball of radius

n1/3S 3

4p D 1/3

1).

In particular, theN/2 or (N11)/2 unit cubes containing the supports of the spinorscm , m
51,...,N all lie in the ball of radiusbN1/3 centered atlN1/3e whereb51/2 if N>1.23107, b
53/5 if N>53103 andb5) if N>1 ~the ball of radius)n1/3 contains never less thann lattice
cubes!. This replaces Eq.~4! and implies, together with Eqs.~7! and ~8!, that

uĴm~p!2 Ĵ0~p!u<
6b

l2b
uĴ0~p!u, l.b.

Using this anduĴ0(p)u51/2(2p)23/2(12p)2(21p) one finds

E JT~x!JT~y!

ux2yu
dx dy5 (

m,n51

N E dp
4p

p2 Ĵm* ~p!TĴn~p!

>N2F E dp
4p

p2 Ĵ0* ~p!TĴ0~p!2
12b

l2b E dp
4p

p2 uĴ0~p!u2G
5N2F12

18b

l2bG 11

35p
, ~A1!
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where T is the 333 matrix with the componentsTi j 5d i j 2pipj /p2. This replaces~17!. We
proceed to bound the self-energy and exchange terms. Inequality~19! becomes

uĴmn~p!u2<3~2p!23x~ up1nm2nnu<1!, ~A2!

because the support ofu now has diameter 1 not). Since theN ballsB(nn,1) cover a given point,
at most, 8 times~recall that nown2n215n2n) inequality ~A2! leads to the bound

1

2 (
m,n

^cm ^ cn ,B~x2y!cn ^ cm&<
48

p
bN4/3, ~A3!

improving~20!. The kinetic energy is bounded by (l1b)N4/3 and^c,Vcc&<0 since(Zk5N and
(Zk

2>1. In conjunction with~A1! and ~A3! this gives

EN~c!<N4/3Fl1b1
48

p
ba2aN2/3

11

70p S 12
18b

l2bD G . ~A4!

For b51/2, a215137 and the optimall this is negative forN>3.43107. For b53/5 anda
.0 arbitrary this is negative forN>C max(a23/2,1) with C543859 wherel was chosen to
minimize C. This explains the numbers in Theorem 3.

Now drop the term (48/p)ba in Eq. ~A4! which was due to the exchange- and self-ene
terms. By Eq.~11! what we are left with is a upper bound for infc,APAEN(c,A). It is negative for
b5), the optimall anda3/2N>1348863, or forb51/2 the optimall, a215137, andN>3.4
3107. This explains the numbers in the remark after Corollary 2.
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Gauge symmetries of the master action in the
Batalin–Vilkovisky formalism

M. A. Grigoriev, A. M. Semikhatov, and I. Yu. Tipunin
Lebedev Physics Institute, Russian Academy of Sciences,
53 Leninski prosp., Moscow 117924, Russia

~Received 29 June 1998; accepted for publication 10 December 1998!

We study the geometry of the Lagrangian Batalin–Vilkovisky~BV! theory on an
antisymplectic manifold. We show that gauge symmetries of the BV theory are
essentially the symmetries of an even symplectic structure on the stationary surface
of the master action. ©1999 American Institute of Physics.
@S0022-2488~99!01803-4#

I. INTRODUCTION

In this paper, we investigate gauge symmetries in the Lagrangian Batalin–Vilkovisky~BV!
formalism,1,2 which is the most universal approach to the quantization of general gauge the
The version of the BV quantization in which the coordinates are not explicitly separated into
and antifields is known as the covariant approach.3–9 The partition function is then given by a pat
integral of the exponential of the master action over a gauge-fixing surfaceL that is a Lagrangian
submanifold of an odd-symplectic manifoldM. The gauge independence is realized as the in
pendence from the choice ofL and is ensured by the master equation imposed on the m
action.

While the gauge symmetries of the original action are no longer symmetries of the forma
the covariant formulation itself has its own ‘‘gauge’’ transformations. Each observable@a Becchi–
Rouet–Stora–Tyutin-~BRST-! closed function# determines a gauge symmetry. Studied in Ref.
were the gauge symmetries corresponding to the trivial observables~BRST-exact functions!. It
was shown there that the space of functions modulo the BRST-exact ones, calledthe space of
gauge parameters,10 is endowed with a Lie algebra structure induced by the Lie algebra struc
on the space of BRST-trivial gauge symmetries.

In this paper, we study symmetries of the BV formalism using the geometrical setting w
the BV data are viewed as aQP-manifold.7,11 This is a supermanifold equipped with an antisym
plectic structure~theP-structure! and an odd nilpotent Hamiltonian vector field~theQ-structure!;
in the BV setting, the vector field is given by the antibracket with the master action.

An important characteristic of theQ-structure is thezero locusZQ of the odd vector field. The
most interesting case in applications is whereZQ is a smooth (nuN2n)-dimensional submanifold
~assuming the antisymplectic supermanifoldM to be (NuN)-dimensional!. We call suchQP-
manifolds the properQP-manifolds; then theQP-structure induces a symplectic structure on t
zero locus ofQ @see~II.8!#. @The existence of a symplectic structure on the zero locus can als
inferred from Ref. 11; the Poisson bracket on~,!-Lagrangian submanifolds was described in R
12; see also Ref. 13.#

It turns out that symmetries of the BV ‘‘master system’’ are to a considerable degree d
mined by Hamiltonian vector fields on the stationary surface of the master action~the vector fields
being Hamiltonian with respect to thePoisson bracket!. We will explicitly define a nondegenerat
Poisson bracket on the quotient algebra of all smooth functions modulo the functions vanish
ZQ ; this generalizes the bilinear operation of Ref. 10, which is not a Poisson bracket since
to satisfy the Leibnitz rule~in fact, it defined on the space that is not an algebra under
associative multiplication!.

We show that each symmetry of a properQP-manifold, i.e., a vector field preserving th
QP-structure, can be restricted toZQ and, moreover, this restriction is a locally Hamiltonia
17920022-2488/99/40(4)/1792/15/$15.00 © 1999 American Institute of Physics
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vector field with respect to the Poisson bracket onZQ . Conversely, locally Hamiltonian vecto
fields onZQ can be lifted to vector fields onM, into symmetries of the properQP-manifold. At
the same time, theglobally Hamiltonian vector fields onZQ lift to BRST-trivial symmetries. In
this way, we obtain a ‘‘translation table’’ between the objects pertaining to the antisymp
geometry onM and those of the symplectic geometry onZQ .

We further select theon-shell symmetries, i.e., symmetries modulo those vanishing on t
stationary surface. We show that the Lie algebraHZQ

of the on-shell gauge symmetries is isomo
phic to the Lie algebra of locally Hamiltonian vector fields on the stationary surfaceZQ . The Lie
algebras of the on-shell gauge symmetries (HZQ

), of gauge parameters10 (Õtriv
c ), and of gauge

symmetries of the master action (Õc), as well as their quantum counterparts, are related to e
other as shown in~III.11! and to the cohomology, as shown in~III.16!, ~III.18!, and~III.19!.

We consider two examples of the general construction. We explicitly calculate the Lie
brasOc andHZQ

in the Abelianized14 gauge theory. It is not difficult to see then that the alge
of gauge symmetries of the original classical theory is embedded into the Lie algebraOc as a
subalgebra in such a way that the algebra of the on-shell gauge symmetries of the original
is embedded into the Lie algebraHZQ

. As another example, we consider the theory with
vanishing action on a Lie group. Not surprisingly, the Poisson structure on the ‘‘stationary
face’’ is then related to the Kirillov bracket15 on the coalgebra.

In Sec. II, we study the geometry ofQP-manifolds. In Sec. III, we give a short reminder o
the BV-quantization and then study the quantum and classical gauge symmetries. In Sec.
demonstrate the main points of our construction in two characteristic examples.

II. GEOMETRY OF PROPER QP-MANIFOLDS

In this section, we study geometry of theQP-manifolds and define properQP-manifolds by
simply reformulating the condition from Ref. 1 for a solution of the master equation to be pr
We then show that the zero locusZQ of the vector fieldQ on a properQP-manifold is a
symplectic manifold. Moreover, the vector fields that aresymmetriesof a properQP-manifold
correspond to locally Hamiltonian vector fields onZQ ; the BRST-trivialsymmetries then corre
spond to globally Hamiltonian vector fields.

A. A poisson structure

Let M be an (NuN)-dimensional supermanifold and letCM denote the algebra of smoot
functions onM. Let ~•,•!: CM3CM→CM be an antibracket onM. It satisfies

e„~F,G!…5e~F !1e~G!11, ~II.1!

~F,G!52~21!„e~F !11…„e~G!11…~G,F !, ~II.2!

~F,GH!5~F,G!H1~21!e~G!„e~F !11…G~F,H !, ~II.3!

05cycle
F,G,H

~21!„e~F !11…„e~H !11…
„F,~G,H !…. ~II.4!

In a local coordinate systemGA, A51,...,2N, we have the matrixEAB5(GA,GB) that defines a
bivectorE such that (F,G)5E(dF,dG). We assume the antibracket to be nondegenerate.

Consider an odd vector fieldQ:CM→CM onM satisfying the following conditions:
~1! Q preserves the antibracket, i.e., £QE50, where £Q is the Lie derivative alongQ; equiva-

lently, Q differentiates the antibracket:

Q~F,G!2~QF,G!2~21!e~F !11~F,QG!50, F,GPCM ; ~II.5!

~2! Q is nilpotent:Q(QF)50, FPCM , ⇔@Q,Q#50.
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Definition II.17,11: A supermanifoldM equipped with a nondegenerate antibracket (•,•) and
an odd nilpotent vector fieldQ that satisfies condition (II.5) is called theQP-manifold.

The main object of our analysis is the setZQ of zeroes ofQ, i.e., the set defined by th
equationsQA50, whereQ5QA]A in a local coordinate systemGA. We assumeZQ to be a
submanifold inM. Denote byIZQ

,CM the ideal of all smooth functions vanishing onZQ . We
also assume the ‘‘regularity condition,’’ i.e., thatQ-exact functionsgenerateIZQ

, which means
that any functionf PIZQ

admits a representationf 5(Qh)g with someg,hPCM . The quotient
CZQ

5CM /IZQ
is the algebra of smooth functions onZQ . Obviously,QCM,IZQ

.
An additional requirement imposed onQ is that its local cohomology~that is, the cohomology

evaluated in a sufficiently small neighborhood of a point! is trivial ~constants only! at every point
pPZQ . In local coordinates, then, the nilpotent operator]QA/]GBuQA50 has the vanishing coho
mology on the tangent space to everypPZQ .7,11 This in turn implies the condition from Ref. 1

rankUS ]QA

]GB D U
QA50

5N. ~II.6!

In particular, it follows from~II.6! thatZQ is an (nuN2n)-dimensional submanifold.
Definition II.2: A properQP-manifold is aQP-manifold on which the local cohomology ofQ

is trivial at every point ofZQ .
Lemma II.3: The submanifoldZQ of a properQP-manifold is Lagrangian with respect to th

antibracket. In particular, the idealIZQ
is closed under the antibracket:

~IZQ
,IZQ

!,IZQ
. ~II.7!

Proof: Since any function fromIZQ
can be represented as the product (Qf )h with someh

PCM , it suffices to check that the antibracket ofQ-exact functions isQ-exact, which is obvious
in view of (Qg,Qh)5Q(g,Qh).

In fact, the submanifoldZQ is endowed with a natural Poisson structure. This is given b
construction of the type of those used, with some variations, in Refs. 10, 12, 13, and 16, n

$F,G%5~F,QG!, F,GPCM . ~II.8!

We interpret this structure as a bilinear mapping on the quotient algebraCZQ
. Functions fromCM

considered moduloIZQ
represent functions onZQ . We then have the following.

Theorem II.4: For any properQP-manifold,

~1! Equation (II.8) defines a Poisson bracket$•,•%: CZQ
3CZQ

→CZQ
on the submanifoldZQ .

~2! Moreover, the Poisson bracket$•,•% is nondegenerate (thus, ZQ is symplectic).

Proof: First of all, we must prove that definition~II.8! does not depend on the choice
representatives of the equivalence classes, i.e.,$F1 f ,G1g%2$F,G%PIZQ

wheneverf ,gPIZQ
.

SinceQ differentiates the antibracket, we can check that

$F1 f ,G1g%2$F,G%5~21!e~F !~QF,g!1~21!e~F !11Q~F,g!1„f ,Q~G1g!….

The first and the third terms belong toIZQ
by Lemma~II.3! and the second term is inIZQ

because
it is Q-exact. Thus~II.8! defines a mapping$•,•%: CZQ

3CZQ
→CZQ

. It is antisymmetric because

$F,G%1~21!e~F !e~G!$G,F%5~F,QG!1~21!e~F !e~G!~G,QF !5~21!e~F !11Q~F,G!PIZQ
,

where we used~II.5! again. Next, to prove the Leibnitz rule, we evaluate
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$F,GH%2$F,G%H2~21!e~F !e~G!G$F,H%

5~21!„e~F !11…„e~G!11…~QG!~F,H !1~21!e~G!~F,G!~QH !, ~II.9!

which evidently vanishes modulo terms fromIZQ
. Finally, to prove the Jacobi identity we have

show that

cycle
F,G,H

~21!e~F !e~H !$F,$G,H%%5cycle
F,G,H

~21!e~F !e~H !
„F,Q~G,QH !…[0 modIQ .

In view of the Leibnitz rule and the nilpotency condition this rewrites, modulo terms fromIZQ
as

cycle
QF,G,QH

~21!„e~QF !11…„e~QH !11…
„QF,~G,QH !…,

which vanishes by virtue of the Jacobi identity for the antibracket.
To prove that the Poisson bracket is nondegenerate onZQ , we recall a standard fact from

symplectic geometry, namely that in some neighborhood ofZQ there exists a coordinate syste
xi , j i such that the antibracket takes the canonical form (xi ,j j )5d j

i andZQ is determined byj i

50. Locally, the vector fieldQ can be written in the formQ5(S,•) with some functionS
PCM @since a vector field preserving a nondegenerate~anti!bracket is locally Hamiltonian#. Ex-
pandingS as

S5S0~x!1j iS
i~x!1j iS

i j ~x!j j1j ij jjkS
i jk~x!1¯ ,

we see thatS0(x)5const andSi(x)50, becauseQ5(S,•) vanishes asj50. Then condition~II.6!
means that the matrixSi j (x) is nondegenerate at each point ofZQ . On the other hand
Si j (x)uj5052 1

2$x
i ,xj%uj50 , which shows the theorem. j

Note that the symbol$•,•% is used for the formal operation~II.8! on the manifoldM and also
for the Poisson bracket on the submanifoldZQ . We do not introduce two different symbols an
hope that this will not lead to confusion.

B. Symmetries of QP-manifolds

For applications to the BV quantization in the subsequent sections, we will need some
about symmetries ofQP-manifolds.

Definition II.5: A vector fieldX on a QP-manifoldM is called a symmetry ofM if
~1! X preserves the antibracket (•,•):

X~F,G!2~XF,G!2~21!„e~F !11…e~X!~F,XG!50, F,GPCM , ~II.10!

and
~2! X preserves the odd vector fieldQ: @Q, X#50.
Our aim is to demonstrate that symmetries of a properQP-manifold restrict to the zero locu

of Q, and to study the properties of such restrictions. We begin with characterizing, in the sta
way, those vector fields onM that restrict toZQ :

Lemma II.6: A vector fieldX on a properQP-manifoldM restricts toZQ if and only if

@X,Q#uZQ
50. ~II.11!

Proof: A vector field restricts toZQ if and only if it preserves the ideal of functions vanishin
on ZQ : XIZQ

,IZQ
. Now, @X, Q#uZQ

50⇔@X, Q# f PIZQ
; f PCM , which rewrites asXQ f PIZQ

.
SinceQ-exact functions generate the ideal, we conclude thatXIZQ

,IZQ
. The converse is now

obvious. j
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It follows from this Lemma that any vector fieldX that is a symmetry of a properQP-
manifold can be restricted toZQ . We now recall that the zero locus ofQ is endowed with a
Poisson structure.

Theorem II.7: If a vector fieldX is a symmetry of a properQP-manifoldM, its restriction
XuZQ

to the zero locus ofQ preserves the Poisson bracket from Theorem II.4:

XuZQ
$F,G%2$XuZQ

F,G%2~21!e~F !e~X!$F,XuZQ
G%50, F,GPCZQ

. ~II.12!

Proof: Let us choose two representativesF,GPCM of the equivalence classes of functions
ZQ . Using the properties stated in Definition~II.5!, we have

X$F,G%5X~F,QG!5~XF,QG!1~21!„e~F !11…e~X!~F,XQG!5$XF,G%1~21!e~F !e~X!$F,XG%.
j

It follows from the nondegeneracy of the Poisson bracket~II.8! that any vector fieldx onZQ that
preserves the Poisson bracket can be written asx5$H,•% with some~locally! defined functionH.
We will refer to this as alocally Hamiltonianvector field. Everyx5$H,•% with a globally defined
H will be called globally Hamiltonian. It is well known that globally Hamiltonian vector field
form an ideal in the Lie algebra of locally Hamiltonian vector fields.

C. Lifts and restrictions of vector fields

In this section, we are interested in relations between Hamiltonian vector fields on the
plectic manifoldZQ and the Hamiltonian vector fields onM, in particular, the symmetries of th
properQP-manifoldM. ~Thus, whenever we speak about Hamiltonian vector fields onM, these
are Hamiltonian with respect to theantibracket, while the Hamiltonian vector fields onZQ are
Hamiltonian with respect to the Poisson bracket.!

To explain why there exists a correspondence between symmetries of a properQP-manifold
M and symmetries of its symplectic submanifoldZQ , we begin with an example.16 Consider an
N-dimensional symplectic manifoldK with the symplectic formv̂ which defines the nondegen
erate Poisson bracket$•,•% ~in general,K can be a supermanifold, but we assume for simplic
that it is an even manifold!. In a local coordinate systemxi , we have the invertible matrixv i j

5$xi ,xj%. Let PT*K be the cotangent bundle with the flipped parity. In the canonical coordin
xi , j i @with the antibracket (xi ,j j )5d j

i #, the manifoldK can be identified with the zero sectio
j i50 of PT*K. The functionS5 1

2j iv
i j j j satisfies (S,S)50 becausev i j is the matrix of a

Poisson bracket. Then the submanifoldK is the zero locus of the vector field

Q5~S,• !5
1

2
j i S ]W

]xk v i j D j j

]W

]jk
2j iv

i j
]W

]xj . ~II.13!

It is easy to see thatQ satisfies the conditions of Definition II.1. In addition, condition~II.6! is
satisfied because the dimension ofK is N. ThusPT*K is a QP-manifold and, in fact, a prope
QP-manifold ~becausev i j is nondegenerate!. With the help of the symplectic form, we ca
identify PT*K with the tangent bundlePTK ~with j i5v i j j j being the coordinates on the fibers!.
Then we can rewriteQ as

Q5j i
]W

]xi . ~II.14!

Upon the identification of functions onPTK with differential forms onK, Q becomes the De
Rham differential onK.11

Further, every locally Hamiltonian vector fieldx onK can be lifted to a globally Hamiltonian
vector fieldX on PT*K. Namely, if x5$H,•% ~where we allowH to be multivalued!, we take
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F5(21)e(H)Q(p* H), where p* is the pullback with respect to the canonical projecti
p:PT*K→K. Then the vector fieldX5(F,•) is well-defined~independent of the multivalued
ness ofH! and satisfies

XuK5x ~II.15!

and is also a symmetry ofPT*K in the sense of Definition II.5. Conversely, any symmetry
PT*K determines a locally Hamiltonian vector field onK ~see Theorem II.7!, which is obviously
a symmetry of this symplectic manifold.

The above is a particular case of a more general construction, whereM can be an arbitrary
properQP-manifold. There still exists a correspondence between symmetries ofM and symme-
tries of its symplectic submanifoldZQ .

We have seen in Theorem II.7 that every symmetry of a properQP-manifold restricts toZQ
as a locally Hamiltonian vector field. Consider now the converse problem. We say that a sy
try X of a properQP-manifoldM is a lift from ZQ of a locally Hamiltonian vector fieldx if X
restricts toZQ andXuZQ

5x.
Theorem II.8: Every locally Hamiltonian vector fieldx onZQ admits a lift to a symmetry o

M that is a globally Hamiltonian vector field onM with a Q-closed Hamiltonian. Ifx is globally
Hamiltonian onZQ , it is lifted to a globally Hamiltonian vector field with aQ-exact Hamiltonian.

In what follows, symmetries ofM of the formX5(F,•) with a Q-exact HamiltonianF are
called theBRST-trivial symmetries.

Proof: For a~locally! Hamiltonian vector fieldx onZQ , the equationx5$H,•% can be solved
for H in a sufficiently small neighborhood of every pointpPZQ . Different such solutions can b
considered as a multivalued HamiltonianH. This can be extended to a multivalued functionH̃ on
M that restricts toH onZQ ~for example, consider a neighborhoodU of ZQ inM and identify it
with a neighborhood of the zero section of a vector bundle overZQ ; if h̃ is the pullback of the
multivalued functionH to the bundle, we can choose a functionaPCM such thatauZQ

51 and

a50 outsideU, which yields the liftingH̃5ah̃ of the multivalued HamiltonianH!.
Then consider the functionF5(21)e(H)QH̃ onM; F is single-valued, is Q-closed by con-

struction, but in general is notQ-exact~because itsQ-primitive is not necessarily single-valued!.
Now, let X5(F,•). For any functionG̃PCM , we have

~F,G̃!uZQ
5~H̃,QG̃!uZQ

,

which coincides with$H̃uZQ
,G̃uZQ

%5xG̃uZQ
@see~II.8!#. ThusX is a lift of x to a symmetry ofM.

Whenever the HamiltonianH of x on ZQ is globally defined onZQ , the functionF is
obviouslyQ-exact and thusX5(F,•) is a BRST-trivial symmetry ofM. j

This theorem can also be seen by noticing that the cohomology ofQ evaluated on an appro
priately chosen neighborhoodU of ZQ in M coincides with the De Rham cohomology ofZQ .11

Namely, one can identify the neighborhoodU of ZQ with some neighborhood of the zero sectio
of PTZQ . Then we can writeQ5j i]W /]xi , wherexi and j i are coordinates onZQ and on the
fibers, respectively. ThusQ coincides with the De Rham differential ofZQ if one identifies
functions onU that are homogeneous inj with the differential forms onZQ . In particular, every
closed but not exact one-formf 5dxi f i gives rise to the functionF5j i f i on U that is obviously in
the cohomology ofQ. At the same time, the one-formf 5dxi f i gives rise to the locally Hamil-
tonian vector fieldx5(21)e(xi )e( f i ) f iv

i j ]W /]xj on ZQ ~wherev i j 5$xi ,xj%!. Therefore,x lifts to
the vector field (21)e(F)11(F,•) on U whose Hamiltonian is the same functionF5j i f i .

We see, in particular, that a locally Hamiltonian vector field representing the first cohomo
of ZQ corresponds to an element of theQ-cohomology onM. We now single out those~•,•!-
Hamiltonian vector fields onM that restrict to$•,•%-Hamiltonian vector fields onZQ , and de-
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scribe the full arbitrariness of the lifts of Hamiltonian vector fields onZQ to Hamiltonian vector
fields onM. The following is proved by directly generalizing the proof of Theorem II.8.

Theorem II.9:
~1! Let X5(F,•) be a globally Hamiltonian vector field on a properQP-manifoldM with the

Hamiltonian satisfyingQFPIZQ

3 ~i.e., QF5QAQBQCYABC with some YABCPCM!. ThenX re-

stricts to a locally Hamiltonian vector field onZQ .
~2! Every locally Hamiltonian vector fieldx on ZQ admits a lift to a globally Hamiltonian

vector field onM with the Hamiltonian F satisfyingQF50. If x is globally Hamiltonian onZQ
with the Hamiltonian H, the Hamiltonians of all its lifts toM are of the form

F5~21!e~H̃ !QH̃1K1const, KPIZQ

2 , ~II.16!

where H̃ is any function onM such that H̃uZQ
5H.

III. GAUGE SYMMETRIES OF THE MASTER ACTION

We now interpret the classical gauge symmetries in the covariant BV formalism as sy
tries of the corresponding properQP-manifold. Using the results of the previous section, we th
show that the Lie algebra of locally Hamiltonian vector fields on the stationary surface o
master action coincides with the algebra ofon-shell gauge symmetries. Section III A contains a
brief reminder on the BV formalism, so the reader may wish to go directly to Sec. III B.

A. Batalin–Vilkovisky quantization

The geometrical background of the covariant formulation of the BV quantization is
(NuN)-dimensional supermanifoldM equipped with a nondegenerate antibracket~•,•! and a vol-
ume formdm5rdG, wherer5r(G) is a density~and GA, A51,...2N, are some local coordi-
nates!. The density should be compatible with the antibracket in such a way that the BD
operator

DrH5 1
2 divr~VH! ~III.1!

be nilpotent,Dr
25 1

2@Dr , Dr#50. Here, divr denotes the divergence of a vector field with resp
to the densityr andVH5(H,•) is the globally Hamiltonian vector field with the HamiltonianH.

The physics is determined by the quantum master actionWPCM@@\## ~a formal power series
in \ with coefficients inCM! that satisfies the quantum master equation

Dre~ i /\!W50⇔ 1
2~W,W!5 i\DrW. ~III.2!

Writing W5S1 i\W11( i\)2W21¯ , we rewrite~III.2! as

~S,S!50, ~III.3!

~S,W1!5DrS, ~III.4!

and so on. Equation~III.3! is the classical master equation and the functionS5Wu\50 is called the
classical master action.

In addition to the master equation, one should impose boundary conditions onW. This re-
quires fixing a Lagrangian submanifoldL0 in M ~in the canonical coordinates, the manifold
fields, with the antifields set to zero! and a functionS on L0 , which is theoriginal (‘‘bare’’)
action of the classical theory that is being quantized. Then one requiresW(G,\) to be such that
W(•,0)uL0

5S.
By definition, a quantum observable is a functionAPCM@@\## satisfyingdWA50, where

dWA5~W,A!2 i\DrA. ~III.5!
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It follows from ~III.2! that dW
2 50, and, therefore, any functionA of the form A5dWB is an

observable; these are calledtrivial observables. ExpandingA5A01 i\A11( i\)2A21¯ , we
rewrite the equationdWA50 as

~S,A0!50, ~III.6!

~S,A1!1~W1 ,A0!5DrA0 , ~III.7!

and so on. An\-independent functionA0 satisfying~III.6! is called aclassical observable. It is
easy to see that ifA5dWB, thenA05(S,B0), whereB05Bu\50 . Any classical observableA0 of
the formA05(S,B0) with some\-independent functionB0 is called atrivial classical observable.

The quantum expectation of an observable is defined via the path-integral over a Lagr
submanifoldL,

^A&5E
L
dlr Ae~ i /\!W, ~III.8!

wheredlr is the volume form onL determined by the volume formdm5rdG onM and by the
antisymplectic structure as follows:4,3,8

dlr~e1,...,eN!5„dm~e1,...,eN, f 1 ,...,f N!…1/2, ~III.9!

whereeiPTL and f jPTM are any vectors that satisfyÊ(ei , f j )5d j
i andÊ is the antisymplectic

two-form onM. It follows from ~III.9! that the volume formdlr8 corresponding to the densit
function r85reH is related todlr as dlr85dlre(1/2)H ~this is the origin of the exponent in
Definition III.1!. If the submanifoldL is determined by the equationsGa50, a51,...,N, it is
Lagrangian whenever (Ga ,Gb)5Uab

g Gg .
An important part of the BV axioms is the nondegeneracy conditions. The submanifoldL in

~III.8! must be such that the restriction ofS5Wu\50 to L be nondegenerate. In terms of th
equationsGa50, the matrix]AGa and the Hessian matrix]A]BS should have no common nu
vectors at the points where]AS50 andGa50.1–3 Whenever the setZ(S,•) defined by equations
]AS50 is a submanifold, this requirement means thatZ(S,•) intersectsL transversely. It also
follows that the rank of the Hessian matrixHAB5(]A]BS)u]AS50 satisfiesrank(HAB)>N. At the
same time, the classical master equation~III.3! implies thatrank(HAB)<N, whence we have1–3

rankS ]2S

]GA]GBD U
]AS50

5N. ~III.10!

The solution of classical master equation~III.3! that satisfies~III.10! is called aproper solution.
The key statement of the BV formalism is that the path integral constructed as in~III.8! is

invariant under infinitesimal deformations of the Lagrangian submanifoldL1–4 for every quantum
observableA. In the case whereA51, this is often called the gauge independence of the parti
function.

B. Lie algebras of gauge symmetries

We now study Lie algebras of gauge symmetries in the BV quantization scheme. The
Lie algebrasOq andOc of quantum and classical gauge symmetries, respectively. In addition to
these two basic algebras, it is useful to consider several more Lie algebras, which we de
what follows and which can be arranged into the following commutative diagram of Lie alg
homomorphisms:
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~III.11!

In addition, we have homomorphisms~III.16!, ~III.18!, and~III.19!, whose constructions will also
be explained in what follows. HereHZQ

is the Lie algebra of theon-shell gauge symmetrie

~which, as we show, is the algebra of locally Hamiltonian vector fields onZQ!, Otriv
q is the Lie

algebraof BRST-trivial quantum gauge symmetries, andÕtriv
q is the Lie algebraof quantum gauge

parameters.10,6 The Lie algebrasOc, Otriv
c , andÕtriv

c are the classical counterparts ofOq, Otriv
q ,

andÕtriv
q , respectively. We now proceed to the exact definitions.

Definition III.1:10,17A vector fieldX~\! is called a quantum gauge symmetry if it preserves
antibracket and the measurere(2i /\)WdG (viewed as formal power series in\). The Lie algebra
Oq of these vector fields is called the Lie algebra of quantum gauge symmetries.

It follows from this definition that a quantum gauge symmetryX~\! satisfies

divr„X~\!…1
2i

\
X~\!W50, ~III.12!

X~F,G!2~XF,G!2~21!„e~F !11…e~X!~F,XG!50, F,GPCM . ~III.13!

Equation ~III.13! implies that there exists, at least locally, a functionA(\) such thatX(\)
5(A(\),•). Then Eq.~III.12! implies that„W,A(\)…2 i\DrA(\)50. WheneverA(\) is globally
defined, it is a quantum observable. We explicitly indicate the\ dependence ofX~\! because
re(2i /\)W should be preserved for any value of\; we assumeX~\! to be a formal power series in
\ with coefficients in the vector fields onM.

AlthoughX~\! is not a symmetry of any classical system~in particular, it preserves neither th
quantum master action nor the measuredm!, we call it a quantum gauge symmetry because
classical counterpart, obtained by taking the\→0 limit, does preserve the classical master act
S. ~This action can be considered as the action of some classical system defined onM. Then the
classical master equation can be viewed as an additional constraint imposed on the system
action S. One can naturally identify gauge symmetries of this system with the transforma
preserving bothS and the master equation imposed onS.!

To make contact with the literature, we consider the Lie algebraOtriv
q of quantumBRST-trivial

gauge symmetries.10 These are quantum gauge symmetriesXB(\)5„dWB(\),•… whose Hamilto-
nians are trivial observables@see~III.5!#, which span an ideal inOq.

Now, the~Hamiltonian! mappingCM@@\##→Otriv
q allows us to pull back the Lie bracket from

Otriv
q to the space of\-dependent functions. Namely,

@B1~\!, B2~\!#q5„B1~\!,dWB2~\!…, ~III.14!

which implies

@XB1~\!, XB2~\!#5~dW„B
1~\!,dWB2~\!…,• !5X@B1~\!, B2~\!#q. ~III.15!

The bracket~III.14! was shown in Refs. 10 and 6 to determine a Lie algebra structure on
quotient space

Õtriv
q 5CM@@\##/dWCM†@\#‡
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of all \-dependent functions modulo thedW-exact ones.Otriv
q was called theLie algebra of

quantum gauge parametersin Refs. 10 and 6.@This is not an algebra under theassociative
multiplication because the multiplication does not preserve the equivalence classesB(\);B(\)
1dWC(\); in particular,~III.14! is not a Poisson bracket.#

There is a nice way to ‘‘measure’’ how muchOtriv
q differs from Õtriv

q . The ~Hamiltonian!
mappingCM†@\#‡→Otriv

q induces a homomorphismÕtriv
q →Otriv

q @see diagram~III.11!#, whose
kernel consists of functions~modulodW-exact ones! satisfyingdWB(\)5const(\). However, the
fact that a functionF satisfiesdWF(\)5const(\) implies dWF(\)50. @In order to see this,
consider first a functionF0 satisfyingQF05(S,F0)5const. Since~as we see in the next subse
tion! M is a properQP-manifold, the functionQF0 vanishes on the zero locus ofQ, and
therefore,QF050. Now, to see that equationdWF(\)5const(\) leads todWF(\)50, we rewrite
dW and F(\) as a power series in\: dW5dW

0 1 i\dW
1 1( i\)2dW

2 1¯ , where in particulardW
0

5Q, and F5F01 i\F11( i\)2F21¯ . SinceM is a properQP-manifold, the equationQF0

5(S,F0)50 implies that in some neighborhood, we haveF05Qf01const with some function
f0 . Then in the first order in\, the equationdW

1 F01dW
0 F15const implies thatdW

1 F01dW
0 F1

50 becausedW
1 F052dW

0 dW
1 f0 . A similar argument applies to higher orders in\. Thus, the

kernel of the homomorphismÕtriv
q →Otriv

q coincides with the cohomology ofdW evaluated on the
space of formal power series in\ with the coefficients in smooth function onM.# We thus
conclude that the homomorphismÕtriv

q →Otriv
q is included into the exact sequence that involves

cohomology ofdW :

0→Hq→Õtriv
q →Otriv

q →0, Hq5Ker dW /Im dW . ~III.16!

The classical versions of these constructions are as follows.
Definition III.2: A vector fieldX0 is called a classical gauge symmetry ifX0S50 and X0

preserves the antibracket. The Lie algebraOc of these vector fields is called the Lie algebra
classical gauge symmetries.

The classicalBRST-trivial gauge symmetriesare the vector fieldsX05„(S,B0),•… whose
Hamiltonians are trivial classical observables@see ~III.6!#. These vector fields span the ide
Otriv

c ,Oc, which is called theclassical BRST-trivial gauge symmetries.

We have the obvious homomorphismOq ——→
\→0

Oc. This induces a homomorphism from th
idealOtriv

q ,Oq into the idealOtriv
c ,Oc @which are shown in~III.11!#.

The classical counterpart ofÕtriv
q is the spaceÕtriv

c of all functions onM modulo the functions
of the form~S,C!, whereS is the classical master action satisfying (S,S)50. One can see that th
spaceÕtriv

c is endowed with a Lie algebra structure with respect to the ‘‘classical’’ bracket

@B0
1, B0

2#c5„B0
1,~S,B0

2!…. ~III.17!

Thus, we have the Lie algebra homomorphismÕtriv
c →Otriv

c shown in~III.11!. The kernel of the
homomorphism coincides with the cohomology ofQ; therefore, we have the following exac
sequence involving the cohomology ofQ:

0→Hc→Õtriv
c →Otriv

c →0, Hc5Ker Q/Im Q. ~III.18!

We also observe that the relation between the quantum and the classical bracket is gi
@B0

1, B0
2#c5@B1(\), B2(\)#qu\50 , whereB0

i 5Bi u\50 . Therefore, there exists a Lie algebra h

momorphismÕtriv
q ——→

\→0

Õtriv
c . Following Refs. 10 and 6 we callÕtriv

c the Lie algebra of clas-
sical gauge parameters. We thus see how it is related to the other algebras in~III.11!.

Of the algebras entering~III.11!, it only remains to constructHZQ
, which we now do in the

BV setting.
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C. The Hamiltonian algebra of on-shell gauge symmetries

The BV field–antifield manifoldM and the classical master actionS satisfying the BV
quantization axioms are such thatM is a properQP-manifold. Indeed, the odd vector fieldQ
5(S,•) on the (NuN)-dimensional antisymplectic manifoldM preserves the antibracket, an
therefore, satisfies condition~II.5!; the master equation imposed onS implies thatQ is nilpotent;
finally, the fact thatS is a proper solution of the master equation implies the rank condition~II.6!.

The zero locusZQ of Q determined by the equations]AS50 will be referred to as the
stationary surfaceof the actionS. As before, we assumeZQ to be a smooth submanifold.~Al-
though in realistic examples the structure of the zero locus ofQ can be very involved, we treatZQ
as a submanifold. Note in passing that the finite-dimensional models of gauge systems sh
considered with some caution also in view of the results of Ref. 18!. Then, according to Theorem
II.4, ZQ has a natural symplectic structure. Further, the classical gauge symmetries~see Definition
III.2! are in fact symmetries of the properQP-manifoldM.

Theorem III.3: Every classical gauge symmetryX0 determines a vector fieldx5X0uZQ
onZQ

that preserves the Poisson bracket onZQ .
Proof: Indeed, any vector fieldX0 preserving the master actionS and the antibracket com

mutes withQ5(S,•) and is therefore a symmetry ofM ~Definition II.5!. As we saw in Sec. II B,
any vector fieldX0 that is a symmetry ofM restricts toZQ , andX0uZQ

is locally Hamiltonian on

ZQ . j

We denote the Lie algebra of locally Hamiltonian vector fields onZQ by HZQ
. As we are

going to see, this is the algebra of the on-shell gauge symmetries.
Definition III.4: A classical gauge symmetryX0 is called on-shell trivial if it vanishes on the

stationary surfaceZQ .
We now show that the Lie algebra of locally Hamiltonian vector fields onZQ is isomorphic to

the algebra of the on-shell gauge symmetries.
Theorem III.5: The algebraI0 of the on-shell trivial symmetries is an ideal in the L

algebraOc of gauge symmetries and the quotient algebraOc/I0 is isomorphic to the Lie algebra
HZQ

of locally Hamiltonian vector fields onZQ .
Proof: Let Y0PI0 and X0POc. For any functionFPCM , we haveY0FPIZQ

. Since
X0IZQ

,IZQ
and Y0FPIZQ

, we have@X0 , Y0#F5X0Y0F2(21)e(X0)e(Y0)Y0X0FPIZQ
. There-

fore, I0 is an ideal in the Lie algebraOc. Further, we have seen in Theorem II.8 that any loca
Hamiltonian vector fieldx onZQ is a restriction of some vector fieldXPOc. Thus we can identify
the quotient algebraOc/I0 with the Lie algebra of locally Hamiltonian vector fields onZQ . j

It follows from the theorem that the homomorphismOc→HZQ
is included into the exac

sequence

0→I0→Oc→HZQ
→0. ~III.19!

Note that we cannot replaceOc with Otriv
c here, because the homomorphismOtriv

c →HZQ
is not

surjective whenever there exists the first cohomology ofZQ . Indeed, a nonvanishing first coho
mology implies that there exist locally Hamiltonian vector fields that are not globally Hamilto
onZQ , which we have seen in Theorem II.8 to correspond toBRST-nontrivialgauge symmetries
Due to the existence of the latter, the mappingOtriv

c →HZQ
is not surjective in general.

Looking at diagram~III.11!, it is natural to ask the following question: What is the analog
HZQ

for the upper line of the diagram, i.e. what is thequantumanalog of the on-shell gaug
symmetries? We propose one possible answer to this question.

Note that Poisson bracket~II.8! onZQ and Lie bracket~III.17! on the space of gauge param
eters are defined by the same bilinear operation~•, Q •! onCM . The difference between these tw
brackets is that~III.17! is defined on the quotient spaceCM /Im Q, while the Poisson bracket i
defined onCM /IZQ

. For a properQP-manifold, IZQ
is the ideal generated byIm Q, i.e., IZQ

5CM•Im Q. At the same time,~III.17! is the limit as\→0 of the quantum construction~III.14!
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defined onCM†@\#‡. Therefore, in the quantum case one can construct a Poisson bracke
direct generalization of~II.8!, as$•,•%q5(•,dW•). The bracket$•,•%q would be well defined only
on the quotient algebra ofCM†@\#‡ modulo the idealIdW

generated byIm dW . Obviously,Im dW

is generated by all series of the formdWf (\), wheref (\)5 f 01 f 1\1 f 2\21¯ with the coeffi-
cients f i taking independently each value 1,GA, andGAGB. Since the matrixEAB5(GA,GB) is
invertible, we thus see thatIdW

consists of the series of the formIZQ
1CM\1CM\21¯ . Thus,

the quotient algebraCM@@\##/IdW
coincides with the algebraCZQ

of functions on the zero locus o
Q. This means that the algebraHZQ

is in a certain sense the most general algebra of the on-s
symmetries not only of the classical but also of the quantum, master action.

IV. EXAMPLES

A. Abelianized gauge theory

We now consider the field–antifield space and the master action corresponding to the si
gauge theory, the Abelianized gauge theory, which we choose as an instructive example
free of additional complications because gauge symmetries are explicitly separated from the
cal ones. We then explicitly construct the Poisson bracket and the Lie algebrasOc and HZQ

.
Moreover, this example shows that the classical gauge symmetriesOc contain the Lie algebra o
gauge symmetries of theoriginal theory as a subalgebra and that, similarly, the on-shell ga
symmetriesHZQ

contain the on-shell symmetries of the Abelianized gauge theory.
Let S0(X,x) be a polynomial action such that

]aS050, det~] i] jS0!u] iS050Þ0, ~IV.1!

where we denote]a5]/]xa and ] i5]/]Xi and assumeXi and xa to be bosonic for simplicity.
Due to rank condition~IV.1!, the equations] iS050 admit only a finite set of solutionsM. Thus,
the stationary surface of this theory is the direct product ofM with the space parametrized byxa.
The gauge transformations preserving the actionS0 are of the form

Y05Y0
a~X,x!]a1m i j ~X,x!] iS0] j , ~IV.2!

wherem i j (X,x) is an antisymmetric matrix. These vector fields span a Lie algebraA with respect
to the commutator of vector fields; those vanishing on the stationary surface span the idealAtriv in
A. ThenÃ5A/Atriv is the algebra of the on-shell gauge symmetries, which can be identified
the Lie algebra of vector fields on the stationary surface.

To implement the BV scheme, we choose the gauge generators in the formRb
a5db

a and
introduce the ghostsca and the antifieldsxa* , Xi* , and ca* . The canonical antibracket i
(fA,fB* )5dB

A , wherefA5(Xi ,xa,ca) andfA* 5(Xi* ,xa* ,ca* ). Then the master action

S5S01xa* ca ~IV.3!

is a proper solution of the master equation (S,S)50. This action gives rise to the vector field

Q5~S,• !5] iS0

]W

]Xi*
1ca

]W

]xa 1xa*
]W

]ca*
, ~IV.4!

whose stationary surfaceZQ is determined by] iS050, xa* 50, ca50. ThusZQ is the direct
product ofM ~the set of solutions to the system of equations] iS050! with the space parametrize
by YA5$Xi* ,xa,ca* %. The Poisson bracket~II.8! on ZQ is then represented by the matrix
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VAB5$YA, YB%5S ] i] jS0 0 0

0 0 da
b

0 2dg
n 0

D . ~IV.5!

We now want to show that the Lie algebrasA andÃ of the original theory are subalgebras
the Lie algebrasOc andHZQ

, respectively. To do so, we calculateOc in the master theory with the
master action~IV.3!. Note that for the Abelianized gauge theory, the first cohomology group o
field–antifield space vanishes, and, therefore, each Hamiltonian vector field has a globally d
Hamiltonian. Thus, in order to findOc, it suffices to find the kernel ofQ evaluated on the spac
of globally defined functions. Any elementAPKer Q can be written in the formA5QF1G,
whereF is an arbitrary smooth function on the field–antifield space andG is a representative o
the cohomology class ofQ. To calculate the cohomology ofQ, we writeQ5Q11Q2 , where

Q15] iS0

]W

]Xi*
, Q25ca

]W

]xa 1xa*
]W

]ca*
and Q1

25Q2
25@Q1 ,Q2#50. ~IV.6!

~Note that in the case whereS05 1
2d i j X

iXj , the vector fieldQ is nothing but the De Rham
differential ofZQ . In this case the cohomology ofQ consists of constants only andOc coincides
with Otriv

c .!
By the Poincare´ lemma, the cohomology ofQ2 consists of constants only. Thus the cohom

ogy of Q is determined by the cohomology ofQ1 on the space of functionsF(X,X* ). A function
F(X,X* ) belongs to the image ofQ1 wheneverF(X,X* )5] iS0f i(X,X* ), i.e.,F(X,X* ) vanishes
at each point where] iS050. Thus, any elementA from Ker Q is of the form

A~X,X* !5QF~X,X* !1G~X!, ~IV.7!

whereF is an arbitrary function andG(X) is a function that does not vanish at least at one po
of M. WheneverM is ann-point set, the cohomology ofQ is ann-dimensional vector space.~In
this example, the group of ‘‘physical’’ symmetries is the group of permutations of thesen points.
This group obviously acts on the cohomology ofQ.!

We thus see thatOc andOtriv
c are spanned by the vector fields of the form„QF1G(X),•… and

(QF,•) respectively. The algebraHZQ
of the on-shell symmetries consists of Hamiltonian vec

fields $H(m,X* ,x,c* ),•% on ZQ ~where we label the Hamiltonian bymPM enumerating the
different components ofM!.

To see that the algebraA of gauge transformations of the original theory is embedded into
Lie algebraOc of the classical gauge symmetries, we note that vector fields of the form

Y5~Y0
a~X,x!xa* 1m i j ~X,x!] iS0Xj* ,•… ~IV.8!

form a subalgebra inOc. Moreover, these fields restrict to the subspaceca5ca* 5xa* 5Xi* 50 as
elements ofA @see~IV.2!#. Thus, we have an embedding ofA intoOc ~obviously, the embedding
is not unique!.

As regards the on-shell gauge symmetries, observe that the vector fields onZQ of the form

y5$ya~m,x!ca* ,•% ~IV.9!

~which define a subalgebra inHZQ
! restrict to the stationary surface of the original theory~which

is a submanifold ofZQ determined by the equationsca* 50 andXi* 50! and spanÃ. Thus the
algebra of the on-shell gauge symmetriesÃ of the original theory is embedded into the Lie algeb
HZQ

of the on-shell gauge symmetries.
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B. A ‘‘topological’’ field theory

We now apply Theorem II.4 to the ‘‘topological’’ theory with the vanishing action on a
group G. We show that in this case, bracket~II.8! is related to the Kirillov bracket on the
coalgebra. Denote byxi a coordinate system in the neighborhood of 1PG. LetRa5Ra

i ] i ~where
the Greek indices have the same cardinality as the Latin ones! be the basis of the left invarian
vector fields onG. We have@Ra ,Rb#5Fab

g Rg , whereFab
g are the structure constants.

In accordance with the BV prescription we introduce the ghostsca and the antifieldsxi* and
ca* such that (xi ,xj* )5d j

i and (ca,cb* )5db
a . The master actionS5xi* Ra

i ca2 1
2cg*Fab

g cbca is a
proper solution of (S,S)50. Then

Q5~S,• !5caRa
i ]W

]xi 1
1

2
Fab

g cbca
]W

]cg 1~xi* Ra
i 2cg*Fab

g cb!
]W

]ca*
, ~IV.10!

and therefore the zero locusZQ of Q is determined by the equationsca50 andxi* 50 and is
coordinatized byYA5$xi ,ca* %. In this caseZQ5T*G5G3g* is the cotangent bundle toG, where
g* is the coalgebra. The matrix of Poisson bracket~II.8! takes the form

VAB5$YA,YB%5S $xi ,xj% $xi ,cb* %

$ca* , xj% $ca* ,cb* %
D 5S 0 Rb

i

2Ra
j 2cg*Fab

g D . ~IV.11!

It is nondegenerate becauseRa
i are nondegenerate everywhere onZQ , sinceRa

i are the coeffi-
cients of the left invariant vector fields on a Lie group. The cotangent bundle to a Lie gro
trivial, therefore we have the embeddingg*→T*G, which induces a Poisson bracket ong* . This
gives us the Kirillov bracket15 on the coalgebrag* parametrized by the coordinatesc* .

V. CONCLUSIONS

We have seen that a number of objects of the antisymplectic BV geometry are esse
determined by objects of the symplectic geometry on the stationary surface of the master
where the nondegenerate Poisson bracket is given by~II.8!. In particular, every observable dete
mines a symmetry of the master action, which in turn restricts to a locally Hamiltonian vector
onZQ ; at the same time, every trivial observable determines a symmetry of the master actio
that the corresponding vector field onZQ is globally Hamiltonian. Those Hamiltonian vector field
on ZQ that are not globally Hamiltonian correspond then to the BRST-nontrivial observable

Recalling how the master theory is constructed in terms of the bare classical actionS, we were
able to explicitly see, in the Abelianized setting, that the gauge symmetries ofS are dressed into
master theory symmetries, i.e., into~,!-Hamiltonian vector fields; at the same time, the on-sh
gauge symmetries ofS are dressed into$ , %-Hamiltonian vector fields on the symplectic manifo
ZQ . This would be interesting to extend to the general gauge theory setting.

Our analysis was performed in the framework of a finite-dimensional model; such m
should be viewed with caution precisely for the reasons related to the existence of the
cohomology.18 It would be interesting to see how our results can be reformulated in local
theory, where the gauge symmetries have been discussed in Ref. 19, and, possibly, also i
cation to string field theory,5,6 which has been one of the motivations behind the geometric
covariant reformulation of the BV quantization.
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On path integral localization and the Laplacian
Topi Kärkia)

Institut Mittag-Leffler, Auravagen 17, S-18262 Djursholm, Sweden

~Received 10 August 1998; accepted for publication 15 January 1999!

We introduce a new localization principle, which is a generalized canonical trans-
formation. It unifies BRST localization, the non-Abelian localization principle and
a special case of the conformal Duistermaat–Heckman integration formula of Pa-
niak, Semenoff, and Szabo. The heat kernel on compact Lie groups is localized in
two ways. First, using a non-Abelian generalization of the derivative expansion
localization of Palo and Niemi and second, using the BRST localization principle
and a configuration space path integral. In addition, we present some new formulas
on homogeneous spaces, which might be useful in a possible localization of Sel-
berg’s trace formula on locally homogeneous spaces. ©1999 American Institute
of Physics.@S0022-2488~99!01804-6#

I. INTRODUCTION

Integral localization is a method to calculate path integrals. It conventionally involves a B
symmetry and a one-parameter localization deformation of the action, which in the limit tha
localization parameter is put to infinity evaluates the integral.1–3 The result is usually a sum ove
the critical points of the action or an integral over a finite-dimensional subspace of the or
infinite-dimensional integration domain. The method has been effective in topological
theories.4

A special case of it is the Duistermaat–Heckman integration formula5 and its loop space
version,6 where the BRST symmetry is another way of writing the definition of the Hamilton
vector field. A more technical introduction to the Hamiltonian BRST symmetry is given in Se

Recently there has emerged localizations that cannot be understood from the conve
BRST point of view: the non-Abelian localization principle7 and the conformal Duistermaat
Heckman formula of Paniak, Semenoff, and Szabo.8 In Secs. III, IV, and V they are unified in a
new localization principle.

The two main questions behind this article are ‘‘why is the heat kernel of the Laplacia
compact Lie groups semiclassically exact?’’9,10 and ‘‘why are there Selberg’s trac
formulae?’’11–14 The new localization principle was also discovered in studying these ques
We review shortly the facts that motivated them. The heat kernel on Lie groups has been
to be semiclassically exact9,10 by direct comparison. On the other hand, the loop sp
Duistermaat–Heckman theorem6 explains semiclassical exactness, in the case that the Ha
tonian vector field is also a Killing vector field, using a path integral localization proof. It is
however, the case~in the obvious way! on Lie groups. In addition, there is Selberg’s trace form
on constant negative curvature Riemann surfaces,

tr e2bD05F1~4pb!21/2e2b/4(
n51

`

(
p

l ~p!/2

sin l ~pn!/2
e2 l 2~pn!/4b, ~1!

whereF is the fixed point contribution.13 p means a primitive geodesic andl (p) the length of it.
The formula is similar to the semiclassical approximation because it holds thatS5 1

4*0
bgmnẋmẋn

5 l 2(pn)/4b at the critical points of the actionS. The negative constant curvature Riemann s

a!Electronic mail: karki@ml.kva.se
18070022-2488/99/40(4)/1807/24/$15.00 © 1999 American Institute of Physics
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faces can be obtained as quotient spacesG \ @SU~1,1!/U~1!#, whereG is a discrete subgroup.12 This,
together with the semiclassical exactness on Lie groups and the fact that there are also g
zations of Selberg’s trace formula on some symmetric spaces,14 leads to the speculation of
localization of the Laplacian on locally homogeneous manifoldsG\(G/H).

The answers that we provide to the questions above are organized as follows.
A localization deformation of the Laplacian on homogeneous spaces is given in Sec. V

formulas and notations are presented in Appendices A and B because most of them are not
in the rest of the discussion. They involve some new formulas: the use of a degenerate ba
vector fields is new as well as the Maurer–Cartan connection on the tangent bundle and the
space metric. In Appendix D the scalar curvature is calculated. In addition, a formula is pres
that might appear in the hypothetical localization on locally homogeneous manifolds.

The question about the heat kernel on Lie groups is answered partially in Sec. VII us
non-Abelian derivative expansion localization. The localization principle is even more intere
because it formally seems to apply to homogeneous manifolds as well, and because it ma
apply to integrable models~Sec. IX!. The final answer to the question is given in Sec. VIII usi
a configuration space path integral and the symplectic form pointed out by Picken in Ref.

The question about Selberg’s trace formulas is left open, despite the negative result, th
not the deformation in Sec. VI, and the speculations in Sec. IX.

In addition, a new bound for the geodesic action is presented in Appendix C.

II. BRST LOCALIZATION PRINCIPLE

We review the~Hamiltonian! BRST localization principle, introducing some notations.
We assume thatG is a 2D-dimensional phase space,v a symplectic form, andH a Hamil-

tonian. The classical partition function of the Hamiltonian system is

Z5E
G
vDe2bH, ~2!

and it is calculated using the BRST localization principle. The definition of the Hamiltonian ve
field x can be written as

~d1 ix!~H1v!50, ~3!

whered is the exterior derivative andi x is a contraction operator. The equivariant derivative,

d1 i x5dx5Q,

is a BRST symmetry with the exception that it is closed only in the invariant subspace,

Q2a5Lxa50,

where Lx is the Lie derivative anda is a differential form on the phase space. The BR
localization principle can be formulated as follows: Analogously to the Fradkin–Vilkovisky th
rem, the partition function~see the explanation of notations below!,

Zl5E dfm dcm e2b~H1v!1l dxc, ~4!

is independent ofl, provided that the arbitrary one-formc satisfies the Lie derivative condition

Lxc50. ~5!

In ~4!, fm are the coordinates on the phase spaceG and the Grassmann variablescm are associated
with the one-formsdfm on the phase space. In particular, the symplectic form has been rep
by a bilinear in the fermionic variablesvmn dfm∧dfn→vmncmcn. Whenl vanishes the integra
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reduces to the partition function~2! modulo an irrelevant factor of (2b)D. ~We use throughout
the paper the convention that such normalization factors are neglected, which is usual wit
integrals.! If one makes a clever choice of the one-formc and takes the localization parameterl
to infinity, one is able to evaluate the integral.

One can also give a loop space version of the localization principle. The path integral de
ing the quantum partition function is

Zl~b!5E @dfm dcm#expE
0

b

umḟm2H1v1l dSc, ~6!

wherev is the loop space symplectic form,u is the symplectic potential, anddS is the loop space
equivariant derivative,

dS5d1 i ḟ2x5d1 i xS
. ~7!

~We use the convention that the imaginary uniti is missing.! In addition,xS is called the loop
space Hamiltonian vector field andḟ5ḟm(]/]fm)[*0

b dt ḟm(t)@d/dfm(t)# is a vector field on
the loop space. We use the notation that the integral sign is not written and the func
derivatives are written as ordinary derivatives.6 The loop space one-formc must also satisfy the
Lie derivative condition,

LxS
c50.

Various applications of the principle can be found in Refs. 6, 15, 16 and 17, which, howev
not an exhaustive list.

III. NEW LOCALIZATION PRINCIPLE

We discuss the new localization principle and give the first example of a localization d
mation that is obtained using it.

We define that

@S~l!,x~l!,c# ~8!

is a triple of the new localization principle~or triple! if the following occurs.
~1! S(l)5H(l)1v(l) is a one-parameter family of Hamiltonian structures, with the exc

tion that the symplectic form can be degenerate except whenl is zero,
~2! x~l! is a one-parameter family of vector fields satisfying

dx~l!S~l!50. ~9!

~3! c is such a one-form that

dS

dl
5dx~l!c. ~10!

Theorem 1: If @S(l),x(l),c# is a triple, then the partition function,

Zl5E dfm dcm eS~l!, ~11!

is independent ofl.
Proof: If one makes an infinitesimal change of variables in the direction of the superv

field V5cdx(l) , the integrand is invariant, and the Jacobian is 11eSdiv V511e dx(l)c which
proves thatZ(l1e)5Z(l). h

We make few remarks on the theorem that is the new localization principle.
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Remark 1:The definition of the principle is complicated due to the fact that one can
assume thatv~l! is nondegenerate for alll. If one could neglect the complication, taking an
point H1v in the space of Hamiltonian structures and any one-formc on the phase space woul
give a one-parameter flow of Hamiltonian structures, because thenx~l! is uniquely determined as

x~l!5v~l!21 dH~l!. ~12!

Remark 2:There are some interesting special cases of the localization principle. If the
form is exact,c5dF, it reduces to a canonical transformation generated by the functionF. On the
other hand, ifLxc50 andx(l)5x, it is the BRST localization principle.

Remark 3:The one-formc is in many examples of the principle associated with a phase s
metric g that is contracted with some vector field, for example,c5 i x(0)g.

Remark 4:The loop space version of the principle is obtained by thinking that the phase s
is the infinite-dimensional loop space.

Remark 5:If v(l)5v(0)1l dc is nondegenerate for alll, the localization principle further
simplifies. We define another vector field,

u~l!5v~l!21c, ~13!

and write the flow equation~10! in the alternative form

dS

dl
52Lu~l!S, ~14!

which is a diffeomorphism of the phase space. It is then possible to transport any tensorT along
the flow ~14! according to the equation

dT

dl
52Lu~l!T. ~15!

One should not think that the invertibility ofc~l! is generic, for example, the Duistermaa
Heckman theorem on a compact phase space5 gives a counterexample, which can be deduced
follows: On a compact phase space the Hamiltonian function has a maximum and min
which cannot change under any diffeomorphism flow.~We thank Losev for this observation.! But
in the Duistermaat–Heckman case the maximum of the Hamiltonian function goes to in
under the localization flow becauseH(l)5H(0)1lg(x(0),x(0)), where g is a phase space
metric. Thus, the flow cannot be a diffeomorphism and thereforev~l! must be degenerate fo
somel.

Finally, we give the first example of the localization principle. Suppose that the phase
admits a metricg such that

“xx50. ~16!

Then@ 1
2g((11l)x,(11l)x)1d( i (11l)xg),(11l)x,i xg# is a triple of the new localization prin

ciple, provided that the two-formd( i xg) is nondegenerate. For example, the geodesic motion
homogeneous manifolds has this structure; there is actually a one-parameter family of m
~B13! satisfying the condition~16!. As a triple, it is a very special case becausel can be actually
any function that satisfiesLxl50 and the partition function is still independent ofl. The condi-
tions of a triple can be proved using the identity5

“xx50⇔dx@ 1
2g~x,x!1d~ i xg!#50.
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IV. NON-ABELIAN LOCALIZATION PRINCIPLE

We review the non-Abelian localization principle, making some additions to the orig
discussion in Ref. 7. In the end of the section it is interpreted using the new localization prin

The partition function for two-dimensional gauge theories is

Z5E @dAm
B#e2~1/e!* tr FmnFmn

. ~17!

The configuration spaceA of gauge potentials that is integrated over has a symplectic form,

v5E dxm∧dxn dAm
B∧dAn

B5
1

2 E Agd2xAgemn dAm
B∧dAn

B , ~18!

a metric,

g5E Agd2x gmn dAm
B

^ dAn
B , ~19!

and an almost complex structure,

J5v21g, J2521. ~20!

The partition function~17! is actually an integration over the Liouville measure of the symple
form ~18!. In addition, the ‘‘Hamiltonian’’ in the partition function~17! is the quadratic Casimir o
the group of gauge transformations: The gauge transformations act symplectically and th
mentum map ism: A→g* ~g is the Lie algebra of gauge transformations!,

m~A!5F5dA1A∧A. ~21!

In other words,

me5E Fmn
B eB dxm∧dxn5E Agd2x~AgemnFmn

B !eB ~22!

generates the gauge transformation

$me ,Am
B%5DmeB. ~23!

The associated Hamiltonian vector fields are

ve5v21 dme5E Agd2x Dm
Be

d

dAm
B , ~24!

which generate isometries of the metric,

Lve
g50. ~25!

Using the Hamiltonian generators of the Lie algebra of gauge transformations,

mBx5me5dBCd~x2y!5AgemnFmn
B , ~26!

one can write the Hamiltonian in~17! as the quadratic Casimir,

S5E Agd2x mBxmBx5E Agd2x Fmn
B FB

mn . ~27!
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The discussion above is analogous to the following finite-dimensional situation: We as
thatC5( im i

2 is the quadratic Casimir of a group that acts symplectically on the phase spac
that there is a metricg that is invariant. The partition function is

Z5E vne2(m i
2
5E dxm dcm e2(m i

2
1v ~28!

5E df ie
~1/4!(f i

2E dxm dcm e(f im i1v, ~29!

where(f im i1v is closed by the equivariant derivative

d1 i f iv i
, ~30!

and v i is the Hamiltonian vector field ofm i . ~See Ref. 7 for the correct reinsertion of th
imaginary unit.! We choose a one-formc on the phase space that is invariant under the actio
the group,

Lv i
c50, ~31!

for all v i . One can use the BRST localization principle to prove that

Z5E df ie
~1/4!(f i

2E dxm dcm e(f im i1v1l~d1 i f iv i
!c, ~32!

5E dxm dcm e2( i ~m i1l i v i
c!21v1l dc, ~33!

is independent ofl. The limit l→` yields a localization on

i v i
c50. ~34!

We choose more specificallyc5 i xg (x5$(m i
2,%52(m iv i), which is equivalent to the one-form

in Ref. 7, and get a localization on the critical points of(m i
2, which is the non-Abelian localiza

tion principle.
Equation~33! can be interpreted as a consequence of the new localization principle be

@2( i(m i1l i v i
c)21v1l dc,2((m i1l i v i

c)v i ,i xg# is a triple. The conditions of a triple can b
proved using the identity (d1 i v i

)(m i1v1l dv i
c)50. We are reminded that, neglecting possib

complications due to the degeneracy ofv~l!, one deforms the actionS52( im i
21v using the

flow ~10!, where the one-form isc5 i xg.

V. CONFORMAL DUISTERMAAT–HECKMAN FORMULA

We derive the conformal Duistermaat–Heckman formula using the new localization prin
We have to impose, however, a restriction that is not present in the original approach in R

In the following it is assumed that the phase space admits a metricg such that the Hamiltonian
vector fieldx is a conformal Killing vector,

Lxg5Lg. ~35!

L is a function on the phase space. In addition, the following is assumed.
~1! There is a one-parameter family of vector fieldsx~l!, such that

dx~l!@H1v1ldx~ i xg!#50. ~36!
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~2! Here

g~x~l!,x!5g~x,x! at the pointsp, where L vanishes, ~37!

which follows if x(l)5x at the pointsp or if v(l)5v1ld( i xg) is nondegenerate for alll.
Lemma 1:@H1v1ldx( i xg),x(l),i xg# is a triple of the new localization principle.
Proof: We prove only the condition~10! of a triple because the other two conditions a

evident. If l is zero,~10! is trivially true, and we can assume that it is nonzero. A conform
Killing vector satisfies the equation

dg~x,x!5L i xg2 i xd~ i xg!,

and using the condition~36! we get the identity

i x~l!v~l!52d@H1lg~x,x!#5 i xv~l!2lL i xg.

If LÞ0, we get that

i x~l!i xg5
1

lL
i x~l!i xv~l!5

1

lL
i x dH~l!5g~x,x!,

which is enough to prove~10!. If L vanishes then~10! follows directly from the restriction~37!.h
Because of the new localization principle, the partition function,

Zl5E dfm dcm eS~l!, ~38!

is independent ofl, and in the limitl→2` the action produces a delta functiond~x!, which
localizes the integral to the critical points of the HamiltonianH. Calculation of the integral gives
the Duistermaat–Heckman formula

Z5 (
dH50

Adetvmn

Adet
]2H

]fm]fn

e2bH. ~39!

We have used the fact thatL50 at the critical points that follows from the formula8

L5
1

2D
“lxl5

1

2D
~“lvlr!]rH.

The details of the calculation can be found in Ref. 5.

VI. LOCALIZATION DEFORMATION OF THE LAPLACIAN ON HOMOGENEOUS SPACES

We derive a localization deformation~51! of the Laplacian~40!, ~43! on homogeneous space
using the new localization principle. It is demonstrated that the deformation does not giv
desired localization to the geodesics. However, it is worth presenting as a nontrivial so
example of the triple, or more accurately a combination of the two of them. We mention
another flow that might localize, but it seems to be nonsolvable in closed form, and it is not
if the conditions of a triple are satisfied~we conjecture that they are satisfied!. See Appendices A
and B for notations.

We consider the partition function

Z5tr e2b@~1/2!D02Jiv i #, ~40!
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where b, Ji are constants andD0 is the zero-form part of the LaplacianD5dd* 1d* d on
homogeneous manifolds.ebJiv i is the translation operator in the direction of the isometryJiv i .
The partition function~40! coincides with the heat kernel that is integrated over the manifold

Z5E Agdx̂ xue2b@~1/2!D02Jiv i #ux&5E Agdx̂ xue2~1/2!bD0uebJiv ix&, ~41!

5E Agdx kb~x,ebJiv ix!. ~42!

The path integral presentation of~40! is

Z5E @dxm dpm dcm dc̄m#expE
0

b

I iv
i~ ẋ!2

1

2
Ki j I i I j1Ji I i1d~ I iv

i !, ~43!

where 1
2K

i j I i I j5
1
2g

mnpmpn is the Hamiltonian of the geodesic motion and the Grassmann v
ables are associated with the one-forms,cm;dxm, c̄m;dpm . In addition, there is DeWitt’s
term;18 we assume that it is proportional to the scalar curvature.~There has been some controver
about this term; see Ref. 18 for a recent discussion and the speculation at the end of Sec. VI! We
have neglected it because homogeneous manifolds are of constant scalar curvature and
only a shift in the energy levels.

The straightforward way to derive a localization deformation of the action in Eq.~43! would
be to choose the loop space one-form,

c5 i xS
g,

where g is the phase space metric~B13! ~lifted6 on the loop space! and xS is the loop space
Hamiltonian vector field,6

xS5ḟ2x1Jiv i
H , x5 1

2K
i j I iv j

H ,

and apply the flow equation~10!, neglecting the degeneracy problem. One can think~hopefully!
that the inverse of the symplectic form becomes singular at some points of the phase sp
xS(l)5v(l)21dH(l) stays finite, we conjecture that this is the case. However, we have not
able to solve the flow equation. A power series solution experiment seems to give an infin
different terms, which probably indicates that the flow is not solvable in closed form. How
this flow might localize to the geodesics if one could extract its asymptotic behavior someh

The following refined approach gives a localization deformation that is solvable and doe
suffer from the degeneracy problem of the symplectic form; the latter is argued afterwa
reasons of pedagogy. We use two one-forms@g1 and g2 are the two components of the metr
~B13!#,

c i5 i xS
gi , i 51,2,

both of which give a flow that is exactly solvable and localizes half of the degrees of freedo
addition,c2 satisfies

LxS
c250, ~44!

so that the flow in the direction of it is just a BRST flow,

S→S1a dxS
c2 .

We combine the flows as follows:
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First, the action and the one-formc2 are evolved by the flow of the one-formc1 , the
localization parameter of the flow isl. Second, the resulting action is evolved by the flow of t
transported one-formc2(l) and the localization parameter isa. The principle is described graph
cally in Fig. 1; by the arrows there is the localization parameter and the one-form that gen
the flow. It is important to note that the first flow turns out to be such thatv~l! is nondegenerate
for all l. It can be seen using the formulas in Appendices A and B. Thus, one can transpo
one-form c2 along it according to Eq.~15!. In addition, the flow preserves the Lie derivativ
condition ~44! in the form

LxS~l!c2~l!50.

Consequently, the flow along the transported one-formc2(l) is again a BRST flow. The condi
tions of a triple are trivially satisfied because both the flows are familiar special cases: a d
morphism and a BRST flow. In the former the vector fieldxS(l) is obtained fromxS(0) by letting
the diffeomorphism flow it according to Eq.~15!. In the latterxS(a,l)5xS(l).

We get the total two-parameter localization deformation,

S~a,l!5S2SB~a,l!2SF~a,l!, ~45!

SB5~l1 1
2l

2!Ki j x̃x
i x̃x

j 1aKi j ] t
JI i~l!] t

JI j~l!, ~46!

SF5ld~Ki j x̃x
i v j !1aKi j d@] t

JI i~l!dI j~l!#, ~47!

where

x̃x
i 5v i~ ẋ!2Ki j I j1gj

i Jj , ~48!

I i~l!5I i2lKi j x̃x
j , ~49!

] t
J5d i

j] t1JkCki
j . ~50!

The partition function,

Z~a,l!5E @dx dp dc dc̄#eS~a,l!, ~51!

is independent of the parametersa andl and coincides with~43! when they vanish. The limit tha
the localization parameters are put to infinity localizes only half of the degrees of free
namely,

x̃x
i 50, ~52!

FIG. 1. Localization principle.
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leaving an infinite-dimensional integral. The full localization on the equations of motion~the
geodesics! would be

] t
JI i50, x̃x

i 50.

The fact that the localization deformation localizes only half of the degrees of freedom c
proved as follows: Asl anda are large there is exponential damping in the path integral du
the bosonic part~46!, unless

x̃x
i ;

1

l
f i , ] t

JI i;] t
JKi j f j1

1

Aa
gi , ~53!

where f i and gi are finite. The fermionic part does not change the situation because the
function scaling of the fermionic determinant shows that it can only give a polynomial de
dence. We see from the equations~53! that we get localization only on~52!. However, it might be
that taking firstl to infinity and thena would localize, or although there is no exponent
damping, there might be a rational delta functiond(x);a/@11(ax)2#. Neither occurs, as can b
proved in the caseJ50 by integrating the fermions and expanding the bosonic action aro
x̃x

i 50 using the coordinate systemxm, fS
m5v i

mx̃x
i . One sees that the residuala andl dependence

cannot localize further. In addition, if there would be localization in the case thatJÞ0, there
would also be localization in the limit thatJ vanishes.

VII. NON-ABELIAN DERIVATIVE EXPANSION LOCALIZATION

We localize the heat kernel on compact Lie groups using a derivative expansion localiz
In the end of the section it is commented how it might be possible to obtain new localiz
formulas using the principle. Many of the equations in this section are formal; they inv
distributions or possess singularities that cancel. We do not address the difficult mathem
problem of how to treat them rigorously.

We begin by studying the shifted heat kernel,

^xue2b@~1/2!Ki j v iv j 2Jiv i #uy&, ~54!

on homogeneous manifoldsM5G/H. If one puts the pointsx,yPM equal and integrates overx
one gets the partition function~40!.

Theorem 2: Provided that the series~57! converges in the sense of distribution theory,19 the
following formal identity holds:

^xue2b@~1/2!Ki j v iv j 2Jiv i #uy&5e2~1/2!bKi j uiuj^xuew iv iuy&uw5bJ , ~55!

where

ui5S 2wkCk

e2wkCk21
D

i

j ]

]w j . ~56!

@(Ci)k
j 5Cik

j are the structure constants; see Appendix A.#
Proof: We expand the exponential function on the left-hand side as

^xue2b@~1/2!Ki j v iv j 2Jiv i #uy&5 (
n50

`

^xuew iv iS 2
1

2
bKi j v iv j D n

uy&Y n!, ~57!

and by definition the right-hand side is
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e2~1/2!bKi j uiuj^xuew iv iuy&5 (
n50

`
1

n! S 2
1

2
bKi j uiuj D n

^xuew iv iuy&. ~58!

The terms in the series on the right-hand side are actually distributions: then50 term is

^xuew iv iuy&5d~x2ew iv iy!, ~59!

and higher terms are obtained by differentiating it~it may occur that the terms diverge because
the singularities ofui but then the series does not converge!. Moreover, the terms on both sides a
equal in each order~which suffices to prove the theorem because the series converge! because of
the formal identity

uie
wkvk5ewkvkv i , ~60!

which can be proved as follows: Using Duhamel’s formula20

]

]w i ewkvk5ewkvkv~w! i
jv j , ~61!

where

v~w! i
j dw i5S e2wkCk21

2wkCk
D

i

j

dw i ~62!

can be understood as the left-invariant one-form of the Lie groupG in exponential coordinates. I
is, however, continued on the whole Lie algebra, including the points where the coordinate s
is singular. The equation~60! follows, inverting it, which is possible, except at the singular poi
of the exponential coordinate system. However, formally the equation~60! holds also at these
points, thenui is singular, but the singularity cancels in the whole expression~60!. h

One can turn the derivative expansion in Theorem 2 formally into an integral using the k

Kb~w8,w!5^w8ue2~1/2!bKi j uiuj uw& ~63!

as follows:

e2~1/2!bKi j uiuj^xuew iv iuy&5E Ag8~w8!dw8 Kb~w,w8!^xuew8 iv iuy&, ~64!

whereg8 is the degenerate metric,

g8~w!kl5Ki j v~w!k
i v~w! l

j , ~65!

on the Lie algebra.
In addition, one can formally calculate the kernel as follows:

Kb~w8,w!5^0ue2~1/2!bKi j uiuj uj~w8,w!&5Kb~0,j!,

wherej is defined as

e2w8kvkewkvk5ej~w8,w!kvk. ~66!

An explicit expression forj can be obtained using the Campbell–Baker–Hausdorff theorem21 in
a neighborhood thatw8 andw are close to zero. The kernelKb(0,j) has been calculated in Ref. 9
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Kb~0,w!5
M

~2pb!D/2 Â~w iCi !e
2~1/2b!Ki j w

iw j 1~D/48!b, ~67!

where Â(X)5Pxk.0(xk/2/sinxk/2) ~ixk are the eigenvalues of the antisymmetric real matrixX!

andM is a normalization constant.9,10

We localize the Laplacian on Lie groups, assuming that the condition of Theorem 2 hold
one can transform the derivative operator into an integral as in Eq.~64!, which is plausible becaus
the singularities cancel. We calculate

kb~1,g!5^1ue2~1/2!bD0ug&, ~68!

5E Ag8dw Kb~0,w!d~12gew iTi !5 (
wPL

Kb~s!, ~69!

where1, gPG and we use the notation of matrix groups.Ti are the generators of the Lie algebr
One should notice that the delta function is normalized with respect to the volume on th
group whereas the integral is overw, however, because one can associatew as the exponentia
coordinate we get agreement. The latticeL is

L5$wug5ew iTi%. ~70!

@We have used the symmetryKb(w)5Kb(2w) to fix the sign convention for the latticeL.# It is
in one to one correspondence with the geodesics starting at1 and ending atg because one can
associate withwPL a geodesicet/bw iTi, tP@0,b#. The expression~69! coincides with the semi-
classical approximation and it is studied in more detail in the next section.

Finally, we comment on how it might be possible to obtain new localization formulas u
Theorem 2. Puttingy5x in Theorem 2 and integrating overx gives

tr e2b@~1/2!Ki j v iv j 2Jiv i #5e2~1/2!bKi j uiuj tr ew iv iuw5bJ . ~71!

There is, however, a minor subtlety: the condition of Theorem 2 does not necessarily hold.
Lie group case the terms in the series~57! are not in the space of distributions because the d
functions restrict the vector fieldui to its singular points, hence, the series does not converge in

sense of distributions. The problem can be circumvented by replacingy instead byew0
i v ix and

continuing analyticallyw0 to zero~or modifying the formulas byw0!.
The linear partition function,

Z5tr ewkvk, ~72!

is in the path integral form (w5bJ),

Z5E @dx dp dc dc̄#expE
0

b

I iv
i~ ẋ!1Ji I i1d~ I iv

i !. ~73!

It can be localized using the BRST localization principle because the Hamiltonian vector fie
the HamiltonianJi I i generates an isometry of the phase space metric~B13!. Consequently, we
should get a localization for the partition function~71! that is a derivative expansion of ordinar
localization formulas.~This principle appeared first in the Abelian form in Ref. 16. There is a
a path integral derivation of it which lacks for the non-Abelian case; see also Ref. 22.! However,
one has to be careful because the linear partition function~72! is a distribution, therefore the pat
integral~73! must diverge~for example, the divergent integral*2`

` eipx dx can be associated with
the delta function!.
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One can formally add a BRST exact term to the action in the path integral~73! with any of the
following gauge fermions or their linear combinations, multiplied by the localization parametl:

c15 i Jiv i
Hg, ~74!

c25 i ḟg, ~75!

c35 i ḟ2Ki j I iv j
Hg, ~76!

whereg is the phase space metric~B13!.
For example, the gauge fermion~75! should give a localization formula that is an integral ov

the phase space15 of an equivariant characteristic class.~The Dirac genus should possibly b
replaced by the Todd class23 in Ref. 15.! The integral must be divergent, but if one would be ab
to differentiate the derivative expansion in the full formula~71! one would perhaps get a conve
gent integral over the phase space and a novel localization formula.

Moreover the gauge fermionc22c1 should give the loop space Duistermaat–Heckm
formula6 or its degenerate version, but it turns out to be singular because there are no c
points, except at fixed values ofb. The localization by the gauge fermion~75! seems to be even
more singular; it should localize to the nonexisting critical points of the Hamiltonian.22 The gauge
fermion ~76! can possibly give a localization only if one first sums the derivative expansion
then takes the limit, which we have not been able to do.

VIII. CONFIGURATION SPACE LOCALIZATION

We localize the Laplacian on a Lie group using a configuration space path integral.
On the spaceVG of based loops~loops that start and end at the unit element1 of the Lie

group!, there is a natural symplectic form that is right invariant,

v5 1
2Ki j vR

i ∧] tvR
j , dv50. ~77!

~The left- and right-invariant forms have changed places compared to Ref. 24.! The notation is that
v i ,v i

R are the left- and right-invariant vector fields and the dual one-forms are

v i5Ki j g~v j !, vR
i 5Ki j g~v j

R!,

whereg is the bi-invariant metric and the vector fields coincide at1, v i u15v i
Ru1 .

The configuration space path integral is

Z5E @dxm dcm#vbcexpE
0

b 1

2
Ki j @v i~ ẋ!1Ji #@v j~ ẋ!1Jj #1

1

2
Ki j vR

i ∧] tvR
j , ~78!

where vbc means vanishing boundary conditions for both bosons and fermions,xm(b)5xm(0)
50, cm(b)5cm(0)50, and the coordinatesxm are chosen so thatxm50 corresponds to the uni
element1 of the Lie group.

Integration of the fermionic part of the integral gives a Pfaffian,

Adet~vRm
i Ki j ] tvRn

j !5AdetgmnAdet~d j
i ] t!vbc, ~79!

where we have used the product rule for the determinant and the determinants obey va
boundary conditions. The equation~79! can be justified using the change of variables,

cm5v i
mMi j

21u j , Ki j 5~MTM ! i j , ~80!

writing the measure as@du j #vbc5@du j #pbcd@u j (0)# and expandingu j in Fourier modes~pbc
means periodic boundary conditions!. The procedure also evaluates the determinant,
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det~d j
i ] t!vbc5det8~b] t!

D51,

in terms of the standard determinant

det8~] t1m!pbc5 )
nÞ0

S m1
2pni

b D5b
sinhbm/2

bm/2
. ~81!

~We have chosen a regularization that preserves the ‘‘charge conjugation’’ symmet25,23

m↔2m.)
The result, after the integration of fermions, is

E @Agdxm#vbcexpE 1

2
Ki j @v i~ ẋ!1Ji #@v j~ ẋ!1Jj #,

which, using the change of variables,

xm→e2tJiv ixm, ~82!

gives the equivalent path integral

E @Agdx#bcexp
1

2 E0

b

Ki j v
i~ ẋ!v j~ ẋ!,

with the boundary conditions~bc!

xm~b!5~ebJiv ixm!ux50;ebJiTi5g, xm~0!50;1.

Thus, the configuration space path integral~78! coincides with the heat kernelkb(1,g).
We proceed to localize the integral~78! using the Hamiltonian BRST localization principle

The Hamiltonian vector field for the action,24

S5E
0

b 1

2
Ki j @v i~ ẋ!1Ji #@v j~ ẋ!1Jj #, ~83!

is

xS5x1Jiui , ~84!

where

x5 ẋ2v i~ ẋ!u t50v i
R , ~85!

ui5v i2v i
R , ~86!

and one can use the Hamiltonian BRST symmetry with the equivariant derivativedxS
.

We construct the gauge fermionc starting with an invariant tensor,

g85E
0

b

Ki j dv i~ ẋ! ^ dv j~ ẋ!, LxS
g850, ~87!

and contracting it with the loop space Hamiltonian vector field,

c5 i xS
g8. ~88!
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This is analogous to the localization in Ref. 6. Adding the gauge fermion gives the action

S~l!5S1v1ldxS
~ i xS

g8!, ~89!

5S1v1lKi j ] t
Jv i~ ẋ!] t

Jv j~ ẋ!1lKi j d@] t
Jv i~ ẋ!dv j~ ẋ!#, ~90!

where] t
J5d j

i ] t2JkCk j
i .

The path integral,

Z5E @dxm dcm#vbce
S~l!, ~91!

coincides with~78! whenl vanishes and localizes in the limitl→2` on ] t
Jv i( ẋ)50, which are

the classical geodesics] tv
i( ẋ)50 before the change of variables in Eq.~82!.

One can write the geodesics starting at1 and ending atg5ebJiTi ~in matrix group notation!
as9,10

gn~ t !5e~ t/b!~w i12pn i !Ti, n iPL,

wherew i5bJi and

L5$n i u@n iTi ,w jTj #50, e2pn iTi51%,

and we assume thatw iTi is in the generic position that its annihilator is a conjugated Ca
subalgebra. One can also write the latticeL in terms of the roots of the algebra; see Refs. 9 and
The solutions of the equation] t

Jv i( ẋ)50 are obtained from these by inverting the change
variables in Eq.~82! @which is translated into matrix group notation asxm(t);g(t)→e2tJiv ixm

;g(t)e2tJiTi#, giving

g̃~ t !5e~ t/b!2pn iTi. ~92!

Then we calculate the limitl→2` in the path integral~91!.
First we make the change of variables,

@dxm dcm#vbc→@dXi dh i #,

whereXi5v i( ẋ) andh i5dXi5@dv i( ẋ)/dxm#cm. It changes the vanishing boundary conditio
into something more complicated. Fortunately it is enough to study what occurs near the c
points because of the localization and the fact that the first variation of the bosonic part inS(l)
vanishes. In first order the bosonic coordinates are related by the identity

xm5xcr
m1dxm, dv i~ ẋ!5

dv i~ ẋ!

dxm U
xcr

dxm5~D̃t
M2C! j

i ~vm
j dxm!,

where we have the Maurer–Cartan differential operator~A20!. The critical points are given in
equation~92! so that the Maurer–Cartan operator is

D̃t
M –C5e2~ t/b!2pn iCi ] te

~ t/b!2pn iCi.

We get that the vanishing boundary condition results in the condition

E
0

b

e~ t/b!2pn iCi dXi50, ~93!
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for the coordinateXi5Xcr
i 1dXi near the critical point. The fermionic coordinatesh i also obey the

same condition~93!.
Integrating the fermions and putting the localization parameter to infinity yields

Z5(
n

1

Pf~] t
J!

e2~1/2b!Ki j ~w i12pn i !~w j 12pn j !,

where the Pfaffian obeys the boundary condition~93!. It is calculated conjugating the Hilber
space by the operatore2(t/b)2pn iv i, which turns the boundary condition~93! into *0

b dXi50 and
the operator] t

J into ] t
J12pn . Furthermore, the diagonalization of (w i12pn i)Ci gives the eigen-

valuesm j ,

m j5 H0; j 51,...,r ,
i ^w12pn,a j&; j 5r 11,...,D, ~94!

wherer is the rank of the group,a i are the roots~they are in the annihilator ofw iTi , which is
isomorphic to the Cartan subalgebra!, and ^,& is the contraction by the Killing tensorKi j . The
Pfaffian reduces into a product of usual determinants~81! and the final result is

kb~1,ew iTi !5
M

~2pb!D/2 (
n

)
a.0

^w12pn,a&/2

sin̂ w12pn,a&/2
e2~1/2b!^w12pn,w12pn&, ~95!

which, however, has to be corrected with DeWitt’s term, which gives the extra factor
@2b(D/48)#. It is consistent with DeWitt’s original26 proportionality constant112 in front of the
scalar curvatureD/4. The result coincides with the expression~69! and has been calculated usin
the different methods in Refs. 9 and 10. This is, however, disturbing because the natural val18 of
DeWitt’s constant should be18. We hope that further research solves this puzzle. We speculate
both values may be correct, they just correspond to different path integral measures, and t
trivial looking problem may reveal deep insights in how to make the path integral rigorous
what the quantization is all about.

IX. CONCLUSIONS, SPECULATIONS, AND FUTURE PROSPECTS

We have developed two new localization methods: the new localization principle an
non-Abelian derivative expansion localization. We emphasize that both the principles are u
sal and probably have many other applications that are not yet known. For example, th
Abelian derivative expansion localization may apply to integrable models: Many integrable
els can be embedded in Poisson–Lie algebras.27 The integrable hierarchy is the sequence
Casimirs with respect to ther-deformed Poisson bracket. The linear generators generate
coadjoint action and are therefore isometries of the Killing metric on the algebra. Howeve
algebra in many cases is noncompact and the metric that is pulled back on the phase space
indefinite. There may also be anomalous problems associated with the quantization and
rivative expansion in Theorem 2 may be singular, so that before concrete examples are wor
we cannot say if the principle eventually works or not.

Another direction of research is to generalize the configuration space localization o
groups in Sec. VIII to homogeneous or locally homogeneous manifolds and try to unde
Selberg’s trace formulas. However, it may be that the existence of Selberg’s trace formula
separate phenomenon; see the remarks below. Yet another direction of research would be
if there would be an analog of the configuration space localization for two-dimensional s
models, for example, the Laplacian on loop groups might be such. In addition, it and the deri
expansion localization in Sec. VII may have supersymmetric versions; the starting point wo
the grand canonical partition function that was introduced in Ref. 18.

Finally, we collect few remarks on Selberg’s trace formula on constant negative curv
Riemann surfaces, which might be helpful in a possible path integral localization.
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Remark 6:Selberg’s trace formula is the exact Gutzwiller’s trace formula,28 which suggests
that the path integral should perhaps be enlarged by one degree of freedom,

Z~b!5tr e2bD0→E
0

`

e2bEZ~b!. ~96!

Remark 7: The Riemannian surfaces have a natural symplectic form, the volume
Agemn dxm∧dxn, which makes it possible to write the path integral as follows:

Z~b!5E @Agdx#expE gmnẋmẋn5E @dxm dcm#expE gmnẋmẋn1Agemncmcn. ~97!

Perhaps it should be taken to be the starting point for localization.
Remark 8:We have assumed inRemark 7that the path integral takes implicit care of the fa

that the Riemann surfaces are not simply connected. It can be made explicit~it may even be that
it is necessary! by integrating on the Poincare´ upper half-plane and splitting the integral into a su
of path integrals with different boundary conditions. It is possible to transform the boun
conditions into periodic using an analogous change of variables that was used in Sec. VIII
~82!, which allows one to use localization deformations. Furthermore, in order to replace the
as an integral, one can perhaps make an analogous trick,29 as in the case of the material particle o
U~1!:

tr eb]x
2
5 (

n52`

` E
0

L

dx~0!E @dx#x~b!5x~0!1nLe* ẋ2
5E @dx#pbcexpE F ẋ1S x~0!

L DLG2

,

wherex(t)PR1 and@x# is the greatest integer smaller thanx. U~1! is associated withR1 modL.
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APPENDIX A: FORMULAS ON HOMOGENEOUS SPACES

We introduce formulas on homogeneous spaces that use a degenerate basis for vector fi
addition, we define a Maurer–Cartan connection on the tangent bundle.

A homogeneous space is, in this article, the quotient spaceM5G/H ~G andH are Lie groups!
with the metric that is inherited from the unique bi-invariant metric on the Lie groupG. Techni-
cally, one inverts the metric onG and pushes it onM using the canonical projection.30 We require,
in addition, thatG is compact, although the formulas are valid also in the noncompact case,
the exception that the metric tensors are not necessarily positive definite.

As the quotient is taken by the right action we get the standard left action ofG on M that is
generated by the vector fields,

v i , i 51,...,N, ~A1!

on theD-dimensional manifoldM. They are isometries of the metric and satisfy the Lie algebr
G,

@v i ,v j #5Ci j
k vk . ~A2!
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We define the Killing tensor,

Ki j 52tr CiCj52Cil
k Cjk

l , ~A3!

which is positive definite becauseG is compact. The inverse ofK is Ki j and it is used to raise
indicesi , j ,k¯P$1,...,N% as Greek indicesa,b¯P$1,...,D% are raised and lowered by the metr
gmn . For example, the tensor

Ci jk5KimCjk
m

is antisymmetric in all the three indices when the upper index is lowered.
We define the one-forms,

v i5Ki j g~v j !, ~A4!

that are dual to the vector fields~A1!. If xm are coordinates onM one can write the vector field
and their dual one-forms in the coordinate basis asv i5v i

m]m and v i5vm
i dxm that satisfy the

relation

vm
i v i

n5dm
n . ~A5!

The metric can be written as

g5Ki j v
i
^ v j , g215Ki j v i ^ v j . ~A6!

We define a tensorgj
i ,

gj
i 5v i

•v j , ~A7!

which has the properties

gi j 5gji , gj
i gk

j 5gk
i , gj

i v j5v i , gj
i v i5v j . ~A8!

Using it, we can associate the Lie algebra of the local isotropy group

Hp5$gPGugp5p%, pPM ,

with

hp5$Xiv i uXiPR,gj
i ~p!Xj50%,

and the orthogonal complement of it, which is isomorphic to the tangent space atp, with

mp5$Xiv i uXiPR,@d j
i 2gj

i ~p!#Xj50%.

The key observation is thatXiv i vanishes atp if and only if gj
i (p)Xj50. Using the association th

standard commutation relations on homogeneous spaces,30

@hp ,mp#,mp , @hp ,hp#,hp ,

give the identity

~dn
m2gn

m!Cnk
i gj

k5~dn
m2gn

m!gk
i Cm j

k . ~A9!

The dual of the algebra~A2! is

dv i52 1
2~2dm

i 2gm
i !Ckl

mvk∧v l , ~A10!
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and we obtain the formulas for the connection,

“v i
v j5G i j

k vk , ~A11!

G i j
k 5 1

2K
kl~Ci j

n gln2Cli
ngjn1Cjl

n gil !, ~A12!

and the curvature

R~v i ,v j !vk5Rki j
l v l , ~A13!

Rki j
l 5Ci j

mGmk
l 1Cik

mG jm
l 2Cjk

mG im
l 1G jk

mGmi
l 2G ik

mGm j
l . ~A14!

The formula for the connection can be checked using the formula20

2~“XY•Z!5X~Y•Z!2Z~X•Y!1Y~Z•X!1@X,Y#•Z2@Y,Z#•X2@Z,X#•Y,

where• means contraction with respect to the metricg. The Laplacian on zero-forms is actual
the Casimir,

D05Ki j v iv j . ~A15!

One can also check that these manifolds are of constant scalar curvature by calculating

R5Rjkl
i gi

jgkl,

and checking that

Lv i
R50

~Appendix D!.
We make few comments on the connection and the curvature. First, we have on TM the

Levi-Civita connection~A12!, which is denoted as

D5DL–C5db
ad1dxg Ggb

a . ~A16!

Since

Gab
g 5~]avb

j !v j
g1va

i vb
j G i j

k vk
g5~]avb

j !v j
g1 1

2va
i vb

j Ci j
k vk

g ,

we can write

Dn
m5v i

m~d j
i d1 1

2v
kCk j

i !vn
j , ~A17!

5v i
m D̃ j

i vn
j , ~A18!

whereD̃ is a differential operator. There is also another interesting connection on TM, whic
call the Maurer–Cartan connection:

~DM–C!n
m5v i

m~D̃M–C! j
i vn

j , ~A19!

where

~D̃M–C! j
i 5d j

i d1vkCk j
i . ~A20!

The differential operator associated with it has the property
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~D̃M–C! j
i gk

j 5gj
i ~D̃M–C!k

j . ~A21!

The fact that it really is a connection is checked by calculating the difference of it and
Levi-Civita connection that yields the tensor,

Ckmn5vm
i vn

j Ci j
k Kklvk

l . ~A22!

Then one can check easily that the axioms of a connection are satisfied, except the torsi
axiom.31 The definition of the tensor~A22! is invariant under rotations that takev i into their linear
combinations but may depend on the particular way thatM is quotiented,M5G/H. In addition,
it is antisymmetric in all the three indices. Consequently, on any two-dimensional homoge
manifold D andDM–C coincide.

Then we calculate the curvature of the Maurer–Cartan tensor, but first the Levi-Civita c
ture:

D25 1
2Rbgd

a dxg∧dxd,

where the curvature tensor is easily expressed in terms of the tensor~A14! as Rbgd
a

5v i
aRjkl

i vb
j vg

kvd
l . One can calculate the Maurer–Cartan curvature,

Fbgd
a 5v i

aF jkl
i vb

j vg
kvd

l ; ~A23!

similarly,

DM–C
2 5v i

m D̃M–C gj
i D̃M–Cvn

j 5v i
m D̃M–C

2 vn
j 5 1

2F jkl
i v i

mvn
j vk

kvl
l dxk∧dxl,

where

F jkl
i 5Cjn

i ~dm
n 2gm

n !Ckl
m . ~A24!

In the Lie group casegm
n 5dm

n andF50, which is very natural because on a Lie group,

DM–C5g21 dg5d1V,

whereV5g21 dg is the Maurer–Cartan form~g is now exceptionally a group elementgPG,
g5eu iTi, whereu are the exponential coordinates on the Lie group andTi are the generators of th
Lie algebra!, and the connection is zero-curvature by the Maurer–Cartan equation,21

DM–C
2 5dV1V∧V5g21 d2g50.

APPENDIX B: FORMULAS ON THE COTANGENT BUNDLE

We introduce some formulas and a one-parameter family of invariant metrics on the cota
bundle of homogeneous manifolds.

The phase space of the geodesic motion on a manifold is the cotangent bundle. Ifxm,pm are
the standard coordinates on it,

pm dxmupPT* M , pPM ,

the standard symplectic potential is

u5pm dxm,

and the Hamiltonian of the geodesic motion is

H5 1
2 gmnpmpn .
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The G action onM has a Hamiltonian lift;7 the Hamiltonians that generate it are

I i5v i
mpm , ~B1!

and they satisfy the Poisson brackets

$I i ,I j%5Ci j
k I k . ~B2!

The associated Hamiltonian vector fields are

v i
H5$I i , %5v i2

]I i

]xm

]

]pm
. ~B3!

The symplectic form7 can be written as

v5du5d~ I iv
i !5dIi∧v i2 1

2 I iCjk
i v j∧vk, ~B4!

wherev i is actually the pull-back of the familiar form onM onto the cotangent bundle by th
canonical projection.

The dual vector fields to the formsv i ,dIi are

ui5v i
H2Ci j

k I kw
j , wi5vm

i ]

]pm
,

and the word ‘‘dual’’ means that the identity tensor in the fiber of the tangent bundle ca
written as

12D5ui ^ v i1wi
^ dIi5v i

H
^ v i1wi

^ ~dIi1Ci j
k I kv

j !. ~B5!

However, we prefer the vector fieldsv i
H ,wi , whose contractions are

v i
H
•dI j5Ci j

k I k , ~B6!

v i
H
•v j5gi

j , ~B7!

wi
•dI j5gj

i , ~B8!

wi
•v j50, ~B9!

and commutators,

@wi ,wj #50, @wi,vi
H#5Cjk

i wk, @vi
H ,vj

H#5Cjk
i vi

H .

The inverse of the symplectic form can be written using these vector fields as

v215v i
H∧wi1 1

2 I iCjk
i wj∧wk. ~B10!

Finally, we describe a natural invariant metric on the cotangent bundle. Observing tha

Lv i
Hv j5Ci j

k vk , Lv i
H dI j5Ci j

k dIk ,

the following tensors are invariant under the action of the groupG because of the Casimi
structure:

g15Ki j v
i
^ v j , ~B11!
                                                                                                                



o

the

ef. 33.

1828 J. Math. Phys., Vol. 40, No. 4, April 1999 Topi Kärki

                    
g25Ki j dI i ^ dI j . ~B12!

From these two one can combine a metric,

g5ag11bg2 , ~B13!

provided thata andb are positive.
Proof: The combination is positive semidefinite becauseKi j is positive definite. One needs t

check that it is nondegenerate, which can be done by calculating the determinant of it,

detg5b detg1
mn det @agmn

1 1b~Ki j 2gi j !]mI i ]nI j #,

using the block matrix formula, and proving that it is nonzero, which is not difficult because
last term in the latter determinant is positive semidefinite. h

The invariance property of the metric can be written explicitly as

Lv i
Hg50;

see also Ref. 7 for a different metric.

APPENDIX C: BOUND FOR THE GEODESIC ACTION

We derive a bound for the geodesic action,

S5E
0

b

gmnẋmẋn, ~C1!

starting from the expression32

S~ t !5E gmn~ ẋm1tgmkuk!~ ẋn1tgnlul!>0, ~C2!

whereu is an arbitrary one-form. The inequality holds for allt, especially at the minimum,

t52
*umẋm

*gmnumun
, ~C3!

where it gives the bound

E gmn ẋm ẋn>
~*umẋm!2

*gmnumun
. ~C4!

For BRST quantization of the winding number action that appears in the bound, see R

APPENDIX D: CALCULATION OF THE SCALAR CURVATURE AND A FORMULA

We calculate the scalar curvature on homogeneous manifolds, but first we calculate

gn
agb

kgc
i gd

j Rki j
n ~D1!

using the missing identity,

G i j
k gk

l ga
i 5Ga j

k gk
l ; ~D2!

the torsion,
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G i j
k 2G j i

k 5gl
kCi j

l ; ~D3!

and the following property of the connection coefficient:

ga
i gb

j G i j
k gk

c5 1
2ga

i gb
j Ci j

k gk
c . ~D4!

The point is to use~D2! to eliminate theG’s using~D4! when one substitutes the expression~A14!
in ~D1!. Another way is just hard work, but it requires perhaps the introduction of Feynman
for the terms. The result is

5gn
agb

kgc
i gd

j @2Ci j
mCmk

n 1 1
2Ci j

mgm
p Cpk

n ~D5!

1 1
4~Cik

mgm
p Cp j

n 2Cjk
mgm

p Cpi
n !], ~D6!

which is also useful in calculating the equation~D14!. The scalar curvature is

R5Rjkl
i gj

i gkl, ~D7!

5Ki j Cik
mgl

kCjm
l 2 3

4K
i j Cik

mgl
kCjn

l gm
n , ~D8!

5Ki j tr~CigCj !2 3
4K

i j tr~CigCjg!. ~D9!

Using the equation

Lva
gl

k5@g,Ca# l
k5gp

kCal
p 2Cap

k gl
p , ~D10!

it is easy to see thatLva
R50. If one putsgj

i 5d j
i one recovers the Lie group formula

5
1

4
Ki j tr CiCj5

D

4
, ~D11!

whereD is the dimension of the Lie group.
Finally we mention a formula. We define first

D25Dt2
1
2v

i~ ẋ!Cik
l v l

lvk
k5v i

l ] tvk
i , ~D12!

D15Dt1
1
2v

i~ ẋ!Cik
l v l

lvk
k5Dt

M–C, ~D13!

where the operators are considered on classical trajectories of the geodesic motion which
that v i( ẋ) is constant. The formula reads as

D1D25D2D15Dt
21Rbgd

a ẋbẋg1Fbgd
a ẋbẋg, ~D14!

whereF is the curvature of the Maurer–Cartan connection. In the Lie group case it reduces
factorization of the geodesic deviation operator,

gmk
dS

dxk dxnU
dS50

5D1D25D2D15Dt
21Rbgd

a ẋbẋg,

whereS5 1
2*gmnẋmẋn.
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Two-particle scattering theory for anyons
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We consider potential scattering theory of a nonrelativistic quantum mechanical
2-particle system inR2 with anyon statistics. Sufficient conditions are given which
guarantee the existence of Møller operators and the unitarity of theS-matrix. As
examples the rotationally invariant potential well and thed-function potential are
discussed in detail. In case of a general rotationally invariant potential the angular
momentum decomposition leads to a theory of Jost functions. The anyon statistics
parameter gives rise to an interpolation for angular momenta analogous to the
Regge trajectories for complex angular momenta. Levinson’s theorem is adapted to
the present context. In particular we find that in case of a zero energy resonance the
statistics parameter can be determined from the scattering phase. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!01504-2#

I. INTRODUCTION

In recent years the theory of identical quantum mechanical particles with braid group sta
has received increasing attention~for a recent review and references on anyon physics~see, e.g.,
Refs. 1, 2!. The original observation that in two-dimensional configuration spaceR2 identical
particles may obey statistics different from Bose or Fermi statistics is due to Leinaas
Myrheim.3 They based the notion of quantum statistics on the topological structure of the cla
configuration space for identical particles. The relevant symmetry group is then shown to
braid group which replaces the permutation group. Models for particles with a one-dimen
representation of the braid group were first discussed by Wilczek, who coined the name any
particles with these new statistics4 ~see also Refs. 5–7!. Wilczek suggested the following physica
picture of anyons: Magnetic flux tubes~vortices! are attached to either charged bosons or fer
ons. The latter then give rise to arbitrary Aharonov–Bohm phases when transported along
exchanging the particle positions. The magnetic flux tubes are described by long range
potentials whose curvature vanishes and can be related to Chern–Simons theory.4,8 This point of
view was taken up by several authors~e.g., Refs. 9, 10! leading to a second quantized version
anyons obtained by coupling a Chern–Simons U~1!-gauge potential to a matter field.11

Also, the general case, where the finite-dimensional representation of the braid group
one-dimensional, has been considered. The corresponding particles are called ‘‘plektons12,13

The relevance of braid group statistics in conformal quantum field theory was realize
Tsuchiya and Kanie14 and in algebraic quantum field theory by Fro¨hlich15 and Fredenhagen
Rehren and Schroer.12,13

a!Electronic mail: christian.korff@physik.fu-berlin.de
b!Electronic mail: lang@math.tu-berlin.de
c!Electronic mail: robert.schrader@physik.fu-berlin.de
18310022-2488/99/40(4)/1831/39/$15.00 © 1999 American Institute of Physics
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However, in the discussion of particles with braid group statistics the main focus is on a
~Abelian statistics!, since in many particle theory they might provide an explanation for
fractional quantum Hall effect and for highTc superconductivity~for a review see, e.g., Refs. 16
17 and 18, 19!.

In this article we want to discuss nonrelativistic two-particle potential scattering theor
anyons. This is done in the framework of ordinary quantum mechanics, i.e., we insert a
potential of the Aharonov–Bohm type in the center of mass Hamiltonian. Emphasis is then
showing how well known techniques of scattering theory extend to the case of anyon sta
The motivation is twofold. On the one hand scattering theory is a powerful tool in spectral an
and thus might be helpful for a better understanding of fractional statistics. On the other
scattering data can be used to compute the virial coefficients of aninteractinganyon gas.20 Hence,
it is possible to infer bulk properties from scattering theory. The latter are of main interest i
investigation of the above mentioned phenomena.

The first calculation of the second virial coefficient for the two-particle anyon system
done by Arovaset al.9 They considered the case when only the statistics is present correspo
to the case of Aharonov–Bohm scattering.21,22 See Ref. 23 and references therein for rec
articles on the second virial coefficient of interacting anyon systems. In a forthcoming public
we intend to apply the results of this article to the calculation of the second virial coefficien

The case of non-Abelian vortex–vortex scattering has been investigated in Refs. 24–2
looking at the irreducible components~which are then one-dimensional Abelian! our discussion
then also applies.

The article is organized as follows. In Sec. II we review the quantum mechanics of
‘‘free’’ anyons in order to introduce our notation and to keep the paper self-contained. In pa
lar, we give the energy eigenfunctions, the resolvent~Green’s function! and the propagator. We
also recapitulate the relation of the free anyon system and Aharonov–Bohm scattering whic
be used in our discussion of the differential cross-section in Sec. IV. In Appendix A we reca
equivalent differential geometric formulation in terms of vector bundles, which in the cas
anyons are line bundles. In particular, we recall that there exists a canonical Hermitian conn
encoding the statistics such that the ‘‘free’’ Hamiltonian is the canonically associated Bo
Laplacian.

In Sec. III we consider scattering theory for the interacting anyon system obtained by a
a potential to the center of mass Hamiltonian. We give sufficient conditions for the existen
the Møller operators, which also cover the nonspherical symmetric case. Applying the Ku
Birman theorem27 we derive the unitarity of the resultingS-matrix.

In Sec. IV we discuss the differential cross-section with the modifications necessary
commodate anyon statistics. We show that the scattering amplitude splits into two part
describing the effects of the statistics the other the interaction represented by the potentia

In Sec. V, Jost functions are introduced which depend on the statistics parameter for a
The latter enters in the form of continuous angular momentum. This establishes a connectio
Regge trajectories in the theory of complex angular momenta. We conclude Sec. V by sh
how Levinson’s theorem, which relates the scattering phase shift to the number of bound
carries over to the present situation. In case the Jost function vanishes at zero energy, we d
explicit formula giving the statistics parameter in terms of the scattering phase shift.

Sections VI and VII are devoted to explicitly solvable examples. In Sec. VI we examine
d-potential. This case also figures under the name of anyons without a hard-core conditio
corresponding resolvent is calculated in closed form in Appendix D and the bound state pr
is then considered. We also remark on the modification of Levinson’s theorem and find an
tional formula relating the statistics parameter to the scattering phase. In Sec. VII we discu
square well potential. The Jost function is calculated and Regge trajectories are plotted
show the dependence of the point spectrum on angular momentum and the statistics param
Secs. VI and VII we provide numerical examples for the differential cross-section which di
the interpolation between Bose and Fermi statistics when the statistics parameter for an
varied.
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The results presented here are based in part on the diploma thesis of two of the a
~Korff 28 and Lang29!.

Throughout the article we will work in atomic units,\5e5m51, wherem denotes the mas
of the particles. In particular, this sets the reduced mass of a two-particle system equal to
estimates we make the convention thatC, C(e), etc. denote generic constants depending one, etc.

II. QUANTUM MECHANICS OF TWO ANYONS

The theory of identical particles with statistics differing from Bose or Fermi statistics
show up when the configuration~or momentum! space of one particle is the two-dimension
Euclidean space. Henceforth we will often use the complex planeC to describe such a space. F
the configuration spaceC3C of two nonidentical particles with points labeled by (z1 ,z2), the
relative coordinatez5z12z2 changes into2z if the coordinatesz1 andz2 of the two particles are
interchanged. The basic observation of Leinaas and Myrheim was, that by leaving out th
where the two particles are at the same point, i.e., wherez50, the configuration space in the cent
of mass frame of two identical particles should be the space obtained fromC!5C\$0% by identi-
fying the pointsz and2z. This space is therefore the orbit spaceC!/Z2 , whereZ25$11,21% acts
in the obvious way as a transformation group onC!. This space is also obtained from the clos
upper half-planeH in C minus the origin, i.e., the setH\$0%, by identifying the pointsx and2x
on the real axis. Geometrically this leads to a cone with removed apex as configuration spac
obvious choice of polar coordinates (r ,u)PR13@0,p) on H carries over to the coneC!/Z2 . We
take the state vectors of the system to be the square integrable functions on the coneL2(C!/Z2) or
equivalently thep-periodic functions on the punctured planeC!. The fact that the cone’s apex o
respectively, the plane’s origin is removed, allows for the particles to carry flux-tubes.
corresponds to the physical picture introduced by Wilczek~see, e.g., Refs. 4, 18!, who named such
particlesanyons. The flux-tubes are taken into account by inserting a gauge potential o
Aharonov–Bohm type,

Aa5
a

r
eu , aP@0,1#, ~II.1!

into the center of mass Hamiltonian. Herea is the so called statistics parameter andeu denotes the
unit vector corresponding to the polar angle. Choosing units in such a way that\51 and setting
the mass of the particles to one, the resulting Hamiltonian has the form

H0~a!52~“1 iAa!252
]2

]r 22
1

r

]

]r
2

1

r 2 S ]

]u
1 ia D 2

,

in polar coordinates. This operator will be considered to be the free Hamiltonian in the cen
mass frame for a two-particle anyon system with statistics parameteraP@0,1#. If a50 the
particles actually behave like bosons, while fora51 they behave like fermions. In Appendix A
we give a short review of a mathematically precise formulation of this model in terms of v
bundles, following Refs. 30, 31~see also Refs. 32, 33!. There we also argue whya50,1 corre-
sponds to bosons and fermions, respectively, and why we may restrict the parametera to the
interval @0, 1#.

We now determine the spectrum and the eigenfunctions ofH0(a). We start with the decom-
position

L2~C!/Z2!>L2~R1,r dr ! ^L2~S1,du!,

where the points inS1, the unit circle inC, are parameterized as exp(2iu) with 0<u,p. This
leads to the decomposition
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L2~C!/Z2!> %

mPZ
h2m , h2m5L2~R1,r dr ! ^ H e2imu

Ap
J . ~II.2!

This decomposition is of course related to the following fact. The rotation group SO/(2)>U~1!
mapsC! into itself and commutes with the action ofZ2 , thus acts onC!/Z2 and defines a unitary
action onL2(C!/Z2). Also H0(a) commutes with this action of U~1!; it is diagonal w.r.t. the
decomposition, i.e.,

H0~a!5 %

mPZ
H0,2m~a!,

with

H0,2m~a!52H d2

dr2 1
1
r

d
dr2

~2m1a!2

r 2 J ,

on L2(R1,r dr )>h2m . To find all solutions of the stationary Schro¨dinger equation forH0(a) it
therefore suffices to find the solutions of the Bessel equation for eachmPZ,

H d2

dr 1
1
r

d
dr2

~2m1a!2

r 2 1EJ R~r !50. ~II.3!

For definiteness we choose those solutions of Eqs.~II.3! which are regular nearr 50.
This gives the following improper eigenfunctions:

fa;m,E~r ,u!5
e2imu

A2p
•Ju2m1au~AEr !.

In what follows we will use the notations

kªAE, mªu2m1au.

The identity

E
0

`

Jm~at!Jm~bt!t dt5
1

Aab
d~a2b!, for a,b.0,

gives the following orthogonality and completeness relations:

^fa;m,Eufa;m8,E8&5dm,m8d~E2E8!, ~II.4!

(
m52`

1` E
0

`

dEfa;m,E~r ,u!fa;m,E~r 8,E8!5
1

r
d~r 2r 8!d~u2u8!. ~II.5!

We will also need the integral kernel for the resolventR0,a(z)ª(H0(a)2z)21, also called the
Green’s function, given by

^r ,uuR0,a~k6 i e!ur 8,u8&56
i

2 (
m52`

1`

e2im~u2u8!Jm~kr,!Hm
6~kr.!. ~II.6!

Here we have used the standard conventionr .ªmax(r,r8) and r ,ªmin(r,r8). To abbreviate the
notation we will sometimes make the convention thatHm

6 denotes the first and second Hank
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functionHm
(1) andHm

(2) , respectively.I m is the modified Bessel function andKm is the MacDonald
function ~see, e.g., Ref. 34!. To establish~II.6! one uses the well-known formula~see, e.g., Ref.
35!.

E
0

`

kdk
Jm~kr !Jm~kr8!

k21c2 5I m~cr,!Km~cr.!@Rem.21,Rec.0#.

Finally we give the kernel of the unitary time evolution exp(2itH0(a)):

ka~r ,u;r 8,u8;t !ª^r ,uue2 i tH 0~a!ur 8,u8&. ~II.7!

We can make this explicit by adapting a calculation, which is quite standard in the context
Aharonov–Bohm effect.21 Along the lines of Refs. 36, 37 we obtain the following result:

ka~r ,u;r 8,u8;t !5ka,0~r ,u;r 8,u8;t !1 k̂a~r ,u;r 8,u8;t !. ~II.8!

Here the two subexpressionska,0 and k̂a are given as

ka,0~r ,u;r 8,u8;t !5
1

2p i t
e2~1/4i t !~r 21r 82!eia~u2u82~p/2!sgn~u2u8!!

3cosS 2
ap

2
sgn~u2u8!1

rr 8

2t
cos~u2u8! D , ~II.9!

k̂a~r ,u;r 8,u8;t !5
i

2pt
•

sin~pa!

p
e2~1/4i t !~r 21r 82!I a~rr 8/2t,u2u8!, ~II.10!

where we have introduced

I a~r,x!5E
2`

1`

dyeir coshy
e2ya

12e22y22ix . ~II.11!

The formal relation to the Aharonov–Bohm effect used in the derivation of~II.9! and~II.10! does
not come by accident. In fact, the Hamiltonian of the two-anyon system coincides with
Hamiltonian of the Aharonov–Bohm effect when restricted to the subspace of symmetric
functions. As has been realized before~see, e.g., Ref. 18! one can exploit this by describing th
anyonic dynamics with the help of Aharonov–Bohm scattering and thus demonstrate the
trivial character of the statistical interaction. The description of the Aharonov–Bohm effe
terms of scattering theory was first given by Aharonov and Bohm themselves and later taken
several authors, among others, Refs. 22, 38, 39. We will mostly follow the discussion presen
Ref. 22 because there the time-dependent as well as the time-independent scattering forma
considered. The wave operators and the scattering operator of the Aharonov–Bohm eff
formally defined by

VAB
6
ªs-lim

t→6`

eitH 0~a!e2 i tH 0 and SABª~VAB
1 !* VAB

2 , ~II.12!

respectively. Here and henceforthH0 denotes the bosonic HamiltonianH0(a50) and the symbol
s-lim stands for the strong operator limit. Furthermore, by writing~II.12! we have implied the
restriction of the Aharonov–Bohm scattering to the subspace of symmetric functions or eq
lently to the spaceL2(C!/Z2). It has been shown22 that the wave operators exist and are comple
whence the scattering operator is unitary. For later use we give the explicit form of the in
kernels ofVAB

6 , i.e., the stationary scattering states, which can be obtained by symmetrizin
results given in Refs. 22, 39,
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^r ,uuVAB
6 uk,u8&5

1

p (
mPZ

~6 i ! u2m1auJu2m1au~kr !ei2m~u2u8!, ~II.13!

whereuk,u8& denotes the symmetric plane wave, i.e.,

^r ,uuk,u8&5
1

p
cos~kr cos~u2u8!!.

The scattering phase shift corresponding toSAB was first derived by Henneberger.38 Using his
result we can rewrite the scattering operator in the compact form

SAB5eipaP>1e2 ipaP, , ~II.14!

with P> and P, denoting the spectral projections onto the subspaces of positive, respec
negative angular momentum. Equation~II.14! serves physical intuition by clarifying the effect o
the gauge potentialAa defined in~II.1!.

However, of practical importance is the integral kernel of theS-matrix in momentum space
which was first given in Ref. 22. After symmetrization we obtain foraP@0,1#,

^k,uuSABuk8,u8&54d~k22k82!Fcospad~Q!1
sinpa

2p i
PV~11 i cotQ!G . ~II.15!

Here,Q5u2u8 andPV stands for the principal value prescription. From~II.15! one immediately
derives the scattering amplitude,

f AB~k,Q!5S p

ik D 1/2

^uuTAB~E5k2!uu8&5S p

ik D 1/2

2F ~cospa21!d~Q!1
sinpa

2p i
PV~11 i cotQ!G ,

~II.16!

where^uuTAB(E)uu8& denotes the on-shell matrix element ofTABªSAB21 defined by the equa
tion

^k,uuTABuk8,u8&52d~E2E8!^uuTAB~E!uu8&,

with E5k2 andE85k82. Note that Eq.~II.16! differs from what one would get when symmetri
ing the amplitude in the way calculated by Aharonov and Bohm.21 In their result the contribution
of the d-function was left out. This violates the unitarity of theS-matrix, as was pointed out by
Ruijsenaars.22 Thus, away from the forward direction we end up with the following expression
the differential cross-section:

dsAB

du
5u f AB~k,u!u25

sin2 pa

pk
~11cot2 u!, uÞ0, ~II.17!

which has a nontrivial angular dependence. Note that the total cross-section is infinite ifa¹Z
because of the singular contribution in the forward direction, as displayed in~II.16!. The latter has
been interpreted to be characteristic of anyon statistics reflecting the long range nature
statistical interaction~Ref. 18, p. 23!. For a50,1, i.e., for bosons and fermions, the cross-sect
vanishes. This is obvious from Eq.~II.14! which shows that bosons are not scattered at all w
fermions pick up a factor minus one.

III. POTENTIAL SCATTERING

In this section we discuss two-particle potential scattering for anyons. Time-dependen
tering theory involves the comparison between two dynamics, one of which is considered
‘‘free’’ in an appropriate sense. Here, we shall consider the ‘‘free’’ dynamics to be the one de
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by H0(a). This appears to be a natural choice, if one views statistics to be an inherent prope
the particles. It is a generalization of the fermionic picture, where usually the free time evo
acts on the space of antisymmetric functions. Note, however, that this ‘‘free’’ dynamics con
an interaction given by the long range gauge forces encoding the statistics. In particular,
teger values ofa lead to a highly nontrivial ‘‘free’’ time evolution similar to the Aharonov–Boh
effect~see our discussion at the end of Sec. II!. As a consequence not all methods used in poten
scattering theory may be applied. For example, we do not know how to adopt Enss’40 method,
which makes use of the Fourier transformation and is therefore not suitable in the present c
Thus, in order to prove the existence of the wave operators and the unitarity of theS-matrix, we
will rely on Cook’s method~see, e.g., Ref. 41! and the Kuroda–Birman theorem,27 respectively.

Following our discussion in Sec. II we will formulate the two-particle scattering theory in
center of mass system using the Hilbert spaceL2(C!/Z2) with H0(a)52Da being the free
Hamiltonian. LetV, the potential, be a measurable function onC!/Z2 . For example,V may result
from a function, also denoted byV(z), onC with V(2z)5V(z) and which acts as a multiplicatio
operator. We set

H~a!ªH0~a!1V52Da1V

as an operator onL2(C!/Z2). At this point we are not concerned with giving a criterium f
self-adjointness ofH0(a); below we specify a certain class of spherically symmetric potentials
which this operator is self-adjoint. The wave operatorsVa

6 for the pair (H(a),H0(a)) are defined
as follows:

Va
6
ªs-lim

t→6`

eitH ~a!e2 i tH 0~a!,

provided the strong operator limit, denoted by s-lim, exists. Note that in the present conte
absolute continuous spectrum ofH0(a) is the positive real axis including the origin and th
associated space is all ofL2(C!/Z2). TheS-matrix is then defined as

Saª~Va
1!* Va

2 .

Now we have the following theorem.
Theorem III.1: Let (11r )V be inL2(C!/Z2). Then the wave operatorsVa

6 for the pair
(H(a),H0(a)) exist for all a.

According to Cook’s theorem~see, e.g., Ref. 41! it suffices to prove the following lemma.
Lemma III.1:Under the conditions onV stated in the Theorem one has

E
t

`

iVe2 isH0~a!fids,`,

for a dense set off’s and for somet5t(f),`.
We will provide two proofs of this lemma. The first one will use the explicit form of t

integral kernel ofe2 i tH 0(a) given in expressions~II.9!, ~II.10! and ~II.11!. The second proof will
make use of the asymptotic form of Bessel functions near the origin and at infinity.

1. Proof of lemma III.1: It suffices to consider the caseaP(0,1) since the casesa50 and
a51 are the already well known bosonic and fermionic situation, respectively. We will choof
to be of the formrf(r ,u)5(]/]r )F(r ,u) with FPC0

`(C!/Z2). It is easy to see that suchf’s
form a dense set.

Using ~II.8!, we write

u~e2 i tH ~a!f!~r ,u!u<Fa,0~r ,u;t !1F̂a~r ,u;t !,

with
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Fa,0~r ,u;t !5U E
0

`E
0

p

ka,0~r ,u;r 8,u8;t !f~r 8,u8!r 8 dr8 du8U,
F̂a~r ,u;t !5U E

0

`E
0

p

k̂a~r ,u;r 8,u8;t !f~r 8,u8!r 8 dr8 du8U.
We start with an estimate ofFa,0 . Partial integration w.r.t.r 8 gives

Fa,0~r ,u;t !<
1

t2 E
0

`E
0

p

G0~r ,u;r 8,u8;t !uF~r 8,u8!udr8 du8,

whereG0 satisfies an estimate of the form

0<G0~r ,u;r 8,u8;t !<~11r !C,

uniformly in r ,u,t,aP(0,1) and (r 8,u8) in the support ofF. This gives

Fa,0~r ,u;t !<C
~11r !

t2 ,

and hence

E
0

`E
0

p

uV~r ,u!Fa,0~r ,u;t !u2r dr du<
C

t4 E
0

`E
0

p

u~11r !V~r ,u!u2r dr du, ~III.1!

uniformly in aP(0,1). We turn to an estimate ofF̂a . By ~II.10!,

0<F̂a~r ,u;t !<
C

t
•U E

0

`E
0

p

e2~1/4i t !~r 21r 82!I a~r,x!f~r 8,u8!r dr 8 du8U,
with the notation

r5
rr 8

2t
, x5u2u8.

Adding and subtractingI a(0,x) gives

0<F̂a~r ,u;t !, ~III.2!

<
C

t E0

`E
0

p

uI a~r,x!2I a~0,x!uuf~r 8,u8!ur 8 dr8 du8

1
C

t U E0

`E
0

p

e2~1/4i t !~r 21r 82!I a~0,x!
]

]r 8
F~r 8,u8!dr8 du8U. ~III.3!

We need the following lemma which will be proved in Appendix B.
Lemma III.2:The quantityI a(r,x) satisfies the estimates

uI a~r,x!u<C,

uI a~r,x!2I a~0,x!u<C~e!re,

uniformly in r andx for all 0<e,min(a,12a).
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We use this lemma combined with a partial integration w.r.t.r 8 in the second term of the r.h.
of ~III.2! to obtain

uF̂a~r ,u;t !u<C~e!S r e

t11e 1
1

t2D .

Therefore, sincer e<11r we finally arrive at

E
0

`E
0

p

uV~r ,u!u2uF̂a~r ,u;t !u2r dr du<C~e!S 1

t2 1
1

t11eD 2E
0

`E
0

p

~11r !2uV~r ,u!u2r dr du.

~III.4!

Combining~III.1! and~III.4! shows thatiVe2 i tH 0(a)i is integrable int on the interval@1,̀ !, say,
concluding the first Proof of lemma III.1. h

2. Proof of lemma III.1: For fixed and givenaP(0,1) we use the spectral decomposition
H0(a) to obtain ana-dependent unitary equivalence,

V̂a :L2~C!/Z2!→L̂5 %

mPZ
L2~R1,dE!, ~III.5!

defined by

c°ĉ[$ĉm%mPZ , ĉm~E!5^fa;m,Euc&,

such thatH0(a) just turns into a multiplication operatorH0(a )̂ :

~H0~a!ĉ !m~E!5~H0~a !̂ĉ !m~E!5Eĉm~E!.

Via this isomorphism we have

iVe2 i tH 0~a!i25 (
m,m8PZ

E
0

`

dEE
0

`

dE8 e2 i t ~E82E!ĉm~E!va
m,m8~E,E8!ĉm8~E8!, ~III.6!

where

va
m,m8~E,E8!5^fa;m,EuV2fa;m8,E8&.

We now choose the following dense subspaceD̂,D(H0(a )̂ ) in L̂:

D̂5$ĉPL̂uĉmPC0
`~R1! and ĉm[0 for almost everym%.

Correspondingly, we setD5(V̂a)21D̂. We need the following lemma, which will be proved
Appendix B.

Lemma III.3: Let V satisfy the conditions of the Theorem. For arbitrarym and m8 the

functionsva
m,m8(E,E8) have measurable partial derivatives up to order 3 inE and E8 on ~0,̀ !,

which are essentially bounded on compact sets.
With this lemma at hand we now proceed as follows. We use the identity

eitE5S 1

i t

]

]ED n

eitE

to perform 3 partial integrations w.r.t.E in ~III.6!. This gives forcPD,
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iVe2 i tH 0~a!ci2<
1

t3 (
m,m8

E dEE dE8u]E
3$ĉm~E!va

m,m8~E,E8!%uuĉm8~E8!u<C
1

t3 ,

which again shows thatiVe2 i tH 0(a)ci is integrable int in the interval@1,̀ ! say. This concludes
the second proof of lemma III.1. h

Now we turn to the situation, where the potential is centrally symmetric, i.e., wherV
5V(r ). According to Ref. 42 it is possible to defineH(a)5H0(a)1V as a self-adjoint operator
if the potential is of the formg/r 1b/r b1W(r ) say, whereg and b are arbitrary reals,b
P@0,2) andW is a bounded function onR1. In general,H(a) is obviously diagonal w.r.t. the
decomposition~II.2! such that

H~a!5 %

mPZ
H2m~a! with H2m~a!5H0,2m~a!1V,

acting onL2(R1,r dr ). This leads to a corresponding decomposition for the wave operators
the S-matrix,

Va
65 %

mPZ
Va,2m

6 , where Va,2m
6 5s-lim

t→6`

eitH 2m~a!e2 i tH 0,2m~a! ~III.7!

and

Sa5 %

mPZ
Sa,2m , with Sa,2m5~Va,2m

1 !* Va,2m
2 .

The Kuroda–Birman theorem27 now leads to the following result.
Theorem III.2: Let the centrally symmetric potential V satisfy

E
0

1

uV~r !urdr 1E
1

`

uV~r !udr,`.

Then the wave operatorsVa,2m
6 exist and are complete. In particular, the S-matrices Sa,2m are

unitary and so are the Sa .
We recall that the wave operators for an arbitrary pair (H,H0) are called complete if they ar

unitary when considered as operators from the absolutely continuous subspace ofH0 to the
absolutely continuous subspace ofH. Note that these conditions onV in the central symmetric
case are weaker than the conditions used in theorem III.1.

Proof: We have to show that the operator

uVu1/2~H0,2m~a!1k2!21V1/2

in L2(R1,r dr ) has finite trace class normi•i1 , whereV1/2(r )5sgn(V(r))•uV(r)u1/2. Here it suf-
fices to choose anyk2.0. By ~II.6! we have

^r u~H0,2m~a!1k2!21ur 8&5I m~kr,!Km~kr.!,

with m5u2m1au. Therefore we obtain the followinga priori estimate:

iuVu1/2~H0,2m~a!1k2!21V1/2i1<E
0

`

uV~r !uuI m~kr !uuKm~kr !urdr . ~III.8!

The following estimates forI m ,Km can be derived from the asymptotic behavior near the or
and at infinity~see, e.g., Refs. 34, 35!

for kr<1: uI m~kr !u<C~m!~kr !m, uKm~kr !u<C~m!~kr !2m;
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for kr>1: uI m~kr !u<C~m!
ekr

Akr
, uKm~kr !u<C~m!

e2kr

Akr
.

Now we choosek51. For this choice ofk the right hand side of~III.8! is bounded by

C~m!H E
0

1

uV~r !urdr 1E
1

`

uV~r !udrJ ,

concluding the proof of the theorem. h

IV. THE DIFFERENTIAL CROSS-SECTION

We now turn to the discussion of the two-particle scattering cross-section. The conven
approach when dealing with identical particles is to compute first the cross-section fordistinguish-
ableparticles and in a second step to symmetrize or anti-symmetrize it in order to describe
or fermion scattering. This is allowed because all observables commute with the projectio
erators onto the subspaces of symmetric and antisymmetric wave functions, respectively~see, e.g.,
Ref. 43 for a detailed account on this issue!. In the context of anyon statistics this procedure is
applicable since no corresponding projection operators on the anyonic Hilbert spaces are av
Hence, we will investigate the two-particle cross-section in the center of mass system in
similar to the single particle case. Doing this one encounters an additional difficulty, namel
presence of the gauge potentialAa encoding the statistics. The latter gives rise to a nontriv
differential cross-section, even if nodynamicalpotential is present, i.e.,V[0. This should not
come as a surprise since the ‘‘free’’ dynamics generated byH0(a) is described by Aharonov–
Bohm scattering in the infinite time limit~see our discussion in Sec. II!. Thus, the cross-sectio
will display both the statistical as well as the dynamical interaction represented byAa and V,
respectively.

Let us first consider the simplest case wherea50, i.e., the particles are bosons. Then t
natural choice of a basis for describing the scattering is given by thesymmetricplane wavesuk,u&,
because the incoming asymptote is usually taken to have a sharply peaked momentum distr
Moreover, we recall that the localization of some statec at large times can be determined b
means of its Fourier transform,

lim
t→6`

E
C
ue2 i tH 0cu25E

C
dukdku^k,uuc&u2, ~IV.1!

whereCª$(k,u):kPR1 ,uP(a,b),@0,p#% denotes a cone in real space on the left hand side
in momentum space on the right hand side. The above identity can be found in several text
on scattering theory; see, e.g., Ref. 44.

If a¹Z the flux-tube destroys translation invariance, whence the plane waves are not
states ofH0(a). Thus, we have to look for an appropriate replacement such that the new
diagonalizesH0(a) and we still can form an incident wave packet with a sharply peaked mom
tum distribution. It turns out that this can be achieved by making use of Aharonov–Bohm
tering theory. We assign to each symmetric plane wave denoted byuk,u& the corresponding
stationary Aharonov–Bohm scattering state, that is,

uk,u& in
ªVAB

2 uk,u& and uk,u&out
ªVAB

1 uk,u&. ~IV.2!

The symbolsVAB
6 stand for the Aharonov–Bohm wave operators, as defined in~II.12!. Note that

each of the sets$uk,u& in% and $uk,u&out% forms a complete orthonormal system since t
Aharonov–Bohm wave operators are unitary.22 Moreover, the basis elements are~improper!
eigenstates ofH0(a) due to the intertwining relation
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H0~a!VAB
6 5VAB

6 H0 .

Their explicit form was given in Sec. II, Eq.~II.13!. Now, by construction every wave packet

the uk,u&out
in

basis under the ‘‘free’’ anyonic time evolution exp(2itH0(a)) approaches the corre
sponding wave packet in the plane wave basisuk,u& as t→7`. Therefore, we shall refer to

uk,u&out
in

as the anyonic state with incoming, respectively, outgoing~relative! momentum (k,u).
Note that according to their definition the ‘‘in’’ states are transformed into the ‘‘out’’ states by
Aharonov–BohmS-matrix,

out^k,uuk8,u8& in5^k,uuSABuk8,u8&.

An additional argument for the usefulness of the two basesuk,u&out
in

is the following generalization
of Dollard’s theorem to anyonic dynamics:

lim
t→6`

E
C
ue2 i tH 0~a!cu25E

C
dukdkuout

in
^k,uuc&u2. ~IV.3!

The proof is immediate. By construction, the statee2 i tH 0(VAB
6 )* c approaches the anyonic sta

e2 i tH 0(a)c in the norm ast→6`. Applying ~IV.1! yields the desired relation.
We are now prepared to consider a single scattering event of two anyons when a poteV

is present. Denote now byc the incoming wave function. According to~IV.3! the probability that
the particles are scattered intoC is given by

lim
t→`

E
C
ue2 i tH 0~a!Sacu25E

C
du kdkuout^k,uuSac&u2, ~IV.4!

whereSa is the scattering operator introduced in Sec. III. On physical groundsc is assumed to
have a sharply peaked momentum distribution att52`, whence it will be given in the basis
uk,u& in. Therefore, we perform the following transformation:

out^k,uuSac&5E du8 k8 dk8 out^k,uuSauk8,u8& in in^k,8,u8uc&

5E du8 k8 dk8^k,uu~VAB
1 !* SaVAB

2 uk8,u8& in^k8,u8uc&, ~IV.5!

where in the second step we have used the defining relation~IV.2!. Thus, we are lead to conside
the operator

Sa
tot
ª~VAB

1 !* SaVAB
2 ,

which can be identified with theS-matrix resulting from the wave operators

V6~H~a!,H0!5s-lim
t→6`

eitH ~a!e2 i tH 0.

This can be easily verified by using the well known chain rule for wave operators~see, e.g., Ref.
41!

V6~H~a!,H0!5V6~H~a!,H0~a!!V6~H0~a!,H0!5Va
6VAB

6 . ~IV.6!

Notice that the scattering operatorSa
tot incorporates the statistical as well as the dynamical in

action whileSa only takes care of the latter. This is best displayed by setting the potential e
to zero,
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V[0 ⇒ Sa51, Sa
tot5SAB .

Therefore, in order to accommodate the anyon statistics of the particles we shall defin
scattering amplitudef a , referring to the dynamical interactionV as follows. Denote byTa

tot the
operator

Ta
tot
ª~VAB

1 !* ~Sa21!VAB
2 5Sa

tot2SAB .

Then the scattering amplitude is given by

f a~k,u2u8!ªS p

ik D 1/2

^uuTa
tot~E5k2!uu8&, ~IV.7!

where^uuTa
tot(E)uu8& denotes the on-shell matrix element defined by the relation

^k,uuTa
totuk8,u8&52d~E2E8!^uuTa

tot~E!uu8&,

with E5k2 andE85k82. From~IV.4! and~IV.5! one can now derive the differential cross-secti
analogously to the single-particle case, e.g., Refs. 43, 44. Away from the forward directio
ends up with the expression

ds

du
~E0 ,u0!5pE0

21/2u^uuTa
tot~E0!1TAB~E0!uu0&u2

5u f a~k0 ,u2u0!1 f AB~k0 ,u2u0!u2, ~IV.8!

with uÞu0 . Here,E05k0
2,u0 determine the energy and direction of the incident particle beam

^uuTAB(E)uu8& denotes the on-shell matrix element of the operatorTAB5SAB21 @see Sec. II, Eq.
~II.17! for the explicit expression of the Aharonov–Bohm scattering amplitudef AB#. Note that we
have a normalization factorp instead of 2p in ~IV.8! because the polar angle is restricted to t
interval @0,p#. As mentioned in Sec. II the total Aharonov–Bohm cross-section is infinite
a¹Z, whence the total cross-section corresponding to~IV.8! is infinite as well. However, the
above differential cross-section coincides with the usual one for bosons or fermions if we sea50
anda51, respectively. This can be most easily seen by use of the defining relation~IV.2! for the
‘‘in’’ and ‘‘out’’ states which for the valuesa50,1 become symmetric and antisymmetric pla
waves, respectively@compare~II.13!#. In casea51, however, this is only true up to an angula
dependent phase factor which comes in by representing fermions as bosons with attache
tubes. This does not influence the outcome since the differential cross-section is given
square modulus of the scattering amplitude. Thus, as special cases we obtain the familia
that the differential cross-section for bosons and fermions is given by the square modulus
symmetrized and anti-symmetrized scattering amplitude, respectively. In particular,f AB vanishes
and the total cross-section becomes finite for suitable short range interactionsV.

V. JOST FUNCTIONS AND LEVINSON’S THEOREM

In this section we will introduce Jost functions45 indexed by a continuous angular momentu
and discuss their properties. This continuous parameter leads to an alternative formulation
generalized Levinson theorem. We start by adapting the standard theory and results of Jo
tions to the present situation~see e.g., Refs. 41, 43, 46–48!. Conditions on the spherically sym
metric potential will be presented at the appropriate places.

Consider the unitary mapU:L2(R1,r dr )→L2(R1,dr), given by

c~r !°Arc~r !. ~V.1!

Under this map the HamiltonianH2m(a)5H0,2m(a)1V turns into the operator
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hm5h0,m1V, ~V.2!

with m5u2m1au.0, where

h0,m52S d2

dr22
m22 1

4

r 2 D . ~V.3!

In this sectionm will be allowed to be any positive number. Also in this section the nota
f0(r ;k,m) will be reserved for the regular solutions~so called because of their behavior near
50! of the free Schro¨dinger equation (h0,m2k2)c50 given as

f0~r ;k,m!5Apkr

2
Jm~kr !. ~V.4!

With the help of these solutions the orthogonality and completeness relations~II.4! and~II.5! are
now reformulated as

E
0

`

f0~r ;k,m!f0~r 8;k,m!dk5
p

2
d~r 2r 8!, ~V.5a!

E
0

`

f0~r ;k,m!f0~r ;k8,m!dr5
p

2
d~k2k8!. ~V.5b!

We will also need the irregular, free solutionsx0
6 given as

x0
6~r ;k,m!56 iApkr

2
Hm

6~kr !.

With help of these solutions the free Green’s functions read@compare~II.6!# as

G0
6~r ,r 8;k,m!5^r u~h0,m2k27 i e!21ur 8&5

1

k
f0~r , ;k,m!x0

6~r . ;k,m!. ~V.6!

Definition V.1:For givenV the functionf5f(r ;k,m) is the regular solution of the equatio
(hm2k2)c50 which for r→0 approximates the free, regular solutionf0 :

lim
r→0

S 2

kr D
m11/2G~m11!

Ap
f~r ;k,m!51.

As in the standard theory~see, e.g., Refs. 46, 47! one establishes the following facts.
~A0! f is the solution to the integral equation

c5f02G0
,Vc, with G0

,~r ,r 8;k,m!5Q~r 2r 8!g0~r ,r 8;k,m!. ~V.7!

HereQ denotes the Heaviside step function andg0 is given as

g0~r ,r 8;k,m!5
1

k
@f0~r ;k,m!x0

2~r 8;k,m!2x0
2~r ;k,m!f0~r 8;k,m!#. ~V.8!

~B0! If the potentialV satisfies the condition
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E
0

`

r dr uV~r !u,`,

then the regular solutionf to the eigenvalue problem (h0,m1lV2k2)c50 has a convergen
power series expansion inl of the form

f5 (
n50

`

lnfn , with fn505f0 and fn52G0
,Vfn21 , n>1. ~V.9!

~C0! For fixedm.0, r .0 and realV the solutionf has an analytic continuation ink into the
complex plane with a cut along the negative imaginary axis. There one has the relation (k.0)

f~r ;2 ik20,m!5eip~m11/2!f~r ; ik,m!5e2ip~m11/2!f~r ;2 ik10,m!. ~V.10!

The proofs of~A0!, ~B0! and~C0! are as in ordinary 3-dimensional Schro¨dinger theory~see, e.g.,
Ref. 47!. As a byproduct of the proof one also has the two estimates:

ufn~r ;k,m!u,euIm kur S ukur
11ukur D

m11/2C~m!n11

n! F E
0

r

dr8
r 8uV~r 8!u
11ukur 8 Gn

, ~V.11a!

uf~r ;k,m!u,C~m!euIm kur S ukur
11ukur D

m11/2

. ~V.11b!

We will prove these estimates in Appendix C. Relation~V.10! is a consequence of the relation

Jm~einp!5einpmJm~z!.

We now introduce the irregular solutions of the eigenvalue equation with potential as
solutionsx6 which approximate the free irregular solutionsx0

6 at r 5`.
Definition V.2: The functionsx65x6(r ;k,m) are the solutions of the eigenvalue proble

(hm2k2)c50 satisfying the boundary conditions at infinity of the form

lim
r→`

e7 i ~kr2~p/2!m1p/4!x6~r ;k,m!51.

These solutions will be called Jost solutions. With the help of these solutionsf andx6 the
Green’s function for the full Hamiltonianhm now takes a form analogous to the free case@see
~V.6!#,

G6~r ,r 8;k,m!5^r u~hm2k27 i e!21ur 8&5
f~r , ;k,m!x6~r . ;k,m!

W~x6,f!
, ~V.12!

whereW is the Wronskian, i.e.,

W~c1 ,c2!~r !5c1~r !] rc2~r !2c2~r !] rc1~r !.

We recall that sincef andx6 are solutions of the same eigenvalue equation, the Wronskia
~V.12! is actually independent ofr, whence the notation.

Again one may establish the following facts~see, e.g., Ref. 47!.
~A6! The functionsx6 are the solutions to the integral equations,

c5x0
62G0

.Vc, G0
.~r ,r 8;k,m!ªQ~r 82r !g0~r ,r 8;k,m!. ~V.13!

Here,g0 denotes the function defined in~V.8! which can be rewritten as
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g0~r ,r 8;k,m!5
i

2k
@x0

1~r ;k,m!x0
2~r 8;k,m!2x0

2~r ;k,m!x0
1~r 8;k,m!#.

~B6! If the potentialV satisfies the condition

E
0

`

r dr ~11r !uV~r !u,`, ~V.14!

the irregular solutionsx6 to the eigenvalue problem (h0,m1lV2k2)c50 with 6Im k>0, k
Þ0 have a convergent power series expansion inl of the form

x65 (
n50

`

lnxn
6 , with xn50

6 5x0
6 and xn

652G0
.Vxn21

6 , n>1.

~C6! For V real andm.0, r .0 the functionsx6 are analytic ink for 6Im k.0 with
continuous extensions to the real axis, except possibly for a singularity of orderm21/2 atk50. In
caseV satisfies

E
0

`

r dr uV~r !uehr,`, h.0, ~V.15!

then the functionsx6 have an analytic continuation into the domains given by6Im k.2h/2 for
all m.0, r .0, with the exception of a branch cut fromk50 to k57 i (h/2). There one has the
relation (k.0)

x6~r ;7~ ik10!,m!5x6~r ;7~ ik20!,m!12i cospm x6~r ;6 ik,m!.

The proof of these statements is similar to the one in the regular case and involves a proof
bounds,

uxn
6~r ;k,m!u,e7Im~k!r S ukur

11ukur D
2m11/2C~m!n11

n! F E
r

`

dr8euIm kur 87Im~k!r
r 8uV~r 8!u
11ukur 8 Gn

~V.16!

and

ux6~r ;k,m!u,C~m!e7Im~k!r S ukur
11ukur D

2m11/2

, ~V.17!

for all m.0 andr .0. We will establish these bounds in Appendix C. Due to the uniqueness o
solutionsx6 and the multivaluedness of the Hankel functions~see, e.g., Ref. 35! one has the
relation

x6~r ;k,m!5x7~r ; k̄,m!57 ie6 ipmx6~r ,2 k̄,m!.

We are now in the position to introduce the Jost functions in the present context and establis
properties. Sincex1 and x2 form a basis of solutions,f is a linear combination of these tw
solutions. As in the standard theory~see, e.g., Ref. 47! it turns out that this linear combination i
of the form

f~r ;k,m!5
i

2
@F~k,m!x2~r ;k,m!2F~2k,m!x1~r ;k,m!#,

where the coefficient functionF5F(k,m) is called the Jost function given by the Wronskian
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F5
1

k
W~x1,f!. ~V.18!

The Jost function was first introduced by and named after R. Jost. Note, however, th
definition of F follows the convention introduced by Newton,47 which differs from the original
one given in Ref. 49. We have the first main result concerning these Jost functions.

Theorem V.1: Let the potential V satisfy the condition (V.14). Then for fixedm.0 F(k,m)
extends to an analytic function in k in the open upper half plane, which is continuous up to th
axis with the exception of the origin.

In case the potential satisfies the stronger condition~V.15!, F(k,m) is analytic in k in
$kuIm k.2h/2%, except for a cut on the negative imaginary axis. ThenF also satisfies the relation
(k.0)

F~2 ik20,m!52e2ipmF~2 ik10,m!12 cospmF~ ik,m!.

The proof follows from the representation forF:

F~k,m!511
1

k
^x0

2~•;k,m!uVf~•;k,m!&, ~V.19!

the estimate~V.11b! for f and the estimate~V.17!, which is also valid forx0
1 . To establish this

relation we use the integral equation~V.7! for f, which for larger gives

f~r ;k,m! ——→
r→` i

2 Fx0
2~r ;k,m!H 11

1

k
^x0

2~•;k,m!uVf~•;k,m!&J
2x0

1~r ;k,m!H 11
1

k
^x0

1~•;k,m!uVf~•;k,m!&J G . ~V.20!

Sincex6(r ;k,m) approachesx0
6(r ;k,m) for r→`, relation~V.19! follows from this behavior.

Note that making use of the analytic properties just proven there is an equivalent definit
the Jost function in terms of Fredholm theory, see, e.g., Refs. 47, 50. Consider the op
G0

1(k,m)V with G0
1 the free Green’s operator andV satisfying relation~V.14!. Then fork positive

imaginary (kP iR1) the operatorG0
1(k,m)V is trace class, whence its Fredholm determin

det(11G0
1(k,m)V) is well defined. It turns out that the Jost function is just the analytic cont

ation of this determinant to the upper half complex plane.
We note that the series expansion~V.9! for the regular solutionf gives the series expansio

F511
1

k (
0

`

Fn, with Fn~k,m!5^x0
2~•;k,m!uVfn~•;k,m!&.

The bound~V.11a! for fn combined with the bound~V.17! for x0
1 gives the bound

uFn~k,m!u,C~m!
Cn

n! E0

`

dr e~ uIm ku2Im k!r
ukur

11ukur
uV~r !u,

while the bound~V.11b! gives

uF~k,m!21u<C~m!E
0

`

dr e~ uIm ku2Im k!r
r uV~r !u
11ukur

.

The importance of the Jost function stems from its role in the discussion of theS-matrix. LetVm
6

be the wave operators for the pair (hm ,h0,m) such that one has@see~III.7! and ~V.1!#
                                                                                                                



,
solute

r for

1848 J. Math. Phys., Vol. 40, No. 4, April 1999 Korff, Lang, and Schrader

                    
Vm
65UVa,2m

6 U21 and Sm5~Vm
1!* Vm

25USa,2mU21.

SinceSm commutes withh0,m there is a decomposition ofSm in the form

Sm5E
%

dkS~k,m!,

with respect to the spectral decomposition ofh0,m . Since the spectrum ofh0,m is not degenerate
S(k,m) acts in a one-dimensional Hilbert space and therefore is a complex number of ab
value one, i.e.,

S~k,m!5e2id~k,m!, k>0, m>0,

with d(k,m) being the phase shift. We define by

f ~k,m!ª
e2id~k,m!21

Ap ik

the partial wave amplitude for the angular momentum6m, such that we obtain the following
partial wave decomposition of the scattering amplitude given in~IV.7!:

f a~k,u2u8!5S p

ik D 1/2

^uuTa
tot~k2!uu8&

5S p

ik D 1/21

p (
mPZ

e2 ipu2m1au~e2id~k,u2m1au!21!ei2m~u2u8!

5 (
mPZ

e2 ipu2m1au f ~k,u2m1au!ei2m~u2u8!. ~V.21!

Here we have used the relation^k,uuTa
totuk8,u8&5out^k,uuSa21uk8,u8& in as well as the identities

^r ,uuk,u8&out
in

5A2p
1

p (
mPZ

~7 i ! u2m1aufa;m,E~r ,u!e2 i2mu8,

^fa;m,EuSafa;m8,E8&5dmm8d~E2E8!e2id~k,u2m1au!.

Now set

f6~r ;k,m!5~Vm
6f0!~r ;k,m!.

By construction one has a solution of the eigenvalue equation (hm2k2)c50 andf6 satisfies the
Lippmann–Schwinger equation,

f6~•;k,m!5f0~•;k,m!2~hm2k26 i0!21Vf6~•;k,m!.

With the help off6 one may express the partial wave amplitude as

f ~k,m!52
2

k2 S ik

p D 1/2

^f0~•;k,m!uVf1~•;k,m!&.

The solutionf1 of the Lippmann–Schwinger equation has the following asymptotic behavio
r→`:
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f1~r ;k,m! ——→
r→`

f0~r ;k,m!1 1
2 Apk f~k,m!ei ~kr2~p/2!m!,

where we have usedx0
1(r ;k,m) ——→

r→`
ei (kr2(p/2)m1p/4). Alternatively, using the relationf0

5 i /2(x0
22x0

1) one gets

f1~r ;k,m! ——→
r→`

i

2
~x0

2~r ;k,m!2e2id~k,m!x0
1~r ;k,m!!.

With the same arguments as in the standard theory~see, e.g., Refs. 41, 46, 47! one proves the
following.

Lemma V.1:Let m.0 be fixed and assume thatV satisfies the condition~V.14!. Then one has
the following.

~i! For k on the real axis (kPR1), the following identities are valid:
f~r;k,m!5F~k,m!f1~r;k,m!, ~V.22!

S~k,m!5e2id ~km!5
F̄~k,m!

F~k,m!
5

F~2k,m!

F~k,m!
. ~V.23!

Furthermore,F(k,m) can only vanish at the origin.
~ii ! The zeros ofF(k,m) in the upper half plane Imk.0 all lie on the positive imaginary axis

and are simple. In particular,kP iR1 is a zero ofF(k,m) iff k2 is the energy of a bound
state ofhm with angular momentum6m.

~iii ! The following limit relation is valid in the closed upper half plane:
lim
k→`

F~k,m!51.

Since the proof is analogous to the one given in three-dimensional Schro¨dinger theory41,46,47

we omit it here. Now, the famous Levinson’s theorem follows as a corollary by use of the re
theorem. Only the so called resonance case, i.e.,F(k50,m)50, requires some more work.

Theorem V.2: Let m.0 and V satisfy~V.14!. If F (k50,m)Þ0 one has the following relation
between the phase shiftd(k,m) and the number nm of bound states with angular momentum6m,

d~k50,m!2d~k5`,m!5pnm . ~V.24!

Proof: The proof of Eq.~V.24! is standard and can be found in, e.g., Refs. 41, 43, 46, 47.
the sake of completeness we recall the main arguments. Integrate the logarithmic derivativF
with respect tok over a closed semi-circle in the complex upper half plane centered at the o
According to the preceding lemma the integrand has simple poles on the positive imaginar
each of which corresponds to a bound state ofhm . While the contribution of the semi-circle
vanishes in the limit of infinite radius@see~III.4!# the integration over the real axis yields the pha
difference by Eq.~V.23!. Applying the residue theorem completes the proof. h

We comment on the results of the above theorem. Equation~III.5! generalizes Levinson’s
theorem to continuous angular momentumm. One might wonder what happens whenm varies. On
physical grounds one expects that for higher angular momentumm there are fewer bound state
since then the centrifugal barrier is stronger. Thus, whenm is steadily increased the zeros of th
Jost functionF move along the positive imaginary axis towards the origin. Every time a
moves out of the upper half plane we get a discontinuous jump in the phase shift indicatin
disappearance of a bound state.

Theorem V.3: Let m¹Z, m.0 and assume V satisfies~V.15!. In case F(k50,m)50 the
above form of Levinson’s theorem remains valid whenm.1 and is modified as

d~k50,m!2d~k5`,m!5p~nm1m!, ~V.25!
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whenm,1.
So far we have not been able to settle the casemPZ corresponding to boson and fermio

statistics. For real anyons, however, note that in case of positive angular momentum we
m5a whenm,1. Thus, Eq.~V.25! then specializes to

d~k50,a!2d~k5`,a!5p~nm1a!, ~V.26!

showing that one can determine the statistics parameter from the scattering phase independ
the detailed form of the short range potentialV. Below we will find a similar formula for the delta
potential. Settinga51/2 ~i.e., for semions! in ~V.25! we obtain the well known resonance case
three-dimensional Schro¨dinger theory,46 since then the radial Schro¨dinger equation is formally
identical to the one in three dimensions@compare~V.2! and ~V.3!#.

Proof: The strategy for proving~V.25! is similar to the one used for~V.24!. The techniques
used are analogous to those in three-dimensional Schro¨dinger theory~see Refs. 43, 46! but the line
of argument is slightly changed.

BecauseF(k50,m)50 we change the integration contour as follows. We cut the semi-c
at the origin and insert a small semi-circleCr of radiusr!1 centered at the origin. Then there
an additional contribution to Eq.~V.24!, namely,

pnm8 5d~k50,m!2d~k5`,m!1 lim
r→0

1

2i R
Cr

d ln F, ~V.27!

wherenm8 is the number of bound states with the exception of a possible zero energy eigenst
order to compute the second term of the right hand side in the above equation we only n
know the small energy behavior ofF. Since we have assumed that the potential is deca
exponentially we can continueF in the lower half plane and expand it into a convergent pow
series around the origin for suitably smallk. We start by rewriting expression~V.19!,

F~k,m!511
1

k
^x0

2~•;k,m!uVf~•;k,m!&

511
1

k sinpm
@^f0~•;k,2m!uVf~•;k,m!&2e2 ipm^f0~•;k,m!uVf~•;k,m!&#.

~V.28!

Here we have used the identityHm
(1)(z)5(1/i sinpm)@J2m(z)2e2ipmJm(z)# which can be found in,

e.g., Refs. 34, 35. Note that in case of integerm the Hankel function is defined by the limit of th
r.h.s. of the last equation. Then the above decomposition~V.28! is no longer valid, whence we
restrict ourselves to the noninteger case. Both integrals in~V.28! converge uniformly as can b
shown by use of the estimates

uf0~r ;k,m!f~r ;k,m!u<C~m!e2uIm kur S ukur
11ukur D

2m11

,

uf0~r ;k,2m!f~r ;k,m!u<C~m!e2uIm kur S ukur
11ukur D ,

which follow from ~V.11a! and ~V.11b!. The functionsf0(r ;k,2m) and f0(r ;k,m) can be
written as a convergent power series ink2 times a factork2m11/2 andkm11/2, respectively. This
follows from their definition ~V.4! and the series expansions of the Bessel functi
J2m(kr),Jm(kr); see, e.g., Refs. 34, 35. From~V.9! we see that alsof(r ;k,m) can be written as
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a convergent power series ink2 timeskm11/2, since the Green’s function is an even function ink.
Therefore, in a suitably small chosen neighborhood ofk50 the Jost function can be expanded
a convergent series of the form

F~k,m!5 (
n50

`

an~m!k2n1k2m (
n50

`

bn~m!k2n, uku!1. ~V.29!

Recall our convention to place the branch cut ofF along the negative imaginary axis. Th
assumptionF(0,m)50 gives a050. In order to deduce from this expansion the small ene
behavior ofF, we need to know the first nonvanishing coefficient in~V.29!. We claim a1(m)
Þ0 for m.1 andb0(m)Þ0 for m,1. But then we have

F~k,m!5 HO~k2m!,
O~k2!,

if m,1,
if m.1.

Thus, evaluating the integral over the semi-circleCr yields

lim
r→0

1

2i R
Cr

d ln F5 H 2pm,
2p,

if m,1,
if m.1. ~V.30!

In order to prove the claim we consider the limit limk→0 k21(]/]k)F. If we can show that

lim
k→0

k21
]

]k
F~k,m!5H `, if m,1,

C~m!Þ0, if m.1,

then the claim follows, as can be inferred directly from~V.29!. We calculate the expressio
(]/]k)F by making use of the identity~V.18!. Since the solutionsx1, f are ill defined fork
→0 we consider instead the modified solutions

C~r ;k,m!ªkm21/2x1~r ;k,m! and F~r ;k,m!ªk2m21/2f~r ;k,m!,

which are both finite and nonvanishing atk50. This can be seen by taking the limitk→0 in the
defining integral equations~V.7! and ~V.13!, respectively. In particular, one then derives th
F(r ;0,m) behaves liker m11/2 for r→0 andC(r ;0,m) like r 2m11/2 for r→`. In terms ofF, C
the Jost function and its derivative w.r.t.k ~denoted by a dot! then read as

F5W~C,F! and Ḟ5W~Ċ,F!1W~C,Ḟ!.

SinceC is a solution of the radial equation one easily verifies the identity

]

]r
W@C~r ;k,m!,C~r ;k8,m!#5~k22k82!C~r ;k,m!C~r ;k8,m!.

Differentiating w.r.t.k and setting subsequentlyk5k8 one obtains from this the relation

W@Ċ~r ;k,m!,C~r ;k,m!#522kE
r

`

dr8 C~r 8;k,m!2, ~V.31!

where the r.h.s. is finite for Imk.0. The assumptionF(0,m)50 implies that the regular and th
irregular solution are proportional whenk50, i.e., C(r ;0,m)5k(m)F(r ;0,m) holds. Note that
the proportionality factork~m! is nonzero and finite because both solutions are nonvanish
Thus, in the limitk→0 we have

Ḟ~0,m!5k~m!21W~Ċ~r ;0,m!,C~r ;0,m!!1k~m!W~F~r ;0,m!,Ḟ~r ;0,m!!.
                                                                                                                



e

n
is

ssion

ct
onva-

r

e

y free
nd the

in
nt
w.

-

distri-

e.

1852 J. Math. Phys., Vol. 40, No. 4, April 1999 Korff, Lang, and Schrader

                    
However,Ḟ(0,m) does not depend onr whence we can setr 50 in the last equation. Since th
regular solutionF vanishes atr 50 we obtain from~V.31!,

lim
k→`

k21
]

]k
F~k,m!5 lim

k→0
k21k~m!21W@Ċ~0;k,m!,C~0;k,m!#

522k~m!21E
0

`

drC~r ;0,m!2

522k~m!E
0

`

drF~r ;0,m!2. ~V.32!

The irregular solutionC falls off like r 2m11/2 for larger and is proportional to the regular solutio
F at k50, therefore the r.h.s. of~V.32! is finite for m.1. This means that the regular solution
square integrable and hence a proper eigensolution of the full Hamiltonianhm . The number of
bound states is thusnm5nm8 11, whence we read off from~V.27! and ~V.30! that Levinson’s
theorem also holds in caseF(0,m)50 whenm.1.

For m,1, however, the regular solution is no longer square integrable and the expre
~V.32! is divergent. Hence the number of bound states is given bynm5nm8 and from~V.27! and
~V.30! we infer the modified equation~V.25!. This completes the proof. h

VI. THE d -POTENTIAL

In this section we will introduce and discuss thed-potential, often also called the conta
potential or zero-range interaction potential because it describes an interaction which is ‘‘n
nishing’’ only if the two particles are at the same place, i.e., ifzrel50. In the literature this figures
also under the notion of anyons without a hard-core condition.23 See, e.g., Refs. 51–53 fo
previous articles on this subject also in connection with field theoretic considerations.

To introduce thed-potential we follow a standard strategy~see, e.g., Ref. 54!, i.e., we consider
the free Hamiltonian~in the center of mass system! restricted to a definition domain of wav
functions which vanish atzrel50. The resulting operator has deficiency indices~1,1! and so there
is a one-parameter family of self-adjoint extensions, one of which is of course the ordinar
Hamiltonian given as the Friedrich’s extension. We discuss the bound state problem a
resulting scattering theory. We also check the validity of Levinson’s theorem.

Note that Aharonov–Bohm scattering onR2 with d-type interactions have been discussed
Refs. 55, 56. OnR2 deficiency indices are~2, 2!, leading to a four-parameter family of self-adjoi
extensions. By specializing to symmetric functions one can obtain some of the results belo

For a start, consider the operator

h0,m52] r
21

m22421

r 2 ,

onL2(R1,dr) @recall ~V.1!# with domain of definitionD(h0,m) consisting of wave functionsc(r )
having compact support away from the origin such thatc and] rc are locally absolutely continu
ous and such thath0,mc ~defined in the sense of distributions! is an element ofL2(R1,dr). Recall
that locally absolutely continuous functions are such that their derivatives in the sense of
butions are locally integrable functions~see, e.g., Ref. 57!.

Let us now investigate the most general solution of the equationh0,mc50, given by

c1•r 1/21m1c2•r 1/22m.

Using Weyl’s terminology~consult, e.g., Ref. 58!, one has the limit point case atr 5`. At r
50 one also has the limit point case if and only ifm>1, otherwise one has the limit circle cas
If now 0<m,1, by Weyl’s alternative there is exactly one solution ofh0,mc50, which isL2 near
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infinity. By construction this solution must beL2 at both infinity and at zero, and thus it follow
that dim(ker(h0,m6 i ))51 by Weyl’s alternative. Therefore the deficiency indices are~1,1! and
there is a one-parameter family of s.a. extensions~see e.g. Ref. 50!.

In terms of the statistics parametera we have the following situation: If one choosesa51,
thenm5u2m1au>1 for all mPZ and all the$h0,m% are essentially self-adjoint. Now, ifaP@0,1!
we havem,1 if and only if m50. In this case, just as in the three-dimensional case,
d-potential affects only one of the angular momentum channels, namely, the one associate
the smallest eigenvalue in the sense of the modulus~in three dimensions called thes-channel!.

Let a be in @0,1!. To construct the s.a. extensions of the operatorsh0,a with domainD(h0,a)
given above, following Refs. 42, 54 we define the regular and irregular solutions ofh0,ac50:

Fa~r !ªr 1/21a ~regular!,

Ga~r !ªFa~r !E
r

r 0
dr8~Fa~r 8!!22 ~ irregular!,

wherer 0PR1 may be chosen arbitrary. The choicer 051 gives

Ga~r !5H 1

2a
~r 1/22a2r 1/21a!, a.0,

2Ar ln r , a50.

In order to explicitly construct the s.a. extensions of the$h0,a% we take recourse to the
following theorem, to be found in, e.g., Ref. 58.

Theorem VI.1: For a,1 the operator h0,a with domainD(h0,a) has a one-parameter family
of s.a. extensions$h0,a(s)%sPR which are essentially s.a. on the domains

D~h0,a~s!!5$cPD~h0,a* !u lim
r↓0

W~ca,s ,c!~r !50%. ~VI.1!

Here again W is the Wronskian and

ca,sªGa1sFa .

The choice s5` gives the Friedrich’s extension.
In Appendix D we will prove the following.

Theorem VI.2: The integral kernel of the resolvent of h0,a(s) for a,1 is given as

1

h0,a~s!2k2 ~r ,r 8!5
ip

2
Arr 8Ja~kr,!Ha

~1!~kr.!2A~k,a;s!•Arr 8Ha
~1!~kr !Ha

~1!~kr8!, ~VI.2!

where k satisfies0,arg(k),p. A(k,a;s) is given as

A~k,a;s!5
p

2 F S k

2D 22a

~2sa21!
1

sinpa

G~11a!

G~12a!
1cotpa2 i G21

. ~VI.3!

Note that lims→` A(k,a;s)50 such that with~VI.2! in the limit s→` we indeed recover the
kernel of the resolvent of the Friedrich’s extension~V.6!. Taking the ‘‘bosonic limit’’ a→0 one
arrives at the expression

A~k,0;s!5
p2

4 F ln
k

2i
1g1sG21

~g: Euler’s constant!.
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Combined with~VI.2! we have arrived at an expression for the resolvent of thed-potential in the
bosonic case, which agrees with Ref. 54.

We turn to the discussion of the bound states. It can be shown that the essential spec
a set is equal toR0

1 and thatR1 is the purely absolutely continuous spectrum. We therefore h
to look for poles of the resolvent at energiesEb5kb

2,0. By ~VI.2! we have to search for the pole
of A(k,a;s) as a function ofk, and by~VI.3! this gives the condition

kb
2a522aeipa mod 2p i

G~11a!

G~12a!
~122as!. ~VI.4!

The restriction 0,arg(k),p now implies 0,arg(k2a),2pa. Applying this condition to~VI.4!
leads to three different cases.

~i! 122as.0: Then~VI.4! may be solved to give

kb5kb~a,s!52i S G~11a!

G~12a!
~122as! D 1/2a

,

i.e., kb is purely imaginary. The casekb50 occurs whena↑1. Note that this requires 0<s, 1
2.

Hence there is exactly one bound state.
~ii ! 122as,0: Since by definition 0<a,1, it is easy to see that in this case there is

solution to Eq.~VI.4!, only in the limit a↑1 one obtainskb50. This means that there is no boun
state.

~iii ! 122as50: This immediately giveskb50, which implies that there is no bound state
For comparison we recall that in the three-dimensional case the attractived-potential supports,

at most, one bound state. A bound state exists if the particles obey bosonic statistics. For fe
there is none. In the present context a bound state always exists fora50 ~bosons! and disappears
at the latest whena51 ~fermions!. The fact that fora50 there is always a bound state sugge
that in two dimensions there is no such thing as a repulsived-potential.

Below we argue that case~iii ! corresponds to a zero energy resonance in three-dimens
Schrödinger theory. Figure 1 gives a plot ofukb(a,s)u as a function ofs for various values ofa in

FIG. 1. Bound state energies.
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case~i!, i.e., when 122as.0. To calculate the bound state wave functioncb when 122as
,0, we note that

1

h0,a~s!2k2 '
1

kb
22k2 Pb ,

for k'kb wherePb is the orthogonal projector onto the eigenspace of energyEb5kb
2,0. Since

this pole of the resolvent is isolated,Pb may be calculated as a residue. The calculation is easy
shows thatPb is indeed one-dimensional and that the associated~normalized! eigenfunctioncb is
given as

cb~r ;a!5S 2 sinpa

pa D 1/2

Ar uEbuKa~ ukbur !,

for a,1 and henceukb(a,s)u.0. For any fixeda,1 the wave function decays exponentially f
large r, which guarantees square-integrability. In the limita↑1 the bound state wave functio
approachesr 21/2 times a normalization constant, which is not square integrable. The casea51
should therefore be considered as a resonance atE50.

We turn to a discussion of the resulting scattering theory. First we note that due to re
~VI.2! the difference of the resolvents forh0,a(s) and the free Hamiltonianh0,a(s5`) is a
rank-one operator and therefore in particular trace class. Therefore theS-matrix exists and is
unitary by the Kuroda–Birman theorem~see, e.g., Ref. 27!.

Theorem VI.3: For givena and E5k2.0 the outgoing states for the Hamiltonian h0,a(s)
are given as

f1~r ;k,a!5f0~r ;k,a!1
2i

p
A~k,a;s!•x0

1~r ;k,a!.

In particular, the resulting partial wave amplitude and the phase shift take the form

f ~k,a;s!5
4i

p

A~k,a;s!

Ap ik
, ~VI.5a!

e2id~k,a;s!511
4i

p
A~k,a;s!. ~VI.5b!

Proof: We start by rewriting the resolvent~VI.2! as

1

h0,a~s!2k2 ~r ,r 8!5S f0~r , ;k,a!1
2i

p
A~k,a;s!x0

1~r , ;k,a! D i

k
x0

1~r . ;k,a!. ~VI.6!

Now we observe that~see, e.g., Ref. 54, p. 37!

lim
e↓0

lim
r 8→`

e2 i ~k1 i e!r 8
1

h0,a~s!2~k1 i e!2 ~r ,r 8! ~VI.7!

must be proportional to the outgoing solutionf1(r ;k,a). The claim now follows by applying
~VI.7! to ~VI.6!. h

In view of Levinson’s theorem we would like to make the following comments on this
result: The limiting values ofd(k,a;s) at k→01 and k→` are a priori determined up to an
additive constant inp•Z, only. We shall choose these constants in such a way, thatd(k,a;s) as
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a function ofkPR1 can be defined as a continuous function ofk. Now, exp(i2d(k,a;s)) is of the
form (a(k;a;s)1 i )(a(k,a;s)2 i )21. Herea(k,a;s) is a real-valued, continuous function ofk.
Explicitly,

a~k,a;s!5
p

2
A~k,a;s!211 i .

@This observation also shows that the right hand side of~VI.5b! is indeed unimodular.# Hence

d~k,a;s!5arg~a~k,a;s!1 i !.

Here the branch of arg(•) is chosen such thatd(k,a;s) is a continuous function of all its argu
ments. In particular, we can achieved(k,a;s)P(0,p), for any k and fixeda,1 ands. For the
cases, where there is a bound state, this is consistent with the attractive nature of the inte
By the explicit form ofa(k,a;s), it is easily seen that

d~k,a;s! ——→
k→01

p
12sgn~2as21!

2
,

d~k,a;s! ——→
k→`

pa.

The fractionnª@12sgn(2as21)#/2 takes values in$0, 1% and is, in fact, nothing but the numbe
of bound states given by~VI.4!. We therefore have the following relation:

d~01,a;s!2d~`,a;s!5p~n2a!, ~VI.8!

which is not of the form one would naively expect in view of Levinson’s theorem V.2. In t
context we note that the statement of Levinson’s theorem also fails in the nonanyonic
dimensional case, if ad-interaction is considered. However, we obtain a formula similar to~V.26!
relating the phase shift to the statistics parametera.

By relations~IV.8! and~V.21!, we obtain the following expression for the differential cros
section:

ds

du
5u f ~k,a;s!•e2 ipa1 f AB~k,u!u2,

wheref AB andf are given by expressions~II.16! and~VI.5a!, respectively. Inserting these explic
expressions, one obtains—away from the forward direction—the following relation:

ds

du
5

1

pk Usinpa~cotu2 i !1e2 ipa
4i

p
A~k,a;s!U2

.

So far, we have been unable to analyze this in a non-numerical way. Figures 2 and 3 show
numerical results of the differential cross-section as a function of the scattering angleu. Displayed
is the deviation from pure Aharonov–Bohm scattering, which is asymptotically reached
s→6`. Note the simultaneous cross over atu5pa for varying s in each of the plots withsÞ
6`. In particular, the point corresponding to the cross over always lies on the graph (s56`)
associated with the Aharonov–Bohm cross-section. We like to point out that in both Figs.
3 only for s50,2 anda50.5 ~semions! the differential cross-section actually vanishes for so
scattering angleu. In the other cases the cross-section becomes very small but is nonvanishi
all u.
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VII. THE SQUARE WELL POTENTIAL

Another explicitly solvable problem in scattering theory is given by the square well,

V~r !5H 2V0 , r<d,

0, r .d,
with V0.0.

The regular solution of the eigenvalue problem (hm2k2)c50 in the interval 0,r<d is given by

f~r ;k,m!5S k

qD m11/2

f0~r ;q,m!, where q5Ak21V0.

For r .d the eigensolutions ofhm obey the free radial equation and hence the Jost solutions in
interval are just given by the free solutions,

x6~r ;k,m!5x0
6~r ;k,m!, r .d.

Making the usual requirement that all solutions are continuously differentiable we can evalua
WronskianW(x6,f) at r 5d and obtain the following expression for the Jost function:

F~k,m!5S k

qD m21/2Fx0
1~d;k,m!f0~d;q,m21!2

k

q
x0

1~d;k,m21!f0~d;q,m!G .

FIG. 2. Cross-sections for contact interaction 1.
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Here, we have used the common differentiation rules for Bessel and Hankel functions~see, e.g.,
Refs. 34, 35!. With the help of the Jost function we can now calculate the phase shift an
partial wave amplitude. We find

tand~k,m!5 i
F2F̄

F1F̄
5

qJm~kd!Jm21~qd!2kJm21~kd!Jm~qd!

qYm~kd!Jm21~qd!2kYm21~kd!Jm~qd!
,

f ~k,m!5
F̄2F

Ap ikF
5

22

Ap ik

qJm~kd!Jm21~qd!2kJm21~kd!Jm~qd!

qHm
~1!~kd!Jm21~pd!2kHm21

~1! ~kd!Jm~qd!
.

Inserting the last expression into the formula~V.21! for the partial wave decomposition of th
scattering amplitude we can calculate the differential cross-sections for various parametersa. Note
that for small momenta we can make use of the small energy behavior of the partial
amplitude, which is given by

k→0: f ~k,m!5O~k2m21!.

Thus, when calculating the scattering amplitude in the partial wave decomposition the partia
amplitudes for higher angular momentum hardly contribute to the infinite sum in~V.21!. Accord-
ing to our discussion in Sec. IV we have to add the Aharonov–Bohm scattering amplitudef AB in
order to obtain the differential cross-section@see~IV.8!#. A numerical example is displayed in Fig

FIG. 3. Cross-sections for contact interaction 2.
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4. For different values of the statistics parametera one obtains very different angular distribution
of the scattered particles. One observes the interpolation between the bosonic~a50! and the
fermionic ~a51! cross-section at energyE5k250.25. Note that the singularities at the scatteri
anglesu50 and u5p for a¹Z enter due to the long range nature of the statistics. In f
according to~IV.8! they result from adding the Aharonov–Bohm amplitude given in~II.16!. For
fermions~a51! there is no scattering under an angle ofu5p/2, as is well known. The figure fo
a50.5 shows that a similar effect can take place for fractional statistics.

According to our discussion in Sec. V the zeros of the Jost functionF lie on the positive
imaginary axis and determine the bound states. Thus, plotting the solutions of

F~ ik,m!50, k.0,

we get so called~real! Regge trajectories~see, e.g., Ref. 47! displaying them dependence of the
discrete spectrum ofhm . Figure 5 provides a numerical example. In contrast to three-dimens
scattering theory here every point on the Regge trajectories has a specific physical m
because the statistics parametera interpolates between the integer-valued angular momen
channels.

VIII. CONCLUSION

We have demonstrated that it is possible to formulate nonrelativistic quantum scat
theories for two particles obeying anyon statistics. In particular, we have proven the existe

FIG. 4. Square well cross-sections.
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the wave operators under certain assumptions concerning the interaction. For spherically s
ric potentials we gave the criteria for completeness, i.e., unitarity of theS-matrix. These criteria
turned out to be the same as in three-dimensional Schro¨dinger theory. It remains an open proble
to show completeness in the general case in a way comparable to Enss’ method. To genera
latter, we believe it is crucial to obtain a better analytic control of the propagator.~There is an
extensive literature on a similar problem, namely, to obtain a closed form of the Aharonov–B
propagator, see, e.g., Ref. 37.! We extended the notion of a differential cross-section to t
dimensions and showed that in case of anyon statistics, the corresponding scattering am
consists of two parts. The first encodes the anyon statistics and resembles the Aharonov
amplitude, while the second is relevant to spectral analysis of the perturbed Hamiltonia
spherically symmetric potentials we carried out this analysis by introducing Jost function
showed how fractional statistics is equivalent to fractional angular momentum. We also sh
that Levinson’s theorem holds in the conventional case and gave the modifications neces
the presence of a zero energy resonance. In the latter case we found that for positive
momentumm,1 the statistics parameter—independently of the detailed form of the short r
potential—can be determined from the scattering phase, namely@compare~V.26!#

a[
1

p
~d~k50,a!2d~k5`,a!!modZ.

FIG. 5. Regge trajectories for the square well.
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We then applied our results to the following two examples. First we considered thed-potential,
where we extracted information regarding the point spectrum of the perturbed Hamiltonian
its resolvent and showed that the above relation between the statistics parameter and sc
phase is also valid in this context@compare~VI.8!#. Second, we considered the square w
potential, where we obtained similar information from the corresponding Jost function. In
situations we numerically evaluated the differential cross-section for noninteger values
statistics parameter. It then became evident that fractional statistics is fundamentally di
from Bose and Fermi statistics: The statistical gauge forces produce singularities of the diffe
cross-section in the forward direction, showing the long range nature of these forces. Due
fact the angular dependence of the statistical interaction will invariably show up in the scat
data. In particular, this might cause a differential cross-section which is constant for boso
fermions, but which becomes angular-dependent for intermediate statistics. Our discussion
d-potential provides an example.

The results presented in this paper may also be relevant to the investigation of bulk pro
of anyon matter, via the relation between the virial coefficients and the scattering data.20 This we
intend to discuss in a forthcoming publication.
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APPENDIX A: THE BUNDLE THEORETIC FORMULATION

In Sec. II we used the physical picture of particles carrying flux-tubes in order to describ
anyon model. Anyons, however, are but a special case in a more general class of particles
plektons, obeying neither Bose nor Fermi statistics. In this appendix we give a short revi
plektonic systems, i.e., systems ofn particles whose statistics are determined by a fin
dimensional unitary representation of the braid groupBn . The appropriate mathematical tool t
describe such particles is the concept of vector bundles. This will, in particular, provide the H
space and a canonical ‘‘free’’ dynamics described by a certain Laplace operator. Our prese
will closely follow the one given in Refs. 30, 31, where, however, emphasis was mainly giv
relativistic formulations using momentum space considerations. For other references on the
theoretic formulation see, e.g., Refs. 32, 33. We continue to useC to describe the one-particl
configuration space. LetC3n denote then-fold product, viewed as the configuration space fon
distinguishable particles. The setDn in C3n is the set of all pointsz5(z1 ,z2 ,...,zn) with zi5zj for
at least one pair of different indices. Any elements of the permutation groupSn acts in an obvious
way onC3n via (zs) i5zs( i ) . We define the configuration space ofn identical particles in two
dimensions to be

nCª~C3n\Dn!/Sn ,

with points in it denoted byzI . Let nC̃ denote the universal covering space ofnC with points there
being written asz̃ and letp: nC̃→nC,z̃°p( z̃)5zI be the associated projection mapping.

It is well-known that the fundamental group ofnC, denoted byp1(nC), is isomorphic to the
braid groupBn and that any elementbPBn acts in a standard way from the rightz̃° z̃b on the
manifold nC̃. Furthermore, the universal coveringnC̃°nC can be viewed as a principal fibe
bundle overnC with structure groupp1(nC) and fiberp21(zI ) for any zIPnC. Given any finite-
dimensional unitary representationb°r(b) of Bn in a Hilbert spaceF with scalar product̂•u•&
there is an associated Hermitian vector bundle. This vector bundleF with base spacenC is given
by nC̃3r,Bn

F, which by definition is the set of orbits innC̃3F under the following action ofBn on
this space:
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b:~ z̃, f !°~ z̃b,r~b21! f !, z̃PnC̃, f PF. ~A1!

F is a smooth fibered space with basenC and fibers isomorphic toF. On the fiber overzI there is
a natural scalar product denoted by^•u•&zI . Furthermore, there is a canonical measuredm(zI ) on nC
inherited from the Lebesgue measure onC3n. This defines a scalar product on the spaceGc(F) of
smooth sections inF with compact support via

^cuf&ªE
nC

^c~zI !uf~zI !&zIdm~zI !. ~A2!

By L2(F) we denote the resulting Hilbert space completion. There is another Hilbert s
equally well suited and canonically isomorphic to this space. Consider the set of mapsC: nC̃°F
which are smooth withp(suppC),nC being compact and which satisfy the equivariance prope

C~ z̃b!5r~b21!C~ z̃!, ; z̃PnC̃, bPBn . ~A3!

For any two such functionsF andC we therefore have

^C~ z̃b!uF~ z̃b!&5^C~ z̃!uF~ z̃!&, ; z̃PnC̃, bPBn . ~A4!

Hence this expression depends onzI5p( z̃) only and so the integral over the base space ma
sense and we may define a scalar product by

^CuF&ªE
nC

^C~ z̃!uF~ z̃!&dm~zI !. ~A5!

The resulting Hilbert space obtained again by completion is denoted byLeq
2 (nC̃,F) and there is a

canonical isomorphism betweenL2(F) andLeq
2 (nC̃,F) ~see, e.g., Refs. 30, 31!. Furthermore the

canonical~flat! Levi-Civita connection onC3n induces a~flat! connection onnC which in turn
defines a Hermitian connection“ on F. The associated Bochner or generalized Laplacian~see,
e.g., Ref. 59! D5“+“ onL2(F) is what defines a free HamiltonianH052D/2m for a system of
n plektons, ifm.0 is taken to be the mass of one particle.

When the unitary representationr of Bn is one-dimensional one speaks of anyons. Any s
representation is obviously Abelian and can be shown to be of the formbk°exp(iap) in terms of
the generatorsb1 ,...,bn21PBn for a fixedaP@0,2). This follows easily from the observation th
all the bk’s are conjugate to each other. We denote the resulting line bundle byFa . Another
consequence ofF being one-dimensional is that all anyonic line bundles are actually trivial. T
observation was first made by Dowker,60 based on Arnold’s result thatH2(nC,Z)5061 and the
classification theorem of Cartan, Kostant, Souriau and Isham. It was rediscovered by Gabe62

and is implicitly contained in Refs. 63 and 64. Another proof is given in Refs. 30, 31.
Let us now consider in more detail the Hilbert spaces constructed above whenn52. We first

introduce relative coordinates by considering the following transformation ofC32:

~z1 ,z2!°~221~z11z1!,z12z2!5~zcen,zrel!. ~A6!

The transposition inS2>Z2 obviously maps (zcen,zrel) into (zcen,2zrel). Therefore2C is diffeo-
morphic toC3C!/Z2 . The first factor is the configuration space for the center of mass motion.
corresponding quantum mechanical discussion is analogous to ordinary multi-particle sy
since it is not affected by the statistics. Therefore we will concentrate on the second factor a
associated quantum mechanical description. In the same way asR is the universal covering spac
of S1; the universal covering space ofC!/Z2>R13S1 is given byR13R with the projection
mapping

p:R13R→R13S1, with ~r ,u!°~r ,e2iu!. ~A7!
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The action ofB2 on the universal covering is given in terms of its only generatorb1 as

~r ,u!°~r ,u!b1ª~r ,u1p!. ~A8!

Choosing the representationb1°exp(2ipa) for a fixedaP@0,1# we are prepared to construct th
line bundleFa and the Hilbert spaceL2(Fa), or equivalentlyLeq

2 (nC̃,F). The fact that the bundle
Fa is trivial is now reflected in the possibility to ‘‘pull-down’’ the theory from either of thoseL2

spaces onto the space of square integrable functions onnC itself, denoted byL2(nC). Explicitly
there is the following unitary map fromL2(nC) ontoLeq

2 (nC̃) given as

cPL2~nC!°CPLeq
2 ~nC̃!, with C~ z̃!5eipa•u~ z̃!

•c~p~ z̃!!,

whereu( z̃) is a real-valued, continuous function ofz̃ induced by the polar angle. With the help o
this unitary mapping, we can pull-down the Bochner Laplacean fromL2(Fa) to obtain an expres-
sion for the free Hamiltonian onL2(nC). The result of this procedure is precisely the Hamilton
we introduced in Sec. II on physical grounds.

Let it be noted thata was introduced as a parameter fixing the representationB2

{b1°exp(2ipa) and is hence determined up to an additive even integer, only. Therefore we
no generality if we restricta to the interval @0, 2!. In fact, we haveH0(a12)5exp
(2i2u)H0(a)exp(i2u), which is a gauge transformation reflecting the arbitrariness we have. O
other hand, time inversion causesa to change sign, i.e., ifT denotes the anti-unitary operator o
time inversion, we haveH0(2a)5TH0(a)T. However, H0(2a) is, in turn, equivalent to
H0(22a) and consequently the anyon models withaP@0,1# are connected to those witha
P@1,2# by time reversal. This justifies the restriction ofa to the interval@0, 1#.

Furthermore, we remark thatL2(C!/Z2 ,r drdu) is unitary equivalent to the square integrab
symmetric functions on the punctured planeP1L2(C!,1/2r drdu) and therefore the casea50
corresponds to the bosonic case@since H0(a50)52D#. If a51 our model is equivalent to
H0(a51) acting on P1L2(C.), which is, in turn, unitary equivalent to2D on
P2L2(C.,1/2r drdu), the Hilbert space of square integrable, anti-symmetric functions on
punctured plane. Hence we call anyons obeying statistics corresponding toa51 fermions.

APPENDIX B: SOME ESTIMATES

This appendix is devoted to a proof of the lemmas III.2 and III.3.
Proof of lemma III.2:For the moment let 0,e,1 be arbitrary. Sinceueix21u<min(2,uxu),

we haveueix21u,2uxue for all xPR. This gives

uI a~r,x!2I a~0,x!u<U E
2`

1`

dy~eir coshy21!
e2ay

12e22y22ixU
<2reE

0

`

dy coshe yU e2ay

12e22y22ix 1
eay

12e2y22ixU.
To proceed further, we split the integral into a part from 0 to 1 and the rest. This gives

uI a~r,x!2I a~0,x!u<2re~cosh~1!•I 1~x!1I 2~x!!.

For I 1 we have an expression involving the sum of three integralsI 1,1, I 1,2 and I 1,3, given by

I 1~x!5I 1,1~x!1I 1,2~x!1I 1,3~x!5E
0

1

dyU e2ay21

12e22y22ixU1E
0

1

dyU eay21

12e2y22ixU
1E

0

1

dyU 1

12e22y22ix 1
1

12e2y22ixU.
                                                                                                                



y be

ll

1864 J. Math. Phys., Vol. 40, No. 4, April 1999 Korff, Lang, and Schrader

                    
For I 2 we have the expression

I 2~x!5E
1

`

dy coshe yS U e2ay

12e22y22ixU1U eay

12e2y22ixU D .

The aim is to estimate these quantities forxP@2p,1p#. To estimateI 1,1(x) we use the follow-
ing estimates:

2u12e2ayu<2y, for y.0 and aP~0,1!; ~B1!

u12e22y22ixu>u12e22yu, for yPR. ~B2!

This gives

I 1,1~x!<E
0

1

dy
ay

12e22y,C.

I 1,2(x) is estimated similarly, if one replaces the estimate~B1! by

0<eay21<2e2y, for 0<y<1 and aP~0,1!.

To estimateI 1,3(x) for xP@2p,1p# we first observe that for min(uxu,p2x,p1x)>p/4 it is
obviously bounded. Hence, it suffices to estimate the three remaining casesuxu<p/4, 3/4p<x
<p or 2p<x<23/4p. We only consider the first case, since the other two cases ma
discussed with similar arguments. So letuxu<1/4p and add and subtract (62y12ix)21 in the
integrand ofI 1,3(x). This way we can estimateI 1,3 by a sum of three integrals, which we wi
denote byÎ i ,

I 1,3~x!< Î 1~x!1 Î 2~x!1 Î 3~x!5E
0

1

dyU 1

12e22y22ix2
1

2y12ixU1E
0

1

dyU 1

12e2y22ix

2
1

22y12ixU1E
0

1

dyU 1

2y12ix
1

1

22y12ixU.
To estimateÎ 1(x) and Î 2(x) we note that the function

G~z!5
1

12e2z2
1

z
,

is obviously analytic in$zPCuuIm(z )u<p/2%, except possibly at the originz50. However,G(z
50)51 and hence by Riemann’s theorem,G(z) is an analytic function in that domain. In
particular,G(z) is bounded on every compact subset, and this gives the boundedness ofÎ 1(x) and
Î 2(x) for xP@21/4p,1/4p#. Î 3(x) can be estimated as follows:

Î 3~x!<E
0

1

dy
uxu

x21y2 <E
0

`

dh
1

11h2,`.

This concludes the estimate forI 1(x) and it remains to estimateI 2(x). By ~B2! we have

I 2~x!<E
1

`

dy2eeyS e2ay

12e22y 1
eay

e2y21D .

Now this integral is finite whenevere,min(a,12a). h
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Proof of lemma III.3:We will consider the third partial derivatives w.r.t.E only, since this is
actually the case we will need and since the other cases may be discussed similarly. By
changing integration and differentiation we formally have

]n

]En va
m,m8~E,E8!5E

H\$0%

]n

]En @fa;m,E~z!V~z!2fa;m8,E8~z!#dm~z!, ~B3!

for n51,2,3. This is permitted provided the integrand is a measurable function inz, E and E8,
bounded in the sense of the modulus by a function which is inL1 w.r.t. z and with uniform bounds
in E andE8 in compact sets in~0, `!. To prove this claim it obviously suffices to replace]/]E by
]/]k with E5k2 in ~B3!. By the explicit form offa;m,E given in Sec. II, for fixeda, m andm8
we therefore have to estimate the product

u]k
nJm~kr !u•uJm~k8r !u•uV~r ,u!u2, for n51,2,3.

Using the formula to be found in Refs. 34 or 35,

d

dk
Js~kr !5

r

2
~Js21~kr !2Js11~kr !!, ~B4!

it follows by iteration that it suffices to estimate

r nuJm1 l~kr !u•uJm8~k8r !u•uV~r ,u!u2, ~B5!

for 2n< l<n with 0<n<3. Let the compact set in question be given byE1<E, E8<E2 such
that k1<k, k8<k2 . Using the well known estimates

~a! uJs~kr !u<C~s!, for ukru<1,

~b! uJs~kr !u<C~s!~kr !21/2, for ukru>1,

we see that~B5! with k1<k, k8<k2 is bounded by

C~m,m8!•r nuV~r ,u!u2<C~m,m8!•max~1,k2
21!3uV~r ,u!u2,

for r<k2
21 and by

C~m,m8!•r n21k1
21uV~r ,u!u2<C~m,m8!•max~k1

2,k1
21!•r 2uV~r ,u!u2,

for r>k1
21. Obviously ~B5! is bounded forr in the interval (k2

21,k1
21) uniformly for k1<k, k8

<k2 . This proves the claim and by our previous remark this concludes the proof. h

APPENDIX C: BOUNDS FOR JOST FUNCTIONS

In this section we will prove the estimates~V.11b!, ~V.17!, ~V.11a! and ~V.16! for the func-
tions f and x6 and their power series coefficientsfn and x6,n. Also, we will show that the
analyticity properties forf andx6 also extend to their derivatives with respect tor. We start with
two preparations. Observe first that~V.11b! and ~V.17! hold whenV50, i.e., for f5f0 and
x65x0

6 , respectively. Indeed, forf0 ~V.11b! follows from the relations~see, e.g., Refs. 34, 35!

Jm~z! ——→
z→0

C~m!zm and Jm~z! ——→
uzu→`

cosS z2
p

2
~2m11!D

Ap

2
z

.
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For x0
6 the equation~V.17! follows from the following asymptotic behavior:

Hm
6~z! ——→

z→0

C~m!zm and Hm
6~z! ——→

uzu→`

e6 i ~z2~p/2!m21/4!

Ap

2
z

.

Second, forg0 @see~V.7!# one establishes analogously

0<r 8<r : ug0~r ,r 8;k,m!u<C~m!euIm~k!u~r 2r 8!S r

11ukur D
m11/2S r 8

11ukur 8D
2m11/2

, ~C1!

0<r<r 8: ug0~r ,r 8;k,m!u<C~m!euIm~k!ur 2Im~kr8!S r

11ukur D
m11/2S r 8

11ukur 8D
2m11/2

. ~C2!

Now ~V.11a! is proved by induction onn as follows. DefineAn by

ufn~r ;k,m!u5euIm~k!ur S r

11ukur D
m11/2

An~r ;k,m!,

and it suffices to show that

An~r ;k,m!<ukum11/2
C~m!n11

n! F E
0

r

dr8
r 8uV~r 8!u
11ukur 8 Gn

,

whereC(m) is the maximum of theC(m) in ~V.11b! and the one in~C1!. By the preparatory
remarks~V.11a! holds forn50, i.e., forf05fn50 . To perform the induction step, by constru
tion we have

fn~r ;k,m!5E
0

r

dr8g0~r ,r 8;k,m!V~r 8!fn21~r 8;k,m!,

which gives the inequality

An~r ;k,m!<C~m!E
0

r

dr8
r 8uV~r 8!u
11ukur 8

An21~r 8;k,m!,

from which the induction step follows easily. This completes the proof of~V.11a! and ~V.11b!
follows from it by summation.

The proof of the bounds~V.16! and~V.17! is similar and we will consider the casex2 only.
Now write

uxn
2~r ;k,m!u5eIm~kr !S r

11ukur D
2m11/2

Bn~r ;k,m!,

such that it suffices to prove

Bn~r ;k,m!<
C~m!n11

n!
uku2m11/2S E

r

`

dr8
r 8uV~r 8!u
11ukur 8 D n

.

By the preparatory remarks, this inequality is valid forn50. To make the induction step, we no
that by construction
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xn
2~r ;k,m!5E

r

`

dr8g0~r ,r 8;k,m!xn21
2 ~r 8;k,m!.

Hence one has the estimate

Bn~r ;k,m!<C~m!E
r

`

dr8
r 8uV~r 8!u
11ukur 8

Bn21~r 8;k,m!,

from which the induction step easily follows. This completes the proof of~V.16! and ~V.17!
follows by summation.

APPENDIX D: THE RESOLVENT OF THE d -POTENTIAL

Proof of theorem VI.2:For anyhPL2(R1) define

cª
1

h0,a~s!2k2 h,

using the integral kernel given by~VI.2!. It is easily seen thatc is well-defined. In order to prove
the theorem we shall show that~VI.2! formally defines a resolvent, i.e., we have

S 2
]2

]r
2

a22
1

4

r 2
D c2k2c5h. ~D1!

That this ‘‘resolvent property’’ is formally satisfied can easily be verified with the aid of
well-known formulas for the first derivatives of Bessel functions. In particular, one uses
relations

Ca85
a

z
Ca2Ca11 , Ca118 5Ca2

a11

z
Ca11 , for Ca5Ja or Ha .

Furthermore, we shall show thatc satisfies the boundary condition in~VI.1!, i.e.,

lim
r↓0

W~ca,s ,c!~r !50. ~D2!

For convenience we introduce the following notation:

I ,~r !ªE
0

r

dr8Ar 8Ja~kr8!h~r 8!, IªE
0

`

dr8Ar 8Ha
~1!~kr8!h~r 8!,

I .~r !ªE
r

`

dr8Ar 8Ha
~1!~kr8!h~r 8!.

c can now be cast into the form

c~r !5Ar F ip

2
Ha

~1!~kr !I ,~r !1
ip

2
Ja~kr !I .~r !2A~k,a;s!H ~1!~kr !I G . ~D3!

To verify the boundary condition~D2!, we note that

ca,s~r !5
1

2a
•r 1/22a1 s̃•r 1/21a, with s̃5s2

1

2a
,
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giving

ca,s8 ~r !5S 1

4a
2

1

2D •r 1/22a1S s̃

2
1 s̃a D r 21/21a,

and hence

W~ca,s ,c!~r !5B8~r !S 1

2a
•r 12a1 s̃r 11aD1B~r !S 1

2
•r 2a2a s̃r aD ,

whereB(r ) denotes the quantity in the square brackets in~D3!. In order to take the limit, we
remark thatz2aJa(z) is an analytic function for any value ofaPR. From its power series
expansion atz50 ~see, e.g., Ref. 35! one obtains the following asymptotic relations whena.0:

lim
r↓0

r 2aJa~kr !5ia~k!ªS k

2D a 1

G~11a!
,

lim
r↓0

r aYa~kr !5ga~k!ª2S 2

kD a 1

sinpa

1

G~12a!
,

lim
r↓0

r aY2a~kr !5g2a~k!ª2S k

2D 2a 1

tanpa

1

G~12a!
.

For the definition of the integral kernel~VI.2! we restricted the Bessel functions to the sheet giv
by 0,arg(k),p. Since the irrational powers ofk in the above expressions stem from t
asymptotic behavior of the Bessel functions, they have to be evaluated on the same sheet.
this in mind, we are prepared to take the limitr→01, which will make most of the terms in~D3!
disappear. SinceuI ,(r )u;C•r a11 and I .;I for r !1, the remaining terms are

lim
r↓0

W~ca,s ,c!~r !5I • lim
r↓0

F ip

2
r 2aJa~kr !1 s̃•k•A~k,a;s!r 11aHa11

~1! ~kr !

1
k

2a
A~k,a;s!r 12aS Ha11

~1! ~kr !2
2a

kr
Ha

~1!~kr ! D G .
Now, by a standard theorem for Bessel functions, we haveHa11

(1) (kr)2(2a/kr)Ha
(1)(kr)

52Ha21
(1) (kr). The boundary condition~D2! therefore implies

A~k,a;s!5
ip

2
ia~k!F ia~k!22i s̃a•ga1

ik

2a
ga21G21

.

Substitutings̃5s21/2a and the expressions foria , ga andga21 we see thatA(k,a;s) is given
by ~VI.3!, thus completing the proof of theorem~VI.2!. h
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Poisson brackets of normal-ordered Wilson loops
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We formulate Yang–Mills theory in terms of the large-N limit, viewed as a clas-
sical limit, of gauge-invariant dynamical variables, which are closely related to
Wilson loops, via deformation quantization. We obtain a Poisson algebra of these
dynamical variables corresponding to normal-ordered quantum~at a finite value of
\! operators. Comparing with a Poisson algebra one of us introduced in the past for
Weyl-ordered quantum operators, we find, using ideas closely related to topological
graph theory, that these two Poisson algebras are, roughly speaking, the same.
More precisely speaking, there exists an invertible Poisson morphism between
them. © 1999 American Institute of Physics.@S0022-2488~99!02204-5#

I. INTRODUCTION

Among the many different approaches to Yang–Mills theory, one of the most widely stu
is the large-N limit.1 The large-N limit can be formulated as a classical limit,2 with a well-defined
phase space and a Poisson bracket between dynamical variables which are functions of th
space. The hallmark of Yang–Mills theory is the gauge invariance of physical observables,
is natural for us to think that the dynamical variables should also be gauge-invariant func
Next comes naturally this question: Is there a sensible Poisson bracket between these
invariant functions? If so, this will be a major step towards the classical formulation of Ya
Mills theory in the large-N limit.

One of us, together with Turgut, introduced in a previous article3 such a Poisson bracke
Consider a Yang–Mills theory with matter fieldszi , where different matter fields are distinguish
by different values of the indexi , in the adjoint representation. Such a theory can be obtained
example, by dimensionally reducing aD-dimensional Yang–Mills theory to a two-dimension
one. The two color indices carried by the adjoint matter field can be regarded as matrix entr
this sense, the adjoint matter fields are Hermitian matrices. Consider the trace of a product o
matrices. Under a gauge transformation characterized by a unitary matrixg, the adjoint matter
fields are changed in the following manner:

zi→gzig†. ~1!

Hence the trace remains unchanged, and is thus a gauge-invariant function, and a dyn
variable of the theory. We call this gauge-invariant function a loop variable, as this was orig
motivated from the study of Wilson loops.4

A convenient way to quantize such loop variables is via deformation quantization.~Deforma-
tion quantization was proposed by Flato, Lichnerowicz and Sternheimer.5 See also Ref. 6. Refer
ence 7 gives a pedagogical introduction. A more comprehensive list of references can be fo
Ref. 8.! The essential idea is that the commutative product of these loop variables is deform
such a way that when we multiply two loop variables, it is as if we are multiplying the
operators they represent.~We say that the loop variables are the symbols of these operators! As
there are different ways to order a product of operators, there are also different schem
deformation quantization. In Ref. 3, the operators are Weyl-ordered. Then the Poisson bra
two loop variables can be defined as the large-N limit of the commutator of them. We will review
the precise definition of this Poisson bracket at the beginning of Sec. III. In a sense, we
18700022-2488/99/40(4)/1870/21/$15.00 © 1999 American Institute of Physics
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obtained a classical limit not by setting\ to 0 but by lettingN go to infinity. This Poisson bracke
dictates the classical dynamics of a system in which the dynamical variables are expres
terms of these loop variables.

However, as most finite-\ quantum theory are formulated in terms of normal-ordered op
tors, it should be interesting to find another Poisson bracket which corresponds to normal-o
operators, i.e., the loop variables should be multiplied in such a way that it is as if w
multiplying normal-ordered operators. This is the goal in Sec. II.

This Poisson algebra is closely related to the Lie algebras we presented in previous pap9–11

though we derived those Lie algebras in a manner thoroughly independent of this Poisson a
We believe that the loop variables have a meaning in noncommutative geometry, and, in
sense, the Lie algebras are linear approximations of this Poisson algebra. We have not y
cisely identified the nature of this approximation, and this is a subject worthy of being pursu
the future. Nevertheless, at the end of Sec. II, we will indicate in a crude manner how the P
algebra can be truncated to obtain these Lie algebras.

The next interesting question which comes to mind is: what is the relationship between
two seemingly different Poisson algebras? It turns out that when there are only a finite num
distinct Hermitian matriceszi , i.e., wheni can take on a finite number of distinct values on
these two Poisson brackets are, roughly speaking, the same. More precisely speaking, the
an invertible Poisson morphism between the two Poisson algebras. We are going to sh
existence of this Poisson morphism in Sec. III. The astute reader will notice that many o
lemmas in the proof have simple interpretations in terms of topological graph theory.~For an
introductory account on topological graph theory, see, e.g., Ref. 12. However, we will not us
of the results there because of the difference between the underlying topologies discussed
reference and the topologies here.! Indeed, we will derive from first principles some properties
topological graphs which, we hope, will be of interest to topological graph theorists.

II. DEFORMATION QUANTIZATION

We are going to derive a Poisson algebra pertinent to gauge theory via deformation q
zation in this section. Deformation quantization refers to the procedure of defining an alge
smooth functions in such a way that when the functions are multiplied, it is as if we are m
plying suitably ordered operators these smooth functions represent. To be more specific, c
the set of all smooth functions on a one-dimensional complex Euclidean space. Letz be a coor-
dinate of this one-dimensional space. Then we can associate a smooth functionf (z,z̄) on it with
a Weyl-ordered operator in the way described by Chari and Pressley.7 The way to associatef (z,z̄)
with a normal-ordered operator is similar. Indeed, the first step is to obtain the Fourier tran
f̂ (j,h) of f (z,z̄) first,

f̂ ~j,h!5
1

~2p!2E dzdz̄f ~z,z̄!e2~ i/\!~jz1h z̄!. ~2!

Herej andh are still complex variables and\ is a quantization parameter. Then the associa
normal-ordered operatorF( f ) is defined as

F~ f !5E djdh f̂ ~j,h!ei\ja†
ei\ha, ~3!

wherea anda† are the annihilation and creation operators satisfying@a,a†#51, respectively. We
then define a noncommutative associative product* \ such that

F~ f 1* \ f 2!5F~ f 1!F~ f 2!. ~4!

Equation~4! is satisfied if this product is defined as follows:
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f 1* \ f 2[e\ ~]/] z̄!~]/]z8! f 1~z,z̄! f 2~z8,z̄8!uz5z8,z̄5 z̄8 . ~5!

Then this operation* \ is a deformation of the algebra of functions on a one-dimensional com
Euclidean space.

In the physical systems we are interested, the dynamical variables are represented b
variables. Mathematically these loop variables are traces ofN3N matrices. Thus we would like to
generalize the above formulation of deformation quantization from ordinary complex variab
N3N matrices. Furthermore, physically each matrix corresponds to a state with a particular
quantum numbers other than color~e.g., momentum!. There are, of course, more than one possi
set of quantum numbers and so we would also generalize the quantization scheme from
dimensional space to a multidimensional space. For the sake of simplicity, this dimension
finite though in the actual physical context it should be infinite.

Having said this, let us generalize the formulation of deformation quantization to a syste
bosons. Consider a complex Euclidean space of dimension 2LN2, whereL is an arbitrary positive
integer. Letzi , wherei 52L, 2L11, . . . ,21, 1, 2, . . . , orL, be a HermitianN3N matrix.
An entry ofzi is denoted byzb

ia , a andb being the row and column indices, respectively. Den
z2 i by z̄i . A normal-ordered loop variableis a function of the form

f̃ I~z,z̄!5Tr zi 1
•••zi m. ~6!

Here I represents the sequence of nonzero integersi 1 , . . . ,i m between2L and L inclusive.
f̃ I(z,z̄) is gauge-invariant since it remains unchanged under the gauge transformation giv
Eq. ~1!. Linear combinations of products of normal-ordered loop variables form a function s
N. Equation~5! can be generalized to

f̃ I* f̃J~z,z̄!5e\gmn ~]/]zb
ma

!~]/]z8a
nb

!f̃ I~z,z̄!f̃J~z8,z8̄!uz5z8,z†5z8† ~7!

with gmn50 unlessm,0 andn.0. In the limit \→`, Eq. ~7! produces the ordinary Poisso
bracket.

Let us derive from Eq.~7! a Poisson bracket for a finite value of\. This is done by expanding
Eq. ~7! as a power series of\. Indeed, we obtain

f̃ I* \f̃J5f̃ If̃J1(
r 51

`
\ r

r !
g i m1

j n1•••g i mr
j nr

] rf̃ I

]z
b1

i m1
a1
•••z

br

i mr
ar

] rf̃J

]z
a1

j n1
b1
•••z

ar

j nr
br

, ~8!

wherei m1
,i m2

, . . . ,i mr
,0 and j n1

, j n2
, . . . ,j nr

.0. We can always bring the first set of indices
the orderm1,m2,¯,m r by relabeling the indices. Then the set of indicesn1 ,n2 , . . . ,n r will
be rearranged in one of allr ! possible permutations. We note that

]f̃ I

]zb
ka

50 ~9!

unless k is equal to one of the elements of the loop (i 1 , . . . ,i m). If k5 i m for some m
51, . . . ,m, then

]f̃ I

]zb
ka

5@zi m11zi m12
¯zi mzi 1

¯zi m21#a
b . ~10!

More generally, whenm1,m2,¯,m r ,
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] rf̃ I

]z
b1

i m1
a1]z

b2

i m2
a2
¯]z

br

i mr
ar

5Pa2

b1~ I ~m1 ,m2!!Pa3

b2~ I ~m2 ,m3!!¯Pa1

br ~ I ~m r ,m1!!, ~11!

where

Pa2

b1~ I ~m1 ,m2!!5H @zi m111zi m112
¯zi m221#a2

b1 if m2.m1

@zi m111zi m112
¯zi mzi 1 . . . zi m221#a2

b1 if m2,m1

~12!

and so on for the otherP’s. Hence, we can substitute Eq.~11! into Eq. ~8! to get

(
$s%

\ r

r !
g i m1

j ns~1!¯g i mr
j ns~r !

•Pa2

b1~ I ~m1 ,m2!!Pa3

b2~ I ~m2 ,m3!!¯

•Pa1

br ~ I ~m r ,m1!!Pbs~2!

as~1!~J~ns~1! ,ns~2!!!Pbs~3!

as~2!~J~ns~2! ,ns~3!!!¯

•Pbs~1!

as~r ! ~J~ns~r ! ,ns~1!!! ~13!

for the rth order term. Heres is any possible permutation ofn1 , . . . ,n r .
In the large-N limit, the term with the largest number of traces will dominate. This occur

the n indices are in decreasing order up to a cyclic permutation, e.g.,n2.n3.¯.n r.n1 , etc.
Then to the first two orders in the large-N limit,

f̃ I* \f̃J.f̃ If̃J

1(
r 51

`

(
m1,m2,•••,mr
~n1.n2.•••.nr !

\ rg i m1
j n1•••g i mr

j nr

•f̃ I ~m1 ,m2!J~n2 ,n1!f̃ I ~m2 ,m3!J~n3 ,n2!
•••f̃ I ~mr ,m1!J~n1 ,nr !, ~14!

where

f̃ I ~m1 ,m2!J~n2 ,n1!5Pa
b~ I ~m1 ,m2!!Pb

a~J~n2 ,n1!!. ~15!

To ensure that the large-N limit is well defined, we need to normalize the functionsf I by
someN-dependent factor. The normalization is such that the vacuum expectation valuef I

remains finite asN→`. Consider the vacuum state of the Hamiltoniangi j Tr zi z̄j , where i , j
51, . . . ,L. Then the vacuum expectation value ofzb

iazd
jc is ^zb

iazd
jc&5g i j d d

a d b
c . Thus the vacuum

expectation value of the product of an odd number ofz’s will vanish whereas that of an eve
number ofz’s will be given by Wick’s theorem. A short calculation reveals that the^f̃ I& for the
f I defined in Eq.~6! with m even is of orderN(m/2)11. This can further be shown to be indepe
dent of the particular form of the Hamiltonian. Consequently, we define the normalized func

f I5
1

N~m/2!11
f̃ I . ~16!

Combining Eqs.~14! and ~15!, we get
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f I* \fJ5f IfJ1
1

Nc
2(r 51

`

(
m1,m2,•••,mr
~n1.n2.•••.nr !

\ rg i m1
j n1•••g i mr

j nr

•f I ~m1 ,m2!J~n2 ,n1!f I ~m2 ,m3!J~n3 ,n2!
•••f I ~mr ,m1!J~n1 ,nr !1OS 1

N 3D . ~17!

Let us define the Poisson bracket by

$f I ,fJ%N[ lim
N→`

N2~f I* fJ2fJ* f I !. ~18!

We then finally obtain

$f I ,fJ%N5a(
r 51

`

(
m1,m2,¯,mr
~n1.n2.¯.nr !

\ rg i m1
j n1¯g i mr

j nr

•f I ~m1 ,m2!J~n2 ,n1!f I ~m2 ,m3!J~n3 ,n2!
¯f I ~mr ,m1!J~n1 ,nr !2~ I↔J!. ~19!

We can visualize Eq.~19! by the diagrammatic representations in Fig. 1.
Equation~19! characterizes the Poisson algebra of loop variables corresponding to no

ordered operators, and we call this thenormal-ordered Poisson algebra. In comparison with the
Poisson algebra found in a previous paper,3 where the loop variables correspond to Weyl-orde
operators, we notice that the antisymmetric tensorsv i j in the last equation of Ref. 3 are her
replaced byg i j , which are nonzero only ifi ,0 and j .0. In addition, terms of order
\1, \3, \5, . . . , etc. vanish in the last equation of Ref. 3 but they are nonzero here in gen

FIG. 1. ~a! A typical loop variablef I . Each solid circle represents azi . Notice the cyclic symmetry of the figure.~b! A
simplified diagrammatic representation off I . We use the capital letterI to denote the whole sequencei 1 , i 2 , . . . , i m . ~c!
A typical term in $f I ,fJ%N . This is a product of the loop variablesf I (m1 ,m2)J(n4 ,n3), f I (m2 ,m3)J(n5 ,n4), f I (m3 ,m4)J(n1 ,n5),
f I (m4 ,m5)J(n2 ,n1), andf I (m5 ,m1)J(n3 ,n2).
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Nevertheless, these two Poisson algebras have a deep relationship — there is an invertible
morphism between the Poisson algebra of Weyl-ordered operators and that of normal-o
operators, whose proof will be given in the next section.

In previous papers, we defined and discussed a number of Lie algebras like the
algebra,9 the centrix algebra,10 and the heterix algebra.11 These Lie algebras arise from taking th
planar large-N limit of gauge theory. We can actually think of them as various approximation
the Poisson algebra given by Eq.~19!. For example, to get the centrix algebra from this Poiss
algebra, we choose\51 andg i j 5d2 i , j and restrict ourselves to loop variables of the formsJ

I

[f IJ* 5Tr zi 1zi 2
•••zi #(I )z̄j #(J)z̄j #(J)21

••• z̄j 1, where #(I ) and #(J) are the numbers of integers inI
andJ, respectively, and all the indicesi 1 , i 2 , . . . , i #(I ) , j 1 , j 2 , . . . , andj #(J) are positive inte-
gers between 1 andL inclusive. (J* is defined as the reverse sequence ofJ.) If we now compute
the Poisson bracket between two loop variables of this form using Eq.~19!, we should obtain

$sJ
I ,sL

K%N5(
r 51

`

(
m1.m2.¯.mr
~n1.n2.¯.nr !

fJ* ~m1 ,m2!K~n2 ,n1!
•fJ* ~m2 ,m3!K~n3 ,n2!

•••fJ* ~mr 21 ,mr !K~nr ,nr 21!

•fJ* ~mr ,0!I ~0,#~ I !11!J* ~#~J!11,m1!K~nr ,#~K !11!L* ~#~L !11,0!K~0,n1!2~ I↔K,J↔L !. ~20!

If we now retain only those terms in whichm1 , m2 , . . . ,m r are consecutive integers in th
reverse order, i.e.,m25m121,m35m221, . . . , andm r5m r 2121, and in whichn1 , n2 , . . . ,n r

are also consecutive integers in the reverse order, we will get precisely the Lie bracket
centrix algebra. If we retain some more terms, we will obtain the heterix algebra. The c
algebra is obtained from the heterix algebra by identifying certain products of loop variable
linear combination of single loop variables. We believe that the loop variables have a geom
meaning in a noncommutative space, and thus there should be a geometrical meaning o
truncating approximations. We hope to understand the geometry better in the future.

III. A POISSON MORPHISM

We are going to show that there exists an invertible Poisson morphism between the P
algebra of Weyl-ordered loop variables described in Ref. 3 and the Poisson algebra of n
ordered loop variables given in Eq.~19!. It should be interesting for the reader to discern, with
help of the accompanying diagrams, the meanings of many of the following lemmas in topol
graph theory.

Let us remind ourselves the definition of the Weyl-ordered Poisson algebra here. ConsidL
distinct N3N Hermitian matricesh2L, h2L11, . . . ,h21, h1, h2, . . . , and hL. A Weyl-
ordered loop variableis a trace of an arbitrary sequence of these matricesf I5Tr h i 1h i 2

•••h i m,
where m is a positive integer called thedegree of fI , i kP$2M ,2M11, . . . ,
21,1,2, . . . ,M %;k51,2, . . . ,m, and I denotes the integer sequencei 1 ,i 2 , . . . ,i m . Linear com-
binations of products of Weyl loops form a function spaceW. The Poisson bracket between tw
Weyl-ordered loop variablesf I andf J5Tr h j 1h j 2

•••h j n, wheren, j k , andJ have analogous defi
nitions asm, i k , andI , is given by the following formula:

$ f I , f J%W52i (
r 51,odd

`

(
m1,m2,•••,mr
~n1.n2.•••.nr !

S 2
i\

2 D r

ṽ i m1
j n1•••ṽ i mr

j nr

• f I ~m1 ,m2!J~n2 ,n1! f I ~m2 ,m3!J~n3 ,n2!
••• f I ~mr ,m1!J~n1 ,nr !. ~21!

In this equation, for every value ofr , we sum over all possible sets of integersm1 ,m2 , . . . ,m r

P$1,2, . . . ,m% such that m1,m2, . . . ,m r , and all sets of integersn1 ,n2 , . . . ,n r
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P$1,2, . . . ,m% such thatn1 ,n2 , . . . ,n r form a decreasing sequence up to a cyclic permutat
ṽ i j is an antisymmetric tensor. Equation~21! defines theWeyl-ordered Poisson algebrafor the
spaceW.

Now we are going to define a linear transformationF:W→N. Nevertheless, we need
number of lemmas first in order to show thatF is well defined. Introduce two matricesSandJ as
follows:

S52S I 0

0 2 i I D ; ~22!

and

J5S 0 I

2I 0D , ~23!

whereI is theL3L unit matrix. The index of each row and column ofSandJ runs from 1 toL,
then from21 to 2L. From Eq.~22!, we see that

S215
1

2S I 0

0 i I D . ~24!

Let h8 i , wherei P$2L,2L11, . . . ,21,1,2, . . . ,L%, be defined as

h8 i5~S21! i~zi1Ji ī zī !, ~25!

where

~S21! i5~S21! i i ~26!

and

ī 52 i . ~27!

Moreover, let

Ci j 5g i j 1Ji ī g ī j1Jj j̄ g i j̄ 1Ji ī Jj j̄ g ī j̄ ~28!

and

Ti j 5
\

2
~S21! i~S21! j~Ci j 1Cji !. ~29!

We will need these formulas in the definition ofF( f I).
Next we want to introduce the concepts of an allowable set of contracted indices, a forb

set of contracted indices and leftover indices. Choose an ordered sequenceI a of 2k integers, where
k is a non-negative integer with 2k<m, from i 1 , . . . ,i m with distinct subscripts. Let us call th
integers i a(21) , i a(1) , i a(22) , i a(2) , . . . , i a(2k) and i a(k) , respectively, wherea(21),a(1),
a(22), a(2), . . . ,a(2k),a(k)P$1,2, . . . ,m% anda(r )Þa(s) if rÞs for integersr ands such
that 1<ur u<k and 1<usu<k. Then I a5( i a(21) ,i a(1) ,i a(22) ,i a(2) ,i a(2k) ,i a(k)) will be calledan
allowable set of contracted indices~or in shortI a is allowable! if any arbitrary integersr ands
such that 1<r ,s<k,

Condition 1: either ia(6s)PI (a(2r ),a(r )) or i a(6s)PI (a(r ),a(2r )).
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Otherwise,I a will be a forbidden set of contracted indices~or in shortI a is forbidden!. We
illustrate in Fig. 2 examples of an allowable set of contracted indices, and one of a forbidd
of contracted indices.

We have the following lemmas characterizing an allowable set of contracted indices.
Lemma 1: Let Ia be an allowable set of2k contracted indices, and r any integer between

and k inclusive. Let b(21),b(1),b(22),b(2), . . . ,b(2k),b(k) be an ordered sequence of in
tegers such that for each r, either b(6r )5a(6r ) or b(6r )5a(7r ). Then Ib
5( i b(21) ,i b(1) ,i b(22) ,i b(2) , . . . ,i b(2k) ,i b(k)) is also an allowable set of contracted indices. Ifa

is forbidden, then Ib is also forbidden.
Proof: Trivial.
Lemma 2: Let Ia5( i a(21) ,i a(1) ,i a(22) ,i a(2) , . . . ,i a(2k) ,i a(k)) be an allowable set of con

tracted indices, p an arbitrary integer between 1 and k21 inclusive, r any integer between 1 an
k inclusive, and(b(21), b(1), b(22), b(2), . . . , b(2k), b(k)) a sequence of integers suc
that

H b~6r !5a~6r ! if rÞp andrÞp11;

b~6p!5a~6~p11!!; and

b~6~p11!!5a~6p!.

~30!

Then Ib5( i b(21) ,i b(1) ,i b(22) ,i b(2) , . . . ,i b(2k) ,i b(k)) is also an allowable set of contracted ind
ces. If Ia is forbidden, then Ib is also forbidden.

Proof: Assume thatI a is allowable. From Lemma 1, we can assume without loss of gener
that a(2p),a(p). It is clear that the set of integers (i b(21) ,i b(1) ,i b(22) ,i b(2) , . . . ,i b(2p) ,i b(p))
satisfies Condition 1. Consideri b(2p21) and i (p11) . SinceI a is allowable, we have from Condi
tion 1 that eitheri b(6(p11))5 i a(6p)PI (a(2s),a(s))5I (b(2s),b(s)) or i b(6(p11))PI (b(s),
b(2s));s51,2, . . . ,p21. Moreover, we have either case~1! that i b(6p)5 i a(6(p11))PI (a
(2p),a(p))5I (b(2p21),b(p11)); case ~2! that i b(6p), i b(2p21) ; case ~3! that i b(6p)

. i b(p11) ; or case~4! that i b(2p), i b(2p21) and i b(p). i b(p11) . If one of the first 3 cases holds
then i b(6(p11))PI (b(p),b(2p)). If case~4! holds, theni b(6(p11))PI (b(2p),b(p)). Hence in
all cases, the set of integers (i b(21) ,i b(1) ,i b(22) ,i b(2) , . . . ,i b(2p21) ,i b(p11)) satisfies Condition
1. It is now easy to deduce that the whole set (i b(21) , i b(1) , i b(22) , i b(2) , . . . , i b(2k) , i b(k))
satisfies Condition 1. HenceI b is also allowable. The proof thatI b is forbidden if I a is forbidden
is similar. Q.E.D.

Lemma 3: Consider an allowable set of contracted indices

FIG. 2. ~a! An allowable set of contracted indices in a loop variable~Weyl-ordered or normal-ordered!. Each straight line
joins i a(2r ) and i a(r ) together. Note that no two straight lines cross each other.~b! A forbidden set of contracted indices
Note that some straight lines cross one other.
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I a5~ i a~21! ,i a~1! ,i a~22! ,i a~2! , . . . ,i a~2k! ,i a~k!!.

Let s:$1,2, . . . ,k%→$1,2, . . . ,k% be a permutation of the set of integers 1, 2,. . . , and k. Then

I s~a!5~ i a~2s~1!! ,i a~s~1!! ,i a~2s~2!! ,i a~s~2!! , . . . ,i a~2s~k!! ,i a~s~k!!!

is also allowable. If Ia is forbidden, then Is(a) is also forbidden.
Proof: This can be easily deduced from Lemma 2. Q.E.D.
In short, we see from Lemma 3 that whether a set of contracted indicesI a is allowable or not

is independent of the order of the pairs of indicesi a(s) ,i a(2s)’s. Each of these pairs will be calle
a contraction pair.

Let us concentrate on an allowable set of contracted indicesI a . For the i l ’s such thatl
P$1,2, . . . ,m% but that lÞa(s)PI a;s561, . . . ,6k ~thesei l ’s are called theleftover indices!,
form subloopsby defining an integer-valued auxiliary functionL of some positive integers a
below. Let L(1)5 l . If L(v) is defined for an integerv, then we defineL ( i )(v11) for some
integersi by the following:

Algorithm 1: (cf. Fig. 3 below) In the following, L(v)1m1 means precisely L(v)11 if
L(v)Þm, and it means 1 if L(v)5m. Similarly, L(v2m1) means L(v)21 if L(v)Þ1, and it
means m if L(v)51.

Step 1: Set i51.
Step 2: L( i )(v11)5L(v)1m1.
Step 3: If L( i )(v11)Þa(s);s561, . . . ,6k, then end this algorithm.
Step 4: Let si be such that a(si)5L ( i )(v11).
Step 5: Increment the value of iby 1.
Step 6: Set L( i )(v11)5a(2si)1m1.
Step 7: Go back to Step 3.

If L ( i )(v11)ÞL(1), wherei is the maximum integer such thatL ( i )(v11) is defined, then define
L(v11)5L ( i )(v11); otherwise,L(v11) and thusL(v12), L(v13), . . . , etc. are all left
undefined.

Before proceeding on using the auxiliary functionL to define a subloop, we need to show th
the above algorithm is well defined by

Lemma 4: In the notations of Algorithm 1, if L(v) is well defined, then there is an i such th
L ( i )(v11)Þa(s);s561, . . . ,6k.

FIG. 3. A typical subloop with 5 numbers in the integer sequenceL.
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Proof: Assume on the contrary that such ani does not exist. Then we have an infini
sequenceL (1)(v11),L (2)(v11), . . . and so on. Since there are a finite number ofa(s)’s for s
561, . . . ,6k only, there is an integeri 2 such thatL ( i 2)(v11)5L ( i 1)(v11)' i 1P$1,2, . . . ,i 2

21%. Consider the casei 1Þ1. LetL ( i 121)(v11)5a(s1) andL ( i 221)5a(s2) for some integerss1

and s2 . Then L ( i 1)(v11)5a(2s1)1m1 and L ( i 2)(v11)5a(2s2)1m1. Hencea(2s1)1m1
5a(2s2)1m1 and thusa(s1)5a(s2), i.e., L ( i 121)(v11)5L ( i 221)(v11), contradicting the as-
sumption thatL ( i 2)(v11) is the first integer that repeats one of the previous numbers in
sequence. Now consider the casei 151. Then L ( i 1)(v11)5L(v)1m1 and L ( i 2)(v11)5a
(2s2)1m1. HenceL(v)5a(2s2). However,L(v) does not belong toI a and this equation is
impossible. Consequently, there is ani such thatL ( i )(v11)Þa(s) for all s561, . . . ,6k. Q.E.D.

Let u be the maximum integer such thatL(u) is defined. Then thesubloop of fI with respect
to Ia including i l is given byfL5Tr h8 i L(1)h8 i L(2)

•••h8 i L(u), whereh8 i is defined in Eq.~25!.
Obviously any one of the leftover indices belongs to at least one of these subloops. Moreov
two distinct subloopsfL1 and fL2 of f I with respect toI a share even one commonh8 i l for an
arbitrary leftover indexi l because of the following two lemmas.

Lemma 5: Consider a subloopfL5Tr h8 i L(1)
•••h8 i L(u) of f I with respect to Ia . Let r and s be

integers between 1 and u inclusive. Then L(r )ÞL(s) if r Þs.
Proof: Assume on the contrary that there exist some integersr̃ and s̃ such thatr̃Þ s̃ but

L( r̃ )5L( s̃). Choose the smallest integerr out of theser̃ and s̃’s. Thenr .1 from the statemen
immediately after Algorithm 1. Lets be the smallest integer distinct fromr such thatL(s)
5L(r ). Thens.r .1. Again from the statement immediately after Algorithm 1, there exists
unknown integerx such thatL(r )5L (x)(r ). Consider the following reverse of Algorithm 1:

Algorithm 2: Here is the procedure of this algorithm.
Step 1: Set i50.
Step 2: Let an integer y be such that it satisfies the equation L(x2 i )(r )5y1m1.
Step 3: If y does not belong to Ia , then y5L(r 21) from Step 2 of Algorithm 1 (or else

L (x2 i )(r )5y1m1, where yPI a because of Step 6 of Algorithm 1, which is impo
sible). Hence x2 i 51⇒x5 i 11. End the algorithm.

Step 4: Since yPI a , L (x2 i )(r )5a(2si 11)1m1' integersi 11 .
Step 5: Increment the value of iby 1.
Step 6: From Steps 6 and 4 of Algorithm 1, L(x2 i )(r )5a(si).
Step 7: Go back to Step 2.
HenceL(r 21) can be uniquely determined just from the value ofL(r ) by Algorithm 2.

Moreover,L(s21) can be uniquely determined just from the value ofL(s) by the same algo-
rithm. SinceL(r )5L(s), we must haveL(r 21)5L(s21), contradicting the assumption thatr is
the smallest number such thatL(r )5L(s) for a numbers.r . Q.E.D.

Corollary 1: The degree of a subloop is a finite positive integer.
Proof: Since the degree of a loop is a finite number only, a subloop of it also has a

degree by Lemma 5.
Lemma 6: For each distinct lP$1,2, . . . ,m% such that il is a leftover index,h8 i l is contained

in at most one of the distinct subloops produced from all the leftover indices.

Proof: Let h8 i lPfL5Tr h8 i L(1)
•••h8 i L(u), where L(1)5 l . Consider another subloopf L̃

5Tr h8 i L̃(1)
•••h8 i L̃(v)

•••h8 i L̃(ũ), where L̃(v)5 l . From Algorithm 1, it is clear thatL̃(v11)
5L(2), L̃(v12)5L(3), . . . , and L̃(ũ)5L(ũ2v11). Then L̃ ( i )(ũ11)5L̃(1) for the maxi-
mum integeri such thatL̃ ( i )(ũ11) is defined. On the other hand,L̃ ( i )(ũ11)5L ( i )(ũ2v12)
5L(ũ2v12). Hence L̃(1)5L(ũ2v12). Then L̃(2)5L(ũ2v13), . . . , and L̃(u2ũ1v
21)5L(u). L ( j )(u11)5L(1) for the maximum integerj such thatL ( j )(u11) is defined. How-
ever, L ( j )(u11)5L̃ ( j )(u2ũ1v)5L̃(u2ũ1v). As a result, L̃(u2ũ1v)5L(1)5L̃(v). By
Lemma 5,L̃(u2ũ1v)5L̃(v) only if u5ũ. Now it is clear thatfL5f L̃. Q.E.D.

Figure 3 shows a typical subloop.
The following lemmas and corollary pertaining to subloops will be found useful later.
Lemma 7: Let us consider a particular pair of indices a(2s0) and a(s0), where 1<us0u
                                                                                                                



h

at

-

1880 J. Math. Phys., Vol. 40, No. 4, April 1999 C.-W. H. Lee and S. G. Rajeev

                    
<k, and the sequence Lext of the numbers L(1), L (1)(2), L (2)(2), . . . , L (i2)(2)5L(2), L (1)

3(3), L (2)(3), . . . , L (i3)(3)5L(3), . . . , L (1)(u), L (2)(u), . . . ,L (iu)(u)5L(u), L (1) (u11),
L (2)(u11), . . . , and L(iu1121)(u11), wherei2 , i3 , . . . , iu11 are the maximum integers suc
that L(i)(x) is defined for2<x<u11 and i<ix . Moreover, L(iu11)(u11)5L(1) by the defini-
tion of u. Then either all numbers in LextPI (a(2s0),a(s0))ø$a(s0)% or all numbers in Lext

PI (a(s0),a(2s0))ø$a(2s0)%.
Proof: Let L(1)PI (a(s0),a(2s0))ø$a(2s0)%. Note that in the sequenceLext, the immedi-

ately succeeding numberl (s) of a preceding numberl (p) is always obtained either by~1! l (s)

5l (p)1m1 if l (p) does not belong toI a , or by ~2! l (s)5a(2s(p))1m1 for an integers(p) such
that l (p)5a(s(p)) if l (p)PI a . Assume thatl (p)PI (a(s0),a(2s0))ø$a(2s0)%. In Case~1!,
l (p)PI (a(s0),a(2s0)) and so l (s)PI (a(s0),a(2s0)) or l (s)5a(2s0). Hence l (s)

PI (a(s0),a(2s0))ø$a(2s0)%. In Case ~2!, if a(s(p))Þa(2s0), then a(s(p))PI (a(s0),
a(2s0)) and soa(2s(p))PI (a(s0),a(2s0)) ~becauseI a is allowable and because of Lemma 3!.
This implies a(2s(p))1m1PI (a(s0),a(2(s0))ø$a(2s0)%. If, on the other hand,a(s(p))
5a(2s0), thena(2s(p))5a(s0) and soa(2s(p))1m1PI (a(s),a(2s0))ø$a(2s0)%. By induc-
tion, all numbers in LextPI (a(s0),a(2s0))ø$a(2s0)%. The case for L(1)
øI (a(2s0),a(s0))ø$a(s0)% is similar. Q.E.D.

Lemma 8: Consider a subloopfL5Tr h8 i L(1)
•••h8 i L(u) of f I with respect to Ia . Without loss

of generality, L(1) can be chosen to be the smallest among L(1),L(2), . . . ,L(u) by a cyclic
permutation of theh8 matrices. Then using the notations of Lemma 5, we have L(1)
,L (1)(2),L (2)(2),•••,L (i2)(2),L (1)(3),L (2)(3), •••,L (i3)(3), •••,L (1)(u),L (2)(u)
,•••,L (iu)(u).

Proof: Consider the numbersl (p) and l (s) defined in the proof of Lemma 7. Assume th
L(1),L (1)(2),•••,L (i2)(2),•••,l (p). If l (p)5L (iu)(u), the lemma is proved. Ifl (p) is a
number beforeL (iu)(u) in the sequenceLext, then l (s) is obtained by the two alternatives de
scribed in the proof of Lemma 7. For the casel (p) does not belong toI a , we havel (s)5l (p)

1m1. Thus eitherl (s)51<L(1) or l (s).l (p). For the casel (p)PI a , we havel (s)5a(2s(p))
1m1 wheres(p) is defined in the proof of the Lemma 7. Ifa(s(p)),a(2s(p)), then eitherl (s)

<L(1) or l (s).l (p). If a(s(p)).a(2s(p)), then we deduce from l (p)

PI (a(2s(p)),a(s(p)))ø$a(s(p))% and Lemma 7 thatL(1)PI (a(2s(p)),a(s(p))). Then l (s)5a
(2s(p))1m1<L(1). Hence this lemma is proved if we can show thatl (s)<L(1) is impossible.

Clearly, l (s)5L(1) is impossible by Lemma 5. Letl (s),L(1), and letl (s)5L (i)(x) for
some numbersi andx. Consider the numbersL (i)(x), L (i11)(x), . . . , andL (ix)(x)5L(x). Since
L(x).L(1), there is a smallest integeric such thatL (ic)(x),L(1) but L (ic11)(x).L(1). Let
L (ic)(x)5a(sc). Then L (ic11)(x)5a(2sc)1m1.L(1) and soa(2sc).L(1). This, together
with a(sc),L(1), implies L(1)PI (a(sc),a(2sc))ø$a(2sc)%. By Lemma 7,a(sc)5L (ic)(x)
PI (a(sc),a(2sc))ø$a(2sc)%, and this is clearly impossible. Q.E.D.

Corollary 2: Consider a subloopfL5Tr h8 i L(1)
•••h8 i L(u) of f I with respect to Ia . L(1) can

be chosen to be the smallest among L(1),L(2), . . . ,L(u) without loss of generality. Then L(1)
,L(2),•••,L(u).

Proof: This follows directly from Lemmas 6 and 8. Q.E.D.
We are now ready to defineF:W→N. Let f I5Tr h i 1

•••h i mPW. Then,

F~ f I !5 (
all distinct allowable sets
of contracted indicesI a

Ti a~21!i a~1!Ti a~22!i a~2! . . . Ti a~2k!i a~k!

• )
all distinct subloopsL

of f I w.r.t. I a.

Tr h8 i L~1!h8 i L~2!
•••h8 i L~u!. ~31!

For instance,
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F~Tr h i 1h i 2h i 3h i 4!5Tr h8 i 1h8 i 2h8 i 3h8 i 41Ti 1i 2 Tr h8 i 3h8 i 41Ti 1i 3 Tr h8 i 2 Tr h8 i 4

1Ti 1i 4 Tr h8 i 2h8 i 31Ti 2i 3 Tr h8 i 1h8 i 41Ti 2i 4 Tr h8 i 1 Tr h8 i 3

1Ti 3i 4 Tr h8 i 1h8 i 21Ti 1i 2Ti 3i 41Ti 1i 4Ti 2i 3. ~32!

Let us give another example. InF(Tr h i 1h i 2h i 3h i 4h i 5h i 6), there are terms like
Ti 2i 3Ti 5i 6 Tr h8 i 1h8 i 4, Ti 1i 6Ti 3i 4 Tr h8 i 2h8 i 5 and Ti 1i 2Ti 4i 5 Tr h8 i 3h8 i 6. Moreover, we define
F( f I f J)5F( f I)F( f J) for somef I , f JPW. The following lemma shows thatF is invertible.

Lemma 9: Consider the mapping F:W→N defined in Eq. (32). Then F is invertible.
Proof: Let P(n) be the proposition that for every normal-ordered loop variablef I in N of

degreen, there is a unique element inW such thatF maps this element tof I . From Eq.~25!, we
see that

H zj5h8 j1 ih82 j

z2 j5h8 j2 ih82 j ~33!

for j P$1, . . . ,M %. Hence

H Tr zj5Tr h8 j1 i Tr h82 j

Tr z2 j5Tr h8 j2 i Tr h82 j ~34!

for eachj . HenceP(1) is true. Assume thatP(k) is true. ConsiderfJ5Tr zj 1
•••zj k11. From Eq.

~33!, fJ is a linear combination of Trh8 j 18h8 j 28
•••h8 j k118 , where j 185 j 1 or 2 j 1 , j 285 j 2 or

2 j 2 , . . . , andj k118 5 j k11 or 2 j k11 . Each of these in turn differs fromF(Tr h j 18h j 28
•••h j k118 ) by

normal-ordered loop variables of degrees less thank11. By the induction hypothesis, there is a
elementf 8 in W which is mapped byF to the sum of these normal-ordered loop variables of low

degree. Hence Trh8 j 18h8 j 28
•••h8 j k118 5F(Tr h j 18h j 28

•••h j k118 1 f 8). Therefore,P(k11) is true and
there is an elementf IPW such thatF( f I)5fJ. If there is another elementf I 8Þ f I such that
F( f I 8)5fJ, thenF( f I 82 f I)50 for f I 82 f IÞ0. However, this is impossible from Eq.~31!. Q.E.D.

Having defined a mappingF:W→N, we are going to prove that this is a Poisson morphis
Let f I and f JPW. F is a Poisson morphism if~1! every term in$F( f I),F( f J)%N is also a term in
F($ f I , f J%W), which is a product of normal-ordered loop variables, and~2! every term in
F($ f I , f J%W) is also a term in$F( f I),F( f J)%N .

Let us derive expressions for$F( f I),F( f J)%N andF($ f I , f J%W) first before proving these two
statements. From Eq.~31! and the Leibniz property of a Poisson bracket,

$F~ f I !,F~ f J!%N5 (
distinct

allowableI a

Ti a~21!i a~1!Ti a~22!i a~2!
¯Ti a~2k!i a~k!

• (
distinct

allowableJb

Tj b~21! j b~1!Tj b~22! j b~2!
¯Tj b~2 l ! j b~ l !

• )
distinct subloopsL of f I

w.r.t. I a except subloopA

Tr h8 i L~1!h8 i L~2!
•••h8 i L~u!

• )
distinct subloopsM of f J

w.r.t. Jb except subloopB

Tr h8 j M ~1!h8 j M ~2!
•••h8 j M ~v !

•$Tr h8 i A~1!
•••h8 i A~a!, Tr h8 j B~1!

•••h8 j B~b!%N , ~35!
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whereJb5( j b(21) , j b(1) , j b(22) , j b(2) , . . . ,j b(2 l ) , j b( l )) is an allowable set of contracted indices
J for a positive integerl , u, andv are the degrees of the subloopsL andM , respectively, anda
andb are the degrees of the subloopsA andB. Furthermore, from Eqs.~25! and ~19!,

$Tr h8 i A~1!
•••h8 i A~a!, Tr h8 j B~1!

•••h8 j B~b!%N

5 (
r 851

`

(
m1,m2,•••,mr 8
~n1.n2.•••.nr 8!

\ r 8~S21! i A~m1!~S21! i A~m2!
•••~S21! i A~mr8!

•~S21! j B~n1!~S21! j B~n2!
•••~S21! j B~nr8!

•~Ci A~m1! j B~n1!Ci A~m2! j B~n2!
•••Ci A~mr8! j B~nr8!2Cj B~n1!i A~m1!Cj B~n2!i A~m2!

•••Cj B~nr8!i A~mr8!!

•HI A~m1 ,m2!JB~n2 ,n1!HI A~m2 ,m3!JB~n3 ,n2!
•••HI A~mr 8 ,m1!JB~n1 ,nr 8!. ~36!

In this equation, ifm1,m2 , then

I A~m1 ,m2!5 i A~m111! ,i A~m112! , . . . ,i A~n221! . ~37!

If, instead,m1>m2 , then

I A~m1 ,m2!5 i A~m111! ,i A~m112! , . . . ,i A~a! ,i A~1! ,i A~2! , . . . ,i A~n221! . ~38!

We have a similar definition forJB(n2 ,n1). In addition,

HI A~m1 ,m2!JB~n2 ,n1!5Tr h8 i A~m111!
•••h8 i A~m221!h8 j B~n211!

•••h8 j B~n121! ~39!

if m1,m2 andn1.n2 , and so on forHI A(m2 ,m3)JB(n3 ,n2), . . . , etc.
Let us define,

v i j 5 i~S21! i~S21! j~Ci j 2Cji !. ~40!

Then Eq.~36! can be simplified by the following lemma:
Lemma 10: (Within the statements and proofs of Lemmas 10 and 11, iA(mk) and jB(nk) will be

abbreviated as ik and jk , respectively.) The following identity holds true:

~S21! i 1~S21! i 2
•••~S21! i r 8~S21! j 1~S21! j 2

•••~S21! j r 8

•~Ci 1 j 1Ci 2 j 2
•••Ci r 8 j r 82Cj 1i 1Cj 2i 2

•••Cj r 8i r 8!

52 (
distinct sets of choices for

D with an odd number ofv8s

~D! i 1 j 1~D! i 2 j 2
•••~D! i r 8 j r 8 ~41!

where each(D) i j can be chosen as either2( i /2)v i j or (1/\)Ti j .
In order to prove Lemma 10, we need to state and prove Lemma 11 simultaneously.
Lemma 11: The following identity holds true:

~S21! i 1~S21! i 2
•••~S21! i r 8~S21! j 1~S21! j 2

•••~S21! j r 8

•~Ci 1 j 1Ci 2 j 2
•••Ci r 8 j r 81Cj 1i 1Cj 2i 2

•••Cj r 8i r 8!

52 (
distinct sets of choices of

D with an evennumber o fv8s

~D! i 1 j 1~D! i 2 j 2
•••~D! i r 8 j r 8 ~42!

Proof of Lemmas 10 and 11:Let us calculate the coefficient of the term
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~S21! i 1~S21! i 2
•••~S21! i r 8~S21! j 1~S21! j 2

•••~S21! j r 8Ci 1 j 1Ci 2 j 2
•••Ci r 8 j r 8 ~43!

on the right-hand sides of Eqs.~41! and~42! first. This is (1/2r 21) the number of summands on th
right-hand sides of these two equations because each summand contributes to Formula~43! what-

ever set of choices ofD ’s we choose. Since the number of distinct choices isC1
r 81C3

r 81•••

1Cr 821
r 8 or C1

r 81C3
r 81•••1Cr 8

r 852r 821 for Eq. ~41! and C0
r 81C2

r 81•••1Cr 821
r 8 or C0

r 81C2
r 8

1•••1Cr 8
r 852r 821 for Eq. ~42!, this coefficient is 1. Similarly, the numerical coefficient of th

expression

~S21! i 1~S21! i 2
•••~S21! i r 8~S21! j 1~S21! j 2

•••~S21! j r 8Cj 1i 1Cj 2i 2
•••Cj r 8i r 8 ~44!

is 21 on the R.H.S. of Eq.~41! and 1 on that of Eq.~42!, the negative sign in Eq.~41! being due
to the fact that we choose an odd number of theD ’s to bev ’s, whereas in Eq.~42! we choose an
even number. Hence, every term on the left-hand sides of Eq.~41! and Eq.~42! are contained in
the right-hand sides of the same equations with the same coefficient. We are going to sho
there are no other terms on the R.H.S.’s besides the terms present on the left-hand sides

Indeed, letC^ i j &5Ci j or Cji , and letP(r 8,k,2) be the proposition that the coefficient o
C^ i 1 j 1&C^ i 2 j 2&

•••C^ i r 8 j r 8&, wherek of theC^ i j &’s areCji ’s andr 82k of them areCi j ’s vanishes on
the R.H.S. of Eq.~41! for 1<k<r 821. Similarly, let P(r 8,k,1) be the proposition that this
coefficient vanishes on the R.H.S. of Eq.~42! for 1<k<r 821. ConsiderP(2,1,2) and P(2,1,
1). The R.H.S. of Eq.~41! is

2 i
Ti 1 j 1v i 2 j 2

\
2 i

v i 1 j 1Ti 2 j 2

\
5~S21! i 1~S21! i 2~S21! j 1~S21! j 2~Ci 1 j 1Ci 2 j 22Cj 1i 1Cj 2i 2!. ~45!

Therefore,P(2,1,2) is true. Similarly, the R.H.S. of Eq.~42! is

2
Ti 1 j 1Ti 2 j 2

\2
2

1

2
v i 1 j 1v i 2 j 25~S21! i 1~S21! i 2~S21! j 1~S21! j 2~Ci 1 j 1Ci 2 j 21Cj 1i 1Cj 2i 2!. ~46!

HenceP(2,1,1) is also true.
Now assume thatP(r 9,k,2) and P(r 9,k,1) are true for a positive integerr 9>2 and 1<k

<r 921. ConsiderP(r 911,k,2). There are 2 types of summands on the R.H.S. of Eq.~41! which
contributes tot5C^ i 1 j 1&

•••C^ i r 9 j r 9&C^ i r 911 j r 911&. One type~type 1 summands! is of the general
form (D) i 1 j 1

•••(D) i r 9 j r 9Ti r 911 j r 911. Here an odd number of theD ’s arev ’s, and the rest areT’s.
The other type~type 2 summands! is of the general form (D) i 1 j 1

•••(D) i r 9 j r 9v i r 911 j r 911. Here an
even number of theD ’s arev ’s. There are several different cases.

• Case 1: 2<k<r 921.
Subcase a: t5C^ i 1 j 1&

•••C^ i r 9 j r 9&Ci r 911 j r 911.
SinceP(r 9,k,2) is true, the coefficient oft derived from type 1 summands, where the fi

r 9C^ i j &’s come from (D) i j ’s andCi r 911 j r 911 comes fromTi r 911 j r 911, is 0. SinceP(r 9,k,1) is also
true, the coefficient oft derived from type 2 summands, whereCi r 911 j r 911 comes fromv i r 911 j r 911

instead, is also 0. As a result,P(r 911,k,2) is true in this subcase.
Subcase b: t5C^ i 1 j 1&

•••C^ i r 9 j r 9&Cj r 911i r 911.
SinceP(r 9,k21,2) is true, the coefficient oft derived from type 1 summands is 0. Sinc

P(r 9,k21,1) is also true, the coefficient oft from type 2 summands is also 0. HenceP(r 9
11,k,2) is also true in this subcase.

• Case 2: k51.
Subcase a: t5C^ i 1 j 1&

•••C^ i r 9 j r 9&Ci r 911 j r 911.
This is exactly the same as Subcase 1a.
Subcase b: t5Ci 1 j 1

•••Ci r 9 j r 9Cj r 911i r 911.
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The coefficient of t derived from type 1 summands is12 ~this 1
2 comes from the term

1
2C

j r 911i r 911 in Ti r 911 j r 911), and the coefficient oft derived from type 2 summands is2 1
2 ~because

of the term2 1
2C

j r 911i r 911 in v j r 911i r 911). Hence the total coefficient is122 1
250, i.e., P(r 911,1,

2) is true in this case.
• Case 3: k5r 9
Subcase a: t5Cj 1i 1

•••Cj r 9i r 9Ci r 911 j r 911.
The coefficient oft derived from type 1 summands is2 1

2, whereas that derived from type
summands is12. Hence the total coefficient vanishes andP(r 911,r 9,2) is true in this case.

Subcase b: t5C^ i 1 j 1&
•••C^ i r 9 j r 9&Cj r 911i r 911.

This is the same as Subcase 1b.

Thus P(r 911,k,2) is true for all cases for 1<k<r 9. With the same induction hypothesi
P(r 911,k,1) is also true by a similar analysis. By induction,P(r 8,k,2) and P(r 8,k,1) are
always true forr 8>2 and 1<k<r 821. Q.E.D.

With the help of Lemma 10, we can derive from Eqs.~35! and~36! that $F( f I),F( f J)%N is a
linear combination of all terms of the form

Ti a~21!i a~1!Ti a~22!i a~2!
•••Ti a~2k!i a~k!Tj b~21! j b~1!Tj b~22! j b~2!

•••Tj b~2 l ! j b~ l !

• )
distinct subloopsL of f I

w.r.t. I a except subloopA

Tr h8 i L~1!h8 i L~2!
•••h8 i L~u!

• )
distinct subloopsM of f J

w.r.t. Jb except subloopB

Tr h8 j M ~1!h8 j M ~2!
•••h8 j M ~v !

•2\ r 8~D! i A~m1! j B~n1!~D! i A~m2! j B~n2!
•••~D! i A~mr8! j B~nr8!

•HI A~m1 ,m2!JB~n2 ,n1!HI A~m2 ,m3!JB~n3 ,n2!
•••HI A~mr 8 ,m1!JB~n1 ,nr 8! ~47!

with an arbitrary allowableI a , an arbitrary allowableJb , an arbitrary positive integerr 8, arbitrary
sets ofm ’s andn ’s such thatm1,m2,•••,m r 8 and (n1.n2.•••.n r 8), and an arbitrary setC
of choices ofD ’s with an odd number ofv ’s. On the other hand, from Eqs.~21! and ~31!,
F($ f I , f J%)W) is a linear combination of all terms of the form

2iS 2
i\

2 D r

v i r1
j s1•••v i rr

j sr•)
p51

r

Tka~21!
~p! ka~1!

~p!
Tka~22!

~p! ka~2!
~p!

•••Tka~2k!
~p! ka~k!

~p!

• )
distinct subloopsL

of f K w.r.t. Ka
~p!

Tr h8kL~1!
~p!

h8kL~2!
~p!

•••h8kL~u!
~p!

~48!

with an arbitrary positive odd integerr , arbitrary sets ofr ’s and s ’s such thatr1,r2,•••

,r r and (s1.s2.•••.s r), and an arbitrary allowable set of contracted indicesKa
(p) in

K ~p!5H I ~rp ,rp11!J~sp11 ,sp! for 1<p<r 21

I ~r r ,r1!J~s1 ,s r ! for p5r .
~49!

Moreover, the indices ofK (p) arek1
(p) ,k2

(p) , . . . , etc.
It is possible to rewrite Eqs.~47! and ~48! in the same form. Because of the emergence o

large number of new parameters, before writing out the new expression~Eq. ~52! below!, we
would like to introduce these parameters first with the help of Fig. 4.

In Fig. 4, the oval object on the left, which is delineated by a thick closed line with an ar
is the Weyl-ordered loop variablef I . The oval object on the right isf J. If we map them to
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normal-ordered loop variables and then take the Poisson bracket, we will obtain Eq.~47!; if we
take the Poisson bracket first and map the resultant expression to the space of normal-orde
variables later, we will obtain Eq.~48! instead. There are a number ofv i j ’s in both Eqs.~47! and
~48!. They will be labeled asv i r10

j s10, v i r20
j s20, . . . , andv i rr0

j sr0, where r is a positiveodd
integer. Moreover, it is always possible to arrange the indices in such a way thati r10

, i r20
,•••

, i rr0
and (j s10

. j s20
.•••. j sr0

). We represent thesev ’s as solid lines joining the two ova
objects in Fig. 4.

There are also a number ofTi j ’s, where the indexi comes fromI andj comes fromJ, in both
Eqs.~47! and~48!. We will show in the following two lemmas that if they are generically labe
asTi rx1x2

j sx1x2, where 1<x1<r andx2 is an integer between 1 and a certain positive integersx1
, in

such a way that

~r10,r11,•••,r1s1
,r20,r21,•••,r2s2

,•••,r r0,r r1,•••,r rsr
!, ~50!

then

~s10.s11.•••.s1s1
.s20.s21.•••.s2s2

.•••.s r0.s r1.•••.s rsr
!. ~51!

TheseT’s are depicted as broken lines joining the two oval objects in Fig. 4.
There are otherTi j in both Eqs.~47! and~48! such that bothi andj come fromI . We will also

show in the following two lemmas that they can be generically labeled asTi ax1x2(2x3)
i ax1x2(x3), where

x3 is an integer between 1 and a certain positive integerkx1x2
in such a way thati ax1x2

(6x3)

PI (rx1x2
,rx1x211) for x2,sx1

or i ax1x2
(6x3)PI (rx1x2

,rx11m1,0) for x25sx1
. TheseT’s are de-

picted as broken lines within the left oval object in Fig. 4. There are still otherTi j in both
equations such that bothi andj come fromJ. Likewise, we will show that they can be generical
labeledTj bx1x2(2x3)

j bx1x2(x3), wherex3 is an integer between 1 and a certain positive integerl x1x2
in

such a way thatj bx1x2
(6y3)PI (sx1x2

,sx1x211) for x2,sx1
or j bx1x2

(6y3)PI (sx1x2
,sx11m1,0) for

x25sx1
. TheseT’s are depicted as broken lines within the right oval object in Fig. 4.

FIG. 4. An illustration for a typical term in Eq.~52!. See the text for the legend of this figure.
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We are now ready to introduce the following lemmas.
Lemma 12: i$F( f I),F( f J)%N is equal to a linear combination of all terms of the form

2i )
x151

r S 2
i\

2 Dv i rx10
j sx10 )

x251

sx1

Ti rx1x2
j sx1x2• )

x351

kx1x2

Ti ax1x2
~2x3!i ax1x2

~x3! )
y351

l x1x2

Tsbx1x2
~2y3! j bx1x2

~y3!

• )
distinct subloops L within I

w.r.t. all contracted indices in I

Tr h8 i L~1!h8 i L~2!
•••h8 i L~u!

• )
distinct subloops M within J

w.r.t. all contracted indices in J

Tr h8 j M ~1!h8 j M ~2!
•••h8 j M ~v !

• )
distinct subloops QR between I and J
w.r.t. all contracted indices in I and J

Tr h8 i Q~1!h8 i Q~2!
•••h8 i Q~w1!

•h8 j R~1!h8 j R~2!
•••h8 j R~w2!,

~52!

where

~1! r is an arbitrary odd positive integer;
~2! the set of indicesrx1x2

is arbitrary except that these indices have to satisfy Eq. (50). Simila

the set of indicessx1x2
is arbitrary except that these indices have to satisfy Eq. (51).

~3! the set of all iax1x2
(6x3)’s is an arbitrary allowable set of contracted indices in I satisfying t

stipulations in a paragraph on p. 42, and with iax1x2
(2x3) and iax1x2

(x3) forming a contraction

pair. Similarly, the set of all jbx1x2
(6y3)’s is an arbitrary allowable set of contracted indices

J also satisfying the stipulations in the same paragraph, and with jbx1x2
(2y3) and jbx1x2

(y3)

forming a contraction pair;
~4! u andv are the degrees of the subloops L and M, respectively. w1 and w2 are integers such

that w11w2 is the degree of the subloop QR; and
~5! the set of all indices in I belonging to any subloop QR comes from one subloop in I

respect to the set of all iax1x2
(6x3)’s. Similarly, the set of all indices in J belonging to an

subloop QR comes from one subloop in J with respect to the set of all Jbx1x2
(6y3)’s.

Proof: First of all, let us prove that any expression of the form shown in Eq.~47! can be
rewritten in the manner shown in Eq.~52!. Indeed, letr be the number ofD ’s in Eq. ~47! which
are v ’s. r is then a positive odd number~Statement~1!!. By Corollary 2, m1,m2,•••,m r 8
implies A(m1),A(m2),•••,A(m r 8) and (n1,n2,•••,n r 8) implies (B(n1),B(n2),•••

,B(n r 8)). Let us rename the indices A(m1),A(m2), . . . ,A(m r 8) and B(n1)
,B(n2), . . . ,B(n r 8) by the following:

Algorithm 3: Here is the procedure of this algorithm.
Step 1: Set x150 and x250.
Step 2: Set y51.
Step 3: If(D) i A(my) j B(ny)5Ti A(my) j B(ny), then increment the value of x2 by 1. Putrx1x2

5A(my)
and sx1x2

5B(ny).
Step 4: If(D) i A(my) j B(ny)5v i A(my) j B(ny), then put sx1

5x2 . Increment the value of x1 by 1 and set

the value of x2 to 0. Putrx105A(my) and sx105B(ny).
Step 5: If yÞr 8, then increment the value of y by 1. Go back to Step 3.
Step 6: Put sr5x21s0 .
Step 7: Set x2851.
Step 8: If x28.s0 , then end the algorithm.
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Step 9: Putr r ,x21x
28
5r0,x

28
and s r ,x21x

28
5s0,x

28
.

Step 10: Increment the value of x28 by 1.
Step 11: Go back to Step 8.

It is now clear that Eqs.~50! and~51! are true~Statement~2!!. Consideri a(2s) andi a(s) in Eq.
~47!, where 1<usu<k. If i a(2s)PI (rx1x2

,rx1 ,x211) wherex2,sx1
but i a(s)PI (rx1 ,x211 ,rx1x2

),

then i rx1x2
PI (a(s),a(2s)) and i rx1 ,x211

PI (a(2s),a(s)). Thus two subloops off I are involved

to produce theg ’s by Lemma 7 and then theD ’s in the Poisson bracket withf J. However, only
one subloop off I , namelyA in Eq. ~47!, should be involved and this leads to a contradictio
Hence, if i a(2s)PI (rx1x2

,rx1 ,x211), then i a(s)PI (rx1x2
,rx1 ,x211) also. Similarly, if i a(2s)

PI (rx1 ,x211 ,rx1x2
), then i a(s)PI (rx1 ,x211 ,rx1x2

) also. In addition, i a(2s) and i a(s)

PI (rx1sx1
,rx11r1,0) or i a(2s) and i a(s)PI (rx11r1,0,rx1sx1

). Let ax1x2
(61),ax1x2

(62), . . . ,

ax1x2
(6kx1x2

) be thosea(6s)’s such thata(6s)PI (rx1x2
,rx1 ,x211) for x2,sx1

or a(6s)

PI (rx1sx1
, rx11r1,0) for x25sx1

, and let thebx1x2
(6x3)’s have analogous definitions. These de

nitions of ax1x2
(x3)’s andbx1x2

(y3)’s are consistent with the ones given in the paragraph pre

ing this Lemma. Furthermore, Statement~3! should be clear. Statements~4! and ~5! are direct
consequences of Eq.~47!.

The subloopsL andM are still defined by using Algorithm 1. From Eqs.~47! and~52!, every
QR lies within I (rx1x2

,rx1x211) andJ(sx1x211 ,sx1x2
) for x2,sx1

or within I (rx1sx1
,rx11r1,0) and

J(sx1sx1
,sx11r1,0). Let Q(0)5rx1x2

. If Q(v) is defined for an integerv, then we defineQ( i )(v

11) for some integersi as follows:
Algorithm 4: Here is the procedure of this algorithm.
Step 1: Set i51.
Step 2: Q( i )(v11)5Q(v)1m1.
Step 3: If Q( i )(v11)5rx1x2

'x1 and x2 , then jump to Step 9.

Step 4: If Q( i )(v11)Þax1x2
(x3);x1 ,x2 ,x3 (where x3 can be positive or negative), then en

the algorithm.
Step 5: Let$x1 ,x2 ,x3% be a set of numbers such that ax1x2

(x3)5Q( i )(v11).
Step 6: Increment the value of i by 1.
Step 7: Set Q( i )(v11)5ax1x2

(2x3)1m1.
Step 8: Go back to Step 3.
Step 9: Let$x1 ,x2% be a set of numbers such thatrx1x2

5Q( i )(v11).
Step 10: Increment the value of i by 1.
Step 11: Set Q( i )(v11)5sx1x2

.
Step 12: End the algorithm.
If the algorithm was ended in Step 4, then defineQ(v11)5Q( i )(v11); if the algorithm was

ended in Step 12, then defineR(0)5Q( i )(v11). If R(v) is defined for an integerv, then we
defineR( i )(v11) for some integersi by Algorithm 5, which is the same as Algorithm 4 exce
that Q( i )(v11) is changed toR( i )(v11), 1m to 1n , rx1x2

to sx1x2
, ax1x2

(x3) to bx1x2
(y3), and

sx1x2
to rx1x2

. Then, if Algorithm 5 was ended in Step 4, we will defineR(v11)5R( i )(v11); if
it was ended in Step 12, then thisR( i )(v11) should be exactlyQ(0).

Conversely, now let us prove that any expression in the form shown in Eq.~52! and satisfying
the five ensuing statements can be rewritten in the way shown in Eq.~47!. It should be clear by a
reversal of the procedure described earlier in this proof that we can rewrite the2 iv i rx10

j sx10/2’s
and Ti rx1x2

j sx1x2/\ ’s as (D) i A(mx) j B(nx)’s with m1,m2,•••,m r 8 and (n1.n2.•••.n r 8). More-
over, theTi ax1x2

(2x3) i ax1x2
(x3)’s can be rewritten asTi a(2x) i a(x)’s, and theTj bx1x2

(2y3) j bx1x2
(y3)’s can be

rewritten asTj b(2y) j b(y)’s. If we can show that the set of alli rx1x2
’s come from one subloop with

respect to the set ofi ax1x2
(x3)’s in I , and the set of allj sx1x2

’s come from one subloop with respe

to the set ofj bx x (y3)’s in J, then the subloopsQR can be rewritten as thoseH ’s in Eq. ~47!.

1 2
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To show that alli rx1x2
’s come from one subloop, we need to show that ifL(v8)5rx1x2

for

some values ofx1 and x2 , then there exists an integerv such L(v)5rx1x211 for x2,sx1
or

L(v)5rx11r1,0 for x25sx1
. We will write L(v)5rx1x211 generically. We can setv851 without

loss of generality by Lemma 6. Obviously (L(1),rx1x211). Assume that (L(1),L(2)

,•••L(v21),rx1x211) for an integerv.1, and assume thatL(v) does not exist. Then ther

should be anL i8(v) for an integeri8>1 such thatL (i8)(v)5ax̃1x̃2
(2 x̃3) for some integers

x̃1 ,x̃2 ,x̃3 andax̃1x̃2
( x̃3)1m15L(1). Thus (ax̃1x̃2

( x̃3),L(1),L (1)(v),rx1x211). Hence there ex-

ists a smallest integeri such that (ax1x2
(x3),L(1),L (i)(v),rx1x211), where ax1x2

(2x3)

5L (i)(v). However, this is impossible and soL(v) exists. Assume (rx1x211,L(v),L(1)). Then

there should be anL (i8)(v) for an integeri8>1 such thatL (i8)(v)5ax̃1x̃2
(2 x̃3) for some integers

x̃1 ,x̃2 ,x̃3 and ax̃1x̃2
( x̃3)1m15L(v). Hence (L (1)(v),rx1x211,ax̃1x̃2

(x3),L(1)). This implies

the existence of a smallest integeri such thatL (i)(v)5ax1x2
(2x3) for an integerx3 and (L (i)

3(v),rx1x211,ax1x2
(x3),L(1)). Again this is impossible. Hence (L(1),L(v)<rx1x211). By

Corollary 2, (L(1),L(2),•••,L(v)<rx1x211). Since there are only a finite number of indic

betweenL(1) andrx1x211 , there exists a numberṽ such thatL( ṽ)5rx1x211 . Hencei rx1x2
and

i rx1x211
belong to the same subloop ofI . Consequently, the set of alli rx1x2

’s for 1<x1<r and

0<x2<sx1
belongs to one subloop ofI . Similarly, the set of allj sx1x2

’s belongs to one subloop o

J. Q.E.D.
Before we prove Lemma 13, we remark that in the following,

I (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(rx1x2
,sx1x2

) we mean the sequenc

i rx1x2
11 ,i rx1x2

12 , . . . ,i rx11r1,0
, j sx11r1,0

, . . . ,j sx1x2
.

Lemma 13: F($ f I , f j%W) can also be written as a linear combination of all terms of the fo
shown in Eq. (52) with the five accompanying statements.

Proof: First of all, let us show that any expression of the form given in Eq.~48! can be
rewritten as shown in Eq.~52! with the accompanying five statements being satisfied. Ind
Statement~1! is obvious. Let us rename the indicesr1 , r2 , . . . ,r r , s1 , s2 , . . . ,s r in Eq. ~48!
asr10, r20, . . . ,r r0 , s10, s20, . . . ,s r0 . Moreover, within the loopf I (rx10 ,rx11r1,0)J(sx11r1,0,sx10),
for those contraction pairs with one index coming fromI and the other one fromJ, call these
indicesi rx1x2

and j sx1x2
in such a way thatrx10,rx11,•••,rx1sx1

,rx111,0 if there aresx1
such

pairs for x1,r , or (r r0,r r1,•••,r rsr
,r10) if x15r . Thus Eq. ~50! is true. Obviously

(sx11r1,0.sx11.sx10). Assume that (sx11r1,0.sx1x2
.sx1x221.•••.sx10). If x2Þsx1

, con-

sider sx1 ,x211 . Since i rx1x211
PI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(rx1x2

,sx1x2
), we get j sx1 ,x211

PI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(rx1x2
,sx1x2

) also. Hence (sx11r1,0.sx1 ,x211.sx1x2

.sx1 ,x221.•••.sx10). Thussx11r1,0.sx1sx1
.sx1 ,sx1

21.•••.sx10 . Therefore Statement~2!

is true. Statements~3! and ~4! are obvious.
Now let us fix the values ofx1 andx2 , and consider those contraction pairs with both indic

coming from I , and one of them, sayi c , belonging to I (rx1x2
,rx1 ,x211) for x2,sx1

or

I (rx1x2
,rx11r1,0) for x25sx1

. Let i c8 be the other index of this contraction pair. Clearlyi c8
PI (rx10 ,rx11r1,0). If i c8 does not belong toI (rx1x2

,rx1 ,x211) for x2,sx1
or I (rx1x2

,rx11r1,0) for

x25sx1
, then i cPI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(rx1x2

,sx1x2
) but i c8

PJ(sx11r1,0,sx10)I (rx10 ,rx11r1,0)(sx1x2
,rx1x2

), which is impossible. Thus any contraction pa

coming only fromI can be written asi ax1x2
(6x3) because both of them must belong to a seque

I (rx1x2
,rx1x211) with x2,sx1

, or belong to a sequenceI (rx1x2
,rx11m1,0) with x25sx1

.

We can now say that for a fixed value ofx1 , the set of alli rx1x2
, j sx1x2

, i ax1x2
(6x3) and

j bx x (6y3) , where 1<x2<sx1
, 1<x3<kx1x2

and 1<y3< l x1x2
, together form an allowable set o
1 2
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contracted indices in the loopI (rx10 ,rx11r1,0)J(sx11r1,0,sx10) with i rx1x2
and j sx1x2

being con-

traction pairs,i ax1x2
(x3) and i ax1x2

(2x3) being contraction pairs, andj bx1x2
(y3) and j bx1x2

(2y3) being

contraction pairs.
The remaining thing to do to prove that Statement~5! is satisfied is to show that the set of a

i ax1x2
(6x3)’s for 1<x1<r , 0<x2<sx1

and 1<x3<kx1x2
is allowable in I , and the set of all

j bx1x2
(6y3)’s for 1<x1<r , 0<x2<sx1

and 1<y3< l x1x2
is allowable inJ. Indeed, since for each

fixed x1 , the set of alli ax1x2
(6x3)’s is allowable inI (rx10 ,rx11r1,0)J(sx11r1,0,sx10), this set alone

is allowable inI also. Now let us choose a fixed set of values forx1 , x2 andx3 . Consider two

integersx̃1 and x̃2 such that 1< x̃1<r and 1< x̃2<sx̃1
. In addition, eitherx̃1Þx1 or x̃2Þx2 , or

both. Theni ax1x2
(6x3)PI (ax̃1x̃2

( x̃3),ax̃1x̃2
(2 x̃3)) for 1< x̃3<kx̃1x̃2

if ax̃1x̃2
( x̃3)>ax̃1x̃2

(2 x̃3) and

r x̃10,r x̃11r1,0, or if ax̃1x̃2
( x̃3).ax̃1x̃2

(2 x̃3).r x̃10.r x̃11r1,0, or if r x̃10.r x̃11r1,0.ax̃1x̃2
( x̃3)

.ax̃1x̃2
(2 x̃3). Similarly, i ax1x2(6x3)PI (ax̃1x̃2

(2 x̃3),ax̃1x̃2
( x̃3)) if ax̃1x̃2

( x̃3).r x̃10.r x̃11r1,0

.ax̃1x̃2
(2 x̃3). As a result, the set of alli ax1x2

(6x3)’s is allowable inI . A similar argument holds

for all j bx1x2
(6y3)’s in J.

The subloopsL andM are found by using Algorithm 1, and the subloopsQR can again be
determined by Algorithms 4 and 5.

Let us consider the converse, i.e., whether any expression of the form shown in Eq.~52! and
satisfying the five accompanying statements is a term in Eq.~48!. The only thing we need to do to
substantiate this converse statement is to prove that if the set of alli ax1x2

(6x3)’s is allowable inI ,

the set of allj bx1x2
(6y3)’s is allowable inJ, the set of alli rx1x2

’s satisfies Eq.~50! and the set of all

j sx1x2
’s satisfies Eq.~51!, then for each fixedx1 , the set of alli ax1x2

(6x3)’s and j bx1x2
(6y3)’s together

with i rx1x2
and j sx1x2

is allowable inf I (rx10 ,rx11r1,0)J(sx11r1,0,sx10).

Indeed, let all the five statements accompanying Eq.~52! be satisfied. Obviously the pairi rx11

and j sx11
forms an allowable set of contraction pairs in the loopI (rx10 ,rx11r1,0)J(sx11r1,0,sx10).

Assume that (i rx11
, j sx11

, i rx12
, j sx12

, . . . , i rx1x2
, j sx1x2

) is allowable. Ifx2,sx1
, consider the set

( i rx11
, j sx11

, i rx12
, j sx12

, . . . , i rx1x211
, j sx1x211

). It is clear thati rx1x211
PI (rx1x2

,rx11r1,0) and

j sx1x211
PJ(sx11r1,0,sx1x2

) from Eqs. ~50! and ~51!. Hence both i rx1x211
and j sx1x211

PI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(rx1x̃2
,sx1x̃2

); x̃251, 2, . . . , and x2 . As a result,

( i rx11
, j sx11

,i rx12
, j sx12

, . . . ,i rx1sx1

, j sx1sx1

) is allowable inI (rx10 ,rx11r1,0)J(sx11r1,0,sx10).

Let us turn to i ax1x2
(6x3)’s for the fixed x1 we are considering. Sincei ax1x2

(6x3)

PI (rx1x2
,rx1 ,x211) for x2,sx1

or I (rx1x2
,rx11r1,0) for x25sx1

, we have i ax1x2
(6x3)

PI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(rx1x̃2
,sx1x̃2

) for x̃2<x2 , or i ax1x2
(6x3)

PI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)(sx1x̃2
,rx1x̃2

) for x̃2.x2 . Moreover, the set of alli ax1x2
(6x3)’s

for the fixed x1 is allowable in I , so this set of i ax1x2
(6x3)’s alone is also allowable in

I (rx10 ,rx11r1,0)J(sx11r1,0,sx10). Furthermore, i ax1x2
(6x3)PI (rx10 ,rx11r1,0)J(sx11r1,0,sx10)

3(bx1x̃2(2y3) ,bx1x̃2(y3)) for 0< x̃2<sxr
and (sx11r1,0,bx1x̃2(2y3),bx1x̃2(y3),sx10). A similar ar-

gument applies to the set of allj bx1x2
(6y3)’s for the fixedx1 . Consequently, for each fixedx1 , the

set of all i ax1x2
(6x3) , j bx1x2

(6y3) ,i rx1x2
, j sx1x2

’s is allowable in I (rx10 ,rx11r1,0)J(sx11r1,0,sx10).

Q.E.D.
Theorem 1: There exists an invertible Poisson morphism between the Poisson algeb

Weyl-ordered loop variables and the Poisson algebra of normal-ordered loop variables.
Proof: This is a direct consequence of Lemmas 9, 12 and 13. Q.E.D.
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Differential equations for scaling relation in N52
supersymmetric SU „2… Yang–Mills theory coupled
with massive hypermultiplet

Yűji Ohta
Research Institute for Mathematical Sciences, Kyoto University, Sakyoku,
Kyoto 606, Japan
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Differential equations for the scaling relation of prepotential inN52 supersym-
metric SU~2! Yang–Mills theory coupled with massive matter hypermultiplet are
proposed and are explicitly demonstrated in one flavor (Nf51) theory. By apply-
ing Whitham dynamics, the first-order derivative of the prepotential over theT0

variable corresponding to the mass of the hypermultiplet, which has a line integral
representation, is found to satisfy a differential equation. As a result, the closed
form of this derivative can be obtained by solving this equation. In this way, the
scaling relation of massive prepotential is established. Furthermore, as an applica-
tion of another differential equation for the massive scaling relation, the massive
prepotential in a strong coupling region is derived. ©1999 American Institute of
Physics.@S0022-2488~99!01704-1#

I. INTRODUCTION

It is well-known that the low energy effective action ofN52 supersymmetric Yang–Mills
theory is described in terms of the holomorphic prepotentialF.1 In this case, the perturbative pa
of the prepotential is not modified beyond one-loop order according to the nonrenormaliz
theorem,2–5 but is known to be affected by instantons. In the case of the SU~2! gauge group,
Seiberg and Witten6,7 proposed a general prescription to determine the nonperturbative prep
tial with the aid of Riemann surface of genus one. Based on their observation, Klemmet al.8

determined the instanton corrected prepotential by adopting a method of Picard–Fuchs eq
which was often used in the mirror symmetry of Calabi–Yau manifold.9–11 On the other hand,
Matone12 derived a recurrence formula of the instanton expansion coefficients of the prepot
by noticing a modularity. As a bonus, he obtained a quite simple relation between prepotent
moduli often referred as a scaling relation. After this discovery, the existence of such relat
N52 supersymmetric Yang–Mills theory coupled with or without massive quark hypermulti
was pointed out independently by two groups.13,14 Sonnenscheinet al.13 proved it by noticing the
homogeneity of the prepotential, while Eguchi and Yang14 established the same result~2.17! in the
language of Whitham dynamics.15,16 However, in the framework of Whitham dynamics, we a
ways encounter the problem of evaluating the derivative ofF over theT0 variable in order to
establish a scaling relation when the mass of the hypermultiplets is not ignored. In the Wh
theory, this quantity is represented by a line integral interpolating two coverings of Riem
surface and therefore its evaluation is quite complicated, especially, in a massive case.
explicit calculation of this integral is not found in the literature.

One of the aims of the paper is to give a solution to this problem. However, since
calculation in the case of a theory withNf massive flavors is very complicated even for SU~2!, we
treat only SU~2! Nf51 case. In addition, extension toNf.1 is straightforward, so it is recom
mended that the reader try to proceed to other cases. Our construction starts from compa
Wronskian of a massive Picard–Fuchs equation with the modular invariant of Matone.12 These
two are shown to be related by a Fuchsian differential equation. Applying the Whitham theo
soliton to this equation, we can obtain a differential equation for]F/]T0 . In this way, it is
18910022-2488/99/40(4)/1891/10/$15.00 © 1999 American Institute of Physics
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determined as a solution to this equation. The details are discussed in Sec. II. On the othe
in the course of the calculus used in the derivation of this differential equation, we can find an
simple differential equation, which indicates a relation between prepotential and moduli like
in five dimensions.17 This equation is also a consequence of scaling relation in the massive th
As an application, the prepotential in the strong coupling region~dual prepotential! is derived in
Sec. III. At first sight, the dual prepotential looks very complicated, but the massless limit
cides with that in the massless theory obtained by Ito and Yang.18 Section IV is a brief summary

II. SCALING RELATION AND THE WHITHAM HIERARCHY

A. The Picard–Fuchs equation

First of all, let us recall the basics of the massiveNf51 theory in the Seiberg–Witten
approach.7 In the case of SU~2!, we can take two kinds of curves, one of which is elliptic type7 and
the other is hyperelliptic type.19 Though an elliptic curve is used in the next section, here we t
the hyperelliptic curve. In this case, it is given by

y25~x22u!22L3~x1m!, ~2.1!

whereu5^tr f2& is the moduli~f is the complex scalar field ofN52 chiral superfield!, m is the
mass of the hypermultiplet, andL is the mass scale parameter of thisNf51 theory. For this curve,
the Seiberg–Witten differential 1-forml is determined from the basic relationdl/du}dx/y.
Taking into account the numerical normalization factor, we find19,20

l5
&

4p i

x dx

y F x22u

2~x1m!
22xG . ~2.2!

In general, the Seiberg–Witten 1-form in a theory involving massive matter hypermultiplets
fundamental representation of the gauge group is endowed with a pole structure whose re
linearly proportional to the masses of the hypermultiplets.7,19

The Seiberg–Witten ansatz requires that the vacuum expectation value off and its dual are
quantum mechanically given by the two periods

a5 R
a
l, aD5 R

b
l, ~2.3!

respectively, along the canonical basis (aùb511) of 1-cycles on~2.1!. Then the periods satisfy
the Picard–Fuchs equation

d3P

du3 1X
d2P

du2 1Y
dP

du
50, ~2.4!

where

X5
d

du
ln

D

4m223u
,

~2.5!

Y52
8

D F4~2m223u!13
3mL324u2

4m223u G .
Here,

D~u!5256u32256m2u22288mL3u1256m3L3127L6 ~2.6!

is the discriminant of the curve~2.1!.
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B. Differential equations for scaling relation

Differential equations for the Wronskian can be used to make a relation to prepotentia
reader might know the example in the context of mirror symmetry presented by Can
et al.,10,11 who used the ‘‘Wronskian’’ in order to make contact with Yukawa coupling in
complex structure moduli space. A similar presentation is possible also inN52 supersymmetric
Yang–Mills theory coupled with or without massless matter hypermultiplets. In the case of S~2!,
the integral of Wronskian of Picard–Fuchs equation yields the scaling relation of
prepotential.14 However, when hypermultiplets are massive, it is not easy to see such a s
relation connecting prepotential and moduli. We encountered a similar problem in the
dimensional gauge theory.17 Since we did not know a five-dimensional analog of the scal
relation in four-dimensional gauge theory, we proposed a differential relation between prepo
and the Wronskian. The method used in the course of this calculation reveals further aspect
scaling relation, provided it is applied to four-dimensional gauge theory.

For this, let us prepare the following two quantities:

W5a8aD9 2a9aD8 , w5aaD8 2a8aD , ~2.7!

where85d/du. The first equation is precisely the Wronskian for the third-order Picard–F
equation~2.4!, while the integration of the second one produces the modular invariant of Mato12

E
0
wdu5aaD22F. ~2.8!

Remark: The Modular invariance mentioned here is the sense of pure SU(2) theory.
Here, the integral symbol indicates that it is an integration constant free integral, name

integration constant is set to zero. What we would like to clarify is a relation between~2.8! and
~integration of! W, so the first task is to try to connectW andw.

Fortunately, this is simply done by differentiatingw over u repeatedly modulo the Picard
Fuchs equation~2.4!, and we can find

w91Xw81Yw5W. ~2.9!

It is interesting to notice thatw satisfies a Picard–Fuchs equation withW as a source term. On th
other hand, forW we can easily obtain

W81XW50, ~2.10!

which implies

W5c
4m223u

D
, ~2.11!

wherec is an integration constant. Note that the discriminant of the curve appears in the de
nator and a similar relation was noticed in five dimensions.17 In order to fix c, we may use a
massless or double scaling limit as a boundary condition. For example, in the massless lim
well-known thatw5 i3/(4p),21 therefore, from~2.9!

c52 i
16

p
. ~2.12!

Of course,c must be uniquely fixed, and the same value is obtained from double scaling
~2.11! with ~2.12! plays an important role in the next section.

In this way, we arrive at
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w91Xw81Yw52 i
16

p

4m223u

D
. ~2.13!

Since the solution to this equation givesw and must be related to~2.8!, w obtained from~2.13! is
expected to give a scaling relation in this massive theory13

a
]F
]a

22F52m
]F
]m

2L
]F
]L

, ~2.14!

whereF is regarded here as a homogeneous functionF5F(a,L,m) in variables. Specifically, the
solution of~2.13! will include information on the right-hand side of~2.14! and what we would like
to do next is extract such information from~2.13!. The best way to accomplish this is to introdu
the Whitham theory.15,16

C. Relation to Whitham dynamics

Let us consider a consequence of~2.13! in view of Whitham dynamics inN52 Yang–Mills
theory. For details of Whitham dynamics in the context of Yang–Mills theory, see Refs. 14

Let Tn (nPNø$0%) be time variables coupled to (n11)th order pole of the Seiberg–Witte
differential 1-form. In the SU~2! Nf51 theory, the prepotential is available from the relation

]F
]a

5 R
b
l,

]F
]Tn

522p i res~z2nl!,
]F
]T0

522p i E
z
*

52m

z52m

l, ~2.15!

where residue is evaluated atx51/z5` andz* (51/x) is the coordinate on the other sheet of t
curve. Atx5`, l is expanded as

l5F2 (
n.0

`

nTnz2n211T0z212
1

2p i (
n.0

`
]F
]Tn

zn21Gdz. ~2.16!

Then, Whitham dynamics inN52 Yang–Mills theory implies the homogeneity relation of th
prepotential14

a
]F
]a

22F52T0

]F
]T0

2T1

]F
]T1

. ~2.17!

Note that the right-hand side of~2.17! should be identified with that in~2.14!.
In the framework of Whitham hierarchy,T0 , T1 , and]F/]T1 are read from~2.16! as

T052 i
m

4&p
, T15 i

3

4&p
,

]F
]T1

5&S m2

4
2uD . ~2.18!

Due to our normalization, the numerical factors are different from those used by Eguch
Yang.14 Note thatT0 vanishes whenm50. This simplifies~2.17! and because of this, the scalin
relation in the massless theory is easily determined by using the Whitham hierarchy. In this
it is not necessary to know]F/]T0 , but in a massive case it must be known. However, in
massive theory the calculation of]F/]T0 requires care because the third equation in~2.15! is a
line integral from one covering of the Riemann surface to the other. In the case at han
integral consists of two pieces of integral from2m to ` on one sheet and a copy of it on the oth
sheet~when the mass vanishes, it reduces to a familiar integral14!. Due to the pole ofl at x
52m, the evaluation of it is not easy and it is therefore still at a challenging stage. Howeve
can develop another method and show that]F/]T0 satisfies a differential equation with the aid
~2.13!. Then]F/]T0 is obtained as a solution to this equation.
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Differentiation of~the left-hand side of! ~2.17! givesw, so a differential equation for]F/]T0

can be obtained by substitutingw calculated from~2.17! with ~2.18! into ~2.13!

Q-1XQ91YQ85
4&

m F i
p

2
W1

6

D S 28m213
3mL324u2

4m223u D G , ~2.19!

whereQ5]F/]T0 . It is easy to get a solution to this equation

Q85c1a81c2aD8 1 i
2&p

m
w1 i

3&p

2m FaD8 E
0

a8Z

4m223u
du2a8E

0

aD8 Z

4m223u
duG , ~2.20!

whereci are integration constants and

Z528m213
3mL324u2

4m223u
. ~2.21!

In the derivation of~2.20!, we have used the fact that a second-order differential equation

d2y

dx2 1P~x!
dy

dx
1Q~x!y5R~x! ~2.22!

with any functionP(x), Q(x) andR(x) has a general solution in the form

y5c1y11c2y22y1E
0

y2R~x!

W~y1 ,y2!
dx1y2E

0

y1R~x!

W~y1 ,y2!
dx, ~2.23!

whereyi are two independent solutions in the case ofR(x)50 andW(y1 ,y2) is its Wronskian.
Since ~2.19! without the right-hand side is nothing but the massive Picard–Fuchs equation
aboveyi may be chosen asa8 and aD8 . Then W(y1 ,y2) is identified withW defined in~2.7!.
Furthermore,~2.11! is used to arrive at the final expression~2.20!.

Let us see the massless limit of~2.20!. In this limit, naively, the factor 1/m diverges, but we
leave it for the moment. Whenm vanishes, the integrals can be easily evaluated and the resu
terms cancel out the third term in~2.20!. Therefore, it follows that

]F
]T0

U
m→0

5c1a1c2aD1const. ~2.24!

This result reflects the fact that~2.19! reduces to the total differentiation of the massless Pica
Fuchs equation because of vanishing of the right-hand side of~2.19! for m→0. Actually,]F/]T0

corresponds to]F/]m, so all constants in~2.24! should be zero form→0.
On the other hand, integrating~2.20! for mÞ0, we obtain

aaD22F5 i
m

6&p
~c1a1c2aD!1c32

1

4 E0
FaD8 E

0

a8Z

4m223u
du2a8E

0

aD8 Z

4m223u
duGdu,

~2.25!

wherec3 is an integration constant, with the aid of~2.17! and~2.18!. This is the general form of
the massive scaling relation.

Remark: If the prepotential is known,20 ci are easily determined as

c1523p in8, c253p in, c352
m2

16
~ i 14i ln 222pnn8!, ~2.26!
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where n,n8PZ are the winding numbers of 1-cycles around the pole corresponding to x52m of
l. These constants support the massless limit behavior of]F/]T0 . However, precisely, thes
integration constants must be determined by comparing them with the result of lower
expansion of the third equation in (2.15).

III. MASSIVE PREPOTENTIAL IN STRONG COUPLING REGIME

Next, let us study the prepotential in the strong coupling region following the techno
recently developed in the five-dimensional gauge theory.17 The basic tool in our case is~2.11!.

For later convenience, we take the elliptic curve7

y25x2~x2u!1
1

4
mL3x2

L6

64
, ~3.1!

whose discriminant coincides with~2.6!. The Seiberg–Witten differential 1-form is given by

l5
&

8p

dx

y F2u23x2
mL3

4x G . ~3.2!

For this curve, we choose the 1-cycles on the surface~3.1! as Ito-Yang cycles,18 which reduce for
largeu with vanishing mass

a: 2 i
L3

8Au
→1 i

L3

8Au
, b: u→2 i

L3

8Au
. ~3.3!

Also in this case, the periods are defined by~2.3! and satisfy~2.4!.
To find strong coupling regime, let us decompose the discriminant as

D~u!5256 )
i 51

3

~u2ei !, ~3.4!

whereei are given by the vanishing points ofD(u)50, which correspond to the strong couplin
regime. ei can be easily obtained by solvingD(u)50 for u, but we should take care of th
derivation. In general, any cubic equation inx,

x31ax21bx1c50, ~3.5!

wherea, b, andc are some constants independent ofx, has three independent solutions. One
them is

x52
21/3~2a213b!

3@22a319ab227c1A4~2a213b!31~22a319ab227c!2#1/3
1¯ , ~3.6!

where the ellipsis~¯! means omission of the remaining terms. However, if the denomin
vanishes

22a319ab227c1A4~2a213b!31~22a319ab227c!250, ~3.7!

i.e.,

~a223b!350, ~3.8!

formula ~3.6! is not valid any more. In this case, one must start again from~3.5! under condition
~3.8!.

In the case at hand, the condition~3.8! for ~2.6! corresponds to
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m3~2m13L!3~4m226mL19L2!350, ~3.9!

which implies that the directly obtained location undermÞ0 @cf. ~3.6!#, does not reflect the
precise massless limit of the massive discriminant. To understand more illustratively, let
u5x1 iy , where x,yPR. Then the equationD(u)50 produces 3(x2m2/3)22y25m(8m3

127)/24. For a nonzerom, this is nothing but hyperbolic curves, but form50 it becomes crossing
lines. Clearly, the zeros of the discriminant atm50 behave singularly because transition from t
hyperbolic curve to lines is always suppressed.

In fact, though the correct massless location in the strong coupling regime must be

e1
~0!52

3L2

28/3 , e2
~0!5

3~12 i) !L2

211/3 , e3
~0!5

3~11 i) !L2

211/3 , ~3.10!

these cannot be obtained from~3.6! with m50. Therefore,~3.9! distinguishes regions in quantum
moduli space atm50 and mÞ0. To see a connection with massless theory, for example,
realize the zero locus of the massive discriminant as a small mass perturbation in the foei

5ei
(0)1(series inm), where this series converges forumu,1. Substituting this into the equatio

D50 and equating coefficient of powers inm to zero, one finds

e15e1
~0!2

m

21/3L1
m2

3
2

4

27

21/3m3

L
1

4

81

22/3m4

L2 1¯ ,

e25e2
~0!2

~11 i) !

24/3 mL1
m2

3
1

24/3~12 i) !m3

27L
1¯ , ~3.11!

e35e3
~0!1

~12 i) !

24/3 mL1
m2

3
1

24/3~11 i) !m3

27L
1¯ .

As a final check,~3.4! must be satisfied, but this can be easily confirmed by order inm greater than
m3. Note that~3.11! coincides with the massless strong coupling points form50 and thus the
aboveei are the expected ones for small but finite mass. Below, to make a contact with the
of Ito and Yang,18 e1 is chosen as a representative of the strong coupling regime. On the
hand, form greater than or equal to 1,~3.6! is available to derive zeros of the discriminant.

Remark: In the case of theSU~2! gauge group, this situation is characteristic of the Nf51
theory. For Nf52 and3 theories’ discriminants, we do not encounter such a sensitive proble
the determination of the strong coupling region.

Performing differential calculation between periods and dual prepotential

da

du
5
F D9

u8
,

d2a

du2 5
1

u83 ~F D-u82F D9 u9!, ~3.12!

da3

du3 5
1

u85 @~F D
~4!u82F D-u-!u823u9~F D-u82F D9 u9!#,

where85d/daD andFD is the prepotential defined by

a5
dFD

daD
, ~3.13!
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and using~2.4! for P5a with inverse relationdu/daD ~see also Ref. 17!, we can arrive at the
differential equation forFD ,

FD
~4!1u8S X2

3u9

u82 DF D-50. ~3.14!

This equation is integrated to give

F D-5c
4m223u

D
u83, ~3.15!

wherec is an integration constant to be determined later. The factor (4m223u)/D corresponds to
the WronskianW defined in~2.7!.

SinceF D- manifestly vanishes atu54m2/3,FD is represented by a linear combination ofaD
2 ,

aD , and 1, althoughO(aD) terms can be neglected, thus it follows immediately from~3.13! that
a}aD . This induces the trivial monodromy

S a
aD

D→S 1 0

0 1D S a
aD

D , ~3.16!

which indicates that the indicial indices of the Picard–Fuchs equation atu54m2/3 are integers
and the BPS spectrum is unchanged at this point.

Remark: The same monodromy can be seen from a version of (3.15) in the weak co
region.

As is easy to find, all we need to determineFD is a functionu5u(aD), which is obtainable
from inverting the solution of the Picard–Fuchs equation. Therefore, substituting these da
~3.15! and triply integrating it, we will be able to determineFD . On the other hand, it would be
sufficient to once determinec at a representative point in the moduli space. Sincec has mass
dimension zero, it can be regarded as a pure number. In fact,c can be determined at the massle
point and the result

c5
i

16p
~3.17!

follows from comparing~3.15! with the massless prepotential.21

Next we calculateu8, but this is an easy task. Sinceu85(daD /du)21, it is sufficient to obtain
the solution to the Picard–Fuchs equation atu5e1 . With the help of~3.4!, it is found by a linear
combination

daD

du
5r1w11r2w2 , ~3.18!

where

w1512
6u

4m223e1
2

u2

e1~2e12e2!~2e12e3!~3e124m2!2 @9e1
2~36e12e22e3!212~112e1

2

23e1e223e1e31e2e3!m21512~3e12m2!m4136m~3e124m2!L3#2¯ ,
~3.19!

w25u2
3e1

2~4e12e22e3!24~8e1
223e1e223e1e31e2e3!m2

2e1~2e12e2!~2e12e3!~3e124m2!
u22¯ .
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Since thesew i are extremely complicated functions in the language of explicitei , i.e., the right-
hand sides ofei in ~3.11!, we do not try to expressw i by using them. The constantsr i are
determined from an asymptotic expansion of the period integral ofaD , i.e.,

r152
1

21/6)L
, r252

25

9L3A2

3
. ~3.20!

Integration producesaD itself with an integration constant, but from dimensional analysis, i
found that it has a unit mass dimension. Since all dependence of the scale parameter~instanton
correction! should be entered on the right-hand side of~3.18!, the integration constant must b
proportional tom. In addition, since the massless theory does not have this term, it can be reg
as a characteristic feature in massive theory. Actually, it is a residue contribution from the m
meromorphic 1-form, and this is the case. Thus,

aD52p in res~l!1E
0
~r1w11r2w2!du, ~3.21!

wherenPZ is the winding number of theb-cycle which loops around the pole of the massi
meromorphic 1-form and the residue is evaluated atx50. DenotingãD5aD22p in res(l) and
repeatedly solving~3.21!, one can arrive at the inverse relationu5u(aD).

In this way, the result

FD5
1

2
c1ãD

2 1c2ãD1c32 i
L2

p

ãD
2

~e12e2!~e12e3! F 3

217/3~3e124m2!~ ln ãD
2 23!

1
1

229/632/3~e12e2!~e12e3!
@125~e12e2!~e12e3!~3e124m2!19•27/3~e21e322e1!

3m2L2127•21/3~6e1
214e2e325e1~e21e3!!L2#

ãD

L
1¯G , ~3.22!

whereci are integration constants, follows from expanding~3.15!. c2ãD1c3 may be neglected
because this term does not change the effective coupling constant, butc1 is nontrivial. Dimen-
sional analysis shows thatc1 is a pure number. Therefore, it is sufficient to choose it as a cons
such thatFD for m→0 coincides with that in the massless theory. As a check, one can see th
FD reduces to that of massless theory form→0, provided

c152
i

4p
ln L2. ~3.23!

The reader might already have noticed that actually this prepotential was obtained w
regard to the details ofe1 , although it was calculated under the assumption of small mass to
a connection with the massless theory. For generalm in the strong coupling regime, only th
differences of the final form of the prepotential are explicit values ofei , ci andc. For instance, for
a large mass case, it is enough to simply expand~3.6! nearm5` to get the zeros ofD and replace
ei by, e.g.,

e15m21
L3

8m
1¯ , e25L3/2Am2

L3

16m
1¯ , e352L3/2Am2

L3

16m
1¯ . ~3.24!

The periodaD can be obtained by simply substituting~3.24! into ~3.18!. In this way, the dual
prepotential for a large mass is calculated, but its form is not so attractive for us because it is
written by a complicated function inei . For this reason, it would not be necessary to write do
the dual prepotential forumu^1, and for otherNf cases.
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IV. SUMMARY

In this paper, it has been shown that the Wronskian of the Picard–Fuchs equation in m
theory is related to~differentiation of! Matone’s modular invariant through a differential equatio
By comparing the solution to this equation with the Whitham dynamics, we have found a c
form of ]F/]T0 , which has not been evaluated so far. In this way, we have found a general
of the massive scaling relation. In the pure SU~2! theory, the scaling relation of the prepotential
known to also be obtained as an anomalous superconformal Ward identity,22 therefore, it would be
a natural question to ask whether~2.25! can be obtained as ‘‘an anomalous superconformal W
identity’’ in this Nf51 massive theory.

On the other hand, we have also found that the differential equation for the Wronskian
a differential relation between prepotential and moduli, which is quite reminiscent of the
presented in the five-dimensional gauge theory17 and the dual prepotential is calculated from th
equation.

A more detailed study of the relation between the Wronskian and modular invariant of M
will provide us with more useful information on the massive prepotentials in the future.
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The flux-across-surfaces theorem for short range
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The quantum probability flux of a particle integrated over time and a distant surface
gives the probability for the particle crossing that surface at some time. The relation
between these crossing probabilities and the usual formula for the scattering cross
section is provided by the flux-across-surfaces theorem, which was conjectured by
Combes, Newton, and Shtokhamer@Phys. Rev. D11, 366–372~1975!#. We prove
the flux-across-surfaces theorem for short range potentials and wave functions
without energy cutoffs. The proof is based on the free flux-across-surfaces theorem
~Daumeret al.! @Lett. Math. Phys.38, 103–116~1996!#, and on smoothness prop-
erties of generalized eigenfunctions: It is shown that if the potentialV(x) decays
like uxu2g at infinity with g.nPN then the generalized eigenfunctions of the
corresponding Hamiltonian21/2D1V aren22 times continuously differentiable
with respect to the momentum variable. ©1999 American Institute of Physics.
@S0022-2488~99!00604-0#

I. INTRODUCTION

Potential scattering theory is concerned with the long-time behavior of wave functionsC t . Its
relation to experiment, i.e., to the definition of the scattering cross section, is, however, only
discussed. One such relation is provided by Dollard’s scattering-into-cones theorem.1 It asserts
that, assuming asymptotic completeness of the wave operators, the probability of finding a p
with a wave functionC t5e2 iHtC0PHac(H), the absolutely continuous subspace for the Ham
tonianH, in the far future in a given coneC,R3 ~with a vertex at the origin! equals the prob-
ability that the quantum mechanical momentum of the asymptotic outgoing waveW1

21C0 lies in
the same cone,

lim
t→`

E
C
uC t~x!u2 dx5E

C
uW1

21̂C0~k!u2 dk, ~1!

wherê denotes the Fourier transform,W1ªs2 limt2` eiHte2 iH 0t is the wave operator, and
H5H01V with the free HamiltonianH052 1

2D ~we choose units such that\5m51! and the
potentialV. The scattering-into-cones theorem is regarded as fundamental for quantum me
cal scattering theory. The expression for the differential cross sectionds/dV5u f (u,f)u2 from the
time-independent scattering theory can be derived from the right-hand side of~1!.

Combes, Newton, and Shtokhamer3 observed, however, that what is relevant for scatter
theory is a formula for the probability that the particle crosses some distant surface at som
during the scattering process. Heuristically, this probability should be given by integratin

a!Electronic mail: teufel@rz.mathematik.uni-muenchen.de
b!Electronic mail: kmb@amath.unizh.ch
19010022-2488/99/40(4)/1901/22/$15.00 © 1999 American Institute of Physics
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quantum mechanical probability fluxj C t
ª Im(Ct* “Ct) over the relevant time interval and th

surface.4–6 Combes, Newton, and Shtokhamer hence conjectured the flux-across-surfaces th

lim
R→`

E
0

`

dtE
RS

j C t
•n ds5E

CS

uW1
21̂C0~k!u2 dk, ~2!

whereS is a measurable subset ofS1 , the sphere with radius 1,RSª$RxPR3:xPS% and CS

ª$lxPR3:xPS,l>0% is the cone spanned byS. The free flux-across-surfaces theorem~2! was
proven by Daumer, Du¨rr, Goldstein, and Zanghi4 for the caseV50. Recently~2! has been estab
lished for a large class of short range potentials by Amrein and Zuleta.7 For long range potentials
Amrein and Pearson8 showed that the left-hand side of~2! equals the left-hand side of~1!. @In this
case, modified wave operators have to be introduced to define the right-hand side of~1! and~2!.#
However, since the proofs

in Refs. 7 and 8 apply the usual time-dependent methods, they have to assume thatW1
21̂C0 has

compact support not containing the origin. Although this condition is a natural idealization o
experimental situation often encountered in scattering theory, and these wave functions
dense set inL2, there are no physical or mathematical reasons that~2! should hold only for this
restricted class of wave functions. Furthermore, there are situations, i.e., the decay of an u
system, where the physically interesting wave functions do have momentum support at ze
the set of wave functions for which~2! holds cannot be enlarged by a simple limiting procedure
L2, since the expression

E
0

`

dtE
RS

j C t
•n ds

is an unbounded sesquilinear form. Therefore the essential propagation estimates hav
proven directly for wave functions without energy cutoffs. Some results in this direction, so-c
Lp estimates, have been established under rather restrictive conditions on the potential.9,10 How-
ever, these estimates alone are not sufficient to prove~2!.

In this paper we will give an elementary proof of~2! for a class of wave functions withou
energy cutoffs. We must assume, however, that the potential is short range with decay o
uxu242e, e.0, at infinity, and that it does not have a zero energy resonance or eigenvalue
proof as well as the proof in Ref. 7 are based on the results of the free case (V50) established in
Ref. 4. We employ stationary phase methods and the so-called generalized eigenfu
F(x,k), which are certain solutions of the stationary Schro¨dinger equation „2 1

2D
1V(x)…F(x,k)5k2F(x,k), kPR3, not belonging toL2(R3). This strategy of proof has been pu
forward in Ref. 5. We needF(x,k) to be differentiable with respect tok as well as to be uniformly
bounded in both variables. Furthermore, we need that supkPR\$0%u]kl

F(x,k)u<c(11uxu) for some
constantc and l 51,2,3.

In Sec. II, the flux-across-surfaces theorem will be established under suitable conditio
the generalized eigenfunctions. In Sec. III we will prove a theorem on the regularity o
generalized eigenfunctions, which will, among other things, justify the assumptions made in
II: F(x,k) is n times partially differentiable with respect tok if V(x)5O(uxu2n222e) for uxu
→` and somee.0. Moreover, consider a family of HamiltoniansHcªH01cV, cPR. Then, if
V(x)5O(uxu232e),11 the eigenfunctions corresponding toHc are uniformly bounded and thei
partial derivatives of ordern with respect tok grow not faster than (11uxu)n, except for a discrete
set of constants,cPR.

II. THE FLUX-ACROSS-SURFACES THEOREM

We start with notation. Points in position space will be denoted byxPR3; points in momen-
tum space bykPR3. By dx and dk integration with respect to the Lebesgue measure onR3 is
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understood. Forn>2, the following conditions on the potentialV will be denoted by (V)n :(V)n

V:R3→R and ~i! V is locally Hölder continuous except at a finite number of singularities;12 ~ii !
VPL2(R3); and ~iii ! uV(x)u5O(uxu2n2e) for uxu→` and somee.0.

For n52 these are the conditions of Ikebe.13 Under these conditionsH is self-adjoint on the
domain of H0 . The absolutely continuous part of the spectrum is@0, `!. Furthermore,H has
neither positive eigenvalues nor a singular continuous spectrum. The wave operatorsW65s
2 limt→6` e2 iHteiH 0t exist and are complete, i.e., RanW65Hac(H).

The time-dependent wave function will be denoted byC tªe2 iHtC0 , C0PL2(R3). To sim-
plify notation we will abbreviateCoutªW1

21C0 for the outgoing asymptotic wave. ByS we
denote the set of Schwartz functions.

Zero is said to be a resonance ofH if there exists a solutionf of 21/2D f (x)1V(x) f (x)
50 such that (11uxu)2g f (x)PL2(R3) for any g. 1

2 and not forg50.14 The appearance o
zero-energy resonances or eigenvalues is an exceptional event:Hc5H01cV can have a zero-
energy resonance or eigenvalue only forc in discrete subset ofR.14

Theorem 2.1:Let the potential satisfy the condition (V)4 and let zero be neither a resonan
nor an eigenvalue ofH. Let CoutPS. Then C t5e2 iHtW1Cout is continuously differentiable,
except at the singularities ofV and for any measurableS,S1 and anyTPR,

lim
R→`

E
T

`

dtE
RS

j C t~x!•n ds5 lim
R→`

E
T

`

dtE
RS

u j C t~x!•nuds5E
CS

uĈout~k!u2 dk. ~3!

Remark 2.2:The first equality in~3! shows that far away from the scattering center the flux
essentially outgoing, i.e., that there the particles cross spherical surfaces only once and
return. Thus~3! yields the crossing probability of interest.

Remark 2.3:It would be, of course, more satisfactory if we could prove~3! under a suitably
general condition onC0 , not on Cout. However, the set of wave functionsC05W1Cout for
which Theorem 2.1 holds is dense inHac(H), sinceS is dense inL2 and W1 :L2→Hac(H) is
unitary. For an explicit characterization of the domainW1S one would need suitable mappin
properties of the wave operators. Some mapping properties for wave functions without e
cutoffs have been established by Yajima,10 however, they are not sufficient for our purpose.

Remark 2.4:Due to the so-called intertwining property of the wave operators,W6e2 iH 0t

5e2 iHtW6 , and the fact thatS is left invariant under the free time evolution, the conditi
imposed on C in Theorem 2.1 is invariant under the full time evolution:e2 iHtW1S
5W1e2 iH 0tS5W1S.

As already mentioned, we will make use of the generalized eigenfunctionsF(x,k) that diag-
onalizeH in the same sense as the ordinary plane waves$eik•x,kPR3% diagonalizeH0 . We define
F(x,k) and state the properties that we will use in the proof of Theorem 2.1 in a propositio

Proposition 2.5:Let V satisfy (V)2 . Then for anykPR3\$0% there are unique continuou
solutionsF6(•,k):R3→C of the Lippmann–Schwinger equations,

F6~x,k!5eik•x2
1

2p E e7 i ukuux2yu

ux2yu
V~y!F6~y,k!dy, ~4!

with the boundary conditions limuxu→`@F6(x,k)2eik•x#50, which are also classical solutions
the stationary Schro¨dinger equation,

F2
1

2
D1V~x!GF6~x,k!5

k2

2
F6~x,k!, ~5!

such that the following holds.
~i! For any compactD,R3\$0% the functionsF6(•,•):R33D→C are uniformly continuous.
~ii ! For any f PL2(R3) the generalized Fourier transforms,
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~F6 f !~k!5
1

~2p!3/2
l.i.m. E F6* ~x,k! f ~x!dx,

exist in L2(R3).15

~iii ! RanF65L2(R3) andF6 :Hac(H)→L2(R3) are unitary and the inverse ofF6 is given by

~F 6
21f !~x!5

1

~2p!3/2
l.i.m. E F6~x,k! f ~k!dk.

~iv! For any f PD(H)ùHac(H), we have

H f ~x!5SF 6
21 k2

2
F6 f D ~x!5

1

~2p!3/2
l.i.m. E k2

2
F6~x,k!~F6 f !~k!dk, ~6!

and therefore for anyf PHac(H),

e2 iHt f ~x!5~F 6
21e2 i ~k2/2!tF6 f !~x!5

1

~2p!3/2
l.i.m. E e2 i ~k2t/2!F6~x,k!~F6 f !~k!dk. ~7!

~v! For any f PHac(H) the relationsW6 f 5F 6
21Ff hold, whereF denotes the ordinary

Fourier transform.
~vi! If V satisfies (V)3, thenF6(x,k) are continuously differentiable with respect tok for all

xPR3, except atk50. The partial derivatives]kl
F6(x,k) are continuous inx and k. If, in

addition, zero is not an eigenvalue or resonance ofH, thenF6(x,k) is well defined and continu-
ous forx,kPR3,

sup
xPR3,kPR3

uF6~x,k!u,`,

and there is ac,` such that

sup
kPR3\$0%

U ]

]kl
F6~x,k!U,c~11uxu!,

for l 51,2,3.
The proof of~i!–~v! of Proposition 2.5 is due to Ikebe.13 ~vi! is a special case of Theorem 3

on the regularity of generalized eigenfunctions that we shall state and prove in Sec. III.
Remark 2.6:Similar eigenfunction expansions can be obtained also for potentials with sl

decay, but then, in general, the continuity ink will not hold anymore.16

Proof (of Theorem 2.1):Let C t5e2 iHtW1Cout, CoutPS. Using Proposition 2.5.~iv!, ~v! and
h(x,k)ªF1(x,k)2eik•x, we have that

C t~x!5
1

~2p!3/2E e2 i ~k2t/2!Ĉout~k!F1~x,k!dk

5
1

~2p!3/2E e2 i ~k2t/2!Ĉout~k!eik•x dk1
1

~2p!3/2E e2 i ~k2t/2!Ĉout~k!h~x,k!dk

5:a~x,t !1b~x,t !. ~8!

The flux generated by this wave function is

j C t~x!5Im~a* “a1a* “b1b* “a1b* “b!, ~9!
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where the differentiability ofa is obvious and that ofb will be established later.
The first part j 05Im(a* “a) is the flux generated by the free time evolution ofCout and

according to the free flux-across-surfaces theorem,2

lim
R→`

E
T

`

dtE
RS

j 0~x,t !•n ds5 lim
R→`

E
T

`

dtE
RS

u j 0~x,t !•nuds5E
CS

uĈout~k!u2 dk.

Therefore to prove~3! we need only show that the last three terms in~9! do not contribute to the
flux across distant surfaces, i.e., that forj 1ªIm(a* “b1b* “a1b* “b),

lim
R→`

E
T

`

dtE
SR

u j 1~x,t !•nuds50. ~10!

For some fixedT.0 this will follow from the estimates~which we shall prove below!

sup
xPSR

ua~x,t !u<t23/2f 1~R,t !, ;t>T ~11!

sup
xPSR

u“a~x,t !u<t23/2f 2~R,t !, ;t>T, ~12!

where there exists ac,` such thatf i(R,t) satisfy

lim
R→`

f i~R,t !50, ;t>T ~13!

and

sup
RP@0,̀ !,t>T

f i~R,t !,c, ~14!

for i 51,2, and there isR0>0 such that

sup
xPSR

ub~x,t !u<c
1

R~ t1R!
, ;R.0, ~15!

sup
xPSR

u“b~x,t !u<c
1

R~ t1R!
, ;R.R0 , ~16!

for t>T. Note that the constants in these estimates depend onT.
Using ~11! and ~16! we obtain by dominated convergence

lim
R→`

E
T

`E
SR

uIm~a* “b!•nuds dt< lim
R→`

4pE
T

`

sup
xPSR

R2uauu“budt

<c lim
R→`

E
T

` R2f 1~R,t !

t3/2R~ t1R!
dt5cE

T

`

lim
R→`

R f1~R,t !

t3/2~ t1R!
dt50,

~17!

for T.0, where we observed that the integrand in~17! is bounded by an integrable functio
uniformly in R,

R f1~R,t !

t3/2~ t1R!
<ct23/2.
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The termsub* “au andub* “bu can be treated analogously and thus~10! holds for positive times
T.

According to Remark 2.4, the set of wave functions for which~3! holds as well as the
right-hand side of~3! are invariant under finite time shifts:

lim
R→`

E
T

`

dtE
RS

j C t~x!•n ds5 lim
R→`

E
T̃

`

dtE
RS

j C t1T2T̃~x!•n ds

5E
CS

ue2 i ~k2/2!~T2T̃!Ĉout~k!u2 dk5E
CS

uĈout~k!u2 dk.

Therefore if~3! holds~for all CoutPS! for some fixedT, then~3! will hold for all T; hence~3! is
proved for allT.

We turn now to the proof of the estimates~11!–~16!. Recalling that a(x,t)
5(e2 iH 0tCout)(x) and, since “ commutes with the free time evolution,“a(x,t)
5(e2 iH 0t

“Cout)(x), we can write

a~x,t !5
1

~2p i t !3/2E ei ~ ux2yu2/2t !Cout~y!dy ~18!

and

“a~x,t !5
1

~2p i t !3/2E ei ~ ux2yu2/2t !
“Cout~y!dy. ~19!

Now ~11!–~14! are immediate consequences of~18! and ~19! and the fact that, for every fixedt
>T, a(x,t), and“a(x,t) are Schwartz functions.

By ~4! h(x,k)5F1(x,k)2eik•x521/2p*(ei ukuux2yu/ux2yu)V(y)F1(y,k)dy, and therefore

b~x,t !5
1

~2p!3/2E e2 i ~k2t/2!Ĉout~k!h~x,k!dk

52
1

~2p!5/2E e2 i ~k2t/2!Ĉout~k!F E e2 i ukuux2yu

ux2yu
V~y!F1~y,k!dyGdk

52
1

~2p!5/2E V~y!

ux2yu E e2 i ~k2t/21ukuux2yu!Ĉout~k!F1~y,k!dk dy

5:2
1

~2p!5/2E V~y!

ux2yu
f ~x,y,t !dy, ~20!

where

f ~x,y,t !ªE e2 i ~k2t/21ukuux2yu!Ĉout~k!F1~y,k!dk. ~21!

The change of order of integration in~20! is justified by Fubini’s theorem. We shall now app
‘‘stationary phase’’ methods to estimate~21!. We set
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xª

k2t

2
1ukuux2yu

t

2
1ux2yu

,

x85
d

duku
x5

ukut1ux2yu
t

2
1ux2yu

5
uku1ux2yut21

1

2
1ux2yut21

>min~1,2uku!,

vª

t

2
1ux2yu.

In the following,8 will denote differentiation with respect touku. Introducing spherical coordinates
with dV denoting the Lebesgue measure on the unit sphere, we estimate~21!:

u f ~x,y,t !u5U E 1

vx8
F d

duku
e2 ivxGĈout~k!F1~y,k!uku2dukudV~k!U

5U 1

v E e2 ivx
d

duku F 1

x8
Ĉout~k!F1~y,k!uku2GdukudV~k!U

<
1

v E U d

duku F 1

x8
Ĉout~k!F1~y,k!uku2GUdukudV~k!. ~22!

For the second equality in~22!, the boundary term from the partial integration atuku5` vanishes

sincex821<max(1,1/2uku), limuku→`uku2Ĉout(k)50, andC1 is bounded according to Propositio

2.5 ~vi!. The boundary term atuku50 vanishes sinceĈout and F1 are bounded andx821uku2

<max(uku2,uku/2). Note that the differentiability ofF1 is ensured by Proposition 2.5~vi!. Next,
observe that

U d

duku F 1

x8
ĈoutF1uku2GU<U 1

x82
x9ĈoutF1uku2U1U 1

x8
Ĉout8 F1uku2U1U 1

x8
ĈoutF18 uku2U

1U 1

x8
ĈoutF12ukuU . ~23!

Sincex95( 1
21ux2yut21)21<2, we obtain for the first term

E U 1

x82
x9ĈoutF1Udk< sup

y,kPR3

uF1~y,k!uS E
uku,1/2

uĈout~k!u
2uku2

dk1E
uku>1/2

2uĈout~k!udkD <c1 .

~24!

Analogously we get for the second and fourth term in~23!,

E U 1

x8
Ĉout8 F1Udk<c2 and E U 2

x8uku
ĈoutF1Udk<c4 .

By Proposition 2.5~vi!, the third term satisfies a bound linear inuyu:

E U 1

x8
ĈoutF18 Udk< c̃3 sup

kPR3\$0%

uF18 ~y,k!u<c3~11uyu!.
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Combining the four estimates, we arrive at

u f ~x,y,t !u<c
1

v
~11uyu!5c

11uyu
t

2
1ux2yu

, ~25!

which inserted into~20! yields

sup
xPSR

ub~x,t !u5 sup
xPSR

U 1

~2p!5/2E V~y!

ux2yu
f ~x,y,t !dyU<c sup

xPSR

E uV~y!u~11uyu!

ux2yuS t

2
1ux2yu D dy. ~26!

Now, substitutingz5x2y,

E uV~y!u~11uyu!

ux2yuS t

2
1ux2yu D dy5E

uzu,uxu/2

uV~x2z!u~11ux2zu!

uzuS t

2
1uzu D dz

1E
ux2yu>uxu/2

uV~y!u~11uyu!

ux2yuS t

2
1ux2yu D dy

< sup
zPBuxu/2

uV~x2z!u~11ux2zu!E
0

uxu/2 4puzu2

uzuS t

2
1uzu D duzu

1
1

uxu
2 S t

2
1

uxu
2 D E uV~y!u~11uyu!dy,

whereBr denotes the ball with radiusr in R3 centered at the origin. SinceV(x)5O(uxu242e) for
somee.0,

sup
zPBuxu/2

uV~x2z!u~11ux2zu!<cuxu23,

for uxu sufficiently large. Using

E
0

d z

t1z
dz5d1t lnS t

t1d D<d1tS t

t1d
21D5

d2

t1d
,

we compute

E
0

uxu/2 uzu2

uzuS t

2
1uzu D duzu<

1

2

uxu2

t1uxu
.

Finally, * uV(y)u(11uyu)dy,`, so that altogether

sup
xPSR

ub~x,t !u<c sup
xPSR

S uxu23
uxu2

t1uxu
1

1

uxu~ t1uxu! D5
c

R~ t1R!
. ~27!
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We now show that the same bound holds for supxPSR
u“b(x,t)u andR.R0 , whereR0 is chosen

such that all singularities ofV lie in the ball with radiusR0 . Then

u“b~x,t !u<
1

~2p!5/2U E V~y!

ux2yu2 E e2 i ~k2t/21ukuux2yu!Ĉout~k!F1~y,k!dk dyU
1

1

~2p!5/2U E V~y!

ux2yu E e2 i ~k2/21ukuux2yu!ukuĈout~k!F1~y,k!dk dyU, ~28!

where the exchange of differentiation and integration will be justified below. The second term

be treated analogously toub(x,t)u, since alsoukuĈout(k)PS. The first term can as well be est
mated along the same lines: in Eq.~26! ux2yu2 will appear in the denominator instead o
ux2yu, which leads to a stronger bound than~27!.

To get~28! from ~20! we note that, according to Proposition 2.5,F(•,k) is a classical solution
of the stationary Schro¨dinger equation. Thus,F(•,k) as well ash(•,k) are differentiable with
respect tox, except at the singularities ofV. We will show that

“xh~x,k!5“xS 2
1

2p E e2 i ukuux2yu

ux2yu
V~y!F1~y,k!dyD

52
1

2p E “xS e2 i ukuux2yu

ux2yu DV~y!F1~y,k!dy, ~29!

and that therefore

u“xh~x,k!u<c11c2uku, ~30!

for somec1 ,c2,`. Then, changing the order of differentiation and integration in the first line
~20! is justified by dominated convergence and~28! follows for all x which are not singularities o
V.

To get~29! for somex0PR3 that is no singularity ofV, we split the domain of integration into
B2R(x0)ª$yPR3:ux02yu<2R% and its complementB2R

c (x0), where R is chosen such tha
B2R(x0) contains no singularity ofV. Then one can change the order of integration and differ
tiation in theB2R

c (x0) term, since there the integrand is bounded by an integrable function
formly in x for xPBR(x0). To see that theB2R(x0) term can be made arbitrarily small b
appropriately choosingR, we write down the difference quotient for this term. Using th
supyPB2R(x0)(V(y)F1(y,k))<ck,` and thatureiu2(r 1Dr )ei (u1Du)u<urDuu1uDr u, we com-
pute

lim
ueu→0

1

ueu U EB2R~x0!
S e2 i ukuux1e2yu

ux1e2yu
2

e2 i ukuux2yu

ux2yu DV~y!F1~y,k!dyU
< lim

ueu→0

1

ueu
ckE

B2R~x0!
Uei ukuux1e2yuux2yu2e2 i ukuux2yuux1e2yu

ux1e2yuux2yu Udy

< lim
ueu→0

1

ueu
ckE

B2R~x0!

ux2yuukuueu1ueu
ux1e2yuux2yu

dy

< lim
ueu→0

ckE
B2R~x0!

S uku
ux1e2yu

1
1

ux1e2yuux2yu Ddy<ck12pR,

where the last inequality is justified by elementary integrations. The bound~30! can be obtained by
a simple calculation.
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From that we also conclude thatC t(x) is differentiable outside the singularities ofV(x) since
a andb are. h

Remark 2.7:We used the domainCoutPS to simplify the proof and avoid tedious estimate
A more detailed analysis of the proof shows that Theorem 2.1 also holds forCoutPL2 such

that (11k2)(q1p)/2(11D)p/2ĈoutPL2 for some p. 7
2 and q. 9

2. Then (11k2)q/2(1

1D)p/2e2 i (k2/2)tĈoutPL2 for all tPR, and this is enough regularity to prove the free theorem
well as our estimates.

III. REGULARITY OF THE GENERALIZED EIGENFUNCTIONS

In this section we will prove a theorem about the generalized eigenfunctions that conne
differentiability of F(x,k) with respect tok with the behavior of the potential at infinity and give
uniform bounds onF(x,k) and its partial derivatives. At the end of the section we state
simple corollaries that show other applications of our results.

Theorem 3.1: Let the potential satisfy the condition (V)n for somen>3, nPN. Then we
have the following.

~i! F6(x,•)PCn22(R3\$0%) for all xPR3 and the partial derivatives]k
aF6(x,k), uau<n

22, are continuous with respect tox andk.17

~ii ! If, in addition, zero is not an eigenvalue or a resonance ofH, then

sup
xPR3,kPR3

uF6~x,k!u,`,

and for anya with uau<n22 there is aca,` such that

sup
kPR3\$0%

u]k
aF6~x,k!u,ca~11uxu! uau.

Remark 3.2:Proposition 2.5~vi! follows from Theorem 3.1 by takingn53.
Proof (of Theorem 3.1):To simplify notation we will give the proof forF1(x,k)

5:F(x,k) since the proof forF2(x,k) is exactly the same apart from the change of some si
The structure of the proof will be as follows: First we introduce some notation and re

from Ikebe and Povzner that we will use frequently. Then part~i! of Theorem 3.1 is shown for
uau51 involving several lemmas and results proven in the appendix. The generalizationuau
>1 will be sketched afterward.

In the proof of part~ii ! of Theorem 3.1 we will establish boundedness ofF(x,k) for k near
zero and foruku→` separately in two propositions.

We start with an investigation of Eq.~4!. If F(x,k)5eik•x1h(x,k) is a continuous solution
of the Lippmann–Schwinger equation~4! with limuxu→` h(x,k)50 for kPR3, thenh(x,k) is a
solution of the integral equation

h~x,k!52
1

2p E e2 i ukuux2yu

ux2yu
V~y!@eik•y1h~y,k!#dy, ~31!

andh(•,k)PC`(R3). Therefore Eq.~31! is examined on the Banach spaceB5C`(R3); the set of
continuous functions vanishing at infinity, equipped with the normi f iB5supxPR3u f (x)u. L(B)
denotes the space of bounded linear operators mappingB into itself, equipped with the operato
norm. Following Ikebe,13 we define the linear operatorsTkPL(B), kPR3, by

~Tkf !~x!52
1

2p E e2 i ukuux2yu

ux2yu
V~y! f ~y!dy. ~32!

Since we will make use of some results of Ikebe and Povzner, we state them as a lemma
Lemma 3.3:Let the potential satisfy the condition (V)3 . Then the following holds.
~i! The operatorTkPL(B) defined in~32! is compact for allkPR3.
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~ii ! Let f (x) be a bounded continuous function onR3; then

h~x!ª2
1

2p E e2 i ukuux2yu

ux2yu
V~y! f ~y!dy

is an element ofB for all kPR3 andh(x)5O(uxu21) for uxu→`.
~iii ! Let

g~x,k!ª2
1

2p E e2 i ukuux2yu

ux2yu
V~y!eik•y dy5~Tke

ik••!~x!;

theng(•,k)PB for all kPR3 andg(•,k) is continuous with respect tok.
~iv! Let f (•,k)PB be a solution of the homogeneous equationf (•,k)5Tkf (•,k) for k

PR3. If uku.0, then f 50, and ifk50 then„2 1
2D1V(x)…f (x,0)50.

~v! The mapT:R3→L(B), k°Tk is continuous.
For the proofs of~i!, ~ii !, ~iii !, and~iv! see Ikebe;13 for the proof of~v! see Povzner.18

Since we will use similar reasoning, we will briefly repeat Ikebe’s proof of the existenc
continuous solutions of Eq.~31!, starting from Lemma 3.3. Equation~31! now reads as

h~•,k!5g~•,k!1Tkh~•,k!. ~33!

According to Lemma 3.3~iv! the homogeneous equationh(•,k)5Tkh(•,k) has only the trivial
solutionh(x,k)50 if kÞ0. Thus 1 is not an eigenvalue ofTk and therefore 1 is in the resolven
set sinceTk is compact,19 i.e., (12Tk)

21PL(B) exists. The unique solution of~31! for uku.0 is
then given by

h~•,k!5~12Tk!
21g~•,k!. ~34!

SinceL(B) is a Banach algebra in which the mapA°A21 is continuous,19 from Lemma 3.3~v!
it follows that (12Tk)

21 is continuous ink. Thus, since according to Lemma 3.3~iii ! g(•,k) is
continuous with respect tok, we have thath(x,k) is continuous with respect tok.

We will now prove part~i! of Theorem 3.1 foruau51 and assume (V)3 . The generalization
to uau.1 will then be immediate. Consider arbitraryl P$1,2,3% and k0PR3\$0%. We use the
following notation:kl denotes thel th Cartesian coordinate of a vectorkPR3 andkl̄ the tuple of
the other coordinates. Symbolically we will writek5(kl ,kl̄ ).

By ~formally! differentiating~31! we obtain

]

]kl
h~x,k!5

]

]kl
g~x,k!1

i

2p

kl

uku E e2 i ukuux2yuV~y!h~y,k!dy

2
1

2p E e2 i ukuux2yu

ux2yu
V~y!

]

]kl
h~y,k!dy. ~35!

Assume that forklPI lª@kl
02d l ,kl

01d l # and kl̄ PI l̄ª@k
l̄

0
2d l̄ ,k

l̄

0
1d l̄ #, where d l and d l̄ are

chosen such that, in particular, 0¹IªI l3I l̄ , the equation

j~x,k!5
]

]kl
g~x,k!1

i

2p

kl

uku E e2 i ukuux2yuV~y!F E
kl

0

kl
j„y,~kl8 ,kl̄ !…dkl81h„y,~kl

0,kl̄ !…Gdy

2
1

2p E e2 i ukuux2yu

ux2yu
V~y!j~y,k!dy, ~36!

which arises from~35! by substitutingh(x,k)5*
k

l
0

kl j„x,(kl8 ,kl̄ )…dkl81h„x,(kl
0,kl̄ )…, has a con-

tinuous solutionj(x,k). Integrating~36! with respect tokl and using Fubini’s theorem we get
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E
kl

0

kl
j„x,~kl8 ,kl̄ !…dkl85g~x,k!2g„x,~kl

0,kl̄ !…

2
1

2p E V~y!Fe2 i ukuux2yu

ux2yu S E
kl

0

kl8j„y,~kl9 ,kl̄ !…dkl91h„y,~kl
0,kl̄ !…D G

k
l
0

kl

dy

5g~x,k!2g„x,~kl
0,kl̄ !…1

1

2p E e2 i u~kl
0,kl̄ !uux2yu

ux2yu
V~y!h„y,~kl

0,kl̄ !…dy

2
1

2p E e2 i ukuux2yu

ux2yu
V~y!S E

kl
0

kl
j„y,~kl8 ,kl̄ !…dkl81h„y,~kl

0,kl̄ !…D dy. ~37!

Sinceh„x,(kl
0,kl̄ )… is a solution of~31!, the second and third term of the right-hand side of~37!

combine to2h„x,(kl
0,kl̄ )…. Therefore~37! simply reads as

h„x,~kl
0,kl̄ !…1E

kl
0

kl
j„x,~kl8 ,kl̄ !…dkl8

5g~x,k!2
1

2p E e2 i ukuux2yu

ux2yu
V~y!S h„y,~kl

0,kl̄ !…1E
kl

0

kl
j„y,~kl8 ,kl̄ !…dkl8D dy.

In other words, if j(x,k) is a continuous solution of~36!, then the function f (x,k)

5h„x,(kl
0,kl̄ )…1*

k
l
0

kl j„x,(kl8 ,kl̄ )…dkl8 is a solution of Eq.~31!. Since~31! has a unique solution in

B, we may conclude thatf (x,k)5h(x,k), i.e., that]kl
h(x,k)5j(x,k) for xPR3 andkPI once

we have shown thatf (•,k)PB.
We show now that Eq.~36! has a solutionj(x,k) that is continuous with respect toxPR3 and

kPI , such thath„•,(kl
0,kl̄ )…1*

k
l
0

kl j„•,(kl8 ,kl̄ )…dkl8PB. From the physical argument thatF(x,k)

;eik•x1ei ukuuxu/uxu for uxu→`, we expect u“kh(x,k)u;ei ukuuxu, uxu→`, to be a uniformly
bounded function, but we will only show thatu“kh(x,k)u<c(11uxu)s for any s.0. We start by
multiplying Eq. ~36! by ^x&2s

ª(11uxu)2s, s.0:

j̃~x,k!5^x&2s ]kl
g~x,k!2

1

2p E e2 i ukuux2yu

^x&sux2yu ^y&sV~y!j̃~y,k!dy

1
i

2p

kl

uku E e2 i ukuux2yu

^x&s ^y&sV~y!F E
kl

0

kl
j̃„y,~kl8 ,kl̄ !…dkl81^y&2sh„y,~kl

0,kl̄ !…Gdy.

~38!

To see thatj(x,k)5^x&sj̃(x,k)<c(11uxu)s, we show that~38! has a unique solution in

B̃ª$ f ~x,k!PC~R33I !: lim
uxu→`

sup
kPI

u f ~x,k!u50%.

In the appendix we prove thatB̃ equipped with the normi f i B̃5supxPR3,kPI u f (x,k)u is a Banach

space~see Lemma A.1!; and that forf PB̃ the operators,
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~ T̃f !~x,k!ª2
1

2p E e2 i ukuux2yu

^x&sux2yu ^y&sV~y! f ~y,k!dy,

~ T̃8 f !~x,k!ª
i

2p

kl

uku E e2 i ukuux2yu

^x&s ^y&sV~y! f ~y,k!dy,

and

~K̃ f !~x,k!ªE
kl

0

kl
f „x,~kl8 ,kl̄ !…dkl8 ,

belong toL(B̃) if s.0 is chosen, such that^x&sV(x) still satisfies (V)3 ~see Lemma A.2!.
Noting that^x&2s ]kl

g(x,k) and ^x&2sh„x,(kl
0,kl̄ )… belong toB̃ ~see Lemma A.2!, Eq. ~38!

can be written as

j̃5^•&2s ]kl
g1T̃8K̃ j̃1T̃8^•&2sh„•,~kl

0,kl̄ !…1T̃j̃,

where^•&2s denotes the operator of multiplication with^x&2s in B̃. To prove that this equation
has a unique solution inB̃, we show that (12T̃)21PL(B̃) exists, and that

j̃5~12T̃!21~^•&2s]kl
g1T̃8^•&2sh„•,~kl

0,kl̄ !…!1~12T̃!21T̃8K̃ j̃ ~39!

has a unique solution. The former will be the content of Lemma 3.4, and to see the latter not
according to Lemma A.2.~i!,

i~12T̃!21T̃8K̃iL~B̃!<i~12T̃!21T̃8iL~B̃!2d l .

Also i(12T̃)21iL(B̃) and iT̃iL(B̃) depend ond l since be spaceB̃ itself depends ond l . But the
norm of these operators decreases asd l decreases, since according to Lemma A.1.~ii ! and the
constructions in the proofs of Lemma A.2 and Lemma 3.4,iT̃8iL(B̃)<supkPI iTk8

siL(B) and
i(12T̃)21iL(B̃)<supkPI i(12Tk

s)21iL(B) . Thus, one can choosed l such that

i~12T̃!21T̃8K̃iL~B̃!,1.

Then ~39! has a unique solutionj̃PB̃ since (12T̃)21T̃8K̃ is a contraction in a complete metri
space.

Now j(x,k)5^x&sj̃(x,k) is a solution of ~36! and f (x,k)5h„x,(kl
0,kl̄ )…

1*
k

l
0

kl j„x,(kl8 ,kl̄ )…dkl8 is a solution of~31!. Recall that to concludef (x,k)5h(x,k), i.e., thatj is

the partial derivative ofh with respect tokl , we need to showf (•,k)PB. By construction,
supkPI uj(x,k)u5O(uxus) for uxu→` and therefore alsou f (x,k)u5O(uxus) for any kPI . Thus,
writing V(x) f (x,k)5^x&sV(x)^x&2sf (x,k) and observing that̂ x&sV(x) satisfies (V)3 and
^x&2sf (x,k) is bounded we use Lemma 3.3~ii ! to conclude thatf (•,k)PB.

To complete the proof of part~i! for uau51 we need to show the following lemma.
Lemma 3.4:(12T̃)21PL(B̃) exists.
Proof: First we show that (12Tk

s)21PL(B) exists, whereTk
s
ª^•&2sTk^•&sPL(B). Since

^x&sV(x) meets the requirements of Lemma 3.3 and multiplication by^x&2s is a bounded opera
tion on B,Tk

s is compact. Therefore (12Tk
s)21 exists if the homogeneous equation (12Tk

s) f s

50 has only the trivial solutionf s50. Now let f sPB be a solution of the homogeneous equatio
which explicitly reads as
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f s~x!5~Tk
sf s!~x!52

1

2p E e2 i ukuux2yu

^x&sux2yu
V~y!^y&sf s~y!dy.

Then f (x)ª^x&sf s(x) is a solution of

f ~x!52
1

2p E e2 i ukuux2yu

ux2yu
V~y! f ~y!dy,

and Lemma 3.3~ii ! implies f PB since^x&sV(x) satisfies (V)3 and^x&2sf (x) is bounded. Using
Lemma 3.3~iv!, we conclude thatf (x)5 f s(x)50 for kÞ0. Therefore (12Tk

s)21 exists for any
kPI . The continuity of (12Tk

s)21 with respect tok follows again from the continuity of (1
2Tk

s).
Using Lemma A.1~ii !, we define the operator (12T̃)21PL(B̃). Since (12Tk

s)(12Tk
s)21

5(12Tk
s)21(12Tk

s)51 holds for allkPI , also (12T̃)(12T̃)215(12T̃)21(12T̃)51 holds.
h

It is now easy to prove the existence of higher-order derivatives by induction. From the
for uau51 we conclude that ifh(x,k)PB is a solution of~31! then ^x&2s ]kl

h(x,k) is given by
the unique solutionj(x,k) in B of

j~x,k!5^x&2s ]kl
g~x,k!1

i

2p

kl

uku E e2 i ukuux2yu

^x&s V~y!h~y,k!dy

2
1

2p E e2 i ukuux2yu

^x&sux2yu ^y&sV~y!j~y,k!dy,

for any kPR3\$0%. In general, assume thath(x,•)PCp(R3\$0%) for some p,n22 and that
^x&2s2p11]k

ah(x,k), uau5p, is given by the unique solutionj(x,k) of

j~x,k!5^x&2s2p11@]k
ag~x,k!1]k

a~Tkh!~x,k!2~Tk]k
ah!~x,k!#1~Tk

s1p21j!~x,k!, ~40!

in B, whereTk
s1p21 is given by

~Tk
s1p21f !~x!ª2

1

2p E e2 i ukuux2yu

^x&s1p21ux2yu
V~y!^y&s1p21f ~y!dy.

Then one can prove by exactly the same method as in the caseuau51 that]kl
j(x,k) exists:

Equation ~40! is analogous to ~33!, where g is replaced by ^x&2s2p11@]k
ag(x,k)

1]k
a(Tkh)(x,k)2(Tk ]k

ah)(x,k)#PB and Tk by Tk
s1p21. As long as^y&s1p21V(y) satisfies

(V)3 , the proof of differentiability of the solution of~40! can be done along the same lines as
uau51.

Proof [of part (ii) of Theorem 3.1#: From the continuity of F and the fact that
limuxu→`„F(x,k)2eik•x

…50 for all kÞ0, Ikebe already concluded that for compactD,R3\$0%,

sup
xPR3,kPD

uF~x,k!u,`,

holds. It remains to examine the casesk→0 and uku→`. If H has a zero-energy resonance
eigenvalue, according to Jensen and Kato,14 the spectral density is singular atE50. Since the
spectral density and the generalized eigenfunctions are closely related,20 we expect that in this cas
also the generalized eigenfunctions become singular atk50.

But assuming thatH has neither a resonance nor an eigenvalue atE50, the eigenfunctions are
uniformly bounded neark50:

Proposition 3.5:Let the potential satisfy (V)n for some n>3. If H has no zero-energy
resonance or eigenvalue, then for any compactD,R3,
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sup
xPR3,kPD

uF~x,k!u,`,

and, for anya with uau,n22, there is aca,` such that

sup
kPD\$0%

u]k
aF~x,k!u,ca~11uxu! uau.

Proof: If H has no zero-energy resonance or eigenvalue, the homogeneous equationf 5T0f
has no solution inB since, according to Lemma 3.3, under the conditions (V)3 any solution of
f 5T0f is a solution of„2 1

2D1V(x)…f (x)50 with f (x)5O(uxu21). And a solution f PB of
H f 50 with f (x)5O(uxu21) is, in particular, a resonance. Thus, eitherf PL2, i.e., zero is an
eigenvalue, orf ¹L2, but then zero is a resonance.

Thus (12Tk)
21 exists for allkPD and, recallingh(x,k)5„(12Tk)

21g…(x,k),

sup
xPR3,kPD

uh~x,k!u5 sup
kPD

ihkiB< sup
kPD

i~12Tk!
21iL~B!igkiB,`,

sincei(12Tk)
21iL(B) is a continuous function on a compact set and therefore bounded. Rec

F(x,k)5eik•x1h(x,k), the proof of the first statement is complete.
The bounds for the partial derivatives near zero also follow from the fact that (12T0)21

exists if zero is neither a resonance nor an eigenvalue ofH. To see this we introduce spheric
coordinates (uku,v), ukuP(0,̀ ) andvPS2 for k. If we replace]ki

uku5ki /uku5v•ei in Eq. ~40!,

it has a unique solutionj(•,uku,v)PB also for uku50. Thus, limuku→0 ]k
ah(x,uku,v) exists for all

vPS2. As in the first part of this proof,

sup
xPR3,kPD\$0%

]k
ah~x,k!

^x&s1uau21 < sup
xPR3,ukuP@0,R#,vPS2

uj~x,uku,v!u,`,

for someR such thatD,KR , follows from the fact thatj(•,uku,v)PB depends continuously on
k. Noting u]k

aeik•xu5ux1
a1x2

a2x3
a3eik•xu,^x& uau completes the proof. h

To prove the uniform bound onF and its derivatives, it remains to examine their behavior
largek. This can be done using the Born series. As expected on physical grounds, the gene
eigenfunctions for large momentum are essentially plane waves.

Proposition 3.6:Let the potentialV satisfy (V)n for somen>3. Then

lim
uku→`

sup
xPR3

^x&2uauu]k
aF~x,k!2]k

aeik•xu50,

for every uau<n22.
Proof: First we will show that the functionh(x,k)5F(x,k)2eik•x converges uniformly to

zero for uku→`. Recall~34!:

h~•,k!5~12Tk!
21g~•,k!.

We shall show that limuku→`ig(•,k)iB50, but we have no simple control of the norm
(12Tk)

21, for example, in terms of the Born series, since

iTkiL~B!5 sup
xPR3

E uV~y!u
ux2yu

dy5const,

does not depend onuku. Following Zemach and Klein21 we iterate Eq.~33! once and obtain

h~•,k!5g~•,k!1Tkg~•,k!1Tk
2h~•,k!, ~41!
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with the formal solution

h~•,k!5~12Tk
2!21

„g~•,k!1Tkg~•,k!…. ~42!

If Eq. ~41! has a unique solution, it must equal the unique solution of~33!, since any solution of
~33! is clearly also a solution of~41!. We shall now first establish that~a! (12Tk

2)21→1 for
uku→` and then that~b! ig(•,k)1Tkg(•,k)iB→0 for uku→`, since then

lim
uku→`

ih~•,k!iB< lim
uku→`

i~12Tk
2!21iL~B!i~g~•,k!1Tkg~•,k!iB50.

~a! follows from the following.
Lemma 3.7:Let VPL1ùL2; then

lim
uku→`

iTk
2iL~B!50. ~43!

Here ~43! also holds, ifTk
2 is understood as an operator on bounded continuous functions.

Now uku can be chosen such thatiTk
2iL(B),1, and then (12Tk

2)21 is given as the norm
convergent Born series:

~12Tk
2!215 (

n50

`

~Tk
2!n.

Thus, limuku→`i(12Tk
2)2121iL(B)50.

Proof (of Lemma 3.7):We compute forf PB,

~Tk
2f !~x!5

1

4p2 E e2 i ukuux2yu

ux2yu
V~y!E e2 i ukuuy2zu

uy2zu
V~z! f ~z!dz dy

5
1

4p2 E V~z! f ~z!E e2 i uku~ ux2yu1uy2zu!

ux2yuuy2zu
V~y!dy dz

5
1

4p 2 E V~z!

ux2zu
f ~z!F ux2zu E e2 i uku~ ux2yu1uy2zu!

ux2yuuy2zu
V~y!dyGdz

5:
1

4p2 E V~z!

ux2zu
f ~z!I V~x,z,uku!dz.

Zemach and Klein21 showed that, forVPC0
1(R3),

lim
uku→`

sup
x,zPR3

uI V~x,z,uku!u50,

i.e., that limuku→` iTk
2iL(B)50 holds forVPC0

1(R3).
PotentialsVPL1ùL2 will be approximated in the following norm:

iuViu5 sup
xPR3

E uV~y!u
ux2yu

dy.

Observing that

iuViu< sup
xPR3

E
ux2yu,1

uV~y!u
ux2yu

dy1 sup
xPR3

E
ux2yu>1

uV~y!u
ux2yu

dy<c~ iViL21iViL1!,`, ~44!
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where we used Schwarz’s inequality for theiViL2 term, we conclude that, since anyV
PL1ùL2 can be approximated by a functionUPC0

1 simultaneously in theL1 andL2 norm, this
is also true for thei u•i u norm. Thus we get the following bound for the norm ofTk

2:

iTk
2f iB5 sup

xPR3
U 1

~2p!2 E e2 i ukuux2yu

ux2yu
„V~y!2U~y!1U~y!…E e2 i ukuuy2zu

uy2zu
V~z! f ~z!dz dyU

<i f iBiuViu~ iuV2Uiu1 sup
x,zPR3

uI U~x,z,uku!u!.

The first term in the brackets becomes small for appropriately chosenUPC0
1 while the second one

converges to zero foruku→`. h

We now proceed to~b!, namely, that limuku→`ig(•,k)1Tkg(•,k)iB50. By Tkg(x,k)
5Tk

2eik•x and Lemma 3.7, limuku→`iTkg(•,k)iB50 follows immediately. To get the analogou
statement forg(•,k) we assume first againVPC0

1(R3). Then

ug~x,k!u5
1

2p U E e2 i ukuux2yu

ux2yu
V~y!e2 ik•~x2y! dyU

<
1

2p U E
u,u0

e2 i ukuuzu~11cosu!

uzu
V~x2z!dzU1 1

2p E
u>u0

uV~x2z!u
uzu

dz ~45!

holds. Hereinu denotes the angle betweenz5(x2y) andk. Stationary phase methods on the fir
term yields

1

2p U E
u,u0

1

i uku~11cosu! S d

duzu
e2 i ukuuzu~11cosu!DV~x2z!uzuduzudV~z!U

5
1

2p U E
u,u0

1

i uku~11cosu!
e2 i ukuuzu~11cosu!S d

duzu
V~x2z!uzu DduzudV~z!U

<
1

2p

1

uku~11cosu0!
E U d

duzu
V~x2z!uzuUduzudV~z!<

c

uku~11cosu0!
——→

uku→`

0,

where

sup
xPR3

E U d

duzu
V~x2z!uzu

uzu2
Udz5c,`

was used. This follows directly fromVPC0
1.

The second term in~45! is an integration over a cone with opening angleu0 , where the
potential in the integrand has compact support, is bounded and displaced by2x. Thus

lim
u0→p

sup
xPR3

E
u>u0

uV~x2z!u
uzu

dz<c lim
u0→p

E
u0

p

usinuudu50,

and limuku→` supxPR3ug(x,k)u50 follows. To get this forVPL1ùL2, we approximateV by U
PC0

1, as in Lemma 3.7.
Analogously we show that^x&2uauu]k

aF(x,k)2]k
aeik•xu vanish uniformly foruku→`. Accord-

ing to the proof of part~i! of Theorem 3.1,]k
ah(x,k) is obtained as the unique solution of~40! in

B. For largeuku the operator (12(Tk
s1p21)2

…

21 with p5uau can be expanded in terms of the Bo
series, and the solution of the modified equation is given by
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j5„12~Tk
s1p21!2

…

21~^•&2s2p11@]k
ag1]k

aTk h2Tk ]k
ah#

1Tk
s1p21^•&2s2p11@]k

ag1]k
aTk h2Tk ]k

ah#!.

It can be shown by the same methods as in the case ofg(x,k) that the term, on which„1
2(Tk

s1p21)2
…

21 acts, uniformly approaches zero foruku→`, which completes the proof of the
proposition. h

The uniform boundedness ofF as well as the bounds on its partial derivatives with respec
k now follow from Proposition 3.5 and Proposition 3.6. h

We will conclude this section with two corollaries to Theorem 3.1 and Proposition 3.6:
first one states that the Riemann–Lebesgue lemma holds also for the generalized Fourie
formation and its inverse. Furthermore, the differentiability of the generalized Fourier transfo
a function is connected to its decay as in the case of the ordinary Fourier transform. Related
can be found in a work by Isozaki.22

Corollary 3.8: Let V satisfy (V)n with somen>3 and let zero not be an eigenvalue
resonance ofH. Then, for anyN<n22 and anyf such that̂ x&Nf PL1(R3)F6 f andF 6

21f are in
CN(R3) and]k

aF6 f PC`(R3) and]k
aF 6

21f PC`(R3) for all a with uau<N.
Proof: Let ^x&Nf PL1, 0<uau<N, then, e.g.,

]k
a~F1 f !~k!5]k

a 1

~2p!3/2E F1* ~x,k! f ~x!dx

5
1

~2p!3/2E ]k
aF1* ~x,k! f ~x!dx

5
1

~2p!3/2E ]k
ae2 ik•xf ~x!dx1

1

~2p!3/2E ]k
ah1* ~x,k! f ~x!dx ~46!

is bounded and continuous sinceu]k
aF1* (x,k)u is bounded byca^x& uau according to Theorem 3.1

and ^x& uau f PL1. Furthermore, the first term in the second line belongs toC` by the ordinary
Riemann–Lebesgue lemma and the second term belongs toC` since^x&2uauu]k

ah1* (x,k)u tends
uniformly to zero foruku→` according to Proposition 3.6. h

The second corollary concerns the so-called T matrix, an object widely discussed in qu
mechanical scattering theory. LetV satisfy (V)3 ; then the T matrixT~•,•! is defined by

T~k,k8!5~2p!23E e2 ik•xV~x!F2~x,k8!dx. ~47!

There are several results about the analyticity of the T matrix for potentials with expon
decay.23 The following corollary gives sufficient conditions forT(k,k8) to be continuously dif-
ferentiable.

Corollary 3.9: Let V satisfy (V)n for somen>3 and let zero be neither a resonance nor
eigenvalue ofH. Then ~i! T(•,•)PCn23

„R33(R3\$0%)…; ~ii ! for every multi-indexa with uau
<n23,

sup
kPR3,k8PR3\$0%

u]k8
a T~k,k8!u,`.
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APPENDIX

In this appendix we prove two lemmas used in Sec. III.
Lemma A.1:~i! The spaceB̃ equipped with the norm

i f i B̃5 sup
xPR3,kPI

u f ~x,k!u

is a Banach space.
~ii ! Let $Ak%kPI,L(B) be a family of bounded operators onB such thatAk depends

continuously onk with respect to the operator norm. Then

~A f !~x,k!ª„Akf ~•,k!…~x!

defines an operatorAPL(B̃) and iAiL(B̃)<supkPI iAkiL(B) .
Proof [of part (i)]: Let $ f n%nPN be a Cauchy sequence inB̃,C(R33I ). Then there exists

f PC(R33I ) such that limn→` i f 2 f ni B̃50. It remains to show thatf PB̃, i.e., that
limuxu→` supkPI u f (x,k)u50. But

sup
kPI

u f ~x,k!u<sup
kPI

u f ~x,k!2 f n~x,k!u1sup
kPI

u f n~x,k!u<i f 2 f ni B̃1sup
kPI

u f n~x,k!u.

The first term can be made arbitrarily small by appropriately choosingn, and the second term
vanishes foruxu→`.

Proof [of part (ii)]: Let f PB̃. Then for any fixedkPI , f (•,k)PB and thereforeAkf (•,k)
PB. First we show thatA f(•,•)PC(R33I ):

u~A f !~x,k!2~A f !~x8,k8!u5u„Akf ~•,k!…~x!2„Ak8 f ~•,k8!…~x8!u

<u„Akf ~•,k!…~x!2„Akf ~•,k!…~x8!u1u„~Ak2Ak8! f ~•,k!…~x8!u

1u~Ak8„f ~•,k!2 f ~•,k8!…!~x8!u. ~A1!

SinceAkf (•,k)PB, the first term can be made arbitrarily small by choosingux2x8u small enough.
The second term becomes small uniformly inx8 by choosinguk2k8u small enough, since

sup
x8PR3

u„~Ak2Ak8! f ~•,k!…~x8!u5i~Ak2Ak8! f ~•,k!iB<iAk2Ak8iL~B!i f i B̃ ,

andAk depends continuously onk. The third term in~A1! yields

sup
x8PR3

u~Ak8„f ~•,k!2 f ~•,k8!…!~x8!u<iAk8iL~B!i f ~•,k!2 f ~•,k8!iB

<c maxS sup
ux8u.R

u f ~x8,k!2 f ~x8,k8!u, sup
ux8u<R

u f ~x8,k!2 f ~x8,k8!u D ,

where we used supkPI iAkiL(B)<c,`. This holds becauseiAkiL(B) is a continuous function ofk
on a compact set. The first term in max(¯) can be made arbitrarily small by choosingR large
since f PB̃. The second term vanishes foruk2k8u→0 since a continuous function on a compa
domain is uniformly continuous.

We now show that

lim
uxu→`

sup
kPI

~A f !~x,k!5 lim
uxu→`

sup
kPI

„Akf ~•,k!…~x!50.
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Suppose that this is wrong; then there exists ane.0 and a sequence$xn ,kn%nPN,R33I with
limn→` xn5`, such thatu„Akn

f (•,kn)…(xn)u.e,;nPN. SinceI is compact,$kn% contains a con-
vergent subsequence~for simplicity also denoted by$kn%! with limn→` kn5kPI . Now

uAkn
f ~xn ,kn!u<uAkn

„f ~xn ,kn!2 f ~xn ,k!…u1u~Akn
2Ak! f ~xn ,k!u1uAkf ~xn ,k!u,

where the first two terms get arbitrarily small asn→`, as has just been shown, and the third te
gets arbitrarily small asn→` since Akf (•,k)PB. Thus, we have a contradiction andA fPB̃
follows.

The estimate for the norm follows directly from

iA fi B̃5 sup
xPR3,kPI

u~Akf ~•,k!!~x!u<sup
kPI

iAkiL~B!i f ~•,k!iB<sup
kPI

iAkiL~B!i f i B̃ .

h

Lemma A.2:Let V satisfy (V)3 and lets.0 such that̂ x&sV(x) still satisfies (V)3 . For f

PB̃ let

~ T̃f !~x,k!ª2
1

2p E e2 i ukuux2yu

^x&sux2yu ^y&sV~y! f ~y,k!dy,

~ T̃8 f !~x,k!ª
i

2p

kl

uku E e2 i ukuux2yu

^x&s ^y&sV~y! f ~y,k!dy,

and

~K̃ f !~x,k!ªE
kl

0

kl
f „x,~kl8 ,kl̄ !…dkl8 ;

then~i! the operatorsT̃, T̃8, andK̃ belong toL(B̃) andiK̃iL(B̃)<2d l , where 2d l is the length of
the intervalI l ; ~ii ! the functionŝ x&2s ]klg

(x,k) and ^x&2sh„x,(kl
0,kl̄ )… belong toB̃.

Proof [of part (i)]: Let f PB and define

~Tk
sf !~x!52

1

2p E e2 i ukuux2yu

^x&sux2yu ^y&sV~y! f ~y!dy,

~Tk8
sf !~x!5

i

2p

kl

uku E e2 i ukuux2yu

^x&s ^y&sV~y! f ~y!dy;

then for f̃ PB we have (T̃ f̃ )(x,k)5„Tk
sf̃ (•,k)…(x) and analogously forT̃8. We shall use Lemma

A.1 ~ii ! to prove thatT̃ and T̃8 are inL(B̃). We have to show that (Tk
s)kPI and (Tk8

s)kPI are
families of operators inL(B) continuously depending onk.

Now ^y&sV(y) still satisfies the conditions (V)3 . According to Lemma 3.3~i! and~v! ^x&sTk
s

satisfies the conditions of Lemma A.1~ii !. Multiplication by ^x&2s is a bounded operation inB,
and thus also (Tk

s)kPI satisfies the conditions of Lemma A.1~ii !. HenceT̃PL(B̃).
Next considerTk8

s . From ^y&sV(y)PL1 and

u~Tk8
sf !~x!u<^x&2s

1

2p E u^y&sV~y!udyi f iB ,

limuxu→` u(Tk8
sf )(x)u50 follows. With ueia2eia8u<ua2a8u for a, a8PR we estimate
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u^x&s~Tk8
sf !~x!2^x8&s~Tk8

sf !~x8!<
1

2p E ue2 i ukuux2yu2e2 i ukuux82yuuu^y&sV~y!uu f ~y!udy

<
1

2p E ukuuux2yu2ux82yuuu^y&sV~y!udyi f iB

<ux2x8uuku
1

2p E u^y&sV~y!udyi f iB ,

which proves the continuity of̂x&s(Tk8
sf )(x) in x and thus that of (Tk8

sf )(x) itself. Therefore
Tk8

sPL(B). It remains to show thatTk8
s is norm continuous with respect tok:

i~Tk8
s2Tk8

8s
! f iB5 sup

xPR3
U 1

2p E ^y&sV~y! f ~y!

^x&s S kl

uku
e2 i ukuux2yu2

kl8

uk8u
e2 i uk8uux2yu D U

< sup
xPR3

U 1

2p E ^y&sV~y! f ~y!

^x&s e2 i ukuux2yuS kl

uku
2

kl8

uk8u D U
1 sup

xPR3
U 1

2p E ^y&sV~y! f ~y!

^x&s

kl8

uk8u
~e2 i ukuux2yu2e2 i uk8uux2yu!U

<cU kl

uku
2

kl8

uk8uUi f iB1 sup
xPR3

1

2p E u^y&sV~y!u
^x&s ue2 i ukuux2yu2e2 i uk8uux2yuudyi f iB .

Since we can achievecukl /uku2kl8/uk8uu,e/2 for anye.0 by choosinguk2k8u small, it remains
to show that also

sup
xPR3

1

2p E u^y&sV~y!u
^x&s ue2 i ukuux2yu2e2 i uk8uux2yuudy,

e

2
,

for uk2k8u small. Sincê x&sV(x)PL1 and ue2 i ukuux2yu2e2 i uk8uux2yuu<2, there existsR1 such that

sup
uxu.R1

1

2p E u^y&sV~y!u
^x&s ue2 i ukuux2yu2e2 i uk8uux2yuudy< sup

uxu.R1

1

^x&s

1

2p E 2u^y&sV~y!udy,
e

2
.

Similarly, there isR2 such that

sup
xPR3

1

2p E
y.R2

u^y&sV~y!u
^x&s ue2 i ukuux2yu2e2 i uk8uux2yuudy< sup

xPR3

1

^x&s

1

2p E
y.R2

2u^y&sV~y!udy,
e

4
,

holds. Observing that fromuxu,R1 and uyu,R2ux2yu,R11R2 follows, we obtain for the re-
maining part,

sup
uxu,R1

1

2p E
uyu,R2

u^y&sV~y!u
^x&s ue2 i ukuux2yu2e2 i uk8uux2yuudy

<uuku2uk8uu
1

2p
~R11R2!E u^y&sV~y!udy<Cuk2k8u,

e

4
,

for uk2k8u sufficiently small. Combining these results, we get that, for anye.0,

i~Tk8
s2Tk8

8s
! f iB,ei f iB ,
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for uk2k8u small enough, which proves the norm continuity ofTk8
s . ThereforeTk8

s meets the
requirements of Lemma A.1~ii !, and we conclude thatT̃8PL(B̃).

Finally, considerK̃. For f PB̃ the continuity of (K̃ f )(x,k)5*
k

l
0

kl f „x,(kl8 ,kl̄ )…dkl8 in x andk is

clear. Furthermore,

lim
uxu→`

sup
kPI

u~K̃ f !~x,k!u< lim
uxu→`

2d l sup
kPI

u f ~x,k!u50,

so thatK̃PL(B̃) and

iK̃ f i B̃5 sup
xPR3,kPI

U E
kl

0

kl
f „x,~kl8 ,kl̄ !…dkl8U<2d l i f i B̃ .

Proof [of part (ii)]: Since h(x,k)PB for all kÞ0 and I is compact,^x&2sh(x,(kl
0,kl

2))
PB̃ is obvious. Observing

]kl
g~x,k!5

i

2p

kl

uku E e2 i ukuux2yuV~y!eik•y dy2
i

2p E e2 i ukuux2yu

ux2yu
V~y!yle

ik•y dy,

^x&2s]kl
g(x,k)PB̃ can be shown using the same types of estimates as in the proof of p~i!

of this lemma. h
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On conserved quantities at spatial infinity
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There is a well-known short list of asymptotic conserved quantities for a physical
system at spatial infinity. We search for new ones. This is carried out within the
asymptotic framework of Ashtekar and Romano, in which spatial infinity is repre-
sented as a smooth boundary of space–time. We first introduce, for physical fields
on space–time, a characterization of their asymptotic behavior as certain fields on
this boundary. Conserved quantities at spatial infinity, in turn, are constructed from
these fields. We find, in Minkowski space–time, that each of a Klein–Gordon field,
a Maxwell field, and a linearized gravitational field yields an entire hierarchy of
conserved quantities. Only certain quantities in this hierarchy survive into curved
space–time. ©1999 American Institute of Physics.@S0022-2488~99!00504-6#

I. INTRODUCTION

In the description of isolated systems in flat space–time, conserved quantities have ofte
found to be useful. Examples of such conserved quantities include electric charge, en
momentum, angular momentum, and, in certain circumstances, various multipole moments
conserved quantities are usually expressed as surface integrals in the limit as the surfa
proaches infinity. In general relativity, by contrast, the construction of such conserved quant
more complicated. Not the least of these complications is that ‘‘infinity’’ is so much more diffi
to pin down in the presence of curvature.

The study of isolated systems in general relativity was pioneered by Arnowitt, Deser
Misner.1 They defined asymptotic flatness of a space–time in terms of the existence of an
data set, which, expressed in suitable coordinates, has the initial data approach the flat v
suitable rates. Conserved quantities, such as energy–momentum and angular momentu
then expressed as limits of certain surface integrals.

One unfortunate aspect of the approach of Arnowitt, Deser, and Misner is that
asymptotic conditions are tied so closely to coordinates. Their approach was subsequently
etrized and extended by Geroch2 via a conformal completion by a single point ‘‘at spatial infi
ity.’’ Multipole moments for certain fields in flat space–time were generalized to static as
totically flat space–times within this framework.3 An alternative geometrical framework, whic
unifies spatial and null infinity and is thus adapted to the relation between these two asym
regimes, was introduced by Ashtekar and Hansen.4 This framework involves a conformal comple
tion of the entire space–time, null infinity becoming a null cone with spatial infinity its ver
This framework is used, for example, both to formulate and to prove the assertion that the
mass is the past limit of the future Bondi mass.5

In both of the geometrical frameworks outlined above spatial infinity is squeezed into a
and there smoothness of the completed manifold fails. So, inevitably, one is forced to dea
complicated differentiable structures there. This circumstance is less satisfactory than that
infinity, which is formulated as a smooth boundary of space–time. Early attempts to re
smoothness to spatial infinity include those of Sommers6 and Persides.7 Beig and Schmidt,8,9 using
a coordinate-dependent treatment similar to that of Bondiet al.,10 obtained fields on the surface a
spatial infinity order by order, and noticed that these fields there satisfy hyperbolic equations

a!Electronic mail: sperng@rainbow.uchicago.edu
19230022-2488/99/40(4)/1923/28/$15.00 © 1999 American Institute of Physics
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work culminates in that of Ashtekar and Romano,11 who introduced a new geometrical framewo
for asymptotic flatness in which spatial infinity was indeed expressed as a smooth bound
space–time. Their definition also provided a natural geometrical setting for the results of Be
Schmidt. The Ashtekar and Romano framework is somewhat of a hybrid, in that it involves
the conformal and projective structure. By their definition, a space–time is asymptotically fl
spatial infinity, provided one can attach to it a smooth boundaryH and introduce a smooth
function V vanishing atH such that the induced metric on and the normal to the constaV
surfaces are, after rescaling by suitable powers ofV, smoothly extendible toH. This new defini-
tion has proven to be useful in the study of asymptotic properties of space–time at spatial in
since various physical fields turn out to be smooth there.

We return now to conserved quantities. It is natural to ask the following: Do, in some s
the well-known conserved quantities—energy–momentum, angular momentum, e
charge—at spatial infinity exhaust all conserved quantities that could possibly be defined
To settle this question would clearly provide insights into the asymptotic properties of the ph
fields and of the space–time. The framework introduced by Ashtekar and Romano is pe
suited to addressing this question. One has a simple, universal smooth structure at spatial
enabling one to investigate fields at spatial infinity order by order. The notion of a cons
quantity had already been formulated by Ashtekar and Romano: Each conserved quantity i
expressed as an integral over a two-sphere section of spatial infinity, where the value
integral is independent of section. In particular, the well-known conserved quantities are
pressed. We seek others.

This paper is organized as follows. Section II contains the basic framework, which und
the rest of the paper. We first review briefly~a slight modification of! the Ashtekar–Romano
definition of asymptotic flatness. We then formulate within this framework the asymptotic s
ture of the physical fields. In particular, we introduce the notion of a conserved quantity, and
some familiar examples. In Sec. III, we consider the special but important case of fiel
Minkowski space–time. We construct all linear conserved quantities associated with a K
Gordon field, with a Maxwell field, and with a linearized gravitational field and having a ce
‘‘polynomial dependence’’ on asymptotic translations. We then study the symmetry propertie
the ‘‘gauge behavior’’~the dependence on a certain freedom in the formulation of an asymp
structure! of these quantities. In Sec. IV, we consider fields in a curved, asymptotically
space–time. We first derive the equations, at spatial infinity, satisfied by the asymptotic field
then show that—at least in the Klein–Gordon and Maxwell cases—certain of the cons
quantities found in Sec. III for Minkowski space–time can be generalized to these curved s
times. In Sec. V, we discuss various related issues. In particular, we formulate two conjec
One asserts that a certain conserved quantity for linearized gravity in Minkowski space–tim
be generalized to curved space–time. The other asserts that we have here found all co
quantities in curved space–time for Klein–Gordon, Maxwell, and gravitational fields.

II. PRELIMINARIES

A. Asymptotic flatness

Fix a space–time (M̃ ,g̃ab).
Definition 1: By a completion of(M̃ ,g̃ab), we mean (cf. Ashtekar and Romano in Ref. 11)

manifold M with boundaryH, a smooth functionV defined on M vanishing onH, and a diffeo-

morphism from M˜ to M2H (by means of which we identify M˜ with its image in M) satisfying the
following three classes of conditions.

(1) The combinations (i) “aV, (ii) V24g̃ab
“bV([na), and (iii) V2@ g̃ab

2(g̃cd
“cV “dV)21

“aV “bV#([qab) admit smooth, nowhere-vanishing extensions toH such
that (iv) na

“aV([l22)uH51 and (v)Ln@(nm
“mV)21qab#uH50.

(2) (H,qabuH) is a standard timelike hyperboloid, i.e.,H has topology S23R, qabuH[q
0

ab is
of constant positive curvature and is geodesically complete.
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(3) The combinations (i) nknlG̃kl , (ii) V21qa
knlG̃kl , and (iii) V22qa

kqb
l G̃kl , are smoothly

extendible toH, where G̃ab is the Einstein tensor of g˜ ab .
The boundaryH represents spatial infinity. Conditions~1! describe the falloff behavior of the

metric g̃ab and conditions~3! that of its second derivative. Conditions~2! ensure, among othe
things, that we are dealing with~all of! spatial infinity. There is some redundancy in the abo
conditions. Specifically, the constancy both of the left side of~1! ( iv) and of the curvature ofqab

already follow from the other conditions. In light of this, the choice of the constant ‘‘1’’

condition~i! ( iv) ~which is equivalent to the demand thatq
0

ab be the metric of a unit hyperboloid!
serves only to restrict the freedom of multiplyingV by a constant factor. Condition~1!(v) is

essentially the condition,B
0

ab50 @cf. Eq. ~3!#, introduced by Ashtekar and Hansen4 in order to

define angular momentum. More precisely, whenB
0

ab50, condition ~1!(v) can always be
achieved without affecting the other conditions by choosing a suitableV.

Definition 1 is essentially the same as the definition, given by Ashtekar and Romano11 of
what they call an asymptotically Minkowskian space–time. However, there are three differe
First, our conditions on the Einstein tensor are weaker than the corresponding condition, n

limV→0 V21G̃ab50, in their definition. Their condition, expressed in the present languag

equivalent to the smooth extendibility toH of V22nknlG̃kl , V22qa
knlG̃kl , andV22qa

kqb
l G̃kl .

Indeed, our condition holds while theirs fails~for nknlG̃kluHÞ0) in the Reissner–Nordstrom
solution. Second, we impose condition~1!( iv), which, as mentioned above, is effectively a gau
restriction on the conformal factorV, a restriction that is absent in the definition of Ashtekar a
Romano. Finally, we impose condition~1!(v), which Ashtekar and Romano omit from the gene
definition of asymptotic Minkowskian space–times, but subsequently impose for their discu
of angular momentum.

We give a few simple examples of completion. As a first example, let (M̃ ,g̃ab) be Minkowski
space–time, and let (t,r ,u,f) be ordinary spherical polar coordinates. SetV5(r 22t2)21/2 and

tanhx5t/r. Let M beM̃ together with the boundaryH consisting of the points labeled byV50 in
the ~hyperbolic coordinate! chart ~V,x,u,f!, with a differentiable structure given by that cha

Then this (M ,V) is a completion of Minkowski space–time. As a second example, let (M̃ ,g̃ab) be
Reissner–Nordstrom solution, and let (t,r ,u,f) be the usual Schwarzschild-like coordinat
therein. Repeat the same construction as in Minkowski space–time to obtain a manifold
boundary (M ,V). Then this choice ofV satisfies all conditions in definition 1, except conditio
~1!(v). Condition~1!(v), in turn, can be achieved, without violating other conditions, by choos
a new conformal factorV8 of the formV85V(11vV) with a suitable smooth functionv. In
general, all stationary vacuum space–times asymptotically flat by the usual definition3 admit
completions in the present sense.12

Two completions, (M ,V), (M 8,V8) of (M̃ ,g̃ab), are said to be equivalent if the identity ma

of M̃ extends to a diffeomorphism fromM to M 8. It turns out that a space–time may adm
inequivalent completions.13 Minkowski space–time, for instance, has a four-parameter family
inequivalent completions related to each other by what are called ‘‘logarithmic translation14

Indeed, letxm be a usual Minkowskian coordinate system in Minkowski space–timeM̃ , andcm

any constant vector. Then the hyperbolic coordinates associated withx8m given by xm5x8m

2cm logV8 yield a new completion ofM̃ inequivalent to that arising fromxm. In this case we can
single out the usual completion to be the preferred one among this four-parameter family s
is the only one in which all Killing fields are smoothly extendible to the boundary at sp
infinity. Similarly, any stationary asymptotically flat space–time admits at least a one-para
family of inequivalent completions, arising from logarithmic time translations. There is also a
of converse to this: the existence of two inequivalent completions related by such a logar
translation implies that the space–time admits an asymptotic translational Killing field—a v
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field j̃a with the properties thatV21j̃a is smoothly extendible to, and vanishes nowhere on,H;

and that“̃ (aj̃b) and all its derivatives vanishes onH. In the spatial-infinity framework of Geroch
and Ashtekar–Hansen, it has been shown by Chrusciel15 that these logarithmic translations are t
only kind of inequivalent completions that may arise. We conjecture the following in the pre
framework: Any two inequivalent completions are related by such a logarithmic translation. I
conjecture is true, then our work will not be affected by the possible existence of inequiv
completions. In what follows, we will always fix a specific completion and only consider com
tions smoothly related~i.e., equivalent! to the fixed one.

B. Physical fields and their remnants

We now set up the framework for dealing with the asymptotic structure of physical fields
(M̃ ,g̃ab) be a space–time, with (M ,V) a completion. Letṽa1¯am

be a smooth, covariant,mth

rank tensor field onM̃ , and consider the 2m tensor fields that result from contracting each ind
of ṽ with eitherV2na or Vqa

b . We sayṽ is asymptotically regular of order s, provided each of
these 2m tensor fields, multiplied byV2s, is smoothly extendible toH. Asymptotic regularity of
a general tensor field is defined by lowering any contravariant indices withg̃ab and applying the
definition above to the resulting covariant field. Note that conditions~1!~ii !, ~iii ! above are pre-
cisely the statement thatg̃ab is asymptotically regular of order 0; and conditions~3!~i!–~iii ! are
precisely the statement thatG̃ab is asymptotically regular of order 4. The outer product of tw
asymptotically regular fields, of respective orderss ands8, is asymptotically regular, of orders
1s8. Contractions usingg̃ab preserve asymptotic regularity, and order.

Thus, an asymptotically regular physical field gives rise, onM, to 2m smooth fields, with ranks
ranging fromm down to zero, whose behavior nearH reflects the asymptotic behavior of th
physical field. Letua1¯am

denote any one of these fields. Then set, fork any non-negative integer

u
k

a1¯am
[c
←

@~L~n•“V!21n!kua1¯am
#, ~1!

wherec
←

stands for the pull-back toH via the natural embedding mapH→
c

M . Note the right side

of Eq. ~1! exists sinceua1¯am
~and therefore each of its derivatives! is smoothly extendible toH.

The u
k

a1 ...am
so defined will be called thekth-order remnantof ua1¯am

. These remnants, (k

50,1,...), clearly carry, order by order, the asymptotic information contained inua1¯am
, and,

therefore, the asymptotic information in the original physical fieldṽ. Suppose, next, that th
physical fieldṽ satisfies various field equations. Then these field equations yield partial diff
tial equations onM on theu’s that arise via asymptotic regularity fromṽ, and so partial differ-

ential equations onH on the remnantsu
k

that arise via Eq.~1! from theu’s. We will refer to these
as theremnant field equations.

We give some examples of asymptotically regular fields and their associated remnants
space–time (M̃ ,g̃ab) with a completion (M ,V). For the first example, consider the space–ti
metric g̃ab . Then, as we mentioned above, this field is asymptotically regular of order 0.
correspondingu’s are qab([V2qa

kqb
l g̃kl), 0([V3qa

knl g̃kl), and l22([@V4nanbg̃ab#). Their

corresponding remnants,q
k

ab andl
k

, carry the asymptotic information contained in the space–t
geometry. We note that conditions(1)(iv) and (1)(v) in the definition of a completion are

actually conditions on these remnants: namely,l
0

51, andq
1

ab522l
1

q
0

ab , respectively. For the
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second example, consider the Einstein tensorG̃ab . Then, as we mentioned above, this field
asymptotically regular of order 4. The correspondingu’s, written in terms of the stress–energ
tensorT̃ab (5G̃ab /k, with k58pG/c4) are

T[l2nanb~kT̃ab!, Ta[lV21qa
knl~kT̃kl!, and Tab[V22qa

kqb
lk~ T̃kl2

1
2T̃g̃kl!, ~2!

where we have introduced certain powers ofl and have used the trace-reversed version ofT̃ab in

defining Tab for later convenience. We denote byT
k

,T
k

a ,T
k

ab , the remnants ofT, Ta , andTab ,
respectively. For the third example, consider the Weyl tensor,C̃abcd, of this space–time. It is
shown in Appendix C@cf. the discussion around Eq.~C14!# that this field is asymptotically regula
of order 3. Theu’s in this case may be taken to be

Eab[V3l2qa
jqb

lnknmC̃jklm and Bab[V3l2qa
jqb

lnknm* C̃jklm . ~3!

Denote their remnantsE
k

ab andB
k

ab . Note that condition(1)(v) in the definition of a completion

is actually a condition on one of these remnants, namely,B
0

ab50 @cf. Eq. ~C17!#. For the final
example, consider a Maxwell fieldF̃ab in this space–time. We demand that it be asymptotica
regular of order 2,16 i.e., that each of

Ea[VlnbF̃ab and Ba[Vlnb* F̃ab ~4!

be smoothly extendible toH. These are effectively theu’s. This demand reflects the idea that
physically reasonable Maxwell field must fall off like 1/r 2 near spatial infinity. We denote b

E
k

a ,B
k

a the remnants ofEa ,Ba , respectively. Note that it follows that the stress–energy tenso
this Maxwell field has the fall-off rate consistent with that of Eq.~2!. Indeed, from T̃ab

5 1
2(F̃amF̃b

m2 1
4F̃

2g̃ab) we have

T5 1
2k~E21B2!, Ta52keamnE

mBn, Tab5k@EaEb1BaBb2 1
2~E21B2!qab#. ~5!

There remains, as it turns out, some gauge freedom in the present framework. Fix a s
time (M̃ ,g̃ab), and let (M ,V) and (M ,V8), be two completions of (M̃ ,g̃ab). It then follows that

V85V(11vV), for some smooth functionv on M such thatv
0

[vuH satisfies Eq.~7! below

~i.e., v
0

is an ‘‘asymptotic translation’’!; and, conversely, for (M ,V) any completion andv and
V8 as above, then (M ,V8) is also a completion. Thus, the gauge freedom consists precise

suchv fields. The asymptotic gauge freedom, then, is described by the remnants,v
k

, of v. It turns
out8 that one can, utilizing this gauge freedom, always achieve

l
k

50, k>2, ~6!

and that this exhausts the gauge freedom associated with the remnantsv
k

, for k>1. Thus, making

this gauge choice, the remaining gauge freedom is represented by a singlev
0

satisfying Eq.~7!.
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C. Asymptotic translations

In order to construct conserved quantities, it will be convenient to have on hand some
about asymptotic translations. Denote byT the set of functionsv onH satisfying the differential
equation,

DaDbv1vq
0

ab50, ~7!

where Da denotes the derivative operator ofq
0

ab . This T is a four-dimensional vector spac
@since, by virtue of the fact that the curl of Eq.~7! is an identity,v is completely determined by its

value and derivative at any one point# equipped with a Lorentz metriĉv,w&[q
0

abDavDbw
1vw @since, by virtue of Eq.~7!, the right side is a constant#. Elements ofT can be interpreted11

as asymptotic translations onM in the following sense: Forj̃a a vector field onM̃ asymptotically
regular of order 0 such thatLj̃g̃ab is asymptotically regular of order 2, thenV22Lj̃VuHPT.

It is convenient to introduce an index notation for tensors overT: Greek superscripts an
subscripts denote, respectively, elements ofT and its dualT * . Thus, a solutionv of Eq. ~7! might

be denotedvm, while a linear mapT°
w

R might be denotedwm . The action ofw on v would be
expressed by contraction:w(v)5wmvm. We denote byhmn the above Lorentz metric onT, i.e.,
we sethmnvmwn5^v,w&. We shall usehmn ~and its inverse! to lower and raise indices of tenso
overT. The objects with which we shall be concerned are fields onH that may have Latin indices
~indicating tensor character over the manifoldH! and Greek indices~indicating tensor characte
over the vector spaceT !. Thus, for example,za would denote aT * -valued function onH, za

would denote an ordinary tangent vector field onH, andza
a would denote aT * -valued tangent

vector field onH. In particular, an elementvm in T is now viewed as aT-valued constant function
onH. We lower and raise Greek indices of such fields withhab and its inverse, and lower an

raise Latin indices withq
0

ab and its inverse. There is a natural field,am , defined by the property
that, for anyvmPT, amvm is the corresponding solution of Eq.~7!.17 Then, e.g.,amam51. The

derivative operatorDa onH associated withq
0

ab extends to a derivative operator on our index

fields by demanding thatDava50, for va any constant field. There now followsDaq
0

bc50,
Dahab50,

DaDbam1amq
0

ab50 ~8!

@from Eq. ~7!#,

DaamDaan1aman5hmn ~9!

~from the definition ofhmn), andhmnDaamDban5q
0

ab .18

D. Conserved quantities

Now imagine that we were somehow able to find a divergence-free vector field, constr
from ~the remnants of! some physical fields and the background geometry ofH. Integrating~the
dual of! this vector field over a two-sphere cut~i.e., a noncontractible two-sphere submanifold! of
H, we obtain a number—one clearly independent of the choice of cut. Think of such an in
as being the limit of an integral over a spacelike 2-sphere in space–time, as the 2-sphe
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proaches the cut at spatial infinity. These integrals we call conserved quantities. In each
examples we shall consider, the divergence-free vector field is multilinear inam ,19 and so the
conserved quantities may be viewed as a tensor overT.

We now give three well-known1,2,4,11examples of conserved quantities. Some of the com
tations are relegated to Sec. IV and Appendix C. Fix a space–time (M̃ ,g̃ab), a completion (M ,V)
thereof, and a cutC of H.

For the first example, letF̃ab be a Maxwell field onM̃ , regular of order 2. Consider the righ
side of

Q5
1

4p E
C
E
0

a dSa , ~10!

whereE
0

a is the ~zeroth-order! remnant ofEa given by Eq.~4!. Maxwell’s equations imply the
integrand above is divergence-free@cf. Eq.~51!#. Thus, Eq.~10! defines a conserved quantity. Th
Q is precisely the electric charge, for the right side of Eq.~10! is the limit of the integral of* Fab

over a large spacelike 2-sphere in the space–time as that 2-sphere approaches the cutC. For the
second example, consider the right side of

Pm5
1

8p E
C
E
0

abDbam dSa , ~11!

whereE
0

ab is the remnant ofEab , a portion of the Weyl tensor, given in Eq.~3!. The remnant field
equation@Eq. ~C20!# together with Eq.~8! on am , imply that the integrand above is divergenc
free. Thus, Eq.~11! defines a conserved quantity, which is a vector overT. ThisPm is precisely1,2

the total mass momentum of the space–time. For the third example, consider the right sid

Mmn52
1

16p
emn

tsE
C
B
1

abat Dbas dSa , ~12!

where emnts denotes theh-alternating tensor onT. In order for the integrand above to b
divergence-free, we must impose on the space–time the additional condition20 that

D [aT
0

b]50. ~13!

Under this additional condition, Eq.~12! defines a conserved quantity, which is a two-form ov
T. ThisMmn is precisely4 the total angular momentum of the space–time.

Finally, we revisit the issue of gauge. Fix a space–time (M̃ ,g̃ab), and a completion (M ,V)
thereof. Demand further that the completion satisfy the gauge condition~6!, so the remaining

gauge freedom is represented by the choice of somev
0

PT. Applying such a gauge transformatio
the remnants of any physical field, and thus also of any conserved quantities associated w
field, will, in general, change. Specifically, letQA be any conserved quantity or any remnant fie

where the subscriptA is an abbreviation for all the indices ofQ. Then, for each translationv
0

PT, there corresponds a ‘‘gauge-transformed’’ quantity—QA@v
0

#. Thus, we may regard our quan

tity QA as a tensor field on the 4-manifoldT so defined that its value atv
0

PT is QA@v
0

#. In short,
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the gauge behavior of our original quantityQA is coded in the position dependence of this ten
field on T. The derivative of this tensor field reflects the behavior of the quantity under ‘‘in
tesimal gauge transformation.’’ Indeed, from

QA@v
0

1dv
0

#5QA@v
0

#1~dv
0

!mQ~1!
mA@v

0
#1O„~dv

0
!2
…, ~14!

we have

“mQA5Q~1!
mA , ~15!

where“m denote the natural derivative operator on the 4-manifoldT. As examples, consider th

conserved quantities~10!–~12!. Under a gauge transformation,V85V(11vV) with v
0

PT the

remnantsE
0

a ,E
0

ab remain unchanged, whileB
1

ab changes toB
1

8ab5B
1

ab22e (a
klE

0

b)kDlv
0

. In terms

of the corresponding tensor fields on the 4-manifoldT, these become“mE
0

a50, “mE
0

ab50, and

“mB
1

ab522e (a
klE

0

b)kDlam . It follows that the total electric chargeQ ~10! and the 4-momentum
Pm ~11! are gauge invariant, and that11 the angular momentumMmn ~12! changes via21

M8mn5Mmn2v
0

[mPn] . ~16!

In terms of the corresponding tensor fields on the 4-manifoldT, these become, respectivel
“lQ50, “lPm50, and

“lMmn52hl[mPn] . ~17!

III. MINKOWSKI SPACE–TIME

We now apply the framework developed in the previous section to the study of cons
quantities associated with physical fields in Minkowski space–time. Minkowski space–time
good starting point: It is simple and suggestive of what might happen in the presence of curv
We shall take as the physical field successively a Klein–Gordon field, a Maxwell field, a
linearized gravitational field. We will write down, for each of these cases, all conserved qua
linear in the physical fields and multilinear in asymptotic translations.

Let (M̃ ,h̃ab) be Minkowski space–time. Fix a pointpPM̃ ; let V be the inverse geodesi
distance fromp. Then thisV yields a completion (M ,V) of Minkowski space–time that we ca

the standard completion. In this completion, we havel
n

50 andqab

n

50, for n>1.

A. Remnant field equations

Here we derive the remnant field equations for Klein–Gordon, Maxwell, and linearized g
tational fields for later use in constructing conserved quantities. For what follows we fix a sta
completion of Minkowski space–timeM̃ and denote byDa the derivative operator associated wi
qab on constant-V surfaces.

Let f̃ be a Klein–Gordon field onM̃ asymptotically regular of order 1. Settingf5V21f̃,
we have

05¹̃2f̃5V3@~D221!f1VLnf1V2~Ln!2f#. ~18!

Taking the remnants of the above equation, we obtain
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D2f
n

5~2n211!f
n

, ~19!

for n50,1,2,... .

Let F̃ab be a Maxwell field onM̃ asymptotically regular of order 2, with remnantsE
n

a andB
n

a .
Using Eq.~4!, Maxwell’s equation can be written as

05“̃

mF̃ma5VDmEm“aV2V2~VLnEa2eakl D
kBl !, ~20!

05“̃

m* F̃ma5VDmBm“aV2V2~VLnBa1eakl D
kEl !. ~21!

Taking the remnants of the above equations, we obtain

DaE
0

a50, DaB
0

a50, ~22!

eabcDbB
n

c5nE
n

a, 2eabcDbE
n

c5nB
n

a, ~23!

for n50,1,2,... . Note that Eqs.~23! imply

D2E
n

a5~2n212!E
n

a , D2B
n

a5~2n212!B
n

a , ~24!

for n50,1,2,... .
Let K̃abcd be a linearized gravitational field onM̃ , i.e., a tensor field onM̃ having the same

symmetry and contractions as the Weyl tensor and satisfying the linearized Bianchi identit

“̃ [aK̃bc]de50. ~25!

Let K̃abcd be asymptotically regular of order 3, soEab[V3K̃akbln
knl andBab[V3* K̃akbln

knl are

smoothly extendible toH. Their remnants, denotedE
n

ab andB
n

ab , are symmetric and trace-free
The linearized Bianchi identity can be written as

05“̃

mK̃mabc*

5@V21
“aV DmBm[b2~VLnBa[b1eakl D

kEl
[b!#“c]V

1 1
2@“aV DkEkm2V~VLnEma2emkl D

kBl
a!#em

bc . ~26!

Taking the remnants of the above equation, we obtain

e lma DlB
n

m
b5nE

n
ab, 2e lma DlE

n

m
b5nB

n
ab, ~27!

for n50,1,2,... . Note that Eqs.~27! imply

D2E
n

ab5~2n213!E
n

ab , D2B
n

ab5~2n213!B
n

ab , ~28!

for n50,1,2,... .
Recall that the present framework is subject to a class of restricted gauge transform

@namely, replacements ofV by V85V(11vV)#, which preserve the gauge conditionsl
n

50, n
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>2, and that each such gauge transformation is completely characterized by anv
0

PT. For com-
pleteness, we summarize the behavior of the remnants above under such a gauge transfo

“mf
n

5n~LDam
f

n21

2nam f
n21

!, ~29!

“mE
n

a5n~LDam
E

n21

a2nam E
n21

a1ea
kl B

n21

k Dlam!, ~30!

“mB
n

a5n~LDam
B

n21

a2nam B
n21

a2ea
kl E

n21

k Dlam!, ~31!

“mE
n

ab5n~LDam
E

n21

ab2nam E
n21

ab12ekl
(a B

n21

b)k Dlam!, ~32!

“mB
n

ab5n~LDam
B

n21

ab2nam B
n21

ab22ekl
(a E

n21

b)k Dlam!, ~33!

for n50,1,2,... . Note thatf
0

, E
0

a , B
0

a , E
0

ab , andB
0

ab are gauge invariant. As a consistency che
we note also that the“m curl of the right side of each of the above equations vanishes, by v
of “man50, as it must. Of course, these gauge-transformed fields satisfy the same equat
the original fields.

B. Remnant radiation multipoles

It is perhaps most natural to seek conserved quantities that are linear in the remnants
e.g., this category includes all well-known conserved quantities.22 In this section we shall find al
such conserved quantities for a Klein–Gordon field, a Maxwell field, and a linearized gravita
field in Minkowski space–timeM̃ . Again, we fix the standard completion ofM̃ .

We begin with the Klein–Gordon field. Letf̃ be a Klein–Gordon field asymptotically regula

of order 1, with remnantsf
n

.
Theorem 1: (i) The conserved quantities linear in this Klein–Gordon field consist precisely o

the family

Km1¯mn21
@f

n

#[E
C
@C~am1

¯amn21
!Daf

n

2f
n

DaC~am1
¯amn21

!#dSa , n>1, ~34!

whereC(am1
¯amn21

) denotes the symmetric, trace-free part ofam1
¯amn21

.23

(ii) TheKm1¯mn21
are totally symmetric and trace-free.

(iii) The behavior ofKm1¯mn21
under restricted gauge transformations is given by

“mKm1¯mn21
5 1

2n~n22!h (m1m2
Km3¯mn21)m2n~n21!hm(m1

Km2¯mn21) . ~35!

We will refer to theseK’s as the remnant radiation multipoles of a Klein–Gordon field.
To see that Eq.~34! indeed defines a conserved quantity, take the divergence of the integ

and use that bothf
n

andC(am1
¯amn21

) satisfy Eq.~19!. To prove(iii) , use Eq.~29!, the defini-
tion of K, and a certain identity onC(am1

¯amn21
). See Appendix B for details. Note the righ

side of Eq.~35! is, up to an overall factor, the only (n21)th rank, symmetric, trace-free tens
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linear in K
n22

. Equation~35! states that the dependence of theK’s on position inT is exactly that
of ordinary multipole moments. The proof that the family given by Eq.~34! exhausts the linea
conserved quantities in the Klein–Gordon case is outlined in Appendix B. As an example of
remnant radiation multipoles, letf̃5„f (t1r )2 f (t2r )…/r . Then, providedk6(x)[ f (61/x), x

.0, are both smoothly extendible to zero, thisf̃ will be asymptotically regular of order 1. The

the remnants off̃ are given byf
n

5(11z2)21/2$k1
(n)(0)@(11z2)1/22z#n2k2

(n)(0)@(11z2)1/2

1z#n%, where we have setz52V22(]V/]t)uHPT. TheK’s in this example involve various
derivatives ofk6 at zero. Explicitly, the first two are given byK54p@k18 (0)1k28 (0)#, Km

54p@k29 (0)1k29 (0)#^am ,z&. Thus, theK’s in this example describe radiation emanating fro
future and past timelike infinity.

We turn next to the Maxwell case. LetF̃ab be a Maxwell field asymptotically regular of orde

2, with remnantsE
n

a andB
n

a .
Theorem 2: (i) The conserved quantities linear in this Maxwell field consist precisely of

electric charge [given by Eq. (10)], the magnetic charge [obtained by replacing E
0

a by B
0

a in Eq.
(10)], and the family

Emm1¯mn21
[Km1¯mn21

@E
n

mDmam#

5E @Da~E
n

mDmam!C~am1
¯amn21

!2E
n

mDmamDaC~am1
¯amn21

!#dSa , ~36!

for n51,2,3,... .
(ii) The Emm1¯mn21

are trace-free in all indices, totally symmetric in the indicesm1¯mn21 ,
and satisfy

E~mm1¯mn21!50. ~37!

(iii) The gauge behavior ofEmm1¯mn21
is given by

“

mEn
m1¯mn21

5 1
2n~n22!h (m1m2

Enm
m3¯mn21)2n~n21!dm

(m1
En

m2¯mn21)

1
n~n22!

n21
h (m1m2

E@nm#
m3¯mn21)22nd [m

(m1
En]

m2¯mn21) . ~38!

We will refer to theE’s as the remnant radiation multipoles of a Maxwell field.
To see that Eq.~36! indeed defines a conserved quantity, take the divergence of the inte

and use thatE
n

m Dmam ~and B
n

m Dmam) satisfy Eq.~19!. To prove Eq.~37!, we note that its
integrand is the divergence of an antisymmetric tensor.24 Equation~37! implies, in particular, that
Em is zero, and thatEmn is antisymmetric. While a second family of conserved quantities,* E,

associated similarly withB
n

a could be defined, they yield nothing new, for we have25

* Emm1¯mn21
5

n21

n
em(m1

nn1Eunn1um2¯mn21) . ~39!

Note that * Emm1¯mn21
has the symmetries(ii) in Theorem 2 above and that** Emm1¯mn21

52Emm1¯mn21
. The gauge behavior, Eq.~38!, is proved in Appendix B. Note that Eq.~38! yields,
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in particular, thatEmn is gauge invariant. The proof that the quantities given by Eq.~36! exhaust
the linear, Maxwell conserved quantities is outlined in Appendix B. Here is an example of
electromagnetic conserved quantities. Letf̃ be a Klein–Gordon field asymptotically regular o

order 1,w̃ab a constant antisymmetric tensor field onM̃ , and setF̃ab5“̃ [a(w̃b]m “̃

mf̃). Then this
F̃ab is a solution of Maxwell’s equations, asymptotically regular of order 2. Its remnants are g
in terms of those off̃ by

E
n

a5Da Db f
n21

jb2~n11!Dmja Dm f
n21

1n2 f
n21

ja , ~40!

where we have setja5w̃abxb . Then, the remnant radiation multipoles ofF̃ab can be expressed in
terms of those of f̃. For instance, we haveEmn5Kwmn , where we have setwmn

[2jaa [m Daan]1Dajb Daam Dban .
We turn finally to linearized gravity. LetK̃abcd be a linearized gravitational field asymptot

cally regular of order 3, with remnantsE
n

ab andB
n

ab .
Theorem 3: (i) The conserved quantities linear in this linearized gravitational field con

precisely of the mass–momentum [given by Eq. (11)], the angular momentum [given by Eq. (1
and

Gmnm1¯mn21
[Km1¯mn21

@E
n

kl Dkam Dlan#

5Enm1¯mn21
@E

n

ab Dbam#

5E @Da~E
n

kl Dkam Dlam!C~am1
¯amn21

!

2E
n

kl Dkam Dlam DaC~am1
¯amn21

!#dSa , ~41!

for n51,2,3,... .
(ii) TheGmnm1¯mn21

are trace-free in all indices, totally symmetric in the indicesm1¯mn21 ,
symmetric in indicesm, n, and satisfy

Gm~nm1¯mn21!50. ~42!

(iii) The gauge behavior ofGmnm1¯mn21
is given by

“

sGmn
m1¯mn21

5 1
2n~n22!h (m1m2

Gmns
m3¯mn21)2n~n21!ds

(m1
Gmn

m2¯mn21)

1
n~n22!

n21
h (m1m2

~Gm@ns#
m3¯mn21)1Gn@ms#

m3¯mn21)!

22nd [s
(m1

~Gm]n
m2¯mn21)1Gn]m

m2¯mn21)!. ~43!

We will refer to theG’s as the remnant radiation multipoles of a linearized gravitational field
To see that Eq.~41! indeed defines a conserved quantity, take the divergence of the integ

and use thatE
n

kl Dkam Dlan ~andB
n

kl Dkam Dlan) satisfy Eq.~19!. Equation~42!, which is actu-
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ally equivalent toE(nm1¯mn21)50, implies, in particular, thatGmn5Gmns50. While a second

family of conserved quantities,*G, associated similarly withB
n

ab could be defined, they yield
nothing new, for we have26

*Gmn
m1¯mn21

5
n21

n
es(m

l(m1
Gn)l

usum2¯mn21) . ~44!

Note that*Gmnm1¯mn21
also satisfies(ii) in Theorem 3 and that** Gmnm1¯mn21

52Gmnm1¯mn21
.

The proof that the quantities given by Eq.~41! exhaust the linear, gravitational conserved qu
tities is outlined in Appendix B. We omit the proof of the gauge behavior@Eq. ~43!#, which is
similar to the Maxwell case. Examples of linearized gravitational fields, their remnants, and
remnant radiation multipoles can be constructed in a manner similar to that of the Maxwell c27

One might expect, on physical grounds, that a static field would be characterized comp
by its static multipole moments and that its remnant radiation multipoles would all vanish
tically. This indeed turns out to be the case. See Appendix A.

IV. CURVED SPACE–TIME

It is natural to ask whether the remnant radiation multipoles constructed above for va
fields in Minkowski space–time can be generalized to curved space–time. To address this
we first obtain the remnant equations. Letf̃ be a Klein–Gordon field asymptotically regular o
order 1, so,f([V21f̃) is smoothly extendible toH. Then the Klein–Gordon equation onf̃
yields

05¹̃2f̃5V3@D2f1l21 Dal Daf1Vl22~2f
1

1Vf
2

!

1~f1Vf
1

!~2l222Vl23l
1

1 1
2Vl22qabq

1

ab!], ~45!

whereDa is, as before, the derivative operator on constant-V surfaces induced from“̃a . Evalu-
ating ~45! and its first two normal derivatives onH, we obtain, respectively,

05~D221!f
0

, ~46!

05D2f
1

, ~47!

05D2f
2

13f
2

2q
2

abDa Dbf
0

216l
1

f
1

214l
1

Dal
1

Daf
0

22~Da Dbl
1

!Dal
1

Dbf
0

132l
1

2f
0

12~Dl
1

!2f
0

. ~48!

For thenth derivative, the equation that results has the form

05~D21n221!f
n

24n2~n21!l
1

f
n21

1¯ , ~49!

where¯ involves only remnants off of order<n22.
Next, letF̃ab be a Maxwell field asymptotically regular of order 2. Then Maxwell’s equati

yield
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05“̃

mF̃ma52lV DmEm“aV2l21V2ea
bc@Db~lBc!1 1

2VLl2n~Emembc!#. ~50!

Evaluating~50! and its first two normal derivatives onH, we obtain, respectively,

DaE
0

a50, DaB
0

a50, ~51!

D [aE
0

b]50, D [aB
0

b]50, ~52!

D [aB
1

b]52 1
2eab

c~E
1

c22l
1

E
0

c!, ~53!

D [aE
1

b]5
1
2eab

c~B
1

c22l
1

B
0

c!, ~54!

D [aB
2

b]52eab
c@E

2

c24l
1

E
1

c1wcdE
0

d#, ~55!

D [aE
2

b]5eab
c@B

2

c24l
1

B
1

c1wcdB
0

d#, ~56!

where we have setE
1

a5E
1

a1l
1

E
0

a , E
2

a5E
2

a12l
1

E
1

a1l
2

E
0

a , B
1

a5B
1

a1l
1

B
0

a , B
2

a5B
2

a12l
1

B
1

a

1l
2

B
0

a , and wab52q
2

ab1( 1
2q

213l
1

22l
2

)q
0

ab . For thenth derivative, the equations that resu
have the form

D [a~B
n

b]1nl
1

B
n21

b] !52
n

2
eab

c~E
n

c2nl
1

E
n21

c1¯ !, ~57!

D [a~E
n

b]1nl
1

E
n21

b] !5
n

2
eab

c~B
n

c2nl
1

B
n21

c1¯ !, ~58!

where¯ involves only remnants ofEa , Ba of order<n22.
We turn finally to the gravitational field. The remnant field equations of order<2 were

obtained by Beig and Schmidt8,9 in the vacuum case under the gauge conditions~6!. We here drop
the assumption of the vacuum and the gauge condition. See Appendix C for an outline
derivation. The zeroth-order equations are satisfied identically. The first-order equations ar

q
1

ab522l
1

q
0

ab , ~59!

~D213!l
1

50. ~60!

The second-order equations are

q
2

52~Dl
1

!2124l
1

22D2l
2

26l
2

2DmT
0

m22T
0

, ~61!

Dbq
2

a
b532l

1

Dal
1

14 Dbl
1

Da Dbl
1

24 Dal
2

26Da~D2l
2

!1Da~2DmT
0

m22T
0

!12T
0

a , ~62!
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~D222!q
2

ab58~Dl
1

!2q
0

ab120Dal
1

Dbl
1

128l
1

Da Dbl
1

236l
1

2q
0

ab14Da Dcl
1

Db Dcl
1

14Dcl
1

DaDb Dcl
1

24Da Dbl
2

14l
2

q
0

ab2DaDb~D2l
2

!

24T
0

ab1DaDb~2DmT
0

m22T
0

!14D (aT
0

b) . ~63!

The third- and fourth-order equations are not used in what follows and are collected in App
C, where we also rewrite the second-order equations in terms of the remnants of the Weyl

We turn now to the issue of whether or not the various conserved quantities that we d
in flat space–time can be generalized to curved space–time. Recall that a conserved qua
given by the integral over a cut ofH of a vector fieldva

G onH, where that field is expressed a
an algebraic function of the preferred fieldam of the universal background geometry ofH, the
remnants of the physical field, the remnants of the geometry, and their derivatives. The dive
of this va

G must, for independence of cut, vanish by virtue of the equations satisfied byam and the
various remnants. In the special case of flat space–time, we have~or, at least, achieved via gauge!

l
k

50, q
k

ab50, for k>1, i.e., we have effectively no ‘‘remnants of the geometry.’’ Clearly, ev
conserved quantity, in general, remains a conserved quantity in the special case of flat spac
But the converse need not hold. Given a conserved quantity in flat space–time—i.e., g
divergence-free fieldva

G constructed from the preferred fieldam , the remnants of the physica
field, and their derivatives—then it may or may not be the case that it is the specialization
space–time of some conserved quantity in curved space–time. When it is, we say we
produced ageneralizationof our given flat-space conserved quantity.

Consider first the Klein–Gordon case. We have immediately from Eq.~47!, the following.
Theorem 4: The conserved quantityK [n 51 in Eq. (34)] for the Klein–Gordon field in flat

space–time admits a generalization, in the sense described above, to a conserved quan
curved space–time, namely, that given by

K5E Daf
1

dSa . ~64!

For the higher-order Klein–Gordon remnant radiation multipoles, we have the following
Theorem 5: Fix n>2. Then the conserved quantityKm1¯mn21

for the Klein–Gordon field in

flat space–time, given by Eq. (34), does not admit generalization to curved space–time.
Proof: Let, for contradiction,va

m1¯mn21
be a generalization to curved space–time. By

simple scaling argument~using, respectively, linearity of the Klein–Gordon remnant field eq

tions in thef
k

and homogeneity of all remnant field equations in order!, we may assume tha

va
m1¯mn21

is linear in thef
k

, and of total ordern in all remnants. Thus,va
m1¯mn21

contains nof
k

,

for k.n, and the term involvingf
n

is, becauseva
m1¯mn21

must reduce to the integrand o

Km1¯mn21
in flat space–time, preciselycm1¯mn21

Daf
n

2f
n

Dacm1¯mn21
, where we have se

cm1¯mn21
5C(am1

¯amn21
). Denote byua

m1¯mn21
the term ofva

m1¯mn21
involving f

n21

. Then,
the vanishing of divergence ofva

m1¯mn21
implies

Daua
m1¯mn21

5̂24n2~n21!l
1

cm1¯mn21
f

n21

, ~65!
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where5̂ stands for equality modulo Klein–Gordon remnants of order<n22. But there exists no
suchua

m1¯mn21
, as one sees by the following steps. First, add tova

m1¯mn21
a divergence of an

antisymmetric tensor field to achieve the form

ua
m1¯mn21

5wm1¯mn21
Da f

n21

2 f
n21

Dawm1¯mn21
, ~66!

with wm1¯mn21
linear in l

1

andcm1¯mn21
, and from Eqs.~65! and ~49!, satisfying

~D21n222n!wm1¯mn21
54n2~n21!l

1

cm1¯mn21
. ~67!

Second, replace every occurrence ofl
1

in Eq. ~67! by am . Then, under this substitution,wm1¯mn21

reduces to the formwm1¯mn21
5c Daam Dacm1¯mn21

1c8amcm1¯mn21
, for some constantsc,c8.

Sinceam satisfies Eq.~60!, which is the only property ofl
1

that may be used in establishing~67!,

it follows that Eq.~67! must continue to hold after replacingl
1

therein byam . However, under this
substitution, Eq.~67! becomes

2@~n11!c1c8#@Daam Dacm1¯mn21
1~n21!amcm1¯mn21

#54n2~n21!amcm1¯mn21
,

~68!

which can never hold. h

We turn next to Maxwell fields. We have the following.

Theorem 6: Let B
0

a50, and let the stress–energy tensor Tab satisfy

T
0

a50, T
0

abE
0

b2T
0

E
0

a50. ~69!

Then the conserved quantityEmn [of Eq. (36)] for the Maxwell field in flat space–time admits a
generalization to a conserved quantity in curved space–time, namely, that given by

Emn5E saba [n D ubuam] dSa , ~70!

where we have set

sab52 D (aE
2

b)22 DcE
2

c q
0

ab116E
1

(a Db)l
1

28E
1

c Dcl
1

q
0

ab116cl
1

Da Dbl
1

18l
1

E
0

(a Db)l
1

18l
1

2 DaE
0

b1@12cl
1

2220l
1

E
0

c Dcl
1

24c~Dl
1

!2#q
0

ab14cwab14cT
0

ab24cT
0

q
0

ab

211~cDa Dbl
2

1l
2

Da Dbc22 D (ac Db)l
2

!2c~11D2l
2

122l
2

!q
0

ab , ~71!

wherec is so chosen to satisfy Dac5E
0

a .28

The integrand reduces, in flat space–time, to the integrand ofEmn therein plus a divergence

namely,Db(E
2

[aa [m Db]an] ), of an antisymmetric tensor field. The demonstration ofDbsab50 is
given in Appendix B. The above conditions,~69!, on Tab are satisfied when the space–time
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vacuum, and also when the source is the Maxwell field itself. But the condition~69! need not be
satisfied in the presence of other matter sources. It is readily verified that this generalizedEmn is
again gauge invariant.

For higher-order Maxwell remnant radiation multipoles, we have the following theorem
Theorem 7: Fix n>3. Then the conserved quantityEmm1¯mn21

for the Maxwell field in flat

space–time, given by Eq. (36), does not admit generalization to curved space–time.
The proof of Theorem 7 is similar to that of Theorem 5, and is therefore omitted.

V. CONCLUSION

We have constructed, for each of a Klein–Gordon field, a Maxwell field, and a linea
gravitational field in Minkowski space–time, a hierarchy of conserved quantities that we ca
remnant radiation multipoles. In the cases of Klein–Gordon and Maxwell, we have generaliz
remnant radiation monopoles to curved space–time. There follows a discussion of some ou
ing issues.

Does the remnant gravitational monopole admit generalization to curved space–time
conjecture that the answer is yes. In Appendix C we give the remnant field equations necess
addressing this question. There we also display a candidate for a curved-space gravitation
nant monopole. This candidate has the attractive feature that its divergence, which co
principle, have contained remnants of order as high as 3, contains only remnants of ord<2.
Although the existence of this candidate lends some support to the conjecture, it is, of cour
from a proof of it. Work is in progress to settle this conjecture. We further conjecture that no
the higher-order remnant radiation multipoles for linearized gravitational fields admit gener
tion to curved space–time.

The way we introduced the Klein–Gordon and Maxwell remnant radiation monopoles

curved space–time involves a quite strong falloff condition, namely,B
0

ab50, on the gravitation
remnants. In the Klein–Gordon case, this restriction is, in fact, unnecessary. Indeed, in the a

of this condition, the first-order remnant field equation onf
1

becomesDava50, with va5Daf
1

2q
1

ab Dbf
0

1 1
2q

2

Daf
0

1l
1

Daf
0

. Thus,K[*Cva dSa remain conserved in asymptotic condition
weaker than the ones presently imposed. Can other conserved quantities be defined wi
weaker asymptotic conditions?

Do there exist conserved quantities analogous to our remnant radiation multipoles, but d
at null rather than spatial infinity? And if so, are there any simple relations between the valu
corresponding quantities at spatial and null infinity? In Minkowski space–time, it should n
too difficult to answer these two questions. A relevant observation29 is that, in the case of
Minkowski space–time corresponding conserved quantities, in general, take different val
spatial and null infinity. This result suggests that ‘‘remnant radiation’’ is capable of esca
between spatial infinity and null infinity. Recall that Newman, Penrose, and Exton30,31 have in-
troduced certain conserved quantities at null infinity in curved space–time. Are these qua
analogs, in any sense, of the remnant radiation monopoles?

It is unfortunate that the present treatment of asymptotic quantities involves such compl
algebra. It is not entirely clear whether these complications are inherent in the subject its
merely a reflection of the present techniques. One case in which we know that these techniq
the culprit is that of stationary space–times. It is not hard to convince oneself that the p
framework, in the case of stationary space–times, is essentially equivalent to the usual form
involving a three-dimensional manifold of trajectories. Since the stationary gravitational mult
moments of all order can be defined within this three-dimensional formalism, it should al
possible, in principle, to define these very same moments within the present framework. Ho
it already seems difficult to define even the first few stationary multipoles in the present fr
work. Unlike the three-dimensional formalism, the present framework is not well adapted t
presence of Killing fields. For example, to treat Killing’s equation order by order yields a c
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plicated set of remnant equations. Finding a more natural way of dealing with stationary s
times within the present framework may give some clue as to how to tame its algebraic com
ity. Indeed, it may further lead to a generalization of the stationary multipoles to more ge
asymptotically flat space–times.

Here we have restricted our consideration to conserved quantities that are linear i~the
highest-order part of the remnants of! the physical fields. More generally, one might allow pol
nomial dependence on the remnants. A candidate for a conserved quantity quadratic in th

nants has been given by Beig:9 *ekl(aDkl
1

E
0

l
b)a [m D ubuan] dSa , whereja is any Killing field inH.

However, as shown in Ref. 9, this quantity vanishes identically by virtue of the second-
gravitational remnant equations. It would be of interest to carry out a systematic searc
polynomial conserved quantities. One might even search for conserved quantities with no
nomial dependence on the remnant fields, but the fact that these remnant fields have com
gauge behavior rather suggests that no such quantities will exist.
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APPENDIX A: STATIONARY FIELDS IN MINKOWSKI SPACE–TIME

Consider in Minkowski space–time a physical field that is static, i.e., that is invariant un
time translation in the space–time. In this appendix, we do two things: Express within the p
framework the ordinary static multipole moments of such a field; and show that, in this static
all the remnant radiation multipoles vanish. We will only discuss linearized gravity here sinc
treatment of Klein–Gordon and Maxwell fields is similar and simpler.

Let K̃abcd be a linearized gravitational field in Minkowski space–timeM̃ , asymptotically
regular of order 3. Further, letK̃abcd be static, i.e., let

L t̃ K̃abcd50, ~A1!

where t̃ a is a ~unit! timelike Killing field in M̃ . Denote byz (5V22L t̃V) the corresponding uni
time translation onH. Taking the remnants of Eq.~A1!, we obtain the following equations on th
remnant fields:32

LDzE
n

ab2~n11!zE
n

ab12e lm
(aB

n

b) l Dmz50, ~A2!

for n50,1,2,... . Setf
n

E5E
n

ab Daz Dbz. Then thisf
n

E satisfies Eq.~19!, and, from Eq.~A2!, also

LDzf
n

E2~n11!zf
n

E50. ~A3!

Under a gauge transformationf
n

E changes according to Eq.~29!. The same equations hold

similarly, onf
n

B5B
n

ab Daz Dbz, n50,1,... . We note that theE
n

ab andB
n

ab for this static linearized

gravitational field can be expressed in terms off
n

E andf
n

B . Indeed, we have, from Eq.~A2! and
Eq. ~27!, that
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E
n

ab5
2z211

~n11!~n12!
Da Dbf

n

E1
3D (az Db) Dmf

n

E Dmz

2~n11!~n12!
2

Dk Dlf
n

E Dkz Dlzq
0

ab

2~n11!~n12!

1
5z D (az Db)f

n

E

2~n11!
1

4n15

2~n12!
f
n

E Daz Dbz1
~n23!z212n11

2~n12!
f
n

Eq
0

ab

1
2zekl

(aDb) Dkf
n

B Dlz

~n11!~n12!
1

2ekl
(aDb)z Dkf

n

B Dlz

n11
, ~A4!

and similarly forB
n

ab .
Now consider, forn50,1,2,...,

Mm1¯mn
@f

n

E#[
~2n11!!

2n11~n! !3 E
C
@f

n

E~am1
1^am1

,z&z!¯~amn
1^amn

,z&z!~11z2!21 Daz#dSa .

~A5!

The integrand on the right above is divergence-free, by Eq.~A3!, and so Eq.~A5! defines, for each

n, a conserved quantity,Mm1¯mn
@f

n

E#. These are precisely the ordinary static electric multip
moments of the linearized gravitational field.33 They are totally symmetric, and satisfy

05zm1Mm1m2m3¯mn
, ~A6!

05hm1m2Mm1m2m3¯mn
, ~A7!

“mMm1¯mn
52~2n21!hm(m1

Mm2¯mn)1~n21!h(m1m2
Mm3¯mn)m , ~A8!

where we have sethmn5hmn1zmzn . To prove Eq.~A7!, use thatf
n

E satisfies Eq.~19!; to prove

Eq. ~A8!, use the gauge behavior~29! of f
n

E . Similarly, we obtain the magnetic multipole mo

ments,Mm1¯mn
@f

n

B#. These two sets of moments are the linearized versions of Hansen’s mas
angular momentum multipole moments, respectively.

Finally, we show that all of the gravitational remnant radiation multipoles@theG’s introduced
in Eq. ~41!, Sec. III#, vanish for a static linearized gravitational field in Minkowski space–time.
see this, substitute Eq.~A4! into the integrand ofGmnm1¯mn21

, to obtain

Gmnm1¯mn21
5K@c1h0mh0nf

n

E1c2hmnf
n

E1c3h0(mLj
n)*

f
n

B1c4Lj
(m*
Lj

n)*
f
n

E

1c5h0(mLjn)
f
n

E1c6Lj(m
Lj

n)*
f
n

B1c7Lj(m
Ljn)

f
n

E#m1¯mn21
, ~A9!

where c1 ,...,c7 are certain constants, andja
m and j* a

m are the Killing fields given byja
m

5z Daam2am Daz and j* a
m5eabcDbz Dcam . Let C denote thez50 2-sphere section ofH.

We show that each term on the right in eqn.~A9! contributes zero by evaluating the integral ov
C. The first four terms contribute zero by virtue of the fact that each of the terms satisfies the

equations as a staticnth-order Klein–Gordon remnant fieldf
n

, and that, for any suchf
n

,
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*Cf
n

am1
¯amk

Daz dSa50, for 0<k,n. The fifth and sixth terms contribute zero because

any f
n

as above,Ljm
f
n

vanishes onC, andLDz(Ljm
f
n

) is a sum of two terms, one of which

@namely (n11)zLjm
f
n

# vanishes onC and the other@namely 2(f
n

)m[2DaamDaf
n

1(n

11)amf
n

# satisfies the (n11)th remnant field equation and is static. Finally, the last term c

tributes zero because (Ljm
Ljn

f
n

E) is a translation times a term that satisfies the (n11)th remnant

field equation and is static, and becauseLDz(Ljm
Ljn

f
n

E) is a sum of two terms, one of which

@namely, (n11)zLjm
Ljn

f
n

E2Lj(m
(f

n

E)n)# vanishes onC and the other~namely,2@Lj(m
f
n

E#n))

satisfies the (n11)th remnant field equation and is equal to a static fieldf
n11

on C. h

APPENDIX B: MISCELLANEOUS RESULTS

Appendix B 1 contains the proofs of item(i) of each of Theorems 1–3. Appendix B 2 contai
the proofs of item(iii) of each of Theorems 1–2. Appendix B 3 completes the proof that theEmn

we introduced in Theorem 6 is indeed conserved.

1. The remnant radiation multipoles exhaust the conserved quantities in Minkowski
space–time

We first show that, in the Klein–Gordon case, theK’s of Eq. ~34! exhaust all conserved

quantities in Minkowski space–time linear inf
n

and multilinear inT. Sketch of proof: Letva
G be

a divergence-free vector field onH, constructed linearly in thef
n

, and multilinearly inT. ~We
introduce the subscriptG to stand for any Greek indices that may be attached tova.) Since the

variousf
n

are uncoupled in~19!, we may takeva
G to depend on just a single remnant field, sayf

n

.
Thenva

G takes the form

va
G5 (

k50

s

waa1¯ak
GDa1

¯Dak
f
n

, ~B1!

wheres is the order of the highest derivative inva
G . We may assumewaa1¯as

G5w(aa1¯as)
G ,

since any parts ofwaa1¯as
G antisymmetric between ‘‘a’’ and another index can be eliminated b

adding tova
G the divergence of an antisymmetric second-rank tensor field, and any parts

symmetric between two indices neither ‘‘a’’ can be eliminated using the definition of the Rieman
tensor. It now follows, fromDava

G50, that waa1¯as
G5q(aa1ua2¯as)

G , for some tensor field
ua2¯a4

G . Weres>2, then this term could now be eliminated in its entirety by adding tova
G a

divergence, namelyDa2
@2(D [aDa3

¯Das
f
n

)ua2]a3¯a4
G#, of an antisymmetric tensor. So we ma

assumes51 in Eq. ~B1!, i.e., we may setva5wG Daf
n

2f
n

wa
G . It now follows, again from

Dava
G50, thatwa

G5DawG , wherewG is some solution of Eq.~19!. But this wG must be mul-
tilinear in T, and the only34 such solution of Eq.~19! is C(am1

¯amn21
).35

We next show that, in the Maxwell case, theE’s of Eq. ~36!, together with the electric and
magnetic charges, exhaust all conserved quantities in Minkowski space–time linear in the
nants of the Maxwell field and multilinear inT. Sketch of proof: Letva

G be a divergence-free
                                                                                                                



n

m-

pace–

n

-

1943J. Math. Phys., Vol. 40, No. 4, April 1999 Shyan-Ming Perng

                    
vector field onH, constructed linearly in theE
n

a and multilinearly inT. As before, we may take

va
G to depend on a single remnant field,E

n

a . If n50, the result, thatva5E
0

a follows by setting

E
0

a5Dac with D2c50, and using the Klein–Gordon result. So, letn>1. Thenva
G takes the form

va
G5 (

k50

s

waa1¯ak11
GDa1

¯Dak
E
n

ak11
, n>1, ~B2!

wheres is the order of the highest derivative inva
G . An argument similar to the Klein–Gordo

case shows thatva
G can be brought to the form

va
G5wbG DaE

n
b2E

n

b Dawb
G1mGE

n
a, ~B3!

where (D21n222)waG5DamG . We may achievemG50 in ~B2! by adding tova
G a divergence

of an antisymmetric tensor field, namely,Db„2E
n

[a Db]wG12wG D [aE
n

b]1(2/n2)cG D [aE
n

b]
…,

where cG is a certain constant and where we have setwG5(1/n2)(2mG1Dawa
G). Now wa

G

satisfies precisely the same equations asE
n

a. The conserved quantity thus arises from the ‘‘sy

plectic product’’ betweenE
n

a andwaG . But thiswa
G must be multilinear inT, and the only such

solution of Eq.~23! is wa
mm1¯mn21

5C(am¯amn21
)Daam1(1/n2)Da(Dbam DbC(am¯amn21

))
2amC(am¯amn21

).
Finally, we show that, in the case of linearized gravity, theG’s @of Eq. ~41!#, together with the

mass–momentum and angular momentum exhaust all conserved quantities in Minkowski s
time linear in remnants of the linearized gravitational field and multilinear inT. Sketch of proof:

Let va
G be a divergence-free vector field onH, constructed linearly in theE

n

ab and multilinearly

in T. As before, we may takeva
G to depend on a single remnant field,E

n

ab . If n50, the result, that

va
m5E

0
abDbam , follows by settingE

0

ab5Da Dbc1cq
0

ab with D2c523c, and using the Klein–

Gordon result. Ifn51, the result, thatva
mn5E

1
aba [m Dban] , follows by settingE

1

ab5D (aub) with
D2ua522ua , Daua50, and using the Maxwell result. So, letn>2. Thenva

G takes the form

va
G5 (

k50

s

waa1¯ak12
GDa1

¯Dak
E
n

ak11ak12
, n>2, ~B4!

wheres is the order of the highest derivative inva
G . An argument similar to the Klein–Gordo

case shows thatva
G can be brought to the form

va
G5wbcGDaE

n
bc2E

n

bcD
awbc

G1E
n

abubG , ~B5!

where wabG is symmetric and trace-free, and satisfies (D21n223)wabG5D (aub)G

2 1
3q

0

abDmum
G . We may achieveuaG50 in ~B5! by adding tova

G a divergence of an antisym
metric tensor field. The result now follows from an argument similar to the Maxwell case.
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2. Gauge behavior of remnant radiation multipoles

Here we prove that the gauge behavior of the Klein–Gordon and Maxwell remnant rad
multipoles is that given, respectively, by Eqs.~35! and ~38!.

For the Klein–Gordon case, denote byka
m1¯mn21

the integrand of Eq.~34!. Then we have

“mka
m1¯mn21

5nDa~LDam
f

n21

2nam f
n21

!C~am1
¯amn21

!

2n~LDam
f

n21

2nam f
n21

!DaC~am1
¯amn21

!.

5 1
2n~n22!h (m1m2

km3¯mn21)m
a 2n~n21!hm(m1

km2¯mn21)
a

1Dm@2n D[a f
n21

Dm]am C~am1
¯amn21

!

12n f
n21

D [aam Dm]C~am1
¯amn21

!#, ~B6!

where we used, in the first step, Eqs.~34! and ~29!, and, in the second, the identity36

Dmam DmC~am1
¯amn21

!52~n21!amC~am1
¯amn21

!1~n21!hm(m1
C~am2

¯amn21)!

2
n22

2
h (m1m2

C~am3
¯amn21)am!. ~B7!

Integrate over a cut ofH.
For the Maxwell case, denote by (eE)nm1¯mn22

a the integrand of Eq.~36!, and setja
mn

52a [m Daan] . Then we have

“

m@~eE!a#n
m1¯mn21

5nDa@~LDam
E

n21

m2nam E
n21

m1emkl B
n21

k Dlam!Dman#C~am1
¯amn21

!

2n@~LDam
E

n21

m2nam E
n21

m1emkl B
n21

k Dlam!Dman#DaC~am1
¯amn21

!

5“mkm1¯mn21

a @ E
n21

m Dman#1
n~n22!

n21
h (m1m2

@~eE!a#@nm#
m3¯mn21)

22nd [m
(m1

@~eE!a#n]
m2¯mn21)2

n

n21
Dm@2~D [a E

n21

kD
m]jk

mn

1 E
n21

[ajm]
mn!C~am1

¯amn21
!12 E

n21
k D [ajkmn Dm]C~am1

¯amn21
!#,

~B8!

where we used, in the first step, Eqs.~30! and ~36!, and, in the second, the identity, Eq.~B7!,
again. Integrate over a cut ofH.

3. Completion of proof of Theorem 6

In our proof of Theorem 6, we omitted one step: The demonstration the thesab of Eq. ~71! is
indeed divergence-free. Here we supply that step. We have
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Dbsab522eabcD
b~wcdB

0

d!116l
1

eabcDbl
1

B
0

c28cT
0

a14~T
0

abE
0

b2T
0

E
0

a!50, ~B9!

where, in the first step, we used the following six equations:

Db~2D (aE
2

b)22DcE
2

cq
0

ab!516~D [aE
1

b] ! Dbl
1

124l
1

E
1

a216l
1

2E
0

a24wabE
0

b22eabcD
b~wcdB

0

d!

116l
1

eabcDbl
1

B
0

c, ~B10!

Db~16E
1

(a Db)l
1

28E
1

c Dcl
1

q
0

ab!5216~D [aE
1

b] !D
bl

1

224l
1

E
1

a116~E
0

c Dcl
1

!Dal
1

, ~B11!

Db~4cwab!54wabE
0

b28cl
1

Dal
1

28cDa Dbl
1

Dbl
1

122cDa~D2l
2

!

1cDa~2 DbTb14T!28cTa , ~B12!

Db@16cl
1

Da Dbl
1

18l
1

E
0

(a Db)l
1

18l
1

2 DaE
0

b1~12cl
1

2220l
1

E
0

c Dcl
1

24c~Dl
1

!2!q
0

ab#

516l
1

E
0

a216~E
0

bDbl
1

!Dal
1

18cl
1

Dal
1

18cDa Dbl
1

Dbl
1

, ~B13!

Db@211~cDa Dbl
2

1l
2

Da Dbc22D (ac Db)l
2

!1c~211D2l
2

122l
2

!q
0

ab ,#5222cDa~D2l
2

!,
~B14!

Db~4cT
0

ab24cT
0

q
0

ab!54~T
0

abE
0

b2T
0

E
0

a!14c~DbT
0

ab2DaT
0

! ~B15!

~themselves consequences of the remnant field equations@~50!–~56!, ~60!–~63!, ~C12!, ~C13!#,

and, in the second step,B
0

a50 and Eq.~69! of the theorem.

APPENDIX C: GRAVITATIONAL REMNANT EQUATIONS

In Appendix C 1 we discuss the issue of generalizing the remnant radiation multipoles
linearized to full gravitation. In Appendix C 2, we outline the derivation of gravitational remn
field equations. In Appendix C 3 we present an alternative version of the second-order g
tional remnant field equations, involving the remnants of the Weyl tensor.

1. Generalization of gravitational remnant radiation monopole

In Sec. IV, we generalized the flat-space Klein–Gordon and Maxwell remnant radi
monopoles to curved space–time. However, we have been unable to determine whethe
exists a similar generalization for linearized gravity. Here is how far we have gotten.

The remnant equations for gravitation were given, up to second order, in~60!–~63!. We shall
need the next two orders. The third-order remnant equations are

q
3

5q
2

abDa Dbl
1

12Da Dbl
1

Dal
1

Dbl
1

112l
1

~Dl
1

!2224l
1

3, ~C1!

Dbq
3

ab5Daq
3

12q
2

ab Dbl
1

14~Dl
1

!2 Dal
1

164l
1

2 Dal
1

, ~C2!
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D2q
3

ab52q
3

ab1Da Dbq
3

212Dl
1

•Dq
2

ab124l
1

q
2

ab116D (a~q
2

b)m Dml
1

!116D (al
1

Db) Dcl
1

Dcl
1

24~Dl
1

!2Da Dbl
1

1160l
1

Dal
1

Dbl
1

252l
1

2Da Dbl
1

2@5q
3

212l
1

~Dl
1

!21372l
1

3#q
0

ab .

~C3!

The fourth-order remnant equations are

q
4

5 2
3q

3
abDa Dbl

1

1 1
3 Dl

1

•Dq
3

1 10
3 q

2
ab Dal

1

Dbl
1

15l
1

q
2

abDa Dbl
1

12q
2

abq
2

ab

2 4
3~Dl

1

!2~Dl
1

!21 92
3 l

1
2~Dl

1

!2110l
1

Da Dbl
1

Dal
1

Dbl
1

2192l
1

4, ~C4!

Dbq
4

ab5Daq
4

14q
3

ab Dbl
1

12q
3

Dal
1

13Db~q
2

acq
2

c
b!2 9

4 Da~q
2

bcq
2

bc!

2 3
2 q

2

ab Dbq
2

210l
1

q
2

ab Dbl
1

176l
1

~Dl
1

!2 Dal
1

1832l
1

3 Dal
1

, ~C5!

D2q
4

ab526q
4

ab12D (a Dmq
4

b)m12q
4

q
0

ab116l
1

D (a Dmq
3

b)m116D (aq
3

b)m Dml
1

172l
1

q
3

ab220l
1

q
3

q
0

ab

28l D2q
3

ab216Dl
1

•Dq
3

ab196l
1

2D (a Dmq
2

b)m196l
1

2q
2

ab296l
1

2q
2

q
0

ab

1120l
1

D (aq
2

b)m Dml
1

248l
1

2 D2q
2

ab2156l
1

Dl
1

•Dq
2

ab116Dc D (al
1

q
3

b)c116Dcq
3

c(a Db)l
1

28q
3

cdDc Ddl
1

q
0

ab28 Dcq
3

cd Ddl
1

q
0

ab212Dcq
2

cd D (aq
2

b)d212q
2

cdDc D (aq
2

b)d

16 Dcq
2

cd Ddq
2

ab16q
2

cdDc Ddq
2

ab1192l
1

D (al
1

Dcq
2

b)c1192l
1

Dc D (al
1

q
2

b)c

1192D (al
1

q
2

b)c Dcl
1

296l
1

Dcq
2

cd Ddl
1

q
0

ab296l
1

q
2

cdDc Ddl
1

q
0

ab296q
2

cdDcl
1

Ddl
1

q
0

ab

1432l
1

3Da Dbl
1

11440l
1

2 Dal
1

Dbl
1

11488l
1

2~Dl
1

!2q
0

ab11296l
1

4q
0

ab148l
1

Dl
1

•Dq
2

q
0

ab

23 Dq
2

•Dq
2

ab16 D (aq
2

b)c Dcq
2

14 Dl
1

•Dq
3

q
0

ab148~Dl
1

!2~Dl
1

!2q
0

ab124q
2

acq
2

c
b

212q
2

cdq
2

cdq
0

ab248~Dl
1

!2q
2

ab26 Dcq
2

d(a Ddq
2

b)
c23 Daq

2

cd Dbq
2

cd16 Dcq
2

da Dcq
2

b
d

2Dc Dbq
4

28DaDb~l
1

q
3

!13DaDb~q
2

cdq
2

cd!248DaDb~l
1

2q
2

!. ~C6!

We begin by noting that, introducing a potentialhab for the linearized gravitational field, the

integrand ofGmnls in flat space–time in Eq.~41! is a multiple ofD (ah
4

bc)j
b

(mu(ljc
s)un) , where we

have setja
mn5a [mDaan] . Note also thatD (ah

4

bc) is divergence-free, by virtue of the remna

field equations onh
k

ab . Thus, the problem of generalizing to curved space–time theGmnls of flat
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space–time is equivalent to that of finding a third-rank, totally symmetric, divergence-free t
field sabc onH, constructed from the gravitational remnants, such thatsabc reduces, in the case o

linearized gravity, toD (ah
4

bc) . Consider, in this connection, the candidateŝabc given by

ŝabc5D (aq
4

bc)1~ 82
3 14c!l (aq

3

bc)2~2414c!q
0

(abq
3

c)dld1~ 20
3 12c!l

1

D (aq
3

bc)

2~ 10
3 1c!ld

(abq
3

c)d1~ 2
3 1 c

2!q
0

(ablc)deq
3

de1 4
3 ld

(a Dbq
3

c)d2~ 10
3 1 c

2!q
0

(ab Dc)q
3

delde

1 8
3 q

0

(abD
dq

3
e
c)lde1~21c!ldD (a Dbq

3

c)d2~ 8
31c!ldDd D (aq

3

bc)1cld(a Ddq
3

bc) , ~C7!

where c is any constant, and where we have setla[Dal
1

, lab[Da Dbl
1

1l
1

q
0

ab , and labc

[Dalbc . This ŝabc has all the required properties, except that its divergence, instead of vanis
includes remnants of order not exceeding 2. The issue, then, is whether one can add to thŝabc

terms of order not exceeding two to achieve vanishing divergence. In any case, the mere ex
of this field ŝabc lends support to the conjecture thatGmnls admits a generalization to curve
space–time. Work is in progress to settle this conjecture.

2. Derivation of gravitational remnant field equations

The Einstein equation gives rise to certain differential equations on the gravitational rem

l
k

ab ,q
k

ab . These equations for a vacuum space–time were first systematically studied by Be
Schmidt.8,9 We have here utilized the nonvacuum equations, of order one~59!–~60!, two ~61!–
~63!, and vacuum equations of order three~C1!–~C3!, and four~C4!–~C6!. We summarize how
these were derived. First write Einstein’s equation in a 311 form, adapted to the surfacesV
5const:

V2T52 1
2@R1pmnpmn2p2#, ~C8!

V2Ta5Dm~pam2pqam!, ~C9!

V2Tab5Rab12pa
mpmb2ppab2l21Da Dbl1l21pab2VLlnpab , ~C10!

where Da denotes the derivative operator of the metricqab of these surfaces,Rab its Ricci
curvature, andpab the rescaled extrinsic curvature of these surfaces, defined by

pab[Vqa
kqb

I
“̃k~V22l “̃ lV!52l21qab1 1

2VLlnqab . ~C11!

Taking the remnants of Eqs.~C8!–~C10! through fourth order, we obtain Eqs.~59!–~60!, ~60!–
~63!, ~C1!–~C3!, and~C4!–~C6!.

We remark, finally, that the conservation equation of the stress–energy tensor,“̃

aT̃ab50,
yields, for the zeroth-order remnants ofT̃ab , the following equations:

05DaT
0

a12T
0

12T
0

m
m , ~C12!

05DbT
0

ab2Da~T
0

1T
0

m
m!. ~C13!
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3. Second-order equations in Weyl remnants

We first remark that, for any space–time with completion, the Weyl tensor is asymptot

regular of order 3. To see this, rewrite 2“̃ [a“̃b]nc5R̃abc
dnd as

Eab5V21~2R
q

ab2pa
mpbm1ppab!1V@ 1

2~Tab2 1
3qabT

m
m!2 2

3qabT#, ~C14!

Bab5V21emn(a D
q

mpn
b) , ~C15!

with Eab andBab given by Eq.~3!, pab given by Eq.~C11!, andTab given by Eq.~2!. But, by the
conditions in Definition 1, the right sides are smooth onM.

We next remark that the gravitational remnant equations,~60!–~63!, can be written in terms of

the Weyl remnants,E
k

ab ,B
k

ab . To see this, first take the zeroth-order remnants of Eqs.~C14!,
~C15! above, to obtain

E
0

ab52~Da Dbl
1

1l
1

q
0

ab!, ~C16!

B
0

ab5ekl(aDk~q
1

l
b)12l

1

q
0

l
b)!50, ~C17!

and the first-order remnants, to obtain

E
1

ab52 1
2q

2

ab1@~Dl
1

!215l
1

2#q
0

ab1l
1

Da Dbl
1

22 Dal
1

Dbl
1

2 1
2T

0

ab2~ 2
3T

0

1 1
6T

0
m

m!q
0

ab ,
~C18!

B
1

ab5 1
2emn(aDmq

2
n

b) . ~C19!

These Weyl remnants satisfy, by virtue of Eqs.~60!–~63!, the equations

D [aE
0

b]c50, ~C20!

D [aE
1

b]c5 1
2eab

m@B
1

mc14ekl(m~Dkl
1

!E
0

l
c)1

1
2emc

nT
0

n#, ~C21!

D [aB
1

b]c52 1
2eab

m@E
1

mc22T
0

mc2T
0

q
0

mc1DcT
0

m#, ~C22!

where we have set

E
1

ab5E
1

ab2l
1

E
0

ab1 1
2T

0

ab1~ 1
6T

0
m

m2 2
3T

0

!q
0

ab . ~C23!

Now fix a space–time with completion, and defineE
0

ab , E
1

ab , andB
1

ab by Eqs.~C16!–~C19!.

Then Eqs.~60!–~63! are equivalent to the statements that theE
0

ab , E
1

ab , B
1

ab , so defined are
trace-free and satisfy~C20!–~C22!.
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12Sketch of proof: Let (M̃ ,g̃ab) be a stationary asymptotically flat vacuum space–time with Killing fieldja. Denote bym

andv the norm and twist of the Killing field, respectively. Let (Ṽ,h̃ab) denote the~Riemannian! manifold of orbits of the
Killing field, ( V,L) its completion,VG a conformal factor, andhab5VG

2 h̃ab ~see Ref. 3!. It follows37 that each of
VG

21/2m1/4(m2m211m21v2), VG
21/2m1/4(m21v), andm1m211m21v2 is smooth onV. Fix any smooth coordinatesxi

on V nearL such thathi j uL5d i j , and Lie drag them intoM̃ by ja. Perform an inversion on these coordinates to obt
x̃i on M̃ . Pick at8a on V satisfyingD [atb]8 52

1
2m23/2eabc Dcv and such thatta8 is smooth iny8 and vanishes atL ~See,

e.g., the appendix of Ref. 37 for motivation!. Let ta be the pull-back ofta8 to M̃ . Define x̃0 on M̃ such that“ax̃0

5m21ja2ta ~note the right side is curl-free and yields 1 when contracted withj̃a). Then the hyperbolic coordinate
associated with thex̃m coordinates yield a completion ofM̃ in the sense above.

13Such freedom in choices of~inequivalent! completion are known to exist also for other frameworks such as tha
Geroch and that of Ashtekar-Hansen.

14P. G. Bergmann, Phys. Rev.124, 274 ~1961!.
15P. T. Chrusciel, J. Math. Phys.30, 2094~1989!.
16More generally, for a spin-s field, we would demand asymptotic regularity of orders11.
17In essence, one may viewam as a choice of an orthonormal basis ofT, andv5vmam as the expansion of an elemen

vPT in the basisam with constant coefficientsvm. Our presentation serves the same purpose without commit
ourselves to a particular choice of basis. Thus, theam might be better viewed as an ‘‘abstract orthonormal basis.’’

18To see this, evaluateD [a Db] (h
mn Dcam Ddan) using Eq.~8! and equate the result to 2Rab(c

m(hmn Dd)am Dman), to

obtainhmn Daam Dban5hmnamanq
0

ab . Now contract withq
0

ab using Eq.~9!.
19One might be tempted to consider, in addition, those divergence-free vector fields that are multilinear in the Killing

onH. However, this adds nothing new, since every antisymmetric second rank tensorFmn in T yields a Killing field in
H when contracted witha [m Daan] and, conversely, for every Killing fieldja in H, there exists an antisymmetric secon
rank tensor overT ~namely,Fmn[2jaa@m Daan]1Dajb Daam Dban) that gives rise to it. Similarly, multilinearity in
conformal Killing fields yields nothing new, for every vectorvm in T yields a curl-free conformal Killing field inH
when contracted withDaam and conversely, for every curl-free conformal Killing fieldza inH, there exists a vector ove
T @namely,vm5za Daam2

1
3(Daza)am# that gives rise to it.

20In Ref. 11, Ashtekar and Romano used instead the condition limV→0 V21G̃ab50 to show that the angular momentum
conserved. As we have noted earlier, their condition is too strong. The condition we are imposing is the necess

sufficient condition forB
1

ab to be divergence-free onH @cf. Eq. ~C22!#. An example of a space–time satisfying ou
additional condition is the Kerr–Newman solution. In fact, the Kerr–Newman solution satisfies a stronger con

T
0

a50. In general, it is not clear how restrictive is the condition given by Eq.~13!. However, the condition is presumabl
satisfied for all stationary asymptotically flat space–times since in that case one expects the angular momentum
defined and equal to Hansen’s angular-momentum dipole moment.38

21To see this, note that Mmn8 2Mmn52(1/16p)emn
ts*C$(22emn(aE

0
b)

m Dnv
0

)at Dbas%dSa5

2(1/8p)v
0

[m*CE
0

ab D ubuan] dSa52v
0

[mPn] .
22The linearity is clear for electric charge. For total energy–momentum and angular momentum, we have in m

linearized gravity in Minkowski space–time in which these quantities are linear in the gravitational field an
expressible as surface integrals.39

23That is,C(am1
¯amn21

)[(m50
@n/2# (21/4)m(m

n2m21)h (m1m2
¯hm2m21m2m

am2m11
¯amn21) , with @n/2# denoting the largest

integer not exceedingn/2.

24Indeed, we haveDa(E
n

m Dma (m)C(am1
¯amn21))2E

n
m Dma (m DaC(am1

¯amn21))5Db$2E
n

[a Db]a (m C(am1
¯amn21))

1eabcB
n

c@a (mC(am1
¯amn21))2(1/2)h (mm1

C(am2
¯amn21))#%, which can be seen by using Eq.~B7! and the identity

a (m DaC(am1
¯amn21))5(n21)C(a (m1

¯amn21
)Daam)1(1/2)h (mm1

DaC(am2
¯amn21)).

25To see this, note that the difference between the integrands of* Emm1¯mn21
and that of the right of Eq.~39! is given by

Dk$(2/n)Dmam e lm[a@(Dk]E
n

l)C(am1
¯amn21

)2E
n

l Dk]C(am1
¯amn21

)#%. Integrate over a cut ofH.
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26To see this, note that the difference between the integrands of*Gmnm1¯mn21
and the right side of Eq.~44!

is given by Dk$(1/n)eaklE
n

lma (m Dman) C(am1
¯amn21

)1(2/n)Dma (m Dsan) e lm[a@(Dk]E
n

ls)C(am1
¯amn21

)2E
n

ls Dk]C
3(am1

¯amn21
)#%. Integrate over a cut ofH.

27Indeed, we have the following. Letf
n22

satisfy then22th remnant equation for a Klein–Gordon field,ja any Killing

field. Denote by c
n22

a1¯as
the symmetric and trace-free part ofDa1

¯Das
f

n22

. Then E
n

ab[ c
n22

abcdj
cj* d1

12
7 (n11)

3(n12)@j* m c
n22

m(ajb)1jm c
n22

m(ajb)* 2
2
3q

0

ab c
n22

cdj
cj* d#2

4
5n(n11)(n12) c

n22
mDm(j (ajb)* )1

4
5n(n21)(n11)(n12)

3 c
n22

j (ajb)* 1(n12) c
n22

cd(aDb)(j
(cj* d)), satisfies thenth remnant equations for a linearized gravitational field.

28Adding to c a constant changes the integrand ofEmn in Eq. ~70! by a divergence of an antisymmetric tensor.
29Let f̃ be a Klein–Gordon field in Minkowski space–time asymptotically regular of order 1. ConsiderI 5*S`

2 ẽabcdx
c
“̃

d@(xe
“̃e11)f̃#, whereS` denotes a two-sphere at infinity, andxa a position vector field. WhenS` is any

two-sphere cut at spatial infinity, the above integral reproduces the remnant radiation monopoleK associated withf̃.
However, in general, the integral evaluates to a different value when the two-sphereS` is at null infinity. For example,
let f̃5„f (t1r )2 f (t2r )…/r , with k6(x)[ f (61/x), x.0, both smoothly extendible to zero. Then, whenS` is at spatial
infinity, we haveI 5K54p@k18 (0)1k28 (0)#, while for S` any cut at future null infinity,I 54pk18 (0), and forS` any
cut at past null infinity,I 54pk28 (0).

30 Newman and Penrose, Proc. R. Soc. London Ser. A305, 175 ~1968!.
31A. R. Exton, E. T. Newman, and R. Penrose, J. Math. Phys.10, 1566~1969!.

32The analogous equation forB
n

ab ,

LDzB
n

ab2~n11!zB
n

ab22e lm
(aE

n

b) Dmz50,

follows from Eq.~A2! and the remnant field equations. For a Maxwell field the corresponding equation isLDzE
n

a2(n

11)zE
n

a1ea
klB

n

k Dlz50, and for a Klein–Gordon field, Eq.~A3!.
33We remark that the multipole momentM defined here is related to theQ defined by Geroch in Ref. 40 by a normalizatio

factor: Qi 1¯ i n
5(2

1
3)nn! Mi 1¯ i n

.
34We are concerned only with ‘‘irreducible’’ solutions. Thus, for example,C(am1

¯amn21
) and hmnC(am1

¯amn21
) are

viewed as equivalent solutions to Eq.~19!.
35To see this, embedH as the unit hyperboloid in Minkowski space–timeM 8. Let xa denote the position vector field from

some origin. Then“axb5da
b andH is specified byxaxa51. Let ka be a constant vector field inM 8. Thenkaxa is a

translation onH. Thus, the most general function multilinear in translations is a sum of terms of the formw(s)
[wa1¯asxa1

¯xas
, with wa1¯as

some symmetric, trace-free constant tensor. Thisw(s) satisfies the Klein–Gordon

equation inM 8. Using ¹2w5@D21(x•x)21((x•“)212x•“)#w, we see thatw(n21) satisfies Eq.~19! onH. Such
w(n21)’s clearly exhaust all solutions of Eq.~19!, which are multilinear in translations. But each suchw(n21)’s onH
is the contraction ofC(am1

¯amn21
) with some tensor overT.

36One way to prove the identity is to note the following:Daam DaC(am1
¯amn21

)1(n21)amC(am1
¯amn21

) satisfies Eq.

~19! with n replaced byn21 and is trace-free inm1¯mn21 . The overall normalization factor can be fixed by compa
ing, say, the coefficients of the termh (mm1

C(am2
¯amn21)

) on both sides.
37R. Geroch, J. Math. Phys.12, 918 ~1970!.
38R. O. Hansen, J. Math. Phys.15, 46 ~1974!.
39R. Penrose, Proc. R. Soc. London, Ser. A381, 53 ~1982!.
40R. Geroch, J. Math. Phys.11, 1955~1970!.
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Group invariant solutions for the N52 super
Korteweg–de Vries equation

M. A. Ayari,a) V. Hussin,b) and P. Winternitzc)

Centre de Recherches Mathe´matiques, Universite´ de Montréal,
C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada

~Received 3 August 1998; accepted for publication 9 November 1998!

The method of symmetry reduction is used to solve Grassmann-valued differential
equations. The (N52) supersymmetric Korteweg–de Vries equation is considered.
It admits a Lie superalgebra of symmetries of dimension 5. A two-dimensional
subsuperalgebra is chosen to reduce the number of independent variables in this
equation. We are then able to give different types of exact solutions, in particular
soliton solutions. ©1999 American Institute of Physics.
@S0022-2488~99!02903-5#

I. INTRODUCTION

The study of integrability and conservation laws for systems of Grassmann-valued differ
equations~SGVDEs! has known a wide expansion in the area of supersymmetry.1–13 Many of
these equations have been constructed2–6 in order to combine bosonic and fermionic degrees
freedom in such a way that these equations are invariant under supersymmetry transform
This means that in these cases, there exists a symmetry relating bosonic and fermionic fie

Many authors have proven integrability by finding Lax pairs and conservation laws.
example, Yung12 has studied the supersymmetric Boussinesq hierarchies and his results
confirmed later by Bellucciet al.13 Mathieu3,4 has investigated the supersymmetric~SUSY!
Korteweg–de Vries~KdV! equation forN51,2 odd independent variables and has found t
integrability occurs for special values of a parameter figuring in the superequations.

These SUSY KdV equations are the starting point of our approach and more particular
case4 N52. These equations contain both the KdV and modified KdV equations in the limit w
odd Grassmann dependent variables are set equal to zero. Moreover, the supersymmetry
richer in theN52 case than forN51 and it contains significant subgroups.14 We will use the
technique of symmetry reduction adapted to the super case to give some solutions of tN
52) SUSY KdV equation. This technique does not depend on the integrability of the equatio
consists of a systematic application of group theory to reduce the SGVDE to a system of or
differential equations~ODEs!.

The problem of computing solutions for SGVDEs has recently received a large amou
attention.15–19 In these approaches, the SGVDEs are decomposed and give rise to syste
classical partial differential equations~PDEs! which can be solved. Our approach is based
symmetries and supersymmetries and does not require that we start with such a decompo

The Lie-point symmetries of a SGVDE have been obtained using an extension to Gras
variables of the procedure described, e.g., by Olver.20 The N52 SUSY KdV admits a symmetry
superalgebra with three even and two odd generators.14 The equation, its invariance superalgeb
and the corresponding group will be given in Sec. II. The technique of symmetry reduction a
us to consider solutions which are invariant under subsuperalgebras with at least one sup
metric ~or odd! generator. In Sec. III, a subsuperalgebra of dimension 2 will be used to deriv

a!Electronic mail: ayaria@dms.umontreal.ca
b!Electronic mail: hussin@dms.umontreal.ca
c!Electronic mail: wintern@crm.umontreal.ca
19510022-2488/99/40(4)/1951/15/$15.00 © 1999 American Institute of Physics
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reduced equations and the solutions of the bosonic and fermionic part of the superfield.
conclusions are drawn in Sec. IV.

II. THE SUPERSYMMETRY GROUPS OF THE N52 SUSY KdV EQUATION

Let us recall that a SGVDE is a system ofs partial differential equations of orderk
5(k1 ;k2) of the form

Dn~X,Q;A~k1!,G~k2!!50, n51,...,s ~2.1!

with m independent even variablesX5$x1 ,...,xm%, n independent odd variablesQ
5$u1 ,...,un%, q dependent even variablesA5$A1,A2,...,Aq%, andp dependent odd variablesG
5$G1,G2,...,Gp%. Note that odd variablesh i must satisfy

h ih j52h jh i , h i
250, 1< i , j <r .

The equation we are interested in is precisely of this type. It takes the form:4

At52Axxx13~AD1D2A!x1
~a21!

2
~D1D2A2!x13aA2Ax , ~2.2!

whereD1 ,D2 are the covariant superderivatives

Di5u i]x1]u i
, i 51,2. ~2.3!

Equation~2.2! thus represents a one-parameter (aPR) family of Grassmann-valued partial dif
ferential equations having four~two even and two odd! independent variables (x,t;u1 ,u2) and one
dependent variableA which is supposed to be a bosonic~or even! superfield. It has been con
structed by Mathieuet al.4 as a nontrivial SUSY equation which contains both the KdV and
modified KdV as nonSUSY limits.

A more suitable form of Eq.~2.2! is given using partial derivatives, i.e.,

At1Axxx23au1u2AxAxx2~a12!u1AAxxu2
2~a12!$u1u2AAxxx2u2AAxxu1

%

1~2a11!u2AxAxu1
1~a12!$AxAu1u2

1AAxu1u2
%2~2a11!u1AxAxu2

2~a21!$u1Au2
Axx2u2Au1

Axx1Au1
Axu2

2Au2
Axu1

%23aA2Ax50. ~2.4!

Since the superfieldA is bosonic, it can be decomposed into

A~x,t;u1 ,u2!5u~x,t !1u1r1~x,t !1u2r2~x,t !1u1u2v~x,t !, ~2.5!

whereu andv are even functions of~x,t! while r1 andr2 are odd functions of the same indepe
dent even variables. It is then easy to see that the superequation~2.4! reduces to the following
system of two bosonic and two fermionic equations:

ut1uxxx23au2ux1~a12!~uv !x2~a21!~r1r2!x50,
~2.6!

v t1vxxx16vvx23auxuxx2~a12!uuxxx23r2rxx
2 2~a12!r1rxx

1

23a~u2vx12uuxv22ur1rx
212ur2rx

122uxr
1r2!50,

and
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r t
11rxxx

1 1~a12!~r1v !x2~a21!~r1v !x2~a12!urxx
2 2~2a11!uxrx

2

2~a21!r2uxx23a~u2rx
112uuxr

1!50,
~2.7!

r t
21rxxx

2 1~a12!~r2v !x1~a12!urxx
1 1~2a11!uxrx

11~a21!r1uxx

2~a21!~r2v !x23a~u2rx
212uuxr

2!50.

We see that the first bosonic equation reduces to the mKdV equation whenv50 and r15r2

50. The second one reduces to the KdV equation whenu50 andr15r250. So we expect to
find, for example, supersolitonic solutions for the complete supersymmetric system. Conc
the fermionic equations, they form a system of coupled linear equations inr1 andr2 onceu and
v are known. We will see later that the method of symmetry reduction will decouple t
equations and will help in its resolution.

The Lie superalgebra of symmetries for Eq.~2.4! has been computed making use of aMAPLE

programGLIE.21 It is a ~3u2!-dimensional superalgebra with basis

P15]x , P05] t ,

D5x]x13t] t1
1
2u1]u1

1 1
2u2]u2

2A]A , ~2.8!

Q15u1]x2]u1
, Q25u2]x2]u2

,

whereP0 ,P1 ,D are the three even generators andQ1 andQ2 are the two odd ones. This result
true independent of the value of the parametera entering in the superequation. The supercomm
tator table of the Lie superalgebra is given in Table I, where, as usual, commutation relatio
satisfied for even–even and even–odd products while anticommutation relations are satis
odd–odd products.

As usual in super Lie group theory, starting with a Lie superalgebra, we obtain the c
sponding Lie group by exponentiation. The groupG of Lie-point symmetries for Eq.~2.4! is
generated by the elementsg5(x0 ,t0 ,d;h1 ,h2) wherex0 ,t0 ,d are even Grassmann numbers a
h1 ,h2 odd ones. They satisfy the composition law

g[~x0 ,t0 ,d;h1 ,h2!5~x0
2,t0

2,d2 ;h1
2,h2

2!~x0
1,t0

1,d1 ;h1
1,h2

1!5g2g1 ~2.9!

with

d5d21d1 , t05t0
21e3d2t0

1,

x05x0
21ed2x0

11expF S d21
d1

2 D G~h1
2h1

11h2
2h2

1!, ~2.10!

h15h1
11e2d1/2h1

2, h25h2
11e2d1/2h2

2.

TABLE I. The supercommutator table of the SUSY KdV equation (N
52).

P1 P0 D Q1 Q2

P1 0 0 P1 0 0
P0 0 0 3P0 0 0
D 2P1 23P0 0 (21/2)Q1 (21/2)Q2

Q1 0 0 (1/2)Q1 22P1 0
Q2 0 0 (1/2)Q2 0 22P1
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The identity element ise5(0,0,0;0,0) and the inverseg21 of g is

g215~2e23dt0 ,2e2dx0 ,2d;2e2d/2h1 ,2e2d/2h2!. ~2.11!

This group acts on the superspace (x,t;u1 ,u2) and on the superfieldA as

g~x,t;u1 ,u2!5~ed~x1h1u11h2u2!2x0 ,e3dt2t0 ;ed/2~u12h1!,ed/2~u22h2!! ~2.12!

and

gA~x,t;u1 ,u2!5e2dA~g21~x,t;u1 ,u2!!. ~2.13!

The even parametersx0 and t0 correspond to space and time translations, respectively, whd
corresponds to a dilatation. The two odd parametersh1 and h2 correspond to supersymmetr
transformations mixing even and odd variables.

III. INVARIANT SOLUTIONS

Different subgroups may be chosen to get invariant solutions of the SUSY KdV equ
~2.4!. The more interesting ones contain at least one SUSY transformation. In fact, since boQ1

andQ2 are like square roots of the translation generatorP1 , they come together in a subgrou
structure and lead to invariant solutions constant in the variablex. We are not interested in suc
trivial solutions. Nevertheless, a combination likeQ15Q11 iQ2 is allowed giving (Q1)250.
The subgroupG15$g05(cb,b,0;h,ih)% will be considered since it has the superalgebraG1

5$P02cP1 ,Q1% and will give rise to traveling-wave solutions of Eq.~2.4!. In order to perform
the symmetry reduction using such a subgroup of the symmetry groupG, we have first to find the
invariants of the action of this subgroup on the independent and dependent variables an
rewrite the equations in terms of them. This will reduce the number of independent variable
we will get superequations with one even and one odd variables.

A. The reduced superequations

From Eqs.~2.12! and ~2.13!, we see that the subgroupG1 acts on the independent an
dependent variables as follows:

g0~x,t;u1 ,u2!5~x1h~u11 iu2!2cb,t2b;u12h,u22 ih!,

g0A~x,t;u1 ,u2!5A~g0
21~x,t;u1 ,u2!!.

It is then easy to compute the invariants of this action. They are

y5x1ct1 iu1u2 , u5u11 iu2 . ~3.1!

Now, if we takeA5A(y,u), we get, from Eq.~2.4! and the fact thatD15]u1u]y , D25 i (]u

2u]y), the reduced superequation

cAy52Ayyy13aA2Ay2 i ~a12!~Ay!22 i ~a12!AAyy

12i ~2a11!uAyAyu12i ~a12!uAAyyu12i ~a21!uAuAyy . ~3.2!

Such an equation may be integrated once with respect toy and gives

Ayy2aA31 i ~a12!AAy22i ~a12!uAAyu22i ~a21!uAuAy1cA1c12uk50, ~3.3!

wherec1 andk are even and odd integration constants, respectively. In fact, it is again a PD
much simpler than the original one. Indeed, expanding now the bosonic superfieldA as

A~y,u!5u~y!1ur~y!,
                                                                                                                



.

ter
ear

t
by

given

unc-

1955J. Math. Phys., Vol. 40, No. 4, April 1999 Ayari, Hussin, and Winternitz

                    
we finally get the system of ODEs:

u92au31 i ~a12!uu81cu1c150, ~3.4!

r92 i ~a12!ur81~c23au21 i ~42a!u8!r5k. ~3.5!

The prime~8! means that we differentiate with respect toy. We notice that Eq.~3.4! is a second-
order nonlinear differential equation inu which does not depend onr. For a522, we recover a
reduction of the mKdV equation. Sinceu is an even function iny, the method of resolution of Eq
~3.4! is a standard one and we will use the classification given in Ince’s book22 to get explicit
solutions. We will see that this will give a selection of admissible values for the paramea.
Equation~3.5! is linear inr onceu is known and it can be solved by the usual techniques for lin
equations, once we taker(y)5c f (y), wherec is an odd constant parameter andf (y) an even
function.

B. Solution of the equation for u

It has been noted that Eq.~3.4! reduces to the mKdV equation for the special valuea522
and then has well-known solutions such as the soliton solutionu51/coshy. Requiring that all
solutions of Eq.~3.4! be free of movable critical points, we will see that this value ofa appears in
a list of only five admissible values, namelya524, 22, 21, 1, and 4. Here let us mention tha
the complete integrability of Eq.~2.2!, in terms of the existence of Lax pairs, has been proven
Mathieuet al.4 only for a522 and 4. Conservation laws have been found fora51 but not a Lax
pair.

To make use of the classification of second-order ODEs without movable critical points
in Ince’s book,22 we first make the following change of variables:

u~y!5a~y!w~z~y!!1b~y!, a~y!Þ0, z8~y!Þ0, ~3.6!

in order to take Eq.~3.4! to one of the canonical forms of the equation

wzz5~A~z!w1B~z!!wz1C~z!w31D~z!w21E~z!w1F~z!. ~3.7!

This corresponds to the case 14.31 i! listed by Ince. The functionsA,B,C,D,E,Fare written as
follows:

A~z!52 i ~a12!
a

z8
, B~z!52

1

a~z8!2 ~2a8z81az91 i ~a12!baz8!,

C~z!5
aa2

~z8!2 , D~z!5
1

~z8!2 ~3aab2 i ~a12!a8!,

E~z!5
1

a~z8!2 ~3aab22 i ~a12!~a8b1ab8!2a92ac!,

F~z!5
1

a~z8!2 ~ab32cb2c12 i ~a12!b8b2b9!.

In order to obtain an equation with solutions free from movable critical points, the pair of f
tions A andC must belong to the following list~after a suitable choice of the functionsa, b and
z!:

~ i.a! A50, C50; ~ i.b! A522, C50;

~ i.c! A523, C521; ~ i.d! A521, C51;
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~ i.e! A50, C52.

The first two cases cannot occur in our context. Indeed, no value ofa satisfies~i.a!. For the case
~i.b!, a must be zero anda52 iz8. Continuing with the classification,23 we have to satisfy at leas
one of the following conditions:

~ i! B5D, E50; ~ ii ! D5F50, E5B8,

to get an integrable equation. This is impossible forcÞ0.
The three other cases effectively occur and give rise to a selection of the admissible valu

a. This leads toa51 or a54 for the case~i.c!, a524 or a521 for the case~i.d! and finally
a522 for the case~i.e!. Let us now specify the classification process and exhibit the solution
all these cases.

1. Case (i.c): a 51, or a 54

We have to takea523iz8/(a12) and the functionsB, D, E, andF must verifyB5D and
E5F50. The first equality is trivially satisfied whena51 or a54 and the other constraints lea
to the following equations onb andz8:

b92ab31 i ~a12!bb81cb1c150, ~3.8!

z-1 i ~a12!~z8b!823ab2z81cz850. ~3.9!

Equation~3.8! is the same as the original Eq.~3.4! but now we only need one particular solutio
It is obtained as the constant solution

b5S 2c1

2a D 1/3

5S c

3aD 1/2

, ~3.10!

which gives a relation betweenc and the integration constantc1 . With such a solutionb, the
function z satisfying Eq.~3.9! can be simply taken asz(y)5y.

Thus, Eq.~3.7! reduces to the canonical form

wyy523wwy2w31q~wy1w2!, ~3.11!

where the constantq is given by

q52 i ~a12!S c

3aD 1/2

52 i ~3c!1/2, ~3.12!

which is the same fora51 anda54. The solution of Eq.~3.11! is easily computed using th
substitutionw5vy /v, wherev satisfies the linear equationv-5qv9, i.e.,

v~y!5c2eqy1c3y1c4 . ~3.13!

Finally, sinceu(y)5(23i /(a12))w(y)1b, we get

u~y!5
i

a12 Fq23
vy

v G . ~3.14!

We see thatv given by Eq.~3.13! depends on three integration constants butu depends only on
two independent constants. Indeed forc2Þ0, we get

u~y!5
i

a12 Fq23
qeqy1c3

eqy1c3y1c4
G . ~3.15!
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For c250,c3Þ0, the solution is

u~y!5
i

a12 Fq2
3

y1c4
G , ~3.16!

and finally for c25c350, we get the constant solutionu(y)5b. Thus we have obtained th
general solution of Eq.~3.4! with a51, or a54 subject to the constraint~3.10! on c andc1 .

2. Case (i.d): a 524, or a521

We choosea52 iz8/(a12) and all solutions of Eq.~3.7! will be free from movable critical
points if B5D50 andF52E8. These conditions are satisfied forb50, z950 and this implies
that the integration constantc1 must be zero. Hence Eq.~3.7! reduces to the canonical form

wzz52wwz1w32pw, ~3.17!

wherep52c/(z8)2 is a constant. The standard way of solving Eq.~3.17! is to introduce a new
function v(z) that satisfies

vz
25p3v31p2v21p1v1p0 , ~3.18!

for some constantspi ( i 50,1,2,3) and to writew5vz /(v21). From Eq.~3.18!, we immediately
get

vzz5
1
2~3p3v212p2v1p1!, vzzz5~3p3v1p2!vz . ~3.19!

Inserting now the new expression ofw in Eq. ~3.17! and using the expressions~3.19!, we get the
admissible values for the constantsp1 , p2 , andp3 . A canonical choice gives

p35
p

3
, p250, p152p.

The solution of Eq.~3.18! is expressed in terms of the P-Weierstrass elliptic function,P(z,g2 ,g3),
~see, e.g., Byrd and Friedman23! and is written as follows:

v~z!5S 12

p D 1/3

P~z!, ~3.20!

where

g25~12p2!1/3, g352p0 .

Finally, for the simplest choicez(y)5y, we obtain the solution of Eq.~2.4! as

u~y!52
i

~a12! S v8~y!

v~y!21D52
i

~a12! S P8~y!

P~y!2~p/12!1/3D , ~3.21!

whereP8(y)52A4P3(y)2g2P(y)1p0.

3. Case (i.e): a 522

This corresponds to the mKdV equation and all solutions are free from movable cr
points. We seta252(z8)2 and haveB5D50. We choose the auxiliary quantities to bea5 i ,
b50, andz5y so that from Eq.~3.6!, we see thatu(y)5 iw(y). Hence, we can solve directly Eq
~3.4!, which reduces to

u912u31cu1c150. ~3.22!
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Multiplying it by u8 and integrating once, we get

~u8!252~u41cu212c1u2c2!5H~u!, ~3.23!

wherec2 is an integration constant. This is a well-known equation solvable in terms of ell
functions and their degenerate cases. Let us give some particular solutions.

We first consider the solitonic solution

uS~y!5u21
v2

2u21~u11u2!cosh~vy!
, ~3.24!

wherev5A(u12u2)(u113u2), u1 ,u2 being roots of the polynomialH(u) in Eq. ~3.23!. Indeed,
if we denote byu1 , u2 , u3 andu4 the four roots ofH(u), the solutionuS corresponds to the cas
whereu1>uS.u25u3.u4 ~note thatu452u12u22u3). The constantsc andc1 ~written now
ascS andc1S) are then given by

cS52~u1
212u1u213u2

2!, c1S522u2~u1
21u1u21u2

2!.

The second solution we are interested in, is the rational one

uR~y!5u12
4u1

4u1
2y211

. ~3.25!

It corresponds to the case where three roots ofH(u) are equal and such thatu15u25u3.uR

.u4 . Again the constantsc andc1 in Eq. ~3.23! may be written as

cR526u1
2, c1R528u1

3.

C. Solutions of the equation for r

Now we will use the solutionsu of the PDE~3.4! to solve Eq.~3.5! that is linear inr. We can
taker(y)5c f (y) andk5ck1 , wherec is an odd constant. We get a linear equation satisfied
the even functionf:

f 9~y!1p1f 8~y!1p0f ~y!5k1 , ~3.26!

where

p1~y!52 i ~a12!u, p0~y!5c23au21 i ~42a!u8 ~3.27!

andu is a solution of Eq.~3.4!. For general solutionsu(y), Eq. ~3.26! cannot be solved in term
of elementary functions, nor the standard special functions. Some particular solutions foru lead to
simple forms of Eq.~3.26! that can be solved explicitly.

For the casea51, or a54, the general solutionu(y) was given by Eq.~3.14! with v
satisfying the expression~3.13!. It is easy to see thatp1 andp0 in Eq. ~3.27! are now given by

p1~y!5S q23
vy

v D , p0~y!522q
vy

v
1~a21!S vy

v D 2

. ~3.28!

We see thatp1(y) does not depend ona and thatp0(y) has been simplified taking into account th
admissible values ofa. We now distinguish the two values ofa. For a51, we use the particula
solution ~3.16! which leads to the linear equation

f 91S q2
3

yD f 82
2q

y
f 5k1 , ~3.29!
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where without loss of generality we put the constantc4 equal to zero. The general solution is

f ~y!5C1~624qy1q2y2!1C2~qy13!e2qy1
k1

2q2 ~322qy!, ~3.30!

C1 andC2 being arbitrary integration constants. Fora54, the same solutionu(y) inserted in Eq.
~3.26! gives

f 91S q2
3

yD f 81S 22q

y
1

3

y2D f 5k1 , ~3.31!

which admits the general solution

f ~y!5qy@C1~12qy!1C2e2qy#2
k1y

q
, ~3.32!

where againC1 andC2 are arbitrary constants.
We now turn to the casea522 which leads to the solitonic solutionuS(y) of Eq. ~3.24!.

Equation~3.26! takes the form

f 9~y!1p0~y! f ~y!5k1 ~3.33!

with

p0~y!5
1

@~u11u2!cosh~vy!12u2#2 $2~u1
212u1u213u2

2!~~u11u2!2 cosh~vy!12u2!2

16~u2~u11u2!cosh~vy!1u1
212u1u22u2

2!2

26i ~u12u2!~u11u2!~u113u2!v sinh~vy!%. ~3.34!

Suitable changes of variables lead to a hypergeometric equation that can be solved exactly.
we first consider the homogeneous equation and use the change of variables5evy to get the new
equation

f ss1P~s! f s1Q~s! f 50, ~3.35!

where

P~s!5
1

s
, Q~s!5

2~s2110ks1~k!2!

s2~s2k!2 ,

with k52(2u22 iv)/(u11u2). A second change of variable will bring us to the hypergeome
equation

wzz1
3~2z21!

z~z21!
wz2

6

z~z21!
w50, ~3.36!

where z5s/(s2k) and w5@1/z(z21)# f . One solution of Eq.~3.36! is easily found as
w1(z)52z21, which leads us to a solution for the original homogeneous equation

f 1~y!5
kevy~evy1k!

~evy2k!3 . ~3.37!

The second linearly independent solutionw2(z) is obtained fromw1(z) using the formula
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w2~z!5w1~z!E 1

w1
2~z!

e2 E P~z!dzdz, ~3.38!

or, explicitly,

w2~z!5321
7~2z21!2

z~z21!
2

~2z21!2

2z2~z21!2 130~2z21!lnS z21

z D . ~3.39!

We then get the other solution of the original homogeneous equation by replacingz in terms ofy,
i.e.,

f 2~y!5
32kevy17~evy1k!2

~evy2k!2 2
~evy1k!2

2kevy 130f 1~y!~2vy1 ln~k!!. ~3.40!

The corresponding solution of the inhomogeneous equation is obtained by the method of va
of constants and it is the linear combination off 1 and f 2 and a particular solution given by

f p~z~y!!5
k

v2 S 2123z133z2230z326z~123z12z2!lnS z2
1

zD D . ~3.41!

Finally let us take the rational solutionuR given by Eq.~3.25! and solve

f 91S 48u1
2

~122iu1y!2D f 5k1 . ~3.42!

Once we putr 5122iu1y, we get an Euler type equation of the form

r 2f rr 212 f 5
k1r 2

24u1
2 . ~3.43!

We easily see that the general solution of Eq.~3.42! is

f ~y!5C1~122iu1y!41C2~122iu1y!231
k1

40u1
2 ~122iu1y!2, ~3.44!

with C1 andC2 arbitrary integration constants.

D. Super traveling-wave solution

Returning to the original super KdV equation~2.4!, let us give the expression for the solution
A which are invariant underG1 . Let us recall that we have solved Eq.~2.4! with A5A(y,u)
5u(y)1ur(y) wherey is an even Grassmann variable given by Eq.~3.1!. Developingu andr,
we get~in view of the nilpotent character ofu1 andu2)

A5u~x1ct!1 iu1u2

du

djU
j5x1ct

1~u11 iu2!r~x1ct!. ~3.45!

This means that the components ofA in Eq. ~2.5! are not independent. Indeed we have

v5
du

djU
j5x1ct

, r25 ir15 ir~j!. ~3.46!

So we can view the solutionsu and r as functions ofj5x1ct instead ofy and A5u(j)
1 iu1u2(du/dj)1(u11 iu2)r(j). For example, we have fora51, the solutions
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u~j!5
i

3 Fq2
3

j G , ~3.47!

r~j!5cFC1~624qj1q2j2!1C2~qj13!e2qj1
k1

2q2 ~322qj!G . ~3.48!

For a54, we get

u~j!5
i

6 Fq2
3

j G , ~3.49!

r~j!5cFqj@C1~12qj!1C2e2qj#2
k1j

q G . ~3.50!

Let us now develop the supersolitonic solution occurring fora522. First, we take some
particular values for the constants appearing in the solution~3.24!. Thus, withu151, u250, and
c521, we get

u~x2t !5
1

cosh~x2t !
, ~3.51!

the well-known solitonic solution of the mKdV equation. The first solution for the homogen
equation inr becomes very simple. It takes the formr1(x2t)5c f 1(x2t) where

f 1~x2t !5
1

cosh3~x2t ! Fsinh~x2t !1
i

2
~12sinh2~x2t !!G . ~3.52!

In Fig. 1, we see the behavior ofu, Re(f1) and Im(f1) as functions ofj5x2t. As function ofx and
t, we have the graphs of Re(f1) and Im(f1) in Figs. 2 and 3. The solution~3.52! has a very
interesting behavior, discussed earlier by Ibortet al.16 for a different supersymmetric equation
They had a real solution which they called asolitino and its graph was similar to that of Re(f1) in
Fig. 2. Here we get a complex solution for which the norm of the corresponding even fun
f 1(x2t) is u f 1(x2t)u5 1

2u(x2t). We also see that the real part off 1 is the derivative of the usua
soliton solution~up to a multiplication by a constant factor! of the KdV equation, while the
imaginary part is related tou by Im f1(j)5d2u(j)/dj2.

FIG. 1. The functionsu(j), Re(f1(j)), and Im(f1(j)).
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Let us emphasize that our soliton type solution of the SUSY mKdV equation provid
complete solution of Eq.~2.4!, since we have obtained all components ofA @see Eq.~3.45!#. The
behavior of the other independent solutionsr2(j) andrp(j) is more complex, but we can com
pute it in the particular case whereu is given by Eq.~3.51!. They take the form

f 2~j!5Re~ f 2~j!!1 i Im~ f 2~j!! ~3.53!

with

FIG. 2. The function Re(f1(x2t)).

FIG. 3. The function Im(f1(x2t)).
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Re~ f 2~j!!526115p
sinh~j!

~cosh~j!!3 130
1

~cosh~j!!2230j
sinh~j!

~cosh~j!!3 , ~3.54!

Im~ f 2~j!!52sinh~j!115
j

cosh~j!
230

j

~cosh~j!!32
15

2
p

1

cosh~j!

115p
1

~cosh~j!!3230
sinh~j!

~cosh~j!!2 . ~3.55!

Finally, the particular solutionf p is

f p~j!5Re~ f p~j!!1 i Im~ f p~j!! ~3.56!

with

Re~ f p~j!!5k1S 212
3

2

ej

cosh~j!
1

33

4

~211e2j!

4~cosh~j!!22
15

4

~23ej1e3j!

~cosh~j!!3

26S p

2
2j D F ej

2 cosh~j!
2

3

4

~211e2j!

~cosh~j!!2 1
~23ej1e3j!

4~cosh~j!!3 G D , ~3.57!

FIG. 4. The functions Re(f2(j)) and Im(f2(j)).

FIG. 5. The functions Re(fp(j)) and Im(fp(j)).
                                                                                                                



er-
Grass-

mpose
l
g that

with
At this

a set of

f both
olitonic
d by
odd

d

et

the

R du

1964 J. Math. Phys., Vol. 40, No. 4, April 1999 Ayari, Hussin, and Winternitz

                    
Im~ f p~j!!5k1S 2
3

2 cosh~j!
1

33

2

ej

~cosh~j!!2215
~2113e2j!

4~cosh~j!!3

26S p

2
2j D F 1

2 cosh~j!
2

3ej

2~cosh~j!!2 1
~2113e2j!

4~cosh~j!!3G D . ~3.58!

All these functions are represented in Figs. 4 and 5 as functions ofj and fork151.

IV. CONCLUSION

Starting from theN52 SUSY KdV equation~2.4!, we have used a subgroup of the sup
symmetry group to obtain Grassmann-valued solutions depending on one even and one odd
mann independent variable. Such an equation contains a lot of information, since if we deco
the bosonic superfield in terms of its components, As in Eq.~2.5!, it produces a set of four partia
differential equations. Our way of determining symmetries has the advantage of avoidin
decomposition, of working with the concise equation~2.4!, and of producing a superalgebra~2.8!
of symmetries. In the search for solutions using the method of symmetry reduction, we work
Grassmann variables until we get a PDE with one even and one odd Grassmann variable.
stage, the nilpotency of the odd variable leads, by expansion of the dependent variable, to
two ODEs.

The invariant solutions that we have obtained are based on the choice ofG1 as a subgroup of
the SUSY group. Let us recall that it contains a SUSY transformation and a combination o
spatial and temporal translations. It gives rise to interesting solutions such as the supers
ones. Another groupG2 containing the same SUSY transformation and the dilation generate
D may also be considered. Here the difficulty is to solve explicitly the linear equation for the
field r. Indeed, if we take the groupG25$g085(0,0,d;h,ih)%, it acts on the independent an
dependent variables as

g08~x,t;u1 ,u2!5~ed~x1h~u11 iu2!!,e3dt;ed/2~u12h!,ed/2~u22 ih!!,

g08A~x,t;u1 ,u2!5e2dA~~g08!21~x,t;u1 ,u2!!,

and the invariants of this action are

y5t21/3~x1 iu1u2!, u5u11 iu2 , W5t1/3A. ~4.1!

It is easy to show that the reduced equation in terms ofW5W(y,u) may be developed as a s
similar to Eqs.~3.4! and ~3.5! where the constantc is replaced by2y/3. This means that the
solution for u essentially follows the lines described in Sec. III. In particular, this implies
selection of the same values fora, important information for the integrability of the SUSY KdV
equation. We plan to return to the study of self-similar SUSY solutions in the near future.
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On the integrability of nonlinear partial
differential equations
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We investigate the integrability of Nonlinear Partial Differential Equations~NP-
DEs!. The concepts are developed by first discussing the integrability of the KdV
equation. We proceed by generalizing the ideas introduced for the KdV equation to
other NPDEs. The method is based upon a linearization principle that can be
applied on nonlinearities that have a polynomial form. The method is further illus-
trated by finding solutions of the nonlinear Schro¨dinger equation and the vector
nonlinear Schro¨dinger equation, which play an important role in optical fiber com-
munication. Finally, it is shown that the method can also be generalized to higher
dimensions. ©1999 American Institute of Physics.@S0022-2488~99!01904-0#

I. INTRODUCTION

The conditions under which Nonlinear Partial Differential Equations~NPDEs! can be solved
are even in one dimension not well understood.1 Roughly speaking, the majority of the integrab
systems can be classified in three main groups. In the first of these groups are those equati
can be reduced to a quadrature through the existence of an adequate number of integ
motion. In the second class are those equations that can be mapped into a linear sys
applying a number of transformations~hereafter to be calledC integrable2!. The last group con-
sists of differential equations that can be solved by Inverse Scattering Transformations~IST!. In
the following, we will call equations that can be solved by inverse scattering methods ‘‘S inte-
grable.’’ The discovery of the IST has led to considerable progress in understanding the to
integrability, since this technique made it possible to investigate the integrability of large cl
of NPDEs systematically.3

Another important consideration is that most of the work on the integrability of NPDEs
been carried out in one space dimension only. Although the inverse problem of the Schro¨dinger
equation can be generalized to three dimensions, the method is far too complicated to
higher-dimensional NPDEs. An alternative is the]̄ approach, which is also successfully gener
ized toN dimensions~see, for instance, the book by Ablowitz and Clarkson3!. Nevertheless, for
both these methods the existence of the obtained solutions is difficult to prove. The concepC
integrability, however, has the potential to be generalized to dimensions higher than one.
paper, we will demonstrate a simple method based upon linearization principles that enable
compute solutions of large classes of NPDEs by solving a linear algebraic recursion relatio
The result suggests that the method can be generalized to higher-dimensional NPDEs.

In this paper we aim to find integrable differential equations that can be solved by linea
tion. The basic idea of the method goes back to Stokes,4 and is used several times to obta
solutions of nonlinear evolution equations.5–9 We will apply the method in a slightly differen
form to find conditions on the integrability of nonlinear evolution equations. Since it is not c
what integrability exactly means, we use in this paper the heuristic definition that a NPD
integrable if given a sufficiently general initial condition, we can find analytic expressions the
evolution of the solution. For NPDEs that can be solved by inverse scattering technique

a!Electronic mail: H.J.S.Dorren@ele.tue.nl
19660022-2488/99/40(4)/1966/11/$15.00 © 1999 American Institute of Physics
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notion is equivalent with the existence ofN-soliton solutions, since it is implicitly assumed that t
obtained solution can be expanded on a Fourier basis.8 It is shown that the condition of expansio
in a Fourier can be replaced by an arbitrary other infinite set of basis functions.

We present the following results. First, we derive a simple method to test NPDEs w
polynomial type of nonlinearity in the presence ofN-soliton solutions. Necessary conditions th
indicate whether a NPDE hasN-soliton solutions includes that the nonlinearity can be expande
the same basis functions as the linear part, and second that the dispersion relationship as
with the linearized problem can be solved. The method is demonstrated by first discussi
integrability of the KdV equation in Sec. II. In Sec. III, the concepts derived for the KdV equa
are generalized to discuss the integrability of more general NPDEs. Finally, in Sec. IV, the r
are applied to investigate the integrability of the coupled nonlinear Schro¨dinger equation. More-
over, it is indicated that the method can also be used to obtain solutions to higher-dimen
NPDEs. The paper is concluded with a discussion.

II. THE INTEGRABILITY OF THE KdV EQUATION

In order to illustrate the machinery developed throughout this paper, we first discus
integrability of the KdV equation as an example. The integrability of the KdV equation
well-studied problem.3 This makes the KdV equation an ideal object to test the validity of ne
developed ideas with respect to the integrability of NPDEs. We will introduce our methods o
integrability of NPDEs by discussing the existence ofN-soliton solutions for the KdV equation
which is given by

ut1uxxx56uxu. ~1!

We try to find solutions of Eq.~1! by substitution of the following Fourier series:

u~x,t !5 (
n51

`

Anein~kx2vt !. ~2!

If we substitute the solutionu(x,t) into Eq. ~2!, we obtain

(
n51

`

~nv1k3n3!Anein~kx2vt !526k(
n51

`

(
l 51

n21

lAlAn2 le
in~kx2vt !. ~3!

We can now determine the coefficientsAn by deriving a recursion relationship. This can b
achieved by comparing the exponential functions in Eq.~3!. If we compare all the terms for which
n51, we find

~v1k3!A1ei ~kx2vt !50. ~4!

For a nonzeroA1 , we find that Eq.~4! is satisfied if

v52k3. ~5!

If we put n52 in Eq. ~3!, we can determineA2 by solving the following relationship:

~2v18k3!A2e2i ~kx2vt !526kA1A1e2i ~kx2vt !. ~6!

If we use the dispersion relationship~5!, we find thatA2 is given by

A252
A1

2

k2 . ~7!
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By repeating this procedure, we can compute all the expansion coefficientsAn of the solutions
u(x,t). In general, all the coefficientsAn can be computed by solving the following linear alg
braic problem:

L ~n!~k!An5R~n!~k!. ~8!

The operatorsL (n)(k) andRn(k) in Eq. ~8! are given by

L ~n!~k!5n@n221#k3, R~n!~k!526k(
l 51

n21

lAlAn2 l . ~9!

If we compute all the coefficientsAn by using Eq.~9!, we then obtain the Fourier expansion
u(x,t), for which the first terms are given by

u~x,t !5A1ei ~kx2vt !2
A1

2

k2 e2i ~kx2vt !1
3A1

3

4k4 e23i ~kx2vt !1¯ . ~10!

If we substitutek52ib andA154 db into Eq. ~10!, we find

u~x,t !54 db e22~bx24b3t !116d2e24~bx24b3t !1
24d3

b
e26~bx24b3t !1¯ . ~11!

By carrying out the summation in Eq.~11!, we can formulate this equation more compactly:

u~x,t !5
8 db e22~bx24b3t !

S 11
d

b
e22~bx24b3t !D 2 . ~12!

Hence, if we put

b5
1

2
Ac, x052

1

Ac
logS 2

d

b D , d,0, ~13!

we can simplify Eq.~12! one step further to

u~x,t !52
c

2
sech2H 1

2
Ac~x2ct1x0!J . ~14!

Equation~14! describes the well-known KdV soliton.
What did we learn from this simple exercise? At first, the KdV equation has solutions be

of the special structure of the nonlinearity. If we substitute the special solution~2! in the nonlinear
part of the KdV equation, we find that we can expand the nonlinearity in the same basis fun
as the linear part:

6uxu5 (
n51

`

Dnein~kx2vt !; Dn526k(
l 51

n21

lAlAn2 l . ~15!

This guarantees that we can find an iteration relationship for the expansion coefficientsAn . As we
will see later, we do not have to restrict to a Fourier expansion of the solution only. In princ
this method works for any set of basis functions as long as we can expand the nonlinearity
same basis functions as the linear part. In the following, we will show that the structure o
nonlinearity of the KdV equation enables us to construct the Fourier expansion of theN soliton of
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the KdV equation. In order to systematically solve these solutions it is illustrative to discuss
the two-soliton solutions, which are assumed to have the following series expansion:

u~x,t !5 (
m1 ,m251

`

C~m1 ,m2!ei ~m1k1z11m2k2z2! H z15x2
v~k1!

k1
,

z25x2
v~k2!

k2
.

~16!

If we substitute Eq.~16! into the KdV equation~1!, we obtain the following result:

(
m1 ,m251

`

L ~m1 ,m2!~k1 ,k2!C~m1 ,m2!ei ~m1k1z11m2k2z2!

526 (
m1 ,m251

`

(
h1 ,h251

m121,m221

M ~h1 ,h2!~k1 ,k2!C~m12h1 ,m22h2!C~h1 ,h2!ei ~m1k1z11m2k2z2!,

~17!

where

L ~n1 ,n2!~k1 ,k2!5(
i 51

2

ni@ni
221#ki

3, M ~n1 ,n2!~k1 ,k2!5(
i 51

2

niki . ~18!

We solve Eq.~17! by comparing equal exponential powers on both sides. This can be don
defining a parameterG5m11m2 and subsequently comparing the powers forG51,2,3,... . We
first discuss the case in whichG51 in which only the coefficientsC(1,0) andC(0,1) contribute:

@v11k1
3#C~1,0!eik1z11@v21k2

3#C~0,1!eik2z250. ~19!

If we put C(1,0)5A1 andC(0,1)5A2 , we find that the following linear dispersion relationshi
must be valid:

v~k1!52k1
3 and v~k2!52k2

3. ~20!

Once the linear dispersion relationships are determined and if the coefficientsC(1,0) andC(0,1)
have taken their valuesA1 andA2 , we can compute all the other coefficientsC(m,h) by applying
the following linear recursion relation:

L ~m1 ,m2!~k1 ,k2!C~m1 ,m2!5R~m1 ,m2!~k1 ,k2!, ~21!

where

R~m1 ,m2!~k1 ,k2!526 (
h1 ,h251

m121,m221

M ~h1 ,h2!~k1 ,k2!C~m12h1 ,m22h2!C~h1 ,h2!. ~22!

Equation~21! has a similar structure as Eq.~8!. In principle, Eq.~21! provides an efficient tool to
compute all the coefficientsC(m,h). We can generalize this result to theN-soliton case by
assuming that the solutionu(x,t) takes the following form:

u~x,t !5 (
m1¯mN51

`

C~m1¯mN! i ~m1k1z11¯1mNkNzN! 5
z15x2

v~k1!

k1

]

zN5x2
v~kN!

kN
.

~23!
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We can determine the nonzero coefficientsC(m1¯mN) by substituting Eq.~23! into the KdV
equation~1!:

(
m1¯mN51

`

L ~m1¯mN!~k1¯kN!C~m1¯mN!ei ~m1k1z11¯1mNkNzN!

526 (
m1¯mN51

`

(
h1¯hN51

m121¯mN21

M ~h1¯hN!~k1¯kN!C~m12h1¯mN2hN!C~h1¯hN!

3ei ~m1k1z11¯1mNkNzN!, ~24!

where

L ~n1¯nN!~k1¯kN!5(
i 51

N

ni@ni
221#ki

3; M ~n1¯nN!~k1¯kN!5(
i 51

N

niki . ~25!

If we use that v(ki)52ki
3, (i P1¯N) and A15C(1,0,0,...,0),A25C(0,1,0,...,0),...,AN

5C(0,...,0,1), we find that the expansion coefficients of theN-soliton solution for the KdV
equation can be computed by solving the following linear relationship:

L ~m1¯mN!~k1¯kN!C~m1¯mN!5R~m1¯mN!~k1¯kN!, ~26!

where

R~m1¯mN!~k1¯kN!526 (
h1¯hN51

m121¯mN21

M ~h1¯hN!~k1¯kN!C~m12h1¯mN2hN!C~h1¯hN!.

~27!

From the exercise performed in this section, we can conclude that general solutions of th
equation can be obtained by solving Eqs.~26!. This implies that the KdV equation can be tran
formed into a simple linear algebraic equation in the coefficient space. We can conclude th
KdV equation hasN-soliton solutions because the following two conditions are satisfied.

~i! The structure of the nonlinearity of the kdV equation guarantees that the equatio
solutions of the form~23!. This result implies that the coefficientsR(m1¯mN)(k1¯kN) exist.

~ii ! L (n1¯nN)(k1¯kN) is not equal to zero ifk1¯kNÞ0 andn1¯nNÞ0. This implies that
L (n1¯nN)(k1¯kN) has an inverse.

In the following section we will show that a similar condition must hold for other NPDEs
the following section it is shown that the concepts derived for the KdV equation can be ge
ized to large classes of NPDEs. The results obtained in this section are derived by assum
the solution of the KdV equation can be expanded in Fourier basis functions. In the follo
section, it will be shown that similar principles apply for other basis functions.

III. GENERALIZATIONS

In this section we will present more general results with respect to the integrability of
linear evolution equations. This will be done by generalizing the results obtained for the
equation. In this section, we focus on NPDEs of the following type:

L@u~x,t !#5Q@u~x,t !#. ~28!

In Eq. ~28!, the functionu(x,t) is an M-component vector function having entriesui(x,t). The
operatorL@•# is assumed to take the following form:
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L@u~x,t !#5F i I
]

]t
1 (

n51

K

A~n!
]n

]xnGu~x,t !. ~29!

The matricesA(n) in Eq. ~29! areM3M matrices andI is the identity matrix. As concluded from
the previous section, integrability puts strong constraints on the nonlinearity represented
operatorQ. As a necessary condition for the integrability we require that if a solution of Eq.~28!
has the following form:

u~x,t !5 (
m1¯mN51

`

C~m1¯mN!expF i (
r 51

N

(
s51

M

m rkrszrsG ; zrs5x2
v~krs!

t
, ~30!

then the operatorQ must satisfy the following property:

Q@u~x,t !#5 (
m1¯mN51

`

R~m1¯mN!expF i (
r 51

N

(
s51

M

m rkrszrsG , ~31!

where C(m1¯mN) and R(m1¯mN) are M-dimensional vector functions. Similarly as for th
KdV equation, the vector functionR(m1¯mN) is specified by the nonlinearity. In other words, w
require that given a solution of the form~30!, the nonlinear operatorQ@u(x,t)# can be expanded
in the same set of basis functions asL@u(x,t)#. In the previous section, we have shown that t
nonlinearity of the KdV equation satisfies this condition. In general, large classes of non
operators will have the property~31! and among them we are especially interested in the subc
P̂, which plays an important role in nonlinear optics:

P̂@u~x,t !#5PNS u,
]u

]x
,
]u

]t
,...,

]pu

]xq]tp2qD , ~32!

wherePN are polynomials of orderN. If we let act the linear operatorL onto the solution~30!, we
obtain the following relationship:

L@u~x,t !#5S I (
r 51

N

(
s51

M

m rv~krs!1 (
n51

K

A~n!F i (
r 51

N

(
s51

M

m rkrsGnD u~x,t !. ~33!

From this result, we can identify a matrixL (m1¯mN)(ki j ), which is given by

L ~m1¯mN!~ki j !5I (
r 51

N

(
s51

M

m rv~krs!1 (
n51

K

A~n!F i (
r 51

N

(
s51

M

m rkrsGn

. ~34!

This result implies that the coefficientsC(m1¯mN) that determine the solution~30! can be
determined by solving

L ~m1¯mN!~ki j !C~m1¯mN!5R~m1¯mN!. ~35!

The coefficientsC~1,0,0,...,0!,C~0,1,0,...,0!,...,C~0,...,0,1! are determined by the initial condition
In principle, we expand the solutionu(x,t) in an arbitrary set of basis functions. Suppose

an example a functionû(x,t) that can be expanded in the set of basis functionsf (n)(x,tuk,v):

û~x,t !5 (
n51

`

anf ~n!~x,tuk,v!. ~36!

We define the setS as the basis function:

S5$ f ~1!~x,tuk,v!, f ~2!~x,tuk,v!, f ~3!~x,tuk,v!,...%, ~37!
                                                                                                                



s

sis
n

er by

h

1972 J. Math. Phys., Vol. 40, No. 4, April 1999 H. J. S. Dorren

                    
which have the following properties:

I: if f ~n!~x,tuk,v!PS⇒ ]

]t
f ~n!~x,tuk,v!5ân~k,v! f ~m!~x,tuk,v! ~ f ~m!~x,t !PS!,

II: if f ~n!~x,tuk,v!PS⇒ ]

]x
f ~n!~x,tuk,v!5b̂n~k,v! f ~m!~x,tuk,v! ~ f ~m!~x,t !PS!,

III: if f ~n!~x,t !PS and f ~m!~x,t !PS⇒ f ~n!~x,t !• f ~m!~x,t !PS. ~38!

The properties I and II guarantee thatL@ û(x,t)# can be expanded in basis function
f (n)(x,tuk,v):

L@ û~x,t !#5 (
n51

`

L̂ ~n!anf ~n!~x,tuk,v!, ~39!

where the precise structure of the operatorL̂ (n) is determined by the linear differential operatorL.
Property III in Eq.~38! guarantees nonlinearities of the typeP̂ can be expanded in the same ba
functionsf (n)(x,tuk,v). If the nonlinearity represented by the operatorP̂ can also be expanded i
the same basis functionsf (n)(x,tuk,v):

Q@ û~x,t !#5 (
n51

`

R̂nf ~n!~x,t !, ~40!

then, we can compute the expansion coefficientsan by solving the relationship

an5@ L̂ ~n!#21R̂n , ~41!

wherea1 is determined by the initial condition. Of course, we can generalize this result furth
replacing Eq.~30! by

u~x,t !5 (
m1¯mN51

`

Ĉ~m1¯mN!)
i 51

N

)
j 51

M

f ~ i !~x,tuk̂i j ,v̂ i j !. ~42!

The structure of the solutions proposed in Eq.~42! is, in fact, a generalization of Eq.~30!. If we
replacef ( i )(x,tuk̂i j ,v̂ i j ) by exp@imikijzij#, the form~30! is retained. Following a similar approac
as in the case of Fourier basis functions, we find that if the conditions~38! hold for the solution
~42!, the linear part of the differential equation acts on the solution~42! like

L@u~x,t !#5S i I(
i 51

N

(
j 51

M

v̂ i j 1 (
n51

K

A~n!F(
i 51

N

(
j 51

M

k̂i j GnD u~x,t !, ~43!

where it is assumed that ] t f
( i )(x,tuk̂i j ,v̂ i j )5v̂ i j f

( i )(x,tuk̂i j ,v̂ i j ) and
]xf ( i )(x,t)5 k̂i j f

( i )(x,tuk̂i j ,v̂ i j ). This relationship enables us to identify an operatorL̂ ( i j )

3(v̂ i j ,k̂i j ) according to

L̂ ~ i j !~ v̂ i j ,k̂i j !5S i I(
i 51

N

(
j 51

M

v̂ i j 1 (
n51

K

A~n!F(
i 51

N

(
j 51

M

k̂i j GnD . ~44!

If we, moreover, assume that the operatorQ is of the classP̂ so that

Q@u~x,t !#5 (
m1¯mN51

`

R̂~m1¯mN!)
i 51

N

)
j 51

M

f ~ i !~x,tuk̂i j ,v̂ i j !, ~45!
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then the expansion coefficients are determined by the following linear iteration series:

L̂ ~ i j !~ v̂ i j ,k̂i j !Ĉ~m1¯mN!5R̂~m1¯mN!. ~46!

From this result, we can conclude that we can transform Eq.~28! into Eq. ~46!. We can conclude
that a NPDE of the form of Eq.~28! is integrable if the following two conditions are satisfied.

~i! The nonlinearity must have such a structure that it can be expanded in the same
functions as the linear part. In other words, the nonlinearity must guarantee that Eq.~45! is
satisfied.

~ii ! The inverse matrixL̂ ( i j )(v̂ i j ,k̂i j ) must exist.
From this result we can conclude that provided a solution~30! exists, the integrability of the

NPDE is completely determined by the linear part of the evolution equation. These are al
conditions that guarantee the integrability of Eq.~28!. In the following section, we apply thes
concepts to examine the integrability of some NPDEs.

IV. EXAMPLES

In this section, we will apply the machinery developed in the previous sections to inves
the integrability of various NPDEs. As a first example, we consider the nonlinear Schro¨dinger
equation:

i ] tu5]xxu12uu* u. ~47!

If we substitute

u~x,t !5eiaxei ~a22b2!teif (
n51

`

Ane2n~bx22abt!, ~48!

into Eq. ~47!, we obtain

(
n51

`

@~12n2!b2#Ane2n~bx22abt!52(
n51

`

(
l 51

n22

(
m51

n2 l 21

AlAmAn2m2 le
2n~bx22abt!. ~49!

It can be verified that forn51 the linear dispersion relationshipv52k2 (k5a1bi) is satisfied.
Since both the left-hand side and the right-hand side can be expanded in the same Fouri
functions, we can determine the expansion coefficients by the following recursion relations

L ~n!~k!An5R~n!; k5a1bi, ~50!

where

L ~n!5@12n2#b2; R~n!52(
l 51

n22

(
m51

n2 l 21

AlAmAn2m2 l . ~51!

If we assume thatA15A, then by computing all the coefficientsAn , and carrying out the sum
mation, similarly as in Eq.~11!, we obtain the NLS soliton:

u~x,t !5Aeiaxei ~a22b2!teifej0 sech~bx22abt1j0!, j052
1

2
logS A2

4b2D . ~52!

Similarly as for the KdV equation, the two-soliton solution of the nonlinear Schro¨dinger equation
can be computed by considering solutions:
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u~x,t !5ei ~a11a2!xei ~a1
2
1a2

2
2b1

2
2b2

2
!teif (

n,m51

`

C~n,m!e2n~@b11b2#x22@a1b11a2b2#t !. ~53!

By generalizing this procedure, as presented in Sec. III, theN-soliton solution of the nonlinea
Schrödinger equation can be computed.

As a second example we consider the coupled nonlinear Schro¨dinger equation:

iu1t5u1xx1~ uu1u21uu2u2!u150,
~54!

iu2t5u2xx1~ uu2u21uu1u2!u250.

If we make the following substitution for the solutionu(x,t)5@u1(x,t),u2(x,t)#T:

u~x,t !5eiaxei ~a22b2!t (
n51

`

Ane2n~bx22abt!, A~n!5~A1
~n! ,A2

~n!!T, ~55!

into Eq.~54!, it can be verified that both the left-hand side and the right-hand side of Eq.~54! can
be expanded in the same basis functions. This is due to the fact that bothu1(x,t) andu2(x,t) have
the same dispersion relationv(k)52k2. As a result, we can determine the expansion coefficie
A(n) by solving the following recursion relation:

L ~n!~k!A~n!5R~n!, k5a1bi, ~56!

where

L ~n!5I @12n2#b2; R~n!5 (
l 51

n22

(
m51

n2 l 21 S A1
~ l !A1

~m!A1
~n2m2 l !1A2

~ l !A2
~m!A1

~n2m2 l !

A1
~ l !A1

~m!A2
~n2m2 l !1A2

~ l !A2
~m!A2

~n2m2 l !D . ~57!

As a last example, we consider the three-dimensional nonlinear Schro¨dinger equation:

i ] tu5 (
n51

3

]xn

2 u12uu* u. ~58!

If we substitute

u~x,t !5eia–xei ~a–a2b–b!teif (
n51

`

Ane2n~b–x22a–bt !, ~59!

into Eq. ~47!, we obtain

(
n51

`

@~12n2!b–b#Ane2n~b–x22a–bt !52(
n51

`

(
l 51

n22

(
m51

n2 l 21

AlAmAn2m2 le
2n~b–x22a–bt !. ~60!

In Eq. ~59! and Eq.~60!, it is used thatx5(x1 ,x2 ,x3)T, a5(a1 ,a2 ,a3)T, andb5(b1 ,b2 ,b3)T. It
can be verified that forn51 the linear dispersion relationshipv252k–k(k5a1bi ) is satisfied.
Since both the left-hand side and the right-hand side can be expanded in the same Fouri
functions, we can determine the expansion coefficients by the following recursion relations

L ~n!~k!An5R~n!; k5a1bi , ~61!

where
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L ~n!~k!5@12n2#b–b; R~n!52(
l 51

n22

(
m51

n2 l 21

AlAmAn2m2 l . ~62!

Similarly as in the one-dimensional case, explicit solutions of the three-dimensional non
Schrödinger equation can be obtained by carrying out the summation of the expansion coeffi
The discussion can be made more general by using other expansion functions, similarly as
~53!.

V. DISCUSSION AND CONCLUSIONS

We have presented a method to investigate the integrability for NPDEs having a polyn
type of nonlinearity. It has to be remarked that we have assumed throughout this pape
integrability is equivalent with the existence ofN solitons. It is shown that two conditions play a
important role. The first condition is that the nonlinearity can be expanded in the same
functions as the linear part. The second condition is that the linearized part of the NPD
nontrivial solutions. The method is presented by investigating the integrability of the KdV e
tion as an example. In Sec. III the method is first generalized for NPDEs having solutions th
be expanded in an infinite set of Fourier basis functions. Later on, it is shown that we do no
to restrict ourselves to Fourier basis functions only. Moreover, it is likely that the method
works for nonpolynomial types of nonlinearity, at least if the nonlinearity can be expande
polynomial form. The paper is concluded by applying the method on the nonlinear Schro¨dinger
equation, the coupled nonlinear Schro¨dinger equation, and a three-dimensional example. I
shown that we can derive special solutions of the three-dimensional nonlinear Schro¨dinger equa-
tion.

There is an interesting link between the work carried out in this paper and Hirota’s meth5,9

in which it is shown for the KdV equation that by applying the transformation

u52~ logF !xx , ~63!

the solutionF can be written as

F~x,t !5detuM u, ~64!

where theN3N matrix M has the entries

Mi j ~x,t !5d i j 1
2~Pi Pj !

1/2

Pi1Pj
e~1/2!~j i1j j !; j i5Pix2Pi

3t2j i
0, ~65!

andPi andj i
0 are arbitrary constants. The result presented above was obtained by assumi

the solutionF(x,t) can be expanded in a similar series that formed the starting point in this p

F~x,t !511F ~1!~x,t !1F ~2!~x,t !1¯ . ~66!

The major difference between the method presented in this paper and Hirota’s method is t
latter succeeded to formulate solutions of the KdV equation by using a finite number of func
F (N)(x,t), whereas our method needs an infinite number of basis functions. It is also interes
mention that the solutions obtained by Hirota have a similar structure as inverse scattering
tions for rational reflection coefficients as obtained by Sabatier.10 Moreover, in Ref. 11 it is shown
for the KdV equation that Fourier expansion of the inverse scattering solutions as deriv
Sabatier is equal to the series~11!. The solutions derived in this paper can therefore be rega
as a Fourier expansion of Hirota’s solution.
                                                                                                                



t. This

Phys.

gher-

.

1976 J. Math. Phys., Vol. 40, No. 4, April 1999 H. J. S. Dorren

                    
ACKNOWLEDGMENTS

An anonymous referee is gratefully thanked for the comments made on the manuscrip
research was supported by the Netherlands Organization for Scientific Research~N.W.O.! through
the ‘‘N.R.C. Photonics’’ grant.

1V. E. Zakharov, inWhat is Integrability~Springer-Verlag, New York, 1990!.
2F. Calogero and W. Eckhaus, ‘‘Nonlinear evolution equations, rescaling model PDEs and their integrability. I & II,’’
Inverse Probl.3, 229–262~1987!; 4, 11–33~1988!.

3M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evolution Equations and Inverse Scattering~Cambridge Uni-
versity Press, Cambridge, 1991!.

4G. G. Stokes, ‘‘On the theory of oscillatory waves,’’ Cambridge Trans.8, 441–473~1847!.
5G. B. Whitham,Linear and Nonlinear Waves~Wiley, New York, 1974!.
6R. R. Rosales, ‘‘Exact solutions of some nonlinear evolution equations,’’ Stud. Appl. Math.59, 117–151~1978!.
7M. Wadati and K. Sawada, ‘‘New representations of the soliton solution of the Korteweg-de Vries equation,’’ J.
Soc. Jpn.48, 312–318~1980!.

8H. J. S. Dorren, ‘‘A linearizing transformation for the Korteweg-de Vries equations; generalizations to hi
dimensional nonlinear partial differential equations,’’ J. Math. Phys.39, 3711–3729~1998!.

9R. Hirota, ‘‘Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons,’’ Phys. Rev. Lett27,
1192 ~1971!.

10P. C. Sabatier, ‘‘Rational reflection coefficients and inverse scattering on the line,’’ Nuovo Cimento B78, 235–248
~1983!.

11H. J. S. Dorren and R. K. Snieder, ‘‘On the stability of inverse problems,’’ Inverse Probl.11, 889–911~1995!.
                                                                                                                



s
lass of
erest
turm–
e

ral

hro

initial

of
y
-

on of
‘‘soli-
d by
re ap-

he

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 4 APRIL 1999

                    
Isospectral problem for Schro ¨ dinger operator:
Evolutional viewpoint

V. M. Eleonsky and V. G. Koroleva)

Lukin Research Institute of Physical Problems, Zelenograd, Moscow, Russia, 103460

~Received 15 May 1998; accepted for publication 7 December 1998!

An isospectral transform of the Schro¨dinger operator is considered as an evolu-
tional problem. For a transform defined by the McKean–Trubowitz flows associ-
ated evolutional equations are derived. It is shown that for one-level and two-level
flows these equations can be split into integrable Liouville equations. A relation-
ship between the Liouville equations and the Darboux transforms is discussed; this
analysis suggests that the evolutional equations can be split into the Liouville
equations in the general case. A Hamiltonian formulation of the isospectral trans-
form defined by the McKean–Trubowitz flows is presented. It is shown that this
transform is performed by a canonical change of variables, which is related to the
Darboux transform. ©1999 American Institute of Physics.
@S0022-2488~99!02403-2#

I. INTRODUCTION

Any progress in a study of isospectral transforms for the Schro¨dinger operator always give
rise to particular interest. On the one hand, such transforms provide a tool to extend a c
models for which the Schro¨dinger equation can be solved exactly; this explains the special int
of isospectral transforms among physicists. For mathematicians, to develop a theory of the S
Liouville operator ~and for them, the Schro¨dinger operator is nothing but its particular cas!
always was a generous classical challenge. In some branches of mathematics~i.e., in the theory of
the Korteweg–de Vries equation! the Schro¨dinger operator plays an auxiliary role; its isospect
properties are related with an existence of soliton solutions to evolutional equations.1

The Darboux transform2 is known as the most popular isospectral transform of the Sc¨-
dinger operator. Since Darboux’s earliest papers,3 this method was extensively developed;4,5 it is
mostly used in building new operators whose spectrum differs from the spectrum of the
Schrödinger operator by one eigenvalue.

The Darboux transform of the Schro¨dinger operator is closely related with a number
modern approaches, such as the factorization method6–8 ~which, in its turn, is a basis for the theor
of supersymmetry in physics9,10!; the method of dressing chains;11 the method of nonlinear spec
trum shift operators,12 etc.

There exists another approach to the isospectral problem; it involves an investigati
isospectral phase flows. This branch of the problem goes back to the theory of integrable
ton’’ equations and is related with a Hamiltonian description of the evolution that is governe
such equations. Comparatively recently, an important step was made in this direction: the
peared the paper by McKean and Trubowitz;13 the authors studied phase flows of the form

Ut5(
n

tn@cn
2#x ; tnPR ~1!

(cn are eigenfunctions of discrete states!; it was shown that in this case the deformation of t
potential as well as of the eigenfunctions is isospectral; the flows~1! were analyzed from the

a!Electronic mail: korolev@nonlin.msk.ru
19770022-2488/99/40(4)/1977/16/$15.00 © 1999 American Institute of Physics

                                                                                                                



in this

s in
the
for as

ille
n
uville
ntial
naly-
local

ntial
ntials

using

r
lution

of

l
mula
enko
ation
bitrary

ville

the
itial
bles.
owitz
ation
o the
l
d the
c. VI

ach
died

1978 J. Math. Phys., Vol. 40, No. 4, April 1999 V. M. Eleonsky and V. G. Korolev

                    
viewpoint of symplectic geometry in associated function spaces. Later, the results exposed
paper were made more strict, generalized and extended by Levitan in Ref. 14.

Note that in both the Darboux transform and the McKean and Trubowitz approachclosed
evolutional equations~i.e., partial differential equations where one of the partial derivatives i
the deformation parametert! for eigenfunctions as well as for a potential are not derived. So
solutions for the isospectral deformation of eigenfunctions and a potential were not looked
a result of the integration of such evolutional equations. This~quite natural! problem was formu-
lated and solved in our paper.15 There we derived coupled evolutional equations of the Liouv
type that govern the isospectral deformation defined by the flows~1!. In the simplest case, whe
the sum in~1! contains the only term, those equations degenerate into an integrable Lio
equation for the evolutions both of the eigenfunction that ‘‘specifies’’ the flow and of the pote
itself; and into d’Alembert equations for the other eigenfunctions. The simple asymptotical a
sis performed in Ref. 15 showed that such an evolution is accompanied by splitting off a
potential well, which asymptotically gains the form of the soliton reflectionless pote
g2/cosh2@gj#; and this scenario holds for a wide class of potentials, including scattering pote
as well as the potential of the harmonic~and anharmonic! oscillator.

In the present paper we develop the ‘‘evolutional approach’’ to the isospectral problem
the flow ~1! in the following directions.

~i! We consider a generalization of this flow in the form

Ut5(
k

tk@ckc̃k#x , ~2!

whereck(x,t) andc̃k(x,t) are a pair of solutions to the Schro¨dinger equation with the paramete
Ek , but onlyck must be an eigenfunction. For this case we derive proper PDEs for an evo
of the eigenfunctions of the Schro¨dinger operator.

~ii ! Returning to the original McKean–Trubowitz flows we study a ‘‘two-level’’ flow@in the
expression~1! two constantstn are nonzero# in detail. It is found out that an associated pair
evolutional equations splits intotwo integrable Liouville equationsfor certain combinations of the
eigenfunctions for those states and of their derivatives inx. The integration of the evolutiona
equation for the potential provides a solution, which can be rewritten as the well-known for
for the isospectral deformation of the potential that arises in the Gelfand–Levitan–March
theory. It seems likely that the conclusion about the splitting of the coupled evolutional equ
into independent integrable Liouville equations can be extended to the general case of ar
multi-level flows ~1!.

~iii ! We show that the Darboux transform is also directly related with the integrable Liou
equations and the McKean and Trubowitz ‘‘flow’’ approach.

~iv! Finally, in the case of two-level flow, we present a Hamiltonian formulation of
isospectral evolution that obeys the Liouville equations; we show that splitting of the in
coupled equations into the Liouville equations is performed by a canonical change of varia

The paper is arranged as follows: in Sec. II we discuss the role of the McKean–Trub
flows in the isospectral problem; in Sec. III we derive evolutional equations for the generaliz
of the McKean–Trubowitz flows. In Sec. IV we present a brief review of the results related t
simplest flow ~‘‘individual,’’ in the terminology of Ref. 13!. In Sec. V we study evolutiona
equations for the two-level flow; we discuss relations between the Darboux transform an
Liouville equations and between them both and the McKean–Trubowitz flows. Finally, in Se
we develop a Hamiltonian description for the two-level case.

II. ON A NOTION OF ISOSPECTRAL FLOWS. THE McKEAN–TRUBOWITZ FLOWS

To begin with, we would like to say a few common words concerning the ‘‘flow’’ appro
to the Schro¨dinger isospectral problem; this will help us in clearing up a role of the flows stu
by McKean and Trubowitz in the general context of the isospectral problem.
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Consider the Sturm–Liouville problem for the 1D Schro¨dinger operator inR1:

2 1
2 ~cn!xx1Ucn5Encn , n>0, lim

x→6`

cn50. ~3!

Let U and cn be functions of parametert ~it is a deformation parameter and should not
confused with the physical time: we deal with astationarySchrödinger equation!. A dependence
of the eigenelements of the problem~3! on the parametert will be specified by the following
relation:

Ut5F~U,Ux ,...;$ck%,$~ck!x%,...!. ~4!

If the right-hand side of this relation can be represented as a gradient~in x! of a variational
derivative for a certain functional of the potentialU, then such a relation has a meaning ofa phase
flow. Since we will mostly deal with relations~4! that admit of this representation, we will say th
relation ~4! specifies a phase flow.

Demand that the eigenvaluesEn do not vary as the potential deforms. As follows from~3!, the
conditions,

~En! t50, ;t; n>0, ~5!

lead to the system of equations,

E
2`

1`

Utcn
250, n>0. ~6!

Hence, we get anecessarycondition for a flow of type~4! to be isospectral~to preserve the
spectrum of the Schro¨dinger operator!:

E
2`

1`

Fcn
250, n>0. ~7!

In the other words, for any isospectral flow the functionalF is to belong to the orthogona
complement to the set$cn

2%.
Return to the Schro¨dinger equation~3!. Differentiating it in x gives us the following equa

tions:

1
8 ~cn!xxx

2 2 1
2 Uxcn

22~U2En!~cn
2!x50, n>0, ~8!

which can be rewritten in the form

L @cn
2#x5En@cn

2#x , n>0, ~9!

if one introduces the integro-differential operator,

L[2 1
8 D22 1

2 UxD
211U, ~10!

whereDg(x)[dg/dx, D21g(x)[*x
1`g(x8)dx8 ~this remark is usually assigned to Hermite; se

for instance, the monograph16!.
The operatorL has two important properties~quite a large number of them is listed in th

book17!.
~1! The functions@cn

2#x are its eigenfunctions, which correspond to the eigenvaluesEn ; this
fact is expressed by formula~9!. So, if the set of pairs$(Em ,cm)% is a set of eigenelements for th
operatorH52(1/2)D21U, then the set$(Em ,@cm

2 #x)% is a set of eigenelements for the opera
L . Note thatL is not a Hermitian operator, so the set@cn

2#x is not to be complete.
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~2!

E
2`

1`

cn
2L f ~x!dx5EnE

2`

1`

cn
2f ~x!dx, n>0, ~11!

for quite a wide class of functionsf (x) ~this class includes functions that grow at infinity slow
than the exponential!. This property implies that if some relationUt5F determines an isospectra
flow, then all the flowsUt5L kF, k.0 are also isospectral: each of them satisfies the cond
~6!. The last feature of the operatorL is widely used when one builds hierarchies of integra
evolutional equations, and is the reason to call ita recursion operator.

Note that the operatorL can be written in the following symmetric form:

L52 1
8 D22AUDAUD21 ~12!

~hereU is assumed to be non-negative; but, obviously, the formula can be generalized!.
Now let us return to the isospectral problem and compare two simple isospectral flows

first of them is a so-called ‘‘shift flow:’’

Ut5cUx5
c

2

]

]x

dL

dU
; L5E dxU2. ~13!

Really,

E
2`

1`

Uxcn
2 dx50, ~14!

in the same class of potentials that grow at infinity slower than the exponential; this simple
immediately follows from Eq.~3!. Usually, however, to avoid a singularity int, one demands a
‘‘good behavior’’ of Ux at infinity ~in particular, for scattering potentialsUx→0 asx→6`).

Sequentially applying the recursion operatorL to the shift flow~13!, one builds a hierarchy o
KdV flows:

k50: Ut5c0Ux ,

k51: Ut5c1„Uxxx16~U2!x…,

...

k5m: Ut5cmLmUx .

...

Let us stress again that all these flows lie in the orthogonal complement to the set$cn
2%.

The second elementary type of isospectral flows is given by the expression

Ut5(
n

tn@cn
2#x ; tnPR; ~15!

actually, it can be shown that

E
2`

1`

cn
2@cm

2 #x dx50, ;n,m>0, ~16!

by virtue of Eq.~3!; in the other words, the sets$cn
2% and$@cn

2#x% lie in orthogonal complements
The flows~15! and their isospectral property were studied in detail in Ref. 13; in what follows
will be referred to as ‘‘the McKean–Trubowitz flows’’ or simply ‘‘MKT flows.’’
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What sets off the MKT flows among other isospectral flows? Note two their important p
erties.

~a! The functionalF that determines the MKT flow does not depend on the potential~only on
the eigenfunctions, which always behave well!. So these flows exist both for scattering potenti
and for potentialsgrowing at infinity~e.g., for the potential of the harmonic oscillator!.

~b! As it follows from the first property of the recursion operatorL , the functions@cn
2#x are its

eigenfunctions. It means that it is impossible to build anL -hierarchy starting with the MKT flow:

L(
n

tn@cn
2#x5(

n
tnL @cn

2#x5(
n

tn8@cn
2#x . ~17!

Thus, the operatorL simply changes the weightstn , but the flow is related with the linea
envelope of the set$@cn

2#x%, as before. On the contrary, the elements of a functional space tha
associated with different flows of the KdV hierarchy, are sequentially mapped onto each ot
the operatorL . One can say loosely that the MKT flows are ‘‘eigenflows’’ of the recurs
operatorL ; this, in particular, explains an interest in a deeper study of their features.

Note that these two elementary isospectral flows can coincide: as is well known~see, for
example, Ref. 17!, the reflectionless soliton potentials can be represented in the form

U52&(
n50

N

A2Encn
2, ~18!

where the sum is taken over all the discrete states of the Schro¨dinger operator. So, if we specif
the weightstn by the relationstn5cA2En, then the MKT flow with these weights reduces to t
simplest shift flow~the first flow of the KdV hierarchy! for those potentials; hence, each of t
higher k-th flows of the KdV hierarchy coincides with the MKT flow with properly chang
weights:

tn
~k!5cA2EnEn

k . ~19!

It is clear that the expressions for the KdV flows are evolutional equations for the potenU
themselves. The situation with the MKT flows is more complex. In the paper15 we showed that in
the case of ‘‘individual’’ MKT flow ~all tn50 but one! the deformation both of the potential an
of the eigenfunctions is related to the integrable Liouville equationSxt5exp 2S. In the present
paper we show that an analogous statement holds for more complex MKT flows; more
everything indicates that this is true for any McKean–Trubowitz flow.

III. EQUATIONS OF ISOSPECTRAL DEFORMATION FOR SCHRÖ DINGER OPERATORS:
GENERAL CASE

Let us supplement the Schro¨dinger problem~3! by the relation

Ut5(
k

tk~ckc̃k!x , ~20!

whereck(x,t) andc̃k(x,t) are a pair of solutions to the Schro¨dinger equation with the paramete
Ek and$ck ,Ek% is an eigenelement:

E
2`

1`

ck
2~x8,t !dx8,`, ;t. ~21!

Evidently, relation~20! is an analog and a generalization of Eq.~15!, which determines MKT
flows.

Linear independence of the functionsck and c̃k is characterized by the Wronskian,
                                                                                                                



if

1982 J. Math. Phys., Vol. 40, No. 4, April 1999 V. M. Eleonsky and V. G. Korolev

                    
wk~ t !5@ck ,c̃k#[ck~ c̃k!x2~ck!xc̃k . ~22!

In the casewk(t)Þ0 we do not know a representation of the relation~20! in the form of a phase
flow ~with a gradient of a variational derivative on the right-hand side!.

Let us derive equations that determine an evolution of the eigenelements$cm ,Em%, m
50,1,..., of the Schro¨dinger operator under the condition~20!. Differentiating Eq.~3! in t and
substituting the right-hand side of Eq.~20! for Ut , we obtain the system of equations:

cm
2 ~Em! t1

1

2
@cm~cm!xt2~cm!x~cm! t#x5(

k
tk~ckc̃k!x , m50,1,... . ~23!

Now we take into account the following identities:

cm
2 ~ckc̃k!x[

1
2 ~cm

2 ckc̃k!x1 1
2 $cm

2 ~ckc̃k!x2~cm
2 !xckc̃k%, ~24!

and

cm
2 ~cmc̃m!x2~cm

2 !xcmc̃m[cm
2 wm~ t !,

cm
2 ~ckc̃k!x2~cm

2 !xckc̃k[
$@cm ,ck#•@cm ,c̃k#%x

2~Em2Ek!
, kÞm.

Then the system~23! can be written as follows:

H ~Em! t2
1

2
tmwm~ t !J cm

2 52
1

2
@cm~cm!xt2~cm!x~cm! t#x1

1

2 (
k

tk@cmckc̃k#x

1
1

2 (
kÞm

tk

2~Em2Ek!
@cm ,ck#@cm ,c̃k#. ~25!

Integrating Eqs.~25! in xPR, we eventually find that the evolution of the eigenvaluesEm and the
eigenfunctionscm obeys the following equations:

~Em! t5
1
2 tmwm~ t !, m50,1,..., ~26!

F ~cm!x

cm
G

t

5(
k

tkckc̃k1 (
kÞm

tk

2cm
2 ~Em2Ek!

@cm ,ck#@cm ,c̃k#. ~27!

Thus, for all the states with ‘‘weights’’tmÞ0 the evolution of the eigenvaluesEm(t) is described
by the simple formula:

Em~ t !5Em
0 1

tm

2 E
0

t

wm~ t8!dt8. ~28!

In the other words, only those eigenvalues move, for whichwm(t)Þ0 @i.e., the relation~20!
contains a corresponding pair of linearlyindependentfunctions#. Eigenvalues are constant
wm(t)50. All the other eigenvalues~for which tm50) are also invariant@regardless ofwm(t),
naturally#.
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IV. ONE-LEVEL ISOSPECTRAL DEFORMATION

Let us present a brief review of results for the simplest case: the relation~20! contains only
one product of the functionscm , c̃m ; the detailed analysis, including a study of asymptoti
behavior both of the eigenfunctions and of the potential, together with a description of the
level isospectral deformation in terms of explicit unitary operators, was presented in our pa15

Let all tm50 except for the onlytn51. In this case the general equations~26!, ~27! split into
separate equations for the evolution of the eigenelement (cn ,En) and for the evolution of the
other eigenelements$(cm ,Em),mÞn%:

~En! t5
1
2 wn~ t !, ~Em! t50, mÞn; ~Dlog cn! t5cnc̃n ,

~Dlog cm! t5cnc̃n1
@cm ,cn#@cm ,c̃n#

2cm
2 ~Em2En!

, mÞn

@for brevity, hereafter we use the operator of ‘‘logarithmic derivative’’ Dlog : DlogG(x)[Gx /G
[(lnuGu)x#.

In the casec̃n5cn ~‘‘individual’’ MKT flow ! we havewn(t)50, and the above equation
take the form

~En! t5~Em! t50, ~Dlog cn! t5cn
2, ~29!

~Dlog cm! t5cn
21

@cm ,cn#2

2cm
2 ~Em2En!

, mÞn. ~30!

Equation~29!, which determines evolution~in the parametert! of the ‘‘specifying’’ eigenfunction
cn can be rewritten in the classical form of theintegrable Liouville equationafter the substitution
cn→expSn . It has the following solution:

cn~x,t !5
cn

0

11~et21!*x
1`@cn

0#2dx8
. ~31!

Here thet-function, which is arbitrary in the general case, is chosen exponential to keep the
of the eigenfunction.

After a few transforms, the equations~30! for the other eigenfunctions can be written in th
simple form

]

]t
Dlog

cm

@cn ,cm#
50. ~32!

They are integrated in an obvious way; this allows us to write down the evolution of any fun
cm(x,t) if we know a solution for the ‘‘main’’ eigenfunctioncn(x,t).

Note that by virtue of the Schro¨dinger operator the Wronskian of these functions can alw
be expressed through the integral of their product, andvice versa:

@cn ,cm#5~En2Em!E
x

`

cncmdx8; ~33!

this relation can be used if convenient.
Of course, formula~31! as well as the solutions for the other eigenfunctionscm , mÞn are

known in the literature for quite a long time; they were also presented by McKean and Trub
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in Ref. 13; we have obtained these results in the framework of the evolutional approach, c
ering the isospectral deformation as an evolution in the parametert; deriving associated PDEs an
integrating them.

Return to the generalization of the individual flow. Letc̃nÞcn @wn(t)Þ0#. Expressingc̃n

from Eq. ~20! and substituting it into the equation for the evolution ofcn , we get

~D logcn! t5cn
2S 11wn~ t !Ex dx8

cn
2~x8,t ! D . ~34!

On the other hand, expressingc̃n from the equation for the evolution ofcn and substituting it
into the formula for the flow~20!, we obtain an equation, which is convenient to rewrite int
ducing the functionfn[1/cn :

F ~fn!xx

fn
G

t

52wn~ t !; ~35!

it can be integrated int; as a result we find

~fn!xx

fn
2

~fn
0!xx

fn
0 522~En2En

0!. ~36!

If cn
0 is given, then this is the Schro¨dinger equation forfn . Taking into account that

(cn
0)xx /cn

052(U02En
0), we can rewrite it in the form

2
1

2
~fn!xx1H U02

d2

dx2 lnucn
0uJ fn5Enfn . ~37!

This formula clearly witnesses that in the case of individual flow defined by a pair of line
independent functions, the integration of the associated evolutional equations leads to th
results as does the Darboux transform.

Note also that the functionscn(x,t) can be expressed through solutions of the Schro¨dinger
equations att50 ~this is especially important if those solutions are known explicitly!:

cn~x,t !5
cn

0

@cn
0,x0#

; ~38!

herex0 is a solution of the following Schro¨dinger equation:

2 1
2 ~x0!xx1U0x05En~ t !x0 ~39!

@with the initial potentialU0, but for the valueEn(t) already shifted#.
We stress that all the formulas related to the casewn(t)Þ0 directly transform to the corre

sponding formulas for the casewn(t)50; except for expressions~38!, ~39!: when they are de-
rived, the assumptionEn(t)2En

0Þ0 is used. Note also that the above formulas for the general
MKT flow were also obtained by McKean and Trubowitz in their approach.13

Up to this point we dealt with equations that describe a deformation ofeigenfunctionsof the
Schrödinger operator. Using them, one can derive an equation that governs a deformationthe
potential U(x,t) for the generalization of the individual flow:

]

]t FDlog Y2
wn~ t !

Y G52Y, ~40!

where
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Y5
]

]t E
x

U~x8,t !dx8. ~41!

If wn(t)50 it also degenerates into the Liouville equation. In this case the analysis of the as
totical behavior forU(x,t) shows,15 that for a wide class of potentials, such a deformation
volves the formation of moving local wells in the potential relief; their form is asymptotic
close to the reflectionless soliton potential:

DU~x;x0~ t !;t→`!'2
2~U0~x0!2En!

cosh2A2~U0~x0!2En!~x2x0~ t !!
, ~42!

where the ‘‘center’’x0(t) of the moving soliton well is determined by the equation

Ex0A2~U0~x8!2En!dx85
t

2
. ~43!

The eigenfunction that defines the flow~for which tnÞ0) is localized in this well; ast→` the
domains of localization move to infinity, which is related with disappearance of the correspo
state from the spectrum. This process is accompanied by a deformation of all the other fun
in such a way that the number of nodes and zeros for the other eigenfunctions correspond
new spectrum after the ‘‘governing’’ state is removed.

It is important that such a scenario~a splitting off of local potential wells of soliton form! is
realized not only for the scattering potentials but also for the potential ofthe harmonic oscillator.

V. ANALYSIS OF ISOSPECTRAL EVOLUTION FOR TWO-LEVEL FLOW

Now consider a case of the ‘‘two-level’’ MKT flow. Assume that in the relation~20! tn , t l

Þ0 for two states, and for all the other statestm50, mÞn,l ; let alsowm50, m50,1,... . Since
wn5wl50, the evolution of the system is not accompanied by a shift of the eigenvaluesEn ,El ~as
we know, for the other states eigenvalues do not change in any case!. Then Eqs.~26!, ~27!, which
describe a deformation of the eigenfunctions of the Schro¨dinger problem, take the form

~Dlog c l ! t5tn~cn!21t l~c l !
22

tn

2Dnl
H @c l ,cn#

c l
2 J 2

, ~44!

~Dlog cn! t5tn~cn!21t l~c l !
21

t l

2Dnl
H @c l ,cn#

cn
2 J 2

, ~45!

whereDnl5En2El .
For the convenience of the further analysis, rewrite this pair of coupled evolutional equa

as follows:

~Dlog c l ! t5S2
tn

2Dnl
S cn Dlog Fcn

c l
G D 2

, ~46!

~Dlog cn! t5S1
t l

2Dnl
S c l Dlog Fcn

c l
G D 2

; ~47!

here we denotedS[tncn
21t lc l

2.
Subtracting these equations, we get

S Dlog Fcn

c l
G D

t

5
S

2Dnl
S Dlog Fcn

c l
G D 2

, ~48!
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so

S52
]

]t H 2Dnl

Dlog Fcn

c l
G J . ~49!

Furthermore, from a pair of Schro¨dinger equations for the functionscn ,c l for some potential
U follows:

1

2

~cn!xx

cn
1En5

1

2

~c l !xx

c l
1El , ~50!

which we rewrite in the form

@cn ,c l #x52Dnlcnc l . ~51!

Note that this relation must be satisfied by any pair of eigenfunctions of the Schro¨dinger
operator for which the difference between eigenvalues equalsDnl . In the other words, for the
equations that determine the evolution int the expression~51! is an additional condition, which is
to hold at anyt; a priori it is not known whether this condition is substantial or holds always
virtue of the equations themselves~i.e., in some sense, it is aa local integralof those equations!.

Dividing both sides of Eq.~51! by @cn ,c l #, and comparing the result with Eq.~49!, we find
that

S5
]

]t
Dlog @cn ,c l #[a~x,t !. ~52!

If we return to a definition of the flow (Ut5Sx), we notice that the functiona(x,t) that
denotes the right-hand side of the relation~52! coincides with the antiderivative of the potenti
V(x,t): Vx5U up to an arbitrary term depending onx only.

Substituting the expression forS from ~52! into the coupled equations~44!–~45!, we obtain
two separatedequations for the functions$@cn ,c l #/c l%

2 and$@cn ,c l #/cn%
2:

]

]t
Dlog H @cn ,c l #

c l
J 2

51
tn

Dnl
H @cn ,c l #

c l
J 2

, ~53!

]

]t
Dlog H @cn ,c l #

cn
J 2

52
t l

Dnl
H @cn ,c l #

cn
J 2

. ~54!

Thus, for the McKean–Trubowitz flow defined at two eigenfunctions of the Schro¨dinger
operator, the evolution of these combinations obeys twoindependentintegrable equations tha
reduce to classical Liouville equations after substitutions of the kind@cn ,c l #/cn,l→expSn,l .

It can be proved that expression~51! is a local integralfor that pair of independent equation
~for any choice of two arbitrary functions oft in their solutions!. In terms of Dirac’s description of
Hamiltonian systems with constraints~see the next section! this expression is classified as ‘‘
complementary condition that is not substantial by virtue of a dynamics of the system’’~this
means that such a condition does not violate an integrability of the dynamical system!.

Consider the ‘‘diagonalizing’’ transform

$cn ,c l%⇒H Fn51
c l

@cn ,c l #
, F l52

cn

@cn ,c l #
J ~55!

in more detail. This transform is antisymmetric:
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Fn51
c l

@cn ,c l #
, cn52

F l

@Fn ,F l #
,

~56!

F l52
cn

@cn ,c l #
, c l51

Fn

@Fn ,F l #
;

since

@Fn ,F l #•@cn ,c l #521. ~57!

The condition~50! or ~51! ~which was written as a condition for the functionscn and c l to be
solutions of the Schro¨dinger equation for the same potential but for different valuesEn andEl)
can be rewritten in the form

1

2

~Fn!xx

Fn
1En5

1

2

~F l !xx

F l
1El . ~58!

It means that the functionsc l /@cn ,c l #, cn /@cn ,c l # are also solutions of the Schro¨dinger equa-
tion for a potential, which differs from the potential for the functionscn ,c l , but for the same
values of the parametersEn ,El . Indeed, it is not difficult to prove that the transform~55! can be
represented as a product of two Darboux transforms defined at the states with eigenvaluesEn and
El , respectively.

The explicit formula for the change of the potential by the transform~55! is as follows:

U85U1
d

dx
Dlog @cn ,c l #. ~59!

Let us try to understand the following: why it is after the transform to the functionsFn
22,F l

22

that the initial coupled evolutional equations for the functionscn ,c l are diagonalized in our
problem? The answer is related to the following simple observation: if some functionF(x,t) is a
solution to the equation

~Dlog F ! t5F ~60!

~which reduces to the Liouville equationSxt5expS), then the functionF5F21/2 is a solution to
the equation

H Fxx

F J
t

50, ~61!

andvice versa~generically, in the latter case the ‘‘times’’t in these equations are not the same, b
they are related by a simple scaling!.

It is easy to see that Eq.~61! is satisfied by a family of solutions to the Schro¨dinger equation
with a fixed potential and a fixed parameterE, if we identify t with a substantial parameter of tha
family ~the parameter that cannot be removed by scaling!. In the other words, if we continuousl
change the parametert and thus move over solutionsF (t) of the Schro¨dinger equation with a fixed
potential and fixed parameterE, then the functionsF (t)5(F (t))22 ‘‘evolve’’ in accordance with
the Liouville equations~60!; it is important thatE is constant.

Thus, the Liouville equations for the functionsF22 arise in the problem on the isospectr
deformation quite naturally. A switch from the set of eigenfunctionsck to the set of functionsFk

is performed by transforms of the Darboux type: in the case of ‘‘individual’’ MKT flows it is
simple Darboux transform; in the case of ‘‘two-level’’ MKT flow, which we study, it is t
transform~55! that can be represented as an analogous double~consecutive! transform.
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Now return to the separated equations for the functionsFn
225(@cn ,c l #/c and F l

22

5(@cn ,c l #/cn)2 ~53!, ~54!. They can be written in the form

]

]t1
Dlog

1

Fn
2 51

1

Fn
2 , ~62!

]

]t2
Dlog

1

F l
2 52

1

F l
2 , ~63!

wheret15tn /Dnlt, t25t l /Dnlt. Solutions of these equations are as follows:

1

Fn
2 512

]

]t1
DlogF12

1

2 E0

t1
expg1~ t8!dt8E

x

` 1

Fn
2U

t50

dx8G , ~64!

1

F l
2 522

]

]t2
DlogF11

1

2 E0

t2
expg2~ t8!dt8E

x

` 1

F l
2U

t50

dx8G . ~65!

Denote the right-hand sides of these solutions byF1 andF2 , respectively. Then final formulas fo
the isospectral deformation of the eigenfunctions in the case of two-level flow will be given i
form

c l51YAF2E
x

` dx8

AF1F2

, cn51YAF1E
x

` dx8

AF1F2

. ~66!

Equations~53!, ~54! can also be rewritten as a pair of separated equations for certain func
Z6, which are only expressed through the functiona(x,t) @see Eq.~52!# and its derivative; i.e., in
fact, we can obtain equations that describe the isospectral deformation of thepotential in closed
form for the case of two-level McKean–Trubowitz flow. Define the functionsZ6 as follows:

Z15
ax

a
2a1

2Dnl

a
, ~67!

Z25
ax

a
2a2

2Dnl

a
; ~68!

and use, together with Eq.~3!, the identity

ax

a
2a5DlogF a2

cnc l
G . ~69!

It can be shown that Eqs.~53!, ~54! and relations~3!, ~69! lead to the separated equations f
the functionsZ6(x,t):

]

]t
DlogZt

652Zt
6 . ~70!

Any of them can be used to determine the evolution of the potential, since the compat
condition for their solutions~i.e., a condition under which they give the same potential!,

2~Z1!x1~Z1!214Dnl52~Z2!x1~Z2!224Dnl , ~71!

is nothing but the condition~51! rewritten in the new variables.
The solutions of Eqs.~70! have the form
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Z65Z612Dlog u6~x,t !,

u[12
1

2 E0

t

expg6~ t8!dt8E
x

`

uZt
6u t50dx8. ~72!

Using these expressions, we can write down a solution for the functiona(x,t) ~an antideriva-
tive of the potential!; the same solution can be obtained from formulas~64!, ~65!:

1

a~x,t !
5

1

a0~x!
1

1

2Dnl
Dlog

122t lDnla~ t !*x
`~c l /a!2u t50dx8

112tnDnlb~ t !*x
`~cn /a!2u t50dx8

, ~73!

wherea(t)5*0
t expg1(t8)dt8, b(t)5*0

t expg2(t8)dt8.
It can be proved that this expression can be transformed to a particular case of a well-

formula for the isospectral deformation of the potential in the Schro¨dinger operator,

a~x,t !5a02DlogU11a~ t !E
x

`

~cn
0!2dx8 a~ t !E

x

`

cn
0c l

0dx8

b~ t !E
x

`

cn
0c l

0dx8 11b~ t !E
x

`

~c l
0!2dx8

U , ~74!

which is derived both in the method related to the integral equations of the Gelfand–Levita
Marchenko types, and in the McKean and Trubowitz approach. The transformation from fo
~73! to ~74! is not obvious; but it is not difficult to check, as an intermediate step, that Eqs.~73!
and ~74! can be rewritten as follows:

1

a~x,t !
5

1

a02
1

~a0!2

2Rx

R2Rx@a0#21 ~75!

and

a~x,t !5a02DlogR, ~76!

respectively.
Thus, we have shown that the known formulas for the isospectral deformation of the po

and of the eigenfunctions can also be obtained as solutions of PDEs~reducible to the Liouville
equations!, which we derived using the ‘‘evolutional’’ approach to the description of the isos
tral deformation of the Schro¨dinger operator together with the formulas for the McKea
Trubowitz flow.

VI. ON HAMILTONIAN DESCRIPTION OF TWO-LEVEL ISOSPECTRAL DEFORMATION

Performing the scalingx/ADnl⇒j, ADnlt⇒t, Atncn⇒Cn , At lc l⇒C l , and defining the
variablesGn , G l , Gnl by the relations

Gn[
~Cn!j

Cn
, G l[

~C l !j

C l
, Gnl[Gn2G l , ~77!

rewrite the initial system of two coupled evolutional equations in the form

~Gn!t2~Cn
21C l

2!51 1
2 ~GnlC l !

2, ~78!

~G l !t2~Cn
21C l

2!52 1
2 ~GnlCn!2. ~79!
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In the new variables the relation~50! ~the condition for the functionscn , c l to be solutions of the
Schrödinger equation with one and the same potential forEn andEl) takes the form of a relation
between the logarithmic derivativesGn andG l :

1
2 ~Gnl!j5212 1

2 Gn
21 1

2 G l
2. ~80!

Note that Eqs.~78!, ~79! and the relation~80! do not contain any parameters.
The evolutional equations~78!, ~79! can be written as Hamiltonian equations with respec

the dynamical variablesGn , G l :

~Gn!t52
]

]j

dH

dGn
, ~G l !t51

]

]j

dH

dG l
; ~81!

these equations are generated by the functional

H5
1

4 E2`

1`

djGnl
2 ~j,t!FexpS 2E

2`

j

dj8Gn~j8,t! D 1expS 2E
2`

j

dj8G l~j8,t! D G . ~82!

In fact, one can prove that Eqs.~81! together with the condition~80! and the definitions~77! lead
to the initial system of evolutional equations~78!, ~79!.

Thus, the evolutional formulation of the problem on isospectral deformations of the S¨-
dinger operator is related with dynamical systems of the Hamiltonian type with constraints
Hamiltonian formalism for such a class of dynamical systems was first studied by Dirac.18

Now pass from the variables$Cn,l ,Gn,l5DlogCn,l% to the variables$zn,l ,gn,l5Dlogzn,l% by the
relations

gn5Gn1
~Gnl!j

Gnl
, g l5G l1

~Gnl!j

Gnl
,

zn5CnGnl , z l5C lGnl .

In these variables the evolutional equations~78!, ~79! and the constraint~80! take the form

~gn!t52 1
2 zn

2, ~g l !t51 1
2 z l

2, ~83!

2 1
2 ~gnl!j1 1

2 ~gn
22g l

2!521. ~84!

Thus, the transform (G i ,C i)⇒(g i ,z i) leads to a system of twoseparatedequations. Moreover
this transformpreserves a Hamiltonian structureof the dynamical system: the equations

~gn!t52
]

]j

dh

dgn
, ~g l !t51

]

]j

dh

dg l
, ~85!

generated by the functional

h5
1

4 E2`

1`

djFexpS 2E
2`

j

dj8gn~j8,t! D 1expS 2E
2`

j

dj8g l~j8,t! D G ~86!

provide the evolutional equations~83!; note thath5H.
Furthermore, the transform (G i ,C i)⇒(g i ,z i) preserves ‘‘naive’’~in terms of Ref. 16! Pois-

son brackets. For example, if they are defined as follows:

$a,b%P~G![E
2`

1`

dj
da

dG~j!

]

]j

db

dG~j!
, ~87!
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then we find that

$gm ,gm8%P~g!5$gm ,gm8%P~G! , ~88!

since the variational derivative of a logarithmic derivative always vanishes.
Thus, the transform (G i ,C i)⇒(g i ,z i) is a canonical transformfor the Hamiltonian dynami-

cal system with the Hamiltonian functionh5H.
Note also that the constraint~84! is a local integralof the system~83!. This means that the

expression on the right-hand side of Eq.~84! ~denote it byJnl) satisfies the equation (Jnl)t50 by
virtue of Eqs.~83!. Hence, the equations give usJnl5C(j); and only choosing the ‘‘level’’
C(j)521 we can satisfy the condition~84!.

Now let us formulate principal results of this section.
~i! The above-considered system of two coupled evolutional equations can be writt

Hamiltonian equations generated by the functional~82! ~where ‘‘logarithmic derivatives’’ of the
eigenfunctions are canonical variables!.

~ii ! The switch from the system of two coupled evolutional equations to the pair of
evolutional equations of Liouville form is performed by a canonical change of variables.

APPENDIX: SEQUENCE OF CANONICAL TRANSFORMS

Consider the following sequence of transforms, each of which preserves a Hamiltonian
ture of the equations~78!, ~79!.

~i!: (G i ,C i)⇒(g i ,z i). The initial system of evolutional equations~78!, ~79! and the con-
straint ~80! are transformed to~83!, ~84!.

~ii !: (g i ,z i)⇒(g̃ i ,z̃ i): g̃n52gn , g̃ l52g l , z̃n5zn
21, z̃ l5z l

21. Now the system of equation
~83!, ~84! is transformed to the form

~ g̃n!t52 1
2 z̃n

22, ~ g̃ l !t51 1
2 z̃ l

22, ~A1!

1 1
2 ~ g̃nl!j2 1

2 g̃nl~ g̃n1g̃ l !521. ~A2!

~iii !: (g̃ i ,z̃ i)⇒(G̃ i ,C̃ i):

G̃n5g̃n1
~ g̃nl!j

g̃nl
, G̃ l5g̃ l1

~ g̃nl!j

g̃nl
,

C̃n5G̃nlz̃n , C̃ l5G̃nlz̃ l .

Here the system~A1!, ~A2! takes the form

S G̃n1
2

G̃nl

D
t

51
G̃nl

2

2C̃n
2

, S G̃ l1
2

G̃nl

D
t

52
G̃nl

2

2C̃ l
2

, ~A3!

2 1
2 ~ G̃nl!j1 1

2 G̃nl~ G̃n1G̃ l !521. ~A4!

~iv!: (G̃ i ,C̃ i)⇒(Ḡ i ,C̄ i): Ḡn52G̃n , Ḡ l52G̃ l , C̄n5C̃n
21, C̄ l5C̃ l

21.
After this ~last! step the system~A3!, ~A4! is written as follows:

S Ḡn1
2

Ḡnl

D
t

52
1

2
~ ḠnlC̄n!2, ~A5!
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S Ḡ l1
2

Ḡnl

D
t

52 1
2 ~ ḠnlC̄ l !

2, ~A6!

1 1
2 ~ Ḡnl!j1 1

2 Ḡnl~ Ḡn1Ḡ l !521. ~A7!

It is not difficult to prove that

Ḡn5Gn , Ḡ l5G l , C̄n52Cn , C̄ l52C l , ~A8!

whereas Eqs.~A5!, ~A7! coincide with the initial system of evolutional equations~78!, ~79! and
the constraint~80!.

Thus, the chain of transforms (G i ,C i)⇒(g i ,z i)⇒(g̃ i ,z̃ i)⇒(G̃ i ,C̃ i)⇒(Ḡ i ,C̄ i) maps the ini-
tial Hamiltonian system with constraints into itself~up to change of signs of the solutionsC i).

Note that links of this chain coincide, principally, with links of the double Darboux transfo
This points to a possibility to define a correspondence between the Darboux approach in the
of integrable evolutional equations of the isospectral deformation in the Schro¨dinger problem and
canonical transforms of an associated Hamiltonian system with constraints. This statement
be made more formal by a strict analysis of the multi-flow case and a more correct definit
Poisson–Dirac brackets.16
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Exact integrability of the Sasa Satsuma equation~SSE! in the Liouville sense is
established by showing the existence of an infinite set of conservation laws. The
explicit form of the conserved quantities in terms of the fields are obtained by
solving the Riccati equation for the associated 333 Lax operator. The soliton
solutions, in particular, one and two soliton solutions, are constructed by the Hiro-
ta’s bilinear method. The one soliton solution is also compared with that found
through the inverse scattering method. The gauge equivalence of the SSE with a
generalized Landau Lifshitz equation is established with the explicit construction of
the new equivalent Lax pair. ©1999 American Institute of Physics.
@S0022-2488~99!00204-2#

I. INTRODUCTION

Nonlinear Schro¨dinger equation and its various generalized versions~higher order nonlinear
Schrödinger equation! is well known in describing various physical phenomenas.1 A common
property in all these physical systems is the appearance of solitons, as a result of a b
between the nonlinear and dispersive terms of the wave equations. With the advancem
experimental accuracy, solitons having more complicated dynamics can also be detect
observed now.2 The Sasa Satsuma equation3

iQT1
1

2
QXX1uQu2Q1

i

6e
~QXXX16uQu2QX13uQuX

2Q!50 ~1!

describing the evolution of a complex scalar field, is an example of such a system, whose
solutions have been obtained through inverse scattering method~ISM! in Ref. 3.

A limited class of soliton bearing equations exhibits further interesting properties and be
to the exclusive club of integrable systems. The most prominent definition of integrability i
integrability in the Liouville sense, i.e., the existence of a set of infinite numbers of conse
quantities in involution,4 which can be considered as the action variables. This criterion of
grability is extendable also to the quantum case. The Lax pair associated with the model is u
a sign of such integrability, while the Painleve´ singularity analysis5 is supposed to be a direct te
of integrability for the given equation.

a!Electronic mail: sasanka@iitg.ernet.in
b!Electronic mail: anjan@tnp.saha.ernet.in
c!Electronic mail: sudipta@iitg.ernet.in
19930022-2488/99/40(4)/1993/8/$15.00 © 1999 American Institute of Physics
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It should be mentioned that the Lax pair for the SSE as well as its one soliton through
were found in Ref. 3, while the Painleve analysis for the equation was carried out in R
However, extraction of the higher conserved quantities for the Sasa Satsuma system a
establishing the integrability of the whole hierarchy in the Liouville sense remained unexplor
possible reason of this may be the difficulty involved due to the unusual 333 matrix form of the
Lax operator, associated with the SSE.

Our objective is, therefore, to find the Riccati equation for the 333 Lax operator, associate
with the SSE and consequently, to obtain the whole hierarchy of conserved charges in a sys
way. This construction will be somewhat involved due to the extended form of the Lax ope

For investigating SSE from a different view point, we further find the explicit soliton solut
of the equation through Hirota’s bilinear method. This is a direct and much more effective m
compared to ISM for obtaining the soliton solutions, since it does not require the knowledge
Lax pair. Moreover, the construction of thet function becomes straightforward in this method

One should recall in this context another interesting fact about the NLS equation tha
gauge related to the well known Landau Lifshitz equation~LLE!.7 This equivalence can also b
established through the space curve method.8 It is, therefore, natural to ask what is the gau
equivalent equation to the SSE. Though such an equivalent system has been discovered
space curve method in Ref. 6, we complete the investigation for SSE by showing the equiv
of it through an explicit gauge transformation, which not only reproduces the generalized
~GLLE!, but also constructs the associated Lax pair for the GLLE.

The organization of this paper is as follows. In Sec. II we study the soliton solutions of
by Hirota’s bilinear method. We compute explicitly the one and two soliton solutions and com
our result of one soliton solution with the known one.3 In Sec. III, we construct the related Ricca
equation using the 333 Lax operator of the SSE and subsequently find the infinite numbe
conserved quantities through the recursion relation. The time invariance of the conserved
ties is checked directly by using the evolution equation. This proves the Liouville integrabili
the SSE. Section IV provides the gauge equivalent generalized LLE and gives the associat
Lax operators in the explicit form. Section V is the concluding one.

II. SOLITON SOLUTIONS THROUGH HIROTA’S METHOD

Let us begin with the SSE~1!, which through a change of variable and a Galelian trans
mation:

Q~X,T!5u~x,t !expH i eS x1
et

6 D J ,

T5t,

X5x1
e

2
t, ~2!

may be simplified to the form

ut1
1

6e
~uxxx16uuu2ux13~ uuu2!xu!50. ~3!

This is an example of a complex modified KdV type equation and goes to mKdV for the
valued field. The associated spectral problem can be studied through the pair of linear equ

Cx5U~x,t,l!C, ~4a!

C t5V~x,t,l!C, ~4b!
                                                                                                                



m

g

not
inear

ing

1995J. Math. Phys., Vol. 40, No. 4, April 1999 Ghosh, Kundu, and Nandy

                    
whereU(x,t,l) andV(x,t,l) are 333 matrices andl is the spectral parameter. The explicit for
of U andV may be given using the result of Ref. 3 as

U52 ilS1A, ~5a!

V52 i4el3S14e~l22uuu2!A2 i2leS~A22Ax!2eAxx1e~AxA2AA x!, ~5b!

with

S5S 1
0
0

0
1
0

0
0

21
D ,

A5S 0
0

2u*

0
0

2u

u
u*
0
D .

Compatibility of~4a! and~4b! leads to SSE~3!, which can be shown easily by using the followin
properties ofS andA matrices:

$S,A%50,

S251,

A312uuu2A50.

Note that SSE in the form~3!, though suitable for studying inverse scattering technique, is
convenient for casting it into Hirota’s bilinear form. On the other hand, the higher order nonl
Schrödinger equation form~1! for SSE is more suitable for this purpose. Now, in order to write~1!
in the bilinear form, we make the transformation

Q~X,T!5G~X,T!/F~X,T!, ~6!

where,G is complex andF is real. Consequently, in these new variables, we have the follow
set of equations:

S iD T1
1

2
DX

21
i

6e
DX

3 DG•F50, ~7a!

DX
2F•F54G* •G, ~7b!

S 12
2i

e
DXDG* •G50, ~7c!

which follow from ~1!. DT , DX , DXX etc. in ~7! are Hirota derivatives.9 Equation~7! belongs to
a new class of bilinear equations, whose general form would be of the type

B~DX ,DT ,...!G•F50, ~8a!

A~DX ,DT ,...!F•F5C~DX ,DT ,...!G* •G, ~8b!

E~12DX ,DT ,...!G* •G50. ~8c!
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The additional bilinear equation~7c! involving G* G imposes one further condition on the com
plex parameterP ~shown below!, which is absent in other examples of higher order nonlin
Schrödinger equations.10

For obtaining one soliton solution of SSE~1!, we chooseG andF in the following form

G5L exp~h!, ~9a!

F511K exp~h1h* !, ~9b!

where,L is a complexc-number parameter and

h5PX1VT1¯ , ~10!

with P, V are in general complex parameters. Substituting the expressions~9! for G andF in ~7!,
we see thatG andF are the solutions of~7! provided the following relations hold:

iV1
1

2
P21 i

P3

6e
50, ~11a!

K5
LL*

2m2 , ~11b!

P2P* 52i e, ~11c!

where the complex parameter,P is of the form

P5m1 i e. ~12a!

Equation~11a! is nothing but the dispersion relation and~11b! determinesK. In the above solu-
tion, so far,L is an arbitrary complex parameter. We will see shortly that in order to compare
result with the one obtained through the ISM,3 the parameterL is to be chosen in a specific form
It follows from the dispersion relation~11a! and the expression ofP ~12a! thatV should be of the
form

V52mS m2

6e
1

e

2D2 i
e2

3
. ~12b!

Substituting~12a! and ~12b! in ~10! and using~11b! the one soliton solution in the explicit form
becomes

Q~X,T!5
L exph

11K exp~h1h* !
5

L expH ~m1 i e!X2S m3

6e
1

me

2
1 i

e2

3 DTJ
11

uLu2

2m2 expH 2mX2S m3

3e
1me DTJ . ~13!

To compare~13! with that of ISM, we chooseL as

L52m exp~2 i eX~1!2mX~0!!, ~14!

which reduces~13! to the form
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Q~X,T!5

m

&
expH i eS X2

e

3
T2X~1!D J

coshS mX2mS m2

6e
1

e

2DT2mX~0!1 log& D ~15!

and this is in agreement with the ISM result of Ref. 3.
Two soliton solutions of the Sasa Satsuma equation may be obtained, following Ref. 1

choosingG andF of the form

G5L~exph11M exp~h11hA!!, ~16a!

F511k exp~h11h1* !1exp~hA!1kMM* exp~h11h1* 1hA!, ~16b!

where,h1 is complex as in the case of one solition, buthA is chosen to be real. SubstitutingF and
G ~16! in the bilinear forms~7!, we observe thath1 soliton satisfies the same dispersion relati
as ~11a!, whereas the dispersion relation forhA becomesPA

250. The degree 2 term in~7a!
determines the parameterM to be unity. Once again following Ref. 10, we define the degree
term by the number ofh’s present in the exponent. Now the degree 2 and 4 terms in~7b!, yield the
value ofk as in~11b!. However, because of the additional bilinear form~7c! in our case, we obtain
one more relation,e(P1* 2P1)52i . Note that, in general for complex bosonic systems hav
complex parameters, the two soliton solutions may have some relation, which is analogous
three soliton conditions.10 But, the choice of the real parameterhA , makes the three soliton
condition trivial in our case. A more general choice ofF andG for two soliton solutions will give
such a nontrivial condition.

III. RICCATI EQUATION AND THE CONSERVED QUANTITIES

To show the Liouville integrability, i.e., the existence of an infinite number of conse
quantities related to SSE~3!, we first write the associated Riccati equation. Since the Lax op
tors in this case are 333 matrices, the Riccati equation becomes more complicated, tho
tactable. Let us write the auxiliary fieldC in the component form as

C5S x1

x2

x3

D . ~17!

Substituting~17! in ~4a!, we get a set of three coupled equations:

x1x52 ilx11ux3 , ~18a!

x2x52 ilx21u* x3 , ~18b!

x3x5 ilx32u* x12ux2 . ~18c!

Now expressing~18! in terms ofG15(x1 /x3) and G25(x2 /x3), and eliminatingx1 , x2 , and
x3 , one obtains

G1x5u22il11u* G1
21uG1G2 , ~19a!

G2x5u* 22il21uG2
21u* G1G2 . ~19b!

The first order nonlinear coupled equations~19! for G1 and G2 are the Riccati equations in ou
case. Notice that neither the integral ofG1 nor of G2 , plays the role of generating functions fo
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conserved quantities, but a suitable combination of them does. The infinite number of con
quantities~Hamiltonians!, H2n11 ; n50,1,2,... can be obtained from~19! by identifying

a~l!5exp~2 ilx!ux→`C3~`,l!5expH 2E
2`

`

~u* G11uG2!dxJ , ~20a!

whereH2n11 are related toa(l) as

ln a~l!522(
n50

`

~2i !22n21H2n11l22n21. ~20b!

We will see that Hamiltonians with odd indices only survive, while the terms with even ind
become trivial. This property is similar to that of the real KdV or the modified KdV equatio

We may look for series solutions of~19! by assumingG1 andG2 in the form

G15 (
n50

`

Cn
1l2n, ~21a!

G25 (
n50

`

Cn
2l2n, ~21b!

which yield the following recursion relations from~19a! and ~21!:

C0
150, C1

15
u

2i
,

2iCn12
1 52~Cn11

1 !x1 (
m50

n11

~u* Cm
1 Cn2m11

1 1uCm
1 Cn2m11

2 !. ~22!

Similarly ~19b! and ~21! determine another, though quite similar, set of recursion relations g
as

C0
250, C1

25
u*

2i
,

2iCn12
2 52~Cn11

2 !x1 (
m50

n11

~uCm
2 Cn2m11

2 1u* Cm
2 Cn2m11

1 !. ~23!

Inserting the expressions ofCn
1 andCn

2, thus obtained through the recursion relations~22!, ~23! in
~21!, we get from~20a! and ~20b! the explicit form of all conserved quantities,H2n11 . These
expressions are the integrals taken over the functions of the fieldsu andu* and their derivatives.
The first few conserved quantities of the infinite set of the SSE hierarchies are given by

H15E u* u dx, ~24!

H35E ~2ux* ux12uuu4!dx, ~25!

H55E ~uxx* uxx28uuu2ux* ux23~~ uuu2!x!
218uuu6!dx. ~26!
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We have checked explicitly by using equations of motion~3! thatH1 , H3 , andH5 are, indeed, the
constants of motion.

IV. GENERALIZED LANDAU LIFSHITZ TYPE EQUATION AS THE GAUGE EQUIVALENT
SYSTEM

We now show an interesting connection between the SSE in the form~3! and the generalized
Landau Lifshitz type equation, by exploiting the gauge equivalence of the Lax pairs of thes
dynamical systems. The procedure is similar to that between the NLS and the standard L
Lifshitz equation.7 Under a local gauge transformation, the Jost function,C(x,t,l) changes as

C̃~x,t,l!5g21~x,t !C~x,t,l!, ~27!

whereg(x,t)5C(x,t,l)ul50 , may be taken as an element of the gauge group. Consequentl
Lax equations~4! under this gauge transformation~27! become

C̃x5Ũ~x,t,l!C̃, ~28a!

C̃ t5Ṽ~x,t,l!C̃, ~28b!

whereŨ and Ṽ are the new gauge transformed Lax pair, given by

Ũ~x,t,l!5g21~U2U0!g, ~29a!

Ṽ~x,t,l!5g21~V2V0!g, ~29b!

with U05Uul505g21(x,t)gx(x,t) andV05Vul505g21(x,t)gt(x,t).
We may identify the spin field of the Landau Lifshitz type equation as

S5g~x,t !21Sg~x,t !, S251. ~30!

With this identification, the gauge transformed Lax pair~29! can be expressed in terms of the sp
field S ~30! and its derivatives only, yielding

Ũ52 ilS, ~31a!

Ṽ524i el3S12el2SSx1 i el~Sxx1
3
2SSx

2!. ~31b!

In deriving ~31! one has to use the following important identities:

SSx52g21Ag, SSx
2524g21SA2g and Sxx1SSx

252g21SAxg.

The zero curvature condition of~31!;

Ũt2Ṽx1@Ũ,Ṽ#50 ~32!

leads to the generalized Landau Lifshitz type equation

St1eSxxx1
3
2e~Sx

31SSxxSx1SSxSxx!50 ~33!

with SPSU~3!/SU~2!.
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V. CONCLUSION

In this paper, we have bilinearized the higher order nonlinear Schro¨dinger equation via the
SSE following Hirota’s method. Hirota’s method is an effective and important method to o
multisoliton solutions. We have found explicitly one and two soliton solutions and recovere
ISM result of one soliton solution from that of Hirota’s method after a specific choice of
parameter involved. The result related to higher soliton solutions are more complicated and
given elsewhere. It is found that the SSE falls under a new class of bilinear forms.

The linear problem of SSE is a nontrivial one in the sense that the Lax operator correspo
to this dynamical equation is a 333 matrix, which makes the related Riccati equation m
involved. However, by solving such coupled Riccati equations we are able to compute exp
the infinite number of conserved quantities through the recursion relations and to show tha
with odd indices only contribute to the conserved charges like KdV and mKdV systems.
result establishes explicitly the integrability of the SSE in the Liouville sense. Finding ou
Poisson bracket structures among the dynamical fields and consequently revealing the
form of the hierarchy of SSE from the conserved charges obtained here will be an inter
future problem.

The gauge equivalence of the GLLE with the SSE has been established here. This equiv
not only gives a direct relationship between the fields, which would help to find the so
solutions of the GLLE using those of the SSE, but also yields explicit Lax operators for G
from which one would be able to extract the related higher conserved quantities in the simila
following the present results of SSE.
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A new integrable differential-difference system is proposed. By the dependent vari-
able transformation, the system is transformed into multilinear form. By introduc-
ing an auxiliary variable, we further transform it into the bilinear form. A corre-
sponding Ba¨cklund transformation for it is obtained. Furthermore a nonlinear
superposition formula is presented. As an application of the obtained results, soli-
ton solutions to the system are derived. ©1999 American Institute of Physics.
@S0022-2488~99!03202-8#

I. INTRODUCTION

While continuous soliton equations have been under active investigation, only a rela
small portion of the literature was devoted to the subject of discrete systems. Howeve
situation has been improved by now. Recently there has been a renewal of interest in d
soliton systems. As a result, various approaches are being further developed to discrete
equations, among which Hirota’s method is one of the most important ones. As is known, Hi
bilinear method has played an important role in solitons and integrable systems sin
inception.1 In a series of papers,2 Hirota discretized several soliton equations and obtained so
solutions to the discretized equations.

The purpose of this paper is to propose a new differential-difference system and then s
by using Hirota’s method. It is noted that recently the so-called Belov–Chaltikian lattice3

bt~n!5b~n!~b~n11!2b~n21!!2c~n!1c~n21!, ~1!

ct~n!5c~n!~b~n12!2b~n21!!, ~2!

and the Blaszak–Marciniak lattice4

at~n!5c~n11!2c~n21!, ~3!

bt~n!5a~n21!c~n21!2a~n!c~n!, ~4!

ct~n!5c~n!~b~n!2b~n11!!, ~5!

are transformed into the following bilinear forms:5,6

~Dt
2e~1/2!Dn2Dze

~1/2!Dn! f ~n!• f ~n!50, ~6!
20010022-2488/99/40(4)/2001/10/$15.00 © 1999 American Institute of Physics

                                                                                                                



s:

inte-
natu-
he type
e
se the

e-
olterra

2002 J. Math. Phys., Vol. 40, No. 4, April 1999 Hu, Wu, and Geng

                    
~Dze
Dn2Dt

2eDn12e2Dn22eDn! f ~n!• f ~n!50, ~7!

and

~Dt
222Dze

Dn! f ~n!• f ~n!50, ~8!

~DzDt24 sinh2~ 1
2Dn!! f ~n!• f ~n!50, ~9!

respectively, wherez is an auxiliary variable and the bilinear operators are defined as follow7–9

Dz
mDt

na•b[S ]

]z
2

]

]z8D
mS ]

]t
2

]

]t8D
n

a~z,t !b~z8,t8!uz85z,t85t ,

exp~dDn!a~n!•b~n![expFdS ]

]n
2

]

]n8D Ga~n!b~n8!un85n5a~n1d!b~n2d!.

On the other hand, in Ref. 10 a new, and relatively simple, procedure for finding new
grable differential-difference equation was reported. By combining these two thinkings, it is
ral to search for new integrable systems such that the systems have the bilinear forms of t
~6! and ~7! and ~8! and ~9! and the corresponding bilinear Ba¨cklund transformations could b
found. With such a motivation in mind and after some tests and guesses, we now propo
following new system:

v t~n!5v~n!~2u~n!2u~n11!2u~n21!!, ~10!

ut~n11!1ut~n21!1v~n!ut~n!1 3
4~u~n11!2u~n21!!2

1 1
4~u~n11!1u~n21!22u~n!!21 1

4~v~n!21!50. ~11!

By the dependent variable transformation

u~n!5~ ln f ~n!! t , v~n!5
f 2~n!

f ~n11! f ~n21!

and by use of~A1!, ~A2!, ~A3!, ~10! and ~11! can be transformed into the following form:

@~3Dt
2eDn13Dt

22eDn11! f ~n!• f ~n!# f ~n!21@~12eDn! f ~n!• f ~n!#~Dt
2f ~n!• f ~n!!

1Dt
2@~eDn21! f ~n!• f ~n!#• f 2~n!50. ~12!

Further, by introducing an auxiliary variablez and using~A4!, we can decouple~12! into the
following bilinear form:

~DzDt22eDn12! f ~n!• f ~n!50, ~13!

~Dt
3Dz16Dt

2eDn16Dt
222eDn12! f ~n!• f ~n!50. ~14!

Equation~11! may be rewritten as

ut~n!1~T11T21v~n!!21@ 3
4~u~n11!2u~n21!!2

1 1
4~u~n11!1u~n21!22u~n!!21 1

4~v~n!21!#50, ~15!

whereT6u(n)[u(n61). Obviously ~15! is nonlocal. However, to our knowledge, most int
grable differential-difference systems appeared in literature such as the Toda lattice, V
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equation are local. Therefore it is far from obvious to find such a transformation if there e
some transformation~point transformation, Miura-like transformation, etc.! which relates the sys
tem ~10! and ~11! to some other one already in the literature. On the other hand, from
viewpoint of bilinear formalism, to our knowledge it is the first time to consider the bilin
equations~13! and~14! simultaneously withz being an auxiliary variable, although~13! is just the
bilinear form of the two-dimensional Toda lattice. Based on these explanations, it wou
reasonable to view~13! and ~14! as a new system.

The paper is organized as follows. In Sec. II we give a Ba¨cklund transformation for Eqs.~13!
and ~14!. Then in Sec. III, we give a brief proof of a nonlinear superposition formula. So
particular solutions of Eqs.~13! and ~14! are then found through this formula. Finally, Sec. I
summarizes the obtained results. An Appendix lists some bilinear operator identities made
in this paper.

II. A BÄ CKLUND TRANSFORMATION

In this section, we shall derive a Ba¨cklund transformation for Eqs.~13! and ~14!. The result
obtained is:

Proposition 1:A Bäcklund transformation~BT! for ~13! and ~14! is

~Dz1l21e2Dn1m! f ~n!•g~n!50, ~16!

~Dte
2~1/2!Dn2le~1/2!Dn1ge2~1/2!Dn! f ~n!•g~n!50, ~17!

@l21Dt
3e2Dn/213Dt

2eDn/213l21gDt
2e2~1/2!Dn16gDte

~1/2!Dn1~6g221!e~1/2!Dn

1ve2~1/2!Dn# f ~n!•g~n!50, ~18!

wherel, m, g, andv are arbitrary constants.
Proof: Let f (n) be a solution of Eqs.~13! and ~14!. If we can show that Eqs.~16!–~18!

guarantee that the following two relations

P1[~DzDt22eDn12!g~n!•g~n!50,

P2[~Dt
3Dz16Dt

2eDn16Dt
222eDn12!g~n!•g~n!50,

hold, then Eqs.~16!–~18! form a Bäcklund transformation.
In fact, same as the proof in Ref. 11, we know thatP150 can be proved using Eqs.~16! and

~17!. Thus it suffices to show thatP250. For this, by making use of~A5!–~A11!, ~16!–~18!, we
have

2 f ~n!2P25@~Dt
3Dz16Dt

2eDn16Dt
222eDn12! f ~n!• f ~n!#g~n!2

2 f ~n!2@~Dt
3Dz16Dt

2eDn16Dt
222eDn12!g~n!•g~n!#

13@~DzDt22eDn12! f ~n!• f ~n!#@Dt
2g~n!•g~n!#

23@Dt
2f ~n!• f ~n!#@~DzDt22eDn12!g~n!•g~n!#

52Dt
3~Dzf ~n!•g~n!!• f ~n!g~n!

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

2~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!
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522l21Dt
3~e2Dnf ~n!•g~n!!• f ~n!g~n!

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

2~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

54l21 sinh~ 1
2Dn!@~Dt

3e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

13~Dte
2~1/2!Dnf ~n!•g~n!!•~Dt

2e2~1/2!Dnf ~n!•g~n!!#

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

2~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

54l21 sinh~ 1
2Dn!~Dt

3e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~Dt

2e2~1/2!Dnf ~n!•g~n!!

212l21gsinh~ 1
2Dn!~e2~1/2!Dnf ~n!•g~n!!•~Dt

2e2~1/2!Dnf ~n!•g~n!!

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

2~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

54l21 sinh~ 1
2Dn!~Dt

3e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112 sinh~ 1
2Dn!~Dt

2e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

212Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

1~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#112l21g sinh~ 1

2Dn!

3~Dt
2e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

2~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

54l21 sinh~ 1
2Dn!~Dt

3e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112 sinh~ 1
2Dn!~Dt

2e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

124Dt cosh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~ge2~1/2!Dnf ~n!•g~n!!

112l21g sinh~ 1
2Dn!~Dt

2e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!
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54l21 sinh~ 1
2Dn!~Dt

3e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112 sinh~ 1
2Dn!~Dt

2e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

124g sinh~ 1
2Dn!@~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

2~e~1/2!Dnf ~n!•g~n!!•~Dte
2~1/2!Dnf ~n!•g~n!!#

112l21g sinh~ 1
2Dn!~Dt

2e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

54l21 sinh~ 1
2Dn!~Dt

3e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112 sinh~ 1
2Dn!~Dt

2e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

124g sinh~ 1
2Dn!~Dte

~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

124g2 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

112l21g sinh~ 1
2Dn!~Dt

2e2~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!

24 sinh~ 1
2Dn!~e~1/2!Dnf ~n!•g~n!!•~e2~1/2!Dnf ~n!•g~n!!50.

Thus we have completed the proof of proposition 1.
By using ~16!–~18!, we can easily obtain the following solutions from the trivial soluti

f (n)51:

g~n!511exp~h!

with

l56A e~1/2!p2e2~1/2!p

4e~1/2!p24e2~5/2!p, m52l21, g5l, v526l211,

whereh5pn1qz1rt 1h0, q5l21(ep21), r 5l(12e2p).

III. A NONLINEAR SUPERPOSITION FORMULA

In the following, we shall simply denote, without confusion,f (n,t)5 f (n) or f. The result
reached is

Proposition 2:Let f 0 be a solution of Eqs.~13! and ~14! and suppose thatf i ( i 51,2) are
solutions of~13! and ~14! which are related tof 0 under the BT Eqs.~16!–~18! with parameters
(l i ,m i ,g i ,v i), i.e.,

f 0 ——→
~l i ,m i ,g i ,v i !

f i ~ i 51,2!, l1l2Þ0, f jÞ0 ~ j 50,1,2!.

Then f 12 defined by

exp~2 1
2Dn! f 0• f 125k@l1 exp~2 1

2Dn!2l2 exp~ 1
2Dn!# f 1• f 2 ~k is a nonzero constant!

~19!

is a new solution which is related tof 1 and f 2 under the BT ~16!–~18! with parameters
(l2 ,m2 ,g2 ,v2), (l1 ,m1 ,g1 ,v1), respectively.

Proof: Same as the deduction in Refs. 11 and 6, we can show that
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~Dz1l2
21e2Dn1m2! f 1• f 1250, ~20!

~Dz1l1
21e2Dn1m1! f 2• f 1250, ~21!

~Dte
2~1/2!Dn2l2e~1/2!Dn1g2e2~1/2!Dn! f 1• f 1250, ~22!

~Dte
2~1/2!Dn2l1e~1/2!Dn1g1e2~1/2!Dn! f 2• f 1250, ~23!

2Dzf 1• f 21~m12m2! f 1f 22
1

kl1l2
e2Dnf 0• f 1250, ~24!

~l2Dte
~1/2!Dn1l1Dte

2~1/2!Dn22l2g1e~1/2!Dn12l1g2e2~1/2!Dn! f 1• f 21
1

k
Dte

2~1/2!Dnf 0• f 1250.

~25!

Therefore in order to prove proposition 2, it suffices to show that

@l2
21Dt

3e2Dn/213Dt
2eDn/213l2

21g2Dt
2e2~1/2!Dn16g2Dte

~1/2!Dn1~6g2
221!e~1/2!Dn

1v2e2~1/2!Dn# f 1• f 1250, ~26!

@l1
21Dt

3e2~Dn/2!13Dt
2e~Dn/2!13l1

21g1Dt
2e2~1/2!Dn16g1Dte

~1/2!Dn1~6g1
221!e~1/2!Dn

1v1e2~1/2!Dn# f 2• f 1250. ~27!

Sincef 1 and f 2 are two solutions of Eqs.~13! and~14!, we have, by use of~A5!–~A15!, ~19!, ~20!,
~22!, ~24!, ~25! and

f 0 ——→
~l2 ,m2 ,g2 ,v2!

f 2 ,

that

05@~Dt
3Dz16Dt

2eDn16Dt
222eDn12! f 1• f 1# f 2

2

2@~Dt
3Dz16Dt

2eDn16Dt
222eDn12! f 2• f 2# f 1

2

13@~DzDt22eDn12! f 1• f 1#@Dt
2f 2• f 2#

23@~DzDt22eDn12! f 2• f 2#@Dt
2f 1• f 1#

52Dt
3~Dzf 1• f 2!• f 1f 2112Dt cosh~ 1

2Dn!@~Dte
~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!

2~e~1/2!Dnf 1• f 2!•~Dte
2~1/2!Dnf 1• f 2!#24 sinh~ 1

2Dn!~e~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!

52
2

kl1l2
Dt

3~e2Dnf 0• f 12!• f 1f 2

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!2~e~1/2!Dnf 1• f 2!•~Dte
2~1/2!Dnf 1• f 2!#

24 sinh~ 1
2Dn!~e~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!

52
2

kl1l2
e2~1/2!Dn@~Dt

3e2~1/2!Dnf 0• f 2!•~e2~1/2!Dnf 1• f 12!23~Dt
2e2~1/2!Dnf 0• f 2!

•~Dte
2~1/2!Dnf 1• f 12!
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13~Dte
2~1/2!Dnf 0• f 2!•~Dt

2e2~1/2!Dnf 1• f 12!2~e2~1/2!Dnf 0• f 2!•~Dt
3e2~1/2!Dnf 1• f 12!#

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!2~e~1/2!Dnf 1• f 2!•~Dte
2~1/2!Dnf 1• f 2!#

1
4

l1
sinhS 1

2
DnD @~l1e2~1/2!Dn2l2e~1/2!Dn! f 1• f 2#•~e~1/2!Dnf 1• f 2!

52
2

kl1l2
e2~1/2!Dn$@~Dt

3e2~1/2!Dn13g2Dt
2e2~1/2!Dn! f 0• f 2#•~e2~1/2!Dnf 1• f 12!

2~e2~1/2!Dnf 0• f 2!•@~Dt
3e2~1/2!Dn13g2Dt

2e2~1/2!Dn! f 1• f 12#

23l2~Dt
2e2~1/2!Dnf 0• f 2!•~e~1/2!Dnf 1• f 12!13l2~e~1/2!Dnf 0• f 2!•~Dt

2e2~1/2!Dnf 1• f 12!%

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!2~e~1/2!Dnf 1• f 2!•~Dte
2~1/2!Dnf 1• f 2!#

1
4

kl1
sinhS 1

2
DnD ~e2~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!

52
2

kl1l2
e2~1/2!Dn$@~Dt

3e2~1/2!Dn13g2Dt
2e2~1/2!Dn13l2Dt

2e~1/2!Dn! f 0• f 2#•~e2~1/2!Dnf 1• f 12!

2~e2~1/2!Dnf 0• f 2!•@~Dt
3e2~1/2!Dn13g2Dt

2e2~1/2!Dn13l2Dt
2e~1/2!Dn! f 1• f 12#%

1
12

kl1
Dt coshS 1

2
DnD @~Dte

2~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!1~e2~1/2!Dnf 0• f 12!

•~Dte
~1/2!Dnf 1• f 2!#

112Dt cosh~ 1
2Dn!@~Dte

~1/2!Dnf 1• f 2!•~e2~1/2!Dnf 1• f 2!2~e~1/2!Dnf 1• f 2!•~Dte
2~1/2!Dnf 1• f 2!#

1
2

kl1
e2~1/2!Dn@~e~1/2!Dnf 0• f 2!•~e2~1/2!Dnf 1• f 12!2~e2~1/2!Dnf 0• f 2!•~e~1/2!Dnf 1• f 12!#

52
2

kl1l2
e2~1/2!Dn$@~Dt

3e2~1/2!Dn13g2Dt
2e2~1/2!Dn13l2Dt

2e~1/2!Dn2l2e~1/2!Dn! f 0

• f 2#•~e2~1/2!Dnf 1• f 12!

2~e2~1/2!Dnf 0• f 2!•@~Dt
3e2~1/2!Dn13g2Dt

2e2~1/2!Dn13l2Dt
2e~1/2!Dn2l2e~1/2!Dn! f 1• f 12#%

224g2Dt cosh~ 1
2Dn!~e2~1/2!Dnf 1• f 2!•~e~1/2!Dnf 1• f 2!

52
2

kl1l2
e2~1/2!Dn$@~Dt

3e2~1/2!Dn13g2Dt
2e2~1/2!Dn13l2Dt

2e~1/2!Dn2l2e~1/2!Dn! f 0• f 2#

•~e2~1/2!Dnf 1• f 12!

2~e2~1/2!Dnf 0• f 2!•@~Dt
3e2~1/2!Dn13g2Dt

2e2~1/2!Dn13l2Dt
2e~1/2!Dn2l2e~1/2!Dn! f 1• f 12#%

2
24g2

kl1
Dt coshS 1

2
DnD ~e2~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!

52
2

kl1l2
e2~1/2!Dn$@~Dt

3e2~1/2!Dn13g2Dt
2e2~1/2!Dn13l2Dt

2e~1/2!Dn2l2e~1/2!Dn! f 0

• f 2#•~e2~1/2!Dnf 1• f 12!

2~e2~1/2!Dnf 0• f 2!•@~Dt
3e2~1/2!Dn13g2Dt

2e2~1/2!Dn13l2Dt
2e~1/2!Dn2l2e~1/2!Dn! f 1• f 12#%
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2
12g2

kl1
e2~1/2!Dn@~Dte

~1/2!Dnf 0• f 2!•~e2~1/2!Dnf 1• f 12!2~e~1/2!Dnf 0• f 2!•~Dte
2~1/2!Dnf 1• f 12!

1~Dte
2~1/2!Dnf 0• f 2!•~e~1/2!Dnf 1• f 12!2~e2~1/2!Dnf 0• f 2!•~Dte

~1/2!Dnf 1• f 12!#

5
2

kl1l2
e2~1/2!Dn~e2~1/2!Dnf 0• f 2!•@~Dt

3e2~1/2!Dn13g2Dt
2e2~1/2!Dn13l2Dt

2e~1/2!Dn

2l2e~1/2!Dn16l2g2Dte
2~1/2!Dn16l2g2

2e~1/2!Dn1v2e2~1/2!Dn! f 1• f 12#,

which implies that~26! holds. Similarly we can prove~27! also holds. Therefore we have com
pleted the proof of the proposition 2.

As an application of the result, we can construct soliton solutions of Eqs.~13! and ~14!.
Choose for examplef 051, c51/(l12l2). It is easily verified that

where

f 12511
l1e2p12l2

l12l2
eh11

l12l2e2p2

l12l2
eh21

l1e2p12l2e2p2

l12l2
eh11h2

with

h i5pin1qiz1r i t1h i
0, qi5l i

21~epi21!, r i5l i~12e2pi !

and

l i56A e~1/2!pi2e2~1/2!pi

4e~1/2!pi24e2~5/2!pi
, m i52l i

21, g i5l i , v i526l i
211.

In general, along this line, we can obtain multisoliton solutions for Eqs.~13! and~14! step by
step.

IV. CONCLUSION AND DISCUSSIONS

A new integrable differential-difference system is proposed. By the dependent variable
formation, the system is transformed into multilinear form. By introducing an auxiliary varia
we further transform it into the bilinear form. A corresponding Ba¨cklund transformation for it is
obtained. Furthermore a nonlinear superposition formula is presented. As an application
obtained results, soliton solutions to the system are derived. As is known, it is of both theo
and practical value to find as many new integrable systems as possible and to elucidate in
their algebraic and geometric properties. In theory, it will greatly help to formulate a criterio
integrability, which is a long-standing open problem; and in practice it will provide us with do
of nonlinear systems, which are of potential value in physical applications. Therefore we hop
proposed system~10! and ~11! will model the behavior of some physical, or biological syste
Moreover, it also would be of interest to study other algebraic and geometric properties fo~10!
and~11!, e.g., to see if it has Hamiltonian structure and belongs to hierarchies associated to
linear problem. Besides, we can further consider the following extended form of~13! and ~14!:

~DzDt22eDn12! f ~n!• f ~n!50, ~28!
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~Dt
3Dz16Dt

2eDn16Dt
21ADte

Dn22eDn12! f ~n!• f ~n!50, ~29!

whereA is an arbitrary constant.
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APPENDIX: HIROTA BILINEAR OPERATOR IDENTITIES

The following bilinear operator identities hold for arbitrary functionsa, b, c, andd:

~Dt
2a•a!b21a2Dt

2b•b52~Dt
2a•b!ab22~Dta•b!2, ~A1!

Dt
2ca•a5ctta

21cDt
2a•a, ~A2!

Dt
2a2

•a252a2Dt
2a•a, ~A3!

~Dt
3Dza•a!a21~DzDta•a!~Dt

2a•a!5Dt
2~DzDta•a!•a2, ~A4!

~Dt
3Dza•a!b22a2~Dt

3Dzb•b!13~DzDta•a!~Dt
2b•b!23~Dt

2a•a!~DtDzb•b!

52Dt
3~Dza•b!•ab, ~A5!

~Dt
2eDna•a!b22a2Dt

2eDnb•b1~Dt
2a•a!~eDnb•b!2~eDna•a!~Dt

2b•b!

52Dt cosh~ 1
2Dn!@~Dte

~1/2!Dna•b!•~e2~12!Dna•b!2~e~1/2!Dna•b!•~Dte
2~1/2!Dna•b!#,

~A6!

Dt
3~e2Dna•b!•ab522 sinh~ 1

2Dn!@~Dt
3e2~1/2!Dna•b!•~e2~1/2!Dna•b!

13~Dte
2~1/2!Dna•b!•~Dt

2e2~1/2!Dna•b!#, ~A7!

sinh~ 1
2Dn!@~e~1/2!Dna•b!•~Dt

2e2~1/2!Dna•b!2~Dt
2e~1/2!Dna•b!•~e2~1/2!Dna•b!#

52Dt cosh~ 1
2Dn!@~Dte

~1/2!Dna•b!•~e2~1/2!Dna•b!1~e~1/2!Dna•b!•~Dte
2~1/2!Dna•b!#,

~A8!

Dt cosh~ 1
2Dn!~e~1/2!Dna•b!•~e2~1/2!Dna•b!5sinh~ 1

2Dn!@~Dte
~1/2!Dna•b!•~e2~1/2!Dna•b!

2~e~1/2!Dna•b!•~Dte
2~1/2!Dna•b!#, ~A9!

Dt cosh~ 1
2Dn!a•a50, ~A10!

sinh~ 1
2Dn!a•a50, ~A11!

Dt
3~e2Dna•b!•cd5e2~1/2!Dn@~Dt

3e2~1/2!Dna•d!•~e2~1/2!Dnc•b!23~Dt
2e2~1/2!Dna•d!

•~Dte
2~1/2!Dnc•b!13~Dte

2~1/2!Dna•d!•~Dt
2e2~1/2!Dnc•b!2~e2~1/2!Dna•d!

•~Dt
3e2~1/2!Dnc•b!#, ~A12!
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e2~1/2!Dn@~Dt
2e2~1/2!Dna•b!•~e~1/2!Dnc•d!2~e~1/2!Dna•b!•~Dt

2e2~1/2!Dnc•d!#

5e2~1/2!Dn@~e2~1/2!Dna•b!•~Dt
2e~1/2!Dnc•d!2~Dt

2e~1/2!Dna•b!•~e2~1/2!Dnc•d!#

12Dt cosh~ 1
2Dn!@~Dte

2~1/2!Dna•d!•~e~1/2!Dnc•b!1~e2~1/2!Dna•d!•~Dte
~1/2!Dnc•b!#,

~A13!

2 sinh~ 1
2Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!

5e2~1/2!Dn@~e~1/2!Dna•d!•~e2~1/2!Dnc•b!2~e2~1/2!Dna•d!•~e~1/2!Dnc•b!#, ~A14!

2Dt cosh~ 1
2Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!

5e2~1/2!Dn@~Dte
~1/2!Dna•d!•~e2~1/2!Dnc•b!2~e~1/2!Dna•d!•~Dte

2~1/2!Dnc•b!

1~Dte
2~1/2!Dna•d!•~e~1/2!Dnc•b!2~e2~1/2!Dna•d!•~Dte

~1/2!Dnc•b!#. ~A15!
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High-frequency soliton-like waves in a relaxing medium
V. O. Vakhnenkoa)

Division of Geodynamics of Explosion, Institute for Geophysics, 252054 Kyiv, Ukraine

~Received 23 March 1998; accepted for publication 6 October 1998!

A nonlinear evolution equation is suggested to describe the propagation of waves in
a relaxing medium. It is shown that for low-frequency approach this equation is
reduced to the KdVB equation. The high-frequency perturbations are described by
a new nonlinear equation. This equation has ambiguous looplike solutions. It is
established that a dissipative term, with a dissipation parameter less than some limit
value, does not destroy these looplike solutions. ©1999 American Institute of
Physics.@S0022-2488~99!00503-4#

I. INTRODUCTION

As a rule the behavior of media under the action of high-frequency wave perturbations
described in the framework of equilibrium models of continuum mechanics. So, to develop p
cal models for wave propagation through media with complicated inner kinetics, the notions
on the relaxational nature of a phenomenon are regarded to be promising and fruitful.

The description of nonlinear processes arising in different areas of research can of
reduced to the well-known Korteweg–de Vries~KdV! equation.1,2 It turns out that low-frequency
perturbations in a relaxing medium satisfy the KdV equation, too. The high-frequency pert
tions are described by a new nonlinear evolution equation which has been investigated in R
and 4. This equation has an ambiguous solution in the form of a solitary wave. This work
with the looplike solutions of the model evolution equation. It is proved that the dissipative
with a dissipation parameter less than some limit value, does not destroy the looplike solu

II. LOW-FREQUENCY AND HIGH-FREQUENCY PERTURBATIONS IN RELAXING
MEDIUM

Thermodynamic equilibrium is disturbed owing to the propagation of fast perturbations
medium. There are processes of the interaction that tend to return the equilibrium. The para
characterizing this interaction are referred to as the inner variables unlike the macropara
such as the pressurep, mass velocityu, and densityr. In essence, the change of macroparame
caused by the changes of inner parameters is a relaxation process. From the nonequ
thermodynamics standpoint, the models of a relaxing medium are more general than the e
rium models for describing the evolution of the wave perturbations.

We restrict our attention to barothropic media. An equilibrium state equation of a baroth
medium is a one-parameter equation. As a result of relaxation, an additional variablej ~inner
parameter! appears in the state equation. It defines the completeness of the relaxation proc

p5p~r,j!. ~2.1!

There are two limiting cases:
~i! the lack of the relaxation~inner interaction processes are frozen! j51.

p5p~r,1![pf~r!, ~2.2!

~ii ! the relaxation complete~there is the local thermodynamic equilibrium! j50:

a!Electronic mail: vakhnenko@bitp.kiev.ua
20110022-2488/99/40(4)/2011/10/$15.00 © 1999 American Institute of Physics
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p5p~r,0![pe~r!. ~2.3!

These relationships enable us to introduce the sound velocities for fast processes

cf
25dpf /dr ~2.4!

and for slow processes

ce
25dpe /dr. ~2.5!

Slow and fast processes are compared by means of the relaxation timetp . The dynamic state
equation is written down in the form of the differential first-order equation

tpS dp

dt
2cf

2 dr

dt D1~p2pe!50. ~2.6!

Clearly, for the fast processes (vtp@1) we have the relation~2.2!, and for the slow ones (vtp

!1) we obtain~2.3!.
The substantiation of this equation within the framework of the thermodynamics of irre

ible processes has been given in Refs. 5–8. The mechanism of the exchange~inner! processes is
not defined concretely when the equation~2.6! is derived, and the thermodynamic and kine
parameters appear in this equation only. These characteristics can be found by experime
dynamic state equation~2.6! enables us to take into account the exchange processes comp
We note that the phenomenological approach for describing the relaxation processes in hy
namics is developed in many works.7–10 The dynamic state equation was used to describe
propagation of sound in a relaxing medium,7 to take into account the exchange processes wi
media~gas–solid particles!,8 and to study wave fields in gas-liquid media9 and in soils.10 In most
works the state equation has been derived from the concept of some concrete mechanism
inner process.

To analyze the wave motion, we shall use the hydrodynamic equations: the law of the
servation of mass

]V

]t
2

]u

r0]x
50 ~2.7!

and the law of the conservation of momentum

]u

]t
1

]p

r0]x
50. ~2.8!

HereV[r21 is specific volume andx is Lagrangian space coordinate.
The closed system of equations consists of two motion equations~2.7! and ~2.8! and the

dynamic state equation~2.6!. The motion equations~2.7! and ~2.8! are written in Lagrangian
coordinates, since the state equation~2.6! is related to the element of the mass of medium.

Let us consider a small perturbationp8,p0. The state equations for fast@~2.2!# and slow
@~2.3!# processes are considered to be known. They can be expanded as the power ser
accuracyO(p82)

Vf~p01p8!5V02cf
22V0

2p81
1

2

d2Vf

dp2 U
p5p0

p821 . . . ,
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Ve~p01p8!5V02ce
22V0

2p81
1

2

d2Ve

dp2 U
p5p0

p821 . . . .

Hereafter, the velocitiesce , cf are related to initial pressurep0. Combining these two relation
ships with the motion equations~2.7! and~2.8!, we obtain the equation in one unknown~the dash
in p8 is omitted!:

tp

]

]tS ]2p

]x2
2cf

22 ]2p

]t2
1

1

2V0
2

d2Vf

dp2 U
p5p0

]2p2

]t2 D 1S ]2p

]x2
2ce

22 ]2p

]t2
1

1

2V0
2

d2Ve

dp2 U
p5p0

]2p2

]t2 D 50.

~2.9!

A similar equation has been obtained in Ref. 5, though without nonlinear terms.
Now we shall show that for low-frequency perturbations the equation~2.9! is reduced to the

Korteweg–de Vries–Burgers~KdVB! equation, while for high-frequency waves we shall obta
the equation with hydrodynamic nonlinearity and term that appeared in the Klein–Gordon
tion.

To analyze the equation~2.9!, let us apply the multiscale method.11,12 The value«[tpv is
chosen to be small~large! parameter where the quantityv is the characteristic frequency of wav
perturbation. For the sake of convenience we rewrite the equation~2.9! as follows:

tpv
]

]tvS ]2p

]~xv!2
2cf

22 ]2p

]~ tv!2
1a f

]2p2

]~ tv!2D 1S ]2p

]~xv!2
2ce

22 ]2p

]~ tv!2
1ae

]2p2

]~ tv!2D 50,

~2.10!

a f5
1

2V0
2

d2Vf

dp2 U
p5p0

, ae5
1

2V0
2

d2Ve

dp2 U
p5p0

,

and introduce new independent variables

T05tv, X05xv, T225tv/«2, X225xv/«2.

It is precisely these variables that cause the equations, obtained within the framework of
scale method11,12

O~«11!:
]

]T0
S ]2p

]X0
2

2cf
22 ]2p

]T0
2

1a f

]2p2

]T0
2 D 50,

O~«0!:
]2p

]X0
2

2ce
22 ]2p

]T0
2

1ae

]2p2

]T0
2

50,

O~«21!:S ]3

]X0
2]T22

12
]3

]T0]X0]X22
D p23cf

22 ]3p

]T0
2]T22

13a f

]3p2

]T0
2]T22

50,

O~«22!:
]2p

]X0]X22
2ce

22 ]2p

]T0]T22
1ae

]2p2

]T0]T22
50, ~2.11!

O~«23!:S ]3

]T0]X22
2

12
]3

]X0]X22]T22
D p23cf

22 ]3p

]T0]T22
2

13a f

]3p2

]T0]T22
2

50,
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O~«24!:
]2p

]X22
2

2ce
22 ]2p

]T22
2

1ae

]2p2

]T22
2

50,

O~«25!:
]

]T22
S ]2p

]X22
2

2cf
22 ]2p

]T22
2

1a f

]2p2

]T22
2 D 50,

to be partially uncoupled. The two leading equations depend onT0 andX0 only, while the last two
equations include the independent variablesT22 andX22 only. Thus, the low-frequency pertur
bations are described by the two leading equations, and the high-frequency perturbatio
described by the last two equations. An interaction between these perturbations is described
three center equations.

Let us write out the motion equations for low-frequency and high-frequency perturbatio
the initial variablesx and t. For low-frequency perturbations the main terms]2p/]x2 and
ce

22]2p/]t2 appear in the second equation of the system~2.11!, while for high-frequency pertur-
bations the main terms]2p/]x2 andcf

22]2p/]t2 appear in the seventh equation of~2.11!.
For low-frequency perturbations (tpv!1) propagating in one direction, we obtain an evo

tion equation

]p

]t
1ce

]p

]x
1aece

3p
]p

]x
2be

]2p

]x2
1ge

]3p

]x3
50,

~2.12!

be5
ce

2tp

2cf
2 ~cf

22ce
2!, ge5

ce
3tp

2

8cf
4 ~cf

22ce
2!~cf

225ce
2!.

This equation can be obtained in the following way. A dispersion relation for the linea
equation~2.10! can be written down with an accuracyO(k3) in the formv5cek1 ibek

22gek
3,

if the termsce
21]p/]t and]p/]x are the main ones. For this dispersion relation we write a lin

equation in which a nonlinear term is reconstructed in agreement with the initial equation.
The equation~2.12! is the well-known KdVB equation. It is encountered in many chapters

physics to describe nonlinear wave processes.1 In Ref. 2 it was shown how hydrodynamic equ
tions reduce to either the KdV or Burgers equation according to the choices for the state eq
and the generalized force when analyzing the gasdynamical waves, waves in shallow2

hydrodynamic waves in cold plasma,13 or ion-acoustic waves in cold plasma.14 The KdV equation
(be50) has stationary solutions~solitons!. In the case ofbeÞ0 the stationary solutions of th
equation~2.12! are known also.15

For high-frequency perturbations (tpv@1), using the last two equations of the system~2.11!,
we get the following evolution equation:

]2p

]x2
2cf

22 ]2p

]t2
1a fcf

2 ]2p2

]x2
1b f

]p

]x
1g f p50,

~2.13!

b f5
cf

22ce
2

tpce
2cf

, g f5
cf

42ce
4

2tp
2ce

4cf
2

.

In addition to the nonlinear term with coefficienta f , the equation has dissipativeb f ]p/]x and
dispersiveg f p terms. If a f5b f50, this is a linear Klein–Gordon equation. There is a Gree
function for this equation16,17 that enables us to find the solution in quadrature, at least. Nume
solutions of the Klein–Gordon equation modeling the propagation of high-frequency perturb
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in gas–liquid media have been presented in Ref. 17. Whitham’s monograph18 has also described
a similar evolution equation for high-frequency perturbations, but its form coincides with th
Eq. ~2.13! only whena f50 andg f50.

Landau and Lifshitz have shown that for high frequencies the dissipative term under
transport of heat agrees with corresponding term in the equation~2.13! ~see section 79 and 81 i
Ref. 7!. Thus, the dynamic state equation~2.6! enable us to take into account the dissipat
processes completely. But the form of the dissipative terms describing the inner exchang
cesses~transport of heat and momentum! are different for the high and low frequencies.

We call attention to the fact that the dispersion relationsv5v(k) for the linearized equations
~2.12! and ~2.13! have been restricted by the finite power series ink and ink21, respectively:

v5cek1 ibek
22gek

3, tpv!1,

cf
22v25k21 ib fk2g f , tpv@1.

In the general case the equation~2.13! has been investigated insufficiently. It is likely that th
is connected with the fact noted by Whitham18 that the high-frequency perturbations attenu
very fast. However, in Ref. 18 the evolution equation without nonlinear and dispersive term
considered. Certainly, the lack of such terms restricts the class of solutions. At least, there
solution in the form of a solitary wave which is caused by nonlinearity and dispersion.

The studies of the equation~2.13! have some scientific interest both from the viewpoint of t
investigation of the propagation of high-frequency perturbations and from the viewpoint o
existence of stable wave formations.

III. EVOLUTION EQUATION FOR HIGH-FREQUENCY PERTURBATIONS

The equation~2.13!, which we are interested in, is written down in dimensionless form. Le
restrict our consideration to the propagation of high-frequency waves in positive directionx, then
with necessary accuracy we can write the operator

]2

]x2
2cf

22 ]2

]t2
5S ]

]x
2cf

21 ]

]t D S ]

]x
1cf

21 ]

]t D→2
]

]xS ]

]x
1cf

21 ]

]t D
~for example, see section 93 in Ref. 7!. In the moving coordinates system with velocitycf , the
equation has the form in dimensionless variablesx̃5Ag f /2(x2cf t), t̃ 5Ag f /2cf t, ũ5a fcf

2p ~tilde
over variablesx̃, t̃ , ũ is omitted!:

]

]xS ]

]t
1u

]

]xDu1a
]u

]x
1u50. ~3.1!

The constanta5b f /A2g f is always positive.
The equation~3.1! without the dissipative term has the form of the nonlinear equation3,4

]

]xS ]

]t
1u

]

]xDu1u50. ~3.2!

These equations are related to that of Whitham18 with the kernelsK(x)5 1
2@a(2Q(x)21)1uxu#

andK(x)5 1
2uxu ~see Eq.~2! in Ref. 3! and are written as

]u

]t
1u

]u

]x
1au1

1

2E2`

`

ux2su
]u

]s
ds50, ~3.3!
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]u

]t
1u

]u

]x
1

1

2E2`

`

ux2su
]u

]s
ds50, ~3.4!

whereQ(x) is a Heaviside function. There is no derivative in the dissipative termau of Eq. ~3.3!.
Papers3,4 are devoted to the analysis of the equation~3.2!. In Ref. 4 it was named Vakhnen

ko’s equation. The equation~3.2! has two families of traveling wave solutions.3,4 In one case the
solutions have looplike form~see Fig. 1 in Ref. 3!. Only in this case is there a solitary wav
solution. In Ref. 4 it is predicted that both families of solutions are stable to long wavele
perturbations. The existence of singular points, at which the derivatives tend to infinity, req
the application of a nonstandard method.4 The ambiguous structure is similar to the loop solit
solution to an equation that models a stretched rope.19 The looplike solitons on a vortex filamen
were investigated by Hasimoto20 and Lamb, Jr.21

The material described below deals with the ambiguous looplike solutions of the equ
~3.1!. From the mathematical point of view the ambiguous solution does not present diffic
while the physical interpretation of ambiguity always has some difficulties. In this connectio
problem of ambiguous solutions is regarded to be important. The problem consists in wheth
ambiguity has a physical nature or is related to the incompleteness of mathematical mo
particular to the lack of dissipation.

We will consider the problem related to the singular points when the dissipation takes
At these points the dissipative terma ]u/]x tends to infinity. The question arises: are the
solutions of the equation~3.1! in a looplike form? That the dissipation is likely to destroy t
looplike solutions can be associated with the following well-known fact.1 For a simplest nonlinea
equation without dispersion and dissipation,

]u

]t
1u

]u

]x
50, ~3.5!

any initial smooth solution with boundary conditions

uux→1`50, uux→2`5u05const.0

becomes ambiguous in the final analysis. When the dissipation is considered, we have a B
equation22

]u

]t
1u

]u

]x
1m

]2u

]x2
50.

The dissipative terms of this equation and Eq.~2.13! for low frequency are coincided. The inclu
sion of the dissipative term transforms the solutions so that they cannot be ambiguous as
of evolution. The wave parameters are always unambiguous. What happens in our case
high frequency when the dissipative term has the formau @Eq. ~3.3!#? Will the inclusion of
dissipation give rise to unambiguous solutions? It turns out that, and here this has been prov
dissipative term, with a dissipation parameter less than some limit value, does not destr
looplike solutions. A physical interpretation is given to ambiguous solutions.

IV. AMBIGUOUS SOLUTIONS

Let us pass to the coordinates in which the equation~3.2! has stationary periodic solutions@see
Eq. ~7! in Ref. 3#

h5x2vt, t5t, ~4.1!

wherev is a nonzero constant. Eq.~3.2! has looplike solutions whenv.0. Parkes noted4 that
there are no stationary periodic solution of~3.2! whenv50. After substitution of
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z5u2v

into Eq. ~3.1! we get the evolution equation

zth1~zzh!h1~z1v !1azh50. ~4.2!

We investigate the solution behavior within the neighborhood of singular pointsz50 where
zh→6` and zt!zh . Therefore in the investigated equation~4.2! we neglect the termz in
comparison withv, and also discard the termzt , to obtain

~zzh!h1v1azh50. ~4.3!

It is convenient to use the inverse functionh5h(z). Taking into accountzh51/hz and zhh5
2hzz/hz

3, Eq. ~4.3! is rewritten as

2zhzz1vhz
31ahz

21hz50.

Introducing the definitionq[hz , this equation can be integrated to obtain

E dq

q~vq21aq11!
5E dz

z
.

Depending on the sign of the quantity 12a2/4v, the latter expression has two different forms. W
have introduced the critical valuea* of the parametera defined by

a* 52Av. ~4.4!

For a,a* ~i.e., 12a2/4v.0), we get

lnF z2

q2
~vq21aq11!G52

2a

A4v2a2
tg21

2vq1a

A4v2a2
1 ln c1 , ~4.5!

and fora.a* ~i.e., 12a2/4v,0), we have

lnF z2

q2
~vq21aq11!G5

a

Aa224v
lnU2vq1a1Aa224v

2vq1a2Aa224v
U1 ln c2 . ~4.6!

We analyze the expression~4.5!. First let us verify the special casea50. We have

z2

q2
~vq211!5c1 ,

or

vz21
1

4
~z2!h

25c1 .

Hence in the vicinity ofz50,

h1h056
1

2
E dz2

Ac12vz2
57

Ac12vz2

v
.
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We arrive at the result given in Ref. 3, namely that with the lack of dissipation (a50) the integral
curves pass over an ellipse atz50.

Now we investigate the case 0,a,a* . It is easy to show that the r.h.s. of~4.5! is always
bounded for any valueq[zh

21. In the neighborhood ofz50 the r.h.s. of~4.5! is close to value

2
2a

A4v2a2
tg21

a

A4v2a2
1 ln c1[ ln c3 .

Consequently, we arrive at the equation

z2

q2
~vq21aq11!5c3 .

Even not integrating this equation, it is easy to show that atz50 we must haveq50 since in
generalc3Þ0. This means that atz50 the derivatives have the values

hz50, zh56`.

At z50 the solution becomes ambiguous.
In the casea.a* there is the solution

z50, q5hzÞ0, zhÞ6`.

In fact, atz50 we obtain from the r.h.s. of~4.6!

q5hz52
a

2v
2

Aa224v
2v

Þ0. ~4.7!

Thus, the derivativezh at z50 is bounded by a finite value. The solution is always unambiguo
Let us consider the solution behavior in the neighborhood ofz50 as a→a* . We first

consider the casea→a* 20. According to~4.5! the r.h.s. of this equation tends to minus infinit
i.e., atz'0 we haveq5hzÞ0. Consequently, there is no looplike solution.

When a→a* 10 there is also a solution withq5hzÞ0 at z50. The rootq50 at z50
seems possible in this case since~4.6! transforms to

lnF z2

q2
~vq21aq11!G5

2a

2vq1a
1 ln c2 . ~4.8!

However, as appears from~4.7!, the r.h.s. of the equation~4.8! tends to minus infinity so thatq
Þ0 at z50. Therefore, in the casea→a* the dissipation destroys the looplike solutions.

We have proved the following statement. For values ofa,a* the inclusion of the dissipative
term does not change the looplike solutions of equation~3.1!, while for a>a* there is no solution
with an infinite gradient.

The common form of the dissipative term for high-frequency perturbationsau ~which does
not depend on the nature of the exchange processes! cannot preclude the possibility of a formatio
of a multi-valued solution from an initial single-valued profile. In this case there are the in
gradients in contrast to the profiles of a wave for the low frequencies when the dissipative te
the formb ]2u/]x2.

The problem of a multi-valued solution can be forestalled in a following way. The equa
~3.2! can be rewritten into new independent variablesy5y(x,t) and t15t so that the dependen
variableu5u(y,t1) will be a single-valued function ofy. These variables have been defined
the relationships
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wdy5dx2udt, t15t

in which the equation~3.2! has been reduced to a system of the equations in the unknownsu and
w:

]w

]t1
5

]u

]y
,

]2w

]t1
2

1uw50.

For example, for a one-soliton solution we havew512u/v @see Eqs.~12! and~14! in Ref. 3#.
In the space of new variablesy andt1 a solution is a single-valued function@Eq. ~13! from Ref. 3#.
Each state has been uniquely defined by the variabley at any timet.

Considering the dependent variableu and the coordinatex as the functions of new variabley
we solve the problem of the ambiguous solution. A number of the states with their thermody
parameters can occupy one microvolume, but these states are distinguished by the coordiny. It
is assumed that the interaction between the separated states occupying one microvolume
neglected in comparison with the interaction between the particles of one thermodynamic
Even if we shall take into account the interaction between the separated states in accord w
dynamic state equation~2.6!, then for high frequencies the dissipative term arises which is sim
to the corresponding term in Eq.~2.13!, but with the other relaxation time. In this sense t
separated terms are distributed in space, but describing the wave process we consider
interpenetratable. The similar situation, when several components with different hydrody
parameters occupied one microvolume, has been assumed in the mixture theory~see, for instance
Refs. 23 and 24!. Such a fundamental assumption in the theory of mixtures is physically im
sible ~see Ref. 23, p. 7!, but it is appropriate in the sense that separated components are
velocity interpenetratable continua.

Thus in the frameworks of this model approach, the high-frequency perturbation ca
described by the multi-valued functions.

V. CONCLUSIONS

The KdV and KdVB equations are employed to describe a number of evolution proc
when the low-frequency approach turns out to be adequate. In these cases thermodynamic
eters of a medium are close to the equilibrium values, the microvolume state is defined by o
of thermodynamic values, and the disturbance from the equilibrium is taken into account by
of expansion in gradients.25 If the low-order expansions within the framework of such an appro
give rise to an inadequate description, we could take into account the terms of higher order
a result consider higher frequencies. For example, if Eq.~3.5! has an ambiguous solution~or
discontinuous solution!, the improvement of models by means of adding higher degree deriva
excludes the ambiguous solutions. So, in the low-frequency approach, an ambiguity is con
with the incompleteness of the mathematical model.

In contrast to this, in models for the propagation of high-frequency perturbations the d
bance from the ‘‘frozen’’ state is taken into account by means of expansion in integral term@see
Eq. ~3.3! and ~3.4!#. The integral terms contain the prehistory of the process. We have
established that a higher order of expansion~in particular, the dissipative term! for the high-
frequency evolution equation still allows ambiguous solutions. Consequently, the ambigu
solution does not relate to the incompleteness of the mathematical model, in particular to th
of dissipation. In addition there is the space of new independent variables where the solution
single-valued function.

The following three circumstances show that in the framework of the approach consi
here there are the multi-valued solutions when we model the high-frequency wave process~1!
All parts of looplike solutions are stable to perturbations; this was proved by Parkes.4 ~2! The
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dissipation does not destroy the looplike solutions~the result of this work!. ~3! The investigation
regarding the interaction of the solitons has shown that it is necessary to take into accou
whole ambiguous solution, and not just the separate parts.

It is necessary to note that the substantiation of the nonlinear evolution equation~3.1! within
the framework of statistic physics remains an important problem. At present this problem
difficult since it is connected with the description of high nonequilibrium systems.
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It is shown that if an asymptotically flat space–time is asymptotically stationary, in
the sense thatLjgab vanishes at the rate;t23 for asymptotically timelike vector
field ja, and the energy–momentum tensor vanishes at the rate;t24, then the
space–time is an asymptotically Schwarzschild space–time. This gives a new as-
pect of the uniqueness theorem of a black hole. ©1999 American Institute of
Physics.@S0022-2488~99!00704-5#

I. INTRODUCTION

There are many astrophysical phenomena that are best explained by black holes, e.g.
galactic nuclei and x-ray binaries. The analyses on the phenomena are done assuming th
black holes are described by the Kerr space–times. This is because the uniqueness theor
black hole guarantees that a space–time which is stationary, vacuum, and asymptotically
uniquely the Kerr space–time, and we believe that when gravitational collapse takes place
black hole is formed, the space–time around it becomes vacuum and accordingly stationar~For
details on the uniqueness theorem of a black hole, see Ref. 1.! However, one may argue that suc
a space–time does not becomeexactly vacuum orexactly stationary: the space–time becom
asymptoticallyvacuum, and accordinglyasymptoticallystationary at a certain rate of the time.
this context, a more adequate ‘‘uniqueness theorem’’ is the one that states an asympt
stationary, vacuum and flat space–time is uniquely an asymptotically Schwarzschild space
This is what we show in this paper.~One may find it peculiar that an asymptoticallystationary
space–time is an asymptotically Schwarzschild space–time. However, if we defineasymptotically
Schwarzchild space–times as a class of space–times that asymptotically approach th
Schwarzschild space–time, the space–times comprise a wide class of space–times, includ
Kerr space–time, which is stationary. See the end of Sec. IV for details.!

To show the theorem, we use the notion of the asymptotic flat space–time, first introduc
Ashtekar and Romano2 at spacelike infinity and succeedingly developed in our previous stud3 at
timelike infinity. We investigate the asymptotic behavior of the gravitational field at the fu
timelike infinity, because we would like to know whether the gravitational field approache
ymptotically that of the Schwarzschild space–time at thelate timewhen the space–time become
asymptotically stationary. The standard definition of the asymptotic flatness4 is based on the
conformal completion method, which is used to obtain the Penrose diagram. This method is
in that spacelike and timelike infinities can be simultaneously treated with null infinity, and
that investigation concerning the global causal structure can be done. However, the metho
presses the spacelike and timelike infinities, which possess rich 3-manifold information, do
points, and this compression results in a complicated differential structure at these poin
makes it difficult to obtain the comprehensive picture of the behavior of gravitational field

a!JSPS Postdoctoral Fellowship for Research Abroad.
20210022-2488/99/40(4)/2021/11/$15.00 © 1999 American Institute of Physics
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general asymptotically flat space–times. In contrast, the completion method introduced by
for definining the asymptotic flatness at spacelike infinity leaves the infinity as a 3-manifold.
result, the complicated differential structure in the former treatment can be avoided. Subseq
in our previous study,3 we applied the method to timelike infinity and clarified that the meth
leads to a definite picture of hierarchy in the asymptotic behavior of the gravitational field an
symmetry, and that it is suitable to discuss such a notion as an ‘‘asymptotically Schwarz
space–time.’’~Perng also investigates hierarchy in the asymptotic gravitational field at spac
infinity,5 although it does not directly correspond to the hierarchy discussed in Ref. 3.! In this
paper, we further investigate the hierarchy and prove the theorem stating that an asympt
stationary, vacuum and flat space–time is uniquely an asymptotically Schwarzschild space

The plan of this paper is the following. Section II is devoted to preliminaries. The defin
of the asymptotic flatness at timelike infinity is recalled, and some of its useful consequenc
summarized for the subsequent discussion. In Sec. III, the first-order asymptotic struct
explored, that is, the one order higher structure than the basic asymptotic structure that
asymptotic flat space–times possess. Then, in Sec. IV, we introduce the notion of asym
stationarity and investigate how the condition that an asymptotic flat space–time be asympto
stationary, constrain the asymptotic structure. The investigation leads to the proof of the
theorem.

Throughout the paper, we follow the notation of Wald.6

II. PRELIMINARIES

In this section, we recall the definition of asymptotic flatness at timelike infinity of Ref. 3
will be used in the main proof and fix the notation.

Definition: A physical space–time (M̂,ĝab) is said to possess anasymptote at future timelike
infinity ı̆1 to order n(ATI- n) for a non-negative integern, if there exists a manifoldM with
boundaryH, a smooth functionV defined onM, and an imbeddingC of an open subsetF̂ in M̂
toM2H satisfying the following conditions:

~1! ı̆1
ª]Fù(M2C(M̂)) is not empty andı̆1,I 1(F) whereFªC(F̂);

~2! V5̆0 and¹aVÞ̆0, where5̆ denotes the equality evaluated onı̆1;
~3! na

ªV24C* ĝab¹bV andqabªV2(C* ĝab1V24F21¹aV¹bV) admit smooth limits toı̆1

with qab having signature~111! on ı̆1, whereFª2LnV; and
~4! lim→ ı̆1V2(21n)Tm̂n̂5̆0 where T̂m̂n̂ªC* @(êm)a(êv)bT̂ab# in which $(êm)a% and T̂ab are a

tetrad and the physical energy–momentum tensor of (M̂,ĝab), respectively.

Henceforth, we use a tetrad consisting of a unit vector fieldn̂a that is normal to theV-const
surfaces and a triad$(êI)

a% I51,2,3 of the metricq̂abªĝab1n̂an̂b on theV-const surface. We denot
the timelike components with the subscript 0 and the spacelike component with capital-R

letter subscript, e.g.,Â0̂
ªn̂aÂa and ÂÎ

ª(êI)aÂa. If a tensorAa¯b
c¯d admits a smooth limit to

ı̆1, it is useful to define thenth order term ofAa¯b
c¯d as

~0!Aa¯b
c¯dª lim

→ ı̆1

Aa¯b
c¯d ,

~n!Aa¯b
c¯dª lim

→ ı̆1

V2nS Aa¯b
c¯d2 (

l 50

n21

~ l !Aa¯b
c¯dV l D for n>1. ~1!

This definition of thenth order terms of a tensor implies that in the vicinity ofı̆1, Aa¯b
c¯d can

be expanded as

Aa¯b
c¯d5 (

n50

`

~n!Aa¯b
c¯dVn. ~2!
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Since all the equations appearing in the following discussion are those onM, unless it may cause
ambiguity, we omit hereafterC* in front of the tensors defined onM̂ for brevity.

Before we examine the properties of ATI-n space–times, we introduce some valuable tens
First, the projection operator with respect to theV-const surface can be introduced as

qa
bª (

I 51,2,3
~ êI!

a~ êI!b5da
b1F21na¹bV.

This operator admits a smooth limit toı̆1 by virtue of the definition of an ATI-n space–time.
Second, note that the above definition of an ATI-n space–time implies thatı̆1 is a 3-submanifold
of M with an imbedding, sayP. Hence, if a tensor fieldAa¯b

c¯d is tangential toı̆1, or
Aa¯b

c¯dªqa
e¯qb

fq
g

c¯qh
dAe¯ f

g¯h , it is useful to consider the tensor fieldP* Aa¯b
c¯d de-

fined on ı̆1. Hereafter, we denote such a tensor field in boldface, i.e.,Aa¯b
c¯dªP* Aa¯b

c¯d ,
and say thatAa¯b

c¯d inducesAa¯b
c¯d on ı̆1.

Now we explore the consequence of the definition of an ATI-n space–time forn50. Solving
the Einstein equation under the falloff condition on the energy–momentum te
lim→ ı̆1V22T̂m̂n̂50, it is found that

F5̆1, qab5̆hab ~3!

in an ATI-0 space–time, wherehab5(dx)a(dx)b1sinh2 x@(du)a(du)b1sin2 u(df)a(df)b# is the
3-metric of the unit timelike 3-hyperboloid.~For the details of the derivation, see Ref. 3.! Because
Eq. ~3! is a gravitational structure common to all the ATI-0 space–times, we call it thezeroth
order asymptotic structure. Using conformal timehª ln V, these results imply

ĝab5 ~0!ĝab1V~1!ĝab1O~V2!

where

~0!ĝab5~e2h!2@2~dh!a~dh!b1hab# ~4!

in which (n)ĝab is defined by

~n!ĝabª(
m,n

~ êm!a~ ên!b
~n!gm̂n̂ ~5!

with a functiongm̂n̂ª(êm)a(ên)bĝab that admits a smooth limit toı̆1 and thus is expanded in th
manner described in Eq.~1!. (0)ĝab is a metric of the Milne universe and is equivalent to the me
of a Minkowski space–time,ĝab

Min . In other words, Eq.~4! tell us that an ATI-0 space–time is a
asymptotically Minkowski space–time:

ĝab5ĝab
Min1O~V!. ~6!

Hence, it is no surprise that the Riemann tensor asymptotically vanishes in such a space–tim
trace part of the Riemann tensor asymptotically vanishes by virtue of the falloff condition o
energy–momentum tensor. The traceless part, or the Weyl tensorĈambn, can be best investigate
by decomposing the tensor into the electric partÊabªĈambnn̂

mn̂n and the magnetic partB̂ab

ª* Ĉambnn̂
mn̂n where* Ĉambn denotes the dual of the 2-formĈ@am#bn . In terms ofq̂ab andn̂a, Êab

and B̂ab are given by

Êab5K̂arK̂
r
b2Ln̂K̂ab1D̂ (aâb)1âaâb1 1

2~ q̂a
r q̂b

s2q̂abn̂
r n̂s!L̂ rs,

~7!
B̂ab5 ê ra

sD̂r K̂bs1
1
2êab

r n̂sL̂ rs ,
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where K̂abª
1
2Ln̂q̂ab , L̂abªR̂ab2 1

6R̂ĝab , âaªq̂arn̂
s¹sn̂

r , and D̂a and êabc are the derivative
operator and the volume element associated withq̂ab , respectively. Using the definitions ofna and
qab , and imposing the falloff condition on the energy–momentum tensor, it can be found
both admit a smooth limit toı̆1 and thus can be expanded by the manner described in Eq~1!.
Their leading terms are

~0!Eab5̆0, ~0!Bab5̆0. ~8!

A simple calculation shows that the behaviors of(n)Eab and(n)Bab for n>1 depend on that of the
higher order energy–momentum tensor, which is arbitrary in an ATI-0 space–time.~See Ref. 3 for
the derivations.!

III. THE FIRST-ORDER ASYMPTOTIC STRUCTURE

In this section, we derive the first order asymptotic structure, that is, a structure wh
possessed by all the ATI-1 space–times but not by ATI-0 space–times. The part of the str
i.e., theO(V) term ofF, has been already derived in Ref. 3. Here, we treat the whole structu
a systematic way. The point is that the first-order asymptotic structure may be considered
perturbation to the Milne universe, Eq.~4!, whereV plays the role of a small parameter of th
perturbation. Hence, we can apply the technique of the cosmological perturbation7,8 to derive the
first-order asymptotic structure.

The energy–momentum tensor of an ATI-1 space–time satisfies a stronger falloff cond
lim→ ı̆1V23T̂m̂n̂50, than that of an ATI-0 and thus the behavior of asymptotic gravitational fi
is constrained stronger. In other words, ATI-1 space–times possess more asymptotic gravi
structure in common. The structure can be derived by solving the Einstein equation und
condition lim→ ı̆1V23T̂m̂n̂50. To obtain the equation, we first decompose the first-order me
(1)ĝab as

~1!ĝab5~e2h!2@ ~1!F~dh!a~dh!b22 ~1!b (a~dh!b)22 ~1!chab12 ~1!xab#, ~9!

where (1)ba and (1)xab are tangential to theV-const surfaces, i.e.,qa
b (1)bb5 (1)ba and

qa
cqb

d (1)xcd5 (1)xab ; and (1)xab is traceless, i.e.,qab (1)xab50. With these quantities, the Ein
stein equation induces onı̆1 the following set of differential equations in an ATI-1 space–tim
satisfying lim→ ı̆1V23T̂m̂n̂50:

3 ~1!F12D ~1!c22Dm
~1!bm1DmDn

~1!xm
n5̆0,

Da~ ~1!F12 ~1!c!1 1
2~D22!~1!ba2 1

2Da~Dm
~1!bm!1Dm

~1!xa
m5̆0, ~10!

~habD2DaDb!~ ~1!F12 ~1!c!12D(a
~1!bb)12~D13!~1!xab

22habDm
~1!bm24D(aDm ~1!xb)m12habD

mDn
~1!xm

n5̆0,

where Da is the derivative operator associated with the metrichab of ı̆1, and DªDaDa . To
simplify the equation above, we consider the Poisson gauge in which(1)ba is transverse and(1)xab

is transverse traceless. Noting that the quantities are transformed as

~1!F̄5̆ ~1!F, ~1!b̄a5̆ ~1!ba1DaT2La ,
~11!

~1!c̄5̆ ~1!c1T2 1
3D

aLa , ~1!x̄ab5̆ ~1!xab1D(aLb)2
1
3habDmLm

under a gauge transformation generated byja5VT(]h)a1VLa, we find that the Poisson gaug
can be always chosen if we set
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T:5̆2 1
2D

21@3~D23!21DmDn ~1!xmn12Da ~1!ba#,
~12!

La :5̆ 1
2~D22!21$Da@~D23!21DmDn ~1!xmn#24Dm ~1!xma%,

for the generatorja5VT(]h)a1VLa, which satisfyDa (1)bab1DaD(aLb)2
1
3Db(DmLm)5̆0 and

Da (1)ba1DT2DaLa5̆0. Note that this Poisson gauge is preserved under the transform
generated byja5VT(]h)a1VLa whereT andLa satisfies

DT2DmLm5̆0, ~D22!Lb1 1
3DbDmLm5̆0. ~13!

In this gauge, the Einstein equation~10! simplifies to

3 ~1!F12D ~1!c5̆0, ~14a!

Da~ ~1!F12 ~1!c!1 1
2~D22!~1!ba

T5̆0, ~14b!

~habD2DaDb!~ ~1!F12 ~1!c!12D(a
~1!bb)

T 12~D13!~1!xab
TT5̆0, ~14c!

where the overbar is omitted which shows that the quantity is transformed and the subscriptsT and
TT denote that the quantities are transverse and transverse traceless, respectively.

First, we derive the scalar(1)F. Subtracting Eq.~14a! from the divergence of Eq.~14b!, we
obtain

~D23!~1!F5̆0. ~15!

The general solution of the above equation can be derived by first expanding the function(1)F as

~1!F~x,u,f!5̆( al m
~1!Fl m~x,u,f!

where

~1!Fl m~x,u,f!ªT0
l ~x!Yl m~u,f! ~16!

in which the summation is taken overl PZ andumu<ul u, andYl m(u,f) are the two-dimensiona
spherical harmonics. Substituting Eq.~16! into Eq. ~15!, it is found thatT0

l is given by

T0
l ~x!5P2

l ~x!, ~17!

where the functionsPn
l (x) are defined by

Pn
l ~x!5̆

1

Asinhx
Pn2~1/2!

l 1~1/2!~coshx!, ~18!

and satisfies

Pn
l 9~x!1

2

tanhx
Pn

l 8~x!2S n2211
l ~ l 11!

sinh2 x DPn
l ~x!5̆0, ~19!

where the prime~8! denotes the derivative with respect tox; andPn
m(z) is an associated Legendr

function normalized as

Pn
m~z!ª

1

G~12m! S z11

z21D m/2

FS 2n,n11,12m;
12z

2 D for z.1. ~20!
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@Note here that the unconventional choice ofl is taken. It is related to the conventional choicel c

by l 52l c21, and thus it isl <21 terms that are regular. The reason for the choice is to h
the coefficienta00 in Eq. ~16! correspond to the mass of a space–time. See Eq.~51!.#

Second, we derive the scalar(1)c. Adding Eq.~15! to Eq. ~14a!, we obtain

D~~1!F12 ~1!c!5̆0. ~21!

Let A be the solution ofDA5̆0. Then,(1)c may be given by

~1!c5̆2
1

2
~1!F1

A

2
. ~22!

Now, perform the gauge transformation generated byja5VT(]h)a whereT5̆2A/2. This trans-
formation preserves the Poisson gauge, which can be seen from Eq.~13!, and simplifies(1)c:

~1!c5̆2 1
2

~1!F. ~23!

Next, we consider the vector field(1)ba
T . Substitution of Eq.~23! into Eq. ~14b! yields

~D22!~1!ba
T5̆0. ~24!

Hence, together with the fact(1)ba
T is transverse, we see from Eq.~13! that the gauge transforma

tion generated byja5VLa whereLa5̆ (1)ba
T preserves the Poisson gauge, and results in

~1!ba
T5̆0. ~25!

Finally, we derive the tensor field(1)xab
TT . Substituting Eqs.~23!–~25! into Eq. ~14c!, we

obtain

~D13!~1!xab
TT5̆0. ~26!

To solve this equation, we consider the spherical harmonic expansion again. As generally
we decompose(1)xab

TT into the even~or electric-type! parity part (1)xab
TT(1) and the odd~or

magnetic-type! parity part(1)xab
TT(2) : (1)xab

TT5̆ (1)x̆ab
TT(1)1 (1)x̆ab

TT(2) . In the present case, the eve
parity part that satisfies Eq.~26! is found to be9

~1!xab
TT~1 !5̆~DaDb2hab!X, ~27!

whereX is a function that satisfies (D23)X5̆0. On the other hand, the odd parity part is fou
to be10

~1!xab
TT~2 !5̆ (

l Þ0
bl m

~2 ! ~1!xab
TT~2 !l m , ~28!

where the summation is taken overl PZ for l Þ0, umu<ul u; and

~1!xxx
TT~2 !l m :5̆0, ~1!xxA

TT~2 !l m :5̆T1
l ~x!eA

BDBYl m, ~1!xAB
TT~2 !l m :5̆T2

l ~x!eC
(ADB)DCYl m

~29!

in which functionsT1
l (x) andT2

l (x) are given by

T1
l ~x!5̆P 0

l ~x!, T2
l ~x!5̆

sinh2 x

~ l 21!~ l 12! F]x12
coshx

sinhx GP 0
l ~x! for l Þ1,22. ~30!
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~Here, there is no need to deriveT2
l (x) for l 51 or l 522 sinceec

(ADB)DCYl m vanishes for
these values ofl .! Next, consider the gauge transformation generated byja5VT(]h)a1VLa

whereT:5̆2X andLa :5̆2DaX. This transformation leaves(1)ba and(1)c unchanged and kills
the even parity part of(1)xab

TT :

~1!xab
TT5̆ (

l Þ0
bl m

~2 ! ~1!xab
TT~2 !l m . ~31!

To summarize, the solutions of the Einstein equation~10! is given by

~1!F̄5̆( al m
~1!Fl m, ~1!b̄a5̆0,

~32!

~1!c̄5̆2
1

2 ( al m
~1!Fl m, ~1!x̄ab5̆ (

l Þ0
bl m

~2 ! ~1!xab
TT~2 !l m

in the suitably chosen Poisson gauge. This is the structure of the gravitational field common
the ATI-1 space–times, and thus we define thefirst-order asymptotic structureas follows.

Definition: (1)ĝab given by Eq.~9! is called thefirst-order asymptotic structureof an AFTI-1
space–time, where(1)F, (1)ba , (1)c, and (1)xab takes the form Eq.~32! on �

1, in the Poisson
gauge.

In such a space–time, it can be calculated that

~1!Eab5̆ 1
2~DaDb2hab!

~1!F, ~1!Bab5̆ 1
2era

sDr ~1!xbs ~33!

and that(n)Eab and(n)Bab for n>2 depend on the behavior of the higher order energy–momen
tensor, which is arbitrary in an ATI-1 space–time.~See Ref. 3 for the details of the calculation!
Equation~33! clearly shows that(1)F of the first-order asymptotic structure forms the first-ord
term of the electric part of the Weyl tensor and that(1)xab forms the magnetic part. In other word
if we specify the sets of coefficients$al m% and$bl m%, the first-order terms of the electric part an
the magnetic part are determined, respectively.

IV. ASYMPTOTIC STATIONARITY

In this section, we introduce the notion ofasymptotic stationarityof ATI- n space–times, and
prove that an ATI-1 space–time that is asymptotically stationary to order 2 must be an a
totically Schwarzschild space–time. The plan of the proof is:~1! we derive, in the Poisson gaug
the reduced first asymptotic structure of an ATI-1 space–time that is asymptotically station
order 2 in the lemma;~2! we perform a suitable gauge transformation as to show explicitly
such an asymptotic structure approaches asymptotically the Schwarzschild metric in the th

A Killing vector field ĵa is a vector field with respect to which the Lie derivative of the met
vanishes,Lĵĝab50. This fact motivates us to define an asymptotic Killing vector field and
order as follows.

Definition: An ATI- m spacetime (M̂,ĝab) is said to admit anasymptotic Killing fieldĵa to
ordern if

lim
→�

1

V2n~Lĵĝ!m̂n̂50, ~34!

where (Lĵĝ) m̂n̂ªC* ((êm)a(ên)bLĵĝab).
Next, we consider how to define asymptotic stationarity, using this notion of an asymp

Killing vector field. A vector fieldĵa is said to be a stationary Killing vector field in an asym
totically flat space–time, ifĵa is a timelike Killing field and satisfiesĝabĵ

aĵb521 at infinity.
Hence, we define its asymptotic correspondence as follows.
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Definition: A vector fieldja is said to be an asymptotic stationary Killing vector field to ord
n of an ATI-m space–time ifĵa is admitted as an asymptotic Killing vector field to ordern in the
ATI- m space–time and satisfies

ĝabĵ
aĵb5̆21 ~35!

on �

1.
It is important to note that the definition of the asymptotic stationary Killing vector fi

implies that the leading term ofĵ m̂5 ĵa(êm)a is of the orderV0. Hence,jm̂
ª ĵ m̂ admits a smooth

limit to �

1 and can be expanded as

jm̂5 (
n51

`

~n!jm̂Vn. ~36!

~Here,(n)j 0̂ and(n)j Î correspond to(n12)j 0̂ and(n11)j Î in Ref. 3. We do not use the notation o
Ref. 3 for ĵa, because the above notation reflects the nature of the completion more intrinsic!
Simple calculation shows that the function (Lĵĝ) m̂n̂ admits a smooth limit to�1, and thus can be
expanded in the manner described by Eq.~1!.

Now we are ready to prove the following lemma.
Lemma:An ATI-1 space–time is asymptotically stationary to order 2 if and only ifal m5̆0

for l Þ0 andbl m5̆0.
Proof of only if: If an ATI-1 space–time is asymptotically stationary to order 2,

~n!~Lĵĝ!m̂n̂5̆0 for n<2, ~37!

ĝabĵ
aĵb5̆21 ~38!

hold. First, we note that Eq.~38! is equivalent to

2~ ~0!j 0̂!21 ~0!j a ~0!ja5̆21, ~39!

where(l )ja
ª

(l )j K̂(eK)a and$(eI)a% I51,2,3 is a triad ofhab . Second, we simplify then<1 part of
Eq. ~37!. In an ATI-1 space–time, theO(V0) andO(V1) terms of (Lĵĝ) m̂n̂ are given by

~0!~Lĵĝ! 0̂0̂5̆0, ~0!~Lĵĝ! 0̂Î5̆0, ~0!~Lĵĝ! ÎĴ5̆0,

~1!~Lĵĝ! 0̂0̂5̆0, ~1!~Lĵĝ! 0̂Î5̆@ ~0!ja2Da
~0!j0̂#~eI!

a,

~1!~Lĵĝ! ÎĴ5̆@D(a
~0!jb)2

~0!j0̂hab#~eI!
a~eJ!

b.

Hence, then<1 part of Eq.~37! is equivalent to

~0!ja2Da
~0!j 0̂5̆0, D(a

~0!jb)2
~0!j 0̂hab5̆0. ~40!

Solving Eqs.~39! and ~40! simultaneously, we find that

~0!j 0̂5̆coshx, ~0!j K̂~eK!a5̆sinhx~]x!a. ~41!

Next, we consider then52 part of Eq.~37!. Let us choose the Poisson gauge in which t
first-order asymptotic structure takes the form Eq.~32! in an ATI-1 space–time. Because

~2!~Lĵĝ! 0̂0̂5̆2 ~1!j 0̂1 1
2~

~0!j 0̂1 ~0!j mDm!~1!F,
~42!
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~2!~Lĵĝ! 0̂Î5̆@2 ~1!ja2Da
~1!j0̂1~Da

~0!j 0̂2 ~0!ja!~1!F22 ~0!jm
~1!xa

m#~eI!
a,

the n52 part of Eq.~37! for m̂50̂ is equivalent to

~1!j0̂5̆ 1
2~

~0!j0̂1 ~0!jmDm!~1!F, ~1!j K̂~eK!a5̆ 1
2@Da

~1!j 0̂2~Da
~0!j 0̂2 ~0!ja!~1!F12 ~0!jm

~1!xa
m#.

~43!

Using Eqs.~41!–~43!, we find that(2)(Lĵĝ) ÎĴ are given by

~2!~Lĵĝ! ÎĴ5̆2 sinhx@1Lab
~1!F12L(a

m ~1!xb)m#~eI!
a~eJ!

b ~44!

where the derivative operators1Lab and2Lab are given by

1Lab :5̆
3

tanhx
~DaDb2hab!1~]x!mD(aDb)Dm2~dx!(aDb) , 2Lab :5̆2~dx!pha

[ phb
m]Dm ,

~45!

respectively. By the definition of(1)F and(1)xab , (2)(Lĵĝ) ÎĴ vanishes if and only if1Lab
(1)F and

2L(a
s (1)xb)s vanish independently. With the help of eqs.~16!–~32!, 1Lab

(1)F5̆0 can be rewritten
as

( al mF S T0
l -1

3T0
l 9

tanhx
2T0

l 82
3T0

l

tanhx
D ~dx!a~dx!b12S T0

l 92
T0

l 8

tanhx
2S 51

4

sinh2 xDT0
l D

3~dx!(aDb)1sinhx coshxS T0
l 91

2T0
l

tanhx
23T0

l 2
l ~ l 11!

2 sinhx coshx
S T0

l 81
T0

l

tanhx
D D ~ds!ab

1S T0
l 81

T0
l

tanhx
D ~DaDb2 1

2~ds!abDcDc!GYl m5̆0. ~46!

We first consider thel Þ0 terms of the above equation. Noting that all the components
independent and using Eqs.~17!–~19!, it is found that if al mÞ̆0 the above equation~46! is
equivalent to

l ~ l 11!

sinh2 x
SP2

l 81
P2

l

tanhx
D 5̆0, S l 21l 24

sinh2 x
22DP2

l 23P2
l 85̆0,

l ~ l 11!

sinh2 x
P2

l 5̆0,

P2
l 81
P2

l

tanhx
5̆0. ~47!

Apparently, there is no integerl that is not equal to 0 and that satisfies Eq.~47!, simultaneously.
Therefore,al m5̆0 for l Þ0. Noting thatDaYl m vanishes forl 50, we find that all the compo-
nents of thel 50 terms of the right-hand side of Eq.~46! vanish. Therefore,a00 can take arbitrary
value. Next consider2L(a

s (1)xb)s5̆0. This equation is satisfied if and only if

(
l Þ0

bl mF S T1
l 81

T1
l

tanhx
D ~dx!(aeb)

rDr1S T2
l 82

T2
l

tanhx
2T1

l D er
(aDb)Dr GYl m5̆0. ~48!

With the same reasoning, we find that ifbl mÞ̆0 Eq. ~48! is equivalent to

l ~ l 11!

sinh2 x
P0

l 5̆0,
~ l 12!~ l 21!

sinh2 x
P0

l 5̆0 ~49!
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and that there is nol that satisfies the above equations simultaneously. Hence, we con
bl m5̆0. h

Proof of if: If al m5̆0 for l Þ0 and bl m50 in an ATI-1 space–time, the vector fieldĵa

whoseO(V0) andO(V1) terms are given by Eqs.~41!–~43! satisfy(n)(Lĵĝ) m̂n̂5̆0 for n<2 and
ĝabĵ

aĵb5̆21. Hence,ĵa is an asymptotically stationary Killing vector field to order 2. h

The fact thatal m5̆0 for l Þ0 andbl m5̆0 means that in such an ATI-1 space–time, the fi
asymptotic structure takes the simple form

~1!F5̆a00
~1!F00, ~1!c5̆2 1

2a00
~1!F00, ~1!b5̆0, ~1!xab5̆0. ~50!

Before we show that such an ATI-1 space–time is an asymptotically Schwarzschild space
we remark an important fact relating to the definition of the angular-momentum of an asym
cally flat space–time. To define angular-momentum, one must impose the condition th
O(V1) term of the magnetic part of the Weyl tensor vanish.2–4 However, the physical meaning o
the condition was left unclear. The lemma and Eqs.~33!–~50! tells us that the meaning is that th
angular-momentum of an asymptotically spacetime can be defined if the spacetime is asy
cally stationary to order 2.

Theorem: An ATI-1 space–time which is asymptotically stationary to order 2 is an asy
totically Schwarzschild space–time with massa00 in the sense that the metric takes the form

ĝab5ĝab
Sch1O~r 22!1O~ t22!

where

ĝab
Sch

ª2S 12
2a00

r D ~dt!a~dt!b1S 12
2a00

r D 21

~dr !a~dr !b1r 2~ds!ab ~51!

in which t.r .
Proof: From the lemma, in an ATl-1 space–time which is asymptotically stationary to o

2, al m50 for l Þ0 andbl m50 hold. Thus, the first-order term of the metric(1)ĝab takes the form

~1!ĝab5~e2h!2@a00
~1!F00~dh!a~dh!a1a00

~1!F00hab#. ~52!

Under a gauge transformation generated byja5VT(]h)a1VDaL where

T:5̆a00~2x coshx1sinhx!, L :5̆24a00sinhx1T, ~53!

(1)ĝab transforms as

~1!ĝab°~e2h!2@a00
~1!F00~dh!a~dh!a28a00coshx~dh!(a~dx!b)1a00

~1!F00~dx!a~dx!b#.
~54!

Then, the change of variables,t5V21 coshx and r 5V21 sinhx, leads us to

O~V2!5sinh22 xO~V2!1cosh22 xO~V2!5O~r 22!1O~ t22!,
r

t
5tanhx,1. ~55!

and

~0!ĝab1V~1!ĝab5ĝab
Sch1O~V2!. ~56!

Hence, Eq.~51! holds. h

It is important to note here that asymptotically Schwarzschild space–times, that are defi
Eq. ~51!, comprise the Kerr space–time also. This can be understood by writing the Kerr m
ĝab

Ker with the coordinates~V,x! wheret5coshx and r 5sinhx:
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ĝab
Ker5ĝab

Sch1V2 ~2!ĝab1O~V3!, ~57!

where

~2!ĝab5~4m22a2 sin2 u!S ~dh!(a~dh!b)22
~dx!(a~dh!b)

tanhx D14ma
sin2 u

tanhx
~df!(a~dh!b)

1
4m22a2 sin2 u

tanhx
~dx!a~dx!b24amsin2 u2~df!(a~dx!b)1a2 cos2 u~du!a~du!b

1a2 sin2 u~df!a~df!b . ~58!

In other words, the Kerr space–time is a special space–time of asymptotically Schwarz
space–times, which possesses a particular second-order asymptotic structure, i.e.,(2)ĝab given by
Eq. ~58!.

V. SUMMARY AND REMARKS

In this paper, we have proved that an asymptotically flat space–time as defined in defin
of Sec. II is an asymptotically Schwarzschild spacetime in the sense of Eq.~51!, if the energy-
momentum of the space–time falls off at the rate faster thanO(V3) and the space–time i
asymptotically stationary to order 2 in the sense that (Lĵĝ) m̂n̂ falls off at the rate faster than
O(V2) for the asymptotically timelike vectorĵa,ĝabĵ

aĵb5̆21.
Finally, we give a remark. Although we have solved the Einstein equation~10! and obtained

the first-order asymptotic structure, we did not impose any physically suitable boundary cond
on the solutions. Hence, the obtained first-order asymptotic structure may include those t
unphysical. For example, a solution that describes an incoming gravitational wave from future
infinity or an outcoming wave from the event horizon. In other words,physically acceptable
gravitational fields around a black hole may be obtained only after a suitable boundary con
are imposed on the solutions. The derivation of the physical first-order asymptotic structur
be profitable because it may be possible to show that an ATI-1 space–time with such a ph
structure is intrinsically asymptotically stationary to order 1, and thus is an asymptot
Schwarzschild space–time. This result is anticipated because we expect that a space–tim
black hole that becomes vacuum also becomes stationary, due to the nature of the black ho
is an important point that should be clarified.
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Weyl-type fields with geodesic lines of force
Brendan S. Guilfoylea)

Department of Mathematics, Institute of Technology
Tralee, Tralee, County Kerry, Ireland
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The static electrogravitational equations are studied and it is shown that an aligned
type D metric that has a Weyl-type relationship between the gravitational and
electric potential has shear-free geodesic lines of force. All such fields are then
found and turn out to be the fields of a charged sphere, charged infinite rod and
charged infinite plate. A further solution is also found with shearing geodesic lines
of force. This new solution can havem.ueu or m,ueu, but cannot be in the
Majumdar–Papapetrou class~in which m5ueu). It is algebraically general and has
flat equipotential surfaces. ©1999 American Institute of Physics.
@S0022-2488~99!01604-7#

I. INTRODUCTION

Static fields have been a very fruitful area of study for general relativity. On the one han
simplifications in the field equations for static fields are substantial, and on the other hand, it
area that lends itself most easily to comparison with Newtonian gravitation and classical po
theory. For example, the 44-component of the metric tensor,g44, plays the role of a gravitationa
potential. This allows one to talk of gravitational equipotential surfaces~surfaces of constantg44)
and lines of force~the integral curves of the gradient ofg44).

Das1 and Kota and Perj¸es2 investigated vacuum metrics in which the lines of force a
geodesic. The Newtonian analog for such a field is one with straight lines of force, whi
generated by a sphere or an infinite rod or an infinite plate. Das found that among all va
fields with geodesic lines of force is included the exterior field of a sphere and an infinite ro
an infinite plate. These constitute all of the vacuum fields in which the lines of force ar
addition, shear-free. Das also discovered a shearing field with no Newtonian analog.

When the source of the field is an electric field, one also has the electric potentialf, and the
corresponding electric equipotential surfaces and lines of force. Fields in which there is a
tional relationship between the two potentials has been investigated by numerous author~e.g.,
Weyl,3 Majumdar,4 Papapetrou,5 Gatreau and Hoffman,6 Guilfoyle7!. We will refer to such fields
as being of theWeyl-type.

In this paper we show that among all Weyl-type fields the algebraically special~type D! ones
have shear-free geodesic lines of force. We then go on to find all Weyl-type fields with geo
lines of force. The shear-free metrics turn out to describe the fields of a charged sphere, an
charged rod and an infinite charged plate. The only asymptotically flat member of this class
Reissner–Nordstro¨m metric. Again, there is a further shearing field which is algebraically gen
and has no Newtonian analog. We find, however, that this is not in the Majumdar–Papa
class of electrovac solutions. In fact, the only Majumdar–Papapetrou field with geodesic lin
force is found to be the extreme Reissner–Nordstro¨m solution.

II. BACKGROUND AND GENERAL RESULTS

A space–time (M ,gmn) is static if there exists a timelike hypersurface orthogonal Killin
vectorjm on M . With a suitable choice of co-ordinates (xi ,t) the metric takes the form

a!Electronic mail: brendan.guilfoyle@ittralee.ie
20320022-2488/99/40(4)/2032/14/$15.00 © 1999 American Institute of Physics
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ds25gi j dxi dxj2ev dt2,

where both the spatial metricgi j andev depend only onxi . Here, and throughout, Greek lette
will take values 1 to 4, while Latin letters will take values 1, 2, 3. We will raise and lower
indices usingg.

The 311 split above induces the following decomposition of the Riemann tensor of (M ,gmn)
in terms of that of the spatial slices (V3,gi j ) ~see Synge8!:

Ri jkl 5
3Ri jkl , Ri44l52e~1/2! v~e~1/2! v! u i l , Ri j 4l50. ~1!

A stroke represents covariant differentiation with respect to the Levi-C¸ ivita connection of the
spatial metricgi j . The Ricci tensors of (M ,gmn) and (V3,gi j ) are then found to be related by

Ri j 5
3Ri j 1e2 ~1/2! v~e~1/2! v! u i j , ~2!

R4452 1
2 ev~nv1 1

2 udvu2!, ~3!

wheren is the covariant Laplaciannv5gi j v u i j and udvu25gi j v, iv, j .
We note that the 3-dimensional Riemann tensor of (V3,gi j ) is entirely determined by the

3-dimensional Ricci tensor through

3Ri jkl 5gi [ l
3Rk] j1gj [k

3Rl ] i1
1
2

3Rgi [kgl ] j , ~4!

where 3R is the Ricci scalar3R[ 3Ri
i . Skew-symmetrization~symmetrization! is denoted by

square~round! brackets on pairs of indices.
It is often useful to turn to the conformally related background space (V̄3,ḡi j ) given by

gi j 5e2vḡi j .

The relationship between the Ricci curvatures of (V3,gi j ) and (V̄3,ḡi j ) is

3Ri j 5
3R̄i j 2e2 ~1/2! v~e~1/2! v! u i j 1

1
2 v, iv, j2

1
2 gi j ~nv1 1

2 udvu2!. ~5!

Einstein’s field equations for the electric fieldf are

Ri j 52e2vf, if, j2e2vudfu2gi j , ~6!

Dv52e2vudfu22 1
2 udvu2, ~7!

R50, ~8!

while Maxwell’s equations reduce to

Df5 1
2 v ,if, i . ~9!

III. ALGEBRAIC STRUCTURE

We now turn to the algebraic structure of the electrostatic field. The most widely used
sification scheme for the gravitational field is due to Petrov9 ~see also Krameret al.,10

Papapetrou11 and Synge12!. In this, a metric is classified by the degeneracy of certain null dir
tions associated with the Weyl conformal curvature tensor. This tensor is given in terms
Riemann and Ricci curvature tensors by

Cabgd5Rabgd1 1
2 ~ga[gRd]b1gb[dRg]a!1 1

6 Rga[dgg]b .
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A principal null direction ~p.n.d.for short! of the Weyl tensor is a null vector,km, satisfying

k[mCa]bg[dkn]k
bkg50.

As the name suggests, a p.n.d. is defined only up to multiplication by a function. A repeated
for the Weyl tensor is a null vector,km, satisfying

Cabg@skn#k
bkg50.

Using Eqs.~1! to ~8!, this can be shown to be equivalent to

e2 ~1/2! v~e~1/2! v! u i j 5e2vf, if, j2xS kikj

uku2
2

1

3
gi j D , ~10!

where

x[
3

2uku2
@e2v~kif, i !

22e2 ~1/2! v~e~1/2! v! u i j k
ikj #, ~11!

and the p.n.d. is

km5~ki ,e2 ~1/2! vuku!. ~12!

We note as a check on these calculations that contracting~10! gives

e2 ~1/2! vD~e~1/2! v!5e2vudfu2,

which is precisely the field equation~7!.
Thus, a necessary and sufficient condition that a static electrovac space–time is algeb

special~and therefore, type D! is that there exists a 3-vectorki satisfying~10! and~11!. Then the
repeated p.n.d. of the Weyl tensor is given by~12! and the Ricci tensor of (V3,gi j )is @put ~10! in
~2!#

3Ri j 5xS gi j 2
3kikj

uku2
D 1e2v~f, if, j2udfu2gi j !. ~13!

In the vacuum case (f50) this tells us that a repeated p.n.d. of the Weyl tensor is also
eigenvector of the spatial Ricci tensor3Ri j . Furthermore, any vector on (V3,gi j ) that is orthogonal
to the spatial component,ki , of the repeated p.n.d., is also an eigenvector of the spatial R
tensor. This decomposition of3Ri j allows one to integrate the field equations fully, and determ
explicitly all type D static vacuum fields, as was done almost 75 years ago by Levi-C¸ ivita.13

Although the Schwarzchild solution is of this type, it was found that all the other 6 solution
this class are unphysical~Krameret al.,10 Ehlers and Kundt14!.

If we now include the electromagnetic field, the spatial Ricci tensor differs only by
projection operator onto directions orthogonal tof, i . Thus, we have the following theorem.

Theorem 1: A repeated p.n.d. of the Weyl conformal tensor of an algebraically special s
electrovac field is also an eigenvector of the spatial Ricci tensor if one of the following hold
The electric field vanishes(f50); (ii) The electric field is aligned(f,[ ikj ]50); (iii) The electric
field is perpendicular(f, ik

i50).
Since the field equations are tractable in case(i) and the algebraic structure of3Ri j is the same

in ~i!, ~ii !, and~iii !, we are led to consider the possibility that all aligned or perpendicular typ
static electrovac fields may be explicitly determined using Eq.~13! to integrate the field equations

We shall look at the case where the field is aligned andv, i is also coincident withf, i . In this
case, there is a functional relationship betweenev andf. It is well known that this must be of the
form ~see Majumdar4!

ev5A1Bf1f2,
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from which we find that

f, i5
ev

2~ev1l!1/2
v, i ,

and

udfu25
e2vudvu2

4~ev1l!
,

where

l[
B2

4
2A, A,B constants.

From these we find that~10! becomes

v u i j 52
l

2~ev1l!
v, iv, j12xS 1

3
gi j 2

v, iv, j

udvu2
D , ~14!

or transvecting withv , j ,

v u i j v
, j52F4

3
x1

ludvu2

2~ev1l!
Gv, i .

This is just the geodesic equation,

v u i j v
, j5

v lkv ,lv ,k

udvu2
v ,i .

We have therefore established the following theorem
Theorem 2: If a static Weyl-type electrovac space is aligned and type D, then the line

force are geodesic in(V3,gi j ).
In fact, we can go further by looking at these equations in the conformal space (V̄3,ḡi j ).

There, Eq.~14! becomes

v i i j 5F2
ev

4~ev1l!
1

3

2

v iklv,kv, l

idvi4 Gv, iv, j1F idvi2ev

4~ev1l!
2

1

2

v iklv,kv, l

idvi2 G ḡi j ,

where we have denoted covariant differentiation with respect to the metricḡi j by a double stroke
subscript andidvi25ḡi j v iv j . Thus, the lines of force are also geodesic in (V̄3,ḡi j ). Now, if we
let

ki5
v, i

idvi ,

then ki is a geodesic in (V̄3,ḡi j ) and km @given by ~12!# is also a null geodesic in the ful
space–time (M ,gmn). In addition,ki is shear-free in (V̄3,ḡi j ):

k~ i i j !k
i i j2~ ḡi j ki i j !

250.

This also means, as one would expect from the Goldberg–Sachs theorem,15 that the p.n.d.km is
shear-free in (M ,gmn). Thus we have the following:
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Theorem 3: If a static Weyl-type electrovac space is aligned and type D, then the line

force are geodesic and shear-free in(V̄3,ḡi j ).
In the next section we determine all such metrics explicitly.

IV. TYPE D FIELDS

It is well known that the Reissner–Nordstro¨m solution is the unique static asymptotically fl
electrovac field with geodesic shear-free lines of force~or eigenrays! Kota and Perj¸es.2 In this
section we present all static electrovac fields withg445g44(f), which possess shear-free geode
lines of force.

In the vacuum case, all static fields with geodesic lines of force were found by Das1 and Kota
and Perj¸es.2 Here we shall adopt the formalism of Das, generalizing it to include the electros
field. This formalism entails the setting up of a 3-dimensional complex triad field in (V̄3,ḡi j ) and
then expressing the field equations in terms of the associated 3-dimensional Ricci rotati
efficients.

Let l (A)
i be an orthonormal frame in (V̄3,ḡi j ) and

G~ABC![l~A! j ikl~B!
j l~C!

k ,

be the associated Ricci rotation co-efficients. Here and throughout we use bracketed capita
lettersA,B,...5 1,2,3 to represent frame components and summation is implied over any rep
indices. These satisfy the commutation relations

l~A!
i , jl~B!

j 2l~B!
i , jl~A!

j 1G~C[AB] !l~C!
i 50, ~15!

and the Riemann curvature of (V̄3,ḡi j ) is given in terms of them by

3R̄~ABCD!5G~AB![ ~C!,~D !]1G~ABM!G~M [CD] !1G~MAD!G~MBC!2G~MAC!G~MBD! . ~16!

We choose the frame so that the congruence ofl (1)
i is normal to the surfacev5const. Thus

l~1!i5Uv, i , G~123!5G~132! . ~17!

We choose co-ordinates so that

v5x1, ḡ125ḡ1350.

Hence~17! can be raised to give

l~1!
i 5U21d1

i .

Since the lines of force are geodesic, we have that

G~131!5G~121!50.

Parallelly propagatel (2)
i , l (3)

i alongl (1)
i , so that

G~231!50.

Finally, since we have vanishing shear,

G~122!5G~133! , G~123!50.

Label the remaining nonvanishing rotation co-efficients by

H[ 1
2 ~G~122!1G~133!!,
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s[
1

A2
~G~233!2 iG~232!!.

Here and throughout capital Latin letters will indicate real valued functions and Greek letter
denote complex valued functions.

Furthermore, we make a formal transformation to complex conjugate co-ordinates defin

z2[x21 ix3, z2̄[x22 ix3.

It should be noted that a co-ordinate transformation of the form

x1→x815x1, z2→z825 f ~x1,z2!, z2̄→z82̄5 f ~x1,z2!,

wheref (x1,z2) is an analytic function ofx1,z2 and the bar denotes complex conjugation, does
alter the static form of the metric. This corresponds to a co-ordinate transformation of (x2,x3) on
the equipotential surfacesv5x15const.

The field equations written in terms of frame components in (V̄3,ḡi j ) are

3R̄~AB!52e2vf,~A!f,~B!2
1
2 v,~A!v,~B! , ~18!

v,~AA!1G~CAA!v,~C!52e2vf,~A!f,~A! , ~19!

with Maxwell’s equation

f,~AA!1G~CAA!f,~C!5v,~A!f,~A! . ~20!

Finally, introduce the complex triad fieldL (A)
j in complex co-ordinates by

L~1!
j [l~1!

j , L~2!
j [

1

A2
~l~2!

j 1 il~3!
j !,

L
~ 2̄!

j
[

1

A2
~l~2!

j 2 il~3!
j !,

where complex frame indices take the values 1, 2, 2.̄ We choose complex co-ordinates on t
equipotential surfaces so that

L~2!
j 5(d2

j , L~2!
j 5(

¯
d

2̄

j

for some complex function(.
For a Weyl-type electric field the gravitational and electric potentials are related by

ev5B1Cf1f2, B,C constants.

Assembling the field equations~18!–~20! @using ~4! and ~16! together with the commutation
relations~15!# gives

~ ln s!,152HU, ~21!

UH,11~HU !21
1

4
S 11

ex1

l
D 21

50, ~22!

H,250, ~23!

Ss̄,21S̄s,2̄12usu21H22
1

4
U22S 11

ex1

l
D 21

50, ~24!
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~ ln U !,122HU1
ex1

2l
S 11

ex1

l
D 21

50, ~25!

U,250, ~26!

~ ln S!,152HU, ~27!

S̄S,2̄1s̄S50, ~28!

where

l[
C2

4
2B.

By ~23!, ~26! we have thatU5U(x1) and H5H(x1), and so~22! and ~25! are ordinary
differential equations. In order to integrate this system of equations, we must consider sep
the casesl50, l.0 andl,0. In the asymptotically flat case these correspond tom5ueu, m
.ueu andm,ueu, respectively.

A. l50

Here,~22!, ~24! and ~25! reduce to

UH,11~HU !250 ~29!

HU,122~HU !21 1
2 HU50, ~30!

S̄s,2̄1Ss̄,212usu21H250., ~31!

Adding the first two of these, we get the Bernoulli equation

d~HU !

dx1
1

1

2
HU5~HU !2,

with the solution

HU5
e2 ~1/2! x1

a12e2 ~1/2! x1 , ~32!

wherea is an arbitrary constant of integration.
Now, ~32! in ~30! reads as

~ ln U !,12
2e2 ~1/2! x1

a12e2 ~1/2! x1 1
1

2
50,

or, integrating this up,

U5
be2 ~1/2! x1

~a12e2 ~1/2! x1
!2

, ~33!

with b another arbitrary~nonzero! constant of integration. When this is put in~32!, we find that
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H5
1

b
~a12e2 ~1/2! x1

!. ~34!

Now, having determined theḡ11 component of the metric, we return to Eq.~27!, which, using
~32!, integrates up to

S5~a12e2 ~1/2! x1
!eS1 is,

where S and s are otherwise arbitrary real-valued functions of (z2,z2̄). However,s does not
contribute to the metric form and so we can, without loss of generality, puts50. Thus

S5~a12e2 ~1/2! x1
!eS, ~35!

and we need only determineS to completely solve the problem.
We do this by first putting~35! in ~28!, yielding

s52~a12e2 ~1/2! x1
!S,2eS, ~36!

and then Eqs.~34!–~36! in ~31! boils down to the simple equation

S,22̄5
e22S

2b2
. ~37!

In real co-ordinates this is the 2-dimensional Poisson-type equation,

]2S

]x22
1

]2S

]x32
5

e22S

2b2
.

The general solution of~37! is ~see Nehari16!

eS5
11ucu2

A2ubuuc,2u
, ~38!

wherec is an otherwise arbitrary function ofz2. Finally, ~21! is identically satisfied by~32! and
~36!.

We can now assemble the metric with~33!, ~35!, and~38!,

ds25b2e2x1F e2x1

~a12e2 ~1/2! x1
!4

~dx1!21
4uc,2u2udz2u2

~a12e2 ~1/2! x1
!2~11ucu2!2G2ex1

dt2,

or making the co-ordinate transformation,

x1→x81[x1, z2→z82[2c, z2̄→z82̄[2c̄, ~39!

and subsequently dropping the primes and returning to real co-ordinates,

ds25b2e2x1F e2x1

~a12e2 ~1/2! x1
!4

~dx1!21
1

~a12e2 ~1/2! x1
!2

~dx2!21~dx3!2

~11 ~1/4! @~x2!21~x3!2# !2G
2ex1

dt2. ~40!

By writing this metric on a null tetrad and analyzing it with theREDUCEcomputer algebra system
we find that this metric generates a Petrov type D field, as expected. Furthermore, the s
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x15constant in~40! are 2-spaces of constant positive curvature, i.e., spheres and so we exp
Birkhoff’s Theorem, that~40! is just the extreme Reissner–Nordstro¨m solution in an unusua
co-ordinate system. To see that this is indeed the case we introduce new co-ordinates (u,w) on
these 2-spaces, defined by

u[tan21F1

2
„~x2!21~x3!2

…

1/2G , w[tan21S x3

x2D , ~41!

so that~40! reduces to

ds25b2e2x1F e2x1

~a12e2 ~1/2! x1
!4

~dx1!21
du21sin2 ud w2

~a12e2 ~1/2! x1
!2G2ex1

dt2.

Now, if we relabel the equipotential surfaces with% defined by

e2 ~1/2! x1
52

a

2S 11
b

2% D ,

and rescale the time co-ordinate by

t→t8[
2t

a
,

we find, dropping the primes, that~40! becomes

ds25S 11
b

2% D 2

@d%21%2~du21sin2 u dw2!#2S 11
b

2% D 22

dt2,

which is precisely the extreme Reissner–Nordstro¨m solution with

b52m52ueu.

B. l>0

In this case we must solve~21!–~28!. We still have, by~23! and ~26! U5U(x1) and H
5H(x1), but when we add~22! and ~25! we get the Ricatti equation

d~HU !

dx1
2~HU !21

1

2
HU

ex1

l
S 11

ex1

l
D 21

1
1

4
S 11

ex1

l
D 21

50, ~42!

with the first integral

HU5
1

2
S 11

ex1

l
D 2 1/2

.

So, returning to~42! with a substitution of the form

HU5
1

2
S 11

ex1

l
D 2 1/2

1F~x1!, ~43!

we get a Bernoulli equation forF with the solution
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F5
1

ae2I21
S 11

ex1

l
D 2 1/2

, ~44!

wherea is an arbitrary constant of integration andI is defined,

I[E S 11
ex1

l
D 2 1/2

dx1.

Plugging~44! in ~43! gives the general solution to~42! as

HU5
1

2
S 11

ex1

l
D 2 1/2

1
eI

a2eI
S 11

ex1

l
D 21/2

5
1

2S ae2I11

ae2I21
D S 11

ex1

l
D 2 1/2

. ~45!

Putting this in~25! and integrating,

U5
beI

~11 ~ex1
/l!!1/2~a2eI !2

, ~46!

whereb is a nonzero constant of integration. Then~46! in ~45! gives

H5
1

2b
e2I~a22e2I !. ~47!

Again, having determinedḡ11 we return to~27!, which, with the help of~46! and ~47!,
integrates to

S5~a2eI !e2 ~1/2! IeS1 is, ~48!

whereS ands are arbitrary functions of (z2,z2̄). Without loss of generality, we can again puts
50.

Then,~48! in ~28! gives

s52~a2eI !e2 ~1/2! IS,2eS, ~49!

and ~21! is identically satisfied by~48! and ~49!.
Our remaining equation~24! boils down, from~46!–~49! to

S,22̄5
a

2b2
e22S. ~50!

Here we must consider the solutions to~50! for a.0, a50 and a,0 separately. These
correspond to the cases where the equipotential surfaces are of constant positive, zero and
curvature, respectively.

a.0: In this case the general solution to~50! is

eS5A a

2b2F11ucu2

uc,2u G ,
wherec is an otherwise arbitrary function ofz2.

Assembling our metric, we find that
                                                                                                                



ositive

n-

2042 J. Math. Phys., Vol. 40, No. 4, April 1999 Brendan S. Guilfoyle

                    
ds25b2e2x1F e2I~dx1!2

~11 ex1
/l!~a2eI !4

1
4eI uc,2u2udz2u2

a~a2eI !2~11ucu2!2G2ex1
dt2,

and then transforming co-ordinates by~39! and dropping the primes, we find

ds25b2e2x1F e2I~dx1!2

~11 ex1
/l!~a2eI !4

1
eI
„~dx2!21~dx3!2

…

a~a2eI !2@11 ~1/4! „~x2!21~x3!2
…#2G2ex1

dt2.

Again, the field is Petrov type D, the equipotential surfaces are 2-spaces of constant p
curvature, i.e., spheres, and we thus expect it to represent the under-charged (m.ueu) or over-
charged (m,ueu) Reissner–Nordstro¨m solution in an unfamiliar co-ordinate system. This is i
deed the case, as can be seen by utilizing the co-ordinate transformation~41! and relabeling the
equipotential surfaces with% defined by

eI[aS b2%

b1% D ,

or, equivalently,

ex1
[

4la

~12a!2

~12 b2/%2!2

@112~~11a!/~12a!!~b/% ! 1 ~b2/%2!#2
.

The metric then becomes

ds25
~12a!2

64a3 F112S 11a

12aD b

%
1

b2

%2G 2

@d%21%2~du21sin2 u dw2!#

2
4la~12 b2/%2!2

~12a!2 F112S 11a

12aD b

%
1

b2

%2G22

dt2,

which, with a final rescaling of

t→S 12a

2Ala
D t, %→S ~4a!3/2

12a D%,

takes the standard isotropic form

ds25F112S 11a

12aD b

%
1

b2

%2G 2

@d%21%2~du21sin2 u dw2!#

2S 12
b2

%2D 2F112S 11a

12aD b

%
1

b2

%2G22

dt2,

with mass and charge parameters given by

m5
2~11a!b

12a
, e25

16ab2

~12a!2
.

a50: In this case the general solution to~50! is

e2S5buc,2u, c5c~z2!,
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and using~39! our metric takes the simple form

ds25b2e2x1F e22I

~11 ex1
/l!

~dx1!21e2I@~dx2!21~dx3!2#G2ex1
dt2.

From this we can see that the equipotential surfaces are flat, and so our metric represents
of a charged infinite plate, which also turns out to be of Petrov type D. The fact that it is n
asymptotically flat field can be most easily seen by transforming into isotropic co-ordin
However, rather than do this here, we shall change to the canonical form of the plane sym
static Einstein–Maxwell field, as given by McVitie.17 This is achieved by relabeling the equip
tential surfaces byz defined by

ex1
[

4~l21l!1/2

bz
1

4~11l!

b2z2
,

and rescaling,

t→t8[S l1/2b2

~l11!1/2D t

x2→x82[S b2

~l11!1/2D x2, x3→x83[S b2

~l11!1/2D x3,

we get~dropping the primes!

ds25S m

z
1

e2

z2D 21

dz21z2@~dx2!21~dx3!2#2S m

z
1

e2

z2D dt2,

where

m[
4~l11!3/2

l1/2b5
, e2[

4~l11!2

lb6 .

a,0: In this case~50! has the general solution

eS5A2a

2b2F12ucu2

uc,2u G ,
and so, assembling our metric we find that, after transforming by~39! that

ds̄25dS 1

eI2a
D 2

2
eI

a~eI2a!2

~dx2!21~dx3!2

†12 1
4 @~x2!21~x3!2#‡2

.

If we write the metric for the equipotential 2-surfaces of constant negative curvature in the
Stephani18

ds̄25
du2

11u2
1u2 dw2,

and make the co-ordinate transformations
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x1→%[F 2eI

a~eI2a!2G 1/2

u, u→h[~11u2!1/2F 1

4a2
2

%2

u2G 1/2

,

we find that the metric is in the Weyl canonical form for a static axially symmetric field.
furthermore find that the field is singular along the axis of symmetry and has only two prin
null directions associated with the Weyl curvature tensor~i.e., it is Petrov type D!. We therefore
interpret the field as being generated by an infinite rod situated along the axis of symme%
50.

C. l<0

By a series of calculations similar to thel.0 case, one obtains the metric generated by
overcharged (m,ueu) sphere, infinite rod and infinite plate.

V. SHEARING FIELDS

By a procedure similar to that of the last section, all Weyl-type fields with shearing geo
lines of force can be found. The metricḡ turns out to be~for details, see Guilfoyle19!

ḡ115
F22

l2~l1ex1
!
@112klF† 1

4 „~x2!21~x3!2
…

21@~x2!22~x3!2#V1V2
‡#,

ḡ1252
F21x2

l~l1ex1
!1/2

@ 1
2 „~x2!223~x3!2

…1V#

ḡ1352
F21x3

l~l1ex1
!1/2

@ 1
2 „~x3!223~x2!2

…2V#

ḡ225ḡ335
1

kl
„~x2!21~x3!2

…F21,

wherek is a constant,V is an arbitrary function ofx1 and

F~x1!5expF ~l14k2!1/2E ~l1ex1
!2 1/2dx1G55 F ~l1ex1

!1/22l1/2

~l1ex1
!1/21l1/2G n

, for l.0

expF22n tan21F2S 11
ex1

l
D G1/2G , for l,0,

for n[@11 (2k)2/l#1/2. As expected, this metric is algebraically general, with shear given b

ubu25k2l2F2Þ0.

Therefore this cannot be of the Majumdar–Papapetrou type. That is,l.0 or l,0, but l50 is
not possible.

The equipotential surfacesx15const are easily seen to be flat.

VI. CONCLUSION

We have established that all algebraically special Weyl-type electric fields have shea
geodesic lines of force. In the over-charged (m,ueu) and under-charged (m.ueu) cases these ar
the fields generated by a charged sphere, infinite charged rod and infinite charged plate
correspond exactly to the fields in Newtonian theory that have straight lines of force. Of t
only the sphere is asymptotically flat. In the Majumdar–Papapetrou case (m5ueu) the only solu-
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tion is the extreme Reissner–Nordstro¨m solution. All metrics with shearing geodesic lines of for
giving rise to a Weyl-type electric field were also found. This class of solutions depends
arbitrary function of the gravitational potential and the equipotential surfaces are flat. It is
braically general and cannot be in the Majumdar–Papapetrou class.

ACKNOWLEDGMENT

The author would like to thank Petros Florides, under whose supervision most of the
work was carried out.

1A. Das, J. Math. Phys.14, 1099~1973!.
2J. Kota and Z. Perj¸es, J. Math. Phys.13, 1695~1972!.
3H. Weyl, Ann. Phys.~Leipzig! 54, 117 ~1917!.
4S. D. Majumdar, Phys. Rev.72, 390 ~1947!.
5A. Papapetrou, Proc. R. I. Acad. Sect. A, Math. Astron. Phys. Sci.51, 191 ~1947!.
6R. Gatreau and R. B. Hoffman, Nuovo Cimento B16, 162 ~1973!.
7B. S. Guilfoyle, to appear in Gen. Relativ. Gravit.
8J. L. Synge,Relativity: The General Theory~North-Holland, Amsterdam, 1966!.
9A. Z. Petrov,Einstein Spaces~Pergamon, New York, 1969!.

10D. Kramer, H. Stephani, E. Herlt, M. MacCallum and E. Schmutzer,Exact Solutions of Einstein’s Field Equation
~Cambridge University Press, England, 1980!.

11A. Papapetrou,Lectures on General Relativity~Reidel, Dordrecht, 1974!.
12J. L. Synge, Commun. Dublin Inst. Adv. Stud. A15, ~1964!.
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On relativistic spin network vertices
Michael P. Reisenbergera)
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Barrett and Crane have proposed a model of simplicial Euclidean quantum gravity
in which a central role is played by a class of Spin~4! spin networks called ‘‘rela-
tivistic spin networks’’ which satisfy a series of physically motivated constraints.
Here a proof is presented that demonstrates that the intertwiner of a vertex of such
a spin network is uniquely determined, up to normalization, by the representations
on the incident edges and the constraints. Moreover, the constraints, which were
formulated for four valent spin networks only, are extended to networks of arbitrary
valence, and the generalized relativistic spin networks proposed by Yetter are
shown to form the entire solution set~mod normalization! of the extended con-
straints. Finally, using the extended constraints, the Barrett–Crane model is gener-
alized to arbitrary polyhedral complexes~instead of just simplicial complexes!
representing space-time. It is explained how this model, like the Barret–Crane
model can be derived from BF theory, a simple topological field theory@G. Horow-
itz, Commun. Math. Phys.125, 417~1989!#, by restricting the sum over histories to
ones in which the left-handed and right-handed areas of any 2-surface are equal. It
is known that the solutions of classical Euclidean general relativity form a branch
of the stationary points of the BF action with respect to variations preserving this
condition. © 1999 American Institute of Physics.@S0022-2488~99!00904-4#

I. INTRODUCTION

The ‘‘Relativistic spin networks’’ defined by Barrett and Crane~BC! are a fundamenta
ingredient of their proposal for a simplicial model of quantum general relativity in four dim
sions. In Ref. 1 the space of intertwiners that relativistic spin networks are allowed to ca
defined implicitly by a set of physically motivated constraints. They also exhibit a single sol
to these constraints. Soon after Barbieri2 gave a partial proof of the uniqueness up to normalizat
of this solution, which relies on some unproven hypothesies. BC’s constraints apply on
4-valent spin networks, but their solution to their constraints has been generalized in a natur
to arbitrary valence by Yetter,3 and Barrett4 has given a very transparent characterization of t
extension in the non-q-deformed case,q51.

Here a proof~without auxiliary assumptions! will be given showing that the BC solution is th
only one, up to normalization, and similarly Yetter’s generalization of the solution~for q51! is
the unique solution up to normalization of a natural generalization of the BC constrain
addition a physically motivated extension of the BC model to polyhedral complexes is out
The BC model can be obtained from a sum over histories quantization of Spin~4! BF theory by
restricting the histories to ones that assign equal~suitably defined! left-handed and right-hande
areas to any 2-surface. At the classical continuum level such a constrained BF theory does
duce general relativity~GR!. The solutions of GR form a branch of the stationary points of
Spin~4! BF action with respect to variations that preserve the constraint that the left- and
handed areas be equal for all 2-surfaces.5 This procedure for obtaining the BC model generaliz
straightforwardly to complexes of convex 4-polyhedra.

For background information on spin networks see Refs. 6–10.

a!Electronic mail: miguel@fisica.edu.uy
20460022-2488/99/40(4)/2046/9/$15.00 © 1999 American Institute of Physics
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II. DEFINITION OF RELATIVISTIC SPIN NETWORKS

I will adopt the following definition of relativistic spin networks, which generalizes BC
definition from 4-valent vertices to vertices of arbitrary valence.

Definition 1: A relativistic spin network is a Spin(4) spin network such that
(1) on each edge the left-handed spin, j L , and the right-handed spin, j R , are equal.
(2) in any expansion of an n-valent vertex into a sum of trivalent trees only trivalent trees

j L5 j R on each of the internal (virtual) edges appear.
In general the edges of a spin network carry nontrivial irreducible representations~irreps! of

the gauge group, and the vertices carry intertwiners. The intertwiner for a vertex can b
invariant tensor of the product representationR formed by the product of the irreps carried by th
incoming edges and the duals of the irreps on the outgoing edges.~The dual of a representationD
of a group is the representationD21T formed by the transposes of the inverses of the represe
tion matrices ofD. If D is unitary its dual is the complex conjugate representationD* formed by
complex conjugating each matrix element in the representation matrices ofD.! The space of
invariant tensors ofR will be denoted Inv(R). The evaluationof a spin network is a complex
number calculated by contracting the intertwiners of the vertices along the edges. An inter
carries one index for each incident edge. In the evaluation of a spin network the pair of in
associated with each edge~one index lives at each end! is contracted, leaving ultimately a singl
C number. In the BC model histories of the gravitational field determine relativistic spin netw
on the boundaries of the 4-simplices that form the simplicial space–time, and the prob
amplitude of each history is the product of the evaluations of these spin networks~times some
simple further factors associated with the lower dimensional simplices!.

Relativistic spin networks are spin networks of Spin~4!, the covering group of SO~4!. Spin~4!
is the product of two SU~2!s: Spin~4!5SU~2!3SU~2!, where the first SU~2! factor will be called
SU(2)L , the ‘‘left-handed’’ subgroup, and the second SU(2)R , the ‘‘right-handed’’ subgroup.
This factorization extends to the irreps of Spin~4!. These are tensor products of an irrep of SU(2L

and an irrep of SU(2)R , and their carrying spaces, i.e., the vector spaces on which they act, a
tensor products of the carrying spaces of the SU(2)L and SU(2)R irreps @M. Tinkham, Group
Theory and Quantum Mechanics~McGraw-Hill, New York, 1964!, p. 43#.

The factorization of the irreps implies that the productR of irreps incident on a spin networ
vertex also factorizes into a left-handed factor,RL , and a right handed factor,RR , and hence that
the intertwiner space factorizes according to

InvSpin~4!~R!5InvSpin~4!~RL ^ RR!5InvSU~2!~RL! ^ InvSU~2!~RR! ~1!

into a tensor product of two SU~2! intertwiner spaces.
SU~2! irreps are determined by their spin, modulo the freedom to change basis in the ca

space. Spin~4! irreps are therefore characterized in the same sense by the spins (j L , j R) of their
left- and right-handed factors. To keep the mathematics as concrete as possible it is conve
fix the bases in the carrying spaces so that the irreps take a standard form completely dete
by their spins (j L , j R). ~Note that the evaluation of a spin network is invariant under change
basis in the carrying spaces of the irreps on the edges. The contractions of the indices
intertwiners are all between vector indices of some irrep and corresponding covector indice
vector indices of the dual of the irrep.! We shall adopt as our standard (j L , j R) irrep

U ~ j L!
^ U ~ j R!* , ~2!

where for each spinj, U ( j ) is a particular,unitary, spinj SU~2! irrep fixed once and for all by som
conventions, andU ( j )* is its dual irrep.@For instance we may choose

U ~ j !m
n~g!5S 2 j

j 1mD 21/2S 2 j
j 1nD 21/2

(
(Mi5m,(Ni5n

gM1
N1
¯gM2 j

N2 j
;gPSU~2!. ~3!
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Here the indicesMi and Ni range over$21
2,

1
2%.# This choice can be made because, first,

compactness of SU~2! implies that its irreps preserve a Hermitean inner product, and are
unitary in orthonormal bases with respect to this inner product, and second because the du
spin j SU~2! irrep is also a spinj irrep, so that the Spin~4! irrep chosen really has right-handed sp
j R .

Now let us consider a spin network vertex. First we will define some notation. Once the
are fixed the product representationR formed by the incident irreps is completely determined
the incident spins and whether edges are incoming or outgoing. This information can be ga
into two vectors,jL and jR , which we shall, in a slight abuse of language, refer to as the vec
of incident left-handed and right-handed spins. Each entry ofjL corresponds to an incident edg
and consists of the left-handed spin,j L , if the edge is incoming and2 j L if the edge is outgoing.
The left-handed factor ofR is thenRL5R( jL) where

R~ j !5 ^

n
U ~ j n! ~4!

~n numbers the edges and we have definedU (2 j )[U ( j )* !. jR is defined in complete analogy tojL ,
so our conventions for the Spin~4! irreps on the edges imply thatR5R( jL) ^ R( jR)* . If H( j ) is
the carrying space of the SU~2! representationR( j ), and InvSU~2!( j )[InvSU~2!(R( j )) is its invariant
subspace then the carrying space ofR5R( jL) ^ R( jR)* is H( jL) ^H( jR)* and the Spin~4! inter-
twiner space is InvSpin~4!( jL ,jR)5InvSU~2!( jL) ^ InvSU~2!( jR)* .

The inner product preserved by the unitary representationR( j ) establishes a one to on
correspondence between vectors ofH( j )* and linear functionsH( j )→C. A tensorCPH( jL)
^H( jR)* can thus be viewed as a linear mappingC:H( jR)→H( jL). If the tensorC is an
intertwiner it maps InvSU~2!( jR) into InvSU~2!( jL) and the orthogonal complement of InvSU~2!( jR) in
H( jR) to zero.

Condition 1 in the definition of relativistic spin networks implies thatjL5 jR at their vertices.
Thus a relativistic intertwinerF may be viewed as a mapping ofH( jR) into itself, that furthermore
maps InvSU~2!( jR) into itself and the orthogonal complement of InvSU~2!( jR) to zero. It is the
composition of the orthogonal projectorP onto InvSU~2!( jR) and a linear mappingX of InvSU~2!( jR)
to itself: F5XP.

Condition 2 in the definition of relativistic spin networks refers to trivalent tree expansion
spin network vertices. It is well known~see Refs. 6 and 11! that for SU~2! spin networks each
trivalent tree graph having the same external edges as a given vertex defines a basis
intertwiner space InvSU~2!( j ) of the vertex.~The trivalent tree has oriented edges and a cy
ordering of the edges incident at each vertex.! Each element of such a ‘‘trivalent tree basis’’
associated with an assignmentJ of ~possibly zero! spins to the internal edges of the tree~also
known as ‘‘virtual’’ edges because they are not present in the actual spin network!. The basis
element is evaluated by contracting the intertwiners of the trivalent vertices along the in
edges as in a spin network evaluation. This leaves just the intertwiner indices associated w
external edges free. To complete the definition one needs to specify the trivalent intertwiner
trivalent intertwiner spaces InvSU~2!( j 1 , j 2 , j 3) of SU~2! are all one dimensional, so it is sufficien
to fix the freedom to multiply the intertwiners by scalar factors. We will choose the triva
intertwiners to be normalized. Then, if a normalizing factorA2J11 is included for each interna
edge, the trivalent tree intertwiners will be normalized. There remains a phase which m
chosen by convention. We will suppose that such a convention has been adopted, so t
trivalent treeT and the vectorJ of spins on the internal edges determine a unique intertw
uT,j ,J&PInvSU~2!( j ). @The Wigner 3-jm symbols, (m1

j 1
m2

j 2
m3

j 3 ), with the standard convention6 that

(21) j 12 j 21 j 3( j 1

j 1
j 32 j 1

j 2
2 j 3

j 3) is real and non-negative for allj 1 , j 2 , and j 3 , form a basis of triva-

lent intertwiners consistent with the convention forU ( j ) of ~3!. Aside from being real this basi
also has the attractive feature that the intertwiners have simple symmetry properties under
tations of the incident edges: Ifj 11 j 21 j 3 is even they are symmetric, if it is odd they a
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antisymmetric.# Spin~4! trivalent tree bases can then be constructed from the SU~2! trivalent tree
bases: If the trivalent treeT spans a Spin~4! vertex with incident spins (jL ,jR) then the multiplet

$uT,jL ,JL& ^ ^T,jR ,JRu%JD ,JR
~5!

spans the intertwiner space InvSpin~4!( jL ,jR). Here ^T,j ,Ju denotes the complex conjugate of th
tensoruT,j ,J&, which, as has been explained, defines a linear functionH( j )→C via the Hermitean
inner product, thus justifying the Dirac bra notation. The definition of a relativistic spin netw
implies that the expansion of an intertwinerF of such a spin network on a trivalent tree basis h
the form

F5(
J

ajJ
T uT,j ,J& ^ ^T,j ,Ju, ~6!

i.e., the left- and right-handed spins are equal on both external and internal edges, forany treeT
spanning the vertex.

III. THE SOLUTION TO THE CONSTRAINTS DEFINING RELATIVISTIC VERTICES

Now that relativistic spin networks have been defined and explained we are ready to sta
prove our result:

Theorem: The intertwiner of any vertex in a relativistic spin network is uniquely determin
up to a numerical factor, by the irreps on the incident edges. Letj5 jL5 jR be the common value
of the vectors of left- and right-handed incident spins~as defined in Sec. II! at a vertex, and let
H~j ! be the space of tensors transforming under the product of theSU~2! irreps with these spins
equipped with the Hermitean inner product preserved bySU~2!. When the bases in the carryin
spaces of theSU~2!L andSU~2!R irreps on the edges of the relativistic spin network are chosen
that theSU~2!L irrep is the dual of theSU~2!R irrep on each edge incident on the vertex then

(1) tensors, like the intertwiner, that transform under the product of the incidentSpin~4!
irreps live in the tensor product ofH~j ! and its dual, and can thus be viewed as line
mappings ofH~j ! to itself, and

(2) the intertwiner is proportional to the orthogonal projector fromH~j ! to the subspace o
invariant tensorsInvSU~2!( j ),H( j ).

Proof: Part~1! has already been established in Sec. II, so only part~2! remains to be proven
~6! shows that an intertwiner,F, of a relativistic spin network is the composition of the projec
P from the spaceH~j ! of tensors with spinsj onto the subspace of intertwiners InvSU~2!( j ) and a
linear mapX of InvSU~2!( j ) to itself. ~6! furthermore requires thatX is diagonal in each of the
trivalent tree bases of InvSU~2!( j ). ObviouslyX5c1 with cPC satisfies this condition, socP is a
relativistic intertwiner. To establish the theorem it remains to be shown that the set of all triv
tree bases is rich enough so that this is the only solution to the condition.

Let us first consider four valent vertices. There are three~unoriented! trivalent trees matching
the four incident edges,
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each of which has one internal, or virtual, edge. Once the orientations of the external edg
fixed to match those of the four valent vertex being expanded there remains the freedom to
the orientation of the internal edge and the cyclic ordering of the incident edges at the two tri
vertices. However these choices only affect thesignsof the corresponding trivalent tree basi
modulo sign it is determined by the unoriented tree graph.

Let us number the incident edges 1, 2, 3, 4 clockwise from the top left, and letGni for n
P$1,2,3,4% be the generators, acting inH~j !, of the SU~2! irreps on the incident edges. Let us al
defineGmni5(Gm1Gn) i . ~If the edgen is incoming then@Gni ,Gn j#5 i e i j

k Gnk . If the edge is
outgoing the negatives2Gni satisfy these communication relations. The generators belongin
distinct edges of course commute.! The first of the trivalent trees drawn above corresponds
pairing of edges 1 and 2, which join at a trivalent vertex. The corresponding basis intertw

are contractions of a trivalent intertwiner at this vertex and one at the other vertex of the g
The invariance of the intertwiner at the first vertex implies that

~7!

The intertwiner basis

is thus the eigenbasis ofG12
2 in InvSU~2!( j ). Similarly the trivalent tree bases associated with

second and third trees diagonalizeG13
2 andG14

2 , respectively.
Since X, the restriction ofF to InvSU~2!( j ), is diagonal in all the trivalent tree bases

commutes withG12
2 , G13

2 , andG14
2 . Further, since the spectra of these operators ($J(J11)%) are

nondegenerate,X can be expressed as a function of any one of them. ChoosingG12
2 we write

X5 (
q50

d21

bq@G12
2 #q, ~8!

whered is the dimension of InvSU~2!( j ). Since the spinJ defined by the eigenvaluesJ(J11) of
G12

2 can take onlyd values a polynomial of degreed21 can reproduce any dependence ofX on
G12

2 .
BecauseX also commutes withG13

2

05@G13
2 ,X#5 (

q50

d21

bq@G13
2 ,~G12

2 !q#. ~9!

This condition implies thatbq50 ;qÞ0, so thatX5b01. To prove this it is sufficient to conside
the matrix elements of~9! between the basis intertwiners
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~which I will denote uJ& and uJ21& in the following! for all allowed values of J.
^Ju@G13

2 ,(G12
2 )q#uJ21& is obviously zero whenq50. Whenq>1 it equals

(
r 50

q21

^Ju~G12
2 !r@G13

2 ,G12
2 #~G12

2 !q212r uJ21&5bJPq~J!, ~10!

wherebJ5^Ju@G13
2 ,G12

2 #uJ21&, and

Pq~J!5 (
r 50

q21

@~J!~J11!# r@~J21!J#q212r . ~11!

~9! therefore implies

05bJ(
q51

d21

bqPq~J!. ~12!

The matrix elements of@G13
2 ,G12

2 # have been worked out explicitly by Levy´-Leblond and
Levý-Nahas.12 They find

bJ5
2 j 411

A4J221
$@~ j 11 j 211!22J2#@J22~ j 12 j 2!2#%1/2$@~ j 31 j 411!22J2#@J22~ j 32 j 4!2#%1/2.

~13!

@~13! corresponds to Eq.~2.17! of Ref. 12. TheirJ is called j 4 in our notation and theirl is ourJ.
Our formula has an extra factor (2j 411) relative to theirs because, while they are evaluating
matrix element between states ofthreespins having definite values~j 4 andm4! of the magnitude
and 3 axis component of the total spin, we are calculating the matrix elements between st
four spins which have total spin zero. In this latter calculation one must sum over the 2j 411
possible values ofm4 . It is also interesting to note that the operator@G13

2 , G12
2 #

524i e i jkG1iG2 jG3k has a physical interpretation in loop quantum gravity. It is24i times the
squared 3-volume associated with the four valent vertex.13–15#

The important feature of~13! for us is that it is nonzero for all values ofJ such that bothJ and
J21 satisfy the triangle inequalities

u j 12 j 2u<spin< j 11 j 2 , ~14!

u j 32 j 4u<spin< j 31 j 4 ~15!

for the spin on the internal edge of

It is thus nonzero for all but the smallest of the values ofJ corresponding to the intertwinersuJ&
spanning InvSU~2!( j ). The condition~12! therefore implies

05 (
q51

d21

bqPq~J! ~16!

for all but one of thed allowed values ofJ.
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Now note that, first, the highest order term inPq(J) is J2(q21), and, second, thatPq(2J)
5Pq(J). It follows that thePq have the formPq(J)5(p50

d22 AqpJ
2p, whereA is a (d21)3(d

21) matrix. Moreover, since their leading powers ofJ are all distinct, thePq are linearly inde-
pendent polynomials, implying thatA is invertible. From~16! it follows that (q51

d21 bqAqp50;p
P$0,...,d22%. The invertibility of A then shows thatbq50;qP$1,...,d21%. As claimed X
5b01.

The result is thus established for four valent vertices. Let us now consider a vertex of arb
valence. Fix a particular trivalent tree graphT expanding the vertex and consider a four vale
fragment of the graph consisting of an internal edgee, and the four~internal or external! edges
attached to it~see Fig. 1!. The preceeding arguments relating to four valent vertices can be ap
directly to this fragment and show that the eigenvalueajJ

T of X on uT,j ,J& is independent of the
spin one. Since this holds for any internal edge ofT the eigenvalue is independent of all th
internal spins, i.e., it has a common valuecPC on each element of the basis$uT,j ,J&%J . Hence
X5c1 and the relativistic intertwiner iscP. j

I close with a few observations.
~1! The BC model has a simple, physically motivated extension to arbitrary polyhedral

plexes~as opposed to simplicial complexes! representing space–time. The generalized BC c
straints of definition~1! are equivalent to the requirement that relativistic spin networks de
equal left- and right-handed areas for any surface, including ones cutting through vertices
the left- and right-handed areas are determined from the left- and right-handed spins on th
network edges and on the virtual edges of trivalent tree expansions of the vertices using th
operator of loop quantum gravity.13,16,17

In Ref. 5 it has been shown that GR is a branch of the theory obtained by restricting SO~4! ~or
Spin~4!! BF theory to histories in which left-handed and right-handed areas are equal. That
solutions of GR form a branch of the stationary points of the SO~4! BF action with respect to
variations that respect the constraint that left-handed areas equal right-handed areas. This p
a motivation of the BC model which may be extended to polyhedral complexes: Spin~4! BF theory
is just two noninteracting SU~2! BF theories, corresponding to SU(2)L and SU(2)R , respectively.
Thus Ooguri’s18 simplicial lattice sum over histories quantization of SU~2! BF theory@this model
is also known as the Crane–Kauffman–Yetter model19# immediately provides a simplicial quan
tization of Spin~4! BF theory. The BC model is then obtained from simplicial Spin~4! BF theory
by restricting the histories to ones in which left- and right-handed areas are equal. A history
Spin~4! BF theory defines a Spin~4! spin network on the boundary of each 4-simplex~or more
precisely, on the 1-skeleton of the dual of the boundary seen as a three-dimensional sim
complex!, which plays the role of boundary data in the sense that the spins and intertwiners
spin networks on two neighboring 4-simplices must match in their mutual boundary. The re
ment that left- and right-handed areas be equal then reduces the allowed Spin~4! spin networks to
just relativistic spin networks.

Ooguri’s quantization of BF theory is most easily generalized to arbitrary polyhedral c
plexes in the connection formulation~see Ref. 20 for a detailed discussion!. In this formulation the
boundary data on each 4-cell is a lattice connection@of Spin~4! in our case# defined by the paralle
transport matrices across the 2-cells separating the 3-cells of the boundary of the 4-cell.~Equiva-

FIG. 1. The circle contains a four valent fragment of the trivalent tree graphT.
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lently, it is a lattice connection on the 1-skeleton of the dual of the boundary!. The amplitude of
this connection is a delta distribution with support on flat connections. Clearly the sum
histories yields the same states on the boundary of the space–time~once infinities stemming from
redundancies in the delta functions are factored out! whether simplices or arbitrary convex poly
hedral 4-cells form the space–time complex.

If one transforms the sum over connection boundary data to a sum over spin network b
ary data~see Ref. 20! one finds, for polyhedral complexes as for simplicial complexes, that
amplitudes of each history is just the product of the evaluations of the spin networks on the 4
times a factor (2j 11)2 for each 2-cell, withj 5 j L5 j R the common value of the spins carried b
the spin network edges crossing that 2-cell. Applying the constraint that left areas equal righ
for all surfaces, even ones crossing the vertices of the spin networks, restricts the spin netw
the boundaries of the 4-cells to be relativistic spin networks in the extended sense of our de
~1!. This defines the generalization of the BC model to polyhedral complexes.

~2! To completely determine the BC sum over histories a normalization has to be chos
the relativistic intertwiners. The four valent relativistic intertwiner given by BC in Ref. 1 seem
be justP. On the other hand, if the sum over histories is to be truly a restriction of the sum
histories for BF theory then the relativistic intertwiner must be normalized in the sense th
contraction on all indices with its complex conjugate must be 1. Thus it must beP/Ad up to a
phase, whered is the dimensionality of InvSU~2!( j ).

~3! Barrett4 has shown that Yetter’s extension to arbitrary valence of the four valent rel
istic intertwiner found by BC is equal to

E
SU~2!

dg)
j P j

U ~ j !~g! ~17!

~when the conventions fixing the bases in the irrep carrying spaces are adopted!. HereU ( j )(g) is
the spin j representation matrix ofgPSU(2) corresponding to the basis convention, and
normalized Haar measure is used to integrate over the group.~17! is precisely the orthogona
projectorP on InvSU~2!( j ). Thus the theorem shows that the unique solution~mod normalization!
of our generalization of BC’s constraints is Yetter’s extension of their solution.

~4! Sincej R is everywhere equal toj L the BC state sum can be viewed as a sum over histo
of left-handed ‘‘fields,’’ i.e., thej L only. Thus the BC model can be viewed, like the model of R
20 as a~proposal for! a formulation of quantum GR in terms of ‘‘self-dual’’ variables.~Note that
this doesnot mean that it is a model of only the self-dual sector of GR, in which the anti-self-
curvature vanishes. It only means that exclusively self-dual variables are used to expre
configuration of the gravitational field.!
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Generalized Kronecker and permanent deltas, their spinor
and tensor equivalents and applications

R. L. Agacya)

42 Brighton Street, Gulliver, Townsville, Qld 4812, Australia
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The aim of this paper is fourfold:~i! to introduce ageneralized permanent deltaon
an equal footing with the generalized Kronecker delta, to use for the symmetries of
any tensor or spinor,~ii ! to cite an ancillary reference source of comprehensive
tensorial and spinorial combinatorial formulas for both,~iii ! to table spinor equiva-
lents of these individual tensors and give examples of their usage, and~iv! to
tabulate the tensor equivalents of various useful combinations of their spinor forms.
© 1999 American Institute of Physics.@S0022-2488~99!03303-4#

I. INTRODUCTION

The generalized Kronecker delta~gKd! is well known as an alternating function orantisym-
metrizer, e.g.,dde f

abcXabc53!X@de f# . In contrast, although symmetric tensors are seen constant
the mathematical language for general relativity~GR!, there does not appear to be employment
anysymmetrizer, for e.g.,X(abc) , in analogy with the antisymmetrizer. Historically, nomenclatu
for both date back to Cauchy 1812 in terms of ‘‘fonctions syme´triques alterne´es’’ and ‘‘fonctions
symétriques permanentes.’’1 A permanent symmetrized tensor was probably first introduced
Cramlet,2,3 but seems to have been neglected, never acquiring the same prominence as th
However, it is exactly the combination ofboth types of symmetrizers, treated equally, that give
the flexibility to describe any type of tensor symmetry, being exactly the symmetrizers need
describe Young tableaux tensors.4 We define such a ‘‘permanent’’ symmetrizer as a generali
permanent delta~gpd! below. Our purpose is to restore an imbalance between the gKd and
and cite a reference of combinatorial formulas for them, most of which is not in the literature
contents of this Ref. 5, referred to as PAPS, which contains acomprehensivetabulation of gKd
and gpd formulas is amplified at the end of this section. In Sec. II we define the gpd and gK
state some very basic relations. In Sec. III we illustrate the usage of the generalized deltas
symmetries of tensors. In Sec. IV examples are given of finding spinor equivalents of s
tensors almost instantly, using gKd and gpd spinors. A table of spinor equivalents of indiv
tensor generalized deltas are tabulated in Appendix A. Converse to finding spinor equivalen
next tabulate the tensor equivalents of spinor generalized deltas in Appendix B. They c
applied to obtain a variety of spinor formulas.

General indices range from 1,...,n. All index sets are permutations of each other. Tw
component spinor indices are in capital lower case roman.

The PAPS reference5 contains the following parts and sections: Part I; formulas
n-dimensions,~1! Introduction,~2! Definitions and illustrations of the gKd and gpd,~3! General-
ized Kroneckerd, ~4! Generalized permanentd, ~5! Combined gKd and gpd, Part II; formulas fo
tensors and spinors in the mathematical language of GR,~6! Spinor equivalents of gKd and gp
tensors,~7! Tensor equivalents of gKd and gpd spinors. Appendixes A–F provide tabulatio
all formulas. Thederivationof each and every formula is provided in the above sections.

II. DEFINITIONS AND BASICS OF THE gKd AND gpd

Complete symmetry of~a tensor’s! indices, as opposed to total antisymmetry, is manifested
all positive signs in anyp-linear expression. Whereas the gKd’s antisymmetry comes a

a!Electronic mail: ragacy@ultra.net.au
20550022-2488/99/40(4)/2055/9/$15.00 © 1999 American Institute of Physics
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through adeterminant~interchanges of rows/columns or indices changes the sign!, total positive or
pure orpermanentsymmetry, as we term it, comes about through the use of apermanent. Then in
complete analogy to the gKd we introduce thegeneralized permanent deltaor gpd. This is
defined, like the gKd determinant of a matrix,except that we take all positive signs. We use the
kernel letterp to denote a gpd anddoublevertical lines for thepermanentof the defining matrix.
The gKd and gpd are completely complementary to each other and are defined, forp(<n) distinct
indices, respectively by,

d j 1¯ j p

i 1¯ i p 5Ud j 1

i 1
• •

d j p

i 1

• • • •

• • • •

d j 1

i p
• •

d j p

i p

U , p j 1¯ j p

i 1¯ i p 5I d j 1

i 1
• •

d j p

i 1

• • • •

• • • •

d j 1

i p
• •

d j p

i p

I ,

where the first is a determinant and the second a permanent. The gKd has value11 ~21! depend-
ing on whether (j 1 ,...,j p) is an even~odd! permutation of (i 1 ,...,i p). The gpd has thepermanent
value 11 for any permutation of the index sets. Note thatpb

a5db
a . The gpd is a complete

symmetrizer~permanent symmetrizer! and now one easily sees thatpde f
abcXabc53!X(de f) .

A simple but important interaction between the gKd and gpd is that in any expression
taining them as a product, where there is a summation on a pair of indices between them
expression vanishes. For

d ............
...a...b...p ...a...b...

............5d ............
...a...b...p ...b...a...

............52d ............
...b...a...p ...b...a...

............52d ............
...a...b...p ...a...b...

............50.

From this it also obviously follows that the product of any gKd and any gpd withtwo or more
common contracted indicesvanishes.

If A5@aj
i # is ann3n matrix its determinantandpermanentare

detA5
1

n!
aj 1

i 1
¯aj n

i nd i 1¯ i n

j 1¯ j n, perA5
1

n!
aj 1

i 1
¯aj n

i np i 1¯ i n

j 1¯ j n.

III. gKd’s AND gpd’s IN SYMMETRIES OF TENSORS

The use of symmetrizing parentheses and antisymmetrizing brackets for specification
sor symmetries can become both convoluted and ambiguous. For example 4T@( i u j u#k) can be con-
fusing at first sight; taken to mean performing symmetry ini, k and skew symmetry ini, j , it is still
ambiguous, depending on which operation is performed first. It can be appreciated that sym
specifications in this way for tensors with a large number of indices and intertwining bracke
be quite horrendous. Specification of tensor symmetries withgeneralized deltas~gd’s—
collectively gKd’s and gpd’s! gives clean, unambiguous expressions. Performing symmetry
antisymmetry and vice versa on 4T@( i u j u#k) gives two quite different expressions:

2~T@ i j #k1T@k j # i !5~Ti jk1Tk ji2Tjik2Tjki !5p ik
pn~Tp jn2Tjpn!5dp j

lmp ik
pnTlmn ,

2~T~ i u j uk!2T~ j u i uk!!5~Ti jk2Tjik1Tk ji2Tki j !5d i j
pm~Tpmk1Tkmp!5ppk

ln d i j
pmTlmn .

Specification of what one means by the gd’s is unequivocal. They are also exactly w
needed for tensors obeying the symmetry of Young tableaux illustrated next.

The Riemann tensorRabcd is a Young tableau~YT! tensor in its algebraic symmetries,
expressible as4,6 Rabcd5

1
12R$ac,bd% , obeying the partial symmetries and antisymmetries as de

mined by its tableau$ac,bd%. Fully expanded, it is4
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Rabcd5
1

12R$ac,bd%

5 1
12@Rabcd1Radcb1Rcbad1Rcdab2Rabdc2Racdb2Rdbac2Rdcab

2Rbacd2Rbdca2Rcabd2Rcdba1Rbadc1Rbcda1Rdabc1Rdcba#.

Its symmetries are inbuilt. It is easy to see the skewsymmetry in~a,b! and in~c,d!. Then too
the interchange (a,b)⇔(c,d) can also be seen, while the cyclic symmetryRabcd1Racdb

1Radbc50, though tedious, is easy enough to verify. Conversely, using these symmetries
rhs does indeed produce the lhs.

The above expression can be put into a convenient form involving gKd’s and gpd’s. LetEabcd

be the expression on the rhs within brackets:

Eabcd5Rabcd1Rcbad1Radcb1Rcdab2Rabdc2Rdbac2Racdb2Rdcab

2Rbacd2Rcabd2Rbdca2Rcdba1Rbadc1Rdabc1Rbcda1Rdcba

5dab
pq@Rpqcd1Rcqpd1Rpdcq1Rcdpq2Rpqdc2Rdqpc2Rpcdq2Rdcpq#

5dab
pqdcd

rs @Rpqrs1Rrqps1Rpsrq1Rrspq#

5dab
pqdcd

rs ppr
eg@Reqgs1Resgq#

5dab
pqdcd

rs ppr
egpqs

f hRe f gh,

so that

Rabcd5
1

12dab
pqdcd

rs ppr
egpqs

f hRe f gh

and there are no intertwined, or indeed any parentheses or brackets.
As for recognition of symmetries from this, it is evident that because of the gKd’s

expression is skew in~a,b! and in ~c,d!. With (a,b)⇔(c,d) and slight index manipulation it is
also visible that the expression is symmetric. The cyclic identity is not obvious from either th
term expression or its compacted gd equivalent. But it is here that the PAPS reference table
into play.

Observing the gd factordab
pqdcd

rs ppr
egpgs

f h above and formulam3 from the table in PAPS Ap-
pendix C 7.3.2, i.e.,d ...

bcdd .b
pqdcd

rs ppr
.. pqs

.. 50 ~dots allow any free indices!, we can immediately write
down the symmetry/condition asd i jk

bcdRabcd50. But let us show it in reverse~in fact deriving the
m3 identity!.

Multiply the above relation forRabcd by d i jk
bcd to get

d i jk
bcdRabcd5

1
12d i jk

bcddab
pqdcd

rs ppr
egpqs

f hRe f gh

5 1
6d i jk

brsdab
pqppr

egpqs
f hRe f gh ~or see PAPS-formulak8 or, better, Eq.~4!!

5 1
6@d i jk

qrsda
p2d i jk

prsda
q#ppr

egpqs
f hRe f gh

50 ~ two repeated indices for a gKd and a gpd!.

Expanding the lhs~six terms!, but using the antisymmetry in the last two indices, produces
cyclic identity. This reverse derivation relied on ‘‘already knowing’’ the cyclic identity of t
Riemann tensor~by applyingd i jk

bcd).
If instead we have the tensor
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Uabcd5Tabcd2Tcbad1Tdbac2Tdbca1Tcbda2Tabdc

1Tbacd2Tbcad1Tbdac2Tbdca1Tbcda2Tbadc

5dacd
pgh~Tpbgh1Tbpgh!

5dacd
pghppb

e f Te f gh

one may, with some scrutiny, discern the antisymmetry in indices~a,c! and in ~a,d! ~and hence
total antisymmetry in all three of these indices! from the expanded expression. The antisymme
in ~a,c,d! is immediately obvious from the compacted gd expression. However, there is an
‘‘hidden’’ symmetry, unobvious from either expression forUabcd. It is

Uabcd2Ubcda1Ucdab2Udabc50.

But how can this be discovered? Here, again, inspection of the identityo9 in the same table in
PAPS, i.e., d ....

e f ghde f g
p.. php

.. 50, provides the answer. Adapted to our indices by (e, f ,g,h)
→(a,c,d,b) we can write~sign changes do not matter here!

d i jkl
abcddacd

pghppb
e f Te f gh50.

Thus the ‘‘hidden’’ identity isd i jkl
abcdUabcd50. One may wish to leave it like this; howeve

expansion of it, and using antisymmetry in first, third, and fourth indices produces the 4
alternating cyclic identity above~with subscriptsi,j,k,l!. Further, we also remark that while th
antisymmetries can be encompassed within the bracketed notation,Uabcd5U @aubucd# , what can be
suggested to accommodate the hidden symmetry? Clearly the gd notation to express an
cover’’ symmetries of tensors seems superior.

The simpler Lanczos tensor7,8 satisfies algebraic~nondifferential, or not involving covarian
differentiation! relationsLi jk52L jik , Li jk1L jki1Lki j50, andLi j

j50 ~optional algebraic gauge
condition, often accepted!. In any case, it is the symmetries of the~free! 3-index object that
interests us. These first two symmetries qualify it as a YT tensor, expressible as4 Li jk5 1

3L $ ik, j % .
This again is a one-line expression for the tensor, encompassing the first two symmetries
expanded, we have

Li jk5 1
3L $ ik, j %5

1
3@Li jk2L jik1Lk ji2Lki j #

5 1
3d i j

pm@Lpmk1Lkmp#

5 1
3d i j

pmpkp
ln Llmn .

It is then easy enough to verify the skewsymmetry and the cyclic symmetry~multiply by dabc
i jk )

from this equation—and in reverse; that with these symmetries, employed on the rhs, we
the lhs. The cyclic relation for the Lanczos tensor gives rise to the identityd ...

i jkd i j
p.pkp

.. 50, recorded
as identityo2 in the PAPS reference document.

Other than determining symmetries of tensors, the use of gd’s may possibly help in ‘‘se
the number of independent components of a tensor with various symmetries.

Some computer algebra packages allow for symmetrization and antisymmetrization of in
It is suggested that perhapsspecificgpd and gKd objects~over and above a single Kronecker delt!
be constructed in these packages allowing easy expansions of products of them over s
indices. This would be most useful for checking identities and formulas of various sorts.

IV. SPINOR AND TENSOR EQUIVALENTS OF gKd’s AND gpd’s AND EXAMPLES

A. Spinor equivalents of tensors

It is quite easy to construct spinor equivalents of the gKd’s and gpd’s from the basic s

equivalent of the Kroneckerd, i.e.,db
a⇔dB

AdB8
A8 , and the use of determinants and permanents. T
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leads to a tabulation of spinor equivalents of individual gKd’s and gpd’s in Appendix A.
derivation of such formulas can be done by sight and by simple manipulations.

Apart from this table it is also our purpose to demonstrate in a couple of examples that
the gd’s can facilitate extremely quick derivation of spinor equivalents.

In general, if one expresses the symmetries of a tensor using gd’s then~using the table of
Appendix A! we can write down their spinor equivalents, replacing all tensor indices by c
sponding spinor equivalent ones. Once this is done the spinor equivalent is technically
However, it may involve several relations and consequent algebraic manipulations in order
decompositions, such as the Weyl and Ricci parts for the Riemann tensor equivalent.

The two illustrations of obtaining the spinor equivalents of 2-index permanent symmetri
skewsymmetric tensors follow.

First, we determine the spinor equivalent of the skewsymmetric tensorFab52Fba5F @ab# .
This can be written asFab5 1

2Fcddab
cd in terms of a gKd. Then taking the spinor equivalent~seeD2

in Appendix A! gives

FABA8B85
1
4FCDC8D8@dAB

CDpA8B8
C8D81pAB

CDdA8B8
C8D8#

52FBAB8A85F @AB#~A8B8!1F ~AB!@A8B8#5eABcA8B81eA8B8fAB ,

wherecA8B85
1
2FX

X
(A8B8) and fAB5 1

2F (AB)X8
X8. If Fab is real, Fab5F̄ab , then cA8B85f̄A8B8

5fAB, so that the spinor equivalent of the real skew-tensor~Maxwell tensor! Fab is

Fab5F @ab#⇔eABf̄A8B81eA8B8fAB .

Second, we determine the spinor equivalent of a permanent symmetric~or just symmetric by
common usage if the context is clear! tensor Tab5Tba5T(ab) . This can be writtenTab

5 1
2Tcdpab

cd in terms of a gpd. Then taking the spinor equivalent~seeP2 in Appendix A! gives

TABA8B85
1
4TCDC8D8@dAB

CDdA8B8
C8D81pAB

CDpA8B8
C8D8#

5TBAB8A8

5T@AB#@A8B8#1T~AB!~A8B8!

5 1
4eABeA8B8T1T~AB!~A8B8! ,

whereT5TX
X

X8
X85TXX8

XX8, which is also thetrace of the tensorTa
a. Thus

Tab5T~ab!⇔ 1
4eABeA8B8T1T~AB!~A8B8! .

If one writesR in place ofT, then the spinor equivalent of the trace-free Ricci tensor is

Rab2 1
4gabR⇔R~AB!~A8B8! .

B. Tensor equivalents of spinors

The tensor equivalents of gd spinors in combination are elegantly derived in PAPS
results, along with related formulas are accumulated in the table in Appendix B.

We feel it worth mentioning at least one formula, one that enables us to easily rememb
usual rather complicated formula for the spinor equivalent of the alternating tensor—by
gKd/gpd spinors. Abbreviate by putting

D5dCD
AB P5pCD

AB

D85dC8D8
A8B8 P85pC8D8

A8B8 .
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The formula, with the understanding that the first relation is a symbolic equivalence, is~see
full derivation in PAPS!

i

2
dD8P8

DP [
i

2
~DP82PD8!5

i

2
~dCD

ABpC8D8
A8B8 2pCD

ABdC8D8
A8B8 !⇔eab

cd .

To give an example from the table, consider the tensor equivalent of the spinor~last but one
table entry in Appendix B!

dC
AdD

BdD8
A8dC8

B8⇔ 1
2~pcd

ab2gabgcd2 i eab
cd!.

Multiply the lhs by HABA8B8 and the rhs by its tensor equivalentHab and one immediately
obtains~see Ref. 6, p. 153!

HCDD8C8⇔ 1
2~pcd

ab2gabgcd2 i eab
cd!Hab5 1

2~Hcd1Hdc2gcdHa
a2 i eabcdH

ab!.

Now take the conjugate of the spinor/tensor equivalent relation, to getdD
AdC

BdC8
A8dD8

B8⇔ 1
2(pcd

ab

2gabgcd1 i e cd
ab , multiply as before byHABA8B8 and its equivalentHab, and arrive at thediffer-

ent tensor equivalent~with unprimed indices interchanged!

HDCC8D8⇔ 1
2~Hcd1Hdc2gcdHa

a1 i eabcdH
ab!.

APPENDIX A: SPINOR EQUIVALENTS FOR THE gKd AND gpd

In the reference formulas below it should be mentioned that there is a good deal of inte
between the gKd and gpd in such specifications, there being a variety of ways to express
sions of some gKd’s, gpd’s~and also their spinor equivalents!.

1. Spinor equivalents of the gKd’s

D15db
a⇔dB

AdB8
A8 ,

D25dcd
ab5Udc

a

dc
b

dd
a

dd
bU⇔UdC

AdC8
A8

dC
BdC8

B8

dD
AdD8

A8

dD
BdD8

B8U5 1
2 @dCD

ABpC8D8
A8B8 1pCD

ABdC8D8
A8B8 #,

D35dde f
abc5Udd

a

dd
b

dd
c

de
a

de
b

de
c

d f
a

d f
b

d f
c
U

5dd
ade f

bc2de
add f

bc1d f
adde

bc⇔ 1
2 @dD

AdD8
A8 ~dEF

BCpE8F8
B8C81pEF

BCdE8F8
B8C8!

2dE
AdE8

A8~dDF
BCpD8F8

B8C81pDF
BCdD8F8

B8C8 !1dF
AdF8

A8~dDE
BCpD8E8

B8C81pDE
BCdD8E8

B8C8 !#.
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We can expand the gKd with 4~upper/lower! indices by a Laplace expansion of its first two row
and complementary minors. The result is

D45de f gh
abcd5Ude

a

de
b

de
c

de
d

d f
a

d f
b

d f
c

d f
d

dg
a

dg
b

dg
c

dg
d

dh
a

dh
b

dh
c

dh
d

U
5de f

abdgh
cd2deg

abd f h
cd1deh

abd f g
cd1d f g

abdeh
cd2d f h

abdeg
cd1gdgh

abde f
cd .

The rhs can be written as the sum/difference ofpermanentsof gKd’s, if desired

I de f
ab

de f
cd

dgh
ab

dgh
cdI2 I deg

ab

deg
cd

d f h
ab

d f h
cdI1 I deh

ab

deh
cd

d f g
ab

d f g
cdI .

The spinor equivalent ofde f gh
abcd is

D4⇔ 1
4 @~dEF

ABpE8F8
A8B81pEF

ABdE8F8
A8B8!~dGH

CDpG8H8
C8D81pGH

CDdG8H8
C8D8 !2~dEG

ABpE8G8
A8B81pEG

ABdE8G8
A8B8 !

3~dFH
CDpF8H8

C8D81pFH
CDdF8H8

C8D8!1~dEH
ABpE8H8

A8B81pEH
ABdE8H8

A8B8 !~dFG
CDpF8G8

C8D81pFG
CDdF8G8

C8D8!

1~dFG
ABpF8G8

A8B81pFG
ABdF8G8

A8B8 !~dEH
CDpE8H8

C8D81pEH
CDdE8H8

C8D8!2~dFH
ABpF8H8

A8B81pFH
ABdF8H8

A8B8 !

3~dEG
CDpE8G8

C8D81pEG
CDdE8G8

C8D8!1~dGH
AB pG8H8

A8B8 1pGH
AB dG8H8

A8B8 !~dEF
CDpE8F8

C8D81pEF
CDdE8F8

C8D8!#.

2. Spinor equivalents of the gpd’s

P15pb
a5db

a⇔dB
AdB8

A8 ,

P25pcd
ab5 I dc

a

dc
b

dd
a

dd
bI⇔I dC

AdC8
A8

dC
BdC8

B8

dD
AdD8

A8

dD
BdD8

B8 I5 1
2 @dCD

ABdC8D8
A8B8 1pCD

ABpC8D8
A8B8 #,

P35pde f
abc5I dd

a

dd
b

dd
c

de
a

de
b

de
c

d f
a

d f
b

d f
c
I

5dd
ape f

bc1de
apd f

bc1d f
apde

bc⇔ 1
2 @dD

AdD8
A8 ~dEF

BCdE8F8
B8C81pEF

BCpE8F8
B8C8!

1dE
AdE8

A8~dDF
BCdD8F8

B8C81pDF
BCpD8F8

B8C8 !1dF
AdF8

A8~dDE
BCdD8E8

B8C81pDE
BCpD8E8

B8C8 !#.

Since permanents only involve positive signs, the following Laplace expansion is also clea

P45pe f gh
abcd5I de

a

de
b

de
c

de
d

d f
a

d f
b

d f
c

d f
d

dg
a

dg
b

dg
c

dg
d

dh
a

dh
b

dh
c

dh
d

I
5pe f

abpgh
cd1peg

abp f h
cd1peh

abp f g
cd1p f g

abpeh
cd1p f h

abpeg
cd1pgh

abpe f
cd .

The rhs can be written as the sum of permanents of permanents, if desired
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Ipe f
ab

pe f
cd

pgh
ab

pgh
cdI1 Ipeg

ab

peg
cd

p f h
ab

p f h
cdI1 Ipeh

ab

peh
cd

p f g
ab

p f g
cdI .

The spinor equivalent ofpe f gh
abcd is

P4⇔ 1
4 @~dEF

ABdE8F8
A8B81pEF

ABpE8F8
A8B8!~dGH

CDdG8H8
C8D81pGH

CDpG8H8
C8D8 !1~dEG

ABdE8G8
A8B81pEG

ABpE8G8
A8B8 !

3~dFH
CDdF8H8

C8D81pFH
CDpF8H8

C8D8!1~dEH
ABdE8H8

A8B81pEH
ABpE8H8

A8B8 !~dFG
CDdF8G8

C8D81pFG
CDpF8G8

C8D8!

1~dFG
ABdF8G8

A8B81pFG
ABpF8G8

A8B8 !~dEH
CDdE8H8

C8D81pEH
CDpE8H8

C8D8!1~dFH
ABdF8H8

A8B81pFH
ABpF8H8

A8B8 !

3~dEG
CDdE8G8

C8D81pEG
CDpE8G8

C8D8!1~dGH
AB dG8H8

A8B8 1pGH
AB pG8H8

A8B8 !~dEF
CDdE8F8

C8D81pEF
CDpE8F8

C8D8!#.

APPENDIX B: SPINOR ⇔TENSOR EQUIVALENTS

The mixed mode spinor appears with its covariant form below it.
Spinor Tensor

dB
A

eAB

dB
AdB8

A8 db
a

eABeA8B8 gab

dCD
AB5D, dC8D8

A8B8

eABeCD5eACeBD2eADeBC

pCD
AB5P, pC8D8

A8B8 5P8
eACeBD1eADeBC

1
2(dCD

ABpC8D8
A8B8 1pCD

ABdC8D8
A8B8 )5

1
2(DP81PD8) dcd

ab

eACeBDeA8C8eB8D82eADeBCeA8D8eB8C8 gacgbd2gadgbc

1
2(dCD

ABdC8D8
A8B8 1pCD

ABpC8D8
A8B8 )5

1
2(DD81PP8) pcd

ab

eACeBDeA8C8eB8D81eADeBCeA8D8eB8C8 gacgbd1gadgbc

i~dC
AdD

BdD8
A8dC8

B82dD
AdC

BdC8
A8dD8

B8 !5
i

2
dD8P8

DP ecd
ab5eab

cd

i (eACeBDeA8D8eB8C82eADeBCeA8C8eB8D8) eabcd

dCD
ABdC8D8

A8B8 5DD8 gabgcd

eABeCDeA8B8eC8D8 gabgcd

dCD
ABpC8D8

A8B8 5DP8 dcd
ab2 i eab

cd

eACeBDeA8C8eB8D82eADeBCeA8D8eB8C8 gacgbd2gadgbc2 i eabcd
1eACeBDeA8D8eB8C82eADeBCeA8C8eB8D8
5eABeCD(eA8C8eB8D81eA8D8eB8C8)

pCD
ABdC8D8

A8B8 5PD8 dcd
ab1 i eab

cd

eACeBDeA8C8eB8D82eADeBCeA8D8eB8C8 gacgbd2gadgbc1 i eabcd
2eACeBDeA8D8eB8C81eADeBCeA8C8eB8D8
5(eACeBD1eADeBC)eA8B8eC8D8

pCD
ABpC8D8

A8B8 5PP8 2pcd
ab2gabgcd

(eACeBD1eADeBC)3(eA8C8eB8D81eA8D8eB8C8) 2gacgbd12gadgbc2gabgcd

dC
AdD

BdD8
A8dC8

B8 1
2(pcd

ab2gabgcd2 i eab
cd)

eACeBDeA8D8eB8C8
1
2(gacgbd1gadgbc2gabgcd2 i eabcd)
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1T. Muir, The Theory of Determinants in the Historical Order of Development~Macmillan and Co., Limited, London,
1906!, Vol. 1, p. 94.

2C. M. Cramlet,Invariant tensors and their application to the study of determinants and allied tensor functions, Ph.D.
thesis, University of Washington~1926!.

3C. M. Cramlet, ‘‘Applications of the determinant and permanent tensors to determinants of general class and allie
functions,’’ Am. J. Math.49, 87–96~1927!.

4R. L. Agacy, Generalized Kronecker, permanent delta and Young tableaux applications to tensors and sp
Lanczos–Zund spinor classification and general spinor factorizations, Ph.D. thesis, London University~1997!. The
expressionLi jk5

1
3L $ ik, j % is correctly stated on p. 28 of this reference, but incorrectly stated on p. 26 withL $ i j ,k% on the

rhs.
5See AIP document No. PAPS JMAPAQ-Vol. 40-033903 for 33 pages of the document entitled ‘‘Generalized Kro
and Permanent deltas, their spinor and tensor equivalents—Reference Formulae.’’ Order by PAPS number an
reference from the American Institute of Physics, Physics Auxiliary Publications Service, 500 Sunnyside Bou
Woodbury, NY 11797-2999. Fax: 516-576-2223, email: paps@aip.org. The price is $1.50 for each microfiche o
for photocopies of up to 30 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make
payable to the American Institute of Physics.

6In this connection we remark that our definition for the algebraic symmetries of the Riemann tensorRabcd

5
1

12R$ac,bd% , agrees with the result in R. Penrose and W. Rindler,Spinors and Space-time~Cambridge University Press
England, 1984!, Vol. 1, p. 144,

3
4Rabcd5R

(bI dI )
(āc̄) . This is because the symmetrization on two letters introduces a facto

1/2, which together with 2 rows gives a factor of 1/4. Antisymmetrization of columns produces another factor o
Hence the rhs of the latter is 1/16 of our result, i.e.,

3
4Rabcd5

1
16R$ac,bd% , agreeing precisely with our definition.

7S. B. Edgar and A. Ho¨glund, ‘‘The Lanczos potential for the Weyl curvature tensor: existence, wave equation
algorithms,’’ Proc. R. Soc. London, Ser. A453, 835–851~1997!.

8P. Dolan and C. Kim, ‘‘The wave equation for the Lanczos potential,’’ Proc. R. Soc. London, Ser. A447, 557–575
~1994!.
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The algebra of two symmetric matrices: Proving
completeness and deriving syzygies for a set
of invariants of the Riemann tensor

S. Bonanosa)

Institute of Nuclear Physics, N.C.S.R. DEMOKRITOS, Aghia Paraskevi, 15310 Greece

~Received 8 October 1998; accepted for publication 9 December 1998!

A large number of Riemann tensor invariants can be written as traces of products of
two 333 matrices, representing the Weyl tensor and the Weyl-like square of the
Ricci tensor. It is pointed out that finding a complete set,I, for all of these invari-
ants is a simple consequence of the more general problem of finding a complete set
of symmetricmatrices,M, in terms of which all symmetric matrix polynomials in
these two matrices can be expressed. Such a set is constructed and a formal proof
of its completeness is given. Several matrix identities and a scalar syzygy, obtained
recently by Sneddon, are rederived and their interrelationships clarified. They are
shown to be, ultimately, consequences of the Cayley–Hamilton theorem. A ‘‘mini-
mal set’’ of invariants, that must be contained in the complete set of invariants of
the general problem, is identified and it is concluded that no set proposed so far is
complete. ©1999 American Institute of Physics.@S0022-2488~99!02503-7#

I. INTRODUCTION

The study of the invariants of the Riemann tensor was originally motivated by their obv
usefulness in the invariant characterization of space–time properties1–4 and, thereby, in the invari-
ant classification of gravitational fields.5–8 Gradually, however, interest has focused on m
mathematical questions regarding the ‘‘complete set of polynomial curvature invariants.’’Poly-
nomial curvature invariantsare those that are expressible as contractions of arbitrary produc
the curvature tensorRabcd, the metric tensorgab and the totally antisymmetric tensorhabcd, and
are, therefore, polynomials in the curvature components. Acomplete setI5$I 1 ,I 2 ,...,I n% of
invariants is one having the property that any polynomial invariant can be expressed as a
nomial in I 1 ,...,I n and no invariant in the set can be so expressed in terms of the remainingI i .9,10

It is known that such a set will be redundant, i.e., it will contain more than the maximum nu
~514! of gauge-independent components of the Riemann tensor.10 There will then existn214
polynomial identities~syzygies! relating these invariants.

The mathematical questions alluded to above are:

~i! How does one decide which invariants to include in a complete set?
~ii ! How does one prove that a certain set of invariants is complete?
~iii ! How does one derive the syzygies that relate the invariants of a complete set?

The answers to these questions are anything but obvious, as is indicated by the num
different sets of invariants that have been proposed,5,6,11–15some of which have later been show
to be deficient in some sense,14,16 and by the lack of any attempt to prove completeness~in the
sense used here! for any of them.

In this paper we shall answer these questions for a restricted set of Riemann tensor inv
~to be precisely defined in Sec. II!. The essential idea is to consider these invariants as trace
products of a pair of symmetric matrices and obtain the desired result as a corollary of the so
of the more general problem of finding a complete set ofmatrices,M, in terms of which all such

a!Electronic mail: sbonano@mail.ariadne-t.gr
20640022-2488/99/40(4)/2064/10/$15.00 © 1999 American Institute of Physics
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symmetric matrix products can be expressed.~Sneddon17 has also considered the invariants bu
out of these two matrices.! This more general problem is actually easier to handle because o
Cayley–Hamilton theorem which implies polynomial identities between matrices. In fac
matrix identities obtained here are consequences of this theorem. In a recent paper,18 Sneddon
gives a reference to work by Spencer and Rivlin19,20 who apparently solved this problem~in even
greater generality! 40 years ago! The proof of completeness given here, however, is differen
conceptually simpler. It also leads to a more efficient computer algebra algorithm for simp
tion of products of matrix polynomials.

In Sec. II we define the set of scalars we will be considering and formulate the proble
terms of traces of products of two symmetric matrices. In Sec. III we systematically construc
of matrices,M, ~and a corresponding set of scalars,I! and prove that it is complete. In Sec. IV w
derive a matrix identity satisfied by the matrices of the complete set which leads to a
identity ~syzygy! between the invariants of the complete setI. This syzygy was first obtained b
Sneddon17 in a rather tortuous manner. We also show that the nine symmetric matrix iden
obtained recently by Sneddon18 are direct consequences of the first one. In Sec. V we show th
wider class of scalars than originally considered can actually be expressed in terms of the
plete set obtained. Finally, in Sec. VI we extend our set to a ‘‘minimal set’’ that must be cont
in the complete set of invariants of the Riemann tensor, and conclude that none of th
proposed so far can be complete. In particular neither the set of Carminati and McLenagha14 nor
the set of Zakhary and McIntosh15 are complete, even though the latter has been shown to y
the required number of invariants for every combination of Petrov and Segre types.

II. MOTIVATION AND FORMULATION OF THE PROBLEM

In the Newman–Penrose formalism the Riemann tensor is described by the~complex! Weyl
spinor CABCD , the traceless Ricci spinorFABC8D8 and the scalar curvatureR. The polynomial
curvature invariants defined in the introduction can, therefore, be equivalently defined as tho
are expressible as complete contractions~with «AB, «A8B8) of arbitrary products of the spinor
CABCD andFABC8D8 together with the scalarR.

The 4-index spinorsCAB
CD andFAB

C8D8 can be represented as 333 matrices~C symmetric
traceless andF Hermitian! with respect to an orthonormal basis21,22 for 2-index spinors as fol-
lows:

C5
1

2 S 2C22C02C4 2 i ~C02C4! 2~C12C3!

2 i ~C02C4! 2C21C01C4 2i ~C11C3!

2~C12C3! 2i ~C11C3! 24C2

D , ~2.1!

F5
1

2 S F001F222F022F20 2 i ~F002F221F022F20! 2~F212F01!

i ~F002F222F021F20! F001F221F021F20 22i ~F211F01!

2~F122F10! 2i ~F121F10! 4F11

D .

~2.2!

Then contraction of two 4-index spinors over a pair of indices~which gives again a 4-index
spinor!! corresponds to multiplication of the corresponding matrices, i.e., the matrix productsCC

andCF have componentsCAB
MNCMN

CD andCAB
CDFCD

C8D8 , respectively, arranged as in~2.1!
~the traceless part ofCC! and~2.2!. @The form~2.2! for CF refers to the arrangement of its spin
components only. Reality relations between these components, like those that make theF matrix

Hermitian, are not implied. The Hermitian conjugate ofCF is the matrixFC̄, and one must take

the combinationsCF1FC̄ and i (CF2FC̄) to obtain Hermitian matrices.#
To avoid the complication of having to distinguish primed from unprimed indices, we

consider in this paper only those scalars that can be formed by contraction of arbitrary prod
the following two spinors:CABCD andxABCD5F (AB

C8D8FCD)C8D8 , the Weyl-like square of the
Ricci spinor. In addition we will require that contractions between these spinors will alw
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involve pairs of indices.~In Sec. V we show that this restriction can be weakened considera!
Under these conditions, the set of scalars we will be considering can be defined as the set o
of arbitrary products of the traceless 333 matricesC andx corresponding toCAB

CD andxAB
CD .

As stated in the Introduction, the question of finding a complete set for these traces fo
immediately if we have solved the problem of finding a complete set of symmetric matric
terms of which all symmetric products of two given symmetric matrices can be expressed
required complete set will consist of the traces of the matrices in the complete set of ma
together with any other scalars that were used in expressing higher order matrices in terms o
in the complete set. Thus the mathematical problem to be solved becomes:

Given two symmetric, traceless 333 matrices A and B, find a set ofM of symmetric matrices
such that every symmetric product of A’s and B’s can be written as a linear combination o
matrices in the set, with coefficients that are scalar combinations of the components of A a.

Although the problem of finding a complete set of matrices seems, at first, more difficult
the corresponding one for scalars, it is actually easier because of the Cayley–Hamilton th
which gives polynomial identities between matrices. For the traceless matricesA and B the
Cayley–Hamilton theorem reads

A35 i aA12 j a1, B35 i bB12 j b1, ~2.3!

wherei a51/2 tr(A2), 2j a51/3 tr(A3)5detA and similarly fori b and j b .
Now, if A, B, C are three 333 matrices, then evaluating the expression (A1B1C)32

(2A1B1C)32(A2B1C)32(A1B2C)3 ~i! by expanding each term and~ii ! by applying the
Cayley–Hamilton theorem to each term we obtain a very useful identity. WhenA, B, C are
traceless, this identity takes the simple form~square brackets denote the trace of the enclo
matrix!

ABC1ACB1BCA1BAC1CAB1CBA5A@BC#1B@AC#1C@AB#1~@ABC#1@ACB# !1.
~2.4!

This identity can also be obtained17 by antisymmetrizing the outer product of the 3 matrices a
the identity over 4 indices. Our derivation shows that it is a simple consequence of the Ca
Hamilton theorem.

III. SOLUTION OF THE PROBLEM

To build the complete set of matricesM, we will first systematically construct all symmetri
matrices of low order~5number of factors! in A andB and collect those that are independent. T
symmetric matrices for each order<4 ~after using Eq.~2.3! to eliminate powers ofA andB greater
than 2! are:

order 1:A, B,
order 2:A2, AB1BA, B2,
order 3:A2B1BA2, ABA, BAB, B2A1AB2,
order 4:A2BA1ABA2, AB2A, A2B21B2A2, ABAB1BABA, BA2B, B2AB1BAB2.

The matrices of order 1 and 2 are clearly independent. Now, puttingC5A andC5B in Eq. ~2.4!
we obtain the identities:

A2B1BA21ABA5 i aB1sA1p1, ~3.1!

B2A1AB21BAB5 i bA1sB1q1, ~3.2!

wheres5@AB#, p5@A2B#, andq5@AB2#. Thus, of the third order matrices onlyA2B1BA2 and
B2A1AB2 need to be included in the complete set, Eqs.~3.1! and ~3.2! giving expressions for
ABA andBAB in terms of matrices inM. Next, multiplying each of~3.1!, ~3.2! by A on the left
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and on the right and adding, and replacingB in ~3.1! by the traceless matrixB22(2/3)i b1, we find
that all symmetric 4th order matrices can be expressed in terms ofA2B21B2A2 and lower order
matrices. Thus, the set23M ~so far! includes the matrices

M5$1, A, B, A2, AB1BA, B2, A2B1BA2, B2A1AB2, A2B21B2A2%, ~3.3!

while the set of scalarsI contains the traces of these matrices and ofA3, B3,

I5$ i a , i b , j a , j b , s, p, q, t%, ~3.4!

where i a51/2@A2#, i b51/2@B2#, j a51/6@A3#, j b51/6@B3#, s5@AB#, p5@A2B#, q5@AB2#, t
5@A2B2#.

Proceeding in a similar manner we can show that all 10 symmetric matrices of fifth ord
A, B can be written as linear combinations of the matrices inM with coefficients that are
polynomials inI. In fact, the fifth order matrices are expressible in terms of third or lower o
matrices, as there are no first order scalars inI. It thus appears that the setM may be the required
complete set. To prove this we will also need the expressions for the 15 sixth order sym
matrices. They can be obtained by appropriate multiplication byA and/orB of the lower order
equations, or substitutionsA→A22(2/3)i a1, B→B22(2/3)i b1 in ~3.1!, ~3.2!. The resulting ex-
pressions for all 4th, 5th and 6th order symmetric matrices in terms of matrices inM with
coefficients inI are given in the Appendix.

We are now in a position to formally prove completeness of the setM ~and, hence, ofI!. We
will first make the following definition.

Definition: A symmetric matrix will be calledreducible if it can be expressed as a linea
combination of matrices inM with coefficients that are polynomials inI.

Now let P(n) stand for the propositionevery symmetric polynomial matrix of order n in A an
B is reducible. We shall prove the following theorem.

Theorem: P(n) holds provided thatP(m) holds for allm<n22.
Having already verified thatP(m) holds for allm<6, this theorem guarantees thatP(n) holds

for all n. To prove the theorem we shall need the following lemma.
Lemma: For any MPM, the symmetric matrices~i! AMA, ~ii ! BMB, ~iii ! AaMBb

1BbMAa ~a,b51 or 2! are reducible.
Proof of the lemma:As the maximum order ofMPM is 4, cases~i!, ~ii !, and ~iii ! for a

5b51 are trivial because the resulting symmetric matrices are of order<6, and all such matrices
have been shown to be reducible. When eithera or b equals 2, we need to consider only tho
MPM for which the resulting matrix in~iii ! has order greater than 6. In every such case we
isolate factors that are symmetric matrices of order 5 or 6 and are therefore reducible to m
of order 3 or 4, respectively. For example,

A2~A2B1BA2!Bb1Bb~A2B1BA2!A25A4B11b1A2BA2Bb1BbA2BA21B11bA4,
~3.5!

Substituting for the 5th order symmetric matrixA2BA2 in the middle two terms~and forA4 in the
other two! we find that the sum reduces to a symmetric matrix of order 31b,6. Similarly

A2~A2B21B2A2!Bb1Bb~A2B21B2A2!A25A4B21b1A2B2A2Bb1BbA2B2A21B21bA4

~3.6!

and reducibility is effected by substituting forA2B2A2 in the middle two terms~and forA4 in the
other two!, giving a 41b<6 symmetric matrix, which is again reducible.

Proof of the theorem:An arbitrary symmetric polynomial matrix of ordern in A andB will
have highest order terms of the form

K5Aa1Bb1Aa2Bb2
¯AamBbm1BbmAam

¯Bb2Aa2Bb1Aa1, ~3.7!

where the sum of all exponentsa i and b i is n. We implicitly define the matricesV and W by
writing K in the form
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K5Aa1VBbm1BbmVTAa15Aa1Bb1WAamBbm1BbmAamWTBb1Aa1. ~3.8!

The proof is different depending on whethera1bm50 or not.
Case (i):If a1bm50, i.e., the first and last matrix in each term ofK is the same~A or B!, then

we can writeK ~if, say, bm50) as

K5AUA1AUTA5A~U1UT!A,

whereU stands for the remaining factors in the product and is, therefore, of ordern22. By using
the lemma,K is reducible provided thatU1UT is reducible, proving the theorem for this case

Case (ii): If neither a1 nor bm vanishes, we writeK using ~3.8! as

K5Aa1~V1VT!Bbm1Bbm~V1VT!Aa12Aa1VTBbm2BbmVAa1. ~3.7a!

Now V1VT is a symmetric matrix of ordern2a12bm<n22 and, by the lemma, the first tw
terms are reducible ifV1VT is. The last two terms can be written2Aa11amWTBb11bm

2Bb11bmWAa11am which is of the same form asK except that the first and last exponents a
larger. If eithera11am or b11bm is greater than 2, the Cayley–Hamilton theorem reduces th
two terms to a symmetric matrix of ordern22 in A andB, proving the theorem. If not, we ca
apply again the steps of case~ii ! to these two terms, resulting in exponents which are n
necessarily greater than 2~since alla i andb i are>1! and thus the Cayley–Hamilton theorem w
be applicable to lower the order of these terms, completing the proof of the theorem.

Corollary: The set of scalarsI is a complete set for the traces of arbitrary matrix products
A andB.

The proof follows trivially from the theorem and the fact that an arbitrary matrix can
written as the sum of a symmetric and an antisymmetric matrix—the latter having vanishing

The proof of this theorem suggests a recursive procedure for fully reducing a symm
matrix polynomial of arbitrary order inA, B: ~i! for each term of order.6 apply the steps of the
proof to obtain terms of lower order;~ii ! for each term of order<6 use the expressions in th
Appendix. This procedure has been implemented in a set of MATHEMATICA routines w
have been used in carrying out the calculations in the next section.~They are available by e-mai
from the author.!

IV. A MATRIX IDENTITY AND ITS CONCOMITANTS

Let Q be anantisymmetric333 matrix. Then the antisymmetric part of the Cayley–Hamilt
theorem forQ reads

Q351/2@Q2#Q ~4.1!

~the symmetric part is just detQ50). Multiplying ~4.1! by Q, we conclude that thesymmetric
matrix X5Q2 satisfies the identity

Z[X221/2@X#X5O. ~4.2!

Thus, if Q is any antisymmetric matrix polynomial inA andB, then, by the results of the previou
section,~4.2! will be an identity relating the matrices inM! Taking Q5AB2BA and evaluating
~4.2! we find

Z52~2t22s2t24i ai bt12iaai bs21pqs112j aj bs28i aj bp28i bj aq!1

12~qt1 i bps22i aj bs22i ai bq28i b
2 j a!A12~pt1 i aqs22i bj as22i ai bp28i a

2 j b!B

12~2i bt2 i bs22q216 j bp!A212~2i at2 i as22p216 j aq!B21~st1pq22i ai bs236j aj b!

3~AB1BA!12~ i bp2qs16i aj b!~A2B1BA2!12~ i aq2ps16i bj a!~AB21B2A!

12~s223t12i ai b!~A2B21B2A2!, ~4.3!
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while taking Q5A2B2BA2 we obtain a lengthy expression,Z1 , which can be shown to equa
~after proper reduction of all matrix products! to

Z15¯522 j a~AZ1ZA!. ~4.4!

Similarly, Q5A2B22B2A2 gives

Z25¯54 j aj b~AZB1BZA1ABZ1ZBA!. ~4.5!

It is clear that there is essentially only one independent matrix identityZ50. One can obtain eigh
others by multiplyingZ, as given by Eq.~4.3!, symmetrically by the elements ofM and reducing
the resulting expressions. These are precisely the nine symmetric matrix identities relati
elements ofM whose existence was inferred by Sneddon.18 In fact it can be checked that th
matricesS1 , S2 , andS4 given in his Appendix A are equal, in our notation, to 6S15Z, 24S2

5BZ1ZB and 6S45AZB1BZA1ABZ1ZBA.
Now, multiplying Eq.~4.3! by each matrix inM in turn and taking traces, we find that all bu

one are identically zero~as polynomials inI!. The only nonvanishing trace, written as a polyn
mial in t, is

@Z~A2B21B2A2!#524t31~s2120i ai b!t222~pqs236s jaj b12i ai bs222i aq222i bp2

112i aj bp112i bj aq116i a
2i b

2!t1p2q214i a
2i b

2s2216j aj bs318i aj bps2

18i bj aqs228i a
2 j bqs28i b

2 j aps296i ai bj aj bs24i a
2i bq224i b

2i ap228 j aq3

28 j bp3172j aj bpq132i a
2i bj bp132i b

2i aj aq2432j a
2 j b

2116i a
3 j b

2116i b
3 j a

2

116i a
3i b

3. ~4.6!

The vanishing of this expression gives the single syzygy connecting the invariants of the com
setI. This syzygy was first obtained by Sneddon17 ~his Eq. ~19!! in a very laborious and rathe
inelegant way.~Note that in Sneddon’s expression the term14i a

2i b
2s2 is missing and the terms

28i a
2 j bqs28i b

2 j aps appear with a plus sign.! Our derivation shows that it is, ultimately, a con
sequence of the Cayley–Hamilton theorem.

V. DIFFERENT SPINOR CONTRACTIONS

The traceless parts of the eight symmetric matrices inM define eight symmetric 4-index
spinors by the correspondence~2.1!. The discussion in Sec. III proved completeness of the sI
for contractions overpairs of indices of arbitrary products of these spinors. It is natural to
what happens when different spinor contractions are performed.

Consider first triple index contractions. IfUABCD andVABCD are any two of the eight basi
spinors, then it is easy to show that the 2-index spinorQAB5U (A

CDEVB)CDE corresponds22 to the
antisymmetric matrixQ5VU2UV. Thus the scalaru5U (A

CDEVB)CDEX(A
PQRYB)PQR is propor-

tional to the trace of the symmetric matrix (UV2VU)(XY2YX)1(XY2YX)(UV2VU),
which, when expanded, is of the form considered in III~symmetric products of elements ofM!.
It follows that scalars likeu can be expressed as polynomials inI.

Single index contractions lead to a greater variety of spinors and scalars. Consider ne
4-index spinor~symmetrized overABCD!

KABCD5UA
KLMVBK

PQXCLP
RYDMQR , ~5.1!

where a single index is contracted between every pair of spinorsU, V, X, Y. Is the traceless
333 matrix corresponding toKABCD reducible? The answer can be found by using the fun
mental« identity24

«AB«CD5«AC«BD2«BC«AD . ~5.2!

We first write all contractions in terms of«’s
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KABCD5UA
KLMVB

K1PQXC
L1P1RYD

M1Q1R1«KK1
«LL1

«MM1
«PP1

«QQ1
«RR1

and use the identity~5.2! to replace«MM1
«PP1

. Regrouping terms we find thatKABCD can be
written as

~UA
KLMVB

K1PQ«KK1
«M P!~XC

L1P1RYD
M1Q1R1«M1P1

«RR1
!«LL1

«QQ1

2~UA
KLMXC

L1P1R«LL1
«M P1

!~VB
K1PQYD

M1Q1R1«PM1
«QQ1

!«KK1
«RR1

5~UA
KLMVBKM

Q!~XC
L1P1RYDR P1

Q1!«LL1
«QQ1

2~UA
KLMXCLM

R!~VB
K1PQYDPQ

R1!«KK1
«RR1

. ~5.3!

The last expression involves contractions ofpairs of indices only and, hence, is reducible.
Consider finally the 6-index spinorP (UV)

ABCDEF5U (ABC
SVDEF)S . Such a spinor can be

formed from any two of the eight 4-index spinors, but cannot be represented in terms of33
matrices~it corresponds to a third-rank tensor!. We can form scalars by contracting any number
different spinorsP (K) among themselves. For example,

s45P~1!ABCDEFP~2!
AB

KLMNP~3!
CDKL

RSP~4!
EFMNRS,

s75P~1!ABCDEFP~2!
A

GHKLMP~3!
BG

PQRSP~4!
CHP

TUVP~5!
DKQT

XYP~6!
ELRUX

ZP~7!
FMSVYZ.

In s4 two indices are contracted between any twoP (K)’s, while in s7 only one. Clearly, there are
many other possibilities. It is very likely that, using the identity~5.2!, all such scalars can b
reduced to successive contractions over pairs of indices of the constituent 4-spinors. Ho
lacking a general theorem to this effect, we will not attempt to examine the reducibility of t
scalars. In any case, it is safe to say that the technical requirement imposed at the beginni
only contractions of products ofCABCD and xABCD over pairs of indices will be considered
~which was needed in order to translate the problem into the language of 333 matrices!, can be
weakened considerably if not dropped altogether.

VI. A MINIMAL SET OF RIEMANN TENSOR INVARIANTS

WhenA is identified withC andB with x the invariants found in the complete setI can be
identified with known Riemann tensor invariants. Thusi a and j a are the two~complex! Weyl
tensor invariantsI and J. The invariantsi b and j b , being of 4th and 6th order inFABC8D8 ,
respectively, can be expressed as polynomials in the 2nd, 3rd and 4th order invaria
FABC8D8 . Specifically, let

r 25FAA8
BB8FBB8

AA8 ,

r 35FAA8
BB8FBB8

CC8FCC8
AA8 , ~6.1!

r 45FAA8
BB8FBB8

CC8FCC8
DD8FDD8

AA8 .

Then it can be shown8 that

i b5~7/12!r 2
22r 4 , ~6.2!

6 j b5~1/3!r 3
21~17/36!r 2

32r 2r 4 . ~6.3!
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The introduction of these lower order invariants (r 2 ,r 3 ,r 4), however, may make some of th
higher order invariants~p,q,t! become dependent on the lower order ones. Counting powersC
andF, we find that only the following relations are possible:

p5c1i ar 2 ,

q5c2sr2 , ~6.4!

t5c3pr21c4s21c5i ar 41c6i ar 2
2,

where the coefficientsci are constants. However, it is easy to check that there are noci that can
make any one of~6.4! an identity in the components ofC andF. Hence the invariantsp, q andt
remain independent even whenr 2 , r 3 , andr 4 are added to the set. Including the scalar curvat
R, we conclude that the set$R,r 2 ,r 3 ,r 4 ,I ,J,s,p,q,t% of 4 real and 6 complex invariants~subject
to the complex syzygy~4.8!! is a minimal set that must be contained in the complete se
invariants of the Riemann tensor. The set of Carminati and McLenaghan does not conta
invariantsq and t, while the set of Zakhary and McIntosh does not containt. ~The additional

invariants in these sets, containing bothC andC̄, cannot be used to writeq and t.! Thus neither
of these sets can be complete according to the definition used here. Moreover, as the num
invariants minus the number of syzygies for the minimal set equals 14, for every addi
invariant that is added to the set an additional syzygy must be found to maintain the num
algebraically independent invariants equal to 14, the number of gauge-independent compon
the Riemann tensor.

VII. SUMMARY AND CONCLUSIONS

The main results of this paper are the proof of completeness of the setsM andI given in Sec.
III and the derivation of the matrix identities, together with the scalar syzygy~4.8!, given in Sec.
IV. They have all been obtained using entirely elementary means: beginning with Eq.~2.4!,
everything is a consequence of the Cayley–Hamilton theorem!

Considering the general problem, these results reinforce a conclusion reached recen
related publication;25 a definitive study of the Riemann tensor invariants can only be done afte
algebra of the matricesC, F ~and their complex conjugates! has been fully worked out.

Note added in proof:Sneddon~private communication! has pointed out that the conjecture
the end of Sec. V~scalars obtained by different spinor index contractions can be converte
contractions overpairs of indices! is correct and can be proved using the rotor~bivector! notation.
Particularly useful in the proof is the equation following Eq.~A5! in Appendix A of Ref. 17.

APPENDIX: ALL 4th, 5th AND 6th ORDER SYMMETRIC MATRICES

4th Order:

A2BA1ABA25sA21pA22 j aB ,

AB2A52~A2B21B2A2!12i bA21 i aB21qA1~ t22i ai b!1,

ABAB1BABA5~A2B21B2A2!1s~AB1BA!22~ i bA21 i aB2!12~2i ai b2t !1.

There are two more equations, that can be obtained from the first two through the interch
A↔B, i a↔ i b , j a↔ j b , p↔q.

5th Order:

A2B2A1AB2A2522 j aB21qA21tA14i bj a1,

A2BAB1BABA252 i a~AB21B2A!1s~A2B1BA2!22 j aB21qA22~ t22i ai b!A,
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ABA2B1BA2BA5 i a~AB21B2A!1p~AB1BA!22 j aB22qA21~ t22i ai b!A,

ABABA52s~A2B1BA2!12 j aB21~s22t1 i ai b!A1siaB1~ps22i bj a!1,

A2BA25 i a~A2B1BA2!22 j a~AB1BA!1pA22 i a
2B1~2s ja2pia!1.

There are five more equations, that can be obtained from these through the interchanges,A↔B,
i a↔ i b , j a↔ j b , p↔q.

6th Order:

AB2A2B1BA2B2A52s~A2B21B2A2!1p~AB21B2A!1q~A2B1BA2!1 i ai b~AB1BA!

1s~ i bA21 i aB2!1~2i aj b2 i bp!A1~2i bj a2 i aq!B

1~st2pq22siai b24 j aj b!1,

A2BAB21B2ABA25p~AB21B2A!1q~A2B1BA2!1~ i ai b2t !~AB1BA!1s~ i bA21 i aB2!

2~2i aj b1 i bp!A2~2i bj a1 i aq!B1~st2pq22siai b24 j aj b!1,

ABABAB1BABABA5s~A2B21B2A2!1~s21 i ai b2t !~AB1BA!22s~ i bA21 i aB2!

22~st22siai b24 j aj b!1,

AB2ABA1ABAB2A52s~A2B21B2A2!2q~A2B1BA2!12sibA21siaB222~ i aj b2qs!A

1 i aqB1~st1pq22siai b24 j aj b!1,

A2B2AB1BAB2A25s~A2B21B2A2!2p~AB21B2A!1~ t2 i ai b!~AB1BA!2s~ i bA21 i aB2!

2~2i aj b2 i bp!A1~2i bj a1 i aq!B2~st2pq22siai b14 j aj b!1,

A2B2A25 i a~A2B21B2A2!22 j a~AB21B2A!1~ t22i ai b!A22 i a
2B214i bj aA

1~2i a
2i b12q ja2 i at !1,

ABA2BA52p~A2B1BA2!22 j a~AB21B2A!1~ t2 i ai b!A21~ps12i bj a!A1 i apB1p21,

A2BABA1ABABA252 j a~AB21B2A!1~s212i ai b22t !A21~ps24i bj a!A22s jaB,

A2BA2B1BA2BA252 i a~A2B21B2A2!12 j a~AB21B2A!1p~A2B1BA2!12i a~ i bA21 i aB2!

24i bj aA22~2i a
2i b12q ja2 i at !1.

There are six more equations, that can be obtained from the last six through the interch
A↔B, i a↔ i b , j a↔ j b , p↔q.
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The Darboux method introduces algebraic solutions quite useful to obtain invariant
and first integrals of polynomial differential systems. Here we study the 2D Lotka–
Volterra~LVS! and the complex quadratic system~QS! using straight lines for both
and conics for the LVS. The conditions needed to obtain these invariants are given
and a study of the phase space portrait is done. ©1999 American Institute of
Physics.@S0022-2488~99!02604-3#

I. INTRODUCTION

We consider the search of invariants for the two-dimensional differential system

dx

dt
5P~x,y!,

dy

dt
5Q~x,y!, ~1!

whereP and Q are polynomials with coefficients inF, whereF is either the real fieldR or the
complex fieldC. We say thatm5max$degP,degQ% is thedegreeof the polynomial differential
system. This type of equations appear in the modelization of natural phenomena descr
different branches of the science such as biology, chemistry, astrophysics, fluid mechanics
tronics, etc. Of particular interest are the systems such thatm52. The polynomial differential
systems of degree 2 will be calledquadratic systems~QS!. One particularly well known quadrati
system is theLotka-Volterra system~LVS! which has been used to model the time evolutions
conflicting species in biology and of chemical reactions.1,2 Among other applications, we find
QS in the equations of continuity describing the interactions of ions, electrons and neutral s
in plasma physics~with the assumption of quasineutrality to eliminate either the ion or elec
equation!.3 Moreover a reduced QS is obtained from a generalized Blasius equation for fluid
around a wedge-shaped obstacle in boundary layer theory.4 In the context of plasma physics, a
the nonlinear terms represent binary interactions or model certain transport across the boun
the system. There is a long history of research on finding sufficient conditions for which pe
solutions ~center problem! exist for systems equivalent to the QS, and numerous results
obtained which we are not able to fully survey.5 However, most of the previous works assum
that the origin is a linear center~i.e., having eigenvalues6 i ) which we do not assume here a
starting point.

a!Electronic mail: lcairo@labomath.univ-orleans.fr
b!Electronic mail: jllibre@mat.uab.es
20740022-2488/99/40(4)/2074/18/$15.00 © 1999 American Institute of Physics
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Although our main interest concerns the integrability, we will also consider cases for w
one can exhibit a constant of the motion which is not afirst integral. As it is well known in 2D a
polynomial system is integrable if it possess a first integral. However, it can be interesting
times to know if it can have aninvariant. Roughly speaking, with a first integral we can descr
completely the phase portrait of the polynomial system, while with an invariant~a time-dependen
first integral! we only can describe its asymptotic behavior. In fact, an invariant is a func
I (x,y,t) such that when (x,y)5(x(t),y(t)) is a solution of~1!, I is a constant. Consequently,I
must satisfy the equation

]I

]t
1

]I

]x
P1

]I

]y
Q50. ~2!

When I does not depend explicitly oft, the invariant is called a first integral.
In spite of the fact that they differ in the details of computation, all the methods to ob

invariants~Carleman linearization,6,2 Hamiltonian method7,8! are based on ana priori hypothesis
on the form of the invariantI . So, in the Carleman method this form is introduced in system~1!
and the parameters entering in it are selected in order that~2! becomes an identity or, in the
Hamiltonian method, through rescaling, the form of the equations leading to this invaria
determined and again we select the different parameters and unknowns which are at our d
to identify these equations with the one we want to study.

Here we review a method proposed long time ago by Darboux.9 A survey of many works
triggered by the Darboux theorem together with a study of the integrability of real quad
systems having an invariant conic is given in Ref. 10.

The Darboux method is based on the possibility of writing the invariant@or at least an
integrating factor for system~1!# as the product of different functionsf i(x,y) raised at a given
powerl i . It is on the form of these functionsf i that we introduce an ansatz and the subsequ
need to identify the parameters. In that sense the Darboux method is not so different fro
others cited above. Nevertheless the experience shows that we have somehow divided th
culties of the unavoidable identification leading to algebraic but nonlinear equations with s
times a number of equations greater than the number of unknowns with, consequently, con
imposed on the parameters describing the dynamical system. From a physicist point of vie
rule of the game is to find invariants with as few conditions as possible on the parameters
given system.

The paper is organized as follows. In Sec. II we present the Darboux method, and app
Sec. III to the Lotka–Volterra system. In Sec. IV we apply it to the quadratic systems
reduction to a canonical form already used by two of the authors in the Painleve´ analysis of such
systems.11 In Sec. V we give our conclusion.

II. THE DARBOUX METHOD

Although the method can be extended to more than 2 dimensions we present it for the
system~1! whereP andQ are polynomials inx andy.

As has been said in the Introduction, the Darboux method is based on the existen
functionsf i(x,y) which are in factalgebraic solutionsof the differential system. Suppose that w
can determine two polynomialsf i(x,y) andKi(x,y) such that

] f i

]x
P1

] f i

]y
Q5Ki f i . ~3!

Then equationf i(x,y)50 describes an algebraic curve which is formed by trajectories.
Thesef i are going to be the ‘‘bricks’’ with which we will build the invariants. Suppose th

we have obtainedq functions f i . The polynomialKi is called thecofactorof f i . We look for an
invariant of the form
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I 5)
i 51

q

f i
m i~x,y!exp~st!. ~4!

We obtain

dI

dt
5

]I

]t
1

]I

]x
P1

]I

]y
Q5I Fs1(

i 51

q
m i

f i
S ] f i

]x
P1

] f i

]y
QD G . ~5!

Taking into account~3! and imposing thatI is an invariant, we obtain

s1(
i 51

q

m iKi50. ~6!

The equations form i are now linear equations. How manyf i do we need? Equation~3! shows that
if the system is of degreem, Ki is at most of degreem21 independently of the degree off i . The
left-hand side of~6! is consequently a polynomial inx,y of degree at mostm21 with a total of
m(m11)/2 terms. Consequently~6! producesm(m11)/2 equations where the unknowns are t
m i . We see from~6! that if we allows to be different from zero the system of equations for t
m i is inhomogeneous, and we needq5m(m11)/2. If we want a first integral thens must be zero
and the system becomes homogeneous and we need a priori either a newf i , or a new condition
by imposing that the determinant of the system of equations for them i is zero. We will calll i the
solution of this system.

In fact it is not impossible to find cases whereq is smaller thanm(m11)/2 with m i such that
(m iKi1s[0. We see that the possibility of solving form i in Eq. ~6! depends on the condition
we put on the coefficients of~1!. We should not forget that some conditions come from Eq.~6! and
other ones come from Eq.~3!.

Another possibility indicated also by Darboux is to obtain an integrating factor as follows
seek an integrating factor of the form

R5)
i 51

q

f i
l i . ~7!

For R to be an integrating factor we must have

div~RP,RQ!5
]

]x
~RP!1

]

]y
~RQ!50. ~8!

We have

]R

]x
5R(

i

l i

f i

] f i

]x
,

]R

]y
5R(

i

l i

f i

] f i

]y
, ~9!

and

div~RP,RQ!5R div~P,Q!1R(
i 51

q
l i

f i
S P

] f i

]x
1Q

] f i

]y D . ~10!

Taking ~3! into account we obtain

div~RP,RQ!5RFdiv~P,Q!1(
i 51

q

l iKi G50. ~11!
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ThereforeR will be an integrating factor if we can solve forl i the following system:

(
i

q

l iKi1div~P,Q!50, ~12!

which is of the same type as Eq.~6!. They differ only through the inhomogeneous terms.~12!
givesm(m11)/2 equations and,a priori, we need the same number of pairsf i ,Ki . However, for
some usually nongeneric cases a smaller number can be enough.

A comment is in order about the number of conditions and its variation withm and the order
of the algebraic solutions tested. For the existence of algebraic solutions of higher order we
larger number of conditions than for curves of smaller order. Since the number of alge
solutions needed increases quickly withm, we see that the most interesting cases~i.e., with a not
too high number of conditions! will be obtained using straight lines and conics as algeb
solutions for Lotka–Volterra and quadratic systems. This conclusion was already found usi
Carleman or Hamiltonian method.

III. LOTKA–VOLTERRA SYSTEM

The bidimensional LVS writes

ẋ5x~a11b11x1b12y!, ẏ5y~a21b21x1b22y!, ~13!

We begin with straight lines as algebraic solutions, i.e.,

f ~x,y!5 f 001 f 10x1 f 01y, K~x,y!5K001K10x1K01y. ~14!

Two first straight lines are obvious,

f ~x,y!5x, K~x,y!5a11b11x1b12y, ~15!

f ~x,y!5y, K~x,y!5a21b21x1b22y. ~16!

We remark that these two straight lines do not impose any condition. The interest of using
straight lines was noted by Cairo´ and Feix who were seeking invariants of the form

xaybP~x,y!exp~st!,

and have noted that the two termsxayb were giving extra freedom. Now the fulfillment of~3!
imposes eitherf 0050 or K0050. We begin with the solutionK0050. We obtain

K105b11, K015b22, f ~x,y!5 f 00S 11
b11

a1
x1

b22

a2
yD , ~17!

but we need one condition, namely,

r 125
b11

a1
~b122b22!1

b22

a2
~b212b11!50, ~18!

found in Ref. 2 to obtain the invariant of type III~in fact a first integral!.
Note that the straight linef (x,y)50 with f given by ~17! joins the two equilibrium points

2a1 /b11,0 and 0,2a2 /b22 while the cofactor straight lineb11x1b22y50 joins the origin to the
equilibrium point outside the axes.

Another invariant straight line is obtained by takingf 0050. It is easily proved that we nee
one condition namelya15a25a, and thatK105b11, K015b22 and K005a. This condition is
needed to obtain the invariant of type II.
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Two other possible linear algebraic solutions aref (x,y)5x1a1 /b11 with b1250 as condi-
tion, andf (x,y)5y1a2 /b22 with b2150 as condition. Table I recapitulates the 6 possible inv
ant straight lines.

We see that to build an invariant with straight lines we must include first the straight lin
and 2 which do not bring any condition. If we add the invariant straight line 5 we recove
invariant II of Cairóand Feix, and if we add the straight line 6 we recover invariant III which
in fact a first integral. Straight lines 3 and 4 do not bring interesting invariants since the asso
invariant concerns the species fully decoupled from the other~we have eitherb12 or b21 equal to
zero!. Finally we try to build an invariant with no condition, and for that we select the two stra
lines f 5x and f 5y. If m1 andm2 are the respective exponents, we obtain, taking into accoun
expression of the cofactors,

m1a11m2a21s50, b11m11b21m250, b12m11b22m250. ~19!

Sinces is at our disposal we can ignore the first equation, but the two others being homoge
will have a nontrivial solution only ifD5b11b222b12b2150. This is the invariant of type I in Ref
2. The LVS need at least one condition to posses an invariant. So the following theorem c
established.

Theorem 1: Let f15x50 and f25y50 be the two trivial algebraic solutions of a LVS. The
the following statement holds:

(a) If r 1250 the expression f1
l1f 2

l2 is an integrating factor of the LVS withl15@(a22a1)b22

1a2b12#/(a1b222a2b12) and l25(2a1b222a2b12)/(a1b222a2b12). If the condition isD
50, then the expression f1

m1f 2
m2est is a Darboux invariant of the LVS provided thatm1 and

m2 be a solution of the system (19).
If a LVS has a third algebraic solution f350 of degree1, then modulus the symmetr
(x,y,b11,b12,a1 ,b21,b22,a2)→(y,x,b22,b21,a2 ,b12,b11,a1) and provided that the LVS
satisfies one of the conditions indicated in Table I, there exist a Darboux inva
f 1

m1f 2
m2f 3

m3est and an integrating factor f1
l1f 2

l2f 3
l3 having the following values for f3 and

the exponentsl i ,m i :
(b) If a1b11b22Þ0, and condition (3) is satisfied, then

f 35b11x1a1 ,

m152s/a1 , m250, m35s/a1 ,

l15~a22a1!b11, l2522a1b11, l35a1~b212b11!2a2b11.

(c) If a1(b122b22)(b212b11)Þ0, and condition (5) is satisfied, then

f 35~b212b11!x1~b222b12!y,

TABLE I. Algebraic solutions and conditions for Theorem 1.

f (x,y) K(x,y) Condition No.

x a11b11x1b12y — 1
y a21b21x1b22y — 2
a11b11x b11x b1250 3
a21b22y b22y b2150 4
(b212b11)x1(b222b12)y a11b11x1b22y a15a2 5
a1a21b11x1b22y b11x1b22y r1250 6
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m15s
b22

a1~b122b22!
, m25s

b11

a1~b212b11!
, m35s

b11b222b12b21

a1~b122b22!~b212b11!
,

l15b12~b212b11!, l25b21~b122b22!, l352@b11~b122b22!1b22~b212b11!#.

(d) If a2
2b11

2 1a1
2b22

2 Þ0, and condition (6) is satisfied, then there exist a first integral f1
m1f 2

m2f 3
m3

with

f3511
b11

a1
x1

b22

a2
y,

m15b22~b212b11!, m25b11~b122b22!, m35b11b222b12b21.

Next we turn to quadratic algebraic solutionsf (x,y)50, which we write

f ~x,y!5 f 001 f 10x1 f 01y1 f 20x
21 f 11xy1 f 02y

2.

The cofactor is of the formK(x,y)5K001K10x1K01y but K00 must be zero iff 00Þ0. The
identification of the terms inx3 andy3 give

f 20K1052 f 20b11, f 02K0152 f 02b22,

and if f 20f 02Þ0 ~we will come back to this possibility later on!, we get

K1052b11, K0152b22. ~20!

Taking f 0051, the identification of terms inx andy gives

f 105
2b11

a1
, f 015

2b22

a2
. ~21!

Identification of terms inx2 andy2 gives, taking~20! and ~21! into account

f 205
b11

2

a1
2

, f 025
b22

2

a2
2

. ~22!

All quantities exceptf 11 are known and we are left with three equations from the identificatio
terms inxy, x2y, andxy2. Consequently we will need two conditions. After some calculations
get

f 11522
b11b22

a1a2
,

with the two conditions

b125b22S 21
a1

a2
D , b215b11S 21

a2

a1
D . ~23!

The conic is

f ~x,y!5S 11
b11

a1
x1

b22

a2
yD 2

24
b11b22

a1a2
xy,

and the associated cofactor is

K~x,y!52b11x12b22y.
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It must be realized that the presence of two conditions as given by~23! leaves a one paramete
LVS equation. Indeed it is easily proved that~13! can be written as a three parameter syste
IntroducingX5b11x/a1, Y5b22y/a2, C15b12a2 /b22a1, C25b21a1 /b11a2, ~13! becomes

dX

a1dt
5X~11X1C1Y!,

dY

a2dt
5Y~11C2X1Y!, ~24!

where

C15112
a2

a1
, C25112

a1

a2
,

and, indeed, writing the system~24! in the form dY/dX, we are left with one relevant paramete
(a1 /a2).

We briefly discuss the other possibilities. The identification of the coefficients of the term
x3 andy3 can also be obtained by takingf 20 ~for x3) and f 02 ~for y3) equal to zero. Identifying
both leads to an uninteresting case: eitherf 1150 or b125b2150. Breaking the symmetry we tak
f 0250. Table II gives the result of the identification of the different terms. We recover again
conditions,

b2252b12, b215b11S 21
a2

a1
D .

One is identical to the previous case, the other is different. However, there is still another ca
invariant conics of type~19!. The identification of they2 term givesf 01b225K01f 01 and assuming
f 01Þ0 we deduceK015b22. Finally another solution is possible withf 0150. Since~4th column
in Table II! f 015K01/a2, we must takeK0150 and the table is modified. The identification of th
term in xy2 gives

b121b2250,

which is the first condition. The next termx2y gives f 11 and the term inxy gives the second
condition

b215b11S 21
a2

a1
D ,

the same as in the previous two cases.
We must now consider a nonzero constant term in the cofactor with, consequently, no

stant term inf with

K~x,y!5K001K10x1K01y,

f ~x,y!5 f 10x1 f 01y1 f 20x
21 f 11xy1 f 02y

2.

TABLE II. Consequences of the identification of the different terms of~3!.

x y x3 y3

f 1052b11 /a1 f 015K01 /a2 K1052b11 f 0250

x2 y2 xy2 x2y xy

f 205b11
2 /a1

2 K015b22 f 1150 b2252b12 b215b11(21a2 /a1)
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The terms inx3 andy3 provide the usual resultsK1052b11, K0152b22 with f 20 and f 02 different
from zero. Then the terms inx andy give f 10K005 f 10 a1 and f 01K005 f 01a2 with a first condition
a15a2 ~assumingf 10Þ0 andf 01Þ0). However, we have found that this condition is sufficient
provide the invariant II. The existence of a conic as an invariant curve implies a second con
Obtaining an invariant with this conic and the two straight linesx50, y50 does not present an
interest since we can get an invariant with only the first condition. However, could it be tha
recover a first integral? Pushing the computation we obtain for the conic the following relatio~in
addition toa15a25a):

f 105~a/b11! f 20, f 015~a/b22! f 02,

f 205~b212b11!/@2~b222b12!# f 11,

f 025~b122b22!/@2~b112b21!# f 11.

The second condition comes from the identification of terms inx,y. We get in addition tor 12

50, the relation

3b11b221b12b2122b11b1222b22b2150, ~25!

which is the interesting one. Now the three cofactors are

a1b11x1b12y, a1b21x1b22y, a12b11x12b22y ,

and we obtain a first integral if the determinant of the matrix

S 1 1 1

b11 b21 2b11

b12 b22 2b22
D

cancels, but this gives again~25! which together witha15a2 provide the two conditions neede
to obtain a first integral. If we assume that one of the coefficients, sayf 01, is zero, thenK00

5a1 and the cancellation of the terms inx2 andy2 gives, respectively,

a1f 205b11f 10 and a152a2 . ~26!

Finally looking at the terms inxy2, x2y andxy we obtain

f 1152 f 02~b112b21!/~b122b22!, ~27!

f 1152 f 20~b222b12!/~b212b11!, ~28!

f 115~2b222b12! f 10/a2 . ~29!

Equations~28! and ~29! and the first of~26! give the second condition, the first beinga152a2,

b21~2b222b12!2b11~3b2222b12!50.

The following theorem recapitulates the five cases obtained with a conic as algebraic solu
addition to the two straight linesf 15x, f 25y. We note that a trivial interchange betweenx andy,
a1 anda2, b11 andb22, b12 andb21, give three other invariants in cases~a!, ~b!, and ~d! while
cases~c! and ~e! are invariant under this interchange.

Theorem 2: Let f15x50 and f25y50. If a LVS has a third algebraic solution
f 350 of degree 2, then modulus the symmetry(x,y,b11,b12,a1 ,b21,b22,a2)
                                                                                                                



nt

r

2082 J. Math. Phys., Vol. 40, No. 4, April 1999 Cairo, Feix, and Llibre

                    
→(y,x,b22,b21,a2 ,b12,b11,a1), and under the conditions given in Table III, a Darboux invaria

f 1
m1f 2

m2f 3
m3e st and an integrating factor f1

l1f 2
l2f 3

l3 can be found having the following values fo
f 3 and the exponentsm i ,l i :

(a) If a1a2b11Þ0, then

f 35S 11
b11

a1
xD 2

1
b22

a2
y,

m152s/a1 , m250, m35s/2a1 ,

l1522, l25~a12a2!/a2 , l352~2a11a2!/~2a2!.

(b) If a1(a11a2)b11Þ0, then

f 35S 11
b11

a1
xD 2

12
b11b22

a1~a11a2!
xy,

m15m252s/~a11a2!, m35~3a11a2!s/2a1~a11a2!,

l152a1 /~a11a2!, l252~2a11a2!/~a11a2!, l35~a12a2!/@2~a11a2!#.

(c) If a1a2b11Þ0, then

f 35S 11
b11

a1
x1

b22

a2
yD 2

24
b11b22

a1a2
xy,

m152s/~2a1!, m252s/~2a2!, m35~a11a2!s/~2a1a2!,

l1521, l2521, l3521/2.

(d) If a1b11(2b222b12)Þ0, then

f 35a1b11x1@b11x1~2b222b12!y#2,

m152b22s/a1~b1222b22!, m252s/a1 , m352~b222b12!s/a1~b1222b22!,

l15~b222b12!/~b1222b22!, l2522, l35b12/@2~b1222b22!#.

(e) Finally, a first integral f1
m1f 2

m2f 3
m3 exists if a1b11b22(b122b22)(b212b11)Þ0. Then

f 35a1@b22~b212b11!
2x1b11~b122b22!

2y#1b11b22@~b212b11!x2~b122b22!y#2,

m15b2122b11, m25b11, m35b112b21.

TABLE III. Invariant conditions of Theorem 2.

Statement Condition 1 Condition 2

a b2222b1250 (2a11a2)b112a1b2150
b b121b2250 (2a11a2)b112a1b2150
c (a112a2)b222b12a250 (2a11a2)b112a1b2150
d a152a2 b21(2b222b12)2b11(3b2222b12)50
e a15a2 b21(2b222b12)2b11(3b2222b12)50
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The qualitative picture of the phase portrait at finite distance from the origin for each s
ment of Theorem 2 is given in Fig. 1.

IV. THE COMPLEX QUADRATIC SYSTEM

The LVS are a particular case of thequadratic systems. Its most general form is

ẋ5
dx

dt
5k11a11x1a12y1b11x

21b12xy1c1y2,

~30!

ẏ5
dy

dt
5k21a21x1a22y1b21xy1b22y

21c2x2,

where the coefficients and the variablesx,y are complex, but the independent variablet is real.
Here we are going to consider a canonical version of~30!, which is the result first, of a translatio
of the origin eliminating the constant termsk1 andk2,

x5 x̄1m1 , y5 ȳ1m2 , ~31!

and second, of a linear transformation

x5a11x̄1a12ȳ, y5a21x̄1a22ȳ, ~32!

to eliminate the termsc1y2 andc2x2 in ~30!. Since the linear transformations~31! and~32! do not
introduce higher order terms, we arrive at a new system with the same form as~30! ~with of course
k15k250) but with all the terms in overbar variables. Of interest are

c̄152a12
3 c21a12

2 a22~b112b21!1a12a22
2 ~b122b22!1a22

3 c1 ,

c̄25a11
3 c22a11

2 a21~b112b21!2a11a21
2 ~b122b22!2a21

3 c1 .

Introducing

l 5
a12

a22
, m5

a11

a21
, ~33!

it is easily checked that the two equationsc̄150 andc̄250 coincide and write

c2X31~b212b11!X
21~b222b12!X2c150. ~34!

In ~34! we must take forl andm two different roots, otherwisea11a222a12a2150 and the linear
transformation becomes degenerate. The transformation is nondegenerate if we take differe
among the three roots of~34! for l and m. Note at this point that when two roots are compl

FIG. 1. Typical phase portraits for the LVS having invariants formed with a conic.
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conjugate, the resulting complex quadratic system has complex coefficients, without mod
the generality of our subsequent study. Two coefficients~for examplea11 and a22) are still
arbitrary and one could hope to be chosen in order to diagonalize the linear terms. If tha
possible, we could reduce the quadratic system to the LVS. To see the impossibility we us~32!
to diagonalize the linear terms. We obtain a similar result, namely, thatl andm, as given by~33!,
are the two different roots of the second degree equation

a21X
21~a222a11!X2a1250. ~35!

Of course the samel andm cannot be simultaneously the roots of~34! and ~35!. Excluding the
case of a double root we can say that the quadratic system becomes, without loss of gene

ẋ5a11x1a12y1b11x
21b12xy,

~36!

ẏ5a21x1a22y1b21xy1b22y
2,

where we have, once again, dropped the over-bar on the variables. The only—but esse
difference with the LVS is the presence of the off-diagonal termsa12y anda21x. It is clear that the
above transformation, can in general, generate complex coefficients. For this reason system~36! is
calledcomplex quadratic system, which in short will be called here QS.

The search for invariant straight lines is quite similar to the one given above for the LVS
begin with we look for a~complex! straight line going through the origin, i.e.,

f ~x,y!5 f 10x1 f 01y, K~x,y!5K001K10x1K01y,

where we suppose first thatf 10 and f 01 are different from zero. The terms inx2 andy2 in ~3! gives
K105b11 andK015b22. The terms inxy, x, andy give, respectively,

f 10~b222b12!1 f 01~b112b21!50, ~37!

f 10~a112K00!1 f 01a2150, f 10a121 f 01~a222K00!50. ~38!

If we supposeb21Þb11 andb12Þb22, we deducef 10/ f 01 from ~37! and introducing it in~38! we
obtain K00 and a condition, the values of which are given below in„5… of Proposition 3. A
particularly interesting case is obtained whenb125b22 andb215b11. Then~37! is automatically
fulfilled and the two Eqs.~38! have a nontrivial solution only in the case ofK00 being the solution
of the equation

K00
2 2~a111a22!K001Da50, ~39!

whereDa5a11a222a12a21 and the two roots ofK00 are the eigenvalues of the matrix~a!

~a!5S a11 a12

a21 a22
D . ~40!

The precise values are given below in„58… and„59… of Proposition 3.
The other general case is obtained with

f ~x,y!5 f 001 f 10x1 f 01y, K~x,y!5K10x1K01y.

Again the terms inx2 andy2 give K105b11 andK015b22 ~assumingf 00, f 10, f 01Þ0). The terms
in x andy give

f 10a111 f 01a215 f 00b11, f 10a121 f 01a225 f 00b22. ~41!
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The solution of~41! give f 10 and f 01 which introduced in~37! provides a condition~case„6… of
Proposition 3!.

As in the LVS we must also consider cases where one off 10 or f 01 is equal to zero. In fact we
recuperate the two axes and the two parallel to the axes given in Table I~under the numbers 1, 2
3, and 4! with conditions differently written. Now these straight lines and especially 3 and 4
more interesting. In the LVS two conditions were needed (b125b2150), resulting in a decoupling
of the two equations, while now, it is a relation between four coefficients (a12,a11,b12, andb11)
or (a21,a22,b21, andb22) which are needed. Proposition 3 recapitulates the eight different in
ant straight lines, their cofactors, and the conditions for their existence.

Proposition 3: A QS has a linear algebraic solution f50 with cofactor K in the following
cases:
„1… If a1250, then f5x and K5a111b11x1b12y.
„2… If a2150, then f5y and K5a221b21x1b22y.
„3… If a11b11Þ0 and a125a11b12/b11, then f5a111b11x and K5b11x1b12y.
„4… If a22b22Þ0 and a215a22b21/b22, then f5a221b22y and K5b21x1b22y.
„5… If (b212b11)(b122b22)Þ0 and r1[(b122b22)(b212b11)(a112a22)1a12(b212b11)

2

2a21(b122b22)
250, then f5(b212b11)x1(b222b12)y and K5a112a21(b122b22)/

(b212b11)1b11x1b22y.
„58… If b125b22 and b215b11, then f5a21x1(K00

[1]2a11)y and K5K00
[1]1b11x1b22y, where

K00
[1] is the first root of (39), which writes(a111a22)/21@(a112a22)

214a12a21#
1/2/2 .

„59… If b125b22 and b215b11, then f5a12y1(K00
[2]2a22)x and K5K00

[2]1b11x1b22y, where
K00

[2] is the second root of (39), which writes(a111a22)/22@(a112a22)
214a12a21#

1/2/2 .
„6… If b11b22(b212b11)(b122b22)(a11a222a12a21)Þ0 and r2[(a12b112a11b22)(b212b11)

1(a21b222a22b11)(b122b22)50, then f5a11a222a12a211(a22b112a21b22)x1(a11b22

2a12b11)y and K5b11x1b22y.
A comment is in order about the two invariant straight lines„5’… and „5’’ …. They do not

contain anybi j and are the support of the two eigenvectors of the matrix (a). Moreover it is easily
shown that in this case (b125b22,b215b11) we have only three equilibrium points at finite di
tance from the origin: the origin, one on„58… and the last one on„59!. Moreover the invariant
straight line„6… goes through these two last points.

Now with these eight ‘‘bricks’’ we are going to build the invariants, first integrals and in
grating factors. Let us begin with the obtention of Darboux invariants. Gettingq invariant straight
lines labeled withi going from 1 toq, we obtain the identity

(
i 51

q

m i~K00i1K10ix1K01i y!1s50,

i.e., two homogeneous linear equations inm i ,

(
i 51

q

K10im i50, (
i 51

q

K01im i50, ~42!

and the inhomogeneous equation

(
i 51

q

K00im i1s50. ~43!

Sinces is at our disposal, let us leave for a moment~43! which will simply fix s. For the two Eqs.
~42! to be fulfilled we need either three straight lines~with 3 m i) or two straight lines, but then the
determinant of the system must be zero. Since one straight line implies one condition we n
principle three conditions. However, one can find exceptional cases with two straight lines h
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a determinant automatically equal to zero. For example, the cofactors of straight lines„5… and„6…
have the sameK10i and K01i ~respectively,b11 and b22) and we get an invariant with only two
straight lines and two conditions.

Concerning the integrating factor, the things are somewhat similar except that nows is re-
placed by div(P,Q), with div(P,Q)5A01A1x1A2y. We have now three inhomogeneous equ
tions with three conditions.

A priori the most expensive in conditions should be the first integral. Since we get~42! and
~43! and this time withs50, we have a system of three homogeneous linear equations.
identification of the determinant plus the obtention of the three straight lines gives four cond
but again special cases can be found. For example straight lines„58…, „59… and„6… altogether, ask
for only two conditions (b125b22 andb215b11). Moreover they all possess the sameK10i5b11

andK01i5b22 in their three cofactors and we get a first integral with only two conditions. C
sequently each case must be separately examined.

In the rest of the paper we use the following notation: If a first integral, an integrating fa
or a Darboux invariant of a complex QS has been obtained using for instance the alg
solutions of statements„5… and„6… of Proposition 3, we only say that the integrable case is„56…,
etc. We present three types of results.

A. Invariant „56…
It is the invariant built with straight lines„5… and„6…. The coexistence of straight lines„5… and

„6… implies r 15r 250 and a first solution is

a125a22~b222b12!/~b112b21!, a215a11~b112b21!/~b222b12!, ~44!

but it is easily checked that under conditions~44!, the straight lines„5… and„6… are identical~the
straight line„6… passing also through the origin! with, as a consequence, not enough straight li
to build an invariant. Fortunately another solution is possible with

b11~b222b12!1b22~b112b21!50, ~45!

~a112a22!b11b222a12b11
2 1a21b22

2 50. ~46!

The cofactors being, respectively,b11x1b22y1K0050 for „5… and b11x1b22y50 for „6…, the
equations write

b11~m11m2!50, b22~m11m2!50, K00m11s50.

Taking m252m1 , we get an invariant with only two conditions,~45! and ~46!. Now this result
must be compared with the two conditions given for that system in Ref. 11. For the passing
Painlevétest as given in Ref. 11,~45! is the index condition~4.31! and ~46! is the compatibility
condition~4.33!. Indeed with, for example,m151 andm2521 we obtain an analytical invarian
in agreement with the conclusion obtained in Ref. 11.

B. Invariant „5859… and „58596…
In the case where the invariant is built with„58… and„59… or „58…, „59… and„6… we have the two

conditions b215b11, b125b22 and the corresponding cofactors areb11x1b22y1K00
[1] ,

b11x1b22y1K00
[2] andb11x1b22y, whereK00

[1] andK00
[2] are the eigenvalues of matrix~a! given by

~39!. First we search an invariant built only with„58… and „59…. We getm11m250, m1K00
[1]

1m2K00
[2]1s50 with, for example,m151, m2521 ands5K00

[2]2K00
[1] . The invariant writes

I 5
a21x1~K00

[1]2a11!y

~K00
[2]2a22!x1a12y

exp~2A~a112a22!
214a12a21!t. ~47!
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However, we can have a first integral in addition to~47! without introducing new conditions. Fo
that we build with„58…, „59…, and„6… obtainingm11m21m350 andm1K00

[1]1m2K00
[2]1s50. The

interesting point is that we get twice the equationm11m21m350. Now takingm15K00
[2] and

m252K00
[1] we obtains50 ~and consequently a first integral!. Having a first integral and an

invariant the problem is now fully algebraic and, consequently, this system can be comp
solved and the integration is as complete as possible. Note, however that this case does n
the Painleve´ test, a clear indication that passing the Painleve´ test and getting explicit invariant, firs
integral or explicit solutions are two different approaches not always connected~although corre-
lated in many cases!.

C. Other cases
We exclude cases treated above built with both straight lines„5… and „6… and cases where

b125b22, b215b11. Also we omit those invariants involving only one variable obtained wh
one equation is decoupled from the other one. As a result, 13 invariants are obtained: 8 bui
3 straight lines, 4 with 2 straight lines and 1 with 1 line. We denote the invariants with the n
of the straight lines upon which they have been built. With three straight lines we have

„125…, „236…, „345…, „146…, which are the generalization of invariant II of the LVS.„125… is
LVS (a1250, a2150) with the three straight lines passing through one of the equilibrium po

„126…, „235…, „346…, „145…, which are the generalization of invariant III of the LVS.„126… is
LVS with three straight lines forming a triangle.

With two straight lines, we have
„12…, „14…, „23…, „34…, which are the generalization of the invariant I of the LVS~„12… is LVS!.

These four cases require the third conditionD50.
A last case can be found with only one line. Obviously the cofactor must be a constant a

only interesting case is given by the straight line„5… with b115b2250. Taking f 5 f 10x1 f 01y and
K5K00 we obtain

f 10b121 f 01b2150, ~48!

f 10~a112K00!1 f 01a21, f 10a121 f 01~a222K00!50, ~49!

and the invariant is

I 5~b21x2b12y!exp@~a12b212a22b12!t/b12#, ~50!

with three conditions

b115b2250, a112a225a21

b12

b21
2a12

b21

b12
. ~51!

which is invariant I in Ref. 11.
It is worth to note that in all cases~including the last one! each invariant straight line goe

through two equilibrium points. We have seen also that many cases are generalization of th
I, II, and III of the LVS. One of the most interesting invariants~„56… since we need only 2
conditions! splits for the LVS in both invariants II and III. The introduction of the canonical fo
~36! through transformations~31! and ~32! has greatly simplified the problem of expliciting in
variants and conditions and has shown the very fundamental connection between LVS a
We can establish the following theorem.

Theorem 4: A complex QS has a first integral, an integrating factor or a Darboux invari
formed by invariant straight lines in the following cases:

(a) If b11(2b222b12)2b21b2250, r250 and a11a22b11b22(b122b22)(b212b11)Þ0, then the
straight lines f15b11x1b22y50 and f25a11a222a12a211(a22b112a21b22)x1(a11b22

2a12b11)y50 are algebraic solutions of the QS with cofactors K15b11x1b22y1a11

1a21b22/b11 and K25b11x1b22y, respectively, and f1
m1f 2

m2e st is a Darboux invariant for
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m152m2 and m25sb11/(a21b221a11b11). This corresponds to the integrable case„56….
(b) If b215b11, b125b22, a11a22b11b22Þ0, and let us call K00

[1] , K00
[2] the eigenvalues of matrix

(a), then the straight lines f15a21x1(K00
[1]2a11)y50 and f25(K00

[2]2a22)x1a12y50 are

algebraic solutions of the QS with cofactors K15b11x1b22y1K00
[1] and K25b11x1b22y

1K00
[2] , respectively, such that f1

l1f 2
l2 is an integrating factor forl15(a111a22)/(2K00

[1]

22K00
[2] )23/2 and l252(a111a22)/(2K00

[1]22K00
[2] )23/2. Moreover f1

m1f 2
m2e st is a Dar-

boux invariant form152s/(K00
[1]2K00

[2] ) andm252m1 . This corresponds to the integrabl
case„5859….

(c) If b215b11, b125b22, a11a22b11b22Þ0, and let us call K00
[1] , K00

[2] the eigenvalues of matrix

(a), then the straight lines f15a21x1(K00
[1]2a11)y50, f 25(K00

[2]2a22)x1a12y50 and f3
5a11a222a12a211(a22b112a21b22)x1(a11b222a12b11)y50 are algebraic solutions of the
QS with cofactors K15b11x1b22y1K00

[1] , K25b11x1b22y1K00
[2] and K35b11x1b22y, re-

spectively, and f1
m1f 2

m2f 3
m3 is a first integral for m15K00

[2] , m252K00
[1] and m35K00

[1]

2K00
[2] . This corresponds to the integrable case„58596….

(d) If a1250, a215a22b21/b22, r 250 and a11a22b11b22(b122b22)(b212b11)Þ0, then the
straight lines f15y50, f 25a111b11x50 and f35b11x1(b222b12)y1a11a2250 are alge-
braic solutions of the QS with cofactors K15b21x1b22y1a22, K25b11x1b12y and K3

5b11x1b22y, respectively, such that f1
l1f 2

l2f 3
l3 is an integrating factor forl152(a11

1a22)/a22, l25b12/(b222b12) and l35a11/a221b22/(b122b22). Moreover,
f 1

m1f 2
m2f 3

m3e st is a Darboux invariant form152s/a11, m25sb11/@a22(b212b11)# and m3

5s/a221sb12/@a11(b122b22)#. This corresponds to the integrable case„236….
(e) If a125a11b12/b11, a215a22b21/b22, r 150, and a11a22b11b22(b122b22)(b212b11)Þ0 then

there exist the straight lines f15a111b11x50, f 25a221b22y50 and f35a22b11x
2a11b22y50 which are algebraic solutions of the QS with cofactors K15b11x1b12y, K2

5b21x1b22y, K35b11x1b22y2(b122b22)a22/b22, respectively, such that f1
l1f 2

l2f 3
l3 is an

integrating factor for l15a22b11/@a11(b112b21)#21, l25b21/(b112b21) and l3

5b11(a111a22)/@a11(b212b11)#. Moreover, f1
m1f 2

m2f 3
m3e st is a Darboux invariant of the QS

for m152s/a22, m25sb22/@a11(b222b12)# and m35s/a221sb12/@a11(b122b22)#. This
corresponds to the integrable case„345….

(f) If a1250,a215a22b21/b22, r 250 and a11a22b11b22(b122b22)(b212b11)Þ0, then the
straight lines f15x50, f 25a221b22y50 and f35(b112b21)x1b22y1a11a2250 are alge-
braic solutions of the QS with cofactors K15b11x1b12y1a11, K25b21x1b22y1a22 and
K35b11x1b22y1a11, respectively, such that f1

l1f 2
l2f 3

l3 is an integrating factor forl15

2(a111a22)/a11, l25b21/(b112b21) and l35b11/(b212b11)1a22/a11. Moreover,
f 1

m1f 2
m2f 3

m3e st is a Darboux invariant form152s/a11,m25sb11/@a22(b212b11)# and m3

5sb21/@a22(b212b11)#1s/a11. This corresponds to the integrable case„146….
(g) If a125a11b12/b11, a2150, r 150 and a11a22b11b22(b122b22)(b212b11)Þ0, then the

straight lines f15y50, f 25a111b11x50 and f35(b212b11)x2(b122b22)y50 are alge-
braic solutions of the QS with cofactors K15a221b21x1b22y, K25b11x1b12y and K3

5a111b11x1b22y, respectively, and f1
m1f 2

m2f 3
m3 is a first integral for m15b22(a11

2a22),m252a11b12 and m35a22b12. This corresponds to the integrable case„235….
(h) If a111a2250, a125a11b12/b11, a215a22b21/b22 and a11a22b11b22(b122b22)(b212b11)D

Þ0, then there exist the straight lines f15a111b11x50, f 25a221b22y50 and f35a11D
2b11b22(b212b11)x1b22b11(b122b22)y50 which are algebraic solutions of the QS wit
the cofactors K15b11x1b12y, K25b21x1b22y, K35b11x1b22y, such that f1

m1f 2
m2f 3

m3 is a
first integral form15b22(b212b11),m25b11(b122b22) andm35D. This corresponds to the
integrable case„346….

(i) If a 1250, a215a22b21/b22, r 150 and a11a22b11b22(b122b22)(b212b11)Þ0, then the
straight lines f15x50, f 25a221b22y50 and f35(b212b11)x2(b122b22)y50 are alge-
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braic solutions of the QS with cofactors K15a111b11x1b12y, K25b21x1b22y and K3

5a221b11x1b22y, respectively, and f1
m1f 2

m2f 3
m3 is a first integral for m152a22b21,m2

5b11(a222a11) and m35a11b21. This corresponds to the integrable case„145….
(j) If a 1250, a215a22b21/b22 and a11a22b11b22(b122b22)(b212b11)Þ0, then the straight lines

f 15x50 and f25a221b22y50 are algebraic solutions of the QS with cofactors K15b11x
1b12y1a11 and K25b21x1b22y, respectively, such that with the additional condition1
50, f 1

l1f 2
l2 is an integrating factor for l152(a111a22)/a11 and l25(a22b12

22a11b22)/(a11b22). On the other hand if the additional condition isD50 then f1
m1f 2

m2e st is
a Darboux invariant form152s/a11 and m25sb12/(a11b22). This corresponds to the inte
grable case„14….

(k) If a1250, a215a22b21/b22, D50 and a11a22b11b22(b122b22)(b212b11)Þ0 then the
straight lines f15y50 and f25a111b11x50 are algebraic solutions of the QS with cofa
tors K15b21x1b22y1a22 and K25b11x1b12y, respectively, such that with the additiona
condition r150, f 1

l1f 2
l2 is an integrating factor forl252(a111a22)/a22 and l15(a11b21

22a22b11)/(a22b11). On the other hand if the additional condition isD50 then f1
m1f 2

m2e st

is a Darboux invariant form152s/a22 and m25sb22/(a22b12). This corresponds to the
integrable case„23….

(l) If a 125a11b12/b11, a215a22b21/b22, D50 and a11a22b11b22(b122b22)(b212b11)Þ0 then
the straight lines f15a111b11x50 and f25a221b22y50 are algebraic solutions of the QS
with cofactors K15b11x1b12y and K25b21x1b22y, respectively, such that f1

m1f 2
m2 is a first

integral for m15b22 and m252b12. This corresponds to the integrable case„34….
(m) If b115b2250, r 150 and b12b21Þ0, then the straight line f5b21x2b12y50, is an alge-

braic solution of the QS with cofactor K5a112a21b12/b21 such that f1
me st is a Darboux

invariant for m5(a12b212a22b12)/b12. This corresponds to the integrable case„5….

A qualitative picture of the phase space portrait at a finite distance from the origin for ea
the statements of Theorem 4 appears in Fig. 2. The figures concerning the invariants„126…, „145…,
„235…, and„346… deserve a special comment. They suggest that the equilibrium point, which
a summit of the triangle formed by the three straight lines is a center. Indeed the four cases a
integrals and if we show that this equilibrium point is a linear center, the possession of thi
integral will confer a center status.

To check this linear center property we will have to discuss the real or complex nature
roots of the second degree equation obtained by linearization of the system~36!. While the relation
between the coefficients of the QS, needed for the existence of the invariants or first in
remains equally valid for complex or real coefficients of~36!, we will suppose real in this para
graph all the coefficients of~36!.

Let x0 andy0 be the coordinates of an equilibrium point. The linearized equation fordx and
dy with x5x01dx andy5y01dy writes

d ẋ5~a1112b11x01b12y0!dx1~a121b12x0!dy,
~52!

d ẏ5~a211b21y0!dx1~a2212b22y01b21x0!dy,

which will describe a linear center if the two eigenvalues of the matrix are purely imaginary
a consequence, two relations are necessary. The first concerns the trace of the matrix
system. We must have

a111a221b12y01b21x012~b11x01b22y0!50, ~53!

relation which can be written, taking into account the fact thatx0 ,y0 are the coordinates of a
equilibrium point

a12~y0 /x0!1a21~x0 /y0!5b11x01b22y0 . ~54!
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The second relation is an inequality concerning the sign of the term under the square root to ob
a purely imaginary root. Taking into account~53!, the eigenvalues are

l1,25A2D, ~55!

where

D5Ua1112b11x01b12y0 , a121b12x0

a211b21y0 , a2212b22y01b21x0U
and the inequality to obtain a linear center isD.0. Now we show that the four cases mentioned
above fulfill ~54!. We begin with„346… where the origin is the candidate to the status of a cente
With x05y050, ~53! becomesa111a2250, which is precisely one of the conditions needed to
obtain a first integral. Ifa11a222a12a21.0 the origin is consequently a center. For„126… we are
in the LVS case (a125a2150). Computingx0 andy0 and introducing it in~54! we check that this

FIG. 2. Typical phase portraits for the QS having invariants or first integrals formed with straight lines.
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last relation is fulfilled. For values of the parameters such thatD.0 this equilibrium point will be
a center. Finally we consider„145… ~„235… being symmetric!. Taking into account the three con
ditions and doing a little algebra, we obtain forx0 andy0,

x052a11b22/D, y05a11b21/D. ~56!

Introducing~56! into ~53!, we see that this last relation is fulfilled and we have just to check
D.0.

Consequently the four equilibrium points of figures„126…, „235…, „346…, and„145… fulfill the
relations needed to have the status of a center and are, indeed, centers ifD.0.

V. CONCLUSION

Although some of the results presented here have been obtained before, we see t
Darboux method is more systematic and simplifies the obtention and resolution of the res
algebraic—but nonlinear—equations. These equations are originated from the identification
different terms after the introduction of ansatzes on the expression of the algebraic solution~also
called invariant curves!. Each of these algebraic solutions brings its own conditions to exist.
bidimensional quadratic systems, three algebraic solutions are needed. The simplest are
lines, each bringing one condition in the QS case. We need altogether three conditions
essentially in two cases. The LVS is the special quadratic system witha125a2150 and, conse-
quently only one more condition is needed. These algebraic solutions are invariant straigh
connecting two equilibrium points. For the LVS the two axes provide the two first algeb
solutions and if the third one is a conic we need two conditions. The invariant conics also co
two equilibrium points. Both an increase of the dimensionality and the degree of the s
increase quickly the number of needed conditions.
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From the existing methods of singularity analysis only, we derive the two equations
which define the Ba¨cklund transformation of the Tzitze´ica equation. This is
achieved by defining a truncation in the spirit of the approach of Weisset al., so as
to preserve the Lorentz invariance of the Tzitze´ica equation. If one assumes a
third-order scattering problem, this truncation admits a unique solution, thus lead-
ing to a matrix Lax pair and a Darboux transformation. In order to obtain the
Bäcklund transformation~BT!, which is the main new result of this paper, one
represents the Lax pair by an equivalent two-component Riccati pseudopotential.
This yields two different BTs; the first one is a BT for the Hirota–Satsuma equa-
tion, while the second one is a BT for the Tzitze´ica equation. One of the two
equations defining the BT is the fifth ordinary differential equation of Gambier.
© 1999 American Institute of Physics.@S0022-2488~99!01503-0#

I. INTRODUCTION

This paper is a follow-up of a previous article,1 hereafter referred to as paper I, in which w
defined a scheme, based on singularity analysis only, in order to find the auto-Ba¨cklund transfor-
mation~BT! of a given partial differential equation~PDE! when one exists. This general schem
was designed so as to also succeed when thesingular manifold methodof Weisset al.2,3 and its
later improvements, see references in paper I, fail to provide this auto-BT.

After the Kaup–Kupershmidt equation, we consider the Tzitze´ica equation

E~u![uxt1aeu1a2e22u50, aa2Þ0, ~a,a2!const. ~1!

Its invariance under the permutation~Lorentz transformation!

P:~]x ,] t!→~] t ,]x!, ~2!

which does not exist for evolution equations like the one considered in paper I, must be pre
all the expected results, and this will require some extra care. For the definitions, notatio
procedure, we refer to paper I. This equation appears in several domains of mathemat
physics, which we summarize below.

~1! It was originally found in the field of geometry in 1907 by Georges Tzitze´ica4 who looked
for surfaces on which the total curvature at each point is proportional to the fourth power o
distance from a fixed point to the tangent plane. One of the beautiful properties of this equa
the periodicity of its Laplace sequence,5 with a period three. In the opinion of Tzitze´ica however
~Ref. 6, p. 255!, ‘‘...l’inté gration de l’équation~1! ...est tre`s difficile.’’
20920022-2488/99/40(4)/2092/15/$15.00 © 1999 American Institute of Physics
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~2! In one-dimensional ideal gas dynamics, when the equation of state is

P5
r3

M4 , ~3!

in which P, r, M denote the pressure, density and Lagrangian mass, the system of Euler’s
tions is reducible7,8 to the Tzitzéica equation. This equation of state is identical,mutatis mutandis,
to the geometrical definition of Tzitze´ica. The geometrical link with the equation for affin
spheres6 has been recently rederived in the context of gas dynamics.9

~3! In magnetohydrodynamics, there exits a 211-dimensional system which, after eliminatio
of the magnetic field, becomes

r x1sy50, r t2r xxx1~rs!x50, ~4!

in which ~r,s! are the components of the velocity on thex and y axes. The stationary reductio
~independence ont! is equivalent to the so-called Hirota–Satsuma PDE,10 which we define as

HS~w![@wxxt1~6/a!wxwt#x50, aÞ0 ~5!

@notation isr 5(6/a)wy , s52(6/a)wx , with a constant andy renamedt#. Its potential form

pHS~w![wxxt1~6/a!wxwt1F~ t !50, aÞ0, ~6!

in the particular caseF(t)50 ~this restriction is important, see Sec. II!, has a one-to-one
correspondence11 with the Tzitzéica equation, obtained by elimination ofa2 in Eq. ~1!

S F~ t !50,eu5
2

aa
wtD⇒S e22u~e2uE~u!!x5S pHS~w!

wt
D

t
D . ~7!

~4! The search for all equations of the type

uxt1 f ~u!50 ~8!

which admit an infinite number of integrals of motion led Dodd and Bullough12,13to the following
finite list of admissible functionsf ~up to linear transformations onu!: 0 ~d’Alembert!, u, eu

~Liouville!, sin u or sinh u ~sine- or shine-Gordon, not different in the complex plane!, andeu

2e22u ~Tzitzéica!. This infinity of integrals of motion for~1! was later found by Zhiber and
Shabat.14

~5! The search of separating solutions of~8!, i.e., of functionsw, X,Tof one variable such tha

u5w~X~x!T~ t !! ~9!

satisfies~8!, gives rise15 to a finite list of admissiblef including the above mentioned list.
~6! In the nonlinear SL~3,R! s-model

r xt1r21~r xt ,r x ,r t!
1/2r50, r constant, ~10!

~r xx ,r x ,r t!5~r tt ,r x ,r t!50, ~11!

in which boldface characters denote vectors inR3, the fieldu5(1/2)Log(r xt ,r x ,r t) satisfies the
Tzitzéica equation.16

~7! Equation~1! is a reduction of the two-dimensional Toda lattice.17

The purpose of this paper is to derive all the integrability results of~1! ~Lax pair, Darboux
transformation and Ba¨cklund transformation! from singularity analysisonly.

We handle at the same time all the equations of the type considered by Zhiber and Sh14
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E~u![uxt1aeu1a1e2u1a2e22u50, aÞ0, ~12!

i.e., the Liouville equationa15a250, the sine-Gordon equation (a1Þ0, a250) and the Tzitze´ica
equation (a150, a2Þ0). The results to be found are the auto-BT of each equation, and
Liouville the hetero-BT to the d’Alembert equation. We use the notation of Ref. 18.

The paper is organized as follows. In Sec. II, we recall the existing results, whether ob
from singularity analysis or from other methods, and we point out what is missing. In Sec. II
recall the singularity structure of the Tzitze´ica PDE and argue that, just like the Kaup
Kupershmidt equation in paper I, it possesses only one relevant family of movable singularit
the next two sections, we successively choose the order two, then three, for the order
unknown scattering problem. In Sec. IV, we thus give a very short singularity-based derivat
the hetero-BT between Liouville and d’Alembert equations; we also give a unified derivatio
the auto-BT of the Liouville and sine-Gordon equations. In Sec. V, we assume an unknow
pair invariant under the Lorentz transformation~2! and define it in its equivalent projective Ricca
representation; the truncation which it defines admits a unique solution, thus providing a m
Lax pair and a Darboux transformation. The last section is divided into two subsections,
corresponding to one of the two possible eliminations leading to a Ba¨cklund transformation. In
Sec. VI A, the first elimination provides the BT of the Hirota–Satsuma PDE~5!. In Sec. VI B, the
second elimination provides the expected result, namely the BT of the Tzitze´ica equation~1!. We
write this BT as one second-order nonlinear ODE and one first-order PDE, which are both
izable. The ODE part

y913yy81y31ry1q50, ~13!

in which q andr depend on a solution of~1! and on the Ba¨cklund parameterl, belongs to the fifth
equivalence class of Gambier.19

II. PREVIOUS RESULTS

Two Lax pairs of~1! are known. The first one has been given by Tzitze´ica,20

2txx1Uxtx1Aa2le2Ut t50, ~14!

2t tt1Utt t1Aa2l21e2Utx50, ~15!

2txt2aeUt50, ~16!

in which the arbitrary complex constantl is the spectral parameter@this ‘‘pair’’ is in fact a set of
three scalar equations in the entire functiont for which the three commutators vanish whenev
these three equations hold andU satisfies~1!#. The third-order traceless matrix Lax pair

L5S 2Ux/2 0 2Aal21eU/2

2Aa2e2U Ux/2 0

0 AaleU/2 0
D , ~17!

M5S Ut/2 2Aa2e2U 0

0 2Ut/2 2Aal21eU/2

AaleU/2 0 0
D , ~18!

Lt2Mx1@L,M #5S 21 0 0

0 1 0

0 0 0
D E~U ! ~19!
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has been established by Mikhailov.17

Note that the system~14!–~16! is invariant under the involution21,8

~t,eU,l!→S 1

t
,2eU2

2

a

txt t

t2 ,2l D , ~20!

which defines the Darboux transformation

eu52eU2
2

a

txt t

t2 ~21!

between two different solutionsu andU of ~1!.
Both the prolongation method22 and the conditional symmetries method23 allow us to retrieve

the Lax pair of Mikhailov in its equivalent projective Riccati representation.
The Bäcklund transformation, according to the classical definition recalled in paper I~see also

the fifth step of Sec. II in that paper!, is a set of two PDEs in two solutionsu andU of ~1! such
that the PDE inU resulting from the elimination ofu is equivalent toE(U)50.

It is worthwhile to underline the fact that the BT isnot a couple made of a Lax pair and
Darboux transformation; it is the explicit result of the elimination of the solution of the Lax
between them.

Such a BT has never been obtained for the Tzitze´ica equation. All the classical author
~Tzitzéica,21,24A. Demoulin and H. Jonas25! considered the Lax pair and the DT and none of th
gave the explicit form of the Ba¨cklund transformation. McLaughlin and Scott26 proved that its
type is certainly different from the well-known one of the sine-Gordon equation.

Gaffet was the first modern author to analyze the difficulty of finding the BT~section 5.1 of
Ref. 8!. His main conclusion is that obtaining the BT would be quite easy if one knew ascalar
Lax pair whose commutator is equivalent to the PDE~1! and generates the one-soliton solutio
Such a pair is given below, Eqs.~114! and ~115!.

By elimination of ]x ~resp. ] t) between the three scalar linear PDEs~14!–~16!, Gaffet
obtained8 the two linear third-order ODEs,

txxx2~Uxx1Ux
2!tx1aAa2lt50, ~22!

t ttt2~Utt1Ut
2!t t1aAa2l21t50, ~23!

but these two ODEs, taken alone, do not define a scalar Lax pair since their commuta
equivalent to~1! only modulothe triplet~14!–~16!. Therefore, the elimination oft between these
two ODEs and the DT cannot yield the BT.

Sharipov and Yamilov27 ~see also subsequent papers, Refs. 28 and 29! eliminatedt between
the DT ~21! and three differential consequences of~14!–~16!, to obtain three complicated PDE
instead of two, without the property that two of them constitute a BT obeying the above defin

For completion, let us also mention the existence of a nonlinear superposition formu
tween four different solutions of~1!.25,30,31

From the correspondence~7! with the Hirota–Satsuma equation, one might think of transp
ing the well-established results for that equation~Lax pair,32 DT and BT,33 all easy to find by
singularity analysis34! to get the BT of the Tzitze´ica equation. Unfortunately, this is impossib
because the correspondence~7! restricts the potential form of the Hirota–Satsuma equation
F(t)50. This impossibility is illustrated by the solution to the Hirota–Satsuma equation35

wx52a~P~x2 f ~ t !!1Q~x1 f ~ t !!!, ~24!

wt5a~P~x2 f ~ t !!2Q~x1 f ~ t !! f 8~ t !, f 8Ó0, ~25!

P9~z!56P~z!21kz1A, Q9~z!56Q~z!21kz1B, ~26!
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F~ t !5a f8~ t !~2k f~ t !2A1B!, ~27!

in which k,A,Bare arbitrary constants andf is an arbitrary function. BothP andQ are either a first
Painlevéfunction (kÞ0) or a Weierstrass elliptic function (k50). This also defines a solution t
the Tzitzéica equation only under the two additional restrictionsF(t)50, f 9(t)50. This implies
k50, A5B and thus forbids the first Painleve´ function, only leaving the elliptic solution@formula
~104! in Ref. 18#.

One must therefore turn to the study of the singularity structure of the Tzitze´ica equation.
If the underlying scattering problem is not of second order, then the usual truncation of W

~as well as its two-singular manifold extension18,36! is not adapted and it should generically fa
Indeed, the determining equations generated by the Weiss truncation@condition of identical van-
ishing of a polynomial in (w2w0)21# are equivalent37 to those generated by the assumption t
the fieldc defined by

wx

w2w0
2

wxx

2wx
5

1

x
5

cx

c
~28!

satisfies thesecond-orderlinear system

cxx1
S

2
c50, ~29!

c t1Ccx2 1
2 Cxc50, ~30!

in which S and C are invariant under a homography onw and linked by the cross-derivativ
condition

X[St1CSx12CxS1Cxxx50. ~31!

As briefly explained in paper I formulas~26! and~27!, when the scattering problem is of thir
order, it is inconsistent to perform the Weiss truncation, then to insert in each of the gen
determining equations an assumption for a third-order Lax pair. For the same reason, it
inconsistent to introduce the so-calledsingular manifold equation. Although such an inconsistenc
may still provide the full result for some ‘‘robust’’ equations~Boussinesq,38 Sawada–Kotera,39

Hirota–Satsuma34!, there do exist equations for which it leads to a failure, and the Ka
Kupershmidt equation studied in paper I is one of them.

The correct procedure40 when one assumes a scattering problem with an ordern>2 is to
generate determining equations@~27! in paper I# by expansion on a (n21)-component basis.

The Tzitzéica equation is one of the equations which, up to now, has escaped the W
truncation, as found by three previous attempts in his formalism:

~1! the truncation ofe2u has no solution at all,41,42 not even the one-soliton;
~2! the truncation ofeu ~Ref. 18! does provide some particular solutions~in particular a two-wave

solution! but, when the involved computations are finished, it should probably fail to pro
a Lax pair;

~3! the truncation ofeu contains a particular solution43 linking w to the pair (t,t8), in which t
satisfies the Tzitze´ica triplet ~14!–~16! andt8 its adjoint.20,25

To summarize, the results of singularity analysis which are missing are the following.

~1! Definition of a truncation whose general solution is unique and defines a single Lax pa
a Darboux transformation.

~2! The BT as exactly two DEs, namely one nonlinear ODE~necessarily linearizable! plus one
first-order PDE, with a commutator equivalent to the Tzitze´ica equation.
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III. SINGULARITY STRUCTURE OF THE ZHIBER–SHABAT EQUATIONS

Equation~12! always possesses the family

eu;2~2/a!wxw t~w2w0!22, indices ~21,2!, D5~2/a!]x] t . ~32!

For the Liouville equation, this is the only family. For Sine-Gordon~SG!, there also exists the
family

e2u;~2/a1!wxw t~w2w0!22, indices ~21,2!, D52~2/a1!]x] t , ~33!

which reflects the invariance of SG underu→2u1Log(2a1 /a).
For the Tzitze´ica equation, there also exists the family

e2u;A~1/a2!wxw t~w2w0!21, indices ~21,2!. ~34!

However, the existence of the single family for the Hirota–Satsuma equation~6!

w;awx~w2w0!21, indices ~21,1,6!, D5a]x , ~35!

together with the link~7!, proves that this second family~34! is irrelevant and must not be
considered. This conclusion is confirmed by the negative result of Weiss41,42 obtained when
performing a truncation one2u.

All the truncations will accordingly take the form

eu5D Logt1eU, E~u!50, D5~2/a!]x] t , ~36!

without assuming thatU should satisfyE(U)50.
Remark:In paper I, the similar assumptionE(U)50 is, also, unnecessary for the equation

Kaup–Kupershmidt, since the conditionE(U)50 comes out of the truncation.

IV. ASSUMPTION OF A SECOND-ORDER SCATTERING PROBLEM

We are going to derive, by singularity analysis only, first the general solution of the Liou
equation and its hetero-BT to the d’Alembert equation and second the second-order Lax p
the auto-BT of both the Liouville and sine-Gordon equations.

A. Hetero-BT between Liouville and d’Alembert equations

The special form of the Liouville equation allows the assumption~36! to be integrated twice
to yield

u522 logt1V, E~u!5(
j 50

2

Ejt
j 2250, ~37!

in which nothing is assumed onV. The three determining equations are then quite simple,

E0[2txt t1aeV50, ~38!

E1[txt50, ~39!

E2[Vxt50, ~40!

and their general solution depends on two arbitrary functions of one variable,

t5 f ~x!1g~ t !, ~41!

eV52
2

a
txt t52

2

a
f 8~x!g8~ t !, ~42!
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eu52
2

a

txt t

t2 52
2

a

f 8~x!g8~ t !

~ f ~x!1g~ t !!2 , ~43!

eU5t22eV1
2

a

txt t

t2 50. ~44!

Thus, the two fieldsu andV are the general solution of, respectively, the Liouville and d’Alemb
equations. The hetero-BT between these two equations is provided by the elimination off andg
between~42!, ~43! and thex- and t-derivatives of~37!:

~u2v !x5ale~u1v !/2, ~45!

~u1v ! t522l21e~u2v !/2, ~46!

in which v is another solution of d’Alembert equation defined by

ev5~lt t!
22eV52

2

a
l22

f 8~x!

g8~ t !
. ~47!

Remark:When performing the truncation~36!, Tamizhmani and Lakshmanan44 already found
eU50, txt50 as aparticular solution, while the above truncation~37! proves it to be thegeneral
solution. Another difference between the two truncations is the presence of a fieldV in ~37!, which
allows one to find in addition the hetero-BT between the Liouville and d’Alembert equation

B. Auto-BT of Liouville and sine-Gordon equations

One takes herea250 and eithera150 ~Liouville! or, by a linear change on variableu, a1

52a ~sine-Gordon!. Let us define a unique truncation for both equations.
For sine-Gordon, the two equivalent families provide the two pieces of information

eu5D Logt11eU1,
~48!

e2u5D Logt21e2U2,

in which eacht j satisfies some second-order Lax pair andU1 ,U2 are two a priori unknown
quantities. Consequently, the field

Y5
t1

t2
~49!

satisfies a Riccati system. The condition thatY be a homographic transform ofx and vanish asx
whenw2w0 goes to zero imposes the existence of two nonzero quantities~A,B! such that34,36

Y215B~x211A!, ABÞ0; ~50!

in which the Riccati system satisfied by the expansion variableY is easily deduced from the
canonical one satisfied byx:

xx511
S

2
x2, ~51!

x t52C1Cxx2
CS1Cxx

2
x2, ~52!

with S andC linked by ~31!. The elimination of (t1 ,t2) between~48! and ~49! leads to
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eu2e2u5D LogY1eU12eU2, E~u!50, ~53!

which can be integrated twice to yield18,36

u522 LogY1W, E~u!50. ~54!

For Liouville, if we assume the most general form for the unknown second-order Lax pai
arrive at an assumption identical to~54!.

Accordingly, in both cases, the truncation is

u522 LogY1W, Y215B~x211A!, E~u!5(
j 50

4

Ej~W,A,B,S,C!Yj 2250, ~55!

in which nothing is imposed onW @it is to avoid any confusion with~37! that we use different
symbolsV andW#. This generates six determining equations:Ej50 and~31!, in which B andW
only contribute by the productB2eW. They are solved as usual by ascending values ofj:

E0 :B2eW5
2

a
C, ~56!

E1 :A52 1
2~LogC!x , ~57!

E2[0, ~58!

E3 :S52F~x!1
Cx

2

2C22
Cxx

C
, ~59!

E4 :CCxt2CxCt1F~x!C31a1aF~x!21C50, ~60!

X:a1F8~x!50, ~61!

in which F is a function of integration. For sine-Gordon,F(x) must be a constant

F~x!52l2. ~62!

In the Liouville case, for which the truncation imposes no restriction onF(x), let us also require
thatF(x) be a constant. Then, for both equations, LogC is proportional to a second solutionŨ of
the PDE

C5
a

2
l22eŨ, E~Ũ !50, ~63!

and one has obtained the Darboux transformation

u522 Logy1Ũ, y5lBY, ~64!

in which y satisfies the Riccati system

yx5l1Ũxy2ly2, ~65!

yt52
a

2
l21eŨ2

a1

2
l21e2Ũy2. ~66!
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The second-order matrix Lax pair~Refs. 45 and 46 in the Liouville case! results from the linear-
ization y5c1 /c2 :

~]x2L !S c1

c2
D50, L5S Ũx/2 l

l 2Ũx/2
D , ~67!

~] t2M !S c1

c2
D50, M5S 0 2~a/2!l21eŨ

~a1/2!l21e2Ũ 0
D . ~68!

The auto-BT~classical for sine-Gordon, Ref. 46 for Liouville! results from the substitutiony

5e2(u2Ũ)/2 into ~65! and ~66!:

~u1Ũ !x524l sinh
u2Ũ

2
, ~69!

~u2Ũ ! t5l21~ae~u1Ũ !/21a1e2~u1Ũ !/2!. ~70!

The ODE part of the BT is a Riccati equation, and the link between the entire functiont and the
solutionc of a scalar Lax pair ist5c @see~120! and ~121!#.

For sine-Gordon, the Riccati system~65! and~66! is invariant under the involutions~denoting
y5lt/tx)

~Y,U,l!→~Y21,U22 LogY,2l!,~Y21,2U,l!, ~71!

~Y,U,l,u,]x ,] t!→~e2UY,2U,2a/~2l!,u,] t ,]x!, ~72!

~Y,eU,l!→~Y21,e2U1D Logt,2l!. ~73!

This defines the two usual forms of the DT of sine-Gordon:

eu5e2sU1D Logt, ~74!

u5sU22 LogY, ~75!

in which s can take either sign61.

C. The case of the Tzitze´ ica equation

We have already summarized in Sec. II the consequences of the assumption of a secon
scattering problem. Although, in our opinion, this question is not settled yet, we will not com
any more on it.

An additional computational complication arises from the existence of a single family.
indeed forbids the integration of the operatorD twice in order to transform the assumption~36!
into one with a form similar to either~37! or ~54!.

V. ASSUMPTION OF A THIRD-ORDER SCATTERING PROBLEM

There only remains the Tzitze´ica equation.
The only Lax pair invariant under~2! is the matrix pair in the basis (tx ,t t ,t),

~]x2L !S tx

t t

t
D 50, L5S f 1 f 2 f 3

g1 g2 g3

1 0 0
D , ~76!
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~] t2M !S tx

t t

t
D 50, M5S g1 g2 g3

h1 h2 h3

0 1 0
D , ~77!

in which the nine coefficientsf j ,gj ,hj , j 51,2,3, are functions to be determined. We define it
the equivalent projective Riccati components (Y1 ,Y2) with the propertyY1,t5Y2,x :

Y15
tx

t
, Y25

t t

t
, ~78!

Y1,x52Y1
21 f 1Y11 f 2Y21 f 3 , ~79!

Y2,x52Y1Y21g1Y11g2Y21g3 , ~80!

Y1,t52Y1Y21g1Y11g2Y21g3 , ~81!

Y2,t52Y2
21h1Y11h2Y21h3 . ~82!

The truncation defined by

eu5D Logt1eU, ~83!

E~u![(
k50

3

(
l 50

32k

Ekl~ f j ,gj ,hj ,U !Y1
kY2

l 50 ~84!

generates ten determining equations,

;k,l :Ekl~ f j ,gj ,hj ,U !50, ~85!

in U and the nine unknown coefficients. One must add to them the six equationsXj50 defined by
the cross-derivative conditions

~Y1,x! t2~Y1,t!x5X01X1Y11X2Y250, ~86!

~Y2,x! t2~Y2,t!x5X31X4Y11X5Y250. ~87!

During their resolution, one first proves that the productf 2h1 cannot vanish~otherwisea2

would be zero!. This makes the 16 equations algebraically independent and equivalent to t
differential relations

f j ,t ,gj ,x ,gj ,t ,hj ,x ,gj ,xt5P~$ f k ,gk ,hk%, k51,2,3!, j 51,2,3, ~88!

with P polynomials whose coefficients depend onU,Ux ,Ut ,Uxt , plus the single algebraic relatio

E00[a22
4

a2 ~g31g1g21~a/2!eU!250. ~89!

They are solved successively as@equations are numbered as in~88! and ~89!#
g3,xt2(g3,x) t , : E(U)50,
g1,x2g2,t : 'g0(x,t):g15g0,t , g25g0,x

g2,t : g352aeU2g0,xg0,t2g0,xt

E00 : ' f 0(x,t)Þ0: f 25Aa2W21f 0 , h15Aa2W21f 0
21,

notationW5eU1(2/a)g0,xt

g2,x : f 352Aa2W21f 0g0,t2 f 1g0,x2g0,x
2 1g0,xx ,
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g3,x : f 15Wx /W12g0,x , ~90!
f 2,t : h25Wt /W12g0,t2 f 0,t / f 0 ,
h1,x : f 0,x50,
g1,t : h35g0,t(2Wt /W1 f 0,t / f 02g0,t)1g0,tt2Aa2W21g0,x / f 0 ,
g3,t : f 0,t50,
h2,x : g0,xt50.

The irrelevant arbitrary functiong0 reflects the freedom in the definition~83! of t and can be
absorbed by redefiningt as te2g0. Thus the solution is unique: the fieldU must satisfy the
Tzitzéica PDE, andf 0 is an arbitrary nonzero complex constantl. Accordingly, one has obtaine
a Lax pair and a Darboux transformation. This Lax pair is the rewriting in matrix form of
scalar triplet; it reads in its equivalent projective Riccati representation

Y1,x52Y1
21UxY11Aa2le2UY2 , ~91!

Y2,x52Y1Y22aeU, ~92!

Y1,t52Y1Y22aeU, ~93!

Y2,t52Y2
21UtY21Aa2l21e2UY1 , ~94!

with cross-derivative conditions proportional to the Tzitze´ica equation

~Y1,x! t2~Y1,t!x5Y1E~U !, ~Y2,x! t2~Y2,t!x5Y2E~U !. ~95!

It admits by construction the involution~20!, equivalent to

~t,eU,l!→~1/t,eU1D Logt,2l!. ~96!

This defines two equivalent writings for the DT,~21! and ~36!.
Remark:Knowing these results, one can also write this DT17,22,23as a difference of the two

fields u2U in terms of the two components of a projective Riccati pseudopotential

u5U1Log~22l2y1y221!, yj5a21/2l21Yje
2U/2, ~97!

in a quite similar manner to the DT of Liouville and sine-Gordon~64!.
In order to find the BT, one must now eliminate one of the two equivalent projective c

ponents, and this defines two possible, different, eliminations.

VI. BÄCKLUND TRANSFORMATION

A. First elimination: BT of the Hirota–Satsuma equation

One takesY2 from ~91! and substitutes it into the three remaining equations, which resul

Y25~Y1,x1Y1
22UxY1!eU/~Aa2l!, ~98!

ODE[Y1,xx13Y1Y1,x1Y1
32e2U~eU!xxY11aAa2l50, ~99!

PDE[Y1,t1eU~~Y1Y1,x1Y1
3!2Y1

2Ux!/~Aa2l!1aeU50, ~100!

~94![2Y1E~U !2
eUY1

Aa2l
ODE1~2Y12Ux1]x!PDE50, ~101!

@ODE,PDE#5~Y1,xx! t2~Y1,t!xx5Y1~e2UE~U !!x . ~102!
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Only two of them are functionally independent, as shown by relation~101!, but the commutator
~102! of Eqs. ~99! and ~100! shows that this elimination fails to generate the auto-BT of
Tzitzéica equation.

However, it does provide another result, which we now derive. The ODE~99! belongs to the
classification of Gambier—this is the number 5, see Eq.~13!. It is linearizable by the transforma
tion Y15]x Log c into the third-order linear ODE~22! considered by Gaffet, with the relatio
t5c between the two entire functions. This transformation also linearizes the PDE~100! ~the
linearization is best seen on the equivalent combinationY1,t2Y2,x of the projective Riccati sys-
tem!, and the resulting linear system.

txxx2~Uxx1Ux
2!tx1Aa2alt50, ~103!

2Aa2lt t1eUtxx2Uxe
Utx50, ~104!

which cannot be a scalar Lax pair of the Tzitze´ica equation, is, in fact, the scalar Lax pair of th
Hirota–Satsuma equation~5!:

txxx2~6/a!wxtx1Lt50, ~105!

Lt t2~2/a!wttxx1~2/a!wxttx50, ~106!

under the change of variables~7!.
Thus, the underlying Gambier equation for the Hirota–Satsuma equation is the fifth one~13!.

Let us recall that the Painleve´ analysis of the Hirota–Satsuma equation34 directly provides this
result.

B. Second elimination: BT of the Tzitze ´ ica equation

The second elimination is to takeY1 from ~92! and to substitute it into the three remainin
equations:

Y152~Y2,x1aeU!/Y2 , ~107!

ODE[Y2Y2,xx22Y2,x
2 2~UxY213aeU!Y2,x1Aa2le2UY2

32a2e2U50, ~108!

PDE[Y2Y2,t1Y2
32UtY2

21Aa2al21~11e2UY2,x!50, ~109!

~93![E~U !2Aa2l21e2UY2
22ODE1~2aeUY2

211]x!PDE50, ~110!

@ODE,PDE#5~Y2,xx! t2~Y2,t!xx5~3aeU1UxY213Y2,x2Y2]x!E~U !. ~111!

Only two of them are functionally independent, as shown by the relation~110!, and the vanishing
of the commutator~111! of Eqs. ~108! and ~109! is equivalent to the vanishing of the Tzitze´ica
equation forU. This elimination therefore generates the auto-BT of the Tzitze´ica equation by the
substitution

Y25~a/2!E ~eu2eU!dx ~112!

into ~108! and ~109!.
This BT, contrary to all the previously proposed ones, obeys the definition given in Se
The nonlinear ODE~108! again belongs to the equivalence class of the fifth Gambier equa

~13!, and its linearization

Y2
2152a21e2U]x Log~eUc! ~113!
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transforms the two equations~108! and ~109! into the third-order scalar Lax pair of the Gelfan
and Dikii types:

Lc[cxxx1~2Uxx2Ux
2!cx1~~2Uxx2Ux

2!x/21Aa2al!c50, ~114!

Mc[c t1Aa2~al!21e22U~cxx1Uxcx1Uxxc!1S Ut1E ~aeU1a2e22U!dxDc50,

~115!

@L,M#53E]x
21~2~eU!xE1Ex!]x1~eU!xEx1~3Uxx2Ux

2!E, E5E~U !. ~116!

Remarks:
~1! The results of these two different eliminations show that the scalar Lax pair deduced

a matrix one crucially depends on the choice of the scalar component.
~2! In the third step of the method presented in paper I, which we have not strictly follo

here, one had to assume a link]x] t Log t5 f (c) between the two entire functionst andc. This
link is herea posterioriprovided by the linearizing formula~113! and the Riccati equation~93!;
this is the invertible transformation

t5e2U~eUc!x , c52~1/a!e2Ut t . ~117!

~3! The number three, rather than two, of linear scalar equations~14!–~16! in t has been the
source of all the difficulties to obtain the correct BT. Its reduction to two, i.e., to a true scala
pair, is achieved by taking the parametric representation of the third one~16!,

'C:t5e2UCx , t t52aC, ~118!

and by inserting it in the two other equations. After the rescalingC5eUc, Eq.~14! becomes
exactly ~114!, but Eq.~15! becomes~115! without its last term (*E(U)dx)c; this one is recov-
ered by adding a suitable termec with et50 so as to match the cross-derivative conditi
(cxxx) t5(c t)xxx with the conditionE(U)50. Note that such a matching term also arises in
sine-Gordon case36 when converting the Riccati form~65! and ~66! into a one-component scala
Lax pair:

y215l21]x Logt, ~119!

L1t[txx1Uxtx2lt50, ~120!

L2t[t t1
a

2l
eUtx2S E ~aeU1a1e2U!dxD t50, ~121!

@L1 ,L2#52E~U !]x . ~122!

~4! Denoting (t1 ,t2 ,t3) the wave vectors of the Lax pair of Mikhailov~17! and ~18!, the
correspondence is

t15~Aal!21e2U/2t t , t25~Aal!21e2U/2tx , t35t. ~123!

VII. CONCLUSION

The results of this paper are twofold: the explicit analytic expression for the Ba¨cklund trans-
formation, and the proof that there indeed exists an application of the truncation method a
yield all the integrability results. This reinforces the power of the singularity approach to P
initiated by Weisset al.
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Table I represents a unified picture of the Darboux transformation of each of the three
tions of the Zhiber–Shabat group.
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4G. Tzitzéica, ‘‘Sur une nouvelle classe de surfaces,’’ C. R. Acad. Sci. Paris144, 1257–1259~1907!.
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On the Groenewold–Van Hove problem for R 2n
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We discuss the Groenewold–Van Hove problem forR2n, and completely solve it
whenn51. We rigorously show that there exists an obstruction to quantizing the
Poisson algebra of polynomials onR2n, thereby filling a gap in Groenewold’s
original proof. Moreover, whenn51 we determine the largest Lie subalgebras of
polynomials which can be consistently quantized, and explicitly construct all their
possible quantizations. ©1999 American Institute of Physics.
@S0022-2488~99!00304-7#

I. INTRODUCTION

In 1946 Groenewold1 presented a remarkable result which states that one cannot consis
quantize the Poisson algebra of all polynomials in the positionsqi and momentapi on R2n as
symmetric operators on some Hilbert spaceH, subject to the requirement that theqi and pi be
irreducibly represented. Van Hove2 subsequently refined Groenewold’s result. Thus it isin prin-
ciple impossible to quantize—byany means—every classical observable onR2n, or even every
polynomial observable, in a way consistent with Schro¨dinger quantization~which, according to the
Stone–Von Neumann theorem, is the import of the irreducibility requirement on theqi andpi). At
most one can consistently quantize certain Lie subalgebras of observables, for instance
mials which are at most quadratic, or observables which are affine functions of the momen

This is not quite the end of the story, however; there are two loose ends which need to b
up. The first is that there is a technical gap in Groenewold’s proof.3 This gap has been filled in
Ref. 2 ~see also Ref. 4! by means of a certain functional analytic assumption. Although ‘‘sma
this gap is nevertheless vexing, and its elimination in this manner is not entirely satisfa
Second, in the absence of such a polynomial quantization, it is important to determine the
Lie subalgebras of polynomials that can be consistently quantized along with their quantiza
While some results are known along these lines, this program has not yet been fully carrie

In this paper we consider the Groenewold–Van Hove problem forR2n. We present two
variants of Groenewold’s theorem~‘‘strong’’ and ‘‘weak’’ !; the weak one is the version tha
Groenewold actually proved, while the strong one is the result referred to above. We then
that the strong version follows from the weak onewithout introducing extra hypotheses. Thus w
fill the gap in Groenewold’s proof. Moreover, whenn51 we determine the largest quantizable L
subalgebras of polynomials and explicitly construct all their possible quantizations.

To make the presentation self-contained, we include a detailed discussion of previous w
the Groenewold–Van Hove problem.

II. BACKGROUND

Let P(2n) denote the Poisson algebra of polynomials onR2n with Poisson bracket

$ f ,g%5 (
k51

n F ] f

]pk

]g

]qk
2

]g

]pk

] f

]qkG .

a!Electronic mail: gotay@math.hawaii.edu
21070022-2488/99/40(4)/2107/10/$15.00 © 1999 American Institute of Physics
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P(2n) contains several distinguished Lie subalgebras: TheHeisenberg algebra

h~2n!5span$1,qi ,pi u i 51, . . . ,n%;

the symplectic algebra

sp~2n,R!5span$qiqj ,qipj ,pipj u i , j 51, . . . ,n%;

the extended~or inhomogeneous! symplectic algebra

hsp~2n,R!5span$1,qi ,pj ,qiqj ,qipj ,pipj u i , j 51, . . . ,n%,

which is the semidirect product of h(2n) with sp(2n,R); and thecoordinate~or position! algebra

C~2n!5H (
i 51

n

f i~q!pi1g~q!J ,

where f i andg are polynomials. All of these will play an important role in our development.
Let Pk(2n) denote the subspace of polynomials of degree at mostk, andPk(2n) the subspace

of homogeneous polynomials of degreek. Then P1(2n)5h(2n), P2(2n)5sp(2n,R), and
P2(2n)5hsp(2n,R). Whenn is fixed, we simply writeP5P(2n), etc.

We now state what it means to ‘‘quantize’’ a Lie algebra of polynomials onR2n. Throughout,
the Heisenberg algebra h(2n) is regarded as a ‘‘basic algebra of observables.’’5

Definition 1: Let O be a Lie subalgebra ofP(2n) containing the Heisenberg algebra h(2n).
A quantizationof O is a linear mapQ from O to the linear space Op(D) of symmetric operators
which preserve a fixed dense domainD in some separable Hilbert spaceH, such that for all
f ,gPO,

~Q1! Q($ f ,g%)5 i /\@Q( f ),Q(g)#,
~Q2! Q(1)5I ,
~Q3! If the Hamiltonian vector fieldXf of f is complete, thenQ( f ) is essentially self-adjoint

on D,
~Q4! Q represents h(2n) irreducibly, and
~Q5! D contains a dense set of separately analytic vectors for the standard basis ofQ(h(2n)).
We briefly comment on these conditions; a full exposition along with detailed motivatio

given in Ref. 5.
Condition ~Q1! is Dirac’s famous ‘‘Poisson bracket→commutator’’ rule; here\ is Planck’s

reduced constant. The second condition reflects the fact that if an observablef is a constantc, then
the probability of measuringf 5c is one regardless of which quantum state the system is
Regarding~Q3!, we remark that in contradistinction with Van Hove,2 we do not confine our
considerations to only those classical observables whose Hamiltonian vector fields are co
Rather than taking the point of view that ‘‘incomplete’’ classical observables cannot be quan
we simply do not demand that the corresponding quantum operators be essentially self-
~‘‘e.s.a.’’!.

~Q4! and ~Q5! emphasize the fundamental role of the Heisenberg algebra. The tech
condition ~Q5! guarantees the integrability of the Lie algebra representationQ(h(2n)) on D.6

@There do exist nonintegrable representations of the Heisenberg algebra;7 however, none of them
seem to have physical significance.~Q5! thus serves to eliminate these ‘‘spurious’’ represen
tions.# By virtue of the Stone–Von Neumann theorem,~Q5! along with the irreducibility criterion
~Q4! imply thatQ(h(2n)) is unitarily equivalent to a restriction of theSchrödinger quantization
dP:

qi°qi , pj °2 i\]/]qj , and 1°I ~1!
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on the Schwartz spaceS(Rn),L2(Rn). Indeed, by~Q5! Q(h(2n)) can be integrated to a repre
sentationt of the Heisenberg group H(2n) which, according to~Q4!, is irreducible. The Stone–
Von Neumann theorem then states that this representation of H(2n) is unitarily equivalent to the
Schrödinger representationP, and hencet5UPU21 for some unitary mapU:L2(Rn)→H.
Consequently,8 Q( f )5UdP( f )U21�D for all f Ph(2n), where the bar denotes closure. It no
follows from ~1!, the invariance of the domainD, and Sobolev’s lemma thatU21D#S(Rn), so
that U21QU is the restriction ofdP to U21D.

Finally, there is a sixth criterion that a quantization must satisfy in general, viz., thatQ be
faithful when restricted to the given basic algebra of observables.5 In the case of the Heisenber
algebra, however, this follows automatically by virtue of~Q1! and ~Q2!.

III. THE WEAK NO-GO THEOREM

In the next two sections we argue that there are no quantizations ofP(2n). Extensive dis-
cussions can be found in Refs. 1–4 and 9–13. We shall state the main results forR2n but, for
convenience, usually prove them only forn51. The proofs for higher dimensions are immedia
generalizations of these.

We begin by observing that theredoesexist a quantizationdÃ of hsp(2n,R). It is given by
the familiar formulas

dÃ~qi !5qi , dÃ~1!5I , dÃ~pj !52 i\
]

]qj
,

dÃ~qiqj !5qiqj , dÃ~pipj !52\2
]2

]qi]qj
, ~2!

dÃ~qipj !52 i\S qi
]

]qj
1

1

2
d j

i D , ~3!

on the domainS(Rn),L2(Rn). Properties~Q1!–~Q3! are readily verified.~Q4! follows automati-
cally since the restriction ofdÃ to P1 is just the Schro¨dinger representation. For~Q5! we recall
that the Hermite functionshk1•••kn

(q1, . . . ,qn)5hk1
(q1)•••hkn

(qn), where

hk~q!5eq2/2
dk

dqk e2q2

for k50,1,2, . . . , form a dense set of separately analytic vectors fordÃ(P1). As these functions
are also separately analytic vectors fordÃ(P2),14 the operator algebradÃ(P2) is integrable to a

unique representationÃ of the universal cover HSp˜(2n,R) of the extended~or inhomogeneous!
symplectic group HSp(2n,R) ~thereby justifying our notation ‘‘dÃ ’’ !.15 Ã is known as the
‘‘extended metaplectic representation;’’ detailed discussions of it may be found in Refs. 1
13.

We call dÃ the ‘‘extended metaplectic quantization.’’ It has the following crucial proper
Proposition 1:The extended metaplectic quantization is theuniquequantization of hsp(2n,R)

which exponentiates to a unitary representation of HSp˜(2n,R).
By ‘‘unique,’’ we mean up to unitary equivalence and restriction of representations.
Proof: SupposeQ were another such quantization of hsp(2n,R) on some domainD in a

Hilbert spaceH. ThenQ~hsp~2n,R!! can be integrated to a representationt of HSp̃(2n,R), and

~Q4! implies thatt, when restricted to H(2n),HSp̃(2n,R), is irreducible. The Stone–Von Neu
mann theorem then states that this representation of H(2n) is unitarily equivalent to the Schro¨-
dinger representation, and hencet5UÃU21 for some unitary mapU:L2(Rn)→H.16 Conse-
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quently,Q( f )5UdÃ( f )U21�D for all f Phsp(2n,R). Arguing as in the discussion following
Definition 1, we see thatU21QU is in fact therestriction of dÃ to U21D#S(Rn). h

The existence of an obstruction to quantization now follows from Theorem 2.
Theorem 2 „Weak No-Go Theorem…: The extended metaplectic quantization ofP2 cannot

be extended beyondP2 in P.
Since P2 is a maximal Lie subalgebra ofP,17 ~Q1! implies that any quantization which

extendsdÃ must be defined on all ofP. Thus we may restate this as:There exists no quantizatio
of P which reduces to the extended metaplectic quantization on P2.

Proof: Let Q be a quantization ofP which extends the metaplectic quantization ofP2. As
noted previously, we may assume that the domainD#S(Rn). We will show that a contradiction
arises when cubic polynomials are considered.

Taken51. By inspection of~1!–~3! we see that the ‘‘Von Neumann rules’’

Q~q2!5Q~q!2, Q~p2!5Q~p!2, ~4!

Q~qp!5 1
2~Q~q!Q~p!1Q~p!Q~q!!, ~5!

hold. These in turn lead to higher degree Von Neumann rules.9,10

Lemma 1:For all real-valued polynomialsr,

Q~r ~q!!5r ~Q~q!!, Q~r ~p!!5r ~Q~p!!,

Q~r ~q!p!5 1
2@r ~Q~q!!Q~p!1Q~p!r ~Q~q!!#,

Q~qr~p!!5 1
2@Q~q!r ~Q~p!!1r ~Q~p!!Q~q!#.

Proof: We illustrate this forr (q)5q3. The other rules follow similarly using induction. Now
$q3,q%50 whence by~Q1! we have@Q(q3),Q(q)#50. Since also@Q(q)3,Q(q)#50, we may
writeQ(q3)5Q(q)31T for some operatorT which ~weakly! commutes withQ(q). We likewise
have using~4!

@Q~q3!,Q~p!#52 i\Q~$q3,p%!53i\Q~q2!53i\Q~q2!5@Q~q!3,Q~p!#

from which we see thatT commutes withQ(p) as well. Consequently,T also commutes with
Q(q)Q(p)1Q(p)Q(q). But then from~5!,

Q~q3!5
1

3
Q~$pq,q3%!5

i

3\
@Q~pq!,Q~q3!#

5
i

3\F1

2
„Q~q!Q~p!1Q~p!Q~q!…,Q~q!31TG

5
i

6\
@Q~q!Q~p!1Q~p!Q~q!,Q~q!3#5Q~q!3. ,

With this lemma in hand, it is now a simple matter to prove the no-go theorem. Conside
classical equality

1
9$q

3,p3%5 1
3$q

2p,p2q%.

Quantizing and then simplifying this, the formulas in Lemma 1 give

Q~q!2Q~p!222i\Q~q!Q~p!2 2
3\

2I

for the lhs, and
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Q~q!2Q~p!222i\Q~q!Q~p!2 1
3\

2I

for the rhs, which is a contradiction. h

IV. THE STRONG NO-GO THEOREM

In Groenewold’s paper1 a stronger result was claimed: His assertion was that there i
quantization ofP, period. This isnot what Theorem 2 states. For ifQ is a quantization ofP, then
while of courseQ(P1) must coincide with Schro¨dinger quantization, it is not obvious thatQ need
be the extended metaplectic quantization when restricted toP2. Referring to Proposition 1, the
problem is thatQ(P2) is not a priori integrable;~Q5! only guarantees thatQ(P1) can be inte-
grated. From a different point of view, the problem lies indeducingthe relations~2! and ~3! or,
equivalently, the Von Neumann rules~4! and~5! from the quantization axioms~Q1!–~Q5! and the
properties of the extended symplectic algebra alone.

Van Hove2 supplied an extra assumption guaranteeing the integrability ofQ(P2), which in
particular implies: If the Hamiltonian vector fields off ,g are complete and$ f ,g%50, thenQ( f )
andQ(g) stronglycommute.18 This assumption is used to derive relations~2! and ~3! in Refs. 4
and 9. It is also possible to enforce the integrability ofQ(P2) in a more direct manner.3

We now show that Van Hove’s assumption is unnecessary; in fact, we may establis
integrability ofQ(P2) directly, via the following generalization of Proposition 1.

Proposition 3:LetQ be a quantization ofP2 on a dense invariant domainD in a Hilbert space
H. Then there is a unitary transformationU: L2(Rn)→H such thatQ( f )5UdÃ( f )U21�D for
all f PP2.

Thus, up to unitary equivalence,Q must be eitherdÃ or a restriction thereof. As such,Q(P2)
must be integrable and, consequently, Van Hove’s strong commutativity assumption hol
elements ofP2.

Before giving the proof, we establish two technical lemmas.
Lemma 2:Let A be an e.s.a. operator on a Hilbert space, andB a closable operator, both o

which have a common dense invariant domainD. Suppose thatD consists of analytic vectors fo
A, and thatA ~weakly! commutes withB. Then exp(iĀ) ~weakly! commutes withB̄ on D.

Proof: Recall that ascPD is analytic forA,

eiĀc5 (
k50

`
1

k!
~ iA !kc5:f.

Define the partial sums

fK5 (
k50

K
1

k!
~ iA !kcPD;

then using the~weak! commutativity ofA andB,

BfK5 (
k50

K
1

k!
~ iA !kBcPD.

SinceBcPD is analytic forA, the sequenceBfK converges:

xª lim
K→`

BfK5eiĀBc5eiĀB̄c.

But B̄ is closed, hencef5 limK→`fK is in the domain ofB̄ andx5B̄f, i.e.,

eiĀB̄c5B̄eiĀc
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for all cPD. ,

Lemma 3:Let B be a closable operator. If a bounded operatorT ~weakly! commutes withB̄ on
D(B), then they also commute onD(B̄).

Proof: If cPD(B̄), then from the definition of closure there exists a sequence$ck% in D(B)
with ck→c such thatBck→B̄c. Because the operatorT is continuous,

TB̄c5T lim
k→`

Bck5 lim
k→`

TBck5 lim
k→`

B̄Tck

asT commutes withB̄ on D(B). Again applying the definition of closure to the sequence$Tck%
in D(B̄), we get that limk→`Tck5TcPD(B̄) and

B̄Tc5 lim
k→`

B̄Tck5TB̄c

for everycPD(B̄). ,

Proof of Proposition 3:Let Q be a quantization ofP2. As discussed earlier, we may assum
that Q(P1) is the Schro¨dinger representation~1! on L2(Rn), and that the domainD#S(Rn).
Again takingn51, we will prove by brute force that the Von Neumann rules~4! and ~5! hold.

We begin by determiningQ(q2). SetD5Q(q2)2Q(q)2. We readily verify that@D,Q(q)#
50 and@D,Q(p)#50 onD. Now letDv#D be the space of separately analytic vectors forQ(q)
andQ(p); by ~Q5! we have thatDv is dense. According to Proposition 1 of Ref. 6,D leavesDv

invariant. By Corollary 2 in Sec. X.6 of Ref. 7,Q(q)�Dv is e.s.a.; moreover,DvªD�Dv is
symmetric and hence closable. Upon takingA5Q(q)�Dv andB5Dv in Lemma 2, it follows that
exp(iQ(q)�Dv)5exp(iQ(q)) and Dv commute onDv. Lemma 3 than shows that exp(iQ(q))
and Dv commute onD(Dv). Likewise exp(iQ(p)) and Dv commute onD(Dv). But now the
unbounded version of Schur’s lemma19 implies that Dv5EI for some real constantE on
D(Dv)5L2(R). SinceDv is the smallest closed extension ofDv andDv,D,D̄, it follows that
D̄5EI, whenceD itself is a constant multiple of the identity onD. ThusQ(q2)5Q(q)21EI on
D.

An identical argument yieldsQ(p2)5Q(p)21FI on D. Quantizing the relation 4pq
5$p2,q2% and using these formulas then gives

Q~pq!5 1
2~Q~p!Q~q!1Q~q!Q~p!!

on D. But upon quantizing 2q25$pq,q2% we find thatE50. Similarly F50. It follows from
~1!–~3! thatQ5dÃ�D. h

Thus, up to unitary equivalence and restriction of representations, we may as well su
that D5S(Rn). If we were to take this as our starting point, then we could reverse our cons
tions and derive~4! and ~5! in a simpler fashion, cf. Sec. 5.1 of Ref. 5.

If Q were a quantization ofP, Q(P2) must therefore be unitarily equivalent to~a restriction
of! the extended metaplectic quantization, and this contradicts Theorem 2. Thus we have
our main result.

Theorem 4 „Strong No-Go Theorem…: There is no quantization ofP.
Van Hove2 gave a slightly different analysis using only those observablesf PC`(R2n) with

complete Hamiltonian vector fields, and still obtained an obstruction@but now to quantizing all of
C`(R2n)#. Yet other variants of Groenewold’s theorem are presented in Refs. 12 and 20. R
results can be found in Refs. 21 and 22.

V. QUANTIZABLE LIE SUBALGEBRAS OF POLYNOMIALS

We hasten to add that there are Lie subalgebras ofP(2n) other thanP2(2n) which can be
quantized. For example, consider the coordinate subalgebraC(2n). It is straightforward to verify
that for eachhPR, the mapsh :C(2n)→Op(S(Rn)) given by
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shS (
i 51

n

f i~q!pi1g~q!D 52 i\(
i 51

n S f i~q!
]

]qi
1F1

2
1 ih G] f i~q!

]qi D 1g~q! ~6!

is a quantization ofC(2n). s0 is the familiar ‘‘position’’ or ‘‘coordinate representation.’’ The
significance of the parameterh is explained in Ref. 23 and 24~see also Ref. 25!. There it is shown
that while the quantizationssh andsh8 are unitarily inequivalent ifhÞh8, they are related by a
nonlinearnorm-preserving isomorphism.

Proposition 5: Cis a maximal Lie subalgebra ofP.
Proof: We taken51. Suppose thatV were a Lie subalgebra ofP strictly containingC. V must

contain a polynomialh of the form

h~q,p!5 f ~q!pk1terms of degree at mostk21 in p

for somek.1 and some polynomialf Þ0 of degreel. Now bothq,pPV, and so by bracketingh
with q (k22)-times, we get

k!

2
f ~q!p21terms of degree at most degree 1 inpPV.

SinceC,V this implies thatf (q)p2PV. By bracketing this expression withp l-times, we con-
clude thatp2PV. Now both q2,qpPV, so P2,V. The maximality ofP2 implies thatV5P,
whenceC is maximal. h

As a consequence, any quantization which extendssh must be defined on all ofP. Thus
Theorem 4 yields

Corollary 6: The quantizationssh of C cannot be extended beyondC in P.
Furthermore a variant of Proposition 3~see also Theorem 8 in Ref. 25! yields ‘‘uniqueness:’’
Proposition 7:LetQ be a quantization ofC on a dense invariant domainD in a Hilbert space

H. Then there is anhPR and a unitary transformationU :L2(Rn)→H such thatQ( f )
5Ush( f )U21�D for all f PC.

Proof: Again setn51. As in the proof of Proposition 3, we may assume thatQ(P1) is given
by ~1! on L2(R) and thatD#S(R).

Just as before, we first compute thatQ(q2)5Q(q)21EI on D for some real constantE.
Now considerQ(q,p). Set

D5Q~qp!2 1
2~Q~q!Q~p!1Q~p!Q~q!!.

It is straightforward to verify thatD commutes with bothQ(q) andQ(p). The same argumen
based on Lemmas 2 and 3 and the unbounded Schur’s lemma that was used in the p
Propositin 3 can be appliedmutatis mutandisto giveD5GI on D for some real constantG. Thus

Q~qp!5 1
2~Q~q!Q~p!1Q~p!Q~q!!1GI ~7!

on D. By quantizing the Poisson bracket relation$qp,q2%52q2 we find thatE50. Arguing as in
the proof of Lemma 1, we then find that onD

Q~qk!5Q~q!k. ~8!

Next, quantizing the Poisson bracket relations$qkp,q%5qk and$qkp,p%52kqk21p yields

@Q~qkp!,Q~q!#52 i\Q~qk! and @Q~qkp!,Q~p!#5 i\kQ~qk21p!, ~9!

respectively. Now consider the classical relation (12k)qkp5$qkp,qp%. Quantizing this and sim-
plifying by means of~7!, ~9!, and~8! produces the recursion relation
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Q~qkp!5
1

12k
~Q~qk!Q~p!2kQ~q!Q~qk21p!!.

Iterating this computation (k21)-times gives

Q~qkp!5~12k!Q~qk!Q~p!1kQ~q!k21Q~qp!.

Again using~7! and simplifying, we finally get

Q~qkp!5Q~qk!Q~p!1kS G2
i\

2 DQ~q!k21.

Recalling~1! and ~8!, this can be rewritten

Q~qkp!52 i\Fqk
d

dq
1S 1

2
1

iG

\ Ddqk

dq G
on D. Consolidating this with~8!, we obtain~6! whereh5G/\. We thus haveQ5sh�D, as
claimed. h

Notice that unlike in the proof of Proposition 3, we cannot quantize the Poisson br
relation $q2,p2%524qp to obtainG50 sincep2¹C. The fact thatG remains arbitrary is mir-
rored by the presence of the parameterh in ~6!.

Thus far we have encountered two maximal Lie subalgebras ofP containingP1: P2 andC.
Whenn51, it turns out that these are essentially theonly such subalgebras.

Theorem 8: (n51) Up to isomorphism,P2 andC are the only maximal Lie subalgebras
P which containP1.

Proof: Suppose thatW were a maximal Lie subalgebra ofP containingP1, distinct fromP2.
We will show thatW must be isomorphic toC. DenoteWk5WùPk, etc.

Since WÞP2 there must exist a polynomial of degreek,k.2, in W. By bracketing this
polynomial (k22) times with an appropriate number ofp,qPW, we obtain a nonzero polynomia
hPW2. SinceP1,W, we may subtract off terms of degree one or less, so we may assumeh
is homogeneous quadratic. By means of a rotation we may diagonalizeh; thus we may further
suppose that canonical coordinates have been chosen so thath(q,p)5ap21cq2. Now dim W2

Þ3, for otherwiseP2,W, and then the maximality ofP2 implies thatW5P. We break the
argument into parts, depending on whether dimW251 or 2.

~i! dimW251: ThenW2 is spanned byh. We first claim that eitherW35W2 or W3,C3.
Indeed, if f PW3, then the quadratic terms of both$p, f %,$ f ,q%PW2 must be proportional to
h: $p, f %5rh1 l.d.t. and$ f ,q%5sh1 l.d.t., where ‘‘l.d.t.’’ means lower degree terms. The pa
ticular form of h then implies that

f ~q,p!5 1
3~sap31rcq3!1 l.d.t.,

along withsc50 andra50. SincehÞ0, botha,c cannot vanish. If bothr ,s50, thenf PW2 and
so W35W2. If both s,a50, thenh is proportional toq2 and f must be of the form

1
3rcq31aq21bqp1gp21 l.d.t.

But then$ f ,h%}2bq214gqpPW2, which forcesg50. ThusW3,C3. The canonical transfor-
mationq°p, p°2q reduces the subcase withr ,c50 to the previous one.

If W35W2 thenW5W2,P2, which contradicts the assumed maximality ofW.
If W3,C3, then a similar argument shows thatW4,C4, and so on. ThusW,C, which again

contradicts the maximality ofW.
~ii ! dimW252: Now we may suppose thath,g form a basis forW2 , whereh is as above and

g~q,p!5rp21spq1tq2.
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If s50 then, ash,g are linearly independent, bothp2,q2PW2 . But then$p2,q2%54pqPW, so
that dimW253. Without loss of generality, we may thus assume thats51.

Now $h,g%PW2 , and a computation shows thath,g,$h,g% are linearly dependent iff

ac1~at2cr !250. ~10!

Again we consider various subcases. Ifa50 then~10! gives r 50, and it follows from the
above expressions forh,g that W25C2 . As in case~i!, the subcasec50 can be reduced to tha
of a50 by means of a linear canonical transformation. It remains to consider the subcaac
Þ0. We may suppose thata51; ~10! then implies thatc,0. Settingb5t2rc, we may thus take

h5p22b2q2 and $g,h%52~p212bpq1b2q2!.

as a basis forW2 . But now the canonical transformation

p°
1

A2b
~p2bq!, q°

1

A2
~p1bq!

reduces this subcase to that ofa50. Thus up to isomorphism we haveW25C2 .
Similarly we haveWk#Ck , and soW#C. The maximality ofW now implies thatW5C.h
In particular, the subalgebras$ f (mp1q)(p2mq)1g(mp1q)%, where f ,g are polynomials

and mPR, are all maximal Lie subalgebras ofP(2) containingP1(2) isomorphic toC(2).
@These are the normalizers inP(2) of the polarizations$g(mp1q)%.] So is the ‘‘momentum
algebra’’ consisting of polynomials which are at most affine in the position.

As bothP2(2) andC(2) are quantizable, it follows from Theorem 2 and Corollary 6 that
following corollary is true.

Corollary 9: Up to isomorphism,P2(2) andC(2) are the largest quantizable subalgebras
P(2) containingP1(2).

Unfortunately, neither Theorem 8 nor Corollary 9 hold in higher dimensions. To see this
n52 and consider the Lie algebra

$ f ~q1!p11g~q1,q2,p2!%,

where f ,g are polynomials. This subalgebra is maximal, but not isomorphic to eitherC(4) or
P2(4). It is also not quantizable—if it were, we would obtain a quantization of the polynom
algebra inq2,p2 , contrary to the Strong No-Go Theorem. Furthermore, the subalgebra there
which g is at most quadratic inq2,p2 is maximal quantizable, but also not isomorphic to eith
C(4) or P2(4).

VI. DISCUSSION

We have thus completely solved the Groenewold–Van Hove problem forR2 in that we have
identified~the isomorphism classes of! the largest quantizable Lie subalgebras ofP(2) @viz. P2(2)
and C(2)] and explicitly constructed all their possible quantizations@given by ~1!–~3! and ~6!,
respectively#. It remains to carry out this program in higher dimensions; the key missing ing
ent is a classification of the maximal Lie subalgebras ofP(2n) containingP1(2n). Unfortunately,
this appears to be a difficult problem. We emphasize, however, that all the results of this
other than Theorem 8 and Corollary 9 hold for arbitraryn.

Of course, Groenewold’s classical result is valid only forR2n. Similar obstructions appea
when trying to quantize certain other phase spaces, e.g.,S2 andT* S1. Complete solutions of the
corresponding Groenewold–Van Hove problems in these two examples are given in Refs.
25, respectively. On the other hand, in some instances there areno obstructions to quantization
such asT2 and T* R1 , cf. Refs. 27 and 12, respectively.~Although probably not of physica
interest, it is amusing to wonder what happens forR2n, n.1, with an exotic symplectic structure!
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It is important, therefore, to understand the mechanisms which are responsible for these div
outcomes. Already some results have been established along these lines, to the effect tha
certain circumstances there are obstructions to quantizing both compact and noncompac
spaces.12,28–30We refer the reader to Ref. 5 for an up-to-date summary.
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The Jacobi polynomial ensemble and the Painleve ´ VI
equation

Luc Hainea) and Jean-Pierre Semengue
Department of Mathematics, Universite´ Catholique de Louvain,
Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
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We consider the Jacobi polynomial ensemble ofn3n random matrices. We show
that the probability of finding no eigenvalues in the interval@21,z# for a random
matrix chosen from the ensemble, viewed as a function ofz, satisfies a second-
order differential equation. After a simple change of variable, this equation can be
reduced to the Okamoto–Jimbo–Miwa form of the Painleve´ VI equation. The
result is achieved by a comparison of the Tracy–Widom and the Virasoro ap-
proaches to the problem, which both lead to different third-order differential equa-
tions. The Virasoro constraints satisfied by the tau functions are obtained by a
systematic use of the moments, which drastically simplifies the computations.
© 1999 American Institute of Physics.@S0022-2488~99!02203-3#

I. INTRODUCTION

Consider a family of orthonormal polynomialsPn(x), n50,1,2,..., on an interval@a,b#, for a
weight functionw(x)5exp„2V(x)…. The associated orthogonal polynomial ensemble assig
probability measure on the space ofn3n Hermitian matrices proportional to

exp„2Tr V~M !…dM, ~1.1!

with dM the product of Lebesgue measures over the independent elements of the Hermitian
M. As in the case of the unitary group, where the probability measure is the Haar measure
is an exact analog of the Weyl integral formula, giving the induced density distribution on
eigenvalues of the matrices:

)
1<k, l<n

~xk2xl !
2)

j 51

n

w~xj !dxj . ~1.2!

We refer the reader to the book of Mehta,1 as well as to the introductory lectures by Tracy a
Widom,2 for a discussion of this material.

In this paper, we shall be concerned with the~finite Fredholm! determinant,

det„I2K~z!…, ~1.3!

viewed as a function ofz, whereK(z)5„Ki j (z)…0< i , j <n21 , denotes then3n matrix with entries

Ki j ~z!5E
a

z

Pi~x!Pj~x!w~x!dx. ~1.4!

The determinant~1.3! gives the probability of finding no eigenvalues in the interval@a,z# for a
random matrix chosen from the ensemble.1,2 Tracy and Widom3 have shown that, in the case o
the Hermite and the Laguerre polynomials, as a function ofz, the logarithmic derivatives of the

a!Electronic mail: haine@agel.ucl.ac.be
21170022-2488/99/40(4)/2117/18/$15.00 © 1999 American Institute of Physics
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determinants~1.3! ~multiplied by an appropriate factor related to the interval of orthogonal!
solve, respectively, the Painleve´ IV and the Painleve´ V equations. In the case of the Jaco
polynomials, they have obtained3 a third-order differential equation that they could not recogn
as being connected with some Painleve´ transcendents.

The methodology of Tracy and Widom goes well beyond the special examples ment
above. It extends very successfully the pioneering work of Jimbo, Miwa, Moˆri, and Sato,4 who
showed that the Fredholm determinant constructed from the sine kernel solves the Pain´ V
equation. Adler, Shiota, and van Moerbeke5 have proposed another approach to the probl
based on the use of ‘‘Virasoro constraints decoupling into a time-part and a boundary-par
examples of orthogonal polynomial ensembles, the authors discuss the cases of the Herm
the Laguerre polynomials, which lead to the same equations as those obtained by Tra
Widom.3

We note that, in the case of the Hermite and the Laguerre polynomials, the ‘‘Virasoro
straints without boundary-part’’ were first obtained by Haine and Horozov.6 The latter paper was
motivated by the explicit construction of all the highest weight representations of the Vira
algebra~with central chargec51) in terms of tau functions. The Jacobi polynomials did not p
any role in that construction. Gru¨nbaum and Haine7 came back to the Jacobi case, in relation w
a discrete-continuous version of the bispectral problem, but more about this below.

We are now ready to state the results of our paper. We show that, in the case of the
polynomials, the Tracy–Widom and the Virasoro approaches lead todifferent third-orderdiffer-
ential equations for the determinants~1.3!. Comparing the results gives then asecond-order
differential equation, which, after some manipulations, we recognize as the Okamoto–Ji
Miwa ‘‘ s representation’’ of the Painleve´ VI equation ~Theorem IV.3!. The derivation of our
result depends on a new construction of the so-called master symmetries of the~semi-infinite!
Toda lattice hierarchy. It is based on the classical correspondence~valid under appropriate hy
pothesis!,

$m0 ,m1 ,m2 ,...%→L, ~1.5!

between sequences of moments and semi-infinite tridiagonal matrices, as explained, for in
in the treatises of Akhiezer8 or Chihara.9 Thus, we do not assume any knowledge of Sat
Grassmannian from the reader. Our main tool, Theorem III.1, allows us to establish the Vir
constraints by checking some ‘‘trivial’’ relations satisfied by the moments@see Lemma IV.1 and
formulas~A2! and ~A8! in the Appendix, for illustrations of this principle#.

There is, in fact, an intimate relation between some subalgebras of the algebra of m
symmetries of the Toda lattice hierarchy, which appear naturally in the context of thebispectral
problem,7,10 and thespecialsolutions of the Painleve´ equations that we consider here. To expla
this, let us introduce the moments

mk~z!5E
z

b

xkw~x!dx, zP@a,b#. ~1.6!

Elementary row and column manipulations show that

det„I 2K~z!…5
tn~z!

tn~a!
, ~1.7!

with

tn~z!5det~m i 1 j~z!!0< i , j <n21 . ~1.8!

The bispectral problem, in the form that is relevant to the considerations of this paper, asks
families of orthogonal polynomials that are eigenfunctions of a second-order differential equ
In this ~special! form, the problem was already solved by Bochner:11 all the solutions are given by
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the classical orthogonal polynomials. Although the above mentioned work7 was concerned with a
bi-infinite version of the problem, it contains, in particular, the result that all the~semi-infinite!
tridiagonal matricesL, which solve the problem, arefixed points of some subalgebras of t
algebra of master symmetriesof the Toda lattice hierarchy. Under the identification~1.5!, the
corresponding sequences of moments are obtained by puttingz5a and w(x) to be the weight
function of any family of classical orthogonal polynomials in~1.6!. In a nutshell, our proof tha
~1.8! is a tau function for the appropriate Painleve´ equations, amounts to checking that precis
the same subalgebras of symmetriesbecometangentalong the curve~1.6!, obtained by lettingz
move away froma.

II. ORTHOGONAL POLYNOMIALS AND SATO THEORY

In this section we summarize some of the results of Haine and Horozov,6 where a precise
connection was established between Sato’s theory12 and the theory of orthogonal polynomials. W
have, however, removed all ‘‘Grassmannian considerations,’’ hoping to make the material
sible to a larger audience. Our starting point is the classical correspondence,8,9

$m0 ,m1 ,m2 ,...%→L, ~2.1!

between sequences of moments and~semi-infinite! Jacobi matrices. We shall deal with mon
orthogonal polynomials and consequently writeL in the form

L5S b1 1

a1 b2 1

a2 b3 1

• • •

• • •

• • •

D . ~2.2!

The correspondence is valid with the assumption that all entriesan are nonzero and that all th
n3n(n51,2,3,...) determinants,

tn5det~m i 1 j !0< i , j <n21 , ~2.3!

do not vanish. In one direction, it is given by the formulas

an5
tn21tn11

tn
2

, bn5
ṫn

tn
2

ṫn21

tn21
, ~2.4!

where, by convention,t051, ṫ050, andṫn denotes the determinant

ṫn5det~m i j
~n!!0< i , j <n21 , ~2.5!

with

m i j
~n!5m i 1 j for j <n22 and m in21

~n! 5m i 1n .

Conversely, given the Jacobi matrixL, one constructs inductively the sequence of polyno
als,

pn~x!5~x2bn!pn21~x!2an21pn22~x!, n>1, ~2.6!

with
                                                                                                                



.

the

dge,

Toda
n of
mo-
e

e

proof,

2120 J. Math. Phys., Vol. 40, No. 4, April 1999 L. Haine and J. P. Semengue

                    
p21~x!50 and p0~x!51. ~2.7!

By Favard’s theorem,9 as long as the entriesan are nonzero, there exists a unique~up to a
multiplicative constant! sequence$mn%n>0 , such that the sequence$pn(x)%n>0 is an orthogonal
polynomial sequence for the associated moment functionalM, that is

M ~pnpm!50, for mÞn and M ~pn
2!Þ0.

We remind the reader that the moment functionalM corresponding to the sequence$mn%n>0 , is
defined byM (xn)5mn and then extended to the vector space of all polynomials by linearity

It is a beautiful and elementary fact that, under the correspondence~2.1!, the vector field,

ṁk5mk11 , ~2.8!

translates on the Jacobi matrixL into the celebrated Toda lattice equation. More generally,
sequence of vector fields,

Ti :
]mk

]t i 11
5mk1 i 11 , i>21, ~2.9!

with T0 , giving ~2.8!, form a family of commuting vector fields,

@Ti ,Tj #50, ~2.10!

and we have the following.
Theorem II.1:13,14 Under the correspondence~2.1!, the vector fields~2.9! translate on the

Jacobi matrix L into the Toda lattice hierarchy,

Ti :
]L

]t i 11
5@L1

i 11,L#, ~2.11!

where L1
i denotes the upper part (including the diagonal) of Li .

Remark:Although the proof of the above theorem is elementary, to the best of our knowle
in the context of semi-infinite matrices, it was first formulated by Witten.14 In that paper, Witten
considers polynomials orthogonal with respect to some measureds0 and shows that the time
deformation of the measure

ds t5expS (
n

tnxnDds0 , ~2.12!

defines orthogonal polynomials for which the corresponding Jacobi matrices satisfy the
lattice hierarchy. Starting with the Hermite polynomials leads then to the partition functio
two-dimensional~2-D!-lattice quantum gravity. This corresponds to the situation when the
ment functionalM is defined by a measure~i.e., all an.0). It is straightforward to check that th
deformation~2.12! induces the flows~2.9! on the moments. When the starting measureds0 is
purely discrete, one is led to the finite Toda lattice, and Eq.~2.12! can be traced back to th
integration by Moser13 of the finite Toda lattice, via the inverse Stieltjes transform.

The next theorem6 establishes the precise link between Sato’s theory12 and the theory of
orthogonal polynomials. For the convenience of the reader we present here an elementary
which avoids the use of Grassmannians. Lett5(t1 ,t2 ,t3 ,...) and let usdenote by

tn~ t !5det„m i 1 j~ t !…0< i , j <n21 , ~2.13!

the determinants obtained by flowing from~2.3! under the flows of the commuting vector fieldsTi

defined in~2.9!. With a similar definition forL(t), we have the following.
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Theorem II.2: The functionstn(t), t5(t1 ,t2 ,t3 ,...), are tau functions in the precise sense
Sato theory, that is,

pn~x,t !5xn
tn~ t2@x21# !

tn~ t !
, ~2.14!

where pn(x,t) denote the (monic) orthogonal polynomials defined by the Jacobi matrix L(t) and

@x#5~x, 1
2x

2, 1
3x

3,...!. ~2.15!

Proof: Introduce the elementary Schur polynomials via the generating function

expS (
k51

`

tkx
kD 5 (

nPZ
Sn~ t !xn. ~2.16!

The ~formal! solution of the family of commuting flowsTi in ~2.9! is given by

mk~ t !5 (
nPZ

Sn~ t !mn1k~0!. ~2.17!

From ~2.16!, we deduce easily that

Sn~ t2@x21# !5Sn~ t !2x21Sn21~ t !, ~2.18!

which, using~2.17!, gives

mk~ t2@x21# !5mk~ t !2x21mk11~ t !, ~2.19!

and therefore

xntn~ t2@x21# !5U m0~ t ! m1~ t ! ¯ mn~ t !

] ] ]

mn21~ t ! mn~ t ! ¯ m2n21~ t !

1 x ¯ xn

U , ~2.20!

which can be checked by expanding the determinant along the last line. The ratio of the righ
side of~2.20! by tn(t) is the classical formula9 that expresses the~monic! orthogonal polynomials
pn(x,t) in terms of the momentsmk(t). This establishes the theorem.

It follows from Theorem II.2 that each of the functionstn(t), n51,2,3,4,..., must be a
solution of the system of Hirota’s bilinear equations,12,15 which characterizes tau functions. I
what follows we shall just need to know that they satisfy the first equation of this hierarchy, w
is the classical Kadomtzev–Petviashvili~KP in short! equation:

S ]4

]t1
4 13

]2

]t2
224

]2

]t1]t3
D logtn~ t !16S ]2

]t1
2 logtn~ t !D 2

50. ~2.21!

III. OSCILLATOR REPRESENTATIONS OF THE VIRASORO ALGEBRA AND MASTER
SYMMETRIES OF THE TODA LATTICE HIERARCHY

We introduce the following vector fields on the space of moments:

Vi :
]mk

]si
5~ i 1k11!m i 1k , i>21. ~3.1!
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These vector fields satisfy the commutation relations,

@Vi ,Vj #5~ j 2 i !Vi 1 j . ~3.2!

They can be used to generate, via commutators, the vector fieldsTi of the Toda lattice hierarchy
~2.9!,

@Vi ,Tj #5~ j 11!Ti 1 j , ~3.3!

and, for this reason, they are often called master symmetries.
In order to formulate the result of this section, we shall need the so-called oscillator r

sentations of the Virasoro algebra:15

L0
~n!5n21 (

k51

`

ktk
]

]tk
,

L j
~n!5 (

k51

j 21
]2

]tk]t j 2k
12n

]

]t j
1 (

k51

`

ktk
]

]tk1 j
, j >1, ~3.4!

L2 j
~n!5

1

4 (
k51

j 21

k~ j 2k!tkt j 2k1n jt j1 (
k5 j 11

`

ktk
]

]tk2 j
, j >1.

The operatorsL j
(n) satisfy the commutation relations of the Virasoro algebra, with central ch

c51:

@Li
~n! ,L j

~n!#5~ i 2 j !Li 1 j
~n! 1d i ,2 j

i 32 i

12
. ~3.5!

Starting with a sequence$tn% as in ~2.3!, let us denote by$tn
sj(t)% the sequence that i

obtained by first flowing along the vector fieldVj during a timesj , and then flowing along the
~commuting! family of Toda flows. Notice that, since the master symmetries and the Toda fl
do notcommute between themselves, it is very important to specifyin which orderthe flows are
followed. With this convention, we can formulate our main result.

Theorem III.1: For j >21,

]

]sj
tn

sj~ t !usj 505L j
~n!tn~ t !. ~3.6!

This theorem isthe keyto the derivation of the various ‘‘Virasoro-type constraints’’ that a
satisfied byspecial~Toda-type! tau functions. Indeed, it tells us, for example, that if the vec
field Vj vanishes at$tn[tn(0)% ~that is, at$mn[mn(0)%), then, by definition,tn

sj(t) is indepen-
dent of sj , and thusL j

(n)tn(t)50, for all n. The proof of Theorem III.1 will depend on a
expansion of the tau function in terms of Schur polynomials.

For any partition j 1> j 2>¯> j k.0, with k parts, the Schur polynomialsSj 1 ,...,j k
(t) are

defined in terms of the elementary Schur polynomials~2.16! by the determinants

Sj 1 ,...,j k
~ t !5det„Sj r1s2r~ t !…1<r ,s<k . ~3.7!

Substituting~2.17! into ~2.13!, one computes that the tau functionstn(t) admit the following
expansion~which is a particular case of a formula of Sato12 for general tau functions!:

tn~ t !5 (
0< i 1, i 2,¯, i n

pi 1 ,i 2 ,...,i n
Si n2n11,i n212n12,...,i 1

~ t !, ~3.8!
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wherepi 1 ,i 2 ,...,i n
denote the Plu¨cker coordinates:

pi 1 ,i 2 ,...,i n
5U m i 1

m i 2 ¯
m i n

m i 111 m i 211 ¯
m i n11

] ] ¯ ]

] ] ¯ ]

m i 11n21 m i 21n21 ¯
m i n1n21

U . ~3.9!

We shall need three lemmas. In order to formulate them, we introduce some notations.
n vectors x1 ,...,xnPRn, we shall denote byux1x2¯xnu the determinant of then3n matrix
formed with the columnsxi . Also, given two vectorsx and y, x∧y denotes the usual wedg
product, with components (x∧y) rs5xrys2xsyr . Finally, for ann3n matrix A, Ar will denote the
r th column ofA and tr~A! will mean the trace ofA. With these conventions, we have the follow
ing.

Lemma III.2: Let A and B be n3n matrices, with A invertible, and let D be an n3n diagonal
matrix D5diag(d1,d2,...,dn); then

~ i ! S r 51
n uA1¯Ar 21~DB!rAr 11¯Anu5~detA!tr~DBA21!,

~ i i ! S1<r ,s<nuA1¯Ar 21~DB!rAr 11¯As21~DB!sAs11¯Anu

5~detA! (
1<r ,s<n

„~DBA21!r∧~DBA21!s…rs .

Proof: Both assertions are easy consequences of Cramer’s formula. For simplicity of
tions, we just establish~i!. One has

the left-hand side of~ i !5~detA!(
r 51

n

~A21DB!rr , by Cramer’s formula,

5~detA!tr~A21DB!5~detA!tr~DBA21!. ~3.10!

This proves Lemma III.2.
The next lemma translates the master symmetries on Plu¨cker coordinates.
Lemma III.3: Let Vj pi 1 ,...,i n

denote the Lie derivative of the Plu¨cker coordinates~3.9! in the

direction of the vector fields Vj introduced in~3.1!; then

~ i ! V21 pi 1 ,...,i n
5(

r 51

n

i rpi 1 ,...,i r21,...,i n
,

~ i i ! V0 pi 1 ,...,i n
5S n~n11!

2
1(

r 51

n

i r D pi 1 ,...,i n
,

~ i i i ! V1 pi 1 ,...,i n
5(

r 51

n

~n111 i r !pi 1 ,...,i r11,...,i n
,

~ iv ! V2 pi 1 ,...,i n
5(

r 51

n

~n121 i r !pi 1 ,...,i r12,...,i n
1 (

1<r ,s<n
pi 1 ,...,i r11,...,i s11,...,i n

.

Proof: Let us fix 0< i 1, i 2,¯, i n and introduce then3n matrices,

A5~m i s111r !0<r ,s<n21 , Bj5~m i s111r 1 j !0<r ,s<n21 , ~3.11!
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as well as then3n diagonal matrix,

D5diag~0,1,2,...,n21!. ~3.12!

Notice that, by the definition~3.9! of the Plücker coordinates, we have

detA5pi 1 ,...,i n
. ~3.13!

From the definition ofVj and of the Plu¨cker coordinates, respectively, in~3.1! and~3.9!, using first
Leibniz rule and then Lemma III.2~i!, we find

Vj pi 1 ,...,i n
5(

r 51

n

~ j 1 i r11!pi 1 ,...,i r1 j ,...,i n
1(

r 51

n

uA1¯Ar 21~DBj !rAr 11¯Anu,

5(
r 51

n

~ j 1 i r11!pi 1 ,...,i r1 j ,...,i n
1~detA!tr~DBjA

21!. ~3.14!

When j 521, one checks easily that tr(DB21A21)50, using~3.11! and~3.12!, which gives
~i!. When j 50, B05A, and thus tr(DB0A21)5tr(D)5n(n21)/2 which, using~3.13!, gives~ii !.

When j 51,

~detA!tr~DB1A21!5~n21!~detA!tr~B1A21!

@using the definition ofB1 and D in ~3.11! and ~3.12!#,

5~n21!(
r 51

n

pi 1 ,...,i r11,...,i n
~using Lemma III.2~i! with D5 identity!,

~3.15!

and thus~3.14! reduces to~iii !.
It remains to discuss the casej 52 of ~3.14!. One computes that

~detA!tr~DB2A21!5~n21!~detA!tr~B2A21!

1~detA! (
1<r ,s<n

„~B1A21!r∧~B1A21!s…rs , ~3.16!

noticing that, in the last sum, only the termr 5n21, s5n is nonzero. Using Lemma III.2~i! and
~ii !, both withD5 identity, it follows that

~detA!tr~DB2A21!5~n21!(
r 51

n

pi 1 ,...,i r12,...,i n

1 (
1<r ,s<n

pi 1 ,...,i r11,...,i s11,...,i n
, ~3.17!

which shows that~3.14!, with j 52, reduces to~iv!. This concludes the proof of Lemma III.3.
The last lemma computes the action of the Virasoro operators, defined in~3.4!, on the Schur

polynomials.
Lemma III.4: Let0< i 1,¯, i k ; then
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~ i ! L21
~n!Si k2k11,...,i 1

~ t !5(
r 51

k

~ i r11!Si k2k11,...,i r2r 12,...,i 1
~ t !

1~n2k!t1Si k2k11,...,i 1
~ t !,

~ i i ! L0
~n!Si k2k11,...,i 1

~ t !5S n22
k~k21!

2
1(

r 51

k

i r DSi k2k11,...,i 1
~ t !,

~ i i i ! L1
~n!Si k2k11,...,i 1

~ t !5(
r 51

k

~2n2k1 i r !Si k2k11,...,i r2r ,...,i 1
~ t !,

~ iv ! L2
~n!Si k2k11,...,i 1

~ t !5(
r 51

k

~2n2k1 i r !Si k2k11,...,i r2r 21,...,i 1
~ t !

1 (
1<r ,s<k

Si k2k11,...,i r2r ,...,i s2s,...,i 1
~ t !.

Proof: The proof is very similar in spirit to the proof of Lemma III.3, so we just sketch
main steps. We introduce the operators

M 215 (
k52

`

ktk
]

]tk21
and M j5 (

k51

`

ktk
]

]tk1 j
, j >0. ~3.18!

From the definition of the elementary Schur polynomials in~2.16!, it follows easily that

M 21Si~ t !5~ i 11!Si 11~ t !2t1Si~ t ! and M jSi~ t !5~ i 2 j !Si 2 j~ t !, j >0. ~3.19!

We introduce then3n matrices,

A5„Si s112r~ t !…0<r ,s<k21 , Bj5„Si s112r 2 j~ t !…0<r ,s<k21 , ~3.20!

as well as the diagonal matrix,

D5diag„0,21,22,...,2~k21!…. ~3.21!

Notice that

detA5Si k2k11,...,i 1
~ t !. ~3.22!

Since the operatorsM j , j 521,0,1,2, act as derivations on the space of polynomials
t1 ,t2 ,t3 ,..., using ~3.19!, ~3.20!, ~3.21!, and ~3.22!, one derives explicit formulas fo
M jSi k2k11,...,i 1

(t) in terms of Schur polynomials, using exactly the same arguments as in the
of Lemma III.3. From these formulas, using that

]

]t j
Si~ t !5Si 2 j~ t !, ~3.23!

one deduces easily formulas~i!, ~ii !, ~iii !, and~iv!, giving the action of the Virasoro operators o
the Schur polynomials. This finishes the proof of Lemma III.4.

Given the previous lemmas, the proof of Theorem III.1 is now straightforward.
Proof of Theorem III.1:We shall use the shorthand notation

tn~ t !5S I pISI~ t !, ~3.24!
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for the Plücker expansion~3.8!. For j 521,0,1,2, we have

]

]sj
tn

sj~ t !usj 505S I~Vj pI !SI~ t !,

5S I pI„L j
~n!SI~ t !…, using Lemmas III.3 and III.4, with

k5n, and some relabeling of the indices,

5L j
~n!tn~ t !. ~3.25!

The rest of the argument follows from the commutation relations~3.2! and ~3.5!, that are
satisfied by the master symmetries and the Virasoro operators. Notice that forj >21, they differ
by a sign! Assuming the theorem for somej >2, we establish it forj 11. Indeed,

~ j 21!
]

]sj 11
tn

sj 11~ t !usj 11505S I~@V1 ,Vj #pI !SI~ t !, using ~3.2!,

5S I pI„@L j
~n! ,L1

~n!#SI~ t !…, by induction hypothesis,

5~ j 21!L j 11
~n! tn~ t !, using ~3.5!. ~3.26!

This establishes Theorem III.1.
Using Theorem III.1 and formula~2.4!, which gives the entriesan andbn of the tridiagonal

matrix L in ~2.2! in terms of$tn%, it is possible to obtain an expression for the master symme
Vj , j >21, acting onL, in terms of a Lax pair. Let us defineP to be the strictly lower matrix,
which representsd/dx in the basis formed by themonicorthogonal polynomialspn(x):

d

dx
p5Pp, with p5„p0~x!51,p1~x!,p2~x!,...…T. ~3.27!

For a semi-infinite matrixA5(ai j ) i , j >0 , we denote by trA5(a00,a001a11,a001a111a22,...),
the diagonal matrix formed with the partial traces ofA. Also, A2 means the strictly lower part o
A, andA11 , the strictly upper part ofA. With these notations, we have

]L

]sj
5F2~PLj 11!22 (

k50

j 21

~ tr Lk!L2
j 2k2 (

k51

j 22

~L11
k L2

j 2k!2 ,LG , j >21. ~3.28!

This Lax pair is different from the one obtained by Adler and van Moerbeke,16 which requires
L to be in symmetric form. We shall not pursue this aspect here, since it will not be needed in
follows. We refer the interested reader to the Ph.D. thesis of the second author,17 for a detailed
proof. To the best of our knowledge, the theory of master symmetries of Toda-type system
not yet been extended beyond tridiagonal matrices. We feel that~3.28! may be useful in this regard
since, in general, a finite-band matrix cannot be assumed to be in symmetric form. As a
comment, we mention that, specializing our theory to the case of discrete orthogonal polyno
we find back the master symmetries of the finite Toda lattice, which were studied by Damia18

and Fernandes.19 However, a general Lax pair formulation was not given in these works.

IV. THE JACOBI POLYNOMIALS AND THE PAINLEVE´ VI EQUATION

In this section, we illustrate the use of Theorem III.1. The choice of the Jacobi polynomi
motivated by the fact that, as explained in the Introduction, the study of this example allows
connect the Jacobi polynomial ensemble to the Painleve´ VI equation. To the best of our knowl
edge this result is new.

Let a andb denote real numbers witha.21 andb.21. We consider the following curve
in the space of moments:
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mk~z!5E
z

1

xk~12x!a~11x!b dx, zP@21,1#. ~4.1!

Whenz521, themk’s are the moments of the orthogonality measure for the Jacobi polynom
Thinking of z as a parameter, we shall denote bytn(z,t) the tau functions associated with th
sequence$mk(z)%, i.e.,

tn~z,t !5det@„m i 1 j~z!…~ t !#0< i , j <n21 . ~4.2!

The key to our story is the following.
Lemma IV.1: For all k>0 and for all j>0, we have

zj~z221!
d

dz
mk~z!5@Vj 112Vj 211~a1b!Tj1~a2b!Tj 21#mk~z!, ~4.3!

where the notation on the right-hand side of (4.3) means the Lie derivative in the direction
vector field between the brackets.

Proof: By definition of the vector fieldsTj andVj in ~2.9! and ~3.1!, the right-hand side of
~4.3! is equal to

~k1 j 121a1b!mk1 j 11~z!1~a2b!mk1 j~z!2~k1 j !mk1 j 21~z!,

5E
z

1

@~ i 121a1b!xi 111~a2b!xi2 ix i 21#~12x!a~11x!b dx, with i 5 j 1k,

5E
z

1

2
d

dx
@xi~12x!a11~11x!b11#dx,

5the left-hand side of~4.3!, ~4.4!

which proves the lemma.
It was observed in Gru¨nbaum and Haine7 that the vector fields,

Vj5Vj 112Vj 211~a1b!Tj1~a2b!Tj 21 , j 50,1,2,..., ~4.5!

form a subalgebra of the algebra of master symmetries,

@Vi ,Vj #5~ j 2 i !~Vi 1 j 112Vi 1 j 21!, ~4.6!

and that thevanishingof all these vector fields characterize the Jacobi polynomials, which co
spond toz521. In a similar spirit, we can interpret the lemma above as saying thatall vector
fieldsVj , j >0, becometangentalong the curve~4.1!.

Combining Lemma IV.1 with Theorem III.1, we obtain the following.
Corollary IV.2: The tau functionstn(z,t), as defined in (4.2), satisfy the following ‘‘Virasor

type’’ constraints,

zj~z221!
]

]z
tn~z,t !5FL j 11

~n! 2L j 21
~n! 1~a1b!

]

]t j 11
1~a2b!

]

]t j
Gtn~z,t !, ~4.7!

for j 50,1,2,...,with Lj
(n) defined as in~3.4!, where]/]t0 tn(z,t) is interpreted as ntn(z,t).

Proof: Expanding~4.2! in Plücker coordinates as in~3.8!, and using Lemma IV.1, we hav
that
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zj~z221!
]

]z
tn~z,t !5 (

0< i 1,¯, i n
Vj pi 1 ,...,i n

~z!Si n2n11,...,i 1
~ t !, ~4.8!

where pi 1 ,...,i n
(z) are the Plu¨cker coordinates~3.9! formed with the momentsmk(z), and

Vj pi 1 ,...,i n
(z) denotes the Lie derivative in the direction of the vector fieldVj , defined in~4.5!.

Equation~4.8! can be rewritten as

zj~z221!
]

]z
tn~z,t !5

]

]sj 11
tn

sj 11~z,t !U
sj 1150

2
]

]sj 21
tn

sj 21~z,t !U
sj 2150

1F ~a1b!
]

]t j 11
1~a2b!

]

]t j
Gtn~z,t !. ~4.9!

By Theorem III.1, the right-hand side of~4.9! is identical with the right-hand side of~4.7!, which
establishes the corollary.

We shall now show that the Virasoro constraints~4.7! combined with the KP equation~2.21!
imply that the functions

r ~z!5~z221!
d

dz
logtn~z!, n51,2,3,..., ~4.10!

with tn(z)[tn(z,0), all satisfy~after some manipulations! the Painleve´ VI equation. Put

f ~z,t !5 logtn~z,t !. ~4.11!

From now on we fix the integern and, for this reason, we dropn from our notations.
Remembering the definition ofL j

(n) in ~3.4!, we can rewrite the first three Virasoro constrain
in ~4.7!, for j 50,1,2, as follows:

~z221!
] f

]z
5n~a2b2t1!1~2n1a1b!

] f

]t1
1t1

] f

]t2

1 (
k52

`

ktkS ]

]tk11
2

]

]tk21
D f , ~4.12!

z~z221!
] f

]z
52n21~a2b!

] f

]t1

1~2n1a1b!
] f

]t2

1
]2f

]t1
2 1S ] f

]t1
D 2

1 (
k51

`

ktkS ]

]tk12

2
]

]tk
D f , ~4.13!

z2~z221!
] f

]z
522n

] f

]t1
1~a2b!

] f

]t2
1~2n1a1b!

] f

]t3

12
]2f

]t1]t2
12

] f

]t1

] f

]t2
1 (

k51

`

ktkS ]

]tk13
2

]

]tk11
D f . ~4.14!

These three equations can be exploited to express all the partialt derivatives off, involved in the
KP equation~2.21!, at t[(t1 ,t2 ,t3 ,...)5(0,0,0,...), in terms ofz derivatives of the functionr (z)
defined in~4.10!. We note that a similar method20 was already used in the case of the tau functio
associated with the Laguerre polynomials, to show that the Virasoro constraints uniquely c
terize these tau functions~up to a constant!.
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The constraint~4.12! evaluated att[(t1 ,t2 ,t3 ,...)5(0,0,0,...) gives, remembering the de
nition of r (z) in ~4.10!,

] f

]t1
U

t50

5
r ~z!2n~a2b!

2n1a1b
. ~4.15!

We then proceed by induction. We call

]nf

]t j 1
¯]t j n

, ~4.16!

a t derivative of weighted degreeu j u5 j 11¯1 j n . Then, fork>1, we compute the system forme
by

all t2derivatives of weighted degreek of the constraint~4.12!,

all t2derivatives of weighted degreek21 of the constraint~4.13!,

all t2derivatives of weighted degreek22 of the constraint~4.14!,

evaluated att50.

~4.17!

For instance, fork51, ~4.17! reduces to

~z221!
d

dzS ] f

]t1
U

t50
D 52n1~2n1a1b!

]2f

]t1
2U

t50

1
] f

]t2
U

t50

,

~4.18!

zr~z!52n21~a2b!
] f

]t1
U

t50

1~2n1a1b!
] f

]t2
U

t50

1
]2f

]t1
2U

t50

1S ] f

]t1
U

t50
D 2

,

which, after substitution of~4.15!, can be solved for]2f /]t1
2u t50 and] f /]t2u t50 in terms ofr (z)

and r 8(z).
In general, the system~4.17! is an ~overdetermined! system that can be solved for allt

derivatives off of weighted degreek11, evaluated att50, in terms of lower~weighted! degreet
derivatives off ~at t50). Assuming, by induction, that the latter have already been express
terms of r (z) and its firstk21 derivatives, we conclude that allt derivatives off of weighted
degreek11, at t50, can be expressed purely inz, in terms ofr (z) and its firstk derivatives.

Since the KP equation~2.21! containst derivatives off of weighted degree less or equal to
by performing the above scheme up tok53, we can express all these derivatives, evaluatedt
50, in terms ofr (z) and its first three derivatives, which gives usa third-order differential
equation forr (z):

~12z2!2r-52z~12z2!r 916~12z2!~r 8!218zrr8

2@4n214~a1b!n2~a2b!212~b22a2!z2~2n1a1b!2z2#r 8

22r 22@a22b21~2n1a1b!2z#r . ~4.19!

Now Tracy and Widom,3 using a different method, find thatr (z) satisfiesanother third-order
differential equation,

~12z2!2r-5~12z2!2
~r 9!2

r 8
12z~12z2!r 912~12z2!~r 8!2

12S 12
2a1

2

r 8
D r 214a1~a01a1z!r , ~4.20!
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with

a05
b22a2

2~2n1a1b!
, a152S n1

a1b

2 D . ~4.21!

Substracting Eq.~4.20! from Eq. ~4.19!, shows that, in fact,r (z) does satisfy asecond-order
differential equation. We now show that this second-order equation is nothing but the cele
PainlevéVI equation in disguised form.

Let us put

r ~z!52rS z11

2 D , ~4.22!

which amounts to normalizing the Jacobi polynomials to be orthogonal on the interval@0,1#, and
to reparametrize our curve of moments~4.1! in terms of the variable

s5
z11

2
. ~4.23!

Then, one computes thatr(s) satisfies the following second-order equation:

~4.19!–~4.20!⇔„s~s21!r9…214s~s21!~r8!314r8r22~2n1a1b!2r214~122s!r~r8!2

22@2n212~a1b!n1b~a1b!2~2n1a1b!2s#rr8

2@b222„2n212~a1b!n1b~a1b!…s1~2n1a1b!2s2#~r8!250. ~4.24!

We can now state the following.
Theorem IV.3: Let r(z)5(z221)(d/dz)logtn(z) be defined as in (4.10). Then, the functi

s~s!5
1

2
r ~2s21!2

~2n1a1b!2

4
s1

2n212~a1b!n1a~a1b!

4
, ~4.25!

satisfies the Okamoto–Jimbo–Miwa form21 of the Painleve´ VI equation:

s8„s~s21!s9…21$~2s21!~s8!222ss82n1n2n3n4%
2

5~s81n1
2!~s81n2

2!~s81n3
2!~s81n4

2!, ~4.26!

with n i , 1< i<4, specified in terms of n,a andb as in the equations (4.28), (4.31), (4.32), (4.3
and (4.34) below.

Proof: Observe that, in fact,s8 factors out of Eq.~4.26!, so that it can be written in the les
elegant form

„s~s21!s9…214s~s21!~s8!314s8s214~122s!s~s8!2

2c1~s8!21@2~122s!c42c2#s814c4s2c350, ~4.27!

with

c15(
i

n i
2, c25(

i , j
n i

2n j
2,

c35 (
i , j ,k

n i
2n j

2nk
2, c45n1n2n3n4 . ~4.28!
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We try to match~4.24! with ~4.27! by putting

r~s!5s~s!1xs1y, ~4.29!

and determining the constantsx andy to eliminate the coefficients ofr2 andrr8 in ~4.24!. We
find that

x5
~2n1a1b!2

4
and y52

2n212~a1b!n1a~a1b!

4
. ~4.30!

With this choice ofx andy, the new functions(s) satisfies Eq.~4.27! if we take

c152n212~a1b!n1a21ab1b2, ~4.31!

c25 1
8@3~a1b!2~a21b2!14~a1b!~3a212ab13b2!n

14~5a216ab15b2!n2116~a1b!n318n4#, ~4.32!

c35
~2n1a1b!2

16

3@~a1b!2~a22ab1b2!12~a1b!~a21b2!n12~a21b2!n2#, ~4.33!

c45
~a22b2!~2n1a1b!2

16
. ~4.34!

Remembering the relations between the functionsr (z), r(s), and s(s) in ~4.22!, ~4.29!, and
~4.30!, Theorem IV.3 is established.

Remarks:~1! One can check that

2r 9~z!3~left-hand side–right-hand side! of ~4.19!

5
d

dz
r 8~z!3@right-hand side of~4.20!–right-hand side of~4.19!#. ~4.35!

This shows that, in fact, the third-order equation~4.19!, which is obtained by the ‘‘Virasoro
method,’’ can indeed be integrated into a second-order equation, which we know to be equ
@via ~4.25!# to the Painleve´ VI equation. Thus, in principle, we could have derived our res
without using the equation~4.20! found by Tracy and Widom. But~4.35! is not so easy to gues
a priori!

~2! From our point of view, it is no more difficult to obtain systems of partial differen
equations satisfied by the probability of finding no eigenvalues in a disjoint union of inte
ø i 51

r @z2i 21 ,z2i #,@21,1#, as a function of the boundary points. One just needs to conside
‘‘manifolds’’ in the space of moments,

mk~z1 ,...,z2r !5(
i 50

r E
z2i

z2i 11
xk~12x!a~11x!b dx, ~4.36!

with z0521 andz2r 1151, the crucial point being that the quantity under the integral sign in~4.4!
is an exact derivative. One then replaces the ordinary differential operator inz on the left-hand
side of ~4.3! by the partial differential operator

(
i 51

2r

zi
j~zi

221!
]

]zi
. ~4.37!
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Using a recipe similar to the one described in~4.17!, one can express all the time derivatives of t
logarithmic derivative of the tau function, evaluated at timet50, in terms of partial derivatives
with respect to the variableszi , 1< i<2r . Substituting the result into Hirota’s hierarchy o
bilinear equations satisfied by the tau function, produces the desired system of partial diffe
equations.

APPENDIX: THE HERMITE AND LAGUERRE ENSEMBLES

For the sake of completeness, we write the analogues of Eqs.~4.3! and ~4.7!, in the cases of
the Laguerre and the Hermite polynomials, though it does not lead to new results on the
sponding orthogonal polynomial ensembles. Only the methodology is different.

In the case of the Laguerre polynomials the curve of moments,

mk~z!5E
z

`

xk1ae2x dx, zP@0,̀ @ ,a.21, ~A1!

satisfies

zj 11
d

dz
mk~z!5~Vj2Tj1aTj 21!mk~z!, j 50,1,2,..., ~A2!

which, using Theorem III.1, immediately leads to the Virasoro constraints ontn(z,t):

zj 11
]

]z
tn~z,t !5S L j

~n!2
]

]t j 11
1a

]

]t j
D tn~z,t !, j 50,1,2,... . ~A3!

The functions

s~z!5z
d

dz
logtn~z!, ~A4!

satisfy the Okamoto–Jimbo–Miwa form21 of the Painleve´ V equation:

~zs9!25„s2zs812~s8!21~n01n11n21n3!s8…2

24~s81n0!~s81n1!~s81n2!~s81n3!, ~A5!

with

n05n, n15n1a, n25n350. ~A6!

For the Hermite polynomials, the curve of moments,

mk~z!5E
z

`

xke2x2
dx, zP] 2`,`@ , ~A7!

satisfies

zj 11
d

dz
mk~z!5~Vj22Tj 11!mk~z!, j 521,0,1,2,..., ~A8!

leading to the Virasoro constraints

zj 11
]

]z
tn~z,t !5S L j

~n!22
]

]t j 12
D tn~z,t !, j 521,0,1,2,... . ~A9!
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The functions

s~z!5
d

dz
logtn~z!, ~A10!

satisfy the Okamoto–Jimbo–Miwa form21 of the Painleve´ IV equation:

~s9!254~zs82s!224~s81n0!~s81n1!~s81n2!, ~A11!

with

n052n, n15n250. ~A12!

We notice that, both in~A2! and ~A8!, the subalgebra$Vi% of the algebra of master symme
tries, which becomes tangent along the curves of moments~A1! and ~A7!, satisfies the commu
tation relations

@Vi ,Vj #5~ j 2 i !Vi 1 j . ~A13!

Equations~A5! and ~A11! were first obtained by Tracy and Widom.3 When z→0 ~respec-
tively, z→2`), the left-hand side of~A2! @respectively,~A8!# vanishes; the corresponding V
rasoro constraints for the tau functions~A3! @respectively~A9!# were obtained by Haine an
Horozov.6 The introduction of a ‘‘boundary-part’’ into~A3! and ~A9! appears in Adler, Shiota
and van Moerbeke.5 We hope that the methodology developed in this paper will bring furt
progress in the field.
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An algebra homomorphismc from the nonstandardq-deformed~cyclically sym-
metric! algebra Uq(so3) to the extension Uˆ

q(sl2) of the Hopf algebra Uq(sl2) is
constructed. Not all irreducible representations of Uq(sl2) can be extended to rep-
resentations of Uˆ

q(sl2). Composing the homomorphismc with irreducible repre-
sentations of Uˆ q(sl2) we obtain representations of Uq(so3). Not all of these repre-
sentations of Uq(so3) are irreducible. Reducible representations of Uq(so3) are
decomposed into irreducible components. In this way we obtain all irreducible
representations of Uq(so3) whenq is not a root of unity. A part of these represen-
tations turns into irreducible representations of the Lie algebra so3 when q→1.
Representations of the other part have no classical analog. Using the homomor-
phismc it is shown how to construct tensor products of finite-dimensional repre-
sentations of Uq(so3). Irreducible representations of Uq(so3) when q is a root of
unity are constructed. Some of them are obtained from irreducible representations
of Ûq(sl2) by means of the homomorphismc. © 1999 American Institute of
Physics.@S0022-2488~99!01003-8#

I. INTRODUCTION

It is well known that the Lie algebras sl2 and so3 of the Lie groups SL(2,C) and SO~3!,
respectively, are isomorphic. But these algebras differ from each other if we consider the
bedding to the wider Lie algebra sl3. There is no automorphism of sl3 which transfers the embed
ding sl2,sl3 to the embedding so3,sl3. Note that the embedding so3,sl3 is of great importance
for nuclear physics: it is used in spectroscopy.

The definition of theq-analog of the universal enveloping algebra U~sl2! is well known. It is
the quantum algebra Uq(sl2) which is a Hopf algebra. If we wish to have aq-analog of the
universal enveloping algebra so3 such that atq→1 we obtain the classical embedding so3,sl3,
then the algebra sl2 is not appropriate for this role. By other words, an algebra Uq(so3) must differ
from Uq(sl2). This algebra Uq(so3) is well known. It is the associative algebra generated by th
elementsI 1 , I 2 , andI 3 satisfying the relations

q1/2I 1I 22q21/2I 2I 15I 3 , ~1!

q1/2I 2I 32q21/2I 3I 25I 1 , ~2!

q1/2I 3I 12q21/2I 1I 35I 2 . ~3!
21350022-2488/99/40(4)/2135/27/$15.00 © 1999 American Institute of Physics
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Such~and more general! deformation of the commutator@ I i , I j #5I i I j2I j I i was defined in 1967
by R. Santilli in Ref. 1~see also Refs. 2 and 3! under studying a generalization of the Lie theo
Afterwards~in 1990!, the algebra Uq(so3) with commutation relations~1!–~3! was determined by
D. Fairlie ~see Ref. 4!. An algebra which can be reduced to Uq(so3) was defined in 1986 by M.
Odesski in Ref. 5.

Fairlie gave finite-dimensional irreducible representations of the algebra Uq(so3) which atq
→1 give the well-known finite-dimensional irreducible representations of the Lie algebra so3 ~see
Ref. 4!. These representations are given by integral or half-integral non-negative num
Odesski also gave some classes of irreducible representations in Ref. 5.

It was shown in Refs. 5–7 that the algebra Uq(so3) has irreducible finite-dimensional repre
sentations which have no classical analog~that is, which do not admit the limitq→1). It was not
clear why such strange representations of the algebra Uq(so3) appear. What is their nature? Th
answer to this question is one of the aims of this paper.

We construct a homomorphism from Uq(so3) to the algebra Uˆ
q(sl2) which is an extension of

the well-known quantum algebra Uq(sl2) @note that there is no homomorphism from Uq(so3) to
Uq(sl2)#. Irreducible finite-dimensional representations of Uq(sl2) ~but not all! can be extended to

finite-dimensional representations of the algebra Uˆ
q(sl2). Composing a homomorphism Uq(so3)

→Ûq(sl2) with these representations of Uˆ
q(sl2), we obtain representations of the algebra Uq(so3).

But some irreducible representations of Uˆ
q(sl2) lead to reducible representations of the alge

Uq(so3). Decomposing these reducible representations of Uq(so3) we obtain irreducible represen
tations of this algebra which have no analog for the Lie algebra so3. If q is not a root of unity, then
in this way we obtain all finite-dimensional irreducible representations of Uq(so3). But there are
infinite-dimensional irreducible representations of Uq(so3) which cannot be obtained in this way

Existence of the homomorphism Uq(so3)→Ûq(sl2) allows us to define tensor products
representations of the algebra Uq(so3) which is not a Hopf algebra.

Using the homomorphism Uq(so3)→Ûq(sl2) and irreducible representations of Uˆ
q(sl2) we

obtain representations of Uq(so3) whenq is a root of unity. Taking irreducible representations
Uq(so3) obtained in this way and decomposing reducible representations, we obtain severa
of irreducible representations of Uq(so3). In addition, we construct irreducible representations

Uq(so3) which cannot be derived from Uˆ
q(sl2).

Whenq is not a root of unity, then each irreducible~finite or infinite dimensional! represen-
tation of Uq(so3) is equivalent to one of the representations constructed below.~We do not give a
proof of this assertion in this paper because it would take much space; this proof will be giv
a separate paper.! We think that in this paper we constructed also all irreducible representatio
Uq(so3) whenq is a root of unity. But in this case we have no proof of this assertion. The re
of this is that in this case there are many classes of irreducible representations and a p
completeness of irreducible representations becomes very tedious.

Let us remark that in Ref. 5 there were constructed irreducible finite-dimensional repre
tions of Uq(so3) when q is not a root of unity and a part of irreducible infinite-dimension
representations. In Refs. 6 and 7, there were constructed irreducible representations of Uq(so3)
which satisfy the conditions of* -representations@that is, such thatT(I j* )52T(I j ), j 51,2#.
These*-representations are a part of irreducible representations of Uq(so3) constructed in this
paper. We started to study irreducible representations of Uq(so3) for q a root of unity in Ref. 8,
where a part of irreducible representations for this case were constructed. Note that in Re

there are no relations of representations of Uq(so3) to representations of Uˆ
q(sl2). This relation

makes representations of Uq(so3) clear and understandable.
We suppose that in Secs. II and IIIq is any complex number different from21. In Secs.

IV–VII, q is not a root of unity. In Secs. VIII–X,q is a root of unity.
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II. THE ALGEBRAS U q„so3… AND Ûq„sl 2…

The algebra Uq(so3) is obtained by aq-deformation of the standard commutation relation

@ I 1 , I 2#5I 3 , @ I 2 , I 3#5I 1 , @ I 3 , I 1#5I 2

of the Lie algebra so3. So, Uq(so3) is defined as the complex associative algebra with unit elem
generated by the elementsI 1 ,I 2 ,I 3 satisfying the defining relations

@ I 1 , I 2#qªq1/2I 1I 22q21/2I 2I 15I 3 , ~4!

@ I 2 , I 3#qªq1/2I 2I 32q21/2I 3I 25I 1 , ~5!

@ I 3 , I 1#qªq1/2I 3I 12q21/2I 1I 35I 2 . ~6!

Unfortunately, a Hopf algebra structure is not known on Uq(so3). However, it can be embedde
into the Hopf algebra Uq(sl3) as a Hopf coideal~see Ref. 9!. This embedding is very important fo
the possible application in spectroscopy.

It follows from the relations~4!–~6! that for the algebra Uq(so3) the Poincare´–Birkhoff–Witt
theorem is true and this theorem can be formulated as:The elements I1

kI 2
mI 3

n , k,m,n50,1,2,...,
form a basis of the linear spaceUq(so3). Indeed, by using the relations~4!–~6! any product
I j 1

I j 2
¯I j s

, j 1 , j 2 ,¯ , j s51,2,3, can be reduced to a sum of the elementsI 1
kI 2

mI 3
n with complex

coefficients.
Note that by~4! the elementI 3 is not independent: it is determined by the elementsI 1 andI 2 .

Thus, the algebra Uq(so3) is generated byI 1 andI 2 , but now instead of quadratic relations~4!–~6!
we must take the relations

I 1I 2
22~q1q21!I 2I 1I 21I 2

2I 152I 1 , ~7!

I 2I 1
22~q1q21!I 1I 2I 11I 1

2I 252I 2 , ~8!

which are obtained if we substitute the expression~4! for I 3 into ~5! and ~6!. The equationI 3

5q1/2I 1I 22q21/2I 2I 1 and the relations~7! and ~8! restore the relations~4!–~6!.
Remark that the definition of Uq(so3) by means of relations~7! and~8! was used in Ref. 9 for

the embedding of Uq(so3) to Uq(sl3). The relations~7! and~8! differ from Serre’s relations in the
definition of quantum algebras by V. Drinfeld and M. Jimbo by the appearance of nonvani
right-hand sides.

The algebra Uq(so3) is closely related to~but does not coincide with! the quantum algebra
Uq(sl2). The last algebra is generated by the elementsqH, q2H, E, andF satisfying the relations

qHq2H5q2HqH51, qHEq2H5qE, qHFq2H5q21F, ~9!

@E, F#ªEF2FE5
q2H2q22H

q2q21 . ~10!

Note that Uq(sl2) is the associative algebra equipped with a Hopf algebra structure~a comultipli-
cation, a counit, and an antipode!. In particular, the comultiplicationD is determined by the
formulas

D~q6H!5q6H
^ q6H, D~E!5E^ qH1q2H

^ E, D~F !5F ^ qH1q2H
^ F.

In order to relate the algebras Uq(so3) and Uq(sl2) we need to extend Uq(sl2) by the elements
(qkqH1q2kq2H)21 in the sense of Ref. 10. We denote by Uˆ

q(sl2) the associative algebra wit
unit element generated by the elements
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qH, q2H, E, F, ~qkqH1q2kq2H!21, kPZ,

satisfying the defining relations~9! and ~10! of the algebra Uq(sl2) and the following natural
relations:

~qkqH1q2kq2H!21~qkqH1q2kq2H!5~qkqH1q2kq2H!~qkqH1q2kq2H!2151, ~11!

q6H~qkqH1q2kq2H!215~qkqH1q2kq2H!21q6H, ~12!

~qkqH1q2kq2H!21E5E~qk11qH1q2k21q2H!21, ~13!

~qkqH1q2kq2H!21F5F~qk21qH1q2k11q2H!21. ~14!

Note that the algebra Uq(sl2) has finite-dimensional irreducible representationsTl[Tl
(1) ,

Tl
(21) , Tl

( i ) , Tl
(2 i ) , l 50,1

2,1,32,..., acting on the vector spacesHl with basesum&, m52 l ,2 l
11,...,l . These representations are given by the formulas

Tl
~1!~qH!um&5qmum&, Tl

~1!~E!um&5@ l 2m#um11&, ~15!

Tl
~1!~F !um&5@ l 1m#um21&, ~16!

where a number in square brackets means aq-number, defined by the formula

@a#5
qa2q2a

q2q21 ,

and by the formulas

Tl
~21!~qH!um&52qmum&, Tl

~21!~E!5Tl
~1!~E!, Tl

~21!~F !5Tl
~1!~F !, ~17!

Tl
~ i !~qH!um&5 iqmum&, Tl

~ i !~E!5Tl
~1!~E!, Tl

~ i !~F !52Tl
~1!~F !, ~18!

Tl
~2 i !~qH!um&52 iqmum&, Tl

~2 i !~E!5Tl
~1!~E!, Tl

~2 i !~F !52Tl
~1!~F !. ~19!

The representationsTl
(1) , Tl

(21) , Tl
( i ) , Tl

(2 i ) , l 50,1
2,1,32,..., arepairwise nonequivalent, and an

finite-dimensional irreducible representation of Uq(sl2) is equivalent to one of these represen
tions ~see, for example, Ref. 11, Chap. 3!.

Now we wish to extend these representations of Uq(sl2) to the representations of Uˆ
q(sl2) by

using the relation

T„~qkqH1q2kq2H!21
…ª„qkT~qH!1q2kT~q2H!…21.

Clearly, only those irreducible representationsT of Uq(sl2) can be extended to Uˆ
q(sl2) for which

the operatorsqkT(qH)1q2kT(q2H) are invertible. From formulas~15!–~19! it is clear that these

operators are always invertible for the representationsTl
(1) , Tl

(21) , l 50,1
2,1,32,..., and for the

representationsTl
( i ) , Tl

(2 i ) , l 5 1
2,

3
2,

5
2,... . For therepresentationsTl

( i ) , Tl
(2 i ) , l 50,1,2,..., some of

these operators are not invertible since they have zero eigenvalue. Denoting the extende
sentations by the same symbols, we can formulate the following statement:

Proposition 1: The algebraÛq(sl2) has the irreducible finite-dimensional representatio

Tl
(1) , Tl

(21) , l 50,1
2,1,32,..., and Tl

( i ) , Tl
(2 i ) , l 5 1

2,
3
2,

5
2,... . Any irreducible finite-dimensional rep

resentation ofUq(sl2) is equivalent to one of these representations.
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III. THE ALGEBRA HOMOMORPHISM U q„so3…˜Ûq„sl 2…

The aim of this section is to give~in an explicit form! the homomorphism of the algebr
Uq(so3) to Ûq(sl2). This homomorphism is described by the following proposition:

Proposition 2: There exists a unique algebra homomorphismc:Uq(so3)→Ûq(sl2) such that

c~ I 1!5
i

q2q21 ~qH2q2H!, ~20!

c~ I 2!5~E2F !~qH1q2H!21, ~21!

c~ I 3!5~ iqH21/2E1 iq2H21/2F !~qH1q2H!21, ~22!

where qH1a
ªqHqa for aPC.

Proof: In order to prove this proposition we have to show that

q1/2c~ I 1!c~ I 2!2q21/2c~ I 2!c~ I 1!5c~ I 3!,

q1/2c~ I 2!c~ I 3!2q21/2c~ I 3!c~ I 2!5c~ I 1!, ~23!

q1/2c~ I 3!c~ I 1!2q21/2c~ I 1!c~ I 3!5c~ I 2!.

Let us prove the relation~23!. ~Other relations are proved similarly.! Substituting the expression
~20!–~22! for c(I i), i 51,2,3, into~23! we have@after multiplying both sides of the equality b
(qH1q2H) on the right#, the relation

q~E2F !EqH~qqH1q21q2H!211q~E2F !Fq2H~q21qH1qq2H!21

2qE2qH~qqH1q21q2H!212q21FEq2H~qqH1q21q2H!21

1q21EFqH~q21qH1qq2H!211qF2q2H~q21qH1qq2H!215 i
q2H2q22H

q2q21 .

The formula ~23! is true if and only if this relation is correct. We multiply both its sides
(qqH1q21q2H)(q21qH1qq2H) on the right and obtain the relation in the algebra Uq(sl2) @that
is, without the expressions (qkqH1q2kq2H)21#. This relation is easily verified by using th
defining relations~9! and ~10! of the algebra Uq(sl2). Proposition is proved.

IV. FINITE-DIMENSIONAL REPRESENTATIONS OF U q„so3…: q IS NOT A ROOT OF
UNITY

We assume in Secs. IV–VII thatq is not a root of unity.
If T is a representation of the algebra Uˆ

q(sl2) on a linear spaceV, then the mapping
R:Uq(so3)→V defined as the compositionR5T+c, wherec is the homomorphism from Propo
sition 2, is a representation of Uq(so3). Let us consider the representations

Rl
~1!5Tl

~1!+c, Rl
~21!5Tl

~21!+c, Rl
~ i !5Tl

~ i !+c, Rl
~2 i !5Tl

~2 i !+c

of Uq(so3), whereTl
(1) , Tl

(21) , Tl
( i ) , andTl

(2 i ) are the irreducible representations of Uˆ
q(sl2) from

Proposition 1.
Using formulas for the representationsTl

(61) of Uq(sl2) and the expressions~20!–~22! for
c(I j ), j 51,2,3, we find that

Rl
~1!~ I 1!um&5 i @m#um&,
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Rl
~1!~ I 2!um&5

1

qm1q2m $@ l 2m#um11&2@ l 1m#um21&%,

Rl
~1!~ I 3!um&5

iq1/2

qm1q2m $qm@ l 2m#um11&1q2m@ l 1m#um21&%

for the representationRl
(1) and

Rl
~21!~ I 1!um&52 i @m#um&, Rl

~21!~ I 2!52Rl
~1!~ I 2!, Rl

~21!~ I 3!5Rl
~1!~ I 3!.

Denoting the vectorsum& by u2m& for the representationRl
(21) we easily find that the matrices o

the representationRl
(21) in the basisu2m&, m52 l ,2 l 11,...,l , coincide with the corresponding

matrices of the representationRl
(1) . Thus, the nonequivalent representationsTl

(1) andTl
(21) of the

algebra Ûq(sl2) lead to equivalent representations of Uq(so3).
For the representationsRl

( i ) andRl
(2 i ) we have

Rl
~ i !~ I 1!um&52

qm1q2m

q2q21 um&,

Rl
~ i !~ I 2!um&5 i

@ l 2m#

qm2q2m um11&1 i
@ l 1m#

qm2q2m um21&,

Rl
~ i !~ I 3!um&52

iqm11/2@ l 2m#

qm2q2m um11&2
iq2m11/2@ l 1m#

qm2q2m um21&,

and

Rl
~2 i !~ I 1!um&5

qm1q2m

q2q21 um&,

Rl
~2 i !~ I 2!um&52 i

@ l 2m#

qm2q2m um11&2 i
@ l 1m#

qm2q2m um21&,

Rl
~2 i !~ I 3!um&52

iqm11/2@ l 2m#

qm2q2m um11&2
iq2m11/2@ l 1m#

qm2q2m um21&.

Proposition 3: The representations Rl
(1) of Uq(so3) are irreducible. The representations Rl

( i )

and Rl
(2 i ) are reducible.

Proof: To prove the first part of the proposition we first note that sinceq is not a root of unity,
the eigenvaluesi @m#, m52 l ,2 l 11,...,l , of the operatorRl

(1)(I 1) are pairwise different.
Let V be an invariant subspace of the spaceHl of the representationRl

(1) , and let v
[(mi

a i umi&PV, whereumi& are eigenvectors ofRl
(1)(I 1). Thenumi&PV. We prove this for the

case whenv5a1um1&1a2um2&. ~The case with a larger number of summands is proved s
larly.! We haveRl

(1)(I 1)v5 ia1@m1#um1&1 ia2@m2#um2&. Since

v5a1um1&1a2um2&PV, v8[ ia1@m1#um1&1 ia2@m2#um2&PV,

one derives that

i @m1#v2v85 ia2~@m1#2@m2# !um2&PV.

Since@m1#Þ@m2#, thenum2&PV and henceum1&PV.
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In order to prove thatV5Hl we obtain from the above formulas forRl
(1)(I 2)um& and

Rl
(1)(I 3)um& that

$Rl
~1!~ I 3!2 iqm11/2Rl

~1!~ I 2!%um&5 iq1/2um21&,

$Rl
~1!~ I 3!1 iq2m11/2Rl

~1!~ I 2!%um&5 iq1/2um11&.

SinceV contains at least one basis vectorum&, it follows from these relations thatV contains the
vectorsum21&,um22&,...,u2 l & and the vectorsum11&,um12&,...,u l &. This means thatV5Hl

and the representationRl
(1) is irreducible.

Let us show that the representationsRl
( i ) are reducible. The eigenvalues of the opera

Rl
( i )(I 1) are

2
qm1q2m

q2q21 , m52 l ,2 l 11,...,l ,

that is, every spectral point has multiplicity 2. Namely, the pairs of vectorsum& and u2m& are of
the same eigenvalue. LetV1 be the subspace of the representation spaceHl spanned by the vector

u 1
2&1 i u2 1

2&, u 3
2&2 i u2 3

2&, u 5
2&1 i u2 5

2&, u 7
2&2 i u2 7

2&, ..., ~24!

and letV2 be the subspace spanned by the vectors

u 1
2&2 i u2 1

2&, u 3
2&1 i u2 3

2&, u 5
2&2 i u2 5

2&, u 7
2&1 i u2 7

2&, ... . ~25!

We denote the vectors~24! by

u 1
2&8, u 3

2&8, u 5
2&8, u 7

2&8,... ~26!

and the vectors~25! by

u 1
2&9, u 3

2&9, u 5
2&9, u 7

2&9, ... . ~27!

Then

Rl
~ i !~ I 1!um&852

qm1q2m

q2q21 um&8, Rl
~ i !~ I 1!um&952

qm1q2m

q2q21 um&9.

We also have

Rl
~ i !~ I 2!u 1

2&85 i
@ l 2 1

2#

q1/22q21/2 u 3
2&1 i

@ l 1 1
2#

q1/22q21/2 u2 1
2&1

@ l 1 1
2#

q1/22q21/2 u 1
2&1

@ l 2 1
2#

q1/22q21/2 u2 3
2&

5
@ l 1 1

2#

q1/22q21/2 u 1
2&81 i

@ l 2 1
2#

q1/22q21/2 u 3
2&8.

We derive similarly that

Rl
~ i !~ I 2!u 1

2&952
@ l 1 1

2#

q1/22q21/2 u 1
2&91 i

@ l 2 1
2#

q1/22q21/2 u 3
2&9

and that
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Rl
~ i !~ I 2!um&85 i

@ l 2m#

qm2q2m um11&81 i
@ l 1m#

qm2q2m um21&8, m. 1
2,

Rl
~ i !~ I 2!um&95 i

@ l 2m#

qm2q2m um11&91 i
@ l 1m#

qm2q2m um21&9, m. 1
2.

Thus, the subspacesV1 andV2 are invariant with respect to the operatorsRl
( i )(I 1) andRl

( i )(I 2).
This means that they are invariant with respect to the representationRl

( i ) .
It is proved similarly that the subspaceV1 of the spaceHl of the representationRl

(2 i ) spanned
by the vectors~24! and the subspaceV2 of Hl spanned by the vectors~25! are invariant with
respect to the operatorsRl

(2 i )(I 1) andRl
(2 i )(I 2). That is, the representationRl

(2 i ) is also reducible.
Proposition is proved.

Let Rn
( i ,1) andRn

( i ,2) , n5 l 1 1
25dimV15dimV2 , be the representations of Uq(so3) which are

restrictions ofRl
( i ) to the subspacesV1 and V2 , respectively. Denoting the vectors~26! of the

subspaceV1 by

u1&,u2&,u3&,u4&,...,un&[u l 1 1
2&, ~28!

respectively, we have

Rn
~ i ,1 !~ I 1!uk&52

qk21/21q2k11/2

q2q21 uk&,

Rn
~ i ,1 !~ I 2!u1&5

@n#

q1/22q21/2 u1&1 i
@n21#

q1/22q21/2 u2&,

Rn
~ i ,1 !~ I 2!uk&5 i

@n2k#

qk21/22q2k11/2 uk11&1 i
@n1k21#

qk21/22q2k11/2 uk21&, kÞ1.

For the operatorRn
( i ,1)(I 3) we have

Rn
~ i ,1 !~ I 3!u1&52

@n#

q1/22q21/2 u1&2 i
q@n21#

q1/22q1/2 u2&,

Rn
~ i ,1 !~ I 3!uk&52 i

qk@n2k#

qk21/22q2k11/2 uk11&2 i
q2k11@n1k21#

qk21/22q2k11/2 uk21&, kÞ1.

Denoting the vectors~27! of the subspaceV2 by the symbols~28!, respectively, we obtain

Rn
~ i ,2 !~ I 1!uk&52

qk21/21q2k11/2

q2q21 uk&,

Rn
~ i ,2 !~ I 2!u1&52

@n#

q1/22q21/2 u1&1 i
@n21#

q1/22q21/2 u2&,

Rn
~ i ,2 !~ I 2!uk&5Rn

~ i ,1 !~ I 2!uk&, kÞ1.

For the operatorRl
( i ,2)(I 3) we find that

Rn
~ i ,2 !~ I 3!u1&5

@n#

q1/22q21/2 u1&2 i
q@n21#

q1/22q21/2 u2&,
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Rn
~ i ,2 !~ I 3!uk&5Rn

~ i ,1 !~ I 3!uk&, kÞ1.

Let now Rn
(2 i ,1) andRn

(2 i ,2) , n5 l 1 1
2, be the representations of Uq(so3) which are restric-

tions of the representationRl
(2 i ) to the subspacesV1 andV2 , respectively. Introducing the vector

similar to the vectors~28!, for the representationRn
(2 i ,1) we have

Rn
~2 i ,1 !~ I 1!uk&5

qk21/21q2k11/2

q2q21 uk&, Rn
~2 i ,1 !~ I 2!52Rn

~ i ,1 !~ I 2!,

Rn
~2 i ,1 !~ I 3!u1&5

@n#

q1/22q21/2 u1&1 i
q@n21#

q1/22q21/2 u2&,

Rn
~2 i ,1 !~ I 3!uk&5 i

qk@n2k#

qk21/22q2k11/2 uk11&1 i
q2k11@n1k21#

qk21/22q2k11/2 uk21&, kÞ1.

For the representationRl
(2 i ,2)(I 3) we obtain

Rn
~2 i ,2 !~ I 1!uk&5

qk21/21q2k11/2

q2q21 uk&, Rn
~2 i ,2 !~ I 2!52Rn

~ i ,2 !~ I 2!,

Rn
~2 i ,2 !~ I 3!u1&52

@n#

q1/22q21/2 u1&1 i
q@n21#

q1/22q21/2 u2&,

Rn
~2 i ,2 !~ I 3!uk&5Rn

~2 i ,1 !~ I 3!uk&.

Thus, we constructed the representationsRn
( i ,1) , Rn

( i ,2) , Rn
(2 i ,1) , andRn

(2 i ,2) of the algebra
Uq(so3). The following theorem characterizes them.

Theorem 1: The representations Rn
( i ,1) , Rn

( i ,2) , Rn
(2 i ,1) , and Rn

(2 i ,2) are irreducible and
pairwise nonequivalent. For any l the representation Rl

(1) is not equivalent to any of these repre
sentations.

Proof: The irreducibility is proved exactly in the same way as in Proposition 3. Equivale
relations may exist only for irreducible representations of the same dimension. That is, we h
show that under fixedn no pair of the representationsRn

( i ,1) , Rn
( i ,2) , Rn

(2 i ,1) , and Rn
(2 i ,2) is

equivalent. It follows from the above formulas that the operatorsRn
( i ,1)(I 1) andRn

( i ,2)(I 1), as well
as the operatorsRn

(2 i ,1)(I 1) and Rn
(2 i ,2)(I 1), have the same set of eigenvalues. Moreover,

spectrum of the first pair of operators differs from that of the second pair. Hence, neither
representationsRn

( i ,1) andRn
( i ,2) is equivalent toRn

(2 i ,1) or Rn
(2 i ,2) . The representationsRn

( i ,1)

and Rn
( i ,2) are not equivalent since the operatorsRn

( i ,1)(I 2) and Rn
( i ,2)(I 2) have different traces

~for equivalent representations these operators must have the same trace!. For the same reason, th
representationsRn

(2 i ,1) andRn
(2 i ,2) are not equivalent. The last assertion of the theorem follo

from the fact that the spectrum of the operatorRl
(1)(I 3) differs from the spectra of the operato

Rn
( i ,1)(I 1), Rn

( i ,2)(I 1), Rn
(2 i ,1)(I 1), andRn

(2 i ,2)(I 1). Theorem is proved.
Clearly, the reducible representationsRn

( i ) andRn
(2 i ) decompose into irreducible componen

as

Rn
~ i !5Rn

~ i ,1 !
% Rn

~ i ,2 ! , Rn
~2 i !5Rn

~2 i ,1 !
% Rn

~2 i ,2 ! . ~29!

It can be proved thatevery irreducible finite-dimensional representation ofUq(so3) is equiva-
lent to one of the representations Rl

(1) , Rn
( i ,1) , Rn

( i ,2) , Rn
(2 i ,1) , Rn

(2 i ,2) . That is, these represen
tations exhaust, up to equivalence, all irreducible finite-dimensional representations of Uq(so3). A
proof of this statement will be given in a separate paper.
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V. TENSOR PRODUCTS OF REPRESENTATIONS OF Uq„so3…

As mentioned above, no Hopf algebra structure is known for the algebra Uq(so3). Therefore,
we cannot construct a tensor product of finite-dimensional representations of Uq(so3) by using a
comultiplication as we do in the case of the quantum algebra Uq(sl2). However, we may construc
some tensor product representations by using the algebra homomorphism of Proposition 2

First we determine which tensor products of irreducible representations of Uq(sl2) can be
extended to representations of the algebra Uˆ

q(sl2). Verifying for which tensor productsT5T8
^ T9 of irreducible representations of Uq(sl2) the operators

qkT~qH!1q2kT~q2H!, kPZ,

are invertible, we conclude that only the tensor products

Tl
~61!

^ Tl 8
~61! , Tl

~61!
^ Tl 8

~71! , l ,l 850,1
2,1,32,...,

Tl
~61!

^ Tl 8
~6 i ! , Tl

~61!
^ Tl 8

~7 i ! , l 50,1,2,..., l 85 1
2,

3
2,

5
2,...,

Tl
~6 i !

^ Tl 8
~61! , Tl

~6 i !
^ Tl 8

~71! , l 5 1
2,

3
2,

5
2,..., l 850,1,2,...,

Tl
~6 i !

^ Tl 8
~6 i ! , Tl

~6 i !
^ Tl 8

~7 i ! , l ,l 85 1
2,

3
2,

5
2,...,

can be extended to the algebra Uˆ
q(sl2). Taking into account the decompositions of tensor produ

of irreducible representations of Uq(sl2) ~see, for example, the end of Subsection 3.2.1 and Pro
sition 3.22 in Ref. 11! we find that

Tl
~v!

^ Tl 8
~v8!.Tl 1 l 8

~vv8!
% Tl 1 l 821

~vv8!
%¯% Tu l 1 l 8u

~vv8! , ~30!

Tl
~v!

^ t l 8
~6 i !.Tl 1 l 8

~6v i !
% Tl 1 l 821

~6v i !
%¯% Tu l 1 l 8u

~6v i ! , ~31!

Tl
~6 i !

^ Tl 8
~v!.Tl 1 l 8

~6v i !
% Tl 1 l 821

~6v i !
%¯% Tu l 1 l 8u

~6v i ! , ~32!

Tl
~v i !

^ Tl 8
~v8 i !.Tl 1 l 8

~2vv8!
% Tl 1 l 821

~2vv8!
%¯% Tu l 1 l 8u

~2vv8! , ~33!

wherev,v8561.
Now we define tensor products of representations of Uq(so3) corresponding to the abov

tensor product representations of Uˆ
q(sl2) as

R^ R85~T^ T8!+c,

whereR5T+c and R85T8+c. Taking into account the definitions of tensor products of rep
sentations of Uq(sl2) by means of the comultiplication and the definition of the mappingc we
have

~R^ R8!~ I 1!5~T^ T8!+c~ I 1!

5
i

q2q21 „T~qH! ^ T8~qH!2T~q2H! ^ T8~q2H!….

Similarly,

~R^ R8!~ I 2!5„T~E! ^ T8~qH!1T~q2H! ^ T8~E!2T~F ! ^ T8~qH!

2~T~q2H! ^ T8~F !!~T~qH! ^ T8~qH!1T~q2H! ^ T8~q2H!…21.
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Composing both sides of the relations~30!–~33! with the mappingc of Proposition 2, we find
the decomposition into representations of Uq(so3) for the tensor products

Rl
~1!

^ Rl 8
~1! , Rl

~1!
^ Rl 8

~6 i ! , Rl 8
~6 i !

^ Rl
~1! , Rl

~6 i !
^ Rl 8

~6 i ! , Rl
~6 i !

^ Rl 8
~7 i ! ,

where the second and the third tensor products are defined only forl 50,1,2,... . ~Note that the
representationsRl

(6 i ) are defined only forl 5 1
2,

3
2,

5
2,... .) Wehave

Rl
~1!

^ Rl 8
~1!.Rl 1 l 8

~1!
% Rl 1 l 821

~1!
%¯% Ru l 2 l 8u

~1! ,

Rl
~1!

^ Rl 8
~6 i !.Rl 1 l 8

~6 i !
% Rl 1 l 821

~6 i !
%¯% Ru l 2 l 8u

~6 i ! ,

Rl
~6 i !

^ Rl 8
~1!.Rl 1 l 8

~6 i !
% Rl 1 l 821

~6 i !
%¯% Ru l 2 l 8u

~6 i ! ,

Rl
~v i !

^ Rl 8
~v8 i !.Rl 1 l 8

~1!
% Rl 1 l 821

~1!
%¯% Ru l 2 l 8u

~1! .

In these formulas the representationsRl
(6 i ) are reducible. Unfortunately, our definition of tens

products of representations of Uq(so3) does not allow us to determine the tensor products c
taining the irreducible representationsRn

(6 i ,6) andRn
(6 i ,7) .

VI. INFINITE-DIMENSIONAL REPRESENTATIONS OF U q„so3… OBTAINED FROM
REPRESENTATIONS OF Uq„sl 2…

By using the homomorphismc:Uq(so3)→Ûq(sl2) from Proposition 2 and infinite-
dimensional irreducible representations of the algebra Uˆ

q(sl2) we can construct infinite-
dimensional irreducible representations of the algebra Uq(so3).

Let us first describe irreducible infinite-dimensional representations of the algebra Uq(sl2).
Note that by an infinite-dimensional representationT of Uq(sl2) we mean a homomorphism o
Uq(sl2) into the algebra of linear operators~bounded or unbounded! on a Hilbert space, defined o
an everywhere dense invariant subspaceD, such that the operatorT(qH) can be diagonalized, ha
a discrete spectrum, and its eigenvectors belong toD. Infinite-dimensional representationsT of
Uq(so3) are described in the same way replacing the operatorT(qH) by T(I 1).

Two representationsT and T8 of Uq(sl2) on spacesH and H8, respectively, are called
~algebraically! equivalent if there exist everywhere dence invariant subspacesV,H andV8,H8
and a one-to-one linear operatorA:V→V8 such thatAT(a)v5T8(a)Av for all aPUq(sl2) and
vPV. Equivalence of infinite-dimensional representations of Uq(so3) is defined in the same way

Let e be a fixed complex number such that 0<Ree,1, and letHe be a complex Hilbert space
with the orthonormal basis

um&, m5n1e, n50,61,62,... . ~34!

For every complex numbera we construct the representationTae on the Hilbert spaceHe defined
by

Tae~qH!um&5qmum&, Tae~E!um&5@a2m#um11&, Tae~F !um&5@a1m#um21&,

where@a6m# is theq-number~see, for example, Ref. 12!. The equivalence relations in the set
the representationsTae can be extracted from Ref. 12.

Note that the representationTae is irreducible if and only ifaÞ6e(modZ).
All the representationsTae can be extended to representations of the algebra Uˆ

q(sl2) except
for the case whene56 ip/2t, whereq5et. ~We suppose below thateÞ6 ip/2t.) We denote
these extended representations by the same symbolsTae .
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The formulaRae5Tae+c associates with every irreducible representationTae , eÞ6 ip/2t,
of Ûq(sl2) a representation of the algebra Uq(so3).

Let eÞ6 ip/2t andeÞ6 ip/2t1 1
2. Then for the representationsRae of Uq(so3) we have

Rae~ I 1!um&5 i @m#um&, ~35a!

Rae~ I 2!um&5
1

qm1q2m $@a2m#um11&2@a1m#um21&%, ~35b!

Rae~ I 3!um&5
iq1/2

qm1q2m $qm@a2m#um11&1q2m@a1m#um21&%. ~35c!

If e5 ip/2t1 1
2, then denoting the basis elementsum&, m5n1e, nPZ, by un1 1

2&, nPZ, respec-
tively, we obtain

Rae~ I 1!uk&52
qk1q2k

q2q21 uk&,

Rae~ I 2!uk&5 i
@a82k#

qk2q2k uk11&1 i
@a81k#

qk2q2k uk21&,

Rae~ I 3!uk&52
iqk11/2@a82k#

qk2q2k uk11&2
iq2k11/2@a81k#

qk2q2k uk21&,

where a85a1 ip/2t and k5n1 1
2. If e52 ip/2t1 1

2, then using the same notations for bas
elements we obtain

Rae8 ~ I 1!uk&5
qk1q2k

q2q21 uk&,

Rae8 ~ I 2!uk&52 i
@a82k#

qk2q2k uk11&2 i
@a81k#

qk2q2k uk21&,

Rae8 ~ I 3!uk&52
iqk11/2@a82k#

qk2q2k uk11&2
iq2k11/2@a81k#

qk2q2k uk21&

~to distinguish these representations from the previous ones we suppliedRae with a prime!.
Proposition 4: The representations Rae of Uq(so3) are irreducible for irreducible represen

tations Tae , eÞ6 ip/2t1 1
2 of Ûq(sl2). The representations Rae , e5 ip/2t1 1

2, and Rae8 , e
52 ip/2t1 1

2, are reducible.
Proof is given in the same way as in the case of Proposition 3.
As in the case of finite-dimensional representations in Sec. IV, decomposing the repre

tions Rae , e5 ip/2t1 1
2, and Rae8 , e52 ip/2t1 1

2, we obtain irreducible infinite-dimensiona
representations of Uq(so3) which will be denoted byRa8

( i ,6) and Ra8
(2 i ,6) , a85a1 ip/2t. In the

basis

un&, n51,2,3,...,

they are given by the formulas

Ra8
~ i ,6 !

~ I 1!uk&52
qk21/21q2k11/2

q2q21 uk&,
                                                                                                                



-
ta-

hest

g
nta-
rep-

-

t be

at

2147J. Math. Phys., Vol. 40, No. 4, April 1999 Havlı́ček, Klimyk, and Pošta

                    
Ra8
~ i ,6 !

~ I 2!u1&56
@a8#

q1/22q21/2 u1&1 i
@a821#

q1/22q21/2 u2&,

Ra8
~ i ,6 !

~ I 2!uk&5 i
@a82k#

qk21/22q2k11/2 uk11&1 i
@a81k21#

qk21/22q2k11/2 uk21&, kÞ1.

Ra8
~ i ,6 !

~ I 3!u1&57
@a8#

q1/22q21/2 u1&2 i
q@a821#

q1/22q21/2 u2&,

Ra8
~ i ,6 !

~ I 3!uk&52 i
qk@a82k#

qk21/22q2k11/2 uk11&2 i
q2k11@a81k21#

qk21/22q2k11/2 uk21&, kÞ1

and by the formulas

Ra8
~2 i ,6 !

~ I 1!uk&5
qk21/21q2k11/2

q2q21 uk&, Ra8
~2 i ,6 !

~ I 2!52Ra8
~ i ,6 !

~ I 2!,

Ra8
~2 i ,6 !

~ I 3!u1&56
@a8#

q1/22q21/2 u1&1 i
q@a821#

q1/22q21/2 u2&,

Ra8
~2 i ,6 !

~ I 3!uk&5 i
qk@a82k#

qk21/22q2k11/2 uk11&1 i
q2k11@a81k21#

qk21/22q2k11/2 uk21&, kÞ1.

Theorem 2: The representations Ra8
( i ,6) andRa8

(2 i ,6) are irreducible and pairwise nonequiva
lent. For any a the irreducible representation Rae is not equivalent to some of these represen
tions.

Proof is given in the same way as in the finite-dimensional case~see the proof of Theorem 1!.
The algebra Uq(sl2) also has irreducible infinite-dimensional representations with hig

weights or with lowest weights. They are classified in Ref. 12. All of these representationsT can
be extended to the algebra Uˆ

q(sl2). Using the compositionR5T+c we obtain the correspondin
representationsR of Uq(so3). As above, it can be easily proved that to nonequivalent represe
tions T of Ûq(sl2) with highest or lowest weight there correspond nonequivalent irreducible
resentations of Uq(so3). We give a list of these representations.

Let l 5 1
2,1,32,2,... . We denote byRl

1 the representation of Uq(so3) acting on the Hilbert space
Hl with the orthonormal basisum&, m5 l ,l 11,l 12,..., and given by formulas~35! with a52 l . By
Rl

2 we denote the representation of Uq(so3) acting on the Hilbert spaceĤl with the orthonormal
basisum&, m52 l ,2 l 21,2 l 22,..., and given by formulas~35! with a5 l .

Now let aÞ0(modZ) andaÞ 1
2(modZ). We denote byHa the Hilbert space with the ortho

normal basisum&, m52a,2a11,2a12,... . On this space the representationRa
1 acts as given by

formulas~35!. On the Hilbert spaceĤa with the orthonormal basisum&, m5a,a21,a22,..., the
representationRa

2 acts as given by formulas~35!.
Proposition 5: The above representations Rl

6 and Ra
6 are irreducible and pairwise non-

equivalent.
Proof of this proposition is contained in Ref. 13.

VII. OTHER INFINITE DIMENSIONAL REPRESENTATIONS OF U q„so3…

The algebra Uq(so3) has also irreducible infinite-dimensional representations which canno
obtained from representations of Uˆ

q(sl2). We describe these representations in this section.
Let H be the infinite-dimensional vector space with the basisum&, m50,61,62,..., and let

l5qt be a nonzero complex number such that 0<Ret ,1. Then a direct calculation shows th
the operatorsQl

1(I 1) andQl
1(I 2) given by the formulas
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Ql
1~ I 1!um&5

lqm1l21q2m

q2q21 um&,

Ql
1~ I 2!um&5

1

q2q21 um11&1
1

q2q21 um21&

satisfy the relations~7! and ~8! and hence determine a representation of Uq(so3) which will be
denoted byQl

1 . Similarly, the operatorsQl
2(I 1) andQl

2(I 2) given on the spaceH by

Ql
2~ I 1!um&52

lqm1l1q2m

q2q1 um&, Ql
2~ I 2!ªQl

1~ I 2!

determine a representation of Uq(so3) which is denoted byQl
2 . The operatorsQl

6(I 3) can be
calculated by means of formula~4!.

Proposition 6: IflÞ1 andlÞq1/2, then the representations Ql
1 and Ql

2 are irreducible. The
representations Q1

6 and QAq
6 are reducible.

Proof: The first part is proved in the same way as that of Proposition 3. Let us prove
second part. The representationsQ1

6 and QAq
6 are the only representations in the set$Ql

6% for
which the operatorQl

6(I 1) has not a simple spectrum. The operatorsQ1
6(I 1) has the spectrum

..., q221q2, q211q, 2, q1q21, q21q22, ... .

Thus, only the spectral point 2 has multiplicity 1. All other points have multiplicity 2. LetV1 and
V2 be the vector subspaces ofH with the bases

u0&, um&85um&2u2m&, m51,2,...,

and

um&95um&1u2m&, m51,2,...,

respectively. These basis vectors are eigenvectors of the operatorQ1
6(I 1):

Q1
6~ I 1!um&856

qm1q2m

q2q21 um&8, Q1
6~ I 1!um&956

qm1q2m

q2q21 um&9,

and

Q1
6~ I 2!u0&5

1

q2q21 u1&8, Q1
6~ I 2!u1&95

1

q2q21 u2&9,

Q1
6~ I 2!um&85

1

q2q21 um11&81
1

q2q21 um21&8, m.0,

Q1
6~ I 2!um&95

1

q2q21 um11&91
1

q2q21 um21&9, m.1.

Thus, the subspacesV1 and V2 are invariant with respect to the representationQ1
1 ~and the

representationQ1
2). We denote the subrepresentations ofQ1

6 realized onV1 andV2 by Q1
1,6 and

Q1
2,6 , respectively.

The eigenvalues of the operatorsQAq
6 (I 1) are

..., q23/21q3/2, q21/21q1/2, q1/21q21/2, q3/21q23/2, ... .
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Thus, every spectral point has multiplicity 2. We denote byW1 andW2 the vector subspaces ofH
spanned by the basis vectors

u 1
2&85u0&2u21&,u 3

2&85u1&2u22&,...,um1 1
2&85um&2u2m21&,...

and

u 1
2&95u0&1u21&,u 3

2&95u1&1u22&,...,um1 1
2&95um&1u2m21&,...,

respectively. These basis vectors are eigenvectors of the operatorQAq
6 (I 1):

QAq
6 ~ I 1!um1 1

2&856
qm11/21q2m21/2

q2q21 um1 1
2&8,

QAq
6 ~ I 1!um1 1

2&956
qm11/21q2m21/2

q2q1 um1 1
2&9,

and

QAq
6 ~ I 2!u 1

2&852
1

q2q21 u 1
2&81

1

q2q21 u 3
2&8,

QAq
6 ~ I 2!um1 1

2&85
1

q2q21 um1 3
2&81

1

q2q21 um2 1
2&8, m.0,

QAq
6 ~ I 2!u 1

2&95
1

q2q21 u 1
2&91

1

q2q21 u 3
2&9,

QAq
6 ~ I 2!um1 1

2&95
1

q2q21 um1 3
2&91

1

q2q21 um2 1
2&9, m.0.

Thus, the subspacesW1 andW2 are invariant with respect to the representationsQAq
6 . We denote

the subrepresentations ofQAq
6 realized onW1 andW2 by QAq

1,6 andQAq
2,6 , respectively. Proposition

is proved.
Theorem 3: The representations Q1

1,6 , Q1
2,6 , QAq

1,6 , and QAq
2,6 are irreducible and pairwise

nonequivalent. For any admissible value ofl the representation Ql
1 (as well as the representatio

Ql
2) is not equivalent to some of these representations.

Proof: Proof is similar to that of Theorem 1 if to take into account spectra of the opera
Q1

1,6(I 1), Q1
2,6(I 1), QAq

1,6(I 1), QAq
2,6(I 1), and Ql

6(I 1) and traces of the operatorsQ1
1,6(I 2),

Q1
2,6(I 2), QAq

1,6(I 2), andQAq
2,6(I 2).

It will be proved in a separate paper that every irreducible infinite-dimensional represen
of Uq(so3) is equivalent to one of the representations described in this and previous sectio

VIII. FINITE-DIMENSIONAL REPRESENTATIONS OF Û q„sl 2…: q IS A ROOT OF UNITY

Everywhere belowq is a root of unity, that is, there is a smallest positive integerp such that
qp51. We suppose thatpÞ1,2. We introduce the numberp8 settingp85p if p is odd andp8
5p/2 if p is even.

As in the case of the algebra Uq(sl2) ~see Ref. 11, Chap. 3!, if q is a root of unity, then
Uq(so3) is a finite-dimensional vector space over the center of Uq(so3). If q is a primitive root of
unity, then this assertion is stated in Ref. 5. Ifq is any root of unity, then this assertion may b
proved in the following way. Ifqp51, then the centerC of Uq(so3) contains the elements
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Pp5I j
p1aI j

p221bI j
p241¯1dI j

r , j 51,2,3,

where r 50 if p is even andr 51 if p is odd anda,b,...,d are certain fixed complex number
expressed in terms ofq. @They are the polynomialsP defined in Ref. 5 ifq is a primitive root of
unity. Unfortunately, we could not find the explicit expressions for the coefficientsa,b,...,d. But
note thatP35I j

31I j , P45I j
41I j

2, andP55I j
51„11(q1q21)21

…I j
31(q1q21)21I j .# Therefore,

I j
s , s.n, can be reduced to the linear combination ofI j

i , i ,n, with coefficients from the cente
C. Now our assertion follows from this and from the Poincare´–Birkhoff–Witt theorem for
Uq(so3).

Theorem 4: If q is a root of unity, then any irreducible representation ofUq(so3) is finite
dimensional.

Proof: Let T be an irreducible representation of Uq(so3). ThenT maps central elements int
scalar operators. Since the linear space Uq(so3) is finite dimensional over the centerC with the
basisI 1

kI 2
mI 3

n , k,m,n,p then for anyaPUq(so3) we haveT(a)5(k,m,n,pT(I 1
kI 2

mI 3
n). Hence, ifv

is a nonzero vector of the representation spaceV, thenT„Uq(so3)…v5V andV is finite dimensional.
Theorem is proved.

Taking into account Theorem 4, below we consider only finite-dimensional representatio
Uq(so3).

In order to find irreducible representations of Uq(so3) for q a root of unity, we use the sam
method as before, that is, we apply the homomorphismc from Proposition 2 and irreducible
representations of the algebra Uˆ

q(sl2) for q a root of unity.
Let us find irreducible representations of Uˆ

q(sl2) for q a root of unity. The quantum algebr
Uq(sl2) for q a root of unity has the following irreducible representations~see Ref. 11, Subsectio
3.3.2!:

~a! The representationsTl
(1) , Tl

(21) , Tl
( i ) , Tl

(2 i ) , 2l ,p8, given by the formulas~15!–~19!.
~b! The representationsTabl , a, b, lPC, lÞ0, acting on ap8-dimensional vector spaceH

with the basisuj&, j 50,1,2,...,p821, and given by the formulas

Tabl~qH!u i &5q2 ilu i &, Tabl~F !up821&5bu0&, ~36!

Tabl~F !u i &5u i 11&, i ,p821, Tabl~E!u0&5aup821&, ~37!

Tabl~E!u i &5S ab1@ i #
l2q12 i2l22qi 21

q2q21 D u i 21&, i .0. ~38!

The representationsTabl with (a,b)5(0,0) andl56qn, n50,1,2,...,p822, are reducible and
must be taken out from this set.

~c! The representationsT0bl8 , b, lPC, lÞ0, acting on ap8-dimensional vector spaceH with
the basisuj&, j 50,1,2,...,p821, and given by the formulas

T0bl8 ~qH!u i &5qil21u i &, T0bl8 ~E!up821&5bu0&, ~39!

T0bl8 ~E!u i &5u i 11&, i ,p821, T0bl~F !u0&50, ~40!

T0bl8 ~F !u i &5@ i #
l2q12 i2l22qi 21

q2q21 u i 21&, i .0. ~41!

The representationsT00l8 with l56qn, n50,1,2,...,p822, are reducible and must be taken o
from this set.

Remark 1:In the set of representations~a!–~c! there exist equivalent representations~see, for
example, Propositions 3.17 and 3.18 in Ref. 11!.

Remark 2:In Ref. 11, Subsection 3.3.2, irreducible representations of the algebra genera
the elementsE,F,Kªq2H, K21

ªq22HPUq(sl2) are given. Clearly, this algebra is a subalgeb
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in Uq(sl2). It is easy to generalize the results of Subsection 3.3.2 in Ref. 11 for Uq(sl2). Let us
note that the algebra Uq(sl2) has a unique automorphismw such thatw(qH)5 iqH, w(E)52E,
andw(F)5F. ~If q is not a root of unity, then this automorphism transforms the representa
Tl

(1) to the representationsTl
( i ) , respectively.! Therefore, the mappingT̃2a,b,l5Tabl+w is also a

representation of Uq(sl2). We have

T̃abl~qH!u i &5 iq2 ilu i &, T̃abl~F !up821&5bu0&, ~42!

T̃abl~F !u i &5u i 11&, i ,p821, T̃abl~E!u0&5aup821&, ~43!

T̃abl~E!u i &5S ab2@ i #
l2q12 i2l22qi 21

q2q21 D u i 21&, i .0. ~44!

However, it is easy to see by comparing~36!–~38! with ~42!–~44! that the representationT̃abl is
equivalent toTa,b,il . This means that forq a root of unity we do not obtain new representatio
of Uq(sl2) from Tabl applying the automorphismw as in the case of the representationsTl

(1) .
We have described irreducible representations of the algebra Uq(sl2). Now we wish to extend

these representations to obtain representations of the algebra Uˆ
q(sl2) by using the relation

T„~qkqH1q2kq2H!21
…ª„qkT~qH!1q2kT~q2H!…21.

Clearly, only those irreducible representationsT of Uq(sl2) can be extended to Uˆ
q(sl2) for which

the operatorsqkT(qH)1q2kT(q2H) are invertible. From formulas~15!–~19! it is clear that these

operators are always invertible for the irreducible representationsTl
(1) , Tl

(21) , l 50,1
2,1,32,...,(p8

21)/2, and for the irreducible representationsTl
( i ) , Tl

(2 i ) , l 5 1
2,

3
2,

5
2,...,(p821)/2 @or (p8

22)/2.# ~For the representationsTl
( i ) , Tl

(2 i ) , l 50,1,2,..., some of these operators are not inv
ible since they have zero eigenvalue.! We denote the extended representations by the same
bols Tl

(1) , Tl
(21) , Tl

( i ) , andTl
(2 i ) , respectively.

Similarly, the representationTabl ~and the representationT0bl8 ) can be extended to a repre
sentation of the algebra Uˆ

q(sl2) if and only if lÞ6 iqk, kPZ.
Proposition 7: The algebraÛq(sl2) for q a root of unity has the irreducible representation

Tl
(1) , Tl

(21) , l 50,1
2,1,32,...,(p821)/2, the irreducible representations Tl

( i ) , Tl
(2 i ) , l

5 1
2,

3
2,

5
2,...,(p821)/2 @or (p822)/2#, and the irreducible representations Tabl , T0bl8 , l

Þ6 iqk, kPZ. Any irreducible representation ofÛq(sl2) for q a root of unity is equivalent to one
of these representations.

IX. REPRESENTATIONS OF Uq„so3… FOR q A ROOT OF UNITY OBTAINED FROM
THOSE OF Ûq„sl 2…

As in Sec. IV, we shall obtain representations of Uq(so3) for q a root of unity by applying the
homomorphismc from Proposition 2. Namely, ifT is a representation of Uˆ

q(sl2), then

R5T+c ~45!

is a representation of Uq(so3). As in Sec. IV, application of this method to the pair of th
irreducible representationsTl

(1) andTl
(21) of Ûq(sl2) leads to the same representation of Uq(so3)

which will be denoted byRl
(1) . Applying the formula~45! to the irreducible representationsTl

( i )

andTl
(2 i ) of Ûq(sl2) gives the representations of Uq(so3) which will be denoted byRl

( i ) andRl
(2 i ) ,

respectively.
Proposition 8: The representations Rl

(1) of Uq(so3) are irreducible. The representations Rl
( i )

and Rl
(2 i ) are reducible.

Proof of this proposition is the same as that of Proposition 3.
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Repeating word-by-word the reasoning of Sec. IV, we decompose the representationsRl
( i ) and

Rl
(2 i ) into the direct sums of representations of Uq(so3) which are denoted byRn

(6 i ,1) and
Rn

(6 i ,2) :

Rl
~ i !5Rn

~ i ,1 !
% Rn

~ i ,2 ! , Rl
~2 i !5Rn

~2 i ,1 !
% Rn

~2 i ,2 ! , n5 l 1 1
2.

Moreover, the representationsRn
(6 i ,1) and Rn

(6 i ,2) are given in the appropriate base
u1&,u2&,...,un& by the corresponding formulas of Sec. IV.

Theorem 5: The representations Rn
( i ,1) , Rn

( i ,2) , Rn
(2 i ,1) , andRn

(2 i ,2) , n51,2,3,...,p8/2 @or

(p821)/2# are irreducible and pairwise nonequivalent. For any l, l 50,1
2,1,32,...,(p821)/2, the

representation Rl
(1) is not equivalent to some of these representations.

Proof is the same as that of Theorem 1.
Now we apply formula~45! to the representationsTabl andT0bl8 . As a result, we obtain the

representations

Rabl5T2a,b,2 il+c, R0bl8 5T0,b2 il8

given in the basesuj&, j 50,1,2,...,p821, by the formulas

Rabl~ I 1!u i &5
21

q2q21 ~q2 il1qil21!u i &, ~46!

Rabl~ I 2!u0&5
i

l2l21 ~aup821&1u1&), ~47!

Rabl~ I 2!up821&5
i

q2p811l2qp821l21

3H bu0&1S ab1@p821#
q2p812l22qp822l22

q2q21 D up822&J , ~48!

Rabl~ I 2!u i &5
i

q2 il2qil21 H S ab1@ i #
q2 i 11l22qi 21l22

q2q21 D u i 21&1u i 11&J , 0, i ,p821,

~49!

and by the formulas

R0bl8 ~ I 1!u i &5
1

q2q21 ~q2 il1qil21!u i &, R0bl8 ~ I 2!u0&5
2 i

l2l21 u1&,

R0bl8 ~ I 2!up821&5
2 i

q2p811l2qp821l21
S bu0&1@p821#

q2p812l22qp822l22

q2q21 up822& D ,

R0bl8 ~ I 2!u i &5
2 i

q2 il2qil21 S u i 11&1@ i #
q2 i 11l22qi 21l22

q2q21 u i 21& D , 0, i ,p821.

The operatorsRabl(I 3) andR0bl8 (I 3) can be calculated by means of the relation

R~ I 3!5q1/2R~ I 1!R~ I 2!2q21/2R~ I 2!R~ I 1!.

Recall that the representationsRabl andR0bl8 are determined forlÞ0 andlÞ6qk, kPZ.
It is seen from the above formulas that
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R0bl8 ~ I 1!5R0,b,2l~ I 1!, R0bl8 ~ I 2!5R0,b,2l~ I 2!,

that is, the representationsR0,b,2l and R0bl8 are equivalent. For this reason, we consider bel
only the representationsRabl .

In order to study the representationsRabl of Uq(so3) we consider the spectrum of the operat
Rabl(I 1). It coincides with the set of points

2
l1l21

q2q21 , 2
q21l1ql21

q2q21 , 2
q22l1q2l21

q2q21 , ..., 2
q12p8l1qp821l21

q2q21 . ~50!

It is easy to see that there exist coinciding points in this set if and only ifl is equal to one of the
numbers

6q1/2,6q3/2,6q5/2,...,6q~p821!/2 ~or 6q~p822!/2!.

~Here we have to take6q(p821)/2 if p8 is even and6q(p822)/2 if p8 is odd.! Moreover, the set~50!

splits into pairs of coinciding points if and only ifl56q(p821)/2. In all other cases there exists
least one spectral point which coincides with no other point. In particular, ifl56q(p822)/2, then
in this set there exists only one eigenvalue with multiplicity 1. In all other cases there are
than one eigenvalue with multiplicity 1.

Proposition 9: IflÞ6q(p821)/2 for even p8 and lÞ6q(p822)/2 for odd p8, then the repre-
sentation Rabl is irreducible.

Proof: Let lÞ6q(p821)/2 for evenp8 and lÞ6q(p822)/2 for odd p8. We distinguish two
cases: when the spectrum of the operatorRabl(I 1) is simple and when there exists at least o
spectral point of this operator having multiplicity 2. In the first case the proof is the same a
first part of the proof of Proposition 3. For the second case, we give a proof only forl5q1/2.
~Proofs for other values ofq are similar.! Then in the set~50! there are only two coinciding point
2(l1l21)/(q2q21) and2(q21l1ql21)/(q2q21) corresponding to the eigenvectorsu0& and
u1&. Let V be an invariant subspace of the representation spaceH. As in the proof of Proposition
3, it is shown thatV is a linear span of eigenvectors of the operatorRabl(I 1), that is, a certain par
of the vectorsui&, iÞ0, 1, a0u0&1a1u1&, b0u0&1b1u1& constitutes a basis ofV. Let V contain
some basis vectoruj&. Then as in the proof of Proposition 3, acting successively uponuj& by certain
linear combinations of the operatorsRabl(I 2) and Rabl(I 3) we generate all the vectorsui&, i

50,1,...,12(p821). This means thatV5H and the representationRabl is irreducible. IfV contains
no vectoruj&, j Þ0,1, then some linear combinationa0u0&1a1u1& belongs toV. Then the vector
v5Rabl(I 2)(a0u0&1a1u1&) belongs toV. Since v contains the summandau2& with nonzero
coefficienta, thenu2&PV. This is a contradiction. Hence, the representationRabl is irreducible.
Proposition is proved.

Let p8 be even. Let us study the representationsRabl for l56q(p821)/2. Forl5q(p821)/2 we
have

Rabl~ I 1!u i &5
21

q2q21 ~q2 i 1~p821!/21qi 2~p821!/2!u i &, ~51!

Rabl~ I 2!u0&5c~p821!/2~aup821&1u1&), ~52!

Rabl~ I 2!up821&52c~p821!/2„~ab1@p821#2!up822&1bu0&…, ~53!

Rabl~ I 2!u i &5c2 i 1~p821!/2„~ab1@ i #2!u i 21&1u i 11&…, ~54!

where
                                                                                                                



2154 J. Math. Phys., Vol. 40, No. 4, April 1999 Havlı́ček, Klimyk, and Pošta

                    
cj5
i

qj2q2 j .

The operatorRa,b,(p821)/2(I 1) has the spectrum

21

q2q21 ~q2 i 1~p821!21qi 2~p821!/2!, i 50,1,2,...,p821,

that is, if p8 is even, then all spectral points are of multiplicity 2.
We assume thatabÞ2@ j #2, j 50,1,...,p821, and go over from the basis$ui&% to the basis

$u i &°%, where

u i & +5)
j 50

i

~ab1@ j #2!21/2u i &, i 50,1,2,...,p821.

Then the formula~51! does not change and the formulas~52!–~54! turn into

Rabl~ I 2!u0& +5c~p821!/2S a )
j 51

p821

~ab1@ j #2!1/2up821& +1~ab11!1/2u1& +D ,

Rabl~ I 2!up821& +52c~p821!/2S ~ab11!1/2up822& +1
b

P j 51
p821~ab1@ j #2!1/2

u0& +D ,

Rabl~ I 2!u i & +5c2 i 1~p821!/2„~ab1@ i #2!1/2u i 21& +1~ab1@ i 11#2!1/2u i 11& +
….

We split the representation spaceH into the direct sum of two linear subspacesH1 andH2

spanned by the basis vectorsu j &8, j 50,1,2,...,12(p822), andu j &9, j 50,1,2,...,12(p822), where

u j &85u j & +1 i ~21!2 j 211p8/2up82 j 21& +, u j &95u j & +1 i ~21!2 j 1p8/2up82 j 21& +.

Then as in Sec. IV, we derive

Ra,b,~p821!/2~ I 1!u j &85
21

q2q21 ~q2 j 1~p821!/21qj 2~p821!/2!u j &8,

Ra,b,~p821!/2~ I 1!u j &95
21

q2q21 ~q2 j 1~p811!/21qj 2~p821!/2!u j &9 ,

for the operatorRa,b,(p821)/2(I 1) and

Ra,b,~p821!/2~ I 2!u j &85c2 j 1~p821!/2„~ab1@ j 11#2!1/2u j 11&81~ab1@ j #2!1/2u j 21&8…,

Ra,b,~p821!/2~ I 2!u j &95c2 j 1~p821!/2„~ab1@ j 11#2!1/2u j 11&91~ab1@ j #2!1/2u j 21&9…,

where j Þ0, p8/221,

Ra,b,~p821!/2~ I 2!Up8

2
21L 8

5
1

q1/22q1/2 S ab1Fp8

2 G2D 1/2Up8

2
21L 8

1
i

q1/22q21/2 S ab1Fp8

2
21G2D 1/2Up8

2
22L 8

,
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Ra,b,~p821!/2~ I 2!Up8

2
21L 9

52
1

q1/22q21/2 S ab1Fp8

2 G2D 1/2Up8

2
21L 9

1
i

q1/22q21/2 S ab1Fp8

2
21G2D 1/2Up8

2
22L 9

,

Ra,b,~p821!/2~ I 2!u0&85c~p821!/2S a )
j 51

p821

~ab1@ j #2!1/2up821& +1~ab11!1/2u1& +D
2 i ~21!~p822!/2c~p821!/2S ~ab11!1/2up822& +

1
b

P j 51
p821~ab1@ j #2!1/2

u0& +D .

When

a )
j 51

p821

~ab1@ j #2!1/25
b

P j 51
p821~ab1@ j #2!1/2

, ~55!

then the last relation reduces to

Ra,b,~p821!/2~ I 2!u0&85
~21!~p822!/2

q~p821!/22q2~p821!/2
a )

j 51

p821

~ab1@ j #2!1/2u0&81c~p821!/2~ab11!1/2u1&8.

Similarly, if the condition~55! is fulfilled, then

Ra,b,~p821!/2~ I 2!u0&95
~21!p8/2

q~p821!/22q2~p821!/2
a )

j 51

p821

~ab1@ j #2!1/2u0&91c~p821!/2~ab11!1/2u1&9.

Thus, the subspacesH1 andH2 are invariant with respect to the representationRa,b,(p821)/2 if the

condition ~55! is fulfilled. We denote the corresponding subrepresentations byRa,b,(p821)/2
1,1 and

Ra,b,(p821)/2
2,1 , respectively.

Similarly, if l52q(p821)/2, then

Ra,b,2~p821!/2~ I 1!52Ra,b,~p821!2~ I 1!, Ra,b,2~p821!/2~ I 2!52Ra,b,~p821!/2~ I 2!

and the subspacesH1 andH2 are invariant with respect to the representationRa,b,2(p821)/2 if the
condition ~55! is fulfilled. We denote the corresponding subrepresentations byRa,b,2(p821)/2

1,2 and

Ra,b,2(p821)/2
2,2 , respectively.

Proposition 10: Let the condition (55) be satisfied. Then the representations Ra,b,(p821)/2
i ,1

and

Ra,b,2(p821)/2
i ,2 , i 51,2, of the algebraUq(so3) are irreducible and pairwise nonequivalent. If th

condition (55) is not satisfied, then the representations Ra,b,(p821)/2 and Ra,b,2(p821)/2 are irre-
ducible.

Proof is similar to that of the previous propositions and we omit it.
Remark that the representationsRa,b,(p821)/2

i ,1 and Ra,b,2(p821)/2
i ,2 , i 51,2, have two nonzero

diagonal matrix elementŝp8/221uRup8/221& and ^0uRu0&.
Let now p8 be odd andl5q(p822)/2. For this value ofl we have
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Rabl~ I 1!u i &5
21

q2q21 ~q2 i 1~p822!/21qi 2~p822!/2!u i &,

Rabl~ I 2!u0&5c~p822!/2~aup821&1u1&),

Rabl~ I 2!up821&52cp8/2„~ab1e@p821#@p8# !up822&1bu0&…,

Rabl~ I 2!u i &5c2 i 1~p822!/2„~ab1e@ i #@ i 11# !u i 21&1u i 11&…,

where e51 for p85p/2, e521 for p85p, and cj is such as in~51!–~54!. The operator
Ra,b,(p822)/2(I 1) has the spectrum

21

q2q21 ~q2 i 1~p822!/21qi 2~p822!/2!, i 50,1,2,...,p821,

that is, all spectral points are of multiplicity 2 except for the point2(qp8/21q2p8/2)/(q2q21)
which is of multiplicity 1.

We assume thatabÞ2e@ j #@ j 11#, j 50,1,...,p821, and go over from the basis$ui&% to the
basis$u i &°%, where

u i & +5)
j 50

i

~ab1e@ j #@ j 11# !21/2u i &, i 50,1,2,...,p821.

Then

Rabl~ I 1!u i & +5
21

q2q21 ~q2 i 1~p822!/21qi 2~p822!/2!u i & +,

Rabl~ I 2!u0& +5c~p822!/2S a )
j 51

p821

~ab1e@ j #@ j 11# !1/2up821& +1~ab1e@2# !1/2u1& +D ,

Rabl~ I 2!up821& +5cp8/2S ~ab1e@p821#@p8# !1/2up822& +1b )
j 51

p821

~ab1e@ j #@ j 11# !21/2u0& +D ,

Rabl~ I 2!u i & +5c2 i 1~p822!/2„~ab1e@ i #@ i 11# !1/2u i 21& +1~ab1e@ i 11#@ i 12# !1/2u i 11& +
…,

where l5q(p822)/2. Let H1 and H2 be two linear subspaces of the representation spacH
spanned by the basis vectors

u j &85u j & +1 i ~21! j up82 j 22& +, j 50,1,2,...,
p823

2
,

and the basis vectors

u j &95u j & +1 i ~21! j 11up82 j 22& +, j 50,1,2,...,
p823

2
,

respectively. Then the operatorRa,b,(p822)/2(I 1) acts on the basis elementsu j &8 andu j &9 as on the
vectorsuj& and

Ra,b,~p821!/2~ I 2!u j &85c2 j 1~p822!/2„~ab1e@ j 11#@ j 12# !1/2u j 11&8

1~ab1e@ j #@ j 11# !1/2u j 21&8…,
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Ra,b,~p822!/2~ I 2!u j &95c2 j 1~p822!/2„~ab1e@ j 11#@ j 12# !1/2u j 11&9

1~ab1e@ j #@ j 11# !1/2u j 21&9…,

where j Þ0,(p823)/2,

Ra,b,~p822!/2~ I 2!Up823

2 L 8
5

~21!~p823!/2

q1/22q21/2 S ab1eFp821

2 GFp811

2 G D 1/2Up823

2 L 8

1
i

q1/22q21/2 S ab1eFp821

2 GFp823

2 G D 1/2Up825

2 L 8
,

Ra,b,~p822!/2~ I 2!Up823

2 L 9
52

~21!~p823!/2

q1/22q21/2 S ab1eFp821

2 GFp811

2 G D 12Up823

2 L 9

1
i

q1/22q21/2 S ab1eFp821

2 GFp823

2 G D 1/2Up825

2 L 9
,

Ra,b,~p822!/2~ I 2!u0&85c~p822!/2S a )
j 51

p821

~ab1e@ j #@ j 11# !1/2up821& +1~ab1e@2# !1/2u1& +

2 i ~ab1e@2# !1/2up821& +2 i ~ab1e@p822#@p821# !1/2up823& +D ,

Ra,b,~p822!/2~ I 2!u0&95c~p822!/2S a )
j 51

p821

~ab1e@ j #@ j 11# !1/2up821& +1~ab1e@2# !1/2u1& +

1 i ~ab1e@2# !1/2up821& +1 i ~ab1e@p822#@p821# !1/2up823& +D .

If

a )
j 51

p821

~ab1e@ j #@ j 11# !1/21 i ~ab1e@2# !1/250, ~56!

~ab1e@2# !1/2 )
j 51

p821

~ab1e@ j #@ j 11# !1/25 ib, ~57!

then

Ra,b,~p822!/2~ I 2!up821&5
2bcp8/2

P j 51
p821~ab1e@ j #@ j 11# !1/2

u0&8,

Ra,b,~p822!/2~ I 2!u0&85
i ~ab1e@2# !1/2

q~p822!/22q2~p822!/2
u1&81cup821&8,

Ra,b,~p822!/2~ I 2!u0&95
i ~ab1e@2# !1/2

q~p822!/22q2~p822!/2
u1&9,
                                                                                                                



spaces
tation

d

bspaces

2158 J. Math. Phys., Vol. 40, No. 4, April 1999 Havlı́ček, Klimyk, and Pošta

                    
wherec is a nonzero coefficient easily determined from the above formulas. Hence, the sub
H11Cup821& andH2 of the representation space are invariant with respect to the represen
Ra,b,(p822)/2 ~we denote these subrepresentations byRa,b,(p822)/2

1 andRa,b,(p822)/2
2 , respectively!.

Remark that

dimH11Cup821&5 1
2~p811!, dimH25 1

2~p821!.

If

a )
j 51

p821

~ab1e@ j #@ j 11# !1/22 i ~ab1e@2# !1/250, ~58!

~ab1e@2# !1/2 )
j 51

p821

~ab1e@ j #@ j 11# !1/252 ib, ~59!

then

Ra,b,~p822!/2~ I 2!up821&5
2bcp8/2

P j 51
p821~ab1e@ j #@ j 11# !1/2

u0&9,

Ra,b,~p822!/2~ I 2!u0&85
i ~ab1e@2# !1/2

q~p822!/22q2~p822!/2
u1&8,

Ra,b,~p822!/2~ I 2!u0&95
i ~ab1e@2# !1/2

q~p822!/22q2~p822!/2
u1&91cup821&,

wherec is a nonzero coefficient. Hence, now the subspacesH1 andH21Cup821& of the repre-
sentation space are invariant. We denote the subrepresentations on these subspaces byR̂a,b,(p822)/2

1

and R̂a,b,(p822)/2
2 , respectively!. Note that the representationR̂a,b,(p822)/2

1 is not equivalent to

Ra,b,(p822)/2
2

~and the representationR̂a,b,(p822)/2
2 is not equivalent toRa,b,(p822)/2

1 ) since the pa-
rametersa andb determining these representations satisfy different equations.

If a and b do not satisfy the relations~56! and ~57! or the relations~58! and ~59!, then the
representationRa,b,(p822)/2 is irreducible.

Let now p8 be odd andl52q(p822)/2. In this case, the representationRa,b,2(p822)/2 is
irreducible ifa andb do not satisfy the relations~56! and~57! or the relations~58! and~59!. If a
and b satisfy the relations~56! and ~57!, then Ra,b,2(p822)/2 is a reducible representation an
decomposes into the direct sum of two subrepresentations acting on the subspacesH11Cup8

21& andH2 . These subrepresentations are denoted byR̂a,b,2(p822)/2
1 andRa,b,2(p822)/2

2 , respec-
tively, and are determined as

Ra,b,2~p822!/2
i

~ I 1!52Ra,b,~p822!/2
i

~ I 1!, Ra,b,2~p822!/2
i

~ I 2!52Ra,b,~p822!/2
i

~ I 2!, i 51,2.

Similarly, if a andb satisfy the relations~58! and ~59!, thenRa,b,2(p822)/2 is a reducible repre-
sentation and decomposes into the direct sum of two subrepresentations acting on the su
H1 and H21Cup821&. These subrepresentations are denoted byR̂a,b,2(p822)/2

1 and

R̂a,b,2(p822)/2
2 , respectively, and are determined as

R̂a,b,2~p822!/2
i

~ I 1!52R̂a,b,~p822!/2
i

~ I 1!, R̂a,b,2~p822!/2
i

~ I 2!52R̂a,b,~p822!/2
i

~ I 2!, i 51,2.
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Proposition 11: Let the conditions (56) and (57) be satisfied. Then the representa
Ra,b,(p822)/2

1 , Ra,b,(p822)/2
2 , Ra,b,2(p822)/2

1 , and Ra,b,2(p822)/2
2

are irreducible and pairwise non-

equivalent. If the conditions (58) and (59) are satisfied, the representations Rˆ
a,b,(p822)/2
1 ,

R̂a,b,(p822)/2
2 , R̂a,b,2(p822)/2

1 , and R̂a,b,2(p822)/2
2

are irreducible and pairwise nonequivalent.
Proof is similar to that of the previous propositions and we omit it.

X. OTHER REPRESENTATIONS OF Uq„so3… FOR q A ROOT OF UNITY

In the previous section we described irreducible representations of Uq(so3) obtained from
irreducible representations of the algebra Uˆ

q(sl2) for q a root of unity. However, atq a root of
unity the algebra Uq(so3) has irreducible representations which cannot be derived from thos
Ûq(sl2). They are obtained as irreducible components of the representationsQl from Sec. VII
when one putq equal to a root of unity. We describe these representations of Uq(so3) in this
section.

Let l5qt be a nonzero complex number such that 0<Ret,1 and let H be the
p8-dimensional complex vector space with basis

um&, m50,1,2,...,p821.

We define on this space the operatorsQl8(I 1) andQl8(I 2) determined by the formulas

Ql8~ I 1!um&5
lqm1l21q2m

q2q21 um&,

Ql8~ I 2!u0&5
1

q2q21 u1&1
1

q2q21 up821&,

Ql8~ I 2!up821&5
1

q2q21 up822&1
1

q2q21 u0&,

Ql8~ I 2!um&5
1

q2q21 um21&1
1

q2q21 um11&, mÞ0,p821.

A direct computation shows that these operators satisfy the relations~7! and~8! and hence deter
mine a representation of Uq(so3) which will be denoted byQl8 .

Theorem 6: If lÞ1 and lÞq1/2, then the representation Ql8 is irreducible.
Proof of this proposition is the same as that of the first part of Proposition 3.
The representationsQ18 and QAq8 are studied in the same way as the representationsQ1 and

QAq in Sec. VII. This study leads to the irreducible representations of Uq(so3) which are described
below.~Note that the description of these representations forp8 even and forp8 odd is different.!

Let p8 be odd. We denote byHr andHs , r 5 1
2(p811) ands5 1

2(p821), the complex vector
spaces with the bases

u0&,u1&,u2&,...,u 1
2~p821!&, and u1&,u2&,...,u 1

2~p821!&,

respectively. Four representationsQ1
6,6 act on the spaceHr and are given by the formulas

Q1
1,6~ I 1!um&5

qm1q2m

q2q21 um&, m50,1,2,...,12~p821!, ~60!

Q1
1,6~ I 2!u 1

2~p821!&56
1

q2q21 u 1
2~p821!&1

1

q2q21 u 1
2~p823!&, ~61!
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Q1
1,6~ I 2!um&5

1

q2q21 um11&1
1

q2q21 um21&, m, 1
2~p821!, ~62!

and by the formulas

Q1
2,6~ I 1!um&52

qm1q2m

q2q21 um&, m50,1,2,...,12~p821!, ~63!

Q1
2,6~ I 2!ªQ1

1,6~ I 2!. ~64!

Note that the upper sign corresponds to the representationsQ1
1,1 andQ1

2,1 and the lower sign to
the representationsQ1

1,2 andQ1
2,2 .

On the spaceHs , four representationsQ̂1
6,6 act by the corresponding formulas~60!–~64!, but

now m runs over the values 1,2,3,...,1
2(p821).

Let nowHr8 andHs8 , r 5 1
2(p811) ands5 1

2(p821), be the complex vector spaces with th
bases

um1 1
2&, m50,1,2,...,12~p821!, and um1 1

2&, m50,1,2,...,12~p823!,

respectively. The four representationsQAq
6,6 act on the spaceHr8 and are given by the formulas

QAq
1,6~ I 1!um1 1

2&5
qm11/21q2m21/2

q2q21 um1 1
2&, m50,1,2,...,12~p821!, ~65!

QAq
1,6~ I 2!u 1

2&56
1

q2q21 u 1
2&1

1

q2q21 u 3
2&, ~66!

QAq
1,6~ I 2!um1 1

2&5
1

q2q21 um1 3
2&1

1

q2q21 um2 1
2&, mÞ0, ~67!

whereum1 3
2&[0 if m5 1

2(p821), and by the formulas

QAq
2,6~ I 1!um1 1

2&52
qm11/21q2m21/2

q2q21 um1 1
2&, m50,1,2,...,12~p821!, ~68!

QAq
2,6~ I 2!ªQAq

1,6~ I 2!. ~69!

On the spaceHs8 , four representationsQ̆Aq
6,6 act by the corresponding formulas~65!–~69!, but

now m runs through the values 0,1,2,...,1
2(p823).

Let now p8 be even. We denote byHr andHs , r 5 1
2(p812) ands5 1

2(p822), the complex
vector spaces with the bases

u0&,u1&,u2&,...,u 1
2 p8&, and u1&,u2&,...,u 1

2~p822!&,

respectively. The representationsQ1
1,6 andQ1

2,6 act onHr andHs , respectively, which are given
by the formulas

Q1
i ,6~ I 1!um&56

qm1q2m

q2q21 um&, i 51,2,

Q1
i ,6~ I 2!um&5

1

q2q21 um11&1
1

q2q21 um21&, i 51,2,
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whereum11& or um21& must be put equal to 0 if the corresponding vector does not exist.
Let Hp8/2 be the complex vector space with the basis

um1 1
2&, m50,1,2,...,12~p822!.

Four representationsQ̂Aq
6,6 act on this space which are given by the formulas

Q̂Aq
1,6~ I 1!um1 1

2&5
qm11/21q2m21/2

q2q21 um1 1
2&,

Q̂Aq
1,6~ I 2!u 1

2&56
1

q2q21 u 1
2&1

1

q2q21 u 3
2&,

Q̂Aq
1,6~ I 2!u 1

2~p822!&56
1

q2q21 u 3
2~p822!&1

1

q2q21 u 1
2~p824!&,

Q̂Aq
1,6~ I 2!um1 1

2&5
1

q2q21 um2 1
2&1

1

q2q21 um1 3
2&, mÞ 1

2,
1
2~p822!,

and by the formulas

Q̂Aq
2,6~ I 1!um1 1

2&52
qm11/21q2m21/2

q2q21 um1 1
2&,

Q̂Aq
2,6~ I 2!5Q̂Aq

1,6~ I 2!.

Let us mention peculiarities of the representations described above. The operatorsQ1
6,6(I 2),

QAq
6,6(I 2), Q̆Aq

6,6(I 2), andQ̂Aq
6,6(I 2) have nonzero diagonal matrix elements and nonzero tra

Moreover, the operatorsQ̂Aq
6,6(I 2) have two such diagonal elements. Spectra of the opera

Q1
6,6(I 1), QAq

6,6(I 1), Q1
1,6(I 1), Q1

2,6(I 1), andQ̂Aq
6,6(I 1) are not symmetric with respect to th

zero point.
Proposition 12: The representations Q1

6,6 , QAq
6,6 , Q̌Aq

6,6 , Q1
1,6 , Q1

2,6 , andQ̂Aq
6,6 are irre-

ducible and pairwise nonequivalent. No representation Ql8 is equivalent to any of them.
Proof is the same as that of Proposition 3.
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Alternative sets of hyperspherical harmonics: Satisfying
cusp conditions through frame transformations

Thomas A. Heima) and Dmitry Greenb)

James Franck Institute, University of Chicago, Chicago, Illinois 60637

~Received 4 February 1998; accepted for publication 30 November 1998!

By extending the concept of Euler-angle rotations to more than three dimensions,
we develop the systematics under rotations in higher-dimensional space for a novel
set of hyperspherical harmonics. Applying this formalism, we determine all pair-
wise Coulomb interactions in a few-body system without recourse to multipole
expansions. Our approach combines the advantages of relative coordinates with
those of the hyperspherical description. In the present method, each Coulomb ma-
trix element reduces to the ‘‘1/r ’’ form familiar from the two-body problem. Con-
sequently, our calculation accounts for all the cusps in the wave function whenever
an interparticle separation vanishes. Unlike a truncated multipole expansion, the
calculation presented here is exact. Following the systematic development of the
procedure for an arbitrary number of particles, we demonstrate it explicitly with the
simplest nontrivial example, the three-body system. ©1999 American Institute of
Physics.@S0022-2488~99!02804-2#

I. INTRODUCTION

A system consisting ofN charged particles gives rise toN(N21)/2 pairwise Coulomb inter-
action terms in its Hamiltonian. Since only the two-body problem (N52) can actually be solved
exactly, conventional atomic physics methods view the complete system of particles at the
as a conglomerate of independent two-body systems, adding the interactions between the
pendent particles in a second step. This approach amounts to selecting a suitable subse
N(N21)/2 Coulomb terms for which a solution in terms of ‘‘simultaneous two-body wave fu
tions’’ can be given. For instance, the independent-particle model for atomic systems treat
electron as interacting primarily with the nucleus~or with the ionic core in the case of valenc
electrons!. Each~valence! electron’s position introduces an independent spherical direction.
as in the familiar solution of the hydrogen atom, each electron contributes to the angular p
the total system’s wave function a spherical harmonicYlm of the angles specifying its direction i
space. In the next step, all the electron–electron interactions are calculated by expand
corresponding separations into Legendre polynomials of the interelectronic angles, thus y
the familiar multipole expansion. In more general terms, the independent-particle mode
selects a specific particle 1~on physical grounds, typically the nucleus or the ionic core! and
solves for each of the remainingN21 particles the two-body problem$1,j %, j 52, . . . ,N, thereby
providing a basis for expanding the total wave function. In the next step, the interaction be
particlesi andj is calculated by adapting the reciprocal of their separation, 1/r i j , to the coordinate
system pertaining to the ‘‘two-body’’ basis functions fori and j ( i , j 52, . . . ,N).

The Coulomb interaction is singular whenever an interparticle separation vanishes.
these singularities are isolated from one another, they do not pose fundamental difficul
calculating the Hamiltonian matrix. However, they give rise tocusps~discontinuous derivatives!
in the wave function,1 thus slowing down the convergence of partial-wave expansions of the w
function in their vicinity.2,3 The independent-particle wave functions can only account~through

a!Present address: Department of Physics and Astronomy, University of Basel, CH-4056 Basel, Switzerland.
b!Present address: Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520.
21620022-2488/99/40(4)/2162/19/$15.00 © 1999 American Institute of Physics
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the correspondings-wave components! for the cusps arising from vanishing separationsr 1 j , j
52, . . . ,N. Cusps due to vanishingr i j with iÞ1 are not reproduced. Possible remedies to th
shortcomings include the explicit use of coordinates like the interelectronic angleu i j or evenr i j

besidesr i and r j ; various approximations for 1/r i j ;4 or replacingr i ,r j by r ,5min(ri ,r j),r.

5max(ri ,r j) in the Hamiltonian.5 All these approaches amount toadapting the interaction opera
tor 1/r i j to a single coordinate system.

The present investigation explores the alternative approach ofadapting the basis functionsto
match the relevant interparticle separationsr i j by utilizing several coordinate systems simult
neously. We calculate a specific interaction term;1/r i j in the coordinate system best suited f
this particular purpose. Thus, the particle separationsr i j dictate the choice of coordinate system
the wave functions being transformed between the relevant reference frames to evalu
different terms of the Hamiltonian. The success of this approach hinges on our ability to pe
the numerous transformations between reference frames with high efficiency. Section II de
hyperspherical Jacobi coordinates appropriate for this task. Section III provides the main res
implementing the relevant transformations for a system with an arbitrary number of particle
by constructing basis functions~harmonics! suitable for extensive transformation between ref
ence frames. The resulting set of hyperspherical harmonics, derived here in the context of
lating the Hamiltonian matrix for a system ofN charged particles, has in fact much wider app
cability.

Hyperspherical coordinates and corresponding hyperspherical harmonics have been ap
various areas of physics since the 1950s, for instance, in three-body scattering,6–8 nuclear9,10 and
atomic11–19 physics, as well as in quantum chemistry.20,21 However, the sets of functions intro
duced in the present investigation are equivalent to, but much more flexible than, the hyper
cal harmonics discussed in Refs. 6–21. Beyond constituting a complete orthogonal set of fun
appropriate for expansions, their frame independence affords greater flexibility in analyzin
lection rules and other relations between harmonics. These aspects are conveniently inve
through ladder operators; they are determined entirely by the symmetry properties o
N-particle system, independent of any coordinate representation. Only calculating the nonv
ing matrix elements requires an appropriate coordinate representation of the generic bas
tions. Section IV illustrates the relevant procedures with the simplest nontrivial example
three-body problem. The concluding Sec. V discusses advantages and limitations of th
technique, as compared to the conventional multipole expansion.

II. HYPERSPHERICAL JACOBI COORDINATES

The inverse proportionality between pairwise interaction and interparticle separation su
replacing individual particles’ positions withrelative ~Jacobi! coordinates. Starting from one pa
of particles, the construction of Jacobi coordinates proceeds hierarchically by joining~the centers
of mass of! increasingly complex groups of particles. This hierarchical structure is comm
referred to as a ‘‘Jacobi tree.’’10 Alternative choices for the initial particle pair, as well as t
ordering of successive particle groups, correspond to different Jacobi trees. In the next step
scaling of the Jacobi coordinates fully exposes the symmetry of the kinetic energy operator
multiparticle system. Letp,q denote two~groups of! particles with massesM p ,Mq and center of
mass positionsrp andrq , respectively. Appropriate mass scaling of the relative coordinate in
form8 jp,q5$M pMq /(M p1Mq)%1/2(rp2rq) removes the individual mass dependence from
expression for the kinetic energy:

2(
i 51

N
\2

2Mi
D ri

52
\2

2 (
k51

N21

Djk
2

\2

2M tot
D rc.m.

. ~2.1!

Setting the origin at the center of mass of the whole system allows discarding the c.m.’s po
and motion. With the individual mass factors removed, the kinetic energy~generalized Laplacian!
displays complete symmetry under rotations in (3N23)-dimensional space.
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Hyperspherical coordinates exploit this symmetry by separating the ‘‘shape’’ of the sy
~described by 3N24 angular coordinates! from its overall ‘‘size’’ R25(kjk

2 ~with the dimension
of a moment of inertia!. Eigenfunctions of the Laplacian’s angular part, termed ‘‘hyperspher
harmonics’’ by generalizing the two- and three-dimensional cases, constitute a basis for exp
the complete wave function. In higher-dimensional spaces, the angular Laplacian’s eigen
L(L13N25) are highly degenerate. In addition to the ‘‘grand angular momentum’’L,8 the
hyperspherical harmonics thus require numerous labels—analogs of the single ‘‘magnetic’’
tum numberm for three-dimensional spherical harmonics—for their unique specification. Di
ent sets of hyperspherical harmonics, resulting from solving the Laplacian eigenvalue probl
separation of variables in alternative sets of coordinates, have been investigated extensive~see,
e.g., Refs. 10,17, and 21 for systematic studies!. However, their construction through separation
variables inevitably ties these harmonics to a specific coordinate system. They are thus n
suited for extensive transformation between different reference frames. The definition of ha
ics based only on their behavior under the relevant transformations is the main result of this
to be derived in Sec. III.

The construction of each Jacobi tree starts with a pair of particles. Thus, each Jaco
contains at least one Jacobi vector joining two particles only~rather than centers of mass o
particlegroups!. We denote such a vector as a ‘‘primary’’ coordinate. In any one Jacobi tree
to bN/2c Jacobi vectors are directly proportional to actual interparticle separations,r i j , the remain-
ing relative coordinates necessarily involving larger complexes of particles.~Here and in the
following, bxc denotes the largest integer not exceedingx.! We will calculate each of theN(N
21)/2 Coulomb terms of the Hamiltonian in a Jacobi tree where it occurs as a ‘‘prim
coordinate. Obviously, all these terms then take the same form as the simple one-electron
over 1/r in hydrogen, but the variables now refer to a multitude of different reference fra
Having thus eliminated all nested integrations, our next task consists in determining the tra
mations between different Jacobi trees.

The most general transformation from one Jacobi tree to another~for the same system o
particles! resolves into a sequence of elementary operations. Each elementary step con
‘‘transplanting’’ a subcomplexq from some particle complex$pq% to a complex$qr%;10 it is
achieved by a two-dimensional kinematic rotation8 through the angle

f5tan21AMq~M p1Mq1Mr !/M pMr ~2.2!

in the (jp,q ,jpq,r)-plane of the (N21)-dimensional space of mass-scaled Jacobi vectors:

jq,r8 5cosfjp,q2sinfjpq,r , ~2.3a!

jp,qr8 5sinfjp,q1cosfjpq,r . ~2.3b!

As each Jacobi vector is a vector in three-dimensional physical space, the basic rotation
(jj ,jk) plane implies three rotations through the same anglef in the (xj ,xk), the (yj ,yk), and the
(zj ,zk) planes, where (x,y,z) denote the Cartesian components ofj. An elementary kinematic
rotation through a finite anglef in the (jj ,jk) plane then reads22

Tjj ,jk
~f!5exp~ ifJxjxk

! exp~ ifJyj yk
! exp~ ifJzjzk

!, ~2.4!

with infinitesimal rotation operators

Juv[2 i S u
]

]v
2v

]

]uD , ~u,v !5~xj ,xk!,~yj ,yk!,~zj ,zk!. ~2.5!

@For a heuristic explanation of~2.4!, recall the Taylor expansion off (x1Dx) which may formally
be written as exp(iDxp) f(x) with the infinitesimal ‘‘translation operator’’p[2 i (]/]x) corre-
sponding to the quantum mechanical linear momentum~with \[1). In the present context, th
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translation fromx to x1Dx is replaced by a rotation through an anglef from some direction in
multidimensional space to a new direction.# In order to determineTjj ,jk

’s effect on the basis
functions, we need to~i! express the generic rotation operatorsJuv in terms of ‘‘ladder operators’’
whose action on the basis functions is straightforward to calculate, and~ii ! construct basis func-
tions suitable for such transformations.

This section concludes with the outline of a strategy for determining the most efficien
quence of two-dimensional rotations to achieve the transformation between arbitrary Jacob
Note first that the individual terms in the Hamiltonian are referred to by means ofparticle labels,
implying the need for appropriate antisymmetrization of the total wave function under interch
of identical particles. This consideration dominates the construction of the first Jacobi tr
which all subsequent transformations are applied. In an atomic or molecular system, antis
trization concerns primarily the electronic part of the wave function. Thus the basic Jacob
starts out with a pair of electrons. It grows by adding one electron at a time, finishing wit
addition of nuclei or ionic core~s!. This procedure results in a ‘‘canonical’’ Jacobi tree,10 repre-
sented by the sequence of particle labels

~•••~~~~12!3!4!5! . . . !, ~2.6!

whose parentheses separate subcomplexes. Alternatively, one could start by first forming a
pairs of particles as possible, i.e.,bN/2c pairs, before joining these pairs into larger complex
Although the antisymmetrization of an electron pair is particularly compact~namely, their relative
angular momentum and their spin must add to anevenvalue!, antisymmetrization among differen
pairs requires breaking up all these pairs, in essence going back to a canonical tree. Since b
up subcomplexes involves about as many elementary rotations as forming the new complex
procedure is not efficient. Nevertheless, a set ofN ~for odd particle number! or N21 ~even
particle number! trees with the maximum number ofbN/2c pairs suffices to isolate all theN(N
21)/2 interparticle separations. A successful strategy therefore aims at building these pa
Jacobi trees from the canonical tree. The simplest of these ‘‘pair trees,’’ (•••((12)(34))
3(56) . . . ), isobtained from the canonical tree with onlybN/2c21 rotations. In general, the pa
( jk) with j ,k is (k2 j 2d j ,1) rotations away from the canonical tree, but many other ‘‘usef
pairs are formed in the course of these ‘‘transplantations.’’

III. TRANSFORMING THE BASIS FUNCTIONS

This section provides the tools required to rotate harmonics from one coordinate syst
another. The reader familiar with Lie algebra will of course recognize the relevant aspects
algebra of rotations in (3N23) dimensional space, so (3N23). However, such familiarity is no
presumed, and we hardly use the terminology of group theory. The presentation reflects
pragmatic point of view, emphasizing both the technical implementation as well as its relat
the physical application at hand, rather than full mathematical generality, let alone mathem
rigor. For the latter aspects, the reader should turn to the mathematical literature.23

A. Rotations in d-dimensional space

The most intuitive description of a rotation in three dimensions requires two elements
~invariant! axis, and theangleof rotation. The rotation itself occurs in aplaneperpendicular to the
axis of rotation. In three dimensions, specifying the direction of the axis of rotation is equiv
to, but more economical than, describing the actual plane of rotation. For a higher dimen
space this is no longer the case, because there are several invariant directions perpendic
given plane. Thus, ind-dimensional space, a basic rotation is more appropriately characteriz
occurring in theplanespanned by two coordinates rather than by an invariant axis orthogon
it. The generic infinitesimal rotation operators then take the form~2.5!. The number of different
planes,12d(d21) in d dimensions, equals the number of basic rotations. Because rotations o
ring in nonintersecting planes affect different pairs of coordinates, they are evidently indepe
of each other; the corresponding rotation operators commute with one another. As there arbd/2c
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nonintersecting planes in ad-dimensional space, the largest set of simultaneously commu
operatorsJuv containsl [ bd/2c elements. These commuting operators are commonly denote
H j , j 51, . . . ,l .23 For our application, the power of the Lie algebraic method derives from
structure and the properties of rotations being completely independent of any particular coo
representation of the operatorsH j . In fact, the following manipulations are most efficiently ca
ried out in generic Cartesian coordinates without any reference to a specific Jacobi tree.

Simultaneous eigenfunctions of theH j with ~integer! eigenvaluesmj , j 51, . . . ,l , provide a
basis for building hyperspherical harmonics suitable for extensive rotations between refe
frames. If the infinitesimal rotation corresponding toH j occurs in the (uj ,v j ) plane, the simulta-
neous eigenfunction of thel H j with eigenvaluesmj , respectively, reads

F~ . . . !3)
j 51

l

~uj1 iv j !
mj ~3.1!

with a functionF that bears further specification in Sec. III C. At this point, we only require
H j F[0 for all j . The set of eigenvaluesm5$m1 ,m2 , . . . ,ml % serves as a label identifying
different harmonics with the same value ofL(L1d22) in the angular Laplacian’s eigenvalu
equation. Additional labels required for a unique specification will be introduced in Sec. III

Appropriate linear combinations of the remaining infinitesimal rotation operators act asladder
operators Ea satisfying

@H j ,Ea#5a jEa , j 51, . . . ,l , ~3.2!

with an l -dimensional vector indexa with componentsa j50,61. Herea j50 indicates thatEa

does not change the part of the eigenfunction pertaining toH j , whereasa j561 means that it
maps this part to the eigenfunction with eigenvaluemj61. The ladder operators interrelate eige
functions with differentm but degenerateL. Raising and lowering operators form Hermitia
conjugate pairsE2a5Ea

† .
In general~for l .1), each ladder operator affects two of themj simultaneously; for odd-

dimensional spaces a subset ofl pairs of raising and lowering operators change one of themj

only.23 Abbreviating the vector labela by giving only its two nonvanishing componentsa j and
ak , the ladder operator that raisesmj and simultaneously lowersmk takes the form

Ejk
1252

i

2S ~uj1 i v j !
]

]~uk1 ivk!
2~uk2 ivk!

]

]~uj2 iv j !
D , ~3.3a!

whereas the operator raising bothmj andmk is represented by

Ejk
1152

i

2S ~uj1 iv j !
]

]~uk2 ivk!
2~uk1 ivk!

]

]~uj2 iv j !
D . ~3.3b!

@Straightforward application of these operators to eigenfunctions~3.1! verifies their behaving as
ladder operators: they contribute to, or remove from,~3.1! factors (uj6 iv j ) and (uk6 ivk) as
appropriate for the intended ‘‘ladder operator action.’’# For odd-dimensional spaces, a residu
coordinate, denoted here byw, does not occur in any of theH j . The ladder operators changin
only mj ~rather than a pairmj ,mk) read then

Ej
652 i S ~uj6 iv j !

]

]w
2w

]

]~uj7 iv j !
D , j 51, . . . ,l . ~3.3c!

@For d53, setting (u,v,w)5(x,y,z) and transforming the derivatives reveals the familiar pair
ladder operatorsl x6 i l y , the singleH j occurring in this case coinciding withl z .# This symbolic
representation allows for efficient implementation on the computer.
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A subset ofl ladder operatorsEej
~and their Hermitian conjugates! suffices to interrelate al

harmonics with the same eigenvalueL. A convenient choice23 for theseEej
is given by the ladder

operators that raisemj and simultaneously lowermj 11 for j 51, . . . ,l 21. Eel
’s form depends on

whetherd is even or odd. Ford even,Eel
raises bothml 21 andml , and for oddd, it raisesml

only, without changing any of the othermj . The set$ej%, j 51, . . . ,l , then provides a basis fo
the l -dimensional space of the vector labelsa and m. In an l -component vector notation, thi
basis reads~we assumel >5 in order to expose the generic structure clearly!

e15~1,21,0,0, . . . ,0!,

e25~0,1,21,0, . . . ,0!,

e35~0,0,1,21, . . . ,0!,

A ~3.4!

el 215~0,0, . . .,0,1,21!,

el 5H ~0,0, . . .,0,1,1! for d52l

~0,0, . . .,0,0,1! for d52l 11.

In general these basis vectors arenot orthogonal inl -dimensional space. Note, however, th
following special cases:~i! In four-dimensional space~with l 52), the two basis vectorse1

5(1,21) ande25(1,1) are orthogonal, indicating that the two basic ladder operator pairs,E6e1

andE6e2
, commute with each other. In group theoretical language, this feature reflects the

product structure SO(4)5SO(3)̂ SO(3). However, the two SO(3) components do not refer
m1 and m2 directly, but rather to (m12m2)/2 and (m11m2)/2. ~ii ! For rotations in three-
dimensional space, we havel 51, thus only one quantum numberm which is being changed by
one pair of ladder operatorsE6e1

[ l 6 . ~iii ! In d52 dimensions,there are no ladder operators.
Since all rotations occur in the same plane~the ‘‘only’’ plane of two-dimensional space!, the order
in which rotations through different angles are performed does not matter; they are all indep
of each other. In the present formulation, the~single! rotation operatorH1 generates all rotations
Each rotation is associated with its own harmonic function, exp(if), the phase functions fo
different rotations~i.e., for different rotation anglesf) not being related to one another throug
linear operators.

B. Rotation of hyperspherical harmonics

We now turn to the analysis of the transformation described by~2.4!. Note first that the three
rotations occur in three nonintersecting planes, affording the more suitable represen
exp(if@Jxjxk

1Jyjyk
#)exp(if Jzjzk

). Arranging the Cartesian components of theN21 mass-scaled
Jacobi vectorsjk in the form

$x1 ,y1 ,x2 ,y2 , . . . ,xN21 ,yN21 ,z1 ,z2 , . . . ,zN21%, ~3.5!

we choose theH j by selecting pairs of coordinates from this list, starting from the left:

H j5Jxj yj
, j 51, . . . ,N21, ~3.6a!

HN211k5Jz2k21z2k
, k51, . . . ,b N21

2 c, ~3.6b!
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in the notation of~2.5!. We have stressed repeatedly our aim of defining hyperspherical harm
entirely through their behavior when acted upon by the operatorsH j and Eej

, because these
operators embody the structure and symmetry of the whole system in a frame-independen
The explicit coordinate representation~3.6a!–~3.6b! of the relevant operators appears at varian
with our intended frame independence. However, the spatial coordinates, (xj ,yj ,zj ), j
51, . . . ,N21, in ~3.6a!–~3.6b! should be viewed asgeneric Cartesian coordinates; they arenot
tied to any particular Jacobi tree. Arranging the generic Cartesian coordinates as we did in~3.5!,
on the other hand, does reflect physical considerations beyond the purely mathematical stru
rotations in higher-dimensional space: The latter would instead label the coordinates most
priately as (X1 ,X21 ,X2 ,X22 , . . . ,Xl ,X2l ), supplemented possibly with anX0 for odd-
dimensional spaces. Our arrangement takes into account that the dimension (3N23) arises from
a product structureof an (N21)-dimensional particle space with the three-dimensional phys
space of each Jacobi vector. In particular, the arrangement~3.5! affords attributingrelevant physi-
cal meaningto the first (N21) eigenvaluesmj , ( j 51, . . . ,N21): They represent thez projec-
tions of physical angular momenta; their sum constitutes thez projectionLz of the total orbital
angular momentum, an invariant of the system.

As is evident from~3.6a!, the coordinates (xj ,xk ,yj ,yk)occur inH j andHk . Thex andy parts
of the rotation~2.4! thus involve the ladder operators that changemj andmk only. A more detailed
analysis shows that~3.3a–c! can be inverted to read:

Jxjxk
1Jyj yk

5Ejk
121Ejk

21[Ea~ jk !1E2a~ jk ! , ~3.7!

for 1< j ,k<N21, with a( jk)5(s5 j
k21es , i.e., thel -component vector with11 as itsjth com-

ponent and21 as itskth component, all other entries being 0.
The following consideration is central to our development, providing the crucial link betw

the ladder operator representation~3.7! for (Jxjxk
1Jyj yk

) and their transformation matrix element
by means of Euler-angle rotations. In analogy to the relationl x5 1

2( l 11 l 2) familiar from rotations
in three dimensions, we view the sum of a ladder operatorEa( jk) and its inverse~Hermitian
conjugate! E2a( jk) as describing a rotation about an analog of thex axis. In three dimensions, a
arbitrary rotation conventionally resolves into a sequence of three rotations: about thez axis, about
the resultingy8 axis, and about the newz8 axis, through the Euler angles~w,u,c!, respectively.22

In terms of these three Euler-angle rotations, a rotation about thex axis through an anglef results
from the following sequence of operations: The first Euler-angle rotation about thez axis through
the anglew52p/2 rotates they axis onto the originalx axis; in the second step one rotates ab
this y8 axis ~which is the originalx axis! through the angleu5f; the third Euler-angle rotation
finally moves thex8 axis back to the originalx direction by rotating about thez8 axis ~lying in the
original (yz) plane! through the anglec5p/2. Wigner’sd-symbol is the matrix element for th
rotation of a spherical harmonic about they axis,dm8m

( l ) (f)5^Ylm8uexp(ifly)uYlm&, whereas the two
z-type rotations only contribute phase factors exp(im8p/22 imp/2),22 giving for the rotation of a
spherical harmonic about thex axis

^Ylm8uexp~ if l x!uYlm&5eim8~p/2!d
m8m
~ l !

~f!e2 im ~p/2!
. ~3.8!

Generalization of the concept of Euler-angle rotations from three to more dimensions h
on the following key observations:m andm8 serve to distinguish between degenerate harmo
with the samel . In higher-dimensional spaces, the vector indicesm and m8 play the same role.
However, the parameterl in the d-symbol indicates not only the angular Laplacian’s eigenva
l ( l 11), but also—more importantly—the range of possiblem values,2 l<(m,m8)< l . More
precisely, it sets the upper limit of 2l for the number of times either one of the two ladd
operatorsl 1 ,l 2 can act in direct succession before necessarily mapping any spherical har
Ylm to zero. Viewed in this way, the harmonic’s parameterm indicates its ‘‘position’’ along the
string~of length 2l 11) of degenerate harmonics interrelated by a ladder operator. We now e
these concepts to rotations in more than three dimensions.
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The singlem ( l z’s eigenvalue! in three dimensions belongs to a string ranging from2 l to 1 l ,
accessed by the single pair of ladder operatorsl 1 ,l 2 . In more than three dimensions, we repla
it with an l -component vectorm whose components are changed~typically in pairs! along dif-
ferent strings labeled by corresponding ladder operator pairsEa andE2a . ~Recall, however, that
the l vectorsej provide a basis for the vectorsa; thus any ladder operatorEa can be expressed
as products ofEej

.! The role ofm as an indicator of the harmonic’s position along the single str
in three dimensions extends therefore to higher dimensions if we project the ‘‘indicator’’m onto
the ‘‘direction’’ of any particular stringa of interest, i.e., if we define

ma5
m–a

a–a
, ma85

m8–a

a–a
, ~3.9!

where the scalar product in the denominators accounts fora’s two nonzero components in the cas
of a pairwise change ofmj ’s. In analogy tol in the three-dimensional case, a parameterla

determines how many times the ladder operatorsE6a can be applied in direct succession. T
modulus ofma in ~3.9! provides a lower limit for the relevant ‘‘string length’’la . Since theej

form a basis for thea, we anticipate thatla emerges from anl -component vectorl
5(le1

, . . . ,lel
). The latter provides the additional parameters required for a unique specific

of harmonics~besidesm and the eigenvalueL) . Note that in the general casela is not identical
with the eigenvalueL, at variance with the situation in three dimensions.

To summarize the procedure so far, we note that thex andy parts of the finite rotation~2.4!
affect only the two componentsmj andmk of the vectorm, shifting mj by an integer amountn
while simultaneously changingmk by the same amount in the opposite direction. The projecti
~3.9! evaluate to

ma~ jk !5
1
2 ~mj2mk!, ~3.10a!

ma~ jk !8 5 1
2 ~mj82mk8!5ma~ jk !1n, ~3.10b!

with nonvanishing matrix elements for the rotation of a hyperspherical harmonicYL,m,l into
another harmonicYL8,m8,l8 occurring only ifm andm8 lie along thesamea-string of harmonics
with degenerateL, i.e., if an integral numbern of ladder operator stepsE6a( jk) separatesm8 from
m. With our previous considerations on Euler-angle rotations leading to~3.8!, this matrix element
reads

^YL8,m8,l8uexp~ if@Jxjxk
1Jyj yk

# !uYL,m,l&5ei ~ma82ma!p/2 d
m

a8ma

~la!
~2f!dL8,Ldl8,ldm8,m1na ,

~3.11!

where we omitteda’s parametersj ,k for brevity. The Kronecker symbolsd ensure that only
harmonics with the same eigenvalueL, lying along the samea-string, are connected. The facto
2 multiplying the rotation anglef reflects the absence of the factor 1/2 on the right-hand sid
~3.7!, as compared to the expression forl x5 1

2( l 11 l 2), thereby effectively doubling the rotatio
angle in~3.8!.

It remains to apply the same concepts to thez part of the rotation~2.4!. This part affects only
m’s components that correspond to theHk involving zj andzk . Because we chose to gather all t
z coordinates after all (xy) pairs in~3.5!, the Jacobi vector indicesj ,k are shifted relative tom’s
components for thez coordinates. To simplify the notation, we use

i[N211 b j 11

2 c; k[N211 b k11

2 c, ~3.12!
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so thatH i andmi now refer to the operator and quantum number pertaining to the coordinatzj ,
with the same connection betweenHk , mk , and zk . Depending on the indicesj and k, i.e.,
depending on the positions of the coordinateszj andzk in the sequence~3.5!, Jzjzk

takes alternative

forms in terms of ladder operators orHk . The possible cases are:

~1! k even andj 5k21. According to~3.6b!, Jzjzk
coincides withHN211k/2[Hk . The rotation

matrix element is simply

^YL8,m8,l8uexp~if Jzjzk
!uYL,m,l&5exp~imkf!dL8,Ldl8,ldm8,m . ~3.13!

~2! k even andj ,k21 even. We find

Jzjzk
5 1

4 ~Eik
121Eik

211Eik
111Eik

22!. ~3.14!

Viewing again the sum of a ladder operator and its inverse~Hermitian conjugate! as propor-
tional to an analog of a rotation about thex axis, we readily recognize the last expression
the sum oftwo x-type rotations@compare with~3.7!’s central expression#. With the explicit
formulas~3.3a!–~3.3b!, it is straightforward to verify that the ladder operatorEik

12 raisingmi

and loweringmk commutes with the ‘‘raising–raising’’ operatorEik
11 . The twox-type rota-

tions are therefore independent of each other. As in the previous discussion of thex and y
parts, an integer number of stepsEik

12 must connect (mi ,mk) to (mi8 ,mk8), i.e., mi85mi

1n1 , mk85mk2n1 . However, the second rotation involves the same components ofm, only
this time changing both in thesamedirection:mi85mi1n2 , mk85mk1n2 . Compatibility of
the two conditions requiresn15n250, thus

mb2~ik!5
1
2 ~mi2mk!5mb2~ik!8 , ~3.15a!

mb1~ik!5
1
2 ~mi1mk!5mb1~ik!8 , ~3.15b!

and the extra phase factors occurring in~3.11! drop out in this case:

^YL8,m8,l8uexp~ifJzjzk
!uYL,m,l&5d

mb2
,mb2

~lb2
!

~f/2!d
mb1

,mb1

~lb1
!

~f/2! dL8,Ldl8,ldm8,m . ~3.16!

The factor 1/2 multiplying the rotation angle stems of course from the factor 1/4 in~3.14!.
~3! k even andj ,k21 odd. In this case,

Jzjzk
5

1

4i
~Eik

122Eik
211Eik

112Eik
22!, ~3.17!

obviously the sum of twoy-type rotations. The ‘‘selection rules’’ formi andmk are the same
as in the previous case, and since the extra phase factors distinguishing anx from a y-type
rotation cancel in~3.16!, thematrix element is identical to the one in case (2).

~4! k,N21 odd andj even.Jzjzk
turns into

Jzjzk
5

1

4i
~Eik

122Eik
212Eik

111Eik
22!. ~3.18!

Exactly the same considerations apply again, except that thedifferenceof two y-type rotations
corresponds to a rotation through the angle2f/2 for theEik

11 part.
~5! k,N21 odd andj even, yielding

Jzjzk
5 1

4 ~Eik
121Eik

212Eik
112Eik

22!, ~3.19!

i.e., the difference of twox-type rotations. The matrix element coincides with the one of c
~4!.

~6! k5N21 odd andj even.zk does not occur in any of theHk , and the relevant ladder operato
act onmi only:

Jzjzk
5 1

2 ~Ei
11Ei

2!. ~3.20!

This is anx-type rotation, exactly as in three dimensions. Projectingm and m8 onto the
appropriate directiong(i): mg(i)5mi , mg(i)8 5mi85mg(i)1n, we obtain for the matrix
                                                                                                                



f our
ctions
labels
or-

er set
rdi-

e inde-

(3
cs rep-
ding on
us
ating
ast for
e
ely

y the

alized

(3

e sets
l

2171J. Math. Phys., Vol. 40, No. 4, April 1999 T. A. Heim and D. Green

                    
element

^YL8,m8,l8uexp~if Jzjzk
!uYL,m,l&5d

m
g8 ,mg

~lg!
~f!ei ~mg82mg!p/2dL8,Ldl8,ldm8,m1ng . ~3.21!

~7! k5N21 odd andj odd.

Jzjzk
5

1

2i
~Ei

12Ei
2!, ~3.22!

a y-type rotation. Its matrix element differs from the one in case~6! only by the absence of the
phase factor exp(inp/2).

Thus, thez part of the rotation~2.4! takes essentially three different forms:~i! a phase factor
exp(imkf), diagonal in them, if Jzjzk

coincides withHk ; ~ii ! an x or y-type rotation through the

anglef, changingmi into mi85mi1n, as in three dimensions, ifzk is the unpaired coordinate
zN21 of an odd-dimensional space;~iii ! the product of two rotations through the anglesf/2 and
(21)kf/2, respectively, but diagonal inm, if zj andzk belong to differentH i andHk .

C. Harmonics suitable for rotation

In Sec. III B, we have completely determined the matrix elements for the rotations o
interest when applied to hyperspherical harmonics, before actually specifying these fun
explicitly. This was possible because we expressed the matrix elements in terms of the
~‘‘quantum numbers’’! (L,m,l) identifying the harmonics, rather than through integrals in co
dinate space. So far, the harmonics are functions of the generic Cartesian coordinates (xj ,yj ,zj ).
Upon rotation from one Jacobi tree to another, these coordinates transform into anoth
(xj8 ,yj8 ,zj8), j 51, . . . ,N21, but the harmonics, when expressed in terms of the new coo
nates, retain their functional form. In this sense, these hyperspherical harmonics are fram
pendent.

Direct solution of the angular Laplacian’s eigenvalue problem by separation of theN
24) coordinates in the second-order differential equation leads to hyperspherical harmoni
resented by standard spherical harmonics and Jacobi or Gegenbauer polynomials, depen
the choice of hyperspherical coordinates.10,17,21However, these harmonics are not simultaneo
eigenfunctions of all theH j . Consequently, they are not suitable for our purpose, because rot
the harmonics requires knowledge of the ladder operators’ effects on these functions, at le
the base set of ladder operatorsE6ej

, j 51, . . . ,l , which in turn requires uniquely specifying th
harmonics with labels~L,m,l!. We now construct complete sets of functions defined exclusiv
by their behavior under the action of the first-order differential operatorsH j and E6ej

, j

51, . . . ,l . The resulting functions are ‘‘hyperspherical harmonics,’’ too, because they satisf
generalized Laplacian’s symmetry under rotations.

The hyperspherical description separates the ‘‘hyperradial’’ momentum from the gener
angular momentum. Each of the Cartesian coordinatesxj ,yj ,zj , ( j 51, . . . ,N21), is propor-
tional to the ‘‘hyperradius’’R. The angular Laplacian’s eigenvalue parameterL determines the
harmonic’sdegreeby setting the radial scale asRL. Neither theH j nor the ladder operatorsE6ej

affect this radial factor, as is to be expected of angular momentum-like operators. WithN
24) angular coordinates, a complete specification of the harmonics requires (3N25) labels in
addition toL. The vectorm providesl 5 b(3N23)/2c of them in the form of the eigenvaluesmj

of all the H j . The remaining labels are taken from thel -component vectorl consisting of the
‘‘string lengths’’ lej

for the ladder operatorsE6ej
. The first ~l 22! components ofl suffice to

reach a total of (3N24) labels ifN is odd, as do the first~l 21! components forN even.
It remains to determine the functionF introduced in~3.1!. The requirementH j F[0 for all j

implies thatF depends only on (uj
21v j

2) @and possibly on the single unpaired coordinatew in case
(3N23) is odd#. Furthermore, if( j umj u5L the product) j (uj1 i v j )

mj already accounts for the
radial factorRL, i.e.,F5const in this case. This circumstance suggests constructing complet
of degenerate harmonics with the sameL as follows: We setm1 to its maximum value and al
                                                                                                                



r

rate

rmon-

l of a
onic

d

ally
se

rand

,
require

or
con-

-

ical
n
s, the

s
r

2172 J. Math. Phys., Vol. 40, No. 4, April 1999 T. A. Heim and D. Green

                    
other mj50, i.e., m5(L,0, . . . ,0).24 For j 51, . . . ,l , the modulus of the projectionmej
5m

•ej /(ej•ej ) sets the lower limit for the corresponding string lengthlej
. However,lej

cannot be
larger thanmej

either, for applying any of theraising operatorsE1ej
necessarily results in a vecto

m85m1ej having ( j umj8u.L, i.e., in a harmonic not belonging to the same set of degene
functions. Withl completely specified, the first harmonic reads

YL,m,l5cL~x11 iy1!L, l5~me1
,0,...,0!, m5~L,0,...,0!, ~3.23!

wherecL denotes a normalization constant. Starting from this first function, we generate ha
ics by applying all the lowering operatorsE2ej

first to ~3.23!, then applying theE2ej
to the

harmonics so obtained, and so on in arecursive procedure:

YL,m2ej ,l85
1

A~lej
1mej

!~lej
2mej

11!
E2ej

YL,m,l ~3.24!

for all ej strings that have not yet terminated, i.e., the strings havingmej
.2lej

. The recursive
nature of the process suggests gathering together the harmonics in ‘‘levels,’’ with the leve
harmonic indicating the number of lowering operator steps separating it from the first harm
~3.23!. At level 0 with the harmonic~3.23!, thee1 string is the only string with nonzero length, an
we can only generate one harmonic of level 1. But forl .1, this level-1 harmonic will already
have several nonvanishingmej

8 and correspondinglej
8 , giving rise to additionalej strings starting

from this level. Repeating this procedure level by level, we work our way down until fin
reaching the last harmonic withm5~2L,0, . . . ,0!. The procedure stops automatically, becau
applying any of the lowering operators to this last harmonic maps it to zero~exactly asl 2Yl ,2 l

[0 in three dimensions!.
In d dimensions, the total number of different hyperspherical harmonics with the same ‘‘g

angular momentum’’L is ~Ref. 22, p. 265!.

dim~L;d!5
2L1d22

L1d22 S L1d22
d22 D . ~3.25!

For a givenL, the procedure outlined above generates exactly dim(L, d) independent functions
i.e., a complete set of hyperspherical harmonics. However, some of these harmonics still
modifying for our purpose, as the following observations illustrate.

Note first that with our choice forEej
, the first~l 21! ladder operators always change twomj

in opposite directions, thus leaving( j umj u5L invariant when starting from the first harmonic. F
all these harmonics, the functionF reduces to a constant. At some stage during the above
struction, however, anel string will appear along which the sum( j umj u no longer remains
constant. Since the ladder operators do not change the overall radial factorRL, the functionF
accounts for any ‘‘missing powers’’ in) j (uj1 iv j )

mj for harmonics havingm with ( j umj u,L.
For instance, in three dimensions the lowering operatorl 2 @E1

2 in ~3.3c!’s notation# removes one
power of (x1 iy) from the ‘‘highest’’ harmonicr lYll ;(x1 iy) l5r l sinl u exp(ilf) while simulta-
neously adding a factorF5z5r cosu to the next harmonic r lYl ,l 21;z (x1 iy) l 21

5r l cosu sinl21 u exp(i@l21#f). In the same way, repeated application ofl 2 generates the higher
degree Legendre polynomials in cosu making upF in this case.

So far,L and the vectorm provide enough information to uniquely specify the hyperspher
harmonics; we need their additional labell only for the purpose of determining transformatio
matrix elements, not to distinguish the harmonics from one another. For these harmonic
construction described above provides the appropriate functionF.

In a higher-dimensional setting, however, theEej
do not all commute with each other. It i

thus possible to arrive atdifferent functions with thesamem along different ladder operato
                                                                                                                



e
.
s pro-

ate

nts

ific

ired
a-
r
their

is

l
rs.
ific

ity

s to a
tomic

2173J. Math. Phys., Vol. 40, No. 4, April 1999 T. A. Heim and D. Green

                    
sequences, starting from the first harmonic~3.23!. This is exactly the situation of ‘‘degenerat
eigenvalues:’’ in this case,m, the set of eigenvalues of theH j , has multiplicity higher than one
Although our construction generates the appropriate number of independent functions, thu
viding a basis system for the higher-dimensional eigenspace associated withm, we now need
additional labels—to be taken froml—to distinguish the different eigenfunctions with degener
eigenvaluem. Suppose, therefore, the vectorm occurs with multiplicity n.1. Our procedure
generatesn independent functionsFr , r51, . . . ,n, all having the same) j (uj1 iv j )

mj . These
functions differ only in theirF. Harmonics suitable for the calculation of rotation matrix eleme
are expressed as linear combinations

F̃s5 (
r51

n

asrFr , ~3.26!

and the requirement

~E1ej
!lej

2mej
11F̃s50, for j 51, . . . ,j max ~3.27!

determines the coefficientsasr for s51, . . . ,n ~and thus the functionsF). In this way, appro-
priate sets of parameters (le1

, . . . ,lej max
) serve to distinguish the harmonics by enforcing spec

lengths for the differentej strings. As noted previously, the number of additional labels requ
is j max5l 22 ~or l 21! for even~or odd!-dimensional spaces, respectively. With this modific
tion, even the harmonics corresponding to degenerate vectorsm show the desired behavior unde
rotations ind dimensions, and their transformation matrix elements can be deduced from
‘‘quantum numbers’’~L,m,l! directly.

Finally, a remark concerning the degeneracy ofm seems in order. In three dimensions, it
impossible to arrive at the samem[m along different strings, because there isonly one pair of
ladder operators. Nevertheless, even in this case we note that them components arising for a
given l ~[L! occur again forl 8. l . Due to the mostly pairwise change ofmj in higher-
dimensional spaces, we expect that a vectorm occurring for a givenL will appear again as a labe
for harmonics withL85L12,L14, . . . . For d.4 there are noncommuting ladder operato
Because the number of different pathways leading from the highest harmonic to a specm
increases with the length of this path,m’s multiplicity increases withL. Furthermore, since
different functionsF imply contributions from different (uj

21v j
2) terms, higher multiplicity—even

in spaces with more than three dimensions—can only arise forL2( j umj u>2. A detailed analysis
of the recursion inL with m held fixed confirms these expectations, yielding for the multiplic
of m

mult~m;L,d!5S p1q
q D ~3.28!

with p5 b L2( j umj u
2 c, q5 b d23

2 c,
a useful result to test the implementation of the~recursive! procedure.

IV. EXAMPLE: TWO-ELECTRON SYSTEM

For the purpose of illustration, we apply the method outlined in the preceding section
Coulombic three-body system. Specifically, we consider a two-electron atom or ion with a
numberZ, i.e., a system with only one heavy particle. The case of diatomic molecules~two-center
Coulomb system! requires additional modifications of the hyperspherical approach.25
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A. Coulomb interactions among three particles

After elimination of the c.m. motion, a three-particle system requires two Jacobi vectors f
description. We use three different Jacobi trees,ji , hi , zi , (i 51,2). Withr1 , r2 , andrN denoting
the positions of the two electrons and the nucleus, respectively, the relevant mass-weighted
vectors read

j15AMe

2
~r12r2!, ~4.1a!

j25A 2MeMN

MN12Me
S r11r2

2
2rND , ~4.1b!

h15A MNMe

MN1Me
~rN2r1!5cosbj11sinbj2 , ~4.2!

z15A MNMe

MN1Me
~r22rN!5cosgj11singj2 , ~4.3!

where

cosb52A MN

2~MN1Me!
, ~4.4a!

sinb52A MN12Me

2~MN1Me!
, ~4.4b!

andg52b. MN andMe denote the nuclear and electron mass, respectively. The vectorsh2 andz2

will not be needed, since the Coulomb interaction among the three particles takes the form

VC5AMe

2

1

uj1u
2A MNMe

MN1Me
S Z

uh1u
1

Z

uz1u D . ~4.5!

At this point, the familiar approach using the transformation of thecoordinateswould exploit
~4.2!–~4.3! in a multipole expansion of the electron–nucleus interactions in terms of the co
natesj1 and j2 . In our method, however, we apply the~kinematic! rotations~4.2!–~4.3! to the
wave functionsinstead. This amounts to calculating the three interaction matrix elements in
different coordinate systems. The immediately obvious advantage of this method is that e
the three terms takes exactly the same form. Each of the integrals reduces to the sam
integral as in the textbook example of hydrogen. Higher-order multipoles and nested integr
over powers of the coordinates do not occur.

B. Choice of Hj and ladder operators

The kinetic energy has rotational symmetry in six dimensions. Partitioning the six coordi
into pairs defines three nonintersecting planes, and thusl 53 mutually commuting rotations. We
choose the corresponding first-order operatorsH j as Jx1y1

, Jx2y2
, and Jz1z2

. Here

$x1 ,y1 ,z1 ,x2 ,y2 ,z2% denote the Cartesian components of the mass-weighted Jacobi vector
cordingly, the harmonics—simultaneous eigenfunctions of the threeH j with eigenvaluesm
5(m1 ,m2 ,m3)—take the form

F~x1
21y1

2 , x2
21y2

2 ,z1
21z2

2!)
j 51

2

~xj1 i sign~mj ! yj !
umj u~z11 i sign~m3! z2! um3u, ~4.6!
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where we have rewritten~3.1! so as to yield non-negative powers of the hyperradius for either
of the mj . The appropriate base set of three ladder operator pairsE6ej

is then specified by the

vector labelse15(1,21,0), e25(0,1,21), ande35(0,1,1), corresponding toE12
67 , E23

67 , and
E23

66 in ~3.3a!–~3.3b!.

C. Labeling the basis functions

Five angles specify each point on a sphere of fixed hyperradiusR in six-dimensional space
Consequently, our hyperspherical harmonics require five labels—related to the numbers of
in the five angular variables—for their identification. BesidesL andm5(m1 ,m2 ,m3) we need one
more label,le1

, the string length along the ladder operator sequences spanned byE6e1
.

The set of harmonics so defined differs from the more familiar set labeled by qua
numbers (l 1 ,m1 ,l 2 ,m2 ,na).17,22 However, the latter set of harmonics does not make use of
third eigenvaluem3 . Since rotating the harmonics is accomplished by acting on them with la
operators which in turn act onall the mj , the conventional harmonics specified b
( l 1 ,m1 ,l 2 ,m2 ,na) are not suited for our purpose. They may, of course, still serve as a basis
an application, being then expanded into the new set labeled by (L,m,le1

) prior to the actual
rotation. A straightforward transformation links the two basis sets.

D. Explicit construction of harmonics with degenerate m

As an example, we derive the expressions for some harmonics that are not completel
acterized byL and m. Consider for instance harmonics withL54, m5~1,0,1!. According to
~3.28!, there are two harmonics with these labels, to be distinguished by the additional para
le1

. With the particular vectorm of this example, we obtainme1
5 1

2, thus setting the lower limit
for le1

. The two essentially different ways of arriving at the set of labels (1,0,1) from harmo
of the next-lower level are given by anE2e1

-step fromm85~2,21,1!, and by anE2e3
-step from

m95~1,1,2!. Both of these labels have multiplicity 1 since( j umj u5L; the functionF( . . . ) in the
corresponding harmonics reduces to a normalization constant. Up to these normalizing factc1

andc2 , ~4.6! gives these harmonics as

Y4,~2,21,1!, 3/25c1~x11 iy1!2~x22 iy2!~z11 iz2!, ~4.7a!

Y4,~1,1,2!,15c2~x11 iy1!~x21 iy2!~z11 iz2!2. ~4.7b!

Applying the appropriate ladder operators to these harmonics provides a basis for the
dimensional eigenspace of degeneratem5~1,0,1!:

F15E2e1
Y4,~2,21,1!, 3/25c3 ~x11 iy1!~z11 iz2!~@x1

21y1
2#22@x2

21y2
2# !, ~4.8a!

F25E2e3
Y4,~1,1,2!,15c4~x11 iy1!~z11 iz2!~2@x2

21y2
2#2@z1

21z1
2# !, ~4.8b!

with constant factorsc3 , c4 to be ultimately absorbed into the normalization. BecauseF1 is
obtained fromY4,(2,21,1),3/2 by applyingE2e1

, it behaves under the relevant rotations exactly a
required forY4,(1,0,1),3/2. Apart from the normalization constantc3 , we thus find

Y4,~1,0,1!, 3/25c3~x11 iy1!~z11 iz2!~@x1
21y1

2#22@x2
21y2

2# !. ~4.9!

However, the second harmonic with the samem5~1,0,1! does not simply coincide withF2 ,
because the latter has the same string-lengthle1

5 3
2 asF1: One easily verifies that

Ee1
F2Þ0. ~4.10!
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We can, however, construct a harmonicY4,(1,0,1),1/2 as a linear combination ofF1 and F2 by
requiring

Ee1
~aF11bF2![0, ~4.11!

yielding the condition 3ac322bc450 and thus

Y4,~1,0,1!, 1/25c5~x11 iy1!~z11 iz2!~2@x1
21y1

2#12@x2
21y2

2#23@z1
21z2

2# !. ~4.12!

The two harmonics with ‘‘degenerate’’m5~1,0,1! are now distinguished by their respectivele1
.

E. Rotating the harmonics

Equation~4.2! describes thecoordinatetransformation between the Jacobi trees (j1 ,j2) and
(h1 ,h2). Accordingly, the hyperspherical harmonics transform as

uL,m,le1
&j5(

m8
D

m8,m

~le1
!
~b!uL,m8,le1

&h ~4.13!

where the subscripts on the ket vectors indicate the respective Jacobi tree. The transfo
matrix elements are given by

D
m8,m

~le1
!
~b!5^L,m8,le1

uexp~ ib@Jx1x2
1Jy1y2

1Jz1z2
# !uL,m,le1

&

5^L,m8,le1
uexp~ ib@Ee1

1E2e1
1H3# !uL,m,le1

&, ~4.14!

according to Sec. III B. Following the analysis given there, we find

D
m8,m

~le1
!
~b!5ei [m82m]p/2d

m8,m

~le1
!
~2b!eim3bdm8,m1ne1

, ~4.15!

with

m5 1
2 ~m12m2!, ~4.16a!

m85 1
2 ~m182m28!, ~4.16b!

n5m182m152m281m2 ~4.16c!

in terms of m components. Replacing the angleb with g52b yields the expressions for th
transformation to Jacobi treez.

F. Symmetry properties of basis functions

Due to the very high degeneracy of harmonics with the same grand angular momentumL as
expressed in~3.25!, it is important to exploit various symmetries of the functions in order
reduce the size of the hyperspherical basis. Reflection through the origin of the coordinate
transforms all six coordinates into their negatives. According to~4.6!, the harmonicuL,m,le1

&
picks up a factor (21)um1u1um2u1um3u under this operation. Since all the ladder operators cha
two of themj at a time, the sum in the exponent has the same parity asL. This first observation
thus restricts the basis set by allowing only evenL for even-parity states and oddL for odd-parity
states.

Consider next the harmonics’ symmetry under interchange of identical particles~i.e., the two
electrons!. This interchange is most easily described in the Jacobi tree$j1 ,j2%:
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j1↔2j1 , j2↔j2 . ~4.17!

Accordingly, the harmonicuL,m1 ,m2 ,m3 ,le1
& turns into the harmonicuL,m1 ,m2 ,2m3 ,le1

&
under interchange of the electrons while acquiring a factor (21)m11m31S ~whereS denotes the
total spin of the two electrons!. Antisymmetrized basis functions may thus be labeled by n
negativem3 only, andm350 is possible only for harmonics with (m11S) even.

Furthermore, when choosing the first-order operatorsH j we have arranged the six coordinat
in a way that allows us to identifym1 and m2 with the z projections of the three-dimensiona
relative angular momental1 and l2 . Therefore, the summ11m25mtot is thez component of the
coupled ~total! orbital angular momentumL. The fact that the Coulomb interaction does n
couple states with differentmtot reduces the size of a basis consisting of antisymmetrized harm
ics accordingly. This point is particularly interesting because the system’s invariantmtot restricts
our basis, even though the corresponding total orbital angular momentumL is not definedin this
basis. The reason for this seemingly surprising fact lies in our use of first-order operators
henceLz can be identified, but not the second-order operatorsl j

2 or L2. The absence of the
invariant three-dimensionalL is the main trade-off we have to accept when treating all trans
mations as rotations in a genuinely six-dimensional space~Ref. 22, especially Sec. 10.2., p. 267ff!.

G. Calculation of matrix elements

While Cartesian coordinates prove most appropriate for manipulating the hyperspheric
monics using ladder operators, hyperspherical coordinates lend themselves for the calcula
matrix elements. Specifically, the familiar representation of Cartesian coordinates

x15R cosa sinu1 cosw1 , x25R sina sinu2 cosw2 ,

y15R cosa sinu1 sinw1 , y25R sina sinu2 sinw2 ~4.18!

z15R cosa cosu1 , z25R sina cosu2 ,

transforms~4.6! into

RLF sinum1uu1eim1w1 sinum2uu2eim2w2~cosa cosu11 i sign~m3!sina cosu2! um3u, ~4.19!

whereF is a function of (cos2 a sin2 u1), (sin2 a sin2 u2), and (cos2 a cos2 u11sin2 a cos2 u2). Note
that this form remains the same, regardless of whether the Cartesian components (x,y,z) refer to
the Jacobi vectors in treej, in h, or in z. The relevant interaction operator entering into the ma
element is always 1/(R cosa), for each of the three pairwise Coulomb interactions, with the an
a referring to a different coordinate system in each case. Theu and a integrals arising in the
calculation are related to the Euler beta function,26 namely,

E
0

2p

dfei ~m82m!w52pdm8m , ~4.20a!

E
0

p

du sinp u cosq u5~11~21!q!
~p21!!! ~q21!!!

~p1q!!!
cpq , ~4.20b!

E
0

p/2

da sinp a cosq a5
~p21!!! ~q21!!!

~p1q!!!
cpq , ~4.20c!

where
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cpq5H p

2
p,q both even

1 otherwise.

~4.21!

A multipole expansion would have forced us to split the last integral into two parts, with diffe
integrands depending on whetherucosbj1u is greater or smaller thanusinbj2u. The resulting
integral could only be expressed as a sum of factorial quotients, rather thana single term, as in
~4.20c!.

Gathering together all the pieces developed in this section, we find for the angular part
matrix elements

^L8,m8,le1
8 uVCuL,m,le1

&5^L8,m8,le1
8 u

1

r 12
2

Z

r 1N
2

Z

r 2N
uL,m,le1

& ~4.22!

5
1

R
AMe

2
^L8,m8,le1

8 u
1

cosa
uL,m,le1

&2
Z

R
A MNMe

MN1Me

3 (
m1 ,m2

$~D
m1 ,m8

~le1
8 !

~b!!† D
m2 ,m

~le1
!
~b!1~D

m1 ,m8

~le1
8 !

~g!!† D
m2 ,m

~le1
!
~g!%

3^L8,m1 ,le1
8 u

1

cosa
uL,m2 ,le1

&, ~4.23!

with the further simplificationg52b. The double summation~transforming the bra and ke
vectors between Jacobi trees! seems to spoil the present approach’s advantage over a mult
expansion. After all, the latter also leads to two summations, namely, a sum over the mu
order and another summation stemming from the analytical evaluation of the nested integr
a. Note, however, that the present method achieves significantly more with two summatio
accounts forall the cuspsin the wave functions whenever an interparticle separation vanish

Finally, the particular case of a three-body system involves two relevant Jacobi vectors
All possible Jacobi trees are thus related to one another by rotations in thesame plane(j1 ,j2).
This particularity of the three-body problem might suggest arranging the Cartesian coordina
the Jacobi vectors in the following way:

$x1 ,x2 ,y1 ,y2 ,z1 ,z2%, ~4.24!

rather than our choice~3.5!. TheH j resulting from the above arrangement of coordinates coinc
with Jx1x2

, Jy1y2
, andJz1z2

, thereby simplifying the rotation of harmonics:All rotations reduce to
the first case of (z1z2)-type rotations discussed in Sec. III B, with matrix elements

^L8,m8,le1
8 uexp~ ib@Jx1x2

1Jy1y2
1Jz1z2

# !uL,m,le1
&5ei ~m11m21m3!bdL8Ldm8mdl

e1
8 le1

.

~4.25!

This orthogonality relation virtually eliminates the double summation overm1 ,m2 in ~4.23!. How-
ever, the corresponding harmonics are now functions of (x16 ix2), (y16 iy2), and (z16 iz2).
Transforming to hyperspherical coordinates using

x15R sina1 cosa2 cosw1 , x25R sina1 cosa2 sinw1 ,

y15R sina1 sina 2 cosw2 , y25R sina1 sina2 sinw2 , ~4.26!

z15R cosa1 cosw3 , z25R cosa1 sinw3 ,
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yieldsH j52 i (]/]w j ), with 0<w j<2p and 0<ak<p/2. While theH j , as well as the harmon
ics, now obviously attain their simplest form, the choice~4.24! has two serious drawbacks:~i!
None of the three eigenvaluesmj of the H j have physical significance, and~ii ! 1/uj1u5(x1

21y1
2

1z1
2)21/2 is a ~complicated! function of all five angles (a1 ,a2 ,w1 ,w2 ,w3). The latter problem is

solved by using hyperspherical coordinates~4.18! instead of~4.26!, yielding for each of the
combinations (x16 ix2), (y16 iy2), and (z16 iz2) a sum of two terms@as opposed to the singl
terms obtained for (xj6 iy j ) in the previous subsections#. Expanding powers of these binomia
leads to two additional summations, leaving us with no net gain.

V. CONCLUSION

Recognizing the independent-particle model’s failure to account for cusps due to variab
which the wave function does not depend explicitly, we have developed a method that sa
Kato’s cusp condition through reference frame transformations. By transforming thewave function
to the appropriate reference frame, we expose the wave function’s cusp arising from vanish
any given particle separationr i j . In addition to satisfying the cusp condition on the wave functi
this technique also simplifies the calculation of the pairwise Coulomb interaction;1/r i j , as
compared to the conventional multipole expansion.

Implementation of the approach outlined above resolves into three major tasks, all add
in the present investigation:~i! the systematic study of the relevant transformations betw
reference frames;~ii ! the definition of functions suitable for such transformations;~iii ! the deter-
mination of the transformation matrix. While the literature on Lie algebra provides ready-m
solutions to problem~i!, it usually fails to do so for~ii ! and ~iii !. Furthermore, the mathematica
literature does not exploit the particularity of an atomic or molecularN-body system.

More specifically, problem~i! is solved by using mass-scaled Jacobi coordinates, since
transformations between reference frames reduce then to generalized rotations in (3N23) dimen-
sions. The Lie algebra so(3N23) describes these transformations completely, embodied in
sets of commuting rotation operators$H j% and ladder operators$E6ej

%, j 51, . . . ,b(3N23)/2c.
To solve problem~ii ! mentioned above, we have introduced basis functions defined en
through their behavior under infinitesimal rotations, i.e., when acted upon by the operatorsH j and
E6ej

. Simultaneous eigenfunctions of all theH j constitute appropriate basis functions, classifi
further according to their matrix elements for the transformation between reference frame
latter step removes possible ambiguities whenever theH j have degenerate eigenvalues. Finally,
extending the concept of Euler-angle rotations from three to higher dimensions, we have pr
the solution to task~iii !, the determination of the transformation matrix elements. For an arbit
N-body system, each change of reference frames considered here resolves into a sequence
transformations described by these matrix elements.

In an N-body system, the high dimensionality arises from theproduct structureof the (N
21)-dimensional particle space and the three-dimensional physical space. The basic step
transformation between reference frames reduces to a two-dimensional rotation in a pl
particle space. Upon expansion of the particle space variables into their physical-space c
nents, the basic rotation induces three two-dimensional rotations in (3N23)-dimensional space
that are analyzed using the Lie algebra so(3N23). To take advantage of the efficiency offered
the Lie algebraic method, we treat the transformations as rotations in a ge
(3N23)-dimensional space. Thus, we work with thefirst-orderdifferential operatorsH j andE6ej

throughout. Arranging the generic Cartesian components (xj ,yj ,zj ) of the particle-space variable
jj appropriately, we canpartially recover the product structure characteristic for the phys
application at hand: The eigenvalues of (N21) among theH j carry physical significance; and w
interpret them asz projections of orbital angular momenta. Their sum represents the total an
momentum’sz projection, an invariant of the system. However, neither the individual ang
momenta, nor the coupled~total! angular momentum can appear in our treatment, as they
represented by second-order operators. Other methods exploit the product structure of thN
23)-dimensional coordinate space to a larger extent by solving the Laplacian’s~second-order!
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eigenvalue problem through separation of variables. However, the resulting hyperspheric
monics incorporate these features of the three-dimensional physical space at considerab
Transforming these functions between reference frames proves very inefficient, requiring
tially their expansion into the equivalent sets of harmonics introduced in the present investig

In conclusion, we have demonstrated by explicit construction the possibility of describ
system ofN charged particles without recourse to multipole expansions. Kato’s cusp condit
satisfied implicitly through reference frame transformations of thewave function. We introduced
appropriate basis functions and discussed their symmetries under particle interchange and
tion through the origin. We derived the matrix elements for the transformation between refe
frames for arbitrary numbers of particles, and we showed that the interaction matrix ele
attain a simpler form as compared to the conventional multipole expansion. Because the form
underlying our approach relies exclusively on first-order differential operators, it does not i
porate angular momenta, thereby limiting its usefulness for bound state problems. Howev
technique introduced here provides significant simplifications in scattering problems where
angular momenta are not resolved.

Note added in proof. Our transformation matrices are analogous to the so-called Ray
Revai coefficients. See, e.g., A. Novoselsky and J. Katriel, Phys. Rev. A49, 833~1994!, especially
Sec. 5.
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The operator integral* f dE of a complex valued measurable functionf with re-
spect to a positive operator measureE is considered. IfF is a Neumark dilation of
E into a projection measure, then the ‘‘projected’’ operator integral pr(* f dF) is a
restriction of the operator* f dE. Necessary and sufficient conditions for the equal-
ity pr(* f dF)5* f dE are obtained. The results are applied to determine the mo-
ment operators of the phase space observables generated by the number states
© 1999 American Institute of Physics.@S0022-2488~99!01104-4#

I. INTRODUCTION

The operator integral of a complex valued measurable functionf with respect to an operato
measureE is defined as the unique linear operatorLE( f ) for which the number̂ cuLE( f )w&
equals the integral off with respect to the complex measureEc,w defined byE and the vectorsc
andw, with c ranging over the whole of the Hilbert spaceH andw the natural domain ofLE( f ).
For positive operator measuresE this domain contains, as a subspace, the set of those vectorsw for
which f is square integrable with respect to the positive measureEw,w . For a positive operator
measureE one may also use a Neumark dilation ofE into a projection measureF to obtain a
‘‘projected’’ operator integral pr(LF( f )). In general, the thus obtained operator pr(LF( f )) is a
restriction of the operatorLE( f ). It will be shown that the two operators are the same exa
when the domain ofLE( f ) consists only of those vectorsw for which f is square integrable with
respect toEw,w . The theory of operator integrals, developed here and in a previous article,1 will be
applied to the so-called phase space observables generated by the number eigenstates.

The structure of the paper is as follows. Section II reviews the basic notions and results
theory of operator integrals. Section III relates this theory in the case of positive operator me
to the operator integrals obtained via the Neumark dilation theory. In Sec. IV the general r
will be applied to determine the moment operators of the number state generated phase
observables and their Cartesian margins.

II. INTEGRATION WITHOUT DILATION

A. The operator integral

LetH be a complex Hilbert space, with the inner product^•u•&, and letL~H! denote the set of
bounded operators onH. Let V be a nonempty set andA a s algebra of subsets ofV. Let E:A
→L(H) be an operator measure, i.e., a set function which iss additive with respect to the weak
or, equivalently, the strong operator topology ofL~H!. For anyw,cPH we denote byEc,w the
complex measure defined byEc,w(X)5^cuE(X)w&. Let f :V→C be anA-measurable function
and letD(LE( f )) denote the set of those vectorswPH for which f is Ec,w integrable for each
cPH. D(LE( f )) is a vector subspace ofH and there is a unique linear operatorLE( f ), with the
domainD(LE( f )), such that

a!Electronic mail: pekka.lahti@utu.fi
b!Electronic mail: juhpello@utu.fi
c!Electronic mail: ylinen@utu.fi
21810022-2488/99/40(4)/2181/9/$15.00 © 1999 American Institute of Physics
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^cuLE~ f !w&5E
V

f dEc,w

for all cPH. We call LE( f ) the integral of f with respect toE and we also writeLE( f )
5* f dE. For further details, see Ref. 1.

Let Df
E denote the set of those vectorswPH for which u f u2 is Ew,w integrable. The following

result, proved in Ref. 1, will be important.
Theorem: ~a! If the operator measureE is positive, that is,E(X)>O for eachXPA, thenDf

E

is a subspace ofH and

Df
E#D~LE~ f !!.

~b! If the operator measureE is projection valued, that is,E(X)25E(X)5E(X)* for all XPA,
thenDf

E5D(LE( f )).
We note that in the above case~a! the inclusion may be proper. Indeed, ifm:A→@0,1# is a

probability measure andE:X°E(X)ªm(X)I , then for any f which is m integrable,LE( f )
5(* f dm)I , with D(LE( f ))5H, but, if u f u2 is not m integrable, thenDf

E5$0%. It is equally
obvious that the equalityDf

E5D(LE( f )) does not requireE to be projection valued. For instanc
if E is a projection valued measure andg:V→@a,b#, with 0,a,b,`, anA-measurable func-
tion, thenF(X)ª*Xg dE defines a positive operator measure. Then, for anyf, and for allc,w
PH, the integral* f dFc,w exists exactly when the integral* f g dEc,w exists, which, in turn, exists
if and only if * f dEc,w exists. This shows thatDf

F5Df
E5D(LE( f ))5D(LF( f )). Clearly, if f is

bounded, thenDf
E5D(LE( f ))5H for any positive operator measureE. Finally, we note that the

equality iLE( f )wi25* u f u2dEw,w , wPDf
E , does not hold, in general. Section IV D provides e

amples of this phenomenon.

B. Remarks on the literature

In mathematical literature the operator integralsLE( f ) are mostly discussed only for positiv
operator measures and the domain of the operatorLE( f ) is taken to beDf

E instead of the wider
domainD(LE( f )). See, e.g., Refs. 2–5. Riesz and Sz.-Nagy,2 however, point out on page 460 tha
the integral* f dEc,w , cPH, can also converge for certainw which do not belong toDf

E . On the
other hand, Akhiezer and Glazman4 report on page 132 of Vol. II an example for which the s
Df

E , as well as the setD(LE( f )), consists only of the null vector. Schroeck6 develops a theory of
operator integrals under the additional assumption that the positive operator measures invol
absolutely continuous; the question of the domain is not explicitly addressed there. As an ex
of recent physics literature we mention Ozawa,7 who also takes the setDf

E as the domain of the
operator defined by the integral of a measurable functionf with respect to a positive operato
measureE. The natural domain of the linear operatorLE( f ) is, however, the wider setD(LE( f )).
In Sec. III we shall see that the restriction of the operatorLE( f ) to Df

E equals the projected
operator integral pr(LF( f )) obtained via a Neumark dilation of the~positive! operator measureE
into a projection measureF.

C. Densely defined operator integrals

From now on we assume that the operator measureE is positive and so normalized tha
E(V)5I .

Let f̄ be the complex conjugate off. The operatorLE( f̄ ) has the domainD(LE( f̄ ))
5D(LE( f )). If LE( f ) is densely defined, then the adjoint ofLE( f ) exists and it extends the
operatorLE( f̄ ), that is,LE( f̄ )#LE( f )* ~Ref. 1, Lemma A4!. Furthermore, ifD(LE( f )) is dense
in H, then alsoLE( f )* is densely defined, implying thatLE( f ) is closable, withLE( f )** being
the smallest closed linear extension ofLE( f ) ~Ref. 2, Theorem on p. 305!. Thus, if LE( f ) is
densely defined, we have

LE~ f̄ !#LE~ f !* ,
                                                                                                                



s

t

ns

s

2183J. Math. Phys., Vol. 40, No. 4, April 1999 Lahti, Pellonpää, and Ylinen

                    
LE~ f !#LE~ f !** .

It is well known thatLE( f̄ )5LE( f )* wheneverE is projection valued. But it is obvious that thi
is not a necessary condition for the equalityLE( f̄ )5LE( f )* . The operator measureE(X)
5m(X)I defined by a probability measurem also demonstrates this statement. Indeed, iff is m

integrable, thenLE( f )* 5LE( f̄ ), though E is not projection valued. Finally, we recall tha
LE( f )5LE( f )** holds if and only ifLE( f ) is densely defined and closed.

D. Symmetric operator integrals

Assume that the functionf is real valued. Then the operatorLE( f ) is symmetric, that is, for
any w,cPD(LE( f )),

^cuLE~ f !w&5^LE~ f !cuw&,

see Ref. 1 for a proof. Therefore, if, in addition,LE( f ) is densely defined one has the extensio

LE~ f !#LE~ f !** #LE~ f !* .

E. The real and imaginary parts

Let f 5 f 11 i f 2 be the decomposition off into its real and imaginary parts. Thenf is Ec,w

integrable if and only if f 1 and f 2 are Ec,w integrable, in which case* f dEc,w5* f 1 dEc,w

1 i * f 2 dEc,w . We thus have the operator equalities

LE~ f !5LE~ f 1!1 iL E~ f 2!,

LE~ f̄ !5LE~ f 1!2 iL E~ f 2!,

with D(LE( f ))5D(LE( f̄ ))5D(LE( f 1))ùD(LE( f 2)). Assume now thatD(LE( f ))5H. Then
LE( f̄ ),LE( f )* so that the operatorsaLE( f )1bLE( f̄ ) andaLE( f )1bLE( f )* are equal for all
nonzeroa, bPC, and, in particular,

ReLE~ f !ª 1
2@LE~ f !1LE~ f !* #5 1

2@LE~ f !1LE~ f̄ !#,

Im LE~ f !ª
1

2i
@LE~ f !2LE~ f !* #5

1

2i
@LE~ f !2LE~ f̄ !#.

By definition,D(Re(LE(f )))5D(LE( f ))#D(LE(Ref )), and for anycPH, wPD(LE( f )),

^cuRe~LE~ f !!w&5^cu 1
2~LE~ f !1LE~ f̄ !!w&5^cuLE~ 1

2~ f 1 f̄ !!w&5^cuLE~Ref !w&,

which shows that Re(LE(f ))#LE(Ref ). Since the functions Ref and Imf are real the operator
LE(Ref ) andLE(Im f ), as well as their restrictions ReLE(f ) and ImLE(f ), are symmetric.
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III. INTEGRATION VIA DILATION

A. Neumark dilation

Consider the~positive normalized! operator measureE:A→L(H) and letF:A→L(K) be a
~Neumark! dilation of it into a projection measure acting on a Hilbert spaceK. Let V:H→K be
the isometry such that

E~X!5V* F~X!V

for all XPA. For anyA-measurablef :V→C the operatorLF( f )5* f dF is densely defined with
the domainD(LF( f ))5Df

F . The question arises under which conditions the ‘‘projected’’ opera
pr(LF( f ))ªV* LF( f )V equals the operatorLE( f ). This will be answered next.

Theorem: With the above notations, the operatorV* LF( f )V is the restriction of the operato
LE( f ) to Df

E , so thatV* LF( f )V5LE( f ) if and only if Df
E5D(LE( f )).

Proof: For anyw,cPH the complex measuresEc,w andFVc,Vw are the same. Hence, for an
wPDf

E ,

E u f u2dFVw,Vw5E u f u2dEw,w,`,

showing thatV(Df
E)#Df

F5D(LF( f )). But then for anywPDf
E and for eachcPH,

^cuLE~ f !w&5E f dEc,w5E f dFVc,Vw5^VcuLF~ f !Vw&5^cuV* LF~ f !Vw&.

This means that

LE~ f !uD
f
E5V* LF~ f !VuD

f
E.

But we have

D~V* LF~ f !V!5D~LF~ f !V!5$wPHuVwPD~LF~ f !!%

5 HwPHU E u f u2dFVw,Vw,`J 5 HwPHU E u f u2dEw,w,`J
5Df

E#D~LE~ f !!.

Therefore,V* LF( f )V is the restriction ofLE( f ) to Df
E , andV* LF( f )V5LE( f ) if and only if

Df
E5D(LE( f )).

Remark:For compactly supported operator measuresE and for functionsf which are bounded
on the support of the measure, the equalityV* LF( f )V5LE( f ) is already proved in Ref. 8. The
authors are indebted to an anonymous referee for bringing this reference to their attention
general case, however, the inclusionDf

E,D(LE( f )) may be proper, as pointed out in Sec. II A

B. A theorem of Foias ¸

As an application of the above result we obtain a slight generalization of a theorem of F¸3

which characterizes subnormal operators in terms of operator measures. To that end, assu
thatE is defined on thes-algebraB(C) of Borel subsets of the complex planeC. Let F andV be
as in Sec. III A and choosef to be the identity function id onC. Let A stand for the operato
*z dE(z). The operatorNª*z dF(z) is now normal and by the proof of the above theorem
haveV* NV5AuD

id
E, whereDid

E5$wPHu* uzu2dEw,w,`%. We also recall9 that a~not necessarily
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densely defined! operatorB:D(B)→H is said to be subnormal if there is a Hilbert spaceK, a
linear isometry V:H→K, and a normal operator N:D(N)→K such that
D(B)#V* (V(H)ùD(N)), N(V(D(B)))#V(H), andBw5V* NVw for all wPD(B).

Theorem: An operatorB:D(B)→H is subnormal if and only if there is a positive normalize
operator measureE:B(C)→L(H) such that for eachcPH, wPD(B), the following two condi-
tions are satisfied:

~a! ^cuBw&5E zdEc,w ,

~b! iBwi25E uzu2dEw,w .

Proof: Assume thatB is subnormal, and letN:D(N)→K be a normal extension of it on th
Hilbert spaceK, with V:H→K being the accompanying isometry as described above.
F:B(C)→L(K) be the spectral measure ofN. ThenE(Z)ªV* F(Z)V defines a positive normal
ized operator measureE:B(C)→L(H) which satisfies for allcPH, cPD(B), the conditions:

^cuBw&5^cuV* NVw&5^VcuNVw&

5E z dFVc,Vw5E z dEc,w ,

iBwi25iV* NVwi25^V* NVwuV* NVw&

5^NVwuVV* NVw&

5^NVwuNVw&

5E uzu2 dFVw,Vw5E uzu2 dEw,w ,

where we have used the fact thatVV* is the projection ontoV(H) and thatN(V(D(B)))#V(H).
Conversely, assume that there is a normalized positive operator measureE associated withB

via the formulas~a! and~b!. We observe first that these conditions imply thatB is a restriction of
AuD

id
E, that is,B#AuD

id
E, whereA denotes*z dE. Let F:B(C)→L(K) be a dilation ofE into a

projection measure,N5*z dF, and letV:H→K be the associated isometry. Then, by the theor
of Sec. II A, for anywPD(B),

Bw5Aw5V* NVw,

and

iBwi25E uzu2 dEw,w5E uzu2 dFVw,Vw5iNVwi2.

SinceiNVwi5iBwi5iV* NVwi5iVV* NVwi for all wPD(B), andVV* is the projection onto
V(H), this givesVV* (NVw)5NVw for all wPD(B), that is,N(V(D(B)))#V(H), which con-
cludes the proof thatB is subnormal.

Let E,F,V,fbe as in Sec. III A. We then haveV* LF(Ref )V#LE(Ref ), with the equality sign
if and only if DRe f

E 5D(LE(Ref )). Moreover,

Re~V* LF~ f !V!5 1
2@V* LF~ f !V1~V* LF~ f !V!* #

5 1
2@V* LF~ f !V1V* LF~ f !* V!]

5V* Re~LF~ f !!V#V* LF~Ref !V,
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where the second equality is due to the fact that (V* LF( f )V)* $V* LF( f )* V and
D(V* LF( f )V)5D(V* LF( f )* V)#D((V* LF( f )V)* ).

IV. EXAMPLES

In this section we apply the above results to some phase space observables and their C
margins. From now on the Hilbert spaceH will be separable.

A. The phase space observable A zs ‹

For any w,cPH we let uw&^cu denote the rank one operatoruw&^cu(h)5^cuh&w. Let
$un&%n>0 be a fixed orthonormal basis ofH. Let N5(n>0nun&^nu, a5(n>0An11un&^n11u, and
a* 5(n>0An11un11&^nu be the associated number, lowering, and raising operators, re
tively. Their domains areD(N)5$wPHu(n>0n2u^nuw&u2,`%, and D(a)5D(a* )5$w
PHu(n>0nu^nuw&u2,`%. Clearly, a* a5N and aa* 5N1I . Moreover, Re(a) and Im(a) are
~densely defined! symmetric operators whose closures are, apart from a scaling factor, the ca
cal position and momentum operatorsQ andP, respectively, that is,& Re(a)** 5Q, & Im(a)**
5P.

Let l:B(C)→@0,̀ # be the two-dimensional Lebesgue measure. LetDz5eza* 2 z̄a, zPC, be
the ~unitary! shift operator, and letus& be a fixed number state. The mapC{z°Dzus&PH is
norm-continuous and 1/p*CDzus&^suDz* dl(z)5I , where the integral converges in the weak o
erator topology. The formula

Aus&~Z!ª
1

p E
Z
Dzus&^suDz* dl~z!PL~H!, ZPB~C!,

thus defines a normalized positive operator measure, the phase space observableAus& associated
with the number stateus&. For further details on the phase space observables and their dila
~Sec. IV B! the reader may wish to consult Refs. 10 and 11.

B. A dilation of A zs ‹

Let K denote the Hilbert spaceL2(C,(1/p)dl) and let F:B(C)→L(K) be the canonical
spectral measure (F(Z)f5xzf). Consider the mappingVus& :H→K, with

~Vus&w!~z!ª^suDz* w&H , zPC.

Vus& is linear and preserves the norm:

iVus&wiK
2 5

1

p E
C
~Vus&w!~z!~Vus&w!~z!dl5

1

p E
C
^wuDzus&^suDz* w&dl5iwiH

2

for any wPH. The final projection of this isometryVus& , that is, the projection onto the close
subspaceVus&(H)5$Vus&wuwPH%,K, is easily seen to bePus&5(n50

` P@fn
s#, where fn

s

5Vus&un&, n>0.
For anyw,cPH, and for eachZPB(C),

^wuAus&~Z!c&5^Vus&wuF~Z!Vus&c&,

which shows that the projection measureF is a dilation of the operator measureAus& .
Let LF( f )5*Cf (z)dF(z) be the normal operator defined by the canonical projection mea

F(Z)f5xZf and the Borel functionf :C→C. Then L( f ) is a multiplication operator,
(LF( f )f)(z)5 f (z)f(z), zPC, fPD(LF( f )). By the theorem of Sec. III A we now have tha
Vus&* LF( f )Vus&#LAus&( f ) and the domain ofVus&* LF( f )Vus& is D f

Aus&.
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C. A completeness relation

For eachs50,1,2,... the functionsfn
s , n50,1,2,..., are mutually orthogonal unit vectors. W

shall proceed to show that the set$fn
sus,n50,1,2,...% is a complete orthonormal system. Th

orthogonality of the functionsfn
s can readily be computed. Indeed, these functions are relate

the associated Laguerre polynomials as follows:

fn
s~z!5^suDz* un&

5
1

As!
e2uzu2/2 (

l 50

min$s,n%

~21!s2 l S s
l D An!

~n2 l !!
zs2 l z̄n2 l

5ei ~s2n!u~21!max$0,s2n%e2uzu2/2A~min$n,s%!!

~max$n,s%!!
uzu us2nuLmin$n,s%

us2nu ~ uzu2!,

wherez5uzueiu andLm
k , kPZ, mPN, is the associated Laguerre polynomial. Using the Vand

monde convolution formula12 or the properties of the Laguerre polynomials it is a straightforw
computation to confirm that for anys,r ,n,m>0

^fn
sufm

r &5
1

p E
C
fn

s~z!fm
r ~z!dl5

1

p E
C
^nuDzus&^r uDz* um&dl5dsrdnm .

This shows that forsÞr the operator measuresAus& andAur & are Neumark projections ofF into
mutually orthogonal subspacesVus&(H) and Vur &(H) of K. To show that the functionsfn

s ,s,n
50,1,2,..., constitute a complete system we write

L2S C,
1

p
dl~z! D.L2S @0,2p!,

du

2p D ^ L2~R1,d~r 2!!,

and recall that the functionseiku, kPZ, and

A m!

~ l 1m!!
e2r 2/2r lLm

l ~r 2!,

l ,mPN, form orthonormal bases for the respective component spaces. We may thus conclu

(
s50

`

Pus&5(
s50

`

(
n50

`

P@fn
s#5IK .

In other words, we have the orthogonal decomposition of the bigger space

K5L2S C,
1

p
dl~z! D5Vu0&~H! % Vu1&~H! % Vu2&~H! %¯ .

D. The moment operators of A zs ‹

In Ref. 1 all the operator integralsLAus&( f ) for the functionsz°zk and z° z̄k, with k
50,1,2,..., were determined. They are:

~a! LAus&~zk!5E
C
zkdAus&5ak,

~b! LAus&~ z̄k!5E
C
z̄kdAus&5~a* !k,
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with the domains

D
idk

Aus&5D~LAus&~zk!!5D~ak!5D~a* k!.

Accordingly, we also have:

ak5Vus&* LF~zk!Vus&5Vus&* LF~z!kVus&5~Vus&* LF~z!Vus&)
k,

~a* !k5Vus&* LF~ z̄k!Vus&5Vus&* ~LF~z!* !kVus&5~Vus&* LF~z!* Vus&)
k,

where (LF(z)f)(z)5zf(z), zPC, for all fPD(LF(z)).
In Ref. 1 it was shown, in addition, that for anys50,1,2,...,

~c! E
C
uzu2dAus&5N1~s11!I .

Sinceaa* 5N1I we observe that the operator integral~c! equalsaa* exactly whens50. Indeed,
the phase space measureAu0& , associated with the ground stateu0&, satisfies the condition

~d! ak~a* ! l5E
C
zkz̄l dAu0&

for k,l 50,1. This shows the well-known fact that the operatora* is subnormal. Holevo13 referred
to the subnormality ofa* as an explanation of the validity of the formulas~a!–~d! for the operator
measureAu0& . It is worth mentioning that the operatora is not subnormal14 so that there is no
positive operator measureE:B(C)→L(H) for which a5*Cz dE, a* 5*Cz̄ dE, and a* a
5*Cuzu2 dE. This is in accordance with formula~c! which givesa* a5* uzu2 dAus&2(s11)I .

E. The real and imaginary parts of L A zs ‹
„zk

…

The above results~a! and ~b! give immediately

ReLAus&~zk!5 1
2~LAus&~zk!1LAus&~ z̄k!)5 1

2~ak1a* k!,

Im LAus&~zk!5
1

2i
~LAus&~zk!2LAus&~ z̄k!)5

1

2i
~ak2a* k!,

with the domainD(ak). Writing z5x1 iy we also have that the operatorsLAus&(x) andLAus&(y)
extend the operators12(a1a* ) and (1/2i )(a2a* ), respectively. SinceLAus&(x) and LAus&(y) are
densely defined symmetric operators, and since Re(a)** 51/&Q and Im(a)** 51/&P, we con-
clude that

1

2
~a1a* !,LAus&~x!,LAus&~x!** 5

1

&
Q,

1

2i
~a2a* !,LAus&~y!,LAus&~y!** 5

1

&
P.

Similarly, one gets:
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1
2@N1~s11!I 1 1

2~a21a* 2!#5 1
2@LAus&~ uzu2!1 1

2~a21a* 2!#

,LAus&~x2!,LAus&~x2!**

5 1
2Q

21 1
2~s1 1

2!I ,

1
2@N1~s11!I 2 1

2~a21a* 2!#5 1
2@LAus&~ uzu2!2 1

2~a21a* 2!]

,LAus&~y2!,LAus&~y2!**

5 1
2P

21 1
2~s1 1

2!I ,

1

4i
~a22a* 2!,LAus&~xy!,LAus&~xy!** 5

1

4
~QP1PQ!.

Finally, we note that the operator measureAus& and its Cartesian marginal measur
X°Aus&(X3R)5:Aus&

x (X) andY°Aus&(R3Y)5:Aus&
y (Y) carry the following respective noises

R~Aus&!ªLAus&~z2!2LAus&~z!25O,

R~Aus&
x !ªLAus&~x2!2LAus&~x!25 1

2~s1 1
2!I ,

R~Aus&
y !ªLAus&~y2!2LAus&~y!25 1

2~s1 1
2!I .

The fact that the positive operatorsR(Aus&
x ) and R(Aus&

y ) are nonzero reflects the fact that th
marginsAus&

x andAus&
y are not projection valued.2 Recalling that the marginal measuresAus&

x andAus&
y

are—apart from the scaling factor&—unsharp position and momentum observables, the ab
noise equations lead to the followings-dependent uncertainty product for these observables~with
q5&x andp5&y):

Var~Aus&
q ,w!Var~Aus&

p ,w!5~Var~Q,w!1^wuR~Aus&
q !w&!~Var~P,w!1^wuR~Aus&

p !w&!

5~Var~Q,w!1~s1 1
2!!~Var~P,w!1~s1 1

2!!

5~Var~Q,w!Var~P,w!1~s1 1
2!~Var~Q,w!1Var~P,w!!1~s1 1

2!
2

>~s11!2.

For s50, this result is well known, see, e.g., Ref. 11, p. 55.
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On Verma bases for representations of sl „n ,C…
K. N. Raghavana) and P. Sankaranb)

SPIC Mathematical Institute, 92 G. N. Chetty Road, T. Nagar, Chennai 600 017, India

~Received 11 February 1998; accepted for publication 17 December 1998!

Conjectural bases for irreducible representation spaces of simple Lie algebras, due
to Verma, have been described by Li, Moody, Nicolescu, and Patera. In this paper
the basis conjecture for the algebras of typeAn is established. ©1999 American
Institute of Physics.@S0022-2488~99!02504-9#

I. INTRODUCTION

Conjectural bases for irreducible representation spaces of simple Lie algebras, due to V
are described in Ref. 1. The purpose of the present paper is to establish the basis conjectur
algebras of typeAn .

The proof consists of two steps. Recall that isomorphism classes of irreducible represe
spaces are in one-to-one correspondence with shapes of Young tableaus. The first step in t
is to exhibit a ‘‘natural’’ bijective correspondence between the conjectural basis vectors
irreducible representation space on the one hand and the standard tableaus of the corres
shape on the other. From the well-known result that the number of such standard tableaus
the dimension of the representation, we conclude that the basis vectors are right in number.
remains only to prove that they are linearly independent, and this is step two of the proof.

The set up for step two is borrowed from Ref. 2. In fact, the linear independence ca
deduced as a special case of the main Proposition 7.1 of Ref. 2. In the present paper, we
the linear independence as an immediate consequence of Proposition 2 below. Although t
propositions appear at first sight to be identical, they are not so, for the partial orders are dif
The proof of linear independence in the present paper is much simpler than the proof in
even after specializing the latter to the case of typeAn . Referring to Ref. 2 for the proof of linea
independence would greatly reduce the readability of the present paper.

Another strategy for a proof of the basis conjecture, quite different from the one of our p
is outlined in Ref. 1 itself~see Sec. V of that paper!. We believe the conjectures on which th
strategy is based to be true, but our attempts at obtaining a proof along these lines have
with success.

There naturally arises the question whether our method of proof can be generalized to
the other types of algebras. A ‘‘natural’’ bijective correspondence between the conjectural
vectors and standard tableaus presumably exists for the other types too, but we do not se
course, even after getting hold of such a correspondence, one still has to establish the
independence of conjectural basis vectors.

The organization of this paper is as follows. In Sec. II we recall the basis conjecture fo
algebras of typeAn . The bijective correspondence between the basis vectors and the sta
tableaus is the subject of Sec. III. The proof of linear independence is straight forward fo
fundamental representations as pointed out in Sec. IV. The linear independence in the ca
non-fundamental representation is established in Sec. V.

II. THE VERMA CONJECTURE

Let g5sl(n;C), the Lie algebra ofn3n matrices of trace 0 over the complex numbers. Wh
we speak of roots, weights, positive roots, and such other terms, it is to be understood tha

a!Electronic mail: knr@smi.ernet.in
b!Electronic mail: sankaran@smi.ernet.in
21900022-2488/99/40(4)/2190/6/$15.00 © 1999 American Institute of Physics

                                                                                                                



es

.
-

n
ng
d

ero

aint

set of

au is

2191J. Math. Phys., Vol. 40, No. 4, April 1999 K. N. Raghavan and P. Sankaran

                    
are with respect to the standard Cartan subalgebra~the subalgebra of traceless diagonal matric!
and the standard Borel subalgebra~the subalgebra of traceless upper triangular matrices!.

Let lªn21, therank of g. Let Ã1 ,...,Ã l be the fundamental weights. A weightl is domi-
nant integral if, in the expressionl5m1Ã11¯1mlÃ l , the mi are all non-negative integers
Recall that isomorphism classes of irreducible finite dimensionalg-modules are in bijective cor
respondence with dominant integral weights. Given an irreducibleg-module, the corresponding
dominant integral weight is just the highest weight of thatg-module.

Let l5m1Ã11¯1mlÃ l be a dominant integral weight,Vl the corresponding irreducible
finite dimensionalg-module, andvl a highest weight vector inVl . ~The vectorvl is uniquely
determined up to a scalar factor.! Note thats1(s2s1)¯(si¯s1)¯(sl¯s1) is a reduced expressio
for the longest element of the Weyl group ofg; heresi denotes the simple reflection correspondi
to the simple roota i which corresponds to the fundamental weightÃ i . Thus the vectors obtaine
by the action onvl of the monomials

Y
1
~a1

1
!
~Y

2
~a2

2
!
Y

1
~a1

2
!
!¯~Y

i
~ai

i
!
Y

i 21
~ai 21

i
!
¯Y

2
~a2

i
!
Y

1
~a1

i
!
!¯~Y

l
~al

l
!
¯Y

1
~a1

l
!
! ~1!

spanVl ; hereYi is the lower triangular matrix with all but one entry being 0, the sole non-z
entry being 1 on rowi 11 and columni, ak

c are non-negative integers, andYi
(a) denotesYi

a/a!. It
was conjectured by Verma1 that the subset of these vectors defined by the following constr
forms a basis forVl : for each pair~c,k! such that 1<k<c< l ,

0<ak
c<min$ak21

c 1ml 2c1k ,ak11
c11%, ~2!

where

ak
l 11

ª` and a0
c
ª0.

Let us call those monomials~1! that are subject to the constraint~2! the Verma monomials.
Let us callVerma vectorsthose vectors obtained by the action of the Verma monomials onvl .
The theorem of the present paper can now be phrased thus:

Theorem 1 „Verma’s Conjecture…: The Verma vectors form a basis for Vl . The proof is
given in Sec. V.

III. STANDARD TABLEAUS AND VERMA MONOMIALS

The purpose of this section is to establish a bijective correspondence between the
standard tableaus of a fixed shapel on the one hand and the Verma monomials associated tol on
the other. We first recall the notion of tableaus and standard tableaus.

Fix a positive integerl. Let l5(ml ,...,m1) be anl-tuple of non-negative integers. Tol we
associate ashapeas follows. The shape consists of boxeslml1( l 21)ml 211¯11•m1 in num-
ber, left-justified and bottom-justified, withl boxes in the firstml columns,l 21 boxes in the next
ml 21 columns, and so on. For example, ifl 53, the shape corresponding tol5~3,3,2! is shown in
Fig. 1.

A tableauof shapel is a filling up of the boxes in the shape associated tol by integers
1,...,nª l 11, such that the entries in each column are strictly increasing downwards. A table

FIG. 1.
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standardif the numbers in each row are non-increasing rightwards. For example, ifl 53 andl
5(3,3,2), the tableau in Fig. 2 is not standard while the one in Fig. 3 is standard.

In what follows, l andl are fixed, and~c,k! denotes an ordered pair of integers satisfying
<c< l and 1<k<c. Given a standard tableaus, define for each~c,k! the integerbk

c to be the
number of entries on rowc of s that are~strictly! greater thank, where the topmost row is row 1
the one just below it is row 2, and so on until the bottom-most row is rowl. It is clear, from the
definition ofbk

c , thatbk
c<bk21

c and further, sinces is a tableau, thatbk
c<bk11

c11. In other words, the
bk

c satisfy

bk
c<min$bk21

c ,bk11
c11%,

bk
c<ml1¯1ml 2c11 . ~3!

Conversely, given integersbk
c subject to the constraint~3!, we can construct a standard table

as follows. Fill up the shape corresponding tol with integers so that in rowc there are precisely
bk

c entries greater thank and the entries in each row are nonincreasing rightwards. There is cl
a unique way of doing this. The result is a tableau sincebk

c<bk11
c11, and it is standard by construc

tion. Thus the standard tableaus are in bijective correspondence with sets of integers$bk
c% subject

to ~3!.
Settingak

c
ªbk

c2(ml1¯1ml 2c1k11), it is easily checked that~3! transforms to~2!. Thus
the Verma monomials are in bijective correspondence with$bk

c% subject to~3! and so also with
standard tableaus. The Verma monomial corresponding to the standard tableau of Fig. 3 i

Y1
~1!~Y2

~2!Y1
~2!!~Y3

~2!Y2
~3!Y1

~1!!.

IV. THE CASE OF A FUNDAMENTAL REPRESENTATION

Let V1 ,...,Vl denote the representations that correspond respectively to the fundam
weightsÃ1 ,...,Ã l . These representations admit the following simple description. The repre
tation V1 is thestandard representationof g5sl(n;C): the elements ofV1 are complex matrices
of size n31 andg acts onV1 by left multiplication. For 1< j < l , the representationVj is the
exterior product∧ jV1 . Let ei denote then31 matrix with the entry on rowi being 1 and all other
entries being 0. The vectorv jªe1∧¯∧ej is a highest weight vector inVj .

A standard tableaus of shapeÃ j consists of a column ofj integers 1< i 1,¯, i j<n
arranged in increasing order downwards. The Verma monomial corresponding tos is

~Yi 121¯Y2Y1!¯~Yi j 2k1121¯Yj 2k12Yj 2k11!¯~Yi j 2121¯YjYj 21!~Yi j 21¯Yj 12Yj 11Yj !.

As can be readily checked, the action of this onv j results inei 1
∧¯∧ei j

, which we denoteu(s).
Since theu(s) form a basis forVj ass varies over~standard! tableaus, Theorem 1 holds for
fundamental representation.

FIG. 2.
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V. THE CASE OF A GENERAL REPRESENTATION

Let l5mlÃ l1¯1m1Ã1 be an arbitrary dominant integral weight. LetVl be the corre-
sponding finite dimensional irreducible representation. We can realizeVl as follows. Consider the
tensor product representation

The element

of V then is a highest weight vector and theg-submodule ofV generated byvl is a model forVl .
We think of a tableauz of shapel as a concatenationz5(z1 ,...,zm), wheremªml1¯

1m1 ; z1 ,...,zml
are tableaus of shapeÃ l ; zml11 ,...,zml1ml 21

are tableaus of shapeÃ l 21 ; and
so on. We associate toz the vectoru(z)ªu(z1) ^¯^ u(zm) of V, whereu(z j ) is the basis vector
of Vr ( j ) associated as in Sec. IV toz j , wherer ( j ) is the number of rows inz j . It is clear that as
z varies over all tableaus of shapel, standard or otherwise, theu(z) form a basis forV.

Proof of Theorem 1:For a fundamental weightl, the proof was given in Sec. IV. Now letl
be a nonfundamental weight,s be a standard tableau of shapel, andv(s) be the corresponding
Verma vector inVl . Thinking of v(s) as a vector inV, we can express it as a sum of the ba
vectorsu(z), z varying over all tableaus. Proposition 2 below is an assertion about this ex
sion. It follows immediately from the proposition that the Verma vectorsv(s) are linearly inde-
pendent and therefore also that they form a basis~since the number of standard tableaus
well-known to equal the dimension ofVl!. h

To state Proposition 2, we introduce the following partial order on the set of all tablea
shapel. Given a tableauz of shapel, let z( i , j ) denote the entry ofz on row i and columnj,
where the rows and columns are indexed as for a matrix—of course, in the case of a tab
opposed to that of a matrix, the range of possible values forj depends on the value ofi and vice
versa. We call those pairs~i,j! admissiblefor which z( i , j ) makes sense. For admissible pairs~i,j!
and (i 8, j 8), we say (i , j )<( i 8, j 8) if either i , i 8 or i 5 i 8 and j < j 8. For tableausz, z8 of shapel,
we sayz<z8 if z( i , j )<z8( i , j ) for the smallest such pair~i,j! that z( i , j )Þz8( i , j ).

There clearly exists a smallest tableau of a given shape. The smallest tableau of shape~3,3,2!
is shown in Fig. 4. The exponentsak

c in the Verma monomial of the smallest tableau are all 0.

FIG. 3.

FIG. 4.
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a standard tableaus, the relation between the numbersbk
c and ak

c defined in Sec. III may be
rephrased thus

ak
c~s!5bk

c~s!2bk
c~t!, ~4!

wheret is the smallest tableau of the same shape ass.
Proposition 2: With notation as above, one has

v~s!5u~s!1 (
z²s

q~z!u~z!,

where q(z) are some scalars (in fact, integers).
Proof: We proceed by an induction on the order< defined above. Ifs is the smallest tableau

of shapel with respect to<, thenv(s)5u(s)5vl and the statement is clear.
So suppose thats is not the smallest tableau. Letak

c be the exponents in the Verma monom
corresponding tos. Let C be the smallest such value ofc that ak

cÞ0 for somek. Let K be the
largest such value thataK

CÞ0. ChangingaK
C to 0 but leaving the remainingak

c unchanged, we ge
another Verma monomial, the standard tableau corresponding to which we denote bym. It is
readily checked thatm ands satisfy the following:

~1! In positions (i , j )<(C,ml1¯1ml 2C1K), the entries ofm are equal to the correspondin
entries of the smallest tableau@see Eq. ~4!#. In particular, for (i , j )<(C,ml1¯

1ml 2C1K11), if m( i , j )5K, then i ,C andm( i 11, j )5K11.
~2! To go fromm to s the only change that needs to be made is to replaceK by K11 in certain

boxes,aK
C in number, on rowC. The boxes figuring in these changes occur in consecu

columns starting with the columnml1¯1ml 2C1K1111. In each of these columns ofm, K
occurs but notK11.

Note thatm²s. The induction hypothesis applied tom says

v~m!5u~m!1 (
h²m

q~h!u~h!

and so

v~s!5YK
~p!u~m!1 (

h²m
q~h!YK

~p!u~h!,

where we have writtenp for aK
C for simplicity of notation.

We now investigateYK
(p)u(h) for a general tableauh. An entry of h is calledmarkedif it

equalsK and is either on the last row or the entry immediately below it is notK11. Let S(h,K)
be the set of marked positions ofh, and letZ(h)ªZ(h,K,p) be the subsets of cardinalityp of
S(h,K). For t an element ofZ(h), let h t be the tableau obtained by changing the entries oh
from K to K11 in those marked positions that belong tot. We have

YK
~p!u~h!5 (

tPZ~h!
u~h t!

and so

v~s!5 (
tPZ~m!

u~m t!1 (
h²m

(
tPZ~h!

q~h!u~h t!. ~5!
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Let t and t8 be sets of cardinalityp of positions~i,j! admissible for the shapel. We sayt
<t8 if t r²t r8 for the least suchr that t rÞt r8 , where t5$t1²¯²tp% and t85$t18²¯²tp8% are
arranged in increasing order.

Let h,z be tableaus of shapel. Let sPZ(h) andtPZ(z). The following statements are easi
seen to be true:

~a! If h<z ands>t, thenhs<z t .
~b! If h<z, s>t, and eitherh²z or s³t, thenhs²z t .

Let h<m. It is clear that statement~1! above holds forh because it holds form. Thus every
elements of Z(h) satisfies

s>s0ª$~C,ml1¯1ml 2C1K1111!,...,~C,ml1¯1ml 2C1K111p!%.

By statement~2! above, we see thats0 belongs toZ(m) and thats5ms0
. Now by the statements

~a! and ~b! above, we obtainhs<ms0
5s and that equality holds if and only ifh5m and s

5s0 . The proposition now follows from Equation~5!. h
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@S0022-2488~99!02304-X#

~1! Equation~5! should read

Kq~p,p8!52(
j

pj lnq

p8 j

pj
.

~2! Equation~7! should read

Kq~p,p8!5E dx
p~x!q

12q
~p~x!12q2p8~x!12q!52E dxp~x! lnqS p8~x!

p~x! D .

~3! Above Eq.~34! the sentence should read as follows:
...consequently the conditional entropy giveny

(q~xuy![2(
x

pq~xuy! lnqp~xuy! ~34!

~which is related to the conditional entropy averaged over the variabley through Sq(xuy)
5(ypq(y)(q(xuy)! must vanish. This case... .

~4! In Eqs.~35! and ~36!, Sq(xuy) should be replaced by(q(xuy).

A. K. Rajagopal is sincerely thanked for discussions and in particular for directing our a
tion to the above points.
21960022-2488/99/40(4)/2196/1/$15.00 © 1999 American Institute of Physics
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The value of the coupling constantsxx
(0) computed in Sec. VII A is not correct. Its calculatio

was based on the reasonable but false assumption that the field configurations which dom
large wavelengths are smooth. As a matter of fact, the relevant configurations contain a
high-momentum component due to the alternating structure of the Chalker–Coddington ne
When this is taken into account, the value of the longitudinal conductivity changes tosxx

(0)51/2 for
the single-channel model andsxx

(0)5N/2 for theN-channel model. The rest of the paper is un
fected by this change.
21970022-2488/99/40(4)/2197/1/$15.00 © 1999 American Institute of Physics
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This paper proposes to broaden the canonical formulation of quantum mechanics.
Ordinarily, one imposes the conditionH†5H on the Hamiltonian, where † repre-
sents the mathematical operation of complex conjugation and matrix transposition.
This conventional Hermiticity condition is sufficient to ensure that the Hamiltonian
H has a real spectrum. However, replacing this mathematical condition by the
weaker and more physical requirementH‡5H, where ‡ represents combined parity
reflection and time reversalPT, one obtains new classes of complex Hamiltonians
whose spectra are still real and positive. This generalization of Hermiticity is in-
vestigated using a complex deformationH5p21x2( ix)e of the harmonic oscillator
Hamiltonian, wheree is a real parameter. The system exhibits two phases: When
e>0, the energy spectrum ofH is real and positive as a consequence ofPT sym-
metry. However, when21,e,0, the spectrum contains an infinite number of
complex eigenvalues and a finite number of real, positive eigenvalues becausePT
symmetry is spontaneously broken. The phase transition that occurs ate50 mani-
fests itself in both the quantum-mechanical system and the underlying classical
system. Similar qualitative features are exhibited by complex deformations of other
standard real HamiltoniansH5p21x2N( ix)e with N integer ande.2N; each of
these complex Hamiltonians exhibits a phase transition ate50. ThesePT-
symmetric theories may be viewed as analytic continuations of conventional theo-
ries from real to complex phase space. ©1999 American Institute of Physics.
@S0022-2488~99!00105-X#

I. INTRODUCTION

In a recent letter1 a class of complex quantum-mechanical Hamiltonians of the form

H5p21x2~ ix !e ~e real! ~1.1!

was investigated. Despite the lack of conventional Hermiticity the spectrum ofH is real and
positive for all e>0. As shown in Fig. 11 in this paper and Fig. 1 of Ref. 1, the spectrum
discrete and each of the energy levels increases as a function of increasinge. We will argue below
that the reality of the spectrum is a consequence ofPT invariance.

The operatorP represents parity reflection and the operatorT represents time reversal. Thes
operators are defined by their action on the position and momentum operatorsx andp:

P:x→2x, p→2p,
~1.2!

T:x→x, p→2p, i→2 i .
22010022-2488/99/40(5)/2201/29/$15.00 © 1999 American Institute of Physics
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When the operatorsx and p are real, the canonical commutation relation@x, p#5 i is invariant
under both parity reflection and time reversal. We emphasize that this commutation re
remains invariant underP andT even if x and p are complex provided that the above transfo
mations hold. In terms of the real and imaginary parts ofx and p, x5Rex1i Im x and p5Rep
1i Im p, we have

P:Rex→2Rex, Im x→2Im x,

Rep→2Rep, Im p→2Im p,
~1.3!

T:Rex→Rex, Im x→2Im x,

Rep→2Rep, Im p→Im p.

While there is as yet no proof that the spectrum ofH in Eq. ~1.1! is real,2 we can gain some
insight regarding the reality of the spectrum of aPT-invariant HamiltonianH as follows: Note that
eigenvalues of the operatorPT have the formeiu. To see this, letC be an eigenfunction ofPT
with eigenvaluel: PTC5lC. Recalling that (PT)251, we multiply this eigenvalue equation b
PT and obtainl* l51, where we have used the fact thati→2 i underPT. Thus,l5eiu. We
know that if two linear operators commute, they can be simultaneously diagonalized. By as
tion, the operatorPT commutes withH. Of course, the situation here is complicated by t
nonlinearity of thePT operator~T involves complex conjugation!. However, let us suppose fo
now that the eigenfunctionsc of H are simultaneously eigenfunctions of the operatorPT with
eigenvalueeiu. Then applyingPT to the eigenvalue equationHc5Ec, we find that the energyE
is real:E5E* .

We have numerically verified the supposition that the eigenfunctions ofH in Eq. ~1.1! are also
eigenfunctions of the operatorPT when e>0. However, whene,0, thePT symmetry of the
Hamiltonian is spontaneously broken; even thoughPT commutes withH, the eigenfunctions ofH
are not all simultaneously eigenfunctions ofPT. For these eigenfunctions ofH the energies are
complex. Thus, a transition occurs ate50. As e goes below 0, the eigenvalues as functions oe
pair off and become complex, starting with the highest-energy eigenvalues. Ase decreases, there
are fewer and fewer real eigenvalues and below approximatelye520.57 793 only one real energ
remains. This energy then begins to increase with decreasinge and becomes infinite ase ap-
proaches21. In summary, the theory defined by Eq.~1.1! exhibits two phases, an unbroken
symmetry phase with a purely real energy spectrum whene>0 and a spontaneously-broken
symmetry phase with a partly real and partly complex spectrum whene,0.

A primary objective of this paper is to analyze the phase transition ate50. We will demon-
strate that this transition occurs in the classical as well as in the quantum theory. As a cl
theory, the HamiltonianH describes a particle subject to complex forces, and therefore the tr
tory of the particle lies in the complex-x plane. The position and momentum coordinates of
particle are complex functions oft, a real time parameter. We are interested only in solution
the classical equations of motion for which the energy of the particle is real. We will see th
the PT-symmetric phase of the theory, the classical motion is periodic and is thus a com
generalization of a pendulum. We actually observe two kinds of closed classical orbits, o
which the particle oscillates between two complex turning points and another in which the pa
follows a closed orbit. In many cases these closed orbits lie on an elaborate multisheeted R
surface. On such Riemann surfaces the closed periodic orbits exhibit remarkable knotlike
logical structures. All of these orbits exhibitPT symmetry; they are left–right symmetric wit
respect to reflections about the imaginary-x axis in accordance with Eq.~1.3!. In the broken-
symmetry phase classical trajectories are no longer closed. Instead, the classical path spira
infinity. These spirals lackPT symmetry.

There have been many previous instances of non-HermitianPT-invariant Hamiltonians in
physics. Energies of solitons on acomplexToda lattice have been found to be real.3 Hamiltonians
rendered non-Hermitian by an imaginary external field have been used to study popu
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biology4 and to study delocalization transitions such as vortex flux-line depinning in typ
superconductors.5 In these cases, initially real eigenvalues bifurcate into the complex plane d
the increasing external field, indicating the growth of populations or the unbinding of vortic

ThePT-symmetric Hamiltonian considered in this paper has many generalizations:~i! Intro-
ducing a mass term of the formm2x2 yields a theory that exhibits several phase transitio
transitions occur ate521 and e522 as well as ate50.1 ~ii ! Replacing the condition of
Hermiticity by the weaker constraint ofPT symmetry also allows one to construct new classes
quasi-exactly solvable quantum theories.6 ~iii ! In this paper we consider complex deformations
real Hamiltonians other than the harmonic oscillator. We show that Hamiltonians of the for

H5p21x2K~ ix !e ~1.4!

have the same qualitative properties asH in Eq. ~1.1!. As e decreases below 0, all of these theor
exhibit a phase transition from an unbrokenPT-symmetric regime to a regime in whichPT
symmetry is spontaneously broken.

The HamiltonianH in ~1.1! is especially interesting because it can be generalized to qua
field theory. A number of such generalizations have recently been examined. ThePT-symmetric
scalar field theory described by the Lagrangian7

L5 1
2~]f!21 1

2m
2f21gf2~ if!e ~e>0! ~1.5!

is intriguing because it is not invariant under parity reflection. This is manifested by a no
value of ^f&. It is interesting that this broken symmetry persists even whene.0 is an even
integer.7 The Hamiltonian for this theory is not Hermitian and, therefore, the theory is not un
in the conventional sense. However, there is strong evidence that the spectrum for this th
real and bounded below. Fore51 one can understand the positivity of the spectrum in term
summability. The weak-coupling expansion for a conventionalgf3 theory is real, and apart from
a possible overall factor ofg, the Green’s functions are formal power series ing2. These series are
not Borel summable because they do not alternate in sign. Nonsummability reflects the fa
the spectrum of the underlying theory is not bounded below. However, when we replaceg by ig,
the perturbation series remains real but now alternates in sign. Thus, the perturbation
becomes summable, and this suggests that the underlying theory has a real positive spec

Replacing conventionalgf4 or gf3 theories byPT-symmetric2gf4 or igf3 theories has
the effect of reversing signs in the beta function. Thus, theories that are not asymptotical
become asymptotically free and theories that lack stable critical points develop such points.
is evidence that2gf4 in four dimensions is nontrivial.8

Supersymmetric quantum field theory that isPT invariant has also been studied.9 When we
construct a two-dimensional supersymmetric quantum field theory by using a superpotential
form S(f)52 ig( if)11e, the supersymmetric Lagrangian resulting from this superpotential

L5 1
2~]f!21 1

2i c̄]”c1 1
2S8~f!c̄c1 1

2@S~f!#2

5 1
2~]f!21 1

2i c̄]”c1 1
2g~11e!~ if!ec̄c2 1

2g
2~ if!212e, ~1.6!

wherec is a Majorana spinor. The Lagrangian~1.3! has a broken parity symmetry. This poses t
question, Does the parity violation induce a breaking of supersymmetry? To answer this qu
both the ground-state energyE0 and the fermion–boson mass ratioR were calculated as series i
powers of the parametere. Through second order ine, E050 andR51, which strongly suggests
that supersymmetry remains unbroken. We believe that these results are valid to all ord
powers ofe. This work and our unpublished numerical studies of SUSY quantum mechanics
that complex deformations do not break supersymmetry.

Quantum field theories having the property ofPT invariance exhibit other interesting feature
For example, the Ising limit of aPT-invariant scalar quantum field theory is intriguing becaus
is dominated by solitons rather than by instantons as in a conventional quantum field theor10 In
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addition, a model ofPT-invariant quantum electrodynamics has been studied.11 The massless
theory exhibits a stable, nontrivial fixed point at which the renormalized theory is finite. More
such a theory allows one to revive successfully the original electron model of Casimir.

Since ^f&Þ0 in PT-symmetric theories, one can in principle calculate directly~using the
Schwinger–Dyson equations, for example! the real positive Higgs mass in a renormalizablePT-
symmetric theory in which symmetry breaking occurs naturally. No symmetry-breaking para
needs to be introduced. This most intriguing idea could lead to an experimental vindication
proposed generalization of the notion of Hermiticity toPT symmetry.

This paper is organized as follows: In Sec. II we study the classical version of the Hamilt
in Eq. ~1.1!. The behavior of classical orbits reveals the nature of the phase transition ate50.
Next, in Sec. III we analyze the quantum version of this Hamiltonian. We derive se
asymptotic results regarding the behavior of the energy levels near the phase transition. In S
we discuss the classical and quantum properties of the broad class ofPT-symmetric Hamiltonians
in Eq. ~1.4! of which H in Eq. ~1.1! is a special case.

II. CLASSICAL THEORY

The classical equation of motion for a particle described byH in ~1.1! is obtained from
Hamilton’s equations:

dx

dt
5

]H

]p
52p,

~2.1!
dp

dt
52

]H

]x
5 i ~21e!~ ix !11e.

Combining these two equations gives

d2x

dt2
52i ~21e!~ ix !11e, ~2.2!

which is the complex version of Newton’s second law,F5ma.
Equation~2.2! can be integrated once to give12

1

2

dx

dt
56AE1~ ix !21e, ~2.3!

whereE is the energy of the classical particle~the time-independent value ofH!. We treat timet
as a real variable that parametrizes the complex pathx(t) of this particle.

This section is devoted to studying and classifying the solutions to Eq.~2.3!. By virtue of the
PT invariance of the HamiltonianH, it seems reasonable to restrict our attention to real value
E. Given this restriction, we can always rescalex and t by real numbers so that without loss o
generality Eq.~2.3! reduces to

dx

dt
56A11~ ix !21e. ~2.4!

The trajectories satisfying Eq.~2.4! lie on a multi-sheeted Riemann surface. On this surf
the functionA11( ix)21e is single valued. There are two sets of branch cuts. The cuts in the
set radiate outward from the roots of

11~ ix !21e50. ~2.5!

These roots are the classical turning points of the motion. There are many turning points, al
at a distance of unity from the origin. The angular separation between consecutive turning
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is 2p/(21e). The second set of branch cuts is present only whene is noninteger. In order to
maintain explicitPT symmetry~left–right symmetry in the complex-x plane!, we choose these
branch cuts to run from the origin to infinity along the positive imaginary axis.

A. Case e50

Because the classical solutions to Eq.~2.4! have a very elaborate structure, we begin
considering some special values ofe. The simplest case ise50. For this case there are only tw
turning points and these lie on the real axis at61.

In order to solve Eq.~2.4! we need to specify an initial conditionx(0). Thesimplest choice
for x(0) is a turning point. If the path begins at61, there is a unique direction in the complexx
plane along which the phases of the left side and the right side of Eq.~2.4! agree. This gives rise
to a trajectory on the real axis that oscillates between the two turning points. This is the
known sinusoidal motion of the harmonic oscillator.

Note that once the turning points have been fixed, the energy is determined. Thus, ch
the initial position of the particle determines the initial velocity~up to a plus or minus sign! as
well. So, if the path of the particle begins anywhere on the real axis between the turning poin
initial velocity is fixed up to a sign and the trajectory of the particle still oscillates between
turning points.

Ordinarily, in conventional classical mechanics the only possible initial positions for
particle lie on the real-x axis between the turning points because the velocity is real; all o
points on the real axis lie in the classically forbidden region. However, because we are analy
continuing classical mechanics into the complex plane, we can choose any pointx(0) in the
complex plane as an initial position. For all complex initial positions outside of the convent
classically allowed region the classical trajectory is an ellipse whose foci are the turning p
The ellipses are nested because no trajectories may cross.~See Fig. 1.! The exact solution to Eq
~2.4! is

x~ t !5cos@arccosx~0!6t#, ~2.6!

where the sign oft determines the direction~clockwise or anticlockwise! in which the particle
traces the ellipse. Forany ellipse the period of the motion is 2p. The period is the same for a
trajectories because we can join the square-root branch cuts emanating from the turning

FIG. 1. Classical trajectories in the complex-x plane for the harmonic oscillator whose Hamiltonian isH5p21x2. These
trajectories represent the possible paths of a particle whose energy isE51. The trajectories are nested ellipses with fo
located at the turning points atx561. The real line segment~degenerate ellipse! connecting the turning points is the usu
periodic classical solution to the harmonic oscillator. All closed paths@see Eq.~2.6!# have the same period 2p.
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creating a single finite branch cut lying along the real axis fromx521 to x51. The complex path
integral that determines the period can then be shrunk~by Cauchy’s theorem! to the usual real
integral joining the turning points.

Finally, we remark that all of the classical paths~elliptical orbits! are symmetric with respec
to parityP ~reflections through the origin! and time reversalT ~reflections about the real axis!, as
well asPT ~reflections about the imaginary axis!. Furthermore,P andT individually preserve the
directions in which the ellipses are traversed.

B. Case e51

The casee51 is significantly more complicated. Now there are three turning points. Two
located below the real axis and these are symmetric with respect to the imaginary axx2

5e25ip/6 and x15e2 ip/6. That is, underPT reflectionx2 and x1 are interchanged. The third
turning point lies on the imaginary axis atx05 i .

As in the casee50, the trajectory of a particle that begins at the turning pointx2 follows a
unique path in the complex-x plane to the turning point atx1 . Then, the particle retraces its pa
back to the turning point atx2 , and it continues to oscillate between these two turning poi

This path is shown on Fig. 2. The period of this motion is 2A3pG( 4
3)/G( 5

6). The periodic motion
betweenx6 is clearly time-reversal symmetric.

A particle beginning at the third turning pointx0 exhibits a completely distinct motion: I

travels up the imaginary axis and reachesi` in a finite timeApG( 4
3)/G( 5

6). This motion is not
periodic and is not symmetric under time reversal.

Paths originating from all other points in the finite complex-x plane follow closed periodic
orbits. No two orbits may intersect; rather they are all nested, like the ellipses for the ce
50. All of these orbits encircle the turning pointsx6 and, by virtue of Cauchy’s theorem, have th

same period 2A3pG( 4
3)/G( 5

6) as the oscillatory path connectingx6 . Because these orbits mu
avoid crossing the trajectory that runs up the positive imaginary axis from the turning poix0

5 i , they are pinched in the region just belowx0 , as shown on Fig. 2.
As these orbits become larger they develop sharper indentations in the vicinity ofx0 . We

observe that the characteristic radius of a large orbit approaches the reciprocal of the disd
betweenx0 and the point where the orbit intersects the positive imaginary axis. Thus, it is a
priate to study these orbits from the point of view of the renormalization group: We scal
distanced down by a factorL and then plot the resulting orbit on a graph whose axis are sc

FIG. 2. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21 ix3 and having
energyE51. An oscillatory trajectory connects the turning pointsx6 . This trajectory is enclosed by a set of closed, nes
paths that fill the finite complex-x plane except for points on the imaginary axis at or above the turning pointx05 i .
Trajectories originating at one of these exceptional points go off toi` or else they approachx0 , stop, turn around, and then
move up the imaginary axis toi`.
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down by the same factorL. Repeated scaling gives a limiting orbit whose shape resembl
cardioid~see Fig. 3!. The equation of this limiting orbit is obtained in the asymptotic regime wh
we neglect the dimensionless energy 1 in Eq.~2.4!:

dx

dt
56~ ix !3/2. ~2.7!

The solution to this differential equation, scaled so that it crosses the negative imaginary a
23i , is

x~ t !5
4i

~ t12i /) !2
~2`,t,`!. ~2.8!

This curve is shown as the solid line in Fig. 3.~Strictly speaking, this curve is not a true cardioi
but its shape so closely resembles a true cardioid that we shall refer to it in this paper
limiting cardioid.!

In the infinite scaling limit all periodic orbits@all these orbits have period 2A3pG( 4
3)/G( 5

6)#,
which originally filled the entire finite complex-x plane, have been squeezed into the region ins
the limiting cardioid~2.8!. The nonperiodic orbit still runs up the positive imaginary axis. T
obvious question is, What complex classical dynamics is associated with all of the other po
the scaled complex-x plane that lie outside of the limiting cardioid? We emphasize that all of th
points were originally at infinity in the unscaled complex-x plane.

We do not know the exact answer to this question, but we can draw a striking and sugg
analogy with some previously published work. It is generally true that the region of converg
in the complex-x plane for an infinitely iterated function is a cardioid-shaped region. For exam
consider the continued exponential function

f ~x!5exexex

. ~2.9!

The sequenceex,exex
,... isknown to converge in a cardioid-shaped region of the complex-x plane

~see Figs. 2–4 in Ref. 13!. It diverges on the straight line that emerges from the indentation o
cardioid. The remaining part of the complex-x plane is divided into an extremely elaborate mos
of regions in which this sequence converges to limit cycles of period 2, period 3, period 4, a

FIG. 3. Approach to the limiting cardioid in Eq.~2.8!. As the orbits shown in Fig. 2 approach the turning pointx0 , they
get larger. Using a renormalization-group approach, we plot successively larger orbits~one such orbit is shown as a dashe
line! scaled down by the characteristic size of the orbit. The limiting cardioid is indicated by a solid line. The inden
in the limiting cardioid develops because classical trajectories may not intersect and thus must avoid crossing the t
~shown in Fig. 2! on the imaginary axis abovex0 .
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on. These regions have fractal structure. It would be interesting if unbounded complex cla
motion exhibits this remarkable fractal structure. In other words, does the breaking ofP andT
symmetry allow for unbounded chaotic solutions?

C. Case e52

Whene52 there are four turning points, two located below the real axis and symmetric
respect to the imaginary axis,x15e23ip/4 andx25e2 ip/4, and two more located above the re
axis and symmetric with respect to the imaginary axis,x35eip/4 andx45e3ip/4. Classical trajec-
tories that oscillate between the pairx1 andx2 and the pairx3 andx4 are shown on Fig. 4. The

period of these oscillations is 2A2pG( 5
4)/G( 3

4). Trajectories that begin elsewhere in the complex
plane are also shown on Fig. 4. Note that by virtue of Cauchy’s theorem all these nested
tersecting trajectories have the same period. All motion is periodic except for trajectorie
begin on the real axis; a particle that begins on the real-x axis runs off to6`, depending on the
sign of the initial velocity. These are the only trajectories that are nonperiodic.

The rescaling argument that gives the cardioid for the casee51 yields a doubly indented
cardioid for the casee52 ~see Fig. 5!. This cardioid is similar to that in Fig. 5 of Ref. 13
However, for the casee52 the limiting double cardioid consists of two perfect circles, which
tangent to one another at the originx50. Circles appear because ate52 in the scaling limit the
equation corresponding to~2.7! is dx/dt56x2. The solutions to this equation are the inversio
x(t)56@1/(t1 i )#, which map the real-t axis into circles in the complex-x plane.

D. Case e55

When e55 there are seven turning points, one located ati and three pairs, each pair sym
metric with respect to reflection about the imaginary axis~PT symmetric!. We find that each of
these pairs of turning points is joined by an oscillatory classical trajectory.~A trajectory joining
any other two turning points would violatePT symmetry.! Surrounding each of the oscillator
trajectories are nested closed loops, each loop having the same period as the oscillatory tr
it encloses. These classical trajectories are shown on Fig. 6. The periods for these three fam
trajectories are

FIG. 4. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p22x4 and having
energyE51. There are two oscillatory trajectories connecting the pairs of turning pointsx1 and x2 in the lower-half
x-plane andx3 andx4 in the upper-halfx-plane.@A trajectory joining any other pair of turning points is forbidden becau
it would violatePT ~left-right! symmetry.# The oscillatory trajectories are surrounded by closed orbits of the same pe
In contrast to these periodic orbits there is a class of trajectories having unbounded path length and running along tx
axis. These are the only paths that violate time-reversal symmetry.
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4Ap
G~8/7!

G~9/14!
cosu,

where u55p/14 for the lowest pair of turning points,u5p/14 for the middle pair, andu
53p/14 for the pair above the real axis.

One other class of trajectory is possible. If the initial position of the classical particle lie
the imaginary axis at or above the turning point ati, then depending on the sign of the initia

FIG. 5. Limiting double cardioid for the casee52. As the orbits in Fig. 4 approach the real axis, they get larger. If
scale successively larger orbits down by their characteristic size, then in the limiting case the orbits approach two
tangent at the origin. In this limit the four turning points in Fig. 4 coalesce at the point of tangency.

FIG. 6. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21 ix7 and having
energyE51. Shown are oscillatory trajectories surrounded by periodic trajectories. Unbounded trajectories run alo
positive-imaginary axis abovex5 i .
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velocity, the particle either runs off toi` or it approaches the turning point, reverses its directi
and then goes off toi`. These purely imaginary paths are the only possible nonperiodic tra
tories. They are also shown on Fig. 6.

E. General case: Noninteger values of e>0

Because Eq.~2.4! contains a square root function, the turning points, which are solution
Eq. ~2.5!, are square root branch points for all values ofe. Thus, in principle, the complex
trajectoriesx(t) lie on a multi-sheeted Riemann surface. However, whene is a non-negative
integer, we can define the branch cuts so that the classical trajectories satisfying Eq.~2.4! never
leave the principal sheet of this Riemann surface. We do this as follows: We choose to jo
PT-symmetric~left–right-symmetric! pairs of turning points by branch cuts that follow exactly t
oscillatory solutions connecting these pairs.~There are three such pairs in Fig. 6, two in Fig. 4, a
one in Figs. 2 and 1.! If e is odd, there is one extra turning point that lies on the positive imagin
axis ~see Figs. 2 and 6!; the branch cut emanating from this turning point runs up the imaginax
axis toi`. Since classical paths never cross, there are no trajectories that leave the principa
of the Riemann surface.

Whene is noninteger, we can see from the argument of the square root function in Eq.~2.4!
that there is an entirely new branch cut, which emerges from the origin in the complex-x plane. To
preservePT symmetry we choose this branch cut to run off to` along the positive-imaginary
x-axis. If e is rational, the Riemann surface has a finite number of sheets, but ife is irrational, then
there are an infinite number of sheets.

If a classical trajectory crosses the branch cut emanating from the origin, then this traj
leaves the principal sheet of the Riemann surface. In Fig. 7 we illustrate some of the po
classical trajectories for the casee5p22. The top plot shows some trajectories that do not cr
the positive-imaginary-x axis and thus do not leave the principal sheet of the Riemann surface
trajectories shown are qualitatively similar to those in Fig. 2; all trajectories have the same p

In the middle plot of Fig. 7 is a trajectory that crosses the positive-imaginary-x axis and visits
threesheets of the Riemann surface. The solid line and the dotted line outside of the solid l
on the principal sheet, while the remaining two portions of the dotted line lie on two other sh
Note that this trajectory doesnot cross itself; we have plotted the projection of the trajectory o
the principal sheet. The trajectory continues to exhibitPT symmetry. The period of the trajector
is greater than that of the period of the trajectories shown in the top plot. This is becau
trajectory encloses turning points that are not on the principal sheet. In general, as the size
trajectory increases, it encloses more and more complex turning points; each time a new
turning points is surrounded by the trajectory the period jumps by a discrete quantity.

Although the trajectory in the bottom plot in Fig. 7 has the same topology as that in the m
plot, it is larger. As the trajectory continues to grow, we observe a phenomenon that seem
universal; namely, the appearance of a limiting cardioid shape~solid line! on the principal surface
The remaining portion of the trajectory~dotted line! shrinks relative to the cardioid and becom
compact and knotlike.

In Fig. 8 we examine the casee50.5. In this figure we observe behavior that is qualitative
similar to that seen in Fig. 7; namely, as the trajectory on the principal sheet of the Rie
surface becomes larger and approaches a limiting cardioid, the remaining portion of the tra
becomes relatively small and knotlike.

To summarize, for anye.0 the classical paths are alwaysPT symmetric. The simplest suc
path describes oscillatory motion between the pair of turning points that lie just below the rea
on the principal sheet. In general, the period of this motion as a function ofe is given by

T54ApE2e/~412e!
G~~31e!/~21e!!

G~~41e!/~412e!!
cosS ep

412e D . ~2.10!

Other closed paths having more complicated topologies~and longer periods! also exist, as shown
in Figs. 7 and 8.
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Whenever the classical motion is periodic, we expect, the quantized version of the the
exhibit real eigenvalues. Although we have not yet done so, we intend to investigate the
quences of quantizing a theory whose underlying classical paths have complicated topo
structures traversing several sheets of a Riemann surface. The properties of such a th
quantum knots might well be novel.

FIG. 7. Classical trajectories forH5p22( ix)p corresponding to the casee5p22. Observe that as the classical trajecto
increases in size, a limiting cardioid appears on the principal sheet of the Riemann surface. On the other sh
trajectory becomes relatively small and knotlike.
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F. Case 21<e<0

Classical paths for negative values ofe are fundamentally different from those correspondi
to non-negative values ofe; such paths no longer exhibitPT symmetry. Furthermore, we no longe
see paths that are periodic; all paths eventually spiral outwards to infinity. In general, the tim
it takes for a particle to reach infinity is infinite.

FIG. 8. Classical trajectories for the casee50.5. As the classical path on the principal sheet of the Riemann sur
increases in size it approaches a limiting cardioid, just as in Fig. 7. The remaining portion of the path becomes re
small and knotlike.
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We interpret the abrupt change in the global nature of the classical behavior that occue
passes through 0 as a change in phase. For all values ofe the Hamiltonian in Eq.~1.1! is PT
~left–right! symmetric. However, fore,0 the solutions cease to exhibitPT symmetry. Thus, we
say thate>0 is aPT-symmetric phase and thate,0 is a spontaneously brokenPT-symmetric
phase.

To illustrate the loss ofPT ~left–right! symmetry, we plot in Fig. 9 the classical trajectory f
a particle that starts at a turning pointx252p(41e)/(412e) in the second quadrant of th
complex-x plane~Rex,0, Imx.0! for three values ofe: 20.2,20.15, and20.1. We observe tha
a path starting at this turning point moves toward butmissesthe PT-symmetric turning point
x152p(e/(412e)) because it crosses the branch cut on the positive-imaginary-x axis. This path
spirals outward, crossing from sheet to sheet on the Riemann surface, and eventually veer
infinity asymptotic to the angleu` , where

u`52
21e

2e
p. ~2.11!

This formula shows that the total angular rotation of the spiral is finite for alleÞ0 but becomes
infinite ase→02. In the top figure (e520.2) the spiral makes 214 turns before moving off to
infinity; in the middle figure (e520.15) the spiral makes 3112 turns; in the bottom figure (e
520.1) the spiral makes 434 turns.

Note that the spirals in Fig. 9 pass many classical turning points as they spiral clockwise
x2 . $From Eq. ~2.5! we see that thenth turning point lies at the angle@(42e24n)/(4
12e)#p ~x2 corresponds ton50!.% As e approaches 0 from below, when the classical traject
passes a new turning point, there is a corresponding merging of the quantum energy lev~as
shown in Fig. 11!. As pointed out in Ref. 1, this correspondence becomes exact in the lime
→02 and is a manifestation of Ehrenfest’s theorem.

G. Case e521

For this special case we can solve the equation~2.4! exactly. The result,

x~ t !5~12b21 1
4t

2!i 1bt ~b real!, ~2.12!

represents a family of parabolas that are symmetric with respect to the imaginary axis~see Fig.
10!. Note that there is one degenerate parabola corresponding tob50 that lies on the positive
imaginary axis abovei.

III. QUANTUM THEORY

In this section we discuss the quantum properties of the HamiltonianH in Eq. ~1.1!. The
spectrum of this Hamiltonian is obtained by solving the corresponding Schro¨dinger equation

2c9~x!1@x2~ ix !e2E#c~x!50 ~3.1!

subject to appropriate boundary conditions imposed in the complex-x plane. These boundar
conditions are described in Ref. 1. A plot of the spectrum ofH is shown in Fig. 11.

There are several ways to obtain the spectrum that is displayed in Fig. 11. The simple
most direct technique is to integrate the differential equation using Runge–Kutta. To do s
convert the complex differential equation~3.1! to a system of coupled, real, second-order eq
tions. We find that the convergence is most rapid when we integrate along anti-Stokes lin
then patch the two solutions together at the origin. This procedure, which is described in R
gives highly accurate numerical results.

To verify the Runge–Kutta approach, we have solved the differential equation~3.1! using an
independent and alternative procedure. We construct a matrix representation of the Hamilto
Eq. ~1.1! in harmonic oscillator basis functionse2x2/2Hn(x)p21/4/A2nn!:
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Mm,n52E
2`

`

dx
1

Ap2m1nm!n!
e2x2/2Hm~x!H d2

dx22 i m1n

3cosFp2 ~e2m2n!G uxu21eJ e2x2/2Hn~x!. ~3.2!

FIG. 9. Classical trajectories that violatePT symmetry. The top plot corresponds to the casee520.2, the middle plot to
e520.15, and the bottom plot toe520.1. The paths in each plot begin at a turning point and spiral outwards to infi
in an infinite amount of time.
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TheKth approximant to the spectrum comes from diagonalizing a truncated version of this m
Mm,n ~0<m, n<K!. One drawback of this method is that the eigenvalues ofMm,n approximate
those of the HamiltonianH in ~1.1! only if 21,e,2. Another drawback is that the convergen
to the exact eigenvalues is slow and not monotone because the HamiltonianH is not Hermitian in
a conventional sense. We illustrate the convergence of this truncation and diagonalization
dure fore52 1

2 in Fig. 12.
A third method for finding the eigenvalues in Fig. 11 is to use WKB~Wentzel–Kramers–

Brillouin!. Complex WKB theory~see Ref. 1! gives an excellent analytical approximation to t
spectrum.

In the next two subsections we examine two aspects of the spectrum in Fig. 11. First, we

FIG. 10. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p22 ix and having
energyE51. Shown are parabolic trajectories and a turning point ati. All trajectories are unbounded.

FIG. 11. Energy levels of the HamiltonianH5p21x2( ix)e as a function of the parametere. There are three regions.
Whene>0, the spectrum is real and positive and the energy levels rise with increasinge. The lower bound of this region,
e50, corresponds to the harmonic oscillator, whose energy levels areEn52n11. When21,e,0, there are a finite
number of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues. Ase decreases from
0 to 21, the number of real eigenvalues decreases; whene<20.57793, the only real eigenvalue is the ground-state ene
As e approaches211, the ground-state energy diverges. Fore<21 there are no real eigenvalues.
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the asymptotic behavior of the ground-state energy ase→21. Second, we examine the pha
transition in the vicinity ofe50.

A. Behavior of the ground-state energy near e521

In this subsection we give an analytic derivation of the behavior of the lowest real en
level in Fig. 11 ase→21. We show that in this limit the eigenvalue grows logarithmically.

Whene521, the differential equation~3.1! reduces to

2c9~x!2 ixc~x!5Ec~x!, ~3.3!

which can be solved exactly in terms of Airy functions.14 The anti-Stokes lines ate521 lie at 30°
and at2210° in the complex-x plane. We find the solution that vanishes exponentially along e
of these rays and then rotate back to the real-x axis to obtain

cL,R~x!5CL,R Ai ~7xe6 ip/61Ee62ip/3!. ~3.4!

We must patch these solutions together atx50 according to the patching condition

d

dx
uc~x!u2U

x50

50. ~3.5!

But for realE, the Wronskian identity for the Airy function14 is

d

dx
uAi ~xe2 ip/61Ee22ip/3!u2U

x50

52
1

2p
~3.6!

instead of 0. Hence, there is no real eigenvalue.
Next, we perform an asymptotic analysis fore5211d whered is small and positive:

2c9~x!2~ ix !11dc~x!5Ec~x!,
~3.7!

c~x!;y0~x!1dy1~x!1O~d2! ~d→01 !.

FIG. 12. Real eigenvalues of the (K11)3(K11) truncated matrixMm,n in Eq. ~3.2! (K50,1,...,17) fore52
1
2. As K

increases, the three lowest eigenvalues converge to the three real energy levels in Fig. 11 ate52
1
2. The other real

eigenvalues do not stabilize, and instead disappear in pairs.
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We assume thatE→` asd→01 and obtain

y09~x!1 ixy0~x!1Ey0~x!50,
~3.8!

y19~x!1 ixy1~x!1Ey1~x!52 ix ln~ ix !y0~x!,

and so on.
To leading order we again obtain the Airy equation~3.3! for y0(x). The solution fory0(x)

(x>0) is given bycR(x) in Eq. ~3.4! and we are free to chooseCR51. We can expand the Airy
function in y0(x) for large argument in the limitE→`:

y0~x!5Ai ~xe2 ip/61Ee22ip/3!;~xe2 ip/61Ee22ip/3!21/4exp@ 2
3~xe2 ip/61Ee22ip/3!3/2#.

~3.9!

At x50 we get

y0~0!5Ai ~Ee22ip/3!;eip/6E21/4e~2/3!E3/2
/~2Ap!. ~3.10!

To next order ine we simplify the differential equation fory1(x) in ~3.8! by substituting

y1~x!5Q~x!y0~x!. ~3.11!

Using the differential equation fory0(x) in ~3.8!, we get

y0~x!Q9~x!12y08~x!Q8~x!52 ix ln~ ix !y0~x!. ~3.12!

Multiplying this equation by the integrating factory0(x), we obtain

@y0
2~x!Q8~x!#852 ix ln~ ix !y0

2~x!, ~3.13!

which integrates to

Q8~x!5
i

y0
2~x!

E
x

`

dt t ln~ i t !y0
2~ t !, ~3.14!

where the upper limit of the integral ensures thatQ8(x) is bounded forx→`. Thus, we obtain

Q8~0!5
i

y0
2~0!

E
0

`

dx x ln~ ix !y0
2~x!. ~3.15!

To determine the asymptotic behavior of the ground-state eigenvalue asd→0, we insert

c~x!;y0~x!1dy1~x!1O~d2!5y0~x!@11dQ~x!#1O~d2! ~3.16!

into the quantization condition:

05
d

dx
@c* ~x!c~x!#U

x50

;
d

dx
@ uy0~x!u2„11dQ* ~x!…„11dQ~x!…#U

x50

;
d

dx
@ uy0~x!u2#U

x50

12duy0~0!u2 Re@Q8~0!#

12d
d

dx
@ uy0~x!u2#U

x50

Re@Q~0!#. ~3.17!
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We are free to chooseQ(0)50, and doing so eliminates the last term on the right side.
leading-order result for the quantization condition in Eq.~3.6! then gives

1

2p
;2duy0~0!u2 Re@Q8~0!#. ~3.18!

Next, we substitute the asymptotic form fory0 in Eq. ~3.10! and the result forQ8(0) in Eq.~3.15!
and obtain

AEe2~4/3!E3/2
;2d ReE

0

`

dx ix ln~ ix !F y0~x!

y0~0!G
2

. ~3.19!

Because the ratio of the unperturbed wave functions in the integrand in Eq.~3.19! is bounded
and vanishes exponentially for largex, we know that the integral can grow at most as a powe
E. Thus,

d;CEae2~4/3!E3/2
~3.20!

for some powera and constantC and the controling behavior of the ground-state energy ad
→0 is given by

E;@2 3
4 ln d#2/3, ~3.21!

where we have neglected terms that vary at most like ln(lnd). Equation~3.21! gives the asymptotic
behavior of the lowest energy level and is the result that we have sought. This asymptotic be
is verified numerically in Table I.

B. Behavior of energy levels near e50

In this subsection we examine analytically the phase transition that occurs ate50. In particu-
lar, we study high-lying eigenvalues for small negative values ofe and verify that adjacent pair
of eigenvalues pinch off and become complex.

For smalle we approximateH in Eq. ~1.1! to first order ine:

H5p21x21ex2 ln~ ix !1O~e2!. ~3.22!

Using the identity ln(ix)5ln(uxu)11
2ip sgn(x), we then have

H5p21x21ex2F ln~ uxu!1
ip

2
sgn~x!G1O~e2!. ~3.23!

TABLE I. Comparison of the exact ground-state energyE neare521 and
the asymptotic results in Eq.~3.21!. The explicit dependence ofE on e5
211d is roughlyE}(2 ln d)2/3 asd201.

d Eexact Eq. ~3.21!

0.01 1.6837 2.0955
0.01 2.6797 3.9624
0.001 3.4947 3.6723
0.0001 4.1753 4.3013
0.00 001 4.7798 4.8776
0.000 001 5.3383 5.4158
0.0 000 001 5.8943 5.9244
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The simplest way to continue is to truncate this approximate Hamiltonian to a 232 matrix.
We introduce a harmonic oscillator basis as follows: Thenth eigenvalue of the harmonic oscillato
Hamiltonianp21x2 is En52n11 and the correspondingx-space normalized eigenstateun& is

cn~x!5
p21/4

A2nn!
e2x2/2Hn~x!, ~3.24!

where Hn(x) is the nth Hermite polynomial@H0(x)51, H1(x)52x, H2(x)54x222, H3(x)
58x3212x, and so on#. We then have the following diagonal matrix elements:

^nup21x2un&52n11, ~3.25!

^nux2 ln~ uxu!un&5an2S g

2
1 ln 2D S n1

1

2D , ~3.26!

whereg is Euler’s constant and

an5n111Fn

2G1S n1
1

2D (
0

@n11/2#
1

2k21
. ~3.27!

We also have the off-diagonal matrix element

^2n21u
1

2
ipx2 sgn~x!u2n&5

1

3
i ~8n11!FG2~n11/2!

n! ~n21!! G1/2

. ~3.28!

In the (2n21)2(2n) subspace, the matrixH2E then reduces to the following 232 matrix:

S A2E iB

iB C2ED , ~3.29!

where for largen and smalle we have

A;4n211e~n21/2!ln~2n!,

B; 8
3 en, ~3.30!

C;4n111en ln~2n!.

The determinant of the matrix in Eq.~3.\29! gives the following roots forE:

E5 1
2~A1C6A~A2C!224B2!. ~3.31!

We observe that the rootsE are degenerate when the discriminant~the square root! in Eq.
~3.31! vanishes. This happens when the condition

e5
3

8n
~3.32!

is met. Hence, the sequence of points in Fig. 11 where the eigenvalues pinch off approae
50 asn→`. For example, Eq.~3.32! predicts~usingn54! that E7 andE8 become degenerat
and move off into the complex plane ate'20.1. In Fig. 13 we compare our prediction for th
behavior ofE in Eq. ~3.31! with a blow-up of of a small portion of Fig. 11. We find that while o
prediction is qualitatively good, the numerical accuracy is not particularly good. The lac
accuracy is not associated with truncating the expansion in powers ofe but rather with truncating
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the HamiltonianH to a 232 matrix. Our numerical studies indicate that as the size of the ma
truncation increases, we obtain more accurate approximations to the behavior of the energy
E in Fig. 11.

IV. MORE GENERAL CLASSES OF THEORIES

In this section we generalize the results of Secs. II and III to a much wider class of the
In particular, we consider a complex deformation of thex2K anharmonic oscillator, whereK
51,2,3,...@see Eq.~1.4!#. The Schro¨dinger equation for this oscillator has the form

2c9~x!1@x2K~ ix !e2E#c~x!50. ~4.1!

To determine the energy levelsE as functions of the deformation parametere, we must
impose appropriate boundary conditions on Eq.~4.1!. We require that the wave function vanish
uxu→` inside of two wedges symmetrically placed about the imaginary-x axis. The right wedge is
centered about the angleu right , where

u right52
ep

4K12e14
, ~4.2!

and the left wedge is centered about the angleu left , where

u left52p1
ep

4K12e14
. ~4.3!

The opening angle of each of these wedges is

2p

2K1e12
. ~4.4!

This pair of wedges isPT ~left–right! symmetric.

FIG. 13. A comparison of the prediction in Eq.~3.31! and a magnification of Fig. 11. Our prediction for the point at whi
E7 andE8 become degenerate is not very accurate numerically but is qualitatively quite good.
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The orientation of these wedges is determined by analytically continuing the differe
equation eigenvalue problem~4.1! and associated boundary conditions in the variablee using the
techniques explained in Ref. 15. The rotation of the boundary conditions is obtained fro
asymptotic behavior of the solutionc(x) for large uxu:

c~x!;expS 6
i e/2xK111e/2

K111e/2 D . ~4.5!

~In this formula we give thecontrolling factorof the asymptotic behavior of the wave function; w
neglect algebraic contributions.! Note that at the center of the wedges the behavior of the w
function is most strongly exponential; the centerline of each wedge is an anti-Stokes line.
edges of the wedges the asymptotic behavior is oscillatory. The lines marking the edges
wedges are Stokes lines.

For all positive integer values ofK the results are qualitatively similar. Ate50 the two
wedges are centered about the positive and negative real axes. Ase increases from 0 the wedge
rotate downward and become thinner. In the regione>0 the eigenvalues are all real and positi
and they rise with increasinge. As e→`, the two wedges become infinitely thin and lie along t
negative imaginary axis. There is no eigenvalue problem in this limit because the solution c
for the Schro¨dinger equation~4.1! can be pushed off to infinity. Indeed, we find that in this lim
the eigenvalues all become infinite.

Whene is negative, the wedges rotate upward and become thicker. The eigenvalues gra
pair off and become complex starting with the highest eigenvalues. Thus,PT symmetry is spon-
taneously broken fore,0. Eventually, ase approaches2K, only the lowest eigenvalue remain
real. At e52K the two wedges join at the positive imaginary axis. Thus, again there i
eigenvalue problem and there are no eigenvalues at all. In the limite→2K the one remaining rea
eigenvalue diverges logarithmically.

The spectrum for the case of arbitrary positive integerK is quite similar to that forK51.
However, in general, whenK.1, a novel feature emerges: A new transition appears for
negative integer values ofe between 0 and2K. At these isolated points the spectrum is entire
real. Just above each of these negative-integer values ofe the energy levels reemerge in pairs fro
the complex plane and just below these special values ofe the energy levels once again pinch o
and become complex.

A. Quantum x 4
„ ix …e theory

The spectrum for the caseK52 is displayed in Fig. 14. This figure resembles Fig. 11 for
caseK51. However, ate521 there is a new transition. This transition is examined in detai
Fig. 15.

An important feature of the spectrum in Fig. 14 is the disappearance of the eigenvalue
divergence of the lowest eigenvalue ase decreases to22. Following the approach of Sec. III A
we now derive the asymptotic behavior of the ground-state energy ase→221. To do so we let
e5221d and obtain from Eq.~4.1! the Schro¨dinger equation

2c9~x!2x2~ ix !dc~x!5Ec~x!. ~4.6!

We study this differential equation for small positived.
Whend50 this differential equation~4.6! reduces to

2c9~x!2x2c~x!5Ec~x!. ~4.7!

The anti-Stokes lines for this equation lie at 45° and at2225°. Thus, we rotate the integratio
contour from the real axis to the anti-Stokes lines and substitute
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FIG. 14. Energy levels of the HamiltonianH5p21x4( ix)e as a function of the parametere. This figure is similar to Fig.
11, but now there are four regions: Whene>0, the spectrum is real and positive and it rises monotonically with increa
e. The lower bounde50 of this PT-symmetric region corresponds to the pure quartic anharmonic oscillator, w
Hamiltonian is given byH5p21x4. When21,e,0, PT symmetry is spontaneously broken. There are a finite num
of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues; as a function oe the
eigenvalues pinch off in pairs and move off into the complex plane. By the timee521 only eight real eigenvalues remain
these eigenvalues are continuous ate51. Just ase approaches21 the entire spectrum reemerges from the complex pl
and becomes real.~Note that ate521 the entire spectrum agrees with the entire spectrum in Fig. 11 ate51.! This
reemergence is difficult to see in this figure but is much clearer in Fig. 15 in which the vicinity ofe521 is blown up. Just
belowe521, the eigenvalues once again begin to pinch off and disappear in pairs into the complex plane. Howev
pairing is different from the pairing in the region21,e,0. Abovee521 the lower member of a pinching pair is eve
and the upper member is odd~that is,E8 andE9 combine,E10 andE11 combine, and so on!; below e521 this pattern
reverses~that is,E7 combines withE8 , E9 combines withE10 , and so on!. As e decreases from21 to 22, the number of
real eigenvalues continues to decrease until the only real eigenvalue is the ground-state energy. Then, ase approaches
221, the ground-state energy diverges logarithmically. Fore<22 there are no real eigenvalues.

FIG. 15. A magnification of Fig. 14 in the vicinity of the transition ate521. Just abovee521 the entire spectrum
reemerges from the complex plane, and just belowe521 it continues to disappear into the complex plane. The spect
is entirely real ate521.
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x55
s

&
e25ip/4 ~Rex,0!,

r

&
eip/4 ~Rex.0!,

~4.8!

for x in the left-half and in the right-half complex plane, respectively. Note ass andr increase,x
moves towards complex infinity in both the left- and right-half plane.

The wave function in the left-half plane,cL(s), and the wave function in the right-half plan
cR(r ), satisfy the differential equations

2
d2

ds2 cL~s!1S s2

4
2

1

2DcL~s!5ncL~s!,

~4.9!

2
d2

dr2 cR~r !1S r 2

4
2

1

2DcR~r !5~2n21!cR~r !,

where we have setn52( i /2)E2 1
2. For each of these equations the solution that vanishe

infinity is a parabolic cylinder function:16

cL~s!5CLDn~s!5CLDn~x&e5ip/4!,
~4.10!

cR~r !5CRD2n21~r !5CRD2n21~x&e2 ip/4!,

whereCL andCR are arbitrary constants.
We impose the quantization condition by patching these solutions together atx50 on the

real-x axis according to the patching conditions

cL~x!ux505cR~x!ux50 ,
~4.11!

d

dx
cL~x!U

x50

5
d

dx
cR~x!U

x50

To eliminate the constantsCL andCR we take the ratio of these two equations and simplify
result by cross multiplying:

FcR~x!
d

dx
cL~x!2cL~x!

d

dx
cR~x!GU

x50

50. ~4.12!

We now show that this condition cannot be satisfied by thed50 wave function in Eq.~4.10!.
For this case, the quantization condition~4.12! states that

Dn~s!
d

ds
D2n21~ is!2D2n21~ is!

d

ds
Dn~s! ~4.13!

vanishes ats50. ~We have simplified the argument by settings5x&e5ip/4!. But Eq. ~4.13! for
any value ofs is just the Wronskian for parabolic cylinder functions16 and this Wronskian equal
2 ie2 inp/2. This is anonzeroresult. Thus, whend50, there cannot be any eigenvalueE, real or
complex, and the spectrum is empty.

The quantization condition~4.12! can be satisfied whend.0. We investigate this region fo
the case whend is small and positive by performing an asymptotic analysis. We assume thE
→` asd→01, but slower than any power ofd, and that the wave functionc(x) has a formal
power series expansion ind:
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c~x!;y0~x!1dy1~x!1O~d2! ~d→01 !. ~4.14!

Next, we expand the Schro¨dinger equation~4.6! in powers ofd:

y09~x!1x2y0~x!1Ey0~x!50,
~4.15!

y19~x!1x2y1~x!1Ey1~x!52x2 ln~ ix !y0~x!,

and so on.
Of course, to zeroth order ind we obtain Eq.~4.7! for y0(x). Thus, in the left- and right-half

complexx-plane we get

y0
L~x!5CLDn~x&e5ip/4!,

~4.16!
y0

R~x!5CRD2n21~x&e2 ip/4!.

To first order ind, we simplify the differential equation fory1(x) in ~4.15! by substituting

y1~x!5Q~x!y0~x!. ~4.17!

Using the differential equation fory0(x) in ~4.15!, we get

y0~x!Q9~x!12y08~x!Q8~x!52x2 ln~ ix !y0~x!. ~4.18!

Multiplying this equation by the integrating factory0(x), we obtain

@y0
2~x!Q8~x!#852x2 ln~ ix !y0

2~x!. ~4.19!

The integral of this equation gives

QL8~x!5E
x

`e25ip/4

dt t2 ln~ i t !F y0
L~ t !

y0
L~x!G

2

,

~4.20!

QR8 ~x!5E
x

`eip/4

dt t2 ln~ i t !F y0
R~ t !

y0
R~x!G

2

,

where the limit of the integral at infinity ensures thatQ8(x) is bounded foruxu→`.
To determine the asymptotic behavior of the ground-state eigenvalue asd→01, we insert

cL,R~x!;y0
L,R~x!1dy1

L,R~x!1O~d2!5y0
L,R~x!@11dQL,R~x!# ~4.21!

into the quantization condition~4.12!:

05FcR~x!
d

dx
cL~x!2cL~x!

d

dx
cR~x!GU

x50

5Fy0
R~x!

d

dx
y0

L~x!2y0
L~x!

d

dx
y0

R~x!GU
x50

@11d~QR~0!1QL~0!!#

1dy0
R~0!y0

L~0!@QL8~0!2QR8 ~0!#. ~4.22!

We are free to chooseQR(0)1QL(0)50 to simplify this result.
Substituting the Wronskian for the parabolic cylinder function and the result fory0(0) in Eq.

~4.16!, we obtain
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&e2pE/4;dDn~0!D2n21~0!@QR8 ~0!2QL8~0!#. ~4.23!

We can simplify this result using the identity

Dn~0!5
Ap2n/2

G~ 1
22n/2!

~4.24!

andn52( i /2)E2 1
2 to obtain

Dn~0!D2n21~0!5
G~ 1

21n/2!cos~pn/2!

G~11n/2!&
;

e~p/4!E

AE
, ~4.25!

where we have used the reflection formula,G(z)G(12z)5p/sin(pz), and the asymptotic behav
ior G(x11/2)/G(x11);x21/2 for largex. Thus, Eq.~4.23! reduces to

A2E

d
e2pE/2;QR8 ~0!2QL8~0!. ~4.26!

We can further show that

QR8 ~0!2QL8~0!5E
0

`eip/4

dt t2 ln~ i t !FD2n21~&te2 ip/4!

D2n21~0! G2

2E
0

`e25ip/4

dt t2 ln~ i t !FDn~&te5ip/4!

Dn~0! G2

52E
0

` t2dt

23/2 e2 ip/4 lnS s

&
e3ip/4D F D2n21~ t !

D2n21~0!G
2

2E
0`

t2dt

23/2 eip/4 lnS s

&
e23ip/4D F Dn~ t !

Dn~0!G
2

. ~4.27!

We observe that the previous expression is real becausen* 52n21 implies that Dn(t)*
5D2n21(t) and thus the two integrals are complex conjugates. Thus, Eq.~4.27! is real, andE is
a real function ofd. Furthermore, because the ratioDn(t)/Dn(0) appears in both integrals, th
expression can at most vary as a power ofE. Hence, the contribution ofQR8 (0)2QL8(0) to the
balance in Eq.~4.26! is subdominant and can be neglected. Our final result for the smd
behavior of the lowest eigenvalue is that

E;2
2

p
ln d1O@ ln~ ln d!# ~d→01!. ~4.28!

In Fig. 16 we show that Eq.~4.28! compares well with the numerical data for the lowest eig
value in the limit asd→0.

B. Classical x 4
„ ix …e theory

It is instructive to compare the quantum mechanical and classical mechanical theories
caseK52. Our objective in doing so is to understand more deeply the breaking ofPT symmetry
that occurs ate50. For the caseK51 we found thatPT symmetry is broken at the classical lev
in a rather obvious way: Left–right symmetric classical trajectories become spirals ase becomes
negative~see Fig. 9!. However, we find that whenK52 spirals do not occur untile,22. The
classical manifestation ofPT symmetry breaking for22<e,0 and the transition that occurs a
e50 is actually quite subtle.

For purposes of comparison we begin by examining the classical trajectories for the po
valuee50.7. In Fig. 17 we plot three classical trajectories in the complex-x plane. The first is an
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arc that joins the classical turning points in the lower-half plane. The other two are closed
that surround this arc. The smaller closed orbit remains on the principal sheet and has a
(T'4.9), which is equal to that of the arc. The more complicated trajectory is left–right s
metric but extends to three sheets of the Riemann surface. The period (T'26.1) of this third orbit
is significantly different from and larger than the period of the other two.

Next, we consider the negative valuee520.7. In Fig. 18 we plot two classical trajectories fo
this value. The first~solid line! is an arc joining the classical turning points in the upper-half pla
This arc extends to three sheets of the Riemann surface. The other trajectory~dashed line! is a
closed orbit that surrounds this arc. Both have the periodT'22.3. This figure illustrates the firs

FIG. 16. A comparison of the lowest eigenvalue of the HamiltonianH5p21x4( ix)e ~solid circles! with the asymptotic
prediction in~4.28! ~solid line! neare522. The solid line includes a one parameter fit of terms that grow like ln(lnd) as
d→01.

FIG. 17. Three classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21x4( ix)e

with e50.7. The solid line represents oscillatory motion between the classical turning points. The long-dashed li
nearby trajectory that encloses and has the same period as the solid-line trajectory. The short dashed line has a
topology~it enters three sheets of the Riemann surface! from the long-dashed line, even though these trajectories are
near one another in the vicinity of the turning points. The period of this motion is much longer than that of the so
long-dashed trajectories.
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of two important changes that occur ase goes below zero. The trajectory that joins the two turn
points no longer lies on the principal sheet of the Riemann surface; it exhibits a multish
structure.

Figure 19 illustrates the second important change that occurs ase goes below zero. On this
figure we again plot two classical trajectories for the negative valuee520.7. The first~solid line!
is the arc joining the classical turning points in the upper-half plane. This arc is also shown o
18. The second trajectory~dashed line! is a closed orbit that passes near the turning points.
two trajectories do not cross; the apparent points of intersection are on different sheets
Riemann surface. The period of the dashed trajectory isT'13.7, which is considerablysmaller
than that of the solid line. Indeed, on the basis of extensive numerical studies, it appears
trajectories for22,e,0, while they arePT ~left–right! symmetric, have periods that are le
than or equal to that of the solid line. Whene.0, the periods of trajectories increase as t
trajectories move away from the oscillatory trajectory connecting the turning points.

FIG. 18. Two classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21x4( ix)e

with e520.7. The solid line represents oscillatory motion between the classical turning points. This trajectory enter
sheets of the Riemann surface. The dashed line is a nearby trajectory that encloses and has the same period as th
trajectory.

FIG. 19. Two classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21x4( ix)e

with e520.7. The solid line represents oscillatory motion between the classical turning points and is the same as
Fig. 18. The dashed line is a nearby trajectory whose period is smaller than the period of the solid-line trajectory
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We speculate that for negative values ofe the appearance of complex eigenvalues in
quantum theory~see Fig. 14! is associated with an instability. The path integral for a quant
theory is ordinarily dominated by paths in the vicinity of the classical trajectory connecting
turning points. However, whene is negative, we believe that these trajectories no longer domi
the path integral because there are more remote trajectories whose classical periods aresmaller.
Thus, the action is no longer dominated by a stationary point in the form of a classical path h
PT symmetry. Hence, the spectrum can contain complex eigenvalues.

The appearance of a purely real spectrum for the special valuee521 is consistent with this
conjecture. For integer values ofe.22 we find that all classical trajectories lie on the princip
sheet of the Riemann surface and have thesameperiod.

C. Quantum x 6
„ ix …e theory

The spectrum for the caseK53 is displayed in Fig. 20. This figure resembles Fig. 14 for
caseK52. However, now there are transitions at bothe521 ande522.
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The first quantized theory ofN52, D53 massive superparticles with arbitrary
fixed central charge and~half! integer or fractional superspin is constructed. The
quantum states are realized on the fields carrying a finite-dimensional, or a unitary
infinite-dimensional, representation of the supergroups OSp~2u2! or SU~1,1u2!. The
construction originates from quantization of a classical model of the superparticle
we suggest. The physical phase space of the classical superparticle is embedded in
a symplectic superspaceT* (R1,2)3L1u2, where the inner Ka¨hler supermanifold
L1u2>OSp~2u2!/@U~1!3U~1!#>SU~1,1u2!/@U~2u2!3U~1!# provides the particle with
superspin degrees of freedom. We find the relationship between Hamiltonian gen-
erators of the global Poincare´ supersymmetry and the ‘‘internal’’ SU~1,1u2! one.
Quantization of the superparticle combines the Berezin quantization onL1u2 and
the conventional Dirac quantization with respect to space–time degrees of freedom.
Surprisingly, to retain the supersymmetry, quantum corrections are required for the
classicalN52 supercharges as compared to the conventional Berezin method.
These corrections are derived and the Berezin correspondence principle forL1u2

underlying their origin is verified. ©1999 American Institute of Physics.
@S0022-2488~99!01303-1#

I. INTRODUCTION

In this paper we construct anN52, D5112 massive spinning superparticle model and stu
the symplectic supergeometry behind it. This supergeometry is compatible with the Berezin
tization method which is applied to construct the one-particle quantum theory. The main p
our consideration is based on the observation that theN52 superextension of theD53 spinning
particle results in the classical model which possesses simultaneously Poincare´ supersymmetry
~SUSY! and Lorentz supersymmetry of the superspin degrees of freedom. This ‘‘double’’ s
symmetry can be lifted to the quantum level and we obtain the realization of theN52, D53
Poincare´ supermultiplet on the fields carrying an irreducible representation of the superg
SU~1,1u2! @‘‘Lorentz supergroup’’ whose even part is SO↑~1,2!3U~2!3central charge#. A nonlin-
ear mutual involvement of the Hamiltonian generators of two supersymmetries requires the c
geometric quantization of the superparticle. At first, we try to explain the most important mo
tions of the problem.

In the hierarchy of all known entities, the particles living in three-dimensional space–
stand out mostly due to a possibility of fractional spin and statistics~anyons!. Anyon excitations
are actually presented in some planar physics phenomena,1,2 and the relevant theoretical conce
has both topological3–5 and group-theoretical6–8 grounds. It is well known that in the field theor

a!Electronic mail: ivan@phys.tsu.ru
b!Electronic mail: sll@phys.tsu.ru
22300022-2488/99/40(5)/2230/24/$15.00 © 1999 American Institute of Physics
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fractional statistics originates usually from a coupling of the matter fields to the gauge field
the Chern–Simons mass term.9,10 The supersymmetric extension of this approach11 implies a
direct interaction between anyon excitations.

The group-theoretical methods may give an alternative way to understand the anyon co
One can start from the mechanical model of theD53 spinning particle, whose quantization lea
to the one-particle quantum mechanics for the fractional spin state.12,13,8,14–17It is established that
D53 spinning particles possess the following remarkable features:~i! the spinning particle carries
as many physical degrees of freedom as a spinless one;~ii ! there is the so-calledcanonical model12

of the spinning particle, which implies a deformation of the canonical symplectic structure o
spinless particle by the use of the Dirac monopole two-form, without extension of the phase
introducing any ‘‘spinning’’ variables;~iii ! it is a promising feature of the canonical model to
adapted for the construction of consistent couplings of the particle to external fields18,19,15,20,16and
self-interaction of anyons.21,22 In higher dimensions, the interaction problem for spinning partic
becomes more involved, although some progress has recently been achieved there as well;23,24~iv!
the anyon wave equations may be formulated in analogy with the ones for bosons and fer
An essential difference is that the fractional spin, in contrast to the~half! integer, is naturally
described in terms of infinite component fields carrying infinite-dimensional representations
universal covering groupSO↑~1,2!>SU~1,1!; ~v! representations of fractional spin are multiva
ued.

There is no consistent quantum field theory of anyons up to now; nevertheless, the C
Simons and group-theoretical constructions are deemed to lead to a unified consistent the
this regard, it would be interesting to understand how the supersymmetry may be included
group-theoretical description of anyons in terms of the infinite component fields.

Another reason to investigate theD53 superparticle is the exceptional fact that not only t
Poincare´ supersymmetry is possible in 112 dimensions, but the Lorentz one is, too. The Lore
group SO↑(1,2) coincides with theD52 anti-de Sitter group; the latter admits the superextens
regardless of specific space–time dimension. Although the Lorentz and the Poincare´ supersym-
metries are not compatible with each other, surprisingly, we will show that the Lorentz supe
metry of theD53 spinning superparticle~which is invariant by construction with respect to th
global Poincare´ SUSY transformations! manifests itself as a hidden supersymmetry of inter
degrees of freedom associated to the particle superspin and to the underlying superex
monopolelike symplectic structure.

The hidden OSp~2u2! supersymmetry ofN51 superanyons has been found in Ref. 25 wh
the respective model is constructed. The presence of the OSp~2u2! supersymmetry already in th
classical mechanics appears to be crucial for a consistent first quantization of theN51, D53
superanyon. As a result, one obtains in quantum theory the realization of theN51 Poincare´
supermultiplet on the fields carrying an atypical unitary infinite-dimensional representation
OSp~2u2!.25 It is a direct N51 superextension of description in terms of infinite-dimensio
unitary representation of theD53 Lorentz group6–8 or the ones of the deformed Heisenbe
algebra.26 We argued in this manner the relevance of the group-theoretical approach forN51
supersymmetric anyons. In this paper we suggest a nontrivial generalization of this construc
the case of theN52, D53 massive spinning superparticle with arbitrary fixed central charg

We construct a superparticle model, which givesN52 superextension of the canonical d
scription of theD53 spinning particle mentioned above. It is essential for our consideration
the Hamiltonian formalism of the canonical model may be built either in terms of the min
phase space, or in an extended phase space restricted by constraints.14,16,17,25In both cases the
reduced phase space could be thought of as a space of motion of a Souriau’s ‘‘elem
system.’’27

A general concept of elementary physical systems, including spinning particles and sup
ticles, is based on the so-called Kostant–Souriau–Kirillov~KSK! construction.28,27,29The idea of
the KSK construction is to identify thephysical phase space (5space of motion)of any elemen-
tary system with acoadjoint orbitO of the symmetry groupG. The symplectic actionG on O
~classical mechanics! lifts to a representation of the group in a space of functionsH on the
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classical manifold~prequantization!. Then the quantization problem reduces to an appropr
choice of polarization, that is, a global Lagrangian section inT(O) being invariant under the
action of the symmetry group.

In the special case of Ka¨hler homogeneous spaces, perfect results can be achieved i
framework of the Berezin quantization method,30,31 which implies one-to-one corresponden
between the phase-space functions~covariant Berezin symbols! and linear operators in a Hilber
space. The latter is realized by holomorphic sections, because the Ka¨hler homogeneous manifold
admits a natural complex polarization.32 Moreover, the multiplication of the operators in th
Hilbert space induces a noncommutative binary* -operation for the covariant Berezin symbols a
a correspondence principle can be proved.30,31

Physically speaking, it would not always be satisfactory to describe elementary syste
terms of the coadjoint orbits. In particular, the dynamics of relativistic particles and superpa
is usually supposed to evolve in a fiber bundleM over aspace–time manifoldthat is crucial for
the interaction problem. Thus, the coadjoint orbit of the spinning~super!particle arises from
embedding into evolution~super!space. The projectionp: M→OG , whereG is a Poincare´ ~su-
per!group, generatesG-invariant constraints and gauge symmetries inM. The construction of
interactions, being consistent with the gauge symmetries, and the quantization problemp
provide a subject of current interest in the problems of spinning particle and superpa
models.12,33–35

Concerning theD53 spinning particle, it is established13,14,16,25that the quantization problem
for the canonical model is naturally solved by means of an embedding of the maximal~four-
dimensional! coadjoint orbit of the group ISO↑(1,2) into eight-dimensional phase space~that is,
extended phase space!M8>T* (R1,2)3L. HereL>SU~1,1!/U~1! is a Lobachevsky plane and th
character>denotes a symplectomorphism. The projectionp:M8→Om,s onto coorbitOm,s of the
particle of massm and spins is provided by the constraints. The auxiliary variables parametriz
L are used to describe the particle spin. One can interpret the~holomorphic! automorphisms of the
Lobachevskian Ka¨hler metric as a hidden symmetry of the internal particle’s structure, whic
related to the spin. In this approach the quantization of the anyon could be achieved as
promise of the conventional Dirac quantization onT* (R1,2) and of the geometric quantization i
the Lobachevsky plane. Constraints of the classical mechanics are converted into wave eq
of the anyon according to the Dirac prescriptions.

The starting point of this paper is a mechanical model ofN52 superparticles with arbitrary
fixed massm.0, superspinsÞ0, and central chargeZ[mb, ubu<1, briefly announced before.36

For this elementary system the maximal coadjoint orbitOm,s,b of real dimension 4/4 is related t
the caseubu,1. In our model, this orbit appears embedded into 8/4-dimensional extended
superspaceM8u4 of a special geometry:M8u4>T* (R1,2)3L1u2, where L1u25SU~1,1u2!/
@U~2u2!3U~1!#>OSp~2u2!/@U~1!3U~1!# is an atypical Ka¨hler coadjoint orbit of the supergrou
SU~1,1u2! and the typical one of OSp~2u2!. The inner supermanifoldL1u2, providing the particle
model with a nonzero superspin, was studied originally in Refs. 38 and 39 in relation to OSp~2u2!
supercoherent states and called theN52 superunit disc. The projection ofM8u4 onto physical
subspace follows similarly to the nonsupersymmetric model. In fact, introducing the supe
metry for theD53 particle, we need to superextend only the inner submanifoldL of the extended
phase space. The extended phase superspaceM8u4>T* (R1,2)3L1u2 carries ‘‘double supersym
metry:’’ one is related to the Poincare´ supergroup and acts on the associated coo
Om,s,b,M8u4, another one lives in the inner subsupermanifoldL1u2. Moreover, the model allows
an extended hiddenN54 supersymmetry with special values of the central charges saturatin
Bogomol’ny–Prassad–Sommerfield~BPS! bound.

We will quantize the theory similarly to the quantization of the canonical model of the par
onM8.16,25 Specifically, we combine the geometric quantization in the inner subsuperman
L1u2 for the internal SU~1,1u2! supersymmetry and the canonical Dirac quantization inT* (R1,2).

This quantization scheme implies from the outset that the mentioned ‘‘double supersy
try’’ must survive in the quantum theory. The crucial point is to express the Hamiltonian ge
tors of the Poincare´ supersymmetry inM8u4 in terms of the ones of internal SU~1,1u2! supersym-
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metry ~as well as of space–time coordinates and momenta!. These expressions appear to
nonlinear. As a consequence, some renormalization of the Poincare´ supergenerators should b
required for the closure of the Poincare´ supersymmetry algebra. Roughly speaking, the correct
to generators could be treated as a manifestation of the ordering ambiguity for operat
quantum theory. We will see that the origin of the corrections may also be clarified from
viewpoint of the Berezin quantization inL1u2 and the underlying correspondence principle. Ho
ever, the Berezin method itself does not provide a regular technique of deriving the c
corrections which have to recover the representation of the Poincare´ superalgebra in quantum
theory. Moreover, it is uncleara priori whether the consistent corrections exist at all. Surprising
the problem is solved if a simple ansatz is taken for the renormalized Poincare´ generators. Then
the closing corrections, which appear in the order ofO(s22), can beexactlycalculated.

We arrive eventually to the realization of the unitary representation of theN52, D53
supermultiplet on the fields carrying atypical irreps of the supergroup SU~1,1u2! and the typical
ones of the subsupergroup OSp~2u2!. These irreps are certainly infinite dimensional for the case
fractional superspin, but for the habitual case of~half! integer superspin they may be chosen to
finite dimensional.

The model of theN52 superparticle reduces to the one of theN51 superparticle in the
Bogomol’ny–Prassad–Sommerfield~BPS! limit for central charge, whenubu51. One can trace
the BPS limit both at the classical and quantum levels. Classically, it corresponds to the d
erate coadjoint orbit of theD53, N52 superparticle of dimension 4/2. Whenubu51, the extended
phase superspace becomes degenerate and reduces toM8u2>T* (R1,2)3L1u1 with inner super-
manifoldL1u1>OSp~2u2!/U~1u1!>OSp~1u2!/U~1!. M8u2 is exactly the extended phase supersp
of the N51 superanyon.25 In this exceptional case, the generators of theN51 Poincare´ super-
symmetry and the internal OSp~2u2! one arelinearly expressible to one another. Thus, the ge
metric quantization immediately gives the quantum theory of theN51 superparticle, without
extra constructions and corrections. In this paper we touched on the BPS limit briefly; the de
theory is considered in Refs. 25 and 37.

The geometric quantization in the OSp~2u2! coadjoint orbits was constructed in Refs. 38 a
39 and we follow these results. At the same time we have to clarify two important points, w
have seemingly been unknown. First, we found out that the Ka¨hler geometry of the regular coorb
L1u2 admits the symplectic holomorphic action of the supergroup SU~1,1u2!, which is larger than
the supergroup OSp~2u2! in itself. We construct the geometric quantization onL1u2 provided for
this extended supersymmetry supergroup. Second, we perform Berezin quantization forL1u2 to
establish a correspondence principle and to explain the origin of quantum corrections
N52 Poincare´ supercharges inM8u4.

The paper is organized as follows. In Sec. II we recall briefly the canonical model o
D53 spinning particle in terms of the minimal and extended phase spaces. Specifically, we
on symplectic structure and symmetries of the minimal and extended spaces.

Then we are going to construct the superextension of the canonical model. The cla
mechanics of theN52, D53 massive spinning superparticle with arbitrary central charg
considered in Sec. III. Starting from a first-order Lagrangian we study the supergeometry
phase superspace and identify it withM8u45T* (R1,2)3L1u2. We construct explicitly the embed
dings of theN52 Poincare´ and Lorentz supergroup’s coadjoint orbits intoM8u4 and find out the
Hamiltonian generators of corresponding supersymmetries. The relation, being crucial for
tization, is established between theN52 Poincare´ and SU~1,1u2! Hamiltonian generators. We als
reveal a degenerateN54 supersymmetry in the model and a special case of degenerate coo
which appear in the BPS limit.

In Sec. IV we suggest a quantization procedure for the classical mechanics constructed
III. At first the Berezin quantization is considered on the regular OSp~2u2! coadjoint orbit. In
particular, we construct the correspondence between symbols and operators onL1u2 and prove the
underlying correspondence principle. Then these results are applied to the consistent quan
of the D53, N52 superparticle, which is the final object of construction.
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II. MINIMAL AND EXTENDED PHASE SPACES OF A CANONICAL MODEL OF
SPINNING PARTICLE

First consider the nonsupersymmetric canonical model of the particle~various formulations,
see Refs. 12, 6, 7, 14, and 17!, which serves as an initial subject for further generalizations.
particle lives originally on six-dimensional phase spaceM6 with a symplectic two-form

Vs52dxa∧dpa1Vm , Vm5
s

2

eabcpadpb∧dpc

~2p2!3/2 , p2,0, ~2.1!

where Vm is known as the Dirac monopole form.@We use Latin letters to denote theD53
Lorentz vectors and Greek letters for the SU~1,1! spinors; the Minkowski metric is chosen to b
hab5diag(21,1,1), the totally antisymmetric tensor is normalized by the conditione01252e012

51; the spinor indices are raised and lowered with the use of the spinor metriceab52eba

52eab (a,b50,1), e01521 by the ruleca5eabcb, ca5eabcb .# The Poincare´ transforma-
tions are generated by the following functions:

Pa5pa , Ja5eabcx
bpc2s

pa

~2p2!1/2, ~2.2!

which constitute theD53 Poincare´ algebra with respect to Poisson brackets~PBs!

$Pa ,Pb%50, $Ja ,Pb%5eabcPc, $Ja ,Jb%5eabcJ c, ~2.3!

The fundamental PBs read

$xa,xb%5s
eabcpc

~2p2!3/2, $xa,pb%5da
b , $pa ,pb%50. ~2.4!

The last two PBs mean thatxa andpa transform as coordinates and momenta by Poincare´ trans-
lations. Moreover, they are Lorentz vectors because of$Ja ,xb%5eabcx

c and$Ja ,pb%5eabcp
c.

Let us assume that the particle dynamics onM6 is governed by the mass shellconstraint

p21m250, ~2.5!

whereas the canonical Hamilton function is identically zero. On the mass shell, the Ca
functions of the enveloping Poincare´ algebra are identically conserved:P252m2, (P,J)5ms.
We conclude that theD53 particle of massm, spins, and energy signp0/up0u lives on mass shell.
From now on, we take a further restrictionp0.0, bearing in mind the supersymmetric theor
when the energy is positive essentially. The mass shell constraint generates the reparame
~gauge! invariance for every world line of the particle. The set of world lines, being consid
modulo to the gauge equivalence, is named the particle history space, the latter is isomor
the physical state spaceOm,s of the spinning particle. The reduced symplectic manifoldOm,s is
symplectomorphic to the maximalcoadjoint orbit27,29,32of the D53 Poincare´ group.

There is a standard way to extend the canonical model to the Poincare´ supersymmetry. One
may substitutedxa→dxa2 i (ga)abuaIdubI in Eq. ~2.1!, introducing real Grassmann variable
uaI , I 51,...,N. The resulting symplectic superform appears to be invariant under theN-extended
Poincare´ supergroup without central charges. One may further generate central charges int
ing some Wess–Zumino-type terms40,34 in Eq. ~2.1!. Then, imposing the mass shell constra
~2.5!, one may build the classical model of theD53 superparticle of massm, superspins, and
arbitrary fixed central charges in the 6/2N-dimensional phase superspace. However, it is ha
possible to conceive satisfactory quantization of this model.

Even for the canonical model without supersymmetry the realization of the coordinate o
tors x̂a is a nontrivial problem accounting for the complicated form of the first Poisson brack
Eqs. ~2.4!. A detailed analysis of Ref. 14 shows that the manifest covariance of the cano
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model, being formulated in terms of the ‘‘minimal’’ phase spaceM6, is inevitably lost in quan-
tum theory. The superextension of the canonical model makes the Poisson brackets, bein
tized, much more complicated. In fact, the quantization problem in the reduced nonlinear
superspace is not solved even for the spinlessD53 superparticle. Thus we will reformulate from
the outset the canonical model in an ‘‘extended’’ phase space, where a hidden symmetry
spinning particle becomes transparent and gives an efficient method for quantization maki
of this symmetry. Moreover, the construction will be appropriate for intriguing superextens

An adapted reformulation of the canonical model is suggested in Refs. 16 and 25. We ob
that the monopole two-formVm in Eq. ~2.1! is nothing else but the Ka¨hler two-form on the mass
hyperboloid~2.5!, which gives the realization of the Lobachevsky planeL. It will be convenient
to make use of another realization ofL>$zPC1,uzu,1% by an open unit disc of complex plan
C1. We rewrite the symplectic two-form~2.1! as follows:

Vs52dxa∧dpa1VL , VL522is
dz∧dz̄

~12zz̄!2 , ~2.6!

where~recall thatp2,0 and we have takenp0.0!

pa5A2p2na, na5S 11zz̄

12zz̄
,2

z1 z̄

12zz̄
,i

z̄2z

12zz̄D , n2[21. ~2.7!

The unit timelike Lorentz vectorna parametrizes the points of the Lobachevsky plane.
Let us look at Eq. ~2.6! from a different viewpoint. Consider a new phase spa

M8>T* (R1,2)3L with a symplectic two-form~2.6! and an elementary system onM8, whose
dynamics is subjected by three constraints

pa5mna. ~2.8!

Apparently these constraints project the extended phase spaceM8 into the same coadjoint orbit a
the mass shell constraint~2.5! does forM6. Alternatively, one can solve explicitly only two
constraintspa5A2p2na providing the reductionp1 :M8→M6 of extended phase space to th
minimal one. In other words, we have constructed the sequence of embeddingsOm,s,M6,M8.
Hence, we get an equivalent description of theD53 spinning particle in terms of the extende
phase spaceT* (R1,2)3L. The Hamiltonian generators of the canonical Poincare´ transformations
in M8 read

Pa5pa , Ja5eabcx
bpc1Ja , ~2.9!

where the spin vectorJa is expressed in terms of the ‘‘inner’’ spaceL:

Ja52sna . ~2.10!

The Hamiltonians~2.9! generate the Poincare´ algebra with respect to PBs inM8, whereas the spin
generators~2.10! span the internal Lorentz algebra related to the~holomorphic! automorphism
group of the Lobachevsky plane. The latter group can be recognized as a hidden symmetry
internal structure of spinning particle. Although this concept may seem artificial at the mo
below we will observe essentially nontrivial superextension of the hidden symmetry.

The Poincare´ Casimir functions are identically conserved owing to constraints~2.8!:

p21m250, ~p,J!2ms50. ~2.11!

A crucial detail is that the equations~2.11! define the same surface in the extended phase spa
the constraints~2.8! do.
                                                                                                                



ical

as an

rang-
boosts

e
orana

ng

lity

the

the
ly:

2236 J. Math. Phys., Vol. 40, No. 5, May 1999 I. V. Gorbunov and S. L. Lyakhovich

                    
The quantization of the model inM8 is almost transparent. We can combine the canon
Dirac quantization inT* (R1,2) and the Berezin quantization in the Lobachevsky plane.25 Con-
straints~2.11! will be imposed in Hilbert space to separate the one-particle states.

Finally, write down the Lagrangian of the theory. One may choose the action functional
integrand of the one-formU, wheredU5Vs1V andV vanishes on shell. Let us take

S5E U, U5padxa1 is
z̄dz2zdz̄

12zz̄
[padxa1SL , dSL5VL . ~2.12!

It is implied here that the virtual paths lay in the constraint surface~2.8!. Excluding the momenta
accounting for constraints~2.8! and making pull back ofU, one obtains the action functional

S5E
t1

t2
L dt, L5m~ ẋ,n!1 is

z̄ż2zzG

12zz̄
, ~2.13!

with the first-order Lagrangian being invariant under reparametrizations. Notice that the Lag
ian is also strongly invariant under translations and spatial rotations, whereas the Lorentz
change it by a total derivative.

III. CLASSICAL MODEL OF D53 SPINNING SUPERPARTICLE

A. A first-order Lagrangian

Introduce anN52 superextension of the Lagrangian~2.13! providing both the super-Poincar´
invariance of the theory and other hidden supersymmetry as well. Introducing a pair of Maj
anticommuting spinorsuaI5(ua,xa), I 51,2, we suggest

L5m~P,n!1mb~uaẋa2xau̇a!2mbuanagṅg
bxb1 is

z̄ż2zzG

12zz̄
, ~3.1!

where m,b,sare real parameters,na is a unit Lorentz vector in the Lobachevsky plane, bei
defined by Eq.~2.7!, and

nab[nagaab , Pa5 ẋa2 igab
a ~uau̇b1xaẋb!.

The three-dimensional Dirac matricesga are chosen in the form

~g0!ab5S 0 1

1 0D , ~g1!ab5S 1 0

0 1D , ~g2!ab5S 2 i 0

0 i D ,

~ga!ag~gb!g
b5 i eabc~gc!ab2habeab .

@One may wonder why theg-matrices are not Hermitian. It is instructive to note that the rea
condition for SU~1,1! spinor formalism is not trivial, as for isomorphic SL~2,R! ones. For anyg
PSU(1,1) the complex conjugation readsḡ5cgc, wherec5c215antidiag(21,21). The ma-
tricescga are truly Hermitian. The covariant Majorana~reality! condition looks like

cc̄5c ~3.2!

for two-component SU~1,1!-spinor c.# The first term in the Lagrangian~3.1! is a conventional
superextension of the respective expression in Eq.~2.13! and the second addend represents
Wess–Zumino-type term generating the central charge for the supersymmetry.40 At last, the third
term accounts for the specific of theD53 spinning superparticle model. Owing to this addend,
supertranslations, underlying Poincare´ supersymmetry of the Lagrangian, read rather unusual
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dex
a5 igab

a eaub1 ibeabcnbgcabeaxb1bnaeaxa , deu
a5ea, dex

a50, dez50
~3.3!

dhxa5 igab
a haxb2 ibeabcnbgcabhaub2bnahaua , dhua50, dhxa5ha, dhz50.

Here ea and ha are odd real parameters. For completeness, expose also the even infinit
Poincare´ transformations and U~1! transformations as well:

dvxa5eabcvbxc , dvua52
i

2
vaga

a
bub dvxa52

i

2
vaga

a
bxb, dvz5 ivaja ,

d fx
a5 f a, d fu

a5d fx
a50, d fz50, ~3.4!

dmxa50, dmua52mua, dmxa5mua, dmz50,

with the even real parametersva, f a, and m and the holomorphic objectja521/2„2z,1
1z2,i (12z2)…. The infinitesimal transformations~3.4! and ~3.3! generate theN52 Poincare´
superalgebra, which is discussed in Sec. III C.

B. Extended phase superspace

We show in this subsection that the superparticle being described by the Lagrangian~3.1!
lives in a supersymplectic phase spaceM8u4 of very special supergeometry:M8u4>T* (R1,2)
3L1u2. Then we identifyL1u2 with regular~when ubu,1! or degenerate~when ubu51! coadjoint
orbit of the OSp~2u2! supergroup. Having the goal to quantize the theory inM8u4, we will need
detailed information about SUSYs and quantization inL1u2. The supersymplectic geometry o
L1u2 is considered in Sec. III D, while the Berezin quantization will be constructed in IV A.

The model~3.1! fits naturally into the formulation in symplectic language. The theory or
nates from the action functional

S5E USUSY, USUSY5padxa1SL1u2, ~3.5!

SL1u252 imnabuadub2 imnabxadxb1mbuadxa2mbxadua

22mb
zazbuaxbdz̄2 z̄az̄buaxbdz

~12zz̄!2 1 is
z̄dz2zdz̄

12zz̄
, ~3.6!

where the virtual paths belong to the surface

pa5mna, ~3.7!

as follows from the definitionpa5]L/] ẋa. Introduce the objects

za[~1,z!, z̄a[~ z̄,1!, a50,1, ~3.8!

which simplifies Eq.~3.6! and many of the forthcoming formulas.
Relation ~3.5! shows that the particle dynamics is embedded in phase superspaceM8u4

>T* (R1,2)3L1u2 with some inner superspace of a real dimension 2/4 denoted byL1u2. The
symplectic two-superform inM8u4 reads

Vs
SUSY5dUSUSY52dxa∧dpa1VL1u2, VL1u25dSL1u2. ~3.9!

The inner superspace is anN52 superextension of the Lobachevsky plane. We show at first
L1u2 coincides with a coadjoint orbit of the OSp~2u2! supergroup. Let us introduce new compl
Grassmann variables~mÞ0, sÞ0!
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u5Am

s
~ izaxa2zaua!F11m

12b

4s
~uaua1xaxa!G , ū5~u!,

~3.10!

x5Am

s
~ izaua2zaxa!F11m

11b

4s
~uaua1xaxa!G , x̄5~x!,

which are in one-to-one correspondence with the Majorana spinorsua andxa used before.
It is easy to check that the symplectic two-superform

VL1u25dSL1u2 ~3.11!

in the new holomorphic variables~3.10! exactly coincides with the one deduced by Gradechi a
Nieto39 in the supercoherent state’s approach for the OSp~2u2! coadjoint orbits.VL1u2 is nonde-
generate iff ubuÞ1. In the caseubu,1, the supermanifoldL1u2 is the regular OSp~2u2! coadjoint
orbit L1u2>OSp~2u2!/@U~1!3U~1!# and is called theN52 superunit disc. The degenerate or
OSp~2u2!/U~1u1!, which is denoted usually byL1u1 and called theN51 superunit disc, appear
when ubu51. The other possibility,ubu.1, has no physical significance: neither the Poinc´
supersymmetry nor the internal OSp~2u2! one admit unitary representations. It is seen from furt
consideration that the inequalityubu.1 contradicts the BPS bound.

C. Observables and the physical subspace

Consider in detail the realization of the Poincare´ supersymmetry in the extended phase sup
spaceM8u4>T* (R1,2)3L1u2. The Poincare´ supergroup is realized by a symplectic action leav
the coadjoint orbit~3.7! invariant. The vector superfields generating the transformations~3.3! and
~3.4! are related to the corresponding canonical Hamiltonian generators by

XH4Vs
SUSY52~21!eHdH, ~3.12!

whereeH is the Grassmann parity of the HamiltonianH. Solving these equations one gets t
following Hamiltonian generators@we denote the generator of isotopic U~1! rotations byP3#:

Pa5pa , Ja5eabcx
bpc2sna1 1

2mna~uaua1xaxa22ibnabuaxb!,

Qa
15 ipab~ub2 ibnb

gxg!1m~ inabub1bxa!, pab[pagab
a ,

~3.13!
Qa

25 ipab~xb1 ibnb
gug!1m~ inabxb2bua!,

P35 imnabuaxb2
mb

2
~uaua1xaxa!.

With respect to Poisson superbrackets onM8u4 they generate the following superalgebra:

$Ja ,Jb%5eabcJ c, $Ja ,Pb%5eabcP c, $Ja ,Qa
I %52

i

2
~ga!a

bQb
I ,

~3.14!
$Qa

I ,P3%52 1
2e

IJQa
J , $Qa

I ,Qb
J %'22id IJpab22e IJeabZ, Z5mb,

the other brackets being equal to zero andI ,J51,2, e IJ52eJI, e0151. We stress that the latte
bracket$Qa

I ,Qb
J % is closed only in a weak sense, that is, modulo to constraints~3.7!. What we

have obtained is theN52, D53 Poincare´ superalgebra with central chargeZ5mb and isotopic
chargeP3 acting on the internal indices of superchargesQa

I .
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One can easily examine that the mass and the spin Casimir functions of the supera
~3.14! readC1[PaPa5p2 andC2[PaJa1 1

8QI aQa
I 2ZP352s(p,n). On the constraint surface

~3.7!,

p21m250, ~p,n!1m50, ~3.15!

the Casimirs are conserved identically. Equations~3.15! and ~3.7! are completely equivalent to
each other, in other words, they define one and the same surface in the phase superspacM8u4.
We conclude that the mechanical model describes theN52, D53 superparticle of massm,
superspins, and central chargemb.

Regular and degenerate cases are essentially distinguished for the coadjoint orbit, be
sociated for the superparticle. Since the massless and spinless particles are not covere
model, the Bogomol’nyi–Prassad–Sommerfield bound of central charge~see, for instance, Ref
41! assumes the only possibility for the degeneracy. The BPS boundm>uZu provides, as is
known, consistency of the quantum theory; the opposite inequality breaks the unitarity. A
have the goal to construct the quantum theory, we may restrict the consideration to the c
ubu<1. Furthermore, the limiting pointubu51 corresponds to the multiplet-shortening.41 It is the
casem5uZu when the massive multiplet contains the same number of particles as a massle
These massive multiplets are called hypermultiplets. In the case of theN52, D53 Poincare´
superalgebra, a massive supermultiplet of superspins describes a quartet of particles with spi
s,s1 1

2, s1 1
2, s11 for m.uZu and a doublets,s1 1

2 for m5uZu. The shortening of the superpa
ticle multiplet has the respective origin in the classical mechanics: the number of odd ph
degrees of freedom of the superparticle halved in the BPS limit. Let us show that it is the
which is described by our model.

Reducing to the constraints~3.15! @or, equivalently,~3.7!# we come to the smaller 5/4
dimensional phase spaceM5u4,M8u4 with a degenerate symplectic two-superform

Vs
SUSYupa5mna

[Vs
red52mdxa∧dna1VL1u2, dna[

2jadz̄12j̄adz

~12zz̄!2 , ~3.16!

whereVL1u2 is defined by Eq.~3.11! and

ja52 1
2~ga!abzazb52 1

2„2z,11z2,i ~z221!…, j̄a5~ja!. ~3.17!

The kernel of the two-superform~3.16! contains obviously the even one-dimensional null sp
Ker0Vs

red, related to the reparametrization invariance of the world lines. In the coset super
Om,s,b5M5u4/Ker0 Vs

red the induced symplectic two-superform is nondegenerate whenubu,1;
the same is true inL1u2 for the respective superformVL1u2. Therefore,Om,s,b , dimOm,s,b54/4,
ubu,1 is isomorphic to a regular coadjoint orbit of theN52, D53 Poincare´ supergroup. We have
established both the embedding of the regular orbit into the original phase superspace a
underlying projectionp:M8u4→Om,s,b , provided by constraints~3.15!.

In the BPS limit ubu51, the inner two-superformVL1u2 generates a 0/2-dimensional nu
vector superspace. To make the degeneracy more evident we introduce for a while ne
variables

ũa5ua2 ina
bxb, x̃a5xa2 ina

bub

instead ofua,xa. This change of the odd variables is one-to-one, and the original Lagrangian~3.1!
reads in new variables as

L5m~ ẋ,n!2 im
11b

2
nabũaũ

˙b2 im
12b

2
nabx̃ax8 b1 is

z̄ż2zzG

12zz̃
. ~3.18!
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It is seen immediately that half of the odd degrees of freedom of the superparticle drops ou
the theory in the case ofubu51. The full kernel KerVs

red of the symplectic two-superform onM5u4

becomes 1/2-dimensional ifubu51. The 4/2-dimensional coset superspaceOm,s5M5u4/KerVs
red

corresponds to a degenerate orbit of theN52 Poincare´ supergroup. Hence, the number of od
physical degrees of freedom of theN52, D53 superparticle halved actually in the BPS limit an
we observe an evident classical analog of the multiplet-shortening. Moreover, in the BPS
expression~3.18! reduces to the Lagrangian of theN51, D53 superparticle25 and does describe
after quantization not a superquartet, but a supersymmetric doublet of particles of equal mm
and spinss ands1 1

2 only.

D. Hidden su „1,1z2… supersymmetry of the superspin degrees of freedom

We have shown that the superparticle dynamics is embedded in the phase superspacM8u4

>T* (R1,2)3L1u2. One can imply that the inner supermanifoldL1u2 carries internal~both even and
odd! degrees of freedom of theD53 particle. Then the symplectomorphisms ofL1u2 should be
treated as the hidden supersymmetry of the particle internal structure. Consider this supers
try in more detail. To be specific, let us assume thatubu,1. The degenerate case is alrea
discussed in Ref. 25.

We have already mentioned thatL1u2 is a homogeneous OSp~2u2! superspace. Introducing
new odd complex variables~3.10!, we established that the symplectic two-superform~3.11! re-
duces to the superform on the regular OSp~2u2! coadjoint orbit obtained earlier in Refs. 38 and 3
in the framework of the supercoherent state technique. A crucial point is thatL1u2 reveals aKähler
supermanifold structure with the superpotential

F522s ln~12zz̄!2s~11b!
uū

12zz̄
2s~12b!

xx̄

12zz̄
1

s~12b2!

2

uūxx̄

~12zz̄!2 , ~3.18!

so that

VL1u25 i S dz̄
]

] z̄
1dū

uW

]ū
1dx̄

]W

]x̄
D ∧S dz

]

]z
1du

]W

]u
1dx

]W

]x
D F,

and OSp~2u2! acts on theN52 superunit disc by thesuperholomorphictransformations. More-
over, the supergroup of the superholomorphic symplectomorphisms ofL1u2 is, in fact, essentially
larger than OSp~2u2! and it contains at least the supergroup SU~1,1u2!. The corresponding infini-
tesimal transformations read

dz5 ivaja2
A11b

2
eazau2

A12b

2
hazax,

du5
i

2
va]jau1

i

2
A12b

11b
m1x2

i

2
~m21m3!u2

1

A11b
ēaza2

A12b

2
ha]zaux,

~3.19!

dx5
i

2
va]jax2

i

2
A11b

12b
m̄1u2

i

2
~m22m3!x1

A11b

2
ea]zaux2

1

A12b
h̄aza,

where][]/]z, even parametersva, m2 , andm3 are real, even parameterm1 is complex, and the
odd onesea andha are complex. Transformations~3.19! are generated by the following Hami
tonians, which may be obtained straightforwardly solving Eqs.~3.12!. There are seven~real! even
Hamiltonians,
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Ja52snaS 12
11b

2

uū

12zz̄
2

12b

2

xx̄

12zz̄
1

12b2

2

uūxx̄

~12zz̄!2D ,

P15s
A12b2

2

ux̄2 ūx

12zz̄
, P352sS 11b

2

uū

12zz̄
2

12b

2

xx̄

12zz̄
D , ~3.20a!

P25 is
A12b2

2

ux̄1 ūx

12zz̄
, P452sS 11b

2

uū

12zz̄
1

12b

2

xx̄

12zz̄
2

12b2

2

uūxx̄

~12zz̄!2D ,

and eight odd ones,

Ea5sA11bS zaū2 z̄au

12zz̄
D S 12

12b

2

xx̄

12zz̄D , Fa5 ina
bEb

~3.20b!

Ga5sA12bS zax̄2 z̄ax

12zz̄ D S 12
11b

2

uū

12zz̄
D , Ha5 ina

bGb.

These Hamiltonians, together with one more even elementZ[s, generate a closed superalgeb
with respect to Poisson superbrackets onL1u2 ~the explicit form of these superbrackets may
found in Ref. 36!. This is the so-called su~1,1u2! superalgebra,42 whose even part is su(1,1u2)0

5su~1,1!%u~2!% R5$Ja ,PI ,Z% and the odd part constitutes an eight-dimensional module of
even part;Z presents a central charge. The osp~2u2! subsuperalgebra found in Refs. 38 and 39
spanned byJa , B, AmsVa, andAmsWa, whereVa andWa are defined below by Eqs.~3.26! and,
B5P32bZ. We reveal that theN52 superunit disc is not only a typical coadjoint orbit of th
OSp~2u2! supergroup,L1u2>OSp(2u2)/@U~1!3U~1!#, but it can be treated simultaneously as
atypical Kähler orbit of the supergroup SU(1,1u2):L1u2>SU(1,1u2)/@U~2u2!3U~1!#.

E. Hidden N54 Poincaré supersymmetry

Subalgebra u~2! of the internal su~1,1u2! superalgebra acts on the odd variables, as is s
from Eqs.~3.19!. It is exactly the subalgebra of the isotopic symmetry. However, the isotopic~2!
symmetry may now be involved in the Poincare´ supersymmetry. The isotopic rotations togeth
with the N52 Poincare´ transformations~3.3! and ~3.4! generate~when ubuÞ1! the widerD53,
N54 Poincare´ superalgebra. In addition to~3.3! there are the following supersymmetry transfo
mations:

dẽx
a5 ibgab

a ẽaxb2 i eabcnbgcabẽaub1naẽaua , dẽu
a52 ina

bẽb, dẽx
a5dẽz50,

~3.21!
dh̃xa52 ibgab

a h̃aub2 i eabcnbgcabh̃axb1nah̃axa , dh̃xa52 ina
bh̃b, dh̃ua5dh̃z50,

whereēa,h̄a are odd infinitesimal parameters. The respective Hamiltonians onM8u4 read

Q̃a
15 ipab~ inb

gug1bxb!2m~ua2 ibnabxb!'2
i

m
pa

bQb
1,

~3.22!

Q̃a
25 ipab~ inb

gxg2bub!2m~xa1 ibnabub!'2
i

m
pa

bQb
2.

New supercharges together withN52 superpoincare´ Hamiltonians~3.13! and isotopic U~2!
HamiltoniansPI , I 51,2,3,4 generate the closedN54 Poincare´ superalgebra with one centra
charge. It can be seen by introducing a new basis for supercharges 2Ra

I 5(Qa
11Q̃a

2,Qa
22Q̃a

1),
2R̃a

I 5(Q̃a
11Qa

2,Q̃a
22Qa

1), I 51,2. On shell~3.7! we have
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$Ra
I ,Rb

J %'~12b!~2 id IJpab1me IJeab!,
~3.23!

$R̃a
I ,R̃b

J %'~11b!~2 id IJpab1me IJeab!, $Ra
I ,R̃b

J %'0.

The invariance of the original Lagrangian~3.1! under the transformations~3.21! can be ex-
amined straightforwardly. Thus, the model, beingN52 super-Poincare´ invariant by construction,
allows the hiddenN54 supersymmetry. The appearance of the enhanced supersymmetry is
surprising in the model. ThisN54 supersymmetry is degenerate in a sense that the correspo
central charges equals tom and, so, they saturate the BPS bound for theN54 Poincare´ superal-
gebra. It reflects the degeneracy of theN54 supersymmetry and the shortening of theN54
superparticle multiplet to theN52 supermultiplet in quantum theory. Moreover, it is a gene
property of extended supersymmetry that some of the degenerate multiplets of a larger
~those which saturate the BPS bound! have the same particle content, as is observed in
respective multiplets of a smaller SUSY. This fact provides a simple reason why some of
symmetric theories may have the extended supersymmetries. The precedents are known
D54,6,10 superparticle models43 and supersymmetric field theories~for example, the theories
with nontrivial topological charge44!. The D53, N51 superparticle allows the hiddenN52
SUSY.25

F. Relationship between Hamiltonian generators of the Poincare ´ and internal
supersymmetries

We have observed that the model contains both the global Poincare´ SUSY and the hidden
SU~1,1u2!. The latter is closely related to the superspin intrinsic structure. Thus, the rel
quantization procedure should make a provision for either symmetry to survive in quantum t
This quantization can be based on the simple fact that the Hamiltonian generators~3.13! and
~3.22! of the Poincare´ supersymmetries, being the functions onM8u4>T* (R1,2)3L1u2, can be
expressed in terms of the Minkowski-space coordinates and momenta (xa,pa) and of the su~1,1u2!
HamiltoniansJa , PI , Ea, Fa, Ga, andHa ~3.20!, which parametrize the coadjoint orbitL1u2. We
give here the explicit form of these expressions:

Ja5eabcx
bpc1Ja , Pa5pa , Z5mb,

Qa
15~ ipabWb1mW̃a!@11qcl~bP32A12b2P22P4!#, ~3.24!

Qa
25~ ipabVb1mṼa!@11qcl~bP31A12b2P22P4!#,

Q̃a
15~ ipabW̃b2mWa!@11qcl~bP32A12b2P22P4!#,

~3.25!
Q̃a

25~ ipabṼb2mVa!@11qcl~bP31A12b2P22P4!#,

where

Wa5
1

2Ams
~A11bEa1A12bHa!, W̃a5

1

2Ams
~A11bFa2A12bGa!,

~3.26!

Va5
1

2Ams
~A11bFa1A12bGa!, Ṽa5

1

2Ams
~A12bHa2A11bEa!,

and constantqcl reads as

qcl5
1

4s
. ~3.27!
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To construct an appropriate operator realization of these expressions we shall quantize (xa,pa)
canonically and extend simultaneously su~1,1u2! Hamiltonian vector fields to a representation
Hermitian operators in Hilbert space.

Notice at once some important details in relation to the quantization which should be
patible to the full symmetry of the superparticle. First, expressions~3.24! and~3.25! are essentially
nonlinear in the generators~3.20! of the inner su~1,1u2! superalgebra. Thus, even though t
operator realization of the Poisson su~1,1u2! superalgebra is found and the corresponding opera
are substituted in Eq.~3.24!, we may not be sure that the representation of the Poincare´ superal-
gebra ~neither N52 nor N54! is reproduced for certain in quantum theory. Because of
nonlinearity, the superalgebra of operators, corresponding to~3.24!, might be disclosed, and it is
the parameterq that controls the possible disclosure of the Poincare´ superalgebra. We will see tha
the parameterqcl should be renormalized in quantum theory to reproduce a representation
Poincare´ supersymmetry.

Second, it is a matter of direct verification that the HamiltoniansWa andW̃a have vanishing
Poisson superbrackets withbP32A12b2P22P4 , whereasVa and Ṽa commute to bP3

1A12b2P22P4 . This point is important for Hermitian properties of supercharge operator
quantum mechanics.

IV. FIRST QUANTIZATION OF THE SUPERPARTICLE

It is a primary objective of previous consideration to present the classical model o
N52, D53 superparticle in the form, well adapted for a quantizing procedure. We have obt
an embedding of the~maximal! coadjoint orbit of theN52 Poincare´ supergroup in the extende
phase superspaceM8u4>T* (R1,2)3L1u2. Going to quantum theory we will combine the canon
cal Dirac quantization onT* (R1,2) and the geometric quantization methods on the SU~1,1u2!
coorbit L1u2. In particular, a combination of the standard real polarization inT* (R1,2) and the
Kähler one inL1u2 will be used to construct the superparticle’s Hilbert space.

The quantization scheme implies from the outset that the internal SU~1,1u2! supersymmetry
must survive at the quantum level. Mutual relation between Hamiltonians of SU~1,1u2! and Poin-
carésupersymmetries, being expressed by Eq.~3.24! and ~3.25!, is crucial in our approach. A
first, we construct the operator realization for the Hamiltonians of the su~1,1u2! superalgebra in the
framework of Berezin quantization. Then the expressions~3.24! @possibly together with~3.25!# are
used to obtain the realization of a unitary irreducible representation~UIR! for the N52 ~respec-
tively, enhancedN54! Poincare´ superalgebra. We find that the classical meaning of the param
q in ~3.27! in the relations~3.24! and ~3.25! should be accompanied by certain quantum corr
tions, referred to as a renormalization, for consistency of the quantum theory.

Eventually we obtain the straightforwardN52 supergeneralization of the conventional re
ization of the unitary irreducible representations~UIRs! of theD53 Poincare´ group on the fields
carrying representations ofSO↑(1,2).6,13 Two cases should be distinguished among these re
sentations. The fields describing fractional superspin~superanyons! carry a atypical unitary
infinite-dimensionalUIRs of SU~1,1u2!, whereas the UIRs of~half! integer superspin can b
realized on the spin-tensor fields carrying atypicalfinite dimensionalnonunitary representations o
SU~1,1u2!. The realization of the superparticle Hilbert space is slightly different in these two c

A. Berezin quantization on L1z2

The Berezin technique30,31,45,46provides the perfect quantization method for the Ka¨hler ho-
mogeneous spaces. We consider here briefly the application of this method to the superm
L1u2>OSp~2u2!/@U~1!3U~1!#>SU~1,1u2!/@U~2u2!3U~1!# with the nondegenerate symplect
structure whenubu,1. The geometric quantization onL1u2, being considered as a regular coa
joint orbit, is studied in Refs. 38 and 39 in detail. However, as we know,L1u2 has not been
considered as an irregular SU~1,1u2! coorbit nor as a detailed Berezin quantization, and the
derlying correspondence principle is not explicitly established.
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In the following subsection we apply the obtained results for quantization of theD53 super-
particle.

1. Antiholomorphic sections and an inner product

Let us consider the spaceOs,b of superantiholomorphic sections of the superholomorphic
bundle overL1u2, whose elements are represented by functions

f ~GĪ ![ f ~ z̄,ū,x̄ !5 f 0~ z̄!1As~11b!ū f 1~ z̄!1As~12b!x̄ f 2~ z̄!1As~s11/2!~12b2!ūx̄ f 3~ z̄!,
~4.1!

where f i( z̄), i 50,1,2,3, are ordinary antiholomorphic functions on the unit disc of the com

plane. We denote byGI [$GI A%5$z,u,x% andGĪ [$GI Ā%5$z̄,ū,x̄% the sets of the superholomorph
and superantiholomorphic variables, respectively. The spaceOs,b is equipped naturally by an inne
product

^ f ug&L1u25E
L1u2

f ~GĪ !g~GĪ !e2F~GI ,GĪ ! dm~GI ,GĪ !. ~4.2a!

HereF(GI ,GĪ ) is the Kähler superpotential~3.18! anddm(GI ,GĪ ) is an SU~1,1u2! invariant Liouville
supermeasure onL1u2. Taking into account the definition of the symplectic two-superform~3.11!

VL1u2[dGI AVAB̄dGI B̄, one can derive the supermeasure explicitly:38,39

dm~GI ,GĪ !52
1

4p
sdetiVAB̄idGI dGĪ 5

dGI dGĪ

ips~12b2!
, dGI dGĪ [dzdz̄dudūdxdx̄. ~4.3!

Using Eqs.~3.18!, ~4.1!, and ~4.3! we can integrate out the Grassmann variables in Eq.~4.2a!,
which reduces the inner product to the following form:

^ f ug&L1u25^ f 0ug0&L
s 1^ f 1ug1&L

s11/21^ f 2ug2&L
s11/21^ f 3ug3&L

s11, ~4.2b!

where

^wux&L
l 5~2l 21!E

uzu,1

dzdz̄

2p i
~12zz̄!2l 22w~ z̄!x~ z̄! ~4.4!

is an inner product in the representation spaceD1
l of SO↑(1,2) discrete series bounded belo

being realized by antiholomorphic functions in the unit discuzu,1. $The monomialsfn
l 5@G(2l

1n)/G(n21)G(2l )#1/2z̄n, n is a non-negative integer, serve as a standard orthonormal ba
D1

l .% The inner product~4.4! is well defined and positive ifl . 1
2. Moreover, for values 0, l

,1/2 one can still use Eq.~4.4! if suitable analytic continuations are made. The case ofl 5 1
2

should be understood in the sense of the limit. We conclude that the inner product~4.2! in Os,b is
well defined ifs.0 ~and, of course, ifubu,1.!.

In view of the transformation law for Ka¨hler superpotentialF(GI ,GĪ ) under the action of
SU~1,1u2! supergroup, the inner product~4.2! holds to be SU~1,1u2! invariant, if an appropriate
transformation law forf (G)POs,b is implemented. In other terms, the Hamiltonian action
SU~1,1u2! onL1u2 can be lifted to a unitary representation inOs,b . We give below an infinitesima
form of this representation only, that is, explicit representation of corresponding supera
su~1,1u2!. To obtain it, we first consider a conventional correspondence between linear opera
Os,b and Berezin’s symbols.
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2. Classical observables and operators

Let A(GI ,GĪ ) be a ‘‘classical observable,’’ that means it is a real function onL1u2 to be
continuously differentiable inz,z̄ that the integrals considered below do exist. We associa
linear operatorÂ in Os,b to the classical observableA(GI ,GĪ ) by the rule

~Âf !~GĪ !5E
L1u2

A~GI 1 ,GĪ ! f ~GĪ 1!Ls,b~GI 1 ,GĪ !e2F~GI 1GĪ 1! dm~GI 1 ,GĪ 1!, ~4.5!

where A(GI 1 ,GĪ ) serves only as an analytic continuation inL1u23L1u2 for classical observable
A(GI ,GĪ ). The generating kernelLs,b(GI 1 ,GĪ ) can be constructed by the use of an arbitrary comp
orthonormal basisf k(GĪ ) in Os,b , and appears to be related immediately to the analytic cont
ation inL1u23L1u2 of the Kähler superpotential:

Ls,b~GI 1 ,GĪ !5 (
k51

`

f k~GĪ ! f k~GĪ 1!5exp@F~GI 1 ,GĪ !#. ~4.6!

The state, being presented by the functionFGĪ (GĪ 1)5Ls,b(GI ,GĪ 1) with fixed GĪ [$z̄,ū,x̄% is denoted
by uz̄,ū,x̄&, is called as an SU~1,1u2! @or OSp~2u2!# supercoherent state. The analytic continuat
in L1u23L1u2 for any classical observable could be expressed in terms of the supercoheren
as follows:

A~GI 1 ,GĪ 2!5
^FGĪ 2

uÂuFGĪ 1
&L1u2

^FGĪ 2
uFGĪ 1

&L1u2
. ~4.7!

So, the symbol of the unit operatorÎ is just 1. Hence, the one-to-one correspondence betw
classical observables onL1u2 and linear operators inOs,b is established. In view of Eq.~4.7!,
classical observables are also referred to as~covariant! Berezin symbols.

3. Atypical unitary and finite-dimensional representations of the su(1,1 z2) superalgebra

Using Eq. ~4.5!, one can now obtain the operators which correspond to the Hamilto
generators~3.20! of holomorphic transformations of theN52 superunit disc. One gets

Ĵa52 j̄a]̄2~ ]̄ j̄a!S s1
1

2
ū

]

]ū
1

1

2
x̄

]

]x̄ D , Ẑ5sÎ,

P̂152
1

A12b2 S 12b

2
x̄

]

]ū
1

11b

2
ū

]

]x̄
D , P̂35

1

2
ū

]

]ū
2

1

2
x̄

]

]x̄
,

P̂25
i

A12b2 S 12b

2
x̄

]

]ū
2

11b

2
ū

]

]x̄
D , P̂45

1

2
ū

]

]ū
1

1

2
x̄

]

]x̄
,

Êa5
A11b

2
ūF z̄a]̄1~ ]̄ z̄a!S 2s1x̄

]

]x̄
D G2

1

A11b
z̄a

]

]ū
, ~4.8!

F̂a52 i
A11b

2
ūF z̄a]̄1~ ]̄ z̄a!S 2s1x̄

]

]x̄
D G2 i

1

A11b
z̄a

]

]ū
,
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Ĝa5
A12b

2
x̄F z̄a]̄1~ ]̄ z̄a!S 2s1 ū

]

]ū
D G2

1

A12b
z̄a

]

]x̄
,

Ĥa52 i
A12b

2
x̄F z̄a]̄1~ ]̄ z̄a!S 2s1 ū

]

]ū
D G2 i

1

A12b
z̄a

]

]x̄
,

where ]̄[]/] z̄, all the derivatives are left, andj̄a ,z̄a are defined by Eqs.~3.17! and ~3.8!,
respectively. It is readily verified that the derived operators generate an irreducible represe
of the su~1,1u2! superalgebra, and it is the same case for any valuess andb, not only fors.0 and
ubu,1. The anticommutation relations for operators~4.8! completely correspond to the Poisso
superbrackets of the classical observables~3.20!, and it is sufficient to apply the corresponden
rules, that is, to replace$,%→1/i @ ,#7 ~anticommutator for two odd operators and commutator
the rest cases!. By reduction to the orthosymplectic subsuperalgebra we reproduce just the ty
UIRs of the osp~2u2! obtained in Refs. 38 and 39.

The constructed representation is infinite dimensional fors.0 andubu,1, and unitary in the
sense that the operators~4.8! are Hermitian with respect to inner product~4.2!. It means, in

particular, that̂ f uĴaug&L1u25^guĴau f &L1u2 and ^ f uP̂I ug&L1u25^guP̂I u f &L1u2 for any f ,gPOs,b . The
Hermitian self-conjugation conditions for the odd operators may reveal some subtlety. An
classical observable among~3.20! is the Majorana spinor and we have, for example,E052E1,
E152E0 with respect to the reality condition~3.2!. Êa ~and any odd operator with the spino

index! is Hermitian in the sense that^ f uÊ0ug&L1u252^guÊ1u f &L1u2.
We denote the UIR obtained byD1

s,b . With respect to the su~1,1! subalgebra, it is decompose
into the direct sumD1

s
% D1

s11/2
% D1

s11/2
% D1

s11 of the unitary representations of discrete seri
and the componentsf 0 , f 1,2, f 3 of the state~4.1! transform by the representations of higher weig
s, s11/2, ands11, respectively.

The representations being obtained fors<0 or ubu.1 are nonunitary. The case ofs11
52 j , j is non-negative integer or half integer, is special. Then the operators~4.8! generate a
finite-dimensional representationDj of dimension 8j 18. It is a superquartet of finite-dimension
representations of su~1,1!, Dj5D j 11

% D j 11/2
% D j 11/2

% D j , and the state’s componentsf 0 , f 1,2, f 3

transform by the 2j 13-, 2j 12-, and 2j 11-dimensional representations, respectively.
It should be mentioned that the representations of the su~1,1u2! being considered here corre

spond to anirregular coadjoint orbitL1u2 of the supergroup SU~1,1u2! and, hence, they are
atypical representations. By reduction to the orthosymplectic subsuperalgebra we get ju
typical representations of the osp~2u2!.

Keeping in mind the spinning superparticle, we remember that the representationsD1
s of the

universal coveringSO↑(1,2) are commonly used for conventional realizations of the UIRs of
D53 Poincare´ symmetry of fractional spin,6,7,14 whereas the finite-dimensional irrepsD j serve
the ones of integer or of half-integer spin. It will be natural to extend these realizations t
N52 Poincare´ supersymmetry by means of representationsD1

s,b and Dj of the inner su~1,1u2!
superalgebra.

4. The correspondence principle

To complete the quantization procedure onL1u2 let us return to the relation between obser
ables and linear operators. We have examined for the supersymmetry generators of the s~1,1u2!
superalgebra that there is an exact correspondence between supercommutators of the ope
Os,b and the Poisson superbrackets of respective classical observables. In this sense we
‘‘the quantization’’ of a classical mechanics on theN52 superunit disc. Consider now the co
respondence between the algebras ofarbitrary linear operators in the Hilbert space and th
symbols.
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The problem we are concerned with is thoroughly studied for Ka¨hler homogeneous manifolds
Berezin proved the general ‘‘correspondence principle,’’30,31 which roughly consists of the fol-
lowing. The multiplication of operators induces a binary* -operation for corresponding symbol
* -multiplication is noncommutative. Furthermore, the theory contains a ‘‘Planck constanh
related to one of the quantum numbers, and in the limit whenh→0 *-algebra transforms to the
ordinary commutative algebra of functions on the manifold. Finally, the first-order reset
respect toh of the commutator of symbols coincides with their Poisson bracket. The Lobache
plane has originally served as a test example for the Berezin technique.31 The parameters21 plays
the role of the Planck constant.

Similar principles hold true for theN52 superunit disc being a naturalN52 superextension
of the Lobachevsky plane.

Let Â1 and Â2 be two linear operators inOs,b andA1(GI ,GĪ ) andA2(GI ,GĪ ) be the respective
Berezin covariant symbols. It follows from Eq.~4.5! that the symbol being corresponded to t
productÂ2•Â1 ~and denoted byA2* A1! reads

A2* A1~GI ,GĪ !5E
L1u2

A2~GI 1 ,GĪ !A1~GI ,GĪ 1!
Ls,b~GI ,GĪ 1!Ls,b~GI 1 ,GĪ !

Ls,b~GI 1 ,GĪ 1!Ls,b~GI ,GĪ !
dm~GI 1 ,GĪ 1!. ~4.9!

Hence the multiplication of the operators induces the*-multiplications of the symbols.
Theorem „the correspondence principle…: The following estimations take place:

~1! lim
s→`

A2* A1~GI ,GĪ !5A2~GI ,GĪ !•A1~GI ,GĪ !

~2! lim
s→`

s„A2* A1~GI ,GĪ !2A1* A2~GI ,GĪ !…5 is$A2 ,A1%,

where$,% is the Poisson superbracket onL1u2.
Proof: It is based on the asymptotic estimation

A2* A1~GI ,GĪ !5A2~GI ,GĪ !•A1~GI ,GĪ !1 iA2~GI ,GĪ !
]Q

]GI A VAB̄
]W

]GI B̄
A1~GI ,GĪ !1O~s22!, ~4.10!

from which both propositions of the theorem are easily obtained. HereVAB̄5$GI A,GI B̄% are funda-
mental Poisson superbrachets onL1u2, whose explicit form is written down in the extende
version of this paper.37 The validity of the relation~4.10! is sufficient to prove whenz50. If it is
the case, Eqs.~4.10! hold true at anyz in consequence of the SU~1,1! invariance of the symplectic
structure. Taking this fact into account, the verification of Eq.~4.10! is made by means of an
ordinary expansion of the symbols in~finite! series in the odd variables and the comparison of
lhs and rhs of Eqs.~4.10! for the respective components. It is a trivial but cumbersome exer
which may be successfully performed using the known estimation31

T̂l@w#[
2l 21

2p i E
uzu,1

w~z,z̄!~12zz̄!2l 22 dzdz̄5w~0,0!1
1

2l
Dw~z,z̄!U

z5 z̄50

1O~ l 22!

~4.11!

and its consequence

l ~ T̂1@w#2T̂l 11/2@w#!5
1

4l
Dw~z,z̄!uz5 z̄501O~ l 22!.
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Here l . 1
2, w(z,z̄) is an arbitrary function to be continuously differentiable into the unit disc i

complex plane, andD5(12zz̄)2]]̄ is an invariant Laplace–Beltrami operator inL. It is exactly
the estimation~4.11! that was originally applied by Berezin for the proof of the corresponde
principle in the Lobachevsky plane.31 In this sense, we reduce the correspondence principle inL1u2

to the one inL by means of the expansion in the odd variables. j

B. Operator realization of the Poincare ´ superalgebra. Renormalization of the
supercharges

Now we are in a position to proceed directly to the quantization of theD53 spinning
superparticle. Consider the spaceH of functions of the form

F~p,GĪ ![F~p,z̄,ū,x̄ !5F0~p,z̄!1As~11b!ūF1~p,z̄!1As~12b!x̄F2~p,z̄!

1As~s11/2!~12b2!ūx̄F3~p,z̄!, ~4.12!

wherep[paPR1,2, andFp(Ḡ)[F(p,Ḡ)POs,b at each fixedp. We would like to suppose that th
Hamiltonians~3.24! @which are the same as in relation~3.13!# present ‘‘the classical symbols’’ o
respective operators of theN52 Poincare´ superalgebra acting inH. We take the following ansatz
for these operators:

Ĵa52 i eabcp
b

]

]pc
1 J̄a , P̄a5pa , Z̄5mb,

Q̂a
15~ ipabŴb1mŴ̃a!@11q~bP̂32A12b2P̂22 P̂4!#, ~4.13!

Q̂a
25~ ipabV̂b1mV̂̃a!@11q~bP̂31A12b2P̂22 P̂4!#.

Here the operatorsŴa, Ŵ̃a, V̂a, andV̂̃a are expressed as linear combinations ofÊa, F̂a, Ĝa, and
Ĥa according to relations~3.26!, whereas the latter, together with the operatorsĴa and P̂I , are
defined by the expressions~4.8!.

Recall that the classical observables~3.24! or ~3.13! generate the Poincare´ superalgebra on
shell only, that is, modulo to the constraints~3.15!. The operator counterparts of the constraints
now imposed to annihilate the physical states according to Dirac quantization prescription
linear operator inOs,b , which corresponds to the Berezin covariant symbol2sna(s.0), reads

2sn̂a5 ĴaS 12
2

2s11
P̂41

2

~2s11!~2s12!
ū

]W

]ū
x̄

]W

]x̄
D 5 ĴaS 11

1

s
P̂4D 21

.

Thus, the wave equations for the superparticle are easily brought to the form

~p21m2!Fphys~p,z̄,ū,x̄ !50, @~p,Ĵ!2mP̂42ms#Fphys~p,z̄,ū,x̄ !50. ~4.14!

@It is worth noting that the second constraint equation~3.15! should be written in an equivalen
form (p,J)2mP42ms50.# Solutions of the wave equations generate a subspaceHm,s,b in H.
Furthermore, ifFPHm,s,b and Ŝ is any one of the operators~4.13!, then ŜF is a physical state
again, regardless of the particular value of the parameterq. In this sense, the wave equations a
super-Poincare´ invariant.

It is crucial now to examine explicitly whether the operators~4.13! actually generate the
N52 Poincare´ superalgebra. One gets inH @compare with Eq.~3.13!#

@Ĵa , Ĵb#25 i eabcĴc, @Ĵa , P̂b#25 i eabcP̂c, @P̂a , P̂b#250,

~4.15!
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@Ĵa , Q̂a
I #25

1

2
~ga!a

bQ̂b
I , @P̂a , Q̂a

I #250, @Q̂a
I ,P̂3#252

i

2
e IJQ̂a

J .

These relations hold true with an arbitrary number taken forq. However, the anticommutator o
the supercharges is strongly dependent on the particular value ofq:

@Q̂a
I ,Q̂b

J #152d IJpab22imbe IJeab1cab
1IJ~p21m2!1cab

2IJ
„~p,Ĵ!2mP̂42ms…1O~s22!,

~4.16!

wherecab
•IJ are some functions, andO(s22) are the corrections of higher orders ins21, which

depend onq and the other parameters likem and b. These corrections do not vanish ifq5qcl

51/4s.
Notice that the quantum value ofq is not uniquely determined. The valueqcl51/4s is derived

from the expressions~3.24!, when the relationship between the super-Poincare´ and su~1,1u2!
generators~3.20! is taken into account. However, one can start immediately from the sym
~3.13! and restore the operators applying the correspondence rule~4.5!. What is remarkable is tha
one obtains the same operators~4.13!, but the parameterq changes, andqcl appears to beq1

cl

51/(4s12). But the Poincare´ superalgebra is disclosed byq51/(4s12); the same is true for
q51/4s too.

Both the appearance of correctionsO(s22) on the rhs of Eq.~4.16! and the ambiguity in the
definition of q have the same origin, that is, anonlinearityof the Poincare´ supercharge operator
~4.13! in the generators~4.8! of the inner su~1,1u2! superalgebra. In consequence of the non
earity, different operator factor orderings may lead to the different forms forQ̂a

I , and the correc-
tions appear in response to the correspondence principle inL1u2.

We show that the disclosure of the Poincare´ superalgebra at the quantum level has transpa
mathematical ground in view of the Berezin correspondence principle. However, this disclos
quite unsatisfactory from the physical viewpoint for the quantization of the elementary sy
The latter is completely characterized by its inherent symmetries~in the present case it is theD
53 Poincare´ SUSY!. It is the representation of these symmetries in Hilbert space that allow
to identify the obtained quantum theory with the quantized elementary system. According to these
reasons, to quantize theD53 superparticle we now have to provide anexactrealization of the
representation of the Poincare´ superalgebra in the physical Hilbert space, without any correct
in the parameters of the model. To find the true quantum realization for the representation, w
try, starting from Eqs.~4.13!–~4.16!, to introduce some renormalized terms in the observa
~4.13!, which should be sufficient for the closure of the anticommutators~4.16!.

Certainly, we do not have ana priori reason, which may ensure the consistency of
renormalization procedure; a structure of the possible higher-order corrections to~4.13! is unclear
in general. Surprisingly, the exact corrections may be obtained from the simplest ansatz~4.13! for
the quantum observables. In other words, a true ordering exists for the su~1,1u2! superalgebra
operators, entering inQ̂a

I in Eq. ~4.13!, thatallows us to restore a representation of the Poinca´
superalgebra by the renormalization of the only parameter q.

It is examined by a direct calculation that the correctionsO(s22) on the rhs of Eq.~4.16!
vanish and the operators~4.13! generate the closed Poincare´ superalgebra if, and only if,

q5q7
quant517A12

1

2s11
. ~4.17!

Some details of calculations of the anticommutators~4.16! are given in the Appendix of Ref. 37
The renormalized valueq2

quant5qcl1O(s22) can be treated as a perturbative correction to
classical symbols of the supercharges. The other possible valueq1

quant emerges from the hidden
N54 supersymmetry and could be understood from the following reasons.

Let q5q2 . The operators of supercharges corresponding to the classical observables~3.25!
@see also Eqs.~3.22!# and providing the hiddenN54 supersymmetry inHm,s,b are presented by
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Q̂̃a
I 52

i

m
pa

bQ̂b
I 5 iK̂ •Q̂a

I U
q→22q

, ~4.18!

where theparity operator K̂ is introduced. It acts on the components of the wave function~4.12!
by the rule

K̂:F5~F0 ,F1 ,F2 ,F3!→K̂F5~F0 ,2F1 ,2F2 ,F3!, K̂25 Î , ~4.19!

andQ̂a
I uq→22q denote the supercharges~4.13! being considered when the constantq is substituted

for the expression (22q).
The same critical values~4.17! evidently provide the closure of theN54 Poincare´ superal-

gebra. Moreover, the parity operator~4.19! possesses remarkable features: it commutes with
even generators of theN54 Poincare´ superalgebra and anticommutes with the supercharges

@Ĵa , K̂#25@P̂a , K̂#250, @ P̂I ,K̂#250, I 51,2,3,4,
~4.20!

@Q̂a
I , K̂#15@ Q̂̃a

I , K̂#150, I 51,2.

Therefore, the operatorsQ̂8a
I 52 iK̂ Q̂a

I 5Q̂̃a
I uq→22q and Q̂̃8a

I 52 iK̂ Q̂̃a
I 5Q̂a

I uq→22q satisfy the
~anti!commutation relations being identical with Eqs.~4.15! and ~4.16! for the superchargesQ̂a

I

and Q̂̃a
I themselves. This observation clarifies to some extent the origin of the nonperturb

value q1
quant for the parameterq. Notice that two representations of the Poincare´ superalgebra

corresponding to either possible valueq are equivalent to each other. It is seen straightforwar
from relations

Q̂a8
I5ÛQ̂̃a

I Û, Q̂̃a8
I5ÛQ̂a

I Û, @Ĵa , Û#25@P̂a , Û#25@ P̂I , Û#250,

where the operatorÛ reads

Û5122ū
]W

]ū
x̄

]W

]x̄
, Û25 Î .

We do not observe, however, either any classical counterpart for the superchargesQ̂a8
I ,Q̂̃a8

I or
any algebraic construction~for instance, superalgebra! involving both sets of theN54 super-

chargesQ̂a
I ,Q̂̃a

I andQ̂a8
I ,Q̂̃a8

I on equal footing.
To summarize briefly, the ‘‘double’’ SUSY of the classical mechanics of theD53 spinning

superparticle can be lifted to the operator representation in the quantum theory. The key ste
construction is the renormalization~4.17! for the Poincare´ supercharges~4.13!. Equation~4.17!
displays two exceptional values of the parameterq providing the closure for the anticommutator
supercharges~4.16! and recovering the consistent representation of the Poincare´ superalgebra. In
accordance with the analysis of Sec. IV A 3 we conclude that the off-shell wave function~4.12!
carries the representation of the superalgebra su~1, 1u2! which is unitary infinite dimensional when
s.0, and nonunitary finite dimensional whens115 j , j being non-negative integer or hal
integer. The first possibility corresponds to theN52 superanyon, whereas in the second case
obtain conventional realization of the representations of a habitual half-integer superspin. O
easily establish that the theory describes the massive quartet ofN52, D53 superparticles when
ubu,1, and this quartet contracts to theN51 superdoublet25 in the BPS limitubu51.

The last remarkable step is that the representations of the Poincare´ superalgebra obtained ar
unitary. For example, in the case of fractional superspin (s.0), the physical spaceHm,s,b is
naturally endowed by an inner product
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~FuG!5NE dp

p0 ^FuG&L1u2, p05Ap21m2,0, ~4.21!

where ^FuG&L1u2 denotes the inner product~4.2! in Os,b , pa5(p0,p), andN is an arbitrary
normalization constant. The operators~4.13! of the N52 Poincare´ superalgebra are Hermitia
with respect to the inner product. However, the integrand in Eq.~4.2! @and, thus,~4.21!# has the
inherent singularity atuzu51 in the case ofs,0, and it is ill defined in the BPS limitubu51. The
correct realization of the inner product for the case of half-integer superspin and in the BPS
has been found in Refs. 37 and 25, respectively.

V. SUMMARY AND DISCUSSION

In the present paper we have constructed the consistent first quantized theory of anN52,
D53 superanyon as well as the one of massive superparticle of the habitual~half! integer super-
spin. The starting point for the quantization is the classical model of the superparticle i
nonlinear phase superspaceM8u45T* (R1,2)3L1u2, which is different from the standard ap
proach.

A traditional viewpoint in the construction of the spinning particle models34 is to describe the
spinning degrees of freedom by some variables being simultaneously translation invaria
Lorentz covariant~as usual, those are Lorentz vectors or spinors!. Such variables parametriz
some linear spaceL and then the extended phase space is chosen to beM5T* (R1,D21)3L or
M5T* (R1,D213L). The only difference for superparticles is to replaceD-dimensional
Minkowski spaceR1,D21 by the respective superspace. The advantage of the covariant~super!
spaceM is in the linear~‘‘covariant’’ ! action of the Poincare´ supergroup. In this approach
however, an embedding of the~super!particle physical spaceO ~that is, the underlying coadjoin
orbit! in the covariant phase~super!space may be ambiguous. Moreover, it is a common usag
this approach to give little attention to the geometry underlying the embeddingO→M.

We have demonstrated that the nonlinear phase superspaceM8u45T* (R1,2)3L1u2 of the
D53 spinning superparticle has the following remarkable features:

~i! The embedding of an appropriate coadjointOm,s,b orbit, being associated to theN52,
D53 superparticle of arbitrary fixed massm.0, superspinsÞ0, and central chargemb
(ubu,1 inM8u4!, is realized by two constraints, which provide the identical conserva
of any Casimir function of the Hamiltonian Poincare´ superalgebra. These constraints ha
transparent geometric origin and, after quantization, they are converted into wave equ
of the superparticle in a natural way.

~ii ! The ‘‘inner’’ subsupermanifoldL1u2 ofM8u4 appears to be in itself the coadjoint orbit fo
some supergroups.L1u2 is shown to be symplectomorphic to the Ka¨hler homogeneous
superspace of the supergroup SU~1, 1u2! or its subsupergroup OSp~2u2!. In this sense the
model admits the second supersymmetry@SU~1, 1u2! SUSY# along with the original Poin-
caréone.
To describe the superparticle in a standard way, it is convenient, starting from an ord
particle living in R1,D21, to extend the geometry of the Minkowski space to the supe
ometry of the respective Minkowski superspace. We have found an alternative way, a
for dimensionD53. The intrinsic structure ofD53 spinning particle may be described
terms of the Lobachevsky geometry. To introduce the supersymmetry we may exten
inner manifold, going to the Lobachevsky supergeometry.
The following interpretation is admissible. TheD53 particle lives in an ordinary
Minkowski spaceR1,2. In addition thesuperspin degrees of freedom are associated
its internal structure and generate the internal phase superspaceL1u2 with an inherent
SU~1, 1u2! supersymmetry, which is different from the Poincare´ ~super!symmetry.

~iii ! We suggest nontrivial quantization of the superparticle in the extended phase supe
M8u4, which combines the canonical quantization inT* (R1,2) and the Berezin quantizatio
in the inner phase superspaceL1u2. This quantization scheme leads naturally to the fie
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carrying infinite-dimensional or finite-dimensional representation of the supergroup S~1,
1u2! depending on the fractional or habitual~half!integer value of spin. The results ar
completely consistent with the previous known description ofD53 nonsupersymmetric
particles as mechanical systems.6,13,14

Surprisingly, there are two, unitary equivalent to one another, series ofN52 supercharges in
quantum theory, which correspond to different possibilities for the parameterq in Eq. ~4.17!. Only
one of them, namelyq2 , is related directly to a conventional classical limit. Another possi
value q1 is shown to be related to the special properties~4.20! of the parity operator~4.19!.
However, the classical counterpart of this parity structure remains unclear, and the origin
second possible value forq may seem enigmatic. Notice that the parity operator generates
structure of the deformed Heisenberg algebra in Hilbert space of anyon26 or N51 superanyon.25

It would be interesting to understand what is a geometry behind the parity operator fo
N52 superanyon.

The significance of this one-particle theory may vary, in particular, depending on the p
bility of an efficient second quantization of the model. One of the problems here is to const
Lagrangian of the theory, which leads to the one-particle wave equation we have deduced fr
classical mechanical action. The first step of construction may be to present two independen
equations of superanyon@like Eqs.~4.14!# in the form of one spinor equation, when the mass a
spin shell fixing conditions may emerge as integrability conditions. It is known that the sim
construction for anyons gives a simple action functional,8,26 which may be relevant for the secon
quantization of fractional spin particles. An adequate superextension~at least forN51! may be
constructed probably using the representations of the su~1, 1u2! superalgebra in the same way,
the spinor set of the anyon wave equations was constructed in Ref. 26 using the atypical U
osp~2u2!. In this connection it should be noted that the exploitation of the atypical UIRs of
osp~2u2! superalgebra and of the deformed Heisenberg algebra produces the linear set of
wave equations of theN51, D53 superparticle only for special~half! integer j 5 1

2 and j 51
values of the superspin.26

And, of course, the consistent interaction of~super!anyons remains an intriguing problem
Even in the first quantized theory the suggested approach to the description of anyon,
attempted for the extension to an interaction with an external field, implies~in the framework of
minimal phase space! a perturbative representation for nonlinear commutation relations in term
a series in powers of the field strengths.18 In particular, it is unclear whether any consiste
generalization exists for the wave equations of~super!anyons obtained in this paper in the pre
ence of arbitrary external fields.
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An inversion inequality for potentials in quantum
mechanics
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Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Boulevard West, Montre´al, Québec H3G 1M8, Canada
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We suppose:~1! that the ground-state eigenvalueE5F(v) of the Schro¨dinger
Hamiltonian H52D1v f (x) in one dimension is known for all values of the
coupling v.0; and ~2! that the potential shape can be expressed in the form
f (x)5g(x2), whereg is monotone increasing and convex. The inversion inequality
f (x)< f̄ (1/4x2) is established, in which the ‘‘kinetic potential’’f̄ (s) is related to
the energy functionF(v) by the transformation$ f̄ (s)5F8(v), s5F(v)2vF8(v)%.
As an example,f is approximately reconstructed from the energy functionF for the
potential f (x)5ax21b/(c1x2). © 1999 American Institute of Physics.
@S0022-2488~99!01705-3#

I. INTRODUCTION

We suppose that a discrete eigenvalueE5F(v) of the Schro¨dinger Hamiltonian,

H52D1v f ~x!, ~1.1!

is known for all sufficiently large values of the coupling parameterv.vc , and we try to use this
data to reconstruct the potential shapef. Herevc is the critical value of the coupling parameter f
the eigenvalue considered. For the present discussion we shall assume that the potentia
f (x) is nonconstant, symmetric, and monotone increasing forx.0. The usual ‘‘forward’’ problem
would be the following: given the potential~shape! f, find the energy trajectoryF; ‘‘geometric
spectral inversion’’ is the inverse of this, that is to say,F→ f .

This problem should be distinguished from the ‘‘inverse problem in the coupling const
discussed, for example, by Chadan and Sabatier.1 In this latter problem, the discrete part of th
‘‘input data’’ is a set$vn% of values of the coupling constant that all yield the identical ene
eigenvalueE. The indexn might typically represent the number of nodes in the correspond
eigenfunction. In contrast, for the problem discussed in the present paper,n is kept fixed and the
input data is the graph„Fn(v),v…, where the coupling parameter has any valuev.vc(n), and
vc(n) is the critical value ofv for the support of a discrete eigenvalue withn nodes; for the ground
state in one dimension we have, in general,vc(0)50. For the excited states, the critical couplin
depends on the potential shape; for example, in the case of the square well,vc(n)5(np/2)2; for
the sech-squared potential with shapef (x)52sech2(x), we have2 vc(n)5n(n11),
n50,1,2, . . . .There are strong indications on the basis of studies involving the inversion o
WKB approximation3 that inversion from a single fixed energy trajectoryFn becomes more
efficient asn increases~and the problem becomes more classical!. However, the present paper wi
be concerned only with inversion from the ground-state energy functionF0(v)5F(v) for the
problem in one spatial dimension.

By making suitable assumptions concerning the class of potential shapes, theoretical p
has already been made with this inversion problem.4–7 In Ref. 5 a ‘‘concentration lemma’’ is
proved. If we suppose thatHc5Ec and ici51, this lemma quantifies the monotone increase

a!Electronic mail: rhall@cicma.concordia.ca
22540022-2488/99/40(5)/2254/5/$15.00 © 1999 American Institute of Physics
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concentration towardx50 of the probability densityc2(x,v) with increasingv. In Ref. 6 this
lemma is used to establish the uniqueness of the potential shapef corresponding to a given energ
function F. The class of potentials for which this uniqueness proof applies are those nonco
potential shapesf that are symmetric, continuous atx50, piecewise analytic,8 and monotone
increasing forx.0. The ‘‘envelope inversion’’ discussed in Ref. 6 involved a class of poten
that could be expressed as a smooth monotone transformationf (x)5g„h(x)… of a soluble poten-
tial h(x). The approximation obtained wasad hoc, in the sense that nothing was knowna priori
concerning the relationship between the approximation and the~unknown! exact potential corre-
sponding to the given energy functionF(v). In the present paper we establish an invers
inequalityfor a special case of envelope inversion, namely the case in which the ‘‘envelope b
is the harmonic-oscillator shapeh(x)5x2. Thus, we assume that the potential shapef (x) has the
representation

f ~x!5g~x2!, ~1.2!

whereg is monotone increasing and convex (g9.0). This is a strong assumption, but, as w
prove in Sec. II, it yields a corresponding strong result, that is to say,

f ~x!< f̄ S 1

4x2D , ~1.3!

wheref̄ (s) is the ‘‘kinetic potential’’ corresponding to the potentialf (x). The parameters is equal
to the mean kinetic energŷ2D& and, in terms ofs, the eigenvalueF(v) may be represented9

exactlyby the semiclassical expression

E5F~v !5min
s.0

$s1v f̄ ~s!%. ~1.4!

The transformationsF↔ f̄ are essentially Legendre transformations.10 This is so because we
know5 that F and f̄ have definite and opposite convexity; more particularly, we know

f̄ 9~s!F9~v !52
1

v3,0. ~1.5!

The transformation in the direction needed hereF→ f̄ will be given explicitly in Sec. II, below
where we also prove the inequality~1.3!, the main result of this paper. In Section~III ! we discuss
an example for which we compare the upper approximation given by~1.3! with the corresponding
exact result.

II. PROOF OF THE INVERSION INEQUALITY

We suppose that the exact normalized wave function corresponding to the potentialv f (x) is
given byc(x,v), where the coupling parameterv.0. Thus, (c,Hc)5F(v). We know how this
total expectation value is divided between kinetic and potential energies for, in more deta
have

^2D&5~c,2Dc!5F~v !2vF8~v !5s,
~2.1!

^ f &5~c, f c!5F8~v !5 f̄ ~s!.

These equations also define the kinetic potentialf̄ (s) parametrically in terms of the parameterv
.0. We first use Heisenberg’s uncertainty inequality, which gives us

^2D&^x2&5s^x2&> 1
4. ~2.2!
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We now consider

f̄ ~s!5^ f ~x!&5^g~x2!&>g~^x2&!. ~2.3!

This inequality follows from Jensen’s inequality11 and the fact thatg is convex. By applying~2.2!
in ~2.3!, and using the monotony ofg, we find

f̄ ~s!>gS 1

4sD5 f S 1

2As
D . ~2.4!

Finally, by lettingx51/2As we establish the inversion inequality,

f ~x!< f̄ S 1

4x2D . ~2.5!

h

Since the transformation in the directionF→ f̄ is already expressed by~2.1!, the upper ap-
proximation provided by the inversion inequality is now completely determined.

III. AN EXAMPLE

We consider the potential shape given by

f ~x!5ax21b/~c1x2!, a,b,c.0. ~3.1!

The casea5b5c51 is illustrated in Fig. 1, which shows the potential shapef (x), in the
inset graph, and also the ground-state energy functionF(v) generated from it. In Fig. 2 the uppe
approximationA obtained by the inversion inequality is shown along with the exact pote
shapef itself. The set of corresponding ‘‘exact’’ wave functionsc(x,v) are also shown for 3
31024<v<10. The wave function normalization is arbitrarily taken here to bec(0,v)520, so
that the graphs fit on the same figure as the potentials. As the couplingv increases, the wave
functions become monotonically more concentrated near zero, in agreement with the ‘‘conc
tion lemma’’ mentioned in Sec. I.

FIG. 1. The potentialf (x)5x211/(11x2) is shown in the inset graph, along with the corresponding ground-state en
function E5F(v). The aim of geometric spectral inversion is to reconstructf from F.
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IV. CONCLUSION

Although the assumption behind the inversion inequality is strong, the fact that suc
inequality exists may be important, especially if it can eventually be generalized. The expre
of this result in terms of kinetic potentials could be avoided, in principle. However, the repr
tation of the energy functionsF(v) in terms of f̄ (s) has already yielded some very effectiv
bounds in the forward direction, and it is natural to explore this same apparatus for the
difficult inversion problem. For example, in the forward direction the envelope method9 may be
expressed succinctly as

f ~x!5g„h~x!…⇒ f̄ ~s!'g„h̄~s!…, ~4.1!

where'5> if g is convex and'5< if g is concave. Once one has such an approximation
f̄ (s), it can immediately be inserted in the expression~1.4! to yield an approximation for the
corresponding eigenvalueE5F(v). In the present paper we have found one caseh(x)5x2 for
which an inequality is retained for the inverse problem. In Ref. 6 we also explored the id
inverting the Rayleigh–Ritz variational method, and we obtained an inversion approximation
respect to a chosen family of ‘‘trial’’ functions. However, unlike the situation in the forw
direction, the inversion approximation obtained was againnot an inequality. Our experience with
this problem so far suggests that it is difficult to generate potential inequalities for geom
spectral inversion.
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Weyl anomaly in higher dimensions and Feynman rules
in coordinate space
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An algorithm to obtain the Weyl anomaly in higher dimensions is presented. It is
based on the heat-kernel method. Feynman rules, such as the vertex rule and the
propagator rule, are given in~regularized! coordinate space. A graphical calculation
is introduced. The six-dimensional scalar-gravity theory is taken as an example,
and its explicit result is obtained. ©1999 American Institute of Physics.
@S0022-2488~99!01805-8#

I. INTRODUCTION

The anomaly phenomenon is, as well as the renormalization, one of the important asp
the quantum field theories. It is a local quantum effect originating from regularization o
continuous space–time. We may say it is the problem of how to define the space–time
continuum. Generally, the symmetry, imposed at the classical level does not hold at the qu
level due to the anomaly. As for the chiral anomaly, which is the anomaly concerned with tg5

symmetry~chiral symmetry!, the general form is well established in arbitrary even dimensions1 It
is fixed, except for an overall coefficient, by its cohomology structure, and is given in a bea
form in terms of the differential form: tr(R`R`¯`R), tr(F`F`¯`F). The topological
nature due to theg5 projection is the origin of its simplicity. On the other hand, as for the W
anomaly, the general form in higher dimensions is not so simple. This is the anomaly conc
with local scale transformations. Cohomology analysis restricts the Weyl anomaly to some e
but there generally remains numerous candidate terms in higher dimensions.2–5 The undetermined
coefficients of those terms must be fixed in some way. The situation originates from the ‘‘
structure of the functional space on which the scale transformation acts. In the developmen
string theory orM theory, it becomes more and more necessary to investigate the Weyl ano
in higher-dimensional field theories.6 At this circumstance we present a new formalism for it.

The Weyl anomaly itself is not harmful to the construction of physical theories becaus
know that realistic theories have some dimensional parameters, such as the mass or the
logical constant, and they break the Weyl symmetry. However, when we try to understan
origin of those massive parameters, the Weyl anomaly is so important because it trigge
symmetry breaking of the conformal invariant vacuum. In this sense the Weyl anomaly c
regarded as a ‘‘softer’’ anomaly than the chiral one. The latter threatens the consistency
theory whereas the former does not. The nonrenormalization theorem is valid for the
whereas generally not for the former.

In supersymmetric theories, however, it is also known that both anomalies make a
multiplet together with the super-current.7 Under the supersymmetric treatment, both anoma
are intimately related. In this connection there has been a lot of work. Because our interest
to establish a general algorithm to treat the Weyl anomaly of the higher-dimensional theorie

a!On leave of absence from the Department of Physics, University of Shizuoka, Yada 52-1, Shizuoka 422, Japan. E
mail: ichinose@u-shizuoka-ken.ac.jp

b!Electronic mail: nori@kurims.kyoto-u.ac.jp
22590022-2488/99/40(5)/2259/32/$15.00 © 1999 American Institute of Physics
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do not consider supersymmetry here. We suppose, using the present result, that we can inv
how the Weyl anomaly is constrained by the supersymmetry.

We analyze the Weyl anomaly in the heat-kernel regularization. The content is essentia
same as, or overlaps with, topics with other names such as the effective action analys
background field method, the Schwinger–De Witt technique, Seeley series, etc. They a
some background functional that represents~one-loop! quantum effects. It has a long history sinc
Schwinger,8 DeWitt,9 and Seeley.10 Especially the first author, in 1951, treated quantum ma
theories in external gauge fields, keeping the gauge invariance of the effective action. He
duced an additional ‘‘coordinate’’ into the ordinary space~–time! coordinates, called ‘‘proper
time’’ or ‘‘temperature’’ in a natural way. It was exploited by Alvarez-Gaume´ and Witten1 in the
modern problem of the chiral anomaly of the gravitational theories. Later it was generalized
Weyl anomaly by a SUNY group.11,12

The effective action has been analyzed in various ways. Its divergent part was systema
and algorithmically analyzed by t’Hooft13 in 1973 and with Veltman14 in 1974 using dimensiona
regularization. As will be shown later, the Weyl anomaly is obtained from the ‘‘heat kern
which is the one-loop effective action, with the proper time as the ultraviolet regularization
evaluation of the heat kernel has been well developed by many people.10,15–21Each of them has
their own characteristic formalisms. Generally they start with expressing a differential opera
some general background quantities. Most of them put an emphasis on the covariance
formulas in the intermediate stages. As originally done by tHooft,13 the ‘‘intermediate covari-
ance’’ is powerful as far as the lower-order calculations, such as the heat kernel on two an
dimensions, are concerned. However, at higher order~this means higher dimensions too!, it hin-
ders one from performing explicit calculations because many more ‘‘intermediate invaria
appear than those appearing in the final explicit answer. The important thing is not the form
intermediate stages, but the final explicit result. Aiming at the treatment of the Weyl anom
higher dimensions, we present a new algorithm that is based on a simple weak-field expans
course, we assume the invariance of the general coordinate and gauge symmetries at t
result, because it is guaranteed by the background~effective action! formalism.9,13,22

The following are new points of the present approach.

~1! We take a formalism in the regularized coordinate space, that is, the space wi
ordinary space~–time! coordinates and the proper time.23,24 The Feynman rules in the coordina
space are given for the anomaly~effective action! calculation.25 The ultraviolet regularization is
done with the Schwinger’s parameter~proper time!. The regularization lets us properly evalua
both chiral and Weyl anomalies.26,27 The Feynman rules help us to investigate the Weyl anom
in higher-dimensional theories.

~2! The graphical representation is taken at all stages. The familiar procedures in the or
perturbative treatment, such as the propagator rule and the vertex rule, are all graphically
sented in coordinate space. The expanded terms themselves are also graphically repr
Especially, we introduce a ‘‘graphical calculation.’’ This makes the higher-order calculation t
parent and the Weyl anomaly calculation in the higher dimensions tractable.

~3! We have not introduced any covariant quantities in intermediate stages. It is based
weak-field perturbation. Although losing manifest general covariance in intermediate stage
expanded elements have the simplest symmetry~w.r.t. the suffix permutation! and are preferable
for the computer algorithm.

~4! We focus only on a special type of term: (]]h)n, in then-dimensional space. These are t
lowest order of the product ofn Riemann tensors. We demonstrate that they can determine
Weyl anomaly up to ‘‘trivial terms.’’

In Sec. II we briefly give the present formalism of the Weyl anomaly. The anomaly is g
by the trace of the heat kernel. In Sec. III we present the Feynman rules to compute the hea
to any higher order. They are naturally expressed in theregularizedcoordinate space, that is, th
space ofn-dim ordinary space coordinates plus the the proper time. As always in perturb
approaches, a graphical representation helps to systematically compute the heat kerne
                                                                                                                



cessary.
four

aly for
ed to
calcu-
-dim
neral

d

2261J. Math. Phys., Vol. 40, No. 5, May 1999 S. Ichinose and N. Ikeda

                    
higher order. The Taylor expansion, with respect to the ‘‘regularization’’ parametert, is explained
in Sec. IV. The more the number of space dimensions becomes, the more expansion is ne
We apply the general algorithm to the 6-dim scalar-gravity theory in Sec. V. We focus on
special graphs and introduce a new graphical calculation. The final result of the Weyl anom
the model is obtained in Sec. VI. We conclude in Sec. VII. Four appendices are provid
supplement the text. The propagator rules are given in Appendix A. Some supplementary
lation, relegated by Sec. V of the text, is done in Appendix B. Weak field expansion of the 6
scalar gravity is graphically given in Appendix C. The table of coefficients, when some ge
invariants are weak-field expanded, is given in Appendix D.

II. FORMALISM

Let us explain the present formulation of anomalies taking a simple example:n-dim Euclidean
gravity-scalar coupled system~see Ref. 26!,

L@gmn ,f#5Agf~2 1
2¹

21 1
2qR!f[ 1

2f̃ Df̃,
~1!

q52
n22

4~n21!
, Dx[A4 gS 2¹x

22
n22

4~n21!
R~x! D 1

A4 g
,

wheregmn and f are the metric field and the scalar field, respectively. We have introducef̃
[A4 gf for the measureDf̃ to be general coordinate~BRS! invariant.28 This Lagrangian is in-
variant under the local Weyl transformation:

gmn~x!85e2a~x!gmn~x!, f̃~x!85e2a~x!f̃~x! @f~x!85e~n22!a~x!/2f~x!#, ~2!

wherea(x) is the parameter of the local Weyl transformation.
Even if the Lagrangian is Weyl invariant, the quantum theory is generally not~Weyl

anomaly!. The effective actionG@gmn#, defined by

e2G@gmn#5E Df̃ expH 2E dnxL@gmn ,f#J , ~3!

changes as

e2G@gmn8 #5E Df̃8 expH 2E dnxL@gmn8 ,f8#J
5E Df̃~x!det

]f̃8~y!

]f̃~x!
expH 2E dnxL@gmn ,f#J . ~4!

The Weyl anomaly is given by the Jacobian,29,30

J[detF ]f̃8~y!

]f̃~x!
G5exp„2Tr a~x!dn~x2y!1O~a2!…. ~5!

Taking the heat-kernel regularization, we obtain the expression for the Weyl anomaly as

J5exp„2 lim
l→10

Tr@a~x!G~x,y;t !#1O~a2!…,

~6!

Weyl anomaly5
dG

da~x!
U

a50

52
d ln J

da~x!
U

a50

522gmn^Tmn&5 lim
t→10

Tr G~x,y;t !,
                                                                                                                



n
ion

d

tive
nt

nt

s,

solve

2262 J. Math. Phys., Vol. 40, No. 5, May 1999 S. Ichinose and N. Ikeda

                    
whereG(x,y;t) is the heat kernel defined by

S ]

]t
1DxDG~x,y;t !50, G~x,y;t !S ]Q

]t
1DQ y

†D 50,

~7!
lim

t→10
G~x,y;t !5dn~x2y!,

where DQ x means it operates on the left. The parametert is regarded here as a regularizatio
parameter and is called Schwinger’sproper time.8 The last equation expresses the regularizat
of the delta functiondn(x2y).31,32 G(x,y;t) can be symbolically written as

G~x,y;t ![^xue2tDuy&, t.0. ~8!

We note here the physical dimension of the space coordinatexm and the proper timet are

@xm#5L, @ t#5L2, ~9!

whereL is some length. For other~conformally invariant! theories, the Weyl anomaly is obtaine
by replacing the operatorD above. See Ref. 26 for details.

III. FEYNMAN RULES IN COORDINATE SPACE

A. Heat kernel and Feynman graph

Let us solve Eq.~7! in weak-field perturbation theory. For a general theory with the deriva
couplings up to the second order, the operatorDx

i j can be always divided into the field-independe
~free! part and the field-dependent~perturbation! one:

Dx
i j 52dmnd i j ]m]n2V i j ~x!,

V i j ~x![Wmn
i j ~x!]m]n1Nm

i j ~x!]m1Mi j ~x!, ~10!

i , j 51,2,...,N,

whereWmn
i j , Nm

i j , andMi j are external fields~background coefficient fields! and the field suffixes
~such as a fermion suffix and a vector suffix! i , j are introduced for general use. In the prese
example~1!, the above quantities are explicitly written as (N51)

V~x!5A4 g~“m
“m2qR!

1

A4 g
2dmn]m]n ,

Wmn5gmn2dmn52hmn1hmlhln1O~h3!,
~11!

Nl52gmnGmn
l 2glmGmn

n 52]mhlm1O~h2!,

M52qR1 1
4g

mn$Gml
l Gns

s 12Gmn
l Gls

s 22]nGml
l %52q~]2h2]a]bhab!2 1

4]
2h1O~h2!,

where gmn5dmn1hmn , h[hmm . The graphical representation ofWmn , Nl , and M above is
given, up toh3 order, for then56-dim case in Appendix C: Fig. 16 forWmn andNl , Figs. 17–21
for M. The usage of general coefficientsWmn

i j , Nm
i j , andMi j , instead of their concrete content

makes it possible to perform the general treatment valid for many theories.26,33,34All equations
below are valid for all theories insofar as they have no higher-derivative interactions. Let us
the differential equation~7! perturbatively for the case of weak external fields (Wmn

i j ,Nm
i j ,Mi j ). ~In

the present example, this corresponds to perturbation aroundflat space.! The differential equation
~7! becomes
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S ]

]t
2]2DGi j ~x,y;t !5V ik~x!Gk j~x,y;t !,

~12!

]2[dmn]m]n5 (
m51

n S ]

]xmD 2

.

In the following we suppress the field suffixesi , j ,..., andtake the matrix notation. This equatio
~12! is then-dim heat equation with the small perturbationV. We give two important quantities in
order to obtain the solution.~This approach is popular in the perturbative quantum field the
under the namepropagator approach.35 In Ref. 35, the momentum representation is taken, wh
is to be compared with the coordinate one of the present approach. The Weyl anomaly in the
theory was analyzed in this approach by Alvarez.36!

1. Heat equation

The heat equation,

S ]

]t
2]2DG0~x,y;t !50, t.0, ~13!

has the solution

G0~x,y;t !5G0~x2y;t !5E dnk

~2p!n exp$2k2t1 ikm~x2y!m%I N5
1

~4pt !n/2 c2~x2y!2/4tI N ,

k2[ (
m51

n

~km!2, ~14!

where I N is the identity matrix of the sizeN3N. G0 satisfies the initial condition:
limt→10 G0(x2y;t)5dn(x2y)I N . We define

G0~x,y;t !50, for t<0. ~15!

2. Heat propagator

The heat equation with the delta-function source defines the heat propagator,

S ]

]t
2]2DS~x,y;t2s!5d~ t2s!dn~x2y!I N ,

S~x,y;t !5S~x2y;t !5E dnk

~2p!n

dk0

2p

exp$2 ik0t1 ik•~x2y!%

2 ik01k2 I N5u~ t !G0~x2y;t !, ~16!

k2[ (
m51

n

kmkm, k•x[ (
m51

n

kmxm.

u(t) is the step functiondefined byu(t)51 for t.0; u(t)50 for t,0. S(x2y;t) satisfies the
initial condition limt→10 S(x2y;t)5dn(x2y)I N andS(x,y;t)50 for t<0.

Now the formal solution of~12! with the initial condition~7! is given by

G~x,y;t !5G0~x2y;t !1E dnzE
2`

`

ds S~x2z;t2s!V~z!G~z,y;s!. ~17!

G(x,y;t) appears in both sides above. We can iteratively solve~17! as8
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G~x,y;t !5G0~x2y;t !1E SVG01E SVE SVG01¯ ,

G1~x,y;t ![E SVG05E dnz dsS~x2z;t2s!V~z!G0~z2y;s!

5E dnzE
0

t

ds G0~x2z;t2s!V~z!G0~z2y;s!,

~18!

G2~x,y;t ![E SVE SVG05E dnz8 ds8 S~x2z8;t2s8!V~z8!

3E dnz ds S~z82z;s82s!V~z!G0~z2y;s!

5E dnz8E
0

t

ds8 G0~x2z8;t2s8!V~z8!

3E dnzE
0

s8
ds G0~z82z;s82s!V~z!G0~z2y;s!,

G3~x,y;t !5E dnz9E
0

t

ds9 G0~x2z9;t2s9!V~z9!E dnz8E
0

s9
ds8 G0~z92z8;s92s8!V~z8!

3E dnzE
0

s8
ds G0~z82z;s82s!V~z!G0~z2y;s!.

Expressions for higher-order terms are similarly obtained.

FIG. 1. Graph ofG0(x2y;t).

FIG. 2. Graph ofG1(x,y;t).
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As in the ordinary field theory, it is illuminating to represent this perturbative solution
graphs. We do it in the (n11)-dimensional space, which is composed of the space of the ord
n-dim ~Euclidean! space plus 1-dim positive proper time. In the above solution,G0(x2y;t) plays
the role of ‘‘propagator.’’ It is represented by a directed37 straight line as in Fig. 1.V(z) plays the
role of ‘‘vertex,’’ which acts on the system, during the process of ‘‘propagation of particle
sometimes according to the perturbation order. The situation up to the third order is represe
Figs. 2–4. We can easily write down the expression of any higher order,Gk(x,y;t), with the help
of this graphical representation.

Generally, inn-dim, the terms up toGn/2 are sufficient for the anomaly calculation.26 In this
sense, the present expansion looks like that with respect to the space~–time! dimension.

B. Factoring out the scale parameter t

Because of the presence of the positive regularization parametert, we can safely~without
singularity! take the trace part,x5y, in the above equations:

G~x,x;t !5G0~0;t !1G1~x,x;t !1G2~x,x;t !1G3~x,x;t !1¯ ,
~19!

G0~0;t !5
1

~4pt !n/2 I N .

As shown in~6!, the t0 part ofG(x,x;t) is the Weyl anomaly. In order to see theirt dependence,
it is best to replace the dimensional coordinate variables such as (z,s) in ~18! by the dimensionless
ones (w,r ),

G1~x,x;t ![E SVG0U
x5y

5
1

t ~n/2!21 E dnwE
0

1

dr G0~w;12r !V~x1Atw!G0~w;r !, ~20!

1.r 5
s

t
.0, w5~z2x!/At, ~21!

FIG. 3. Graph ofG2(x,y;t).

FIG. 4. Graph ofG3(x,y;t).
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where the relation~A2! is used. In the same way, we obtain

G2~x,x;t ![E SVE SVG0U
x5y

5
1

t ~n/2!22 E dnw8E
0

1

dr8 G0~w8;12r 8!V~x1Atw8!

3E dnwE
0

r 8
dr G0~w82w;r 82r !V~x1Atw!G0~w;r !, ~22!

where

1.r 85s8/t.r 5s/t.0, w85~z82x!/At, w5~z2x!/At,

G3~x,x;t ![E SVE SVE SVG0U
x5y

5
1

t ~n/2!23 E dnw9E
0

1

dr9 G0~w9;12r 9!V~x1Atw9!

3E dnw8E
0

r 9
dr8 G0~w92w8;r 92r 8!V~x1Atw8!

3E dnwE
0

r 8
dr G0~w82w;r 82r !V~x1Atw!G0~w;r !, ~23!

where

1.r 95s9/t.r 85s8/t.r 5s/t.0,

w95~z92x!/At, w85~z82x!/At, w5~z2x!/At.

The above quantities ofGk(x,x;t), (k50,...,3) are depicted in Figs. 5–8, with the dimensionle

FIG. 5. Graph ofG0(0;t).

FIG. 6. Graph ofG1(x,x;t).
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quantities. We can easily write down higher-order terms with the help of graphs.

C. Vertex and propagator rules

The vertex operatorV(x1Atw) in the expressionGk(x,x;t) has differentials,

V~x1Atw!5
1

t
Wmn~x1Atw!

]

]wm

]

]wn 1
1

At
Nm~x1Atw!

]

]wm 1M ~x1Atw!, ~24!

and acts only on the ‘‘adjacently right’’G0 in Eqs.~20!–~23!. Here we have the followingvertex
rule: Vertex Rule 1,

V~x1Atw8!G0~w82w;r 82r !5
1

$4p~r 82r !%n/2 V~x1Atw8!e2~w82w!2/4~r 82r !

5H 1

t
Wmn~x1Atw8!S 2

dmn

2~r 82r !
1

~w82w!m~w82w!n

4~r 82r !2 D
1

1

At
Nm~x1Atw8!S 2

~w82w!m

2~r 82r ! D1M ~x1Atw8!J
3G0~w82w;r 82r !

5V~x1Atw8;w82w,r 82r ;t !G0~w82w;r 82r !,

where

FIG. 7. Graph ofG2(x,x;t).

FIG. 8. Graph ofG3(x,x;t).
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V~x;w,r ;t ![
1

t
Wmn~x!S 2

dmn

2r
1

wmwn

4r 2 D1
1

At
Nm~x!S 2

wm

2r D1M ~x!, ~25!

where V doesnot have differentials. Especially takingr 50, w50 in the above and dropping
primes~8!, we obtain the following relation: Vertex Rule 2,

V~x1Atw!G0~w;r !5H 1

t
Wmn~x1Atw!S 2

dmn

2r
1

wmwn

4r 2 D
1

1

At
Nm~x1Atw!S 2

wm

2r D1M ~x1Atw!J G0~w;r !

5V~x1Atw;w,r ;t !G0~w;r !. ~26!

Making use of the above rule, we can evaluateG1(x,x;t) of Eq. ~20! as

G1~x,x;t !5
1

t ~n/2!21 E dnwE
0

1

dr G0~w;12r !G0~w;r !V~x1Atw;w,r ;t !

5
1

~4p!n/2t ~n/2!21 E dnwE
0

1

dr G0~w;~12r !r !V~x1Atw;w,r ;t !, ~27!

where the relationG0(w;12k)G0(w;r )5@1/(4p)n/2#G0„w;(12r )r …, 1.r .0, which is derived
from apropagator rule4 ~A8!, is used in order to reduce the number ofG0’s by one. In Appendix
A, we list the propagator rules~A5!–~A8!, and their graphical~‘‘geometrical’’! expressions in the
coordinate space: Figs. 10–13.G2(x,x;t) of Eq. ~22! is written, in terms ofV, as

G2~x,x;t !5
1

t ~n/2!22 E dnw8E
0

1

dr8 G0~w8;12r 8!E dnwE
0

r 8
dr V~x1Atw8;w82w,r 82r ;t !

3G0~w82w;r 82r !V~x1Atw;w,r ;t !G0~w;r !. ~28!

By changing the integration variablew8 to a new onew̄ defined below, we can make allG0’s have
space variables independent of each other. Using the following relations:

G0~w8;12r 8!G0~w82w;r 82r !5G0S w̄;
~12r 8!~r 82r !

12r DG0~w;12r !,

1.r 8.r , w̄5w82
12r 8

12r
w, ~29!

G0~w;12r !G0~w;r !5
1

~4p!n/2 G0~w;~12r !r !, 1.r .0,

which are obtained from Rule 2,~A6!, and Rule 3,~A8!, respectively, we can finally evaluate E
~28! as

G2~x,x;t !5
1

~4p!n/2t ~n/2!22 E dnw̄E
0

1

dr8E dnwE
0

r 8
drG0S w̄;

~12r 8!~r 82r !

12r D
3G0„w;~12r !r …V~x1Atw8;w82w,r 82r ;t !V~x1Atw;w,r ;t !,

~30!

w85w̄1
12r 8

12r
w,
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where the integration variablew8 is changed tow̄ (det@](w8,w)/](w̄,w)#51). We note the following
things in the above evaluation.

~1! The number of propagators,G0’s, decreases by one and becomes the same as that of the
integration variables.

~2! All ‘‘Gaussian’’ coordinates inG0’s ~w̄ andw in the present case! can be taken to be inde
pendent.

~3! In the above reduction, we have applied the propagator rules onG0’s from ‘‘left’’ to ‘‘right.’’
There are some other choices~for example, from ‘‘right’’ to ‘‘left’’ ! which give expressions
different from ~30! in appearance.

These properties are valid for any order ofGk(x,x;t).
Similarly, we can evaluateG3 as

G3~x,x;t !5
1

~4p!n/2t ~n/2!23 E dnw% E dnw̄E dnwE
0

1

dr9E
0

r 9
dr8E

0

r 8
dr

3G0S w% ;
~12r 9!~r 92r 8!

12r 8 DG0S w̄;
~12r 8!~r 82r !

12r DG0„w;~12r !r …

3V~x1Atw9;w92w8,r 92r 8;t !V~x1Atw8;w82w,r 82r ;t !V~x1Atw;w,r ;t !,
~31!

w95w% 1
12r 9

12r 8
w̄1

12r 9

12r
w, w85w̄1

12r 8

12r
w,

where the integration variablesw9 and w8 are changed tow% and w̄ (det@](w9,w8,w)/](w% ,w̄,w)#
51). As in G2 , there are some different expressions depending on how we apply the prop
rules inG0’s.

Because of the integration formulas~A3! of Appendix A, the space integrations in~27!, ~30!
and ~31! give a product of Kronecker’s deltas times some rational function of dimension
parameters. From the above results we can write downGk(x,x;t) for any higherk. Gk(x,x;t) has
k-fold parameter integrals.

IV. EVALUATION OF t 0 PART OF G„x ,x ; t …—TAYLOR EXPANSION FOR TAKING THE
LIMIT t˜10—

Let us evaluateG(x,x;t)u t0. We considern56-dim space. We focus on the (]]h)3-type
terms, because that part has the sufficient information to determine the Weyl anomaly in
Taking the Taylor expansion ofWmn(x1Atv), Nm(x1Atv), and M (x1Atv) aroundAtv50,
V(x1Atv;w,r ;t) can be expanded as

V~x1Atv;w,r ;t !5
1

t
Wmn~x1Atv !S 2

dmn

2r
1

wmwn

4r 2 D1
1

At
Nm~x1Atv !S 2

wm

2r D1M ~x1Atv !

5
1

t
V21~x,v;w,r !1V0~9!1tV1~9!1¯1

1

At
V21/2~9!1AtV1/2~9!1¯ , ~32!

whereV21/2, V1/2,..., areirrelevant parts because they all have odd-time derivatives ofh’s: ]h,
]]]h,... . V21(9)5Wmn(x)(2dmn/2r 1wmwn/4r 2) is also irrelevant because it has no derivativ
of h’s.38 V0 , V1 , V2 are given by
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V0~x,v;w,r !5
1

2!
]a1

]a2
Wmn•va1va2S 2

dmn

2r
1

wmwn

4r 2 D1]a1
Nm•va1S 2

wm

2r D1M ,

V1~x,v;w,r !5
1

4!
]a1

]a2
¯]a4

Wmn•va1va2
¯va4S 2

dmn

2r
1

wmwn

4r 2 D1
1

3!
]a1

]a2
]a3

Nm

•va1va2va3S 2
wm

2r D1
1

2!
]a1

]a2
M•va1va2, ~33!

V2~x,v;w,r !5
1

6!
]a1

]a2
¯]a6

Wmn•va1va2
¯va6S 2

dmn

2r
1

wmwn

4r 2 D1
1

5!
]a1

]a2
¯]a5

Nm

•va1va2
¯va5S 2

wm

2r D1
1

4!
]a1

]a2
¯]a4

M•va1va2
¯va4.

The Taylor expansion ofWmn , Nm , M, for the case of the 6-dim scalar-gravity theory is grap
cally shown in Appendix C:~C3! for V0 , ~C5! for V1 , and~C7! for V2 .

Now we pick up thet0 part39 and focus on the (]]h)3 terms in the final form. ForG1(x,x;t),

G1~x,x;t !5
1

~4p!3 E
0

1

drE d6wG0~w;~12r !r !F 1

t2 V~x1Atw;w,r ;t !G ,
~34!

F 1

t2 V~9!GU
t0

5V2~x,w;w,r !.

We notice thewa1wa2
¯ parts give, after thew integration, different products of Kronecker

deltas times powers of (12r )r . See~A3!.
As for G2(x,x;t), from ~30!,

G2~x,x;t !5
1

~4p!3 E
0

1

dr8E
0

r 8
drE d6w̄E d6wG0S w̄;

~12r 8!~r 82r !

12r DG0~w;~12r !r !

3F1

t
V~x1Atw8;w82w,r 82r ;t !V~x1Atw;w,r ;t !G ,

F1

t
V~9!V~-!GU

t0
5V1~x,w8;w82w,r 82r !V0~x,w;w,r !1V0~x,w8;w82w,r 82r !V1~x,w;w,r !

1 irrel. terms,
~35!

w85w̄1R1w, w82w5w̄2S1w,

R1[
12r 8

12r
[R~r ,r 8!, S1[

r 82r

12r
[S~r ,r 8!, R1.0, S1.0, R11S151.

The functionsR(r ,r 8) andS(r ,r 8) will be used in~37!. The irrelevant terms~‘‘irrel. terms’’ ! are
such ones asV2V21 , V1/2V1/2, etc.

As for G3(x,x;t), from ~31!,
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G3~x,x;t !5
1

~4p!3 E
0

1

dr9E
0

r 9
dr8E

0

r 8
drE d6w% E d6w̄E d6wG0S w% ;

~12r 9!~r 92r 8!

12r 8 D
3G0S w̄;

~12r 8!~r 82r !

12r DG0„w;~12r !r …@V~x1Atw9;w92w8,r 92r 8;t !

3V~x1Atw8;w82w,r 82r ;t !V~x1Atw;w,r ;t !#,
~36!

@V~9!V~-!V~99!#u t05V0~x,w9;w92w8,r 92r 8!V0~x,w8;w82w,r 82r !V0~x,w;w,r !

1 irrel. terms,

where ‘‘irrel. terms’’ above are such ones asV1V21V0 , V1/2V1/2V0 , etc. In the above, the coor
dinate variables in the integrand are written by the integration variablesw% , w̄, andw as

w95w% 1R2w̄1R3w, w92w85w% 2S2w̄2T1w,

w85w̄1R1w, w82w5w̄2S1w,

where

R15R~r ,r 8!5
12r 8

12r
, R25R~r 8,r 9!5

12r 9

12r 8
, R35R~r ,r 9!5

12r 9

12r
,

~37!

S15S~r ,r 8!5
r 82r

12r
, S25S~r 8,r 9!5

r 92r 8

12r 8
, T15

r 92r 8

12r
[T~r ,r 8,r 9!,

whereR(r ,r 8) and S(r ,r 8) was introduced in the previous order~35!, andT(r ,r 8,r 9) is a new
function.Ri , Si , andT1 have the following relations:

R11S151, R21S251, R31T15R1 ,
R3

R2
5R1 ,

T1

S2
5R1 ,

~38!
R1 ,R2 ,R3 ,S1 ,S2 ,T1.0.

Here we finish treating the Weyl anomalyG(x,x;t)u t0 in terms of the general ones
(Wmn ,Nl ,M ) and their derivatives. Their explicit forms depend on each model. The conte
Appendix C comes from the 6-dim scalar-gravity theory~11!. In the following two sections, we
explain how we obtain the explicit form of the Weyl anomaly using the obtained formulas.

V. FOUR SPECIAL GRAPHS

In the 6-dim space, there are four ‘‘important general invariants’’ as the Weyl anomaly te
which will be explained in the next section. In order to obtain the four coefficients of those te
let us determine the coefficients of the following four (]]h)3 terms that appear inG(x,x;t)u t0,

Graph 35]s]thmn•]n]lhtv•]v]mhls ,

Graph 675]t]vhmn•]m]nhls•]l]shtv ,
~39!

Graph 15]m]nhnl•]l]shst•]t]vhvm ,

Graph 25]m]nhts•]s]lhln•]t]vhvm .

Here we introduce a useful graphical representation to express SO(n) invariants like those given
above.~See Ref. 40 for details.! We graphically express the basic ingredient]m]nhls as
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~40!

The contraction of suffixes is expressed by gluing the corresponding suffix lines. Then the
four terms~39! are graphically shown in Fig. 9. The advantage of this representation is tha
way suffixes are contracted can be read by the topology of the graph. We need not bothe
the dummy contracted suffixes. For later use, we introduce the following usage too:

~41!

The choice of those graphs~39! is an important step of this algorithm. As will be explained
Sec. VI, it is done by looking at the table of Appendix D and the content of the ‘‘impor
invariants.’’ In the evaluation, we exploit the topology of graphs in order to efficiently se
relevant terms. All four graphs above come only fromG3(x,x;t)u t0. It is graphically seen by the
following common features:

the structure ofG1 andG2 :

G1~x,x;t !u t0;E drE d6w G0~w;~12r !r !V2~x,w;w,r !,

~42!

G2~x,x;t !u t0;E dr8E drE d6w̄E d6w G0S w̄;
~12r 8!~r 82r !

12r DG0„w;~12r !r …

$V1~x,w8;w82w,r 82r !V0~x,w;w,r !1V0~x,w8;w82w,r 82r !V1~x,w;w,r !%,

whereV2 , V1 , andV0 are graphically shown in Appendix C 2. BothG1u t50 andG2u t50 contain,
at least, one of two graph ingredients itemized above. For simplicity we focus, in this section
on Graphs 3 and 67. Graph 1 and 2 are evaluated in Appendix B. Because of the foll
common features of Graph 3 and 67:

FIG. 9. Four Graphs of 3, 67, 1, and 2. See the~40! for the definition of the graph.
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• No tadpoles,

we can reduce the expression ofG3(x,x;t)u t0, ~36! with V0 given by ~C2! and ~C3!, to the
following form as the relevant part:

~43!

where the relationsR3 /R25R1 , T1 /S25R1 are used@see~38!#. Furthermore, again by the com
mon features of the Graphs 3 and 67, we see no contribution comes fromw̄8 and w̄6 terms.41

~44!

wheremCr means ‘‘other choices ofrw̄ ’s amongm suffixes appearing in the first term within th
brackets.’’ Thew% , w̄, w integrations are three independent Gaussian integrations, and they
the product of two parts for each term. One part is a rational function of the parameters a
other is a symmetrized product of the Kronecker’s deltas. In terms of a ‘‘components’’ nota

^c1 ,c2&[c1~Graph 3!1c2~Graph 67!, ~45!
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the final result is evaluated as

G3~x,x;t !u t05
1

~4p!3 E
0

1

dr9E
0

r 9
dr8E

0

r 8
dr3S 2

1

2D 3

3
1

4~r 92r 8!2 3
1

4~r 82r !2 3
1

4r 2

3~R2!2~S2!23F ~R1!6~S1!2$2~12r !r %63^64,16&

12
~12r 8!~r 82r !

12r
$2~12r !r %53$~R1!6^0,0&22~R1!5S1^32,8&

1~R1!4~S1!2^64,16&%1H 2
~12r 8!~r 82r !

12r J 2

$2~12r !r %43$~R1!2~S1!2^0,8&

22~R1!3S1^32,0&1~R1!4^0,8&%G1other graph terms

5
1

~4p!3 K 4

273105
,2

1

36363L 1other graph terms. ~46!

The above numberŝc1 ,c2& are obtained by a computer calculation.42 The numbersc1 and c2

show the ‘‘weights’’ when a symmetrized product of Kronecker’s deltas are multiplied
(]]h)3 tensor. For example the first one of~46!, ^64,16&, says

~47!

where the notation@a1a2¯# is the symmetrized product of Kronecker’s deltas and is define
~A4! of Appendix A. Note that in the expression just before the parameter integral, polesr
51, r 851 cancel out and there remain no divergences of the parameter integrals. This occu
in the calculation in Appendix B. Adding the result for Graph 1 and 2 explained in Appendi
we obtain finally the total contribution ofG(x,x;t)u t0 to the four graphs as

G~x,x;t !u t05
1

~4p!3 H 4

273105
(Graph 3!2

1

36363
~Graph 67!1

1

363630
~Graph 1!

1
1

36335
~Graph 2!J1other terms. ~48!

VI. FINAL INVARIANT FORM OF 6-DIM WEYL ANOMALY

The general structure of the Weyl anomaly has been analyzed by Refs. 43–45. They
that the Weyl anomaly is composed of three types of terms:~a! the Euler term;~b! conformal
invariants;~c! trivial terms. Trivial terms are those that can be absorbed by local countert
made of the metric. This statement is checked by the cohomology analysis up to six dimen2

We called, in Sec. V, the~a! and ~b! terms ‘‘important invariants.’’ Therefore we may write, fo
the present 6-dim case,
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G~x,x;t !u t05
1

~4p!3 Ag$xC11yC21zC31wE1trivial terms%

C15CmnlsCslabCba
nm , C25CmnasCnlbaCl

ms
b ,

~49!
C3;Cmnab¹2Cmnab1¯ , E;RmnabRlsgdRtveuemnlstveabgdeu,

Cmns
l 5Rl

mns 1
1

4
~dn

lRms1gmsRn
l2n↔s!1

1

20
~ds

lgmn2n↔s!R,

whereCl
mns is the Weyl tensor,C1 , C2 , andC3 are three independent conformal invariants, a

E is the Euler term.x,y,z, andw are some constants to be determined. It is well established
all possible independent invariants~parity even! with mass dimension 6 are, in the 6 and high
space dimensions, given by the following 17 terms:2,46,47

P15RRR, P25RRmnRmn, P35RRmnlsRmnls,

P45RmnRnlRl
m , P552RmnlsRmlRns, P65RmnlsRt

nlsRmt,

A15RmnlsRsl
tvRvtnm, B15RmntsRn

lv
tRlmsv,

O15“

mR–“mR, O25“

mRls–“mRls,
~50!

O35“

mRlrst
–“mRlrst , O45“

mRln–“
nRl

m ,

T15¹2R•R, T25¹2Rls•Rls, T35¹2Rlrst•Rlrst,

T45“

m
“

nR•Rmn ,

S5¹2¹2R.

In terms of the above 17 ‘‘basis,’’ we can rewrite~49! as follows:

C15 9
200P12 27

40P21 3
10P31 5

4P41 3
2P523P61A1 ,

C252 19
800P11 57

160P22 3
40P32 7

16P42 9
8P51 3

4P61B1 ,

C35P128P222P3110P4110P52 1
2T115T225T3 , ~51!

E5P1212P213P3116P4124P5224P614A128B1 ,

G~x,x,t !u t05
1

~4p!3 AgH ~x14w!A11~y28w!B11S 5

4
x2

7

16
y110z116wD P4

1S 3

2
x2

9

8
y110z124wD P51other invariantsJ ,

where ‘‘other invariants’’ means other thanA1 , B1 , P4 , andP5 . Now we see how nicely we hav
chosen the four graphs in Sec. V.

~i! We note that the trivial terms are written in the total derivative form, therefore they do
contain any one ofA1 , B1 , P4 , andP5 .

~ii ! Now we know, from Appendix D,
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P4u~]]h!352 1
4 ~Graph1!1other~]]h!3 terms,

P5u~]]h!35 1
4 ~Graph2!1other~]]h!3 terms,

A1u~]]h!352~Graph3!1other~]]h!3 terms,

B1u~]]h!352 1
4 ~Graph3!1 1

4 ~Graph67!1other~]]h!3 terms, ~52!

where ‘‘other (]]h)3 terms’’ means ‘‘other terms than Graph1,2,3 and 67’’.48

~iii ! We also note, again from Appendix D, Graphs 1, 2, 3, and 67 do not come from
invariants than (A1 ,B1 ,P4 ,P5).

These properties are due to the chosen four graphs. Then we can rewrite~51! as

G(x,x;t)u t0,~]]h!35
1

~4p!3 H S 2x2
1

4
y22wD (Graph3)1

1

4
(y28w)(Graph67)

1
1

4 S 3

2
x2

9

8
y110z124wD (Graph2)

2
1

4 S 5

4
x2

7

16
y110z116wD (Graph1!1other (]]h)3 termsJ . ~53!

Comparing the result of Sec. V, we finally obtain

x52
83

189360
, y5

31

189315
, z52

11

189350
, w5

3

189310
,

~54!

G~x,x;t !u t0522gmn^Tmn&5
1

~4p!3

1

189
AgH 2

83

60
C11

31

15
C22

11

50
C31

3

10
E1trivial termsJ .

The trivial terms can be similarly obtained, but they do change by introducing the local cou
terms in the action and seem to be unimportant. This result~54! is similar to that of Ref. 17.

VII. DISCUSSION AND CONCLUSION

We have presented a new algorithm to obtain the Weyl anomaly in the higher dimension
Feynman rules in coordinate space are presented. The graphical representation is exploite
stages. Especially the graphical calculation is taken to efficiently compute the coefficients
four graphs given in Sec. V. An explicit result of the Weyl anomaly for the 6-dim scalar gra
is obtained.

As the space–time dimension increases, the number of suffixes to deal with increases b
we must treat higher products of Riemann tensors. The aid of the computer is indispensable
algebraic calculation. As mentioned at some places in the text and the Appendices, the

FIG. 10. Two important (]]h)4 graphs in 8 dim.
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calculation in the contraction of multisuffixed quantities relies on a computer~a C program42!.
Although we do not touch on the computer algorithm in the present paper, it helps to obta
concrete results.

In the recent rapid development of string theory, the low-energy effective actions pla
important role. They are field theories~supergravities! on various~higher! dimensions. The chira
anomalies of gravitational and gauge symmetries were well analyzed for those low-energy
tive actions. The famous one is the pioneering work by Green and Schwarz,49 where they found
the SO~32! andE83E8 gauge group from the analysis of the chiral anomaly structure of 10-
N51 supergravity. Clearly the analysis from the Weyl anomaly side is lacking. From the pr
standpoint, we stress the importance of examining the string from the structure of the
anomaly in the low-energy effective theories.50 One reason is we know some important mod
often have vanishing Weyl anomaly due to conformal symmetry. Another is that the supe
metry surely relates the Weyl anomaly to the chiral one. We can examine the role of supe
metry from this point. Reference 51 recently analyzed the Weyl anomaly of conformal
theories using the adS/CFT correspondence conjectured by Ref. 52. Weyl anomalies are ex
obtained for some theories in 2, 4, and 6 dimensions. We hope the present result will b
useful when we go over the quantum field theory through the string theory.

We have most experience with quantization only in 0–4-dim field theories. Hig
dimensional quantum field theories have not been so thoroughly examined~at least systematically!
so far, because they are unrenormalizable except for free theories. In the text we consid
theories on curved space. It is meaningful if we ignore the trivial terms and the divergent m
terms, which should be explained by the quantum gravitational mode. It might be possible t
a clue to make meaningful the higher-dimensional field theories through the present analy

Although the nonperturbative aspect is recently stressed in string theory, the pertur
analysis is still important because it is one of few reliable approaches to analyze dynamical a
systematically. We suppose the analysis will become important to understand how the qu
field theory is generalized in the coming new era of Planck physics. Finally, we point out th
graphs shown in Figs. 10 and 11 are expected to become some of the ‘‘important graphs’’
Weyl anomaly calculation in 8-dim and 10-dim, respectively.
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APPENDIX A: PROPAGATOR RULES

G0(x;t) is the solution of the heat equation, Eq.~13!, and is given by

G0~x;t !5
1

~4pt !n/2 e2x2/4tI N , t.0, x25~x1!21~x2!21¯1~xn!2, ~A1!

whereI N is theN3N unit matrix andx5(x1 ,x2 ,...,xn) is then-dim Euclidean space coordinate
It has the basic properties

FIG. 11. Two important (]]h)5 graphs in 10 dim.
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G0~x;t !5G0~2x;t !:even function ofx,
~A2!

G0~Aax;at!5a2n/2G0~x;t !, a.0.

The integral formula is given by

E dnx xm1
¯xm2sG0~x;t !5@m1¯m2s#~2t !sI N , ~A3!

where@m1¯m2s# is the totally symmetric sum of products of Kronecker’s deltas and is concre
defined by

@mn#[dmn,

@mnls#[dmndls1dmsdnl1dmldns,

@m1¯m6#[dm1m2@m3¯m6#1dm1m3@¯#1¯1dm1m6@¯#,
~A4!

¯

¯

@m1¯m2s#[dm1m2@m3¯m2s#1dm1m3@¯#1¯1dm1m2s@¯#.

G0(x,t) has the ‘‘convolution’’ property. Propagator Rule 1:

G0~v2w;r 2k!G0~w2u;k2 l !5G0S w̄;
~r 2k!~k2 l !

r 2 l DG0~v2u;r 2 l !,

~A5!

r .k. l , w̄5w2
~k2 l !v1~r 2k!u

r 2 l
.

This relation is geometrically expressed in the coordinate space as in Fig. 12. Some specia
of above are given by Propagator Rule 2:v50, r 51 in Eq. ~A5!,

G0~w;12k!G0~w2u;k2 l !5G0S w̄;
~12k!~k21!

12 l DG0~u;12 l !,

~A6!

1.k. l , w̄5w2
12k

12 l
u;

FIG. 12. Propagator Rule 1, Eq.~A5!.
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Propagator Rule 3:u50, l 50 in Eq. ~A5!,

G0~v2w;r 2k!G0~w;k!5G0S w̄;
~r 2k!k

r DG0~v;r !,

~A7!

r .k.0, w̄5w2
k

r
v;

Propagator Rule 4:u50, v50, l 50, in Eq. ~A5!,

G0~w;r 2k!G0~w;k!5
1

~4pr !n/2 G0S w;
~r 2k!k

r D , r .k.0. ~A8!

The above three relations are geometrically represented as in Figs. 13–15.

APPENDIX B: SUPPLEMENTARY CALCULATION OF SEC. V

In Sec. V of the text, we have evaluatedG(x,x;t)u t0, focusing on four special (]]h)3 terms
~graphs! in order to fix four coefficients of the main Weyl anomaly terms given in~49!. Among the
four graphs, Graph3 and 67 only are explained for simplicity. We evaluate the remaining g
Graph1 and 2 to supplement Sec. V.

From ~36!,

FIG. 13. Propagator Rule 2, Eq.~A6!.

FIG. 14. Propagator Rule 3, Eq.~A7!.
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G3~x,x;t !u t05
1

~4p!3 E d6w% E d6w̄E d6wE
0

1

dr9E
0

r 9
dr8E

0

r 8
dr

3G0S w% ;
~12r 9!~r 92r 8!

12r 8 DG0S w̄;
~12r 8!~r 82r !

12r DG0„w;~12r !r …

3V0~x,w9;w92w8,r 92r 8!V0~x,w8;w82w,r 82r !V0~x,w;w,r !1 irrel.,

w95w% 1R2w̄1R3w, w92w85w% 2S2w̄2T1w, ~B1!

w85w̄1R1w, w82w5w̄2S1w,

where Ri , Si , and T1 are defined in~37!. Because Graph1 and 2 do not have tadpoles

subgraph, we can reduceV0 of ~C2! with ~C3! to the following relevant form:

~B2!

The firstV0 in ~B1! is evaluated as

~B3!

FIG. 15. Propagator Rule 4, Eq.~A8!.
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~B4!

The aboveV0 , with thew% integration, gives

~B5!

wherew% is integrated out and the relationsR3 /R25T1 /S25R1 are used. Therefore theV0V0V0

part of ~B1!, with thew% integration, can be written as

~B6!
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Now we can further evaluate~B1! by picking up relevant powers ofw̄ in ~B6! in the same way as
Sec. V. After integration of the remaining coordinates (w̄,w) and the parameters (r ,r 8,r 9), the
final result is

G3~x,x;t !u t05
1

~4p!3 H 1

363630
(Graph1!1

1

36335
~Graph2!J1other terms. ~B7!

APPENDIX C: WEAK FIELD EXPANSION OF 6-DIM SCALAR-GRAVITY THEORY

In the text, we have taken 6-dim scalar-gravity theory~1! as a higher-dimensional model. Th
expressions for the general theories are expressed in terms ofWmn , Nl , and M ~10!. In this
appendix we graphically express those general expressions for the case of the explicit mo

1. Graphs of W, N, and M

For the 6-dim scalar-gravity theory,Wmn , Nl , and M are given by~11!. Their weak-field
expansions (gmn5dmn1hmn) up to O(h3) are given in Fig. 16 forWmn and Nl , and in Figs.
17–21 forM. Especially they are classified by the number of closed suffix loops.

2. Taylor Expansion of W, N, and M

In Sec. IV of the text, we have Taylor expandedWmn , Nm , andM, which are the background
functional appearing in the differential operatorD

Wmn~x1v !5Wmn~x!1]a1
Wmn•va11 1

2 ]a1
]a2

Wmn•va1va21¯ ,

Nm~x1v !5Nm~x!1]a1
Nm•va11 1

2 ]a1
]a2

Nm•va1va21¯ , ~C1!

M ~x1v !5M ~x!1]a1
M•va11 1

2 ]a1
]a2

M•va1va21¯ .

We focus on those terms that have only]]h-type ones. They are sufficient to determine the W
anomaly, and are used in the text.

FIG. 16. Wmn andNl .

FIG. 17. M, order ofh.
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FIG. 18. M, order ofh2.

FIG. 19. M, order ofh3 and loop No.52.

FIG. 20. M, order ofh3 and loop No.51.

FIG. 21. M, order ofh3 and loop No.50.
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~i! Expansion terms appearing inV0 of ~33!,

V0~x,v;w,r !5
1

2!
]a1

]a2
Wmn•va1va2S 2

dmn

2r
1

wmwn

4r 2 D1]a1
Nm•va1S 2

wm

2r D1M , ~C2!

~C3!

~ii ! Expansion terms appearing inV1 of ~33!,

V1~x,v;w,r !5
1

4!
]a1

]a2
¯]a4

Wmn•va1va2
¯va4S 2

dmn

2r
1

wmwn

4r 2 D1
1

3!
]a1

]a2
]a3

Nm

•va1va2va3S 2
wm

2r D1
1

2!
]a1

]a2
M•va1va2, ~C4!

~C5!

~iii ! Expansion terms appearing inV2 of ~33!,
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V2~x,v;w,r !5
1

6!
]a1

]a2
¯]a6

Wmn•va1va2
¯va6S 2

dmn

2r
1

wmwn

4r 2 D1
1

5!
]a1

]a2
¯]a5

Nm

•va1va2
¯va5S 2

wm

2r D1
1

4!
]a1

]a2
¯]a4

M•va1va2
¯va4. ~C6!

~C7!

APPENDIX D: WEAK-EXPANSION OF INVARIANTS WITH „MASS…

6-DIM

In 6-dim space, there are totally 17 independent general invariants given in~50!. In this
appendix, we list the coefficients of (]]h)3 terms when the invariants are weak-field expand
(gmn5dmn1hmn). They are obtained by a computer using a C program.42 Among 17 ones,
Oi( i 51 – 4) terms do not have (]]h)3 terms. As shown in the first column of Table I, there are
independent (]]h)3 terms. Some terms~G3,G67,G1,G2! are given, in the ordinary literal form, in
~39! and graphically in Fig. 9. Their complete list is graphically given in Ref. 40. For example
A1 column says
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TABLE I. Weak Expansion of Invariants with~Mass!6-Dim: (]]h)3. ~a! G1–G13~lI@No of suffix loops#51!; ~b! G14-G42
( lI52); ~c! G43-G69 (lI53); ~d! G70-G85 (lI54); ~e! G86-G89 (lI55); ~f! G90 (lI56).

Graph P1 P2 P3 P4 P5 P6 A1 B1 T1 T2 T3 T4 S

~a! lI51

G1 0 0 0 2
1
4

0 0 0 0 0 0 0 0 0

G2 0 0 0 0 2
1
4

0 0 0 0 0 0 0 0

G3 0 0 0 0 0 0 21 2
1
4

0 0 0 0 0

G4 0 0 0 2
3
4

0 0 0 0 0 0 0 22 24

G5 0 0 0 0 0 1
2

0 0 0 0 0 21 22

G6 0 0 0 0 0 1
2

0 0 0 21 0 0 0

G7 0 0 0 0 0 0 0 3
2

0 0 2 0 0

G8 0 0 0 0 1
2

0 0 0 0 21 0 0 0

G9 0 0 0 0 0 1
2

0 0 0 0 0 0 0

G10 0 0 0 0 1
4

0 0 0 0 21 0 0 28

G11 0 0 0 0 0 1
2

0 0 0 0 0 0 216

G12 0 0 0 0 0 0 0 3
2

0 0 6 0 28

G13 0 0 0 0 0 0 23 2
3
4

0 0 22 0 24

~b! lI52

G14 0 0 0 0 0 0 1 0 0 0 21 0 12

G15 0 0 0 0 0 0 3 0 0 0 21 0 0

G16 0 0 0 0 21 0 0 0 0 1 0 22 24

G17 0 0 0 0 0 2
1
2

0 0 0 1 0 0 216

G18 0 0 0 0 0 0 0 2
3
4

0 0 21 0 24

G19 0 0 0 0 0 2
1
2

0 0 0 1
2

0 3
2

7

G20 0 0 0 0 0 0 0 2
3
4

0 0 22 0 6

G21 0 0 0 0 0 2
1
2

0 0 0 0 0 0 0

G22 0 0 0 0 0 0 0 2
3
2

0 0 22 0 0

G23 0 2
1
2

0 0 0 0 0 0 22 0 0 0 0

G24 0 0 2 0 0 0 0 0 21 0 0 0 0

G25 0 0 0 0 0 2
1
2

0 0 0 0 0 0 0

G26 0 2
1
2

0 0 0 0 0 0 0 0 0 0 0

G27 0 0 0 3
8

0 0 0 0 0 0 0 1 2

G28 0 0 0 0 0 2
1
4

0 0 0 0 0 1
2

1

G29 0 0 0 0 2
1
2

0 0 0 0 5
4

0 0 8

G30 0 0 0 0 0 2
1
2

0 0 0 0 0 0 8
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TABLE I. ~Continued.!

Graph P1 P2 P3 P4 P5 P6 A1 B1 T1 T2 T3 T4 S

G31 0 0 0 0
2

1
2

0 0 0 0 1
4

0 0 0

G32 0 0 0 3
4

0 0 0 0 0 0 0 1 2

G33 0 0 0 3
8

0 0 0 0 0 0 0 1 2

G34 0 0 0 0 0
2

1
4

0 0 0 1
2

0 0 0

G35 0 0 0 3
8

0 0 0 0 0
2

1
4

0 0 24

G36 0 0 0 0 0
2

1
4

0 0 0 1
2

1
2

0 22

G37 0 0 0 0
2

1
2

0 0 0 0 1
2

0 0 28

G38 0 0 0 0 0
2

1
2

0 0 0 0 1 0 24

G39 0 0 0 3
8

0 0 0 0 0
2

1
4

0 1 22

G40 0 0 0 0 0
2

1
4

0 0 0 0 1
2

1
2

21

G41 0 0 0 0
2

1
2

0 0 0 0
2

1
2

0 0 0

G42 0 0 0 3
4

0 0 0 0 0
2

1
2

0 0 0

~c! lI53

G43 0 0 0 0 1
4

0 0 0 0 1
2

0 0 22

G44 0 0 0
2

3
4

0 0 0 0 0 1 0 0 28

G45 0 0 0 0 0 1
4

0 0 0
2

1
2

2
1
2

0 14

G46 0 0 0 0 0 1
4

0 0 0
2

1
4

0
2

3
4

2
7
2

G47 0 0 0 0 0 1
4

0 0 0
2

1
2

0 0 8

G48 0 0 0 0 1
2

0 0 0 0
2

1
4

0 1 2

G49 0 0 0 0 0 0 0 3
4

0 0 1 0 4

G50 0 0 21 0 0 0 0 0 3
2

0 0 0 0

G51 0 0 0
2

3
4

0 0 0 0 0 1
2

0 0 4

G52 0 0 0 0 1
2

0 0 0 0 1
4

0 0 4

G53 0 1
2

0 0 0 0 0 0 2 0 0 0 0

G54 0 0 22 0 0 0 0 0 1 0 0 0 0

G55 0 0 0
2

3
4

0 0 0 0 0 1
2

0 21 2

G56 0 1
2

0 0 0 0 0 0 0 0 0 0 0

G57 0 0 0 0 0 1
4

0 0 0
2

1
4

2
1
2

2
3
4

9
2

G58 0 0 0 0 1
2

0 0 0 0 0 0 1 4

G59 0 0 0 0 0 1
2

0 0 0 0 21 0 0

G60 0 0 0 0 1
2

0 0 0 0 1
2

0 1 22
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TABLE I. ~Continued.!

Graph P1 P2 P3 P4 P5 P6 A1 B1 T1 T2 T3 T4 S

G61 0 1 0 0 0 0 0 0 22 0 0 0 0

G62 0 0 0
2

3
4

0 0 0 0 0 0 0
2

3
2

23

G63 0 0 0 0 1
4

0 0 0 0
2

1
4

0 0 0

G64 0 0 0 0 0 1
2

0 0 0 0 0 0 0

G65 0 0 0 0 1
2

0 0 0 0
2

1
2

0 1 2

G66 0 1 0 0 0 0 0 0 2 0 0 0 0

G67 0 0 0 0 0 0 0 1
4

0 0 0 0 0

G68 0 0 21 0 0 0 0 0 0 0 0 0 0

G69 21 0 0 0 0 0 0 0 0 0 0 0 0

~d! lI54

G70 0 0 0 1
8

0 0 0 0 0
2

1
4

0 0 4

G71 0 0 0 0
2

1
4

0 0 0 0
2

1
8

0
2

1
2

22

G72 0 0 1 0 0 0 0 0
2

3
2

0 0 0 0

G73 0 0 0 3
8

0 0 0 0 0
2

1
2

0 0 4

G74 0 21 0 0 0 0 0 0 2 0 0 0 0

G75 0 0 0 0
2

1
4

0 0 0 0
2

1
2

0
2

1
2

3

G76 0
2

1
4

0 0 0 0 0 0 1 0 0 0 0

G77 0 0 0 1
8

0 0 0 0 0 0 0 1
4

1
2

G78 0 0 0 0
2

1
4

0 0 0 0 1
8

0
2

1
2

21

G79 0
2

1
4

0 0 0 0 0 0
2

1
2

0 0 0 0

G80 0 0 0 3
8

0 0 0 0 0
2

1
4

0 1
4

2
1
2

G81 0 21 0 0 0 0 0 0 22 0 0 0 0

G82 0 0 0 0
2

1
4

0 0 0 0
2

1
4

0
2

1
2

1

G83 0
2

1
2

0 0 0 0 0 0 1 0 0 0 0

G84 0 0 1 0 0 0 0 0 0 0 0 0 0

G85 3 0 0 0 0 0 0 0 0 0 0 0 0

~e! lI55

G86 0 1
4

0 0 0 0 0 0 21 0 0 0 0

G87 0 1
4

0 0 0 0 0 0 1
2

0 0 0 0

G88 23 0 0 0 0 0 0 0 0 0 0 0 0

G89 0 1
2

0 0 0 0 0 0 21 0 0 0 0

~f! lI56

G90 1 0 0 0 0 0 0 0 0 0 0 0 0
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A1~RmnlsRsl
tvRvtnm!5~21!3Graph3~]s]thmn•]n]lhtv•]v]mhls!1~23!

3Graph13~]m]nhts•]m]vhls•]t]vhnl!1~1!3Graph14~]m]nhvs

•]n]lhtv•]l]mhst!1~3!3Graph15~]m]nhvs•]t]vhnl•]l]mhst!

1O~h4!. ~D1!

The content of the table is fully used in Secs. V and VI of the text. Especially the choice o
four graphs of Fig. 9 relies on the table.

1L. Alvarez-Gaume´ and E. Witten, Nucl. Phys. B234, 269 ~1983!.
2L. Bonora, P. Pasti, and M. Bregola, Class. Quantum Grav.3, 635 ~1986!.
3T. Arakelyan, D. R. Karakhanyan, R. P. Manvelyan, and R. L. Mkrtchyan, Phys. Lett. B353, 52 ~1995!.
4D. R. Karakhanyan, R. P. Manvelyan, and R. L. Mkrtchyan, Mod. Phys. Lett. A11, 409 ~1996!.
5S. Ichinose and S. D. Odintsov, Nucl. Phys. B539, 643 ~1999!.
6S. Deser, Uniqueness ofD511 supergravity,Lecture at ‘Quantum Mechanics of Fundamental Systems VI’, Santiago,
Chile, August 1997, hep-th/9712064.

7S. Ferrara and B. Zumino, Nucl. Phys. B87, 207 ~1975!.
8J. Schwinger, Phys. Rev.82, 664 ~1951!.
9B. DeWitt, Dynamical Theory of Groups and Fields~Gordon and Breach, New York, 1965!.

10R. T. Seeley, Proc. Symp. Pure Math.10, 288 ~1967!.
11F. Bastianelli, Nucl. Phys. B376, 113 ~1992!.
12F. Bastianelli and P. van Nieuwenhuizen, Nucl. Phys. B389, 53 ~1993!.
13G. t’Hooft, Nucl. Phys. B62, 444 ~1973!.
14G. t’Hooft and M. Veltman, Ann. Inst. Henri Poincare´, Sect. A20, 69 ~1974!.
15P. B. Gilkey, J. Diff. Geom.10, 601 ~1975!.
16I. G. Avramidi, ‘‘The covariant methods for calculation of the effective action in quantum field theory and the inv

gation of higher derivative quantum gravity,’’ Ph.D. thesis, Moscow State University, Moscow, 1986; hep-th/951
17I. G. Avramidi, Nucl. Phys. B55, 712 ~1991!.
18A. O. Barvinsky and G. A. Vilkovisky, Phys. Rep. C119, 1 ~1985!.
19J. de Boer, B. Peeters, K. Skenderis, and P. van Nieuwenhuizen, Nucl. Phys. B446, 211 ~1995!.
20J. de Boer, B. Peeters, K. Skenderis, and P. van Nieuwenhuizen, Nucl. Phys. B459, 631 ~1996!.
21S. Yajima, Class. Quantum Grav.14, 2853~1997!.
22I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro,Effective Action in Quantum Gravity~IOP, Bristol, 1992!.
23Other examples of the coordinate space approach are the operator product expansion method and the lattice fie

The former was exploited in the 2 dim conformal field theory. Traditionally the coordinate space has been used
analysis of conformally invariant or covariant Green’s functions. For example, see a recent progress of Ref. 24

24J. Pachos and R. Schiappa, ‘‘Conformal symmetry and the three point function for the gravitational axial ano
MIT-CTP#2760, hep-th/9807128, to be published in Phys. Rev. D.

25The heat kernel is formulated in the coordinate space, using the quantum-mechanical nonlinear sigma model,
Feynman rules are given in Refs. 11, 12, 19, 20.

26S. Ichinose and N. Ikeda, Phys. Rev. D53, 5932~1996!.
27It must be compared with the dimensional regularization.
28K. Fujikawa, Nucl. Phys. B226, 437 ~1983!.
29K. Fujikawa, Phys. Rev. Lett.42, 1195~1979!; 44, 1733~1980!; Phys. Rev. D21, 2848~1980!; 22, 1499~E! ~1980!.
30K. Fujikawa, Lecture in Quantum Gravity and Cosmology, Kyoto SummerInstitute 1985, edited by Sato and Inam

~World Scientific, Singapore, 1985!, p. 106. This is the good review of the series of works by Fujikawa.
31E. Abdalla, M. C. B. Abdalla, and K. D. Rothe,Non-Perturbative Methods in 2 Dimensional Quantum Field The

~World Scientific, Singapore, 1991!.
32E. D’Hoker, ‘‘Tasi Lectures on critical string theory,’’ UCLA/92/TEP/30, 1992.
33S. Ichinose and N. Ikeda, ‘‘Gauge symmetry of the heat kernel and anomaly formulae,’’ DAMTP/96-87, hep-th/96
34The case of specialWmn

i j ~Riemann geometry! was done by Gilkey,15 where he analyzed using the normal coordinates
order to keep the general covariance manifestly.

35J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics~McGraw-Hill, New York, 1964!.
36O. Alvarez, Nucl. Phys. B216, 125 ~1983!.
37The conditiont.0 in G0(x2y;t) requires the directedness.
38These properties come only from the physical dimensions ofWmn, Nm , andM, not the speciality of the present mode

The relevant-part selection in this section is valid for general theories.
39The divergent partst21, t22,..., areconsidered to be canceled by the divergent counterterms. They generally corre

to power divergences~not log divergence! and the counterterms are those operators that have massive coupling
example, the cosmological term, the Einstein term.

40S. Ichinose and N. Ikeda, J. Math. Phys.38, 6475~1997!.
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41The w̄8 term gives disconnected graphs, andw̄6 terms give graphs that conflict with the second one of the comm
features of Graph3 and 67.

42S. Ichinose, Int. J. Mod. Phys. C9, 243 ~1998!.
43M. J. Duff, Nucl. Phys. B125, 334 ~1977!.
44S. Deser and A. Schwimmer, Phys. Lett. B309, 279 ~1993!.
45S. Ichinose, US-97-08, ‘‘General structure of conformal anomaly and 4 Dimensional photon–dilaton gravity,’’ h

9801056.
46S. A. Fulling, R. C. King, B. G. Wybourne, and C. J. Cummins, Class. Quantum Grav.9, 1151~1992!.
47S. Ichinose, Class. Quantum Grav.12, 1021~1995!.
48The total independent (]]h)3 terms are given by 90 terms shown in the first column of the table in Appendix D.
49M. B. Green and J. H. Schwarz, Phys. Lett. B149, 117 ~1984!.
50M. J. Duff, Class. Quantum Grav.11, 1387~1994!.
51M. Henningson and K. Skenderis, J. High Energy Phys.9807, 23 ~1998!.
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eloped
phere,
four

r two
inves-
have

w the

er

permit-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 5 MAY 1999

                    
Superintegrability on the two-dimensional hyperboloid. II
E. G. Kalnins
Department of Mathematics and Statistics, University of Waikato, Hamilton, New Zealand

W. Miller, Jr.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

Ye. M. Hakobyan and G. S. Pogosyan
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Moscow Region 141980, Russia
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This work is devoted to the investigation of the quantum mechanical systems on the
two-dimensional hyperboloid which admits separation of variables in at least two
coordinate systems. Here we consider two potentials introduced in a paper of C. P.
Boyer, E. G. Kalnins, and P. Winternitz@J. Math. Phys.24, 2022 ~1983!#, which
have not yet been studied. We give an example of an interbasis expansion and work
out the structure of the quadratic algebra generated by the integrals of motion.
© 1999 American Institute of Physics.@S0022-2488~99!00505-8#

I. INTRODUCTION

Superintegrable systems on the two-dimensional hyperboloid were introduced and dev
in Refs. 1–3. In distinction to the cases of two-dimensional Euclidean space and the two-s
the classification of superintegrable systems on the hyperboloid is difficult. To date only the
potentials studied in Ref. 3 and two more listed in Ref. 1 are known. In the present pape
potentials are considered, which were constructed in Ref. 1 but have not previously been
tigated. These potentials both have only a finite number of bound states. At this point we
treated all the potentials that arise by restriction from Hermitean hyperbolic space. We follo
approach of Ref. 3, which contains an introduction and motivation.

The two-dimensional hyperboloid is characterized via the Cartesian coordinatesv0 , v1 , v2

wherev0
22v1

22v2
251, v0.1. The requirementv0.1 means that we consider only the upp

sheet of the double-sheet hyperboloid. Throughout this paper we will consider the Schro¨dinger
equation on the hyperboloid in the form (\5m51)

HC[~2 1
2DLB1V!C5EC, ~1!

whereV is a potential function and the Laplace–Beltrami operatorDLB is written as

DLB5K3
21K2

22M1
2. ~2!

HereK3 , K2 , M1 generate the Lie algebra so~2,1! ~Refs. 4 and 5!:

K35v0]v1
1v1]v0

, K25v0]v2
1v2]v0

, M15v1]v2
2v2]v1

, ~3!

and

@K3 , K2#5M1 , @K2 , M1#52K3 , @K3 , M1#5K2 . ~4!

The Schro¨dinger equation~1! for V50 separates in nine coordinate systems.6 Introduction of a
potential breaks the symmetry and, in general, reduces the number of coordinate systems
ting separability, usually to zero. We consider the following two potentials~see Table I!, con-
structed in Ref. 1, for which~1! is superintegrable.
22910022-2488/99/40(5)/2291/16/$15.00 © 1999 American Institute of Physics
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Recall that~1! is superintegrablefor a given potentialV if it is separable simultaneously in a
least two coordinate systems.

II. FIRST POTENTIAL

The first considered potential is

V15
a2

v2
2
2

g2

~v02v1!2
1b2

v01v1

~v02v1!3
, ~5!

wherea, b, g are positive constants. The corresponding Schro¨dinger equation admits separab
solutions in four coordinate systems: equidistant, elliptic–parabolic, hyperbolic–parabolic
horicyclic.

A. Solutions of the Schro ¨ dinger equation

1. Equidistant coordinates

In this coordinate system

v05cosht1 cosht2 , v15cosht1 sinht2 , v25sinht1

@t1 ,t2P(2`,`)#, the potentialV1 has the form

V1~t1 ,t2!5
a2

sinh2 t1

1
1

cosh2 t1

b22g2~cosht22sinht2!2

~cosht22sinht2!4
. ~6!

After putting

C~t1 ,t2!5~cosht1!21/2S1~t1!S1~t2!, ~7!

we come to the system of equations:

d2S2

dt2
2 1@2m222b2e4t212g2e2t2#S250, ~8!

d2S1

dt1
2 1F S 2E2

1

4D1
m22 1

4

cosh2 t1
2

2a2

sinh2 t1
GS150, ~9!

TABLE I. Superintegrable potentials.

PotentialV(v) Coordinate system

Equidistant
Elliptic-parabolic

V15
a2

v2
22

g2

~v02v1!
2 1b2

v01v1

~v02v1!
3

Hyperbolic-parabolic
Horicyclic

Equidistant

V25
a2

v2
2 1g2

v0v1

~v0
21v1

2!2 1~a22b2!
v0

22v1
2

~v0
21v1

2!2

Semi-hyperbolic
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wherem is the equidistant separation constant. The first equation~8! could be considered as
one-dimensional Schro¨dinger equation for the Morse potential7 and the orthonormalized solutio
is given by the expression

S2~t2![Sm
~b,m!~z!5A2mG~m1m11!

m!G2~m11!
e2z/2zm/2

2F1~2m,m11;z!

5A 2mm!

G~m1m11!
e2z/2zm/2Lm

m~z!, z5&be2t2 ~10!

whereLm
m(z) are the Laguerre polynomials.8 The separation constant is quantized as

m522m211
g2

&b
, 0<m<F1

2 S g2

&b
21D G . ~11!

The second equation~9! represents the modified Po¨schl–Teller equation.3,9 The orthonormalized
wave function is given by

S1~t1![Sn
~a,m!~t1!5A 2~m2A2a211/422n21!G~m2n!n!

G~m2A2a211/42n!G~11n1A2a211/4!

3~sinht1!1/21A2a211/4~cosht1!1/22mPn
~A2a211/4,2m!~cosh 2t1!, ~12!

with n50,1,...,@ 1
2(m212A2a21 1

4)#, wherePn
(a,b)(x) is the Jacobi polynomial.8 The quantized

energy is

EN52
1

2 S m2A2a21
1

4
22n21D 2

1
1

8
52

1

2 S 2N121A2a21
1

4
2

g2

&b
D 2

1
1

8
, ~13!

whereN5m1n is the principal quantum number and the bound states occur for

0<N<F1

2 S g2

&b
2A2a211/422D G . ~14!

The orthonormalized total wave functionCnm(t1 ,t2) is given by~7!, ~10!, and~12!.
The symmetry operator describing this coordinate system is

L1Cnm~t1 ,t2![FK3
222b2S v01v1

v02v1
D 2

12g2
v01v1

v02v1
GCnm~t1 ,t2!

5S 22m211
g2

&b
D 2

Cnm~t1 ,t2!. ~15!

2. Horicyclic coordinates

In the horicyclic coordinates,

v05
x21y211

2y
, v15

x21y221

2y
, v25

x

y
~16!

@y.0,xP(2`,`)#, the potentialV1 is
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V1~x,y!5y2Fa2

x2 1b2~x21y2!2g2G ~17!

and the Schro¨dinger equation has the following form:

2
1

2
y2F ]2

]x22
2a2

x2 22b2x21
]2

]y222b2y212g2GC~x,y!5EC~x,y!. ~18!

Via putting

C~x,y!5c1~x!c2~y!, ~19!

it admits a separation

d2c1

dx2 12Fg2~l111!2b2x22
a2

x2 Gc150, ~20!

d2c2

dy2 12Fg2~l221!2b2y21
E

y2Gc250, ~21!

wherel1 andl2 are the horicyclic separation constants with the relationl11l251.
The orthonormalized solutions of the equations~20! and ~21! for (22E1 1

4).0 are

c1~x![cn1

~a,b!~x!5A n1! ~&b!1/2

G~n11A2a21 1
411!

e2bx2/&~A&bx2!1/21A2a211/4Ln1

A2a211/4~&bx2!,

~22!

c2~y![cn2

~g,b!~y!

5A n2! ~&b!1/2

G~n21A22E1 1
411!

e2by2/&~A&by2!1/21A22E11/4Ln2

A22E11/4~&by2!.

~23!

The separation constantsl1 , l2 are quantized as

l15
&b

g2 S 2n11A2a21
1

4
11D 21; l25

&b

g2 S 2n21A22E1
1

4
11D 11, ~24!

and according to the relationl11l251, we come to the energy spectrum as in~13!. The operator
characterizing the separation in horicyclic coordinates is

L2Cn1n2
~x,y![F ~K22M1!22

2b2v2
2

~v02v1!22
2a2~v02v1!2

v2
2 12g2GCn1n2

~x,y!

52@2&b~2n11A2a21 1
411!12g2#Cn1n2

~x,y!. ~25!

3. Elliptic –parabolic coordinates

In this coordinate system,

v05
cosh2 a1cos2 u

2 cosha cosu
, v15

sinh2 a2sin2 u

2 cosha cosu
, v25tanha tanu ~26!
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@a.0,uP(2p/2,p/2)], the potentialV1 has the form

V1~a,u!5
cosh2 a cos2 u

cosh2 a2cos2 u Fb2~cosh2 a sinh2 a1cos2 u sin2 u!

2g2~cosh2 a2cos2 u!1a2S 1

sinh2 a
1

1

sin2 u D G . ~27!

The Schro¨dinger equation is

2
1

2

cosh2 a cos2 u

cosh2 a2cos2 u F ]2

]a222b2 cosh2 a sinh2 a12g2 cosh2 a2
2a2

sinh2 a

1
]2

]u222b2 cos2 u sin2 u22g2 cos2 u2
2a2

sin2 uGC~a,u!5EC~a,u!. ~28!

Putting for the wave functionC(a,u)5S(a)S(u), after separation of variables we get two ide
tical equations:

d2S~r!

dr2 1Fl22b2 cosh2 r sinh2 r12g2 cosh2 r2
2a2

sinh2 r
2

2E

cosh2 rGS~r!50, ~29!

wherel is the elliptic–parabolic separation constant andr[a,iu. After changing the variables
x5cosh2 r in Eq. ~29!, we obtain

4x~x21!
d2S

dx2 12~2x21!
dS

dx
1Fl22b2x~x21!12g2x2

2a2

x21
2

2E

x GS50. ~30!

Thus the regionxP@1,̀ # in Eq. ~30! belongs to the wave functionS(a) andxP@0,1# to the wave
function S(u). Putting

S~x!5~x21!sxte2bx/&G~x!, ~31!

where

s5
1

4
1

1

&
Aa21

1

8
, t5

1

4
1

1

&
A2E1

1

8
, ~32!

we get

d2G

dx2 1
1

2 F114t

x
1

114s

x21
2

4b

&
G dG

dx

1
1

4 H @2g224b„112~ t1s!…/&#x1n1&b~114t !14~ t1s!2

x~x21! J G50. ~33!

If we now substitute

G~x!5)
i 51

N

~x2u i ! ~34!

and take into account~32!, we find thatu i satisfies the equation
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2u i~12u i !S (
k51
kÞ i

N
1

uk2u i
1

b

& D 12~12u i !N1
&g2

4b
u i1

g2

&b
1A2a21

1

4
1150. ~35!

The quantization for the energy is given via

A22E1
1

4
1A2a21

1

4
12N122

g2

&b
50, ~36!

and we obtain the expression~13!. The separation constantl is

l5
8b

&
(
i 51

N

u i2S g2

&b
21D 2

1
4b

&
S 11A2a21

1

4D 22g2. ~37!

Thus the total solutionC(a,u) is represented as

CNpq~a,u!5SNp~a!SNq~u!

5~sinha sinu!1/21A2a211/4~cosha cosu!g2/&b2A2a211/422N23/2

3expH 2
b

&
~cosh2 a1cos2 u!J )

i 51

N

~cosh2 a2u i !~cos2 u2u i !, ~38!

wherep andq are the number of zeros for the wave functionsS(a) andS(u) in the regions@0,1#,
@1,̀ # correspondingly, and the total number of zeros isN5p1q.

Eliminating the energyE from Eq. ~30!, we see that the additional integral of motion here

L3CNpq~a,u!5
1

cos2 u2cosh2 a H cosh2 a
]2

]a2 1cos2 u
]2

]u222b2~cosh4 a sinh2 a1cos4 u sin2 u!

12g2~cosh4 a2cos4 u!22a2~coth2 a2cot2 u!J CNpq~a,u!

5H 2~K22M1!22K3
212b2

~w01w1!21w2
2

~w02w1!2 12a2S w02w1

w2
D 2

24g2
w0

w02w1
J CNpq~a,u!

5lCNpq~a,u!. ~39!

4. Hyperbolic –parabolic coordinates

In this coordinate system,

v05
cosh2 b1cos2 u

2 sinhb sinu
, v15

sinh2 b2sin2 u

2 sinhb sinu
, v25cothb cotu ~40!

@b.0,uP(2p/2,p/2)#, the potentialV1 has the form

V1~b,u!5
sinh2 b sin2 u

sinh2 b1sin2 u Fb2~sinh2 b cosh2 b1sin2 u cos2 u!

2g2~sinh2 b1sin2 u!1a2S 1

cos2 u
2

1

cosh2 bD G . ~41!
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The Schro¨dinger equation is

2
1

2

sinh2 b sin2 u

sinh2 b1sin2 u F ]2

]b222b2 sinh2 b cosh2 b12g2 sinh2 b1
2a2

cosh2 b

1
]2

]u222b2 sin2 u cos2 u12g2 sin2 u2
2a2

cos2 uGC~b,u!5EC~b,u!. ~42!

Putting for the wave functionC(b,u)5S(b)S(u), after separation of variables we get two ide
tical equations:

d2S~r!

dr2
12F t

2
2b2 sinh2 r cosh2 r1g2 sinh2 r1

a2

cosh2 r
1

E

sinh2 rGS~r!50, ~43!

wheret is the hyperbolic–parabolic separation constant andr[b,iu. After changing the variables
x5sinh2 r in Eq. ~43!, we come to the equation

4x~x11!
d2S

dx2 12~2x11!
dS

dx
1Ft22b2x~x11!12g2x1

2a2

x11
1

2E

x GS50. ~44!

Choosing

P~x!5~11x!sxte2bx/&)
i 51

N

~x2u i !, ~45!

wheret ands are given by the formulas~32!, we obtain the energy spectrum~36!. Hereu i satisfies
the equations

2u i~11u i !S (
k51
kÞ i

N
1

u i2uk
2

b

& D 22~11u i !N1
&g2

4b
u i1

g2

&b
2A2a21

1

4
2150. ~46!

The separation constantt is

t5
8b

&
(
i 51

N

u i2S g2

&b
21D 2

2
4b

&
S 11A2a21

1

4D 12g2, ~47!

so the total solutionC(b,u) is represented as

CNlk~b,u!5SNl~b!SNk~u!

5~coshb cosu!1/21A2a211/4~sinhb sinu!g2/&b2A2a211/422N23/2

•expH 2
b

&
~sinh2 b2sin2 u!J )

i 51

N

~sinh2 b2u i !~sin2 u1u i !. ~48!

The total number of zeros isN, andk of them are located in the interval@21, 0# andl are in@0,`#.
Each solutionCNlk(b,u) satisfies the eigenvalue equation
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L4CNlk~b,u!52
1

sin2 b1sin2 u H sinh2 b
]2

]b22sin2 u
]2

]u222b2~cosh2 b sinh4 b2cos2 u sin4 u!

12g2~sinh4 b2sin4 u!12a2~ tanh2 b1tan2 u!J CNlk~b,u!

5H ~K22M1!22K3
212b2

~w01w1!22w2
2

~w02w1!2 22a2S w02w1

w2
D 2

24g2
w1

w02w1
J CNlk~b,u!5tCNlk~b,u!. ~49!

B. Algebra

Among the operators$L1 ,L2 ,L3 ,L4%, corresponding to the four separable coordinate syste
only two are independent, as

L352L22L1 , L45L22L1 . ~50!

Consider the operatorsN1 , N2 , andR where

N15L̃25L1 , N25L̃15L222g2,
~51!

R[@N1 ,N2#52$K3 ,$K2 ,M1%%22$K3 ,K2
2%22$K3 ,M1

2%

18Fa2S v02v1

v2
D 2

1b2S v2

v02v1
D 2GK31

16b2v2

~v02v1!2 ~v0K22v1M1!

1
8g2v2

v02v1
~M12K2!24Fg212a2S v02v1

v2
D 2

22b2
112v2

2

~v02v1!2G .
We have

@R, N2#528N2
2264b2H216g2N2232b2N1116b2~4a221!, ~52!

@R, N1#54$N1 ,N2%132g2H216N2116g2N1116g2~2a21!, ~53!

R25 8
3$N2 ,N2 ,L1%2 176

3 N2
2132b2N1

21128b2H2164g2HN21128b2HN1

116g2$N1 ,N2%1~ 128
3 1256a2b2!H1~64a2g22 352

3 g2!N21~ 352
3 2128a2b2!N1

1~128a4b21128g4a22 128
3 a2b22 64

3 b2248g2!,

where$A,B%5AB1BA and

$A,B,C%5ABC1ACB1BCA1BAC1CAB1CBA.

The integrals of motionN1 , N2 , andH generate a quadratic algebra.

C. Interbasis expansion

For a fixed value of energy, we can write the equidistant wave function~7! in terms of the
horicyclic ones~19! as

Cn1n2
~x,y!5 (

m50

n11n2

Wn1n2

nm ~a,b,g!Cnm~a,b!, ~54!
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wheren11n25n1m. The connection between the equidistant~a,b! and horicyclic~x,y! coordi-
nates is

x5eb tanha, y5eb
1

cosha
. ~55!

Going over to the horicyclic coordinates on the left side of expansion~54!, then considering the
limit b→` and using the asymptotic formula for Laguerre polynomials8

lim
x→`

Ln
a~x!→~21!n

xn

n!
, ~56!

we see that dependence onb cancels on both sides of~54!. Now, using the orthogonality condition
for the angular wave functions~12!, we find the following expression for the interbasis coefficie
Wn1n2

nm :

Wn1n2

nm 5~21!nA m!n!&b~m2d22n21!G~m1m11!G~m2n!

n1!n2!mG~n11d11!G~n21d11!G~n1d11!G~m2d2n!
Bn1n2

nm , ~57!

where

Bn1n2

nm 5E
2`

1`

~sinha!112d12n1~cosha!122m22mPn
~d,2m!~cosh 2a!da ~58!

and d5A2a21 1
4. The integralBn1 ,n2

nm can be evaluated by expressing the Jacobi polynom

through the hypergeometric function2F1 :8

Pn
~a,b!~x!5~21!n

G~n1b11!

G~b11!n! 2F1S 2n,n1a1b11
b11 U 11x

2 D . ~59!

Representing the function2F1 as a series we come to a sum of integrals, each of which ca
calculated by using the formula8

E
0

1`

~sinht!a~cosht!2b dt5
1

2
BS 11a

2
,
b2a

2 D @Rea.21,Re~a2b!,0#. ~60!

We thus obtain

Wn1n2

nm 5
~21!n

2
A m!&b~m2d22n21!~m1m!G~n11d11!

n!n1!n2!mG~n21d11!G~n1d11!G~m2n2d!

3
G~m!G~m1m2d2n121!

AG~m2n!G~m1m!
3F2S 2n,n1d2m11,12m2m

12m,21n11d2m2m U1D . ~61!

Alternatively, by using the formula10 for the Hahn polynomialshn
(a,b)(x,N),

hn
~a,b!~x,N!5

~21!nG~N!G~b1n11!

n!G~N2n!G~b11! 3F2S 2n;a1b1n11;2x
b11;12N U1D , ~62!

we obtain the following expression for the expansion coefficients:
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Wn1n2

nm 5
~21!n

2
Am!n!&b~m2d22n21!~m1m!

n1!n2!mG~n1d11!G~m2n2d!
•AG~n11d11!G~m2n!

G~n21d11!G~m1m!

3G~m1m2d2n12n21!•hn
~d,2m!~m1m11,m1m2d2n121!, ~63!

in terms of Hahn polynomials.

III. SECOND POTENTIAL

The second considered potential is

V25
a2

v2
2

1g2
v0v1

~v0
21v1

2!2
1~a22b2!

v0
22v1

2

~v0
21v1

2!2
, ~64!

wherea, b, andg are positive constants. The corresponding Schro¨dinger equation admits sepa
rable solutions in two coordinate systems: equidistant and semi-hyperbolic.

A. Solutions of the Schro ¨ dinger equation

1. Equidistant coordinates

In this coordinate system,

v05cosht1 cosht2 , v15cosht1 sinht2 , v25sinht1 ~65!

@t1 ,t2P(2`,`)#, the potentialV2 has the form

V2~t1 ,t2!52
a2

sinh2 t1
1

1

cosh2 t1

a22b21g2 cosht2 sinht2

~cosh2 t21sinh2 t2!2 . ~66!

After putting

C~t1 ,t2!5~cosht1!21/2Z~t1!S~t2!, ~67!

we arrive at two equations:

d2S

dt2
2 1F2m22

2~a22b2!1g2 sinh~2t2!

cosh2~2t2! GS50, ~68!

d2Z

dt1
2 1F2E2

1

4
1

m22 1
4

cosh2 t1
2

2a2

sinh2 t1
GZ50, ~69!

wherem is the equidistant separation constant.
Let us consider the first equation~68!. The substitutionx5sinh 2t2 transforms this equation to

4~11x2!
d2S

dx2 14x
dS

dx
1F2m21

2~b22a2!2g2x

~11x2! GS50, ~70!

where the physical region isxP(2`,`). The equation~68! has three regular singularities in th
points x52 i ,i ,` and may be solved in term of hypergeometric functions. The solution of
equation~68! for a largeuxu can be written as
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S~x!5A1~x2 i !2~b1m!/221/4~x1 i !b/211/4
2F1S a1b111m

2
,
b2a111m

2
;11m;

2i

i 2xD
1A2~x2 i !2~b2m!/221/4~x1 i !b/211/4

2F1S a1b112m

2
,
b2a112m

2
;12m;

2i

i 2xD
~71!

with

a25~b2!* 5
2b222a2112 ig2

4
. ~72!

Let the separation constantm be a positive number@the equation~71! is symmetric with
respect to the replacementm→2m]. Then the second term in formula~71! behaves likeuxum/2 at
` and must be omitted. Thus forS(x) we obtain

S~x!5A~x2 i !2~b1m!/221/4~x1 i !b/211/4
2F1S a1b111m

2
,
b2a111m

2
;m11;

2i

i 2xD .

~73!

The hypergeometric function in Eq.~73! converges ifx lies out of the circleC on Fig. 1, defined
by u i 2xu52, and converges on the circleC with the condition Re(b),0. The functionS(x) exists
everywhere insideC except the intervalxP@2 i , i #, since the hypergeometric function in~73! has
a cut along the argument 2i /( i 2x)P@1,̀ ). That means that the solution~73! along the real axes
insideC in general is not a continuous function and may have a jump at the pointx50. Let us now
consider the analytic continuation of~73! inside the circleC:

FIG. 1. Domain of convergence.
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S~x!5AH ~x2 i !a/211/4~x1 i !b/211/4
G~m11!G~2a!

G„~b2a111m!/2…G„~2b2a111m!/2…~2i !~a1b111m!/2

•2F1S a1b111m

2
,
a1b112m

2
;a11;

i 2x

2i D
1~x2 i !2a/211/4~x1 i !b/211/4

G~m11!G~a!

G„~b1a111m!/2…G„~2b1a111m!/2…~2i !~2a1b111m!/2

•2F1S 2a1b111m

2
,

2a1b112m

2
;2a11;

i 2x

2i D J . ~74!

From Eq.~72! follow two possibilities

a5b* , a52b* . ~75!

Putting thea5b* @Re(a)5Re(b),0# we find that the first term in~74! represents an analyti
function, while the second term is discontinuous atx50. @Note since the both terms in Eq.~74!
transform to each other with replacementa→2a, the choicea52b* means that the first term in
~74! is discontinuous while the second term is continuous atx50.] Thus thesufficientcondition
for the existence of the continuous solution requires the relation

m1a1a* 11522m, m50,1,2,...,F2
a1a* 11

2 G , ~76!

so from ~72! we have

m522m211
1

&
A2b222a2111A~2b222a211!21g4. ~77!

Finally, the orthonormalized eigenfunction of Eq.~68! may be written in the form

S~t2!5~21!3m/2G~2a!A ~22m2a2a* 21!G~2m2a* !

pm!2a1a* 11G~2m2a!G~2m2a2a* !

•~11 i sinh 2t2!a/211/4~12 i sinh 2t2!a* /211/4

•2F1S 2m,m1a1a* 11;a11;
11 i sinh 2t2

2 D
5~21!m/2A~22m2a2a* 21!m!G~2m2a!G~2m2a* !

p2a1a* 11G~2m2a2a* !

•~11 i sinh 2t2!a/211/4~12 i sinh 2t2!a* /211/4Pm
~a,a* !~2 i sinh 2t2!, ~78!

where

a5
1

23/2$2AA~2b222a211!21g412b222a211

1 iAA~2b222a211!21g42~2b222a211!%.

The second equation~69! is quite like ~9! and has a solution
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Z~t1![Sn
~a,m!~t1!5A 2~m2A2a21 1

422n21!G~m2n!n!

G~m2A2a21 1
42n!G~11n1A2a21 1

4!

3~sinht1!1/21A2a211/4~cosht1!1/22mPn
~a,2m!~cosh 2t1! ~79!

with n50,1,... .
The quantized energy is

E52
1

2
~m2A2a211/422n21!21

1

8

52
1

2 H 2N121A2a21 1
42

1

&
A2b222a211A~2b222a211!21g4J 2

1
1

8
, ~80!

whereN5n1m is the principal quantum number and the bound state occurs for

0<N<F 1

A8
A2b222a2111A~2b222a211!21g42

1

2
A2a21 1

421G . ~81!

The additional operator describing this coordinate system is

L1Cnm~t1 ,t2![FK3
222~a22b2!S v0

22v1
2

v0
21v1

2D 2

22g2
v0v1~v0

22v1
2!

~v0
21v1

2!2 GCnm~t1 ,t2!

5H 2m112
1

&
A2b222a2111A~2b222a211!21g4J 2

Cnm~t1 ,t2!.

~82!

2. Semi-hyperbolic coordinates

Here

v0
252

~m2e3!~n2e3!

2@~e32a!21b2#
1

1

2
2

1

2b F @~m2a!21b2#@~n2a!21b2#

~e32a!21b2 G1/2

,

v1
25

~m2e3!~n2e3!

2@~e32a!21b2#
2

1

2
2

1

2b F @~m2a!21b2#@~n2a!21b2#

~e32a!21b2 G1/2

, ~83!

v2
252

~m2e3!~n2e3!

~e32a!21b2

@n,e3,m#, where sinh 2f5(e32a)/b and 2f is the distance between the focii of the sem
hyperbolas and the bases of their equidistants.6

If we change variables according to

v05
~s11s2!

&
, v15

2 i ~s12s2!

&
, v252 is3 , ~84!

the Schro¨dinger equation becomes
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1

2 F S s1

]

]s2
2s2

]

]s1
D 2

1S s1

]

]s3
2s3

]

]s1
D 2

1S s3

]

]s2
2s2

]

]s3
D 2GC

1F2E2
1

2 S k1
22 1

4

s1
2 1

k2
22 1

4

s2
2 1

k3
22 1

4

s3
2 D GC50 ~85!

with

1

2 S k1
22

1

4D5
1

4
~b22a2!2

i

8
g2,

1

2 S k2
22

1

4D5
1

4
~b22a2!1

i

8
g2,

1

2 S k3
22

1

4D5a2.

Noting

v0
22v1

22v2
25s1

21s2
21s3

251

and considering Eq.~85!, we see that the problem we wish to solve using the real coordinatesv0 ,
v1 , andv2 is a real case of the corresponding problem on the sphere with coordinatess1 ,s2 ,s3

and energy«52E.
Inverting the relations~84! we have

s15
~v01 iv1!

&
, s25

~v02 iv1!

&
, s35 iv2 .

Now choose elliptic coordinates on the complex sphere according to

s1
25

~m2e1!~n2e1!

~e12e2!~e12e3!
, s2

25
~m2e2!~n2e2!

~e22e1!~e22e3!
, s3

25
~m2e3!~n2e3!

~e32e2!~e32e1!
.

This choice of real coordinatesm,n will work for the real coordinatesvk , k50,1,2, if we take
e15e2* 5a1 ib,a,b real andn,e3,m.

In terms of the coordinatesm andn the Schro¨dinger equation has the form

4

~m2n! H ~m2e2* !~m2e2!~m2e3!F]2C

]m2 1
1

2 S 1

m2e2*
1

1

m2e2
1

1

m2e3
D ]C

]m G
2~n2e2* !~n2e2!~n2e3!F]2C

]n2 2
1

2 S 1

n2e2*
1

1

n2e2
1

1

n2e3
D ]C

]n G J
1F S k1

22
1

4D ~e2* 2e2!~e2* 2e3!

~m2e2* !~n2e2* !
1S k2

22
1

4D ~e22e2* !~e22e3!

~m2e2!~n2e2!

1S k3
22

1

4D ~e32e2!~e32e2* !

~m2e3!~n2e3! GC522EC. ~86!

The separation equations are

~r2e2* !~r2e2!~r2e3!Fd2C

dr2 1
1

2 S 1

r2e2*
1

1

r2e2
1

1

r2e3
D dC

dr G
2

1

4 F S k1
22

1

4D ~e2* 2e2!~e2* 2e3!

~r2e2* !
1S k2

22
1

4D ~e22e2* !~e22e3!

~r2e2!

1S k3
22

1D ~e32e2!~e32e2* !
22Er1lGc~r!50, ~87!
4 ~r2e3!
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wherer5m,n. The operatorL2 with eigenvaluel is

L2C5
24

~m2n! H n~m2e1!~m2e2!~m2e3!F]2C

]m2 1
1

2 S 1

m2e2*
1

1

m2e2
1

1

m2e3
D ]C

]m G
2mF ~n2e1!~n2e2!~n2e3!F]2C

]n2 1
1

2 S 1

n2e2*
1

1

n2e2
1

1

n2e3
D ]C

]n G J
2F S k1

22
1

4D ~e2* 2e2!~e2* 2e3!

~m2e2* !~n2e2* !
~m1n2e2* !1S k2

22
1

4D ~e22e2* !~e22e3!

~m2e2!~n2e2!
~m1n2e2!

1S k3
22

1

4D ~e32e2!~e32e2* !

~m2e3!~n2e3!
~m1n2e3!GC. ~88!

In order to find the bound state solutions of this system in semi-hyperbolic coordinates w
observe the identity

s1
2

u j2e2*
1

s2
2

u j2e2
1

s3
2

u j2e3
5

~v0
22v1

2!~u j2a!22v0v1b

~u j2a!21b2 2
v2

2

u j2e3

5
~m2u j !~n2u j !

~u j2e2* !~u j2e2!~u j2e3!
. ~89!

If we then look for solutions of the form

C5 )
l 51

3

s
l

kl 11/2)
j 51

N S s1
2

u j2e2*
1

s2
2

u j2e2
1

s3
2

u j2e3
D , ~90!

we see that the corresponding zeros satisfy the equations

k111

um2e2*
1

k211

um2e2
1

k311

um2e3
1 (

j Þm

N
2

~um2u j !
50. ~91!

For the energyE we have

E52 1
2~2N121k11k21k3!21 1

8, ~92!

which coincides with the formula~73! @note ~86!#. For the separation constantl we obtain

l522@k1~e21e3!1k2~e2* 1e3!1k3~e21e2* !#22@e3k1k21e2k1k31e2* k2k3#

2
3

2
~e2* 1e21e3!24e2e3~k111! (

m51

q
1

~um2e2* !
2e2* e3~k211! (

m51

q
1

~um2e2!

24e2e2* ~k311! (
m51

q
1

~um2e3!
. ~93!

In terms of variableswi the total wave function is written

C5S v01 iv1

&
D k111/2S v02 iv1

&
D k211/2

~ iv2!k311/2)
j 51

N F ~v0
22v1

2!~u j2a!22v0v1b

~u j2a!21b2 2
v2

2

u j2e3
G .

The algebra of second-order symmetries for this potential is generated by the operato

L jk5~sj]sk
2sk]sj

!21S 1

4
2kj

2D sk
2

sj
2 1S 1

4
2kk

2D sj
2

sk
2

~94!
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for j ,k51,2,3 andj Þk. The Hamiltonian of the system is expressed in terms ofL jk as

H5
1

2
~L121L131L23!2

1

2 (
i 51

3

ki
21

3

4
. ~95!

The relevant generators in the real case we are considering are then

L1252K3
21S 1

4
2k1

2D S v02 iv1

v01 iv1
D 2

1S 1

4
2k2

2D S v01 iv1

v02 iv1
D 2

, ~96!

L135
1

2
~M12 iK 2!21S b22a22

i

2
g2D v2

2

~v01 iv1!2 1a2
~v01 iv1!2

v2
2 , ~97!

L235
1

2
~M11 iK 2!21S b22a21

i

2
g2D v2

2

~v02 iv1!2 1a2
~v02 iv1!2

v2
2 . ~98!

The commutation relations and resulting quadratic algebra can then be deduced from the re
for the complex forms in terms of theLi j . It is easy to show that the additional integrals
motion, corresponding to the separation in equidistant and semi-hyperbolic coordinates,
written as

L152L121b22a2 ~99!

and

L25e3L121e2L131e1L322k1
2~e21e32e1!2k2

2~e11e32e2!2k3
2~e11e22e3!1 1

4~e11e21e3!.
~100!

The algebra for the operators~99! and ~100! is found in Ref. 11.
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On the Coulomb Sturmian matrix elements of relativistic
Coulomb Green’s operators

B. Kónya and Z. Pappa)

Institute of Nuclear Research of the Hungarian Academy of Sciences, P. O. Box 51,
H–4001 Debrecen, Hungary
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The Hamiltonian of the radial Coulomb Klein–Gordon and second order Dirac
equations are shown to possess an infinite symmetric tridiagonal matrix structure
on the relativistic Coulomb Sturmian basis. This allows us to give an analytic
representation for the corresponding Coulomb Green’s operators in terms of con-
tinued fractions. The poles of the Green’s matrix reproduce the exact relativistic
hydrogen spectrum. ©1999 American Institute of Physics.
@S0022-2488~99!02104-0#

I. INTRODUCTION

In quantum mechanics the knowledge of the Green’s operator is equivalent to the com
knowledge of the system. So, having an analytic basis representation for the Green’s opera
tremendously simplify the actual calculations. If we know the Green’s operator only o
asymptotic part of the Hamiltonian we can treat the remaining terms as perturbations and ap
mate them by finite matrices.

In a recent publication, Ref. 1, we have proposed a method for calculating matrix repr
tation of Green’s operators. If, in some basis representation, the Hamiltonian possesses an
symmetric tridiagonal~Jacobi! matrix structure the corresponding Green’s operator can be g
in terms of continued fractions. In Ref. 1, this theorem was exemplified with the Green’s op
of the nonrelativistic Coulomb and harmonic oscillator Hamiltonian, and, in Ref. 2, an ex
solvable nonrelativistic potential problem was considered which provides a smooth tran
between the Coulomb and the harmonic oscillator problems.

Our aim in this paper is to extend this result for relativistic Coulomb Green’s operators
for the Coulomb Green’s operator of the Klein–Gordon and of the second order Dirac equa
This later is equivalent to the conventional Dirac equation and seems to have several adva
For details see Ref. 3 and references therein. The Coulomb Sturmian matrix elements
second order Dirac equation has already been obtained by Hostler3 via evaluating complicated
contour integrals. Our derivation, however, is much simpler, it relies only on the Jacobi-m
structure of the Hamiltonian, and the result obtained is also better suited for numerical ca
tions. In Ref. 3 the result appears in terms ofG and hypergeometric functions, while our procedu
results in an easily computable and analytically continuable continued fraction.

II. MATRIX ELEMENTS OF RELATIVISTIC COULOMB–GREEN’S OPERATORS

The radial Klein–Gordon and second order Dirac equations for Coulomb interaction are
by

Huuju&50, ~1!

where

a!Electronic mail: pz@indigo.atomki.hu
23070022-2488/99/40(5)/2307/4/$15.00 © 1999 American Institute of Physics
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Hu5S E

\cD 2

2m21
2aZ

\c

E

r
1

d2

dr2
2

u~u11!

r 2
. ~2!

Herem5mc/\, a5e2/\c, m is the mass andZ denotes the charge. For the Klein–Gordon ca
u is given by

u52 1
2 1A 1

4 1 l ~ l 11!2~Za!2, ~3!

and in the case of the second order Dirac equation for the different spin states we have

u652 1
2 7 1

2 1A~ j 1 1
2!

22~Za!2. ~4!

The relativistic Coulomb Green’s operator is defined as the inverse of the HamiltonianHu :

HuGu5GuHu51u , ~5!

where1u denotes the unit operator of the radial Hilbert spaceHu .
In complete analogy with the nonrelativistic case we can define the relativistic Cou

Sturmian functions as solutions of the Sturm–Liouville problem,

S 2
d2

dr2
1h21

u~u11!

r 2
2

2h~n1u11!

r D Sn;h
u ~r !50, ~6!

whereh is a real parameter andn50,1,2, . . . ,̀ is the radial quantum number. In coordina
space representation they take the form

^r unu;h&5F n!

~n12u11!! G
1/2

~2hr !u11e2hrLn
2u11~2hr !, ~7!

whereL is a Laguerre-polinom. The Coulomb Sturmian functions, together with their biorthog
partner^r unu;h̃&51/r •^r unu;h&, form a basis: i.e., they are orthogonal,

^nu;h̃umu;h5^nu;humu;h̃&5dnm , ~8!

and form a complete set inHu ,

(
n50

`

unu;h&^nu;h̃u5 (
n50

`

unu;h&^nu;h̃u51u . ~9!

A straightforward calculation yields

^nu;humu;h&5
1

2h
@dnm~2u12n12!2dnm21A~n11!~n12u12!2dnm11An~2u1n11!#.

~10!

Utilizing this relation and considering Eq.~6! we can easily calculate the Coulomb Sturmi
matrix elements ofHu ,
                                                                                                                



plicable

nted in
rsion

d and
o the

ct

hus to

ed
.

2309J. Math. Phys., Vol. 40, No. 5, May 1999 B. Kónya and Z. Papp

                    
Hnmª^nu;huHuumu;h&51dnmS 2azE

\c
22~u1n11!h12~u1n11!

~E/\c!22m21h2

2h D
2dnm21S ~E/\c!22m21h2

2h
A~n11!~n12u12! D

2dnm11S ~E/\c!22m21h2

2h
An~n12u11! D , ~11!

which happens to possess a Jacobi-matrix structure. So, the theorem of Ref. 1 is readily ap
here.

Let us consider thè 3` Green’s matrix,

~Gu!nm[^nu;h̃uGuumu;h̃&, ~12!

and let us denote its rank-N leading principal submatrix byGu
(N) . Then, according to Ref. 1,

~Gu
~N!! i j

215Hi j 1d jNd iNHNN11F, ~13!

whereF is a continued fraction,

F52Ki 5N
` S ai

bi
D52

a11N

b11N 1

a21N

b21N 1•••1

an1N

bn1N 1•••

, ~14!

whose coefficients are related to the Jacobi matrix

ai52
Hii 21

Hii 11
, bi52

Hii

Hii 11
. ~15!

This continued fraction convergent for bound-state energies, but, by using the method prese
Ref. 1, can be continued analytically to the whole complex energy plane. Simple matrix inve
now gives the desired Green’s matrix.

In Table I we demonstrate the numerical accuracy of the method by evaluating the groun
some highly excited sates of relativistic hydrogen-like atoms, which, in fact, correspond t
poles of the Dirac Coulomb Green’s matrix. In particular, the zeros of the determinant of~13!
were located. It should be noted that irrespective of the rankN the zeros should provide the exa
Dirac results. In Table I we have taken 232 matrices. Indeed, the results of this method,Ecf ,
agree with the exact one in all cases, practically up to the machine accuracy, allowing t
study the fine structure splitting.

TABLE I. Energy levels of hydrogen-like atoms in atomic units.Ecf is the relativistic spectrum calculated via a continu
fraction,ED andES are textbook values of the relativistic Dirac and the nonrelativistic Schro¨dinger spectrum, respectively

Energy levels Ecf ED ES

Hydrogen 1S1/2 20.5000066521 20.5000066521 20.5
Z51 2P1/2 20.1250020801 20.1250020801 20.125

2P3/2 20.1250004160 20.1250004160 20.125
50P1/2 20.0002000002 20.0002000002 20.0002
50P3/2 20.0002000001 20.0002000001 20.0002

Uranium 1S1/2 24861.1483347 24861.1483347 24232
Z592 100D3/2 20.4241695002 20.4241695002 20.4232

100D5/2 20.4238303306 20.4238303306 20.4232
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III. SUMMARY

In this paper we have presented a practical and easy-to-apply procedure for calculati
Coulomb Sturmian matrix elements of the Coulomb Green’s operator of the Klein–Gordon a
the second order Dirac equations. The method is relied only on the Jacobi-matrix structure
corresponding Hamiltonians and results in a continued fraction which can be continued a
cally to the whole complex energy plane.
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Quantum geometry of field extensions
Shahn Majida)

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, United Kingdom

~Received 9 October 1998; accepted for publication 20 October 1998!

We introduce a new kind of topological gauge configuration or ‘‘soliton’’ associ-
ated to the extensionC$R of the real numbers to the complex ones. These con-
figurations describe zero-curvature gauge fields and nontrivial cohomology over the
real line, but with a quantum choice of differential calculus. In general, the quan-
tum differential 1-forms on the line with coordinate algebrak@x# are in correspon-
dence with field extensions ofk, and the quantum cohomology detects the nontrivi-
ality of the extension. ©1999 American Institute of Physics.
@S0022-2488~99!04002-5#

I. INTRODUCTION

Usually quantum differential geometry aims to model orq-deform classical geometrical con
structions, e.g., Ref. 1 as a step towards a more general geometry appropriate to quantu
grable systems and~in principle! to the Planck scale. In this paper we observe that in quan
differential geometry one also has the possibility of entirely new kinds of topological g
configurations or ‘‘solitons’’ not even visible classically. We demonstrate the ideas explicitl
the real line, which we work with algebraically as the coordinate algebra of real polynomialsR@x#
in one variable. The existence of these topological configurations implies, among other thi
novel quantum geometrical approach to number theory that we have not seen considere
where. From a physical point of view, the extension from real numbers to complex on
particularly central to physics and the introduction of a geometrical way of looking at it
unification that could certainly be significant at the Planck scale.

First, note that the differential calculus on a space is additional information to the space
but for Lie groups there is a unique translation-invariant calculus which is usually assum
quantum differential geometry we drop the assumption that the product of coordinate fun
and differential 1-forms from the left and right coincide, i.e., in 1-variable we allowx dx
Þ(dx)x. This is the natural situation, for example, on a lattice, where multiplication from the
and right differ due to the difference between the starting-point and end-point of a finite-diffe
differential. On the other hand, the choice of differential calculus is then no longer unique,
for covariant ones2 on a classical~or quantum! group. A lot of attention in recent years has be
given to classifying the possible covariant calculi on various groups and quantum groups, a
recently solved generically for finite groups and for the coordinate algebras of standard qu
groupsUq(g).3

In the present paper we will concentrate on the simplest Hopf algebra of all, namel
coordinate algebrak@x# of the line, but wherek is a general field. In this case the classification
calculi itself is quite elementary, although we have not seen it treated explicitly elsewhere
provide this explicit treatment in the preliminary Sec. II and see that the coirreducible calcu
of the formkl@x#, wherekl$k is a field extension ofk. We then proceed in Sec. III to compu
the quantum differentials associated to the extensionC$R ~so the functions areR@x# and the
1-forms areC@x#!. In Sec. IV we consider quantum cohomology and gauge theory in this case
compute the moduli of algebraic flat connections. In both cases we find nontrivial configura

a!Royal Society University Research Fellow and Fellow of Pembroke College, Cambridge, England. Electronic
majid@damtp.cam.ac.uk
23110022-2488/99/40(5)/2311/13/$15.00 © 1999 American Institute of Physics
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reflecting the nontriviality of the field extension from real to complex numbers. Section V
cludes with some further quantum geometric considerations.

Note that the possible quantum differentials in 1-variable over the fieldC are already known4

to be parametrized byl0PC and have the form

df ~x!5dx
f ~x1l0!2 f ~x!

l0
, x dx2~dx!x5l0 .

Of these,l050 is the classical Newtonian calculus while the others are clearly the na
differential calculi for a version of lattice geometry based on finite differences. The calculi in
cases do not have nontrivial cohomology; the new phenomenon to be described in the p
paper arises only when we consider quantum differentials over a nonalgebraically close
such asR.

II. V1 AND FIELD EXTENSIONS

Let A be an algebra, which we consider as playing the role of ‘‘co-ordinates’’ in algeb
geometry, except that we do not require the algebra to be commutative. The appropriate no
cotangent space or differential 1-forms in this case is the following:2

1. V1 an A-bimodule.
2. d:A→V1 a linear map obeying the Leibniz rule d(ab)5a db1(da)b for all a,bPA.
3. The mapA^ A→V1, a^ b°a db is surjective.
WhenA has a Hopf algebra structure with coproductD:A→A^ A and counite:A→k ~k the

ground field!, we say thatV1 is bicovariant if the following occurs:
4. V1 is a bicomodule with coactionsDL :V1→A^ V1, DR :V1→V1

^ A bimodule maps
~with the tensor product bimodule structure on the target spaces, whereA is a bimodule by left and
right multiplication!.

5. d is a bicomodule map with the left and right regular coactions onA provided byD.

A morphism of calculi means a bimodule and bicomodule map forming a commuting tria
with the respective d maps. One says3 that a calculus is coirreducible if it has no proper quotien

Note that we do not demand thata db5(db)a, for in this case axiom 2 would imply tha
d(ab2ba)50, which we cannot naturally suppose whenA is noncommutative. This possibl
noncommutativity of forms and ‘‘functions’’ is the main generalization featuring in the ab
axioms; we say that a differential calculus is noncommutative or ‘‘quantum’’ if the left and r
multiplication of forms by functions do not coincide. Also, givenV1, there are natural prolonga
tions to higher order differential forms, i.e., the entire exterior algebraV•. We recall this when it
is needed, in Sec. IV. Note that this approach is somewhat different from Ref. 5, where an
V• on an algebra is effectively specified via a ‘‘spectral triple.’’

On the other hand, whenV1 is required to be bicovariant, there is a standard argument2 that
it must be of the form

V15V0^ A, da5~p ^ id!~Da21^ a!,

whereV05kere/M with canonical projectionp:kere→V0 andM is a left ideal contained in
ker e and stable under the Hopf algebra adjoint coaction Ad. The right~co!module structures are
those ofA alone by~co!multiplication. The left~co!module structures are the tensor product
those onV0 as inherited from kere,A ~whereA acts by left multiplication and coacts by Ad! and
those onA by ~co!multiplication. We recall that modules and comodules of a Hopf algebraA have
a tensor product induced by the coproduct and product ofA, respectively. Then bicovariantV1 are
in 1–1 correspondence with the Ad-stable left idealsM#kere. WhenA is cocommutative the
adjoint coaction Ad is trivial.
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Proposition 2.1:WhenA5k@x#, the coirreducible bicovariantV1 are in 1–1 correspondenc
with irreducible monic polynomialsmPk@l#, and take the formV15kl@x#, where kl

5k@l#/^m& is the corresponding field extension. The bimodule structures and d differentia

f ~x!•P~l,x!5 f ~x1l!P~l,x!, P~l,x!• f ~x!5P~l,x! f ~x!, df ~x!5
f ~x1l!2 f ~x!

l

for all f Pk@x#, PPkl@x#.
Proof: We are interested inA5k@x#, the polynomials over a fieldk, forming a Hopf algebra

with its additive coproduct counit and antipode,

Dx5x^ 111^ x, ex50, Sx52x.

According to the above, bicovariant differential calculi onk@x# are in 1–1 correspondence wit
idealsM#kere. Here kere5^x&, the ideal generated byx in k@x#. Sincek@x# is a principal ideal
domain~P.I.D.!, the idealM above is generated by a polynomial. SinceM#kere, this polyno-
mial is divisible by x, i.e.,M5^xm&. Coirreducible calculi correspond tom irreducible and
monic.

We identify the correspondingV05^x&/^xm&>k@l#/^m&5kl by x f(x)° f (l). Under this
identification,V15V0^ k@x#>kl@x#. The action from the right is by the inclusionk@x#,kl@x#.
The action from the left is by

f ~x!•xm
^ xn5 f ~x^ 111^ x!xm

^ xn,

as the tensor product action. Hencef (x)•lm21xn5 f (l1x)lm21xn under our identification. The
quotient by^xm(x)& or ^m(l)& is understood in these expressions.

We compute df 5 f (x^ 111^ x)21^ f (x) modulo^xm& in the first tensor factor. Under ou
isomorphism this is@ f (l1x)2 f (x)#/l modulo ^m(l)&. Note that dx5x^ 1 modulo^xm& be-
comes dx51Pkl@x#.

To see explicitly that the correspondence here is indeed 1–1, suppose thatkl1
@x#>kl2

@x# as
quantum differential calculi associated tom1(l1) and m2(l2). Since the isomorphism is, in
particular, a right module map underk@x#, it restricts to the identity onk@x#. And since the
isomorphism forms a commutative triangle with the d maps, it identifies@ f (x1l1)2 f (x)#/l1

with @ f (x1l2)2 f (x)#/l2 for all f. Taking f 5x2 we have 2x1l1 and 2x1l2 identified, hence
l1 ,l2 identified. Similarly by inductionl1

n andl2
n are identified for alln>0. One can also use th

left module map property to conclude this. Hencem1(l2)50 in kl2
. Hencem2 dividesm1 . Since

m1 is monic and irreducible, we conclude thatm15m2 as required. The converse direction
clear. h

This generalizes the observation in Ref. 4 that coirreducible bicovariant quantum differ
calculi overC@x# are parametrized byl0PC ~say!. Herem(l)5l2l0 andp(l)5l0 . Hence, in
this case,

df 5dx
f ~x1l0!2 f ~x!

l0
. ~1!

The ratio on the right should be understood as the coefficient ofl0 in f (x1l0)2 f (x), i.e., we
include the usual differential calculus as the casel050. More generally, if the extension is Galoi
the rootsl i of m are as many as its degree and are primitive elements ofkl , i.e., kl>k@l i # by
settingl5l i , for eachi. This gives us different ways of thinking of the differentials in Propo
tion 2.1 concretely as finite differences, all of them equivalent via the action of the Galois g
of kl automorphisms that permute thel i .

It is easy to verify thatV1 in Proposition 2.1 is bicovariant under the left and right coactio

DRP~l,x!5P~l,x1y!Pkl@x# ^ k@y#, DLP~l,x!5P~l,y1x!Pk@y# ^ kl@x#, ~2!
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induced by the coproductD, as it must be by construction. Here the coacting copy ofA is denoted
by k@y#. The spaceV0 is the subspace ofV1 invariant under the left coactionDL , again by the
general theory. Clearly, the dimension ofV0 over k, which is the dimension of the quantum
differential calculus, is the degree ofm, the degree of the associated field extension. The elem
$15dx,l,¯ ,ldeg(m)21% of kl@x# are a basis of right-invariant 1-forms.

III. QUANTUM DIFFERENTIALS FOR THE COMPLEX EXTENSION OF THE REALS

In this section we consider in detail the casek5R andm(l)5l211. Thenkl5C. The space
of right-invariant 1-forms has the basis

V05$15dx, l5dx222~dx!x%.

We use the notations dx andv[dx222(dx)x5x dx2(dx)x ~by the Leibniz rule! for these two
1-forms in what follows.

Lemma 3.1:The left part of the bimodule structure onV1 in this basis is given by

x•dx5~dx!x1v, x•v5vx2dx.

Proof: The first equality is the definition ofv ~given the Leibniz rule!. The second depends o
the irreducible polynomialm according tox•v5(x1l)l5lx215vx2dx. h

Proposition 3.2:The exterior differential is given by

df ~x!5~dx!Tf ~x1i !1v~ f ~x!2Rf ~x1i !!,

where f PR@x# is continued toC and T, R denote imaginary and real parts. The left and rig
multiplication of forms by functions are related by

f ~x!•~dx v!5~dx v!S R 2T

T R
D f ~x1i !.

Proof: This follows directly as an example of Proposition 2.1 on writingl5i. Here we
provide a more conventional direct proof based on the more conventional description in L
3.1. First we write Lemma 3.1 in matrix form

x•~dx v!5~dx v!S x 21

1 x D .

Then f (x)•dx5(dx) f (x1L)1
11v f (x1L)2

1 whereL5(1 0
0 21) and the numerical indices de

note the matrix element. We regardx for these purposes as multiplied by the identity matr
Similarly for f (x)•v.

Now, by induction on the Leibniz rule,

dxm5xm21 dx1xm22~dx!x1¯1~dx!xm21

5~dx v!~xm211xm22~x1L!1¯1x~x1L!m221~x1L!m21!S 1
0D

5~dx v!S ~x1L!m2xm

L D S 1
0D

5~dx v!~~x1L!m2xm!S 0
21D .

This provides the formula
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df 5~dx v!~ f ~x1L!2 f ~x!!S 0
21D .

SinceL2521, we then identify theL0 andL1 parts of f (x1L)2 f (x) with the real and imagi-
nary parts off (x1i)2 f (x) as stated. Similarly forf (x)•dx and f (x)•v. h

To gain further insight into this differential calculus it is useful to embed it in the 1-param
family corresponding tom(l)5l21q2, qPR. This is isomorphic to the aboveq51 case for all
qÞ0 and not irreducible forq50. It does, however, have an interesting limit asq→0. Briefly, the
relevant formulas are

x•~dx v!5~dx v!S x 2q2

1 x D , ~3!

resulting in

df 5q22v~ f ~x!2Rf ~x1iq!!1q21~dx!Tf ~x1iq!. ~4!

This has a limit asq→0:

xv5vx, x dx5~dx!x1v, df 5v 1
2 f 91~dx! f 8, ~5!

in terms of the usual Newtonian derivativef 8. This is the 2-jet calculus in Ref. 4 whereby up
second order derivatives are viewed as ‘‘first order’’ with respect to the new calculus an
appropriate ‘‘braided derivation’’3 rule. We see that this calculus, although not coirreducib
arises naturally as a degenerate limit of coirreducibles corresponding to the extensionR,C.

IV. QUANTUM COHOMOLOGY AND GAUGE THEORY OF FIELD EXTENSIONS

In this section, we consider two natural prolongations of theV1(k@x#) associated to a field
extension to ‘‘exterior algebras’’Vn(k@x#) of degreen.1. We compute the first quantum coho
mology for each prolongation in the case of the extensionR#C, and the associated gauge theo

We recall first that a differential graded algebraV• over a unital algebraA means a graded
algebra with degree zero partA itself, and d:V•→V• which increases the degree by 1 and obe
d250 and the graded Leibniz rule. In other words,V• has the algebraic properties of an ‘‘exteri
algebra’’ in DeRahm theory and one may likewise compute its ‘‘quantum de Rahm cohomolo
Thus,

H15$vPV1udv50%/$dauaPA%. ~6!

Given V1, its maximal prolongation is defined as follows. First of all, we recall that in v
of Axiom 3 above we can writeV1 as a quotient of the universal calculusVU

1 5ker(•:A^ A
→A) by a sub-bimoduleN. HereVU

1 has the obvious bimodule structure fromA^ A and dUa
5a^ 121^ a. @Note that whenA is a Hopf algebra thenA^ A>A^ A by a^ b°(Da)b restricts
to VU

1 >kere ^ A andN>M^ A, giving the description used in Sec. II.# Moreover,VU
1 is the

degree 1 part of a canonicalVU
• ~albeit with trivial quantum cohomology!. HereVU

n ,A^ n11 as
elements in the joint kernel of all product maps• i multiplying the i ,i 11’th copies ofA. This can
also be identified withVU

n 5VU
1

^ A¯^ AVU
1 in the obvious way; see Refs. 5 and 1. Here

dU~a0^ a1¯^ an!5 (
i 50

n11

~21!n112 ia0^¯^ ai 21^ 1^ ai ^¯^ an . ~7!

One may check that dU+dU50. The product∧ of VU
• is given by multiplication between the tw

adjacent copies ofA. A generalV• overA is a quotient ofVU
• by a differential graded ideal~i.e.,

an ideal stable under dU!. Without loss of generality we assume that the degree 0 part of the
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is zero. The degree 1 part is some subbimoduleN#VU
1 and conversely, givenN the maximal

prolongation is provided by the differential ideal generated byN. Its degree 2 part isF
5VU

1 ∧N1N∧VU
1 1dUN andV25VU

2 /F.
Lemma 4.1:For the field extensionR,C, the maximalV2 is generated as anR@x#-module by

the two forms dx∧dx and dx∧v. Moreover,

dv52 dx∧dx52v∧v, dx∧v52v∧dx.

Proof: The subbimoduleN in our case is generated byxv2vx1dx wherev is defined as
above. Now, dv5d(x dx2(dx)x)52 dx∧dx from the definition ofv and the graded Leibniz rule
and d250. Hence the subbimoduleF is generated byVU

1 ∧N, N∧VU
1 and dx ∧v1v∧dx

12x dx∧dx22(dx∧dx)x. From Lemma 3.1 we havex dx∧dx5(dx)∧x dx1v∧dx5(dx∧dx)x
1dx ∧v1v∧dx up to terms inVU

1 ∧N, N∧VU
1 . Therefore,F is generated by these andv∧dx

1dx∧v.
Finally, from the definition ofv, and the relations inV1 andN, we have

v∧v5~x dx2~dx!x!∧v

52xv∧dx2~dx!x∧v

5dx∧dx2v∧x dx2~dx!x∧v

5dx∧dx2v∧v2v∧dx x1dx∧dx2~dx!∧vx

52 dx∧dx2v∧v,

which gives the stated description ofV2 as a quotient of the tensor square overR@x# of V1. h

Proposition 4.2:With the maximalV2, the quantum de Rahm cohomologyH1 associated to
R,C vanishes.

Proof: Suppose d((dx) f 1vg)50, i.e., 2dx∧df 12(dx∧dx)g2v∧dg50. Putting in the
form of df and dg from Proposition 3.2, we see this is equivalent to

Tg~x1i !5 f ~x!2Rf ~x1i !, Rg~x1i !1g~x!5Tf ~x1i !,

which can be combined into the single equation

f ~x1i !2 f ~x!5i~g~x!1g~x1i !!. ~8!

We now show that suchf,g are necessarily of the form

f 5Th~x1i !, g5h~x!2Rh~x1i !,

for someh(x). Note first that if~f,g! obey ~8! and without loss of generalityf 5nxn211 lower
degree, say, then

g5
n~n21!

2
xn221 lower degree.

Indeed, writingg5mxp1 lower degree, the second half of~8! implies thatmxp1mR(x1i)p

1¯52mxp1¯5nT(x1i)n212nxn211¯5n(n21)xn221¯ . Equating leading terms
givesp5n22 and 2m5n(n21).

Now let

f n5T~x1i !n, gn5xn2R~x1i !n5xn2~x1i !n1i f n ,

for n.0. Note that the leading term off n is nxn21 and the leading term ofgn is @n(n
21)/2#xn22. Hence
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f 5 f n1 f̄ , g5gn1ḡ

defines two polynomialsf̄ ,ḡ of lower degree. Now, since (f n ,gn) are the components of th
differential ofxn, and since d250, we know that they obey~8!. Hence (f̄ ,ḡ) obeys~8! and has a
lower degree.

Therefore we have a proof by induction. The case wheren52 is easily seen to be true. Tha
is, if f 52x1m then~8! implies as above thatg51. Then, indeed,f 5T((x1i)21m(x1i)) and
x21mx2R((x1i)21m(x1i))515g, as required. In terms of differential forms, the assert
is that if (dx)(2x1m)1vh(x) is closed thenh(x)51 and the form is d(x21mx). This may also
be verified directly from the relations in Lemma 4.1. h

Next we consider a natural quotient of the above prolongation which always exists wheA is
a Hopf algebra andV1 is bicovariant. In this caseV15V0^ A as explained in Sec. II, andV• is
defined in such a way that the invariant differential forms ‘‘braided-anticommute’’ where
braiding is the one associated to the quantum double ofA.2 Fortunately, in our case whereA is
commutative and cocommutative, the quantum double braiding is the trivial flip map~the usual
transposition!. Hence, in this case we have simplyVn5LnV0^ A, whereLn denotes the usua
exterior algebra of the vector spaceV0 . We call this the skew exterior algebra.

Proposition 4.3:The skewV2 in the caseR,C is 1-dimensional with basis dx∧v @i.e., as in
Lemma 3.1, with the additional relations (dx)2505v2#. The first quantum cohomology in thi
case isH15Rv, i.e., 1-dimensional and spanned byv.

Proof: This time d((dx) f 1vg)50 and df ,dg from Proposition 3.2 implies only that

Tg~x1i !5 f ~x!2Rf ~x1i !, ~9!

as the coefficient of dx∧v. @The first half of~8! does not apply since dx∧dx50.# This equation
still implies that if f 5nxn211 lower degree andn.2 theng5@n(n21)/2#xn221 lower degree,
as before. Indeed, ifg5mxp1¯ then it saysmpxp211¯5n(n21)(n22)/21¯ . This is
weaker than before because it does not fixm when n52. We proceed as before by writingf
5 f n1 f̄ , g5gn1ḡ so thatf̄ ,ḡ obey~9! and have a lower degree. In this way we obtain~without
loss of generality by scalingf,g suitably! f 5F12x1m andg5G1t where (dx)F1vG5dh for
someh. Adding f 21m f 1 and g251 ~hereg150! to F,G, we have (dx) f 1vg5(12t)v1dh8
for h85h1x21mx. HenceH15Rv. Indeed dv50 for this choice ofV2 but v is not exact.h

Finally, associated to anyV• over a unital algebraA one has further ‘‘quantum geometrical
constructions, such as gauge theory. In its simplest form we consider a gauge field asa
PV1 and a gauge transform as an any invertiblegPA. The group of gauge transforms acts on t
set ofa by

ag5g21ag1g21 dg. ~10!

The fundamental lemma of gauge theory is that the curvature

F~a!5da1a∧aPV2 ~11!

is covariant in the sense thatF(ag)5g21F(a)g. Moreover, one can consider sectionscPA and
a covariant derivative¹c5dc1acPV1. One has an action of the group of gauge transform
tions by cg5g21c and ¹gcg5(¹c)g. These facts require only thatV1,V2 obey the natural
axioms as part of a differential graded algebra; see Ref. 4. Note that whenV1 is ‘‘quantum,’’ the
nonlinearity inF does not necessarily collapse, even though the ‘‘structure group’’ here is tr
i.e., one has many of the features of non-Abelian gauge theory. One may also considera with
values in some other algebra.

In our present setting whereA5k@x#, only 1 will be invertible as a polynomial. One ma
enlargeA and our constructions above to handle this. Alternatively, instead of the ‘‘finite’’ ga
transformationsg one can consider only ‘‘infinitesimal’’ ones. Here an infinitesimal gauge tra
formation meansuPk@x# acting by
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au5a1du1au2ua, F~au!5F~a!1F~a!u2uF~a!, ~12!

to lowest order inu. This can be stated more formally as a vector field associated to eachu on the
space of connections, etc., in the usual way. The covariant derivative¹5d1a∧ is covariant to
lowest order undercu5c2uc. By the same methods as in Ref. 4, one may check that
V1,V2 which are part of an exterior algebra will do for these features of gauge theory. Covar
of the curvature means that the vector fields associated tou restrict to vector fields on the space
flat connections. They may not, however, restrict to only the algebraic~i.e., polynomial! part.

Proposition 4.4:For the extensionR,C and the maximal prolongationV2 we write a
5(dx)a1vb andF(a)5(dx)2F01dx∧vF1 , say, then

F01iF15~a~x!1i~b~x!11!!~a~x1i !2i~b~x1i !11!!21,

and the infinitesimal gauge transformations are

~a~x!1i~b~x!11!!°~a~x!1i~b~x!11!!~11u~x!2u~x1i !!.

The algebraic part of the space of flat connections is a circle,

Flat5$dx s1vtus,tPR, s21~ t11!251%5S1,C.

Heres1itPC,C@x#,V1 is a circle of unit radius centered at2i. The action ofu(x)5x is a
unit vector field along the circle, so that the algebraic moduli space is the class of the
connection.

Proof: We use Proposition 3.2 to compute da1a∧a in V2. We then use Lemma 4.1 an
collect the coefficients of dx∧dx and dx∧v as

F05~2Ta~x1i !1Rb~x1i !!~11b~x!!1b~x!1~Ra~x1i !1Tb~x1i !!a~x!,

F15~Ra~x1i !1Tb~x1i !!~11b~x!!2a~x!1~Ta~x1i !2Rb~x1i !!a~x!.

Likewise from Proposition 3.2, the action of infinitesimal gauge transformationuPR@x# is

a°a~x!~11u~x!!1Tu~x1i !~11b~x!!2Ru~x1i !a~x!,

b°b~x!~11u~x!!1u2Ru~x1i !~11b~x!!2Tu~x1i !a~x!.

We can then combine these expressions into the expressions shown forF01iF1 anda1ib. Note
that a5dx a1vb5a1ib in the identification of Proposition 2.1, and similarlyF(a)5dx∧(F0

1iF1) by an extension of this identification.
Next we compute the algebraic part of the space of flat connections. Suppose that

a5a1ib5sxn1¯1i~ txm1¯ !, s,tÞ0

are the leading terms for the real and imaginary parts. Here,n,m>0. Then

F~a!52snxn212is
n~n21!

2
xn2212txm1itmxm211~sxn1itxm!

3S sxn2itxm1isnxn211tmxm212s
n~n21!

2
xn221it

m~m21!

2
xm22D1¯

52snxn212is
n~n21!

2
xn2212txm1itmxm211s2x2n1t2x2m1is2nx2n211it2mx2m21

1st~m2n!xm1n211
i

2
st~m~m21!2n~n21!!xm1n221¯ .
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Now, sincen>0 the xn21 and ixn22 terms can be dropped against thex2n and ix2n21 terms,
respectively.

Suppose thatm>1. Then thexm and ixm21 terms can likewise be dropped. Ifm5n then
(s21t2)x2n1i(s21t2)nx2n21 is dominant, in which caseF50 would imply s50, t50. So this
case is excluded under our initial assumption. Ifm.n then t2x2m1it2mx2m21 is dominant, in
which caset50. Likewisem,n would imply s50.

Hencem50 for a flat connection under our assumptions,tÞ0. In this case, ifn>1 then
s2x2n1is2nx2n21 is dominant andF50 would imply thats50. Hencen50 as well for a flat
connection.

It remains to consider the simpler cases wheret50 or s50 in our leading terms~i.e., real or
imaginarya!. If t50 andsÞ0 we similarly conclude thatn50 for a nonzero flat connection. An
if s50 andtÞ0 thenm50 for a nonzero flat connection in the same way. Hence, for an algeb
connection of zero curvature, we are left witha5s1it for s,tPR. Then

F~dx s1vt !5d~dx s1vt !1~dx s1vt !∧~dx s1vt !5~ t212t1s2!dx∧dx,

via Lemma 4.1, which tells us thats21(t11)251 for zero curvature.
For u(x)5xe, where ePR, we have the infinitesimal gauge transforms1i(t11)°(s

1i(t11))(12ie) to lowest order ine. This is an infinitesimal rotation ofs1it about2i. h

Although we can consider only infinitesimal gauge transformations in our present alge
setup, it is clear that the exponentiation of the infinitesimal gauge transformations associa
u(x)5xe rotate us around the statedS1. Since thisS1 passes through the origin, we see that all
algebraic zero curvature solutions stated are connected in this way to the zero connection b
gauge transformations. Note also that infinitesimal gauge transformations byu(x)5xne, n.1
take us out of the space of algebraic zero curvature connections. This tells us that addition
curvature connections beyond those in the proposition certainly exist in a suitable context, ju
as polynomials. For example, the formal exponentiation of the gauge transform byu(x)5x2e of
the a522i solution is

a52i~11et~122xi !!, tPR.

It corresponds to the gauge transformation ofa522i by g(x)5etx2
, where~10! for the R,C

calculus comes out as

ag1i5~a1i !
g~x!

g~x1i !
. ~13!

Although we are not able to consider such finite gauge transformations and exponentials
polynomial setting, we see that the infinitesimal gauge transforms do give us some inform
about the entire space of solutions.

Proposition 4.5:For the extensionR,C and the skew prolongationV2 we write a5(dx)a
1vb as above andF(a)5dx∧vF1 , say. Then

F15~Ra~x1i !1Tb~x1i !!~11b~x!!2a~x!1~Ta~x1i !2Rb~x1i !!a~x!,

and the infinitesimal gauge transformations byu as in the preceding proposition. The algebra
part of the space of flat connections is the complex plane,

Flat5$ds1vtus,tPR%5C,

wheres1itPC,C@x#5V1. The algebraic moduli space of flat connections modulo gauge tr
formations is the half-lineR1 .

Proof: We take the same form fora with leading coefficientss,t as in the preceding proof
This time, however, the zero-curvature condition is only half of the preceding one. Indeed,
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F152s
n~n21!

2
xn221tmxm211txmS 2s

n~n21!

2
xn221tmxm21D

1sxnS snxn211t
m~m21!

2
xm22D1¯ ,

for the leading terms after cancellations. We used the same expression forF1 as the coefficient of
dx∧v in the preceding proof. We dropxn22 againstx2n21 and, assumingm>1 we dropxm21 as
well. If m5n we dropxm1n22 and the dominant term is (s21t2)nx2n21, which would implys
5t50 for a flat connection. Ifm.n the dominant term ist2x2m21 which would imply t50. If
m,n the dominant term iss2x2n21 which would implys50. Hencem50. Hence the dominan
term iss2nx2n21 which would implys50 if n>1. Hencen50 as well. Finally, if we consider the
similar form of a with s50, the leading term form>1 would bet2x2m21 and imply a50, so
m50 in this case for a nonzero flat connection. If we considera with t50 then the leading term
is s2nx2n21 as before, which would implyn50. These are similar arguments to those in t
preceding proof but relying now only on the imaginary part of the curvature. We deduce th
algebraic flat connection is of the forma5dx s1vt. This time, however,F(a)50 for all s,t
PR since dx∧dx50 in the skew prolongation.

Infinitesimal gauge transformations are computed as before without change. Hence, th
of the formu(x)5xe rotate about2i in thes1it plane. The orbits are circles of constant radi
s21(t11)2PR1 . The different orbits are, however, inequivalent at least by suchu. ~On the other
hand, higher degreeu take us out of the class of polynomial connections.! Hence the algebraic par
of the moduli space of flat connections isR1 . h

Finally, the cohomology and moduli spaces in the maximal and skew prolongations are
more easily computed in the simpler 2-jet calculus resulting from the degenerateq→0 limit of the
parametrized version of theR,C extension. We first compute the maximal prolongation as hav
relations

v∧v5q2 dx∧dx, dv52 dx∧dx, dx ∧v52v∧dx. ~14!

The proof is entirely similar to that of Lemma 4.1~and equivalent to it after a rescaling!, so we
omit it. The degenerate limit is therefore

v∧v50, dv52 dx∧dx, dx ∧v52v∧dx. ~15!

The skew prolongation has the additional relation dx∧dx50.
Proposition 4.6:The quantum cohomology for the 2-jet calculus isH150 in the maximal

prolongation andH15Rv in the skew prolongation.
Proof: Here d((dx) f 1vg)50 implies

1
2 f 85g, 1

2 f 95g8.

Letting h be such thath85 f , we have (dx) f 1vg5dh, so thatH1 is trivial. For the skew
prolongation we have only (1/2)f 95g8, which implies (1/2)f 85g2m wheremPR. Choosingh
such thatf 5h8, we have (dx) f 1vg5dh1mv, so thatH15Rv. h

Gauge theory in theq→0 limit is described in Ref. 4, and we now compute the moduli sp
of flat connections in this case.

Proposition 4.7:Writing a5(dx)a1vb, the curvature in the 2-jet calculus with the maxim
prolongation is

F~a!5dx∧dx~2b2a81a2!1dx∧v~b82 1
2 a91a8a!,

and is invariant under the gauge transformation,
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a°a1u8, b°b2au81 1
2 ~u92~u8!2!,

by uPR@x#. The moduli space of flat connections in the maximal prolongation is trivial and in
skew prolongation isR, with flat connections gauge equivalent toa5mv for uniquemPR.

Proof: We computeF(a) using the relations inV2 and the commutation rules forV1 at the
end of Sec. III. The gauge transformation is likewise the infinitesimal gauge transformatio
above but computed for this calculus, and corrected by the21/2(u8)2 to make, in the present cas
an exact gauge symmetry of the curvature~not only to lowest order inu!. These formulas are
obtained by formally writingg5eu in the finite gauge transformation formulas computed for
2-jet calculus in Ref. 4; in our present case the result involves only polynomials in derivativ
u, i.e., makes sense in terms ofu at our algebraic level. One then verifies directly at this level t
F(au)5F(a).

The zero-curvature condition in the maximal prolongation is therefore

b5 1
2 ~a82a2!.

If this is the case then chooseu such thatu852a. This gauge transformsa°0. On the other
hand,b°b2a(2a)11/2(2a82a2)5b11/2(a22a8)50 as well. Hence every flat connectio
is gauge equivalent to the zero one. By contrast, in the skew prolongation, the zero-cur
equation is

b85 1
2 a92a8a,

which meansb51/2(a82a2)1m for some constantmPR. Making the same gauge transform
tion as before now sendsa°0 andb°m. Any further gauge transformation preservinga50
would requireu850, which would therefore not change theb component, i.e., the differentm
cannot be related by any further gauge transformation. Hence the moduli space isR in the skew
prolongation. h

V. CONCLUDING REMARKS

We conclude the paper with two miscellaneous pieces of general theory, demonstrated
particular quantum exterior algebras. First, by Ref. 6, the WoronowiczV• ~which in our case
means the skew prolongation! is always aZ2-graded Hopf algebra with the coproduct extended
D5DL1DR on V1. The same applies, in general, to the maximal prolongation, which again g
a Z2-graded Hopf algebra. From~2!, we know ~for any field extension! that DLln51^ ln and
DRln5ln

^ 1 ~i.e., V05kl is left and right invariant!. Hence the coproduct structure is with th
basis ofV0 primitive, and the original coproduct ofk@x#.

For example, for the extensionR,C we have the maximal prolongationV• as theZ2-graded
Hopf algebra generated overR by x of degree zero andu[dx, v of degree 1, and the relations an
coproduct

xu2ux5v, xv2vx52u, vu52uv, u25v2,
~16!

Dx5x^ 111^ x, Du5u ^ 111^ u, Dv5v ^ 111^ v.

The skew prolongation is the quotient of this by the additional relationu250.
Finally, we consider what should be the notion of ‘‘differentiable’’ mapk@x#→k@x# where

the source and target are considered with differential calculi defined bym1 , m2 , respectively. A
full analysis of the dependence of the above quantum geometric constructions on the choicm
will be developed elsewhere, but one may conjecture that at least some ‘‘geometric’’ inva
obtained from constructions of this type will be invariants of the field extension; i.e., ifm1 , m2

give isomorphic field extensions then some of the invariants should coincide. This is a long
goal suggested by the above results, and would have applications in number theory~where the
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question of which monic polynomials give equivalent extensions is poorly understood for
fields k!. The analysis of which mapsk@x#→k@x# are indeed differentiable should be a first st
in this geometric program.

We recall that anyV1(A) over a unital algebraA is a quotientVU
1 A/NA of the universal

1-formsVU
1 A,A^ A. Any algebra mapf:A→B ~between unital algebrasA,B! clearly induces a

mapf ^ f:VU
1 A→VU

1 B. Given this situation, we say thatf is differentiable iff ^ f descends to
a mapV1(A)→V1(B). If so, we denote the map byf* and note that it obeys the commutativ
diagram

A →
f

B

d↓ ↓d
V1~A!→

f
* V1~B!

, ~17!

since the universal dU for A,B clearly obey this. The condition for differentiability is tha
(f ^ f)(NA)#NB .

Proposition 5.1:In the setting of Proposition 2.1, an algebra mapf:k@x#→k@x# defined by
f(x)5FPk@x# is differentiable with respect to calculi defined bym1(l1), m2(l2) on the source
and target, respectively, iff

dF50, or m1~F~l21x!2F~x!!50,

in kl2
@x#. Then f* (P(l1 ,x))5(dF)P(F(l21x)2F(x),F(x)), where the product is in

kl2
@x#.

Proof: We use the explicit isomorphismu:VU
1 A>kere ^ A provided by u(a^ b)5a(1)

^ a(2)b and u21(a^ b)5a(1)^ (Sa(2))b whereS is the antipode andDa5a(1)^ a(2) ~the sum-
mation is understood!. In view of this, the mapf ^ f becomes the mapf

*
U :kere ^ A→kere

^ A as given by

f
*
U~a^ b!5u~f~a~1!! ^ f~Sa~2!!f~b!!5f~a~1!!~1! ^ f~a~1!!~2!f~Sa~2!!f~b!,

for all aPkere andbPA. In the present setting, this becomes

f
*
U~yg~y! ^ f ~x!!5~F~y1x!2F~x!!g~F~y1x!2F~x!! f ~F~x!!,

for polynomials f,g ~we write A^ A5k@y,x#!. As in the proof of Proposition 2.1, we furthe
identify the source kere5k@l1# by yg(y)°g(l). We likewise identify the target kere5k@l2# in
the similar, say. With these identifications understood, we have

f
*
U~g~l1! ^ f ~x!!5

F~l21x!2F~x!

l2
g~F~l21x!2F~x!! f ~F~x!!.

This map descends to the quotientskl1
5k@l1#/^m1& andkl2

5k@l2#/^m2& iff

f
*
U~m1~l1! ^ 1!50,

in kl2
@x#, i.e., iff

~dF!m1~F~l21x!2F~x!!50,

in kl2
@x#, where we used the description of d in the target calculus from Proposition 2.1. T

the condition stated. Of the two possibilities, the second is more interesting in view of the fo
f* . h

For example, for the differential calculus associated toR,C in the source and target, th
differentiability condition is
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F~x1i !2F~x!5 H0,
6i, ~18!

which at the algebraic level meansF(x)56x1m or F(x)5m for mPR. If we allow nonpoly-
nomials then other possibilities, such asF(x)5e2px, certainly open up. By contrast, for th
degenerate 2-jet calculus in the source and target, the differentiability condition is automa
satisfied for allFPR@x#. Herem(l)5l2 is not irreducible but one can use the same formu
~the calculus is merely not coirreducible!. Then F(l1x)2F(x)5lF8 and m(lF8)
5l2(F8)250 for all F.
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A novel realization of the classical SU~2! algebra is introduced for the Dirac rela-
tivistic hydrogen atom defining a set of operators that allow the factorization of the
problem. An extra phase is needed as a new variable in order to define the algebra.
We take advantage of the operators to solve the Dirac equation using algebraic
methods. A similar path to the one used in the angular momentum case is used;
hence, the radial eigenfunctions so calculated comprise nonunitary representations
of the algebra. One of the interesting properties of such nonunitary representations
is that they are not labeled by integer nor by half-integer numbers, as occurs in the
usual angular momentum representation. ©1999 American Institute of Physics.
@S0022-2488~99!02004-6#

I. INTRODUCTION

The unitary representations of groups and algebras are of a great interest in physics. W
mention the ubiquitous example of angular momentum or the SU~2! algebra. In this instance, as
is well known, the representations are labeled by two real numbersj andm, which may take only
integer or half-integer values; the representations depend only on two parameters,u andf, say,
which are defined in the compact sets@0, p# and@0, 2p#, respectively.1 However, there are many
other physically interesting groups or algebras that are not unitary. In such a case, the re
tations are not restricted to parameters defined in compact sets nor are its generators nec
Hermitian, but they nevertheless can play an important role in physics. The Lorentz group
a very important example of the class of physically relevant noncompact groups whose alg
not necessarily unitary.2

It is our purpose in this article to introduce a realization of the cyclic SU~2! algebra in terms
of non-Hermitian operators and then to use these operators to factorize and solve the rela
Dirac hydrogen atom. The solution is obtained using algebraic methods, using the basic op
of the system following a route parallel to the unitary compact case, but introducing an
variable~it is found below to play the role of a phase!, which is required in our approach.3

The use of algebraic techniques has been common for these sort of problems. For exam
the relativistic hydrogen atom a` la Dirac, one approach has been the use of shift operato4

whereas in the nonrelativistic case a successful approach requires the use of ladder opera
the factorization method.5,6 Our approach is more akin to the introduction of ladder operators
to the shift operator method customarily used for this problem.4

The paper is organized as follows. In Sec. II we introduce the equations of the problem
define our notation. In Sec. III we construct the basic operators spanning the SU~2! algebra as a
useful tool for the problem. In Sec. IV we define the inner product needed to investigat

a!On sabbatical leave from Facultad de Ciencias UNAM; electronic mail: rodolfo@dirac.fciencias.unam.mx
b!Electronic mail: asb@hp9000a1.uam.mx
23240022-2488/99/40(5)/2324/13/$15.00 © 1999 American Institute of Physics
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properties of our basic operators. In Sec. V some nonunitary representations of the sym
algebra are constructed as the radial eigenfunctions of the problem. We find that they ar
compact representations that play an equivalent role to the spherical harmonics in the unitar
In order to write such representations we find it convenient to define a family of polynomia
Sec. VI, using algebraic methods and the operators defined in Sec. II, we find the energy sp
of the hydrogen atom. In Sec. VII we give our conclusions. In the Appendix, we list and plo
explicit expressions of the first six mentioned polynomials; they are then explicitly related t
generalized associated Laguerre polynomials previously used by Davis for expressing the
eigenfunctions of the hydrogen atom.7

II. THE DIRAC HYDROGEN ATOM

The symmetry algebra for the bound states of the nonrelativistic hydrogen atom, even
classical case, is well known to be the SO~4!,8,9 but in the relativistic case the situation is differen
as it is well known. The algebra associated with the symmetry of the radial part of the proble
be regarded as SU~2!, as occurs with the angular momentum. The beautiful thing that follow
that we can then proceed to solve the relativistic hydrogen atom following a method that e
tially parallels the calculation of eigenfunctions and eigenvalues of the angular momentum
only expense of introducing an extra phase.

Let us begin with the Dirac Hamiltonian of the hydrogen atom,

HD5a–p1bm2
Ze2

r
, ~1!

wherem is the mass of an electron anda andb are the standard Dirac matrices,10

a5S 0 s

s 0 D , b5S 1 0

0 1D , ~2!

where the 1’s and 0’s stand, respectively, for 232 unit and zero matrices and thes is the standard
vector composed by the three Pauli matricess5(sx ,sy ,sz). Since the Hamiltonian~1! is in-
variant under rotations, the solutions of the problem can be written in the form

c~r ,u,f!5
1

r S F~r !Yjm~u,f!

iG~r !Yjm8 ~u,f!
D , ~3!

whereYjm andYjm8 are spinor spherical harmonics of opposed parity. Parity is a good qua
number in the problem because the Coulomb potential is invariant under reflections; parity g
(21)l and, according to the triangle’s rule of addition of momenta, the orbital angular mome
l is given by l 5 j 6 1

2. But, instead of working directly with parity, we prefer to introduce t
quantum numbere, defined by

e5H 1, if l 5 j 1 1
2,

21, if l 5 j 2 1
2.

~4!

Thus l 5 j 1e/2 in all cases; we also definel 85 j 2e/2. Accordingly, the spherical spinorYjm

depends onl, whereas the spherical spinorYjm8 , which has an opposite parity, depends onl 8.
Writing the solutions in the form~3! completely solves the angular part of the problem.

Let us now address the radial part of the problem; we are interested in its bound state
of the quantityk[Am22E2 is positive definite; furthermore, let us define

z[Ze2, t j[eS j 1
1

2D , n[Am2E

m1E
; ~5!
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then, we can write the differential equations for the radial part of the problem, in terms o
dimensionless variabler5kr, as

S 2
d

dr
1

t j

r DG~r!5S 2n1
z

r DF~r!, ~6!

and

S 1
d

dr
1

t j

r DF~r!5S n211
z

r DG~r!; ~7!

these equations are to be regarded as the initial formulation of our problem.
The first thing we want to do is to show that Eqs.~6! and~7! can be rewritten using a set o

three operators whose commutation relations define a SU~2! algebra. To this end, let us firs
introduce the new variablex through the relation@but please notice that this change is not requi
for any of the conclusions that follow; see the second remark below after Eq.~15!#

r5ex, ~8!

so x is defined in the open interval~2`, `! and redefine the radial functionsF(r) and G(r),
introduced in Eqs.~6! and ~7!, in the form

F„r~x!…5Am1E @c2~x!1c1~x!#, ~9!

G„r~x!…5Am2E @c2~x!2c1~x!#. ~10!

In terms of the new functions,c1(x) and c2(x), we thus arrive at the following set o
equations for our problem:

F d

dx
1ex2

zE

Am22E2Gc1~x!5S zm

Am22E2
2t j D c2~x!, ~11!

and

2F d

dx
2ex1

zE

Am22E2Gc2~x!5S zm

Am22E2
1t j D c1~x!. ~12!

This first-order system can be uncoupled, multiplying by the left the first equation@Eq. ~11!# times
the operators that appear between square brackets in the second equation and,vice versa, by
multiplying the second equation@Eq. ~12!# times the operators that appear~between square brack
ets! in the first one. This procedure gives us the second-order system,

F d2

dx2 12mex2e2x2
1

4Gc1~x!5S t j
22z22

1

4Dc1~x!, ~13!

and

F d2

dx2 12~m21!ex2e2x2
1

4Gc2~x!5S t j
22z22

1

4Dc2~x!, ~14!

where we have defined

m[
zE

Am22E2
11. ~15!
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At this point there are several remarks that need be made. First, in the next sectio
seemingly odd term2 1

4 in Eqs.~13! and ~14! is shown to be necessary to construct the alge
Second, as we said before, the change of variable fromr to x is not really necessary for any of th
calculations in the article, however, we prefer to work in thex rather than in ther variable because
this choice simplifies the appearance of some of the equations and, mainly, because it ma
inner product introduced in Sec. III@in Eq. ~33!# to look more familiar; but to make contact wit
the usual description, we sometimes, at our convenience, revert to the variabler. As a third
remark, notice that we can regard Eqs.~13! and ~14! as two eigenvalue equations, where t
common eigenvaluev is given by

v5t j
22z22 1

4 5 j ~ j 11!2z2; ~16!

as it is obvious, we do not need to calculatev because it follows directly from the radial symmet
of the problem and from the intensity of the interaction that is needed to set the scale. The
remark we want to make is that, as the minimum value ofj is 1

2, then v>0 for at leastZ
51,2,..., up to 118; for a discussion of the significance of this number see Ref. 4, p. 236.

III. AN OPERATOR ALGEBRA FOR THE DIRAC HYDROGEN ATOM

Our main purpose of this article is the construction of nonunitary representations of the~2!
algebra for the Dirac hydrogen atom;3 let us introduce the operator

V3[2 i
]

]j
, ~17!

depending exclusively on the new variablej, which is essentially an extra phase, as must be c
in what follows, and

V6[e6 i jS ]

]x
7ex7 i

]

]j
1

1

2D , ~18!

which depend both onj and on the transformed ‘‘radial’’ variablex. These three operators satis
the following algebraic relations:

@V3 ,V6#56V6 , ~19!

and

@V1 ,V2#52V3 . ~20!

We can alternatively define the two operators,V1 andV2 , as

V15
1

2
~V11V2!, V25

1

2i
~V12V2!, ~21!

in terms of which the algebraic properties~19! and ~20! read as

@V i ,V j #5 i e i jkVk , i , j ,k51,2,3. ~22!

It is now clear that the commutation relations~19! and~20!—or just~22!—correspond to an SU~2!
algebra.1,3,8 To complete the discussion, we also need to introduce the Casimir operator o
algebra; let us consider the operator

V25V1
21V2

21V3
2; ~23!

we can easily show that~23! is indeed a Casimir for the algebra~19! and ~20! @or ~22!#,
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@V2,V i #50, for i 51,2,3. ~24!

Here, as in the angular momentum case, we can regardV2 as the square ofV5V1 î1V2ĵ
1V3k̂. To obtain the explicit expression ofV2, it is better to calculate first the productV2V1 :

V2V15
]2

]x22e2x22iex
]

]j
1 i

]

]j
1

]2

]j22
1

4
, ~25!

and obtain the Casimir operator from the relationshipV25V2V11V3(V321). We remark that
we do not have a linear term in]/]x in Eq. ~22! because we choose the last constant in Eq.~18!
precisely as1

2. We then easily conclude that the Casimir operator is given explicitly by

V25
]2

]x22e2x22iex
]

]j
2

1

4
. ~26!

Although we are not restricted to a compact set of parameters anymore due to the pres
the variablex, in analogy with the conventions used for thespherical harmonics Yl

m(u,f), we
label the simultaneous eigenfunctions ofV2 and V3 as Vv

m(x,a), where the numbersv are the
eigenvalues ofV2 and the numbersm are the eigenvalues ofV3 . Therefore, we write

V3Vv
m~x,j!5mVv

m~x,j! ~27!

and

V2Vv
m~x,j!5vVv

m~x,j!; ~28!

we thus have

Vv
m~x,j!5eimjPv

m~x!, ~29!

where, again, we have used the angular momentum analogy to write thex functions asPv
m(x),

resembling the usual notation for the Legendre polynomialsPl
m(u). In this equation it becomes

clear the role ofj as just an extra phase.
A comparison with Eqs.~13! and ~14! tells us that

c1~x!5Pv
m~x!, ~30!

c2~x!5Pv
m21~x!. ~31!

The operatorsV6 are thus ladder operators for the problem; they move along the s
eigenfunctions, changing the eigenvaluem to the eigenvaluem61, in a completely analogous wa
to the the case of the angular momentum algebra,

V6Vv
m~x,j!}Vv

m61~x,j!; ~32!

the required proportionality constants are evaluated in Sec. V@Eq. ~52!#.

IV. THE INNER PRODUCT AND RELATED PROPERTIES OF THE OPERATORS

To establish the properties of theV operators and to construct the representations of the S~2!
algebra they span, we need a properly defined inner product. Here we cannot longer rely
angular momentum analogy, since two of the parameters of the algebra we purport to constr
defined over the noncompact interval~2`, `!, making it completely different from the angula
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momentum. This situation implies that not all the generators of the algebra are to be Her
~indeed,V3 is found to be Hermitian butV1 andV2 are are found to be anti-Hermitian! and, as
a consequence, that the corresponding group could not be unitary.

Let us consider the operation

~f,c!5E
0

2p dj

2p E
2`

`

f* ~j,x!c~j,x!dx. ~33!

It is easy to show that Eq.~33! defines an inner product, since, as it is not difficult to prove
satisfies the three basic properties:~i! If c(x)50, then (c,c)50; ~ii ! if c(x)Þ0, then (c,c)
>0; ~iii ! if c is any complex number, then (c,cf)5c(c,f) and (cc,f)5c* (c,f).

To study the behavior of the generators of the algebra in terms of the inner product~33!, we
consider a certain functionc(x,j) associated with a certain fixed valuem0 . We define the
elements of the associated Hilbert spaceHm0

with functions of the form

c~x,j!5ei ~m01m2n!jF~x!, ~34!

wherem andn are integer numbers andF(x) is a well-behaved function depending only onx. As
we exhibit in Sec. V, this is actually the general form of the functions inhabiting the Hilbert s
of our problem.

With the help of the inner product~33!, we can establish the properties of theVa (a
51,2,3) operators. Let us consider firstV3 ; in this case the important product is

~c8,V3c!5dm82n8,m2n~m01m2n!E
2`

`

F* ~x!F~x!dx; ~35!

this last equation, due to the presence of the Kronecker delta, can be written as

E
0

2p dj

2p E
2`

` F i
]

]j
e2 i ~m01m82n8!jGe2 i ~m01m2n!jF* ~x!F~x!dx, ~36!

and this is precisely (V3c8,c). We have in this way proved thatV3 is a Hermitian operator:

V3
†5V3 . ~37!

To study the operatorsV6 , let us first considerV1 and evaluate the product

~c8,V1c!5E
0

2p dj

2p È`

e2 i ~m01m82n8!jF* ~x!dxei jS ]

]x
2ex2 i

]

]j
1

1

2Dei ~m01m2n!jF~x!dx.

~38!

To analyze this integral, it is simpler to split it in two parts. Let us consider first theei j(2]/]j
11/2) part; its contribution to the inner product~38! is

S m01m2n1
1

2D dm82n8,m2n11E
2`

`

F* ~x!F~x!dx; ~39!

this expression can be written as

2E
0

2p dj

2p Fe2 i jS i
]

]j
1

1

2Dei ~m01m82n8!jF~x!G†

ei ~m01m2n!jF~x!dx. ~40!

We now take care of the contribution of the termei j(]/]j2ex). After a partial integration this
contribution becomes
                                                                                                                



th

ipated
the

ing a

roblem
to the

t

2330 J. Math. Phys., Vol. 40, No. 5, May 1999 Martı́nez-y-Romero, Salas-Brito, and Saldaña-Vega

                    
dm82n821,m2nE
2`

` F2S ]

]x
1exDF~x!G†

F~x!dx. ~41!

Taking together the two previous results, it is easy to see that the operator complies wiV1
†

52V2 . A similar calculation establish the analogous propertyV2
† 52V1 . Therefore, we have

established that

V6
† 52V7. ~42!

We have proved that not all the operators are Hermitian, thence arriving to the antic
results: We showed that the operatorV3 is indeed Hermitian; as a consequence, we expect
range of the only parameter it depends on,j, to be compact; this is certainly the case sincej
P@0,2p#, a compact set. The other two operatorsV1 andV2 depend uponx, a variable defined
over the noncompact set~2`, `!, but here such operators are anti-Hermitian,

Va
†52Va , a51,2, ~43!

as it is easy to show from Eqs.~21! and ~42!.

V. REPRESENTATIONS OF THE SU„2… ALGEBRA „RADIAL EIGENFUNCTIONS OF THE
PROBLEM …

With the inner product defined in the previous section, we are in the position of introduc
complete orthogonal basis of simultaneous eigenfunctions forV2 and V3 , which, accordingly,
must carry a representation of the algebra—and, besides, they solve our radial eigenvalue p
@Eqs.~6! and~7!#. We have decided to choose the commuting operators in a similar fashion
standard SU~2! case. Let us define then

Vv
m~x,j![uvm&, ~44!

where the ketsuvm& are both assumed orthogonal and normalized respect the inner produc~33!,

^v8m8uvm&5dv,v8dm,m8 . ~45!

Now, as V1 and V2 are not Hermitian, the Casimir operatorV2 defined in ~23! is not
necessarily positive definite, we can nevertheless introduce a positive definite operator as

V†
–V52V1

22V2
21V3

252V3
22V2; ~46!

the positivity of this operator allows us to show that

2m2>v, ~47!

that is,umu is bounded by below. As a consequence, there must exist a minimum value forumu, let
us sayl[umumin . We also know the that the ketuvl& is annihilated byV2 or, equivalently, that
V1V2uvl&50; so

v2l22l50 or v5l~l21!. ~48!

Given Eq.~47!, let us introduce a slight change in notation, writingl instead ofv in the eigen-
functionsPv

m(x) of Eq. ~29!, that is,Pv
m(x) is to be replaced byPl

m(x). Furthermore, asl has to
be positive and sincev5t j

22z22 1
4, we find that the minimumumu value is

umumin[l5s1 1
2, ~49!

where we have defined
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s[1At j
22z25A~ j 1 1

2!
22z2. ~50!

Notice thats is a real quantity forZ51,2,3,...,137.
However, the most important conclusion we can draw from Eqs.~49! and ~50!, is thatl no

longer has to be an integer or half-integer number, as necessarily occurs in the unitary co
angular momentum case. We may see that this result is a direct consequence of bothV1 andV2

not being Hermitian operators. So the operators introduced for the SU~2! algebra associated with
the Dirac hydrogen atom lead naturally to nonunitary representations labeled by real numb
at least, not necessarily integer nor half-integer ones.

For constructing the functions comprising the representations, let us introduce the con
Cm

6 as follows@compare with Eq.~32!#:

V6uvm&5Cm
6uvm61&; ~51!

these constants can be explicitly evaluated from^vmuV1V2uvm&5Cm
2Cm21

1 and from
(Cm21

1 )* 52Cm
2 ; if we further assume these constants to be real, we easily get

Cm
656Am~m61!2l~l21!, ~52!

a result with a slightly different form than in the analogous angular momentum case.4,8

The ground state of the hydrogen atom can be obtained from the equationV2ull&50 for the
positive set of eigenvalues. Such an equation becomes

e2 i jS ]

]x
1ex2l1

1

2DeiljPl
l~x!50, ~53!

whose solution is

Pl
l~x!5dlesx exp~2ex!5dle~l21/2!x exp~2ex!, ~54!

where

dl[
2~l21/2!

AG~2l21!
, ~55!

is a normalization constant andG(y) stands for the Euler-gamma function. Sincel is the lowest
eigenvalue, in this instance we should have

c1~x!5Pl
l~x!, ~56!

and

c2~x!50. ~57!

In terms of the radial variabler, we can see from Eqs.~9! and ~10! that the ground state
solutions are

F~r!5A ~m1E!

2m~l21/2!
rse2r, ~58!

and

G~r!52A ~m2E!

2m~l21/2!
rse2r, ~59!
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normalized in the sense

E
0

`

~ uF~r!u21uG~r!u2!dr51. ~60!

We can also see that in the case of negative eigenvalues the solutions behave as;rser,
giving divergent behavior asr→`. This behavior makes the negative energy solutions not sq
integrable; therefore, we have to discard them if we want to describe physically reali
states.2,3,10

The excited states can be obtained, as we do in the Appendix, by applying successivelyV1 to
the ground stateull&, as it is customarily done for the spherical harmonics. The result involves
functionsPl

m(x) introduced by Eqs.~29! and ~34!. ThePl
m(x) are polynomials multiplied by the

weight factorW(r)5rl21/2e2r. This weight factor assures that the behavior of the big and
small components of the spinor are regular both at the origin as well asr→`. As an illustration
of the solutions discussed here, we quote in the Appendix the first few cases ofPl

l1p(x), for p
50,...,5; there we also plot these polynomial parts of the functions@i.e., we plotPl

m(x) without
the weight factors# for the first five excited energy levels. Notice that the polynomial part in
eigenfunctionPl

l1p(x) is always of orderp.
The matrix representations of theVa , a51,2,3, for l5s1 1

21p, p50,1,2,3,..., are con-
structed from Eqs.~27!, ~28!, ~51!, and ~52!. In contrast with the standard SU~2! case, here the
representations are non-Hermitian and infinite dimensional for eachl, except forV3 . The matrix
elements of the operatorV3 , including the negative eigenvalues series, are given by

^vmuV3uvm8&5mdmm8 , ~61!

wherem56(l1p), p50,1,2,...; therefore, its trace vanishes and the determinant of any ele
of the corresponding group with the form exp(iV3)j, is always 1.

For the other two operators the only nonvanishing matrix elements are

^vmuV1uvm61&57 1
2Am~m61!2l~l21!, ~62!

^vmuV2uvm61&52
i

2
Am~m61!2l~l21!. ~63!

This means again that the trace of bothV1 andV2 vanish. Notice also that the determinant of
group element generated byV1 or V2 is 1 only for a purely imaginary parameter.

VI. THE ENERGY SPECTRUM

We can now evaluate the bound energy spectrum for the problem. As we mentioned in S
the bound state energy spectrum comprises only the positive series eigenvalues.2,10 Let us first
express the energy in terms of the eigenvaluem from Eq. ~15!,

E5mF11
z2

~m21/2!2G21/2

; ~64!

then, for the case of positive eigenvalues—the only ones with physically approp
eigenfunctions—we have thatm5l1p, wherep is a non-negative integerp50,1,2,..., or, equiva-
lently, that m2 1

25s1p. This gives precisely the energy spectrum of the relativistic hydro
atom. To rewrite our result in a more familiar form, we need only to define the principal qua
numbern and the auxiliary quantitye j as follows:

n5 j 1 1
21p, ~65!

e j5n2s2p5 j 1 1
22s; ~66!
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we then finally conclude thatm2 1
25s1p5n2e j , which gives precisely the well-known energ

spectrum.10

VII. CONCLUDING REMARKS

In summary, we have constructed a SU~2! algebra for the hydrogen atom in the Dirac form
lation, introducing the Hermitian operatorV3 and the anti-Hermitian operatorsV1 andV2 . The
result of all of this is that the representations are labeled by numbersl that are neither integers no
half-integers, as in the case of the more familiar unitary representations. Nevertheless, the
introduced predicts precisely the energy eigenvalues and eigenfunctions of the Dirac hyd
atom. One of the most noteworthy features of the representations reported here is the mixi
spinorial angular momentum character, implying an equally spaced spectrum, with the e
requirements of the problem—requiring a differently spaced spectrum; the interplay of thes
spectral requirements is basically reflected in the fact that the eigenvalues associated wi
~13! and ~14! follows from both the generic radial symmetry and the specific features of
interaction in the Dirac equation~1!. From Eq.~15!, it also follows that in the limit of a vanishing
interaction, i.e.,z→0, our representations collapse and, in this special case,m51 always. Such
behavior is precisely as expected because there is no longer any restriction over the eige
and thus the spectrum becomes continuous, corresponding to a free Dirac particle. The o
algebra we introduced allows an essentially algebraic solution of the Dirac hydrogen atom,
may have various applications.3,4,6

It is to be noted also the possible connections that our formulation may have with sy
with hidden supersymmetric properties,11–14 as we will discuss in a forthcoming article. Th
energy spectrum of the problem has some peculiarities that also appear in the spectrum of
oscillator;12,13,15in particular, the equally spaced energy solutions forc1(x) andc2(x) resemble,
respectively, the behavior of the big and the small components of the aforementioned syst
a result of this resemblance, we are studying the hidden supersymmetric properties and the
conformal algebra, in the sense of Refs. 13 and 16, associated with this problem. The similit
Eqs.~13! and ~14! with the corresponding ones for a Morse oscillator should be also notice6

It is worth pinpointing that we are forced to introduce the new variablej in order to define the
algebra; in terms of the solutions of the Dirac equation,j just plays the role of a phase. T
exemplify, when we perform a ‘‘rotation’’ usingV3 , the big component changes fromF(x)
}@c2(x)1c1(x)# to F(x)}@ei (m21)jc2(x)1eimjc1(x)#5eimj@e2 i jc2(x)1c1(x)#. The phase
eimj does not play any observable role, but the terme2 i j changes the relative phase between
c1(x) and thec2(x) components of the eigenfunction and, in consequence, changes the
function F(r) itself although the energy spectrum is still invariant under such a transforma
this is a consequence of the fact thatuvm& andV3uvm& both correspond to the same eigenvaluem.
In a way, this resembles what happens when there are superselection rules in a system.17–19

To finalize, let us comment that it is not widely known that the radial eigenfunctions o
Dirac hydrogen atom can be expressed in terms of generalized associated Laguerre polyn
as was realized by Davis a long time ago.7,20 These polynomials, which are a generalization
nonintegral indices of the usual associated Laguerre polynomials, are defined as7

Lp
a~x!5

G~a1p11!

n!G~a11! 1F1~2p;a11;x!, ~67!

whereG(x) is again the Euler gamma function,p is a positive integer, and1F1(2p,a11;x)
stands for the confluent hypergeometric function—having one of their arguments negativ
hypergeometric function reduces to a polynomial.21 The polynomial representation of the radi
eigenfunctions introduced here is related to that used by Davis in Eqs.~A8! and ~A9! of the
Appendix.
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APPENDIX: THE POLYNOMIAL PART OF THE RADIAL EIGENFUNCTIONS

Our purpose in this appendix is to illustrate the behavior of the first few polynomials ass
ated with the radial eigenfunction of the hydrogen atom in the baseulm& and to relate this
description to the old but little known results of Davis.7,11 We explicitly calculate the first six
functions of the positive eigenvalue series; such functions are always of the form of the we
factor W(r) times a polynomial; the weight factor isW(r)5rse2r. The polynomials are plotted
in Fig. 1. The radial eigenfunctions are essentially generated from the basic relation
V1uvm&5Cm

1uvm11&. In ther variable, the first equation in the series can be written as

e1 i jS r
]

]r
2r2 i

]

]j
1

1

2DeimjPl
l~r!5Cm

1ei ~m11!jPl
l11~r!, ~A1!

which is just the first term in the whole ascending seriesPl
l1p(r)5V1

p Pl
l(r) used to recursively

calculate~A2!–~A7!. Note that the polynomial part of the functionPl
l1p(x) is always of the form

( i 50
p Ci(l)r i , whereCi(l) is also an order (p2 i ) polynomial inl.

Starting withm5l, the first few functions in the positive series are then given by

Pl
l~r!5W~r!, ~A2!

FIG. 1. We show the graph of the first polynomialsPl
l1p(r)/W(r), for p51,2,3,4,5,Z51, andj 5

1
2. Notice the similarity

of the behavior of all polynomials near the origin.
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Pl
l11~r!5A2

l
~l2r!W~r!, ~A3!

Pl
l12~r!5

W~r!

A2l~l11/2!
@2r22~2l11!~2r2l!#, ~A4!

Pl
l13~r!5

W~r!

A3l~l11/2!~l11!
@22r316r2~l11!23r~2l213l11!1l~2l213l11!#,

~A5!

Pl
l14~r!5A2

3

W~r!

Al~l11/2!~l11!~l13/2!
Fr422~312l!r313~315l12l2!r2

2~3111l112l214l3!r1S l313l21
11

4
l1

3

4DlG , ~A6!

Pl
l15~r!5

W~r!

A15l~l11/2!~l11!~l13/2!~l12!
F2r51S 5l1

29

2 D r42~10l2151l154!r3

1S 10l3166l21
235

2
l1

123

2 D r22S 5l4137l31
319

4
l21

257

4
l1

33

2 D r1l5

1
15

2
l41

65

4
l31

105

8
l21

27

8
lG . ~A7!

The relationship of these polynomials to those used by Davis can be seen from Eqs.~13! and
~14!, puttingr5expx and introducing the functionv(r) according toc1[rs exp(2r)v(r), and,
finally, usingL(r)[v(r/2), to get

r
d2L
dr2 1@~2s11!2r#

dL
dr

1F ~s21z22t j
2!

r
1~m2s21/2!GL50, ~A8!

wherem5s1 1
21n8. This equation can be regarded as a generalization to a noninteger ind

the usual associated Laguerre differential equation. The equation corresponding toc2 can be
obtained in an analogous fashion. This equation reduces to the one used by Davis if and
s25t j

22z2, a result that just recovers the definition in Eq.~50!. Now we can give the explicit
relationship between our representation of the radial eigenfunctions to that used by Davis

c1~r!5Ps11/2
s11/21n8~r!5rs exp~2r!Ln8

2s
~2r!,

c2~r!5Ps11/2
s21/21n8~r!5rs exp~2r!Ln821

2s
~2r! ~A9!

save for normalization factors~unimportant for the point at hand!, wheres5l2 1
2, and where the

generalized associated Laguerre polynomials used by Davis are defined in Eq.~67!.
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Well known methods of measure theory on infinite dimensional spaces are used to
study physical properties of measures relevant to quantum field theory. The differ-
ence of typical configurations of free massive scalar field theories with different
masses is studied. We apply the same methods to study the Ashtekar–
Lewandowski~AL ! measure on spaces of connections. In particular we prove that
the diffeomorphism group acts ergodically, with respect to the AL measure, on the
Ashtekar–Isham space of quantum connections modulo gauge transformations. We
also prove that a typical, with respect to the AL measure, quantum connection
restricted to a~piecewise analytic! curve leads to a parallel transport discontinuous
at every point of the curve. ©1999 American Institute of Physics.
@S0022-2488~99!00404-1#

I. INTRODUCTION

Path integrals play an important role in modern quantum field theory. The application in
context of methods of the mathematical theory of measures on infinite dimensional spaces
to constructive quantum field theorists.1–5 With the help of these methods important physic
results have been obtained, especially concerning two and three dimensional theories. R
analogous methods have been applied within the framework of Ashtekar nonperturbative qu
gravity to give a rigorous meaning to the connection representation,6–10 solve the diffeomorphism
constraint,11 and define the Hamiltonian constraint.12–18 These works all crucially depend on th
use of~generalized! Wilson loop variables which have been considered for the first time, with
Hamiltonian formulation of gauge theories, by Gambini, Trias, and collaborators19–21 and were
rediscovered for canonical quantum gravity by Rovelli and Smolin.22 In fact, instead of working in
the connection representation for which Wilson loops are just convenient functions, one can
so-called loop representation~see Ref. 23 and references therein! by means of which a rich arsena
of ~formal! results was obtained which complement those obtained in the connection repre
tion. For previous works on measures on spaces of connections see, e.g., Refs. 24 and 2

The present paper has two main goals. The first consists of studying physical properties
support of the path integral measure of free massive scalar fields. We use a system
countable number of simple random variables which probe the typical scalar fields over
with volumeLd11, placed far away in~Euclidean! space–time. With these probes we are able
study the difference between the supports of two free scalar field theories with different m

a!Electronic mail: jmourao@galaxia.ist.utl.pt
b!Electronic mail: thiemann@aeipotsdam.mpg.de
c!Electronic mail: jvelhi@ualg.pt
23370022-2488/99/40(5)/2337/17/$15.00 © 1999 American Institute of Physics
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The results that we obtain provide a characterization of the supports which is physically
transparent than those obtained previously.26–30

Our second goal consists of providing the proof of analogous results for the Ashte
Lewandowski ~AL ! measure on the spaceA/G of quantum connections modulo gaug
transformations.6,7 First we prove that the group of diffeomorphisms acts ergodically, with res
to the AL measure, onA/G. Second we show that the AL measure is supported on connec
which, restricted to a curve, lead to parallel transports discontinuous at every point of the

Quantum scalar field theories have been intensively studied both from the mathematic
the physical point of view. Divergences in Schwinger functions~which, in measure theoretica
terminology, are the moments of the measure! are directly related with the fact that the releva
measures are supported not on the space of nice smooth scalar field configurations, that e
classical action, but rather on spaces of distributions. This gives a strong motivation for
detailed studies of the support of relevant measures. In physical terms this corresponds to
‘‘typical ~quantum! scalar field configurations,’’ the set of which has measure one.

The present paper is organized as follows. In Sec. II we recall some results from the the
measures on infinite dimensional spaces. Namely Bochner–Minlos theorems are stated
concept of ergodicity of~semi-!group actions is introduced. In Sec. III we study properties
simple measures: The countable product of identical one-dimensional Gaussian measures
white noise measure. In the first example we illustrate the disjointness of the support of dif
measures, which are invariant under a fixed ergodic action of the same group. For the white
measure we choose random variables which probe the support and which will be also used
IV to study the support of massive scalar field theories. In Sec. V we obtain properties o
support of the AL measure that complement previously obtained results8 and prove that the
diffeomorphism group acts ergodically on the space of connections modulo gauge transform
In Sec. VI we present our conclusions.

II. REVIEW OF RESULTS FROM MEASURE THEORY

A. Bochner–Minlos theorems

In the characterization of typical configurations of measures on functional spaces the so
Bochner–Minlos theorems play a very important role. These theorems are infinite dimen
generalizations of the Bochner theorem for probability measures onRN. Let us, for the conve-
nience of the reader, recall the latter result. Consider any~Borel! probability measurem on RN,
i.e., a finite measure, normalized so thatm(RN)51. The generating functionalxm of this measure
is its Fourier transform, given by the following function onRN @>(RN)8, the prime denotes the
topological dual, see below#

xm~l!5E
RN

dm~x!ei ~l,x!, ~1!

where (l,x)5S j 51
N l j xj . Generating functionals of measures satisfy the following three b

conditions,

~i! Normalization:x(0)51;
~ii ! Continuity: x is continuous onRN;
~iii ! Positivity: Sk,l 51

m ckclx(lk2l l)>0, for all mPN, c1 ,...,cmPC andl1 ,...,lmPRN.

The last condition comes from the fact thati f im>0, for f (x)5Sk
mcke

i (lk ,x), wherei•im denotes
theL2(RN,dm) norm. The finite dimensional Bochner theorem states that the converse is als
Namely, for any functionx on RN satisfying ~i!, ~ii !, and ~iii ! there exists a unique probabilit
measure onRN such thatx is its generating functional.

Both in statistical mechanics and in quantum field theory one is interested in the so-
correlators, or in probabilistic terminology, the moments of the measurem,
                                                                                                                



ures

t

for

delta
will

ear

d if
sent a
more

or

duct

2339J. Math. Phys., Vol. 40, No. 5, May 1999 Mourão, Thiemann, and Velhinho

                    
^~xi 1
!p1...~xi k

!pk&ªE
RN

dm~x!~xi 1
!p1...~xi k

!pk. ~2!

For the correlators of any order to exist the measurem must have a rapid decay atx-infinity, in
order to compensate the polynomial growth in~2! ~examples are Gaussian measures and meas
with compact support!. In the l-space the latter condition turns out to be equivalent tox being
infinitely differentiable (C`). The correlators are then just equal to partial derivatives ofx at the
origin, multiplied by an appropriate power of2 i .

Let us now turn to the infinite dimensional case. The role of the space ofl’s will be played
by S(Rd11), the Schwarz space ofC`-functions on~Euclideanized! space-time with fast decay a
infinity. So we have the indicesl( i )ªl i replaced byf (x). The spaceS(Rd11) has a standard
~nuclear! topology. Its elements are functions with regularity properties both for small and
large distances. The physically interesting measures will ‘‘live’’ on spaces dual toS(Rd11).
Consider the spaceS8(Rd11) of all continuous linear functionals onS(Rd11) @i.e., the topological
dual of S(Rd11)#. This is the so-called space of tempered distributions, which includes
functions and their derivatives, as well as functions which grow polynomially at infinity. We
consider also the even bigger spaceSa(Rd11) of all linear~not necessarily continuous! functionals
onS(Rd11). Then the simplest generalization of the Bochner theorem states that a functionx( f )
on S(Rd11) satisfies the following conditions,

~i8! Normalization:x(0)51;
~ii 8! Continuity: x is continuous on any finite dimensional subspace ofS(Rd11);
~iii 8! Positivity: Sk,l 51

m ckclx( f k2 f l)>0, for all mPN, c1 ,...,cmPC and f 1 ,...,f mPS(Rd11),

if and only if it is the Fourier transform of a probability measurem on Sa(Rd11), i.e.,

x~ f !5E
Sa~Rd11!

dm~f!eif~ f !. ~3!

The topology of convergence on finite dimensional subspaces ofS(Rd11) is unnaturally
strong. Demanding in (ii8) continuity of x with respect to the much weaker standard nucl
topology onS(Rd11) yields a measure supported on the topological dualS8(Rd11) of S(Rd11).31

This is the first version of the Bochner–Minlos theorem. Further refinement can be achievex
is continuous with respect to an even weaker topology induced by an inner product. We pre
special version of this result, suitable for the purposes of the present work; for different,
general formulations see Refs. 3 and 32. LetP be a linear continuous operator fromS(Rd11) onto
S(Rd11), with continuous inverse. Suppose further thatP is positive when viewed as an operat
on L2(Rd11,dd11x) and that the bilinear form

^ f 1 , f 2&P1/2ª~P1/2f 1 ,P1/2f 2!, f 1 , f 2PS~Rd11! ~4!

defines an inner product onS(Rd11), where~,! denotes theL2(Rd11,dd11x) inner product. Letx
satisfy (i8), (iii 8) and be continuous with respect to the norm associated with the inner pro
^,&P1/2. Natural examples are provided by Gaussian measuresmC with covarianceC and Fourier
transform

xC~ f !5e2~1/2!~ f ,C f !, ~5!

in which case one can take the positive operatorP to be the covarianceC itself. A particular case
is the path integral measure for free massive scalar fields with massm, which is the Gaussian
measure with covariance

Cm5~2D1m2!21, ~6!
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where D denotes the Laplacian onRd11. In the general~not necessarily Gaussian! case let
HP1/2(HP21/2) denote the completion ofS(Rd11) with respect to the inner produc
^,&P1/2(^,&P21/2). Then the measure onS8(Rd11) corresponding tox is actually supported on a
proper subset ofS8(Rd11) given by an extension ofHP21/2 defined by a Hilbert–Schmidt operato
onHP1/2. We see that in the scalar field caseHC

m
21/2 is the space of finite action configurations a

therefore typical quantum configurations live in a bigger space. In order to define the exte
mentioned above, recall that an operatorH on a Hilbert space is said to be Hilbert–Schmidt
given an~arbitrary! orthonormal basis$ek% one has

(
k51

`

^Hek ,Hek&,`.

Given such a Hilbert–Schmidt operatorH onHP1/2, which we require to be invertible, self-adjoin
and such thatH(S(Rd11)),S(Rd11), define the new inner product^,&P21/2H on S(Rd11) by

^ f 1 , f 2&P21/2Hª~P21/2H f 1 ,P21/2H f 2!, f 1 , f 2PS~Rd11!. ~7!

ConsiderHP21/2H , the completion ofS(Rd11) with respect to the inner product^,&P21/2H , and
identify its elements with linear functionals onS(Rd11) through theL2(Rd11,dd11x) inner prod-
uct. Under the above conditions, the~second version of the! Bochner–Minlos Theorem states th

„Bochner–Minlos…: A generating functionalx, continuous with respect to the inner produ
^,&P1/2, is the Fourier transform of a unique measure supported onHP21/2H , for every Hilbert–
Schimdt operatorH onHP1/2 such thatS(Rd11),RanH, H21(S(Rd11)) is dense andH21:
S(Rd11)→H^,&P1/2 is continuous.

In Sec. III A we will also use an obvious adaptation of this result to the space of infinite sequ
RN.

A common feature of the two versions of the Bochner–Minlos theorem is that they giv
support as a linear subspace of the original measure space. Nonlinear properties of the
have to be obtained in a different way. In particular one can show~see Sec. III B! that the white
noise measures with

xs1
~ f !ªe2~s1/2!~ f , f ! ~8!

and

xs2
~ f !ªe2~s2/2!~ f , f ! ~9!

have disjoint supports fors1 ,s2.0, ands1Þs2 , while the Bochner–Minlos theorem would giv
the same results in both cases.

B. Ergodic actions

We review here some concepts and results from ergodic theory.32,33Let w denote an action of
the groupG on the spaceM, endowed with a probability measurem, by measure preserving
transformationswg :M→M , gPG, i.e.,wg

*
m5m, ;gPG or, equivalently, for every measurab

setA,M and for everygPG, the measure ofA equals the measure of the pre-image ofA by wg .
The actionw is said to be ergodic if allG-invariant sets have either measure zero or one. The
that w is measure preserving implies that the~right! linear representationU of G on L2(M ,dm)
induced byw

~Ugc!~x!ªc~wgx! ~10!

is unitary. The actionw on M is ergodic if and only if the onlyUG-invariant vectors onL2(M ,dm)
are the~almost everywhere! constant functions. This follows easily from the fact that the lin
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space spanned by characteristic functions of measurable sets~equal to one on the set and ze
outside! is dense inL2(M ,dm). The above also applies for a discrete semi-group generated
single~not necessarily invertible! measure preserving transformationT, in which case the role of
the groupG is played by the additive semi-groupN, T being identified withw1 . Notice that in the
latter case the linear representation onL2(M ,dm) may fail to be unitary, although isometry sti
holds. For actions ofR andN, respectively, the following properties are equivalent to ergodici33

lim
t→`

1

2t E2t

t

dtc~w tx0!5E
M

dm~x!c~x!, ~11a!

lim
N→`

1

N11 (
n50

N

c~wnx0!5E
M

dm~x!c~x!, ~11b!

where wnªw1
n and the equalities hold form-almost everyx0 and for all cPL1(M ,dm). One

important consequence of~11! is that if m1 andm2 are two different measures and a given acti
w is ergodic with respect to bothm1 and m2 then these measures must have disjoint supp
@points x0 for which ~11! holds#. Recall also that the action ofR and N, respectively, is called
mixing if for every c1 ,c2PL2(M ,dm) we have

lim
t→`

^c1 ,Utc2&5^c1,1&^1,c2&, ~12a!

lim
n→`

^c1 ,Unc2&5^c1,1&^1,c2&. ~12b!

It follows from ~12! that everyU-invariantL2(M ,dm)-function is constant almost everywhere a
therefore every mixing action is ergodic~see Ref. 33 for details!. If M is a linear space then~11!
gives a nonlinear characterization of the support. Indeed ifx1 andx2 are typical configurations, in
the sense that~11! holds for them, thenx11x2 and lx1 for lÞ1, are in general not typica
configurations. The nonlinearity of supports is best illustrated by the action ofN on the space of
infinite sequences endowed with a Gaussian measure that we recall in the next subsectio

III. SUPPORT PROPERTIES OF SIMPLE MEASURES

A. Countable product of Gaussian measures

We will consider here the simplest case of a Gaussian measure in an infinite dimen
space. We will see however that many aspects of Gaussian measures on functional space
rephrased in this simple context.

Let M5RN, the set of all real sequences~maps fromN to R!

x5$x1 ,x2 ,...%

and consider on this space the measure given by the infinite product of identical Gaussia
sures onR, of mean zero and variancer

dmr~x!5 )
n51

`

e2xn
2/2r

dxn

A2pr
. ~13!

As we saw above, an equivalent way of definingmr is by giving its Fourier transform. Let

^y,z&Arªr~y,z!, y,zPS, ~14!

where (y,z)5(n51
` ynzn andS is the space of rapidly decreasing sequences
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SªH yPRN: (
n51

`

nkyn
2^`,;k&0J .

Then

xr~y!ªe2~1/2!^y,y&Ar5E ei ~y,x!dmr~x!, ~15!

whereyPS, xPRN.
Consider now the ergodic~in fact mixing! actionw of N generated byT[w1 ,

~w1~x!!nªxn11 , xPRN ~16!

which, as we will see, is a discrete analog of the action ofR by translations on the quantum
configuration space of a free scalar field theory. The transformationw1 is clearly measurable an
measure preserving, since all the measures in the product~13! are equal. It is also not difficult to
see thatw is mixing. In fact, invoking linearity and continuity, one only needs to show that~12b!
is verified for a set ofL2-functions whose span is dense. The functions of the form exp(i(y,x)),
yPS form such a set, and one has for them

lim
n→`

^ei ~y,x!,Unei ~z,x!&5e2~1/2!~^z,z&Ar1^y,y&Ar!5^ei ~y,x!,1&^1,ei ~z,x!&, ;y,zPS,

where, in the first and last terms,^,& denotes theL2(RN,dmr) inner product andU denotes the
isometric representation associated withw. Thus,w is an ergodic action with respect tomr , for
any r. Of course,rÞr8 implies mrÞmr8 and one concludes thatmr andmr8 must be mutually
singular~i.e., have disjoint supports!. In fact, taking in~11b! c(x)5exp(i(y,x)) for both mr and
mr8 leads to a contradiction, unless ax0 satisfying~11b! for both mr andmr8 cannot be found.

The aim now is to find properties of typical configurations which allow us to distinguish
supports ofmr andmr8 . Unfortunately the Bochner–Minlos theorem cannot help, due to the
that the inner products~14!, that define the measuresmr andmr8 via ~15!, are proportional to each
other and therefore the corresponding extensions in the Bochner–Minlos theorem are
Hr21/2H5Hr821/2H(5HH) for any r,r8.

Let us now find a better characterization of the support, for which the mutual singularity omr

and mr8 becomes explicit. In order to achieve this we use a slight modification of an argu
given in Ref. 1, that provides convenient sets, both of measure zero and one.

Proposition 1:Given a sequence$D j%, D j.1 themr-measure of the set

Zr~$D j%!ª$x:'NxPN s.t.uxnu,A2r ln Dn, for n>Nx% ~17!

is one~zero! if (1/(D jA ln Dj ) converges~diverges!.
This can be proven as follows. For fixed integerN and positive sequence$L j% define sets
ZN($L j%) by

ZN~$L j%!ª$x:uxnu,Ln , for n>N%. ~18!

The mr-measure of each of these sets is

mr~ZN~$L j%!!5 )
n5N

`

ErfS Ln

A2r
D , ~19!

where Erf(x)51/Ap*2x
x e2j2

dj is the error function. The sequence of setsZN($L j%) is an in-
creasing sequence for fixed$L j%, and the setZr($D j%) defined in~17! is just their infinite union,
for D j5exp(Lj

2/2r):
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Zr~$D j%!5 ø
NPN

ZN~$L j%!. ~20!

From s-additivity one gets

mr~Zr~$D j%!!5 lim
N→`

mr~ZN~$L j%!! ~21!

and therefore

mr~Zr~$D j%!!5expS lim
N→`

(
n5N

`

ln~Erf~Aln Dn!!D . ~22!

Notice that the exponent is the limit of the remainder of orderN of a series. Since only divergen
sequences$D j% may lead to a nonzero measure, one can use the asymptotic expression for Ex),
which gives

mr~Zr~$D j%!!5expS 2 lim
N→`

(
n5N

`
1

DnAln Dn
D . ~23!

Depending on the sequence$D j%, only two cases are possible: either the series exists, o
diverges to plus infinity, sinceD j.1, ; j . In the first case the limit of the remainder is zero, a
so the measure ofZr($D j%) will be one. If the sum diverges so does the remainder of any o
and therefore the measure ofZr($D j%) is zero. h

Let us now discuss the meaning of this result. To begin with, it is easy to present disjoin
A, A8 s.t mr(A)51, mr8(A)50 andmr(A8)50, mr8(A8)51, for rÞr8. Without loss of gener-
ality, taker5ar8, a.1. The setZr($n%) hasmr-measure zero, since(1/(nAln n) diverges. But
Zr($n%)5Zr8($n

a%) ~see ~17!! and Zr8($n
a%) has mr8-measure one, since(1/(naAln na) con-

verges, fora.1. On the other hand the setsZr($n11e%) are such that

mr~Zr~$n11e%!!5mr8~Zr~$n11e%!!51, ;e.0

and sinceZr($n%),Zr($n11e%), ;e.0, the difference sets

Ar
e
ªZr~$n11e%!\Zr~$n%! ~24!

are such thatmr(Ar
e)51 andmr8(Ar

e)50, ;e.0.
Notice that the ‘‘square-root-of-logarithm’’ nature of the supportAr

e of mr does not mean tha
the typical sequencex approachesA2r ln n, asn→`. To clarify this point let us appeal to th
Bochner–Minlos Theorem~see Sec. II A!. TakeHP1/2 to be l 2, the completion ofS with respect
to the inner product~,!:

l 25H yPRN: (
n51

`

yn
2,`J .

Consider a vectora5$a1 ,a2 ,...%P l 2 and a Hilbert–Schmidt operatorHa defined by

~Ha~x!!nªanxn , xP l 2. ~25!

Then the Bochner–Minlos Theorem leads to the conclusion that a typical sequencex in the
support of the measure must satisfy

(
n51

`

an
2xn

2,`, ~26!
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which is certainly not true for a sequence behaving asymptotically likeA2r ln n, if we choose
appropriatelyaP l 2. However, the Bochner–Minlos theorem does not forbid the appearance
subsequence behaving asymptotically even worse thanA2r ln n. Therefore proposition 1 mean
that in a typical sequence$xn% no subsequence$xnk

% can be found such that,;nk , uxnk
u

.A2(11e)r ln nk, for any arbitrary but fixede greater than zero, and that one is certainly fou
if e is taken to be zero. But this subsequence is rather sparse, as demanded by the Bochner
Theorem; from a stochastic point of view the occurrence of valuesuxnu greater thanA2r ln n is a
rare event. The typical sequence in the support is one that is generated with a probability
bution given by the measure. The measure in this case is just a product of identical Ga
measures inR, so the typical sequence is one obtained by throwing a ‘‘Gaussian dice’’ an in
number of times.

Notice that a typicalmr8 sequence can be obtained from amr typical sequence simply by
multiplying by Ar8/r. This follows from the fact that the mapx°Ar8/rx is an isomorphism of
measure spaces (RN,mr)→(RN,mr8).

B. The white noise measure

We consider now the so called ‘‘white noise’’ measure, which in some sense is the conti
analog of the previous case.4 Again, we will look for convenient sets of measure one, in the se
given in Sec. III A. This will be achieved by a proper choice of random variables, i.e., measu
functions, which will reduce the present case to the previous discrete one.

As mentioned in Sec. II A thed11-dimensional white noise is the Gaussian measurems with
Fourier transformxs( f )5exp(2s/2( f , f )). Notice that heres has dimensions of inverse mas
squared.

The Euclidean groupE acts onS(Rd11), S8(Rd11) and ~unitarily! on L2(S8(Rd11),dms),
respectively, by

~ w̃gf !~x!5 f ~g21x!,

~wgf!~ f !5f~w̃g21f !, ~27!

~Ugc!~f!5c~wgf!,

wheregPE, gx denotes the standard action ofE on Rd11 by translations, rotations and reflection
f PS(Rd11), fPS8(Rd11) andcPL2(S8(Rd11),dms).

It is easy to see that a subgroup of translations in a fixed direction, say the time direct
mixing. One just has to consider the set with dense span ofL2-functions of the form exp(if(f )),
f PS(Rd11) and use the Riemann–Lebesgue Lemma to prove that

lim
t→`

E f ~x01t,...,xd!g~x0 ,...,xd!dd11x50, ; f ,gPS~Rd11!. ~28!

This implies that the measuresms and ms8 for sÞs8 have disjoint supports, even though th
Bochner–Minlos theorem gives us for the support in both cases an extension ofL2(Rd11,dd11x)
through a Hilbert–Schmidt operator~see Sec. III A!. Since the choice of a complet
~ , !-orthonormal system$ f n% gives us an isomorphism of measure spaces

~S8~Rd11!,ms!→~RN,mr! ur5s

f°$f~ f n!%, ~29!
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for every such basis one can find sets of the type of those found in the previous subsecti
which put in evidence the mutual singularity ofms andms8 . However, for the convenience of ou
analysis of free massive scalar fields in the next section, let us study thex-behavior of typical
white noise configurationsf. Since

dx :f°f~x! ~30!

is not a good random variable, we fix inRd11 a family of nonintersecting cubic boxes,$Bj% j 51
` ,

with sides of lengthL. Then the mean value off over Bj is a well defined random variable

FBj
:f°FBj

~f![f~ f j !5
1

Ld11 EBj

f~x!dd11x, ~31!

wheref j denotes the characteristic function of the setBj divided by the volumeLd11, and the map

S8~Rd11!→RN

f°$f~ f j !% ~32!

defines~by push-forward! a measure onRN of the form ~13! with r5s/Ld11. This can be seen
from the fact that

E
S8~Rd11!

dms expS i (
j 51

`

yjf~ f j !D 5expS 2
s

Ld11

( j 51
` yj

2

2 D . ~33!

We then conclude from Sec. III A that the sets

Ws
e
ª$fPS8~Rd11!:'NfPNs.t.uf~ f n!u,A2~11e!~s/Ld11!ln n, for n>Nf% ~34!

havems-measure one for every positivee, and that fors8.s ane(s8).0 can be found such tha

ms8(Ws
e(s8))50. This shows that the supremum of the mean value off overN boxes with volume

Ld11 goes likeA2(11e)(s/Ld11)ln N. A white noise with a bigger variances8.s has the latter
behavior on larger boxes with volumeL8d115(s8/s)Ld11.

IV. QUANTUM SCALAR FIELD THEORIES

A. Constructive quantum scalar field theories

Here we recall briefly some aspects of constructive quantum field theory that will be rel
for the next subsection.2 A quantum scalar field theory ond11-dimensional~flat Euclideanized!
space-time is a measurem on S8(Rd11) with Fourier transformx ~generating functional or
x( f )5Z(2 i f )/Z(0) in theoretical physics terminology! satisfying the Osterwalder–Schrad
~OS! axioms. We will be interested in the axioms which state the Euclidean invariance o
measure~OS2! and ergodicity of the action of the time translation subgroup~OS4!, i.e., for g
5Tt : Tt(t8,x)5(t81t,x),

lim
t→`

1

2t E2t

t

dt c~wTt
f0!5a.e.E

S8~Rd11!
c~f!dm~f!. ~35!

The action of the Euclidean group onS(Rd11), S8(Rd11) andL2(S8(Rd11),dm) is defined as in
Sec. III B. So OS2 states thatwg* m5m for all elementsg of the Euclidean groupE. Notice that
OS21OS4 imply that ergodicity under the subgroup of time translations is equivalent to e
icity under the full Euclidean group. The vacua of the theory correspond to Euclidean inv
vectors onL2(S8(Rd11),dm) and the axioms OS2 and OS4 imply that the vacuum is unique
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given by the constant function. Examples of measures satisfying the OS axioms are the G
measuresmCm

corresponding to free massive quantum scalar field theories@see Eqs.~5! and~6!#.

B. Support of free scalar field measures

Since the Euclidean groupE acts ergodically on (S8(Rd11),mCm
) we conclude that the mea

suresmCm
andmCm8

@see Eq.~6!# with mÞm8 must have disjoint supports. Like in Sec. III B w
will characterize the difference of supports in terms of the mean value off over a region with
volumeLd11. Before going into the details of the calculations notice that the map

~S8~Rd11!,ms!→S8~Rd11!,mCm
)

f°@s~2D1m2!#21/2f ~36!

is an isomorphism of measure spaces which maps typical white noise configurations to
mCm

-configurations. Heuristically this means that for big distances (Dx@1/m) or small momenta
the correlation imposed by the kinetic term in the action is lost and the typical configura
approach those of white noise withs51/m2. Let us now obtain a formal derivation of this fact a
far as thex-space behavior of typical configurations of free massive scalar fields is concern

Consider the same random variablesFBj
as in Sec. III B but, in order to eliminate the corr

lation, the cubic boxesBj will be chosen centered in the pointsxj5(x0
j ,...,xd

j )5( j 2/m,0,...,0) and
with sides parallel to the coordinate axes. The push-forward ofmCm

with respect to the map

S~Rd11!→RN

f°$f~ f j !% ~37!

is a Gaussian measuremMm
in RN with covariance matrixMm given by

~Mm! j l 5Cm~ f j , f l !5S 2

p
D d11 1

L2~d11! ERd11
dd11pei ~p0 /m!~ j 22 l 2!

1

p21m2 )
k50

d sin2~pkL/2!

pk
2 .

~38!

Let us denote the~constant! value of the diagonal elements ofMm by Cm
L , i.e.,

Cm
L
ª~Mm! i i 5S 2

p
D d11 1

L2~d11! ERd11
dd11p

1

p21m2 )
k50

d sin2~pkL/2!

pk
2 . ~39!

Proposition 2:The set

Y~m!
e

ª$fPS8~Rd11!:'NfPN s.t.uf~ f n!u,A2~11e!Cm
L ln n, n>Nf% ~40!

hasmCm
-measure one for anye.0.

Like in Sec. III B, we will show that themMm
-measure of the image ofY(m)

e in RN is one. To prove
this we will relate the measuremMm

with a diagonal Gaussian measure of the form~13!. Let mC
m
L

be the Gaussian measure inRN with diagonal covariance matrixCm
L d i j .

Lemma 1:The measuresmMm
andmC

m
L are mutually absolutely continuous, i.e., have the sa

zero measure sets.
To prove the lemma we will rely on Theorem I.23 on p. 41 of Ref. 1~see also Theorem 10.

on p. 160 of Ref. 32!, which gives necessary and sufficient conditions for two covariances to
rise to mutually absolutely continuous Gaussian measures. In our case, since the covari
mC

m
L is proportional to the identity, it is sufficient to show that~i! the operatorTªMm2Cm

L 1 is
                                                                                                                



s

re
34

.

hen
-

2347J. Math. Phys., Vol. 40, No. 5, May 1999 Mourão, Thiemann, and Velhinho

                    
Hilbert–Schmidt and~ii ! the operatorMm is bounded, positive with bounded inverse inl 2. Let us
first prove thatT is Hilbert–Schmidt. The matrix elements ofT areTii 50 andTjl 5(Mm) j l , for
j Þ l . One can see from~38! that the off-diagonal elements of (Mm) j l are the values at the point
j 22 l 2 of the Fourier transform of a real functionf. Explicitly,

~Mm! j l 5E
R
dn0ein0~ j 22 l 2! f ~n0!, ~41!

where

f ~n0!ªS 2

p
D d11 1

md13L2~d11!

sin2~mLn0/2!

n0
2

•E
Rd

ddn
1

11n0
21S1

dnk
2 )

1

d sin2~mLnk/2!

nk
2 . ~42!

Since bothf and its derivativef 8 andL1, one gets for the Fourier transformf̃ of f :

u f̃ ~ t !u5
u f̃ 8~ t !u

utu
, ~43!

with f̃ 8 continuous, bounded, and approaching zero at infinity. ThereforeA.0 exists such that

u~Mm! j l u2<
A

~ j 22 l 2!2 , for j Þ l , ~44!

and therefore

(
j ,l

uTjl u2<A(
j Þ l

1

~ j 22 l 2!2,`, ~45!

thus proving thatT is Hilbert–Schmidt. Let us now prove~ii !. The operatorMm is a positive
operator onl 2 since it is given by the restriction of the positive covarianceCm on L2(Rd11) to the
linearly independent system$ f j% j PN . Positivity of Mm and the fact thatMm5Cm

L 11T, T being
compact~in fact Hilbert–Schmidt!, implies thatMm is bounded, has a trivial kernel and therefo
is invertible with bounded inverse~see, e.g., Theorem 4.25 and open mapping theorem in Ref.!.
Proposition 2 now follows, given the characterization of the support ofmC

m
L one gets from Sec

III A. h

Using the fact that

1

ap

sin2~ap!

p2 ~46!

tends tod(p) whena→`, one sees from~39! that

lim
L→`

Ld11Cm
L 5

1

m2 . ~47!

Thus, comparing~40! with ~34! we see that, in accordance with the discussion above, w
averaged over widely separated large boxes (L@1/m), the typical free field distribution ap
proaches white noise withs51/m2.
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The explicitness of the mutual singularity ofmCm
andmCm8

, with mÞm8 now follows easily

from ~24!, ~40!, and the fact thatCm
L is a monotonous~decreasing! function of m.

V. PROPERTIES OF THE ASHTEKAR–LEWANDOWSKI MEASURE ON SPACES OF
CONNECTIONS

A. Ergodic action of the group of diffeomorphisms

The diffeomorphism-invariant Ashtekar–Lewandowski measuremAL on the space of connec
tions modulo gauge transformationsA/G over the manifoldS plays an important role in rigorou
attempts to find a quantization of canonical general relativity. In the present section we
properties of this measure. We show that Diff0(S), the connected component of the group
diffeomorphisms of~the connected analytic manifold! S, acts ergodically onA/G. In the next
subsection we also obtain results concerning the properties of the support ofmAL .

Let us recall the definition ofmAL . We denote by a hoop@a# in S the equivalence class o
~piecewise analytic! loops$ã% based onx0PS such that

U ã~A!5Ua~A!, ;APA, ~48!

whereUa(A) denotes the holonomy corresponding to the loopa, the connectionA and a chosen
point in the fiber overx0 of the ~fixed! principal G-bundle overS andA is the space of all
connections on this bundle. The set of all hoops forms a groupHG, called the hoop group.7 We
note that for allG5SU(N) with N>2 the groupHG does not depend onN nor on the principal
bundle.7 Throughout the present section we will assumeG to be a compact connected Lie grou
It is well known that a connectionA defines throughU(A) a homomorphism fromHG to the
gauge groupG: @a#°Ua(A). In fact, the spaceA/G is in a natural bijection with the space of a
appropriately smooth homomorphisms of this type, modulo conjugation at the base point.35–37On
the other hand, and as expected from the example of scalar fields, the measuremAL lives in a space
bigger than the classical spaceA/G. This is the space of all, not necessarily smooth or e
continuous, homomorphisms fromHG to G modulo conjugation, denoted byA/G.6,7 The space
A/G of smooth classes@A# was shown to be of zero measure inA/G.8 In the next subsection we
will deepen this result.

The measuremAL is, as in the scalar field case, completely specified by giving the resu
integrating the so-called cylindrical functions, which in this case are gauge-invariant functio
a finite number of parallel transports along~analytic embedded! edges

f ~Ā!5F~Ā~e1!,...,Ā~en!!, ~49!

where different edges may intersect only on the ends andĀPĀ, the space of all connection
realized as parallel transports in a natural way.9,11 The measuremAL is then defined by

E
A/G

dmAL f ~Ā!5E
Gn

dg1¯dgnF~g1 ,...,gn!, ~50!

wheredg is the normalized Haar measure onG.
The group Diff0(S) has a natural action onĀ which leavesmAL invariant

w* Ā~e!ªĀ~w•e!. ~51!

As we have seen in Sec. II B this action induces a unitary action of Diff0(S) on L2(A/G,dmAL)

~Uw f !5 f ~w* Ā!. ~52!

Consider now the so-called spin-network states38–40$Ts%, indexed by tripless5(g,p,c), whereg
is a graph,pª(p1 ,...,pn) is a labeling of the edges ofg with nontrivial irreducible representa
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tions p i of G andcª(c1 ,...,cm) is a labeling of the verticesv1 ,...,vm of g with contractorscj ,
i.e., nonzero intertwining operators from the tensor product of the representations correspon
the incoming edges atv j to the tensor product of the representations associated with the outg
edges. The unitary action of Diff0(S) on the spin-network states is particularly simple, bei
given by

UwTg,p,c5Twg,wp,wc ~53!

or, in short

UwTs5Tws , ~54!

where wg is the image of the graphg under the diffeomorphismw and wp and wc are the
corresponding representations and contractors associated withwg. A crucial property is that the
contractors can be chosen in such a way that the spin-network states form an orthonormal b
L2(A/G,dmAL).39–41 We will assume that this has been done to prove the following.

Theorem 1: The group Diff0(S) acts ergodically onA/G, with respect to the measuremAL .
To prove the theorem, we will show that the only Diff0(S)-invariant vector on

L2(A/G,dmAL) is the constant function. Therefore there can be no measurable Diff0(S)-invariant
subsets ofA/G with measure different from zero or one.

Using the completeness of the spin-network states, everycPL2(A/G,dmAL) can be repre-
sented in the form

c5(
s

csTs , ~55!

where no more than countably many coefficientscs are nonzero. Since for anys and any diffeo-
morphismw, Tws belongs to the same orthonormal basis (wsÞs⇒Tws'Ts), we conclude thatc in
~55! is Diff 0(S)-invariant if and only if

cws5cs ;wPDiff 0~S!. ~56!

An L2-vector cannot have more than finitely many equal coefficients, and since for every
trivial spin-network~with nontrivial graph and representations! there is an infinite~actually un-
countable! number of~distinct! spin-networks in the orbit

Diff 0~S!sª$ws,wPDiff 0~S!%, ~57!

we conclude that an invariantc in ~55! is necessarily constant almost everywhere. h

From the proof it follows that ifH is a subgroup of Diff0(S) s.t. theH-orbit Hs through every
nontrivial spin-networks is infinite, thenH acts ergodically onA/G. So for example

Corollary 1: If S5RN or S5TN the measure space (A/G,mAL) admits the ergodic action o
subgroupsH of Diff 0(S) isomorphic toZ.

For S5RN we take theZ-subgroup of Diff0(S) generated byw0 :

w0~x1,...,xN!5~x11v1,...xN1vN!, ~58!

where (v1,...,vN) is a fixed nonvanishing vector inRN ~recall that spin-networks are defined he
only for finite graphs!. If S5TN we take in~58! the vector (v1,...,vN) to have~at least! two
irrational and incommensurable components, where (x1,...,xN) are now mod 1 coordinates ofTN.
In both cases for every nontrivial spin networks, $w0

ns,nPZ% contains an infinite number o
distinct spin networks and so the group$w0

n ,nPZ% acts ergodically on (A/G,mAL). h
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B. Support properties

As we mentioned in the beginning of Sec. V A the spaceA/G of smooth connections modul
gauge transformations is contained in a zero measure subset ofA/G, the space where the measu
mAL is naturally defined.6–8 The latter space is naturally identified with the space of all~not
necessarily continuous! homomorphisms from the hoop groupHG to the gauge groupG modulo
conjugation at the base point.9 In the present subsection we deepen the result of Ref. 8 by sho
that the parallel transport of amAL-typical connectionĀPĀ along an edgee leads to a nowhere
continuous map

g~• !:@0,1#→G. ~59!

Indeed lete: @0,1#→S be an arbitrary edge and consider forsP@0,1# the part of the edgees given
by

es~ t !5e~st!, tP@0,1#.

We then have a map

v:Ā→G@0,1#

Ā°v Ā , v Ā~s!ªĀ~es!, ~60!

whereG@0,1# denotes the space of all maps from@0,1# to G. By choosing inG@0,1# the standard
product space topology and as algebra of measurable sets the Borels-algebra mapv becomes
measurable.

It is easy to see that, due to the properties of the Haar measure, the push-forwardv* mAL of
mAL

42 to G@0,1# is a product of Haar measures, one for each pointsP@0,1#:

dn~g~• !!5v* dmAL5 )
sP@0,1#

dg~s!. ~61!

The main result of this subsection is the following.
Theorem 2: The measuremAL is supported on the setW of all connectionsĀ such thatv Ā is

everywhere discontinuous as a map from@0,1# to G.
SinceW5v21(W1), where

W15$g~• !PG@0,1#, s.t. g~• ! is nowhere continuous%, ~62!

it is sufficient to prove that the complement ofW1 ,

W1
c5$g~• !PG@0,1#:'s0P@0,1# s.t. g~• ! is continuous ats0%, ~63!

is contained in a zeron-measure subset ofG@0,1#. Consider the sets

QU5$g~• !PG@0,1#:'I s.t. g~ I !,U%, ~64!

whereU is a ~measurable! subset ofG with 0,mH(U),1 (mH(U) denoting the Haar measure o
U! and I is an open subset of@0,1#. We need the following.

Lemma 2:For everyU,G with 0,mH(U),1 the setQU is contained in a zero measur
subset ofG@0,1#.

To prove the lemma recall that the open balls

B~q,1/m!5$sP@0,1#:us5qu,1/m% ~65!
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with rational q and integerm are a countable basis for the topology of@0,1#. Thus QU is the
countable union of the sets

QU,q,mª$g~• !PG@0,1#:g~B~q,1/m!!,U%, qPQ,mPN. ~66!

It is easy to construct zero measure subsets containingQU,q,m . For this fix an infinite sequence
$si% i 51

` ,B(q,1/m) of distinct points,siÞsj for iÞ j . Then the setZ5$g(•)PG@0,1#:g(si)PU,
i PN% containsQU,q,m and has zero measure:

n~Z!5 lim
n→`

~mH~U !!n50.

From thes-additivity of n we conclude that, for every subsetU,G with Haar measure less tha
one, the setQU is contained in a zeron-measure subset. h

We can now conclude the proof of the theorem. Let us choose a numberr, 0,r ,1 and a
finite open covering$Ui% i 51

k of the compact groupG with mH(Ui)5r , i 51,...,k. This is clearly
possible since we can take a neighborhood of each point with measurer and then take a finite
subcovering. Considerg(•)PW1

c . Then there exists as0P@0,1# such thatg(•) is continuous at
s0 . Let i 0 be such thatg(s0)PUi 0

. Continuity implies that there exists a neighborhoodI of s0

such thatg(I ),Ui 0
and therefore we haveW1

c,Ui 51
k QUi

. h

VI. CONCLUSION AND DISCUSSION

The knowledge of the support of measures on infinite dimensional spaces, used in qu
field theory, gives a grasp on the behavior of typical quantum field configurations associate
these measures. This may be important for a better understanding, both from the physic
mathematical points of view, of problems afflicting interacting theories like the problem of d
gences.

The Bochner–Minlos theorem is very effective in capturing linear properties of the supp
measures on the spaceS8(Rd11) of quantum scalar field configurations@the support is a linear
subspace ofS8(Rd11) spanned by configurations with a given norm finite#. It allows, e.g., to
distinguish the support of the measuremCm , corresponding to free scalar field theory with ma
m, from that of the white noise measure. However, this theorem would predict the same s
for the measuresmCm

and mCm8
with mÞm8 even though these measures must have disj

supports. The latter is due to the fact that any one parameter subgroup of translations ofRd11 acts
ergodically onS8(Rd11) with respect to both measures. The above two claims do not contr
and rather complement each other since the subset of a ‘‘support’’ which is thick, i.e., suc
any measurable subset of its complement has measure zero, is also a~finer! support for the same
measure. So, to distinguish betweenmCm

and mCm8
, one has to find properties of the suppo

which complement those given by the Bochner–Minlos theorem. Support properties ofmCm
were

studied in Refs. 26 and 27~see also Refs. 28–30!. Our goal in Sec. IV B consisted in showing th
a simple system of random variables can be used to study the difference of supports ofmCm

and
mCm8

for large distances. This simplifies part of the results of Refs. 26 and 27 and makes
physically more transparent.

The use of theAL measure in attempts to construct a quantum theory of gravity6–18,43–51

justifies the importance to study its properties. In Sec. V we improved the results of Ref. 8
fixed an arbitrary edgee, or equivalently a piecewise analytic curve onS, and considered the
random variables given byĀ°Ā(es), whereĀ is a quantum connection,es represents the edgee
up to the valuesP@0,1# of the parameter, andĀ(es) is the parallel transport corresponding toĀ
and es . These random variables were suggested to the authors by Abhay Ashtekar and
motivated by studies of the volume operator in quantum gravity.43–53 Varying s we obtain a
~measurable! map v from the space of quantum connectionsĀ to the spaceG@0,1# of maps,
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, g(•):@0,1#→G. The AL measure becomes, by push-forward, an infinite product of Haar m

sures. Using this we have shown that for a typicalmAL-connectionĀ the parallel transportĀ(es)
is everywhere discontinuous.

We also showed that Diff0(S) acts ergodically onA/G with respect to theAL measure. The
importance of this stems from the fact that in quantum gravity one has to solve the diffeo
phism constraint and therefore naively one would have to take functions on the quotient

A/G/Diff 0~S!.

The ergodicity of the action of Diff0(S) onA/G implies that the only solution to the diffeomor
phism constraint inL2(A/G,dmAL) is the constant function. This explains why in Ref. 11, a
even thoughA/G is compact, one had to use distributional elements to solve the diffeomorp
constraint. If the action were not ergodic one would have diffeomorphism invariant measu
subsets ofA/G ~pre-images of sets inA/G/Diff 0(S)) with mAL-measure different from zero o
one. The characteristic functions of these sets would provideL2 solutions to the diffeomorphism
constraint.
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42Here mAL is considered onĀ. It is defined analogously to Eq.~50! with the difference that the functions of paralle

transports are not necessarily gauge invariant~see Ref. 7!. The push-forward of this measure toA/G5Ā/Ḡ gives the
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We construct a new family of boson coherent states using a specially designed
function which is a solution of a functional equationde(q,x)/dx5e(q,qx) with
0<q<1 ande(q,0)51. We use this function in place of the usual exponential to
generate new coherent statesuq,z& from the vacuum, which are normalized and
continuous in their labelz. These states allow the resolution of unity, and a corre-
sponding weight function is furnished by the exact solution of the associated Stielt-
jes moment problem. They also permit exact evaluation of matrix elements of an
arbitrary polynomial given as a normally-ordered function of boson operators. We
exemplify this by showing that the photon number statistics for these states is
sub-Poissonian. For anyq,1 the statesuq,z& are squeezed; we obtain and discuss
their signal to quantum noise ratio. The functione(q,x) allows a natural generation
of multiboson coherent states of arbitrary multiplicity, which is impossible for the
usual coherent states. Forq51 all the above results reduce to those for conven-
tional coherent states. Finally, we establish a link withq-deformed bosons.
© 1999 American Institute of Physics.@S0022-2488~99!01404-8#

I. INTRODUCTION

The conventional boson coherent states are a family of collective states of the har
oscillator which are parameterized by a single complex numberz.1 They are sums of the eigen
states of the number operatorN5a†a, with @a,a†#51,

Nun&5nun&, ~a†!nu0&5An! un&, ^nun8&5dn,n8 , ~1!

with coefficients given by the exponential function. More precisely, the coherent stateuz& is
defined by

uz&5N2 1/2exp~za†!u0&, ~2!

5N2 1/2(
n50

`
zn

An!
un&, ~3!

with the normalizationN(uzu2)5exp(uzu2). Whereas the statesuz& are normalized,̂zuz&51, their
overlap is nonvanishing,2

^zuz8&5exp~2 1
2 uz2z8u21 i Im~z* z8!!. ~4!

a!Electronic mail: penson@lptl.jussieu.fr
b!Electronic mail: a.i.solomon@open.ac.uk
23540022-2488/99/40(5)/2354/10/$15.00 © 1999 American Institute of Physics
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The eigenfunctions ofN form a complete set and their resolution of unity is given by a sum
orthogonal projection operators,(n50

` un&^nu5I . The setuz& gives a resolution of unity with
weight functionW(z) if

E E d2zuz&W~z!^zu5I . ~5!

Consequently, the requirement thatuz& form a complete~in fact, an overcomplete! set is equivalent
to the condition

(
n50

` H p

n! E0

`

e2xxnW~x!dxJ un&^nu5I , ~6!

wherex[uzu2, from which a~trivial! Stieltjes power-moment problem3 results, namely, determin
a positive weight functionW̃(x) with W̃(x)[e2xW(x), such that

E
0

`

xnW̃~x!dx5
n!

p
~n50,1,2, . . . ,̀ !, ~7!

which immediately yields a~unique! solutionW(x)51/p. The reason for the appearance of t
weight function in

E E d2zuz&W~ uzu2!^zu5I

is that the statesuz& are eigenstates of a non-Hermitian operatora,auz&5zuz&; then in the resolu-
tion of unity for uz& we have a weighted sum of nonorthogonal projection operatorsuz&^zu as in
Eq. ~4!. Following the prescription of Klauder,4 a general coherent state is defined as one sa
fying the following minimal set of conditions:1

The statesum& are coherent states if the following occurs

~1! um& are normalizable, i.e.,̂mum&51.
~2! um& are continuous in the labelm, i.e.,

um2m8u→0⇒uum&2um8&u2→0.

~3! The setum& allows a resolution of unity, i.e., there exists a weight functionW(umu2).0 such
that

E E d2mum&W~ umu2!u^mu5I .

Whereas Condition 1 is evident for any allowable vector in the Hilbert space by defin
Condition 2 follows from the continuity of the overlapping factor through

uum&u2um8&u252~12Re^mum8&!, ~8!

and can be realized rather easily in practice. However, Condition 3 imposes very severe
tions on possible setsum&. In this paper we present results obtained by creating a set of s
through a specially designed functione(q,z). These states are coherent in the sense descr
above, in that the requirements 1, 2 and 3 are satisfied. One remark appears in order, con
the weight functionW(umu2): if the coherent states are based on an underlying group stru
@Heisenberg–Weyl,SU(2) ~Ref. 5! or SU(1,1) ~Ref. 6! coherent states, for example# then finding
W(umu2) is equivalent to considering the Ka¨hler potentialF(m,m* ) defined by7
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F~m,m* !5 log~ u^0um&u22!, ~9!

from which the weight function, up to a multiplicative constant, can beuniquelyobtained through

W~ umu2!5
]2

]m]m*
F~m,m* !. ~10!

The Kähler potential mirrors the geometry and the group structure of the underlying phase
In the following we set aside any group structure and will use exclusively analytic methods

II. NEW GENERALIZED EXPONENTIAL FUNCTION AND THE STIELTJES MOMENT
PROBLEM

Consider the following functional equation for a function of the complex variable:

de~q,z!/dz5e~q,qz!, „e~q,0!51, 0<q<1…. ~11!

When q51 these are defining equations for exp(z). When qÞ1, then e(q,z)Þexp(z) and a
solution analytic in some neighborhood ofz50 may be assumed to be given bye(q,z)
5(n50

` an(q)zn. Equation~11! produces the following recursion relation:

an11~q!5an~q!
qn

~n11!
, n51,2, . . . ,̀ , a051, ~12!

with solutionan(q)5qn(n21)/2/n! and

e~q,z!5 (
n50

`

qn~n21!/2zn/n!, ~13!

which is convergent for allz whenq<1. Note thate(q,z) interpolates betweene(0,z)511z and
e(1,z)5exp(z). The functione(q,z) has an infinitely countable number of roots, of which no
lies on the positive real axis.

We now define a new family of physical statesuq,z& labeled byq andz,

uq,z&5$N~q,uzu2!%2 1/2e~q,za†!u0&, ~14!

and show that the statesuq,z& are coherent in the general sense described above:

A. Normalization

From ^q,zuq,z&51 we obtain the normalization

N~q,uzu2!5 (
n50

`
qn~n21!

n!
uzu2n, ~15!

5e~q2,uzu2!.0. ~16!

Then the normalized state is

uq,z&5@e~q2,uzu2!#2 1/2(
n50

`
q

n~n21!
2

An!
znun&. ~17!

Note thatuq,z& is not an eigenstate ofa. For a givenq we calculate the overlap,
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^q,zuq,z8&5@e~q2,uzu2!e~q2,uz8u2!#2 1/2(
n50

`

qn~n21!~z8z* !n/n!

5@e~q2,uzu2!e~q2,uz8u2!#2 1/2e~q2,z* z8!. ~18!

For z fixed we can always choosez8 such thatz* z85r p(q), wherer p(q) is the pth root of
e(q2,z) (p51,2, . . . ). It follows that the stateuq,z& can be made orthogonal to an infinity o
statesuq,z8&. However, since the infinite set of rootsr p(q) is still of measure zero with respect t
the whole complex plane, we conclude that^q,zuq,z8& never vanishes except on a set of meas
zero. @We recall that theSU(2) coherent statesum& and um8& are never orthogonal, except fo
m8521/m* , since^mum8& has only one root.5#

B. Continuity in z

We use Eq.~18! and substitute it into Eq.~8!, which after a few standard steps leads to

uuq,z8&2uq,z&u2<uz2z8uDq~z8,z!, ~19!

where

Dq~z8,z!5 (
p51

`
qp~p21!

p! (
k50

p21

~z8* !kz~p212k!, ~20!

with Dq(z,z)>0. Therefore the statesuq,z& are continuous in their label, as are the canoni
coherent states.

C. Resolution of unity

In close analogy with Eq.~5! the condition for the resolution of unity for the set of statesuq,z&
is

E E d2zuq,z&W~q,uzu2!^q,zu5I , ~21!

which transforms into (x[uzu2)

(
n50

` Fpqn~n21!

n! E
0

` xnW~q,x!

e~q2,x!
dxG un&^nu5I , ~22!

where the unknown positive weight functionW(q,x) is the solution of the following Stieltjes
power-moment problem forW(q,x)̃[W(q,x)/e(q2,x):

E
0

`

xnW~q,x!̃dx5
n!

pqn~n21!
[cq~n!, n51,2, . . . ,̀ . ~23!

The general theory of the Stieltjes power-moment problem3 tells us that a condition for the
solvability of Eq.~23! is the positivity of the two series$h0

(n)%,$h1
(n)%(n51,2, . . . ,̀ ) of so-called

Hankel–Hadamard matrices~HH-matrices!, defined by

h0
~n!~ i , j !5cq~ i 1 j 22!5

~ i 1 j 22!!

q~ i 1 j 22!~ i 1 j 23!
~ i , j 51,2, . . . ,n!, ~24!
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h1
~n!~ i , j !5cq~ i 1 j 21!5

~ i 1 j 21!!

q~ i 1 j 21!~ i 1 j 22!
~ i , j 51,2, . . . ,n!. ~25!

It turns out that indeed all the left-upper corner determinants of HH-matrices are positive.8 There-
fore a solution of Eq.~23! exists. However, in contradistinction to the case of group-defi
coherent states, the solution here is not unique. In fact, there exists an infinity of solutions,
so-called Carleman criterion3 indicates,

(
n50

`

@cq~n!#21/2n,`. ~26!

We have generated a few families of solutions of Eq.~23! using the combined methods of Melli
and Laplace transforms.9,10,11We quote here the simplest solution,

W̃~q,x!5@2q~p!3/2Alog~q21!#21E
0

`

expS 2
xy

q
2

~ logy!2

4log~q21!
D dy, ~27!

which is effectively the Laplace transform with respect tox/q of the lognormal distribution
function. It satisfies W̃(q,0)5pq22 and W̃(q,`)50. With the change of variabley
5q22exp(2Alog(q21)s), W̃(q,x) transforms into

W̃~q,x!5@q2~p!3/2#21E
2`

`

expS 2
x

q3
e2Alog~q21!s2s2D ds, ~28!

from which we observe that forq→1, W̃(q,x)→p21exp(2x). A detailed derivation of these
results, together with a discussion of analyticity properties and a graphical representation
~27!, as well as of other solutions of Eq.~23!, will be given in a forthcoming publication.11 The
above results have two main consequences.

First, it follows from Eq.~21! that ^q,zuq,z8& is a reproducing kernel, since

E E d2z^q,z8uq,z&W~q,uzu2!^q,zuq,z9&5^q,z8uq,z9&. ~29!

Equivalently, any stateuq,z8& can be expressed in terms of the others through

uq,z8&5E E d2zuq,z&^q,zuq,z8&uW~q,uzu2!. ~30!

Second, any arbitrary stateuf& can be expressed in terms of statesuq,z&

uf&5E E d2zuq,z&uW~q,uzu2!^q,zuf&, ~31!

where from Eq.~17!,

^q,zuf&5@e~q2,uzu2!#2 1/2(
n50

`
qn~n21!/2

An!
zn^fun&. ~32!

We conclude from these considerations that the family ofuq,z& states is a fully-fledged family o
coherent states in the sense described above.
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III. PHYSICAL APPLICATIONS

The utility of the general coherent statesuq,z& in physical applications is enhanced by th
observation that the following quite general matrix element can be calculated exactly fop,r
50,1,2, . . . ,

^q,zu~a†!rapuq,z&5~z* !rzpq~1/2! ~r 21p22r 2p!
e~q2,q~p1r !uzu2!

e~q2,uzu2!
. ~33!

More generally, the nondiagonal matrix elements^q,zu(a†) rapuq,z8& are also readily evaluated
but will not be quoted here.

We now give three simple physical applications of the formula of Eq.~33!.

A. Photon number distribution

First, the average number of photons in the stateuq,z& is given by

^q,zuNuq,z&5uzu2
e~q2,q2uzu2!

e~q2,uzu2!
<uzu2 ~N[a†a!. ~34!

The variance (DQ)2 of an operatorQ in the stateuc& is defined by

~DQ!25^cuQ2uc&2^cuQuc&2. ~35!

We have the following expression for the number variance in the stateuq,z&:

~DN!2[^q,zuN2uq,z&2^q,zuNuq,z&2 ~36!

5x
e~q2,x!e~q2,q2x!1x@q2e~q2,x!e~q2,q4x!2e2~q2,q2x!#

e2~q2,x!
, ~37!

wherex[uzu2. Upon closer inspection one sees that the number variance is always smalle
^N&. Consequently, the probability distribution generated bye(q,x) is sub-Poissonian.~The ordi-
nary coherent states are exactly Poissonian.!

B. Squeezing properties

Introduce the self-adjoint quadrature operatorsX5(a1a†)/A2 andP5(a2a†)/ iA2 which
satisfy @X,P#5 i I . The variances ofX andP in any stateuc& satisfy the Heisenberg uncertain
relation,

~DX!2~DP!2> 1
4 . ~38!

A stateuc& is calledsqueezedfor the quadratureX if ( DX)2, 1
2 ~the vacuum value!. We now show

that for q,1, there is a neighborhood ofz50 for which the stateuq,z& is squeezed. To this en
we observe that (DX)2, 1

2 may be rewritten as

^a2&2^a&21^a†a&2^a&^a†&,0, ~39!

where all the averages in Eq.~39! are understood as taken in the stateuq,z&. Using Eq.~33! gives
the following condition for squeezing (x[uzu2):

~11q!e~q2,q2x!e~q2,x!22e2~q2,qx!,0. ~40!
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We note that the inequality~40! is always satisfied forx50, as it then reduces toq,1, which is
true by hypothesis. From the continuity ofe(q,x) for fixed q there is therefore a neighborhood
x50 for which the inequality~40! is satisfied; that is, there is a constantd(q).0 such that
squeezing inX occurs for 0,x,d(q).

C. Signal-to-quantum noise ratio

The last physical quantity calculated in the stateuq,z& will be the signal-to-quantum nois
ratio s, which is defined by

s5
^X&2

~DX!2
. ~41!

Repeated use of Eq.~33! yields the result

s~q,x!52xe2~q2,qx!/$x@~11q!e~q2,x!e~q2,q2x!22e2~q2,qx!#1 1
2 e2~q2,x!%. ~42!

For the standard coherent states (q51) the quantitys(1,x) attains the value 4Ns , whereNs is the
number of photons in the signal,Ns5Ns(1,x), whereNs(q,x)5^q,zua†auq,z&. In our case we
may show that in a positive neighborhood ofx,

s~q,x!

4Ns~q,x!
511~12q2!x•••, ~43!

which is greater than 1 forq2,1, thus improving on the usual coherent state value.
The classical result of Yuen,12,13 valid for any state whatsoever, implies that

s~q,x!<4Ns~q,x!„Ns~q,x!11…, ~44!

where the upper value is attained by a conventional squeezed state.14 Calculations on our coheren
stateuq,z& , which as we have seen above is a squeezed state, confirm this upper bound.

IV. TIME EVOLUTION

Since the stateuq,z& is not an eigenstate of the HamiltonianH5va†a, it is natural to analyze
its time dependence, obtained from the time-dependent Schro¨dinger equation

i
]

]t
uq,z;t&5Huq,z;t& ~\51!. ~45!

The time-dependent stateuq,z;t& is obtained by acting onuq,z&[uq,z;0& by the time-evolution
operatorU(t)5exp(2iHt). That is,

uq,z;t&5exp~2 iHt !uq,z;0&5exp~2 iHt !@e~q2,uzu2!#2 1/2(
n50

`
qn~n21!/2

An!
znun&

5@e~q2,uz~ t !u2!#2 1/2(
n50

`
qn~n21!/2

An!
z~ t !nun&5uq,z~ t !&, ~46!

where z(t)[zexp(2ivt). The eigenproperties of the setun& have been used, exp(2iHt)un&
5exp(2invt)un&. The corresponding evolution of the propagator,

^q,zuq,z8;t&5^q,zuq,exp~2 ivt !z8&5^q,exp~ ivt !zuq,z8&, ~47!

indicates that the coherent stateuq,z8& goes over into another coherent state described byz8(t)
[z8exp(2ivt) under the action of the time-evolution operator; this latter state is simply
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time-dependent state of aclassicalharmonic oscillator. Then, very much as for standard cohe
states, the set of all statesuq,z& is invariant under time evolution with the HamiltonianH. The
stateuq,z& remains as close as possible to its classical analog.

V. RELATION TO DEFORMED BOSONS

The reader will have noticed by now that the statesuq,z& share practically all the properties o
the usual coherent statesuz&[u1,z& except one:uq,z& is not an eigenstate ofa, whereasuz& is,
auz&5zuz&. Although this did not impair our ability to apply the new statesuq,z& in actual
calculations, it is legitimate to ask the following question: is the stateuq,z& an eigenstate of som
non-Hermitian operatorb ? The answer to that question is affirmative, with the operatorb and its
Hermitian conjugate playing the role ofdeformed bosons; in other words, one has to deform th
basic commutation relations in order to introduce the so-called deformed bosons. It is nat
our context to parametrize such a deformation by the parameterq, i.e., b[b(q) andb†[b†(q)
with b(1)5a. The study of deformed commutation relations and their representations~more
specifically asquantum groups! has been the subject of much activity in recent years.15,16 Of
course, there exists an infinite number of possible deformations. All of them can be systema
investigated using the function@x#q ~‘‘box’’ x),17 which enters the deformed commutator
follows:

b~q!b†~q!2b†~q!b~q!5@N11#q2@N#q , ~48!

whereN5a†a, Nun&5nun&. Furthermore, it is possible to assume thatb†(q) anda† ~along with
their conjugates! act on the same Fock space with basis$un&%. From Eq.~48!, it follows that

b~q!un&5A@n#qun21&,

so the operatorsb(q) may be thought of as functions ofa according to b(q)
5A@N11#q /(N11)a, etc.

For historical reasons some specific forms of the function@N#q gained a particular
popularity.18–20 The general coherent statesuq,z& of this paper are related naturally to a speci
‘‘box’’ function, and a particular set of deformed commutation relations. Defining@n#q

[nq2(12n) , then

@n#q! 5@n#q@n21#q•••@1#q5n!/qn~n21!,

and the stateuq,z& of Eq. ~17! may be rewritten as

uq,z&5@e~q2,uzu2!#2 1/2(
n50

`
zn

A@n#q!
un&. ~49!

This shows thatuq,z& is an eigenstate of aq-deformed bosonb(q) satisfying

b~q!uq,z&5zuq,z&, ~50!

where, from Eq.~48!, the operatorsb(q) satisfy the following commutation relations:

b~q!b†~q!2~1/q2!b†~q!b~q!5q22N. ~51!

This gives a newq-deformation, different from the ones previously used. Note that the cohe
state of Eq.~14! or Eq. ~49! corresponds to a newq-exponential functione(q,x)5( xn/@n#!,
where@n# is defined above, and@n#! 5@n#@n21#•••@1#,@0#! 51. This is not one of the family of
q-exponential functions considered, for example, by Exton,21 but may be thought of as a memb
of a 3-parameter family,
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E~p,q,l;x![(
xnqln~n21!

@n#p!
;

namely,e(q,x)5E(1,q,1;x) with @n#p[ (12pn)/(12p) here being the traditional definition.

VI. MULTIBOSON STATES

The use of the functione(q,x) can be extended to investigate multiboson coherent sta
First, recall that if we set out to createk excitations of the harmonic oscillator at the time, we a
led to use, for fixedk,

~a†!knu0&5A~kn!! ukn&, n50,1, . . . ,̀ . ~52!

Using the conventional exponential function to create such ak-state leads us to consider, fo
complexz,

uk,z&5N2 1/2~k,uzu2! (
n50

`
@z~a†!k#n

n!
u0&5N2 1/2~k,uzu2! (

n50

`
znA~kn!!

n!
ukn&, ~53!

where the normalization is

N~k,uzu2!5 (
n50

` uzu2n~kn!!

~n! !2
. ~54!

~The functionsuk,z& are not of only theoretical interest:u2,z& was the first example of an
exponentially-generated state displaying squeezing.14! Unfortunately, the power series in Eq.~54!
diverges fork.2.22 Therefore no multiboson coherent states fork.2 exist when generated by th
usual exponential, unless a number-dependent convergence factor is introduced.23 We now turn to
e(q,z) and define

uq,k,z&5N2 1/2~q,k,uzu2!e~q,z~a†!k!u0&5N2 1/2~q,k,uzu2! (
n50

`
znA~kn!!qn~n21!/2

n!
ukn&,

~55!

where the normalization is now

N~q,k,uzu2!5 (
n50

` uzu2n~kn!!qn~n21!

~n! !2
, ~56!

and for q,1 is a convergent series for alluzu2 and for k51,2, . . . . This allows us to define
normalizable multiboson states of any multiplicityk. However, theuq,k,z& do not form a complete
set as their Stieltjes problem does not possess a positive weight function. However, such sta
be understood to be ‘‘complete’’ in a different sense: there is a way to extract every eigensta
uk,m&, from a state of the type Eq.~55! either by taking derivatives atz50, or by dividing by
m11 and performing a contour integral aboutz50. We refer to Ref. 24 for a description of suc
an approach.

VII. CONCLUSIONS

We have shown how to define new coherent states by the introduction of a variant
exponential functione(q,x). We have shown these states to be coherent in that we have exp
given the weight function which satisfies the associated Stieltjes power-moment problem an
the resolution of unity property. The analytic behavior of this new exponential is such as to e
ready evaluation of matrix elements of operators in these new coherent states, and w
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exemplified this by evaluating their squeezing and related physical properties, as well as the
dependence. Further, the stronger convergence behavior ofe(q,x) allows the definition of multi-
boson coherent states, not permitted in the convention exponential case. Finally, we have
that the new function may be considered as theq-exponential associated with a simple deform
tion of the boson commutation relations, and the related coherent states as theq-boson eigenstates
As a postscript, we mention another construction of coherent states which follows what mig
termed an inverse path as compared to our construction of Eqs.~23! and ~27!. Any positive
function having well-behaved moments can serve as a weight function for a family of coh
states. In this way one may define new and interesting coherent states with particularly inte
geometrical properties.25,26

The new coherent state defined in this paper possesses a combination of strong conv
properties and easy evaluability which make it a good candidate for the description of so
model systems.
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Waves and particles in Kaluza–Klein theory
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We examine three overlapping problems in the application of five-dimensional
~5D! manifolds to physics. First, we linearize the 5D theory along the lines of the
four-dimensional~4D! theory, using the harmonic gauge condition. The resulting
wave equations have sources, and can in principle describe gravitons and scalar
particles with finite masses, but the natural choice of gauge parameters makes both
massless. Second, we generalize the 5D metric by including separate conformal
factors on its 4D and extra parts. Then the 5D harmonic gauge gives back the 4D
harmonic gauge of gravitational waves and the Lorentz gauge of electromagnetic
waves, but both particles are massless. Third, we again take a conformally rescaled
metric, but rewrite the field equations in a novel manner. This allows us to interpret
the finite masses of ordinary particles in terms of the wavelengths associated with
4D spaces embedded in a 5D space. ©1999 American Institute of Physics.
@S0022-2488~99!01304-3#

I. INTRODUCTION

Five-dimensional~5D! Kaluza–Klein theory is a generalization of 4D Einstein theory and
commonly regarded as a unified theory of the gravitational, electromagnetic, and scala
whose quantum analogs are the spin-2 graviton, spin-1 photon, and the spin-0 scalar~for a recent
review of Kaluza–Klein theory see Ref. 1!. As a possible bridge between classical field theory a
quantum theory, there has in recent years been significant work on wavelike solutions
manifolds which might be interpreted as four-dimensional~4D! particles.2–5 In the present work
we wish to give fairly generic accounts of three overlapping problems in this area.

In Sec. II we take a new look at the case where the 5D metric can be written as a flat
plus a perturbation. The linearized 5D field equations can be made algebraically tractable
chooses the 5D harmonic gauge. This gives a wave equation for the 4D components
perturbation and a Klein–Gordon type equation for the extra part of the perturbation. These
equations in general have sources, and can represent gravitons and scalar particles wi
masses. However, both masses go to zero for what should be considered the most natura
of gauge parameters. In Sec. III, we generalize the metric by conformally rescaling its 4D a
parts separately. We consider the full~nonlinearized! field equations and again choose the 5
harmonic gauge. For a certain choice of constant parameters involved in the conformal res
the general equations reduce to the 4D harmonic gauge and the Lorentz gauge. In Sec. IV
the results derived in previous sections to explore the relationship between 5D field theory a
particle mass following lines suggested by previous work.6–8 We find that particle masses may b
interpreted as a wavelength in the 4D subspace of a 5D space.

a!Electronic mail: wnsajko@astro.uwaterloo.ca
b!Electronic mail: wesson@astro.uwaterloo.ca
23640022-2488/99/40(5)/2364/17/$15.00 © 1999 American Institute of Physics
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II. WAVES IN LINEARIZED 5D THEORY

To linearize 5D gravity we assume as in the 4D problem that the metric can be written

ĝAB5ĥAB1ĥAB , ~2.1!

where ĥAB is viewed as a small perturbation from flat 5D Minkowski space. Here and in w
follows we use careted 5D objects and uncareted 4D ones. Also, upper-case Latin letters ru
0 to 4, Greek letters run from 0 to 3, and the block diagonal form for the 5D Minkowski spa
ĥAB5(ĥab,e) wheree can be spacelike~21! or timelike ~11!. The inverse of the above metri
to O(ĥ) is

ĝAB5ĥAB2ĥAB, ~2.2!

and the Christoffel symbols toO(ĥ) are

ĜBC
A 5 1

2~]BĥA
C1]CĥA

B2]AĥBC!. ~2.3!

Here ]A5]/]xA and the flat-space metric is responsible for raising and lowering ind
(ĥA

C5ĥABĥBC5ĥC
A). We take as our starting point the 15 field equations representing th

vacuum:

R̂AB50. ~2.4!

These toO(ĥ) give

R̂AB5 1
2~]A]CĥC

B1]B]CĥC
A2ĥĥAB2]A]BĥC

C!, ~2.5!

where the trace ofĥAB is defined as

ĥ[ĥA
A5ĥABĥAB ~2.6!

and the 5D box operator is defined as

ĥ[ĥAB]A]B . ~2.7!

In order to reduce the algebraic complexity of the 5D Ricci tensor we now choose
harmonic gauge:

ĜC[ĝABĜAB
C 50. ~2.8!

This to O(ĥ) gives

]AĥAC5 1
2]

Cĥ, ~2.9!

and the 5D Ricci tensor reduces to

R̂AB5 1
2ĥĥAB . ~2.10!

If we now impose~2.4!, we obtain a wave equation for theĥAB , namely

ĥĥAB50. ~2.11!

The trace of this gives
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R̂5 1
2ĥĥ50. ~2.12!

However, it is sometimes more convenient to use the tensor

ĉAB[ĥAB2 1
2ĥABĥ, ~2.13!

and by using~2.10! and ~2.12! we see thatĉAB satisfies the wave equation

ĜAB5 1
2ĥĉAB50. ~2.14!

Now the harmonic gauge~2.8! applied toĉAB becomes

]AĉAB50. ~2.15!

Since this equation is a manifestation of the~noncovariant! harmonic gauge, we cannot de
mand that it be invariant under arbitrary 5D coordinate transformations. Instead what w
demand~as in 4D theory! is that ~2.15! be invariant toO( ĵ) for the transformation

xA→x8A5xA1 ĵA, ~2.16!

whereĵA is an infinitesimal vector. Under this transformationĥAB ,ĉAB and the gauge condition
transform as

ĥAB→ĥAB8 5ĥAB2]BĵA2]AĵB , ~2.17!

ĉAB→ĉAB8 5ĉAB2]BĵA2]AĵB1ĥAB]CĵC, ~2.18!

]AĉAB→]A8 ĉ8AB5]AĉAB2ĥ ĵB. ~2.19!

The invariance of~2.15! under the gauge transformation~2.16! then holds provided the fol-
lowing wave equation forĵB is satisfied:

ĥ ĵB50. ~2.20!

The transformation~2.16! represents the only gauge freedom left in the theory and is importa
deducing the actual degrees of freedom of the metricĥAB . Now ĥAB has fifteen independen
components. But we have used five coordinate degrees of freedom in~2.16! and imposed five
constraints through~2.8!. We therefore conclude thatĥAB has only 15252555 degrees of
freedom left. These correspond to two degrees of freedom for the gravitational field, two de
for the electromagnetic field, and one degree for the scalar field.

We now turn to the field equations and look at their reduction to 4D quantities and inte
their meaning. The field equations for 5D linearized theory are

R̂AB5 1
2ĥĥAB50

or

ĜAB5 1
2ĥĉAB50, ~2.21!

]AĥAB5 1
2]

Bĥ

or
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]AĉAB50, ~2.22!

ĥ ĵA50. ~2.23!

Looking at the~ab!, ~a4!, and~44! components of the right part of~2.21! we obtain

Gab5 1
2hMĉab5 1

2~22ĥ4g]4]gĉab2ĥ44]4
2ĉab!, ~2.24!

1
2hMĉ4a5 1

2~22ĥ4g]4ĉ4a2ĥ44]4
2ĉ4a!, ~2.25!

1
2hMĉ445 1

2~22ĥ4g]4]gĉ442ĥ44]4
2ĉ44!. ~2.26!

The b and fourth components of the constraint equations yield

]aĉab52]4ĉ4b, ~2.27!

]aĉ4a52]4ĉ44. ~2.28!

And the wave equation forĵA gives

hM ĵa522ĥ4b]4]bĵa2ĥ44]4
2ĵa, ~2.29!

hM ĵ4522ĥ4b]b]4ĵ42ĥ44]4
2ĵ4. ~2.30!

In the above, the 5D box operator was expanded as

ĥ[ĥAB]A]B5ĥab]a]b12ĥ4a]4]a1ĥ44]4
2, ~2.31!

and using the 4D Minkowski box operatorhM[ĥab]a]b ~2.31! reduces to

ĥ5hM12ĥ4a]4]a1ĥ44]4
2. ~2.32!

The most important of the sets of equations given above is~2.24! since it describes an induce
energy–momentum tensor from the definitionGab[Tab ~with 8pG5c5\51). Its explicit form
and the wave equation it satisfies are

Tab[ 1
2~22ĥ4g]4]gĉab2ĥ44]4

2ĉab!, ~2.33!

hMĉab52Tab. ~2.34!

These are the equations for 4D linearized gravity,5 but with a source term. It should be noted th
the procedure used above, wherein 5D terms are shifted in a vacuum relation to produce a 4
of equation with a source, is now in common use~see Ref. 1 for a review!. In our case, it would
be necessary to have]4ĝAB50, ĝ4A50 andĝ445const. for a 5D vacuum to go to a 4D vacuum
These conditions will not in general be met by significant solutions of the 5D field equations~2.4!.
So, in general, Kaluza–Klein theory in 5D generates an energy–momentum tensor for E
theory in 4D.

The question of whether the induced energy–momentum tensor is conserved is no
dressed. SinceTab is of O(ĉ) we only need to verify that

]aTab50, ~2.35!
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since the product ofTab and the Christoffel symbols is ofO(ĉ2), which we neglect in our
approximation. Taking the partial derivative of both sides of~2.34! and using~2.27! we obtain

]aTab5 1
2hM]aĉab52 1

2hM]4ĉ4b. ~2.36!

Therefore, for the induced stress–energy to be conserved in our approximation we mus
hM]4ĉ4b50. There are three cases in which this statement will hold, and these are worked
detail in the Appendix. The first case is whenhMĉ4a50 which implies a massless spin-1 fiel
and leaves open the possibility for massive gravitons and scalar particles. The second case
]4ĉ4b50 so that the spin-1 field has nox4 dependence. The spin-1 field in this case is massl
but the graviton and the scalar field may be massive. The third and final case is whenĉ4b50 by
a choice of the coordinate frame. This can be achieved by setting from the outsetĥ4b5ĥ4b50,
and this defines what we will refer to as the natural frame. This condition removes the spin-
~up to a coordinate transformation involving the extra coordinate!, and allows for either massive o
massless gravitons, but constrains the scalar field to be massless.

We now look at a simple example of plane waves in the natural frame. The flat-space
and the perturbation are

ĥAB5S ĥab

0
0
e D , ~2.37!

ĥAB5S ĥab

0

0

ĥ44
D . ~2.38!

We can assume thatĉab has the form of a 4D gravitational wave and a scalar wave:

ĉAB5S ĉab

0

0

ĉ44D , ~2.39!

ĉAB5S Aabei ~kaxa1ax4!

0

0

A44eil axaD . ~2.40!

HereAab is the 4D polarization tensor,A44 is the amplitude of the scalar wave, anda is a constant
with dimensions of inverse length which parametrizes the extra coordinate dependence. Th
equations~2.24!–~2.26! simplify considerably and give

hMĉab52e]4
2ĉab⇒kgkg52ea2, ~2.41!

hMĉ4452e]4
2ĉ44⇒ l gl g50. ~2.42!

We see that~2.42! can be interpreted as a massless scalar field, while~2.41! can be interpreted
as a massive graviton when the parametera is identified as

a56 iAem. ~2.43!

The induced stress–energy is

Tab52
e

2
a2Aabei ~kaxa1ax4!, ~2.44!

and its trace is given by
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Ta
a52

e

2
a2Aa

aei ~kaxa1ax4!. ~2.45!

This will be zero either if the 4D polarization tensor can be put into a trace-free form or i
choosea50 ~or both!. This would imply a radiationlike equation of state induced on the
manifold representing gravitational radiation. The gauge condition~2.27! gives

kbAab50, ~2.46!

so the propagation of the 4D gravitational plane wave is transverse as it is in 4D theory.
So far there exists little difference in the qualitative features of 5D and 4D linearized th

but the difference becomes apparent when the gauge freedom inĵA is used to obtain a transverse
traceless~TT! representation forAab. The wave equations for the components ofĵA which must
be satisfied are

hM ĵa52e]4
2ĵa, ~2.47!

hM ĵ452e]4
2ĵ4. ~2.48!

The choice

ĵa5~ ĵa,ĵ4!5~2 ieaei ~kgxg1ax4!,2 i ee4ei ~ l gxg!! ~2.49!

satisfies these wave equations, since~2.41! and~2.42! hold. In the natural frame, the transform
tions for the polarization components ofĉAB under the gauge transformation are given by
following @see~2.18!#:

A8ab5Aab2kaeb2kbea1habkgeg, ~2.50!

A84a52aeeaei ~kgxg1ax4!2ee4l aeil gxg
, ~2.51!

A8445A441ekaeaei @~k2 l !gxg1ax4#. ~2.52!

We see that off-diagonal amplitudes have been generated and that the scalar amplitude h
been changed. What is interesting about the off-diagonal components is that they are a
superposition of plane waves with different wave vectors, and functions of all five coordin
The choice of settinga5e450 is consistent with all the equations derived above but physic
limiting since is sets the off-diagonal components in the transformed natural frame to zero
therefore removes the electromagnetic effects which are usually associated with these comp
This choice also sets the graviton mass to zero, and hence the 5D theory would give a c
tional TT 4D gravitational wave and a scalar wave with an oscillating amplitude. Another
plification that takes place is if one chooses to remove the periodic behavior from the scala
amplitude with the choiceka5 l a . Sincel a is null, this forceska to be null as well, and hencea
must equal zero, which implies a massless graviton again. In this case, the off-diagonal
survive and give a simple expression:

A84a52ekae4eikgxg
. ~2.53!

This has the form of an electromagnetic plane wave propagating with the same null wave
as the gravitational plane wave.

Let us now consider an example of a plane gravitational wave in the natural frame prop
ing in thez direction. The wave vector is

kg5~v,0,0,k!, ~2.54!
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and obeys the conditions~2.41!, ~2.43! and ~2.46!. These give

v22k25m2,
~2.55!

vA0a5kA3a.

Performing the gauge transformations and using the above we see that the only indep
components of theĉAB are

A8005A002ve02ke3,

A8015A012ve1,

A8025A022ve2,

A8115A112ve01ke3, ~2.56!

A8125A12,

A8225A222ve01ke3,

A8445A442e~ve02ke3!.

Then the choice

e05
1

2v S A001
1

2
A111

1

2
A22D ,

e15A01,
~2.57!

e25A02,

e35
1

2k S A002
1

2
A112

1

2
A22D

will bring the 4D polarization tensor to a transverse-traceless form, but will generate off-dia
terms and an oscillating scalar field amplitude. The choicee45a50 corresponds to setting th
off-diagonal terms to zero, and theĉAB represents a massless TT gravitational wave and a sc
wave. If we choosel a5ka ~which again forces the graviton mass to zero!, the 4D gravitional
wave is again TT, but the off-diagonal components with the choice ofe45eC/k ~whereC!1 is
a constant!, are:

A80452Ceikgxg
,

~2.58!
A8345Ceikgxg

.

These are simple plane waves with constant amplitude.
What we have shown in this section is that 5D gravity can be linearized in the same w

4D gravity, but that the harmonic gauge~2.8! is very restrictive; and since it is noncovarian
conservation of the induced energy–momentum tensor on the 4D subspace holds only
certain restrictions are imposed on the extra off-diagonal components of the perturbation
Also, while the equations allow in principle for massive gravitons, the most natural choic
parameters which removes electromagnetic effects also reduces the graviton mass to zero
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III. WAVES IN CONFORMAL 5D GRAVITY

In this section we investigate the consequences of imposing the 5D harmonic gauge co
for a metric with two conformal factors, one for the 4D part of the metric and another for th
off-diagonal components. We then look at the propagation of electromagnetic waves and
interaction with the scalar field. To end this section we give a solution to the field equations
has physical relevance.

Let us consider the metric

dS25f2agab dxa dxb2f2b~dx41Aa dxa!2, ~3.1!

wherea andb are constants. The demand that this metric satisfy the 5D harmonic gauge con
~2.8! gives two equations:

Ĝg[ĝABĜAB
g 50⇒gabGg

ab1~2a1b!
fg

f
50, ~3.2!

Ĝ4[ĝABĜAB
4 50⇒¹aAa1~2a1b!

faAa

f
50. ~3.3!

Here¹a is the 4D covariant derivative operator associated with the metricgab . In order for the
5D harmonic gauge to induce the 4D harmonic gauge as well as the Lorentz gauge, we are
to choose 2a1b50. With this constraint and changing the conformal factor tof5e2s/b), the
metric takes the form

dS25e22s/)gab dxadxb2e4s/)~dx41Aa dxa!2, ~3.4!

which is the usual metric for Kaluza–Klein gravity in the Einstein frame.9 The field equations are
obtained by calculating the~ab!, ~4a!, and~44! components ofR̂AB50. We obtain

Rab52 1
2e

2)s~FagFb
g2 1

4gabF2!12sasb , ~3.5!

¹b~e2)sFab!50, ~3.6!

hs1
)

8
e2)sF250. ~3.7!

The Einstein tensor can be used to give the induced matter of an electromagnetic field c
to a massless scalar field. Thus

Gab[Tab
EM1Tab

S , ~3.8!

where

Tab
EM52 1

2e
2)s~FagFb

g2 1
4gabF2!, ~3.9!

Tab
S 52~sasb2 1

2gabsgsg!. ~3.10!

The Ricci scalar is simply

R52sgsg . ~3.11!

We now investigate the propagation of electromagnetic waves using the Lorentz gaug~3.3!
with 2a1b50 and Maxwell’s equations~3.6!. We postpone the use of the 4D harmonic gauge
the following equations hold 4D covariantly for the induced matter from the Kaluza–Klein m
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in the Einstein frame. The 4D harmonic gauge will however be imposed when we discuss an
solution at the end of this section. The ansatz for the electromagnetic vector potential is

Aa5aaeivS, ~3.12!

whereaaPIm, SPRe, and this assumption represents a good approximation for largev only.
Substituting this ansatz into both the Lorentz gauge condition and Maxwell’s equations and s
the coefficients ofv2 andv separately to zero, gives, respectively,

¹aAa50⇒kaaa50, ~3.13!

O~v2!: kaka50, ~3.14!

O~v!: ka¹bab2aa¹bkb22kb¹baa522)sb~kaab2kbaa!. ~3.15!

Hereka[]aS is the gradient to surfaces of constant phase, and as such the null condition im
that theka propagate on null geodesics:

kb¹bka50. ~3.16!

The contraction of~3.15! with āa and the orthogonality condition~3.13! allows us to obtain

¹a~a2ka!52)sa~a2ka!, ~3.17!

wherea2[aaāa. If we define a photon currentj a[a2ka, the right-hand side here can be inte
preted as a violation of photon number due to the coupling of the gradient of the scalar field
wave vector. The equation governing the propagation of the unit polarization vector ca
obtained from~3.17! by the substitution off a5aa/a2, and is

kb¹b f a5)sb f a1
1

2 S ¹b f b1
f b¹ba

a D ka. ~3.18!

This again differs from the usual 4D result due to the scalar-field coupling. Since the ph
follow 4D null geodesics, their motion in the 4D part of the 5D space is the same as their m
in 4D space–time. However, the scalar field does modify the conservation equation for p
number, and also introduces a new term to the propagation of the unit polarization vector
things could in principle be tested.

So far we have not used the 4D harmonic gauge in deriving the above equations~3.5!–~3.18!.
We will illustrate the use of this gauge by deriving an exact, gravitational plane wave sol
accompanied by a plane electromagnetic wave and a scalar wave. The choice of an elec
netic plane wave simplifies the induced 4D field equations sinceF250 for plane waves. This
reduces the field equations~3.5!–~3.7! along with the 4D harmonic and Lorentz gauge to

Rab
H 52 1

2e
2)sFagFb

g12sasb , ~3.19!

]aFab1]a~ ln AgFab!522)saFab, ~3.20!

hs5gab]a]bs50, ~3.21!

gabGab
g 50, ~3.22!

¹aAa5gab]aAb50. ~3.23!

HereRab
H is the Ricci tensor in the harmonic gauge. We would like a 4D gravitational wave m

that would simplify these equations even further. The candidate metric should have a deter
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equal to a constant, which would remove the second term on the left-hand side of~3.20!, while
also satisfying the 4D harmonic gauge~3.22!. A simple metric which satisfies these conditions
that of an exact gravitational plane wave with parallel rays~pp-wave! traveling along thez
direction. Such a metric has the form:10

ds25K~u,j,j̄ !du212 du dv2dj dj̄. ~3.24!

Hereu andv are retarded and advanced coordinates, andj5x1 iy andj̄5x2 iy are complex
transverse coordinates. If we choose the electromagnetic vector potential and the scalar fie
independent of the complex transverse coordinates, we have

Aa5~0,0,12A~u!, 1
2A~u!!, s5s~u!. ~3.25!

The vector potential then corresponds to an electric field oscillating in thex direction and a
magnetic field oscillating in they direction, while the wave propagates in thez direction. One can
check that the scalar wave equation~3.21! and Maxwell’s equations~3.20! are satisfied by arbi-
trary functionss(u) andA(u), and that the only surviving component of the Ricci tensor isRuu ,
which gives for~3.19! the equation

]j]j̄K~u,j,j̄ !5 1
4e

2)s@]uA~u!#21@]us~u!#2. ~3.26!

This equation can be integrated immediately to give

K~u,j,j̄ !5~ 1
4e

2)s@]uA~u!#21@]us~u!#2!jj̄1 f ~u!j21 f̄ ~u!j̄2, ~3.27!

where f (u) is an arbitrary complex function which represents the solution to the homogen
equation. Since we are interested in electromagnetic and scalar waves we assume that the
written as

A~u!5ReA0eivu, s~u!5Res0eilu, ~3.28!

whereA0 ands0 are real constants. This gives on taking the real parts only,

K~u,j,j̄ !5~ 1
4e

2)s0 cos~lu!@A0
2v2 sin2~vu!#1s0

2l2 sin2~lu!!jj̄. ~3.29!

This particular solution is simple and realistic, and would probably repay future investiga
However, all of the work we have done in this section presumes the 5D harmonic gauge, in
the graviton and photon are massless. This is acceptable, but leaves open the question of
theory should be interpreted in order to accommodate the many kinds of particles in nature
have finite masses. We turn our attention to this now.

IV. PARTICLE MASSES IN CONFORMAL 5D FIELD THEORY

It is now well known that because Einstein’s equations with matter are a subset o
Kaluza–Klein equations in vacuum, phenomenological fluids in 4D can be generated by a
priate coordinate transformations in 5D.1 The idea behind this, namely that 4D matter is a ma
festation of 5D geometry, can in principle be extended from continuous fluids to particles.6–8 For
example, a connection between the mass of a particle as measured by its Compton wavelen
the dimension of the geometry as measured by its Ricci scalar was put forward as a realiza
Mach’s principle.6 An extension of this approach was to envisage 4D space–time as h
principle curvatures related via de Broglie waves to the 4-momenta of a particle, the mass
being determined by the scalar curvature.7 The latter proposal involved a reinterpretation of t
right-hand side of Einstein’s field equations, and an alternative way of doing this has recently
proposed that introduces the Planck length as a fundamental parameter and derives partic
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gies dependent on wave modes in the extra dimension.8 In this section, we wish to inquire into th
possible relationship between the mass of a particle and a conformal factor in the geomet

Following Sec. III and Ref. 7, let us consider metric~3.1! with a51 andAa50 ~this does not
restrict the 4D metric but removes electromagnetic effects!. Thus the metric we consider has th
form

dS25f2 ds22f2b~dx4!2,
~4.1!

ds25gab dxa dxb.

Using as elsewhere a caret to distinguish 5D quantities from purely 4D quantities as conve
ally defined, the Christoffel symbols of the second kind for~4.1! are

Ĝbg
a 5Gbg

a 1f21~db
afg1dg

afb2gabfa!,

Ĝba
a 5Gba

a 14
fa

f
,

Ĝ44
a 5bf2b23fa,

Ĝ4b
a 5Ĝab

4 5Ĝ44
4 50, ~4.2!

Ĝ4a
4 5b

fa

f
,

ĜaD
D 5Gad

d 1~b14!
fa

f
,

Ĝ4D
D 50.

Here as before,fa[]af andfa[gabfb . The components of the 5D Ricci tensor are

R̂ab5Rab2~b12!f21¹afb2~b11!~b24!)f22fafb2f22@f¹gfg1~b11!fgfg#gab ,

~4.3!

R̂4a50, ~4.4!

R̂445bf2b24@f¹afa1~b11!fafa#. ~4.5!

Clearly, the electromagnetic components of the field equationsR̂AB50 are trivially satisfied, while
the remaining equations read

Rab5~b12!f21¹afb1~b11!~b24!f22fafb , ~4.6!

f¹afa1~b11!fafa50. ~4.7!

These are a set of ten tensor equations and one scalar equation, and are what we will be co
with in what follows.

From ~4.6! using ~4.7! we find that the 4D Ricci scalar is

R526~b11!
fafa

f2 . ~4.8!
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This combined with~4.6! allows us to form the Einstein tensorGab5Rab2 1
2Rgab . Then Ein-

stein’s equationsGab[Tab define the induced energy–momentum tensor:

Tab5~b12!f21¹afb1~b11!~b24!f22fafb13~b11!f22fgfggab . ~4.9!

This obviously contains a term that is second order in the derivatives of the scalar field, an
terms that are first order as in ordinary quantum field theory. We can in principle have matte
depends solely on second derivatives by settingb521, or matter that depends solely on fir
derivatives by settingb522. However, we have not so far imposed the 5D harmonic gauge~3.2!,
and if we do so then it corresponds to settingb522, and we specialize to this case in wh
follows. Thus the 5D line element is given by

dS25f2 ds22f24~dx4!2, ~4.10!

whereds2 is the 4D line element and the metric components are independent of the extra

dinate (]4gab5]4f50). The 5D field equationsR̂AB50 then yield the 4D ones

Rab56
fafb

f2 , ~4.11!

¹afa5
fafa

f
, ~4.12!

with an effective 4D energy–momentum tensor

Tab56f22~fafb2 1
2f

gfggab!. ~4.13!

It is our objective to evaluate this for a particle.
To this end, let us briefly review 4D particle dynamics. The Lagrangian is

L[m
ds

dl
5mAgab

dxa

dl

dxb

dl
, ~4.14!

wherel is a parameter andm is the particle mass, which we assume to be constant. The cova
and contravariant components of the 4-momenta are

pa5
]L

]S dxa

dl D 5mgab

dxb

ds
, ~4.15!

pa5gabpb5m
dxa

ds
, ~4.16!

and obeypapa5m2. The action corresponding to the Lagrangian is

I 5E L dl5E S m
ds

dl Ddl5E m ds5E mS gab

dxa

ds

dxb

ds Dds5E pa dxa, ~4.17!

where we have used~4.14! and~4.15!, respectively. However, in place of the action we can us
wave function

C[e2 i I /\ ~4.18!

involving Planck’s constant. In terms of this, the momenta are given by
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2 i\¹aC5
]

]xa C[paC. ~4.19!

If the pa were constants as in flat space–time, they would be the eigenvalues andC the eigen-
function of the 4D momentum operator. Now thepa are not generally constants in curved spac
time, but we can keep~4.19! as the defining relation for the momenta because the precee
relations~4.14!–~4.18! are covariant. Then following the philosophy of induced-matter theory,
question is how to relate the particle formalism involvingC to the Kaluza–Klein equations~4.7!
involving f.

We answer this by adopting the ansatz

f[Cd, ~4.20!

whered is a dimensionless parameter. Then~4.11!, ~4.12! with ~4.19!, ~4.20! give

Rab52
6d2

\2 papb , ~4.21!

hC1
m2

\2 C50. ~4.22!

The corresponding induced energy–momentum tensor~4.13! is

Tab526
d2

\2 S papb2
m2

2
gabD . ~4.23!

These relations make sense in the context of induced-matter theory and justify the assu
~4.20!. Thus~4.22! is the curved-space–time Klein–Gordon equation. The implication is tha
the harmonic gauge the extra potential of the 5D space is related to the wave function of t
space. That wave function, by~4.1!, represents a conformal modification of space–time. It can
regarded, alternatively, as a particle with massm and momentapa . Then~4.21! says that the de
Broglie wavelengths associated withpa describe by their productpapb the curvature of the 4D
space as represented by the Ricci tensorRab . The corresponding energy–momentum ten
~4.13! is really a dynamical quantity, which by virtue of¹aTab50 can be shown to yield the
standard equations of motionpb¹bpa50. @See Ref. 6: It can be shown by some tedious alge
that the 4D Bianchi identities¹aGab5¹aTab50 with ~4.13! give relations which are the same a
those derived from the 4D part of the 5D geodesic equation.# In other words,~4.13!–~4.20! are the
field equations for what might be called Kaluza–Klein–Gordon field theory.

To go further, we need exact solutions. The most convenient way to show such is to wr
4D part of the metric as

ds25dt22e2l dx22e2m dy22dz2, ~4.24!

where l5l(t,z) and m5m(t,z). This metric can describe a plane wave moving in t
z-direction.10 We expect the associated particle to have momenta which are constants and gi
~4.15! as

p05m
dt

ds
[E, p150, p250, p352m

dz

ds
[2p. ~4.25!

These particle properties are connected to the wave properties by the field equations~4.21! and
~4.22!. The components of~4.21! can be evaluated using~4.25! and read
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R0052~l1m!002~l0
21m0

2!526d2E2/\2,

R0352~l1m!032~l0l31m0m3!56d2Ep/\2,

R3352~l1m!332~l3
21m3

2!526a2p2/\2,

~4.26!

R115e2l@l002l331l0~l1m!02l3~l1m!3#50,

R225e2m@m002m331m0~l1m!02m3~l1m!3#50,

Rab50 otherwise.

It is obvious when written in this way that there is a solution given by

l52m5)a~Et2pz!/\. ~4.27!

This with ~4.17! and ~4.18! gives the action and the wave function, respectively,

I 5E pa dxa5Et2pz, ~4.28!

C5e2 i ~Et2pz!/\. ~4.29!

The latter should satisfy the fifth or Klein–Gordon part of the field equations~4.22! and we find
that it does so. The induced or effective 4D energy–momentum tensor given by~4.23! and~4.25!
has the following nonzero components:

T0
0526d2~E22m2/2!/\2,

T0
352T3

056d2Ep/\2,
~4.30!

T1
15T2

253d2m2/\2,

T3
356d2~p21m2/2!/\2.

These obeyTa
a56d2m2/\2, and we recall from~4.15! and~4.16! thatE, p, andm are related by

papa5E22p25m2. This constraint means that we have a class of exact solutions that depen
two constants,E andp. @The dimensionless constantd which we introduced in~4.20! to connect
the scalar field and the wave function could in principle be absorbed intoE andp, or into \.# We
can sum up the 5D wave solutions by

dS25C2d ds22C24d dx42
, ~4.31!

ds25dt22e2l dx22e22l dy22dz2, ~4.32!

C5e2 i ~Et2pz!/\, l5)d~Et2pz!/\. ~4.33!

We have examined the algebraic properties of this class of solutions usingGRTENSOR,11 and apart
from confirmingR̂AB50, we findR̂ABCDÞ0 so that these solutions are not 4D curved and 5D
like some others in the literature.@See Ref. 1; for~4.31!–~4.33! above we find for example tha
R̂1414522d2(3E21p2)C24dÞ0 and K[R̂ABCDR̂ABCDÞ0.# However, while the solutions
~4.31!–~4.33! are in general curved, they haveA2g51 for the determinant of the 4D metric an
so are algebraically special.
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It is useful to review the argument of this section before discussing some implications
nonelectromagnetic metric~4.1! with R̂AB50 yields field equations~4.6!, ~4.7! with tensor and
scalar parts. Together they give a Ricci scalar~4.8!, and in the induced-matter picture1 an energy–
momentum tensor~4.9!, both of which depend on a free parameterb. This is fixed asb522 by
the harmonic condition~3.2!, or alternatively by the requirement that matter depend on first-o
derivatives of the scalar field. The resulting metric~4.10! has field equations~4.11!, ~4.12! and
energy–momentum tensor~4.13!. Conventional particle dynamics~4.14!–~4.19! can be connected
to classical field theory via the ansatz~4.20!, which effectively says that the wave functio
depends on the scalar field or fifth part of the metric, or equivalently on the conformal facto
modifies the 4D metric. The field equations are then~4.21! and ~4.22!, of which the latter is the
Klein–Gordon equation with an effective particle massm. The induced energy–momentum tens
~4.23! is actually a dynamical quantity, and the Bianchi identities of field theory yield the stan
equations of motion of particle physics. The special solution~4.33! satisfies the field equations o
classical Kaluza–Klein theory, but is written in terms of a wave function associated with qua
theory.

The implications of this are clear and can be summed up succinctly by the relation

m25
k\2

c2 R. ~4.34!

Here we have conventional units for Planck’s constant and the speed of light, andk is a coupling
constant. But the essential thing is that a particle’s rest mass can be related to the scalar cu
of the 4D subspace of a 5D manifold. This idea is not new~see Refs. 6–8!, but the results of this
section are significant in that they demonstrate its viability for a fairly wide class
x4-independent metrics. However, two comments need to be made. First, it is not always po
to write the 4D Ricci tensor as a product of two~momentum! vectors as in~4.21!. More work is
needed on this, presumably using the Segre´ classification of the Ricci tensor. Second, we rec
from differential geometry that the Ricci tensorR̃ in the frame where there is a 4D conform
factor f2a is related to the Ricci tensorR in the frame where there is no conformal factor by

R̃5f22aS R26a
hf

f
16a~12a!

fgfg

f2 D . ~4.35!

This means that if the mass is known in one frame it is different in another frame by an am
that depends on the conformal factor. More work is needed on this in order to see how con
factors relate to the observed hierarchy of particle masses.

V. CONCLUSION

The equations of 4D general relativity are succinct and in the formRab50 are known from
the classical tests to be in agreement with observation. However, the dimensionality of the
tions, as recognized by Einstein and Kaluza, is open. This has led to much work on Kaluza–
theory, supergravity, and superstrings. In the present article, we have gone back to basic
and looked at three overlapping problems in 5D theory with the field equationsR̂AB50.

Waves in 5D can be approached as in 4D, using a linearized metric and the harmonic
condition. However, the last is algebraically restrictive, and physically implies that the pa
analogs of the gravitational and scalar waves are massless. Introducing conformal factors i
metric ~a traditional step in Kaluza–Klein theory! generalizes the field equations, and impos
the harmonic gauge describes massless gravitons and photons. Now there is nothing heino
this, but if 5D theory is to describe the real world then one needs to find a way to codify par
of finite mass. This can apparently be done if, again using a conformal factor, the field equ
are rewritten so that the mass of a particle is defined by the scalar curvature of a 4D
embedded in a 5D space.
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Our results follow because, as in the induced-matter approach to fluids,1 we allow dependency
on the extra coordinate. This algebraic latitude has not hitherto been much applied to eluc
the physical properties of waves and particles; and as noted at several places above, in thi
there are vistas to be explored.
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APPENDIX: CONSERVATION OF THE LINEARIZED INDUCED STRESS–ENERGY
TENSOR

As discussed in Sec. II, conservation of the induced stress–energy tensor in our line
approximation will hold only if

hM]4ĉ4a50. ~A1!

There are three cases in which this is satisfied and they are presented here.
Case 1:hMĉ4a50. The spin-1 field in this case is massless, and implies from the right-h

side of ~2.25! that

22ĥ4g]g]4ĉ4a5ĥ44]4
2ĉ4a. ~A2!

This constraint does not have a direct physical interpretation but follows from the requireme
the stress–energy be conserved. The wave equations~2.24! and~2.26! allow for massive gravitons
(]4ĉabÞ0) or massless gravitons (]4ĉab50), and a massive (]4ĉ44Þ0) or massless (]4ĉ44

50) scalar field.
Case 2: ]4ĉ4a50. This implies that the spin-1 field has nox4 dependence and soĉ4a

5ĉ4a(xS). The gauge constraint equations~2.27! and ~2.28! then reduce to

]aĉab50, ~A3!

]aĉ4a52]4ĉ44, ~A4!

and by operating on~A4! with ]4 and using the commutation of partial derivatives along w
]4ĉ4a50, we see that

]4
2ĉ4450. ~A5!

The wave equations~2.24!–~2.26! then reduce to

hMĉab522ĥ4g]4]gĉab2ĥ44]4
2ĉab, ~A6!

hMĉ4a50, ~A7!

hMĉ44522ĥ4g]4]gĉ44. ~A8!

These are the wave equations for a massive graviton (]4ĉabÞ0) or massless graviton (]4ĉab

50), a massless spin-1 field and massive (]4ĉ44Þ0) or massless (]4ĉ4450) scalar field.
Case 3:ĥ4a5ĥ4a50⇒ĝ4a50. In this case the off-diagonal components of the flat-sp

metric and the perturbation tensor are set to zero from the outset, defining what we refer to
natural frame. This automatically setsĉ4a50 by the definition~2.13!. Therefore the spin-1 field
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is removed from the theory in this frame, but can be reintroduced using a coordinate trans
tion involving the extra coordinate. The gauge constraints~2.27! and ~2.28! reduce to

]aĉab50, ~A9!

]4ĉ4450. ~A10!

These simplify the wave equations~2.24! and~2.26! in the natural frame so@using~A10! in ~2.26!#
they become

hMĉab52ĥ44]4
2ĉab, ~A11!

hMĉ4450. ~A12!

The scalar field in this case is massless, and the gravitons are massive if]4ĉabÞ0 and massless
if ]4ĉab50. Since off-diagonal components are absent in the natural frame, we can us
coordinate transformation~2.16! to generate off-diagonal terms. In the natural frame, the coo
nate transformation for the extra coordinate is

x4→x845x41 ĵ4~xS!, ~A13!

whereĵ4 obeys the wave equation

hM ĵ450. ~A14!

The off-diagonal componentsĉ4a transform@using]4ĵa50 and~2.18!# as

ĉ4a→ĉ4a8 5ĉ4a2]aĵ4 . ~A15!

These equations can be compared to the coordinate transformation which shifts the elect
netic vector potential in regular 5D Klauza–Klein theory

x4→x845x41l~xS!, ~A16!

Aa→Aa85Aa1]al~xS!.

This is the usual gauge freedom in electromagnetism, where the functionl satisfies

hMl50.

This implies that off-diagonal componentsĉ4a can be created in the same way as electromagn
potentialsAa, and hence should resemble electromagnetic terms.
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Classical and quantum mechanics of jointed rigid bodies
with vanishing total angular momentum
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Department of Applied Mathematics and Physics, Kyoto University,
Kyoto 606-8501, Japan
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A gauge theoretical treatment proves to have been successful in the study of sys-
tems of point particles; the center-of-mass system is made into a principal fiber
bundle, on which is defined a natural connection. The gauge theoretical approach
may be generalized to be applicable to a system of rigid bodies. The present article
deals with a system of two identical axially symmetric cylinders jointed together by
a special type of joint. This system is the model made by Kane and Scher and
reformulated later by Montgomery, in order to study the falling cats who can land
on their legs when released upside down. With the no-twist condition, the system
turns out to have the configuration space diffeomorphic with SO~3!, which is made
into a principal O~2! bundle overRP2, the real projective space of dimension two,
and endowed with a natural connection. An optimal control problem for this system
with the vanishing total angular momentum is satisfactorily treated in this bundle
picture. Along with a certain performance index, the Maximum Principle gives rise
to a Hamiltonian system on the cotangent bundleT* (SO(3)) of SO~3!. This
Hamiltonian system is shown to admit a symmetry group O~2!, which is not the
structure group, but comes from the material symmetry of the respective cylinders.
Moreover, quantization of this ‘‘classical’’ system is carried out, giving rise to a
quantum system with the constraints of the vanishing total angular momentum.
Through the symmetry by the structure group O~2!, the reduction procedure is
performed for both the classical and the quantum systems. It then turns out that the
respective reduced systems, classical and quantum, admit the material symmetry
group O~2!, in general. ©1999 American Institute of Physics.
@S0022-2488~99!01905-2#

I. INTRODUCTION

Systems of point particles have been successfully studied in the gauge theoretical mann
center-of-mass system is made into a principal fiber bundle, on which is defined a natura
nection. The bundle picture~or gauge theoretical method! for systems of point particles dates ba
to 1984 when Guichardet1 first defined rotational and vibrational motions precisely and ther
showed that rotations cannot be separated from vibrations by the use of the connection th
the gauge theory. As Guichardet1 pointed out, the nonseparability of rotation and vibration h
been known to cats who can land on their legs when launched in the air, that is, wh
accomplish a rotation after a vibrational motion. The gauge theoretical method has been dev
to study and analyze classical and quantum mechanics of many-particle systems.2–10

Systems of rigid bodies are more suitable than systems of point particles in the underst
of falling cats. In fact, before introduction of the bundle picture for many-particle systems,
and Scher11 considered a system of rigid bodies as a model of the falling cat, and
Montgomery12 gave it a bundle picture. In this article, the gauge theoretical approach is gen
ized to be applicable to systems of rigid bodies. In particular, a system of two identical a
symmetric cylinders jointed along their symmetry axes by a special kind of joint is studied
explicit manner, after Kane and Scher11 and Montgomery.12 Under the no-twist condition, the
present system has the configuration space diffeomorphic with SO~3!, which is made into an O~2!
23810022-2488/99/40(5)/2381/19/$15.00 © 1999 American Institute of Physics
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principal fiber bundle overRP2, the real projective space of dimension two. This fact was fi
observed by Montgomery.12 A natural connection is defined on this bundle, like the natu
connection for systems of point particles. In this bundle picture, a control problem is well fo
lated for the jointed cylinders to move with the vanishing total angular momentum. Along w
performance index which describes the horizontal~or vibrational! kinetic energy, the Maximum
Principle applied to the optimal control problem provides an optimal Hamiltonian system o
cotangent bundleT* (SO(3)) of SO~3!, whose Hamiltonian flows, when projected on SO~3!, bring
about optimal paths for the control problem. The reduction of the optimal Hamiltonian syst
performed through the structure group symmetry to show that, in general, the reduced phas
is not the cotangent bundleT* (RP2) of RP2, but a double cover ofT* (RP2). Further, the
reduced system is shown to admit the ‘‘material’’ symmetry group O~2!.

With the optimal Hamiltonian system is associated a quantum system on SO~3!, which may be
looked upon as a quantum system with the constraint of the vanishing total angular moment
a simplified case, the energy eigenvalues and eigenfunctions can be calculated explicitly. L
‘‘classical’’ system, the quantum system on SO~3! is reduced, through the structure group sy
metry, to a system defined on the vector bundle overRP2 with fiber C2, in general. It will be
shown further that the ‘‘material’’ symmetry group O~2! has unitary representations in ener
eigenspaces.

The organization of this article is as follows: Section II contains the setting up of a syste
two identical axially symmetric cylinders jointed together by a special type of joint. The con
ration space of this system is SO~3!3SO~3!, clearly made into an SO~3! principal fiber bundle
with base space SO~3!, a local section of which is obtained explicitly. In Sec. III, the no-tw
condition is taken into account, with which the motion of the jointed cylinders is restricted to
without twist at the joint. It turns out that the no-twist configuration space is diffeomorphic
SO~3!, which is made into a principal O~2! bundle overRP2. A close look is given at the structur
group O~2! and at its action on SO~3! along with the explicit expression in terms of local coo
dinates. Section IV is concerned with the connection and the curvature defined on the pr
bundle SO(3)→RP2. By using the connection, a control problem is well formulated for
jointed cylinders to move under the condition of the vanishing total angular momentum. In S
a metric is defined on SO~3! in association with the kinetic energy of the jointed cylinders. T
metric is decomposed into the horizontal~or vibrational! and vertical~or rotational! components.
By the use of the horizontal part of the metric, a performance index is defined to be the vibra
energy of the jointed cylinders, and thereby the above-mentioned control problem is set up
optimal control problem. The Maximum Principle can then be applied to give rise to an op
Hamiltonian system on the cotangent bundleT* (SO(3)) of SO~3!, whose Hamiltonian function is
equal to the vibrational energy of the jointed cylinders. In Sec. VI, the reduction of the op
Hamiltonian system is performed through the symmetry by the structure group O~2! action. The
reduced phase space proves to be notT* (RP2) but a double cover of it, in general. Section VII
concerned with the symmetry of the jointed cylinders, which results from the material symm
of the cylinders. It is shown that both the optimal Hamiltonian system and its reduced s
admits O~2! as a symmetry group. Section VIII is devoted to the quantization of the opt
Hamiltonian system obtained in Sec. V. The vibrational energy functional of wave functions
rise to a Hamiltonian operator corresponding to the optimal Hamiltonian function. If the Ha
tonian operator is chosen in a simplified form, its eigenvalues can be obtained quite easily. S
IX contains the reduction and the symmetry of the quantum system set up in Sec. VIII
reduced quantum system is defined on the vector bundle associated with the O~2! bundle SO(3)
→RP2. The energy eigenspaces are obtained, in which the symmetry group O~2! is represented
unitarily.

II. SETTING UP

Let a rigid body be laid in the spaceR3 in such a way that the principal axes of the iner
tensor relative to the center of mass of the rigid body are parallel to the standard basisej , j
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51,2,3, ofR3. Let Xa denote the position vector of a point of the rigid body with respect to
frame of the principal axes placed at the center of mass, wherea is a continuous parameter. The
a generic position vectorxa of points of the rigid body is expressed as

xa5r1gXa , ~2.1!

wherer is the position vector of the center of mass of the rigid body andgPSO(3). Equation
~2.1! implies that one needs a pair (r ,g)PR33SO(3) to specify the position and the attitude
the rigid body.

In what follows, our interest will center on a system of two identical rigid bodies in
center-of-mass system. This means that we assume that the center of mass of the two i
rigid bodies are kept fixed at the origin ofR3. Further, we assume that the rigid bodies are axia
symmetric cylinders jointed together along their symmetry axes by a special type of joint
joint is supposed to be ball-and-socket; that is, the joint will give no constraint on the re
motion of the cylinders other than that they are jointed. We assume that the symmetry axes
respective cylinder are parallel tog1e3 andg2e3 , whereg1 ,g2PSO(3) denote the attitude of eac
body half. Letl be the distance of each body half’s center of mass from the joint. Then the c
of mass of each body half is pointed byr i5l gie32l /2(g1e31g2e3), i 51,2. This means thatr1

andr2 are determined byg1 andg2 . Hence, the configuration of our jointed cylinders is describ
by a pair (g1 ,g2) of rotation matrices. Thus, the configuration space of our system is the pro
spaceQªSO~3!3SO~3!, on which the rotation group SO~3! acts in a natural manner,

~g1 ,g2!°~kg1 ,kg2!, kPSO~3!. ~2.2!

Since SO~3! is compact and acts freely onQ, the factor spaceQ/SO(3) becomes a manifold. Th
natural projection to the factor space is obviously given by

p:~g1 ,g2!°g1
21g2 , ~2.3!

which means that the factor space is diffeomorphic with SO~3!. This factor space is called th
shape space, which consists of shapes of our jointed cylinders.

Let g1
21g2PSO(3) be expressed in terms of the Euler angles such that

g1
21g25e2u1ê3ecê1eu2ê3, 0<u1<2p, 0<c<p, 0<u2<2p, ~2.4!

whereêj , j 51,2,3, are the 333 skew-symmetric matrices defined, in general, to be

â5S 0 2a3 a2

a3 0 2a1

2a2 a1 0
D for a5(

j 51

3

ajejPR3. ~2.5!

Then we are allowed to describe (g1 ,g2) as

g15he2c/2ê1eu1ê3,

g25hec/2ê1eu2ê3,
hPSO~3!. ~2.6!

This expression is capable of natural interpretation; the body half 1~respectively, 2! is first laid in
the spaceR3 in such a way that its symmetry axis is parallel toe3 , and then rotated around thee3

axis byu1 ~respectively, byu2) and further on around thee1 axis by2c/2 ~respectively, byc/2!.
Thusc stands for the angle made by the symmetry axes of respective body halves, andu1 andu2

are the rotation angles of the respective body halves around their symmetry axes. The jointe
bodies laid tentatively along thee2–e3 plane are acted on byhPSO(3) to take a generic attitud
in the spaceR3.
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We have to point out here that ifc50 or p a pair of rotation angles (u1 ,u2) are not
determined uniquely from the shape of the jointed cylinders. In fact, ifc50 ~respectively,c
5p), the shapes of the jointed cylinders designated by the pairs of rotation angles (u1 ,u2) and
(u11c,u21c) @respectively, (u1 ,u2) and (u12c,u21c)# with cPR3 are not distinguished from
each other. This singularity of the Euler angles atc50 or p can be observed from~2.4! as well.

Equation~2.6! also describes the local triviality of our principal SO~3! bundle,Q→SO(3). In
fact, for an open subset U of SO~3! designated by the Euler angles (u1 ,u2 ,c) with cÞ0, p, a
local sections5(s1 ,s2): U→SO~3!3SO~3! is defined to be

s1~u1 ,u2 ,c!5e2c/2ê1eu1ê3,
~2.7!

s2~u1 ,u2 ,c!5ec/2ê1eu2ê3,

and thereby the local trivialityp21~U!>U3SO~3! is realized as (g1 ,g2)5(hs1 ,hs2), as is seen
from ~2.6!.

Another local coordinate system is also possible. If we start with

g1
21g25e2u1ê2e2fê1eu2ê2, 0<u1<2p, 0<2f<p, 0<u2<2p, ~2.8!

in place of~2.4!, we will obtain the following local section in place of~2.7!;

t1~u1 ,u2 ,f!5e2fê1eu1ê2,
~2.9!

t2~u1 ,u2 ,f!5efê1eu2ê2.

This local section allows of an interpretation; at first we assume that the symmetry ax
respective body halves are oriented in such a way that the positive direction is outward fro
joint. With this assumption, the body half 1~respectively, 2! is set in such a way that its symmetr
axis is in parallel with2e2 ~respectively,e2), then rotated arounde2 by u1 ~respectively,u2) and
further on arounde1 by 2f ~respectively,f!. Thus, the jointed body halves are laid tentatively
the e2–e3 plane, which will be rotated, as a whole, by the action of SO~3! to take its generic
position;

~g1 ,g2!5~kt1 ,kt2!, kPSO~3!. ~2.10!

III. NO-TWIST CONFIGURATION SPACE

Our system of jointed cylinders is a model of the cat that somersaults when launched
air. Kane and Scher11 imposed the no-twist condition on the jointed cylinders, which implies t
two of body halves rotate around the respective symmetry axes without twist at the joint. Ac
ing to Montgomery,12 the no-twist condition is characterized as follows: Lete be a rotation such
that e25I . Then an involutioni acting on SO~3!3SO~3! is defined as

i ~g1 ,g2!5~eg2e,eg1e!. ~3.1!

The no-twist configuration space is defined to be the subset of fixed points fori,

Q05$~g1 ,g2!PSO~3!3SO~3!; i ~g1 ,g2!5~g1 ,g2!%. ~3.2!

The fixed-point conditioneg1e5g2 implies thatQ0 is diffeomorphic with SO~3!,

Q05$~g,ege!; gPSO~3!%>SO~3!. ~3.3!

Further, to see thatQ0 is indeed subject to the no-twist condition of Kane and Scher, we ch
to expresse and an arbitrary point (g1 ,g2) of the total space, respectively, as
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e5epê2, H g15ex1ê2ef1ê1eu1ê2,

g25ex2ê2ef2ê1eu2ê2.
~3.4!

Then, the conditioneg2e5g1 implies that

x15x2 , f152f2 , u15u2 , ~3.5!

where use has been made ofepê2etê15e2tê1epê2, tPR. Settingx15x25x, f152f252f,
u15u25u in ~3.4!, one has

g15exê2e2fê1euê2,

g25exê2efê1euê2,
0<x<2p, 0<f<p, 0<u<2p, ~3.6!

which is a specialization of~2.9! and~2.10!. We are then allowed to interpret that the body halv
are rotated by the same angleu around respective symmetry axes without twist at the jo
However, the structure group SO~3! has reduced to a subgroup.

Now we wish to study to what subgroup the structure group reduces. A first glance at~3.6!
will tempt us to be convinced that the structure group SO~3! has reduced to a one-paramet
subgroup SO~2! which consists ofexê2. However, the reduced structure group is not SO~2! but
O~2!.12 To see this, one has to be aware of the fact that iff is increased byp(f°f1p), each
of the body halves is rotated aboute1 to be set in the direction opposite to the previous one, so
the shape of the jointed cylinders is not altered. In fact, one verifies from~3.6! that p(g1 ,g2)
5e2uê2e2fê1euê2 does not change under the transformationu°f1p. This means that the jointed
cylinders do not change in shape. Under the transformationf°f1p, one has the factorexê2epê1

in the expression ofg1 andg2 in ~3.6!. Written out,exê2epê1 is expressed as

exê2epê15S cosx 0 2sinx

0 21 0

2sinx 0 2cosx
D , ~3.7!

which describes an action of O~2! in the e3–e1 plane. Thus the reduced structure group turns
to be O~2!;

O~2!5SO~2!øSO~2!epê1 with SO~2!5$exê2%. ~3.8!

We notice, for confirmation, that this subgroup is indeed closed under multiplication. In fact
can easily verify that

ex1ê2epê1ex2ê2epê15e~x12x2!ê2 ~3.9!

which also implies that O~2! is not Abelian.
Accompanying the reduction of the structure group, the base space will reduc

Q0 /O~2!>SO~3!/O~2!, which is diffeomorphic withS2/Z2>RP2, the real projective space o
dimension two. Restricting the projection given in~2.3! to the subsetQ0 (p0ªpuQ0

), one must
have p0(Q0)>RP2. That is, p0(Q0) must be an embedding ofRP2 in SO~3!, which can be
verified as follows: From~3.6! it follows that

p0~g1 ,g2!5g1
21g25e2uê2e2fê1euê2. ~3.10!

We then set

x35sinf cosu,
x15sinf sinu,
x25cosf,

0<u<2p, 0<f<p/2, ~3.11!
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and form the matrixX5(xixj ), i , j 51,2,3, which represents a point ofRP2. Then we obtain, after
calculation,

diag~1,21,21!~ I 322X!diag~1,1,21!5e2uê2e2fê1euê2, ~3.12!

whereI 3 is the 333 identity matrix. This provides the embedding ofRP2 into SO~3!. From~3.10!
and ~3.12!, it follows thatp0(Q0)>RP2. We note in addition that

e2uê2e2fê1euê25e2f~ ê1 cosu1ê3 sin u!, ~3.13!

which means that~2f,u! serve as ‘‘polar’’ coordinates of the projective planeRP2. Thus we have
the following:

Proposition 1:The configuration spaceQ0 of the jointed cylinders with no-twist condition i
diffeomorphic with SO~3!, which is made into a principal O~2! bundle with base spaceRP2.
Equation~3.6! provides a local coordinate system of this bundle.

In conclusion, we are to describe the structure group action in terms of local coord
~x,f,u!. Letting etê2 andetê2epê1 act to the left onQ0 , one obtains, from~3.6!,

etê2: ~x,f,u!°~x1t,f,u!,
~3.14!

etê2epê1: ~x,f,u!°~2x1t,f1p,u!,

respectively, where use has been made ofepê1exê25e2xê2epê1.

IV. CONNECTION AND CURVATURE

We are interested in making our system move with the condition of the vanishing total an
momentum. To this end, we calculate both the total angular momentum and the total inertia
of our system, and thereby define a connection form.

From ~2.1!, the angular momentum of a rigid body is given by and calculated as

(
a

maxa3dxa5mr3dr1gA0Q, ~4.1!

where(a stands for the sum throughout the body,m5(a ma is the total mass of the rigid body
A0 is the inertia tensor of the rigid body around its center of mass, which is expressed, fro
assumption we have made in the last paragraph of Sec. II, as

A05diag~ I 1 ,I 2 ,I 3!, I 35I 1 ~4.2!

with respect to the standard basisej , j 51,2,3, andQ is the vector of one-forms defined throug

g21dg5Q̂. ~4.3!

The total angular momentum,L, of our system is the sum of the angular momentum of
respective cylinders;

L5(
i 51

2

mr i3dr i1(
i 51

2

giA0Qi , ~4.4!

where the subscriptsi 51,2 indicate that the subscripted quantities (r i , etc.! are concerned with
the respective body halves 1 and 2.
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We are going to calculate the total angular momentumL in terms of the local coordinate
given in ~3.6!. We assume that our system is a center-of-mass system, that is, the center o
of the jointed cylinders is kept fixed at the origin. The position vectors,r1 andr2 , of the center of
mass of the respective body halves are then given by

r152l ~g1e2•e2!e2 , r25l ~g2e2•e2!e2 , ~4.5!

wherel is the distance of the center of mass of the respective body halves from the joint, ang1 ,
g2 are the matrices given in~3.6!. A straightforward calculation then provides

r13dr11r23dr250, ~4.6!

which implies that the first term of the right-hand side of~4.4! vanishes. As for the latter term o
the right-hand side of~4.4!, we obtain, after a straightforward calculation,

(
i 51

2

giA0Qi52~~ I 1 sin2 f1I 2 cos2 f!dx1I 2 cosf du!e2 . ~4.7!

From ~4.4! along with ~4.6!, and~4.7!, it follows that

L52~~ I 1 sin2 f1I 2 cos2 f!dx1I 2 cosfdu!e2 . ~4.8!

We turn to the inertia tensor of the jointed cylinders. From~2.1!, the inertia tensor of a rigid
body as a map ofR3 to R3 is defined to be and calculated as

(
a

maxa3~v3xa!5mr3~v3r !1gA0g21v, ~4.9!

where vPR3, and m and A0 are the same as those in~4.1!. The total inertia tensor,Aq : R3

→R3, qPQ0 , is the sum of those for respective body halves;

Aqv5(
i 51

2

mr i3~v3r i !1(
i 51

2

giA0gi
21v, qPQ0 . ~4.10!

As for the first term on the right-hand side of~4.10!, one obtains, after a calculation, the matr

S ej•(
i 51

2

(r i3(mek3r i)) D
j ,k51,2,3

52ml 2 diag~cos2 f,0,cos2 f!. ~4.11!

Further calculation withg1 andg2 given in ~3.6! provides

(
i 51

2

giA0gi
2152S A1 cos2 x1A3 sin2 x 0 2A1 cosx sinx1A3 cosx sinx

0 A2 0

2A1 cosx sinx1A3 cosx sinx 0 A1 sin2 x1A3 cos2 x
D ,

~4.12!

where

A15I 1 ,

A25I 1 sin2 f1I 2 cos2 f, ~4.13!

A35I 1 cos2 f1I 2 sin2 f.
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Hence the total inertia tensorAq is put in the matrix form as the sum of the right-hand sides
~4.11! and ~4.12!.

In the same manner as in particle systems, the connection form is defined to be

vq5Aq
21̂Lq , qPQ0 , ~4.14!

and turns out, from~4.8!, ~4.11!, and~4.12!, to be expressed as

v5S dx1
I 2 cosf

I 1 sin2 f1I 2 cos2 f
du D ê2 . ~4.15!

We have to notice here that thev satisfies the following equations:

vS ]

]x D5ê2 ,
]

]x
5

d

dt
etê2qU

t50

,

vgq5Adg vq , gPO~2!, qPQ0 . ~4.16!

In what follows, we introduce the parameter

l5I 2 /I 1 . ~4.17!

Then thev takes the form

v5S dx1
l cosfdu

sin2 f1l cos2 f D ê2 . ~4.18!

A vector field X on Q0 is called horizontal~or vibrational! if it satisfiesv(X)50. One can
easily observe, from~4.18!, that the following vector fields are independent horizontal ones:

X15
]

]f
, X25

]

]u
2

l cosf

sin2 f1l cos2 f

]

]x
. ~4.19!

A curve q(t) in Q0 is called horizontal, if its tangent vectorq̇(t) is horizontal at any pointq(t).
Hence, any smooth horizontal curveq(t) is subject to a differential equation

dq

dt
5u1X11u2X2 , ~4.20!

whereu1 ,u2 are functions oft. Sincev(q̇)50 is equivalent toLq(q̇)50, as is observed from
~4.14!, Eq.~4.20! means kinematically that a curveq(t) satisfying~4.20! describes a motion of the
no-twist jointed cylinders with the vanishing total angular momentum.

The curvature of the connectionv is defined, in general, to be

V5dv2v∧v, ~4.21!

where the minus sign on the right-hand side of~4.21! is due to the left action of the structur
group, in our case. We notice here that from~4.16! the V is also subject to the transformation

Vgq5Adg Vq , gPO~2!, qPQ0 . ~4.22!

Applying the formula~4.21! to ~4.18!, we obtain the connection formV on Q0 ,

V52l
11~12l!cos2 f

~sin2 f1l cos2 f!2 sinfdf∧du ê2 . ~4.23!
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A casual glance at~4.23! makes us tend to think ofV as defined on the base spaceRP2, since
~4.23! is independent ofx, the vertical coordinate. However, the curvature formV defined onQ0

does not project to a two form onRP2. This is becauseV is not invariant under the action of th
structure group O~2!. In fact, for g5epê1PO(2), onaccount of~4.22! along with epê1ê2e2pê1

52ê2 , the curvature formV is subject toVgq52Vq .
The curvature form~4.23! seems to vanish iff50, i.e., if the body halves get in line

However, it does not vanish, as we show in the following. The factor two-form sinf df∧du on the
right-hand side of~4.23! does not vanish even iff50, since this form is a kind of an area form
defined in an open subset containing the ‘‘origin’’ of the polar coordinates~2f,u! @see~3.13!# in
the projective planeRP2. In fact, on settingj15sin(f/2)cosu, j25sin(f/2)sinu, one obtains
dj1∧dj25 1

4 sinf df∧du. On the other hand, ifl.2, one has 11(12l)cos2 f.0 in ~4.23!.
However, the conditionl.2 is satisfied for any axially symmetric cylinder. In the same mann
we see thatV does not vanish iff5p. Thus we observe that the curvature form vanish
nowhere onQ0 .

V. AN OPTIMAL HAMILTONIAN SYSTEM

Equation~4.20! defines a control problem, ifu1 andu2 are regarded as control variables, a
if a performance index is given. To define a performance index, we consider the metric oQ0

which is associated with the kinetic energy of the no-twist jointed cylinders.
By using~2.1!, the metric associated with the kinetic energy for a rigid body is given by

calculated as

(
a

ma dxa•dxa5m dr•dr1Q•A0Q, ~5.1!

wherem is the mass of the rigid body andQ is the vector of one-forms defined by~4.3!. The
metric of our system is then defined to be

ds25(
i 51

2

m dr i•dr i1(
i 51

2

Qi•A0Qi . ~5.2!

From ~4.5!, it follows that

(
i 51

2

m dr i•dr i52ml 2 sin2 f df2. ~5.3!

In a similar manner, one obtains

(
i 51

2

Qi•A0Qi52I 1~sin2 f dx21df2!12I 2~cosf dx1du!2. ~5.4!

The sum of the right-hand sides of~5.3! and~5.4! provides the metricds2, as is desired. In view
of the connection form~4.18!, we put the metric in the form

ds252I 1F ~11k sin2 f!df21
l sin2 f

sin2 f1l cos2 f
du2G

12I 1F ~sin2 f1l cos2 f!S dx1
l cosf

sin2 f1l cos2 f
du D 2G , ~5.5!

where

k5ml 2/I 1 . ~5.6!
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The last term of the right-hand side of~5.5! is the vertical~or rotational! component which
vanishes forX1 ,X2 given in ~4.19!, and the first term is the horizontal~or vibrational! component
which vanishes for the vertical vector field]/]x, the infinitesimal generator of the structure gro
action. Sinceds2 is O~2! invariant, as is observed from the transformation~3.14! applied to~5.5!,
the metricds2 projects to the base spaceQ0 /O(2)>RP2, defining a metric

ds0
2
ª2I 1F ~11k sin2 f!df21

l sin2 f

sin2 f1l cos2 f
du2G . ~5.7!

To be strict,ds0
2 is defined through

ds0
2~]/]f,]/]u!ªds2~X1 ,X2!, etc., ~5.8!

whereX1 ,X2 are the horizontal vector fields given in~4.19!, which project to]/]f, ]/]u, respec-
tively; p0* X15]/]f, p0* X25]/]u.

We proceed to the cotangent bundleT* (Q0)>T* (SO(3)) which is endowed with the stan
dard one-form expressed as

Q5pxdx1pfdf1pudu, ~5.9!

where (px ,pf ,pu) are related to tangent vectors (ẋ,ḟ,u̇) throughds2;

px dx1pf df1pu du5ds2S ẋ
]

]x
1ḟ

]

]f
1 u̇

]

]u
,• D . ~5.10!

Let us denote the horizontal metric tensor by

hi jªds2~Xi ,Xj !, i , j 51,2, ~5.11!

which are actually given in~5.7!, because of~5.8!.
Now we are going to consider the control problem~4.20!, wishing to determine controlsu1 ,u2

in such a way that the performance index

1

2 E0

T

(
i , j 51

2

hi j ~q~ t !!ui~ t !uj~ t !dt ~5.12!

is minimized among all controls which steer the stateq(t)PQ0 from an initial stateq0 to a final
stateq1 in time T. To apply the Maximum Principle to this problem, we define the conjug
variables by

P1ªQ~X1!5pf , P2ªQ~X2!5pu2
l cosf

sin2 f1l cos2 f
px , ~5.13!

whereX1 ,X2 are given by~4.19!. Then the Maximum Principle tells us that optimal controls f
normal extremals are determined so that the function

H5(
i 51

2

ui Pi2
1

2 (
i , j 51

2

hi j uiuj ~5.14!

may take its maximum value inui . Thus one obtains the optimal controlui5( j 51
2 hi j Pj with

(hi j )5(hi j )
21, and thereby the optimal Hamiltonian
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H5
1

2 (
i , j 51

2

hi j Pi Pj5
1

4I 1
S 1

11k sin2 f
pf

2 1
sin2 f1l cos2 f

l sin2 f S pu2
l cosf

sin2 f1l cos2 f
pxD 2D .

~5.15!

Thus we have the following:
Proposition 2: The optimal control problem described by~4.20! together with the perfor-

mance index~5.12! gives rise to the Hamiltonian system (T* (Q0),dQ,H), where dQ is the
differential of ~5.9! andH is the Hamiltonian given by~5.15!.

According to Montgomery,11 abnormal extremals forH do not occur when the curvature doe
not vanish, so that our optimal control problem can be solved through the normal extremals
Hence, optimal paths are obtained by projecting trajectories for the optimal Hamiltonian s
(T* (Q0),dQ,H) to the base spaceQ0 .

We note in addition that the Hamiltonian~5.15! is just equal to the horizontal~or vibrational!
part of the total kinetic energyT that can be obtained in the usual manner as follows:

T5
1

4I 1
S 1

11k sin2 f
pf

2 1
sin2 f1l cos2 f

l sin2 f S pu2
l cosf

sin2 f1l cos2 f
pxD 2D

1
1

4I 1

1

~sin2 f1l cos2 f!
px

2. ~5.16!

In fact, the Lagrangian defined through~5.5! is Legendre transformed into~5.16! by using~5.10!.
Note that the last term of the right-hand side of~5.16! stands for the rotational energy associat
with the total angular momentum. Thus we understand that the optimal Hamiltonian s
describes the motion with the vanishing total angular momentum.

In conclusion, we should mention that the choice of the performance index is not uniqu
course, rather it is in our hands. Hence, we may choose a simpler one. If we setk50, i.e., l

50, then the metric~5.5! becomes the metric known as that for a symmetrical top. Further,l
51 in addition, the metric~5.12! takes the form

dscan
2 52I 1~dx21df21du212 cosf dx du!, ~5.17!

which is known, within a constant multiple, as the canonical metric on SO~3! expressed in the
Euler angles. If we start withdscan

2 , the optimal Hamiltonian takes a simpler form,

H85
1

4I 1
S pf

2 1
1

sin2 f
~pu2cosfpx!2D . ~5.18!

VI. REDUCTION

The equations of motion of the optimal Hamiltonian system (T* (Q0),dQ,H) are obtained, as
usual, through the Hamiltonian vector fieldXH determined byi(XH)dQ52dH; dp/dt5XH , p
PT* (Q0). One of the equations is expressed asdpx /dt52]H/]x50, so thatpx5m5const.
This constant of motion must be a consequence of the O~2! symmetry of our system. Howeve
since O~2! is neither connected nor Abelian, we must be careful in treating the O~2! symmetry.
First, the O~2! action onQ0 is lifted to that onT* (Q0) so that the lifted action may preserve th
standard one-formQ. According to~3.14!, the O~2! action onQ0 gives rise to the transformatio
(dx,df,du)°(2dx,df,du) for ete2̂epe1̂, so that one has (px ,pf ,pu)°(2px ,pf ,pu) from the
invariance ofQ. Thus the lifted action is expressed, in terms of local coordinates ofT* (Q0), as
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etê2: H ~x,f,u!°~x1t,f,u!,
~px ,pf ,pu!°~px ,pf ,pu!,

~6.1!

etê2epê1: H ~x,f,u!°~2x1t,f1p,u!,
~px ,pf ,pu!°~2px ,pf ,pu!.

The momentum mapJ associated with the O~2! symmetry, which takes its value in the Lie algeb
of O~2!, proves to be adjoint-equivariant on account of~6.1! and ofepê1ê2e2pê152ê2 ;

JªQ~]/]x!ê25pxê2 ,
~6.2!

J~gp!5Adg J~p!, gPO~2!, pPT* ~Q0!.

We should note here thatJ is not O~2!-invariant. However, the Hamiltonian~5.15! is O~2!-
invariant, i.e., invariant under~6.1!.

The submanifold determined byJ21(m) with mÞ0 is not invariant under the action of O~2!
but invariant under that of SO~2!. Thus the reduced phase space should be

PmªJ21~m!/SO~2!5J21~m!3O~2!~O~2!/SO~2!!5J21~m!3O~2!Z2 , ~6.3!

so thatPm is a fiber bundle with base spaceT* (RP2) and fiberZ2 , that is, a double cover o
T* (RP2). The reduced symplectic formdQm and the reduced HamiltonianHm are apparently
expressed in terms of local coordinates as

dQm5dpf∧df1dpu∧du, ~6.4!

Hm5
1

4I 1
S 1

11k sin2 f
pf

2 1
sin2 f1l cos2 f

l sin2 f S pu2
l cosf

sin2 f1l cos2 f
m D 2D , ~6.5!

respectively. It is to be noted here thatHm is a function not onT* (RP2) but onPm . In fact, it is
not a single-valued function onT* (RP2), that is, it is not invariant when (f,u,pf ,pu) is replaced
by (f1p,u,pf ,pu). If m50, the phase spacePm becomesT* (RP2). In this case,H0 is a
function onT* (RP2), of course.

Theorem 3: The optimal Hamiltonian system (T* (Q0),dQ,H) is reduced to a Hamiltonian
system (Pm ,dQm ,Hm), wherePm with mÞ0 is a double cover ofT* (RP2), anddQm andHm

are given, respectively, by~6.4! and ~6.5!. If m50, thePm becomesT* (RP2).
In conclusion, we have to point out that the mechanical system (T* (Q0),dQ,T) has also the

constant of motionpx5m5const, and reduces to (Pm ,dQm ,Tm), whereTm is defined from~5.16!
along withpx5m. If m50, thenT05H0 , so that the two reduced systems coincide. This imp
that if px50 the mechanical and the controlled system have the same trajectories.

VII. SYMMETRY

We wish to discuss the symmetry of the jointed cylinders. Since each of the body halves
axially symmetric cylinder, the system of jointed cylinders has to admit symmetry arising from
axial symmetry of the body halves.

We have assumed in Sec. II that the reference attitude of the respective body halves a
that their principal axes are set in parallel to the standard basisej , j 51,2,3, ofR3. However, the
choice of the reference attitude of the body halves is not unique. We can choose to set th
halves in such a way that the principal axes are parallel tohej , hPSO(3).Then the inertia tenso
of each body half becomes expressed ash21A0h, whereA0 is the diagonal inertia tensor given i
~4.2!. For the rigid body in this attitude, the position vector of a generic point from its cente
mass is described asghXa in place ofgXa . This implies that SO~3! acts on the configuration
spaceQ0 to the right,
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~g1 ,g2!°~g1h,g2h!, hPSO~3!. ~7.1!

In what follows, we are to ask how the system of jointed cylinders is transformed unde
right action of SO~3!. We first observe that under the right action, the vector,Q, of one-forms
defined by~4.3! receives the transformation

~gh!21d~gh!5h21Q̂h5h21̂Q. ~7.2!

In view of this and the transformationA0→h21A0h, we conceive that the subgroup

G05$hPSO~3!; A05h21A0h% ~7.3!

will provide a symmetry group of the jointed cylinders. It turns out from~4.2! and ~7.3! that

G0>HO~2!

SO~3!

for lÞ1
for l51, ~7.4!

where O~2! is a subgroup of SO~3! expressed as

H S a 0 b

0 1 0

c 0 d
D , S a8 0 b8

0 21 0

c8 0 d8
D ;

k5S a b

c dD , n5S a8 b8

c8 d8
D PO~2!,

detk51, detn521
J . ~7.5!

On the other hand, under the right action ofh, the position vector of the center of mass of the bo
half 1 is subject to the transformation

r152l ~g1e2•e2!e2°r1852l ~g1he2•he2!he2 . ~7.6!

Sincehe256e2 for hPG0>O(2) with lÞ1, one hasr1856r1 . However, forhPG0>SO(3)
with l51, one hasr18Þ6r1 in general. For the body half 2, similar equations hold.

Thus, from the definitions~4.4!, ~4.10!, ~4.14!, and~5.2!, one has the following.
Proposition 4:Both the connection formv and the metricds2 on the no-twist configuration

spaceQ0 are invariant under the right action ofG0>O(2). Themetric ds0
2 on the shape spac

Q0 /O(2)>RP2 is invariant underG0 as well, since the structure group O~2! and the symmetry
groupG0 commute. In the case ofl51 andk50 @see~4.17! and~5.6!#, bothv andds2 become
invariant under the symmetry groupG0>SO(3).

Now it is clear that the optimal Hamiltonian system (T* (Q0),dQ,H) referred to in Proposi-
tion 5 will be also invariant under theG0>O(2) action, where one should note that the action
Q0 is naturally lifted to a symplectic action on the cotangent bundleT* (Q0). To show this in an
explicit manner, we describe the right action of O~2! in local coordinates. We notice first that th
groupG0>O(2) given in~7.5! is put in the form

O~2!5SO~2!øepê1SO~2!, SO~2!5$etê2%. ~7.7!

Letting etê2 andepê1etê2 act to the right onQ0 with the local expression~3.6!, one obtains

etê2: ~x,f,u!°~x,f,u1t !,
~7.8!

epê1etê2: ~x,f,u!°~x,f1p,2u1t !,

on account ofetê2epê15epê1e2tê2. The lifted symplectic action is then expressed as
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etê2: H ~x,f,u!°~x,f,u1t !,
~px ,pf ,pu!°~px ,pf ,pu!,

~7.9!

epê1etê2: H ~x,f,u!°~x,f1p,2u1t !,
~px ,pf ,pu!°~px ,pf ,2pu!.

The following Proposition is now easy to prove.
Proposition 5: The Hamiltonian system (T* (Q0),dQ,H) admits a symmetry groupG0

>O(2) which acts on the phase space to the right. Ifl51 andk50 @see~4.17! and ~5.6!#, the
symmetry groupG0 becomes SO~3!.

Since the symmetry group and the structure group commute, the reduced system adm
same symmetry groupG0 as well.

Theorem 6: The reduced system (Pm ,dQm ,Hm) admits the symmetry group O~2! as well. If
l51 andk50, the symmetry group becomes SO~3!.

VIII. QUANTIZATION

We have obtained in Sec. V the Hamiltonian system arising from the optimal control prob
We now wish to quantize this system, regarding the jointed cylinders as a model of a mole

For convenience’ sake, we choose to treat the optimal Hamiltonian given by~5.18! along with
I 151/2. The canonical metricdscan

2 is now expressed as

dscan
2 5df21sin2 f du21~dx1cosf du!2. ~8.1!

Then the volume element is defined to be

df∧sinf du∧~dx1cosf du!5sinf df∧du∧dx, ~8.2!

and the horizontal metric tensor and horizontal vector fields become, respectively,

~hi j !5diag~1, sin2 f!, ~hi j !5~hi j !
21, ~8.3!

X15
]

]f
, X25

]

]u
2cosf

]

]x
. ~8.4!

By the use of these quantities, the horizontal~or vibrational! energy functional for wave
functionsf on Q0 is expressed as

1

2 EQ0
(

i , j 51

2

hi j Xi f Xj fAuhudq, ~8.5!

where the overbar denotes the complex conjugate, and

Auhudq5sinf df∧du∧dx, uhu5det~hi j !5sin2 f. ~8.6!

Assuming thatf is a function of compact support in the local coordinate system, we carry ou
integration of~8.5! by part to obtain

2
1

2 EQ0

f̄
1

Auhu
(

i , j 51

2

Xi~hi jAuhuXj f !Auhudq, ~8.7!

which provides the Hamiltonian operatorĤ8 in the form
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Ĥ852
1

2

1

Auhu
(

i , j 51

2

Xi~hi jAuhuXj !52
1

2 S 1

sinf

]

]f S sinf
]

]f D1
1

sin2 f S ]

]u
2cosf

]

]x D 2D .

~8.8!

This operator is manifestly O~2! invariant, as is observed by using~3.14!.
On the other hand, we denote byD3 the Laplacian onQ0>SO(3) with respect to the canon

cal metric given in~8.1!. By definition,D3 is expressed as

D352
1

Auhu
(

k,l 51

3
]

]qk
S gkl Auhu

]

]ql
D , ~qk!5~f,u,x!, ~8.9!

where (gkl )5(gkl )21 with dscan
2 5(k,l 51

3 gkl dqk dql , and we have used the fact th
det(gkl )5det(hij). TheD3 can also be obtained from the total energy functional which is bro
up into the sum of the horizontal~or vibrational! and the vertical~or rotational! energy functionals;

1

2 EQ0
(

k,l 51

3

gkl
] f

]qk

] f

]ql

Auhudq5
1

2 EQ0
S (

i , j 51

2

hi j Xi f Xj f 1
] f

]x

] f

]x DAuhudq. ~8.10!

The integration of~8.10! by part yields

1

2
D35Ĥ82

1

2

]2

]x2 . ~8.11!

This means thatĤ8 is the horizontal part of the total energy operator1
2D3 . This fact is the same

as thatH8 is the horizontal part of the total energyT8, whereT8 is T with k50, l51, andI 1

51/2. Thus, the operatorĤ8 should be regarded as a quantization of the classical HamiltonianH8

given by~5.18! with I 151/2. In other words, theĤ8 is a quantization of the classical Hamiltonia
satisfying the nonholonomic constraint of the vanishing total angular momentum.

Using the relation~8.11!, we can find the eigenvalues ofĤ8. As for D3 , its eigenvalues and
the associated eigenfunctions are known,13 respectively, to be given by

J~J11!, J50,1,2,..., ~8.12!

YJKM~f,u,x!5FJKM~f!eiKueiM x, uKu<J,uM u<J, ~8.13!

whereFJKM(f) is defined, by the use of the Jacobi polynomialPg
(a,b)(x), to be

FJKM~f!5S sin
f

2 D aS cos
f

2 D b

Pg
~a,b!~cosf!,

~8.14!
a5uK2M u, b5uK1M u, g5J2 1

2uK2M u2 1
2uK1M u.

Applying Ĥ8 to YJKM results in

Ĥ8YJKM5 1
2~J~J11!2M2!YJKM , J50,1,2,..., uM u<J, ~8.15!

which provides the eigenvalues ofĤ8.
Theorem 7: The classical Hamiltonian system having the Hamiltonian functionH8 given by

~5.18! with I 151/2 is quantized to be a quantum system having the Hamiltonian operatoĤ8
given in ~8.8!, whose eigenvalues and associated eigenfunctions are given in~8.15! and ~8.13!,
respectively.
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It is possible to define the Hamiltonian operator corresponding to the optimal Hamilto
~5.15!. To do this, we put theds2, given in ~5.5!, in the form

ds252I 1 (
a,b51

3

gabnanb , ~8.16!

wherena are one-forms defined to be

n15df,

n25du, ~8.17!

n35dx1
l cosf

sin2 f1l cos2 f
du.

Let (gab)5(gab)21, and letXa be the dual vector fields to~8.17!, na(Xb)5dab , whereX1 and
X2 are equal to those given in~4.19! andX35]/]x. The volume element is then defined, fro
~8.16!, to be

Augudq5AlA11k sin2 f sinfdf∧du∧dx. ~8.18!

With this set up, the kinetic energy functional is put in the form

1

4I 1
E

Q0
(

ab51

3

gabXa f Xb fAugudq5
1

4I 1
E

Q0
F (

i , j 51

2

hi j Xi f Xj f 1g33X3f X3f GAugudq,

~8.19!
~hi j !5~gi j !, i , j 51,2.

Thus one defines the Hamiltonian operatorĤ corresponding to the optimal Hamiltonian~5.15! to
be

Ĥ52
1

4I 1

1

Augu
(

i , j 51

2

Xi~hi jAuguXj !

52
1

4I 1
F 1

A11k sin2 f sinf

]

]f S sinf

A11k sin2 f

]

]f D
1

sin2 f1l cos2 f

l sin2 f S ]

]u
2

l cosf

sin2 f1l cos2 f

]

]x D 2G , ~8.20!

which is the horizontal~or vibrational! part of the full energy operatorT̂,

T̂52
1

4I 1

1

Augu
(

a,b51

3

Xa~gabAuguXb!

52
1

4I 1
F 1

A11k sin2 f sinf

]

]f S sinf

A11k sin2 f

]

]f D
1S cos2 f

sin2 f
1

1

l D ]2

]u22
2 cosf

sin2 f

]2

]x]u
1

1

sin2 f

]2

]x2G
5Ĥ2

1

4I 1~sin2 f1l cos2 f!

]2

]x2 . ~8.21!
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If k50, theT̂ becomes the operator known as the Hamiltonian operator for a symmetrical13

the eigenfunctions and eigenvalues of which are known13 to be given byYJKM and

E5
1

4I 1
S J~J11!1K2S 1

l
21D D , ~8.22!

respectively. IfkÞ0, the eigenvalue problem becomes quite difficult to solve.

IX. REDUCTION AND SYMMETRY OF THE QUANTUM SYSTEM

We wish to reduce the quantum system onQ0>SO(3) with the HamiltonianĤ8 to a quantum
system onQ0 /O(2)>RP2. To do this, we have to set up vector bundles associated with
principal O~2! bundle,Q0→Q0 /O(2). Letr be a unitary irreducible representation of the stru
ture group O~2! in a complex vector spaceV. For example, in the vector spaceC2, one has a
unitary irreducible representationrM such that

rM~etê2!u15eiMtu1 , rM~etê2epê1!u15e2 iMtu2 ,

rM~etê2!u25e2 iMtu2 , rM~etê2epê1!u25eiMtu1 , ~9.1!

whereui , i 51,2, are the standard basis ofC2 andM is an integer. It is an easy matter to obser
that rM is indeed a homomorphism. For example, one has

rM~et1ê2epê1et2ê2epê1!5rM~et1ê2epê1!rM~et2ê2epê1!. ~9.2!

We are to give the definition of the vector bundle associated with a representationr. First we
define a left action of O~2! on Q03V by

~q,v !°~gq,r~g!v !, ~q,v !PQ03V, gPO~2!. ~9.3!

This action gives an equivalence relation inQ03V, and then yields the quotient manifold, d
noted byVrªQ03rV, which is made into a complex vector bundle with base spaceQ0 /O(2) and
fiber V.

A V-valued functionF on Q0 is called equivariant with respect tor ~or r-equivariant!, if it
satisfies

F~gq!5r~g!F~q!, gPO~2!, qPQ0 . ~9.4!

A maps:BªQ0 /O(2)→Vr is called a cross section inVr , if p+s5 idB , where idB is the identity
map ofB. Ther-equivariant functions are in one-to-one correspondence with the cross secti
Vr . In fact, one has the correspondences(p(q))5@(q,F(q))#, where@•# denotes an equivalenc
class inQ03V. We denote byqr

# the correspondence;qr
#s5F.

We proceed to the linear connection associated with the connectionv defined on the principa
O~2! bundle Q0→B. Let j be a vector field on the base spaceB and j* its horizontal lift;
v(j* )50, p* jq* 5jp(q) , qPQ0 . Then, for a cross sections in Vr , its covariant derivative with
respect toj is defined to be

¹js5qr
#21

j* ~qr
#s!. ~9.5!

In the same manner, the reduced Hamiltonian operatorĤr8 is defined through

Ĥr8s5qr
#21

Ĥ8~qr
#s!. ~9.6!
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This is becauseĤ8 is O~2! invariant, so thatĤ8(qr
#s) is r-equivariant. It then follows that ifF is

a r-equivariant eigenfunction ofĤ8 with an eigenvalueE thens5qr
#21

F becomes an eigen-cros
section ofĤr8 with the same eigenvalueE.

We are going to work with the representationrM given in ~9.1!. For therM , we choose to
denote the vector bundleVr and the correspondenceqr

# by VM and byqM
# , respectively. Applying

~9.6! to ~8.8!, one has the reduced Hamiltonian operatorĤM8 5qM
#21

Ĥ8qM
# expressed as

ĤM8 52
1

2

1

Auhu
(

i , j 51

2

¹ i~hi jAuhu¹ j !, ~9.7!

where¹1 , ¹2 are the covariant differential operators with respect to]/]f and]/]u, respectively.
We now turn to the eigenfunctionsYJKM for Ĥ8, in order to obtain eigenvalues and eige

cross sections ofĤM8 . The first task for us to do is to findrM-equivariantC2-valued functions in
terms ofYJKM(q), qPQ0 . A calculation along with~3.14!, ~8.13!, and~8.14! provides

YJKM~etê2epê1q!5~21!b1geiMtYJK,2M~q!,
~9.8!

YJK,2M~etê2epê1q!5~21!a1ge2 iMtYJKM~q!,

where we have used the following formula for the Jacobi polynomials;

Pg
~a,b!~2x!5~21!gPg

~b,a!~x!. ~9.9!

It turns out from~9.8! that, for MÞ0, theC2-valued function

FJKM5YJKMu11YJK,2Mu2 ~9.10!

becomesrM-equivariant if bothb1g anda1g are even numbers. Incidentally, this condition
satisfied, if all ofJ, M, K are either even or odd. Hence theFJKM proves to be arM-equivariant

function if all of J, M, K are either even or odd. We denote bygJKM5qM
#21

FJKM the associated
cross section in the complex vector bundleVM . If M50, one has

YJK0~f,u,x!5
J!

~J1uKu!!
PJ

uKu~cosf!eiKu, ~9.11!

which seem to be spherical harmonics onS2. However, under the antipodal map (f,u)→(f
1p,u1p), YJK0 transforms to (21)J1KYJK0 . In our case, sinceJ and K are even or odd
simultaneously,YJK0 has the same value on a pair of antipodal points ofS2. ThusYJK0 becomes
a function onRP2>Q0 /O(2).

Theorem 8: The quantum system onQ0>SO(3) with the Hamiltonian operatorĤ8 is re-
duced to a quantum system onQ0 /O(2)>RP2, which consists of the complex vector bundleVM

(MÞ0) with base spaceRP2 and fiberC2, and the Hamiltonian operatorĤM8 acting on the space
of cross sections inVM . The local expressions ofĤM8 are of the form~9.7!. The eigenvalues and
the associated eigen-cross sections forĤM8 are given by1

2(J(J11)2M2), J5uM u,uM u12,uM u
14,..., andgJKM , K52J,2J12,...,J22,J, respectively, wheregJKM are the cross section
corresponding toFJKM given in ~9.10!. If M50, the complex vector bundleVM is replaced by a
trivial complex line bundle overRP2, and the eigen-cross sections become the eigenfunction
RP2.

Now it is an easy matter to find the symmetry of the quantum reduced system. Lik
classical reduced system, the quantum reduced system is expected to admit the symmetr
O~2! which acts on eigenspaces ofĤM8 . We wish to find how O~2! is represented in the eigens
pace. In a similar manner to~9.8!, a calculation along with~7.8! provides
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YJKM~qepê1etê2!5eiKtYJ,2KM~q!,
~9.12!

YJ,2KM~qepê1etê2!5e2 iKtYJKM~q!,

where we have used the assumption that all ofJ, K, M are either even or odd. Thus one finds th
the rM-equivariant functionsFJKM given in ~9.10! are subject to the transformation

FJKM~qepê1etê2!5eiKtFJ,2KM~q!,
~9.13!

FJ,2KM~qepê1etê2!5e2 iKtFJKM~q!.

This equation implies that the symmetry group O~2! is unitarily irreducibly represented in th
two-dimensional subspace spanned by eigen-cross sectionsgJKM and gJ,2KM in the energy
eigenspace, ifKÞ0. If K50, the symmetry group O~2! is trivially represented in the one
dimensional subspace spanned bygJ0M .

Theorem 9: If MÞ0, the reduced quantum system (VM ,ĤM8 ) admits the symmetry group
O~2!, which is unitarily represented in the energy eigenspace associated with the eige
1
2(J(J11)2M2). If both J and M are odd, the eigenspace is completely reducible to the d
sum of two-dimensional irreducible subspaces spanned bygJKM andgJ,2KM with J, M fixed and
K52J,2J12,...,J. If both J and M are even, the one-dimensional subspace spanned bygJ0M

occurs in addition to the two-dimensional subspace spanned bygJKM andgJ,2KM . If M50, the
symmetry group becomes SO~3!, which acts on the energy eigenspace spanned bygJK0 with J a
non-negative even number andK52J,2J12,...,J.

In conclusion, we have to mention that the quantum system onQ0>SO(3) with the Hamil-
tonian operator12D3 @see~8.9!# is reduced to a quantum system onRP2, which consists of the
vector bundleVM(MÞ0) and the Hamiltonian operatorT̂MªĤM8 1M2/2. If M50, one hasT̂0

5Ĥ0 , and the eigenfunction are the same for both ofT̂0 andĤ0 . This implies that ifM50, the
free and the controlled quantum systems have the same states.
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Algebraic structure of discrete zero curvature equations
and master symmetries of discrete evolution equations
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An algebraic structure related to discrete zero curvature equations is established. It
is used to give an approach for generating master symmetries of the first degree for
systems of discrete evolution equations and an answer to why there exist such
master symmetries. The key of the theory is to generate nonisospectral flows (l t

5l l , l>0) from the discrete spectral problem associated with a given system of
discrete evolution equations. Three examples are given. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01305-5#

I. INTRODUCTION

The theory of integrable systems has various aspects, although the term ‘‘integrab
somewhat ambiguous, especially for systems of partial differential equations. Symmetries a
of those important aspects and have a deep mathematical and physical background. Wh
special character, for example the Lax pair, has not been found for a given system of cont
or discrete equations, among the most efficient ways is to consider its symmetries in or
obtain exact solutions. It is through symmetries that Russian scientistset al. developed some
theories for testing the integrability of systems of evolution equations, both continuous an
crete, and classified many types of systems of nonlinear equations that possess higher diff
or differential-difference degree symmetries~for example, see Refs. 1 and 2!. Usually an inte-
grable system of equations is referred to as a system possessing infinitely many symme3,4

Moreover, these symmetries form nice and interesting algebraic structures.3,4

For a given system of evolution equationsut5K(u), both continuous and discrete, a vect
field s(u) is called its symmetry ifs(u) satisfies its linearized system,

ds~u!

dt
5K8@s#, i.e.,

]s

]t
5@K,s#ªK8@s#2s8@K#, ~1!

where the prime means the Gateaux derivative. Starting from a Lie-point symmetry, we can
construct the corresponding explicit group-invariant solutions. A symmetrys may, of course,
depend explicitly on the evolution variablet. If a symmetrys of the systemut5K(u) not
depending explicitly ont is a polynomial int, i.e.,

s~ t,u!5(
i 50

n
t i

i !
r i~u!, n>1, ~2!

then we have

a!Electronic mail: mawx@cityu.edu.hk
b!Electronic mail: benno@uni-paderborn.de
24000022-2488/99/40(5)/2400/19/$15.00 © 1999 American Institute of Physics
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r i5@K,r i 21#, 1< i<n, ~3!

and

~adK!n11r050, where ~adK)r05@K,r0#. ~4!

Therefore the symmetry~2! is totally determined by a vector fieldr0 satisfying~4!. This kind of
vector fieldr0 has been discussed in considerable detail and is called a master symmetry of
n of ut5K(u) by one of the authors~BF! in Ref. 5.

The appearance of first degree master symmetries gives a common character for int
systems of continuous evolution equations, both in 111 dimensions and in 211 dimensions, for
example, the KdV equation and the KP equation. The resulting symmetries are sometimes
t-symmetries~for more information, see Ref. 6, for example! and usually constitute centerles
Virasoro algebras together with time-independent symmetries.7–9 Moreover theset-symmetries
may be generated by use of zero curvature equations or Lax equations,10 and the corresponding
master symmetry flows may also be solved by the inverse scattering method.11,12 In the case of
systems of discrete evolution equations, there exist some similar results. For example,
systems of discrete evolution equations havet-symmetries and centerless Virasoro symme
algebras,13–15 and the inverse scattering method may still be applied in solving themselves
their master symmetry flows.16–19 So far, however, to the best of our knowledge, there has
been a systematic mathematical theory to explain why there existt-symmetries for systems o
discrete evolution equations and how we can construct thoset-symmetries when they exist, from
the point of discrete zero curvature equations.

Throughout this paper, ‘‘master symmetries’’ is used to express the first degree maste
metries that generatet-symmetries. Our purpose is to give an algebraic explanation of the
question above and to provide a procedure to generate those master symmetries for a give
hierarchy. The discrete zero curvature equation is our basic tool to give rise to our answ
procedure. The Volterra lattice hierarchy, the Toda lattice hierarchy, and a sub-KP lattice h
chy are chosen and analyzed as some illustrative examples, which have one dependent v
two dependent variables, and three dependent variables, respectively.

Let us now describe our notation. Assume thatu5(u1 ,...,uq)T, where ui5ui(t,n), 1< i
<q, are real functions defined overR3Z ~in the case of the complex function, the discussion
similar!, and letB denote all real functionsP@u#5P(t,n,u), which areC` differentiable with
respect tot andn, andC`-Gateaux differentiable with respect tou. We always writeE as a shift
operator and

~Emx!~n!5x~m!~n!5x~m1n!, where x:Z→R, m,nPZ. ~5!

Note thatx(m) here does not mean themth derivative. SetBr5$(P1 ,...,Pr)
TuPiPB,1< i<r %, and

denote byV r all matrix operatorsF5(F i j ) r 3r , where the entriesF i j 5F i j (t,n,u)PB, and by
Ṽ r , all matrix operators depending on a parameterl: U5(Ui j ) r 3r , where the entriesUi j

5Ui j (t,n,u,l)PB for all l, beingC` differentiable with respect tol.
We will need a multiplication operator,

@n#:B→B, P@u#°@n#P@u#, ~@n#P@u# !~m!5m~P@u# !~m!, ~6!

which is often involved in the construction of master symmetries. This avoids an unclear e
sionnP@u#, which may also mean (nP@u#)(m)5n(P@u#)(m). For example, it is absolutely clea
that (@n#P@u#)(m)5mu(m21)1mu(m), when P@u#5E21u1u. We also need a differenc
operatorD5E2E21, whose inverse operator may be defined by

~D21u!~n!5„~E2E21!21u…~n!ª
1

2 S (
k52`

21

u~n1112k!2 (
k51

`

u~n2112k!D , ~7!
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whereu is required to be rapidly vanishing at the infinity. Moreover, we define

~D21a!5~1/2!a@n#, i.e., ~D21a!~n!5~1/2!an, a5const. ~8!

Obviously, we can find that

~E21!215D21~11E21!, ~12E21!215D21~E11!, ~9!

and thus

~E21!21a5a@n#, ~12E21!21a5a@n#, a5const., ~10!

which may also be viewed as a definition of two inverse operators (E21)21 and (12E21)21.
Note that here we have used the operator@n# so that two functions (E21)21a and (1
2E21)21a have the other clear expressions. The operatorsD21, (E21)21, and (12E21)21

often appears in the expressions of master symmetries, and thus master symmetries are
nonlocal vector fields belonging toBq.

In order to carefully analyze algebraic structures related to symmetries, we specify the
nition of the Gateaux derivativeX8@S# of any vector-valued functionXPBr at a directionS
PBq as follows:

X8@S#5
d

deU
e50

X~u1eS!, ~11!

which implies thatX8 is an operator fromBq to Br , and need the following two product opera
tions:

@K,S#5K8@S#2S8@K#, K,SPBq, ~12!

v f ,gb~l!5 f 8~l!g~l!2 f ~l!g8~l!, f ,gPC`~R!, ~13!

where C`(R) denotes the space of smooth functions defined overR. It is known that
(Bq,@•,•#) and (C`(R),v•,• b) are all Lie algebras.

We now assume thatUPṼ r and the Gateaux derivative operatorU8 is injective throughout
the paper. Let us consider the discrete spectral problem,

Ef5Uf5U~n,u,l!f, f t5Vf5V~n,u,l!f, ~14!

whereVPṼ r . Its adjoint system reads as

E21c5Uc5U~n,u,l!c, c t5~EV!c5„EV~n,u,l!…c.

Their integrability conditions are given by the following discrete zero curvature equation:

Ut5~EV!U2UV. ~15!

If the operator equation~15! is equivalent to a system of discrete evolution equationsut

5K(n,u), KPBq, then it is called a discrete zero curvature representation ofut5K(n,u). Evi-
dently,

Ut5U8@ut#1 f ~l!Ul , if l t5 f ~l!,

whereUl5]U/]l. Therefore a system of discrete evolution equationsut5K(n,u), KPBq, is the
integrability condition of~14! with the evolution lawl t5 f (l) if and only if

U8@K#1 f Ul5~EV!U2UV. ~16!
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Note that the injective property ofU8 is indispensable in deriving zero curvature representati
of systems of evolution equations. The equation~16! exposes an essential relation between
system of discrete evolution equations and its discrete zero curvature representation. It will p
important role in the context of our construction of master symmetries.

The paper is divided into five sections. The next section will be devoted to a general alg
structure related to discrete zero curvature equations. Then in the third section we will estab
approach for constructing master symmetries by the use of discrete zero curvature represen
along with an explanation of why there exist master symmetries for systems of discrete evo
equations. In the fourth section, we will go on to illustrate our approach by three concret
amples of lattice hierarchies. Finally, the fifth section provides a conclusion and some rem

II. BASIC ALGEBRAIC STRUCTURE

We aim to discuss Lie algebraic structures of symmetries, including master symmetrie
using zero curvature equations. It is natural to ask what algebraic structure exists, related
curvature equations. To answer this question, we first plan to expose a Lie algebraic struct
the space„Bq,Ṽ r ,C`(R)….

Let (K,V, f ), (S,W,g)P„Bq,Ṽ r ,C`(R)…, in other words,K,S are vector fields,V,W are r
3r matrix operators, andf ,g are smooth functions. We introduce their product:

v~K,V, f !,~S,W,g!b5~@K,S#,vV,Wb ,v f ,gb !, ~17!

where@K,S#, v f ,gb are defined by~12!, ~13!, respectively, andvV,Wb is defined by

vV,Wb5V8@S#2W8@K#1@V,W#1gVl2 f Wl , ~18!

where@V,W#5VW2WV. The same product as~18! has been introduced for the continuous ca
in Ref. 20.

Theorem 1: ~Lie algebra! The space„(Bq,Ṽ r ,C`(R)),v•,• b… is a Lie algebra, the product
v•,•b being defined by (17), i.e.,

v~K,V, f !,~S,W,g!b5~@K,S#,vV,Wb ,v f ,gb !,

where

@K,S#5K8@S#2S8@K#,

vV,Wb5V8@S#2W8@K#1@V,W#1gVl2 f Wl ,

v f ,gb~l!5 f 8~l!g~l!2 f ~l!g8~l!.

The proof of the theorem will be given in Appendix A. Upon looking at the product a little
more carefully, we can find that the Lie algebra„(Bq,Ṽ r ,C`(R)),v•,• b… has a Lie subalgebra
„(Bq,Ṽ r ,0),v•,• b), for which everything corresponds to the isospectral case. Moreover, the c
of an element of this Lie subalgebra is often Abelian.

The above theorem exposes that a Lie algebraic structure hidden in the back of vector
Lax operators, and spectral evolution laws. Usually we just touch Lie algebraic structures of
fields while discussing symmetries. If we analyze symmetries from the point of zero curv
equations, it is natural that we need to find and handle the Lie algebraic structure for all
(K,V, f )P„Bq,Ṽ r ,C`(R)…, whereK, V, and f are related to each other by zero curvature eq
tions. In other words, we need to observe how two triples (K,V, f ), (S,W,g) that appear in zero
curvature equations connect with each other. The following theorem tells us that such a k
connection can be reflected by the Lie algebraic operation of„Bq,Ṽ r ,C`(R)… in Theorem 1. Its
proof can be found in Appendix B.
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Theorem 2: ~Algebraic structure of representations! Let V,WPṼ r , K,SPBq, and f,g
PC`(R). If two equalities,

~EV!U2UV5U8@K#1 f Ul , ~19!

~EW!U2UW5U8@S#1gUl , ~20!

hold, then we have a third equality,

~EvV,Wb !U2UvV,Wb5U8@T#1v f ,gbUl , T5@K,S#, ~21!

wherevV,Wb,@K,S# and vf,gb are defined by (18), (12), and (13), respectively.
According to this theorem, we can easily find that if a systemut5K(n,u) is isospectral, i.e.,

l t5 f 50, then the product systemut5@K,S# for any SPBq can be viewed to be still isospectra
because we havev f ,gb5v0,gb50, whereg is the evolution law correspondingut5S(n,u). Ac-
tually, the above theorem gives a discrete zero curvature representation for a product sysut

5@K,S#, which possesses the same order matrix operators as ones for the original systut

5K(n,u) andut5S(n,u) ~see Refs. 20 and 21 for the continuous case!. Combining two theorems
above can show the following.

Corollary 1: The space defined by

$~K,V, f !P~Bq,Ṽ r ,C`~R!!uU8@K#1 f Ul5~EV!U2UV%,

is a Lie subalgebra of„Bq,Ṽ r ,C`(R)… under the Lie product (17).
This corollary tells us a Lie algebraic structure about zero curvature equations, which

help us to establish Lie algebraic structures of symmetries, including master symmetries.
However, for zero curvature representations, some interesting problems remain to be

For example, assuming that two initial systemsut5K(n,u) andut5S(n,u) have zero curvature
representations possessing different-order matrix operators, we want to know whether the
any zero curvature representations for the product systemut5@K,S# and what structures the
resulting zero curvature representations possess if the answer is yes. It is likely to be hel
solving this problem to use the Kronecker product, as in Ref. 22.

III. LAX OPERATORS AND MASTER SYMMETRIES

Assume that we already have a hierarchy of isospectral integrable systems of discrete
tion equations of the form

ut5Kk5FkK0 , FPVq, K0PBq, k>0, ~22!

or of the form

ut5Kk5JGk5MGk21 , J,MPVq, Gk21PBq, k>0, ~23!

associated with a discrete spectral problem,

Ef5Uf, f5~f1 ,...,f r !
T. ~24!

The second form~23! occurs more often than the first form~22!, although it is simpler to deal with
the first form~22!. Generally speaking, the operatorF above is a hereditary symmetry operat
~see Ref. 23 for a definition! determined by the spectral problem~24! and J,M constitute a
bi-Hamiltonian pair.24,25 If we chooseF5MJ21 whenJ is invertible, then the form~23! may be
changed into the form~22!. Usually F involves nonlocal operators, for example,D21, but J,M
often involves only local operators. Our examples are all local Hamiltonian systems.
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A. Structures of Lax operators

For a givenXPBq or GPBq, let us introduce an operator equation ofVPṼ r :

„EV~X!…U2UV~X!5U8@FX#2lU8@X#, ~25!

in the case of~22!, or an operator equation ofVJPṼ r :

„EVJ~G!…U2UVJ~G!5U8@MG#2lU8@JG#, ~26!

in the case of~23!. We call them the characteristic operator equations ofU. The introduction of the
operator equation~25! @or ~26!# is an important step in our manipulation. Obviously, we c
chooseVJ(G)5V(JG) when F5MJ21. We demand that~25! @or ~26!# has solutions, andV
5V(X) @or VJ(G)] is a particular solution atX ~or at G!. Usually ~25! @or ~26!# has infinitely
many solutions once one solution exists, because we can construct othersV(X)1 f V for any f
PC`(R) when VPV r

^ C@l,l21# solves the stationary discrete zero curvature equa
(EV)U2UV50. The existence of solutions of (EV)U2UV50 may result from the existence o
an isospectral hierarchy associated withEf5Uf.

Theorem 3: ~structure of Lax operators! Let two matrices V0 ,W0PṼ r and two vector fields
K0 ,r0PBq ~or r05Jg0 , g0PBq) satisfy

~EV0!U2UV05U8@K0#, ~27!

~EW0!U2UW05U8@r0#1lUl . ~28!

If we definer l , l>1,Vk , k>1, and Wl , l>1, as follows:

r l5F lr0, l>1 @or r l5Jg l5Mg l 21 , g lPBq, l>1#, ~29!

Vk5lkV01(
i 51

k

lk2 iV~Ki 21! @or VJ~Gi 2 l !#, k>1, ~30!

Wl5l lW01(
j 51

l

l l 2 jV~r j 21! @or VJ~g j 21!#, l>1, ~31!

then Vk , Wl , k,l>0, satisfy

~EVk!U2UVk5U8@Kk#, ~EWl !U2UWl5U8@r l #1l l 11Ul, k,l>0. ~32!

Therefore for any k,l>0, the systems of discrete evolution equations ut5Kk and ut5r l possess the
isospectral(l t50) and nonisospectral (l t5l l 11) discrete zero curvature representations,

Ut5~EVk!U2UVk , Ut5~EWl !U2UWl ,

respectively.
The theorem shows that the Lax operators associated with two hierarchies of interesting

fields can be constructed simply by a unified form. Its proof is left to Appendix C. We
successful, thanks to introducing a characteristic operator equation. The difficulty is now
ferred to seeking a solution to the characteristic operator equation. However, this can aut
cally be solved on the basis of the structure of Lax operators of isospectral hierarchies, whic
be seen in the next Sec. III B.

B. A method for constructing master symmetries

Now we focus our attention on the construction problem of master symmetries. Theo
already shows the structure of Lax operators associated with the isospectral and nonisos
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hierarchies~refer to Ref. 26 for the continuous case!. When an isospectral hierarchy~22! @or ~23!#
is known, the theorem also provides us with a method to construct a nonisospectral hie
associated with the discrete spectral problem~24! by solving an initial discrete zero curvatur
equation~28! and solving a characteristic operator equation~25! @or ~26!#.

However, a solution to~25! @or ~26!# may easily be generated by observing the resulting L
operators. In fact, we have

V~Kk! @or VJ~Gk!#5Vk112lVk . ~33!

This may be checked, say, for the case of~22!, as follows:

Vk112lVk5S lk11V01 (
i 51

k11

lk2 i 11V~Ki 21!D 2lS lkV01(
i 51

k

lk2 iV~Ki 21!D 5V~Kk!,

by using~30!. Now by the first equality of~32!, we may compute the following:

~EV~Kk!!U2UV~Kk!5~EVk112lEVk!U2U~Vk112lVk!

5„~EVk11!U2UVk11…2l„~EVk!U2UVk…

5U8@Kk11#2lU8@Kk#5U8@FKk#2lU8@Kk#,

for example, for the case of~22!. Therefore we see that a possible solutionV(X) to ~25! @or
VJ(G) to ~26!# may be generated by replacing the elementKk ~or Gk) in the equality~33! with X
~or G!.

The Lax operator matricesVk11 andVk are known, when the isospectral hierarchy has alre
been found. Thus we do not have to directly solve the characteristic operator equations, an
the whole process of construction of the nonisospectral hierarchy becomesan easy task: finding
r0 , W0 to satisfy~28! and computingVk112lVk to find a solution to~25! @or ~26!#.

The nonisospectral hierarchy~29! is exactly the master symmetries that we need to find. T
reasons are that the product systems between the isospectral hierarchy and the noniso
hierarchy are still isospectral by Theorem 2, or as we said before in Sec. II, and that usua
systems of the isospectral hierarchy commute with each other. Therefore it is because ther
a nonisospectral hierarchy that there exist master symmetries for isospectral systems of d
evolution equations derived from a given discrete spectral problem.

In the next section, we shall in detail illustrate our construction process by three con
examples and establish the corresponding centerless Virasoro symmetry algebras.

IV. APPLICATIONS

We illustrate only by three examples how to apply the method in the last section to con
master symmetries for various lattice hierarchies.

To make the process clearer, we introduce a conception for a given discrete spectral p
Ef5Uf, which has an injective Gateaux derivativeU8. That is a uniqueness property similar
the one in the continuous case:27 if (EV)U2UV5U8@K#, VPV r

^ C@l,l21#, KPBq, and
Vuu5050, then V50, and furtherK50 by the injective property ofU8. It means that if an
isospectral (l t50) Lax operatorV equals zero atu50, then so doesV itself. Actually, this
property corresponds to the uniqueness of an integrable hierarchy associated with a s
problem Ef5Uf. That is to say, when initial conditions and constants of inverse differe
operators are fixed@for example, as in~7! and~8!#, the associated isospectral hierarchy is uniqu
determined. Most of the discrete spectral problems share the uniqueness property. The fo
three spectral problems are exactly examples that share such a property.
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A. The Volterra lattice hierarchy

Let us first consider the following discrete spectral problem:15

Ef5Uf, U5S 1 u

l21 0D , f5S f1

f2
D . ~34!

The corresponding isospectral integrable lattice hierarchy reads as

ut5Kk5FkK05u~ak11
~1! 2ak11

~21!!, K05u~u~21!2u~1!!, k>0. ~35!

Here the matrix

V5( i>0S ai uci 11
~1!

ci ai
D l2 i

solves the stationary discrete zero curvature equation (EV)U2UV50, where we choose the
initial conditions

a05 1
2, c050, a152u, c151,

and the hereditary operatorF is given by

F5u~11E21!~2u~1!E21u!~E21!21u21, ~36!

where (E21)21 is determined by~9!. It is worth pointing out that each system in~35! is local and
polynomially dependent onu, although the hereditary operatorF has nonlocal and nonpolynom
ally dependent features.

The first discrete evolution equation is the Volterra lattice equation,28

„u~n!…t5u~n!„u~n21!2u~n11!…,

which is significantly generalized by Bogoyavlensky.29 The associated Lax operators are as f
lows:

Vk5~lk11V!>11S ak11 0

ck11 ak11
~21!D , k>0, ~37!

where (P)>1 denotes the selection of the terms with degrees ofl no less than 1. In particular, th
initial isospectral Lax operator reads as

V05S 1
2l2u lu

1 2 1
2l2u~21!D . ~38!

The result until here can be obtained from~34! by using a powerful method in Ref. 30.
We easily obtain the corresponding quantities in the nonisospectral (l t5l) initial discrete

zero curvature equation~28!:

r05u, W05S 1
2 0

0 2 1
2

D , ~39!

and a solution to the characteristic operator equation~25! by ~33!:
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V~X!5S V11~X! V12~X!

V21~X! V22~X!
D , ~40!

whereV i j (X), i , j 51,2, are given by

V11~X!5~E21!21~2u~1!E21u!~E21!21u21X,

V12~X!5luE~E21!21u21X,

V21~X!5~E21!21u21X,

V22~X!52l~E21!21u21X1E21~E21!21~2u~1!E21u!~E21!21u21X.

Now by Theorem 3, we obtain a hierarchy of nonisospectral discrete evolution equationsut5r l

5F lr0 , l>0, associated with the spectral problem~34!.
Let us now consider how to compute the corresponding symmetry algebra. The idea

can be applied to other cases. We first make the following computation atu50:

Kkuu5050, r l uu505F lr0uu5050, k,l>0,

Vkuu505lkS 1
2l 0

1 2 1
2l

D , k>0,

Wl uu505l lS 1
2 0

0 2 1
2

D 1~12d l0!l l 21S 0 0

@n# 2l@n#
D , l>0,

Vkluu505klk21S 1
2l 0

1 2 1
2l

D 1lkS 1
2 0

0 2 1
2

D , k>0,

Wlluu505 ll l 21S 1
2 0

0 2 1
2

D 1~12d l0!S 0 0

~ l 21!l l 22@n# 2 ll l 21@n#
D , l>0,

whereVk , Wl , k,l>0, are given as in Theorem 3 andd l0 represents the Kronecker symbol. Whi
computingWl uu50 , we need to note thatV(r0)uu50Þ0, but V(r l)uu5050, l>1. The other two
examples below have a similar character, too. Now we can find by the definition~18! of the
product of two Lax operators that

vVk ,Vl buu5050, k,l>0,

vVk ,Wl buu505~k11!Vk1 l uu50 , k,l>0, ~41!

vWk ,Wl buu505~k2 l !Wk1 l uu50 , k,l>0.

For example, we can compute that
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vVk ,Wl buu505@Vkuu50 ,Wl uu50#1l l 11Vkluu50

5lk1 lF S 1
2l 0

1 2 1
2l

D ,S 1
2 0

0 2 1
2

D 1~12d l0!l21S 0 0

@n#2l@n#
D G

1l l 11S klk21S 1
2l 0

1 2 1
2l

D 1lkS 1
2 0

0 2 1
2

D D
5lk1 l S 0 0

1 0D 1klk1 lS 1
2l 0

1 2 1
2l

D 1lk1 l 11S 1
2 0

0 2 1
2

D
5~k11!lk1 lS 1

2l 0

1 2 1
2l

D 5~k11!Vk1 l uu50 .

BecausevVk ,Vl b , vVk ,Wl b2(k11)Vk1 l , vWk ,Wl b2(k2 l )Wk1 l , k,l>0, are all isospectral (l t

50) Lax operators belonging toV2
^ C@l,l21# by Theorem 2, based upon~41! we obtain a Lax

operator algebra by the uniqueness property of the spectral problem~34!,

vVk ,Vl b50, k,l>0,

vVk ,Wl b5~k11!Vk1 l , k,l>0, ~42!

vWk ,Wl b5~k21!Wk1 l , k,l>0.

Further, due to the injective property ofU8, we finally obtain a vector field algebra of th
isospectral hierarchy and the nonisospectral hierarchy,

@Kk ,Kl #50, k,l>0,

@Kk ,r l #5~k11!Kk1 l , k,l>0, ~43!

@rk ,r l #5~k2 l !rk1 l , k,l>0.

This implies thatr l , l>0, are all master symmetries of each lattice equationut5Kk0
in the

isospectral hierarchy, and the symmetries,

Kk , k>0, and t l
~k0!

5t@Kk0
,r l #1r l , l>0,

constitute a symmetry algebra of Virasoro type possessing the same commutator relations~43!.

B. The Toda lattice hierarchy

Second, let us consider the discrete spectral problem:30

Ef5Uf, U5S 0 1

2v l2pD , u5S p
v D , f5S f1

f2
D . ~44!

The corresponding isospectral integrable Toda lattice hierarchy31 reads as

ut5Kk5FkK05S ak122ak12
~1!

v~bk12
~1! 2bk12! D , K05S v2v ~1!

v~p2p~21!! D , k>0. ~45!

Here
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V5( i>0S ai bi

2vbi
~1! 2ai

D l2 i

solves (EV)U2UV50, in which we choose

a05 1
2, b050, a150, b1521,

and the hereditary operatorF is determined by

F5S p ~v ~1!E22v !~E21!21v21

v~E2111! v~pE2p~21!!~E21!21v21D . ~46!

The first system of discrete evolution equations is the Toda lattice,32

~p~n!! t5v~n!2v~n11!,

„v~n!…t5v~n!„p~n!2p~n21!…,

up to a transform of dependent variables. The lattice hierarchy above has a local tri-Hamil
structure,

ut5Kk5J
dHk12

du
5M

dHk11

du
5N

dHk

du
, k>0,

where the Hamiltonian operatorsJ,M ,N and the conserved quantitiesHk , defined by

J5S 0 ~12E!v

v~E2121! 0 D ,

M5JF†52FJ5S Ev2vE21 p~E21!v

v~12E21!p v~E2E21!v D ,

N5MF†52FM

5S p~vE212Ev !1~vE212Ev !p p2~12E!v1~vE212Ev !~11E!v

v~E2111!~vE212Ev !1v~E2121!p2 2v~E21p2pE!v D ,

H05p1 1
2 ln v, Hk52

bk11

k
, k>1,

whereF† denotes the conjugate operator ofF. Note that this tri-Hamiltonian structure may b
established through a trace identity.30 The corresponding Lax operators read as

Vk5~lk11V!11S bk12 0

0 0D , k>0, ~47!

where the subscript1 denotes selecting the non-negative part. Hence, in particular,

V05S 1
2l2p~21! 21

v 2 1
2l

D . ~48!

It is easy to find the corresponding quantities in the nonisospectral (l t5l) initial discrete
zero curvature equation~28!:
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r05S p
2v D , W05S @n#21 0

0 @n#
D , ~49!

where@n# is the multiplication operator defined by~6!, and a solution to the characteristic opera
equation~25! by ~33!:

V~X!5S V11~X! V12~X!

V21~X! V22~X!
D , X5S X1

X2
D , ~50!

whereV i j (X), i , j 51,2, are given by

V11~X!5E21~E21!21X11~p~21!2l!~E21!21v21X2 ,

V12~X!5~E21!21v21X2 ,

V21~X!5vE~E21!21v21X2 ,

V22~X!5~E21!21X1 .

In this way, we obtain a hierarchy of nonisospectral systems of discrete evolution equatior l

5F lr0 , l>0, associated with the spectral problem~44!.
In order to construct a vector field algebra, we make a similar computation atu50:

Kkuu5050, r l uu505F lr0uu5050, k,l>0,

Vkuu505lkS 1
2l 21

0 2 1
2l

D , k>0,

Wl uu505l l S @n#21 0

0 @n#
D 1~12d l0!S 22l@n# 2@n#

0 0 D , l>0,

Vkluu505klk21S 1
2l 21

0 2 1
2l

D 1lkS 1
2 0

0 2 1
2

D , k>0,

Wlluu505 ll l 21S @n#21 0

0 @n#
D 1~12d l0!S 22ll l 21@n# 2~ l 21!l l 22@n#

0 0 D , l>0.

Now we can find through the product definition ofv•,•b in ~18! that

vVk ,Vl buu5050, k,l>0,

vVk ,Wl buu505~k11!Vk11uu50 , k,l>0, ~51!

vWk ,Wl buu505~k2 l !Wk1 l uu50 , k,l>0.

A similar argument yields a Lax operator algebra by the uniqueness property of the sp
problem~44!,
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vVk ,Vl b50, k,l>0,

vVk ,Wl b5~k11!Vk11 , k,l>0, ~52!

vWk ,Wl b5~k2 l !Wk1 l , k,l>0.

And then because of the injective property ofU8, we obtain a semiproduct Lie algebra of th
isospectral hierarchy and the nonisospectral hierarchy,

@Kk ,Kl #50, k,l>0,

@Kk ,r l #5~k11!Kk11 , k,l>0, ~53!

@rk ,r l #5~k2 l !rk1 l , k,l>0,

which gives rise to a symmetry algebra of the Virasoro type for the isospectral Toda hier
~45!.

C. A sub-KP lattice hierarchy

Let us finally consider the discrete spectral problem:33

Ef5Uf, U5S 0 1 0

b2l a 1

c 0 0
D , u5S a

b
c
D , f5S f1

f2

f3

D , ~54!

which is equivalent to (2E21b1aE1E21c)f15lf1 , a sub-KP discrete spectral problem.34

The corresponding isospectral integrable lattice hierarchy reads as

ut5Kk5JGk5MGk21 , k>0, ~55!

where a Hamiltonian pairJ, M andG21 , G0 , G1 are defined by

J5S E2E21 0 0

0 0 ~E2121!c

0 2c~E21! 0
D ,

M5S Eb2bE211aD1D21D2a EcE2E21c 2aD1D21D2c

cE2E21cE21 E21ac2acE 2bD2c

cD12D21D2a 2cD1b c@D1D21D22D22D1#c
D ,

G215S 0
1
0
D , G05S c

b
a
D , G15S c~Eb1b!

b21ac1E21ac
a~Eb1b!2Ec2E21c

D ,

whereD1 , D2 are the difference operators:D15E21,D2512E21. The first nonlinear system
of discrete evolution equations is

„a~n!…t5c~n11!2c~n21!,

„b~n!…t5a~n21!c~n21!2a~n!c~n!,

„c~n!…t5c~n!„b~n!2b~n11!….
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We easily find the corresponding quantities in~27! and ~28!:

K05S ~E2E21!c
~E2121!ac
c~12E!b

D , V05S 0 0 1

c 0 0

2E21ac E21c l2b
D ,

r05Jg05Mg215JS 1
2D

21a

2 3
2@n#

2c21D2
21b

D 5MS 0
0

2~@n#1 3
2!c

21
D 5S 1

2a

b
3
2c
D ,

W05S 1
2@n# 0 0

0 1
2~@n#11! 0

0 0 1
2~@n#12!

D .

We can also obtain a solution to the characteristic operator equation~26! by ~33!:

VJ~G!5S V11~G! V12~G! V13~G!

V21~G! V22~G! V23~G!

V31~G! V32~G! V33~G!
D , G5S G~1!

G~2!

G~3!

D , ~56!

whereV i j (G), i , j 51,2,3, are determined by

V11~G!52~E21E!21~cG~3!1EaG~1!!,

V12~G!5E21G~1! , V13~G!5G~2! ,

V21~G!5cEG~2!1~b2l!G~1! ,

V22~G!52~E11!21~cG~3!1EaG~1!!1aG~1! , V23~G!5G~1! , ~57!

V31~G!5E21cE21G~1!2E21acG~2! , V32~G!5E21cG~2! ,

V33~G!52E~E11!21~cG~3!1EaG~1!!1D1aG~1!2~b2lG~2! .

By Theorem 3, we get a hierarchy of nonisospectral systems of discrete evolution equatiut

5r l5F lr0 , l>0, associated with the spectral problem~54!.
In order to generate a vector field algebra of the isospectral hierarchy and the nonisos

hierarchy, we need the following quantities, which may be directly worked out:

Kkuu5050, r0uu505Jg0uu5050, r l uu505Jg l uu505Mg l 21uu5050, k>0, l>1,

Vkuu505lkS 0 0 1

0 0 0

0 0 l
D ,

Wl uu505l lS 1
2 0 0

0 1
2~@n#11! 0

0 0 1
2~@n#12!

D 1~12d l0!l l 21S 0 0 2 3
2@n#

0 0 0

0 0 2 3
2l@n#

D ,
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Vkluu505klk21S 0 0 1

0 0 0

0 0 l
D 1lkS 0 0 0

0 0 0

0 0 1
D ,

Wlluu505 ll l 21S 1
2@n# 0 0

0 1
2~@n#11! 0

0 0 1
2~@n#12!

D 1~12d l0!S 0 0 2 3
2~ l 21!l l 22@n#

0 0 0

0 0 2 3
2ll

l 21@n#
D .

Now we easily find, according to the product definition ofv•,•b, that

vVk ,Vl buu5050, k,l>0,

vVk ,Wl buu505~k11!Vk1 l uu50 , k,l>0,

vWk ,Wl buu505~k2 l !Wk1 l uu50 , k,l>0.

The same deduction leads to a Lax operator algebra,

vVk ,Vl b50, k,l>0,

vVk ,Wl b5~k11!Vk1 l , k,l>0, ~58!

vWk ,Wl b5~k2 l !Wk1 l , k,l>0,

and further a vector field algebra,

@Kk ,Kl #50, k,l>0,

@Kk ,r l #5~k11!Kk1 l , k,l>0, ~59!

@rk ,r l #5~k2 l !rk1 l , k,l>0,

which may generate a master symmetry algebra possessing the same algebraic structure~59!.

V. CONCLUSION AND REMARKS

We have established an algebraic structure related to discrete zero curvature equatio
further introduced a simple but systematic approach for constructing master symmetries of t
degree for isospectral lattice hierarchies associated with discrete spectral problems. The re
algebraic structures also leads to an explanation of why there exist master symmetries of t
degree. Some complicated calculation in our construction is saved by using a characteris
erator equation~25! @or ~26!# and a uniqueness property of discrete spectral problems. The cr
step is the construction of the corresponding nonisospectral lattice hierarchies, which can be
by solving an initial nonisospectral discrete zero curvature equation. Three lattice hierarch
shown as illustrative examples, and the corresponding master symmetry algebras of the ce
Virasoro type are exhibited. Some of the results in this paper have been reported at SIDE II,35

It is worth noting that three examples described in the last section possess the same c
tator relations between their isospectral and nonisospectral vector fields. In general, we
@Kk ,r l #5(k1g)Kk11 , g5const., but the other two equalities of the whole Virasoro algebra
not change. This is also a common phenomenon for continuous integrable hierarchies.36,37 Fur-
thermore, we may add a nonisospectral master symmetry withl t51 to the whole Virasoro
symmetry algebra, but this often requires additional checking. For example, a nonisosp
master symmetry withl t51 of the sub-KP lattice hierarchy~55! is r215Jg215(0,1,0)T. On the
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other hand, similar to the theory in Ref. 37, we may also choose an operator solutionV(X) @or
VJ(G)] satisfyingV(X)uX5050 @or VJ(G)uG5050] ~all three examples in the last section ha
this property!, and then we only need to computevV0 ,W0buu50 so as to give Lax operator algebra
at u50 and finally give Lax operator algebras generally.

In our discussion, in fact, we have not used the hereditary property of the recursion op
F ~or the bi-Hamiltonian property ofJ andM!, while we construct Virasoro symmetry algebras f
integrable lattice hierarchies, and thus it can also be applied to lattice hierarchies that p
nonhereditary recursion operators. The advantage of our scheme is to fully utilize discret
curvature equations so that the whole process to generate master symmetries of the first
becomes an easy task. There were also an algorithm implemented in MuPAD38 and other direct
tricks13–15,39to compute master symmetries of first degree for systems of discrete evolution
tions. However, our theory focuses on seeking an answer to the existence and structure pro
master symmetries of the first degree.

We should mention that there exists a large variety of other theories or methods to d
integrable properties of systems of nonlinear discrete equations, which include Hamilt
theory,40,41 Bäcklund–Darboux transformation,42,43 The R-matrix method,34,44 symmetry
reduction,45 etc. Moreover, we can consider the time discretization problem46 and periodic initial
and boundary value problems of time discretizations47 for symmetry flows of systems of discret
evolution equations. The resulting difference equations and mappings should be useful in d
ing the integrability of the underlying systems of discrete evolution equations themselves. W
also curious about the following natural problem: Are there any higher degree master symm
for systems of discrete evolution equations that do not depend explicitly on the evolution var
If the answer is yes, can we establish any relations between those higher degree master sym
and discrete zero curvature equations as we did for the first degree master symmetries?
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APPENDIX A: PROOF OF THEOREM 1

Let (Ki ,Vi , f i)P„Bq,Ṽ r ,C`(R)…, 1< i<3. Because the bilinearity and the skew symmetry
the product~17! are self-evident and we already know that the products defined by~12! and~13!
are Lie products, we only need to prove the following Jacobi identity:

vvV1 ,V2b ,V3b1cycle~1,2,3!50. ~A1!

Let us first compute by~18! that

v vV1 ,V2b ,V3b5~ vV1 ,V2b !8@K3#2V38@@K1 ,K2##1@ vV1 ,V2b ,V3#1 f 3vV1 ,V2bl2v f 1 , f 2bV3l

5~V18@K2# !8@K3#2~V28@K1# !8@K3#1@V1 ,V2#8@K3#1 f 2~V1l!8@K3#

2 f 1~V2l!8@K3#2V38†@K1 ,K2#‡1†V18@K2#,V3‡2†V28@K1#,V3‡1†@V1 ,V2#,V3‡

1 f 2@V1l ,V3#2 f 1@V2l ,V3#1 f 3~V18@K2# !l2 f 3~V28@K1# !l1 f 3@V1 ,V2#l

1 f 2l f 3V1l1 f 2f 3V1ll2 f 1l f 3V2l2 f 1f 3V2ll2v f 1 , f 2bV3l . ~A2!

We need to use the following fundamental equalities:

~Vl!8@K#5~V8@K# !l , VPṼ r , KPBq,
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@V,W#l5@Vl,W#1@V,Wl#, V,WPṼ r ,

@V,W#8@K#5@V8@K#,W#1@V,W8@K##, V,WPṼ r , KPBq,

V8@T#5~V8@K# !8@S#2~V8@S# !8@K#, T5@K,S#, VPṼ r , K,SPBq,

which may be shown by a direct computation and the last equality of which is a similar res
in Ref. 21. Now we can go on to compute that

Da
123

ª~V18@K2# !8@K3#2~V28@K1# !8@K3#2V38†@K1 ,K2#‡

5~V18@K2# !8@K3#2~V28@K1# !8@K32~V38@K1# !8@K21~V38@K2# !8@K1#,

Db
123

ª@V1 ,V2#8@K3#1†V18@K2#,V3‡2†V2
8@K1#,V3‡

5†V18@K3#,V2‡2†V28@K3#,V1‡1†V18@K2#,V3‡2†V28@K1#,V3‡,

Dc
123

ª f 2~V1l!8@K3#2 f 1~V2l!8@K3#1 f 3~V18@K2# !l2 f 3~V28@K1# !l

5 f 2~V1l!8@K3#2 f 1~V2l!8@K3#1 f 3~V1l!8@K2#2 f 3~V2l!8@K1#,

Dd
123

ª f 2@V1l ,V3#2 f 1@V2l ,V3#1 f 3@V1 ,V2#l

5 f 2@V1l ,V3#2 f 1@V2l ,V3#1 f 3@V1l ,V2#2 f 3@V2l ,V1#,

De
123

ª f 2l f 3V1l1 f 2f 3V1ll2 f 1l f 3V2l2 f 1f 3V2ll2v f 1 , f 2bV3l ,

5 f 2l f 3V1l1 f 2f 3V1ll2 f 1l f 3V2l2 f 1f 3V2ll2 f 1l f 2V3l1 f 1f 2lV3l .

A direct check can result in that

D
*
1231cycle~1,2,3!50, where * 5a,b,c,d or e.

Noting ~A2!, it follows therefore that

vvV1 ,V2b ,V3b1cycle~1,2,3!5Da
1231Db

1231Dc
1231Dd

1231De
1231†@V1 ,V2#,V3‡1cycle~1,2,3!50,

which is exactly the Jacobi identity~A1! and thus completes the proof.

APPENDIX B: PROOF OF THEOREM 2

The proof is an application of the equalities~19! and ~20! and the third equality,

~U8@K# !8@S#2~U8@S# !8@K#5U8@T#, T5@K,S#, ~B1!

which has been mentioned in the proof of the first theorem. We observe that

@Eq. ~19!#8@S#2@Eq. ~20!#8@K#1g@Eq. ~19!#l2 f @Eq. ~20!#l .

The resulting equality reads as

~U8@K# !8@S#2~U8@S# !8@K#1v f ,gbUl

5~EV8@S# !U1~EV!U8@S#2U8@S#V2UV8@S#2~EW8@K# !U2~EW!U8@K#

1U8@K#W1UW8@K#1g~EVl!U1g~EV!Ul2gUlV

2gUVl2 f ~EWl!U2 f ~EW!Ul1 f UlW1 f UWl . ~B2!
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On the other hand, we have immediately

~EvV,Wb !U2UvV,Wb5~EV8@S# !U2~EW8@K# !U1~EV!~EW!U2~EW!~EV!U1g~EVl!U

2 f ~EWl!U2UV8@S#1UW8@K#2UVW1UWV2gUVl1 f UWl .

~B3!

It follows, therefore from~B1!, ~B2!, and~B3! that

~EvV,Wb !U2UvV,Wb2U8@T#2v f ,gbUl

5~EvV,Wb !U2UvV,Wb2~U8@K# !8@S#1~U8@S# !8@K#2v f ,gbUl

5~EV!$~EW!U2V8@S#2gUl%2~EW!$~EV!U2U8@K#2 f Ul%

2UVW1UWV1gUlV2 f UlW1U8@S#V2U8@K#W

5~EV!UW2~EW!UV2UVW1UWV1gUlV2 f UlW1U8@S#V2U8@K#W

5$~EV!U2UV2 f Ul2U8@K#%W2$~EW!U2UW2gUl2U8@S#%V50,

which is what we need to prove.

APPENDIX C: PROOF OF THEOREM 3

We prove two equalities in~32!. The rest is obvious. We compute that

~EVk!U2UVk5lk@~EV0!U2UV0#1(
i 51

k

lk2 i{ „EV~Ki 21!…U2UV~Ki 21!}

5lkU8@K0#1(
i 51

k

lk2 i$U8@FKi 21#2lU8@Ki 21#%

5lkU8@K0#1(
i 51

k

lk2 i$U8@Ki #2lU8@Ki 21#%5U8@Kk#, k>1;

~EWl !U2UWl5l l@~EW0!U2UW0#1(
j 51

l

l l 2 j$„EV~r j 21!…U2UV~r j 21!%

5l l$U8@r0#1lUl%1(
j 51

l

l l 2 j$U8@Fr j 21#2lU8@r j 21#%

5l l$U8@r0#1lUl%1(
j 51

l

l l 2 j$U8@r j #2lU8@r j 21#%

5U8@r l #1l l 11Ul,

l>1.

Note that we have used the characteristic operator equation~25!, but the situation in the case o
~26! is completely similar. The proof is therefore finished.
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On the Fay identity for Korteweg–de Vries tau functions
and the identity for the Wronskian of squared
solutions of Sturm–Liouville equation
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We show that the well-known identity for the Wronskian of squared solutions of a
Sturm–Liouville equation follows from the Fay identity. We also study some odd-
order @(2n21)-order, n52,3,...# identities which are specific for tau functions,
related to the KdV hierarchy. ©1999 American Institute of Physics.
@S0022-2488~99!00705-7#

I. INTRODUCTION

We began this research as a study of the expression of the Wronskian of squared solu
the Sturm–Liouville equation by Korteweg–de Vries~KdV! tau functions and the Fay identity
Now, when the desired result is obtained~cf. Theorem 1.1!, we realize that this is a story of th
common origin of the following three relations for the functions:x, sin(x), andu11(x) respectively
(x,z1 ,z2PC):

~z22z1!@~x1z11z2!~x2z1!~x2z2!2~x2z12z2!~x1z1!~x1z2!#

5~z11z2!@~x1z12z2!~x2z1!~x1z2!2~x2z11z2!~x1z1!~x2z2!#,

sin~z22z1!@sin~x1z11z2! sin~x2z1! sin~x2z2!2sin~x2z12z2! sin~x1z1! sin~x1z2!#

5sin~z11z2!@sin~x1z12z2! sin~x2z1! sin~x1z2!

2sin~x2z11z2! sin~x1z1! sin~x2z2!#,

u11~z22z1!@u11~x1z11z2!u11~x2z1!u11~x2z2!2u11~x2z12z2!u11~x1z1!u11~x1z2!#

5u11~z11z2!@u11~x1z12z2!u11~x2z1!u11~x1z2!

2u11~x2z11z2!u11~x1z1!u11~x2z2!#

~we use the notations for theta functions from Ref. 1!.
In the present paper we will prove an identity for general KdV tau functions~it will be a

third-order identity for tau!. The mentioned three types of functions are, roughly speaking, t
types of KdV tau functions for stationary~t-independent! solutions of the KdV equation
ut56uux1uxxx . So, the polynomial relation follows from this cubic identity for KdV taus, b
there are some specific problems to translate the identity for the general KdV taus to the c
trigonometric functions and elliptic theta functions. We will postpone the solution of these p
lems to some next publication.

This way, the status of the three relations is quite different: the first one is easy to
directly ~and it also follows from the cubic identity for KdV taus!; the second one is not difficul

a!On leave from Forestry University, Sofia, Bulgaria. Electronic mail: mishevyp@kurims.kyoto-u.ac.jp
24190022-2488/99/40(5)/2419/10/$15.00 © 1999 American Institute of Physics
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to prove directly, using the well-known trigonometric identities; and the third one is still con
tural ~we could not derive it from the Riemann relations, we could only check it numerically, u
the system Mathematica 3.0 at RIMS, Kyoto University!.

Let t(t), t[(t1 ,t2 ,t3 ,...)PC`, t1[x, be an arbitrary tau function, related to th
Kadomtzev–Petviashvili~KP! hierarchy~Ref. 2!. Let us denote (zPC)

@z#ª~z,z2/2,z3/3,...!PC`,

t~ t1@z# !ªt~ t11z,t21z2/2,t31z3/3,...!.

The following identity (z0 ,z1 ,z2 ,z3PC),

~z02z1!~z22z3!t~ t1@z0#1@z1# !t~ t1@z2#1@z3# !1~z02z2!~z32z1!t~ t1@z0#

1@z2# !t~ t1@z3#1@z1# !1~z02z3!~z12z2!t~ t1@z0#1@z3# !t~ t1@z1#1@z2# !50 ~1.1!

is called theFay identity~Ref. 3! for the KP tau functiont. It was first obtained~Ref. 4! for theta
functions related to Jacobians. In genusg51 case its form is

u11~z02z1!u11~z22z3!u11~ t1z01z1!u11~ t1z21z3!1u11~z02z2!u11~z32z1!u11~ t1z0

1z2!u11~ t1z31z1!1u11~z02z3!u11~z12z2!u11~ t1z01z3!u11~ t1z11z2!50.

Afterwards it was used~Ref. 1! in geometric treatment of soliton equations. Later it was gen
alized for tau functions~Ref. 3!.

The Fay identity is fulfilled at also for tau functions related to thenth (n52,3,4,...) Gel’fand–
Dickey reduction of the KP hierarchy. In the present paper we will consider only then52
reduction, i.e., the KdV hierarchy. Such tau functions we will call KdV tau functions. They ca
characterized by the conditions (] t2k

[]/]t2k)

] t2k
t~ t !50, k51,2,3,...,

which imply for everyzPC

t~ t-@z# !5t~ t1@2z# !. ~1.2!

There are two main goals in the present article. The first aim is to show that the fa
identity for the Wronskian@W( f ,g)ª f g82 f 8g, 8[]x[]/]x# of squared solutions of the Sturm
Liouville equation~Ref. 5! follows from the Fay identity for KdV tau functions. The second a
is to obtain some specific relations for the KdV tau functions.

We came to these results when studying the problem of finding a dictionary between t
functions and some formulas related to squared solutions of the Sturm–Liouville equation~espe-
cially the mentioned identity for the Wronskian of squared solutions–an important ingredie
this area~Refs. 5 and 6!. Such a dictionary will be useful in examining some features of Mi
transformations. It is well known that squared solutions span the kernels of the Frechet deriv
M68 (v)52v6]x of Miura transformationsu65M6vªv26vx (vx[]xv), wherev is a solution
of the mKdV equation andu6 are solutions of the KdV equation. Also well known~Ref. 7! is the
interpretation of Miura transformations as projections from flag to corresponding subspa~in
Sato Grassmannian!, which is intimately connected to tau functions. Some parts of the diction
were known: e.g., a formula, which expresses the squared solutions by means oft(t) and vertex
operators~Ref. 2! @in this paper the so-calledL-operators~Ref. 5! are also mentioned#. There were
no relations to the tau functions of the identity for the Wronskian of squared solutions, but
was a well-known expression of the Wronskian of two solutions by means oft(t) ~Refs. 2 and 8!.
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Because of the fact that in the proof of the latest formula, the Fay identity was used, we ex
that the same identity will be useful in the ‘‘paraphrase’’ of the Wronskian of squared solut

We need such a dictionary, because we observed some similarities between Mats
Cherednik transformations~Ref. 9!:

Knizhniv-Zamolodchikov equation→quantum Calogero-Sutherland system on the one h
and Miura transformation on the other hand. Our opinion is that such similarities will be e
explained on the language of tau functions, flag and Grassmann manifolds, etc. So, the
phrase’’ of the relations for the Wronskian of squared solutions of the Sturm–Liouville equ
is only the first step in this direction. We also expect that the presented connections be
squared solutions and tau functions will be useful in another areas of the subject~cf. Refs. 10 and
11!.

In order to explain the main results of the present article, let us review some notations~Refs.
2 and 8!. Let c(x,z) and c* (x,z) be two linearly independent solutions~cf. Sec. II! of the
Sturm–Liouville equation:

„]x
21u~x!…c~x,z!5z2c~x,z!. ~1.3!

Then the following relations,

W„c~x,z1!c* ~x,z1!,c~x,z2!c* ~x,z2!…

52~z1
22z2

2!21]x@W„c~x,z1!,c~x,z2!…W„c* ~x,z1!,c* ~x,z2!…#

52~z1
22z2

2!21]x@W„c~x,z1!,c* ~x,z2!…W„c* ~x,z1!,c~x,z2!…# ~1.4!

(z1 ,z2PC), we will call the Faddeev–Tahtajan identity. This relation has a long history. It wa
used in the theory of inverse spectral problems for the Sturm–Liouville operators. Afterward
Faddeev–Tahtajan identity played an important role in the first years of soliton theory. In R
the origin of the identity is interpreted in terms of classicalr-matrixes. Here we will explain the
origin of the Faddeev–Tahtajan identity using the language of tau functions.

The first main result in this paper is given in the following.
Theorem 1.1: The Faddeev–Tahiajan identity (1.4) follows from the Fay identity (1.1) fo

KdV tau functions.
The second main result in the present article is given in the following.
Theorem 1.2:Let t(t), tPC` be an arbitrary KdV tau function. Then
(i) for every z1 ,z2PC,

~z22z1!†t~ t1@z1#1@z2# !t~ t2@z1# !t~ t2@z2# !2t~ t2@z1#2@z2# !t~ t1@z1# !t~ t1@z2# !‡

5~z21z1!†t~ t1@z1#2@z2# !t~ t2@z1# !t~ t1@z2# !2t~ t2@z1#1@z2# !t~ t1@z1# !

3t~ t2@z2# !‡;

(ii) for every zPC

t~ t12@z# !t2~ t2@z# !2t~ t22@z# !t2~ t1@z# !

52(
k50

`

z2k11
†t~ t2@z# !W2k11„t~ t !,t~ t1@z# !…1t~ t1@z# !W2k11„t~ t !,t~ t2@z# !…‡,

where we denote W2k11( f ,g)ª f (] t2k11
g)2(] t2k11

f )g, k50,1,2,... .
Remark 1.3:Let us mention that the identities from Theorem 1.2 are cubic int relations

~contrary to the Fay identity, which is quadratic in thet relation! and they are specific only for th
KdV tau functions.

Remark 1.4:The proof of Theorem 1.2 is basedonly on the following three facts:
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~i! The Fay identity~1.1! ~which is common for all tau functions!,
~ii ! the relation~1.2! ~which is specific only for KdV tau functions!, and
~iii ! the obvious identity for Wronskians:

W~ f 1f 2 ,g1g2!5 f 1g1W~ f 2 ,g2!1 f 2g2W~ f 1 ,g1!5 f 1g2W~ f 2 ,g1!1 f 2g1W~ f 1 ,g2!. ~1.5!

The paper consists of four sections. In Sec. II we give some preliminary results. The pro
Theorems 1.1 and 1.2 are given in Sec. III. In Sec. IV we give some examples and comme
the main statements. A preliminary~and from different viewpoint! version of some of the result
is presented in Refs. 12 and 13.

II. PRELIMINARY RESULTS

First, let us mention some obvious relations for Wronskians.
Lemma 2.1:

~ i! W~ez1xf ,ez2xg!5e~z11z2!x@W~ f ,g!2~z12z2! f g#,

~ ii ! WS f 1

g
,
f 2

g D5
W~ f 1 , f 2!

g2 ,

~ iii ! ]xS f 1f 2

g2 D52
f 1W~ f 2 ,g!1 f 2W~ f 1 ,g!

g3 .

Instead of Fay identity~1.1! we will use the differential Fay identity of Ref. 8 (z1 ,z2PC):

W„t~ t1@z1# !,t~ t1@z2# !…5~z2
212z1

21!†t~ t1@z1# !t~ t1@z2# !2t~ t !t~ t1@z1#1@z2# !‡. ~2.1!

Shifting the argumentt respectively to (t2@z1#2@z2#), (t2@z2#), and (t2@z1#) we could obtain
expressions respectively for the following Wronskians:

W„t~ t2@z1#,t~ t2@z2# !…, W„t~ t1@z1#2@z2# !,t~ t !…, W„t~ t2@z1#1@z2# !,t~ t !….

But, shifting t we cannot obtain an expression, e.g., for the Wronskian:

W„t~ t1@z1# !,t~ t2@z2# !….

This is possible for KdV tau functions. Using~2.1! and ~1.2!, it is easy to see that

W„t~ t1@z1# !,t~ t2@z2# !…52~z2
211z1

21!†t~ t1@z1# !t~ t2@z2# !2t~ t !t~ t1@z1#2@z2# !‡.

This way we obtain the following expressions for the Wronskians of KdV tau functions.
Lemma 2.2: Lett(t) be an arbitrary KdV tau function. Then we have

~ i! W„t~ t1@z1# !,t~ t1@z2# !…5~z2
212z1

21!†t~ t1@z1# !t~ t1@z2# !2t~ t !t~ t1@z1#1@z2# !‡,

W„t~ t2@z1# !,t~ t2@z2# !…52~z2
212z1

21!†t~ t2@z1# !t~ t2@z2# !2t~ t !t~ t2@z1#2@z2# !‡,

W„t~ t2@z1# !,t~ t1@z2# !…5~z2
211z1

21!†t~ t2@z1# !t~ t1@z2# !2t~ t !t~ t2@z1#1@z2# !‡,

W„t~ t1@z1# !,t~ t2@z2# !…52~z2
211z1

21!†t~ t1@z1# !t~ t2@z2# !2t~ t !t~ t1@z1#2@z2# !‡,

~ ii ! W„t~ t1@z1#2@z2# !,t~ t !…5~z2
212z1

21!†t~ t1@z1#2@z2# !t~ t !2t~ t1@z1# !t~ t2@z2!‡,

W„t~ t2@z1#1@z2# !,t~ t !…52~z2
212z1

21!†t~ t2@z1#1@z2# !t~ t !2t~ t2@z1# !t~ t1@z2!‡,
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W„t~ t2@z1#2@z2# !,t~ t !…5~z2
211z1

21!†t~ t2@z1#2@z2# !t~ t !2t~ t2@z1# !t~ t2@z2!‡,

W„t~ t1@z1#1@z2# !,t~ t !…52~z2
211z1

21!†t~ t1@z1#1@z2# !t~ t !2t~ t1@z1# !t~ t1@z2!‡.

Let us define thewave functionsc(t,z) andc* (t,z) in Ref. 8 by expressions

c~ t,z!ªexpS (
k51

`

tkz
kD t~ t2@z21# !

t~ t !
,

c* ~ t,z!ªexpS 2 (
k51

`

tkz
kD t~ t1@z21# !

t~ t !
.

For an arbitrary KdV tau functiont(t), denotingu(t)ª2]x
2 ln t(t), it is well-known ~Ref. 8! that

the wave functionsc(t,z) and c* (t,z) satisfy the Sturm–Liouville equation~1.3! ~t1[x and
t3 ,t5 ,... areparameters!. Using the relations of Lemma 2.2 we can explain the Wronskians of
wave functionsc(t,z) andc* (t,z) in terms of the tau functiont(t).

Lemma 2.3: Lett(t) be an arbitrary KdV tau function andc(t,z) and c* (t,z) are the
corresponding wave functions. Then we have(z1 ,z2PC)

~ i! W„c~ t,z1!,c~ t,z2!…5~z12z2! expS (
k50

`

t2k11~z1
2k111z2

2k11!D t~ t2@z1
21#2@z2

21# !

t~ t !
,

~ ii ! W„c* ~ t,z1!,c* ~ t,z2!…52~z12z2! expS 2 (
k50

`

t2k11~z1
2k111z2

2k11!D
3

t~ t1@z1
21#1@z2

21# !

t~ t !
,

~ iii ! W„c~ t,z1!,c* ~ t,z2!…5~z11z2! expS (
k50

`

t2k11~z1
2k112z2

2k11!D t~ t2@z1
21#1@z2

21# !

t~ t !
,

~ iv! W„c* ~ t,z1!,c~ t,z2!…52~z11z2! expS 2 (
k50

`

t2k11~z1
2k112z2

2k11!D t~ t1@z1
21#2@z2

21# !

t~ t !
.

Proof: Let us denote the functions

w~ t,z!ªezx
t~ t2@z21# !

t~ t !
, w* ~ t,z!ªezx

t~ t1@z21# !

t~ t !
.

Then we have

c~ t,z!5expS (
k51

`

t2k11z2k11Dw~ t,z!, c* ~ t,z!5expS 2 (
k51

`

t2k11z2k11Dw* ~ t,z!,

and consequently we have

W„c~ t,z1!,c~ t,z2!…5expS (
k51

`

t2k11~z1
2k111z2

2k11!DW„w~ t,z1!,w~ t,z2!…, etc.

Using the relations of Lemmas 2.1 and 2.2 we obtain
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W„w~ t,z1!,w~ t,z2!…5WS ez1x
t~ t2@z1

21# !

t~ t !
,ez2x

t~ t2@z2
21# !

t~ t ! D
5e~z11z2!xFWS t~ t2@z1

21# !

t~ t !
,
t~ t2@z2

21# !

t~ t ! D
2~z12z2!

t~ t2@z1
21# !t~ t2@z2

21# !

t2~ t ! G
5e~z11z2!xFW„t~ t2@z1

21# !,t~ t2@z2
21# !…

t2~ t !

2~z12z2!
t~ t2@z1

21# !t~ t2@z2
21# !

t2~ t ! G
5

e~z11z2!x

t2~ t !
@~z12z2!„t~ t2@z1

21# !t~ t2@z2
21# !2t~ t !t~ t2@z1

21#2@z2
21# !…

2~z12z2!t~ t2@z1
21# !t~ t2@z2

21# !#

5~z12z2!ex~z11z2!
t~ t2@z1

21#2@z2
21# !

t~ t !
.

From here follows~i!, because we have (t1[x)

ex~z11z2! expS (
k51

`

t2k11~z1
2k111z2

2k11!D 5expS (
k50

`

t2k11~z1
2k111z2

2k11!D .

It is easy to proove~ii !, ~iii !, and~iv! in the same way. h

III. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.2:First we will prove the identity~i!. Using the identities of Lemma 2.2
and ~1.5!, let us expand the following Wronskian:

W„t~ t1@z1# !t~ t2@z1# !,t~ t1@z2# !t~ t2@z2# !…

in two different ways. From the first line of~1.5! we obtain

~z2
212z1

21!t~ t !†t~ t2@z1#2@z2# !t~ t1@z1# !t~ t1@z2# !

2t~ t1@z1#1@z2# !t~ t2@z1# !t~ t2@z2# !‡,

and from the second line of~1.5! we obtain

~z2
211z1

21!t~ t !†t~ t1@z1#2@z2# !t~ t2@z1# !t~ t1@z2# !

2t~ t2@z1#1@z2# !t~ t1@z1# !t~ t2@z2# !‡.

But (z2
212z1

21)5(z12z2 /z1z2 and (z2
211z1

21)5(z11z2)/z1z2 , so we have

t~ t !

z1z2
@ lhs of ~ i !#5

t~ t !

z1z2
@rhs of ~ i !#.

The proof of the first identity of Theorem 1.2 is completed.
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Now we will obtain the second identity~ii ! of Theorem 1.2 lettingz2 tend toz1 in the first
identity ~i! ~we will denotez15z25z!. The lhs of~ii ! is clear. In order to obtain the rhs of~ii ! we
mention that:

]z2
„t~ t1@z1#2@z2# !…uz25z15z5]z2

FtX~x1z1!2z2 ,S t31
z1

3

3 D 2
z2

3

3
,S t51

z1
5

5 D 2
z2

5

5
,...CGU

z25z15z

52 (
k50

`

z2k] t2k11
t~ t !.

In the same way we obtain

]z2
„t~ t2@z1#1@z2# !…uz25z15z5 (

k50

`

z2k] t2k11
t~ t !,

]z2
„t~ t1@z2# !…uz25z5 (

k50

`

z2k] t2k11
t~ t1@z# !,

]z2
„t~ t2@z2# !…uz25z52 (

k50

`

z2k] t2k11
t~ t2@z# !,

So, from the rhs of~i! we obtain

t~ t2@z# !(
k50

`

2z2k11@t~ t !] t2k11
t~ t1@z# !2t~ t1@z# !] t2k11

t~ t !#

1t~ t1@z# !(
k50

`

2z2k11@t~ t !] t2k11
t~ t2@z# !2t~ t2@z# !] t2k11

t~ t !#,

which gives the rhs of~ii !. h

Proof of Theorem 1.1:On the one hand, using the expressions of the wave functionsc(t,z)
and c* (t,z) in terms of tau functiont(t) ~in our caset is an arbitrary KdV tau function! we
obtain from the first line of~1.4!

W[W@c~ t,z1!c* ~ t,z1!,c~ t,z2!c* ~ t,z2!#

5WS t~ t1@z1
21# !t~ t2@z1

21# !

t2~ t !
,
t~ t1@z2

21# !t~ t2@z2
21# !

t2~ t ! D
5

1

t4~ t !
W„t~ t1@z1

21# !t~ t2@z1
21# !,t~ t1@z2

21# !t~ t2@z2
21# !….

From the proof of the identity~i! of the Theorem 1.2 we know that this equals either

z22z1

t3~ t !
†t~ t2@z1

21#2@z2
21# !t~ t1@z1

21# !t~ t1@z2
21# !

2t~ t1@z1
21#1@z2

21# !t~ t2@z1
21# !t~ t2@z2

21# !‡,

or
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z21z1

t3~ t !
†t~ t1@z1

21#2@z2
21# !t~ t2@z1

21# !t~ t1@z2
21# !

2t~ t2@z1
21#1@z2

21# !t~ t1@z1
21# !t~ t2@z2

21# !‡.

On the other hand, using the relations from Lemmas 2.1–2.3, we obtain from the the seco
of ~1.4!

W1[2~z1
22z2

2!21]x†W@c~ t,z1!,c~ t,z2!#W@c* ~ t,z1!,c* ~ t,z2!#‡

5~z12z2!2~z1
22z2

2!21]xFt~ t2@z1
21#2@z2

21# !t~ t1@z1
21#1@z2

21# !

t2~ t ! G2
z12z2

z11z2
t23~ t !

3@t~ t2@z1
21#2@z2

21# !W~t~ t1@z1
21#1@z2

21# !,t~ t !!1t~ t1@z1
21#1@z2

21# !

3W~t~ t2@z1
21#2@z2

21# !,t~ t !!#

5
z22z1

z11z2
t23~ t !†t~ t2@z1

21#2@z2
21# !~2~z11z2!~t~ t1@z1

21#1@z2
21# !t~ t !2t~ t1@z1

21# !

3t~ t1@z2
21# !!!1t~ t1@z1

21#1@z2
21# !~~z11z2!„t~ t2@z1

21#2@z2
21# !t~ t !2t~ t2@z1

21# !

3t~ t2@z2
21# !…!‡

5
z22z1

t3~ t !
†t~ t2@z1

21#2@z2
21# !t~ t1@z1

21# !t~ t1@z2
21# !2t~ t1@z1

21#1@z2
21# !t~ t2@z1

21# !

3t~ t2@z2
21# !‡, j

and for the third line of~1.4!

W2[2~z1
22z2

2!21]x†W@c~ t,z1!,c* ~ t,z2!#W@c* ~ t,z1!,c* ~ t,z2!#‡

5~z11z2!2~z1
22z2

2!21]xFt~ t2@z1
21#1@z2

21# !t~ t1@z1
21#2@z2

21# !

t2~ t ! G
52

z11z2

z12z2
t23~ t !†t~ t2@z1

21#1@z2
21# !W~t~ t1@z1

21#2@z2
21# !,t~ t !!1t~ t1@z1

21#

2@z2
21# !W„t~ t2@z1

21#1@z2
21# !,t~ t !…‡

5
z21z1

z12z2
t23~ t !†t~ t2@z1

21#1@z2
21# !~2~z12z2!„t~ t1@z1

21#2@z2
21# !t~ t !2t~ t1@z1

21# !

3t~ t2@z2
21# !…!1t~ t1@z1

21#2@z2
21# !~~z12z2!„t~ t2@z1

21#1@z2
21# !t~ t !2t~ t2@z1

21# !

3t~ t1@z2
21# !…!‡

5
z21z1

t3~ t !
†t~ t1@z1

21#2@z2
21# !t~ t2@z1

21# !t~ t1@z2
21# !2t~ t2@z1

21#1@z2
21# !t~ t1@z1

21# !

3t~ t2@z2
21# !‡. j

This way we obtain thatW equals toW1 or W2 , i.e., the Faddeev–Tahtajan identity
fulfilled. h
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IV. CONCLUSION REMARKS AND EXAMPLES

First we illustrate the identities from Theorem 1.2 by examples with polynomial KdV
functions. The author thanks F. A. Gru¨nbaum for suggestions that include these examples in
body of the paper.

Example 4.1: The first nontrivial polynomial KdV tau function ist1(t)ªt1 . In this case the
examination of the identities~i! and~ii ! of Theorem 1, is easy to do directly and the result is t
the both sides of~i! are equal to 2z1z2

322z1
3z2 and the both sides of~ii ! are equal to 4z3.

Example 4.2: The next polynomial KdV tau function is of degree 3:t3(t)ªt1
323t3 and as is

clear from the results, the examination of the identities~i! and ~ii ! of Theorem 1, in this case is
difficult to do directly. We used the system Maple V Release 4 at RIMS, Kyoto University. So
both sides of~i! are equal to

6~z1z2
32z1

3z2!t1
6136~z1

5z22z1z2
5!t1

41126~z1z2
32z1

3z2!t1
3t3154~z1

3z2
52z1

5z2
3!t1

2

154~z1
5z22z1z2

5!t1t3154~z1z2
32z1

3z2!t3
2,

and the both sides of~ii ! are equal to

12z3t1
62144z5t1

41252z3t1
3t31108z7t1

22216z5t1t31108z3t3
2.

There were some problems with fixing the correct form of the KdV tau func
t3(t)-polynomial of the formt1

32at3 . The functiont1
32at3 satisfies the Fay identity~1.1! iff a

53.
Remark 4.3: Applying the identities~1.5! to the Wronskian,

W„t~ t1@z1# !t~ t2@z1# !t~ t1@z3# !t~ t2@z3# !,t~ t1@z2# !t~ t2@z2# !t~ t1@z4# !t~ t2@z4# !…

(z1 ,z2 ,z3 ,z4PC), we can obtain eight different~equivalent! expessions where we have Wronsk
ans of two tau functions only~i.e., without any Wronskian of products of tau functions!. The
expressions are separated in two groups and applying Lemma 2.2 we could see that the r
identities among the expressions in each group are easily obtained using the result of Theo
~i!. The equality of the given bellow expressions~from the two groups! is a nontrivial seventh-
order ~specific for KdV tau functions only! identity:

~z4
212z3

21!t~ t1@z1# !t~ t2@z1# !t~ t1@z2# !t~ t2@z2# !†t~ t1@z3# !t~ t1@z4# !t~ t2@z3#2@z4# !

2t~ t2@z3# !t~ t2@z4# !t~ t1@z3#1@z4# !‡1~z2
212z1

21!t~ t1@z3# !t~ t2@z3# !t~ t1@z4# !t~ t

2@z4# !†t~ t1@z1# !t~ t1@z2# !t~ t2@z1#2@z2# !2t~ t2@z1# !t~ t2@z2# !t~ t1@z1#1@z2# !‡

5~z2
212z3

21!t~ t1@z1# !t~ t2@z1# !t~ t1@z4# !t~ t2@z4# !†t~ t1@z2# !t~ t1@z3# !t~ t2@z2#

2@z3# !2t~ t2@z2# !t~ t2@z3# !t~ t1@z2#1@z3# !‡

1~z4
212z1

21!t~ t1@z2# !t~ t2@z2# !t~ t1@z3# !t~ t2@z3# !†t~ t1@z1# !t~ t1@z4# !t~ t2@z1#

2@z4# !2t~ t2@z1# !t~ t2@z4# !t~ t1@z1#1@z4# !‡.

It is clear that this way we can obtain generalized identities of order 2n21 for anyn54,5,... . The
identities from Theorem 1.2 and Remark 4.3 correspond to the casesn52 andn53, respectively.

Example 4.4: For the first polynomial tau functiont1(t)5t1 , both sides of the identity from
Remark 4.3 are equal to

2~2z1
21z2

22z3
21z4

2!t1
414~z1

2z3
22z2

2z4
2!t1

212~2z1
2z2

2z3
21z1

2z2
2z4

22z1
2z3

3z4
21z2

2z3
2z4

2!.

For the next polynomial KdV tau functiont3(t)5t1
323t3 , both sides of this identity have to

many terms~more than 250!.
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Remark 4.5: As we mentioned in the Introduction, there are some problems to translat
identity ~i! from Theorem 1.2 to the cases when KdV tau function is expressed by trigonom
functions or elliptic theta functions. The problems come, roughly speaking, from the fact th
the original Fay identity~i.e., for theta functions related to Jacobians! is used the ‘‘Prime Form’’
@e.g., in theg51 case:u11(z02z1)„u118 (0)…21#, but in the Fay identity~1.1! for KP tau functions
is used the difference (z02z1) instead. Our next task is to fix these problems and to fin
‘‘geometric’’ explanation of the identities from the present paper. It will be done in some fu
article.

Remark 4.6: The ‘‘elliptic version’’ of the identity ~ii ! from Theorem 1.2 is the following
relation:

u118 ~0!@u11~x12z!011
2 ~x2z!2u11~x22z!u11

2 ~x1z!#

5u11~2z!@u11~x2z!W„u11~x!,u11~x1z!…1u11~x1z!W~u11~x!,u11~x2z!!#.

It is easily obtained from the elliptic version of the identity~i! from Theorem 1.2~cf. the Intro-
duction! letting z1→z2 and denotingz15z2[z.
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An integrable nonlinear partial differential equation typically extends to a hierarchy
of integrable equations. There exist several recursive schemes for obtaining these
hierarchies. Recently, explicit expressions for the KdV hierarchy have been found.
We derive explicit expressions for the hierarchy associated with the KP equation.
The main tools are Sato’s theory, Hirota’s formalism, and Bell’s polynomials.
© 1999 American Institute of Physics.@S0022-2488~99!00805-1#

I. INTRODUCTION

In this paper we derive some new formulas for the Kadomtsev–Petviashvili~KP! and the
Korteweg–de Vries~KdV! hierarchies of solitonic partial differential equations. The proofs r
on the properties of the so-called Bell polynomials and their transforms.

The KdV hierarchy1 consists of a sequence of evolution equations

]u

]t2n21
5K2n21@u#, n>2, ~1!

the flows of which commute with each other. Hereu depends on an infinite set of variable
t1 ,t3 ,t5 ,... andKn@u# is a polynomial in the variableu and itst1 derivatives up to some highe
order. The first equation of the hierarchy, i.e., the KdV equation itself, reads

]u

]t3
5

1

4
u~3!13uu~1!, ~2!

where we use the notation

u~k!5
]ku

]t1
k .

It is well known that the KdV hierarchy is generated by Lenard’s recursion1

K2n11@u#5RK2n21@u#,

where the recursion operator reads

R5
1

4 S ]

]t1
D 2

12u1u~1!S ]

]t1
D 21

.

24290022-2488/99/40(5)/2429/16/$15.00 © 1999 American Institute of Physics
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Hirota2,3 succeeded in finding bilinear forms for a large number of solitonic equations. L
recall the definition of Hirota’s bilinear operatorsD j acting on pairs of functionst~t! ands~t!:

D j~t•s!~ t!5
]

]zj
„t~ t1z!s~ t2z!…U

z50

, ~3!

where

t5~ t1 ,t2 ,t3 ,...!

denotes a sequence of real variablestn and

z5~z1 ,z2 ,z3 ,...!

is an auxiliary sequence. More generally, letP denote a polynomial in several variables wi
constant coefficients. Then Hirota defines

P~D!~t•s!~ t!5PS ]

]zD „t~ t1z!s~ t-z!…U
z50

, ~4!

with the symbolic sequences

D5~D1 ,D2 ,D3 ,...!

and

]

]z
5S ]

]z1
,

]

]z2
,

]

]z3
,¯ D .

The so-calledt-function is introduced by

u5
]2

]t1
2 log ~t!.

Then the following bilinear expression for the KdV equation holds:

~4D1D32D1
4!~t•t!50. ~5!

The KdV hierarchy can be viewed as a reduction of the more general KP hierarchy4 which begins
with the KP equation itself:

]u

]t3
5

1

4
u~3!13uu~1!1

3

4 E ]2u

]t2
2 dt1 , ~6!

whereu now depends on an infinite set of variablest1 ,t2 ,t3 ,... . TheLenard recursion has bee
extended to some complicated bilocal recursion scheme for the KP equation by Foka
Santini:5

]u

]tn
5Kn,KP@u#, n>3, ~7!

where nowKn,KP@u# is a polynomial depending onu, *(]2u/]t2
2)dt1 and their highert1 deriva-

tives up to some order. The higher KP equations generate symmetries for the lower ones.
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Sato’s theory4,6 describes the KP hierarchy by means of pseudodifferential operators a
so-calledt-function. This theory allows a compact formulation of this hierarchy in bilin
terms:7,9

1
2D1Dn~t•t!5Sn11~D!~t•t!, n>3. ~8!

The KdV hierarchy emerges from the KP hierarchy by a two-reduction, which means, in pa
lar, that allt2 ,t4 ,t6 ,... dependencies disappear.

The right-hand side of~8! is given by the (n11)-th Schur polynomialSn11 . The sequence o
the Schur polynomialsSn(t)5Sn(t1 ,...,tn) is defined through the generating function

expS (
n51

`

tn

hn

n D 5 (
n50

`

Sn~ t1 ,...,tn!hn.

Let us also introduce a modificationPn(t)5Pn(t1 ,...,tn) of the Schur polynomials which is
defined through the generating function

expS (
n51

`

tnhnD 5 (
n50

`

Pn~ t1 ,...,tn!hn.

Starting from~8!, we have found the following explicit expression of the KP hierarchy:

]2ũ

]t1]tn
5 (

k50

n

PkXS1S ]

]tD ~ ũ!,¯,SkS ]

]tD ~ ũ!CPn2kXS1S 2
]

]tD ~ ũ!,¯,Sn2kS 2
]

]tD ~ ũ!C,
in terms of the function

ũ5E E u dt1 dt15 log ~t!

and of the symbolic sequence

]

]t
5S ]

]t1
,

]

]t2
,

]

]t3
,¯ D .

Moreover, in terms of the functionu and of two sequences of functionszn and zn* , which are
recursively defined by

zn52
1

2 S ]zn21

]t1
2E ]zn21

]t2
dt11 (

k51

n22

zkzn212kD , z152u,

zn* 52
1

2 S ]zn21*

]t1
1E ]zn21*

]t2
dt11 (

k51

n22

zk* zn212k* D , z1* 5u,

the KP hierarchy assumes the form:

]u

]tn
5

]

]t1
Pn11S E ~z11z1* !dt1 ,¯,E ~zn1zn* !dt1D , n>3.

Finally, in the KdV case the analogous explicit expression takes the form

]u

]t2n21
5

]

]t1
PnS 2E z2 dt1 ,¯,2E z2n dt1D , n>3,
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where now

zn52
1

2 S ]zn21

]t1
1 (

k51

n22

zkzn212kD , z152u.

II. THE BELL POLYNOMIALS

In this section, we introduce the Bell polynomials together with some of their transforms
list several properties. In particular, we derive a new determinant representation.

The sequence of the Bell polynomialsBn(t)5Bn(t1 ,...,tn), n51,2,3,..., in real variables
t1 ,t2 ,t3 ,... is defined by the bilinear recursion10,11

Bn11~ t!5 (
k50

n S n
kDBk~ t!tn112k , B0~ t!51. ~9!

Equivalently, the Bell polynomials can be introduced through the generating function:12

expS (
n51

`

tn

hn

n! D 5 (
n50

`

Bn~ t!
hn

n!
. ~10!

The first few Bell polynomials read as follows:

B0~ t!51,

B1~ t!5t1 ,

B2~ t!5t1
21t2 ,

B3~ t!5t1
313t1t21t3 ,

B4~ t!5t1
416t1

2t213t2
214t1t31t4 ,

B5~ t!5t1
5110t1

3t2115t1t2
2110t1

2t3110t2t315t1t41t5 .

The following explicit formula goes back to Faa´ di Bruno:13

Bn~ t!5 (
imi5n

n!

m! S t1

1! D
m1S t2

2! D
m2

¯S tn

n! D
mn

, ~11!

where we use some multiindex notation for non-negative integersm1 ,...,mn :

m5~m1 ,m2 ,...,mn!, m! 5m1!m2!¯mn!,

imi51•m112•m21¯1n•mn .

We shall also consider some close relatives of the Bell polynomials, namely, the S
polynomialsSn(t)5Sn(t1 ,...,tn) defined by

expS (
n51

`

tn

hn

n D 5 (
n50

`

Sn~ t1 ,...,tn!hn ~12!

and the modified Schur polynomialsPn(t)5Pn(t1 ,...,tn) defined by
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expS (
n51

`

tnhnD 5 (
n50

`

Pn~ t1 ,...,tn!hn. ~13!

Both these are closely related to the Bell polynomials, namely,

Sn~ t1 ,...,tn!5
1

n!
Bn„0!t1 ,...,~n21!! tn…, ~14!

Pn~ t1 ,...,tn!5
1

n!
Bn~1!t1 ,...,n! tn!. ~15!

Let us further consider the ‘‘thinned Bell polynomials’’ where either the even varia
t2 ,t4 ,... or the oddvariablest1 ,t3 ,... are set tozero.

Proposition 1:For n>0 there holds

B2n~2t1,0,2t3,0,...,2t2n21,0!5B2n~ t1,0,t3,0,...,t2n21,0!,

B2n11~2t1,0,2t3,0,...,2t2n11!52B2n11~ t1,0,t3,0,...,t2n11!,

B2n11~0,t2,0,t4 ,...,0!50,

B2n~0,t2,0,t4 ,...t2n!5
~2n!!

n!
Bn S 1!

2!
t2 ,

2!

4!
t4 ,,¯,

n!

~2n!!
t2nD .

Proof: From

expS (
n51

`

~2t2n21!
h2n21

~2n21!! D 5expS (
n51

`

t2n21

~2h!2n21

~2n21!! D
we obtain immediately

(
n50

`

Bn~2t1,0,2t3,0,̄ ,!
hn

n!
5 (

n50

`

Bn~ t1,0,t3,0,̄ ,!
~2h!n

n!
.

Further, from the generating function we have on the one hand,

expS (
n51

`

t2n

h2n

~2n!! D 5 (
n50

`

Bn~0,t2,0,t4 ,¯ !
hn

n!
,

and, on the other hand,

expS (
n51

`

t2n

h2n

~2n!! D 5expS (
n51

`

t2n

n!

~2n!!

~h2!n

n! D
5 (

n50

`

BnS 1!

2!
t2 ,

2!

4!
t4 ,¯,

n!

~2n!!
t2nD ~h2!n

n!

5 (
n50

`
~2n!!

n!
BnS 1!

2!
t2 ,

2!

4!
t4 ,¯,

n!

~2n!!
t2nD h2n

~2n!!
.

The results follow.
Let us also introduce the inverse Bell polynomialsBn

2(t)5Bn
2(t1 ,...,tn) by the bilinear

recursion
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Bn11
2 ~ t!5tn112 (

k51

n S n
k21DBk

2~ t!tn112k , B0
2~ t!51. ~16!

They naturally appear if the system~9! is inverted, i.e., solved for the variablest1 ,t2 ,t3 ,... .
Namely, if we replace in~9! tn by Bn

2 and vice versa we get

tn115 (
k50

n S n
kD tkBn112k

2 ~ t!,

which is nothing but~16!. The same replacement transforms~10! into

expS (
n51

`

Bn
2

hn

n! D 5 (
n50

`

tn

hn

n!
, t051, ~17!

becoming equivalent to

log S 11 (
n51

`

tn

hn

n! D 5 (
n51

`

Bn
2~ t!

hn

n!
. ~18!

Thus we have found the generating function of the inverse Bell polynomialsBn
2(t1 ,...,tn). The

first few of them read as follows:

B1
2~ t!5t1 ,

B2
2~ t!52t1

21t2 ,

B3
2~ t!52t1

323t1t21t3 ,

B4
2~ t!526t1

4112t1
2t223t2

224t1t31t4 ,

B5
2~ t!524t1

5260t1
3t2130t1t2

2120t1
2t3210t2t325t1t41 l 5 .

Finally, we derive a representation of the Bell polynomials in the form of a determinan
Proposition 2:There holds forn>2:

Bn5U S 0
0D t1 21 0 ¯ 0

S 1
0D t2 S 1

1D t1 21 ¯ 0

A A A A A

S n22
0 D tn21 S n22

1 D tn22 S n22
2 D tn23 ¯ 21

S n21
0 D tn S n21

1 D tn21 S n21
2 D tn22 ¯ S n21

n21D t1

U .

Proof: We shall show that the determinantuMnu of the matrixMn given by the right-hand side
of the above identity satisfies the bilinear recursion~9!. To this end we expand the determina
uMnu with respect to the last row. The element (k

n21)tn2k is multiplied by its algebraic comple
ment
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~21!n2k21UMk Ok

Hk Tk
U5~21!n2k21uMkuuTku5~21!n2k21uMku~21!n2k215uMku.

HereOk stands for thek3(n2k21) zero matrix andHk is some (n2k21)3k matrix of less
importance.Tk is a (n2k21)3(n2k21) lower triangular matrix with diagonal elements21,
henceuTku5(21)n2k. Furthermore, we setuM0u51, uM1u5t1 and uT0u51. All together, we
obtain

uMnu (
k50

n21 S n21
k D uMkutn2k , uM0u51,

and the proof is completed.
Notice that instead of the variablest5(t1 ,t2 ,t3 ,...), anyother commutative variables can b

inserted into the Bell polynomials. For instance, inserting the differentiations

]

]t
5S ]

]t1
,

]

]t2
,

]

]t3
,¯ D ,

we obtain from the Faa´ di Bruno formula~11!:

BnS ]

]tD „t~ t!…5 (
imi5n

`
n!

m! S 1

1!

]

]t1
D m1S 2

2!

]

]t2
D m2

¯S 1

n!

]

]tn
D mn

„t~ t!…. ~19!

This enables us to handle the formal Taylor expansion:

t~ t1h!5 (
n50

`
1

n! S h•
]

]tD
n

„t~ t!…

5expS h•
]

]tD „t~ t!…

5 (
n50

`

BnS ]

]tD „t~ t!…
hn

n!

5 (
n50

`

SnS 1

0!

]

]t1
,¯,

1

~n21!!

]

]tn
D „t~ t!…hn,

whereh is the sequence

h5S h

1!
,
h2

2!
,
h3

3!
,¯ D

and

h•
]

]t
5

h

1!

]

]t1
1

h2

2!

]

]t2
1

h3

3!

]

]t3
1¯ .

For later convenience we derive the following formula:
Proposition 3:There holds forn>0,

exp„2t~ t!…BnS ]

]tD ~exp„t~ t!…!5BnXB1S ]

]tD „t~ t!…,¯,BnS ]

]tD „t~ t!…C.
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Proof: Through Taylor expansion we obtain on the one hand

exp„t~ t1h!…5 (
n50

`

BnS ]

]tD ~exp„t~ t!…!
hn

n!
,

and on the other hand

exp„t~ t1h!…5expS t~ t!1 (
n51

`

BnS ]

]tD „t~ t!…
hn

n! D
5exp„t~ t!…(

n50

`

BnXB1S ]

]tD „t~ t!…,¯,BnS ]

]tD „t~ t!…C hn

n!
.

Comparison of the coefficients ofhn/n! gives the result.
Next we shall produce some Hirota-type Leibniz rule.
Proposition 4:There holds forn>1,

Bn~D!~t•s!~ t!5 (
k50

n S n
kDBkS ]

]tD „t~ t!…Bn2kS 2
]

]tD „s~ t!….

Proof: We obtain by Taylor expansion

t„t1~z1h!…s„t2~z1h!…5 (
n50

`

BnS ]

]z1
,

]

]z2
,

]

]z3
,¯ D „t~ t1z!s~ t2z!…

hn

n!
.

Here we setz50:

t~ t1h!s~ t2h!5 (
n50

`

Bn~D!~t•s!~ t!
hn

n!
.

Multiplication of the series expansions oft ands gives, alternatively,

t~ t1h!s~ t2h!5 (
n50

`

BnS ]

]tD „t~ t!…
hn

n! (
n50

`

BnS 2
]

]tD „s~ t!…
hn

n!

5 (
n50

`

(
k50

n

BkS ]

]tD „t~ t!…Bn2kS 2
]

]tD „s~ t!…
hn

k! ~n2k!!

5 (
n50

` S (
k50

n S n
kDBkS ]

]tD „t~ t!…Bn2kS 2
]

]tD „s~ t!…D hn

n!
.

Comparison of the coefficients ofhn/n! gives the result.

III. HIROTA’S FORMALISM AND THE KdV EQUATION

Let us make explicit some expressions which appear in Hirota’s formalism.2,3 By using

t~ t!5expS E E u~ t! dt1 dt1D
we now will express the bilinear quantitiesD1

n(t•t)(t) as differential polynomials inu(t)
5(]2/]t1

2)log „t(t)…. Here*u(t) dt1 denotes any primitive ofu(t) and**u(t) dt1 dt1 any two-
fold primitive.
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From the observationBn( l 1,0,...,0)5t1
n we obtain the special formulas:

BnS ]

]t1
,0,̄ ,0D ~t~ t1!!5S d

dt1
D n

„t~ t1!…,

BnS 2
]

]t1
,0,̄ ,0D ~t~ t1!!5~21!nS d

dt1
D n

„t~ t1!…,

Bn~D1,0,...,0!~t•t!~ t1!5D1
n~t•t!~ t1!.

Notice that generally

D1
2n11~t•t!~ t!50, n>0.

The even expressionsD1
2n(t•t)(t) do not vanish and we just now calculate these.

Proposition 5:There holds forn>1,

D1
2n~t•t!5

~2n!!

n!
~t!2BnS 2

1!

2!
u,2

2!

4!
u~2!,¯,2

n!

~2n!!
u~2n22!D ,

where

u5
]2

]t1
2 log~t!, u~k!5S ]

]t1
D k

u.

Proof: We can confine ourselves to functions depending only ont1 . Then Taylor expansion
gives

t~ t11h!t~ t12h!5 (
n50

`

D1
n~t•t!~ t1!

hn

n!
5 (

n50

`

D1
2n~t•t!~ t1!

h2n

~2n!!
.

By insertion of

t~ t1!5expS E E u~ t1! dt1 dt1D5exp„ũ~ t1!…

and again by Taylor expansion we obtain

t~ t11h!t~ t12h!5exp~ ũ~ t11h!1ũ~ t12h!!

5expS (
n50

`

2ũ~2n!~ t1!
h2n

~2n!! D
5t~ t1!2 expS (

n51

`

2ũ~2n!~ t1!
h2n

~2n!! D
5t~ t1!2(

n50

`

Bn„0,2ũ~2!~ t1!,0,2ũ~4!~ t1!,...0,2ũ~2n!~ t1!…
hn

n!
.

The result follows.
As a consequence from Proposition 5 we obtain, by virtue of the inverse Bell polyno

Bn
2 , the following propesition.

Proposition 6:There holds forn>1,
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u~2n22!5
~2n!!

2n!
Bn

2S 1!

~2•1!!

1

t2 D2•1~t•t!,¯,
n!

~2n!!

1

t2 D2n~t•t! D ,

whereBn
2 denotes thenth inverse Bell polynomial.

As a further consequence we obtain the following.
Proposition 7:There holds forn>1,

n!

~2n!!

1

t2 D1
2n~t•t!5U S 1

0D2u 21 ¯ 0

S 3
0D2u~2! S 3

2D2u ¯ 0

A A A A

S 2n22
0 D2u„2~n21!22… S 2n22

2 Du„2~n22!22…
¯ 21

S 2n21
0 D2u~2n22! S 2n21

2 D2u„2~n21!22…
¯ S 2n21

2n22D2u

U .

Proof: The proof relies on Proposition 6 and uses determinant rules and proceeds sim
the proof of Proposition 2.

A natural continuation of the KdV equation would be given by the sequence

]u

]t2n21
5

1

2 S 1

4D n21 ~2n!!

n!

]

]t1
BnS 2

1!

2!
u,2

2!

4!
u~2!,¯,2

n!

~2n!!
u~2n22!D . ~20!

It is well known that the stationary KdV equation

1
4u

~2!1 3
2u

25c3

is an ordinary differential equation~ODE! of the Painleve type. The question arises whether or
the following ODE’s,

BnS 2
1!

2!
u,2

2!

4!
u~2!,¯,2

n!

~2n!!
u~2n22!D5c2n21 ,

represent nontrivial integrable equations of the Painleve type.

IV. THE KP AND KdV HIGHER-ORDER EQUATIONS

Let us briefly recall some facts from Sato’s theory.4,6 With the pseudodifferential operator

L5]11u2]1
211u3]1

221¯,
]

]t1
,

its adjoint

L* 52]12]1
21u22]1

22u31¯,

and a real eigenvalue parameterhÞ0 we build up the linear problems

Lc5hc,
]c

]tn
5~Ln!1c, ~21!
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L* c* 5hc,
]c*

]tn
52~Ln!1* c* , ~22!

where the differential operator (Ln)1 is defined as the non-negative part of the pseudodifferen
operatorLn. The first three operators (Ln)1 , (Ln)1* read as

~L1!15]1 ,

~L2!15]1
212u2 ,

~L3!15]1
313u2]113u313

]u2

]t1
,

~L1!1* 52]1 ,

~L2!1* 5]1
212u2 ,

~L3!1* 52]1
323u2]113u3 .

The linear problems~21! and ~22! admit formal solutions, called wave functions,4,6

c~ t!5expS (
n51

`

tnhnD t~ t2h21!

t~ t!
, ~23!

c* ~ t!5expS 2 (
n51

`

tnhnD t~ t1h21!

t~ t!
, ~24!

where

h215S h21

1
,
h22

2
,
h23

3
,¯ D .

We obtain by means of Taylor expansion

log S t~ t7h21!

t~ t! D5 log „t~ t7h21!…2 log „t~ t!…

5 (
n50

`

SnS 7
]

]t D ~ log „t~ t!…!h2n2 log „t~ t !…

5 (
n51

`

SnS 7
]

]tD ~ log „t~ t!…!h2n.

This yields

t~ t7h21!

t~ t!
5expS (

n51

`

SnS 7
]

]t D ~ log „t~ t!…!h2nD
5expX(

n51

` E SnS 7
]

]tD S ]

]t1
log „t~ t!…Dh2nC

and gives the following expression for the wave functions~23! and ~24!:
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c~ t!5expS (
n51

`

tnhnD expX(
n51

` E SnS 2
]

]tD S ~]t/]t1!~ t!

t~ t! Ddt1h2nC
5expS (

n51

`

tnhnD expS (
n51

` E zn~ t! dt1h2nD , ~25!

c* ~ t!5expS 2 (
n51

`

tnhnD expX(
n51

` E SnS ]

]tD S ~]t/]t1!~ t!

t~ t! Ddt1h2nC
5expS 2 (

n51

`

tnhnD expS (
n51

` E zn* ~ t! dt1h2nD , ~26!

where

zn5SnS 2
]

]tD S ~]t/]t1!~ t!

t~ t! D , zn* 5SnS ]

]tD S ~]t/]t1!~ t!

t~ t! D .

In Sato’s theory, the KP hierarchy arises from the Lax equations

]

]tn
L5@~Ln!1 ,L !],

and the so-calledt-function serves as a potential for the functionun , in particular

u5u25
]2

]t1
2 log~t!.

Based on the bilinear form~8! we shall now find explicit representations of the polynomi
Kn,KP@u# in ~7!.

Proposition 8:The KP hierarchy can be written as

]2ũ

]t1]tn
5 (

k50

n

PkS S1S ]

]tD ~ ũ!, . . . ,Sk S ]

]tD ~ ũ! D
Pn2kS S1S 2

]

]tD ~ ũ!, . . . ,Sn2k S 2
]

]tD ~ ũ! D ,

whereSn andPn denote the Schur polynomials and the modified Schur polynomials, respect
Moreover, there holds

]u

]tn
5

]

]t1
Pn11S E ~z11z1* ! dt1 ,¯,E ~zn1zn* ! dt1D , n>3.

Proof: We use again

t~ t!5expS E E u~ t! dt1 dt1D5exp„ũ~ t!….

Then by straightforward calculation we obtain the left-hand side of the bilinear KP equation~8!:
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1
2D1Dn~t•t!5 1

2D1Dn„exp~ ũ!•exp~ ũ!…

5exp~2ũ!E ]u

]tn
dt1 .

Therefore, the KP hierarchy in bilinear form reads as:

exp~2ũ!
]2ũ

]t1]tn
5Sn~D!~exp~ ũ!•exp~ ũ!!.

From Propositions 3 and 4 the first assertion follows immediately.
The right-hand side of the bilinear KP can be transformed by Taylor expansion similar t

proof of Proposition 3. There holds on the one hand

exp„ũ~ t1h21!1ũ~ t2h21!…5exp„2ũ~ t!… expS (
n51

` XSnS ]

]tD „ũ~ t!…1SnS 2
]

]tD „ũ~ t!…Ch2nD
5exp„2ũ~ t!…

(
n50

`

PnXS1S ]

]tD „ũ~ t!…1S1S 2
]

]tD „t~ t!…,¯,

SnS ]

]tD „ũ~ t!…1SnS 2
]

]tD „ũ~ t!…Ch2n,

while we obtain on the other hand

exp„ũ~ t1h21!1ũ~ t2h21!…5 (
n50

`

Sn~D!~exp„ũ~ t!…•exp„ũ~ t!…h2n!.

Comparing both expressions gives

Sn~D!„exp~ ũ!•exp~ ũ!…

5exp~2ũ!PnXS1S ]

]tD ~ ũ!1S1S 2
]

]tD ~ ũ!,¯,SnS ]

]tD ~ ũ!1SnS 2
]

]tD ~ ũ!C.
Now the definition of the quantitieszn andzn* , together with

SnS 6
]

]tD ~ ũ!5SnS 6
]

]tD S E E u dt1 dt1D
5E SnS 6

]

]tD S E udt1Ddt1

5E SnS 6
]

]tD S ]

]t1
log „t~ t!…Ddt1,

completes the proof.
Insertion of the wave functions~25! and ~26! into

]c

]t2
5

]2c

]t1
2 12uc,

]c*

]tn
52

]2c

]t1
2 22uc*

produces the following recursion formulas:
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zn52
1

2 S ]zn21

]t1
2E ]zn21

]t2
dt11 (

k51

n22

zkzn212kD , z152u, ~27!

zn* 52
1

2 S ]zn21*

]t1
1E ]zn21*

]t2
dt11 (

k51

n22

zk* zn212k* D , z1* 5u. ~28!

These definezn and zn* as polynomials in the variablesu, *(]u/]t2) dt1 and their higher
t1-derivatives.

Let us finally discuss the KdV case. Here thet-function and thusu depend only on
t1 ,t3 ,t5 ,... . Furthermore, the linear problem]c/]t25B2c reads as

h2c5
]2c

]t1
2 12uc,

and its adjoint version takes the same form,

h2c* 5
]2c

]t1
2 12uc* ,

while the recursion for thezn becomes

zn52
1

2 S ]zn21

]t1
1 (

k51

n22

zkzn212kD , z152u. ~29!

From properties of theBn ~cf. Proposition 1! or equivalently of thePn and from

zn5SnS 2
]

]t1
,0,2

]

]t3
,0,̄ D S ~]t/]t1!~ t!

t D ,

zn* 5SnS ]

]t1
,0,

]

]t3
,0,̄ D S ~]t/]t1!~ t!

t D ,

we get

z2n11* 52z2n11 , z2n* 5z2n .

Therefore the KdV equations become forn>1

]u

]t2n21
5

]

]t1
P2nS 0,2E z2 ,¯,0,2E z2nD

5
]

]t1
PnS 2E z2 ,...,2E z2nD . ~30!

V. DISCUSSION

The partial differential equations of solitonic type appeared, historically, as physical mo
These soliton equations became then seed equations to solitonic hierarchies, i.e., seque
PDEs of evolution type with increasing order. The higher-order equations can be interpre
infinitesimal symmetries to the seed equations, i.e., their flows are one-parameter symme
the latter. The most prominent equations or hierarchies are the Korteweg–de Vries~KdV! and the
Kadomtsev–Petviashvili~KP! ones. We have studied these here by means of Hirota’s bili
formalism and of pseudodifferential operators of Sato–Gelfand–Dickey type. In Sato’s theo
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t-function is governed by a set of equations arising from the conditionreslc(t)c* (t8)50 which
is just the KP hierarchy. In Ref. 7 this hierarchy has been related to the hierarchy of symm
of the KP equation studied in Ref. 4 through formula~8!. In Refs. 8 and 9 constraints of thos
hierarchies and their trilinear forms have been considered. In the present paper the repres
of the KP hierarchy~Proposition 8! and the KdV hierarchy@Eq. ~30!# in terms of the Bell
polynomials and their transforms are the main results. These representations are explicit~nonre-
cursive! expressions since several explicit formulas for the Bell polynomials are known. To
we add some new determinant formulas.

The Bell polynomials and their transforms have been, since the days of Faa´ di Bruno,13

studied from different points of view. Recently, one of the authors~RS et al.! studied the non-
commutative Bell polynomials, i.e., the generalization from real variablest1 ,t2 ,t3 ,... tononcom-
mutative algebra-valued variables.10,11

One of the authors~RS! had found an explicit expression for the KdV hierarchy,14,15 alterna-
tive to the expression found in this paper. Progress has been made with the recent paper,16 where
‘‘full explicitness’’ has been achieved: the constant coefficients of the differential polynomial
given by multiple sums and by products of binomial coefficients.

APPENDIX: EXAMPLES BY MATHEMATICA

Considering the generating functions as functions of the variableh shows that the modified
Schur polynomialsPn can be calculated according to

Pn~ t1 ,...,tn!5
1

n! S d

dhD n

exp~ t1h1¯1tnhn!U
h50

.

This formula can be easily evaluated byMATHEMATICA and the polynomialsP1 ,...,P6 are imple-
mented as follows:

j†t12 ,t22 ,t32 ,t42 ,t52 ,t62‡ªt1*h1t2*hˆ21t3*hˆ31t4*hˆ41t5*hˆ51t6*hˆ6

P†1,t12‡ª ExpandFzh,1‰expzjzt1,t2,t3,t4,t5,t6z
1!

/.h˜0G
P†2,t12 ,t22‡ª ExpandFzh,2‰expzjzt1,t2,t3,t4,t5,t6zz

2!
/.h˜0G

P†3,t12 ,t22 ,t32‡ª ExpandFzh,3‰expzjzt1,t2,t3,t4,t5,t6zz
3!

/.h˜0G
P†4,t12 ,t22 ,t32 ,t42‡ª Expand†

ˆh,4‰ exp†j†t1,t2,t3,t4,t5,t6‡‡/4!/.h˜0‡

P†5,t12 ,t22 ,t32 ,t42 ,t52‡ª ExpandFzh,5‰expzjzt1,t2,t3,t4,t5,t6zz
5!

/.h˜0G
P†6,t12 ,t22 ,t32 ,t42 ,t52 ,t62‡ª ExpandFzh,6‰expzjzt1,t2,t3,t4,t5,t6zz

6!
/.h˜0G

Next, the recursion formula~29! for the KdV case is programmed:

z†n2‡ª2
1

2
Xxz†n21‡1(

k51

n22

z†k‡z†n212k‡C;z†1‡ª2u†x‡
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Let us calculate the differential polynomialsz2 ,z4 ,z6 needed for the KdV equation itself an
for the next higher equation in the hierarchy:

z†2‡//Simplify

u8@x#

2

z†4‡//Simplify

u@x#u8@x#1 1
8u

~3!@x#

z†6‡//Simplify

1
32~64u@x#2u8@x#136u8@x#u9@x#116u@x#u~3!@x#1u~5!@x# !.

According to~30!, we obtain the right-hand side of the first two members of the KdV h
archy]u/]t35K3@u# and]u/]t55K5@u#:

D†P†2,2* Integrate†z†2‡,x‡,2* Integrate†z†4‡,x‡‡,x‡//

Simplify

3u@x#u8@x#1 1
4u

~3!@x#

D†P†3,2* Integrate†z†2‡,x‡,

2* Integrate†z†4‡,x‡,2* Integrate†z†6‡,x‡‡,x‡//

Simplify

1
16~120u@x#2u8@x#140u8@x#u9@x#120u@x#u~3!@x#1u~5!@x# !.
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Attractors for the Klein–Gordon–Schro ¨ dinger equation
Bixiang Wanga)

Department of Applied Mathematics, Tsinghua University,
Beijing 100084, People’s Republic of China

Horst Lange
Mathematisches Institut, Universita¨t zu Köln, D-50931 Köln, Germany
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In this paper we deal with the asymptotic behavior of solutions for the Klein–
Gordon–Schro¨dinger equation. We prove the existence of compact global attractors
for this model in the spaceHl3Hl3Hl 21 for each integerl>1. © 1999 Ameri-
can Institute of Physics.@S0022-2488~99!00405-3#

I. INTRODUCTION

In this paper, we investigate the long time behavior of solutions for the dissipative Kl
Gordon–Schro¨dinger system in a bounded domain ofRn with n<3. This model is concerned with
a complex-valued functionc and a real-valued functionf and takes the form

ic t1Dc1 inc1fc5 f , ~1.1!

f tt1gf t2Df1f2ucu25g, ~1.2!

where n and l are positive constants,f and g driving terms. System~1.1!–~1.2! describes the
interaction of a nucleon fieldc and a meson fieldf through the Yukawa coupling. The dissipativ
mechanism of this model is introduced by the termsinc andgf t .

The well-posedness problem of system~1.1!–~1.2! has been studied by many authors such
Bachelot;1 Hayashi and von Wahl;2 Fukuda and Tsutsumi,3,4 and the references therein.

The long time behavior of solutions for this model has been studied by Biler;5 Li; 6 and Guo
and Li.7 In Ref. 5, the author proved the existence of the weak global attractor in the Hilbert s
H13H1. The finite dimensionality of the weak global attractor was also obtained there.
existence of the strong global attractor inH23H2 was investigated in Refs. 6 and 7.

In this paper, we first intend to establish the continuity property of solutions on initial da
H13H1, which was left open in Ref. 5. For system~1.1!–~1.2!, it seems difficult to show this
continuity by usual methods. We here apply an energy equation to achieve our goal. The
equation method was essentially due to Ball8 ~see also Ref. 9!. The continuity property of solu-
tions is needed for us to construct the strong global attractor and also interesting by itself.

The second purpose of this paper is to present the asymptotic compactness of solut
Hl3Hl for eachl>1. In general, this kind of compactness is more difficult to obtain for wea
dissipative equations such as~1.1!–~1.2! than strongly dissipative ones, such as the Navier–Sto
equaion; see, e.g., Refs. 10–14. Again, we, here, employ an energy equation to estab
desired compactness for the Klein–Gordon–Schro¨dinger model.

As a result of the asymptotic compactness, the existence of the strong global attractorH1

3H1 follows. Obviously, this strong global attractor coincides with the weak one. We men
that here we obtain the existence of the compact global attractor by assuming the driving tf
andg only in L2, which is weaker than the corresponding conditionf PH2 in Ref. 5.

a!Electronic mail: wang@math.byu.edu
24450022-2488/99/40(5)/2445/13/$15.00 © 1999 American Institute of Physics
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Our third task in this paper is to show the existence of the strong global attractor inHk12

3Hk12 when driving termsf and g in Hk with k>0. This is achieved by similar methods a
above, except some more complicated computations.

The organization of this paper is as follows. In the next section, we derivea priori estimates
on the solutions of system~1.1!–~1.2! in Hk123Hk12 when f and g belong toHk with k>0.
These estimates are needed for the proof of the existence of bounded absorbing sets
asymptotic compactness. Then, in Sec. III, we establish the existence of the dynamical s
associated to problem~1.1!–~1.2! in the spaceHl3Hl for eachl>1. Finally, in Sec. IV, we first
prove the asymptotic compactness of the dynamical system and then present the existenc
strong global attractor in each spaceHl3Hl with l>1.

II. A PRIORI ESTIMATES

In this section, we formally derivea priori estimates on solutions of the Klein–Gordon
Schrödinger equation. These estimates hold for smooth functions and will become rigorous
limiting process~e.g., the Galerkin method!.

We first introduce the transformationu5f t1df with d a small positive constant that will b
specified below. Then system~1.1!–~1.2! becomes

ic t1Dc1 inc1fc5 f , in V3R1, ~2.1!

f t1df5u, in V3R1, ~2.2!

u t1~g2d!u2Df1„12d~g2d!…f2ucu25g, in V3R1, ~2.3!

whereV is a smooth~e.g.,C2) bounded domain inRn with n<3. Problem~2.1!–~2.3! is supple-
mented with the initial condition

c~x,0!5c0~x!, f~x,0!5f0~x!, u~x,0!5u0~x!, xPV, ~2.4!

and the boundary condition

~c,f,u!u]V50 or ~c,f,u! is V periodic. ~2.5!

In the sequel, we denote byHs(V) both the standard real and complex Sobolev spaces
H5L2(V). We also usei•i and ~•,•! for the usual norm and inner product ofL2(V). For any
1<p<`, we denote byi•ip the norm ofLp(V) (i•i25i•i). In general,i•iX denotes the norm
of any Banach spaceX.

We are now in a position to derive the estimates on solutions of problem~2.1!–~2.5!. We start
with the estimates inH13H13H.

Lemma 2.1: Assume that f and g belong to H. Then there exists a constantd1 such that when
d<d1 , every solution~c,f,u! of problem (2.1)–(2.5) satisfies

ic~ t !iH11if~ t !iH11iu~ t !i<M , t>t2 ,

where M depends on(n,g,d,i f i ,igi);t2 depends on (n,g,d,i f i ,igi) and R when
i(c0 ,f0 ,u0)iH13H13H<R.

Proof: The proof of this lemma is similar to Proposition 2.1 in Ref. 5. Therefore, here we
sketch it.

Taking the imaginary part of the inner product of~2.1! with c in H, we get

1

2

d

dt
ici21nici25Im E

V
f c̄. ~2.6!
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In the sequel, we denote byc̄ the conjugate ofc. Then, taking the real part of the inner produ
of ~2.1! with 2c t2nc in H, we get

1

2

d

dt
i“ci21ni“ci22nE

V
fucu21n ReE

V
f c̄2

1

2 EV
f

]

]t
ucu21ReE

V
f c̄ t50. ~2.7!

Using ~2.2!, we find

E
V

f
]

]t
ucu25

d

dt EV
fucu22E

V
f tucu25

d

dt EV
fucu21dE

V
fucu22E

V
uucu2. ~2.8!

By ~2.6!–~2.8!, we have

1

2

d

dt S ici21i“ci22E
V

fucu212 ReE
V

f c̄ D 1nici21ni“ci22S n1
1

2
d D E

V
fucu2

1
1

2 EV
uucu21n ReE

V
f c̄2Im E

V
f c̄50. ~2.9!

Taking the inner product of~2.3! with u in H, we have

1

2

d

dt
iui21~g2d!iui22E

V
u Df1„12d~g2d!…E

V
fu2E

V
ucu2u5E

V
gu. ~2.10!

Using ~2.2!, we get from~2.10! that

1

2

d

dt
~ iui21„12d~g2d!…ifi21i“fi2!1~g2d!iui2

1d„12d~g2d!…ifi21di“fi22E
V

ucu2u5E
V

gu. ~2.11!

Then, by 43(2.9)123(2.11), we obtain

d

dt
E~c,f,u!12dE~c,f,u!5F~c,f,u!, ~2.12!

where

E~c,f,u!52ici212i“ci21„12d~g2d!…ifi21i“fi21iui222E
V

ucu2f14 ReE
V

f c̄,

~2.13!

and

F~c,f,u!524~n2d!~ ici21i“ci2!22~g22d!iui2

12~2n2d!E
V

fucu214 Im E
V

f c̄14~2d2n!ReE
V

f c̄12E
V

gu. ~2.14!

Using ~2.12! and proceeding as in Ref. 5, we can easily get the lemma. The details are o
here and then the proof is finished. h
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We remark that the energy equation~2.12! will play a crucial role in the proof of the conti
nuity of solutions on initial data inH13H13H in the next section. Equation~2.12! is also an
important tool for the proof of the asymptotic compactness of solutions in Sec. IV.

Below, we improve the estimates in the previous lemma to the spaceHk123Hk123Hk11

when f andg belong toHk with k>0.
Lemma 2.2: Assume that f and g belong to Hk(V) with k>0. Then every solution~c,f,u! of

problem (2.1)–(2.5) satisfies

ic~ t !iHk121if~ t !iHk121iu~ t !iHk11<Mk , t>tk ,

where Mk depends on(n,g,d,i f iHk,igiHk) and k; tk depends on(n,g,d,i f iHk,igiHk) and k and
R wheni(c0 ,f0 ,u0)iHk123Hk123Hk11<R.

Proof: taking the real part of the inner product of~2.1! with (21)k(Dk11c t1nDk11 c) in H,
we get that

1

2

d

dt
i“k12ci21ni“k12ci21n ReE

V
“

k12c–“k~fc̄!2n ReE
V
“

kf –“k12c̄

1~21!k ReE
V

fc Dk11c̄ t2ReE
V
“

kf –“k12c̄ t50. ~2.15!

Note that

~21!k ReE
V

fc Dk11c̄ t5ReE
V
“

k~fc̄!–“k12c t

5
d

dt
ReE

V
“

k~fc̄!–“k12c2ReE
V
“

k~f tc̄ !•“k12c

2ReE
V
“

k~fc̄ t!–“
k12c. ~2.16!

By ~2.1! and ~2.2!, we first substitutec t andf t into ~2.16!, and then from~2.15! we find that

1

2

d

dt S i“k12ci212 ReE
V
“

k~fc̄!–“k12c22 ReE
V
“

kf –“k12c̄ D 1ni“k12ci2

1~2n1d!ReE
V
“

k~fc̄!–“k12c̄2n ReE
V
“

kf –“k12c̄2ReE
V
“

k~uc̄ !–“k12c

2Im E
V
“

k~f Dc̄!–“k12c2Im E
V
“

k~f2c̄ !–“k12c1Im E
V
“

k~f f !–“k12c̄50. ~2.17!

Now, we derive an energy equation forf and u. Taking the inner product of~2.3! with
(21)k11Dk11u in H, we find

1

2

d

dt
i“k11ui21~g2d!i“k11ui22~21!k11E

V
Df Dk11u1~21!k11

„12d~g2d!…

3E
V

f Dk11u2~21!k11E
V

ucu2 Dk11u5~21!k11E
V

g Dk11u. ~2.18!

By ~2.2! we have
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2E
V

Df Dk11u1~21!k11
„12d~g2d!…E

V
f Dk11u

5
1

2
„12d~g2d!…

d

dt
i“k11fi2

1d„12d~g2d!…i“k11fi21
1

2

d

dt
i“k12fi21di“k12fi2, ~2.19!

and

~21!k11E
V

g Dk11u52
d

dt EV
“

kg–“k12f2dE
V
“

kg–“k12f. ~2.20!

Then, it follows from~2.18!–~2.20! that

1

2

d

dt S i“k11ui21„12d~g2d!…i“k11fi21i“k12fi212E
V
“

kg–“k12f D
1~g2d!i“k11ui21d„12d~g2d!…i“k11fi21di“k12fi2

1dE
V
“

kg–“k12f2E
V
“

k11ucu2
–“u50. ~2.21!

Summing up~2.17! and ~2.21!, we get that

d

dt
Ek„c~ t !,f~ t !,u~ t !…1dEk„c~ t !,f~ t !,u~ t !…5Fk„c~ t !,f~ t !,u~ t !…, ~2.22!

where

Ek~c,f,u!5i“k12ci21„12d~g2d!…i“k11fi21i“k12fi21i“k11ui2

12 ReE
V
“

k~fc̄!–“k12c22 ReE
V
“

kf –“k12c̄12E
V
“

kg–“k12f,

and

Fk~c,f,u!52~2n2d!i“k12ci22d„12d~g2d!…i“k11fi22di“k12fi2

2~2g23d!i“k11ui224n ReE
V
“

k~fc̄!–“k12c22~g2n!ReE
V
“

kf –“k12c̄

12 ReE
V
“

k~uc̄ !–“k12c12 Im E
V
“

k~f Dc̄!–“k12c

12 Im E
V
“

k~f2c̄ !–“k12c22 Im E
V
“

k~f f !“k12c̄12E
V
“

k11ucu2
–“

k11u.

Thus, this lemma follows from~2.21! and Gronwall’s lemma. The details are omitted here.h
In what follows, we state some estimates on the solutions in a finite time interval that w

used when we establish the existence and uniqueness and continuity of solutions. By~2.12! we can
easily get the following result.

Lemma 2.3: Assume that f and g belong to H. Then every solution (c,f,u) of problem (2.1)–
(2.5) satisfies
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ic~ t !iH11if~ t !iH11iu~ t !i<L, 0<t<T,

where L depends on(n,g,d,i f i ,igi), T and i(c0 ,f0 ,u0)iH13H13H .
The following fact is the analog of Lemma 2.2.
Lemma 2.4: Assume that f and g belong to Hk(V) with k>0. Then every solution (c,f,u) of

problem (2.1)–(2.5) satisfies

ic~ t !iHk121if~ t !iHk121iu~ t !iHk11<Lk , 0<t<T,

where Lk depends on(n,g,d,i f iHk,igiHk) and T and k andi(c0 ,f0 ,u0)iHk123Hk123Hk11.

III. THE SOLUTION SEMIGROUP

In this section, we establish the existence of the dynamical system associated to p
~2.1!–~2.5!. What is more, we shall show the existence and uniqueness and continuity of sol
in the spaceHl3Hl3Hl 21 for eachl>1. The existence and uniqueness of solutions follow fr
standard methods and estimates in Lemmas 2.3 and 2.4. Similar results forl<2 was also obtained
in Ref. 5. Lemmas 2.3 and 2.4 are also sufficient to establish the continuity property of sol
on initial data inHl3Hl3Hl 21 when l>2. However, the continuity property inH13H13H is
not so easy and needs to be treated separately. The main purpose of this section is to pr
solution is indeed continuous on initial data inH13H13H. To this end, the energy equatio
obtained in the previous section will play a key role; see Theorem 3.4 below.

By Lemma 2.3, we have the following existence and uniqueness result.
Theorem 3.1: Let f, gPH and (c0 ,f0 ,u0)PH13H13H. Then problem (2.1)–(2.5) has a

unique solution(c,f,u)PC(R1,H13H13H).
For the proof of this theorem, we refer the readers to Ref. 5 and the references therein

we state it just for our purpose below.
The next result can be proved by Lemma 2.4 and the details will be omitted here.
Theorem 3.2:Let f, gPHk and (c0 ,f0 ,u0)PHk123Hk123Hk11 with k>0. Then problem

(2.1)–(2.5) has a unique solution(c,f,u)PC(R1,Hk123Hk123Hk11).
We remark that by Theorem 3.2, one has the existence and uniqueness of solutionsH2

3H23H1 under the assumption of the driving terms inH, which is weaker than the correspon
ing conditiongPH1 in Ref. 5.

The following statement is concerned with the continuity of solutions on initial data
Hk123Hk123Hk11 for eachk>0.

Theorem 3.3:Assume that the hypothesis of Theorem 3.2 holds. Then the solution (c,f,u) of
problem (2.1)–(2.5) is continuous with respect to initial data in Hk123Hk123Hk11.

Proof: We shall sketch the proof below and the details will be omitted.
Consider two solutions (c1 ,f1 ,u1) and (c2 ,f2 ,u2) of problem~2.1!–~2.5!. Then the differ-

ence (c,f,u)5(c12c2 ,f12f2 ,u12u2) satisfies

ic t1Dc1 inc1fc11f2c50, ~3.1!

f t1df5u, ~3.2!

u t1~g2d!u2Dc1„12d~g2d!…f1cc̄12c̄c250. ~3.3!

Taking the real part of the inner product of~3.1! with (21)k(Dk11c t1n Dk11c) in H, and then
using Lemma 2.4 to estimate the terms in the resulting identity, after some computations w
get

d

dt
iciHk12

2 <C~ iciHk12
2

1ifiHk12
2

!. ~3.4!
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Similarly, taking the inner product of~3.3! with (21)k11Dk11u in H, then using~3.2! and Lemma
2.4, we can derive the inequality

d

dt
~„12d~g2d!…ifiHk11

2
1ifiHk12

2
1iuiHk11

2
!

<C~„12d~g2d!…ifiHk11
2

1ifiHk12
2

1iuiHk11
2

!. ~3.5!

It follows from ~3.4! and ~3.5! that

d

dt
~ iciHk12

2
1„12d~g2d!…ifiHk11

2
1ifiHk12

2
1iuiHk11

2
!

<C~ iciHk12
2

1„12d~g2d!…ifiHk11
2

1ifiHk12
2

1iuiHk11
2

!. ~3.6!

This and Gronwall’s lemma give the Lipschitz continuity of solutions inHk123Hk123Hk11.
The proof is complete. h

We remark that the inequality similar to~3.6! is not easy to get in the spaceH13H13H. So
the above method does no longer apply. Below, we shall use the energy equation method t
the continuity in this case.

Theorem 3.4: Assume that f and g belong to H. Then the solution(c,f,u)PC(R1,
H13H13H) of system (2.1)–(2.5) depends continuously on the initial data in H13H13H.

Proof: Assume that (c0,n ,f0,n ,u0,n)→(c0 ,f0 ,u0) in H13H13H; we want to prove
S(t)(c0,n ,f0,n ,u0,n)→S(t)(c0 ,f0 ,u0) for eacht.0 asn→`.

Given t.0, we chooseT.t. By the convergence of (c0,n ,f0,n ,u0,n), we know that
(c0,n ,f0,n ,u0,n) is bounded inH13H13H. Thus, it follows from Lemma 2.3 that

icn~t!iH11ifn~t!iH11iun~t!i<C, 0<t<T, ~3.7!

where we set„cn(t),fn(t),un(t)…5S(t)(c0,n ,f0,n ,u0,n). By ~3.7! and system~2.1!–~2.5! we
can also deduce that

I ]

]t
cnI

L2~0,T;H21!

1 I ]

]t
fnI

L2~0,T;H !

<C. ~3.8!

And, therefore, there exists„c(t),f(t),u(t)…PL`(0,T;H13H13H), such that

„cn~t!,fn~t!,un~t!…→„c~t!,f~t!,u~t!… weakly in L2~0,T;H13H13H !, ~3.9!

and

]

]t
cn→

]

]t
c, weakly in L2~0,T;H21!, ~3.10!

]

]t
fn→

]

]t
f, weakly in L2~0,T;H !. ~3.11!

By ~3.9!–~3.11! and a standard compactness result, we have

~cn ,fn!→~c,f!, strongly in L2~0,T;H3H !. ~3.12!

Again, for a fixedt, by ~3.7! we see that there existsjPH13H13H such that

„cn~ t !,fn~ t !,un~ t !…→j, weakly in H13H13H. ~3.13!
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Then, similar to the proof of the existence of solutions~see Ref. 4, for example!, we can easily
deduce that~c,f,u! is the solution of problem~2.1!–~2.5! with „c(0),f(0),u(0)…5(c0 ,f0 ,u0)
and „c(t),f(t),u(t)…5j for a fixed t. This fact, together with~3.13!, implies the weak conver-
gence ofS(t), that is,

S~ t !~c0,n ,f0,n ,u0,n!→S~ t !~c0 ,f0 ,u0!, weakly in H13H13H. ~3.14!

We now prove that the weak convergence is, in fact, the strong convergence. To this e
shall use the energy equation~2.12!. In fact, by ~2.12! we have

E~ t !5e22 dtE~0!1E
0

t

e22d~ t2t!F„c~t!,f~t!,u~t!…dt, ~3.15!

whereE andF is given by~2.13! and~2.14!, respectively. Note that~3.15! means that any solution
„c(t),f(t),u(t)…5S(t)(c0 ,f0 ,u0) of problem~2.1!–~2.5! verifies

E„S~ t !~c0 ,f0 ,u0!…5e22dtE~c0 ,f0 ,u0!1E
0

t

e22d~ t2t!F„S~t!~c0 ,f0 ,u0!…dt. ~3.16!

Applying ~3.16! to the solutionS(t)(c0,n ,f0,n ,u0,n), we get

E„S~ t !~c0,n ,f0,n ,u0,n!…5e22 dtE~c0,n ,f0,n ,u0,n!1E
0

t

e22d~ t2t!F„S~t!~c0,n ,f0,n ,u0,n!…dt.

~3.17!

Since (c0,n ,f0,n ,u0,n)→(c0 ,f0 ,u0) in H13H13H, by the definition ofE in ~2.13!, we can
deduce that, asn→`,

E~c0,n ,f0,n ,u0,n!→E~c0 ,f0 ,u0!. ~3.18!

Below, we deal with the limit of the second term on the right-hand side of~3.17!. By ~2.14! we
have

E
0

t

e22d~ t2t!F„S~t!~c0,n ,f0,n ,u0,n!…dt

522E
0

t

e22d~ t2t!~2~n2d!„iS~t!c0,ni21i“S~t!c0,ni2
…1~g22d!iS~t!u0,ni2!

12E
0

t

e22d~ t2t!S ~2n2d!E
V

S~t!f0,nuS~t!c0,nu212 Im E
V

fS~t!c0,nD
12E

0

t

e22d~ t2t!S 2~2d2n!ReE
V

fS~t!c0,n1E
V

gS~t!u0,nD . ~3.19!

We now handle the first term on the right-hand side of~3.19!. By the weak convergence~3.9!, we
have

e2d~ t2t!S~t!c0,n→e2d~ t2t!S~t!c0 , weakly in L2~0,t;H1!,

and

e2d~ t2t!S~t!u0,n→e2d~ t2t!S~t!u0 , weakly in L2~0,t;H !.

So we find that
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lim inf
n→`

ie2d~ t2t!S~t!c0,niL2~0,t;H1!>ie2d~ t2t!S~t!c0iL2~0,t;H1! , ~3.20!

and

lim inf
n→`

ie2d~ t2t!S~t!u0,niL2~0,t;H !>ie2d~ t2t!S~t!u0iL2~0,t;H ! . ~3.21!

Then, choosingd small enough such thatn2d.0, andg22d.0, we have the following esti-
mates for the first term on the right-hand side of~3.19!:

lim sup
n→`

22E
0

t

e22d~ t2t!~2~n2d!„iS~t!c0,ni21i“S~t!c0,ni2
…1~g22d!iS~t!u0,ni2!

<22E
0

t

e22d~ t2t!~2~n2d!„iS~t!c0i21i“S~t!c0i2
…1~g22d!iS~t!u0i2!. ~3.22!

For the second term on the right-hand side of~3.19!, we want to prove its convergence. W
first treat the convergence of

E
0

t

e22d~ t2t!E
V

S~t!f0,nuS~t!c0,nu2→E
0

t

e22d~ t2t!E
V

S~t!f0uS~t!c0u2. ~3.23!

Note that

E
0

t

e22d~ t2t!E
V

S~t!f0,nuS~t!c0,nu22E
0

t

e22d~ t2t!E
V

S~t!f0uS~t!c0u2

5E
0

tE
V

e22d~ t2t!
„S~t!f0,n2S~t!f0…uS~t!c0,nu2

1E
0

tE
V

e22d~ t2t!S~t!f0„uS~t!c0,nu1uS~t!c0u…„uS~t!c0,nu2uS~t!c0u…5I1II,

where I and II denotes by the first and second term, respectively. We now show I and II con
to zero asn→`. First we have

uI u<E
0

t

iS~t!c0,ni4
2iS~t!f0,n2S~t!f0i<iS~t!c0,niL`~0,t;H1!

2 E
0

t

iS~t!f0,n2S~t!f0i→0;

the last relation is obtained by~3.12! and Lemma 2.3. Similarly, by~3.12! and Lemma 2.3 again
we can deduce that II→0. And then~3.23! follows. Therefore, by~3.12! we can get

2E
0

t

e22d~ t2t!S ~2n2d!E
V

S~t!f0,nuS~t!c0,nu212 Im E
V

fS~t!c0,nD
12E

0

t

e22d~ t2t!S 2~2d2n!ReE
V

fS~t!c0,n1E
V

gS~t!u0,nD
→2E

0

t

e22d~ t2t!S ~2n2d!E
V

S~t!f0uS~t!c0u212 Im E
V

fS~t!c0D
12E

0

t

e22d~ t2t!S 2~2d2n!ReE
V

fS~t!c01E
V

gS~t!u0D . ~3.24!
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So, by~3.17!–~3.19!, ~3.22!, and~3.24! and the definition ofF in ~2.14!, we finally get

lim sup
n→`

E„S~ t !~c0,n ,f0,n ,u0,n!…

<e22dtE~c0 ,f0 ,u0!22E
0

t

e22d~ t2t!~2~n2d!„iS~t!c0i21i“S~t!c0i2
…

1~g22d!iS~t!u0i2!12E
0

t

e22d~ t2t!S ~2n2d!E
V

S~t!f0uS~t!c0u212 Im E
V

fS~t!c0D
12E

0

t

e22d~ t2t!S 2~2d2n!ReE
V

fS~t!c01E
V

gS~t!u0D . ~3.25!

By ~3.16! we see that the right-hand side of~3.25! is exactlyE„S(t)(c0 ,f0 ,u0)…, so we have

lim sup
n→`

E„S~ t !~c0,n ,f0,n ,u0,n!…<E„S~ t !~c0 ,f0 ,u0!…. ~3.26!

By the weak convergence~3.14! and the compact imbeddingH1,H, we find

S~ t !~c0,n ,f0,n!→S~ t !~c0 ,f0!, strongly in H,

so it is easy to prove

E
V

S~ t !f0,nuS~ t !c0,nu2→E
V

S~ t !f0uS~ t !c0u2, ~3.27!

and

E
V

f S~ t !c0,n→E
V

f S~ t !c0. ~3.28!

By ~3.26!–~3.28! and the definition ofE, we finally get that

lim sup
n→`

~2iS~ t !c0,niH1
2

1„12d~g2d!…iS~ t !f0,ni21i“S~ t !f0,ni21iS~ t !u0,ni2!

<2iS~ t !c0iH1
2

1„12d~g2d!…iS~ t !f0i21i“S~ t !f0i21iS~ t !u0i2.

We note that the right-hand side of the above is equivalent to the norm ofH13H13H, so,
without loss of generality, we can assume that the norm ofH13H13H is defined by it. Then we
have

lim sup
n→`

iS~ t !~c0,n ,f0,n ,u0,n!iH13H13H<iS~ t !~c0 ,f0 ,u0!iH13H13H . ~3.29!

On the other hand, the weak convergence~3.14! implies

lim inf
n→`

iS~ t !~c0,n ,f0,n ,u0,n!iH13H13H>iS~ t !~c0 ,f0 ,u0!iH1H13H . ~3.30!

Then,~3.29! and ~3.30! and ~3.14! yield

S~ t !~c0,n ,f0,n ,u0,n!→S~ t !~c0 ,f0 ,u0!, strongly in H13H13H.

The proof is complete. h
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IV. GLOBAL ATTRACTORS

In this section, we establish the existence of the global attractor for the dynamical systemS(t)
in the spaceHl3Hl3Hl 21 for each l>1. To this end, we first need to prove the asympto
compactness of solutions. The technique used here is the energy equation method that wa
Ball.8 The existence of the global attractor follows from the abstract result9 ~see also Refs. 12 an
13! once the asymptotic compactness ofS(t) is established.

In the sequel, we denote byB1 the ball

B15$~c,f,u!PH13H13H:iciH11ifiH11iui<M %, ~4.1!

whereM is the constant in Lemma 2.1, andBk12 the ball

Bk125$~c,f,u!PHk123Hk123Hk11:iciHk121ifiHk121iuiHk11<Mk%, ~4.2!

for eachk>0, whereMk is the constant in Lemma 2.2.
Then by Lemmas 2.1 and 2.2, we know thatB1 andBk12 (k>0) is a bounded absorbing se

for S(t) in H13H13H andHk123Hk123Hk11, respectively.
We now prove the asymptotic compactness ofS(t) in H13H13H.
Theorem 4.1: Assume that f and g belong to H. Then the dynamical system S(t) is asymp-

totically compact in H13H13H, that is, if (cn ,fn ,un) is bounded in H13H13H and tn→`,
then S(tn)(cn ,fn ,un) is precompact.

Proof: Since (cn ,fn ,un) is bounded, we can assume thati(cn ,fn ,un)iH13H13H<R for a
suitable constantR. Then by Lemma 2.1, we infer that there exists a constantT(R) depending on
R, such that

S~ t !~cn ,fn ,un!PB1 , ;t>T~R!, ~4.3!

whereB1 is the absorbing set in~4.1!. Sincetn→`, there existsN1(R) such that ifn>N1 , then
tn>T(R), and hence

S~ tn!~cn ,fn ,un!PB1 , ;n>N1 . ~4.4!

By ~4.4! we know that there exists (c,f,u)PB1 such that, up to a subsequence,

S~ tn!~cn ,fn ,un!→~c,f,u!, weakly in H13H13H. ~4.5!

For everyT.0, again bytn→`, there existsN2(R,T) such that forn>N2 , we havetn2T
>T(R). So, by~4.3! we get

S~ tn2T!~cn ,fn ,un!PB1 , ;n>N2 . ~4.6!

By ~4.6! we infer that there exists (cT ,fT ,uT)PB1 , such that

S~ tn2T!~cn ,fn ,un!→~cT ,fT ,uT!, weakly in H13H13H. ~4.7!

Following the proof of~3.14!, by ~4.7!, we can get

S~T!„S~ tn2T!~cn ,fn ,un!…→S~T!~cT ,fT ,uT!, weakly in H13H13H. ~4.8!

It follows from ~4.5! and ~4.8! that

~c,f,u!5S~T!~cT ,f t ,uT!. ~4.9!

By the weak convergence~4.5!, we get

lim inf
n→`

iS~ tn!~cn ,fn ,un!iH13H13H>i~c,f,u!iH13H13H . ~4.10!
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If we can also prove that

lim sup
n→`

iS~ tn!~cn ,fn ,un!iH13H13H<i~c,f,u!iH13H13H , ~4.11!

then ~4.5! and ~4.10! and ~4.11! will imply

S~ tn!~cn ,fn ,un!→~c,f,u!, strongly in H13H13H.

So, the proof will be finished once~4.11! is verified. In what follows, we apply the energ
equation~2.12! to prove~4.11!. Here, the idea is analogous to Theorem 3.4. And, therefore,
the main steps will be given below.

Applying ~3.16! to the solutionS(T)„S(tn2T)(cn ,fn ,un)…, we find

E„S~ tn!~cn ,fn ,un!…5E~S~T!„S~ tn2T!~cn ,fn ,un!…!

5e22 dTE„S~ tn2T!~cn ,fn ,un!…

1E
0

T

e22d~T2t!F~S~t!„S~ tn2T!~cn ,fn ,un!…!dt. ~4.12!

Since ~4.6! shows thatS(tn2T)(cn ,fn ,un) is bounded, we derive from the definition ofE in
~2.13! that

e22 dTE„S~ tn2T!~cn ,fn ,un!…<Ce22dT, ;n>N2 . ~4.13!

For the second term on the right-hand side of~4.12!, using~4.7! and proceeding as the proof o
~3.22! and ~3.24!, we can finally get

lim sup
n→`

E
0

T

e22d~T2t!F~S~t!„S~ tn2T!~cn ,fn ,un!…!dt<E
0

T

e22d~T2t!F„S~t!~cT ,fT ,uT!…dt.

~4.14!

It follows from ~4.12!–~4.14! that

lim sup
n→`

E~S~T!„S~ tn2T!~cn ,fn ,un!…!<Ce22 dT1E
0

T

e22d~T2t!F„S~t!~cT ,fT ,uT!…dt.

~4.15!

Again, applying~3.16! to the solution (c,f,u)5S(T)(cT ,fT ,uT), we find

E~c,f,u!5E„S~T!~cT ,fT ,uT!…

5e22 dTE~cT ,fT ,uT!1E
0

T

e22d~T2t!F„S~t!~cT ,fT ,uT!…dt. ~4.16!

It follows from ~4.15! and ~4.16! that

lim sup
n→`

E„S~ tn!~cn ,fn ,un!…<Ce22 dT2e22 dTE~cT ,fT ,uT!1E~c,f,u!

<C1e22 dT1E~c,f,u!@by ~cT ,fT ,uT!PB1#.

Let T→1`, we find

lim sup
n→`

E„S~ tn!~cn ,fn ,un!…<E~c,f,u!.
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Then, by the definition ofE in ~2.13!, and repeating the procedure of~3.27!–~3.29!, we can easily
obtain ~4.11!. And then, the proof is complete. h

We now prove that the dynamical systemS(t) is asymptotically compact in a more regul
space if the driving terms are smoother.

Theorem 4.2:Assume that f and g belong to Hk with k>0. Then the dynamical system S(t)
is asymptotically compact in Hk123Hk123Hk11.

Proof: The proof of this theorem is quite similar to Theorem 4.1. In this case, the en
equation~2.22! and the bounded absorbing setBk12 should be used instead of the energy equat
~2.12! and the bounded absorbing setB1 . Since the idea is analogous, we will not repeat
details here. h

We are now in a position to state our main result.
Theorem 4.3:Assume that f and g belong to H. Then problem (2.1)–(2.5) possesses a stron

compact global attractor in H13H13H.
Theorem 4.4: Assume that f and g belong to Hk with k>0. Then problem (2.1)–(2.5) pos-

sesses a strong compact global attractor in Hk123Hk123Hk11.
The proof of Theorems 4.3 and 4.4 is now obvious. Since we have established the ex

of bounded absorbing sets and the asymptotic compactness forS(t) in H13H13H and Hk12

3Hk123Hk11, respectively, then Theorems 4.3 and 4.4 follow from the abstract result~Ref. 9,
Theorem 3.3! ~see also Refs. 12 and 13!.

We remark that by Theorem 4.3 we have the existence of the strong global attractor
compact in the norm topology ofH13H13H when f belongs toH, which is weaker than the
corresponding conditionf PH2 in Ref. 5.
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Anisotropic fluid spherically symmetric space–times
admitting a kinematic self-similarity

Patricia M. Benoita)

Department of Mathematics Statistics and Computing Science,
St. Francis Xavier University, Antigonish, Nova Scotia B2W 2G5, Canada

Alan A. Coleyb)

Department of Mathematics Statistics and Computing Science, Dalhousie University,
Halifax, Nova Scotia B3H 3J5, Canada

~Received 25 March 1998; accepted for publication 30 September 1998!

Anisotropic fluid spherically symmetric space–times admitting a kinematic self-
similar vector are investigated. The geodesic case is considered, and some special
subcases in which the anisotropic fluid satisfies additional physical conditions are
investigated in detail. A number of other special cases are studied. Particular atten-
tion is focused on the possible asymptotic behavior of the models, and it is shown
that the models considered always asymptote towards an exact homothetic solution,
which is in general either a perfect fluid model or a static solution. ©1999
American Institute of Physics.@S0022-2488~99!01602-3#

I. INTRODUCTION

In a recent paper spherically symmetric space–times which admit a kinematic self-sim
of the second~or zeroth! kind were studied when the source of the gravitational field was assu
to be a perfect fluid.1 In that paper several particular subclasses of models were studied in d
including the subcases ‘‘M150’’ and ‘‘ M250’’ ~which includes the static models as a furth
subcase!. Note that these particular subcases refer to specific forms for the first integralm(r,t) of
the EFEs. The precise definitions of these subcases in terms ofm(r,t) are not necessary here; se
Benoit and Coley1 for more details. These subclasses of models, in which exact solutions
obtained, were found to be of particular interest since their qualitative properties were rep
tative of the asymptotic behavior of more general models.

The metric, in comoving coordinates, is given by

ds252e2fdt21e2cdr21r 2S2dV2, ~1.1!

where the functionsf, c andS and depend only on the self-similarity coordinate

j5r ~at !21/a, ~1.2!

wherea is the self-similar index~and we shall assume henceforward thataÞ0). The kinematic
self-similar generator is given by2

j5ja
]

]xa
5at

]

]t
1r

]

]r
. ~1.3!

It follows from ~1.1! and ~1.3! that

Lj hab52hab , ~1.4!

a!Electronic mail: pbenoit@stfx.ca
b!Electronic mail: aac@mscs.dal.ca
24580022-2488/99/40(5)/2458/12/$15.00 © 1999 American Institute of Physics
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and

Lj ua5aua , ~1.5!

where hab5gab1uaub is the projection tensor. Hencej, as given by~1.3! with aÞ1, is a
kinematic self-similarvector and corresponds to the natural relativistic counterpart of s
similarity of the more general second kind.3 We note that in the casea51, j is a homothetic
vector, corresponding to self-similarity of the first kind. We shall adopt the notation and te
nology of Benoit and Coley1 and for brevity we shall not repeat here the motivation or
discussion of self-similarity given in that paper.

In this paper we shall generalize the perfect fluid solutions in Benoit and Coley4 to the case of
an anisotropic fluid, in which stress-energy tensor is given by

Tab5muaub1pinanb1p'~gab1uaub2nanb!, ~1.6!

whereua is the comoving fluid velocity vector andna is a unit spacelike vector orthogonal toua

~i.e., uana50). The stress-energy tensor~1.6! possesses and eigenvalue degeneracy~and hence is
not the most general anisotropic fluid stress-energy tensor! consistent with the assumption o
spherical symmetry~see metric~1.1!!. For the metric~1.1!, n is given by

n5na
]

]xa
5e2c

]

]r
. ~1.7!

Using Eqs.~1.1!–~1.3!, it therefore follows immediately that

Lj na5na ~1.8!

is satisfied identically, so that the form forn is consistent with the similarity assumption. Th
scalarspi andp' are the pressures parallel to and perpendicular tona, respectively, andm is the
energy-density. The perfect fluid case corresponds to the case in whichpi5p' .

Fluids with an anisotropic pressure have been studied for many reasons~see the discussion in
Coley and Tupper!.5 For example, in several cases in which the stress-energy tensor is
general than that of a perfect fluid~due to, e.g., a two perfect fluid source, an imperfect flu
source or in the region of interaction of two colliding plane impulsive gravitation waves!, the
energy-momentum tensor is formally of the form~1.6!. In particular, a strong magnetic field in
plasma in which the particle collision density is low can cause the pressure along and perpe
lar to the magnetic field lines to be unequal.6 If the source of the gravitational field can b
represented by the sum of a perfect fluid and a local magnetic fieldHa5Hna ~as measured byua),
then the stress-energy tensor can be written in the form~1.6! with

m5m̄1p, pi5 p̄2p, p'5 p̄1p, ~1.9!

where p5 1
2lH2 and l is the magnetic permeability. Other possible sources of anisotr

stresses, in addition to cosmological magnetic and electric fields, include, for example, popu
of collisionless particles like gravitons,7 photons8 or relativistic neutrinos,9 Yang–Mills fields,10

axion fields in low-energy string theory,11 long wavelength gravitational waves,12 and topological
defects like global monopoles, cosmic strings, and domain walls.13–15

Most anisotropic models that have been studied are also spherically symmetric~see references
cited in Ref. 5!, and have applications especially in relativistic astrophysics~e.g., stellar models!;
in particular, static anisotropic spheres have received much attention.5 In addition, such models
with additional symmetries, including homothetic vectors and conformal Killing vectors, have
been studied~see Refs. 6, 5, and references within!.

For the metric~1.1! the Einstein field equations~EFEs! yield the following expressions for the
physical variables:
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m5
W1~x!

r 2
1

W2~x!

t2
,

pi5
Pi

1~x!

r 2
1

Pi
2~x!

t2
, ~1.10!

p'5
P'

1 ~x!

r 2
1

P'
2 ~x!

t2
,

where

W1~x!5
1

S2
2e22c@~11y!212yḟ#,

W2~x!5
e22f

a2
y@y12ċ#,

Pi
1~x!52

1

S2
1e22c~11y!@11y12ḟ#,

Pi
2~x!52

e22f

a2
@2ẏ12ay13y222yḟ#,

P'
1 ~x!5e22c@2yḟ1ḟ21f̈2ḟċ#,

P'
2 ~x!52

e22f

a2
@~a21!y12yċ1ċ1aċ1ċ21c̈2ḟċ#, ~1.11!

and wherey[Ṡ/S, x[ ln j and ḟ 5d f /dx. The final EFE~that ensures that the Einstein tensor
diagonal! becomes

ẏ5yḟ1~ ċ2y!~11y!. ~1.12!

Clearly there exists a variety of anisotropic fluid spherically symmetric kinematic self-sim
space–times satisfying Eqs.~1.10!-~1.12!.

If we assume that the physical quantities also obey similarity conditions of the form

Lj m5am, Lj pi5bipi , Lj p'5b'p' , ~1.13!

wherea, bi andb' are constants, then it can easily be shown that:

~i! W150 or W250

and

~ii ! Pi
150 or Pi

250

and

~iii ! P'
1 50 or P'

2 50.
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The special subcasesWi50 with eitherPi
i̇Þ0 or P'

i̇ Þ0 (i 51,2) are not of physical interest. Th
special subcaseW15Pi

15P'
1 50 corresponds to the special subcase ‘‘M150.’’ Finally, the spe-

cial subcaseW25Pi
25P'

2 50 is related to the special subcase ‘‘M250,’’ and the static models
are included within this subclass of models.

It turns out~Benoit and Coley,1 in particular, see the Appendix therein! that all static spheri-
cally symmetric kinematic self-similar solutions belong to the subclass ‘‘M250,’’ regardless of
the form of the stress-energy tensor, and, moreover, that all such static spacetimes nec
admit ahomothetic vector. Consequently, no new static anisotropic solutions can be obtained
admit a proper kinematic self-similarity. Hence we shall concentrate here on the special s
‘‘ M150.’’

II. GEODESIC MODELS

The geodesic case, in which the acceleration of the comoving fluid velocity vector is ze
characterized byḟ50 and is equivalent to the special subcase ‘‘M150’’ considered in Benoit
and Coley.1 In this model, Eq.~1.12! gives ~for S1ṠÞ0)

e2f51, ċ5
Ṡ1S̈

S1Ṡ
5

ẏ1y21y

11y
, ~2.1!

whence the metric~1.1! becomes

ds252dt21~S1Ṡ!2dr21r 2S2dV2. ~2.2!

Assuming the first of conditions~2.1!, the second condition guarantees the resulting Eins
tensor is diagonal and hence the remaining EFEs simply yield the following expressions form, pi

andp' :

m5W~x!t22, pi5Pi~x!t22, p'5P'~x!t22, ~2.3!

~where we have now omitted the index ‘‘2’’ for convenience!, so that Eqs.~1.13! are automati-
cally satisfied witha5bi5b'522a, where

W~x![
y

a2~11y!
~3y13y212ẏ!,

Pi~x![2~3y212ay12ẏ!/a2, ~2.4!

P'~x![2
~11y!~2ẏ13y212ay!13yẏ1a ẏ1 ÿ

a2~11y!
.

Equations~2.2!–~2.4! represent a class of anisotropic fluid solutions depending upon the arb
function S(x).

We note that the following relationships result from the definitions given in Eqs.~2.3!:

P'5Pi1
Ṗi

2~11y!
,

W5
2y@~2a23!y1a2Pi#

a2~11y!
.
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A. Perfect fluid models

In the perfect fluid case we have thatPi5P' , and hence from Eqs.~2.4! we obtain the
following differential equation for the functiony(x) @and henceS(x)# in the metric~2.2!:

2ẏ13y212ay1a2p050. ~2.5!

In Eq. ~2.5! p0 is an arbitrary integration constant. In the perfect fluid casem is obtained from Eqs.
~2.3! and ~2.4! and we have that

p5p0t22, ~2.6!

and hence the significance ofp0 is that it constitutes a dimensional constant~appearing in the
pressure! characterizing the physical problem; this property is characteristic of self-similarit
the second kind.3 It can be shown that these perfect fluid solutions~for aÞ1) cannot, in general
admit any homothetic vectors.4

The perfect fluid solutions were studied in detail in Benoit and Coley;1 in fact, exact solutions
were obtained and the qualitative properties of the whole class of models were studied. I
ticular, in the pressure-free case we obtain the exact dust solution of the Tolman family stud
Lynden-Bell and Lemos16 and Carter and Henriksen,2 and we found that all solutions ar
asymptotic to exact, power-law~flat! FRW models~which admit a homothety!.

B. Solutions with S1Ṡ50

In Benoit and Coley~1998! we showed that the caseS1Ṡ50, which implies thatS
5s0e2x, could be factored out of the analysis as it could not lead to a perfect fluid solution
that reason, we consider it as a special case here.~This case is not contained in the geode
models studied above.!

WhenS5s0e2x ~i.e., y521), the EFEs yield

ḟ50, ~2.7!

whence we can choose coordinates so thate2f51, and

m5s0
22e2xr 221~122ċ !a22t22, ~2.8!

pi~x!52s0
2e2xr 221~2a23!a22t22, ~2.9!

p'~x!52@~12a!~12ċ !1ċ21c̈#a22t22. ~2.10!

The fluid described by these equations will further satisfy Eq.~1.13! in one of two cases. Either~i!
a51, and the solution admits a homothetic vector, or~ii ! ċ51/2, a53/2.

In the first case, i.e.,a51, the solution is given by

ds252dt21e2cdr21s0t22dV2, ~2.11!

with

m5~s0
221122ċ !t22, ~2.12!

pi52~s0
2211!t22, ~2.13!

p'52~ ċ21c̈ !t22, ~2.14!

where the functionc(x) is arbitrary.
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In the second case the solution is given~after a coordinate redefinition! by

ds252dt21t22/3dr21t4/3dV2, ~2.15!

with

m5m0t24/3, ~2.16!

pi52m, ~2.17!

p'50, ~2.18!

wherem0 is a constant. It can be easily shown that the metric~2.15! does not admit a prope
homothetic vector. Curiously, cosmic strings satisfy ‘‘equations of state’’ of the formm1pi50,
p'50.17

III. SPECIAL CASES

There are a variety of models which satisfy additional constraints. We consider here two
models.

A. Case A: Dimensional constants

If we assume thatP'5p0 , a constant, then Eqs.~2.4! yield

Ṗi~x!52~11y!~p02Pi~x!!. ~3.1!

This equation can be integrated to yield

Pi~x!5p01ce22xS22, ~3.2!

wherec is an arbitrary constant. Using this expression forPi , we obtain

W~x!5
y

a2~11y!
@y~322a!2a2p02ca2e22xS22#, ~3.3!

and the differential equation

2ẏ13y212ay52a2p02a2ce22xS22. ~3.4!

Note that whenc50 ~i.e., Pi5P'5p0 , corresponding to a perfect fluid! Eq. ~3.4! is related to
Eq. ~2.56! in Benoit and Coley.1

If we had begun the analysis of this section with the assumption thatPi5p0 , then Eqs.~2.4!
automatically imply thatPi5P'5p0 , the perfect fluid case considered in Benoit and Coley.1

The pressurespi andp' are positive if the constantsp0 andc are non-negative. The energ
conditions will constrain these constants further~for a given value ofa) through~3.3!.

B. Case B: Equations of state

We can also consider the subclass of solutions which satisfy equations of state of the

pi5 f i~m!, p'5 f'~m!, ~3.5!

for arbitrary functionsf i and f' . From Eqs.~2.3!, conditions~3.5! automatically yield

pi5cim and p'5c'm, ~3.6!

whereci andc' are constants. Substituting these conditions into the definitions~2.4! then yields
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m5m0t22@Sex#22~12c' /ci ! ~3.7!

and the differential equation fory:

2ẏ13y212ay52a2cim0@Sex#22~12c' /ci !. ~3.8!

Once again we note that whenci5c' ~i.e., the perfect fluid case!, we recover Eq.~2.5! as
expected.

A positive value for the constantm0 guarantees that the energy density is positive. Ifuciu
<m0 and uc'u<m0 , the energy conditions are satisfied. The pressures are non-negative ifci>0
andc'>0.

IV. ANALYSIS OF SPECIAL CASES

The behavior of each of the special cases derived in Sec. III can be studied qualitatively
each of the ordinary differential equations governing the model is autonomous.

The special cases A~dimensional constants! and B~equations of state! can be considered si
multaneously using the following change of variables:

n5b@Sex#22n, ~4.1!

whereb is a non-negative constant. The resulting system is then

ẏ52 1
2 ~3y212ay1k1n!, ~4.2!

ṅ522nn~11y!. ~4.3!

Using these definitions, case A is characterized byn51, k5a2p0 , and case B is characterized b
n511c' /ci andk50.

It is important to note that the invariant setn50 of Eqs.~4.2!/~4.3! defines the perfect fluid
solutions. We also note thaty50 represents the static solutions. Each of these cases is exam
in detail in Benoit and Coley.1

If we consider only the case of positive pressures and positive energy density, we can i
the necessary~though not necessarily sufficient! condition that the parameters in our equatio
must satisfyk>0, n>1 andn>0. With these restrictions, we find that there are at most th
singular points at finite values. We note thatn50 is an invariant set of the system~4.2!/~4.3!, as
is the setn.0. As a result we need only consider the dynamics~and hence the singular points! in
the half-planen>0.

The finite singular points (y0 ,n0) are given by:

Q15~ 1
3 ~2a1~a223k!1/2,0!,

Q25~ 1
3 ~2a2~a223k!1/2,0!,

Q35~21,2a232k!.

The nature of these singular points, which can be determined using standard techniques,18 depends
upon the relationship between the parametersa and k. The results are summarized in Table
Note that only those singular points which are located in the physical phase space are listed
table. It is important to note that each of the cases I–IV is possible when considering the
~4.2!/~4.3! in case A. In case B, however, we find that only the cases labeled~I! and~II ! in Table
I yield consistent constraints on the parametera.
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We can complete the qualitative analysis of these two cases by considering the stability
singular points at infinity. To perform the analysis at infinity, we apply the following Poinc´
transformation to our system~4.2!/~4.3! in order to compactify the phase space:

Y5
y

~11y21n2!1/2
, V5

n

~11y21n2!1/2
. ~4.4!

In these new variables, the phase space has been compactified to the regionQ2512(Y21V2)
>0, and all infinite points of the original system are found on the boundaryQ50. The restriction
thatn>0 implies thatV>0, and all finite singular points remain at finite values ofY andV and are
of the same sign in the new coordinate system (Y,V).

The transformed Eqs.~4.1!/~4.2! are then given by:

Y85 1
2 ~4n23!Y2V21Q@ 1

2 Y1~2n2a!V#2 1
2 Q2@3Y21kV2#2Q3@aY1 1

2 V#2 1
2 kQ4,

~4.5!

V852 1
2 ~4n23!Y3V1QYV@ 1

2 V2~2n2a!Y#1 1
2 Q2YV@k24n#22nVQ3, ~4.6!

where f 85Q ḟ . There are four singular points at infinity located on the boundaryY21V251,
which are given by

R65~0,61!, S65~61,0!. ~4.7!

The pointsS6 correspond to perfect fluid solutions, andR6 correspond to static solutions. A loca
stability analysis shows that the pointsS6 are both saddles.R1 is a nonhyperbolic point contain
ing both stable and unstable manifolds for all values ofa andk. The stable manifold ofR1 lies
in an elliptic sector ofR1 and corresponds to homoclinic orbits. The fixed pointR2 is not in the
physical phase space.

The phase portraits in the compactified phase space (V21Y2<1,V>0) are given in Fig. 1.
From these portraits it is immediately evident that the only stable singular points~both to the past
and the future! either lie in theV50 invariant set, occur at the infinite singular pointR1 , or occur
at Q3 ~when it exists in the phase space!. Recall that the invariant setV50 represents the perfec
fluid solutions studied previously,1 where in the equivalent ‘ ‘M150’’ case the solutions were
shown to asymptote towards a flat FRW model. The fixed pointR1 hasy50, and hence is a stati
solution. Finally, the fixed pointQ3 has the propertyy521 ~or S1Ṡ50), which was examined
in Sec. II B. Since all of the solutions in the phase space, and in particular those asymptoting
point Q3 , have the property thatpi5Pi(x)t22, p'5P'(x)t22, andm5W(x)t22, by continuity
so must the solution atQ3 . Therefore the solution represented by the pointQ3 must be given by
the metric~2.11!.

TABLE I. Summary of the nature of the finite singular points for the system
~4.2!/~4.3!. ‘‘N/A’’ indicates that the given point is not located in the physi-
cal regionn>0. The two cases~i! a253k, 2a23.k and ~ii ! a2,3k,
2a23>k are omitted since they do not give any real solutions fork anda.

a2.3k
a253k a2,3k

2a23<k 2a23.k 2a23<k 2a23,k
I II III IV

Q1 sink sink saddle-node N/A
Q2 source saddle ([ Q1) N/A
Q3 saddle N/A N/A N/A
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Consequently we see that in the analysis of the two cases considered in Sec. III A an
above the asymptotic behavior is described by either a flat FRW perfect fluid model, a
model, or by that of the metric~2.11!. In all cases these exact asymptotic models admit a ho
thetic vector.

V. DISCUSSION

We note that in the cases studied in this paper the dynamics of the models is governe
system of the form:

ẏ52 1
2 ~3y212ay!1 f ~n!, ~5.1!

ṅ522nn~11y!. ~5.2!

The variablen is defined by Eq.~4.1! and the functionf (n) depends on the specific case bei
studied. In the cases considered in Sec. III we had that:

Case A: Dimensional Constants :f (n)52 1
2(n1a2p0).

Case B: Equations of State :f (n)52 1
2n.

The system~5.1!/~5.2! results whenever we impose the condition

Pi~x!522a22f ~n!. ~5.3!

FIG. 1. Phase portraits. The phase portraits for the system~4.5!/~4.6! for various ranges of values ofa andk are given,
where the particular cases are as listed in Table I.
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In the cases examined in Sec. III it was shown that all solutions necessarily asymptote to a
solution admitting a homothetic vector. It is of interest to consider whether there are any po
asymptotic states for the geodesic anisotropic models which satisfy Eq.~5.3! that donot admit a
homothetic vector.

As was the case in Sec. IV, the perfect fluid solutions are located in the invariant setn50. The
definition ofn requires that it be greater than or equal to zero. In the relevant phase space th
then~at most! three finite singular points of the system~5.1!/~5.2!. These singular points, equiva
lent to those studied in Sec. IV, are given by:

Q15~ 1
3 @2a1~a216 f ~0!!1/2#,0!,

Q25~ 1
3 @2a2~a216 f ~0!!1/2#,0!,

Q35~21,f 21~3/22a!!.

The singular pointsQ1 and Q2 represent perfect fluid models, andQ3 ~as in Sec. IV! is repre-
sented by the metric~2.11!. In each case the model represented by the finite singular point ad
a homothetic vector.

The only possibility for the asymptotic behavior not to be governed by an exact homo
model is then~i! the model is represented asymptotically by a periodic orbit in the phase spa
~ii ! the model is represented by a singular point at infinity not located on one of the coord
axesn50 or y50.

In the first case we can impose necessary conditions for the existence of a periodic orb
periodic orbit in a plane must necessarily enclose a singular point. As a result we must ha
the pointQ3 is in the phase space in which case we necessarily have thatf 21(3/22a) is positive.
The energy conditions requiring that the pressures and density are positive will result in the f
condition thatf (n)<0, and thereforea>3/2 andy>0. We consider the existence of a period
orbit which enclosesQ3 by examining the horizontal and vertical isoclines of the system~5.1!/
~5.2!. The horizontal isoclines are located at~i! n50, an invariant line, and~ii ! y521. The
second case indicates that if there exists a periodic orbit about the pointQ3 then there must be
vertical isoclines on either side of the liney521. Solving Eq.~5.2!, we find that the vertical
isoclines are given by

y65 1
3 ~2a6~a213 f ~n!!1/2!. ~5.4!

Imposing the energy conditionsf (n)<0 and a>3/2, we find that they-values of the vertical
isoclines must satisfy

21<y<0; ~5.5!

i.e., y6 cannot take on values less than21. Therefore, there can be no periodic orbits enclos
the pointQ3 if the energy conditions are to be satisfied.

If there is an asymptotic solution at infinite values ofy and/orn which is not homothetic then
the corresponding singular point at infinity must be such thatyÞ0 or nÞ0. This will occur when
limn→` f (n)n22Þ0. In such cases the infinite fixed point may represent a nonhomot
asymptotic solution. Therefore, geodesic models for which Eq.~5.3! and the energy conditions ar
satisfied will not admit a nonhomothetic asymptotic solution whenever limn→` f (n)n22 is exactly
zero.
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VI. OTHER MODELS

Additional anisotropic fluid models can be investigated. For example, we can conside
case in which the source is a combination ofa perfect fluid and a magnetic fieldsatisfying Eqs.
~1.9!. Assumingp̄5(g21)m̄ ~whereg is a constant!, in the geodesic case we can immediate
derive the governing system as:

ẏ52 1
2 ~3y212ay!2 1

2a
2h, ~6.1!

ḣ524~11n!yh24~n21!~322a!a22y2, ~6.2!

whereh[2a22(3y212ay12ẏ)5Pi andn[1/g. The system~6.1!/~6.2! is of a similar form to
Eqs. ~5.1! and ~5.2! and can be analyzed using similar techniques. In the special casesg51 (n
51) anda53/2, Eq.~6.2! can be integrated immediately and exact solutions can be obtained
note that at the equilibrium points of the system~6.1!/~6.2!, Pi5 constant (Ṗi50), and hence
from Eqs.~1.9!, ~2.3! and ~2.4! we have that

p5
1

2
~p'2pi!5

Ṗi

2t2~11y!
50; ~6.3!

hence these equilibrium points correspond to perfect fluid models.
However, in order to study the physics of this particular model we note thatp5lH2/2 and

Eqs.~6.1! and~6.2! need to be supplemented by an additional differential equation~for H, derived
from Maxwell’s equations! and an assumption on the form of the magnetic permeability,l.

Finally, we note that in the case in whichp5constant5p0 ~with an unrestricted equation o
state! it can be shown that the governing equations reduce to

ẏ52 1
2 ~3y212ay!2a2p0 ln~n!, ~6.4!

ṅ52n~11y!. ~6.5!

This system is of the same form as that of~5.1!/~5.2! with f (n)52a2p0 ln(n) and with the
constantn5 1

2. Since~6.3!/~6.4! is of the same form we can immediately conclude that the o
asymptotic states of the system necessarily admit a homothetic vector. Note that in this casf (n)
is not analytic atn50; however the physical phase space hasn.0.
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The generalized thin-sandwich problem and its local
solvability

Domenico Giulinia)

Institut für Theoretische Physik, Universita¨t Zürich, Winterthurerstrasse 190,
CH-8057 Zu¨rich, Switzerland

~Received 5 October 1998; accepted for publication 18 January 1999!

We consider Einstein gravity coupled to matter consisting of a gauge field with any
compact gauge group and minimally coupled scalar fields. We investigate under
what conditions a free specification of a spatial field configuration and its time
derivative allows us to solve the constraints for lapse, shift, and other gauge pa-
rameters and hence determine a solution to the field equations~thin-sandwich prob-
lem!. We establish sufficient conditions under which the thin-sandwich problem
can be solved locally in field space. ©1999 American Institute of Physics.
@S0022-2488~99!00305-9#

I. INTRODUCTION

In this paper we consider the initial value problem for Einstein gravity plus matter in sp
timesS3R, whereS is a closed orientable three-manifold. We are interested in the questio
how to find initial data which satisfy the constraints. The most popular approach here is a po
method devised by Lichnerowicz, Choquet-Bruhat, York, and others, henceforth referred to
‘‘conformal method.’’ ~See Ref. 1 for a brief review and Ref. 2 for more details.! Of the gravi-
tational variables it allows us to freely specify the conformal class of the initial three-metric
conformally rescaled transverse-traceless components of the extrinsic curvature, and a c
trace thereof~i.e., S must have constant mean curvature!. Given these data, the constraints tu
into a quasilinear elliptic system of second order for the conformal factor~scalar function! and the
transverse momentum~vector field!, which decouples due to the constant mean-curvature co
tion. The disadvantages of this method are that it does not easily generalize to data of v
mean curvature and, more important for us, that it does not allow us to control the local sca
the physical quantities initially, since the freely specifiable data~gravitational and non-
gravitational! are related to the actual physical quantities by some rescalings with suitable p
of the conformal factor. In particular, one has no control over the conformal part of the i
three-geometry.

In this paper we are concerned with the so-called ‘‘thin-sandwich method,’’ which di
from the one just mentioned insofar as it aims to define solutions to the Einstein equation
free specification of the initial field configuration and its coordinate-time-derivative. The
straints are now read as equations for the gauge parameters~lapse, shift,...!. From the conformal
point of view this means that one tries to trade in the freedom to specify the initial g
parameters for the freedom to specify the conformal part of the metric and the longitudinal p
the momentum. The disadvantages mentioned above would then be overcome, but unfort
the equations~for the gauge parameters! turn out to be nonelliptic in general.3,4 ~By ellipticity of
nonlinear differential operators we mean the ellipticity of its linearization, which depends o
point ~in field space! about which one linearizes. The usual statement that the thin-sand
equations are not elliptic merely asserts the existence of points where the linearization
elliptic, but not that the domain of ellipticity is empty.! However, for certain open subsets of initi
data they are elliptic and can be locally solved. This was first shown in Ref. 5 and will he

a!Electronic mail: giulini@physik.unizh.ch
24700022-2488/99/40(5)/2470/13/$15.00 © 1999 American Institute of Physics
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generalized to the full system including dynamical matter in the form of scalar and vector g
fields.

We note that historically this approach arose from the question~then formulated as a conjec
ture! of whether the specification of two three-geometries uniquely determine an interpo
Einstein space–time~thick-sandwich problem!. For nearby geometries infinitesimally close
time this turns into the thin-sandwich problem~see Ref. 6, Chap. 4, and Ref. 7! which we now
describe in more detail.

In a space–time neighborhoodS3R of the Cauchy surfaceS, we use the standard param
etrization of the space–time metricg(4),

g~4!52a2dt^ dt1gab~dxa1badt! ^ ~dxb1bbdt!, ~1.1!

whereg is the ~t-dependent! Riemannian metric ofS and a and b are ~t-dependent! scalar and
vector fields onS, known as lapse and shift. The extrinsic curvature reads

K5
1

2a
~] t2Lb!g, ~1.2!

whereLb denotes the Lie derivative alongb. Written in terms of~g,K!, the constraints do no
depend ona and b and hence constrain the set of allowed values for the data~g,K!. The con-
straints read

KabK
ab2~Ka

a!22R522T'' , ~1.3!

¹b~Kb
a2db

aKc
c!5T'

a , ~1.4!

whereT is the energy-momentum tensor of the matter and' denotes the component along th
future pointing normaln of S.

Alternatively, one may write the constraints in terms ofg andġª] tg by replacingK via ~1.2!.
Then they explicitly involvea and b and one may ask whether it is possible tofreely specify
(g,ġ) and let the constraints determinea andb. This is the thin-sandwich problem~TSP!. If we
abbreviateCª(g,ġ), Xª(a,b), the constraints take the form of the thin-sandwich equa
~TSE!:

F@C, X#50. ~1.5!

The TSP now asks for existence and uniqueness of solutions of the TSE, read as equatioX
given C. Once this is solved, we can construct~g,K! satisfying~1.3! and ~1.4!, which uniquely
determine space–time via the Einstein evolution equations.2

It has long been discussed in the literature that, in general, existence and uniqueness
fail,3 although some arguments merely showed this under the additional assumption~a priori! of
constant lapse functiona ~Ref. 4! ~see also Ref. 8 for a related issue!. However, more recently it
was shown that given a solution (C,X) of the TSE, which satisfies certain bounds on geome
quantities and which admits no nontrivial solutions of the spatially projected Killing equa
there exist unique solutionsX(C8) for all C8 in a neighborhood ofC. This was achieved by an
implicit function theorem for a reduced version of~1.5! with already eliminated lapse function.

Note that in this formulation of the TSP the right-hand sides of the constraints, that isT'' and
T'

a , are assumed given. These arenot the components ofT that an observer along] t would
measure. The relation between the two sets of components involvea andb. For example, if the
matter is represented by some dynamical fieldf, the quantitiesT'' andT'

a cannot be calculated
from the initial data (f,ḟ) without the use ofa andb. Hence there is a certain inconsistency
the traditional formulation of the TSP in that it eliminates any appearance of the normaln in favor
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of ] t , lapse, and shift on the left side~the gravitational part!, but not on the right side~matter part!
of the constraints. This inconsistency was already felt by others~see, e.g., Sec. IV of Ref. 3!, but
no alternative formulation was hitherto attempted.

In this paper we consider a generalized thin-sandwich problem~GTSP! for the initial data of
the full system of coupled gravitational and matter fields, which avoids the difficulty just m
tioned. As matter we shall consider coupled systems of scalar and gauge fields, further sp
below. ByF we shall collectively denote all dynamical fields of the theory. We ask: Under w

conditions do input dataFª(F,Ḟ) uniquely specify a solution to the Einstein matter equatio
In the same fashion as for~1.5!, one obtains a nowgeneralizedthin-sandwich equation~GTSE!
from which one tries to determine the ‘‘gauge parameters’’X given the dataC. One nontrivial
aspect of our generalization is due to the possible presence of gauge matter fields. In thisX
comprises lapse, shift, andadditional functions with values in the Lie algebra of the gauge gro
Our main result will consist of an implicit function theorem for this extended set of variab
which for our GTSP is precisely analogous to the result proven in Ref. 5 for the traditional
of the thin-sandwich problem. But note that the two formulations differ even without gauge fi

II. THE GENERALIZED FRAMEWORK

The dynamical fields we consider involve the gravitational field, a gauge field with com
gauge groupG of dimensionN and anM-component scalar field with values in an associa
RM-vector-bundle. It couples to both previous fields in the standard minimal fashion. For sim
ity we assume theG-principal bundle to be trivial. Since the frame bundle of any orienta
three-manifold is always trivial, we may choose global trivializations of these bundles and r
sent fields by their globally defined component fields on space–time. For fixed time, a co
ration of fields is given by the 613N1M component fields onS,

FA
ª~gab ,Aa

m ,fa!, ~2.1!

where indicesm,n,... denote components in the Lie algebraLG anda,b,... denote components i
RM. Hence we think of a field configuration as mapping

F:S→S2
1~R3!3R3N3RM, ~2.2!

whereS2
1(R3) denotes the space of symmetric, positive definite, bilinear forms onR3, in which

gab is valued. Looking ahead, we remark that this space may be identified~via polar decomposi-
tion! with the homogeneous manifold GL~3,R!/O~3!, a fact that is useful when studying th
Lorentzian structure~2.11!.8 The total target space, whose dimension is 613N1M , will be
denoted byU, and the space of mappingsS→U ~to be further specified! byM.

Compactness of the gauge-groupG implies the existence ofG-invariant, symmetric, positive
definite, bilinear formskmn andhab on LG andRM, respectively. The class of models we sh
consider here are characterized by the Lagrange four-form

L5 1
2* R~4!2 1

4kmnVm∧* Vn2 1
2h

ab¹fa∧* ¹fb2W, ~2.3!

where* is the Hodge-duality map wrtg(4) andV is the curvature ofA. For notational simplicity
we shall denote all the covariant derivatives acting on sections in the various vector bundles
same symbol¹. In general, it will therefore involve the Christoffel symbols as well as the ga
connectionA in the appropriate representation ofLG. The potentialW depends on the fields an
their first spatial derivatives. Its precise form is not important, except that we need to exp
exclude second~or higher! derivative couplings, in particular, the so-called conformal coupling
the scalar and gravitational field. The reason for this will be explained below. The Hamilto
constraint for~2.3! has the general form

H5 1
2GABVAVB1U50, ~2.4!
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where the potential is the following sum:

U52R1 1
4kmngacgbdVab

m Vcd
n 1habgab¹afa¹bfb1W, ~2.5!

whose terms represent the contributions of the gravitational, gauge, and scalar fields~two terms!,
respectively, to the potential energy.R denotes the Ricci scalar forg and V now denotes the
curvature of the pulled-backG-bundle overS. The covariant derivative¹a refers from now on to
the connection in the splicing of the frame bundle ofS with the pulled-backG-bundle. The

‘‘canonical velocities,’’VA, can be written in terms of the ‘‘coordinate velocities’’ḞA
ª] tF

A and
the ‘‘gauge-parameters’’a andjª(b,l). The general structure is@compare~1.2!#

V5
1

a
G5

1

a
~Ḟ1 f j!, ~2.6!

where f j represents the variations generated by the infinitesimal diffeomorphism and g
transformation with parametersb andl, respectively. Resolved in terms of the individual fiel
~2.1!, the components ofG, and hence off j , read

Gab5ġab22¹ (abb) , ~2.7!

Ga
m5Ȧa

m2bbVba
m 2¹alm, ~2.8!

Ga5ḟa2ba¹afa1lmrmb
a fb, ~2.9!

wherer denotes the representation ofLG in gl(M ,R).
Finally, following the decomposition ofU as Cartesian product, the ‘‘kinetic-energy-metric

GAB on U which appears in~2.4! has the following block structure:

GAB5Gab cd
% kmngab

% hab , ~2.10!

where the first 636 block is given by the DeWitt metric

Gab cd5 1
4~gacgbd1gadgbc22gabgcd!, ~2.11!

which is a Lorentz metric of signature~1.5!. HenceGAB itself is a Lorentz metric of signature
(1,513N1M ) on the manifoldU, which is homeomorphic toR613N1M. We shall sometimes
denote this metric simply byG and write G(•,•) for the inner product. We will see that th
Lorentzian signature ofG is the important feature on which the proofs of our main results re
This is also the reason why we had to exclude higher derivative~e.g., conformal! couplings of the
scalar and gravitational fields, since they will, in general, destroy this signature structure.9 On the
other hand, our proofs will still apply to more complicated self-couplings of the scalar field
example, nonlinears-models would be allowed, since here the target space metric of the s
field, hab , simply becomesfa dependent, which is unimportant to our proofs as long as it s
positive definite.

The~undensitized! momenta of the fieldFA are just given by the covariant components—w
respect to G—of the velocities: PAªGABVB. For the individual fields we writePA

5(pab,pm
a ,pa). In the canonical theory, the phase space function that generates infinite

diffeomorphisms and gauge transformations with parameterj8 is given by

Pj8ªE
S
dm PAf j8

A , ~2.12!
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where here and below we setdmªAdet $gab%d
3x for the measure onS. For completeness we

remark that, using~2.7!–~2.9!, a straightforward calculation yields the following familiar Poisso
bracket relation, which involves the curvature tensorV of the gauge field onS:

$Pj8 ,Pj9%5Pj- , ~2.13!

wherej-5(b-,l-) reads

b-52@b8, b9#, ~2.14!

l-5@l8, l9#2V~b8,b9!. ~2.15!

The diffeomorphism- and Gauss-constraints are just given byPj850 ;j8, which may be
expressed by saying that the velocity fieldV is L2G-orthogonal to all ‘‘vertical’’ vector fieldsf j8 .
Hence we must have

05E
S

PAf j8
A dm5E

S

1

a
G~G, f j8!dm5:E

S
~gabb8aDb1kmnl8mGn!dm, ~2.16!

for all, say C`, vector fieldsb8 and LG-valued functionsl8. This is equivalent toDa50
~diffeomorphism constraint! andGm50 ~Gauss constraint!. Explicitly we get

Da52Gabcd¹bS 1

a
GcdD2

1

a
gabkmnVbc

m gcdGd
n2

1

a
gab~¹bfa!habGb, ~2.17!

Gm5¹aS 1

a
gabGb

mD1
1

a
kmnrnb

a fbhagGg. ~2.18!

Given F and Ḟ we now have the 41N equations 05H5Da5Gm for the 41N unknowns
a,ba,lm. The first step consists of inserting~2.6! into ~2.4! and solving fora2:

a252
G~G,G!

2U
. ~2.19!

For this to make sense the right-hand side must be positive. But for the following analysis it
out that we need to put the following stronger condition.

Condition 1 (a priori):

U.0, ~2.20!

G~G,G!,0. ~2.21!

Note that~2.20! just involves the initial data, whereas~2.21! contains as well the unknownsb and
l ~hence ‘‘a priori’’ !. Note that~2.21! says that the system must, at each point ofS, move in a
‘‘timelike’’ direction with respect to the Lorentz metricG. The need for such ana priori bound
implies that our results will only be perturbative. Given these bounds, we seta equal to the
positive square root of the right-hand side of~2.19!. We can then eliminatea from ~2.17! and
~2.18! and obtain a set of 31N equations for the 31N unknownsj5(b,l), which we call the
generalizedreducedthin-sandwich equation~GRTSE!:

F@C, j#50. ~2.22!

Now consider the following functional over configurations satisfying Condition 1:
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S@C, j#5E
S
A22UG~G,G! dm. ~2.23!

Then solutions to the GRTSE are stationary points with respect to variations inj. More precisely,
let D2 denote the partial~functional! derivative in the second argument and denote theL2 inner
product ofj1 andj2 by ^j1uj2&ª*Sdm(kmnl1

ml2
n1gabb1

ab2
b). We then have the following.

Lemma 1:

D2S@C, j#~j8!52^j8uF@C, j#&. ~2.24!

Proof: For sP(2e,e) set h(s)5j1sj8 and G(s)5Ḟ1 f h(s) . Hence (d/ds)us50G(s)
5 f j8 . Then, recalling~2.16!,

d

dsU
s50

S@C, h~s!#52E
S
A 22U

G~G,G!
G~G, f j8!dm52^j8uF@C, j#&. ~2.25!

III. MAIN RESULTS

In this section we are mainly concerned with the linearization of the GRTSE, except at th
where we will discuss global uniqueness. The corresponding linear operator will be callL,
without explicit indication that it depends onC andj. It is defined by

^j8uLj9&ª
d

dsU
s50

^j8uF@C, j1sj9#&5E
S
dm

d

dsU
s50

G„f j8 ,G~s!…

a~s!
, ~3.1!

where G(s)5Ḟ1 f j1sj9 and a(s)5@2G„G(s),G(s)…/2U#1/2. Setting G(s50)5G, a(s50)
5a, and noting that (d/dt)us50G(s)5 f j9 , we get

d

dsU
s50

a~s!52
G~ f j9 ,G!

2aU
5a

G~ f j9 ,G!

G~G,G!
, ~3.2!

where we used~2.4! to eliminateU in the last step. Hence

d

dsU
s50

G~ f j8 ,G~s!!

a~s!
5

1

a FG~ f j8 , f j9!2
G~ f j8 ,G!G~ f j9 ,G!

G~G,G! G5
G~ f j8

' , f j9
'

!

a
, ~3.3!

where

f j8
'
ª f j82G

G~ f j8 ,G!

G~G,G!
~3.4!

is the G-orthogonal projection off j8 pointwise perpendicular toG. This leads to the following
expression forL’s matrix elements:

^j8uLj9&5E
S
dm

1

a
G~ f j8

' , f j9
'

!, ~3.5!

wherea is the square-root of the rhs of~2.19!. If ~2.21! holds,G is ‘‘timelike’’ ~pointwise onS!
and hence thef'’s are ‘‘spacelike’’ or zero. Since the metricG is Lorentzian, it is positive definite
on ‘‘spacelike’’ vectors. Hence we have shown the following.

Lemma 2: Suppose Condition 1 holds. Then L is self-adjoint and non-negative. Further,
j8Pkernel(L)⇔'k:S→R such that
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f j85kG. ~3.6!

Remark:Symmetry is expected, for consider the rhs of~2.23! as functional ofC and G,
denoting it byS@C,G#. Then the calculation of the rhs of~3.5! was just that of2D2

2S@C,G#
3(G8,G9) for G85 f j8 andG95 f j9 .

We will next show that under the same hypothesesL is, in fact, elliptic. For this we will need
the following.

Lemma 3: If Condition 1 holds, pab is a positive or negative definite matrix.
Proof: Condition 1 impliesGABPAPB,0⇒Gab cdp

abpcd52(pabp
ab2 1

2(pa
a)2),0. Choos-

ing a frame wheregab5dab andpab5diag (p1,p2,p3), this is equivalent to the following condition
on the eigenvalue vectorpWª(p1 ,p2 ,p3):

UnW •pW

ipW i U.A2

3
, ~3.7!

wherenW 5(1,1,1)/), which means thatpW lies in the interior of the double cone with axis alon
nW and opening angleu,cos21(2/3)1/2 about its axis. This cone just touches the walls of t
positive and negative octants along the bisecting lines, and sincepW must be in its interior, all
eigenvalues are either strictly positive or strictly negative. h

Proposition 1: Suppose Condition 1 holds. Then the second-order differential operato
elliptic.

Proof: For later purposes we shall prove slightly more, namely that the definiteness ofpab is
equivalent to the ellipticity ofL. This we do by a direct calculation ofL’s principal symbol. For
this we to go back to the explicit formulas~2.17! and ~2.18! for the full nonlinear problem and

explicitly linearize them, but keeping track only of the highest~second! derivatives. By5
2

we shall

denote equality in the second derivative terms. We set againG(s)5Ḟ1 f j1sj8 , etc., with j8
5(b8,l8). It will be convenient to express things in terms of the momenta, usingaPA

5GABGB, and accordingly write~3.2! in the form

d

dsU
s50

a~s!52
PAf j8

A

2U
. ~3.8!

Then

d

dsU
s50

Da5
2

]bFPAf j8
A

aU
pab2

4

a
Gab cd]cbd8G

5
2

2
1

a F2pacpdegdb]c]eb8b1pabpn
c]b]cl8n

U
1gbc]b]cb8a2gac]c]bb8bG , ~3.9!

d

dsU
s50

Gm5
2

]aFPAf j8
A

2aU
kmnpn

a2
1

a
gab]bl8mG

5
2

2
1

a F2kmnpn
agbcp

cd]a]db8b1kmsps
apn

b]a]bl8n

2U
1gab]a]bl8mG . ~3.10!

Replacing]a→ka we can just read off the matrix of the principal symbols(k) in the general form
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Fsn
m sb

m

sn
a sb

aG , ~3.11!

where we have chosen to order theN13 rows and columns so that we first count theN compo-
nents ofl8 and then the three components ofb8. In order to calculate the determinant we ma
the following simplifications: We callpabkb5:pa, pm

a ka5:pm , pm
ªkmnpn , and choose a spa

tial frame wheregab5dab , ka5(iki ,0,0) andpa5(p1 ,p2,0). Then~3.11! reads explicitly

s~k!52
1

a 3
pmpn

2U
1iki2dn

m pmp1

U

pmp2

U
0

p1pn

U

2p1
2

U

2p1p2

U
0

p2pn

U

2p1p2

U

2p2
2

U
1iki2 0

0 0 0 iki2

4 . ~3.12!

Now, for kÞ0, p15ikip( k̂,k̂), wherek̂ªk/iki . Lemma 3 then ensures thatp1Þ0. In order to
calculate det$s(k)%, we simplify this matrix as follows: We subtractpm/2p1 times the (N11)st
row from themth row, for each 1<m<N, and also subtractp2 /p1 times the (N11)st row from
the (N12)nd row. The resulting matrix reads

2
1

a F iki2dn
m 0 0 0

p1pn

U

2p1
2

U

2p1p2

U
0

0 0 iki2 0

0 0 0 iki2

G . ~3.13!

Its determinant, which equals that ofs(k), is now easily calculated:

det $s~k!%5
2p1

2

U
iki2~N12!F2

1

aGN13

52F2
iki2

a GN13 @p~ k̂,k̂!#2

U
. ~3.14!

Lemma 3 implies that this is zero⇔k50, which finally proves ellipticity ofL. h

Remark:It is interesting to see that all momenta of matter fields in~3.12! drop out when
taking the determinant, and that the result is}@p( k̂,k̂)#2, just as in the vacuum case.5 The
underlying reason is the fact that (f j)matterdepends ultralocally~i.e., without derivatives! on b @see
~2.8! and ~2.9!#, which implies that the lower-right 333-matrix in ~3.12! is independent of the
momenta for matter fields and hence identical to the principal symbol in the vacuum case. W
note that there is a simple argument that ellipticity ofL is implied by the definiteness ofpab. In
brief, the argument is simply this:~Here I follow a suggestion made by the referee.! Replacing
]a→ka , any kernel element of the quadratic form~3.5! must, according to~3.6!, satisfy
22k(abb)5kGab , where kÓ0, which immediately impliesp(k,k)50. Hence a definitepab

implies a trivial kernel.~3.14! shows that this condition is also necessary.
The results obtained so far suffice to deduce an implicit function theorem. To state i

cisely, we need to choose appropriate function spaces. It is natural to choose Sobolev
which are also used in showing existence of the time evolution.2 To begin with, it is convenient to
summarize the order of spatial differentiation by which the various fields enter the quantitiesG, U,
a, and hence the GRTSE, by the following matrix:
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G U a GRTSE

gab 1 2 2 3

Aa
m 1 1 1 2

fa 1 1 1 2

ġab 0 — 0 1

Ȧa
m 0 — 0 1

ḟa 0 — 0 1

ba 1 — 1 2

lm 1 — 1 2

~3.15!

Note that we assumed thatU only contained first derivatives of the matter fields, whereas
contains second derivatives of the gravitational field through the Ricci scalar. Hencegab enters the
GRTSE thrice differentiated.~This seems to have been overlooked in Ref. 5.!

By Hn(V) we shall denote the Sobolev space ofV-valued functions onS with L2-norm in the
first n derivatives~i.e., generalizingHn5Wn,2 using an inner product inV). We shall haveV
5T2

0 for gab and ġab , V5T1
0

^ LG for Aa
m and Ȧa

m , V5RM for fa and ḟa, V5T0
1 for ba, and

V5LG for lm. The inner products for the variousV’s are just as in the metricG, except for the
gravitational field where instead ofGab cd, which is not positive definite, we choose the positiv
definite formgacgbd @compare~2.11!#. Now we define the Sobolev spaces

HF
n
ªHn13~T2

0!3Hn12~T1
0

^ LG!3Hn12~RM !, ~3.16!

H
Ḟ

n
ªHn11~T2

0!3Hn11~T1
0

^ LG!3Hn11~RM !, ~3.17!

HC
n
ªHF

n 3H
Ḟ

n
, ~3.18!

Hj
n
ªHn~T0

1!3Hn~LG!. ~3.19!

One may now show that the operatorF in the GRTSE,F@C,j#50, defines aC1-map

F:HC
n 3Hj

n12→Hj
n for n>2 ~3.20!

on the domain of fields~C, j! which satisfy Condition 1.@The Sobolev embedding theorem fo
three-dimensional domains andL2-norms implies a continuous embeddingHn(V)�Ck(V) for
k,n23/2. n>2 is needed to guarantee continuity of the functions and gain pointwise con
which is needed in the proof forF beingC1.# For this we need to impose suitable but very mi
regularity conditions on the unspecified functionW in ~2.5!. The linear mapL is the first derivative
of F wrt the second argument:D2F@C,j#. Ellipticity implies that Image (L)ªL(Hj

n12)#Hj
n is

closed and henceHj
n splits as orthogonal sum of closed subspaces, given byL’s image and the

kernel ofL’s adjoint. Hence, sinceL is self-adjoint,Hj
n5 image (L) % kernel (L). We now get an

implicit function theorem for the mapF if D2F@C,j# is a linear isomorphism, i.e., if
kernel (L)5$0%. But sinceL is elliptic, any nontrivial element in the kernel may be represen
by a C` function j8 which must then satisfy~3.6!. Hence a trivial kernel is equivalent to th
following condition for smooth functions:

Condition 2:

f j85kG implies j850, k50. ~3.21!

Hence we arrive at the following formulation of an implicit function theorem for the gen
alized thin-sandwich problem. It may be seen as generalization of Theorem 2~or 3! in Ref. 5.
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Theorem: Let n>2 and (C,j)PHC
n 3Hj

n12 be a solution to the GRTSE, F@C,j#50, which
satisfies Condition 1 [i.e., (2.20 and 2.21)] and Condition 2 [i.e., (3.21)]. Then there exist
neighborhoods V,HC

n of C and W,HC
n 3Hj

n12 of ~C, j! and a C1 maps:V→Hj
n12 such that

F@C8,j8#50 for (C8,j8)PW⇔C8PV andj85s(C8).

Consider the actionT of ṘªR2$0% on HC
n 3Hj

n12, given byTd(F,Ḟ,j)ª(F,dḞ,dj) for
dPṘ. It leaves individually invariant the three subsets of points~C, j! which ~1! obey Condition
1, ~2! obey Condition 2, and~3! solve the GRTSE. To see this, recall thatf j is linear inj, hence
TdG5dG. Invariance of the first set is now obvious. Further, iff j85kG has only the trivial
solution, then so doesf j85kTdG, since otherwise (d21j8,k) would be a nontrivial solution to the
first equation. Hence the second set is invariant. Finally, sinceG scales withd and the square roo
of expression~2.19! for a with udu, the GRTSE~2.16! changes at most by an overall sign, whi
proves invariance of the third set.

We can now repeat the Theorem for each pointTd(C,j) on theṘ orbit of ~C, j! with open
setsVd ,Wd and solution mapssd . In this way the solution maps extends to a solution maps* :
V*→Hj

n12, whereV*ªødPṘVd, which uniquely represents all solutions inW*ªødPṘWd . By

construction it satisfiess* (F,dḞ)5ds(F,Ḟ);dPṘ. Dropping the superscript* , we formulate
this as follows.

Corollary 1: Let ~C, j! be as in the Theorem. Then there exist open neighborhoods V,HC
n of

ødPṘTdC and W,HC
n 3Hj

n12 of ødPṘTd(C,j) and a C1 map s:V→Hj
n12 such that

F@C8,j8#50 for (C8,j8)PW⇔C8PV andj85s(C8). Moreover,

s~F,dḞ!5ds~F,Ḟ!, ;dPṘ ~3.22!

Finally we prove that Condition 2 not only ensures local but also global uniquenes
generalizes the analogous result for the traditional RTSE, proven in Ref. 3.@The full statement and
proof given in Ref. 3 contains an additional part which is erroneous, as was first pointed
Ref. 5. If transcribed to our setting, the incorrect part would amount to the claim that~3.23!
implied r[1 without using Condition 2.#

Proposition 2: Let~C, j! and (C,j̃) satisfy Condition 1 and~C, j! the GRTSE. Then(C,j̃)

satisfies the GRTSE⇔ there exists a positive function r: S→R1 such thatG5Ḟ1 f j and G̃

5Ḟ1 f j̃ are related by

G̃5rG. ~3.23!

Proof: ⇐: This follows trivially from the fact that the GRTSE, i.e., Eqs.~2.17! and ~2.18!,
containj only through the combination~1/a!G.

⇒: For sP@0, 1#, consider the convex combinationsj(s)ªsj1(12s) j̃ and GsªḞ1 f j(s)

5sG1(12s)G̃. In the following it is useful to think of eachGs as section in the pulled-bac
bundle F* T(Q) whose fiber atpPS is a Minkowski spaceR1,513N1M with metric GF(p) .

Condition 1 requiresG(p) and G̃(p) to be ‘‘timelike,’’ so that s°Gs(p) is the straight path

connecting these two ‘‘timelike’’ vectors. First we show thatG(p) andG̃(p) lie in the interior of
the same ‘‘light-cone’’ for some, and hence all,pPS. To see this, we consider, for eachp, the

inner productG(G2G̃,V) with the timelike vectorVªgab]/]gab of constant length-square
G(V,V)523. Now,

E
S
G~G2G̃,V! dm52E

S
¹a~ba2b̃a!dm50, ~3.24!
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so that, becauseS is connected, there exists a pointpPS whereG(G2G̃,V)(p)50. HenceG(p)

andG̃(p) point in the same half of the ‘‘light-cone,’’ and so doesGs(p), since the interior of the
half ‘‘light-cone’’ is a convex set. By continuity this must then be true at each pointpPS so that
G(Gs ,Gs) is a negative-valued function onS for eachs.

Next we consider the function

I ~s!ªS@C, j~s!#5E
S
A22UG~Gs ,Gs! dm. ~3.25!

We haveI 8(0)505I 8(1), where 85d/ds, since j and j̃ solve the GRTSE. Furthermore,
straightforward calculation yields

I 9~s!5E
S

@2U#1/2

@2G~Gs ,Gs!#
3/2G~G,G!G~ G̃' ,G̃'! dm<0, ~3.26!

with

G̃'ªG̃2G
G~G,G̃ !

G~G,G!
. ~3.27!

The inequality in~3.26! results fromG being ‘‘timelike’’ and G̃' being ‘‘spacelike’’ or zero. But
I 8(0)5I 8(1)50 and I 9(s)<0 imply I 9[0. On the other hand, equality in~3.26! can only be

achieved forG̃'50 which is equivalent to~3.23!, wherer must be positive valued sinceG andG̃
point in the same half of the ‘‘light cone.’’ h

Now ~3.23! implies ~3.6! with j85 j̃2j and k5r 21, so that Condition 2 will enforcer
51 andj5 j̃. Hence we have the following corollary.

Corollary 2: If ~C, j! and (C,j̃) satisfy the GRTSE and Conditions 1 and 2, thenj5 j̃.

IV. DISCUSSION

It is obvious that the strategy of the~generalized! thin-sandwich approach cannot work for a
data. Obvious bad data are those for which the Hamiltonian constraint cannot be solved

nowhere vanishinga. For example, consider fieldsF such thatU.0 and velocitiesḞ whose
gravitational part is pure gauge:ġab52¹ (aj8b) . The Hamiltonian constraint implies (¹aha)2

>Ua2, whereh5j82j, showing thata must vanish somewhere since*Sdm ¹aha50 andS is
connected. To avoid such situations, Condition 1 or its reversed version,U,0 andG(G,G).0,
may be imposed. However, if the second condition is chosen, formula~3.14! together with the
proof of Lemma 3 show thatL manifestly fails to be elliptic, thus leaving only Condition 1.

The technical Condition 2 has an interpretation in terms of the ‘‘canonical data’’ (F,V),

where aV5Ḟ1 f j and where we assume (F,Ḟ,j) to satisfy Condition 1 in order to havea
Þ0. Namely, if f j85kG for some nonzero (j̇8,k), then f j85akV says that the same canonic
data admit a representation in terms of the new lapse functionanew5ka ~now possibly with

zeros!, gauge functionsjnew5j8, and coordinate-velocitiesḞnew50. Conversely, if ananew exists
such thatanewV5 f jnew

, then f j85kG with k5anew/a and j85jnew. Hence Condition 2 pre-
cisely excludes the existence of other representations of the same canonical data with va

coordinate velocitiesḞ. We note that Condition 2 may itself be implied by simple geome
conditions onF. One such set of conditions is provided by the following.

Proposition 3: Condition 2 is implied by Condition 1 and the following conditions onF:

~ i ! Ric,0 ~Ric5Ricci tensor of g!, ~4.1!
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~ i i ! ¹alm50 and lmrmb
a fb50 imply lm50. ~4.2!

Proof: Let f j85kG. ThenG(G,G),0⇒G( f j8 , f j8)<0⇒

E
S
dm@Gab cd4¹ (ab8b)¹ (cb8d)#5E

S
dm2@¹ [ab8b]¹

[ab8b]2Rabb8ab8b#<0 ~4.3!

⇒b850. SinceG is positive definite onf j8’s for which b850, G( f j8 , f j8)<0 implies f j850
which for b850 is equivalent to the first two equations in~4.2!. h

We recall that metrics with Ric,0 exist on any three-manifoldS ~Ref. 10! ~e.g., quite in
contrast to Ric.0, which is well known to imply a finite fundamental group!. Equation~4.2!
should be read as a mild genericity condition for the matter fields. For example, if we have a
U~1! gauge field and a charged scalar field@here represented by a real doublet (f1,f2)#, then
condition ~4.2! is satisfied if the scalar field is not identically zero.

Finally we comment on the functionalS@C,j# defined in~2.23!. Given that Condition 1 is
satisfied, solutions to the GRTSE are stationary points with respect to variations inj ~Lemma 1!.
Lemma 2 asserts that these must be minima which are stable if Condition 2 is satisfied. W
assume Conditions 1 and 2 to hold and evaluateS@C,j# at a solutionj5s(C). We get a
C1-function S* : HC

n→R1 ,

S* @F,Ḟ#5E
S
dmA22UG~Ḟ1 f s~F,Ḟ! , Ḟ1 f s~F,Ḟ!!, ~4.4!

which satisfies

S* @F,dḞ#5uduS* @F,Ḟ# ~4.5!

for all dPṘ. Standard consequences are

D2S* @F,dḞ#~Ḟ!5sign ~d!S* @F,Ḟ#, ~4.6!

D2
2S* @F,dḞ#~Ḟ,Ḟ!50, ~4.7!

where in~4.7! we assumedC2 smoothness ofs. It is tempting to try and regardS* as a kind of
metric on at least an open subset of the tangent bundle of the space of fields. For pure gr
generalizes a previously considered expression which is valid only for constant lapse functio8 and
also gives rigorous meaning to a formal definition of a distance function given in Ref. 4. How
presently it is unclear to us whetherS* indeed defines an interesting geometric structure.$One
may wonder whether it defined a Finsler metric. For this one would have to show that the b

form D2
2S

*
2 @F,Ḟ# is ~weakly! nondegenerate. But this is not even the case in finite dimension

functions of the form~4.4! ~i.e., sum of square roots rather than square root of sum!. Take, e.g., the
function f (y1 ,...,yn)5( iAyi

2. Then] i] j f
252] i f ] j f , which is obviously just of rank one.%
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Null cones from I1 and Legendre submanifolds
Mirta Iriondo, Carlos N. Kozameh, and Alejandra T. Rojas
FaMAF, Universidad Nacional de Co´rdoba, 5000 Co´rdoba, Argentina

~Received 29 May 1998; accepted for publication 27 January 1999!

It is shown that the main variableZ of the null surface formulation of GR is the
generating family of a constrained Lagrange submanifold that lives on the energy
surfaceH50 and that its level surfacesZ5const yield Legendre submanifolds on
that energy surface. Thus, the singularity structure of past null cones with apex at
I1 is obtained by studying the projection map of the Legendre submanifolds to the
configuration space. The behavior of the coordinate system defined by the variable
Z at the caustic points is analyzed. It is shown that a single functionZ(xa,z,z̄)
cannot generate the conformal structure of an asymptotically flat space–time that
satisfies the generic and weak energy condition. ©1999 American Institute of
Physics.@S0022-2488~99!02105-2#

I. INTRODUCTION

In the last several years a formalism has been developed where null surfaces play a dyn
role replacing the metric as a basic variable.1–4 The goal of the null surface formulation of Gener
Relativity ~GR!, or NSF for short, is to introduce a new variable such that from its knowledge
can obtainall the conformal structure of the space–time. Field equations equivalent to Eins
equation then determine the dynamical evolution of those surfaces. By casting GR as a th
surfaces rather than a theory of fields the NSF provides a completely new point of view
emphasis on the geometrical character of the theory. The basic variable is a functionZ(xa,z,z̄)
with xa representing points on the space–time and (z,z̄) parametrizing the sphere of null direc
tions. At each point on the space–time the functionZ satisfies

gab~xc!]aZ~xc,z,z̄ !]bZ~xc,z,z̄ !50, ~1!

and the level surfaces of this function, namelyZ5const are null hypersurfaces on the space–tim
The reader should be aware that the above construction is done at a local level and that in
it might not be possible to find a single function satisfying these conditions on the whole sp
time. Weyl curvature induces self-intersections and caustics on null congruences. Thus,
one locally obtains a smooth hypersurface, extending such surface along the generators of
geodesics will fail to be smooth. This generalized null surface is called awave frontand cannot be
described as the level surface of a single functionZ.

In this work we introduce a generalized variableẐ to describe the wave fronts. By studyin
the geometry of these fronts we analyze the singularities of our variable. We are also a
determine under what circumstances a single functionZ suffices to construct the entire conform
structure, or how many different functions must be given to cover the space–time. We
consider a specific class of space–times which are asymptotically flat along future null direc
For those space–timesZ represents past null cones from the future null boundaryI1.

Note thatZ can be thought of as the action of the Hamilton–Jacobi equation for the Ha
tonianH(x,p)5gabpapb . Since Eq.~1! can be written as

H~x,]aZ!50,

Z is the action of the time-independent Hamilton–Jacobi equation and the study of the unic
the solution and its global properties can be carried out using the tools of analytical mecha
24830022-2488/99/40(5)/2483/11/$15.00 © 1999 American Institute of Physics
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is worth mentioning that the study of the solutions of the Hamilton–Jacobi equations led
development of the theory of Lagrange submanifolds on cotangent bundles and the loss of
on the solutions is directly related to the singularities of the projection map of these subman
onto the configuration space.5–10

We show thatẐ is the generating family of a constrained Lagrange submanifold that live
the energy surfaceH50 of the cotangent bundleT* M and that its level surfaces are Legend
submanifolds. Thus, the singularity structure of the wave fronts can be obtained by studyi
projection maps to the configuration space. We thus, define the caustic set as the points
Lagrange or Legendre submanifold with singular projection and the projection of those poi
the caustics. Since Lagrange and Legendre submanifolds are smooth surfaces inT* M this work
suggests that one can redefine the main variable of the NSF in a way that is free fro
singularities and self-intersections that are naturally associated with characteristic wave fro
GR.

In Sec. II we introduce the necessary mathematical background needed for this work.
context we also prove that the hypersurfaces of a constrained Lagrange submanifold define
restriction of this Lagrange submanifold to the level surfaces of its generating family are Leg
submanifolds on the energy surfaceH5const.

In Sec. III we study the singularity structure of our variableZ and the main results are found
We show that the caustic points are obtained by choosing the points whereZZpZ, the parameter
space Laplacian ofZ, blows up. We also show that at those points (Z,ZZ,ZpZ) remain finite
whereasZ2Z diverges. Using available singularity theorems we find as a proposition that a s
function Z(xa,z,z̄) cannot generate the conformal structure of an asymptotical space–time
satisfies the generic and weak energy condition. Thus, in order to properly study the
behavior of the main variable in the NSF one must abandon the idea of using a single funct
the space–time and instead one has to think of our variable as a generating familyẐ of a Lagrange
submanifold on the cotangent bundle of the space–time. We close this work with some com
of how to deal with the dynamics of the new variable.

II. LAGRANGE AND LEGENDRE SUBMANIFOLDS

In this section we review the notions of Lagrange and Legendre manifolds in a given c
gent bundleT* M of an n-dimensional manifoldM. Exhaustive treatises at a high mathemati
level and/or with applications to different areas in physics can be found in the literature.5,7–13We
present here a brief review of some basic results needed for the present work. In Secs. I
II B we introduce the concept ofconstrained Lagrange and Legendre submanifoldsin order to
reinterpret our variableZ as the generating family of a Lagrange manifold. Moreover, we prov
proposition II.3 that the hypersurfaces of a constrained Lagrange submanifold defined
restriction of the Lagrange submanifold to the level surfaces of its generating family are Leg
submanifolds on the energy surfaceH5const.

A. Lagrange manifolds

Recall that (P,v) is a symplectic manifold ifP is an even-dimensional differentiable man
fold and v is a closed, nondegenerate, differential two-form onP. We consider a particula
submanifold ofP called aLagrange manifold, defined as a manifold whose dimension is the sa
as the configuration space and where the pullback of the symplectic form vanishes on the
fold.

From now on we will restrict ourselves to a particular class of symplectic manifolds
cotangent bundle of ann-dimensional manifoldM, denoted byT* M . This bundle can be assigne
local coordinates (qi ,pi), with (qi) representing points ofM and pi the local coordinates of the
covectors at the point (qi). In these local coordinates the closed nondegenerate differential
form v on T* M can be written asv5dqi∧dpi .
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If L is a Lagrange submanifold of (T* M ,v), then the projection mapp:T* M→M is called
theLagrange map. The set of points where the rank ofp* drops are called thesingular setand the
image of this set is called thecaustic.

Notice also that ifS:M→R, then the graph ofdS is a Lagrange submanifold andp is a
diffeomorphism.

The converse is also true, ifp is locally a diffeomorphism, thenL is the graph ofdS, where
S:M→R.

Now, consider the Hamiltonian system (T* M ,v,H), whereH:T* M→R is a Hamiltonian
function. We introduce the notion ofconstrained Lagrange submanifoldsas follows:

Definition II.1: Let L̂ be a Lagrange submanifold of T* M and H a Hamiltonian function, we

say that L̂is a constrained Lagrange manifold if Lˆ ,Ĥ, where Ĥ is an energy surface.
Note that constrained Lagrange manifolds are invariant under the flow of the Hamilto

vector fieldXH ~Ref. 10, Proposition 5.3.32!. This, can be easily proved using the fact thatXH is
tangent to the hypersurfaceH5const and thatL̂ is of maximal dimension.

If L̂ is the graph ofdS, whereS:M→R, thenSmust satisfy the time-independent Hamilton
Jacobi equation

HS qj ,
]S

]qi D5const, ~2!

and conversely, a solution of~2! locally defines a constrained Lagrange manifold with a diffe
morphic projection toM.

However, in general~and in the problem we want to address! the projection ofL̂ will not be
globally diffeomorphic toM.

Let us briefly analyze how to construct our constrained Lagrange manifold from the solu
to the time-independent Hamilton–Jacobi equation. From now on we shall assume thatĤ is the
hypersurface defined byH50.

Since the Hamiltonian flow is tangent toL̂, we may solve Hamilton’s canonical equation
with initial values (qi(0),pi(0))PÑ, whereÑ is constructed as follows. Consider a hypersurfa
N,M and a null covector field onN that is a restriction of a differential of some function onM,
then this field defines ann21 dimensional surfaceÑ,Ĥ diffeomorphic toN. The initial data
shall be the Cauchy data of the Hamilton–Jacobi equation.

To solve Hamilton’s canonical equations we look for a generating function of a cano
transformationg:(qi ,pi)→(Qi ,Pi) such that in the new variables the Hamiltonian become
function which depends only on the variablesQi , i.e., H5K(Qi).

It is easy to show that the difference between the canonical one-forms associated with t
coordinates is exact,5,7–9 i.e.,

pidqi2PidQi5dS~qi ,Qj !. ~3!

The functionS is calledthe generating functionof the canonical transformation. Furthermore,
S(qi ,Qj ) is a solution to the differential equation

HS qi ,
]S

]qj D5K~Qi !, ~4!

with Qi parameters such thatu]2S/(]Qi]qj )uÞ0, then Hamilton’s canonical equations can
solved by quadratures and the functionsQi5Qi(qi ,pj ) determined by the equationspi5]S/]qi

are first integrals of the canonical equations.~Jacobi’s Theorem—Refs. 5 and 14!.
Given a solutionS(qi ,Qj ) to Eq. ~4! the corresponding constrained Lagrange manifold inĤ,

is obtained by first requiring thatK(Qi)50. Then, the functionŜ5S(qi ,Qj )uK(Qi )50 is a gener-
ating family of L̂ given by
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L̂5~qi ,pj !upj5
]Ŝ

]qj
and

]Ŝ

]Qi 50.

Note that if we can solve forQl5Ql(qi) from

K~Qi !50,
]S

]Ql 50, ~5!

then L̂ is locally the graph ofdS, with S(qi)5S8(qi ,Qj (qi)) and theLagrange mapp̄ is a
diffeomorphism. This can be guaranteed in a neighborhood of a point if the rank of the s
built by ~5! is r 5n in the variablesQl . If r 5k,n then there existsQJ5QJ(qi), for J51¯k and
Ŝ5Ŝ(qi ,QI), for I 5k11¯n. In this case the rank ofp̄* drops at some points and this can
related to the presence of these parametersQI , for I 5k11¯n.

Then Ŝ(qi ,QI), defines a Lagrange submanifoldL̂,Ĥ embedded intoT* M by setting:

pi5
]Ŝ

]qi , 1< i<n, ~6!

and imposing the constraints

05
]Ŝ

]QI . ~7!

Since the rank of~7! is n2k in theqI variables, then there existqI5qI(QI ,qJ), andL̂ andp(L̂)
are parametrized by (QI ,qJ). The derivativep̄* can be written as

S ]qI

]QI

]qI

]qJ

0 I
D ,

where I is the identity matrixk3k, therefore it is clear that the rank ofp* >k and it shall be
strictly less thann when

U ]qI

]QIU50.

The set of singular points and thus the caustic set shall be isolated points, curves or in ge
set of points of zero measure with respect to the topology ofM, since the rank ofp̄* cannot drop
more thann22.6

B. Legendre manifolds

Odd-dimensional manifolds do not admit asymplectic structure. The analog of a symplectic
structure for odd-dimensional manifolds is acontact structure.

We define acontact manifoldas a pair (P̂,v̂), consisting of an odd-dimensional manifoldP̂

and a closed two-formv̂ of maximal rank on this manifold. An exact contact manifold (P̂,k̂)
consists of a (2n21)-dimensional manifoldP̂ and a one-formk̂ on P̂ such thatv̂52dk̂ is of
maximal rank onP̂.

Moreover, an analogous notion to a Lagrange manifold can also be given.
(n21)-dimensional manifoldN of P̂ is called aLegendre submanifoldif the pullback of the
contact formk̂ vanishes onN.
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Now, consider the Hamiltonian system (T* M ,v,H), the next proposition ensures that we c
find, in a natural way, acontact submanifoldof T* M .

Proposition II.2: Let(T* M ,v,H) be a Hamiltonian system and Hˆ a regular energy surface

defined by H5const.Then(Ĥ,i * v) is a contact manifold, where i:Ĥ→T* M is an inclusion (Ref.
10, Proposition 5.1.7).
Thus the Legendre submanifolds we will consider are those that are submanifolds of the c
manifold (Ĥ,i * v). Moreover they are hypersurfaces ofconstrained Lagrange manifoldof a given
Hamiltonian system and the projection mapp:T* M→M will induce a mapp̂ defined asp̂5p
+ê and called theLegendre map.

The next proposition gives a description of this kind of manifold.
Proposition II.3: Let L̂ be a constrained Lagrange submanifold of the Hamiltonian sys

(T* M ,v,H) and Ŝits generating family, i.e., a solution of the time independent Hamilton–Jacobi

equation. Then the hypersurface Nˆ of L̂, defined as the restriction of Lˆ to Ŝ5const,is a Legendre

submanifold of Hˆ .
Proof: Given a Hamiltonian system, Proposition II.2 ensures that (Ĥ,i * k) is a contact mani-

fold and sinceL̂ is a constrained Lagrange manifold, the generating familyŜ(qi ,QI) of L̂ satisfies
H(qi ,]S/]qj )50. ThenŜ defines a Legendre submanifoldN̂ of Ĥ by setting

pi5
]Ŝ

]qi , 1< i<n, ~8!

imposing the constraints

Ŝ5u0 ,
]Ŝ

]QI 50, ~9!

and requiring that the rank of~9! shall ben2k11 in theqI variables.
Recall that~9! is an algebraic nonlinear system of equations. Then if we define the fun

G5(Ŝ2u0 ,]Ŝ/]QI), a solution of~9! satisfiesG50, that is, it belongs to the kernel of the ma
G. Therefore demanding that the rank of the derivative ofG be n2k11 in the variablesqI and
in one of theqJ variables, the implicit function theorem guarantees thatqi5qi(qj ,QI) for i PI
11 and j PJ21.

Observe that the Legendre manifold constructed in this way becomes an hypersurfacL̂

and that both are submanifold of the energy surfaceĤ. h

The image of the Legendre map is called thewave frontand the image of the constraine
Lagrange manifold can be considered as a wave front family. As in the case of the Lag
manifolds, the set of points where the rank ofp̂* drops are called thesingular setand the image
of this set is called thecaustic. If the singular set ofL̂ is known then intersection of this set wit
Ŝ5u0 yields the singular set of the associated Legendre submanifold.

III. THE FUNCTION Z IN ASYMPTOTICALLY FLAT SPACE–TIME

In this section we will use the results developed in Sec. II to analyze the behavior o
cones on asymptotically flat space–times with a future null boundary diffeomorphic toS23R.15

Those space–times represent compact objects that can emit gravitational radiation.
To define our variableZ we consider the intersection of the future null cone fromxa with the

null boundaryI1. This intersection is called alight cone cut of null infinityand in general it is a
complicated surface with caustics, self-intersections, etc. Introducing Bondi coordinates (u,z,z̄)
on I1 @with u representing a Killing time and (z,z̄) being stereographic coordinates on the u
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sphere# it is possible to give a parametric representation of light cone cuts for pointsxa close
enough toI1 so that their future light cones have no caustic points before or atI1. Under those
conditions the light cone cuts can be described as

u5Z~xa,z,z̄ !. ~10!

On Minkowski space–time the light cone cuts adopt a very simple form,u5xal a with l a a
null covector constructed from the spherical harmonicsY0,0,Y1,21 ,Y1,0,Y1,1. On an arbitrary
asymptotically flat space–time, the cuts develop singularities and self-intersections. Thu
function Z becomes, in general, multivalued. However, it can be shown that for regular sp
times the index number is always one. Therefore, a light cone cut~as complicated as it might be!
is always a continuous deformation of the sphere of null directions above each pointxa. It can also
be shown that generically the light cone cuts can only have two kinds of singularities, cusp
swallowtails, since they represent the projection of 2-dim Legendre submanifolds onI1.16

A second meaning can be assigned to our variableZ(xa,z,z̄). Fixing a point (u,z,z̄) of I1,
the collection of interior pointsxa that satisfy

Z~xa,z,z̄ !5u5const, ~11!

form the past null cone of (u,z,z̄). Moreover, from knowledge ofZ we can construct a nul
coordinate system as follows.

Starting with our variable and taking (z,z̄) derivatives ofZ(xa,z,z̄) we construct the follow-
ing set of scalars;

u i~xa,z,z̄ ![~u0,u1,u2,u1![~u,w,w̄,R![~Z,ZZ,ZpZ,ZZpZ!. ~12!

For fixed values of (z,z̄) they define a coordinate system with the following geometric mean
u5const denotes the past null cone from (u,z,z̄); (w,w̄)5const single out a null geodesic on th
surface;R5const identifies a point on that geodesic.

However, one knows that null cones can develop caustics and singularities. One also
that past those singularities the null cone is no longer smooth~it is called a wave front! and thus,
a null coordinate system like the one above breaks down past those singular points. Since th
goal of the NSF is to replace the metric with a functionZ such that its level surfaces are past n
cones fromI1, we immediately face a nontrivial problem: If the null cones develop s
intersections and singularities that cannot be analyzed with a single functionZ, then the construc-
tion given above is only valid on a neighborhood ofI1. However, we also know that null wav
fronts are projections of Legendre submanifolds that live onT* (M ). It would then appear that the
best way to deal with this lack of smoothness is to think of our variable as the generating f
Ẑ of a constrained Lagrange submanifold. An outline of this construction is presented belo

As was done before, we assume that our variableZ describing the past light cone from a poi
(u,z,z̄) at I1 is a solution to the equation

H~xa,]bZ!5gabZ,aZ,b50, ~13!

with gab a metric that is asymptotically flat.
In a neighborhood ofI1 this solution is single valued since the~unphysical! metric is ‘‘al-

most’’ conformally flat and thus the past null cones are free from caustics and singularities
For each value of (z,z̄), one then uses this smooth functionZ(xa,z,z̄) as the generating

family of a constrained Lagrange manifoldL̂ given by

L̂5H S xa,pb5
]Z

]xbD :e* k5dZJ . ~14!
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Note that Proposition II.3 ensures that the surfaceN̂ defined byZ5const is a Legendre subman
fold of the energy surface given byH50, i.e.,

N̂5H S xa,pb5
]Z

]xbD :ê* k̂5d~e* Z!50J .

Thus, we have constructed a constrained Legendre submanifoldN̂ and a constrained Lagrang
submanifoldL̂ of Ĥ using our fundamental variableZ(xa,z,z̄).

The idea is to extend this construction to regions where caustics develop. As we men
before, in these regions the Lagrange submanifold is not diffeomorphic to its projection. W
thus assume that the generating family describing the past null cone from (u,z,z̄) can be written
as Ẑ5Ẑ(xa,w,w̄,z,z̄) with (w,w̄) parameters labeling the past geodesics. Note that the fun
Ẑ depends on two parameters since the rank of the projection map cannot drop more tha5

Note also that (w,w̄) are two of our null coordinatesu i since we are consideringẐ as the
generating function of the canonical transformation betweenxa andu i restricted toĤ. The con-
strained Lagrange submanifoldL̂ is then given by

pa5
]Z̄

]xa ,

together with the constraint

]Ẑ

]w
50,

]Ẑ

]w̄
50. ~15!

Observe that if we can solve~15! uniquely for (w,w̄) in a neighborhood of a point, i.e., (w,w̄)
5(w(xb),w̄(xb)), then Ẑ5Z and we are back in the previous diffeomorphic region. In gene
one will obtain multivalued solutions of~15!. Inserting the different solutions of (w,w̄) into
Ẑ(xa,w,w̄,z,z̄) one obtains a multiple-valued functionZ(xa,z,z̄). The Legendre submanifold i
obtained by settingẐ5const. Conversely, if several functionsZi are given, one can reconstruct th
Lagrange submanifold by imposing~14! on the differentZ’s. The construction defines th
Lagrange submanifold except for the caustic set.

Finally, we would like to determine under what circumstances it is possible to find a s
functionZ that would yield for us a global coordinate system (u,R,w,w̄) on an asymptotically flat
space–time. In other words we want to know if there exists space–times that are diffeomorp
the corresponding Lagrange manifolds. At the same time we would like to know when and
this coordinate system breaks down due to the presence of conjugate points. We are th
interested in describing the relationship between our fundamental variableZ and the loss of the
rank of the derivative of the Legendre mapp̂, i.e., we want to described the singular set in ter
of Z.

When the Lagrange manifold is a constrained one, the loss of rank of the Lagrange
indicates the nonexistence of global solutions of the Hamilton–Jacobi equation and the l
rank of the associated Legendre map is related to theexistence of conjugate points of a congruen
of null geodesics.

In order to clarify this assertion, we consider the local description of the wave front~the
projection of the Legendre manifold!. We assume that the wave front is locally described by

xa5 f a~u0 ,s,w,w̄,z0 ,z̄0!

with s an affine length. The vectors
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La5
] f a

]s
, Ma5

] f a

]w
, M̄a5

] f a

]w̄

are tangent to the wave front.La is directed along the null geodesics whereasMa and M̄a are
geodesic deviation vectors.

The derivative of the Legendre map losses its rank when these three vectors become
dependent. This dependence is related to the existence of conjugate points on the congru
null geodesic with apex atI1 and null tangent vectorLa as follows.

We introduce the parallel propagated null triad$ l a,ma,m̄a%, satisfying

l ama50 mam̄a521 l a¹amb50. ~16!

In terms of this triad,

La5 l a, Ma5jma1h̄m̄a, M̄a5 j̄m̄a1hma, ~17!

therefore this set of vectors becomes linearly dependent when

U j h

h̄ j̄
U5~jj̄2hh̄!50. ~18!

On the other hand, this quantity is related to the divergencer, and the shears of the congruence
with apex inI1. To see this, consider the optical parameters

r5mam̄b¹al b , s5mamb¹al b .

Using Eq.~17! together with the fact thatMa is Lie propagated along the null directionLa we get
~Ref. 3!

s5
h̄2

A
DS j̄

h̄
D , r5

DA

2A

with A5(jj̄2hh̄) and where we have used the fact thatr is real.
Hence, at those points where the Legendre map looses its rank, the divergence of the c

ence becomes unbounded, i.e., limrs→s0
5`, wheres is the affine parameter ands0 corresponds

to a conjugate point.
Note thatZ(xa,z,z̄) is a single valued function for pointsxa nearI1. Therefore, (u,R,w,w̄)

is a well-behaved coordinate system since there are no conjugate points in that regio
question is what happens to our coordinates as we approach a generic conjugate point. Giv
our variable has a second meaning, namely, the intersection of the future light cone fromxa with
I1, a related question is what happens to this cut as the apex recedes into the interior
space–time until a caustic develops atI1. We first answer the latter question since the res
obtained are then used in the analysis of the behavior of the coordinates (u,R,w,w̄) near a caustic
point.

A. Light cone cuts

We consider the future light cone from a pointxa nearI1 such that the intersection with th
null boundary is locally described by a single valuedZ(xa,z,z̄).

Lemma III.1. If the apex xa moves into the interior until the cut develops a generic cau
point, then at this first conjugate point the components of the extrinsic curvature of the cut

by R5ZZpZ andL5Z2Z become infinite.

Proof: We first introduce Bondi coordinates (V,u,z,z̄) in a neighborhood ofI1 such that this
boundary is described byV50. We then introduce a null geodesicl that connects the pointxa
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with I1 and an affine lengths such that the apex is labeled ass0 . Furthermore, we suppose th
the description of the null cone is given byF50, whereF5F(V,u,z,z̄,s0). NearI1 the function
F can be written as

F5F0~u,z,z̄,s0!1VF1~u,z,z̄,s0!1O~V2!.

whereF05u2Z. Then, the divergence and the shear of the light cone congruence with apexs0

containing the null geodesicl and defined by~see Ref. 17!

r5mam̄b¹aFb , s5mamb¹aFb ,

respectively, are calculated atI1 as

r~s0 ,I1!5mam̄b¹a~u2Z!5rB2R~s0!, ~19!

s~s0 ,I1!5mamb¹a~u2Z!5sB2L~s0!, ~20!

whererB andsB are the divergence and the shear of a Bondi congruence.
Now, we move the apexxa ~i.e., s0! into the interior along the null geodesicl until the cut

develops a caustic point. Since at a generic conjugate point atI1, the divergence and the shear
the light cone congruence become infinite, whereasrB andsB are bounded quantities, we prov
the statement. h

It is worth mentioning that it is possible to find degenerate conjugate points where the
goes to zero instead of infinity. Those, however, are not generic singularities since the
removable by a small perturbation of the initial values of the optical parameters in the geo
deviation equation.

B. Past null cones from I1

As was shown before, our functionZ(xa,z,z̄) is a generating family of past null cone con
gruences with apex (u,z,z̄) at I1. Furthermore, for fixed values of (z,z̄) this function generates
a null coordinate system (u,R,w,w̄) which is then used in the derivation of the most importa
results in the NSF formulation. It is therefore very relevant to analyze the range of validity o
coordinate system. To do so we use a reciprocity theorem for null congruences together w
previous lemma.

We first state a reciprocity theorem relating null cone congruences.18,19

Theorem: Given two null cone congruences having a common null geodesicl, denoting by
X1 and X2 the matrices whose elements are the tetrad components of the complex de
vectors associated with the null cone congruences with apex at a point p1 and p2 along l, then

X1~at p2!52X2~at p1!.

We now prove the following lemma:
Lemma III.2. Assume Z5constdescribes the past null cone from(u,z,z̄) at I1. Then, at a

conjugate point R→2` and uLu→`.
Proof: Consider the past null cone from (u,z,z̄) atI1, take a geodesic labeled by (u,w,w̄) on

this congruence, introduce an affine lengths on this geodesic, and denote byr1 ,s1 the optical
parameters associated with this congruence. If a conjugate point is reached ats5s0 then at this
point r1 ands1 become infinite.

On the other hand, if we consider the future light cone congruence froms and denote byr2 ,
s2 the corresponding optical parameters, then the reciprocity theorem shows that this cong
has a conjugate point at (u,z,z̄) whens→s0 . Thus,r2(s0 ,I1)→`, us2(s0 ,I1)u→` and from
Lemma III.1R(s0)→2` and uL(s0)u→`. h
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The first consequence of this lemma is that our coordinate system is well defined
domainRP(2`,`), in other words from our coordinate system we cannot detect the cau
that arise in the past null cones as we move into the space–time. It is easy to show thatw5ZZ and
w̄5ZpZ remain finite at a conjugate point. This follows from the fact that both are constants
a null geodesic.

The lemma is also useful to answer the question we posed before, namely, if there
asymptotically flat space–times that can be covered with a global canonical coordinate s
constructed from a single functionZ. Using proposition 4.4.5~Ref. 15! which states that on an
asymptotically flat space–time that satisfies the generic and weak energy conditions, an
congruence along a geodesic such that the affine length can be extended arbitrarily has a
conjugate points and lemma III.1 we conclude that the coordinate system (u,w,w̄,R) derived from
Z cannot cover such a space–time. We conclude that

Proposition III.3: A single function Z(xa,z,z̄) cannot generate the conformal structure of a
asymptotically flat space–time that satisfies the weak energy and generic conditions.

It is also of interest to analyze the behavior of the conformal factorV, and the metric
components near a caustic point.

It can be shown that the conformal factor can be written as3

V25g01
ªgabZ,aZZpZ,b5

dR

ds
.

SinceR(s) diverges ass approaches a conjugate point while the affine length is a sm
nonvanishing function along the null geodesic, it follows thatg01 also blows up at that point.

IV. CONCLUSIONS

We have shown that our main variableẐ is the generating family of a constrained Lagran
submanifold and that its level surfaces are constrained Legendre submanifolds that projec
to past null cones fromI1. For a generic asymptotically flat space–time the projection of
Lagrange submanifold starts diffeomorphic to the configuration space but it later develops c
sets. Thus, except for Minkowski space, a single functionZ on configuration space does not giv
the conformal structure of the space–time. At the caustic points,ZZpZ diverges. This means tha
the coordinate system constructed on the null cones is only locally defined but on the othe
one never sees the caustics since they are pushed out toR52`.

Although the entire treatment so far has been kinematical, we would like to think of
variable as coming from the solution of a set of field equations given on the space–time.3,4

It is clear from the previous results that the solution of those field equations must
multiple valuedness in order to generate the multiple branches needed to construct the gen
family Ẑ of the Lagrange submanifold. These solutions are defined in a six-dimensional s
four-space–time coordinates and two parameters on the sphere, (z,z̄). We demand the solution to
be globally defined with respect to the parameters (z,z̄), that is, it shall be a piecewise smoo
function on the sphere~it could be multiple valued but always finite on the sphere!.

Alternatively, we could try to find field equations given onT* M . In this case the solution
would yield a global generating familyẐ of a constrained Lagrange submanifold that coincid
with Z in a neighborhood ofI1. This last approach will be further explored.
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We show that the algebra of functions on the Grassmann supergroup Grq(1u1) has
a ~graded! Hopf algebra structure related to GLq(1u1). © 1999 American Insti-
tute of Physics.@S0022-2488~99!01603-5#

In the past few years, quantum groups1 andq-deformed universal enveloping algebras2 have
been intensively studied both by mathematicians and mathematical physicists. From a math
cal point of view, these algebraic structures are just special classes of noncommutative
algebras.

The algebraic structure underlying quantum groups extends the theory of the superg3

The simplest quantum supergroup is GLq(1u1), i.e., the deformation of the supergroup of 232
matrices with two bosonic~even! and two fermionic~odd! matrix entries.

The aim of the present work is to construct the~graded! Hopf algebra structure of the Gras
mann supergroup Grq(1u1), the superdual of GLq(1u1), which was introduced in Ref. 4. Befor
discussing the~graded! Hopf algebra structure of Grq(1u1), let us first give some notations an
useful formulas about the quantum Grassmann supergroup Grq(1u1).

A Grassmann supermatrixT̂ which is an element of Gr~1u1! is of the form

T̂5S a b

c d D
with two odd~Greek letters! and two even~Latin letters! matrix elements. The symbolhat is used
to distinguishT̂ from an elementT of GLq(1u1).

The q-deformation of the Grassman supergroup Gr~1u1! as a quantum matrix supergrou
Grq(1u1) is generated bya, b, c, d with the relations4

ab5q21ba, ac5q21ca,

db5q21bd, dc5q21cd,
~1!

ad1da50, a2505d2,

bc5cb1~q2q21!da,

whereq is a nonzero complex number andq2Þ1. The associative algebra~1! is equivalent to
equation5

R1T̂1T̂252T̂2T̂1R2, ~2!

where

a!Electronic mail: scelik@fened.msu.edu.tr
24940022-2488/99/40(5)/2494/6/$15.00 © 1999 American Institute of Physics
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R15S q 0 0 0

0 21 0 0

0 q2q21 21 0

0 0 0 q21

D , R25S q21 0 0 0

0 21 q212q 0

0 0 21 0

0 0 0 q

D ~3!

are both the solutions of the quantum~graded! Yang–Baxter equation. Here, we used the tensor
convention

~ T̂1!kl
i j 5~ T̂^ I !kl

i j 5T̂k
i d l

j ,

~ T̂2!kl
i j 5~ I ^ T̂!kl

i j 5~21! i ~ j 1 l !T̂l
jdk

i . ~4!

The central element of the algebra~1! is4

D̂q5bc212ac21dc215c21b2c21ac21d. ~5!

We now denote the algebra generated by the elementsa, b, c, d with the relations~1! by Â.

We want to make the algebraÂ into a ~graded! Hopf algebra related to the quantum supergro
GLq(1u1). Because of this, we state briefly some properties of the quantum supergroup GLq(1u1)
we are going to need in this work.

The quantum supergroup GLq(1u1) is generated by four generatorsa, b, g, d and the
q-commutation relations3

ab5qba, db5qbd,

ag5qga, dg5qgd,
~6!

bg1gb50, b2505g2,

ad5da1~q2q21!gb.

The generators satisfying the relations~6! generate the algebra called the algebra of functions
the quantum supergroup GLq(1u1) and we shall denote it byA. We know that the algebraA is a
~graded! Hopf algebra whose structure we now discuss. We represent the set of generatorsa, b, g,
d in the form of a matrix

T5S a b

g d D .

Then the relations~6! are equivalent to equation

RT1T25T2T1R, ~7!

where

R5S q 0 0 0

0 1 0 0

0 q2q21 1 0

0 0 0 q21

D . ~8!

The superinverse ofT is given by3
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T215S A V

G D D 5S a211a21bd21ga21 2a21bd21

2d21ga21 d211d21ga21bd21D , ~9!

and the superdeterminant is

Dq5ad212bd21gd21. ~10!

It is easy to verify thatDq commutes with all matrix elements ofT. Note that the matrix element
of T with those ofT21 satisfy the following relations:

aA5q2Aa112q2, dA5Ad,

aD5Da, dD5q2Dd112q2,

aV5qVa, dV5qVd,

aG5qGa, dG5qGd,
~11!

bA5qAb, gA5qAg,

bD5qDb, gD5qDg,

bV5Vb, gV52q2Vg,

bG52q2Gb, gG5Gg.

The usual coproduct is given by

D:A→A^A, D~ t j
i !5tk

i
^ t j

k , ~12!

where summation over repeated indices is understood. One can rewrite the last formula
following nice and elegant form,

D~T!5T^̇ T, ~13!

where ^ stands for the usual tensor product and the dot refers to the summation over re
indices and reminds us about the usual matrix multiplication. The counit is given by

«:A→C, «~ t j
i !5d j

i . ~14!

The coinverse~antipode! is given by

S:A→A, S~T!5T21. ~15!

It is not difficult to verify the following properties of the co-structures:

~D ^ id!+D5~ id^ D!+D, ~16!

m+~« ^ id!+D5m8+~ id^ «!+D, ~17!

m+~S^ id!+D5«5m+~ id^ S!+D, ~18!

where id denotes the identity mapping,

m:C^A→A, m8:A^C→A ~19!
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are the canonical isomorphisms, defined by

m~k^ a!5ka5m8~a^ k!, ;aPA, ;kPC, ~20!

andm is the multiplication map

m:A^A→A, m~a^ b!5ab. ~21!

The multiplication inA^A follows the rule

~A^ B!~C^ D !5~21!p~B!p~C!AC^ BD, ~22!

wherep(X) is thez2-grade ofX, i.e., p(X)50 for even variables andp(X)51 for odd variables.
Since the~graded! Hopf algebra structure of Grq(1u1) is related to those of GLq(1u1) it is

necessary to obtain the commutation relations of the generators ofÂ with those ofA. We define

the ~mixed! commutation relations between the generators ofÂ andA as follows:

RT̂1T25~21!p~T2!T2T̂1R8, R85R2~q2q21!P, ~23!

whereP is the superpermutation matrix. The equation~23! gives the mixed relations

aa5q2aa, ba52qab,

ab5qba1~q221!ab, bb5bb,

ac5qca1~q221!ag, bc5cb1~q2q21!ad,

ad5da1~q2q21!~bc2bg!, bd52q21db1~12q22!bd,
~24!

da5ad, ga52qag,

db5q21bd, gb5bg2~q2q21!ad,

dc5q21cd, gc5cg,

dd5q22dd, gd52q21dg1~12q22!cd.

Using these relations, it is easy to verify thatD̂q , which is given by~5!, is still a central element
i.e., D̂q also commutes with the generators ofA.

After some algebra the commutation relations between the matrix elements ofT̂ with T21 are
obtained to be

aA5q2Aa, dA5Ad,

aD5Da, dD5q22Dd1~q2q21!2Aa1~q2221!~Vc2Gb!,

aV52qVa, dV52q21Vd1~q212q!Ab,

aG52qGa, dG52q21Gd1~q212q!Ac,
~25!

bA5qAb, cA5qAc,

bD5q21Db1~q2q21!Va, cD5q21Dc1~q2q21!Ga.

bV5Vb, cV5Vc1~q221!Aa,
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bG5Gb1~12q2!Aa, cG5Gc,

and

Dqu5q2uDq , uP$a,b,c,d%. ~26!

Before defining a coproduct on the algebraÂ, let us note the following facts. LetT̂ andT̂8 be
any two supercommuting matrices that satisfy~1!. We denote a productT̂T̂8 by T. Then, it can be
verified that the matrix elements ofT satisfy the commutation relations~6! of GLq(1u1), i.e., if

T5S a b

c d D S a8 b8

c8 d8
D ,

then we have the relations~6!. In short,

T̂,T̂8PGrq~1u1!⇒T5T̂T̂8PGLq~1u1!.

In view of these facts, we can say that there may be no coproduct of the usual formD(T̂)5T̂

^̇ T̂. For this coproduct, if it existed, would be invariant under theq-commutation relations~6! of
GLq(1u1). But we can define a map on the algebraÂ as follows:

D̂:Â→Â^ Â, D̂~ T̂!5T̂^̇ T1~21!p~T!T^̇ T̂. ~27!

Explicitly,

D̂~a!5a ^ a1b^ g1a^ a2b ^ c,

D̂~b!5b^ d1a ^ b1a^ b2b ^ d,
~28!

D̂~c!5c^ a1d ^ g2g ^ a1d^ c,

D̂~d!5d ^ d1c^ b2g ^ b1d^ d.

The action on the generators ofÂ of «̂:Â→C is

«̂~a!5 «̂~b!5 «̂~c!5 «̂~d!50. ~29!

Finally, we define the coinverse as

Ŝ:Â→Â, Ŝ~ T̂!52~21!p~T21!T21T̂T21. ~30!

The action ofŜ on the generators ofÂ is

Ŝ~a!52~aA1bG!A1q~cA1dG!V,

Ŝ~b!52~aA2cV!V2q~bA1dV!D,
~31!

Ŝ~c!52~aA1bG!G2q~cA1dG!D,

Ŝ~d!5q2~aA2cV!D1q~aV1q2bD!G2~aA1q2dD !D.
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It is not difficult to check that the mapsD̂ and «̂ are both algebra homomorphisms andŜ is an
algebra anti-homomorphism and also the three maps satisfy the properties~16!–~18!, and they

preserve the relations~24! provided that the action on the generators ofA of D̂ is the same with
~13!.

The coproduct, counit, and coinverse which are specified above supply Grq(1u1) with a
structure, which can be called a quasi-Hopf algebra.

It is interesting to note that there is a close connection with the differential calculus6 on the
quantum supergroup GLq(1u1) via the equation~23!. In fact, we have observed that the matr
elements ofT̂PGrq(1u1) are just the differentials of the matrix elements ofTPGLq(1u1). In
other words, we can interpret the generating elements of Grq(1u1) as differentials of coordinate
functions on GLq(1u1). In this case, we can writeT̂5dT ~more information on these issues a
given in Ref. 6!. Then the extended algebra can be interpreted as an algebra of differential
on GLq(1u1). Thus the coproduct is interpreted as a~left and right! coaction of the quatum
supergroup GLq(1u1) on differential forms. To this end, we consider the two maps

DR :G→G ^A, DR+d5~d^ id!+D ~32a!

and

DL :G→A^ G, DL+d5~t ^ d!+D, ~32b!

whereG denotes the differential algebra ofA. Here t : G→G is the linear map of degree zer
which givest(a)5(21)p(a)a. We now define a mapfR as follows,

fR~u1dv11dv2u2!5D~u1!DR~dv1!1DR~dv2!D~u2!, ~33!

and another mapfL by replacingL with R. The following identities are satisfied.

~fR^ id!+fR5~ id^ D!+fR , ~ id^ e!+fR5 id, ~34a!

and

~ id^ fL!+fL5~D ^ id!+fL , ~e ^ id!+fL5 id. ~34b!

Consequently, we define the mapD̂, in ~27!, as

D̂5fR1fL . ~35!
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Applying the harmonic map ansatz we find new classes of SU(N) and SO(N)
chiral fields. We write the corresponding one-dimensional subgroups of SU(N) and
SO(N) chiral fields in terms of one and two harmonic maps and the corresponding
two-dimensional subgroups in terms of SU~2! and SO~3! chiral fields. In other
words, we reduce the SU(N) and SO(N) chiral equations to harmonic maps in one-
and two-dimensional spaces. ©1999 American Institute of Physics.
@S0022-2488~99!01204-9#

I. INTRODUCTION

One of the most important and interesting models in mathematical physics are the m
called nonlinears models or principal chiral models. These are important for different reas
they have similar properties to the four-dimensional Yang–Mills theories,1 they have an infinite
number of conservation laws,1,2 they contain soliton solutions,3,4 and they are used as approxima
models in particle physics. Their applications as field equations in various theories also
these models very attractive and interesting. In general relativity and gravitational theorie
Einstein’s field equations in a space–time with two Killing vectors reduce to a nonlinears model
with invariant group SU~1,1! for the vacuum case, and with invariant group SU~2,1! for the
electrovacuum case.5 Then-dimensional Einstein’s equations with a (n22)-dimensional isometry
group reduce to a nonlinears model with invariant group SL(n22,R).6 But one of the most
interesting features of thes models is that self-dual Yang–Mills fields and self-dual gene
relativity reduce to the field equations of thes models5 ~see Refs. 7 and 8!. In the first case the
field equations reduce to a SU(N) nonlinears model, and in the last case the field equatio
reduce to a SU(̀ );Diff( S2)-s model.7,8 In this work we deal with SU(N) and SO(N)-s
models. These are defined by means of the following Lagrangian density:

L5
a

4
Tr~g,zg

21g,z̄g
21!, ~1!

wheregPSU(N), (SO(N)), i.e.,

gg†51 ~ggT51!, Detg5a251, ~2!

a!Electronic mail: tmatos@fis.cinvestav.mx
b!Electronic mail: ulises@fis.cinvestav.mx
c!Electronic mail: biene@ctrl.cinvestav.mx
25000022-2488/99/40(5)/2500/14/$15.00 © 1999 American Institute of Physics
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wherez is a complex coordinate andz̄ its complex conjugate,gT is the transpose ofg, andg†

5ḡT. Even if a51 for the groups studied here, we shall write it explicitly; the only differen
appears in the harmonic map equations, but our results are written in terms of these ha
maps, which will be supposed to be arbitrary in this work. The corresponding Euler–Lag
equations of~2! are given by

~ag,zg
21! ,z̄1~ag,z̄g

21! ,z50, ~3!

which are the chiral equations.
Solutions to chiral equations have been found by the application of various methods, e

Bäcklund transformations~see Ref. 1!, by the inverse scattering method~see Refs. 3 and 4!, and
recently, Uhlenbeck has deduced the form of all classical solutions of the chiral equation
constraints from a factorization theorem proved by herself.9 In this work we will apply the method
developed by Matos in Ref. 10, which permits us to supposeg to be an arbitrary element of a Li
group G, where the dimension ofG can even be infinite. The most important feature of t
method is that we can write the chiral fields, i.e., the solutions of the chiral equations, in ter
explicit functions which are solutions of a well-known differential equation like the Lapl
equation or minimal surfaces equation in two dimensions. We obtain classes of solutions in
of these arbitrary harmonic maps. The solutions can be then interpreted physically. In this
we will give a set of exact solutions of the chiral equations for the Lie groups SU(N) and SO(N)
in terms of harmonic maps. In order to make this paper self-contained, we will resum
harmonic map ansatz method of Ref. 10 in Sec. II. In Sec. III we will analyze one-dimens
subspaces, and in Sec. IV the two-dimensional ones.

II. THE HARMONIC MAP ANSATZ METHOD

In this section we briefly give a general treatment of the harmonic map ansatz. For full d
we refer the reader to Ref. 10. LetG be a Lie group and

g:C3C→G, ~z,z̄!°g~z,z̄!PG, ~4!

where g is a solution of~3! and it depends on the complex variablesz and z̄. Let wR be the
Maurer–Cartan form inG:

wR5dg g21, gPG, ~5!

thenwR is right invariant onG, that is

Rc* ~dg g21!5dg g21. ~6!

Rc is the right translation associated with the elementcPG. Furthermore, we define the function
Az andAz̄ by

g°Az~g!5g,zg
21, g°Az̄~g!5g,z̄g

21, ~7!

whereAz ,Az̄PG, G being the corresponding Lie algebra ofG. Then, using~7!, the Maurer–Cartan
form in G can be written in terms of the Lie algebra valued functionsAz andAz̄ as

wR5Az dz1Az̄ dz̄5g,zg
21 dz1g,z̄g

21 dz̄. ~8!

Now, let us suppose that the matrixg depends on a set of functionsl i(z,z̄), which are local
coordinates of an arbitrary Riemannian manifoldMr , that is

l i :Mr→R, ; i 51,2,...,r , g5g~l i !, ; i 51,2,...,r . ~9!
                                                                                                                



x

2502 J. Math. Phys., Vol. 40, No. 5, May 1999 Matos, Nucamendi, and Wiederhold

                    
The harmonic map ansatz consists of assuming that the parametersl i build minimal surfaces in
the Riemannian manifoldMr , that is, they satisfy the following equation:

~al i
,z! ,z̄1~al i

,z̄! ,z12aG jk
i l j

,zl
k
,z̄50, ; i 51,2,...,r , ~10!

whereG jk
i represents the Christoffel’s symbols in the Riemannian manifoldMr . If we do so, the

chiral equations reduce to a Killing equation in the Riemannian manifoldMr .
In order to see this, we substitute~9! in the chiral equations~3!, getting

a@~g,ig
21! , j1~g, jg

21! ,i #l ,z
i l ,z̄

i 1g,ig
21@~al ,z

i ! ,z̄1~al ,z̄
i ! ,z#50. ~11!

The substitution of~10! in ~11! gives

@~g,ig
21! , j1~g, jg

21! ,i22G i j
k g,kg

21#l j
,z̄l

i
,z50. ~12!

From Eq.~12! it follows

~g,ig
21! , j1~g, jg

21! ,i22G i j
k g,kg

2150. ~13!

Analogously, we can define the functions

Ai :G→G, g°Ai~g!5g,ig
21, ; i 51,2,...,r . ~14!

Again, the matricesAi(g) belong to the Lie algebra ofG. Then, the Maurer–Cartan matri
one-formw can be written as

w~g!5Ai~g!dl i5g,ig
21 dl i . ~15!

The covariant derivative in the Riemannian manifoldMr is given by

¹ jAi5Ai , j2G i j
k Ak . ~16!

Using ~14! and ~16! in ~13!, it is easy to see that the chiral equations~3! become

¹ jAi1¹ iAj50. ~17!

The matricesAi(g) also satisfy the relation

¹ jAi2¹ iAj2@Aj ,Ai #50; ~18!

the last relation means that the matricesAi(g) are pure gauge potentials.~17! and ~18! together
reduce to

¹ jAi5
1
2@Aj ,Ai #. ~19!

Let the matricess j be a basis of the Lie algebraG. We can write the matricesAi in this basis,

Ai~g!5e i
js j . ~20!

Using ~20! and ~17!, we obtain

@¹ je i
k1¹ ie j

k#sk50. ~21!

Because the matricessk are linearly independent we can conclude that

¹ je i
k1¹ ie j

k50. ~22!
                                                                                                                



d

em of

n

a
n

.e., to

tz is

of
n

by
n

2503J. Math. Phys., Vol. 40, No. 5, May 1999 Matos, Nucamendi, and Wiederhold

                    
Equation~22! is the Killing equation on the Riemannian manifoldMr . Using the following
relation, which is satisfied for any Killing vector fieldek:

¹ l¹ je i
k5Rl ji

m em
k , ~23!

we find that the covariant derivative of the Riemann tensor on the Riemannian manifolMr

vanishes, thenMr is a symmetric manifold. Any symmetric manifold containsr (r 11)/2 linearly
independent Killing vector fields.11 Then if we know the Riemannian manifoldMr we have the
Killing vector space. Let$ek% be a basis of Killing fields onMr , and write the matricesAi in
terms of this basis. The substitution of~20! in ~19! yields the algebra of the$sk% matrices. The
next step is to choose a representation of this algebra and to solve the following syst
first-order differential equations:

Ai~g!5g,ig
21, ; i 51,2,...,r . ~24!

Observe that the field equations~3! are invariant under the transformation

g°g85Lhg5hg, hPGc , ~25!

whereGc5$cPGuc is a constant matrix% andLh is the left action ofGc on G. In other words,
if g is solution of the field equations~3!, theng8 is solution of them too. Under the transformatio
~25!, the matricesAi(g) transform intoAi8 :

Ai°Ai85hAih
21. ~26!

The relation~26! separates the set of matrices$Ai% in equivalent classes. Now let us work with
representation of each class. After integrating the equations~24! for this representation, we ca
find all the solutions in this class to the field equations~3! by means of the transformation~25!.
The problem of solving the chiral equations is then reduced to finding harmonic maps, i
solve the system of coupled linear differential equations~10! for the parametersl i .

III. ONE-DIMENSIONAL SUBSPACES

One-dimensional subspaces are characterized by a one-dimensional manifoldM1 , with only
one parameterl, and a metric given by

ds25dl2. ~27!

The metric~27! is symmetric and has a constant Killing vector field. The harmonic map ansa
then

g5g~l!, l5l~z,z̄!. ~28!

From ~13! we can see thatAl is a constant matrix@Al belongs to the corresponding Lie algebra
SU(N)#. The Lie algebra su(N), corresponding to SU(N), is the set of traceless anti-Hermitia
complexN3N matrices

su~N!5$APGL~N,C!uA52A†, Tr A50%. ~29!

For the su(N) algebra, the Jordan normal form is always diagonal. We use this form
integrating the matrix differential equationg,l5Alg. We have only the following representatio
for N even,N52n:
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Al5S a1i
0
•

•

0
0

0
2a1i
•

•

0
0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
•

•

ani
0

0
0
•

•

0
2ani

D , ~30!

and the following one forN odd,N52n11:

Al5S a1i
0
•

•

0
0
0

0
2a1i
•

•

0
0
0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0
•

•

ani
0
0

0
0
•

•

0
2ani

0

0
0
•

•

0
0
0

D , ~31!

wherea1 ,...,anPR, aiÞ0, i 51,...,n.
For the caseN52n, we integrate the differential equationg,l5Alg, and obtain

g5S u1,1exp~a1il!

u2,1exp~2a1il!

•

•

u2n21,1exp~anil!

u2n,1 exp~2anil!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u1,2n exp~a1il!

u2,2n exp~2a1il!

•

•

u2n21,2n exp~anil!

u2n,2n exp~2anil!

D . ~32!

Under the conditionsg215g†, detg51, the (2n)2 complex constantsui , j , i , j 51,...,2n satisfy

S u1,1

u2,1

•

•

u2n21,1

u2n,1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u1,2n

u2,2n

•

•

u2n21,2n

u2n,2n

D PSU~N!. ~33!

Analogously, for the caseN52n11 we obtain

g5S u1,1exp~a1il!

u2,1exp~2a1il!

•

•

u2n21,1exp~anil!

u2n,1 exp~2anil!

u2n11,1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u1,2n11 exp~a1il!

u2,2n11 exp~2a1il!

•

•

u2n21,2n11 exp~anil!

u2n,2n11 exp~2anil!

u2n11,2n11

D . ~34!

Under the restrictionsg215g†, detg51, the (2n11)2 complex constantsui , j , i , j 51,...,2n11
satisfy
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S u1,1

u2,1

•

•

u2n21,1

u2n,1

u2n11,1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u1,2n11

u2,2n11

•

•

u2n21,2n11

u2n,2n11

u2n11,2n11

D PSU~N!. ~35!

From ~10! we see that the parameterl must satisfy the Laplace equation, that is

~al ,z! ,z̄1~al ,z̄! ,z50. ~36!

For each solutionl of the Laplace equation, we obtain a different matrix solution of the chira
equations by means of matrices~32! and ~34!.

IV. TWO-DIMENSIONAL SUBSPACES

A. Two-dimensional subalgebras of su „N…

Two-dimensional subspaces are characterized by a two-dimensional manifoldM2 with pa-
rametersl15l, l25t, and a metric given by

ds25
dl dt

~11klt!2 . ~37!

The metric~37! is symmetric and has a constant curvaturek. The harmonic map ansatz is then

g5g~l,t!, l5l~z,z̄!, t5t~z,z̄!. ~38!

The matricesAl , andAt , satisfy Eqs.~17! and ~19!, this is,

¹lAt1¹tAl50,

DlAt5 1
2@Al ,At#, ~39!

¹tAl5 1
2@At ,Al#.

The Killing vector space of the metric~37! can be obtained by solving the Killing equation~22!

el,l1
2kt

~11klt!
el50,

et,t1
2kl

~11klt!
et50, ~40!

el,t1et,l50.

The components of the Killing vector fields are

el5
1

V2 ~akt21bt1c!,
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et5
1

V2 ~ckl22bl1a!, ~41!

with

V5~11klt!,

We choose three independent Killing vectors on the manifoldM2 :

f5
1

V2 ~1,kl2!, j5
1

V2 ~22t,2l!, z5
1

V2 ~kt2,1!. ~42!

Using Eq.~20! we can define the matrix vectorA5(Al ,At) by

A5fs11js21zs3 . ~43!

The matricess1 , s2 , s3 form a basis of a Lie subalgebra of su(N). These matrices have th
following expressions:

Al5
1

V2 @s122ts21kt2s3#, At5
1

V2 @kl2s112ls21s3#. ~44!

Introducing Eqs.~44! into ~39! we obtain the commutation relations of the subalgebra ofsk

matrices

@s1 ,s2#52ks1 , @s2 ,s3#52ks3 , @s3 ,s1#524s2 . ~45!

We take the casek50 ands250. The manifoldM2 is therefore flat. The commutation relation
of the two-dimensional Abelian subalgebras of su(N) are

@s3 ,s1#50. ~46!

From ~44!, the matricesAl , At are reduced to

g,lg215Al5s1 , g,tg
215At5s3 . ~47!

Since the group SU(N) has range (N21), its algebra has (N21) diagonal commuting elements
The two-dimensional Abelian subalgebras of su(N) can be written in the basiss1 , s3 , where

s15S a1i
0
•

•

0
0

0
a2i
•

•

0
0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
•

•

•

0

0
0
•

•

0
aNi

D ,

and
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s35S b1i
0
•

•

0
0

0
b2i
•

•

0
0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
•

•

•

0

0
0
•

•

0
bNi

D , ~48!

herea11¯1aN50, a1 ,...,aNPR, b11¯1bN50, b1 ,...,bNPR.
The constantsb1 ,...,bN ,a1 ,...,aN must be chosen in such a way that the matricess1 ands3

are linearly independent. We integrate the differential equationsg,l5Alg, and g,t5Atg, we
obtain

g5S u1,1exp~a1il1b1i t!

u2,1exp~a2il1b2i t!

•

•

•

uN,1 exp~aNil1bNi t!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u1,N exp~a1il1b1i t!

u2,N exp~a2il1b2i t!

•

•

•

uN,N exp~aNil1bNi t!

D ,

where the complex constants satisfy the condition

S u1,1

u2,1

•

•

•

uN,1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

u1,N

u2,N

•

•

•

uN,N

D PSU~N!. ~49!

From Eq.~10!, we see that the parametersl andt satisfy the Laplace equation

~al ,z! ,z̄1~al ,z̄! ,z50, ~at ,z! ,z̄1~at ,z̄! ,z50. ~50!

For each solutionl andt of the Laplace equation we obtain a new matrix solution for the ch
equations by applying the matrix~49!.

B. Three-dimensional subalgebras of su „N… and so „N…

Let us consider now a nonflat manifoldM2 with constant curvaturekÞ0. Let l15x, l2

5y, be the local coordinates ofM2 . Then we choose the following metric onM2 ,

ds25
dx21dy2

@11k~x21y2!#2 . ~51!

The matricesg depend on the coordinatesx,y,

g5g~x,y!, x5x~z,z̄!, y5y~z,z̄!. ~52!

For convenience, we perform a transformation from the variablesx,y in the complex variables
w,w̄, defined by

w5x1 iy , w̄5x2 iy . ~53!

Then the matricesg are functions of the variablesw,w̄,

g5g~w,w̄!, w5w~z,z̄!, w̄5w̄~z,z̄!. ~54!
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Equations~17! and ~19!, rewritten in terms of the complex variablesw and w̄, become

¹wAw̄1¹ w̄Aw50, ¹wAw̄5 1
2@Aw ,Aw̄#, ¹ w̄Aw5 1

2@Aw̄ ,Aw#. ~55!

Metric ~51! can be written in terms of the new variablesw,w̄ as

ds25
dw dw̄

~11kww̄!2 . ~56!

The Killing equations for the metric~56! are

ew,w1
2kw̄

~11kww̄!
ew50, e w̄,w̄1

2kw

~11kww̄!
e w̄50, ew,w̄1e w̄,w50. ~57!

Solving the above differential equations, we obtain

ew5
1

V2 ~ykw̄21aiw̄1ḡ !, e w̄5
1

V2 ~ ḡkw22aiw1g!, ~58!

with

V5~11kww̄!, gPC, aPR.

Now, we choose three linearly independent Killing vectors

f5
1

V2 ~gkw̄21ḡ,ḡkw21g!,

j5
1

V2 ~2aiw̄,aiw!, ~59!

z5
1

V2 ~ ḡkw̄21g,gkw21ḡ !.

Then the matrix vectorA5(Aw ,Aw̄) can be written in the form

A5fs11js21zs3 , ~60!

where the matricesA5(Aw ,Aw̄) read

Aw5
1

V2 @~gkw̄21ḡ !s12aiw̄s21~ ḡkw̄21g!s3#,

~61!

Aw̄5
1

V2 @~ ḡkw21g!s11aiws21~gkw21ḡ !s3#.

Introducing Eq.~60! in Eq. ~55!, we obtain the commutation relations for thesk matrices,

@s1 ,s2#5s3 , @s2 ,s3#5s3 , @s3 ,s1#5s2 , ~62!

where we have chosen the constantsg511 i , a52, k5 1
2.

The three-dimensional subalgebra of su(N), fulfilling relations ~62!, is the three-dimensiona
algebra su~2!. A vector basis of the three-dimensional subalgebra of su(N) in terms of the su~2!
basis is given by$s1 ,s2 ,s3%, where
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s15
1

2 S 0
i
0
•

•

0

i
0
0
•

•

0

0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
•

•

•

0

D , s25
1

2 S 0
21

0
•

•

0

1
0
0
•

•

0

0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
•

•

0

D ,

~63!

s35
1

2 S 2 i
0
0
•

•

0

0
i
0
•

•

0

0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
•

•

0

D .

Introducing this basis in~61! we obtain forA5(Aw ,Aw̄),

Aw5
i

2V2 S 2~ ḡkw̄21g!

~gkw̄21ḡ1aw̄!

0
•

•

0

~gkw̄21ḡ2aw̄!

~ ḡkw̄21g!

0
•

•

0

0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
•

•

0

D ,

~64!

Aw̄5
i

2V2 S 2~gkw21ḡ !

~ ḡkw21g2aw!

0
•

•

0

~ ḡkw21g1aw!

~gkw21ḡ !

0
•

•

0

0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
•

•

0

D .

Now we go into the group SU(N). This can be done by means of the exponential map o
integration. Let us integrate them. We must solve the matrix differential system

g,wg215Aw , g,w̄g215Aw̄ , ~65!

writing ~65! in components, it is easy to obtain the next 2N2-differential equations

g1i ,w5
i

2V2 @2~ ḡkw̄21g!g1i1~gkw̄21ḡ2aw̄!g2i #,

g2i ,w5
i

2V2 @~gkw̄21ḡ1aw̄!g1i1~ ḡkw̄21g!g2i #,

gji ,w50,
~66!

g1i ,w̄5
i

2V2 @2~gkw21ḡ !g1i1~ ḡkw21g1aw!g2i #,

g2i ,w̄5
i

2V2 @~ ḡkw21g2aw!g1i1~gkw21ḡ !g2i #,

gji ,w̄50,
                                                                                                                



2510 J. Math. Phys., Vol. 40, No. 5, May 1999 Matos, Nucamendi, and Wiederhold

                    
wherei 51,2,...,N, and j 53,4,...,N.
This system has the solution

g1i~w,w̄!5
@2d0i1~g f 0i2ḡd0i !iw̄1~ ḡ f 0i2gd0i !iw2d0iww̄#

2~11kww̄!
,

g2i~w,w̄!5
@2 f 0i1~g f 0i1ḡd0i !iw1~ ḡ f 0i1gd0i !iw̄2 f 0iww̄#

2~11kww̄!
, ~67!

gji ~w,w̄!5cji , cji PC,

for i 51,2,...,N, and j 53,4,...,N.
Because this solution~67! must fulfill the constraintg215g†, detg51, the constants

d0i , f 0i ,cji , must satisfy,

S d01

f 01

c31

•

•

cN1

d02

f 02

c32

•

•

cN2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

d0N

f 0N

c3N

•

•

cNN

D PSU~N!. ~68!

For the so(N) algebra, the three-dimensional subalgebra that fulfills the relations~62!, is the so~3!
algebra which has the three basis elements

s15S 0
0
0
0
•

•

0

0
0
1
0
•

•

0

0
21

0
0
•

•

0

0
0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
0
•

•

0

D , s25S 0
0

21
0
•

•

0

0
0
0
0
•

•

0

1
0
0
0
•

•

0

0
0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
0
•

•

0

D ,

~69!

s35S 0
1
0
•

•

•

0

21
0
0
•

•

•

0

0
0
0
•

•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
•

•

•

0

D .

The introduction of the basis~69! in Eq. ~61! gives for the matrix vectorA5(Aw ,Aw̄)
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Aw5
1

V2 S 0
~ ḡkw̄21g!

~aiw̄!

0
•

•

0

2~ ḡkw̄21g!

0
~gkw̄21ḡ !

0
•

•

0

~2aiw̄!

2~gkw̄21ḡ !

0
0
•

•

0

0
0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
0
•

•

0

D ,

~70!

Aw̄5
1

V2 S 0
~gkw21ḡ !

~2aiw!

0
•

•

0

2~gkw21ḡ !

0
~ ḡkw21g!

0
•

•

0

~aiw!

2~ ḡkw21g!

0
0
•

•

0

0
0
0
0
•

•

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0
0
0
0
•

•

0

D .

Again, we must integrate Eq.~65! in order to obtain the elements of the group. We obtain t
2N2-differential equations

g1i ,w5
1

V2 @2~ ḡkw̄21g!g2i2~aiw̄!g3i #,

g2i ,w5
1

V2 @~ ḡkw̄21g!g1i2~gkw̄21ḡ !g3i #,

g3i ,w5
1

V2 @~aiw̄!g1i1~gkw̄21ḡ !g2i #,

gji ,w50,

g1i ,w̄5
1

V2 @2~gkw21ḡ !g2i1~aiw!g3i #,

g2i ,w̄5
1

V2 @~gkw21ḡ !g1i2~ ḡkw21g!g3i #,

g3i ,w̄5
1

V2 @2~aiw!g1i1~ ḡkw21g!g2i #,

gji ,w̄50,

wherei 51,2,...,N, and j 54,...,N.
This system has a solution given by
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g1i~w,w̄!5Fd0i2d0iww̄2 f 0igw2ḡ f 0i w̄1~e0i2 id0i !w
21~e0i1 id0i !w̄

21
g f 0i

2
w2w̄

1
ḡ f 0i

2
w̄2w1

d0i

4
w̄2w2G Y ~11kww̄!2,

g2i~w,w̄!5F f 0i23 f 0iww̄2~e0i2 id0i !ḡw2~e0i1 id0i !gw̄1
ḡ

2
~e0i2 id0i !w̄w2

1
g

2
~e0i1 id0i !ww̄21

f 0i

4
w̄2w2G Y ~11kww̄!2,

~71!

g3i~w,w̄!5Fe0i2e0iww̄1ḡ f 0iw1g f 0i w̄1 i ~e0i2 id0i !w
22 i ~e0i1 id0i !w̄

22
ḡ

2
f 0i w̄w2

2
g

2
f 0iww̄21

e0i

4
w̄2w2G Y ~11kww̄!2,

gji ~w,w̄!5cji , cji PR

for i 51,2,...,N, and j 54,...,N.
The solution~71! must fulfill the constraintsg215gT, detg51, which implies that the con-

stantsd0i , f 0i , cji , must satisfy

S d01

f 01

e01

c41

•

•

cN1

d02

f 02

e02

c42

•

•

cN2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

d0N

f 0N

e0N

c4N

•

•

cNN

D PSO~N!. ~72!

The complex parametersw, w̄ must satisfy the harmonic equation inM2 given by

~aw,z! ,z̄1~aw,z̄! ,z2
4akw̄

~11kww̄!
w,zw,z̄50,

~73!

~aw̄,z! ,z̄1~aw̄,z̄! ,z2
4akw

~11kww̄!
w̄,zw̄,z̄50.

For each solution of Eq.~73!, we get a new solution,g, of the chiral equations given by~67! for
SU(N), and by~71! for SO(N).

V. CONCLUSIONS

We have found three classes of exact solutions of the SU(N)- and SO(N)-chiral equations~3!.
The first class depends on a harmonic map which corresponds to a one-dimensional Riem
space. Any one-dimensional space is flat, and its harmonic functions are solutions of the L
equation~36!. For the two-dimensional Riemannian spaces we found two classes depend
two harmonic maps, which are the local coordinates of the two-dimensional symmetric Riem
ian spaceM2 . All the two-dimensional Riemannian spaces are conformally flat, and all
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two-dimensional symmetric spaces have constant curvature. The first two-dimensional cla
zero curvature and it is flat, while the second class has nonzero curvature. This last class
sponds to the three-dimensional subalgebras of su(N) and so(N), they can be put in terms of th
su~2! and so~3! respective vector space basis. For the flat two-dimensional class, the har
maps correspond to a system of two decoupled Laplace equations, while for the nonflat cla
harmonic maps are minimal surfaces on a two-dimensional Riemannian space with positiv
vature. The corresponding group elements can be found by the exponential map or by integ
We have integrated all the group elements to obtain explicit expressions of the chiral field in
of the harmonic maps.
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q -Trinomial identities
S. Ole Warnaara)

Instituut voor Theoretische Fysica, Universiteit van Amsterdam,
Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
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We obtain connection coefficients betweenq-binomial andq-trinomial coefficients.
Using these, one can transformq-binomial identities intoq-trinomial identities and
back again. To demonstrate the usefulness of this procedure we rederive some
known trinomial identities related to partition theory and prove many of the con-
jectures of Berkovich, McCoy and Pearce, which have recently arisen in their study
of the f2,1 and f1,5 perturbations of minimal conformal field theory. ©1999
American Institute of Physics.@S0022-2488~99!01105-6#

I. INTRODUCTION

The q-binomial coefficients can be defined by theq-analog of Newton’s binomial expansion

~11x!~11qx!¯~11qn21x!5 (
a50

n

xaqa~a21!/2FnaG . ~1!

An explicit expression for theq-binomial coefficients is given by

FnaG
q

5FnaG5H ~q!n

~q!a~q!n2a
for 0<a<n,

0, otherwise,

where

~q!n5)
j 51

n

~12qj !, n>1 and ~q!051.

q-Binomials play an essential role in combinatorics, partition theory, and statistical me
ics; see, e.g., Refs. 1–4, and one of MacMahon’s famous results is that@ m

n1m# is the generating
function of partitions with no more thanm parts, no part exceedingn. Less well understood are th
q-trinomial coefficients, defined asq-analogs of the numbers appearing in the generalized Pa
triangle

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

• • • • • • • • •

. ~2!

Andrews, Baxter, and Forrester5,6 were the first to encounterq-trinomial coefficients, and in Ref
6 Andrews and Baxter defined

a!Electronic mail: warnaar@wins.uva.nl
25140022-2488/99/40(5)/2514/17/$15.00 © 1999 American Institute of Physics
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FL,b;q
a G

2
5FL,b

a G
2
5 (

k>0
qk~k1b!FLk GFL2k

k1aG ~3!

and

Tn~L,a;q!5Tn~L,a!5q~L2a!~L1a2n!/2FL,a2n;q21

a G
2
. ~4!

The q-trinomial Tn can be expressed explicitly as

Tn~L,a!5 (
r 50

L2a2r even

L2uau
qr ~r 2n!/2~q!L

~q!~L2a2r !/2~q!~L1a2r !/2~q!r
. ~5!

Clearly, theq-trinomial coefficients are nonzero fora52L,2L11,...,L only and satisfy the
symmetries

FL,b;q
a G

2
5qa~a2b!FL,b22a

2a G
2

and Tn~L,a!5Tn~L,2a!.

To see that~3! indeed definesq-analogs of the trinomial coefficients, setq51 and twice apply the
binomial formula to find that

(
a52L

L

xaFL,b;1
a G

2
5~11x1x21!L,

in accordance with~2!. The only further properties ofq-trinomials needed in this paper are th
limiting formulas6

lim
L→`

L2a even

T0~L,a!5
~2q1/2!`1~q1/2!`

2~q!`
, ~6!

lim
L→`

L2a odd

T0~L,a!5
~2q1/2!`2~q1/2!`

2~q!`
, ~7!

and

lim
L→`

FL,a
a G

2
5

1

~q!`
. ~8!

Finally, we introduce the abbreviation

FL,a
a G

2
5FLaG

2
.

Since their discovery about a decade ago,q-trinomials have found numerous applications
again, combinatorics, partition theory, and statistical mechanics.5–23 Among the most striking
results is aq-trinomial proof of Schur’s partition theorem and Capparelli’s~then! conjecture,9 a
q-trinomial proof of the Go¨llnitz–Gordon partition theorem7 and their Andrews–Bressou
generalizations,13,16 the proof of anE8 Rogers–Ramanujan-type identity,10 and a trinomial analog
of Bailey’s lemma.19
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Most of the above-cited papers containq-trinomial identities. Upon close inspection of man
of these identities, one is struck by their similarity with well-knownq-binomial identities. This
strongly suggests that manyq-trinomial identities can be simply viewed as corollaries
q-binomial identities. In an earlier paper23 we made a first, only partially successful, attempt
relateq-trinomial identities toq-binomial identities, showing that each Bailey pair~which implies
a q-binomial identity! implies a trinomial Bailey pair~which implies aq-trinomial identity!. The
problem with the idea of Ref. 23 is that it applies toq-trinomial identities in which the paramete
a in ~3! and~4! takes even values only. Therefore,q-trinomial identities in whicha takes arbitrary
integer values remained irreducible toq-binomial identities.

In this paper we intend to deal with this problem, and in the next section connection c
cients betweenq-binomial andq-trinomial coefficients are obtained. Using these coefficients
the idea of Ref. 23, manyq-trinomial identities are derived from knownq-binomial identities. In
Sect. III, severalq-trinomial identities related to partitions are obtained and in Sec. IV gen
classes ofq-trinomial identities are proved, including many of the recent conjectures of Berko
McCoy, and Pearce.21 To make contact with the recently discovered trinomial analog of Baile
lemma, our results are finally formulated in the language of Bailey pairs in Sec. V. In the Ap
dix some necessary formulas forq-binomial coefficients are collected.

II. CONNECTION COEFFICIENTS

To relateq-binomials andq-trinomials, we consider the simple problem of finding the co
ficientsCL,k andCL,k8 , such that

T0~L,a!5 (
k50

L

CL,k~a!F 2k
k2aG ~9!

and

F 2L
L2aG5 (

k50

L

CL,k8 ~a!T0~k,a!. ~10!

Of course, the two equations imply that

(
k5M

L

CL,k~a!Ck,M8 ~a!5dL,M . ~11!

The answer to the above connection coefficient problem is given by the following lemm
Lemma II.1: For CL,k and CL,k8 as above,

CL,k~a!5~21!L2kq~ 2
L2k

!1~a22L2!/2FLk G , ~12!

CL,k8 ~a!5q~k22a2!/2FLk G . ~13!

Proof: Substitution of the expression forCL,k8 into the right-hand side of~10! and using Eq.~5! for
T0 gives

(
k50

L

CL,k8 ~a!T0~k,a!5 (
k50

L

(
r 50

k2a2r even

k2uau
q~k22a21r 2!/2~q!L

~q!L2k~q!~k2a2r !/2~q!~k1a2r !/2~q!r
.

To proceed, we introduce new summation variablesi , j defined byk5 i 1 j 1a and r 5 i 2 j , and
apply theq-Chu–Vandermonde sum, i.e.,
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(
k50

L

CL,k8 ~a!T0~k,a!5(
i 50

L

(
j 50

i

qi ~ i 1a!1 j ~ j 1a!FLi GF i
j GFL2 i

j 1aG 5
by ~A1)

(
i 50

L

qi ~ i 1a!FLi GF L
i 1aG

5
by ~A1) F 2L

L2aG .
This settles~13!, and to prove~12! we show that~11! holds. Taking the left-hand side of~11! and
substituting the claim of the lemma, we find

(
k5M

L

CL,k~a!Ck,M8 ~a!5 (
k5M

L

~21!L2kq~ 2
L2k

!1~M22L2!/2FLk GF k
M G

5q~M22L2!/2F L
M G (

k50

L2M

~21!kq~2
k
!FL2M

k G5dL,M ,

where in the last step we have used~1! with x521. h

We note that a proof of~12! that does not rely on~13! is implied by Eqs.~2.12! and~2.35! of
Ref. 6.

The analogous result involvingT1 instead ofT0 can be stated as follows. DefineDL,k and
DL,k8 by

T1~L,a!5 (
k50

L

DL,k~a!F 2k
k2aG

and

F 2L
L2aG5 (

k50

L

DL,k8 ~a!T1~k,a!. ~14!

Lemma II.2: For DL,k and DL,k8 as above,

DL,k~a!5~21!L2kq~ 2
L2k

!1~2
a
!2~2

L
!
11qa

11qk FLk G , ~15!

DL,k8 ~a!5q~2
k
!2~2

a
!
11qL

11qa FLk G . ~16!

Proof: Following the proof of Lemma II.1 withT0 replaced byT1 , one finds after application
of the q-Chu–Vandermonde sum~A1!, that the right-hand side of~14! is equal to

11qL

11qa (
i 50

L

qi ~ i 1a21!FLi GF L
i 1aG .

Before ~A1! can again be applied, the recurrence~A5! is needed to rewrite this as

11qL

11qa H (
i 50

L

qi ~ i 1a21!FLi GF L21
i 1a21G1qa(

i 50

L

qi ~ i 1a!FLi GFL21
i 1a G J .

Using ~A1! and combining terms gives@L2a
2L #. To prove ~15! it again suffices to conside

(k5M
L DL,k(a)Dk,M8 (a). After substituting the results forD andD8 and replacingk→L2k, one

finds that this becomesdL,M after using~1! with x521. h
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To conclude this section, we note that the representations~3! and ~5! for the q-trinomial
coefficients can also be written as a relation betweenq-trinomials andq-binomials. That is,

Tn~L,2a!5 (
k>0

q~L22k!~L22k2n!/2F L
2kGF 2k

k2aG ~17!

and

FL,b
2a G

2
5 (

k>0
q~k2a!~k2a1b!F L

2kGF 2k
k2aG . ~18!

These results, which, unlike the previous transformations are not invertible, will be needed

III. SIMPLE EXAMPLES FROM PARTITION THEORY

Before proving general series ofq-trinomial identities using the results of the previous secti
we treat some simple examples related to partition identities first.

The first example concerns the following result of Andrews7 ~see also Ref. 21!. It is well
known24 that the ~first! Rogers–Ramanujan identity can be obtained as a limiting case o
polynomial identity,

(
n>0

qn2FL2n
n G5 (

j 52`

`

~21! jqj ~5 j 11!/2F L
~L25 j !/2G . ~19!

Here the polynomials appearing on either side are known to be the generating function of
tions with the difference between parts of at least two and the largest part not exceedingL21.4,25

In Ref. 7, Andrews remarks that it is ‘‘most surprising and intriguing’’ that the following a
holds:

(
n>0

qn2FL2n
n G5 (

j 52`

` H qj ~10j 11!F L
5 j G

2
2q~2 j 11!~5 j 12!F L

5 j 12G
2
J . ~20!

We now show that~20! is a corollary of~19!, or for those who prefer to decrease instead
increase complexity, that~19! is a corollary of~20!. Replacingq→1/q in ~9! and ~12!, using~4!
and ~A7!, we find that@see also Ref. 6, Eqs.~2.12! and ~2.35!#

FLaG
2
5 (

k50

L

~21!L2kq~L2k!~L1k11!/2FLk GF 2k
k2aG .

If we thus take~19! with L replaced by 2k, multiply by (21)L2kq(L2k)(L1k11)/2@k
L# and sum over

k, we arrive at

(
k>0

(
n>0

~21!L2kq~L2k!~L1k11!/21n2FLk GF2k2n
n G

5 (
j 52`

` H qj ~10j 11!F L
5 j G

2
2q~2 j 11!~5 j 11!F L

5 j 12G
2
J .

To simplify the left-hand side, we setk5L2m1n followed by n→m2n to get

(
m>0

qm2

(
n>0

~21!nq~2
n
!1n~L22m11!FLnGF2L2m2n

m2n G5 (
m>0

qm2FL2m
m G ,
                                                                                                                



d

2519J. Math. Phys., Vol. 40, No. 5, May 1999 S. O. Warnaar

                    
where the sum overn has been performed using theq-Chu–Vandermonde summation~A3!. As
remarked before, one can equally well take the reverse route and starting from~20!, using Lemma
II.1, one readily obtains~19!. We leave this to the reader.

Our second example concerns the following identity of Slater26 related to the~first! Göllnitz–
Gordon partition identity:27,28

(
n50

`
qn2

~2q;q2!n

~q2;q2!n
5 )

n50

`
1

~12q8 j 11!~12q8 j 14!~12q8 j 17!
. ~21!

A polynomial identity that implies this equation is given by13,16

(
m,n>0

q~m21n2!/2FL2m
n GF n

mG5 (
j 52`

`

~21! jq2 j 21 j /2$T0~L,4j !1T0~L,4j 11!%. ~22!

It was observed in Ref. 7 that for fixedL the polynomial appearing on the right-hand side withq
replaced byq2 is the generating function of partitionsl5(l1 ,l2 ,...) with l i2l i 11>2 for l i

odd, l i2l i 11>3 for l i even, and with the largest part not exceeding 2L21. To see that~22!
indeed implies~21!, let L tend to infinity using~6!, ~7!, and~A6!. Hence,

(
m,n>0

q~m21n2!/2

~q!n
F n
mG5 ~2q1/2!`

~q!`
(

j 52`

`

~21! jq2 j 21 j /2.

Using Jacobi’s triple product identity@Eq. ~2.2.10! of Ref. 1# and Eq.~1! with x5q1/2 gives

(
n>0

qn2/2~2q1/2!n

~q!n
5

~2q1/2!`~q3/2;q4!`~q5/2;q4!`~q4;q4!`

~q!`
.

Letting q→q2 and cleaning up the right-hand side finally yields~21!.
The companionq-binomial identity of~22! is given by the following identity of Refs. 29 an

30:

(
m1 ,m2>0

m11m2 even

q~m1
2
1m2

2
!/4FL1 1

2~m12m2!

m1
GF 1

2~m11m2!

m2
G

5 (
j 52`

`

~21! j Hqj ~20j 11!/2F 2L
L24 j G1q~4 j 11!~5 j 11!/2F 2L

L24 j 21G J .

To prove this we replaceL by k, multiply by q2a2/2CL,k(a) as given by~12!, and sum overk using
~9!. The resulting equation is

(
j 52`

`

~21! jq2 j 21 j /2$T0~L,4j !1T0~L,4j 11!%

5 (
m1 ,m2>0

m11m2 even

q~m1
2
1m2

2
22L2!/4F 1

2~m11m2!

m2
G (

k50

L

~21!kq~2
k
!FLk GFL2k1 1

2~m12m2!

m1
G

5
by ~A2)

(
m1 ,m2>0

m11m2 even

q„~m12L !21~m22L !2
…/4F 1

2~m11m2!

m2
GF 1

2~m12m2!

m12L
G .

Making the variable changem1→L1n2m andm2→L2n2m, we find Eq.~22!.
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IV. q-TRINOMIAL IDENTITIES

After the previous examples, we now derive general classes ofq-trinomial identities, as stated
in Propositions IV.1–IV.5 below. The setup will be as follows. First we describe a family
q-binomial identities for bounded analogs of Virasoro characters, based on continued fr
expansions. We then transform these identities intoq-trinomial identities, by either using~9! or
~18!. Many of theq-trinomial identities available in the literature are contained in Propositi
IV.1–IV.5 or can be derived in a completely analogous fashion.

A. q-binomial identities for bounded Virasoro characters

Using the inclusion–exclusion construction of Feigin and Fuchs,31 the~normalized! characters
of the Virasoro algebra of central chargec5126(p82p)2/pp8, with p,p8 integers such that 1
,p,p8 and gcd(p,p8)51, are given by32,33

x r ,s
~p,p8!~q!5

1

~q!`
(

j 52`

`

$qj ~pp8 j 1p8r 2ps!2q~p j1r !~p8 j 1s!%.

Here r 51,...,p21 ands51,...,p821 label the highest weight representations.
For simplicity we only deal with the ‘‘vacuum’’ character, determined byup8r 2psu51. The

following polynomial analogs of the vacuum Virasoro characters have arisen in the conte
statistical mechanics34,35 and partition theory,36

BL~p,p8;q!5 (
j 52`

` Hqj ~pp8 j 11!F 2L
L2p8 j G2q~p j1r !~p8 j 1s!F 2L

L2p8 j 2sG J . ~23!

The polynomialsBL(p,p8) are known to be related to the minimal conformal field theo
M (p,p8) perturbed by the operatorf1,3.

Recently, very different, so-called fermionic representations for the above polynomials
been obtained by Berkovich, McCoy and Schilling using continued fractions.29,30 Assumep
,p8,2p, gcd(p,p8)51 and define non-negative integersn and n0 ,...,nn by the continued
fraction expansion

p

p82p
5n01

1

n11
1

n21¯1
1

nn12

5@n0 ,...,nn21 ,nn12#.

Using n andn j , set

tm5 (
j 50

m21

n j , 1<m<n and d5(
j 50

n

n j . ~24!

The tm andd are used to define a fractional incidence matrixI and a fractional Cartan-type matri
2B52I 2I ~with I the d by d unit matrix! as follows:

Ii , j5H d i , j 111d i , j 21 , for 1< i ,d, iÞtm ,

d i , j 111d i , j2d i , j 21 , for i 5tm , 1<m<n2dnn,0 ,

d i , j 111dnn,0d i , j , for i 5d.

~25!

Whenp85p11, the incidence matrixI has componentsIi , j5d u i 2 j u,1 ( i , j 51,...,p22), so that 2B
corresponds to the Cartan matrix of the Lie algebraAp23 . Whenp52k21 andp852k11 the
matrix I has componentsIi , j5d u i 2 j u,11d i , jd i ,k21 ( i , j 51,...,k21), so that 2B corresponds to the
Cartan-type matrix of the tadpole graph ofk21 nodes.
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Using the above definition, the fermionic representation for the bounded Virasoro char
with p,p8,2p can be given as

FL~p,p8;q!5 (
mP2Zd

qmBm/2)
j 51

d FLd j ,11
1
2~Im! j

mj
G . ~26!

Here we use the notationsvMw5( j ,kv jM j ,kwk , (Mv) j5(kM j ,kvk and (vM ) j5(kvkMk, j .
These conventions are important since, generally,M (5I,B) is not a symmetric matrix. The
general form~26! for FL(p,p8) can be found in Refs. 29 and 30~see also Ref. 37!. The important
special cases (p,p8)5(p,p11) and (2k21,2k11) were proven prior to this is in Refs. 38, 3
and Ref. 40, respectively.

The expression forFL(p,p8;q) with p8.2p follows from the duality transformation

FL~p,p8;1/q!5q2L2
FL~p82p,p8;q!. ~27!

To obtain fermionic character formulas forx r ,s
(p,p8)(q) with up8r 2psu51, one simply letsL tend to

infinity in ~26!.
Before we proceed to use the identity,

FL~p,p8;q!5BL~p,p8;q!, ~28!

to derive trinomial identities, let us comment on the convention of writing 2B for a Cartan-type
matrix in the above formulas. This has its origin in the work of Ref. 41, where, in more ge
situations, the matrixB has a~nontrivial! tensor product structure,B5b1^ b2 . In the identities of

this section the matrixb1 is simply the inverse of theA1 Cartan matrix, (b1)5( 1
2). In Sec. IV D,

however, we indeed encounter a different situation,b1 being the~still trivial ! Cartan-type matrix
of the tadpole graph with just a single node, so thatb15(1).

B. q-trinomial identities I

We start with theq-binomial identity~28! for p,p8,2p, assuming thatd>2. Applying Eq.
~9!, with CL,k given by ~12!, we find

(
j 52`

`

$q„p8~2p2p8! j 12…j /2T0~L,p8 j !2q„~2p2p8! j 12r 2s…~p8 j 1s!/2T0~L,p8 j 1s!%

5 (
k50

L

~21!L2kq~ 2
L2k

!2L2/2FLk GFk~p,p8;q!

5 (
mP2Zd

q~mBm2L2!/2S )
j 52

d F 1
2~Im! j

mj
G D (

k50

L

~21!kq~2
k
!FLk GFL2k1 1

2~Im!1

m1
G

5
by ~A2)

qL2/2 (
mP2Zd

qmBm/22L~Bm!1F 1
2~Im!1

m12L
G)

j 52

d F 1
2~Im! j

mj
G

5qL2I1,1/2 (
m1Le1P2Zd

qmBm/21L~mB2Bm!1/2)
j 51

d F 1
2LIj ,11

1
2~Im! j

mj
G ,

with ej ( j 51,...,d) the standard unit vectors inZd. We now have to distinguish two cases acco
ing to whethern051 ~so that 3p/2,p8,2p! or n0.1 ~so thatp,p8<3p/2!. In the latter case
I1,j5Ij ,15d1,j 21 , and we obtain the following polynomial identities.
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Proposition IV.1: For integers p,p8 with p,p8<3p/2 and gcd(p,p8)51, let integers1<r
,p and1<s,p8 be fixed byup8r 2psu51 and letI and B be defined by (24) and (25). Then t
following polynomial identity holds for LPZ:

(
m1Le1P2Zd

qmBm/2)
j 51

d F 1
2Ld j ,21

1
2~Im! j

mj
G

5 (
j 52`

`

$q„p8~2p2p8! j 12…j /2T0~L,p8 j !2q„~2p2p8! j 12r 2s…~p8 j 1s!/2T0~L,p8 j 1s!%.

The admissible pairs (p,p8)5(3,4) and (p,p8)5(2,3) have been neglected in our derivatio
due to the assumption thatd>2. These two cases can be treated in a similar fashion, and w
(p,p8)5(3,4) the left-hand side is 1 forL even and 0 forL odd. When (p,p8)5(2,3), in which
caseFL(2,3;q)51, the left-hand side becomesdL,0 . All of the identities of Proposition IV.1 have
been derived before, and forp85p11 they were first found by Schilling.42,14 The more genera
case can be found in Ref. 22.

Next we treat the casen051. When this occursI1,j5d j ,12d1,j 21 andIj ,15d j ,11d1,j 21 , and
we obtain the following polynomial identities.

Proposition IV.2: For integers p,p8 with 3p/2,p8,2p and gcd(p,p8)51 let integers1
<r ,p and1<s,p8 be fixed byup8r 2psu51 and letI and B defined by (24) and (25). Then th
following polynomial identity holds for LPZ:

(
m1Le1P2Zd

qL~L22m2!/41mBm/2)
j 51

d F 1
2L~d j ,11d j ,2!1 1

2~Im! j

mj
G

5 (
j 52`

`

$q„p8~2p2p8! j 12…j /2T0~L,p8 j !2q„~2p2p8! j 12r 2s…~p8 j 1s!/2T0~L,p8 j 1s!%.

The case (p,p8)5(3,5) has again escaped a proper derivation, but has, in fact, been tr
previously, corresponding to identity~20! with q replaced by 1/q. Apart from this special case du
to Andrews,7 the identities of Proposition IV.2 have been proved by Berkovich, McCoy,
Orrick13,16 for (p,p8)5(2n11,4n) and were conjectured for generalp and p8 by Berkovich,
McCoy, and Pearce@Eq. ~8.8! of Ref. 21#.

C. q-trinomial identities II

Our starting point for derivingq-trinomial identities is again Eq.~28!, but this time we rely on
~18!. This implies that~28! with L replaced byk, multiplied byqk2

@2k
L #, and summed overk yields

(
k>0

qk2F L
2kGFk~p,p8;q!5 (

j 52`

` H qj ~p8~p1p8! j 11!F L
2p8 j G

2
2q~p8 j 1s!~~p1p8! j 1r 1s!F L

2p8 j 12sG
2
J .

~29!

To transform this into explicit polynomial identities we need to distinguish betweenp,p8,2p
andp8.2p.

First, assume thatp,p8,2p. After substituting expression~26! for FL , the left side of~29!
is

(
k>0

(
mP2Zd

qk21mBm/4F L
2kG)

j 51

d Fkd j ,11
1
2~Im! j

mj
G .

By the q-Chu–Vandermonde summation~A1!, with L→L2k1m1/2, a→k2m1/2, andb→2k
2m1/2, this can be rewritten as
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(
i ,k>0

(
mP2Zd

qi „i 2k2m1/2…1k21mBm/4FL2k1 1
2m1

i
GFk2 1

2m1

2k2 i
G)

j 51

d Fkd j ,11
1
2~Im! j

mj
G .

Replacingmj→mj 12 , j 51,...,d, followed byk→(m11m2)/2 andi→m1 yields

( 8q~3m1
2
1m2

2
22m1m3!/41( j ,k51

d mj 12Bj ,kmk12/4

3FL2 1
2~m11m22m3!

m1
GF 1

2~m11m22m3!

m2
G)

j 51

d F 1
2~m11m2!d j ,11

1
2(k51

d Ij ,kmk12

mj12 G ,

where the primed sum denotes a sum overmPZd12 such thatm11m2 andm3 ,...,md12 are all
even.

Now define a new incidence matrixI8 and Cartan-type matrix 2B852I 2I8 of dimension
d85d11 by replacing the continued fraction expansion@n0 ,...nn12# by @1,n0 ,...,nn12#, so
thatI8 becomes the incidence matrix corresponding to the continued fraction expansion ofp8/p.
Also defineI9 and 2B952I 2I9 of dimensiond95d12 as

Ii , j9 5H 2d i ,1d j ,11d i ,21d i ,32d j ,21d j ,3 , for i 51 or j 51,

Ii 21,j 218 , for i , j 52,...,d12.
~30!

Then the above sequence of transformations implies the following proposition.
Proposition IV.3: For integers p,p8 with p,p8,2 and gcd(p,p8)51 let integers 1<r,p and

1<s,p8 be fixed byup8r2psu51 and letI9 and B9 be defined by (30). Then the following pol
nomial identity holds for LPZ:

( 8qmB9m/4)
j 51

d9 FLd j ,11
1
2~I9m! j

mj
G

5 (
j 52`

` H qj ~p8~p1p8! j 11!F L
2p8 j G

2
2q~p8 j 1s!~~p1p8! j 1r 1s!F L

2p8 j 12sG
2
J .

The identities of Proposition IV.3 are then50 case of the conjectured equation~8.11! @which
contains then50 instances of~6.19! and~8.3!# of Ref. 21, and are related to thef2,1 perturbation
of the minimal conformal field theoryM (p8,p1p8).

Whenp8.2p we replacep→p82p in ~29! and use the duality property~27!. Hence

(
k>0

q2k2F L
2kGFk~p,p8;q21!

5 (
j 52`

` H qj ~p8~2p82p! j 11!F L
2p8 j G

2
2q~p8 j 1s!~~2p82p! j 1r 1s!F L

2p8 j 12sG
2
J . ~31!

Observe that the transformation carried out above impliesp,p8,2p and up8(r 2s)1psu51.
Substituting expression~26! for FL and using~A7!, the left side of~31! yields

(
k>0

(
mP2Zd

qk~2k2m1!1mBm/4F L
2kG)

j 51

d Fkd j ,11
1
2~Im! j

mj
G .

By the q-Chu–Vandermonde summation~A1!, with L→L2m1/2, a→m1/2, b→m1/222k, this
can be rewritten as
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(
i ,k>0

(
mP2Zd

qi „i 22k1m1/2…1k~2k2m1!1mBm/4FL2 1
2m1

i
GF 1

2m1

2k21G)
j 51

d Fkd j ,11
1
2~Im! j

mj
G .

Replacingmj→mj 12 , j 51,...,d, followed by t→m11m2 and i→m1 , gives

( 8q~m1
2
1m2

2
2m2m3!/21( j ,k51

d mj 12Bj ,kmk12/4FL2 1
2m3

m1
G

3F 1
2m3

m2
G)

j 51

d F 1
2~m11m2!d j ,11

1
2(k51

d Ij ,kmk12

mj 12
G ,

where the primed sum again denotes a sum overmPZd12 such thatm11m2 andm3 ,...,md12 are
all even.

Now define a new incidence matrixI and Cartan-type matrix 2B852I 2I of dimensiond8
5d11 by replacing the continued fraction expansion@n0 ,...,nn12# by @n011,n1 ,...,nn12#, so
that I8 becomes the incidence matrix corresponding to the continued fraction expansi
p8/(p82p). Also defineI9 and 2B952I 2I9 of dimensiond95d12 as

Ii , j9 5H d i ,32d j ,3 , for i 51 or j 51,

Ii 21,j 218 , for i , j 52,...,d12.
. ~32!

Then the above sequence of transformations implies the following proposition.
Proposition IV.4: For integers p,p8 with p,p8,3p/2 and gcd(p,p8)51 let integers1<r

,p and1<s,p8 be fixed byup8(r 2s)r 1psu51 and letI and B be defined by (32). Then th
following polynomial identity holds for LPZ:

( 8qmB9m/4)
j 51

d9 FLd j ,11
1
2~I9m! j

mj
G

5 (
j 52`

` H qj „p8~2p82p! j 11…F L
2p8 j G

2
2q~p8 j 1s!„~2p82p! j 1r 1s…F L

2p8 j 12sG
2
J .

The identities of Proposition IV. 4, which are related to thef2,1 perturbation of the conforma
field theory M (p8,2p82p), were conjectured in Ref. 21@as Eq.~6.9!#. For p5p821 a proof
using recurrences was recently given in Ref. 20.

D. q-trinomial identities III

There are, of course, many moreq-trinomial identities that can be derived using the tec
niques of the previous sections. Our final application is to show that in some cases a bi
ingenuity is required to arrive at the desired result. The identities we set out to prove here
again conjectured by Berkovich, McCoy, and Pearce@Eq. ~9.4! of Ref. 21# and are interesting, a
they contain the~polynomial! Rogers–Ramanujan identity~20! as the simplest case. It also pro
vides an example for which the matrixB5b1^ b2 ~in the proposition below denoted asCn! of
Sec. IV A hasb15(1) and not~ 1

2!.
Proposition IV.5: For n>1, let Cn be the Cartan matrix of An . Then for all LPZ,

(
mPZn

qmCnm/2)
j 51

n FLd j ,11mj2~Cnm! j

mj
G

5 (
j 52`

` H q„~n13!~n14! j 12…j /2F L
~n14! j

G
2
2q„~n13! j 12…„~n14! j 12…/2F L

~n14! j 12G
2
J . ~33!
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Letting L tend to infinity using~8! and ~A6!, this yields the following Virasoro-characte
identities.

Corollary IV.1: For n>1 and uqu,1,

(
mPZn

qmCnm/2

~q!m1

)
j 52

n Fmj2~Cnm! j

mj
G5H x1,2

~~n13!/2,n14!~q!, n odd,

x1,2
~~n14!/2,n13!~q!, n even.

~34!

In Ref. 21, the identities~33! and ~34! were associated with thef2,1 perturbation of the
conformal field theoriesM „(n14)/2,n13… when n is odd and thef1,5 perturbation ofM „(n
13)/2,n14… whenn is even.

Proof: The corollary betrays a hidden parity dependence of~33!, which also plays a role in the
proof. Treatingn being odd first, we setn52k21. The left-hand side of~33! then reads as

(
mPZ2k21

qmC2k21m/2 )
j 51

2k21 F 1
2Ld j ,11mj 212mj1mj 11

mj
G , ~35!

with the convention thatm05L/2 andm2k50. We eliminate the variablesm2 j 21 , j 51,...,k in
favor of new variablesM1 ,...,Mk , defined as

m2 j 215m2 j 222 1
2~M j2M j 11!,

where Mk1150. If after this replacement we relabelm2 j to mj for j 51,...,k ~so thatmk50!,
expression~35! becomes

(
M1Le1P2Zk

q„L~L22M1!1M1
2
1( i , j 52

k Mi ~Ck21! i , j M j …/4

3 (
m1 , . . . ,mk21

q( j 51
k21

~M j 112mj !„mj 212mj 2~M j 2M j 12!/2…

3Fm01m11 1
2~M12M2!

m02 1
2~M12M2!

G)
j 51

k21 Fmj 212 1
2~M j2M j 12!

mj
GFmj 111 1

2~M j 112M j 12!

M j2
1
2~M j 112M j 12!

G .

~36!

This allows for successive summation overmk21 ,...,m1 by the q-Saalschu¨tz sum ~A4!. When
summing overmj , we take ~A4! with L→mj 212(M j2M j 12)/2, a→(M j 112M j 12)/2, b→
2(M j 111M j 12)/2, c→(M j2M j 11)/2 ~for j >2!, and c→m01(M12M2)/2 ~for j 51!. As a
result,~36! collapses into

(
M1Le1P2Zk

qL~L22M1!/41MBM/2)
j 51

k F 1
2L~d j ,11d j ,2!1 1

2~IM ! j

M j
G , ~37!

with matricesI and 2B52I 2I defined in Eqs.~24! and ~25! corresponding to the continue
fraction expansion of (k12)/(k11)5@1,k21#, i.e.,

Ii , j5H d i ,1d j ,11d i ,22d j ,2 , for i 51 or j 51,

d i , j 211d i , j 11 , for i , j 52,...,k.

The last part of the proof consists of the observation that the identity obtained by equatin~37!
with the right-hand side of~33! ~with n52k21! is nothing but the identity of Proposition IV.2
with (p,p8)5(k12,2k13) after lettingq→1/q. This is readily seen using~4! and ~A7!.

Next, we deal withn being even, settingn52k. The left-hand side of~33! then is
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(
mPZ2k

qmC2km/2)
j 51

2k FLd j ,11mj 212mj1mj 11

mj
G , ~38!

where m05m2k1150. We eliminate the variablesm2 j , j 51,...,k, introducing new variables
m0 ,...,Mk21 by

m2 j5m2 j 212 1
2~M j 212M j !,

whereMk50. After this replacement we shiftm2 j 21→mj for j 51,..., k so that expression~38!
becomes

(
M0 ,...,Mk21

M j even

q„M0
2
1( i , j 51

k21 Mi ~Ck21! i , j M j …/4

3 (
m1 ,...,mk

qm1„m12~M01M1!/2…1( j 52
k

~M j 212mj !„mj 212mj 2~M j 222M j !/2…

3FL2 1
2~M02M1!

m1
G S )

j 52

k Fmj 212 1
2~M j 222M j !

mj
G D )

j 51

k Fmj 111 1
2~M j 212M j !

mj2
1
2~M j 212M j !

G .

We now sum overmk ,...,m3 by successive application of theq-Saalschu¨tz sum ~A4!. When
summing overmj we take ~A4! with L→mj 212(M j 222M j )/2, a→(M j 212M j )/2, b→
2(M j 211M j )/2, andc→(M j 222M j 21)/2. The final sum overm1 follows from ~A1! with L
→L2(M02M1)/2, a→(M02M1)/2, andb→2(M01M1)/2. SettingM0→2i , the resulting ex-
pression is

(
i>0

qi 2F L
2i G (

MP2Zk21
qMCk21M /4)

j 51

k21 F id j ,11M j2
1
2~Ck21M ! j

M j
G .

Equating this with the right-hand side of~33! for n52k, we recognize identity~29! with
(p,p8)5(k11,k12). h

V. THE TRINOMIAL BAILEY LEMMA

In this final section of our paper we formulate some of our results in the language of B
pairs. As we will see, the connection coefficients obtained in Sec. II provide a very eleme
proof of the trinomial analog of Bailey’s lemma recently obtained by Andrews and Berkovi19

First, some definitions are needed. In subsequent formulas,Tn(L,a)/(q)L will be abbreviated
to Qn(L,a).

Definition V.1: A pair of sequencesa5$aL%L>0 and b5$bL%L>0 that satisfies

bL5(
r 50

L
a r

~q!L2r~aq!L1r
,

forms a (binomial) Bailey pair relative to a.
Definition V.2: A pair of sequences A5$AL%L>0 and B5$BL%L>0 that satisfies

BL5(
r 50

L

Qn~L,r !Ar ,

forms a trinomial Bailey pair relative to n.
The Bailey lemma43 and trinomial Bailey lemma19 can now be stated as the following sum

mation formulas.
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Lemma V.1. Let (a,b) be a Bailey pair relative to a. Then

(
L50

M
~r1!L~r2!L~aq/r1r2!LaL

~aq/r1!L~aq/r2!L~q!M2L~aq!M1L
5 (

L50

M
~r1!L~r2!L~aq/r1r2!L~aq/r1r2!M2LbL

~aq/r1!M~aq/r2!M~q!M2L
.

Lemma V.2. Let (A,B) form a trinomial Bailey pair relative to 0. Then

(
L50

M

~21!LqL/2BL5~21!M11(
L50

M

qL/2AL

Q1~M ,L !

11qL . ~39!

If (A,B) is a trinomial Bailey pair relative to 1, then

(
L50

M

~2q21!LqLBL5~21!M (
L50

M

ALH Q1~M ,L !2
Q1~M21,L11!

11q2L21 2
Q1~M21,L21!

11qL21 J .

Before we translate the results of Sec. II in the language of Bailey pairs, let us point ou
the connection coefficients betweenq binomials andq trinomials can be applied to yield a ver
simple proof of the trinomial Bailey lemma. At the heart of the proof of Lemma V.2 is
following identity derived in Ref. 19 by a considerable amount of work,

T0~L,a!5q~a2L !/2H 11qL

11qa T1~L,a!2
12qL

11qa T1~L21,a!J . ~40!

To see, for example, that this implies~39!, we multiply ~40! by qL/2(21)L /(q)L and sum overL
from a to M. On the right-hand side all but one term cancels, so that

(
L5a

M

qL/2~21!LQ0~L,a!5
qa/2

11qa ~21!M11Q1~M ,a!,

which obviously implies~39!.
By Eqs.~9!–~13!, Eq. ~40! is proved if we can show its validity when multiplied byCM ,L(a)

and summed overL. Doing this and using~10!, one finds~replacingL→k andM→L!

F 2L
L2aG5 (

k50

L

q~2
k
!2~2

a
!FLk G H 11qk

11qa T1~k,a!2
12qk

11qa T1~k21,a!J
5 (

k50

L

q~2
k
!2~2

a
!H 11qk

11qa FLk G2qk
12qk11

11qa F L
k11G J T1~k,a!

5 (
k50

L

q~2
k
!2~2

a
!
11qL

11qa FLk GT1~k,a!.

But the extremes of this string of equations is nothing but Eq.~14!, with DL,k8 (a) given by Eq.~16!
of Lemma II.2, establishing~40!.

We now give a series of lemmas that are all straightforward consequences of the res
Sec. II.

Lemma V.3: Let (a,b) be a Bailey pair relative to 1. Then

AL5q2L2/2aL , BL5 (
k50

L
~21!L2kq~ 2

L2k
!2L2/2~q!2k

~q!k~q!L2k
bk

is a trinomial Bailey pair relative to 0 and
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AL5
q2~2

L
!

11qL aL , BL5 (
k50

L
~21!L2kq~ 2

L2k
!2~2

L
!~q!2k

~11qk!~q!k~q!L2k
bk

is a trinomial Bailey pair relative to 1.
The converse statement is as follows.
Lemma V.4: Let„A(n),B(n)… be a trinomial Bailey pair relative to n. Then,

aL5qL2/2AL~0!, bL5
~q!L

~q!2L
(
k50

L
qk2/2

~q!L2k
Bk~0!

and

aL5q~2
L

!~11qL!AL~1!, bL5
~q!L

~q!2L
~11qL!(

k50

L
q~2

k
!

~q!L2k
Bk~1!,

are Bailey pairs relative to 1.
Lemma V.3 is to be compared with the following result of Ref. 23.
Lemma V.5: Let l be a non-negative integer and (a,b) a Bailey pair relative to a5ql . Then

AL5H a~L2 l !/2 , for L5 l ,l 12,...,

0, otherwise;

BL5H (
k50

@~L2 l !/2#
q~L2 l 22k!~L2 l 22k2n!/2

~q! l~q!L2 l 22k
bk , f or L> l ;

0, otherwise,

forms a trinomial Bailey pair relative to n.
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APPENDIX: SOME q-BINOMIAL FORMULAS

In this appendix we list some standardq-binomial identities that are repeatedly used in t
main text.

The following three formulas all hold for integersa, b, L such thata, L>0,

(
k50

L

qk~k1b!FLk GF a
k1bG5Fa1L

b1L G , ~A1!

(
k50

L

~21!kq~2
k
!FLk GFL1a2k

b G5qL~L1a2b!F a
b2L G , ~A2!

(
k50

L

~21!kq~2
k
!1k~b2L11!FLk GFL1a2k

b G5F a
b2L G . ~A3!
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The first two equations are specializations of theq-Chu–Vandermonde sum~II.7! of Ref. 3 and the
last equation is a specialization of theq-Chu–Vandermonde sum~II.6! of Ref. 3. Identity~A2! is
also given in Ref. 1 as Eq.~3.3.10!. A useful specialization of theq-Saalschu¨tz sum@~II.12! of Ref.
3# is given by

(
k50

L

q~a2b2k!~L2k!FLk GF a
k1bGF k1c

a1L G5F c
b1L GFc2b

a2bG , ~A4!

true for integersa, b, c, L such thata, c, L>0. This is Eq.~3.3.11! of Ref. 1. Finally, we list the
elementary results:

FLaG5FL21
a21G1qaFL21

a G , for L,a>0, L1aÞ0, ~A5!

lim
L→`FLaG5 1

~q!a
~A6!

and

FLaG
1/q

5q2a~L2a!FLaG
q

. ~A7!

1G. E. Andrews, ‘‘The theory of partitions,’’Encyclopedia of Mathematics and its Applications~Addison-Wesley, Read-
ing, MA, 1976!, Vol. 2.

2G. E. Andrews, ‘‘q-Series: Their development and application in analysis, number theory, combinatorics, physic
computer algebra,’’ inCBMS Regional Conference Series in Mathemancs~AMS, Providence, RI, 1985!, Vol. 66.

3G. Gasper and M. Rahman, ‘‘Basic hypergeometric series,’’Encyclopedia of Mathematics and its Applications~Cam-
bridge Univiversity Press, Cambridge, 1990!.

4P. A. MacMahon,Combinatory Analysis~Cambridge University Press, London and New York, 1916!, Vol. 2.
5P. J. Forrester and G. E. Andrews, ‘‘Height probabilities in solid-on-solid models. I,’’ J. Phys. A19, L923–L926~1986!.
6G. E. Andrews and R. J. Baxter, ‘‘Lattice gas generalization of the hard hexagon model. III.q-Trinomial coefficients,’’
J. Stat. Phys.47, 297–330~1987!.

7G. E. Andrews, ‘‘q-Trinomial coefficients and Rogers–Ramanujan type identities,’’ inAnalytic Number Theory, edited
by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand~Birkhäuser, Boston, 1990!, pp. 1–11.
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Comment on phase-space representation of quantum
state vectors
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A simple approach to phase-space representation of quantum state vectors using the
displacement-operator formalism is presented. Although the resulting expressions
for the fundamental operators~position and momentum! are equivalent to those
obtained by other methods, this approach provides both alternative mathematical
foundation as well as physical interpretation of phase-space representation of quan-
tum state vectors. ©1999 American Institute of Physics.
@S0022-2488~99!01605-9#

I. INTRODUCTION

Over the past few years there has been a renewed interest in phase-space descrip
quantum systems. In a recent paper by Ban1 a novel approach to phase-space representatio
quantum state vectors is obtained within the relative-state formulation, and in this Comme
make a few remarks on the physical contents of this construction. Also, we relate it to an
approach to phase-space representation of quantum state vectors, the so-called displa
operator approach.

The idea of phase-space representation of quantum state vectors, i.e., representati
quantum state as a probability amplitude depending ontwo real variables related to the positio
and momentum coordinates goes back to the works of Fock2 and Bargmann.3 In their formulation,
a quantum state is represented as a complex function depending onone complexcoordinate whose
real and imaginary part is proportional to the position and momentum coordinate, respec
This is a result of regarding the bosonic creation and annihilation operators as the funda
operators.

The relative-state formulation, on the other hand, treats the position and momentum op
themselves as the fundamental operators and is therefore more closely related to the w
Torres-Vega and Frederick4 and Harriman.5 Both of these works rely to a certain extent on Dirac
representation theory of quantum mechanics,6 either as a Hilbert-space-vector approach postu
ing the existence of a complete set of states depending on two real parameters that can be
a basis in phase space or a linear transformation onto phase space from position or mom
space.

In fact, the relative-state representation of Ban1 becomes, under certain conditions, equivale
to those of Torres-Vega and Frederick4 and Harriman.5 The relative-state formulation may there
fore serve as a mathematical and physical foundation for the representations presented b
authors since it is derived from first principles without assumptions or transformations from
representations.

However, the relative-state formulation is not the only way to construct a phase-space
sentation of quantum state vectors from first principles that becomes equivalent to those of T
Vega and Frederick4 and Harriman.5 Below, we present an alternative construction, using
displacement operators, and discuss the mathematical and physical differences betwe
method the relative-state approach.

a!Electronic mail: klaus@cco.caltech.edu
25310022-2488/99/40(5)/2531/5/$15.00 © 1999 American Institute of Physics
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The displacement-operator approach is essentially equivalent to the coherent-state for
as put forward by, for instance, Klauder and Skagerstam7 and studied in some detail by the prese
author.8 Hence, the presentation given here is extracted from these earlier works and put in
relevant for the present discussion. For a thorough review and analysis of the use of displa
operators, the reader is referred to Refs. 7 and 8 and the references therein.

II. RELATIVE-STATE FORMULATION

The relative-state formulation is presented in great detail by Ban1 and here we only include a
few results relevant for the further discussion. The key of this approach is to enlarge the H
spaceH of a quantum system by introducing an auxiliary~reference! quantum system and trea
quantum state vectors in the extended Hilbert spaceH̃5H^Hr , whereHr is the Hilbert space of
the reference system. A state vector in the extended Hilbert spaceH̃ then becomesuC&&[uc&
^ uf& r whereuf& r is the reference state.

A set of state vectors$uv(r ,k;s)&&ur ,kPR% may be introduced1 that becomes a complet
orthonormal system inH̃. These state vectors, which can be written on the following form:

uv~r ,k;s!&&[
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxux& ^ ux2r & r ~1!

~as in Ref. 1, we set\51 throughout this Comment! are simultaneous eigenstates of the opera
x̂2 x̂r , and p̂1 p̂r ,

~ x̂2 x̂r !uv~r ,k;s!&&5r uv~r ,k;s!&&, ~2!

~ p̂1 p̂r !uv~r ,k;s!&&5kuv~r ,k;s!&&. ~3!

However, when we investigate the properties of the relevant quantum system, we only n
description of this system in the Hilbert spaceH. Thus, the extended Hilbert space is reduc
again by fixing the state vector of the reference system. For any fixed state vectoruf& r of the
reference system, the set$uv(r ,k;s)&ur ,kPR%, where

uv~r ,k;s!&[ r^fuv~r ,k;s!&&5
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxf* ~x2r !ux&, ~4!

becomes an overcomplete system in the Hilbert spaceH.1 Therefore, the relevant quantum syste
can be represented by anL2(2) normalized wave functioncv(r ,k;s)[^v(r ,k;s)uc& depending
of the two real parametersk andr. In this representation, the fundamental operatorsx̂ and p̂ take
the form

^v~r ,k;s!ux̂uc&5F1

2
~11s!r 1 i

]

]kGcv~r ,k;s!, ~5!

^v~r ,k;s!u p̂uc&5F1

2
~12s!k2 i

]

]r Gcv~r ,k;s!. ~6!

Apart from some notational differences these are essentially the expressions given by Torre
and Frederick4 and Harriman5 in their representations. Thus, the construction by Ban1 may serve
as a mathematical foundation for the work of Torres-Vega and Frederick4 and Harriman.5 Fur-
thermore, the relative-state formulation provides a physical interpretation of the wave fun
cv(r ,k;s) and the parametersk andr as phase-space coordinates. In light of Eqs.~2! and~3!, the
function ucv(r ,k;s)u2 represents the probability distributions of the eigenvalues of the oper
x̂2 x̂r and p̂1 p̂r in the extended Hilbert spaceH̃.
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Alternatively, one may utilizeucv(r ,k;s)u2 as a combined probability distribution directly i
the r ,k-parametrized space as follows:

r̄[E
2`

`

drE
2`

`

dk rucv~r ,k;s!u25xc2xf , ~7!

k̄[E
2`

`

drE
2`

`

dk kucv~r ,k;s!u25pc1pf . ~8!

Here,xc5^cux̂uc& and so on. Thus,r andk may be interpreted as phase-space coordinates in
sense that the average value ofr equals the relative position between the relevant and the refer
system, and the average value ofk equals the sum of the momenta of the relevant and
reference system. Hence, the physical interpretation of the wave function depends on the re
state, although the operator expressions, Eqs.~5! and~6!, do not, and from this point of view the
most satisfactory representation is obtained using a reference state with^fux̂uf&50 and
^fu p̂uf&50. In general, also the physical interpretation of higher momenta ofr andk depend on
the reference system.1

III. DISPLACEMENT-OPERATOR APPROACH

Here we present an alternative derivation from first principles of the phase-space repre
tion of quantum state vectors that also becomes equivalent to the ones of Torres-Veg
Frederick4 and Harriman5 and therefore to the result of Ban,1 as well. However, the derivation
presented here differs from the one obtained in the relative-state formulation in both the
ematical foundation and in the physical interpretation of the phase-space wave functions. I
it resembles closely Dirac’s construction of the usual position and momentum representati6

Two things are important for the definitions of these representations. First, the basis
denoted byur &x and uk&p , are eigenstates of the position and momentum operator, respectiv

x̂ur &x5r ur &x and p̂uk&p5kuk&p . ~9!

Second, the position~momentum! eigenstate with eigenvaluer (k) can be generated from th
eigenstate with eigenvaluer 50 (k50) by a displacement operator,

ur &x5D̂x~r !u0&x and uk&p5D̂p~k!u0&p , ~10!

where the displacement operators are given asD̂x(r )5exp(2irp̂) and D̂p(k)5exp(ikx̂).6 The
wave function in position~momentum! space is then obtained by projection onto a posit
~momentum! eigenstate,c(r )[^r uc& (c(k)[^kuc&). This implies that the displacement oper
tors when acting on a state displace the expectation value of the position or momentum byr and
k, respectively.

An identical approach to a phase-space representation of quantum state vectors would
the existence of an Hermitian operator representing a point in phase space. Torres-Ve
Frederick4 claim that such an operator exist but without proof and, in fact, the existence of su
operator would violate the Heisenberg uncertainty relation. In the relative-state formulati
close resemblance is obtained for the basis statesuv(r ,k;s)&& in the extended Hilbert space; c
Eqs.~2! and ~3!.

Nevertheless, anr ,k-parametrized basiscan be constructed utilizing displacement operato
In general, a displacement operator that displaces the expectation values of the positi
momentum for any state byr andk simultaneously, can be defined as7,8

D̂s~r ,k!5exp@ i ~kx̂2r p̂2skr/2!#, ~11!
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where s is real number determining the phase such thatD̂1(r ,k)5D̂q(r )D̂p(k), D̂21(r ,k)
5D̂p(k)D̂q(r ), andD̂0(r ,k) is a symmetric combination. Anr ,k-parametrized state vector ma
then be defined asuV(r ,k;s)&[(2p)21/2D̂s(r ,k)ux&, whereux& is an arbitrary normalized state
and the set$uV(r ,k;s)&ur ,kPR% becomes an overcomplete set of normalized vectors.7 The set
$uV(r ,k;s)&ur ,kPR% can therefore be used as a basis and the relevant quantum system
sented by theL2(2) normalized wave functioncV(r ,k;s)[^V(r ,k;s)uc&, depending on the two
real parametersk and r. These basis vectors obviously satisfy the displacement relation

uV~r ,k;s!&5D̂s~r ,k!uV~0,0;s!&. ~12!

Using that

i
]

]k
D̂~r ,k;s!5F1

2
~11s!r 2 x̂GD̂~r ,k;s!, ~13!

i
]

]r
D̂~r ,k;s!52F1

2
~12s!k2 p̂GD̂~r ,k;s!, ~14!

it is seen that in this representation, the fundamental operatorsx̂ and p̂ take the same form as in
the relative-state formulation, given by Eqs.~5! and ~6!.

Therefore, the displacement-operator approach provides an alternative derivation from
principles to the results obtained within the relative-state formalism. Here, the state of the re
system is projected onto an auxiliary~reference! state ux&, displaced byr and k, whereas the
auxiliary stateuf& in the relative-state formulation is utilized to project the orthonormal basi
the extended Hilbert space onto a reduced Hilbert space. Thus, the auxiliary states play d
physical roles, as can also be seen from the relations

r̄[E
2`

`

drE
2`

`

dk rucV~r ,k;s!u25xc2xx , ~15!

k̄[E
2`

`

drE
2`

`

dk kucV~r ,k;s!u25pc2px . ~16!

Hence,r andk may here be interpreted as phase space coordinates, in the sense that the
values obtained usingucV(r ,k;s)u2 as a combined probability distribution equal the relative p
sition and momentum, respectively, between the relevant and the auxiliary system. Hen
displacement-operator approach provides a more symmetrical interpretation of
r ,k-parametrized representation of the quantum state vector.

Since

D̂s~r ,k!ux&5e2 i ~11s!kr/2E
2`

`

dx eikxx~x2r !ux&, ~17!

we see that the displacement-operator approach and the phase-space representation
within the relative-state formulation become formally identical ifx(x)5f* (x); cf. Eq.~4!, which
implies thatpf52px , as expected@compare Eqs.~8! and ~16!#.

In conclusion, we have shown that the two different mathematical approaches to a p
space representation of quantum state vectors lead to identical expressions for the funda
operators. However, usage of the well-known technique of displacement operators is in
closer to the construction of the usual position and momentum representations and, also,
vides a more transparent physical interpretation of the auxiliary state as a ‘‘probe’’ state in
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space.8 With this interpretation, phase-space representation of quantum state vectors bec
powerful tool and has been applied recently in the study of quantum dynamics directly in
space9 or as a route to semiclassical approximations.10
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10S. Jang, M. Zhao, and S. A. Rice, Chem. Phys.230, 237 ~1998!.
                                                                                                                



rest in
en

the
ills

e

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 6 JUNE 1999

                    
Moyal–Nahm equations
L. M. Bakera) and D. B. Fairlieb)
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Various aspects of the Nahm equations in three and seven dimensions are investi-
gated. The residues of the variables at simple poles in the seven-dimensional case
form an algebra. A large class of matrix representations of this algebra is con-
structed. The largeN limit of these equations is taken by replacing the commutators
by Moyal brackets, and a set of nontrivial solutions in a generalized form of
Wigner distribution functions is obtained. ©1999 American Institute of Physics.
@S0022-2488~99!03706-8#

I. INTRODUCTION

When the study of self-dual gauge fields was very fashionable, there was some inte
extending the theory to higher dimensions.1–3 In recent years interest in this subject has be
revived4 partly because of the occurrence of Yang–Mills gauge actions in the M~atrix! theory
approximation to string theories.5–7 The present article is a study of a class of solutions to
Nahm equations8 in seven dimensions, which are a particular form of the self-dual Yang–M
equations in Euclidean eight-dimensional space, where the gauge fieldsAm, m51,...,7 depend only
upon the eighth coordinate,t, and we work in a gauge whereA850. These equations take th
form

]A1

]t
2@A2,A7#2@A6,A3#2@A5,A4#50,

]A2

]t
2@A7,A1#2@A5,A3#2@A4,A6#50,

]A3

]t
2@A1,A6#2@A2,A5#2@A4,A7#50,

]A4

]t
2@A1,A5#2@A6,A2#2@A7,A3#50, ~1!

]A5

]t
2@A4,A1#2@A3,A2#2@A6,A7#50,

]A6

]t
2@A3,A1#2@A2,A4#2@A7,A5#50,

]A7

]t
2@A1,A2#2@A3,A4#2@A5,A6#50.

a!Electronic mail: l.m.baker@durham.ac.uk
b!Electronic mail: david.fairlie@durham.ac.uk
25390022-2488/99/40(6)/2539/10/$15.00 © 1999 American Institute of Physics
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The sum of the squares of the left-hand sides of these equations give the Lagrangian
for Yang–Mills theory in eight dimensions dependent only upont in the gaugeA850, up to
divergence terms. This is just the Bogomol’nyi property of Eq.~1!. Alternatively, the equations
may be iterated to obtain the equations of motion for the Yang–Mills field. Note that whent
dependence ofAm is a simple pole, then the equations for the residues are just algebraic. Th
objective of this paper is to initiate a study of the algebraic solution to such equations. It is k
that a solution to~1! takes the form

Ai5
21

2t
ei , i 51,...,7, ~2!

where theei form a basis for the imaginary octonions, but since these do not possess a
representation, as they are nonassociative, one might wonder whether a matrix valued s
exists. Indeed many such solutions exist, and we determine the allowablet dependence of some o
them. We find a particular solution, modeled upon the structure constants for octonionic mu
cation and a more general solution in the form of a direct sum of SU~2! representations.

The second objective of this paper is to consider the infinite limit of the Nahm equatio
both three and seven dimensions in the limit of largeN for the gauge group SU(N). The motiva-
tion for this is a possible application to string theory and matrix models. In this case the ma
Am go over to functionsXm(x,p) on phase space~x,p!. The matrix elements may be regarded
the Fourier components ofXm. The commutator goes over to the Moyal bracket.9 This we recall
is the antisymmetric part of the star product, which acts on functions in phase space~x,p!. The star
product of two functionsf (x,p) andg(x,p) is defined as

f ~x,p!!g~x,p!5 f ~x,p!eil~]Qx]W p2]Q p]Wx!g~x,p!, ~3!

wherel is a parameter. The Moyal bracket is proportional to the antisymmetric part of the
product and so the Moyal bracket of two functionsf (x,p) andg(x,p) is written as

$ f ,g%MB5
1

2i
~ f !g2g! f !. ~4!

It is the unique one-parameter associative deformation of the Poisson bracket.10–12 As N
52p/l passes through the odd integers the Moyal bracket$Xm,Xn%MB degenerates into an infinit
direct sum of copies of the commutator@Am,An#, whereAm, An are SU(N) matrices, the largeN
limit of which is the Poisson bracket,

$Xm,Xn%PB5
]Xm

]x

]Xn

]p
2

]Xm

]p

]Xn

]x
. ~5!

The square of this quantity is just the Schild13,14 form of the string Lagrangian, giving the sam
classical equations of motion as does the NambuGoto string. Thus the largeN limit of the Yang–
Mills Lagrangian in the strong coupling limit, where it is simply proportional to the square of
trace of the commutator, is equivalent to the string Lagrangian.14 This may be viewed as a
primitive form of a type of Maldacena conjecture,15 relating a field theory in the largeN limit to
a string theory. The phase space coordinatesx,p are to be interpreted as coordinate parametri
tions on the world sheet of the string. The idea had been advanced that the target space coo
Xm ~D0 branes! may be represented by a generalized form of the Wigner function familiar f
quantum mechanics.16,17 We shall demonstrate solutions of the Moyal–Nahm equations~where
the commutators are replaced by Moyal brackets! which take the form of a generalized Wigne
function.
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II. SEVEN-DIMENSIONAL NAHM EQUATIONS

Equation~1! can be written more succinctly with the aid of totally antiysmmetric struct
constantsCi jk which, in fact, define the multiplication table of octonions of different index;

ei3ej5Ci jkek ~6!

in the same way as thee i jk symbol does for the quaternions. The Nahm equations may the
written in the form

]Ai

]t
5

1

2
Ci jk@Aj ,Ak# ~7!

with a solution for the residuesBi of the simple poles inAi52(1/t)Bi given by

Bi5Ci jk . ~8!

An explicit set of matricesBi is listed in the Appendix. No more generalt-dependent solution
of this type has been found. However, a very large class of solutions whose matrices take th
of a direct sum of representations of the SU~2! algebra, but which have a nontrivialt dependence
and are different for eachBi does exist and we proceed to explain their construction. Let

B152 iS s3 0 0

0 s3 0

0 0 s3

D , B252 iS s1 0 0

0 bs2 0

0 0 ics3

D ,

B352 iS as3 0 0

0 s2 0

0 0 ics2

D , B452 iS ias2 0 0

0 bs3 0

0 0 s2

D ,

~9!

B552 iS as2 0 0

0 2 ibs3 0

0 0 s1

D , B652 iS ias3 0 0

0 s1 0

0 0 cs2

D ,

B752 iS s2 0 0

0 ibs2 0

0 0 cs3

D .

It is somewhat surprising to find that this solution involves three arbitrary parameters
none of these parameters can be set to zero in such a way that the solution remains faith
each matrix is different. Obviously many such solutions of direct sum form can be constr
where thes’s in each row can be replaced by representations of SU~2! of arbitrary dimension.

In particular, a representation of the Nahm algebra with 434 matrices can be found, b
simply omitting the last two rows in the above matrices~9!. Our next task will be to search for th
presence of solutions with nontrivialt dependence. An attempt was made to find a solution to
Nahm equations using the matricesBi ~settinga51, b51, c51!. Each of these matrices wa
multiplied by a function oft, f i(t). Therefore,

Ai5 f i~t!Bi , i 51,...,7. ~10!

However this ansatz is not sufficiently flexible and the previous result,f i(t)521/2t is all
that is recovered. A more general ansatz for a solution is to multiply each matrixBi by a diagonal
matrix Ci given by
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Ci5S f i~t!1 0 0

0 gi~t!1 0

0 0 hi~t!1
D . ~11!

~This amounts to multiplying eachs matrix entry in each matrixBi by a differentt-dependent
function.! It is easiest to consider each row ofs matrices separately. First, we shall look at the t
row of sigma matrices and put in thet dependence by multiplying each matrix by a functionf i(t).
Putting these 232 matrices into the Nahm equations gives the following set of differential eq
tions:

] f 2

]t
52 f 1f 712 f 5f 322 f 4f 6 ,

] f 1

]t
52 f 2f 7 ,

] f 3

]t
52 f 2f 5 ,

] f 4

]t
52 f 2f 6 , ~12!

] f 5

]t
52 f 2f 3 ,

] f 6

]t
52 f 2f 4 ,

] f 7

]t
52 f 2f 1

and the following constraints:

f 7f 35 f 1f 5 , f 6f 75 f 1f 4 , f 3f 45 f 5f 6 . ~13!

Note that all of the differential equations involvef 2 , but none of the constraints do. These c
be solved in terms of elliptic functions. It was found that

f 65K1f 35K1M1f 15 1
2K1M1Q1 sn~q1t1d1!,

f 45K1f 55K1M1f 75
2 i

2
K1M1Q1 cn~q1t1d1!, ~14!

f 25
i

2
q1 dn~q1t1d1!,

where cn, sn, dn are elliptic functions andK1 , M1 , q1 , Q1 , d1 are all constants. The elliptic
functions are related to each other by a parameterk1 as follows:

sn2~x!1cn2~x!51, dn2~x!1k1
2 sn2~x!51, ~15!

wherek15(Q1 /q1)A11M1
2(12k1

2).
The following set of matrices solve Nahm’s equations:

A152 iS f 1s3 0 0

0 g1s3 0

0 0 h1s3

D , A252 iS f 2s1 0 0

0 g2s2 0

0 0 ih2ṡ3

D ,

A352 iS f 3s3 0 0

0 g3s2 0

0 0 ih3s2

D , A452 iS i f 4s2 0 0

0 g4s3 0

0 0 h4s2

D , ~16!
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A552 iS f 5s2 0 0

0 2 ig5s3 0

0 0 h5s1

D , A652 iS i f 6s3 0 0

0 g6s1 0

0 0 h6s2

D ,

A752 iS f 7s2 0 0

0 ig7s2 0

0 0 h7s3

D ,

where the othert-dependent functions are given by

g55K2g45K2M2g15 1
2K2M2Q2 sn~q2t1d2!,

g75K2g25K2M2g35
2 i

2
K2M2Q2 cn~q2t1d2!, ~17!

g65
i

2
q2 dn~q2t1d2!,

h65K3h35K3M3h15 1
2K3M3Q3 sn~q3t1d3!,

h45K3h55K3M3h75
2 i

2
K3M3Q3 cn~q3t1d3!, ~18!

h25
i

2
q3 dn~q3t1d3!.

III. MOYAL–NAHM EQUATIONS

Consider a fieldXk (k50,1,2,3) in four dimensions whereXk depends upon only one coo
dinate~in this caset! and phase space~x,p!. The gauge is fixed soX0 is a constant. The Moyal–
Nahm equations in three dimensions are:

]X1

]t
5$X2,X3%MB ,

]X2

]t
5$X3,X1%MB ,

]X3

]t
5$X1,X2%MB . ~19!

If the Moyal brackets were to be replaced by commutators and the functionsXk(t,x,p) were
replaced by matricesXk(t) then the equations would become the Nahm equations for a self-
field. The main idea to solve these Moyal–Nahm equations is to use the following ansatz:

Xi5 i E
2`

`

c j
†~x2y,t !e i jkck~x1y,t !e2p ipy/l dy, ~20!

wherec(x,t) are three component wave functions. These wave functions were chosen to be
following form:

c~x,t !5S c1~x,t !
c2~x,t !
c3~x,t !

D 5S f 1~ t !f1~x!

f 2~ t !f2~x!

f 3~ t !f3~x!
D , ~21!

where thef i(x) are orthonormal wave functions. The star product ofXj andXk is calculated as
follows:
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Xj!Xk52E E c i
†~x2y,t !e j i l c l~x1y,t !e2p ipy/l!cm

† ~x2y8,t !

3ekmncn~x1y8,t !e2p ipy8/l dy dy8

52E E c i
†~x2y1y8,t !e j i l c l~x1y1y8,t !

3e2p ipy/lcm
† ~x2y82y,t !ekmncn~x1y82y,t !e2p ipy8/l dy dy8

52
1

2 E cm
† ~x2y,t !ekmnZ~ t !e j i l c l~x1y,t !e2p ipy/l dy

52
1

2 E fm
† ~x2y! f ms

† ~ t !eksnZ~ t !e j ir f rl ~ t !f l~x1y!e2p ipy/l dy, ~22!

where orthogonality of thefk(x) is assumed to be of the form

E
2`

`

f j
†~x!fk~x!dx5d jk ~23!

and

Z~ t !5 f †f ,

where f 5S f 1~ t ! 0 0

0 f 2~ t ! 0

0 0 f 3~ t !
D . ~24!

The partial derivative]Xi /]t can be written as

]Xi

]t
5 i E f j

†~x2y!
]

]t
~ f †~ t !e i jk f ~ t !!fk~x1y!e2p ipy/l dy. ~25!

By putting these into the Moyal–Nahm equations one obtains three matrix equations
form

i
]

]t
~ f †~ t !e1f ~ t !!5

21

4i
~ f †~ t !e3Z~ t !e2f ~ t !2 f †~ t !e2Z~ t !e3f ~ t !!, ~26!

wheree i is a 333 matrix with jkth entrye i jk . Equating the entries in the matrices gives diffe
ential equations of the form

]

]t
~ f 2* f 3!52

1

4
u f 1u2~ f 2* f 3!,

]

]t
~ f 3* f 2!52

1

4
u f 1u2~ f 3* f 2! ~27!

and cycle combinations of these. These can be used to create the following set of three diffe
equations:
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]

]t
~ u f 2u2u f 3u2!52

1

2
u f 1u2u f 2u2u f 3u2,

]

]t
~ u f 3u2u f 1u2!52

1

2
u f 1u2u f 2u2u f 3u2, ~28!

]

]t
~ u f 1u2u f 2u2!52

1

2
u f 1u2u f 2u2u f 3u2.

Note that for each of the above, the right-hand side of the equations is always the same.

A. Simplest solution

The simplest solution is to set all thef i equal to each other. This gives the solution

u f 1u25u f 2u25u f 3u25
4

t1K
, ~29!

so that

f 1~ t !5 f 2~ t !5 f 3~ t !5
2

At1K
, ~30!

whereK is an arbitrary constant.

B. Another simple solution

By setting two of thef i equal to each other then a solution in terms of the hyperbolic funct
can be found.

u f 1u25u f 2u254q coth~qt1K !, u f 3u258q csch~2qt12K !, ~31!

so that

f 1~ t !5 f 2~ t !52Aq coth~qt1K !, f 3~ t !52A2q csch~2qt12K !, ~32!

whereK andq are both real constants.

C. General solution

However, ideally we want a general solution to these equations. In this case the solutio
written in terms of elliptic functions sn, cn, and dn. The most general solution was found to

u f 1u254qk sn~qt1c!,

u f 2u252qk sn~qt1c!1
2q~dn~qt1c!cn~qt1c!11!

sn~qt1c!
, ~33!

u f 3u252qk sn~qt1c!1
2q~dn~qt1c!cn~qt1c!21!

sn~qt1c!
.

k, q, andc are all constants but may have to be carefully chosen in order to ensure that all thu f i u2

are positive.k depends on the elliptic functions.
A more aesthetically pleasing form of solution is as follows:
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u f 1u254qk2
sn~qt1c!cn~qt1c!

dn~qt1c!
,

u f 2u2524q
cn~qt1c!dn~qt1c!

sn~qt1c!
, ~34!

u f 3u254q
dn~qt1c!sn~qt1c!

cn~qt1c!
.

q, c, andk are all constants. Again,k depends on the elliptic functions.

IV. SEVEN-DIMENSIONAL MOYAL EQUATIONS AGAIN

The Moyal–Nahm equations in seven dimensions are:

]X1

]t
5$X2,X7%MB1$X6,X3%MB1$X5,X4%MB ,

]X2

]t
5$X7,X1%MB1$X5,X3%MB1$X4,X6%MB ,

]X3

]t
5$X1,X6%MB1$X2,X5%MB1$X4,X7%MB ,

]X4

]t
5$X1,X5%MB1$X6,X2%MB1$X7,X3%MB , ~35!

]X5

]t
5$X4,X1%MB1$X3,X2%MB1$X6,X7%MB ,

]X6

]t
5$X3,X1%MB1$X2,X4%MB1$X7,X5%MB ,

]X7

]t
5$X1,X2%MB1$X3,X4%MB1$X5,X6%MB .

The set of matricesBi can also be used to find a solution to Eq.~35!. Using the ansatz

Ai5 i E
2`

`

c†~x2y,t!Bic~x1y,t!e2p ipy/l dy, ~36!

wherec(x,t) are six component wave functions of the form

c j5 f j~t!f~x! j , j not summed ~37!

we find a rather simple solution in terms of this ansatz of the form

$ f 1 , f 2 , f 3 , f 4 , f 5 , f 6%

5H 2AK1eiu1

A12e2K1t
,
2AK1eiu2

AeK1t21
,

2AK2eiu3

A12e2K2t
,
2AK2eiu4

AeK2t21
,

2AK3eiu5

A12e2K3t
,
2AK3eiu6

AeK3t21
J .

All Ki andu j are constants.
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The previous solution used the two-dimensionals matrix representation of SU~2!. If instead
the three-dimensional representation of SU~2!, which involves the completely antisymmetric m
trices e i jk , is used to construct theBi a more generalt-dependent solution can be found alon
similar lines to that in Sec. III. This time the matricesBi were taken to be

B152S e3 0

0 e3
D , B252S e1 0

0 e2
D , B352S e3 0

0 e2
D , B452S i e2 0

0 e3
D ,

~38!

B552S e2 0

0 i e3
D , B652S i e3 0

0 e1
D , B752S e2 0

0 i e2
D ,

where thejkth entry of the matrixe i is given by the totally antisymmetric tensore i jk .
The same ansatz~36!, ~37! was used as before but with the newBi matrices. Thet-dependent

functions f i were found to be of the same form as the solution to the three-dimensional Mo
Nahm equations when solved usinge matrices~34!. They are as follows:

u f 1u254qk2
sn~qt1c!cn~qt1c!

dn~qt1c!
, u f 4u254QK2

sn~Qt1b!cn~Qt1b!

dn~Qt1b!
,

u f 2u2524q
cn~qt1c!dn~qt1c!

sn~qt1c!
, u f 5u2524Q

cn~Qt1b!dn~Qt1b!

sn~Qt1b!
, ~39!

u f 3u254q
dn~qt1c!sn~qt1c!

cn~qt1c!
, u f 6u254Q

dn~Qt1b!sn~Qt1b!

cn~Qt1b!
.

These solutions can be extended for direct sums of more than twoe i matrices.
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APPENDIX: MATRIX REPRESENTATION OF STRUCTURE CONSTANTS

The following 737 matrices which solve the Nahm algebra are created using the octon
structure constantsci jk which are taken to be:

c1275c6315c5415c5325c2465c3475c56751. ~A1!

These are totally antisymmetric. All otherci jk are zero. Thejkth entry of the matrixmi is given
by @mi # jk5ci jk ,

m15S 0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 21 0

0 0 0 0 21 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 21 0 0 0 0 0

D , m25S 0 0 0 0 0 0 21

0 0 0 0 0 0 0

0 0 0 0 21 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 21 0 0 0

1 0 0 0 0 0 0

D ,
                                                                                                                



2548 J. Math. Phys., Vol. 40, No. 6, June 1999 L. M. Baker and D. B. Fairlie

                    
m35S 0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 21 0 0 0 0 0

21 0 0 0 0 0 0

0 0 0 21 0 0 0

D , m45S 0 0 0 0 1 0 0

0 0 0 0 0 21 0

0 0 0 0 0 0 21

0 0 0 0 0 0 0

21 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

D ,

m55S 0 0 0 21 0 0 0

0 0 21 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 21 0

D , m65S 0 0 21 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 21 0 0 0 0 0

0 0 0 0 0 0 21

0 0 0 0 0 0 0

0 0 0 0 1 0 0

D ,

m75S 0 1 0 0 0 0 0

21 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 21 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 21 0 0

0 0 0 0 0 0 0

D .
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A rigorous path integral for quantum spin using flat-space
Wiener regularization

Bernhard Bodmann
Department of Mathematics, University of Florida,
358 Little Hall, Gainesville, Florida 32611
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Staudtstr. 7, D-91058 Erlangen, Germany
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Adapting ideas of Daubechies and Klauder@J. Math. Phys.26, 2239 ~1985!# we
derive a rigorous continuum path-integral formula for the semigroup generated by
a spin Hamiltonian. More precisely, we use spin coherent vectors parametrized by
complex numbers to relate the coherent representation of this semigroup to a suit-
able Schro¨dinger semigroup on the Hilbert spaceL2(R2) of Lebesgue square-
integrable functions on the Euclidean planeR2. The path-integral formula emerges
from the standard Feynman–Kac–Itoˆ formula for the Schro¨dinger semigroup in the
ultradiffusive limit of the underlying Brownian bridge onR2. In a similar vein, a
path-integral formula can be constructed for the coherent representation of the
unitary time evolution generated by the spin Hamiltonian. ©1999 American In-
stitute of Physics.@S0022-2488~99!02005-8#

I. INTRODUCTION

Even 50 years after the appearance of Feynman’s celebrated paper1 that introduced the path
integral formalism2–6 into quantum theory in a heuristic but convincing manner, there is
general consensus on how to treat a quantum spin within this framework. To the best
knowledge, among the various approaches over the years, see, for example, Refs. 7–22,
rigorous expression for the dynamics of a quantum spin in terms of an integral over conti
paths is due to Daubechies and Klauder.12 These authors were able to write the coherent rep
sentation of the unitary time-evolution operator of a spin with a definite quantum number
Wiener-regularized path integral, more precisely, as the ultradiffusive limit of a well-defi
integral over spherical Brownian-motion paths.

The main goal of the present paper is to show that one may equally well perform the W
regularization by employing planar Brownian motion. In this way also a closer contact to sym
continuum path-integral formulas widely discussed in the recent literature23–28 is established. One
may hope that the wealth of analytical tools associated with the flat-space Wiener measur
clarifying some subtle points there.

II. BASIC DEFINITIONS, RESULT, AND COMMENTS

We consider a single spin with fixedquantum number jP$0,1/2,1,3/2,...%, that is, using
physical units where Planck’s constant 2p\ equals 2p,

1
2~J1J21J2J1!1J3

25 j ~ j 11!1. ~1!

The spin operatorsJ1 , J2 , andJ3 obey the usual angular-momentum commutation relati
J1J22J2J152J3 , J3J62J6J356J6 and are viewed as acting on the (2j 11)-

a!Electronic mail: simone@theorie1.physik.uni-erlangen.de
25490022-2488/99/40(6)/2549/11/$15.00 © 1999 American Institute of Physics
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dimensional complex Hilbert spaceC2 j 11. Its standard scalar product is denoted as^•u•& and, by
convention, antilinear in the first argument. The unit operator onC2 j 11 is denoted by1.

Non-normalized so-calledcoherent vectors9,29 in this Hilbert space,

uz&ªg~z!ezJ1u j ,2 j &, zPC, ~2!

are parametrized by complex numbersz. Henceforth,z* will refer to their complex conjugates
z1ª(z1z* )/2 and z2ª(z2z* )/2i to their real and imaginary parts, and we writef * (z)
ª„f (z)…* for the values of complex-conjugated functionsf * . For later notational convenience th
strictly positive prefactor is taken as

g~z!ªS 2 j 11

p D 1/2

~11uzu2!2 j 21, ~3!

and a normalizedspin-down vectoru j ,2 j &PC2 j 11, obeyingJ2u j ,2 j &50 and ^ j ,2 j u j ,2 j &
51, serves as the reference vector. Every vectoruc&PC2 j 11 is characterized by its so-calle
coherent representation̂zuc&, a function of the formg(z) times a polynomial inz* of maximal
degree 2j . The scalar product of two coherent vectors^zuz8&5g(z)g(z8)(11z* z8)2 j is an ex-
ample. Given an arbitrary operatorB on C2 j 11, the scalar product̂zuBuz8& of uz& andBuz8& is
called thecoherent representationof B. The mapping (z,z8)°^zuBuz8& is continuous, becaus
z°uz& is continuous, every operatorB on C2 j 11 is bounded, and the scalar produ
(uw&,uc&)°^wuc) is continuous. An example iŝzue2lJ3uz8&5g(z)g(z8)(e2l1z* z8el)2 j , l
PC.

In what follows, it is a comforting fact that whatever thespin HamiltonianH may be—given
as a~self-adjoint! operator onC2 j 11—it is polynomial in the spin operatorsJ1 , J2 , andJ3 , and
it is always possible to write it inpseudodiagonal form,

H5E
C
d2z h~z!uz&^zu. ~4!

Here the~real-valued! function h on C>R3R may be chosen bounded and continuous,30–32 the
operator uz&^zu/^zuz& denotes the orthogonal projection onto the one-dimensional subs
spanned byuz&PC2 j 11, andd2zªdz1 dz2 is the two-dimensional Lebesgue measure on the
clidean planeR3R5:R2. Following Ref. 33, we callh a contravariant symbolof H, elsewhere
called an upper34 or lower35 symbol. In particular, the unit operator1 has the constant 1 as
contravariant symbol. In this sense, the coherent vectors areunity-resolvingand hence~over-!
complete. Other examples for contravariant symbols are listed in Table I; confer Ref. 36.

After these preparations we are able to state the main result of the present paper, na
rigorous expression for thespin semigroup$e2tH% t>0 as theultradiffusive limitof a Wiener type

TABLE I. Contravariant symbols for selected operators onC2 j 11, which are
bounded and continuous.

Operator
Contravariant

symbol Operator
Contravariant

symbol

J1 2~ j11!
z*

11uzu2
J1J2 22~ j11!

122~ j11!uzu2

~11uzu2!2

J2 2~ j11!
z

11uzu2
J2J1 2~ j11!

2~ j11!uzu22uzu4

~11uzu2!2

J3
2~ j11!

12uzu2

11uzu2 J 3
2 ~ j11!~ j1

3
2!S12uzu2

11uzu2D
2

2
j11

2

                                                                                                                



c
ne is

e

re,

y a

2551J. Math. Phys., Vol. 40, No. 6, June 1999 Bodmann, Leschke, and Warzel

                    
of integral over Brownian-motion paths$s°b(s)5b1(s)1 ib2(s)%s>0 on the complex plane
C>R3R. More precisely, the coherent representation ofe2tH may, for all z,z8PC and t.0, be
written as

^zue2tHuz8&5 lim
n→`

E dmz,0;z8,t
~n!

~b!expH 4~ j 11!nE
0

t ds

~11ub~s!u2!2J
3expH ~ j 11!E

0

t

ds
ḃ~s!b* ~s!2ḃ* ~s!b~s!

11ub~s!u2 2E
0

t

ds h„b~s!…J . ~5!

Here for givenz, z8PC, t.0, andn.0 the path integration is defined by

E dmz,0;z8,t
~n!

~b!~• !ª
1

4ptn
e2uz2z8u2/4tnE~• !, ~6!

whereE~•! indicates the probabilistic expectation with respect to thetwo-dimensional Brownian
bridge, with diffusion constantn starting inz5b(0) and arriving atz85b(t) a timet later.3,6,37–39

As a Gaussian stochastic process with continuous paths onC>R3R the Brownian bridge, in its
turn, is uniquely determined by its mean,

E„b~s!…5z1~z82z!
s

t
, sP@0,t#, ~7!

and covariances,

E„b* ~r !b~s!…2E„b* ~r !…E„b~s!…54nS min$r ,s%2
rs

t D , ~8!

E„b~r !b~s!…2E„b~r !…E„b~s!…50, r ,sP@0,t#. ~9!

The second integral in the exponent on the right-hand side of~5! is a purely imaginary stochasti
~line! integral,37–39which is understood in the sense of Fisk and Stratonovich and to which o
therefore allowed to apply the rules of ordinary calculus,40 although the time derivativeḃ does not
exist.

Several comments apply.
~i! By the Itô formula3,37–39it can be seen that the stochastic integral in~5! may equally well

be interpreted as a stochastic integral in the sense of Itoˆ. Moreover, using the Itoˆ formula in a
different way, the sum of this integral and the first~Lebesgue! integral in the exponent of the
right-hand side of~5! can be converted41 according to

4nE
0

t ds

„11ub~s!u2
…

2 1E
0

t

ds
ḃ~s!b* ~s!2ḃ* ~s!b~s!

11ub~s!u2
5 lnS 11ub~ t !u2

11ub~0!u2D22E
0

t db* ~s!b~s!

11ub~s!u2 .

~10!

Here the complex stochastic integral*0
t db* (s)b(s)/@11ub(s)u2# has to be understood in th

sense of Itoˆ. It contains the onlyn-dependence of the right-hand side. By using~10! in the path
integrand in ~5!, the logarithmic term results in the prefactor@(11uz8u2)/(11uzu2)# j 11

5g(z)/g(z8).
~ii ! The stochastic integral in~5! is of kinematical origin and reflects the symplectic structu

which renders the complex plane a phase space for the so-called classical spin;42,43,31also see the
concluding remarks.

~iii ! If one wants to use~5! to express the trace*Cd
2z^zue2tHuz& of e2tH as a path integral,

one should resist the temptation to interchange the integration with respect toz with the ultradif-
fusive limit n→`, because the resulting prelimit expression would be infinite.

~iv! Instead of taking the ultradiffusive limit, one may perform the regularization also b
long-time limit, in the sense that
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^zue2tHuz8&5 lim
u→`

E dmz,0;z8,u
~n!

~b!expH 4~ j 11!nE
0

u ds

„11ub~s!u2
…

2J
3expH ~ j 11!E

0

u

ds
ḃ~s!b* ~s!2ḃ* ~s!b~s!

11ub~s!u2 2
t

u E0

u

ds h„b~s!…J . ~11!

This formula can be deduced from~5! by suitably scaling the Brownian bridge, holds for alln.0,
and, in contrast to~5!, makes sense as it stands even fort<0, hence for alltPR. One should
notice that the time-parameter set of the Brownian bridge used in~11! is the closed interval@0,u#
and not@0,t#.

~v! Replacingh by ih in ~5! or ~11! yields analogous expressions for the coherent repre
tation of the~unitary! spin time-evolutionoperatore2 i tH. A rigorous justification relies on the
boundedness and continuity ofh and requires extending the subsequent proof by showing an
ticity of both sides of~5! in a coupling parameterlPC multiplying h. The left-hand side and the
prelimit expression in~5! are easily seen to be analytic inl. Analyticity in l in the limit n→` is
then proved with the help of an equation analogous to~29! and uniform convergence inn.2n0

.0 of the perturbation series inl of the relevant operator and functions there.
~vi! The flat-space Wiener-regularized path-integral expression~5! for the spin semigroup is

an alternative to a result first given and proved in Ref. 12. There the authors integrate
Brownian-motion paths on the unit-sphere in the three-dimensional Euclidean spaceR3 to obtain
the coherent representation ofe2 i tH. Unlike in Ref. 12, the regularizing path measu
dmz,0;z8,t

(n) (b)exp$4(j11)n *0
t ds(11ub(s)u2)22% used in~5! is not invariant under the full special un

tary group SU~2! when the latter is realized by suitable Mo¨bius transformations on the~extended!
complex plane. Yet in the limitn→` all symmetries of a given spin Hamiltonian are restor
Contrary to what one might expect, Eq.~5! cannot be obtained from the corresponding resul
Ref. 12 merely by stereographically projecting the paths from the sphere onto the~extended!
plane. Nevertheless, the proof given in the next section shows that the key ideas behin
constructions are the same; also see the concluding remarks.

~vii ! So far we have considered a fixed spin quantum numberj. In order to make contact with
the Wiener-regularized path-integral expression associated with a canonical degree of fre
also proved in Ref. 12, one has to contract44,45 the algebra of SU~2! to the Heisenberg–Wey
algebra by taking thehigh-spin limit j→`. More explicitly, in the given~polynomial! spin
HamiltonianH on C2 j 11, one has to replaceJ1 , J2 , andJ3 by J1 /A2 j , J2 /A2 j , andJ3

1 j 1, respectively. IfHj5*C d2z hj (z)uz&^zu denotes the resulting operator, one then finds
relation

lim
j→`

p

2 j
^z/A2 j ue2tHj uz8/A2 j &5^^zue2tHuz8&&, ~12!

where uz&&PL2(R) is a normalized canonical coherent vector30–32 and the HamiltonianH on
L2(R), the Hilbert space of Lebesgue square-integrable complex-valued functions on the re
R, is defined by

HªE
C

d2z

p
h~z!uz&&^^zu, with h~z!ª lim

j→`
hj~z/A2 j !. ~13!

By using ~5! for the prelimit expression in~12!, suitably rescaling the Brownian bridge, an
interchanging the order of the limitsj→` andn→`, one arrives at the path-integral formula

^^zue2tHuz8&&5p lim
n→`

e2tnE dmz,0;z8,t
~n!

~b!expH 1

2 E0

t

ds@ ḃ~s!b* ~s!2ḃ* ~s!b~s!#J
3expH 2E

0

t

dsh„b~s!…J , ~14!
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in agreement with Eq.~1.3! in Ref. 12; also see Refs. 46 and 35. Formula~14! can be shown to
hold not only for the polynomial HamiltoniansH resulting from the contraction, but for a wide
class of operators whose conditions are stated in Theorem 2.4 of Ref. 12.

~viii ! With regard to some of the symbolic path-integral expressions for spin sys
frequently encountered in the literature, see, for example, Refs. 10, 11, and 23–28, it
be illuminating to recognize certain formal similarities between these expressions an
above result~5!. While the kinematical and dynamical terms in the exponents of all
corresponding path integrands look essentially the same, only the above result is base
genuine path measure, namely,dmz,0;z8,t

(n) (b)exp$4(j11)n *0
t ds(11ub(s)u2)22%, but requires taking

the limit n→`. Here, the Wiener type of measuredmz,0;z8,t
(n) (b) is often symbolically written as

d2b d(b(0)2z)d(b(t)2z8)exp$2(1/4n)*0
t dsuḃ(s)u2%, or similarly. In any case, the necessity

regularize by some ultradiffusive limit was observed several times also in nonrigo
works.10,17–19,27

III. PROOF

The proof of~5! consists of three major steps, adapting key ideas of Ref. 12. First, the
Hilbert spaceC2 j 11 is embedded intoL2(C), the Hilbert space of Lebesgue square-integra
complex-valued functions onC. Next, it is identified with the (2j 11)-dimensional ground-stat
eigenspace of a suitable Schro¨dinger operatorR acting onL2(C). Then the spin semigroup, now
realized onL2(C), is shown to be the limitn→` of a Schro¨dinger semigroup generated by
suitably perturbednR. Rewriting this Schro¨dinger semigroup with the help of the standa
Feynman–Kac–Itoˆ path-integral formula finally gives~5!.

A. The embedding of the spin Hilbert space

The embedding of the spin Hilbert spaceC2 j 11 into the infinite-dimensional Hilbert spac
L2(C), equipped with the standard scalar product (wuc)ª*C d2z w* (z)c(z), is accomplished by
interpreting the coherent representation as a linear isometric mapping,

I : C2 j 11→L2~C!, uc&°c, ~15!

where the functionc on C>R3R is defined by its valuesc(z)ª^zuc&.
The ~Hilbert! adjoint I † of I explicitly reads as

I †: L2~C!→C2 j 11, w°E
C

d2z w~z!uz&, ~16!

and the isometric property is simply stated asI †I 51. The orthogonal projection fromL2(C) onto
I (C2 j 11) is the operatorII †5:E0 .

Every operatorB on C2 j 11 can be realized by the unitary equivalentIBI † on E0„L
2(C)…

5I (C2 j 11), which trivially extends to the whole ofL2(C). In particular, it follows from~4! that

IHI †5E0HE0 , ~17!

where H is the bounded multiplication operator onL2(C) defined by the functionh, that is,
(Hw)(z)ªh(z)w(z) for all wPL2(C). Furthermore, the embedded operatorIHI † possesses a
continuous integral kernelIHI †(z,z8) ~also known as its position representation! given by the
coherent representation ofH, that is,

IHI †~z,z8!5^zuHuz8&. ~18!

Using ~17!, one can now verify the identifyIe2tHI †5E0e2tE0HE0 to all orders in t, which,
analogous to~18!, shows thatE0e2tE0HE0 has a continuous integral kernel given by the equat

E0e2tE0HE0~z,z8!5^zue2tHuz8&. ~19!
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B. A Schrö dinger operator and its ground-state eigenspace

Consider onL2(C) the ‘‘magnetic’’ Schro¨dinger operator,

Rª~ i ]11A1!21~ i ]21A2!21V, ~20!

with the partial differential operators]1ª]/]z1 , ]2ª]/]z2 and the vector and scalar potentia
(A2

A1) andV acting as multiplication operators defined by the bounded and continuous funct

S a1~z!

a2~z! DªS 2]2

]1
D ln g~z!5

2~ j 11!

11uzu2 S z2

2z1
D , ~21!

v~z!ª]1a2~z!-]2a1~z!52
4~ j 11!

~11uzu2!2 . ~22!

The self-adjoint operatorR is tailored such that its ground-state eigenspace is identica
E0„L

2(C)… and the corresponding eigenvalue vanishes. In essence, this follows from a res
Aharonov and Casher47 on zero-energy eigenstates. Since the proof is quite short, we will giv
thereby closely following the presentation in Ref. 48. Factorized likeR5D†D, whereDª i ]1

1]21A12 iA2 , the positivity ofR becomes manifest. Its null space consists of all those funct
c in L2(C) with Dc50. The general solution of this differential equation is a productc5gf,
wheref is any function analytic inz* , that is, (]12 i ]2)f50. Due to~3!, square integrability
then requiresf to be any polynomial inz* of maximal degree 2j , which proves that the ground
state eigenspace ofR and the subspaceE0„L

2(C)…5I (C2 j 11) are identical.
Two remarks are in order.
~i! The spectrum ofR coincides with the positive half-line, as can be inferred from Theor

6.1 in Ref. 48. Following arguments as in the proof of Theorem 6.2 in Ref. 48, one sees tha
is the only eigenvalue. Therefore the nature of the spectrum and the ground-state eigenfu
are explicitly known. However, we are not aware of explicit results on generalized eigenfunc
corresponding to strictly positive spectral values.

~ii ! Employing the spectral theorem, one proves that the semigroup generated bynR con-
verges strongly to the ground-state projectionE0 , in the sense that

lim
n→`

ie2tnRw2E0wi50, for all wPL2~C! and t.0, ~23!

where the normi•iª(•u•)1/2 corresponds to the standard scalar product onL2(C).

C. The spin semigroup as the limit of a Schro ¨ dinger semigroup

With the material gathered in Secs. III A and III B we can isolate the central reason fo
validity of the main result~5! of the present paper. The point is that the spin semigroup,
realized onL2(C), can be understood as the limitn→` of the Schro¨dinger semigroup generate
by nR1H. More precisely, we will show that the continuous integral kernel given in~19! is the
pointwise limit

E0e2tE0HE0~z,z8!5 lim
n→`

e2t~nR1H !~z,z8!, for all z,z8PC and t.0, ~24!

where the prelimit expression is the continuous integral kernel of exp$2t(nR1H)%. By expressing
this integral kernel in terms of theFeynman–Kac–Itô formula49,50 ~observing]1a11]2a250!
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e2t~nR1H !~z,z8!5E dmz,0;z8,t
~n!

~b!expH ~ j 11!E
0

t

ds
ḃ~s!b* ~s!2ḃ* ~s!b~s!

11ub~s!u2 J
3expH 4~ j 11!nE

0

t ds

~11ub~s!u2!22E
0

t

ds h„b~s!…J , ~25!

the right-hand sides of~24! and ~5! are seen to coincide.
The proof of~24! makes essential use of the semigroup property ofe2t(nR1H). Throughout the

proof we fix t.0 and pick some reference diffusion constantn0.0. As a starting point we define

hw
~l!~z!ªe2t~n0R1lH !~z,w!, ~26!

for all lPR andw, zPC. We assert that the functionhw
(l) :z°hw

(l)(z) is continuous, bounded, an
lies in L2(C). The continuity follows from that of the integral kernel in~25!. Boundedness and
square integrability result from the inequality

uhw
~l!~z!u<e4~ j 11!tn0etuluihi`~4ptn0!21e2uz2wu2/4tn0, ~27!

whereihi`ªsupzPCuh(z)u,` denotes the supremum norm ofh. This inequality, in turn, is found
by estimating the path integral in~25!. We also state that the mappingsw°hw

(l) andl°hw
(l) are

strongly continuous. The first statement holds because of (hw
(l)uhw8

(l))5e22t(n0R1lH)(w,w8) and
the continuity of the integral kernel. The second one is a consequence of the inequality

ihw
~l!2hw

~l8!i<A t

8pn0
ul2l8uihi`e4~ j 11!tn0et max$ulu,ul8u%ihi`, ~28!

which is derived by estimating the difference of two path integrals of type~25! using the elemen-
tary inequalityuex2eyu<ux2yuemax$x,y%, for x,yPR.

The following two steps of the proof are based on writing the integral kernel forn.2n0 as a
scalar product,

e2t~nR1H !~z,z8!5~hz
~n0 /n!ue2t~n22n0!~R1H/n!h

z8

~n0 /n!
!. ~29!

In the first step, we claim that

lim
n→`

~hz
~n0 /n!ue2t~n22n0!~R1H/n!h

z8

~n0 /n!
!5~hz

~0!uE0e2tE0HE0hz8
~0!

!, ~30!

for all z,z8PC.
Due to the strong continuity ofl°hw

(l) , the boundedness ofe2t(n22n0)(R1H/n), which is
uniform in n, and the continuity of the scalar product~•u•!, it suffices to show that

lim
n→`

ie2t~n22n0!~R1H/n!w2E0e2tE0HE0wi50, for all wPL2~C!. ~31!

To prove this strong operator convergence we employ the Duhamel–Dyson–Phillips pertur
expansion,

e2t~n22n0!~R1H/n!w5e2t~n22n0!Rw1 (
n51

` S 2n02n

n D nE
0

t

dsn¯E
0

s3
ds2E

0

s2
ds1 e2~ t2sn!~n22n0!R

3H3¯3e2~s22s1!~n22n0!RHe2s1~n22n0!Rw, ~32!
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which converges uniformly innP]2n0 ,`@ with respect to the norm onL2(C). This holds because
the norm of the series is dominated by the exponential series(n50

` (tn/n!) ihi`
n iwi , independent of

n. Thus, the limit n→` can be interchanged with the summation and, using~23! and the
dominated-convergence theorem, we obtain the expansion ofE0e2tE0HE0w.

In the second and final step we claim that the right-hand side of~30! is already the desired
integral kernel, that is,

~hz
~0!uE0e2tE0HE0hz8

~0!
!5E0e2tE0HE0~z,z8!, for all z,z8PC. ~33!

This is verified by checking that the mapping (z,z8)°(hz
(0)uE0e2tE0HE0hz8

(0)) constitutes an inte-
gral kernel ofE0e2tE0HE0 and is, in fact, continuous. The former is true sincee2tn0RE05E0 . The
latter holds because the mappingw°hw

(0) is strongly continuous, the operatorE0e2tE0HE0 is
bounded, and the scalar product~•u•! is continuous.

IV. CONCLUDING REMARKS

We conclude the paper with six remarks.
~i! As already mentioned in Sec. II, the main result~5! cannot be obtained from a result in Re

12 merely by stereographically projecting the Brownian paths from the two-sphereS2 onto the
~extended! Euclidean planeR2. The reason can be traced back to the different operators
equivalently path measures, used for regularization. The stereographic projection corresp
reexpressing the differential operator onL2(S2) used by the authors of Ref. 12 in flat Cartesi
coordinates. The resulting operator is not of the standard Schro¨dinger form, acts on a weighte
Hilbert space, and is not related to planar Brownian motion.

~ii ! In contrast to Ref. 12 the regulatizing operatorR used in the proof of~24!, and hence of
~5!, has no spectral gap above its ground-state eigenvalue. Accordingly,e2tnR only converges
strongly, and not in operator norm, to the corresponding eigenprojectionE0 asn→`. As a con-
sequence, the foregoing proof of the pointwise convergence of integral kernels required a s
different from that in Ref. 12.

~iii ! From a fundamental point of view, it is gratifying that a spin system can be related
limit of a well-defined integral over continuous Brownian-motion paths. From a practical poi
view, it would be desirable to apply to~5! the well-established theory and computational pos
bilities associated with the flat-space Wiener measure,3,39,51 in order to attack specific spin prob
lems of physical interest. One such problem, which has been extensively discussed in the
literature,23–28 is to understand the nature of the saddle-point approximation for the evaluati
continuum path integrals connected with simple spin Hamiltonians. Looking at Table I an
resultingj-dependence of the path integrand in~5!, this approximation is expected to be the mo
reliable the larger the spin quantum number is. Moreover, for HamiltoniansH linear in the spin
operators, the saddle-point approximation is believed23–27 to give the~explicitly known! exact
result already for given finitej. In this context, when dealing with symbolic continuum pa
integrals one has to overcome the so-called overspecification problem due to missing regul
terms in the action functionals of those path integrals.10,27 Rigorous continuum path integrals a
used in~5! do not suffer from this problem by their very construction. Of course, the details fo
saddle-point approximation of the Wiener type of path integral in the ultradiffusive limit still h
to be worked out.

~iv! In Refs. 52 and 53, the ground-state eigenspace of a charged point mass und
influence of a certain magnetic field on an even-dimensional Riemannian manifold is st
thereby extending the Aharonov–Casher theorem.47,48 This result lies at the heart of the quan
zation procedure proposed in Refs. 53–55. A quantum system is hereby represented
ground-state eigenspace of such a generalized Landau Hamiltonian on the Hilbert space o
tions over its classical phase space. The symplectic structure of the latter determines the m
field. In this sense, Eq.~5! read from right to left can be viewed as aquantization prescriptionfor
a classical spin system.
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In this context it is worth mentioning that the path integral in~5! is well-defined for all values
of j taken from the positive half-line. Even more, in the limitn→` it manages to single out the se
of allowed spin quantum numbers,$0,1/2,1,3/2,...%, from the ‘‘classical continuum@0,̀ @.

More precisely, for a given bounded and continuoush: C→C and j P@0,`@ we assert that the
right-hand side of~5! is equal to^c(z)ue2tHcuc(z8)&. Here the set of vectors,

uc~z!&ªg~z! (
n50

2~ j ! AS 2 j
n D znucn&, zPC, ~34!

is unity-resolving inC2( j )11, where ~j! denotes the smallest integer or half-integer equal to
larger thanj, and $ucn&} is a fixed but arbitrary orthonormal basis inC2( j )11. The binomial
coefficient can be defined recursively by (0

2 j )ª1 and (n11
2 j )ª@(2 j 2n)/(n11)#(n

2 j ), andg(z) is
defined by~3! as it stands for generalj P@0,`@ . Finally,Hc is an operator onC2( j )11 associated
to the givenh by the definition

HcªE
C
d2zh~z!uc~z!&^c~z!u. ~35!

This association can be viewed as a quantization, which maps the pair (j ,h) to the pair ((j ),Hc)
with Hc being interpreted as the Hamiltonian of a spin with quantum number~j!. While Hc in
general depends on the chosen basis$ucn&}, the expression̂c(z)ue2tHcuc(z8)& does not because
of unitary invariance.

For the proof of the above assertion we remark that the latter is identical to~5! in the case
j 5( j ), because thenuc(z)&5uz& when choosingucn&5u j ,n2 j &, the usual orthonormal eigenba
sis ofJ3 . In the casej ,( j ), the proof follows from~25!, equations analogous to~24! and~19!,
and the Aharonov-Casher theorem, which in our setting states that the ground-state eigens
the ‘‘magnetic’’ Scho¨dinger operatorR @stemming fromg, confer ~20!–~22!# has a dimension
equal to the largest integer strictly smaller thanu*Cd

2zv(z)u/2p52 j 12 and is spanned by the se
of orthonormal functionsz°^c(z)ucn&, n50,1,...,2(j ).

~v! It is straightforward to generalize formula~5! to systems where the HamiltonianH de-
pends explicitly on time and/or several~coupled! spins. The formula in the latter case, like i
older ‘‘spherical relative’’ in Ref. 12, may then serve as a rigorous starting point for the deriv
of effective field theories, which aim to describe the low-energy excitations of quantum la
models for magnetism. Confer, for example, Refs. 17, 56, 57, and references therein.

~vi! Following the reasoning of the present paper it should also be straightforward to d
flat-space Wiener-regularized path integrals also for physical systems with degrees of freedo
are neither of the canonical nor of the spin type.
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On the geometric equivalence of certain discrete
integrable Heisenberg ferromagnetic spin chains

M. Daniel and K. Manivannan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University,
Tiruchirapalli 620 024, India
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Using a discrete curve mapping procedure, we reformulate the problem of nonlin-
ear spin dynamics in three different discrete Heisenberg ferromagnetic spin chain
models with different magnetic interactions. The procedure helps to rewrite the
Landau–Lifshitz equations that govern the dynamics of spins in these ferromag-
netic spin systems as equivalent to the integrable discretization of the completely
integrable nonlinear Schro¨dinger family of equations. The elementary spin excita-
tions in these spin systems are governed by lattice solitons. ©1999 American
Institute of Physics.@S0022-2488~99!00706-9#

I. INTRODUCTION

The one-dimensional classical continuum Heisenberg ferromagnetic spin chain model
different magnetic interactions have been identified as one of the interesting class of non
dynamical systems exhibiting complete integrability and soliton spin excitations on m
occasions.1–12 Notable among them are the one-dimensional isotropic Heisenberg ferromag
spin chain with bilinear3,4 and also biquadratic5 exchange interactions, anisotropic interactio6

interaction with external magnetic fields,7 spin-phonon coupling,8–10 weak interaction,11,12 etc.
The dynamics of spins in these classical continuum Heisenberg ferromagnetic spin syste
governed by the Landau–Lifshitz~L–L! equations, a highly nontrivial vector nonlinear part
differential equation. In addition to linear magnons an interesting class of nonlinear eleme
spin excitations that occur are solitons, domain walls, kinks, breathers, etc.1–12 in one-dimensional
chains and line solitons, lump solitons, dromions, etc.13 in higher dimensional spin system
Solving the L–L equations for classical spin systems in its natural vector form for understa
the underlying nonlinear dynamics is a difficult task in general. Hence, attempts were ma
relate the L–L equations as equivalent to nonlinear equations which have been already s
Notable among them are the geometric equivalence or mapping the spin chain with a m
continuous space curve14 and the gauge equivalence technique.15,16 Both these methods hav
helped to rewrite the L–L equations as equivalent to the nonlinear Schro¨dinger ~NLS! family of
equations depending on the nature of magnetic interactions involved. For instance, the no
spin dynamics of the isotropic bilinear ferromagnetic spin chain can be represented equivale
terms of the completely integrable cubic NLS equation through geometric and gauge equiv
methods3,15 and the biquadratic ferromagnetic chain to the fourth order completely integrable
equation.5 As the above integrable NLS family of equations admitN-soliton solutions, the elemen
tary spin excitations in these magnetic systems can then be expressed in terms of soliton
Later, these methods have been extensively used in the case of several other physically int
and mathematically generalized ferromagnetic spin models, which resulted in the identificat
new integrable spin systems.17 The dynamics of a continuous moving space curve has playe
important role in identifying integrable models not only in the case of classical continuum f
magnets but also in several other contexts. We have many physical examples in which geo
considerations yield NLS family of equations and also the motion of the continuous space
and its elementary geometric properties were proved to select integrable dynamics of s
soliton equations.18–24

Though several classical continuum Heisenberg ferromagnetic spin models have been
25600022-2488/99/40(6)/2560/8/$15.00 © 1999 American Institute of Physics
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fied as completely integrable systems through continuous space curve mapping, this proced
not been adapted in the case of more realistic discrete or lattice spin chain models so fa
recent paper Doliwa and Santini25 from the elementary geometric properties of a discrete mov
curve showed that the motion of it on a sphere selects integrable dynamics o
Ablowitz–Ladik26 hierarchy of evolution equations. The theory of discrete curves found in Re
motivated us to develop a discrete generalized mapping procedure27 for the lattice models of few
integrable classical Heisenberg ferromagnetic spin chains which can help to rewrite the d
dynamical equations in the L–L form in terms of the integrable discretized version of the
family of equations thus making the analysis of the underlying dynamics more simple.
presenting a brief account of this discrete mapping procedure in Sec. II, we employ the pro
in the case of three different integrable discrete classical Heisenberg ferromagnetic spin
models with different magnetic interactions. In Sec. III, we map the integrable discrete iso
bilinear Heisenberg spin chain model originally proposed by Ishimori to the integrable discre
version of the completely integrable cubic NLS equation using the discrete curve mappin
cedure developed in Sec. II. Also, using the same procedure we map a higher order inte
discrete ferromagnetic spin chain model to the completely integrable discrete Hirota equatio
a new generalized isotropic Heisenberg ferromagnetic discrete spin chain model involving
order and next nearest neighbor exchange interactions to the integrable discretization of the
order integrable NLS equation. The results are concluded in Sec. IV.

II. MOTION OF A DISCRETE CURVE

Before attempting to map integrable discrete ferromagnetic spin systems to integrable d
zation of the completely integrable nonlinear Schro¨dinger family of equations, in this section, w
present a brief account of a generalization of the theory of discrete moving space curves
following the procedure presented by Doliwa and Santini in Ref. 25. The motion of the dis
curve is considered to be taking place on a sphere with origin at O andrn is the unit vector at the
point n of the sequence pointing along the direction of the position vectorRn ~see Fig. 1!. The unit
vectorstn andtn8 are tangent to the big circle passing through the pointsrn andrn11 at the points,
respectively, and the angle betweenrn andrn11 is defined asun . A third unit vectorbn is defined
as normal to bothrn and tn ~i.e! bn5rn∧tn . The angle betweentn218 and tn is denoted byfn21 .
The transition from the basis (rn ,tn ,bn) at thenth point to the next basis (rn11 ,tn11 ,bn11) at the
neighboring (n11)th point can be represented by25,27

~rn11 tn11 bn11!T5@M #~rn tn bn!T, ~2.1a!

FIG. 1. The motion of a discrete curve.
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where

@M #5S cosun sinun 0

2cosfn sinun cosfn cosun sinfn

sinfn sinun 2sinfn cosun cosfn

D , ~2.1b!

andT means the transpose of the matrix. Similarly, the basis (rn21 ,tn21 ,bn21) associated with
the point (n21) of the sequence can be obtained from (rn ,tn ,bn) by using the matrix@M #21

~with n replaced by (n21)). In asimilar way the next nearest bases, namely, (rn12 ,tn12 ,bn12)
and (rn22 ,tn22 ,bn22) can be generated in terms of (rn ,tn ,bn).

As the motion of the discrete curve takes place on the surface of the sphere, the velocit
must always be tangent to the surface. The evolution of the orthonormal frame (rn ,tn ,bn) can
then be described by the antisymmetric matrix equation25

d

dt S rn

tn

bn

D 5S 0 Vn Un

2Vn 0 Wn

2Un 2Wn 0
D S rn

tn

bn

D . ~2.2!

HereVn andUn are the velocity field components parallel totn andbn , respectively, andWn is an
unknown function to be determined. The compatibility between Eqs.~2.1! and~2.2! then provides
the following evolution equations25 for un andfn ,

dun

dt
5cosfnVn112sinfnUn112Vn , ~2.3a!

dfn

dt
5Wn112cosunWn1sinunUn , ~2.3b!

and the unknown functionWn as

Wn5
1

sinun
@cosfnUn111sinfnVn112cosunUn#. ~2.3c!

Thus the motion of the discrete curve on the surface of the sphere is governed by the c
evolution equations for the two anglesun andfn . Specific values of the field componentsVn and
Un will give rise to different nonlinear evolution equations. Experience gained in the cas
continuous space curve mapping suggests to rewrite the coupled evolution equations forun andfn

given in Eqs.~2.3a! and ~2.3b! as a single evolution equation in terms of a new variable usin
suitable transformation involvingun and fn . This may be advantageous because it leads
identification of the resultant equation with standard nonlinear discrete evolution equations
in the forthcoming sections, we employ our discrete mapping procedure developed in this s
to find geometrically equivalent representations of few integrable discrete classical Heise
ferromagnetic spin chain models.

III. GEOMETRIC EQUIVALENCE OF CERTAIN DISCRETE HEISENBERG SPIN CHAINS

Integrable classical Heisenberg ferromagnetic spin chain models are of great interest b
they exhibit an interesting class of nonlinear elementary spin excitations namely solitons. T
real ferromagnets exist in lattice, soliton excitations could be identified mostly in the clas
continuum limit. In the following, we consider three one-dimensional discrete classical He
berg ferromagnetic spin chain models and employ our discrete curve mapping procedure t
tify them with standard discrete integrable nonlinear evolution equations so that solitons c
constructed readily.
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A. Ishimori model of the discrete spin chain

An integrable discrete classical Heisenberg ferromagnetic spin chain model originally
posed by Ishimori28 is governed by the equation of motion

dSn~ t !

dt
52Sn∧F Sn11

11Sn•Sn11
1

Sn21

11Sn•Sn21
G , ~3.1a!

Sn5~Sn
x ,Sn

y ,Sn
z!, ~3.1b!

Sn
251. ~3.1c!

HereSn represents the three component classical spin vector at the lattice siten, the evolution of
which is governed by the interaction of it with its nearest neighbors in the form of a bili
exchange. Now, we employ our mapping procedure developed in the previous section
Ishimori model by identifying the three-component classical spin vectorSn(t) of Eq. ~3.1! with the
unit vectorrn(t) of the discrete curve. Because of this identification, Eq.~3.1! can be rewritten as

drn

dt
52rn∧F rn11

11rn•rn11
1

rn21

11rn•rn21
G . ~3.2!

Substitutingrn11 and rn21 from Eqs.~2.1! in Eq. ~3.2!, we obtain

drn

dt
522S tan

un21

2
sinfn21D tn22S tan

un21

2
cosfn212tan

un

2 Dbn . ~3.3!

On comparing Eq.~3.3! with Eq. ~2.2! the velocity fieldsVn andUn can be identified as

Vn522 tan
un21

2
sinfn21 , ~3.4a!

Un52S tan
un

2
2tan

un21

2
cosfn21D . ~3.4b!

Substituting the above values ofVn andUn in Eqs.~2.3!, the evolution equations forun andfn

can be written as

dun

dt
52S tan

un21

2
sinfn212tan

un11

2
sinfnD , ~3.5a!

dfn

dt
5

2

sinun11
S tan

un12

2
cosfn111tan

un

2
cosfnD

2
2

sinun
S tan

un11

2
cosfn1tan

un21

2
cosfn21D . ~3.5b!

Defining a new angleCn as the difference betweenfn21 andfn ~i.e.!,

fn5Cn212Cn , ~3.6!

Eqs.~3.5! can be rewritten as

dun

dt
522 tan

un11

2
sin~Cn212Cn!12 tan

un21

2
sin~Cn222Cn21!, ~3.7a!
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dCn

dt
52S 12

1

sinun11
tan

un12

2
cos~Cn2Cn11! D2S 2

sinun11
tan

un

2
cos~Cn212Cn! D .

~3.7b!

In order to indentify Eqs.~3.7! with standard nonlinear differential-difference equations, we m
the transformation

qn5tan
un

2
exp~ iCn21!, ~3.8!

and hence Eqs.~3.7! can be rewritten as

i
dqn

dt
5~11uqnu2!@qn111qn21#22qn . ~3.9!

Equation~3.9! is the integrable discretization of the completely integrable cubic NLS equati

i
]q

]t
1

]2q

]x2 12uqu2q50. ~3.10!

Thus the discrete isotropic classical Heisenberg ferromagnetic spin chain model propos
Ishimori which is governed by the equation of motion~3.1! is proved to be geometrically equiva
lent to the integrable discrete NLS equation~3.9! via our mapping procedure for discrete curve
Equation~3.9! can be solved by the inverse scattering transform~IST! method and found to admi
N-soliton solutions.28,29

B. A discrete higher order spin chain

Another integrable classical discrete Heisenberg ferromagnetic spin chain model with h
order magnetic interactions is described by the equation of motion30

dSn~ t !

dt
52aF ~Sn•Sn11!Sn2Sn11

11Sn•Sn11
2

~Sn•Sn21!Sn2Sn21

11Sn•Sn21
G

12bSn∧F Sn11

11Sn•Sn11
1

Sn21

11Sn•Sn21
G ,

Sn
251.

~3.11!

Herea andb are constant parameters. In Eq.~3.11! higher order interactions are represented
terms proportional toa. It may be noted that in the continuum limit using the continuous sp
curve mapping procedure and also by the gauge transformation,30 Eq. ~3.11! is shown to be
equivalent to the continuous third order NLS equation~Hirota equation!,

]q

]t
5aF]3q

]x3 16uqu2
]q

]x G1 ibF]2q

]x2 12uqu2qG . ~3.12!

Thus a natural question arises as to see whether using our mapping procedure for d
curves developed in Sec. II, Eq.~3.11! can be mapped to the integrable discretization of
completely integrable Hirota equation~3.12!. For this we map the discrete higher order ferroma
netic spin chain governed by the equation of motion~3.11! onto the discrete moving curve on th
sphere and identify the spin vectorSn(t) with the unit vectorrn(t) of the discrete curve. Following
the procedure adapted in the case of Ishimori model, we finally arrive at the following equ
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i
dqn

dt
52 ia~11uqnu2!@qn112qn21#1b@~11uqnu2!~qn111qn21!22qn#. ~3.13!

Equation~3.13! is the integrable discretization of the Hirota equation~3.12! which is a completely
integrable system possessingN-soliton solutions.30 Again whena50, Eq. ~3.13! reduces to the
integrable discretization of the completely integrable cubic NLS Eq.~3.9!.

Thus the dynamics of the discrete higher order ferromagnetic spin model represented
~3.11! is found equivalent to the integrable discretization of the completely integrable H
equation given by Eq.~3.13!. As the integrable discrete Eq.~3.13! admits multisoliton solutions
the spin excitations can also be expressed in terms of solitons.30

C. A discrete generalized Heisenberg spin chain with higher order and next nearest
neighbor interactions

Finally, we consider a classical discrete generalized Heisenberg ferromagnetic spin
characterized by higher order and next nearest neighbor spin–spin interactions in addition
interaction corresponding to the Ishimori model described by the generalized new Hamilto

H522~122K !(
i

log~11Si•Si 11!24K(
i

F11Si•Si 111Si•Si 121Si 11•Si 12

~11Si•Si 11!~11Si 11•Si 12! G .
~3.14!

WhenK50, Hamiltonian~3.14! will reduce to the isotropic bilinear exchange Hamiltonian of t
Ishmori model.28 The equation of motion representing the spin dynamics of the model corresp
ing to the above Hamiltonian~3.14! can be written as

dSn

dt
5Sn∧@ASn111BSn211CSn121DSn22#, Sn

251, ~3.15a!

whereA, B, CandD are spin functions as given below,

A5F 2~122K !

~11Sn•Sn11!
2

4K

~11Sn•Sn11!2 H ~Sn1Sn11!•Sn12

~11Sn11•Sn12!
1

~Sn1Sn11!•Sn21

~11Sn•Sn21! J G , ~3.15b!

B5F 2~122K !

~11Sn•Sn21!
2

4K

~11Sn•Sn21!2 H ~Sn1Sn21!•Sn22

~11Sn21•Sn22!
1

~Sn1Sn21!•Sn11

~11Sn•Sn11! J G , ~3.15c!

C5
4K

~11sn•Sn11!~11Sn11•Sn12!
, ~3.15d!

D5
4K

~11Sn•Sn21!~11Sn21•Sn22!
. ~3.15e!

When the angle between the orientation of the neighboring spins are maintained small and
continuum limit, Eq.~3.15! represents the dynamics of spins in a classical Heisenberg ferro
netic spin chain.5 For specific values ofK and lattice parameter, in the small angle and continu
limits, through the methods of continuous space curve mapping and gauge transformatio
~3.15! has been proven to be equivalent to the completely integrable fourth order NLS equ5

given by

i
]q

]t
1

]2q

]x2 12uqu2q1g1 F]4q

]x4 18uqu2
]2q

]x2 12q2
]2q*

]x2 14qU]q

]xU
2

16q* S ]q

]xD 2

16uqu4qG50.

~3.16!
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Now we consider the discrete generalized Heisenberg spin chain described by the Hami
~3.14! and the equation of motion~3.15! and see whether Eq.~3.15! can be mapped to the
integrable discretization of the complete integrable fourth order NLS equation given by Eq.~3.16!.
For this as before we rewrite Eq.~3.15! by replacingSn by rn and by substituting forrn11 , rn21 ,
rn12 , andrn22 from Eqs.~2.1!, we obtain the velocity field componentsVn andUn in the form

Vn522~122K !tan
un21

2
sinfn2122KH tan

un22

2
sec2

un21

2
sin~fn211fn22!

1tan
un

2
tan2

un21

2
sin 2fn211tan

un11

2
sec2

un

2
sinfn

1tan
un21

2
sec2

un

2
sinfn2124 tan

un21

2
sinfn21J , ~3.17a!

Un52~122K !S tan
un

2
2tan

un21

2
cosfn21D22KH tan

un22

2
sec2

un21

2
cos~fn211fn22!

1tan
un

2
tan2

un21

2
cos 2fn212tan

un11

2
sec2

un

2
cosfn

2tan
un21

2
sec2

un

2
cosfn2113 tan

un

2
22 tan

un21

2
cosfn21J . ~3.17b!

Substituting Eqs.~3.17! in Eqs.~2.3! and using Eqs.~3.6! and~3.8!, the set of coupled equation
for un andfn can be rewritten as a single equation given by

i
dqn

dt
5~11uqnu2!~qn111qn21!22qn1K$~11uqnu2!@~11uqn11u2!qn121~11uqn21u2!qn22

1~qn11
2 1qn21

2 !qn* 1~qn11* qn211qn21* qn11!qn24~qn111qn21!#16qn%. ~3.18!

Equation~3.18! is the integrable discretized version of the completely integrable fourth order
Eq. ~3.16!. When K50, Eq. ~3.18! will reduce to the integrable discrete cubic NLS Eq.~3.9!.
Equation~3.18! can also be derived through the AKNS formulation~for details see Refs. 29, 31!.

For all the above three completely integrable spin models the Lax pair and soliton solu
can be constructed at the discrete level and in the continuum limit in terms of the spin (Sn) and the
qn variables. Hence the elementary spin excitations in all these three models are gover
solitons. More details on this aspect can be found in Refs. 5, 28–31.

IV. CONCLUSIONS

In this paper, we have reformulated the problem of nonlinear spin dynamics of certain di
classical Heisenberg ferromagnetic spin chain models using a mapping procedure for d
curves. As the L–L equations that govern the spin dynamics are normally highly nontrivial v
nonlinear partial differential equations, the purpose of the paper was to find equivalent rep
tations for discrete spin models so that the analysis of the spin dynamics becomes easie
new representation and identification of integrable lattice spin models in a more direct way
we specifically considered three one-dimensional discrete Heisenberg spin chain models
the simple isotropic spin chain with bilinear exchange interaction~Ishimori model!, a higher order
discrete spin chain, and finally a new generalized spin chain involving next nearest neighb
higher order spin–spin interactions. Our discrete curve mapping procedure helped to rewr
L–L equations representing the spin dynamics of the isotropic bilinear chain as equivalent
integrable discretization of the completely integrable cubic NLS equation. Similarly, the dyna
of the higher order spin chain is equivalently expressed in terms of the integrable discretiza
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the completely integrable Hirota equation. Finally, the generalized discrete spin chain cons
here is found to be equivalent to the integrable discretization of the completely integrable
order NLS equation. It was interestingly noted that under the small angle approximation and
continuum limit the above generalized spin model is found to correspond to the one-dimen
continuum biquadratic Heisenberg spin chain for which the integrability properties are know
the elementary spin excitations are governed by solitons. In all the three models the elem
spin excitations are found to be governed by soliton modes. Thus the discrete curve m
procedure helps to indentify integrable discrete spin models admitting soliton spin excita
There are few other ferromagnetic lattice spin models available which are integrable in the
tinuum limit and not at the discrete level. Our attempt on mapping these discrete spin m
~which are not integrable! onto discrete curves on spheres does not fetch equivalent repres
tions in terms of generalized or perturbed discrete NLS family of equations through the tra
mation~3.8!. Hence work is under progress to map these lattice spin chain models to the di
curve in the space~not on the sphere! and the results will be reported elsewhere.
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We examine the geometry of the state space of a relativistic quantum field. The
mathematical tools used involve complex algebraic geometry and Hilbert space
theory. We consider the Ka¨hler geometry of the state space of any quantum field
theory based on a linear classical field equation. The state space is viewed as an
infinite-dimensional complex projective space. In the case of boson fields, a special
role is played by the coherent states, the totality of which constitutes a nonlinear
submanifoldC of the projective Fock spacePF. We derive the metric onC induced
from the ambient Fubini–Study metric onPF. Arguments from differential geo-
metric, algebraic, and Ka¨hlerian points of view are presented, leading to the result
that the induced metric is flat, and that the intrinsic geometry ofC is Euclidean. The
coordinates for the single-particle Hilbert space of solutions are shown to be com-
plex Euclidean coordinates forC. A transversal intersection property of complex
projective lines inPF with C is derived, and it is shown that the intrinsic geodesic
distance between any two coherent states is strictly greater than the corresponding
geodesic distance in the ambient Fubini–Study geometry. The functional metric
norm of a difference field is shown to give the intrinsic geodesic distance between
two coherent states, and the metric overlap expression is shown to measure the
angle subtended by two coherent states at the vacuum, which acts as a preferred
origin in the Euclidean geometry ofC. Using the flatness ofC we demonstrate the
relationship between the manifold complex structure onPF and the quantum com-
plex structure viewed as an active transformation on the single-particle Hilbert
space. These properties ofC hold independently of the specific details of the single-
particle Hilbert space. We show howC arises as the affine part of its compactifi-
cation obtained by setting the vacuum part of the state vector to zero. We discuss
the relationship between unitary orbits and geodesics onC and onPF. We show
that for a Fock space in which the expectation of the total number operator is
bounded above, the coherent state submanifold is Ka¨hler and has finite conformal
curvature. ©1999 American Institute of Physics.@S0022-2488~99!00506-X#

I. INTRODUCTION

The existence of complex structures in quantum theory, and their possible role in a the
quantum gravity, is a subject of much interest. Such structures are essential mechanics to
the idea that the state vector evolves unitarily according to appropriate dynamical equation
of the main applications of complex structures in physics recently has been the subject ogeo-
metric quantum mechanics, an area that has been developed by a number of authors~Refs. 1–11!.
In this picture the natural geometry of the quantum phase space is shown to be characteri
merely by a symplectic structure, but also by a compatible complex structure and a Riem
metric, from which one derives the concepts of quantum mechanical uncertainty and expec

In this paper we explore geometric aspects of the complex structures on function spac
arise in quantum theory. By a complex structureJ we mean a linear operator acting on the Hilbe
spaceV of solutions to a linear field equation, satisfyingJ2521. The operatorJ is an endomor-
25680022-2488/99/40(6)/2568/16/$15.00 © 1999 American Institute of Physics
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phism of V, and if we complexifyV to define the single-particle Hilbert spaceH then J has
eigenspaces with eigenvalues6A21, which we refer to as the positive and negative freque
single-particle Hilbert spaces. From thisH we define the Fock spaceF via tensor products ofH
with itself. In addition to the complex structureJ we also have the quantum mechanical symplec
form V and the real Hilbert space metricg, all of which are mutually compatible. Then the trip
$J,V,g% constitutes aquantum Ka¨hler structure. Such structures have received much attention
the literature, and form the basis of the relationship between classical and quantum field th
On a classical level, theJ operation bridges the symplectic and metric structures, and for
boson fields enables one to obtain a classical expression for the norms of fields. Considera
quantum field theory and the introduction of Planck’s constant then show that the squared n
equal to the expectation of the quantum number operator in a corresponding coherent sta~see,
e.g., Ref. 11!.

In classical Hamiltonian mechanics the symplectic structureV, when taken together with a
preferred Hamiltonian functionH on the phase space, determines the system completely. It
the passage to quantum theory that additional structure is required, namely, the quantum c
structure. When compatibility of the elements of the quantum Ka¨hler structure is assumed, an
two of its elements imply the other, and thus quantization can be viewed as the addition of
J or g to the classical system. In geometric quantum mechanics it is the complex projective
CPn, the quantum mechanical state space, that replaces the classical phase space. This is¨hler
manifold, endowed with the Fubini–Study metric. It is also a symplectic manifold, and thu
geometry of Hamiltonian classical mechanics carries over to the quantum state space. In p
lar, the equation governing the evolution of a quantum mechanical state, Schro¨dinger’s equation,
becomes Hamilton’s equations of classical mechanics. In other words, Schro¨dinger trajectories are
given by the orbits of a Hamiltonian vector field on the quantum state space. The extra ingr
of quantum theory is the quantum metricg, which takes the form of a real Riemannian structu
on the state manifold, enabling one to calculate quantum mechanical transition amplitud
uncertainties.

A further modification that quantum theory entails is that uncertainty terms appear i
Hamiltonian function of the system, in addition to the function obtained by replacing clas
phase space coordinates by the expectations of their associated operators. The harmonic o
is an example of this phenomenon, for which the quantum Hamiltonian function is equalx2

1p21(Dx)21(Dp)2. In this context we are naturally led to consider thecoherent states~Refs.
12–14; cf. also Refs. 15, 30!, which are in some respects classical in behavior. These s
saturate the quantum mechanical uncertainty inequalityDx Dp>\/2, and their quantum mechan
cal evolution corresponds closely to classical evolution.

In this paper we address various aspects of the quantum Ka¨hler structure, with an emphasis o
the geometric features of Fock space. Our main results are as follows. We begin by deve
geometric quantum mechanics for relativistic quantum field theory, thus extending existing r
in the literature to projective Fock spacePF. We see how this applies to coherent states a
derive geometric properties of the coherent state submanifoldC. In particular, in Theorem 1 we
show that the intrinsic geometry ofC is complex Euclidean, and that the single-particle st
vectors serve as complex Euclidean coordinates for this submanifold. This enables one to
other properties ofC, and provides a relationship between the complex structure on the si
particle Hilbert spaceH and that on the ambient state manifold. We discuss the geodesic
unitary orbits ofC, observing thatC and the state spacePF share no geodesics, and that t
geodesic orbits ofC are nonunitary. We discuss the corresponding situation for truncated
spaces, for which the expectation of the total number operator is bounded above. In particu
deduce that the associated submanifold of coherent states has finite conformal curvature.

We conclude with a discussion of some physical issues. We indicate the relationship be
the theory of positive operator measures~POMs! and coherent states in the context of our resu
and in this connection remark on prospects for a model of stochastic state vector reductio

In the generation of a quantum Fock space, we consider the Hilbert spaces of re
complex solutions to a set of linear classical field equations. In the former case, there is on
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available complex structure, since this maps real solutions of the field equations to themsel
terms of the Fourier transformŵ(k) of the field, multiplication by a complex numbera5a1 ib is
replaced by the action of the operatora1Jb on w, whereJ acts linearly and multiplies the positiv
and negative frequency parts of the field by1 i and2 i , respectively. We say thatJ is thequantum
complex structureacting on the Hilbert space. In the case of a complex-valued field there are
possible complex structures, namely~a! the one given above, and~b! multiplication of ŵ by the
complex numbera. It is only the former choice that leads to positive values for the expectatio
energy~Ref. 16!.

II. THE QUANTUM KÄ HLER STRUCTURE

Let V denote the Hilbert space of normalizable real solutions to a classical linear field
tion, and define the single-particle Hilbert spaceH5V^ C. We adopt the notationHn[H^ n for
the n-fold tensor product ofH with itself, where ^ denotes the symmetric tensor product f
bosons and antisymmetric tensor product for fermions. ThenHn is said to be then-particle Hilbert
space, and we define Fock space as the Hilbert spaceF5C%H%H2

%¯%Hn
%¯ ~see e.g., Ref.

17 for various technical details of this construction, which are not as relevant for the pr
discussion!. We introduce thequantum complex structure J, a linear mapJ:V→V such thatJ2

[21. Then, if we extendV to V^ C, the mapJ admits eigenspaces with eigenvalues1 i and2 i
that we call the spaces of positive and negative frequency solutions, denoted byH1 andH2 ,
respectively, soH5H1 %H2 . The spacesH6 give rise naturally to the positive and negativ
frequency Fock spacesF6 according to the schemeF65C%H6 %H6

2
%¯%H6

n
%¯ . We use

an abstract index notation~Ref. 18! for elements ofH, so for a typical element ofH we writeja.
See Refs. 16, 19, and 20 for more details of the abstract index notation in a Hilbert space c
We takeH to have a countably infinite basis, so the index onj can be thought of as running ove
the natural numbers. There are some technicalities associated with the fact that one deals
infinite-dimensional Fock space, which is itself built up from an infinite-dimensional single
ticle Hilbert spaceH1. However, in practice it is reasonable to assume that the underlying si
particle Hilbert space is separable21 so any vector can be decomposed along countably many b
states, as occurs in the Fourier series analysis of an oscillator with boundary conditions. In th
of a state not built up in this way one usually argues via continuity in the relevant function s
~for further discussion of these issues, see Ref. 22!.

We now develop in further detail the abstract index notation. For a positive frequency fie
use an unprimed Greek index, so, for example,jaPH1

1 ; for a negative frequency field we use
primed Greek index. Then we can regard the italic indexa as ‘‘composite’’ by writing a

[a,a8, whereja and ja8 have eigenvalues1 i and 2 i under the action ofJ, respectively, so
Ja

bjb5 i ja andJa8
b8j

b852 i ja8. A general complex fieldj decomposes into independent po
tive and negative frequency partsja[ja,a85ja

% ja8. We refer toja andja8, respectively, as the
positive and negative frequency parts of the complex fieldja. For all fa the action of complex
conjugation will be denotedfa°fa5f̄a8, and thus it interchanges the index type. For a r

field we havefa5fa8 and thusfa5fa
% f̄a8, indicating that in this case the positive an

negative frequency parts are complex conjugates of each other.
We can also represent the metric, the symplectic structure, and the complex structure in

form according to this scheme. For the metric we have

gab5S 0 gab8

ga8b 0 D , ~2.1a!

in which the tensorgab8 is Hermitian~or real! in a sense explained below. Note that, as in the c
of the algebra of two-component spinors, a primed index ‘‘commutes’’ with any unprimed in
so that for any multivalence tensor we haveTa¯dr8¯t8[Tr8¯t8a¯d . Now complex conjugation
interchanges index type according to the schemeTab¯dr8s8¯t85T̄a8b8¯d8rs¯t . Again, as in the
case of two-component spinors, a tensor can only be Hermitian if it has equal numbers of p
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and unprimed indices, in which case the Hermitian condition isTab¯ga8b8¯g8
5Tab¯ga8b8¯g8 . For the metricgab8 , in particular, we havegab8[ḡa8b5ga8b[gba8 . Simi-
larly, we write the symplectic structure

Vab5S 0 igab8

2 iga8b 0 D . ~2.1b!

This is compatible with the complex structure in thatV(f,c)5V(J@f#,J@c#). The action of the
metric is given byg(f,c)5gabf

acb5gab8f
acb81ga8bfa8cb, and thusg(f,c) is real for all

real fieldsf and c. The action of the symplectic structure is given byV(f,c)5 igab8f
acb8

2 iga8bfa8cb. We write the quantum complex structure in matrix form as

Ja
b5S idb

a 0

0 2 idb8
a8D . ~2.1c!

The Dirac or ‘‘quantum mechanical’’ scalar product between the fieldsf and c is defined by
F(f,c)[ 1

2(g1 iV)(f,c)5ga8bfa8cb and is Hermitian in the sense thatF(f,c)5F(c,f) for
all real fieldsf and c. We can usega8b to lower indices by writingfa5gab8f

b8, and fa8
5ga8bfb. The complex structure satisfiesJa

cJ
c
b52db

a . The compatibility of the set$g,V,J%
can be represented by the following conditions:

gac5VabJ
b

c , ~2.2a!

gabJ
a

cJ
b

d5gcd , ~2.2b!

VabJ
a

cJ
b

d5Vcd , ~2.2c!

gapgbqVab5Vpq. ~2.2d!

Condition ~2.2a! is the expression for the positive definite quantum metric in terms of
symplectic form and complex structure, i.e.,g(f,c)[V(f,Jc). A straightforward consequenc
is that g(f,Jf)[0 for any f. Condition ~2.2b! states that the metricg is compatible with the
complex structureJ, i.e., that the metricg is Hermitian~Ref. 23!, sog(f,c)[g(Jf,Jc). We note
that the term ‘‘Hermitian’’ is used conventionally in two related but rather different ways. Firs
can be used to indicate a reality condition on noncomposite tensors of equally mixed ra
indicated above, i.e., for tensors belonging to the subspaceH1

n
^H2

n . On the other hand, we sa
that a tensor of general even rank, belonging toH2n, is Hermitian if Ja

pJb
q
¯Jc

r Jd
sTpq¯rs

5Tab¯cd . The context will usually indicate in exactly which sense the term is being app
Thus ~2.2c! states thatV is Hermitian in the latter sense. Some authors use a convention fo
symplectic tensorVab that differs by a factor of 2 from the one used here~e.g., Ref. 24!. We adopt
conventions such that the tensorV with its indices raised according to~2.2d! above is the inverse
to Vab , soVabVcb5dc

a . We refer to the compatible set$g,V,J% as thequantum Ka¨hler structure
~cf. Ref. 25!. Observe that condition~2.2a! above implies that any two of$g,V,J% are sufficient to
determine the quantum Ka¨hler structure.

We now proceed briefly to examine various operations on Fock space in this spirit. A
vector in Fock spaceF can be writtenuj&5(j,ja,jab,...), wherejaPH1, jabPH2, and so on.
The evaluation of the squared Hilbert space norm of a vectoruj& in F is given by iji25jj̄

1jaj̄a1jabj̄ab1¯ . For anysaPH1 we define the annihilation and creation operatorsÂa and
Ĉa according to the prescription
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Âas̄auj&5Â~ s̄ !uj&5~jms̄m ,&jmas̄m ,)jmabs̄m ,...!, ~2.3a!

Ĉasauj&5Ĉ~s!uj&5~0,saj,&s (ajb),)s (ajbg),...!. ~2.3b!

These obey the commutation relations@Ĉ(s),Ĉ(s8)#50, @Â(s̄),Â(s̄8)#50, and@Âa,Ĉb#5db
a

or, equivalently,@Â(s̄),Ĉ(s)#5(s•s̄)I . These operators are adjoints of each other in the se
that for any vectorfPF we have^Ĉ(s)c,f&5^c,Â(s̄)f&.

We then define the number operator associated withsPH1 (sÞ0) by N̂(s)
5isi22Ĉ(s)Â(s̄), from which it follows thatN̂(s)j5isi2(0,sajms̄m,2s (ajb)ms̄m ,...). Sum-
ming over an orthonormal basis$sa% using the identity(Nsas̄m5dm

a we obtain the total numbe
operatorN̂, given by N̂j5(0,ja,2jab,3jabg,...). The number operators satisfy the followin
commutation relations:@N̂(s),Ĉ(s)#5@N̂,Ĉ(s)#5Ĉ(s), @N̂(s),Â(s̄)#5@N̂,Â(s̄)#52Â(s̄),
and @N̂(s),N̂#50. For further details of these and other relations see Refs. 16 and 19.

III. COHERENT STATES

There are various characterizations of coherent states in quantum field theory. First, w
a definition via exponentiation of the single-particle Hilbert spaceH1. We begin with a vector
jaPH1 and construct from this a unique element ofF, obtained by exponentiatingja, denoted
ujc&. Explicitly, we have

ja°E~ja!5exp~jaĈa!u0&~1,ja,jajb/A2!,...,jajb
¯jd/An!,...!5:ujc&PF, ~3.1!

where the term containingAn! has n indices @cf. the discussion of Perelomov’s ‘‘generalize
coherent states’’ in proof~b! of Theorem 1 below#. The elementujc& is said to be a coherent sta
vector. Now we introduce the projection operatorP from the Fock spaceF down to the state spac
PF so the totality of coherent states form a submanifoldC of PF. It is important to note that if
jaÞ0 then P+E(lja)5P+E(mja) if and only if l5m. Note, however, that althoughlja,mjb

define different vectors inH1 for lÞm, they define the same single-particle state for all nonz
l, m, because the single-particle states are elements ofPH1, not H1. Therefore changing the
phase or scale of a single-particle state vector changes the associated coherent state.
consider theuniversal bundleU over the single-particle state space with projectionP:U→PH1,
defined so the fiber above any point or state is the ray in the Hilbert space that it represen
mapE:U→F defined in~3.1! is a map from this bundle to Fock space, and this is noncons
along the fibersP21(s) for all sPPH1.

The action of the creation and annihilation operators on coherent states is as follows.ta

be an element ofH1
1 anducc& a coherent state vector defined as before. Then from~2.3a! we have

Â~ t̄ !ucc&5~j• t̄ !ucc&, ~3.2a!

or, equivalently,Âaucc&5caucc&, from which it follows thatcoherent states are eigenstates

the annihilation operator Aˆ ( t̄) for any vectortaPH1. On the other hand, from~2.3b! it follows
that the action of the creation operator on a coherent state vector is given by differentiatio
respect toH1, so

Ĉaucc&5
ducc&
dca . ~3.2b!

For convenience we setLªjaj̄a . Then ^ccucc&5eL, so we have to divide by this factor t
calculate the expectation of any operator from its matrix element with a coherent state vect
the expectation of the number operatorN̂(s) in a coherent statePujc& we obtain ^N̂(s)&
5isi22(s• j̄)(j•s̄), and for the total number operatorN̂ we havê N̂&5L. More generally, we
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observe that for any vectorjaPH1 with norm L5jaja the probability distribution for the tota
number of particles in the coherent state associated withja is Prob@N̂5n#5Lne2L/n!, the
Poisson distributionwith mean and varianceL. By a resolution of the identity we mean a
expansion of the unit operator of the form

E
tPA

ptuct&^ctu51, ~3.3!

wheret is an element of some~generally multidimensional! index setA, endowed with a notion of
continuity, andpt is positive. In the case of coherent states the choiceA5H determinespt

uniquely ~see Ref. 14!. This uniqueness property holds, even though the coherent states a
mutually orthogonal and form an over complete basis@in our Hilbert space notation̂jcucc&
5exp(c•j̄), which is never zero#. The resolution of the identity~3.3! leads to an important concep
in quantum measurement theory and quantum optics known as apositive operator measure
~POM!. We return to a discussion of POMs in Sec. VI.

In the case of the quantum harmonic oscillator the space of coherent states evolves int
under the unitary evolution associated with the Hamiltonian operatorĤ. The orbits in classical
phase space are identical to the quantum mechanical orbits in the ‘‘expectation phase
coordinatized by the expectation values of the position and momentum operators^Q̂& and^P̂&. In
this sense the coherent state description of the quantum harmonic oscillator is suggestive
sical. Moreover, the uncertainty relation (DQ̂)(D P̂)>\/2 is saturated by the coherent states, a
(DQ̂),(D P̂) remain constant under unitary Hamiltonian time evolution. These properties ho
the more general case of a system of coupled harmonic oscillators~see Ref. 13!.

Now consider the fiber bundleV5G3F, whereG is the classical phase space of element
Hamiltonian mechanics, and the fiberF above any point (x,p)PG is the set of quantum mechan
cal statesPuc& such that̂ cu(X̂,P̂)uc&5(x,p). In geometric quantum mechanics the evoluti
can be viewed as taking place inV. The quantum Hamiltonian operatorĤ is obtained by promot-
ing x and p to the corresponding position and momentum operatorsX̂ and P̂, so thatĤ5X̂2

1 P̂2 in appropriate physical units. However, the quantum Hamiltonian functionh5^cuĤuc& is
equal to@x21p2#1@(DX̂)21(D P̂)2#. Let us label the two bracketed termsh0 ,hD , respectively.
The termhD comes from the quantum metricg of Sec. I and is the essential extra ingredient
quantum theory. We can separate the Hamiltonian vector fieldXh

a5Vab
“bh uniquely into hori-

zontal and vertical partsX0 ,XD , respectively, in the bundleV. For the quantum harmonic osci
lator the projection toG of any trajectory inV is always the classical orbit inG, corresponding to
X0 . The coherent states are characterized by the fact that the Heisenberg inequality (Dx)(Dp)
>\/2 is saturated, and this fixes the values ofDx,Dp. The coherent state evolution hasXD50,
and thus the trajectory is purely horizontal inV ~cf. Ref. 22!.

In the case of the quantum electrodynamics of a free photon field, the quantum fi
essentially an infinite collection of harmonic oscillators~see Ref. 26!, and the properties of co
herent states apply. Thus, a ‘‘classical’’ state of the quantum electromagnetic field can be
sented by a coherent state inPF, where the Fock spaceF is built up in the standard way from
HM , the space of square integrable real solutions of Maxwell’s equations. The creatio
annihilation operators are based on the electromagnetic 4-potentialAm, and the field operator is
defined asÂ1Â†. The expectation of this operator in a coherent stateujc& is the corresponding
‘‘ancestor’’ classical solution of Maxwell’s equationsjaPHM ~cf. the discussion of Sec. VI!.

IV. THE FUBINI–STUDY GEOMETRY

The projective form of the Fubini–Study metric onCPn that one usually encounters i
quantum theory~see, e.g., Refs. 23, 27, and 7! can be written in the elegant form
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ds25
8Za dZbZ̄[a dZ̄b]

k~ZgZ̄g!2
, ~4.1a!

where Za are homogeneous coordinates forCPn with a50,1,...,n, and k is the holomorphic
sectional curvature, which in subsequent calculations we take to equal one. In applicat
coherent states it will be useful also to have this metric expressed in nonhomogeneous coor
since if Z0 is the coordinate of the vacuum part of a coherent state then it is necessarily no
ishing. Thus, the coherent states form a submanifoldG of the affine part of the projective Foc
space, the latter consisting of elements of the form$(1,ja,jab,...)%5:A.C>C` and whose
compactification is$P(0,ca,cab,...)%5:B>CP`, i.e., states for which the probability of n
quanta being present is zero. Observe that the image of any state vectoruc& under the creation
operatorĈ(s) lies within the compactification, i.e.,Ĉ(s)uc&PB1 , ;uc&PF1 , saPH1

1 . From
now on we deal with coherent states viewed as forming a submanifold ofA and we shall make use
of the following result~Ref. 23!.

Lemma 2: The nonprojective form of the Fubini–Study metric on CPn is given by

ds254
~11zaz̄a!dza dz̄a2~za dz̄a!~ z̄a dza!

k~11zgz̄g!2
, ~4.1b!

whereza5Za/Z0, a51,2,...,n are inhomogeneous coordinates.
Proof: We havedza5(Z0 dZa2Za dZ0)/(Z0)2, together with its complex conjugate, an

thusdza dz̄a5(Z0Z̄0 dZa dZ̄a2Z̄0Za dZ0 dZ̄a2Z0Z̄a dZ̄0 dZa1ZaZ̄a dZ0 dZ̄0)/(Z0Z̄0)2. Also,
z̄a dza5@1/Z0(Z0)2#(Z0Z̄a dZa2ZaZ̄a dZ0) and similarly for its complex conjugate. Straightfo
ward algebra then shows that the numerator of the right-hand side of~4.1b! is equal to@(ZaZ̄a)
3(dZa dZ̄a)1(Z0Z̄0)(dZa dZ̄a)2(Zb dZ̄b)(dZa Z̄a)2(Z0 dZ̄0)(dZa Z̄a)#/(Z0Z̄0)2. Further
manipulation shows that the bracket in the above expression is equal to (ZaZ̄a)(dZa dZ̄a)
2(Za dZ̄a)(dZa Z̄a)[2Z[a dZb] Z̄a dZ̄b , and dividing through by (11zaz̄a)2 completes the
proof. j

We shall use this lemma to provide a differential geometric proof of Theorem 1 below, w
concerns the intrinsic geometry of the submanifold of coherent states. Before stating this res
make some general remarks on the curvature tensor of the Fubini–Study geometry and of¨hler
manifolds in general.

Consider again the Fubini–Study line element~4.1a!. This provides a one-parameter family o
Fubini–Study metrics onCPn. The Riemann tensor derived from the associated metric conne
is given by~Refs. 23, 27, and 7! Rabcd52 1

2k(ga[cgbud]1Va[cVbud]1VabVcd), the Ricci tensor
by Rab52 1

2k(n11)gab , and the Ricci scalar byR52kn(n11). We adopt the convention tha
k51, and in this case forn51 the Fubini–Study metric becomes the intrinsic distance measur
the 2-sphere of the unit radius.

Kähler geometries have a special curvature property that relates to Theorem 1 below. Fi
give the definition of a Ka¨hler manifold~cf. Ref. 28!.

Definition 2: A complex manifold M is said to be Ka¨hler if it comes equipped with a Hermitia

metric hab8 with ds25hab8 dza
^ dz̄b8 such that the real 2-formV5 ihab8 dza∧dz̄b8 is closed.

ThenV is said to be a Ka¨hler form for M.
This is equivalent~Ref. 28! to the existence onM of a real-valued functionK, the Kähler

scalar function, such thatV5 i ]]̄K, or equivalentlyhab85]a]̄b8K. Consequently, a comple
submanifoldN of a Kähler manifoldM is itself Kähler, since the restriction of the functionK to N

provides the intrinsic Ka¨hler form by applying the operatorA21]]̄. In the case of the Fubini–
Study metric onCPn, the Kähler scalar function takes the formK54k21 log@11k(uz1u21uz2u2

1¯1uznu2)#, whereza are inhomogeneous coordinates onCPn.
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Proposition 1: LetV be a positive (1,1)-form on a complex manifold M. ThenV is a Kähler
form for M if and only if for all x0PM there exist holomorphic ‘‘Euclidean’’ coordinates z1,...,zn

around x0, such thatV5 ihab8 dza∧dz̄b8 and hab85dab81O(uzu2) at x0 , and thus the Ka¨hler
metric osculates the flat Euclidean metric to second order.

Proof: The implication towardV being a Kähler form is clear. To prove the reverse implic
tion, begin with holomorphic coordinatesz1,...,zn, such thatdz1,...,dzn give an orthonormal
basis ofTM ,x0

* , the dual tangent space toM at x0 . This implies thatV5 i h̃ab8 dza∧dz̄b8, where

h̃ab85dab81(1<g<n(agab8z
g1ag8ab8

8 z̄g8)1O(uzu2). That V is real impliesag8ab8
8 5āg8b8a .

The Kähler condition]hab8 /]zg5]hgb8 /]za at x0 implies thataagb85a(ag)b8 . To complete the
proof, we define holomorphic Euclidean coordinatesẑa as ẑb

ªzb1 1
2(g,aagab8 dbb8zg za. j

V. THE GEOMETRY OF COHERENT STATES

We begin our discussion with a result concerning the ‘‘nonlinear’’ geometry of the cohe
state submanifold.

Lemma 3: Given a pair of distinct coherent states, the complex projective line L,PF joining
them intersectsC exactly twice, at the coherent states themselves.

Proof: Suppose thatL intersectsC in three or more distinct points. This implies a relation
the formuac&1lubc&5mugc& for ua&, ub&, ug& normalized, withlmÞ0. In the harmonic oscillator
case we expand this equation according touac&5(n50

` (an/An!) •exp(2 1
2aā)un& for energy eigen-

statesun&. Taking the Dirac product witĥmu for all m gives infinitely many linear equations for th
two unknownsl andm, whose solution space is empty for distincta, b, g. A similar argument
applies if we generalize the coherent states according to their algebraic characterization,
exponential mapE of ~3.1! ~i.e., we do not specialize to the case of the harmonic oscillator!. Then
supposeE(ja)1lE(ua)5(11l)E(ha) with ja,ua,ha nonzero distinct elements ofH1. This re-
lation implies infinitely many equations to be satisfied byl. The square of theHn part of the
relation gives (j2)n1l2(u2)n12(j•u)nl5(11l)2(h2)n. If all of j2,u2,h2 are nonzero, and no
all equal to unity, then these equations have no solution. So, for a solution inl to exist, we must
have j2,u2,h2 all equal to unity. Thus,ja,ha,ua are unit vectors and 11l212(j•u)nl5(1
1l)2, ;n. This has no solution for nonzerol unless (j•u)51, in which caseja,ua are the same
unit vectors. j

However, any normalized coherent state vectoruac& is decomposable as a continuous integ
over the states ofC via the resolution of unity~3.3!. Provided an analyticity assumption holds, th
decomposition is unique~see Sec. IV of Ref. 12 for a proof of this result!.

We now state our main result concerning the geometry ofC ~cf. also Refs. 29 and 11!.
Theorem 1a: The metric induced on the coherent state submanifoldC from the ambient

Fubini–Study metric on the quantum state space is intrinsically flat. The coordinatesja on the
single-particle Hilbert spaceH1 are complex Euclidean coordinates forC.

If instead we begin with the coherent state submanifold and decide,a priori, to place on it the
complex Euclidean metric, giving us the manifold with metricCE , then we have the following
equivalent result.

Theorem 1b: The Euclidean coherent state submanifold has an isometric embedding in
Fubini–Study state manifold.

We remark that this theorem relates to the work of Rawnsley,30 which discusses the geometr
quantization of a Ka¨hler manifoldK, and how the resulting coherent states give a mapE from K
into the quantum mechanical projective state space. In particular, following Corollary 6,
remarked that, by Kodaira’s theorem on Hodge manifolds~Refs. 31 and 28!, there exists a holo-
morphic line bundle connection overK for which the mapE is an embedding. This result i
independent of the curvature ofK, which is determined by the Poisson bracket of the classical fi
theory being quantized. In our theorem we have effectively adopted complex Cartesian c
nates forK so thatK is complex Euclidean space and so trivially a Ka¨hler manifold~cf. Corollary
1 below, and also Lemma 6 to follow on truncated Fock spaces!. Our approach differs from tha
of Rawnsley, in that we have focused on geometric quantum mechanics rather than geo
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quantization. It is nevertheless noteworthy that the two approaches yield descriptions of t
herent states with essentially the same underlying geometry. With regard to the choice of
sian coordinates, we note the remarks of Dirac~p. 114 of Ref. 26!. For further background to the
material covered in Ref. 30 see Ref. 24. Observe that our theorem is independent of the de
the single-particle Hilbert spaceH1.

Proof: We give three independent proofs of this result, from the points of view of differe
geometry, operator algebra, and the Ka¨hler form.

(a) Differential geometry.From the way that we defined coherent state vectors, we can re
jaPH1 as complex coordinate functions for the coherent state submanifold. It will be helpf
introduce some further notation. We definej (n)

ªj (ajb
¯jd)/An! so thatj (n) is the tensor con-

tribution to the coherent state vectorujc&, which lies inHn, there beingn factors in the symme-
trized tensor product; we definej̄ (n) similarly. Then settingL5jaj̄a , we find j (n)j̄ (n)5Ln/n!.
Restricted down to the coherent state submanifoldC, we can calculate the tangent vector to
coherent state induced by an elementdj̄ of T*H. The component inHn of the ~dual! tangent
vector is given bydj (n)5n dj (a jbjg

¯jd)/An! and similarly for the complex conjugate expre
sion. To calculate the Fubini–Study line element we find the coordinate inner product of a ta
vector with itself. The contribution to this of any pair of vectors lying in distinctHn vanishes, as
follows from our expression for the Hilbert space norm given earlier. Thus, when evaluatin
inner product of two Fock space vectors in the abstract index notation, we contract over v
and their conjugates with the same number of indices. Hencedj (n) dj̄ (m)[d (m)

(n)
•@1/(n21)!#

3@Ln21 dja dj̄a1(n21)Ln22uja dj̄au2# for all n>1. We also need the coordinate inner pro
uct expression j̄ (m)dj (n)5d (m)

(n)
• j̄ (aj̄b¯ j̄d) /An! •(n/An!)dj (ajbjg

¯jd)[d (m)
(n)

•@1/(n21)!#
3( j̄a dja)Ln21, and, similarly, j (n) dj̄ (m)[d (m)

(n)
•@1/(n21)!#(ja dj̄a)Ln21 for all n>1. In

~4.1b! above a vectorj is given by the collection$j (n)% for all values ofn, and thus to evaluate th
line element induced on the coherent state submanifoldC we must sum over all 1<m, n<` in the
above identities. This yields(m,n dj (n) dj̄ (m)5eL(dja dj̄a1udja j̄au2) and (m,nj̄ (m) dj (n)5eL

• j̄a dja, together with its complex conjugate. The denominator in the Fubini–Study line ele
equals 11(m,nj (n)j̄ (m)5eL, and thus the induced line element reduces tods254 dja dj̄a , as
required. j

(b) Operator algebra.Here we shall assume only the canonical commutation relations~CCR!

for the creation and annihilation operators@Âa,Ĉb#5db
a , together with~3.2a! and~3.2b!, for these

properties characterize the coherent states up to unitary transformations~Refs. 14, 32!. The proof
that follows thus applies in the case of Perelomov’s ‘‘generalized coherent states’’~Ref. 32! since
the CCR and properties~3.2! are preserved under the action of the unitary group. We shall a
the Dirac notation for state vectors according toZa↔uc&, Z̄a↔^cu. In this notation the Fubini–
Study line element becomes

dsF.S.
2 54H ^dcudc&

^cuc&
2

^cudc&^dcuc&

^cuc&2 J . ~5.1!

We abbreviate so thatuc&PF denotes the coherent state vector associated withcaPH1. Then by
~3.2a! and ~3.2b!, we have udc&5Ĉauc&dfa and ^dcu5df̄b^cuÂb. Using the relations

@Âa,Ĉb#5db
a we calculatê dcudc&5df̄b dfa^cuÂbĈauc&. Rewriting the operator in the ma

trix element in terms of a commutator givesdf̄b dfa^cu@Âb,Ĉa#1ĈaÂbuc&, which by the CCR
and ~3.2! equals @dfa df̄a1(fb df̄b)(f̄a dfa)#^cuc&. Similarly, ^cudc&5^cuĈauc&dfa

5^cuf̄auc&dfa5^cuc&(f̄a dfa). Thus, the line element induced onC reduces tods2

54(dfa df̄a)2, as required. The proof is illustrated below. j
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(c) Kähler form. Recall the Ka¨hler scalar function forCPn, where now we taken to be
countable infinityN0 . For A,F defined in Sec. IV, we haveK54 log(11uj(1)u21¯1uj(j)u2

1¯), wherej ( j )5ja1¯a j as before. ForC we have the coherent state vector associated w

caPH1 given byc ( j )5(ca) ^ s
j
/Aj !, and thusuc ( j )u25L j j ! with L5cac̄a . Summing overj to

infinity ~to sum to infinity is, in fact, necessary for flatness, as we discuss below! we obtain the
simple relation

KuC54L. ~5.2!

Then the induced metric onC is given byhab854]a]̄b8(c
gc̄g)54dab8 , as required. j

The theorem has the following immediate consequence.
Corollary 1: The coherent state submanifold is a Ka¨hler manifold.
We see therefore that the theorem asserts a global geometric property of the cohere

submanifold~in itself Kähler!, which, by comparison with Proposition 1, is a special case o
second-orderflatness property that applies locally to any Ka¨hler manifold.

We have seen in Lemma 3 that the coherent state submanifoldC is nonlinear, in the sense tha
the complex projective line joining two distinct coherent states lies in the complement ofC, except
at its two intersection points. This is an algebraic result whose proof relies upon the uniquen
decomposition of any given state into coherent states. It suggests the following geometric pr
of the coherent state submanifold~Refs. 29 and 11!.

Proposition 2: Given any two distinct coherent states, the complex projective line joining
intersectsC transversally; that is to say, the line joining the two coherent states does not lie i
tangent space toC at either intersection point.

Proof: SinceC is homogeneous, we can assume that one of the coherent states is the v
state, that is,Pu0&, whereu0& is the element of Fock space that is the exponential of the origi
the vector spaceH1. Then from Theorem 1 the intrinsic geodesic distances from Pu0& to
Pujc&(jÞ0) is given bys52L1/2. Recall~e.g., Ref. 7! that the geodesic distanceu between the
two states inPF with respect to the ambient Fubini–Study metric onPF is determined by the
cross ratio
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1

2
~11cosu!5

^jcu0&^0ujc&

^0u0&^jcujc&
, ~5.3!

where we takeu to be the principal value determined by this equation, 0<u<p. Clearly ^0u0&
5^0ujc&5^jcu0&51, and thusu5cos21(2e2L21). It follows thatdu/dL5(eL21)21/2, and so
du/ds5@L/(eL21)#1/2. Thus, du/ds is a monotone decreasing function ofL, beginning at
du/ds51, whereL50, and decaying to zero asL tends to infinity. Tangency atPujc& would
requiredu/ds51 for someLÞ0, and this is not possible given the form of the functiondu/ds. j

The method above proves another result that is intuitive from the nonlinear geometric
erty of C derived in Lemma 3.

Corollary 2: The geodesic distance along the projective line in PF joining two distinct
coherent states is strictly less than the intrinsic geodesic distance withinC.

Theorem 1 also establishes the following simple geometric properties ofC.
Lemma 4: The intrinsicC geodesic distance between two coherent states is given by

Hilbert space norm of the difference field of the two corresponding vectors inH1. The corre-
sponding distance of a coherent state from the vacuum is equal to its Hilbert space norm.

Lemma 5: The overlapRê jcucc& of two normalized coherent state vectors is the cosine of
angle that these states subtend at the vacuum state in the intrinsic geometry ofC.

These results illustrate the geometric character of two emergent linear structures in qu
theory. On the one hand, the addition of elements of the Hilbert spaceH1 of solutions to some
classical linear field equation yields a new classical field. As we have seen, the intrinsic geo
of the associated coherent states is Euclidean, with the elements ofH1 serving as Euclidean
coordinates. On the other hand, any two distinct coherent states can be superposed in the q
mechanical sense of joining them with the unique complex projective line in the ambient Fu
Study geometry of the underlying state spacePF; we have seen that this superposition is ‘‘no
coherent.’’ These two features are present in a linear theory of gravity~cf. the discussion in Ref
33!. The coherent states provide a natural preferred basis, together with a unique prob
distribution for the associated resolution of unity. The state space geometry illustrates
quantum superposition of distinct classical field configurations is outside the classical doma~see
Fig. 1!.

Theorem 1 has an important consequence for the relationship between the quantum c
structureJ of Sec. I and the manifold complex structure on the state spacePF. This theorem
shows that, in a suitable sense, these two complex structures are identical. Since the coher
submanifold is Euclidean, and has as Euclidean coordinates the single-particle state vector
selves, the active transformationJ of ~2.1c! induces a corresponding transformation on the tang
space toC at the vacuum statePu0&. ~This is because the notion of finite displacement from so
origin in any Euclidean space is vectorial.! Thus, to find the action of the manifold comple

FIG. 1. Coherent state submanifold, embedded inside projective Fock space. For the states shown,uS&5luc1&1muc2&,
lmÞ0, anduC&5E @uc1

a1(12u)c2
a#, uÞ0,1, c i

aPH1.
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structure of the state space on any tangent vectorV to C at the vacuum, we regard this vector
a displacement in the Euclidean spaceC and accordingly as a coherent state given by this d
placement from the vacuum. Then we act on the correspondingH1 element withJ and exponen-
tiate this according to~3.1! to give a new displacement vector inC. In turn, this is associated with
a unique tangent vector toC at Pu0&, which gives the required action of the manifold compl
structure on the original vectorV.

It is profitable to think in terms of the geometry of the embedding ofC into PF as an affine
subspace whose compactification is the set of states for which the vacuum entry is zero.
way symmetry is broken in affineC via the specification of the location of the vacuum state. T
geodesics inC, which are straight lines, pass through infinity, or, more precisely, they pass thr
the infinite-dimensional complex projective spacePP, whereP5$(0,ca,cab,...)PF%. The only
geodesics in the ambient geometry that pass through a given pointP`PPP are circles that pass
through an antipodal point, for example the vacuum. Observe however thatC and PF share no
geodesics in common, since any geodesic in the state space has length 2p, whereas Theorem 1
implies that geodesics ofC have infinite length with respect to the same distance measure. M
of a coherent state along such a geodesic corresponds to scaling the amplitude of its ass
single-particle state vector. As this amplitude tends to infinity, the compactification ofC is ap-
proached, and the expectation of the total number operator approaches infinity.

The isometry group ofC corresponds to Killing vector fields of the induced Euclidean met
and consists of rigid rotations and translations, giving rise to orbits that are circles or straigh
insideC. Observe that the projective unitary groupPSU(`) is isomorphic to the isometry grou
of the Fubini–Study metric. Hence, the Killing orbits ofC will not, in general, be unitary orbits o
the ambient state space.

We examine to what extent the infinite dimensionality of the situation described above a
the result of Theorem 1. Suppose we truncate the Fock space at theN particle states, and defin
FT5C%H1

%¯%HN for some finite positive integerN. We define analogs of coherent states
previously, where now the coordinatesj (n) for n.N are assumed to vanish. The above proced
for calculating the induced metric on the resulting submanifold can be followed closely, and
interesting features of the truncated coherent state submanifoldCT emerge. We define the rea
functionSN(L)ª11(n51

N (1/n!)Ln with L as above. In physical terms, the truncated Fock sp
FT is appropriate for a situation in which the expectation of the total number operatorN̂ is
bounded above byN. For example, one might consider the quantum electrodynamics of a ph
field constrained inside a finite spatial volume with a saturation density. For a coherent state
ujc& we have ^N̂&5LSN21(L)/SN(L). Thus, ^N̂&,N, since LSN21(L),NSN(L), as is
straightforward to verify. In the limitja°lja, ulu→` we find^N̂&→N, and thus the distribution
among then particle states becomes more strongly peaked at theN particle states, as the amplitud
increases without bound.

Following the same argument as given in proof~a! of Theorem 1, we obtain the following
expression for the induced metric onCT :

ds254H SN21~L!

SN~L!
dja dj̄a1S SN22~L!

SN~L!
2

SN21
2 ~L!

SN
2 ~L!

D u dj aj̄au2J . ~5.4!

The case of Theorem 1 is given by settingN5N0 , and thenS`(L)5eL so that the above line
element reduces to the flat Euclidean line element. It is natural to ask, in the case of finN,
whether the submanifoldCT is Kähler, and whether it possesses intrinsic curvature. As regard
Kähler geometry, we have the following result.

Lemma 6: The induced metric onCT is Kähler, with a Kähler scalar function given by KN
5 logSN(L).

Proof: There are two ways of proceeding. Simplest is to use the same argument as
Kählerian proof~c! of Theorem 1, summing only to finiteN in the expression forK. This incor-
porates a proof of Theorem 1 as a special case in the limitN→`, since SN0

5eL, and thus
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KN0
54L as in~5.2!. Alternatively, it suffices to evaluate the 2-form associated withKN and show

that this is identical to the line element~5.4! upon replacement∧° ^ . We have ]K

5„SN21(L)/SN(L)…j̄a dja, and thus ]̄]K5SN21(L)/SN(L)dj̄a∧dja1@SN(L)SN22(L)
2SN21

2 (L)#/SN
2 (L)(jb dj̄b)∧( j̄a dja), which is of the required form. j

As regards the intrinsic curvature, we adopt coordinatesja5(ja,j̄a8) on CT and write the
induced metric asgab85KN8 dab81KN9 jb8j̄a . Here the prime operation isd/dL, and we adopt the
index notation, as explained in Sec. II. Thatg is Hermitian impliesgab8[ḡa8b5ga8b5KN8 da8b

1KN9 j̄bja8 . To calculate the Christoffel connection, we need the inverse metric togab , written as
in ~2.1a! with all raised indices, and, by inspection, we findgab85(1/KN8 )dab8

2(HN /KN8 )jaj̄b8, where the functionHN is defined byHNªKN9 /(KN8 1LKN9 ). The derivatives of
L are ]aL5 j̄a , ]̄a8L5ja8 , and so ]̄g8gab852KN9 da(b8jg8)1KN-j̄ajb8jg8 and ]ggab8
52KN9 db8(aj̄g)1KN-jb8j̄aj̄g . Observe that these relations imply the symmetries]̄g8gb8a

[]̄ (g8gb8)a , ]ggab8[] (gga)b8 , which, in fact, hold for an arbitrary Ka¨hler manifold~as follows
directly fromgab8}]a]b8K and that]a ,]̄b8 commute among one another!. The Christoffel sym-
bols are defined byGa

bc5
1
2g

ad(]cgbd1]bgcd2]dgbc) and the calculation of these proceeds us
the above identities. We findGa

bg5gad8] (ggb)d85(1/KN8 )(2KN9 d (g
a j̄b)1QNjaj̄gj̄b), where the

function QN is defined byQNª(KN-22HNKN9 2LHNKN-). The calculation ofGa8
b8g8 proceeds

in the same way with the roles ofj and j̄ interchanged, so thatGa8
b8g85(1/KN8 )(2KN9 d (b8

a8 jg8)

1QNj̄a8jb8jg8). The ‘‘mixed’’ symbol Ga
bg8 vanishes, sinceGa

bg85gad8]̄ [g8gd8]b[0 . Thus,
Ga

bg8 , Ga8
b8g[0. The remaining Christoffel symbolsGa8

bg andGa
b8g8 vanish by the identities

gab5ga8b8[0. In summary, only the symbolsGa
bg and Ga8

b8g8 are nonzero.~This property
holds for a general Ka¨hler manifold, since the above symmetries of the derivatives ofg hold in the
general case cf. remark following Definition 2 above.! For a general Ka¨hler manifold there exist
simple identities for the Riemann curvature tensor in terms of the Christoffel connection. We
in particular ~Ref. 34! Ga

bg5gad8 ]3K/]jb ]jg ]j̄d8, Ga8
b8g85gda8 ]3K/]jd ]j̄b8 ]j̄g8; and

Ga
bg85Ga

b8g5Ga8
bg5Ga

b8g85Ga8
b8g5Ga8

bg850. It follows that for a general Ka¨hler mani-
fold the only nonvanishing components of the Riemann tensor areRab8gd8 , Rab8g8d , Ra8bgd8 ,
Ra8bg8d , and these possess the Hermitian and symmetry propertiesRl

a
m

b5Rl
(a

m
b)5R(l

(a
m)

b)

5R̄l
a

m
b5Rl8

a8
m8

b8. As a consequence, the Ricci tensor is determined by a HermitianRab8 , and
the Ricci scalarR is real. For a general Ka¨hler manifold we have~Ref. 34! the useful simplifying
identity Rab8l

m[]̄b8G
m

al , so that in our case we find

Ra
b

l
m52Ra

bm
l52S 2KN9

KN8
D 8

d (a
m j̄l)j

b2
2KN9

KN8
d (a

m dl)
b 2

2QN

KN8
jmj̄ (adl)

b 2S QN

KN8
D 8

jbjmj̄aj̄l .

~5.5a!

Thus, with indices in any position, the Riemann curvature vanishes in the limit thatN→N0 , for
then K851 andQ, K9 both vanish. This is in accordance with Theorem 1.~It makes sense to
discuss the limitN→N0 , since the underlyingH1 serves to coordinatizeCT for eachN.! We
calculate the Ricci tensor ofCT by taking the trace onb andl in the expression forRa

bm
l from

~5.5a!. We obtain

Ra
m5jmj̄a@~KN9 /KN8 !81~n11!~QN /KN8 !1L~QN /KN8 !8#1da

m@L~KN9 /KN8 !81~n11!~KN9 /KN8 !#,
~5.5b!

wheren is the holomorphic dimension ofH1, and thisRa
m is Hermitian. For the Ricci scalarR we

find

R5~n11!LS 2KN9

KN8
D 8

1n~n11!
KN9

KN8
1~n11!L

QN

KN8
1L2S QN

KN8
D 8

, ~5.5c!
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which is real. Observe that both the Ricci tensor and Ricci scalar diverge as the holom
dimensionn approachesN0 . Nevertheless, the Weyl curvature is well defined in this limit, as
demonstrate. The Weyl tensor~e.g., Ref. 18! of a 2n-real dimensional Ka¨hler manifold is deter-
mined byCa

b
g

d2Ra
b

g
d5@1/(2n22)#(da

d Rg
b1dg

bRa
d)2@1/(2n21)(2n22)#Rda

d dg
b so that in

our case, asn5dimC(H1) approachesN0 , we obtain

Ca
b

g
d2Ra

b
g

d5
1

2

QN

KN8
~da

d jbj̄g1dg
bjdj̄a!1

3

4

KN9

KN8
da

d dg
b . ~5.6!

We observe that this quantity is finite, which has the following consequences.
Proposition 3: For the complete Fock space(N5N0), the Weyl curvature of the coheren

state submanifold vanishes for all values ofdimH1, including countable infinityN0 . This is
despite the divergence of the Ricci tensor in the limitdimH1→N0 . Thus, C is conformally flat for
all single-particle Hilbert spacesH1.

Proposition 4: For the Fock spaceFT (N finite), the submanifoldCT has finite conformal
curvature for any single-particle Hilbert spaceH1.

By comparison, the Fubini–Study geometry of the underlying state manifoldPF has a diver-
gent Ricci tensor and scalar for dimH15N0 , and finite nonzero Riemann and Weyl curvatur
proportional to the holomorphic sectional curvaturek, for all H1.

VI. DISCUSSION

Theories of stochastic state vector reduction processes have recently been extensively
~see, e.g., Refs. 35 and articles cited therein!. In particular, a proposal of this kind has been giv
in the context of geometric quantum mechanics!. ~See Ref. 7.! It would be interesting to see
whether such an approach is viable in the infinite-dimensional case that arises in the con
quantum field theory, with the geometry we have described above. The submanifold of co
states suggests itself as a natural geometric object to study in the context of a stochastic m
which the coherent states provide the preferred basis for state vector reduction~cf. Ref. 7, where
the energy eigenstates feature in this respect!. The physical motivation for such a model is that t
coherent states are precisely those from which a unique classical field configuration can
ferred in a quantum field theoretic context. In this way the coherent states play an importa
in many quantization procedures~cf. Refs. 30, 24, and 36!. We take the view therefore tha
coherent states are central in understanding the results of quantum measurement. Evidence
exists in the theory of quantum optics, in which the empirically determined photon numbers
the Poisson statistics of coherent states~cf. Ref. 14!. The theory of positive operator-value
measures~Ref. 37! is important in this regard. As remarked in Sec. III, a POM provide
resolution of the unit operator among nonorthogonal states, and constitutes the spectrum
associated measurement~a consistent theory of POM measurements has been developed in
37, 38, and 39!. We have observed that the space of coherent states provides a natural PO
that the underlying geometry of the coherent state manifold relates to the notion of quantum
classical superposition in a physically intuitive way, as discussed in Sec. V. We envis
stochastic process on the state manifold, with a drift oriented toward the coherent state su
fold C, and a vanishing diffusion tensor onC. An initial incoherent state is driven towardC via the
stochastic evolution combined with drift, untilC is reached, when ordinary unitary evolutio
proceeds according to the Hamiltonian flow. ThusC becomes an invariant attractor for the st
chastic evolution~see Ref. 13, which discusses the preservation of coherent states under u
evolution for a wide class of Hamiltonians!. The stochastic differential geometry of processes
CPn is well understood~cf. Ref. 7! and appears to generalize naturally to the infinite dimensio
case. A suggestion for a stochastic differential equation governing this type of evolution is
in Chap. 8 of Ref. 11.

We have not addressed the issue of boundedness of the field operators associated with
H1, and their kinematical representation. While the former can be dealt with by introducin
corresponding Weyl form of the canonical commutation relations~Refs. 40 and 41!, the latter
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amounts to the choice of vacuum state together with a representation of the quantum co
structureJ on some kinematical background, e.g., spacetime. For massless fields on Mink
space and linearized gravity in vacuum, various representations ofJ and the associated metricg
are given in Ref. 11.

An open problem is that of constructing a geometric phase space formulation of quantum
theory for which the state space is an arbitrary Ka¨hler manifold. Our present view is that the stud
of stochastic processes onCP` may suggest a consistent measurement theory in which ce
modifications of the state space geometry become necessary. We have seen that field theo
on a linearH1 can be formulated naturally in geometric terms. As occurs with spacetime in
passage from Maxwell’s theory to Einstein’s general relativity, the quantum state space
require global departures from the standard complex projective geometry and maximal iso
group, in order to accommodate the quantum description of nonlinear phenomena such as
tation.
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A new type of loop independence and SU „N… quantum
Yang–Mills theory in two dimensions
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The expectation values of Wilson loop products for the pure Euclidean Yang–Mills
theory onR3R given by Ashtekaret al. in the article ‘‘SU(N) Quantum Yang–
Mills Theory in Two Dimensions: A Complete Solution’’@J. Math. Phys.38, 5453
~1997!# are determined directly for all piecewise analytic loops. For that purpose
we enlarge their calculations from quadratic lattices to general floating lattices
introducing a new kind of loop independence and slightly modifying the regular-
ization scheme. ©1999 American Institute of Physics.@S0022-2488~99!01606-0#

I. INTRODUCTION

For quite a long time the quantization of Yang–Mills theories has been investigated. O
the main emphases is the approach via functional integration. The crucial point is the defini
an appropriate measuredm on the spaceA/G of all connections modulo gauge transformation
Heuristically one sets simplydmªe2S(A)DA, whereS(A) is the Yang–Mills action andDA is a
kinematical measure onA/G, but the resulting mathematical problems are enormous. Some y
ago, Ashtekar and Isham1 developed an interesting idea to overcome these difficulties. T
considered a certain completion ofA/G, the compact Hausdorff spaceA/G. Now, Ashtekar and
Lewandowski2 were able to construct a natural kinematical measuredm0 corresponding toDA,
but the extension ofS onto the wholeA/G remained difficult. This problem was circumvente
using the duality between measures onA/G and positive linear functionals on the space of
Wilson loop products. Using the lattice regularization, Thiemann3 and Ashtekaret al.4 defined
these expectation values and received the measuredm.

Nevertheless, some technical problems remained open. The authors of Ref. 4 did not
the type of hoop independence used for the projectionA/G→Gn. Both the strong independenc
and the weak independence2 are not applicable—the former because obviously the lattice lo
bx,y5rx,yhx,yrx,y

21 cannot be strongly independent for lattices with more than two rows
columns, and the latter because then the integral would become illdefined.2 Furthermore, the
authors of Ref. 4 used the completeness of the plaquette loopsbx,y , i.e., that the subgroup of th
hoop group generated by thebx,y coincides with the subgroup generated by all loops in the latt
But, in general, the completeness is not guaranteed if one chooses arbitrary pathsrx,y from the
base point to the plaquette~x,y!. So we will prove that thereexistsa choice for therx,y such that
the plaquette loopsbx,y are complete. For the same reasons, the proof of the decompo
lemma, which ensures that any loopa without self-intersections can be expressed by a produc
the loops corresponding to the plaquettes in the interior ofa, has to be modified.

The present article is intended to provide these missing mathematical details. Moreov
drop the restriction on quadratic lattices. We admit now any finite connected graph—a ‘‘floa
lattice—for the regularization. For this we slightly modify the regularization of the Yang–M
action simply replacinga2 ~a...lattice spacing! by the areauGu of the plaquette~see also Ref. 5! and

a!Electronic mail: Christian.Fleischhack@itp.uni-leipzig.deor Christian.Fleischhack@mis.mpg.de
25840022-2488/99/40(6)/2584/27/$15.00 © 1999 American Institute of Physics
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adapting the regularization to the given loops and not, as usual, the opposite. Thus, the
floating lattices allows us to calculate the Wilson loop expectation values for all sets of h
directly, i.e., without approximating them in a certain sense by loops in a quadratic lattice
without a subsequent~naive! limit. On the other hand we need a little bit more sophisticated—a
unfortunately, more technical—analysis, even if we would consider only quadratic lattices. A
beginning we define a new type of independence—the so-called moderate independence
stands between the strong and the weak independence and is well suited to making the calc
mathematically rigorous. We prove that it is strong enough to make the integration calculu
applicable. Then we generalize the propositions in Ref. 4 to the case of floating lattices. The
bx,y correspond now to the so-called flagsf G , i.e., loops that run from the base pointm to the
interior domainG—the generalized plaquette—traverseG once, and return tom. Choosing a flag
to each interior domain we get a flag world. The crucial point is now the proof that there
~moderately! independent and complete flag world for any graph. Moreover, the genera
decomposition lemma yields that, if one refines the underlying graph, any flag world ca
naturally refined to a new~again moderately independent and complete! flag world and each flag
f of the old flag world is a product of exactly the flags of the new one that correspond to dom
in the interior off.

By means of these propositions we can finally compute the Wilson loop expectation v
reusing the calculations of Thiemann and Ashtekaret al.

II. PRELIMINARIES

In this section we summarize the basic facts about the spaceA/G of generalized connection
modulo gauge transformations following Refs. 1, 2, and 4.

Let P be a fixed principal fiber bundle over the base manifoldM with structure groupG and
m any fixed point inM. Furthermore, let$Ui% be a covering ofM ,$x i% a trivialization ofP over
$Ui% and j a fixed index withmPU j . In the following we supposeG to be either SU(N), N
>2, or U~1!. Connections onP are described by their connection one-formA on P or, equiva-
lently, their localized formsAi on Ui . Similarly, we describe a gauge transformation by
corresponding equivariant mapr:P→G or its localized formsr i :Ui→G. We will only consider
C` connections andC` gauge transformations. The spaces of all connections and all g
transformations are denoted byA andG, respectively, and their quotient with respect to the natu
action ofG onA is denoted byA/G.

Next, we defineLm to be the set of all piecewise analytic loops inM with base pointm, i.e.,
all piecewise analytic mapsa:@0,1#→M , a(0)5a(1)5m. Two loopsa1 anda2 are multiplied
by

a1+a2~ t !ªH a1~2t ! for tP@0,1
2#

a2~2t21! for tP@ 1
2,1#

.

Note, that + is not associative. For anyaPLm and APA we define the holonomyha(A)
5hA(a)5h(a,A)PG as the group element, which corresponds to the parallel transport
respect toA of x j

21(m,eG) alonga. In the trivializationx j we haveh(a,A)5P exp2(raAj) if a
is completely contained inU j . A change of the trivialization yields only a conjugation ofh(a,A)
independent ofa. ~Since such a conjugation is irrelevant for our purpose, we fix now a ce
chart U j for the computation of the holonomies.! Moreover, we havehahb5ha+b for all a,b
PLm .

The fundamental idea of Ashtekar and Isham was to use the description of connections
traces of their holonomies, the so-called Wilson loops. First, they defined an equivalence r
on Lm . Two loops a1 , a2PLm are said to be holonomically equivalenta1;a2 iff ha1

(A)
5ha2

(A) for anyAPA. The equivalence classes@a# are called hoops.@In the following we often
drop the brackets. Then the equal sign~5! means the equality of loops and the symbol; means
equality of hoops.# The hoop groupHG is the set of all hoops with the well-defined project
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multiplication of Lm :@a1#+@a2#5@a1+a2# and @a#215@b# with b(t)5a(12t). For instance,
two loops are holonomically equivalent if they can be obtained from each other by repara
zation or insertion of retracings. Second, Ashtekar and Isham made use of the so-called
loopsTa :A→C defined byT(a,A)5Ta(A)5(1/N)tr ha(A). Obviously,T factorizes over; and
G, i.e., T:HG3A/G→C. Next, they defined the algebraHAª$ f :A/G→Cu f
5( i 51

n ciP j i51
ni Ta j i

un,niPN,ciPC% of all finite linear combinations of finite products of Wilso

loops and called its completionHA with respect to the sup-norm onA/G holonomy algebra.
Clearly,HA is a commutativeC* algebra. This allows to use the powerful tools provided by
theory of C* algebras. Due to the Gelfand–Naimark theorem there exists a compact Hau
spaceM(HA), the space of all characters ofHA, i.e., all nontrivial, linear, multiplicative func-
tionals onHA, such thatHA>C(M(HA)). Giles6 had proved that given all Wilson loops on
can reconstruct the corresponding connection up to a gauge transformation. Rendall7 observed
that, therefore,A/G can be densely embedded intoM(HA). This justifies the Ashtekar–Isham
definitionA/GªM(HA) of the space of the generalized connections modulo gauge transfo
tions. The elements ofA/G are denoted byĀ. The isomorphism betweenHA andC(M(HA)) is
given by the Gelfand transformation

;:HA→C~A/G! with f̃ :A/G→C,

f ° f̃ , Ā°Ā~ f !.

The theory ofC* algebras yields also the measure theory and representation theory onA/G.
There is a one-to-one correspondence between Borel measuresm on A/G, linear continuous
positive functionalsF on HA, and continuous cyclic Hilbert space representationsf of HA.
More precisely, any such functionalF can be obtained byF( f )5*A/G f̃ dmF with a certain unique
Borel measuremF and any suchf is unitary equivalent to the representationw of HA on
L2(A/G,dmf) by multiplication operatorsw( f )c5 f̃ •c with a certain measuremf .

Ashtekar and Lewandowski2 ~in the following denoted by AL! discovered a second descrip
tion ofA/G via the hoop groupHG. ~Marolf and Mourão8 obtained a third description ofA/G via
projective limits. However, this approach is unimportant for our purpose and we only ment
for completeness.! They defined two kinds of independence onLm . A finite subsetbª$b i% of Lm

is called strongly independent iff eachb i contains an open segment which is traced once and
once byb i and which is intersected by the remainingb j at most in a finite set of points.b is
weakly independent iff to any (g1 ,...,gn)PGn there exists anAPA such thathb i

(A)5gi for all
i. They proved that strong independence implies weak independence. Then they could
bijection betweenA/G and the space Hom(HG,G)/Ad of all homomorphisms fromHG to G
modulo a hoop independent conjugation. More precisely, anyhPHom(HG,G)/Ad yields anĀh

PA/G via Āh(Ta)ª(1/N)tr h(a) and vice versa.
This graph-theoretical approach was used by AL to define a natural integration measu

so-called induced Haar measure.2 They introduced an equivalence relation onA/G for finitely
generated subgroupsHG(b)#HG:Ā1;Ā2 with respect toHG~b! iff hĀ1

(g)5g21hĀ2
(g)g for all

gPHG(b) with a ~hoop independent! gPG. pbA/G:→A/G; is the corresponding projection
Thus, there is a bijectionA/G;↔Hom(HG(b),G)/Ad as for A/G and Hom(HG,G)/Ad.
Hom(HG(b),G)/Ad itself is isomorphic toG#b/Ad if b is weakly independent. Therefore A
could reduce the integration overA/G under certain circumstances to the case of the integra
over a finite dimensional Lie group. In detail, they defined cylindrical functions, i.e., functiof
being pullbackspbf b of continuous functionsf b on Hom(HG(b),G)/Ad5G#b/Ad with strongly
independentb and showed that the setC of all such functions is dense inHA5C(A/G). Now,
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they defined*A/G f dm0ª*G#b/Ad f bdmb and chosedmb to be the Haar measure for eachb. Thus
they got a well-defined, regular and positive measurem0 on A/G, the so-called induced Haa
measure.

Ashtekar and Lewandowski realized thatm0 could serve as a kinematical measure of physi
theories in the functional integral approach. Since the elements ofA/G are classical potentia
configurations, the completionA/G seems to be a candidate for the space of histories in
quantum regime and the physical measure is built fromdm0 by multiplication withe2S, whereS
is the physical action of the theory. The crucial point was to choose such anSdefined not only on
A/G but onA/G. Neglecting that fact, one could compute via^ f &5*e2Sf dm0 any expectation
value of the theory supposedf to be a function onA/G. Thiemann3 and Ashtekaret al.4 ~in the
following denoted by TA1) proposed a solution of that problem in the case of the tw
dimensional quantum Yang–Mills theory using lattice regularization. The main problem wa
replacement of the Yang–Mills actionSYM5 1

4*MFmnFmn dx by an expression whose domain
A/G. The onlya priori available quantities are the generalized holonomies. This indicates th
of Wilson’s lattice regularization. For this one places a finite quadratic lattice with spacinga and
lengthR on the 2-plane and definesSYM

req 5(N/g2a2)(h(12(1/N)Re trhh) where the sum goes
over all plaquettes of the lattice.hh denotes the holonomy around the plaquetteh. In the limit
a→0 andR→` one can show naively the regularized action to converge toSYM . The advantage
of SYM

req is its natural extendability toA/G. Now, TA1 could compute the expectation values of t
Wilson loops expected to determine the whole pure quantum YM2 theory:

^Ta1
¯Tan

&5
1

Z E
A/G

dm0 e2 lima→0,R→`SYM
regTa1

¯Tan
5 lim

a→0,R→`

1

Za,R
E
A/G

dm0 e2SYM
reg

Ta1
¯Tan

~1!

after exchanging limit and integral.~The factor 1/Z guaranteeŝT1&51.) Afterwards they ex-
pressed each loopa1 ,...,an and each plaquette looph by a product of ‘‘simple’’ loops~i.e., loops
traversing exactly one plaquette and connecting it with the base pointm by conjugation!, provided,
however,a1 ,...,an are contained in the lattice. Under the assumption that these loops are
pendent they could reduce the integration overA/G to the integration overGn, n finite. Finally,
they computed the integrals explicitly and got an algebraic expression depending only on th
enclosed by the loops. For generala1 ,...,an they suggested to approximate these loops naively
lattice loops and to consider the limit of the expectation values, but this is simply given b
limit of the enclosed areas.

III. MODERATE INDEPENDENCE

In this section we will introduce a new type of independence being crucial for the cons
ations below—the so-called moderate independence.

A. Why a new type of independence?

We consider a quadratic lattice with spacinga and lengthR5 la, l PN1, i.e., with l 2

plaquettes, see, e.g., Fig. 1. Now we assign~see Ref. 4! a loop bx,yªrx,y+ f x,y+rx,y
21 to each

plaquettehx,y . x,y indicates the position of the plaquette, as follows: First, choose a pathrx,y

FIG. 1. Example of a lattice (l 53) and the loopb1,1.
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from the base pointm to the bottom left-hand corner~x,y! and then definebx,yªrx,y+ f x,y+rx,y
21

wheref x,y is a path traversinghx,y counterclockwise. For our example, we chooserx,y to consist
of a horizontal and a subsequent vertical path as in Fig. 1.

Obviously, the setb of all these loopsbx,y is not strongly independent~for the exact defini-
tion see Sec. III B! because, e.g.,b1,1 does not have a segment which is intersected by any o
bx,y at most in a finite number of points. Of course, one can prove thatb is weakly independent
but this is not sufficient to allow the application of the integration calculus. Therefore we ne
third type of independence between these two ones; this will be the moderate independen

B. Moderate independence: Definition and position among the independencies

In the following,b denotes any finite subset$b i% of Lm ~orHG! andHG~b! the subgroup of
HG generated byb. ~To avoid technical complications we setHG(B)5$@1#%.) First, we recall
the definition of the strong independence.2

Definition 3.1: Strong independence inLm . b#Lm is strongly independentiff any b iPb
contains an open segmentei , the so-calledfree segment, traced exactly once byb i and intersected
by anyb j , j Þ i , in at most a finite number of points.~The intersection condition can be replac
by ‘‘ eiùb j5B ; jÞ i . ’’ However, this yields to an equivalent definition.!
Our definition of the moderate independence differs very little from the previous one. We
replacej Þ i by j , i .

Definition 3.2:Moderate Independence inLm . b#Lm is moderately independentiff any b i

Pb contains an open segmentei , the so-calledfree segment, traced exactly once byb i and
intersected by anyb j , j , i , in at most a finite number of points.~The remark in Definition 3.1
holds analogously in the case of moderate independence: ‘‘eiùb j5B ; j, i ’’. !
We have simply replaced the rigid condition of a simultaneous freeness of segments
flexible condition of an iterative freeness. We will see that this keeps the integration calculus
and makes the set of all plaquette loops~cf. Fig. 1! independent.

We mention that the simple specification of the elements of a moderately independent sb is
not sufficient. If we say ‘‘b is moderately independent’’ then there is an order of the elem
b iPb, such that the above criterion is valid. Analogously, the specification ‘‘$b1 ,b2% or
$b2 ,b1%, respectively, are moderately independent’’ should be clear.

Finally, we recall the definition of weak independence.2

Definition 3.3: Weak Independence inLm . b#Lm is weakly independentiff for any
(g1 ,...,gn)PGn, n5#b, there is anAPA, such thathb i

(A)5gi for all i 51,...,n.
Obviously, this kind of independence can be extended fromLm to HG.

Instead of the previous two definitions being graph-theoretical we have here an alg
condition. Weak independence ofb means no relations between the holonomieshb i

and so it
ensures the freeness of the corresponding subgroupHG(b)#HG, see Sec. III C.

The position of the moderate independence clarifies the next
Proposition 3.1:b strongly independent⇒b moderately independent⇒b weakly indepen-

dent.
Proof: ~1! The first implication is obvious.~2! The proof of the second implication is technic

and can be found in the Appendix. qed

C. Algebraic consequences of the weak independence

Proposition 3.2:Let b#HG be weakly independent. Then the following holds:

~1! HG~b! is freely generated byb. @In the caseG5U(1) we understand by ‘‘free’’ anytime
‘‘Abelian free.’’#

~2! Let there be given ag #HG, such thatHG(b)5HG(g). Then we have:g is weakly
independent⇔b andg have the same cardinality.

Proof: ~1! See Ref. 2.
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~2! ⇐
~a! ForHG(g)5HG(b) there are expressions

g i; )
ki51

Ki

b j ~ i ,ki !

e~ i ,ki ! and b j; )
l j 51

L j

g i ~ j ,l j !

h~ j ,l j !

for any i , j P@1,n#, nª#b5#g, and thus

g i; )
ki51

Ki S )
l j ~ i ,ki !51

L j ~ i ,ki !

g
i ~ j ~ i ,ki !l j ~ i ,ki !

!

h~ j ~ i ,ki !l j ~ i ,ki !
!D e~ i ,ki !

; i P@1,n#.

~b! Due to the first pointb is a free system of generators forHG~b!. Sinceg also generates
HG(b)5HG(g) and #g5#b, g is a free system of generators forHG(b)5HG(g) ~Ref. 9!.

~c! Let there be given (g1 ,...,gn)PGn and letH be the group generated by$g1 ,...,gn%. Since
HG~g! has the free rankn there is~Ref. 9! an epimorphismp:HG(g)→H with p(g i)5gi .

~d! Sinceb is weakly independent, there exists anAPA with hb j
(A)5P l j 51

L j gi ( j ,l j )
h( j ,l j ) ; j , i.e.,

we have for alli P@1,n#

hg i
~A!5hP

ki51

Ki b
j ~ i ,ki !

e~ i ,ki !~A!5 )
ki51

Ki S )
l j ~ i ,ki !51

L j ~ i ,ki !

g
i ~ j ~ i ,ki !,l j ~ i ,ki !

!

h~ j ,~ i ,ki !,l j ~ i ,ki !
!D e~ i ,ki !

5pS )
ki51

Ki S )
l j ~ i ,ki !

51

L j ~ i ,ki !

g
i ~ j ~ i ,ki !,l j ~ i ,ki !

!

h~ j ~ i ,ki !,l j ~ i ,ki !
!D e~ i ,ki !D 5p~g i !5gi .

Thus,g is weakly independent.
⇒
Let g be weakly independent, i.e.,HG(g)5HG(b) is free. Consequently,b andg have the same
cardinality.9 qed

D. Graphs and loops

We recall some fundamental facts about graphs~see, e.g., Ref. 10!.
A graph (X,X0) consists of a Hausdorff spaceX and a discrete subspaceX0 , the space of the

so-called vertices.X\X0 is a disjoint union of edges, i.e., open subsetsei isomorphic to the interval
~0, 1!. ei can connect one or two vertices. In the first caseei is called sling. Two vertices are
connected by a multiple edge iff there are at least two different edges connecting these verti
a graph has neither slings nor multiple edges, it is called ordinary. Furthermore, (X,X0) is finite iff
both the set of edges and the set of vertices are finite. A graph (X8,X08) is called subgraph~or
refinement! of a graph (X,X0) iff X8#X andX08#X0 . Obviously, any~finite! graph is subgraph
of an ordinary~finite! graph. In the following we will briefly denote a graph byX instead of
(X,X0). Additionally, X<X8 means thatX is a subgraph ofX8.

In a natural way one can choose an orientation to any edge. The initial~terminal! vertex of an
edge e is denoted byve

2(ve
1). A path f in a graph is a finite sequence of~oriented! edges

(e1 ,...,en), n<0, such that the terminal vertex ofei coincides with the initial vertex ofei 11 (1
< i ,n) with respect to the chosen orientation. Iffn50, f is called trivial. Iff the initial vertexv f

2

and the terminal vertexv f
1 of f are equal,f is called closed path or loop with base pointv f

5v f
6 . f is called reduced iff no edge is retraced immediately and is called genuine iff no v

is traced twice~exception: initial and terminal vertex can be equal!. Finally, a treeT is a graph
without any nontrivial genuine closed path.

Obviously, any graph contains trees. If we partially order the set of all trees in a graph
the inclusion, i.e., subgraph relation, we get
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Lemma 3.3:Any tree in a graphX is contained in a maximal tree inX. If X is connected, then
a treeT in X is maximal if and only ifT contained all vertices ofX.
Using this lemma one can construct explicitly the fundamental group of a connected graph
choose a vertexv0 and a maximal tree. Let$elulPL% be the set of all edges ofX not contained
in T and choose an orientation for eachel . Now denote bytl

2 and tl
1 the ~unique! reduced path

alongT from v0 to the initial vertex ofel and, respectively, from the terminal vertex ofel to v0 .
Finally, defineal to be the product oftl

2 , el and tl
1 . We have

Proposition 3.4:The fundamental groupp(X,v0) is the free group generated by$alul
PL%, whereal denotes here not the loop itself, but its homotopy class.
The Euler–Poincare´ characteristicx(X) of a finite graph is per definition the difference of th
number of vertices and the number of edges.

Proposition 3.5: Let X be finite and connected. Thenp(X,v0) is a free group with 1
2x(X) generators andX is a tree iffx(X)51.
Let there be given now a finite set of loopsb5$b i%#Lm in a manifoldM. Note thatLm contains
only piecewise analytic loops. The image ofb in M defines naturally a finite connected graphGb

via the following ~see also Ref. 2!.
Construction 3.4:~1! Mark all end points of overlapping intervals of two loops and

intersection points outside those overlapping intervals. These points become the verticesGb .
Due to the piecewise analyticity the number of vertices is finite.

~2! Divide any b i into paths between ‘‘neighboring’’ vertices and call these paths edge
Gb . Again due to the piecewise analyticity the set of edges is finite.

~3! Since anyb i is a loop with base pointm, Gb is connected.

E. Relations between the fundamental group and the hoop group of a graph

In this sectionG is a finite connected graph andm an arbitrary, but fixed vertex ofG.
Furthermore, we denote byHG~G! the subgroup ofHG generated by all loops inG.

It was an important observation of Ashtekar and Lewandowski2 that there is a close relatio
between the representation of a loop as a hoop and as an equivalence class with respec
homotopy in a graph. In detail, they got

Lemma 3.6:Two homotopically equivalent loops are holonomically equivalent, i.e., ther
an epimorphismf:p(G,m)→HG(G). f is an isomorphism ifG5SU(N). ForG5U(1) we have
kerf5@p(G,m),p(G,m)#.
Consequently, in the caseG5SU(N) two loops are holonomically equivalent if and only if the
can be obtained from each other by reparametrizations or~if necessary successively! canceling
retracings. Obviously, we have

Lemma 3.7:Let T be a maximal tree and$al% the set of the corresponding generators
p(G,m) as in Proposition 3.4. Then$al% is strongly independent and complete inG, i.e., we have
HG($al%)5HG(G).
The free segments are the edgesel not contained inT. Additionally, one can express any finite s
of hoops by a finite set of strongly independent hoops.2

Lemma 3.8:For any finite set@b# of hoops there is a seta#Lm , such that

~1! HG(b)#HG(a),
~2! a is strongly independent, and
~3! #a5rankp(Gb ,m).

For this choose the natural graphGb of b. Choose now some generating seta of the fundamental
groupp(Gb ,m). Obviously,a fulfills the required conditions.

Now we want to investigate the independence of loops.
Lemma 3.9:Let n be the rank ofp(G,m). Then anyb#Lm with #b5n and HG(b)

5HG(G) is weakly independent.
Proof: Choose any maximal treeT in G and a corresponding system$al% of generators of

p(G,m). $al% hasn elements and is a free generating system. Due to Lemma 3.7$al% is strongly
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independent and thus weakly independent. Proposition 3.2 finishes the proof. qed
Generally, one cannot conclude thatb is even moderately independent. To see this

p(G,m) be generated by two loopsa1 ,a2 as in Proposition 3.4. Setb1ªa1a2a1
21 and b2

ªa1a2 .

~1! We haveHG(b)5HG(G)5HG($a1 ,a2%), becausea15b1
21b2 anda25b2

21b1b2 .
~2! Suppose$b1 ,b2% are moderately independent. Any segment ofb2 is already traced byb1 .

This is a contradiction to the assumptionb2 has a free segment.

The case ‘‘$b2 ,b1% are moderately independent’’ yields an analogous contradiction. Thb
is not moderately independent.

We finish this section with a criterion for the completeness of loops in a given graph.
Proposition 3.10:Let G be a finite connected graph andb a set of moderately independe

loops inG. Then isb complete with respect toG if and only if the cardinality ofb equals the rank
of p(G,m).

Proof: The ⇒ direction is simple. Due to Lemma 3.8 there is a seta with HG(a)5HG(G)
5HG(b), whose cardinality is just equal to the rank ofp(G,m). Proposition 3.2 yields thata and
b have the same cardinality.

The ⇐ direction is a little bit technical.
The free segments of theb i are as usual denoted byei and the cardinality ofb by n. Suppose

first that nob i has a retracing interval.
~1! W.l.o.g. the free segmentsei of b i are edges ofG. Otherwise, if necessary, restrict anyei ,

such that it is still contained in only one edgeki . Sinceb i has no retracing intervals, the wholeki

is a free segment ofb i . Thus one can seteiªki .
~2! The graphTªG\ø i 51

n $ei% created by removing all free segments is again a conne
graph.

SetG jªG\ø i 5 j
n $ei%. ThenGn115G, G15T. Due to the moderate independence of theb i we

have b iùet85B ; i 8. i , i.e., b i is a loop in G i 11 . SupposeT is not connected. Then ther
would exist aj P@1,n#, such that allG i with i . j are connected, butG j is not connected. Sinceb j

is a loop inG j 11 andb j passesej ,b j has to pass vertices of both connected components oG j

5G j 11\$ej%. Thus ej must be passed at least once in each direction byb j , i.e., we have a
contradiction to the assumption thatej is a free segment. Thus,G i is connected for alli P@1,n
11#.

~3! T is a maximal tree inG.
Due to Proposition 3.5 we haven5rankp(G,m)512x(G)512eG1kG , whereeG andkG

are the numbers of vertices and edges ofG, respectively. SinceT5G\ø i 51
n $ei% we havekT

5kG2n and obviouslyeT5eG . For T connected, we havex(T)5eT2kT5eG2kG1n5x(G)
1n51. ThusT is a tree inG due to Proposition 3.5.T is even maximal becauseT contains all
vertices ofG.

~4! Let aª$a i% be a free system of generators ofp(G,m) due to Proposition 3.4 for the jus
constructed maximal treeT and the edges$ei%. Thus, a fulfills HG(a)5HG(G). W.l.o.g. a i

traces the edgeei in the same direction asb i . We show thatb is complete inG.
~a! b1 is a loop inTø$e1%5G111 , wheree1 is traced once and in the same direction

a1 is. Thusb15t1e1t2;a1 with certain pathst6 in T, i.e.,HG($b1%)5HG($a1%), i.e., $b1% is
complete inG111 .

~b! Let HG($b1 ,...,b i%)5HG(G i 11)5HG($a1 ,...,a i%) hold for all i , j . We have now
b j5kj ,1ejkj ,21 , where kj ,6 are some paths inG j 11\$ej%5G j . Furthermore, we havea j

5t j ,1ej t j ,2 with t j ,6#T#G j . Thus b j;kj ,1t j ,1
21 a j t j ,2

21 kj ,2 . Since kj ,1t j ,1
21 and t j ,2

21 kj ,2 are
loops in G j , we have @kj ,1t j ,1

21 #,@ t j ,2
21 kj ,2#PHG(G j )5HG($a1 ,...,a j 21%)

5HG($b1 ,...,b j 21%). Due to a j;t j ,1kj ,1
21 b j kj ,2

21 t j ,2PHG($b1 ,...,b j%) we have
HG($a1 ,...,a j 21%ø$a j%)#HG($b1 ,...,b j%). Sinceb j is a loop inG j 11 , we get immediately the
$ relation, i.e.,HG(G j 11)5HG($a1 ,...,a j%)5HG($b1 ,...,b j%). Thus $b1 ,...,b j% is complete
in G j 11 .
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The induction yields alsoHG(b)5HG(a)5HG(Gn11), i.e., b is complete inGn115G.
We allow now theb i to have retracing intervals. Denote byb i8 the loop that remains afte
canceling all these intervals inb i . Obviously, b i8 lies in the same hoop class asb i , i.e.,
HG(b)5HG(b8). Thus, since we have already proven the proposition for the retracing-freeb8,
we get immediately the claim for arbitraryb. qed

IV. FLAG WORLDS

This section provides some facts about the hoop group of a graph~‘‘lattice’’ ! G in the
two-dimensional manifoldM5R2. For this we can specialize the facts of Sec. III E to the cas
planar graphs~see, e.g., Ref. 11!. These have a crucial advantage: one can define domain
closed by the graph edges. The set of all these domains induces a basis of the correspondi
groupHG~G!. Finally, we will investigate the behavior of that set under refinement of the graG
generalizing the results of TA1.

A. Planar graphs

This section collects some basic and simple facts about planar graphs and is inten
clarify the notations. We call a graphX planar iff there exists a homomorphismi:X→G#R2. We
identify X andG in the sequel. Furthermore, in the following any graph is supposed to be pl
finite, and connected.

Any graph is the complement of a disjoint union of domains. Exactly one of them
unbounded—the so-called exterior domainGext. The set of the remaining domains, the so-cal
interior domains, is denoted byL int(G) and we setL(G)ªL int(G)ø$Gext%. We say that a domain
G is contained inG iff its boundary]G is in G andGùGext5B.

One easily proves Euler’s polyhedron formulae2k1l52, wheree, k, andl are the numbers
of vertices, edges, and domains, respectively, of the graph. Sincel21512(e2k)512x(G),
we have using Proposition 3.5

Lemma 4.1:The number of interior domains of a graphG is equal to the rank ofp(G,m). We
are now interested in the behavior ofL(G8) under refinement ofG8. Clearly, if we refine a graph
G8 to a graphG, then any domain ofG8 is refined into a certain set of domains inG ~see, e.g., Fig.
2!. We have in detail the simple

Proposition 4.2:Let G8<G. Then the following holds:

~1! For any GPL(G),G8PL(G8) we haveGùG8ÞB⇒G#G8. Especially, two interior do-
mains of one and the same graph are disjoint or equal.

~2! For anyGPL(G) there exists exactly oneG8PL(G8) with GùG8ÞB.
~3! For anyG8PL(G8) there exists exactly oneLG8#L(G), such thatGùG8ÞB⇔GPLG8 and

øGPLG8
G$G8.

~4! Now let G8 be any domain inG, not necessarily an interior domain. There is exactly one
LG8(G)#L int(G), such that for all interior domainsG holds: GPLG8(G)⇔GùG8ÞB and
øGPLG8

G$G8.

We call L(G) a refinement ofL(G8) ~and analogously forL int) iff G is a refinement ifG8.

FIG. 2. Example for the decomposition of domains.
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Definition 4.1:A domain G#R2 is calledsimple iff it is the interior of a Jordan curve. A
graphG is calledsimpleiff each of its interior domains is simple.
Finally we need

Proposition 4.3:Any ordinary graphG is subgraph of a simple, ordinary graphG8 whose
exterior domain coincides with that ofG.

The proof is quite easy. First one eliminates the retracing, then the repetitions of edge
finally the repetitions of vertices by inserting appropriate edges as demonstrated in Fig. 3.

B. Boundary loops and flags

We start with a simple
Lemma 4.4:For any simple domainG#G and anym̃PG0ù]G there is exactly one genuin

loop aG,m̃ in G with base pointm̃, such that~we recall that we do not distinguish between loo
and hoops in the sequel—the equal sign means equality of loops and the symbol; means equality
of hoops!

~1! aG,m̃5]G and
~2! aG,m̃ traverses the domainG counterclockwise.

By contrast, any such loop determines exactly one simpleG#G. We callaG,m̃ theboundary
loop of G with base pointm̃.

Analogously, for anyG#G and anym̃PG0ù]G there exists a loopaG,m̃ in G with base point
m̃ and the properties above.

Now we are interested in loops with base pointm, that traverse only one domainG in G. This
is provided by

Definition 4.2:Flag. LetG be a simple domain in a graphG. We call a loopf G,m,m̃ flag with
base pointm, flag pointm̃, and domainG iff

~1! f 5rmm̃aG,m̃rmm̃
21,

~2! aG,m̃ is a boundary loop ofG with base pointm̃ and
~3! rmm̃ is a path fromm to m̃ in G;
~4! there is avP]G, such that

~a!rmm̃5rmvrvm̃ ,
~b! rmvù]G5$v%,
~c!rmv traces neither an edge nor a vertex twice and
~d!rvm̃#]G holds.

Thenrmm̃ is calledflagpole. We call f G,m,m̃ minimal iff v5m̃.
SinceG is connected, we get from Lemma 4.4

Lemma 4.5:For any triple$G,m,m̃% with the above properties there exists a correspond
flag f G,m,m̃ ~Fig. 4!.

FIG. 3. Canceling~a! retracings,~b! repetition of edges,~c! repetition of vertices.
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Remark:~1! To any simple domainG and anymPG0 there exists a minimal flag. For thi
choose a maximal treeT and anm8P]GùG0 . Furthermore, choose the shortest pathr from m to
m8 alongT. Let m̃ be the nearest tom ~with respect to the up to there traced edges ofr! point in
]Gùr and rmm̃ the corresponding initial path ofr from m to m̃. Obviously, f G,m,m̃

ªrm,m̃aG,m̃rmm̃
21 with the boundary loopaG,m̃ is a minimal flag forG.

~2! All flags beginning with the samermv are equal modulo holonomy equivalence, especia
any flag is holonomically equivalent to a minimal flag.

~3! For G5U(1) all flags to one and the same domain are holonomically equivalent.
Let f i5rmm̃i

aG,m̃i
rmm̃i

21 , i 51,2. We have

f 15rmm̃i
aG,m̃i

rmm̃1

21 ;rmm̃1
rm̃1m̃2

aG,m̃2
rm̃1m̃2

21 rmm̃1

21

;rmm̃1
rm̃1m̃2

rmm̃2

21 rmm̃2
aG,m̃2

rmm̃2

21 rmm̃2
rm̃1m̃2

21 rmm̃1

21

;rmm̃1
rm̃1m̃2

rmm̃2

21 rmm̃2
rm̃1m̃2

21 rmm̃1

21 rmm̃2
aG,m̃2

rmm̃2

21 ; f 2 .

rm̃1m̃2
is any path fromm̃1 to m̃2 along]G. In the last but one step we used the commutativ

of HG$HG(G) induced by the commutativity of U~1!.
~4! Two flags to disjoint domains are nonoverlapping.

C. Flag worlds: Definition and existence

In this section and Sec. IV D we only consider simple graphs, i.e., graphs with only si
interior domains, to avoid technical complications.

We are looking for a setb of hoops, such that any hoop inG can be expressed by a produ
of elements ofb, i.e.,HG(b)5HG(G) holds. Furthermore, we are interested in integrating
lindrical functions overHG~b!. For this we need the moderate independence ofb, that means at
least the weak independence. Due to Proposition 3.2 that is guaranteed only if the num
elements ofb equals the number of generators ofHG~G!, i.e., equals the number of generators
the fundamental groupp(G,m). With this in mind one could chooseb to be a system of genera
tors as in Proposition 3.4. But, because of our regularization we need loops enclosing a
being as tiny as possible, i.e., enclosing only one interior domain. For this the above define
are well suited. We already know that the number of interior domains ofG equals the rank of the
fundamental group~cf. Euler’s polyhedron formula in Sec. IV A!. Thus the following definition is
obvious.

Definition 4.3:Flag World. A setF of flags is calledflag world to the simple graphG ~with
base pointm! iff F5$ f GuGPL int(G)%, wheref G is any flag to the domainG and to the base poin
m. F is calledcompleteiff HG(F)5HG(G).

Using Proposition 3.2 we have immediately

FIG. 4. Flags: Examples and counterexamples.
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Corollary 4.6: The flags of a complete flag world are weakly independent.
Now we are interested in moderately independent flag worlds because they are neces

the integration calculus and because of
Proposition 4.7:Let F be a moderately independent flag world in a simple graphG. ThenF

is complete.
Proof: G is a finite, connected graph andF is a moderately independent set of loops inG,

whose cardinality is equal to the rank ofp(G,m) due to Lemma 4.1. Proposition 3.10 finishes t
proof. qed

We can construct naturally a flag world to any tree as follows.
Definition 4.4:Let T be a maximal tree in a simple graphG.
F is calledT-flag world for G iff the following holds for all flagsf PF:

~1! f is a minimal flag.
~2! The flagpole off is a path inT.

Proposition 4.8:Let T be a maximal tree in a simple graphG.

~1! There is aT-flag world for G.
~2! Any T-flag world for G is moderately independent.

From this we get the crucial
Corollary 4.9: For any simple graphG there exists a moderately independent, i.e., also c

plete flag world.
Corollary 4.10:Any loop in G is holonomically equivalent to a product of mutually nonove

lapping loops.
Proof (Proposition 4.8):
~i! First, letG be a tree, i.e.,G5T. Then there is no interior domain and therefore no flag, t

We haveF5B andHG(F)5$1%5HG(G).
~ii ! Now, G is not a tree. LetT be a maximal tree inG andEª$el% the corresponding set o

edges ofG not contained inT. Now we can constructG from T inserting successively edgesel .
The intermediate graphs are denoted byGl . This allows us to use induction on the number
interior domains increased exactly by 1 in each step. We can insert these edges, such that a
edgeel lies on the boundary of the corresponding graphGl . ~Suppose there is a treeT8 with
]G#T8. Then]G is a tree itself and]G has no interior domain. Consequently,G has no interior
domain, i.e.,G is a tree. Thus, there is no treeT8 with ]G#T8 and so for any treeT in G there is
an edgeel#]G that is not contained inT.! Thus the interior domains of the intermediate grap
are simple due toL int(Gl)#L int(G). Obviously, anyGl is finite, planar, and connected.

~iii ! Suppose the proposition holds for any graph withk21>0 interior domains. Now,G has
k interior domains,T andE are chosen as above andePE is an edge in]G. We setG8ªG\$e% and
E8ªE\$e%. By inserting e in G8 we get a new~simple! interior domain G, i.e., L int(G)
5L int(G8)ø$G%. Obviously,T is also a maximal tree inG8 andE8 is the set of all edges ofG8 not
contained inT. G8 has exactlyk21 interior domains and we have by induction:

~1! There exists aT-flag world for G8.
~2! Any T-flag world for G8 is moderately independent.

~1! Existence of aT-flag world for G
We construct a flag forG. Since any vertex ofG is contained inT, there is a path inT from m to
a vertex of]G. We choose from among these paths a pathr which is minimal with respect to the
number of traced edges. The terminal vertex ofr is denoted bym̃, m̃P]G. Due to Lemma 4.4 we
choose a boundary loopa of G with base pointm̃. fªrar21 is now a minimal flag forG and
FªF8ø$ f % is a T-flag world for G.

~2! Moderate independence of anyT-flag world for G
G8, E8, andG are still chosen as above. SetF8ªF\$ f G%, wheref GPF, f G5rar21, is the flag
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for G with flagpole r#T. Obviously,F8 is a T-flag world for G8, and therefore moderatel
independent by induction.

Since f G is minimal, e is traced exactly once byf G , and becauseF8 is a flag world inG8
5G\e, not any f iPF8 tracese. Thereforee is now a free segment off G .

Finally, F8 itself is moderately independent with the free segmentsei of the corresponding
f iPF8. Thus, F5F8ø$ f G% is moderately independent with the free segme
$e1 ,...,ek21 ,e%. qed

Remark:For G5U(1) even any flag worldF is complete.
To prove this choose any complete flag worldF8 for G. Since @for G5U(1)] all flags

belonging to one and the same domain are equal up to holonomy equivalence, we haveHG(F)
5HG(F)85HG(G), i.e.,F is complete.

In other words, for U~1! all flag worlds to one and the same graphG are equal modulo
holonomy equivalence.
The completeness of a flag world is not at all trivial for the SU(N) because of

Proposition 4.11:Let G5SU(N). Then there exists a simple graphG, such that a noncom
plete ~and so also not moderately independent! flag world exists toG.

Proof: It is sufficient to give an example. Due toG5SU(N) holonomy equivalence equal
homotopy equivalence and we will indentify hoops and the corresponding elements of the
mental groupp(G,m). It is sufficient to construct a flag worldF, such that there is a loopf
Pp(G,m)5HG(G) not contained in the subgroupHG~F ! of the fundamental group generated b
F.

Let G be the graph in Fig. 5 with the flag worldFª$ f 1 , f 2 , f 3 , f 4%, the maximal treeT, and
the corresponding free edgese1 ,e2 ,e3 ,e4 . We constuct fromT and ei the free generators
a1 ,...,a4 of p(G,m) as in Proposition 3.4. We will prove, thatF is not complete showing tha
f ¹HG(F), wheref is the loop defined in Fig. 5.

A simple calculation shows:

f ;a1
21a3 ,

f 1;a1 ,

f 2;a2 ,

f 3;a4a3a1
21a4

21,

f 4;a3
21a2

21a4a3 .

FIG. 5. Example of a noncomplete flag world.
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Supposef PHG(F ), i.e., f ;P j 51
J f i j

h j;Pkalk

ek with h jPZ and ekP$21,11%. Choose this

decomposition, such that the numberJ of used factorsf i j

h j is minimal. Due to the freeness o

HG(G)5p(G,m) there must exist aj 8 with i j 853 andh j 8>11, i.e.,

a1
21a3; f ; )

j 51

j 821

f i j

h j f 3
h j 8 )

j 5 j 811

J

f i j

h j;)
k

alk

eka4)
h j 8

~a3a1
21!a4

21)
k8

alk8

ek8 .

In the last stepf j
h has been replaced by the corresponding reduced representation in tal

~see above!, e.g., f 3
h by a4(a3a1

21)ha4
21 @i.e., not by (a4a3a1

21a4
21)h, since here~for uhu.1)

the a4a4
21 terms are not reduced#.

The right-hand decomposition off in al is ~with respect to the number of used factors! longer
than the left-hand one. Again by the freeness ofHG~G! there must exist in the right-hand decom
position of f in al a k with alk

ek5alk11

2ek11. This case does not occur in the decompositions of

f i in al above, thus this must occur during the multiplicationf i j

h j f i j 11

h j 11 of two flags. From the

decompositions above we see that such a collision ofal is only possible, ifi j5 i j 11 . This is a
contradiction to the minimality of the decomposition off into a product of flagsf i

hPF.
Thus, f ¹HG(F), andF is not complete. qed

Remark:~1! Up to now, we do not know, whether noncomplete flag worlds can be constru
for graphs with less than four interior domains.

~2! Simultaneously, we have constructed an example for the fact that fromHG(b)#HG(a)
and the equality of the cardinalities ofa andb not generally follows, thatHG(b)5HG(a).

But, obviously,HG~F! is freely generated by$ f 1 , f 2 , f 3 , f 4%. Thus, we have constructed
genuine~free! subgroup ofHG~G! having the same rank asHG~G!.

D. Refinement of flag worlds

Now we want to investigate the behavior of flag worlds under refinement of the under
graph. We need the following:

Lemma 4.12:Let G be a simple graph andG a simple domain inG(m¹G) with corresponding
refinement$Gi u i PI %#L int(G). Let f be a minimal flag belonging toG with base pointm. Fur-
thermore,e is an arbitrary edge ofG on ]G. Then, there exist minimal flagsf i with base pointm,
such that:

~1! f i is a flag to domainGi for all i PI ;
~2! f is holonomically equivalent to the product of allf i in a certain order;
~3! $ f i% is moderately independent and any of the free segments lies in intGøe.

FIG. 6. Refinement into two domains.
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Proof: Induction on the cardinality ofI. @I is finite, sinceG is finite and thusL int(G) is finite.#
~1! I 51 is trivial, i.e.,G5Gi is an interior domain itself.
~2! First, we consider the caseI 5$1,2%.
We consider the case thate and m̃ do not lie on the boundary of one and the same inte

domain. Topologically, we have the situation of Fig. 6; if necessary, one has to exchang
domains 1 and 2. Letrmm̃ be the flagpoles off from m to m̃,r,r1 ,r2 ,r12 as in Fig. 6 anda i the
corresponding boundary loop forGi with base pointm1 .

We setf iªrmm̃r1a ir1
21rmm̃

21 for i 51,2, after canceling possible retracings, i.e., we cons
f i to be minimal.

~a! Obviously, f i is a flag forGi .
~b! We havef ; f 2f 1 .
~c! Choose an edgee1#]G1ù]G2 , i.e.,e1#r12, and sete2ªe. Then$ f 1 , f 2% is obviously

moderately independent with the free segmentse1 ,e2# int Gøe. In the case thate andm̃
lie on the boundary of one and the same domain, one has to exchange, if necessr1

andr in the construction above, such thateùr15B. The rest of the proof is completel
analogous.

~3! Suppose the lemma is proven for refinements byk21>2 domains and now let$Gi% be a
refinement ofG by k>3 domains.

~a! Choose anyi PI , such thatGiù]G contains at least one edge ofG and the domainG̃
built from the remainingGj is again simple~W.l.o.g. we seti 5k and j runs in the
following from 1 to k21.) More precisely:]G, ]Gk , andrmm̃ span a finite and for
Gkù]GÞB again connected graph. We demand that the set of the interior doma
this graph is equal to$G̃,Gk% and thatG̃ is simple.

It remains the question, whether such aGk exists. The first condition is trivial. To prove th
second one it is sufficient to choose a domainGk , such that]Gkù]G is connected.

To see this leta be a boundary loop ofG. One gets anã from this, if one replaces the subpa
ak of a belonging to]Gk by the pathãk corresponding to the boundary]Gk\]G. Obviously,ã
is a path inG. ã has neither repetitions of vertices nor of edges, because neithera nor ak have the
like and becauseãk touchesa only in its initial and terminal vertex~these are distinct!. Otherwise,
we would have a contradiction to the connectivity of]Gkù]G. Thereforeã is a Jordan path, i.e.
a boundary of exactly one simple interior domainG̃.

It remains now to ask for the existence of such a domain. Suppose not any]Giù]G is
connected. Then there would exist a pair of indices (i 1 ,i 2), such that we have the situation in Fi
7. Obviously, this is a contradiction to the connectivity ofGi 1

andGi 2
.

Thus, there is a refinement ofG into two simple domains$G̃,Gk%, such thatG̃ itself has a
refinement into$Gj% in G.

~b! Due to point~2! there are minimal flagsf̃ , f k for G̃ andGk , respectively, such that

FIG. 7. Existence of aGk with connected]Gkù]G.
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~i! f ; f̃ f k ~or f k f̃ );

~ii ! $ f̃ , f k% or $ f k , f̃ % is moderately independent, where the free segmentsẽ and ek lie in
int Gøe.

~c! Let ẽ be the free segment off̃ . It is obviously an edge inGù]G̃. Thus, by induction there
are minimal flagsf j , such that:

~i! f̃ is a product of thef j in a certain order;

~ii ! $ f j% is moderately independent, where any of the free segmentsej lies in intG̃øẽ.
~d! Thus,f can be represented as a hoop product of thef i in a certain order.
~e! The proof of the moderate independence of$ f j%ø$ f k% goes completely analogously to th

case of two domains.

~i! Let $ f̃ , f k% be moderately independent. Thenek lies in (intGøe)\ f̃ , otherwiseek would

already be traced byf̃ . Thus, ek5e, since (intG\ f̃ )ù f k5B, and so ẽ# int G. Due to

ej# int G̃øẽ# int G we haveej , ek# int Gøe.
$ f 1 ,...,f k21 , f k% is moderately independent becausee1 ,...,ek21 are free segments off 1 ,...,f k21 ,

andek is free, becauseekù f j#ekù( f̃ ø int G̃)5(ekù f̃ )ø(ekù int G̃)5u. The second intersec

tion vanishes obviously and the first one does because$ f̃ , f k% are moderately independent.

~ii ! Let $ f k , f̃ % be moderately independent. The argumentation is analogous to the other
however, here$ f k , f 1 ,...,f k21% is moderately independent. qed

We have now
Proposition 4.13:Let G,G8 be simple graphs,G8 a refinement ofG and mPG. Then there

exists for any moderately independent flag worldF of G a moderately independent flag worldF8
of G8, such that the following holds for all interior domainsGI of G: The flag f IPF to GI is the
hoop product of exactly these flagsf I ,i I

PF8, that belong to the interior domainsGI ,i I
with

GI ,i I
#GI , in a certain order.
Proof: Obviously, we havem¹GI for all GIPL int(G) becausemPG. First, we defineG9 to

be the graph built from all interior domains ofG8 that are contained in the exterior domain ofG
and from all interior domains ofG. Obviously,G9 is simple,G<G9<G8 and the exterior domains
of G9 and G8 coincide. Now letF5$ f I%5$ f 1 ,...,f L% be moderately independent with the fre
segmentseI . We can refineF to a moderately independent flag worldF 95$ f 1 ,...,f L9%$F of
G9, whereL9 is the number of interior domains ofG9, analogous to the proof of Proposition 4.
Next, we consider for any interior domain ofG the corresponding refinement ofGI into the
GI ,i I

PL int(G8). Due to Lemma 4.12 there exist minimal flagsf I ,i I
with base pointm, such that:

~1! f I ,i I
is a flag to the domainGI ,i I

.
~2! f I is holonomically equivalent to the product of allf I ,i I

in a certain order.
~3! $ f I ,i I

% is moderately independent and any free segmenteI ,i I
is contained in intGIøeI .

~W.l.o.g. eI is an edge ofG on ]GI .)

The flags f I in F 9\F, i.e., those flags that belong to the interior domain ofG8, but are con-
tained in the exterior domain ofG, are left untouched. We only setl Iª1 and f I ,i I

ª f I . Now
(l I is the number of domains, that the GI are refined into! F8
5$ f 1,1,...,f 1,l1

, f 2,1,...,f 2,l2
,...,f L9,1 ,...,f L9,lL9

% is a moderately independent flag world ofG8

because:

~i! eI ,i I
is traced exactly once byf I ,i I

per constructionem and is not traced by anyf I , j with
j , i I due to the just stated point~3!. $ f I , j u j P@1,l I #% is moderately independent with th
free segmentseI , j for a fixed I.

~ii ! But, eI ,i I
is also not traced byf J, j with J,I :

f J, j traces onlyf Jø int GJ and we haveeI ,i I
# int GIøeI . Since the domains ofG are disjoint,

we have intGJù int GI5B, f Jù int GI5B and intGJùeI5B. Finally, we havef JùeI5B since
F 95$ f 1 ,...,f L9% itself is moderately independent. Thus,f J, jùeI ,i I

5B.
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Thus,eI ,i I
fits all conditions for a free segment. SinceF8 is obviously a flag world ofG8, we get

the proof. qed

E. Conclusions

We collect the most important facts with regard to the applications in Sec. VI some
neglecting mathematical details. Any graph is finite, planar, connected, and nonempty.

Let there be given an arbitrary graphG.
~1! There is a refinement ofG to an ordinary graphG8.
~2! Any graph can be naturally associated with a finite set of connected interior domain

an exterior domain~Sec. IV A!. By a refinement ofG this set is refined.
~3! A graph is called simple iff its interior domains are simple, i.e., are bounded by Jo

loops.
~4! Any ordinary graphG8 is subgraph of a simple, ordinary graphG9. The exterior domains

of both graphs are the same~Proposition 4.3!.
~5! Any simple domainG in a graph can be naturally associated with a flag, i.e., a l

running from a base pointm to ]G, traversingG exactly once and running back tom ~Definition
4.2!.

~6! By choosing a flag to each interior domain one gets a flag world~Definition 4.3!. It is
called complete iff it spans the full hoop group ofG.

~7! We are looking for moderately independent and complete flag worlds. The complet
ensures that any loop inG can be expressed by elements of a flag world. The moderate inde
dence is necessary for the integration of cylindrical functions. Fortunately, the moderate ind
dence implies the completeness~Proposition 4.7!.

~8! One can naturally construct flag worlds to any simple graph. For this one choo
maximal tree in this graph and then for any interior domain a flag consisting of a path alon
tree, a boundary loop of the corresponding domain and the inverse initial path. Any suc
world is moderately independent~Proposition 4.8!.

~9! There is a moderately independent flag world for any simple graph~Corollary 4.9!. Thus,
any hoop can be represented as a hoop product of mutually nonoverlapping loops.

~10! Under refinement of a simple domainG with a flag f one can choose flagsf i to the new
domainsGi such that these generate all hoops ‘‘inG’’ and that f can be expressed as a hoo
product of thef i in a certain order~Lemma 4.12!.

~11! In simple graphsG8 any moderately independent flag worldF of a simple subgraphG
can be refined to a moderately independent flag worldF8 von G8 such that any flagf GPF is a
product of the flagsf G8PF8 to the interior domainsG8#G in a certain order~Proposition 4.13!.

In Sec. VI we will see that especially the last point is crucial for the regularization of
Wilson loop functionals. We can now decompose the ‘‘banner’’ of a given flag in smaller ‘‘b
ners.’’ But all small ‘‘banners’’ have ‘‘equal rights’’ sincef I; f I ,1••• f I ,l I

. That is why they give
identical contributions if we integrate cylindrical functions inf I .

V. INTEGRATION ON A/G

In this section we slightly generalize the integration calculus onA/G which was in detail
investigated by Ashtekar and Lewandowski.2 Their key idea was to first define an equivalen
relation onA/G which identifies two connections iff their holonomies on a certain finite setb of
hoops are equal~up to conjugation!, i.e., factorizing with respect to that relation they extracted
properties of a generalized connection on that finite set. But, if one knows these properties
finite sets of hoops, one can reconstruct viaA/G;Hom(HG,G)/Ad the generalized connection i
A/G. The main advantage of the factorization is the reduction of the infinite-dimensional pro
to a finite-dimensional one, sinceA/G/;>Hom(HG(b),G)/Ad>G#b/Ad. Comparing that situ-
ation with the case of infinite-dimensional topological vector spaces, AL defined first cylind
functions as functions onA/G/; and second the integral of cylindrical functionsf 5pb* f b via
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*A/G f , dm5*A/G/; f b dmb , wheredmb is a measure onA/G/;>G#b/Ad. The main problem is
to guarantee that this integral is well defined. AL could prove this for the choice thatdmb is the
Haar measure onG#b/Ad, and if only strongly independentb are allowed for calculating the
integral above. The use of merely weakly independentb leads to contradicitons. Our task is no
to prove that the use ofmoderatelyindependentb keeps instead the definition valid. This point
crucial for the calculation of the Wilson loop expectation values using the not strongly
moderately independent flag worlds.

A. Equivalence of connections

We recall2 the following.
Definition 5.1:Equivalence of Connections. LetHG(b)#HG be a finitely generated subgrou

of the hoop groupHG with weakly independentb. Two ~generalized! connectionsĀ1 andĀ2 are
calledequivalent with respect toHG~b! iff

hĀ1
~g!5g21hĀ2

~g!g, ;gPHG~b!

with a fixed ~hoop independent! gPG.
Furthermore, letpb :A/G→A/G/; be the corresponding canonical projection.
Using the bijectionA/G↔Hom(HG,G)/Ad Ashtekar and Lewandowski2 could easily analyze the
structure ofA/G/;.

Lemma 5.1:~1! There is a bijectionA/G/;→Hom(HG(b),G)/Ad. That means, two gener
alized connections are equivalent if and only if they coincide mod Ad onHG~b!.

~2! Any choice ofn weakly independent generatorsb iPHG(b) yields a bijectionfb :A/G/
;→Gn/Ad.

~3! GivenHG(b)#HG the topology onA/G/; induced by the last point is independent of t
choice of generators.
Furthermore, we have2

Corollary 5.2: Let HG~b! be a finitely generated subgroup of the hoop group and; the
induced equivalence relation onA/G. Then any equivalence class@Ā#PA/G/; contains a regular
connection.

B. Cylindrical functions

In the following we setBbªHom(HG(b),G)/Ad>Gn/Ad with b a weakly independent se
of n hoops. Furthermore we usually do not distinguish between a functionf PHA and its Gelfand
transform f̃ :A/G→C.

We now provide a slightly modified version of the Ashtekar–Lewandowski definition
cylindrical function.

Definition 5.2: Cylindrical Function.f :A/G→C is called cylindrical function iff there is a
finite setb of weakly independent hoops and a continuousf b :Bb→C, such thatf 5pb* f b . Iff f
can be obtained that way for a givenb, f is calledcylindrical with respect tob.

The set of all cylindrical functions is denoted byC.
It is very simple to verify

Lemma 5.3:Let f be cylindrical with respect tob. Thenf is cylindrical with respect toa, if the
following holds:

~1! a is weakly independent.
~2! HG(a)$HG(b).

Remark:In contrast to Ref. 2 we define cylindrical functions not only on strongly indep
dent, but also on weakly independentb. For the present the set of cylindrical functions seems
be enlarged. But, it is easy to see, that given anf PC there is a seta of strongly independent loops
such thatf is cylindrical with respect toBa .
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Let f PC, i.e., there is a finite setb of weakly independent hoops with respect to thatf is
cylindrical. Following Lemma 3.8 there is a seta of strongly independent loops, such th
HG(b)#HG(a). Due to the just proven lemmaf is cylindrical with respect to the strongl
independent seta. Thus, our definition is equivalent to that one in Ref. 2.
Finally, we quote2

Proposition 5.4:C is a normed*-algebra andC̄ is isomorphic toHA.

C. The induced Haar measure on A/G

Definition 5.3:Let be f PC andb#HG be a moderately independent set ofn hoops, such that
f is cylindrical with respect tob, i.e., f 5pb* f b with a continuous functionf b :Bb→C. Further-
more,dmb is an arbitrary measure onBb . Then we define*A/G f dmª*Bb

f b dmb .
We have to guarantee that the measures on the distinctBb are compatible in order to make th
integral in the definition above well-defined.

Ashtekar and Lewandowski suggested to choose the Haar measure on eachBb , b strongly
independent, induced fromGn/Ad with n the cardinality ofb. Indeed, they could prove that th
definition above provides a well-defined integral onA/G. We are only left with the proof that the
integral is still well-defined if we allowb to be merely moderately independent instead of stron
independent. Fortunately, for this we can reuse the AL proof with slight modifications. Thu
have

Theorem 5.5:Let *A/G f dm0 be defined as in Definition 5.3, where the measure onBb is in
each case the Haar measure ondnmHaar.

~1! The integral*A/G f dm0 is well-defined.
~2! The functionalF:HA→C, f ° *A/G f (Ā)dm0(Ā) is linear, continuous, positive and Diff(M )

invariant.
~3! The cylindrical measuredm0 is a regular, positive and Diff(M )-invariant measure onA/G.

Proof: It remains to prove the integral to be well defined. If it is, then our measure coinc
with the AL measure defined only by the use of strongly independent hoops, since the AL m
is unique and we did not remove any of the conditions the integral has to fulfill—becaus
strongly independentb is moderately independent. Consequently, all the other assertions o
theorem already proven in Ref. 2 using the strong independence can be generalized to ou
lem.

~1! Let there be given anf PC and two setsb8,b9#Lm of moderately independent loops, suc
that f is cylindrical with respect toBb8 andBb 9 .

~2! W.l.o.g. choose the free segmentsei 8
8 ,ei 9

9 of b i 8
8 ,b i 9

9 , such that they are in each cas
completely contained in an edge ofGb8øb9 . ~If necessary, freeb8 andb9 from retracings and then
use the argumentation of Proposition 3.10. For the definition ofGb8øb9 see Construction 3.4.!
Now connect any vertexvÞm of Gb8øb9 with the base pointm by a piecewise analytic Jorda
pathhv , such thathvùhv8 , ;vÞv8 andhvùGb8øb9 consist of at most a finite number of point
Construct all pathsb iªhe

i
2eihe

i
1

21
, where ei runs over all edges ofGb8øb9 . Obviously,

b8,b9#HG(b),bª$b i u i 51,...,n%, and alsoHG(b8),HG(b9)#HG(b). More precisely: Letb j8

5Pkj 51
K j ei ( j ,kj )

e( j ,kj ) be a ~minimal! decomposition of b j8 into a sequence of edges, sob j8

;Pkj 51
K j b i ( j ,kj )

e( j ,kj ) is a ~minimal! decomposition ofb j8 in b i . The same holds forb j9 .

Next, b is strongly independent with the free segmentsei .
SinceHG(b8),HG(b9)#HG(b), f is also cylindrical with respect toBb . Thus, it is sufficient to
prove*Bb8

f b9 dmBb8
5*Bb

f b dmBb
.

~3! Now we can express anyb i8Pb8 by a product ofb iPb, such that for alli P@1,n8# there
exists aK( i 8)P@1,n# and that the following holds:

~a! iÞ j 8⇔K( i 8)ÞK( j 8);
~b! bK( i 8) is not used in any decomposition of theb j 8

8 , j 8, i 8, into elements ofb;
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~c! bK( i 8) ~or bK( i 8)
21 ) is used in any decomposition ofb i 8 exactly once.

To see this chooseK( i 8), such thateK( i 8) contains the free segment ofb i 8
8 . Since there is a

bijection ei↔b i , these three conditions are only a reformulation of the criteria for the mode
independence of theb i 8

8 .
~4! Sincef is as well cylindrical with respect tob as with respect tob8, f 5pb* f b5pb8

* f b8 .
Analogously to Lemma 5.3 we havepb85ppb , where

p: Gn/Ad → Gn8/Ad

@g1 ,...,gn#Ad ° F )
k151

K1

gi ~1,k1!

e~1,k1! ,..., )
kn851

Kn8

g
i ~n8,kn8!

e~n8,kn8!G
Ad

is defined due to the decompositions

b i 8
8 5 )

ki851

Ki 8

e
i ~ i 8,ki 8!

e~ i 8,ki 8!
.

Thus, we have

f b5p* f b8 , i.e., f b~@g1 ,...,gn#Ad!5~p* f b8!~@g1 ,...,gn#Ad!

5 f b8S F )
k151

K1

gi ~1,k1!

e~1,k1! ,..., )
kn851

Kn8

g
i ~n8,kn8!

e~n8,kn8!G
Ad
D .

~5! Since we fixed the generators ofHG~b!, we can interpret the integration onBb as an
integration onGn/Ad. Since the Haar measure is Ad invariant, we can pull back any functio
Gn/Ad onto the wholeGn and integrate hereon. The analogon holds forBb8 .

~6! Now we can integrate~consideringf b to be both a function onGn andGn/Ad):

E
Bb

f b dmBb
5E

Gn)i 51

n

dm i f b~g1 ,...,gn!

5E
Gn)i 51

n

dm i f b8S )
k151

K1

gi ~1,k1!

e~1,k1! ,..., )
kn851

Kn8

g
i ~n8,kn8!

e~n8,kn8!D
5E

Gn2n8 )
i 51,i ¹K~@1,n8# !

n

dm iE
G

dmK~1!¯

3E
G

dmK~n8! f b8~ ...,gK~1! ...,...,...,gK~n8! ,...!

~permutation of the order of integration. The three dots in
...,gK( i 8) . .. denote a product ofgi , which because of the
construction above does not contain agK( j 8) with j 8> i 8.)

5E
Gn2n8 )

i 51,i ¹K~@1,n8# !

n

dm iE
G

dmK~n8!E
G

dmK~1! ...

3E
G

dmK~n821! f b8~ ...,gK~1! ...,...,...,gK~n821! ,...,gK~n8!!
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~results from the translation invariance of the Haar measure,
since for all j 8,n8,...,gK( j 8) ,... does not contain a factor
gK(n8) and sincegK(n8) appears in ...,gK(n8) ,... exactly once.!

]

5E
Gn2n8 )

i 51,i ¹K~@1,n8# !

n

dm iE
G

dmK~1! ...

3E
G

dmK~n8! f b8~gK~1! ,...,gK~n8!!

~We used successively the translation invariance of the
Haar measure in order to eliminate thē products as in
the step above.!

5E
Gn8)i 51

n8

dm i f b8~g1 ,...,gn8!

~Normalization of the Haar measure and bijection
i 8↔K( i 8))

5E
Bb8

f b8 dmBb8
.

~7! Thus, *A/G f dm0 is well-defined. ~We assumed in our calculation, that in any ca
...,gK( i 8) , ... appears and...,gK( i 8)

21 ,... does not. Otherwise in all steps but the but the third we

a function partially ingK( i 8)
21 . The claim remains valid since the Haar measure is invariant u

inversions, i.e., we have*G dmHaarf (g)5*G dmHaarf (g21).)
Remark:The proof that the integral is well-defined gives us the earlier mentioned import

of moderate independence. Though the flag worlds in Sec. IV are usually not strongly ind
dent, they can be used for the integration calculus. If one instead demanded only the
independence for the definition of the integral, the integral would becomeill-defined. Let, e.g.,
G5SU(2) andb be a strongly or, equivalently, a moderately independent loop.gªb2 is no
longer moderately independent, but, of course, still weakly independent, since extractin
square root is possible in SU~2!. Let now f 5tr hg5tr hb

2. f is cylindrical with respect tog and
with respect tob. We integratef with respect tog and receive*A/G f dm05*G tr gdmHaar50. But,
with respect tob we have*A/G f dm05*G tr g2 dmHaar521, i.e., the integral is ill-defined. Thus
the moderate independence is best-suited for the mathematically rigorous calculation of th
son loop expectation values in Sec. VI.

VI. CALCULATION OF THE WILSON LOOP EXPECTATION VALUES

In this section the expectation values of the Wilson loop products^Ta1
¯Tan

& of the pure
Yang–Mills theory are computed. Thiemann3 and Ashtekaret al.4 were the first who succeeded i
calculating^Ta1

¯Tan
&—at least for loopsa i that lie in a certain quadratic lattice—in the Ash

tekar framework. Our goal is now to generalize their results for arbitrarya i .
It is well known2 that given the expectation values^Ta1

¯Tan
& for all a i one can reconstruc

the measuredmYM of the theory and vice versa. A direct definitiondmYMªe2S@Ā#dm0 is difficult
since one has to define the actionS not only onA/G but on the wholeA/G. The first step to
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overcome this problem is an appropriate regularizationSreg
W (A) of SYM(A)5*M

1
4 tr FmnFmn dx.

Since the only variables useda priori in the Ashtekar approach are the Wilson loops, it seems v
likely to use the lattice regularization. Strictly speaking, TA1 set

Sreg
W ~A!ª

N

g2a2 (
h

S 12
1

N
Re trhh~A! D , ~2!

wherea denotes the lattice spacing,h runs over all plaquettes of the lattice, andhh(A) is the
holonomy around the boundary ofh. On the one hand,Sreg

W converges naively toSYM , when the
lattice grows ad infinitum anda goes to zero, and on the other hand,Sreg

W is a function of Wilson
loops, i.e., it can be naturally extended fromA/G onto the wholeA/G. The second step of TA1

was now the definition of̂ Ta1
¯Tan

& exchanging limit and integration~L is the length of the
lattice!:

^Ta1
¯Tan

&ª lim
a→0,L→`

1

Za,L
E
A/G

dm0 e2Sreg
W

Ta1
¯Tan

‘ ‘ 5 ’ ’
1

Z E
A/G

dm0 e2 lima→0,L→`Sreg
W

Ta1
¯Tan

.

Now they were able to calculate explicitly the expectation values for alla1 ,...,an contained in a
quadratic lattice. Finally, they suggested to compute these values for generala i by approximating
them by certain lattice loops.

We avoid this problem using a slightly modified regularization. The idea is to adap
regularization to the given loops and not vice versa. We consider any finite lattice with c
interior domainsG generalizing the quadratic plaquettesh. Then we replace in~2! h by G and
alsoa2 by uGu, the area of the interior domainG, in the denominator. Following the calculation
of TA1 we get an explicit formula for̂Ta1

¯Tan
& with arbitrarya1 ,...,an that coincides with the

naive limit of TA1.

A. Regularization of the Wilson loop functionals

In this section we want to introduce our regularization.
Definition 6.1:Generalized Yang–Mills action. LetG be a simple domain inR2,uGu its area,

aG a boundary loop ofG and @A#PA/G. Then we set

SG~@A# !ª
N

g2

1

uGu S 12
1

N
Re trhaG

~A! D5
N

g2

1

uGu ~12ReTaG
~A!!.

~This definition is obviously independent of the choice of the boundary loop and the chosA
P@A#.)

Now let G be a finite simple graph inR2 with interior domainsG. G→R2 means that the
supremum supGPG diamG of the diameters of the interior domains goes to 0 and the supremu
the diameters of all circles with center inm, which are completely contained inøḠ goes to`.
~The choice ofm is arbitrary. One can choose any point inM5R2, but one has to fix that poin
once for all.!

We set theregularized Yang–Mills action to be SG(@A#)ª(G SG(@A#) and defineS(A)
[S(@A#)ª limG→R2 SG(@A#).

Finally let ĀPA/G. We defineS(Ā)ª limG→R2(G SG(Ā) to be thegeneralized Yang–Mills
action.

Remark:While we have written the present paper the article ‘‘Study of Wilson loop funct
als in 2D Yang–Mills theories’’ of Aroca and Kubyshin5 appeared. They used an analogo
regularization, i.e., they also permitted arbitrarily bounded domains instead of the usual qua
plaquettes. They even considered a more general class of actionsSG(A)ª(G S1(haG

(A)), where
G runs over all plaquettes which the lattice on the~compact! two-dimensional manifold is divided
into and whereS1 has to fulfill the following axioms
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~1! S1(g)5S1(g21) for all gPG;
~2! S1(g) has an absolute minimum ing5eG ;
~3! limG→$x% (1/uGu)S1(haG

(A))5 1
2 tr Fmn(x)Fmn(x).

Our definition reduces to that of Thiemann, Ashtekaret al.3,4,12if all domainsG are quadratic and
congruent with areauGu5a2 ~a... lattice spacing!. One can prove—at least in a naive limit—th
S(A) converges pointwise toSYMª

1
4*M tr FmnFmn dx with Fmn5] [mAn]2 ig@Am ,An#.

Note that the limitS(Ā) is very formal because one can easily prove that this limit neithe
unique nor exists for generalĀPA/G However, why should we need the existence or uniquen
of the limit S(Ā)? Actually, we only have to calculate terms like

E
A/G

expF2 lim
G→R2

(
G

SG~Ā!G T̃a1
~Ā!¯T̃an

~Ā!dm0 .

In order to use the integration calculus one has to exchange the limit and the integral.A priori we
do not know, whether this is—at least mathematically—correct. Astonishingly, one can prov
such an exchange makes the limitof the integralsindependent of the limiting process. By now, w
do not really know which effect is responsible for that behavior.

B. Results

Given a finite seta5$a1 ,...,an% of loops. We have to calculate the following expression

x~a!ª lim
G→R2

1

Z E
A/G

expF2(
G

SG~Ā!G T̃a1
~Ā!¯T̃an

~Ā!dm0 .

Z is chosen here so that we havex(1)51. ~Strictly speaking,Z actually depends onG, but we
suppress this here and in the sequel.!

Due to the analyticity of the loops the seta generates a finite, nonempty, planar and connec
graphGa . We enlargeGa to an ordinary graph~Sec. III D! and afterwards to a simple, ordinar
graph~Proposition 4.3! again denoted byGa with the interior domainsGI , I 51,...,l. Furthermore
we choose any moderately independent flag worldF5$ f I% for Ga existing due to Proposition 4.9
Now, due to Corollary 4.10 any hoop inGa can be expressed by a hoop product of flags inF, i.e.,
by a product of nonoverlapping loops:

a i5)
j 51

j i

f I ~ i , j !
e~ i , j ! , ; i 51,...,n;e~ i , j !561.

Finally, we demand that any graphG in the limiting process is a refinement ofGa .
Thus, we arrived at the point where we can reuse the calculations of TA1. We have to replace

simply the plaquette loops in TA1 by the flags and, analogously, the corresponding refineme
Therefore we skip the technical details~for that purpose, see, e.g., Ref. 13 and present only
result:

x~a!5
1

Nn )
I 51

l S (
~m!

e2~1/2!g2c~m!uGI up~m!
~n!

^
n1D

AW I

BW I

C
CW
DW E

EW
FW

,

which for a1 ,...,an contained in a quadratic lattice coincides with the results of TA1. Here,p(m)
(n)

are the projectors built from the Young tableaux~m! for ^
ng and c(m) is the eigenvalue of the
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corresponding quadratic Casimir operator.n depends only on the decomposition of thea i into the

flags f I . Finally, C
CW
DW

and E
EW
FW

are certain tensors andAW I and BW I indices whose structure is als
determined by the algebraic structure of that decomposition.

For G5U(1) we get

x~a!5)
I 51

l

e2~1/2!g2nI
2uGI u,

wherenI is the ‘‘effective’’ winding number ofa1¯an around the domainGI .
In conclusion we emphasize that the limits above are completely independent of the lim

processG→R2 supposedGa is a restriction of any graph in the limiting process. Thus, the lim
exists and is unique.

VII. DISCUSSION

In Sec. VI we ‘‘derived’’ the expectation values of the Wilson loop products. Actually,
word ‘‘derived’’ is an exaggeration—de facto wedefinedthe values even if the Yang–Mills actio
on A/G influenced the definition ofx. But we did not deduce the values ofx from SYM in a
mathematically correct way. Formally we gotx by

x~a!5E
A/G

dm0 e2SYM~Ā!Ta1
¯Tan

5E
A/G

dm0e2 lim Sreg~Ā!Ta1
¯Tan

,

i.e., by extendingSYM ontoA/G, and subsequently by exchanging the limiting process and
integration

x~a!ª lim E
A/G

dm0 e2Sreg~Ā!Ta1
¯Tan

.

Consequently, this definition is the actual start of our considerations. In principle, that appro
a kind of constructive quantum field theory that needs a physical justification only a poster

In Sec. VI A we already noted that the regularization ofSYM by

Sª lim
G→R2

(
G

N

g2

1

uGu S 12
1

N
Re trhaGD

makes no problems onA/G, but breaks down onA/G, because the limit does not exist in gener
Thus,Scannot be inHA. But, surprisingly the exchange of limit and integral yields very regu
results. We have even shown13 that the limit x~a! for our choice of regularization exists for a
finite a#Lm and is independent of the limiting process. Is there a deeper reason behind th

However, we know that the given expectation values define a unique Borel measurem on
A/G2 because we can extend these values to a linear continuous positive functional onHA. Note
that originally the expectation values are not mutually independent, but subjected to the so
Mandelstam relations. Since we defined the expectation values using integrals onTa , these
relations are indeed implemented. What properties doesm have? Ism strictly positive or ism
absolutely continuous with respect to the induced Haar measurem0? Is it even possible to defin
an actionS on A/G directly, i.e., without regularization, and is it therefore possible to get
desired measure bydmªe2Sdm0?

The choice of regularization is also worth being discussed. In the present case the regu
tion of SYM depends crucially on the dimension two. It cannot be extended to three or
dimensions because it uses—roughly speaking—the chance that for two-dimensional man
loop has both dimension and codimension one. But the codimension is decisive. To avoid
malization one has to regularize thed-dimensional Yang–Mills theory by
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lim
sup diamG→0

N

g2

1

vol G (
$G%

S 12
1

N
Re trP expS 2 igE ]GAD D ,

where $G% is a decomposition of the base manifold into certaind-dimensional objects. How to
connectP exp(2ig*]GA) andP exp(2ig*aA)? Moreover, the used propositions for planar grap
cannot be applied to higher dimensions. Thus, from dimension three on problems of knot
will be important and so will methods of the topological quantum field theory. Perhaps u
algebraic topology or invariant theory one can specify a class of constructible models.

Let us return finally to the concrete generalization of the two-dimensional Yang–Mills th
within the Ashtekar approach. In the last few years some papers were published that calcula
expectation values of the Wilson loops inA/G ~e.g., Refs. 14–16! and performed the continuum
limit. They provided an area law, an indication for the confinement in the theory. All in all th
papers delivered the same result as the Ashtekar approach does today. Thus, we get
justification for our choice of the regularization. Perhaps it is possible to translate further m
into the new approach and to confirm that way the results got onA/G. However, it seems to be
unlikely that one gets—at least in the next time—general assertions for the equivalence
‘‘classical’’ and the Ashtekar approach. But, from the mathematical point of view this woul
very interesting because some problems of the classical approach could be circumvented.
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APPENDIX: PROOF OF PROPOSITION 3.1

Lemma A.1.:Let g be a Jordan path inM contained completely in a chartUi with trivialization
x i and p any point in the fiber overg~0!. Furthermore, letG be compact and connected ande

P]0,1
2@ arbitrary.

Then tg,Ae,g,i
(p)5Pg(1) , where Ae,g,i is defined by Ae,g,iª$APAuAi(g(t))[0 for

t¹@e,12e#%, i.e., any point ofPg(1) can be reached by parallel transport starting inp with respect
to connections inAe,g,i . @tg,A(p):P→P is the parallel transport ofp alongg with respect to the
connectionA andtg,p(A) the corresponding group element.#

Proof: ~1! Let p[piªsi(g(0))ªx i
21(g(0),eG). Thentg,p(A)5P exp@2*gAi(ġ)dt#, where

ġ is the tangential vector field tog andAi is the connectionA in the local trivializationx i . ~We
dropped the factorig.!

~2! Obviously, there is a one-formai :TUi→C with ai(ġ)ug(@0,e#ø@12e,1#)[0 and
2*gai(ġ)dt51Þ0.

~3! SetAl,iªai ^ l for anylPg and extendAl,i to a connectionAl on TP. ~This is possible,
see, e.g., Ref. 17, p. 67.! Obviously,AlPAe,g,i for any lPg.

~4! For l constant, we havetg,p(Al)5Pexp@2(*gai(ġ)dt)l#5el.
~5! Since the image of the Lie algebrag under the exponential map is the connected com

nent of unity of the Lie groupG, we haveG$tg,p(Ae,g,i)$$tg,p(Al)ulPg%5$elulPg%5G,
i.e., G5tg,p(Ae,g,i) and thustg,Ae,g,i

(p)5Pg(1) .
~6! Now let p be arbitrary. Since the parallel transport commutes with the right action

havetg,Ae,g,i
(p)5(Ad cg)tg,Ae,g,i

(pi)5(Ad cg)5Pg(1)5Pg(1) becauseG acts freely onP. We
choseg, such thatp5pi•g. qed

Proof: ~Proposition 3.1! Let aª$a1 ,...,an% be a set of moderately independent loops. W
have to show that for anyn-tupel (g1 ,...,gn)PGn there is anAPA with ha i

(A)5gi ;1< i

<n. ~Note, that we have fixed a trivializationx and therefore a base pointp in Pm from the very
beginning.!
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Fix a covering$Uk% of M. Choose a free segmentei to anya iPa due to Definition 3.2, such
that

~1! a i5 f i
2ei f i

1 with f i
6ùei5B anda jùei5B, ; j, i and

~2! any free segment lies completely in a chartUi .

Next, choose open neighborhoodsVi of ei , such thatVi#Ui are mutually disjoint and tha
a jùVi5B for any j , i , and modify the covering ofM in that way, thatVi lies in exactly one
chart~denoted again byUi). Furthermore, choose openVi ,e and compact setsVi

c ,Vi ,e
c with some

eP]0,1
2@ , ei#Vi

c#Vi and Vi ,e
c #Vi ,e#Vi

c , Vi ,eù f i
65B and g i(t)PVi ,e

c ⇔tP@e,12e#, where
g i :@0,1#→ei is a parametrization ofei . ~See Fig. 8.!
It is a well-known fact that there exists afPC`(M ) with f[1 on øVi

c andf[0 on M \øVi

and analogously af i ,ePC`(M ) with f i ,e[1 auf Vi ,e
c andf i ,e[0 on M \Vi ,e for all i.

Let BPA be some connection.
~1! i 50.
A(0)

ªB2fB is again a connection.~This simple notation means: There is anA(0) for thatB,
such thatAi

(0)5(12f)Bi on øVi and elsewhereB5A(0) since because of the special selection
Vi the compatibility conditions of chart changes are not touched.! We have nowAj

( i )[0 onej for
all j . i 50 ~and obviouslyha j

(A( i ))5gj for all j < i 50).
~2! i .0.
Let pi ,2ªt f

i
2 ,A( i 21)(p)PPg i (0) be the parallel transport toA( i 21) of p along f i

2 and pi ,1

ªt f
i
1 ,A( i 21)

21
(p•gi) the ‘‘inverse’’ parallel transport with respect toA( i 21) along f i

1 leading from

Pg i (1) to p•gi . Due to the lemma above there is anA8PAe,g i ,i with pi ,15tei ,A8(pi ,2) and we
have

p•gi5t f
i
1 ,A~ i 21!~tei ,A8~t f

i
2 ,A~ i 21!~p!!!

5t f
i
1 ,A~ i 21!1f i ,eA8~tei ,A8~t f

i
21,A~ i 21!1f i ,eA8~p!!! ~due to f i ,e[0 on f i

6!

5t f
i
1 ,A~ i 21!1f i ,eA8~teiA

~ i 21!1f i ,eA8~t f
i
2 ,A~ i 21!1f i ,eA8~p!!!

~due to Ai
~ i 21!uei[0 and f i ,eusuppA

i8ùei
[1!

5t f
i
2ei f i

1 ,A~ i 21!1f i ,eA8~p!5ta i ,A~ i !~p!,

FIG. 8. The domainsVi , Vi
c , Vi ,e , andVi ,e

c .
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where we setA( i )
ªA( i 21)1f i ,eA8. Obviously,A( i ) is a connection, and we getha i

(A( i ))5gi .
Since A( i )5A( i 21) outside Vi and Viùa j5B ; j, i , we have alsoha j

(A( i ))5ha j
(A( i 21))

5gj , ; j, i by induction. Furthermore, we haveAj
( i )[0 on ej for all j . i .

The proof ends settingAªA(n). qed
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Quantization of massive vector fields in curved
space–time

Edward P. Furlani
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260

~Received 7 December 1998; accepted for publication 12 March 1999!

We develop a cannonical quantization for massive vector fields on a globally hy-
perbolic Lorentzian manifold. ©1999 American Institute of Physics.
@S0022-2488~99!04506-5#

I. INTRODUCTION

Rigorous theories have been developed for scalar, Dirac, and electromagnetic quantum
on globally hyperbolic manifolds.1–6 However, apparently few rigorous results exist for mass
vector fields on such manifolds.7 A particle described by such a field is thev-meson with a mass
mv5783 MeV.8 In this article, we develop a canonical quantization for massive vector field
a globally hyperbolic Lorentzian manifold. The analysis is divided into two parts, the clas
problem and the quantum problem.

For the classical problem, we start with the equations of motion (d (4)d(4)1m2)A50 which
are the curved space–time generalizations of Proca’s equations. We reduce these to a hy
system (h1m2)A50, and a constraintd (4)A50. The hyperbolic system has global fundamen

solutionsEm
6(1)

and a propagatorEm
(1)

5Em
1(1)

2Em
2(1)

.9–12 We introduce a series of operatorsr (0) ,
r (d) , r (d) , and r (n) that map a solutionA to its Cauchy dataA(0) , A(d) , A(d) , and A(n) ,
respectively. These operators have transposesr (0)8 , r (d)8 , r (d)8 , andr (n)8 . We construct a series o
operatorsEm

(1)
r (0)8 , Em

(1)
r (d)8 , Em

(1)
r (d)8 , andEm

(1)
r (n)8 and show that these operators collective

map Cauchy data to a unique field solution. We apply these operators to obtain a global s
for Proca’s equations wherein we satisfy the constraint by restricting the Cauchy data. Ou
resentation of the solution is apparently new, and especially useful for field quantization
demonstrate. This method also applies to Maxwell’s equations. Since these equations are
interest, but not needed for our quantum problem, we treat them separately in an appendi

For the quantum problem, we start with a representation (f,p,H) of the CCRs on an arbitrary
Cauchy surface. We construct a space–time field operatorA in terms of the data (f,p) in
accordance with the classical initial value problem. We then pass to the Weyl formW of the CCRs
and study theC* algebra of observablesA generated byW. We show thatA is independent of the
representation on a given Cauchy surface, and also independent of the Cauchy surface. Th
generalizes Dimock’s treatment of scalar fields.3

II. PRELIMINARY CONCEPTS

Let (M,g) be a globally hyperbolic, orientable, time-orientable, space–time consisting
smooth four-dimensional manifoldM endowed with a smooth Lorentzian metricg with signature
(21,1,1,1). As a consequence of global hyperbolicity, there is a~nonunique! smooth time coor-
dinatet, and (M,g) can be foliated by a one-parameter family of Cauchy surfaces$t%3 S t giving
it the topologyM'R3S.2,13 Each Cauchy surfaceS inherits a smooth, proper Riemannia
metric g. We label events inM using (t,x) wherexP S, and adopt the standard convention
which Greek subscripts apply to (M,g) taking values from 0 to 4, and Latin subscripts apply
(S,g) and range from 1 to 3.

Let E (p)(M) denote the space of smooth, real-valuedp-forms on (M,g) and D(p)(M)
specify such forms with compact support. These spaces have dualsE 8(p)(M) andD8(p)(M) with
26110022-2488/99/40(6)/2611/16/$15.00 © 1999 American Institute of Physics
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topologies similar to those defined for the corresponding spaces onRn.10–12 We use the standard
notation^T,F& to denote the action of a distributionT on a test functionFPD(p)(M). Special-
izing to TPD(p)(M),D8(p)(M) we have^T,F&5^T,F&M , where

^T,F&M[E
M
T`* (4)F, ~1!

is the global inner product, and* (4):D(p)(M)→D(42p)(M) is the Hodge star operator wit
respect tog ((* (4))25(21)p11). On (M,g) we have an exterior derivatived(4) and codifferen-
tial d (4)5* (4)d4* (4) which are the formal adjoints of one another^d(4)A,F&M5^A,d (4)F&M ,
where APD(p21)(M) and FPD(p)(M). There is also the D’Alembertianh5(d (4)d(4)

1d(4)d (4)) which is formally self-adjoint~on Minkowski spaceh5]0
22¹2).14,15

Let E (k)(S), D(k)(S), E 8(k)(S) andD8(k)(S) denote the corresponding spaces on (S,g). For
TP D(k)(S),D8(k)(S) we have^T,F&5^T,F&S , where

^T,F&S[E
S
T`* (3)F, ~2!

is the global inner product on (S,g), and* (3): D(k)(S)→D(32k)(S) is the Hodge star operato
with respect to g ((* (3))251). The exterior derivatived(3) and codifferential d (3)

5(21)k* (3)d(3)* (3) on (S,g) are formal adjoints of one another^d(3)A,F&S5^A,d (3)F&S , with
APD(k21)(S) and FPD(k)(S). The Laplace–Beltrami operatorn5d (3)d(3)1d(3)d (3) is for-
mally self-adjoint.14,15 Finally, we work in units in whichc51.

III. PROCA’S EQUATIONS

We study the initial value problem for a vector fieldA of massmP(0,̀ ) satisfying the
curved space–time generalization of Proca’s equations

~d (4)d(4)1m2!A50. ~3!

These equations reduce to the hyperbolic system

~h1m2!A50, ~4!

and a constraint

d (4)A50. ~5!

The system ~4! has unique fundamental solutionsEm
6(1)

(p,q)PD8(1)(Mp3Mq) where

Em
6(1)

(p,q):D(1)(Mq)→E (1)(Mp) (p,qPM represent space–time events andMp , Mq identify

the action ofEm
6(1)

(p,q)).9,10,16These solutions satisfy

~hp1m2!Em
6(1)

~p,q!5d (1)~p,q!, ~6!

where d (1)(p,q) is the Dirac 1-tensor kernel, and suppEm
6(1)

(•,q),J6(q). Also A6(p)

5^Em
6(1)

(p,q),F(q)&Mq
satisfies (h1m2)A65F, with

supp~A6!,J6~supp~F!!, ~7!

whereJ6(S) is the set of point in (M,g) that can be reached from the setS,M by a future/past
directed causal curve.10

The kernelsEm
6(1)

(p,q) are identified with operatorsEm
6(1)

:D(1)(M)→E (1)(M) and from
~6!,
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Em
6(1)

~h1m2!5~h1m2!Em
6(1)

5I . ~8!

The Em
6(1)

, which are linear and continuous, give rise to transpose operatorsEm
68(1)

:E 8(1)(M)

→D8(1)(M) which are also continuous.17 Sinceh1m2 is formally self-adjointEm
68(1)

5Em
7(1)

on

D(1)(M). Moreover, sinceEm
68(1)

are linear and continuous onE 8(1)(M) we extendEm
6(1)

from
D(1)(M),E8(1)(M) to E8(1)(M), i.e.,

Em
7(1)

5Em
68(1)

:E 8(1)~Mp!→D8(1)~Mq!. ~9!

Lastly, we introduce the propagator

Em
(1)

5Em
1(1)

2Em
2(1)

, ~propagator!,

where (h1m2)Em
(1)

50. This operator has a transposeEm
8(1)

5Em
18(1)

2Em
28(1)

and from~9! we have

Em
8(1)

52Em
(1)

:E 8(1)~Mp!→D8(1)~Mq!. ~10!

Next, we introduce a series of operators that collectively map a solution of~4! to its data.
Choose any Cauchy surface say$0%3S, and leti :S→M be the inclusion operator with pullbac
i * . We define the operators

r (0)[ i * ~pullback!

r (d)[2* (3)i * * (4)d(4) ~ forward normal derivative!
~11!

r (d)[ i * d (4) ~pullback of divergence!

r (n)[2* (3)i * * (4) ~ forward normal!,

wherer (0) , r (d) :E (1)(M)→E (1)(S), andr (d) , r (n) :E (1)(M)→E (0)(S). These operators can b
applied to any smoothp-form. The motivation for~11! comes from an analysis of Green’s identi
for h1m2 ~Appendix A!.

Next, letAPE (1)(M) and define

A(0)[r (0)A, ~12!

A(d)[r (d)A, ~13!

A(n)[r (n)A, ~14!

and

A(d)[r (d)A, ~15!

with A(0) , A(d)PE (1)(S) and A(n) , A(d)PE (0)(S). Specifying A(0) , A(d) , A(n) , and A(d) is
equivalent to specifying the Cauchy data forA. To see this, let (n,ei) be a surface norma
reference frame for (S,g), then~12! and~14! specifyAm(0,x) from which we obtain,kAm(0,x).
Given,kAm(0,x), ~13! specifies,0Ak(0,x) and finally,~15! gives,0A0(0,x). Thus, the opera-
tors~11! collectively map a solutionA to its Cauchy data (Am , na,aAm). Alternatively, we view
A(0) , A(d) , A(d) andA(n) as Cauchy data for~4!.

The operators~11! which are continuous and linear, give rise to continuous transpose o
tors r (0)8 , r (d)8 :E 8(1)(S)→E 8(1)(M), andr (n)8 , r (d)8 :E 8(0)(S)→E 8(1)(M).17 We construct the
following continuous operatorsEm

(1)
r (d)8 , Em

(1)
r (n)8 , Em

(1)
r (d)8 , andEm

(1)
r (0)8 , where
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Em
(1)

r (0)8 ,Em
(1)

r (d)8 :D(1)~S!,E 8(1)~S!→D8(1)~M!, ~16!

and

Em
(1)

r (d)8 ,Em
(1)

r (n)8 :D(0)~S!,E 8(0)~S!→D8(1)~M!. ~17!

These play a crucial role in the classical Cauchy problem as is now shown.
Theorem 1: Let A(0) , A(d)PD(1)(S), and A(n) , A(d)PD(0)(S) specify Cauchy data on

(S,g), and let mP@0,̀ ). Then,

A 852Em
(1)

r (d)8 A(0)2Em
(1)

r (n)8 A(d)1Em
(1)

r (d)8 A(n)1Em
(1)

r (0)8 A(d) ~18!

is the unique smooth solution of(h1m2)A 850 with these data. Moreover,A 8PE (1)(M) is
continuously dependent on the data.

Proof: First, from ~16! and ~17! we know that~18! makes sense. LetFPD(1)(M) be any
1-form test function, and consider

^A 8,F&5^A(0) ,r (d)Em
(1)F&S1^A(d) ,r (n)Em

(1)F&S2^A(n) ,r (d)Em
(1)F&S2^A(d) ,r (0)Em

(1)F&S .

From Theorem 5 we know that ifA is a smooth solution with data~12!–~15!, then ^A 8,F&
5^A,F&M which implies thatA 85A in a distributional sense. ThusA 8 is identified with the
unique smooth solutionAPE (1)(M).

It remains to show thatA 8 is continuously dependent on the data. For this result, we ass
that S is compact. From the first part of the proof we haveEm

(1)
r (0)8 , Em

(1)
r (d)8 :D(1)(S)

→E (1)(M) and Em
(1)

r (d)8 ,Em
(1)

r (n)8 :D(0)(S)→E (1)(S). It suffices to show that these restriction
are continuous. The same analysis applies to both sets of operators so we need only cons
former. Recall thatEm

(1)
r (0)8 , Em

(1)
r (d)8 :E 8(1)(S)→D8(1)(M) are continuous with respect to th

weak topologies of dual spaces. Thus, the graphs of the restrictionsEm
(1)

r (0)8 , Em
(1)

r (d)8 D(1)(S)
→E (1)(M) are closed with respect to these weak topologies and it follows that they are c
with respect to the topologies ofD(1)(S) and E (1)(M) as well. Finally, sinceD(1)(S) and
E (1)(M) are Frechet spaces~assumingS is compact! it follows from the closed graph theorem
that the restrictions ofEm

(1)
r (0)8 andEm

(1)
r (d)8 are continuous. As noted, a similar analysis applies

the restrictions ofEm
(1)

r (d)8 andEm
(1)

r (n)8 and thereforeA 8PE (1)(M) is continuously dependent o
the data. This presumably holds for noncompactS as well. j

Thus, we obtain a global solution to~4! as a mapping of Cauchy data. Notice that Theorem
applies form50 which we use in our study of Maxwell’s equations~Appendix B!.

Corollary 1: On D(1)(S) we have

r (0)Em
(1)

r (d)8 52I , r (d)Em
(1)

r (d)8 50, r(d)Em
(1)

r(d)8 50, r (n)Em
(1)

r (d)8 50, ~19!

r (0)Em
(1)

r (0)8 50, r (d)Em
(1)

r (0)8 5I , r (d)Em
(1)

r (0)8 50, r (n)Em
(1)

r (0)8 50, ~20!

and onD(0)(S) we have

r (0)Em
(1)

r (n)8 50, r (d)Em
(1)

r (n)8 50, r(d)Em
(1)

r(n)8 52I, r(n)Em
(1)

r(n)8 50, ~21!

r (0)Em
(1)

r (d)8 50, r (d)Em
(1)

r (d)8 50, r(d)Em
(1)

r(d)8 50, r (n)Em
(1)

r (d)8 5I . ~22!

Proof: These identities follow from~18!. For example, the first identity in~19! is obtained by
applyingr (0) to ~18! with A(d) , A(n) , A(d)50. The remaining indentities are obtained in a simi
fashion. h
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We are finally ready for the main result of this section. Notice that Theorem~1! gives a global
solution to~4!. We apply it to Proca’s equations and obtain a global solution to the initial v
problem by restricting the data.

Theorem 2: Let A(0) , A(d)PD(1)(S), and A(n) , A(d)PD(0)(S) specify Cauchy data onS
and let mP@0,̀ ). Set

A(d)50, ~23!

and

d (3)A(d)5m2A(n) . ~24!

Then,

A52Em
(1)

r (d)8 A(0)1Em
(1)

r (d)8 A(n)1Em
(1)

r (0)8 A(d) ~25!

is the unique smooth solution of(d (4)d(4)1m2)A50 with these data. Moreover,APE (1)(M) is
continuously dependent on the data. When m.0 ~Proca’s equations) we satisfy (24) with arb
trary A(d) and A(n)5@d (3)A(d) /m2#, thus

A52Em
(1)

r (d)8 A(0)1Em
(1)S d(4)d (4)

m2
1I D r (0)8 A(d) ~m.0!, ~26!

where we have usedr (d)8 d (3)5d(4)d (4)r (0)8 on D(1)(S). When m50 we satisfy (24) with arbitrary
A(n) , and with A(d) satisfyingd (3)A(d)50 ~see Maxwell’s equations in Appendix B).

Proof: We show thatA is a smooth solution of (h1m2)A50 with d (4)A50. The former
follows from Theorem 1. For the latter, it suffices to show that^d (4)A, f &M50, for all f
PD(0)(M). Consider,

^d (4)A, f &M5^A,d(4)f &M ,

5^A(0) ,r (d)Em
(1)

d(4)f &S2^A(n) ,r (d)Em
(1)

d(4)f &S ,

2^A(d) ,r (0)Em
(1)

d(4)f &S . ~27!

Now, sinceEm
(1)

d(4)5d(4)Em
(0)

on D(0)(M) we haver (d)Em
(1)

d(4)f 50 and the first term on the
right-hand side of~27! is zero. Consider the second term on the right-hand side of~27!,

r (d)Em
(1)

d(4)f 5 i * d (4)Em
(1)

d(4)f ,

5 i * d (4)d(4)Em
(0)

f ,

5 i * ~h2d(4)d (4)!Em
(0)

f ,

52r (0)m
2Em

(0)
f , ~28!

where we have used (h1m2)Em
(0)

f 50, andd (4)Em
(0)

f 50 (Em
(0)

f is a function!. Substituting~28!

into ~27! and making use ofr (0)Em
(1)

d(4)f 5d(3)r (0)Em
(0)

f we have

^d (4)A, f &M5^A(n) ,r (0)m
2Em

(0)
f &S2^A(d) ,d(3)r (0)Em

(0)
f &S

5^m2A(n)2d (3)A(d) ,r (0)Em
(0)

f &S ,

50,
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where, in the last step we have used~24!. Thusd (4)A50 which is compatible with~23!.
Lastly, from Theorem 1 we know thatA is unique. We also have thatA is continuously

dependent on the data whenS is compact. j

From Theorem 2 we have the following additional result which is need for the quan
problem.

Corollary 2: The operator identity

S d(4)d (4)

m2
1I D Em

(1)
52Em

(1)
r (d)8 r (0)S d(4)d (4)

m2
1I D Em

(1)
1Em

(1)S d(4)d (4)

m2
1I D r (0)8 r (d)Em

(1)
, ~29!

holds onD(1)(M) for m.0.
Proof: Let FPD(1)(M). It is easy to check that (d(4)d (4)/m2 1I )Em

(1)F is a smooth solution
to Proca’s equations. Thus,~29! follows from Theorem 2 withA5@(d(4)d (4)/m2) 1I #Em

(1)F and
the fact thatr (d) @d(4)d (4)/m2# Em

(1)F50. j

This last result completes the prerequisite classical work. We proceed to the quantum
lem.

IV. THE QUANTUM PROBLEM

Our approach to field quantization closely follows the work of Dimock.3 We start with a
representation (f,P,H… of the CCRs on an arbitrary Cauchy surfaceS. Let h denote the comple-
tion of smooth complex-valued 1-forms onS with respect to the normi•ih

25^•,•&h , where

^F,G&h5E ~ F̄,G!x dt, ~30!

and

~F,G!x5Fn~x!Gn~x!, ~n51,2,3! ~31!

with dt5Agdx1`dx2`dx3, wherex5(x1,x2,x2) are local coordinates for (S,g). Next, con-
struct the Bose–Fock spaceH over h,

H5C% S %
n51

`

h(n)D , ~32!

where h(n)5 ^ s
n
h, and the subscripts denotes the symmetric tensor product. Leta(•), a* (•)

denote the usual creation and annihilation operators defined on finite particle vectors inH with
@a(F),a* (G)#5^F,G&h .18 Let

f~F ![
1

A2
@a~F !1a* ~F !#, ~33!

and

P~F ![
i

A2
@a* ~F !2a~F !#, ~34!

and then take the closure of~33! and~34! ~keeping the same notation! to obtain self-adjointf and
P on H with @f(F),P(G)#5 i ^F,G&h for F,GPD(1)(S).18 This gives the representatio
(f,P,H).

Now, given a representation (f,P,H… on S, not necessarily as above, we define a space–t
field operator
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A[2Em
(1)

r (d)8 f1Em
(1)S d(4)d (4)

m2
1I D r (0)8 P , ~35!

in accordance with the classical initial value problem~Theorem 2 withm.0). This holds in a
distributional sense, therefore,

A~F!5f~r (d)Em
(1)F!2PS r (0)Fd(4)d (4)

m2
1I GEm

(1)FD
for FPD(1)(M). This makes sense becauseEm

(1)FPE (1)(M) andJ6(supp(F))ùS is compact.3

Theorem 3: Let (f,P,H) be a representation of the CCRs overD(1)(S), and letA be the
field operator (35) with test functionsFPD(1)(M). ThenA satisfies the Proca’s equations in
distributional sense,

~d (4)d(4)1m2!A50, ~36!

and

@A~F!,A~F8!#52 i K F,S d(4)d (4)

m2
1I D Em

(1)F8L
M

. ~37!

Proof: First we verify ~36!. Consider,

~d (4)d(4)1m2!A~F!5A~~d (4)d(4)1m2!F!,

5f~r (d)Em
(1)

~d (4)d(4)1m2!F!

2PS r (0)Fd(4)d (4)

m2
1I G ~d (4)d(4)1m2!Em

(1)FD ,

52f~r (d)d
(4)d (4)Em

(1)F!2P~r (0)@h1m2#Em
(1)F!,

50,

where we have usedr (d)d
(4)50 and (h1m2)Em

(1)
50 on E (1)(M).

Next, we verify~37!. Consider,

@A~F!,A~F8!#52 i K r (d)Em
(1)F,r (0)S d(4)d (4)

m2
1I D Em

(1)F 8L
S

1 i K r (0)S d(4)d (4)

m2
1I D Em

(1)F,r (d)Em
(1)F8L

S

,

5 i K F,Em
(1)

r (d)8 r (0)S d(4)d (4)

m2
1I D Em

(1)F8L
M

2 i K F,Em
(1)S d(4)d (4)

m2
1I D r (0)8 r (d)Em

(1)F8L
M

,

52 i K F,S d(4)d (4)

m2
1I D Em

(1)F8L
M

,
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where we have applied Corollary 2. j

Notice from ~7! that

suppS Fd(4)d (4)

m2
1I GEm

(1)F8D ,J1~supp~F8!!øJ2~supp~F8!!,

and therefore~37! implies causality. Also,~37! reduces to the usual relation on Minkows
space.19

We now show that a representation (f,P,H) on S induces a representation on any oth
Cauchy surface.

Corollary 3: Let (f,P,H) be a representation of the CCRs overD(1)(S), and letA be the

field operator (35). LetŜ be another Cauchy surface inM, and letf̂ and P̂ be data ofA on Ŝ,
i.e.,

f̂[r̂ (0)A,

and,

P̂[r̂ (d)A.

Then(f̂,P̂,H) is a representation of the CCRs overD(1)(Ŝ). Furthermore, let

Â[2Em
(1)

r̂ (d)8 f̂1Em
(1)S d(4)d (4)

m2
1I D r̂ (0)8 P̂, ~38!

then

Â~F!5A~F!. ~39!

Proof: We first show that (f̂,P̂,H) is a representation. LetFPD(1)(Ŝ), then

f̂~F !5A~ r̂ (0)8 F !,

5f~r (d)Em
(1)

r̂ (0)8 F !2PS r (0)Fd(4)d (4)

m2
1I GEm

(1)
r̂ (0)8 F D , ~40!

and

P̂~F !5A~ r̂ (d)8 F !,

5f~r (d)Em
(1)

r̂ (d)8 F !2PS r (0)Fd(4)d (4)

m2
1I GEm

(1)
r̂ (d)8 F D . ~41!

These make sense becauseEm
(1)

r̂ (0)8 ,Em
(1)

r̂ (d)8 :D(1)(Ŝ)→ E (1)(M) ~Theorem 1! and
J6(supp(F))ùS is compact.3 Consider,
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@f̂~F !,P̂~F8!#52Ff~r (d)Em
(1)

r̂ (0)8 F !,PS r (0)Fd(4)d (4)

m2
1I GEm

(1)
r̂ (d)8 F8D G

1Ff~r (d)Em
(1)

r̂ (d)8 F8!,PS r (0)Fd(4)d (4)

m2
1I GEm

(1)
r̂ (0)8 F D G

52 i ^r (d)F,r (0)F 8&S1 i ^r (0)F,r (d)F 8&S

[ iVS~F,F 8! ~42!

whereF[$@d(4)d (4)/m2# 1I %Em
(1)

r̂ (0)8 F andF 8[$@d(4)d (4)/m2# 1I %Em
(1)

r̂ (d)8 F8 are smooth solu-
tions of Proca’s equations. It follows from Green’s identity thatVS(•,•) is independent of the
Cauchy surface for such solutions~see the vector potential formulation of Maxwell’s equations!.2,4

Thus,~42! is independent of the Cauchy surface and we have

@f̂~F !,P̂~F8!#5 iVŜ~F,F 8!

52 i ^r̂ (d)F,r̂ (0)F 8&Ŝ ~43!

1 i ^r̂ (0)F,r̂ (d)F 8&Ŝ

5 i ^F,F8&Ŝ , ~44!

where in the last step we have applied Corollary~1! to Ŝ. Thus (f̂,P̂,H) is a representation.
We now verify ~39!. Substitute~40! and ~41! into ~38! and obtain

Â~F![f~r (d)F̂!2PS r (0)S d(4)d (4)

m2
1I D F̂D ,

5f~r (d)F̃!2PS r (0)S d(4)d (4)

m2
1I D F̃D

5f~r (d)Em
(1)F!2PS r (0)S d(4)d (4)

m2
1I D Em

(1)FD
5A~F!,

where

F̂5FEm
(1)

r̂ (0)8 r̂ (d)Em
(1)

2 r̂ (d)8 r̂ (0)S d(4)d (4)

m2
1I D Em

(1)GF
and

F̃5F S d(4)d (4)

m2
1I D Em

(1)
2

d(4)d (4)

m2
Em

(1)
r̂ (0)8 r̂ (d)Em

(1)GF.

In the second step we have used Corollary 2 and in subsequent steps we have usedr (d)d
(4)50 on

E (1)(M) andd (4)G50 for any smooth solutionG of Proca’s equations. j

At this point we have a field operatorA defined in terms of a representation (f,P,H) on an
arbitrary Cauchy surfaceS. Unlike Minkowski space–time, there is, in general, no prefer
representation~i.e., no natural positive and negative frequency decomposition!.2 Thus, we must
consider a class of representations, and show that the theory is independent of the represe
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and independent of the Cauchy surface. To this end, we pass to the Weyl form of the
construct an algebra of observablesA, and exploit known results on the equivalence of su
algebras.

Given a representation (f,P,H) let

W~F,F8!5exp~ i ~f~F !2P~F8!!!.

ThenW(•,•)is a map fromD(1)(S)3D(1)(S) to unitary operators onH satisfying

W~F,F8!W~G,G8!5W~F1G,F81G8!exp~2 i /2 sS~~F,F8!,~G,G8!!!, ~45!

where

sS~~F,F8!,~G,G8!![^F,G8&S2^F8,G&S , ~46!

is symplectic onD(1)(S)3D(1)(S). Also, t→W(tF,tF8) is strongly continuous. Thus we hav
the Weyl system (W,H) with the Weyl form of the CCRs~45!. As an aside, note tha
VS(F,F 8)5sS((r (0)F,r (d)F),(r (0)F 8,r (d)F 8)) for smooth solutionsF and F 8 of Proca’s
equations.

Alternatively, given a representation (W,H) we recover self-adjointf and P via Stone’s
Theorem, i.e.,

eif(F)t5W~ tF,0!, ~47!

and

e2 i P„F)t5W~0,tF !. ~48!

We also obtain a self-adjoint field operatorA„F) via Stone’s Theorem,

eiA(F)t5WS tr (d)Em
(1)F,tr (0)Fd(4)d (4)

m2
1I GEm

(1)FD , ~49!

whereFPD(1)(M).
Next, we define an algebra of observablesA. Given a Weyl system (W,H) take the set of all

finite sums of the form

(
a

caW~Fa ,Fa8 !, caPC,

whereFa ,Fa8PD(1)(S) and defineA to be the norm closure of this set in the Banach space o
bounded operators onH.

We now exploit known results on the equivalence of such algebras.
Theorem 4: Let (W,sS ,A,H) and (W̃,sŜ ,Ã,H̃) be representations on Cauchy surfacesS

and Ŝ, respectively. There is a unique* -isomorphisma:A→Ã with a:eiA(F)→ei Ã(F).

Proof: First, consider the caseS 5Ŝ. Given (W,sS ,A, H) and (W̃,sS ,Ã,H̃) over
D(1)(S)3D(1)(S) there is a unique* 2 isomorphism a:A→Ã such that a(W(F,F8))

5W̃(F,F8) ~see Theorem 5.2.8 in 18!. It follows from ~49! that a:eiA(F)→ei Ã(F). Thus A is
independent of the representation onS in this sense.

Next, letS andŜ be different, and let (f,P,H) and (f̂,P̂,H) be respective representation
as defined in Corollary 3. It follows thateiA(F)5ei Â(F) and thereforeA5Â. Moreover, from the
first part of the proof we havea:Â→Ã and thereforea:A→Ã with a:eiA(F)→ei Ã(F). ThusA is
independent of the Cauchy surface in this sense. j
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From this last result, we see that the Fock representation (f,P,H) defined by~33! and ~34!
gives rise to an algebra of observablesA that is unique up to* 2 isomorphism. This concludes th
quantum problem.

V. CONCLUSION

We have obtained classical and quantum results for the propagation of massive vecto
on a globally hyperbolic Lorentzian manifold. Our classical results include solutions of the i
value problem for Proca’s equations~3!, the vector Klein Gordon equation~4!, and Maxwell’s
equations~Appendix B!. The form of these solutions is apparently new and useful for fi
quantization. Our quantum results include a causal field operator constructed from a represe
of the CCRs on an arbitrary Cauchy surface. The algebra of observables generated by th
operator is independent of the representation and independent of the Cauchy surface.
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APPENDIX A: GREEN’S IDENTITY

In this section we develop Green’s identity forh1m2. Start with Stoke’s Theorem,

E
O

d(4)G5E
]O

i *G, ~A1!

whereO,M, ]O is the boundary ofO, i :]O→O is the natural inclusion,i * is the pullback, and
GPD(3)(M).20–22 Let G (1)5d (4)F`* (4)A2d (4)A`* (4)F and G (2)5A`* (4)d(4)F2F
`* (4)d(4)A, with A, FPD(1)(M). We apply~A1! with G5G (1)1G (2) and obtain

E
O
A`* (4)hF2F`* (4)hA52E

]O
i * ~A`* (4)d(4)F1d (4)A`* (4)F!

1E
]O

i * ~d (4)F`* (4)A1F`* (4)d(4)A!. ~A2!

Finally, addA`* (4)m2F2F`* (4)m2A to the left-hand side of~A2! and obtain Green’s identity
for (h1m2),

E
O
A`* (4)~h1m2!F2F`* (4)~h1m2!A52E

]O
i * ~A`* (4)d(4)F1d (4)A`* (4)F!

1E
]O

i * ~d (4)F`* (4)A1F`* (4)d(4)A!.

~A3!

Next, apply~A3! to the regionsO5S6[J6(S)\S, with ]O5S and obtain

E
S6
A`* (4)~h1m2!F2F`* (4)~h1m2!A57$^r (0)A,r (d)F&1^r (d)A,r (n)F&S

2^r (n)A,r (d)F&S2^r (d)A,r (0)F&S , ~A4!

where r (0) , r (n), r (d) , and r (d) are as defined in~11!, and, for example,*Si * d (4)F`* (3)

(2* (3)i * * (4))A5^r (d)F,r (n)A&S ~the standard orientation is used for both regionsS6).
The action ofr (0) andr (d) is obvious, however,r (n) andr (d) are more subtle. Specifically

r (n) and r (d) are the forward normal, and pullback of the forward normal derivative opera
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respectively. To see this, letxm5(t,xi), thenem5]xm represents the standard basis for the tang
space of (M,g). Let (S,g) be a Cauchy surface with forward normaln. Following the presen-
tation of Misner, Thorne and Wheeler we haven5nmem ,

n5N21~] t2Ni]xi !

where N5(2g00)2(1/2) is the lapse function, andNi5gikgok are the components of the shi
vector.14 Notice that n52N dt in covariant form, and recall thatAugu5NAg. Now, let A
5Amdxm and consider,

r (n)A52* (3)i * * (4)A mdxm,

52* (3)i *
1

3!
AuguA memabhdxa`dxb`dxh,

52* (3)
1

3!
NAgA 0e0i jkdxi`dxj`dxk,

52
1

3!
NgA 0e0lmne i jkg i l g jmgkn,

52NA 0,

5A~n!,

whereemabh is the Levi Cevita symbol.14

For the analysis ofr (d) it is convenient to work with a basisêm whereê05n andêi5]xi. The
dual for this basis isv̂m where v̂05Ndt and v̂ i5dxi1Nidt.14 We also haveuĝu5g. Let A
5Âmv̂m, and F5dA5 (1/2!)F̂mnv̂m`v̂n. It follows that F̂0s5F(ê0 ,ês)5F(nmem ,es)
5nmFms and therefore,

nmF msdxs5r (0)F~n,• !. ~A5!

Consider,

r (d)A52* (3)i * * (4)d(4)Âmv̂m,

52* (3)i * * (4)
1

2!
F̂mnv̂m`v̂n,

52* (3)i *
1

2!
Auĝu

1

2!
ĝmaĝnbF̂abemnstv̂

s`v̂t,

52* (3)Agĝ0aĝibF̂abe0i jkdxj`dxk,

5g
1

2!
F̂0sg

isg jmgkne0imne jkpdxp,

5
1

2!
F̂0ses jke jkpdxp,

5F̂0sdxs,

5naF asdxs

5r (0)~d(4)A!~n,• !,
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where in the last step we have used~A5!.
We are finally ready to prove
Theorem 5: Let A be a smooth solution of(h1m2)A50 with Cauchy data A(0)[r (0)A,

A(d)[r (d)APD(1)(S), and A(n)[r (n)A, A(d)[r (d)APD(0)(S). Then,

^A,F&M5^A(0) ,r (d)Em
(1)F&S1^A(d) ,r (n)Em

(1)F&S2^A(n) ,r (d)Em
(1)F&S2^A(d) ,r (0)Em

(1)F&S ,
~A6!

for any test functionFPD(1)(M).
Proof: Since (h1m2)A50, the second term on the left-hand side of~A4! is zero. For the

remaining integrals, substituteF5Em
7(1)
F 8 for the regionsS6, respectively. All integrals are

well-defined because they entail integrations of smooth functions over compact sets. Spec
for the left-hand side of~A4! we have

supp~Em
7(1)
F 8!,J7~supp~F 8!!,

with J7(supp(F 8))ùJ6(S) compact (M is globally hyperbolic!, and for the right-hand side,S
is compact by assumption.3 Next, sum the integrations over theS6 regions substituting (h

1m2)Em
6(1)

5I in S6 integrals andEm
(1)

5Em
1(1)

2Em
2(1)

in S integrals. The sum of theS6 inte-
grals gives an integral overM (S constitutes a set of measure zero relative to this integrati!.
Finally, relabelF 8→F and obtain~A6!. This completes the proof. j

APPENDIX B: MAXWELL’S EQUATIONS

In this section we study Maxwell’s equations,

d(4)F50 ~B1!

and

d (4)F50, ~B2!

whereF is the field strength 2-form~not a test function as above!. We pose an initial value
problem for these equations following the presentation in Wald.13 Specifically, we specify the
initial data forF in terms of the electric and magnetic fieldsE[r (n)F andB[r (0)F, respectively,
which are regarded as a 1-form and 2-form onS, respectively. This data satisfies addition
constraintsd (3)E50 andd(3)B50. Given these data, we obtain a field solutionF that satisfies
~B1! and ~B2! onM. Our approach is similar to Dimock’s; the differences being that our e
phasis is on the fields rather than the vector potential, and we give an explicit representat
F.4

Before we proceed, we make a further restriction onM. Specifically, we assume thatS is
compact and contractible. IfS is contractible then any closed p-form onS is exact, that is,K
PD(p)(S) with d(3)K50⇒K5d(3)H for someHPD(p21)(S) (p.0).20,21

Theorem 6: Let EPD(1)(S) and BPD(2)(S) be data for the field strengthF, i.e.,

r (n)F5E, ~B3!

and

r (0)F5B, ~B4!

where

d (3)E50, ~B5!

and
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d(3)B50. ~B6!

Then, given these data, there is a smooth potentialA such thatF5d(4)A satisfies Maxwell’s
equations d(4)F50 and d (4)F50, as well as (B3)–(B6). Moreover, any two such potentials a
gauge equivalent i.e., they differ by the exterior derivative of a scalar. Here we assume thaS is
compact and contractible.

Proof: Existence:We choose data forA as follows:

A(d)5E, ~B7!

d(3)A(0)5B, ~B8!

with

d (3)A(d)50, ~B9!

A(d)50, andA(n) arbitrary. These choices of data are compatible with the field constraints~B5!,
and~B6! in that ~B7! and~B9! imply ~B5!, and~B8! implies ~B6!. Regarding~B8!, we know that
such anA(0) exists becauseS is contractible andB is exact. These choices of data satisfy~23! and
~24! of Theorem 2 for them50 case. Consequently, there is a unique smoothA that satisfies

d (4)d(4)A50, ~B10!

andF5d(4)A is our desired field strength. Next we show thatF renders the data~B3! and~B4!.
From Theorem 2 we have

A52E0
(1)

r (d)8 A(0)1E0
(1)

r (d)8 A(n)1E0
(1)

r (0)8 A(d) . ~B11!

Consider,

r (n)F52r (n)d
(4)E0

(1)
r (d)8 A(0)1r (n)d

(4)E0
(1)

r (d)8 A(n)1r (n)d
(4)E0

(1)
r (0)8 A(d) ,

52r (d)E0
(1)

r (d)8 A(0)1r (d)E0
(1)

r (d)8 A(n)1r (d)E0
(1)

r (0)8 A(d) ,

5A(d) ,

5E,

and

r (0)F52r (0)d
(4)E0

(1)
r (d)8 A(0)1r (0)d

(4)E0
(1)

r (d)8 A(n)1r (0)d
(4)E0

(1)
r (0)8 A(d) ,

52d(3)r (0)E0
(1)

r (d)8 A(0)1d(3)r (0)E0
(1)

r (d)8 A(n)1d(3)r (0)E0
(1)

r (0)8 A(d) ,

5d(3)A(0) ,

5B,

where we have used the results of Corollary 1.
Uniqueness: We want to show that any two potentialsA 8 andÃ that satisfy~B10! with data

~B7!–~B9! are gauge equivalent, i.e.,

A 85Ã1d(4)f ,

where f PD(0)(M).4 It suffices to show that any solution is gauge equivalent to the un
solutionA above. Consider a solutionA 8, we want to show thatf 8 exists such that
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A5A 81d(4)f 8.

SinceA is unique, it suffices to constructf 8PD(0)(M) such thatA 81d(4)f 8 satisfies

h~A 81d(4)f 8!50 ~B12!

onM with the same data asA on S. First, notice that~B12! is equivalent to

d (4)d(4)A 81d(4)d (4)A 81d(4)d (4)d(4)f 850. ~B13!

The first term in~B13! is zero becauseA 8 satisfies~B10!. Therefore~B12! reduces to

h f 852d (4)A 8. ~B14!

Next, we study the data. Recall from Theorem 2 that the unique solutionA has dataA(d) , A(n) ,
A(0) , andA(d) , where

A(d)50, ~B15!

d (3)A(d)50, ~B16!

andA(0) andA(n) are arbitrary. We need to constructf 8 so thatA 81d(4)f 8 renders the same data
To this end, we specify

r (d)~A 81d(4)f 8!50, ~B17!

r (n)A5r (n)~A 81d(4)f 8!, ~B18!

r (0)A5r (0)~A 81d(4)f 8!, ~B19!

and

r (d)A5r (d)~A 81d(4)f 8!. ~B20!

To satisfy~B17! we impose~B14!. The conditions~B18! and ~B19! are satisfied when

r (d) f 85r (n)~A2A 8!, ~B21!

and

d(3)r (0)f 85r (0)~A2A 8!, ~B22!

respectively. Regarding~B22!, we know that such ar (0)f 8 exists becauseS is contractible and, by
assumption,r (0)(A2A 8) is exact, i.e.,d(3)r (0)(A2A 8)5B2B50. Finally, ~B20! is satisfied
because, by assumption,A andA8 satisfy ~B7!, and we know thatr (d)d

(4)f 850.
Now, by assumption, we are givenA andA8 so we view~B14!, ~B21! and ~B22! as speci-

fying a Cauchy problem for the scalar fieldf 8. That is,~B21! and~B22! specify the Cauchy data
r (d) f 8 andr (0)f 8 for the nonhomogeneous linear hyperbolic equation~B14!. A unique solution to
this problem is known to exist which gives us the desiredf 8.13 This shows that any solutionA 8

is gauge equivalent to the uniqueA and therefore, given two different solutionsA 8 and Ã we
haveA5A 81d(4)f 8, andA5Ã1d(4) f̃ which shows thatA 85Ã1d(4)f , wheref 5 f̃ 2 f 8. Thus
any two such solutions give rise to the same field strengthF. This completes the proof. j

We obtain an explicit expression forF as follows:
Corollary 4: LetA be a vector potential with data A(0) , A(d) , A(n) , and A(d) satisfying the

conditions of Theorem 6. The field strength is given by
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F52d(4)E0
(1)

r (d)8 A(0)1d(4)E0
(1)

r (0)8 A(d) , ~B23!

whereFPE (2)(M) is continuously dependent on A(0) , A(d)PD(1)(S).
Proof: From Theorem 2 we have

A52E0
(1)

r (d)8 A(0)1E0
(1)

r (d)8 A(n)1E0
(1)

r (0)8 A(d) ~B24!

with

d (3)A(d)50. ~B25!

We show that~B23! equalsd(4)A. Let GPD(2)(M) be a 2-form test function, and consider,

^d(4)A,G&M5^A,d (4)G&M ,

5^A(0) ,r (d)E0
(1)

d (4)G&S2^A(n) ,r (d)E0
(1)

d (4)G&S

2^A(d) ,r (0)E0
(1)

d (4)G&S

5^2d(4)E0
(1)

r (d)8 A(0)1d(4)E0
(1)

r (0)8 A(d) ,G&S ,

where, in the last step we have usedr (d)E0
(1)

d (4)G50. Thus,~B23! is satisfied in a distributiona
sense. From Theorem 1 we know thatE0

(1)
r (0)8 , E0

(1)
r (d)8 :D(1)(S)→E (1)(M) are continuous, and

we also know thatd(4):E (1)(M)→E (2)(M) is continuous, thereforeFPE (2)(M) is continuously
dependent onA(0) andA(d) . j

From this final result, we see thatF depends only on the dataA(0) andA(d) . Thus, we can se
A(n)50 in ~B24!. This choice of data is useful when quantizing the electromagnetic field.4
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Exact spectral values for discrete quantum
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For specific choice of parameters the spectrum of the discrete quantum pendulum-
integral contains the eigenvalues of a finite matrix which depends analytically on
the flux. Under natural continuity assumptions these eigenvalues include the spec-
tral values which may be obtained by the algebraic Bethe ansatz. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!01205-0#

I. INTRODUCTION

Discrete quantum pendulum-integrals~QP-integrals! are integrals of motion of a~110!-
dimensional discrete integrable quantum field theory. This quantum field theory is the di
sine–Gordon field theory with shortest possible~symmetric! periodicity in space. With space
compatified in that way to one point, the model becomes that of the discrete quantum~mathemati-
cal! pendulum.1 Coincidently, QP-integrals arise in solid state physics as well: they may
interpreted as magnetic Schro¨dinger operators onZ2 generalizing the Hofstadter Hamiltonian2

which describes an elementary quantum–Hall system.3 The QP-integrals so arise as self-adjo
elements of the discrete Weyl–Heisenberg algebra, which is theC* -algebra generated by tw
unitary elementsu andv which are subject to the relationuv5q21vu, q5eig. Hereg plays here
the role of the flux of the magnetic field. To define QP-integrals in this context, conside
family

H~a,b,k!ªau1āu* 1bv1b̄v* 1k~q1/2uv1q21/2v* u* !1k21~q21/2uv* 1q1/2vu* ! ~1!

parametrized by complex continuous functionsa5a(q1/2) andb5b(q1/2) and a strictly positive
real numberk. We will right away focus our attention on particular choices fora andb and write
more briefly

H̃~z,n,k!ªH~z1z21,qn/21q2n/2,k!, ~2!

z5z(q1/2), nPN. In casez(q1/2) is of modulus 1,H̃(z,n,k) arises as an integral of motion o
discrete sine–Gordon field theory with shortest possible periodicity in space.4,5 For z(q1/2)
5qn/2, i.e.,a5b52 cos(ng/2), H̃(z,n,k) is referred to as a QP-integral. We shall prove here th
for z1z21PR, the spectrum ofH̃(z,n,k) contains the eigenvalues of the tridiagonal matrix

Ã~z,n,k!ªS x̃0 ỹ0

z̃0 x̃1 ỹ1

� � �

z̃n22 x̃n21

D , ~3!

where

x̃ j52~z1z21!~kq~12n!/21 j1k21q~n21!/22 j !, ~4!

a!Electronic mail: kellen@math.tu-berlin.de
26270022-2488/99/40(6)/2627/13/$15.00 © 1999 American Institute of Physics
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ỹ j5qn/21q2n/22~qj 112n/21qn/22 j 21!, ~5!

z̃j5qn/21q2n/22~k2qj 112n/21k22qn/22 j 21!. ~6!

Figure 1 shows a plot of the spectrum ofH̃(q3/2,3,2) againstg ~for rational g/2p with small
denominator! together with the three curves of eigenvalues ofÃ(q3/2,3,2).

Although diagonalization of the above matrix furnishes only finitely many spectral values
find this result surprising, since one expects the spectrum ofH(a,b,k) to be a Cantor set for
g/2p¹Q and not much is known about spectral values of operators with Cantor spectrum.

As already mentioned, in casez(q1/2) is of modulus 1,H̃(z,n,k) is an integral of motion of an
integrable discrete quantum field theory. The integrability means in particular that one ma
termine~generalized! eigenvalues and functions of its integrals of motion, among which are
QP-integrals. This is achieved by use of the algebraic Bethe ansatz,6 which was adapted to the
present case by Nadja Kutz.4 It leads to the following result.4,5

Theorem 1: Let dPS15R/2pZ, nPN, and k.0. If the set of n21 spectral parameters
h1 ,...,hn21 , which ought to be complex, pairwise different numbers, satisfies the so-called
ansatz equations

)
j Þ i 51

n21
h jq2h i

h j2h iq
5e2id

q21/2h j
21h j~k1k21!1q1/2

q1/2h j
21h j~k1k21!1q21/2 , ~7!

then, with q5eig,

FIG. 1. Spectrum ofH̃(q3/2,3,2) ~horizontal lines, forg/2p5M /N with small N! and eigenvalues ofÃ(q3/2,3,2!
~continuous curves!.
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E~h1 ,...,hn21!522~k1k21!cosS n21

2
g1d D14 sinS n21

2
g1d D sin

g

2 (
j 51

n21

h j
21~g! ~8!

lies in the spectrum of H˜ (eid,n,k).
A formula for eigenfunctions~in the generalized sense, i.e., not neccessarily normaliza!

corresponding to these so-called Bethe ansatz eigenvalues will be recalled later.
We expect that the so-called Bethe ansatz eigenvalues~8! coincide with the eigenvalues o

Ã(eid,n,k). Indeed, we shall derive that the Bethe ansatz eigenvalues are among the eigen
of Ã(eid,n,k) in casek51 and extend this result tokÞ1 under natural assumptions on th
behavior of the Bethe ansatz eigenvalues onk, z, and g. Therefore, our result may also b
understood as a simpler approach to the determination of the Bethe ansatz eigenvalues
expect that a similar simplification occurrs in other models, too, in particular those coming
the sine–Gordon model. In fact, the Bethe ansatz equations are rather difficult to solve. A
for n53 they lead to polynomial equations which have too high orders to be tractable by an
means. In Ref. 5, solutions fork.1 were for that reason only obtained in casen<2.

The key to compare the Bethe ansatz eigenvalues with the eigenvalues ofÃ(eid,n,k) is to
look first at k51, a case in which the solution of the Bethe ansatz eigenvector simplifies
mously. It is shown in Ref. 5 that the Bethe ansatz eigenvector is then not only a true eigen
or, more precisly, a square summable vector in a particular representation onl 2(Z), but it even
vanishes in that representation outside$0,...,n21%,Z. This leads us to a remark on yet anoth
approach to determine spectral values ofH̃(z,n,k) which we will, however, not follow here. Tha
approach is essentially an ansatz for eigenfunctions ofH̃(z,n,k) which have finite support. For
mulated in a representation onL2(S1), the Fourier space ofl 2(Z), the above ansatz is one fo
polynomial eigenfunctions. It may then also be reformulated in terms of Bethe ansatz equat7,5

@different from ~7!# which, however, are again rather difficult to solve.
After recalling some important facts about the discrete Weyl–Heisenberg algebra, whi

do in the next section following mainly Ref. 5, we prove in Sec. III that the eigenvalue
Ã(z,n,k) are spectral values ofH̃(z,n,k) by showing that the characteristic polynomial factoriz
in the appropriate way. In Sec. IV we relate the Bethe ansatz eigenvalues to these eigenv

II. PRELIMINARIES

The discrete Weyl–Heisenberg or rotation algebraAg with angleg is theC* -envelope of the
*-algebra generated by two elementsu andv which are subject to the relations8

uu* 51, u* u51, vv* 51, v* v51, uv5q21vu,

with q5eig. Any element of the discrete Weyl–Heisenberg algebraAg may be approximated in
norm by finite sums of the form( cnun1vn2, nPZ2, cnPC. A faithful representation ofAg on the
Hilbert spacel 2(Z2) is given by

u•c~n!5eiA1~n!c~n121,n2!, ~9!

v•c~n!5eiA2~n!c~n1 ,n221!, ~10!

whereA: Z2→R2 is a gauge potential with discrete rotationg:

„A2~n!2A2~n121,n2!…2„A1~n!2A1~n1 ,n221!…5g,

and we have used the convention to denote the action of an elementxPAg in some representation
space simply by•. In other words,Ag is isomorphic to the norm-closure of the subalgebra
bounded operators ofl 2(Z2) generated byu andv in the above representation. The above rep
sentation yields the framework for the discretized version of the Landau model which descri
electric particle in the discretized planeZ2 to which a constant magnetic field is perpendicula
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applied. More precisely,Ag is the algebra of observables for that model, and the famous H
tadter Hamiltonian, which plays the role of the discrete Landau Hamiltonian, equalsu1v1u*
1v* acting in the above representation. The angleg is proportional to the magnetic field or th
flux per unit cell. The functionA is for giveng unique up to a discrete gradient. Different gaug
lead, in general, to different representations which are, however, unitarily equivalent. For sim
ity we will call g/2p the flux.

The above representation is faithful but not irreducible. Its decomposition into irredu
components leads, for rationalg/2p, to a family of representations labeled by a two-torus,
two-torus of quasimomenta, or Bloch parameters. The first step of this decomposition,
applies as well to irrationalg/2p, leads to the family of Weyl–Schro¨dinger representations, la
beled by an angleu, with representation spacel 2(Z). They are given by

u•c~n!5eiuq2nc~n!, ~11!

v•c~n!5c~n21!. ~12!

For irrational g/2p the Weyl–Schro¨dinger representations are irreducible and still faithful;
rationalg/2p this is not the case. In fact, forg/2p5M /N, (M ,N)51 ~meaning thatM andN are
coprime!, the Weyl–Schro¨dinger representations are neither irreducible nor faithful. In that c
the Weyl–Schro¨dinger representation with angleu decomposes into a direct integral o
N-dimensional irreducible representations parametrized by a second angle. Denoting the
angle byw, u has in the irreducible representation labeled by~u,w! matrix representation

u~u,w!5eiuS q21

�

q21

�

1

D , ~13!

which in particular is independent ofw, andv

v ~u,w!5S 0 1 0 ¯ 0

A � � A

A � � 0

0 � 1

eiw 0 ¯ 0

D . ~14!

Two such matrix representations, one for~u,w! and one for~u8,w8!, are unitarily equivalent when
ever u2u85ng for somenPZ and w5w8, that is, if uu

N5uu8
N and vw

N5vw8
N . The asymmetry

appearing in the parameters~u,w! labeling the irreducible components is, from a physical point
view, artificial. In the~discrete! Landau model,uN andvN are translation operators alongN sites
in the one- and two-directions, respectively, and the parametersNu and w have the physical
interpretation of quasimomentum in thex1- and thex2-direction, respectively. We denote byx(u,w)

the matrix representation ofxPAg in the N-dimensional representation labeled by~u,w!.
It follows from the above consideration that the spectrums(x) of any elementxPAg is, for

irrational g/2p, equal to the spectrum ofx in any Weyl–Schro¨dinger representation, and fo
rationalg/2p given by

s~x!5 ø
~u,w!PS13S1

s~x~u,w!!.
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Sincex(u,w) is a finite-dimensional matrix, its spectrum consists of eigenvalues, the zeroes
characteristic polynomial. It turns out that, for our family of operators, the characteristic po
mial has a very special form, namely, withg/2p5M /N, (M ,N)51,

det„H ~u,w!~a,b,k!2E…5p~a,b,k;E!1h~a,b,k;u,w!,

where p(a,b,k;E) is a polynomial in E of degreeN which is independent of~u,w!, and
h(a,b,k;u,w), the so-called off-set function, is independent ofE. Such a relation is called a
Chambers relation. While the polynomialp may look rather complicated, the off-set functionh is
explicitly known.2,5 With TN„z1z21)/2…5(zN1z2N)/2 for any complexzÞ0, it is

h~a,b,k;u,w!522XTNS 2
a

2DeiNu1TNS 2
b

2DeiwC1~21!M~kNei ~Nu1w!1k2Nei ~Nu2w!!1c.c.

We also write

h̃~z,n,k;z1 ,z2!5hS z1z21,2 cos
ng

2
,k;u,w D , z15eiNu, z25eiw. ~15!

For the above result we have normalizedp(a,b,k;0)50 and c.c. stands for complex conjugat
TN is, up to constants, theNth Chebychev polynomial of the second kind.

Despite the irregular behavior ofp(a,b,k;E) on g, the spectrum ofH(a,b,k) depends, in a
certain sense, continuously on the flux. The collection of allAg , gPS1, can be combined into a
continuous field ofC* -algebras overS1.9 Its continuous sections, which are in particular functio
S1→øgAg : g°xgPAg for which g°ixgi is continuous, form aC* -algebra, and it is shown10

that, under the hypothesis that allxg are normal, the following continuity property holds: for ea
open U,C, the set of gPS1 for which s(xg)ùUÞB and the set ofgPS1 for which
s(xg)PU are both open. In the present case,H(a,b,k)5Hg„a(g),b(g),k…, which depends ong
also through the relation betweenu and v, is a continuous section of self-adjoint elemen
provided we remove one point~let’s say p! from S1. We are forced to remove one poin
becauseHg„a(g),b(g),k… contains square roots ofq5eig. An immediate consequence o
the above property is therefore that any continuous functionE: S1\$p%→C which
satisfies E(g)Ps„Hg(a(g),b(g),k)… on a dense subset ofS1 must already satisfy
E(g)Ps„Hg(a(g),b(g),k)… for all gPS1\$p%.

III. FACTORIZATION OF THE CHARACTERISTIC POLYNOMIAL

As already mentioned in the Introduction, ifk51, a different ansatz to determine the eige
values~8! of H(a,b,k) is one for eigenfunctions of finite support in a Weyl–Schro¨dinger repre-
sentation ofAg . Denoting byHu(a,b,k) the operatorH(a,b,k) acting in such a representatio
with angleu, we have

Hu~a,b,k!c~m!5zm21c~m21!1xmc~m!1ymc~m11!,

where

xm5aq2meiu1āqme2 iu, ~16!

ym5b1~kq2m21/2eiu1 inv.!, ~17!

zm5b̄1~k21q2m21/2eiu1 inv.!, ~18!

x1 inv. standing forx1x21 andu labeling the representation. Note thatHu(a,b,k) is self-adjoint
only if kPR. We have required this above and in Ref. 5 for the definition of QP-integrals
below we allowk to be complex.
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Lemma 1: LetuPC and nPN. If k52q(n21)/2e2 iu and b52 cos(ng/2), then y215yn21

50.
Proof: Setting k5kq1/2eiu one obtains thaty215yn2150 is equivalent to2b5k1k21

5kq2n1k21qn. This, in turn, is equivalent tok5eqn/2 and b52e2 cos(ng/2), e561, the
statement of the lemma being one choice of sign. q.

In view of the above lemma we shall from now on restrict the parameterb to be

b52 cos
ng

2
.

Let Pn be the orthogonal projection onto the subspace ofl 2(Z) of all wave functions which
vanish outside$0,...,n21%. The operator

Au~z,n,k!ªPnH̃u~z,n,k!Pn

has, when restricted to the image ofPn , ~tridiagonal! matrix representation

Au~z,n,k!5S x0 y0

z0 x1 y1

� � �

zn22 xn21

D .

The following result was also obtained in Ref. 5.
Theorem 2: If k51 andu5p1@(n21)/2#g, then the eigenvalues of A˜ (z,n,1) coincide with

those eigenvalues of Hu(z,n,1) whose corresponding eigenvectors vanish outs
$0,...,n21%,Z.

Proof: If k51 andu5p1@(n21)/2#g, thenÃ(z,n,k)5Au(z,n,k) andy215yn2150 and
yj5zj . This implies thatHp1@(n21)/2#g(z,n,1) commutes withPn from which the statemen
follows. q.e.d.

Let

B̃~z,n,k!ªH ~z1 ,z2!PC3Cuz252zN
~21!Mnz12~21!M1NkN

12~21!M ~n21!1Nz1kN J ~19!

and

B~z,n,k!ª$~u,w!PS13S1u~eiNu,eiw!PB̃%. ~20!

In Ref. 5 it was shown thatB(z,n,k) furnishes, for stictly positivek and uzu51, the set of labels
~Bloch parameters! for the irreducible representations ofAg in which the Bethe ansatz eigenvalu
~8! are spectral values ofH̃ (u,w)(z,n,k). The following lemma, which follows for stictly positive
k and uz1u5uz2u5uzu51 from that result, is straightforwardly verified:

Lemma 2: The off-set function h˜ (z,n,k;z1 ,z2) is for z1z21PR, nonzero kPC, and nPN
constant onB̃(z,n,k).

In the irreducible representation ofA2pM /N labeled by~u,w!, H̃(z,n,k) is represented by the
matrix ~tridiagonal apart from the entries in the corners!

H̃ ~u,w!~z,n,k!5S x0 y0 z21e2 iw

z0 x1 y1

� � �

y21eiw zN22 xN21

D .
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Theorem 3: Let z1z21PR and, forg/2p5M /N, (M ,N)51,

x~z,n,k,E!ªpS z1z21,2 cos
ng

2
,k;ED1h~z,n,k;z1 ,z2!,

where(z1 ,z2)PB̃(z,n,k). Then

x~z,n,k,E!5det„Ã~z,n,k!2E… det„B̃~z,n,k!2E…, ~21!

where

B̃~z,n,k!ªS x̃n ỹn

z̃n x̃n11 ỹn11

� � �

z̃N22 x̃N21

D .

In particular, the eigenvalues of A˜ (z,n,k) are, even for arbitaryg/2p, spectral values of
H̃(z,n,k), their corresponding (generalized) eigenvectors occurring in irreducible represe
tions which, forg/2p5M /N, (M ,N)51, have Bloch parameters inB(z,n,k).

Proof: Consider first the rational caseg/2p5M /N, (M ,N)51, in which x(z,n,k,E) is the
characteristic polynomial ofH̃ (u,w)(z,n,k) with (u,w)PB(z,n,k). Sincex(z,n,k,E) is indepen-
dent on the value of (eiNu,eiw) as long as the latter belongs toB̃(z,n,k), we may consider
complexkÞ0 and complexu such thatk52q(n21)/2e2 iu. Then, using Lemma 1, the characte
istic polynomial can be written as

x~z,n,k,E!5det„Au~z,n,k!2E… det„Bu~z,n,k!2E…2~21!Ne2 iw )
j 50

N21

zj ,

whereBu(z,n,k)ª(12Pn)H̃ (u,w)(z,n,k)(12Pn) and (eiNu,eiw)PB̃(z,n,k). ~HerePn has to be
understood as the projection onto the firstn components of the vectors inCN.! But (eiNu,eiw)
PB̃(z,n,k) implies

e2 iw52z2N
12~21!M ~n21!1NeiNu~2e2 iuq~n21!/2!N

~21!MneiNu2~21!M1N~2e2 iuq~n21!/2!N 50.

Furthermore, at the above value foru we haveAu(z,n,k)5Ã(z,n,k) andBu(z,n,k)5B̃(z,n,k).
This proves Eq.~21!. Thus all eigenvalues ofÃ(z,n,k) are spectral values ofH̃(z,n,k), at least if
g/2p is rational. By the continuity property of the spectrum with respect tog, which we mentioned
in the last section, this is also the case for irrationalg/2p. q.e.d.

IV. COMPARISON WITH BETHE ANSATZ EIGENVALUES

As mentioned in the Introduction, the algebraic Bethe ansatz can be used to determine
spectral values ofH̃(z,n,k) as well. In this section we argue that the spectral values determin
Sec. III contain the Bethe ansatz eigenvalues, the argumentation being based on natural co
assumptions which we cannot prove yet. Much of the work has already been done, b
Theorem 3 states in particular that the Bloch parameters, which label, for rational flux, the
ducible representations in which spectral values ofH̃(z,n,k) coincide with the eigenvalues o
Ã(z,n,k), belong toB(z,n,k). On the other hand, it has been shown in Ref. 5 that the B
ansatz eigenvalues~8! are spectral values ofH̃(z,n,k) in these representations as well. Therefo
to assert our claim in the rational case we just need to show that the spectral values ofH̃(z,n,k)
coinciding with the eigenvalues ofÃ(z,n,k) on the one hand and its Bethe ansatz eigenvalue
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the other belong to the sameh-bands. By anh-band we mean the closure of a connected com
nent of p21

„(hmin ,hmax)…, the preimage underp understood as a polynomial inE @i.e., p(E)
5p(z1z21,2 cosng/2,k;E)# of the open interval (hmin ,hmax), hmin andhmax denoting the absolute
minimum and maximum, respectively, of the off-set function as a function of~u,w!. The strategy
is to show this fork51 by comparison of the eigenfunctions, and then to extend this resu
arbitrarykÞ0 by topological arguments assuming continuity.

A detailed derivation of the Bethe ansatz for the discrete sine–Gordon model and the qu
pendulum goes beyond the scope of this article, so we give only a very short description an
the reader to the original literature11,12,1,4and to Ref. 5 for more information on that subject. W
use mainly the notation of Ref. 5.

Doubly discrete Minkowski space–time in 111 dimensions is modeled byZ2 as a light cone
lattice. This means that the two elements of its standard base, here denoted byel ander , point in
left and in right moving directions of the light cone, respectively. Quantum fields of the~doubly!
discrete sine–Gordon model are fields on that lattice whose values are unitary operatorsQ(n),
nPZ2, which commute exept if they are neighbors on the light cone, namely in this case

Q~n1er !Q~n!5q21Q~n!Q~n1er !,

Q~n1el !Q~n!5q21Q~n!Q~n1el !.

Hereq5eig, whereg is a real number proportional to Planck’s constant. Moreover, the fields
subject to the field equation

Qn1er1el
5

k1q1/2Qn1el

11q1/2kQn1el

k1q1/2Qn1er

11q1/2kQn1er

Qn
21, ~22!

the discrete equation of motion. The strictly positive real numberk is a parameter of the model. I
particular, the quantum fields on all of the light cone lattice are uniquely determined by
values on the set̂nPZ2un12n2P$0,1%‰, a so-called Cauchy zig-zag. The discrete quantum p
dulum arrises upon taking specific periodic boundary conditions~periodic in space!. First, let us
take two-periodic boundary conditions, i.e.,Q„n12(er2el)…5Q(n). This then implies that

z~n!ªQ~n!Q~n1er2el !
21

is a unitary which commutes with allQ’s. Furthermore, thez(n) are invariant under time evolu
tion. Thus the~operator-valued! degrees of freedom of the discrete sine–Gordon model whic
two-periodic in space may be taken to be$Q(0),Q(el),z(0),z(el)%, in particular they generate th
C* -algebraCªAg ^C(S13S1), and time evolution is given by an automorphism ofAg extended
trivially on the second factor in the tensor product. Second, fixing eigenvalues forz(0) andz(el)
amounts to taking boundary conditions which make the periodicity even shorter~as short as
possible!, periodicity being understood here as one up to an alternating phase. The discrete
tum pendulum is the discrete sine–Gordon model with such boundary conditions but w
additional symmetry requirement that both eigenvalues are equal. How do we obtain integ
motion for these models?

The answer to this question is based on the observation that the fields of the discrete
Gordon model are the gauge-invariant and spectral-parameter-independent part of a larg
algebra in which a field is assigned to each edge of the light cone lattice~or strictly speaking its
dual! and the values of the field are 232 matrices: An edge is simply a link betweenn and n
1el or betweenn andn1er . The equivalent of a Cauchy zig-zag is therefore a sequence of e
which are every other time parallel toel or to er , respectively. Indexing these edges by integ
numbers so that thesth edge is parallel toer if s is odd and parallel toel if s is even, the value of
the above-mentioned field on edges is given by
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Vs~h!5S ûs 2h1/2k~21!s/2v̂s
21

h1/2k~21!s/2v̂s ûs
21 D ,

whereûs andv̂s are unitaries satisfyingûsv̂s5q21/2v̂sûs , i.e., generatingAg/2 , andh is a spectral
parameter. Such a matrix is called VolterraL matrix,11 in fact, the discrete Volterra model and th
discrete sine–Gordon model are related by a simple coordinate transformation. The
mentioned sine–Gordon fields on the Cauchy zig-zag are quartic expressions in theûs and v̂s

which are independent ofh and their time evolution follows from a quantum analog of a ze
curvature condition stated in terms of the Volterra matrices. We do not repeat the formulas
but refer the reader to Ref. 5. The use of that formulation is that for 2p-periodic boundary
conditions~in space, i.e., there are 2p independent edges in the Cauchy zig-zag!, the matrix trace
of the monodromy matrixM(h)5V2p(h)¯V1(h) is conserved under time evolution and ther
fore are the coefficients of its expansion in the spectral parameter integrals of motion. In th
of the sine–Gordon model with periodicity 2 in space there are four edges in a Cauchy zi
i.e., p52. In that case, the relation between the sine–Gordon variables and the entries of th
Volterra L matrices is

Q~0!5û3
21û2

21v̂3
21v̂2 , Q~el !5û2

21û1
21v̂2

21v̂1 ,

Q~er !5û4û3v̂4v̂3
21, Q~er2el !5û1û4v̂1v̂4

21.

We now describe the monodromy matrix in this case in detail.
Its diagonal elements turn out to depend only on the sine–Gordon varia

$Q(0),Q(el),z(0),z(el)%, and moreoverM22(h)* 5M11(h), where we treat the spectral par
mater as a variable which is independent under the*-operation. Expansion in the spectral para
eter results in

M11~h!5A~0!2hA~1!1h2A~2!,

whereA(2) is a unitary depending onz(0), z(el) which is the identity ifz(0)5z(el),

A~0!5w2A~2!

with another unitaryw depending onz(0), z(el), and

A~1!1A~1!* 5H~wA~2!1~wA~2!!* ,w1w* ,k!.

~The precise form ofA(1) is not of importance here.! H„wA(2)1(wA(2))* ,w1w* ,k…, which is~1!
with operator-valueda and b ~and realk!, should now be understood as an element ofC. The
unitariesu and v of ~1! are, up to factors depending onz(0), z(el), equal toQ(el)

21 and
Q(0)21, respectively. This change of variables is convenient for what follows; its precise fo
bit cumbersome but straightforward and we supress it here. It can be found in Ref. 5. To su
rize, there are three integrals of motion for the discrete sine–Gordon model with periodicity
space, namelyA(0)1A(0)* , A(1)1A(1)* , andA(2)1A(2)* . The spectra ofA(0) and ofA(2) are both
$zPCuuzu51% and describe the possible shortest boundary conditions. The remaining task
determine the spectrum ofA(1)1A(1)* . This can be partly achieved by the algebraic Bethe an
for which we need to know also the off-diagonal entries of the monodromy matrix.

The off-diagonal entries satisfyM21(h)* 52M12(h), and one may write

M21~h!5SC~h!

whereC(h)PC andS is a unitary element which satisfies the following relations with the g
erators ofC:
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A~2!S5q1/2SA~2!, ~23!

wS5q21/2Sw, ~24!

uS5q1/2Su, ~25!

vS5qSv. ~26!

Expansion ofC(h) in powers of the spectral parameter results in

C~h!5h1/2~C~1/2!2hC~3/2!!

with

C~1/2!5q21/2
„~k21/21k1/2q21/2wu* !w2A~2!1~k21/2u* 1k1/2q1/2w!v…,

C~3/2!5q23/2wu* „~k21/21k1/2q21/2wu* !qA~2!1~k21/2u* 1k1/2q1/2w!v….

In distinction to Ref. 5 we have formulated here the operators in terms of the generators ofC and,
as above, writtenu andv for P1 andP2 , respectively. What should be kept in mind is thatC(h)
has the form

C~h!5 f 1~u,w,A~2!,h!1 f 2~u,w,A~2!,h!v ~27!

with two continuous functionsf 1 and f 2 .
The starting point of the algebraic Bethe ansatz is the construction of a so-called Bethe

ground state, which is a null vector ofM21(h). One proceeds to construct ‘‘excited’’ states b
applying the ‘‘ladder operator’’M12(h) one or several times. A Yang-Baxter equation gives r
to a commutation relation between the traceM11(h)1M22(h) andM12(h) which may be used
to determine more eigenvalues of the trace in a purely algebraic way, i.e., just upon using
relations. Their corresponding eigenvectors arise upon application of products
M12(h1)¯M12(hn) to the Bethe ansatz ground state; however, due to the nature of the a
commutation relations, only with a special choice of spectral parametersh1 ,...,hn . The system of
equations which determines these spectral values is called Bethe ansatz equations. For the
case, the Bethe ansatz equations and Bethe ansatz eigenvalues are stated in Theorem 1.

A. Bethe ansatz ground state

The Bethe ansatz ground state is a null vectorV of M21(h) and therefore a solution of th
two equations

„~k21/21k1/2q21/2wu* !w2A~2!1~k21/2u* 1k1/2q1/2w!v…V50, ~28!

~w22q!A~2!V50. ~29!

To solve for such a null vector one has to choose a representation forC. But sincew is central in
C, we may as well take a representation of the quotient algebra which isC modulo the ideal
generated by the elementw22q. We choose a representation with representation spacel 2(Z),
labeled by two anglesu andd:

u•f~n!5eiuq2nf~n!, ~30!

v•f~n!5f~n21!, ~31!

A~2!
•f~n!5q21/2eidf~n!. ~32!
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Note that this representation extends the Weyl–Schro¨dinger representation for the algebra gen
ated byu andv. Upon substitutingq1/2 for w, Eq. ~28! looks in the above representation, whereV
is a function overZ, like

~k21/21k1/2e2 iuqn!q1/2eidV~n!1~k21/2e2 iuqn1k1/2q!V~n21!50. ~33!

To solve~33! there are two cases to distinguish. The first case is that, for allnPZ, ke6 iuqnÞ
21 ~we require realk here!. Equation~33! gives then rise to a recursion relation forV which can
easily be solved. Ifg/2p5M /N, then the solution of this recursion relation isN-periodic up to a
phase and vanishes nowhere. For generalg/2p one finds that

UV~m!

V~0!
U5U k1eiu

k1eiuqmU,
from which we see that, forkÞ1, V is what is called an extended state, it is bounded but it d
not decay at infinity. Moreover,~33! gives rise to the equation for the Bloch parameters~u,w! at
which, for rational flux, the Bethe ansatz eigenvalue corresponding to the ground state exi
stated differently, which label the irreducible representations in whichV decomposes. It is tha
consideration–it has been carried out in a slightly different representation in Ref. 5—which
to the result mentioned earlier, namely that for rational flux, the Bethe ansatz eigenvalu~8!
occurr in irreducible representations which are labeled by (u,w)PB(eid,n,k).

The other case,k51 and u5p, is of even more importance in this section. In that ca
V(n)5dn0 is a solution of~33!, wheredmn is the Kronecker symbol,dmn51 if n5m, and 0
otherwise.

B. ‘‘Excited’’ Bethe ansatz eigenstates

Sincew1w* andwA(2)1(wA(2))* are central elements inC, they act as scalar operators
irreducible representations ofC. We mentioned already that these scalars are integrals of mo
which define boundary conditions. They may also be interpreted as quantum numbers whic
a super selection sector of the two-periodic sine–Gordon model. Since the ‘‘ladder’’ ope
M12(h) has the formM12(h)52C* (h)S* andS does not commute with the elements ofC, it
cannot be implemented as an operator in the above representation and its application to a
a specific sector will change the sector. It is convenient to combine all these sectors into on
representation. As representation space we takeH5 % nPZHn , where eachHn is a copy ofl 2(Z)
which is preserved byC and plays the role of a sector. IdentifyingH with l 2(Z2) by denoting the
component ofCPH which belongs toHn by C(•,n) we represent the algebra generated byC and
the elementS as

u•C~n1 ,n2!5eiqqn2 /22n1C~n1 ,n2!, ~34!

v•C~n1 ,n2!5C~n121,n2!, ~35!

w•C~n1 ,n2!5qn2/2C~n1 ,n2!, ~36!

A~2!
•C~n1 ,n2!5eidq2n2/2C~n1 ,n2!, ~37!

S•C~n1 ,n2!5q2n1C~n1 ,n221!. ~38!

The anglesq andd label the representation. It is straightforward to check that this definitio
compatible with the relations among the elements ofC andS.

Lemma 3: Consider the operator H„wA(2)1(wA(2))* ,w1w* ,1… acting in the above repre-
sentation withq5p2g/2. It preserves the subspacesHn and its restriction toH1 coincides with
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H̃p(eid,1,1). Moreover, a Bethe ansatz ground state for H˜
p(eid,1,1) may be identified with the

vectorV(n1 ,n2)5dn10dn21 in H and any vector of the formM12(h1)¯M12(hn21)V vanishes

outside the subset$(0,n),...,(n21,n)% ,Z2.
Proof: That H„wA(2)1(wA(2))* ,w1w* ,1… preservesHn is straightforwardly verified. Its

restriction toH1 clearly coincides withH̃(eid,1,1) acting in the Weyl–Schro¨dinger representation
with angleu5q1g/2. Hence, ifq5p2g/2, thenV(n)5dn0 is a Bethe ansatz ground state f
H̃(eid,1,1) in that Weyl–Schro¨dinger representation. In representation~34!–~38! V has to be
identified withV(n1 ,n2)5dn10dn21 , i.e., it has support$~0,1!%. The lemma follows therefore from
the special form~27! of C(h) and Eqs.~35! and ~38!. q.e.d.

Now consider a Bethe ansatz eigenvector in the above representation onH. It is a vector of
the formM12(h1)¯M12(hn21)V, nPN, ‘‘excited’’ when n.1, whereh1 ,...,hn21 satisfy the
Bethe ansatz equations~7!. Although there are, in general, infinitely many such vectors
H„wA(2)1(wA(2))* ,w1w* ,k…, their corresponding eigenvalues do not exhaust the spectru
this operator. In particular,~36! and Lemma 3 imply that the eigenvalue ofw on the above Bethe
ansatz eigenvectorM12(h1)¯M12(hn21)V has to beqn/2. Thus, such a Bethe ansatz eigenve
tor is a~generalized! eigenvector of the restriction ofH„wA(2)1(wA(2))* ,w1w* ,k… toHn , and
this restriction coincides with the operatorH(2 cosd,2 cos(ng/2),k)5H̃(eid,n,k) acting in the
Weyl–Schro¨dinger representation with angleu1(n/2)g.

Theorem 4: Suppose that there exist, an open interval I of the real line containing 1 an
neighborhood U,S1 of d such that the Bethe ansatz eigenvalues (8) depend continuously
and d when ~k,d! is varied inside I3U. Then, for rational values of the flux, the Bethe ans
eigenvalues (8) for H˜ (eid,n,k), dPS1, nPN, kPI , are eigenvalues of A˜ (eid,n,k).

Proof: First, let k51 and considerH„wA(2)1(wA(2))* ,w1w* ,1… in a representation~34!–
~38! with u5p2g/2. Then, by the above lemma, Bethe ansatz eigenvectors of the
M12(h1)¯M12(hn21)V belong to Hn and have support contained in$(0,n),...,(n
21,n)%,Z2. RestrictingH„wA(2)1(wA(2))* ,w1w* ,1… toHn we obtain the operatorH̃(eid,n,1)
acting in the Weyl–Schro¨dinger representation withu5p1@(n21)/2#g, and we have just shown
that the Bethe ansatz eigenvectors are among its eigenvectors belonging to the image ofPn . For
k51, the statement of the theorem follows therefore from Theorem 2. To extend this statem
kPI recall that we only have to show that the eigenvalues of which we want to show equal
in the sameh-bands. To see that this is the case, first note that the eigenvalues ofÃ(eid,n,k)
depend continuously onk and d. By assumption, the Bethe ansatz eigenvalues depend con
ously on (k,d) when varied insideI 3U. Therefore, if the offset function does not have
absolute extremum at (u,w)PB(z,n,k), then the eigenvalues in question are spectral values in
interior of h-bands and hence cannot change bands under variation ofk inside I. This is the case
for an open dense set of values ford. Using continuity ind, the theorem follows. q.e.d

Continuity of the Bethe ansatz eigenvalues ingPS1\$p% would imply the above result to hold
true for all values ofg.

V. CONCLUDING REMARKS

We have foundn values in the spectrum of the operatorH̃(z,n,k) which are exact even fo
irrational flux and given evidence that these coincide with the eigenvalues obtained by the
braic Bethe ansatz. Moreover, these spectral values depend analytically on the flux. Which
they play for the model of our consideration? We conclude this article with two remarks w
give partial answers to this question.

~1! We have seen that forkÞ1 the Bethe ansatz ground state is an extended state. First re
indicate that this remains true for the ‘‘exited’’ states as well. In fact, one can show th
g/2p is approximated by a sequence of rationals (pn /qn)n for which limn→` qn

2ug/2p
2pn /qnu50 ~equivalently, its continued fraction expansion is unbounded!, thenV(n) is an
almost periodic sequence providedkÞ1. ~The set of irrational numbers for which this is th
case has full Lebesgue measure and is nowadays also referred to as Last-admissible nu!
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From the specific form of the ‘‘ladder’’ operatorM12 one sees that it acts on a state as a s
of two operators, one being multiplication by an almost periodic sequence and the other
the shift followed by multiplication with another almost periodic sequence. Hence, if a sta
an almost periodic sequence, then its image underM12 is one, too. In particular, if the image
does not vanish, then it is extended.

A similar phenomenon has been observed for tight binding models on codimension
quasicrystals13 like the Fibonacci chain. Also there, exact spectral values could be obtained
their corresponding eigenstates are extended. Extended states are a peculiarity in these m
which, in general, an eigenstate is expected to be critical due to the self-similarity of the
The nature of the~generalized! eigenstates can be related to transport properties.13

~2! For the symmetric case of the QP-integral@i.e., a5b52 cos(ng/2)] at rational fluxg/2p
5M /N with N>2n it can be shown that the spectral values obtained in this article are p
in the spectrum at whichh-bands touch. This effect occurs also in Ref. 13. ForaÞb, how-
ever, we do not observe this band touching.
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The exact~bosonic! ground state and a class of excited states are obtained for
several Calogero-typeN-body problems inD dimensions when theN bodies are
also interacting via anN-body potential of the form2e2/ASr i

2. © 1999 Ameri-
can Institute of Physics.@S0022-2488~99!01505-4#

I. INTRODUCTION

Over the years, the exact solutions ofN-body problems have attracted considerable atten
because of their possible relevance in statistical mechanics as well as in atomic, nuclea
gravitational many-body problems. Whereas the exact solution of severalN-body problems in one
dimension is known by now,1,2 a class of exact solutions including the bosonic ground state h
been obtained for several Calogero-typeN-body problems in higher dimensions, when they a
also interacting via an oscillator potential.3–7 Clearly, it is of considerable interest to discov
otherN-body problems that are either completely solvable or for which at least the ground s
exactly known.

The purpose of this paper is to show that a class of exact solutions including the bo
ground state of all theN-body problems inD dimensions discussed in Refs. 3–7 can also
obtained when the oscillator potential is replaced by anN-body potential of the form

V~r1 ,r2 ,...,rN!52
e2

A( ir i
2

. ~1!

We further show that one can also add anN-body potential of the form

V~r1 ,r2 ,...,rN!52
d2

( ir i
2

, ~2!

and the problem is still analytically solvable with that the degeneracy in the bound state spe
being much reduced. In this context, we may add that recently we have obtained8 a class of exact
solutions of theN-anyon problem~in two dimensions! when they are interacting via theN-body
potential~1!. Furthermore, some time ago we also obtained the complete bound state spect
the N-particle problem in one dimension when they are interacting via a variant of the a
potential.9–11 Subsequently Gurappaet al.12 showed that the complete bound state spectrum
also be obtained in one dimension when anN-body potential of the formb2/( i , j (xi2xj )

2 is
added either to an oscillator or to a variant of theN-body potential~1!.

Actually, the basic idea of this paper is quite elementary. There are several quantum me
cal N-body problems whose solution is ultimately reduced to solving the Schro¨dinger equation in
an appropriate radial variable for the harmonic oscillator potential. These problems remain
able if the oscillator potential is replaced by the ‘‘Coulomb’’ potential~1!. Furthermore, both the
oscillator and the Coulomb problem remain solvable with the addition of the ‘‘centrifugal’’~in-

a!Electronic mail: khare@iopb.res.in
26400022-2488/99/40(6)/2640/7/$15.00 © 1999 American Institute of Physics
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verse square! potential~2!. Thus, what we are really showing in this paper is that this is exa
what happens in severalN-body problems. These additional terms are susceptible of being i
preted as rather artificial many-body potentials in the original physical problem. The hope i
some of these new many-body problems may be of some applicative relevance.

The plan of the paper is as follows. In Sec. II we discuss theN-body Calogero–Marchioro3

model inD dimensions4 and show that one can analytically obtain some exact eigenstates, in
ing the~bosonic! ground state when theN bodies are also interacting via the potential~1!. In Sec.
III we consider a model of Murthyet al.5,6 in two dimensions and show that exact solutions w
novel correlations can also be obtained when one replaces the oscillator potential by the po
~1!. We also show that the corresponding two-body problem is completely solvable. In Sec.
consider a Calogero-type model inD dimensions8 which has only two-body~and no three-body!
interactions, and show that one can obtain some exact eigenstates including the~bosonic! ground
state when theN bodies are interacting via theN-body potential~1!. In all the above cases we als
show that some exact states including the bosonic ground states can still be obtained ana
if one adds theN-body potential~2! to theN-body potential~1! ~or to the oscillator potential!, and
that the degeneracy in the discrete spectrum is then much reduced.

II. CALOGERO–MARCHIORO MODEL WITH N-BODY POTENTIAL

A long time ago, in an effort to generalize the original Calogero model2 to dimensions higher
than one, Calogero and Marchioro3 considered a model in three dimensions in which theN
particles are interacting via two-body and the three-body inverse square interactions as we
pairwise harmonic oscillator potentials, and obtained some exact eigenstates, includin
bosonic ground state of the system. They also mentioned that these results could be ea
tended to higher-dimensional spaces. This generalization was explicitly carried out b
recently,4 and in the special case of two dimensions we were able to obtain all the corre
functions of a many-body theory by mapping the problem to complex random matrices. In
ticular, we considered the followingN-body Hamiltonian inD-dimensions:

H52
\2

2m (
i 51

N

¹ i
21

g\2

2m (
i , j

1

r i j
2 1

G\2

2m (
i , j ,k

iÞk, j Þk

r ki–r k j

r ki
2 r k j

2 1
mv2

4 (
i

N

r i
2, ~3!

and obtained some eigenstates, including the bosonic ground state of the system providedG and
g are related to each other@see Eq.~6! below#. Herer i is theD-dimensional position vector of the
ith particle andr i j 5r i2r j denotes the relative separation of theith and jth particles whiler i j

denotes its magnitude.
Let us consider the same many-body problem, as given by Eq.~3!, but with the oscillator

potential being replaced by theN-body potential~1!. Throughout this paper, whenever we discu
the exact solutions with theN-body potential~1!, we shall rescale all distancesr i→\2r i /me2 and
measure energy in units ofme4/\2 so thatm, e, \ are all scaled away. On the other hand, in t
oscillator case we shall rescale all distancesr i→A\/mvr ; and measure energy in units of\v. On
substituting the ansatz,

c5S)
i , j

ur i2r j uLDDf~r! ~4!

in the Schro¨dinger equation, one obtains

rf9~r!1~2GD11!f8~r!1~222ruEu!f~r!50. ~5!

HereLD andGD are given by

LD[AG5 1
2@A~D22!214g2~D22!#, ~6!
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GD5 1
2@DN221LDN~N21!#, ~7!

while, here and always below,

r25(
i

N

r i
2. ~8!

It is easily seen that the solution to this equation is

f~r!5exp~2A2uEur!Lnr

2GD~2A2uEur!, ~9!

with the corresponding energy eigenvalues being~in units of me4/\2)

Enr
52

1

2~nr1GD1 1
2!

2
. ~10!

Several comments are in order at this stage.
~1! The exact solutions are obtained whenG andg are related by Eq.~6!. As g→0, we see

from Eq. ~6! that alsoG→0, and the wave function as given by Eqs.~4! and ~9! becomes the
ground state eigenfunction of the hyperspherical ‘‘Coulomb problem’’ inD dimensions without a
centrifugal barrier and with Bose statistics. Thus, the situation is different from the
dimensional problem,2,10 where, asg→0, the eigenfunction is the ground state of the ‘‘Coulom
problem,’’ but with Fermi statistics. We shall see that in all the higher-dimensional many-
problems (D.1), unlike in the one-dimensional case, as the coupling is switched off the e
function corresponds to that of Bose statistics.

~2! The N-body problem is still solvable if, in addition to replacing the oscillator poten
with theN-body potential~1!, we also add the potential~2! to the Hamiltonian~3!. In this case the
ansatz~4! in the Schro¨dinger equation yields

rf9~r!1~2GD11!f8~r!1S 22
d2

r
22ruEu Df~r!50, ~11!

so that the exact eigenstates are given by~in units of me4/\2)

Enr
52

1

2~nr1g1 1
2!

2
, ~12!

f~r!5r~g2GD! exp~2A2uEur!Lnr

2g~2A2uEur!, ~13!

where

g5AGD
2 1d2. ~14!

~3! In the same way, theN-body problem with the oscillator potential as given by Eq.~3! is
also solvable if we add theN-body potential~2! to it. In particular, it is easily shown that th
corresponding exact eigenstates are then

Enr
5@2nr111g#, ~15!

cnr
5S)

i , j
ur i2r j uLDDexpS 2

1

2
r2D r~g2GD!Lnr

g ~r2!. ~16!
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III. NOVEL CORRELATIONS WITH AN N-BODY POTENTIAL

In a recent paper, Murthyet al.5,6 have proposed a model in two dimensions with two-bo
and three-body interactions. They were able to obtain the bosonic ground state and a c
excited states of the system by adding an external harmonic oscillator potential. The mod
constructed in such a way that the solutions have a novel correlation of the form

Xi j 5xiyj2xjyi ~17!

built into them. Note thatXi j is a pseudoscalar. Furthermore, unlike the Laughlin–Jastrow typ
correlation, this correlation is not translationally invariant. We now show that the bosonic gr
state and the radial excitations over it can also be obtained when the oscillator potential is re
by theN-body potential~1!. Furthermore, we also obtain the complete solution of the two-b
problem. Notice that the two-body problem is nontrivial since the center of mass motion can
separated.

Following Murthy et al.,5,6 we start with theN-particle HamiltonianH ~in the scaled vari-
ables!, as given by

2H52(
i 51

N

¹ i
21g1(

iÞ j

N r j
2

Xi j
2 1g2 (

iÞ j Þk

N r j–r k

Xi j Xik
2

2

r
, ~18!

whereXi j is given by Eq.~17! while g1 andg2 are the dimensionless coupling constants of
two-body and the three-body interactions, respectively. Note that this Hamiltonian differs
those considered in Refs. 5, 6 by the replacement of an external harmonic oscillator potenti
the externalN-body potential~1! @the last term on the rhs of Eq.~18!#.

It is easily seen that

c0~xi ,yi !5S )
i , j

N

uXi j ugD exp~2A2uE0ur! ~19!

is the exact ground state of this system with the corresponding ground-state energy being~in units
of me4/\2)

E052
1

2@gN~N21!1N2 1
2#

2
, ~20!

providedg1 andg2 are related tog by

g15g~g21!, g25g2. ~21!

It may be noted that thisc0 is regular forg>0 which implies thatg1>21/4, g2>0. There is a
neat way of proving that this is indeed the ground state, by using the method of operators13

A. A class of excited states

As in the oscillator case, also in our case a class of excited states can be obtained analy
To that end we consider the ansatz

c~xi ,yi !5S )
i , j

N

uXi j ugD exp~2ar!f~xi ,yi !. ~22!

On using Eqs.~18! and ~22! it is easily seen thata2522E, while f satisfies the eigenvalu
equation
                                                                                                                



i.e.,
ccord-
states

exact
en in

ctly
e
.

tes.
h,

lar,

2644 J. Math. Phys., Vol. 40, No. 6, June 1999 Avinash Khare

                    
F2
1

2 (
i

¹ i
21

a

r (
i

r i–“ i1
A

r
1g(

iÞ j
S xj

]

]yi
2yj

]

]xi
D Gf50, ~23!

where

A5a@gN~N21!1N2 1
2#21. ~24!

It is worth remarking thatf is also an eigenstate of the total angular momentum operator
LF5 lF. One can now run through the steps of Ref. 5 and classify some exact solutions a
ing to their angular momentum. In particular, one can show that one has a tower of excited
whose exact energy eigenvalues may be written in the form

Enr ,l52
1

2@nr1gN~N21!1N1u l u2 1
2#

2
. ~25!

The existence of a tower is a general result applicable to all excited states of which the
solutions shown above form a subset. This is easily proved by following the arguments giv
Bhaduriet al.6 Finally, theN-body problem is still solvable if we add theN-body potential~2! to
the Hamiltonian~18!.

B. The two-body problem: Complete solution

As in the oscillator case,6 we now show that the two-body problem is integrable and exa
solvable when the two bodies are interacting via theN-body potential~1!. Let us again emphasiz
that the two-body problem is nontrivial here since the center of mass cannot be separated

The two-body Hamiltonian is given by@see Eq.~18!#

H52
1

2
~¹1

21¹2
2!2

1

Ar1
21r2

2
1

g1

2

~r1
21r2

2!

X2 , ~26!

whereX5x1y22x2y1 . This two-body problem is best solved in the hyperspherical coordina
To that end, let us parametrize the coordinatesr1 , r2 in terms of three angles and one lengt
(R,u,f,c).14,15 In terms of the hyperspherical coordinates the Hamiltonian~26! is given by

H52
1

2 F ]2

]R2 1
3

R

]

]R
2

L2

R2 1
2

RG1
2g1

R2 sin2~2u!
, ~27!

where the operatorL2 is the Laplacian on the sphereS3 and is given by

2L25
]

]u22
2 sin~2u!

cos~2u!

]

]u
1

1

cos2~2u! F ]2

]f2 12 sin~2u!
]2

]f]c
1

]2

]c2G . ~28!

It is easily seen that if we write

C~R,u,f,c!5F~R!F~u,f,c!, ~29!

then the eigenvalue equationHC5EC separates into angular and radial equations. In particu
the angular equation is given by

FL21
4g1

sin2 2uGF5b~b12!F, ~30!

whereb>21, while the radial equation is given by
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F9~R!1
3

R
F8~R!1S 2E1

2

R
2

b~b12!

R2 DF~R!50. ~31!

The radial equation is easily solved, yielding

F~R!5Rb exp~2A2uEuR!M ~a,b;2A2uEuR!, ~32!

whereb52b13, a5 3
21b21/A2uEu, and M (a,b;x) is the confluent hypergeometric function

Demandinga52nr , wherenr is a non-negative integer, yields the bound state energy eigen
ues

E52
1

2~nr1b1 3
2!

2
. ~33!

The tower structure of the eigenvalues built on the radial excitations of the ground state is o
from this formula.

It must be emphasized here thatb is still unknown and has to be obtained by solving t
angular equation~30!. We now note that the angular equation is, in fact, identical in the oscill
and our case, and it has been analyzed in great detail by Bhaduriet al.6 We can therefore borrow
their results and draw conclusions about the value ofb and hence the spectrum, as given by E
~33!.

IV. CALOGERO-TYPE MODELS IN HIGHER DIMENSIONS WITH N-BODY INTERACTION

In Sec II, we have considered one possible generalization of the Calogero-type mod
higher dimensions. The key point there was to have a long-ranged three-body interaction
This is in addition to the long-ranged two-body interaction term that is also present in
dimension. Only then was it possible to obtain a class of exact solutions including the bo
ground state. Another possible generalization of the Calogero model to higher dimension
considered recently by Ghosh.7 In a remarkable paper7 he introduced two models with purel
two-body long-ranged interactions and in both cases he was able to obtain the exact b
ground state and radial excitations over it. In this section we show that the exact ground sta
radial excitations over it can also be obtained if the oscillator potential in Ref. 7 is replaced b
N-body potential~1!. Following Ghosh,7 let us consider the Hamiltonian

H52
1

2 (
k51

N

¹k
22

1

r
1V1~b!1V2~b!1W3~b!, ~34!

where

V1~b!5
b2

2
g~g21!(

kÞ j

ur ku2~b21!

~ ur kub2~ ur j ub!2 ,

V2~b!5
gb

2
~D1b22!(

kÞ j

ur ku~b22!

~ ur kub2ur j ub!
, ~35!

W3~b!5
b2

2
g~g21! (

iÞ j Þk

ur i u2~b21!

~ ur i ub2ur j ub!~ ur i ub2ur kub!
,

with g a dimensionless constant. Note that forb51 andb52 the three-body interaction termW3

vanishes. Also note that the Hamiltonian as given by Eq.~34! differs from Ref. 7 by the replace
ment of an external harmonic oscillator potential with the externalN-body potential~1! @the
second term on the rhs of~34!#.
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It is straightforward to obtain the bosonic ground state and the radial excitation spectrum
it. In particular, it is easily seen that the exact eigenfunctions are

cnr
5S)

i , j
~ ur i ub2ur j ub!gD M ~a52nr ,b;2ar!exp~2A2uEur!, ~36!

with the corresponding eigenvalues being

Enr
52

1

2Fnr1
ND

2
1

gb

2
N~N21!21G2 . ~37!

Here a5A/a, b52(A11)/a while E52a2/2 andA5a@ND/21gbN(N21)/221#. Similar
exact solutions are also obtained if one adds theN-body potential~2! to the Hamiltonian~34!.

V. SUMMARY AND OPEN PROBLEMS

In this paper, we have discussed severalN-body problems in two and higher dimensions a
in every case we have shown that if exact eigenstates including theN-boson ground state can b
obtained when theN-particles are also interacting by an oscillator potential, then similar e
eigenstates can also be obtained when the oscillator potential is replaced by the ‘‘Coulom
N-body potential~1!. Furthermore, we have shown that in both cases one can also add an in
squareN-body potential, and the problems are still analytically solvable while the degenera
the spectrum is much reduced. It is clearly of interest to examine other solvable many
problems with an external harmonic oscillator potential and see if exact results can still b
tained with the replacement of the oscillator potential by theN-body potential~1!.
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In this paper we study the eigenvalue problems for the Ginzburg–Landau operator
with a large parameter in bounded domains inR2 under gauge invariant boundary
conditions. The estimates for the eigenvalues are obtained and the asymptotic be-
havior of the associated eigenfunctions is discussed. These results play a key role in
estimating the critical magnetic field in the mathematical theory of superconduc-
tivity. © 1999 American Institute of Physics.@S0022-2488~99!02806-6#

I. INTRODUCTION AND STATEMENT OF MAIN RESULTS

This paper is devoted to the asymptotic estimates, for large parameters, of the first eigen-
value m(sA) and the associated eigenfunctions of theGinzburg–Landau operator2¹sA

2 in a
smooth bounded domainV in R2. Given a real vector fieldA5(A1,A2), the Ginzburg–Landau
operator2¹A

2 associated withA is defined by

2¹A
2c52¹A•~¹Ac!52¹c1 i @2A•¹c1c div A#1uAu2c,

where i 5A21. We denote¹Ac5¹c2 icA, curlA5]1A22]2A1, and curl2 A5(]2(curlA),
2]1(curlA)), here] j5]/]xj .

Let m5m(A) be the first eigenvalue of the following problem:

2¹A
2c5mc in V,

~1.1!
~¹Ac!•n1gc50 on ]V,

wherec is a complex-valued function,n is the unit outer normal to]V, and g>0 is a given
constant. Then,

m~A!5 inf
cPW1,2~V!

*Vu¹Acu2dx1g*]Vucu2 ds

*Vucu2 dx
. ~1.2!

It is well-known that the Ginzburg–Landau operator has thegauge invarianceproperty

¹A1¹x~eixc!5eix¹Ac, ¹A1¹x
2 ~eixc!5eix¹A

2c

for every real smooth functionx. The equation and the boundary condition in~1.1! as well as the
functional in~1.2! are invariant under the gauge transformationA→A1¹x , c→eixc. Therefore,
m(A1¹x)5m(A). By a gauge transformation if necessary, we may assume

div A50 in V, A•n50 on ]V.

Our main result is the following
26470022-2488/99/40(6)/2647/24/$15.00 © 1999 American Institute of Physics
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Theorem 1: There exists a universal constantb0 , 0,b0,1, such that for all APC2(V̄)

lim
s→`

m~sA!

usu
5min$min

xPV

ucurlA~x!u,b0 min
xP]V

ucurlA~x!u%. ~1.3!

Remark 1.1: As a consequence of Theorem 1 we see that, ifcurlA(x)[H, a nonzero constant
then

lim
s→`

m~sA!

usu
5b0uHu.

The universal constantb0 stated in Theorem 1 is the numberb(1) given in Lemma 2.2. We
have an estimate forb0 :

0.5,b0,0.76,

see Ref. 1. It has been expected thatb0.0.59, see for instance Refs. 2 and 3. If curlA vanishes
at some points, the estimates can be greatly improved, see Sec. VI. It is interesting to see
distribution of minimum points ofucurlAu determines the magnitude ofm(sA) and the location of
the concentration points of the eigenfunctions for larges. This is partially due to the gaug
invariance of the Ginzburg–Landau operator and due to the invariance of curlA under the gauge
transformations.

To prove Theorem 1 we shall establish two estimates form(sA), the upper bound estimat
~given in Sec. VI! and the lower bound estimate~given in Sec. VII!. The gauge invariance of th
Ginzburg–Landau operator, the local decomposition formula of vector fields obtained in Se
and the results obtained in Ref. 4 concerning the eigenvalue problems of Ginzburg–L
operator in the entire plane and on the half plane will play essential roles to obtain these est
To derive the lower bound estimate we also need to show the local convergence, ass→`, of the
rescaled eigenfunctions~after a series of gauge transformations!. Since the eigenfunctions ma
concentrate either in the interior ofV or at the boundary, both interior and boundarya priori
estimates established in Secs. IV and V are needed to obtain the local convergence. We m
that most of the estimates given in this paper are gauge invariant. As a by-product, the asym
behavior of the eigenfunctions ass goes to` will also be obtained.

The technical difficulty in our problem comes from the boundary effects, which is our m
concern in this paper. One may see in Sec. VI that when the eigenfunctions concentrate
interior of V, the limiting equation obtained after rescaling is an eigenvalue problem in the e
planeR2, see~2.3!. All the eigenvalues of~2.3! have been obtained in Ref. 4. However, when t
concentration happens at the boundary, very technical analyses are required to get the b
estimates and to prove the local convergence of the rescaled eigenfunctions near the boun
this case, the limiting equation is an eigenvalue problem in the half plane]R1

2 , see~2.5!. The first
eigenvalueb(h) of ~2.5! was obtained in Ref. 4 after lengthy analyses, which is the difficult p
of Ref. 4. Comparing Lemma 2.1 with Lemma 2.2 in Sec. II, one may see the significant d
ence between the problems in the domain without or with boundary.

The motivation to study such type eigenvalue problems is to estimate the value of the
critical magnetic field at which superconductivity can nucleate.

In the mathematical theory of superconductivity, the following Ginzburg–Landau equatio
~c, A! was proposed as a macroscopic model~see Ref. 5!

2¹kA
2 c5k2~12ucu2!c,

~1.4!

curl2 A52
i

2k
~c̄¹c2c¹c̄!2ucu2A1curlH in V.
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HereV is the region occupied by the superconducting specimen,c is a complex-valued function
calledorder parameter, A is a real vector field calledmagnetic potential, H is the applied magnetic
field, k is the so-calledGinzburg–Landau parameter. The natural boundary conditions for
superconductor-other material junction are~see Ref. 6!

~¹kAc!•n1gc50, ~curlA2H !3n50 on ]V, ~1.5!

wheren is the unit out-normal vector at the boundary ofV andg is a positive constant.
It is well-known that a superconductor placed in an applied magnetic field may chan

phase when the field varies. Consider aspatially homogeneous field. If the field is sufficiently
strong, it penetrates through the entire sample and the superconductor is in a normal state
field is gradually reduced to a certain valueHC3

called theupper critical field, the nucleation of
superconductivity at surface occurs. If the field is further reduced to another valueHC2

, the
nucleation in the interior occurs. It is important in both theory and applications to estimat
values of the critical fields, especially for type 2 superconductors with large value ofk.

The physicists Saint-James and De Gennes were the first to study the surface nuc
phenomenon for semi-infinite superconductor occupying the half space~see Ref. 2!. The most
amazing result they obtained was the relationHC3

/HC2
51/0.59. The argument for this relatio

was nontrivial, even though they studied only the superconductor which occupies the half
and is subjected to aspatially homogeneousapplied magnetic field.

We have been interested in estimating the value of the upper critical field for supercond
specimen occupying anarbitrary bounded smooth domain. In Ref. 1, to get such estimate,
considered the applied field having the formH5sH0 and estimated the maximal value ofs, say
s* , so that under the applied fields* H0 the nucleation of superconductivity occurs. Choosin
vector fieldF so that curlF5H0 , we found that whenk is large, the value ofs* is close to the
numbers* for which m(s* kF)5k2. This led us to study the asymptotic estimates ofm(sF) for
large value ofs. In Ref. 1, by using the results in this paper, we obtained the asymptotic est
for HC3

for largek and the location of nucleation of superconductivity.
There have been many recent works on the mathematical theory of superconductivit

Refs. 3, 7–19, and the references therein. The works3 by Chapman,7 by Bauman, Phillips, and
Tang, and by Bernoff and Sternberg10 are closely related to our present paper, while Refs. 7
10 were found after this work had been completed. In Ref. 3, Chapman studied the half
problem onHC3

by using formal mathematical analysis. In Ref. 7, Bauman, Phillips, and T
rigorously estimatedHC3

and found the location of nucleation for a sample occupying a cylin
with two-dimensional cross section consisting of a disk. The sample is adjacent to a vacuu
is subject to a homogeneous applied magnetic field pointing in the axial direction. From
bifurcation point of view, they studied small solutions bifurcating from the eigenfunctions. In
10, Bernoff and Sternberg considered a sample occupying an infinite cylinder with
dimensional cross section consisting of an arbitrary simply connected smooth bounded re
R2. The sample is adjacent to a vacuum and is subject to a homogeneous applied magne
pointing in the axial direction. They estimatedHC3

and found the location of nucleation by usin
formal asymptotic expansions. In this paper we study eigenvalue problems in bounded s
domains with nonhomogeneous applied magnetic fields under the boundary conditions
superconductor–other material junction. The result obtained in this paper was used in Re
obtain rigorously estimates forHC3

and locations of nucleation for a cylindrical sample which
placed in an applied magnetic field being parallel to the lateral surface but not necessarily sp
homogeneous and is adjacent to other material.

II. PRELIMINARIES

In this section we give some basic lemmas which will be used later to establish our
result. Throughout this paper, we let
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v~x!5 1
2~2x2 ,x1!. ~2.1!

Note that curlv51 and divv50. Denote, for a nonzero real numberh,

a~h!5 inf
cPW~R2!

*R2u¹hvcu2 dx

*R2ucu2 dx
, ~2.2!

whereW(R2)5Wloc
1,2(R2)ùL2(R2). Clearly, the minimizers are theL2 eigenfunctions of the fol-

lowing problem associated witha5a(h):

2¹hv
2 c5ac in R2. ~2.3!

Let

b~h!5 inf
cPW~R1

2
!

*R
1
2 u¹hvcu2 dx

*R
1
2 ucu2 dx

, ~2.4!

whereW(R1
2 )5Wloc

1,2(R1
2 )ùL2(R1

2 ). The associated eigenvalue problem is

2¹hv
2 c5bc in R1

2 ,
~2.5!

~¹hvc!•n50 on ]R1
2 ,

wheren(x)5(0,21) is the outer normal toR1
2 .

Lemma 2.1:~Ref. 4!. For every hÞ0, a(h)5uhu. The associated eigenfunctions are given

c~x!5H f ~x!exp~2uhur 2/4!

f ~x! exp~2uhur 2/4!

if h.0
if h,0,

where r5uxu, f (x) is any function analytic inR2 such that f(x)exp(2uhur2/4)PL2(R2). For all
a,a(h), ~2.3! has no nontrivial bounded solution. h

Lemma 2.2:~Ref. 4!. There exists a positive constantb0 , 0,b0,121/A2ep, such that
b(h)5b0uhu. For all hÞ0, b(h) is not achieved inW(R1

2 ), i.e., there is no L2 eigenfunction
associated withb(h). For all b,b(h), ~2.5! has no nontrivial bounded solution. h

III. LOCAL DECOMPOSITION OF VECTOR FIELDS

In the proof of the convergence of the rescaled eigenfunctions in later sections, we u
gauge transformations frequently. Thus, we need to decompose a vector field into a gradie
and a curl part near a given pointP. When P is an interior point, this decomposition follow
directly from the Taylor expansion~see Lemma 3.1!. WhenP is a boundary point, we need t
decompose the vector field in new coordinates which straighten a portion of boundary~see Lemma
3.2!.

Let A(x)5(A1(x),A2(x))PC2(BR) and denote

aj
i 5

]Ai

]xj
~0!, ajk

i 5
]2Ai

]xj]xk
~0!, a15A1~0!, a2~0!5A2~0!.

Let H(x)5curlA(x). Then, curl2 A(x)5(]2H,2]1H).
Lemma 3.1: Let APC2(BR). Then,

A~x!5A~0!1¹j~x!1¹z~x!1curlA~0!v~x!2 1
2 uxu2curl2 A~0!1D~x!, ~3.1!

where
                                                                                                                



a

ry.

2651J. Math. Phys., Vol. 40, No. 6, June 1999 K. Lu and X.-B. Pan

                    
j~x!5 1
2@a1

1x1
21~a2

11a1
2!x1x21a2

2x2
2#,

~3.2!
z~x!5 1

6@c1x1
313c2x1

2x213c3x1x2
21c4x2

3#

with

c15a11
1 1]2H~0!, c25a12

1 , c35a12
2 , c45a22

2 2]1H~0!,

and uD(x)u5o(uxu2) as x→0. If APC3(BR), then uD(x)u<C(R)uxu3 in BR . h

In the following we assume thatV is a smooth~say,Ck for somek>3! bounded domain in
R2 and 0P]V. Then,]V consists of a finite number of simple closedCk curves disintersecting
with each other. Every componentG of ]V can be represented asz5z(s), wheres is the arclength
of G, andt(s)5(t1 ,t2)5z8(s) is the unit tangent vector. Letn(s)5(n1 ,n2) be the unit outer
normal. We choose the positive direction ofG in such a way that the orientation of~n,t! is
coincident with the orientation of thex1x2 coordinates. Then,t152n2 , t25n1 . From the Frenet
formula we have

t852k rn, t952k r8n2k r
2t, n85k rt, n95k r8t2k r

2n, ~3.3!

where k r is the relative curvature ofG under the given orientation. Obviously, there exists
positive constantm05m0(V) such thatuk r u<1/m0 on ]V.

Fix 0,m,m0 . Denote byd(x)5dist(x,]V) the distance function, and denoteV(m)5$x
PV̄:d(x),m%. Then, dPCk21(V(m0)). For everyxPV(m0) there exists a unique pointz
5z(x)P]V such thatx5z2d(x)n(z), ¹d(x)52n(z). The mapping

x5F~s,t !5z~s!2tn~s! ~3.4!

determines aC1 transformation of coordinates. Set

g~s,t !5udetDFu5uFs3Ftu512tk r~s!.

After rotating the coordinate system we may assumet(0)5(1,0), n(0)5(0,21). Denote
e15t, e252n, y15s, y25t, y5(y1 ,y2). y is the new coordinate straightening the bounda
Using ~3.3! we get

e1~y!5t~y1!5S 1
0D1S 0

k r~0!y1
D1

1

2
y1

2S 2k r
2~0!

k r8~0! D 1O~ uy1u3!,

e2~y!52n~y1!5S 0
1D2S k r~0!y1

0 D2
1

2
y1

2S k r8~0!

k r
2~0! D 1O~ uy1u3!,

~3.5!

F~y!5y1
k r~0!

2 S 22y1y2

y1
2 D1O~ uyu3! as y→0,

g~y!512k r~0!y22k r8~0!y1y21O~ uyu3!.

Denote the inverse map ofF by G(x). At the pointx5F(y) we have

DG~x!5S G1
1 G2

1

G1
2 G2

2D 5
1

12y2k r~y1! S 2n2 n1

2~12y2k r~y1!!t2 ~12y2k r~y1!!t1
D . ~3.6!

For a given vector fieldA(x) we define a new vector fielda(y) associated withA(x) by

a~y!5a1~y!e11a2~y!e2 , ~3.7!
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where

a1~y!5g~y!A~F~y!!•e1~y!, a2~y!5A~F~y!!•e2~y!. ~3.8!

Then,

a1~y!5a11@a1
11k r~0!a2#y11@a2

12k r~0!a1#y21 1
2$@a11

1 1k r~0!a2
112k r~0!a1

2

2k r~0!2a11k r8~0!a2#y1
212@a12

1 22k r~0!a1
11k r~0!a2

22k r
2~0!a22k r8~0!a1#y1y2

1@a22
1 22k r~0!a2

1#y2
2%1o~ uyu2!,

a2~y!5a21~a1
22k r~0!a1!y11a2

2y21 1
2$@a11

2 1k r~0!a2
222k r~0!a1

12k r
2~0!a22k r8~0!a1#y1

2

12@a12
2 2k r~0!a1

22k r~0!a2
1#y1y21a22

2 y2
2%1o~ uyu2!.

Summarizing the above discussion, we obtain
Lemma 3.2: Let V be a smooth domain inR2 with 0P]V. Assume that A

PC2(VùF(BR)). Then, in the new coordinates y straightening the boundary, the vector
a(y) associated with A(x) has the following decomposition for yPBR :

~a1~y!,a2~y!!5A~0!1¹j̃~y!1¹z̃~y!1curlA~0!v~y!

2
uyu2

2
@curl2 A~0!2k r~0!curlA~0!t~0!#1D̃~y!, ~3.9!

where

j̃~y!5 1
2@~a1

11k r~0!a2!y1
21~a2

11a1
222k r~0!a1!y1y21a2

2y2
2#,

z̃~y!5 1
6@ c̃1y1

313c̃2y1
2y213c̃3y1y2

21 c̃4y2
3#

with

c̃15a11
1 2a22

1 1a12
2 1k r~0!~a1

21a2
1!2k r

2~0!a11k r8~0!a2,

c̃25a12
1 1k r~0!~a2

222a1
1!2k r

2~0!a22k r8~0!a1,

c̃35a12
2 2k r~0!~a1

21a2
1!,

c̃45a12
1 2a11

2 1a22
2 .

uD̃(y)u5o(uyu2) asy→0. If APC3(VùF(BR)), then uD̃(y)u<C(R)uyu3 in BR
1 . h

Note that in~3.9! ¹j̃(y)5(]y1j̃,]y2j̃). In the following we denote

¹yf 5S ] f

]y1
De11S ] f

]y2
D f e2 . ~3.10!

From ~3.7! and ~3.10!, we can write~3.9! as follows:

a~y!5A~0!1¹yj̃~y!1¹yz̃~y!1curlA~0!ṽ~y!

2
uyu2

2
@curl2 A~0!2k r~0!curlA~0!t~0!#1D̃~y!, ~3.11!
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where ṽ(y)52(y2/2)e11(y1/2)e2 . The decomposition in the form of~3.11! is more closely
related to the gauge invariance of the operators involving the vectora, and will be used often in
later sections.

IV. INTERIOR ESTIMATES

In this section we shall derivea priori interior estimates for the solutionsc of the equation

¹A
2c5g in V, ~4.1!

where the vector fieldA and the functiong are given. We shall establish the gauge invaria
estimates which depend on curlA instead ofA itself.

Theorem 4.1:Assume thatc is a smooth solution of Eq. (4.1) andcurlAPL2(V). Then, for
any compact subset K ofV, there exists a constant C depending only onV and K such that

iu¹AcuiH1~K !
2 <(

j ,k
i¹Aj¹AkciL2~K !

2 <2ic curlAiL2~V!
2

16igiL2~V!
2

1C@11icurlAiL2~V!
4

#

3@ i¹AciL2~V!
2

1iciL2~V!
2

#. ~4.2!

Before proving Theorem 4.1 we mention thati¹AciL2 can be controlled byiciL2, as shown
in the following

Lemma 4.2: Assume thatcPWloc
1,2(V) is a weak solution of Eq. (4.1) for gPL loc

2 (V). Then,
for every R.0 such that B2R,V we have

E
BR

u¹Acu2 dx<2E
B2R

ugcudx1
16

R2 E
R2R

ucu2 dx.

Proof: Let h be a smooth cutoff function supported inB2R such thath51 on BR and u¹hu
<2/R. Multiplying Eq. ~4.1! by h2c and integrating by parts we get the conclusion. h

For convenience we denoteF j ,kc5(¹Aj¹Ak2¹Ak¹Aj)c, ¹Ajc5(] j2 iA j )c and (f,c)
5*Vfc̄ dx.

Proposition 4:3: Let APC1(V̄) and cPC2(V̄). Then,

(
j ,k

i¹Aj¹AkciL2~V!
2

5ic curlAiL2~V!
2

1i¹A
2ciL2~V!

2
12F~¹A1c¹A2c,curlA!1I ~]V!,

~4.3!

where

I ~]V!5E
]V

H(
j ,k

@¹Ak¹Ajc¹Akcn j #2¹A
2c~¹Ac!•nJ ds

5E
]V

H 1

2

]

]n
u¹Acu21~curlA!@F~ c̄¹c!2ucu2A#•t2R~¹Ac•n!¹A

2cJ ds. ~4.4!

Here t is the unit tangent vector to]V such that the orientation of~n,t! is the same as the
orientation of x1x2 coordinates.

Proof: Let c j5¹Ajc. Then,

~¹Aj¹Akc,¹Aj¹Akc!5~¹Ajck ,F j ,kc!2~ck ,F j ,kc j !1~¹Akck ,¹Ajc j !

1E
]V

¹Akc jckn j ds2E
]V

¹Ajc jcknk ds.
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Taking summation over 1< j , k<2 we obtain

(
j ,k

i¹Aj¹AkciL2~V!
2

5(
j ,k

@~¹Ajck ,F j ,kc!2~ck ,F j ,kc j !#1i¹A
2ciL2~V!

2

1E
]V

H(
j ,k

@¹Akc jckn j #2¹A
2c~¹Ac!•nJ ds

5 i ~ c̄@¹A1c22¹A2c1#1c1c22c2c1,curlA!

1i¹A
2ciL2~V!

2
1E

]V
H(

j ,k
@¹Akc jckn j #2¹A

2c~¹Ac!•nJ ds

5~ ucu2 curlA12F~]2c]1c̄ !12R~A1c̄]2c2A2c]1c̄ !,curlA!

1i¹A
2ciL2~V!

2
1E

]V
H(

j ,k
@¹Akc jckn j #2¹A

2c~¹Ac!•nJ ds

5ic curlAiL2~V!
2

1i¹A
2ciL2~V!

2
12F~]2c]1c̄,curlA!

12R~A1c̄]2c2A2c]1c̄,curlA!

1E
]V

H(
j ,k

@¹Akc jckn j #2¹A
2c~¹Ac!•nJ ds,

which gives~4.3!. ~4.3! implies thatI (]V) is real and

I ~]V!5RE
]V

H(
j ,k

@F j ,k1¹Ajck#ckn j2¹A
2c~¹Ac!•nJ ds.

A computation shows

RE
]V

(
j ,k

F j ,kckn j5RE
]V

F1,2~¹A1cn22¹A2cn1!ds

5RE
]V

i c̄~curlA!~¹A1cn22¹A2cn1!ds

5RE
]V

i c̄~curlA!~]1cn22]2cn1!ds1E
]V

ucu2~curlA!~A1n22A2n1!ds

5E
]V

~curlA!@F~ c̄¹c!2ucu2A#•t ds;

and

RE
]V

(
j ,k

@¹Ajck#ckn j ds5RE
]V

(
j ,k

~] j1 iA j !¹Ak¹Akcn j ds

5RE
]V

(
j ,k

] j¹Ak¹Akcn j ds5
1

2 E]V

]

]n
u¹Acu2 ds.

So ~4.4! is true. h
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Proof of Theorem 4.1:For a given compact subsetK of V, we choose a smooth real cuto
function h such that spth,V and h51 on K. Denotec j5¹Ajc. From ~4.3! and the Kato’s
inequality it follows that

i¹u¹A~hc!uiL2~V!
2 <(

j ,k
i¹Aj¹Ak~hc!iL2~V!

2

5ihc curlAiL2~V!
2

1i¹A
2~hc!iL2~V!

2
12F~¹A1~hc!¹A2~hc!,curlA!

<ihc curlAiL2~V!
2

1ih¹A
2c12¹h•¹Ac1cDhiL2~V!

2

12E
V

ucurlAuu¹A~hc!u2 dx.

Next, we estimate

E
V

ucurlAuu¹A~hc!u2 dx<icurlAiL2~V!H E
V

u¹A~hc!uu¹A~hc!u3 dxJ 1/2

<icurlAiL2~V!i¹A~hc!iL2~V!
1/2 i¹A~hc!iL6~V!

3/2

<C1icurlAiL2~V!i¹A~hc!iL2~V!
1/2 i¹u¹A~hc!uiL2~V!

3/2

~by Sobolev inequality!

< 1
2i¹u¹A~hc!uiL2~V!

2
1C2icurlAiL2~V!

4 i¹A~hc!iL2~V!
2 .

Therefore,

1
2i¹u¹A~hc!uiL2~V!

2 <ihc curlAiL2~V!
2

13ih¹A
2ciL2~V!

2
112i¹h•¹AciL2~V!

2

13icDhiL2~V!
2

1C2icurlAiL2~V!
4 i¹A~hc!iL2~V!

2

<ic curlAiL2~V!
2

13igiL2~V!
2

1C3@ i¹AciL2~V!
2

1iciL2~V!
2

#

1C2icurlAiL2~V!
4 i¹A~hc!iL2~V!

2 ,

whereC1 ,C2 ,C3 are constants depending only onV andK. The proof is complete. h

V. ESTIMATES NEAR BOUNDARIES

In this section we establish the boundary estimates for the solutions of the equation

2¹A
2c5g in V,

~5.1!
~¹Ac!•n1gc50 on ]V.

As mentioned in Sec. I, by making a gauge transformation if necessary, we may assume

div A50 in V, A•n50 on ]V.

Of course, under the gauge transformation, functiong in ~5.1! will be changed to a new function
g̃. However, since it does not effect the estimation given below, we still denote the new fun
g̃ by g.

To obtain the estimates we shall straighten a portion of boundary and study the new eq
in the half ballBR

1 . We also need to extend the solutions to the entire ball. For this purpos
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transform Eq.~5.1! to an equation having homogeneous boundary condition. Letu be the positive
eigenfunction associated with the first eigenvaluel of the following eigenvalue problem:

2Du5lu in V,
~5.2!

]u

]n
1gu50 on ]V.

u is smooth and positive onV̄. Setc5uf, v5 log(u2), f 5g/u. Then,f satisfies the equation

2¹A
2f5¹v•¹Af2lf1 f in V,

]f

]n
50 on ]V.

In the following we denotef̃(y)5f(F(y)), ṽ(y)5v(F(y)), whereF(y) is the diffeomorphism
defined onBR0

, see~3.4!. We shall always assumeR,R0/2. Let a(y) be the vector field associ
ated withA(x) defined by~3.7!. We define the following differential operators:

D~g!w5D~g!1we11D~g!2we2 ,

where D~g!15
1

g
]1 , D~g!25]2 ,

D~g!aw5@D~g!a1w#e11@D~g!a2w#e2 ,

where D~g!a1w5
1

g
~]12 ia1!w, D~g!a2w5~]22 ia2!w,

D~g!a* w5@D~g!a1* w#e11@D~g!a2* w#e2 ,

where D~g!a1* w5D~g!a1w, D~g!a2* w5
1

g
@]2~gw!2 ia2gw#,

D~g!aw5D~g!a1* D~g!a1w1D~g!a2* D~g!a2w

5
1

g H ]1F1

g
~]1w2 ia1w!G2

ia1

g
~]1w2 ia1w!J

1
1

g
$]2@g~]2w2 ia2w!#2 ia2g~]2w2 ia2w!%.

As in Sec. III we denote¹yx5(]1x)e11(]2x)e2 . The operatorsD(g)a andD(g)a have the
following gauge invariant properties:

D~g!a1¹yx
~eixw!5eixD~g!aw, D~g!a1¹yx

~eixw!5eixD~g!aw. ~5.3!

Note that, in the above notations,¹Af5D(g)af̃, ¹A
2f5D(g)af̃. Thus,f̃ satisfies the equa

tion
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2D~g!af̄5D~g!ṽ•D~g!af̃2lf̃1 f̃ on BR
1 ,

~5.4!

]f̃

]y2
50 on GR ,

whereGR5$(y1,0):uy1u,R%.

Next, we extend the solutionf̃ of Eq. ~5.4! onto the entire ball. Note that

a250, ]2f̃50 when y250.

Hence, we can evenly extenda1 andf̃ in y2 and oddly extenda2 in y2 . Note that althoughg(y)
is defined on the entire ball, it is not even iny2 . Therefore, fory2,0 we define

f̃~y1 ,y2!5f̃~y1 ,2y2!, ṽ~y1 ,y2!5 ṽ~y1 ,2y2!,

g~y1 ,y2!5g~y1 ,2y2!,

a1~y1 ,y2!5a1~y1 ,2y2!, a2~y1 ,y2!52a2~y1 ,2y2!.

After such extensions,f̃PC1(BR), aPC(BR), and ] ja
jPC1(BR). We further notice that

D(g)a1f̃ is continuous and even iny2 , D(g)a2f̃ is continuous and odd iny2 , andD(g)af̃ is even
in y2 . Although]2ṽ is not continuous aty250, it is bounded, andD(g)a2f̃50 at y250. Hence,
D(g) ṽ•D(g)af̃ is continuous.

The main result in this section is the following
Theorem 5.1:Assume thatf̃ is a solution of Eq. (5.4) and is extended as the above. Th,

(
j ,k

iD~g!ajD~g!akf̃iL
g
2~BR!

2
<6i f̃ iL

g
2~BR!

2
16E

BR

uD~g!ṽ•D~g!af̃u2g dy1C~g,R!if̃iL
g
2~BR!

2

1C~g,R!$11i]1a22]2a1iL
g
2~BR!

4
%iD~g!af̃iL

g
2~BR!

2

1C~g,R!E
BR

u]1a22]2a1u2uf̃u2 dy. ~5.5!

To prove Theorem 5.1 we need an identity, see Proposition 5.3 below. Define

Gjkw5D~g!ajD~g!akw2D~g!akD~g!ajw,

Gjk* 5D~g!aj* D~g!akw2D~g!akD~g!aj* w.

Denote

@w#GR
5E

GR
1

w dy12E
GR

2
w dy15 lim

e1 ,e2→0
H E

2R

R

@w~y1 ,e1!2w~y1 ,2e2!#dy1J .

If w is continuous inBR , then@w#GR
50. Note thatg51 on GR . We have

Lemma 5.2: Assume thatf and cPC1(BR\GR) and the supportspt(f),BR . Then,
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E
BR

~D~g!ajf!c̄g dy52E
BR

fD~g!aj* cg dy1@n jfc̄#GR
,

wheren150, n2521. Moreover ifcPC2(BR\GR), then

E
BR

~D~g!ajf!D~g!akcg dy52E
BR

fD~g!aj* D~g!akcg dy1@n jfD~g!akc#GR
.

For our convenience we denote byi•iL
g
2 the L2 norm with the weightg, and (f,w)g

5*BR
fw̄g dy.

Proposition 5.3: Assume thatcPC1(BR)ùC2(BR\GR) with its supportspt(c),BR , andc is
even in y2 . Then,

(
j ,k

iD~g!ajD~g!akciL
g
2~BR!

2
5iD~g!aciL

g
2~BR!

2
1iG12ciL

g
2~BR!

2
1E

BR

uD~g!a2cu2g]2S ]2g

g Ddy

22FE
BR

~]1a22]2a1!~D~g!a1c!D~g!a2c dy22RE
BR

~]2g!

3~D~g!a2c!D~g!a1
2 c dy1E

BR

F]1S ]2g

g D2
]1g]2g

g G
3~D~g!a1c!D~g!a2c dy. ~5.6!

Remark 5.1:Note that curla5(]1a22]2a1)/g. Although it is not continuous aty250, it
remains bounded. The term]1((]2g)/g)2(]1g)(]2g)/g is also bounded. Therefore, the integra
involving such terms make sense. Also note that wheny2Þ0, g]2((]2g)/g)52@k r(y1)#2/g
<0. So

E
BR

uD~g!a2cu2g]2S ]2g

g Ddy<0.

Proof of Proposition 5.3:The proof is similar to one of Proposition 4.3, but involves mo
computations. Setc j5D(g)ajc. Using Lemma 5.2 we have

~D~g!ajD~g!akc,D~g!ajD~g!akc!g

5~D~g!ajck ,Gjkc1D~g!akc j !g

5~D~g!ajck ,Gjkc!g1~D~g!ajck ,D~g!akc j !g

5~D~g!ajck ,Gjkc!g2~ck ,Gjk* c j !g1~D~g!ak* ck ,D~g!aj* c j !g

1@n jckD~g!akc j #GR
2@nkckD~g!aj* c j #GR

.

Summing up the above over 1< j , k<2 we have

(
j ,k

iD~g!ajD~g!akciL
g
2~BR!

2
5iD~g!aciL

g
2~BR!

2
1(

j ,k
$~D~g!ajck ,Gjkc!g2~ck ,Gjk* c j !g%

1(
jk

$@n jckD~g!akc j #GR
2@nkckD~g!aj* c j #GR

%.
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Sincen150, n2521, c25D(g)a2c50 on GR , we havenkck50 on GR , and

(
jk

$@n jckD~g!akc j #GR
2@nkckD~g!aj* c j #GR

%52@~D~g!a1c!D~g!a1c2#GR
50.

Here the following fact is used:

D~g!a1c25D~g!a1D~g!a2c5
1

g
@]1]2c2 ia1]2c2 i ]1~a2c!2a1a2c#→0 as y2→0.

Therefore,

(
j ,k

iD~g!ajD~g!akciL
g
2~BR!

2

5iD~g!aciL
g
2~BR!

2
1~D~g!a1c22D~g!a2c1 ,G12c!g2(

jk
~ck ,Gjk* c j !g

5iD~g!aciL
g
2~BR!

2
1iG12ciL

g
2~BR!

2
2(

jk
~ck ,Gjkc j !g1(

k
S ck ,c2D~g!kF]2g

g G D
g

. ~5.7!

By computation we get

(
k

S ck ,c2D~g!kF]2g

g G D
g

5E
BR

uD~g!a2cu2g]2S ]2g

g Ddy1E
BR

]1S ]2g

g D ~D~g!a1c!D~g!a2c dy,

~5.8!

(
jk

~ck ,Gjkc j !g52FE
BR

~]1a22]2a1!~D~g!a1c!D~g!a2c dy12RE
BR

~]2g!c2D~g!a1c1 dy

1E
BR

]1g]2g

g
~D~g!a1c!D~g!a2c dy. ~5.9!

For instance, to obtain~5.9!, we note that

(
jk

~ck ,Gjkc j !g52~c1 ,G12c2!g1~c2 ,G12c2!g

5E
BR

g@c2G12c12c1G12c2#dy

52FE
BR

~]1a22]2a1!~D~g!a1c!D~g!a2c dy

1E
BR

~]2g!@c2D~g!a1c12c1D~g!a1c2#dy.

Since
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E
BR

~]2g!@c2D~g!a1c12c1D~g!a1c2#dy

5E
BR

~]2g!@c2D~g!a1c11c2~D~g!a1c1!#dy1E
BR

]1g]2g

g
c1c2 dy

52RE
BR

~]2g!c2D~g!a1c11E
BR

]1g]2g

g
c1c2 dy,

so ~5.9! holds.

Now, ~5.6! follows from ~5.7! to ~5.9!. h

Proof of Theorem 5.1:In the proof, for simplicity we denotef̃ by f and denote a constan
depending only ong andR by C. Let h be a smooth cutoff function supported inB2R such that
h51 on BR/2 andh is even iny2 . Using Proposition 5.3 we have

(
j ,k

iD~g!ajD~g!ak~hf!iL
g
2~BR!

2
<iD~g!a~hf!iL

g
2~BR!

2
1iG12ciL

g
2~BR!

2

1C$iD~g!afiL
g
2~BR!

2
1ifiL

g
2~BR!

2
%1J112J2 , ~5.10!

where

J15E
BR

u]1a22]2a1uuD~g!a~hf!u2 dy,

J25E
BR

u]2guuD~g!a2~hf!uuD~g!a1
2

~hf!udy.

Now, we estimate each term on the right of~5.10!,

iD~g!a~hf!iL
g
2~BR!

2
<3i f̃ iL

g
2~BR!

2
1C$ifiL

g
2~BR!

2
1iD~g!afiL

g
2~BR!

2
%

13E
BR

uD~g!ṽ•D~g!afu2g dy,

iG12ciL
g
2~BR!

2
<CH iD~g!afiL

g
2~BR!

2
1E

BR

u]1a22]2a1uufu2 dyJ ,

J1<i]1a22]2a1iL
g
2~BR!H E

BR

uD~g!a~hf!uuD~g!a~hf!u3 dyJ 1/2

<Ci]1a22]2a1iL
g
2~BR!iD~g!a~hf!iL

g
2~BR!

1/2 i¹uD~g!a~hf!uiL
g
2~BR!

3/2

~by Sobolev inequality!

<ei¹uD~g!a~hf!uiL
g
2~BR!

2
1

C

e
i]1a22]2a1iL

g
2~BR!

4 iD~g!a~hf!iL
g
2~BR!

2
,

and
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J2<eiD~g!a1
2

~hf!iL
g
2~BR!

2
1

C

e
iD~g!a~hf!iL

g
2~BR!

2

<e(
jk

iD~g!ajD~g!ak~hf!iL
g
2~BR!

2
1

C

e
iD~g!a~hf!iL

g
2~BR!

2
.

Plugging the above inequalities back in~5.10!, using the following

i¹uD~g!a~hf!uiL
g
2~BR!

2
<C~g,R!(

jk
iD~g!ajD~g!ak~hf!iL

g
2~BR!

2
,

and choosinge small enough, we obtain the estimate~5.5!. h

In the same fashion as the above, one can also prove the following
Lemma 5.4: Assume thatf̃ is a solution of Eq. (5.4) and is extended even in y2 . Then,

E
BR/2

uD~g!af̃u2g dy<C~g,R!E
BR

$uf̃u21u f̃ u21uD~g!ṽu2uf̃u2%g dy.

Note that after extension]1a22]2a1 is not continuous atGR . Therefore, the estimates de
pending only on the data given onBR

1 are needed. As a direct corollary of Theorem 5.1 we h
Theorem 5.5:Assume thatf̃ is a solution of Eq. (5.4). Then,

(
jk

iD~g!ajD~g!akf̃i
L

g
2~BR

1
!

2
<C$i f̃ i

L
g
2~BR

1
!

2
1if̃i

L
g
2~BR

1
!

2
%, ~5.11!

where the constant C depends on R, g,iD(g) ṽiL
g
2(B

R
1) and i]1a22]2a1iL

g
2(B

R
1) . h

VI. UPPER-BOUND ESTIMATES

In this section, we give an upper bound form(sA)/usu. Throughout this section we assum
APC2(V).

Lemma 6.1: Assume that APC2(V). Then,

lim sup
s→`

m~sA!

usu
<min

xPV

ucurlA~x!u. ~6.1!

Proof: Let H(x)5curlA(x). First, we note thatm(2sA)5m(sA). In fact, for everyc

PW1,2(V) we setf5c̄. Then, u¹2sAfu5u¹sAcu5u¹sAcu. Therefore, we may assumes.0.
We shall show that for everyx0PV,

lim sup
s→1`

m~sA!

s
<uH~x0!u.

Without loss of generality we may assumex050.
Set h5H(0). When h50 the conclusion is obvious, see Proposition 6.3 below. So,

assumehÞ0. Denoted51/As. Let R.0 be fixed such thatBR,V. For anycPW1,2(V), we let
cd(x)5c(dx) andAd(x)5A(dx)/d. Then,
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m~sA!

s
<

1

s
inf

cPW0
1,2

~BR!

*BR
u¹sAcu2 dx

*BR
ucu2

,

5 inf
fPW0

1,2
~BR/d!

*BR/d
u¹Ad

fu2 dx

*BR/d
ufu2 dx

.

Using ~3.1! and noting that¹j(dx)5d¹j(x), v(dx)5dv(x), we have

Ad~x!5¹xd~x!1hv~x!1Bd~x!,

where

xd~x!5
1

d
A~0!•x1j~x!1dz~x!,

Bd~x!52
d

2
uxu2 curl2 A~0!1

1

d
D~dx!,

uBd~x!u<
d

2
ucurl2 A~0!uuxu2@11o~dR!# in BR/d .

Therefore,

u¹Ad
eixdfu25u¹hv1Bd

fu25u¹hvf2 iBdfu2<~11l!u¹hvfu21
~11l!d2

4l
~11o~dR!!uxu4ufu2,

where 0<l<1. So,

m~sA!

s
< inf

fPW0
1,2

~BR/d!

1

*BR/d
ufu2 dx H ~11l!E

RR/d

u¹hvfu2 dx

1
~11l!d2

4l
~11o~dR!!ucurl2 A~0!u2E

RR/d

uxu4ufu2 dxJ .

Choosef5fm5uhm , whereu(x)5u(uxu)5exp(2h2uxu2/4) andhm is a smooth cutoff function
supported inBm such thathm[1 on Bm/2 . For fixedR and for all smalld,

m~sA!

s
<

1

*Bm
ufmu2 dx H ~11l!E

Rm

u¹hvfmu2 dx

1
~11l!d2

4l
~11o~dR!!ucurl2 A~0!u2E

Rm

uxu4ufmu2 dxJ .

We first fix m.1, lP(0,1) and lets approach1` ~so d→0!, then we fixm and sendl to 0,
finally we sendm to 1`. By using Lemma 2.1, we obtain

lim sup
s→1`

m~sA!

s
<

*R2u¹hvuu2 dx

*R2uuu2 dx
5a~h!5uhu5uH~0!u.

This completes the proof. h

Lemma 6.2: Assume that APC2(V̄). Then,
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lim sup
s→`

m~sA!

usu
<b0 min

xP]V

ucurlA~x!u, ~6.2!

whereb0 is given in Lemma 2.2.
Proof: As in the proof of Lemma 6.1, we only need to show that, if 0P]V and h5H(0),

then

lim sup
s→1`

m~sA!

usu
<b0uhu.

Now, we need to use the local decomposition ofA in the new variables which straighten a portio
of boundary of]V near the point 0. We shall use the notations presented in Sec. III. For a
small R.0, we have

m~sA!< inf
fPW* ~BR

1
!

*B
R
1uD~g!safu2g~y!dy1g*2R

R ufu2 dy1

*B
R
1ufu2g~y!dy

,

whereW* (BR
1)5$fPW1,2(BR

1):spt(f),BR%, a is the vector field associated withA given by
~3.7!.

For s.0 we setd51/As, ad(y)5(1/d)a(dy), gd(y)5g(dy). Then, for all smalld,

m~sA!

s
< inf

fPW* ~BR/d
1

!

*B
R/d
1 uD~gd!ad

fu2gd~y!dy1gd*2R/d
R/d ufu2 dy1

*B
R/d
1 ufu2gd~y!dy

.

From ~3.11! we have

ad~y!5¹yx̃d~y!1hṽ~y!1B̃d~y!,

where

x̃d~y!5
1

d
A~0!•y1 j̃~y!1dz̃~y!,

ṽ~y!5~2y2/2!e11~y1/2!e2 ,

B̃d~y!52
duyu2

2
@curl2 A~0!2hk r~0!t~0!#1

1

d
D̃~dy!.

Here k r(0) is the relative curvature of]V at the point 0. Since the operatorD(g)a is gauge
invariant, see~5.3!, so

uD~gd!ad
exp~ i x̃d!fu25uD~gd!hv1B̃d

fu2<~11l!uD~gd!hvfu21
11l

lugdu2 uB̃dfu2,

wherel is an arbitrary number lying between 0 and 1.
Choosef5chm , wherecPW(R1

2 ), hm is the cutoff function used in the proof of Lemm
6.1. Note thatgd→1 uniformly on eachBm

1 asd→0. Therefore, by the same argument as in
proof of Lemma 6.1, we obtain

lim sup
s→1`

m~sA!

s
<

*R
1
2 u¹hvcu2 dy

*R
1
2 ucu2 dy

.
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Since the above is true for allcPW(R1
2 ), using Lemma 2.2 we have

lim sup
s→1`

m~sA!

s
<b~h!5b0uhu5b0uH~0!u.

The proof is complete. h

If curl A vanishes at some point inV̄, the estimates~6.1!, ~6.2! can be greatly improved
Denote

Z~A,V!5$xPV:curlA~x!50%, Z~A,]V!5$xP]V:curlA~x!50%.

Define, fort.0,

p~t!5 inf
uPW~R2!

*R2$u¹uu21 1
4t

2uxu4uuu2%dx

*R2uuu2 dx
. ~6.3!

Using the rescaling method we can show thatp(t)5p(1)utu2/3 and p(t) is achieved for every

tÞ0. Choosingu5exp(2uxu3 /6) as a test function we see thatp(1)<A3 3/G( 5
3). Define, for a

constant vectora,

q~a!5 inf
fPW~R1

2
!

*R
1
2 U¹f2

i

2
uyu2afU2

dy

*R
1
2 ufu2 dy

. ~6.4!

Obviously,

q~a!< inf
fPW~R1

2
!

*R
1
2 $u¹fu21 1

4uau2uyu2ufu2%dy

*R
1
2 ufu2 dy

<p~ uau!5p~1!uau2/3<
A3 3

G~ 5
3!

uau2/3.

Proposition 6.3: Assume that APC2(V̄). If Z(A,V)ÞB, then

lim sup
s→`

m~sA!

usu2/3 <p~1! inf
xPZ~A,V!

ucurl2 A~x!u2/3. ~6.5!

If Z(A,]V)ÞB, then

lim sup
s→`

m~sA!

usu2/3 < inf
xPZ~A,]V!

q~curl2 A~x!!<p~1! inf
xPZ~A,]V!

ucurl2 A~x!u2/3. ~6.6!

Here p(1) and q(a) are defined in (6.3), (6.4).
Remark 6.1: Note thatucurl2 A(x)u5u¹H(x)u, where H(x)5curlA(x).
Proof of Proposition 6.3:Assume that 0PZ(A,V). For s.0 we setd51/A3 s, cd(x)

5c(dx), Ad(x)5A(dx)/d2. From Lemma 3.1, we have

Ad~x!5¹x̂d~x!2 1
2uxu2 curl2 A~0!1Dd~x!,

where
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x̂d~x!5
1

d2 A~0!•x1
1

d
j~x!1z~x!,

Dd~x!5
1

d2 D~dx!, uDd~x!u5o~duxu3! in BR/d .

Setfm5uhm , wherehm is a smooth cutoff function as we used above andu is a real function to
be determined later. Then, we have

m~sA!

s2/3 <
1

*Bm
ufmu2 dx H ~11l!E

Rm

F u¹fmu21
1

4
ucurl2 A~0!u2uxu4ufmu2Gdx

1O~d!S 11
1

l D E
Rm

uxu6ufmu2 dxJ .

First sendingd to 0, then sendingl to 0, finally sendingm to 1`, we conclude that

lim sup
s→1`

m~sA!

s2/3 < inf
uPW~R2!

*R2$u¹uu21 1
4ucurl2 A~0!u2uxu4uuu2%dx

*R2uuu2 dx
<p~1!ucurl2 A~0!u2/3.

So, ~6.5! is true.
Now, we assume 0PZ(A,]V). From ~3.11! it follows that

a~y!5A~0!1¹yj̃~y!1¹yz̃~y!2 1
2uyu2 curl2 A~0!1D̃~y!.

Using the similar argument we obtain~6.6!. h

Remark 6.2: If there exist a smooth open subdomain D,V such thatcurlA(x) vanishes in D,
then

m~sA!< inf
fPW0

1,2
~D !

i¹sAfiL2~D !
2

ifiL2~D !
2 5 inf

fPW0
1,2

~D !

i¹fiL2~D !
2

ifiL2~D !
2 5l1~D !,

wherel1(D) is the first Dirichlet eigenvalue of2D on D.

VII. LOWER-BOUND ESTIMATES

In this section we give an lower bound ofm(sA)/usu for larges. The asymptotic behavior o
the eigenfunctions ass→` will also be discussed.

Lemma 7.1: LetV be a smooth bounded domain inR2 and APC2(V̄). Then,

lim inf
s→`

m~sA!

usu
>min$min

xPV

ucurlA~x!u,b0 min
xP]V

ucurlA~x!u%, ~7.1!

whereb0 is the positive constant given in Lemma 2.2.
Proof: Let H(x)5curlA(x),

m~V!5min
V̄

uH~x!u, Vm5$xPV:uH~x!u5m~V!%,

m~]V!5min
]V

uH~x!u, ~]V!m5$xP]V:uH~x!u5m~]V!%
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and m5min$m(V),m(]V)b0%. We shall show that lim infs→` m(sA)/usu>m. As in Sec. VI we
assumes.0 and denoted51/As. Let cd be the eigenfunction associated withm(sA) satisfying
maxxPV̄ucd(x)u51. Then,cd satisfies

2¹sA
2 c5m~sA!c in V,

~7.2!
~¹sAc!•n1gc50 on ]V.

Denote byxd the maximum point ofucdu.
Now, we assume that$sk% is a given sequence,sk→1`. We choose a subsequenceskj

such
that

xdkj→x0,
m~skj

A!

skj

→a

for some non-negative numbera. Lemma 6.1 impliesa<m. We shall showa>m. Then it follows
that a5m for any sequence$sk%. For simplicity, we denoteskj

by s. Let hd5H(xd), h

5H(x0).
Case 1: x0PV. We shall showa>m(V). Let Vd5(V2xd)/d, cd(x)5cd(xd1dx),

Ad(x)5(1/d)A(xd1dx), Hd(x)5H(xd1dx). Note that curlAd(x)5Hd(x). Using ~7.2! we
check thatcd satisfies

2¹Ad

2 cd5
m~sA!

s
cd in Vd ~7.3!

anducd(0)u515icdiL`. We shall show that$cd% locally converges up to gauge transformation
Let R.0 be a fixed constant. Then, ford small enough we haveB3R,Vd . Since$ucdu% is

uniformly bounded inL loc
2 , Lemma 4.2 implies that$u¹Ad

cdu% is also uniformly bounded inL loc
2 .

Applying Theorem 4.1 to Eq.~7.3! we have

iu¹Ad
cuiH1~BR!

2 <2icdHdiL2~2R!
2

16Fm~sA!

s G2

icdiL2~B2R!
2

1C~R!@11iHdiL2~B2R!
4

#@ i¹Ad
cdiL2~B2R!

2
1icdiL2~B2R!

2
#

<C~R,iHiL`!icdiL2~B3R!
2 .

So, $u¹Ad
cdu% is uniformly bounded inWloc

1,2, hence, is relatively compact inL loc
2 . Sinceu¹ucduu

<u¹Ad
cu, $u¹ucduu% is uniformly bounded inL loc

2 . Thus, $ucdu% is relatively compact inL loc
2 .

Passing to a subsequence we may assume thatucdu converges inL loc
2 (R2) asd→0. It follows from

Lemma 3.1 that

Ad~x!5¹xd~x!1hdv~x!1Bd~x!,

where

xd~x!5
1

d
A~xd!x1

1

2
@]1A1~xd!x1

21~]1A2~xd!1]2A1~xd!!x1x21]2A2~xd!x2
2#.

Setfd(x)5exp(2ixd)cd(x). Then,fd satisfies

2¹hv
2 fd5

m~sA!

s
fd1 f d~x!, ~7.4!
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whereh5H(x0) and

f d~x!52@ i div Bd12h~hd2h!12hv•Bd1u~hd2h!v1Bdu2#fd

22i @~hd2h!v1Bd~x!#•¹fd .

Sinceu¹hdv1Bd
fdu5u¹Ad

cdu and

u¹fdu2<u¹hdv1Bd
fd1 i ~hdv1Bd!fdu2<2u¹hdv1Bd

fdu212u~hdv1Bd!fdu2,

$u¹fdu% is also uniformly bounded inL loc
2 . Passing to another subsequence we havefd→f0

weakly in Wloc
1,2 and strongly inL loc

2 . Since divBd(x)5(div A)(xd1dx)2(div A)(xd)→0, uBd(x)u
<Cduxu2 andhd→h, we havef d→0 in L loc

2 . Hence, the limiting functionf0 satisfies

2¹hv
2 f05af0 in R2 ~7.5!

and uf0(x)u<1. Applying Theorem 4.1 to Eq.~7.5! yields thatf0 is smooth.
Denotef̂d(x)5fd(x)2f0(x). From ~7.4! and ~7.5!,

2¹hv
2 f̂d5af̂d1 f̂ d , ~7.6!

where

f̂ d5 f d1Fm~sA!

s
2aGfd→0 in L loc

2

and f̂d→0 in L loc
2 . Applying Lemma 4.2 to~7.6! we get u¹hvf̂du→0 in L loc

2 . Since u¹f̂du2

<2u¹hvf̂du212uhvf̂du2 we haveu¹f̂du→0 in L loc
2 . So,

f̂d→0 in Wloc
1,2. ~7.7!

Denotev5(v1,v2), ¹hv j5] j2 ihv j . Applying Theorem 4.1 to Eq.~7.6! we have

¹hv j¹hvkf̂d→0 in L loc
2 . ~7.8!

Note that, for example,

¹hv1¹hv1f̂d5
]2

]x1
f̂d1 ihx2

]

]x1
f̂d2

1

4
uhx2u2f̂d .

Therefore,~7.7! and ~7.8! imply that ] j]kf̂d→0 in L loc
2 . So, f̂d→0 in L loc

2 .
Now, we apply the classicalCa estimates to~7.6! and conclude thatf̂d→0 in Cloc

a , that is,
fd→f0 in Cloc

a . Especially, we getf0(0)5 limd→0 fd(0)51. Therefore,f0 is a nonzero
bounded smooth solution of Eq.~7.5! in R2. From Lemma 2.1 we have

a>a~h!5uhu5uH~x0!u>min
xPV

uH~x!u5m~V!.

Sincea<m, we conclude thata5m. We also see that if Case 1 happens thenm5m(V), x0

PVm and ~7.1! holds.
Case 2: x0P]V. Now, we shall provea>m(]V). Let dd5dist(]V,xd), the distance be-

tweenxd and ]V. Then,Bdd /d,Vd . If there exists a subsequenced j→0 such thatdd j
/d j→`,

then the argument in Case 1 also gives thatm(s jA)/us j u→uH(x0)u. Therefore, we assume tha
dd /d is bounded. Passing to a subsequence, we may assume thatdd /d→d0 .
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Let x̂dP]V such thatux̂d2xdu5dist(xd,]V)5dd . At each pointx̂d we take a diffeomor-
phismFd :BR0

1→VùFd(BR0
) to straighten a portion of boundary around the pointx̂d such that

Fd(0)5 x̂d. For simplicity, we denoteFd by F. We keep in mind that the diffeomorphismF
depends ond. However, the constantR0 can be chosen to be independent ofd, thus, we have
uniform estimates onF for all small d. Let ydPBR0

1 be such thatF(yd)5xd. Then, uydu<Cdd

<Cd.
Let cd(F(y))5u(F(y))c̃d(y), whereu is the positive eigenfunction of Eq.~5.2! associated

with the first eigenvaluel and iuiL`51. Then,$uc̃du% is uniformly bounded from above an
uc̃d(yd)u is uniformly bounded away from zero. As in Sec. V we can check thatc̃d satisfies the
following equation:

2D~g!sac̃
d5D~g!ṽ•D~g!saf̃

d1@m~sA!2l#c̃d in BR0

1 ,

~7.9!
~D~g!sac̃

d!•n50 on GR0
.

Here the notations involved are the same as in Secs. III and V.
Define the following rescaled functions and vector fields:c̃d(y)5c̃d(dy), ṽd(y)5 ṽ(dy),

gd(y)5g(dy), ad(y)5(1/d)a(dy). Then,

2D~gd!ad
c̃d5D~gd!ṽd•D~gd!ad

c̃d1
m~sA!2l

s
c̃d in BR0 /d

1 ,

~D~gd!ad
c̃d!•n50 on GR0 /d .

Recall thathd5H(xd), h5H(x0). From ~3.11! we have

ad~y!5¹yx̃d~y!1hdṽ~y!1B̃d~y!,

which holds inBR0 /d
1 , but not in the entire ball. Setf̃d(y)5exp(2ix̃d)c̃d . Then,

2D~gd!hdṽ1B̃d
f̃d5D~gd!ṽd•D~gd!hdṽ1B̃d

f̃d1
m~sA!2l

s
f̃d in BR0 /d

1 .

Using Theorem 5.5 we obtain

f̃d→f̃0 weakly in Wloc
1,2 and strongly inL loc

2 .

Write B̃d5B̃d
1e11B̃d

2e2 , and write the equation forf̃ as follows:

2D~gd!hṽf̃d5
m~sA!

s
f̃d1 f̃ d in BR0 /d

1 ,

~7.10!
~D~gd!hdṽ

f̃d!•n52 iB̃d
2f̃d on GR0 /d .

Note thatD(gd) ṽd•D(gd)hdṽ1B̃d
f̃d→0 in L loc

2 and B̃d→0 in L loc
2 . So, f̃ d→0 in L loc

2 . We also

note thatgd(y)512dy2k r(dy1)→1. Hence,f̃0 satisfies

2¹hv
2 f̃05af̃0 in R1

2 ,
~7.11!

¹hv•f̃050 on ]R1
2 .
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We apply Theorem 5.5 to the equation forf̃2f̃0 , then use the classical elliptic estimates
obtain thatf̃d→f̃0 in Cloc

a .
Recall thatuydu/d<C. By passing to a subsequence, we may assume thatzd[yd/d→z0,

hence,f̃0(z0)5 lim f̃d(zd)Þ0. Therefore,f̃0Ó0, that is,f̃0 is a nonzero bounded smooth sol
tion of Eq. ~7.11!. Using Lemma 2.2 we conclude that

a>b~h!5b0uhu5b0uH~x0!u>b0 min
xP]V

uH~x!u5m~]V!b0 .

Since m(]V)b0>m>a, we have m5a. We also see that if Case 2 happens thenm
5m(]V)b0 , x0P(]V)m and ~7.1! holds. h

The proof of Lemma 7.1 has the following consequence.
Proposition 7.2: Assume that APC2(V̄). Let cs be the eigenfunction of Eq. (7.2) associat

with the first eigenvaluem(sA) such thaticsiL`<C. Then,

ucsu→0 in Cloc
a ~V\Vm! and in Cloc

a ~]V\~]V!m! as s→`.

Proof of Theorem 1: Combining Lemmas6.1, 6.2, 7.1yields Theorem 1. h

As a corollary of Theorem 1 and Proposition 7.2, we have
Theorem 7.3:Assume APC2(V̄) and curlA(x)[H, a nonzero constant. Then

lim
s→`

m~sA!

usu
5b0uHu. ~7.12!

Let cs be the eigenfunction of (7.2) satisfyingicsiL`51, thencs concentrates at some points o
]V, that is, icsiL`(]V)→1 and

cs→ in Ca~V! as s→`.

Proposition 7.2 says that ass→` the eigenfunctions concentrate at some points
Vmø(]V)m . From the proof of Lemma 7.1 one easily see that, after rescaling near the max
points and making gauge transitions, the eigenfunctions exhibit profiles of either the eigenfu
of ~2.3! in the entire planeR2 ~when interior concentration happens!, or the eigenfunction of~2.5!
in the half planeR1

2 ~when boundary concentration happens!. It will be interesting to find the
exact location of the concentration points. In Ref. 1 the concentration behavior of minimal
tions of Ginzburg–Landau equations is studied and the location of concentration is investi
The arguments used in Ref. 1 can be applied in a similar way to obtain the location of co
tration of the eigenfunctions. We should mention that in Ref. 10 Bernoff and Sternberg obt
the location of surface nucleation of superconductivity by using the asymptotic analysis.

ACKNOWLEDGMENTS

This work was partially done when the second author~X.-B.P.! visited the Department o
Mathematics at Brigham Young University in the academic year of 1995. He would like to t
the Department for hospitality. This work was partially supported by National Science Found
Grant No. DMS-9622853~to K.L.! and by Chinese National Natural Science Foundation, Scie
Foundation of the Ministry of Education of China, and Zhejiang Provincial Natural Scie
Foundation of China~to X.-B.P.!

1K. Lu and X.-B. Pan, ‘‘Estimates of upper critical external magnetic field for the Ginzburg–Landau equation,’’ Ph
D 127, 73–104~1999!.

2D. Saint-James and P. de Gennes, ‘‘Onset of superconductivity in decreasing fields,’’ Phys. Lett.7, 306–308~1963!.
3S. J. Chapman, ‘‘Nucleation of superconductivity in decreasing fields, 1, 2,’’ Eur. J. Appl. Math.5, 449–468~1994!; 5,
469–494~1994!.

4K. Lu and X.-B. Pan, ‘‘Gauge invariant eigenvalue problems inR2 and inR1
2 ,’’ Trans. Am. Math. Soc.~to be published!.
                                                                                                                



gnetic

are

ys.

Paris,

onduc-

enri

Diff.

2670 J. Math. Phys., Vol. 40, No. 6, June 1999 K. Lu and X.-B. Pan

                    
5V. Ginzburg and L. Landau, ‘‘On the theory of superconductivity,’’ Sov. Phys. JETP20, 1064–1082~1950!.
6P. De Gennes,Superconductivity of Metals and Alloys~Benjamin, New York, 1966!.
7P. Bauman, D. Phillips, and Q. Tang, ‘‘Stable nucleation for the Ginzburg–Landau system with an applied ma
field,’’ Arch. Ration. Mech. Anal.142, 1–43~1998!.

8F. Bethuel, H. Bre´zis, and F. He´lein, Ginzburg–Landau Vortices~Birkhöuser, Boston, 1994!.
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For the hydrogenlike atom, with central potential2Z/r , partial differential equa-
tions exist for the Slater sumZ(r ,b) @b5(kBT)21# and for its s-wave (l 50)
componentZ0(r ,b). It is shown thatZ can be eliminated, to lead to a result in
whichZ(r ,b) is solely characterized byZ0(r ,b). A similar situation is exhibited
for the three-dimensional isotropic harmonic oscillator, for which closed forms of
bothZ(r ,b,v) andZ0(r ,b,v) can be obtained explicitly. Finally, a third central
field problem is considered in which independent electrons are confined within a
sphere of radiusR, but are otherwise free. We are able to derive explicitly for this
model thes-wave componentZ0(r ,b,R). The full Slater sumZ(r ,b,R) then is
also analyzed in some detail. ©1999 American Institute of Physics.
@S0022-2488~99!01706-5#

I. BACKGROUND

The single particle level density, or density of statesg(E), of a quantum system described b
a one-particle Hamiltonian with a local effective potentialV(r ) is given by the inverse Laplac
transform of the canonical partition functionZ(b) divided byb, Z(b) being obtained as the trac
of the canonical density matrix

C~r ,r0 ,b!5(
n

xn~r !xn* ~r0!e2ben. ~1!

Hereen are the eigenvalues of the energy for the statesxn(r ), andb5(kBT)21, with kB Boltz-
mann’s constant, andT the absolute temperature. In the context of semiclassical periodic
theory, the so-called ‘‘trace formula’’1 for the oscillating part ofg(E) provides the basis for man
interesting interpretations of quantum phenomena in terms of classical orbits. Examples are
in Ref. 1 of applications in atomic nuclei, metal clusters, and semiconductor quantum dots

In this paper we are interested in the diagonal part of the canonical density matrix
so-called Slater sum

Z~r ,b!5C~r ,r ,b!. ~2!

In particular, we construct this Slater sum for several illustrative central field problems. I
early work of March and Murray,2 central field problems were considered for the Slater s
26710022-2488/99/40(6)/2671/9/$15.00 © 1999 American Institute of Physics
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Z(r ,b), and for its analysis into its angular momentum componentsZl(r ,b). Here, if V(r )
denotes a general central potential energy, and it generates radial eigenfunctionsxnl(r ) and cor-
responding eigenvaluesenl , then following Ref. 2

4pZl~r ,b!5(
n

xnl~r !xnl* ~r !exp~2benl!. ~3!

The full Slater sumZ(r ,b) is constructed fromZl(r ,b) as2

Z~r ,b!5(
l 50

`

~2l 11!Zl~r ,b!. ~4!

In the present work, we shall focus on thes-wave componentl 50,Z0(r ,b) in Eq. ~3!, and the
way in which this can be used in specific central field problems to construct the full Slater
Z(r ,b). We turn immediately in Sec. II below to the first of three central field examples, nam
the three-dimensional isotropic harmonic oscillator. In Sec. III some results concerning the
lomb potential are derived. In Sec. IV we deal with the case of a spherical cavity of radiusR. The
s-wave componentZ0 of the Slater sum is explicitly evaluated. In Sec. V we gather some dis
sion and a summary, while more technical details are relegated to the Appendices.

II. THREE-DIMENSIONAL ISOTROPIC OSCILLATOR

For the three-dimensional isotropic harmonic oscillatorV(r )5v2r 2/2, the evaluation of the
Slater sumZ(r ,b,v) essentially goes back to the pioneering work by Sondheimer and Wilson3 on
free electrons in an external magnetic field. These workers, in fact, obtained for this proble
canonical density matrixC(r ,r0 ,b,v), which is essentially equivalent to the oscillator exam
under discussion here~see also Ref. 4!. In Appendix A, we record first the full results for th
canonical density matrix from which the Slater sumZ(r ,b,v) is immediately obtained as it
diagonal elementC(r ,r05r ,b,v):

Z~r ,b,v!5F v

2p sinh~bv!G
3/2

expF2vr 2 tanhS bv

2 D G . ~5!

It is important to mention that Amovilli and March5 found a differential equation satisfied by th
Slater sum for the harmonic oscillator@see Eqn.~2.10! of Ref. 5#, namely

1

8

]3Z
]r 3 1

1

4r

]2Z
]r 2 2F 1

4r 2 1V1
]

]b G ]Z
]r

1
1

2

dV

dr
Z50. ~6!

Going back to Eq.~5!, note that asv→0, it reduces to

Z`~b!5~2pb!23/2, ~7!

which is the correct partition function for free particles, per unit volume.
What, however, is important for the present consideration is that the knowledge of th

nonical density matrixC(r ,r0 ,b,v) allows thes-state component of the Slater sumZ0(r ,b,v) to
be directly extracted, and this is also accomplished in Appendix A. The final result forZ0(r ,b,v)
is given there by Eqs.~A9! and ~A10!:

Z0~r ,b,v!5F v

2p sinh~bv!G
3/2er 2m2e2r 2m

2r 2m
expS 2

v

2
r 2Fcoth

bv

2
1tanh

bv

2 G D , ~8!

where
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m5
v

2 Fcoth
bv

2
2tanh

bv

2 G .
This reduces to the free-particle result of March and Murray,2 when the ‘‘force constant’’v is
reduced to zero, i.e.,

Z0~r ,b,v→0!5
1

2~2p!3/2b1/2

@12exp~22r 2/b!#

r 2 . ~9!

We discuss the relation betweenZ(r ,b) and itss-state componentZ0(r ,b) in Appendix A, Sec.
2. We shall also return briefly to this example after discussing the hydrogenlike atom. How
we can generalizeZ0(r ,b,v) in Eq. ~8! to a general orbital quantum numberl, the result for
Zl(r ,b,v) being given also in Appendix A.

III. COULOMB CASE

March and Murray2 derive for thes-state componentZ0(r ,b) of the Slater sumZ(r ,b) in a
hydrogenlike atom with central potential energy2Z/r the partial differential equation@see Ref. 2,
equation~4.7!#

1

8

]3

]r 3 ~r 2Z0!2
]2

]r ]b
~r 2Z0!1

Z

r

]

]r
~r 2Z0!2

ZZ0

2
50. ~10!

Let us now use in this Eq.~10! the ‘‘generalized Kato’’ result of March,6 namely~see also Refs.
5, 7, and 8!

]Z
]r

522ZZ0 . ~11!

By replacingZZ0 in Eq. ~10! by half the lhs of Eq.~11!, one finds

1

8

]3

]r 3 ~r 2Z0!2
]2

]r ]b
~r 2Z0!5

1

2r

]

]r S r 2
]Z
]r D2

1

4

]Z
]r

. ~12!

This, then, is an equation relating the total Slater sum for the hydrogenlike atom directly
s-state component, the nuclear potential energy2Z/r no longer appearing explicitly. Thus Eq
~10! is the counterpart of the relation betweenZ andZ0 referred to in Sec. II for the harmoni
oscillator@see also Eq.~6! below#. However, neitherZ norZ0 is yet known in closed form for the
Coulomb case.

We can expect Eq.~12! to apply even when we ‘‘switch off’’Z, to reach the ‘‘free-electron
limit’’ in, initially, an infinite volume. In this limiting case, the functionZ(r ,b) will take the
constant value (2pb)23/2 @see also Eq.~7! above#, which in the units adopted here, is simply th
partition function per unit volume of free electrons. Then the terms involvingZ(r ,b) in Eq. ~12!
become zero and we regain the free-particles-state-only equation already solved by March a
Murray,2 namely

1

8

]3

]r 3 ~r 2Z0!2
]2

]r ]b
~r 2Z0!50, ~13!

with explicit solution given in Eq.~9! above. In fact, Eq.~13! is readily integrated with respect t
r to yield

1

2

]2

]r 2 ~r 2Z0!24
]

]b
~r 2Z0!5~2pb!23/25Z`~b!, ~14!
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again relating the Slater sumZ(r ,b)[Z`(b) directly to itss-state componentZ0(r ,b) of Eq. ~9!.

IV. SPHERICAL BARRIER WITH FINITE RADIUS R

We turn to the third central field problem to be treated in the present study: namely n
teracting electrons confined by an infinite spherical barrier to move inside a sphere of radiusR, but
which are otherwise free. Fortunately, in this case, wave functions and energy levels c
obtained explicitly for thes states as the radial functions are given by

xn0~r !5A2

R

sin~npr /R!

r
, ~15!

and the corresponding eigenvalues in atomic units (\5m51) are

en5
p2

2R2 n2. ~16!

Hence, inserting Eqs.~15! and~16! into Eq.~3!, and using the definition of the Jacobi functionq3

~see Ref. 9!

q3~z,q!5112(
n51

`

qn2
cos~2nz!, uqu,1, ~17!

Eq. ~18! below is found forZ0(r ,b,R):

Z0~r ,b,R!5
1

8pr 2R Fq3X0,expS 2
bp2

2R2 D C2q3Xpr

R
,expS 2

bp2

2R2 D CG . ~18!

The off-diagonal formC0(r ,r 0 ,b,R) is derived in Appendix B.
From Eq.~18! it is straightforward to derive the result

1

8

]2~r 2Z0!

]r 2 2
]~r 2Z0!

]b
5

p

8 (
n50

`
1

R S n

RD 2

expX2 bp2

2 S n

RD 2C, ~19!

which is just a function ofb andR, and therefore is constant forr ,R ~for r .R it is zero!. There
is a discontinuity atr 5R, reflecting the fact that the potential we are dealing with has a str
singularity at this boundary. Observe that the functionr 2Z0 satisfies Eq.~10! with Z50, or
equivalently~13!, but with a strong singularity at the borderr 5R.

We note that for largeR, the limiting process included in Eq.~18! can be carried out essen
tially by replacing the summation involved for the theta function in Eq.~17! by an integration;
such a replacement is valid only asR→`. Then Eq.~18! can be rewritten as

lim
R→`

Z0~r ,b,R!5
1

2pr 2 lim
R→`

(
n51

`
sin2~prn/R!

R
e2~bp2/2!~n/R!2

5
1

2pr 2 E
0

`

e2~bp2/2!x2
sin2~prx !dx, ~20!

which can be shown to be equivalent to

Z0~r ,b,`!5 (
n51

`
~24r 2!n21

~2n!!p2 F 2

b Gn11/2E
0

`

e2y2
y2n dy. ~21!
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The integration appearing in~21! is a gamma function. Therefore, after some straightforw
calculation the previous result can be written as

Z0~r ,b,`!52
1

8p2r 2A2p

b (
n51

`
1

n! S 2
2r 2

b D n

, ~22!

which can be summed to regain the limiting form~9!.
In Appendix B, some progress is made in setting up a differential equation for the Slate

Z(r ,b,R). However, in contrast to the earlier examples of the harmonic oscillator and the h
gen atom, near-diagonal behavior ofC(r ,r0 ,b,R) is required in the formalism available to dat
Therefore, although thes-wave componentZ0(r ,b,R) is completely solved, full information
relatingZ andZ0 is still lacking except in the limit asR tends to infinity.

V. DISCUSSION AND SUMMARY

As is evident from Eq.~12! for the hydrogenlike atom, the knowledge of thes-state compo-
nent for the Slater sumZ0(r ,b) determines the entire sumZ(r ,b) by integration of an ordinary
differential equation to yield

]Z
]r

5 f ~b!1e23r 2/4E r

2re3r 2/4F1

8

]3~r 2Z0!

]r 3 2
]2~r 2Z0!

]r ]b Gdr, ~23!

f (b) being an arbitrary function. Evidently then,Z(r ,b) can be written explicitly by a further
quadrature of Eq.~23!. Naturally, physical boundary conditions must be imposed. Equation~23!
makes explicit the idea motivating the present investigation: namely the characterization
Slater sum by itss-state component.

For the other examples considered here, the more complex analog of~23! is embodied in Eqs.
~A11! and~A12! for the three-dimensional isotropic harmonic oscillator. However, in this spe
example, bothZ, already given in the work of Ref. 3, andZ0 derived in the present paper an
given in ~8!, are known explicitly. Finally, new results are given for thes-state componentZ0 in
Eq. ~18! although a satisfactory integro-differential equation for the full Slater sumZ(r ,b,R) for
the spherical barrier problem is not yet found~see Appendix B!.
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APPENDIX A: SOME RESULTS FOR THE ISOTROPIC THREE-DIMENSIONAL
HARMONIC OSCILLATOR

1. Canonical density matrix

As used, for example, in Eq.~2.4! of Ref. 4, if the potential energy of the oscillator is1
2v

2r 2,
then

C~r ,r0 ,b,v!5F v

2p sinh~bv!G
3/2

expF2
vur2r0u2

4
coth

bv

2 GexpF2
vur1r0u2

4
tanh

bv

2 G .
~A1!

In the limit v→0 we have
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Cfree~r ,r0 ,b!5
1

~2pb!3/2expF2
ur2r0u2

2b G . ~A2!

This is translationally invariant, coming essentially from plane waves exp(ik•r ).
Evidently, from Eq.~A1!, the result~5! of the main text is recovered by settingr05r . In the

limit v→0 this equation gives the correct result~7! above.
To get thel-state matrixCl(r ,r 0 ,b,v), let us introduce in Eq.~A1!

C~r ,r0 ,b,v!5 (
k50

`

~2k11!Ck~r ,r 0 ,b,v!Pk~cosg!, ~A3!

whereg is the angle betweenr and r0 , andPk(x) are Legendre polynomials.
Now extract the ‘‘l’’ state Cl from ~A3! by multiplying both sides byPl(cosg), and by sing,

and integrating fromg50 to g5p:

Cl~r ,r 0 ,b,v!5
Ll~a!

2 F v

2p sinh~bv!G
3/2

expF2
v~r 21r 0

2!

4 S coth
bv

2
1tanh

bv

2 D G . ~A4!

The essential integral involvingg to be evaluated is

Ll~a!5E
0

p

exp~a cosg!singPl~cosg!dg5E
21

1

exp~as!Pl~s!ds, ~A5!

with

a5
rr 0v

2 Fcoth
bv

2
2tanh

bv

2 G .
The last integral~A5! can be evaluated in different forms. For example, we can give an expre
in terms of the derivatives of Legendre polynomialsPl

(n)(s) evaluated at61:

Ll~a!5Feas

a (
n50

l
~21!n

an Pl
~n!~s!G

21

1

5
1

al 11 (
n50

l

~21!nal 2n$eaPl
~n!~1!2e2aPl

~n!~21!%.

~A6!

However, an equivalent and more interesting expression is obtained when using the explic
of Legendre polynomials:

Ll~a!5
1

2l (
m50

@ l /2#

~21!mS l
mD S 2l 22m

l D dl 22mL0~a!

dal 22m . ~A7!

For example, the first terms are

L0~a!5
ea2e2a

a
, L1~a!5

dL0~a!

da
. ~A8!

Using the previous results,C0 can be evaluated explicitly. In particular, on the diagonalr 5r 0 ,
andC0(r ,r ,b,v)5Z0(r ,b,v). Hence

Z0~r ,b,v!5F v

2p sinh~bv!G
3/2er 2m2e2r 2m

2r 2m
expS 2

v

2
r 2Fcoth

bv

2
1tanh

bv

2 G D , ~A9!

where
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m5
v

2 Fcoth
bv

2
2tanh

bv

2 G . ~A10!

As v→0, the infinite volume free particle result forZ0 is regained.

2. Relation between Slater sum Z„r ,b,v… and s-wave component Z0„r ,b,v…

We add here that an explicit, though somewhat complicated, relation exists betweenZ andZ0

for the harmonic oscillator follows by using~i! the general relation betweenV(r ) andZ0 and~ii !
the specific relation betweenV(r ) andZ given in ~6!.

The analog of Eq.~10! for the case of the harmonic oscillator is immediately found from E
~4.7! of Ref. 2 by puttingV(r )5 1

2v
2r 2. However, in the context of the present work it is helpf

to note that Eq.~41! of Ref. 2 can be viewed as a first-order differential equation forV(r ), given
thes state componentZ0(r ,b) of the Slater sum. The integral of this equation then takes the f

V~r !5
1

Q2 E r F1

4
QQ-22Q

]Q8

]b Gdr, Q5r 2Z0 , ~A11!

which, in fact, is a quite general central field equation characterizingV andZ0 .
The corresponding equation forZ, but now specific for the harmonic oscillator, can be o

tained from Ref. 5 as

V~r !5Z2E r 2

Z3 F]Z8

]b
2
Z8

4r 22
Z9

2r
2
Z-
8 Gdr. ~A12!

Clearly, equating Eqs.~A11! and~A12! gives the relation between the Slater sumZ and itss-wave
componentZ0 for the three-dimensional harmonic oscillator.

APPENDIX B: CANONICAL DENSITY MATRIX FOR SPHERICAL BARRIER

1. l 50 component of canonical density matrix

Let us consider thel 50 solutions of the Schro¨dinger equation in three dimensions for a fr
particle inside a spherical barrier of radiusR. Using the normalized radial eigenfunctions and t
eigenvalues given in~15! and~16!, we can evaluate thes-state component of the canonical dens
matrix

C0~r ,r 0 ,b,R!5
1

4p (
n51

`

xn0~r !xn0* ~r !e2ben

5
1

4prr 0R (
n51

`

e2bn2p2/2R2S cosF2np~r 2r 0!

2R G2cosF2np~r 1r 0!

2R G D
5

1

8prr 0R Fq3S p~r 2r 0!

2R
,e2bp2/2R2D2q3S p~r 1r 0!

2R
,e2bp2/2R2D G . ~B1!

We have used here the standard definition of one of the theta functions9 given in ~17!. If we
consider the limitq→1, we get a Fourier series expansion that is precisely a ‘‘Dirac comb’’10

q3~z,1!5p (
k52`

`

d~z2kp!. ~B2!

Therefore, taking the limitb→0 in ~B1! we find
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4prr 0C0~r ,r 0,0,R!5 (
k52`

`

@d~r 2r 022Rk!2d~r 1r 022Rk!#; ~B3!

for the relevant range of variation of the radial variables, only one of the Dirac delta func
contributes. Therefore,

4prr 0C0~r ,r 0,0,R!5d~r 2r 0!, ~B4!

and one of the required conditions on the canonical density matrix is satisfied.
By taking r 5r 0 in ~B1!, we obtain thes-wave component of the Slater sum for this proble

the result being given in~18!. From this expression, it is easy to prove that

Z0~0,b,R!5
p

2R3 (
n51

`

n2e2bn2p2/2R2
5Z~0,b,R!. ~B5!

This function presents a divergence forb/R2→0, which is represented explicitly by

R3Z~0,b,R!'
1

~2p!3/2 S b

R2D 23/2

. ~B6!

In addition, one can easily check that the functionZ0(r ,b,R) of ~18! satisfies Eq.~13!. This is an
immediate consequence of the fact that theq3 function obeys the heat equation.11

2. Additional comments on the canonical density matrix

From Eq.~4.6! of March and Murray2 for V50, and after multiplication by 2r 2 we get

r 2
]2

]r 2 ~rCl !U
r 85r

2 l ~ l 11!~rZl !22r 2
]

]b
~rZl !50. ~B7!

Retaining the ‘‘pathological’’dV/dr, we have for the diagonal quantityZl , again withV50:

1

8r

]3

]r 3 ~r 2Zl !2
1

2r 2

]

]r
„rl ~ l 11!Zl…2

1

2

]V

]r
~r 2Zl !2

1

r

]2

]b]r
~r 2Zl !50. ~B8!

Substitute from Eq.~B7! for l ( l 11)rZl into Eq. ~B8! to find

1

8r

]3

]r 3 ~r 2Zl !2
1

2r 2 H ]

]r F r 2
]2

]r 2 ~rCl !U
r 85r

22r 2
]

]b
~rZl !G J 2

1

r

]2

]b]r
~r 2Zl !5

1

2r

]V

]r
~r 2Zl !.

~B9!

We note here that the great simplification forl 50, fully solved in the present work, is that th
square bracket in Eq.~B9! is identically zero from Eq.~B7!.

To make progress with Eq.~B9! we now appeal to the relation utilized earlier for the ha
monic oscillator:

Cl5E
0

p

CPl~cosg!sing dg, ~B10!

wherePl are Legendre polynomials. Use of Eq.~B10! moves the~as yet unknown! l dependence
of Cl @expect forR→` where we have the March and Murray result forZl(r ,b,R→`) in terms
of Bessel functionsI l 11/2, namely 4prbZl(r ,b)5exp(2r2/b)Il11/2(r

2/b)# entirely into thePl ’s.
Inserting Eq.~B10! into ~B9! we can now multiply throughout by (2l 11) and then sum over al
l to find
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1

2r

]V

]r
~r 2Z!5

1

8r

]3

]r 3 ~r 2Z!2
1

r

]2

]b]r
~r 2Z!2

1

2r 2

]

]r

3F r 2
]2

]r 2 S r E
0

p

(
l 50

`

~2l 11!CPl~cosg!sing dg D U
r 85r

22r 2
]

]b
~rZ!G .

~B11!

To our knowledge, Eq.~B11! is new. But to get an explicit differential equation for the Slater s
Z(r ,b,R) for the spherical barrier, such as Amovilli and March give for both the harmo
oscillator and the hydrogen atom, one must be able to perform the sum over alll in the square
brackets of Eq.~B11! and then express solely in terms of the diagonal ofC, i.e.,Z(r ,b,R). Or,
within the philosophy of the present work, one could consider relating the off-diagonal term i
~B11! to the knownZ0(r ,b,R) for the spherical barrier. We have, so far, not achieved such fur
simplification for the barrier problem.
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Flavor symmetry of the tensor Dirac theory
Frank Reifler and Randall Morris
Lockheed Martin Corporation, Government Electronic Systems 137-227,
199 Borton Landing Road, Moorestown, New Jersey 08057

~Received 7 July 1998; accepted for publication 12 January 1999!

Recently, the Dirac and Einstein equations were unified in a tetrad formulation of a
Kaluza–Klein model with gauge group SL(2,R)3U(1). In this model, the self-
adjoint modes of the tetrad describe gravity, whereas the isometric modes of the
tetrad together with a scalar field describe fermions. This model gives precisely the
usual Dirac–Einstein Lagrangian. In this paper we generalize the tensor Dirac
theory to the larger gauge group SL(2,C)3U(1) acting on bispinors. We show that
each SL(2,R)3U(1) subgroup of SL(2,C)3U(1) corresponds to a different fac-
torization of the second-order Klein–Gordon equation into a first-order Dirac equa-
tion. Since the Noether currents are different for each factorization, the solutions
describe different flavors of fermions. We show that electric charge, lepton number,
and baryon number are conserved in this generalization of the Dirac theory.
© 1999 American Institute of Physics.@S0022-2488~99!02904-7#

I. INTRODUCTION

Recently, the Dirac and Einstein equations were unified in a tetrad formulation of a Ka
Klein model which gives precisely the usual Dirac–Einstein Lagrangian.1,2 In this model, the
self-adjoint modes of the tetrad describe gravity, whereas the isometric modes of the tet
gether with a scalar field describe fermions. An analogy can be made between the tetrad
and the elastic and rigid modes of a deformable body.1 For a deformable body, the elastic mod
are self-adjoint and the rigid modes are isometric with respect to the Euclidean metric onR3. This
analogy extends into the quantum realm since rigid modes satisfying Euler’s equation c
Fermi quantized.3

The use of tetrads to describe gravity has a long history,4 which includes coupling with the
Dirac field as a source.5 However, introducing a tetrad to describe both fermion and gravitatio
fields solves an important problem posed by current theories of fermion–graviton interactio
define bispinors, reference tetrad fields or their equivalent must be defined on the spac
manifold.6 These reference fields have been treated as purely boson fields in supersym
theories.7 We found that the reference tetrads themselves can be taken as fundamental fie
describe both fermions and gravity.1

Boson gauge fields were added to the unified Dirac–Einstein Lagrangian by definin
gauge group of the Kaluza–Klein model to be a semidirect product.2 It was shown that the
semidirect product structure of the gauge group produces precisely the usual ‘‘minimal coup
between bosons and fermions.

The tetrad Kaluza–Klein model is based on a constrained Yang–Mills formulation o
Dirac Theory.1–3,8 In this formulation a bispinor fieldC is mapped to a set of SL(2,C)3U(1)
gauge potentialsAa

K and a complex scalar fieldr. The gauge potentialsAa
K in the image of the map

vanish, except for an SL(2,R)3U(1) subgroup of SL(2,C)3U(1). The restriction to SL(2,R)
3U(1) arises because the Dirac equation has only SL(2,R)3U(1) gauge symmetry, while the
larger SL(2,C)3U(1) gauge group acts on bispinors.

In this paper we generalize the tensor Dirac theory to the larger SL(2,C)3U(1) gauge group
acting on bispinors, and discuss its possible application to describing fermion flavors~e.g., quark
and lepton flavors!. We show that each SL(2,R)3U(1) subgroup of SL(2,C)3U(1) corresponds
to a different factorization of the second-order Klein–Gordon equation into a first-order D
26800022-2488/99/40(6)/2680/18/$15.00 © 1999 American Institute of Physics
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equation. Thus, the Yang–Mills Lagrangian~see Sec. II! for the SL(2,C)3U(1) gauge potentials
Aa

K and scalar fieldr, describes solutions for different flavors of fermions. An assignment of fla
parameters to first generation leptons and quarks shows that electric charge, lepton numb
baryon number are conserved.

In Sec. II we review the derivation, which demonstrates that the Dirac bispinor Lagran
equals a constrained Yang–Mills Lagrangian in the limit of an infinitely large coupling cons
In Sec. III we then derive the generalization that gives rise to fermion flavors. We show ho
flavor symmetric tensor theory includes both the Dirac and Majorana bispinor theories as s
cases. In Appendices A and B we provide a new derivation of the tensor Dirac theory from
principles, starting from trace formulas for the Pauli matrices, and ending with formula
differentiating bispinor Fierz identities. This gauge symmetric derivation greatly simplifies c
putations with bispinors used in previous work on Fierz identities.9,10

Other authors have investigated the Fierz identities using more powerful Clifford alg
techniques.11,12 Clifford algebra provides significant generalizations of the simple matrix alge
presented in Appendices A and B. It is clear from this work that the SL(2,C)3U(1) theory
presented here can be extended to a wider class of gauge groups acting on bispinors by d
representations.13–16 A full generalization of the tensor Dirac theory with Clifford algebra tec
niques merits further study, as discussed in the following brief review of developments i
study of flavor symmetry.

Numerous books and journal articles have noted that different factorizations of the K
Gordon equation can give rise to flavor symmetry. For example, our earlier work represe
bispinor fieldC as a triplet of complex antisymmetric tensorsFab of Carmeli class~G!, defined in
terms ofAa

K andr, as follows:8

Fab5r~Aa
0Ab2AaAb

01 iAa3Ab!, ~1.1!

whereAa
K5(Aa

0,Aa) andAa5(Aa
1,Aa

2,Aa
3). Note that in this paper we denote gauge triplets, s

asFab5(Fab
1 ,Fab

2 ,Fab
3 ) andAa5(Aa

1,Aa
2,Aa

3) by bolding and use– and3 to denote the dot and
cross products with respect to the gauge indices 1,2,3. Class~G! triplets Fab were studied by
Carmeli, who classified the algebraic properties of Yang–Mills curvature tensors.17 The
SL(2,C)3U(1) gauge symmetry of the tripletsFab revealed the flavor symmetry o
bispinors.9,18,19The following composite map from bispinors to Carmeli class~G! triplets Fab :

C→~Aa
K ,r!→Fab , ~1.2!

which commutes with both the space–time and flavor symmetries, is an extension of the
map from spinors to complex isotropic vectors.8,20–22 Note that, similar to the Cartan map, th
extension~1.2! is a holomorphic, branched double covering map with a single branch poi
Fab50. For physically realizable solutions of the Dirac equation, the covering map~1.2! is
unobservable.8,23

Using Clifford algebra techniques, Keller and Rodriguez-Romo generalized all of the
structions of the last paragraph, including flavor symmetry, to a wider class of gauge group
in elementary particle physics.11,12,24,25We believe that the Kaluza–Klein model for the Dira
theory1,2 also extends to this wider class of gauge groups. As a step in this direction, a sp
generalization of the tensor Dirac theory to bispinor multipletsC5(C1 ,...,Cn) with the gauge
group SL(2n,C)3U(1) will be presented in a forthcoming paper.

The tensor form of Dirac’s bispinor equation itself has a long history.1 Most noteworthy was
the derivation of the tensor form of Dirac’s bispinor Lagrangian by Takahashi, who ascrib
similar derivation to Zhelnorovich.10,26However, at that time, the flavor symmetry of Takahash
formula @see formula~2.8! in Sec. II# was not recognized. Clifford algebra techniques co
generalize Takahashi’s formula~2.8! to the wider class of gauge groups investigated by Keller
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Rodriguez-Romo.13 Moreover, studies of such generalizations could expand the numbe
Kaluza–Klein models suitable for the unification of the fundamental fields of elementary pa
physics.

We conclude this Introduction with several remarks on the development of quantum me
ics. As discussed earlier, all the fundamental particles can be derived through the ‘‘se
quantization of fields unified at the classical level in a tetrad Kaluza–Klein model.2 In this model
the classical modes of a tetrad can be separated into isometric and self-adjoint modes, exc
a Schwarzschild horizon.1,27 Fermion statistics can be assumed for the isometric modes, w
classical Hamiltonian structure consists of noncanonical, unitary Lie–Poisson brackets, whil
boson statistics can be assumed for the self-adjoint modes with canonical Hamilt
structure.1,3,28

As previously mentioned, isometric modes of the reference frame fields, which in the
Kaluza–Klein model represent fermion degrees of freedom, are treated as boson degrees
dom in supersymmetric theories.7 An alternative supersymmetric theory would treat only t
self-adjoint modes of the reference frame fields as bosons, and these would describe grav
isometric modes would describe fermions. Thus, the tensor Dirac theory leads to a new fo
tion of the fermion–graviton interaction, which requires the modification of supersymmetric
ries.

Consider first quantization. At the inception of quantum mechanics, with the realizatio
‘‘wave–particle duality,’’ particles, classically conceived as points of mass and charge, were
wavelike properties through first quantization. Thus, Schrodinger’s wave functionC for a single
particle describes a matter field similar to the classical fields describing electromagnetis
gravity. Through ‘‘second’’ quantization, particles associated with the matter, electromag
and gravitational fields are then represented uniformly by occupation states acted upon by c
and annihilation operators. From a practical viewpoint the occupation states and their pre
‘‘classical’’ fields are sufficient to describe all observed phenomena.

The tetrad Kaluza–Klein model supports this viewpoint, since it shows that the ‘‘class
precedents for fermions and bosons are the samekind of field, i.e., a classical Yang–Mills field
with a classical Hamiltonian structure. Specifically, the Schrodinger wave functionC for a single
particle~which Schrodinger originally conceived as a classical field!, is the nonrelativistic limit of
the Dirac field (Aa

K ,r), which satisfies a classical Yang–Mills equation. Thus,C inherits from the
Dirac field (Aa

K ,r) a classical Hamiltonian structure that admits Fermi quantization.3 Therefore,
quantum mechanics need only consist of three parts: the classical field equations, field qu
tion, and rules for applying the formalism to experiments. A fundamental model must accou
all three parts of the theory in a unified framework. Unification of fermion and boson fields
classical level is a step in this direction.

Supersymmetric fields have been investigated, in part, because they describe fermion
with an anticanonical Hamiltonian structure, and hence unify fermions with bosons at a supe
sical level.7 However if supersymmetry is fundamental, a motivation other than unification a
prequantum level, is required, since the tensor Dirac theory, with its noncanonical Hamilt
structure, achieves this unification at a classical level without resorting to supernumbers.

II. TENSOR FORM OF THE DIRAC LAGRANGIAN

In this section we review the derivation that demonstrates that the Dirac bispinor Lagra
~2.4! equals the constrained Yang–Mills Lagrangian~2.14! in the limit of an infinitely large
coupling constant. The derivation exploits the SL(2,R)3U(1) gauge symmetry of Dirac’s bis
pinor Lagrangian.

Consider the SL(2,R)3U(1) gauge transformations, acting on the bispinor fieldC, with
infinitesimal generatorstK for K50,1,2,3, defined by

t0C52 iC, t1C5 iCC,
~2.1!

t2C5CC, t3C5 ig5C,
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where~using bispinor notation! CC denotes the charge conjugate ofC andg5 is the fifth Dirac
matrix.29 Note that the action of SL(2,R)3U(1) on C is real linear, whereas usually only com
plex linear gauge transformations of bispinors are considered. The infinitesimal gauge gen
t0 , t1 , andt2 generate SL(2,R) andt3 generates U~1!.

The SL(2,R)3U(1) gauge transformations generated bytK commute with Lorentz
transformations.29 From formula~2.1! the commutation relations of the gauge generatorstK are
given by

@t0 ,t1#52t2 , @t0 ,t2#522t1 , @t1 ,t2#522t0 , ~2.2!

andt3 commutes with all thetK . Formula~2.2! can be written more compactly as

@tJ ,tK#52 f JK
L tL , ~2.3!

which defines the Lie algebra structure constantsf JK
L for the gauge group SL(2,R)3U(1).

By formula~2.2!, the Minkowski metricgJK ~with diagonal elements$1,21,21,21% and zeros
off the diagonal! is an invariant metric30 for the gauge group SL(2,R)3U(1). Gauge indicesJ, K,
L will be lowered and raised using the Minkowski metricgJK and its inversegJK. As in formula
~2.3!, repeated indices are to be summed from 0 to 3.

Dirac’s bispinor LagrangianL is given by

L5Re@ i C̄ga ]aC2m0s#, ~2.4!

wheres is the complex scalar field defined by

Re@s#5C̄C,
~2.5!

Im@s#5 i C̄g5C,

where~using bispinor notation! C̄5C1g0, whereC1 denotes the transpose conjugate ofC, and
ga for a50,1,2,3 are Dirac matrices.29 Moreover, in formula~2.4!, m0 denotes the fermion mass
and]a denote partial derivatives with respect to space–time coordinates. Tensor indicesa, b, g
are lowered and raised using the Minkowski space–time metric, which we denote asgab , and its
inversegab.

Apart from the mass term, Dirac’s bispinor Lagrangian is invariant under the SL(R)
3U(1) gauge transformations~2.1!. From formula~2.5!, the scalars is invariant under SL(2,R)
gauge transformations, and transforms as a complex scalar under the U~1! gauge transformations
generated byt3 . To make the Lagrangian~2.4! invariant for all SL(2,R)3U(1) gauge transfor-
mations, it suffices thatm0 transform likes̄ ~the complex conjugate ofs!. Sincem0 appears in the
Lagrangian~2.4! without derivatives, the assumption thatm0 transform likes̄ under U~1! gauge
transformations, has no effect on the Dirac equation.

From the Dirac Lagrangian~2.4! we can derive the following SL(2,R)3U(1) Noether cur-
rents:

j a
K5Re@ i C̄gatKC#. ~2.6!

The Noether currentsj a
K and scalars satisfy an orthogonal constraint known as a Fierz identit10

~see Appendix A for an elementary derivation!:

j a
K j Kb5usu2gab . ~2.7!

Takahashi10 derived the following formula for the kinetic part of the Dirac Lagrangian~2.4!:
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Re@ i C̄ga ]aC#52
1

4usu2
Re@~]aJb!–Ja3Jb22i s̄Ja

0 ]as#, ~2.8!

which uses the following notation~which differs from Takahashi’s!:

Ja
K5~Ja

0,Ja!5~2 j a
3,2 i j a

2 ,i j a
1 ,2 j a

0 !. ~2.9!

Thus, from Takahashi’s formula~2.8!, we see that the Dirac Lagrangian~2.4! can be expressed
entirely in terms of the Noether currentsj a

K and the complex scalar fields, satisfying the orthogo-
nal constraint~2.7!.

Takahashi10 derived formulas~2.7! and ~2.8!, along with 15 general and 75 specific Fie
identities, without exploiting the SL(2,R)3U(1) gauge symmetry. The derivation of formu
~2.8! from first principles given in Appendices A and B of this paper exploits this symmetry. O
the SL(2,R)3U(1) gauge symmetry of formula~2.8! is recognized, the demonstration th
Dirac’s bispinor Lagrangian~2.4! equals a constrained Yang–Mills Lagrangian in the limit of
infinitely large coupling constant, is fairly obvious.

Indeed, we can map a subset of SL(2,C)3U(1) gauge potentialsAa
K and a complex scala

field r into (Ja
K ,s) by setting

Ja
K54uru2Aa

K ,
~2.10!

s54uru2r̄.

Since we regard the Lie algebra of SL(2,C) as the complexification of the Lie algebra of SU~2!,
the SL(2,C) gauge potentialsAa5(Aa

1,Aa
2,Aa

3,) are complex, while the U~1! gauge potentialAa
0

is real. By formula~2.9! the gauge potentialsAa
K are restricted to the subset for which

Re@Aa
1 #5Re@Aa

2 #5Im@Aa
3 #50. ~2.11!

This subset corresponds precisely to a SL(2,R)3U(1) subgroup of the gauge group SL(2,C)
3U(1). Onsubstituting formula~2.10! into Takahashi’s formula~2.8!, Dirac’s Lagrangian~2.4!
becomes

L52Re@~]aAb!–Aa3Ab12i r̄Aa
0 ]ar14m0uru2r̄ #, ~2.12!

and the orthogonal constraint~2.7! becomes

Aa
KAKb52uru2gab . ~2.13!

Consider the following Yang–Mills LagrangianLg for the gauge potentialsAa
K and the com-

plex scalar fieldr:

Lg52 1
4 Re@Aab

K AK
ab#1Da~r1m!Da~r1m!2 1

2g
2uru4, ~2.14!

whereAab
K 5(Aab

0 ,Aab) and

Aab
0 5]aAb

02]bAa
0,

Aab5]aAb2]bAa2gAa3Ab , ~2.15!

Da~r1m!5]ar1 igAa
0~r1m!,

where g denotes the Yang–Mills coupling constant andm05 1
2 mg is the fermion mass. From

formulas~2.12! and ~2.13!, Dirac’s bispinor Lagrangian~2.4! equals
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L5 lim
g→`

g21Lg . ~2.16!

Note that the Euler–Lagrange equation for the Lagrangian~2.14! with the constraint~2.13!
expressed using Lagrange multipliers, commutes with the restriction~2.11!. Hence, theAa can be
used to denote either SL(2,C) or the subset of SL(2,R) gauge potentials. By regarding SL(2,R) as
embedded in the complex analytic group SL(2,C), we are able to use familiar vector operations
express the Lie algebra structure constants in formulas~2.12! and ~2.15!. The vector operations
greatly simplify derivations.

Also, note that the part of the Lagrangian~2.14! for the scalar fieldr is not uniquely deter-
mined by Eq.~2.16!. However, the Lagrangian~2.14! has unique additional properties discussed
Refs. 1 and 31. Specifically, the Yang–Mills equation derived from the Lagrangian~2.14! with the
constraints~2.11! and~2.13! has exact plane wave solutions in one-to-one correspondence wit
plane wave solutions of Dirac’s bispinor equation. Because the Yang–Mills equation is nonl
the mass of each plane wave could depend on its amplitude, which would cause velocity s
of wave packets.32 However, the mass of each plane wave equalsm0 , and hence is constant. Wav
packets are identical to the wave packets derived from Dirac’s equation, and do not e
velocity splitting.31 Thus, the constrained Yang–Mills equation has solutions similar to Dir
bispinor equation, which is a limiting case of it by formula~2.16!.

However, if the coefficientg2 in the quartic potentialV(r)5 1
2g

2uru4 of the Lagrangian~2.14!
is varied, then the limit in formula~2.16! fails to exist, and the mass of each plane wave beco
dependent on amplitude. Unless the amplitude vanishes, the mass becomes infinite in the
an infinitely large coupling constantg. Wave packets lose their elementary character with se
velocity splitting and unobservably high mass. Thus, in the Kaluza–Klein tetrad model,1 assuming
a fixed mass parameterm, the quartic potentialV(r) determines both the coupling constantg and
the fermion massm05 1

2mg. This property will be exploited as an alternative to Higgs fields33 for
obtaining fermion masses in a future paper, which generalizes the tensor theory to multiplen
bispinorsC5(C1 ,...,Cn), where each bispinor component ofC is associated with a differen
fermion mass.

Another unique property of the Lagrangian~2.14! may have significance for astrophysics. F
Yang–Mills Lagrangians in general, the energy–momentum tensorTab for wave packets exhibits
both mass density and pressure. However, for plane waves and wave packets derived fr
Lagrangian~2.14!, we can show that

Tab5m0u j uvavb, ~2.17!

wherem0 is the fermion mass,j a5u j uva is the electric current, which is also called the partic
current, andva5 j a/u j u with vava51 is the velocity field.31 As for Dirac’s bispinor Lagrangian
formula ~2.17! exhibits an energy–momentum tensorTab for a fluid with velocity fieldva, mass
densitym0u j u, and zero pressure. Since for a Yang–Mills Lagrangian the pressure generally
as the square of the coupling constantg, which must be large to obtain the Dirac Lagrangian
nonzero pressure would be highly observable, for example, in the internal dynamics of sta

For the Lagrangian~2.14!, neither the exact plane wave solutions nor their wave pac
provide any information about the magnitude of the coupling constantg. Consider, however, the
single-particle~unquantized! Dirac equation applied to the scattering of a single fermion part
in an external electromagnetic potential.29 The computation of scattering cross sections with th
simplifying assumptions may provide a way to estimate the magnitude of the coupling consg.

III. FLAVOR SYMMETRY

We will show in future papers that theories using multiplets ofn bispinors C
5(C1 ,...,Cn) can be formulated as tensor theories. Such formulations are based on extens
the Fierz identities given in Appendix A to bispinor multipletsC, with the gauge group
SL(2n,C)3U(1). Wewill show that any given bispinor multiplet maps to fermion gauge pot
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tials Aa
K that vanish, except for an SL(2,R)3U(1) subgroup of SL(2n,C)3U(1). Thespecific

SL(2,R)3U(1) subgroup for which theAa
K are nonvanishing, determines the fermion flavor. T

is, only the components ofAa
K associated with the SL(2,R)3U(1) subgroup are nonzero, an

henceAa
K reduces to the Dirac theory for a single flavor of fermion. We will also show

particular, that the standard electroweak model can be embedded in a SL(2n,C)3U(1) tensor
theory in a manner consistent with the gauge symmetries used to derive the tensor Dirac eq

Even for a bispinor singlet (n51), which we treat in this paper, current bispinor theories
not utilize the full SL(2,C)3U(1) gauge symmetry of the tensor Dirac Lagrangian~2.14!. We
will show in this section that the SL(2,C)3U(1) symmetric tensor Dirac theory includes both t
Dirac and Majorana bispinor theories as special cases. Furthermore, we will show that the
tional symmetry can be used to model the observed conservation of electric charge, lepto
ber, and baryon number.

A bispinorC consists of a spinor and a dual conjugate spinor@see formula~A30! in Appendix
A#. Equivalently,C can be represented by a spinor doubletF consisting of two spinors, as in
formula ~A18!. Acting on spinor doubletsF is the gauge group SL(2,C)3U(1) whose generators
are defined in formula~A19!. The bijective mapF→C defined by formula~A30!, induces an
equivalent representation of the gauge group SL(2,C)3U(1) acting on bispinorsC.

Unitary gauge transformations form a subgroup U~2!5SU~2!3U~1! of the SL(2,C)3U(1)
gauge transformations acting on spinor doubletsF. Using the representation induced on bispino
C by the bijective mapF→C, the generatorsTK of the unitary group SU~2!3U~1! become

T05t3 , T152t3t2 ,
~3.1!

T25t3t1 , T35t0 ,

where thetK are the SL(2,R)3U(1) gauge generators acting on bispinorsC defined in formula
~2.1!. Note from formulas~A19! and~A30! in Appendix A, that the full set of generators for th
gauge group SL(2,C)3U(1) acting on bispinorsC consists of theTK (K50,1,2,3), which gen-
erate SU~2!3U~1! and three additional gauge generators:

T185t2 , T2852t1 , T385t3t0 . ~3.2!

From formula~2.1!, the gauge generatorsTK satisfy the following commutation relations:

@T1 ,T2#52T3 , @T2 ,T3#52T1 , @T3 ,T1#52T2 . ~3.3!

T0 commutes with all theTK . Thus, T1 , T2 , and T3 generate SU~2!, and T0 , which is t3 ,
generates U~1! as before.

Dirac’s bispinor Lagrangian~2.4! can now be expressed by

L5Re@ i C̄Ga ]aC2m0C̄C#, ~3.4!

whereGa5 igaT35ga. Hence, Dirac’s equation can be expressed as

iGa ]aC5m0C. ~3.5!

We may replaceT3 with an equivalent gauge generatorT5cKTK , wherecKPR4 satisfies
cKcK521. That is, definingGa5 igaT generalizes the Dirac matricesga. From formulas~2.1!
and~3.1! we see thatTKga52gaTK , and from a standard identity for Dirac matricesga we get29

GaGb1GbGa52gab . ~3.6!

Formulas~3.5! and ~3.6! imply that the bispinor fieldC satisfies the Klein–Gordon equation:

]a ]aC52m0
2C. ~3.7!
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Thus, each generatorT5cKTK , with cKcK521, gives a different factorization of the Klein–
Gordon equation into a Dirac equation~3.5!, with Lagrangian~3.4!. The following theorem gen-
eralizes Takahashi’s formula~2.8!.

Theorem 1: Let C be a bispinor field. Then

Re@ i C̄Ga ]aC#52
1

4usu2
Re@~]aJb!–Ja3Jb22i s̄Ja

0 ]as#, ~3.8!

where@see formula~2.9!#

Ja
05cK j a

K ,
~3.9!

Ja5c0ja2cj a
01 ic3ja ,

andcK5(c0,c) with c5(c1,c2,c3), and j a
K5( j a

0,ja) with ja5( j a
1, j a

2, j a
3).

Proof: A proof of Theorem 1 from first principles using simple trace formulas is provide
Appendices A and B. See formula~B15!. Alternatively, Theorem 1 follows from formulas~2.8!
and ~2.9! by a symmetry argument. Note that theJa

K defined by formula~3.9! are the SL(2,C)
3U(1) Noether currents of the bispinor Lagrangian~3.4!. Formulas~2.8! and ~2.9! are a special
case of formulas~3.8! and~3.9! with cK5(0,0,0,1). As in formula~2.9!, the nonvanishingJa

K are
associated with an SL(2,R)3U(1) subgroup of SL(2,C)3U(1). Since the gauge group
SL(2,C)3U(1) acts transitively on the Noether currentsJa and leavesJa

0 invariant, the
SL(2,C)3U(1) Noether currents in formula~3.9! can be obtained from the SL(2,R)3U(1)
Noether currents~2.9! by a gauge transformation. The proof is completed by showing the g
invariance of formula~3.8!.

Note in Theorem 1 thatcK, j a
K , andJa

K are all invariant under U~1! gauge transformations
The SL(2,C) gauge transformations act as SO~1,3! transformations oncK and j a

K , and as complex
orthogonal transformations onJa . As previously stated,Ja

0 is invariant for all gauge transforma
tions. Since the complex scalars is invariant for all but U~1! gauge transformations, the right-han
side of formula~3.8! is invariant for all gauge transformations. The left-hand side of formula~3.8!
is also invariant for all gauge transformations, as can be seen in formula~B4! in Appendix
B. Q.E.D.

As a consequence of Theorem 1, we prove the following theorem.
Theorem 2: SetJa

K54uru2Aa
K ands54uru2r̄. Then~Aa

K ,r) satisfy the orthogonal constrain
~2.13!, and the bispinor Lagrangian~3.4! equals

L5 lim
g→`

g21Lg , ~3.10!

whereLg is the Yang–Mills Lagrangian~2.14!.
Proof: To establish the orthogonal constraint~2.13!, we define an associative binary oper

tion, denoted aŝ on C4 as follows. ForaK, bK, cKPC4, we definec5a^ b if and only if

c05a0b01a–b,
~3.11!

c5a0b1ab01 ia3b,

whereaK5(a0,a) with a5(a1,a2,a3), and similarly forbK andcK. It is straightforward to show
that the binary operation̂ is associative. DenoteãK5aK5(a0,2a). Then formula~3.9! can be
written as

Ja
K5@ j a ^ c̃#K, J̃a

K5@c^ j̃ a#K, ~3.12!

where @a^ b#K denotes theKth component ofa^ b. Since fromcKcK521 we havec̃^ c5
(21,0,0,0), formulas~2.7!, ~3.11!, and~3.12! give
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Ja
KJKb5@Ja ^ J̃b#05@ j a ^ c̃^ c^ j̃ b#052@ j a ^ j̃ b#052 j a

K j Kb52usu2gab . ~3.13!

The orthogonal constraint~2.13! now follows from formulas~2.10! and ~3.13!. On substituting
formulas ~2.5! and ~3.8! into the bispinor Lagrangian~3.4!, formula ~3.10! is a straightforward
evaluation of formulas~2.12!, ~2.14!, and~2.15!. Q.E.D.

Each factorization of the Klein–Gordon equation~3.7! gives a different Dirac equation~3.5!,
parametrized by the choice ofcKPR4, such thatcKcK521. The usual Dirac equation has th
parametercK5(0,0,0,1). Thus, the Yang–Mills Lagrangian~2.14! for the SL(2,C)3U(1) gauge
potentialsAa

K and scalar fieldr describes solutions from different Dirac equations correspond
to different factorizations of the Klein–Gordon equation. We can show using formulas~2.10!,
~2.13!, and~3.12! that Aa

K andr uniquely determine both the parametercK and the bispinor field
C ~except for the unobservable sign ofC!. Since the Noether currents~3.9! are different for each
value of the parametercK, the parametercK describes the fermion flavor.

In the tensor theory, fermion gauge potentialsAa
K , associated with a gauge groupG, can be

unified with boson gauge potentialsVa
K , associated with a gauge groupH that acts onG via a

homomorphismw:H→Aut(G), by regarding (Aa
K ,Va

K) as gauge potentials associated with t
semidirect product groupGw3H. As previously shown, the semidirect product structure of
gauge groupGw3H uniquely prescribes the usual ‘‘minimal coupling’’ between fermions a
bosons.2 For flavor gauge groups let

G5SL~2,C!3U~1!,
~3.14!

H5SU~2!3U~1!,

with w defined as the adjoint action ofH on G.
Note that the boson gauge group SU~2!3U~1! is a compact subgroup of the noncompa

fermion gauge group SL(2,C)3U(1). The U~1! gauge transformations leave the flavor parame
cKPR4 invariant; whereas the SU~2! gauge transformations leavec0 invariant and rotatec
5(c1,c2,c3). Since for the electron we choosec050 andc5(0,0,1), we will assume thatc0

50 for all fermion flavors. That is, we restrict the flavor parametercK to a single SU~2!3U~1!
orbit for which c050.

From formula~3.9! with c050, the SU~2!3U~1! Noether currents Re@Ja
K# can be expressed

with the vector and axial currents,j a
0 and j a

55c–ja , as follows:

Re@Ja
K#5~2 j a

5,2cj a
0 !. ~3.15!

Both j a
0 and j a

5 are invariant under all SU~2!3U~1! gauge transformations. Thus, from formul
~2.1! and~2.6!, j a

0 and j a
5 are gauge-invariant vector and axial currents, respectively, which ca

identified with electroweak vector and axial currents.33 It has been observed that the electroma
netic current is purely vector and that weak currents have both vector and axial componen

Table I shows a possible assignment of flavorscK to first generation leptons and quarks. No
that in Table I antifermions are obtained by replacingcK with 2cK. With these assignments o

TABLE I. Flavor parameters for leptons and quarks.

FERMION cK5(c0, c1, c2, c3)

Electron (e) ~0,0,0,1!
Neutrino ~n! ~0,1,0,0!
Up-quark (u) (0,

1
3,2

2
3,2

2
3)

Down-quark (d) (0,2
2
3,2

2
3,

1
3)
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flavors, the following theorem identifies the Standard Model electromagnetic and neutral cu
denoted asJa

(Q) and Ja
(Z) , respectively, by expressing them as linear combinations of

SU~2!3U~1! Noether currents~3.15!.
Theorem 3: With the assignment of flavorscK to first generation leptons and quarks shown

Table I, the Standard Model electromagnetic and neutral currents are uniquely determi
follows:

Ja
~Q!5Re@Ja

3 #,
~3.16!

Ja
~Z!52

1

2 sinw
Re@6Ja

01Ja
11~122 cosw!Ja

3 #,

wherew is twice the Weinberg angle.33 The plus sign occurs with the U~1! currentJa
0 for an

electron and down-quark and a minus sign for the neutrino and up-quark.
Proof: This is a straightforward verification by substituting values ofcK from Table I

into formulas ~3.15! and ~3.16!, and showing that the currents agree with the Sta
ard Model.33 Q.E.D.

One can deduce from formulas~2.1! and~3.1! that flavor symmetry generalizes the Majora
representation used in quantum field theory to massive fermions.33 The neutrino in Table I for the
case of zero mass is precisely a Majorana neutrino.

By a standard argument, conservation of electric current implies the additivity of ele
charge. By a similar argument, conservation of the SU~2! vector currents,2cj a

0, implies the
additivity of the flavor parametercK5(0,c). To illustrate this additivity consider the beta dec
d→u1e1 n̄ in which a down-quarkd decays into an up-quarku, an electrone, and an an-
tineutrino n̄. SincecK( n̄)52cK(n), we have from Table I,

cK~d!5cK~u!1cK~e!1cK~ n̄ !. ~3.17!

In all known interactions betweene, n, u, andd fermions, thecK as defined in Table I are additive
and hence can be regarded as conserved electroweak charges associated with the SU~2! vector
currents2cj a

0.
The additivity of thecK leads directly to the three familiar laws stated in Theorem 4 t

follows.
Theorem 4: Additivity of the flavor parameter implies the conservation of electric cha

lepton number, and baryon number.
Proof: Using Table I we derive the following relations:

B̃52 1
2c

25baryon number,

L̃5c12 1
2c

21c35 lepton number, ~3.18!

Q̃52c35electric charge.

SinceB̃, L̃, andQ̃ are linear functions ofcK, additivity of cK implies additivity~conservation! of
B̃, L̃, andQ̃. Q.E.D.

Hence, the tensor theory models the conservation of electric charge, lepton numbe
baryon number.

APPENDIX A: FIERZ IDENTITIES

In this appendix we will present an elementary derivation of the Fierz identities, from w
the tensor form of the Dirac Lagrangian will be derived in Appendix B. The spinor Fierz ide
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~A13! is a consequence of trace formulas~A3! and~A4! satisfied by the Pauli matrices. We exten
the spinor Fierz identity first to pairs of spinors~spinor doublets!, and then to bispinors, which ar
defined in formula~A30! as spinor and dual conjugate spinor pairs.

A spinor is a two-dimensional complex vector, denoted as

j5Fj1

j2
GPC2. ~A1!

Acting on spinorsj are the 232 complex Pauli matricessa5(s0,s1,s2,s3) defined by

s05F1 0

0 1G , s15F0 1

1 0G ,
s25F0 2 i

i 0 G , s35F1 0

0 21G . ~A2!

We definesa5(s0,2s1,2s2,2s3) and denotes̃a5sa ands̃a5sa. A straightforward evalu-
ation of the Pauli matrices gives the following trace formula:

Tr@sas̃b#52gab , ~A3!

wheregab denotes the Minkowski metric tensor~with diagonal elements$1,21,21,21% and zeros
off the diagonal!. A further trace formula is expressed by:

Tr@sas̃d sbs̃g#52Cabgd , ~A4!

where, as will be seen in formula~A13!, Cabgd is a Lorentz tensor. Such a tensor is a line
combination ofgabggd , gaggbd , gadgbg , andeabgd , whereeabgd is the permutation tensor. A
straightforward derivation shows that

Cabgd5gaggbd1gadgbg2gabggd2 i eabgd . ~A5!

The tensorCabgd satisfies numerous identities, chief of which are the symmetries:

Cabgd5Cbadg5Cgdab5Cdgba , ~A6!

and the inversion formula:

CabgdCgdlm54da
ldb

m , ~A7!

whereda
b equals one ifa5b and zero otherwise. Note that the tensor indicesa, b, g, d, l, m are

lowered and raised using the Minkowski metric tensorgab and its inversegab, and all repeated
indices are to be summed from 0 to 3.

Formulas equivalent to~A6! and ~A7! are discussed by Penrose and Rindler.34 Note that
formulas vary depending on how one defines the matricessa. Our choice ofsa in formula ~A2!
is made in order to define the standard Dirac matricesga in a consistent manner@see formula
~A32!#.

If we setd50 in formula~A4!, noting thats̃05s05I whereI is the 232 identity matrix, we
have

Tr@sasbs̃g#52Cabg0 . ~A8!

Since the Pauli matricessg are a basis for 232 complex matrices, the productsasb is a linear
combination of the matricessg . From formulas~A3! and ~A8!, this linear combination is given
by
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sasb5Cab
g0 sg . ~A9!

By a similar argument, settinga50 in formula ~A4! gives

s̃gs̃d5Cgd
0bs̃b . ~A10!

Next, we consider a pair of spinorsj and h to which we associate a complex Loren
four-vector j a, whose components are defined by the 232 matrix:

j 52hj15F j 01 j 3 j 12 i j 2

j 11 i j 2 j 02 j 3 G , ~A11!

wherej15( j̄1 ,j̄2) denotes the transpose conjugate ofj. ~The overbar denotes ordinary comple
conjugation.! The spin group of 232 complex matrices with determinant one, denoted SL(2,C) or
Spin ~1,3!, acts on the spinorsj andh. Acting on hj1 in formula ~A11!, the spin group leaves
invariant the determinant ofj, and hence the Minkowski norm ofj a. Thus, j a becomes a Lorentz
four-vector.

We can solve forj a in formula ~A11! by first noting thatj 5 j bs̃b , multiplying by sa , and
then using the trace formula~A3!. This defines a mapj a :C23C2→C4, mapping each pair of
spinorsj andh to a complex Lorentz four-vectorj a(j,h), given by

j a~j,h!5j1sah. ~A12!

We now derive the following Fierz identity.
Proposition 1:For all j, h, k, nPC2,

2 j a~j,h! j b~k,n!5Cab
gd j g~j,n! j d~k,h!. ~A13!

~Note that sincej a , j b , j g , and j d are Lorentz four-vectors,Cabgd is a tensor.!
Proof: From formula~A11! we have

2hj15 j a~j,h!s̃a . ~A14!

Then the trace formula~A4! gives

2 j a~j,h! j b~k,n!52~j1sah!~k1sbn!52 Tr@sa~hk1!sb~nj1!#

5 1
2 Tr@sas̃dsbs̃g# j g~j,n! j d~k,h!5Cabgd j g~j,n! j d~k,h!, ~A15!

which proves formula~A13!. Q.E.D.
The parity mapP:C2→C2 sends a spinorj, as defined in formula~A1!, to its dual conjugate

j̃:

Pj5 j̃5F j̄2

2 j̄1
G . ~A16!

Formula~A2! givesPsaj5s̃aPj. Hence,j̃5Pj transforms under the conjugate representat
of the spin group SL(2,C). SinceP2j52j, the parity mapP is a bijection. From formulas~A11!
and ~A12! we have

j a~Pj,Ph!5 j a~h,j!5 j a~j,h!. ~A17!

Note that a ‘‘parity operation’’ can be defined for spinor fieldsj(xa), which combines the
parity mapP with the space reflection, sending the space–time pointxaPR4 to xa . However, as
defined here, the ‘‘parity map’’P:C2→C2 transforms only the spinor componentsjPC2.
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A spinor doublet is a four-dimensional complex vector, denoted as

F5F j
h GPC4, ~A18!

wherej, hPC2 are spinors as defined in formula~A1!. Acting on spinor doubletsF are the Pauli
matricessa, which extend to 434 matrices by the usual direct sum representation. Also, actin
F are the 434 gauge matricestK5(t0,t1,t2,t3) defined as follows. First, note from formula~A2!
that, apart from6signs, all entries of the Pauli matricessa consist of 0, 1, andi. The 434
complex matricestK are similar to the 232 Pauli matricessa, with I and iI replacing 1 andi,
whereI is the 232 identity matrix. That is,

t05F I 0

0 I G , t15F0 I

I 0G ,
~A19!

t25F 0 2 i I

i I 0 G , t35F I 0

0 2I G .
The gauge matricestK satisfy trace formulas similar to the Pauli matricessa. We definetK

5(t0,2t1,2t2,2t3) and denotet̃ K5tK and t̃ K5tK. For 434 matricessa and tK we have,
similar to formula~A3!,

Tr@sas̃b#54gab , Tr@ tJ t̃ K#54gJK , ~A20!

wheregJK is a Minkowski metric similar togab . Similar to formula~A4!, we have

Tr@sas̃dsbs̃g#54Cabgd ,
~A21!

Tr@ tJ t̃ MtK t̃ L#54CJKLM ,

whereCJKLM is a tensor similar toCabgd .
The 434 complex matricessa and tK commute for each indexa andK. Moreover,

Tr@sa#Tr@ tK#54 Tr@satK#516da
0dK

0 . ~A22!

As with sa in formulas ~A9! and ~A10!, products of the gauge matricestK ~or t̃ K! can be
expressed as linear combinations of thetK ~or t̃ K!, e.g.,

t̃ L t̃ M5CLM
0K t̃ K . ~A23!

From this observation and formula~A22!, if s is a product of matricessa and t is a product of
matricestK , then

Tr@s#Tr@ t#54 Tr@st#. ~A24!

Note that, as in formula~A23!, gauge indicesJ,K,L,M are lowered and raised using th
Minkowski metricgJK and its inversegJK, and all repeated indices are to be summed from 0 t
Now consider the mapj a

K :C43C4→C16, mapping each pair of spinor doubletsF andQ to a set
of four complex Lorentz four-vectorsj a

K(F,Q), defined by

j a
K~F,Q!5F1satKQ, ~A25!

whereF1 denotes the transpose conjugate ofF. We will derive the following Fierz identity for
spinor doublets.
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Proposition 2:For all F, Q, F8, Q8PC4,

CJK
LM j a

J ~F,Q! j b
K~F8,Q8!5Cab

gd j g
L~F,Q8! j d

M~F8,Q!. ~A26!

Proof: The proof is similar to the proof of Proposition 1, using the definition~A25! with the
trace formulas~A20!, ~A21!, and~A24!. In particular, similar to formula~A14!, we derive

4QF15 j aK~F,Q!s̃a t̃ K . ~A27!

An equation similar to formula~A15! is then obtained. The inversion formula~A7! is used in the
final step. Q.E.D.

The parity mapP:C4→C4 sends a spinor doubletF, as defined in formula~A18!, to its dual
conjugate doublet:

PF5F Ph
2Pj G . ~A28!

Note that we use the same symbolP for both the parity map~A16! defined on spinors as well a
its extension~A28! to spinor doublets. It should be clear from the context which mapP:C2

→C2 or P:C4→C4 is intended. Since from formula~A16!, P2j52j andP2h52h, it follows
from formula ~A28! that P2F5F. Thus, the parity mapP:C4→C4 equals its inverse, i.e.
P5P21. From formulas~A25! and ~A27!, we have

j a
K~PF,PQ!5 j K

a~Q,F!5 j K
a~F,Q!. ~A29!

A bispinor C consists of a spinorj and a dual conjugate spinorh̃5Ph. That is,

C5BF5F j
Ph G , ~A30!

whereB:C4→C4 sends the spinor doubletF, as defined in formula~A18!, to the bispinorC. The
charge conjugate ofC is defined by

CC5F h
Pj G , ~A31!

and the Dirac matricesga andg5 acting onC are defined by

gaC5FPsah
saj G , g5C5F j

2Ph G . ~A32!

Note from formulas~A28! and ~A30! that the parity mapP acting on bispinorsC is given by
g05BPB21.

From formulas~A30!, ~A31!, and ~A32!, the four-vectors~A25! expressed in terms of bis
pinorsC andJ become

j a
K~C,J!5Re@ i C̄gatKJ#2 i Im@ i C̄gaTKJ#, ~A33!

where the gauge generatorstK andTK are defined in formulas~2.1! and~3.1!. Note that in formula
~A33! we employ the bispinor notationC̄5(g0C)15C1g0, and C1 denotes the transpos
conjugate of C. Also, note that for simplicity we have writtenj a

K(C,J) instead of
j a
K(B21C,B21J). That is, we suppress the bispinor mapB21:C4→C4, which sends the bis-

pinorsC andJ to spinor doubletsF andQ in definition ~A25!.
The Cartan map8 is defined on bispinors by
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ba
K~C,J!5 j a

K~g0C,J!. ~A34!

The mapba
K :C43C4→C16 generalizes the bilinear spinor map originally discovered in 1913

Cartan.20 The Cartan mapba
K , whose useful properties we exploit in Appendix B, is summariz

in the following proposition.
Proposition 3:For all C, J, C8, J8PC4,

CJK
LMba

J ~C,J!bb
K~C8,J8!5Cab

gd bg
L~C,J8!bd

M~C8,J!. ~A35!

Moreover, the Cartan mapba
K has the following symmetry property:

ba
K~C,J!5bK

a~J,C! ~A36!

and the parity property:

ba
K~g0C,g0J!5bK

a~C,J!. ~A37!

Proof: Set F5B21(g0C), F85B21(g0C8), Q5B21(J), andQ85B21(J8) in formula
~A26! to obtain formula~A35!. Formulas~A36! and~A37! are consequences of formula~A29! and
the identityB21g05PB21. Q.E.D.

Note from the symmetry property~A36! that the components ofba
K(C,J) are either symmet-

ric or antisymmetric in the argumentsC andJ. For example,

b0
0~C,J!5b0

0~J,C! ~A38!

is symmetric; whereas forb05(b0
1,b0

2,b0
3),

b0~C,J!52b0~J,C! ~A39!

is antisymmetric. WhenC5J, the antisymmetric components of the Cartan map vanish.
A reduced form of the Fierz identity~A35! exploits a binary associative operation, denoted

^, defined onC4 as follows: LetpK, qK, r KPC4, and definer 5p^ q if and only if

r K5CLM
0K pLqM. ~A40!

From formula ~A5!, writing pK5(p0,p), where p5(p1,p2,p3) and similarly for qK and r K,
formula ~A40! becomes

r 05p0q01p–q,
~A41!

r5p0q1pq01 ip3q.

It is straightforward to show that the bilinear operation^ is associative@compare formulas
~A23! and~A40!#, and with this operationC4 becomes the algebra of complex quaternions. Set
the indexL50 in the Fierz identity~A35! gives for all bispinorsC, J, C8, J8PC4,

@ba~C,J! ^ bb~C8,J8!#M5Cab
gd bg

0~C,J8!bd
M~C8,J!, ~A42!

where theM th component ofp^ q is denoted as@p^ q#M. We will see that quaternion algebr
simplifies computations with bispinors in Appendix B.

As a first application of the Fierz identity~A42!, we will derive the following identity:

j a
K j Kb5usu2gab , ~A43!

where
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j a
K5 j a

K~C,C!5ba
K~g0C,C!,

~A44!
s5b0

0~g0C,g0C!.

Note using formulas~A30!, ~A32!, and~A33! that the definitions~2.5! and~2.6! for the complex
scalar fields and the Noether currentsj a

K are consistent with formula~A44!. From formulas~A36!
and ~A37!,

j K
a5ba

K~C,g0C!, s̄5b0
0~C,C!. ~A45!

From formula ~A36!, s̄ and s are the only nonvanishing components ofb0
K(C,C) and

b0
K(g0C,g0C), respectively. Thus, on substitutingg0C, C, C, g0C for C, J, C8, J8, respec-

tively, in Fierz identity~A42!, and settingM50, formula~A43! is obtained.

APPENDIX B: PROOF OF THEOREM 1

In this appendix we prove Theorem 1 of Sec. III using the Fierz identity~A42!. Let C(x)
denote a smooth bispinor field defined at each space–time pointxPR4. For all pairs of pointsx,
yPR4, define the following two-point functions using formulas~A44! and ~A45!:

j a
K~x,y!5ba

K
„g0C~x!,C~y!…,

qK~x,y!5b0
K
„C~x!,C~y!…,

Qa~x,y!5ba
0
„C~x!,C~y!…, ~B1!

r ~x,y!5b0
0
„C~x!,C~y!…,

r ~x,y!5b0
0
„g0C~x!,g0C~y!….

As previously defined in formula~A25!, the j a
K(x,y) for K50,1,2,3 are a tetrad of comple

Lorentz four-vectors, and as will become apparent, theqK(x,y) andQa(x,y) are complex quater-
nions with scalar partr (x,y). We also denote, settingy5x,

j a
K~x!5 j a

K~x,x!, r ~x!5r ~x,x!. ~B2!

Note that by formula~A36!, components ofqK(x,y) and Qa(x,y) with KÞ0 or aÞ0 are anti-
symmetric in the variablesx andy, and hence vanish fory5x. The only nonvanishing componen
of qK(x,x) andQa(x,x) is r (x)5q0(x,x)5Q0(x,x). As in formula~3.12! we define

Ja
K~x,y!5@ j a~x,y! ^ c̃#K,

~B3!
Ja

K~x!5@ j a~x! ^ c̃#K,

wherecKPR4 satisfiescKcK521, andc̃K5cK . Since in formula~3.8!, Ga5 igacKTK , we have
from formulas~A33! and ~B3!,

Re@ iC~x!Ga ]bC~x!#52
]

]yb Re@ iJa
0~x,y!#U

y5x

. ~B4!

Thus, Theorem 1 follows from the following proposition.
Proposition 4:
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]

]ya Jb
K~x,y!U

y5x

52
1

4usu2 @~]aJg! ^ J̃g
^ Jb12s̄Jb ]as#K, ~B5!

whereJa
K5Ja

K(x) ands5r (x).
Proof: We will suppress gauge indices and simply writej a for j a

K and j̃ a for j Ka , etc. The
Fierz identity~A42! is then expressed as

ba~C,J! ^ bb~C8,J8!5Cab
gd bg

0~C,J8!bd~C8,J!. ~B6!

On substitutingC(x), C(y), g0C(x), C(x) for C, J, C8, J8, respectively, in the Fierz identity
~B6!, and setting the indexa50, we get from formulas~B1! and ~B2! and the vanishing of
Qg(x,x), for gÞ0,

q~x,y! ^ j b~x!5r ~x! j b~x,y!. ~B7!

Quaternion multiplication of formula~B7! on the right byc̃KPR4 satisfyingcKcK521, gives,
using formula~B3!,

q~x,y! ^ Jb~x!5r ~x!Jb~x,y!. ~B8!

Using the inversion formula~A7!, the Fierz identity~B6! can also be expressed as

Cgd
abba~C,J! ^ bb~C8,J8!54bg

0~C,J8!bd~C8,J!. ~B9!

Settingg5d50 and using formulas~A5! and ~A36!, we have

ba~C,J! ^ b̃a~J8,C8!54b0
0~C,J8!b0~C8,J!. ~B10!

On substitutingg0C(y), C(y), C(x), g0C(x) for C, J, C8, J8 in formula ~B10! using
formulas~B1! and ~B2! we get

j a~y! ^ j̃ a~x!54r ~y,x!q~x,y!. ~B11!

Since by formula~A41! Ja5 j a ^ c̃ implies J̃a5c^ j̃ a and, furthermore,c̃^ c5(21,0,0,0), for-
mulas~B3! and ~B11! give

Jg~y! ^ J̃g~x!524r ~y,x!q~x,y!. ~B12!

Quaternion multiplication of formula~B12! on the right byJb(x), and using formula~B8!, gives

Jg~y! ^ J̃g~x! ^ Jb~x!524r ~y,x!r ~x!Jb~x,y!. ~B13!

Sincer (x,y)5r (y,x) by formulas~A36! and ~B1!, we get

]

]ya r ~y,x!U
y5x

5
1

2

]

]xa r ~x!. ~B14!

Partially differentiating formula~B13! with respect toya, and settingy5x using formula~B14!,
we obtain formula~B5!. Q.E.D.

Corollary ~Theorem 1!:

Re@ i C̄Ga ]aC#52
1

4usu2
Re@~]aJb!–Ja3Jb22i s̄Ja

0 ]as#, ~B15!

whereJa
K5(Ja

0,Ja).
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Proof: Substitute formula~B5! with K50 into formula ~B4! and evaluate the associativ
operation^ using formula~A41!, noting by formulas~2.6! and ~3.9! that bothJa

0 andJa•Jb are
real. Q.E.D.

1F. Reifler and R. Morris, ‘‘Unification of the Dirac and Einstein Lagrangians in a tetrad model,’’ J. Math. Phys36,
1741–1752~1995!.

2F. Reifler and R. Morris, ‘‘Inclusion of gauge bosons in the tensor formulation of the Dirac theory,’’ J. Math. Phy37,
3630–3640~1996!.

3F. Reifler and R. Morris, ‘‘Fermi quantization of tensor systems,’’ Int. J. Mod. Phys. A9, 5507–5515~1994!.
4M. Carmeli, E. Leibowitz, and N. Nissani,Gravitation: SL(2,C) Gauge Theory and Conservation Laws~World Scien-
tific, Singapore, 1990!, pp. 21–27.

5R. Hammond, ‘‘Dirac coupling in gravity with torsion potential,’’ Class. Quantum Grav.12, 279–285~1995!.
6A. Ashtekar and R. Geroch, ‘‘Quantum theory of gravitation,’’ Rep. Prog. Phys.37, 1211–1256~1974!.
7B. DeWitt, Supermanifolds~Cambridge University Press, Cambridge, 1985!, pp. 229–230 and 235–237.
8F. Reifler and R. Morris, ‘‘Unobservability of bispinor two-valuedness in Minkowski space–time,’’ Ann. Phys.~N.Y.!
215, 264–276~1992!.

9F. Reifler and R. Morris, ‘‘A gauge symmetric approach to Fierz identities,’’ J. Math. Phys.27, 2803–2806~1986!.
10Y. Takahashi, ‘‘The Fierz identities—a passage between spinors and tensors,’’ J. Math. Phys.24, 1783–1790~1983!.
11S. Rodriguez-Romo, F. Viniegra, and J. Keller, ‘‘Geometrical content of the Fierz identities,’’Clifford Algebras and

Their Applications in Mathematical Physics, edited by A. Micaliet al. ~Kluwer, Dordrecht, 1992!, pp. 479–497.
12S. Rodriguez-Romo, ‘‘An analysis of Fierz identities, factorization and inversion theorems,’’ Found. Phys.23, 1535–

1542 ~1993!.
13J. Keller and S. Rodriguez-Romo, ‘‘Multivector representation of Lie groups,’’ Int. J. Theor. Phys.30, 185–196~1991!.
14W. Krolikowski, ‘‘A sequence of Clifford algebras and three replicas of a Dirac particle,’’ Acta Phys. Pol. B21,

871–879~1990!.
15J. Keller, ‘‘Dirac equations with electroweak and color symmetry,’’Differential Geometric Methods in Theoretica

Physics 1, edited by S. Catto and A. Rocha~World Scientific, Singapore, 1992!, pp. 355–361.
16J. P. Crawford, ‘‘Hypergravity I and II,’’Clifford (Geometric) Algebras, edited by W. E. Baylis~Birkhauser, Boston,

1996!, pp. 341–363.
17M. Carmeli, Kh. Huleihil, and E. Leibowitz,Gauge Fields: Classification and Equations of Motion~World Scientific,

Singapore, 1989!, p. 40.
18F. Reifler, ‘‘A vector model for electroweak interactions,’’ J. Math. Phys.26, 542–550~1985!.
19F. Reifler and R. Morris, ‘‘A prediction of the Cabibbo angle in the vector model for electroweak interactions,’’ J. M

Phys.26, 2059–2066~1985!.
20E. Cartan,The Theory of Spinors~Dover, New York, 1981!, 41–42.
21F. Reifler, ‘‘A vector wave equation for neutrinos,’’ J. Math. Phys.25, 1088–1092~1984!.
22J. Mickelsson, ‘‘The vector form of the neutrino equation and the photon neutrino duality,’’ J. Math. Phys.26, 2346–

2349 ~1985!.
23F. Reifler and A. Vogt, ‘‘Unique continuation of some dispersive waves,’’ Commun. Partial Diff. Eqns.19, 1203–1215

~1994!.
24J. Keller and S. Rodriguez-Romo, ‘‘Multivectorial generalization of the Cartan map,’’ J. Math. Phys.32, 1591–1598

~1991!.
25J. Keller and S. Rodriguez-Romo, ‘‘A multivectorial Dirac equation,’’ J. Math. Phys.31, 2501–2510~1990!.
26V. A. Zhelnorovich, ‘‘Complex vector triplets in the spinor theory in Minkowski space,’’ Proc. Acad. Sci. USSR311,

590–593~1990!.
27F. Reifler and R. Morris, ‘‘The Hamiltonian structure of Dirac’s equation in tensor form and its Fermi quantizat

Workshop on Squeezed States and Uncertainty Relations, edited by D. Han, Y. S. Kim, and W. W. Zachary, NASA 313
1992, pp. 381–383.

28F. Reifler and R. Morris, ‘‘Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems3rd
International Workshop on Squeezed States and Uncertainty Relations, edited by D. Han, Y. S. Kim, N. H. Rubin, Y.
Shih, and W. W. Zachary, NASA 3270, 1994, pp. 281–286.

29B. Thaller,The Dirac Equation~Springer-Verlag, Berlin, 1992!.
30M. P. DoCarmo,Riemannian Geometry~Birkhauser, Boston, 1992!, pp. 40–41.
31F. Reifler and R. Morris, ‘‘Nonlinear modes of the tensor Dirac equation and CPT violation,’’Workshop on Harmonic

Oscillators, edited by D. Han, Y. S. Kim, and W. W. Zachary, NASA 3197, 1993, pp. 289–294.
32G. B. Whitham,Linear and Nonlinear Waves~Wiley, New York, 1974!, pp. 485–510.
33C. W. Kim and A. Pevsner,Neutrinos in Physics and Astrophysics~Harwood Academic, Langhorne, 1993!, pp. 22–30.
34R. Penrose and W. Rindler,Spinors and Space–Time, Volume 1~Cambridge University Press, Cambridge, 1986!, pp.

153–155.
                                                                                                                



ide the
.
f a

well
er the

ial ge-

ontains
ameters
ixing

eaking
l. One

nation

ed: Is
ts to
new

omes

p again
n-
ion on

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 6 JUNE 1999

                    
Superconnections and the Higgs field
G. Roepstorffa)
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Within the mathematical framework of Quillen, one interprets the Higgs field as
part of the superconnectionD on a superbundle. We propose to take as superbundle
the exterior algebra∧V obtained from a Hermitian vector bundleV of rankn with
structure group U(n) and study the curvatureF5D2. The Euclidean action, at most
quadratic inF and invariant under gauge transformations, depends onn11 central
charges. Spontaneous symmetry breaking is related to a nonvanishing constant
scalar curvature in the ground state,F5Lc

2, whereLc is the Higgs condensate. The
U(1) Higgs model is nothing but the familiar Ginzburg–Landau theory, whereas
the U(2) Higgs model relates to the electro-weak theory~without matter fields!.
The present formulation leads to the relationg253g82 for the coupling constants,
the formula sin2 u51/4 for the Weinberg mixing angle, and the ratiomW

2 :mZ
2:mH

2

53:4:12 for themasses ofW6, Z0, and the Higgs boson. Experimentally observed
deviations are attributed to loop corrections. ©1999 American Institute of Phys-
ics. @S0022-2488~99!01006-3#

I. INTRODUCTION

It has been generally accepted that spontaneously broken local gauge symmetries prov
correct framework for understanding the electro-weak interactions of elementary particles1 The
mechanism that gives masses to theW6, Z0, and leptons however needs the introduction o
doublet of scalar fields, the so-called Higgs field, with many puzzling features, physically as
as mathematically. The concepts of the Higgs field and the related Higgs mechanism, ov
years, have triggered many investigations, either from the supersymmetry or the different
ometry point of view.

Most attempts were a response to the fact that the Lagrangian of the standard model c
a large number of free parameters, among them various gauge coupling constants, the par
of the Higgs potential, coupling constants of matter fields, and the elements of the quark m
matrix. Some of these constants are expected to come out of some kind of symmetry br
mechanism occurring in some yet unknown theory while others can be chosen at our wil
therefore feels that at present one is actually dealing with an effective~low energy, long range!
field theory where only some degrees of freedom appear explicitly. Consequently, no expla
for most of the constants, chosen to fit the experimental data, is offered.

As a normal mathematical setting one would perhaps regard the theory of fiber bundles2,3 that
emerged as a primary tool for studying Yang–Mills systems. Then the question may be rais
the Higgs field an object of geometry? Below we shall briefly survey some of the attemp
extend the formalism of gauge theory to Yang–Mills–Higgs systems before trying to give
answers.

A popular approach to the problem of assigning a geometrical role to the Higgs field c
under the headingdimensional reduction. Witten,4 Manton,5 and Fairlie6 were first to provide
interesting model theories in higher dimension. The reduction technique has been taken u
and used as a guiding principle by other authors.7 In its simplest version it uses one extra dime
sion, flat space, and translational invariance. Thus, one starts from a Yang–Mills connect

a!Electronic mail: roep@physik.rwth-aachen.de
26980022-2488/99/40(6)/2698/18/$15.00 © 1999 American Institute of Physics
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the trivial principal bundleRn113G with compact semisimple Lie groupG, considers the split-
ting dx0A01dxiAi ( i 51,...,n) of the connection one-form, and identifies the Higgs field withA0 .
The drawback is twofold;~1! the gauge field is not allowed to depend on the extra variablex0, ~2!
the Higgs field is always in the adjoint representation.

As a precursor of Quillen’s superconnection theory, one may regard Ne’eman’s propos8 to
make use of the supergroup SU~2u1! for an algebraically irreducible electro-weak unificatio
Supergroups are formal objects obtained from super-Lie algebras where commutators are r
by supercommutators. At first, the model appeared to suffer from spin-statistics complica
The final treatment with Sternberg9 however took full advantage of Quillen’s formalism. Supe
Lie algebras are also at the heart of an attempt10 to construct a renormalizable model of gravity
a broken gauge theory.

Another approach borrows from the framework of noncommutative geometry~NCG! ~Ref.
11! and leads to what has been calledalgebraic Yang–Mills–Higgs theories12 with obvious links
to the supergroup formalism. The idea is to replace the exterior algebra of differential form~the
de Rham complex! by some noncommutativeZ2-graded differential algebra. To start with, on
replacesC`(M ) by A^ C`(M ), whereA is some matrix algebra together with a grading au
morphism andM is spacetime. As there is a generalized notion of what should be call
connection, by a proper choice of the algebraA one can accommodate a Higgs field in t
connection, be it one multiplet or several multiplets. By now, many versions of the NCG app
have appeared which successfully reformulate the standard model. In the Connes–Lott app13

A5C% C whereas the Mainz–Marseille group~see Ref. 12 for details! prefersA5M2(C) with
grading automorphism diag~1,21! in both cases. Recently, Okumura14 proposed yet another for
mulation. When calculating the curvature, these authors get different results which influen
Weinberg angle, the Higgs mass and the quartic Higgs coupling. Therefore, the predictive
of the NCG approach has come under intense scrutiny.

Recently, generalized Dirac operators have been proposed as a ‘‘model building kit
action functionals that include the full standard model as well as gravity by Ackermann
Tolksdorf.15 In their scheme the bosonic part of the action is given by the Wodzicki residue
the Higgs field is intimately related to the gravitational potential. Though this approach h
uses NCG concepts, it somehow parallels the Connes–Lott approach.

Last but not least there are attempts to add a fifth ‘‘discrete dimension’’16 to space–time with
possible relation to parity and chiral symmetry breaking. We feel, though cannot prove, tha
an approach, once fully worked out, will provide but another reformulation of a specific m
within the territory of noncommutative geometry.

In 1985, Quillen described his concept of a superconnection17 ~see also Ref. 18!, thereby
abandoning the traditionalZ-grading~of the exterior algebra of differential forms! in favor of a
Z2-grading, giving thus more freedom to constructions in~commutative! differential geometry.
Bundles carrying aZ2-graded structure are termed superbundles. Quillen aimed at the constr
of invariants of a superbundle~Chern–Weil forms! and the definition of the Chern character of
superconnection. A serious attempt to extend the formalism of gauge theories using Qu
concept of superconnections has been launched in 1990 by Coquereauxet al.19 It still borrows
from the NCG formalism. So does the work of Lee20 and Figueroaet al.21

In the present paper, we do not rely on the NCG approach but strictly follow the guidelin
Quillen and try to paint a coherent picture of U(n) Higgs systems whose ground states ha
constant generalized curvature~to be defined below!. The role we assign to the Higgs field
similar to the one of the NCG and the Ackermann–Tolksdorf approach. But the choice o
superbundle is new to the best of our knowledge. Here we restrict ourselves to discussi
bosonic part of the action. In a second paper we shall include fermions and introduce the
operator of a Clifford superconnection to construct the action of the electro-weak theory.

The formalism we propose has applications to Ginzburg–Landau theory22 and topological
field theory.23 We shall leave out that aspect here.
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II. SUPERBUNDLES

We assume thatM is an oriented Riemannian manifold of dimensionm which may be arbi-
trary. Later we shall be more specific and think ofM as the four-dimensional Euclidean spac
time with flat Levi-Civita connection. We letG denote the algebra of smooth complex functions
M and, if B is some bundle with baseM, write G(M ,B) for the space of smooth sectionss:M
→B.

Pure Yang–Mills theory starts from a principalG bundleP over M, and an invariant action
functional on the setA of connections onP. The compact semisimple Lie groupG is called the
gauge groupof the theory. The setA is modeled on the vector space of gauge fields, i.e., the s
of 1-formsA taking values in the bundle

adP5P3Gg,

whereg is the Lie algebra ofG, andG acts ong via the adjoint representation. A gauge fieldA can
locally be written asdxmAm(x) with Am(x)Pg. The electro-weak theory, however, is based on
nonsemisimple gauge group SU~2!3U~1! and thus admits two independent gauge couplings
what follows the focus will be on the nonsemisimple case. Though we work with the gauge
U(n), we argue in favor of onlyonecoupling constant.

The notion of a gauge transformation is more subtle. Though, locally, gauge transform
may be thought of as maps from the base manifoldM into the groupG, they cannot be extende
globally to sections ofP ~unlessP is a trivial bundle!. Instead, gauge transformations arebundle
automorphismsof P. Automorphisms commute with the group action onP by definition. LetG
5Aut(P) denote the group of bundle automorphisms ofP. A more explicit description ofG,
which is closer to the physicists’ notion, uses sections of the adjoint bundle,

G5G~M ,Ad P!, Ad P5P3GG.

The bundle Ad(P) is the associated bundle whose fibers are copies of the groupG. But the group
action onG is the adjoint action. The Lie algebra ofG can now be easily constructed; LieG
5G(M ,adP).

From now on we shall assume thatP is a principal bundle with structure groupG5U(n). Let
the complex vector spaceCn be equipped with the standard scalar product so that its grou
automorphisms isG. We may construct the associated bundle

V5P3GCn

which is a complex Hermitian vector bundle of rankn with structure groupG. It is always
understood thatG acts on the right ofP and on the left ofCn, and the notation3G means that we
identify (pg,z);(p,gz) for pPP, zPCn, andgPG.

Since algebraic constructions on vector spaces carry over to associated bundles, w
consider the exterior algebra∧V which is a Hermitian vector bundle of rank 2n acted upon by
gauge transformationsuPG via the representation∧, namely, atxPM we have, foru(x)
PU(n),

∧u:∧Vx→∧Vx , ∧u~v1∧¯∧v i !5~uv1!∧¯∧~uv i !. ~1!

Recall now that asuperspaceis aZ2-graded vector space whose elements are said to have ev
odd degree~or parity!. Likewise, asuperbundleis a vector bundle whose fibers are superspa
Furthermore, asuperalgebrahas a superspace as underlying vector space, and a produc
respects theZ2-grading. The exterior algebra∧V is both a superbundle and a superalgebra w
grading

∧V5∧1V% ∧2V, ∧6V5 (
~21!p561

∧pV.
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Though the subbundles∧6V have the same rank 2n21, there exists no natural isomorphis
between them. It will soon become apparent that only a spontaneous symmetry breaking co
∧1V with ∧2V.

The remainder of this section is devoted to reviewing basic facts about the representa∧
5Sk∧k of G5U(n) on ∧Cn. Since the subrepresentations∧k are irreducible and inequivalent, th
commutant

~∧G!85$Sk50
n ckPkuckPC%,

wherePk projects onto∧kCn, is an Abelian algebra. Particular elementsCP(∧G)8 will enter the
Euclidean action. IfC5SckPk , we shall refer to the numbersck ascentral charges.

Another consequence is that the representation∧ of G respects theZ2-grading of∧Cn and
decomposes as∧1

% ∧2. We thus write

∧u5S ∧1u 0

0 ∧2uD , uPU~n!.

Because the operator∧u does not change the parity of vectors, it is said to beeven.
Similar properties may be established for the induced representationa°â of the Lie algebra

g5u(n) given by

â5
d

dt
∧ exp~ ta!u t505S â1 0

0 â2D , aPu~n!, â6PEnd∧6Cn.

In fact, â is the unique extension ofaPEndCn to an even derivation of the algebra∧Cn, i.e.,

â~z∧z8!5âz∧z81z∧âz8, z,z8P∧Cn.

In particular,

âz50 zP∧0Cn>C,

âz5az zP∧1Cn>Cn.

An operatorL on ∧Cn is even ~odd! if it preserves~changes! parity. This gives End∧Cn the
structure of superalgebra,

End∧Cn5End1 ∧Cn
% End2 ∧Cn.

Note thatâPEnd1 ∧Cn.
Up to normalization there exists a unique bilinear formq(a,b), or equivalently a quadratic

form q(a)5q(a,a), on the Lie algebrasu(n), known as the Killing form, which is invariant an
nondegenerate. By contrast, the Lie algebrau(n)5su(n) % u(1), wheren>2, has a two-paramete
family of such forms~we require that they be positive definite! parameterized byg andg8,

q~a!52
n

g2 trS a2
1

n
tr aD 2

2
1

g82 ~ tr a!2, aPu~n!. ~2!

When restricted to the subalgebrasu(n), any member of this family reduces to a multiple of th
Killing form as it should,

tr a50⇒q~a!;tr ad~a!252n tr a2.

In the context of the electro-weak theory,g and g8 are known as the two independent gau
coupling constants. Unless one is committed to a specific representation of the Lie algebra
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will be no a priori relation betweeng andg8. On the other hand, given a distinguished faith
representationr, the conditionq(a);2tr r(a)2 fixes the ratiog/g8 once and for all.

In fact, according to the point of view taken in this paper, the U(n) Higgs model starts from
a distinguished representation, namelyr(a)5â, and thus provides a canonical choice for t
value of the ratiog/g8. Writing Tr for the trace on End∧Cn ~we reserve tr for traces in othe
circumstances! and setting

q~a!52Tr â2, aPu~n!, ~3!

we also fix the value ofg which is solely a matter of convenience without intrinsic meaning.
This choice ofq(a) may appear as an ‘‘article of faith’’ and is certainly questionable;

matter is not being debated here. Instead, we will demonstrate howg andg8 are related. Expand
ing both sides of the well-known formula

log Tr expâ5tr log~11ea!,

we get

Tr 152n, Tr â52n21 tr a, Tr â252n22~~ tr a!21tr a2!. ~4!

Comparison with~2! shows that (g/g8)25n11. For the electro-weak theory (n52), we get the
equationg253g82 apart from the valueg252 owing to our choice of normalization in~3!.

To prepare for later work, we introduce a basisei ( i 51,...,n2) in u(n) such thatq(ei ,ek)
5d ik . It is also assumed thatei ( i 51,...,n221) is a basis forsu(n).

Let us now investigate the two simplest situations U~1! and U~2!. In the U~1! case, it is
obvious that

∧u5S 1 0

0 uD , â5S 0 0

0 aD , u5eaPU~1!, aP iR.

As expected,e15 i , sinceq( i )52 i 251.
We treat the U~2! case in greater detail. Here 2n54 and so∧u is a unitary 434 matrix which

is block diagonal~blocks are 232 matrices!,

∧u5S ∧1u 0

0 ∧2uD , ∧1u5S 1 0

0 detuD , ∧2u5uPU~2!.

It follows that

â5S â1 0

0 â2D , â15S 0 0

0 traD , â5aPu~2!,

andq(a)52(tr a)22tr(a2) by ~3! and ~4!. Setting

a5akek5
i

& S 1

)
a41a3 a12 ia2

a11 ia2 1

)
a42a3D ~akPR!,

we obtain a basis inu(2) with the required propertyq(a)5Sk(a
k)2.
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III. DIFFERENTIAL FORMS

We let T* M denote the complexified cotangent bundle of the manifoldM. Sections ofT* M
are said to be~complex! 1-forms. The exterior algebra∧T* M is a superbundle and so i
∧(T* M % V). The latter construction relates to the dimensional reduction formalism in an ob
way. For, if N is another manifold andV5T* N, then T* M % V>T* (M3N). Whether or not
some manifoldN of dimensionn is lurking behind the scene, there exists a natural isomorph

∧~T* M % V!>∧T* M ^ ∧V ~5!

betweenZ2-graded algebras. The tensor product on the right-hand side of~5! is special for graded
algebras. It is often called askew tensor product. Generally speaking, ifX and Y areZ2-graded
algebras, the multiplication inX^ Y is given by

~x^ y!~x8^ y!5~21!rxx8^ yy8, r 5 H1 if x8 and y are odd
0 otherwise.

The fact that the isomorphism~5! respects the grading means

∧6~T* M % V!> (
~21!p1q561

∧pT* M ^ ∧qV,

or stated equivalently,

∧1~T* M % V!>~∧1T* M ^ ∧1V! % ~∧2T* M ^ ∧2V!,

∧2~T* M % V!>~∧2T* M ^ ∧1V! % ~∧1T* M ^ ∧2V!.

The grading carries over to the space of∧V-valued differential forms,

VªG~M ,∧T* M ^ ∧V!5V1
% V2,

and to the algebra of sections of the endomorphism bundle,

BªG~M ,∧T* M ^ End∧V!5B1
%B2. ~6!

Note that End∧V is a superbundle, and the tensor product in~6! is between graded algebra
Elements ofAPB act onV and are calledlocal operatorssince they leave fibers intact. Equiva
lently, they commute with the multiplication by functionsf PG.

A local operatorAPB6 is said to have parity61—or is referred to as an even~odd!
operator—where parity is defined as follows:

par~A!511 ⇔ AV6,V6,

par~A!521 ⇔ AV6,V7.

A different decomposition ofB arises from theZ-grading of∧T* M ,

B5 (
p50

m

B p, B p5G~M ,∧pT* M ^ End∧V!.

Notice that 1̂ id serves as the unit in the algebraB and that there are two natural embedding
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G~M ,∧T* M !→B, v°v ^ id,

G~M ,End∧V!→B, A°1^ A.

Owing to these embeddings, various constructions onG(M ,∧T* M ) and G(M ,End∧V) have
extensions toB.

For instance, the operator of exterior differentiationd on G(M ,∧T* M ) may be extended.
The trace Tr:G(M ,End∧V)→G can be extended in an obvious manner,

Tr:G~M ,∧T* M ^ End∧V!→G~M ,∧T* M !,v ^ A°v Tr A.

Any local operatorA may be decomposed into homogeneous components~p-forms!,

A5A@0#1A@1#1A@2#1¯ , A@p#PB p.

The series truncates atp5m wherem is the dimension of the manifoldM, and taking the trace o
the top form, the integral

Int~A!5E
M

Tr A@m#PC, ~7!

assigns complex numbers to local operators of compact support.
The Hodge star operator onG(M ,∧T* M ) can uniquely be extended to a real-linear opera

on B so as to satisfy

* ~AB!5B* * A, APB,BPB 0. ~8!

Let f i ( i 51,...,m) be an oriented frame of the tangent bundleTM and f i the dual frame ofT* M .
For any multi-indexI ,$1,...,m% we form the exterior product,

f I5 f i 1f i 2
¯ f i p, I 5$ i 1 ,i 2 ,...,i p%, i 1, i 2¯, i p , p5uI u ~9!

to obtain a frame of∧T* M . It is assumed thatf B51. Using~8!, we have

* ~ f I
^ AI !5* ~~ f I

^ id !~1^ AI !!5~1^ AI* !~* f I
^ id !5~61!m2p* f I

^ AI* , AIPG~M ,End6∧V!.

Let dt5* 15 f 1f 2
¯ f m denote the volume element. Then there are functionsgIPG such that

f I* f I5gI
•dt and from~9!, gI5det(f ik,f il)k,l51,... ,p.0.

The algebraB may be equipped with a scalar product,

~A,B!5Int~B* A!, A,BPB, ~10!

and, by a straightforward calculation,

iAi25~A,A!5E
M

dt(
I

gI Tr~AIAI* !>0, A5(
I

AI f
I .

The normi•i on B will be used in Sec. V to construct the Euclidean action.

IV. SUPERCONNECTIONS

We start with a few remarks about connections. WithP a principal G bundle, whereG
5U(n), the spaceA of connections is an affine space with nontrivial topology ifn>2, e.g.,
p0(A)5Z. With G acting onA, it seems natural to pass to the quotient
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BG5A/G

to obtain the classifying space forG bundles. In physics,BG is known as the space of gauge orbi
It corresponds to the phase space of classical mechanics. The passage to statistical mec
mirrored, in Euclidean field theory, by the process of quantization, i.e., the introduction of
integrals overA. Granted the absence of anomalies, path integrals project ontoBG. The calcula-
tion, however, requires gauge fixing and the introduction of Faddeev–Popov ghosts. Gr
discovery, also known as theGribov ambiguity, may be rephrased by saying that there is
continuous global choice of gauge or, stated more formally,A does not admit a smooth globa
section. Though these intricacies are not the subject of the present paper, we should be aw
some of the formulas below hold only on local coordinate patches without explicit mention

The advantage of giving a connectionA on the principal bundleP is that it determines a
connection on every associated bundle and thus provides covariant derivativesdA on various
vector bundles. We use the termsconnectionandcovariant derivativeinterchangeably. A connec
tion on the bundleV simply is a linear map

dA :G~M ,V!→G~M ,T* M ^ V!

satisfying the Leibniz ruledA( f s)5d f s1 f dAs for all functionsf and sectionss. The connection
extends in a unique way to an operatordA on G(M ,∧T* M ^ V) sendingp-forms to (p11)-forms.
Locally, dA5d1A, whereAPG(M ,T* M ^ EndV) is the connection 1-form or gauge field. Th
2-form F5dA

2PG(M ,∧2T* M ^ EndV) is said to be thecurvatureof the connectiondA . In terms
of physics,F is the field strength of a gauge theory. Under a gauge transformation,

uA5uAu211udu21, uF5uFu21, uPG.

We may pass now to the superbundle∧V and lift the fieldsA andF to certain local operators on
V of definite parity,

Â5S Â1 0

0 Â2D PB2, F̂5S F̂1 0

0 F̂2D PB1.

Of course,Â and F̂ are still 1 and 2-forms, respectively. Recall that the matrix representa
refers to theZ2-grading of∧V. In the same manner,dA can be lifted to a connectionD on the
superbundle,

D5S D1 0

0 D2D , F̂5D2.

Locally, we haveD5d1Â and D65d1Â6. When acting onV, the differential operatorD
changes the parity, and so is of odd type.

To extend the connectionD to a superconnectionD5D1L we introduce a skew selfadjoin
operatorL on G(M ,∧V) of odd type,

L5S 0 iF*

iF 0 D ,

formally a section of the bundle

∧0T* M ^ End2∧V>End2∧V,

and hence an element ofB2ùB0. The complex scalar fieldF(x) is said to be theHiggs fieldof
the system. It has the following characteristic properties:
                                                                                                                



fy a

Higgs

ome set

e

2706 J. Math. Phys., Vol. 40, No. 6, June 1999 G. Roepstorff

                    
~a! At xPM , the Higgs fieldḞ(x) is a linear map from∧1Vx to ∧2Vx . Consequently,F* (x)
maps∧2Vx to ∧1Vx .

~b! Under a change of the gauge,

uF5~∧2u!F~∧1u!21, uF*5~∧1u!F* ~∧2u!21,
which is summarized by

uL5~∧u!L~∧u!21.
~c! Like any section of the bundle End2∧V,L extends to an odd operator onV. In more detail,

L acts on∧V-valuedp-forms by

L~dxm1∧¯∧dxmpvm1¯mp
~x!!5~21!pdxm1∧¯∧dxmpL~x!vm1¯mp

~x!

so as to be in accord with the skew tensor product∧T* M ^ End∧V. To put it differently,L
satisfies the rule$L,dxm%50 or, equivalently,L anticommutes with the multiplication by
G-valued 1-forms. ThusL:V6→V7 is parity changing and henceLPB2 by construction.

~d! Since bothd and L are odd degree operators, their anticommutator~or supercommutator!
dLª$d,L% is an even operator~and a 1-form! called the covariant derivative ofL. Similarly,
the anticommutator,

DLª$D,L%5S 0 i~DF!*

iDF 0 D,
provides the covariant derivatives of the Higgs field and its adjoint,

DFªD2F1FD15dF1Â2F1FÂ15dxm~]mF1Âm
2F2FÂm

1!,

~DF!*ªD1F*1F*D25dF*1Â1F*1F* Â25dxm~]mF*1Âm
1F*2F* Âm

2!.

Here, we used the fact thatF andF* anticommute withdxm.

Finally, the operator

D5D1L5S D1 iF*

iF D2 D
defines asuperconnectionon the superbundle∧V in the sense of Quillen;D is a differential
operator of odd type onV, hence acts on∧V-valued differential forms. It no longer sendsp-forms
to (p11)-forms, but sends odd elements ofV to even elements and vice versa so as to satis
Leibniz formula.

In Physics, fields are viewed as varying objects. Varying both the gauge field and the
field means passage from one superconnectionD to another, sayD8, such that the differenceD
2D8 comes out as a local operator built upon 1-forms~the diagonal parts! and 0-forms~the
off-diagonal parts!. Hence the notion of asuperconnection on a superbundleis in accordance with
the requirement that, whatever the context, connections form an affine space modeled on s
of local operators.

From F5(D1L)25D21$D,L%1L2 we obtain the decomposition

F5F@0#1F@1#1F@2#PB1, F@p#PB p

for the curvatureF of the superbundle∧V. In particular, the curvature is a local operator~not a
differential operator!. Note that the Bianchi identity@D,F#50 is a trivial consequence of th
definition of F.
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As indicated, the curvatureF has homogeneous components forp50,1,2. The 0-form is
bilinear in the Higgs field,

F@0#5L25S 2F* F 0

0 2FF* D ,

while the 1-form is linear in the covariant derivatives of the Higgs field,

F@1#5DL5S 0 i ~DF!*

iDF 0 D .

Finally, the 2-form

F@2#5D25F̂5S F̂1 0

0 F̂2D
gives the curvature when the Higgs field is absent.

V. EUCLIDEAN ACTION AND STATIONARY POINTS

We shall always stay within the realm of Euclidean field theory. For the remainder of
paper,M denotes the four-dimensional Euclidean flat spacetime with standard orientatiodt
5dx1∧dx2∧dx3∧dx4.

Before describing the field equations of the Higgs model, we motivate the construction
gauge invariant Euclidean action based on the superbundle∧V and the gauge group U(n). With
F the curvature of a Yang–Mills connection, one takesS5 1

2iFi2 as the action so that the globa
minimum is attained for the flat connection. Similarly, the superbundle is flat ifF50. However,
the definitionS5 1

2iFi2 gives us models that show no sign of spontaneous symmetry breakin
our rescue comes the abelian algebra (∧G)8 of gauge invariant operatorsC, each of them constan
on M. If C is self-adjoint, the following definition of the Euclidean action serves the purpos

S5 1
2iF1m2Ci2, CP~∧G!8. ~11!

Euclidean actions that differ by the choice ofC are said to bephasesof the same model. As an
element of an abelian algebra,C can always be written in terms of central chargesck ,k
50,...,n. Self-adjointness ofC makes these charges real numbers. We may write

C5S C1 0

0 C2D , C65 (
~21!k561

ckPk

and split the action into different parts for easier interpretation,

S5 1
2iF̂i21 1

2iDLi21 1
2iL21m2Ci2. ~12!

The last term involves the Higgs potentialV(F),

1
2iL21m2Ci25E

M
dtV~F!

V~F!5 1
2 Tr~L21m2C!2

5 1
2 Tr~F* F2m2C1!21 1

2 Tr~FF* 2m2C2!2. ~13!
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In ~12! we encounter the term1
2iF̂i2 as part of the action. To analyze it we introduce the co

ponents of the curvatureF with respect to the basisdxm in T* M and the basisek in u(n),

F5Fkek , Fk5 1
2dxm∧dxnFmn

k ~x!.

The coefficientsFmn
k (x) are real functions onM. It follows that F̂52F̂* 5Fkêk and, in view of

the definitions~10! and ~7!,

1

2
iF̂i25E

M
dt

1

4 (
k,mn

~Fmn
k !2.

This reveals that12iF̂i2 is the Euclidean action, correctly normalized, of a conventional ga
theory without Higgs field.

The positive parameterm sets the mass scale of the model while the central chargesck control
the expectation value of the Higgs field~the so-called condensate! on the classical~or tree! level.
The role of these parameters is similar when the theory is quantized using path integrals. Th
procedure replaces the classical Higgs potential by an effective potential whose minima de
the vacuum states.

One remark is in order. Recall that we have deliberately putg2 equal to 2. It may later be
necessary to work with an arbitrary value of the gauge couplingg. The introduction ofg as a
parameter can be achieved by an appropriate scaling,

S→l22S~lA,lF!, 2l25g2.

Since scaling has no influence on second order terms of the action, it will not alter the res
the present paper.

Let us concentrate on the term12iDLi2 of the action and its dependence on the connec
~i.e., the gauge potentialA!,

SL~A!ª 1
2iDLi25E

M
dt Tr (

m
~DL !m* ~DL !m ,

whereDL5dxm(DL)m and (DL)m5]mL1@Âm ,L#. As usual, the response to a small change
the connection determines the current of the model,

SL~A1a!5SL~A!1~ â,$DL,L%!1O~a2!.

From $DL,L%5dxm@(DL)m ,L# anda5dxmam
k ek we obtainâ5dxmam

k êk and

~ â,$DL,L%!5E
M

dt(
m

am
k Tr~ êk@~DL !m ,L# !.

Thus the currentj 5dxm j m
k ek , which is Lie algebra valued 1-form, has components

j m
k 5Tr~ êk@~DL !m ,L# !,

while the structure of the commutator in terms of the Higgs fieldF is as follows:

@~DL !m ,L#5S F* ~DF!m2~DF!m* F 0

0 F~DF!m* 2~DF!mF* D .
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Let us now consider the formal adjoint operatorsd* , dA* , andD* . They belong to the standar
repertoire of Yang–Mills systems. Adjoints are always formed with respect to the scalar pr
of sections. Each of the above adjoint operators mapsp-forms into (p21)-forms. The operator
dª2d* is called thecoderivativeandD52$d,d* % the Laplacian.

From the condition that the actionSbe stationary one obtains the field equations of the Un)
Higgs model,

D* F̂1 ĵ 50, D* DL5$L,L21m2C%.

For this and similar calculations, it is useful to keep in mind thatD* F̂ is short for@D* ,F̂# and
D* DL is short for@D* ,$D,L%#. The currentj has been lifted to obtainĵ 5dxm j m

k êk .
The field equations may also be put into a form reminiscent of previous Yang–Mills–H

models,

DA* F1 j 50, D* DF5 22FF* F1m2~FC11C2F!. ~14!

Again, dA* F is short for@dA* ,F#, andD* DF is obtained from

@D* ,$D,L%#5S 0 i ~D* DF!*

iD * DF 0 D .

Any solution (A,F) of the second order field Eqs.~14! is said to be a stationary point of th
action. We should be aware that not every stationary point corresponds to a local or
minimum of the action.

The global minimum is attained ifA50 and if L solves of the variational problem

Tr~L21m2C!25minimum. ~15!

The solutions are said to describe~classical! vacua or ground states. Granted thatM is connected,
any solutionLc of ~15! is constant onM and is referred to as theHiggs condensate. The group
U(n) acts upon the set of solutions, though not always freely; the residual gauge group

G05$uPU~n!u~∧u!Lc5Lc~∧u!% ~16!

may well be nontrivial. Ground states that lie on the same gauge orbit are physically equiv
We must not expect the group U(n) to act transitively; there may exist many gauge orbits.

If Lc
2 is unique, we obtain a U(n) invariant vacuum. Nonuniqueness is characteristic o

broken phase. Note also that each ground state has constant scalar curvature,F5Lc
2. The structure

of Lc is that of a constant matrix,

Lc5 i S 0 Fc*

Fc 0
D , Fc5mv.

There are two special cases where the variational problem~15! can be solved with ease. Firs
C50 implies Lc50 giving a U(n) invariant vacuum. Second,C51 implies Lc

25m2, hence
v* v5vv* 51, and v establishes an isomorphism between the spaces∧1Cn and ∧2Cn. Con-
versely, any isomorphismv gives us a solution of~15!.

Suppose we look for exitations from some ground state, but ignore the Higgs degre
freedom. ThenL is kept constant, i.e.,L5Lc and DL5$Â,Lc%5dxm@Âm ,Lc#. Provided

@Âm ,Lc#Þ0, the gauge particles acquire masses. Indeed, the mass term of the action m
written

1

2
iDLci25E

M
dt

1

2 (
m

Q~Am!,
                                                                                                                



-
r form

ong

e

d

l, and
le

at the

2710 J. Math. Phys., Vol. 40, No. 6, June 1999 G. Roepstorff

                    
whereQ is a positive semidefinite quadratic form on the Lie algebra,

Q~a!52Tr@ â,Lc#
25aiakmik

2 , a5aieiPu~n!. ~17!

The eigenvalues of the matrix (mik
2 ) are the masses~squared! of gauge fields given by the eigen

vectors where it is assumed that the eigenvectors are orthonormal with respect to the bilinea
q(a,b) on the Lie algebra obtained from~3!.

Suppose now thatLc8 is another Higgs condensate giving rise to the quadratic formQ8(a).
Both Lc andLc8 lie on the same gauge orbit if (∧u)Lc5Lc8(∧u) for someuPU(n). Owing to the
invariance propertyQ(a)5Q8(uau21), the eigenvalues of the mass matrix stay constant al
any gauge orbit.

VI. THE U„1… HIGGS MODEL

A very simple situation arises whenn51 since there is only one basis elemente15 i in

u(1)5 iR. We may thus writeA5 idxmAm(x) andF5 i 1
2dxm∧dxnFmn(x) with real-valued com-

ponentsAm andFmn . In the two-dimensional cap representation ofu~1! we have

Â5S 0 0

0 AD , F̂5S 0 0

0 F D .

The Higgs field is simply some complex scalar fieldF. With c0 andc1 the central charges, th
Higgs potential becomes

V~F!5 1
2~ uFu22m2c0!21 1

2~ uFu22m2c1!25~ uFu22m2c!21 1
4m

2~c02c1!2, c5 1
2~c01c1!.

Provided thatc.0, the minimum is attained forF5mceia. Otherwise, the minimum is attaine
for F50. There is no restriction in assuming thatc05c1 andc561. From

D5S d F*

2F d1AD , F5S 2uFu2 i ~dAF!*

idAF F2uFu2 D ,

we obtain the action of the Ginzburg–Landau theory,

S5E
M

dtS 1

4 (
mn

Fmn
2 1(

m
u~]m1 iAm!Fu21~ uFu22m2c!2D ,

whose current is given by

j 5 idxm j m~x!, j m52 Im~F* ~]m1 iAm!F!.

For c51, the system is in the superconducting phase, the residual gauge group is trivia
ground states differ by a constant phase,F(x)5meia. However, these states belong to a sing
gauge orbit and hence are equivalent. ProvidedF is kept at its ground state value,S reduces to the
action of a massive photon (mg

252m2),

S5E
M

dtS 1

4 (
mn

Fmn
2 1m2(

m
Am

2 D .

For c521, the system is in the Coulomb phase. Exitations from the ground state show th
vector particle~i.e., the photon! has zero mass.
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VII. THE U„2… HIGGS MODEL

We now come to then52 situation. The U~2! connection 1-formA may be written in the
basisek , k51,...,4 as introduced in Sec. II,

A5
i

& S 1

)
A41A3 A12 iA2

A11 iA2 1

)
A42A3D , Ak5dxmAm

k ~x!,

whereAm
k (x) (k51,...,4) are real gauge fields. A similar decomposition holds for the curva

F5dA
2. Notice that trA5 iA2/3A4. We move on to write the superconnectionD ~a 434 matrix!

in block form,

D5S d1Â1 iF*

iF d1Â2D , Â15S 0 0

0 iA2/3A4D , Â25A.

Subgroups of U~2! have a specific interpretation in the context of the electro-weak theory.
instance, the U~1! subgroup consisting of phase transformations leads to the conservation
weak hypercharge in the unbroken phase. The Higgs fieldF is some 232-matrix whose columns
represent Higgs doublets in the fundamental representation of SU~2!,

F5S F1 F3

F2 F4
D .

The two doublets have opposite weak hypercharge. For an account of the physical implicat
two-doublet models see the review article by Sher.24

There are five real second-order forms, invariant under U~2!, that one may construct from th
Higgs field,

R1~F!5uF1u21uF2u2, R3~F!5uF1* F31F2* F4u,

R2~F!5uF3u21uF4u2, R4~F!1 iR5~F!5F1F42F2F3 .

Since they satisfy the relation

R1R25R3
21R4

21R5
2, ~18!

only four of them are algebraically independent. It is natural to think of the manifold~18! as some
moduli space related to superconnections.

In principle, any gauge invariant Higgs potentialV(F), be it the classical or the effectiv
potential, can be written as a function of the above invariants. Such a representation is con
because the problem of minimizing the action is then reduced to solving a simpler probl
lower dimension. Each solution provides certain constants

r i5Ri~Fc!, i 51,...5,

which characterize the gauge orbit ofFc , and the moduli space of vacua becomes a submani
of

r 1r 25r 3
21r 4

21r 5
2. ~19!

Given the numbersr i , the next step would be to determine the eigenvalues of the mass matrm2

of the vector bosons as defined by~17!. Since the matrix elements depend on the choice ofFc ,
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hence on the point of the gauge orbit chosen, we better look at the characteristic polynomial
matrix which is gauge invariant and thus can be written entirely in terms of the variablesr i . By
a tedious but straightforward calculation one finds

det~m22l!5~l2r !2~l22 4
3rl1 4

3r 3
2!, ~0<2r 3<r !, ~20!

wherer 5r 11r 252 1
2 Tr Lc

2. An immediate consequence is the following alternative:

~1! If r 50, the eigenvalue zero of the mass matrix is fourfold degenerate: all vector boso
massless.

~2! If r .0, the eigenvaluer of the mass matrix is twofold degenerate. We interpretr as the mass
~squared! of the W6 bosons. Ifr 350, there is an eigenvalue zero naturally associated to
photon and an eigenvalue43r interpreted as the mass~squared! of the Z boson so that
mW

2 :mZ
253:4. In the latter case, the residual gauge group is isomorphic to U~1!, leading to the

notion of the electric charge. TheW6 bosons receive the charge61, while theZ boson is
neutral.

So far we have not fixed the value of the mass parameterm. From now on we shall always assum
thatm25r so thatm coincides with theW mass. In other words, it is theW mass that sets the mas
scale. The U~2! Higgs model conforms to the existing empirical data only ifr 350. It is therefore
important to show thatr 350 is not an extra assumption but follows from the Higgs potential~13!.
Though the Higgs potential depends on arbitrary constantsc0 , c1 , andc2 , it is special among
U~2! invariant fourth-order polynomials. For a simple calculation reveals that

V~F!5~R1~F!2b1!21~R2~F!2b2!212R3~F!21b3
2. ~21!

Here we passed from the setci of constants to another more convenient setbi given by

b15 1
2m

2~c01c1!, b25 1
2m

2~c21c1!, b35 1
2m

2~~c02c1!21~c22c1!2!1/2.

While b3 is physically irrelevant,b1 andb2 are essential for spontaneous symmetry breaking.
now obvious that any ground state has coordinates

r i5max~0,bi !, ~ i 51,2!, r 350, r 4
21r 5

25r 1r 25const,

which establishes two things;~1! our claim thatr 350 and~2! the moduli space of vacua is th
sphereS1 provided r 1r 2.0, or simply a point if eitherr 150 or r 250. Granted the condition
r 350 we can always perform a U~2! gauge transformation so that the Higgs condensate assu
the form

Fc5S r 1
1/2eia 0

0 r 2
1/2D , r 11r 25m2, r 41 ir 55~r 1r 2!1/2eia, ~22!

with a parametrizing the sphereS1. The choice of such a standard form is essential for gettin
standard set of eigenvectors of the mass matrix. In fact it follows at once from~17! and~22! that

Q~a!5m2S ua11 ia2u21S 1

)
a41a3D 2D ,
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and thus the eigenvectors of the mass matrix are

mass2 eigenvector

0 1
2()a42a3)

4
3m

2 1
2()a31a4)

m2 a1, a2

The residual gauge group, isomorphic to U~1!, is

G05H S 1 0

0 eiaD PU~2!U0<a<2pJ . ~23!

We relate the photon, theZ boson, and theW boson to the above eigenvectors and thus work w
the following fields:

A05 1
2~)A42A3!, Z5 1

2~)A31A4!, W65
1

&
~A17 iA2!. ~24!

It is common practice to writeZ5cosu A31sinu A4 with u the Weinberg angle and to determin
sin2 u by experiment. Comparison with~24! shows that sin2 u51/4 in the present theory while th
generally accepted value obtained from experiment is sin2 u50.231. The value 1/4, however, ha
previously been predicted on different grounds~see, for instance, Refs. 6 and 8!.

As a matrix, the connection 1-form may now be written in terms ofA0, Z, andW,

A5 i SA2

3
Z W1

W2 A1

2
A02A1

6
Z
D . ~25!

To summarize, the choice of the central chargesci does not seem to matter as long as we ke
r at a fixed value, saym2. That this impression is false will become clear as soon as the cou
to matter is taken into account. In a forthcoming paper, the Yukawa interaction of fundam
fermions with the Higgs field results from a widening of the concept of Dirac operators and
viewed as integral part of the gauge coupling. It will then become clear that the invariant p
etersr 1 and r 2 are proportional to the masses~squared! of the pair (ne ,e) in a purely leptonic
model~one generation only!. Vanishing of the neutrino mass requires thatr 150. In this situation,
the moduli space of vacua shrinks to a point. This puts another constraint on the parametci ,
namelyc01c1<0 or b1<0.

Let us now discuss the Higgs field itself. The assignment of electric charges to the
complex degrees of freedom can be read off from (21

0
0

11). The one-doublet model of Salam an
Weinberg is recovered if

F5S 0 F1

0 F0 D ~26!

which is consistent withr 150 but not withr 1.0.
The two-doublet model we propose has eight real degrees of freedom. Three of them

gauged away, giving an extra polarization degree of freedom to each massive gauge fie
remaining five degrees can be arranged as follows:
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F5S X0 0

X2 A1

2
fD 1Fc .

There are two complex fieldsX0 and X2. The real fieldf describes the Higgs particle of th
conventional theory. To determine the~bare! masses of these fields we expand the Higgs poten
to second order assumingr 150,

V~F!5b1
21b3

222b1uX0u212~m22b1!uX2u212m2f21¯ .

Recall now that 2b15m2(c01c1),0. Therefore,

mX0
2

5m2uc01c1u, mX2
2

5m2~21uc01c1u!, mH
2 54m2.

In this scenario, the hyptheticalX particles have masses that depend on the constantsci while the
mass of the Higgs particle is not influenced by their values. We may state our results as

mW
2 :mZ

2:mH
2 53:4:12, mX2

2
5mX0

2
12mW

2 , ~27!

with the predictionmH52mW5161 GeV. A value of the Higgs mass near 160 GeV has also b
predicted by Okumura.25

To summarize, gauge potentials, Higgs fields, and the Higgs condensate can be acc
dated in a single Hermitian 434 matrix,

Â1L5 iS 0 0 X̄0 X̄2

0 A1

2
A01A1

6
Z 0 A1

2
f1m

X0 0 A2

3
Z W1

X2 A1

2
f1m W2 A1

2
A02A1

6
Z

D . ~28!

The electric charges 0,61 attributed to the entries of such a matrix may be read off from
scheme,

S 0 11 0 11

21 0 21 0

0 11 0 11

21 0 21 0

D .

It should be kept in mind that we rely here on a classical approximation. Quantization chang
Higgs potential to some effective potential which is expected to considerably differ from
classical potential. The same proviso applies to the computation of masses since they also
on the effective potential. To include loop corrections is one way to change predictions, pe
not in a reliable way. Such corrections depend on the mass matrices of matter fields and t
outside the scope of this paper. Another way is to apply renormalization group methods whic
rely on loop calculations. It should also be kept in mind that the relation tanu5g8/g holds forg
andg8 defined on a sliding energy scale. Therefore, the Weinberg angleu cannot be a constan
over a large energy range. The values to be used here should come from energies compa
the mass parameterm.
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The superconnection formalism can be extended to include matter fields as will be sho
a subsequent paper. Left-handed and right-handed leptons~or quarks! of one generation are mod
elled by the vector space∧C2 of dimension four. TheZ2 grading of that space coincides with on
given by the handedness of fields. To obtain the correct action of the electro-weak structure
one associates the subspaces∧0C2, ∧1C2, and∧2C2 with neR, the pair (neL ,eL), andeR , respec-
tively ~taking the first generation of leptons as an example!.

It would also be desirable to push the theory further, so as to obtain a unified theory of
electromagnetic, and strong interactions as a gauge theory based on a larger group incorp
both the vector bosons of the electroweak theory and the gluons of QCD. It is not clear
moment whether such an approach will give reasonable results.
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Momentum and spin of a particle with spin unity
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The first part of this paper deals with the problem of expressing a given boost as the
product of an operator which leaves the momentum of a given particle, massive or
massless, invariant and a helicity conserving operator. This is done by multiplying
boosts and rotations only. In this way more information is obtained than by apply-
ing the operators to the relevant vectors. An operator with the property of conserv-
ing spin while perhaps changing momentum is developed. The second part of the
paper defines a spin angular momentum operator leaving two four-vectors invari-
ant. These vectors are interpreted as the momentum and spin vectors of a massive
particle and the theory is extended to accommodate a massless particle. This theory
emphasizes the close association of spin and momentum in a relativistic theory.
The spin angular momentum operator of a massless particle has invariance prop-
erties which resemble some of those of the gauge invariant electromagnetic theory.
© 1999 American Institute of Physics.@S0022-2488~99!02306-3#

I. INTRODUCTION

The first part of this paper deals with the problem of expressing an arbitrary boost a
product of an operator conserving the momentum of a given massive particle and of an op
conserving the helicity of that particle.1–3

The product of two boosts can be expressed as the product of a third boost prece
followed by a rotation, the angle of rotation being the Wigner angle. The third boost can al
preceded by a rotation and followed by another rotation. The sum of the two angles of ro
must equal the Wigner angle. The choice of these angles introduces a flexibility into the t
which facilitates the accommodation of both the momentum and helicity conserving operat
the kinematics.

We construct a momentum conserving operator for a massive particle that can be ada
be applicable to a massless particle. We then solve our problem also for a massless parti

In the course of our discussions we encounter products of boosts and rotations tha
physical meaning. Examples are the operator conserving momentum and the one conservi
We show how to distinguish in a unique way between different classes of these products.

The problem discussed in Sec. III has also been studied by other authors.2,3 Their methods
differ radically from ours. For instance the angle that we call the Wigner angle plays an imp
part in our methods while this angle does not occur in their discussions.

In the second part of this paper we regard the momentum conserving operator having th
of a product of a boost and its inverse with a rotation between them as the Lorentz transform
of a tensor of the second rank. In this case the tensor being transformed is the rotation op
Proceeding along these lines we define a spin angular momentum operator for a spin 1 par
study of this operator reveals the interrelation between the spin and momentum of a rela
particle.

Finally we derive a spin angular momentum operator for a massless particle. Under L
transformations this operator has gauge invariant properties. The operator for a massive
does not have these properties.

a!Present address: Helderberg Village 210, Private Bag X19, Somerset West, 7129, South Africa.
27160022-2488/99/40(6)/2716/19/$15.00 © 1999 American Institute of Physics
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Almost all our calculations are in coordinate free form. By multiplying operators we ob
more information than by applying these operators to the relevant vectors. We demonstrate
Sec. IV. Another advantage of this procedure is that some of our results are valid for partic
spin unity and spin half.

II. SOME ELEMENTARY DECOMPOSITIONS

In this section we prepare for later sections by briefly restating results derived earlier bu
here in another context. The decomposition of the product of two boosts into a product of a
boost and a rotation can be written as4,5

L~ û,f1!L~ p̂,f!5L~ p̂8,f3!R~ n̂,uW!. ~1!

Here L(û,f1) denotes the boost associated with the relative velocityû tanhf1 while R(n̂,u)
denotes a rotation about the directionn̂ through the angleu. The parameters on the right-hand si
of ~1! are determined in terms of those on the left by the multiplication of the 232 Pauli matrices.
This procedure consists of writing~1! in the form

~cosh~f1/2!1sinh~f1/2!s.û!~cosh~f/2!1sinh~f/2!s.p̂!

5~cosh~f3/2!1sinh~f3/2!s.p̂!~cos~uW/2!1 i sin~uW/2!s.n̂!

carrying out the multiplications and then comparing coefficients of corresponding sigmas. W

cos~uW/2!cosh~f3/2!5cosh~f1/2!cosh~f/2!1sinh~f1/2!sinh~f/2!û.p̂,

p̂8 sinhf35û@sinhf1 coshf1sinhf~coshf121!û.p̂#1p̂ sinhf, ~2!

sin~uW/2!5sinh~f1/2!sinh~f/2!uû∧ p̂u/cosh~f3/2!, ~3!

n̂5û∧p̂/uû∧p̂u, ~4!

coshf35coshf coshf11sinhf sinhf1û.p̂. ~5!

The angleuW is of course the Wigner angle associated with the left-hand side of~1!. For reasons
that will become evident later we regardp andp8 as the initial and final momentum of a particl
respectively.

All the parameters on the right of~1! are uniquely determined by those on the left.
An equation like~1! introduces a hyperbolic as well as an addition triangle5 ~see Fig. 1!. For

the hyperbolic triangleA8B8D8 of ~1! we have

sinA8/sinhf15sinB8/sinhf5sinD8/sinhf3 . ~6!

FIG. 1. The momentum diagram for~12! consists of the addition triangleABD8, the ~solid! sides of which represent the
momentum vectors occurring in~12!. The triangleA8B8D8 with the dotted sideA8B8 represents the hyperbolic triangle o
this equation. In this figure we have chosenu1.0 andu2,0. Equation~1! has the same hyperbolic triangle as~12! but its
addition triangle is obtained from Fig. 1 by replacingu1 by 0, u2 by uw.0, andŵ9 by p̂8.
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ABD8 is the addition triangle of~1! and the measures of its sides and those of the hyperb
triangle satisfy

A8B85AB5f3 , A8D85AD85f, BD85f1 .

Hence~5! holds for both the hyperbolic and the addition triangles. However the angles sati

A5A81uW , B5B, D85D8. ~7!

For the hyperbolic triangle,A8 is the angle between betweenA8D8 andA8B8. By ~6!

sinA85sinhf1uû∧p̂u/sinhf3 . ~8!

For ~1! the angle betweenp̂ andp̂8, the directions of the initial and final momentum respective
are given by

V5A81uW . ~9!

where

sinV5Y/sinhf3 , ~10!

and

Y5uû∧p̂u@sinhf1 coshf1sinhf~coshf121!û.p̂#. ~11!

In the decomposition~12! the left-hand side is the same as in~1! but on the right we have a
boost preceded and followed by a rotation5

L~ û,f1!L~ p̂,f!5R~ n̂,u1!L~ŵ9,f3!R~ n̂,u2!, ~12!

where~5! holds and

sin@~u11u2!/2#5sinh~f1/2!sinh~f/2!uû∧p̂u/cosh~f3/2!. ~13!

Note that~13! has the same structure as~3! whence

u11u25uW ~14!

can be called the Wigner angle for decomposition~12!. This decomposition can be considered
a generalization of~1!. It is important to note that if the left-hand sides of~1! and~12! are the same
then the samef3 andu occur in the right-hand sides. Hence~1! and~12! have the same hyperboli
triangleA8B8D8 and therefore we would expect~5! to hold for ~12!. The angles satisfy

A5A81u2 , B5B81u1 , D85D8. ~15!

The unique determination of the parameters on the right of~1! does not hold for those of~12!.
Equation~14! allows a choice ofu j and this arbitrariness affectsŵ9. This situation will be used in
our search for the operators conserving helicity and momentum in Sec. III.

For future reference we present a formula describing the effect of a rotation on a boos
have

L~ p̂8,f!R~ n̂,u!5R~ n̂,u!L~ p̂,f!. ~16!

For arbitraryn̂ and p̂,

p̂85p̂ cosu1p̂∧n̂ sinu1~12cosu!~ p̂.n̂!n̂.
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If we choosen̂ and p̂ orthogonal thenu is the angle betweenp̂ and p̂8.
If p̂ andp̂8 are the directions of the initial and final momentum of a particle andu is the angle

between them, then the two sides of~16! are operators that leave helicity invariant and then
have two forms of the operator required in Sec. III.

The literature contains two meanings of the term Wigner angle. One group of authors5,6 use
this term for the angle denoted byuW in this article. Another group2,3 use this term for the angle
appearing in the usual momentum conservation operator denoted here byA8. Towards the end of
Sec. III we refer to some of the properties ofA8.

III. CONSERVATION OF HELICITY AND INITIAL MOMENTUM

We consider a massive particle with spin unity and momentum

p5~ p̂ sinhf,i coshf! ~17!

and with spin alongp̂ and a boostL(û,f1). We try to factorize this operator in the form

L~ û,f1!5LhLp , ~18!

where the operatorLp leaves the four-momentum~17! of the particle invariant according to

Lpp5p. ~19!

For the present we assume that

Lp5L~ p̂,f!R~ n̂,u!L21~ p̂,f!. ~20!

Elementary considerations show that if this operator operates on a particle with momentump the
last factor reduces it to rest,R acts on the stationary particle, changing at most its spin direc
while L restores the original momentum. We postpone further discussion of this mome
conservation operator to Sec. V.

The operatorLh leaves the helicity of the particle unchanged in the sense that if initially
spin and the momentum of the particle are parallel then after the action ofLh they are still
parallel. Since the most general Lorentz operator can be expressed as a product of a rota
a boost, the conservation of helicity can be achieved by an operator of the typeRL or LR. We
assume that

Lh5R~ n̂,u1!L~ p̂,f2!. ~21!

Even if the axisn̂ and the angleu of the rotationR(n̂,u) in ~20! are completely arbitrary we hav
~19!. However, if in ~21! n̂ is arbitrary, thenLh is a very general operator containing six ind
pendent parameters.5 Our problem can be solved by limitingn̂ in ~21! to be orthogonal top̂ in
accordance with~4!. Now Lh contains five independent parameters.

Since, according to~16!, the right-hand sides of~21! and ~22! are equal we can also have

Lh5L~ p̂8,f2!R~ n̂,u1!. ~22!

Here p̂8 and p̂ are the vectors of Sec. II andu1 is the angle between them.
From ~18!, ~20!, and~21! we have

L~ û,f1!5R~ n̂,u1!L~ p̂,f3!R~ n̂,u!L21~ p̂,f!,

where

f35f1f2 . ~23!

Written in the form of~12! this equation becomes
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L~ û,f1!L~ p̂,f!5R~ n̂,u1!L~ p̂,f3!R~ n̂,u!. ~24!

The only material differences between~12! and ~24! are the directions of the velocities on th
right-hand sides. We expect that theirf3 , their Wigner angles, and their hyperbolic triangles w
be the same. This will be confirmed below.

We have to solve~24! for u, u1 , andf3 when û, p̂, f1 , andf are given. We find

cosh~f3/2!cos~~u11u!/2!5cosh~f1/2!cosh~f/2!1sinh~f1/2!sinh~f/2!û.p̂, ~25a!

cosh~f3/2!sin~~u11u!/2!5sinh~f1/2!sinh~f/2!uû∧p̂u, ~25b!

sinh~f3/2!cos~~u12u!/2!5cosh~f1/2!sinh~f/2!1sinh~f1/2!cosh~f/2!û.p̂, ~25c!

sinh~f3/2!sin~~u12u!/2!5sinh~f1/2!cosh~f/2!uû∧p̂u, ~25d!

where we have used

û5p̂~ û.p̂!2uû∧p̂un̂∧p̂ ~26!

which follows from~4!. Equations~25a! and~25b! yield ~5! while ~25b! confirms~13! and~14! in
the form

u11u5uW . ~27!

Using the formulas foruW , A8, andV from Sec. II, we find after some manipulation that

tan~A81uW/2!5~RHS of ~25d!!/~RHS of ~25c!! ~28!

5tan~~u12u!/2!, ~29!

when considering also the left-hand sides of~25c! and ~25d!. Here RHS is an abbreviation fo
right-hand side. By~28! and ~29!,

u12u52A81uW , ~30!

whence by~27! and ~30!,

u52A8, u15A81uW5V.

Hence~24! can be written

L~ û,f1!5R~ n̂,V!L~ p̂,f2!L~ p̂,f!R~ n̂,2A8!L21~ p̂,f!, ~31!

which has the required form~18!. Here we have used the notation of Sec. II and~23!.
Equation~31! illustrates two points. First, the factorization~18! was achieved by using th

freedom of choice ofu j allowed by ~14! to replaceŵ9 in ~12! by p̂. Second, the operatorLp

contains an arbitrary parameteru which is determined in~31! as A8, an angle of an associate
hyperbolic triangle. By~9! A8 is linked to the Wigner angle and the angle between the rele
initial and final momentum.

The momentum diagram for~31! can be obtained from Fig. 1 by puttingu252A8 and u1

5V thereby satisfying~9! and ~14!.
The above theory enables us to replace the factorization~18! by

L~ û,f1!5Lp8Lh ,

where the order of the two operators on the right has been changed and the first conserves
momentump8 of Sec. II. Using~1!, ~9!, ~16!, and~23! we find in terms of the above paramete
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L~ û,f1!5L~ p̂8,f3!R~ n̂,2A8!L21~ p̂8,f3!L~ p̂8,f2!R~ n̂,V!.

Note that one of the factors on the right of~18! conserves momentum and the other helic
but the product does not conserve both.

IV. THE EFFECT OF A BOOST ON SPIN AND THE POINT DIAGRAM

In an effort to obtain a maximum of information we limited ourselves thus far to the m
plication of operators and tried to avoid their application to vectors. For instance, if we app
two sides of~1! to the momentum vector of a stationary particle we only obtain~2! and~5!. Since
R(n̂,u) leaves the above-mentioned vector invariant,~3!, ~4! and the equation preceding~2! and
therefore the Wigner angle and the rotation axis, do not appear in the calculations. When d
with spin we have to use the spin vector.

The first topic of this section is the effect of a boost on the spin vector of a spin 1 par
This vector is discussed in greater detail in Sec. IX. For the present we assume it to have th

t5~ t̂ coshf9 , i sinhf9!

which is a spacelike vector with directiont̂. The parameterf9 is linked to the momentum of the
particle by ~32!. The spin and momentum four-vectors must be orthogonal and if~17! is the
momentum vector of the particle then

pt5p̂.t̂ coshf9 sinhf2sinhf9 coshf50. ~32!

When applying a boost to a four-vector we use the formula7

L~ p̂,f!5I 1UD sinhf1~coshf21!~UD!2,

whereUD is obtained fromU of ~49! by putting a50 andb52 i p̂. This is a special case of
more general operator to be introduced in~69!.

The left-hand side of~1! applied to the spin vector of a particle at rest and with spin alonp̂
yields

L~ û,f1!~ p̂ coshf,i sinhf!5~ t̂8 coshf5 ,i sinhf5!,

where

t̂8 coshf55p̂ coshf1û@sinhf1 sinhf1~coshf121!coshf~ û.p̂!#,

sinhf55coshf1 sinhf1sinhf1 coshf~ û.p̂!. ~33!

For the angleV8 betweenp̂ and t̂8, the directions of the initial and final spin, we have by~33!,

sinV85uû∧p̂u@sinhf1 sinhf1~coshf121!coshf~ û.p̂!#/coshf5 . ~34!

By ~9!, V is the angle between the initial and final momentum in~1!. Then the angleV2V8
between the final momentump̂8 and the final spint8 is given by

sin~V2V8!5up̂∧8 t̂8u5sinA8/coshf5 , ~35!

where we have used~8!, ~10!, ~33!, and~34!. It is evident thatV8,V and thatV2V8,A8.
The second topic discussed in this section is the abundance of angles generated by th

tions we have studied in Secs. II and III. Almost every operator in these equations produ
angle. We distinguish between two types of angle. Angles likeu1 andu2 result from the rotation
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factors while angles likeA8 and B8 are caused by the boost factors. Note that the first type
angle appears in the equation while the second type does not. These ‘‘hidden’’ angles p
important part in the discussion of helicity.

We try to provide a representation of the angles which is more convenient than the mom
diagram. We introduce the point diagram in which unit vectors radiating from a common o
indicate the spin and momentum directions at each stage. To construct a point diagram like
we need merely consult equations, like~33!.

The point diagram of the right-hand side of~12! operating on the momentum of a particle
rest can be obtained from Fig. 2. Sinceu2 does not appear, the diagram will consist merely ofp̂,
ŵ9, andp̂8 the last two making anglesV –u1 andu, respectively, withp̂.

V. ANOTHER APPROACH TO CONSERVATION OF MOMENTUM

In Sec. III we mentioned the conservation of momentum rather superficially. We now di
this topic in a more comprehensive way.

Since any Lorentz operator can be expressed as the product of a boost and a rotation,
for a momentum conserving operator having the form

Lp5R21~ n̂,u2!L~ q̂,f4! ~36!

and satisfying~19!. Hereu2 andf4 are real parameters to be determined later. We have

L~ q̂,f4!p5p85~ p̂8 sinhf6 ,i coshf6!,

where the last vector denotes an as yet unknown vector which is timelike for realf6 . SinceR
changes the direction of the momentum vector only we must havef65f whence by~2!,

p̂8 sinhf5p̂ sinhf1q̂@sinhf4 coshf1~coshf421!sinhfp̂.q̂#, ~37!

and by~5! the unknown parameterf4 is given by

sinh~f4/2!/cosh~f4/2!52~sinhf/coshf!~ p̂.q̂!. ~38!

By ~37! and ~38!,

p̂85p̂22~ p̂.q̂!q̂ ~39!

and the angleV between the initial and final momentum is given by

FIG. 2. This point diagram represents the effect of the right-hand side of~12! on the spin of a spin 1 particle at rest wit

spin alongp̂. As in Fig. 1 we chooseu2,0 whenceR(n̂,u2) rotates the spin to the positiont̂- ‘‘below’’ p̂. L(ŵ9,f3)

rotate it throughV9 and thenR(n̂,u1) rotates the spin to its final positiont̂8. The angles produced by rotations and boo
are indicated by small and large arcs, respectively.
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cosV5p̂8.p̂5122~ p̂.q̂!2 or p̂.q̂52sin~V/2!. ~40!

The invariance ofp under~36! demands thatR must rotatep̂8 back top̂ through the angle

u25V. ~41!

This will be the case ifn̂ is defined by

cos~u2/2!n̂52p̂∧q̂. ~42!

By ~38!, ~40!, and~41!,

cos~u2/2!cosh~f4/2!,1. ~43!

Now ~36!, with its parameters specified by~38!, ~42!, and ~43!, is our momentum conserving
operator. By~40! and ~42! the vector left invariant by~36! has the form~17! with

p̂52sin~u2/2!q̂1cos~u2/2!n̂∧q̂. ~44!

Note that for givenp̂ we can choose anyq̂ which makes an obtuse angle withp̂.
Since~20! and ~36! have the same meaning we must have

L~ p̂,f!R~ n̂,u!L21~ p̂,f!5R21~ n̂,u2!L~ q̂,f4!. ~45!

The axis of rotation need not be the same on the two sides of~45!. However we limit ourselves to
the special case where~42! holds. We find

cos~u/2!5cos~u2/2!cosh~f4/2!,

2sin~u/2!coshfn̂5sin~u2/2!cosh~f4/2!n̂, ~46!

2sin~u/2!sinhfp̂∧n̂5sinh~f4/2!~cos~u2/2!q̂1sin~u2/2!n̂∧q̂!, ~47!

and then~38!, ~40!, ~42!, and~44! follow. The only new relations involveu and are given by

cosh2~f4/2!5cos2~u/2!1sin2~u/2!cosh2 f,

tan~u2/2!5coshf tan~u/2!.

All the parameters on the left~right! of ~45! are determined by those on the right~left!.
Equation~45! has close links with the topics already discussed. Written in the form

L~ q̂,f4!L~ p̂,f!5R~ n̂,u2!L~ p̂,f!R21~ n̂,u!,

it is a special case of~12!.
We conclude this approach to momentum conservation by mentioning that each of th

sides of~45! equals the operator7

L~a,b,u,0!5cos~u/2!1 i sin~u/2!s.~a1 ib!

in spinor form or in vector form

L~a,b,u,0!5exp~ iUu!5I 1 iU sinu1~cosu21!U2. ~48!

Here
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U5S 0 2 ia3 ia2 b1

ia3 0 2 ia1 b2

2 ia2 ia1 0 b3

2b1 2b2 2b3 0

D , ~49!

where

a.a2b.b51, a.b50, ~50!

and then

U35U.

U has the eigenvalues 0, 0,61 and the eigenvectors belonging to the zero eigenvalues areA and
D, where

A5~ â,0! D5~ â∧b,ia !. ~51!

The operatorL(a,b,u,0) leaves the vector

A sinhF1D coshF

invariant. For realF this is a timelike vector which can be interpreted as a momentum
therefore the operator qualifies as a momentum conserving operator.

The parametersasin(u/2) and b sin(u/2) of ~48! for ~45! are provided by~46! and ~47!,
respectively.

We can use~36! as the momentum conserving operator to solve the problem of Sec. III. T
it takes the form

L~ û,f1!5R~ n̂,u1!L~ p̂,f2!R21~ n̂,u2!L~ q̂,f4!. ~52!

Relations similar to~2!, ~5!, and~10! can be derived by applying both sides of~52! to p yielding
f2 andu1 . If we apply both sides to (2q̂ sinhf4,i coshf4) and use the properties of the hype
bolic triangle we obtainf4 andu2 .

VI. THE CASE OF ZERO MASS

The Lorentz operator on the left of~45! which conserves the momentum of a massive parti
presupposes a transformation to the rest frame. Such a frame does not exist for a massless
which means that we need a new momentum conservation operator for such a particle.

In our search for the desired operator we could apply the limiting processf→` to the
relevant formulas of Sec. V and such a procedure could be rewarding.

However, we proceed to a more satisfactory derivation by concentrating on the operator
right of ~45! which now must leave a null vector invariant. Following the procedure of Sec. V
must have

L~ q̂,f4!~ p̂,i !5~ p̂8,i !, ~53!

where we have used the fact thatR21(n̂,u2) must rotate the vector on the right of~53! to the one
on the left. From~53! follows that

coshf41~ p̂.q̂!sinhf451 or p̂.q̂52sinh~f4/2!/cosh~f4/2! ~54!

and ~39!. After some calculation we find that~43! is replaced by

sin~u2/2!5sinh~f4/2!/cosh~f4/2! or cos~u2/2!cosh~f4/2!51. ~55!
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Hence the operator~36!, with n̂.q̂50, leaves the null vector on the left of~53! invariant
provided that~55! holds.

In Sec. V we have given a meaning to the operator on the right of~36! in the case
cos(u2/2)cosh(f4/2),1 and in Sec. VII we shall do so for the case cos(u2/2)cosh(f4/2).1.

We study another form of the operator leaving a null vector invariant.7 Instead of~50! we now
choose

a.a2b.b50, a.b50, ~56!

whence

U350

and then we have the singular operator, resembling~48!,

exp~ iU !5I 1 iU 2 1
2U

2 ~57!

for the spin 1 case. In the case of the spinor the operator is

exp@~ i /2!s.~a1 ib!#5I 1~ i /2!s.~a1 ib!.

Hence we must have

R21~ n̂,u2!L~ q̂,f4!5I 1 1
2is.~a1 ib!, ~58!

whence

cos~u2/2!cosh~f4/2!51,

a522 sin~u2/2!cosh~f4/2!n̂,

b522 sinh~f4/2!~sin~u2/2!n̂∧q̂1cos~u2/2!q̂!. ~59!

The operator~57! contains four independent parameters and leaves the null vector

p5~ â∧b̂,i !5@~2sin~u2/2!q̂1cos~u2/2!n̂∧q̂!,i # ~60!

invariant. When~60! is multiplied by a suitable factorp0 , the resulting vector can be interprete
as the momentum vector of the massless particle.

Hence the operator~36! conserves momentum for a massive particle if~43! holds and for a
zero mass particle if~55! holds.

Having found a general form for the operatorLp that leaves the momentum of a zero ma
particle invariant we now consider

L~ û,f1!5R~ n̂,u1!L~ p̂,f2!R21~ n̂,u2!L~ q̂,f4!, ~61!

where the last two factors on the right conserve the momentum of a massless particle
momentump and the first two factors must be determined such that~61! holds for givenL(û,f1).
Herep, û, andf1 are given whilef2 , f4 , andu1 must be found.

We solve our problem by replacing the last two factors on the right of~61! by the operator on
the right of ~58!. Herea, b, andp̂ are given by~59! and ~60!. We now have

L~ û,f1!5P01s.~P1 iQ!,

where
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P05cosh~f1/2!5cos~u1/2!cosh~f2/2!1sin~u1/2!sinh~f4/2!~cosh~f2/2!1sinh~f2/2!!,
~62!

P5sinh~f1/2!û

5p̂@cos~u1/2!sinh~f2/2!2sin~u1/2!~cosh~f2/2!1sinh~f2/2!!sinh~f4/2!#

1n̂∧p̂@2cos~u1/2!sinh~f4/2!~cosh~f2/2!1sinh~f2/2!!2sin~u1/2!sinh~f2/2!#, ~63!

Q5n̂@sin~u1/2!cosh~f2/2!2cos~u1/2!sinh~f4/2!~cosh~f2/2!1sinh~f2/2!!#50. ~64!

Equation~64! follows becauseûS1 the coefficient ofs in L(û,f1) is real. We use~62!, ~63!, and
~64! supplemented by~26! to solve foru1 , f2 , andf4 . We find

tan~ 1
2u1!5sinh~f1/2!uû∧p̂u/@cosh~f1/2!1sinh~f1/2!û.p̂#, ~65!

exp~f2!5coshf11sinhf1û.p̂,

sinh~f4/2!5sinh~f1/2!cosh~f1/2!uû∧p̂u/@coshf11sinhf1û.p̂#5tan~ 1
2u2!, ~66!

where we have used~55!.
Here we have solved foru1 , u2 , f2 , andf4 in terms ofp, û, andf1 . In doing so we have

regarded the product of the last two factors of~61! as a singular operator conserving the mome
tum null vector. We can however multiply both sides of~61! from the right by L21(q̂,f4)
yielding an equation of the type of~12! and with a Wigner angle

uW5u12u2

given by ~65! and ~66!.
If f→` in ~10! and ~11! thenV→V` which is the same asu1 in ~65! as can be expected

VII. SPIN CONSERVATION AND THE OPERATOR L„a,b,0,f…

As was done for momentum we look for an operator that conserves the spint of a particle with
spin unity. We proceed as in Sec. V and we try to construct an operator

L5R21~ n̂,u2!L~ q̂,f4!

resembling~36!, that leaves invariant the given spacelike vector

t5~ t̂ coshf,i sinhf!.

The arguments used and the results obtained are almost identical to those of Sec. V. Howev~38!
is replaced by

sinh~f4/2!/cosh~f4/2!52~ q̂. t̂!coshf/sinhf

which implies that now

sinh~f4/2!/cosh~f4/2!.sin~u2/2! or cos~u2/2!cosh~f4/2!.1. ~67!

An operator having these properties has been discussed before.7 It has the form

L~a,b,0,f!5exp~UDf!5I 1UD sinhf1~coshf21!~UD!2, ~68!

where, in terms of~49!
                                                                                                                



s
ly

t
lso be
d

2727J. Math. Phys., Vol. 40, No. 6, June 1999 C. B. van Wyk

                    
~UD!125U34, ~UD!235U14, ~69!

the other elements following by cyclic permutation of 1, 2, and 3.
The operator

L5L~ p̂,f!L~ŵ,f5!L21~ p̂,f! ~70!

can also be expressed in the form~68! and the vectors left invariant by~70! can be found by mean
of the general procedure developed elsewhere.7 However we can find, in a direct way, two linear
independent vectors by writingLt5t in the form

L~ŵ,f5!T5T, T5L21~ p̂,f!t.

Now T5(W,0) provided thatŵ.W50. Then the spacelike vectors left invariant by~70! are given
by

t5L~ p̂,f!T5@W1~coshf21!~ p̂.W!p̂,i ~W.p̂!sinhf#. ~71!

An obvious choice forW is p̂∧ŵ yielding

t5t15~ p̂∧ŵ,0!.

For the second vector we can chooseW5p̂2(p̂.ŵ)ŵ in ~71!.
In the special case whereŵ.p̂50 we can chooseW5p̂ whence

t5~ p̂ coshf,i sinhf!. ~72!

Hence if this special case applies and initially a particle has momentum~17! and spin~72! then
~70! leaves the spin invariant while the momentum is transformed top85(p̂ sinhf3,i coshf3).

According to~2!,

p̂8 sinhf35ŵ sinhf51p̂ sinhf coshf5 , coshf35coshf coshf5 ,

and the angleV- between final spin and momentum is given by

sinV-5up̂∧8 p̂u5sinhf5 /sinhf3 , ~73!

where we have usedŵ.p̂50.
To summarize, the operator we look for takes the general formL(a,b,0,f) which can be

expressed as~36! with ~67! as well as~68! and ~70!.
The two operatorsL(a,b,u,0) in ~48! and L(a,b,0,f) in ~68!, although different, have a

number of corresponding properties examples of which are~43! and~67! as well as~20! and~70!.
Both contain five independent parameters.

VIII. A SPIN ANGULAR MOMENTUM OPERATOR

In the discussion thus far the momentum conserving operator~20! played an important par
and its main properties were discussed in Secs. III and V. However this operator may a
regarded as the Lorentz transformation of the rotation operatorR(n̂,u) when the latter is regarde
as a second rank tensor.

We consider the generator for an elementary spatial rotation about the unit vectorm̂ which is
an antisymmetric 333 matrix. We generalize it to space–time to yield the 434 matrix,
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J05S 0 2 im̂3 im̂2 0

im̂3 0 2 im̂1 0

2 im̂2 im̂1 0 0

0 0 0 0

D . ~74!

We interpret this as the spin angular momentum tensor for a spin 1 particle at rest. To obta
tensor for such a particle with momentump in a direction other thanm̂ we transform from the res
frame to find

J5L~ p̂,f!J0L21~ p̂,f!5U, ~75!

whereU is given by~49!. We can finda andb without matrix multiplication in the usual sense b
using the Paulis-matrix procedure. We have

L~ p̂,f!~s.m̂!L21~ p̂,f!5s.~a1 ib!,

where

a5m̂ coshf2~coshf21!~m̂.p̂!p̂, b5p̂∧m̂ sinhf, ~76!

which are of course the parameters required in~75!. They satisfy~50! leaving only four indepen-
dent parameters.

To confirm that we are indeed dealing with the Lorentz transformation of a six-vecto
allow m to be complex and not necessarily a unit vector and we replacea1 ib by P, where

P5m coshf2~coshf21!~m.p̂!p̂1 i p̂∧m sinhf. ~77!

Now we replaceP by E81 iB8,m by E1 iB. Then~77! represents the well-known Lorentz tran
formation linking the initial componentsE andB of the six-vector to the final onesE8 andB8.

IX. THE SPIN VECTOR

In the discussion of Sec. IV we found it convenient to introduce the spin vector of a pa
in an intuitive way. Now we are able to develop this vector from the spin angular mome
operator and it is closely associated with the momentum of the particle.

By ~76!,

p0b5p∧a,

which implies that

Jp50. ~78!

J has another eigenvector belonging to the eigenvalue zero which can be chosen orthogonp.
The form

t j5~1/2!e jkrsJkrps , j ,k51,2,3,4 ~79!

for this vector clearly exhibits its transformation properties. The coefficient ofps on the right of
~79! is of courseUD defined by~69! which means that a more convenient way of introducingt is
provided by

t5UDp, Ut50

from which follows that
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p5UDt, tt51,

where we have usedU21(UD)25I . We find

t5~ap01p∧b,i ~a.p!!5~ t̂ coshf9 ,i sinhf9!. ~80!

By ~76! and~80! the form fort when the particle is at rest suggests thatt is its spin vector. We also
have

t̂ coshf95m̂1~coshf21!~m̂.p̂!p̂,
~81!

sinhf95~m̂.p̂!sinhf.

This means that

L~ p̂,f!~m̂,0!5t. ~82!

Since the four-vector on the left is the spin vector of the particle at rest, we can interprett as its
spin when the momentum isp. Hence, the momentum and spin of a particle with spin 1
eigenvectors of its spin angular momentum operator with eigenvalues zero.

Furthermore, for arbitraryF the linear combinations

p5D coshF1A sinhF, t5D sinhF1A coshF,

with A and D given by ~51! are also eigenvectors ofU belonging to the eigenvalue zero. Th
means thatU or a andb do not definep and t uniquely. Hence two particles with different bu
compatible spin and momentum may have the same spin angular momentum operator.
ample,J0 of ~74! can be the spin angular momentum operator of a particle at rest or of a pa
with spin and momentum directionm̂.

Since the fourth component ofA vanishes we have

a25p0
22t0

2. ~83!

If in addition to a andb we also knowp0 then we have the unique expressions

p5~p0 /a!D1~ t0 /a!A, t5~p0 /a!A1~ t0 /a!D, ~84!

satisfying~32!. By ~84!,

a5p0t2t0p, b5p∧t. ~85!

If m̂.p̂Þ0 then by~81! momentum and spin have the same direction for very large mom
tum. In the special case wherep̂.m̂51 we haveb50 andt05sinhf, wherep05coshf. Note that
herep̂5â while p andt have the forms~17! and~72!, respectively. We have often used this for
for t.

If m̂.p̂50 it follows from ~81! and ~84! that

t5A, p5D. ~86!

Hence in this case spin and momentum are not parallel for large momentum.
In the first few sections we discussed the effect of various operators on momentum an

by direct application of these operators to the relevant vectors. In this way we could fin
example, the angle between final spin and momentum in terms of the initial angle between
as in~35!. Another way of studying momentum and spin is to find the effect of these operato
the spin angular momentum tensor.

In this regard we consider the general transformation
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~M01s.M !s.p̂~M02s.M !5s.P, ~87!

where

M0
22M .M51.

We find

P5~M0
21M .M !p̂22iM 0p̂∧M22~ p̂.M !M ~88!

and with

M5a1 ib, P5a1 ib,

we find

a5~2M0
221!p̂12M0p̂∧b22~ p̂.a!a12~ p̂.b!b,

~89!
b522@M0p̂∧a1~ p̂.a!b1~ p̂.b!a#.

With this b we can use~85! in the form

up̂∧ t̂u5b/@ upuutu#5b/@$p0
221%1/2$p0

22b2%1/2#. ~90!

Here we have expressed the sine of the angle between spin and momentum in terms
parametersa, b, andp0 which determinep and t uniquely.

We use~90! to determine the angle between final spin and momentum in a few cases w
an operator acts on the spin angular momentum operator of a particle with initial spin alo
momentum.

First, we consider the effect of the momentum conserving operator withn̂.p̂50 on spin. In the
notation of~87! we have

L~ p̂,f!R~ n̂,u!L21~ p̂,f!5M01s.M ,

where

M05cos~u/2!, M5sin~u/2!~2p̂∧n̂ sinhf1 i n̂ coshf!.

By ~89!

b52n̂ sinu sinhf,

whence by~90! the angleu8 between final momentum and spin is given by

sinu85sinu/@11sinh2 f cos2 u#1/2.

Second, Eq.~35! applies when the above particle is boosted byL(û,f1). By using~89! and
~90! we can confirm~35!.

Third, we consider the spin conserving operator of Sec. VII and try to confirm~73!. We have

L~ p̂,f!L~ŵ,f5!L21~ p̂,f!5cosh~f5 /2!1sinh~f5 /2!s.~ŵ coshf1 i sinhfp̂∧ŵ!,

whence

M05cosh~f5/2!, M5sinh~f5/2!~ŵ coshf1 i p̂∧ŵ sinhf!

and if p̂.ŵ50, then
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b52sinhf5 coshfp̂∧ŵ,

and

up̂∧ t̂u5sinhf5 /sinhf3

confirming ~73!.

X. GAUGE INVARIANCE

Having discussed some of the important properties of the spin angular momentum opera
now turn to its invariance properties and to the properties of the relevant transformation ope
We consider~87! in the form

~M01s.M !s.m~M02s.M !5s.m. ~91!

With appropriate adjustments~88! still holds for ~91!. Hence for givenm to be invariant,M0 and
M must satisfy

M0
21M .M51,

m.M50, ~92!

m∧M50.

We ignore the trivial caseM5m and proceed to the third equation of~92!. We put

m5a1 ib, M5a1 ib,

where these four three-vectors are real and

a.b505a.b.

Then ~92! requires that

a∧a5b∧b, a∧b52b∧a,

which means that these four vectors must be coplanar in such a way that

â∧b̂5a∧b. ~93!

Hence

a25b2, a25b2, m.m50, M.M 50, M051, ~94!

and the second equation of~92! is also satisfied.
In terms of the operators for spin 1 particles we are therefore dealing withU andUD for which

~56! holds. We denote these singular operators, for which~94! holds, byU(a,b), UD(a,b), etc.
Provided that~93! holds we have

@U~a,b!,U~a,b!#50.

Hence~91! becomes

L~a,b!U~a,b!L21~a,b!5U~a,b!, ~95!

where
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L~a,b!5I 1 iU ~a,b!2 1
2U

2~a,b!, ~96!

which resembles~57!.
Therefore our study of~91! leads to the following conclusions. First, both the spin angu

momentum operator and the Lorentz operator under which it is invariant must be singular
tors. Second, guided by~56! and~76! we regardU(a,b) as the spin angular momentum opera
of a massless spin 1 particle. Third, since the operators for which~50! holds do not lead to
invariance, the invariance expressed by~95! does not apply to massive particles.

The operatorU(a,b) has four zero eigenvalues and two linearly independent eigenvectoA
as in ~51! which is spacelike and

D85~ â∧b̂,i !

a null vector uniquely representing the momentum of a zero mass particle in the form

p5p0D8, pp50. ~97!

It is left invariant by~96!.
We try to give physical meaning toA. We find

U~a,b!A52 i ~a.b̂!D8,

L~a,b!A5A1~a.b̂!D8.

We define

t5A1t0D8, t05a.b̂, tt51, pt50. ~98!

In this linear combination ofA andD8 the factora.b̂ is arbitrary in the sense thata can be any
vector in the plane ofa andb.

Despite this arbitrariness we find that for givenp0 , a, andb, subject of course to~56!,

p0â5p0t2t0p, p0b̂5p∧t ~99!

which resembles~85!. Here the magnitudes ofa andb appear to be unimportant.
Hence for givenp0 and six-vectora, b we can find the three-vectorp and the four-vectort for

which ~99! holds. It is important to note thatt is not defined uniquely. This situation is analogo
to gauge invariance in electromagnetic theory where a given six-vectorE, B defines the four-
potentialA, f in a way which is not unique.

HenceU(a,b), the spin angular momentum operator of a massless spin 1 particle, has
invariance properties under the operator~96! which can be called the gauge operator.

To arrive at the linear combination~98! we could have used the fact thatA and D8 are
eigenvectors ofU(a,b) belonging to a degenerate eigenvalue. However the procedure used
is more useful.

In electromagnetic theory no direct physical significance is attached to the four-potent
this case the mathematics presented above seems to suggest thatt can be interpreted as the spin
the massless particle. The question whether such an interpretation could be supported
physical evidence remains open.

Since

@U~a,b!,UD~2b,a!#50

provided that~93! holds, the operator

I 1UD~a,b!1 1
2~UD!2,
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can also be regarded as a gauge operator which leavesU(a,b) invariant.
The papers by Weinberg8 and Shnerb and Horwitz9 also deal with massless systems but a

mostly concerned with field theoretical aspects.

XI. DISCUSSION

In the above discussion of products of rotations and boosts we distinguish between
different types of product which we denote byL(a,b,0,f), L(a,b,u,0), andL(a,b). Each of the
first two types contain five independent parameters while the last one contains four.

The first type includes operators like

L~ û,f1!L~ p̂,f!,L~ p̂,f!L~ŵ,f5!L21~ p̂,f! and exp~UDf!

which leave two spacelike vectors invariant. In Sec. VII we have associated spin with one of
vectors.

The product on the left of

L~ û,f1!L~v,f2!5L~a,b,0,f!

contains six independent parameters with only five on the right. This means that for every
parameters on the right there exists an infinite number of sets of parameters on the left.5

L(a,b,u,0) is a general name for operators likeL(p̂,f)R(n̂,u)L21(p̂,f) and exp(iUu) and
these operators leave a timelike vectorD coshF1AsinhF invariant. Under suitable circum
stances this vector can be interpreted as the momentum vector of a particle.

The product on the left of

L~ p̂,f!R~ n̂,u!L21~ p̂,f!5L~a,b,u,0!

contains six independent parameters with only five on the right. Arguments similar to those i
5 show that for every set of parameters on the right we have an infinite number of s
parameters on the left. As is well-known the operator on the left belongs to a group.

Operators of the type

L~a,b!5I 1~ i /2!s.~a1 ib!, a.a5b.b, a.b50

in its spinor form, or

L~a,b!5I 1 iU ~a,b!2 1
2U

2~a,b!

in its vector form, leave the spacelike vectorA and the null vectorD8 invariant. For anyl the
spacelike vectorA1lD8 is of course also left invariant. Provided that the four three-vectorsa, b,
a, andb are coplanar and~93! is satisfied we have

L~a,b!L~a,b!5L~a8,b8!,

where

a85a1a, b85b1b.

Hence these operators belong to what can be called the gauge group.
We have seen that, depending on the value of cos(u/2)cosh(f/2), the operatorR(n̂,u)L(q̂,f)

with n̂.q̂50 can take any of the above three forms.
The product of any two boosts always has the formL(a,b,0,f). To classify the product of

three Lorentz operators is more complicated. We can write~1! in the form

L21~ p̂8,f3!L~ û,f1!L~ p̂,f!5R~ n̂,u!5L~a,0,u,0!.
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Therefore with the same notation and meaning

L21~ p̂8,f4!L~ û,f1!L~ p̂,f!5L~ p̂8,f32f4!R~ n̂,u!,

whence, for givenu, the magnitude off32f4 determines the classification according to~43!,
~55!, and~67!.

If the directions of three or more boosts are independent then we must expect their prod
contain more than five independent parameters.

The operator discussed in Sec. VI is also a gauge operator. When expressed in the fo

L~a,b!5R21~ n̂,u2!L~ q̂,f4!, cos~u/2!cosh~f4/2!51, n̂.q̂50

the gauge operator has structure in the sense that it is expressible as a product of a rotatio
boost. The four independent parameters on the right are determined uniquely in terms ofa andb.
According to the statement following~99! the magnitudes ofa and b seem to be unimportant
However by~59!,

a5b52 sinh~f4/2!.

We conclude this paper by stating that special relativity appears to make provision f
interrelation between the spin and the momentum of a particle. This statement is suppor
using ~85! to express the generatorUD of any L(a,b,0,f) in the form

UD5up&^tu2ut&^pu,

wherep and t are the momentum and spin, respectively, of a fictitious particle having the
angular momentum operatorU associated withUD.

A similar form can be obtained for a massless particle.
If it is correct to interpret thet of ~98! as the spin of a massless particle then, as in~86!, the

spin and momentum directions of a massless particle need not coincide.
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I. INTRODUCTION

It is well known nowadays that the problem of finding the anomalies and the inva
counterterms that arise in the renormalization of local field theories can be handled in a
algebraic way by means of the BRS technique~For a recent account on the so-calledAlgebraic
Renormalizationsee Ref. 1!. This amounts to looking at the nontrivial solution of the integra
consistency condition,

sE vD
g 50, ~I.1!

wheres is the BRS operator andg andD denote, respectively, the ghost number and the spa
time dimension. Condition~I.1!, when translated at the nonintegrated level, yields a system
equations usually called descent equations~see Ref. 1 and references therein!,

svD
g 1dvD21

g11 50,

svD21
g11 1dvD22

g12 50,

¯

~I.2!
¯

sv1
g1D211dv0

g1D50,

sv0
g1D50,

whered5dxm ]m is the exterior space–time derivative andv i
g1D2 i(0< i<D) are local polyno-

mials in the fields of ghost number (g1D2 i ) and form degreei. The casesg50,1 correspond,
respectively, to the invariant counterterms and to the anomalies. The operatorss, d obey the
algebraic relations

a!Electronic mail: LCQVILAR@SYMBCOMP.UERJ.BR
27350022-2488/99/40(6)/2735/22/$15.00 © 1999 American Institute of Physics
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s25d25sd1ds50. ~I.3!

The problem of solving the descent equations~I.2! is a problem of cohomology ofs modulo
d,2,3 the corresponding cohomology classes being given by solutions of~I.2! that are not of the
type

vm
g1D2m5sv̂m

g1D2m211dv̂m21
g1D2m , 1<m<D,

v0
g1D5sv̂0

g1D21,

with v̂ ’s local polynomials. Notice also that at the nonintegrated level one loses the prope
making integration by parts. This implies that the fields and their derivatives have to be cons
as independent variables.

Of course, the knowledge of the most general nontrivial solution of the descent equation~I.2!
yields the integrated cohomology classes of the BRS operator. Indeed, once the full syste~I.2!
has been solved, integration on space–time gives the general solution of the consistency co
~I.1!.

Recently, a new method of obtaining nontrivial solutions of the tower~I.2! has been proposed4

and successfully applied to a large number of field models such as Yang–Mills theor4,5

gravity,6 topological field theories,7–9 string10 and superstring11 theories as well asW3 algebras.12

The method relies on the introduction of an operatord, which allows us to decompose the exteri
derivative as a BRS commutator,

d52@s,d#. ~I.4!

It is easily proven, in fact, that repeated applications of the operatord on the cocyclev0
g1D that

solves the last of the equations~I.2! will provide an explicit nontrivial solution for the highe
cocyclesv i

g1D2 i .
One has to note that solving the last equation of the tower~I.2! is a problem of local coho-

mology instead of a modulo-d one. The former can be systematically analyzed by using sev
methods as, for instance, the spectral sequences technique.13 It is also worth mentioning that in the
case of the Yang–Mills-type gauge theories, the solutions of the descent equations~I.2! obtained
via the decomposition~I.4! have been proven to be equivalent to those provided by the so-c
Russian Formula.14,15

Another important geometrical aspect related to the existence of the operatord is the possi-
bility of encoding all the relevant informations concerning the BRS transformations of the fi
and the solutions of the system~I.2! into a unique equation that takes the form of a generali
zero curvature condition,16 i.e.,

F̃5d̃Ã2Ã250. ~I.5!

The operatord̃ and the generalized gauge connectionÃ in Eq. ~I.5! turn out to be, respectively
thed transform of the BRS operators and of the ghost fieldc corresponding to the Maurer–Carta
form of the underlying gauge algebra,

d̃5edse2d, d̃250,

Ã5edc.
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As discussed in detail in Refs. 16, the zero curvature formulation allows us to obtain straig
wardly the cohomology classes of the operatord̃. The latters are deeply related to the solutions
the descent equations~I.2!.

The BRS algebraic procedure can be easily adapted to include the case of the renorma
N51 superspace supersymmetric gauge theories in four space–time dimensions, for whic
of superspace descent equations have been established.17–19 The solution of these equations a
much as in the nonsupersymmetric case yields directly all the manifestly supersymmetric
anomalies as well as the manifestly supersymmetric BRS-invariant counterterms. One
remark, however, that in the supersymmetric case both the derivation and the constructio
solution of the superspace version of the descent equations are more involved than the no
symmetric case, due to the algebra of the spinorial covariant derivativesDa and D̄ ȧ and to the
~anti!chirality constraints of some of the superfields characterizing the theory.

In order to have an idea of the differences between the superspace and the ordinary c
us briefly consider the integrated superspaceN51 BRS consistency condition corresponding
the supersymmetric chiral U~1! Yang–Mills axial anomaly,19

sE d4x d2ū K050, ~I.6!

with K0 a local power series in the gauge vector superfield with ghost number zero and dime
two. It can be proven18,19 that condition~I.6! implies that the BRS variation of the integrand, i.e
sK0, is a total derivative in superspace,

sK05D̄ ȧK̄1ȧ, ~I.7!

with K̄1ȧ local power series with ghost number one.@The absence of the termDaKa
1 in Eq. ~I.7!

is actually due to the chirality nature of the consistency condition~I.6!.# Acting now on both sides
of Eq. ~I.7! with the nilpotent BRS operators, we get

D̄ ȧsK̄1ȧ50.

This equation admits a superspace solution~see Sec. V and Appendix A for details!, which, as in
the standard nonsuperspace case~I.2!, entails a set of new conditions, which, together with t
equation ~I.7!, gives the whole set of the superspace descent equations for the U~1! axial
anomaly,19 namely

sK05D̄ ȧK̄1ȧ,

sK̄ȧ
1
5~2DaD̄ ȧ1D̄ ȧDa!Ka

2,

~I.8!

sK2a5DaK3,

sK350,

with Ka
2 andK3 local power series of ghost number two and three.

From now on, the operators in Eqs.~I.8!, whose explicit form will be given later in Sec. I
@see Eqs.~II.14!#, refers to the BRS operator acting on the space of superfields ofN51 Yang–
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Mills theories in superspace. Therefore, its integrated cohomology in the sectors of ghost n
1 and 0 will yield the possible gauge anomalies and gauge-invariant counterterms, which,
given in terms of superfields, are manifestly supersymmetric. In particular, the Eqs.~I.8! are the
superspace analogous of the Wess–Zumino consistency condition~I.2! for the U~1! axial anomaly.

For the sake of clarity, it is worth emphasizing here that the existence of anomalies fo
supersymmetry itself has been deeply investigated by Refs. 20 and 21, who showed, in fa
the N51 supersymmetric algebra with the usual content of superfields~i.e., scalar, chiral, and
vector superfields! does not allow for anomalies of supersymmetry.

Our aim in this paper is to extend the previous works16 to the case of theN51 four-
dimensional supersymmetric Yang–Mills theory, thus yielding a simple way of solving the s
space descent equations. This means that we will introduce two operatorsza and z̄ ȧ , which, in
analogy with the case of the operatord of Eq. ~I.4!, allow us to decompose the supersymmet
covariant derivativesDa and D̄ ȧ as BRS commutators, according to

@za ,s#5Da , @ z̄ ȧ ,s#5D̄ ȧ , ~I.9!

with

DaD̄ ȧ1D̄ ȧDa52isaȧ
m ]m , ~I.10!

saȧ
m being the Pauli matrices.

Moreover, as we shall see in Sec. IV@see Eq.~IV.39!#, the decomposition~I.9! will lead to an
algebraic structure that will close on shell, i.e., on the equations of motion of the standaN
51 Yang–Mills theory in superspace. In other words, we shall work without introducing
so-called antifields, which are known not to contribute to anomalies and nontrivial counterte3

We now have to remark that in the last few years the study of the BRS consistency con
for supersymmetricN>1 models has been undertaken by several authors,20–23 who faced and
solved aspects that were still open. We mention, for instance, the results concerning the p
existence of susy anomalies in the presence of nonstandard constrained multiplets,20,21 and the
very useful possibility of performing a purely algebraic regularization-independent analysis
susy gauge theories in a fully off-shell version of the Wess–Zumino gauge.22,23 In particular, this
last result has allowed for a simple discussion of the renormalization of models with exte
supersymmetry~i.e., N>2!, yielding an algebraic proof of the ultraviolet finiteness of theN54
gauge theories.22

However, although much is already known about the BRS cohomology of theN51 gauge
theories, we emphasize here that the decomposition formulas~I.9! will allow us to cast both the
susy algebra and the supersymmetric BRS transformations into a unique equation, wh
complete analogy with the nonsupersymmetric case, takes the form of a generalized zero cu
condition. Moreover, by means of this zero curvature equation, we shall be able to derive th
set of superspace descent equations for the invariant action and for the U~1! axial anomaly from a
unique equation of the type

d̃ṽ50, ~I.11!

ṽ being a suitable superspace cocycle andd̃ the generalized nilpotent operator entering the z
curvature condition. In addition, a modified version of Eq.~I.11! will allow us to also include the
more complex case of theN51 supersymmetric gauge anomaly, thus improving our underst
ing of the well-known nonpolynomial character of this anomaly.

The zero curvature equation and the related possibility of collecting the superspace d
equations into a unique condition represent the main results of this paper. Their relevance
to the fact that, besides the possibility of recovering the solutions of the BRS consistency
tion in a simple way, they provide an interesting pure geometrical framework inN51 superspace
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The work is organized as follows. In Sec. II we introduce the general notations and we d
the supersymmetric decomposition~I.9!. Section III is devoted to the analysis of the algebr
relations entailed by the operatorsza andz̄ ȧ . In Sec. IV we present the zero cuvature formulati
of the superspace BRS transformations and of the descent equations corresponding to the i
super Yang–Mills Lagrangian. In Sec. V we discuss the descent equations for the supe
version of the U~1! axial anomaly. In Sec. VI we deal with the case of the supersymmetric c
gauge anomaly appearing in the quantum extension of the supersymmetric Slavnov–Taylo
tity. In order to make the paper self-contained, in the final Appendices A, B, and C we col
short summary of the main results concerning the Yang–Mills superspace BRS cohomolo
well as the solution of certain equations relevant for the superspace version of the descen
tions.

II. GENERAL NOTATIONS AND DECOMPOSITION FORMULAS

In order to present the general algebraic setup, let us being by fixing the notations.~The
superspace conventions used here are those of Ref. 24.! We shall work in a four-dimensiona
space–time withN51 supersymmetry. The superfield content that will be used throughout i
standard set of the superfields of the pureN51 super-Yang–Mills theories, i.e., the vector sup
field f and the gauge superconnectionswa and w̄ ȧ . They are defined as

wa[e2fDaef, w̄ ȧ[efD̄ ȧe2f, ~II.12!

whereDa and D̄ ȧ are the usual supersymmetric derivatives:

$Da ,Db%5$D̄ ȧ ,D̄ ḃ%50,

DaD̄ ȧ1D̄ ȧDa52isaȧ
m ]m . ~II.13!

Introducing now the chiral and antichiral Faddeev–Popov ghostsc and c̄,

D̄ ȧc5Dac̄50,

for the superspace nilpotent BRS transformations, one has

sef5efc2 c̄ef, sc52c2, sc̄52 c̄2,
~II.14!

swa52Dac2$c,wa%, sw̄ ȧ52D̄ ȧc̄2$c̄,w̄ ȧ%,

and

$s,Da%5$s,D̄ ȧ%50.

Let us also give, for further use, the BRS transformations of the chiral and antichiral supe
strengthsFa and F̄ ȧ ,

Fa[D̄2wa , D̄ ȧFa50,

F̄ ȧ[D2w̄ ȧ , DaF̄ ȧ50, ~II.15!

sFa52$c,Fa%, sF̄ȧ52$c̄,F̄ ȧ%. ‘

The quantum numbers, i.e., the dimensions, the ghost numbers, and theR weights of all the fields
are assigned as follows~Table I!.
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The fields will be treated as commuting or anticommuting according to the fact that their
degree, here chosen to be the sum of the ghost number and of the spinorial indices, is even
Otherwise stated, all the fields are Lie-algebra valued, the gauge groupG being assumed to be
semisimple Lie group with anti-hermitian generatorsTa.

The set of fields (c,c̄,f,wa ,w̄ ȧ) and their covariant derivatives will define therefore the ba
local space for studying the superspace descent equations. Let us also observe that due to
thatD, D̄ have dimension1

2, the number of covariant derivatives turns out to be limited by pow
counting requirements. For instance, as we shall see in the explicit examples considered
next sections, the analysis of the superspace consistency condition for both the U~1! axial anomaly
and the gauge anomaly requires the use of local formal power series in the var
(c,c̄,f,wa ,w̄ ȧ) of dimension 2. We recall here that the nonpolynomial character of certaN
51 superspace expressions is due to the fact that the vector superfieldf is dimensionless. Finally
whenever the space time derivatives]m appear they are meant to be replaced by the covar
derivativesD,D̄, according to the supersymmetric algebra~II.13!.

Let us introduce now the two operatorsza and z̄ ȧ of ghost number21, defined by

zac5wa , z̄ ȧc̄5w̄ ȧ ,

zac̄5 z̄ ȧc5zaf5 z̄ ȧf50, ~II.16!

zawb5 z̄ ȧwb50.

Thus, it is almost immediate to check that they are of total degree zero and that they ob
following algebraic relations:

@za ,s#5Da , @ z̄ ȧ ,s#5D̄ ȧ ,
~II.17!

@za ,zb#5@za ,z̄ ḃ#5@ z̄ ȧ ,z̄ ḃ#50,

yielding then the supersymmetric decomposition~I.9! we are looking for. As we shall see later o
the operatorsza and z̄ ȧ will turn out to be very useful in order to solve the superspace des
equations. Let us focus, for the time being, on the analysis of the consequences stemming f
equations~II.17!.

III. ALGEBRAIC RELATIONS

To study the algebra entailed by the two operatorsza andz̄ ȧ , let us first observe that they d
not commute with the supersymmetric covariant derivativesD, D̄. Instead, as one can easily che
by using the equations~11.16! we have, in complete analogy with the nonsupersymmetric ca4

@ z̄ ḃ ,Da#5@za ,D̄ ḃ#52Gaḃ , ~III.18!

@ z̄ ȧ ,D̄ ḃ#5@za ,Db#50, ~III.19!

where the new operatorGaḃ has negative ghost number21 and acts on the fields as

TABLE I. Dim., ghost numb., andR weights.

s Da D̄ ȧ
f c c̄ wa w̄ȧ Fa F̄ ȧ

dim 0
1
2

1
2 0 0 0

1
2

1
2

3
2

3
2

Ng 1 0 0 0 1 1 0 0 0 0
R 0 1 21 0 0 0 1 21 21 1
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Gaȧc5D̄ ȧwa , Gaȧc̄5Daw̄ȧ ,
~III.20!

Gaȧf5Gaȧwb5Gaȧw̄ ḃ50,

and

$Gaȧ ,s%5$Da ,D̄ ȧ%,
~III.21!

@za ,Gbḃ#5@ z̄ ȧ ,Gbḃ#5$Gaȧ ,Gbḃ%50.

Again, the operatorGaḃ does not anticommute with the covariant derivativesD,D̄. It yields, in
fact,

$Gaȧ ,Db%52 1
2eabR̄ȧ , $Gaȧ ,D̄ ḃ%5 1

2eȧḃRa , ~III.22!

with Ra and R̄ȧ of ghost number21 and defined as

Rac5Fa , R̄ȧc̄5F̄ ȧ ,

Rac̄52D̄ ȧDaw̄ȧ1DaD̄ ȧw̄ ȧ1~Daw̄ȧ!w̄ ȧ1w̄ ȧ~Daw̄ȧ!,

R̄ȧc52DaD̄ ȧwa1D̄ ȧDawa1~D̄ ȧwa!wa1wa~D̄ ȧwa!, ~III.23!

Raf5Rawb5Raw̄ḃ5RaFb5RaF̄ ḃ50,

R̄ȧf5R̄ȧwb5R̄ȧw̄ ḃ5R̄ȧFb5R̄ȧF̄ ḃ50.

In addition, we have

@Ra ,s#5@Ra ,Db#5@Ra ,D̄ ḃ#5@Ra ,Gaḃ#50,
~III.24!

@Ra ,zb#5@Ra ,z̄ ḃ#5@Ra ,Rb#5@Ra ,R̄ḃ#50.

Let us display the quantum numbers of the operators entering the algebraic relations~II.17!,
~III.18!, ~III.22! ~Table II!.

In the next section, it will be shown how the operators in the Table II can be combined
a unique generalized operator by means of the introduction of a set of global parameters.
parameters will be required to fulfill a certain number of suitable conditions@see Eqs.~IV.26! in
the next section#, which will project the algebra~II.17!, ~III.18!, ~III.22! on the equations of
motion of N51 super-Yang–Mills, and will allow us to cast the BRS transformations of
superfields in the form of a zero curvature condition in superspace. In particular, the introd
of the aforementioned global parameters will have the effect of realizing the decomposition~II.17!
on all the elementary superfields (c,c̄,f,wa ,w̄ ȧ) and their covariant derivatives on shell, i.e
modulo the equations of motion. Therefore, we can assume as the basic functional space
forthcoming analysis that of the polynomials in the elementary superfields and their cov

TABLE II. Dim., ghost numb., andR weights.

za z̄ȧ Gaȧ Ra
R̄ȧ

Dim
1
2

1
2 1

3
2

3
2

Ng 21 21 21 21 21
R 1 21 0 21 1
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derivatives bounded by dimension two. This limitation comes directly from superspace p
counting considerations. Moreover, all possible nontrivial counterterms and anomalies allow
the power counting will be included.

IV. THE ZERO CURVATURE CONDITION

Having characterized all the relevant operators entailed by the consistency of the sup
metric decomposition~II.17!, let us pay attention to the geometrical aspects of the algeb
relations so far obtained. To this purpose it is useful to introduce a set of global parametersea, ēȧ,
and ẽaȧ, naturally associated to the operatorsza , z̄ ȧ , and Gaḃ , of ghost number one, an
obeying the relations~Table III!

eaeb5ēȧēḃ5ẽaȧẽbḃ50,
~IV.25!

@ea,ēḃ#5@ea,ẽbḃ#5@ ẽaȧ,ēḃ#50.

In addition, the global parameters (ea,ēȧ,ẽaȧ) will be required to obey the following condi
tions ~see also Appendix D!:

eaẽbȧ52 1
2e

abegẽg
ȧ , ẽaȧēḃ5 1

2e
ȧḃẽġ

aēġ,

~IV.26!

eaẽbȧēḃ52 1
4e

abeȧḃegẽgġẽġ,

fixing the symmetry properties of the product of two parameters with respect to their spin
indices. Defining now the nilpotent dimensionless operatorsz,z̄, andG as

z5zaea , z̄5 z̄ ȧēȧ, G5Gȧ
aẽa

ȧ ,

it is straightforward to verify that they have zero ghost number andR weight, respectively, 1,21,
0, and that the subalgebra generated byza , z̄ ȧ , andGaḃ , i.e.,

@za ,zb#5@za ,z̄ ḃ#5@ z̄ ȧ ,z̄ ḃ#50,

@za ,Gbḃ#5@ z̄ ȧ ,Gbḃ#5$Gaȧ ,Gbḃ%50,

can be simply rewritten as

@z,b̄#5@z,G#5@ z̄,G#50.

TABLE III. Dim., ghost numb., andR weights.

ea ēȧ ẽaȧ

dim 2
1
2 2

1
2 21

Ng 1 1 1
R 0 0 0
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Analogously, introducing the nilpotent operatorsG̃,D,D̄,R,R̄,],]̃

G̃5Gȧ
aeaēȧ, G5Gȧ

aẽa
ȧ ,

D5Daea , D̄5D̄ ȧēȧ,
~IV.27!

R5Raẽaȧēȧ, R̄5R̄ȧeaẽa
ȧ ,

]̃5$Da,D̄ ȧ%eaēȧ, ]5$Da,D̄ ȧ%ẽa
ȧ ,

it is immediate to check that all the algebraic relations and field transformations of eqs.~II.16!–
eqs.~III.24! may be cast into the following free index notation

@z,s#5D, @ z̄,s#5D̄, $G̃,s%5 ]̃, @G,s#5],

$s,D%50, $s,D̄%50, @s,]̃ #50, $s,]%50,

@D,]̃ #50, @D̄,]̃ #50, $D,]%50, $D̄,]%50,

@D,z#50, @D̄,z̄ #50, @D̄,z#5G̃, @D,z̄ #5G̃,

@],]̃ #50, @G,G̃#50, @z,G̃#50, @ z̄,G̃#50,

@G,]#50, @G̃,]̃ #50, @G,]̃ #50, $G̃,]%50,
~IV.28!

$G̃,D%50, $G̃,D̄%50, 2@D,G#5R̄, 2@G,D̄#5R,

@z,]̃ #50, @ z̄,]̃ #50, 2@z,]#5R̄, 2@],z̄ #5R,

@z,R#50, @z,R̄#50, @ z̄,R#50, @ z̄,R̄#50,

@R,]̃ #50, @R̄,]̃ #50, $R,]%50, $R̄,]%50,

$D,R%50, $D̄,R%50, $D,R̄%50, $D̄,R̄%50,

$G̃,R%50, $G̃,R̄%50, @G,R#50, @G,R̄#50,

$s,R%50, $s,R̄%50, $R,R̄%50.

Let us proceed now by showing that, as announced in the Introduction, the supersymmetri
transformations~II.14!, ~II.15! can be obtained by means of a generalized zero curvature co
tion. To this aim let us introduce the operatord,

d5z1 z̄2G, ~IV.29!

from which one easily obtains the following decomposition:

@s,d#52D2D̄2].

Defining now thed transform of the BRS operators as

d̃5edse2d, ~IV.30!
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one gets

d̃5s1D1D̄1]2G̃1 1
2R̄2 1

2R,
~IV.31!

d̃d̃50,

so that, callingÃ andA! the d transform of the chiral and antichiral ghosts (c,c̄),

Ã5edc5c1w1D̄w, w5waea , ~IV.32!

A! 5edc̄5 c̄1w̄1Dw̄, w̄5w̄ ȧēȧ, ~IV.33!

it follows that the BRS transformations of (c,c̄) imply the zero curvature equations,

edse2dedc52edc2⇒d̃Ã1Ã250 ~IV.34!

and

edse2dedc̄52edc̄2⇒d̃A! 1A! 250. ~IV.35!

Equations~IV.34! and~IV.35! are easily checked to reproduce all the BRS transformations~II.14!,
~II.15!, as well as the whole set of the equations~III.20!–~III.23!. One sees, thus, that, in comple
analogy with the nonsupersymmetric case,16 the zero curvature equations~IV.34! and ~IV.35!

deeply rely on the existence of the operatorsza and z̄ ȧ . Let us underline here that the nilpote
operatord̃ in Eq. ~IV.31! will play a rather important role in the discussion of the supersp
descent equations. For instance, as we shall see explicitly in the example given in the next s
it turns out that the superspace descent equations corresponding to the BRS-invariant coun
can be remarkably obtained from the single equation,

d̃ṽ50, ~IV.36!

whereṽ is an appropriate cocycle of dimension zero and ghost number three, whose comp
are the superspace field polynomials of the Taylor expansion ofṽ in the global parameters
(ea,ēȧ,ẽaȧ). Equation~IV.36! can also be applied to characterize the descent equations o
U~1! anomaly. In Sec. VI we shall see that a slight modification of Eq.~IV.36! will allow us to
treat the case of the Yang–Mills gauge anomaly, as well. In all these cases the componenṽ
will not exceed dimension two, this dimension being taken as the upper limit of our super
analysis of the descent equations. In other words, in what follows we shall limit ourselves
study of the solutions of the superspace descent equations in the space of local functiona
dimension less or equal to two. In particular, according to Table I, this implies that the max
number of covariant derivativesD,D̄ present in each component ofṽ is four.

Let us conclude this section with the following important remark. Being interested in
descent equations involving superspace functionals of dimension less or equal to two, we
have checked the closure of the algebra~IV.28! built up by the operators
(s,z,z̄,G,G̃,D,D̄,R,R̄,],]̃) on all the fields and their covariant derivatives up to reaching dim
sion two. It is not difficult to convince oneself that actually there is a breakdown of the closu
this algebra in the highest level of dimension two. However, as it usually happens in supe
metry, the breaking terms turn out to be nothing but the equations of motion corresponding
pureN51 susy Yang–Mills action, thus implying an on-shell closure of the algebra. Evalua
in fact, the commutator between the operatorsz ands on the superfield strengthF, one gets

@z,s#F52@w,F#. ~IV.37!
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The right-hand side of the equation~IV.37! can be rewritten as

@z,s#F5DF2~DF1@w,F# !,

so that, recalling that

DF1@w,F#52 1
2e

gẽgġēġ~DaFa1$wa,Fa%!50, ~IV.38!

are precisely the equations of motion of the pureN51 susy Yang–Mills action, one obtains

@z,s#F5DF2equation of motion. ~IV.39!

It is worth underlining here that the on-shell closure of the algebra relies precisely o
introduction of the global parametersea,ēȧ,ẽaȧ and on the relations~IV.26!. Nevertheless, this
on-shell closure does not represent a real obstruction in order to solve the superspace con
conditions. In fact, from Eq.~IV.38! and from Table I, one can observe that the equations
motion of N51 super-Yang–Mills are of dimension two. Therefore, they could eventually c
tribute only to the highest level of the descent equations. Rather, the above on-shell c
~IV.28! is related to the absence of the so-called BRS external fields~i.e., the Batalin–Vilkoviski
antifields!, which are known to properly take care of the equations of motion. However, as s
by Refs. 17, 18, and 24, these external fields do not contribute to the superspace BRS coho
in the cases considered here of the U~1! chiral anomaly, of the gauge anomaly as well as of
invariant counterterms. This is the reason why we have discarded them. In Appendix C it w
shown how the introduction of an appropriate external field takes care in a simple way o
Yang–Mills equations of motion, thus closing the algebra off shell.

A. Nonchiral descent equations for the invariant action

In order to apply the supersymmetric decomposition~II.17! to the analysis of the superspac
descent equations, let us begin by considering the BRS consistency condition correspondin
nonchiral Yang–Mills invariant action, i.e.,

sE d4x d2u d2ū L050⇒sL05DaLa
11D̄ ȧL1ȧ, ~IV.40!

whereL0 is a local power series of dimension two and ghost number zero. According to wha
mentioned in the previous section, the full set of the superspace descent equations charac
L0 can be obtained directly from the generalized equation,

d̃ṽ50, ~IV.41!

with ṽ a generalized cocycle of ghost number three and dimension zero, whose Taylor exp
in the global parameters (ea,ẽaȧ,ēȧ) reads as

ṽ5v31v2aea1v̄ȧ
2 ēȧ1ṽȧ

2aẽa
ȧ1ṽȧ

1aeaēȧ1v1aẽaȧēȧ1v̄ȧ
1eaẽa

ȧ1v0eaẽaȧēȧ.
~IV.42!

TABLE IV. Dim. and ghost numb.

v3 v2a v̄ȧ
2 ṽȧ

2a ṽȧ
1a v1a v̄ȧ

1 v0

dim 0
1
2

1
2 1 1

3
2

3
2 2

Ng 3 2 2 2 1 1 1 0
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The coefficients (v3,v2a,v̄ȧ
2,ṽȧ

2a ,ṽȧ
1a ,v1a,v̄ȧ

1,v0) are local power series in the superfields w
the following quantum numbers~Table IV!.

In particular, one observes that the coefficientv0 in the expression~IV.42! has the same
dimension of the invariant action we are looking for, thus justifying the choice of the qua
numbers ofṽ in Eq. ~IV.41!.

The generalized condition~IV.41! is easily worked out and yields the following set of equ
tions:

sv052 1
2D

ava
11 1

2D̄ ȧv̄1ȧ1 1
4R̄ȧv̄2ȧ1 1

4R
ava

22 1
4$D

a,D̄ ȧ%ṽa
1ȧ2 1

4Gȧ
aṽa

2ȧ ,

sv̄ȧ
1
52 1

2$D
a,D̄ ȧ%va

22 1
2D

aṽaȧ
2

1 1
2R̄ȧv3,

~IV.43!
sṽȧ

1a52Dav̄ȧ
2
2D̄ ȧv2a1Gȧ

av3, sv1a5 1
2$D

a,D̄ ȧ%v̄2ȧ1 1
2D̄ ȧṽ2aȧ2 1

2R
av3,

sv̄ȧ
2
52D̄ ȧv3, sṽȧ

2a5$Da,D̄ ȧ%v3, sv2a52Dav3, sv350.

These equations do not yet represent the final version of the superspace descent equation
the presence of the operators (Gaȧ ,Ra ,R̄ȧ) on their right-hand sides. However, we shall pro
that these undesired terms can be rewritten as pure BRS cocycles or as total superspace
tives, meaning that they can be eliminated by means of a redefinition of thev’s cocycles entering
the equations~IV.43!. Let us first observe that a particular solution of the tower~IV.43! can be
fully expressed in terms of the BRS invariant cocyclev3. In fact, owing to the zero curvatur
equations~IV.30!, ~IV.34!, and~IV.35!, it is apparent that the system~IV.43! is solved by

ṽ5edv3, ~IV.44!

which, when written in components, yields the following expressions:

v2a5zav3, ṽȧ
2a5Gȧ

av3,

v̄ȧ
2
5 z̄ ȧv3, v1a5 1

2Gȧ
az̄ ȧv3,

~IV.45!
ṽȧ

1a5zaz̄ȧv3, v̄ȧ
1
52 1

2Gȧ
azav3,

v05 1
4z

aGaȧz̄ ȧv3.

In particular, from the results on the superspace BRS cohomology18,19,25~see Appendix B!, it turns
out that the most general form forv3 can be identified with the invariant ghost monomial,

TrS c3

3 D , ~IV.46!

which, of course, is determined modulo a trivial exact BRS cocycle. Recalling then~Appendix B!
that the difference (Trc32Tr c̄3) is cohomologically trivial, i.e.,

Tr c32Tr c̄35s~¯ !,

we can choose forv3 the following symmetric expression@one should observe that due to th
anti-hermiticity property of the group generatorsTa, the cocycle (Trc31Tr c̄3) is real#:

v35TrS c3

3 D1TrS c̄3

3 D . ~IV.47!
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On the other hand, it is easily established that all the termsRav3, R̄ȧv3, Rava
2, R̄ȧv̄2ȧ on the

right-hand side of Eqs.~IV.43! are trivial BRS cocycles. Considering, for instance, the first te
we have, from Eqs.~III.24!,

sRav35Rasv350, ~IV.48!

which implies thatRav3 belongs to the cohomology ofs in the sector of ghost number two an
dimension one-half. Therefore, being the BRS cohomology empty in this sector, it follows

Rav35sL1a, ~IV.49!

as well as

R̄ȧv35sL̄1ȧ. ~IV.50!

In fact, from

Ra TrS c3

3 D5s Tr~cRac!5s Tr~cFa!,

R̄ȧ TrS c3

3 D5s Tr~cR̄ȧc!,

and

Ra TrS c̄3

3 D5s Tr~ c̄Rac̄!,

R̄ȧ TrS c̄3

3 D5s Tr~ c̄R̄ȧc̄!5s Tr~ c̄F̄ ȧ!,

we have thatL1a and L̄1ȧ can be identified, modulo trivial terms, with

L1a5Tr~cFa!1Tr~ c̄Rac̄!, L̄1ȧ5Tr~ c̄F̄ ȧ!1Tr~cR̄ȧc!, ~IV.51!

whereR̄ȧc,Rac̄ are given in Eqs.~III.23!.
In the same way, we have

Rava
25Razav35zaRav35zasL1a5s~zaL1a!1DaL1a, ~IV.52!

showing thatRava
2 is a trivial BRS cocycle plus a total superspace derivative. The same co

sions hold forR̄ȧv3 andR̄ȧv̄2ȧ and can be extended by similar arguments to include theG terms
Gȧ

av3 andGȧ
aṽa

2ȧ .
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The final result is that the equations~IV.43! can be rewritten without the explicit presence
the operatorsR andG, thus yielding the final version of the superspace descent equations fo
invariant action, i.e.,

s~v01 1
4 z̄ ȧL̄1ȧ1 1

4 zaLa
1 !52 1

2D
a~va

11 1
2La

1!1 1
2D̄ ȧ~ v̄1ȧ2 1

2L̄
1ȧ!,

s~v̄ȧ
1
2 1

2L̄ȧ
1 !52 1

2D̄ ȧDava
22DaD̄ ȧva

22 1
2D

2v̄ȧ
2,

s~v1a1 1
2L

1a!5 1
2D

aD̄ ȧv̄2ȧ1D̄ ȧDav̄2ȧ1 1
2D̄

2v2a,
~IV.53!

sv̄ȧ
2
52D̄ ȧv3,

sv2a52Dav3,

sv350.

In particular, the first equation of the above system explicitly shows that the invariant a
L0 can be identified with

L05v01 1
4z̄ ȧL̄1ȧ1 1

4z
aLa

1. ~IV.54!

The above expression has to be understood modulo an exact BRS cocycle or a total sup
derivative. Its nontriviality relies on the nontriviality of the ghost cocycle~IV.47!, as one can show
by using a well-known standard cohomological argument.14,15 Recalling then the expression
~IV.45!, ~IV.51!, for L0, we get

L05 1
4 Tr~waFa!1 1

4 Tr~ w̄ ȧF̄ ȧ!,

which when integrated on the full superspaced4x d2u d2ū, yields the familiarN51 supersym-
metric invariant Yang–Mills Lagrangian~here we recall the useful superspace iden
*d4x d2u d2ū5*d4x d2u D̄2!:

SYM5E d4x d2u d2ū L05
1

4 E D4x d2u Tr FaFa1
1

4 E d4x d2ū Tr F̄ ȧF̄ ȧ.

V. DESCENT EQUATIONS FOR THE U„1… ANOMALY

As already remarked in the Introduction the BRS consistency condition for the chiral~1!
axial anomaly reads19,24 as

sE d4x d2ū K050⇒sK05D̄ ȧK̄1ȧ, ~V.55!

whereK0 andK̄1ȧ have dimensions two and three half and ghost numbers zero and one, re
tively. K0 has thus the same quantum numbers of the invariant action considered in the pr
section, the only difference lying in the fact that the superspace measure, i.e.,d4x d2ū, is now
chiral instead of the vector oned4x d2ū d2u. Therefore the descent equations forK0 are obtained
by performing the chiral limit of the vector equations~IV.43!. Acting indeed with the BRS
operator on the second equation of the condition~V.55!, we obtain

D̄ ȧsK̄1ȧ50. ~V.56!
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Using then the results given in Appendix A, it follows that the general solution of the equ
~V.56! is given by

sK̄1ȧ5~D̄ ȧDa12DaD̄ ȧ!Ka
2,

~V.57!
D̄2Ka

250,

whereKa
2 is of dimension one-half and ghost number two. Again, acting with the BRS operat

Eq. ~V.57!, one gets

~D̄ ȧDa12DaD̄ ȧ!sKa
250, ~V.58!

which, according to Appendix A, implies that

sKa
25DaK3,

D̄2DaK350, D2D̄ ȧK350,

with K3 of dimension zero and ghost number three. Finally, from

DasK350,

it follows that

sK350.

Summarizing, the superspace descent equations for the U~1! chiral axial anomaly are

sK05D̄ ȧK̄1ȧ,

sK̄ȧ
1
5~2DaD̄ ȧ1D̄ ȧDa!Ka

2, ~V.59!

sK2a5DaK3, sK350,

with the constraints

D̄2Ka
250,

~V.60!
D̄2DaK35D2D̄ ȧK350.

Recalling then the result of the previous section, forK3 we have

K35S Tr
c3

3
1Tr

c̄3

3 D1sD2, ~V.61!

for some local power seriesD2. It is interesting to observe that in this case the constraints~V.60!
fix completely the trivial part ofK3, giving, for instance,

sD250.

Acting with the operatorza on both sides of the last of Eqs.~V.59!, and making use of the
decomposition~II.17!, for Ka

2 one gets

Ka
252zaK31sDa

1.
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Once more, it is not difficult to prove that the imposition of the constraints~V.60! yields a
unique expression forDa

1, i.e.,

Da
15Tr~cwa!,

so that forKa
2 we get

Ka
25Tr~cDac!.

One sees thus that in the chiral case, due to the constraints~V.60!, the trivial BRS contributions
are uniquely fixed at the lowest levels of the descent equations. Repeating now the same pr
and making use of the relations~III.18! for K̄1ȧ, one obtains

K̄1ȧ5GaȧKa
22L̄1ȧ1DaD̄ ȧ Tr~cwa!1Tr~ c̄F̄ ȧ!1sD0ȧ, ~V.62!

where the cocycleL̄1ȧ is the same as in Eq.~IV.48!, i.e.,

L̄1ȧ5Tr~cR̄ȧc!1Tr~ c̄F̄ ȧ!.

Thus, that it follows

K̄1ȧ522 Tr~DacD̄ȧwa!1sD0ȧ. ~V.63!

Finally, acting with the operatorz̄ ȧ on both sides of the equation,

sK̄ȧ
1
5~2DaD̄ ȧ1D̄ ȧDa!Ka

2,

for the last levelK0, we find

K052 z̄ ȧK̄1ȧ1Tr~2waFa1D̄ ȧwaD̄ ȧwa!,

reproducing the well-known expression for the U~1! supersymmetric chiral anomaly,

K05Tr~2waFa2D̄ ȧwaD̄ ȧwa!2D̄ ȧD0ȧ.

Let us conclude by remarking that the expressions of the cocyclesK3, Ka
2, K̄1ȧ, andK0 found

here are completely equivalent to those of Ref. 19, i.e., the difference is an exact BRS coc
a total superspace derivative.

VI. THE SUPERSYMMETRIC GAUGE ANOMALY

As the last example of our superspace analysis, let us consider the case of the supersy
gauge anomaly. As usual, let us first focus on the derivation of the corresponding descen
tions. The latter, as mentioned in the Introduction and in Sec. IV, can be obtained by adding
right-hand side of the generalized equation~IV.41! an appropriate extra term. The presence of t
term actually stems from the BRS triviality18 of the pure ghost cocycles (Trc2n112Tr c̄2n11),
n>1,

sV2n5Tr
c2n11

2n11
2Tr

c̄2n11

2n11
, ~VI.64!

V2n being a local dimensionless functional of (f,c,c̄) with ghost number 2n. Acting in fact with
the operatored on both sides of Eq.~VI.64! and recalling the definitions~IV.32! and~IV.33!, we
get the desired modified version of the generalized superspace equation~IV.41! we are looking
for,
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d̃Ṽ5Tr
Ã2n11

2n11
2Tr

A! 2n11

2n11
,

~VI.65!
Ṽ5edV2n.

The descent equations for the gauge anomaly follows then from Eq.~VI.65! whenn52, i.e.,

d̃Ṽ5 1
5 Tr~Ã52A! 5!,

~VI.66!
Ṽ5edV4.

To see that the above equation characterizes indeed the gauge anomaly, let us write it in
nents. ExpandingṼ in the global parameters (ea,ēȧ,ẽa

ȧ),

Ṽ5V41V3aea1V̄ȧ
3 ēȧ1Ṽȧ

3aẽa
ȧ1Ṽȧ

2aeaēȧ1V2aẽaȧēȧ1V̄ȧ
2eaẽa

ȧ1V1eaẽaȧēȧ,
~VI.67!

and eliminating theG andR terms as done in Sec. IV A, we get the known descent equation
the superspace gauge anomaly,18,25

sV15DaVa
21D̄ ȧV2ȧ,

sVa
252D̄2Va

31~2D̄ ȧDa1DaD̄ ȧ!V̄3ȧ12 Tr„~DaD̄ ȧc̄!~ c̄D̄ ȧc̄1D̄ ȧc̄c̄!…,

sV̄2ȧ5D2V̄3ȧ2~2DaD̄ ȧ1D̄ ȧDa!Va
322 Tr„~D̄ ȧDac!~cDac1Dacc!…,

~VI.68!
sVa

35DaV41Tr~c3Dac!,

sV̄3ȧ52D̄ ȧV41Tr~ c̄3D̄ ȧc̄!,

sV45 1
5Tr~c52 c̄5!.

One sees, in particular, that integrating the first equation of~VI.68! on superspace, the cocycleV1

obeys exactly the BRS consistency condition corresponding to the possible gauge breakin

sE d4x d2u d2ū V150,

identifying thereforeV1 with the supersymmetric Yang–Mills anomaly.
In order to find a solution of the descent equations~VI.68!, we use the same climbing proce

dure of the previous examples, obtaining the following nontrivial expressions:

Va
352zaV42Tr~wac3!,

V̄3ȧ5 z̄ ȧV42Tr~ w̄ ȧc̄3!,

Va
25Gaȧz̄ ȧV41D̄ ȧz̄ ã̇zaV42Tr„w̄ ȧ~Daw̄ȧ!c̄22w̄ ȧc̄~Daw̄ȧ!c̄1w̄ ȧc̄2Daw̄ȧ

…

12 Tr„~Daw̄ȧ!~ c̄D̄ ȧc̄1D̄ ȧc̄c̄!…,

V̄2ȧ5GaȧzaV41DazȧzaV41Tr„wa~D̄ ȧwa!c̄22wac̄~D̄ ȧwa!c̄1wac̄2D̄ ȧwa…

22 Tr„~D̄ ȧwa!~cDac1Dacc!…, ~VI.69!
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and for the gauge anomaly,

V152zaGaȧz̄ ȧV412 Tr„Facwa2Fawac1~D̄ ȧwa!~D̄ ȧwa!c…

22 Tr„F̄ ȧc̄w̄ ȧ2F̄ ȧw̄ ȧc̄1~Daw̄ȧ!~Daw̄ȧ!c̄…. ~VI.70!

One should observe that the explicit final expression for the gauge anomaly depends
knowledge of the cocycleV4 solution of the last of the descent equations~VI.68!. This point is
particularly important and deserves some further clarifying remarks.

A. Nonpolynomial character of the gauge anomaly

It is known that due to a theorem by Ferrara, Girardello, Piguet, and Stora,26 the superspace
gauge anomaly cannot be expressed as a polynomial in the variables (wa ,la[ewDae2w) and
their covariant derivatives. In fact, all the known superspace closed expressions of the
anomaly so far obtained by means of homotopic transgression procedures27–30show up as a highly
nonpolynomial character in the gauge superconnection. On the other hand, in our approa
simple knowledge of the cocycleV4 would produce a closed expression for the supersymme
gauge anomaly without any homotopic integral. Of course, this would imply a deeper under
ing of this anomaly. It is not difficult, however, to convince oneself that solving the equatio

sV45 1
5Tr~c52 c̄5! ~VI.71!

is not an easy task. This is actually due to the BRS transformation of the vector superfieldf,

sef5efc2 c̄ef,

which when written in terms off, takes the highly complex form24

sf5
1

2
Lf~c1 c̄!1

1

2
LfFcothSLf

2 D G~c2 c̄!, ~VI.72!

where

Lf•5@f,•#,

and

cothSLf

2 D5
eLf/21e2Lf/2

eLf/22e2Lf/2 .

The formula~VI.72! can be expanded in powers off, allowing us to solve the equation~VI.71!
order by order in the vector superfieldf. For instance, in the first approximation, which corr
sponds to the Abelian limit of retaining only the linear terms of the BRS transformations, i.

s→sab ,

with

sabf5c2 c̄,

sabc5sabc̄50,

one easily checks that

Tr~c52 c̄5!5sab Tr„f~c41c3c̄1c2c̄21cc̄31 c̄4!…, ~VI.73!
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which shows indeed the BRS triviality1 of Tr(c52 c̄5).
To our knowledge a closed exact form forV4 has not yet been established. In other wor

due to the theorem of Ferrara, Girardello, Piguet, and Stora,26 the nonpolynomiality of the super
symmetric gauge anomaly directly relies on the nonpolynomial nature of the cocycleV4. Any
progress in this direction will be reported as soon as possible.

Let us conclude this section by giving the explicit expression of the gauge anomaly~VI.70! up
to the second order in the vector fieldf, i.e.,

V1522 Tr„DafD̄2Dafc1D̄2DafDafc2~D̄ ȧDaf!~D̄ ȧDaf!c…12 Tr„D̄ ȧfD2D̄ ȧf c̄

1D2D̄ ȧfD̄ ȧf c̄2~DaD̄ ȧf!~DaD̄ ȧf!c̄…, ~VI.74!

which is easily recognized to be equivalent to that of Ref. 18. One should also observe th
above expressions do not receive contributions from the termV4 since they are at least of th
order three inf, as it can be checked by applying the combinationzaGaȧz̄ ȧ on the cocycle of Eq.
~VI.73!.

VII. CONCLUSION

The supersymmetric version of the descent equations for the four-dimensionalN51 super-
Yang–Mills gauge theories can be analyzed by means of the introduction of two operators,za and
z̄ ȧ, which decompose the supersymmetric derivativesDa and D̄ ȧ as BRS commutators. Thes
operators provide an algebraic setup for a systematic derivation of the superspace desce
tions. In addition, they allow us to cast both the supersymmetric BRS transformations an
descent equations into a very suggestive zero curvature formalism in superspace.
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APPENDIX A

We list here the superspace algebraic solutions18,19,24,31of some equations needed for th
analysis of the supersymmetric descent equations. All these solutions are built up by supe
They have always to be understood modulo terms that automatically solve the corresp
equations but cannot be written in the same algebraic form as the solutions. The existence
particular terms strongly depends on the superfield content of the particular model under c
eration.

The first result states that the solution of the superspace equation,

D̄2Q50,

can be generically written as

Q5D̄ ȧMȧ,

for some superfieldMȧ.
The second important result concerns the solution of the following equation:

~2D̄ ȧDa1DaD̄ ȧ!Q̄ȧ5D̄2Qa .

For the superfieldsQ̄ȧ andQa , we have now
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Q̄ȧ5D̄ ȧM, Qa52DaM,

withM an arbitrary superfield. Let us observe that in this case the term Tr(cDac), due to the fact
that the ghostc is a chiral superfield, is automatically annihilated by the operatorD̄2. Therefore it
must be included in the expression given forQa , although it cannot be written as a total supe
space derivative.

Considering now the equation

DaQa5D̄ ȧQ̄ȧ,

we have

Qa52D̄2Pa1~2D̄ ȧDa1DaD̄ ȧ!P̄ȧ1DbN~ab! ,
~A1!

Q̄ȧ52D2P̄ȧ1~2DaD̄ ȧ1D̄ ȧDa!Pa1D̄ ḃN̄~ ȧḃ !,

with Pa andN(ab) appropriate superfields. Of course, the existence of the symmetric supe
N(ab) depends on the dimension and on the ghost number ofQa . For instance, in the case of th
vector descent equations~IV.53! in which Qa corresponds tos(va

11 1
2La

1), it is not difficult to
check thatN(ab) is automatically absent due to the quantum numbers of the problem.

In particular, in the case of the chiral descent equations considered in Sec. V, Eqs.~A1! imply
that the most general solution of Eq.~V.56! is given indeed by

sK̄1ȧ5~D̄ ȧDa12DaD̄ ȧ!Ka
2,

with the constraint

D̄2Ka
250.

APPENDIX B

In this appendix we summarize some useful results concerning the BRS superspace co
ogy for the N51 supersymmetric Yang–Mills gauge theories. The various BRS cohom
classes are labeled by the ghost numberg and by the spinor indices.

The following results hold.18,19,25

~1! The BRS cohomology is empty in the space of the invariant local power seriesAg with
dimension 2 and positive ghost numberg.

~2! The cohomology classes corresponding to local BRS invariant cocyclesAa
g or Āȧ

g with
dimension3

2 and ghost numberg51, 2, or 3 are empty.
~3! The cohomology classes in the space of the BRS-invariant local power seriesAa

g or Āȧ
g

with dimension1
2 and ghost numberg greater than zero are empty.

~4! The BRS cohomology classes in the space of the local power seriesAg with dimension 0,
ghost numberg, and at least of orderg11 in the fields are empty.

~5! Any invariant objectAg with dimension 0 and even ghost numberg greater than zero and
of orderg in the fields is BRS trivial.

In particular, it turns out that in the pure ghost sector the BRS cohomology classes are
by polynomials built up with monomials of the type

Tr
c2n11

2n11
, n>1, ~B1!

or
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Tr
c̄2n11

2n11
, n>1. ~B2!

We remark also that the two expressions above~B1! and ~B2! do not actually define differen
cohomology classes. Instead they are equivalent, due to the triviality18,24 of the combination,

Tr
c2n11

2n11
2Tr

c̄2n11

2n11
5sV2n,

for some local power seriesV2n. This result implies that the expressions~B1! and~B2! are related
to each other by means of an exact BRS cocycle.

APPENDIX C

In this appendix we show that the off-shell closure of the algebra~IV.28! can be recovered in
a simple way by introducing an appropriate external fieldh. Indeed, leth be a superfield with
dimension 2 and ghost number21, whose BRS transformation reads as

sh5@h,c#12~DF1@w,F# !,

s2h50.

Modifying now the operatorz in such a way that

zF52 1
2h,

it is easily verified that the commutator~IV.37!

@z,s#F52z@c,F#1 1
2sh5DF,

gives now the covariant derivative ofF without making use of the equations of motion, closi
therefore the algebra~IV.28! off shell. Let us conclude by also remarking that the external fielh
cannot contribute to the BRS cohomology classes relevant for the examples considered
previous sections due to its ghost number and to its dimension.

APPENDIX D

This appendix is devoted to some technical details concerning the introduction of the g
parametersea, ēȧ, and ẽaȧ. As it has been already underlined, these parameters have
introduced in order to project the algebraic relations~II.16!–~III.24! on the equations of motion o
N51 super-Yang–Mills. This has been achieved by requiring that the conditions~IV.26! are
fulfilled. In addition, as it is apparent from the construction of Sec. IV, the introduction of th
global parameters, while collecting all the algebraic relations~II.16!–~III.24! into a unique ex-
tended generalized operatord̃ @see Eq.~IV.31!#, is of great relevance in order to cast the BR
transformations of the superfields and the full system of superspace consistency con
~IV.53!, ~V.59!, and~VI.68! into a unique equation. The latter has the meaning of a zero-curva
condition @see Eqs.~IV.34!–~IV.36!!. Therefore, the expansion of the equation,

d̃ṽ50,

in powers of the global parameters (ea,ē2ȧ,ẽaȧ), will automatically provide the full set of the
superspace consistency conditions for the cocycleṽ. In this sense, the parameters (ea,ēȧ,ẽaȧ)
can be seen as a suitable basis in superspace for the zero curvature formulation ofN51 super-
symmetry.
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It is also worth remarking that this construction does not have the meaning of collecting
an extended BRS operator the various classical symmetries of a given gauge-fixed action, a
for instance, in the case of the extended (N>2) supersymmetric Yang–Mills theories.22,23 @It is
indeed rather simple to convince oneself that the operators (za ,z̄ ȧ) do not actually represen
invariances of the gauge-fixedN51 super-Yang–Mills action.# Rather, it is closer to the zero
curvature formulation of the topological field theories discussed by Refs. 32 and 16 in terms
so-called universal bundle.
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Complete sets of Bloch and Wannier functions composed
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We discuss Bloch and Wannier functions related to oscillator eigenfunctions. In
particular, we construct complete sets of mutually orthogonal Bloch and Wannier
functions. We show that they can be expressed in several ways in terms of theta
functions and their derivatives. We also analyze their localization properties and
discuss expectation values for specifically chosen Hamiltonians. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!02406-8#

I. INTRODUCTION

Localized but nonorthogonal functions, like Gaussian orbitals, are widely used in phy
applications~see, for instance, Ref. 1!. In the case of periodic crystals, the most prominent a
important functions for describing their electronic properties are Bloch2,3 and Wannier4 functions.
Wannier was the first to consider Bloch and Wannier functions composed of Gaussian orb5

He showed that these Bloch functions can be expressed in terms ofu functions, which makes a
detailed analysis of their properties possible.6,7 Another recent work on these topics is Ref. 8.

However, in many applications it is not enough to use only Gaussian orbitals centered
atomic sites. One approach is to use in addition Gaussian orbitals that are centered in be
Alternatively, one could use oscillator eigenfunctions that are all centered at the sites of the
Thus, it is natural to study not only Bloch functions composed of Gaussian orbitals, b
investigate the more general case of Bloch and Wannier functions that are composed of os
eigenfunctions. This is particularly interesting since one can construct a complete set of mu
orthogonal Bloch and Wannier functions. Thus they may be used to expand any arbitrary
function, which might go far beyond the usual expansion in terms of Gaussian orbitals. More
this complete set of orthonormalized Bloch functions provides an alternative to the expansi
terms of plane waves. In fact, the plane waves can be seen as the limits of these orthonorma
functions in the case that the oscillator frequencyv goes to zero~instead ofv we use the
parametera;Av in the following!. Thus, particularly for smalla the Bloch functionscn

a(k,x),
which are composed of oscillator eigenfunctions, are an alternative to the plane wave basis.
other hand, for largea the Bloch functionscn

a(k,x) are typical Bloch functions for tight-binding
approximations. Thus, depending on the choice ofa, these Bloch functions could be useful bo
in tight-binding approximations as well as in the case of nearly free electrons. The id
constructing this complete set of mutually orthogonal Bloch and Wannier functions is the fo
ing: Since the~properly normalized! eigenfunctions form a complete orthonormal system of fu
tions, the corresponding Bloch and Wannier functions should also form a complete basis.
ever, these functions are, in general, not mutually orthogonal. By applying an appro
orthogonalization procedure, we construct a complete set of mutually orthonormal Bloch
Wannier functions.

a!Electronic mail: zeiner@tph.tuwien.ac.at
27570022-2488/99/40(6)/2757/25/$15.00 © 1999 American Institute of Physics
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All these considerations confine to the one-dimensional case. However, it is not diffic
generalize these ideas to the three-dimensional case. In the simplest case of primitive latti
three-dimensional Bloch functions composed of the eigenfunctions of a three-dimensiona
monic oscillator are just products of three one-dimensional Bloch functions composed of e
functions of one-dimensional harmonic oscillators.

In the first section of this paper we transform the oscillator eigenfunctionsun(x) into Bloch
functionsfn(k,x) and discuss their properties as well as the corresponding Wannier functio
particular, we show that these Bloch and Wannier functions are, in general, not orthogon
different values ofn. In the following sections we construct complete orthonormal system
Bloch and Wannier functions. We show that these Bloch functions can be represented in v
ways in terms ofu functions and their derivatives. In particular, thek dependence can be express
in terms ofu functions only. In addition, we discuss the localization properties of the corresp
ing Wannier functions and their symmetry properties, as well as certain limits and several e
tation values.

II. BLOCH AND WANNIER FUNCTIONS COMPOSED OF OSCILLATOR
EIGENFUNCTIONS

A. Harmonic oscillator

First we want to recall some basic properties of the harmonic oscillator. The norma
eigenfunctions of the HamiltonianH5(1/2m)P21(mv2/2)X2 are given by

un
a~x!5Aa~Ap2nn! !21/2Hn~ax!e2a2x2/2, ~1!

wherea5Amv/\ is the inverse of the classical amplitude for a harmonic oscillator whose en
is equal to the ground state energyE05 1

2\v. Here the symbolsHn denote the Hermite
polynomials,9 which are defined as follows:

Hn~x!5ex2/2S x2
d

dxD
n

e2x2/25~21!nex2 dn

dxn e2x2
. ~2!

Recall that theun
a are real, fulfilling the symmetry relationsun

a(2x)5(21)nun
a(x), and satisfying

the orthonormality condition*2`
` um

a (x)un
a(x)dx5dmn , respectively. For sake of simplicity, w

set\51.

B. Bloch functions

Now we can investigate the Bloch functions that are composed of the oscillator eigenfun
un

a(x), namely,

fn
a~k,x!5Nn

a~k! (
m52`

`

eikmun
a~x2m!, ~3!

whereNn
a(k) is chosen positive and such that^fn

a(k),fn
a(k)&15*0

1 dxufn
a(k,x)u251/2p. Recall

that the Bloch functions forn50 are given by6

f0
a~k,x!5S a

Ap
D 1/2

1

A2p
e2a2x2/2

u3S k

2
2 i

a2x

2
U ia2

2p
D

Au3S k

2
U ia2

4p
D

5
1

A2p
eikx

u3S ip

a2 k1px U i2p

a2 D
Au3S i2p

a2 kU4ip

a2 D
, ~4!
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N0
a~k!5

1

A2p

1

Au3S k

2
U ia2

4p
D

5
1

A2p
A a

A4p
ek2/2a2 1

Au3S i2p

a2 kU4ip

a2 D
, ~5!

whereu3 is one of the well-knownu functions.10–12 The Bloch functionsfn
a(k,x) can be ex-

pressed either in terms of theta functions or by the special Bloch functionsf0
a(k,x) and their

derivatives:

fn
a~k,x!5Nn

a~k!S a

Ap2nn!
D 1/2

(
m52`

`

eikmHn„a~x2m!…e2a2~x2m!2/2 ~6a!

5Nn
a~k!S a

Ap2nn!
D 1/2FaS x1 i

]

]kD2
1

a

]

]xGn

e2a2x2/2u3S k

2
2 i

a2x

2 U ia2

2p D ~6b!

5Nn
a~k!~2nn! !21/2FaS x1 i

]

]kD2
1

a

]

]xGn f0
a~k,x!

N0
a~k!

~6c!

5Nn
a~k!~2nn! !21/2eikxF ia

]

]k
2

1

a S ]

]x
1 ik D Gn

e2 ikx
f0

a~k,x!

N0
a~k!

~6d!

5Nn
a~k!S 2Ap

a2nn! D
1/2

eikxF ia
]

]k
2

1

a S ]

]x
1 ik D Gn

e2k2/2a2
u3S ip

a2 k1pxU i2p

a2 D
~6e!

5Nn
a~k!S 2Ap

a2nn! D
1/2

~2 i !neikx (
m52`

`

HnS k12pm

a De2~k12pm!2/2a2
ei2pmx. ~6f!

The normalization constantsNn
a(k) read as

„Nn
a~k!…2254p

Ap

a
~2nn! !21 (

m52`

`

HnS k12pm

a D 2

e2~k12pm!2/a2
~7a!

52p (
r 52`

`

Ln
0S a2r 2

2 De2a2r 2/4e2 ikr , ~7b!

whereLn
g(x) are the Laguerre polynomials9

Ln
g~x!5

1

n!
exx2g

dn

dxn xn1ge2x5 (
m50

n S n1g
n2mD ~2x!m

m!
. ~8!

Note that Eq.~7b! is just the Fourier series of Eq.~7a!.
The inner product of Bloch functions referring to differentn values is easily calculated:

^fm
a ~k!,fn

a~k!&15
i m222ApNm

a ~k!Nn
a~k!

a~2m1nm!n! !1/2 (
r 52`

`

HmS k12pr

a DHnS k12pr

a De2~k12pr !2/a2

~9a!

5
Nm

a ~k!Nn
a~k!~2nn! !1/2

~2mm! !1/2 (
r 52`

`

~2ar !m2nLn
m2nS a2r 2

2 De2a2r 2/4e2 ikr .

~9b!
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Again the second equation is the Fourier series of the first one. From Eq.~9b! we infer that the
Bloch functions cannot be orthogonal for allk values. For specialk, however, the Bloch functions
may be orthogonal. For instance, ifk50 than^fm

a (k),fn
a(k)&150 if m2n is odd.

Let us briefly discuss the symmetry properties of the Bloch functionsfn
a . They have the

following transformation properties:

„fn
a~k,x!…* 5fn

a~2k,x!, ~10!

fn
a~k,2x!5~21!nfn

a~2k,x!, ~11!

which correspond to time reversal and inversion symmetry, respectively. These equations
immediately from the fact that the oscillator eigenfunctions are real and even or odd, depend
n52m or n52m11, respectively. In terms of band representations~see Refs. 13–15! the sym-
metry of the Bloch functionsfn

a is described as follows: Forn even the Bloch functionsfn
a

transform according to the band representation of the only nontrivial one-dimensional space
ZsC2 , where the former is characterized by the Wyckoff positionw50 and the trivial one-
dimensional irreducible unitary representation of the corresponding site symmetry group.n
odd the Bloch functionsfn

a transform according to the band representation that is characterize
the Wyckoff positionw50 and the one-dimensional irreducible unitary representation$1,21% of
C2 .

C. Wannier functions

We adopt the following convention for the Wannier functions:

Wn
a~m;x!5Wn

a~x2m!5
1

A2p
E

2p

p

dk e2 ikmfn
a~k,x!, ~12!

which leads to the following symmetry relationsWn
a(x)5(21)nWn

a(2x). Unfortunately there is
no explicit expression for the Wannier functions. Since the Bloch functions are unique only
a phase factor, we could have also chosen

Wn
a~m;x!5Wn

a~x2m!5
1

A2p
E

2p

p

dk e2 ikmeig~k!fn
a~k,x! ~13!

to define the Wannier functions, whereeig(k) is a phase factor. This freedom of definition of th
Wannier functions is exploited in Ref. 5 forn50 to construct Wannier functions that can be sta
explicitly. However, this is no longer possible forn>1, and thus we use Eq.~12! to define the
Wannier functions. Forn50 the Wannier functions have a remarkable property: The uncerta
of positionDx51/2a2 is the same for the Wannier functions and the original Gaussians.6,7 Thus,
it is interesting to see whether this result can be generalized for alln. Obviously^x&50 holds due
to the symmetry relationsWn

a(x)5(21)nWn
a(2x), and we need to computêx2& only. Using

several partial integrations and some well-known formulas for the Hermite polynomials,9 we get
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^x2&W
n
a5

2n11

2a2 2
n

2pa2 E
2p

p

dk

(
m52`

`

e2~k12pm!2/a2
Hn21S k12pm

a DHn11S k12pm

a D
(

m52`

`

e2~k12pm!2/a2
HnS k12pm

a D 2

~14a!

5
2n11

2a2 1
1

4pa2 E
2p

p

dk

(
m52`

`

~am!2Ln21
2 S a2m2

2 De2a2m2/4e2 ikm

(
m52`

`

Ln
0S a2m2

2 De2a2m2/4e2 ikm

, ~14b!

where the second equation is obtained by expanding the integrand into a Fourier series.
ently ^x2&W

n
aÞ^x2&u

n
a and, in fact, numerical calculations suggest that^x2&W

n
a.^x2&u

n
a is valid for

arbitrarya, but it is an open question how to prove this statement analytically.
For largea we get the following approximation:

^x2&W
n
a5

2n11

2a2 2Ln21
2 S a2

2 DLn
0S a2

2 De2a2/21O~a8n22e2a2
!, ~15!

hence we have, in fact,̂x2&W
n
a.^x2&u

n
a for sufficiently largea. For sufficiently smalla the

following heuristic arguments apply. The main problem are the zeros of the Hermite polynom
Consider the integral in Eq.~14a!. Of course, it would be quite tentative to neglect all terms w
mÞ0, but in this approximation the denominator would have a zero of second order, and th
integral would diverge. So we have to take into account also the terms form561, and the
denominator reads in this approximation as

e2k2/a2
HnS k

a D 2

1e2~k22p!2/a2
HnS k22p

a D 2

1e2~k12p!2/a2
HnS k12p

a D 2

.

Let us assumen51 for simplicity. Then the only zero of the Hermite polynomialH1(x)5x is
x50. Hence, foruk/au&e22p2/a2

the denominator is of ordere2(2p)2/a2
. On the other hand, for

uk/au*e22p2/a2
we may neglect all terms withmÞ0, and hence the integrand may be appro

mated byHn21(k/a)Hn11(k/a)/Hn(k/a)2, which should contribute less to the integral than t
interval uk/au&e22p2/a2

. Thus, we infer that the integral in question is of order;O(e2p2/a2
). In

fact, the term of order;O(e2p2/a2
) is positive, since H0(0)H2(0),0. Hence ^x2&W

1
a

;O(e2p2/a2
)@3/2a2. Similarly, for all n.1 the main contributions to the integral arise from t

zeros of the Hermite polynomialHn , and are again approximately of orderO(e2p2/a2
). Again the

integral is negative, sinceHn21(x)Hn11(x),0 for Hn(x)50.

D. The limit a˜0

The limits of the Bloch functionsfn
a read as

fn
0~k,x!ª lim

a→0
fn

a~k,x!55
~21!n/2

1

A2p
eikx, k̇P~2p,p!\$0%,

1

A2p
, k50,

~21!n/2
1

Ap
cos~px!, k56p,

~16!
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if n is even, and

fn
0~k,x!ª lim

a→0
fn

a~k,x!5

¦

2 i n
1

A2p
eikx, kP~0,p!,

i n
1

A2p
eikx, kP~2p,0!,

~21!~n21!/2
1

Ap
sin~2px!, k50,

~21!~n21!/2
1

Ap
sin~px!, k56p,

~17!

for n odd. Convergence is uniform with respect tox and uniform with respect tok in the intervals
@2p1e,2e# and@e,p2e#. Note that except fork50,p the Bloch functionsfn

a(k,x) converge
for all n to the same free electron wave function~up to a phase factor!. Thus the limit Bloch
functions do not form a complete set of Bloch functions, whereas for alla.0 the Bloch functions
$fn

a(k)% form a complete~but not orthogonal! basis.
The limits of the corresponding Wannier functions are given by

W2m
0 ~x!ª lim

a→0
W2m

a ~x!5~21!m
sinpx

px
, ~18!

W2m11
0 ~x!ª lim

a→0
W2m11

a ~x!52~21!m
S sin

px

2 D 2

px
. ~19!

III. ORTHONORMALIZED BLOCH FUNCTIONS

A. Bloch functions

We have discussed the Bloch functions composed of oscillator eigenfunctions in the pre
sections and we have seen that Bloch functions of differentn values are for any given
kP(2p,p), in general, not orthogonal, contrary to the oscillator eigenfunctions. In the follow
sections we want to construct and discuss a complete set of orthonormal Bloch functions
posed of oscillator eigenfunctions. One way of constructing an orthonormal set is to app
Gram–Schmidt procedure onto the Bloch functionsfn

a(k,x) of the preceding sections. Since th
Hermite polynomialsHn are polynomials of degreen, the Bloch functionsfn

a(k,x) are just linear
combinations of the following~not normalized! Bloch functions:

x l
a~k,x!5~2 i ! l (

m52`

` S k12pm

a D l

e2~k12pm!2/2a2
ei ~k12pm!x ~20a!

5S 2
1

a

]

]xD l

x0
a~k,x!5S 2

1

a

]

]xD n

eikxe2k2/2a2
u3S ipk

a2 1pxU i2p

a2 D , ~20b!

with l 50,...,n. Thus, we can alternatively apply the Gram–Schmidt procedure to the func
xn

a(k,x). Then the orthogonalized Bloch functions read as

hn
a~k,x!5detQn

a~k,x!, ~21!

whereQn
a(k,x) is the (n11)3(n11) matrix with matrix elementsqn;m,l

a (k),
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qn;m,l
a ~k!5^xm

a ~k!,x l
a~k!&1 , for m50,...,n21, l 50,...,n, ~22a!

qn;n,l
a ~k,x!5x l

a~k,x!, l 50,...,n, ~22b!

where ^ f ,g&1 denotes the inner product*0
1f * (x)g(x)dx. The norm ofhn

a(k,x) is easily calcu-
lated:

ihn
a~k!i5ADn21

a ~k!Dn
a~k!, ~23!

where Dn
a(k)5det(̂ xj

a(k),xl
a(k)&1) j ,l 50,...,n denotes the Gramian determinant. To obtain an

plicit expression forcn
a(k,x), we note that

^x j
a~k!,x l

a~k!&15~2 i ! l 2 j (
m52`

` S k12pm

a D j 1l

e2~k12pm!2/a2
~24a!

5~21! j S 2
1

a

]

]yD j 1l

(
m52`

`

e2~k12pm!2/a2
ei ~k12pm!yU

y50

~24b!

is valid. Nowhn
a(k,x) can be written as

hn
a~k,x!5~2 i !n

1

n! S 2p

a D n2

(
m052`

`

¯ (
mn52`

` S )
j 50

n21

e2~k12pmj !
2/a2D e2~k12pmn!2/2a2

3 )
n21> j .l >0

~mj2ml ! )
n> j .l >0

~mj2ml !ei ~k12pmn!x
, ~25!

where we have made use of Vandermonde’s determinant, which reads as follows:

detS 1 1 ¯ 1

x0 x1 ¯ xn

x0
2 x1

2
¯ xn

2

] ] ]

x0
n x1

n
¯ xn

n

D 5)
i . j

~xi2xj !. ~26!

Similarly, we obtain

Dn
a~k!5

~2p!n~n11!

~n11!!an~n11! (
m052`

`

¯ (
mn52`

` S )
j 50

n

e2~k12pmj !
2/a2D F )

n> j .l >0
~mj2ml !G2

.

~27!

There are several transformation rules for the Bloch functionshn
a(k,x). For instance, by changing

the summation indices appropriately we see immediately thathn
a(k,x) are periodic functions:

hn
a~k12p,x!5hn

a~k,x!. ~28!

Also, the following quasiperiodicity properties can be easily proved:

hn
a~k1 ia2,x!5e~n11/2!a2

e2~2n11!ike2a2xhn
a~k,x!, ~29!

hn
a~k,x11!5eikhn

a~k,x!, ~30!
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hn
aS k1 i

a2

2
,x1

1

2D5e~n11/2!~a2/4!e2 inke2~a2/2!~x11/2!hn
a~k,x!. ~31!

In addition,hn
a(k,x) have the following symmetry properties:

hn
a~k,2x!5~21!nhn

a~2k,x!, ~32!

„hn
a~k,x!…* 5hn

a~2k,x!, ~33!

which are the analogs of Eqs.~11! and~10!. Thus, the Bloch functionshn
a(k,x) transform accord-

ing to the same band representations as the nonorthogonalized Bloch functionsfn
a(k,x).

The equations~28! and ~29! are crucial since they determine thek dependence of the Bloch
functions nearly completely. It is shown in Appendix A 1 that a function with the properties~28!
and ~29! can be written as

hn
a~k,x!5eikxe2@~2n11!/2a2#k2

(
r 52n

n

dr
a,n~x!u3S ip

a2 k1
p

2n11
~x2r !U i 2p

~2n11!a2D , ~34!

where the functionsdr
a,n(x) are independent ofk. Note the simple structure ofhn

a(k,x) with
respect tok: It is a sum of 2n11 theta functions multiplied by a Gaussiane2@(2n11)/2a2#k2

and the
plane wave factoreikx. Only the dependence onx is rather complicated. Next we take Eq.~30! into
account and infer

dr
a,n~x11!5dr 21

a,n ~x!. ~35!

Hencedr
a,n(x) may be expressed byd0

a,n(x), and thus we have

hn
a~k,x!5eikxe2@~2n11!/2a2#k2

(
r 52n

n

d0
a,n~x2r !u3S ip

a2 k1
p

2n11
~x2r !U i 2p

~2n11!a2D . ~36!

From Eqs.~31!, ~32!, and~33! we infer the following properties ofd0
a,n(x):

d0
a,n~x1n1 1

2!5d0
a,n~x!, ~37!

d0
a,n~2x!5~21!nd0

a,n~x!, ~38!

„d0
a,n~x!…* 5d0

a,n~x!. ~39!

Let us determine the functiond0
a,n(x). To this end, note thathn

a(k,x) is a linear combination of
the 2n11 functionsu3„( ip/a2)k1@p/(2n11)#(x2r )u i @2p/(2n11)a2#… with the coefficients
d0

a,n(x2r ), which are independent ofk. Determining the functiond0
a,n(x) is, of course, equivalen

to compute the 2n11 coefficientsd0
a,n(x2r ). Thus, we need 2n11 equations for the coefficient

d0
a,n(x2r ). These can be obtained from Eq.~36! by choosing 2n11 values fork. A convenient

choice isk5 ia2@s/(2n11)# for s52n,...,n. The resulting convolution equation,

hn
aS ia2

s

2n11
,xDea2@s/~2n11!#xe2a2s2/2~2n11!

5 (
r 52n

n

d0
a,n~x2r !u3S p

2n11
~x2r 2s!U i 2p

~2n11!a2D , ~40!

can be solved easily:
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d0
a,n~x2r !5

1

2n11 (
l 52n

n ei @2pr l /~2n11!#(s52n
n ei @2psl /~2n11!#ea2@s/~2n11!#xe2a2s2/2~2n11!hn

aS ia2
s

2n11
,xD

(s52n
n ei @2psl /~2n11!#u3S p

2n11
~x2s!U i 2p

~2n11!a2D ~41!

5
1

~2n11!2 (
l 52n

n e@2p2/~2n11!a2#l 2
(s52n

n e2 i @2p~x2r 2s!l /~2n11!ea2@s/~2n11!#xe2a2s2/2~2n11!hn
aS ia2

s

2n11
,xD

u3S px1
i2p2

a2 l U i 2p~2n11!

a2 D .

~42!

Various alternative expressions ford0
a,n(x) can be obtained if one chooses, for instanc

k5k1 ia2@s/(2n11)# in the derivation above. In particular, the choic
k5 ia2@(x1s)/(2n11)# yields the Fourier series ford0

a,n(x).
A formula analogous to Eq.~36! can also be derived for the functionsDn

a(k). The periodicity
and quasiperiodicity properties,

Dn
a~k12p!5Dn

a~k!, ~43!

Dn
aS k1 i

a2

2 D5e~n11!~a2/4!e2 i ~n11!kDn
a~k!, ~44!

imply that Dn
a(k) may be written as follows:

Dn
a~k!5(

r 50

n

br
a,ne2@~n11!/a2#k2

u3S i2p

a2 k2
p

n11
rU i 4p

~n11!a2D . ~45!

The coefficientsbr
a,n can be determined as before. Analogously the norm squareihn

a(k)i2 can be
expressed as a linear combination ofu functions:

ihn
a~k!i25 (

r 52n

n

cr
a,ne2@~2n11!/a2#k2

u3S i2p

a2 k2
p

2n11
rU i 4p

~2n11!a2D , ~46!

with appropriate coefficientscr
a,n , respectively.

B. Another representation of the Bloch functions

To get more insight into thex dependence of the Bloch functionshn
a(k,x), we derive another

expression for them. To this end we need, in addition to Eqs.~28!–~31!, the information how
hn

a(k,x) transforms if we replacex by x1 i (a2/2). This transformation law is more complicate
than the other ones, sincehn

a(k,x) is not quasiperiodic in the complexx direction. We may write
the Bloch functionshn

a(k,x) as follows:

hn
a~k,x!5~2 i !n

1

n! S 2p

a D n2

eikxe2~n11/2!k2/a2

(
l 50

n

aa,n,l ~k!ba,n,n2l ~k,x!, ~47!

with the factors
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ba,n,l ~k,x!ªek2/2a2
e2 ikx (

m52`

`

e2~k12pm!2/2a2
ei ~k12pm!xml

5
1

~2i ! l

] l

]zl u3S ipk

a2 1px1zU2p i

a2 D U
z50

, ~48!

aa,n,l ~k!ª~21! l en~k2/a2! (
m052`

`

¯ (
mn2152`

` S )
j 50

n21

e2~k12pmj !
2/a2D

3F )
n21> j .l >0

~mj2ml !G2

(
n21> j 1.¯ j l >0

mj 1
¯mj l

. ~49!

One verifies easily thataa,n,l (k) transforms according to the following rules:

aa,n,l S k1 i
a2

2 D5aa,n,l ~k!, ~50!

aa,n,l ~k12p!5e@~2p!2n/a2#e~4pnk/a2!(
s50

l S n2l 1s
s Daa,n,l 2s~k!. ~51!

Thus, aa,n,l (k) may be written as the following linear combination ofu functions and their
derivatives~see Appendix A 2!:

aa,n,l ~k!5 (
p50

n21

e2@~2p!2/na2#p2
e~4p/a2!kp(

s50

l S n2l 1s
s Ddp

a,n,l 2s

3
1

~2i !s

]s

]zs u3S 2
2p ink

a2 1
i4p2p

a2 1zU4p in

a2 D U
z50

. ~52!

Hence,hn
a(k,x) reads as

hn
a~k,x!5~2 i !n

1

n! S 2p

a D n2

eikxe2k2/2a2

(
p50

n21

e2~n/a2!~k22pp/n!2

(
q50

n

dp
a,n,n2q 1

~2i !q

3
]q

]zq S u3S 2
2p ink

a2 1
i4p2p

a2 1zU4p in

a2 D u3S ipk

a2 1px1zU2p i

a2 D D U
z50

, ~53!

which is obtained by changing the summation indices appropriately:( l 50
n (s50

l 5(q50
n ( r 50

q ,
with q5n2(l 2s), r 5n2l . The coefficientsdp

a,n,l read as

dp
a,n,l 5e~2pp!2/na2

(
m01¯1mn215p

` S )
j 50

n21

e2~2pmj !
2/a2D

3F )
n21> j .l >0

~mj2ml !G2

(
n21> j 1.¯. j l >0

mj 1
¯mj l

, ~54!

which we can derive by comparing the Fourier coefficients of Eqs.~A17! and ~49!.

C. Expressions for Bloch functions suitable for large a

In the preceding sections we have derived various expressions for the Bloch fun
hn

a(k,x), but for numerical calculations these expressions are suitable only for small valuesa.
Thus, we want to derive some expressions for the orthogonalized Bloch functions, whic
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suitable for largea. This can be achieved by using Jacobi’s transformation foru functions. Note
that it is not sufficient to apply Jacobi’s transformation to theu functions in Eqs.~36! and ~53!
since we still need Eq.~25! to determine the coefficientsdn

a,n(x2r ) and dp
a,n,l , respectively.

Using Jacobi’s transformation we get the equations

xn
a~k,x!5

a

A2p
S 2

1

a

]

]xD n

e2~a2/2!x2
u3S 2

k

2
1 i

a2

2
xU ia2

2p D , ~55!

522n/2
a

A2p
(

m52`

`

eikmHnS a

&
~x2m!D e2~a2/2!~x2m!2

~56!

and

^x j
a~k!,x l

a~k!&15~21! j
a

A4p
S 2

1

a

]

]yD j 1l

e2~a2/4!y2
u3S 2

k

2
1 i

a2

4
yU ia2

4p D U
y50

, ~57!

5~21! l
a

A4p
22 j 2l (

m52`

`

eikmH j 1l S a

2
mDe2~a2/4!m2

. ~58!

Thus, the orthonormalized Bloch functionscn
a(k,x)5(1/A2p)@hn

a(k,x)/ADn21
a (k)Dn

a(k)# read
as

cn
a~k,x!5

Aa

A4 p

1

A2p

1

ALn21
a ~k!Ln

a~k!
(

m052`

`

¯ (
mn52`

` S )
j 50

n21

eikmje2~a2/4!mj
2D

3eikmne2~a2/2!~x2mn!2
detMn;m0 ,...,mn21

a ~x2mn!, ~59!

where the (n11)3(n11) matrix Mn;m0 ,...,mn21

a (x2mn) is defined by its matrix element

mn;m0 ,...,mn21; j ,l

a (x2mn):

mn;m0 ,...,mn21 ; j ,l
a ~x2mn!5~21! l 22 j 2l H j 1l S a

2
mj D , ~60!

for j 50,...,n21, l 50,...,n and

mn;m0 ,...,mn21 ;n,l
a ~x2mn!522~ l /2!H l S a

&
~x2mn!D , ~61!

for l 50,...,n, andLn
a(k) is given by

Ln
a~k!5~21!n~n11!/222n~n11!

3 (
m052`

`

¯ (
mn52`

` S )
j 50

n

eikmje2~a2/4!mj
2D detS H j 1l S a

2
mj D D

j ,l 50,...,n

. ~62!

It might be surprising thatcn
a(k,x) is of the form

cn
a~k,x!5 (

l 50

n

bn;l
a ~k! (

m52`

`

eikmH l S a

&
~x2m!D e2~a2/2!~x2m!2

, ~63!

whereas one would have expected thatcn
a(k,x) reads as
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cn
a~k,x!5 (

l 50

n

cn;l
a ~k!f l

a~k,x!5 (
l 50

n

cn;l
a ~k! (

m52`

`

eikmH l „a~x2m!…e2~a2/2!~x2m!2
, ~64!

with appropriate coefficientscn; l
a (k). This is due to the fact that we have applied the orthogon

ization procedure on the functionsx j
a(k) instead onf l

a(k,x). But Eq. ~63! can be easily trans
formed into Eq.~64! by using the addition theorem9

(
l 50

n S n
l DH l ~21/2x!Hn2l ~21/2y!52n/2Hn~x1y!. ~65!

Thus the coefficientscn;l
a (k) in Eq. ~64! are given by

cn;l
a ~k!5

1

A2p

~21!n~n11!/2

2n2

~2l l ! !1/2

Nn
a~k!

1

ALn21
a ~k!Ln

a~k!

3 (
m052`

`

¯ (
mn2152`

` S )
j 50

n21

eikmje2~a2/4!mj
2D Dn;l ;m0 ,...,mn21

a , ~66!

where Dn;l ;m0 ,...,mn21

a denotes the determinant of the (n11)3(n11) matrix

Ba(n;l ;m0 ,...,mn21), with the matrix elements

bpq
a ~n,l ,mp!5Hp1qS a

2
mpD , for p50,...,n21, q50,...,n, ~67!

bnq
a ~n,l !50, for q50,...,l 21, ~68!

bnq
a ~n,l !5~21!qS q

l DHq2l ~0!, for q5l ,...,n. ~69!

One expects that the orthogonalized Bloch functionscn
a(k,x) are approximately the same as th

nonorthogonalized Bloch functionsfn
a(k,x) in the limit of largea, and this is, in fact, true. More

precisely, we have

cn;l
a ~k!5O~a2n21e2a2/4!, for l ,n, ~70!

cn;n
a ~k!511O~a2ne2a2/4!. ~71!

For proving the first equation, it is sufficient to show that the determinantDn;l ;m0 ,...,mn21

a is zero

for m05¯5mn2150. To this end, we show that the last row of the matrixBa(n;l ;0,...,0) is a
linear combination of the firstl rows. Let r pª$Hp1q(0)% be thepth row and letr l 5$0,...,0,
(21)q( l

q )Hq2l (0)% be the last one. In the case of evenl , one can prove

(
p850

l 8 S l 8
p8 D p8!

~2p8!!
r 2p8522l 8l 8!r2l 8 , ~72!

where we have setl 52l 8, p52p8 andq52q8. The case for oddl is very similar. Defining
l 52l 811, p52p811, q52q811, the essential equation is

(
p850

l 8 S l 8
p8 D ~p811!!

~2p812!!
r 2p811522l 8l 8!r2l 811 . ~73!
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Equation~71! can be proved by using the facts

Ln
a~k!5~21!n~n11!/222n~n11! detAn1O~a2ne2a2/4!, ~74!

Nn
a~k!5

1

A2p
1O~a2ne2a2/4!, ~75!

Dn;n;0,...,0
a 5~21!n~n21!/222n2

det An21 , ~76!

detAn5~21!n2nn! detAn21 , ~77!

whereAn is the (n11)3(n11) matrix Anª(H j 1 l(0)) j ,l 50,...,n. Thus

cn
a~k,x!5fn

a~k,x!1en
a~k,x! ~78!

hold true, whereen
a(k,x) are linear combinations off0

a(k,x),...,fn21
a (k,x), whose coefficients

are all of orderO(a2ne2a2/4).

D. Limit a˜0

We know already that the Bloch functionsc0
a(k,x) converge witha→0 to the free electron

wave functions.6 In fact, this is also valid for generaln, i.e., the Bloch functionscn
a(k,x) converge

to the free electron wave functions corresponding to thek vectors of the (n11)th Brillouin zone.
To prove this, recall Eqs.~25! and~27!. Obviously, in Eqs.~25! and~27! only the terms where al
indicesmj are different do not vanish. In other words, only those terms are nonzero for whic
valuesk12pmj lie all in different Brillouin zones. Thus, the leading terms are those for wh
k12pm0 ,...,k12pmn21 are elements of the firstn Brillouin zones, andk12pmn is a member
of the (n11)th Brillouin zone. Forn52m the limit a→0 of the orthonormalized Bloch function
cn

a(k,x) reads as

c2m
0 ~k,x!5 lim

a→0
c2m

a ~k,x!5
~21!m

A2p H ei ~k12pm!x, kP~0,p!,
ei ~k22pm!x, kP~2p,0!,
& cos~2pmx!, k50,
& cos„p~2m11!x…, k56p.

~79!

For n52m11, we have

c2m11
0 ~k,x!5 lim

a→0
c2m11

a ~k,x!5
~21!m

A2p H iei ~k22p~m11!!x, kP~0,p!,
2 iei ~k12p~m11!!x, kP~2p,0!,
& sin~2p~m11!x!, k50
& sin~p~2m11!x!, k56p.

~80!

Note that these functions are Bloch functions for free electrons. In particular, the limit of the B
functioncn

a(k,x) is a free electron wave function of then11th band. The corresponding Wanni
functions are given by

W2m
0 ~x!5~21!m

2

px
cosS 2pm1

p

2 D x sin
p

2
x, ~81!

W2m11
0 ~x!5~21!m

2

px
sinS 2pm1

3p

2 D x sin
p

2
x. ~82!
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E. Wannier functions

Again we use the convention

Wn
a~m;x!5Wn

a~x2m!5
1

A2p
E

2p

p

dk e2 ikmcn
a~k,x!, ~83!

for the definition of the Wannier functions. The transformation properties,

„cn
a~k,x!…* 5cn

a~2k,x!, ~84!

cn
a~k,2x!5~21!ncn

a~2k,x!, ~85!

imply again the reality and~anti-!symmetry of the Wannier functions:

„Wn
a~x!…* 5Wn

a~x!, ~86!

Wn
a~x!5~21!nWn

a~2x!. ~87!

Unfortunately there is no explicit expression for the Wannier functions. In Figs. 1–6 we com
the nonorthogonal~dashed! and the orthonormalized~dotted! Wannier functions with the origina
oscillator eigenfunctions~solid! for n51 andn52. Figures forn50 can be found in Ref. 6.

The orthonormalized Wannier functions have the remarkable property that the uncertai
position (Dx)W

n
a is the same as the uncertainty of the original oscillator eigenfunctionun

a(x),

namely, we have (Dx)W
n
a

2
5(2n11)/2a2. The proof is rather lengthy and thus we omit most of t

FIG. 1. Oscillator eigenfunction and Wannier functions forn51 anda53.

FIG. 2. Oscillator eigenfunction and Wannier functions forn51 anda51.5.
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details. Obviously we havêx&W
n
a50 and hence we need to calculate only^x2&W

n
a. For this

purpose we express the expectation value^x2&W
n
a in terms of the Bloch factor:

^x2&W
n
a5E

0

1

dxE
2p

p

dkU ]

]k
vn

a~k,x!U2

, ~88!

vn
a~k,x!5e2 ikxcn

a~k,x!. ~89!

According to Sec. III A the Bloch factorvn
a(k,x) may be expressed in terms of the functio

j l
a(k,x),

j l
a~k,x!5e2 ikxx l

a~k,x!5~2 i ! l (
m52`

` S k12pm

a D l

e2~k12pm!2/2a2
ei2pmx, ~90!

whose inner products are given by

^j j
a~k!,j l

a~k!&15~2 i ! l 2 j (
m52`

` S k12pm

a D j 1l

e2~k12pm!2/a2
. ~91!

For writing the Bloch factor as convenient as possible we use the following notions and nota
Let j1 ,...,jnPL2(@0,1#); then

j1^ j2^¯^ jnP„L2~@0,1# !…n ~92!

denotes the direct product and

FIG. 3. Wannier functions forn51 anda50.

FIG. 4. Oscillator eigenfunction and Wannier functions forn52 anda53.
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j1∧j2∧¯∧jn5 (
pPPn

sign~p!jp~1! ^ jp~2! ^¯^ jp~n! ~93!

is the antisymmetrized product of the vectorsj1 ,...,jn . Here the inner product~•,•! means the
inner product of„L2(@0,1#)…n, where the value ofn should be clear from the context. Note tha

~z1^¯^ zn ,j1∧¯∧jn!5
1

n!
~z1∧¯∧zn ,j1∧¯∧jn! ~94!

5~z1∧¯∧zn ,j1^¯^ jn!. ~95!

In addition, we introduce the notation

~z1^¯^ zn ,j1∧¯∧jn!∧jn11ª (
pPPn11

sign~p!~z1^¯^ zn ,jp~1! ^¯^ jp~n!!jp~n11! ~96!

5 (
pPPn11

sign~p!^z1 ,jp~1!&1¯^zn ,jp~n!&1jp~n11! . ~97!

In case we want to stress that (z1^¯^ zn ,j1∧¯∧jn)∧jn11PL2(@0,1#) is a function ofx, we
write

~z1^¯^ zn ,j1∧¯∧jn!∧jn11~x!5@~z1^¯^ zn ,j1∧¯∧jn!∧jn11#~x!. ~98!

Thus,vn
a(k,x) can be written as follows:

FIG. 5. Oscillator eigenfunction and Wannier functions forn52 anda51.5.

FIG. 6. Wannier functions forn52 anda50.
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vn
a~k,x!5

1

A2p

1

ADn21
a ~k!Dn

a~k!
„j0

a~k! ^¯^ jn21
a ~k!,j0

a~k!∧¯•jn21
a ~k!…∧jn

a~k,x!,

~99!

Dn
a~k!5„j0

a~k! ^¯^ jn
a~k!,j0

a~k!∧¯∧jn
a~k!…. ~100!

Note that (]/]k)j l
a(k,x) is given by

]

]k
j l

a~k,x!52
i

a
j l 11

a ~k,x!2
i l

a
j l 21

a ~k,x!. ~101!

Now a lengthy calculation with appropriate partial integrations yields

^x2&W
n
a5

1

2p E
2p

p

dk„I n
a~k!1I n21

a ~k!…, ~102!

where

I n
a~k!ª

1

Dn
a~k!

S j0
a~k! ^¯^ jn21

a ~k! ^
]

]k
jn

a~k!,j0
a~k!∧¯∧jn21

a ~k!∧
]

]k
jn

a~k! D2

]2

]k2 Dn
a~k!

4Dn
a~k!

~103!

5
n11

2a2 1
1

2a2

1

Dn
a~k!

Jn
a~k!. ~104!

Now one shows easily that

Jn
a~k!5„j0

a~k! ^¯^ jn21
a ~k! ^ jn11

a ~k!,j0
a~k!∧¯∧jn21

a ~k!∧jn11
a ~k!…

1„j0
a~k! ^¯^ jn22

a ~k! ^ jn
a~k! ^ jn11

a ~k!,j0
a~k!∧¯∧jn

a~k!…

1„j0
a~k! ^¯^ jn21

a ~k! ^ jn12
a ~k!,j0

a~k!∧¯∧jn
a~k!…50 ~105!

is valid, where one takes into account

detS 1 1 ¯ 1

x0 x1 ¯ xn

x0
2 x1

2
¯ xn

2

] ] ]

x0
n21 x1

n21
¯ xn

n21

x0
n11 x1

n11
¯ xn

n11

D 5S (
i 50

n

xi D )
n> i . j >0

~xi2xj !, ~106!

detS 1 1 ¯ 1

x0 x1 ¯ xn

x0
2 x1

2
¯ xn

2

] ] ]

x0
n21 x1

n21
¯ xn

n21

x0
n12 x1

n12
¯ xn

n12

D 5S (
i 50

n

xi
21 (

n> i . j >0

n

xixj D )
n> i . j >0

~xi2xj !, ~107!
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S 1 1 ¯ 1

x0 x1 ¯ xn

x0
2 x1

2
¯ xn

2

] ] ]

x0
n22 x1

n22
¯ xn

n22

x0
n x1

n
¯ xn

n

x0
n11 x1

n11
¯ xn

n11

D 5S (
n> i . j >0

n

xixj D )
n> i . j >0

~xi2xj !. ~108!

Hence,I n
a(k)5(n11)/2a2, and thus we have the simple result

^x2&W
n
a 5

2n11

2a2 . ~109!

Note that this is also the expectation value ofx2 for the nth excited eigenstate of the harmon
oscillator. Recall that the oscillator eigenfunctions can be obtained by applying the Gram–S
procedure onto the set$xl ea2x2/2% l 50

` , whereas the orthonormalized Wannier functions are
tained in the following way: First construct the Wannier functions corresponding

$xl ea2x2/2% l 50
` and then orthonormalize them, a procedure that is best done in terms of

functions. Although the oscillator eigenfunctions and the corresponding orthonormalized W
functions have been constructed in a different way and are completely different for small val
a, their uncertaintyDx is the same. This remarkable feature is quite astonishing, and natural
question arises whether this is only pure chance or whether there is a more sophisticated
behind it.

IV. EXPECTATION VALUES FOR THE ORTHONORMALIZED BLOCH FUNCTIONS

One of the most interesting properties of a physical system is its energy. Here we w
discuss briefly the expectation values of the kinetic energy (1/2m)P2 and the potential energyV,
whereV(x)5V(x11) is a periodic potential.

A. Kinetic energy

1. Expectation value

The expectation value of the kinetic energy reads as

^P2&n
a~k!52p^cn

a~k!,P2cn
a~k!&1

52
a2

Dn21
a ~k!

„x0
a~k! ^¯^ xn21

a ~k!,x0
a~k!∧¯∧xn23

a ~k!∧xn21
a ~k!∧xn

a~k!…

1
a2

Dn21
a ~k!Dn

a~k!
„x0

a~k! ^¯^ xn21
a ~k!,x0

a~k!∧¯∧xn22
a ~k!∧xn

a~k!…

3„x0
a~k! ^¯^ xn

a~k!,x0
a~k!∧¯∧xn21

a ~k!∧xn11
a ~k!…

2
a2

Dn
a~k!

„x0
a~k! ^¯^ xn

a~k!,x0
a~k!∧¯∧xn21

a ~k!∧xn12
a ~k!…. ~110!

Of course,^P2&n
a(k)5^P2&n

a(2k) is symmetric. Forn50 one can show that̂P2&0
a(k) is

monotone increasing forkP@2p,p#. For generaln, numerical calculations suggest that^P2&n
a(k)

is monotone increasing or decreasing, depending on whethern is even or odd. However, the proo
of the casen50 cannot be easily generalized.
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2. Further matrix elements

One can easily compute all the matrix elements^cm
a (k),P2cn

a(k)&1 . We have
^cm

a (k),P2cn
a(k)&150 for um2nu.2. Form5n11 andm5n12 the matrix elements read as

^cn11
a ~k!,P2cn

a~k!&1

5
1

2p

a2

Dn11
a ~k!

FADn12
a ~k!

Dn
a~k!

„x0
a~k! ^¯^ xn21

a ~k!,x0
a~k!∧¯∧xn22

a ~k!∧xn
a~k!…

2A Dn
a~k!

Dn12
a ~k!

„x0
a~k! ^¯^ xn11

a ~k!,x0
a~k!∧¯∧xn

a~k!∧xn12
a ~k!…G , ~111!

^cn12
a ~k!,P2cn

a~k!&152a2A Dn
a~k!Dn13

a ~k!

Dn11
a ~k!Dn12

a ~k!
. ~112!

Figures 7–10 show the expectation values of the kinetic energy^P2&n
a(k) and the first two

or three eigenvalues of the matrices$^cm
a (k),P2cn

a(k)&%, where m,n50,1 (232 matrix),
m,n50,1,2 (333 matrix), andm,n50,1,2,3 (434 matrix), respectively. In the limita→0,
^P2&n

a(k) converges to the free electron energy parabola, and hence the expectation
^P2&n

a(k) are a very good approximation for the exact eigenvalues for smalla; see Fig. 7 for
a51. With increasinga, the difference between the correct eigenvalues ofP2 and the expectation
value^P2&n

a(k) becomes larger~see Figs. 8–10!, and thus more and more matrix elements have
be taken into account if one wants to get a good approximation for the correct eigenvaluesP2;
see Figs. 8–10. Note the band gap structure for the approximate eigenvalues.

FIG. 7. Expectation valueŝP2&n
a for n50,1,2 anda51.

FIG. 8. Expectation valueŝP2&n
a ~black! for n50,1,2 anda53 the eigenvalues of the corresponding 232- ~dashed!, 333-

~dotted! and 434-matrix ~grey!.
                                                                                                                



2776 J. Math. Phys., Vol. 40, No. 6, June 1999 Zeiner, Dirl, and Davies

                    
B. Potential energy

Another interesting quantity is the expectation value for a periodic potentialV. Let V(x)
5(p52`

` cpei2ppx be the Fourier series of the potentialV. Then we have

^x j
a~k!,Vx l

a~k!&5(
s50

j

(
t50

l S j
sD S l

t D i t1s@^x j 2s
a ~k!,x l 2t

a ~k!&1Vs1t
1 ~a!

1^x j 2s
a ~k1p!,x l 2t

a ~k1p!&1Vs1t
2 ~a!#, ~113!

where we have employed the definitions

Vs
1~a!ª (

q52`

`
~2pq!s

as c2qe2~2pq!2/a2
, ~114!

Vs
2~a!ª (

q52`

`
„p~2q11!…s

as c2q11e2„p~2q11!…2/a2
. ~115!

Thus, the expectation value of the potential energy reads as

^V&n
a52p^cn

a~k!,Vcn
a~k!&15(

s50

2n

„ds
1~k,a,n!Vs

1~a!1ds
2~k,a,n!Vs

2~a!…, ~116!

where the coefficientsds
1(k,a,n) andds

2(k,a,n) are given by

FIG. 9. Expectation valueŝP2&n
a ~black! for n50,1,2 anda54 the eigenvalues of the corresponding 232- ~dashed!, 333-

~dotted! and 434-matrix ~grey!.

FIG. 10. Expectation valueŝP2&n
a ~black! for n50,1,2 anda55 the eigenvalues of the corresponding 232- ~dashed!,

333- ~dotted! and 434-matrix ~grey!.
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ds
1~k,a,n!ª

1

Dn21
a ~k!Dn

a~k! (
j ,l 50

n

~21! j 1l (
t5max~s2 j ,0!

min~ l ,s! S j
s2t D S l

t D i s

3„x0
a~k! ^¯^ x j 21

a ~k! ^ x j 11
a ~k! ^¯^ xn

a~k!,x0
a~k!∧¯∧xn21

a ~k!…

3„x0
a~k! ^¯^ xn21

a ~k!,x0
a~k!∧¯∧x l 21

a ~k!∧x l 11
a ~k!∧¯∧xn

a~k!…

3^x j 2s1t
a ~k!,x l 2t

a ~k!&1 , ~117!

ds
2~k,a,n!ª

1

Dn21
a ~k!Dn

a~k! (
j ,l 50

n

~21! j 1l (
t5max~s2 j ,0!

min~ l ,s! S j
s2t D S l

t D i s

3„x0
a~k! ^¯^ x j 21

a ~k! ^ x j 11
a ~k! ^¯^ xn

a~k!,x0
a~k!∧¯∧xn21

a ~k!…

3„x0
a~k! ^¯^ xn21

a ~k!,x0
a~k!∧¯∧x l 21

a ~k!∧x l 11
a ~k!∧¯∧xn

a~k!…

3^x j 2s1t
a ~k1p!,x l 2t

a ~k1p!&1 . ~118!

Note that the potential enters into the expression for the expectation value^V&n
a only via the

2n12 constantsVs
1(a), Vs

2(a), whereas onlyds
1(k,a,n) and ds

2(k,a,n) depend onk. For
special values ofs, the functionsds

1(k,a,n) andds
2(k,a,n) simplify considerably:

d2n
1 ~k,a,n!5~-1!n

Dn21
a ~k!

Dn
a~k!

^x0
a~k!,x0

a~k!&1 , ~119!

d2n
2 ~k,a,n!5~21!n

Dn21
a ~k!

Dn
a~k!

^x0
a~k1p!,x0

a~k1p!&1 , ~120!

d0
1~k,a,n!51. ~121!

V. FURTHER PROPERTIES OF THE WANNIER FUNCTIONS

In a previous section we have seen that the uncertaintyDx5A(2n11)/2a2 is the same for the
orthonormalized Wannier functions and the original oscillator eigenfunctions. Here we show
an analogous result is not true for the uncertainty of momentumDp.

Of course,̂ P&W
n
a50 due to symmetry. The expectation value^P2&W

n
a can be computed with

the same methods used in Sec. III E, if one starts with Eq.~110! and expresseŝP2&n
a(k) in terms

of jn
a instead ofxn

a(k). Then we get the result

^P2&W
n
a5a2S n1

1

2D1
1

2p

a4

8 E
2p

p

dkF ]

]k
Dn21

a ~k!

Dn21
a ~k!

2

]

]k
Dn

a~k!

Dn
a~k!

G 2

1
1

2p

a4

8 E
2p

p

dkH F ]

]k
Dn21

a ~k!

Dn21
a ~k!

G 2

1F ]

]k
Dn

a~k!

Dn
a~k!

G 2J 1
1

2p E
2p

p

dk Kn
a~k!,

~122!

whereKn
a(k) is defined by
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Kn
a~k!5

a2

Dn21
a ~k!

„j0
a~k! ^¯^ jn22

a ~k! ^ jn11
a ~k!,j0

a~k!∧¯∧jn21
a ~k!…

1
a2

Dn
a~k!

„j0
a~k! ^¯^ jn22

a ~k! ^ jn
a~k! ^ jn11

a ~k!,j0
a~k!∧¯∧jn

a~k!…. ~123!

The first term in Eq.~122! is the expectation valuêP2&u
n
a for the original oscillator eigen-

functions, the second and third term are obviously positive, and also the last term seems
positive, since numerical calculations suggest thatKn

a(k)>0. Hence

^P2&W
n
a.a2~n1 1

2!, ~124!

which means that the uncertainty of momentumDp for the orthonormalized Wannier functions
larger than the corresponding uncertainty for the original oscillator eigenfunctions. Of cours
analogous statement is valid for the uncertainty product:

~Dx Dp!W
n
a.~Dx Dp!u

n
a5n1 1

2. ~125!

In the special casen50, we can calculate the expectation value^P2&W
0
a explicitly:

^P2&W
0
a5

a2

2
1

1

2p

a4

4 E
2p

p

dkF ]

]k
u3S k

2 U ia2

4p D
u3S k

2 U ia2

4p D G 2

5
a2

2
1

a4

192F u1-S 0U ia2

4p D
u18S 0U ia2

4p D 11G . ~126!

For the limits of large and smalla we obtain the following simple formulas:

^P2&W
0
a5

a2

2
1O~a4e2a2/2!, for a→`, ~127!

^P2&W
0
a5

p2

3
1O~a4!, for a→0. ~128!

The corresponding uncertainty products read as

~Dx Dp!W
0
a5 1

21O~a2e2a2/2!, for a→`, ~129!

~Dx Dp!W
0
a5

p

A6a
1O~a2!, for a→0. ~130!

VI. CONCLUSIONS

We have used the eigenfunctions of the harmonic oscillator to construct a complete
mutually orthonormal Bloch and Wannier functions. The interesting aspect for solid state ph
is that these Bloch functions provide an expansion for arbitrary Bloch functions, which mig
far beyond the usual expansions in terms of Gaussian orbitals. In the limita→0, these Bloch
functions converge to the plane wave eigenfunctions of the free electron. Thus, the free e
wave functions may be viewed as a special case of the Bloch functionscn

a(k,x). Hence the Bloch
functionscn

a(k,x) represent an alternative complete set of mutually orthonormal Bloch funct
which is appropriate for nearly free electrons in the case of smalla. On the other hand, for large
a the Bloch functionscn

a(k,x) are typical Bloch functions for tight-binding approximations. Thu
depending on the choice ofa, these Bloch functions could be useful both in tight-binding appro
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mations as well as in the case of nearly free electrons. In addition, we have derived s
expressions for these Bloch functions and calculated certain expectation values. Moreov
have discussed the localization properties of the corresponding Wannier functions.
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APPENDIX A: SOME FACTS RELATED TO THETA FUNCTIONS

1. A function related to theta functions

In this section we show that an analytic functionhn
a(k,x) with the quasiperiodicity properties

hn
a~k12p,x!5hn

a~k,x!, ~A1!

hn
a~k1 ia2,x!5e~n11/2!a2

e2a2xe2~2n11!ikhn
a~k,x!, ~A2!

can be expressed in terms of theta functions. Due to periodicityhn
a(k,x) can be expanded into

Fourier series:

hn
a~k,x!5 (

m52`

`

cm
a,n~x!eikm. ~A3!

Taking Eq.~A2! into account we obtain the following relation for the Fourier coefficients:

e2a2mcm
a,n~x!5e~n11/2!a2

e2a2xcm12n11
a,n ~x!. ~A4!

The general solution of these equations is given by

cr 1s~2n11!
a,n ~x!5e@2a2/2~2n11!#„r 1s~2n11!2x…2dr

a,n~x!, ~A5!

wherer 52n,...,n. Thus,hn
a(k,x) can be expressed as a sum of 2n11 u functions:

hn
a~k,x!5 (

r 52n

n

dr
a,n~x!e2@a2/2~2n11!#~r 2x!2

eirku3S 2n11

2
k1 i

a2

2
~r 2x!U i ~2n11!a2

2p D .

~A6!

By applying Jacobi’s transformation, we get

hn
a~k,x!5A 2p

~2n11!a2 eikx (
r 52n

n

dr
a,n~x!

3e2@~2n11!/2a2#k2
u3S ip

a2 k2
p

2n11
~r 2x!U i 2p

~2n11!a2D . ~A7!

2. A function related to derivatives of theta functions

Let aa,n,l (k) be an analytic function obeying the following transformation rules:

aa,n,l S k1 i
a2

2 D5aa,n,l ~k!, ~A8!
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aa,n,l ~k12p!5e~2p!2n/a2
e4pnk/a2

(
s50

l S n2l 1s
s Daa,n,l 2s~k!. ~A9!

Then this function may be expressed in terms ofu functions and their derivatives. From Eq.~A8!,
we infer thataa,n,l (k) may be expanded into the following Fourier series:

aa,n,l ~k!5 (
m52`

`

cm
a,n,l e~4p/a2!km. ~A10!

Due to Eq.~A9! we have:

cm1n
a,n,l 5e-~4p2/a2!~2m1n!(

s50

l S n2l 1s
s D cm

a,n,l 2s . ~A11!

These equations can be solved recursively and it is easily seen that the solution of these eq
is unique for given starting valuescm

a,n,l 2s , s50,...,l , m50,...,n21. Using the ansatz

cm
a,n,l 5e2@~2p!2/na2#m2

dm
a,n,l , ~A12!

we obtain the simpler equations

dm1n
a,n,l 5(

s50

l S n2l 1s
s Ddm

a,n,l 2s . ~A13!

Now we use the ansatz

dp1qn
a,n,l 5(

s50

l S n2l 1s
s Dqsf p

a,n,l ,s , ~A14!

where f p
a,n,l ,05dp

a,n,l . Then Eq.~A13! is fulfilled if we set

f p
a,n,l ,s5 f p

a,n,l 2s,05dp
a,n,l 2s . ~A15!

Since the solution is unique, we have

dp1qn
a,n,l 5(

s50

l S n2l 1s
s Dqsdp

a,n,l 2s , ~A16!

wherep50,...,n21. Hence,aa,n,l (k) may be written in the following way:

aa,n,l ~k!5 (
p50

n21

(
q52`

`

(
s50

l S n2l 1s
s Ddp

a,n,l 2sqse2@~2p!2/na2#~p1qn!2
e~4p/a2!k~p1qn!

5 (
p50

n21

e2@~2p!2/na2#p2
e~4p/a2!kp(

s50

l S n2l 1s
s Ddp

a,n,l 2s ~A17!

3S a2

4pn

]

]kD s

u3S 2
2p ink

a2 1
i4p2p

a2 U4p in

a2 D . ~A18!
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Symmetries of discrete dynamical systems involving
two species
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The Lie point symmetries of a coupled system of two nonlinear differential-
difference equations are investigated. It is shown that in special cases the symmetry
group can be infinite dimensional, in other cases up to ten dimensional. The equa-
tions can describe the interaction of two long molecular chains, each involving one
type of atoms. ©1999 American Institute of Physics.@S0022-2488~99!03206-5#

I. INTRODUCTION

Our purpose in this article is to perform a symmetry analysis of a system of two cou
differential-difference equations of the form

E15ün2Fn~ t,un21 ,un ,un11 ,vn21 ,vn ,vn11!50,
~1.1!

E25 v̈n2Gn~ t,un21 ,un ,un11 ,vn21 ,vn ,vn11!50.

The overdots denote time derivatives. The discrete variablen plays the role of a space variable;
labels positions along a one-dimensional lattice. The functionsFn andGn represent interactions
e.g., between different atoms along a double chain of molecules~see Fig. 1!. The functionsFn and
Gn area priori unspecified; our aim is to classify equations of the type~1.1! according to the Lie
point symmetries that they allow. The interactions in such a model depend on up to six neig
ing particles. For instance, we can interpretun andvn as deviations from equilibrium positions o
two different types of atoms, say typeU and typeV. The accelerationsün and v̈n depend on the
deviationsu andv of both types of atoms at the neighboring sitesn21, n, andn11. We do not
restrict to two-body forces, nor do we impose translational invariance for the chain. W
however, assume there is no dissipation, i.e., system~1.1! does not involve first derivatives with
respect to time.

Such differential-difference equations typically arise when modeling phenomena in mole
physics, biophysics, or simply coupled oscillations in classical mechanics.1–3

A recent article4 was devoted to a similar problem, but was concerned with a single spe
i.e., one dependent variableun(t). The approach adopted here is similar to that of Ref. 4. Thus
shall consider only symmetries acting on the continuous variablest, un , andvn . Transformations
of the discrete variablen must then be studied separately.

Several different treatments of Lie symmetries of difference and differential-difference e
tions exist in the literature.4–13 The one adopted in this article is that of Refs. 4–6. It has b

a!Electronic mail: dgu@eucmos.sim.ucm.es
b!Electronic mail: lafortus@crm.umontreal.ca
c!Electronic mail: wintern@crm.umontreal.ca
27820022-2488/99/40(6)/2782/23/$15.00 © 1999 American Institute of Physics
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called the ‘‘intrinsic method,’’ makes use of a Lie algebraic approach, and is entirely algorith
The Lie algebra of the symmetry group, the ‘‘symmetry algebra’’ for short, is realized by ve
fields of the form

X̂5t~ t,un ,vn!] t1fn~ t,un ,vn!]un
1cn~ t,un ,vn!]vn

. ~1.2!

The algorithm for finding the functionst, fn , and cn in ~1.2! is to construct the appropriat
prolongation prX̂ of X̂ ~see Refs. 4–6 and Sec. II! and to impose that it should annihilate th
studied system of equations on their solution set,

pr X̂E1uE15E25050, prX̂E2uE15E25050. ~1.3!

Our first step is to find and classify all interactions (Fn ,Gn) for which the system~1.1! allows
at least a one-dimensional symmetry algebra. The next step is to specify the interactions
and to find all those that allow a higher-dimensional, possibly infinite-dimensional, symm
algebra.

As in previous articles,4,14 our classification will be up to conjugacy under a group of ‘‘a
lowed transformations.’’ These are fiber preserving locally invertible point transformations,

un5Vn~ ũn ,ṽn , t̃ !, vn5Gn~ ũn ,ṽn , t̃ !, t5t~ t̃ !, ~1.4!

which preserve the form of Eqs.~1.1!, but not necessarily the functionsFn andGn ~they go into
new functionsF̃n andG̃n of the new arguments!.

Throughout the article we assume that bothFn andGn depend on at least one of the quantiti
un21 ,un11 ,vn21 ,vn11 , so that nearest neighbors are genuinely involved. In the bulk of the ar
the interaction is assumed to be nonlinear.

In Sec. II we formulate the problem, establish the general form of the elements of the
metry algebra, and present the determining equations for the symmetries. We also der
‘‘allowed transformations’’ under which we classify the interactions and their symmetries. Se
III is devoted to a classification of interactionsFn , Gn , allowing at least a one-dimensiona
symmetry algebra. Ten classes of such interactions exist, each involving two arbitrary functi
six variables. In Sec. IV we study higher-dimensional symmetry algebras and introduce a
portant restriction. We first prove that four equivalence classes of symmetry algebras isom
to sl~2,R! exist. Then we restrict to just one of them, sl(2,R)1 generating a gauge group acting on
on the fieldsun andvn ~in a global, coordinate-independent manner!. We describe all symmetry
algebras, containing the chosen sl~2,R! as a subalgebra. In Sec. V we obtain the invariant in
actions for all algebras containing sl(2,R)1 . The results are summed up and discussed in Sec
where we also outline future work to be done.

II. FORMULATION OF THE PROBLEM

To find the Lie point symmetries of the system~1.1!, we write the second prolongation of th
vector field~1.2! in the form4–6

FIG. 1. Double molecular chain with two types of atoms.
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pr~2! X̂5t~ t,un ,vn!] t1 (
k5n21

n11

fk~ t,un ,vn!]uk
1 (

k5n21

n11

ck~ t,un ,vn!]vk
1fn

tt] ün
1cn

tt] v̈n
,

~2.1!

with

fn
tt5Dt

2fn2~Dt
2t!u̇n22~Dtt!ün ,

~2.2!
cn

tt5Dt
2cn2~Dt

2t!v̇n22~Dtt!v̈n ,

whereDt is the total time derivative. The determining equations for the symmetries are obt
by requiring that Eq.~1.3! be satisfied. The obtained equations will involve terms likeu̇k, v̇k, and
u̇kv̇ l . The coefficients of each linearly independent term must vanish and this provides 16
differential equations that are easy to solve and do not involve the interaction functionsFn ,Gn .
The result is that an elementX̂ of the symmetry algebra must have the form

X̂5t~ t !] t1F S ṫ

2
1anDun1bnvn1ln~ t !G]un

1Fcnun1S ṫ

2
1dnD vn1mn~ t !G]vn

, ~2.3!

where the overdots denote time derivatives. The functionst(t), ln(t), mn(t), an , bn , cn , anddn

satisfy the two remaining determining equations, namely,

t̂

2
un1l̈n1S an2

3

2
ṫ DFn1bnGn2tFn,t2 (

k5n21

n11

Fn,ukF S ṫ

2
1akDuk1bkvk1lk~ t !G

2 (
k5n21

n11

Fn,vkF S ṫ

2
1dkD vk1ckuk1mk~ t !G50, ~2.4!

t̂

2
vn1m̈n1S dn2

3

2
ṫ DGn1cnFn2tGn,t2 (

k5n21

n11

Gn,ukF S ṫ

2
1akDuk1bkvk1lk~ t !G

2 (
k5n21

n11

Gn,vkF S ṫ

2
1dkD vk1ckuk1mk~ t !G50. ~2.5!

In Eqs. ~2.3!, ~2.4!, and ~2.5! the quantitiesan , bn , cn , and dn are independent oft. To
proceed further, one could specify the interaction functionsFn andGn . Instead, we shall assum
that at least one symmetry generator~2.3! exists and make use of allowed transformations
simplify this vector. The second step is to find interactionsFn and Gn compatible with such a
symmetry.

Substituting~1.4! into Eq. ~1.1! and requiring that the form of these two equations be p
served, we find that the allowed transformations are quite restricted, namely,

S un~ t !
vn~ t ! D5S Qn Rn

Sn Tn
D t821/2S ũn~ t̃ !

ṽn~ t ! D 1S an~ t !
bn~ t ! D , t̃ 5 t̃ ~ t !,

d t̃

dt
Þ0. ~2.6!

The entriesQn , Rn , Sn , and Tn are independent oft; t̃ (t) is an arbitrary locally invertible
function of t; an ,bn are arbitrary functions ofn and t, and the matrix

Mn5S Qn Rn

Sn Tn
D , detMnÞ0, ~2.7!

is nonsingular.
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It will be convenient to use a shorthand notation for the vector fieldXn of Eq. ~2.3!, namely,

H t~ t !,An ,S ln~ t !
mn~ t ! D J , An5S an bn

cn dn
D . ~2.8!

If we perform an allowed transformation~2.6!, then Eq.~1.1! goes into an equation of th
same form, withFn andGn replaced by

S F̃n

G̃n
D 5 t823/2Mn

21F S Fn

Gn
D2S än

b̈n
D G1S 1

2
t̂̃ t8232

3

4
ẗ̃2t824D S ũn

ṽn
D , ~2.9!

whereF̃n andG̃n are functions of the new variables.
The vector field characterized by the triplet~2.3! goes into a new one of the same form,

H t̃~ t̃ !,Ãn ,S l̃n~ t̃ !

m̃n~ t̃ !
D J , ~2.10!

with

t̃~ t̃ !5t~ t~ t̃ !! t8,

Ãn5Mn
21AnMn ,

S l̃n~ t̃ !

m̃n~ t̃ !
D 5Mn

21t81/2F S An1
ṫ

2D S an

bn
D2tS ȧn

ḃn
D 1S ln

mn
D G .

We shall use the allowed transformations to simplify the vector field, rather than the equ
itself.

III. SYSTEMS WITH ONE-DIMENSIONAL SYMMETRY GROUPS

Let us now assume that the system~1.1! has at least a one-dimensional symmetry gro
generated by a vector field of the type~2.3!. Using allowed transformations~2.6!, we takeX̂ into
one of ten inequivalent classes.

Indeed, fortÞ0 we can choose the functiont̃ (t) so as to transformt(t) into t51, the
functionsan(t) andbn(t) so as to annulln(t), andmn(t) and the matrixMn so as to takeAn into
its canonical Jordan form.

For t50 the standardized form ofX̂ depends on the rank of the matrixAn . For rankAn

52, we can again transformln andmn into ln5mn50 and takeAn into one of three canonica
forms. For rankAn51, only one of the functionsln or mn can be annulled. We choose it to b
ln(t)50. ThenAn can be taken into one of the two standard matrices of rank 1 inR232. For rank
An50 bothln(t) andmn(t) survive.

We thus obtain ten mutually inequivalent one-dimensional symmetry algebras, listed b
The statement now is that any single vector fieldX̂ of the form ~2.3! can be transformed by a
allowed transformation into precisely one of these vector fields.

The next step is to determine the interactions for which a one-dimensional symmetry
exists. To do this, we run through the canonical vector fields just obtained, substitute the
spondingt ~51 or 0!, An , ln(t), andmn(t) into Eqs.~2.4! and~2.5!, and solve these equations fo
Fn andGn .

Following this procedure, we arrive at the following list of interactions and their o
dimensional symmetry algebras:
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A1,1 X̂5] t1anun]un
1dnvn]vn

,
Fn5eant f n(jk ,hk),
Gn5edntgn(jk ,hk),
jk5uke

2akt, hk5vke
2dkt,

k5n21,n,n11;

A1,2 X̂5] t1(anun1vn)]un
1anvn]vn

,
Fn5eant@ f n(jk ,hk)1tgn(xk ,hk)#,
Gn5eantgn(jk ,hk),
jk5(uk2tvk)e

2akt, hk5vke
2akt,

k5n21,n,n11;

A1,3 X̂5] t1(anun1bnvn)]un
1(2bnun1anvn)]vn

, bn.0,

SFn

Gn
D5eantS cosbnt sinbnt

2sinbnt cosbnt
DS fn~jk ,hk!

gn~jk ,hk!
D,

jk5r ke
2akt, hk5uk1bkt,

uk5r k cosuk , vk5rk sinuk ,
k5n21,n,n11;

A1,4 X̂5anun]un
1dnvn]vn

, uanu>udnu,
Fn5unf n(ja ,hk ,t),
Gn5vngn(ja ,hk ,t),
ja5ua

anun
2aa, hk5vk

anun
2dk,

k5n21,n,n11, a5n21,n11;

A1,5 X̂5(anun1vn)]un
1anvn]vn

, anÞ0,
Fn5vnf n(ha ,jk ,t)1vn ln(vn)gn(ha ,jk ,t),
Gn5anvngn(ha ,jk ,t),

jk5ak

uk

vk
2ln~vk!, ha5va

anvn
2aa,

k5n21,n,n11, a5n21,n11;

A1,6 X̂5vn]un
,

Fn5 f n(vk ,ja ,t)1ungn(vk ,ja ,t),
Gn5vngn(vk ,ja ,t),
ja52vaun1vnua ,
k5n21,n,n11, a5n21,n11;

A1,7 X̂5(anun1bnvn)]un
1(2bnun1anvn)]vn

, bn.0,

SFn

Gn
D5e2~an /bn!unScosun 2sinun

sinun cosun
DS fn~jk ,ha ,t!

gn~jk ,ha ,t!D,
jk5r k

bneakun, ha5bnua2baun ,
uk5r k cosuk , vk5rk sinuk ,
k5n21,n,n11, a5n21,n11;

A1,8 X̂5anun]un
1mn(t)]vn

, mnÞ0,
Fn5unf n(ha ,jk ,t),

Gn5
m̈n

mn
vn1gn~ha ,jk ,t!,

ha5mnva2mavn , jk5uke
2akvn /mn,

k5n21,n,n11, a5n21,n11;
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A1,9 X̂5vn]un
1mn(t)]vn

, mnÞ0,

Fn5
1

2

m̈n

mn
2 vn

21vngn~ha ,hn ,ja ,t!1fn~ha ,hn ,ja ,t!,

Gn5
m̈n

mn
vn1mngn~ha ,hn ,ja ,t!,

ha5mn
2ua1 1

2mavn
22mnvnva , ja5mavn2mnva ,

hn5mnun2 1
2vn

2, a5n21,n11;

A1,10 X̂5ln(t)]un
1mn(t)]vn

, ln , mnÞ0,

Fn5
l̈n

ln
un1fn~hk ,ja ,t!,

Gn5
m̈n

mn
un1gn~hk ,ja ,t!,

ja5lnua2laun , hk5mkun2lnvk ,
k5n21,n,n11, a5n21,n11.

We mention that the variablesjk andhk are to be taken exactly as above. For instance,jn11

is not an upshift ofjn .
The above results are summed up quite simply. Namely, the existence of a one-dimen

symmetry algebra restricts the interaction termsFn and Gn to two arbitrary functions of six
variables, rather than the original seven variables. The algebrasA1,1, A1,2 andA1,3 involve time
translations. Hence, the time dependence in these cases is restricted:Fn andGn depend on time
explicitly and via invariant variablesjk andhk that, in turn, depend explicitly ont. The algebras
A1,4,...,A1,10 correspond to gauge transformations: the group transformations act on depe
variables only. The time variable figures in the arbitrary functions, as does the discrete ind
dent variablen.

IV. HIGHER-DIMENSIONAL SYMMETRY ALGEBRAS

A. General strategy

The commutator of two symmetry operators~2.3! is an operatorX35@X1 ,X2# of the same
form, satisfying

t35t1ṫ22t2ṫ1 , An,352@An,1 ,An,2#,
~4.1!

S ln,3

mn,3
D5t1S l̇n,2

ṁn,2
D 2t2S l̇n,1

ṁn,1
D 2S An,11

ṫ1

2 D S ln,2

mn,2
D1S An,21

ṫ2

2 D S ln,1

mn,1
D .

To obtain a finite-dimensional Lie algebra of symmetry operators, we see that the ‘‘diff
tial components’’t i(t)] t must form a Lie algebraLd , the ‘‘matrix components’’An,i must also
form a Lie algebraLm , homomorphic toLd . Moreover, Eq.~4.1! shows that the ‘‘functional
components’’„ln,i(t),mn,i(t)… must satisfy certain cohomology conditions.

The algebra of diffeomorphisms ofR1, $t(t)] t% has only three mutually nondiffeomorphi
finite-dimensional subalgebras, namely sl~2,R! and its subalgebras, realized, e.g., as

$] t ,t] t ,t2] t%, $] t ,t] t%, and $] t%, ~4.2!

respectively.
For n fixed, the matricesAn generate the Lie algebra of gl~2,R!. However, since the depen

dence onn is arbitrary, an unlimited number of copies of gl~2,R! and its subalgebras is availabl
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We shall not perform a complete classification of possible symmetry algebras here. In
we shall first concentrate on sl~2,R! symmetry algebras and show that, up to allowed transfor
tions, four different sl~2,R! symmetry algebras can be constructed. We then consider just o
these four and study its extensions to higher-dimensional Lie algebras.

B. Equivalence classes of sl „2,R… symmetry algebras

Since sl~2,R! is a simple Lie algebra, it has no ideals. Hence, a homomorphism bet
sl~2,R! algebras is either an isomorphism, or one of the algebras is mapped onto zero. Corre
ingly, we have three possibilities to explore: we shall call them sl(2,R)d , sl(2,R)m , and sl(2,R)c

~whered stands for ‘‘differential,’’m for ‘‘matrix,’’ and c for ‘‘combined’’!.

1. The algebra sl „2,R…d
We havea priori

X15] t1ln~ t !]un
1mn~ t !]vn

,

X25t] t1„

1
2un1rn~ t !…]un

1„

1
2vn1sn~ t !…]vn

, ~4.3!

X35t2] t1„tun1vn~ t !…]un
1„tvn1kn~ t !…]vn

.

Using allowed transformations we transformln→0, mn→0. The commutation relation@X1 ,X2#

5X1 then requiresṙn5ṡn50. A further allowed transformation~2.6! with t̃ (t)5t, Mn5I , and
(an ,bn) constant will not changeX1 , but takern→0, sn→0 ~while leavingln5mn50!. The
commutation relations@X2 ,X3#5X3 and @X1 ,X3#52X2 then implyvn5kn50.

2. The algebra sl „2,R…m

A priori we have

X15bnvn]un
1ln~ t !]un

1mn~ t !]vn
,

X25an~un]un
2vn]vn

!1rn~ t !]un
1sn~ t !]vn

, ~4.4!

X35cnun]vn
1vn~ t !]un

1kn~ t !]vn
.

The structure constants cannot depend onn, so the commutation relations imply

an5a, bncn5bc. ~4.5!

Given that the productbncn does not depend onn, we can use an allowed transformation
takebn→b, cn→c. A further allowed transformation will takern→0, sn→0. The commutation
relations then implyln5mn50 andvn5kn50.

3. The combined algebra sl „2,R…c

In view of the above results, we can write a ‘‘combined’’ algebra as

X15] t1avn]un
1jn]un

1hn]vn
, aÞ0,

X25t] t1@~ 1
21b!un1ln#]un

1@~ 1
22b!vn1mn#]vn

, ~4.6!

X35t2] t1~ tun1rn!]un
1~gun1tvn1sn!]vn

.

                                                                                                                



r-

he
re-

i

con-
e

ining

2789J. Math. Phys., Vol. 40, No. 6, June 1999 Gómez-Ullate, Lafortune, and Winternitz

                    
We use allowed transformations to seta51, jn5hn50. The commutation relations then dete
mine b5 1

2, g521. The functionsln(t), mn(t), rn(t), and sn(t) are greatly restricted by the
commutation relations. As a matter of fact, we either haveln5mn5rn5sn50, or we can use
allowed transformations to obtainln5t, mn51, rn52t2, sn52t.

We arrive at the following result.
Theorem 1: Precisely four classes ofsl~2,R! algebras can be realized by vector fields of t

form (2.3). Any suchsl~2,R! algebra can be taken by an allowed transformation (2.6) into p
cisely one of the following algebras:

sl~2,R!1 : X15vn]un
,

X25 1
2 ~un]un

2vn]vn
!,

X35un]vn
,

~4.7!

sl~2,R!2 : X15] t ,

X25t] t1
1
2~un]un

1vn]vn
!,

X35t2] t1t~un]un
1vn]vn

!,
~4.8!

sl~2,R!3 : X15] t1vn]un
,

X25t] t1un]un
,

X35t2] t1tun]un
1~ tvn2un!]vn

,
~4.9!

sl~2,R!4 : X15] t1vn]un

X25t] t1~un1t !]un
1]vn

X35t2] t1~ tun12t2!]un
1~ tvn2un12t !]vn

.
~4.10!

C. Indecomposable Lie algebras containing sl „2,R…1

A Lie algebraL is called indecomposable if it cannot be written as a direct sum,L5L1

% L2 . A Lie algebra overR containing sl~2,R! is either simple or it allows a nontrivial Lev
decomposition,15

L5SxR, ~4.11!

whereS is a semisimple Lie algebra andR is the radical, that is, the maximal solvable ideal ofL.
It follows from the results of Sec. IV A that the only simple Lie algebras that can be

structed from operators of the form~2.3! are the four sl~2,R! algebras obtained in Sec. IV B. W
can hence concentrate on Lie algebras of the form~4.11!.

The algebraS is either sl(2,R)1 itself, or the direct sum of sl(2,R)1 with one or more other
sl~2,R! algebras.

Requiring that a symmetry operatorY should commute with all elements of sl(2,R)1 , we find
that Y must have the form

Y05t] t1~ 1
2 ṫ1an!~un]un

1vn]vn
!. ~4.12!

It is hence possible to construct precisely one semisimple Lie algebra properly conta
sl(2,R)1 , namely, the direct sum sl(2,R)1% sl(2,R)2 with sl(2,R)2 defined in Eq.~4.8!.

Let us introduce some notations for vector fields, to be used below. We put

V~an!5an~un]un
1vn]vn

!, ~4.13!
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T~an!5] t1an~un]un
1vn]vn

!, ~4.14!

D~an!5t] t1~ 1
21an!~un]un

1vn]vn
!, ~4.15!

P~an!5t2] t1~ t1an!~un]un
1vn]vn

!, ~4.16!

R~an!5~ t211!] t1~ t1an!~un]un
1vn]vn

!, ~4.17!

Yu~ln!5ln~ t !]un
, Yv~ln!5ln~ t !]vn

. ~4.18!

In all cases we haveȧn50, butln(t) can be a function oft. Both an andln(t) can be functions
of n.

Let us considerS5sl(2,R)1 andS5sl(2,R)1% sl(2,R)2 in Eq. ~4.11! separately.

1. S5sl „2,R…1

The considered Lie algebras will have a basis$X1 ,X2 ,X3 ,Y1 ,...,Yn% with Xi given in Eq.
~4.7!. The basis elements$Y1 ,...,Yn% span the radicalR. The algebraS acts onR according to
some linear, not necessarily irreducible, finite-dimensional representation.

We start with the Cartan subalgebra$X2% of sl~2,R!. It can be represented by a diagon
matrix in any finite-dimensional representation. ConsiderYPR. We have

@X2 ,Y#5pY, ~4.19!

with Y as in Eq.~2.3!. Equation~4.19! implies

pt50,

pS ṫ

2
1anD50, S p1

1

2Dln50, ~p11!bn50, ~4.20!

pS ṫ

2
1dnD50, S p2

1

2Dmn50, ~p21!cn50.

For p50 we obtain an operator that commutes not only withX2 , but with all of sl(2,R)1 , namely,
Y0 of Eq. ~4.12!. This is a singlet representation of sl~2,R!.

For p51, or p521, Eq.~4.19! forcesY to be an element of sl(2,R)1 , in other words, no such
YPR exists.

For p56 1
2 we obtainY15ln(t)]un

andY25mn(t)]vn
, respectively. Acting withX1 andX3

on these operators, we find that the only representation of sl(2,R)1 that can be realized is a double
one, namely$Yu(ln),Yv(ln)% of Eq. ~4.18!, with ln(t) an arbitrary function ofn and t. The
indecomposable Lie algebra$X1 ,X2 ,X3 ,Yu(ln),Yv(ln)% is isomorphic to the special affine Li
algebra saff~2,R!.

All further indecomposable symmetry algebras containing sl(2,R)1 must be extensions o
saff~2,R!. The objects that we can add to saff~2,R! are either sl~2,R! doublets or singlets. Let us
run through all possibilities.

~1! We can add an arbitrary numberk of doublets of the form~4.18!, where thek functions
$ln

1(t),ln
2(t),...,ln

k(t)% must be linearly independent. However, we shall see in Sec. V
the presence of three such pairs forces the functionsFn and Gn in Eq. ~1.1! to be linear.
Moreover, even two such pairs are compatible with a nonlinear interaction only if they a
the form ~or transformable into!

ln
1~t!51, ln

2~ t !5t. ~4.21!
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~2! We can add a singlet of the form~4.12!. If we havet50, then the commutation relation
@Y0 ,Yu# and@Y0 ,Yv# imply an5an11 and we can setan51. We obtain an affine Lie algebr
gaff(2,R)1 consisting of saff~2,R! andV(1) of Eq. ~4.13!.
If we havetÞ0 in Eq. ~4.12! and only one operator of this type, then we can use allow
transformations to taket(t) into t(t)51. The commutation relations@Y0 ,Yu# and @Y0 ,Yv#
then imply

ln~t!5Rne
~an1k!t, Ṙn50.

For k50, the algebra is decomposable. ForkÞ0 we can use allowed transformations to p
k521 andRn51. We obtain a second algebra isomorphic to gaff~2,R!, but not conjugate to
the previous one. We have

gaff~2,R!2;$X1 ,X2 ,X3 ,Yu~e~an21!t!,Yv~e~an21!t!,T~an!%. ~4.22!

In the special case ofan5an11 in Eq. ~4.22!, a further extension is possible. We transfor
l5e(a21)t into l51; then T(an) goes intoD(bn) with bn5bn11[bÞ2 1

2, since for b
52 1

2 the algebra is decomposable.
~3! We can add two singlets of the form~4.12!. If they commute, they must be$V(1),T(0)%. The

obtained algebra is decomposable. If they do not commute, they must form a two-dimen
Lie algebra, namely,$T(0),D(a),an5an11[a%. This impliesln(t);1, i.e., the entire radi-
cal is $Yu(1),Yv(1),T(0),D(a)% with aÞ 1

2 ~the casea5 1
2 corresponds to a decomposab

algebra!.
~4! If we add three singlets, the only case corresponds to the ra

$Yu(1),Yv(1),V(1),T(0),D(0)%. There will then be no invariant interaction~see below!.
~5! Let us consider the special case of two doublets of the form~4.18!, namely,

Yu~1!5]un
, Yv~1!5]vn

, Yu~t!5t]un
, Yv~t!5t]vn

. ~4.23!

This algebra can be extended by a further element, namely,

Z5~t01t1t1r2t
2!]t1~ 1

2t11t2t1a!~un]un
1vn]vn

!,

~4.24!
an5an11[a,

wheret0 , t1 , andt2 are constants. By allowed transformations we can takeZ into one of the
four operatorsV(1), T(a), D(a), or R(a) of ~4.13!, ~4.14!, ~4.15!, and~4.17!, respectively.

~6! We can add a two-dimensional algebra to~4.23!, namely,

$T~0!,D~a!%, $T~0!,V~1!%, $V~1!,D~0!%, or $V~1!,R~0!%.

~7! We can add only one three-dimensional algebra to~4.23!, namely,

$T~0!, D~0!, V~1!%.

This completes the list of indecomposable symmetry algebras of the form~4.11! with S
5sl(2,R)1 .

2. S5sl „2,R…1 % sl „2,R…2

The algebraS is itself decomposable. It gives rise to precisely two indecomposable symm
algebras. First, we have the one obtained by adding the Abelian ideal~4.23! to sl(2,R)1

% sl(2,R)2 . Second, we get an 11-dimensional algebra by addingV(1) to the first case.

D. Decomposable Lie algebras containing sl „2,R…1

All decomposable Lie algebrasLD can be obtained from the indecomposableLI ones, by
adding their centralizers,
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LD5LI % C, @C,LI #50. ~4.25!

The centralizerC must commute with all elements of sl(2,R)1 and hence all of its element
will have the form ofY0 of Eq. ~4.12!.

Let us consider the individual indecomposable algebrasLI .

1. L I5sl „2,R…1

The centralizerC can be Abelian. Then we have the following possibilities:C5$V(ai ,n),i
51,...,k% or C5$V(ai ,n),T(bn),i 51,...,k%. The quantitiesa1,n ,...,ak,n must form a set ofk lin-
early independent functions ofn. If the centralizer is non-Abelian, then we have eitherC
;sl(2,R)2 or C5$T(0),D(a)%. Both of these centralizers can be further extended by ad
V(ai ,n), i 51,...,k, ~with a1,n ,...,ak,n linearly independent!.

2. L I5saff „2,R…

We must requireY0 of Eq. ~4.12! to commute withYu(ln) and Yv(ln) of Eq. ~4.18!. We
obtain

ln~ 1
2ṫ1an!2tl̇n50. ~4.26!

For t50, Eq. ~4.26! implies lnan50, and this is not allowed. FortÞ0 we taket→1 by an
allowed transformation, and Eq.~4.26! then impliesln(t)5gneant. A further allowed transforma-
tion will take gn→1. We obtain the decomposable Lie algebra saff(2,R) % T(an). In the special
casean5an11 we transformln(t)→1 and obtain a larger centralizer, namely,$T(0),D(2 1

2)%.

3. L I5gaff „2,R…1

A nontrivial centralizer exists only if we haveln(t)5eant in saff~2,R!. In the caseanÞ0, the
centralizer isC5$T(an)%. If an50 the centralizer isC5$T(0),D(2 1

2)%.

4. L I5gaff „2,R…2

The centralizer isC5$T(an)2V(1)%. This algebra corresponds to the first one obtained
the caseLI5gaff(2,R)1 above.

E. Summary of possible symmetry algebras containing sl „2,R…1

The classification of possible symmetry algebras can now be summed up rather sim
addition to sl(2,R)1 of Eq. ~4.7!, we have a further algebraLC ~the ‘‘complementary’’ algebra!.
The structure of each symmetry algebra is

L5sl~2,R!1uLC , @sl~2,R!1 ,LC##LC , @LC ,LC##LC . ~4.27!

The symbolu denotes a direct sum of vector spaces. Moreover, Eq.~4.27! shows thatL is either
a direct sum or a semidirect one. The algebraLC is also a representation space for sl(2,R)1 .
Irreducible representations in this case can be of dimension 1 or 2. All higher-dimensional
sentations are completely reducible into sums of one- and two-dimensional representation

For further use it is convenient to split the symmetry algebras into four series, according
structure of the Lie algebraLC . In all casesL contains sl(2,R)1 . We shall just specifyLC .

1. Series A

LC is solvable and each element is a sl(2,R)1 singlet. There exist three different infinite
dimensional Lie algebras of this type:

A1• $V~ak,n!%, ~4.28!

A2• $T~bn!,V~ak,n!%, ~4.29!
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A3• $T~0!,D~bn!,V~ak,n!%. ~4.30!

In each case we havek51,2, . . . , and theexpressionsak must be linearly independent function
of n. Taking 1<k<N for some finiteN, we obtain finite-dimensional subalgebras.

2. Series B

LC is solvable and contains precisely one sl(2,R)1 doublet,

B15$Yu~ln!,Yv~ln!%. ~4.31!

This is the indecomposable algebra saff~2,R! @B1 together with sl(2,R)1#. We have dimL55,

B25$Yu~ln!,Yv~ln!,V~1!%. ~4.32!

B2 corresponds to the indecomposable algebra gaff(2,R)1 with dimL56,

B35$Yu~e~an21!t!,Yv~e~an21!t!,T~an!%. ~4.33!

B3 corresponds to the Lie algebra gaff(2,R)2 , isomorphic but not conjugate toB2 ,

B45$Yu~eant!,Yv~eant!,T~an!%. ~4.34!

This algebra is saff(2,R) % T(an),

B55$Yu~1!,Yv~1!,T~0!,D~a!%. ~4.35!

The algebraB5 is indecomposable~except ifa52 1
2!,

B65$Yu~e~an21!t!,Yv~e~an21!t!,T~an!,V~1!%. ~4.36!

The algebraB6 is decomposable,

B75$Yu~1!,Yv~1!,T~0!,D~0!,V~1!%. ~4.37!

The algebraB7 is indecomposable.

3. Series C

LC contains two sl~2,R! doublets. The doublets could be characterized by any two funct
l1,n(t) andl2,n(t). However, we shall only be interested in the casel151, l25t. The others do
not lead to invariant interactions. Similarly, we do not need algebras containing three or
doublets. In all cases the algebraLC contains the elements~4.23!. For dimLC>5 it contains
further elements. We have

C15$Yu~1!,Yv~1!,Yu~ t !,Yv~ t !%. ~4.38!

Further, we just list the additional elements,

C2• $T~a!%, a50 or 1, ~4.39!

C3• $D~a!%, ~4.40!

C4• $R~a!%, ~4.41!

C5• $V~1!%, ~4.42!

C6• $T~0!,D~a!%. ~4.43!
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In all cases above,a does not depend onn(an115an),

C7• $V~1!,T~0!%, ~4.44!

C8• $V~1!,D~0!%, ~4.45!

C9• $V~1!,R~0!%, ~4.46!

C10• $T~0!,D~0!,P~0!%;sl~2,R!2 , ~4.47!

C11• $T~0!,D~0!,V~1!%, ~4.48!

C12• $T~0!,D~0!,P~0!,V~1!%. ~4.49!

4. Series D

LC contains sl(2,R)2 and ~possibly! further elements, namely,

D1• None, ~4.50!

D2• $V~an!%, ~4.51!

D3• $V~a1,n!,V~a2,n!%, ~4.52!

D4• $Yu~1!,Yv~1!,Yu~ t !,Yv~ t !%, ~4.53!

D5• $Yu~1!,Yv~1!,Yu~ t !,Yv~ t !,V~1!% ~4.54!

~D4 coincides withC10 andD5 with C12!.

V. THE INVARIANT INTERACTIONS

A. General procedure and interactions invariant under SL „2,R…1

In this section we shall find all interaction functions, invariant under symmetry groups,
taining SL(2,R)1 . We make use of the subalgebra classification provided in Sec. IV.

We first establish the form of the interaction, invariant under SL(2,R)1 itself. To do this we
sett(t)5ln(t)5mn(t)50 in the determining equations~2.4! and~2.5! and consider the equation
obtained for an52dn51, bn5cn50, then bn51, an52dn5cn50, and, finally, cn51,
an52dn5bn50. The general solution of the obtained system of six equations can be writt
the following form:

Fn5un11f n1ungn , Gn5vn11f n1vngn , ~5.1!

where f n andgn are functions of four variables each, namely,

t, jn5un11vn212un21vn11 , ja5uavn2unva , a5n61. ~5.2!

Note thatjn , jn11 , andjn21 are as given in Eq.~5.2!. They are not upshifts or downshifts o
each other.

We shall proceed further by dimension of the symmetry algebra and by its structure. Thu
can successively add sl~2,R! singlets of the form~4.12! or doublets of the form~4.18!. We
continue adding symmetry elements until the interaction is completely specified, i.e., it inv
no further arbitrary functions. We then solve the ‘‘inverse problem.’’ That is, we substitute
functions Fn and Gn back into the determining equations and solve for the symmetries.
provides a verification of previous calculations. More important, this procedure will find
largest symmetry algebra allowed by any given interaction.
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Obviously, all invariant interactions will have the form~5.1!. It is the functionsf n andgn that
will be further refined, and their dependence on the variablesjk and t will be restricted.

For future convenience we write down two further forms of the SL(2,R)1 invariant interaction
functions, equivalent to~5.1!. The first is

Fn5un11

jn21

jn
hn1unkn , Gn5vn11

jn21

jn
hn1vnkn , ~5.3!

wherehn andkn are arbitrary functions of the variables~5.2!. The second convenient form is

Fn5~ln21un112ln11un21!fn1~ln11un2lnun11!cn1
l̈n

ln11
un11 ,

~5.4!

Gn5~ln21vn112ln11vn21!fn1~ln11vn2lnvn11!cn1
l̈n

ln11
vn11 ,

whereln(t) is some arbitrary function ofn andt andfn andcn depend in an unspecified mann
on the variables~5.2!.

B. Interactions invariant under four-dimensional symmetry groups

As was shown in Sec. IV, two types of four-dimensional symmetry algebras conta
sl(2,R)1 can exist. Both are decomposable according to the pattern 45311. Here and below we
shall always list the operators that we can add to sl(2,R)1 .

1. V„an…5an„u nu n
1v nv n

…

The invariant interactions will have the form~5.3!, but hn and kn will depend on three
variables only.

~i! an211an11Þ0. The variables are

t, ha5~ja!an211an11~jn!2an2aa, a5n61. ~5.5!

~ii ! an211an1150. The variables are

t, jn , h5~jn11!an112an~jn21!an111an. ~5.6!

2. T„b n…5 t1b n„u nu n
1v nv n

…

The invariant interaction will again have the form~5.3!, however, in this casehn andkn are
arbitrary functions of the three variables,

zn5jne2~bn211bn11!t, za5jae2~bn1ba!t, a5n61. ~5.7!

We see that adding further singlets of the typeV(an) will restrict the variables in the function
hn andkn , not, however, the general form of Eq.~5.3!.

C. Five-dimensional symmetry groups

From the results of Sec. IV, we know that three decomposable and one indecomp
symmetry algebras of dimension 5 can exist. Let us run through all four possibilities.

1. Decomposition 5 531111
a. V(ai ,n)5ai ,n(un]un

1vn]vn
,) i 51,2, a2,nÞla1,n . The interaction is of the form~5.3!.

The functionshn andkn depend on two variables each, namely, timet and

h5~jn21!A~jn11!B~jn!C, ~5.8!
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A5a1,n~a2,n111a2,n21!1a1,n11~a2,n212a2,n!2a1,n21~a2,n111a2,n!,

B52a1,n~a2,n111a2,n21!1a1,n11~a2,n211a2,n!2a1,n21~a2,n112a2,n!, ~5.9!

C5a1,n~a2,n112a2,n21!2a1,n11~a2,n211a2,n!1a1,n21~a2,n111a2,n!.

Note that the variableh always exists since the conditionA5B5C50 ~and henceh5const!
only occurs fora1,n21a2,n2a1,na2,n2150, which impliesa2,n5la1,n , l5const, and this is not
allowed.

b. V(an)5an(un]un
1vn]vn

), T(bn)5] t1bn(un]un
1vn]vn

). The invariant interaction is as
in Eq. ~5.3! with hn andkn functions of two variables each. Namely, the following.

~i! an111an21Þ0:

ra5~za!an111an21~zn!2aa2an, a5n61, ~5.10!

with za , zn as in Eq.~5.7!.
~ii ! an111an2150:

rn5zn , sn5~zn21!an111an~zn11!an112an. ~5.11!

2. Decomposition 5 5312
a. T(0)5] t , D(bn)5t] t1( 1

21bn)(un]un
1vn]vn

). We imposebnÞ2 1
2; otherwise we have

no invariant interaction. We must distinguish two subcases here.

~1! bn111bn2111Þ0. The interaction as in Eq.~5.3!, with

hn5~jn!
22/~bn111bn2111!pn , kn5~jn!22/~bn111bn2111!qn , ~5.12!

wherepn andqn depend on two variables, namely,

xa5~ja!bn111bn2111~jn!
2bn2ba21, a5n61. ~5.13!

~2! bn111bn211150, bn111bn11Þ0:

hn5~jn11!
22/~bn111bn11!pn , kn5~jn11!22/~bn111bn11!qn , ~5.14!

wherepn andqn depend on

xn5~jn21!
bn111bn11~jn11!

2bn212bn21, jn . ~5.15!

Note that forbn111bn211150, bn111bn1150, we havebn52 1
2, and there is no invari-

ant interaction.

3. Indecomposable Lie algebra

Yu~ln!5ln~ t !]un
, Yv~ln!5ln~ t !]vn

. ~5.16!

The invariant interaction is as in Eq.~5.4!, but the functionsfn andcn depend on only two
variables, namely,

t, v5ln21jn112lnjn2ln11jn21 . ~5.17!

D. Six-dimensional symmetry groups

1. Decomposition 653111111
a. V(ai ,n)5ai ,n(un]un

1vn]vn
), i 51,2,3. The invariant interaction is as in Eq.~5.3!, but hn

andkn are functions oft only. We see that the coefficientsai ,n do not figure in the interaction
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Hence, we can add an arbitrary number of vector fieldsV(ai ,n), i PZ to the symmetry algebra. In
other words, the symmetry algebra for the interaction~5.3! with hn andkn depending ont alone is
infinite dimensional.

b. V(ai ,n)5ai ,n(un]un
1vn]vn

), i 51,2, T(bn)5] t1bn(un]un
1vn]vn

). The invariant inter-
action is as in Eq.~5.3!, but hn andkn depend on one variable only, namely,

v5he22tuM u, M5S bn21 bn bn11

a1,n21 a1,n a1,n11

a2,n21 a2,n a2,n11

D , ~5.18!

with h as in Eq.~5.8!.

2. Decomposition 6 531211
a. V(an)5an(un]un

1vn]vn
), T(0)5] t , D(cn)5t] t1( 1

21cn)(un]un
1vn]vn

). We start
from Eq. ~5.3!. The presence ofT(0)5] t implies thathn and kn do not depend ont. We first
notice that if we have

gn5cn1 1
250 or gn5cn1 1

25lan , ~5.19!

then we must havehn5kn50 ~no invariant interaction!. In all other cases, invariance underV(an)
andD(cn) implies

hn5~jn!m~jn11!n~jn21!rpn~v!, kn5~jn!m~jn11!n~jn21!rqn~v!,
~5.20!

v5~jn21!A~jn11!B~jn!C,

with A, B, andC as in Eq.~5.9!, with the substitutions

a1,n→cn1 1
2, a2,n→an .

The constantsm, n, andr in Eq. ~5.20! satisfy

~an111an21!m1~an111an!n1~an211an!r50,
~5.21!

~gn111gn21!m1~gn111gn!n1~gn211gn!r522.

Thus, forCÞ0 we can put

m50, n52
an1an21

C
, r522

an1an11

C
.

For C50, AÞ0,

m52
an1an11

A
, n522

an111an21

A
, r50.

For C5A50, BÞ0,

m522
an211an

B
, n50, r52

an111an21

B
.

The caseA5B5C50 corresponds to Eq.~5.19! and hence to the absence of an invariant int
action.
                                                                                                                



-

2798 J. Math. Phys., Vol. 40, No. 6, June 1999 Gómez-Ullate, Lafortune, and Winternitz

                    
3. Decomposition 6 5313

a. sl(2,R)1% sl(2,R)2 . The algebra sl(2,R)2 is as in Eq.~4.8! and the invariant interaction is

Fn5
1

~jn!2 Fun11

jn21

jn
pn~xn11 ,xn21!1unqn~xn11 ,xn21!G ,

Gn5
1

~jn!2 Fvn11

jn21

jn
pn~xn11 ,xn21!1vnqn~xn11 ,xn21!G , ~5.22!

xn115
jn11

jn
, xn215

jn21

jn
.

4. Decomposition 6 5511

a. saff(2)% A1 . We have

Yu~eant!5eant]un
, Yv~eant!5eant]vn

, T~an!5] t1an~un]un
1vn]vn

!.

The invariant interaction will be as in Eq.~5.4! with ln5eant. The functionsfn and cn will
satisfy

fn5e~an2an212an11!tKn~v!, cn5e2an11tLn~v!,
~5.23!

v5e2~an1an11!tjn112e2~an111an21!tjn2e2~an211an!tjn21 .

5. Indecomposable symmetry algebras

It was shown in Sec. IV that two inequivalent gaff~2! symmetry algebras exist.
a. gaff(2,R)1 .

Yu~ln!5ln~ t !]un
, Yv~ln!5ln~ t !]vn

, V~1!5un]un
1vn]vn

.

The interaction is as in Eq.~5.4!, however,fn andcn depend only ont. This means that the
equations are linear and, moreover, the equations~1.1! for un andvn are decoupled.

b. gaff(2,R)2 . The algebra is as in Eq.~4.22! @or ~4.33!#, the interaction as in Eq.~5.4! with
ln(t)5e(an21)t. The functionsfn andcn satisfy

fn5e2~an111an212an21!tKn~v!, cn5e~2an1111!tLn~v!, ~5.24!

with v as in Eq.~5.23!.

E. Seven-dimensional symmetry groups

1. Decomposition 7 5311111111

We exclude the case

V~ai ,n!5ai ,n~un]un
1vn]vn

!, i 51,...,4,

since the only invariant interaction is~5.3! with hn andkn functions oft. We already know that the
symmetry algebra is infinite dimensional.

a. V(ai ,n)5ai ,n(un]un
1vn]vn

), i 51,2,3,T(bn)5] t1bn(un]un
1vn]vn

). The interaction is
as in Eq.~5.3! with hn andkn constants~depending onn!. The algebra is actually infinite dimen
sional: we can take any number of operatorsV(ai ,n).
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2. Decomposition 7 53121111
a. V(ai ,n)5ai ,n(un]un

1vn]vn
), i 51,2, T(0)5] t , D(cn)5t] t1( 1

21cn)(un]un
1vn]vn

).
We putgn5cn1 1

2. An invariant interaction exists if and only if we have

D5detS gn gn11 gn21

a1,n a1,n11 a1,n21

a2,n a2,n11 a2,n21

D Þ0. ~5.25!

The invariant interaction is that of Eq.~5.3!, with

hn5hkpn , kn5hkqn , k52
2

D
. ~5.26!

The variableh is as in Eq.~5.8!; pn andqn are constants.

3. Decomposition 7 531311

a. sl(2,R)1% sl(2,R)2% A1 . We haveA15$V(an)%. The invariant interaction can be obtaine
from Eq.~5.22!. The additional invariance implied by the presence ofV(an) restrictspn andqn to

pn5S jn11

jn
D 2~an111an21!/~an2an21!

r n~v!,

qn5S jn11

jn
D 2~an111an21!/~an2an21!

sn~v!, ~5.27!

v5~jn11!an112an~jn21!an2an21~jn!an212an11,

and we must imposeanÞan21 ~otherwise we haveFn5Gn50!.

4. Decomposition 7 5611

The algebra gaff(2,R)1 does not allow any nonlinear interactions. Let us consider gaff(2,R)2

of Eq. ~4.22!.
a. gaff(2,R)2% $U5un]un

1vn]vn
%. The interaction is as in Eq.~5.4!, with fn andcn as in

Eq. ~5.24!. Invariance under the dilations corresponding toU implies thatfn and cn do not
depend onv. Hence, the interaction is linear and decoupled.

5. Indecomposable Lie algebras

a. Yu(ln)5ln(t)]un
, Yv(ln)5ln(t)]vn

, Yu(mn)5mn(t)]un
, Yv(mn)5mn(t)]vn

. We start
from Eq. ~5.4! with fn andcn functions oft andv as in Eq.~5.17!. If fn andcn do not depend
on v, the interaction is already linear and decoupled. Hence,v must be invariant under the
transformations corresponding toYu(mn) andYv(mn). This implies thatln andmn are indepen-
dent ofn. Further, invariance implies

l̈n

ln
5

m̈n

mn
5 k̃, ~5.28!

with k̃5const. Equation~5.28! allows solutions,

S ln

mn
D5S sinkt

cosktD , S sinhkt
coshktD , S 1

t D . ~5.29!

These solutions are all equivalent under allowed transformations. We chooseln51, mn5t, i.e.,
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Yu~1!5]un
, Yv~1!5]vn

, Yu~ t !5t]un
, Yv~ t !5t]vn

. ~5.30!

The invariant interaction is

Fn5~un112un21!fn~v,t !1~un2un11!cn~v,t !,
~5.31!

Gn5~vn112vn21!fn~v,t !1~vn2vn11!cn~v,t !,

with

v5jn112jn212jn . ~5.32!

b. Yu(1)5]un
, Yv(1)5]vn

, T(0)5] t , D(b)5t] t1( 1
21b)(un]un

1vn]vn
), bÞ2 1

2, b

5const. The invariant interaction is as in Eq.~5.31!, with

fn5knv22/~2b11!, cn5pnv22/~2b11!, ~5.33!

with kn and pn constants,v as in Eq.~5.32!. For b52 1
2 there is no invariant interaction. Forb

Þ2 1
2 the symmetry algebra is actually larger and includesYu(t)5t]un

andYv(t)5t]vn
.

F. Symmetry groups of dimensions 8, 9, and 10

By now, all invariant interactions have been specified up to arbitrary constants~depending on
n!, except those involving symmetry algebras containing the subalgebra sl(2,R)1% sl(2,R)2 , or the
subalgebra$Yu(1),Yv(1),Yu(t),Yv(t)% of Eq. ~5.30!. Let us consider the remaining nonline
interactions.

1. sl „2,R…1 % sl „2,R…2 % ˆV„a1,n…‰% ˆV„a2,n…‰

The invariant interaction is obtained from Eq.~5.27! by specifyingr n(v) and sn(v) to be
specific powers ofv. The result is

Fn5jn
22Fun11

jn21

jn
pn1unqnG~jn21!22A/D~jn11!22B/D~jn!2@~A1B!/D#,

~5.34!

Gn5jn
22Fvn11

jn21

jn
pn1vnqnG~jn21!22A/D~jn11!22B/D~jn!2@~A1B!/D#.

Herepn andqn are constants,A andB are as in Eq.~5.9!, and

D5a1,n~a2,n112a2,n21!1a1,n11~a2,n212a2,n!1a1,n21~a2,n2a2,n11!. ~5.35!

We assumeDÞ0; otherwise there is no invariant interaction. In particular, we havea1,n

Þa1,n11 , a2,nÞa2,n11 .

2. Algebras containing „Yu„1…,Yv„1…,Yu„t …,Yv„t …… of (5.30) plus one additional
operator Z

The interaction is as in Eq.~5.31! with a restriction onfn andcn .

~i! Z5T(a)5] t1a(un]un
1vn]vn

), a[an5an11 ,

fn5fn~h!, cn5cn~h!, h5ve22at. ~5.36!

~ii ! Z5D(a)5t] t1( 1
21a)(un]un

1vn]vn
), a[an5an11 ,

fn5
1

t2
rn~h!, cn5

1

t2
sn~h!, h5vt2~2a11!. ~5.37!
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~iii ! Z5R(b)5(t211)] t1(t1b)(un]un
1vn]vn

), b[bn5bn11 ,

fn5
1

~t211!2
rn~h!, cn5

1

~t211!2
sn~h!,

~5.38!

h5
v

11t2
e22b arctant,

with v as in Eq.~5.32! in all cases.
~iv! Z5V(1). Thenfn andcn depend only ont and the interaction is linear.

We can add two operators to those of Eq.~5.30!

T~0!5] t , D~b!5t] t1~ 1
21b!~un]un

1vn]vn
!.

The invariant interaction coincides with that of Eq.~5.33!.
Finally, the interaction~5.31! is invariant under a ten-dimensional symmetry algebra of

form

„sl~2,R!1% sl~2,R!2…x$Yu~1!,Yv~1!,Yu~ t !,Yv~ t !%,

for

fn5knv22, cn5pnv22, ~5.39!

i.e., b50 in Eq. ~5.33!.

VI. SUMMARY AND CONCLUSIONS

Let us first sum up the results on invariant interactions and the corresponding sym
algebras. We shall follow the summary of possible symmetry algebras outlined in Sec. IV E
results are presented in the following tables.

Table I. The SeriesA of symmetry algebras. The algebraLC of Eq. ~4.27! consists entirely of
sl(2,R)1 singlets. In the first column of Table I we list the symmetry algebras. The numb
brackets@e.g., A1(3)# denotes the dimension of the symmetry algebra. The notation for b
elements in column 2 are as in Eqs.~4.13!–~4.18!. Note that if the functionshn and kn in the
interaction~5.3! depend only ont or are constants, then the symmetry algebra is infinite dim
sional, although the interaction is nonlinear.

The caseA3(7) corresponds to an algebraL with dimL57 and the interaction is completel
specified@see~5.3!, ~5.25!–~5.26!#. In other cases the functionshn andkn depend on one, two, o
three variables involvinguk andvk .

Table II. The SeriesB of symmetry algebras. The symmetry algebras are either five o
dimensional. The interactions are as in Eq.~5.4! and involve two arbitrary functions,fn andcn .
A B-type symmetry allowsfn andcn to depend on just one variable involvinguk andvk . Any
extension of theB-type algebras will restrictln(t) to beln51 and will involve a further pair with
ln5t. This takes us into the seriesC of symmetry algebras.

The algebrasB2 , B6 , andB7 of Eqs.~4.32!, ~4.36!, and~4.37! lead to linear interactions. Any
interaction invariant with respect toB5 will be invariant under a larger group, corresponding to
Lie algebra in the series C. We do not include linear interactions in the tables and w
interactions together with theirmaximalsymmetry algebras.

Table III. The SeriesC of symmetry algebras. The interaction will be as in Eq.~5.31!,
involving a variable v as in Eq. ~5.32!. The algebras
C5(8),C7(9),C8(9),C9(9),C11(10),C12(11), absent in the table, lead to a linear interaction.
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For C6(9) andC10(10) the interactions are specified up to constants~that can depend onn!.
In all other cases, the arbitrary functions depend on one variable, involvinguk andvk .

Table IV. The SeriesD of symmetry algebras. There are three such algebras of dimensi
7, and 8, respectively. They all lead to nontrivial invariant interactions of the form~5.22!. For
D3(8), theinteraction is completely specified. We do not listD4(10) in Table IV since it coin-
cides withC10(10) of Table III. The algebraD5(11) corresponds to a linear interaction.

For each interaction we have verified that the given symmetry algebra is the maximal
A few words about the interpretation of the invariant interactions. From Eq.~5.1! and the

variables~5.2! we see that invariance under sl(2,R)1 imposes very strong restrictions.

~1! In particular, if the interaction is linear and sl(2,R)1 invariant, we must have

Fn5 (
k5n21

n11

Ak~t!uk , Gn5 (
k5n21

n11

Ak~t!vk , ~6.1!

i.e., the equations~1.1! for uk andvk decouple~into identical equations forun andvn sepa-
rately!.

~2! If the interaction termsFn andGn in Eq. ~5.1! are nonlinear, they always involve many-bod
forces. That is, they cannot be written as sums of terms of the typehn(un ,vn) or
hn(un ,vn11), etc. Indeed, each invariant variablejn ,jn11 ,jn21 itself involves four of the
original variablesui ,v i simultaneously. This many-body character becomes more pronou
when the invariance algebra is larger.

~3! The operatorsV(an) correspond to site-depending dilations,

TABLE I. SeriesA of symmetry algebras. The interaction has the form~5.3!.

No. LC

Restrictions on
hn andkn

Variables and
comments

A1(3) ¯ ¯ t,jn11 ,jn21 ,jn ~5.2!

A1(4) V(an) ¯ Ht,hn11,hn21 ~5.5!
t,jn ,h ~5.6!

A1(5) V(a1,n),V(a2,n) ¯ t, h ~5.8!
A1(`) V(ai ,n),i PZ.

¯ t

A2(4) T(bn) ¯ zn11 ,zn21 ,zn ~5.7!

A2(5) T(bn),V(an) ¯ Hrn21,rn11 ~5.10!
rn ,sn ~5.11!

A2(6) T(bn),V(a1,n),V(a2,n) ¯ h ~5.18!
A2(`) T(bn),V(ak,n),kPZ. hn ,kn constants None

A3(5) T(0),D(bn) ~5.12! or ~5.14! ~5.13! or ~5.15!
A3(6) T(0),D(cn),V(an) ~5.20! v ~5.20!
A3(7) T(0),D(cn),V(a1,n)V(a2,n) ~5.26! None

TABLE II. SeriesB of symmetry algebras. The algebra includes one pairYu(ln), Yv(ln). The interaction has the form
~5.4!.

No.
Restrictions onln , additional

Elements ofLC Restrictions onfn andcn Variables and comments

B1(5) ¯ ¯ t, v as in ~5.17!
B4(6) ln5eant,T(an) ~5.23! v ~5.23!
B3(6) ln5e(an21)t,T(an) ~5.24! v ~5.23!
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ũn5eeanun , ṽn5eeanvn . ~6.2!

Invariance under two such one-dimensional symmetry groups, generated
$V(a1,n),V(a2,n)%, wherea1,n anda2,n are two linearly independent functions ofn, introduces
the symmetry variable

vD[~jn21!
A~jn11!

B~jn!
C, ~6.3!

as in Eq.~5.8!. Here all six variables are coupled together.
~4! The pair of operatorsYu(ln),Yv(ln) induces site-dependent~and time-dependent! shifts of

the dependent variables,
ũn5un1eln~t!, ṽn5vn1eln~t!. ~6.4!

The corresponding invariant variable again involves all six variables@see Eq.~5.17!#,

vT[ln21jn112lnjn2ln11jn21 . ~6.5!

A special case of the variablevT is obtained settingln5ln215ln1151. This is the case of Eq
~5.32!, where

v5vS5jn112jn2jn21 ~6.6!

is invariant with respect to two such translations:

ũn5un1e11e2t, ṽn5vn1e11e2t ~6.7!

~e1 ande2 are group parameters and hence constants!.
A continuation of this study is in progress. It involves several aspects.
The first is a study of the integrability properties of the equations that are completely spe

by their symmetries. These are, first of all, those with infinite-dimensional symmetry gro
namely

ün5un11

jn21

jn
hn1unkn , v̈n5vn11

jn21

jn
hn1vnkn , ~6.8!

TABLE III. SeriesC symmetry algebras. The algebras contain sl(2,R)1 ,Yu(1), Yv(1), Yu(t), Yv(t), and possibly addi-
tional elements. The interaction is as in Eq.~5.31!.

No. Additional elements Conditions onfn andcn Variables

C1(7) – ¯ v, t ~5.32!
C2(8) T(a) ¯ h5ve22at

C3(8) D(a) fn5t22r n(h), cn5t22sn(h) h5vt2(2a11)

C4(8) R(b) fn5(t211)22r n(h), h5v(t211)21

cn5(t211)22sn(h) e22b arctant

C6(9) T(0),D(a) fn5knv22/(2a11), cn5pnv22(2a11) None
kn , pn constants, 2a11Þ0

C10(10) T(0),D(0),P(0) fn5knv22, cn5pnv22 None

TABLE IV. SeriesD of symmetry algebras. The algebra contains sl(2,R)1% sl(2,R)2 . The interaction has the form~5.22!.

No. Additional elements inLC Conditions onpn andqn Variables

D1(6) ¯ ¯ xn11 , xn21 as in ~5.22!
D2(7) V(an) ~5.27! h as in ~5.27!
D3(8) V(a1,n), V(a2,n) ~5.34! ¯
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with hn andkn functions oft or constants@seeA1(`) andA2(`) in Table I#.
Completely specified equations with finite-dimensional symmetry algebrasL are the following

ones.

~i!

ün5Sun11

jn21

jn
pn1unqnDvD

22/D , v̈n5S vn11

jn21

jn
pn1vnqnDvD

22/D , ~6.9!

with vD as in Eq.~6.3!, D as in Eq.~5.25!. This is caseA3(7) of Table I.
~ii !

ün5@~un112un21!pn1~un2un11!qn#vS
22/~2a11! ,

v̈n5@~vn112vn21!pn1~vn2vn11!qn#vS
22/~2a11! , ~6.10!

with vS as in Eq.~6.6!, pn ,qn ,aÞ2 1
2 const. This is caseC6(9) of Table III.

~iii ! For a50, Eq. ~6.10! is invariant under a ten-dimensional symmetry algebra, nam
C10(10) of Table III.

~iv!

ün5~jn21!
22A/k~jn11!

22B/D~jn!
@2~A1B2D!/D#Fun11

jn21

jn
pn1unqnG,

v̈n5~jn21!
22A/D~jn11!

22B/D~jn!
@2~A1B2D!/D#Fvn11

jn21

jn
pn1vnqnG,

with pn andqn depending only onn. The constantsA andB are given in Eq.~5.9!, D in Eq.
~5.35!.

A further task is to complete the classification, that is, to treat the cases of other s~2,R!
algebras and also of solvable symmetry algebras.
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Dissipative canonical flows in classical and quantum
mechanics
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Department of Mathematical Physics, National University of Ireland Maynooth,
Maynooth, Ireland
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A theory of stochastic flows over the algebra of observables of a dynamical system
is presented in which the main objective is to ensure that the overall canonical/
symplectic structure on the algebra is preserved. We study both classical and quan-
tum systems and the importance of physical interpretation in the Stratonovich in-
terpretation is stressed. We find the natural formulation of quantum dissipative
systems to be given in terms of quantum stochastic calculus. This treatment allows
for a physically meaningful treatment of both constant and nonlinear dissipation.
As an application, we quantize a mechanical system with the same nonlinear damp-
ing mechanism as the van der Pol oscillator. ©1999 American Institute of Phys-
ics. @S0022-2488~99!00206-6#

I. INTRODUCTION

The theory of open systems has been developed widely in both classical and quantum
tions. To quantize a classical dynamical system, it is necessary to have an underlying Hami
mechanism and there is a problem whenever the dynamical system is dissipative. By diss
we mean that the Poisson structure is not preserved under the dynamical evolution. Typica
open system is viewed as a subcomponent of a larger Hamiltonian system and the dyn
equations of the system~observed on its own! are approximations to the actual regular motion.
this paper we consider classical stochastic flows wherein the fluctuation-dissipation has a g
ric content, or perhaps more exactly a symplecto-geometric content. That is, the fluctu
balance the Poisson structure dissipation. In doing so, we discover the natural way in wh
compare classical open systems to quantum ones and, in the process, learn how to quanti
standard classical dissipative models.

The program to quantize dissipative mechanical systems is now at least easy to sta
quantize the system-reservoir and then trace out the reservoir degrees of freedom. Under
assumptions one may obtain Markovian approximations for the reduced system evolution
correct approach to this is detailed in Ref. 1 and also Chap. XVI of Ref. 2 for a review and fu
references.

Before pursuing this program further, it is important to take a closer look at the difficu
encountered in the classical case. In particular, we find that many of the mathematical trea
of quantum dissipative processes designed to parallel the Langevin approach fall down at th
fundamental level of physical interpretation. The Langevin approach, as emphasized by va
mpen especially in Sec. IX.5 of Ref. 2, cannot be applied indiscriminately to problems whe
noise coefficient, denoted bys in this paper, is nonlinear in the variables of the system.
common mistake is to construct a Langevin equation by taking a deterministic macroscopi
and adding on a noise term with coefficients arrived at by independent considerations. V
Kampen blames this on the disregard of physicists for possible physical origins of the fluctu
and on a belief that ‘‘...stochasticity is part and parcel of the mathematics and requires
physical cause.’’ This is, if anything doubly true in the quantum domain. The essential problem
of course, that Langevin approach is justifiable only in the Stratonovich interpretation of stoc
calculus while it is in the Ito interpretation where most research is formulated. In point of fac
28050022-2488/99/40(6)/2805/11/$15.00 © 1999 American Institute of Physics
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Ito version is the one appropriate for mathematical analysis while the Stratonovich is th
appropriate for physical insight.

In this paper we examine the notion of canonical flows as the correct description o
evolution of physical functions of phase variables. The classical situation is described first a
introduce both deterministic and stochastic canonical flows and study the latter in both It
Stratonovich interpretations. We show that the quantum analog of this is given in terms of
tum stochastic processes in the sense of Hudson and Parthasarathy,3 in particular we employ the
notion of a quantum stochastic flows and derivations which was introduced by Accard
Hudson.4 As an application of our ideas we construct a quantum process with the same non
damping mechanism as the van der Pol oscillator. We conclude with several remarks
physical status of our investigations.

Notations:LetA be a unital* -algebra throughout. The algebra of observables of a dynam
system is described as a Poisson manifold, that is, a pair~A, `! where` gives a Poisson structure
In classical systems, the geometry~kinematics! is distinct from Poisson structure~dynamics!,
however, for quantum systems this is not so as the Poisson structure is typically algebra
outline some definitions below to fix our ideas.

Definition 1: A Poisson Structurè onA, compatible with the* -involution, is a bilinear map
`:A3A°A satisfying

~i! `(a,1)50;
~ii ! `(a,b)52`(b,a);
~iii ! `(a,bc)5`(a,b)c1b`(a,c);
~iv! `(a,`(b,c))1`(b,`(c,a))1`(c,`(a,b))50;
~v! `(a,b)* 5`(a* ,b* ).

Definition 2: The distension of a* -linear mapl onA is the bilinear mapD~l! defined by

D~l;a,b!ªl~ab!2l~a!b2al~b!. ~1.1!

Definition 3: A * -linear map m: A°A is said to be canonical with respect to a Poiss
structure` onA if

m`~a,b!5`~ma,b!1`~a,mb!. ~1.2!

The dissipation of a* -linear mapl with respect to the Poisson structurèonA is the bilinear
map D(l) defined by

D~l;a,b!ªl`~a,b!2`~la,b!2`~a,lb!. ~1.3!

The distension measures how far a map is from being a derivation and as such is an al
concept independent of whether a Poisson structure exists. The dissipation measures ho
map deviates from being a canonical with respect to a given Poisson structure and as su
dynamical concept. The set of derivations is KerD. We take Can~G, `! to be the kernel space o
D when restricted to KerD, that is, the set of canonical derivations.

Definition 4: For each HPAS , the Hamiltonian map XH generated by H is defined to be

XH~a!ª`~a,H !. ~1.4!

By property~iii ! of the Poisson structure, Hamiltonian maps are derivations. By property~iv!,
they are also canonical with respect to`. We denote the set of Hamiltonian maps by Ham~G, `!.

Definition 5: A Poisson algebraA is said to be`-simple if every canonical map is Hami
tonian (wrt. `).
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II. CLASSICAL FLOWS

LetA denote the*-algebra of observables of a dynamical system. A stationary flow (ut) t>0 is
a continuous one-parameter group of* -homomorphisms onA which, by Stone’s theorem, pos
sesses a generatorL; that isut5exp$tL%. Let ut

05exp$tL0% be a second stationary flow which w
take as reference or unperturbed dynamics. The perturbation is then described byL2L0. A
standard device is to transfer to the interaction picture of the flowut with respect tout

0 which is
given in terms of the family (j t) t>0 of automorphisms defined by

j tªut+~ut
0!21. ~2.1!

The family (j t) t>t does not form a semigroup but instead is au0-cocycle, that is,

j t1s5 j s+us
0+ j t+~us

0!21. ~2.2!

The dynamical equations of motion aredut f 5ut(Lf )dt which, when transferred to the interac
tion picture, become

d j t f 5 j t~Lt8 f !dt, ~2.3!

whereLt8ªut
0+L8+(ut

0)21.

Stochastic flows on phase space

Let G be the phase space~finite dimensional manifold! of a classical dynamical system and~G,
G, m! a probability space. LetBt be the Wiener process with standard representation on the W
space (V,F,P) and letFt] , F(t denote the past, respectively, future filtrations generated by
process at timet. Consider the SDE onG given by

dXt5b~Xt!dt1s~Xt!dBt , ~2.4!

whereb and s are vector fields onG satisfying global Lipschitz conditions so as to guaran
uniqueness of the solution.5 For Y a random variable independent ofF(s , we shall denote byXt

(Y,s)

the solution to the SDE for timest.s which satisfies the initial conditionXs5Y. By uniqueness
of the solution we have the identityP-a.s.

Xt1s
~x0,0!

5X
t

~X
s

~x0,0!
,s!

, ;x0PG, ~2.5!

however, it is more useful to refer only to diffusions starting at initial time zero and so in pla
~2.5! we haveP-a.s.,

Xt1s
~x0,0!

~v!5X
t

~X
s

~x0,0!
~v!,0!

~usv!, ~2.6!

where us is the time shift map on theV give by (usv) t5v t1s2vs for each sample pathv
PV.

A family of * -homomorphismsj t :L`(G,m)°L`(G,m) ^B(L2(V,F,P)) is defined for t
.0 by

j t f ~x0 ,v!ª f +Xt
~x0,0!

~v!; ~2.7!

j t is then trivially extended fromL`(G,m) to L`(G,m) ^B(L2(V,F,P)) by setting j t( f ^ j (t)
ª( j t f ) ^ j (t for j (tPB(L2(V,F(t ,P)).

Introducing the time shiftut
0 induced byu t , that isut

0Z(v)ªZ(u tv), the following property
is readily obtained

j t1sf 5 j s~us
0~ j t~ f !!!. ~2.8!
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Bearing in mind that theu0 act trivially on L`(G,m), it follows that (j t) t>0 is a u0-cocycle.

III. CLASSICAL CANONICAL FLOWS

Let A5C`(G) be the algebra of smooth complex functions on phase space with com
conjugation being involution. We shall denote a Poisson structure` onA using bracket notation
The existence of a Poisson structure is equivalent to the existence of a second order tensorL such
that

$ f ,g%5L~d f ,dg!. ~3.1!

In terms of local coordinates (xi) on G, $ f ,g%5L i j f ,ig, j and the componentsL i j are required to
satisfy the conditions

L i j 1L j i 50; L i l L jk
,l1L j l Lki

,l1LklL i j
,l50. ~3.2!

In general Ham(A,`)#Can(,̀ )#TG. For `[0, every tangent vector field is canonical b
only the zero vector field is Hamiltonian. We, however, shall only deal with the situation w
the algebra is simple with respect to Poisson bracket structure. Two important examples ar
below.6

~i! Symplectic manifolds.Let ~G, v! be a 2n-dimensional symplectic manifold. Poisson brac
ets are given by$ f ,g%5v(Xf ,Xg) and in this way the mappingf °Xf defines a Lie algebra
homomorphism. The Hamiltonian vector fields spanTG since the symplectic formv is, by
definition, nondegenerate. The prototype for a symplectic manifold is the cotangent
T* M over ann-dimensional manifold~configuration space! and there always exist loca
coordinates (q1,...,qn,p1 ,...,pn), called canonical coordinates, such thatv5dqi∧dpi .

~ii ! Angular momentum algebra.TakeG to be three-dimensional Euclidean space with Ca
sian coordinates (x1,x2,x3) and defineL as the tensor with Cartesian componentsL i j

5e i jkxk. This leads to a degenerate Poisson structure since any functionF of r
5A(x1)21(x2)21(x3)2 has the property that$ f ,F(r )%50, for all f PC`(G). In fact, the
Hamiltonian vector fields span a two-dimensional subspace of the tangent space toG at any
point.

In general, let (xi) be a local coordinate system onG, then the mapv5v i] iPTG is charac-
terized by the dissipation tensorDi j (v) given by

Di j ~v !ªD~v;xi ,xj ![vkL i j
,k2v i

,kL
k j2v j

,kL
ik. ~3.3!

A. Stochastic symplectic flows

A stochastic flow onG can be described by the system of SDEs,

dIXt
i5 ṽ i~Xt! dt1s i~Xt!dIBt . ~3.4!

This equation is termed nonlinear if components ofs depend on the phase pointx. Here,Bt is the
Wiener process and we take the differentials to be the Ito type, that isdIZ(t)ªZ(t1dt)2Z(t).

For f PA, we obtain for the corresponding cocyclej t ,

dI j t f 5 j t~dIL f !, ~3.5!

where, by the Ito rules of stochastic calculus,

dI j t fª j t~ ṽ i f ,i1
1
2 f ,i j s is j !dt1 j t~s i f ,i !dIBt , ~3.6!

that is,

dI j t5 j t+ ldt1 j t+sdIBt , ~3.7!
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where

lª ṽ1 1
2s

is j] i] j , ṽª ṽ i] i , and s5s i] i . ~3.8!

It is convenient to introduce a shifted vector fieldv defined by

v i5 ṽ i2 1
2s

js i
, j ~3.9!

in which case the second order partial differential operatorl becomes

l 5v1 1
2s+s. ~3.10!

Definition 6: A stochastic flow jt is canonical if

dI j t$ f ,g%5$dI j t f , j tg% t1$ j t f ,dI j tg% t1$dI j t f ,dI j tg% t ; ; f ,gPA, ~3.11!

where$a,b%ª j t$ j t
21a, j t

21b%.
A formal infinitesimal generatordIL is then given by

dILª j t
21dI j t[ ldt1sBdt , ~3.12!

where we used the identityj t
21dIBt5(ut

0)21(Bt1dt2Bt)5Bdt . As such the condition reduces t

dIL$ f ,g%5$dIL f ,g%1$ f ,dILg%1$dIL f ,dILg% ~3.13!

or

~D~v; f ,g!1 1
2s+s$ f ,g%2 1

2$s+s f ,g%2 1
2$ f ,s+sg%1$s f ,sg%!dt1D~s; f ,g!Bdt50.

~3.14!

Both thedt andBdt coefficients must vanish. Clearly the dissipation ofs must be zero and sos
is Hamiltonian, says5$.,F%[Xf . Next of all, if we note the identity

XF+XF$ f ,g%5$XF+XFf ,g%12$XFf ,XFg%1$ f ,XF+XFg%,

then the vanishing of thedt coefficient reduces to the requirementD(v; f ,g)50 and sov must
likewise be Hamiltonian, sayv5XH .

Theorem: A stochastic flowj t , driven by a single Wiener process, is canonical if and onl
there existH,FPC`(G) such that

dI j t~ f !5 j t~$ f ,H%1 1
2$$ f ,F%,F%!dt1 j t~$ f ,F%!dIBt . ~3.15!

B. Remarks

~1! If dIL (a) are infinitesimal generators of canonical stochastic flows, then so to
SadIL (a)1SaÞbdIL (a)+dIL (b) . In this way the generators form an algebra. The nontensor
and nonadditivity of generators comes from the Ito calculus. If we switch to the Straton
calculus we find that the SDE~3.4! becomes

dSXt
i5v i~Xt!dt1s i~Xt!dSBt , ~3.16!

while in place of~3.6! we get

dSj t~ f !5 j t~v f !dt1 j t~s f !dSBt . ~3.17!

Thus we see thatv is the phase velocity in the Stratonovich calculus. The infinitesimal gene
in Stratonovich form then reduce to first order form, they can then be added vectorially, and
apparent nonadditivity emerges only when we convert back to Ito form.
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Moreover, the condition~3.11! for a flow to be canonical now reads asdS$ f t ,gt% t

5$dSf t ,gt% t1$ f tdSgt% t since the ordinary rules of calculus now hold. In fact, we may write

dSj t5 j t+XHdt1 j t+XFdSBt ~3.18!

which suggests that we may partially recover the picture of deterministic flows by introduc
formal stochastic HamiltonianFt5H1FdSBt /dt were we able to give an appropriate meaning
the derivative of the Wiener process in Stratonovich calculus.

From the physical point of view this is reasonable. The SDEs using the Wiener proces
only possibly be approximations to a regular random dynamical evolution. As is well-known12 if
the system was governed by the actual HamiltonianH1FdBt

(l)/dt with Bt
(l) a regular stochastic

process which converged to the Wiener process as, say,l→0, then this limit would lead to the
Stratonovich SDEs~3.16–3.17!. This gives strong hope that the stochastic flows can be der
from microscopic dynamics.

~2! Define the forward derivative of an adapted stochastic processZt to be Dt
1Zt

ª limr→0 Et]@(Zt1r2Zt)/r #. We haveDt
1 j t5 j t+ l and specificallyDt

1Xt
i5 ṽ i(Xt). As remarked

above,ṽ is typically not covariant with respect to~deterministic! canonical transformations.
~3! The differential operatorl is an example of what is known as a second order tangent ve

field and their relevance to stochastic processes on manifolds is well-known.7

~4! So far we have worked exclusively with diffusions, however, the generalization to
tinuous semimartingales, in the present context, does not change our findings.7

~5! In a local coordinate system (xi), a second order vectorl can be uniquely decomposed a
l I1l II where l I5l I

i ] i and l II 5l II
i j ] i] j ~with l II

i j symmetric!. We have D(l)5D(l I)
1D(l II ), however, the dissipation tensor only gives characteristics ofl I sinceDi j (l II )[0.

As a result, for l and ṽ as above, we haveDi j ( ṽ)5Di j ( l ). Now Di j ( l )5 1
2D

i j (s+s)
[$s i ,s j%. Therefore, we have a fluctuation-dissipation relation

Di j ~ ṽ !5$s i ,s j% ~3.19!

but this is not a complete characterization. In reality, for a givenṽ, there can exist severa
inequivalent choices forH andF such thatṽ i5 l (xi) with l 5XH1 1

2XF+XF .
~6! The dissipation ofl 5XH1 1

2XF+XF is given explicitly as

D~ l ; f ,g!5$$ f ,F%,$g,F%%. ~3.20!

Note thatD( l ; f * , f )5u$ f ,F%u2 is then positive.

IV. SYSTEMS WITH ONE DEGREE OF FREEDOM

Let ~q,p! be local canonical coordinates on a symplectic manifold~G,v! and consider the fields
ṽ5 ṽq]q1 ṽp]p , s5sq]q1sp]p . The dissipation tensor has onlygªDqp( ṽ)52Dpq( ṽ) as
entries which are possibly nonzero on account of antisymmetry. In terms of the fieldṽ we have

g52 ṽq,q2 ṽp,p , ~4.1!

that is, minus the divergence ofṽ on G.
Our requirement is thatd$qt ,pt%5$dqt ,pt%1$qt ,dpt%1$dqt ,dpt%[0, or equivalently

~$sq ,sp%2g!dt1~sq,q1sp,p!dBt50. ~4.2!

Therefore, in the case thatG is just two-dimensional, the conditions that the Poisson structur
preserved is that, ifM is the 232-matrix with entriessa,b , then

~ i!detM5g, ~ii ! tr M50. ~4.3!

Equivalently, by the Cayley–Hamilton theorem, the condition is thatM252gI 2 .
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The noise coefficientss are derivable from a HamiltonianF; sq[F ,p , sp[2F ,q . The
fluctuation-dissipation relation~3.19! then reduces to

g~q,p!52~F ,qp!
21F ,qqF ,pp . ~4.4!

Likewise the Stratonovich fieldsv are given by~3.9!,

vq5 ṽq2 1
2F ,qpF ,p1 1

2F ,ppF ,q[H ,p ; vp5 ṽp1 1
2F ,qqF ,p2 1

2F ,qpF ,q[2H ,q . ~4.5!

V. EXAMPLES OF QUANTUM SYMPLECTIC FLOWS

A. Linear damping

Starting from the equationq̈1jq̇1V8(q)50, (j.0), which is linearly damped we see th

q̇5 ṽq[p; ṗ5 ṽp[2jp2V8~q!. ~5.1!

The dissipation isg5j and it suffices to take the noise coefficientssa linear in the phase
coordinates

sa[Mabxb . ~5.2!

Here the matrixM is the same as above except now that its entries are constant. The Strato
version of the fields are given byva5 ṽa2 1

2MabMbmxm , however, since we require the stocha
tic flow to be canonical we haveM252gI 2 and so

va5 ṽa1 1
2jxa . ~5.3!

The corresponding functionsH andF introduced in Sec. III are then given by

H5 1
2p

21 1
2jqp1V~q!; F5 1

2x
TJMx; ~5.4!

wherex5(p
q) and Jª(1

0
0
21). As possible choice we may takeM5(2j3/2

0
0
j21/2

), in which case
F[ 1

2j
21/2(p21j2q2). Note that we have chosen the units of mass to be unity; it therefore fol

that j has dimensionss21 andF has dimensionsm2s23/2.
The canonical transformation (q,p)°(Q,P) given byQªq, Pªp1 1

2jq leads to

H5 1
2P

21V~Q!2 1
8j

2Q2 ~5.5!

and

F5 1
2j

21/2~P22jPQ1 5
4j

2Q2!. ~5.6!

B. Nonlinear damping

We consider as an example the equationq̈1j(q22a2)q̇1V8(q), (j.0,a.0), which has the
same damping mechanism as the van der Pol oscillator.8 In terms of phase space coordinates
have

q̇5 ṽq[p; ṗ5 ṽp[2j~q22a2!p2V8~q!. ~5.7!

The dissipation is

g52 ṽq,q2 ṽp,p5j~q22a2!, ~5.8!

which is positive foruqu.a and negative foruqu,a and moreover independent ofp. We shall look
for a candidate forF of the form 1

2cp21f(q). From dimensional arguments, herej has dimen-
sionsm22s21, we find that a solution to~5.4! is given by
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F5
1

a
j21/2F1

2
p21a2j2S q4

12
2

q2a2

2 D G . ~5.9!

The v fields are from~5.5!,

vq5p1
1

2
jS q2

3
2qa2D , vp52

1

2
j~q22a2!p2V8~q!; ~5.10!

which are derivable from the Hamiltonian

H5
1

2
p21V~q!1

1

2
jS q3

3
2qa2D p. ~5.11!

As in the linear case, we can introduce a canonical transformation, this time (q,p)°(Q,P) where
Qªq, Pªp1 1

2j@(q3/3)2qa2#, and so we have

H5
1

2
P21V~Q!2

1

8
j2S Q3

3
2Qa2D 2

~5.12!

and

F5
1

a
j21/2F1

2
P22

1

2
jPS Q3

3
2Qa2D1j2S Q6

72
2

3Q2a4

8 D G . ~5.13!

VI. QUANTUM STOCHASTIC SYMPLECTIC EVOLUTIONS

Let A be a C* -algebra. The extension of a mapl on A to the matrix algebraMn(A) is
denoted byl (n) and l is called positive if it and its extensions are positive. For commuta
algebras, positivity automatically implies complete positivity. Following Lindblad,9 a bounded
*-map l is called completely dissipative ifD( l (n);a* ,a)>0 for all n andaPMn(A). We remark
that Lindblad refers to ourD rather thanD as the dissipation, however, for quantum algebras
Poisson structure is given by

`~a,b!ª
1

i\
@a,b# ~6.1!

and so

D~ l ;a,b![
1

i\
$D~ l ;a,b!2D~ l ;b,a!%. ~6.2!

The distensionD( l ) determinesl up to a Hamiltonian mapXH[(1/i\)@ .,H#. It was proved by
Gorini, Kossakowski, and Sudarshan10 ~for finite dimensional algebras! and by Lindblad9 ~for the
more general case of hyperfinite factors! that, forF t5etl a norm-continuous, completely positiv
identity preserving semigroup onA, its generatorl must be completely dissipative and that t
space of such generators is convex with extremal~pure! elements of the type

l ~a!5
1

i\
@a,H#1

1

\2 S F* aF2
1

2
aF* F2

1

2
F* FaD[XH~a!1

1

2
~F†XF~a!2XF†~a!F !,

~6.3!

for H ~self-adjoint! andF,F* in A.
The distension for the pure Lindblad generator above is then
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D~ l ;a,b!5
1

\2 @F* ,a#@b,F#5~XF* !~XFb!, ~6.4!

and soD( l ,a* ,a)5(1/\2)@F,a#* @F,a#>0. The dissipation~in the sense of our definition 3! is
then

D~ l ;a,b!5
1

i\
$XF* aXFb2XF* bXFa%. ~6.5!

Notice that takingF to be also self-adjoint leads tol 5XH1 1
2XF+XF which is formally the

same as what we have obtained for classical canonical flows.

Quantum stochastic flows

We now describe how quantum stochastic calculus can be used to construct quantum s
tic flows j t such thatF t5E0]+ j t has Lindblad generator.

In the followingGB(h) shall denote the Bose Fock space over a Hilbert spaceh andA]( f ) the
creation and annihilation operators with test functionf Ph. LetH0 be the Hilbert space of state
for a quantum mechanical system. The system is to be considered as open and its ev
operator Vt satisfying the following QSDE onH0^ GB(L2@0,̀ )) driven by the Hudson–
Parthasarathy quantum Wiener processesAt

†5A](x@0,t#),

dIVt5
1

i\ S F ^ dIAt
†1F* ^ dIAt1S H2

1

2\
F* F D ^ dtDVt , ~6.6!

with initial condition V051. Now, if K were also self-adjoint then we could combine the no
terms intoK ^ (dIAt

†1dIAt) in which case it would be much simpler to deal with just the stand
Wiener process, however as this is an exceptional case, we are quite generally forced to
quantum stochastic processes instead. It should be remarked that there are alternative rep
tions, for instance a single quantum Wiener process can be described by two standard
however the choice of quantum stochastic processes is the most natural.

The quantum stochastic flow is given on the set of observablesA5B(H) by the family of
maps (j t) t>0 defined by

j tXªVt
†~X^ 1!Vt , ;XPA. ~6.7!

The differential form of the noisy equations of motion is the given by the quantum Lang
equation

dI j tX5 j tS 1

i\
@X,F# D ^ dIAt

†1 j tS 1

i\
@X,F* # D ^ dIAt1 j t~ l ~X!! ^ dt, ~6.8!

where l is the generator~6.3!. The quantum stochastic processVt is unitary on the combined
system-noise Hilbert space. Moreover it respects the canonical commutation structure; to s
let dILª j t

21dI j t5Adt
† XF1AdtXF* 1dtl then we must show that, for arbitraryX,YPA, that

dIL@X,Y#ª@dILX,Y#1@X,dILY#1@dILX,dILY#. ~6.9!

To this end, we can use the Jacobi identity for commutators at several places. We also h
calculate the Ito shift and here we use the fact thatAdtAdt

† 5dt with all other products of differ-
entials equal to zero,3

@dILa,dILb#5~XF* aXFb2XF* bXFa!dt5 i\D~ l ;a,b!dt. ~6.10!

Here we see explicitly the quantum fluctuation-dissipation relations.
                                                                                                                



atively

e

of the
ature
n

erally

astic,
E
ess

neralize

ition

f

h we
w
se of
rves to

flow,
of the
al, this
or

noise,

s the

tative
novich

2814 J. Math. Phys., Vol. 40, No. 6, June 1999 John Gough

                    
VII. QUANTIZATION OF DISSIPATIVE EVOLUTIONS

In Sec. VI we introduced a scheme for finding the classical HamiltoniansH andF, while in
Sec. V we did this for the case of linear and nonlinear damping. Both these models are rel
easy to quantize. We use the Weyl quantization procedure to produce self-adjoint operatorsH and
F which we can insert into the QSDE~6.6!. For the situations in Sec. V, we end up with th
equationsEt]dIqt5 ṽq(qt ,pt) and Et]dIpt5 ṽp(qt ,pt) where now ṽ i are the symmetrically-
ordered versions of the originals.

The operator ordering ambiguities are not apparent here yet because the special form
Hamiltonians encountered in Sec. V. However, this will in general be a complicating fe
which will in general mean thatF will have to have a modified form from the Weyl quantizatio
of its classical counterpart. We also mention that canonical transformations will not gen
respect given orderings.

VIII. CONCLUSIONS

At the heart of our presentation is the notion that a physical flow, whether classical stoch
quantum mechanical, or quantum stochastic, should be canonical in some sense. The QSD~6.1!
is of the most general type defining a unitary process driven by the quantum stochastic procAt

†

andAt .3 We now wish to make several remarks.

~1! The Ornstein–Uhlenbeck process, and consequently any approach which seeks to ge
it, is not symplectic. Here the Langevin equations areq̇5p, dp5bpdt5spdBt ; that is sq

[0. The matrixM introduced in Sec. V therefore has first row equal to zero and so cond
~i! of ~5.3! cannot be satisfied.

~2! In the quantized models in Sec. V, we meet a HamiltonianH̃ª

1
2p

21V(q) however we
eventually deal with the HamiltonianH and we have from~5.5! and ~5.12! that H5H̃
2U(q), whereU(q)5 1

8j
2q2 in the linear case andU(q)5 1

8j
2@(q3/3)2q#2 in the nonlinear

case. We therefore have three Hamiltonians,F,H, andH̃, at our disposal. From our point o
view it is H which is the physical Hamiltonian and notH̃! The discrepancy betweenH̃ andH
is, as already in the classical theory, a Stratonovich–Ito dilemma. Therefore, althoug
would agree with the approach of Sinha11 to construct a symplectic quantum stochastic flo
for the linearly damped model, we disagree with the arguments introduced to justify the u
a QSDE driven by two independent quantum Wiener processes wherein the second se
account for the convective drift, see~3.9!. There the argument was that, ifH̃ had bounded-
below spectrum, then this property would not generally follow forH̃2U.

~3! Returning to our program to deduce the stochastic flow from a microscopic Hamiltonian
we make the following observation. Suppose we obtain ODEs describing the evolution
system observables driven by a stochastic process relating to the reservoir. In gener
process, though noisy, is not white. However, takingt to measure the autocorrelation time f
the reservoir processes we may expect to obtain SDEs of the type~3.7! in the limit t goes to
zero. If indeed this is the case and the reservoir forcing term does converge to white
then the result of Wong and Zakai12 tells us that the limit SDEs will have the identical form
as the pre-limit ODEs provided we take the Stratonovich interpretation. Therefore, it i
HamiltoniansH andF which are physically relevant. Recall the stochastic derivation~3.18!
which identifiedH1FWS(t) as the effective physical Hamiltonian. The HamiltonianH̃ is
therefore to be viewed as derived fromH and not vice versa.

~4! In Refs. 13, 14 we have introduced a treatment of Stratonovich calculus in a noncommu
setting and discussed the quantum version of the Wong–Zakai theorem. The Strato
QSDE corresponding to~6.6! is of the form

dSVt5
1

i\
~Fat

†1F†at1Hdt!Vt . ~8.1!
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The at
] are formal operators with action on exponential statesC( f ) of GB(L2@0,̀ )) given by

atC~ f !ª 1
2~ f ~ t1!1 f ~ t2!!C~ f !. ~8.2!

However it should be noted that the integratorsat
]dt do not commute with adapted integrand

contrary to the Ito situation, and the QSDEs can only be compared when~8.2! is placed into
normal-ordered form. The passage from Stratonovich to Ito~Hudson–Parthasarathy! form leads,
however, to~8.1! being equivalent to~6.6!. This can be extended to include the so-called con
vation process also.

Moreover, it is reasonable to expect~8.2! as the weak coupling limit of a physical system
reservoir dynamics, typically the emission-absorption-type interaction, as detailed in Ref. 1
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A new first integral for a binary rigid body collision
of arbitrarily short duration

Patrick L. Nasha)
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A standard classical model of a so-called rigid two-body collision that employs the
dynamic Coulomb friction law to model friction is studied. For arbitrary object
geometries and initial conditions it is known that the direction of the relative sliding
velocity continuously changes during the impact. A~new! exact analytical solution
for the relative sliding speedutr of the two objects in terms of initial conditions and
sliding direction is derived. This solution is formulated in terms of a first integral,
which is used to rigorously prove that the dynamic Coulomb friction law does not
allow either instantaneous sticking or stable sticking to evolve from an initially
nonzeroutr , except for certain very special cases. The first integral also yields a
new procedure for accurately and efficiently computing the final center of mass
velocity and the final angular velocity of each of the objects in the model two-body
collision. Accurate solutions such as these are essential for analyzing and control-
ling impacts, which is important, for example, in robot manipulation. Efficient
solutions are critically important for producing real-time simulations of rigid two-
body collisions. ©1999 American Institute of Physics.@S0022-2488~99!01206-2#

I. INTRODUCTION

Well over a century ago Routh1,2 laid out a formalism for analyzing a rigid two-body collisio
of arbitrarily short duration. Routh showed that during an impact the point of contact mu
general, slide. He argued that if the friction forces are strong enough then sliding resu
sticking, possibly followed by rolling. Otherwise, the contact point slides continuously during
collision, possibly reversing direction during the course of the impact. Long after Routh’s
the problems of:~i! formulating a fundamental model describing the basic classical colli
process;~ii ! increasing the accuracy and efficiency of the numerical solution to a particular m
and ~iii ! extending the known analytical results; continue to receive a great deal of attentio3–17

With regard to the analytical solution to the general problem, Routh suggested that there w
fact, no closed form solution, and currently there appears to be a consensus that there ma
nonperturbative solution to this scattering problem.12 However much progress has been ma
Recently in remarkable papers, Stronge4,6 has shown how to generalize both Newton’s Impa
Law and that of Poisson by giving a new definition of the coefficient of restitution that is co
tent with conservation of energy~previous impact laws did not always conserve energy!. In
addition, Bhatt and Koechling,12 among others, have clearly shown for arbitrary object shapes
initial conditions, that the direction of the relative sliding velocity continuously changes thro
out the duration of sliding, and have offered a classification of the possible motions.

In this paper we consider a small part of the unsolved problem, that of analytically calcu
the relationship between the transverse relative speed~sliding speed! and the direction of the
transverse relative velocity~sliding velocity! during the impact of two rigid bodies that suffer a
arbitrarily short collision.Arbitrarily short so that during the collision we may neglect all extern
forces other than the impulsive forces of impact that the two colliding objects exert on

a!Electronic mail: nsh@susan.ep.utsa.edu
28160022-2488/99/40(6)/2816/14/$15.00 © 1999 American Institute of Physics
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another, and so that the collision matrix@defined below in Eq.~6!# has constant matrix element
In order to produce exact analytical results the dynamic Coulomb friction law is assum
describe friction during the scattering. This model asserts that the forcef5fnormal1f' that one
body exerts on the other has a transverse componentf' that is directed opposite to the transver
component of the relative velocity, and has a magnitude given bym f normal, where m is the
coefficient of kinetic friction. We derive an exact analytical expression for the transverse re
speed of the two objects in terms of initial conditions and sliding direction, which is formulate
a first integral@see Eq.~26!#. Using it we prove a somewhat surprising result, namely, that
dynamic Coulomb friction law, strictly imposed, does not allow either instantaneous stickin
stable sticking to evolve from an initially nonzeroutr , except possibly for certain special case
We also show that this does not contradict the conventional view of possible~stable or unstable!
sticking during a collision.

The dynamic Coulomb friction law is assumed to model sliding with friction because it~i! is
widely used in computations;~ii ! is a valid starting point for more detailed investigation; and~iii !
admits an analytical solution. On a macroscopic level the dynamic Coulomb friction law ma
justified by the Bowden–Tabor adhesion model, which is based on the elastic and plastic p
ties of the colliding objects.8,7 However, Coulomb’s laws of friction often oversimplify ver
complex phenomena involving elastomechanical, plastic, and even chemical interactions th
ally operate on very different scales of time and length.15 In fact, deviations from the dynamic
Coulomb friction law are often encountered in practice.8,10,11 For example, the force of kinetic
friction is known to depend on the sliding speed. Heslotet al.10 have demonstrated that und
some circumstances the force of dry friction first decreases, passes through a minimum, a
finally increases. Bhushanet al.,11 working with a thin lubrication layer a few monolayers thic
found that the force of kinetic friction first increases, goes through a maximum, and then fi
decreases. Notwithstanding these observations, since the dynamic Coulomb friction law is
used as a starting point in modeling friction, we believe that there is value in knowing ex
what the dynamic Coulomb friction law predicts when applied to a rigid two-body collision.
possibility of performing reproducible friction experiments on mesoscopic and nanoscopic
increases the interest in comparing the predictions of an exact~albeit incomplete! theory with the
results of experiment.7,15

An outline of the content of this paper is as follows. We first develop our notation by br
reviewing the basic theory; although the basic theory is very well known, the notation us
formulate this theory has not been standardized, and we would like to reduce possible ambi
Next, the equations for the relative velocity of the contact point of the impact are reformu
followed by an examination of the projection of the motion into the natural tangent plane~defined
below!. This leads, after a series of steps, to the statement of the new first integral~conservation
law!. Finally we apply these results to specific examples.

II. OVERVIEW AND KINEMATICS

We shall assume that the impact begins att initial50 and contact terminates attfinal , assuming
that the objects do not stick together. When two physical bodies collide they always expe
deformation over time comprised generally of compression and restoration phases. Conce
therefore, this two-body collision is resolved into two periods: a compression phase of quasi
deformation of each of the bodies that begins with first contact att initial and terminates at the tim
of maximum compressiontmax compression, and a restitution phase that begins attmax compressionand
ends at timetfinal .

The standard model approximates this collision in the zeroth order as being an instanta
impact betweenrigid bodies with the relative velocity being discontinuous with respect to ti
but not with respect to other parameters such as the normal component of the total impuls. We
let Jz denote the normal component of the total impulse. The zeroth-order approximation in
a phenomenological law such as Newton’s Impact Law or Poisson’s Hypothesis3 to relate initial
and final normal components of the relative velocity to one another, and employs integration
respect toJz to calculate the transverse component discontinuity~with respect to time, notJz! of
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the relative velocity. This approach bears a definite resemblance to a ‘‘Born approximation
the scattering in which we approximate the contact point of the impact as fixed with resp
time in the zeroth order, and the moments of inertia of the two bodies as constant durin
collision.

Position:The two colliding bodies are labeled bya51,2. Let us mentally divide each objec
up into a large number of macroscopically small but microscopically large volume element
Na5number of volume elements of theath body.r (a) i locates thei th volume element of theath
body andm(a) i denotes its mass, wherei 50,...,Na21. r (1)0 and r (2)0 locate the~fixed, in the
zeroth-order approximation! point of impact of the two bodies. Thez axis is perpendicular to the
plane of contact, directed from body 2 to body 1. Thex–y plane is tangent to the surface of ea
object at the point of contact. Transverse~i.e., tangential! components of vectors lie in thex–y
plane.

The center of mass and position vector are defined as usual: letma denote the mass of theath
body, ma5( i 50

Na21 m(a) i . The center of massRa is defined throughmaRa5( i 50
Na21 m(a) ir (a) i .

The relative position vectordr (a) i of m(a) i with respect toRa is r (a) i5Ra1dr (a) i , and we find
that the usual constraint identity holds:

maRa5 (
i 50

Na21

m~a!ir ~a!i⇒05 (
i 50

Na21

m~a!idr ~a!i . ~1!

Velocity: Let Ṙa denote the velocity of the center of mass of theath object, where the do
denotes differentiation with respect to time. A rigid body rotation about the center of ma
specified according tod ṙ (a) i5va3dr (a) i , whereva is the angular velocity of theath body.
Define the three standard 333 antisymmetric matricesS5(S(1) ,S(2) ,S(3))5(Sx ,Sy ,Sz) as fol-
lows: let A and B be vectors, and defineS by (A•S)B5A3B. In terms of matrix elements
S( j ) ik5e i jk , where the Levi-Civita tensor,e123511.

Let S(a) i5dr (a) i•S. Sinced ṙ (a) i5va3dr (a) i52dr (a) i3va52S(a) iva , the velocity of the
i th volume element of theath body is ṙ (a) i5Ṙa1d ṙ (a) i5Ṙa2S(a) iva .

For future reference we note that

P~a!i[2S~a!iS~a!i5I333udr ~a!i u22dr ~a!i ^ dr ~a!i , ~2!

where I333 is the 333 unit matrix, defines a projection operatorP(a) i /udr (a) i u2 onto the plane
perpendicular todr (a) i .

Let u5 ṙ (1)02 ṙ (2)0 be the relative velocity of the ‘‘fixed’’ point of impact. We letu'5uxx̂
1uyŷ denote the transverse component of the relative velocity, andutransverse5utr denote the
magnitude of the transverse~tangential! component of the relative velocity. In this coordina
systemu5uzẑ1uxx̂1uyŷ5uzẑ1u'5uzẑ1utr@ x̂ cos(u)1ŷ sin(u)#, where ux5utr cos(u) and uy

5utr sin(u).
The z component of the relative velocity is subject to several conditions:uz(t initial),0;

uz(tmax compression)50; anduz(tfinal)>0.
Angular momentum:The angular momentum of thei th volume element of theath body

is L (a) i5m(a) ir (a) i3 ṙ (a) i5m(a) i(Ra1dr (a) i)3(Ṙa1d ṙ (a) i). We all know that the angula
momentum of theath body decomposes into two pieces corresponding to the cente
mass motion and rotation about an axis through the center of mass:La5( i 50

Na21 L (a) i

5 ( i 50
Na21 m(a) i(Ra 1 dr (a) i) 3 (Ṙa 1 d ṙ (a) i) 5 maRa 3 Ṙa 1 ( i 50

Na21 m(a) idr (a) i 3 d ṙ (a) i 5 maRa

3 Ṙa 1 ( i 50
Na21m(a) iS(a) i(2S(a) iva) 5 maRa 3 Ṙa 1 ( i 50

Na21 m(a) iP(a) iva 5 maRa 3 Ṙa1Iava ,
where we have used Eq.~1! twice. HereIa is the inertia tensor of theath body defined byIa

5( i 50
Na21 m(a) iP(a) i .
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III. EQUATIONS OF MOTION

Let f(a) i
externalbe the external force on thei th volume element of theath body. In the standard

approach it is assumed that during an arbitrarily short collision we may neglect all external
other than the impulsive forces of impact that the two colliding objects exert on one anothe
f(1)0
external52f(2)0

external[f denote these forces.
Newton: The net force on thei th volume element of theath body is m(a) i r̈ (a) i

5( j 50,j Þ i
Na21 f(a) j→ i1f(a) i

external, wheref(a) j→ i is the internal force that thej th volume element exerts
on thei th volume element of theath body.f(a) j→ i is assumed to obey Newton’s Third Law. Th
net force on theath body ismaR̈a5( i 50

Na21 m(a) i r̈ (a) i5( i 50
Na21 f(a) i

external5f(a)
external. Moreover a well-

known simple calculation yieldsL̇a5Ra3f(a)
external1( i 50

Na21 S(a) i f(a) i
external, which implies that

(d/dt)Iava5( i 50
Na21 S(a) i f(a) i

external5S(a)0f(a)0
external.

A. Impulses and velocity changes

The external impulseJ(a) i on the i th volume element of theath body is defined asJ(a) i

5* t initial

tfinal f(a) i
externaldt. Let J(1)052J(2)0[J denote the nonzero external impulses. Upon integra

the equations of motion we find thatDmaṘa5( i 50
Na21 J(a) i5J(a)0 so that

DṘa5
J~a!0

ma
. ~3!

In addition, since the objects are assumed not to move during the collision,D(Iava)5IaDva

5( i 50
Na21

*S(a) i f(a) idt5*S(a)0f(a)0 dt5S(a)0* f(a)0 dt5S(a)0J(a)0 . Therefore

Dva5Ia
21S~a!0J~a!0 . ~4!

The impulseJ is not yet determined. An approximation for it may be obtained usin
standard approach outlined in Sec. III B.

B. Calculation of J

One may generate an equation for the impulseJ in terms ofDu as follows: The change in the
velocity of the i th volume element of theath body isD ṙ (a) i5DṘa1Dd ṙ (a) i5DṘa2DS(a) iva

5DṘa2S(a) iDva5J(a)0 /ma2S(a) i Ia
21S(a)0J(a)05(I333 /ma2S(a) i Ia

21S(a)0)J(a)0 . Therefore
Du5D ṙ (1)02D ṙ (2)05(I333 /m12S(1)0I1

21S(1)0)J(1)02(I333 /m22S(2)0I2
21S(2)0)J(2)0 or

Du5F I333S 1

m1
1

1

m2
D2~S~1!0I1

21S~1!01S~2!0I2
21S~2!0!GJ[KJ , ~5!

where the collision matrixK is defined by

K5I333S 1

m1
1

1

m2
D2~S~1!0I1

21S~1!01S~2!0I2
21S~2!0!. ~6!

It is well known14 that K is a real, positive definite, symmetric nonsingular matrix.
It is convenient to decomposeK into row vectorsk(a) , a,b,c51,2,35x,y,z, according to

k(a)b5Kab . In this notation

K5S k~1!

k~2!

k~3!

D ,

the determinant ofK is k(a)•k(b)3k(c) where (a,b,c)5even permutation of~1,2,3!, and K21

51/(k(3)•k(1)3k(2))(k(2)3k(3) ,k(3)3k(1) ,k(1)3k(2)).
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Solving for J in Eq. ~5! yields

J5K21Du. ~7!

DṘa andDva may then be calculated using Eqs.~3! and ~4!.
The evaluation ofDu employs, in part, energy methods that are dependent on a phenom

logical model of restitution. Relevant energy definitions and rebound models are briefly disc
in the next subsections.

Energy:Let dW(a) i5(( j 50,j Þ i
Na21 f(a) j→ i1f(a) i

external)•dr (a) i denote the infinitesimal work done o
m(a) i in a displacementdr (a) i . The total infinitesimal work done on the system isdW
5(a51

2 ( j 50
Na21 dW(a) i . Since dr (a) i is tangent to the trajectory, during a binary collision w

approximate this as dW5dW(1)01dW(2)0'f(1)0
external

•dr (1)01f(2)0
external

•dr (2)05f•(dr (1)0 /dt
2dr (2)0 /dt)dt5f•udt5u•dJ.

Impact law:A practical problem encountered in integrating the equations of motion is d
mining when to terminate the restitution phase of the collision. Newton, Poisson, and other
postulated different impact laws that govern this judgment. We shall adopt the hypothes
forward by Stronge.4,6 Stronge has given a new definition of the coefficient of restitution tha
consistent with conservation of energy~previous impact laws did not always conserve energy!.

Stronge decomposesdW into three scalar contributions,dW5dWx1dWy1dWz , with dWz

5 f zuzdt5uzdJz and so on. Stronge postulates that

Wz~ tfinal!2Wz~ tmax compression!52e2Wz~ tmax compression!, ~8!

wheree is the coefficient of restitution andWz(t initial)50.

IV. GOVERNING DIFFERENTIAL FORMS

Consider dDu5d(u(tfinal)2u(t initial))5du(tfinal)[du. Here u5uzẑ1uxx̂1uyŷ, and du
5( ẑ(]uz /]l)1 x̂(]ux /]l)1 ŷ(]uy /]l))dl, where l can be any one of$uz ,Wz ,Jz%, or any
other arbitrary monotonically increasing~during the collision! parameter.17 Wz is usually included
as an allowed parameter because it is monotonically decreasing~respectively, increasing! on
t initial<t<tmax compression~respectively,tmax compression<t<tfinal!. For completeness we mention th
there are exceptional occasions in whichuz initially decreases but then monotonically increas
There are standard methods18 for handling this case, and as this case does not affect our result
do not consider it further.

Using Eq. ~5! and dJ5fdt we find that dDu5du5K f dt. We also recall thatdWz

5 f zuzdt. Eliminating dt from these equations givesdJz / f z5dWz / f zuz5duz /k(3)•f5dux /k(1)

•f5duy /k(2)•f or

dJz5
dWz

uz
5

duz

k~3!•~ f/ f z!
5

dux

k~1!•~ f/ f z!
5

duy

k~2!•~ f/ f z!
. ~9!

These differential forms and Stronge’s postulate enable us to calculateDu. J then follows from
Eq. ~7!.

We shall only consider the case in whichutr is not identically zero andf z does not vanish and
employ the dynamic Coulomb friction law to model friction. Hence the forcef has a transverse
component that is directed opposite to the transverse component of the relative velocity, a
a magnitude given bym f z , wherem is the coefficient of kinetic friction.

If we put

j5
f

f z
5S 2m cos~u!

2m sin~u!

1
D ~10!
                                                                                                                



’s

s

2821J. Math. Phys., Vol. 40, No. 6, June 1999 Patrick L. Nash

                    
then, using Eq.~9!, the differential system becomes

dJz5
dWz

uz
5

duz

k~3!•j
5

dux

k~1!•j
5

duy

k~2!•j
. ~11!

The calculation ofDu now follows from Eq.~11!. We know thatuz(tmax compression)50. For-
mally integrating the differential system, we find that at timet5tmax compression,
Wz(tmax compression)5*W(t initial)

W(tmax compression) dWz5*uz(t initial)
0 (uz /k(3)•j)duz while ux(tmax compression)

2ux(t initial)5*uz(t initial)
0 (k(1)•j/k(3)•j)duz and uy(tmax compression)2uy(t initial)5*uz(t initial)

0 @(k(2)

•j)/k(3)•j)]duz . Moreover, using Eq.~11! we find ~formally! that at time t5tfinal , u(tfinal)

2u(tmax compression)5*W(tmax compression)
W(tfinal)5(12e2)W(tmax compression)Kj(dWz /uz), where we have used Stronge

hypothesis in the upper limit of the last integration.

A. Transverse relative velocity

Let ‘‘pseudoforce’’ components$Fx ,Fy% be defined by

Fx5k~1!•j52m cos~u!K112m sin~u!K121K13 ~12!

and

Fy5k~2!•j52m cos~u!K212m sin~u!K221K23, ~13!

where we recall thatK215K12. Inspection of Eq.~11! shows that the equations of motion forux

anduy may be written as

dux

dJz
5ax5Fx ,

duy

dJz
5ay5Fy , ~14!

whereJz is monotonically increasing during the collision. Here$ax ,ay% denotes the component
of the ‘‘pseudotransverse acceleration.’’

The locus of all possible$ax ,ay% is an ellipse. To see this, substitute in Eq.~14! using Eqs.
~12! and ~13!, solve for cos(u) and sin(u), then square and add. This yields

@K22~ax2K13!2K12~ay2K23!#
21@2K12~ax2K13!1K11~ay2K23!#

25m2@K11K222K12K21#
2.

~15!

This is the equation for an ellipse centered at (K13,K23).
In terms of polar coordinates (utr ,u), ux5utr cos(u) anduy5utr sin(u). Substituting this into

Eq. ~14! yields

dutr

dJz
5Fx cos~u!1Fy sin~u!, utr

du

dJz
52Fx sin~u!1Fy cos~u!. ~16!

We denote the ‘‘pseudotorque’’ on the right-hand side of Eq.~11! by

D0~K ,m,u![2Fx sin~u!1Fy cos~u!

5m cos~u! sin~u!K112m cos~u!2K121m sin~u!2K12

2sin~u!K132m cos~u! sin~u!K221cos~u!K23. ~17!

One observes thatD0[0 when eitherutr[0 ~sticking occurs! or sliding is along a straight line
given by
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tan~u!5
Fy

Fx
5

2m cos~u!K212m sin~u!K221K23

2m cos~u!K112m sin~u!K121K13
. ~18!

Putting T5tan(u/2) in Eq. ~18! and solving forT in the resulting quartic equation gives th
possible distinguished directions of sliding along a straight line. When sliding is along a st
line the transverse relative acceleration is either parallel or antiparallel to the transverse r
velocity, and the cosine of the included anglef betweenu' anda' ,

cos~f!5
u'•a'

u'a'

5
Fx cos~u!1Fy sin~u!

AFx
21Fy

2
, ~19!

is 61. If the transverse relative velocity is parallel to the transverse relative acceleration thutr

is increasing and the flow ofu' in the ux–uy plane is called adiverging ray. If the transverse
relative velocity is antiparallel to the transverse relative acceleration thenutr is decreasing and the
flow of u' in theux–uy plane is called aconvergingray. Bhatt and Koechling12 have shown that
the total number of converging and diverging rays is 2 or 4.

We consider the case in whichD0 is not identically zero. Dividing the second of equatio
~16! into the first yields

1

utr

dutr

du
5

Fx cos~u!1Fy sin~u!

D0~K ,m,u!
,

or

d ln~utr!5
Fx cos~u!du1Fy sin~u!du

D0~K ,m,u!
. ~20!

The numerator of Eq. ~20! may be recast usingFx cos(u)du1Fy sin(u)du5Fx dsin(u)
2Fy dcos(u)5d(Fx sin(u)2Fy cos(u))2sin(u)dFx1cos(u)dFy . Hence

d ln~utr!5
d~Fx sin~u!2Fy cos~u!!2sin~u!dFx1cos~u!dFy

2Fx sin~u!1Fy cos~u!

52d ln~2Fx sin~u!1Fy cos~u!!1
2sin~u!dFx1cos~u!dFy

2Fx sin~u!1Fy cos~u!
.

Therefore

d ln~utr!52d ln~D0!1
2sin~u!dFx1cos~u!dFy

D0~K ,m,u!
. ~21!

The numerator of the last term of the right-hand side of Eq.~21! is 2sin(u)dFx1cos(u)dFy

5(2sin(u)2K1112 cos(u)sin(u)K122cos(u)2K22)du.
In terms ofT5tan(u/2), the differential system Eq.~21! governing the dynamical evolution o

the transverse speed is

d ln~utr!52d ln~D0!1S 2sin~u!dFx1cos~u!dFy

D0~K ,m,T! D du

dT
dT.

After some calculation we find that
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S 2sin~u!dFx1cos~u!dFy

D0~K ,m,T! D du

dT
dT522

T

11T2 dT12
N~K ,m,T!

D~K ,m,T!
dT

52d ln~11T2!12
N~K ,m,T!

D~K ,m,T!
dT

where

N~K ,m,T![mK222T~3mK121K23!1T2~2~mK111K13!2mK22!1T3~mK121K23! ~22!

and

D~K ,m,T![2~11T2!2D0~K ,m,T!

5mK122K2312T~K131m~2K111K22!!26T2mK12

12T3~K131m~K112K22!!1T4~mK121K23!. ~23!

Therefore,

d ln~utr!52d ln~D0!2d ln~11T2!12
N~K ,m,T!

D~K ,m,T!
dT52d ln

2D~K ,m,T!

~11T2!
12

N~K ,m,T!

D~K ,m,T!
dT.

~24!

B. A first integral of the motion

The term 2@N(K ,m,T)/D(K ,m,T)#dT is an integrable rational form with a simple exa
integral. The general form for the integral is well known and is given in, for example, Gradsh
and Ryzhik,19 Sec. 2.1. The precise functional form of the integral depends on the degr
D(K ,m,T) and the multiplicities of the roots ofD(K ,m,T). We explicitly consider one importan
case here, the case whenD(K ,m,T) has four distinct roots. LetTr r 51,2,3,4 denote the simple
roots ofD(K ,m,T), D(K ,m,T)5c4P r 51

r 54(T2Tr), wherec45mK121K23Þ0 is the coefficient of
T4 in D(K ,m,T). Define c(T)52@N(K ,m,T)/(d/dT)D(K ,m,T)#. We find that
@2N(K ,m,T)/D(K ,m,T)#dT5( r 51

r 54 c(Tr)d lnuT2Tru so that Eq.~24! becomes

d ln~utr!52d ln
2D~K ,m,T!

~11T2!
12

N~K ,m,T!

D~K ,m,T!
dT52d ln

2D~K ,m,T!

~11T2!
2(

r 51

r 54

d lnuT2Tr u2c~Tr !.

~25!

This integrates to

J~K ,m,T!52utr~T!D0~K ,m,T!~11T2!)
r 51

r 54

uT2Tr u2c~Tr !

5utr~T!
D~K ,m,T!

11T2 )
r 51

r 54

uT2Tr u2c~Tr !

5utr~T!
mK121K23

11T2 )
r 51

r 54
~T2Tr !

uT2Tr uc~Tr ! 5constant. ~26!

This is a new first integral~conservation law! for a binary rigid body collision of arbitrarily
short duration, and the main result of this paper.

In Eq. ~26! two of theTr may be complex conjugates of each other, sayT3 andT45T3* . Then
two of thec(Tr) are complex conjugates of each other,c(T3) andc(T4)5c(T3)* . Put T35x
1 iy and c(T3)5a1 ib, where x, y, a, and b are real. Consider(complexc(Tr)lnuT2Tru
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5(r53
4 c(Tr)lnuT2Tru5(a1ib)ln@T2(x1iy)#1(a2ib)ln@T2(x2iy)#5a ln@(T2x)21y2#1b(2 tan21

3(@y/(T2x)#)12np). Also PcomplexuT2Tr uc(Tr )5Pcomplex exp(c(Tr)lnuT2Tru)5exp((complex

3 c(Tr)lnuT2Tru)5exp(a ln@(T2x)21y2#1b(2 tan21(@y/ (T2x)#12np))5 u(T2x)21 y2ua exp@b
3(2 tan21(@y/(T2x)#)12np)#, wheren is an integer~the branch cut for the natural logarithm is o
the negative real axis; if it is crossed then the phase may change discontinuously!. These obvious
identities may be used as needed to recast expressions involvingPcomplexuT2Tr uc(Tr ) into a mani-
festly real form.

We may use Eq.~26! to eliminateutr in the second of Eq.~16!, utr(du/dJz)5utr(du/dT)
3(dT/dJz)5utr@2/(11T2)(dT/dJz)#52Fx sin(u)1Fy cos(u)5D0(K ,m,T). Let J5J(K ,m,T
3(u initial)). Multiplying on each side with (11T2)2D0(K ,m,T)P r 51

r 54uT2Tr u2c(Tr ) yields

2J~dT/dJz!5@~11T2!D0~K ,m,u!#2)
r 51

r 54

@T2Tr #
2c~Tr !5FD~K ,m,T!

11T2 G2

)
r 51

r 54

uT2Tr u2c~Tr !.

Therefore

2JS F 11T2

D~K ,m,T!G
2

)
r 51

r 54

uT2Tr uc~Tr !D dT52JF S 11T2

c4
D 2

)
r 51

r 54 uT2Tr uc~Tr !

~T2Tr !
2 GdT5dJz ,

or

2J

c4
2 F ~11T2!2)

r 51

r 54

uT2Tr uc~Tr !22GdT5dJz5
duz

k~3!•j
5

dWz

uz
. ~27!

This result can be~numerically! integrated to determine the dynamical evolution ofu during the
collision.

V. DISCUSSION

Physically, utr50 corresponds to~perhaps instantaneous! sticking. During the impactutr

usually changes, and the conventional wisdom is that it may become zero. This idea is ba
physical insight into the problem, but not on analytical results derived from a specific anal
model of friction~the dynamic Coulomb friction law, in this case!. However the conservation law
of Eq. ~26! guarantees that if the constant in the law is not initially zero, thenutr is never zero.
Analytically, therefore, the dynamic Coulomb friction law does not formally allow an initia
nonzeroutr to vanish, except possibly for the special cases ofu' flow along either a converging o
a diverging ray. This may bear repeating: using Eq.~26! we have proven thatthe dynamic
Coulomb friction law does not allow either instantaneous sticking or stable sticking to evolve
an initially nonzero utr , except possibly for the special cases ofu' flow along either a converging
or a diverging ray.

This somewhat surprising prediction is certainly not a dramatic refutation of the tradit
view of sticking during a two-body collision. The traditional view is based largely on observa
and heuristic arguments, but not on exact analytical results founded on a mathematical m
friction ~of limited validity!. There is no reason for a calculation based on Eq.~26! and an accurate
calculation based on the heuristic approach to significantly disagree with one another.

VI. EXAMPLE

The result of Eq.~26! may be employed to compute the transverse relative velocity duri
two-body collision. Before focusing on concrete examples, let us first review the concep
stable and unstable sticking. Consider an arbitrary model of friction and the consequencesutr

50. If sticking isstablethen the governing differential system implies thatdux505duy , which
evidently requires thatk(1)•f505k(2)•f. This implies thatf}k(1)3k(2)}K (3)

21 @k(1)3k(2)Þ0
since det(K)Þ0#. Another way to see this is to note that for the case of instantaneous stickin
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relative velocityu5uzẑ. If sticking is stable, an arbitrary time variationdt in this system pre-
serves sticking. In order thatux and uy remain zero it is necessary thatdux5u̇xdt505u̇ydt
5duy , so thatu̇5u̇zẑ. Therefore

dJ5fdt5K21dDu5K21du5duzK ~3!
215K ~3!

21 duz

dJz

dJz

dt
dt5K ~3!

21 1

~dJz/duz!
f zdt5

K ~3!
21

K33
21 f zdt.

We conclude that

f

f z
5

K ~3!
21

K33
21 5

k~1!3k~2!

K11K222K12K21
~28!

for such a system.
The static friction force components can maintain sticking only if (f x)

21( f y)
2<mstatic

2 ( f z)
2

~e.g., in 1-dim, suppose thatu f xu is required for sticking, whilemstaticu f zu is available!, which
implies that (K31

21)21(K32
21)2<mstatic

2 (K33
21)2, in light of the previous result forf. This is the

well-known condition forstablesticking. If the pseudotransverse acceleration ellipse encircles
origin then it is known that, in principle, the frictional forces are strong enough to pres
sticking if utr50, and that in this case there is no diverging ray of constant sliding direction12,14

This means that sliding would permanently cease ifutr should ever become zero. The theo
embodied in Eq.~26! tells us that onceutr gets ‘‘small’’ the flow of u' is trapped by converging
rays and is driven to even smaller values ofutr toward some converging ray. Thereafter chang
in u, which are proportional toD(K ,m,T), are also very small sinceD(K ,m,T)50 on a ray.
Effectively the system is ‘‘stuck.’’ Therefore our analytical results admit stable sticking.

Otherwise, if frictional forces are not strong enough to preserve sticking and if, in s
particular physical model of friction,utr evolves to zero, then slipping immediately resumes alo
a diverging ray. This is calledinstablesticking. It is known that if frictional forces are not stron
enough to preserve sticking,14 then there is exactly one diverging ray.12,14The theory described in
this paper accommodates instable sticking in a natural manner, as can be seen in the fo
example.

In this first example the impact is characterized by a coefficient of kinetic frictionm50.2 and
a collision matrix

K5S 18 22 11

22 13 21

11 21 15
D . ~29!

These values are used by Mirtich in an example in Ref. 14 and we would like to compar
results with his, since our method of computing results and Mirtich’s method are comp
different. The determinant ofK is D593 and

K215
1

D S 14 9 21

9 39 6

21 6 20
D .

Notice that (K31
21)21(K32

21)25(1/D2)37.mstatic
2 (K33

21)25(1/D2)16 so that sticking is not stable
We shall not specify the coefficient of restitution because we are not trying to findu as a function
of Jz , but are instead studying the behavior of (ux ,uy) as functions ofu.

In Fig. 1 we plot the flow lines of the transverse relative velocity asu varies for an initial
transverse relative speed of ten units; its particular magnitude is immaterial as long as it is n
because conservation law is a function ofutr times a function of angle. The flow lines ar
computed using the first integral of Eq.~26! for selected values ofu initial, where the constant in the
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conservation law is evaluated usingutr
initial510 andTinitial5tan(12u

initial) for each individual case. O
course, the flow lines appear qualitatively the same when plotted for other initial trans
relative speeds such as 1 unit, 0.1, 0.01, and so on. The flow exhibits a type of scale inva
that is a consequence of the fact that the conservation law is a function ofutr times a function of
angle.

Figure 1 confirms that there is a diverging ray~transverse relative velocity parallel to tran
verse relative acceleration! at udiverging5271.1127 deg that attracts outgoing trajectories an
converging ray~transverse relative velocity antiparallel to transverse relative acceleratio! at
uconverging5147.001 deg. Using Eq.~19! we verify that there is a single converging ray and a sin
diverging ray at these angles. If the transverse relative velocity lies on one of these rays th
direction of sliding remains constant, untilutr50.

We find that in this case there are two simple real roots and a complex conjugate pair of
The roots ofD(K ,m,T) are

Tr5S 20.714 777 790 129 410 917
3.376 057 857 830 754 29

0.097 931 394 720 756 870 210.409 889 210 722 295 516i
0.097 931 394 720 756 870 220.409 889 210 722 295 516i

D ,

FIG. 1. Scale invariant transverse relative velocity flows for unstable sticking.
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c~Tr !5S 0.796 175 001 065 219 056
20.210 719 532 590 733 082

0.707 272 265 762 756 90220.347 433 352 914 288 784i
0.707 272 265 762 756 90210.347 433 352 914 288 784i

D .

Using the notation defined in the paragraph preceding Eq.~26!

S x
y
a
b
D 5S 0.097 931 394 720 756 870 2

0.409 889 210 722 295 516
0.707 272 265 762 756 902

20.347 433 352 914 288 784
D .

The conservation law Eq.~26! is equivalent to

utr~T!
sign@T2T1#sign@T2T2#

11T2 uT2T1u12c~T1!uT2T2u12c~T2!
@~T2x!21y2#12a

expFbS 2 tan21S y

T2zD12pnD G
5constant,

wheren50 for 2p,udiverging,u,uconverging,p and

FIG. 2. Scale invariant transverse relative flows for stable sticking.
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n5 H 0,
21,

uy.0
uy,0

for 1
2p,uconverging,u,2p1udiverging ~there is a branch cut for the logarithm on the negative r

axis; we find that there is a change in phase of22p across the cut!. Notice that if we relabel roots
and labelT3,4 asT4,3, theny→2y andb→2b; in this casen511 gives the correct change i
phase of across the cut.

As previously stated, these same values forK andm are used by Mirtich in an example in Re
14, where, however, the flow lines are computed by numerically integrating a system of ord
differential equations equivalent to Eq.~11!. The flows graphed in Fig. 1 computed using analy
cal methods and the flows presented in Mirtich’s Figure@3.3# computed using numerical method
are in agreement.

Next, modify the collision matrix so that sticking is stable. Consider

K5S 112 22 11

22 15 21

11 21 11
D . ~30!

The determinant ofK is D543 and

FIG. 3. Transverse relative velocity flows for unphysicalK .
                                                                                                                



e

e

c-
lision

ite,

ted
e

otion

2829J. Math. Phys., Vol. 40, No. 6, June 1999 Patrick L. Nash

                    
K215
1

D S 4 1 23

1 1 10

23 10 56
D .

Since (K31
21)21(K32

21)25(1/D2)109,mstatic
2 (K33

21)25(1/D2)125.44, sticking is stable. In this cas
we find that there are two real simple roots. By Eq.~19!, there are two converging rays.

In Fig. 2 we plot the flow lines of the transverse relative velocity as a function ofu. The initial
transverse relative speed is again~arbitrarily! ten units andm is unchanged. The flow lines ar
again computed using the conservation law Eq.~26! for selected values ofu initial. Figure 2 con-
firms that there are two converging rays atuconverging5274.6983 deg and 150.832 deg, respe
tively. We see that ifutr becomes small, then it is swept into ever decreasing values as the col
progresses. Effectively, sticking occurs just as in the heuristic model.

For purposes of illustration, we modify the collision matrix so that it is not positive defin
and hence unphysical. Let

K5S 18 27 11

27 13 21

11 21 15
D . ~31!

The determinant ofK is D52122 and

K215
1

D S 14 34 4

34 39 1

4 1 225
D .

In this unphysical case we find that there are four real simple roots. Equation~19! reveals that
there are two converging rays and two diverging rays.

In Fig. 3 we plot the flow lines of the transverse relative velocity as a function ofu. The initial
transverse relative speed is again ten units andm is unchanged. The flow lines are again compu
using the conservation law Eq.~26! for selected values ofu initial. Figure 3 confirms that there ar
a diverging rays atudiverging5299.7051 deg and 23.6415 deg and converging rays atuconverging

5226.2886 deg and 141.66 deg. However, this does not illustrate a possible physical m
sinceK is not positive definite.
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Towards a classification of Euler–Kirchhoff filaments
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Euler–Kirchhoff filaments are solutions of the static Kirchhoff equations for elastic
rods with circular cross sections. These equations are known to be formally equiva-
lent to the Euler equations for spinning tops. This equivalence is used to provide a
classification of the different shapes a filament can assume. Explicit formulas for
the different possible configurations and specific results for interesting particular
cases are given. In particular, conditions for which the filament has points of self-
intersection, self-tangency, vanishing curvature or when it is closed or localized in
space are provided. The average properties of generic filaments are also studied.
They are shown to be equivalent to helical filaments on long length scales.
© 1999 American Institute of Physics.@S0022-2488~99!05006-9#

I. INTRODUCTION

The study of elastic deformations in rods has a long tradition in mathematics, physics
engineering, dating back to Euler and Lagrange. Engineers have been confronted to the pro
coiling in sub-oceanic cables and have tried to understand the process of loop formation in t
wires.1–3 In chemistry and biology, increasing interest is taken in the elastic character of fila
tary structures such as polymers4–7 ~such as DNA molecules8–15! and bacterial fibers,16–18 for
which the macroscopic theory of rods provides an idealized model. Long, twisted structure
play an important role in hydrodynamic models19 such as scroll wave propagation,20 vortex tube
motion,21 or sun spots formation and solar corona heating.22,23

The Kirchhoff model~1859! ~Ref. 24! provides the basic framework for the theory of elas
filaments. A remarkable feature of this model, known as the Kirchhoff kinetic analogy, is tha
equations governing the static phenomena are formally equivalent to the Euler equations d
ing the motion of a rigid body with a fixed point under an external force field. The statics of
is thus intimately connected to the dynamics of spinning tops, a problem to which innume
work has been devoted. For instance, the most studied case where the filament has a circu
section is shown to correspond to a top having an axis of revolution, in which case the equ
are fully integrable. There is a rich mathematical literature on the statics of rods~see for instance,
Ref. 26!. In the particular case of circular cross sections and linear elasticity, various resea
have considered particular equilibrium filament shapes~helices,25,27 rings,28,3 localizing buckling
modes,1,29 solutions having points with vanishing curvature,30 supercoiled helices,31 see also Ref.
32 for a Hamiltonian formulation and Ref. 33 for a group theory approach!. Recently, departing
from the traditional Euler angles approach, Shi and Hearst~1994! have obtained a closed form o
the general solution of the static Kirchhoff equations for circular cross sections.34 Despite this
achievement, it remains highly nontrivial to obtain a global picture of all possible static fila
shapes. A step towards a general geometric classification of the equilibrium solutions is pr
here by considering in more detail the analogy between filaments and spinning tops. In Sec.

a!Electronic mail: mnizette@ulb.ac.be
b!Electronic mail: goriely@math.arizona.edu
28300022-2488/99/40(6)/2830/37/$15.00 © 1999 American Institute of Physics
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rederive Shi and Hearst’s general solution, keeping an explicit dependence in the constant
motion of the spinning top, and we discuss in detail various filament configurations on the ba
the corresponding orbits of the top, recovering the aforementioned shapes as particular ca

In this paper, we provide new results on the different configurations of Kirchhoff filamen
2D and 3D. We give explicit formulas for the centerline coordinate and find conditions
self-tangency and self-intersection of planar filaments, conditions for vanishing curvatur
average behavior of long filaments. Explicit formulas for periodic or localized~homoclinic! fila-
ments in space are also given.

II. THE KIRCHHOFF MODEL

We first introduce the Kirchhoff model. It accounts for the dynamics of a thin elastic filam
subject to internal stresses and boundary constraints. A filament is a unidimensional pi
elastic material which can be mathematically modelized by a curve in space, together with
information about its twist, that is, how longitudinal material lines on the edge of the filam
wind around it. This curve-plus-twist concept is formalized in the notion of ribbon discusse
Sec. II A as a preliminary.

A. Space curves and ribbons

We define a dynamicalspace curveR(s,t) as a smooth function mappingR2 into the physical
spaceR3, and taking as variables the arc lengths and the timet. For everys and t we define the
Frenet basis~n,b,t! to be the normal, binormal and tangent vectors to the curves. These ve
form the Frenet basis. The tangent vector is a unit vector given byt5(]R/]s). The curvaturek of
the curve at the points is then given by

k5U ]t

]sU. ~1!

At points where the curvature does not vanish, the normal vector is defined by

]t

]s
5kn. ~2!

The third unit vectorb is

b5t3n. ~3!

Therefore, the Frenet basis is a right-handed orthonormal basis on the space curveR. As a
consequence, one has

]n

]s
5tb2kt. ~4!

This relation defines the torsiont, which measures the amount of rotation of the Frenet tr
around the tangentt as the arc length increases. Finally the derivative of the binormalb is given
in terms of the normal and tangent vector,

]b

]s
52tn. ~5!

The coupled equations~2!, ~4!, and~5! are the Frenet–Serret equations. If the curvaturek and the
torsiont are known for alls, the Frenet triad~n,b,t! can be obtained as the unique solution of t
Frenet–Serret equations. It is then possible to reconstruct the space curveR by integrating the
tangent vectort.
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A ribbon is a space curveR(s,t) supplied with a smooth unit vector fieldd2(s,t) orthogonal
to the curve. Letd35t be the unit tangent vector. A third unit vector fieldd15d23d3 is intro-
duced so that the triad (d1 ,d2 ,d3) forms a right-handed orthonormal basis. This basis is a ge
alization of the Frenet triad~n,b,t!.

The components of the derivatives of the local basis vectorsd1 , d2 , andd3 with respect to the
arc lengths and the timet expressed in the local basis form the twist vectork(s,t)5k1d1

1k2d21k3d3 and the spin vectorv(s,t)5v1d11v2d21v3d3 , defined as follows:

]di

]s
5k3di , i 51,2,3 ~6a!

]di

]t
5v3di . i 51,2,3 ~6b!

Equations~6a! constitute the generalization of the Frenet–Serret equations for the ribbon. T
equations can also be expressed in terms of the twist matrixK (s,t) and the spin matrixW(s,t),
which we define as follows:

K5S 0 2k3 k2

k3 0 2k1

2k2 k1 0
D , W5S 0 2v3 v2

v3 0 2v1

2v2 v1 0
D . ~7!

The Frenet–Serret equations then read

S ]d1

]s

]d2

]s

]d3

]s D5~d1d2d3!K , ~8!

S ]d1

]t

]d2

]t

]d3

]t D5~d1d2d3!W. ~9!

B. The Kirchhoff equations

1. Main assumptions and derivation of the Kirchhoff equations

A thin filament, or rod, can be modelized by a ribbon constituted of a space curveR joining
the loci of the centroids of the cross sections, together with a vector fieldd2 attached to the
filament material. The space curveR is referred to as the centerline of the rod.

The Kirchhoff equations describe the dynamical evolution of the filament under the effe
internal elastic stresses and boundary constraints, in the absence of external force fields
gravity. Also, only local interactions, between adjacent cross sections, are considered, ignor
possibility for two remote segments of the filament to intersect with each other. LetF(s) and
M (s) be the total force and total moment exerted on the back side of a cylinderC(s) by the
cylinder C(s1ds) whose cross-section shape is defined byS, the set of all the values of the
couple (x1 ,x2) corresponding to a material point inside a given cross section. The conservat
linear and angular momentum yields35

]F

]s
5rA

]2R

]t2 , ~10a!

]M

]s
1d33F5rS I 2d13

]2d1

]t2 1I 1d23
]2d2

]t2 D , ~10b!

whereA denotes the area of the cross section and the quantitiesI 1 and I 2 are the principal
moments of inertia of the cross section,
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I 15E
S
dx1dx2x2

2, I 25E
S
dx1dx2x1

2. ~11!

Equations~10! are closed by using the constitutive relation of linear elasticity relating the to
M to the twist vectork,

M5EI1k1d11EI2k2d21mJk3d3 , ~12!

whereE is Young’s modulus,m is the shear modulus, andJ is a function of the shapeS of the
cross section. In the particular case of a circular cross section, one has

I 15I 25
J

2
5

pR4

4
, ~13!

whereR is the radius of the cross section. The combinationsEI1 andEI2 are called the principa
bending stiffnesses of the rod and measure how strong an applied torque must be in order
it, whereas the combinationmJ is called the torsional stiffness and measures how large an ap
torsional moment must be in order to twist the rod.

The coupled Eqs.~10! and~12! constitute the dynamical Kirchhoff equations. These are th
vector equations involving the local basis (d1 ,d2 ,d3) and its derivatives, the tensionF and the
torqueM , which add up to nine degrees of freedom, hence the system is closed. In the stat
~if the time dependencies is dropped!, the term inR vanishes from Eq.~10a!,

F850, ~14a!

M 81d33F50, ~14b!

M5EI1k1d11EI2k2d21mJk3d3 . ~14c!

2. The Kirchhoff equations in scaled form

In order to restrict the number of independent constants in~14!, we scale the variables, b
choosing combination of the length@L#, time @T#, and mass@M# units in the following way:

@M #5rAAI1,
@M #@L#3

@T#2 5EI1 , ~15!

with

a5
I 2

I 1
, b5

mJ

EI1
5

J

2I 1~11s!
, ~16!

wheres denotes the Poisson ratio. The constanta measures the asymmetry of the cross secti
Our convention is to orient the vector fieldsd1 andd2 such thatI 1 and I 2 are, respectively, the
larger and smaller bending stiffnesses. In this case, we have

0,a<1, ~17!

the value 1 being reached in the symmetric case where the moments of inertia are identic
constantb is the scaled torsional stiffness. It involves the constant 1/(11s) which ranges from
2
3, corresponding to incompressible media~if the volume is unchanged as the material is stretche!,
to 1, corresponding to hyperelasticity~if there is no striction as the material is stretched!. In the
particular case of a circular cross section, one has
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b5
1

11s
PF2

3
,1G . ~18!

The scaled system reads now

F850, ~19a!

M 81d33F50, ~19b!

M5k1d11ak2d21bk3d3 . ~19c!

The quantities involved still have a dimension. From~19!, we see that the scaled momentM has
the dimension of the inverse of a length, and that the scaled tensionF has the dimension of the
inverse of a squared length, hence every variable involved is a length to a power. Howev
system cannot be further simplified by choosing the length unit@L#, because the remaining con
stantsa andb are already dimensionless. It is still possible to choose a convenient length sca
a given problem. For example, if we consider a finite rod, a natural choice for the length un
be the length of the rod. In Sec. III, we choose the length unit@L# such that the norm ofF has a
given value.

The fact that the length unit@L# is undetermined has yet another implication. Considering
static system~14! or ~19!, we see that every known solution actually determines a one-param
family of solutions. More precisely, if$F(s),M (s),k(s)% is a solution of the system, the
$l22F(ls),l21M (ls),l21k(ls)% is another solution of the system for every real nonvanish
l. That is, the system is scale-invariant. Furthermore, if such a transformation is performed
solution together with a rescaling of the length unit@L# by a factorl21, the solution remains
unchanged, although the rod thickness is modified by a factorl21. Hence, the statics of a
filament, in the limit of the Kirchhoff model, does not depend on the rod thickness.

3. Integrability of the static Kirchhoff equations

The static Kirchhoff equations~19! are formally identical to the Euler equations describing
motion of a rigid body with a fixed point under gravity, in the particular case where the
joining the fixed point to the center of mass lies along a principal direction of inertia.~The
correspondence between rigid body variables and rod variables is shown on Table I!. Therefore,
they are fully integrable in two cases of interest, namely, the Lagrange and Kowalevskaya
Actually, the Euler equations are integrable in three cases. The third one corresponds to the
of a rigid body with arbitrary shape in free fall and is known as the Euler case. However
cannot speak of full integrability in the context of filaments since this case corresponds
vanishing tension vectorF and represents only particular boundary conditions, hence a subs
all possible configurations which can be adopted by a filament for given values of the ma
parametersa andb.

TABLE I. Analogy between rigid bodies and static filaments.

Symbol Meaning for rods Meaning for rigid bodies
d3 Unit tangent vector Unit vector joining the fixed point to the center of mass
(d1 ,d2 ,d3) Basis attached to the rod Basis attached to the solid body
s Arc length Time
F Tension Force equal and opposite to gravity
M Moment Angular momentum
k Twist vector Angular velocity vector
EI1 ,EI2 Principal bending stiffnesses Principal moments of inertia in directions orthogonal tod3

mJ Torsional stiffness Principal moment of inertia alongd3

a Bending stiffnesses ratio Ratio of the moments of inertia in directions orthogonal td3

b Scaled torsional stiffness Scaled moment of inertia alongd3
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In the Lagrange case, the rigid body has identical moments of inertia along every dire
perpendicular to the axis joining the fixed point to the center of mass, as for a symmetric top
corresponding rods have identical bending stiffnesses in every direction, so thata51. This is
realized, for instance, in the very common situation where the filament cross section is ci
showing the importance of the Lagrange case for filaments. Much work has been devote
~Euler classified the planar solutions of the equations, see Fig. 1!, and recently, Shi and Hears
~1994! ~Ref. 34! have obtained a closed form for the general solution. Their results are rede
with special emphasis on the correspondence between rod and rigid body variables and de
in detail in Sec. III.

In the Kowalevskaya case, there exists an axisD, originating from the fixed point, along

FIG. 1. Euler’s drawings of planar filaments.
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which the moment of inertia is half as large as the moments of inertia along directions pe
dicular toD. In addition, the center of mass lies in the plane perpendicular toD. In the context of
rods, this corresponds to asymmetric cross sections witha5 1

2 andb51. However, it turns out tha
the Kowalevskaya case, having a very high torsional stiffness, lies far beyond the region co
by the possible physical values of the parameters. For instance, an elliptic cross sectiona
5 1

2 andb51 would have a Poisson ratios52 1
3. This value describes a material which inflat

transversally as it is stretched in length, and although this is not precluded in theory, it
realized in practice.

III. SYMMETRIC RODS AND LAGRANGE TOPS

A. Generalities

The static Kirchhoff equations, written in terms of an appropriate set of variables, are for
equivalent to the Euler equations describing the dynamics of a heavy top. To every po
motion of the top, one can associate a particular static solution of the Kirchhoff equations.
we focus exclusively on the analogy between tops and static rods, in one of the three case
the equations are fully integrable; the Lagrange case, where the top has two identical pr
moments of inertia. This condition is satisfied if it has a symmetry of revolution. The corresp
ing filament has identical bending stiffnesses in all directions, that is, we must seta51 in the
scaled form of the Kirchhoff equations~19!.

The solutions of the Euler equations in the Lagrange case are well known and can be w
as combinations of elliptic functions.36–38In order to obtain the centerlineR of the corresponding
static filament, we must identify the tangent vectord3 to a unit vector lying along the axis o
revolution of the top. The centerline is then obtained by integratingd3 over the arc lengths which,
in the context of tops, corresponds to time. An obvious difficulty arises: in order to describ
behavior of real filaments under given external constraints, the space curveR must be available in
a form that allows for boundary conditions at two distinct points. That is, it is essentia
explicitly carry the integration of the tangent vector. Although it is not obvious that this integra
can be performed, Shi and Hearst~1994! ~Ref. 34! recently obtained expressions for the centerl
R in cylindric coordinates in a closed analytic form involving elliptic functions. Despite
achievement, the problem is still partially unsolved. Indeed, explicit forms of the solutions a
no means sufficient to get a global insight on the large variety of possible filament sh
Furthermore, the detailed analysis of the correspondence between spinning Lagrange to
static symmetric rods provides a way of establishing an exhaustive geometric classification
solutions. The aim of this paper is to provide a first step towards such a classification.

Shi and Hearst obtained their solutions by first solving the Kirchhoff equations for the
vature and torsion and then solving the Frenet–Serret equations to obtain the centerlin
resulting expressions depend on integration constants which do not have a clear meaning
we depart from their approach and work consistently with variables and integration con
relevant to the top. Namely, in Sec. III C, we express the Kirchhoff–Euler equations in term
the Euler angles. Then we compute the centerlineR of the filament as a function of the constan
of the motion for the spinning top. Once the expressions for the centerline have been obtain
study various classes of shapes of the rod and their correspondence with the motion of t
This analysis can be thought of an extension of Euler’s work, who classified planar shap
filaments.

In this section, we show illustrations of the spinning top orbits together with the corresp
ing filament shapes. A top orbit is displayed as a curve on the unit sphere which represe
extremity of the unit vectord3 . The filament shapes are represented with a circular cross sec
henceb must be set to a value lying between2

3 and 1. We have chosenb5 3
4. The radius of the

cross section and the zoom factor vary from one figure to another and are chosen for cla~as
seen in Sec. II, the radius is arbitrary in the static case!.
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In the remaining of this section, we write down the static Kirchhoff equations~19! in the case
a51, and identify a set of three first integrals necessary to guarantee the integrability
system. Witha51, the system~19! reads

F850, ~20a!

M 81d33F50, ~20b!

M5k1d11k2d21bk3d3 . ~20c!

The first equation expresses the fact that the tensionF is constant. We choose it oriented along t
third vector of the fixed basis,

F5FeZ . ~21!

In terms of spinning tops, the tension corresponds to the opposite of the top weight,2mg, which
describes an external force field. In the same spirit, we consider the tension as having
value. As a consequence, we considerF as a parameter rather than a first integral. Inserting~21!
into ~20b! and projecting along the fixed basis vectoreZ , we have

M 8•eZ50. ~22!

The basis vectoreZ being independent ofs, we can extend the derivative in~22! to take effect over
the whole left-hand side, leading to

MZ850, ~23!

whereMZ denotes the component of the moment alongeZ . It is a first integral that represents th
vertical component of the angular momentum of a spinning top. By projecting~20b! alongd3 , we
obtain

M 8•d35~M•d3!82M•d3850. ~24!

Using the fact thatd385k3d35M3d3 , we see that the second term of~24! vanishes identically,
leading to

M3850. ~25!

That is, the torsional momentM3 is another first integral. From~20c!, we see that it correspond
to a constant twist density. For the spinning top,M3 represents the component of the angu
momentum along the axis of revolution of the top.

Finally, taking the dot product of both sides of~20b! with k, we have

M 8•k1~d33F!•k5M 8•k1F•~k3d3!50. ~26!

Using ~20c! and the expressions~6a! of the derivatives of the local basis (d1 ,d2 ,d3) in terms of
k, ~26! reduces to

k1k181k2k281F•d385~ 1
2M•k1F•d3!850, ~27!

which provides the last first integral,

1
2M•k1F•d35H. ~28!
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This constant quantityH is the total elastic-plus-strain energy density of the filament and co
sponds to the total kinetic-plus-potential mechanical energy of the spinning top. We now pr
to analyze different solutions of the system~20!.

B. Helical filaments

1. The general helical solution

Helical solutions have constant Frenet curvaturek and torsiont. Taking into account the fac
that the twist densityk3 is also constant, we introduce the following definitions:

~a! A Frenet helix is a helix with pure torsion, that is,k35t.
~b! An overtwisted helix is a helix such that (k32t) has the same sign ast.
~c! An undertwisted helix is a helix such that (k32t) andt have opposite signs.

These three types of helices are represented in Figs. 2, 3, and 4, respectively. The unde
and overtwisted helices can be distinguished by the relation between the handedness of th
itself and the handedness of the apparent twist pattern on the helix. In the case of an over
helix, both hands are identical, whereas an undertwisted helix has opposite hands.

FIG. 2. An overtwisted helix (k53, t51, k356).

FIG. 3. A Frenet helix (k53, t521, k3521).
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It is convenient to treat the cases of helical, circular~ring-like! and straight solutions of the
Kirchhoff equations independently. The rings and the helical rods are easily identified as
sponding to spinning tops with the extremity describing a circle~centered at the fixed point in th
case of rings!, while the straight solutions correspond to the cases where the extremity of th
is at rest~the so-called sleeping tops!; pointing upwards in the case of positive tensionF3 and
downwards in the case of negative tension. Illustrations of these top orbits are given in Figs
For the sake of simplicity, helical, circular, and straight filaments will be referred to as he
filaments.

We do not introduce Euler angles for the helical solutions. Instead, we introduce a
Frenet curvaturek and a fixed torsiont into the expressions for the twist vector,

k15k sin@~k32t!~s2s0!#, ~29a!

k25k cos@~k32t!~s2s0!#. ~29b!

Substituting this into~20!, we obtain one single nontrivial vector condition,

F5~bk32t!@k2~k32t!d3#, ~30!

FIG. 4. An undertwisted helix (k53, t521, k354).

FIG. 5. A twisted ring (k51, t50, k353).
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which simply gives the tension in the local basis as a constant combination of the other qua
Hence, there exist helical solutions with arbitrary curvaturek, torsiont, and twist densityk3 . This
is unique to the case of symmetric rods. Indeed, in the regular caseaÞ1 the only possible helices
are Frenet helices with eitherk150 or k250.39

Three more facts can be noticed from~30!. First, in the case of rings (t50), the tension has
no longitudinal component (F•d350). Second, in the case of a noncircular filament (tÞ0), a
vanishing longitudinal tension impliesbk35t, hence the tension vectorF itself vanishes. Finally,
in the case of circular cross section, one hasb<1. This means that the Frenet helices (k35t) have
a negative longitudinal tension, and that the helices with null tension are overtwisted.

For straight solutions (k50), ~30! does not hold and is replaced by

F5F3d3 , ~31!

whereF3 is constant and arbitrary. Hence, there exist straight solutions with arbitrary longitu
tension and twist density. The torsion has no meaning for straight rods. Figures 2–7 show
sentations of helical, ringlike, and straight solutions.

FIG. 6. A straight rod subject to extensive tension (k50, k351, F351).

FIG. 7. A straight rod subject to compressive tension (k50, k351, F3521).
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2. The general solution with null tension

SubstitutingF50 into ~20b!, we see that the momentM is constant. Differentiating~20c! with
respect tos and projecting the resulting equation successively alongd1 , d2 , andd3 , we obtain

k181~b21!k3k250, ~32a!

k281~12b!k3k150, ~32b!

050, ~32c!

which, taking into account the fact thatk3 is constant, can be integrated,

k15k sin@~12b!k3~s2s0!#, ~33a!

k25k cos@~12b!k3~s2s0!#, ~33b!

where k and s0 are integration constants. We see that~33! assumes the form~29!, with t
5bk3 . In other words,~33! is a helix.

We conclude that all the solutions with vanishing tension are helices. In the following
tions, we consider nonhelical filaments. Therefore, from now on, we assumeFÞ0. This gives a
precise sense to the vertical unit vectoreZ .

C. General solution for the local basis

1. Equations for the Euler angles

We now introduce the Euler angles~w,u,c! for the local basis (d1 ,d2 ,d3). The anglesw, u,
andc denote, respectively, the precession, nutation, and self-rotation angles~see Fig. 8!. In matrix
form, the local basis is obtained from the fixed trihedron (eX ,eY ,eZ) as follows:

~d1d2d3!5~eXeYeZ!E, ~34!

where the general rotation matrixE reads

E5S cosw cosu cosc2sinw sinc 2cosw cosu sinc2sinw cosc cosw sinu

sinw cosu cosc1cosw sinc 2sinw cosu sinc1cosw cosc sinw sinu

2sinu cosc sinu sinc cosu
D . ~35!

FIG. 8. The Euler angles.
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From ~34! and ~35! we extract the fixed vectoreZ as a function of the local basis,

eZ5sinu~sincd22coscd1!1cosud3 . ~36!

We now express the twist matrixK in terms of the rotation matrixE. Differentiating~34! yields

]

]s
~d1d2d3!5~eXeYeZ!

]

]s
E5~d1d2d3!ETE8, ~37!

hence, from the definition~7! of the twist matrix, we see that

K5ETE8. ~38!

Therefore, we can express the twist vector in terms of Euler angles,

k15u8 sinc2w8 sinu cosc, ~39a!

k25u8 cosc1w8 sinu sinc, ~39b!

k35w8 cosu1c8. ~39c!

Using ~36! and ~39!, we now write the three first integrals in terms of the Euler angles,

MZ5w8@11~b21!cos2 u#1bc8 cosu, ~40a!

M35b~w8 cosu1c8!, ~40b!

H5
1

2 S u821w82 sin2 u1
M3

2

b D 1F cosu. ~40c!

It is convenient to introduce the following auxiliary constants:

h5
1

F S H2
M3

2

2b D , ~41a!

h̃5
1

F S H2
M3

2

2b
1

M3
22MZ

2

2 D , ~41b!

which are well defined sinceFÞ0. We also carry out the following change of variables in E
~40a!–~40c!,

z5cosu. ~42!

Note that a solution with constantz corresponds to a helical rod excluded in this discussion, he
z is not constant. We can solve~40a! to ~40c! for w8, u8, andz8 to obtain the final form of our
equations in the Euler angles,

w85
MZ2M3z

12z2 , ~43a!

c85S 1

b
21D M31

M32MZz

12z2 , ~43b!

z8252F~h2z!~12z2!2~MZ2M3z!2 ~44a!
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⇔z8252F~ h̃2z!~12z2!2~M32MZz!2. ~44b!

2. A better choice of first integrals

The differential Eq.~44a! or ~44b! is an identity betweenz82 and a cubic polynomial inz. In
order to solve this equation, we must know the rootsz1 ,z2 ,z3 of this polynomial. Rather than
computing the roots in terms of the constantsMZ , M3 , h or h̃, the classical approach consists
considering the rootsz1 , z2 , andz3 as three independent first integrals, and then expressing
constantsMZ , M3 , h, and h̃ as functions ofz1 , z2 , andz3 . This is achieved by rewriting the
cubic polynomial in~44a! and ~44b! as a product of three factors involvingz1 , z2 , andz3 ,

z8252F~h2z!~12z2!2~MZ2M3z!2 ~45a!

52F~ h̃2z!~12z2!2~M32MZz!2 ~45b!

52F~z2z1!~z22z!~z32z!. ~45c!

By settingz561 in ~45a! or ~45b!, the right-hand side assumes a nonpositive value. Furtherm
if we chooseF to be positive~which we can always do by defining adequately the vertical u
vectoreZ), we see that the right-hand side of~45a! or ~45b! tends to1` asz→1`. This means
that one of the roots~conventionally,z3) lies in the interval@1,1`@. Finally, in order to obtain
solutions with real values ofu, we require thatz82 be positive forz ranging in some interva
contained in@21,1#. Hence the other two roots of the polynomial must be real and lie between21
and 1. Conventionally, we choosez1<z2 . We conclude that the physical values of our indepe
dent constantsz1 , z2 andz3 must satisfy

21<z1<z2<1<z3 . ~46!

In the previous section, we showed that in order to obtain the scaled form of the Kirc
equations in the static case, it was not necessary to perform a complete scaling. Namely,
level, every variable involved in the equations is a length raised to a given power, and w
have the freedom to choose an arbitrary length unit@L#. In the following, it is convenient to choos
the length unit to be

@L#5A 2

F~z32z1!
, ~47!

which is equivalent to the substitution,

F5
2

z32z1
. ~48!

The right-hand side of~48! is well-defined as long asz1Þz3 . The conditionz15z3 implies z1

5z25z351, which corresponds to a straight rod withz51, a case excluded from this discussio
Expressions for the constantsMZ , M3 , h, and h̃ in terms of the roots can be obtained b

identifying the coefficients of the powers ofz in ~45a!–~45c!, or equivalently, by considering th
equalities between the right-hand sides of~45a!–~45c! for three well-chosen values ofz. Setting
z561 leads, together with~48!, to

2~MZ7M3!25
4

z32z1
~612z1!~z271!~z371!. ~49!

Equation~49! givesMZ2M3 andMZ1M3 up to sign determination. A third equality of type~45!

corresponding to another value ofz would lead to an equation involvingh or h̃ and could not
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provide additional knowledge onMZ or M3 by themselves. We conclude that given values ofz1 ,
z2 , andz3 do not yield unique values ofMZ andM3 . Instead they give these two constants w
a complete sign indetermination. By performing a mirror reflection in space, we can ma
filament with MZ1M3,0 onto a filament withMZ1M3.0. Hence, we restrict our analysis t
the caseMZ1M3>0. Nevertheless, we still have to supply the values ofz1 , z2 , andz3 with extra
information, namely, the signS of MZ2M3 ,

S51 or S52. ~50!

Now, if we set

M 15
MZ1M3

2
>0, ~51a!

M 25
uMZ2M3u

2
, ~51b!

we have

MZ5M 11SM2 , ~52a!

M35M 12SM2 , ~52b!

with

M 65A~16z1!~16z2!~z361!

z32z1
. ~53!

The constantsh and h̃ in ~44a! and ~44b! are obtained from suitable combinations of equalit
between the coefficients ofz in ~45a!–~45c!,

h5 1
2@z11z21z32z1z2z31S~z32z1!M 1M 2#, ~54a!

h̃5 1
2@z11z21z32z1z2z32S~z32z1!M 1M 2#. ~54b!

3. General solution for the Euler angles

The solutions of Eqs.~43a!–~44! involve elliptic functions~see Appendix!. With a suitable
origin for the arc lengths, the solution of Eq.~44! assumes the form,

z5z11~z22z1!sn2~suk!, ~55!

where the modulusk ranges between 0 and 1 and is given by

k25
z22z1

z32z1
. ~56!

We can use the fact thatz5cosu to obtainu as a function ofs. In the generic case wherez1Þ
21 andz2Þ1, the cosine never reaches its extreme values61, and there is a bijective correspo
dence betweenz and u. In this case, we can takeu5arccosz. In the degenerate cases wherez1

521 or z251, we must take care of the behavior ofu as cosu reaches its limiting values. This
is achieved by substitutingz5cosu in ~44! and examining the behavior ofu8 aroundz521 or
z51. The results are as follows:

~a! If z1521 and z2Þ1, u8 has a nonvanishing limit asz→21, hence the sign ofu2p
changes atz521.
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~b! If z1Þ21, z251, andz3Þ1, u8 has a nonvanishing limit asz→1, hence the sign ofu
changes atz51.

~c! If z1Þ21, z251, andz351, z never reaches its extreme value 1, hence we can taku
5arccosz.

~d! If z1521, z251, andz3Þ1, u8 has a nonvanishing limit in both casesz→61, henceu is
a monotonous function ofs. In this case,MZ5M350, that is, the top behaves like a plan
pendulum. This corresponds to planar rods studied by Euler.

~e! If z1521, z251, andz351, u8 has a nonvanishing limit asz→21 andz never reaches its
extreme value 1, hencez assumes the value21 only at the single points50, andu covers
the interval#0,2p@ crossing every value only once. This corresponds to the homoclinic
of the plane pendulum.

In order to obtainw andc as functions ofs, we must integrate~43a! and~43b!, which, using
~52a! and ~52b!, can be rewritten as

w85M 1

1

11z
1SM2

1

12z
, ~57a!

c85S 1

b
21D M31M 1

1

11z
2SM2

1

12z
. ~57b!

Next, we define

n657
z22z1

16z1
. ~58!

In the cases wheren6 have a nonvanishing denominator, we can express~57a! and ~57b! using
~55! as

w85
M 1

11z1

1

12n1sn2~suk!
1S

M 2

12z1

1

12n2sn2~suk!
, ~59a!

c85S 1

b
21D M31

M 1

11z1

1

12n1sn2~suk!
2S

M 2

12z1

1

12n2sn2~suk!
. ~59b!

Notice that we have the freedom to perform global rotations of the local basis aroundd3 and of the
fixed trihedron aroundeZ , in such a way thatw50 andc50 for s50. Equations~59a! and~59b!
can be integrated to yield

w5
M 1

11z1
P~sun1 ,k!1S

M 2

12z1
P~sun2 ,k!, ~60a!

c5S 1

b
21D M3s1

M 1

11z1
P~sun1 ,k!2S

M 2

12z1
P~sun2 ,k!, ~60b!

whereP is the incomplete elliptic integral of the third kind in ‘‘practical’’ form, as defined in t
Appendix.

In the degenerate cases wheren1 or n2 has a vanishing denominator, the correct limits
~60a! and ~60b! are obtained by setting the term involving the ill-defined quantity to zero.

Expressions~60a! and~60b! together with~55! constitute the general solution of the spinnin
symmetric top problem. We can then use~34! to obtain the nonfixed basis (d1 ,d2 ,d3) as a
function of the Euler angles.
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4. Particular orbits of the spinning top

The generic orbits of the spinning top are those for which the extremity ofd3 oscillates
vertically between two parallels on the unit sphere, while it revolves horizontally, either mo
nously as in Figs. 21, 20, 22, and 23, or making loops as in Figs. 16 and 24. The looping
arise if S52 andz3.(12z1z2)/(z22z1). This condition is obtained by allowingw8 to vanish
for some value ofz.

The degenerate caseS52, z35(12z1z2)/(z22z1) separates looping orbits from monoto
nously precessing orbits. This corresponds to trajectories which present turnback points, as
in Fig. 19. We shall see in the following section that the conditionz35(12z1z2)/(z22z1) has a
clear meaning in terms of rods for both values ofS.

The casez1521 with z2Þ1 andz3Þ1 corresponds to orbits which cross periodically t
south pole of the unit sphere, as shown in Fig. 18, while the casez251 with z1Þ21 andz3

Þ1 corresponds to orbits which cross the north pole, as shown in Fig. 17.
The casez25z351 with arbitraryz1 represents homoclinic orbits such as those shown

Figs. 13–15.
Next, there are the orbits for whichMZ5M350, that is, for which the top behaves like

plane pendulum~the extremity ofd3 is restricted to a vertical grand circle on the unit spher!.
They correspond toz1521 and eitherz251 or z351. The casez251 describes an oscillating
pendulum, whereas the casez351 describes a revolving pendulum. The casez25z351 corre-
sponds to the homoclinic orbit of the pendulum.

Finally, there are orbits with constantz which we took apart from our preceding analysis, a
which correspond to the helical, circular, and straight rods examined in Sec. III B~see Figs. 2–7!.

D. Centerline in cylindrical coordinates, curvature, and torsion

1. Polar coordinates, complex curvature, and complex centerline radius

Following Shi and Hearst~1994!, we introduce cylindrical coordinatesR,F,Z for the filament
centerlineR,

R5R cosFeX1R sinFeY1ZeZ . ~61!

Rather than adopting the method of Shi and Hearst to obtainR, F, andZ as functions of the arc
length, we lead the calculations in a way which highlights the remarkable correspondence b
the expressions for the radiusR and the Frenet curvaturek, as well as between the polar angleF
and the anglez5*ds(k32t) giving the orientation of the local basis (d1 ,d2 ,d3) with respect to
the Frenet triad (n,b,d3). The computations are quite analogous and can be led in parallel.

First, we introduce the complex centerline radiusR̂, the complex curvaturek̂ and the complex
horizontal component of the momentM̂ ,

R̂5R expiF, ~62a!

k̂5k11 ik2 , ~62b!

M̂5MX1 iM Y , ~62c!

whereMX and MY are the components of the moment alongeX and eY . Using ~34!, ~35!, and
~39a!, k̂ andM̂ can be expressed in Euler angles as

k̂52
MZ2M3z1 iz8

6A12z2
exp2 ic, ~63a!
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M̂5
M32MZz2 iz8

6A12z2
expiw. ~63b!

The correct sign to put in front of the root in~63a! and~63b! is the one of sinu. The key to obtain
the complex centerlineR̂ is the moment equation~20b!. Taking into account the fact thatF
5FeZ is constant and thatR5*dsd3 , we can integrate both sides of this equation, leading t

M1FR3eZ5MZeZ ~64!

for an appropriate choice of origin in the tridimensional space. Taking the dot product of~64! with
eX1 ieY , we obtain

R̂5
2 i

F
M̂5

2 i

F

M32MZz2 iz8

6A12z2
expiw. ~65!

2. Frenet curvature and centerline radius

Using ~63a! and ~65!, the Frenet curvaturek and the radiusR are

k25uk̂u25
~MZ2M3z!21z82

12z2 , ~66a!

R25uR̂u25
~M32MZz!21z82

F2~12z2!
. ~66b!

We now substitute the expressions~45a! and ~45b! for z82, respectively, in~66a! and ~66b! to
yield the final forms ofk andR. They depend ons only through the variablez,

k252F~h2z!, ~67a!

R25
2

F
~ h̃2z!. ~67b!

Notice that the left-hand sides of these equations are positive for allz, henceh and h̃ are both
greater than or equal toz2 . Also, ignoring the case of straight rods,~67a! and ~67b! show thatk
andR can only vanish at isolated points wherez5z2 . A natural question is: for which values o
z1 , z2 , z3 and S do the equalitiesh5z2 or h̃5z2 hold? Using expressions~48! for F and
~54a!–~54b! for h and h̃, one can easily obtain the following results:

h5z2⇔S52 and z35
12z1z2

z22z1
, ~68a!

h̃5z2⇔S51 and z35
12z1z2

z22z1
. ~68b!

Condition ~68a! is necessary and sufficient for the curvature to vanish at some isolated p
Remarkably, it is identical to the condition for the orbit of the spinning top to present turn
points. In the same way,~68b! is a necessary and sufficient condition for the radiusR to vanish at
isolated points.

In order to have a continuous dependence ins for the polar angleF across these isolate
points where the radiusR vanishes, we must change the sign ofR. In the same way, the sign ofk
must change whereverk vanishes in order for the anglez to be a continuous function ofs.
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3. Frenet torsion and polar angle of the centerline

The argument of the right-hand side of~65! can be used as an expression for the polar an
F. However, this is not convenient. A more tractable expression can be obtained by first co
ing the derivative of the polar angle from~65!,

F85
]

]s
argR̂5

]

]s
arctan

2z8

M32MZz
1w8. ~69!

Similarly, the Frenet torsiont can be computed,

t5k31
]

]s
argk̂5

M3

b
1

]

]s
arctan

z8

MZ2M3z
2c8. ~70!

Taking the derivatives in~69! and~70! leads to expressions forF8 andt involving z, z82, z9, w8,
andc8. Using the expressions~43a!–~44! to express everything in terms ofz only, we obtain

F85
1

2
S MZ1

M32MZh̃

h̃2z
D , ~71a!

t5
1

2 S M31
M3h2MZ

h2z D . ~71b!

In the case of a nonconstantz, we see from~71! that the condition for a constantF is identical to
the condition for the rod to be planar (t50); MZ and M3 must both vanish. This means th
noncircular planar filaments correspond to the case where the spinning top behaves like
pendulum (z1521 and eitherz251 or z351).

For nonplanar rods, we define

n5
z22z1

h2z1
, ~72a!

ñ5
z22z1

h̃2z1

. ~72b!

We can then integrate~71a! and ~71b! to yield

F5
1

2
S MZs1

M32MZh̃

h̃2z1

P~suñ,k!D 2
p

2
, ~73a!

z5
M3

b
s2

1

2 S M3s1
M3h2MZ

h2z1
P~sun,k! D2

p

2
. ~73b!

The integration constant2~p/2! in ~73a! has been determined from the complex radiusR̂ ~65! in
the limit s→0. The integration constant2~p/2! in ~73b! is determined from the fact thatd1 and
the binormalb are opposite whenc50.

4. Vertical cartesian coordinate of the centerline

To complete the filament description, we need an expression forZ, the vertical coordinate of
the centerline. It is given by

Z85z, ~74!
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which, using~55! and ~56!, can be written as

Z85z32~z32z1!@12k2sn2~suk!#. ~75!

The last expression is readily integrated to yield, for an appropriate choice of origin of the ve
coordinate,

Z5z3s2~z32z1!E~suk!, ~76!

whereE is the incomplete elliptic integral of the second kind in ‘‘practical’’ form, as defined in
Appendix.

For very largez3 , Z is expressed as a difference between two large quantities, althouZ
itself is finite for z3→`. Hence,~76! could be tricky to handle numerically for largez3 .

Finally, we note that the expression for the radiusR is bounded while, in general, the expre
sion for Z is not. As a consequence, the vectord3 , averaged over alls, has no component in the
(eX ,eY) plane. This means that, on average, a spinning top is vertical whatever the constants
motion are.

E. Filament shapes

1. Planar shapes

This section is dedicated to planar filaments other than the circular and straight ones.
essentially a modern restatement of Euler’s results. As seen in the previous section, the non
and nonstraight planar filaments correspond to values of the constantsz1 , z2 , andz3 for which the
top behaves like a plane pendulum. In this case, the sign variableS is meaningless. There are tw
one-parameter families of planar solutions. The first one is obtained by settingz1521 andz3

51 and keepingz2 arbitrary; it corresponds to oscillating orbits of the pendulum. The second
is obtained by settingz1521 andz251 and keepingz3 arbitrary; it corresponds to revolving
orbits of the pendulum. In both cases, it is convenient to adopt the modulusk as the arbitrary
parameter.

The two families of pendulum orbits are displayed on the phase portrait shown in Fig. 9.

FIG. 9. Phase portrait for the plane pendulum. The closed curves represent oscillating orbits, while the open
represent revolving orbits. The homoclinic orbit corresponds tok51.
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curve represents a different orbit with a given value ofk in the (u,u8) space. The closed orbit
correspond to oscillating states of the pendulum, while the open orbits correspond to rev
states of the pendulum. The corresponding filament shapes are represented in Figs. 10–1
the scaling defined in Eq.~47! depends onk through z32z1 , so does the length unit for th
filament, or the time unit for the pendulum. This is inadequate to draw a phase portrait, hen
Fig. 9, we have exceptionally chosen the scaled force unit@L#22 to beF. This is identical to the
scaling defined in~47! in the oscillating case.

We introduce the following notations for the complete elliptic integrals of the first and se
kinds defined in the Appendix:

K5K~k!, ~77a!

E5E~k!. ~77b!
a. Oscillating orbits of the pendulum:In the casez351, the expressions for the releva

variablesz, R, andZ, reduce to

z52k2sn2~suk!21, ~78a!

R52kcn~suk!, ~78b!

Z5s22E~suk!. ~78c!

FIG. 10. Planar filaments corresponding to low amplitude oscillating orbits of the plane pendulum.
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In the following, we define

f 5FAS 1

&k
UkD , ~79a!

e5EAS 1

&k
UkD , ~79b!

whereFA andEA are the incomplete elliptic integrals of the first and second kinds in algeb
form ~see Appendix!.

The extrema ofZ are given by the conditionz50, which is satisfied for

sn2~suk!5
1

2k2 ⇔s56 f 12mK, ~80!

wherem is an arbitrary integer. We see from~79a! that f is real only if k2> 1
2. Hence, fork2

, 1
2, Z is a decreasing function ofs @see Fig. 10~a!#. The limiting casek25 1

2 corresponds to an
oscillating pendulum which has just enough energy to reach the horizontal position, as sho
Fig. 10~b!. Above this critical value ofk2, Z is not monotonous, and for large enoughk, the

FIG. 11. Planar filaments corresponding to high amplitude oscillating orbits of the plane pendulum. The homoclin
is reached in the limitk51.
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filaments can have points of self-tangency or self-intersection@see Figs. 10~d!–10~f!#. The cases of
self-tangency are obtained by imposing the equality ofZ at different points wherez vanishes. This
leads to the condition

f 22e12m~2E2K !50, ~81!

wherem is a positive integer which denotes the number of pendulum oscillations before a
tangency occurs. The solutionskm of Eq. ~81! for the lowest values ofm are given in the first
column of Table II.

Settingm5` in Eq. ~81! yields

FIG. 12. Planar filaments corresponding to revolving orbits of the plane pendulum.

TABLE II. Values of k corresponding to self-tangency.

k150.8551 k2150.9414 k̃150.9145
k250.8858 k2250.9270 k̃250.8063
k350.8942 k2350.9214 k̃350.7227
k450.8981 k2450.9185 k̃450.6596
k550.9004 k2550.9167 k̃550.6103

¯ ¯ ¯

k`50.9089 k2`50.9089 k̃`50
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k`50.9089, ~82!

for which the filament shape is the lemniscate represented in Fig. 11~a!. Every value ofk,k`

corresponds to a solutionZ which, on average, is a decreasing function ofs, while for k.k` , Z
is, on average, an increasing function ofs. The increasing solutions can also present points
intersection and self-tangency for given values ofk @see Figs. 11~b!–11~e!#. The condition of
self-tangency in the casek.k` also assumes the form~81!, provided that we setm to be negative.
The positive integer2m counts the number of pendulum oscillations before a self-tange
occurs. The solutionskm of Eq. ~81! for the lowest values of2m are given in the second colum
of Table II.

b. Homoclinic orbit of the pendulum:The homoclinic orbit is obtained by taking the lim
k→1 in either the oscillating case or the revolving case. It is shown in Fig. 11~f!. The expressions
for z, R, andZ then reduce to

z5122 sech2 s, ~83a!

R52 sechs, ~83b!

Z5s22 tanhs. ~83c!
c. Revolving orbits of the pendulum:In this case, we setz1521 andz251. The expressions

for u, R, andZ read

u5p22am~suk!, ~84a!

r52k22dn~suk!, ~84b!

Z5~2k2221!s22k22E~suk!. ~84c!

Next, we define

f̃ 5FS 1

&
UkD , ~85a!

ẽ5ES 1

&
UkD . ~85b!

The extrema ofZ correspond to the values ofs for which u is an integer multiple ofp, hence
am(suk) is an integer multiple ofp/2, or

s562 f̃ 12mK, ~86!

wherem is an integer. Notice thatf̃ andẽ are real for allk. As in the case of oscillating orbits, w
can find a condition for the existence of points of self-tangency,

~22k2! f̃ 22ẽ1m@~22k2!K22E#50, ~87!

where the positive integerm counts the number of pendulum revolutions before a self-tange
occurs. The solutionsk̃m of Eq. ~87! for the lowest values ofm are given in the third column o
Table II. The sequence (k̃m) has a vanishing limit form→` and, in the limitk→0, the filament
is a vertical ring. Some filaments corresponding to revolving orbits are shown in Fig. 12.
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2. Nonplanar localizing solutions

The homoclinic orbits constitute a one-parameter family of solutions which are obtaine
settingz25z351 while z1 is kept arbitrary. Here again, the sign parameterS is meaningless. In
terms of rods, these orbits correspond to the localizing solutions studied by Coyne~1990!.1 They
connect continuously the straight state (z151) to the planar loop (z1521). These solutions have
constant torsion,

t5A11z1

12z1
. ~88!

We see thatt is bijective inz1 and can assume any non-negative value, from 0 in the casez15
21 ~plane pendulum! to infinity in the limit z1→1. Actually, for fixed tension, the torsion canno
be arbitrarily large. One must keep in mind that the parametert used here is the scaled torsion a
that the scaling defined in~47! in turn depends ont throughz1 . As a consequence, the unscal
torsion t̃ is not simply proportional tot, but instead is given byt̃25@ F̃/EI1(11t22)#, whereF̃
is the unscaled tension. Hence, the torsion has actually an upper bound proportional to the
root of the tension. In the following, we adopt the torsiont rather thanz1 as the arbitrary
parameter.

The top variablesw, z, andc assume the form

w5arctanS 1

t
tanhsD1ts, ~89a!

z512
2

11t2 sech2 s, ~89b!

c5arctanS 1

t
tanhsD1S 32

2

bD ts. ~89c!

Notice that the boundary values2
3 and 1 for the variableb in the case of circular cross section ta

a new sense in view of expressions~89!. The valueb5 2
3 makes the self-rotation anglec bounded,

while b51 is the value for whichw5c.
The centerline variablesR, F, andZ read

R5
2

11t2 sechs, ~90a!

F5ts2
p

2
, ~90b!

Z5s2
2

11t2 tanhs. ~90c!

Three typical nonplanar (tÞ0) homoclinic orbits of the spinning top together with the cor
sponding filament shapes are shown in Figs. 13–15.

3. Generic filament shapes

In the most generic case, the spinning top oscillates between two parallelsz1 andz2 , while it
precesses either monotonously or with backward-and-forward motion. The corresponding fi
centerlineR behaves, on average, as a helix around which it is wound.
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a. Average helix: We define the mean helical centerline^R& in the following way: We
introduce cylindrical coordinateŝR&,^F&,^Z& for the helix ^R&, and we take the mean vertica
coordinatê Z& to be a linear function ofs, namely,

^Z&5^z&s, ~91!

where^z& is the average ofz over a period, 2K(k). Using ~76!, we have

^z&5
1

2K~k!
E

0

2K~k!

zds5z32~z32z1!
E~k!

K~k!
. ~92!

Now, consider the expression~65! for the complex centerline radiusR̂. The polar angleF being
the argument ofR̂, we have

F5argr̂1w2
p

2
, ~93!

with

FIG. 13. A locally buckled filament with low torsion and high curvature (t5
1
2).

FIG. 14. A locally buckled filament with intermediate torsion and curvature (t51).
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r̂5
1

F

M32MZz2 iz8

6A12z2
. ~94!

The function r̂ depends ons through z and z8 only, hence it describes a closed curve in t
complex plane. Ifr̂ does not vanish anywhere, ass increases by a period 2K(k), the argument of
r̂ increases by 2pm, wherem is some integer. Moreover, the real and imaginary parts of
numerator in~94! being decreasing functions ofz andz8, respectively, the curve defined byr̂ has
no self-crossing~and is parameterized clockwise bys!. Hence, it turns around the origin at mo
once clockwise over a period 2K(k), so thatm is restricted to the values 0 and21. The domain
in the (z1 ,z2 ,z3 ,S) space where either value ofm holds is delimited by the condition~68b!
ensuring the existence of points wherer̂ vanishes. We find thatm521 if S51 and z3.(1
2z1z2)/(z22z1), andm50 otherwise. As a consequence, we have

w~s12K~k!!2w~s!5F~s12K~k!!2F~s!1H 2p if S51 and z3.
12z1z2

z22z1
,

0 if S52 or z3,
12z1z2

z22z1
.

~95!

Hence, over a period ofz, the precession anglew of the top covers either the same angular dista
as the polar angleF of the rod, or the same angular distance plus one complete revolution.

Now, using~60a! and ~73a!, we define the mean angular velocities^w8& and ^F8& for the
corresponding anglesw andF as

^w8&5
1

2K~k!
E

0

2K~k!

dsw85
M 1

11z1

P~n1 ,k!

K~k!
1S

M 2

12z1

P~n2 ,k!

K~k!
, ~96a!

^F8&5
1

2K~k!
E

0

2K~k!

dsF85
1

2
S MZ1

M32MZh̃

h̃2z1

P~ ñ,k!

K~k!
D . ~96b!

As a consequence, these two quantities either are equal or differ fromp/K(k). The question arises
then: which mean angular velocity,^w8& or ^F8&, should we use to define the polar angle^F& of
our average helix? The most natural choice seems to take^F&5^F8&s. However, expression
~96b! is not continuous through the boundary~68b!, making the definition of the mean polar ang
^F& ambiguous at that point. Therefore, we define

FIG. 15. A locally buckled filament with high torsion and low curvature (t52).
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^F&5^w8&s2
p

2
for S52, ~97a!

^F&5S ^w8&2
p

K~k! D s2
p

2
for S51. ~97b!

These expressions reduce to^F8&s for sufficiently largez3 , and are continuous across the boun
ary ~68b!. As we shall see, this definition is the most adequate in the case where the filament
is a supercoiled helix~this case has a great importance in biochemical applications, in parti
for DNA supercoiling.31,40,41! The supercoiled helices are defined and discussed below. It rem
now to define the mean helix radius^R&. A definition consistent with~97! is

^R&5
1

2K~k!
E

0

2K~k!

dsR̂exp2 i ^F&. ~98!

Therefore, the generic filament behaves on average like an helical filament.
b. Supercoiled helices:A supercoiled helix is a curve which looks like a helix on short leng

scales, with the central axis itself shaped like a helix on large length scales. The condition
centerlineR to be a supercoiled helix, in terms of spinning tops, is that the vectord3 describes
slowly precessing, nearly circular, oblique loops on the unit sphere. Two such examples are
in Figs. 16 and 17. If any of these three conditions~slow precession, near-circularity, and oblici
of the top orbit! is not fulfilled, the filament shape will not look like a supercoiled helix, but rat
like a deformed helix, as shown in Figs. 18–21.

The supercoiled helices can be studied systematically as solutions close to the oblique c
orbits of the spinning top. There are two ways to obtain circular orbits. The first one consi
settingz15z2 , in which case the orbit is horizontal, and not oblique. The second one is to tak
limit z3→`. Indeed, in view of~48!, the tension vanishes asz3 grows without bound, and, as w
mentioned in Sec. III B, every filament with null tension is a helix, hence every top orbit
F50 is a circle. Furthermore, these asymptotic circular orbits can be arbitrarily oriented sin
vertical directioneZ cannot be distinguished from the other directions in the limitF50. As a
consequence, we can redefine a supercoiled helix as a solution with a large~‘‘close to infinity’’ !
value ofz3 . In practice, however,z3 does not need to be very large, so that the threshold v
appearing in~95! can be reached with the centerlineR still reasonably looking like a supercoile
helix.

FIG. 16. A slowly precessing, nearly circular top orbit corresponds to a supercoiled helix (z152
1
2, z25

3
4, z354,

S5—).
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In the limit of largez3 , the vertical axis joining the poles of the unit sphere is interior
precessing circular orbit in the caseS51, and exterior to it in the caseS52. As a consequence
one passes continuously from the supercoiled helices withS52 to the supercoiled helices with
S51 by enlarging the slowly precessing orbit so that it passes through one of the poles, as
17.

We mentioned above that our definitions of the average helix coordinates^R&,^F&,^Z& are
well adapted to supercoiled helices, in the sense that they describe consistently the larg
helical behavior of the axis around which the centerline is wound. Namely, in the limitz3→`, the
supercoiled helix tends towards an~infinitely remote! ordinary helix, with a straight axis given b
the limit of the average helix̂R&.

c. Deformed helices: In many cases, although the centerlineR winds around the averag
helix ^R&, it does not quite look like a supercoiled helix. This happens if the criterion discu
above is not fulfilled, which can result in the following:

~1! The short scale spatial period 2K(k) and the large scale spatial period 2p/^F&8 can be too
close to each other, in which case the two orders of helicity cannot be clearly distingu
Such a situation is shown in Fig. 18.

FIG. 17. A top orbit crossing periodically the north pole. The corresponding filament has a periodically vertical ta

(z15
1
2, z251, z353).

FIG. 18. A top orbit crossing periodically the south pole. The corresponding filament has a periodically vertical t

(z1521, z252
1
2, z35

14
10, S5—).
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~2! If the top orbit is too far away from a circle, the short scale pattern does not look like a h
As an example, Fig. 19 shows a large-scale helix with curvature varying on short scale

~3! For some values of the constants, the top orbit can be periodic although quite differen
a circle. In this case, the filament shape is periodic in space, but different from a helix~see the
‘‘oblique helix’’ in Fig. 20!.

In addition, there is the possibility for the amplitude of the short scale pattern to be
enough for two consecutive turns of the large-scale helix to overlap each other. In this ca
topology of the solution is different from the topology of an ordinary helix. Such a ‘‘kno
helix’’ is shown in Fig. 21.

4. Bounded and closed filament shapes

The filament shapes discussed so far are all unbounded in space, except for the twist
shown in Fig. 5 and the lemniscate shown in Fig. 11~a!. In general, bounded shapes are obtain
by imposing the coordinateZ to be a periodic function ofs, that is,Z50 for s52K(k). Using
~76!, the condition for boundedness reads

FIG. 19. A top orbit presenting turn-back points corresponds to a filament with periodically vanishing curvature (z150,

z25
1
2, z352, S5—).

FIG. 20. A periodic top orbit results in a spatially periodic filament shape (z1520.7822,z250.8782,z351, S5—).
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z3K~k!2~z32z1!E~k!50. ~99!

The condition for the space curveR to be closed is obtained by requiring, in addition, that t
periods of the variablesZ andF be in a ratio of integer numbers. Namely, using~73a!,

MZK~k!1
M32MZh̃

h̃2z1

P~ ñ,k!52p
mF

mZ

, ~100!

where the integersmF andmZ denote, respectively, the number of periods of the variablesZ and
F in a complete covering of the centerlineR.

Finally, one can impose the ribbon associated to the filament to be closed by requiring th
periods of the variablesZ andz be in a ratio of integer numbers, or, using~73b!,

2M3

b
K~k!2S M3K~k!1

M3h2MZ

h2z1
P~n,k! D52p

mz

mZ
, ~101!

wheremz denotes the number of periods ofz in a complete covering of the centerlineR. The
condition ~101! is useful if one has, for instance, an octagonal cross section, in which casmz

must be set to an integer multiple of1
8, in order for the octagons ats50 and ats52mZK(k) to

match each other.
This together makes three conditions from which the constantsz1 , z2 , andz3 can be deter-

mined. However, the conditions~100! and~101! are not very tractable, because the left-hand s
of ~100! is proportional to the average angular velocity^F8& which, as we mentioned, is not
continuous function of the constantsz1 , z2 , andz3 . This holds too for the left-hand side of~101!.
As a consequence, numerical root solvers are inefficient in solving the systems~99!–~101!. In
practice, it is well advised to replace Eqs.~100! and ~101! by equivalent conditions on the Eule
anglesw andc. Remember that, over a period ofZ, the anglesw andF cover angular distance
which differ by integer multiples of 2p. A similar relation holds for the anglesc and z. The
conditions onw andc analogous to~100! and ~101! read

M 1

11z1
P~n1 ,k!1S

M 2

12z1
P~n2 ,k!5p

mw

mZ
, ~102a!

FIG. 21. An apparently simple top orbit resulting in a surprisingly complex ‘‘knotted helix’’ (z1520.4152, z2

50.2800,z351.026,S5—).
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S 1

b
21D M3K~k!1

M 1

11z1
P~n1 ,k!2S

M 2

12z1
P~n2 ,k!5p

mc

mZ
, ~102b!

wheremw andmc differ from mF andmz , respectively, by an integer.
Examples of closed filaments are displayed in Figs. 22–24. Figures 22 and 23 show

knots, that is, knotted curves which are topologically equivalent to closed curves lying on a
Figure 24 shows a supercoiled ring~notice the large value ofz3).

IV. CONCLUSIONS

In this paper we have shown how to classify the shapes of Kirchhoff filaments based o
geometry of the spinning top solutions. To do so, we have pushed the Kirchhoff analogy
extreme and systematically obtained interesting properties of filaments based on the corresp
solutions of the Euler equations. We showed that the solutions of Kirchhoff equations c
extremely varied and that many interesting cases can be distinguished. In particular, we
explicit conditions on the boundary values for filaments to have points of self-tangency
multiple self-intersection. We also studied the case where filaments have points of van

FIG. 22. A torus knot withmZ55, mF53, andmz51 (z1520.4152,z250.3446,z351.026,S5—).

FIG. 23. A torus knot withmZ57, mF54, andmz51 (z1520.4997,z250.4013,z351.037,S5—).
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curvature and show that they correspond to orbits of spinning tops with turnback points. We
a complete description of localizing solutions, that is solutions which are homoclinic in
curvature-torsion space; these filaments are in space asymptotic to a straight line. In the sam
we found conditions to obtain filaments which have the topology of torus knots, that is bou
and periodic filaments~in the physical space!. Finally, we studied the behavior of generic fila
ments and show that on long length scales they always behave like helical filaments.

Some of the particular solutions presented here have been obtained in various pla
different authors. In this paper we have stressed on the geometry of these solutions and pr
them in a unifying way based on the familiar framework of the spinning top.

The solutions of the Kirchhoff equations for rods with circular cross sections are often us
a first guess to study numerically physical filaments with different properties~e.g., noncircular
cross sections, intrinsic curvature or torsion,...!. We hope that the explicit solutions given in th
paper together with their geometric classification will be useful in this context.
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APPENDIX: ELLIPTIC FUNCTIONS

Remark:In the following, the constantk is called the modulus of the elliptic functions an
ranges between 0 and 1, while the constantn is called the characteristic and is a real number l
than 1.

1. Elliptic integrals

A. Incomplete elliptic integrals in standard form

The incomplete elliptic integrals of the first, second, and third kind in standard form
respectively, defined by

FS~Fuk!5E
0

F dF8

A12k2 sin2 F8
, ~A1a!

ES~Fuk!5E
0

F

dF8A12k2 sin2 F8, ~A1b!

FIG. 24. A supercoiled ring withmZ520, mF51, andmz56 (z1520.4269,z250.4171,z359.084,S5—).
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PS~Fun,k!5E
0

F dF8

~12n sin2 F8!A12k2 sin2 F8
. ~A1c!

B. Incomplete elliptic integrals in algebraic form

The algebraic forms are obtained by carrying out the following change of variable into
standard forms:

u5sinF. ~A2!

This yields

FA~uuk!5E
0

u du8

A~12u82!~12k2u82!
, ~A3a!

EA~uuk!5E
0

u

du8A12k2u82

12u82 , ~A3b!

PA~uun,k!5E
0

u du8

~12nu82!A~12u82!~12k2u82!
. ~A3c!

The algebraic forms are those which are implemented in the symbolic calculus software M
Notice that for the change of variable~A2! to be bijective, one must restrictF to the interval
@2~p/2!, ~p/2!#.

C. Incomplete elliptic integrals in practical form

We call the following forms of the elliptic integrals of the second and third kind ‘‘practic
because these are the forms under which they appear the most naturally in the problems in
These forms are obtained by carrying out the following change of variable into the standard

s5FS~Fuk!. ~A4!

This yields

E~suk!5E
0

s

ds8dn2~s8uk!, ~A5a!

P~sun,k!5E
0

s

ds8
ds8

12nsn2~s8uk!
, ~A5b!

where the functions sn and dn are defined in Sec. 2.

D. Complete elliptic integrals

The complete elliptic integrals are defined by the expressions for the corresponding in
plete elliptic integrals evaluated atu51 in algebraic form. They are denoted in the following wa

K~k!5FA~1uk!, ~A6a!

E~k!5EA~1uk!, ~A6b!

P~n,k!5PA~1un,k!. ~A6c!
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2. Jacobi’s elliptic functions

A. Definitions

The incomplete elliptic integrals, having positive integrands, define monotonous, hence
vertible, functions. The function am is defined as the inverse of the standard formFS of the
incomplete elliptic integral of the first kind,

am~suk!5~FS!21~suk!. ~A7!

We then define Jacobi’s elliptic functions sn, cn, and dn as

sn~suk!5sin am~suk!, ~A8a!

cn~suk!5cos am~suk!, ~A8b!

dn~suk!5A12k2sn2~suk!. ~A8c!

Notice that the function sn itself, restricted to the interval@2K(k),K(k)#, is the inverse of the
algebraic formFA of the incomplete elliptic integral of the first kind. The four functions sn, cn, dn
and am are represented in Figs. 25–26 for various values ofk.

FIG. 25. The function sn and cn for various values ofk.

FIG. 26. The function dn and am for various values ofk.
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B. Elementary properties of am, sn, cn, and dn

The function am obeys the relations

am~2nK~k!6suk!5np6am~suk!, ~A9!

for any reals and integern. Hence, the knowledge of am over the interval@0,K(k)#, together with
~111!, is sufficient to reconstruct the function over the whole real line. This holds too for
periodic functions sn, cn, and dn, which obey the following relations:

sn~2nK~k!6suk!56~21!nsn~suk!, ~A10a!

cn~2nK~k!6suk!5~21!ncn~suk!, ~A10b!

dn~2nK~k!6suk!5dn~suk!. ~A10c!

C. Limits of am, sn, cn, and dn for k 50 and k 51

These limits are obtained by considering, fork50 andk51, expression~A1a! defining the
function FS, and then taking the limit of am to be the inverse function. Fork50, one has

am~su0!5s, ~A11a!

sn~su0!5sins, ~A11b!

cn~su0!5coss, ~A11c!

dn~su0!51, ~A11d!

whereask51 leads to

am~su1!5arcsin tanhs, ~A12a!

sn~su1!5tanhs, ~A12b!

cn~su1!5sechs, ~A12c!

dn~su1!5sechs. ~A12d!

D. Derivatives of am, sn, cn, and dn

The derivatives of am, sn, cn, and dn are obtained by differentiating~A1a! and the definition
Eqs.~A8a!–~A8c!. This leads to the following differential relations:

d

ds
am~suk!5dn~suk!, ~A13a!

d

ds
sn~suk!5cn~suk!dn~suk!, ~A13b!

d

ds
cn~suk!52sn~suk!dn~suk!, ~A13c!

d

ds
dn~suk!52k2sn~suk!cn~suk!. ~A13d!
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An exact solution for several charges in classical
electrodynamics

R. Riveraa) and D. Villarroel
Departamento de Fı´sica, Universidad de Chile, Blanco Encalada 2008, Santiago, Chile

~Received 31 December 1998; accepted for publication 23 February 1999!

An exact solution for an arbitrary number of identical charges that are equally
spaced along a circumference and that rotate at constant angular velocity is pre-
sented. The solution is valid for any velocity of the charges less than the speed of
light and considers the radiation reaction effects as well as the retarded interaction
between the charges. The external field that allows this motion consists of a time-
independent electric field tangent to the charges’ orbit and a homogeneous time-
independent magnetic field that points orthogonally to the orbit plane. A detailed
analytical study of the total power of radiation associated with this system of
charges is carried out, and it is shown that it is in perfect agreement with the energy
that the external electric field supplies to the charges. In particular, in the limit
when N goes to infinity only static fields remain. ©1999 American Institute of
Physics.@S0022-2488~99!01906-4#

I. INTRODUCTION

Unlike the equation of motion of a relativistic charge,1,2 the equations of motion for more tha
one charge have received little attention in the literature. In this case, besides the radiation r
forces, the retarded interaction between the charges must also be taken into account. The e
of motion for several charges were obtained by Dirac.3 If the mass and charge of a particle a
denoted bymk andek , respectively, the corresponding equation of motion is the following:

mkak
m5~ek /c!Fext

mavka1~ek /c!S (
iÞk

Fi ret
maD vka1~2ek

2/3c3!„ȧk
m2~1/c2!ak

lal
kvk

m
…. ~1.1!

Herevkm andakm denote the four-velocity and four-acceleration of chargeek , respectively;c is
the speed of light;ȧkm is the proper time derivative ofakm . Moreover, greek indices range from
0 to 3 and the diagonal metric of Minkowski space is~21, 11, 11, 11!.

The second term on the right-hand side of Eq.~1.1! represents the force on the chargeek due
to the retarded fields of the rest of the charges. It is precisely this term that links the equati
motion of the different charges. Equations~1.1! are usually named Lorentz–Dirac equations, a
in spite of the troubles associated with the existence of preacceleration effects and the exist
unphysical runaway solutions, they are the most widely accepted equations of motion for
charges in classical electrodynamics.

In this paper we will show that Eqs.~1.1! admit as an exact solution the motion ofN identical
charges that are equally spaced over a circumference of radiusa rotating as a rigid body a
constant angular velocityv. The external fields that make possible this motion are the sam
those of a previous paper;4 that is, a time-independent electric field tangent to the orbit circle w
a fixed value on it, and a homogeneous time-independent magnetic field orthogonal to the
where the charges are rotating. As it will be shown, these external fields exist for arbitrary v
of the parameters that characterize the motion, that is, chargee, massm, orbit radiusa, angular
velocity v ~such thatav,c!, and a number of chargesN.

a!Electronic mail: rivera@fis.utfsm.cl
28670022-2488/99/40(6)/2867/15/$15.00 © 1999 American Institute of Physics

                                                                                                                



tum
y of a
t it is

e total
other
obtain

y that

er of
ining

ges are
iation,
ly
gh the
ds, the
total
er of

fferent
mber

ith the

viously
,

, in his
the

ux, we

fects
rge, the
a uni-
as the
lds are
ith the
er of
carry

tson, in
son.
ges are

nt to
agnetic

at the
les

n,

2868 J. Math. Phys., Vol. 40, No. 6, June 1999 R. Rivera and D. Villarroel

                    
Although Eqs.~1.1! are derived starting from the conservation law for the energy–momen
tensor of the electromagnetic field, the ambiguities associated with the divergent self-energ
point charge make it necessary to verify the consistency of the solution with the energy tha
radiated away by the system of charges. To this end, we derived an exact formula for th
power of radiation, starting from the far-retarded field generated by the charges. On the
hand, because of the physical symmetries of the charges’ motion, in this case it is easy to
the total power of radiation directly from the solution of Eqs.~1.1!. It turns out that both ways lead
to the same formula; so the Lorentz–Dirac equations correctly take into account the energ
escapes to infinity.

Let us point out that, unlike the one charge case, an exact formula for the total pow
radiation of a system of several charges in the literature does not exist. The difficulty in obta
such a formula can be illustrated by the nonexistence of a Lorentz frame, where all the char
at rest. In general, it is also impossible to obtain any clear answer for the total power of rad
starting from the equations of motion~1.1!. Our success in obtaining an exact formula is main
due to the physical symmetries that the charges’ motion has in the present case. Althou
radiation that escapes from the system of charges is determined by their far-retarded fiel
striking point of our calculation is that the physical symmetries allow us to calculate the
power of radiation by means of the fields near the charges. The formula for the total pow
radiation takes, of course, full account of the interference effects between the fields of the di
charges. In particular, the interference part of the total power of radiation is equal to the nu
of chargesN times the sum of the powers due to the forces on each charge associated w
retarded electric fields of the rest of the charges.

The radiation of the system of charges under consideration here has been studied pre
by Comay,5 who used numerical techniques and considered up toN516 charges. Our treatment is
however, analytic and does not have any restriction on the number of charges. Jackson
well-known book,6 suggests studying the radiation emitted by these charges, starting from
spectral components of the radiation. In this paper, instead of the time-integrated energy fl
work directly with the instantaneous energy flux.

Our formula for the total power of radiation allows us to study in detail the interference ef
on the radiation as the number of charges increases. When the number of charges is very la
system of charges under study resembles a uniformly charged ring. Now, in the case of
formly charged ring that rotates at constant angular velocity, the charge distribution, as well
corresponding current, is time independent. This means that the electric and magnetic fie
static, and therefore the charges do not radiate energy. This is precisely what happens w
exact solution of the Lorentz–Dirac equation constructed in this paper when the numb
charges increases without limit. Incidentally, the mathematical techniques that allow us to
out the proof of this property are the same as those already developed by Bessel and Wa
connection with the old Kepler’s problem, which can be found in the classic book by Wat7

This happens because the equations that define the retarded times of the different char
practically the same as the equation of motion in the Kepler’s problem.

II. THE SOLUTION

In this section it will be shown that for an external time-independent electric field tange
a circumference with a value fixed on it, and a homogeneous time-independent external m
field that points orthogonally to the plane of the circumference, the equations~1.1! admit as a
solution the motion ofN identical charges equally spaced on the circumference and such th
charges rotate at constant angular velocityv. For definiteness, the electric charge of the partic
is chosen as positive, and it is assumed that the orbit circle lies on theX-Y plane in such a way
that the center of the circular orbit of radiusa coincides with the origin of coordinates. In additio
the charges are supposed to be rotating counterclockwise, so the external magnetic fieldBext points
in the negative direction of theZ axis and the external electric fieldEext is tangent to the orbit and
points in the direction of the charges’ motion.

The retarded electric field generated by a chargee is the following:8
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Eext~x,t !5eF ~ n̂2b!~12b2!

s3R2 G1
e

c
F n̂3$~ n̂2b!3ḃ%

s3R
G . ~2.1!

In this equation,n̂ is the unit vector that points from the retarded positionr (t8) of the charge
to the pointx where the field is being considered at timet; R is the distance from the retarde
position of the charge to pointx, that is,R5ux2r (t8)u; b andḃ are defined by (1/c)„dr (t8)/dt8…
anddb/dt8, respectively, and are both evaluated at the retarded timet8, implicitly defined byt
5t81ux2r (t8)u/c; ands is the positive number defined by

s512n̂–b. ~2.2!

The retarded magnetic fieldB(x,t) is given by

B~x,t !5n̂3E~x,t !. ~2.3!

It is easy to see that for the motion under discussion, the external and retarded forces o
charges in Eqs.~1.1! do not have components along theZ axis. Thus, the equations withm53 in
Eqs.~1.1! are identically satisfied for the motion of the charges in theX-Y plane. Moreover, from
the symmetries of the external fields and the charges’ motion, it is immediate that the radi
tangential forces are the same for all the charges and that the magnitude of these forces a
independent. In other words, it is enough to consider the forces on only one charge in order
the values for the external electric field and external magnetic field that make possible the m
under consideration. In Fig. 1 we have drawn the positions of the charges at the actual time,
is chosen ast50. Let us analyze the forces on the chargeN, which is located on theX axis att
50. For this charge the radial direction is along theX axis and the tangential direction is along th
Y axis. Each charge has associated a number that goes from 1 toN, and where the radial direction
that determines the position of thekth charge at timet50 makes an anglek(2p/N) with the

FIG. 1. Points A and C represent the positions at timet50 of particlesN andk, respectively. Point B corresponds to th
retarded position of particlek associated to the position of particleN at t50. The angular separation between the actual a
retarded positions of particlek is denoted by 2wk ; and the angular separation between the retarded position of partik

and the actual position of particleN is denoted by 2ak . Also shown are the retarded quantitiesbk , ḃk , andRk .
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positiveX axis. Besides the actual position of the chargek, in Fig. 1 the retarded position of thi
charge with respect to the position of chargeN at timet50 is also shown. The angle between t
radial direction that determines the retarded position of the chargek with the positiveX axis is
denoted by 2ak . It is also convenient to introduce the angle 2wk as the angle between the radi
directions of the retarded and actual position of the chargek.

All the retarded quantities associated with the chargek can be expressed in terms of the ang
ak . In fact, the retarded time of the chargek, that is, the time that it takes to go from the retard
position determined by the angle 2ak to its actual position determined by the anglek(2p/N), is
2wk /v. Now, since this time is the same as that light takes to travel the distancRk

52a sinak , we obtain the following equation that determines the angleak as a function ofb and
parameterk:

kp/N5ak1b sinak . ~2.4!

From Fig. 1 it is also easy to obtain for the quantitysk of ~2.2! the following expression:

sk511b cosak . ~2.5!

The component withm52 in Eq. ~1.1! for the chargeN located on theX axis att50 gives
rise to the following equation for the determination ofEext:

Eext5
2

3

e

a2 b3g42 (
k51

N21

Eky , ~2.6!

whereg5(12b2)21/2 andEky is the component along theY axis of the retarded electric field o
chargek over chargeN. According to Eq.~2.1!, Eky turns out to be

Eky5
e

4a2 H 2b

sk
2 2

b1cosak

g2sk
3 sin2 ak

J . ~2.7!

For some chargesEky.0, but there are also charges for whichEky,0. In general, the sign ofEky

has a rather complicated dependence onk and the charge’s velocityb. However, as will be shown
in Sec. IV, the sum of theY components of the retarded fields in Eq.~2.6! is positive, as theY
component of the external electric fieldEext is. On the other hand, the radiation reaction force, t
is, the first term on the right-hand side of~2.6!, has a negativeY component.

The component along theX axis Ekx of the retarded electric field of chargek over chargeN
turns out to be

Ekx5
e

4a2sk
3 sinak

$sk
22b2 sin2 ak%. ~2.8!

From this equation, it is easy to see thatEkx , in contradistinction withEky , is positive for anyk;
which is rather obvious since all charges are positive.

The componentm51 of Eq.~1.1! gives the following equation, which determines the exter
magnetic field:

Bz
ext52

mc2gb

ae
2

1

b (
k51

N21

$Ekx1b~Ekx cosak1Eky sinak!%. ~2.9!

Using Eqs.~2.7! and~2.8!, the retarded field of the chargek that appears in the$ % bracket in~2.9!
can be written as follows:
                                                                                                                



the
forces

rgy
ua-

lies to
nged,

the
ge

on the
ence
ied in
d
f this
es is

d
ich are
flux
total
distri-

surface

st

with
tem of

ns that
alid, of

2871J. Math. Phys., Vol. 40, No. 6, June 1999 R. Rivera and D. Villarroel

                    
$ %5
e

4a2sk
3 sinak

F2b~b1cosak!sk1
1

g4G . ~2.10!

Now, since 0,ak,p andsk>12b it is easy to see that the quantity~2.10! is positive for anyk.
In other words, according to Eq.~2.9! the magnitude of the external magnetic field increases as
number of charges increases. This is obviously a consequence of the fact that the repulsive
between the charges increase as the number of charges increases.

Finally, the componentm50 in Eq. ~1.1!, that is, the component associated with ene
conservation, reproduces once again Eq.~2.6!. In order to analyze the energy conservation eq
tion, let us multiply Eq.~2.6! by the chargee, the velocityv, and the number of chargesN. In this
way, ~2.6! becomes

N~evEext!5NS 2e2c

3a2 b4g4D2N (
k51

N21

evEky . ~2.11!

The left-hand side of this equation represents the power that the external electric field supp
the system ofN charges. Now, in this case the kinetic energy of the charges remains uncha
so, according to energy conservation, all the power supplied byEext must be radiated away. In
other words, the right-hand side of Eq.~2.11! must represent the total radiated power due to
system of charges under study. But (2e2c/3a2)b4g4 is the total radiated power of just one char
in circular motion. So the first term on the right-hand side of~2.11! is the rate of radiation of the
system of charges, neglecting all the interference effects. Therefore, the second term
right-hand side of~2.11! must represent that part of the radiation associated with the interfer
of the fields of the different charges. In the next section the total power of radiation is stud
a way independent of the equations of motion~1.1!, and it will be shown that the radiation emitte
does not have any connection with the troubles of mass renormalization. As a result o
calculation, the formula obtained for the total power of radiation of this system of charg
precisely the right-hand side of Eq.~2.11!; so the Lorentz–Dirac equations~1.1! are in perfect
agreement with energy conservation.

III. THE TOTAL POWER OF RADIATION

The total power of radiation at timet is given by

S c

4p D E
S
~E3B!•dS, ~3.1!

whereS is the surface of a sphere of a very large radius, centered at the orbit’s center; anE, B
are the retarded electric and magnetic fields generated by the system of charges, wh
evaluated overS at timet. Although only the far field contributes to the instantaneous energy
acrossS, it will be shown now that, on account of the symmetries of the charges’ motion, the
power of radiation can be calculated using the electric and magnetic fields near the charge
bution. In order to do that, let us consider the instantaneous energy flux across a spherical
S r centered at the orbit’s center and with a radiusr .a, but otherwise arbitrary. Then, if~u, w!
denote the usual spherical angles, the integral~3.1! for S r can be performed by considering fir
the contribution of the ribbon parallel to the orbit plane defined between the anglesu and u
1du. On a fixed point of this ribbon the electric and magnetic fields are obviously changing
time, but since the charges are rotating at constant angular velocity, the positions of the sys
charges at different times look as completely equivalent for the ribbon as a whole. This mea
the instantaneous energy flux across the ribbon is time independent. Such a property is v
course, for any ribbon ofS r , so the instantaneous energy flux acrossS r is time independent.

Let us consider now two spherical surfacesS1 andS2 of radii r 1 and r 2 , respectively, and
such thatr 2.r 1.a. If the volume bounded byS1 andS2 is denoted byV, then at different times
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the charge distribution is indistinguishable with respect toV; and therefore the total field energ
contained inV is time independent. The Poynting vectorS5(c/4p)E3B satisfies the following
conservation equation inV:

“–S1
]u

]t
50, ~3.2!

whereu is the energy density (1/8p)(E21B2). If Eq. ~3.2! is integrated overV, then it follows,
on account of the time independence of the total energy contained inV, that the instantaneou
energy flux across the surface of the sphere of radiusr is not only time independent, but also
does not depend on the radius of the sphere, providedr .a. In other words, the total radiate
power~3.1! can be calculated using any spherical surface centered at the orbit’s center and
radiusr larger than the orbit radiusa.

Let us consider, besides the spherical surfaceS r of radius r .a, a torus that encloses th
charges’ orbit and such that it is contained insideS r . Then, by the same arguments that led to
independence of~3.1! on the radius of the spherical surface, it can be concluded that the in
taneous energy flux across the surface of the torus is precisely the total radiated power ass
with the system of charges under study. Moreover, the instantaneous energy flux across the
of the torus obviously does not depend on the radius of the torus, and therefore it has a pe
well-defined limit when the radius of the torus goes to zero. In what follows we will use this r
in order to obtain an explicit formula for the total power of radiation for the system of cha
under consideration. The total power of radiation will be calculated at the laboratory timet50,
which is the time when the charge characterized by the numberN is on theX axis.

If the electric and magnetic fields of the charge characterized by the numberk are denoted by
Ek andBk , respectively, the total power of radiation can be written as follows:

c

4p E $~E11E21¯1EN!3~B11B21¯1BN!%•dS, ~3.3!

where the integral is carried out over the surface of a torus that encloses the charges’ orbit.
~3.3! there areN terms that involve only the fields of one charge. Now, since the above discu
about the symmetries applies also to the case of only one charge in circular motion, the in
over the surface of the torus of the Poynting vector associated with the field of one charge
of course, the total power of radiation of a monoenergetic electron in circular orbit, whic
(2e2c/3a2)b4g4. Let us emphasize that the corresponding calculation does not presen
trouble in the limit when the radius of the torus goes to zero.9

The interference part of the rate of radiation~3.3! associated with the field of the chargeN
appears only in the terms

c

4p E ~EN3Bk1Ek3BN!–dS, ~3.4!

wherek takes the values 1,2,...,N21. In Fig. 2 the surface of the torus over which the instan
neous energy flux~3.4! is evaluated is shown. This torus is characterized by the radiusb of the
circumference determined by the intersection of the torus surface with the planes that cont
Z axis, which, in turn, are determined by means of the azimuthal anglew. A point over a circum-
ference of radiusb is defined by means of the angleu, which is measured from theX2Y plane
and ranges between 0 and 2p.

The surface element of the torus is given by

dS5a2e~11e cosu!b̂ du dw, ~3.5!

wheree5b/a,1, andb̂ is the outer unit normal to the torus, given by
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b̂5~cosu cosw!x̂1~cosu sinw!ŷ1~sinu!ẑ. ~3.6!

The detection pointx over the surface of the torus can be written as follows:

x5@a~11e cosu!cosw# x̂1@a~11e cosu!sinw# ŷ1@b sinu# ẑ. ~3.7!

Therefore the retarded timestN8 andtk8 of the chargesN andk, respectively, that are associated wi
the pointx of ~3.7! and timet50 are such that

vt505vtN8 1brN5vtk81brk , ~3.8!

where

rN5$e212~11e cosu!~12cosx!%1/2, ~3.9!

and

rk5$e212~11e cosu!~12cosy!%1/2. ~3.10!

In Eqs.~3.9! and ~3.10!, the variablesx andy are the following:

x5w2vtN8 , ~3.11!

y5w2vtk82k~2p/N!. ~3.12!

According to Eq.~3.8!, the variablesx andy are linked by

y2x1k~2p/N!5b~rk2rN!. ~3.13!

In the limit when the radius of the torus goes to zero, that is, when the parametere tends to
zero, the surface element~3.5!, as well as the surface of the torus, goes to zero. But, as is alr
known, the integral~3.4! cannot be zero; soEN3Bk1Ek3BN must be singular in some points i
this limit. From a physical point of view this behavior is rather trivial because the fields o
chargesN and k are singular at the points where these charges are located att50. From a
mathematical point of view, the singular behavior can be easily seen, since the distances
charges are measured by means of the quantitiesrN andrk given in ~3.9! and~3.10!, respectively;
but rN is zero fore50 andx50, while rk is zero fore50 andy50. Now, for points very close
to the chargeN the retarded timetN8 is almost equal to the actual timet, which is zero; so
according to~3.11!, x50 corresponds tow50, that it is precisely the point where the chargeN is

FIG. 2. The toroidal surface of radiusb enclosing the electron orbit. Point P over the surface of the torus is characte
by the azimuthal anglew that specifies a particular cross section, and the angleu that locates P over the circumference
the latter.
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located att50. Similarly, from~3.12! it follows thaty is zero forw5k(2p/N), that it is the point
of the orbit where the chargek is located att50. Therefore, for a very smalle the integrand of
~3.4! is very close to zero everywhere, with the only exception of two small vicinities arounw
50 andw5k(2p/N).

In what follows we will study the contribution of~3.4! aroundw50 for e very small. The
electric and magnetic fields of chargek, that is,Ek andBk , respectively, are smooth functions o
w aroundw50; so the contribution of~3.4! aroundw50 can be written in the form

S c

4p DBk–E
w'0

~ b̂3EN!dS1S c

4p DEk–E
w'0

~BN3b̂!dS. ~3.14!

Hereb̂3EN andBN3b̂ are sharply defined aroundw50, and thus the integrals must be carefu
carried out. Since in the limite going to zero only a small vicinity aroundw50 needs to be
considered, it is evident that its contribution is fully taken into account if the variablew covers the
whole range 0<w,2p. Moreover, instead ofw it is convenient to use the variablex defined in
~3.11! to carry out the integration around the ribbon of the torus. From~3.11! and~3.8!, it follows
that

dw

dx
5sN.0, ~3.15!

which shows thatw is a strictly increasing function ofx. From~3.11! it also follows that the limits
of integration in the variablex arex0 andx012p, with x052vtN8 (w50)52vtN8 (w52p). But,
as it is easy to see, the variablex appears in the integrand only as sinx and cosx; thus, the
integrand is a periodic function ofx and, therefore,x0 can be put equal to zero. Finally, in orde
to get a systematic procedure to study the different contributions in~3.14!, it is convenient to
replace sinx in terms of the correspondingsN of ~2.2! and cosx in terms ofrN given in ~3.9!, that
is,

sinx5
rN~12sN!

b~11e cosu!
,

~3.16!

cosx512
rN2e2

2~11e cosu!
.

In this way, all the contributions to the energy flux across the ribbon of the torus betweenu and
u1du in ~3.14! are expressed in terms of integrals of the type

I ~n,p,q!5enE
0

2p dx

~sN!p~rN!q , ~3.17!

with n>1 due to Eq.~3.5! for the surface element.
Before going to the explicit evaluation of~3.17!, let us remember that when~3.14! is evalu-

ated for different values ofk, that is, fork51,2,...,N21, the result will represent that part of th
total power of radiation associated with the interference of the field of chargeN with the field of
the rest of the charges. We are not considering the second contribution that comes from th
associated withy50 in ~3.4!, because this will be part of the power of radiation associated w
the interference of the field of chargek with the field of the rest of the charges, that is, with t
field of the chargesk11,k12,...,N,1,2,...,k21. But because of the symmetries, the contribution
the total power of radiation of the interference between the field of the chargek with the rest is, of
course, identical with the contribution that comes from the interference of the field of charN
with the rest of the charges.
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In what follows we will study~3.17! in order to obtain the leading terms of a power ser
representation of the integral in the parametere, and where all the terms that vanish in the lim
e→0 are thrown away. To this end, note that the quantityn̂N–bN5b(11e cosu)sinx/rN in ~2.2!
is less than one, which allows us to expand thesN factor in Eq.~3.17!:

I ~n,p,q!5 (
m50

` am
p b2m~11e cosu!2m

@e212~11e cosu!#~2m1q!/2 •2enE
0

p ~sinx!2mdx

~12d cosx!m1q/2 , ~3.18!

where we have written Eq.~3.9! in the form

rN5@e212~11e cosu!#1/2$12d cosx%1/2, ~3.19!

with

d5
2~11e cosu!

e212~11e cosu!
,1, ~3.20!

and where

am
p 5

~2m1p21!!

~2m!! ~p21!!
. ~3.21!

Note that, if we exclude a small vicinity ofx50 in the integral of~3.18!, and sinced,1 and
cosa.cosx for x.a, then

enE
a

p ~sinx!2mdx

~12d cosx!r,
en

~12cosa!r E
a

p

~sinx!2mdx. ~3.22!

The right-hand side of Eq.~3.22! goes to 0 whene goes to 0, which shows that it is sufficient t
consider an arbitrarily small vicinity aroundx50. The use of the whole range 0<x,2p is
advantageous because it makes it possible to work with analytic expressions for the integra
the following result will be used:10

E
0

p ~sinx!2m dx

~12d cosx!r 5
p1/2G~m1 1

2!

G~m11! 2F1„~r 11!/2,r /2,m11,d2
…, ~3.23!

whereG(z) is the gamma function and2F1(a,b,c,x) denotes the hypergeometric function.
Let us study~3.17! in the specific caseq53. Then we must user 5m1 3

2 in ~3.23!. In order
to see clearly the leading terms in~3.23!, it is convenient to use the transformation formula11 for
the hypergeometric function,

F~a,b,a1b2 l ,d2!5
G~ l !G~a1b2 l !

G~a!G~b!
~12d2!2 l (

n50

l 21
~a2 l !n~b2 l !n

n! ~12 l !n
~12d2!n

1terms irrelevant to the flux, ~3.24!

where (z)n is the Pochhammer symbol,

~z!n5z~z11!¯~z1n21!5G~z1n!/G~z!. ~3.25!

The advantage of using Eq.~3.24! is that, instead of the parameterd2 that appears in~3.23! on
the right-hand side of~3.24!, it appears as
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12d25
e2@e214~11e cosu!#

@e212~11e cosu!#2 , ~3.26!

which goes to zero ase2 whene→0. The irrelevant terms that are not explicitly given in~3.24!
vanish in the limit e→0, except one of them that diverges as loge. However, this is of no
importance in the calculation of the energy flux because of the overall factoren in ~3.17! with
n>1.

Therefore, the leading term in Eq.~3.23! is

en
2F1~m/21 5

4,m/21 3
4,m11,d2!5

enG~m11!

G~m/21 3
4!G~m/21 5

4!
~12d2!21. ~3.27!

Now, using

G~m/21 3
4!G~m/21 5

4!5~2p!1/222~m12!~2m11!G~m1 1
2!, ~3.28!

replacing Eqs.~3.23!, ~3.27!, and~3.26! in Eq. ~3.18!, and expanding the expressions containinge,
we get, for the leading terms ofI (n,p,3),

I ~n,p,3!52 (
m50

` am
p b2m

~2m11!
en22H 11

~2m21!cosu

2
e1¯J . ~3.29!

The same ideas as above are easily applied to Eq.~3.17! in the casesq52 andq51. In the
caseq52, we obtain

I ~n,p,2!5p(
m

am
p b2m

~2m21!!!

~2m!!!
en21H 11

~2m21!cosu22m

2
e1¯J , ~3.30!

while in the caseq51, and sincen>1, it is found thatI (n,p,1) always vanishes in the limit whe
e goes to zero. Of course, the casesq>0 also vanish in this limit.

By using the above rules, it follows that in the limite→0 the first term of~3.14! vanishes. In
the second term, in order to simplify more easily the results, it is convenient to introduc
components of the fieldEk under the integral sign. The following nonvanishing terms result in
limit e→0,

S e2c

4pa2D H 2bg24 siny0

sk
3rk

3 1
b2g24 cosy0

sk
3rk

2 1
b3g22 siny0

sk
2rk

1
b4g22 cosy0~12cosy0!

sk
3rk

2

2
b3g22 siny0~12cosy0!

sk
3rk

3 J •E
0

2p

duE
0

2p e2 dx

sN
2 rN

3 , ~3.31!

where it is understood that the factorssk andrk in the curly brackets of Eq.~3.31! are evaluated
at y5y0 , which is given by the retardation condition, Eq.~3.13!, with x50 ande50.

The integral in Eq.~3.31! hasq53, n52, p52, so only the factor 1 in the curly brackets o
~3.29! must be retained. In addition, Eq.~3.21! impliesam

p 5(2m11) and therefore the integral in
Eq. ~3.31! becomes

E
0

2p

du•2 (
m50

`

b2m54pg2.

As mentioned above, the value ofy0 in Eq. ~3.31! is determined by the implicit equation

y012kp/N5b$2~12cosy0!%1/2. ~3.32!
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By plotting both sides of~3.32! as a function ofy0 , it is easily seen that22kp/N,y0,0, and
therefore Eq.~3.32! can be written as

kp/N52
y0

2
2b sin

y0

2
, ~3.33!

which, upon comparison with Eq.~2.4!, shows that

y0522ak . ~3.34!

Then, by substituting Eq.~3.34! into Eq.~3.31! and comparing with Eq.~2.7! for the retarded field
of particlek over particleN, it is easily verified that the flux over the torus in Eq.~3.4! takes the
value 2evEky , and, therefore, when the whole system of charges is considered, Eq.~2.11!,
derived from the Lorentz–Dirac equations, is obtained again.

IV. THE EXTERNAL ELECTRIC FIELD FOR LARGE N

In this section we are going to study in detail the dependence of the external electric fielEext

given by Eq.~2.6!, as a function of the number of chargesN for large values ofN. For this purpose
it is convenient to write the retarded electric fieldEky of Eq. ~2.6! in a slightly different form that
is more appropriate for obtaining a representation of it as a power series in the parameterb.

The retarded fieldEky depends, of course, in an explicit way ofb, but since according to Eq
~2.4! the angleak is a function ofb, Eky also depends implicitly onb. From this last equation it
is easy to obtain

]ak

]b
52

sinak

sk
, ~4.1!

which shows thatak is a decreasing function ofb, on account of the fact that 0,ak,p andsk

.0. The partial derivation symbol is used in~4.1! because the angleak depends also on the
variablekp/N, which is completely independent ofb. With the help of~4.1! it is easy to see tha
~2.7! can be written in the following form:

Eky52
e

4a2 H ~12b2!
]

]b
•S 1

sk sin2 ak
D12b2

]

]b S 1

sk
D J . ~4.2!

The right-hand side of Eq.~4.2! can be written as a power series inb with the help of the
formalism of Watson’s book.7 For this purpose it is convenient to replace the discrete varia
kp/N of Eq. ~2.4! by a continuous variablec, that is,

c5a1b sina. ~4.3!

If in Eq. ~4.3! b is changed by minus the parameter of eccentricity associated with the ellip
orbit of the inverse square law force, Eq.~4.3! becomes identical with the equation of motion
Kepler’s problem. Watson presents a detailed treatment of Eq.~4.3! in his book.7 The pertinent
part of Watson’s book will be sketched here. From Eq.~4.3!, it follows that

]a

]c
5

1

s
.0, ~4.4!

wheres511b cosa is the same that appears in Eq.~2.5!, but without the subindexk. Equation
~4.4! shows thata is an increasing function ofc and the effect of increasingc by 2p is to increase
a by 2p. Therefore, 1/(11b cosa) is an even periodic function ofc, and so it can be expande
in a Fourier cosines series, which turns out to be
                                                                                                                



e

e

2878 J. Math. Phys., Vol. 40, No. 6, June 1999 R. Rivera and D. Villarroel

                    
1

s
5112(

n51

`

Jn~2nb!cos~nc!, ~4.5!

whereJn(x) is the Bessel function. When Eq.~4.5! is introduced on the right-hand side of

]

]b S 1

s sina D52
]

]c S 1

sD , ~4.6!

the following expansion is obtained for the function 1/(s sina):

1

s sina
5

1

sinc
12(

n51

`

n sin~nc!E
0

b

Jn~2nx!dx. ~4.7!

Now, if this equation is differentiated with respect toc, and taking into account that

cosa

s2 sin2 a
2

b

s3 5
]

]b S 1

s sin2 a D , ~4.8!

the following expansion is obtained:

]

]b S 1

s sin2 a D5
cosc

sin2 c
22(

n51

`

n2 cos~nc!E
0

b

Jn~2nx!dx. ~4.9!

Equations~4.2!, ~4.5!, and~4.9! are reduced to those previously given by Gordeyev12 for the case
of two charges rotating at a constant angular velocity at opposite ends of a diameter.

Equations~4.5! and ~4.9!, with c5kp/N, allow us to write the tangential component of th
retarded electric fieldEky of ~4.2! as a power series inb. When~4.5!, ~4.9!, and the power series
representation forJn(x) are introduced in~4.2!, the following expression for the sum of th
retarded tangential electric field is obtained:

(
k51

N21

Eky52S e

2a2D (
n51

`

~21!nF (
k51

N21

cos~nkp/N!G
3H ~2n2Dn,012Cn,0!b

n111 (
m50

`

~2n2Dn,m1112Cn,m111n2Dn,m!bn12m13J ,

~4.10!

where we used the result

(
k51

N21
cos~kp/N!

sin2~kp/N!
50,

and the coefficientsCnm andDnm come from the power series representation ofJn(x), and are the
following:

Cn,m5
~21!m~n12m!nn12m

2n12mm! ~n1m!!
, ~4.11!

Dn,m5
~21!mnn12m

2n12mm! ~n1m!! ~n12m11!
. ~4.12!

The sum overk that appears in~4.10! can be explicitly carried out, since
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(
k51

N21

cos~nkp/N!5H 0, n odd,
21, n even,2N,
N21, n52N,4N,... .

~4.13!

From this formula it follows that only odd powers ofb remain in~4.10!, where, because of~4.13!,
it is convenient to split the sum over the indexn in a part with n<2N22, and the rest tha
contains powers ofb higher than 2N11. In this way,~4.10! can be written as

(
k51

N21

Eky5S e

a2D H @22D2,01C2,0#b
31 (

n51

N22 F22~n11!2D2n12,01C2n12,01 (
m50

n21

~22~n

2m!2D2n22m,m111C2n22m,m1112~n2m!2D2n22m,m!Gb2n13J 1O~b2N11!,

~4.14!

which, when~4.11! and ~4.12! are used, is reduced to

(
k51

N21

Eky5S e

a2D H 2

3
b31 (

n51

N22 F2~n12!~n11!2n13

~2n13!!

12 (
m50

n21
~21!m~n2m!2n12~27n222n322m223n14nm!

~2n11!~2n13!~m11!! ~2n112m!! Gb2n13J 1O~b2N11!.

~4.15!

The sums in Eq.~4.15! can be cast in a simpler way by using the new dumb indicesi 5n11 and
l 5n2m, in terms of which Eq.~4.15! reads as

(
k51

N21

Eky5S e

a2D H 2

3
b312 (

i 52

N21

(
l 51

i
~21! i 2 l l 2i@2i 32 i 22 i 12l 2#

~2i 21!~2i 11!~ i 2 l !! ~ i 1 l !!
b2i 11J 1O~b2N11!.

~4.16!

The sum over the indexl that appears in the above expression can be carried out with the he
the formulas in the Appendix, and the result is

(
k51

N21

Eky5
2e

3a2 (
n51

N21

nb2n111O~b2N11!. ~4.17!

Therefore, from Eq.~2.6! the following estimate is obtained for the external electric field:

Eext5O~b2N11!. ~4.18!

Equation~4.18! is valid for arbitraryN, and sinceb,1, it shows that the external electric fiel
tends to zero when the number of charges increases. For a nonrelativistic motion, the inter
part of the total power of radiation is very effective in supressing the energy radiated away
with a moderate number of chargesN. But for a highly relativistic motion, a very large number
charges is needed to supress the radiation. This can be understood on account of the hig
tionality of synchrotron radiation.8
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APPENDIX: SUMS TO USE IN EQ. „4.16…

In this appendix, we will show that

S15(
l 51

i
~21! i 2 l l 2i

~ i 2 l !! ~ i 1 l !!
5

1

2
, ~A1!

S25(
l 51

i
~21! i 2 l l 2i 12

~ i 2 l !! ~ i 1 l !!
5

i ~ i 11!~2i 11!

12
. ~A2!

Let us first rewrite Eq.~A1! in terms ofv5 i 2 l ,

S15 (
v50

i 21
~21!v~ i 2v !2i

~2i 2v !!v!
,

and note that

S15
1

2
•(

v50

2i
~21!v~ i 2v !2i

~2i 2v !!v!
,

which can be written as

S15
1

2~2i !! (
v50

2i

~21!vS 2i
v D ~ i 2v !2i . ~A3!

Therefore, the identity13

(
k50

n

~21!kS n
kD ~a1k!n5~21!nn! ~A4!

directly leads to Eq.~A1!.
Equation~A2! can be proved by induction oni. Here it also proves convenient to writeS2 in

the form

S25
1

2~2i !! (
v50

2i

~21!vS 2i
v D ~ i 2v !2i 12.

Then, we want to prove

1

2~2i 12!! (
v50

2i 12

~21!vS 2i 12
v D ~ i 112v !2i 145

~ i 11!~ i 12!~2i 13!

12
, ~A5!

by using the hypothesis

1

2~2i !! (
v50

2i

~21!vS 2i
v D ~ i 2v !2i 125

i ~ i 11!~2i 11!

12
. ~A6!

To this end, the identity

S a
bD5S a21

b D1S a21
b21D ~A7!

is used twice on the left-hand side of Eq.~A5!, which after relabeling the dumb indices reads
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1

2~2i 12!! (
v50

2i

~21!vS 2i
v D ~ i 112v !2i 142

1

~2i 12!! (
v50

2i

~21!vS 2i
v D ~ i 2v !2i 14

1
1

2~2i 12!! (
v50

2i

~21!vS 2i
v D ~ i 212v !2i 14. ~A8!

Here the binomial theorem is used in the first and third term of Eq.~A8! to expand the powers o
( i 2v61) into powers of (i 2v). After collecting terms and because of the identity13

(
k50

N

~21!kS N
k D ~a1k!n2150, n<N, ~A9!

only two nonvanishing sums remain. They are easily evaluated by using Eqs.~A6! and ~A4!,
leading directly to the right-hand side of Eq.~A5!.
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Three-dimensional formulation of the Maxwell equations
for stationary space–times

G. F. Torres del Castilloa)
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Using the correspondence between a stationary space–time and a curved three-
dimensional space with a static magnetic field and a conservative field of force, the
Maxwell equations in a stationary space–time are expressed in terms of fields
associated with the corresponding three-dimensional geometry. The Maxwell equa-
tions take a form analogous to the one they have in flat space–time. The Ricci
tensor of the space–time is also written in terms of the three-dimensional fields.
© 1999 American Institute of Physics.@S0022-2488~99!01405-X#

I. INTRODUCTION

In the study of the null1,2 and timelike2 geodesics of a stationary space–time, a cer
decomposition of the metric arises in a natural way in such a manner that, by a suitable cha
the parametrization, the problem of finding the geodesics of a stationary space–time is equ
to finding the orbits of a charged~nonrelativistic! particle in the three-dimensional space
trajectories of the timelike Killing vector field, with a static magnetic field and a veloc
independent potential determined by the space–time metric. When the space–time is sta
magnetic field vanishes and the metric defined on the three-dimensional space mentioned
reduces to the so-called ‘‘optical metric,’’ which has many remarkable properties~see, e.g., Refs
3, 4 and the references cited therein!. One of these properties is the fact that the Maxwell eq
tions in a static space–time take their simplest form~the one they have in an inertial frame in fl
space–time! when expressed in terms of the optical metric.4 In this paper we show that, in a
similar manner, the decomposition of the metric of a stationary space–time found in Refs.
2 is not only distinguished by the dynamics of test particles, but also by the fact that the Ma
equations can be written in the same form as in an inertial frame in flat space–time.

In Sec. II we write down explicitly the geodesic equation in a stationary space–time an
show its equivalence with the equations of motion of a charged particle in a three-dimen
space subject to a magnetic field and a velocity-independent potential. We also show that fr
symmetries of this three-dimensional space that leave the magnetic field and the ve
independent potential invariant one can obtain symmetries of the space–time metric. In S
the Maxwell equations in a stationary space–time are written in a 311 form, making use of the
decomposition of the metric given in Sec. II. We find that the Maxwell equations can be expr
in the same form as in flat space-time, though, among other things, in the present ca
three-dimensional space can be curved. The signature of the space–time metric is ta
~2 1 1 1!, lower case Greek indices run from 0 to 3, and lower case Latin indices run fro
to 3.

II. DECOMPOSITION OF THE SPACE–TIME METRIC

As shown in Ref. 2, the geodesic equation for a test particle with a nonvanishing rest m
a stationary space–time is equivalent to the equations of motion of a charged~nonrelativistic!

a!Electronic mail: gtorres@fcfm.buap.mx
28820022-2488/99/40(6)/2882/9/$15.00 © 1999 American Institute of Physics
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particle in a, possibly curved, three-dimensional space in the presence of a static magnet
and a conservative field of force. Indeed, ifds25gab dxa dxb is the metric of a stationary space
time expressed in a coordinate system such that

]gab

]x0 50, ~1!

we have

ds25g00~dx0!212g0i dx0 dxi1gi j dxi dxj

5g00S dx01
g0i

g00
dxi D 2

1S gi j 2
g0ig0 j

g00
Ddxi dxj

5g00@~dx02Ai dxi !22g i j dxi dxj #, ~2!

with

Ai[
g0i

~2g00!
, g i j [~2g00!

22~g0ig0 j2g00gi j !. ~3!

The metric tensor,

ds2[g i j dxi dxj ~4!

is conformal to the metric in the three-dimensional space of trajectories of the timelike K
vector field]/]x0.5,6,1 When the space–time is static, there exists a coordinate system suc
Eq. ~1! holds andg0i50 ~i.e., Ai50); then the metricds2 @Eq. ~4!# reduces to the so-calle
optical metric~see, e.g., Ref. 4 and the references cited therein!.

Making use of Eqs.~2! and ~3!, one finds that

gi j 5~2g00!~g i j 2AiAj !, g0i5~2g00!Ai , ~5!

and

gi j 5
g i j

~2g00!
, g0i5

g i jAj

~2g00!
, g005

g i jAiAj21

~2g00!
, ~6!

where (g i j ) denotes the inverse of (g i j ). Then, a straightforward computation shows that
Christoffel symbols corresponding to the metric tensorgab , Gbg

a , are given by

G00
0 5 1

2g
i jAi] j ln f, G00

i 5 1
2g

i j ] j ln f, G0 j
i 5 1

2g
ik~Bjk2Aj]k ln f!, ~7!

where

f[ 1
2~2g00!, Bi j [] iAj2] jAi , ~8!

and

G0i
0 5 1

2~] i ln f1g jkBi jAk2Aig
jkAk] j ln f!,

G i j
0 52“̃ ( iAj )1gkmAkBm( iAj )1

1
2~AiAj2g i j !g

kmAk]m ln f, ~9!

G jk
i 5g jk

i 1d ( j
i ]k)ln f1 1

2~AjAk2g jk!g im]m ln f1g imBm( jAk) ,
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where“̃ denotes the covariant derivative compatible withg i j , g jk
i denotes the Christoffel symbol

for the metricg i j ~e.g.,“̃ iAj5] iAj2g i j
kAk), and the parentheses denote symmetrization on

indices enclosed. Therefore, according to Eqs.~7! and ~9!, the geodesic equations,

05
d2xi

dl2 1Gab
i dxa

dl

dxb

dl
5

d2xi

dl2 1G00
i S dx0

dl D 2

12G0 j
i dx0

dl

dxj

dl
1G jk

i dxj

dl

dxk

dl
,

wherel is the proper time of the particle, amount to

05
d2xi

dl2 1 1
2g

i j ] j ln fS dx0

dl D 2

1g ik~Bjk2Aj]k ln f!
dx0

dl

dxj

dl

1@g jk
i 1d j

i ]k ln f1 1
2~AjAk2g jk!g im]m ln f1g imBm jAk#

dxj

dl

dxk

dl
. ~10!

On the other hand, the conditiongab(dxa/dl)(dxb/dl)521 ~which is equivalent to the
definition of the proper time!, takes the form@see Eq.~2!#

~2g00!F S dx0

dl
2Ai

dxi

dl D 2

2g i j

dxi

dl

dxj

dl G51, ~11!

and since]/]x0 is a Killing vector field @see Eq.~1!#, g0a(dxa/dl)[2e is a constant of the
motion. Making use of Eq.~5!, we find that

e5~2g00!S dx0

dl
2Ai

dxi

dl D , ~12!

and substituting Eq.~12! into Eq. ~11!, it follows that

g i j

dxi

dl

dxj

dl
5

e2

~2g00!
22

1

~2g00!
. ~13!

Now, with the aid of Eq.~12!, we can eliminatedx0/dl from Eq.~10!, and making use of Eq.~13!
we obtain

05
d2xi

dl2 1
e

~2g00!
g ikBjk

dxj

dl
1g jk

i dxj

dl

dxk

dl
1

dxi

dl
]k ln f

dxk

dl
1

1

2~2g00!
g im]m ln f. ~14!

Introducing a new parameter,t, in place of the proper timel by means of

dt[
dl

~2g00!
, ~15!

one can get rid of the fourth term on the right-hand side of Eq.~14! and this last equation can b
written in the form

d2xi

dt2 1g jk
i dxj

dt

dxk

dt
5eg ikBk j

dxj

dt
2g im ]mf, ~16!

which are the equations of motion of a nonrelativistic particle of unit mass and electric charge in
a three-dimensional space with metric~4!, in the presence of a magnetic field with vector poten
Ai and a potentialf. If one has found the solution of the equations of motion~16!, xi5xi(t), then
Eqs.~12! and~15! yield dx0/dt5e1Ai dxi /dt, which determinesx0 as a function oft, and the
original affine parameterl is given byl5*2g00„x

i(t)…dt.
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In the case of the equations for the null geodesics ofds2, the right-hand side of Eq.~11! is
equal to zero, wherel is now an affine parameter of the geodesic. Then, the last term on
right-hand side of Eqs.~13!, ~14!, and~16! is absent and one recovers the result of Ref. 1. W
Ai dxi is exact, by replacingdx0 by dx80[dx02Ai dxi , one finds explicitly that the space–tim
is static and the ‘‘magnetic field,’’Bi j , vanishes.

The symmetries of the space–time metricgab do not necessarily correspond to symmetries
the three-dimensional metricg i j . In fact, with the aid of Eqs.~5!, one finds that the Killing
equations,Km ]mgab12gm(a]b)K

m50, amount to the set of equations

Ki] i ln f522]0~K02AiK
i !,

K j ] jAi1Aj ] iK
j5]0~K02AjK

j !Ai1] iK
02g i j ]0K j , ~17!

Kk ]kg i j 12gk( i] j )K
k52]0~K02AkK

k!g i j 22A( ig j )k ]0Kk.

However, ifKi] i is a Killing vector field ofg i j , with ]0Ki50, and the Lie derivatives off and
Bi j dxi∧dxj along Ki] i vanish, then Eqs.~17! are satisfied if we takeK0 in such a way that
]0K050 and

K j ] jAi1Aj ] iK
j5] iK

0. ~18!

The integrability conditions of these equations forK0 are satisfied by virtue of the assume
invariance ofBi j dxi∧dxj under the transformatious generated byKi] i .

For example, the Taub-NUT metric,7

ds252F r 222mr2 l 2

r 21 l 2 G H ~dt12l cosu dw!22
~r 21 l 2!2 dr2

~r 222mr2 l 2!22
~r 21 l 2!2~du21sin2 u dw2!

r 222mr2 l 2 J ,

~19!

wherem and l are arbitrary constants, is a stationary solution of the Einstein vacuum field e
tions in the region wherer 222mr2 l 2.0, which reduces to the Schwarzschild metric whel
50. A comparison of Eqs.~2! and~19! shows that we can takeAi dxi522l cosu dw and that the
corresponding metricg i j dxi dxj is invariant under rotations, i.e., the three-dimensional vec
fields,

K ~1!
i ] i52sinw]u2cotu cosw]w ,

K ~2!
i ] i5cosw]u2cotu sinw]w , ~20!

K ~3!
i ] i5]w ,

which are the generators of rotations on the two-sphere, are Killing vector fields ofds2

5g i j dxi dxj . Furthermore, the Lie derivative ofBi j dxi∧dxj54l sinu du∧dw and f ~which de-
pends onr only! with respect to the vector fields~20! vanish and, therefore, by integrating Eq.~18!
one obtains three Killing vector fields of the metric~19!, induced by the Killing vector fields of
ds2 given by Eqs.~20!. It is easy to see that the substitution of Eqs.~20! into Eq. ~18! yields
~setting the constant of integration equal to zero!, K (1)

0 52l cosecu cosw, K (2)
0 52l cosecu sinw,

K (3)
0 50. @This computation is simplified by noticing that on the left-hand side of Eq.~18! are the

components of the Lie derivative alongKi] i of the 1-formAi dxi , hence, in the present case, E
~18! reduces to £Ki] i

(22l cosu dw)5dK0.# Thus, the vector fields,
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K ~1!
a ]a52sinw]u2cotu cosw]w12l cosecu cosw]0 ,

K ~2!
a ]a5cosw]u2cotu sinw]w12l cosecu sinw]0 , ~21!

K ~3!
a ]a5]w ,

are Killing vector fields of the space–time metric~19!.
A straightfoward computation shows that the Killing vector fields~21! satisfy the same com

mutation relations as those of~20!; however, for other stationary metrics, the Lie algebra of
Killing vector fields induced in this manner is a central extension of the Lie algebra o
three-dimensional vector fields that leaveds2, Bi j dxi∧dxj , andf invariant. As a matter of fact
assuming thatK (a)

i ] i(a51,...,r ) are Killing vector fields ofds2 that leaveBi j dxi∧dxj and f
invariant with @K (a)

i ] i ,K (b)
j ] j #5cab

d K (d)
i ] i , one finds

@K ~a!
a ]a ,K ~b!

b ]b#5cab
d K ~d!

a ]a1 f ab]0 , ~22!

where

f ab[K ~a!
i ] iK ~b!

0 2K ~b!
i ] iK ~a!

0 2cab
d K ~d!

0 . ~23!

One can show that thef ab are constant making use of Eq.~18!.
A simple example of a stationary metric for which thef ab are not all equal to zero is provide

by

ds252
Q~y!

y21a2 H ~du22ax dv !22
~y21a2!2

Q~y!2 @dy21Q~y!~dx21dv2!#J , ~24!

where Q(y)522My1b, and a, b and M are real constants.8 Taking x05u, f5Q(y)/@2(y2

1a2)# andAi dxi52ax dv @see Eqs.~2! and ~8!#, we find thatBi j dxi∧dxj54a dx∧dv and,
evidently,K (1)

i ] i5]x , K (2)
i ] i5]v , andK (3)

i ] i5x]v2v]x are three Killing vector fields ofds2

that leaveBi j dxi∧dxj andf invariant. The only nonvanishing commutators between these ve
fields are@K (1)

i ] i ,K (3)
j ] j #5K (2)

i ] i , and@K (2)
i ] i ,K (3)

j ] j #52K (1)
i ] i . Then, from Eq.~18! one ob-

tainsK (1)
0 52av, K (2)

0 50, andK (3)
0 5a(x22v2) ~setting the constants of integration equal to ze!

and, according to Eq.~23!, f 125]xK (2)
0 2]vK (1)

0 522a; similarly, one finds thatf 135 f 2350.
Thus,K (1)

a ]a5]x12av]u , K (2)
a ]a5]v , andK (3)

a ]a5x]v2v]x1a(x22v2)]u are Killing vector
fields of the metric~24! induced by Killing vector fields ofds2.

III. FIELD EQUATIONS

The Maxwell equations,

“bFab54pJa ~25!

and

]aFbg1]bFga1]gFab50, ~26!

can be written in terms of the three-dimensional quantities,

Di[~2g00!
2F0i , Hi j [~2g00!

2Fi j , ~27!

and

Ei[Fi0 , Bi j [Fi j . ~28!
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Recalling that“bFab5(1/Augu)]b(AuguFab), whereg[det(gab), and noting that from Eqs.~5! it
follows that

g52~2g00!
4g, ~29!

whereg[det(gij), one finds that Eq.~25! amounts to

1

Ag
] i~AgDi !54pr̃,

1

Ag
] i~AgHki!2]0Dk54p j̃ k, ~30!

where we have introduced the definitions

r̃[~2g00!
2J0, j̃ k[~2g00!

2Jk. ~31!

Note that (1/Ag)] i(AgDi)5“̃ iD
i and (1/Ag)] i(AgHki)5“̃ iH

ki. According to Eqs.~29! and
~31!, Agr̃5AuguJ0, thereforer̃ indeed corresponds to the charge density, according to the vo
defined by (g i j ).

The remaining Maxwell equations@Eqs. ~26!# are equivalent toe i jk ] iBjk50 and ]0Bi j

1] iEj2] jEi50 @see Eqs.~28!# or, in terms of the dual ofBi j andEi ,

Bk[
1

2Ag
eki jBi j , Ei j [

1

Ag
e i jkEk , ~32!

we have

1

Ag
] i~AgBi !50,

1

Ag
] i~AgEki!1]0Bk50. ~33!

Making use of Eqs.~5!, ~6!, ~27!, and~28! one easily finds that

Ei5Di1AjH
i j , Hi j 5Bi j 1EiAj2EjAi , ~34!

with the indices of the three-dimensional quantities being raised and lowered by means ofg i j and
g i j . Expressions~34! are somewhat similar to those given in Ref. 9, p. 257~cf. also Ref. 10 and
the references cited therein!; but whenAi50 ~static case! our formulas yield the simple relation
Ei5Di , Hi j 5Bi j , and Eqs.~30! and ~33! reduce to the expressions obtained in Ref. 4.

It should be stressed that, from the physical point of view, our results are equivalent to
of, e.g., Ref. 9, or of any other formulation of the Maxwell equations. The difference in
mathematical appearance of the equations comes from the use of the three-dimensiona
(g i j ), which does not define the spatial lengths@see Eq.~2!#.

If A, j̃ , E, B, D, andH are the three-dimensional vector fields with componentsAi , j̃ i , Ei , Bi ,
Di , andHi ~whereHi is the dual ofHi j ), respectively, then Eqs.~30!, ~33!, and~34! take the form

div D54pr̃, curlH2]0D54p j̃ ,
~35!

div B50, curlE1]0B50

and

E5D1A3H, H5B2A3E. ~36!

In terms of the complex combinationsE1 iH andD1 iB, Eqs.~35! and ~36! can be rewritten as

div~D1 iB!54pr̃, curl~E1 iH!2 i ]0~D1 iB!54p i j̃ ~37!
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and

D1 iB5E1 iH1 iA3~E1 iH!, ~38!

respectively.
As pointed out in Ref. 4, by expressing the Maxwell equations in their usual form one is

to apply some standard techniques to solve them. For instance, for a time-independent solu
the source-free Maxwell equations, from the second equation~37! it follows that there exists
locally a complex potentialc, such that

E1 iH52gradc, ~39!

then, from the first equation~37! and Eq.~38!, one finds that

¹̃2c1 iB•gradc50, ~40!

where ¹̃2 is the Laplace operator corresponding to the metricds2 @i.e., ¹̃2c
5(1/Ag)] i(Agg i j ] jc)# and the vector fieldBi is the dual ofBi j . The presence of the factori in
the second term of the left-hand side of the last equation implies that, if the space–time
static~i.e.,BÞ0), it may not be possible to have an electrostatic field alone, without a mag
static field, and vice versa~see below!.

In the case of the space–time metric~19!, one finds that Eq.~40! admits separable solutions o
the formc5 f j (r )Yjm(u,w), where theYjm are spherical harmonics, andf j obeys the condition

~r 222mr2 l 2!
d

dr F ~r 2 i l !2
d f j

dr G2 j ~ j 1 l !~r 2 i l !2f j50. ~41!

When j 50 ~static monopolar field!, Eq. ~41! immediately givesd f0 /dr5(a1 ib)/(r 2 i l )2,
wherea andb are real constants, and the nonvanishing components of the field generated
solution ~with x15r ) are given by

E11 iH 15
1

A4p

~r 222mr2 l 2!2

~r 21 l 2!4 @a~r 22 l 2!22b lr 1 i ~b~r 22 l 2!12a lr !#, ~42!

hence, there are no values ofa andb for which the field is purely electric or purely magnetic.
one looks for a solution withj 51, which could correspond to a uniform field, one finds that
solution of Eq.~41! grows faster thanr asr→` if lÞ0; thus, by contrast with the Schwarzschi
metric,4 the presence of the NUT parameter does not allow the existence of an asympto
uniform field.

In the case of the Schwarzschild metric, which is given by Eq.~19! with l 50, we can find
solutions to the source-free Maxwell equations analogous to the usual multipole fields
space–time~cf. Ref. 10!. Since, in the present case,A50, we haveD5E and B5H, therefore,
looking for solutions of the form

E5curlS cv j~r !e2 ivtYjm~u,w!
]

]r D , ~43!

wherecv j (r ) is a function to be determined andv is a constant, divD is identically equal to zero
and from the last equation~35!, assuming thatB also has a time dependence of the forme2 ivt, it
follows that

B5
1

iv
curlE, ~44!
                                                                                                                



e
s

of the
s of the

d

ll-

2889J. Math. Phys., Vol. 40, No. 6, June 1999 G. F. Torres del Castillo and J. Mercado-Perez

                    
and divB is equal to zero. The nonvanishing components of the fields~43! and ~44!, with
(x1,x2,x3)5(r ,u,w), are given explicitly by

E25
g11

Ag
cv j ]wYjm e2 ivt, E352

g11

Ag
cv j ]uYjm e2 ivt ~45!

and

B15
j ~ j 11!

ivg22
cv jYjme2 ivt,

B25
1

ivAg
] r S Ag

g22
cv j D ]uYjm e2 ivt, ~46!

B35
1

ivAg
] r S Ag

g22
cv j D 1

sin2 u
]wYjm e2 ivt.

Then, from curlH2]0D50, one obtains the only condition,

d

dr F r 22m

r

d

dr S r

r 22m
cv j D G2

j ~ j 11!

r ~r 22m!
cv j1

v2r 2

~r 22m!2 cv j50. ~47!

This radial equation, written in terms ofrcv j /(r 22m), coincides with the Schro¨dinger-type
equation found by other procedures@see, e.g., Ref. 11, Eq.~21! and Ref. 12, Eq.~20!#. The
electromagnetic field given by Eqs.~43!–~46! is a TE multipole field~sinceE150). The TM
multipole fields are obtained from Eqs.~43!–~46!, replacingE by B andB by 2E.

Since the ‘‘magnetic field’’Bi j and the potentialf are made out of the components of th
metric @see Eqs.~8!#, the differential relations satisfied byBi j and f depend on the condition
imposed on the metric. By means of a straightforward computation, making use of Eqs.~7!–~9!,
one finds that the components of the Ricci tensor of the space–time metric~2! are given by

R005
1
2f

21¹̃2f1 1
4Bi jBi j , ~48!

~2g00!R0
i 5 1

2f
21

“̃ j~fBi j !, ~49!

~2g00!
2Ri j 5g ikg j l @ ~3!Rkl2f21

“̃k“̃ lf1 3
2f

22~]kf!~] lf!2 1
2f

21~¹̃2f!gkl1
1
2BkmBl

m#,
~50!

where (3)Ri j is the Ricci tensor of the metricds2. Equations~48!–~50! are analogous to the
expressions given in Ref. 5, which are based on a generalized Lewis–Papapetrou form
space–time metric, and these equations may also be useful in the search for exact solution
Einstein field equations~cf. Ref. 6!.

From Eqs.~48!, ~49!, and~36! it follows that if Rab50, then the electromagnetic field define
by

H5fB, E52gradf, ~51!

satisfies the Maxwell equations~35! with r̃50, j̃50. This result is a special case of the we
known fact that ifKa is a Killing vector field andRab50, thenFab5“aKb satisfies the source–
free Maxwell equations. The electromagnetic field~51! is associated with the Killing vector field
]/]x0. In the case of the Taub-NUT metric, the field~51! coincides with that given by Eq.~42! if
we takea1 ib52m1 i l .
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IV. CONCLUSIONS

The decomposition of the metric of a stationary space–time given by Eq.~2! allows us to deal
with the particle dynamics and the Maxwell equations in terms of three-dimensional object
convenient way. Owing to the conformal invariance of the Maxwell equations, a similar r
applies in the case of the conformally stationary space-times.

As we have shown, some symmetries of the stationary space–times can also be ea
tained from the symmetries of the equivalent three-dimensional objects. The expressions
components of the Ricci tensor@Eqs. ~48!–~50!# are relatively simple and may be useful in th
integration of the Einstein equations as they stand or in combination with the spinor formalis~cf.
Ref. 5!.
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Hydrodynamic behavior of Brownian particles
in a position-dependent constant force field
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The diffusion equation in physical space–time for a Brownian particle driven by an
external force field has been derived by Smoluchowski in the two particular cases
where the external field is uniform or varies linearly with position~elastic force!. In
more general cases, correction terms must be added to the Smoluchowski equation.
We show here how to use a multi-scale Chapman–Enskog expansion to obtain, in
the hydrodynamic limit, the first corrective terms to the Smoluchowski equation,
without any restriction on the friction coefficient, and for any sufficiently small
position-dependent constant force field. We also compare our approach with the
works of Wilemski, Titulaer, and van Kampen. ©1999 American Institute of
Physics.@S0022-2488~99!00806-3#

I. INTRODUCTION

In 1915, Smoluchowski1,2 raised the important question of how the usual diffusion equa
should be modified in order to describe properly the collective motion of Brownian particles u
the influence of a given external force field. He proved that, for at least two special choices
force field, the diffusion process could be described by a common new equation, which
carries the name of the Austrian physicist. Some 60 years later, the problem was reconsid
various authors,3–9 who applied to Kramers’ equation an asymptotic procedure similar in spir
the Chapman–Enskog expansion introduced for solving the Boltzmann equation. The S
chowski equation could then be recovered as the first approximation to a more general dif
equation and higher-order correction terms have also been derived.3,4

We believe that these important results may be improved in at least one significant dire
First, for the problem at hand, the most general asymptotics susceptible to a treatmen
Chapman–Enskog expansion actually involve, in the one-dimensional case, threea priori distinct
small parameters; however, the results presented so far in the literature have always been o
under the tacit assumption that a single infinitesimal quantity is sufficient to properly addre
problem. The principal aim of this article is to propose a fresh investigation of this matte
particular, we will present, using as examples cases where the external force field is suffi
small, a new implementation of the Chapman–Enskog procedure which will hopefully m
clearer the number and physical significance of the involved small parameters. An app
similar in spirit to the one adopted here has already been used successfully to derive a di
equation from the relativistic Ornstein–Uhlenbeck process.10,11 We will also deduce from our
investigations the first correction terms to the Smoluchowski equation for at least one possi
of asymptotics~see Secs. IV and V!.

This article is organized as follows. In Sec. II, we review rapidly some fundamentals abo
dynamical model of diffusion which will be used in the rest of this work. In Sec. III we elabo
on the general philosophy underlying the Chapman–Enskog expansion and present the
asymptotics considered in this article. Section IV is devoted to obtaining perturbative solutio
28910022-2488/99/40(6)/2891/18/$15.00 © 1999 American Institute of Physics
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Kramers’ equation along the lines presented in the preceding section. In Sec. V we deri
actual ‘‘reduced’’ transport equation corresponding to all solutions obtained in Sec. IV. The
in Secs. IV and V is restricted to the few perturbation orders which are necessary to obtain th
correction terms to the Smoluchowski equation and to compare them, in Sec. VI, with
presented in the existing literature. In the conclusion of the article, we review rapidly our
results and mention some problems left open for further study.

II. FUNDAMENTALS

A. The microscopic model of diffusion

To describe the motion of a Brownian particle of massm under the influence of a given forc
field f, we start with the Langevin-like system:

d

dt
x5v,

~1!
d

dt
v52av1

1

m
G1

1

m
f.

Here, x and v are respectively the instantaneous position and velocity of the particle,a is a
constant positive coefficient, andG is a stochastic force. The frictionlike term2av and the
stochastic forceG model the collisional interaction of the Brownian particle with the particles
the surrounding fluid. As usual, we will suppose thatG is actually a centered Gaussian white no
or, somewhat more precisely, the derivative of a Wiener process multiplied by a constant
cient (m2a2x), so that

^Gi~ t1!Gj~ t2!&512m2a2xd~ t22t1!d i j , x.0.

~The coefficientx is the diffusion coefficient in physical space; see Sec. IV.!
Let P(t,x,v) be the probability distribution function~in phase space! associated to the sto

chastic process defined by~1!. It can be shown,5,10,12 that P satisfies the following differentia
equation, known as Kramers’ equation:

] tP1¹x•~vP!1¹v•~2avP!1¹v•S 1

m
f P D5a2xDvP. ~2!

@In Ref. 10, the derivation of Kramers’ equation has been carried out in the~special! relativistic
framework, which straightforwardly degenerates, in the proper limit, into the Galilean case#

B. Dimensionless Kramers’ equation

To lighten further algebraic manipulations, we feel it convenient to express the external
f and the variablest, x, andv in terms of natural units of force, time, position, and velocity.

The natural time unit that comes directly out of~1! is a21. It represents the typical micro
scopic relaxation time of the stochastic process. We therefore choose as dimensionles
variable:

tI[at.

The typical ‘‘thermal’’ velocity Aax will be chosen as velocity unit. The dimensionle
velocity variable is, consequently,

vO[
1

Aax
v.
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A temperatureT can be defined bykBT5max, so that the thermal velocityAax is given by the
usual expressionAkBT/m (kB is the Boltzmann constant!.

The natural space unitAx/a is simply the ratio of the velocity unit to the time unit. Th
dimensionless position variable is then

xO[Aa

x
x.

From the massm and the natural units of space and time defined above, it is straightfor
to obtain the natural unit of force:mAa3x. The dimensionless external force is thus defined

fO [
1

mAa3x
f.

In terms of these dimensionless variables, Kramers’ equation reads

] tIP1¹xO•~vOP!2¹vO•~vOP!1¹vO•~ fOP!5DvOP. ~3!

C. Hypotheses and restrictions

Throughout this article, we will make the following assumptions:
~1! When uvu tends to infinity, the probability distributionP(t,x,v) and all its derivatives with
respect tov vanish more rapidly than any power ofv, for all time and position:

;k,l ,t,x, lim
uvu→`

vk]v lP~ t,x,v!50.

~2! For technical simplicity reasons, we restrict our study to the one-dimensional case. We
fore work with a one-dimensional probability distributionP(t,x,v) and with a one-dimensiona
version of~2!:

] tP1]x~vP!2]v~avP!1]vS 1

m
f P D2a2x]vvP50. ~4!

The dimensionless form of~4! reads

] tIP1]xI~vI P!2]vI ~vI P!1]vI ~ fIP!2]vvP50. ~5!

~3! The typical linear sizeL of the accessible region in physical space will be assumed to be fi
although very large compared to any physically relevant length scale of the problem. This g
well-defined meaning to the notion of uniform particle-density in physical space.
~4! The probability distributionP(t,x,v), the external forcef, and all their derivatives are sup
posed to exist for any value of (t.0,x,v).

The main points of this article are, first, to present a new implementation of the Chap
Enskog method applied to Kramers’ equation, and, second, to derive from~4!, under the above-
listed hypotheses, an evolution equation for the particle density in physical space, in the so
‘‘hydrodynamic’’ limit.

D. The momentum hierarchy

Let us now consider the hierarchy of~evolution-! equations obtained by multiplying~5! by vI k,
kPN and integrating the result over velocity space. Using the hypotheses presented in Se
the levelk of the hierarchy takes the form

] tI~n^vI k&!1]xI~n^vI k11&!1kn^vI k&2k fIn^vI k21&2k~k21!n^vI k22&50, for k>0, ~6!
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where the symbol̂& designates the average overvI :

n^c&[E
R
c~vI !P~ tI,xI ,vI ! dvI .

In particular, the levelsk50 andk51 provide the balance equations for the particle and mom
tum density:

] tI~n!1]xI~n^vI &!50,

~7!
] tI~n^vI &!1]xI~n^vI 2&!1n^vI &2 fIn50.

The hierarchy~6! will be of crucial importance in establishing the possible asymptotic beh
iors of the system in the next section.

III. THE PRINCIPLE BEHIND THE CHAPMAN–ENSKOG EXPANSION
AND THE VARIOUS POSSIBLE ASYMPTOTICS

The general idea behind the Chapman–Enskog expansion as we implement it in this ar
to solve perturbatively the dimensionless Kramers’ equation~5! by searching for ‘‘slowly vary-
ing’’ solutions in space and time which correspond to a given spatial probability densityn( tI,xI ).
To be more specific, let us choose a ‘‘sufficiently regular’’ functionn( tI,xI ) and try to find solu-
tions of ~5! which give back this density when integrated over the whole velocity space.
evolution equations for the various macroscopic ‘‘hydrodynamical’’ quantities will appear in
perspective as solvability conditions.

It is to be noted that this whole approach of solving Kramers’ equation differs fundamen
from the more usual ‘‘physical’’ one which consists in fixing initial and boundary conditions
using them to generate the solution at all~subsequent! time. If one follows this more traditiona
approach, one is naturally led to distinguish, for example, between a transient regime an
time behavior. Both types of solutions appear, however, on equal footing if one use
Chapman–Enskog method, since the very notion of ‘‘initial condition’’ is absent from the w
formalism. From the Chapman–Enskog point of view the data of the problem are Kra
equation, and a given spatial probability densityat all positive time.

In the special case wherefI vanishes identically, a possible solution of~5! corresponding to the
constant densityn( tI,xI )5n0 is the global equilibrium distribution:

P~eq!~vI !5n0

1

A2p
expS 2

vI 2

2 D . ~8!

It seems therefore reasonable, for densitiesn( tI,xI ) which vary sufficiently slowly in space an
time, to search for possible solutions of Kramers’ equation in the form of an expansion arou
local equilibrium distribution~9!, at least if the force fieldfI is sufficiently small and has also slow
spatial variations:

P~ loc!~vI !5n~ tI,xI !
1

A2p
expS 2

vI 2

2 D . ~9!

Without restricting for the moment the choice offI , let us pick two ‘‘small parameters’’~i.e.,
infinitesimal quantities! e and h, and consider a spatial densityn( tI,xI ) which, in the domain of
space–time under consideration, verifies the scaling relations:

]xIn

n
5O~e!,

] tIn

n
5O~h!. ~10!
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These relations state that the spatial variation scale ofn is large compared to the mean free pa
AkBT/ma2, and that its time variation scale is large compared to the mean flight timea21. The
two parameterse and h are a priori independent. However, in the degenerated case of
diffusion (f50), both parameters are naturally linked byh5e2 ~see the discussion in Sec. VI B!.

To make proper use of these relations, it is best to turn our attention again to the hierarc~6!.
Becausen^vI 2k11&,kPN, vanishes for the local equilibrium distribution~9!, let us introduce a new
‘‘small parameter’’e8 and search for solutions of Kramers’ equation which verify

n^vI &5O~e8!. ~11!

If one supposes, in agreement with the preceding paragraph, that the sought-for distributio
tion can be written as an expansion around~9!, a simple integration by part shows that the scali
~11! is actually valid for any odd power of the velocity:

n^vI 2k11&5O~e8!, kPN. ~12!

The levelk50 in the hierarchy~6! then delivers immediately thath5ee8 and the levelk
51 implies that fI has also to be a vanishingly small quantity, whose order will be here
denoted byn. One is therefore left with the following possibilities for balancing properly the te
in ~7!:

~i! e85e and n<e,

~ii ! n5e and e8<e, ~13!

~iii ! n5e8 and e<n.

Each one of these alternatives defines a particular family of solutions of Eq.~5!. It is already
apparent at this stage that each family subdivides into at least two subfamilies; the firs
corresponds to a strict inequality in~13! and the second one to the case in which all three sm
parameterse, e8, andn are actually identical. The situation is, however, more complicated t
this becausee, e8, h5ee8 andn are not the only infinitesimal quantitiesa priori involved in the
problem. Indeed,~7! also constraints the spatial variations ofn with respect to those off . To
investigate this matter further, it is convenient to introduce a fifth~infinitesimal! quantity
e9 such that

]xI fI
fI

5O~e9!, ~14!

and to derive the levelk of the hierarchy~6! with respect toxp,pPN:

] tI]xI p~n^vI k&!1]xI p11~n^vI k11&!2k]xI p~ fIn^vI k21&!

5k~k21!]xI p~n^vI k22&!2k]xI p~n^vI k&! for k>0. ~15!

If k is even, then both terms on the right-hand side of~15! are of orderep and the first two terms
on the left-hand side are clearly of a higher order. Let us suppose thate9 is strictly superior toe.
Then, the main contribution to the third term on the left-hand side of~15! is of orderne9p and this
quantity has to be inferior toep, for all even integersp. Let us now specialize the discussio
according to the family under consideration. For family~i!, one can always find a non-negativ
integerq such that

eq11<n<eq.

This implies that, for all even integersp,
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e9<e~p2q21!/p,

which obviously contradicts the hypothesise9.e. Similarly, for family ~iii !, one can again intro-
duce a non-negative integerq verifying

e2q<n<e2~q11!,

so that, for all even integersp, one has

e9<e~p1q!/p,

which again contradicts the hypothesise9.e. Finally, for family ~ii !, one has directly that, for al
even integersp,

e9<e~p21!/p,

which delivers the same result as the one obtained for the other families. A similar argume
odd values ofk delivers the same conclusion. We can therefore conclude that in all casese has to
be superior or equal toe9.

Taking into account all four parameterse, e8, e9, andn as well as their possible relationship
to one another, we can sum up the preceding discussion in the following way. There are
main families of solutions which area priori susceptible to a treatment by the Chapman–Ens
method. Each of these families can be subdivided into four different subfamilies of solution
each family, the first subfamily encompasses three-parameter solutions, the second an
subfamilies both represent two-parameter solutions, the second subfamily being actually co
to all main families. The fourth subfamily is also common to the three families and involv
single infinitesimal quantity. These conclusions are displayed in a more compact form in Ta
and II.

One of the advantages of the Chapman–Enskog procedure is to provide an elegant
recover the Smoluchowski equation and its various corrections. Indeed, it actually turns ou
for a given spatial density, the whole expansion is only feasible if, at any order, the inv
coefficients satisfy various constraints or solvability conditions in the form of partial differe
equations. The density and the forcef are the only ‘‘data’’ of the problem. It therefore follows tha
all coefficients in the expansion depend only on the density, the imposed force fieldf, and their
various time and space derivatives. Consequently, the constraints satisfied by these coe
can be transcribed, at any order, into differential equations which are to be verified by the d

TABLE I. The definition of all the infinitesimal parameters introduced in
this article are recalled here.

Quantity ]xP/P ] tP/P n^v2k11& f ]xf / f

Order O~e! O~h! O(e8) O~n! O(e9)

TABLE II. The characteristics of the three families of solutions and of the four subfamilies are summed up here
column of this table corresponds to a family, and each line to a subfamily.

~i! ~ii ! ~iii !

~2.1! e85e, n,e, e9,e n5e, e8,e, e9,e n5e8, e,e8, e9,e
~2.2! n5e, e85e, e9,e
~2.3! e85e, n,e, e95e n5e, e8,e, e95e n5e8, e,e8, e95e
~2.4! n5e8, e5e8, e95e
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the forcef, and their various derivatives for the whole expansion procedure to exist. Thes
ferential equations are actually the evolution equations for the spatial density one is u
looking for.

IV. PERTURBATIVE RESOLUTION OF KRAMERS’ EQUATION FOR FAMILY „II…

A. The general framework

Let us now present, in the ‘‘hydrodynamic’’ limit, a direct resolution of Kramers’ equation
a generalized multi-scale Chapman–Enskog expansion. The dimensionless Kramers’ e
reads

] tIP1vI ]xIP1 fI]vI P5]vI „~vI 1]vI !P…. ~16!

Each family and/or subfamily envisaged in Sec. III corresponds to a different physical situ
~see Table I!. A complete examination of the problem at hand should therefore involve a det
study of eight different cases. This lies clearly outside the scope of the present article; we wi
present the perturbative solutions to Kramers’ equation belonging to one of the three main fa
only. Let us point out, however, that preliminary calculations seem to indicate that the major
in the Chapman–Enskog procedure are similar for all three families. There is no physi
mathematicala priori reason to prefer one family to the other two. In what follows, we w
concentrate on family~ii !.

B. The asymptotic expansion for subfamily „ii.1 …

Using the small parameters presented in Sec. III, we introduce new rescaled space, tim
force variablesX5exI ,Y5e9xI ,T5ee8 tI, fI5nF and rewrite~16! as

ee8]TP1vI ~e]XP1e9]YP!1nF]vI P5]vI „~vI 1]vI !P…. ~17!

A reasonable form for the Chapman–Enskog expansion corresponding to subfamily~ii.1! is

P5 (
k,l ,mPN3

ekS e8

e D l S e9

e D m

Pklm , ~18!

wherePklm is a function ofX, Y, T, andvI . Substituting expression~18! in Eq. ~17! and collecting
all terms of orderek(e8/e) l(e9/e)m, we obtain

]TPk22l 21m1vI ~]XPk21lm1]YPk21lm21!1F]vI Pk21lm5]vI „~vI 1]vI !Pklm…, ~19!

with the convention thatPklm vanishes for any strictly negative value of eitherk, l, or m. We
rewrite Eq.~19! in the more condensed form:

]T~P• +Pk22l 21m!1vI ]• +Pk21lm1F]vI ~P• +Pk21lm!5]vI „~vI 1]vI !P•
+Pklm…, ~20!

where the vectorlike quantity+Pklm is defined by:+Pklm5(Pklm21

Pklm ). In ~20!, P and ] represent

respectively the adjoint vectors~1; 0! and (]X ;]Y). The usefulness of this rather abstract vector
formalism and of the covariant derivativeD to be introduced in Sec. IV B 2 may not be quite
apparent at this stage. The principle advantage provided by these notations is to furnish c
some results obtained in this article in the most possible tractable form. The conversion b
more usual notations will be carried out at the end of all calculations in Sec. V A. We will
present in full detail the resolution of~20! for 0<k<4.
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1. Order k 50

Settingk50 in Eq. ~20! gives

]vI „~]vI 1vI !P• +P0lm…50. ~21!

The only solutions of~21! compatible with hypothesis 1 are of the form

+P0lm5 +A0lme2vI 2/2, ~22!

where +A0lm is a function of X, Y, and T. The A0lm’s and the other similar functions to b
introduced below are not arbitrary. Their link to the spatial densityn will be discussed in
Sec. IV F.

2. Order k 51

Settingk equal to 1 in~5! and using the expression~22! for +P0lm , we obtain

vID• +A0lme2vI 2/25]vI „~vI 1]vI !P•
+P1lm…, ~23!

whereD is a ‘‘covariant’’ derivative defined byD5]2FP. Hypothesis 1 leads us to retain, a
only solutions of~23!,

+P1lm5$+A1lm2vI +~D• +A0lm!%e2vI 2/2, ~24!

where +A1lm is a function ofX, Y, and T. Up to this order, no solvability condition has to b
imposed to obtain solutions of~20! verifying hypothesis 1.

3. Order k 52

We setk equal to 2 in~20! and use for+P0lm and+P1lm the expressions~22! and~24! to obtain

$]T~P• +A0l 21m!2F„P• +~D• +A0lm!…1vI ~D• +A1lm!2vI 2D• +~D• +A0lm!%e2vI 2/2

5]vI „~vI 1]vI !P•
+P2lm…. ~25!

The commutation relation@D;P#50 has also been used in deriving~25!. To satisfy hypothesis 1
the integral overvI on the left-hand side must vanish. Indeed, let us take the primitive of both s
of ~25!. The primitive of the right-hand side clearly vanishes whenvI tends to infinity if hypothesis
1 is verified. Thus, the primitive of the left-hand side must also vanish whenvI tends to infinity.
Hence, the integral overvI of the left-hand side must be zero. We thus find that a necessary~and
sufficient! condition for the integral overvI of the left-hand side of~25! to vanish is

]T~P• +A0l 21m!2]• +~D• +A0lm!50. ~26!

Assuming this solvability condition to be fulfilled, the only solutions of~25! which verify hypoth-
esis 1 are

+P2lm5H +A2lm2vI +~D• +A1lm!1
vI 2

2
+
„D• +~D• +A0lm!…J e2vI 2/2, ~27!

where+A2lm is again a function ofX, Y, andT.

4. Order k 53

With k53 in ~20! and the expressions~24! and ~27! for +P1lm and +P2lm , respectively, we
obtain
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H ]T~P• +A1l 21m!2F„P• +~D• +A1lm!…1vI ~D• +A2lm2 +@D;]#• +~D• +A0lm!2D• +
„D• +~D• +A0lm!…!

2vI 2
„D• +~D• +A1lm!…1

vI 3

2
~D• +

„D• +~D• +A0lm!…!J e2vI 2/25]vI „~vI 1]vI !P•
+P3lm…, ~28!

where the condensed notation+@D;]#• +A stands for

+@D;]#• +A5D• +~]• +A!2]• +~D• +A!.

Note that the straightforward commutation relations@D;P#50 and@]T ;D#50 have been used in
deriving ~28!. The solvability condition associated to~28! is

]T~P• +A1l 21m!2]• +~D• +A1lm!50. ~29!

The corresponding solutions compatible with hypothesis 1 are

+P3lm5H +A3lm2vI ~ +~D• +A2lm!2 +
„

+@D;]#• +~D• +A0lm!…!1
vI 2

2
+
„D• +~D• +A1lm!…

2
vI 3

6
+~D• +

„D• +~D• +A0lm!…!J e2~vI 2/2!, ~30!

where+A3lm is a function ofX, Y, andT.

5. Order k 54

If we setk54 in ~20! and give to+P2lm and +P3lm the forms~27! and ~30!, we have

H ]T~P• +A2l 21m!2F„P• +~D• +A2lm!…1]• +
„

+@D;]#• +~D• +A0lm!…2D• +
„

+@D;]#• +~D• +A0lm!…

1vI ~D• +A3lm2 +@D;]#• +~D• +A1lm!2D• +
„D• +~D• +A1lm!…!2vI 2~D• +~D• +A2lm!

2D• +
„

+@D;]#• +~D• +A0lm!…2 1
2

+@D2;]#• +~D• +A0lm!2 1
2D• +~D• +

„D• +~D• +A0lm!…!!

1
vI 3

2
~D• +

„D• +~D• +A1lm!…!2
vI 4

6
„D• +~D• +

„D• +~D• +A0lm!…!…J e2~vI 2/2!

5]vI „~vI 1]vI !P•
+P4lm…. ~31!

In deriving this expression, we have used the solvability conditions~26! and ~29! and the com-
mutation relations@D;P#50 and @]T ;D#50. Following again the logic of Secs. IV B 3 an
IV B 4, we obtain the solvability condition:

]T~P• +A2l 21m!2]• +~D• +A2lm!52]•„+@D;]#• +~D• +A0lm!…2 1
2

+@D2;]#• +~D• +A0lm!. ~32!

To obtain the desired corrections terms to the Smoluchowski equation, we will only need a
order the solvability condition~32! and no explicit expression for+P4lm .

C. The asymptotic expansion for subfamily „ii.2 …

The subfamily~ii.1! formally degenerates into~ii.2! if e85e. The Chapman–Enskog expan
sion of P takes therefore the form
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P5 (
k,mPN2

ekS e9

e D m

Pkm , ~33!

where

Pkm5(
l PN

Pklm .

The expressions forPklm , 0<k<3, obtained in the preceding section furnish directly by su
mation overl the form of the desiredPkm , 0<k<3. The solvability conditions associated to~33!
can also be straightforwardly deduced from those given in Sec. IV B and do not need
explicitly presented here.

D. The asymptotic expansion for subfamily „ii.3 …

Contrary to~ii.2!, subfamily~ii.3! cannot be directly deduced from subfamily~ii.1!. The main
reason for this is simply that~ii.1! and~ii.2! involve two spatial scales whereas~ii.3! only involves
one. The corresponding dimensionless Kramers’ equation is

ee8]TP1vI e]XP1eF]vI P5]vI „~vI 1]vI !P…, ~34!

whereP is now a function ofX, T, andvI only. As in Secs. IV B and IV C, solutions of~34! are
to be sought for under the form

P5 (
k,l PN2

ekS e8

e D l

Pkl . ~35!

Substituting~35! in Eq. ~34! and collecting all terms of orderek(e8/e) l , we obtain

]TPk22l 211vI ]XPk21l1F]vI Pk21l5]vI „~vI 1]vI !Pkl…, ~36!

with the convention thatPkl vanishes ifk or l is strictly negative. There is, however, an importa
technical difference between~36! and ~19!. In ~19!, the indexm traced back the presence of tw
spatial scales and motivated the introduction of the vectorial formalism used in Secs. IV B
IV C. Because~34! involves only one spatial scale, this formalism is of no use for solving~36!.
Solving ~36! is consequently an essentially similar but simpler process than solving~19! for
subfamily ~ii.1!. It seems therefore un-necessary to present here the corresponding cumb
algebra.

E. The asymptotic expansion for subfamily „ii.4 …

Because subfamily~ii.3! degenerates into subfamily~ii.4! for e85e, all results pertaining to
this last subfamily can be formally deduced from those discussed in Sec. IV D by a summ
over l.

F. Choice of the coefficients in the Chapman–Enskog expansion

One usually fixes the coefficients in the Chapman–Enskog expansion by normalizin
lowest-order term to the given spatial densityn and by requiring consequently that all superi
orders are normalized to zero.11,13 When applied to subfamily~ii.4!, this delivers

E
R
P0 dvI 5n, ~37!

and
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E
R

Pk dvI 50 for k.0. ~38!

Equation ~37! clearly determinesA0 in terms of n and ~38! delivers Ak once the lower-order
coefficientsAj , j ,k, are known.

The implementation of this procedure for subfamilies~ii.3!, ~ii.2!, and ~ii.1! is more subtle.
Let us start with subfamily~ii.3!. There area priori two different ways of fixing the coefficients
of the expansion. The first one would be to normalizeP00 to n and all otherPkl’s to 0. This would
have the direct consequence of actually setting to zero allPk0’s, for k.0, and the corresponding
expansion would not involvee8 but only e. It is easy to check that such an expansion can
satisfy Eq.~34!. This means that the retained normalization condition is too restrictive and t
fore unsuitable to subfamily~ii.3!. The correct way of relating theAkl’s to n is to impose

E
R

(
l PN

S e8

e D l

P0l dvI 5n ~39!

and

E
R

(
l PN

S e8

e D l

Pkl dvI 50 for k.0. ~40!

Equations~39! and~40! solve the problem at the price of not fixing unambiguously everyAkl but
only their weighed sum overl: ( l PN(e8/e) lAkl .

A similar reasoning leads for subfamily~ii.2! to the conditions

E
R

(
mPN

S e9

e D m

P0m dvI 5n ~41!

and

E
R

(
mPN

S e9

e D m

Pkm dvI 50 for k.0, ~42!

and, for subfamily~ii.1!, to

E
R

(
l ,mPN2

S e8

e D l S e9

e D m

P0lm dvI 5n, ~43!

and

E
R

(
l ,mPN2

S e8

e D l S e9

e D m

Pklm dvI 50 for k.0. ~44!

V. THE FIRST CORRECTION TERMS TO THE SMOLUCHOWSKI EQUATION

In classical Brownian motion theory without external force field, the spatial densityn verifies,
in the long-time limit, the~dimensionless! diffusion equation:

] tIn2]xxn50. ~45!

When an external~time-independent! force field is present,~45! obviously has to be modified
Smoluchowski has proved that, iffI is uniform1 or varies linearly with position,2 the exact trans-
port equation forn is
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] tn2]xxn1]x~n fI !50. ~46!

For a more general force field,~46! is only valid approximately. Wilemski3 and Titulaer4 have
obtained, for a sufficiently small force field, the lowest-order correction terms to~46!, which
becomes

] tn2]xxn1]x~n fI !52]x$]xfI ~]xn2 fIn!%. ~47!

Our approach, at least for family~ii !, leads to the same equation forn. We will now present in full
detail how to reach~47! for subfamily~ii.1!. Subfamilies~ii.2!, ~ii.3!, and~ii.4! will be also briefly
discussed.

Let us defineD as the correction to the Smoluchowski equation~46!. We can write

D5] tn2]xxn1]x~n fI !. ~48!

Since all preceding developments involve the phase-space distributionP, it is convenient to
introduce the analog ofD in phase space,d, defined by

d5] tI
P2]xxP1]x~P fI !. ~49!

HereD can be recovered by a direct integration ofd over the velocityvI .

A. Subfamily „ii.1 … and „ii.2 …

Using the rescaled space, time, and force variables defined in Sec. IV A, Eq.~49! becomes

d5ee8]TP2„e2]X2P12ee9]XYP1~e9!2]Y2P…1e„e]X~PF !1e9]Y~PF !…. ~50!

The Chapman–Enskog expansion forP introduced in Sec. IV B leads naturally to the followin
form for d:

d5 (
k,l ,mPN3

ekS e8

e D l S e9

e D m

dklm . ~51!

Replacing in~50! P andd by their respective expressions~18! and ~51!, we obtain

dklm5]TPk22l 21m2~]X2Pk22lm12]XYPk22lm211]Y2Pk22lm22!

1F~]XPk22lm1]YPk22lm21!1FYPk22lm21 . ~52!

BecausePklm vanishes for negative values ofk, so do d0lm and d1lm . With the help of the
vectorial formalism introduced in Sec. IV B, Eq.~52! takes the more compact form

dklm5]T~P• +Pk22l 21m!2]• +~D• +Pk22lm!. ~53!

Making use of Eq.~22! and of the solvability condition~26!, Eq. ~53! implies thatd2lm vanishes
identically for all l andm. This already proves that, at this order, the densityn verifies indeed the
Smoluchowski equation~46!. The correction terms in Equation~47! will now be obtained by
evaluatingd3lm andd4lm . Considering the solvability condition~29! and the expression~24! for
+P1lm , we obtain from~53!

d3lm52vI ~]T„P•
+~D• +A0lm!…2]• +

„D• +~D• +A0lm!…!e2~vI 2/2!. ~54!

After integration overvI , this term provides an identically vanishing contribution toD. Finally, the
substitution of~27! in ~53! leads to
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d4lm5H ]T~P• +A2l 21m!2]• +~D• +A2lm!1
vI 2

2
„]T~P• +

„D• +~D• +A0l 21m!…!

2]• +~D• +
„D• +~D• +A0lm!…!…1K~vI !J e~2vI 2/2!, ~55!

where K(vI ) represents a polynomial expression invI which only involves odd powers of this
variable.K(vI ) will therefore not contribute toD. With the help of the solvability conditions~26!
and ~32! and considering the commutation relations@P;D#50 and @]T ;D#50, ~55! becomes,
after integration overvI ,

E
R
d4lm dvI 52A2p]• +

„

+@D;]#• +~D• +A0lm!…. ~56!

Multiplying ~56! by e4(e8/e) l(e9/e)m and summing overl andm yields the following expression
for D:

D52A2pe4]• +S +@D;]#• +S (
l ,mPN2

S e8

e D l S e9

e D m

D• +A0lmD D 1O~e5!. ~57!

According to the discussion at the end of Sec. IV, the spatial density is

n5E
R

(
l ,mPN2

S e8

e D l S e9

e D m

P0lm dvI . ~58!

Consequently, the summation overl andm in Eq. ~57! can be expressed in terms of the densityn:

eA2p (
l ,mPN2

S e8

e D l S e9

e D m

~D• +A0lm!5DI n, ~59!

where the operatorDI is

DI 5]x2 fI .

Substituting~59! in ~57!, we have

D52]x@DI ;]x#~DI n!. ~60!

Using the identity@DI ;]xI #5]xI f , ~60! leads immediately to the expression~47! for the corrected
Smoluchowski equation. We have seen in Sec. IV C that the Chapman–Enskog expans
subfamily~ii.2! can be formally deduced from the one obtained in Sec. IV B for subfamily~ii.1!
by a simple summation overl. By its very definition~51!, d involves a summation overl and
thereforeD does also. The correction terms to the Smoluchowski equation for subfamily~ii.2! are
consequently identical to those obtained in this section for subfamily~ii.1!.

B. Subfamily „ii.3 … and „ii.4 …

Contrary to the preceding case, it is not necessary here to introduce a vectorial formalism
physical reason is that subfamily~ii.1! involves two space scales, whereas subfamily~ii.3! only
involves one. The corresponding expression ford in terms ofP is then

d5ee8]TP2e2]X2P1e2]X~PF !. ~61!

Considering the form of the Chapman–Enskog expansion forP introduced in Sec. IV D, we write
for d
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d5 (
k,l PN2

ekS e8

e D l

dkl , ~62!

With the help of expressions~35! for P and ~62! for d, ~61! becomes

dkl5]TPk22l 212]X2Pk22l1F]XPk22l1FXPk22l . ~63!

The solution of~36! leads, through~63!, to an expression forD identical to the one obtained in th
preceding section@Eq. ~60!#. Finally, since all results obtained in Sec. IV E can be forma
deduced from those concerning subfamily~ii.3! by summation overl, Eq. ~47! is also valid for
subfamily ~ii.4!.

C. A brief summary of the preceding results

Using expression~60! for the correctionD, the dimensionless Smoluchowski equation w
the first correction terms reads

] tIn2]xxn1]xI~n fI !1]xI$]xI fI ~]xIn2 fIn!%50. ~64!

In terms of the original physical variables, Eq.~64! can be rewritten as

] tn2x]xxn1
1

ma
]x~n f !1

x

ma2 ]xH ]xf S ]xn2
1

xma
n f D J 50. ~65!

VI. DISCUSSION

A. Comparison with previous works

We would like now to discuss thoroughly the results presented in both preceding section
compare them with those already available in the literature. Some typical recent and freq
quoted references on the topic are Refs. 3–9. Actually, Ref. 4 proposes a systematic genera
of the work presented in Ref. 3 and discusses most of the literature before 1978 at great
Reference 5 is essentially based on Ref. 4; it proposes a derivation of the Smoluchowski eq
only, without any correction terms, but it also contains some original very important phy
discussions which render its reading essential to any proper evaluation of the issues raised
present article. References 6–9 elaborate on a relatively different perturbation scheme, wh
unperturbed phase space distribution is actually adrifting Maxwellian, in contradistinction to the
unperturbed local equilibrium retained in the present article and Refs. 3–5. References 6–
therefore be discussed at the end of this section, after having compared carefully our resu
those of Titulaer4 and van Kampen.5

Titulaer envisages the problem of finding the correct solution to Kramers’ equation~2! for
given initial conditions. To this end, he considers different classes of solutions, each class
labeled by a non-negative integern ~which, naturally, must not be confused with the notationn
used in the present article for the spatial density!. In any of these classes, each solution has to
obtained by a Chapman–Enskog expansion about which more will be said later on.@Each class is
actually associated to an eigenvalue of the differential operator which appears, e.g., on the
hand side of Eq.~16!; n labels the various eigenvalues of this operator.# After having constructed
or explained how to construct at least the first expansion terms for solutions belonging to
class, Titulaer argues rather convincingly that the solutions which belong to a class charac
by a strictly positive integern will decay exponentially in time on a typical time-scale (na)21;
this apparently remains true even for spatially homogeneous solutions in homogeneous forc
This makes clear that the solutions considered in the present article, which describe the sy
the hydrodynamic limit, have to be compared only with the solutions of Ref. 4 labeled byn50.
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As already alluded to before, these solutions are obtained by Titulaer~and van Kampen! by
means of a Chapman–Enskog expansion which involves a single ‘‘small parameter,’’ the in
of the friction coefficienta. While the corresponding expansion is formally well defined,
physical interpretation does not seem straightforward to us.

Indeed, if one wants to interpret the asymptotics presented in Refs. 4 and 5 by introduci
scale over which the distribution functionP varies in space, one can follow van Kampen~Ref. 5,
Remark at the end of p. 218! and obtain the following inequality~recast in our notation!:

Ax

a U]xP0

P0
2

f

m}x U!1. ~66!

This essentially states that the small parameter used by Titulaer and van Kampen may be
ered as some kind of mixture of two fundamentally different quantities, which are respective
ratio of the ‘‘mean free path’’Ax/a to the scale over, whichP varies spatially, and the ratio of th
external force field to the natural force unitmAa3x. Moreover, both these quantities may be lar
and their difference may still verify~66!. To our eyes, the uneasiness one might feel in trying
interpret physically~66! any further is a sign that the general asymptotics to be used
Chapman–Enskog expansion applied to Kramers’ equation does nota priori depend on a single
small parameter only. Indeed,~66! alone strongly suggests that it might be wise to consider at l
the two independent small parametersAx/a]xP/P and f /mAa3x, namely,e andn introduced in
Sec. III. As it turns out from the investigation presented in that section and from the results o
IV, the most general collective behavior of point particles diffusing in a time-independent va
ingly small force field involves, in the hydrodynamic limit, three independent small parame
This general situation can naturally degenerate into various two-parameter problems and ev
a one-parameter case. Except in this last situation, the corresponding Chapman–Enskog
sions, presented in part in Sec. IV, are naturally more cumbersome than those proposed by
and van Kampen.

Let us now compare briefly our results with the work presented in Refs. 6–9. If Refs. 6
7 contain very interesting original material, a most useful source for the procedure they intro
seems to us to be Refs. 8 and 9, where some mathematical and physical points are more
sively discussed. What is envisaged in these references is a Chapman–Enskog expansion
a drifting Maxwellian, with a drift velocityvd related to the forcef by vd5 f /a ~in our notation!.
Following the procedure of Refs. 3 and 4, the expansion in Refs. 8 and 9 still involves, as
small parameter, the inverse of the friction coefficienta. The possible limitations imposed by th
last choice have already been discussed at great length in the preceding paragraph and wi
mentioned again. The choice of a drifting Maxwellian as local ‘‘equilibrium’’ around which
expansion is carried out seems to be useful in at least two potentially different~nonexclusive!
situations. The first one would involve a non vanishingly small external force field. It is
obvious to us that the choice ofvd retained in Refs. 8 and 9 would then exhaust all physica
interesting solutions. In particular, this choice seems to correspond only to an overdamped
microscopic motion of the particle. Anyhow, the corresponding physics cannot be compared
one presented in this article, where the force field is supposed to be vanishingly small, as in
3–5. According to Ref. 9, the choice of a drifting Maxwellian may also be useful in descri
transient regimes of at least some solutions of Kramers’ equation. From this point of view, it
be interesting to compare the solutions presented in Ref. 9 to those of families~iii.1! and~iii.3! of
the present article. As was already discussed before, this cannot be done in the framework
Chapman–Enskog formalism, and lies therefore outside the scope of this work.

B. An interpretation of the various subfamilies

The aim we shared with Titulaer4 in performing these voluminous expansions was to der
from them~for a sufficiently small force field! the Smoluchowski equation and at least the fi
correction terms to it. The fact that Eq.~47! formally agrees with the one obtained by Titula
~Ref. 4! hides that our derivation is more general than his, and that Eq.~47! is also valid in various
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physically different situations not investigated in Ref. 4@see in particular Eq.~66! and the discus-
sion thereafter#. The physical meaning of expression~60! for D can be investigated by evaluatin
the order of magnitude of the various terms which appear in Eq.~65! for the four different
subfamilies~ii.1!–~ii.4!. The results are gathered in Table III. This table also indicates the ord
magnitude of the same terms for family~i! and~iii !, because preliminary calculations indicate th
~47! is indeed valid for all three families. We will thus be able to discuss them together via~47!
only.

This clearly reveals that, although formally identical for the three families, Eq.~65! actually
describes substantially different physics in each case.

There are two main groups of subfamilies. The first one~group A! encompasses the subfam
lies ~see Table IV! for which the spatial variations of the densityn(xI ,tI) occur on much smaller
scales than those of the external force field, which can therefore be considered as nearly
geneous (e9,e). The other group~group B! contains the subfamilies for which the densityn(xI ,tI)
and the external force vary on the same spatial scale (e95e).

Each subfamily will be discussed with the help of Table III, retaining in each case
dominant terms in Eq.~64!.

1. Free diffusion regime

Subfamilies~i.1! in group A and~i.3! in group B represent cases where the magnitude of
force is so small that~64! practically degenerates into the usual diffusion equation:

] tIn2]xxn50. ~67!

TABLE III. This table gives the orders of magnitude of all the terms in the corrected Smoluchowski equation for a
subfamilies. Each column corresponds to a subfamily, each line to a term.

Term (i .1) (i i .1) (i i i .1) ~2.2! ( i .3) (i i .3) (i i i .3) ~2.4!

] tn e2 e8n en n2 e92 e8n ne9 n2

]xxn e2 n2 e2 n2 e92 n2 e92 n2

f ]xn en n2 en n2 ne9 n2 ne9 n2

n]xf ne9 ne9 ne9 ne9 ne9 n2 ne9 n2

]xxf ]xn ene92 n2e92 ene92 n2e92 ne93 n4 ne93 n4

n f]xxf n2e92 n2e92 n2e92 n2e92 n2e92 n4 n2e92 n4

]xf ]xxn e2ne9 n3e9 e2ne9 n3e9 ne93 n4 ne93 n4

n(]xf )2 n2e92 n2e92 n2e92 n2e92 n2e92 n4 n2e92 n4

f ]xf ]xn en2e9 n3e9 en2e9 n3e9 n2e92 n5 n2e92 n5

TABLE IV. This table sums up the physical discussion presented in Sec. VI B. Each row corresponds to one of t
physical regimes; columns one and two help distinguish between cases where the force can be considered nea
geneous or not.

Quasi-homogeneous force
group A (e9,e)

Heterogeneous force
group B (e95e)

Free diffusion regime Family (i .1) Family (i .3)
(e5e8; e.n) ] tn2]xxn50 ] tn2]xxn50

Barostatic regime Family (i i .1) Family (i i .3)
(e8,e; e5n) 2]xxn1 f ]x(n)50 2]xxn1]x(n f )50

Over-damped regime Family (i i i .1) Family (i i i .3)
(e,e8; e85n) ] tn1 f ]x(n)50 ] tn1]x(n f )50

Driven diffusion regime Family~2.2! Family ~2.4!
(e85e; e5n) ] tn2]xxn1 f ]x(n)50 ] tn2]xxn1]x(n f )50
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This means that these regimes essentially describe free diffusion phenomena.

2. Barostatic regime

For subfamilies~ii.1! in group A and~ii.3! in group B, Eq.~64! degenerates respectively int

2]xxn1 fI]xI~n!50 ~68!

and

2]xxn1]xI~n fI !50. ~69!

Quite logically, Eq.~68! is essentially identical to~69! specialized to a situation where the forc
field is nearly homogeneous. Equation~69! admits as solution

n~xI ,tI !5n0 exp„2F~x!…,

where F(x)52*xf (y)dy is the potential associated tof, and n0 normalizesn to unity. We
therefore call this regime ‘‘barostatic.’’

3. Overdamped regime

For subfamilies~iii.1! in group A and~iii.3! in group B, Eq.~64! degenerates respectively int

] tIn1 fI]xI~n!50 ~70!

and

] tIn1]xI~n fI !50. ~71!

As before, ~70! can be considered as a special case of~71! for nearly uniform force fields.
Mathematically, Eq.~71! can be obtained from the microscopic equation of motion~1! by neglect-
ing (d/dt)v. The mean motion of the particle is then an overdamped motion in the force fief.

4. Driven diffusion regime

For subfamily~2.4! in group B, Eq.~64! essentially becomes the standard Smoluchow
equation:

] tIn2]xxn1]xI~ fIn!50, ~72!

and subfamily~2.2! in group A is characterized by a nearly homogeneous force field versio
~72!:

] tIn2]xxn1 fI]xI~n!50. ~73!

These equations obviously describe regimes where both diffusion and forcing effects are o
parable importance. This justifies the terminology ‘‘driven diffusion.’’

VII. CONCLUSION

We have proposed a fresh investigation of the collective motion of point particles w
diffuse stochastically under the influence of a time-independent force field. In the hydrodyn
limit, there are three different families of solutions susceptible to a treatment by the Chapma
Enskog expansion method. Each of these families subdivides into four subfamilies charac
by the nature and number of the small parameters involved in the expansion. More precisel
family contains a class of three-~small! parameter solutions, two different classes of tw
parameter solutions and a single class of one-parameter solutions which is actually commo
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three main families. We have presented in full the Chapman–Enskog expansions correspon
the four subcases for one of the three main families. We have then derived from our resu
each subcase, the Smoluchowski equation and the first correction terms to it. These are a
identical for each of the studied subfamilies. We have also discussed at great length the p
significance of our results and compared them with the ones already existing in the literatu

Various extensions of this work are possible and are currently the object of active inve
tion. One should first of all perform the Chapman–Enskog expansions for all subfamilies
sponding to the two main families which were not dealt with in Sec. IV. Preliminary res
indicate that these expansions also lead to the Smoluchowski equation and to the same co
terms as those derived in this article. Considering the apparent ‘‘genericity’’ of these terms a
as the natural emergence of covariant derivatives (D andD! and commutators in the Chapman
Enskog expansions, it seems to us quite possible that an elegant geometric structure exists
all the results derived in this paper. A better understanding of the problem in this direction s
prove most enlightening. This could be linked with an extension of our results to the case
time-dependent force field or to the general relativistic realm with the help of the relativ
Ornstein–Uhlenbeck process introduced in Ref. 10.

As already noted, the Chapman–Enskog method does not permit an investigation
possible transient nature and dynamical stability of the various regimes envisaged in this
This could be at least partially achieved by direct numerical simulations.
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We analyze spectral properties of a class of integral-difference collision operators
arising in some nonequilibrium statistical physics models. We present analytical
estimates and numerical results for the operators defined on finite intervals and
corresponding to the truncated Gaussian equilibrium distribution function. Some
conclusions are drawn about the spectrum of operators on whole axis. Physical
limitations for these kinds of models are discussed. ©1999 American Institute of
Physics.@S0022-2488~99!04006-2#

I. INTRODUCTION

In this paper we study analytically and numerically spectral properties of a class of inte
difference operators. These operators arise as collision operators in nonequilibrium gas mo1 in
the frame of approach developed in numerous papers~see Refs. 1–5, and references therein!. A
rigorous spectral analysis of these operators is important for the study of the thermodynami
and the problem of integrability in such models. On the other hand, these operators are
ematical objects with interesting properties which need an accurate analytical treatment as
a numerical analysis based on rigorous approximation theory.

The collision operator acts in the Hilbert spaceL2(R) as1,6,7

~Kwu!~x!5
defE

2`

` w~s!u~x!2w~x!u~s!

ux2su
ds, ~1!

wherew(x) stands for the function of the equilibrium distribution. It has the sense of probab
thereforeiwiL1„R…

51. In our previous papers6,7 we proved the basic spectral properties of th
operator for a wide class of the equilibrium distributionsw(x). However, the results of papers
and 7 cannot be applied, for example, to the physical Gaussian equilibrium distributionw(x)
5Cbe2bx2

, because they demand the condition that suppw(x) is compact. Actually, together with
the normalizationiwiL1

51 that is a necessary condition to have suche.0 that w(x).e ;x

Psuppw(x), which is very essential for the results proved in Ref. 7. In the present paper we
analytically and numerically the spectral properties of the operatorKw for the Gaussian distribu
tion, which allow one to establish physical limitations for such models.

The paper is organized as follows. In Sec. II we quote preliminary analytic results. In Se
we formulate the main problem of this paper. In Sec. IV we discuss some numerical results t
a solution of this problem. In Sec. V we present analytical results for an asymptotic estimate
29090022-2488/99/40(6)/2909/13/$15.00 © 1999 American Institute of Physics
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lowest eigenvalues of operator~1!. Analytical results for the higher eigenvalues are not yet
tained. Finally, Sec. VI contains a discussion of the results and induced physical limitations f
models generating such collision operators.

II. PRELIMINARY RESULTS

First of all, we need to quote some previous results.6,7

Lemma 1: For any real-valued functionw(x)PL1(R)ùL2(R) the operatorKw acting in the
space L2(R) in accordance with formula (1) obeys the relation

Kw+w5w+Kw* , ~2!

whereKw* is the adjoint operator andw stands for the operator of multiplication by the functio
w(x).

The proof was obtained6 through the Fourier transform and study of the kernels of the co
sponding operators. This result obviously leads to

Corollary 1: For any positive real-valued functionw(x)PL1(R)ùL2(R), the operatorKw is
self-adjoint in the space L2(R;w21(x)dx).

We introduce some notations. Let@a,b# be an interval on the real axis. We denote asx2(x),
xab(x), and x1(x) the indicators of the intervals (2`,a), @a,b#, and (b,`), respectively.
We use the notationsP2 , Pab , and P1 for the projection operators on the subspac
L2(2`,a), L2@a,b#, and L2(b,`), respectively. Actually, for any functionf (x)PL2(R)
we have (Pabf )(x)5xab(x) f (x), and similarly for P6 . By K0 we denote operator~1! with
~non-normalized! equilibrium distribution w(x)5x21,1(x). We also use the notationKw

5PabKwPab . The operatorK05P21,1K0P21,1 acts as

~K0u!~x!5E
21

1 u~x!2u~s!

ux2su
ds.

The following statement is valid.6

Theorem 1: The reduced operator K05P21,1K0P21,1 in the Hilbert space L2@21,1# is
self-adjoint, K05K0* . Its spectrums(K0) is discrete and equal to the set of simple eigenval
s(K0)5$mn%n50

` , where

m050, mn52(
j 51

n
1

j
, n>1. ~3!

The corresponding eigenfunctions are Legendre polynomials Pn(x).
The proof6 is based on straightforward calculations and employs Lemma 1.
Another necessary result is the following.7

Theorem 2: Let the equilibrium distribution functionw(x) satisfy the following conditions:
(i) w(x) has a compact support: suppw(x),@a,b#;
(ii) w(x) is bounded, positive and separated from zero on@a,b#:'e,A:0,e<w(x)<A;x

P@a,b#;
(iii) w(x)PLip(a) for somea.0, i.e., 'a,C.0:uw(x)2w(s)u<Cux2sua;x,sP@a,b#.

Then the spectrums(Kw) of the operatorKw given by formula (1) fills the positive semiax
R1 . Additionally, the operatorKw has a discrete real spectrumsd(Kw)5$ln%, semibounded
from below, ln→1` when n→`. This discrete spectrumsd(Kw) coincides with the spectrum
s(Kw) of the reduced operator Kw5PabKwPab (which is purely discrete). The corresponding
eigenfunctions are the eigenfunctions of the operator Kw multiplied by the indicatorxab(x). If
lPR1\s(Kw), then it is a spectral point of double multiplicity. The corresponding generali
eigenfunctions are
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ul
6~x!5d~x2yl

6!1xab~x!~Kw2l!21
w~x!

ux2yl
6u

, ~4!

where yl
6 are the inverse images of the function qw(x)5*a

bw(s)/ux2suds in the point
l:qw(yl

6)5l, yl
1.b, yl

2,a.
Proof of this theorem7 is based on the decomposition of the spaceL2(R) into orthogonal sum

L2(R)5L2(2`,a) % L2@a,b# % L2(b,`). It allows for reducing the problem essentially to th
study of the reduced operatorKw5PabKwPab . Linear change of variables leads to transformat
of the interval@a,b# into the interval@21, 1# which gives a possibility to consider the operatorKw

on the spaceL2@21,1#. Next, we use the formula which can be obtained by a straightforw
calculation:

Kw5w+K02~K0w!, ~5!

where (K0w) stands for the operator of multiplication by the function (K0w)(x). Indeed,

~Kwu!~x!5E
a

b u~x!w~s!2u~s!w~x!

ux2su
ds

5E
a

b u~x!w~x!2u~s!w~x!1u~x!w~s!2u~x!w~x!

ux2su
ds

5w~x!E
a

b u~x!2u~s!

ux2su
ds2u~x!E

a

b w~x!2w~s!

ux2su
ds

5w~x!~K0u!~x!2u~x!~K0w!~x!.

Using this formula, we compare the resolvents of the operatorsK0 and Kw . Finally, spectral
properties of the operatorK0 known from Theorem 1 allow one to finish the proof of Theorem

III. THE PROBLEM

Our main concerns here are, on one hand, conditions~i!–~iii ! of Theorem 2, and, on the othe
hand, the statement of Theorem 2 on the spectrum of the collision operatorKw .

Conclusions on the character of the discrete spectrum of the collision operatorKf are within
physical expectations.1 But there is not, to our knowledge, any reasonable physical interpreta
of the continuous spectrum. On the other hand when used by physicists equilibrium distri
functionsw(x) do not always satisfy conditions~i!–~iii ! of Theorem 2. Namely, condition~iii !
~smoothness! and positivity ofw(x) are natural physical conjectures. At the same time condi
~i! ~compactness of the support! is not satisfied even for the most natural Gaussian distribu
w(x)5Cb exp$2bx2%, where Cb is the normalizing constant. Together with the normalizat
condition iwiL1

51 the fact that suppw5R leads to the violation of condition~ii !, namely there
cannot exist suche.0 thatw(x).e;xPsuppw. The latter condition is very essential for The
rem 2 ~see Ref. 7!. Therefore, three interrelated questions appear:

~1! What happens if condition~i! of Theorem 2 is violated? Namely, will the spectral propert
of the collision operatorKw be changed drastically?

~2! How to calculate numerically the spectrum of the operatorKw?
~3! If violation of condition~i! of Theorem 2~e.g., using the Gaussian distribution function! does

not eliminate unnatural spectral properties of the collision operator, what are possible
fications of the mathematical object under investigation and to which physical limitatio
the corresponding models they lead?

The rest of our paper is devoted to answering these questions.
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IV. NUMERICAL RESULTS FOR THE GAUSSIAN EQUILIBRIUM DISTRIBUTION

Let us consider the Gaussian equilibrium distribution function. Infinite integration limit
Eq. ~1! are always understood as the limit of the integral over the interval@2a,a# whena→`. In
fact, the truncated functions

wa~x!5
def

Cax2a,a~x!e2bx2
, ~6!

are very similar for different but large enough values of the parametera. Therefore, it may seem
that, for large enougha, the truncation parametera does not influence essentially the spect
properties of the corresponding collision operator. However, that is not true. Namely, there
regular limit of the collision operatorKwa

on the truncation parametera whena→`. Therefore,
there is no way to develop a successful perturbation theory for the spectrum of the operatKwa

with respect to the parameter 1/a. We shall show this both numerically and analytically.
Let us make a simple remark. By change of variables one can show that the spectral p

Kwa
u5lu ~7!

on the spaceL2@2a,a# is equivalent to the spectral problem

K w̃a
ũ5lũ ~8!

on the spaceL2@21,1#, where w̃a(x)5C̃ae2ba2x2
, i.e., operatorsKwa

and K w̃a
have the same

~discrete! spectrum. Indeed, introducing the notationss85s/a, x85x/a, and ũ(x)5u(ax), we
can calculate the action of the operator:

Kwa
u5E

2a

a u~x!e2bs2
2u~s!e2bx2

ux2su
ds

5aE
21

1 u~x!e2ba2s82
2u~as8!e2bx2

ux2as8u
ds8

5E
21

1 u~ax8!e2ba2s82
2u~as8!e2ba2x82

ux82s8u
ds8

5E
21

1 ũ~x8!e2ba2s82
2ũ~s8!e2ba2x82

ux82s8u
ds8

5K w̃a
ũ.

Furthermore, the functionu(x) in Eq. ~7! transforms with changing of the interval intou(ax)
5ũ(x).

The problem for the equilibrium distribution function exp(2bx2) with an arbitraryb can be
reduced to one withb51 by changing the interval. In the same manner as above, we introduc
notationss85Abs, x85Abx, ũ(x)5u(x/Ab) and calculate the operator:
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Kwa
u5E

2a

a u~x!e2bs2
2u~s!e2bx2

ux2su
ds

5
1

Ab
E

2aAb

aAb u~x!e2s82
2u~s8/Ab!e2bx2

ux2s8/Abu
ds8

5E
2aAb

aAb ũ~x8!e2s82
2ũ~s8!e2x82

ux82s8u
ds8.

Again, the functionu(x) on the interval @2a,a# transforms into ũ(x8) on the interval
@2aAb,aAb#. Hence, in the following we assumeb51.

A. Numerical method

In this section we study the spectral problem~7!. The equilibrium distribution functionwa(x)
is defined in Eq.~6!. The normalizing constantCa is calculated asiwa(x)iL1(@2a,a#)51 and is
equal to

Ca
215E

2a

a

e2x2
dx5Ap erf~a!.

It is worth noticing that the normalizing constant has an asymptoticsCa;1/2a at origin andCa

;1/Ap at infinity.
It is convenient to construct a numerical method on the interval@21, 1#. As noticed above, in

order to keep the same spectrum, we have to change the equilibrium distribution funct
w̃a(x)5Ca exp(2a2x2). Being led by the spectral analysis of the operatorK0 in Theorem 1, we
find eigenfunctions ofK w̃a

as an expansion with respect to the Legendre polynomials:

c~x!5 (
k50

N

vkPk~x!. ~9!

Acting by operator ~5! on the function c and calculating the scalar product
L2(@21,1#,dx/w̃a(x)), we obtain for spectral problem~7!:

E
21

1

c~x!E
21

1 c~x!2c~s!

ux2su
ds dx2E

21

1 c2~x!

w̃a~x!
~K0w̃a!~x!dx5lE

21

1 c2~x!

w̃a~x!
dx.

Substituting expansion~9! and using Theorem 1 for calculating the first integral, we obtai
generalized spectral problemK̃v5lS̃v. Matrix elementsKnm andSnm of the operatorsK̃ and S̃
are defined as

Knm5
2mn

2n11
dnm2E

21

1

Pn~x!Pm~x!
~K0w̃a!~x!

w̃a~x!
dx, ~10!

and

Snm5E
21

1 Pn~x!Pm~x!

w̃a~x!
dx.

To calculate integrals in Eq.~10!, we use the relationship:8
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Pn~x!Pm~x!5 (
k50

min~n,m!

Anm
k Pn1m22k~x!, ~11!

where

Anm
k 5

am2kakan2k

an1m2k
S 2n12m24k11

2n12m22k11D , ak5
~2k21!!!

k!
.

As the functionw̃a(x) is symmetric, one can easily see that (K0w̃a)(x) is also symmetric.
Thus, symmetric and antisymmetric solutions are separated and one can sum in Eq.~9! over even
and odd indices separately. Therefore, all matrix elements in Eq.~10! can be expressed as a line
combination of integrals

E
0

1

P2l~x!
f 0~x!

w̃a~x!
dx, ~12!

where f 0(x)5(K0w̃a)(x) for the matrix elements ofK̃ and f 0(x)51 for those ofS̃.
Special care must be taken concerning numerical calculations of integrals in Eq.~12! since the

integrand is highly oscillating for largel and has a huge derivative for largea. These integrals can
hardly be calculated with any usual quadrature method. We thus derive a special representa
them.

Let us first discuss the calculation ofSnm , f 0(x)51. Using the Taylor expansion for exp(a2x2)
and the orthogonality relation

E
21

1

xmPk~x!50, m,k,

we find that

I l
~1!~a2!5

1

Ca
E

21

1

P2l~x!exp~a2x2!dx5
2

Ca
(
k5 l

`
a2k

k! E
0

1

x2kP2l~x!dx. ~13!

The latter integral is calculated analytically,8 and we can finally write

I l
~1!~a2!5

~21! l

Ca
(
k5 l

`
a2k

k!

G~ l 2k!G~ 1
21k!

G~2k!G~ l 1 3
21k!

. ~14!

The residual term of expansion~14! can be easily estimated, and the calculation of a finite sum
~14! is done by using two successive recursion relations with respect to indicesl andk.

A similar idea is implemented to the calculation of integrals inKnm :

I l
~2!5E

21

1

P2l

~K0w̃a!~x!

w̃a~x!
dx. ~15!

We expandw̃a(x) in terms of Legendre polynomials:

w̃a~x!5Ca (
k50

`
4k11

2
P2k~x!I k

~1!~2a2!. ~16!

As we know the action ofK0 on Legendre polynomials, we find an expression forI l
(2) in terms of

matrix elements of the operatorS̃:
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I l
~2!5Ca (

k50

`
4k11

2
m2kI k

~1!~2a2!S2k,2l . ~17!

Eigenvalues and eigenfunctions of the generalized matrix problem~10! are computed with
standardLAPACK routines in double precision.

B. Eigenvalues and their asymptotics

In Fig. 1 we present a set of a few tens first eigenvalues for differenta. ~We excluded zeroth
eigenvalue sincel050 for all a.! One can see that an estimationln>1/a is valid for the eigen-
values. The numerical asymptotics can be found for largen values:ln;1/a(11k(a)ln n). Cal-
culating eigenvalues with rather high accuracy, values ofk(a) can be determined. We have foun
that the functionk(a) excellently fits to the exponent. Summarizing the results of this nume
study, we obtain the following asymptotics:

ln;
1

a
~11te2aa2

ln n!, t'0.62, a'0.92, ~18!

which is valid when bothn,a→`. Asymptotics~18! is numerically checked up ton.100 and
a.10. We would like to say, however, that this is very accurate already for rather small valu
n anda. It is also worth pointing out the analytical asymptotics ofln for small a:

ln;
1

2a
mn , a→0, ~19!

wheremn are given by Eq.~3!.
Let us now discuss a dependence of eigenfunctions ona. Forn being fixed, any eigenfunction

is ‘‘pushed off’’ the interval and is concentrated very closely to its boundaries with increasea.

FIG. 1. Eigenvaluesaln for different values ofa. The solid, dotted, dashed, long-dashed, and dot-dashed lines corres
to a50, 1, 1.5, 2, and 3, respectively.
                                                                                                                



t
with

in
s a

-
nnot
erical

s

2916 J. Math. Phys., Vol. 40, No. 6, June 1999 Y. Melnikov and E. Yarevsky

                    
To illustrate this, we first plot three eigenfunctions for differenta in Fig. 2. We can see tha
already fora52 the eigenfunctions are localized nearby the boundary. The eigenfunctions
a.2 cannot be plotted in a linear scale.

As the eigenfunctions for smalln and biga are nearly zero in a vicinityx50, a difference in
pair of symmetric and antisymmetric eigenvalues is getting small,ln'ln11 , n51,3,5,... . Evi-
dently, this is not the case for eigenfunctions with largen which are not close to zero anywhere
the interval. To illustrate this ‘‘pairing’’ effect, we plot in Fig. 3 the first few eigenvalues a
function of parametera.

The asymptotics~18! gives us a tool to investigate a limit of the spectrum ofK w̃a
when a

→`. Let us calculate the differenceln112ln in a vicinity of a positives. If n0 , s5ln0
, is

sufficiently large, we may approximate the finite difference as the derivative, and we find

dl

dnU
l5s

5t
e2aa2

a
expS 2

~as21!

t
eaa2D . ~20!

One can see that (dl/dn)ul5s→0 when a→` for any s.0, and s50 also belongs to the
spectrum of the operator. Hence, the spectrum condenses into@0,1`! when a→`. We should
note, however, that this does not necessarily mean that the interval@0,1`! constitutes the spec
trum of the operatorK w̃a

defined on the whole axis. The corresponding limiting procedure ca
be investigated numerically and needs an additional analytical support. However, the num
results have stimulated analytical calculations presented in Sec. V.

FIG. 2. Normalized eigenfunctions fora51 ~@0,1#!, a51.5(@0,1.5#), anda52 ~@0,2#!. The solid, dotted, and dashed line
correspond ton51, 2, and 3, respectively.
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V. ANALYTIC ESTIMATE FOR THE FIRST EIGENVALUES OF THE COLLISION
OPERATOR Kwa

„x … FOR a˜`

As in the previous section, we consider the collision operatorKwa
restricted to the interva

@2a,a# and determined by the truncated Gaussian equilibrium distribution functionwa(x) given

FIG. 3. First six eigenvalues as the function ofa ~a!. The same in the double logarithmic scale~b!.
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by Eq. ~6!. We introduce the operatorKa which is given by formula~1! with the equilibrium
distribution functionw(x)5x2a,a(x) and the reduced operatorKa5P2a,aKaP2a,a . Theorem 1
can obviously be generalized for the operatorKa on the spaceL2@2a,a#. Equation~5! reads as

Kw5w+Ka2~Kaw!. ~21!

Here we prove the following analytic result which partially confirms our numerical calculati
Theorem 3: First eigenvalues of the operator Kwa

have the following asymptotic estimates

a→`:

l1,2~a!<Const
1

a
~11o~1!!. ~22!

Proof: The lowest eigenvalue for anya is obviously l050 with the eigenfunctionc0
a(x)

5wa(x). OperatorKwa
is self-adjoint in the spaceL2(@2a,a#;wa

21(x)dx) ~see Theorem 2!,
therefore for the next eigenvalue we have:

l1~a!5 min
g'wa

^Kwa
g,g&w

a
21

^g,g&w
a
21

, ~23!

where^•,•&w
a
21 stands for the inner product inL2(@2a,a#;wa

21(x)dx),

^u,v&w
a
215

defE
2a

a

u~x!v̄~x!wa
21~x!dx,

andg'wa means orthogonality with respect to this inner product. The notation~•,•! we reserve for
the inner product inL2@2a,a#:

~u,v !5
defE

2a

a

u~x!v̄~x!dx.

Let us choose a test function

ha~x!5xwa
1/2~x!.

It is antisymmetric and obviouslyha'wa in L2(@2a,a#;wa
21(x)dx). Due to Eq.~23! we have

l1~a!<
^Kwa

ha ,ha&w
a
21

^ha ,ha&w
a
21

. ~24!

First, let us calculate the denominator:

^ha ,ha&w
a
215^x2wa,1&w

a
215~x2,1!5 2

3a
3. ~25!

Now we shall estimate the nominator using representation~21!. We shall also use the fact tha
operatorsKwa

and Ka are self-adjoint on the spacesL2(@2a,a#;wa
21(x)dx) and L2@2a,a#,

respectively:
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^Kwa
ha ,ha&w

a
215^Kwa

~xwa
1/2!,xwa

1/2&w
a
21

5~Kwa
~xwa

1/2!,xwa
21/2!

5~waKa~xwa
1/2!,xwa

21/2!2~xwa
1/2Kawa ,xwa

21/2!

5~Ka~xwa
1/2!,xwa

1/2!2~Kawa ,x2!

5~Ka~xwa
1/2!,xwa

1/2!2~wa ,Kax2!. ~26!

Therefore, we have to estimate

~Ka~xwa
1/2!,xwa

1/2!5CaE
2a

a E
2a

a x exp$2x2/2%2s exp$2s2/2%

ux2su
xe2x2/2 ds dx

5a3CaE
21

1 E
21

1 x exp$2a2x2/2%2s exp$2a2s2/2%

ux2su
xe2a2x2/2 ds dx

5a3CaE
21

1

x fa~x!e2a2x2/2 dx, ~27!

where

f a~x!5E
21

1 x exp$2a2x2/2%2s exp$2a2s2/2%

ux2su
ds.

Using integration by parts, we find that the leading order of expression~27! is

~Ka~xwa
1/2!,xwa

1/2!;aCaE
21

1

f a8~x!e2a2x2/2 dx.

Using the Laplace method9 one can get ata→`:

E
21

1

f a8~x!e2a2x2/2 dx5Ap f a8~0!a21~11o~1!!. ~28!

On the other hand,

f a8~0!52E
0

1 12exp$2a2s2/2%

s
ds

52E
0

a/& 12exp$2t2%

t
dt

52E
0

1 12exp$2t2%

t
dt12E

1

a/& 12exp$2t2%

t
dt

<Const12E
1

a/& dt

t

5Const12 lna. ~29!

Equations~27!–~29! lead to

~Kawa
1/2,wa

1/2!<Const lna~11o~1!! as a→`. ~30!
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The second term in expression~26! is easy to evaluate:

~wa ,Kax2!5CaE
2a

a

dx e2x2E
2a

a x22s2

ux2su
ds5a3CaE

21

1

dx e2a2x2E
21

1 x22s2

ux2su
ds.

Again using~28!, we find ata→`:

~wa ,Kax2!52ApCaa2. ~31!

Combining results~30!, ~31! and Eqs.~24!–~26!, we have

l1~a!<
3

2

1

a
~11o~1!! as a→`. ~32!

Now let us notice that subspaces of symmetric and antisymmetric functions are invarian
respect to the operatorKwa

. Therefore, to estimate the second eigenvalue

l2~a!5 min
g'wa ,g'c1

a

^Kwa
g,g&w

a
21

^g,g&w
a
21

we only should care about the orthogonality to the functionwa(x). Hence, it is natural to choos
a test function

g~x!5x2wa
1/2~x!2aawa~x!,

where

aa5^x2wa
1/2,wa&w

a
215~x2wa

1/2,1!5Ca
1/2E

2a

a

x2e2x2/2 dx.

Obviously,g(x) is orthogonal both towa(x) and to the~unknown explicitly! first antisymmetric
eigenfunction. Calculations with the functiong(x) are done in the same way as described abo
and yield estimate~22!. The theorem is proved.

It is interesting to consider as a test function

g~x!5xkwa
1/2~x!,

properly orthogonalized towa for evenk ~the symmetric case!. Repeating calculations of Theorem
3, we find the asymptotic

l1,2~a!<
2k11

2k

1

a
~11o~1!! as a→`.

This result is well consistent with numerical asymptotics~18!. It also confirms the ‘‘pushing off’’
effect: The more a test function is concentrated in the vicinity of interval’s boundaries, the
it resembles the eigenfunction.

VI. CONCLUSIONS AND DISCUSSION

Results of the present paper directly lead to the following conclusions.
~1! As it was shown in our previous papers,6,7 in the case when the equilibrium distributio

functionw(x) satisfies the condition of Theorem 2, collision operator~1! has a branch of continu
ous spectrum. To our knowledge, this has no physical interpretation.
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~2! In the natural case of the Gaussian equilibrium distribution, if the truncation paramea
goes to infinity in improper integral~1!, due to the normalization conditioniwiL1

51, this leads to
the violation of condition~ii ! of Theorem 2. Namely, there cannot exist suche.0 that w(x)
.e;xPsuppw, becausee→0 whena→`. In this case eigenvalues condense in accordance
formula~18! when the truncation parametera goes to infinity in improper integral~1!. In our paper
this is proved analytically for the first eigenvalues and numerically for the others. Analytical p
for n>3 is still an open question. It means that in this case we also do not have phys
reasonable spectrum.

~3! The reduced operatorKw5P2a,aKwP2a,a with any fixeda has a purely discrete spectrum
The eigenvalues depend essentially on the truncation parametera.

Summarizing these results one can suggest the following. In order to get physically reas
spectral properties of collision operator~1!, one may consider it on the interval@2a,a# from the
very beginning. Namely, the operatorKw instead ofKw may be called the collision operator. Th
truncation parametera should be chosen taking two things into account. First, it has to pro
correct spectrum, which can be done using our analysis. Second, it has to be in agreement
physical model. The derivation of expression~1! for the collision operator employed some phys
cal assumptions and approximations.1 Given the interval@2a,a#, where the collision operator ha
a reasonable spectrum, one can clarify what are the physical limitations which restrict ou
sideration to this interval. However, this question is rather addressed to physicists working
field of the nonequilibrium statistical physics. Our aim was to demonstrate from the mathem
point of view the presence of such limitations and to provide a rigorous analytical and num
tool for the investigation of the spectral properties of this class of operators.
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This paper studies Manin–Radul supersymmetric Kadomtsev–Petviashvili hierar-
chy ~MR-SKP! in three related aspects:~i! We find an infinite set of additional
~‘‘ghost’’ ! symmetry flows spanning the same~anti!commutation algebra as the
ordinary MR-SKP flows.~ii ! The latter are used to construct consistent reductions
SKPr /2,m/2 of the initial unconstrained MR-SKP hierarchy which involves a non-
trivial modification for the fermionic flows.~iii ! For the simplest constrained MR-
SKP hierarchy SKP1

2,
1
2

we show that the orbit of Darboux–Ba¨cklund transforma-
tions lies on a supersymmetric Toda lattice being a square root of the standard
one-dimensional Toda lattice, and also we find explicit Wronskian-ratio solutions
for the super-tau function. ©1999 American Institute of Physics.
@S0022-2488~99!00906-8#

I. INTRODUCTION

Supersymmetric integrable hierarchies of nonlinear evolution~‘‘super-soliton’’! equations
were originally proposed1 from purely mathematical motivations, but soon they attracted ac
interest also in theoretical physics mainly due to their close connections with superstring th2

~for related studies of supersymmetric integrable systems of Korteveg–de Vries or nonl
Schrödinger type, see Ref. 3!.

The scope of the present paper is the supersymmetric Manin–Radul Kadomtsev–Petv
~MR-SKP! hierarchy1 of integrable supersoliton nonlinear equations within the super-pse
differential operator formulation~see also Ref. 4; for other formulations see Ref. 5!. We study
extensions of the MR-SKP hierarchy incorporating additional~anti!commuting ‘‘ghost’’ symme-
tries, as well as reductions of MR-SKP. We use supersymmetric generalization of severa
concepts in the theory of integrable systems which up to now have been most actively purs
the context of the ordinary~bosonic! KP hierarchy: Baker–Akhiezer wave functions an
tau-functions,6,7 eigenfunctions, and squared eigenfunction potentials~see Refs. 8 and 9, an
references therein!.

The advantage of constructing an infinite set of~anti!commuting ‘‘ghost’’ symmetries in the
supersymmetric context~see Sec. IV below! is twofold. On the one hand, it allows us to double t
original supersymmetric hierarchy according to the ‘‘duality’’ concept, recently introduced in
context of the ordinary KP hierarchy.10 On the other hand, using the ‘‘ghost’’ symmetries we a
able to define systematic reductions of the original MR-SKP model to a broad class of const
supersymmetric KP hierarchies denoted as SKPr /2,m/2 @see Eq.~5.2! below#. These hierarchies
posses correct evolution under both even and odd isospectral flows. The latter turns out
nontrivial problem since reductions to SKPr /2,m/2 hierarchies areincompatiblewith the original
MR-SKP fermionic flows. We provide a solution to this problem by appropriately modify
29220022-2488/99/40(6)/2922/11/$15.00 © 1999 American Institute of Physics
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MR-SKP fermionic flows while preserving their original~anti!commutation algebra, i.e., preser
ing the integrability of the constrained SKPr /2,m/2 systems.

The second part of the paper contains a detailed discussion of the simplest constraine
SKP hierarchy—SKP1/2,1/2 @Eq. ~5.3! below#, for which we construct Darboux–Ba¨cklund ~DB!
transformations preserving both types~even and odd! of the isospectral flows. This again i
achieved thanks to the above-mentioned modification of the original MR-SKP fermionic fl
Further, we study the pertinent DB orbit and discover a new supersymmetric Toda~s-Toda! lattice
structure on it. As a consequence of this result we are able to find explicit Wronskian
representation for corresponding super tau function.

Let us mention that several interesting reduced models of the supersymmetric KP hie
have been previously constructed in the literature in terms of super-pseudo-differ
operators.11–14 In particular, the supersymmetric version of AKNS hierarchy was found wh
allows a description in terms of a bosonic13 as well as fermionic14 super-Lax operators. The
various properties and superspace formulation of these models were worked out, howeve
evolution equations involve only even time flows defining them effectively as reductions o
SKP2 hierarchy,11 where only even time flows are present by construction.

II. BACKGROUND ON MANIN–RADUL SUPER-KP HIERARCHY

We shall use throughout the super-pseudo-differential calculus1 with the following notations:
] andD5]/]u1u] denote operators, whereas the symbols]x andDu will indicate application of
the corresponding operators on superfield functions. As usual, (x,u) denote superspace coord
nates. For any super-pseudo-differential operatorA5( j aj /2Dj the subscripts~6! denote its
purely differential part (A15( j >0 aj /2Dj ) or its purely pseudodifferential part (A2

5( j >1 a2 j /2D2 j ), respectively. For anyA the super-residuum is defined as ResA5a21/2. The
rules of conjugation within the super-pseudo-differential formalism are as follows:13 (AB)*
5(21)uAuuBuB*A* for any two elements with gradingsuAu and uBu; (]k)* 5(21)k]k, (Dk)*
5(21)k(k11)/2Dk andu* 5u for any coefficient superfield.

Finally, in order to avoid confusion we shall also employ the following notations: for
super-~pseudo-!differential operatorA and a superfield functionf, the symbolA( f ) will indicate
application~action! of A on f, whereas the symbolAf will denote just operator product ofA with
the zero-order~multiplication! operatorf.

MR-SKP hierarchy is defined through thefermionicLax operatorL:

L5D1 f 01(
j 51

`

bj]
2 jD1(

j 51

`

f j]
2 j ~2.1!

expressed in terms of abosonic‘‘dressing’’ operatorW:

L5WDW21, W511(
j 51

`

a j]
2 jD1(

j 51

`

b j]
2 j , ~2.2!

wherebj ,b j are bosonic superfield functions whereasf j ,a j are fermionic ones and where

f 052a1 , b152Dua1 , f 152a22a1Dua122a1b12Dub1 . ~2.3!

Remark:The square of MR-SKP Lax operator~2.1! is an even operator of the form

L25]1Dub1]21D1~2b21b1
21Du f 11b1Du f 0!]211¯ . ~2.4!

Note that the zero-order term inL2 vanishesDu f 012b150 due to~2.3!.
The Lax evolution equations for MR-SKP read1
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]

]t l
L52@L2

2l ,L#5@L1
2l ,L#, ~2.5!

DnL52$L2
2n21,L%5$L1

2n21,L%22L2n, ~2.6!

]

]t l
W52~W] lW21!2W, DnW52~WD2n21W21!2W, ~2.7!

with the short-hand notations

Dn5
]

]un
2 (

k51

`

uk

]

]tn1k21
, $Dk ,Dl%522

]

]tk1 l 21
, ~2.8!

~ t,u![~ t1[x,t2 ,...;u,u1 ,u2 ,...!. ~2.9!

Accordingly, the super-Zakharov–Shabat~super-ZS! equations take the following form:

]

]tk
L1

2l2
]

]t l
L1

2k2@L1
2k ,L1

2l #50,
]

]tk
L1

2l 212DlL1
2k2@L1

2k ,L1
2l 21#50, ~2.10!

DkL1
2l 211DlL1

2k212$L1
2k21,L1

2l 21%12L1
2~k1 l 21!50. ~2.11!

Remark:Let us stress that, unlike the possibility to identifyt1[x @since the zero-order term in
L2 ~2.4! vanishes#, wecannotidentify u1[u. Therefore, there is a nontrivial ‘‘evolution’’ alread
with respect to the lowest fermionic flowD1 ~which cannot in general be identified withD!.

The super-Baker–Akhiezer~super-BA! and the adjoint super-BA wave functions are defin
as

cBA~ t,u;l,h!5W~cBA
~0!~ t,u;l,h!!, cBA* ~ t,u;l,h!5W* 21~cBA* ~0!~ t,u;l,h!! ~2.12!

~with h being a fermionic ‘‘spectral’’ parameter!, in terms of the ‘‘free’’ super-BA functions

cBA
~0!~ t,u;l,h![ej~ t,u;l,h!, cBA* ~0!~ t,u;l,h![e2j~ t,u;l,h!, ~2.13!

j~ t,u;l,h!5(
l 51

`

l l t l1hu1~h2lu! (
n51

`

ln21un ~2.14!

for which it holds

]

]tk
cBA

~0!5]x
kcBA

~0! , DncBA
~0!5Du

2n21cBA
~0!5]x

n21DucBA
~0! . ~2.15!

Accordingly, ~adjoint! super-BA wave functions satisfy

~L2!~* cBA
~* !56lcBA

~* ! ,
]

]t l
cBA

~* !56~L2l !1
~* !~cBA

~* !!, DncBA
~* !56~L2n21!1

~* !~cBA
~* !!.

~2.16!

Correspondingly, the defining equations for arbitrary~adjoint-! super-eigenfunctions~sEFs! are

]

]t l
F5L1

2l~F!, DnF5L1
2n21~F!,

]

]t l
C52~L2l !1* ~C!, DnC52~L2n21!1* ~C!

~2.17!
                                                                                                                



r

Lax

t

etric

2925J. Math. Phys., Vol. 40, No. 6, June 1999 Aratyn, Nissimov, and Pacheva

                    
with supersymmetric ‘‘spectral’’ representations~cf. Ref. 9!

F~ t,u!5E dl dh w~l,h!cBA~ t,u;l,h!, C~ t,u!5E dl dh w* ~l,h!cBA* ~ t,u;l,h!.

~2.18!

For later use let us write down the explicit expression for the ‘‘free’’ sEFF (0) of the ‘‘free’’
L(0)5D. Namely, taking into account~2.13!–~2.15! and~2.18! we get~for definiteness, conside
bosonicF (0)!

]

]tk
F~0!5]x

kF~0!, DnF~0!5Du
2n21F~0!, ~2.19!

F~0!~ t,u!5E dl dh w~0!~l,h!ej~ t,u;l,h!

5E dlF S 12u (
n>1

lnunDwB~l!1S u1 (
n>1

ln21unDwF~l!GexpS (
l>1

l l t l D ,

~2.20!

wherew (0)(l,h)5wF(l)1hwB(l) is arbitrary ‘‘spectral’’ density.
The super-tau-functiont(t,u) is related with the super-residues of powers of the super-

operator~2.1! as follows:

ResL2k5
]

]tk
Du ln t, ResL2k215DkDu ln t. ~2.21!

Equation~2.21! follows from the identities

]

]t l
ResL2k5

]

]tk
ResL2l ,

]

]t l
ResL2k215Dk ResL2l ,

~2.22!
Dl ResL2k211Dk ResL2l 2112 ResL2~k1 l 21!50,

which in turn are easily derived from Eqs.~2.5! to ~2.6!. In particular, for the coefficients ofL and
W we have

b15
]

]t1
ln t[]x ln t, a15D1 ln t. ~2.23!

In what follows we shall encounter objects of the formDu
21(FC)5Du]x

21(FC) whereF,C
is a pair of sEF and adjoint-sEF. Similarly to the purely bosonic case15 one can show tha
application of the inverse derivative on such products is well-defined@up to an overall
(t,u)-independent constant#. Namely, there exists a unique superfield function—supersymm
‘‘squared eigenfunction potential’’~super-SEP! S(F,C) such that:DuS(F,C)5FC. More pre-
cisely the super-SEP satisfies the relations

]

]tk
S~F,C!5Res~D21CL2kFD21!, DkS~F,C!5Res~D21CL2n21FD21! ~2.24!

whose consistency follows from the super-ZS Eqs.~2.10! and~2.11!. In particular, Eq.~2.24! for
k51 andn51 read
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]xS~F,C!5Res~D21CL2FD21!5Du~FC!, D1S~F,C!5Res~D21CLFD21!5FC.
~2.25!

III. ISSUE OF DARBOUX–BÄ CKLUND TRANSFORMATIONS IN MR-SKP HIERARCHY

Consider the ‘‘gauge’’ transformation ofL ~2.1! of the form

L̃5TLT21, T5xDx21, ~3.1!

which parallels the familiar DB transformation in the purely bosonic case.15,16 Requiring the
transformed Lax operatorL̃ to obey MR-SKP evolution equation of the same form~2.5!–~2.6! as
L implies thatT must satisfy

]

]t l
TT211~TL1

2lT21!250, DnTT212~TL1
2n21T21!2522~L̃2n21!2 . ~3.2!

The first Eq.~3.2! is exactly analogous to the purely bosonic case and implies thatx must be
a sEF~2.17! of L with respect to the even MR-SKP flows. However, there is a problem with
second Eq.~3.2!. Namely, for the general~unconstrained! MR-SKP hierarchy it does not hav
solutions forx. In particular, if x would be a sEF also with respect to fermionic flows@cf. the
second Eq.~2.17!#, then the left-hand side of second Eq.~3.2! would become zero whereupon w
would get the contradictory relation: (L̃2n21)250.

Thus, we conclude that the DB transformations of the general MR-SKP hierarchy pre
only the bosonic flow equations. In what follows we shall look for consistent solutions of~3.2! in
the framework ofconstrainedMR-SKP systems which will be achieved thanks to a nontriv
modification of the fermionic MR-SKP flows preserving their anticommutation algebra~2.8!.

There is a further essential distinction of DB transformations for MR-SKP hierarchy an
purely bosonic counterpart. Calculating the super-residues of the powers of the DB-transf
Lax operator we obtain

ResL̃s5Du~x21L1
s ~x!!1~21!s11 ResLs. ~3.3!

Note the crucial sign factor in front of the second term on the right-hand side of Eq.~3.3!.
Together with the first Eq.~2.21! it implies for the DB-transformed super-t function

t̃5xt21 ~3.4!

in contrast with the bosonic case~where we havet̃5xt!.

IV. SUPER-‘‘GHOST’’ SYMMETRIES OF MR-SKP HIERARCHY

Consider an infinite set$F j /2 ,C j /2% j 50
` of pairs of ~adjoint-!sEFs ofL where those with

integer indices are bosonic, whereas those with half-integer indices are fermionic. Next,
introduce the following infinite set of super-pseudo-differential operators:

Ms/25 (
k50

s21

F~s212k!/2D21Ck/2 , s51,2,..., ~4.1!

which generate an infinite set of flows]̄s/2( ]̄n21/2[D̄n ,]̄k[]/] t̄ k):

]̄s/2W5Ms/2W, D̄nL5$Mn21/2,L%,
]

] t̄ k

L5@Mk ,L#. ~4.2!
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On ~adjoint-!sEFs enteringMs/2 we allow anonhomogeneousaction of the superflows~4.2!
which parallels the construction of generalized ‘‘ghost’’ symmetry flows in the bosonic ca10

~nonhomogeneous terms are absent in the traditional approach to ‘‘ghost’’ symmetry flows17!:

]̄s/2F l /25Ms/2~F l /2!2Fs1 l /2 , ]̄s/2C l /252Ms/2* ~C l /2!1~21!slCs1 l /2 , ~4.3!

]̄s/2F
~* 56Ms/2

~* !~F ~* !, ~4.4!

whereF (* ) is a generic~adjoint-!sEF not belonging to the set$F j /2 ,C j /2%.
Using ~4.3! we arrive at the following:
Proposition 1: The infinite set of superflows]̄s/2 (4.1) (anti)commute both with the ordinar

superflows of MR-SKP (2.5)–(2.6) as well as among themselves:

F ]

] t̄ s

,
]

]t l
G5F ]

] t̄ s

,DnG50, F D̄s ,
]

]t l
G5$D̄s ,Dn%50, ~4.5!

F ]

] t̄ s

,
]

] t̄ k
G5F ]

] t̄ s

,D̄nG50, $D̄ i ,D̄ j%522
]

] t̄ i 1 j 21

~4.6!

meaning thatMs/2 obey the following equations:

]

]tk
Ms/25@L1

2k ,Ms/2#2 , DnMk5@L1
2n21,Mk#2 , DnMk21/25$L1

2n21,Mk21/2%2 ,

~4.7!

]

] t̄ k

Ml2
]

] t̄ l

Mk2@Mk ,Ml #50,
]

] t̄ k

Ml 21/22D̄ lMk2@Mk ,Ml 21/2#50, ~4.8!

D̄kMl 21/21D̄ lMk21/22$Mk21/2,Ml 21/2%522Mk1 l 21 . ~4.9!

In checking Eqs.~4.7!–~4.9! we make use of several useful identities for super-pseudo-differe
operators:

@Bb ,Fs/2D21Ck/2#25Bb~Fs/2!D21Ck/22Fs/2D21Bb* ~Ck/2!, ~4.10!

@Bf ,Fs/2D21Ck/2#2
~6 !5Bf~Fs/2!D21Ck/21~21!sFs/2D21Bf* ~Ck/2!, ~4.11!

~Fs/2D21Ck/2!~F j /2D21C l /2!5X~s,k!~F j /2!D21C l /21~21!k~ l 1 j 11!Fs/2D21X~ j ,l !* ~Ck/2!,

~4.12!

~F j /2D21C l /2!* 5~21! l j 1 j 1 lC l /2D21F j /2 , X~s,k!~F![Fs/2Du
21~Ck/2F!, ~4.13!

where Bb ,Bf indicate arbitrary bosonic/fermionic purely differential super-operators,
@•,•# (6) denotes commutator or anticommutator whenever the second element is bo
fermionic.

V. CONSTRAINED MR-SKP HIERARCHIES

The super-‘‘ghost’’-symmetry flows and the corresponding generating operatorsMs/2 ~4.1!
and ~4.2! can be used to construct reductions of the full~unconstrained! MR-SKP hierarchy.
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Namely, since according to Proposition 1 the super-‘‘ghost’’ flows obey the same algebra~4.6! as
the original MR-SKP flows, we can identify an infinite subset of the latter with a correspon
infinite subset of the former:

] l r /252 ]̄ l m/2 , l 51,2,..., ]k[
]

]tk

, ]k21/2[Dk , ]̄k[
]

] t̄ k

, ]̄k21/2[D̄k , ~5.1!

where~r,m! are some fixed positive integers of equal parity, and retain only these flows as
evolution flows~this is a supersymmetric extension of the usual reduction procedure in the p
bosonic case18!. Equation~5.1! implies the identification (Lr l )25Ml m/2 for any l and, there-
fore, the corresponding reduced MR-SKP hierarchy denoted as SKPr /2,m/2 is described by the
following constrained super-Lax operator:

L~r /2,m/2!5L1
r 1 (

j 50

m21

Fm212 j /2D21C j /2 . ~5.2!

The two simplest constrained MR-SKP Lax operators read

L~1/2,1/2![L5D1 f 01F0D21C0 , ~5.3!

L~1,1!5]1F0D21C1/21F1/2D21C0 , ~5.4!

whereF0 , C0 andF1/2, C1/2 are pairs of bosonic and fermionic~adjoint-!sEFs with respect to
the bosonic flows~about the fermionic flows, see below!.

In what follows we shall consider in some detail the simplest constrained SKP1/2,1/2 hierarchy
~5.3!, and henceforth we shall skip the subscript~1

2,
1
2! of ~5.3! for brevity.

Using identities~4.10!–~4.12! we find the identity for any integer powerN ~for an analogous
formula in the purely bosonic case, see Ref. 19!:

~LN!25 (
j 50

N21

LN2 j 21~F0!D21Lj* ~C0!. ~5.5!

In particular, for the square of~5.3! we get

L25]1L~F0!D21C01F0D21L* ~C0!, ~5.6!

where again the zero-order termDu f 012F0C050 as a particular case of~2.3!.
The constrained MR-SKP Lax operator~5.3! satisfies consistently the bosonic flow Eq.~2.5!.

However, we need to make a nontrivial modification of the original fermionic flows~2.6! in order
to keep them compatible with the reduction from the general to the constrained MR-SKP h
chy. Indeed, taking the~2! part of Eq.~2.6! for the constrainedL ~5.3! and using identity~4.11!
together with~5.5! we obtain

~DnF02L1
2n21~F0!!D21C02F0D21~DnC01~L2n21!1* ~C0!!

522~L2n!2522 (
j 50

2n21

L2n212 j~F0!D21Lj* ~C0!, ~5.7!

which leads to apparent contradiction.
In Ref. 8 we solved the problem of incompatibility of the standard Orlov–Schulman a

tional nonisospectral symmetry flows20 with the reductions of the full bosonic KP hierarchy b
appropriately modifying the original Orlov–Schulman flows. Motivated by this work8 we arrive at
the following important proposition:
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Proposition 2: There exists the following consistent modification of MR-SKP flows Dn ~2.6!
for constrainedSKP1/2,1/2 hierarchy:

DnL52$L2
2n212X~2n21!,L%5$L1

2n21,L%1$X~2n21!,L%22L2n, ~5.8!

X~2n21![2(
l 50

n22

L2~n2 l !23~F0!D21~L2l 11!* ~C0!, ~5.9!

DnF05L1
2n21~F0!22L2n21~F0!1X~2n21!~F0!, ~5.10!

DnC052~L2n21!1* ~C0!12~L2n21!* ~C0!2~X~2n21!!* ~C0!. ~5.11!

The modified Dn flows obey the same anticommutation algebra (2.8) as in the original un
strained case.

In checking the correct anticommutation algebra forDn ~5.8! one has to verify the identities

DkX
~2l 21!1DlX

~2k21!2$X~2k21!,X~2l 21!%2$X~2k21!,L2l 21%22$X~2l 21!,L2k21%250,

~5.12!

which in turn follow from the definition ofX(2n21) ~5.9! together with identities~4.10!–~4.13!.
Remark:It is straightforward to generalize Proposition 2 for arbitrary constrained SKPr /2,m/2

hierarchy~5.2!. Namely, the modified fermionic flows have the same form as in~5.8! where in the
expression forX(2n21) @cf. ~5.9!# one has to sum over all pairs of~adjoint-! sEFs entering the
purely pseudodifferential part ofL(r /2,m/2) in ~5.2!.

Let us now consider DB transformations onL[L(1/2,1/2) ~5.3! preserving its constrained form

L̃5TLT215D1 f̃ 01F̃0D21C̃0 , T5F0DF0
21 , ~5.13!

f̃ 052 f 022Du ln F0 , F̃05TL~F0!5F0]x ln F01F0Du f 01F0
2C0 , C̃05F0

21 .
~5.14!

We have the following useful identities for DB-transformed quantities:

L̃s~F̃0!5TLs11~F0!,

~L̃s11!* ~C̃0!5~21!s11T * 21Ls* ~C0!5~21!sF0
21Du

21~F0Ls* ~C0!!. ~5.15!

There is a further crucial property of the modifiedDn flows ~5.8!–~5.9!:
Proposition 3: The conditions for preserving the fermionic flow Eqs. (5.8)–(5.9) by the

Darboux–Bäcklund transformations onL[L1/2,1/2 (5.3) [cf. second Eq. (3.2)]:

DnTT212~TL1
2n21T21!2522~L̃2n21!21X̃~2n21!1TX~2n21!T21, ~5.16!

whereT5F0DF0
21 and the ‘‘tilde’’ refers to DB-transformed objects, are now satisfied. The

proof of ~5.16! proceeds by using the modifiedDn flow definitions ~5.9!–~5.11! together with
identities~4.10!–~4.13! and ~5.15!.

VI. THE DARBOUX–BÄ CKLUND ORBIT OF THE CONSTRAINED MR-SKP HIERARCHY

The recursive expression for the chain of the DB-transformations~5.13!–~5.14! of the con-
strained SKP1/2,1/2 hierarchy, starting from the ‘‘free’’ initialL05D, reads~the subscriptk indi-
cating the step of DB iteration!

Lk115TkLkT k
215D1 f k111Fk11D21Ck11 , Tk5FkDFk

21, ~6.1!
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L15T0DT 0
215D22Du ln F01F0~]x ln F0!D21F0

21, ~6.2!

where

f k11522Du ln Fk2 f k , Ck115Fk
21, ~6.3!

Fk115Fk]x ln Fk1FkDu f k1Fk
2Ck ~6.4!

and whereF0 is a sEF of the initial ‘‘free’’L05D satisfying the ‘‘free’’ version of Eq.~5.10! ~no
X(2n21) term!. Therefore, its explicit expression is given by Eq.~2.20! with substitutingun→
2un . Further we have

F15]xF0 , C15F0
21, f 1522Du ln F0 . ~6.5!

Note, that from~6.3! to ~6.4! we find

2Fk11Ck111Du f k1152FkCk1Du f k5¯50, ~6.6!

which is consistent with the absence of a zero-order term in the square ofLk in ~6.1!.
Equation~6.3! can easily be rewritten as follows:

f k11522Du(
i 50

k

~21!k2 i ln F i . ~6.7!

Recalling identity~6.6! we can alternatively rewrite Eq.~6.4! as

Fk1152 1
2FkDu f k115Fk]x ln Fk2Fk

2Ck ~6.8!

from which we obtain

Fk115Fk(
i 50

k

~21!k2 i]x ln F i . ~6.9!

After making the standard substitutionFk5ewk, we find from the second equation in~6.8! a new
super-Toda~s-Toda! lattice equation:

]xwk5ewk112wk1ewk2wk21. ~6.10!

Note, that by acting on~6.10! with ]x we get

]x
2wk5ewk122wk2ewk2wk22, ~6.11!

which has the form of the ordinary one-dimensional Toda lattice equation but with adoubled
lattice spacing and, of course, the Toda variableswk5wk(x,t2 ,...;u,u1 ,...) are nowsuperfields.
Equation~6.10! can also be rewritten as

ewk112wk5(
i 50

k

~21!k2 i]xw i ~6.12!

or

wk115wk1 lnS (
i 50

k

~21!k2 i]xw i D . ~6.13!
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We now discuss the Wronskian representation for the sEFsFk . Thes-Toda lattice~6.10! can
apparently be thought of as the square root of the standard Toda lattice. We can use this
proceed without any technical calculations. According to the construction given in Ref. 21 th
F2n associated with even lattice points can be given the usual Wronskian expressions w
starting ‘‘point’’ F0 . For the same reason, EFsF2n11 associated with odd lattice points of th
s-Toda lattice will have the usual Wronskian expressions with the starting ‘‘point’’F15]xF0

[F0
(1) ~6.5!.
Generally, forn50,1,... we find by the above arguments

F2n5
Wn11@F0 ,F0

~1! ,...,F0
~n!#

Wn@F0 ,F0
~1! ,...,F0

~n21!#
, F2n115

Wn11@F0
~1! ,F0

~2! ,...,F0
~n11!#

Wn@F0
~1! ,F0

~2! ,...,F0
~n!#

, ~6.14!

whereWk@ f 1 ,...,f k#[deti]x
i21f ji, i , j 51,...,k, denotes standard Wronskian determinant@however,

with superfield entries in~6.14!# and whereF0
(k)[]x

kF0 with F0 as in ~2.20! ~with un→2un!.
Using ~3.4! and the above Wronskians expressions~6.14! we find by iteration the super-ta

functions obtained by 2n recursive steps of the DB transformations:

t~2n!5
F2n21F2n23¯F1

F2n22F2n24¯F0
5

Wn@F0
~1! ,...,F0

~n!#

Wn@F0 ,F0
~1! ,...,F0

~n21!#
, ~6.15!

t~2n11!5
F2nF2n22¯F0

F2n21F2n23¯F1
5

Wn11@F0 ,F0
~1! ,...,F0

~n!#

Wn@F0
~1! ,...,F0

~n!#
. ~6.16!

Moreover, since for~5.3! ]x ln t5F0C0, for the k-step DB iteration we have]x ln t(k)5Fk /Fk21

by taking into account~3.4!. The latter equation together with the relationt (k11)5Fk /t (k) true for
any DB-stepk @cf. ~3.4!# yields an alternative super-tau-function form ofs-Toda lattice:

]x ln t~k!~ t,u!5
t~k11!~ t,u!

t~k21!~ t,u!
~6.17!

with the short-hand notation~2.9!.
In a subsequent paper we plan to discuss several interesting issues connected with ex

the present results:~a! construction of a ‘‘doubled’’ MR-SKP hierarchy by providing a super-L
formulation for the super-‘‘ghost’’ symmetry flows@cf. ~4.5!–~4.6!#–a supersymmetric extensio
of the double-KP construction of Ref. 10;~b! general treatment of arbitrary constrained SKPr /2,m/2

hierarchies, including derivation of more general Wronskian-type solutions for the super-tau
tion and elucidating their Berezinian origin;~c! obtaining consistent formulation of supersymme
ric two-dimensional Toda lattice as Darboux–Ba¨cklund orbit on the ‘‘doubled’’ MR-SKP hierar-
chy ~similar to the purely bosonic case10! and of supersymmetric analogs of random~multi!matrix
models; ~d! study of possible connections of super-tau functions, on one hand, and pa
functions and joint distribution functions in random matrix models in condensed matter ph
~cf. Ref. 22!, on the other hand.
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Hamiltonian formalism for the nonlinear Schro¨dinger equation in physical space–
time is developed. Owing to the fact that the equation involves the second partial
derivative with respect to time, the canonical variables are shown to beu, ū, 2ūt ,
and2ut . The first Lax equation and its variations with respect to canonical vari-
ables are very complicated, but the Poisson brackets of transition coefficients are
shown to be simple, and thus the Hamiltonian formalism in terms of action-angle
variables has been achieved. A peculiarity is that the continuous spectrum consists
of reall as well as pure imaginaryl. In the case of pure imaginaryl the full Jost
solutions shall tend to be infinite or vanish asutu→`. This problem needs further
investigation. ©1999 American Institute of Physics.@S0022-2488~99!04106-7#

I. INTRODUCTION

In the last two decades the nonlinear Schro¨dinger~NLS! equation has been thoroughly inve
tigated from the inverse scattering transform,1 Hamiltonian formalism2–4 to the quantum inverse
scattering transform.5,6 As is well known, to describe, for example, a short temporal pulse pro
gation in nonlinear optical fibers the NLS equation takes a form7–9

iux1utt12uuu2u50, ~1!

wheret andx denote the time and the space coordinate in the frame of reference moving wi
group velocity. This equation will be referred to as the NLS equation in physical space–
Nevertheless, since a short temporal pulse is a soliton in time, usually the equation u
describe the propagation of the so-called optical soliton in a fiber is the conventional
equation8,10

iuT1uXX12uuu2u50, ~2!

whereT andX are not true physical time and space though we read them as time and space
of the investigations start from~2!. In finding classical solutions, for example, soliton solutionst,
x, andT, X are just pure parameters, the solutions to~1! can be obtained from the solutions to~2!
by simply exchanging variables andvice versa.11,12However, for developing Hamiltonian formal
ism as to the quantum inverse scattering transform, one should start from~1! wherex andt are true
space and time. On the other hand, Eq.~1! is also called the unstable nonlinear Schro¨dinger
equation which has been studied in detail by Wadatiet al.11,13–15It was shown that~2! can be used
to describe the soliton phenomena in unstable media.~1! has been derived for two physics sy
tems: the Rayleigh–Taylor instability and electron beam plasma. The soliton solutions of~1! and
29330022-2488/99/40(6)/2933/16/$15.00 © 1999 American Institute of Physics
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its application to the physics problem have been discussed. As is known, a Hamiltonian form
of Eq. ~1! has not yet been developed, and the quantum inverse scattering transform for~1! is still
an open question.

In this paper the Hamiltonian formalism for the NLS equation in physical space–tim
developed in an exact manner which provides a basis for further development of the qu
inverse scattering transform and its potential application in the physical systems mentioned
For convenience, the boundary condition will be chosen as:

u→0 as uxu→`. ~3!

II. GENERAL FORMALISM

The Lagrangian densityL for ~1! is given by

L52
i

2
$ūxu2ūux%2ūtut1ū2u2. ~4!

Since Eq.~1! involves the second derivative with respect tot, the generalized coordinates a
chosen asu and ū. This can be easily shown to be right since the Lagrangian equation

]L
]u

2
]

]x S ]L
]ux

D2
]

]t S ]L
]ut

D50, ~5!

and that forū reproduce Eq.~1! and its complex conjugate. The momentum densities conjug
to u and ū, p and p̄, are given by

p[
]L
]ut

52ūt , p̄[
]L
]ūt

52ut . ~6!

Then the Hamiltonian densityH is given by

H[put1p̄ūt2L5
i

2
$ūxu2ūux%2ūtut2ū2u2. ~7!

Sinceu andp, as well asū andp̄, are conjugated with each other, the basic Poisson brac
are

$u~x!,2ūt~y!%5d~x2y!, $u~x!,ū~y!%50,
~8!

$ū~x!,2ut~y!%5d~x2y!, $ut~x!,ūt~y!%50.

Suppose thatSandT are functionals ofu, ū, 2ut , and2ūt , then the Poisson bracket ofSandT
is given by

$S,T%52E
2`

` S dS

du~x!

dT

dut~x!
1

dS

du~x!

dT

dut~x!
2

dS

dut~x!

dT

du~x!
2

dS

dut~x!

dT

du~x!
D dx. ~9!

III. THE JOST SOLUTIONS

The first Lax equation of~1! is given by

]xF~x,l!5L~x,l!F~x,l!, ~10!

where

L~x,l!52 i2l2s312lU~x,t !2 i $U2~x,t !1Ut~x,t !%s3 , ~11!
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and

U~x,t !5S 0 u~x,t !

2u~x,t ! 0 D . ~12!

We define the Jost solutions by boundary condition~3!,

F~x,l!→e2 i2l2xs3 as x→2`, ~13!

and then find

F~x,l!5e2 i2l2xs31E
2`

x

dy e2 i2l2~x2y!s3$L~y,l!1 i2l2s3%F~y,l!. ~14!

Similarly, we define

C~x,l!→e2 i2l2xs3 as x→`. ~15!

The monodromy matrix is given by

T~l!5C21~x,l!F~x,l! or F~x,l!5C~x,l!T~l!. ~16!

We write

F~x,l!5~f~x,l!f̃~x,l!!, C~x,l!5~ c̃~x,l!c~x,l!!, T~l!5S a~l! 2b̃~l!

b~l! ã~l!
D ,

~17!

wheref(x,l), etc., have two components, respectively. Since detC(x,l)51, from ~16!, we have

a~l!5c2~x,l!f1~x,l!2c1~x,l!f2~x,l!, b~l!52c̃~x,l!f1~x,l!1c̃1~x,l!f2~x,l!,

~18!

etc., and

f~x,l!5a~l!c̃~x,l!1b~l!c~x,l!, ~19!

etc. These functions are defined in reall2, i.e., on the real axis and on the imaginary axis
complexl plane.

From~16! we show thatf(x,l) can be analytically continued into the region of Iml2.0, i.e.,
in the first and the third quadrants and thatf̃(x,l) can be analytically continued into the regio
of Im l2,0, i.e., in the second and the fourth quadrants. Zeros ofa(l) are located in the first and
the third quadrants and are assumed to be simple. From~10! it can be shown

f̃~x,l̄ !5 is2f~x,l!, c̃~x,l̄ !52 is2c~x,l!, ~20!

ã~ l̄ !5a~l!, b̃~ l̄ !5b~l!, ~21!

noting that the second one of the last equation holds only for reall2. In the first and the third
quadrantsa(l) may have zeros.a(l) is assumed to haveN simple zeros,ln , n51,2,...,N. From
~18! we have

f~x,ln!5bnc~x,ln!, ~22!

wherebn is independent ofx.
                                                                                                                



in the

s

nts:

e in
ever,

2936 J. Math. Phys., Vol. 40, No. 6, June 1999 Chen, Chen, and Huang

                    
IV. AN INVERSE SCATTERING TRANSFORM

Introducing

Q~x,l!5H a~l!21f~x,l!

c̃~x,l!

as Iml2.0
as Iml2,0. ~23!

By using the standard procedure, we obtain the equation of inverse scattering transform
form of Zakharov–Shabat:

c̃~x,l!ei2l2x5S 1
0D1R~x,l!1J~x,l!, ~24!

where

R~x,l!5(
n

1

l2ln
cnc~x,ln!ei2ln

2x, ~25!

J~x,l!5
1

i2p E
G

1

l82l
r ~l8!c~x,l8!ei2l82x dl8, ~26!

cn5
bn

an
, an[ȧ~ln!5

d

dl
a~l!U

l5ln

, r ~l!5
b~l!

a~l!
, ~27!

and whereG denotes the integral path which contains two parts.12 One part is along the real axi
from 0 to 2` and from 0 to1`, the other is along the imaginary axis from 0 to2 i` and from
0 to 1 i`, i.e.,

E
G
F~x,l!dl5S E

0

1`

2E
0

2` DF~x,m!dm2S E
0

1`

2E
0

2` DF~x,in!d~ in!. ~28!

The time dependence is determined by the second Lax equation,

] tF~x,t,l!5M ~x,t,l!F~x,t,l!, ~29!

where

M ~x,t,l!52 ils31U~x,t !. ~30!

By using the second Lax equation, the time dependence is achieved by simple replaceme

a~l!→a~ t,l!5a~0,l!, b~l!→b~ t,l!5b~0,l!ei2lt, bn→bn~ t !5bn~0!ei2lnt. ~31!

The solution is then determined by

u~x,t !5 lim
ulu→`

~ i2l!c̃2~x,t,l!ei2l2x1 ilt. ~32!

In the case of no reflections, the Zakharov–Shabat equation~24! including the time depen-
dence~31! has the same form as that of Eq.~2! by simply exchanging12

x,t↔T,X, ~33!

while the locations of zeros ofa(l) are somewhat different. In the latter case, all the zeros ar
the upper half plane, while in the former case, those are in the first or third quadrants. How
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as we have shown,16 one can change a pole from the lower half plane to upper half plane in
case that these two poles are symmetric with respect to the real axis, and the final results
same. This implies that, for finding soliton solutions, Eqs.~1! and ~2! are equivalent.

V. CONSERVATIVE QUANTITIES

Sincea(l) is assumed to haveN simple poles in the first and third quadrants,a(l) can be
expressed as

a~l!5 )
n51

N
l2ln

l2l̄n

ǎ~l!, ~34!

whereǎ(l) is analytical in the first and the third quadrants and has no zeros. Taking into ac
that

ln a~l!→0 as ulu→`,

the general expression ofa(l) is

a~l!5 )
n51

N
l2ln

l2l̄n

expH 1

i2p
E

G

lnua~l8!u

l82l
dl8J . ~35!

The fact thata(t,l) is independent oft leads to infinite conservation laws. An expansion of lna(l)
as ulu→` is similar to that for~2!, e.g., the second conservative quantityI 2 is10

I 25 (
n51

n

~ln
22l̄n

2!2 i
2

p E
G

lnua~l!u2l dl. ~36!

The expressions related tou for Eq. ~1! are different from those related tou for ~2!, e.g.,I 2 in the
present case is~for details, see Appendix A!

I 25E
2`

`

dx$ i uutu22 i uuu41~ uuu2!x2ūu%. ~37!

VI. VARIATIONS WITH RESPECT TO u „x … AND u „x …

From ~10! we have

]xdF~x,l!5L~x,l!dF~x,l!1dL~x,l!F~x,l!. ~38!

The solution is obviously

dF~x,l!5E
2`

x

dzF~x,l!F21~z,l!dL~z,l!F~z,l!. ~39!

We have

dL~z,l!

du~x!
5$2ls11 i u~x!s3%d~x2z!, ~40!

etc., in the case ofx.z,

dF~x,l!

du~z!
5F~x,l!F21~z,l!$2ls11 i u~z!s3%F~z,l!, ~41!
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and then settingz5x2[x20,

dF~x,l!

du~x2!
5$2ls11 i u~x!s3%F~x,l!. ~42!

Similarly,

dF~x,l!

du~x2!
5$22ls21 iu~x!s3%F~x,l!, ~43!

dF~x,l!

dut~x2!
5 is2F~x,l!, ~44!

and

dF~x,l!

dut~x2!
52 is1F~x,l!, ~45!

where

s15S 0 1

0 0D , s25S 0 0

1 0D . ~46!

In the same way, we obtain

dC21~x,l!

du~x1!
5C21~x,l!$2ls11 i u~x!s3%, ~47!

dC21~x,l!

du~x1!
5C21~x,l!$22ls21 iu~x!s3%, ~48!

dC21~x,l!

dut~x1!
5C21~x,l!is2 , ~49!

and

dC21~x,l!

dut~x1!
52C21~x,l!is1 , ~50!

wherex1[x10.
From ~16! we have

dT~l!5dC21~z,l!F~z,l!1C21~z,l!dF~z,l!, ~51!

and then

dT~l!

du~x!
5

dC21~z,l!

du~x!
F~z,l!1C21~z,l!

dF~z,l!

du~x!
. ~52!

Sincez is arbitrary in the above formula, we can setz→x2,

dT~l!

du~x!
5C21~x,l!$2ls11 i u~x!s3%F~x,l!. ~53!
                                                                                                                



e

ax

2939J. Math. Phys., Vol. 40, No. 6, June 1999 Chen, Chen, and Huang

                    
Similarly,

dT~l!

du~x!
5C21~x,l!$22ls21 iu~x!s3%F~x,l!, ~54!

dT~l!

dut~x!
5C21~x,l!is2F~x,l!, ~55!

and

dT~l!

dut~z!
52C21~x,l!is1F~x,l!. ~56!

Since

dT21~l!52T21~l!dT~l!T21~l!, ~57!

we can find variation ofT21(l) with respect tou(x), etc.

VII. BASIC POISSON BRACKETS „CONTINUOUS SPECTRUM…

Consider Poisson bracket of$Ti j (l),Tkl
21(l8)%. From~9!, the integrand of the right-hand sid

is

dTi j ~l!

du~x!

dTkl
21~l8!

dut~x!
1

dTi j ~l!

du~x!

dTkl
21~l8!

dut~x!
2

dTi j ~l!

dut~x!

dTkl
21~l8!

du~x!
2

dTi j ~l!

dut~x!

dTkl
21~l8!

du~x!
. ~58!

Substituting~52!, etc., into~58! we can obtain its explicit expression. With the help of the first L
equation, we find that~58! can be expressed as~for details, see Appendix B!

1

2~l2l8!
]x$@C21~x,l!C~x,l8!# i l @F21~x,l8!F~x,l!#k j%. ~59!

Hence we obtain

$Ti j ~l!,Tkl
21~l8!%5 lim

L→`

1

2~l2l8!
@C21~x,l!C~x,l8!# i l @F21~x,l8!F~x,l!#k jU

2L

L

. ~60!

Taking account of~13! and ~15!, the right-hand side is equal to

lim
L→`

1

2~l2l8!
@ei2~l22l82!Ls3# i l @T21~l8!e2 i ~l22l82!Ls3T~l!#k j , ~61!

plus

2 lim
L→`

1

2~l2l8!
@T~l!e2 i2~l22l82!Ls3T21~l8!# i l @ei2~l22l82!Ls3#k j . ~62!

By employing the following relations:

lim
L→`

e2 i4~l22l82!L

2~l2l8!
52 i

1

2
pd~l2l8!, ~63!
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and

1

l6 i0
5p.v.

1

l
7p id~l!, ~64!

where p.v. denotes the Cauchy principal value.3 Finally we obtain

$a~l!,a~l8!%50, $a~l!,ã~l8!%50, $ã~l!,ã~l8!%50, ~65!

$b~l!,b~l8!%50, $b̃~l!,b̃~l8!%50, ~66!

$a~l!,b~l8!%5
1

2

1

l2l81 i0
a~l!b~l8!, $a~l!,b̃~l8!%52

1

2

1

l2l81 i0
a~l!b̃~l8!,

~67!

$ã~l!,b̃~l8!%5
1

2

1

l2l82 i0
ã~l!b̃~l8!, $ã~l!,b~l8!%52

1

2

1

l2l82 i0
ã~l!b~l8!,

~68!

and

$b~l!,b̃~l8!%5 ipd~l2l8!ua~l!u2. ~69!

In last three formulasl andl8 are simultaneously real or simultaneously imaginary.

VIII. BASIC POISSON BRACKETS „DISCRETE SPECTRUM…

From ~65! we know that$ ln a(l),a(l8)%50, then by~35!, we have

$ ln ǎ~l!,a~l8!%1 (
n51

N S $ln ,a~l8!%

l2ln

2
$l̄n ,a~l8!%

l2l̄n

D 50. ~70!

This expression cannot have pole atln , hence we obtain

$ln ,a~l8!%50. ~71!

Similarly, we also have

$l̄n ,a~l8!%50, $lnã~l8!%50, $l̄n ,ã~l8!%50. ~72!

With the same procedure from$ln , ln a(l8)%50, we obtain

$ln ,lm%50, $ln ,l̄m%50. ~73!

From ~67!, we obtain

$ ln a~l!,b~l8!%52b~l8!
1

2

1

l2l81 i0
. ~74!

Substituting~34!, the left-hand side becomes

$ ln ǎ~l!,b~l8!%1 (
n51

N S $ln ,b~l8!%

l2ln

2
$l̄n ,b~l8!%

l2l̄n

D . ~75!
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Since Iml2.0, l8 is real or pure imaginary,l2l81 i0Þ0, ~74! is finite, so that~74! has no
poles, thus

$ln ,b~l8!%50. ~76!

Similarly, we have

$l̄n ,b~l8!%50. ~77!

Poisson brackets involvingbn or b̃m can be obtained from those involvingb(l) or b̃(l) by
simply assumingbn5b(ln) andb̃m5b̃(l̄m), which are the results of the assumption of comp
support3 of u ~for the derivation without compact support see Appendix C!. From ~67!, etc., we
have

$a~l!,bn%5
1

2

1

l2ln

a~l!bn , $a~l!,b̃m%52
1

2

1

l2l̄m

a~l!b̃m , ~78!

$ã~l!,b̃m%5
1

2

1

l2l̄m

ã~l!b̃m , $ã~l!,bn%52
1

2

1

l2ln

ã~l!bn . ~79!

Corresponding to~69!, we have

$b~l!,bn%50, $b~l!,b̃m%50, $bn ,bm%50, $bn ,b̃m%50. ~80!

By using a similar procedure leading to~76!, etc., we have

$lm ,bn%5dmn
1
2bn , $l̄m ,bn%50, ~81!

and

$lm ,b̃n%5dmn
1
2b̃n , $lmb̃n%50. ~82!

IX. HAMILTONIAN FORMALISM

After integration by parts, we can see thatI 2 in ~37! is proportional to the HamiltonianH
which is the integral ofH in ~7!,

H52 i I 2 . ~83!

Hence we have

H5 i2(
n51

N

~ l̄n
22ln

2!2
2

p E
G

lnua~l!u2l dl. ~84!

The NLS equation in physical space–time can be expressed in the Hamiltonian form

] tp~x,t !5$H,p~x,t !%5
dH

du~x,t !
, ] tu~x,t !5$H,u~x,t !%52

dH

dp~x,t !
, ~85!

etc. Substituting~84!, the former leads to the complex conjugate of~1! and the latter gives an
equality.

Similarly,

] ta~ t,l!5$H,a~ t,l!%, ] tb~ t,l!5$H,b~ t,l!%. ~86!
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We obtain

] ta~ t,l!50, a~ t,l!5a~0,l!. ~87!

Owing to

$ua~l!u2,b~l8!%5 ipd~l2l8!ua~l!u2b~l8!, ~88!

and then

$ lnua~l!u2,b~l8!%5 ipd~l2l8!b~l8!, ~89!

we obtain

$H,b~l!%52
2

p E
G
$ lnua~l8!u2,b~l!%l8 dl8. ~90!

This implies

] tb~l!5$H,b~l!%52 i2lb~l!, ~91!

and hence

b~l,t !5b~l,0!e2 i2lt. ~92!

Similarly, since we know

$ua~l!u2,bn%50, ~93!

and

$lm
2 ,bn%52lm$lm ,bn%5dmnlmbn , ~94!

we can find

] tbn5$H,bn%52 i2lnbn , ~95!

and then

bn~ t !5bn~0!e2 i2lnt. ~96!

X. ACTION-ANGLE VARIABLES

Now we introduce the action-angle variables for the NLS equation in physical space–tim~1!,
for continuous spectrum,

P~l!5
1

p
ln

1

ua~l!u2
, Q~l!5argb~l!, ~97!

which are real, and for the discrete spectrum,

Pn52ln , Qn5 ln
1

bn
, ~98!

which are complex, and hence

Pn852 Reln , Pn952 Imln , ~99!
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Qn85 lnubnu, Qn952argbn . ~100!

Since they are also generalized coordinates and conjugated momentum, we must show

$P~l!,Q~l8!%5d~l2l8!, ~101!

$Pn8 ,Qm8 %5$Pn9 ,Qm9 %5dnm , ~102!

and all other Poisson brackets vanish.
By definition ~97!, we know

$ei2Q~l!,ei2Q~l8!%5H b~l!

b~l!
,
b~l8!

b~l8!
J , ~103!

the right-hand side obviously vanishes since

2
b~l8!

b~l!•b~l8!2
$b~l!,b~l8!%2

b~l!

b~l!2
•b~l8!

$b~l!,b~l!%50. ~104!

Hence we obtain

$Q~l!,Q~l8!%50. ~105!

For a function ofua(l)u2 as f (ua(lu2), we have

$ f ~ ua~l!u2!,Q~l8!%5
f 8~ ua~l!u2!

i2

b~l8!

b~l8! H ua~l8!u2,
b~l8!

b~l8!
J . ~106!

By using ~88!, etc., we obtain

$ f ~ ua~l!u2!,Q~l8!%5pd~l2l8!
f 8~ ua~l!u2!

2
ua~l!u2. ~107!

Setting

f ~ ua~l!u2!5
1

p
ln

1

ua~l!u2
, ~108!

~107! leads to~101!. On the other hand, it is obvious

$2lm , ln bn%5dmn , ~109!

and

$2lm , ln b̃n%50. ~110!

Furthermore, we must show that action variables are constants while angle variabl
dependent on time periodically. Substituting~97! and ~99! into ~84! we obtain

H52(
n

Pn8Pn912E
G
P~l8!l8 dl8. ~111!

By this expression, it is easy to know that the Poisson brackets$H,P(l)%, $H,Pn8%, and$H,Pn9%
vanish, so thatP(l), Pn8 , andPn9 are constants. On the other hand, since
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] tQ~l!5$H,Q~l!%52E
G
$P~l8!,Q~l%l8dl852l, ~112!

we have

Q~l,t !5Q~l,0!12lt. ~113!

Similarly, one can find

] tQn85$H,Qn8%52Pn9 , ] tQn95$H,Qn9%52Pn8 , ~114!

and hence

Qn8~ t !5Qn8~0!12Pn9t, Qn9~ t !5Qn8~0!12Pn8t. ~115!

We thus seeQ(l), Qn8 , andQn9 are indeed angle variables.

XI. CONCLUSION AND DISCUSSION

In previous sections, the Hamiltonian formalism for the NLS equation in physical space–
is developed. Owing to the fact that the equation involves the second partial derivative
respect to time, the generalized coordinates are chosen asu and ū, the canonically conjugated
momentum arep52ūt andp̄52ut . The first Lax equation in the present case is more com
cated, it contains the generalized coordinates as well as the canonically conjugated mome
We find that the continuous spectrum consists of reall as well as pure imaginaryl. Though
variations of the first Lax equation with respect tou ~ū, p, andp̄! are complicated, the Poisso
brackets of transition coefficients are simple, and thus the Hamiltonian formalism in term
action-angle variables can be achieved.

As we have shown, for dealing with the soliton solution,~1! and ~2! are equivalent. This is
easy to understand because in the frame moving with the soliton,u→0 whenx or t→`. Never-
theless, the initial condition becomes relevant when dealing with a physics system. For ex
as perturbation is involved, the initial problem will play an important role.17 The importance of the
initial condition has been pointed out by Wadatiet al.11,13–15In the case of pure imaginaryl, the
full Jost solutions shall tend to infinite or vanish asutu→`. The control of instability in physics
system has been discussed by Wadatiet al.13,15 This problem needs further investigations.

APPENDIX A

The expression of the conservative quantity can be obtained from the asymptotic beha
the Jost solutions. The first Lax equation~10! can be expressed as

f1x5~2 i2l21 i uuu2!f11~ iut12lu!f2 , ~A1!

f2x5~ i2l22 i uuu2!f21~2 i ū t12lū!f1 . ~A2!

Here

f5S f1

f1
D .

Taking the derivative with respect tox in ~A1!, one can get an equation that just containsf1 by
substituting~A2!. Introducing

f1~x,l!5e~2 i2l2x1f̂ !, ~A3!

we have
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m22 i4l2m1u iut12luu22uuu2~4l22uuu2!5~ iut12lu!S i uuu22m

iut12luD
x

, ~A4!

here

m5f̂x . ~A5!

From ~13!, we know that

as ulu→`, f̂→0 f̂x→0. ~A6!

Consequently,m can be expanded as

m5(
j 51

`
m j

~ i2l! j . ~A7!

Substituting~A7! back to~A4!, one can find

m152 i ~utū2uūt!, ~A8!

m25 i uutu22 i uuu41~ uuu2!x2ūux , ~A9!

etc. From~A7!, we can expressf̂ as

f̂5(
j 51

`
f̂ j

~ i2l! j . ~A10!

Here

f̂ i5E
2`

x

dy m i . ~A11!

On the other hand, from~16!, ~17!, and~13!, we have

a~ t,l!5 lim
x→`

f1~x,t,l!ei2l2x. ~A12!

Taking account of~A3!, one can find

ln a~ t,l!5 lim
x→`

f̂~x,t,l!. ~A13!

By using ~A10! and ~A11!, we have

ln a~ t,l!5(
j 51

`
I j

~ i2l! j . ~A14!

Here

I j5E
2`

`

m j~x,t !dx. ~A15!

Owing to the fact thata(t,l) is t independent, all theI j are conservative. By substituting~A9! into
~A15!, we get Eq.~37!.
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APPENDIX B

From ~53! to ~57!, we can find the explicit expression of~58!

u~x!Fk2
21~x,l8!C1l~x,l8!@C21~x,l!s3F~x,l!# i j 2u~x!C i1

21~x,l!F2 j~x,l!

3@F21~x,l8!s3C~x,l8!#kl1u~x!C i2
21~x,l!F1 j~x,l!@F21~x,l8!s3C~x,l8!#kl

2u~x!Fk1
21~x,l8!C2l~x,l8!@C21~x,l!s3C~x,l!# i j 12i ~l1l8!

3$C i1
21~x,l!C1l~x,l8!Fk2

21~x,l8!F2 j~x,l!2C i2
21~x,l!C2l~x,l8!Fk1

21~x,l8!F1 j~x,l!%.

~B1!

On the other hand, by employing the first Lax equation~10!, we have

]x@C21~x,l!C~x,l8!# i l 5~l2l8!$@2i ~l1l8!@C i1
21~x,l!C1l~x,l8!

2C i2
21~x,l!C2l~x,l8!#22@C21~x,l!U~x,t !C~x,l8!# i l %

~B2!

and

]x@F21~x,l!F~x,l8!#k j5~l2l8!$@2i ~l1l8!@Fk1
21~x,l!F1 j~x,l8!

2Fk2
21~x,l!F2 j~x,l8!#22@F21~x,l!U~x,t !F~x,l8!#k j%.

~B3!

By using the above equations, we can find out the explicit expression of

]x$@C21~x,l!C~x,l8!# i l @F21~x,l8!F~x,l!#k j%. ~B4!

One can reach the result of~59! by comparing the expression of~B4! and ~B1!.

APPENDIX C

In the appendix, we provide the derivation of the Poisson bracket~78! without introducing the
assumption of compact support ofu. From ~22!, we have

bn5
f1~x,ln!

c1~x,ln!
5

f2~x,ln!

c2~x,ln!
. ~C1!

Taking account of this expression and~18!, to evaluate the Poisson bracket$a(l),bn% we need to
know the Poisson brackets of all components of the Jost solutions.

Since we know that

dF~z,l! i j

du~x!
Þ0 for x,z, ~C2!

etc., and

dC~z,l!kl

du~x!
Þ0 for x.z, ~C3!

etc., the integrand of the Poisson bracket$F(x,l) i j ,C(x,l8)kl% vanishes because two factors
each term cannot be unequal to zero simultaneously, this implies that,
                                                                                                                



nishes,

uate the

b-

2947J. Math. Phys., Vol. 40, No. 6, June 1999 Chen, Chen, and Huang

                    
$F~x,l! i j ,C~x,l8!kl%50. ~C4!

By the Jacobi property the Poisson bracket of the same components of the Jost solutions va
that is,

$F~x,l! i j ,F~x,l8! i j %5$C~x,l! i j ,C~x,l8! i j %50. ~C5!

The nonvanishing Poisson brackets of the components of the Jost solutions needed to eval
Poisson bracket$a(l),bn% are $f1(x,l),f2(x,l8)% and $c1(x,l),c2(x,l8)%. By using the ex-
pressions of elements of~42!, etc., we find

$f1~x,l!,f2~x,l8!%5
1

2

1

l2l8
@f1~x,l!f2~x,l8!2f1~x,l8!f2~x,l!#, ~C6!

and

$c1~x,l!,c2~x,l8!%52
1

2

1

l2l8
@c1~x,l!c2~x,l8!2c1~x,l8!c2~x,l!#. ~C7!

The above formulas are valid whenl or l8 is equal toln .
We now have

$a~l!,bn%5$a~l!,f1~x,ln!%
1

c1~ln!
2$a~l!,c1~x,ln!%

f1~ln!

c1~x,ln!2 . ~C8!

By using the above formulas, we obtain

$a~l!,f1~x,ln!%52c1~x,l!$f2~x,l!,f1~x,ln!%, ~C9!

and

$a~l!,c1~x,ln!%5f1~x,l!$c2~x,l!,c1~x,ln!%. ~C10!

Substituting~C6!–~C10! into ~C8!, we obtain

$a~l!,bn%52
1

2

1

l2ln
a~l!bn2

1

2

1

l2ln
c1~x,l!f1~x,l!Ff2~x,ln!

c1~x,ln!
2

c2~x,ln!f1~x,ln!

c1~x,ln!2 G .
~C11!

The last term vanishes by~C1!. Hence we finally obtain the Poisson bracket of$a(l),bn%. Other
Poisson brackets involvingbn can be found in the same way.
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The nonlinear Schro¨dinger equation on the half line with mixed boundary condition
is investigated. After a brief introduction to the corresponding classical boundary
value problem, the exact second quantized solution of the system is constructed.
The construction is based on a new algebraic structure, which is called in what
follows boundary algebra and which substitutes, in the presence of boundaries, the
familiar Zamolodchikov–Faddeev algebra. The fundamental quantum field theory
properties of the solution are established and discussed in detail. The relative scat-
tering operator is derived in the Haag–Ruelle framework, suitably generalized to
the case of broken translation invariance in space. ©1999 American Institute of
Physics.@S0022-2488~99!01406-1#

I. INTRODUCTION

The general interest in quantization on the half lineR15$xPR:x.0% stems from the re-
cently growing number of applications in different physical areas, including open string th
dissipative quantum mechanics, and quantum impurity problems. In the last few years, imp
progress has been made in this subject by means of conformal field theory. Focusing
nonlinear Schro¨dinger ~NLS! model onR1 , in the present paper we explore the possibility
employ integrability.

Let us recall that when considered on the whole lineR, the NLS model represents one of th
most extensively studied nonrelativistic integrable systems~see, e.g., Ref. 1!. The corresponding
equation of motion is

~ i ] t1]x
2!F~ t,x!52guF~ t,x!u2F~ t,x!, ~1.1!

whereF(t,x) is a classical complex field. The model on the half line is obtained restricting
~1.1! on R1 , supplemented with the boundary condition

lim
x↓0

~]x2h!F~ t,x!50. ~1.2!

Hereh is a dimensionful parameter of the theory. Forh50 and in the limith→` one recovers
from Eq. ~1.2! the familiar Neumann and Dirichlet boundary conditions respectively. To
knowledge, the boundary value problem~1.1!–~1.2! has been first investigated by Sklyanin2 and
Fokas,3 who have shown that the integrability, which holds for the system on the whole
persists also on the half line. Our main goal below will be to construct the exact second qua
solution of Eqs.~1.1! and ~1.2!, in the caseg>0, h>0. Concretely, this means

~1! To construct a Hilbert spaceHg,h describing the states of the system;
29490022-2488/99/40(6)/2949/22/$15.00 © 1999 American Institute of Physics
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~2! To define on an appropriate dense domain inHg,h an operator valued distributionF(t,x),
x.0, satisfying, in a sense that will be made precise below, the equation of motion~1.1!, the
boundary condition~1.2! and the equal time canonical commutation relations

@F~t,x!,F~t,y!#5@F* ~t,x!,F* ~t,y!#50, ~1.3!

@F~t,x!,F* ~t,y!#5d~x2y!, ~1.4!

whereF* is the Hermitian conjugate ofF;
~3! To show the existence of a vacuum stateV in the above mentioned domain, which is cyc

with respect to the fieldF* .

The analogous construction in the case of the whole real line has been carried out som
ago4–9 by means of the quantum inverse scattering transform. The basic algebraic tool o
approach is the Zamolodchikov–Faddeev10 ~ZF! algebraAR—an appropriate generalization of th
canonical commutation relations which incorporates the two-body scattering matrixR. We will
show below that the half line system can be treated in the framework of inverse scattering a
the relevant algebraic structure being now the so called boundary algebraBR . In the same way as
the ZF algebra has been conceived10 to represent the factorized scattering of integrable system
the line, the general concept of boundary algebra11 is inspired by Cherednik’s scattering theory12

of integrable systems on the half line. The fundamental feature ofBR is that it encodes both the
nontrivial scattering between particles and the reflection from the boundary atx50.

A preliminary account without proofs, which partially covers the results presented belo
given in Ref. 13. This paper is organized as follows. In the next section we summarize
known, but useful facts, about the classical NLS model both onR andR1 . Section III represents
a summary of those fundamental properties ofBR and its Fock representations, which are need
in the quantization. In Sec. IV we define the quantum fieldF(t,x) and establish its kinematic
properties, verifying the canonical commutation relations~1.3!–~1.4!. The dynamics is investi-
gated in Sec. V, where it is shown that Eqs.~1.1! and~1.2! are indeed satisfied. We sketch the
also the derivation of the correlation functions. Section VI is devoted to the asymptotic theo
the NLS model onR1 . The last section contains our conclusions.

II. THE CLASSICAL NLS MODEL

The study of the classical NLS equation has a long story. Without entering the details, w
collect in this section some basic facts providing useful hints for the quantization.

A. NLS on the real line

The equation of motion~1.1! on R is obtained by varying the action

A@F,F̄#5E
R
dtE

R
dx@ i F̄~ t,x!] tF~ t,x!2u]xF~ t,x!u22guF~ t,x!u4#. ~2.1!

The system admits an infinite number of integrals of motion, the energy

E@F,F̄#5E
R
dx@ u]xF~ t,x!u21guF~ t,x!u4# ~2.2!

being one of them. Notice thatE@F,F̄# is non-negative as long asg>0. This constraint has an
important role in the quantum version of the theory.

About 20 years ago Rosales14 discovered that Eq.~1.2! on R admits solutions of the form

F~ t,x!5 (
n50

`

~2g!nF~n!~ t,x!, ~2.3!
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where

F~0!~ t,x![l̃~ t,x!5E
R

dq

2p
l~q!eixq2 i tq2

, ~2.4!

solves the free Schro¨dinger equation and

F~n!~ t,x!5E
R2n11 )

i 51
j 50

n
dpi

2p

dqj

2p
l̄~p1!¯l̄~pn!l~qn!¯l~q0!

eiS j 50
n

~xqj 2tqj
2
!2 iS i 51

n
~xpi2tpi

2
!

P i 51
n @~pi2qi 21!~pi2qi !#

.

~2.5!

The integration in~2.5! is defined by the principal value prescription and one assumes thatl(k)
is a function for which the integrals~2.4! and~2.5! exist and the series~2.3! converges uniformly
in x for sufficiently smallg. It is not difficult to argue that there is a large set of such functions;
l belonging to the Schwartz test function spaceS(R) meets for instance the above requiremen
In fact, expressingF (n)(t,x) in terms ofl̃(t,x), one finds

F~n!~ t,x!5E
R2nF)i 51

n

dyidzilS ~ t,yi !l̃~ t,zi !G l̃S t,x1(
i 51

n

yi2zi Ds~x;y1 ,z1 ,...,yn ,zn!,

~2.6!

where

s~x;y1 ,z1 ,...,yn ,zn!542n )
i 51

n

eS x1(
j 51

i 21

yj2 (
k51

i

zkD eS (
j 51

i

~yj2zj !D , ~2.7!

ande(x) denotes the sign ofx. Therefore,

uF~n!~ t,x!u<E
R2nF)i 51

n

dyidzi ul̃~ t,yi !l̃~ t,zi !uGUl̃S t,x1(
i 51

n

yi2zi DU. ~2.8!

At the other hand, using standard estimates one can deduce that for anyl(k)PS(R) there exist
two positive constantsL1 andL2 such that

E
R
dxul̃~ t,x!u<L1~11utu!, sup

xPR
ul̃~ t,x!u<L2 . ~2.9!

Combining Eqs.~2.8! and ~2.9! we conclude that the series~2.3! converges uniformly inx for

g,@L1~11utu!#22. ~2.10!

The main reason for focusing on the result of Rosales is because it turns out5–9 that the general
structure of the solutions~2.3!–~2.5! is preserved by the quantization. From this point of view it
instructive to investigate the behavior of~2.3!–~2.5! when the system is restricted onR1 .

B. NLS on the half line

The relative action, giving rise both to the equation of motion~1.1! on R1 and the boundary
condition ~1.2! is

A@F,F̄#5E
R
dtE

R1

dx@ i F̄~ t,x!] tF~ t,x!2u]xF~ t,x!u22guF~ t,x!u4#2hE
R
dtuF~ t,0!u2.

~2.11!
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This action is invariant under time translations, which leads to conservation of the energy

E@F,F̄#5E
R1

dx@ u]xF~ t,x!u21guF~ t,x!u4#1huF~ t,0!u2. ~2.12!

Positivity impliesg>0 andh>0, which is the case we are going to analyze below.
The series~2.3!, being a solution of the NLS equation onR, is a fortiori a solution when

restricted onR1 . In general however, it does not satisfy the boundary condition~1.2!. In this
respect, one has the following:

Proposition 1:F(t,x) obeys the boundary condition (1.2), provided thatl(k) satisfies

l~k!5B~k!l~2k!, ~2.13!

where

B~k!5
k2 ih

k1 ih
. ~2.14!

Proof: Using ~2.13!, we will show thatF (n)(t,x) satisfies~1.2! for any n>0. For n50 the
statement is obvious. So, let us focus onF (n)(t,x) with n>1. Changing variables in Eq.~2.5!
according to

k2i 215pi , k2 j52qj , i 51,...,n, j 50,...,n, ~2.15!

one finds

lim
x↓0

~]x2h!F~n!~ t,x!5E
R2n11 )

j 50

2n
dkj

2p
f ~n!~k0 ,...,k2n!l̄~k1!¯l̄~k2n21!

3l~2k2n!¯l~2k0!e2 i tS j 50
2n

~21! j kj
2
, ~2.16!

where

f ~n!~k0 ,...,k2n!5
S j 50

2n kj2 ih

iP j 51
2n ~kj1kj 21!

. ~2.17!

Using the simple relations

B~k!B~2k!5B~k!B̄~k!51, ~2.18!

one concludes thatf (n) in Eq. ~2.16! can be equivalently replaced by itsB-symmetrized counter-
part

f B
~n!~k0 ,...,k2n!5 (

s0 ,...,s2nP$21,1%

1

4n S )
j 50

2n
kj1 is jh

kj1 ih D S j 50
2n s j kj2 ih

iP j 51
2n ~s j kj1s j 21kj 21!

. ~2.19!

We shall show now thatf B
(n) vanishes identically. Equation~2.19! can be given the more conve

nient form

f B
~n!~k0 ,...,k2n!5

N~n!~k0 ,...,k2n!

4niP j 50
2n ~kj1 ih!P j 51

2n ~kj
22kj 21

2 !
,

where
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N~n!~k0 ,...,k2n!5 (
s0 ,...,s2nP$21,1%

)
j 50

2n

~kj1 is jh!)
j 51

2n

~s j kj2s j 21kj 21!S (
j 50

2n

s j kj2 ih D .

~2.20!

The final step is to prove then that the numeratorN(n) vanishes. One way to show the validity o
this quite remarkable identity, is to introduce the auxiliary function

M ~n!~k0 ,...,k2n!5 (
s0 ,...,s2nP$21,1%

~s0k02 ih!)
j 50

2n

~kj1 is jh!)
j 51

2n

~s j kj2s j 21kj 21!.

~2.21!

Now, after some algebra one derives the recurrence relations

N~n!~k0 ,...,k2n!524k0k1~k1
21h2!N~n21!~k2 ,...,k2n!14k0k1~k1

22k0
2!M ~n21!~k2 ,...,k2n!,

~2.22!

M ~n!~k0 ,...,k2n!524k0k1~k0
21h2!M ~n21!~k2 ,...,k2n!. ~2.23!

SinceN(0)(k0)5M (0)(k0)50, Eqs.~2.22! and ~2.23! imply by induction that

N~n!~k0 ,...,k2n!50, M ~n!~k0 ,...,k2n!50, ~2.24!

which completes the argument.
We conclude here the brief introduction to the classical boundary value problem~1.1!–~1.2!.

Our next step will be to establish the quantum counterparts of the solution~2.3!–~2.5! and the
constraint~2.13!.

III. THE BOUNDARY ALGEBRA

As already mentioned in the Introduction, our basic algebraic tool will be a particular a
ciative algebraBR , whose generators satisfy specific quadratic relations.

A. Definition of BR

The concept of boundary algebra has been introduced and investigated in a general co
Ref. 11. Here we will consider the following special case. LetR:R3R→C be a measurable
function satisfying

R~k1 ,k2!R~k2 ,k1!5R~k1 ,k2!R̄~k1 ,k2!51. ~3.1!

The boundary algebraBR is generated by the operator valued distributions$a(k),a* (k),b(k):k
PR%, satisfying quadratic exchange relations, which can be conveniently grouped in two set
first one is

a~k1!a~k2!2R~k2 ,k1!a~k2!a~k1!50, ~3.2!

a* ~k1!a* ~k2!2R~k2 ,k1!a* ~k2!a* ~k1!50, ~3.3!

a~k1!a* ~k2!2R~k1 ,k2!a* ~k2!a~k1!52pd~k12k2!1b~k1!2pd~k11k2!. ~3.4!

The second set of constraints describes the exchange relations ofb(k) and reads

a~k1!b~k2!5R~k2 ,k1!R~k1 ,2k2!b~k2!a~k1!, ~3.5!

b~k2!a* ~k1!5R~k2 ,k1!R~k1 ,2k2!a* ~k1!b~k2!, ~3.6!

b~k1!b~k2!5b~k2!b~k1!. ~3.7!
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Notice that if we formally setb(k)→0, the relations~3.5!–~3.7! trivialize, while ~3.2!–~3.4!
reproduce the defining relations of the ZF algebraAR . As it is well known, the factorized
scattering of 111 dimensional integrable systems is encoded inAR , i.e., in a boundary algebra in
which the so called boundary operatorb(k) is trivially implemented. On the contrary, it turns out11

that whenever there is a reflecting boundary, one needs areflection boundary algebra, i.e., a
boundary algebra with the additional constraint

b~k!b~2k!51, ~3.8!

which obviously prevents the boundary operator from being zero. In the case of the NLS o
half line, we shall need a reflection boundary algebraBR with exchange factor

R~k1 ,k2!5
k12k22 ig

k12k21 ig
, ~3.9!

whereg>0 is the coupling constant of the NLS model.R(k1 ,k2) is actually the two-body bulk
scattering matrix of the NLS model4–9 and satisfies~3.1!.

B. Fock representations

Following some basic ideas of Ref. 15, we have constructed in Ref. 11 the Fock repre
tions ofBR . These representations are characterized by the existence of a vacuum stateV, which
is cyclic with respecta* (k) and satisfies

a~k!V50. ~3.10!

In the reflection case~3.8!, the vacuum is11 always an eigenvector of the boundary operatorb(k),
i.e.,

b~k!V5B~k!V, ~3.11!

whereB(k) is a measurable function obeying Eq.~2.18!. Conversely, anyB(k) of this type defines
a Fock representation on a Hilbert spaceFR,B , whose vacuum satisfies~3.11!. We will show
below that the state spaceHg,h of the NLS model onR1 is

Hg,h5FR,B , ~3.12!

with B andR given by~2.14! and~3.9!, respectively. The mere fact that our system has a boun
shows up at the algebraic level, turning the ZF algebra into a reflection boundary algebraBR , i.e.,
forcing a nonzero boundary operatorb(k). The details of the boundary condition~the value of the
parameterh! enter at the representation level through the reflection coefficientB(k). In the Fock
spaceFR,B one has

a~k!5b~k!a~2k!, ~3.13!

a* ~k!5a* ~2k!b~2k!, ~3.14!

which descend from a peculiar automorphism ofBR , established in Ref. 11. The relation~3.13!
turns out to be the correct quantum analogue of Eq.~2.13!. Let us stress once more that th
c-number reflection coefficientB(k) must be distinguished from the boundary generatorb(k),
which according to Eqs.~3.5! and ~3.6! does not even commute with$a(k),a* (k)%.

To the end of this section we will give some details about the structure ofFR,B which are
needed for our construction. One has
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FR,B[ %
n50

`

HR,B
n , ~3.15!

whereHR,B
0 [C and then-particle spaceHR,B

n with n>1 is a subspace ofL2(Rn) defined as
follows:

~i! a L2-function w(p1) belongs toHR,B
1 if and only if

w~p1!5B~p1!w~2p1!; ~3.16!
~ii ! a L2-function w(p1 ,...,pn) with n>2 belongs toHR,B

n if and only if

w~p1,...,pn21,pn!5B~pn!w~p1,...,pn21,2pn!, ~3.17!
and

w~p1,...,pi ,pi11,...,pn!5R~pi ,pi11!w~p1,...,pi11,pi ,...,pn!, ~3.18!

for any 1< i<n21.

Equations~3.16!–~3.18! define a closed subspaceHR,B
n ,L2(Rn). We will denote byPR,B

(n) the
corresponding orthogonal projection operator. We introduce also the finite particle
FR,B

0 ,FR,B , generated by$HR,B
n : n50,1,...%. We recall thatFR,B

0 is the linear space of sequenc
w5(w (0),w (1),...,w (n), ...) with w (n)PHR,B

n andw (n)50 for n large enough. The vacuum state
V5(1,0,...,0,...). TheL2-scalar product onHR,B

n defines in the standard way the scalar prod
^•,•& in the ~Hilbert! direct sum~3.15!.

At this point we are in position to define onFR,B
0 the annihilation and creation operato

$a( f ),a* ( f ): f PL2(R)%. We seta( f )V50 and

@a~ f !w#~n!~p1 ,...,pn!5An11E
R

dp

2p
f̄ ~p!w~n11!~p,p1 ,...,pn!, ~3.19!

@a* ~ f !w#~n!~p1 ,...,pn!5An@PR,B
~n! f ^ w~n21!#~p1 ,...,pn!, ~3.20!

for all wPFR,B
0 . The operatorsa( f ) anda* ( f ) are in general unbounded onFR,B

0 . One can easily
see however thata( f ) anda* ( f ) are bounded on eachHR,B

n . In fact, for allwPHR,B
n one has the

estimates

ia~ f !wi<Ani f iiwi , ia* ~ f !wi<An11i f iiwi , ~3.21!

i•i being theL2-norm. Notice also thata* ( f ) is linear in f, whereasa( f ) is antilinear. The
operator-valued distributionsa(p) and a* (p), generating the Fock representation ofBR , are
defined by

a~ f !5E
R

dp

2p
f̄ ~p!a~p!, a* ~ f !5E

R

dp

2p
f ~p!a* ~p!, ~3.22!

and are related by Hermitian conjugation, namely

^w,a~ f !c&5^a* ~ f !w,c&, ;w,cPFR,B
0 . ~3.23!

Finally, the action of the boundary generatorb(p) on FR,B
0 is defined by Eq.~3.11! and
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@b~p!w#~n!~p1 ,...,pn!

5@R~p,p1!R~p,p2!¯R~p,pn!B~p!R~pn ,2p!¯R~p2 ,2p!R~p1 ,2p!#w~n!~p1 ,...,pn!.

~3.24!

One can show11 that $a(p),a* (p),b(p)%, defined above, indeed satisfy the exchange relati
~3.2!–~3.7! and the reflection condition~3.8!. Moreover, the vacuumV obeys the requirement
formulated in the beginning of this subsection.

It is convenient to introduce here a domainD,FR,B , which will be frequently used in wha
follows. Setting

D0[C, Dn[H E
Rn

dp1¯dpnf ~p1 ,...,pn!a* ~p1!¯a* ~pn!V: f PS~Rn!,n>1J , ~3.25!

we defineD to be the linear space of sequencesw5(w (0),w (1),...,w (n),...), wherew (n)PDn and
w (n) vanish forn large enough. By constructionD is a proper subspace ofFR,B

0 . Nevertheless,D
is dense inFR,B as well. Indeed, using that the factorsR and B are smooth~i.e., C`) bounded
functions, one has thatDn is dense inHR,B

n , which implies the statement. We observe that

a~ f !D,D, a* ~ f !D,D, ; f PS~R!. ~3.26!

Notice also that the matrix elements ofa* (k) between states fromD are smooth functions ofk.
More generally, one has

^w,a* ~k1!¯a* ~kn!c&PS~Rn!, ;w,cPD. ~3.27!

Summarizing, we introduced in this section the boundary algebraBR and its Fock represen
tation FR,B , which are the main ingredients in the construction of the quantum solution o
boundary value problem~1.1!–~1.2!.

IV. QUANTIZATION

A. The quantum field F„t ,x …

Our first step will be to introduce the quantum analog ofF (n)(t,x). For this purpose we
consider

F~0!~ t,x![ã~ t,x!5E
R

dq

2p
a~q!eixq2 i tq2

, ~4.1!

F~n!~ t,x!5E
R2n11 )

i 51
j 50

n
dpi

2p

dqj

2p
a* ~p1!¯a* ~pn!a~qn!¯a~q0!

3
ei ( j 50

n
~xqj 2tqj

2
!2 i ( i 51

n
~xpi2tpi

2
!

P i 51
n @~pi2qi 212 i e!~pi2qi2 i e!#

, ~4.2!

thus replacing formally$l(p),l̄(p)% in Eqs.~2.4! and~2.5! by the generators$a(p),a* (p)% of BR

in the Fock representationFR,B and fixing ani e prescription to contour poles. Our first task w
be to give meaning ofF (n)(t,x) as a quadratic form inD.

Proposition 2: For anyw,cPD, the expectation value

^w,F~n!~ t,x!c&, ~4.3!

is a C` function of t,x.
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Proof: The casen50 is trivial. For n>1 it is enough to takewPDm and cPDm11 with
m.n. Some elementary algebra leads to

^w,F~n!~ t,x!c&5E
Rm1n11 )

i 151

n dpi 1

2p )
i 250

n dqi 2

2p )
i 35n11

m dki 3

2p
w̄~p1 ,...,pn ,kn11 ,...,km!

3
ei ( j 50

n
~xqj 2tqj

2
!2 i ( i 51

n
~xpi2tpi

2
!

P i 51
n @~pi2qi 212 i e!~pi2qi2 i e!#

c~q0 ,...,qn ,kn11 ,...,km!, ~4.4!

which, using thatw andc are Schwartz test functions, implies the proposition.
Taking into account thatD contains only finite particle vectors, we conclude that alsoF(t,x)

is a quadratic form onD, smooth in botht andx. The conjugateF* (t,x) is defined by

^w,F* ~ t,x!c&5^c,F~ t,x!w&, ~4.5!

which is of course smooth int andx as well. The counterparts of Eqs.~4.1! and ~4.2! read

F* ~0!~ t,x![ã* ~ t,x!5E
R

dq

2p
a* ~q!e2 ixq1 i tq2

, ~4.6!

F* ~n!~ t,x!5E
R2n11 )

i 51
j 50

n
dpi

2p

dqj

2p
a* ~q0!¯a* ~qn!a~pn!¯a~p1!

3
ei ( i 51

n
~xpi2tpi

2
!2 i ( j 50

n
~xqj 2tqj

2
!

P i 51
n @~pi2qi 211 i e!~pi2qi1 i e!#

. ~4.7!

Since the system we are considering is inR1 , we adopt the smearing

F~ t, f !5E dx f̄~x!F~ t,x!, F* ~ t, f !5E dx f~x!F* ~ t,x!, f PC0
`~R1!, ~4.8!

whereC0
`(R1) is the set of infinitely differentiable functions with compact support inR1 . Again,

F(t, f ) andF* (t, f ) have meaning as quadratic forms onD, which are related by

^w,F* ~ t, f !c&5^c,F~ t, f !w&. ~4.9!

In order to formulate some other less obvious properties ofF(t, f ) andF* (t, f ), we have to
introduce the following partial ordering relation inC0

`(R1). Let f 1 , f 2PC0
`(R1). Then

f 1a f 2⇔x1,x2;x1Psuppf 1 , ;x2Psuppf 2 . ~4.10!

Instead off 1a f 2 , we will also write f 2s f 1 . Denoting byã* (t, f ) the operator

ã* ~ t, f !5E dx f~x!ã* ~ t,x!, ~4.11!

one can prove the following technical
Lemma 1: Letw,cPD.

~a! The identity

^w,F* ~t,h!ã* ~t,f !c&5^w,ã* ~t,f !F* ~t,h!c&, ~4.12!
holds if ha f ;
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~b! One has

^w,F* ~t,h!ã* ~t,f1!¯ã* ~t,fn!V&5^w,ã* ~t,h!ã* ~t,f1!¯ã* ~t,fn!V&, ~4.13!
provided that hs f j for any j51,...,n;

~c! For any f1s f 2s¯s f n , one has

^w,F~t,h!ã* ~t,f1!ã* ~t,f2!¯ã* ~t,fn!V&5(
j51

n

~h,f j!^w,ã* ~t,f1!¯ẫ* ~t,f j!¯ã* ~t,fn!V&,

~4.14!
where (•,•) denotes the L2-scalar product and the hat indicates that the corresponding fi
must be omitted.

Proof: The proof of the identities~4.12!–~4.14! is analogous to that given by Davies8 for the
NLS on R, so we skip it. We only remark that the novelty onR1 consists in evaluating the
contributions of the boundary generatorb, which stem from the exchange ofa anda* . It is easy
to see that these contributions actually vanish, due to the support requirements imposed on
functions and the conditionh>0.

Summarizing,F(t, f ) andF* (t, f ) have been so far defined as quadratic forms onD and are
Schwartz distributions with respect tof. Our main goal to the end of this subsection will be
show thatF(t, f ) andF* (t, f ) are actually well defined operators. In order to construct a c
mon invariant domain for these operators, we introduce the subspace

D0
n[sp$ã* ~ t, f 1!ã* ~ t, f 2!¯ã* ~ t, f n!V: f 1s f 2s¯s f n%,HR,B

n , n>1, ~4.15!

where sp indicates the linear span andtPR is arbitrary but fixed. SettingD0
05C, we defineD0 to

be the linear space of sequencesw5(w (0),w (1),...,w (n),...) with w (n)PD0
n andw (n)50 for n large

enough. BothD andD0 are subspaces of the finite particle spaceFR,B
0 . We know already thatD

is dense inFR,B . Although it is less obvious, the same is true forD0 .
Proposition 3:D0 is dense inFR,B .
Proof. It is enough to demonstrate that the spaceD0

n is dense inHR,B
n for any tPR and n

>1. So, let us consider the matrix element

Ãt,w~x1 ,...,xn![^w,ã* ~ t,x1!¯ã* ~ t,xn!V&, ~4.16!

wherewPDn is arbitrary. According to Eq.~3.27!, Ãt,wPS(Rn). In order to prove the statemen
it is sufficient to show that

Ãt,w~x1 ,...,xn!50, ;x1.x2.¯.xn.0, ~4.17!

implies w50. It is convenient for this purpose to investigate

At,w~p1 ,...,pn![E
Rn )

j 51

n

dxje
i ( j 51

n pjxj Ãt,w~x1 ,...,xn!

5eit ( j 51
n pj

2
^w,a* ~p1!¯a* ~pn!V&PS~Rn!. ~4.18!

The behavior of this function under the reflection of one of its arguments or the exchange o
consecutive arguments is determined by Eqs.~3.3!, ~3.6!, ~3.11!, ~3.14!. Using this fact, one can
verify that the function

Bt,w~p1 ,...,pn![L~p1 ,...,pn!At,w~p1 ,...,pn!, ~4.19!

where
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L~p1 ,...,pn![)
j 51

n F ~pj2 ih!)
k51
k. j

n

~pj2pk2 ig !~pj1pk2 ig !G ~4.20!

satisfies

Bt,w~p1 ,...,pj ,...,pn!52Bt,w~p1 ,...,2pj ,...,pn!, ; j 51,...,n, ~4.21!

Bt,w~p1 ,...,pj ,pj 11 ,...,pn!52Bt,w~p1 ,...,pj 11 ,pj ...,pn!, ; j 51,...,n21. ~4.22!

By constructionBt,wPS(Rn) and

B̃t,w~x1 ,...,xn!5E
Rn )

j 51

n
dpj

2p
e2 i ( j 51

n pjxjBt,w~p1 ,...,pn!5L~ i ]1 ,...,i ]n!Ãt,w~x1 ,...,xn!,

~4.23!

admits the same antisymmetry properties asBt,w . Therefore, using the smoothness ofÃt,w and Eq.
~4.17!, we deduce thatB̃t,w vanishes identically, or equivalently,

Bt,w~p1 ,...,pn!50, ;pjPR. ~4.24!

Combining Eqs.~4.18!, ~4.19!, ~4.24! with the fact thatL(p1 ,...,pn)Þ0 for anypjPR, one gets

^w,a* ~p1!¯a* ~pn!V&50, ;pjPR, ~4.25!

which, because of the cyclicity ofV with respect toa* , implies w50. This concludes the
argument.

It is convenient in what follows to have an explicit formula for the scalar product inD0 . It is
provided by the following:

Lemma 2: Let f1s f 2s¯s f n and h1sh2s¯shn . Then

^ã* ~ t,h1!¯ã* ~ t,hn!V,ã* ~ t, f 1!¯ã* ~ t, f n!V&5~h1^¯^ hn , f 1^¯^ f n!. ~4.26!

Proof: It is enough to expand the left hand side, using the algebraic relations~3.4! and Eq.
~3.10!. Taking into account the support properties of the test functions involved, all terms, e
the one in the right-hand side of~4.26!, vanish.

A simple corollary of the previous lemma is now in order. Since anywPD0
n can be repre-

sented as

w5 (
aPA

ã* ~ t, f 1
a!¯ã* ~ t, f n

a!V,

whereA is a finite set andf 1
as f 2

as¯s f n
a for all aPA, one has that

^w,w&2[iwi25 I (
aPA

f 1
a

^¯^ f n
aI 2

. ~4.27!

We are now in position to show the following:
Proposition 4: The estimate

u^w,F~ t, f !c&u<~n11!i f iiwiici ~4.28!

holds for anywPD0
n , cPD0

n11, and fPC0
`(R1).

Proof: Let
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w5 (
aPA

ã* ~ t, f 1
a!¯ã* ~ t, f n

a!V, c5 (
bPB

ã* ~ t,h0
b!¯ã* ~ t,hn

b!V, ~4.29!

with f 1
as f 2

as¯s f n
a andh0

bsh1
bs¯shn

b . Then

^w,F~ t, f !c&5 (
aPA

(
bPB

^ã* ~ t, f 1
a!¯ã* ~ t, f n

a!V,F~ t, f !ã* ~ t,h0
b!¯ã* ~ t,hn

b!V&

5 (
aPA

(
bPB

(
j 50

n

~ f ,hj
a!~ f 1

a
^¯^ f n

a ,h0
b

^¯^ ĥ j
b

^¯^ hn
b!

5(
j 50

n S (
aPA

f 1
a

^¯^ f j 21
a

^ f ^ f j
a

^¯^ f n
a , (

bPB
h0

b
^¯^ hj

b
^¯^ hn

bD ,

where use has been made of point~c! of Lemma 1. Applying now the Minkowski inequality, on
finds

u^w,F~ t, f !c&u<(
j 50

n

i f i I (
aPA

f 1
a

^¯^ f n
aI I (

bPB
h0

b
^¯^ hn

bI<~n11!i f iiwiici .

~4.30!

The above proposition shows thatF(t, f ), considered as quadratic form, is bounded onD0
n

3D0
n11 and defines therefore a bounded operatorHR,B

n11→HR,B
n . Since this occurs for anyn>0,

we recover an operatorF(t, f ):FR,B
0 →FR,B

0 , whose properties are collected in
Theorem 1: F(t, f ):FR,B

0 →FR,B
0 is a linear operator, satisfying

F~ t, f !V50, F~ t, f !:HR,B
n11→HR,B

n , n>0. ~4.31!

Moreover, for anyw,cPFR,B
0 , the matrix element̂w,F(t, f )c& has the following properties:

~i! It is antilinear and L2-continuous in f;
~ii ! It is continuous in tPR;
~iii ! It is smooth in tPR, provided thatw,cPD.

Proof: All the statements are simple corollaries of the above propositions.
The operatorF(t, f ) is densely defined and admits therefore a Hermitian conjugateF* (t, f ).
Theorem 2: The fieldF* (t, f ) satisfies

F* ~ t, f !V5ã* ~ t, f !V, F* ~ t, f !:HR,B
n →HR,B

n11, n>0, ~4.32!

and therefore leavesFR,B
0 invariant. Moreover

^w,F~ t, f !c&5^F* ~ t, f !w,c&, ~4.33!

holds for anyw,cPFR,B
0 .

Proof: One uses the fact thatF(t, f ) is bounded on eachHR,B
n .

We will show now that the operatorsF(t, f ) andF* (t, f ) satisfy the basic requirements fo
nonrelativistic quantum fields.

B. Cyclicity of V and commutation relations

We start with
Theorem 3 „Cyclicity…: The vacuumV is a cyclic vector for the fieldF* . More precisely the

space
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E0
n[sp$F* ~ t, f 1!F* ~ t, f 2!¯F* ~ t, f n!V: f 1a f 2a¯a f n%,

is dense inHR,B
n .

Proof: Using Eqs.~4.12!–~4.13! of Lemma 1, one easily proves by induction that

F* ~ t, f 1!F* ~ t, f 2!¯F* ~ t, f n!V5ã* ~ t, f n!¯ã* ~ t, f 1!V, ~4.34!

as long asf 1a f 2a¯a f n . ThusE0
n5D0

n , and the statement follows directly from Proposition
Remark:Theorem 3 is slightly stronger than the standard cyclicity,16 because of the ordering

among the functionsf 1 ,...,f n required in the definition ofE0
n .

Let us consider now the canonical commutation relations~1.3! and ~1.4!. We shall prove
Theorem 4: The equal time canonical commutation relations

@F~ t,h1!,F~ t,h2!#5@F* ~ t,h1!,F* ~ t,h2!#50, ~4.35!

@F~ t,h1!,F* ~ t,h2!#5~h1 ,h2!, ~4.36!

hold onFR,B
0 for any h1 ,h2PS(R1).

Proof: In order to demonstrate Eq.~4.35!, we observe that Eq.~4.14! implies

F~ t,h2!ã* ~ t, f 1!¯ã* ~ t, f n!V5(
j 51

n

~h2 , f j !ã* ~ t, f 1!¯ ẫ* ~ t, f j !¯ã* ~ t, f n!V,

where f 1s¯s f n . Therefore,

F~ t,h1!F~ t,h2!ã* ~ t, f 1!¯ã* ~ t, f n!V

5(
j 51

n

(
k51
kÞ j

n

~h2 , f j !~h1 , f k!ã* ~ t, f 1!¯ ẫ* ~ t, f j !¯ ẫ* ~ t, f k!¯ã* ~ t, f n!V, ~4.37!

which, being symmetric under the exchange ofh1 with h2 , implies the vanishing of
@F(t,h1),F(t,h2)# onD0

n . Then one extends by continuity toHR,B
n and by linearity toFR,B

0 . The
validity of @F* (t,h1),F* (t,h2)#50 follows applying Hermitian conjugation.

We turn now to Eq.~4.36!. Let f 1s¯s f n andh1 ,h2PS(R1). Assume that

f ksh2s f k11 . ~4.38!

Using Lemma 1, one gets

F~ t,h1!F* ~ t,h2!ã* ~ t, f 1!¯ã* ~ t, f n!V

5F~ t,h1!ã* ~ t, f 1!¯ã* ~ t, f k!F* ~ t,h2!ã* ~ t, f k11!¯ã* ~ t, f n!V

5F~ t,h1!ã* ~ t, f 1!¯ã* ~ t, f k!ã* ~ t,h2!ã* ~ t, f k11!¯ã* ~ t, f n!V

5~h1 ,h2!ã* ~ t, f 1!¯ã* ~ t, f n!V

1(
j 51

n

~h1 , f j !ã* ~ t, f 1!¯ ẫ* ~ t, f j !¯ã* ~ t, f k!ã* ~ t,h2!ã* ~ t, f k11!¯ã* ~ t, f n!V.

Analogously,

F* ~ t,h2!F~ t,h1!ã* ~ t, f 1!¯ã* ~ t, f n!V

5(
j 51

n

~h1 , f j !ã* ~ t, f 1!¯ ẫ* ~ t, f j !¯ã* ~ t, f k!ã* ~ t,h2!ã* ~ t, f k11!¯ã* ~ t, f n!V.
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Therefore,

@F~ t,h1!,F* ~ t,h2!#ã* ~ t, f 1!¯ã* ~ t, f n!V5~h1 ,h2!ã* ~ t, f 1!¯ã* ~ t, f n!V. ~4.39!

So, Eq. ~4.36! holds on states of the typeã* (t, f 1)¯ã* (t, f n)V, which satisfy the condition
~4.38!. Observing that the couples$h2 ,ã* (t, f 1)¯ã* (t, f n)V% obeying~4.38! are norm dense in
L2(R1) ^HRB

n , Eq. ~4.36! follows by continuity.
As a consequence of the commutation relations~4.35! and~4.36! one has the following usefu

estimate:
Proposition 5: Let A be a finite set and let f1

a ,...,f n
aPC0

` for anyaPA. Then the norm of the
operator

(
aPA

F~ t, f 1
a!F~ t, f 2

a!¯F~ t, f n
a!,

restricted toHR,B
m with m>n, satisfies

I (
aPA

F~ t, f 1
a!F~ t, f 2

a!¯F~ t, f n
a!I<Am~m21!¯~m2n11!I (

aPA
f 1

a
^¯^ f n

aI . ~4.40!

Proof: Let cPD0
n . Then there is some finite setB, such thatc can be written in the form

c5 (
bPB

F* ~ t,h1
b!¯F* ~ t,hm

b !V, h1
ba¯ahm

b .

Now, by means of the commutation relations~4.35! and ~4.36! one finds

I (
aPA

F~ t, f 1
a!¯F~ t, f n

a!c I<Am~m21!¯~m2n11!I (
aPA

f 1
a

^¯^ f n
aI ici , ~4.41!

implying Eq. ~4.40! by continuity.

V. TIME EVOLUTION

In order to investigate the time evolution in the NLS model onR1 , we consider the mapping

a t~a~k!!5e2 ik2ta~k!, a t~a* ~k!!5eik2ta* ~k!, a t~b~k!!5b~k!, tPR. ~5.1!

It is straightforward to verify thata t defines a 1-parameter group of automorphisms of the bou
ary algebraBR . Using the relations~3.2!–~3.6!, ~3.13!, ~3.14!, one can easily check that this grou
is unitarily implemented in the Fock spaceFR,B by means of the operator

U~ t !5exp~ iHt !, H5
1

2 ER

dk

2p
k2a* ~k!a~k!. ~5.2!

The HamiltonianH acts onD according to

@Hw#~n!~k1 , . . . ,kn!5~k1
21¯1kn

2!w~n!~k1 ,...,kn!, ~5.3!

which implies that the domainD is invariant both underU(t) andH. Moreover, since

2 i
d

dt
U~ t !U

t50

5H, ~5.4!

onD, the latter is a domain of essential self-adjointness forH.
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The crucial point now is that the time evolution of the fieldF(t, f ) is given by

F~ t, f !5U~ t !F~0,f !U~ t !21. ~5.5!

This fact follows directly from the time dependence encoded in Eqs.~4.1! and ~4.2! and is quite
remarkable. It shows the power of both the quantum inverse scattering transform~4.2! and the
algebraBR , which combined together allow to write down the Hamiltonian of an interacting fi
theory as a simple quadratic expression ina anda* . In this formH depends only implicitly on the
coupling constantg through the exchange factorR. Notice also that the boundary generatorb does
not evolve in time.

A. The quantum equation of motion

A preliminary problem to be faced here is to give a precise meaning on the quantum le
the cubic termuF(t,x)u2F(t,x) present in Eq.~1.1!. For this purpose we will follow the standar
approach, introducing the concept of a normal ordered :...: product involvingF and F* . As
usually assumed, in such a product all creation operatorsa* stand to the left of all annihilation
operatorsa. In view of Eqs.~3.2! and ~3.3! in our case one must further specify the ordering
creators and annihilators themselves. We define :...: to preserve the original order of the cr
The original order of two annihilators is preserved if both belong to the sameF or F* and
inverted otherwise. The quantum version of Eq.~1.1! is then obtained by the substitution

uF~ t,x!u2F~ t,x!°:FF* F:~ t,x!. ~5.6!

Concerning the relation between the above way of defining the normal product and the alte
point-splitting procedure, we observe that

:FF* F:~ t,x!5 lim
s↓0

F~ t,x12s!F* ~ t,x1s!F~ t,x!, ~5.7!

holds in mean value onD. Following Ref. 6, Eq.~5.7! can be derived by using the analyticit
properties of the commutator betweena(p) andF(t,x). One can formulate at this point

Theorem 5: The nonlinear Schro¨dinger equation,

~ i ] t1]x
2!^w,F~ t,x!c&52g^w,:FF* F:~ t,x!c&, ~5.8!

is satisfied for anyw,cPD.
Proof: The first step is analogous to the proof of Proposition 2 and consists in showing

the matrix element̂w,:FF* F:(t,x)c& is smooth int andx for anyw,cPD. The next step is to
compare (i ] t1]x

2)^w,F (n)(t,x)c& with the (n21)th order term in the expansion o
^w,:FF* F:(t,x)c& in terms ofg. A straightforward computation, similar to that performed
Ref. 8 for the NLS model onR, shows that these terms indeed coincide.

B. Boundary conditions

We shall demonstrate now
Theorem 6: The following boundary conditions hold for anyw,cPD, and tPR,

lim
x↓0

~]x2h!^w,F~ t,x!c&50, ~5.9!

lim
x→`

^w,F~ t,x!c&50. ~5.10!

Let us first prove
Lemma 3: Letw,cPFR,B

0 . There exists a vectorxPHR,B
1 such that
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^w,F~ t, f !c&5^V,F~ t, f !x&. ~5.11!

Proof: Without loss of generality one can takewPHR,B
n , cPHR,B

n11. Suppose first thatw
PE0

n5D0
n . Thenw is of the form

w5 (
aPA

F* ~ t, f 1
a!F* ~ t, f 2

a!¯F* ~ t, f n
a!V, ~5.12!

whereA is a finite set andf 1
aa f 2

aa¯a f n
a for all aPA. Using the commutation relations~4.35!

and ~4.36! one easily obtains

^w,F~ t, f !c&5 (
aPA

^V,F~ t, f !F~ t, f n
a!f~ t, f n21

a !¯F~ t, f 1
a!c&. ~5.13!

In order to solve~5.11!, it is then sufficient to define

x5F~ t, f n
a!F~ t, f n21

a !¯F~ t, f 1
a!c, ~5.14!

which belongs toHR,B
1 sincecPHR,B

n11. Take now a generalwPHR,B
n . By cyclicity ~Theorem 3!,

there exists a sequence$wk%,D0
n converging tow. By Proposition 5, the corresponding vecto

$xk% given by Eq.~5.14! form a Cauchy sequence, which converges to a vectorxPHR,B
1 , satis-

fying ~5.11! by continuity.
We can now prove Theorem 6.
Proof: Let w,cPD0,FR,B

0 . From the lemma above there existsxPHR,B
1 such that

^w,F~ t,x!c&5^V,F~ t,x!x&5E
R

dk

2p
eikx2 ik2tx~k!. ~5.15!

SincexPL2, the matrix element̂w,F(t,x)c&, which by Proposition 2 is smooth, is also squa
integrable with respect tox. Therefore it vanishes at infinity and Eq.~5.10! is satisfied. Moreover,
taking the derivative with respect tox, theB-symmetry~3.16! of x, immediately leads to Eq.~5.9!.

C. Correlation functions

From the general structure of our solution it follows that

~i! the nonvanishing correlation functions involve equal number ofF andF* ;
~ii ! for computing the exact 2n-point function one does not need all terms in the expans

~2.3!, but at most the (n21)th order contribution.

One has, for instance,

^V,F~ t1 ,x1!F* ~ t2 ,x2!V&5^V,F~0!~ t1 ,x1!F* ~0!~ t2 ,x2!V&, ~5.16!

^V,F~ t1 ,x1!F~ t2 ,x2!F* ~ t3 ,x3!F* ~ t4 ,x4!V&

5^V,F~0!~ t1 ,x1!F~0!~ t2 ,x2!F* ~0!~ t3 ,x3!F* ~0!~ t4 ,x4!V&

1g2^V,F~0!~ t1 ,x1!F~1!~ t2 ,x2!F* ~1!~ t3 ,x3!F* ~0!~ t4 ,x4!V&. ~5.17!

Since the vacuum expectation value of any number of$a(k),a* (k),b(k)% is known explicitly,11

employing Eqs.~4.1!, ~4.2!, ~4.6!, ~4.7! one can derive integral representations for the N
correlation functions onR1 . For example,

^V,F~ t1 ,x1!F* ~ t2 ,x2!V&5E
R

dp

2p
e2 ip2~ t12t2!@eip~x12x2!1B~p!eip~x11x2!#, ~5.18!
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which coincides with that of the nonrelativistic free field on the half line. In spite of this fact,
four-point function~5.17! differs from the free one. We would like to recall in this respect th
according to Jost’s theorem~see, e.g., Ref. 16!, such a phenomenon is forbidden in relativis
invariant models.

VI. SCATTERING THEORY

As it is well known, integrable quantum systems on the real line are characterized
factorized scattering matrix. This means that multiparticle scattering is described by an appr
product of two-particle scattering matrices, which in turn are subject to physical constraint
unitarity, crossing symmetry, etc.

Some years ago, Cherednik12 proposed a version of factorized scattering, adapted to the
line case. The following physical picture emerges from his investigation. Letuk1 ,...,kn&

in be an
in-state, representingn particles coming fromx51` and thus having negative momentak1

,k2,¯,kn,0. These particles interact among themselves before and after being reflec
the wall atx50, giving rise to an out-stateup1 ,...,pm&out composed of particles traveling toward
x51` and thus having positive momentap1.p2.¯.pm.0. The transition amplitude be
tween these states vanishes unlessn5m and pi52ki , i 51,...,n. Therefore, not only the tota
momentum, but each momentum is separately reflected. According to Ref. 12, the sca
amplitude is

out^p1 ,...,pmuk1 ,...,kn&
in5dmn )

i 51

n

2pd~pi1ki !B~pi ! )
i , j 51
i , j

n

R~pi ,pj !R~pi ,2pj !. ~6.1!

The R-factors describe the interactions among the particles in the bulk, while theB-factors take
into account the reflection from the wall.

The main goal of this section is to prove that the NLS model onR1 perfectly fits the scheme
of Cherednik. In order to do that, we must develop first the scattering theory corresponding
off-shell quantum fieldF* (t, f ). Our framework will be the conventional Haag–Rue
approach,17 suitably adapted to the nonrelativistic case.

A first relation between the quantum solutions~4.6!, ~4.7! and Cherednik’s scattering ampl
tude ~6.1! is obtained through the identification

up1 ,...,pn&
out5a* ~p1!¯a* ~pn!V, p1.¯.pn.0, ~6.2!

uk1 ,...,kn&
in5a* ~k1!¯a* ~kn!V, k1,¯,kn,0. ~6.3!

We recall in fact thatBR has been designed in such a way, that the amplitudes

^a* ~p1!¯a* ~pm!V, a* ~k1!¯a* ~kn!V&, ~6.4!

precisely reproduce the right-hand side of Eq.~6.1!. What is still missing therefore is the con
struction of suitable states, expressed in terms ofF* (t,h) andV, which approach the out-state
~6.2! for t→` and the in-states~6.3! for t→2`. We are now going to fill this gap.

Proposition 5 shows thatF* (t, f ), restricted onHR,B
n is a bounded operator of norm

iF* ~ t, f !i<An11i f i , ~6.5!

which in turn implies that it can be extended to anyf PL2(R1). From the estimates~3.21! we
know that alsoa* (h) is bounded onHR,B

n , where

ia* ~h!i<An11ihi , ;hPL2~R!. ~6.6!

Combining this inequality with the definition~4.6!, one finds,
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I E
Rn

dx1¯dxnf ~x1 ,...,xn!ã* ~ t,x1!¯ã* ~ t,xn!V I<An! i f i , ; f PL2~Rn!. ~6.7!

In order to develop the Haag–Ruelle formalism, we will need also the following notations
h(k)PS(R). Then we set

ht~x![E
R

dk

2p
eikx2 ik2th~k!, h1

t ~x![u~x!@ht~x!1ht~2x!#, h̃~k![h~2k!, ~6.8!

whereu(x) is the Heaviside step function. Notice that

h̃1
t ~x!5u~x!@ h̃t~x!1h̃t~2x!#5u~x!@ht~2x!1ht~x!#5h1

t ~x!. ~6.9!

We are now in position to formulate
Theorem 7: ~Asymptotic states! Let

h1sh2s¯shn , hjPS~R1!, j 51,...,n.

Then one has the following strong limits:

lim
t→1`

F* ~ t,h11
t !F* ~ t,h21

t !¯F* ~ t,hn1
t !V5a* ~h1!a* ~h2!¯a* ~hn!V, ~6.10!

lim
t→2`

F* ~ t,h11
t !F* ~ t,h21

t !¯F* ~ t,hn1
t !V5a* ~ h̃1!a* ~ h̃2!¯a* ~ h̃n!V. ~6.11!

For proving this statement, we need some preliminary results.
Lemma 4:Let hPS(R1). Then,

lim
t→1`

ih1
t 2hti50, lim

t→2`

ih1
t 2h̃ti50. ~6.12!

Proof: A direct computation gives

ih1
t 2hti252i E

R2

dk

2p

dp

2p
h̄~k!h~p!

eit ~k1p!~k2p!

k2p1 i e
, ~6.13!

ih1
t 2h̃ti2522i E

R2

dk

2p

dp

2p
h̄~k!h~p!

eit ~k1p!~k2p!

k2p2 i e
. ~6.14!

Now, for proving Eq.~6.12!, it is enough to take into account that supph.0 and to use the weak
limit

lim
t→6`

eitk

k6 i e
50. ~6.15!

Corollary 1: Let h1 ,h2 ,...,hnPS(R1). Then,

lim
t→1`

ih11
t

^¯^ hn1
t 2h1

t
^¯^ hn

t i50, ~6.16!

lim
t→2`

ih11
t

^¯^ hn1
t 2h̃1

t
^¯^ h̃n

t i50. ~6.17!

Lemma 5:Let h1 ,h2PS(R1) are such thath1sh2 . Then, the functions
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Ht~x1 ,x2!5h1
t ~x1!h2

t ~x2!u~x22x1!, ~6.18!

H̃t~x1 ,x2!5h̃1
t ~x1!h̃2

t ~x2!u~x22x1!, ~6.19!

satisfy

lim
t→1`

iHti50, lim
t→2`

iH̃ti50. ~6.20!

Proof: Let us consider for instanceHt. One has

iHti25E
2`

`

dx1E
x1

`

dx2uh1
t ~x1!h2

t ~x2!u2

5E
R4

dk1

2p

dp1

2p

dk2

2p

dp2

2p
h̄1~k1!h1~p1!h̄2~k2!h2~p2!I ~k1 ,p1 ,k2 ,p2!e~k1

2
2p1

2
1k2

2
2p2

2
!t,

~6.21!

with

I ~k1 ,p1 ,k2 ,p2![E
2`

`

dx1E
x1

`

dx2ei @~p12k1!x11~p22k2!x2#.

The integration inx1 andx2 gives

I ~k1 ,p1 ,k2 ,p2!5
2p id~k12p11k22p2!

p22k21 i e
. ~6.22!

Therefore,

iHti25 i E
R3

dp1

2p

dp2

2p

dk2

2p
h̄1~p12p21k2!h1~p1!h̄2~k2!h2~p2!

e2i ~p12k2!~p22k2!t

p22k21 i e
. ~6.23!

The support properties of the functionh1 and h2 imply that the integrand vanishes unlessp1

.k2.0, which completes the argument because of Eq.~6.15!. Analogous considerations apply t
H̃t.

Corollary 2: Let

Gt~x1 ,x2!5h11
t ~x1!h21

t ~x2!u~x22x1!. ~6.24!

Then,

lim
t→6`

iGti50. ~6.25!

Proof: One has to combine Eqs.~6.9!, ~6.16!, ~6.17!, ~6.20!.
The statement of Corollary 2 has the following generalization to the case ofn>2 variables.

Suppose thath1 ,...,hnPS(R1) andh1s¯shn . Let Pn be the group of all permutations of th
indices$1,2,...,n%. For anysPPn we define the function

Gs
t ~x1 ,...,xn![h11

t ~x1!¯hn1
t ~xn!u~xs1

,...,xsn
!, ~6.26!

where
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u~xs1
,...,xsn

![ )
i , j 51
i , j

n

u~xs i
2xs j

!. ~6.27!

Corollary 3: For anysPPn different from the identity e5(1,2,...,n), one has

lim
t→6`

iGs
t i50. ~6.28!

We are now ready to prove Theorem 7.
Proof: The casen51 is quite simple. Using the identities

F* ~ t, f !V5ã* ~ t, f !V, a* ~h!5ã* ~ t,ht!, ~6.29!

one finds

iF* ~ t,h1
t !V2a* ~h!Vi5i ã* ~ t,h1

t !V2ã* ~ t,ht!Vi<ih1
t 2hti , ~6.30!

which according to Lemma 5 tends to 0 in the limitt→1`. Let us consider now the casen
>2. Applying Eq.~4.34! and

u~x1 ,...,xn!512 (
sPPn
sÞe

u~xs1
,...,xsn

!, ~6.31!

we get

F* ~ t,h11
t !¯F* ~ t,hn1

t !V

5E
Rn

dx1¯dxnh11
t ~x1!¯hn1

t ~xn! (
sPPn

u~xs1
,...,xsn

!ã* ~ t,xs1
!¯ã* ~ t,xsn

!V

5ã* ~ t,h11
t !¯ã* ~ t,hn1

t !V1 (
sePn

sÞe

E
Rn

dx1¯dxnGs
t ~x1 ,...,xn!@ ã* ~ t,xs1

!¯ã* ~ t,xsn
!V

2ã* ~ t,x1!¯ã* ~ t,xn!V#. ~6.32!

The estimate~6.7! then leads to

iF* ~ t,h11
t !¯F* ~ t,hn1

t !V2a* ~h1!¯a* ~hn!Vi

5iF* ~ t,h11
t !¯F* ~ t,hn1

t !V2ã* ~ t,h1
t !¯ã* ~ t,hn

t !Vi

<i ã* ~ t,h11
t !¯ã* ~ t,hn1

t !V2ã* ~ t,h1
t !¯ã* ~ t,hn

t !Vi12An! (
sPPn
sÞe

iGs
t i

<An! ih11
t

^¯^ hn1
t 2h1

t
^¯^ hn

t i12An! (
sPPn
sÞe

iGs
t i , ~6.33!

which implies the strong limit~6.10!. Analogous considerations give
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iF* ~ t,h11
t !¯F* ~ t,hn1

t !V2a* ~ h̃1!¯a* ~ h̃n!Vi

<An! ih11
t

^¯^ hn1
t 2h̃1

t
^¯^ h̃n

t i

12An! (
sPPn
sÞe

iGs
t i , ~6.34!

which proves~6.11!.
We proceed with the construction of the scattering operatorS, following the general strategy

developed in Ref. 18. According to Theorem 7, the asymptotic spacesFout andFin are generated
by finite linear combinations of the vectors (n>1),

Eout5$V,a* ~h1!¯a* ~hn!V:h1s¯shn ,hjPS~R1!% ~6.35!

and

Ein5$V,a* ~ h̃1!¯a* ~ h̃n!V:h1s¯shn ,hjPS~R1!%, ~6.36!

respectively. One can show11 moreover, thatFout andFin are separately denseFR,B . This property
of asymptotic completeness allows to demonstrate11 that the mappingS:Eout→Ein, defined by

SV5V, ~6.37!

Sa* ~h1!a* ~h2!¯a* ~hn!V5a* ~ h̃1!a* ~ h̃2!¯a* ~ h̃n!V, ~6.38!

extends to a unitary scattering operator onFR,B . We stress thatS is nontrivial, in spite of the fact
that the quantum fieldsF and F* realize a Fock representation of the canonical commuta
relations. This feature is not in contradiction with Haag’s theorem,16 because we are dealing wit
a nonrelativistic system, which does not satisfy in particular relativistic local commutativity.

The construction of the scattering operatorScompletes the picture and concludes our quant
field theory description of the NLS model onR1 .

VII. OUTLOOK AND CONCLUSIONS

We studied the nonlinear Schro¨dinger equation on the half line with mixed boundary con
tion. After a brief discussion of some aspects of the corresponding classical boundary
problem, we constructed the exact second quantized solution of the system, establishing it
properties. The explicit form of our solution shows that the quantum inverse scattering tran
works also on the half line, provided that the Zamolodchikov–Faddeev algebra is replaced
boundary algebraBR . This is one of the main results of the present paper. It demonstrates
besides being a useful tool in scattering theory,11 the concept of boundary algebra is essential a
for the construction of off-shell interacting fields in integrable systems onR1 . We emphasize in
this respect, that our results have a straightforward generalization to all elements of the
hierarchy~e.g., the complex modified Korteveg–de Vries equation! on the half line. The case with
internal SU(N) symmetry can also be treated analogously.

As for future extensions of the present work, it would be interesting to investigate the
h,0. The new phenomenon, which can be expected on general grounds, is the prese
boundary bound states. Taking into account that one can describe byBR also degrees of freedom
residing on the boundary~see the Appendix in Ref. 11!, we strongly believe that our framewor
extends to the caseh,0 as well.
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The classical Boussinesq–Burgers hierarchy is decomposed into two systems of
solvable ordinary differential equations with the help of the Lax representations of
stationary evolution equations, from which the finite-band solutions of the higher-
order classical Boussinesq–Burgers equations are obtained. ©1999 American
Institute of Physics.@S0022-2488~99!00406-5#

I. INTRODUCTION

It is well known that finite-band solutions of soliton equations are important, which also
be reduced to the multisoliton solutions and elliptic function solutions.1 Dubrovin and Its-Matveev
developed an analog of the inverse scattering theory for Hill’s equation and gave an e
formula of the periodic potentials with the finite number of gaps in the spectrum.2,3 The periodic
N-soliton solution of the KdV equation was constructed explicitly. Date4 obtained the quasiperi
odic solutions of the field equation of classical massive Thirring model via using the Lax e
tions of squared eigenfunctions~also see Ref. 5!. In Ref. 6, Matveev and Yavor gave comple
finite-band multiphase solutions of the Kaup–Boussinesq~KB! equation and used the degenera
procedure to find multisoliton solutions. In Ref. 7, Smirnov continued the investigation of fi
band solutions of the KB equation by finding smooth real solutions and found simple reductio
the general smooth two and three-band solutions to one-dimensional Riemann theta fun
Recently, nonlinearization approach of Lax pairs8,9 has been developed and applied to constr
the finite-band solutions of soliton equations.10,11 Very recently, Gesztesy and Ratnaseelan h
proposed an alternative systematic approach based on elementary algebraic methods
algebro-geometric solutions of the AKNS hierarchy.12

In this paper, we shall develop a direct method to construct finite-band solutions o
higher-order classical Boussinesq–Burgers~CBB! equations based on the Lax pairs of the statio
ary evolution equations and the ideas in Refs. 4, 5. Although the CBB equation can be respe
changed into the KB equation and the coupled nonlinear Schro¨dinger equation in the AKNS
hierarchy under certain transformations,13 yet the finite-band solutions of the higher-order K
equations are still open, and it is also nontrivial that finite-band solutions of the higher-order
equations are obtained with the help of the AKNS equations. The present paper is organ
follows. In Sec. II, we derive the hierarchy of the CBB equations and the corresponding stat
CBB equations. In Sec. III, solutions of the CBB hierarchy are reduced to solving two syste
solvable ordinary differential equations. In Sec. IV, a hyperelliptic Riemann surface of genN
and Abel–Jacobi coordinates are introduced to straighten the associated flows. The Jaco
version problem is discussed, from which the finite-band solutions of the CBB equation an
high-order CBB equations are expressed explicitly by the Riemann theta functions.
29710022-2488/99/40(6)/2971/12/$15.00 © 1999 American Institute of Physics
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II. THE HIERARCHY AND STATIONARY EVOLUTION EQUATIONS

Let us consider the spectral problem with a constant spectral parameterl,

yx5Uy, U5S l2v u1bvx

21 2l1v D , ~1!

whereu andv are two potentials andb is a constant. To drive the CBB hierarchy associated w
the spectral problem~1!, we first define the Lenard’s gradient sequenceSj , 21< j PZ, by the
following recursion relation:

KSj 215JSj , Sj u~u,v !5050, S215~1,0!T, j >0, ~2!

with two skew-symmetric operators

K5S b~12 1
2b!]31u]1]u 1

2~12b!]21v]

2 1
2~12b!]21]v 1

2]
D , J5S 0 ]

] 0D .

It is easy to see thatSj is uniquely determined by the recursion relation~2!. The initial condition
in Eq. ~2! equivalently selects constants of integration to be zero. A direct calculation gives
the recursion relation~2! that

S05S v
uD , S15S 1

2u1v21 1
2~b21!vx

b~12 1
2b!vxx12uv1 1

2~12b!ux
D , ~3a!

S25S 1
4vxx1

3
2~b21!vvx1 3

2uv1v3

1
4uxx1b~12 1

2b!~ 3
2vx

213vvxx!2 3
2~b21!vux1 3

4u
213uv2D . ~3b!

Assume that the time evolution of the eigenfunctiony of Eq. ~1! obeys the differential equation

ytm
5V~m!y, V~m!5S V11

~m! V12
~m!

V21
~m! 2V11

~m!D , ~4!

where

V11
~m!5(

j 50

m S 1

2
Sj 21,x

~1! 2vSj 21
~1! 2vxSj 21

~1! Dlm2 j1(
j 50

m

Sj 21
~1! lm112 j ,

V12
~m!5(

j 50

m Fb2 Sj 21,xx
~1! 1~u1bvx!Sj 21

~1! 1
1

2
Sj 21,x

~2! Glm2 j , V21
~m!52(

j 50

m

Sj 21
~1! lm2 j .

Then the compatibility condition between Eqs.~1! and ~4! yields the zero-curvature equatio
Utm

2Vx
(m)1@U,V(m)#50, which is equivalent to the hierarchy of nonlinear evolution equatio

~utm
,v tm

!T5Xm , m>0, ~5!

whereXj5KSj 215JSj is called the CBB vector field. Ifm0.1, then (utm0
,v tm0

)T5Xm0
is called

a higher-order CBB equation. The first two nontrivial equations in the hierarchy~5! are the CBB
equation14–16

ut1
5bS 12

b

2 D vxxx1
1

2
~12b!uxx12~uv !x , ~6a!
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v t1
5 1

2~b21!vxx12vvx1 1
2ux ~6b!

and a higher-order CBB equation,

ut2
5 1

4uxxx12b~12 1
2b!~3vxvxx1vvxxx!1 3

2~12b!~vxux1vuxx!1 3
2uux16uvvx13uxv

2,
~7a!

v t2
5 1

4vxxx1
3
2~b21!~vvx!x1 3

2~uv !x13v3vx . ~7b!

Assume that Eqs.~1! and ~4! have two basic solutions,c5(c1 ,c2)T and f5(f1 ,f2)T,
which satisfy the different boundary conditions. We introduce a matrixW of three functionsf, g,
h by

W5
1

2
~fcT1cfT!s5S f g

h 2 f D , s5S 0 21

1 0 D . ~8!

A direct calculation shows that

Wx5@U,W#, Wtm
5@V~m!,W#, ~9!

which imply that the function detW is an independent constant ofx and tm . Equation~9! can be
written as

f x5~u1bvx!h1g,

gx52~l2v !g22~u1bvx! f , ~10!

hx522 f 22~l2v !h,

and

f tm
5hV12

~m!2gV21
~m! ,

gtm
52gV11

~m!22 f V12
~m! , ~11!

htm
52 f V21

~m!22hV11
~m! .

Now we suppose that the functionsf, g, andh are finite-order polynomials inl,

f 5 1
2bx1~l2v !b, h52b,

g5
1

2
cx1ub1bvxb1

b

2
bxx , ~12!

b5(
j 50

N

bj 21lN2 j , c5(
j 50

N

cj 21lN2 j .

Substituting Eq.~12! into Eq. ~10! yields

KG5lJG, G5~b,c!T, ~13!

that is

KGj 215JGj , JG2150, ~14a!
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KGN2150, Gj5~bj ,cj !
T. ~14b!

It is easy to see that the equationJG2150 has the general solution,

G215a0S211b0S22 , S225~0,1!T, ~15!

wherea0 andb0 are integral constants. Therefore, if we take Eq.~15! as a starting point, thenGj

can be recursively determined by the relation~14a!. In fact, noticing kerJ5$a0S21

1a21S22u;a0 ,a21%, S22PkerK and acting with the operator (J21K)k uponG21 in Eq. ~15!,
we obtain from Eqs.~14a! and ~2! that

Gk5 (
j 50

k11

a jSk2 j1bk11S22 , 21<k<N21, ~16!

wherea0 ,...,ak11 andbk11 are integral constants. Substituting Eq.~16! into Eq.~14b! yields the
following higher-order stationary CBB equation:

a0XN1a1XN211¯1aNX050. ~17!

Thus u and v satisfy certain stationary CBB equation associated with the spectral problem~1!.
This means that these solutionsu andv are finite-band solutions.

III. THE SOLVABLE ORDINARY DIFFERENTIAL EQUATIONS

In this section, we shall show how the CBB hierarchy is decomposed into two system
solvable ordinary differential equations. Without any loss of generality we can seta051 and
b050 since changingb21 simple results in multiplyingf, g, andh by a constant, and the consta
c21 vanishing by the differential operator in Eq.~12!. From Eq.~16!, we have

G215S 1
0D , G05S v1a1

u1b1
D , ~18a!

G15S 1
2~b21!vx1 1

2u1v21a1v1a2

bS 12
b

2 D vxx12uv1
1

2
~12b!ux1a1u1b2

D . ~18b!

By using the above expressions and Eq.~12!, we get

f 5 (
j 50

N11

f jl
N112 j , g5(

j 50

N

gjl
N2 j , h5(

j 50

N

hjl
N2 j , ~19!

with

f 051, f 15a1 , f 25 1
2~u1bvx!1a2 ,

g05u1bvx , h0521, h152v2a1 , ~20!

h25 1
2~12b!vx2 1

2u2v22a1v2a2 .

This means if we writeh as a finite product it takes the form

h52)
i 51

N

~l2m i !, ~21!

which implies by comparing the coefficients of the same power forl that
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h15(
j 51

N

m j , h252(
i , j

m im j5
1

2 (
j 51

N

m j
22

1

2 S (
j 51

N

m j D 2

,..., ~22a!

hl5~21! l 11 (
j 1, j 2,¯, j l

m j 1
m j 2

¯m j l
, 1< l<N. ~22b!

From Eqs.~20! and ~22!, we have

v52(
j 51

N

m j2a1 , ~23a!

u5S (
j 51

N

m j D 2

2(
j 51

N

m j
222v21~12b!vx22a1v22a2 . ~23b!

If we look at the terms oflN1m and oflN1m21 for the third expression in Eq.~11!, we find also
Eq. ~23! in view of Eq.~22!. Consider the function detW, which is a (2N12)th-order polynomial
in l with constant coefficients

2detW5 f 21gh5 )
j 51

2N12

~l2l j !5R~l!. ~24!

Substituting Eq.~19! into Eq.~24! and comparing the coefficients ofl2N12,l2N11,...,lN12 yield

2 f 0f 152 (
j 51

2N12

l j ,

2 f l1(
j 50

l 22

f j 11f l 2 j 211(
j 50

l 22

gjhl 222 j5~21! l (
j 1, j 2,¯, j l

l j 1
l j 2

¯l j l
, 2< l<N, ~25!

which shows ifgj ,hj ( j < l 22) andf j ( j < l 21) are given thenf l can be also obtained from Eq
~25!. On the other hand, noticing Eqs.~12! and ~19!, we have

hj52bj 21 , f j5
1
2bj 22,x1bj 212vbj 22 , ~26a!

gj5
1

2
cj 21,x1~u1bvx!bj 211

b

2
bj 21,xx , 1< j <N22. ~26b!

By using Eqs.~26! and ~16!, we obtain the following equalities:

f j u~u,v !505a j , hj u~u,v !505a j , gj u~u,v !5050, 1< j <N, ~27!

which together with Eq.~25! implies

(
j 50

l

a ja l 2 j5~21! l (
j 1, j 2,¯, j l

l j 1
l j 2

¯l j l
, ~a051!, 1< l<N. ~28!

From Eq.~28!, it is easy to see thata j (1< j <N) can be explicitly rerepresented by the consta
l1 ,...,l2N12 , for example,

a152
1

2 (
j 51

2N12

l j , a25
1

2 (
i , j

l il j2
1

8 S (
j 51

2N12

l j D 2

, ~29a!
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a352
1

2 (
j 1, j 2, j 3

l j 1
l j 2

l j 3
1

1

4 S (
j 51

2N12

l j D F(
i , j

l il j2
1

4 S (
j 51

2N12

l j D 2G . ~29b!

Noticing Eq.~24!, we have

f ul5mk
5ekAR~mk!, ~30!

where ek is a sheet index that indicates which sheet of the Riemann surface associate
AR(mk) that mk lies on. By Eq.~21! and the third expression of Eq.~10!, we get

hxul5mk
522 f ul5mk

5mkx )
i 51,iÞk

N

~mk2m i !, 1<k<N, ~31!

which together with Eq.~30! gives

mkx52
2ekAR~mk!

P i 51,iÞk
N ~mk2m i !

, 1<k<N. ~32!

By using Eqs.~16!, ~19!, and~12!, we have

bk52hk11 , b2151, h0521, S21
~1!51,

hk1152Sk
~1!2a1Sk21

~1! 2a2Sk22
~1! 2¯2akS0

~1!2ak11 , k>0,

which implies

Sk
~1!52hk112g1hk2g2hk212¯2gkh12gk11h0 , k>0, ~33!

where

g152a1 , g252a1g12a2 , g352a1g12a2g22a3 , ...,

gk52a1gk212a2gk222¯2ak22g22ak21g12ak .

Therefore, we obtain from Eqs.~4! and ~33! that

V21
~m!ul5mk

5 (
n50

m

(
s50

n

gn2shsmk
m2n ~g051!. ~34!

In a way similar to the calculation of Eq.~32!, we arrive at

mktm
5

2(n50
m (s50

n gn2shsmk
m2nekAR~mk!

P i 51,iÞk
N ~mk2m i !

, ~35!

whereh0521, andhs’s are determined by Eq.~22!. Therefore, if the 2N12 distinct parameters
l1 ,...,l2N12 are given and letmk(x,t) be a solution of ordinary differential Eqs.~32! and ~35!,
then ~u, v) determined by Eq.~23! is a solution of the CBB Eqs.~5!.

IV. THE FINITE-BAND SOLUTIONS

In order to obtain the finite-band solutions of the higher-order CBB equations, we first i
duce the Riemann surfaceG of the hyperelliptic curvez25R(l). It is easy to see that the genu
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of this surface isN. On G there are two infinite points̀ 1 , `2 , which are not branch points ofG.
Equip G with canonical basis cycles,a1 ,...,aN ; b1 ,...,bN , which are independent and hav
intersection numbers as follows:

ai+aj50, bi+bj50, ai+bj5d i j .

For the present, we will choose as our basis the following set

Ã l5
l l 21dl

AR~l!
, 1< l<N,

which areN linearly independent homomorphic differentials onG. By using the cyclesa andb, the
period matricesA andB can be constructed from

Ai j 5E
aj

Ã i , Bi j 5E
bj

Ã i .

It is possible to show that the matricesA andB are invertible.17,18 Now we define the matricesC
and t by C5A21, t5A21B. The matrixt can be shown to be symmetric (t i j 5t j i ) and it has
positive definite imaginary part (Imt.0). If we normalizeÃ into the new basisv j ,

v j5(
l 51

N

Cjl Ã l , 1< j <N,

then we have

E
ai

v j5(
l 51

N

Cjl E
ai

Ã l5(
l 51

N

Cjl Ali 5d j i ,

and

E
bi

v j5t j i .

Now we introduce Abel–Jacobi coordinates as follows:

r j~x,tm!5 (
k51

N E
p0

mk~x,tm!

v j5 (
k51

N

(
l 51

N

Cjl E
p0

mk l l 21dl

AR~l!
, 1< j <N, ~36!

wherep0 is chosen a base point onG. Noticing Eq.~32!, we obtain

]xr j
~m!5 (

k51

N

(
l 51

N

Cjl

mk
l 21mkx

ekAR~mk!
5 (

k51

N

(
l 51

N
22mk

l 21Cjl

P iÞk~mk2m i !
, r j

~m!5r j~x,tm!, ~37!

which implies

]xr j
~m!522CjN , 1< j <N, ~38!

in view of the following equality

(
k51

N mk
l 21

P iÞk~mk2m i !
5d lN , 1< l<N. ~39!
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In a similar way, we have from Eqs.~35! and ~36! that

] tm
r j

~m!5(
l 51

N

(
k51

N Cjl mk
l 21mktm

ekAR~mk!
52(

l 51

N

(
k51

N Cjl (n50
m (s50

n gn2shsmk
m2n1 l 21

P iÞk~mk2m i !
. ~40!

For simplicity, we shall discuss the several special cases as follows:
~I! For m51, Eq. ~40! is reduced to

] t1
r j

~1!52(
l 51

N

Cjl (
k51

N
~(s50

N ms2g1!mk
l 212mk

l

P iÞk~mk2m i !
,

which implies

] t1
r j

~1!522Cj ,N2122CjNg15V j
~1! , ~41!

resorting to the equality

(
k51

N mk
s

P iÞk~mk2m i !
5H ds,N21 , s<N21

(
j 11¯1 j N5s2N11,j i>0

m1
j 1m2

j 2
¯mN

j N, s>N.
~42!

Equation~42! can be proved with the help of the following contour integral

1

2pA21
E

C
H~l!dl, H~l!5

ls

P i 51
N ~l2m i !

,

where the contourC encloses all of the polesm j in a counterclockwise manner. It is not difficu
to calculate that

H~l!5ls2NS 12
m1

l D 21S 12
m2

l D 21

¯S 12
mN

l D 21

5ls2N (
j 1>0

(
j 2>0

¯ (
j N>0

l2~ j 11 j 21¯1 j N!m1
j 1m2

j 2
¯mN

j N

5ls2N(
l>0

l2 l (
j 11 j 21¯1 j N5 l

m1
j 1m2

j 2
¯mN

j N,

which implies

2 Res
l5`

H~l!dl5H ds,N21 , s<N21

(
j 11¯1 j N5s2N11,j i>0

m1
j 1m2

j 2
¯mN

j N, s>N.

Therefore, it is easily seen by the residue theorem that Eq.~42! holds.
~II ! For m52, Eq. ~40! can be written as

] t2
r j

~2!52(
l 51

N

Cjl (
k51

N
2mk

l 111~(s50
N ms2g1!mk

l 2~( i ,sm ims2g1(s50
N ms1g2!mk21

l

P iÞk~mk2m i !
,

which together with Eqs.~42!, ~22! yields
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] t2
r j

~2!522Cj ,N2222Cj ,N21g122CjNg25V j
~2! . ~43!

~III ! For m53, applying the same approach, we have

] t3
r j

~3!522Cj ,N2322Cj ,N22g122Cj ,N21g222CjNg35V j
~3! . ~44!

On the basis of the above results we get the following:

r j
~m!522CjNx1V j

~m!tm1g j , 1< j <N, 1<m<3, ~45!

whereg j ’s are constants,

g j5 (
k51

N E
p0

mk~0,0!

v j .

Let T be the lattice generated by 2N vectors$d j ,t j%, where

andt j5td j . The complex torusJ5CN/T is called the Jacobian variety ofG. An Abel map onG
is defined as

A~p!5E
p0

p

v, v5~v1 ,...,vN!T,

wherep0 is a fixed point onG, whose domain of definition can be linearly extended into the fa
group Div~G!,

AS ( nkpkD5( nkA~pk!.

Now we consider a special divisor( j 51
N pk and assume that

AS (
k51

N

pkD 5 (
k51

N

A~pk!5 (
k51

N E
p0

pk
v5r~m!,

with pk5(mk(x,tm),z(mk)), whose component is

(
k51

N E
p0

pk
v j5r j

~m! .

Therefore, according to the Riemann theorem,17,18 there exists a constant vectorM (m)

5(M1
(m) , ...,MN

(m))TPCN such that the function

F ~m!~l!5u~A~p!2r~m!2M ~m!!

has the onlyN zero pointsp1 ,...,pN , with p5(l,z). HereM (m) is the Riemann constant dete
mined byG itself andu is the Riemann theta function defined by

u~jut!5 (
nPZN

exp~pA21^tn, n&12pA21^j,n&!,

in which j5(j1 ,...,jN)TPCN,^•,•& represents the standard inner-product.
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To make the function single valued the surfaceG is cut along allak , bk to form a simple
connected region, whose boundary is denoted byg. Notice the fact that the integrals16,17

1

2pA21
E

g
lkd ln F ~m!~l!5I k~G!

are constants independent ofr with

I k~G!5(
j 51

N E
aj

lkv j .

By the residue theorem, we have

I k~G!5(
l 51

N

m l
k1(

s51

2

Res
l5`s

lkd ln F ~m!~l!. ~46!

In what follows, we shall compute the residues in Eq.~46! ask51,2. To this end we first introduce
local coordinatesz5l21 at infinity. Then the hyperelliptic curvez25R(l) in the neighborhood
of infinity is expressed asẑ25R̂(z) with ẑ5zN11z, R̂(z)5P j 51

2N12(12l j z), and `s5(z,

(21)s21AR̂(l))uz505(0,(21)s21), s51,2. It is easy to see that

A~p! j52hs j1 È
s

p

v j52hs j1(
l 51

N

Cjl È
s

p l l 21dl

~21!s21AR~l!
,

with

hs j5 È
s

p0
v j , 1< j <N, s51,2.

Noting the local coordinatesz5l21, we have

A~p! j52hs j2~21!s21(
l 51

N

Cjl E
0

z zN2 ldz

AR̂~z!
.

Since the theta function is an even function,F (m)(l) is written as

F ~m!~z21!5uS ...,r j
~m!1M j

~m!1hs j1~21!s21(
l 51

N

Cjl E
0

z zN2 ldz

AR̂~z!
,...D

5u~ ...,r j
~m!1M j

~m!1hs j1~21!s21@CjNz1 1
2~Cj ~N21!2a1CjN!z21O~z3!#,...!,

which together with Eq.~45! leads to

F ~m!~z21!5us
~m!1z~21!s21(

j 51

N

CjND jus
~m!

1
z2

2 F ~21!s21(
j 51

N

~Cj ~N21!2a1CjN!D jus
~m!1(

j 51

N

(
k51

N

CjNCkND jDkus
~m!G1O~z3!,

~47!
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whereus
(m)5u(r (m)1M (m)1hs)5u(...,r j

(m)1M j
(m)1hs j ,...), D j signifies a derivative with re-

spect to thej th argument ofus
(m) . It is easy to calculate that

]xus
~m!522(

j 51

N

CjND jus
~m! , ]x

2us
~m!54(

k51

N

(
j 51

N

CjNCkND jDkus
~m! , s51,2.

Therefore we have

F ~m!~z21!5us
~m!1

z

2
~21!s]xus

~m!1
z2

2 F ~21!s21(
j 51

N

Cj ~N21!D jus
~m!

1
1

2
~21!s21a1]xus

~m!1
1

4
]x

2us
~m!G1O~z3!, ~48!

which gives

d

dz
ln F ~m!~z21!5r 0s

~m!1r 1s
~m!1z1O~z2! ~49!

with

r 0s
~m!5 1

2~21!s]x ln us
~m! ,

r 1s
~m!5~21!s21(

j 51

N

Cj ~N21!D j ln us
~m!1

1

2
~21!s21a1]x ln us

~m!1
1

4
]x

2 ln us
~m! .

Noticing the equality

Res
l5`s

lkd ln F ~m!~l!5Res
z50

z2kd ln F ~m!~z21!,

we have

Res
l5`s

ld ln F ~m!~l!5r 0s
~m! , Res

l5`s

l2d ln F ~m!~l!5r 1s
~m! . ~50!

By using Eq.~46!, we have

(
l 51

N

m l~x,tm!5I 1~G!1
1

2
]x ln

u1
~m!

u2
~m! , 1<m<3, ~51a!

(
l 51

N

m l
2~x,tm!5I 2~G!1(

j 51

N

Cj ~N21!D j ln
u2

~m!

u1
~m! 1

1

2
a1]x ln

u2
~m!

u1
~m!2

1

4
]x

2 ln u1
~m!u2

~m! . ~51b!

Substituting Eq.~51! into Eq. ~23!, we obtain

u~x,tm!5
1

4
]x

2 ln u1
~m!u2

~m!2
1

2
~12b!]x

2 ln
u1

~m!

u2
~m!2

1

4 F ]x ln
u1

~m!

u2
~m!G2

1k1]x ln
u1

~m!

u2
~m! 1(

j 51

N

Cj ~N21!D j ln
u1

~m!

u2
~m! 1k2 , ~52a!
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v~x,tm!52
1

2
]x ln

u1
~m!

u2
~m! 1k3 , 1<m<3, ~52b!

with constants

k152 1
2a12I 1~G!, k2522a222a1I 1~G!2I 1

2~G!2I 2~G!, k352a12I 1~G!.

The expressions~52! are, respectively, the finite-band solutions of the CBB equation and the
two higher-order CBB equations (utm

,v tm
)T5Xm , 1<m<3.
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New direct linearizations for KdV and solutions
of the other Cauchy problem

Pierre C. Sabatiera)

Laboratoire de Physique Mathe´matique et The´orique—URA CNRS 768,
UniversitéMontpellier II—34095 Montpellier Cedex 05, France

~Received 14 December 1998; accepted for publication 24 December 1998!

The author showed previously that there are several equations that ‘‘directly lin-
earize’’ the Korteweg de Vries equation. They may give different classes of solu-
tions and they correspond either to generalized Gelfand Levitan or generalized
Marchenko inversion equations. The idea is developed here with a precise goal:
solving by linear methods the ‘‘other Cauchy problem’’ for KdV, i.e., the boundary
value problem where the solution is known at fixedx, together with its two first
derivatives. After several new direct linearization equations are given and analyzed,
the one that solves the problem is eventually obtained. It also corresponds to a new
inverse spectral problem, whose scalar equations are fourth order, and that is first
studied in the Gelfand Levitan form, and then studied and completely solved in the
Marchenko form. The methods given here can be extended probably to most non-
linear integrable equations, and suggest several new problems. ©1999 American
Institute of Physics.@S0022-2488~99!01004-X#

I. INTRODUCTION

In a previous paper,1 we showed how the direct linearization of the Korteweg de Vr
equation can be managed in such a way that the relevant inversion equation is not of the
enko form. As a remarkable example, we showed a case where the radial Gelfand Levitan
tion is relevant. Our study also showed that various ‘‘direct linearization equations’’~DLE! gen-
erate various classes of solutions for the Korteweg de Vries equation, so that it is sound to s
adapted DLE for solving a given problem. So as to first remind on a simple case how we h
a DLE, we rederive rapidly this example in Sec. II~the derivation here is simpler than the previo
one because it is not part of a more general derivation!. In the following, we call this example~G!.

The classical direct linearization of the Korteweg de Vries equation could also be consi
an example of the matricial direct linearization studied in our previous paper, and it leads
Marchenko inversion equation. We shall call it example~M!. Both examples share a very impo
tant common property: they rely on one spectral measure only related toV(x,t)—a ‘‘Gelfand
Levitan spectral measure’’ in the case of~G!, ‘‘scattering data’’ in the case of~M!. And so does
also the matricial direct linearization we also introduced. These remarks explain our concern
present paper, which is to derive new DLE, able to generate new solutions of KdV, wit
ultimate goal of solving boundary values problem of KdV that were not solved by ‘‘linear an
sis’’ up to now. Recall, in particular, the ‘‘Cauchy Problems:’’

Space Cauchy problem.Derive V(x,t), (x,tPR) from @V(x,0), xPR#.
Mixed Cauchy problem.Derive V(x,t) (xPR1, t>0) from @V(x,0), xPR1# and @V(0,t), t

>0#.
Time Cauchy problem.Derive V(x,t), (x,tPR) from V(0,t), V8(0,t), V9(0,t), tPR.
Of course, it is well known2 that the space Cauchy problem can be solved by the lineariza

~M!, and also well known that it is the only boundary value problem of the Korteweg de V
‘‘linearized’’ up to now! What about the others: In particular, what about the time Cau

a!Electronic mail: SABATIER@LPM.UNIV-MONTP2.FR
29830022-2488/99/40(6)/2983/38/$15.00 © 1999 American Institute of Physics
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problem? It really deserves to be called ‘‘the other Cauchy problem,’’ since one would neve
that the linearized Korteweg de Vries equation is integrable if one did not know how to solve
the space and the time Cauchy problems, and yet, people currently say that Korteweg de V
integrable by means of inverse scattering without knowing, up to now, how this ‘‘other’’ Cau
problem can be managed!

Section III is also an introductory section, where we recall the inversion procedure
generalized inversion equations of our previous paper and discuss their relevance for han
Cauchy problem. Although we feel that cases may be done by using this method, we do
further because it is very clear that the method is in any case much more complicated an
complete than that using~M! to manage the space Cauchy problem, and we are much less
ested by a case study than by the time Cauchy problem. What we do learn, in fact, from
section is that a Gelfand Levitan-type approach leads to a new DLE useful for generatin
classes of solutions, but with spectral measures not easy to handle.

In Sec. IV, we wonder if methods showing only one spectral measure are able to deal w
time Cauchy problem. So as to get a feeling of it, we first set down the Lax pair of spe
problems associated to the Korteweg de Vries equation as matrix first-order equations, der
Born approximations forV(x,t), and thus easily see that in an example where the time Ca
problem can be analyzed, formulas showing only one spectral measure are not convenien
linear approximation, and there is no serious reason to be different in exact analyses. Hen
learn from this analysis that three spectral measures formally present in the DLE is pro
necessary in the general case.

After our strategy is defined by the previous sections, we begin the attack to the probl
Sec. V, where we primarily seek general representations of Lax pair solutions based on
analytic properties. The results readily lead us to a generalized Gelfand Levitan formalism
thus to a new direct linearization of KdV, involving for the first time three spectral measure
can be used to generate classes of solutions solving ‘‘their own’’ time Cauchy problem exac
physicists do when they use the inverse scattering method to derive, for instance multis
solutions solving their own ‘‘space Cauchy problem.’’ But for solving the time Cauchy prob
with initial conditionsV(0,t)V8(0,t)V9(0,t) that are arbitrary functions in convenient sets, t
approach suffers from the fact that in any Gelfand Levitan formalism, spectral measures a
directly related to~sort of! physical properties, and we shall not use it further.

Thus, in Sec. VI, we definitely rely on the Scattering theory for handling the time Ca
problem. First we try to guess, by means of extrapolating analogy, what might be a DLE o
Marchenko form with three spectral measures~oddly enough, we obtain one!!, and how scattering
data may appear on time paths. After these appetizers, we derive a Marchenko-type formal
the direct and the inverse scattering problems on time paths! It turns out that they are s
problems with sparse matrices~not many ones in the literature! but that can be related to a clas
of spectral problems with ‘‘good’’ matrices already studied—this meaning that we can assoc
the time scattering problem a ‘‘transformed’’ time scattering problem, and we must go bac
forth from one to the other for solving eventually the inverse scattering problem. Hence, we o
a generalized Marchenko formalism which relates at time zero the values
V(0,t), V8(0,t), V9(0,t), to conveniently defined ‘‘time path reflection coefficients,’’ which b
have as spectral measures in the DLE associated to this formalism. This DLE is given in Se
It enables the evolution of the problem asx varies, and hence the time Cauchy problem
completely solved by this new ‘‘inverse time scattering transform,’’ similar, but more complic
than the ordinary one. It turns out that this ‘‘final’’ DLE given in Sec. VII is, in fact, a set
coupled integral equations, therefore more complicated that the equation we ‘‘guessed’’
beginning of Sec. VI. Therefore, for the latter one should work only for a restricted class of i
conditions~but we shall not try to identify them.!

The paper contains at least three new ‘‘direct linearizations’’ of the Korteweg de V
equation, two new Inverse Problems analyses, and the solution by Inverse Scattering
Korteweg de Vries ‘‘other’’ Cauchy problem. Yet, it suggests considerably more work, fo
stance.
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~1! One has to identify the classes of solutions reached by the DLE’s. Some of them may be
for deriving new solutions in the Painleve´ analysis.
~2! The method~and the same sort of problems! obviously extend to all nonlinear partial differ
ential equations integrable by Inverse Scattering Transform and which can be directly line
~for instance, by means of an ansatz we proposed a few years ago!.1–3

~3! The ‘‘solitonic’’ solutions that correspond to discrete spectra in the time scattering prob
should be studied in general.
~4! The method yields generalized Gelfand Levitan or Marchenko formalisms in two varia
Can the linear partial differential equations of the generalized kernels be geometrically
formed so as to manage other kinds of boundary value problems? Can these formalisms be
term as a tool for generating three variables integrable nlpde? Of course, we do not guess t
kind of boundary value problem for an integrable nonlinear partial differential equation ca
linearized by similar methods. Direct linearization methods are most often available,1,3 but the
boundary value problems may be very intricate, even for the linearized equation,4 together with
the Lax pairs,4 and, in most cases, we shall have to deal with quite unusual inverse scat
problems.5 But I must say that this is for me the most interesting aspect of this subject.

II. A SKETCHY REDERIVATION OF FORMER RESULTS

The starting point was the spectral integral equation,

f 1~k,x,t !5sin@kx1k3t#1E dm~l!

k1l
sin@~k1l!x1~k31l3!t# f 1~l,x,t !. ~2.1!

We assume throughout that the support ofdm(l) is contained in Iml>0, anddm(l) is
‘‘symmetric’’ with respect to the imaginary axis, i.e., if it is a Stieljes measurem8(l)dl, m8(l)
is even. We assume also that the properties of this measure are such that~2.1! is a Fredholm
integral equation, for which the Fredholm alternative holds. In the generic case and/or at g
values ofx and t, we use the working assumption~WA! that the homogeneous equation,

w~k,x,t !5E T~k,l,x,t !w~l,x,t !dm~l!, ~2.2!

whereT is the factor off 1 in ~2.1!, has no solution butw50. As in our previous paper, we ca
show that ifw is the odd part ofw as a function ofk, the working assumption~WA! implies that
only 0 is a solution of

w2~k,x,t !5E dm~l!T2~k,l,x,t !w2~l,x,t !, ~2.3!

where

T2~k,l,x,t !5
1

2 H sin@k1l!x1~k31l3!t]

k1l
2

sin@~k2l!x1~k32l3!t#

k2l J ~2.4!

and thatf 1 is the unique solution of

f 1~k,x,t !5sin@kx1k3t#1E dm~l!T2~k,l,x,t ! f 1~l,x,t !. ~2.5!

In the method of direct linearization, which is recalled in our previous paper, differe
equations forf 1 are obtained by applying differential operators to both sides of~2.1! @or ~2.5!#.
When the operator applies inside the integral, ‘‘parasite terms’’ may appear: we call so those tha
are not similar~modulo the exchangek, l! to those of the left-hand side of the equation. Para
                                                                                                                



na-

the
cy

n

2986 J. Math. Phys., Vol. 40, No. 6, June 1999 Pierre C. Sabatier

                    
terms are ‘‘reduced’’ if algebraic calculations kill for them the denominator (k1l), so that,
thanks to the separability of sin@(k1l)x1(k31l3)t#, the former parasite terms become a combi
tion of ‘‘ free terms’’ ~i.e., go outside the integral!. The game is to obtain an operatorD that
produces a zero free term, so that, according to the assumption~WA!, D f 1 vanishes. Thus,
following exactly our previous derivations, we readily obtain the two equations forf 1 :

F ]2

]x2 1k22V~x,t !G f 1~k,x,t !50 ~2.6!

and

F ]

]t
2k2

]

]x
2

1

2
V~x,t !

]

]x
1

1

4
V8~x,t !G f 1~k,x,t !50, ~2.7!

where the ‘‘prime’’ is used to mean a differentiation with respect tox, and

V~x,t !522
]

]x E dm~l!sin~lx1l3t ! f 1~l,x,t !. ~2.8!

At this point, we go away from the lines of our previous paper, where we derived
Korteweg de Vries equation from the Lax pair~2.6!, ~2.7! and the usual study of a consisten
formula ask→6`. Here, let us rather set

g~k,x,t,u!5 f 1~k,x,t !sin~kx1k3u!5: f s. ~2.9!

From ~2.6!, written for f and fors, we get

g-5
]

]x
~Vg!24k2g812V f s8. ~2.10!

From ~2.7!, written for f and fors, we get

k2g85S s
] f

]t
1 f

]s

]uD2
1

2
V f81

1

4
V8 f . ~2.11!

From ~2.10! and ~2.11! we readily obtain

g-14S ]

]t
1

]

]uDg13Vg850. ~2.12!

In particular, if t5u, ~2.12! reduces to the simple equation for

h~k,x,t !5g~k,x,t,t !, ~2.13!

]3h

]x3 14
]h

]t
23V~x,t !

]h

]x
50. ~2.14!

If we multiply both sides of~2.14! by dm(k) and integrate, we obtain the following equatio
for

U~x,t !5E dm~l!sin~lx1l3t ! f 1~l,x,t !, ~2.15!

]3U

]x3 14
]U

]t
23V

]U

]x
50. ~2.16!
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But according to~2.8!, V522U8, so that we obtain forU and V the nonlinear evolution
equation,

]U

]t
1

1

4

]3U

]x3 1
3

2 S ]U

]x D 2

50, ~2.17!

]V

]t
1

1

4

]3V

]x3 2
3

2
V

]V

]x
50; ~2.18!

Eq. ~2.18! is nothing but the usual Korteweg de Vries equation.

III. REPRESENTATION OF SOLUTIONS AND INVERSION EQUATION

Again, we first recall results obtained in our previous paper. Writing down~2.4! as a sum of
integrals, we obtained a generalized Povzner–Levitan representation off 1(k,x,t):

f 1~k,x,t !5sin~kx1k3t !1E
0

x

dy sin~ky1k3t !L1~x,y,t,t !1k2E
0

t

du sink3ul1~x,t,u!

1kE
0

t

du cosk3ul18~x,t,u!2E
0

t

du sink3ul19~x,t,u!, ~3.1!

where

L1~x,y,t,u!52E dm~l! f 1~l,x,t !sin~ly1l3u!, ~3.2!

l 1~x,t,u!5L1~x,0,t,u!52E dm~l! f 1~l,x,t !sinl3u, ~3.3!

l 18~x,t,u!5F ]

]y
L1~x,y,t,u!G

y50

52E dm~l! f 1~l,x,t !l cos~l3u!, ~3.4!

l 19~x,t,u!5F ]2

]y2 L1~x,y,t,u!G
y50

5E dm~l! f 1~l,x,t !l2 sinl3u. ~3.5!

It follows from ~2.8! that

V~x,t !52
]

]x
L1~x,x,t,t !52F S ]

]x
1

]

]yDL1~x,y,t,t !G
x5y

. ~3.6!

Thus,

V~0,t !5F ]

]x
l 1~x,t,t !1 l 18~x,t,t !G

x50

. ~3.7!

We derive an integral equation from~3.1!, by multiplying by @dm(k)sin(kx1k3t)# and inte-
grating.

With the notations~3.3!–~3.5!, the equation reads as
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L1~x,y,t,u!1G1~x,y,t,u!1E
0

x

G1~z,y,t,u!L1~x,z,t,t !dz2E
0

t

g19~y,s,u!l 1~x,t,s!ds

1E
0

t

g18~y,s,u!l 18~x,t,s!ds2E
0

t

g1~y,s,u!l 19~x,t,s!ds50, ~3.8!

where

G~x,y,t,u!5E dm~l!sin~lx1l3t !sin~ly1l3u!, ~3.9!

g1~y,s,u!5G~0,y,s,u!5E dm~l!sinl3s sin~ly1l3u!, ~3.10!

g18~y,s,u!5F ]

]x
G~x,y,s,u!G

x50

5E dm~l!l cosl3s sin~ly1l3u!, ~3.11!

g19~y,s,u!5F ]2

]x2 G~x,y,s,u!G
x50

52E dm~l!l2 sinl3s sin~ly1l3u!. ~3.12!

Now this Gelfand Levitan scheme enables us to study the following incomplete Ca
problem.

We want to construct a solutionV(x,t) of the Korteweg de Vries equation~2.18! such that
V(x,0) has prescribed values forx>0. The equations~3.1!, ~3.2!, ~3.6!, and ~3.8! simplify. In
particular, if we writeL(x,y) for L(x,y,0,0) andG(x,y) for G(x,y,0,0),

L~x,y!52E dm~l! f 1~l,x,0!sinly, ~3.13!

G~x,y!5E dm~l!sinlx sinly, ~3.14!

L~x,y!1G~x,y!1E
0

x

L~x,z!G~z,y!dz50. ~3.15!

These equations are the usual Gelfand Levitan equations, and it follows from~3.2! and ~2.6!
that L(x,y) obeys the partial differential equations,

S ]2

]x22V~x!2
]2

]y2DL~x,y!50, ~3.16!

with L(x,0)50 andL(x,x) related toV(x,0) by ~3.6!. The usual integration on characteristi
yields the Volterra equation forL(x,y)(x>y>0) from V(y,0) @which we write hereV(y)]:

L~x,y!5
1

2 E~x2y!/2

~z1y!/2
V~s!ds1E

~x2y!/2

~x1y!/2
dsE

0

~x2y!/2
du V~s1u!L~s1u,s2u!. ~3.17!

Hence, givingV(y) for y>0 enables us to constructL(x,y) for x>y>0. Then we can
constructf 1(k,x,0) from sinkx by using the transformation formula~3.1!; here

f 1~k,x,0!5sinkx1E
0

x

L~x,y!sinky dy. ~3.18!
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If V(x,0) is a scattering potential, for which the Gelfand Levitan method applies, we can
construct the Jost functionF(k):

F~k!511E
0

`

eikrV~r ,0!k21f 1~k,r ,0!dr, ~3.19!

and dm(k) from the modulus of the Jost function: the part corresponding to the contin
spectrum is proportional tok(uF(k)u2221), and it is easy to see that a weak condition of reg
larity on V @a derivative inL1(R1) is sufficient# guarantees the working assumptions we impo
to dm(l). There are also potentials that are not regular, and whosedm(l) is such that the method
works. We shall not study them. In all cases, givingdm(l) gives~2.5!, from which the problem
is solved. In our previous paper we gave another Gelfand Levitan equation, which correspo
a different equation~2.5! and also enables us to find~another! solution of KdV from its value on
(0,t). The ambiguity in this determination should not be surprising since it is obvious on
linearized problem, and it is related to our selecting from the beginning a symmetric meas

Hence, it appears that the usual Faddeev–Marchenko scheme is probably better th
Gelfand Levitan one, since it takes the exact amount of information required for solving the
Cauchy problem without any ambiguity. But the scheme we gave here may produce soluti
the Cauchy problems in classes that are not managed by the Marchenko scheme!

IV. MATRICIAL LAX EQUATIONS AND A LINEAR ANALYSIS

The spectral equations~2.6! and~2.7! are fulfilled by a functionf 1(k,x,t) defined by~1!. It is
easy to replace~2.6! by a first-order equation for the vector

f5S f 1~k,x,t !
]

]x
f 1~k,x,t !D . ~4.1!

In the following, we shall say that the vectorf written in ~3.1! ‘‘corresponds’’ to f 1(k,x,t).
On the other hand, if we look for solutions of~2.7! that are twice differentiable functions ofx and
t, we can also derive from~2.7! and~2.6! another first-order equation forf. These two first-order
equations read as

]

]x
f~k,x,t !5Mf ~k,x,t !, ~4.2!

]

]t
f~k,x,t !5Nf~k,x,t !, ~4.3!

where

M5S 0 1

2k21V 0D ,

~4.4!

N5S 2 1
4V8 k21 1

2V

2 1
4V92~k22V!~k21 1

2V! 1
4 V8

D
~again we used the prime forx derivatives!.

They are consistent with each other if

]M

]t
2

]N

]x
1@M ,N#50, ~4.5!
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which holdsif and only if

]V

]t
1

1

4
V-2

3

2
VV850, ~4.6!

i.e., if the Korteweg de Vries equation holds! If it does,~4.2! and~4.3! can be readily transformed
into the Volterra equation,

f~k,x,t !5f~k,0,0!1E
0

x

M ~y,0!f~k,y,0!dy1E
0

t

N~0,u!f~k,0,u!du1E
0

xE
0

t

P~y,u!f~k,y,u!dy du,

~4.7!

where

P~k,x,t !5
]M

]t
1MN5

]N

]x
1NM . ~4.8!

One can derive approximate solutions of~4.8! that are linear inV ~a normiVi may denote the
orders of a series expansion!. It can be done by setting

g~k,x,t !5exp@2M0~x1k2t !#f~k,x,t !, ~4.9!

whereM is the matrix

S 0 1

2k2 0D ,

whose eigenvectors

S 1
6 ik D

correspond to eigenvalues6 ik. Then one notices that

M2M05m, N2k2M05n ~4.10!

are matrices with all elements of orderiVi , and one derives the Volterra equation forg(k,x,t):

g~k,x,t !5g~k,0,0!1E
0

x

dy exp@2M0y#m~y!exp@M0y#g~k,y,0!

1E
0

t

du exp@2k2M0u#n~u!exp@k2M0u#g~k,0,u!1E
0

xE
0

t

dy dup~k,y,u!g~k,y,u!,

~4.11!

where

p~k,x,t !5exp@2M0~x1k2t !#@q~k,x,t !#exp@M0~x1k2t !#,

q~k,x,t !5
]m

]t
1mN2k2M0m5

]n

]x
1nM2M0n. ~4.12!

By using~4.12!, with the parity assumption ondm(l), the reader may easily check that in th
V-linear approximation, the functionf 1(k,x,0) that reduces at order 0 to sinkx, is indeed an
approximate solution of~2.5!:
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f 1~k,x,0!.sinkx1
1

2 E dm~l!Fsin~k1l!x

k1l
2

sin~k2l!x

k2l Gsinlx. ~4.13!

In this approximation,V(x,0) is given by

V~x,0!.22
]

]x E dm~l!sin2 lx dx, ~4.14!

from which we learn that~a! V is known for anyx if it is known for x>0; ~b! dm(l) is known
from the knowledge ofV(x,0) for x>0, so that the solutionV(x,t) of KdV in this linear approxi-
mation ~and with this method! is known fromV(x,0), x>0.

On the other hand, we can study theV-linear approximation of~4.12! at x50:

g~k,0,t !5g~k,0,0!1E
0

t

du exp@2k2M0u#n~u!exp@k2M0u#g~k,0,0!, ~4.15!

with, say,

g~k,0,0!5S b
kaD5aS 1

ik D1bS 1
2 ik D ,

n~ t !5S 2 1
4V8~0,t ! 1

2V~0,t !

2 1
4V9~0,t !1 1

2k
2V~0,t ! 1

4V8~0,t !
D . ~4.16!

Settingg(k,0,0)5(k
0), we obtain, after some direct calculations on~4.16!,

f 1~k,0,t !.sink3t1E
0

t H 2
1

4
V9~0,u!

sink3u

k
sink3~ t2u!

2 1
4V8~0,u!sin~2k3u2k3t !1 1

2V~0,u!cos~2k3u2k3t !J du. ~4.17!

In the V-linear approximation,V,V8,V9 should be themselves the Born approximations:

V~x,t !.22E dm~l!l sin@2~lx1l3t !#, ~4.18!

V~0,t !.22E dm~l!l sin@2l3t#, ~4.19!

V8~0,t !.24E dm~l!l2 cos@2l3t#, ~4.20!

V9~0,t !.8E dm~l!l3 sin@2l3t#. ~4.21!

If we substitute these results into~4.17!, and take into account the symmetry ofdm(l), we
obtain theV-linear approximation off 1(k,0,t) as it is given by~2.5!:

f 1~k,0,t !.sink3t1
1

2 E0

t

dm~l!H sin~k31l3!t

k1l
2

sin~k32l3!t

k2l J sinl3t. ~4.22!
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Hence, the linearized solution of the Lax-pair equations~4.2!, ~4.3! corresponding at zero
order to sin(kx1k3t) and that of~2.5! are identical. Therefore, it is essential to see what can
freely chosen in~4.19!–~4.21!. As a first guess, one may hope thatV9,V8,V, are independen
parameters. But since the derivation has been made with the linear conditions, they are gi
~4.19!, ~4.20!, and~4.21!. This means that, not onlyV,V8,V9 are determined by their values fo
t>0 ~which is a particular feature of the method!, but also they must be consistent altogether w
a representation using only one measure, and with at least another one involving three m
~which are here trivially dependent on each other because of the linear equation!.

Indeed, let us try to solve ‘‘linearized Korteweg de Vries equation,’’ for instance,

]V

]t
1

1

4
V-50; ~4.23!

we see that~4.18! is a solution, but using a full axisx-Fourier transform would enable us, choosin
freely V(x,0), whereas using the representation

V~x,t !5E
2`

1`

dl e2ik3t@g0~l!e2ikx1g1~l!e2ik jx1g2~l!e2ik j 2x#, ~4.24!

where

j 5exp@2ip/3# ~4.25!

is convenient to solve the time Cauchy problem.
Hence, methods showing one spectral measure only, and/or assuming that it is symme

not convenient to solve general boundary value problems.

V. REPRESENTATION OF f „k ,x ,t … ON TIME PATHS

A. Consistency on paths and analytic properties

The known linearizing methods all started from a representation of the wave function@and
thus of the functionf(k,x,t) defined by~4.1!# in terms of one spectral measure. Since it seems
it is not enough to deal with the second Cauchy problem, we try now to derive the most g
representations off(k,x,t), which are of Levitan’s formand consistent with Eqs.~4.2! and~4.3!.
First, notice that we can go fromf(k,x0 ,t0) to f(k,x,t) by following successively anx path and a
t path ~k being fixed, and dropped for a time from the notations!:

f~x,t0!5f~x0 ,t0!1E
x0

x

dy M ~y,t0!f~y,t0!, ~5.1!

f~x,t !5f~x,t0!1E
0

t

du N~x,u!f~x,u!. ~5.2!

We could as well follow successively at path and anx path, or, as in~4.7!, combine both
ones.

The solutionf(x,t) of ~5.2! is the solution of

]

]t
f~x,t !5N~x,t !f~x,t !, ~5.3!

f(x,t0) being given. Now letS(x,t) be the matrix solution of

S~x,t !5I1E
t0

t

N~x,u!S~x,u!du, ~5.4!
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whereI is the 232 unit matrix.
It is clear thatS(x,t)f(x,t0) is equal tof(x,t).
Suppose that thex path ~5.1! has produced a functionf(x,t0) that satisfies the following

property:

]

]x
f~x,t0!5M ~x,t0!f~x,t0!, ~5.5!

and remind thatM and N must fulfill the consistency condition~4.5!. It is a matter of simple
derivations, and using the solution uniqueness property of Volterra equations~5.2! and ~5.4!, to
show that the functionS(x,t)f(x,t0) @or f(x,t)] satisfies for any value oft the equation

]

]x
f~x,t !5M ~x,t !f~x,t !. ~5.6!

Hence, if we get on thex path a representation off(x,t0) consistent with~5.6!, and if we solve
~5.4! on thet path,M andN fulfilling ~4.5!, we constructf(x,t), which satisfies simultaneousl
~5.3! and~5.6!. Since we already know Gelfand Levitan or Marchenko representations off(x,t0)
on thex path, we have now only to study thet path.

We shall use the convenient notations:

N~k,x,t !52k4n21k2n11n05N2~k!1N1~k,x,t !, ~5.7!

where

n25S 0 0

1 0D , n15S 0 1

V0 0D , n05S V1 V0

V2 2V1
D , ~5.8!

V05 1
2V~x,t !, V152 1

4V8~x,t !, V25~ 1
2V

22 1
4V9!~x,t !, ~5.9!

N25S 0 k2

2k4 0 D , N15k2V0n21n05n, ~5.10!

and, for the sake of simplicity, we chooset050. Notice that on the path (0,t), x is fixed and only
t varies in V0 ,V1 ,V2 . We suppose that theVi 8’s are bounded for the value ofx and any
tP@2T,T#, and letV̄(x,t) be their common absolute upper bound. We suppose that*2`

` V̄(x,t)dt
is finite. We first prove the following.

T1. The solutionS(k,t) of ~5.4! at fixedx is an entire function ofk2. If it is written as

S~k,t !5S0~k3,t !1k2S1~k3,t !1k4S2~k3,t !, ~5.11!

where

Sl~k3,t !5 1
3@S~k,t !1 j lS~ jk,t !1 j 2lS~ j 2k,t !#, ~5.12!

thenS0 ,S1 ,S2 are even entire functions ofk3 of exponential typet.
Proof: From ~5.4!, ~5.7!, ~5.11!, and~5.12!, we derive the integral equation for the vectorŝ

~in fact, a 632 matrix! whose components are the 232 matricesS0 ,S1 ,S2 ,

ŝ~k,t !5s 0̂1E
0

t

n~k,u!ŝ~k,u!du, ~5.13!

where
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n~k,t !5S n0 2k6n2 k6n1

n1 n0 2k6n2

2n2 n1 n0

D , ~5.14!

ŝ05S I
0
0
D . ~5.15!

The solution of the Volterra equation~5.13! is given by the uniformly convergent series,

ŝn11~k,t !5E
0

t

n~k,u!ŝn~k,u!du,

starting ats 0̂. It follows thatŝ(k,t), like n(k,t), is an entire function ofk6, and that each elemen
of the 632 matrix ŝ(k,t) is absolutely bounded by the corresponding one of the matrixsn(k,t)
that appears in the series expansion of the solutionsn(k,t) of the equation,

s̄~k,t !5s 0̂1E
0

t

n̄~ uku,u!s̄~k,u!du, ~5.16!

where

n̄uku,t)5S n0 uku6n2 uku6 n1

n1 n0 uk6un2

n2 n1 n0

D , ~5.17!

n05K2S K I

2K2 K D , n15S 0 I

K2 0D , ~5.18!

and the positive numberK has been chosen to yield absolute bounds for the coefficients conta
V and its derivatives inn0 andn1 . Notice thats̄(k,t) is an entire function ofuku6.

Going back froms̄(k,t) to the 232 matrix,

s̃~k,t !5s̄~k,t !1uku2s1~k,t !1uku4 s2~k,t !, ~5.19!

we readily derive

s̃~k,t !5I 1E
0

t

ñ~ uku,u!s̃~k,u!du, ~5.20!

where

ñ~ uku,u!5S K3 x2

x4 K3D ~5.21!

and

x5Auku21K2, ~5.22!

and the solution of~5.20! is
                                                                                                                



t

2995J. Math. Phys., Vol. 40, No. 6, June 1999 Pierre C. Sabatier

                    
s̃5eK3tS coshx3t sinh
x3t

X

x sinhx3t coshx3t
D . ~5.23!

From~5.23! one readily derives bounds for the components ofS0 , S1 , S2 asuku→`, and from
the standard definitions of Boas,6 it follows that the functions ofk3 that appear are of order no
larger than 1 and typet. Q.E.D.

T2. With the assumptions ofT1 and assuming also that (]/]t)V(x,t) and (]/]t)V8(x,t) are
absolutely bounded for the fixed value ofx and any tP@2t1 ,t1#, we claim thatSi(k

3,t) ( i
50,1,2) is absolutely bounded fork3PR and utu,t1 .

Proof: From ~5.7! we get

exp@2N2t#5S cosk3t 2k21 sink3t

k sink3t cosk3t D . ~5.24!

Now set

T~k,t !5S 1 0

0 k21D exp@2N2t#S~k,t !. ~5.25!

It follows from ~5.4! ~dropping the fixedx in notations! that

T~k,t !5T~k,0!1(
21

1 E
0

t

klv ~ l !~u!n~ l !~k3u!T~k,u!du, ~5.26!

where

v ~21!~ t !52 1
2V2~ t !;v ~0!~ t !52 1

4V8~ t !;v ~1!~ t !5 1
2V~ t !, ~5.27!

n~21!~z!5S sin 2z 2 sin2 z

22 cos2 z 2sin 2zD , ~5.28!

n~0!~z!5S cos 2z sin 2z

sin 2z 2cos 2zD , ~5.29!

n~1!~z!5S 2sin 2z cos 2z

cos 2z sin 2zD . ~5.30!

It is readily seen that

2k3n~1!~k3u!5
]

]u
n~0!~k3u!, 2k3n~0!~k3u!52

]

]u
n~1!~k3u!. ~5.31!

Using ~5.31! for integrating by parts the term withl 51, and noticing that]T/]u can be
expressed by means of~5.26! and that

@n0~z!#25I , n0~z!n1~z!5S 0 1

21 0D , ~5.32!

we obtain
                                                                                                                



cients

e
re-

2996 J. Math. Phys., Vol. 40, No. 6, June 1999 Pierre C. Sabatier

                    
@12 1
4k

24~v ~1!~ t !!2#T~k,t !5@11 1
2k

22n~0!~k3t !v ~1!~ t !#

3H F12
1

2
k22v ~1!~0!GT~k,0!1(

21

0

klE
0

l

v ~ l !~u!n~ l !~k3u!T~k,u!du

2
1

2 E0

t

duH 2k23v ~21!~u!n~21!~k3u!1k22

3Fv ~0!~u!1
]

]u
v ~1!~u!n~0!~k3u!G1k21v ~1!~u!

3S 0 1

21 0D J T~k,u!J . ~5.33!

This Volterra equation can be studied by means of a majorant equation, all the coeffi
being trivially bounded asuku becomes large, and it follows that the elements ofT(k,t), at finite t,
are absolutely bounded by those of

T̄~k,t !5C~ t !S 1 k21

1 k21D , ~5.34!

whereC is an appropriate function. We can then improve the asymptotic behavior ofT(k,t) as
uku→` on R by integrating by parts also the term*0

t v (0)(u)n(0)(k3u)T(k,u)du, obtaining

T~k,t !S 1 0

0 k21D 5S O~ uku21! O~k22!

O~ uku21! O~k22!
D , ~5.35!

from which it follows that

US~k,t !2S cosk3t k21 sink3t

2k sink3t cosk3t D U ~5.36!

is bounded for fixedt, realk, and so are therefore ~Q.E.D.!

S0~k,t !, S1~k,t !, S2~k,t !. ~5.37!

SinceS(k,t) enables us to write down any solution of~5.3! whose value and derivative ar
fixed at t50, it follows from T1 andT2 that we can derive generalized Povzner–Levitan rep
sentations of such solutions.

B. Representation of the wave function

As a matter of fact, ifw is the first component of a vectorf solution of

]f

]t
5Nf ~5.38!

~which, in standard scalar form, would be a fourth-order spectral problem!, w is a solution of

Dt~k!w5:F ~k21V0!S ]2

]t2 1k61ak21b D2
]V0

]t S ]

]t
2V1D Gw~k,t !50, ~5.39!

whereV0 , V1 , V2 , are defined by~5.9!, and

a52~V0
21V2!, b52S V1

21V0V21
]V1

]t D . ~5.40!
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We can define two independent solutions of the time spectral problem~5.39! by initial ~i.e.,
t50) conditions and, after some elementary algebra, write down their generalized Pov
Levitan representations,

w1~k,t !5k21 sink3t1E
0

t

du$k21 sink3uc2~ t,u!1cosk3uc0~ t,u!1k sink3uc1~ t,u!%,

~5.41!

w2~k,t !5cosk3t1x~ t !k21 sink3t1E
0

t

du$k21 sink3ux2~ t,u!1cosk3ux0~ t,u!

1k sink3ux1~ t,u!%. ~5.42!

Inserting~5.41! into ~5.39!, we find boundary conditions to be satisfied by the functionsc :

c2~ t,0!5c1~ t,0!5F ]

]u
c0~ t,u!G

u50

5F ]2

]t2 c1~ t,u!G
u50

5F ]2

]u2 c1~ t,u!G
u50

50, ~5.43!

2
d

dt
c1~ t,t !1a50, ~5.44!

2
d

dt
c0~ t,t !2ac1~ t,t !2

]V0

]t
50, ~5.45!

2
d

dt
c2~ t,t !1ac0~ t,t !2

]V0

]t
c1~ t,t !1b50, ~5.46!

F S ]2

]t22
]2

]u2Dc1~ t,u!G
t5u

1ac2~ t,t !1
]V0

]t
c0~ t,t !1~b1aV0!c1~ t,t !22V0

d

dt
c0~ t,t !50,

~5.47!

F S ]2

]t2 2
]2

]u2Dc0~ t,u!G
t5u

1aF ]

]u
c1~ t,u!G

t5u

1~aV01b!c0~ t,t !

2
]V0

]t
c2~ t,t !12V0

d

dt
c2~ t,t !50, ~5.48!

and we also find the partial differential equations to be satisfied by the functionsc :

S ]3

]u32
]3

]t2 ]uDc0~ t,u!2a
]2

]u2 c1~ t,u!1V0S ]2

]t22
]2

]u2Dc2~ t,u!2~b1V0a!
]

]u
c0~ t,u!

2
]V0

]t

]

]t
c2~ t,u!1S V0b1V1

]V0

]t Dc2~ t,u!50, ~5.49!

S ]3

]t2 ]u
2

]3

]u3Dc1~ t,u!1V0S ]2

]t22
]2

]u2Dc0~ t,u!1~b1V0a!
]

]u
c1~ t,u!1a

]

]u
c2~ t,u!

2
]V0

]t

]

]t
c0~ t,u!1S bV01V1

]V0

]t Dc0~ t,u!50, ~5.50!
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S ]2

]t22
]2

]u2Dc2~ t,u!1V0S ]2

]t22
]2

]u2Dc1~ t,u!2a
]

]u
c0~ t,u!

2
]V0

]t

]

]t
c1~ t,u!1~b1aV0!c2~ t,u!1S bV01V1

]V0

]t Dc1~ t,u!50. ~5.51!

Similar results hold forw2(k,t). It is clear that all these results remind us of those of
Gelfand Levitan approach to the space spectral problem, and it is likely they can be u
construct solvable examples of Korteveg de Vries equation, but it is also clear that they are
too complicated for doing more. We can simplify their management if we notice that settin

c2~ t,u!5E
2`

1`

dl sinl3ulc̃21~ t,l!, ~5.52!

c0~ t,u!5E
2`

1`

dl cosl3uc̃0~ t,l!, ~5.53!

c1~ t,u!5E
2`

1`

dl sinl3ul21c̃11~ t,l!, ~5.54!

where thec̃ i(t,l) are even functions ofl, and setting

C0~ t,l!5c̃21~ t,l!1c̃0~ t,l!1c̃11~ t,l!, ~5.55!

C2~ t,l!5 j 2c̃21~ t,l!1c̃0~ t,l!1 j c̃11~ t,l!, ~5.56!

C1~ t,l!5 j c̃21~ t,l!1c̃0~ t,l!1 j 2c̃11~ t,l!, ~5.57!

we readily prove thatc2 , c0 , andc1 are solutions of~5.49!, ~5.50!, ~5.51! if and only if C0 ,
C2 , C1 , are solutions of

Dt~l!C0505Dt~ j l!C25Dt~ j 2l!C1 . ~5.58!

Hence, we can express theC’s ~and the similar functions obtained from thex’s!, by means of
linear combinations ofw1(l,t), w2(l,t) ~and their values forj l and j 2l). Taking into account
the parity, the coefficients of these linear combinations give a way for representing a solut
the time spectral problem~5.39! in terms of three measures. For instance, suppose we stic
w1(k,t), as it should be done~we guess it! in a Gelfand Levitan approach of the Cauchy proble
SettingC0 , C2 , C1 , respectively, proportional tow1(l,t), w1( j l,t), w1( j 2l,t), we obtain for
C̃0 , C̃21 , C̃11 , the expansions

c̃ i~ t,l!5 (
l 521

l 511

al~l! j i l w1~ j 2ll,t !, ~5.59!

where theal ’s are even functions ofl. On the other hand, inserting~5.52!, ~5.53!, and~5.54! into
~5.41!, we obtain

w1~k,t !2k21 sink3t5E
2`

1`

dlH F c̃21~ t,l!1
k

l
c̃11~ t,l!G E

0

t

du sinl3u sink3u

1c̃0~ t,l!E
0

t

du cosl3u cosk3uJ . ~5.60!
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Setting now

f ~k,t !5kw1~k,t !, ~5.61!

and inserting~5.59! into ~5.60! ~with this new notation!, we get, after elementary algebra,

f ~k,t !5sink3t1 (
l 521

l 511 E dm l~l!T2~k, j ll,0,t ! f ~ j ll,t !, ~5.62!

whereT2 has been defined by~2.4!, and the measuresdm(l) are symmetric~i.e., they reduce to
even functions ofl timesdl when they are Stieltjes measures on the real axis!. It is possible to
derive from~5.62! a representation valid for anyx,t by combining thex path and thet path~as we
shall do in Sec. VI!. It is better to use~5.62! as the cornerstone of a guess and to prove this gu
by setting a new direct linearization of the Korteveg de Vries equation.

C. A new direct linearization of KdV

Guess:The following integral equation yields a direct linearization of the Korteweg de V
equation:

f ~k,x,t !5sin~kx1k3t !1 (
l 521

l 511 E dm l~l!T2~k, j ll,x,t ! f ~ j ll,x,t !, ~5.63!

whereT2(k,l,x,t) is defined by~2.4!.
Proof: ~1! As in all direct linearizations, we assume that for a given free term@here sin(kx

1k3 t)], ~5.63! has only one solution. As a matter of fact,~5.63! can be gathered with the two othe
equations, respectively, obtained by substitutingjk and j 2k to k. The system that is obtained is
Fredholm system, which can be used to derivef. It is clear that the uniqueness property holds
the system only if it does for Eq.~5.63!.

~2! We need five formulas, readily derived from~2.4!:

]

]x
T2~k,l,x,t !52sin~kx1k3t !sin~lx1l3t !, ~5.64!

]2

]x2 T2~k,l,x,t !52k cos~kx1k3t !sin~lx1l3t !2l sin~kx1k3t !cos~lx1l3t !, ~5.65!

~k22l2!T2~k,l,x,t !5k cos~kx1k3t !sin~lx1l3t !2l sin~kx1k3t !cos~lx1l3t !,
~5.66!

S ]

]t
2k2

]

]xDT2~k,l,x,t !52lk cos~kx1k3t !cos~lx1l3t !2l2 sin~kx1k3t !sin~lx1l3t !,

~5.67!

S ]3

]x3 1k2
]

]xDT2~k,l,x,t !522lk cos~kx1k3t !cos~lx1l3t !1l2 sin~kx1k3t !sin~lx1l3t !.

~5.68!

~3! Let us now apply (]2/]x21k2) to f (k,x,t) in ~5.63!. Using ~5.64!–~5.66! and their
transforms asl→ j l, j 2l, we see that a functionV(x,t) @given below in~5.72!# is such that

S ]2

]x2 1k2D f ~k,x,t !5V~x,t !sin~kx1k3t !1(
l
E dm l T~k, j ll,x,t !S ]2

]x2 1 j 2ll2D f ~ j l,x,t !,

~5.69!
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whereas it follows from~5.63! that for any functionV that does not depend onk, we can write
down

V~x,t ! f ~k,x,t !5V~x,t !sin~kx1k3t !1(
l

dm l~l!T~k, j ll,x,t !V~x,t ! f ~ j l,x,t !. ~5.70!

Subtracting~5.70! from ~5.69! and thanks to the uniqueness property we get

F ]2

]x2 1k22V~x,t !G f ~k,x,t !50, ~5.71!

whereas

V~x,t !522
]

]x (
l
E dm l~l!sin~ j llx1l3t ! f ~ j ll,x,t !. ~5.72!

~4! Let us apply tof in ~5.63! the operator„]/]t2 3
2k

2(]/]x)2 1
2]

3/]x3
…. Using ~5.65!, ~5.67!

and their transforms asl→ j l, j 2l, we obtain

S ]

]t
2

3

2
k2

]

]x
2

1

2

]3

]x3D f ~k,x,t !52
3

4 F ]

]x
V~x,t !Gsin~kx1k3t !1(

l
E

2`

1`

dm l~l!T~k, j ll,x,t !

3S ]

]t
2

3

2
j 2ll2

]

]x
2

1

2

]3

]x3D f ~ j ll,x,t !. ~5.73!

As in ~5.70!, it follows that

F ]

]t
2

3

2
k2

]

]x
2

1

2

]3

]x3 1
3

4

]

]x
V~x,t !G f ~k,x,t !50, ~5.74!

or, combining this result with thex derivative of~5.71!,

F ]

]t
2k2

]

]x
2

1

2
V~x,t !1

1

4
V8~x,t !G f ~k,x,t !50, ~5.75!

where we use the ‘‘prime’’ notation forx derivatives.
~5! It is clear that~5.71! and ~5.75! are the Lax pair already met in~2.6! and ~2.7! for the

‘‘potential’’ V(x,t) given by ~5.72!, which therefore yields a solution of the Korteweg de Vri
equation~2.18!. Q.E.D.

The integral equation~5.63! can lead us back to the generalized Povzner Levitan repres
tion ~5.41! as its simplified sister did it in our previous paper. It can also lead us to the c
sponding, and very complicated, system, generalizing the Gelfand Levitan equation as in S
There is no need to write down these results, because it is clear that either~5.63! or these equations
can be used for constructing solutions of KdV, but~5.63! is a simpler tool.

It is clear also that the solutions that are thus obtained satisfy parity constraints. Usin
w2(k,t) would get rid of this constraint. But the result would still be much more complicated
that obtained by sticking at a Marchenko approach, which we shall do in the next section.

VI. AN INVERSE ‘‘SCATTERING METHOD’’ ON TIME PATHS

A. A new visit to the traditional inverse method

The traditional inverse method is related to the following integral equation of direct lin
ization:
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f ~k,x,t !5exp@ i ~kx1k3t !#1E dr~l!t~k,l,x,t ! f ~l,x,t !, ~6.1!

where

t~k,l,x,t !52 i
exp@ i ~k1l!x1 i ~k31l3!t#

k1l1 i01 , ~6.2!

the linearization property follows from the formulas

]t

]x
5exp@ i ~kx1k3t !1 i ~lx1l3t !#, ~6.3!

]2t

]x2 5 i ~k1l!exp@ i ~kx1k3t !1 i ~lx1l3t !#, ~6.4!

~k22l2!t5 i ~l2k!exp@ i ~kx1k3t !1 i ~lx1l3t !#, ~6.5!

S ]

]t
2k2

]

]xD t5~l22kl!exp@ i ~kx1k3t !1 i ~lx1l3t !#, ~6.6!

S ]3

]x3 1k2
]

]xD t52~l212kl!exp@ i ~kx1k3t !1 i ~lx1l3t !#, ~6.7!

by proceeding exactly as in Sec. V. It satisfies the two Lax Spectral equations with

V~x,t !52
]

]x E dr~l!exp@ i ~lx1l3t !# f ~l,x,t !. ~6.8!

We wish to generalize this approach, as we did in Sec. V. An obvious guess for a new
is

f ~k,x,t !5exp@ i ~kx1k3t !#1 (
l 521

l 511 E dr l~l!t~k, j ll,x,t ! f ~ j ll,x,t !. ~6.9!

Again, assuming that the homogeneous form of~6.9! has only the zero solution, and usin
~6.3!–~6.7! enables us to show that the solutionf (k,x,t) of ~6.9! satisfies the Lax pair for

V~x,t !52
]

]x (
l 521

l 511 E dr l~l!exp@ i ~ j llx1l3t !# f ~ j ll,x,t !. ~6.10!

But two questions arise. First is~6.9!, the most general approach using Jost solutions? N
can the measuresdr l(l) be obtained as scattering data derived fromV(0,t) and its first twox
derivatives, asdr(l) of ~6.1! is obtained as scattering data derived fromV(x,0) in the traditional
inverse method?

Some light can be put on these questions if we understand how the measuredr(l) of the
traditional method is related to the scattering data ofV(x,0) by using only the Lax pair. We ar
reminded that~5.1!, and ~5.2! give ways, defined from the Lax pair, for going from (x0 ,t0) to
~x,t!—say, using the notationF for vector solutions:

t2paths:
]F

]t
5NF, ~6.11!
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x2paths:
]F

]x
5MF. ~6.12!

In the traditional inverse method we consider anx path, sayt5t0 , and define the following
Jost solutionsFW 6 of ~6.12! by their asymptotic behaviorJW 6 asx→1`, kPR.

FW 6~k,x,t0! ——→
x→`

JW 65 S exp@6 ikx#
6 ik exp@6 ikx# D , ~6.13!

and in the same way, asx→2`,

FQ 7~k,x,t0! ——→
x→2`

JQ 75 S exp@7 ikx#
7 ik exp@7 ikx# D . ~6.14!

Now, since the trace ofM vanishes, so does thex derivative of the determinant of any matri
made out of two vector solutions. Hence, we can write down

FQ 2~k,x,t0!5b~k,t0!FW 1~k,x,t0!1a~k,t0!FW 2~k,x,t0!, ~6.15!

where

2ika~k,t0!5det@FQ 2 ,FW 1#, ~6.16!

22ikb~k,t0!5det@FQ 2 ,FW 2# ~6.17!

define the ‘‘scattering problem.’’ As a matter of fact,

Rx~k,t0!5b~k,t0!/a~k,t0!, ~6.18!

Tx~k,t0!5@a~k,t0!#21, ~6.19!

are the ‘‘Scattering coefficients’’ the indexx recalls that it is on anx path. The existence of the
Jost solutions of course requires thatV(x,t0) goes to zero rapidly enough asuxu→`. Assuming
that this assumption holds for any realt, let us now follow at path with uxu very large,x5x0 so
that V(x0 ,t) is very small. It is clear that, asymptotically,

F~k,x0 ,t ! uxu@1̃ exp@N2~ t2t0!#F~k,x0 ,t0!. ~6.20!

Hence, the evolution of the solutions atx5x0 as t varies is

FW 6~k,x0 ,t0!⇒FW 6~k,x0 ,t0!exp@6 ik3~ t2t0!#, ~6.21!

FQ 7~k,x0 ,t0!⇒FQ 6~k,x0 ,t0!exp@7 ik3~ t2t0!#. ~6.22!

They have no longer the right asymptotic behavior~6.13! and~6.14!, and so as to recover th
true Jost solutions of thex-scattering problem, sayJFW 6 and JFQ 6 , we must set~omitting for
simplicity k andx0 in the notations!

JFW 6~ t !5exp@7 ik3~ t2t0!#FW 6~ t !, ~6.23!

JFQ 7~ t !5exp@6 ik3~ t2t0!#FQ 7~ t !. ~6.24!

On the other hand, sinceN is also a matrix of zero trace, the determinant of the matrix tha
made of two vector solutions is an invariant. Hence, we can write from~6.23! and~6.24!, and from
the invariance property,
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det@JFQ 2~ t !,JFW 1~ t !#5det@FQ 2~ t !,FW 1~ t !#5det@FQ 2~ t0!,FW 1~ t0!#. ~6.25!

Hence,a(k,t) is invariant, and so isT(k). On the other hand, the same formulas yield

det@JFQ 2~ t !,JFW 2~ t !#5e2ik3~ t2t0! det@FQ 2~ t0!,FW 2~ t0!#, ~6.26!

and soRx(k,t)/Rx(k,t0) is equal to the factor exp@2ik3(t2t0)#. Inserting it in the Marchencko
equation yields the traditional inverse method and~6.1!.

Now suppose convenient assumptions onV guarantee on anyt path the existence of time Jos
solutionsGW 6 andGQ 7 ~real k!:

GW 6~k,x0 ,t ! ——→
t→`

e6 ik3tS 7 i
k D , ~6.27!

GQ 7~k,x0 ,t ! ——→
t→2`

e7 ik3tS 6 i
k D , ~6.28!

they define a scattering problem where det@FQ 2 ,FW 1# and det@FQ 2 ,FW 2# are ‘‘time scattering’’ coef-
ficients. Again, for very larget, V(x,t) ‘‘small’’ implies

G~k,x,t !;exp@M0~x2x0!#G~k,x0 ,t !, ~6.29!

and coefficients exp@6ik(x2x0)# appear in the same manner exp@6ik3(t2t0)# did it in the analysis
above. Hence, thex evolution of the measures in~6.9! can be understood on the same grounds
was thet evolution ofdr(l) in ~6.1!. Thus, the way to check~6.9! or another DLE and to relate
it to Cauchy data is by solving the inverse problem from ‘‘time scattering’’ coefficients.

B. The direct problem on time paths, put to second order

For a fixed value ofx, sayx0 , we study the equation~6.11!, whereN is given by~5.7!–~5.10!
asN21N1 ~and we dropx0 in the notations!. We assume thatV and itsx and t derivatives go to
zero ast→6` ‘‘rapidly enough’’ to warrant that the ‘‘leading’’ equation at infinite times is

]F

]t
.N2F. ~6.30!

It is easy to check that the asymptotic behaviorsGW 6
` andGQ 7

` that appear as limits in~6.27! and
~6.28! are indeed solutions of~6.30!.

In order to study the existence and properties of Jost solutions, it is convenient to first co
the second-order problem,

S ]

]t
1ND S ]

]t
2NDF505F ]2

]t22S ]N

]t
1N2D GF. ~6.31!

Clearly, all solutions of~6.31! are not necessarily solutions of~6.11!. We shall see below in
Sec. VI C how the latter are identified, and we give first a study of the second-order pro
writing ~6.31! as

]2F

]t2 1k6F2k2~B1I 1B3n2!F2AF, ~6.32!

where

B15
3

4
V22

1

4
V9, B35

1

2

]V

]t
, ~6.33!
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A5n0
21

]n0

]t
5S A1 A2

A3 A4
D , ~6.34!

B5B1I 1B3n25S B1 0

B3 B1
D . ~6.35!

Except thatF is a two-vector~or a 232 matrix!, ~6.32! is similar to equations studied b
Jaulent and Jean,7 and where the inverse problem can be managed by a method analogous
introduced by the author8 more than 30 years ago. So as to handle it, we first gather~6.32! and its
‘‘ j transformations,’’ (j 5e2ip/3):

]2Fl

]t2 1~k62 j 2lk2B2A!Fl50, ~6.36!

and define the three ‘‘components’’ of a vectorF:

F05
1

3 (
l

Fl , ~6.37!

F15
1

3
k21(

l
j 2lFl , ~6.38!

F25
1

3
k22(

l
j lFl . ~6.39!

If the Fl ’s are 2-vectors,F is a 6-vector. It is a solution of the equation

]2F

]t2 1k6F2k3S 0
0
0

B
0
0

0
B
0
D F2S A

0
B

0
A
0

0
0
A
D F50. ~6.40!

The notation that is used forF in ~6.40! is that of a 3-vector whose elements are 2-vectors
that it is, in fact, a 6-vector, and of 333 matrices, say,B andA whose elements are 232 matrices
so that they are, in fact, 636 matrices. If we wish to compare a with Jaulent Jean presentation
would writeF1 instead ofF and introduceF2 as a solution of the equation obtained by maki
k→2k in ~6.40!. This is avoided here by defining four Jost solutions, as we did in~6.27!, ~6.28!.

Now, in order to study analytic properties, we introduce the ‘‘Jost matrices’’ of~6.40! as the
four 636 matricesM, which are solutions of~6.40! and have the asymptotic behaviors (k3

PR):

MW 6→exp@6 ik3t#I ~ t→`!, ~6.41!

MQ →exp@7 ik3t#I ~ t→2`!, ~6.42!

whereI is the unit matrix. We first study the existence and properties of them, and after th
use them to construct the functions~6.27!, ~6.28!.

From ~6.40! and ~6.41!, we get

MW 6~k3,t !5Ie6 ik3t2E
t

` sink3~ t2u!

k3 @k3B~u!1A~u!#MW 6~k3,u!du, ~6.43!

or setting

mW 6~k3,t !5e7 ik3tMW 6~k3,t !, ~6.44!
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mW 6~k3,t !5I 2E
t

`

du
e7 ik3~ t2u! sink3~ t2u!

k3 @k3B~u!1A~u!#mW 6~k3,u!. ~6.45!

For any finitek, ~6.45! is a Volterra integral equation whose kernel can be absolutely boun
respectively, for6Im k>0, by Cuku3 ~C is a positive number!, and by (u2t)(t,u) which can be
also replaced in these bounds byI (t)J(u), where

I ~ t !5J~2t !511uxuu~2t !, ~6.46!

as we did it for a quite similar opportunity, p. 326, Ref. 5. The result is thatumW 6u can be
constructed by the usual series expansion of the solution of~6.45! and that it is uniformly bounded
on the realk axis, provided

E
2`

1`

tuBi~ t !udt,`, E
2`

1`

tuAi~ t !udt,`, i 51,2,3. ~6.47!

Going to thek3 complex plane, a similar approach with the same assumptions shows
MW 1(k3,t) can be extended into a holomorphic function in Imk3.0, with continuity to the real
axis, and thatMW 2 has the same property in Imk3<0. By the same token, we extend these resu
toMQ 2 in Im k3>0 andMQ 1 in Im k3<0. It is convenient to set hereafterl5k3, and to look more
carefully to the behavior at largeulu. This is done by seeking the solution of~6.43! from the ansatz

MW 6~l,t !5e6 iltPW 6~ t !1l21QW 6~l,t !, ~6.48!

where

PW 6~ t !5expF7
1

2i Et

`

B~u!duG , ~6.49!

has been chosen in order to match the leading asymptotic behavior in~6.43!. With this ansatz and
if the constraints~6.47! extend to the time derivatives ofB elements, we can show tha
ulQW 6(l,t)u is uniformly bounded, respectively, in$6Im l>0%. Let us sketch the proof for
QW 1(l,t). From ~6.43! and ~6.48! we obtain

QW 1~l,t !52E
t

`

sinl~ t2u!A~u!@eiluPW 1~u!1l21QW 1~l,u!#du

1~2i !21e2 iltE
t

`

„lB~u!1A~u!…@e2iluPW 1~u!1l21eiluQW 1~l,u!#du. ~6.50!

An integration by parts readily yields

E
t

`

e2iluB~u!PW 1~u!du52
e2ilt

2il
B~ t !PW 1~ t !2E

t

`

du
e2ilu

2l
„B8~u!1B2~u!…. ~6.51!

Gathering the terms that containQ in ~6.50!, and evaluating those where an integration
parts insertso(l21), we obtain a Volterra integral equation whose free term and kernel
absolutely bounded, except maybe atl50. The boundedness ofQ follows for lÞ0, and atl
50 it follows from our previous results.

If the bounds~6.47! also extend to second time derivatives, we can go further by the s
method and show that

MW 6~l,t !5e6 ilt@PW 6~ t !1l21QW 6~ t !1l22RW 6~l,t !#, ~6.52!
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wherePW 6(t) is given by~6.49!, QW 6(t) is the ~exactly calculable! solution of the equation:

QW 6~ t !5
1

4
B~ t !PW 6~ t !7

1

2i Et

`

du@A~u!PW 6~u!1B~u!QW 6~u!#, ~6.53!

andRW 6 has its elements absolutely bounded in the adequatel half-plane.
By the same token, starting from the equation,

MQ 7~l,t !5e7 ilt1E
2`

t

du
sinl~ t2u!

l
@lB~u!1A~u!#MQ 7~l,u!, ~6.54!

we can show that if~6.47! extends to second-order derivatives, and if, respectively,6Im l>0,

MQ 7~l,t !5e7 ilt@PQ 7~ t !1l21QQ 7~ t !1l22RQ 7~l,t !#, ~6.55!

where

PQ 7~ t !5expF7
1

2i E2`

t

B~u!duG , ~6.56!

andQQ 7(t) is the ~exactly calculable! solution of the equation,

QQ 7~ t !5
1

4
B~ t !PQ 7~ t !7

1

2i E2`

t

du@A~u!PQ 7~u!1B~u!QQ 7~u!#. ~6.57!

If ~6.47! extends only to first-order derivatives, the first term only in~6.55! is guaranteed and
the remainder is of orderO(ulu21) ~in the adequate half-plane, with continuity toR!. This,
however, implies that it is inL2(R), so that we can construct its Fourier transform, obtaining
this way the transformation formulas for the Jost matrices:

MW 6~l,t !5PW 6~ t !exp@6 ilt#1E
t

`

KW 6~ t,u!exp~6 ilu!du, ~6.58!

MQ 7~l,t !5PQ 7~ t !exp~7 ilt !1E
2`

t

KQ 7~ t,u!exp~7 ilu!du. ~6.59!

C. Back to the first-order time equations

As we see below, for any fixed 6-vectorv6, a matrix solutionMW 6(t) of ~6.40!, yields a
6-vector solutionMW 6v7, denoted below asC¢ 6(t), which is asymptotic tov7 exp@6ik3t# as t

→`. In the same way asF was related toF, we can derive fromC a 2-vector solutionHW 6(t) of
~6.31!, which is asymptotic tow7 exp@6ik3t#, and~6.31! can be written as

S ]

]t
1ND S ]

]t
2NDHW 6~ t !50, ~6.60!

which implies that (]/]t2N)HW 6(t) is a solutiony(t) of the equation

S ]

]t
1ND y~ t !50. ~6.61!

So as to get a solution of~6.11!, we wanty(t)50. It cannot be so unless its asymptot
behaviory`(t) is so, andy` is not zero unlessw7e6 ik3t is a solution of
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S ]

]t
2N2D ~w7 exp@6 ik3t# !50, ~6.62!

whereN2 @see~5.10!# is the leading term ofN ast→`. It follows after some algebra that the Jo
solutionsGW 6(t) of ~6.11! are derived fromMW 6v if ~6.62! holds, i.e., if

w75S 7 i
k D , ~6.63!

which, indeed, definesGW 6(t) in ~6.27!. A similar analysis holds ast→2`, where~6.28! properly
definesGQ 7(t), and these results pave the way going from second-order to first-order resul

We also wish appraising asymptotic behaviors asuku→`, fixed t, sufficiently large thatV and
derivatives are small compared to convenient powers ofuku. For this purpose, we found it useful t
have exact reference solutions of a first-order problem as~6.11!, whose matrixÑ goes ‘‘close’’ to
N as eithert or uku goes to`. Here they are

EW 65v7 exp@6 iwW #; EQ 75v6 exp@7 iwQ #, ~6.64!

where

v65S 6 i ~11V0/2k2!

k~12V0/2k2! D , ~6.65!

wW 5k3t1~2k!21E
t

`

V0
2~u!du, ~6.66!

wQ 5wW 2~2k!21E
2`

1`

V0
2~u!du5:wW 2v0 /k. ~6.67!

The time derivative of any solutionE is ÑE, with

Ñ5S 22V1

2k21V0

k2S 12
1

2
k24V0

2D S 11
1

2
k22V0D

12
1

2
k22V0

2k4S 12
1

2
k24V0

2D S 12
1

2
k22V0D

11
1

2
k22V0

2V1

2k22V0

D , ~6.68!

to be compared withN, written as

N5S 0 k21V0

2k2~k22V0! 0 D 1S V1 0

V2 2V1
D . ~6.69!

One easily sees that ift is sufficiently large thatuV0u be smaller than 2uku2, N2Ñ is bounded
uniformly in uku by an integrable function oft, and goes to thek-independent matrix in~6.69!,
calledU in the following, as rapidly asuku22 times an integrable function oft, but the remainder
is not a zero trace matrix~its trace goes to zero asuku24).
                                                                                                                



3008 J. Math. Phys., Vol. 40, No. 6, June 1999 Pierre C. Sabatier

                    
We can now proceed to the first-order scattering problem. The Jost solutionsG that corre-
spond to the first-order time equation~6.11! were defined by~6.27! and~6.28!. The time scattering
coefficients~which are numbers! are defined from them by

GQ 2~k,t !5c1~k!GW 2~k,t !1d1~k!GW 1~k,t !, ~6.70!

GQ 1~k,t !5c2~k!GW 1~k,t !1d2~k!GW 2~k,t !. ~6.71!

By means of two ‘‘j transformations’’ we define the ‘‘Jost vectors’’G:

G5S G~k!

G~ jk !

G~ j 2k!
D , ~6.72!

which are, in fact, 6-vectors, solutions of

]

]t
G~k,t !5N̂~k,t !G~k,t !, ~6.73!

with

N̂~k,!5S N~k,! 0 0

0 N~ jk,! 0

0 0 N~ j 2k,!
D , ~6.74!

and, according to~6.70! and ~6.71!,

Gª 7~k,t !5C6~k!G¢ 7~k,t !1D6~k!G¢ 6~k,t !, ~6.75!

whereC and D are diagonal matrices obtained fromc and d by two ‘‘ j transformations,’’ for
instance,

C6~k!5S c6~k! 0 0

0 c6~ jk ! 0

0 0 c6~ j 2k!
D , ~6.76!

it being understood that each element that is a number is multiplied by the 232 unit matrix~we
call this agreement the ‘‘duplex rule’’!. We define now the ‘‘transformed’’ Jost vectorsC from
the Jost solutionsG as we defined in~6.37!–~6.39! the solutionsF of ~6.40! from the solutionsF
of ~6.32!. Using ~6.72!, we can write

C5 1
3TG, ~6.77!

where

T5S 1 1 1

k21 j 2k21 jk21

k22 jk22 j 2k22
D ~6.78!

~with duplex rule!. The inverse matrix,
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T215
1

3 S 1 k k2

1 jk j 2k2

1 j 2k jk2
D ~6.79!

~with duplex rule!, enables us to go back fromC to G through~6.77!. The C’s are solutions of

]

]t
C5ÑC, ~6.80!

Ñ5TN̂T215S n0 k3n1 2k6n2

2k3n2 n0 k3n1

n1 2k3n2 n0

D . ~6.81!

It is easy to check thatC is also a solution of~6.40!. The asymptotic behaviors of theG’s can
be derived from~6.27!, ~6.28!, and~6.72!, and that of theC’s from that of theG’s by means of
~6.77!:

C¢ 6~k,t ! ——→
t→`

e6 ik3tv0
7 , ~6.82!

Cª 7~k,t ! ——→
t→2`

e7 ik3tv0
6 , ~6.83!

where

v0
65S 6 i

0
0
1
0
0

D . ~6.84!

Since the matrix Jost solutionsM are the solutions of~6.40! that go to the identity matrix a
infinite t, it follows from ~6.32! that

C¢ 6~k,t !5MW 6~k3,t !v0
7 , ~6.85!

Cª 7~k,t !5MQ 7~k3,t !v0
6 . ~6.86!

Hence, theC’s have the analytic and asymptotic properties of the correspondingM’s. Read-
ers may notice that in the Jaulent Jean second-order problem analysis, a vector showing o
nonzero component was used instead ofv0 . It was so because such vectors were a basis
solutions of the asymptotic form of their equation replacing~6.40!. Here, v0

6 comes in as an
eigenvector of the asymptotic form of their~6.77!. Multiplying the G’s in ~6.27! and ~6.28! by k
and k2, then deriving theG’s and theC’s would lead to two other eigenvectors,v1

6 and v2
6 ,

linearly independent ofv0
6 , and the 6-dimensions space would have a basis.

From ~6.75! and ~6.77!, we define the ‘‘transformed scattering problem,’’

Cª 7~k,t !5C̃6~k!C¢ 7~k,t !1D̃6~k!C¢ 6~k,t !, ~6.87!

where

C̃65TC6T21, ~6.88!
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and similarly forD̃6. So as to derive the analytic and asymptotic properties ofC̃6 and D̃6, we
have now to go back and forth several times between the scattering problem and the trans
scattering problem. LetC0 , C1 , C2 the three 2-vectors ‘‘components’’ of aC. From ~6.77! we
get in a domain of holomorphy ofk3→C,

G~k,t !5C0~k3,t !1kC1~k3,t !1k2C2~k3,t !. ~6.89!

If we want to study, for instance,C̃1(k), we know thatCW l
1 ,CQ l

2 , are holomorphic functions
of k3 in Im k3>0. From~6.70!, we derive

2ikc15det@GQ 2,GW 1#, ~6.90!

and substituting in~6.90! the respective expansions~6.89! of GQ 2 andGW 1, we obtain thatc1(k)
is equal to

c1~k!5k21@c0
11c1

1k1c2
1k2#, ~6.91!

wherec0
1 , c1

1 , c2
1 are holomorphic functions ofk3 in Im k3>0, with

2ic0
15det@CQ 0

2 ,CW 0
1#. ~6.92!

It follows from ~6.76! and ~6.88! that

C̃15S c1
1 c0

1 c2
1k3

c2
1 c1

1 c0
1

c0
1k23 c2

1 c1
1
D . ~6.93!

All the coefficients ofC̃1 are holomorphic functions ofk3 in Im k3>0, except maybe one
which has a pole atk50 unlessc0

1(0)50. We can study this condition by makingl→0 in ~6.43!
and~6.54!. It is exactly similar to the generic condition of no zero energy bound state in the th
of ~ordinary! potential scattering, and for the sake of simplicity, we henceforth assume it, tog
with the symmetric one onc2. It would not be difficult to generalize the following theory to th
casec0

1(0)c0
2(0)Þ0. The study ofc2 is symmetric to the study ofc1, and yields similar results

in Im k<0. But the study ofd6 can be done only on the realk axis, where arguments similar t
those above show thatD̃(l) has continuous coefficients onlPR.

Let us now look at the asymptotic behavior ofC̃1 asulu→` in Im k>0 and ofD̃1(l) on R.
For doing it, again we go back to solutions of~6.11!. We first give formulas that generaliz
Wronskian results of potential theory.

Let G5(G2

G1) be any solution of~6.11!, where N stands, andE any solution of the same

equation withÑ, instead ofN. From ~6.68! and ~6.69!, we can write down

N5N~1!1U, Ñ5Ñ~1!2k24n~k,t !I , ~6.94!

wheren(k, t) is t integrable uniformly ink for uku or t large. All the other matrices in~6.94! can
be written in the general form

N5S N1 N2

N3 2N1
D ~6.95!

~notice that, more specifically,N15U250).
The time derivative of

D5det@G,E#, ~6.96!
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can be calculated from~6.94!, and it yields

D~1`!2D~2`!5E
2`

1`

$G1E1@2U31Ñ3
~1!2N3

~1!#1G2E2@N2
~1!2Ñ2

~1!#

1~G1E21G2E1!~N12Ñ11U1!1~G1E22G2E1!k24n%, ~6.97!

whereÑi2Ni
(1) is equal for largeuku to k22n i(t)1k24n i(k,t), the functionsn being integrable.

As for the functionsG of interest, they can be appraised uniformly int for large uku from the
formula ~6.52!, which yields through~6.48! and ~6.56! the asymptotics ofGW 1, for instance, as

GW 15S 2 i 1gW 1
1~ t !k231O~ uku26!

k2
1

2i Et

`

B1~u!du1gW 2
1~ t !k221O~ uku25!D , ~6.98!

and similar formulas hold forGW 2 andGQ 6. The undefined quantitiesg1 , g2 are integrable and the
numbersc,d,d` , which will appear below, are bounded. Setting nowGQ 2, EQ 2 in ~6.96!, and using
the constant ratio betweenEQ 2 andEW 2, we obtain for large realuku,

22ikd1~k!5exp@2 iv0 /k#@d`
11k21d1O~ uku23!#. ~6.99!

A similar work on det@GW 1,EQ 22GQ 2# yields

c1~k!2exp@ iv0 /k#5~2ik !21 exp@ iv0 /k#@c`
11k22c1O~ uku24!#, ~6.100!

an estimate that extends to Imk3>0, and where

c`
152E

2`

1`

V2~ t !dt. ~6.101!

Hence, the leading asymptotic behavior of the diagonal matrixC1(k) as uku→` is the unit
matrix, and since its determinant is that of the holomorphic functionC̃1 in Im k3>0, it can vanish
there only at finitely many separate points. Notice that integrating by parts in the derivati
d1(k) by means of the formula~6.97! is possible becauseGQ 2 and EQ 2 both contain the same
factor exp@2ik3t#, and if the convenient assumptions on time derivatives ofV hold, it yields

d1~k!5O~ uku24!. ~6.102!

Similar derivations hold forc2(k), d2(k), and the related 333 ‘‘duplex rule’’ matrices. The
final result of these estimates is that

~C̃6~k!#21D̃6~k!5O~ uku26!, kPR, uku→`, ~6.103!

and that there exists upper triangular matrices, with 1 as diagonal elements, for instance,

C̃1~`!5S 1 i ~v02 1
2c`

1! 2v0
2

0 1 i ~v02 1
2c`

1!

0 0 1
D , ~6.104!

such that

C̃6~k!2C̃6~`!50~ uku23! ~6Im k3>0!. ~6.105!
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D. Inversion equations

We write down~6.87! as

@C̃6~l!#21Cª 7~l,t !5C¢ 7~l,t !1R̃6~l!C¢ 6~l,t !, ~6.106!

where the notationl5k3 is used instead ofk, without modifying the function’s name, in order t
remind that they depend onl only, and where

R̃6~l!5@C̃6~l!#21D̃6~l! ~6.107!

is the ‘‘reflection matrix,’’@C̃6#21 being the ‘‘transmission matrix’’ of the transformed scatteri
problem. Let us first focus on the upper indices, which label functionsC and C̃ that are holo-
morphic in Iml>0. Using~6.58! and ~6.85!, we can write down~6.106! as

G1~l,t !2H1~l,t !5E
t

`

KW 2~ t,w!e2 ilw dw v0
1 , ~6.108!

where

G1~l,t !5@C̃1~l!#21Cª 2~l,t !2e2 iltPW 2~ t !v0
1 , ~6.109!

H1~l,t !5R̃1~l!@C¢ 1~l,t !2eiltPW 1~ t !v0
2#1R̃1~l!eiltPW 1~ t !v0

2 . ~6.110!

From ~6.103!, ~6.104!, and~6.105!, the asymptotic behaviors ofG1 andH1 on the real axis
are easily shown to beO(ulu21) or less. Hence, we can make the Fourier transform of both s
of ~6.108!, obtaining

KW 2~ t,u!v0
15S1~ t1u!PW 1~ t !v0

21E
t

`

S1~u1u8!KW 1~ t,u8!du8v0
21g1~ t,u!, ~6.111!

where

S1~u!52
1

2p E
2`

1`

eiluR̃1~l!dl, ~6.112!

andg1(t,u) is the Fourier transform ofG1(l,t) @it is defined as in~6.112!#. Now, the function
G1(l) beinge2 ilt0(l21) in Im >0, where it is a meromorphic function, we can evaluateg1(t,u)
for u>t by a contour integration along the real axis completed by a half-circle centeredl
50, whose radius goes tò. Hence,g1(t,u) is equal to a finite sum of residues, each of the
involving values ofCª 2(l,t) or derivatives at a polelm , or using~6.106!, values ofc¢ 1(l,t) and
derivatives at this point. In Sec. VII, we shall see how the vanishing of det@GQ 2,GW 1# at this point
can be used to proceed, in a simplified case, and to derive an extra term forS1(t1u). Here we
prefer, assuming for the sake of simplicity that there is no singularity ofC̃21, so thatg6(t,u)
vanishes~i.e., the ‘‘no bound state’’ case of usual potential theory!.

It follows that KW 2, KW 1, andS1, are related by the inversion equation

KW 2~ t,u!v0
15S1~ t1u!PW 1~ t !v0

21E
t

`

S1~u1w!KW 1~ t,w!dw v0
2 , ~6.113!

where
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S1~u!52
1

2p E
2`

1`

eiluR̃1~l!dl. ~6.114!

Sticking to the scattering problem on the right, we can do similar derivations with the f
tions of the lower index in~6.106!, obtaining with similar assumptions the equation

KW 1~ t,u!v0
25S2~ t1u!PW 2~ t !v0

11E
t

`

S2~u1w!KW 2~ t,w!dw v0
1 , ~6.115!

where

S2~u!52
1

2p E
2`

1`

e2 iluR̃2~l!dl. ~6.116!

These derivations are similar to those of Jaulent Jean. We shall see in Sec. VII that the
produce a constraint couplingKW 2,KW 1,PW 2,PW 1. Constraints are nuisances in true inverse proble
Fortunately, here, either constraints or consistency conditions are not a nuisance, since w
start from the values ofV and derivatives at a point, solve the direct problem to getK6, and we
already know from the analysis of formula~5.5! that the consistencies are preserved in the e
lution. These remarks will become more clear when we come to the DLE. Here, let us only
that if we tried to solve the true inverse scattering problem an obvious algebraic constraintsC̃,
or C̃21, D̃, and R̃, would be that they are transformed from diagonal~duplex! 3-matrices as in
~6.88!, so that, ifa,b,c, are its elements on the diagonal, the tilde matrix, for instanceR̃, should be
of the form

R̃5S r 0 r 2 r 1

k23r 1 r 0 r 2

k23r 2 k23r 1 r 0

D , ~6.117!

where all the elements are functions ofk3 only, and are related toa,b,c, by

r 05 1
3~a1b1c!; k22r 15 1

3~a1 j 2b1 jc !; k21r 25 1
3~a1 jb1 j 2c!, ~6.118!

in agreement with the fact that, in the direct problem,b andc are j transforms ofa5r (k).

VII. THE FINAL INTEGRAL EQUATIONS, SOLVING THE ‘‘OTHER CAUCHY PROBLEM’’

A. Inversion integral equations at fixed x

We first derive the inversion integral equation at fixedx and the corresponding spectr
measures from~6.58! and~6.113!–~6.114!. For the sake of simplicity, we assume that there is
discrete term in~6.114!. Equation~6.58! yields the transformation formula forCW :

CW 6~k3,t !5PW 6~ t !exp@6 ik3t#v0
71E

t

`

KW 6~ t,u!exp@6 ik3u#duv0
7 , ~7.1!

whereas Eqs.~6.115!–~6.116! yield

KW 6~ t,u!v0
752

1

2p E
2`

1`

dl e7 iluR̃7~l!FPW 7~ t !e7 ilt1E
t

`

dw KW 7~ t,w!e7 ilwGv0
6 , ~7.2!
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which is obviously the generalized Marchenko equation of the problem on at path, at fixedx. As
in standard inverse theories, we can insert~7.1! into ~6.40! to get after some algebra the line
partial differential equation~for t,u) and the relations att5u relative to the kernelsK6v0

7

~which vanish fort.u, according to the analytic properties!:

K6~ t,u!→0, u→`, ~7.3!

H F ]2

]t22
]2

]u22A~ t !GKW 6~ t,u!7 iB~ t !
]

]u
KW 6~ t,u!J v0

750, ~7.4!

F d

dt
KW 6~ t,t !7

i

2i
B~ t !KW 6~ t,t !2E6~ t !PW 6~ t !Gv0

750, ~7.5!

where

E6~ t !52
1

2
A~ t !6

1

4i
B8~ t !2

1

8
B2~ t !. ~7.6!

The equations~7.2! and ~7.1! also yield a representation ofKW 6(t,u)v0
7 :

KW 6~ t,u!v0
752

1

2p E
2`

1`

dl e7 iluR̃7~l!CW 7~l,t !. ~7.7!

Inserting~7.7! into ~7.1! yields a set of coupled integral equations forCW 6:

CW 6~k3,t !5PW 6~ t !e6 ik3tv0
72

1

2p E
2`

1`

dl R̃7~l!CW 7~l,t !E
t

`

du e6 i ~k32l6 i01!u. ~7.8!

The equations~7.7!–~7.8! are, of course, the inversion equations of the transformed time-
scattering problem. Here~7.4! and ~7.5! are consistency relations involvingV. Going to the true
time-path scattering problem is done by using~6.118! and~6.77! for derivingG, using also~6.49!
and ~6.35! for handling the first term on the rhs of~7.8!, ~6.88!, and~6.107! for the second one
Settingl5m3 in the integral, we obtain

G¢ 6~k,t !5G¢ 0
6~k,t !7

i

2p
T21~k!E

2`

1`

dm3 T~m!R7~m!G¢ 7~m,t !
e6 i ~k32m3!t

k32m36 i01 , ~7.9!

where

G¢ 0
6~k,t !5S gW 0

6~k,t !

gW 0
6~ jk,t !

gW 0
6~ j 2k,t !

D e6 ik3t, ~7.10!

gW 0
6~k,t !5S 7 i

k7~2i !21E
t

`

B1~u!duD 5:S 7 i
k6 ig~ t ! D , ~7.11!

andR7(k) was given by~6.117!, ~6.118!. Notice that the values of the first ‘‘duplex’’ element o
the diagonal,r 6(k), yield the others byj transformation. Now, the first ‘‘duplex’’ element of th
vectorG¢ 6 in ~7.9! is easily derived:
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GW 6~k,t !5gW 0
6~k,t !e6 ik3t7

i

2p E
2`

1`

dm m2(
l 50

l 52 S 11 j 2l
k

m
1 j l

k2

m2D r 7~ j lm!

3GW 7~ j lm,t !~k32m36 i01!21 exp@6 i ~k32m3!t#. ~7.12!

B. The direct linearization equation

Equation~7.12! should be the fixedx reduction of the direct linearization equation we seek
is an equation for two-vectors, but those we studied previously might also have been put
form. What is unexpected and new is that two coupled integral equations come in. W
excellent is that the spectral measures that come in can be calculated as scattering dat
time-path scattering problem fromV(x0 ,t), V8(x0 ,t), V9(x0 ,t), and/or time derivatives related t
them by the Korteweg de Vries equation (x0 is the fixed value ofx, omitted in notations!. By the
way, notice that sinceN is a real matrix,GW 2(k,t), c2(k), d2(k)r 2(k) are for a realk conjugate
of GW 1(k,t), c1(k), d1(k), r 1(k), so that ‘‘in fine,’’ there are~in some way! three ~complex!
spectral measuresr 0 , r 1 , r 2 .

We have now to write down a direct linearization equation asx evolves. We find in~7.12!
quantities insidegW 0 wherex dependence was given from the beginning, and the scattering
For the latter ones, we use thet-scattering analysis already sketched with the equation~6.29!.
More precisely, ift is so large that the Born formula~6.29! applies, we can write down, forx0

50,

GW 6~k,x,t !5exp@M0x#GW 6~k,0,t ! ——→
t→` S 7 i

k De6 i ~kx1k3t !. ~7.13!

Hence, the ‘‘time problem Jost solution’’GW J
6(k,x,t) is related to the solution of the time La

equation that has evolved from 0 tox according to the space Lax equation by the restandardi
relation:

GW J
6~k,x,t !5e7 ikxGW 6~k,x,t !, ~7.14!

and, by the same token,

GQ J
7~k,x,t !5e6 ikxGQ 7~k,x,t !. ~7.15!

If we notice thatM being a zero trace matrix, the determinant of two solutions of the sp
Lax equation is independent ofx, we deduce from~7.14! ~7.15!, ~6.70!, and~6.71! that

c6~k,x!5c6~k,0!; d6~k,x!5e62ikxd6~k,0!, ~7.16!

r 6~k,x!5e62ikxr 6~k,0!. ~7.17!

From ~7.12! and~7.17!, we finally propose the direct linearization equation, which should
convenient for solving the second Cauchy problem:

GW 6~k,x,t !5S 7 i
k6 ig De6 iZ~k,x,t !1

1

2p E
2`

1`

dm(
l 50

2

j l r 7~ j lm!GW 7~ j lm,x,t !s6~k, j lm,x,t !,

~7.18!

where

g~x,t !5
1

2 Et

`

B1~u!du5
1

2 Ex

`

dy V~y,t !, ~7.19!
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Z~k,x,t !5kx1k3t, ~7.20!

s6~k,m,x,t !57 i ~k2m7 i01!21e6 i @Z~k,x,t !2Z~m,x,t !#. ~7.21!

Notice that the equality between the two values ofg in ~7.19! is the consistency formula KdV
between the two equations whoseG6 must be solutions. One could also say that it is one of
constraints plugged in the method to enforce thatGW 6 solve the two Lax equations. We check no
that they do it using the standard assumptions of the direct linearization methods@see them in
other sections and, in particular, those after~5.63!#. Indeed, straightforward calculations show th

F ]

]x
2S 0 1

2k21V 0D GG6~k,x,t !

5F S 7 ig
6 i ~g81V!2kgD1S 1 0

7 ik 1DW07~x,t !7 i S 0 0

1 0DW17~x,t !Ge6 iZ~k,x,t !

1
1

2p E
2`

1`

dm(
0

2

j l r 7~ j lm!F ]

]x
2S 0 1

j 2lm22V 0D GGW 7~ j lm,x,t !s6~k, j lm,x,t !,

~7.22!

where

Wp7~x,t !5
1

2p E
2`

1`

dm~ j lm!p(
l 50

2

j l r 7~ j lm!GW 7~ j lm,x,t !e7 iZ~m,x,t !. ~7.23!

The free terms vanish and the space Lax equation is solved if and only if the componeGW 2
6

is the derivative ofGW 1
6 and the two~i.e., 6! following sums satisfy

GW 2
6~k,x,t !5

]

]x
GW 1

6~k,x,t !, ~7.24!

W1
07~x,t !56 ig. ~7.25!

As for the time Lax equation, we similarly proceed through

F ]

]t
2N~k!GG6~k,x,t !5F ]

]t
2N~k!G F S 7 i

k6 ig De6 iZ~k,x,t !G
1

1

2p E dm(
0

2

j l r 7~ j lm!@N~ j lm!2N~k!#@G7~ j lm,x,t !#s6~k,m,x,t !

1
1

2p E dm(
0

2

j l r 7~ j lm!G7~ j lm,x,t !
]

]t
s6~k,m,x,t !

1
1

2p E dm(
0

2

j l r 7~ j lm!F S ]

]t
2N~ j lm! DG7~ j lm,x,t !Gs6~k,m,x,t !,

~7.26!

and the free term we obtain is equal to
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F.T.5S 7 ik2g

2k3g6 ik2V06 i
]g

]t
D 2n0S 7 i

k6 ig D2$~ I 7 ikn2!@k2W07~x,t !1kW17~x,t !1W27~x,t !#

6 in1@kW07~x,t !1W17~x,t !#7 in2@W37~x,t !#%. ~7.27!

It vanishes if~7.25! holds, and

W2
077 iW1

176 iV050, ~7.28!

W2
177 iW1

272V0g1V150, ~7.29!

W2
276 iV0W1

177 iW1
376 i

]g

]t
1 iV26 igV150 . ~7.30!

Equations~7.25!, ~7.28!, ~7.29!, ~7.30!, yield V(x,t) and its first and second derivatives
functions ofx,t, and since the two equations of the Lax pair are satisfied for these functions
give the solution of the Korteweg de Vries equation. It is interesting and not difficult~but lengthy!
to check that forx50, the values of theW’s can be derived from the equations~7.5!, ~7.6! by
applying the transformations that lead toG6(k,t) and to check that~7.25! and ~7.28!–~7.30! are
satisfied, together with the equations

]

]x
W1

p757 iW1
~p11!71W2

p7 , ~7.31!

]

]x
W2

p752W~p12!77 iW2
~p11!7 , ~7.32!

which are derived readily from~7.24! and the space Lax equation.
Hence, the coupled vectorial equations~7.18! have almost all properties of a DLE, but on

they cannot be written readily from the values ofV(x,t) at x50, sinceg(x,t) @see~7.19!# contains
V, and if we knewV(x,t) the problem would be solved. Obviously, this point is easy to circu
vent because the kernel of~7.18! is scalar. Hence,~7.18! can be separated into two couples
scalar equations: the first one forGW 1

6(k,x,t), the second one forGW 2
6(k,x,t). The first one can be

written and solved as soon as we know the time scattering data atx50, and it yieldsg(x,t), and
V(x,t), by means of the consistency condition~7.26!. Usingg(x,t) defines the second couple o
equations, whose solutions give readily various quantities, as, for instance, the otherW’s, and
enables one to check that the method works. Hence, the following couple of scalar in
equations is really the DLE of our ‘‘other Cauchy problem:’’

GW 1
6~k,x,t !57 ie6 iZ~k,x,t !1

1

2p E
2`

1`

dm(
l 50

2

j l r 7~ j lm!GW 1
7~ j lm,x,t !s6~k, j lm,x,t !,

~7.33!

and the potential is derived from its solution by means of the formula~7.25!. The ‘‘time inverse
scattering method’’ can be summarized as so

~1! At x50 ~say! whereV and its first twox derivatives are known for anyt, solve the direct
problem~6.11!, so as to derive the Jost solutionsGW 6(k,0,t) andGQ 7(k,0,t) defined by~6.27!,
~6.28!.

~2! Derive det@GQ 2,GW 1# and det@GQ 1,GW 2# to getc6(k), d6(k) andr 6(k). Check~if it is the case!
that there is no pole ofT̃6(l) in Im l>0.

~3! Insert the scattering datar 6 into ~7.33! and solve it, you getV(x,t) by means of~7.25!.
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C. The case of poles in the transmission coefficient, with zero reflection coefficient

From ~6.108!, and the equation obtained by twisting indices1 and2, we saw that poles can
contribute functionsg6(t,u) in ~6.111! and the twisted equation. The general case is complica
We introduce three simplifying assumptions.

Assumption A:We assume that@C̃6(l)#21 have only simple poles in6Im l.0.
These poles correspond to zeros of detC̃6(l) and thus of detC6(k). For such a zerol0 ,

according to the determination of the cubic rootk0 , the productc(k), c( jk)c( j 2k) vanishes!
Assumption B:We assume that ifkn is such thatc(kn) vanishes,c( jkn) andc( j 2kn) do not.
Finally, in order to obtain relatively simple formulas, and because it is not difficult to rem

it by taking into account the preceding results, we also introduce the following.
Assumption C:The reflection coefficients@or d6(k)] vanish for any realk. Thanks to As-

sumptions A and C,KW 2(t,u) can then be directly derived from~6.108! and ~6.109! by Fourier
transformingG1(l,t), and the Fourier transform can be calculated foru.t as a sum of the
residues of@C1(l)#21Cª 2(l,t)eilu at the polesl1

1 , l2
1 , ln

1 @the second term in~6.109! only
implies that the contribution on the infinite half-circle vanishes#. The same method~in Im l,0)
applies to the quantities with the other6 index. The result is

KW 7~ t,u!v0
656 i (

n51

N

e6 iln
6

Gn
6Cª 7~ln

6 ,t !, ~7.34!

where

Gn
65 liml→l

0
6~l2l0

6!@C̃6~l!#21. ~7.35!

Inserting~7.33! into ~7.1!, we obtain

C¢ 6~k3,t !5PW 6~ t !exp~6 ik3t#v0
77 i (

n51

N E
t

`

du exp@6 i ~k32ln
7!u#Gn

7Cª 6~ln
7 ,t !. ~7.36!

Let us now notice that if for eachln
6 , we definekn

6 as the cubic root ofln
6 whose phase is

such thatc1(kn
1) @resp.,c2(kn

2)] vanishes, and thanks to the assumption B, and to the form
~6.88!, we derive from~7.35!,

T21~kn
7!Gn

7T~kn
7!5S 3~kn

7!2 limk→k
n
7

k2kn
7

c7~k!
0 0

0 0 0

0 0 0

D . ~7.37!

Applying 3T21(k) to both sides of~7.36!, we derive an equation forG6(k,t) and thanks to
~7.37! we see at once that the three duplex components of the six vector carry on the
information ~except for trivialj transformations!. Hence, we write down

GW 6~k,t !5GW 0
6~k,t !1 (

n51

N exp@6 i ~k32ln
7!t#

k32ln
7 ~kn

7!2T21~k!T~kn
7!g7~kn

7!GQ 6~kn
7 ,t !,

~7.38!

where

g6~kn
6!5 limk→k

n
6Fk2kn

6

c6~k!
G . ~7.39!
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Now, sincekn
6 is a zero ofc6(k), det@GQ 7,GW 6# vanishes there, so that the functionsGQ 2 and

GW 1, GQ 1 and GQ are proportional whenk5kn
1 , resp.k5kn

2 . Multiplying g7(kn
7) by the corre-

sponding factors yields, say,rn
7 , and expandingT21(k)T(kn

7) kills partially the denominators in
~7.38!.

Hence, we obtain the coupled equations,

GW 6~k,t !5GW 0
6~k,t !1 (

n51

N exp@6 i ~k32ln
7!t#

k2kn
7 rn

7GW 7~kn
7 ,t !. ~7.40!

As an example, the well-known ‘‘soliton,’’

V~x,t !52
2k2

cosh2@k~x2x0!2k3t#
, ~7.41!

is related at fixedx, sayx5x0 , to the following functions and numbers:

GW 1~k,t !52 i ~k1 ik!~k2 ik!21F~k,t !, ~7.42!

GW 2~k,t !5 i ~k2 ik!~k1 ik!21F̃~k,t !, ~7.43!

GQ 1~k,t !52 iF ~k,t !, ~7.44!

GQ 2~k,t !5 i F̃ ~k,t !, ~7.45!

where

F~k,t !5eik3tS k1 ik~12a!

k1 ik
ik21kk~a21!1 ik2b

k1 ik

D , ~7.46!

F̃~k,t !5e2 ik3tS k2 ik~12a!

k2 ik
ik21kk~a21!2 ik2b

k2 ik

D , ~7.47!

a5ek3t/coshk3t b52 cosh2 k3t, ~7.48!

c6~k!5
k6 ik

k7 ik
, d6~k!50, ~7.49!

k is positive, and it is not difficult to derive the value ofr0
6 for the ~unique! pole,

k0
657 ik, r0

7562ik, ~7.50!

and to check~7.40!.
From~7.38! we can derive the direct linearization equation for solutions of this kind. We w

readily the ‘‘first component’’ and the equations that yields the potential:

GW 1
6~k,x,t !57 ie6 iZ~k,x,t !1 (

n51

N exp@6 i ~k3t2~kn
7!3t1kx2kn

7x!#

k2kn
7 rn

7GW 1
7~kn

7 ,x,t !,

~7.51!
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g~x,t !5 (
n51

N

exp@7 i ~~kn
7!3t1kn

7x!#rn
7G1

7~kn
7 ,x,t !, ~7.52!

V~x,t !522
]g~x,t !

]x
. ~7.53!

They could be used to solve the ‘‘other Cauchy problem’’ for a multisolitonic solution.
reader will easily check that using~7.51! in these three formulas give backV(x,t), as given by
~7.41! ~for x050).

D. Final remarks

The linearization equations~7.33! and~7.51! could also be used to construct generalized t
variable Marchenko equations like we did in the Gelfand Levitan case in our previous pape
recall it in Sec. III, since they can also be understood as a generalized two-variable Po
Levitan representation forGW 6(k,x,t). We shall not write down these equations, which may b
step to further generalizations.
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Hamiltonian structures of generalized Manin–Radul
super-KdV and constrained super KP hierarchies
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A study of Hamiltonian structures associated with supersymmetric Lax operators is
presented. Following a constructive approach, the Hamiltonian structures of Inami–
Kanno super-KdV hierarchy and constrained modified super-KP hierarchy are in-
vestigated from the reduced supersymmetric Gelfand–Dickey brackets. By apply-
ing a gauge transformation on the Hamiltonian structures associated with these two
nonstandard super-Lax hierarchies, we obtain the Hamiltonian structures of gener-
alized Manin–Radul super-KdV and constrained super-KP hierarchies. We also
work out a few examples and compare them with the known results. ©1999
American Institute of Physics.@S0022-2488~99!02206-9#

I. INTRODUCTION

In the past decade and more, the supersymmetric integrable systems have receive
attention in the literature~for recent reviews, see Refs. 1–3 and references therein!, especially in
the explorations of the relationship to the supersymmetric conformal field theories and
theories. On the one hand, in superconformal/superstring theories, correlation functions a
erned by supersymmetric extensions of the Korteweg–de Vries~KdV! @or Kadomtsev–
Petviashvili ~KP!# systems. On the other hand, the knowledge of super-KdV/KP systems
motivated people to study nonperturbative properties of superstrings. These superintegrab
tems share many features in common: they have supersymmetric Lax representations, in
many conserved quantities and soliton solutions, etc. Furthermore, it is a common belief tha
also possess bi-Hamiltonian structures that define the dynamical flows on the correspondin
son supermanifolds. In particular, for the super-KdV-type systems, the Poisson brackets rela
their associated second Hamiltonian structures provide extended superconformal algebras~W su-
peralgebras! whose quantum versions serve as the highest weight representations of some i
dimensional symmetries in string theories.

The main purpose of this paper is to construct the Hamiltonian structures of the gener
Manin–Radul super-KdV~MR sKdV! and constrained super-KP~csKP! hierarchies~for the defi-
nitions of these hierarchies, see Sec. IV! using the method of gauge transformation. Although
Hamiltonian structures for the simplest cases have been obtained in Refs. 4 and 5, however
knowledge, those for the general cases are still unexplored. Our motivation comes from th
that, for two gauge-equivalent integrable systems, the gauge transformation between them
forms not only the Lax formulations but also the Hamiltonian structures of the correspon
hierarchies. Hence, the preparation of suitable superintegrable systems that are gauge equi
the generalized MR sKdV and csKP hierarchies is the key in this approach. Our strategy
following: First, for an odd-order super-Lax operatorL̂, we consider its associated supersymm

a!Electronic mail: mhtu@math.ccu.edu.tw
b!Electronic mail: shaw@math.nctu.edu.tw
30210022-2488/99/40(6)/3021/14/$15.00 © 1999 American Institute of Physics
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ric Gelfand–Dickey~GD! bracket6 defined by the Hamiltonian mapJ. We then consider a usua
reduction that modifies the Hamiltonian mapJ to Jc . Second, we construct out two nonstanda
superhierarchies from (L̂,Jc) that have super-Lax operators defined byKA5L̂D and KB

5D21L̂, respectively. The former is referred to the Inami–Kanno sKdV~IK sKdV! hierarchy,7

whereas the latter to the constrained modified sKP~cmsKP! hierarchy.8–10 The Hamiltonian struc-
tures associated withKi can also be constructed fromJc and are denoted byV ( i ) ( i 5A,B).
Finally, we perform a gauge transformation on the systems (Ki ,V ( i )) and denote the resulting

systems by (L̃ i ,Q ( i )), which describe the Lax operators and the Hamiltonian structures o
generalized MR sKdV and csKP hierarchies.

In summary, we shall follow the following steps to achieve the goal:

~ L̂,Jc!→~Ki ,V~ i !!→~ L̃ i ,Q~ i !!. ~1.1!

It will be shown below that each step described above automatically guarantees the requi
that the associated Hamiltonian structures should obey the super-Jacobi identity.

We organize this paper as follows: In Sec. II, we recall some basic facts concerning su
seudodifferential operators~SPDOs!. We then introduce the second supersymmetric GD bra
and its reduction from a Miura transformation viewpoint. In Sec. III, the IK sKdV and the cm
hierarchies are defined. We give a detailed construction of their associated Hamiltonian stru
from the reduced supersymmetric GD bracket. We find that, up to a sign, the Poisson br
defined by their corresponding Lax operators have the same form. In Sec. IV, we defin
generalized MR sKdV and csKP hierarchies by applying a gauge transformation to the IK
and cmsKP hierarchies, respectively. We also show that this gauge transformation enable
obtain the Hamiltonian structures associated with the generalized MR sKdV and csKP hiera
In Sec. V, we give several examples to compare them with the known results. We prese
concluding remarks in Sec. VI.

II. SUPERSYMMETRIC GELFAND–DICKEY BRACKETS

To begin with, we consider the supersymmetric Lax operator of the form

L5Dn1Un21Dn211¯1U0 , ~2.1!

where the supercovariant derivativeD[]u1u](][]/]x) satisfiesD25], u is the Grassmann
variable (u250), which together with the even variablex[t1 defines the~1u1! superspace with
coordinate (x,u). The coefficientsUi are superfields that depend on the variablesu, t i and can be
represented byUi5ui(t)1uv i(t). The parity of a superfieldU is denoted byuUu, which is zero for
U being even and one forU being odd. SinceL is assumed to be homogeneous underZ2 grading,
thus uUi u5n1 i (mod 2). We will introduce the Poisson bracket associated withL on functionals
of the form

F~U !5E
B

f ~U !, ~2.2!

where f (U) is a homogeneous differential polynomial ofUi and *B[*dx du is the Berezin
integral, such that iff (U)5a(u,v)1ub(u,v), then*Bf (U)5*b. The supercovariant derivativ
D satisfies the supersymmetric version of the Leibniz rule;11

DiU5 (
k50

`

~21! uUu~ i 2k!F i
kGU @k#Di 2k, ~2.3!

whereU @k#[(DkU) and the superbinomial coefficients@k
i # are defined by
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F i
kG55 S @ i /2#

@k/2# D for 0<k< i and ~ i ,k!Þ~0,1!mod 2,

~21!@k/2#F2 i 1k21
k G , for i ,0,

0, otherwise.

~2.4!

For a given SPDOP5(piD
i , it is convenient to separateP into a direct sum of two linear space

P5P>k% P,k with P>k5( i>kpiD
i and P,k5( i ,kpiD

i . In particular, we denoteP1

5( i>0piD
i , P25( i ,0piD

i , and (P)05p0 . We also define its super-residue as sresP5p21 and
its supertrace as StrP5*B sresP. It can be shown that, for any two SPDOsP andQ, Str@P,Q#
50 for @P,Q#[PQ2(21)uPuuQuQP, and hence StrPQ5(21)uPuuQu StrQP. Given a functional
F(U)5*Bf (U), we define its gradient as

dLF5 (
k50

n21

~21!kD2k21
d f

dUk
, ~2.5!

and its variation as

dF5~21! uFu1uLu11 Str~dLdLF !, ~2.6!

where the variational derivative is defined by

d f

dUk
5(

i 50

`

~21! uUku i 1 i ~ i 11!/2S ] f

]Uk
@ i #D @ i #

. ~2.7!

The supersymmetric second GD bracket associated withL is given by6,12,13

$F,G%~L !5~21! uFu1uGu1uLu11 Str@J~dLF !dLG#, ~2.8!

where the Hamiltonian mapJ is defined by

J~X!5~LX!1L2L~XL!1 , ~2.9!

where X5(kXkD
k. It has been shown6,13 that ~2.8! indeed defines a Hamiltonian structur

namely, it is antisymmetric and satisfies the super-Jacobi identity.
If we factorizeL5(D2Fn)(D2Fn21)¯(D2F1), which defines a supersymmetric Miur

transformation between the coefficient functionsUi and the Miura fieldsF i , then the second GD
bracket~2.8! becomes

$F,G%~L !5E
B
(
i 51

n

~21! i S D
d f

dF i
D dg

dF i
, ~2.10!

which implies that the fundamental brackets of the Miura fieldsF i are given by6,12

$F i~X!,F j~Y!%5~21! id i j Dd~X2Y!, ~2.11!

where X5(x,u), Y5(y,v) and d(X2Y)[d(x2y)(u2v). This result is what we called the
supersymmetric Kupershmidt–Wilson theorem. Equation~2.11! enables us to write down th
fundamental brackets ofUk through the super-Miura transformation.

Next, let us consider the case when the constraintUn2150 is imposed in~2.1!. It can be
easily shown that such constraint for oddn is second class, which will modify the Hamiltonia
structureJ. On the other hand, for evenn, the constraint is first class and hence the induc
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Poisson brackets can not be well defined. Therefore, for the odd-order operatorL̂5D2k11

1U2k21D2k211¯1U0 , we shall consider the factorizationL̂5(D2F2k11)(D2F2k)¯(D
2F1). Then the modified Poisson bracket defined byL̂ becomes

$F,G%c5~21! uFu1uGu Str„Jc~ d̂F !d̂G…, ~2.12!

whered̂F[dL̂F5( i 50
2k21(21)iD2 i 21(d f /dUi) and

Jc~ d̂F !5J~ d̂F !1F L̂,Ex

D sres@ L̂,d̂F#G . ~2.13!

We remark that the second term is called the third GD structure, which is compatible wit
second structure. Equation~2.12! yields that the modified Poisson brackets for the Miura fieldsF i

are given by

$F i~X!,F j~Y!%c5@11~21! id i j #Dd~X2Y!, ~2.14!

which provide the free-field realizations of classicalW superalgebras associated with the odd-or
Lax operatorL̂.12,14,15Besides the usual reduction described above, there are other reduction
have been discussed in Refs. 13 and 16. Since the first Hamiltonian structure can be obtain
the second Hamiltonian structure by replacingL by L1l, wherel is called the spectral param
eter, we shall focus only on the second structure.

III. TWO NONSTANDARD SUPER-LAX HIERARCHIES

There are several superintegrable hierarchies whose Lax operators are related to the
cations or reductions of the supersymmetric Lax operator~2.1! in the literature. Here, for our
purpose, we consider the following two Lax systems:

dKi

dtk
5@~Ki

k/n!>1 ,Ki # ~ i 5A,B!, ~3.1!

with the Lax operatorsKi defined by

KA5D2n1V2n22D2n221¯1V1D, ~3.2!

KB5D2n1V2n22D2n221¯1V01D21V21 . ~3.3!

The Lax equation forKA is referred to the IK sKdV hierarchy.7 The simplest example in this cas
is just the Laberge–Mathieu super KdV~LM sKdV! hierarchy (n52), which was constructed
from aN52sKdV hierarchy.17 On the other hand, the Lax equation forKB is the generalization of
the super two-boson hierarchy~sTB! (n51),18 which we call the cmsKP hierarchy. In particula
from ~3.1! it is easy to show that the coefficient functionV21 obeys the evolution equation

dV21

dtk
52„~KB

k/n!>1* V21…, ~3.4!

which implies thatV21 is an adjoint eigenfunction associated with the Lax operatorKB .
In general, the second Poisson brackets associated with the Lax operatorsKi can be written as

$F,G%~ i !~Ki !5~21! uFu1uGu11 Str„V~ i !~diF !diG…, ~3.5!

wherediF[dKi
F, and the Hamiltonian mapsV ( i ) are defined by
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V~A!~dAF !5~KAdAF !1KA2KA~dAFKA!11@KA ,~dAFKA!0#

1~21! uFuF Ex

D sres@dAF,KA#,KAG1~21! uFuKAD21 sres@dAF,KA#, ~3.6!

V~B!~dBF !5~KBdBF !1KB2KB~dBFKB!11@KB ,~KBdBF !0#

1~21! uFuFKB ,Ex

D sres@dBF,KB#G1~21! uFuD21 sres@dBF,KB#KB . ~3.7!

Notice that the mapV (A), in operator form, is similar to but different fromV (B). Instead of giving
V ( i ) by other methods,8–10,19 we will follow a constructive approach, analogous to that of t
supersymmetric GD structure,6 to verify the Hamiltonian mapsV ( i ) from a supersymmetric Miura
transformation point of view. To show that the mapsV ( i ) are indeed Hamiltonian, we have t
check that the Poisson brackets defined in~3.5! are antisymmetric and obey the super-Jac
identity. For antisymmetry, by direct computation, it can be easily shown that

$F,G%~ i !52~21! uFuuGu$G,F%~ i !. ~3.8!

For the super-Jacobi identity, instead of direct computation, we rewrite the Lax operatorKi as

KA5L̂AD, KB5D21L̂B , ~3.9!

whereL̂A and L̂B are superdifferential operators with order 2n21 and 2n11, respectively. Fur-
thermore, from the relation

dF5~21! uFu11 Str~dKidiF !5~21! uFu Str~dL̂ i d̂iF !, ~3.10!

whered̂i[dL̂i
, we have

d̂AF52DdAF, d̂BF5~21! uFudBFD21. ~3.11!

Substituting~3.9! and ~3.11! into ~3.6! and ~3.7!, we find

V~A!~dAF !52Jc~ d̂AF !D, V~B!~dBF !5~21! uFuD21Jc~ d̂BF !, ~3.12!

which imply that the Poisson brackets defined byKi can be transformed to those defined byL̂ i as
follows:

$F,G%~ i !~Ki !5h i$F,G%c~ L̂ i !, ~3.13!

wherehA521 andhB511. Hence, the super-Jacobi identity associated with the mapsV ( i ) is
automatically satisfied due to the fact that the reduced supersymmetric GD brackets defineL̂ i

admit Miura representations~2.14!.
Therefore the mapsV ( i ) provide the Hamiltonian formulation for the Lax equations~3.1!:

dKi

dtk
5$Hk

~ i ! ,Ki%
~ i !5V~ i !~diHk

~ i !!, ~3.14!

where the Hamiltonian functionalsHk
( i ) are given by

Hk
~ i !52

n

k
Str~Ki

k/n!. ~3.15!
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Notice that the relative signs in the Hamiltonian mapsV ( i ) are crucial. It is this choice so tha
V ( i )(diHk

( i )) are differential operators of order less than 2n22, and Eq.~3.14! makes sense.
Before ending this section, two remarks are in order. First, we note that both Piosson br

defined byKi , up to a sign, are mapped to the same reduced supersymmetric GD bracket d
by L̂ i , which is different from the situation in the bosonic case, where typeA is mapped to the
differenceof the second and the third GD structures,20 whereas typeB is thesumof the second and
the third ones.20,21 Second, both Lax operatorsKA and KB can be factorized into multiplicative
forms, i.e.,

KA5~D2F2n21!~D2F2n22!¯~D2F1!D,
~3.16!

KB5D21~D2F2n11!~D2F2n!¯~D2F1!,

where the Miura fieldsF i obey the Poisson brackets,

$F j~X!,Fk~Y!%~ i !5h i@11~21! jd jk#Dd~X2Y!. ~3.17!

IV. GENERALIZED MR SKDV AND CONSTRAINED SKP HIERARCHIES

Having constructed the Hamiltonian structures of two nonstandard super-Lax hierarch
the previous section, we are now ready to discuss gauge equivalences related to these tw
standard hierarchies. Based on the fact that gauge transformations are canonical transform
we can use them to obtain new integrable Hamiltonian systems from the known ones.
following, we will show that the second Hamiltonian structures of the generalized MR sKdV
csKP hierarchies are just the ones that can be obtained in this way.

Let us perform the following gauge transformation to the Lax operatorsKi :

L̃ i5T21KiT ~ i 5A,B!, ~4.1!

where the gauge operatorT is defined byT5exp(2*x V2n22 /n), and hence the next leading ter
of Ki can be gauged away. The resulting differential operatorsL̃ i are thus given by

L̃A5D2n1U2n23D2n231¯1U0 ,
~4.2!

L̃B5D2n1U2n23D2n231¯1U01fD21c,

wheref[T21 andc[V21T. It can be proved thatT21 is an even eigenfunction associated w
the operatorL̃ i , i.e., ]T21/]tk5„(L̃ i

k/n)1T21
…0 , and the nonstandard Lax equations in~3.1! are

then transformed to the standard ones,

dL̃i

dtk
5@~ L̃ i

k/n!1 ,L̃ i #. ~4.3!

Therefore the gauge transformation~4.1! provides a connection betweenKi and L̃ i in the Lax
formulation. ForL̃A , the Lax equation~4.3! gives the generalization of the MR sKdV hierarch
(n52), which was originally constructed from the MR sKP hierarchy by reduction.11 On the
other hand, the Lax equation~4.3! for L̃B describes the csKP hierarchy that contains the sAK
hierarchy (n51)5,22 as the simplest example. It can be easily shown that the Lax equation~4.3!
for L̃B is consistent with the following equations:

]f

]tk
5„~ L̃B

k/n!1f…0 ,
]c

]tk
52„~ L̃B

k/n!1* c…0 , ~4.4!
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and thusf and c are an even eigenfunction and an odd adjoint eigenfunction of the c
hierarchy, respectively.

Moreover, since the hierarchy flows associated withKi have Hamiltonian descriptions, it i
quite natural to ask whether we can use such gauge equivalence to obtain the second Ham
structures of the generalized MR sKdV and csKP hierarchies. The answer is yes. To se
consider an infinitesimal gauge transformationKi→Ki1Q, whereQ is a homogeneous superdi
ferential operator of order, at most, 2n22. Then, in view of~4.1!, we can read off the linearized
mapT8 and its transposed mapT8† as

T8:Q→T21QT1
1

n F Ex

q2n22 ,L̃ i G , ~4.5!

T8†:P→TPT211
~21! uPu11

n Ex

sres@P,L̃ i #, ~4.6!

whereP is an arbitrary SPDO,q2n22[sres(QD22n11), and the adjoint of an operatorR is defined
by Str(PRQ)5(21)uRuuPu Str(R†PQ). UsingT8 andT8†, a straightforward but tedius calculatio
~see Appendix A! shows that

T8Q~ i !T8†~P!5~ L̃ i P!1L̃ i2L̃ i~PL̃i !11
1

n F Ex

res@P,L̃ i #,L̃ i G1 1

n F S Ex

sres@P,L̃ i # DD,L̃ i G
2

2

n2 F ExS S Ex8
sres@P,L̃ i # DU2n23D ,L̃ i G[Q~ i !~P!. ~4.7!

That means the Hamiltonian mapsQ (A) and Q (B), in terms of their own Lax operators, hav
the same form. SinceQ ( i ) are canonical equivalent to the Hamiltonian mapV ( i ), the Poisson
brackets defined byQ ( i ) are also antisymmetric and obey the super-Jacobi identity. As a re
Q (A)(Q (B)) can be defined as the Hamiltonian map of the generalized MR sKdV~csKP! hierarchy.
A further consistent check shows thatQ ( i ) map the Hamiltonian one-formsd̃i H̃k

( i ) to ~pseudo-!
superdifferential operators of order, at most, 2n23. Now we can write down the Hamiltonia
flows associated with the Lax operatorsL̃ i as

dL̃i

dtk
5$H̃k

~ i ! ,L̃ i%5Q~ i !~ d̃i H̃k
~ i !!, ~4.8!

where the Hamiltonian functionals, in view of~3.15! and ~4.1!, are defined by

H̃k
~ i !52

n

k
StrL̃ i

k/n . ~4.9!

From the Hamiltonian flows~4.8! we can read off the Poisson brackets for the coefficient fu
tions of L̃ i .

In fact, for L̃B , we can express the associated Poisson brackets forUi , f, and c more
precisely. Let us rewriteL̃B5 l 1fD21c and denoteH5*Bh as one of the Hamiltonian function
als H̃k

(B) . Then the Hamiltonian one-form can be expressed as

d̃BH5dlH1X, ~4.10!

whereX is a superdifferential operator and

dlH5 (
k50

2n23

~21!kD2k21
dh

dUk
. ~4.11!
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Then, from the relation

dH52Str„~d l 1dfD2c1fD21dc!~dlH1X!…52Str~d ldlH !1E
B
S df

dh

df
1dc

dh

dc D ,

~4.12!

we have the following identifications:

dh

df
5~X* c!0 ,

dh

dc
5~Xf!0 . ~4.13!

Inserting~4.10! with X satisfying~4.13! into the Hamiltonian mapQ (B) gives

dl

dt
5~ ldlH !1l 2 l ~dlHl !11„~ ldlH !1fD21c…12~fD21c~dlHl !1!11S l

dh

dc
D21c D

1

2S fD21
dh

df
l D

1

1
1

n F Ex

res@ d̃BH,L̃B#,l G2 2

n
fcEx

sres@ d̃BH,L̃B#

1
1

n F Ex

sres@ d̃BH,L̃B#,l G1 2

n2 F ExS U2n23Ex8
sres@ d̃BH,L̃B# D ,l G ,

df

dt
5„~ ldlH !1f…01S l

dh

dc D
0

1fF ExS Dc
dh

dc D2ExS Df
dh

df D G1
1

n
fEx

res@ d̃BH,L̃B#

2
1

n
~Df!Ex

sres@ d̃BH,L̃B#1
2

n2 fExS U2n23Ex8
sres@ d̃BH,L̃B# D ,

dc

dt
52„~ l * ~dlH !* …1c!02S l *

dh

df D
0

1cF ExS Df
dh

df D2ExS Dc
dh

dc D G2
1

n
cEx

res@ d̃BH,L̃B#

1
1

n S DcEx

sres@ d̃BH,L̃B# D2
2

n2 cExS U2n23Ex8
sres@ d̃BH,L̃B# D , ~4.14!

where

res@ d̃BH,L̃B#5res@dlH,l #1~Dc!
dh

dc
2fS D

dh

df D2sres~dlHfc!2f„D~dlH !* c…,

sres@ d̃BH,L̃B#5sres@dlH,l #2c
dh

dc
1f

dh

df
. ~4.15!

Equation~4.14! can be regarded as the supersymmetric generalization of the second Hamil
structures of constrained KP hierarchy derived by Oevel and Strampp.23

V. EXAMPLES

In this section we work out a number of examples to illustrate the previous results expl
We write down the Poisson brackets for these systems according to the formulas given abo
compare them with the known results.
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A. Laberge–Mathieu super-KdV hierarchy

For KA5]21v2]1v1D, the first equations in~3.1! are given by

d

dt0
S v1

v2
D5S v1x

v2x
D ,

~5.1!
d

dt1
S v1

v2
D5

1

4 S ~v1xx13v1~Dv1!2 3
2 v1v2

223v1v2x!x

„v2xx2
1
2 v2

313v1~Dv2!…x
D ,

which represents the first equations of the LM sKdV hierarchy. The Hamiltonian formulatio
these equations is given by~3.14!, where the second Poisson structure can be obtained by su
tuting dAHk

(A)52D22(dhk
(A)/dv1)1D23(dhk

(A)/dv2) into ~3.6!. We find

d

dtk
S v1

v2
D5S 22v1]2v1x 2]22v2]1v1D2~Dv1!

]22v2]1v1D2v2x 22D31~Dv2!22v1
D S dhk

~A!

dv1

dhk
~A!

dv2

D , ~5.2!

where the first Hamiltonian functionals are given by

H0
~A!522 StrKA

1/252E
B
v1 ,

~5.3!

H1
~A!52

2

3
StrKA

3/252
3

8 EB
F1

2
v1v2

21v1v2x2v1~Dv1!G .
To compare with the known result, we consider the change of variables as follows:

~v1 ,v2!→„2~Du!2t,22u…, ~5.4!

then the Poisson structure in~5.2! becomes

1

2 S 2D]1t 2u]2~Du!D12ux

2u]2~Du!D1ux 2D]213t]1~Dt!D12tx
D , ~5.5!

which is just the form presented in Ref. 24.

B. Super-two-boson hierarchy

For KB5]1v01D21v21 the first Lax equations in~3.1! are given by

d

dt1
S v0

v21
D5S v0x

v21x
D ,

~5.6!
d

dt2
S v0

v21
D 5S v0xx12~Dv21!x1~v0

2!x

2v21xx12~v0v21!x
D ,

which represents the first equations of the sTB hierarchy. The Hamiltonian description for
equations are given by~3.14!, where the second Poisson structure can be obtained by substi
dBHk

(B)5D21(dhk
(B)/dv0)1(dhk

(B)/dv21) into ~3.7!. It turns out that
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d

dtk
S v0

v21
D5S 2D31~Dv0!12v21 ]21v0]1v21D1v0x

2]21v0]1v21D2~Dv21! 2v21]1v21x
D S dhk

~B!

dv0

dhk
~B!

dv21

D , ~5.7!

where the first Hamiltonian functionals are given by

H1
~B!52StrKB52E

B
v21 ,

H2
~B!52

1

2
StrKB

25E
B
v0v21 . ~5.8!

Equation~5.7! provides the second Hamiltonian formulation of the sTB hierarchy.
If we make the following identification:

~v0 ,v21!→„2~DJ0!,J1…, ~5.9!

then the second Poisson structure in~5.7! becomes

S 2D12D21J1D212D21J0xD
21 2D31D~DJ0!2D21J1D

D31~DJ0!D1DJ1D21 J1D21D2J1
D , ~5.10!

which is the form of the second Poisson structure discussed in Ref. 18.

C. Manin–Radul super-KdV hierarchy

For L̃A5]22wD1a, the first Lax equations in~4.3! are given by

d

dt0
S a
w D5S ax

wx
D ,

~5.11!
d

dt1
S a

w
D 5

1

4 S wxxx23„w~Dw!…x16~aw!x

axxx23„w~Da!…x13~a2!x
D ,

which represents the first equations of the MP sKdV hierarchy. The Hamiltonian formulatio
these equations are given by~4.8!, in which the first Hamiltonian functionals are given by

H̃0
~A!522 StrL̃A

1/25E
B
w,

~5.12!

H̃1
~A!52

2

3
StrL̃A

3/252
1

4 EB
@w~Dw!22wa#,

and the second Poisson structure can be obtained by substitutingd̃AH̃k
(A)5D21(dh̃k

(A)/da)
1D22(dh̃k

(A)/dw) into ~4.7!. It turns out that

d

dtk
S a
w D5S Paa Paw

Pwa Pww
D S dh̃k

~A!

da

dh̃k
~A!

dw

D , ~5.13!
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where the second Poisson matrix is given by

Paa5 1
2@D]323w]214aD]1„2~Da!23wx…]12axD13w~Dw!1~D3a!24aw2wxx

1wD21~Da!2~Da!D21w2wD21wD21w2wD21wx1wxD
21w#,

Paw5 1
2@]322wD]14a]2wxD12ax1wD21~Dw!#,

~5.14!
Pwa5 1

2@]312wD]1„4a22~Dw!…]1wxD12ax2~D3w!1~Dw!D21w#,

Pww5 1
2@4w]12wx#.

Equation~5.13! provides the second Hamiltonian formulation of the MR sKdV hierarchy repo
in Ref. 4.

Starting from the Lax operatorKA5]21v2]1v1D associated with the LM sKdV hierarchy
one can perform the gauge transformationT5exp(2*x v2/2)7 on the Lax operatorKA as follows:

KA→L̃A5e*xv2/2KAe2*xv2/25]21v1D2S v2
2

4
1

v2x

2
1

v1~D21v2!

2 D . ~5.15!

Then the Lax operatorL̃A5]22fD1a associated with the MR sKdV hierarchy is related to t
Lax operatorKA as

f52v1 , a52S v2
2

4
1

v2x

2
1

v1~D21v2!

2 D , ~5.16!

which provides the gauge equivalence between the LM sKdV hierarchy~5.1! and the MR sKdV
hierarchy~5.11!. Moreover, it has been shown24 that the second Hamiltonian structure~5.5! of the
LM sKdV hierarchy can be transformed to the second Hamiltonian structure~5.14! of the MR
sKdV hierarchy via this gauge transformation.

D. Super-AKNS hierarchy

For L̃B5]1fD21c, the first equations in~4.3! are given by

d

dt1
S f
c D5S fx

cx
D ,

d

dt2
S f
c D5S fxx12f~Dfc!

2cxx22c~Dfc! D , ~5.17!

which are the first equations in the sAKNS hierarchy. Hamiltonian formulations for these e
tions are given by~4.14!, where the first Hamiltonian functions are given by

H̃1
~B!52StrL̃B5E

B
fc,

~5.18!

H̃2
~B!52

1

2
StrL̃B

25E
B
fxc.

From ~4.14!, the Hamiltonian flow can be expressed as
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d

dtk
S f
c D5S Pff Pfc

Pcf Pcc
D S dh̃k

~B!

df

dh̃k
~B!

dc

D , ~5.19!

where the Poisson brackets are given by

Pff52fD21f2fD22fD2~Df!D22f22fD22fcD22f,

Pfc5D21fD21c1fD22~Dc!1~Df!D22c12fD22fcD22c,
~5.20!

Pcf5D21cD22fD1~Dc!D22f12cD22fcD22f,

Pcc52~Dc!D22c2cD22~Dc!22cD22fcD22c,

which is just the second Poisson structure obtained in Ref. 5. Equation~5.19! provides the second
Hamiltonian formulation of the sAKNS hierarchy.

Starting from the Lax operatorKB5]1v01D21v21 associated with the sTB hierarchy, on
can perform the gauge transformationT5exp(2*x v0)

22,25 to the Lax operatorKB as follows:

KB→L̃B5e*xv0KBe2*xv05]1e*xv0D21e2*xv0. ~5.21!

Then the Lax operatorL̃B5]1fD21c associated with the sAKNS hierarchy is related to the L
operatorKB as

f5e*xv0, a5v21e2*xv0, ~5.22!

which provides the gauge equivalence between the sTB hierarchy~5.6! and the sAKNS hierarchy
~5.17!. Moreover, it can be proved25 that the second Hamiltonian structure~5.10! of the sTB
hierarchy can be transformed to the second Hamiltonian structure~5.20! of the sAKNS hierarchy
via this gauge transformation.

VI. CONCLUDING REMARKS

In this paper, we investigate the Hamiltonian structures associated with several supersy
ric extensions of the KdV hierarchy. Starting with the reduced super-GD bracket, the Hamilt
structures of two nonstandard super-KdV hierarchies can be constructed via supersym
Miura transformations. We then perform a gauge transformation on these two nonstanda
hierarchies to obtain the Hamiltonian structures of the generalized MR sKdV hierarchy and
strained sKP hierarchy in a unified fashion. To compare the obtained Hamiltonian structure
the known results, we work out a few examples, including the LM sKdV, sTB, MR sKdV,
sAKNS hierarchies.

Our approach on the gauge transformation relies on the algebra of superpseudodiffe
operators, which provides an effective method to achieve the goal. In fact, the gauge trans
tion ~4.1! that mapsV ( i ) to Q ( i ) is by no means unique. There is another gauge transforma
triggered byS5D21T25,26 that also bringsV ( i ) to Q ( i ). Since the parity ofS is odd, the gauge
equivalence of the Hamiltonian maps given by~4.7! should be replaced byS8V ( i )S8†52Q ( i ),
where the minus sign will be compensated by that induced from the transformation of the H
tonians such that the hierarchy flows~3.14! are transformed to~4.8!.

Finally, we would like to comment briefly on the algebraic structures associated with
Poisson brackets defined by the Hamiltonian mapsV ( i ) andQ ( i ). As we shows in Eq.~3.13!, the
Poisson brackets defined byV ( i ) are encoded by the Poisson bracket defined byJc . However, it
has been shown12,15that in the space of the supersymmetric Lax operator of odd order, the red
supersymmetric GD bracket~2.12! defines an infinite series of classicalN52W superalgebras
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which containN52 super-Virasoro algebra as a subalgebra. Therefore, through the Miura
formation, the differential polynomials of the coefficient functionsVi of Ki can be identified as the
N52 supermultiplets, and Eq.~3.17! provides the free-field realizations of the correspondingW
superalgebras. On the other hand, for the MR sKdV and csKP hierarchies, the Poisson a
defined byQ ( i ) are not quite clear so far, even for the simplest cases. It seems not so obvi
construct the super-Virasoro generator by covariantizing the supersymmetric Lax operatorL̃ i due
to the fact thatU2n215U2n2250. Therefore, to explore the algebraic structures associated
Q ( i ), the decompositions of coefficient functionsUi into primary fields remain to be worked ou
Work in this direction is still in progress.
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APPENDIX: PROOF FOR „4.7…

To prove~4.7!, let P be an arbitrary superpseudodifferential operator; then

T8V~A!T8†P5T8Q, ~A1!

where

Q[V~A!T8†P5~KAT8†P!1KA2KA~T8†PKA!11@KA ,~T8†PKA!0#

1~21! uPuF Ex

D sres@T8†P,KA#,KAG
1~21! uPuKAD21 sres@T8†P,KA#. ~A2!

Using ~4.6!, each term inQ can be calculated as follows:

~1!5~TLPT21!1KA1
~21! uPu11

n
DS Ex

sres@P,L# DKA ,

~2!52KA~TPLT21!11
~21! uPu

n
KAS DEx

sres@P,L# D2
1

n S Ex

sres@P,L# DD,

~3!5@KA ,~TPLT21!0#1
~21! uPu11

n FKA ,S DEx

sres@P,L# D G ,
~4!5~5!50,

which imply that

Q5~TLPT21!1KA2KA~TPLT21!11@KA ,~TPLT21!0#1
1

n F S Ex

sres@P,L# DD,KAG
~A3!

and
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1

n E
x

q2n225
1

n E
x

sres~QD22n11!

5~TPLT21!01
1

n E
x

res~T@P,L#T21!

1
1

n E
xF S Ex8

sres@P,L# D ~DV2n22!

n G2
2

n2 ExF S Ex8
sres@P,L# DV2n23G .

~A4!

Substituting~A3! and ~A4! into ~4.5!, we obtain the desired result~4.7!.
Since the proof forKB is parallel to the above one, we hence omit it here.
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Large amplitude gravitational waves
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Institute for Applications of Mathematics, Consiglio Nazionale delle Ricerche,
Napoli, Italy

John K. Hunter
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We derive an asymptotic solution of the Einstein field equations which describes
the propagation of a thin, large amplitude gravitational wave into a curved space–
time. The resulting equations have the same form as the colliding plane wave
equations without one of the usual constraint equations. ©1999 American Insti-
tute of Physics.@S0022-2488~99!04306-6#

I. INTRODUCTION

Gravitational wave propagation is one of the most important features of Einstein’s ge
theory of relativity. The Einstein field equations are highly nonlinear, and a question of fu
mental interest is how nonlinearity affects the propagation of gravitational waves.

Small amplitude gravitational waves are well described by the linearized Einstein equa
Large amplitude, unidirectional gravitational plane waves are described by the exact Brinkm
Rosen solution of the vacuum Einstein equations.1,2 Despite the nonlinearity of the Einstei
equations, a unidirectional plane wave propagates into flat space–time without distortion
there are no dynamic nonlinear effects. Thus, one of the simplest situations in which non
effects are significant is when a large amplitude gravitational wave propagates into curved s
time.

If the space–time ahead of the wave is that of a counterpropagating gravitational plane
then the resulting space–time has a two-parameter family of spacelike isometries, and the
is given by the exact colliding plane wave solution of the vacuum Einstein equations.3–6 Exact
solutions do not exist for more general space–time ahead of the wave.

In this paper, we derive an asymptotic solution of the Einstein equations that describ
propagation of a thin, large-amplitude, pulselike gravitational wave into a general curved s
time. The solution applies when the metric inside the wave varies much more rapidly tha
metric on either side of the wave. As a result, the wave can be approximated locally by a non
plane wave, which slowly distorts as it propagates into the curved space–time. For plane-po
waves, the asymptotic solution is given by Eqs.~3.1!, ~3.6!, ~3.7!, and ~3.9!–~3.11! below. For
nonpolarized waves, the asymptotic solution is given by~3.1!, ~6.3!, ~6.5!, and~6.8!–~6.11!. The
asymptotic solution satisfies the colliding plane wave equations without one of the usua
straints. The colliding plane wave equations are therefore canonical equations for nonlinear
tational waves which describe a much larger class of solutions than the ones with exact
wave symmetry.

The nonlinearity of the asymptotic equations may result in the development of a space
singularity. The mechanism of singularity formation in gravitational waves is the mutual focu
of the gravitational wave and the curved space–time into which it propagates. This mech
differs from the nonlinear steepening of waves in quasilinear hyperbolic systems that leads
formation of shocks. A second effect of nonlinearity is the distortion of space–time by the pa
of a nonplanar gravitational wave. Moreover, the wave generates a slowly varying, backsc
gravitational wave.

Isaacson7 and Choquet-Bruhat8 derived a short-wave asymptotic expansion of the Eins
30350022-2488/99/40(6)/3035/18/$15.00 © 1999 American Institute of Physics
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equations that describes the propagation of a small amplitude, oscillatory gravitational
through a slowly varying background space–time. The mean energy density of the gravita
wave curves the background space–time, and this curvature refracts the null geodesics
which the wave propagates. Some further developments of this work are described in Ref.
short-wave expansion derived here applies to large amplitude, impulsive gravitational wave
is completely new.

In Sec. II, we summarize the exact colliding plane wave solution of the Einstein equatio
Sec. III, we give an overview of the asymptotic expansion. In Sec. IV, we write out expansio
the metric components, the connection coefficients, and the Ricci curvature components.
V, we construct a coordinate system in which the metric adopts its simplest form. In Sec. V
complete the derivation of the asymptotic equations. In Sec. VII, we show that the same equ
follow from an expansion of the variational principle for the Einstein equations. In Sec. VIII
explain how to derive boundary conditions for the asymptotic equations, and in Sec. IX
consider some specific physical examples.

II. COLLIDING PLANE WAVES

The vacuum Einstein field equations imply that

Ricci50, ~2.1!

whereRicci is the Ricci tensor associated with the metric tensorg. The plane-polarized, colliding
plane wave solution of~2.1! is given by

g522e2M du dv1e2U~eV dy21e2V dz2!, ~2.2!

where the functionsM (u,v),U(u,v),V(u,v) satisfy the colliding plane wave equations,

Uuv5UuUv , ~2.3!

Vuv5 1
2~UuVv1UvVu!, ~2.4!

Muv5 1
2~2UuUv1VuVv!, ~2.5!

Uuu5 1
2~Uu

21Vu
2!2UuMu , ~2.6!

Uvv5 1
2~Uv

21Vv
2!2UvM v . ~2.7!

Equations~2.3!–~2.5! are wave equations forM ,U,V in characteristic coordinates (u,v). Equa-
tions ~2.6! and ~2.7! are constraints which are preserved by~2.3!–~2.5!. To specify a unique
solution, the wave equations can be supplemented by characteristic initial data forM ,U,V on the
lines u50 andv50, which satisfy the appropriate constraint equation.

The metric which describes the collision of nonpolarized plane waves is

g522e2M du dv1e2U~eV coshW dy222 sinhW dy dz1e2V coshW dz2!,

where the functionsM (u,v),U(u,v),V(u,v),W(u,v) satisfy

Uuv5UuUv , ~2.8!

Vuv5 1
2~UuVv1UvVu!2~VuWv1VvWu!tanhW, ~2.9!

Wuv5 1
2~UuWv1UvWu!1VuVv sinhW coshW, ~2.10!

Muv5 1
2~2UuUv1VuVv cosh2 W1WuWv!, ~2.11!
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Uuu5 1
2~Uu

21Vu
2 cosh2 W1Wu

2!2UuMu , ~2.12!

Uvv5 1
2~Uv

21Vv
2 cosh2 W1Wv

2!2UvM v . ~2.13!

When W50, this solution reduces to the plane-polarized solution. When all functions are
pendent ofv, the solution reduces to the exact Rosen solution for a unidirectional plane wa

III. OVERVIEW OF THE EXPANSION

In this section, we outline the main ideas in the derivation of the asymptotic solution
simplicity, we describe the case of plane-polarized waves. The algebraic details are given
following sections.

We consider metrics of the form

g5gS u~x!

e
,x;e D ,

~3.1!

g~u,x;e!5g
0
~u,x!1eg

1
~u,x!1O~e2!,

wheree is a small parameter, andu is a scalar-valued phase function withduÞ0. This ansatz
corresponds to a metric that varies rapidly and strongly in theu direction. The phaseu is a null
function of the metric, at least up to the ordere. That is, it satisfies

g]~du,du!5O~e2!, ~3.2!

whereg] is the contravariant form of the metric tensor. The component form of this equati
written out in ~4.5! below. The scaled variable

u5
u

e
~3.3!

is a ‘‘stretched’’ coordinate inside the wave. We assume that the derivatives ofg(u,x;e) with
respect tou decay to zero sufficiently quickly asu→`. Thus, the solution~3.1! describes a thin,
pulselike gravitational wave which is located near the null surfaceu50. For example, if the metric
is independent ofu when uuu is sufficiently large, then the solution describes a thin ‘‘sandwic
wave that separates slowly varying metrics on either side.

The Ricci tensor associated with the metric~3.1! has an expansion of the form

Ricci5
1

e 2 Ricci
22

1
1

e
Ricci

21

1O~1!. ~3.4!

At the ordere22, the Einstein equations~2.1! imply that

Ricci
22

50.

This equation is a nonlinear, second-order ordinary differential equation in]u for the leading order
term of the metric in which the ‘‘slow’’ variablesx occur as parameters. We write it symbolica
as

N~]u
2!@g

0
#50. ~3.5!

In suitable coordinates (u,v,y,z), a solution of this equation is the plane-polarized plane w
metric
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g
0
522e2M du dv1e2U~eV dy21e2V dz2!, ~3.6!

whereM ,U,V are functions of (u,v,y,z). For a metric of the form~3.6!, Eq. ~3.5! reduces to the
u-constraint equation,

Uuu5 1
2~Uu

21Vu
2!2UuM u . ~3.7!

At the ordere21, the Einstein equations imply that

Ricci
21

50.

This is a linear equation forg
1

of the form

L~]u
2!@ g

1#5F~]u ,]v ,]y ,]z!@ g
0# , ~3.8!

whereL is a second-order linear ordinary differential operator in]u acting ong
1
, whose coeffi-

cients depend ong
0
, andF is a nonlinear partial differential operator acting ong

0
. The equations in

~3.8! are not independent. The requirement that~3.8! can be solved forg
1

implies thatM, U, andV
satisfy the equations

Uuv5UuUv , ~3.9!

Vuv5 1
2~UuVv1UvVu!, ~3.10!

M uv5 1
2~2UuUv1VuVv!. ~3.11!

Equations~3.9!–~3.11! are identical to the evolution equations~2.8!–~2.10! for the exact colliding
plane wave solution, withu5u/e. The leading order solution~3.6! satisfies the constraint equatio
~3.7! in the ‘‘fast’’ phase variableu, but need not satisfy the constraint equation~2.7! in the
‘‘slow’’ variable v. If the v-constraint equation does not hold, then the asymptotic expansio
the metric contains higher order terms which are absent from the exact colliding plane
solution.

Equation~3.6! implies that]v52eMg]
•du. Thus,]v is a vector on the light cone which i

tangent to the null surfaceu50, and the ‘‘slow’’ derivative with respect tov which appears in
~3.9!–~3.11! is a derivative along the bicharacteristic null geodesics associated withu. The trans-
verse variablesy andz occur as parameters. Therefore, in the short-wave limit considered her
(113)-dimensional field equations reduce to (111)-dimensional asymptotic equations along t
set of null geodesics associated with the phaseu. The parametric dependence of the solution oy
andz allows the pulse to be compactly supported in the transverse directions, so the wave ne
have infinite extent. Moreover, the asymptotic solution need not have any special exact sy
tries.

The asymptotic equations for nonpolarized gravitational waves are obtained in a similar
They consist of the general colliding plane wave equations~2.8!–~2.12! with u replaced byu. The
v-constraint equation~2.13! is not required to hold.

Since the asymptotic equations follow from the ordere22 and ordere21 components of the
field equations, the asymptotic solution remains valid in the presence of matter with a s
varying, order one energy–momentum tensor,T5T(x).

One subtle point in carrying out the expansion concerns the choice of the phase functiou. In
order for ~3.5! to have a nontrivial solution, the phaseu must be a null function of the leadin
order metric, butu need not be a null function of the entire metric. However, it follows from
analysis in Sec. V that we can use a transformation of the form
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u→eCS u

e
,x;e D ~3.12!

to choose a phase which satisfies~3.2!. The asymptotic solutions obtained with the use of the
and the new phases can be shown to be equivalent. When the phase satisfies~3.2!, variations in the
metric propagate along the null geodesics associated with the phase, and the asymptotic e
adopt their simplest form.

IV. EXPANSION OF THE METRIC AND THE CURVATURE

In this section, we write out expansions of the metric components, the connection coeffic
and the Ricci curvature components.

We use local coordinatesxa in which

g5gab dxa dxb. ~4.1!

Here and below, Greek indicesa,b,m,n,... take on the values 0,1,2,3. We look for an expansion
the metric components ase→0 of the form

gab5gabS u~x!

e
,x;e D ,

~4.2!

gab~u,x;e!5g
0

ab~u,x!1eg
1

ab~u,x!1O~e2!.

The contravariant metric componentsgab satisfy

gamgmb5db
a .

Expansion of this equation in a power series ine gives

gab5g
0

ab2eg
1

ab1O~e2!. ~4.3!

In ~4.3!, g
0

ab is the inverse ofg
0

ab , and we use the leading order metric components to r
indices, so that

g
1

ab5g
0

amg
0

bng
1

mn . ~4.4!

With this notation, the ordere term in the expansion of the contravariant metric componentgab is

2g
1

ab, not g
1

ab.
In terms of the metric components, we have

g]~du,du!5gab
]u

]xa

]u

]xb 5g
0

ab
]u

]xa

]u

]xb2eg
1

ab
]u

]xa

]u

]xb 1O~e2!. ~4.5!

Thus, the null condition~3.2! holds provided that

g
0

ab
]u

]xa

]u

]xb 50, g
1

ab
]u

]xa

]u

]xb 50. ~4.6!

The first condition in~4.6! states thatu is a null function ofg
0
. The second condition is required i

order for the phase to be a null function of the perturbed metric up to the ordere.
The Ricci tensor componentsRab are given by
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Rab5
]Gl

ab

]xl 2
]Gl

bl

]xa 1Gl
abGm

lm2Gm
alGl

bm , ~4.7!

whereGl
ab are the connection coefficients

Gl
ab5

1

2
glmS ]gbm

]xa 1
]gam

]xb 2
]gab

]xm D . ~4.8!

From ~3.3!, the derivative of a functionf ab(u,x), with respect toxm is given by

] f ab

]xm 5
1

e
f ab,uum1 f ab,m , ~4.9!

where

um5
]u

]xm , f ab,u5
] f ab

]u U
x

, f ab,m5
] f ab

]xm U
u

.

We use~4.2!, ~4.3!, and~4.9! in ~4.7! and~4.8! and expand the result with respect toe. After some
algebra, we find that

Gl
ab5

1

e
G

21
l

ab1G
0

l
ab1O~e!,

~4.10!

Rab5
1

e2 R
22

ab1
1

e
R

21

ab1O~1!,

where

G
21

l
ab5 1

2g
0

lm~g
0

bm,uua1g
0

am,uub2g
0

ab,uum!,

G
0

l
ab5 1

2g
0

lm~g
0

bm,a1g
0

am,b2g
0

ab,m!1 1
2g

0
lm~g

1

bm,uua1g
1

am,uub2g
1

a,b,uum!

2 1
2g

1
lm~g

0

bm,uua1g
0

am,uub2g
0

ab,uum!,
~4.11!

R
22

ab5 G
21

m
ab,uum2 G

21
m

bm,uua1 G
21

m
ab G

21
n

mn2 G
21

m
an G

21
n

bm ,

R
21

ab5 G
21

m
ab,m2 G

21
m

bm,a1G
0

m
ab,uum2G

0
m

bm,uua1 G
21

m
abG

0
n

mn

1G
0

m
ab G

21
n

mn2 G
21

m
anG

0
n

bm2G
0

m
an G

21
n

bm .

The component form of the field equations~2.1! is

Rab50. ~4.12!

Using ~4.10! in ~4.12! and equating coefficients ofe22 ande21 to zero, we get that

R
22

ab50, ~4.13!

R
21

ab50. ~4.14!
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In order to solve these equations, we first use a coordinate transformation to simplify the fo
the metric.

V. COORDINATE TRANSFORMATIONS

In this section, we show that there is a choice of a local coordinate systemxa in which u
5x0 and the metric has the form

g52g
0

01dx0 dx11g
0

ab dxa dxb1e$2g
1

1a dx1 dxa1g
1

ab dxa dxb%1O~e2!. ~5.1!

Here and below, indicesa,b,c,... take on the values 2,3, while indicesi , j ,k,... take on the values
1,2,3.

The corresponding expansion of the contravariant form of the metric tensor is

g]52g
0

01]0]11g
0

ab]a]b2e$2g
0

01g
0

abg
1

1b]0]a1g
0

acg
0

bdg
1

cd]a]b%1O~e2!. ~5.2!

For this metric, we have

g
0

0050, g
1

0050. ~5.3!

Thus, the phaseu5x0 satisfies~4.6!, and hence~3.2!.
The most general coordinate transformation which is compatible with an expansion o

form ~4.2! is

x0

e
→C

1
0S x0

e
,xD1eC

2
0S x0

e
,xD1O~e2!, ~5.4!

xi→C
0

i~x!1eC
1

i S x0

e ,xD1e2C
2

i S x0

e ,xD1O~e3!. ~5.5!

Here, we suppose that the phase is given byu5x0 in both the old and the new coordinates. Thu
the change of coordinates~5.4! implies a change in the phase of the form~3.12!.

First, we simplify the leading order metric components by means of a transformation

x0→x0, xi→xi1eC
1

i S x0

e , xD . ~5.6!

Expansion of the transformation law for the change in covariant tensor components implie
the leading order metric components transform under~5.6! according to

g
0

00→g
0

0012C
1

,u
k g

0

0k1C
1

,u
k C

1

,u
l g

0

kl , ~5.7!

g
0

0i→g
0

0i1C
1

,u
k g

0

ki , ~5.8!

g
0

i j→g
0

i j . ~5.9!

If the matrixg
0

i j is nonsingular, then~5.8! implies that we can transformg
0

0i to zero. This contra-
dicts the requirement thatx0 is null ~cf. Ref. 2, Sec. 109!. Hence, we must have

detg
0

i j 50. ~5.10!

By an appropriate renumbering of thei coordinates, we can suppose without loss of generality
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detg
0

abÞ0. ~5.11!

From ~5.7! and ~5.8!, we can then choose the transformation~5.6! so that

g
0

005g
0

025g
0

0350. ~5.12!

Solving Eq.~5.10! for g
0

11, we get

g
0

115g
0

abg
0

1ag
0

1b , ~5.13!

whereg
0

ab is the inverse ofg
0

ab . We define

ga5g
0

abg
0

1b . ~5.14!

From ~5.13! and ~5.14!, it follows that

g
0

115g
0

cdg
cgd, g

0

1a5g
0

acg
c. ~5.15!

Using ~5.12!–~5.15! in ~4.1!, we find that, in the transformed coordinate system, the metric i

g52g
0

01dx0 dx11g
0

ab~dxa1ga dx1!~dxb1gb dx1!1O~e!. ~5.16!

From ~4.13!, the metric~5.16! satisfies the condition

R
22

ab50. ~5.17!

Using ~5.16! in ~4.11!, we find that

R
22

ab52 1
2~g

0
01!2g

0

acg,u
c g

0

bdg,u
d . ~5.18!

Equations~5.17! and ~5.18! imply that

g,u
a 50,

so ga is independent ofu. This fact allows us to removega by a transformation

xa→Ca~x1,xc!. ~5.19!

The form of the metric~5.16! is unchanged by~5.19!, and

g
0

ab→C ,a
c C ,b

d g
0

cd ,
~5.20!

ga→~A21!c
a~gc1C ,1

c !,

where (Ac
a)5(C ,c

a ). From ~5.20!, we can setga50. The metric~5.16! then reduces to

g52g
0

01dx0 dx11g
0

ab dxa dxb1O~e!. ~5.21!

Next, we simplify the form ofg
1
. We consider the transformation of coordinates

x0→eC
1

0S x0

e ,xD1e2C
2

0S x0

e ,xD , xi→xi1e2C
2

i S x0

e ,xD . ~5.22!
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Under the action of~5.22!, the form~5.21! of the metric is unchanged at order zero and

g
0

01→C
1

,u
0 g

0

01.

At order one, the components transform according to

g
1

00→C
1

,u
0 ~C

1

,u
0 g

1

0012C
2

,u
1 g

0

01!,

g
1

01→C
1

,u
0 g

1

011~C
1

,0
0 1C

2

,u
0 !g

0

01,

g
1

0a→C
1

,u
0 g

1

0a1C
2

,u
b g

0

ab ,

g
1

11→g
1

1112C
1

,1
0 g

0

01,

g
1

1a→g
1

1a1C
1

,a
0 g

0

01,

g
1

ab→g
1

ab .

These transformations can be used to make

g
1

115g
1

0a50. ~5.23!

The resulting metric then has the form given in~5.1!.
Use of~5.1! and~5.2! in ~4.11! implies that the nonzero connection coefficients at the ord

e21 ande0 are

G
21

0
005g

0
01g

0

01,u , G
21

1
ab52 1

2g
0

01g
0

ab,u , G
21

a
0b5 1

2g
0

acg
0

bc,u ,

G
0

0
005g

0
01g

0

01,0, G
0

0
0a5 1

2g
0

01~g
0

01,a1g
1

1a,u!2 1
2g

1
0bg

0

ab,u ,

G
0

0
ab52 1

2g
0

01g
0

ab,1 , G
0

1
115g

0
01g

0

01,1, G
0

1
1a5 1

2g
0

01~g
0

01,a2g
1

1a,u!,

G
0

1
ab52 1

2g
0

01~g
0

ab,01g
1

ab,u!, G
0

a
0152 1

2g
0

ac~g
0

01,c2g
1

1c,u!,

G
0

a
0b5 1

2g
0

ac~g
0

bc,01g
1

bc,u!2 1
2g

1
acg

0

bc,u ,

G
0

a
1b5 1

2g
0

acg
0

bc,1 , G
0

a
bc5

1
2g

0
ad~g

0

bd,c1g
0

cd,b2g
0

bc,d!1 1
2g

1
0ag

0

bc,u .

The nonzero components of the Ricci curvature at the orderse22 ande21 are

R
22

0052 1
2~g

0
abg

0

ab,u! ,u2 1
4g

0
acg

0

bc,ug
0

bdg
0

ad,u1 1
2g

0
01g

0

01,ug
0

abg
0

ab,u , ~5.24!

R
21

0152~g
0

01g
0

01,1!u2 1
2~g

0
abg

0

ab,1!u2 1
4g

0
acg

0

bc,ug
0

bdg
0

ad,1 , ~5.25!

R
21

ab52g
0

01~g
0

ab,1u2 1
2g

0
cd~g

0

ac,ug
0

bd,11g
0

ac,1g
0

bd,u!1 1
4g

0
cd~g

0

cd,1g
0

ab,u1g
0

cd,ug
0

ab,1!!, ~5.26!
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R
21

0052 1
2g

1

a,uu
a 2 1

2g
0

acg
0

bc,ug
1

a,u
b 1 1

2g
0

01g
0

01,ug
1

a,u
a 2~g

0
abg

0

ab,u!0

2 1
2 g

0
acg

0

bc,ug
0

bdg
0

ad,01
1
2g

0
01g

0
ab~g

0

01,ug
0

ab,01g
0

01,0g
0

ab,u!, ~5.27!

R
21

0a5 1
2~g

0

abg
0

01~g
0

01g
1

0b!u!u1 1
4g

0
cdg

0

cd,ug
0

abg
0

01~g
0

01g
1

0b!u

2 1
2 ~g

0
01g

0

01,a1g
0

cdg
0

cd,a!u1 1
2~g

0
bcg

0

ab,u!c1 1
4g

0
bcg

0

ab,ug
0

deg
0

de,c1 1
4g

0
01g

0

01,ag
0

cdg
0

cd,u

2 1
4g

0
bdg

0

cd,ug
0

ceg
0

be,a . ~5.28!

VI. THE ASYMPTOTIC EXPANSION

We choose coordinates

~x0,x1,x2,x3!5~u,v,y,z! ~6.1!

in which the metric has the form~5.1!. We introduce functionsM ,U,V,W of (u,v,y,z) such that

g
0

0152e2M,
~6.2!

~g
0

ab!5S e2U1V coshW 2e2U sinhW

2e2U sinhW e2U2V coshWD .

It follows from ~5.1!, ~6.1!, and~6.2! that the leading order metric has the form of the collidi
plane wave metric,

g
0
522e2M du dv1e2U~eV coshW dy222 sinhW dydz1e2V coshW dz2!. ~6.3!

From ~5.24!, the only component of the leading order perturbation equation~4.13! which is
not identically satisfied is

R
22

0050. ~6.4!

Using ~5.24! and ~6.2! in ~6.4!, we obtain theu-constraint equation,

Uuu5 1
2~Uu

21Vu
2 cosh2 W1Wu

2!2UuM u . ~6.5!

From ~5.25! to ~5.28!, the only components of the first-order perturbation equation~4.14!
which are not identically satisfied are

R
21

0150, R
21

ab50, ~6.6!

R
21

0050, R
21

0a50. ~6.7!

Using ~5.25!–~5.26! and~6.2! in ~6.6!, we get the evolution equations in the colliding plane wa
equations,

Uuv5UuUv , ~6.8!

Vuv5 1
2~UuVv1UvVu!2~VuWv1VvWu!tanhW, ~6.9!

Wuv5 1
2~UuWv1UvWu!1VuVv sinhW coshW. ~6.10!
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M uv5 1
2~2UuUv1VuVv cosh2 W1WuWv!. ~6.11!

From ~5.2! and~5.27!–~5.28!, we find that the remaining equations~6.7! are satisfied by a suitabl

choice of the first-order metric componentsg
1

ab ,g
1

1a .

VII. VARIATIONAL PRINCIPLE

The variational principle for the vacuum Einstein field equations is

dS50, S5E L d4x,

~7.1!
L5RA2detg,

whereR is the scalar curvature,

R5gabRab .

Using ~4.2!, ~4.3!, and~4.10! to expand the scalar curvature, we obtain that

R5
1

e2 R
22

1
1
e R

21
1O~1!,

R
22

5g
0

ab R
22

ab , ~7.2!

R
21

5g
0

ab R
21

ab2g
1

ab R
22

ab .

For a metric of the form~5.21!, we find that

R
22

50,
~7.3!

R
21

5g
0

ab R
21

ab12g
0

01R
21

012g
1

00R
22

00.

The only order one metric component which appears in~7.3! is

l52g
1

00.

In the derivation of the asymptotic equations, we used a coordinate system in whichl50—see
~5.3!. In the variational principle,l acts as a Lagrange multiplier for the constraint equation, so
will not set it to zero until after we take variations.

We use~7.3! in ~7.1!, expand the result with respect toe, and write the expanded Lagrangia
in terms ofl and the functionsM ,U,V,W, defined in~6.2!. This gives

L5
1
e L

21
1O~1!,

L
21

5$22M uv24Uuv13UuUv1VuVv cosh2 W1WuWv%e
2U

1l$Uuu2 1
2~Uu

21Vu
2 cosh2 W1Wu

2!1UuM u%e
2M2U.

We make a change of variables in the integration,

d4x5du dv dy dz5e du dv dy dz,
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and omit the integration with respect to the parametric variables~y,z!. The leading order
asymptotic variational principle then becomes

dS
0
50, S

0
5E L

21
du dv.

Variations of S
0

with respect to the first-order metric componentl give the constraint~6.5!.
Variations with respect toM ,U,V,W give the evolution equations~6.8!–~6.11!, after we setl
50. It is permissible to setl50 because the constraint is a gauge-type constraint whic
preserved by the evolution equations.

VIII. BOUNDARY CONDITIONS

In this section, we discuss the derivation of boundary conditions for the asymptotic equa
For simplicity, we consider a ‘‘sandwich’’ wave located near the null surfaceu50 that varies
rapidly in a thin strip

u2<
u

e
<u1 .

We denote the slowly varying metrics on either side of the wave by

g5 Hg1

g2

in u.0
in u,0. ~8.1!

We consider a coordinate patch around a point on the surfaceu50 with local coordinates
(u,v,y,z) chosen as in the derivation of the asymptotic equations. In order for the metric ou
the wave to join continuously with the metric inside, we must have

g6→22e2M6 du dv1e2U6~eV6 coshW6 dy222 sinhW6 dy dz1e2V6 coshW6 dz2!,

~8.2!

asu→06, whereM 6 ,U6 ,V6 ,W6 are functions of (v,y,z). From~6.3!, ~8.2!, and the continuity
of the metric, it follows that the solution of~6.8!–~6.11! satisfies the characteristic bounda
conditions,

M5M 6 , U5U6 , V5V6 , W5W6 when u5u6 . ~8.3!

This data need not satisfy the constraint~2.13!.
The asymptotic equations must be supplemented by a condition which specifies the pro

the wave. For example, we can impose a characteristic initial condition

M5M0 , U5U0 , V5V0 , W5W0 when v50, ~8.4!

whereM0 ,U0 ,V0 ,W0 are functions of (u,y,z) which satisfy the constraint~6.5!. The character-
istic initial data must be compatible with the characteristic boundary data, meaning that

M0~u6 ,y,z!5M 6~0,y,z!,

together with the analogous conditions for the other variables.
Equations~6.8!–~6.11!, the characteristic initial condition~8.4! on v50, and the characteristic

boundary condition~8.3! on u5u2 form a well-posed problem. Provided that singularities do
form, the problem has a unique solution, so the solution atu5u1 is uniquely determined. Thus
in principle, the asymptotic equations~6.8!–~6.11! and the characteristic initial data~8.4! deter-
mine a set of jump relations that connect the minus and plus metrics ahead of and beh
wave, respectively. If the metric ahead of the wave is known, then the jump conditions pr
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characteristic boundary conditions onu50 for the space–time behind the wave. Together wit
characteristic initial condition onv50 andu.0, for example, this gives a characteristic initi
value problem10 for the full field equations. This problem determines the slowly varying me
behind the wave, at least locally. The solution of this problem typically includes a slowly var
gravitational wave component which propagates in the opposite direction into the space
behind the rapidly varying ‘‘sandwich’’ wave.

For instance, in the case of a plane polarized wave, the solution of~3.9! for U is6

U~u,v !52 log@ f ~u!1g~v !#. ~8.5!

Heref andg are functions of integration, and we do not explicitly show the parametric depend
of the functions on~y,z!. The solution is nonsingular provided thatf (u)1g(v).0. From ~8.3!,
~8.4!, and~8.5! we have

f ~u!1g~0!5e2U0~u!, f ~u2!1g~v !5e2U2~v !. ~8.6!

It follows from ~8.5! to ~8.6! that the jump relation forU is

e2U1~v !2e2U2~v !5e2U0~u1!2e2U0~u2!.

Use of ~8.5! in ~3.10! gives a linear wave equation forV,

~ f 1g!Vuv5 1
2~gvVu1 f uVv!.

Solution of this equation with the characteristic initial dataV5V0 on v50 and the characteristic
boundary dataV5V2 on u5u2 determines, in principle, the solutionV5V1 on u5u1 . Finally,
for W50, we define thev-constraint functionG by

G5Uvv2 1
2~Uv

21Vv
2!1UvM v . ~8.7!

It follows from ~8.7! and ~3.9!–~3.11! that

Gu5UuG.

Integration of this equation with respect tou implies that

logG1~v !2 logG2~v !5U1~v !2U2~v !.

This equation provides a jump condition forM.
One difficulty which arises in the formulation of boundary conditions ahead of the wav

that the metricg2 may not be given in a coordinate system which is compatible with the coo
nate system used in the derivation of the asymptotic equations. It is then necessary to co
compatible coordinates (u,v,y,z). Theu coordinate is the phase, so it is a null coordinate of
metric, which can be found by solving an eikonal equation, subject to appropriate initial c
tions. Thev coordinate is a null coordinate that is orthogonal tou, while they andz coordinates
parametrize the null geodesics on the surfaceu5v50.

If the gravitational wave frontu50 forms a caustic, then the solution of the eikonal equat
becomes multivalued. When this happens, the local plane-wave approximation breaks dow
the asymptotic solution is not valid. However, the focusing at a caustic of the congruence o
geodesics associated with the phase does not necessarily imply the formation of a spac
singularity.
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IX. EXAMPLES

In this section, we derive boundary conditions for the asymptotic equations which descri
propagation of a gravitational wave into Minkowski space–time, the exterior Schwarzs
space–time, and Robertson–Walker space–time. In each example, we consider the case o
cal waves, where the boundary data can be explicitly computed.

A. Nonplanar wave propagation into Minkowski space–time

We suppose that the space–time ahead of the wave is flat. In inertial coordinates (t,xW ), with
t5x0 andxW5(x1,x2,x3), the metric is

g252dt21dxW2.

We consider a wave with phase

u5
t2w~xW !

&
.

The phaseu is a null function ofg2 if

u¹wu251,

where¹ is the gradient with respect toxW . We define

v5
t1w~xW !

&
,

and choose coordinatesy(xW ),z(xW ) such that¹w,¹y,¹z are orthogonal. In the (u,v,y,z) coordi-
nates, we have

g2522 du dv1
1

u¹yu2
dy21

1

u¹zu2
dz2. ~9.1!

A comparison of~8.2! and ~9.1! implies that the minus boundary data are given by

M 250, e2U25
1

u¹yuu¹zuuu50
, e2V25

u¹yu
u¹zuU

u50

, W250.

For example, in the case of an outgoing spherical wave, suitable coordinates are

u5
t2r

&
, v5

t1r

&
, y5q, z5w, ~9.2!

where (r ,q,w) are spherical polar coordinates andt.0. In (u,v,y,z) coordinates, the flat space
time metric is

g2522 du dv1 1
2~u2v !2~dy21sin2 y dz2!.

Evaluation of this metric atu50 and a comparison with~8.2! gives the minus boundary data

M 250, e2U25 1
2v

2 siny, e2V25siny, W250,

wherev.0. In this case,M 2 , V2 , andW2 are independent ofv, while U5U2 satisfies the
equation
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Uvv5 1
2Uv

2.

Thus, the boundary data satisfy thev-constraint equation~2.13!. The solution is therefore identica
to an exact solution for the collision of outgoing and incoming spherical waves, with an addi
slow parametric dependence on the polar angles~q, w!. Some exact solutions for spherical wav
propagation into flat space–time are constructed in Ref. 11.

For an incoming spherical wave, we use

u5
t1r

&
, v5

t2r

&
,

wheret,0. This leads to the same boundary data as in the case of an outgoing spherical wa
with v,0, instead ofv.0.

B. Gravitational waves incident on a black hole

The exterior Schwarzschild metric is

g252a dt21
1

a
dr21r 2~dq21sin2 q dw2!, ~9.3!

wherer .2m and

a~r !512
2m

r
.

The contravariant metric tensor is

g2
] 52

1

a
] t

21a] r
21

1

r 2 S ]q
2 1

1

sin2 q
]w

2 D .

For simplicity, we consider an axially symmetric phase of the form

u5
t2w~r ,q!

&
.

The functionu is null if w satisfies the eikonal equation

awr
21

1

r 2 wq
2 5

1

a
.

We define the orthogonal null coordinatev by

v5
t1w~r ,q!

&
,

and choose a coordinatey(r ,q) whose gradient is orthogonal to the gradient ofw(r ,q). That is,

yr52
hwq

r 2 , yq5hawr ,

where h(r ,q) is a suitable integrating factor. We takez5w. In (u,v,y,z) coordinates, the
Schwarzschild metric~9.3! is given by
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g2722a du dv1
r 2

h2 dy21r 2 sin2 q dz2. ~9.4!

Inversion of the change of coordinates (t,r ,q,w)°(u,v,y,z) implies that r 5r 2(v,y) and q
5q2(v,y) on u50 for suitable functionsr 2 andq2 . A comparison of~8.2! and ~9.4! implies
that the boundary data are given by

e2M25a2 , e2U25
r 2

2 sinq2

h2
, e2V25h2 sinq2 , W250,

wherea25a(r 2) andh25h(r 2 ,q2).
In the case of an incoming spherical wave incident on the black hole, suitable coordinat

u5
t1A~r !

&
, v5

t2A~r !

&
, y5q, z5w, ~9.5!

where

Ar5
1

a
.

Integration of this equation implies that

A~r !5r 1 log~r 22m!.

In (u,v,y,z) coordinates, the exterior Schwarzschild metric is

g2522a du dv1r 2~dy21sin2 y dz2!. ~9.6!

From ~9.5!, we haver 5r 2(v) on u50, where

A~r 2!5
v

&
. ~9.7!

A comparison of~8.2! and ~9.6! implies that the boundary data ahead of the incoming sphe
wave are given by

e2M25a2 , e2U25r 2
2 siny, e2V25siny, W250. ~9.8!

Dropping the minus subscripts, we find that the constraint functionG in ~8.7! for the boundary
data~9.8! is given by

G52S avr v

ar
2

r vv

r D .

Differentiation of ~9.7! with respect tov implies that

r v52
a

&
, r vv52

av

&
.

Use of this equation in the expression forG implies thatG50. Thus, the boundary data~9.8!
satisfies thev-constraint equation~2.13!.

Numerical solutions of the interaction of a spherical gravitational wave with a black
appear in Ref. 12.
                                                                                                                



licity,

tes are

3051J. Math. Phys., Vol. 40, No. 6, June 1999 G. Alı̀ and J. K. Hunter

                    
C. Gravitational waves in a Robertson–Walker space–time

The Robertson–Walker metric is

g252dt21
1

R2 H 1

12kr2 dr21r 2~dq21sin2 q dw2!J , ~9.9!

whereR(t) is the scale factor, andk521,0,1.
As in the Schwarzschild example, we consider an axially symmetric phase for simp

given by

u5
I ~ t !2w~r ,q!

&
,

where

I t5R, ~12kr2!wr
21

1

r 2 wq
2 51. ~9.10!

We define an orthogonal null coordinatev by

v5
I ~ t !1w~r ,q!

&
.

We choose a coordinatey(r ,q) whose gradient is orthogonal to the gradient ofw(r ,q), so that

yr52
hwq

r 2A12kr2
, yq5hA12kr2wr ,

where h(r ,q) is a suitable integrating factor, and takez5w. In (u,v,y,z) coordinates, the
Robertson–Walker metric~9.9! is given by

g252
2

R2 du dv1
r 2

h2R2 dy21
r 2

R2 sin2 q dz2. ~9.11!

A comparison of~8.2! and ~9.11! implies that the boundary data are given by

e2M25
1

R2
2 , e2U25

r 2
2 sinq2

h2R2
2 , e2V25h2 sinq2 , W250,

wherer 5r 2(v,y), q5q2(v,y), R5R2(v,y), andh5h2(v,y) on u50.
For an outgoing spherical wave in a Robertson–Walker space–time, suitable coordina

u5
I ~ t !2w~r !

&
, v5

I ~ t !1w~r !

&
, y5q, z5w,

where

wr5
1

A12kr2
.

Integration of this equation implies that
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w~r !5H sin21 r if k51
r if k51
sinh21 r if k521.

The corresponding boundary data are given by

e2M25
1

R2
2 , e2U25

r 2
2 siny

R2
2 , e2V25siny, W250, ~9.12!

wheret2(v) and r 2(v) are given by

I ~ t2!5
v

&
, r 25H sin~v/& ! if k51

v/& if k50
sinh~v/& ! if k521

~9.13!

andR25R(t2).
Dropping the minus subscripts, we find that the constraint functionG in ~8.7! for the boundary

data~9.12! is given by

G52S Rvv

R
2

r vv

r D . ~9.14!

From ~9.10! and ~9.13!, we find that

r vv52 1
2kr, Rvv5

RRtt2Rt
2

2R3 .

Use of these expressions in~9.14! gives

G5
RRtt2Rt

2

R4 1k.

Thus, in general, the boundary data~9.12! do not satisfy thev-constraint equation~2.13!.
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Super-energy tensor for space–times with vanishing
scalar curvature
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A four-index tensor is constructed with terms both quadratic in the Riemann tensor
and linear in its second derivatives, which has zero divergence for space–times
with vanishing scalar curvature. This tensor reduces in vacuum to the Bel–
Robinson tensor. Furthermore, the completely timelike component referred to any
observer is positive, and zero if and only if the space–time is flat~excluding some
unphysical space–times!. We also show that this tensor is the unique one that can
be constructed with these properties. Such a tensor does not exist for general
gravitational fields. Finally, we study this tensor in several examples: the
Friedmann–Lemaıˆtre–Robertson–Walker space–times filled with radiation, the
plane–fronted gravitational waves, and the Vaidya radiating metric. ©1999
American Institute of Physics.@S0022-2488~99!04206-1#

I. INTRODUCTION

The investigation of conservation laws in general relativity has a long history. From its
beginning much of this research was based on pseudotensors instead of fully covariant m
The aim of many of these works was to find differential laws which, once transformed
integral ones, were interpreted as energy balances in such a way that expressions for the
and momentum densities of the gravitational field could be identified.

The covariant approach to this problem is mainly based on the analogy of the Bel–Rob
tensor1 with the energy–momentum tensor of the electromagnetic field~there are other approache
based on this analogy, see e.g., Ref. 2!. The Bel–Robinson tensor is conservedin vacuum, com-
pletely symmetric and traceless. Moreover, the completely timelike component referred t
observer~described by a timelike unit vector field! is non-negative, and its vanishing implies th
the space–time is conformally flat~flat in vacuum!. This is a desirable positivity property for an
candidate to gravitational energy density. In spite of these good properties, the Bel–Ro
tensor has dimensions of energy density square and this fact makes its interpretation som
unclear. Nevertheless, it has been revealed as a very useful tool in many kinds of studies
has led to some efforts in finding extensions of the Bel–Robinson tensor to more genera
than vacuum. Therefore, the question arises whether generalizations of the Bel–Robinson
exist for space–times not necessarily empty.

The Bel tensor3 was the first attempt on this problem. It is a tensor whose completely time
component is positive and zero only when the space–time is Minkowski. In vacuum, it redu
the Bel–Robinson tensor, but in the general case it is no longer conserved.

For general space–times, Sachs4 found a divergence-free tensor that coincides with the B
Robinson tensor in vacuum. Unfortunately, this tensor does not satisfy any positivity proper
it is neither completely symmetric nor traceless.

a!Also at: Laboratori de Fı´sica Matema`tica, Societat Catalana de Fı´sica, IEC, Barcelona.
b!Electronic mail: mangel@ffn.ub.es
c!Electronic mail: cfs@tpi.uni-jena.de
30530022-2488/99/40(6)/3053/10/$15.00 © 1999 American Institute of Physics

                                                                                                                



econd

ver,

rvature
begin
t be

free
us to

non-
ld

ee
that

e can

l

instein
sor
its last

d is

usual:
ian-

ion for

3054 J. Math. Phys., Vol. 40, No. 6, June 1999 M. Á. G. Bonilla and C. F. Sopuerta

                    
The systematic treatment of this problem was made by Collinson,5 who found all four-index
divergence-free tensors with terms either quadratic in the Riemann tensor or linear in its s
derivatives. The discovered result is that any such tensor can be derived from onlyone tensor,
namelyT10

ablm @see Eq.~A1!#, whose divergence with respect to the first index vanishes. Howe
there is not enough freedom to construct a tensor with its time component positive.

In this paper we show that, unlike the general case, for space–times with zero scalar cu
(R50) it is possible to construct a unique generalization of the Bel–Robinson tensor. We
in Sec. II by proving that, whenR50, there exists another conserved tensor which canno
derived from the Collinson one. In Sec. III we show that, demanding symmetry in the three
indices, there is not any other tensor independent from these two. This new tensor allows
construct~Sec. IV! a divergence-free tensor which has the completely timelike component
negative and zero only when the space–time is flat~excluding some cases that, via Einstein’s fie
equations, have an unphysical matter content!. This tensor is completely symmetric in its last thr
indices, but it is impossible to get a similar tensor symmetric in all their indices. We remark
it is not possible to construct any other tensor with such characteristics.

In order to illustrate this development, we study in Sec. V some examples in which w
define this tensor, namely: the Friedmann–Lemaıˆtre–Robertson–Walker~FLRW! models with an
energy–momentum content of~incoherent! radiation (p5%/3), the plane-fronted gravitationa
waves with parallel rays~pp waves!, and the Vaidya radiating space–time.

Finally, we recall that for purely electromagnetic space–times, and supposing that the E
field equations hold, Penrose and Rindler6 also gave a generalization of the Bel–Robinson ten
by using spinor methods. This tensor is conserved, completely symmetric, and traceless in
three indices. In Appendix B we find its tensorial expression and a new~to our knowledge!
positivity property.

II. DEDUCTION OF THE NEW CONSERVED TENSOR FOR R50

Unless otherwise stated, throughout this paper we will consider the metric tensorgab to have
signature~2,1,1,1!. The convention for indices on the Riemann tensor that will be use
defined through the Ricci identities:

~¹a¹b2¹b¹a!vl52Rs
labvs , ~1!

whereva is an arbitrary 1-form. The Ricci tensor and the scalar curvature are defined as
Rab[Rs

asb andR[Rs
s . We also recall the Riemann symmetries and the first and second B

chi identities:

Rablm5R@ab#@lm#5Rlmab ,

R@abl#m50, ~2!

¹ [nRab]lm50.

The procedure we are going to use to find the conserved tensor starts from the express
the divergence of the Bel tensor:1

¹aTablm5Rb
r

l
sJmsr1Rb

r
m

sJlsr2 1
2g

lmRb
rsgJsgr, ~3!

where the Bel tensorTablm andJabl are defined as follows:

Tablm[ 1
2~RarlsRb

r
m

s1* R* arls* R* b
r

m
s1* Rarls* Rb

r
m

s1R* arlsR* b
r

m
s!,

~4!
Jlmb[¹lRmb2¹mRlb5¹sRmlbs,
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with the asterisk being the usual dual operator acting over any pair of antisymmetric indice

* Rablm[ 1
2habsrRsr

lm , R* ablm[ 1
2hlmsrRab

sr,

* R* ablm[ 1
4habgdhlmsrRgdsr,

andhablm is the canonical volume 4-form. Our purpose now is to work out the right-hand
~r.h.s.! of Eq. ~3! in order to convert it into a global divergence. To that end, we will repeate
integrate by parts and make use of Eqs.~1! and ~2!.

To begin with, the last term in Eq.~3! can be easily transformed into a divergence, by me
of the Ricci and Bianchi identities~1! and ~2!:

2 1
2g

lmRb
rsgJsgr52glm¹a¹rJarb. ~5!

Next we expand the leading terms of the r.h.s. of~3! by using the definition ofJabl ~4! and
integrating by parts:

Rb
r

l
s¹mRsr2¹a~RmrRb

r
la!1Rmr¹aRb

r
la1@l↔m#. ~6!

The first term in the previous expression can be rewritten by means of the Ricci identities~1! as
follows:

Rb
r

l
s¹mRsr5~¹l¹s2¹s¹l!¹mRsb1@2¹a~Rm

a
l

sRsb!1Rsb¹aRl
s

m
a#1Rs

l¹mRsb.
~7!

Thus, we have converted the r.h.s. of Eq.~3! into a divergence plus the following terms:

Rsb¹aRl
s

m
a1Rsl¹mRs

b1Rmr¹aRb
r

la1@l↔m#

5Rsb~¹sRlm2¹lRs
m!1Rsl¹mRs

b1Rmr~¹rRbl2¹bRr
l!1@l↔m#. ~8!

Now, taking into account the contracted Bianchi identities (¹mRmn5 1
2¹

nR), these terms can be
transformed into the following expression:

2¹b~Rs
lRsm!1¹m~Rs

lRsb!1¹l~Rs
mRsb!22Rbs~¹mRs

l1¹lRs
m!

1¹s~RblRms1RbmRlr12RbsRlm!2 1
2 ~Rbl¹mR1Rbm¹lR12Rlm¹bR!. ~9!

The last three terms of this expression vanish whenR is constant, so we are finally left with
22Rbs(¹mRs

l1¹lRs
m). Nevertheless, notice that our final purpose is to find a conserved te

T9ablm whose completely timelike component referred to an observeruW ,T9ablmuaubulum , is
positive, which means that we are only interested in the symmetric part. Therefore, without
generality, we can symmetrize the whole expression and, as a consequence, the remainin
transform themselves into a divergence:

24Rs(b¹lRs
m)522¹ (b~Rs

lRm)s!. ~10!

So, we have finally achieved a conserved tensor if the scalar curvature vanishes~in fact, if it
is constant!. Collecting all the previous terms~5!–~10! we get the final result:

¹aT9ablm522R(bl¹m)R,

where we have defined

T9ablm[Ta~blm!24Ra(bRlm)1ga(bRs
lRm)s22¹ (b¹lRm)a12¹ (b¹ uauRlm)22¹a¹ (bRlm)

22ga(b¹s¹lRm)s2¹s¹sRa(bglm)1¹s¹aRs(bglm). ~11!
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It is a matter of checking that this tensor cannot be obtained from Collinson tensorT10
ablm when it

is restricted to the caseR50. Now, we are left with the question of its uniqueness.

III. UNIQUENESS

In this section we will prove that, in the case we are concerned with (R50), no other
conserved tensor exists, symmetric in its last three indices, independent fromT9ablm and the
Collinson tensor,T10

ablm . The reasoning is the following. Suppose you are given a tensorT-ablm

which is conserved whenR50. The divergence computed in the general case will be a comb
tion of the following type~taking into account symmetries and unit dimensions!:

¹aT-ablm5aR(bl¹m)R1bR¹ (bRlm)1cRs(b¹sRglm)1dRg(bl¹m)R1e¹ (b¹l¹m)R

1 f ¹s¹s¹ (bRglm)1h¹s¹ (b¹sRglm)1 i¹ (b¹ usu¹sRglm),

a, b, c, d, e, f, h, and i being constants. This can be immediately cast in the following form:

¹aT-ablm5~a2b!R(bl¹m)R1¹atablm,

wheretablm stands for:

tablm[bRga(bRlm)1c~RRa(bglm)2 1
4g

a(bglm)R2!1d 1
2g

(blgm)aR21ega(b¹l¹m)R

1 f gas¹s¹ (bRglm)1hgas¹ (b¹sRglm)1 iga(b¹ usu¹sRglm),

so clearly it is a tensor that vanishes whenR does. That is, if a tensor of the kind we a
considering is divergence free whenR50, in the general case its divergence should be a mult
of R(bl¹m)R plus the divergence of a tensor of the typetablm. If we had two such tensors,
suitable combination of them removing the termR(bl¹m)R would give a conserved tensor for th
general case and, therefore, due to the Collinson result,5 it could be constructed fromT10

ablm .
Given that the tensortablm vanishes whenR50, the three tensors would not be independen
that case.

On the other hand, this reasoning shows that, from the very beginning, we were able to
that in theR50 case at most one more conserved tensor could exist apart from Collinson’s
as finally has been the case.

IV. POSITIVITY

As it has been pointed out above, in the general case all the conserved tensors can
structed fromT10

ablm . This construction is based in two procedures. First, it is clear that if
perform any permutation on the last three indices we will still have a conserved tensor. Seco
taking the two tracesT10

abr
r , T10

arb
r and multiplying them byglm we obtain new conserved

tensors. Actually, there is not any other two-index divergence-free tensor independent from
These two tensors can be taken to be~as usually obtained by Hamiltonian differentiation!:

t1
ab52¹a¹bR22gab¹m¹mR1 1

2g
abR222RRab,

t2
ab52¹s¹aRsb2¹s¹sRab22RasRs

b1 1
2RsrRsrgab2 1

2g
ab¹m¹mR.

This is all the freedom we have in the general case.
In the R50 case, there exists only one two-index conserved tensor, which is that obt

from t2
ab . On the other hand, as we consider tensors which are symmetric in the last three in

from the Collinson tensor we will only have one independent tensor~apart from the two-index
tensor!, namelyT10

a(blm) or, equivalently, the Sachs tensorT8ablm,4 which is symmetric in its last
three indices.
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Therefore, to construct the super-energy tensor in theR50 case, we are led with thre
tensors:~i! the Sachs tensorT8ablm ~restricted to theR50 case!:

T8ablm[Ta~blm!12RasRs
(bglm)2 1

3g
a(bRs

lRm)s2 1
2RsrRsrga(bglm)

12¹ (b¹lRm)a2 2
3¹

(b¹ uauRlm)2 2
3¹

a¹ (bRlm)

1 4
3¹s¹sR(blgm)a22ga(b¹s¹lRm)s2¹s¹aRs(bglm),

~ii ! the two-index tensortab:

tab52¹s¹aRsb2¹s¹sRab22RasRs
b1 1

2RsrRsrgab,

and ~iii ! the tensorT9ablm previously found in~11!.
Now, we have to combine these three tensors in such a way that any observer mea

positive quantity. Moreover, we would like that this completely timelike component vanish
and only if the space–time is flat.

First of all, we have to take into account that terms made of derivatives of the Ricci tens
not have a definite sign, so it would be necessary to eliminate their contributions. This aim
only be achieved by means of the following combination:

Aablm[ 1
2~3T8ablm2T9ablm!1 5

2t
a(bglm),

which more explicitly reads:

Aablm5Ta~blm!12Ra(bRlm)22RasRs
(bglm)2ga(bRs

lRm)s1 1
2RsrRsrga(bglm)

12¹ (b¹lRm)a22¹ (b¹ uauRlm)13¹s¹aRs(bglm)

22ga(b¹s¹lRm)s12¹s¹sR(blgm)a22¹s¹sRa(bglm). ~12!

Since we have already exhausted all the freedom, we finally examine the completely tim
component referred to any timelike unit vectoruW :

A~uW ![Aablmuaubulum

5Tablmuaubulum1 1
2RsrRsr12~Rabuaub!2

13~RasRs
b!uaub2~¹s¹aRsb!uaub . ~13!

To check the positivity ofA(uW ) it is convenient to write out the last term of Eq.~13! in the
following form:

¹s¹aRsb5Ca
sr

bRsr12RasRs
b2 1

2g
abRsrRsr.

At this point, we introduce four spatial tensors, namelyEab(uW ), Hab(uW ), Mab(uW ), andNab(uW ),
that ~together withR! wholly characterize the Riemann tensor.7 Their definitions, properties, an
some useful formulas are given in Appendix A.

Introducing the previous definitions in~13! we obtain, after some calculations:

A~uW !5~Esr2Msr!~Esr2Msr!1HsrHsr13NsrNsr1~Rabuaub!2, ~14!

which is a sum of square terms~all the tensors appearing here are spatial!. Therefore it is mani-
festly positive and its vanishing implies:

Hab50, Nab50,

Rabuaub50, Eab5Mab .
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The previous expressions lead toRabua50 ~see Appendix A!. This condition, when considering
the Einstein field equations, immediately drives to an unphysical energy–momentum t
Hence, if we eliminate these unphysical space–times~for instance, adding any energy condition!,
the vanishing ofA(uW ) finally implies the Minkowski space–time.

V. SOME EXAMPLES

In this section we are going to study the tensorAablm ~12! in some space–times with van
ishing scalar curvature. In particular, we are going to consider the following examples:~i! the
radiation FLRW cosmological models,~ii ! the pp waves, and~iii ! the Vaidya radiating metric. In
examples~i! and~ii ! we will give the expression forAablm and its completely timelike componen
A(uW ) ~14! for an arbitrary observeruW . In example~iii !, for the sake of brevity we will give only
the expression ofA(uW ), also for an arbitrary observer.

In the first example we study the case of the FLRW models~see, for instance, Ref. 8! with
vanishing scalar curvature, the radiation models, whose energy–momentum tensor~of perfect-
fluid type! is given by the following expression~throughout this section we will use units in whic
8pG5c51):

Tab5%UaUb1phab , p5 1
3%,

where UW is the fluid velocity (UaUa521), % the energy density,p the pressure, andhab

5gab1UaUb the orthogonal projector to the fluid velocity. The line element of these con
mally flat models can be written as

ds252dt21a2~ t !$dx21S2~e,x!~du21sin2 udw2!%,

whereS~e,x! is given by

S~e,x!5H sinx if e51
x if e50
sinhx if e521.

The fluid velocityUW , the scale factora(t), and the energy density%(t) are

UW 5
]

]t
, a2~ t !5~ t2t0!@2A2e~ t2t0!#, %~ t !5

3A2

a4~ t !
,

respectively, andA and t0 are arbitrary constants.
After some straightforward calculations, and using the special properties of these s

times, we arrive at the following expression forAablm:

Aablm5 4
3%

2$UaUbUlUm1UaU (bhlm)1 5
3h

a(bUlUm)1 1
3h

a(bhlm)%. ~15!

As we can see, it is proportional to the energy density squared. We can also check that it is
divergence free. Now, let us compute the completely timelike component~14! of this tensor with
respect to an arbitrary observeruW . To that end, we decomposeuW in the next way

uW 5g~UW 1vW !, vaUa50, vava5v2>0, g[~12v2!21/2,

where the casevW 50 corresponds to an observer comoving with the fluid (uW 5UW ). Then, from
~14!, ~15! we find thatA(uW ) is given by

A~uW !5 4
3%

2g4$11 8
3v

21 1
3v

4%.
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That is, it is function of% andv only. Moreover, it increases monotonically asv increases and its
minimum corresponds to the casev50, in which the observer is comoving with the fluid.

Now, we are going to study the tensorAablm in the case of thepp wavesspace–times. The
corresponding line element can be written in null coordinates$u,v,z,z̄% as follows~see Ref. 8 for
details!

ds2522 du dv12dz dz̄22H du2,

whereH is an arbitrary function which does not depend onv@H5H(u,z,z̄)#. Using the following
Newman–Penrose basis$l ,k,m,m̄%,

lW 5
]

]v
, kW5

]

]u
2H

]

]v
, mW 5

]

]z
,

the Ricci and self-dual Weyl tensors are

Rab52Fl al b , Ĉablm[Cablm1 iC
*

ablm52C4VabVlm , ~16!

respectively, where the quantitiesF, C4 , andVab are given by

F[H ,zz̄ , C45H ,z̄ z̄ , Vab[2l [amb] .

From~16! we can see that the energy–momentum content can correspond with vacuum, Ein
Maxwell, or pure radiation fields. Moreover, the Petrov type isN, with lW being the repeated
principal direction of the Weyl tensor, which in fact is a constant vector field (¹al b50).

After some calculations, we have found that the Bel tensorTablm and our tensorAablm are

Tablm54~F21C4C̄4!l al bl ll m,

1
4A

ablm5~3F21C4C̄4!l al bl ll m1l al (b¹l¹m)F2l (bl l¹m)¹aF

1@ga(bl ll m)2l al (bglm)#¹s¹sF.

From this expression, the completely timelike component is given by

A~uW !54~3F21C4C̄4!~ l aua!4.

Then, the vanishing ofA(uW ) implies the Minkowski space–time.
Finally, we are going to consider the Vaidya radiating space–time~see for instance Ref. 8!.

For the sake of brevity we only give here the completely timelike component~14! of the tensor
Aablm. The line element of this spherically-symmetric metric can be written as follows:

ds2522F2~u,v !du dv1r 2~u,v !~du21sin2 u dw2!,

where

F2~u,v !5 f ~u!
]r

]v
,

]r

]u
5

1

2
f ~u!S 2m~u!

r
21D .

Here,m(u) is the invariantly defined mass function. As is well known, the Petrov type of
metric isD. Then, taking the following Newman–Penrose adapted basis:

lW 5
21

F

]

]v
, kW5

21

F

]

]u
, mW 5

1

&r
S ]

]u
1

i

sinu

]

]w D ,
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where lW and kW are aligned with the principal directions of the Weyl tensor, the Ricci tenso
given by

Rab52Fl al b , F[2
m,u

r 2r ,u
.

And the only nonzero component of the Weyl tensor in this basis~see Ref. 8! is

C252
m~u!

r 3~u,v !
,

which in this case is real.
In terms of these quantities, we have found the following expression forA(uW ):

A~uW !52@C21F~ l aua!2#214C2
2@36~ l aua!2~kbub!2218~ l aua!~kbub!11#110F2~ l aua!4,

and again, taking into account that

2~ l aua!~kbub!>1⇒36~ l aua!2~kbub!2218~ l aua!~kbub!11>1,

A(uW ) vanishes if and only if the space–time is the Minkowski space–time. When we re
ourselves to observers lying on the 2-planes generated by the principal directions@2(l aua)
3(kbub)51#, which are precisely the observers that minimizeA(uW ), the result is

A~uW !52@C21F~ l aua!2#214C2
2110F2~ l aua!4.
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APPENDIX A: USEFUL DEFINITIONS

We first write down the Collinson tensor:5

T10
ablm56Q1

ablm1Q2
ab~lm!1Q3

ab~lm! , ~A1!

where

Q1
ablm5Rs

lRbmas1Rs
bRmals1¹m¹sRasbl2¹b¹sRalms2gab¹r¹sRmslr,

Q2
ablm524¹l¹sRasbm26¹m¹sRabls26gam¹s¹lRsb16gam¹r¹sRslbr16¹m¹lRab,

Q3
ablm528galRsr

m
gRrgbs18Rs

lm
rRbsar18Rs

mRbsla18Rs
bm

rRlsar12Rs
mRbasl

12Rs
mb

rRlsar13gabRs
mRls2gabRsr

m
gRrgls,

which is divergence free in the indexa and whose only symmetry on the indicesb, l, andm is
T10

ab@lm#2T10
am@bl#50.

Next, in order to introduce other useful definitions, recall the well-known decompositio
the Riemann tensor into its irreducible parts under the full Lorentz group:

Rablm5Cablm1Eablm1Gablm ,

whereCablm is the Weyl tensor and
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Eablm[ 1
2~R̃algbm2R̃amgbl1R̃bmgal2R̃blgam!, R̃ab[Rab2 1

4Rgab ,

Gablm[
R

12
~galgbm2gamgbl! ,

with R[Rm
m being the scalar curvature.

The electric and magnetic parts of the Weyl tensor associated to a timelike vector fielduW are:

Eal~uW ![Cablmubum, Hal~uW ![2C
*

ablmubum.

These tensors are spatial~orthogonal touW ), symmetric, and traceless, and they fully determine
Weyl tensor.

We can proceed analogously with the tensorEablm and define~see Ref. 7 for a more detaile
study of these matters!:

Mal~uW ![Eablmubum, Nal~uW ![2* Eablmubum.

We give here some of their properties, since they are less well known than the electri
magnetic parts of the Weyl tensor:

Mal5Mla , Malul50, Mm
m5R̃mnumun,

Nal52Nla , Nalul50, Nm
m50.

The tensorMal has six independent components, whileNal has only three. Actually, they com
pletely characterize the traceless Ricci tensor:

R̃ab522Mab24* Ns(ausub)1Ms
s~gab12uaub!.

From the previous definitions, it is clear that

Nab5Rabuaub5R50⇒Rab522Mab ,

and this implies, in particular, thatRabub50.
Let us finally give some formulas which are useful for the derivations of some expressio

Sec. IV.

Tablmuaubulum5EabEab1HabHab1MabMab1NabNab1
R2

48
,

~R̃arur!~R̃s
aus!52NsrNsr2~Ms

s!2,

R̃srR̃sr54MsrMsr24NsrNsr.

APPENDIX B: ELECTROMAGNETIC CASE

For space–times with an electromagnetic energy–momentum content, Penrose and R6

gave the following modification of the Bel–Robinson tensor~see Ref. 6 for the spinor notation
and conventions!:

tablm5CABCDC̄A8B8C8D822g¹CD8wAB¹C8Dw̄A8B816g¹D(A8w (AB¹C)uD8uw̄B8C8) , ~B1!
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whereCABCD andwAB are the Weyl and the electromagnetic spinors, respectively, andg is the
gravitational constant. This tensor is symmetric and traceless in the first three indices and h
covariant derivative with respect to the last one, provided that the Einstein field equations

¹mtablm50,

tablm5t ~abl!m , talm
a 50.

It is important to notice that the second part of this tensor is formed with (¹F)2 terms, so it cannot
be expressed by means of the Ricci tensor and its derivatives. Therefore it is independent fr
tensors considered above.

The tensorial expression for~18! is rather involved but, in this case, it is useful in order
prove a positivity property. It should be noted here that in the final result we have returned
initial signature metric~2,1,1,1!, and units such that 8pg5c51. With these conventions:

tablm5 1
4Tablm12¹ (aF usub¹l)Fm

s12¹ (aF usub¹sFl)m

2 1
2¹ (aF usru¹bFsrgl)m1¹sFr(a¹rF b

s gl)m2g(ab¹sF l)
r ¹rFsm , ~B2!

whereTablm is the Bel–Robinson tensor andFab is the electromagnetic tensor. From this expre
sion it is easily seen that~19! satisfies the following positivity property:

tablmuaubulum>0, ;uW , umum,0,

tablmuaubulum50⇔H Tablmuaubulum50⇔Cablm50

Ḟlm[ua¹aFlm50.

To prove this, let us introduce the orthogonal projector touW , hab[gab1uaub . Then, we compute
tablmuaubulum:

tablmuaubulum5 1
4Tablmuaubulum12uaubḞsaḞs

b1 1
2~ ḞsrḞsr!

5 1
4Tablmuaubulum1~hasḞabub!~hlsḞlmum!

1 1
2~hashbrḞab!~hlshmrḞlm!

>0,

and the equality holds only whenCablm50 and

halhbmḞlm50, hasḞabub50⇔Ḟab50.
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Variational and conformal structure of nonlinear
metric-connection gravitational Lagrangians
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We examine the variational and conformal structures of higher-order theories of
gravity that are derived from a metric-connection Lagrangian that is an arbitrary
function of the curvature invariants. We show that the constrained first-order for-
malism when applied to these theories may lead consistently to a new method of
reduction of order of the associated field equations. We show that the similarity of
the field equations that are derived from appropriate actions via this formalism to
those produced by Hilbert varying purely metric Lagrangians is not merely formal
but is implied by the diffeomorphism covariant property of the associated
Lagrangians. We prove that the conformal equivalence theorem of these theories
with general relativity plus a scalar field, holds in the extended framework of Weyl
geometry with the same forms of field and self-interacting potential but, in addition,
there is a new ‘‘source term’’ that plays the role of a stress. We point out how these
results may be further exploited and address a number of new issues that arise from
this analysis. ©1999 American Institute of Physics.@S0022-2488~99!03906-7#

I. INTRODUCTION

According to the standard variational principle~Hilbert variation! that leads to the Einstein
field equations of general relativity, the gravitational action*RA2g is varied with respect to the
metric tensor of a spacetime manifold that is taken to be a four-dimensional Lorentz ma
~M,g! with metricg and the Levi-Civita connection¹. However, in many instances~see Ref. 1 for
a complete review!, one considers a Lorentz manifold with an arbitrary connection¹” that is
incompatible with the metric, i.e.,¹” gÞ0. A motivation for such a generalization was initial
inspired by the early work of Weyl~Ref. 2!. In this case, one considers the variation of
appropriate action with respect to both the metric componentsgab and the connection coefficient
Gbc

a without imposing from the beginning thatGbc
a be the usual Christoffel symbols. In the curre

literature this variational principle, where the metric and the connection are considered as
pendent variables, is referred to as thefirst-order or metric-connection, or simplyPalatini varia-
tion. ~For a historical commentary of this principle of variation and related issues, we refer to
3.!

Such alternative variational methods were first analyzed in the framework of nonlinear g
tational Lagrangians by Weyl~Ref. 2!, Eddington~Ref. 4!, and others~Refs. 5–20!. In an effort to
obtain second-order field equations different from Einstein’s, Stephenson~Refs. 5, 6! and Higgs
~Ref. 7! applied the first-order formalism to the quadratic LagrangiansR2, RabR

ab, RabcdR
abcd

and Yang~Ref. 8! investigated the LagrangianRabcdR
abcd, by analogy with the Yang–Mills

Lagrangian. However, Buchdahl~Ref. 9! pointed out a difficulty associated with this version

a!Electronic mail: skot@aegean.gr
b!Electronic mail: john@env.aegean.gr
c!Electronic mail: querella@astro.ulg.ac.be
30630022-2488/99/40(6)/3063/9/$15.00 © 1999 American Institute of Physics
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the metric-connection variation, which is related to imposing the metricity condition, i.e.
connection coefficients equal to the Christoffel symbols,after completing the variation, and sub
sequently constructed specific examples, showing that this version of the first-order forma
not a reliable method, in general~Ref. 10!. Van den Bergh~Ref. 11! arrived at a similar conclusion
in the context of general scalar-tensor theories. TheR1aR2 theory including matter was inves
tigated in this framework by Shahid-Saless~Ref. 12! and generalized to thef (R) case by Hamity
and Barraco~Ref. 13!. These authors also studied conservation laws and the weak field limit o
resulting equations. More recently, Ferrariset al. ~Ref. 14! showed that the first-order formalism
applied to generalf (R) vacuum Lagrangians leads to a series of Einstein spaces with cosmo
cal constants determined by the explicit form of the functionf. Similar results were obtained in th
case off (Ric2) theories by Borowiecet al. ~Ref. 15!.

A consistent way to consider independent variations of the metric and connection i
context of Riemannian geometry is to add a compatibility condition between the metric an
connection as a constraint with Lagrange multipliers. In vacuum general relativity, thiscon-
strained first-order formalismresults in the Lagrange multipliers vanishing identically as a c
sequence of the field equations~Ref. 16!. This method was applied to quadratic Lagrangians, w
the aim of developing a Hamiltonian formulation for these theories in Ref. 17.

Consider a Lorentzian manifold (M,g,¹” ) of dimensionD, where¹” is an arbitrary symmetric
connection. Hence,¹” gÞ0 that is, the connection coefficients, are functions independent o
metric components, and the Ricci tensor is a function of the connection only. In the case of g
relativity without matter fields, varying the corresponding action,

S5E LA2gdDx, L5gmnRmn , ~1!

one arrives at the well-known result that variation with respect to the metric produces the va
Einstein’s equations, whereas variation with respect to the connection reveals that the con
is necessarily the Levi-Civita connection~provided thatDÞ2!. The integral~1! is taken over a
compact regionU of the spacetime (M,g,¹” ), and we assume that the metric and the connec
are held constant on the boundary ofU. In the sequel we omit the symbol dDx under the integral
sign and setwªA2g. Gothic characters denote tensor densities, for examplegabªwgab .

In the presence of matter fields, there is an ambiguity because the compatibility con
between the metric and the connection does not hold. The matter Lagrangian depends prim
the field variablesc, and assumes a form that is a generalization of its special relativistic f
which is achieved via the strong principle of equivalence and the principle of minimal coup
according to the schemehab→gab and]→¹” ~the order of the two steps being irrelevant as lo
as the connection is the Levi-Civita one!. Variation of the total action,

S5E @R~g,G!1Lm~g,c,¹” c!#, ~2!

gives the following pair of equations:

Gab5Tabª2
2

w

dLm

dgab , ~3a!

dc
b ¹” dg

ad1dc
a ¹” dg

bd22 ¹” cg
ab52

dLm

dGab
c . ~3b!

These equations are inconsistent in general unless the matter Lagrangian does not
explicitly on the connection, i.e.,dLm /dGab

c 50. @It is interesting to note that in the caseD52 in
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vacuum, since the equationGab
c 5$ab

c %11/2(da
cQb1db

cQa2gabQ
c), with Qaª2¹” a ln w

52]a ln w1Ga , andGaªGab
b , has a vanishing trace, (12D/2)(]a ln A2g2Ga)50, theGa part

of the connection is undetermined~Ref. 18!.#
In Sec. II, after a brief review of the unconstrained metric-connection variational resu

higher-order gravity theories, we show how the constrained first-order formalism is used to
that the field equations of these theories can be given in a reduced form that makes the com
to the usual Hilbert equations direct and point out that such a correspondence is due
diffeomorphism covariance property of the associated Lagrangians. In Sec. III, we prove t
Weyl geometry, higher-order gravity theories are conformally equivalent to general relativity
a scalar field matter source with the same self-interacting potential as in the standard Riem
case, together with a new ‘‘source term’’ that arises as a result of the presence of the
covariant vector field. In the last section, we comment on the usefulness of the extended f
the conformal equivalence and point out how these results may be further exploited to devel
framework.

II. CONSTRAINED AND UNCONSTRAINED VARIATIONS

We begin with a Lagrangian that is a smooth function of the scalar curvatureR and vary the
corresponding action,

S5E w f~R!, ~4!

with respect to the metric tensor and the connection to obtain, respectively,

f 8R~ab!2
1
2 f gab50, ~5a!

¹” a~w f8gbc!50. ~5b!

Explicitly, the G equation~5b! reads as

„]a ln w1~ ln f 8!8]aR2Ga…gbc2]agbc1Gba
m gmc1Gca

m gmb50, ~6!

and so we can solve forGa and substitute back in~6! to find

]ag̃bc5Gba
m g̃mc1Gca

m g̃mb , ~7!

where we have introduced a new metricg̃abª f 8gab , with conformal factorf 8. This means thatG
is the Levi-Civita connection for the metricg̃.

Equation~5a! is more straightforward. On the one hand, its tracef 8(R)R52 f (R) is satisfied
identically if f (R)5aR2 ~up to a constant rescaling factora!, and so ~5a! becomesRab

2(1/4)Rgab50 @provided thatf 8(R)Þ0#, which finally givesR̃ab2(1/2a)g̃ab50 so that the
underlined manifold is an Einstein space with constant scalar curvatureR̃5g̃abR̃ab52/a. On the
other hand, one could regard the above trace as an algebraic equation inR with rootsr1 ,r2 ,... .
This situation was analyzed by Ferrariset al. ~Ref. 14!, who showed that such an analysis leads
a series of Einstein spaces, each having a constant scalar curvature~see also Ref. 10!.

By a completely analogous procedure, one finds Einstein spaces for the choiceL5 f (r ) where
r 5QabQ

ab, and Qab is the symmetric part of the Ricci tensor, and also for the LagrangiaL
5 f (K), whereK5RabcdR

abcd. Note that in this last case, varying the corresponding action w
respect to the metric and the connection, one obtains

2 1
2 f gab2 f 8Ra

klmRbklm1 f 8Rk
almRkb

lm12 f 8Rk
lamRk

l
b

m50 ~8!

and
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¹” d~w f8Ra
~bc!d!50, ~9!

with tracef 8(K)K5 f (K). Hence, eitherf (K)5aK identically or, given a functionf, the trace is
solved algebraically forK. In contrast to the previous cases, there exists no natural way to d
a metricg̃ from the field equation~9! unless the Weyl tensor vanishes~Ref. 19!. Notice that the
field equations derived from the LagrangianR@ab#R

ab by the Palatini variation impose only fou
conditions upon the 40 connection coefficients and leave the metric components entirely un
mined ~Ref. 10!.

Let us now introduce a vector fieldQc called the Weyl covariant vector field and assume
linear metric-connection relation,

¹” cgab52Qcgab , ~10!

and define

Cab
c 5Gab

c 2 H c
abJ , ~11!

where

Gab
c 5 H c

abJ 1 1
2g

cm~Qbgam1Qagmb2Qmgab!. ~12!

The constrainedfirst-order formalism consists of adding to the original Lagrangian the
lowing term as a constraint~with Lagrange multipliersL!:

Lc~g,G,L!5L r
mnFGmn

r 2 H r
mnJ 2Cmn

r G . ~13!

For instance, in Riemannian geometry~13! takes the form

Lc~g,G,L!5L r
mnFGmn

r 2 H r
mnJ G ,

while, in Weyl geometry,

Lc~g,G,L!5L r
mnFGmn

r 2 H r
mnJ 2

1

2
grs~Qngms1Qmgsn2Qsgmn!G .

As an example, consider any of the previous test LagrangiansL(g,G,c) and vary the resulting
action,

S5E w@L~g,G,c!1Lc~g,G,L!#, ~14!

with respect to the independent fieldsg, G, L, andc. We find theg equations

d~wL!

dgab U
G

1wBab50, ~15!

whereBab is defined by

Babª2 1
2¹”

m@Lbam1Lamb2Lmab#, ~16!

and theG equations
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dL

dGc
ab
U

g

1Lc
ab50. ~17!

Variation with respect to the matter fieldsc yields their respective equations of motion. In t
Riemannian case, in particular, we have~some of the expressions given below appear incorre
in Ref. 17!: for the LagrangianL5R2,

1
2R

2gab22RRab1Bab50, ~18a!

Lc
ab5~2gabdc

m2gamdc
b2gmbdc

a!¹” mR, ~18b!

Bab522gabh” R12¹” b¹” aR; ~18c!

for the LagrangianL5RmnR
mn,

1
2RmnR

mngab2RamRb
n2Rm

bRma1Bab50, ~19a!

Lc
ab52¹” cR

ab2dc
a¹” mRmb2dc

b¹” mRam, ~19b!

Bab52h” Rab12¹” m¹” bRam2gab¹” n¹” mRmn; ~19c!

for the LagrangianL5RmnrsR
mnrs,

1
2RmnrsR

mnrsgab22RamnrRb
mnr1Bab50, ~20a!

La
bc52¹” mRa

bcm12¹” mRa
cbm, ~20b!

Bab54¹” n¹” mRambn; ~20c!

and for the LagrangianL5 f (R),

1
2 f gab2 f 8R~ab!1Bab50, ~21a!

~2gbcda
m2gmcda

b2gbmda
b!¹” m f 85La

bc, ~21b!

Bab52gabh” f 81¹” b¹” af 8. ~21c!

It is straightforward to obtain the correspondence with the Hilbert case by substituting theBab’s in
the first equation in each of these above cases. They read, respectively, as

1
4R

2gab2RRab1¹b¹aR2gabhR50, ~22a!

1
2RmnR

mngab22RbmanRmn1¹b¹aR2hRab2 1
2hRgab50, ~22b!

1
2RmnrsR

mnrsgab22RmnrbRmnr
a14¹n¹mRamnb50, ~22c!

f 8R~ab!2
1
2 f gab2¹a¹bf 81gabh f 850. ~22d!

Strictly speaking, compared to the usual Hilbert variation, in all cases considered so far
the first-order formalism, one starts from adifferent Lagrangian defined in adifferent function
space, follows adifferentmethod, but nonetheless ends up in the same set of field equations
means that although the gravitational Lagrangians in a Hilbert type of variational procedu
treated as functions of (xm,g,]g,...), whereas in a metric-connection formalism the correspond
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function spaces become sets of points of the form (xm,g,]g,G,]G,...), thefield equations are the
same. We shall now see this is not a mere formal coincidence but that the reason lies in t
that all our test Lagrangians arediffeomorphism covariant.

All previous cases can be considered as specializations derived from a very general La
ian n-form constructed locally as follows:

L5L„gab ,¹” a1
gab ,...,¹” (a1¯

¹” ak)gab ,c,¹” a1
c,...,¹” (a1¯

¹” a1)c,g…, ~23!

that is,L is a function of dynamical fieldsg,c and also of other fields collectively referred to asg.
Referring tog andc asf, L is calledf-covariant,f PDiff( M ), or simply diffeomorphism cova-
riant, if

L„f * ~f!…5 f * L~f!, ~24!

where f * denotes the induced action off on the fieldsf. Note that this definition excludes th
action of f * on ¹” or the other fieldsg. It immediately follows that our test Lagrangians conside
previously satisfy the above definition and as a result are diffeomorphism covariant.

It is a very interesting result, first shown by Iyer and Wald~Ref. 21!, that if L in ~23! is
diffeomorphism covariant, thenL can be reexpressed in the form

L5L„gab ,Rbcde,¹a1
Rbcde,...,¹ (a1¯

¹am)Rbcde,c,¹a1
c,...,¹ (a1 ...¹a1)c…, ~25!

where¹ denotes the Levi-Civita connection ofgab , Rabcd denotes the Riemann curvature ofgab ,
andm5max(k22,l 22). Notice that everything is expressed in terms of the Levi-Civita conn
tion of the metric tensor and also that all other fieldsg are absent.

Applying the Iyer–Wald theorem in our test Lagrangians, we immediately see that we
have reexpressed them from the beginning in a form that involves only the Levi-Civita conne
and not the original arbitrary connection¹” , and vary them to obtain the corresponding ‘‘Hilber
equations. As we showed above, we arrived at this result by treating the associated Lagrang
different~indeed they are!! according to whether or not they involved an arbitrary~symmetric! or
a Levi-Civita connection.

III. CONFORMAL STRUCTURE AND WEYL GEOMETRY

For the more general nonlinear Lagrangians of the formf (q), where q5R, RabR
ab, or

RabcdR
abcd, wheref is an arbitrary smooth function considered in the previous section, the

equations obtained by the metric-connection formalism are of second order while the corre
ing ones obtained via the usual metric variation are of fourth order. This result sounds
interesting since it could perhaps lead to an alternative way to ‘‘cast’’ the field equations of
theories in a more tractable, reduced form than the one that is usually used for this pu
namely, the conformal equivalence theorem~Ref. 22!. In this way, certain interpretational issue
related to the question of the physicality of the two metrics~Refs. 23, 24! associated with the
conformal transformation would perhaps be avoided.

As discussed in the previous section, the constraint~13! for Weyl geometry becomes

Lc~g,G,L!5Lc
abFGab

c 2 H c
abJ 2

1

2
gcm~Qagmb1Qbgam2Qmgab!G . ~26!

In order to examine the consequences of the Weyl constraint~26!, we now apply the constraine
first-order formalism to the LagrangianL5 f (R). Variation with respect to the Lagrange mult
pliers recovers the expression~12! of the Weyl connection. Variation with respect to the met
yields theg equations,

f 8R~ab!2
1
2 f gab1Bab50, ~27!
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whereBab is defined by~16!. Variation with respect to the connection yields the explicit form
the Lagrange mutlipliers, namely,

Lc
ab5 1

2dc
b~Qaf 82¹” af 8!1 1

2dc
a~Qbf 82¹” bf 8!2gab~Qcf 82¹” cf 8!. ~28!

~We note that since we are considering only variations with respect to the dependent variag
andG and also the Lagrange multipliers, and since theG’s are functions ofQa @from Eq.~12!#, the
Weyl vector fieldQa essentially plays the role of an independent variable and so we refrain
considering variations with respect toQa .! Substituting back this last result into Eq.~16!, we find

Bab52Q(a¹” b) f 82¹” (a¹” b) f 81 f 8¹” (aQb)2 f 8QaQb2gab~2Qm¹” mf 82Q2f 82h” f 81 f 8¹” mQm!.

~29!

Inserting this result into Eq.~27! we obtain the full field equations for the LagrangianL5 f (R) in
the framework of Weyl geometry, namely,

f 8R~ab!2
1
2 f gab2¹” a¹” bf 81gabh” f 85Mab , ~30!

whereMab is defined by

Mab522Q(a¹” b) f 82 f 8¹” (aQb)1 f 8QaQb1gab~2Qm¹” mf 82Q2f 81 f 8¹” mQm!. ~31!

It is interesting to note that the degenerate caseQa50 corresponds to the usual field equatio
obtained by the Hilbert variation in the framework of Riemann geometry, namely,

f 8Rab2 1
2 f gab2¹a¹bf 81gabh f 850.

It is known that these equations are conformally equivalent to Einstein equations with a
interacting scalar field as the matter source~Ref. 22!. In what follows, we generalize this propert
of the f (R) field equations in Weyl geometry. To this end, we define the metricg̃ conformally
related tog with f 8 as the conformal factor. Under a conformal transformation, the Weyl ve
field transforms as

Q̃a5Qa2¹” a ln f 8,

and the field equations~30! in the conformal frame read as

f 8R̃~ab!2
1

2

f

f 8
g̃ab2¹”̃ a¹”̃ bf 81g̃abh” f 85M̃ab ,

where¹”̃ 5¹” , h” gab¹”̃ a¹”̃ b5( f 8)21h” , andM̃ab is given by

M̃ab5 f 8Q̃aQ̃b2 f 8¹”̃ (aQ̃b)2¹”̃ a¹”̃ bf 81g̃ab~ f 8¹”̃ mQ̃m2 f 8Q̃21h” f 8!. ~32!

Introducing the scalar fieldw5 ln f8 and the potentialV(w) in the ‘‘usual’’ form ~Ref. 22!,

V~w!5 1
2„f 8~R!…22

„R f8~R!2 f ~R!…, ~33!

we find that the field equations take the final form

G̃ab5M̃ab
Q 2g̃abV~w!, ~34!

where

G̃ab5R̃~ab!2
1
2R̃g̃ab ,
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and

M̃ab
Q 5Q̃aQ̃b2¹”̃ (aQ̃b)1g̃ab~¹”̃ mQ̃m2Q̃2!.

The field equations~34! are Einstein equations for a self-interacting scalar field matter source
a potentialV(w) and a source termM̃ab

Q depending on the fieldQ̃a . If the geometry is Riemann
ian, i.e.,Q̃a50, one recovers the standard unconstrained variation result. This will be the
only if the original Weyl vector field is a gradient,Qa5¹” aF. Then it can be gauged away by th
conformal transformationg̃ab5(expF)gab, and therefore the original space is not a general W
space but a Riemann space with an undetermined gauge~Ref. 25!. We saw an example of this
previously when we applied the unconstrained method to the LagrangianL5 f (R). Here, the Weyl
vector was deduced using Eq.~6! and turned out to beQa5¹” a(ln f8). ~In Ref. 20, this peculiarity
is used in order to find out a subclass of theories based on a generalD-dimensional dilaton gravity
action, for which both unconstrained method and Hilbert variation yield dynamically equiv
systems.! This fact shows that unconstrained variations cannot deal with a general Weyl geo
and correspond to a degenerate case of the constrained method—the field equations obtain
the former can be recovered only by choosing specific forms of the Weyl vector field~Ref. 26!.

IV. DISCUSSION

The results obtained in Sec. II and Sec. III have the interpretation that a consistent w
investigate generalized theories of gravity without imposing from the beginning that the geo
is Riemannian, is the constrained first-order formalism. Applications to quadratic andf (R)
Lagrangians in the framework of Riemannian and Weyl geometry reveal that unconstrained
tional methods are degenerate cases corresponding to a particular gauge and that the us
formal structure can be recovered in the limit of a vanishing Weyl vector.

The generalization of the result stated above to include arbitrary connections with torsio
be an interesting exercise. The physical interpretation of the source term@Eqs. ~30! and ~31!# is
closely related to the choice of the Weyl vector fieldQ. However, it cannot be interpreted as
genuine stress–energy tensor in general since, for instance, choosingQ to be a unit timelike,
hypersurface-orthogonal vector field, the sign ofMabQ

aQb depends on the signs off 8(R) and the
‘‘expansion’’ ¹” aQa.

The generalization of the conformal equivalence theorem presented in Sec. III opens th
to analyzing cosmology in the framework of these Weylf (R) theories by methods such as tho
used in the traditional Riemannian case. The first steps in such a program may be as follow~Ref.
27!.

~a! Analyze the structure and properties of Friedmann cosmologies, find their singularity
ture, and examine the possibility of inflation.

~b! Consider the past and future asymptotic states of Bianchi cosmologies. Examine isotr
tion and recollapse conjectures in such universes. Look for chaotic behavior in the B
VIII and IX spacetimes.

~c! Formulate and prove singularity theorems in this framework. This will differ from
analysis in the Riemannian case~cf. Ref. 22! because of the presence of the source te
Mab .

All the problems discussed above can be tackled by leaving the conformal Weyl vecto
Q̃a undetermined while setting it to zero at the end will lead to detailed comparisons wit
results already known in the Riemannian case.
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A reinforced random walk on thed-dimensional lattice is considered. It is shown
that this walk is equivalent to an iterated function system~IFS!. Criteria for the
existence of limit cycles are given. Numerical results and conjectures about the
quantitative behavior of the walk are stated. ©1999 American Institute of Phys-
ics. @S0022-2488~99!00905-6#

I. INTRODUCTION

There are a large number of different modifications and variants of the usual symme
random walk~RW!.1–3 Let us mention only Levy flights, biased diffusions, self-avoiding wa
~SAW for short!, etc. Let us confine ourselves to the random walks on the discrete lattice
SAW a walking particle is choosing its trajectory in such a way that it does not step down on
already visited site. If a particle runs into such a node that all neighboring sites were a
visited, it stops. In Ref. 4 the interacting RW was discussed in which the parameter 0,p,` has
influenced probabilities of visiting a given site andp51 corresponds to usual RW. Forp→` this
RW goes on into the SAW.

In 1987 Coppersmith and Diaconis5 introduced reinforced random walk~RRW!. This walk,
opposite to SAW, prefers earliest visited paths. Pemantle6 discussed a related process on trees
proved that this process is equivalent to a random walk in a random environment. He also
criteria for transience and recurrence of RRW. Davis7 considered a variety of types of RRW on th
integersZ. One of them was RRW of sequence type. This process is defined in the following
Let wk be an increasing sequence of non-negative numbers. Let (Xn) be a random motion onZ.
If some interval was traversedk-times, then its weights iswk . If Xn5 i , then the probability that
Xn115 i 21 or Xn115 i 11 is proportional to the weights at timen of the intervals (i 21,i ) and
( i ,i 11). Davis proved that the moving point visits a finite number of integers and event
oscillates between two adjacent integers if and only if(k50

` wk
21,`. This result was generalize

to RRW sequence type on thed-dimensional lattice by Sellke.8

In this paper we consider another type of reinforced random walk on thed-dimensional lattice.
The random point moves according to the following reinforcement convention. Let the mo
point be found at timet5n at a certain pointAPZn. Let p1 ,...,pN be the probabilities of
choosing one of the adjacent pointsA1 ,...,AN . Assume that we choose the pointAi 0

. If after some

time the moving point returns toA, then the probabilities that at the next step it can be found at
adjacent points are equal top18 ,...,pN8 . The values ofp18 ,...,pN8 depend on the previous value
p1 ,...,pN and i 0 . We assume that the probability of choosing a given path will increase wh
was already traversed and probabilities of remaining paths emanating from a given sit
decrease. In other words, the fact that some sites were already visited will be remembere
memory of passing particular edges will be encoded in the change of probabilities. At som

a!Electronic mail: mwolf@ift.uni.wroc.pl
30720022-2488/99/40(6)/3072/12/$15.00 © 1999 American Institute of Physics
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the probability of going in some direction from a given site will reach almost 1, while probabil
to go in other directions will be practically zero. It will result in closed paths: a random wa
will oscillate between a few sites with practically zero probability to escape from such a lim
cycle. We will treat such a final behavior as stopping of the random walk.

Our walk is not Markovian because the probability of choosing any direction changes in
If we extend the phase space by adding the distributions of probabilities of passing par
edges, we obtain a Markov process which is also an iterated function system.9 In Refs. 10 and 11
were introduced self-attracting diffusions: processes attracted by their own trajectories. It is
esting that these processes and our walk have similar features. For example, self-attractin
sions are not Markovian, but jointly with their occupation measures are Markov processes.
over, their trajectories converge almost surely.

The paper is organized as follows. First we define our random walk and the notion of the
cycle is introduced. Next we prove the theorem that this walk reaches the limit cycle. In Se
the result of the Monte Carlo simulations for a particular ‘‘memorizing’’ function are presen
These computer experiments allow us to make some conjecture about the quantitative beh
some characteristics of the walk.

II. MATHEMATICAL MODEL

A. Description of the random walk with memory

Let Z denote the set of all points of thed-dimensional Euclidean space which have integ
coordinates, i.e.,Z is thed-dimensional lattice. A point moves randomly over this lattice. It sta
at point 05~0,...,0!. If at time t5n the moving point can be found at a certain pointx
5(x1 ,...,xd), then at the timet5n11 it can be found at one of theN52d adjacent pointsy
5(y1 ,...,yd), where yi5xi11 or yi5xi21 for i 51,2,...,d. By K we denote the set of al
possible ‘‘steps’’ during the walk, i.e.,

K5$~x,y!PZ3Z:uyi2xi u51 for i 51,...,d%.

If z5(x,y)PK, then the pointsx andy are, respectively, the beginning and the end of the stez.
Let S5$1,21%d be the set of allN steps to the nearest neighbors. IfxPZ, sPS, andy5x1s,
then (x,y)PK.

At time t50 the probability of choosing of any adjacent point equals 22d. During the walk
the point ‘‘memorizes’’ its path in the following way. Assume that the moving random walker
be found at some timet5n at a certain pointxPZ. Let px,x1s , sPS, be the probabilities that a
the timet5n11 it can be found at one of the adjacent pointsx1s, sPS. Assume that we choos
the pointx1s0 to shift the particle from the pointx. If after some time the moving point return
to x, then the probabilities that at the next step it can be found at the adjacent points are e
px,x1s8 , sPS. The numberspx,x1s8 are related to the previous valuespx,x1s in the following way.
Let px5(px,x1s)sPS , px85(px,x1s8 )sPS, and

P5H pxP@0, 1#S:(
sPS

px,x1s51J .

Then

px85 f s0
~px!, ~1!

where f s0
:P→P is a continuous function.

If zPK andz5(x,y), we will often write pz instead ofpx,y .
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B. Iterated function system

The state of the random walk with memory is described at any timet by the position of the
moving point and the probabilitypz for every zPK. Let P denote the set of all admissibl
distributions of probabilitiespz , zPK, i.e.,

P5H pP@0, 1#K:(
sPS

px,x1s51 for each xPZJ .

Then the phase space is the setX5Z3P. Sincepx5(px,x1s)sPS for every xPZ, we haveP
5PZ andX5Z3PZ.

Now, we define an iterated function9 system on the phase spaceX. It consists ofN transfor-
mationsTs :X→X, sPS. These transformations are defined as follows. LetxPZ and sPS be
given. ThenTs(x,p)5(x1s,p8), where

pz85H pz , if z1Þx,

f s~pz!, if z15x,

for eachz5(z1 ,z2)PK. If ( x,p) is the state of the random walk at a timet and if the next position
of the moving point isx1s, thenTs(x,p) is the next state of the random walk. The probabil
that at a pointx5(x,p) we choose the transformationTs is equalps(x)5px,x1s .

C. Markov process on X

Now we construct a Markov process corresponding to the iterated function system giv
Sec. II B.

The phase spaceX is a metric space with some metricr defined as follows. The setK is
countable, that is,K5$z1 ,z2 ,z3 ,...%, where$zn%nPN , znPK, is the sequence of all possible step
If xPX, yPX, then x5(u,pz1

,pz2
,...) andy5(u8,pz1

8 ,pz2
8 ,...), where u, u8PZ and pzk

,pzk
8

P@0, 1# for eachkPN. The metricr is given by

r~x,y!5uu2u8u1 (
k51

`

22kupzk
2pzk

8 u.

Let B be thes-algebra of Borel subsets ofX. For anyxPX andAPB we set

I ~x,A!5$sPS:Ts~x!PA%, P~x,A!5 (
sPI ~x,A!

ps~x!.

ThenP(x,A) is a transition probability function, i.e.,

~a! for eachxPX the functionA°P(x,A) is a probabilistic measure and
~b! for eachAPB the functionx°P(x,A) is B-measurable.

Since the spaceX is s-compact, there exists a homogeneous Markov process$jn%n50
` which

corresponds to the transition functionP(x,A).12 It means that we have some probability space~V,
A, Prob! and a sequence$jn%n50

` of random elementsjn :V→X such that the sequencejn is a
Markov process and

Prob~jn11PAujn5x!5P~x,A!

for eachxPX, APB, n>0. Since the initial state of the system isx05(0,22d,22d,...), we
assume thatj05x0 .

We assume that the probability space~V, A, Prob! is complete, i.e., ifA is a measurable se
and Prob (A)50, then every subset ofA is measurable.
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D. Limit cycle

A sequence (u0 ,u1 ,...,um21) of different elements ofZ is called a cycle if there exists
sequence (s0 ,s1 ,...,sm21) of elements ofS such thatuk115uk1sk for k50,...,m21, where
um5u0 . Let P0 :X→Z be the operator given byP0(u,p)5u. We say that a sequence (xn)n50

` of
elements ofX has a limit cycle if there exist a cycle (u0 ,u1 ,...,um21) and an integern0>0 such
that for everyn>n0 we haveP0(xn)5uk , wherek5n(modm).

Let c0(t)5 l andcn(t)5c+cn21(t).
Now we can formulate the following theorem.
Theorem 1: Let c:@0, 1#→@0, 1# be a continuous nondecreasing function such thatc~1!51

and

(
n50

` F12cnS 1

ND G,`. ~2!

We assume that there exists a continuous functionc:@0, 1#→@0, 1# such that

f s,s~px!>c~px,x1s! ~3!

for sPS, where fs,s is the s-th coordinate of fs . Then there exists a measurable subsetV0,V
such thatProb (V0)51 and for eachvPV0 the sequence$jn(v)%n50

` has a limit cycle.
The proof of Theorem 1 is given in Sec. III.
Remark 1:Let Pz , zPK, be the operatorPz :X→@0, 1# given byPz(u,p)5pz . Assume that

the sequence$jn(v)%n50
` has the limit cycle (u0 ,u1 ,...um21). Then from Theorem 1 it follows

that limn→` Pz„jn(v)…51 for eachz5(uk ,uk11), k50,...,m21.
Remark 2:If c:@0, 1#→@0, 1# is a continuous nondecreasing function such thatc(x).x for

xP(0,1) andc8~1!.1, thenc satisfies~2!

III. PROOF OF THEOREM 1

A. Boundedness of trajectories

The thread of the proof of Theorem 1 is as follows. First we check that almost all path
bounded. From this it follows that a point performing a random walk returns infinitely ofte
some points of the latticeZ. Then we show that if a pointuPZ is visited infinitely often, then
after some time the random walker chooses a fixed adjacent point tou. This implies that the
random walk has a limit cycle.

Let hn(v)5P0„jn(v)…. Then the random variablehn describes the position of the movin
point at timet5n.

Proposition 1: For almost allv the sequence$hn(v)% is bounded.
We precede the proof of Proposition 1 with the following lemmas.
Lemma 1: Letw(t)5Pn50

` cn(t). Thenw(t).0 for t>1/N and

lim
t→1

w~ t !51. ~4!

Proof: Sincec is a nondecreasing function, from~2! it follows that

w~ t !>wS 1

ND,` for tPF 1

N
,1G . ~5!

Let «.0 be given. Sincew(1/N).0 there is an integern0 such that

)
n5n0

`

cn~ t !> )
n5n0

`

cnS 1

ND.12« for tPF 1

N
, 1G . ~6!
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The functionc is continuous andc~1!51. This implies that there isd.0 such that

)
n50

n021

cn~ t !.12« for tP@12d,1#. ~7!

From~6! and~7! it follows thatw(t).(12«)2 for tP@12d, 1#. Consequently, limt→1w(t)51.h
Lemma 2:Let xPZ and yPZ be two adjacent points. Denote by A the event that the poi

is visited for the first at time t5n0 and the point y was not visited earlier. Let

B5$vPV:hn012i 21~v!5y, hn012i~v!5x, for i 51,2,...%.

Then the conditional probabilityProb (BuA) satisfies

Prob~BuA!>FwS 1

ND G2

.

Proof: Let B05A and

Bk5$vPV:hn012i 21~v!5y, hn012i~v!5x, for i 51,2,...,k%.

If vPBkùA, then at each timen0<t,n012k and at each visit atx we have chosen the nex
point y and at each visit aty we have chosen the next pointx. Let s5y2x ands85x2y. Then

Prob~hn012k115yuBkùA!5 f s,s
k S 1

ND ,

Prob~hn012k125xuBkùAù$hn012k115y%!5 f s8,s8
k S 1

ND ,

where f s
k is thekth iterate off s and f s,s

k is thesth coordinate off s
k . Sincec is a nondecreasing

function, from~3! we obtain

f s,s
k S 1

ND>cXf s,s
k21S 1

ND C>c2Xf s,s
k22S 1

ND C>¯>ckS 1

ND ,

f s8,s8
k S 1

ND>ckS 1

ND .

Consequently,

Prob~Bk11uBkùA!>FckS 1

ND G2

. ~8!

From ~8! it follows that

Prob~Bk11ùA!>Prob~A!F)
i 50

k

c i S 1

ND G2

. ~9!

If k→`, then we obtain

Prob~BùA!>Prob~A!FwS 1

ND G2

,

and finally
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Prob~BuA!>FwS 1

ND G2

.0. h

Proof of Proposition 1:For xPRd we set

ixi5max$uxi u: i 51,...,d%.

For k51,2,..., we define

Ck5$vPV:sup
n

ihnv!i>k%.

According to Lemma 2,

Prob~Ck11uCk!<12FwS 1

ND G2

. ~10!

Indeed, letn0(v) be the first time such thatihn0
(v)i5k. If x5hn0

andy is an adjacent point to
x such thatiyi5k11, then with probabilityp>@w(1/N)#2 the moving point visits onlyx andy at
any timet.n0 . This implies~10!. From ~10! it follows that

Prob~Ck!<H 12FwS 1

ND G2J k21

. ~11!

Let C5ùk51
` Ck . Since a trajectoryhn(v) is unbounded if and only ifvPC, from ~11! it follows

that almost all trajectories are bounded. h

B. Stabilization of directions

From Proposition 1 it follows that almost all trajectories are bounded. Consequently
moving point visits some points of the latticeZ infinitely often. Let a pointxPZ be given. ByA
we denote the event that the pointx is visited infinitely often. For anyvPA we denote by
$kn(v)%n51

` successive times of visits at pointx. Let xn(v) be the adjacent point tox visited at
time t5kn(v)11. We show that for almost everyvPA there exists a pointy(v)PZ such that
xn(v)5y(v) for n.n0(v).

The process of choosing the adjacent points can be described as an iterated function
( f s)sPS on the spaceP and the probability that at the pointpxPP we choose the transformationf s0

equalspx,s0
. Indeed, let us assume that we visit the pointx and letpx5(px,s)sPS be the distribu-

tion of probability of choosing adjacent pointsx1s, sPS. If we choose the pointx1s0 , then at
the next visit atx, px85 f s0

(px) is the new distribution of probability of choosing adjacent poin
Sincex is a given point we will writep instead ofpx andps instead ofps,x .

Let $zn%n51
` be a homogeneous Markov process on the phase spaceP corresponding to the

iterated function system (f s)sPS . The transition probability function for the process (zn) is given
by the formula

P~p,A!5(
sPI

ps , where I 5$sPS: f s~p!PA%. ~12!

Denote byx1sn(v) the adjacent point chosen at timet5n. Thenz15(1/N,...,1/N), zn11

5 f sn
(zn), and

Prob~sn5suzn5p!5ps . ~13!

for pPP, n51,2,..., andsPS.
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Proposition 2: For almost everyv there is s(v)PS and an integer n0(v) such that sn(v)
5s(v) for n.n0(v).

We precede the proof of Proposition 2 by a lemma. Let

Pe
s5$pPP:ps>«%,

Pe5 ø
sPS

Pe
s .

Lemma 3: Let Pn(p,A) be the n-step transition probability function. Then for everyd,1 and
pPP we have

lim
n→`

Pn~p,Pd!51. ~14!

Proof: Let «,1 be given. First we check that forpPP« we have

P~p,Pc~«!!>«. ~15!

Indeed, if pPP« , then for somes we havepPP«
s and ps>«. Consequently,f s(p)PPc(«)

s and
inequality ~15! follows immediately from~12!. From ~15! it follows that

Pi 11~p,Pc i 11~«!!>E
Pc i ~«!

P~q,Pc i 11~«!!P
i~p,dq!>c i~«!Pi~p,Pc i ~«!!,

which gives

Pn~p,Pcn~«!!> )
k50

n21

ck~«!>w~«! for pPP« . ~16!

If «>1/N, then limn→` cn(«)51. From~16! it follows that for everyd,1, «>1/N, andpPP«

we have

lim inf
n→`

Pn~p,Pd!>w~«!. ~17!

If pPP, thenpPP1/N and, consequently,

lim inf
n→`

Pn~p,Pd!>wS 1

ND . ~18!

Since

Pn1m~p,Pd!5E
P
Pn~q,Pd!Pm~p,dq!5E

Pd

Pn~q,Pd!Pm~p,dq!1E
P\Pd

Pn~q,Pd!Pm~p,dq!,

the inequalities~17! and ~18! imply

lim inf
n→`

Pn1m~p,Pd!>w~d!Pm~p,Pd!1wS 1

ND Pm~p,P\Pd!5Xw~d!2wS 1

ND CPm~p,Pd!1wS 1

ND .

~19!

Set

a~d!5 lim inf
n→`

Pn~p,Pd!.
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Then from~19! it follows

a~d!>Xw~d!2wS 1

ND Ca~d!1wS 1

ND . ~20!

Since a~d! is a nonincreasing function there exists the limit limd→1 a(d)5a0 . According to
Lemma 1, limd→1 w(d)51. A passage to the limitd→1 in inequality~20! gives

a0>X12wS 1

ND Ca01wS 1

ND . ~21!

From ~21! we conclude thata0>1 and~14! holds. h

Proof of Proposition 2:Let dP(1/N,1) be a given number. Since

Prob~znPPd!5Pn21~z1 ,Pd!,

from Lemma 3 it follows that there existsn0 such that

Prob~zn0
PPd!>d. ~22!

Let A5$v:zn0
PPd% and As5$v:zn0

PPd
s%. Then A5øsPSAs and the setsAs , sPS, are pair

disjoint. From~13! it follows that

Prob~sn0115s,...,sn01m5suAs!>)
i 50

m

c i~d!>w~d!. ~23!

Let

Bs5$v:sn~v!5s for n>n0~v!%,

B5 ø
sPS

Bs .

Inequality ~23! implies that

Prob~BsuAs!>w~d!

and consequently

Prob~Bs!>w~d! Prob~As!. ~24!

The setsAs , sPS, are pair disjoint and the setsBs , sPS, are pair disjoint. From~22! and~24! we
obtain

Prob~B!>w~d!Prob~A!>w~d!~12d!.

Letting d→0 we have Prob (B)51, which completes the proof. h

C. Existence of the limit cycles

Now we are ready to complete the proof of Theorem 1.
According to Proposition 1 almost every trajectory is bounded and goes through some

u0PZ infinitely often. LetD be a bounded subset ofZ andu0PZ be a given point. Denote byA0

the subset ofV which consists of allvPV such that the trajectory$hn(v)% is contained inD and
goes throughu0 infinitely often. According to Proposition 2, for almost everyvPA0 there exists
s(v)PS such that the random walker going throughu0 chooses the directions(v) for sufficiently
                                                                                                                



g

with
ry we

-
s

cess for

3080 J. Math. Phys., Vol. 40, No. 6, June 1999 R. Rudnicki and M. Wolf

                    
large times. Now, we can divide the setA0 into N disjoint subsetsB1 ,...,BN in such a way that in
each setBk the step (u0 ,u1) is determined uniquely. Denote one of these sets byA1 . Then we can
divide the setA1 into N subsets related to the next step (u1 ,u2), etc. After some steps the movin
point returns tou0 and in this way we obtain a limit cycle. h

IV. NUMERICAL SIMULATIONS

A. Details of the studied models

The theorem proved in previous sections gives only general information about the RW
memory. To gain some insights into the more quantitative characteristics of RW with memo
have performed Monte Carlo simulations for the function

f s~x!5ca~x!5x@22a2~12a!x#, ~25!

wherea is a parameter from the interval~0,1!. Since fora51 the functionca(x) is equal to the
identical mapping, we expect that fora→1, the RW with memory will tend to the usual sym
metrical RW. In particular, fora'1 it should never fall into the limiting cycle. In other word
some critical slowing down in reaching the limit cycle will occur fora'1.

FIG. 1. The plot of the histograms of the number of steps performed by random walkers before the stop of the pro
a sample of the values ofa.

TABLE I. The numbers RW of the cycle for a few values ofa.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

2 9554 9555 9592 9640 9645 9633 9723 8973
4 397 410 363 329 316 343 247 199
6 38 29 38 23 27 19 17 10
8 7 5 3 5 6 1 4 6

10 0 0 1 0 3 2 0 2
12 0 0 1 0 1 0 0 0
14 1 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 2
18 0 0 0 0 0 0 1 0
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B. Obtained results

We have performed the simulations only on the two-dimensional, square lattice of the
130031300. In each node of the lattice we have stored probabilities of making a step in one
four directions. Initially allpz were set to be equal1

4. The random walker started from the orig
of the lattice and after each step the probabilities were updated according to Eq.~1!. A given
particular simulation of the RW was finished when onepz reached the value of 0.999 or else th
total number of steps was equal to 2 000 000. We have imposed the periodic boundary con
on the RW and we recorded the facts of crossing by RW the edges of the torus. There we
cases of such events, most of them occurred, of course, for larger values ofa. We have performed
simulations fora in the range~0.8, 0.94!. In the subrange~0.8, 0.91! a was changed with the ste
Da50.01, while in the subinterval~0.91, 0.94! with the stepDa50.001, because the number
steps performed by random walker before the stop was increasing very rapidly with growia.
We did not continue to larger values ofa, because the number of steps needed to stop the RW
too large. For eacha there were 10 000 separate random walks performed. We have store
number of stepsN at which for the first time one of the probabilities reachedpz50.999. The path
of RW falls into the cycle~see Sec. II D! and the length of the limiting trajectory was also store
Table I gives a sample of this data for a few values ofa for the length of the cycle 2, 4,...
18—larger cycles have occurred very randomly. The numbers in this table do not sum
10 000 because some RW had limit cycles larger than 18, and for largea rare samples did not fal
into the limit cycle in less than 2 000 000 steps. These lengths of cycles do not follow the Po
distribution and we do not have any conjecture describing these numbers.

The numbers of steps, for eacha, varied considerably from one sample RW to another.
example, fora50.8 there was a RW which stabilized afterNmin563 steps, while the larges
number of steps wasNmax54114. This gap between smallest and largest number of steps ne
to stop RW increased witha, for example, fora50.93 the minimal and maximal number of ste
before RW stopped wasNmin51034 andNmax5590 176, respectively. We claim that the numb
of stepsN is governed by the gamma distribution with parametersr, b:

gr ,b~x!5b rxr 21e2bx/G~r !, ~26!

whereG(r ) is a generalization of the factorial:

FIG. 2. The plot of the dependence of the parameterr in ~26! obtained from the moments of actual data. Remarkably,
figure suggests thatr does not depend ona.
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G~r !5E
0

`

e2tt r 21 dt. ~27!

In Fig. 1 we present plots of the histograms of the number of steps for a few of valuesa.
The size of the bins was 1000, so they axis gives the number of random walks with the numb
of steps in the range (10003k,10003k11000). In Figs. 2 and 3 the values of the fitted para
etersr andb for all investigated values ofa are shown. Remarkably, the parameterr takes values
around 1.72 and it seems not to depend ona. It is probably linked with the special choice of th
function ~25!.

Despite the large fluctuation ofN between different realizations of RW, there seems to b
simple formula describing the medianm value ofN. Herem is defined as such a value ofN that the
same number of sample random walks stopped in smaller thanm, as well in larger thanm steps.
Since fora51 the RW with memory passes into the usual RW,N should diverge to infinity for

FIG. 4. The plot of dependence of the medianm~a! versusu51/(12a) is shown. The solid line presents the least-squ
fit to the points obtained from the Monte Carlo simulations, represented by circles, under the assumption that fit
by the exponential function.

FIG. 3. The plot of the dependence of the parameterb in ~26! obtained from the moments of actual data.
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a→1, thus we guessed thatm is a function of 1/~12a!. Hence, in Fig. 4 the plot of the medianm
versusu51/(12a) is shown. This figure suggests thatm~a! grows exponentially withu—the
dashed line presents the exponential fit to the actual values obtained by the least-square

m~a!;expS 1

12a D . ~28!

Summarizing, the Monte Carlo simulations suggest that there seems to be strict, quan
rules governing the behavior of some characteristics of the RW with memory for the fun
ca(x).
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Curvature conditions for the occurrence of a class
of spacetime singularities

Wiesław Rudnickia) and Paweł Ziȩbab)

Institute of Physics, University of Rzeszo´w, ul. Rejtana 16A, PL-35-310 Rzeszo´w, Poland

~Received 15 October 1998; accepted for publication 21 January 1999!

It has recently been shown@W. Rudnicki, Phys. Lett. A224, 45–50~1996!# that a
generic gravitational collapse cannot result in a naked singularity accompanied by
closed timelike curves. An important role in this result plays the so-calledinex-
tendibility condition, which is required to hold for certain incomplete null geode-
sics. In this paper, a theorem is proved that establishes some relations between the
inextendibility condition and the rate of growth of the Ricci curvature along incom-
plete null geodesics. This theorem shows that the inextendibility condition may
hold for a much more general class of singularities than only those of the strong
curvature type. It is also argued that some earlier cosmic censorship results ob-
tained for strong curvature singularities can be extended to singularities corre-
sponding to the inextendibility condition. ©1999 American Institute of Physics.
@S0022-2488~99!02106-4#

I. INTRODUCTION

Recently, one of us1 has shown that, under certain physically reasonable conditions, a ge
gravitational collapse developing from a regular initial state cannot lead to the formation of a
state resembling the Kerr solution witha2.m2—i.e., of a naked singularity accompanied b
closed timelike curves. This result supports the validity of Penrose’s cosmic censo
hypothesis2 and suggests that there may exist some deeper connection between cosmic cen
and the chronology protection conjecture put forward by Hawking.3 An important role in this
result plays the so-calledinextendibility condition~see Sec. II!, which is assumed to be satisfie
for certain incomplete null geodesics. This condition enables one to rule out artificial n
singularities that could easily be created by simply removing points from otherwise well-beh
spacetimes. The inextendibility condition is based on the idea that physically essential singu
should always be associated with large curvature strengths, which are in turn usually ass
with the focusing of Jacobi fields along null geodesics.

It is easily seen that the inextendibility condition will always hold for null geodesics te
nating at the so-calledstrong curvature singularitiesdefined by Tipler4 ~see below!. Singularities
of this type are sometimes considered to be theonly physically reasonable singularities~cf., e.g.,
Refs. 5 and 6!. However, strong curvature singularities can exist only if the curvature in t
neighborhood diverges strong enough,7 while it is not unlikely that some singularities occurring
generic collapse situations will involve a weaker divergence of the curvature. In fact, one c
a priori exclude the existence of some ‘‘real’’ singularities near which the curvature would re
even bounded~such singularities occur, for example, in Taub-NUT space!. Accordingly, since we
still have no fully acceptednecessarycondition on the behavior of the curvature near gene
singularities, one should try to prove any cosmic censorship result under as weak a cu
condition as possible. It would be therefore of interest, in view of the mentioned censo
result,1 to know what are curvature conditions for the occurrence of singularities correspond
the inextendibility condition. Furthermore, the inextendibility condition has also been use

a!Electronic mail: rudnicki@atena.univ.rzeszow.pl
b!Electronic mail: pzieba@atena.univ.rzeszow.pl
30840022-2488/99/40(6)/3084/7/$15.00 © 1999 American Institute of Physics
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proving some other recent results8,9 that restrict a class of possible causality violations in class
general relativity.

In this paper, we formulate and prove a theorem that establishes some relations betw
inextendibility condition and the rate of growth of the Ricci curvature along incomplete
geodesics. This theorem shows that the inextendibility condition may hold for a much
general class of possible singularities than only those of the strong curvature type. Our th
will be stated in Sec. II of the paper. In Sec. III, we present a proof of the theorem; our
mathematical tool in this proof is a Sturm-type comparison lemma for nonoscillatory solutio
second-order differential equations. In Sec. IV we give a few concluding remarks; in parti
we argue that some earlier cosmic censorship results obtained for strong curvature singu
can be extended to singularities corresponding to the inextendibility condition.

II. THE THEOREM

To begin with, we clearly need to recall the precise formulation of the inextendibility co
tion. Let h(t) be an affinely parametrized null geodesic, and letZ1 and Z2 be two linearly
independent spacelike vorticity-free Jacobi fields alongh(t). The exterior product of these Jaco
fields defines a spacelike area element, whose magnitude at affine parameter valuet we denote by
A(t). If we now introduce the functionz(t) defined byA(t)[z2(t), then one can show4 thatz(t)
satisfies the following equation:

d2z

dt2
1

1

2
~RabK

aKb12s2!z50, ~1!

whereKa is the tangent vector toh(t) ands2 is a non-negative function oft defined as follows:
2s2[smns

mn (m,n51,2). Heresmn is the shear tensor~see Ref. 10, p. 88! that satisfies the
equation4

d

dt
smn52CmanbK

aKb2
2

z

dz

dt
smn . ~2!

In the following, byM we shall denote a spacetime, i.e., a smooth, boundaryless, conn
four-dimensional Hausdorff manifold with a globally definedC22 Lorentz metric.

Definition (cf. Refs. 1 and 8): Leth:(0,a#→M be an affinely parametrized, incomplete nu
geodesic. Assume also thath(t) generates an achronal set, i.e., a set such that no two points
can be joined by a timelike curve. Thenh(t) is said to satisfy the inextendibility condition if fo
some affine parameter value t1P(0,a) there exists a solution z(t) of Eq. (1) alongh(t) such that
z(t1)50, dz/dtu t1

Þ0 and limt→0 z(t)50.
The key idea behind the inextendibility condition is based on the fact that any two zer

any solution of Eq.~1!, which is not identically zero along a given null geodesic, correspond
pair of conjugate points along the geodesic~see Ref. 4!. From Proposition 4.5.12 of Ref. 10,
follows that incomplete null geodesics generating achronal sets cannot contain any pairs o
jugate points. One can thus easily show8 that if a geodesich:(0,a#→M satisfies the inextendibil-
ity condition, then there isno extension of the spacetimeM, preserving all the above mentione
properties ofM, in which h(t) could be extended beyond a pointh~0!. This means, according to
the standard interpretation, thath(t) should then approach a genuine singularity of the space
M at affine parameter value 0.@Formally, this singularity has the same status as those predicte
the familiar singularity theorems,10 because these theorems predict, in fact, the existence o
complete causal~usually null! geodesics in maximally extended spacetimes satisfying just
same topological and smoothness conditions as those imposed onM.#

Let us now compare the inextendibility condition with the concept of a strong curva
singularity.4 Consider a null geodesicl:(0,a#→M that terminates in a strong curvature singula
ity at affine parameter value 0. This means that every solutionz(t) of Eq. ~1! alongl(t), which
vanishes for, at most, finitely many points in (0,a#, satisfies limt→0 z(t)50 ~cf. Ref. 5, p. 160!.
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Suppose now thatl(t) generates an achronal set; then any solution of Eq.~1!, which is not
identically zero alongl(t), cannot vanish for any two points in (0,a# by the argument with
conjugate points mentioned above. Thus, forall t 1P(0,a# and for all solutionsz(t) of Eq. ~1!
alongl(t) with initial conditionsz(t1)50, we will have limt→0 z(t)50. It is thus clear that any
null geodesic terminating in Tipler’s strong curvature singularity and generating an achron
must always satisfy the inextendibility condition. Notice also that the terms ‘‘all’’ emphas
above imply, via Eqs.~1! and~2!, thatl(t) can terminate in the strong curvature singularity on
if the curvature diverges strong enough alongl(t) as t→0, while the inextendibility condition
could actually be satisfied forl(t), even if the curvature along it would remain bounded. Inde
the theorem stated below makes it clear@see condition~i!# that the curvature need not necessar
diverge along geodesics satisfying the inextendibility condition.

Theorem: Let h:(0,a#→M be an affinely parametrized, incomplete null geodesic genera
an achronal set. Suppose that the Ricci tensor term r(t)[RabK

aKb along h(t), where t is the
affine parameter and Ka is the tangent vector toh(t), obeys at least one of the following cond
tions.

~i! There exists an affine parameter value bP(0,a) such thatinf$r (t)u0,t<b%>2(p/b)2.
~ii ! There exist an affine parameter value cP(0,a) and a constantmP(0,2) such that r(t)

>kt2m for all t P(0,c#, wherek5( 2
3)(33226m15m2)cm22.

Thenh(t) satisfies the inextendibility condition.

Remark 1:From the proof of this theorem, which is given below, it may be seen that
parameter valuesb andc mentioned above in conditions~i! and ~ii ! correspond to the paramete
value t1 occurring in the definition of the inextendibility condition.

Remark 2:Since in the theoremh(t) is assumed to be a generator of an achronal set,h(t)
cannot contain any pair of conjugate points, and so one can expect that there should exist aupper
limit on the rate of growth of the curvature alongh(t). Indeed, from Theorems~3! and~4! of Ref.
11, it follows immediately that the Ricci tensor termr (t) alongh(t) must satisfy the following
two conditions:~1! there is no affine parameter valueb8P(0,a# such that inf$r (t)u0,t,b8%
.8(p/b8)2; and ~2! if r (t)>0 on h(t), then limt→0 inft2r (t)< 1

2. Similar restrictions on the
growth of the Weyl part of the curvature alongh(t) can be obtained from Proposition 1.2 of Re
12.

In the context of our theorem, it is worth recalling the analogous results obtained by C
and Królak7 for singularities of the strong curvature type. They have been obtained for
definitions of a strong curvature singularity: the original one formulated by Tipler4 and its modi-
fication proposed by Kro´lak.6 According to these results, if a null geodesich:(0,a#→M termi-
nates at affine parameter value 0 in a strong curvature singularity defined by Tipler~resp., by
Królak!, then there must exist some affine parameter valuecP(0,a# such thatRabK

aKb.At22

~resp.,RabK
aKb.At21! on (0,c#, whereKa is the tangent vector toh(t), t is the affine param-

eter, andA is some fixed positive constant.@Or very similar conditions on the rate of growth of th
Weyl part of the curvature alongh(t) must be satisfied; see Corollary 2 of Ref. 7.# Comparing
these results with condition~ii ! of our theorem, we see that singularities of the strong curva
type involve a considerably stronger divergence of the Ricci tensor termRabK

aKb than singulari-
ties corresponding to the inextendibility condition. There may thus exist a large class of cur
singularities that are not strong in the sense of the definition of Tipler or Kro´lak, but they may still
satisfy the inextendibility condition. Note also that the above conditions for strong curv
singularities are thenecessaryones, whereas conditions~i! and ~ii ! of our theorem are only
sufficientto ensure that the inextendibility condition does hold for a given geodesic. This im
that the inextendibility condition might be satisfied in more general situations than only
characterized by conditions~i! and ~ii !.

III. PROOF OF THE THEOREM

Now we shall prove the theorem; our main tool in this proof will be the following compari
lemma.
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Lemma (The comparison lemma): Suppose that u(s) is a solution of the equation

d2u

ds2 1F~s!u~s!50,

on an interval (a,b] with initial conditions: u(b)50 and du/dsubÞ0. Let v(s) be a solution of

d2v
ds2 1G~s!v~s!50,

on (a,b], such thatv(b)50, dv/dsub5du/dsub andv(s).0 on (a,b). Assume also that F(s) and
G(s) are piecewise continuous on (a,b], and let G(s)>F(s) on (a,b]. Then u(s)>v(s) on (a,b].

Proof: The proof of this lemma is based essentially on Theorem 1.2 of Ref. 13, p. 210
apply this theorem in its original form, it is convenient to reparametrize both of the equatio
the lemma, introducing the parametert52s instead ofs. Note that this reparametrization does n
change the form of the equations. Clearly, we shall now have established the lemma if we
that for anycP(a,b), u(t)>v(t) on @2b,2c#.

Consider the ratiou(t)/v(t). Sincev(t).0 on (2b,2a), it is well defined on (2b,2c#.
Using l’Hospital’s rule, we get

lim
t→2b

u~ t !

v~ t !
51.

Therefore, asv(t).0 on (2b,2c#, to show thatu(t)>v(t) on @2b,2c#, it suffices to show
that

d

dt Fu~ t !

v~ t !G>0,

on (2b,2c#. It is easy to see that this inequality holds if

v~ t !

v̇~ t !
>

u~ t !

u̇~ t !
, ~3!

on (2b,2c#, where the overdot denotes the first derivative with respect tot. By Theorem 1.2 of
Ref. 13, p. 210, we have

tan21Fv~ t !

v̇~ t !G>tan21Fu~ t !

u̇~ t !G ,
for all tP@2b,2c#. Thus, as tan21 is an increasing function, the inequality~3! does hold, as it is
desirable. h

Proof of the theorem:~Part I! Suppose the condition~i! is satisfied. Letz0(t) be a solution of
Eq. ~1! alongh(t) such thatz0(t) is not identically zero on (0,b# andz0(b)50, whereb is the
parameter value mentioned in condition~i!. Clearly, such a solution will always exist. Sinceh(t)
generates an achronal set,z0(t) can vanish nowhere in (0,b); otherwiseh(t) would have a pair of
conjugate points in (0,b# ~see Ref. 4!, which would contradict, by Proposition 4.5.12 of Ref. 1
the achronality ofh(t). Notice also that Eq.~1! is linear, and so the function2z0(t) will be a
solution of Eq.~1! as well. Thus, asz0Þ0 on (0,b), without loss of generality we can assume th
z0(t).0 on (0,b). This implies, asz0(b)50, that dz0 /dtub<0. Sincez0(t).0 on (0,b), and
condition ~i! holds, from Eq.~1! we see at once thatz0(t) must be a concave function on (0,b#.
This makes it obvious thatdz0 /dtubÞ0, and so we must havedz0 /dtub5a,0. Let us now define
the functionz1(t)[2(1/a)z0(t). As Eq.~1! is linear, it is clear thatz1(t) will be a solution of Eq.
~1! alongh(t); notice also thatz1(t).0 on (0,b), z1(b)50 anddz1 /dtub521.
                                                                                                                



e
.

ve
that
at

s

l

n
s

3088 J. Math. Phys., Vol. 40, No. 6, June 1999 W. Rudnicki and P. Ziȩba

                    
Consider now the equation

d2x

dt2
1vx~ t !50, ~4!

wherev5 1
2inf$r (t)u0,t<b% andr (t) is the function defined in the theorem. Notice thatv.0 by

condition ~i!. Let x1(t) be a solution of Eq.~4! on (0,b# with initial conditionsx1(b)50 and
dx1 /dtub521. It is a simple matter to see thatx1(t)5v21/2sin@v1/2(b2t)#. Let us now apply the
comparison lemma to the equations~1! and ~4! and their solutionsz1(t) and x1(t). Since v
< 1

2r (t) on (0,b#, by the comparison lemma we must havex1(t)>z1(t) on (0,b#. Consequently,
asz1(t).0 on (0,b), we obtainx1(t).0 on (0,b). This implies, by the above form ofx1(t), that
v<(p/b)2. But v>(p/b)2 by condition ~1!. We must thus havev5(p/b)2, which gives
limt→0 x1(t)50. Therefore limt→0 z1(t)50 sincex1(t)>z1(t).0 on (0,b). This means thath(t)
does satisfy the inextendibility condition.

~Part II! The task is now to prove the theorem in the case when condition~ii ! holds. For this
purpose, let us consider the following equation:

d2y

dt2
1Bt2my~ t !50, ~5!

on (0,c#, whereB5k/2, andk, m, andc are some fixed constants mentioned in the condition~ii !.
Let y1(t) be a solution of this equation with initial conditionsy1(c)50 anddy1 /dtuc521. Let
z2(t) be a solution of Eq.~1! alongh(t), such thatz2(c)50 anddz2 /dtuc521. @There is no loss
of generality in assumingz2(t) to exist; the existence ofz2(t) can be established in the sam
manner as the existence of the analogous solutionz1(t) considered in the first part of the proof#
Clearly, the solutionz2(t), just asz1(t), can vanish nowhere in (0,c) by the argument with
conjugate points. Therefore, asdz2 /dtuc521, we must havez2(t).0 on (0,c). Let us now apply
the comparison lemma to the equations~1! and ~5! and their solutionsz2(t) and y1(t). By
condition ~ii ! we haver (t)>kt2m on (0,c#. Thus, by the comparison lemma, we must ha
y1(t)>z2(t) on (0,c#. Of course, in order to prove the theorem, it suffices to show
limt→0 z2(t)50. Thus, asy1(t)>z2(t).0 on (0,c), to complete the proof it suffices to show th
limt→0 y1(t)50. We shall show below thaty1(t) does possess this property.

To this end, let us first find the general solution of Eq.~5!. It is easy to check that if one put
x5t, a51/2,b52AB(22m)21, g5(22m)/2, andn5(22m)21 into the equation~4.1! of Ref.
14, p. 138, then this equation reduces to our equation~5!. Thus, according to the solution~4.3! of
Eq. ~4.1! of Ref. 14, our equation~5! has the following general solution

y~ t !5t1/2@C1Jn~btg!1C2Yn~btg!#, ~6!

whereC1 andC2 are arbitrary constants of integration, andJn(btg) andYn(btg) are the Besse
functions of ordern, of the first and second kind, respectively. SincemP(0,2), from the above
relations it follows that12,n,`, AB,b,` and 0,g,1.

Let us recall that any Bessel function of the first kind has infinitely many positive zeros~cf.,
e.g., Ref. 15, p. 29!. Let j n,1 be the first positive zero of the functionJn(btg), i.e.,Jn( j n,1)50 and
Jn(btg)Þ0 as long as 0,btg, j n,1 . Sincen. 1

2, j n,1 must satisfy the following relation@see Eq.
~2! of Ref. 15, p. 29#:

j n,1,2@~n11!~n15!/3#1/2. ~7!

For Jn(btg) we now defineL to be the number such thatj n,15Lbcg. Putting this into~7!, and
taking into account the fact thatb5(2k)1/2(22m)21, k5321(66252m110m2)cm22, g5(2
2m)/2 andn5(22m)21, we readily find thatL2,1.

Consider now Eq.~5! with B replaced byB85L2B. Let y2(t) be a solution of this equation o
(0,c# with initial conditionsy2(c)50 anddy2 /dtuc521. The general form of this solution i
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given by ~6!, whereb should be replaced byb852AB8(22m)21 ~notice thatb85Lb!. Let us
now insert the initial conditions fory2(t) into this general solution in order to determine fory2(t)
the constantsC1 andC2 occurring in~6!. To find the first derivative of the general solution~6!, we
use the following recurrence formula:

dJn~x!

dx
52Jn11~x!1

n

x
Jn~x!,

which is also valid forYn(x) ~see Ref. 15, p. 197!. We can now easily calculate the constantsC1

andC2 ; the result is as follows:

C15
Yn~b8cg!

b8gcg21/2@Yn~b8cg!Jn11~b8cg!2Yn11~b8cg!Jn~b8cg!#
~8!

and

C25
2Jn~b8cg!

b8gcg21/2@Yn~b8cg!Jn11~b8cg!2Yn11~b8cg!Jn~b8cg!#
. ~9!

As b85Lb, from the above definition ofL it is clear thatb8cg5 j n,1 . ThusJn(b8cg)50, and the
numerator in~9! must vanish. AsJn(b8cg)50, the denominator in~9! can vanish only if
Yn(b8cg)Jn11(b8cg)50. But the Bessel functionsJn11 andYn cannot have any common zero
with the Bessel functionJn ~see Ref. 15, pp. 29–32!, and so the denominator in~9! cannot vanish.
We thus haveC250 and, by~6! and ~8!, the solutiony2(t) can be written as follows:

y2~ t !5C1t1/2Jn~b8tg!, ~10!

whereC15@b8gcg21/2Jn11(b8cg)#21.
Let us now compare the solutionsy1(t) andy2(t) by means of the comparison lemma. Rec

thaty1(t) is a solution of Eq.~5! with B5k/2, while y2(t) is a solution of the same equation wit
B replaced byB85L2k/2. SinceL2,1, by the comparison lemma we must havey2(t)>y1(t) for
all tP(0,c#. We recall that any Bessel functionJk(x) of the first kind with realx and k.0 is
continuous atx50 ~cf. Ref. 15, p. 182!. Thus, asn. 1

2 and 0,g,1, from ~10! it follows
immediately that limt→0 y2(t)50. Therefore, asy2(t)>y1(t).0 on (0,c), we obtain
limt→0 y1(t)50, which completes the proof. h

IV. CONCLUDING REMARKS

We have been concerned in this paper with the problem of determining what are cur
conditions for the occurrence of singularities corresponding to the inextendibility condition
have found two such sufficient conditions concerning the behavior of the Ricci tensor
RabK

aKb along incomplete null geodesics—these are conditions~i! and~ii ! of the theorem stated
in Sec. II. This theorem shows that the inextendibility condition may hold for a considerably l
class of possible singularities than only those of the strong curvature type. In particular, con
~i! of the theorem shows that the inextendibility condition may hold, even if the curvature a
incomplete geodesics would remain bounded. In this context, it is worth recalling that singula
predicted by the famous singularity theorems10 can be interpreted as regions of the universe
which the normal classical spacetime picture and/or certain energy conditions break dow
this may occur in regions where the curvature, though extremely large, still remains finite
cordingly, if one attempts to establish, for example, whether or not these singular region
conform to any cosmic censorship principle, it would be well to try to characterize, if neces
incomplete geodesics terminating in these regions by a condition that may hold even
curvature along the geodesics would remain bounded. One possible candidate for such a co
may thus be the inextendibility condition.
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It should also be stressed here that some earlier cosmic censorship theorems6,16,17proved for
strong curvature singularities can be extended to singularities corresponding to the inexten
condition. To see this, let us first recall that these theorems show, briefly, that under c
restrictions imposed on the causal structure, strong curvature singularities are censored~see Refs.
6, 16, and 17 for details!. Proofs of these theorems are, in essence, alike. In a brief outline,
run as follows. First, one shows that if the theorem under consideration were false, then
would have to exist a sequence$m i% of future endless, future complete null geodesics converg
to a null geodesicm that terminates in the future at a strong curvature singularity. One also s
thatm and all them i must be generators of achronal sets. As allm i are achronal, none of them ca
have a pair of conjugate points, and so any irrotational congruence of Jacobi fields alongm i

cannot be refocused. As$m i% converges tom, this must then imply, by continuity, that an
irrotational congruence of Jacobi fields alongm cannot be refocused as well. However, asm
terminates in a strong curvature singularity, all irrotational congruences of Jacobi fields alom
should be refocused. This gives the required contradiction. It is not difficult to see, howeve
this contradiction can equally well be obtained ifm would be assumed to satisfy the inextendibili
condition, for this condition holds if at least one irrotational congruence of Jacobi fields alo
given geodesic is refocused. It is thus clear that the censorship theorems given in Refs. 6,
17 are unnecessarily restricted to strong curvature singularities and they can be exten
singularities corresponding to the inextendibility condition.

ACKNOWLEDGMENT

This research was supported in part by the Polish State Committee for Scientific Re
~KBN! under Grant No. 2 P03B 073 15.

1W. Rudnicki, ‘‘Cosmic censorship for Kerr-like collapse,’’ Phys. Lett. A224, 45–50~1996!.
2R. Penrose, ‘‘Gravitational collapse: the role of general relativity,’’ Riv. Nuovo Cimento1, 252–276~1969!.
3S. W. Hawking, ‘‘Chronology protection conjecture,’’ Phys. Rev. D46, 603–611~1992!.
4F. J. Tipler, ‘‘Singularities in conformally flat spacetimes,’’ Phys. Lett. A64, 8–10~1977!.
5F. J. Tipler, C. J. S. Clarke, and G. F. R. Ellis, ‘‘Singularities and horizons—a review article,’’ inGeneral Relativity and
Gravitation, edited by A. Held~Plenum, New York, 1980!, Vol. 2.

6A. Królak, ‘‘Towards the proof of the cosmic censorship hypothesis,’’ Class. Quantum Grav.3, 267–280~1986!.
7C. J. S. Clarke and A. Kro´lak, ‘‘Conditions for the occurrence of strong curvature singularities,’’ J. Geom. Phys2,
127–143~1985!.

8W. Rudnicki, ‘‘Black hole interiors cannot be totally vicious,’’ Phys. Lett. A208, 53–58~1995!.
9K. Maeda, A. Ishibashi, and M. Narita, ‘‘Chronology protection and non-naked singularity,’’ Class. Quantum Gra15,
1637–1651~1998!.

10S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of Space–Time~Cambridge University Press, Cambridg
1973!.

11F. J. Tipler, ‘‘On the nature of singularities in general relativity,’’ Phys. Rev. D15, 942–945~1977!.
12L. B. Szabados, ‘‘On singularity theorems and curvature growth,’’ J. Math. Phys.28, 142–145~1987!.
13E. A. Coddington and N. Levinson,Theory of Ordinary Differential Equations~McGraw-Hill, New York, 1955!.
14J. Irving and N. Mullineux,Mathematics in Physics and Engineering~Academic, New York, 1959!.
15N. W. McLachlan,Bessel Functions for Engineers~Clarendon, Oxford, 1955!.
16A. Królak, ‘‘Towards the proof of the cosmic censorship hypothesis in cosmological space–times,’’ J. Math. Ph28,

138–141~1987!.
17R. P. A. C. Newman and P. S. Joshi, ‘‘Constraints on the structure of naked singularities in classical general rela

Ann. Phys.~N.Y.! 182, 112–119~1988!.
                                                                                                                



t

um
rs.

e
-
om-
of a

the

ural for

r is
ed in

-
p

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 6 JUNE 1999

                    
Two-parametric extension of h-deformation of Gr „1z1…
Sultan A. Çelik
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The two-parametric quantum deformation of the algebra of coordinate functions on
the ~dual! supergroup Gr~1u1! via a contraction of Grp,q(1u1) is presented. Al-
though the quantum superdeterminant of any element of Grp,q(1u1) is not central,
in the two parametric Jordanian deformation of Gr~1u1! the quantum superdetermi-
nant belongs to the center. The Hopf algebra structure of Grh1 ,h2

(1u1) is discussed.
© 1999 American Institute of Physics.@S0022-2488~99!00606-4#

I. INTRODUCTION

The discussion of theh-deformation of the matrix Lie group GL~2! via a contraction1 of the
quantum matrix group GLq(2) has led to renewed interest in theh-deformation of the simples
supergroup GL~1u1! ~Ref. 2! and the~dual! supergroup Gr~1u1! ~Ref. 3! which appears as the
Jordanian deformation of the supergroups.

In recent years this deformation@h-deformation#, which appears as a new class of quant
deformations of matrix Lie groups and algebras, has been intensively studied by many autho1–13

An interesting property of theh-deformations of GL~1u1! and Gr~1u1!, is that in both cases, th
deformation parameterh is an anticommuting Grassmann number.2,3 In the two-parametric exten
sion of h-deformation of GL~1u1!, it is seen that both deformation parameters are again antic
muting Grassmann numbers.4 Another interesting point is that the quantum superdeterminant
matrix in Grp,q(1u1) does not commute with all the matrix elements, i.e., it does not belong to
center of Grp,q(1u1). However in the two-parametric Jordanian deformation of Gr~1u1! the quan-
tum superdeterminant belongs to the center of the (h1 ,h2)-deformed supergroup Gr~1u1!. Hence
the general message of this paper may be that multiparameter deformations are more nat
h-deformations as compared toq-deformations.

The purpose of this paper is to present the two-parametric extension of theh-deformation of
the ~dual or Grassmann! supergroup Gr~1u1! using the approaches of Refs. 4 and 3. The pape
organized as follows. In Sec. II we give some notations and useful formulas which will be us
this work. In Sec. III we present the two-parameter deformation of Gr~1u1! as related to super
planes. In the following section we get a two-parameterR-matrix which deforms the supergrou
Gr~1u1!. Since the Hopf algebra structure of Grh1 ,h2

(1u1) is related to GLh1 ,h2
(1u1) it is presented

in Sec. V, as a separate section.

II. REVIEW OF Grp,q„1z1…

A Grassmann supermatrixT̂ which is an element of Gr~1u1! is of the form

T̂5S a b

c d D

30910022-2488/99/40(6)/3091/8/$15.00 © 1999 American Institute of Physics
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with two odd ~Greek letters! and two even~Latin letters! matrix elements. As usual, the eve
elements commute with everything and the odd elements anticommute among themselv
state briefly the properties of the~p,q!-deformed Grassmann supergroup14 we are going to need in
this work.

In this paper we denote~p,q!-deformed objects by primed quantities. Unprimed quanti
represent transformed coordinates.

Let us consider the Manin15 quantum superplaneAp and its dualAq* ,

U85S x8
j8 DPAp⇔x8j82pj8x850, j8250 ~2.1!

and its dual

V85S h8
y8 DPAq* ⇔h8250, h8y82q21y8h850. ~2.2!

Suppose that the matrix elements ofT̂8 ~anti-! commute with the coordinates ofAp andAq* . Then,
the endomorphisms

T̂8:Ap→Aq* and T̂8:Aq*→Ap ~2.3!

impose the following bilinear product relations among the matrix elements:14

a8b85p21b8a8, a8c85q21c8a8,

d8b85p21b8d8, d8c85q21c8d8,
~2.4!

a8d81d8a850, a82505d82,

b8c85pq21c8b81~p2q21!d8a8,

where p and q are nonzero complex numbers andpq61Þ0. These relations define a two
parameter deformation of the algebra of coordinate functions on the Grassmann matrix supe
Gr~1u1! as an associative algebra with unit, generated by the generatorsa, b, c, andd.

The above relations are equivalent to the equation14

Rp,qT̂18T̂2852T̂28T̂18Rp,q , ~2.5!

whereT̂185T̂8^ I , T̂285I ^ T̂8 and

Rp,q5S p1q21 0 0 0

0 22 q212p 0

0 p2q21 22pq21 0

0 0 0 p1q21

D . ~2.6!

Here we employ the convenient grading notation

~ T̂1!kl
i j 5~ T̂^ I !kl

i j 5~21!k~ j 1 l !T̂k
i d l

j , ~2.7!

~ T̂2!kl
i j 5~ I ^ T̂!kl

i j 5~21! i ~ j 1 l !T̂l
jdk

i . ~2.8!

Note that although the algebra~2.4! is an associative algebra of the matrix elements
T̂8, Rp,q does not satisfy the graded quantum Yang–Baxter equation~QYBE!,
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R12R13R235R23R13R12. ~2.9!

However, an interesting point is that if we decompose the matrixRp,q in the form

Rp,q5Rp,q
1 1Rp,q

2 , ~2.10!

where

Rp,q
1 5S p 0 0 0

0 21 0 0

0 p2q21 2pq21 0

0 0 0 q21

D , Rp,q
2 5S q21 0 0 0

0 21 q212p 0

0 0 2pq21 0

0 0 0 p

D , ~2.11!

then both matricesRp,q
1 andRp,q

2 do satisfy the graded QYBE. Also Eq.~2.5! can be written of the
form

Rp,q
1 T18T2852T28T18Rp,q

2 . ~2.12!

This equation will be used in Sec. IV.

III. THE TWO-PARAMETRIC h-DEFORMATION OF Gr „1z1…

We introduce new coordinatesx andj by

U5gh1

21U8, U5S x
j D , ~3.1!

where

gh1
5S 1 0

f 1 1D , f 15
h1

p21
. ~3.2!

Here the deformation parameterh1 is a Grassmann number which has the following propertie

h1
250, h1j52jh1 . ~3.3!

Now, in the limit p→1 we get the following exchange relations:

xj5jx1h1x2, j252h1xj. ~3.4!

These relations define a new deformation, which we called theh1-deformation, of the algebra o
functions on the Manin superplane generated byx andj, and we denote it byAh1

.
Let us consider dual coordinatesh andy with

V5gh2

21V8, V5S h
y D , ~3.5!

where4

gh2
5S 1 f 2

0 1 D , f 25
h2

q21
. ~3.6!

The deformation parameterh2 is again a Grassmann number and it has the following proper

h2
250, h2h52hh2 . ~3.7!
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Next, taking theq→1 limit we obtain the following relations, which define the dualh2-superplane
Ah2

* as generated byh andy with the exchange relations4

h252h2hy, hy5yh2h2y2. ~3.8!

We now consider the endomorphisms

T̂:Ah1
→Ah2

* and T̂:Ah2
* →Ah1

. ~3.9!

Then, we define the corresponding (h1 ,h2)-deformation of the Grassmann supergroup Gr~1u1! as
a quantum matrix group Grh1 ,h2

(1u1) generated bya, b, c, d which satisfy the following
(h1 ,h2)-commutation relations:

ab5ba1h1b22h2~ad1bc!2h1h2bd,

ac5ca1h1~cb2ad!2h2c22h1h2cd,

a25h1ab2h2ac1h1h2ad,
~3.10!

db5bd2h1b21h2~ad1cb!2h1h2ba,

dc5cd1h1~ad2bc!1h2c22h1h2ca,

d252h1bd1h2cd2h1h2ad,

ad52da1h1~db2ba!1h2~ca2cd!2h1h2~da1cb!,

bc5cb1h1~db1ab!2h2~cd1ac!1h1h2~ad2cb!,

provided thata andd anticommute withj, h, h1 , andh2 , and

h1h252h2h1 . ~3.11!

When we takeh250, we obtain the quantum Grassmann supergroup with one parameter.3

These relations can be obtained from the requirement thatAh1
andAh2

* have to be covarian

under the left coactions

m:Ah1
→Grh1 ,h2

~1u1! ^ Ah2
* , m* :Ah2

* →Grh1 ,h2
~1u1! ^ Ah1

, ~3.12!

such that

m~U !5T̂^ V, i.e., m~Ui !5T̂j
i
^ Vj , ~3.13!

m* ~V!5T̂^ U, i.e., m* ~Vi !5T̂j
i
^ U j . ~3.14!

Recall that the multiplication in the tensor product space follows the rule

~A^ B!~C^ D !5~21!P~B!P~C!AC^ BD, ~3.15!

whereP(X) is the z2-grade ofX. Note that Eqs.~3.13! and ~3.14! do not conform to standard
definitions because of~2.3!.

Alternatively, the relations~3.10! can be obtained using the following similarity transform
tion which was given by Aghamohammadiet al.:1

T̂85gT̂g21, ~3.16!
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where in our case4

g5gh1
gh2

. ~3.17!

To do this, we use the relations~2.4! and then take the limitsp→1, q→1. But in that case, the
required steps are rather complicated and tedious.

The quantum~dual! superdeterminant ofT̂ is defined as

D̂h1 ,h2
5bc212ac21dc215c21b2c21ac21d, ~3.18!

which is independent of the relations~3.10!. As an interesting case, it can be verified thatD̂h1 ,h2

commutes with all matrix elements ofT̂, that is,D̂h1 ,h2
belongs to the center of the algebra

T̂D̂5D̂T̂,

although the quantum~dual! superdeterminant of a matrix in Grp,q(1u1) does not commute with
all the matrix elements.

IV. R-MATRIX FOR Grh 1 ,h 2
„1z1…

We shall obtain anR-matrix for the quantum Grassmann supergroup Grh1 ,h2
(1u1) from the

R-matrix of Grp,q(1u1).
The algebra~2.4! is associative under multiplication and the relations~2.4! may be expressed

in terms of a gradedR-matrix condition, which we repeat here,

Rp,q
1 T̂18T̂2852T̂28T̂18Rp,q

2 ~4.1!

@see Eqs.~2.10!–~2.12!#. Now substituting~3.16! into ~4.1! and defining theR-matrix Rh1 ,h2
as

Rh1 ,h2
5 lim

p→1
lim

q→1
~gh1 ,h2

Rp,q8 gh1 ,h2
!, ~4.2!

where

gh1 ,h2
5g1g2

21, Rp,q8 P$Rp,q
1 ,Rp,q

2 %, ~4.3!

we get the followingR-matrix Rh1 ,h2
, as the two parameter extension of theR-matrix in Ref. 3,

Rh1 ,h2
5S 12h1h2 h2 h2 0

2h1 21 2h1h2 2h2

2h1 2h1h2 21 h2

0 h1 2h1 11h1h2

D , ~4.4!

which gives the (h1 ,h2)-deformed algebra of functions on Grh1 ,h2
(1u1) with the equation

Rh1 ,h2
T̂1T̂252T̂2T̂1R2h1 ,2h2

. ~4.5!
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V. HOPF ALGEBRA STRUCTURE OF Gr h 1 ,h 2
„1z1…

We denote the algebra generated by the matrix elementsa, b, c, d of T̂ with the relations
~3.10! by Â. To make the algebraÂ into a Hopf algebra related to the quantum supergro
GLh1 ,h2

(1u1), we state briefly some properties of the quantum supergroup GLh1 ,h2
(1u1) we are

going to need in this section.
The quantum supergroup GLh1 ,h2

(1u1) generated by four generatorsa, b, g, d and the
(h1 ,h2)-commutation relations4

ab5ba2h2~a22bg2ad!, db5bd1h2~d21bg2da!,

ag5ga1h1~a21gb2ad!, dg5gd2h1~d22gb2da!,
~5.1!

b25h2b~a2d!, g25h1g~a2d!,

bg52gb1~h1b2h2g!~d2a!, ad5da1h1b~a2d!1h2~a2d!g.

The generators satisfying the relations~5.1! generate the algebra called the algebra of functions
the quantum supergroup GLh1 ,h2

(1u1) and we shall denote it byA. We know that4 the algebraA
is a graded Hopf algebra with the following structure: the coproduct

D:A→A^A, D~ t j
i !5tk

i
^ t j

k , ~5.2!

the counit

e:A→C, e~ t j
i !5d j

i , ~5.3!

and the antipode

S:A→A, S~ t j
i !5~ t j

i !21, ~5.4!

wheret j
i P$a,b,g,d%.

It is not difficult to check the Hopf algebra axioms.16 If we represent the set of generatorsa,
b, g, d in the form of a matrix

T5S a b

g d D , ~5.5!

then the relations~5.1! are equivalent to the equation

RT1T25T2T1R, ~5.6!

where4

R5S 12h1h2 2h2 h2 0

2h1 1 2h1h2 h2

h1 2h1h2 1 h2

0 h1 h1 11h1h2

D ~5.7!

is the solution of the quantum Yang–Baxter equation.
Since the ~graded! Hopf algebra structure of Grh1 ,h2

(1u1) will be related to those of

GLh1 ,h2
(1u1), it is necessary to obtain the commutation relations of the generators ofÂ with

those ofA. We obtain the commutation relations between the generators ofÂ andA as follows:
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T̂1T25~21!p~T2!R21T2T̂1R. ~5.8!

Equation~5.8! gives

aa5aa1h1~ab1ba!2h2~ac1ga!2h1h2~ad2bc1gb1da12aa!,

ab52ba1h1bb1h2~aa2bc1da!2h1h2~ab2ba2bd1db!,

ag52ga1h1~aa1gb1da!2h2gc2h1h2~ac2ga2gd1dc!,

ad5da2h1~ba2db!1h2~ga2dc!1h1h2~aa2bc1gb2dd!,

ba5ab1h1bb2h2~aa1ad1gb!2h1h2~ab2ba2bd1db!,

bb5bb2h2~ab2ba2bd1db!,

bg5gb2h1~ab1db!2h2~ga2gd!1h1h2~aa1ad1da1dd!,

bd5db2h1bb1h2~gb2da2dd!1h1h2~ab2ba2bd1db!,
~5.9!

ca5ac2h1~aa1ad2bc!2h2gc2h1h2~ac2ga2gd1dc!,

cb5bc1h1~ba1bd!2h2~ac1dc!2h1h2~aa1ad1da1dd!,

cg5gc2h1~ac2ga2gd1dc!,

cd5dc2h1~bc1da1dd!1h2gc1h1h2~ac2ga2gd1dc!,

da5ad2h1~ab2bd!1h2~ac2gd!1h1h2~aa2bc1gb2dd!,

db52bd2h1bb1h2~ad1bc1dd!1h1h2~ab2ba2bd1db!,

dg52gd1h1~ad2gb1db!1h2gc1h1h2~ac2ga2gd1dc!,

dd5dd2h1~bd1db!2h2~gd1dc!1h1h2~ad1bc2gb1da12dd!.

Using these relations, it can be checked thatD̂h1 ,h2
, which is given by~3.18!, is still a central

element, i.e.,D̂h1 ,h2
also commutes with the generators ofA.

Before defining a coproduct on the algebraÂ, let us note the following facts. LetT̂ andT̂8 be
any two supercommuting quantum matrices whose elements satisfy~3.10!. We denote a produc
T̂T̂8 by T. Then, it can be verified that the matrix elements ofT satisfy the commutation relation
~5.1!, i.e., if

T̂,T̂8PGrh1 ,h2
~1u1!⇒T5T̂T̂8PGLh1 ,h2

~1u1!.

In view of these facts, we can say that there may be no coproduct of the formD(T̂)5T̂^̇ T̂. For,
this coproduct, if it existed, would be invariant under the (h1 ,h2)-commutation relations~5.1! of
GLh1 ,h2

(1u1). But we can define a coproduct on the algebraÂ as follows~see Ref. 17, for more
details!:

D̂:Â→Â^ Â, D̂~ T̂!5T̂^̇ T1~21!p~T!T^̇ T̂. ~5.10!

Explicity,
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D̂~a!5a ^ a1b^ g1a^ a2b ^ c,

D̂~b!5b^ d1a ^ b1a^ b2b ^ d,
~5.11!

D̂~c!5c^ a1d ^ g2g ^ a1d^ c,

D̂~d!5d ^ d1c^ b2g ^ b1d^ d.

The action on the generators ofÂ of ê:Â→C is

ê~a!5 ê~b!5 ê~c!5 ê~d!50. ~5.12!

Finally, we define the coinverse as

Ŝ:Â→Â, Ŝ~ T̂!52~21!p~T21!T21T̂T21. ~5.13!

It can be checked that the mapsD̂ and ê are both algebra homomorphisms andŜ is an algebra
antihomomorphism and the three maps satisfy the following properties of the costructures

~D̂ ^ id!+D̂5~ id^ D̂ !+D̂,

m+~ ê ^ id!+D̂5m8+~ id^ ê !+D̂, ~5.14!

m+~Ŝ^ id!+D̂5 ê5m+~ id^ Ŝ!+D̂,

where id denotes the identity mapping,m:C^ Â→Â, m8:Â^C→Â are the canonical isomor
phisms, defined bym(k^ a)5ka5m8(a^ k), ;aPÂ, ;kPC, andm is the multiplication map
m:Â^ Â→Â, m(a^ b)5ab.
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It is shown that when a first integral of aR3 vector fieldX is known, instabilities
are induced on the equilibrium points ofX. © 1999 American Institute of Physics.
@S0022-2488~99!03106-0#

I. INTRODUCTION

Let X be an analytic (Cw) Rn vector field~v.f.! with an isolated singularity at the origin, i.e
X(0)50. We are concerned here with establishing criteria for the instability ofX at 0 ~the origin!.

It is a classical result that when the linear partXL of X at 0 has an eigenvalue of positive re
part then0 is an unstable equilibrium point ofX ~Ref. 1!. This criterion gives no information
concerning instability when there are not eigenvalues ofXL to the right of the imaginary axis.

WhenXH is a Hamiltonian v.f. andH is an analytic function of the form

H5 (
i , j 51

m

pipjai j ~q!1V~q! ~qPRm, n52m!, ~1!

and ~i! ai j (q) is definite positive for anyq, ~ii ! 0 is a critical point ofV, ~iii ! 0 is not a strict
minimum of V, and~iv! m51,2. Then0 is an unstable equilibrium point ofXH ~Ref. 2!.

Whenm.2, the instability ofXH at 0, under the above assumptions, is an unproved con
ture. Nevertheless, the unstable behavior ofXH at 0 has been obtained under additional requi
ments onV(q) ~Ref. 3!.

The stability of periodic solutions of Hamiltonian v.f. when first integrals are known has
been recently investigated~Ref. 4!.

The technique proposed in this paper is valid forR3 v.f. with an isolated singularity~equilib-
rium point! at 0 and with a knownCw first integralI. The technique is illustrated with example
that show that the method is valid, even in the case of trivial center~that is, when all the
eigenvalues ofXL lie on the imaginary axis!.

The method proposed here is based on the well-known fact that thew limit of a bounded
trajectory of a planar vector field must include either a singularity or a closed traje
~Bendixon–Poincare´ theorem!.

The possibilities of extending the new technique toRn v.f. (n.3) are also discussed.

II. INSTABILITY INDUCED BY FIRST INTEGRALS

Let X be aR3 dynamical system with an isolated singularity at0 and I a Cw first integral of
X. Assume that either

~ i! “I u0Þ0,

or ~2!

~ ii ! “I ~P!50, PPN0⇒P5~0,0,0!,

and I has a saddle at the origin.
Then0 is an unstable equilibrium point ofX.
30990022-2488/99/40(6)/3099/5/$15.00 © 1999 American Institute of Physics
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Remember that“I stands for the gradient ofI. On the other hand,I by definition has a saddle
at 0 if “I u050 and there are pointsP andQ arbitrarily near0 on whichI takes values of opposite
signs. Remember that we assume in this paper that the first integralI has the value 0 at0.

Proof: Assume that“I u0Þ0. In this case local coordinates (u1 ,u2 ,u3) can be introduced on
N0 ~a neighborhood of0! on whichI takes the canonical formI 5u1 . Therefore, ifX is assumed
stable at0 its trajectories will lie inN0 and on the local planesul5k1 . The w limits of these
trajectories must be, on account of the Poincare´–Bendixon theorem,5 singular points ofX, po-
lygonals whose vertices are singular points ofX or closed trajectories.

In any of these three cases, singular points ofX, lying on the planesu15k1 and arbitrarily
near 0, are obtained. But since0 was assumed to be an isolated singularity ofX, we get a
contradiction. ThereforeX cannot be stable at0.

Assume now that“I vanishes onN0 just at0 and thatI has a saddle at0.
These assumptions imply~as we now explain! that on a certain domainZ0,N0 the level sets

of I resemble locally topological planes, to which the above reasoning can be applied, g
again a contradiction if0 is assumed to be a stable singularity ofX. Therefore0 must be an
unstable singularity ofX, as we desired to prove.

We now show that ifI is anR3 analytic function with a saddle at0 and“I uN0
vanishes just at

0, then a domainZ0,N0 exists on which the setsI 21(c)ùZ0 are local planes~disks!.
In fact, the analiticity ofI implies thatI 21(0)ùN0 is the finite union of the surfacesCi , i

PJ, through0. Condition~ii ! of Eq. ~2! implies that the surfacesCi do not intersect each other o
N02$0%. The surfacesCi divide N0 into solid zonesZj , whose boundary is made up of one
several of the surfacesCi .

By topological reasons it is not too difficult to show that one at least~sayZ0! of the zonesZj

is diffeomorphic toR3. This is due to the fact thatCi is, insideN0 , either a topological plane~if
Ci has a tangent at0! or a topological cone~if Ci has not a tangent plane at0!; in any case, each
Ci separatesN0 into zones, one of which is clearly diffeomorphic toR3. This property, valid for
any of the surfacesCi , is the geometric reason underlying the existence of the zoneZ0 .

For example, consider the functionsI 15(x21y22z2)z, I 25(x21y22z2)(x21y224z2). I 1

andI 2 have clearly a saddle at0, and it is easy to check that“I i ( i 51,2) vanishes just at0. The
setZ0 diffeomorphic toR3 can be chosen to be

Z05$~x,y,z!ux21y2,z2, z.0%. ~3!

Consider now theCw curveswa , defined either by

wa5I 21~c!ùZ0ùpa , ~4!

pa standing for a family of planes through0, intersectingZ0 , or by

I upaùZ0
5c. ~5!

Calling I upa
by I a* , we have the following.

~1! ~0,0! is a saddle ofI a* . This is a consequence of the fact that the sign ofI changes on the
surfacesCi , since otherwise“I 50 on points ofN02$0%.

~2! “I a* has an isolated zero at~0,0!. In fact, if “I auw* 50, wherew is a curve through~0,0! we
would getI uw50, in contradiction with the fact thatIÞ0 insideZ0 . A similar contradiction is
obtained if“I a* vanishes on a succession of points tending to~0,0!.

Summarizing, the curveswa are the zeros of planeCw functions with a saddle at~0,0! and an
isolated critical point at~0,0!. Therefore~Ref. 6!, wa is just an open segment. The union of the
segments, when the planepa varies is, given the topology ofZ0 , a local plane~a disk!.

ThereforeI 21(c)ùZ0 is locally a plane.
The reasoning above is sketchy and probably can be improved.
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We have not been able to improve it by consultations with professional mathematician
now give some examples ofR3 v.f. whose instability at0 can be detected with the above
mentioned techniques. To our knowledge they cannot be integrated via quadratures and t
interesting since most of them have a vanishing linear part.

A. Consider the R3 v.f.

Here

X5„y~11z2!2x2z…]x1„2y2x~11z2!…]y1„~x21y21xz!~11z2!…]z . ~6!

It is easy to check that this v.f. has an isolated zero at~0,0,0! and the eigenvalues ofXL at 0 are
0 and216 i . Therefore the eigenvalues cannot decide between stability and instability at0.

This v.f. has the first integralI 5 1
2(x

21y2)2arctan(z). Note that“I u0Þ0. Therefore by~i! of
Eq. ~2!, X is unstable at0.

B. Consider the v.f.

Here

X5„x4~y21z2!1x21y2
…]x2„2x3~y21z2!~11y!1x21y21z2

…]y1„2x~x21y2!~11y!

2x2~x21y21z2!…]z . ~7!

It is easy to check that~i! 0 is an isolated zero ofX and thatXL ~the linear part ofX at 0! is
identically zero;~ii ! I 5x2(11y)2z is a first integral ofX. ~iii ! ¹I u0Þ0.

Therefore, according to~i! of Eq. ~2!, 0 is an unstable singular point ofX.

C. Let X be the v.f.

Here

X5„2x~y2z!~x21y21z2!…]x2„~3x21y21z2!~x21y21z2!2x2yz…]y

1„~3x21y21z2!~x21y21z2!12x2y2
…]z . ~8!

It is easy to check that~i! 0 is an isolated zero ofX andXL50; ~ii ! I 5x(x21y21z2) is a first
integral ofX. The first integral has a saddle at0 and its gradient vanishes just at0.

According to~ii ! of Eq. ~2!, 0 is an unstable singularity ofX.

D. Consider the R3 v.f.

Here

X522~y21zx21zxy21xz3!]x1„2~z213x2!y12xyz~x21y21z2!…]y

1„~x21y21z2!~3x212y21z2!…]z . ~9!

It is easy to check that~i! 0 is an isolated zero ofX andXL50; ~ii ! I 5z2x1x32y2 is a first
integral ofX. In addition,I has a saddle at0 and“I vanishes just at0.
Therefore, by applying~ii ! of Eq. ~2!, we can conclude thatX is unstable at0.

We conclude by noting that our instability criterion can be applied toRn v.f. (n.3) when
(n22) first integrals ofX are known and rank(“I 1 ,...,“I n22) u05n22. This can be seen by
introducing local coordinates (u1 ,...,un) in N0 on which the first integrals take the local form
I 15u1 ,...,I n225un22 .

Therefore the local level sets ofI 1 ,...,I n22 will be local planes~two-dimensional disks!. By
applying to them the considerations used to demonstrate of Eq.~2!, we get instability ofX at 0.
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When rank(“I 1 ,...,“I n22) u0,n22, a general criterion for instability seems difficult to ge
We list now several partial results in this direction.

~i! Let X be aR4 v.f. with an isolated zero at0 and the two first integrals:

I 15~11x2!y21~11x4!z22~11ex!u4,
~10!

I 25x.

Note that rank(“I 1 ,“I 2) u051.
On the level setI 250, I 1 andX become

I 1* 5y21z222u4,
~11!

X* 5a]y1b]z1c]u .

It is clear that“I 1* vanishes just at~0,0,0!, thatX* has an isolated zero at~0,0,0!, and thatI 1* has
a saddle at0. Therefore the couple (X* ,I 1* ) satisfies the assumptions of~ii ! of Eq. ~2!, and we
conclude thatX* , and thereforeX, is unstable at~0,0,0,0!.

Examples of this type are not only academic, since they appear in the study of systems
type

ẍ5V,x~x,y!,
~12!

ÿ5V,y~x,y!,

whenever a pair of first integrals of aR4 v.f. are known and the gradient of one of them does
vanish at0 ~Ref. 7!. The second first integral is, usually, linear in the components of the velo

In fact, via a local change of variables this first integral can be reduced to a canonica
similar to the functionI 2 of ~10!. This fact gives generality to the couple of first integrals chos
in ~10!.

~ii ! Let I 1 and I 2 be defined by

I 15un2P~x,y,z!,
~13!

I 25xm2Q~y,z!,

where n and m are positive integers (n,m.1), P and Q non-negative polynomials an
rank(“I 1 ,“I 2) u050.

It is immediate to check that the level sets

I 15C1 ,
~14!

I 25C2 ,

are planes whenC1 ,C2.0 ~one has just to getu andx as global functions ofy andz!. Therefore,
by using similar arguments to those given in the proof of~2!, anyR4 v.f. with an isolated zero a
0 and these first integrals is unstable at0.

~iii ! Let I 1 and I 2 be defined by

I 15y22 f ~x!,
~15!

I 25xu2zy,

f (x) being a non-negative function andf 8(0)50.
Note thatI 2 has the form of an angular momentum and that rank(“I 1 ,“I 2) u050.

On the other hand, the level sets,
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y22 f ~x!5C,

xu2zy5D, ~16!

C.0,

can be globally parametrized in the form

S x,6AC1 f ~x!,
xu2D

6AC1 f ~x!
,uD , ~17!

and they are a couple of two-dimensional planes~note that the parametersx and u are free!.
Therefore any v.f. with an isolated zero at0 and the two first integrals~15! is unstable at0.
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~Received 2 November 1998; accepted for publication 14 February 1999!

Systems of nonlinear ordinary differential equations are constructed for which the
general solution is expressed algebraically in terms of a finite number of particular
solutions. The equations and the corresponding nonlinear superposition formula are
based on a nonlinear action of the Lie group SL(N,C) on a homogeneous spaceM.
The isotropy group of the origin of this space is a nonmaximal parabolic subgroup
of SL(N,C). Such equations can occur as Ba¨cklund transformations for soliton
equations on flag manifolds. ©1999 American Institute of Physics.
@S0022-2488~99!00306-0#

I. INTRODUCTION

Let us consider a system ofn first order ordinary differential equations~ODEs!,

ẏm5hm~y,t ! m51,...,n, ~1.1!

where the dot denotes differentiation with respect to timet.
If the equations are linear we have a linear superposition formula; the general solutio

linear combination ofn linearly independent particular solutions. More interestingly, even if
system~1.1! is nonlinear, it may allow a nonlinear superposition formula

y~ t !5F~y1 ,...,ym ,c1 ,...,cn!,
~1.2!

yPCn ~or yPRn!,

wherey1 ,...,ym are particular solutions,c1 ,...,cn are arbitrary constants andy(t) is the general
solution.

Lie1 established the conditions under which the system~1.1! allows a superposition formula
~1.2!, i.e., the general solution can be expressed as a function of a finite numberm of particular
solutions. Lie’s result can be summed up as follows:

The system~1.1! allows a superposition formula~1.2! if and only if
~1! It has the form

ẏ5 (
k51

r

Zk~ t !jk~y!. ~1.3!

~2! The vector functionsjk(y) ~independent oft! are such that the vector fields

a!Electronic mail: havlicek@km1.fjfi.cvut.cz
b!Electronic mail: severin@km1.fjfi.cvut.cz
c!Electronic mail: wintern@CRM.UMontreal.CA
31040022-2488/99/40(6)/3104/19/$15.00 © 1999 American Institute of Physics
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X̂k5 (
m51

n

jk
m~y!]ym ~1.4!

generate a finite dimensional Lie algebraL,

@Xk ,Xl #5(
j 51

r

f kl jXj . ~1.5!

The number of solutionsm needed in the superposition formula~1.2! satisfies the relation

mn̂ r , ~1.6!

wheren is the number of equations andr is the dimension of the Lie algebraL.
Somewhat unexpectedly, it turned out that nonlinear ordinary differential equations

superposition formulas play an important role in soliton theory2 where they occur as Ba¨cklund
transformations.

In turn, Bäcklund transformations provide soliton superposition formulas, i.e., explicit for
las for multisoliton solutions that asymptotically correspond to a combination of indepen
solitons. Thus two very different types of nonlinear superposition formulas become linke
Bäcklund transformations for integrable nonlinear partial differential equations.

The classification and construction of all systems ofn nonlinear ODEs with superpositio
formulas amounts to a classification of all finite dimensional subalgebras of diff(n), the infinite
dimensional Lie algebra of vector fields inn dimensions. Forn51 such a classification is quit
simple. Indeed the only finite-dimensional subalgebras of diff~1,C! are sl~2,C! and its subalgebras
For n52 a complete classification exists and this is again due to Lie.3 For n^3 the problem
becomes intractable.

A more resctricted problem has however been solved4–6 and that is the classificaton of inde
composable systems of ODEs with superposition formulas. These are systems satisfyin
~1.3!, ~1.4!, and~1.5! from which it is not possible to split off a subset ofl ,n equations that also
satisfy Lie’s criteria and hence have a superposition formula of their own.

The classification of these indecomposable systems is best formulated in a geometric m
Thus, let us view the variables$y1 ,...,yn% ~for fixed t!, as local coordinates on some manifoldM.
Let G be a Lie group acting transitively and effectively onM. We can then identifyM with a
quotient spaceM;G/G0 , whereG0,G is the isotropy group of the origin inM.

The system~1.1! is decomposable if local coordinates onM exist that can be divided into two
subsets,$y1 ,...,yn%;$x1 ,...,xl ,zl 11 ,...,zn% such that the vector fields~1.4! all simultaneously
have the form

Xk5 (
a51

l

f k~x!]xa
1 (

b5 l 11

n

gk~x,z!]zb
~1.7!

~i.e., the coefficients of]xa
depend on the coordinatesx only!. Such coordinates exist if ther

exists aG-invariant foliation of the spaceM. The action ofG on M is called primitive~in addition
to being transitive and effective! if no such foliation exists. Locally, this can be expressed in ter
of the Lie algebrasL andL0 , corresponding toG andG0 . The system~1.1! is indecomposable if
the pair of algebras (L0 ,L) determines a transitive primitive Lie algebra. This means thatL0 , the
subalgebra of vector fields vanishing at the origin, must be a maximal subalgebra ofL, and must
not contain an ideal ofL.

Transitive primitive Lie algebras have been classified.7–11 In turn, this classification was use
to classify indecomposable systems of ODEs with superposition formulas.4–6 Several articles have
been devoted to constructing systems of equations with superposition formulas, and to the
                                                                                                                



een

the
es.

.

e
e

-

n
any
he
s
s

ts just

3106 J. Math. Phys., Vol. 40, No. 6, June 1999 Havlı́ček, Pošta, and Winternitz

                    
position formulas themselves.12–17 Supersymmetric versions of these equations have b
constructed18 as well as difference equations with superposition formulas.19,20All cases considered
so far correspond to transitive primitive Lie algebras.

The purpose of this article is to investigate the nonprimitive case and to show how
previously studied indecomposable systems serve as building blocks for decomposable on

We restrict ourselves to the Lie algebras sl(N,C) ~for arbitrary finite N! and make use of
realizations of these algebras, constructed earlier.21

II. FORMULATION OF THE PROBLEM AND EXAMPLE OF SL „2,C…

A. General formulation

Let us consider a system of ODEs as in Eq.~1.3!, allowing a superposition formula. In view
of Eqs.~1.4! and~1.5! the right-hand side of Eq.~1.3! determines an element of the Lie algebraL
for any fixed value of timet. As t varies, this element varies along some path inL. The general
form of the solution is obtained by integrating the vector fields~1.4! and composing the results
Thus the solution will be given by the corresponding group action

y~ t !5g~ t !•u, ~2.1!

whereg(t) is an element of the Lie groupG5^expL& andu is a constant vector, related to th
initial conditions fory(t). The group elementg(t) depends onr 5dimL group parameters. Thes
in turn depend on timet in such a way thatg(t) follows a path in the groupG, corresponding to
the path inL, determined by the equation, i.e., by the coefficientsZk(t), k51,...,r .

The superposition formula~1.2! is obtained from the group action~2.1!, once the time depen
dence ing(t) is established. To do this, we assume that we knowm solutionsyk(t), k51,...,m
corresponding to the initial valuesuk in ~2.1!. Them relations

yk~ t !5g~ t !uk ~2.2!

are then used to express all parameters ing(t) in terms of the known solutions. Each solutio
providesn equations. The condition~1.6! simply means that we must have at least as m
equations as unknowns. The actual numberm of different solutions needed is obtained from t
requirement that the only transformationg(t0) that simultaneously stabilizes all initial condition
uk (uk5g(t0)uk , k51,...,m) is the identity transformationg(t0)5I . This requirement determine
the minimal numberm and also the independence conditions onu1 ,...,um .

B. Example of the algebra sl „2,C…

For n51 the situation is very simple. The only finite dimensional subalgebras of diff~1,C! are
sl~2,C! and its one and two-dimensional subalgebras. Up to local diffeomorphisms there exis
one realization of sl~2,C! as a subalgebra of diff~1,C!, namely,

X15]y , X25y]y , X35y2]y . ~2.3!

Equation~1.3! in this case is the Riccati equation

ẏ5Z1~ t !1Z2~ t !y1Z3~ t !y2. ~2.4!

The SL~2,C! group transformations corresponding to the realization~2.3! are projective transfor-
mations ofC1. Thus, Eq.~2.1! in this case is

y~ t !5
g11u1g21

g12u1g22
, g11g222g21g1251. ~2.5!

In this case we haven51 ~one equation!, r 5dim sl(2,C)53, hence the number of solutionsm
needed to reconstruct the group elementg(t)5$gik(t)% satisfiesm^3. In fact we havem53.
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Indeed lety1(t), y2(t), andy3(t) be any 3 different solutions of Eq.~2.4!, corresponding, e.g., to
the choicesu150, u2→`, u351, respectively. Substituting into Eq.~2.5! we expressg12, g21,
and g22 in terms of yi(t) and g11 ~which cancels out! and obtain the~well known! nonlinear
superposition formula

y~ t !5
uy2~y12y3!1y1~y32y2!

u~y12y3!1y32y2
. ~2.6!

Choosingu50 as the origin of the spaceM, we see that it is stabilized by the maximal parabo
subgroup of SL~2,C! and we obtain the identification

M;C;G/G0 , G;SL~2,C!,
~2.7!

G0;S g11 g12

0 g11
21D .

Now let us turn to a case that has not been considered before, namelyn52 when the
realization of the algebra sl~2,C! is not primitive. The group SL~2,C! has two inequivalent one
dimensional subgroups,

G0,1;S g11 0

0 g11
21D , G0,2;S 1 g12

0 1 D , ~2.8!

i.e., the maximal torusG0,1 and the unipotent groupG0,2. Hence we must obtain 2 inequivalen
n52 realizations of sl~2,C!. In appropriate coordinates (y1 ,y2) the coefficients of]y1

in all vector
fields will depend ony1 only, those ofy2 can depend on bothy1 and y2 @see Eq.~1.7!#. The
coefficients of]y1

will hence be as in Eq.~2.3!. The analysis is easy to perform and we simp
present the result

X15]y1
, X25y1]y1

1y2]y2
, X35y1

2]y1
1~2y1y21ky2

2!]y2
,

k50 or 1. ~2.9!

The two inequivalent realizations correspond tok50 andk51, respectively. Lie in his classifi
cation of then52 case gave these two reaizations in a different, but equivalent form.3 The form
~2.9! was already used by Krause and Michel.22

The system of ODEs~1.3! corresponding to~2.9! are

ẏ15Z1~ t !1Z2~ t !y11Z3~ t !y1
2,

~2.10!
ẏ25Z2~ t !y21Z3~ t !~2y1y21ky2

2!.

We now wish to obtain superposition formulas for the above system, separately fork50 andk
51.

Integrating the vector fields~2.9! we obtain the group action

y15
g11u11g21

g12u11g22
, y25

u2

~g12u11g22!@g12~u11ku2!1g22#
. ~2.11!

Let us choose the point (u1 ,u2)5(0,1) as the origin. Fork50 we see that it is stabilized by th
unipotent groupG0,2 of Eq. ~2.8!. For k51 the stabilizer of the origin is the subgroup
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G̃0,1;S g11 g112
1

g11

0
1

g11

D . ~2.12!

This is conjugate toG0,1 of Eq. ~2.8!, however if we transformG̃0,1 into G0,1, the origin is shifted
to (u1 ,u2)5(0,̀ ). We prefer to stay with the more convenient origin~0,1!.

The relationmn̂ r for Eq. ~2.10! is 2m^3, hencem^2, and it turns out that two solution
are indeed sufficient to reconstruct the group elementg(t).

Let us assume that (v1 ,v2) and (w1 ,w2) are solutions of Eq.~2.10!. The four components o
v andw are then not independent, but satisfy the relation

~v12w1!@v12w11k~v22w2!#

v2w2
5R~k!, k50,1, ~2.13!

where R(k) is a constant. This relation is the analog of the famous unharmonic ratio of
solutions of the Riccati equation,

~y12y2!

~y12y3!

~y32y4!

~y22y4!
5K5const. ~2.14!

We assume

v1~0!Þw1~0!, v2~0!w2~0!Þ0, ~2.15!

and fork51,

R~1!Þ1.

With no loss of generality we can assume that the initial conditions for the two known solu
are

S v1~0!

v2~0! D5S 1
aD , S w1~0!

w2~0! D5S 0
bD , abÞ0. ~2.16!

Substituting these two solutions and their initial conditions into Eq.~2.11!, we can solve for
gik(t). We mention that the reconstruction is more efficient in the imprimitive case than in
primitive one. Indeed for the Riccati equation we need to know three solutions, for the sy
~2.10! only one.

Let us consider the two cases separately.
~1! k50:
We obtain

g115v1A a

v2
2w1A b

w2
, g125A a

v2
2A b

w2
, g215w1A b

w2
, g225A b

w2
. ~2.17!

Furthermore, the invariantR(0) of Eq. ~2.13! is equal to

R~0!5
~v12w1!2

v2w2
5

1

ab
, ~2.18!

and hence
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g11g222g12g215
v12w2

Av2w2

Aab51. ~2.19!

~2! k51:
We use the invariant~2.13!

R~1!5
~v12w1!~v12w11v22w2!

v2w2
5

a2b11

ab
~2.20!

to expressv2 in terms ofv1 , w1 , andw2 and obtain

g115
b@w1~v12w2!2w1

2#1~b21!v1w2

@b~12b!w2~w12v1!~w11w22v1!#1/2,

g225
b~w11w22v1!

@b~12b!w2~w12v1!~w11w22v1!#1/2, ~2.21!

g215g22w1 , g125
1

v1
@g111g22~v12u1!#.

The results of this section can be summed up as follows:
Theorem 1: Two inequivalent realizations of sl~2,C! by vector fields in two dimensions exis

given by Eq. ~2.9! with k50 or k51, respectively. The corresponding group actions on
homogeneous space SL(2,C)/G0,k is given in Eq.~2.11!.

Theorem 2:The nonlinear ODEs~2.10! for k50 andk51 have superposition formulas give
by the imprimitive group action~2.11!. The group elementsgik(t), i ,kP$1,2% are reconstructed
from any two solutionsv5(v1 ,v2) and w5(w1 ,w2) with the initial conditions satisfying Eq
~2.15!. The explicit reconstruction formulas are given in Eq.~2.17! for k50 and ~2.21! for k
51, respectively.

III. INDUCED REPRESENTATIONS OF SL „N,C… AND PARABOLIC SUBGROUPS

A. General theory

Let us consider the Lie algebra sl(N,C) realized by matricesXPCN3N, Tr X50. We shall
make use of several subalgebras of sl(N,C). The Borel subalgebra is the maximal solvab
subalgebra and it can be realized by the set of all traceless upper triangular matrices. Aparabolic
subalgebra of sl(N,C) is any subalgebra containing the Borel subalgebra. Amaximal parabolic
subalgebra is one that is not contained in any proper subalgebra of sl(N,C). All parabolic subal-
gebras can be realized by block triangular matrices. Maximal parabolic subalgebras corresp
the case of precisely two blocks on the diagonal.

A classification of all maximal parabolic subalgebras of sl(N,C) is obtained by taking all
decompositions ofN into N5r 11r 2 , min(r1,r2)^1 and writing all sets of matrices of the form

p~r 1 ,r 2!5H XPCN3NUTr X50, X5S A11 A12

0 A22
D J ,

N5r 11r 2 , ~3.1!

A11PCr 13r 1, A22PCr 23r 2, A12PCr 13r 2.

Similarly, a maximal parabolic subgroup of the group corresponds to the same partition ofN and
satisfies
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P~r 1 ,r 2!5H GPCN3NUG5S G11 G12

0 G22
D , detG11detG2251J . ~3.2!

The homogeneous spaceM;SL(N,C)/P(r 1 ,r 2) was constructed in an earlier article14 ~as a
Grassmanian!. Local coordinates on this space were introduced as matrix elements of a m
WPCr 13r 2. The group action on this space is represented by matrix fractional linear transfo
tions

W̃5~G11W1G12!~G21W1G22!
21. ~3.3!

The corresponding Lie algebra sl(N,C) is represented by vector fields with~specific! quadratic
nonlinearities. The group action is primitive, the corresponding nonlinear ordinary differe
equations with superposition formulas are matrix Riccati equations,

Ẇ5A1BW1WC1WDW,

W,APCr 13r 2, BPCr 13r 1, CPCr 23r 2, DPCr 23r 1. ~3.4!

In particular for r 251 we obtain projective Riccati equations corresponding to the projec
action of sl(N,C) on CN21. The corresponding superposition formula is given by Eq.~3.3! in
which W5const represents the initial data,W̃5W̃(t) the general solution and the matricesGik(t)
can be reconstructed fromN11 known solutions.13,14

Series of nonprimitive realizations of the Lie algebra sl(N,C) for N^3 can be obtained using
the theory of induced representations.23,24 The homogeneous spaces that we construct areM
;G/G0 , whereG is SL(N,C) andG0 is a ~nonmaximal! parabolic subgroup of SL(N,C). More
specifically, in this articleP(N) is group of matrices

G0;g5S g11 g12 ... ... g1N

... ... ... ... ...

gN22,1 ... gN22,N22 gN22,N21 gN22,N

0 ... 0 gN21,N21 gN21,N

0 ... 0 0 gNN

D . ~3.5!

We use the Borel subgroupB,SL(N,C) to induce representations of SL(N,C) on spaces of
functions f (Z), whereZ is a point on the space SL(N,C)/B.

To obtain the group action explicitly, we use the defining representation of SL(N,C) by N
3N matrices and write the Gauss decomposition

g5jDZ, j5S 1 j12 j13 ... j1N

0 1 j23 ... j2N

0 0 � ... ...

0 ... 0 1 jN21,N

0 ... 0 1

D , Z5S 1 0 ... 0

z21 1 0 ... 0

z31 z32 � ... ...

... 1 0

zN1 ... zN,N21 1

D ,

D5diag~d11,...,dNN!. ~3.6!

The matrix elementszi j , 1% j , i %N are local coordinates onM̃;SL(N,C)/B ~the Borel sub-
group is represented by the matricesjD). The action of the group SL(N,C) on M̃ is given in local
coordinates as

Zg5jDZ̃. ~3.7!
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Explicitly we obtain the group action

Z̃5F~g,Z! ~3.8!

by eliminatingdii andj ik from Eq.~3.7! using a subset of theseN2 equations and substituting int
the remaining@N(N21)#/2 equations.

B. Example of the group SL „3,C…

Let us illustrate the procedure for the simplest nontrivial case, namely SL~3,C!. Equation~3.7!
in this case is

S 1 0 0

z21 1 0

z31 z32 1
D S g11 g12 g13

g21 g22 g23

g31 g32 g33

D 5S 1 j12 j13

0 1 j23

0 0 1
D S d11 0 0

0 d22 0

0 0 d33

D S 1 0 0

z̃21 1 0

z̃31 z̃32 1
D .

~3.9!

We rewrite Eq.~3.9! symbolically as

Rik50.

EquationRi350 gives usd33, j23, andj13 in terms ofzik andgik . EquationR3k50 for k51 and
2 give usz̃32 and z̃31 in terms ofzik andgik , eq.R2250 andR2150 give usd22 and finally z̃21.

Definingz315x1 , z325x2 , andz215x3 and similarly forz̃31, z̃32, andz̃21 we obtain the group
transformations, namely,

x̃15
g11x11g21x21g31

g13x11g23x21g33
,

x̃25
g12x11g22x21g32

g13x11g23x21g33
, ~3.10!

x̃35
~2x11x2x3!A11231x3A11331A2133

~2x11x2x3!A12231x3A12331A2233
,

where

Ai jkl 5Ugi j gil

gk j gkl
U5gi j gkl2gil gk j . ~3.11!

We see that the elements of the last row inZ, namely,z315x1 , z325x2 transform independently
of the second row (z215x3). Thus, we have a realization of SL~3,C! on a flag manifold. Indeed
$x1 ,x2% are local coordinates on the space SL(3,C)/P(2,1) and we have a primitive action on th
subspace~the projective action!. Further$x1 ,x2 ,x3% are local coordinates on SL(3,C)/B and on
this space the action is imprimitive~we haveP(3);B).

The linear representations of SL~3,C! on functionsf (Z) is given as

Tgf ~x1 ,x2 ,x3!5 f ~ x̃1 ,x̃2 ,x̃3!, ~3.12!

with x̃i as in Eq.~3.10!. Calculating the infinitesimal operators in this representation we find

Ê315]1 , Ê325]2 , Ê215x2]11]3 ,

Ê115x1]11x3]3 , Ê225x2]22x3]3 , Ê125x1]22x3
2]3 ,
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Ê135x1~x1]11x2]2!2x3~x3x22x1!]3 , ~3.13!

Ê235x2~x1]11x2]2!2~x3x22x1!]3 ,

] i[]xi
.

The nonlinear ordinary differential equations with a superposition formula corresponding t
action of SL~3,C! on SL(3,C)/B can be read off from~3.13! using Lie’s result~1.3! and ~1.4!.
They are

ẋ15Z311Z11x11Z21x21Z13x1
21Z23x1x2 ,

ẋ25Z321Z12x11Z22x21Z13x1x21Z23x2
2, ~3.14!

ẋ35Z211~Z112Z22!x32Z12x3
22Z13x3~x3x22x1!2Z23~x3x22x1!,

whereZik5Zik(t) are arbitrary functions of timet.
We mention that the origin of the coordinate system in SL(3,C)/P(2,1) is the point (x1 ,x2)

5(0,0) and in SL(3,C)/P(3) it is (x1 ,x2 ,x3)5(0,0,0).
Notice that the first two equations in Eq.~3.14! involve quadratic nonlinearities, while th

third equation involves cubic ones. However, ifx1 and x2 are known~from the first two equa-
tions!, then the equation forẋ3 reduces to a Riccati equation.

C. The group SL „4,C…

For SL~4,C! we no longer haveP(4);B and the flag manifold consists of three spaces

SL~4,C!/P~3,1!,SL~4,C!/P~4!,SL~4,C!/B. ~3.15!

We restrict ourselves to the space SL(4,C)/P(4), put x15z41, x25z42, x35z43, x45z31, and
x55z32 and use Eq.~3.7! to obtain

x̃15
x1g111x2g211x3g311g41

x1g141x2g241x3g341g44
,

x̃25
x1g121x2g221x3g321g42

x1g141x2g241x3g341g44
,

x̃35
x1g131x2g231x3g331g43

x1g141x2g241x3g341g44
, ~3.16!

x̃45
~x1x52x2x4!A11241~x12x3x4!A11341~x22x3x5!A21342x4A11442x5A21442A3144

~x1x52x2x4!A13241~x12x3x4!A13341~x22x3x5!A23342x4A13442x5A23442A3344
,

x̃55
~x1x52x2x4!A12241~x12x3x4!A12341~x22x3x5!A22342x4A12442x5A22442A3244

~x1x52x2x4!A13241~x12x3x4!A13341~x22x3x5!A23342x4A13442x5A23442A3344
.

The infinitesimal operators can again be obtained as vector fields, using the represe
Tgf (Z)5 f (Z̃) with Z and Z̃ related as in Eq.~3.16!. Instead of writing them out we give th
corresponding nonlinear ordinary differential equations, namely,

ẋ15Z411Z11x11Z21x21Z31x31x1~Z14x11Z24x21Z34x3!,

ẋ25Z421Z12x11Z22x21Z32x31x2~Z14x11Z24x21Z34x3!,
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ẋ35Z431Z13x11Z23x21Z33x31x3~Z14x11Z24x21Z34x3!, ~3.17!

ẋ45Z311~Z112Z33!x41Z21x52x4~Z13x41Z23x5!1~x12x3x4!~Z14x41Z24x51Z34!,

ẋ55Z321Z12x41~Z222Z33!x52x5~Z13x41Z23x5!1~x22x3x5!~Z14x41Z24x51Z34!,

whereZik are arbitrary functions oft. Notice that$x1 ,x2 ,x3% satisfy projective Riccati equations
The last two equations involve cubic nonlinearities. However, similarly as in the sl~3,C! case the
equations ‘‘decompose.’’ If$x1 ,x2 ,x3% are known, then the equations for$x4 ,x5% satisfy projec-
tive Riccati equations, based on algebra sl~3,C!.

D. Finite transformations and vector fields for general N

For generalN^3 the formulas are quite similar to the above casesN53,4 only somewhat
more cumbersome to write. Dropping the calculations, we just present SL(N,C) group action on
the space SL(N,C)/P(N),

x̃i5
~( j 51

N21gji xj !1gNi

~( j 51
N21gjNxj !1gNN

, i 51,...,N21,

~3.18!
x̃i 1N215F~ i !/F~N21!, i 51,...,N22,

where

F~ i !5S (
k51

N23

(
l 51

N222k

~xkxl 1N1k212xk1 lxk1N21!Aki~k1 l !ND
1S (

k51

N22

~xk2xN21xk1N21!Aki~N21!ND 1S (
k51

N22

~2xk1N21!AkiNND 2A~N21!iNN .

We see that$x1 ,...,xN21% transform according to the projective realization of SL(N,C). The
remainingN22 variables$xN ,...,x2N23% transform in a manner involving quadratic polynomia
in the denominator and numerator of a fraction.

The nonlinear ODEs with superposition formulas can be read off from the vector fi
representing the Lie algebra sl(N,C) in this realization, namely,

ÊN j5] j , 1% j %N21,

Êi j 5xi] j1xN211 i]N211 j , 1% i %N22, 1% j %N22,

ÊN21 j5xN21] j1]N1 j 21 , 1% j %N22,

ÊN21N215xN21]N212 (
m5N

2N23

xm]m , ~3.19!

ÊiN215xi]N212xN211 i (
m5N

2N23

xm]m , 1% i %N,

ÊiN5xi (
j 51

N21

xj] j2xN211 i (
m5N

2N23

~xmxN212xm2N11!]m , 1% i %N22,
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ÊN21N5xN21 (
j 51

N21

xj] j2 (
m5N

2N23

~xmxN212xm2N11!]m .

The sl(N,C) equations can now be written in a quite compact form, namely,

ẋ j5ZN j1 (
i 51

N21

Zi j xi1xj (
i 51

N21

ZiNxi , 1% j %N21, ~3.20!

ẋN211 j5ZN21 j1 (
i 51

N22

Zi j xN211 i2ZN21N21xN211 j2xN211 j (
i 51

N22

ZiN21xN211 i

1~xj2xN211 j xN21! (
i 51

N22

~ZiNxN211 i1ZN21N!, 1% j %N22. ~3.21!

In ~3.20! and~3.21! Zik are arbitrary functions oft. For N53 andN54 these formulas coincide
with ~3.14! and~3.17!, respectively. The same comments pertain, namely, Eq.~3.20! are projective
Riccati equations based on sl(N,C). Equation~3.21! are projective Riccati equations based
sl(N21,C) if x1 ,...,xN21 are known.

IV. SUPERPOSITION FORMULAS

A. General comments

The superposition formula for the imprimitive SL(N,C) equations is given by the group actio
formula ~3.18! in which xi , i 51,...,2N23 is a constant vector, related to the initial condition
The matrix elementsgik(t) must be expressed in terms ofm particular solutions. The numberm
satisfies Eq.~1.6!. In our case that means that we must have

m~2N23!^N221. ~4.1!

The actual numberm, as well as conditions that must be imposed on the known solution
obtained from the requirement thatm be the smallest number of solutions such that their jo
isotropy group consists only of the identity transformation. We shall call such set a ‘‘fundam
set of solutions.’’

B. Example of SL „3,C…

Equation~4.1! in this case is 3m^8 and hencem^3.
The equations under consideration are given in Eq.~3.14!, the superposition formula has th

form ~3.10!.

1. The fundamental set of solutions

Let us assume that we know three solutions of Eq.~3.14!, x(t), y(t), andz(t). Each solution
is a three component vector. The group SL~3,C! acts on the spaceM3M3M of these three
solutions. Since we have dim SL(3,C)58 the group can sweep out at most an eight-dimensio
orbit, so there must exist at least one SL~3,C! invariant in this nine-dimensional space. We deno
this invariant

R~x1 ,x2 ,x3 ,y1 ,y2 ,y3 ,z1 ,z2 ,z3!5K, ~4.2!

wherex, y, andz are three solutions of Eq.~3.14!. We calculateṘ5(dR/dt), replaceẋ,ẏ,ż using
Eq. ~3.14! and requireṘ50 for all functionsZik(t). This provides us with eight linear first orde
partial differential equations forR. These equations can be solved and we obtain a single ele
tary invariant, namely,
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R5
~XZ!321~ZY!321~YX!321

~XY!321~YZ!321~ZX!321
, ~4.3!

where we have defined

~XY!3215x3~x22y2!2x11y1 , ~4.4!

etc. The quantity (XY)321 and similarly defined (XZ)321, (YX)321, (YZ)321, (ZX)321, and
(ZY)321 play a crucial role in the reconstruction of the group elementsgik(t). For SL~3,C! the
notation is somewhat redundant. However for SL(N,C), N^4 we will have quantities like
(XY)431,(XY)532, etc. so for uniformity we keep the subscripts forN53 as well.

The initial condition for three solutions arex~0!, y~0!, andz~0!. We shall use the transforma
tion ~3.10! ~with constant coefficients! to standardize the initial conditions. Let us do this tran
formation in two steps,

g5g2g1 , g15S g11 g12 0

g21 g22 0

g31 g32 g33

D , g25S a11 0 a112a33

0 a22 a222a33

0 0 a33

D . ~4.5!

Let us now assume that the first two components ofx~0!, y~0!, andz~0! satisfy

D5Ux1~0!2z1~0! y1~0!2z1~0!

x2~0!2z2~0! y2~0!2z2~0!
UÞ0. ~4.6!

This condition can be rewritten as

D5x1~0!~y2~0!2z2~0!!1y1~0!~z2~0!2x2~0!!1z1~0!~x2~0!2y2~0!!Þ0,

so that it is actually symmetric in the three two-dimensional vectors,

xT~0!5S x1~0!

x2~0! D , yT~0!5S y1~0!

y2~0! D , zT~0!5S z1~0!

z2~0! D . ~4.7!

If Eq. ~4.6! is satisfied we can use the transformation~3.10! with the matrixg1 to transform the
three initial vectors into a more convenient form

g1 :$x~0!,y~0!,z~0!%→H S 1
0
x̃3

D ,S 0
1
ỹ3

D ,S 0
0
z̃3

D J ~4.8!

with

x̃35
~XY!3212~XZ!321

~XZ!321
, ỹ352

~YZ!321

~YZ!3212~YX!321
, z̃352

~ZY!321

~ZX!321

~all components evaluated att50).
The initial conditions~4.8! imply that (XY)321 and (XZ)321 cannot vanish simultaneously~and

similarly for (YZ)321 and (YX)321, or (ZX)321 and (ZY)321). To proceed further we need
stronger condition, namely, that at least one of the following relations holds:

~XY!321~XZ!321Þ0, ~YZ!321~YX!321Þ0, ~ZX!321~ZY!321Þ0. ~4.9!

With no loss of generality we assume that the first of the above relations holds. We then tran
further using the matrixg2 and obtain
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g2g1 :$x~0!,y~0!,z~0!%→$xS~0!,yS~0!,zS~0!%,

xS~0!5S 1
0
0
D , yS~0!5S 0

1
a
D , zS~0!5S 0

0
b
D , ~4.10!

where

a5F211
a33

a11

~YX!321

~YZ!321
G21

, b52
a11

a22

~ZY!321

~ZX!321
. ~4.11!

To standardizexS(0) we have already fixed the ratioa33/a22 hence only one of the ratiosa33/a11

anda11/a22 can be chosen freely. From Eq.~4.11! we immediately see four special cases,

~YX!32150⇒a521,

~YZ!32150⇒a50,
~4.12!

~ZY!32150⇒b50,

~ZX!32150⇒b→`.

Thus, if (YX)321(YZ)321Þ0 we can standardizea→1. Alternatively, if (ZY)321(ZX)321Þ0 we
can standardizeb→1. The invariantR of Eq. ~4.3! for the standardized initial conditions~4.10! is

R52
~a11!

a
b. ~4.13!

We recall thatR is time independent and cannot be changed by group transformation of the
conditions.

To see whether a reconstruction is possible from three solutions with initial conditions~4.10!,
let us calculate the stabilizer of these ‘‘standard’’ initial conditions. The stabilizer of the ve
xS(0) and of the first two components of the other two vectors is

g5S a11 0 a112a22

0 a22 0

0 0 a22

D . ~4.14!

The remaining conditions foryS(0) andzS(0) to be stabilized are

a~a11!~g112g22!50, bg115bg22. ~4.15!

Thus, the stabilizer isg;I if we have at least one of the following conditions:

a~a11!Þ0, 0,ubu,`. ~4.16!

All other cases must be excluded.
Thus, if D50, the stabilizer is always too large. The same is true if all the products in

~4.9! vanish~at t50).
Thus, a reconstruction is possible if and only if

~1! DÞ0,
~2! at least 2 of the products in Eq.~4.9! are nonzero.
                                                                                                                



rre-

d

r

ua-

3117J. Math. Phys., Vol. 40, No. 6, June 1999 Havlı́ček, Pošta, and Winternitz

                    
2. Reconstruction of the group element

Let us reconstruct the SL~3,C! group element from the fundamental set of solutions, co
sponding to the initial data~4.10! satisfying one of the conditions~4.16!. We first make use of the
first two components of the three solutionsx(t),y(t),z(t). The first two equations in~3.10! then
imply

x15
g111g31

g131g33
, y15

g211g31

g231g33
, z15

g31

g33
,

~4.17!

x25
g121g32

g131g33
, y25

g221g32

g231g33
, z25

g32

g33
.

This allows us to express all off-diagonal elementsgik(t), iÞk in terms of the diagonal ones an
the first two components of the three known solutions,

g125
1

x1
@g11x21g33~z1x22x1z2!#, g135

1

x1
@g111g33~z12x1!#,

g215
1

y2
@g22y11g33~y1z22z1y2!#, g235

1

y2
@g221g33~z22y2!#, ~4.18!

g315g33z1 , g325g33z2 .

Next, we substitute the known solutions and initial conditions~4.10! into the third equation in
~3.10!. We replace the off-diagonal elements using Eq.~4.18! and obtain three linear equations fo
the diagonal elementsg11, g22, andg33,

S 0 2~XY!321 y2~XZ!3212z2~XY!321

2a~YX!321 0 ~11a!x1~YZ!3212az1~YX!321

by2~ZX!321 x1~ZY!321 bz1y2~ZX!3211x1z2~ZY!321

D S g11

g22

g33

D 5S 0
0
0
D . ~4.19!

The rankr M of the above matrix isr M%2. A reconstruction is possible ifr M52; then we can
expressg11 and g22 linearly in terms ofg33. The rank isr M51 if and only if both conditions
~4.16! are violated~i.e., a50 or a521 and simultaneouslyb50 or b→`).

The above results are particularly obvious att50 when Eq.~4.19! reduce to

S 0 1 21

2a~a11! 0 a~a11!

b 2b 0
D S g11

g22

g33

D 5S 0
0
0
D . ~4.20!

Let us now sum up the results of this section as follows.
Theorem 3: ~1! The general solution of the system of nonlinear ordinary differential eq

tions ~3.14! associated with the imprimitive action of SL~3,C! on the space SL~3,C!/P~3! is given
by the formula

v1~ t !5
g11u11g21u21g31

g13u11g23u21g33
, v2~ t !5

g12u11g22u21g32

g13u11g23u21g33
,

v3~ t !5
~u2u32u1!A11,231u3A11,331A21,33

~u2u32u1!A12,231u3A12,331A22,33
, ~4.21!
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Ai j ,kl~ t !5Ugi j gil

gk j gkl
U5gi j gkl2gil gk j .

The three constantsu1 , u2 , andu3 are related to the initial conditions for the solutionv(t).
~2! The group elementsgik(t) ~and hence also the quantitiesAi jkl ) are reconstructed from a

set of three solutionsx(t), y(t), andz(t). This fundamental set of solutions is quite generic a
is subject to just two conditions:

~i! DÞ0 with D defined in Eq.~4.6!,
~ii ! At lest two of the inequalities~4.9! hold with (XY)321 defined in Eq.~4.4!.

~3! The off-diagonal elementsgik(t), iÞk are given in Eq.~4.18!. The diagonal ones are
obtained by solving Eq.~4.19!.

Comments:~1! The reconstruction is linear in that we only need to solve linear algeb
relations ~once three solutions are known!. All elementsgik are proportional tog33(t) which
cancels out from Eq.~4.21!.

~2! A fundamental set of solutions for projective Riccati equations based on the prim
action of SL~3,C! consists of four solutions. In the imprimitive case we only need three soluti

C. The group SL „4,C…

The sl~4,C! ODEs are given in Eq.~3.17!, the general form of the superposition formula in E
~3.16!. The number of equations isn55, the dimension of the Lie algebra isr 515, hencenm
^r implies m^3.

We shall show that we do actually need preciselym53 generically chosen particular solu
tions and give an explicit reconstruction of the group element. For the group SL~4,C! we have
nm5r ~for m53) and no SL~4,C! invariant can be formed out of three solutions.

Let us assume that we know three solutionsx, y, z, each of them a five-component vector
Let us assume that the first three components of these vectors satisfy an independen

dition for t50, namely,

rankS x1~0!2z1~0! y1~0!2z1~0!

x2~0!2z2~0! y2~0!2z2~0!

x3~0!2z3~0! y3~0!2z3~0!
D 52. ~4.22!

We can then use a constant coefficient SL~4,C! transformation to take the initial conditions into

x~0!5S 1
0
0

x4~0!

x5~0!

D , y~0!5S 0
1
0

y4~0!

y5~0!

D , z~0!5S 0
0
0
0
0

D . ~4.23!

Let us make a further assumption, namely, that transformed initial conditions satisfy

x5~0!y4~0!Þ0, y4~0!1y5~0!Þx4~0!1x5~0!. ~4.24!

We can then standardize the initial conditions further, namely take them into

x~0!5S 1
0
0
0
1

D , y~0!5S 0
1
0
a
0

D , z~0!5S 0
0
0
0
0

D . ~4.25!
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The stabilizer of these three vectors in SL~4,C! consists of matrices satisfying

g~0!5S g11 0 0 g112g44

0 g22 0 g222g44

0 0 g22 g442g22

0 0 0 g44

D , a~g112g22!50, ~a21!~g112g44!50. ~4.26!

Thus, foraÞ0, aÞ1 we haveg;I and a unique reconstruction of the group elementsgik(t) is
possible. We mention that even thougha has no invariant meaning, the valuesa50 anda51
correspond to degenerate orbits of triplets of vectors. These values ofa must be excluded from
further considerations. Indeed, the stabilizer~4.26! for a50 or a51 is larger, sinceg11 and either
g22 or g44 remain free.

Let us now perform a reconstruction, using 3 solutions satisfying Eq.~4.25! with a(12a)
Þ0. Substituting the componentsxi , yi , andzi , i 51,2,3 into Eq.~3.16! we obtain

g415g44z1 , g425g44z2 , g435g44z3 ,

g125
1

x1
@g11x21g44~x2z12x1z2!#, g135

1

x1
@g11x31g44~x3z12x1z3!#,

~4.27!

g145
1

x1
@g111g44~z12x1!#, g215

1

y2
@g22y11g44~y1z22y2z1!#,

g235
1

y2
@g22y31g44~y3z22y2z3!#, g245

1

y2
@g221g44~z22y2!#.

Using the relations~3.16! w4 , w5 , and x4 , we obtain the remaining off-diagonal elements
terms of the diagonal ones~and known solutions!,

g311~z3z42z1!g345g33w4 ,

g321~z3z52z2!g345g33w5 , ~4.28!

g345
2~a221z2a44!~XY!4311a33y2~x42z4!1a44y2~XZ!431

y2@x3x42x12z3z41z1#
.

The expressions (XY)431 and (XZ)431 are defined as in Eq.~4.4!.
Finally using the expressions forx5(t), y4(t), andy5(t) we obtain three linear relations fo

the diagonal elementsgii , making it possible to expressg11, g22, andg33 linearly in terms ofg44,

a22$~x3x52x22z3z51z2!~XY!4312~x3x42x12z3z41z1!~XY!532%

1a33y2$~x3x52x22z3z51z2!~2x41z4!1~x3x42x12z3z41z1!~x52z5!%

1a44$~x3x52x22z3z51z2!@2y2~XZ!4311z2~XY!431#

1~x3x42x12z3z41z1!@y2~XZ!5322z2~XY!532#%50, ~4.29!

2a11ay2~x3x42x12z3z41z1!~YX!4311a22x1~y3y42y12z3z41z1!~XY!431

1a33x1y2@~y42z4!~x3x42x12z3z41z1!2~x42z4!~y3y42y12z3z41z1!#

1a44$ay2~x3x42x12z3z41z1!@2z1~YX!4311x1~YZ!431#

2x1~y3y42y12z3z41z1!@y2~XZ!4312z2~XY!431#%50, ~4.30!
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2a11ay2~x3x42x12z3z41z1!~YX!5321a22x1~y3y52y22z3z51z2!~XY!431

1a33x1y2@~x3x42x12z3z41z1!~y52z5!2~y3y52y22z3z51z2!~x42z4!#

1a44$ay2~x3x42x12z3z41z1!@2z1~YX!5321x1~YZ!532#

2x1~y3y52y22z3z51z2!@y2~XZ!4312z2~XY!431#%50. ~4.31!

Again, we sum up the results as a theorem.
Theorem 4: The general solution of Eqs.~3.17! based on the imprimitive action of SL~4,C!

can be expressed in terms of three generically chosen particular solutionsx(t), y(t), z(t). The
general solutionua(t), a51,...,5 is given by Eq.~3.16!, wherez1 ,...,z5 are constants representin
the initial conditions forua(t). The matrix elementsgik(t) are expressed in Eq.~4.27!,...,~4.31! in
terms of three solutions with initial conditions~4.25!, satisfyinga(a21)Þ0, a finite. h

Comments:~1! As in the case of SL~3,C! the reconstruction ofgik(t) is linear. ~2! In the
primitive case we need five solutions for SL~4,C!, in the imprimitive case only three.

D. The group SL „N,C… for N^2

Let us sum up without proof the main results valid for allN.
Theorem 5: ~1! The nonlinear ODEs with superposition formulas, based on the actio

SL(N,C) on the space SL(N,C)/P(N) are given for allN^3 in Eqs. ~3.20! and ~3.21!. The
general form of the solution is given by Eq.~3.18!.

~2! The number of equations for SL(N,C) is n52N23. The group elementsgi j (t) can be
reconstructed fromm particular generically chosen solutions with

m5H k12 for N52k11

k11 for N52k
. ~4.32!

~3! Such a fundamental set ofm solutions satisfiest constraints with

t5mn2N2115H 3k22 for N52k11

k22 for N52k
. ~4.33!

~4! The reconstruction of the group action is linear in the sense that it requires the solut
2N23 linear algebraic equations.

V. CONCLUSIONS

We mentioned in the Introduction that nonlinear ordinary equations with superposition
mulas occur in soliton theory as Ba¨cklund transformations. For equations in the AKNS family25

the underlying Lie algebra is sl~2,R! and hence the Ba¨cklund transformations are essential
Riccati equations.

As an example consider the sine-Gordon equation and the Ba¨cklund transformation, relating
two solutions,z1 andz2 ,

zi ,xy5sinzi , i 51,2, ~5.1!

z1x2z2x52a sin
z11z2

2
, z1y1z2y5

2

a
sin

z12z2

2
. ~5.2!

The point transformation

ui5tan
zi

4
, i 51,2 ~5.3!
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takes the above system into

ui ,xy5
ui

11ui
2 ~2ui ,x

2 211ui
2!, ~5.4!

u1,x5
1

11u2
2 @au21u2,x1a~12u2

2!u11~u2,x2au2!u1
2#,

u1,y5
1

11u2
2 F2

u2

a
2u2,y1

1

a
~12u2

2!u11S u2

a
2u2,yDu1

2G . ~5.5!

Equations~5.5! are Riccati equations foru1 , onceu2 is given.
Wahlquist and Estabrook have proposed26 a method for finding Ba¨cklund transformations for

a given nonlinear partial differential equation. They introduced a prolongation structure, e
tially an additional system of matrix equations. The compatibility conditions are solved by re
ing that the right-hand sides of these equations lie in a finite-dimensional Lie algebra. This
same condition that is required in Lie’s theorem on ODEs with superposition formulas.

For integrable multifield equations the Ba¨cklund transformations are based on other Lie al
bras and groups. Thus, forn-dimensional generalizations of the sine-Gordon equation and als
wave equation27,28 the Bäcklund transformations are matrix Riccati equations. Similarly, for To
field theories~two-dimensional generalized Toda lattices! Bäcklund transformations are given29,30

that can be transformed into projective Riccati equations.13 The Bäcklund transformations for
nonlinears-models are again various types of matrix Riccati equations.31–33

All the above examples, and all other Ba¨cklund transformations for soliton equations that w
are aware of, share a common feature. Namely, they have the form of nonlinear ODE
superposition formulas based on transitive and primitive group actions.

The equations presented in this article correspond to imprimitive actions. We have a groG,
in this article SL(N,C). We have a chain of subgroupsG1,G2,G3,...,Gn21,Gn[G, where
Gn21 is maximal in G. Correspondingly, we have a flag of subspac
G/Gn,G/Gn21,¯,G/G1 . The action ofG on G/Gn21 is primitive, on the other spaces in th
series it is not primitive.

The integrable systems discussed above ‘‘live’’ either on Lie groups, like thes-model, or on
the Grassmannians, on which the group acts primitively. Now, there also exist integrable sy
on flag manifolds.34,35 While the manifolds, in particular Grassmannians involved area priori,
infinite-dimensional, various reduction schemes lead to finite-dimensional ones.

It is in this direction that we hope that the equations obtained in this article will appe
Bäcklund transformations.
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We construct a nondegenerate symmetric bilinear form on quantized enveloping
algebras associated to Borcherds superalgebras. With this, we study its center and
its universalR matrix. © 1999 American Institute of Physics.
@S0022-2488~99!00106-1#

I. INTRODUCTION

Quantized enveloping algebras for Kac–Moody algebras were introduced independen
Drinfel’d ~Ref. 1! and Jimbo~Ref. 2! in their studies of the Yang–Baxter equation. The Ka
Moody algebras were generalized~Ref. 3! by Borcherds to accommodate for his study of t
monstrous moonshine~Ref. 4!. And a quantized version of the enveloping algebras for Borche
algebras~Ref. 5! was soon studied. There are also superalgebra versions of these algebras~Ref. 6!.
We shall study the structure of the center and find theR matrix for the quantized Borcherd
superalgebras.

Much work has been done on the center of quantized enveloping algebras for
dimensional semisimple Lie algebras~Refs. 7–13!, and there are Kac–Moody~Ref. 14! and
Borcherds~Ref. 15! versions also. We will mainly follow Refs. 13 and 15 to find the center
quantized Borcherds superalgebras.

As for the universalR matrix, the quantum double construction by Drinfel’d~Ref. 16! gives
its existence for any Hopf algebra satisfying some conditions. Even though there is a qu
double construction forZ2-graded Hopf algebras~Ref. 17!, we do not use it in this paper. Instea
we explicitly construct a universalR matrix and show that it satisfies the Yang–Baxter equat

The paper is organized as follows. In Sec. II, we define the quantized Borcherds supera
and give it a Hopf algebra structure. The triangular decomposition will also be mentioned. In
III, the character formula for highest weight representations will be given and we prove a le
that will be used in later sections. The next section is devoted to providing the quan
Borcherds superalgebras with a bilinear form and proving its nondegeneracy. In Sec. V, we
the Harish–Chandra homomorphism, show its injectivity, and prove some properties conc
its image. Information on the center of the quantized Borcherds superalgebra will be obtai
Sec. VI. In the last section we will give the universalR matrix and show that it satisfies th
Yang–Baxter equation.

II. QUANTUM DEFORMATION OF BORCHERDS SUPERALGEBRAS

In this section, we define the quantized Borcherds superalgebras and give it a Hopf a
structure.

Let I be a countable index set. A matrixA5(ai , j ) i , j PI with entries in the real numbers is
Borcherds–Cartan matrix if ~i! ai ,i52 or ai ,i<0 for all i PI ; ~ii ! ai , j<0 if iÞ j andai , jPZ if
ai ,i52; ~iii ! ai , j50 if and only if aj ,i50.

If there exists a diagonal matrixD5diag(siuiPI,si.0) such thatDA is symmetric, thenA is
said to besymmetrizable. If a symmetrizable Borcherds–Cartan matrixA further satisfies the

a!Electronic mail: jhong@math.snu.ac.kr
31230022-2488/99/40(6)/3123/23/$15.00 © 1999 American Institute of Physics

                                                                                                                



an

n

h

metric

l-

3124 J. Math. Phys., Vol. 40, No. 6, June 1999 Jin Hong

                    
constraints,ai , jPZ, siPZ.0 , for all i , j PI , then it is said to beintegral. We will be citing many
results from Ref. 6. The conditionai ,iP2Z appearing therein is superfluous.

A complex matrixC5(u i , j ) i , j PI is acoloring matrixif u i , ju j ,i51 for all i , j PI . Necessarily,
u i ,i561, and we sayi is evenwhenu i ,i51, odd whenu i ,i521. A Borcherds–Cartan matrixA
is colored by Cif for every i PI such thatai ,i52 andu i ,i521 we have,ai , jP2Z for all j PI .

Throughout this paper, we shall assume thatA is a symmetrizable integral Borcherds–Cart
matrix that is colored by a coloring matrixC.

Let I re5$ i PI uai ,i52% and I im5$ i PI uai ,i<0%. Also, let mI 5(mi u i PI ) be a collection of
positive integers such thatmi51 for all i PI re. We call mI a charge of the Borcherds–Carta
matrix A.

For a symmetrizable integral Borcherds–Cartan matrixA, which is colored by a coloring
matrix C, we denote byg(A,mI ,C) the Borcherds superalgebra of chargemI . ~See Ref. 6.!

We setP∨5( % i PIZhi) % ( % i PIZdi) and leth5C^ zP
∨ be the complex vector space wit

basis$hi ,di u i PI %. For i PI , we definea i in the dual spaceh* of h by settinga i(hj )5aj ,i and
a i(dj )5d i , j . SinceA is assumed to be symmetrizable, there exists a nondegenerate sym
bilinear form ~ u ! on h, given by (sihi uh)5a i(h) and (di udj )50 for i , j PI ,hPh.

The free Abelian groupQ5 % i PIZa i generated by thea i( i PI ) is called theroot lattice
associated toA. Let Q15( i PIZ>0a i andQ252Q1. The coloring matrixC5(u i , j ) gives rise to
a complex-valued mapping u:Q3Q→C3, satisfying u(a i ,a j )5u i , j , u(a,b1g)
5u(a,b)u(a,g), u(a1b,g)5u(a,g)u(b,g), for all a,b,gPQ.

We define the binomial coefficients by setting$n%qi
5@(u i ,i

n qi
n2qi

2n)/(u i ,iqi2qi
21)#, $n%qi

!

5P t51
n $t%qi

, and$n
m%qi

5$m%qi
!/ $n%qi

! $m2n%qi
!, where$0%qi

! 51 andqi5qsi. Let j i5qi2qi
21

andKi5qsihi.
Definition II.1 (Ref. 6):Supposeg5g(A,mI ,C) is the Borcherds superalgebra of chargemI

determined by the symmetrizable integral Borcherds–Cartan matrixA that is colored by a coloring
matrix C. Let q be an indeterminant. Then thequantized Borcherds superalgebra Uq(g) associ-
ated tog is the associative algebra overC(q) with 1, generated by the elementsqh(hPP∨),
ei ,k , f i ,k ( i PI , k51,2,...,mi) with the defining relations:

~R1! q051, qhqh85qh1h8, for h,h8PP∨,

~R2! qhei ,kq
2h5qa i ~h!ei ,k , for hPP∨, i PI ,k51,2,...,mi ,

~R3! qhf i ,kq
2h5q2a i ~h! f i ,k , for hPP∨, i PI , k51,2,...,mi ,

~R4! ei ,kf j ,l2u j ,i f j ,lei ,k5d i , jdk,l

1

j i
~Ki2Ki

21!, for i , j PI , k51,2,...,mi , l 51,2,...,mj ,

~R5! (
n50

12ai , j

~21!nu i , j
n u i ,i

n~n21!/2H l 2ai , j

n J
qi

ei ,k
12ai , j 2nej ,lei ,k

n 50, if ai ,i52 and iÞ j ,

~R6! (
n50

12ai , j

~21!nu i , j
n u i ,i

n~n21!/2H l 2ai , j

n J
qi

f i ,k
12ai , j 2nf j ,l f i ,k

n 50, if ai ,i52 and iÞ j ,

~R7! ei ,kej ,l2u i , jej ,lei ,k50, if ai , j50,

~R8! f i ,kf j ,l2u i , j f j ,l f i ,k50, if ai , j50.

Proposition II.2 (Ref. 6): The algebra Uq(g) has a Hopf superalgebra structure with comu
tiplication D, counit e, and antipode S, defined by

D~qh!5qh
^ qh, ~1!
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D~ei ,k!5ei ,k^ 11Ki ^ ei ,k , ~2!

D~ f i ,k!5 f i ,k^ Ki
2111^ f i ,k , ~3!

e~qh!51, ~4!

e~ei ,k!50, ~5!

e~ f i ,k!50, ~6!

S~qh!5q2h, ~7!

S~ei ,k!52Ki
21ei ,k , ~8!

S~ f i ,k!52 f i ,kKi , ~9!

for hPP∨, i PI , k51,2,...,mi .
We denote byU0 the subalgebra ofU5Uq(g) generated byqh for hPP∨ andU1 ~respec-

tively, U2) the subalgebra ofU generated by the elementsei ,k ~respectively,f i ,k) for i PI , k
51,2,...,mi . We also denote byU>0 ~respectively,U<0) the subalgebra ofU generated by the
elementsqh andei ,k ~respectively,qh and f i ,k) for hPP∨, i PI , k51,2,...,mi . For eachbPQ, let

Ub5$xPUuqhxq2h5qb~h!x, for all hPP∨%. ~10!

We similarly defineU6b
6 , U6b

>0, andU6b
<0 for bPQ1. We then have the following.

Proposition II.3 (Ref. 6):
~a! U>U2

^ U0
^ U1.

~b! U05 % hPP∨Cqh.
~c! U65 % bPQ1U6b

6 .
~d! ~R5! and ~R7! @respectively, ~R6! and ~R8!# are the fundamental relations for U1 ~re-

spectively, U2).

We giveQ1 a partial ordering by settingl>m if and only if l2mPQ1. We will also use
the notationKg5PKi

ni for g5(nia iPQ.

III. REPRESENTATIONS OF Uq„g…

For i PI define theC-linear functionalsL iPh* by

L i~hj !5d i , j L i~dj !50, for all j PI . ~11!

Define the lattices:

P5$lPh* ul~hi !,l~di !PZ,; i PI %, ~12!

P̄5S %
i PI

Za i D % S %
i PI

ZL i D . ~13!

P is called theweight latticeof g. An elementlPP is said to be adominant integral weightif

l~hi !PZ>0 , for all i PI re, ~14!

l~hi !P2Z>0 , for all i PI reùI odd, ~15!

where I odd denotes the set ofi PI such thatu i ,i521. Let P1 denote the set of all dominan
integral weights.
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Seth̄* 5C^ zP̄. Then the nondegenerate symmetric bilinear form onh gives an isomorphism
betweenh andh̄* hence also induces a bilinear form onh̄* . We may extend this bilinear form to
a symmetric bilinear form onh* . We extend it so that it satisfies (lua i)5l(sihi) and (luL i)
5l(sidi) for everylPh* . Write l'm if ( lum)50.

For eachi PI such thatai ,iÞ0, we define thesimple reflection riPGL(h* ) on h* by

r i~l!5l2
2

ai ,i
l~hi !a i . ~16!

The subgroupW of GL(h* ) generated byr i( i PI re) is called theWeyl groupof g(A,mI ,C). We
denote byl :W→Z>0 the natural length function.

Let R be the family of all imaginary simple roots, each root occurring as many times a
multiplicity, i.e., mi times for a i . For lPP1, define R(l) to be the set of allm5( j 51

r a i j

1(k51
s l i k

b i k
PQ1, wherea i j

~resp.,b i k
) are distinct even~resp., odd! roots inR, satisfying~i!

a i j
'l,b i k

'l, for all j,k; ~ii ! a i j
'b i k

, for all j,k; ~iii ! a i j
'a i k

,b i j
'b i k

, for j Þk; ~iv! b i k
'b i k

, if
l i k

>2. In particular, 0PR(l). For m as above, we define

ht~m!5r 1 (
k51

s

dik .

SupposerPh* satisfiesr(hi)5 1
2ai ,i for all i PI .

Proposition III.1 (Refs. 18 and 19):Let lPP1. Denote by Mq(l) the Verma module for
Uq(g) with highest weightl and let Vq(l) be the irreducible highest weight module over Uq(g)
with highest weightl. Then,

chMq~l!5
el

PaPF2„12u~a,a!ea
…

u~a,a!dim ga
5el (

bPQ1
~dimU2b

2 !e2b, ~17!

chVq~l!5
(wPW,mPR~l!~21! l ~w!1ht~m!ew~l1r2m!2r

PaPF2„12u~a,a!ea
…

u~a,a!dim ga
. ~18!

In this formula,F2 is theset of all negative roots.
The following is a corollary to this proposition.
Lemma III.2: Letg5( i PInia iPQ1. SupposelPP1, l(hi).0 for all i PI im and l(hi)

>ni for all i PI re. Then we have a linear isomorphism U2g
2 →̃Vq(l)l2g given by u°uvl .

Proof: U2g
2 →Mq(l)l2g is surjective, soU2g

2 →Vq(l)l2g is also surjective. Hence, it suf
fices to show dimU2g

2 5dimVq(l)l2g . Since (a i ul)5l(sihi)5sil(hi).0 for all i PI im, no
nonempty subsetF of R satisfiesF'l, and so

chVq~l!5
(wPW~21! l ~w!ew~l1r!2r

PaPF2„12u~a,a!ea
…

u~a,a!dim ga
, ~19!

5S (
wPW

~21! l ~w!ew~l1r!2rD S (
bPQ1

~dimU2b
2 !e2bD . ~20!

Therefore, it suffices to show that ifw(l1r)2r2b5l2g for somewPW, bPQ1, thenw
51.

We will show that ifwÞ1, theng1w(l1r)2(l1r)¹Q1 by using induction on the length
of w.

If w5r i( i PI re), then

g1r i~l1r!2~l1r!5g1l1r2„l~hi !1r~hi !…a i2~l1r!5g2„l~hi !11…a i¹Q1.

If w5w8r i( i PI re) with l (w)5 l (w8)11, then
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g1w~l1r!2~l1r!5g1w8r i~l1r!2~l1r!

5g1w8~l1r2„l~hi !1r~hi !…a i !2~l1r!

5„g1w8~l1r!2~l1r!…2„l~hi !11…w8a i¹Q1.

This completes the proof. h

IV. THE BILINEAR FORM ON Uq„g…

IV.1. The bilinear form on U>03U<0. In this section, we define a bilinear form onU>0

3U<0, which is nondegenerate when restricted toUb
13U2b

2 , bPQ1.
For fP(Ub)* , cP(Ug)* , xPUb , and yPUg , we define (f ^ c)(x^ y)

5u(2g,b)f(x)c(y). With this, and the Hopf algebra structure onUq(g), we can give an
algebra structure to% aPQ1(Ua

>0)* by setting (f1f2)(x)5(f1^ f2)„D(x)… for f1 ,f2

P % aPQ1(Ua
>0)* andxPU>0. For hPP∨ and i PI , k51,2,...,mi , we define the linear function

als fh ,c i ,kP % aPQ1(Ua
>0)* by

fh~xqh8!5e~x!q2~huh8! ~xPU1,h8PP∨!, ~21!

c i ,k~xqh!50 ~xPUb
1 ,bPQ1\$a i%!, ~22!

c i ,k~ei ,lq
h!5dk,l . ~23!

Proposition IV.1: There exists an algebra homomorphism,

z:U<0→ %
aPQ1

~Ua
>0!* , ~24!

given by

z~qh!5fh , ~hPP∨!, ~25!

z~ f i ,k!52
1

j i
c i ,k ~ i PI ,k51,2,...,mi !. ~26!

Proof: By Proposition II.3, we have only to check that the relations~R1!, ~R3!, ~R6!, and~R8!
are preserved under the mapz. Other cases being easy, we just sketch the~R6! part.

Defineei ,k
(n)5ei ,k

n /$n%qi
!. We may check by induction onn that

D~ei ,k
~n!!5 (

s1t5n
qi

stei ,k
~s!Ki

t
^ ei ,k

~ t ! .

This shows

„~D ^ 1!+D…~ei ,k
~n!!5 (

r 1s1t5n
qi

rs1st1trei ,k
~r !Ki

s1t
^ ei ,k

~s!Ki
t
^ ei ,k

~ t ! .

We again use induction to prove

c i ,k
n ~ei ,k

~n!!5~u i ,iqi !
n~n21!/2.

With this, it is possible to show
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c i ,k
N2nc j ,lc i ,k

n ~ei ,k
~N2m!ej ,lei ,k

~m!!5( u i ,i
A8u i , j

B8qi
C8HN2n

a J
qi

H n
bJ

qi

,

with the summation over non-negative integersa, b, g, d such thata1b5N2m, g1d5m,
a1g5N2n, andb1d5n, and where

A85bg1~N2n!n1 1
2~N2n!~N2n21!1 1

2n~n21!,

B85b2g1~N2n!2n,

C85ab1gd12bg1~b1g!ai , j1
1
2~N2n!~N2n21!1 1

2n~n21!.

Noting

HN
n J

qi

HN2n
a J

qi

H n
N2m2aJ

qi

5 H N
mJ

qi

HN2m
b J

qi

Hm
d J

qi

,

we can calculate

S (
n50

12ai , j

~21!nu i , j
n u i ,i

n~n21!/2H12ai , j

n J
qi

c i ,k
12ai , j 2nc j ,lc i ,k

n D ~ei ,k
~N2m!ej ,lei ,k

~m!!

5 (
n50

N

( u i ,i
A u i , j

B qi
CH N

mJ
qi

HN2m
b J

qi

Hm
d J

qi

,

with the second summation over non-negative integers satisfying the same conditions as
and where

A5 1
2N~N21!1mb1 1

2b~b21!1 1
2d~d21!,

B5N2m,

C5„m2mN1 1
2N~N21!…1~m112N!b1~m21!d.

This can be written as a product of two sums that simplifies to zero. h

Define a bilinear form (u ):U>03U<0→C(q) by

~xuy!5z~y!~x! ~xPU>0,yPU<0!. ~27!

For nPZ.0 , we denote byDn :U→U ^ (n11), the algebra homomorphism defined byD1

5D, Dn5(D ^ 1)+Dn21 , and we write

Dn~x!5(
~x!n

x~0! ^ x~1! ^¯^ x~n! . ~28!

For homogeneous elementsxiPUb i

>0, yiPU2g i

<0 ( i 51,2), we define (x1^ x2uy1^ y2)5u(b2 ,

2g1)(x1uy1)(x2uy2) and extend it by linearity. ForxPUb , yPUg , we will write u(x,y) to mean
u~b,g! and defines:U ^ U→U ^ U by s(x^ y)5u(x,y)y^ x on homogeneous elements an
extend it by linearity.

Proposition IV.2: The bilinear form~ u ! on U>03U<0 defined by (27) satisfies

~xuy1y2!5„D~x!uy1^ y2… ~xPU>0,y1 ,y2PU<0!, ~29!

~x1x2uy!5„s~x1^ x2!uD~y!… ~x1 ,x2PU>0,yPU<0!, ~30!
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~qhuqh8!5q2~huh8! ~h,h8PP∨!, ~31!

~qhu f i ,k!50, ~32!

~ei ,kuqh!50, ~33!

~ei ,ku f j ,l !52
1

j i
d i , jdk,l , ~34!

for i , j PI , k51,2,...,mj .
Moreover, the bilinear form on U>03U<0 satisfying the above equations is unique.
Proof: Everything including uniqueness is straightforward, except for~30!. It is proved by

induction. Here we just show the induction part. We suppress the summation signs for simp
Assume (x1x2uyi)5u(x1,x2)(x2

^ x1uD(yi)) for i 51,2. Then

~x1x2uy1y2!5z~y1!z~y2!~x1x2!

5z~y1! ^ z~y2!„~x~0!
1

^ x~1!
1 !•~x~0!

2
^ x~1!

2 !…

5z~y1! ^ z~y2!~u~x~1!
1 ,x~0!

2 !x~0!
1 x~0!

2
^ x~1!

1 x~1!
2 !

5u~x~1!
1 ,x~0!

2 !u~y2,x~0!
1 !u~y2,x~0!

2 !~x~0!
1 x~0!

2 uy1!~x~1!
1 x~1!

2 uy2!

5u~x~0!
1 ,x~1!

1 !u~x~0!
1 ,x~1!

2 !u~x~0!
2 ,x~1!

2 !u~x~0!
1 ,x~0!

2 !u~x~1!
1 ,x~1!

2 !

3~x~0!
2

^ x~0!
1 uy~0!

1
^ y~1!

1 !~x~1!
2

^ x~1!
1 uy~0!

2
^ y~1!

2 !

5u~x~0!
1 ,x~1!

1 !u~x~0!
1 ,x~1!

2 !u~x~0!
2 ,x~1!

2 !~x~0!
2 uy~0!

1 !~x~0!
1 uy~1!

1 !~x~1!
2 uy~0!

2 !~x~1!
1 uy~1!

2 !

5u~y~1!
1 ,y~0!

2 !„D~x2!uy~0!
1

^ y~0!
2
…„D~x1!uy~1!

1
^ y~1!

2
…

5u~y~1!
1 ,y~0!

2 !u~y~0!
1 y~0!

2 ,x1!~x2
^ x1uy~0!

1 y~0!
2

^ y~1!
1 y~1!

2 !

5u~x1,x2!„x2
^ x1u~y~0!

1
^ y~1!

1 !•~y~0!
2

^ y~1!
2 !…5u~x1,x2!„x2

^ x1uD~y1y2!….

This completes the proof. h

Lemma IV.3:~a! (S(x)uS(y))5(xuy); ~b! (xqhuyqh8)5q2(huh8)(xuy) (h,h8PP∨, xPU1, y
PU2); ~c! (Ub

1uU2g
2 )50, if gÞb.

Proof: To prove~a!, we set (u )85„S()uS()… and show (u )8 satisfies conditions of Propositio
IV.2. The remaining two are easy. h

Lemma IV.4: For xPU>0, yPU<0, which are homogeneous, we have

u~x,y!yx5 (
~x!2 ,~y!2

Qxy„x~0!uS~y~0!!…~x~2!uy~2!!x~1!y~1! ~35!

and

xy5 (
~x!2 ,~y!2

u~x~1! ,y~1!!Qxy~x~0!uy~0!!„x~2!uS~y~2!!…y~1!x~1! , ~36!

with Qxy5u(x(1) ,y(0))u(x(2) ,y(0))u(x(2) ,y(1)).
Proof: By substituting~35! onto the right-hand side of~36!, we can show that~35! implies

~36!.
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To prove ~35!, we use induction ony and reduce the problem to showing this true fory
5qh andy5 f i ,k . The casey5qh is easy. The casey5 f i ,k turns out to be equivalent to showin

u~x, f i ,k! f i ,kx5(
~x!1

$~x~1!u f i ,k!x~0!1u~x~1! , f i ,k!~x~1!uKi
21!x~0! f i ,k

2u~x~1! , f i ,k!~x~0!u f i ,k!Ki
21x~1!%, ~37!

which is proved by induction on the length ofx. h

Lemma IV.5: LetbPQ1\$0% and yPU2b
2 . If ei ,ky5u(a i ,2b)yei ,k , for all i PI , k

51,2,...,mi , then y50.
Proof: ChooselPP1 satisfying the assumptions of Lemma III.2. Sinceei ,k(y•vl)5u(a i ,

2b)y(ei ,k•vl)50 for all i PI , k51,2,...,mi , and wt(y•vl)5l2b<l, y•vl generates a prope
submodule ofVq(l). Hencey•vl50. Lemma III. 2 now saysy50. h

Theorem IV.6: For bPQ1, the bilinear form ( u ):U>03U<0→C(q) defined by~27! is
nondegenerate when restricted to Ub

13U2b
2 .

Proof: Since dimUb
15dimU2b

2 , nondegeneracy on one side implies the nondegenerac
the other side. So we will just prove the following statement:

if yPU2b
2 and ~Ub

1uy!50, then y50. ~38!

We use induction onb.
The caseb50 or a i is easy.
Assume ~38! is true for all g,b with bPQ1\($0%ø$a i% i PI). Recall the notationKg

5q( i PInisihi for g5( i PInia iPQ. By definition ofD, we see that

D~y!5 (
0<g<b

yg~1^ K2g!, ygPU2g
2

^ U2~b2g!
2 , ~39!

with y051^ y andyb5y^ 1. Fix 0,g,b. For anyuPUb2g
1 andvPUg

1 , we have

~v ^ uuyg!5„v ^ uuyg~1^ K2g!…, ~40!

5„v ^ uuD~y!…, ~41!

5u~g,b2g!~uvuy!, by ~30!, ~42!

50. ~43!

Hence (Ug
1

^ Ub2g
1 uyg)50. This impliesyg50 by our induction hypothesis. ThereforeD(y)

5y^ K2b11^ y. We apply Lemma IV.4 to

D2~ei ,k!5ei ,k^ 1^ 11Ki ^ ei ,k^ 11Ki ^ Ki ^ ei ,k , ~44!

D2~y!5y^ K2b ^ K2b11^ y^ K2b11^ 1^ y, ~45!

and get

u~a i ,2b!yei ,k5ei ,ky, for all i PI . ~46!

Hence,y50 by Lemma IV.5. h

IV.2. The Killing form. Recall from Proposition II.3 thatU>U1
^ U0

^ S(U2)>U2
^ U0

^ S(U1). Using the bilinear form defined in the previous section, we define a new bilinear f

^ u &:U3U→C~q1/2!,
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by setting

^x1qh1S~y1!uy2qh2S~x2!&5~x1uy2!~x2uy1!q2~h1uh2!/2u~y1 ,y2!u~y1 ,x2!, ~47!

for homogeneousxiPU1, yiPU2, hiPP∨ and extending by linearity.
For homogeneousu,vPU, we define

ad~u!•v5(
~u!1

u~u~1! ,v !u~0!vS~u~1!!, ~48!

v•ad̃~u!5(
~u!1

u~v,u~0!!S~u0!vu~1! . ~49!

It is easy to check that these define left and right actions ofU on U.
The bilinear form onU defined above isinvariant, in that we have the following.
Proposition IV.7:For u,v,v8PU,

^ad~u!•vuv8&5^vuv8•ad̃~u!&u~u,v !u~u,v8!. ~50!

Proof: It suffices to check the formula foru5qh9(h9PP∨), ei ,k , f i ,k ( i PI , k51,2,...,mi) and
for v5xqhS(y) and v85y8qh8S(x8) with xPUb

1 , x8PUb8
1 , yPU2g

2 , y8PU2g8
2 (b,b8,g,g8

PQ1). Since the caseu5 f i ,k is similar to the caseu5ei ,k , we will omit the caseu5 f i ,k .
~i! u5qh9. The left-hand side is

^ad~u!•vuv8&5^qh9vq2h9uv8&5q~b2g!~h9!^vuv8&,

and the right-hand side is

^vuv8•ad̃~u!&5^vuq2h9v8qh9&5q~g82b8!~h9!^vuv8&.

Since^vuv8&Þ0 only whenb5g8 andb85g, we are done.
~ii ! u5ei ,k . Applying Lemma IV.4, we obtain

ad~u!•v5ei ,kxqhS~y!1u~a i ,b!q~a i ub!xKiq
hS~ei ,ky!

5ei ,kxqhS~y!1u~a i ,b!q~a i ub!(
~y!2

$A2B1C%,

where

A5~ei ,kuy~0!!„1uS~y~2!!…xKiq
hS~y~1!!,

B5qa i ~h!~Ki uy~0!!„1uS~y~2!!…xei ,kq
hS~y~1!…,

C5u~ei ,k ,y~1!!~Ki uy~0!!„ei ,kuS~y~2!!…xqhS~y~1!!,

and

v8•ad̃~u!52u~b82g8,a i !q
~g82a i ua i !ei ,ky8Ki

21qh8S~x8!2u~b8,a i !q
~g82b8ua i !y8qh8S~ei ,kx8!

52u~b82g8,a i !q
~g82a i ua i ! (

~y8!2

$A82B81C8%2u~b8,a i !q
~g82b8ua i !y8qh8S~ei ,kx8!,

where
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A85~ei ,kuy~0!8 !„1uS~y~2!8 !…y~1!8 Ki
21qh8S~x8!,

B85u~a i ,b82g8!q~a i ua i !q2a i ~h8!~Ki uy~0!8 !„1uS~y~2!8 !…y~1!8 qh8S~x8ei ,k!,

C85u~ei ,k ,y~1!8 !~Ki uy~0!8 !„ei ,kuS~y~2!8 !…y~1!8 qh8S~x8!.

There are only two cases to consider:~i! g85b1a i and g5b8; ~ii ! g85b and g5b8
1a i .

Since the latter case is similar to the former, we will only check the first case. Assumg8
5b1a i and g5b8. Then, in order to haveBÞ0, we must havey(0) ,y(2)PU0 and y(1)

PU2g8
2 . Similarly, A8Þ0 implies y(0)8 PU2a i

<0 , y(1)8 PU2b
<0, and y(2)8 PU0. In this case, we ge

y(1)8 5 ỹ18Ki
21 for someỹ18PU2b

2 . Also, C8Þ0 impliesy(0)8 PU0, y(1)8 PU2b
<0, andy(2)8 PU2a i

<0 . In

this case, we havey(2)8 5 ỹ28Kg82a i

21 for someỹ28PU2a i

2 . We need to prepare one more fact. Usi

Proposition IV.2, we obtain the following formula:

~x1x2x3uy!5(
~y!2

u~x1x2 ,x3!u~x1x2 ,y~0!!u~x1 ,x2!u~x1 ,y~1!!~x3uy~0!!~x2uy~1!!~x1uy~2!!,

for any xiPU1 ( i 51,2,3) andyPU2. From this formula, we get

~x8uy!5~x8Ki uy!5(
~y!2

~Ki uy~0!!~x8uy~1!!~1uy~2!!,

~xei ,kuy8!5 (
~y8!2

u~x,ei ,k!u~x,y~0!8 !~ei ,kuy~0!8 !~xuy~1!8 !~1uy~2!8 !,

~ei ,kxuy8!5~ei ,kxKi uy8!5 (
~y8!2

u~ei ,k ,x!u~ei ,k ,y~1!8 !~Ki uy~0!8 !~xuy~1!8 !~ei ,kuy~2!8 !.

Now, we obtain

^ad~u!•vuv8&5^ei ,kxqhS~y!uy8qh8S~x8!&

2u~a i ,b!q~a i ub!qa i ~h!(
~y!2

~Ki uy~0!!^xei ,kq
hS~y~1!!uy8qh8S~x8!&

5u~g,g82b8!q2~huh8!/2

3H ~ei ,kxuy8!~x8uy!2u~a i ,b!q~a i ub!qa i ~h!(
~y!2

~Ki uy~0!!~xei ,kuy8!~x8uy~1!!J
5u~g,g82b8!q2~huh8!/2 (

~y!2 ,~y8!2

~Ki uy~0!!~x8uy~1!!~xuy~1!8 !

3$~Ki uy~0!8 !~ei ,kuy~2!8 !2u~x,y~0!8 !q~a i ub!qa i ~h!~ei ,kuy~0!8 !%

and
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^vuv8•ad̃~u!&52u~b82g8,a i !q
~g82a i ua i ! (

~y8!2

H ( ei ,kuy~0!8 )^xqhS~y!uy~1!8 Ki
21qh8S~x8!&

1u~ei ,k ,y~1!8 !~Ki uy~0!8 !~ei ,kuS~y~2!8 !!^xqhS~y!uy~1!8 qh8S~x8!&J
5u~b82g8,a i !u~g,b2b8!q2~huh8!/2q~bua i ! (

~y8!2

H u~ei ,k ,y~1!8 !~Ki uy~0!8 !

3~ei ,kKi
21u ỹ28Kg82a i

21
!~xuy~1!8 !~x8uy!2~ei ,kuy~0!8 !~xu ỹ18!~x8uy!qa i ~h!J ,

5u~b82g8,a i !u~g,b2b8!q2~huh8!/2 (
~y!2 ,~y8!2

~Ki uy~0!!~x8uy~1!!~xuy~1!8 !

3 H u~ei ,k ,y~1!8 !~Ki uy~0!8 !~ei ,kuy~2!8 !2q~a i ub!qa i ~h!~ei ,kuy~0!8 !J .

Comparing these two, we get the desired formula. h

This proposition allows us to define a rightU-module structure on some subalgebra ofU* .
Definez:U→U* by setting

@z~u!#~v !5^vuu&, ~51!

for u,vPU. Here, the dual space on the right should be viewed as the set of linear maps frU
to C(q1/2). For z(u)Pz(U), xPU, definez(u)•x by,

@z~u!•x#~v !5u~u,x!u~v,x!@z~u!#„ad~x!•v….

Proposition IV.7 allows us to checkz(u)•x5z„u•ad̃(x)…. So this gives a rightU-module structure
on z(U) andz:U→z(U) becomes aU-module homomorphism.

Proposition IV.8: The bilinear form̂ u & is nondegenerate. Hence, the mapz is injective.
Proof: Let uPU2a

2 U0S(Ub
1) with ^vuu&50 for all vPUa

1U0S(U2b
2 ). It suffices to show

u50. For eachgPQ12$0%, choose a basis$ui
g% i of Ug

1 . And let $v i
g% i be a basis ofU2g

2 dual
to $ui

g% i with respect to the nondegenerate bilinear form~ u !. Notice that the elementsui
aqhS(v j

b)
with hPP∨ and i, j going over appropriate indices, form a basis forUa

1U0U2b
2 . Similarly, the

elementsvk
aqh8S(ul

b) form a basis forU2a
2 U0Ub

1 . Writing u5(k,h,lak,h,lvk
aqh8S(ul

b) with
ak,h,lPC(q), and using

^ui
aqhS~v j

b!uvk
aqh8S~ul

b!&5d i ,kd j ,lq
2~huh8!/2u~b,a!u~b,b!,

we arrive at

(
h8PP∨

ak,h8,lq
2~huh8!/250,

for eachk, l, andhPP∨. Now, each maph°q2(huh8)/2 is a group homomorphism fromP∨ to the
multiplicative groupC(q1/2)3. Since q1/2 is not a root of unity, distincth8 produces distinct
homomorphisms. So, by Artin’s Theorem on linear independence of characters, everyak,h8,l50.
We haveu50, as claimed. h

V. HARISH–CHANDRA HOMOMORPHISM

We denote the center ofU by z. For eachi PI with ai ,iÞ0, define thesimple reflection ri
PGL(h) by
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r i~h!5h2
2

ai ,i
a i~h!hi ,

and letW̃5^r i u i PI ,ai ,iÞ0&,GL(h). Let (U0)W̃ be the subspace ofU0 consisting of the element
ShPP∨chqh

„chPC(q)… such thatchÞ0 impliesw(h)PP∨ andcw(h)5ch for any wPW̃.
We define an algebra automorphismf:U0→U0 by settingf(qh)5q2r(h)qh for hPP∨. The

Harish–Chandra homomorphismj:z→U0 is the restriction toz of the map

U→̃U2
^ U0

^ U1 ——→
e ^ 1^ e

U0→
f

U0.

For later use, we define the algebra homomorphismxl :U0→C(q) for eachlPP1 by xl(qh)
5ql(h).

Proposition V.1:~a! j is an algebra homomorphism. ~b! j is injective.
Proof: We will just prove~b!. Let zPz be such thatj(z)50. Writing z5SbPQ1zb with zb

PU2b
2 U0Ub

1 , we see thatz050. Fix any bPQ1 minimal with the property thatzbÞ0. Also
choose basis$yr%r and $xs%s of U2b

2 and Ub
1 , respectively. We may writezb5S r ,syrur ,sxs for

someur ,sPU0. Then

05ei ,kz2zei ,k5 (
gÞb

~ei ,kzg2zgei ,k!1(
r ,s

„ei ,kyr2u~a i ,2b!yrei ,k…ur ,sxs

1(
r ,s

yr„u~a i ,2b!ei ,kur ,sxs2ur ,sxsei ,k….

Recalling the minimality ofb, we see that only the second term on the right belongs
U2(g2a i )

2 U0Ug
1 . So we haveS r ,s„ei ,kyr2u(a i ,2b)yrei ,k…ur ,sxs50. $xs%s was chosen to be a

basis, soei ,kS ryrur ,s5u(a i ,2b)S ryrei ,kur ,s for all i PI ands.
Let vlPVq(l) denote the highest weight vector. Setv5S rxl(ur ,s)yrvl . Then ei ,kv

5u(a i ,2b)S ryrei ,kur ,svl50 for all i PI , so the irreducibility ofVq(l) saysv50. Choosing an
appropriatelPP1, we may use Lemma III.2 and sayS rxl(ur ,s)yr50. Again,$yr% r was a basis,
soxl(ur ,s)50 for all r,s. By choosing a suitable set ofl, we may showur ,s50 for all r,s and we
havezb50. This contradicts the choice ofzb . h

We now try to close in the image ofj. For eachJ,$( i ,k)u i PI ,k51,2,...,mi%, let UJ

5^ei ,k , f i ,k ,U0u( i ,k)PJ&. We denote byzJ the center of the algebraUJ and byjJ :zJ→U0 the
Harish–Chandra homomorphism forUJ . Let UJ

1 ~respectively,UJ
2) be the subalgebra ofUJ

generated byei ,k ~respectively,f i ,k) with ( i ,k)PJ, and set

RJ
15$xPU1u~xuUJ

2!50%5$xPU1u~xuUJ
2U0!50%, ~52!

RJ
25$yPU2u~UJ

1uy!50%5$yPU2u~U0UJ
1uy!50%, ~53!

RJ5RJ
2U0U11U2U0RJ

1 . ~54!

The following may be proved as in Ref. 15.
Lemma V.2:~a! U5UJ% RJ ; ~b! UJRJUJ,RJ ; ~c! (e ^ 1^ e)(RJ)50.
Define Ur

05 % hC(q)qh, where the direct sum is over allhPP∨, satisfying ~i! a i(h)
Psiai ,iZ, if i PI ev; ~ii ! a i(h)P2siai ,iZ, if i PI odd andai ,iÞ0.

Proposition V.3:~a! Im(j),(U0)W̃. ~b! Im(j),Ur
0. ~c! Im(j),Im(jJ).

Proof: ~a! Let zPz. Let vlPMq(l) be the highest weight vector. Then,zvl

5xl1r„j(z)…vl . Sincez commutes with every element ofU, z acts asxl1r„j(z)… on every
element ofMq(l). Now, fix i PI such thatai ,iÞ0. We may calculate
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ei ,kf i ,k
n 5u i ,i

n f i ,k
n ei ,k1u i ,i

n21f i ,k
n21 1

j i
S 12u i ,i

2nqi
2nai ,i

12u i ,i
21qi

2ai ,i
Ki2

12u i ,i
n qi

nai ,i

12u i ,iqi
ai ,i

Ki
21D .

So that, for eachlPP satisfyingn(l)ª(2/ai ,i)l(hi)PZ>0 , we can check thatf i ,k
n(l)11vl is a

highest weight vector. Its weight is

l2S 2

ai ,i
l~hi !11Da i5l2

2

ai ,i
~l1r!~hi !a i5r i~l1r!2r.

The argument at the beginning of this proof applies to any highest weight vector, and we

xl1r„j~z!…5x r i ~l1r!
„j~z!…,

under the condition (2/ai ,i)l(hi)PZ. Checkingx r im
(qh)5xm(r iq

h), for any mPh* , the above
may now be written as

xl1r„j~z!2r ij~z!…50,

for every lPP satisfyingl(hi)P(ai ,i /2)Z>0 . By choosing a suitable set ofl, we may show
j(z)5r ij(z).

~b! Let z5SbPQ1zbPz with zbPU2b
2 U0Ub

1 . Set x5Sn50
` zna i

and y5z2x. Then z5x

1y with xPU $( i ,1)% andyPR$( i ,1)% . Looking at

05ei ,kz2zei ,k5~ei ,kx2xei ,k!1~ei ,ky2yei ,k!,

with Lemma V.2 in mind, we see thatxPz$( i ,1)% . By the results of Section VI.1, all of which ma
be obtained by direct calculation, we have~i! z0P^Ki ,qhua i(h)50& if i PI ev; ~ii ! z0

P^Ki
2,qhua i(h)50& if i PI odd andai ,iÞ0.

The result follows.
~c! For zPz, write z5x1y with xPUJ and yPRJ . As in the proof for~b!, we may show

xPzJ . So we havej(z)5j(x)1j(y)5j(x)5jJ(x)PIm(jJ). h

VI. THE CENTER OF Uq„g…

VI.1. Rank 1.In this section, we list the center for the case when the index set is of size 1
results may be obtained by direct calculation using induction after choosing a suitable ba
U>U2

^ U0
^ U1.

If ai ,iÞ0,u i ,i51, define

Ci5 f i ,1ei ,11
1

j i
S 1

12q2siai ,i
Ki2

1

12qsiai ,i
Ki

21D .

If ai ,iÞ0,u i ,i521, define

Ci5 f i ,1
2 ei ,1

2 1
1

j i
f i ,1S 12qsiai ,i

11qsiai ,i
Ki2

12q2siai ,i

11q2siai ,i
Ki

21Dei ,12
1

j i
2 H 1

~11q2siai ,i !2 Ki
2

1
1

~11qsiai ,i !2 Ki
22J .

If hPP∨ satisfya i(h)Þ0, define

Cih5 f i ,1q
hei ,11

1

j i

1

12q2a i ~h! qh~Ki2Ki
21!.
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Proposition VI.1:~a! If J5$( i ,1)% andai ,iÞ0, thenzJ5^Ci ,qhuhPP∨,a i(h)50&.
~b! If J5$( i ,1)%, ai ,i50, and u i ,i51, thenzJ5^qhuhPP∨,a i(h)50&,U0.
~c! If J5$( i ,1)%, ai ,i50, and u i ,i521, thenzJ5^Cih ,qh8uh,h8PP∨,a i(h)Þ0,a i(h8)50&,
VI.2. Finite type. In this section, we give a structure theorem for the center ofUq(g) when the

Borcherds–Cartan matrix is of finite type. We take the Borcherds–Cartan matrix to be of
type throughout this section. To simplify arguments, we redefine

P∨5 %
i PI

Zhi ,

h5 %
i PI

Chi ,

for this section. Notice that the bilinear form~ u ! is still nondegenerate on the redefinedh.
The irreducible highest weight module has a natural grading,

Vq~l!5 %
aPQ1

Vq~l!l2a .

Define a maphPEnd„Vq(l)… by setting h(v)5u(a,a)v for vPVq(l)l2a . When the
Borcherds–Cartan matrixA is of finite type, it is known~Ref. 20! that the irreducible highes
weight moduleV(l) overg(A) is finite dimensional forlPP1. Since the classical limit~Ref. 6!
of Vq(l) is V(l),Vq(l) is also of finite dimension whenlPP1. So we may define thesuper-
trace for xPUq(g) acting onVq(l) by

str„x;Vq~l!…5tr„h+x;Vq~l!…. ~55!

For homogeneous elementsx,yPU, we can easily check

str~xy!5u~x,y!str~yx!. ~56!

Lemma VI.2: uPz if and only if u•ad̃(x)5e(x)u for all xPU.
Proof: Let uPz. Then,uPU0 and

u•ad̃~x!5(
~x!1

S~x~0!!ux~1!5u(
~x!1

S~x~0!!x~1!5e~x!u.

Conversely, ifu•ad̃(x)5e(x)u for all xPU,

q2huqh5u•ad̃~x!5e~qh!u5u.

So uPU0 , and we have

05e~ei ,k!u5u•ad̃~ei ,k!52Ki
21ei ,ku1Ki

21uei ,k .

This showsei ,ku5uei ,k . We may similarly showf i ,ku5u fi ,k , and henceuPz. h

For eachlPP1, define f lPU* by

f l~u!5str„uK2r
21;Vq~l!…. ~57!

Let n:h→h* denote the isomorphism given by the nondegenerate symmetric bilinear form~ u !.
Define

Q̂5n~P∨!5 %
i PI

Z
1

si
a i .
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Recall the mapz:U→U* defined in~51!.
Lemma VI.3:For lPP1, f lPIm(z) if and only if lP 1

2Q̂.
Proof: From Proposition IV.8, we see that the image ofz is the restricted dual ofUq(g). So

Im~z!5~ %
bPQ1

~U2b
2 !* ! ^ ~ %

mP ~1/2!Q̂

C~q!xm! ^ ~ %
bPQ1

~Ub
1!* !,

under the identificationU>U2
^ U0

^ U1. The finite dimensionality ofVq(l) allows us to show
f lPIm(z) if and only if lP 1

2Q̂. h

The next proposition gives elements of the center.

Proposition VI.4: For eachlPP1ù 1
2Q̂, we have zlªz21( f l)Pz.

Proof: Recall from the theory of finite-dimensional simple Lie algebras thatr may be written
as a half sum of positive roots. Since the simple roots for the super case is identical
nonsuper case, we have 2rPQ1 in either case. Hence, in the notation previously given,K2r is a
well-defined element ofU0. Using the fact thatK2r

21xK2r5S2(x) for any xPU and using the
property of supertrace given by~56!, we have, for anyuPU,

~ f l•x!~u!5 f l„ad~x!•u…u~u,x!

5(
~x!1

str„x~0!uS~x~1!!K2r
21;Vq~l!…u~x~1! ,u!u~u,x!

5(
~x!1

str„uS~x~1!!K2r
21x~0! ;Vq~l!…u~x~0! ,x~1!!

5strS uSS (
~x!1

S~x~0!!x~1!DK2r
21;Vq~l! D 5e~x!str„uK2r

21;Vq~l!…5e~x! f l~u!.

Thus f l•x5e(x) f l . Recall from Proposition IV.8 thatz is injective, and notice

f l•x5z„z21~ f l!…•x5z„z21~ f l!•ad̃~x!….

This showsz21( f l)•ad̃(x)5e(x)z21( f l). From Lemma VI.2, we getz21( f l)Pz. h

We finally show that the above elements generate the whole center.
Theorem VI.5: Suppose that the Borcherds–Cartan matrix A5(ai , j ) i , j PI is indecomposable

and of a finite type. Then, j:z→(Ur
0)W̃ is an isomorphism.

Proof: Let us calculatej(zl). We extend the notationKb previously introduced tobPQ̂ by
settingK (1/si )a i

5qhi. We have the commutative diagram,

e ^ id^ e
U →

z

U*
↓ ↓

U0 → ~U0!* ,

where the right vertical arrow is the restriction map and the lower horizontal arrow is give
Km°x2m/2 . Now, as maps onU0,

f l5 (
m<l

u~l2m,l2m!dim„V~l!m…q
22~rum!xm .

This shows
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j~zl!5 (
m<l

u~l2m,l2m!dim„V~l!m…K22m , ~58!

for lPP1ù 1
2Q̂.

Define P̂ to be the set of elementsmPh* such thatm(hi)PZ if i PI is even andm(hi)
P2Z if i PI is odd. NoticeP1, P̂. We can now write

Ur
05 %

mP2P̂ùQ̂

C~q!Km .

Action of the Weyl groupsW̃ andW defined onh andh* are compatible with the isomorphismn.

By Proposition VI.4, it suffices to show that the elementsj(zl) with lPP1ù 1
2Q̂ generate

(Ur
0)W.
Set m̄5(wPWK2wm for any mPQ̂. We know the elementsm̄ with mP2P1ùQ̂ generate

(Ur
0)W. Let us use induction to show that each of them belong to Im(j). The element 0̄PUr

0 is

given by j(zl), with l50. Choose anylP2P1ùQ̂. Then, 1
2lPP1ù 1

2Q̂ so thatz(1/2)l is an
element of the center. Recall that Im(j) is invariant under the action ofW ~Proposition V.3!. Using

dimVq( 1
2l)(1/2)l51, we may rewrite~58! as

j~z~1/2!l!5l̄1(
m

nmm̄,

with nmPZ and 1
2m running over some set of weights ofVq( 1

2l). Since all m,l, induction

hypothesis show that eachm̄ belong to Im(j). Hencel̄PIm(j) and the induction step is com
plete. h

VI.3. Other cases. Let 2i , 0i , and U i denote the fact thatai ,i is, respectively, 2, 0, and
negative. We will sometimes add a6 to these to reflect the sign ofu i ,i . So, for example, 2i

2

implies thati is an odd real index. Fori , j PI , let us say( i is connected directlyto ( j if ai , j

Þ0, where( can be any one of 2, 0, orU. Here are some results for the case whenuJu52.
Lemma VI.6: Assume one of the following.
~a! J5$( i ,1),(i ,2)%, with U i

~b! J5$( i ,1),(j ,1)%, with 0i
1 connected directly to0 j

2 .
~c! J5$( i ,1),(j ,1)%, with 0i

2 connected directly to0 j
2 .

~d! J5$( i ,1),(j ,1)%, with U i connected directly to0 j
2 .

~e! J5$( i ,1),(j ,1)%, with 2i connected directly toU j .
~f! J5$( i ,1),(j ,1)%, with U i connected directly toU j .
Then,zJ,U0.
Proof: ~a! and~f! may be proved as in Ref. 15, Proposition 4.5. And~e! may be proved as in

Ref. 15, Proposition 4.6.~c! is proved by explicit calculation.
Let us prove~b! and ~d! simultaneously. LetzPzJ . Since it commutes withqh for all h

PP∨, z5(zb with zbPUb
2

^ U0
^ Ub

1 , where the sum is over allbPZ>0a i % Z>0a j . Let a be
maximal among thosebPZ>0a i % Z>0a j for which zb is nonzero and supposeaÞ0. Let $xm%
and$yl% be any bases of (UJ

1)a and (UJ
2)2a , respectively. We can now write

z5S (
l,m,h

ch
l,mylqhxmD 1z8.

Recall Lemma IV.4 and notice

D2~ei ,k!5ei ,k^ 1^ 11Ki ^ ei ,k^ 11Ki ^ Ki ^ ei ,k ,

D2~yl!51^ yl ^ K2a1 ‘ ‘other terms.’’
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This shows that the only part ofei ,kz2zei ,k belonging to the direct sum componentU2a
2

^ U0

^ Ua1a i

1 is

S (
l,m,h

ch
l,mu~a i ,2a!ylei ,kq

hxmD 2S (
l,m,h

ch
l,mylqhxmei ,kD

5(
l,h

ylqh(
m

ch
l,m~q2a i ~h!u~a,a i !ei ,kxm2xmei ,k!.

Hence, for eachhPP∨ andl,

(
m

ch
l,m~q2a i ~h!u~a,a i !ei ,kxm2xmei ,k!50,

and the same statement withi replaced byj also holds. Now,ej ,1
2 50 is the only relation inUJ

1 for
the case we are considering, so we may take an explicit set of monomials inei ,1 andej ,1 for the
basis ofUa

1 and, using these, we can show that the two equations cannot be simultaneouslyh

Proposition VI.7: Assume that A is indecomposable. Suppose that energy0 j
2 is connected

directly to a 0i or a U i . If there is a nonempty subset J of$( i ,k)u i PI ,k51,...,mi% such that
zJ,U0, thenz is contained in U0.

Proof: Let J̄5$ i PI u( i ,k)PJ for somek%. For i PI , set

Ti5 %
hPP∨,a i ~h!50

C~q!qh.

We then havezùU05ù i PITi and similarly,zJùU05ù i P J̄Ti . It suffices to show Im(j),ùiPITi .
We already have Im(j),Im(jJ),Ti for every i P J̄. Also, if 0i

1 , we have
Im(j),Im(j$(i,1)%),Ti by Proposition VI.1~b!. If 0 i

2 , the conditions on the matrix show we ma
use Lemma VI.6 to write Im(j),Ti .

We now show that if aj , jÞ0 and ai , jÞ0, then Tiù(U0)W̃,Tj . Let c5(chqh

PTiù(U0)W̃. We must haver jc5cPTi , so if chÞ0, then a i(h)50 and a i(r jh)50. But
a i(r jh)52(2/aj , j )aj ,ia j (h) so a j (h)50. We havecPTj , as wanted.

Fix any j PI 2( J̄ø$ i uai ,i50%). By the indecomposability ofA, there exists a finite sequenc
i 5 i 0 ,i 1 ,..., i n5 j such thati P J̄ø$ i uai ,i50%, i k¹ J̄ø$ i uai ,i50% for k>1, andai k ,i k11

Þ0 for all
k. What we have found above allows us to recursively show Im(j),Tik

and, in particular,
Im(j),Tj . h

Proposition VI.8: Suppose three exists some finite J,I such that for every jPJ, aj , j52 and
for which the corresponding submatrix AJ5(ai , j ) i , j PJ is indecomposable and not of a finite typ
Then, zJ,U0.

Proof: By Ref. 21, Proposition 4.9, we haveuWJu5`. Let J8,J be such thatuWJ8u5` and
uWJ9u,` for all J9'J8. We may use Proposition VI.7 if we can showzJ8,U0. Hence, it suffices
to show that ifhPP∨, uWJ8(h)u,`, then a i(h)50, for all i PJ8. Give partial order toh by
settingh1>h2 if and only if h12h2P(( iZ>0hi)1(( iZ>0di). Let h8PWJ8(h) be maximal with
respect to this order. Then, for eachi PJ8, if a i(h8),0, thenh8,r ih8, so a i(h8)>0 for all i
PJ8. Set Wh85$wPWuw(h8)5h8%. By Ref. 21, Proposition 3.12~a!, Wh85WJ9 with J95$ i
PJua i(h8)50%. If J9,'J8, then uWJ8(h8)u5uWJ8 /Wh8u5`. Hence, we must haveJ95J8 and
a i(h8)50 for all i PJ8. $h8%5WJ8(h8)5WJ8(h). Soh5h8 anda i(h)50 for all i PJ8. h

Proposition VI.9: Let A be indecomposable, not of finite type, and ai ,i52 for all i PI . Then,
z,U0.

Proof: Suppose there exists some finite indecomposable submatrix that is not of finite
Then we may use Proposition VI.7 and Proposition VI.8 to obtain the result.
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If, to the contrary, every finite submatrix ofA is of finite type, it must be one of the following
types:

In all cases, withI naturally ordered, the matrix satisfies the following condition.

For eachi PI , there exists somej . i such thatai , jÞ0, andai ,k50 for k. j . ~* !

Let c5(hchqhPIm(j),(U0)W̃. Fix hPP∨ for which chÞ0. We aim to showuW̃(h)u5` if
a j (h)Þ0 for somej PI . We may assume that only finitely manyj PI satisfy a j (h)Þ0. Let k
PI be the maximal of those so thata j (h)50 for all j .k and ak(h)Þ0. Set i 05k, and using
property ~* !, recursively choosei n so that i n11. i n and ai n ,i n11

Þ0. Put h05h and hn11

5r i n
hn . Then,hn cannot form a closed orbit anduW̃(h)u5`. Hence Im(j),%hPP∨,ai(h)50Cqh and

z,U0. h

We can now collect all results and state the following.
Theorem VI.10: Assume that the Borcherds–Cartan matrix A5(ai , j ) i , j PI is indecomposable

and not of finite type. Suppose that every0 j
2 is connected directly to a0i or a U i . Except for the

case whenuI u51 with mi51, the centerz belongs to U0.
Proof: We apply Proposition VI.7 to each possible case.
If uI u51, the conditions imply either a 0i

1 or aU i with mi>2. These cases may be handled
Proposition VI.1~b! and Lemma VI.6~a!, respectively.

Now supposeuI u>2. Proposition VI.9 does away with the case when allai ,i52. If it contains
a 0i

1 , we may again use Proposition VI.1~b!. If it contains a 0i
2 but no 0i

1 , we use Lemma VI.6
~c!, ~d!. The only other case is covered by Lemma VI.6~e!, ~f!. h

VII. THE UNIVERSAL R MATRIX

In this section, we find the universalR matrix for the quantum groupUq(g).
A Hopf superalgebra~or a colored Hopf algebra! H together with an elementRPH ^ H is

called aquasitriangular Hopf superalgebraif it satisfies the following:~a! R is invertible; ~b!
R–D(a)5D8(a)–R, for all aPH; ~c! (D ^ 1)(R)5R13R23; ~d! (1^ D)(R)5R13R12, whereD8
5s+D with s a colored transposition map, and whereRi j is an element ofH ^ H ^ H, such that
the i th and j th components are given byR, and the remaining component is 1. The elementR is
called theuniversal R matrix. It satisfies the Yang–Baxter equation,

R12R13R235R23R13R12. ~59!

A Hopf superalgebraH together with an elementCPH ^ H and an algebra homomorphism
F:H ^ H→H ^ H is called apretriangular Hopf superalgebraif it satisfies the following:~P1! C
is invertible; ~P2! C•D(a)5F(D8(a))•C, for all aPH; ~P3! F23+F13(C12)5C12; ~P4! F12

+F13(C23)5C23; ~P5! F23(C13)•C235(D ^ 1)(C); ~P6! F12(C13)•C125(1^ D)(C).
Under some conditions, it is possible to show that a pretriangular Hopf superalgebra be

a quasitriangular Hopf superalgebra.
We setU1,b5 % gPQ1,g<” bUg

1 for eachbPQ1 and define the completionÛ of U by
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Û5 lim
←
b

U/UU1,b. ~60!

There is a natural embedding ofU in Û and there is a natural algebra structure onÛ that extends
that of U under this embedding.

The completion ofU ^ n is similarly defined. We will writeÛ ^̂ Û for the completion ofU
^ U.

Define an algebra automorphismF:U ^ U→U ^ U by

F~qh
^ qh8!5qh

^ qh8, ~61!

F~ei ,k^ 1!5ei ,k^ Ki , F~1^ ei ,k!5Ki ^ ei ,k , ~62!

F~ f i ,k^ 1!5 f i ,k^ Ki
21, F~1^ f i ,k!5Ki

21
^ f i ,k . ~63!

It can be shown thatF naturally extends to an algebra automorphism ofÛ ^̂ Û.
We denote byCbPUb

1
^ U2b

2 the canonical element of the bilinear form (u ):Ub
13U2b

2

→C. Define

C5 (
bPQ1

u~b,b!q~hbuhb!~Kb
21

^ Kb!CbPÛ ^̂ Û. ~64!

Lemma VII.1:~a! C•D(qh)5F„D8(qh)…•C (hPP∨); ~b! (F23+F13)(C12)5C12; ~c! (F12

+F13)(C23)5C23.
Proof: This is just a straightforward calculation. h

Lemma VII.2: LetbPQ1.
~a! (

g1d5b
g,dPQ1Cg(Kd ^ 1)(S^ 1)(Cd)5db,0 .

~b! (
g1d5b
g,dPQ1(Kg ^ 1)(S^ 1)(Cg)Cd5db,0 .

~c! u i ,i@1^ ei ,k ,Cb1a i
#5Cb(ei ,k^ Ki

21)2(ei ,k^ Ki)Cb .

~d! u i ,i@ f i ,k^ 1,Cb1a i
#5Cb(Ki ^ f i ,k)2(Ki

21
^ f i ,k)Cb .

~e! (D ^ 1)(Cb)5(
g1d5b
g,dPQ1q2(hguhd)(Kd ^ 1^ 1)(Cg)13(Cd)23.

~f! (1^ D)(Cb)5(
g1d5b
g,dPQ1q2(hguhd))(1^ 1^ K2d)(Cg)13(Cd)12.

Proof: Here we show the proof for~a! only. Other cases may be proved in a similar spiri
The caseb50 is trivial. So assumebPQ1\$0%. The left-hand side is contained inUb

1

^ U, so by Theorem IV.6 it suffices to show that the application of (•uw) ^ 1 is zero for allw
PU2b

2 . We may write

D~w!5 (
g,dPQ1

g1d5b

wd,g~1^ Kd!, with wd,gPU2d
2

^ U2g
2

and

wd,g5(
m

wd,m
d,g

^ wg,m
d,g , with wd,m

d,g PU2d
2 , wg,m

d,g PU2g
2 .

We may also fix basis$xr
g%r and$yr

g%r of Ug
1 andU2g

2 , respectively, which are dual with respe
to the bilinear form. Now
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~~ uw! ^ 1!~LHS!5„~ uw! ^ 1…S (
g,d,r ,s

u~yr
g ,xs

d!xr
gKdS~xs

d! ^ yr
gys

dD
5 (

g,d,r ,s
u„xr

g ,KdS~xs
d!…u~2g,d!„KdS~xs

d! ^ xr
guD~w!…yr

gys
d

5 (
g,d,r ,s,m

u~d,g!„kdS~xs
d!uwd,m

d,g
…~xr

guwg,m
d,g K2d!yr

gys
d

5 (
g,d,m

u~d,g!S (
r

~xr
guwg,m

d,g K2d!yr
gD S (

s
„KdS~xs

d!Uwd,m
d,g

…ys
dD

5 (
g,d,m

u~d,g!S (
r

~xr
guwg,m

d,g !yr
gD S (

s
„~xs

duKd
21S21~wd,m

d,g !…ys
d! D

5 (
g,d,m

u~d,g!wg,m
d,g Kd

21S21~wd,m
d,g !

5S21S (
g,d,m

wd,m
d,g S~wg,m

d,g Kd
21! D

5„S21+m+~1^ S!+D…~w!5e~w!50.

Hence the left-hand side is zero whenbÞ0. h

Proposition VII.3: Let

C85 (
bPQ1

u~b,b!q~hbuhb!~1^ Kb!~S^ 1!~Cb!PÛ ^̂ Û. ~65!

Then CC85C8C51.
Proof:

CC85S (
gPQ1

u~g,g!q~hguhg!~Kg
21

^ Kg!CgD S (
dPQ1

u~d,d!q~hduhd!~1^ Kd!~S^ 1!~Cd!D
5 (

bPQ1
(

g1d5b
g,bPQ1

u~b,b!q~hguhg!1~hduhd!~Kg
21

^ Kg!Cg~1^ Kd!~S^ 1!~Cd!

5 (
bPQ1

u~b,b!q~hbuhb!~Kb
21

^ Kb! (
g1d5b
g,bPQ1

Cg~Kd ^ 1!~S^ 1!~Cd!.

We may now apply Lemma VII.2. The other part is done similary. h

Proposition VII.4: We have

C•D~ei ,k!5F„D8~ei ,k!…•C, ~66!

C•D~ f i ,k!5F„D8~ f i ,k!…•C. ~67!

Proof:
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C•D~ei ,k!5 (
bPQ1

u~b,b!q~hb1a i
uhb!~Kb

21
^ Kb1a i

!Cb~ei ,k^ Ki
21!

1 (
bPQ1

u~b,b!q~hb2a i
uhb!~Kb2a i

21
^ Kb!Cb~1^ ei ,k!,

F„D8~ei ,k!…•C5 (
bPQ1

u~b,b!q~hbuhb2a i
!~Kb2a i

21
^ Kb!~1^ ei ,k!Cb

1 (
bPQ1

u~b,b!q~hb1a i
uhb!~Kb

21
^ Kb1a i

!~ei ,k^ Ki !Cb ,

C•D~ei ,k!2F„D8~ei ,k!…•C5 (
bPQ1

u~b,b!q~hbuhb1a i
!~Kb

21
^ Kb1a i

!$Cb~ei ,k^ Ki
21!

2~ei ,k^ Ki !Cb2u~a i ,a i !@1^ ei ,k ,Cb1a i
#%.

We apply Lemma VII.2 to obtain the result. The other case is similar. h

Proposition VII.5: We have

F23~C13!•C235~D ^ 1!~C!, ~68!

F12~C13!•C125~1^ D!~C!. ~69!

Proof:

F23~C13!5 (
gPQ1

u~g,g!q~hguhg!~Kg
21

^ Kg
21

^ Kg!~Cg!13,

„F23~C13!…C235 (
bPQ1

u~b,b!q~hbuhb!~Kb
21

^ Kb
21

^ Kb!

3 (
g,dPQ1

g1d5b

q2~hduhg!~Kd ^ 1^ 1!~Cg!13~Cd!23,

~D ^ 1!~C!5 (
bPQ1

u~b,b!q~hbuhb!~Kb
21

^ Kb
21

^ Kb!~D ^ 1!~Cb!.

The second case is done similarly. h

The propositions tell us thatU is almost a pretriangular Hopf superalgebra.
Theorem VII.6: The statements(P1) and (P2) hold in Û^̂ Û and the relations(P3) – (P6)

hold in Û^̂ Û ^̂ Û.
A weight module isP-weightedif all its weights belong toP. Notice (PuP),Z. This allows

us to defineZPEnd(V^ W) for any P-weightedUq(g)-modulesV andW by setting,

Z~v ^ w!5q„wt~v !uwt~w!…v ^ w, ~70!

on homogeneous elements and extending by linearity. The mapZ is certainly invertible. There is
a natural action ofU ^ U on V^ W and as endomorphisms onV^ W,

F~a^ b!5Z+~a^ b!+Z21, ~71!

for everya^ bPU ^ U.
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SetR5Z21C. Then we finally have the following theorem.
Theorem VII.7: Let Vi( i 51,2,3) be P-weighted Uq(g) modules. As endomorphisms on V1

^ V2^ V3 , when it can be defined, R satisfies the Yang–Baxter equation~59!.
Proof: From ~P5! and Eq.~71!, we have

Z23C13Z23
21C235~D ^ 1!~C!, ~72!

R13R235Z13
21

Z23
21~D ^ 1!~C!. ~73!

Applying s ^ 1 to both sides of~P5! and working as above, we get

R23R135Z23
21

Z13
21~D8^ 1!~C!. ~74!

The use of~P2! shows

R23R13R125Z23
21

Z13
21

„~D8^ 1!~C!…R12 ~75!

5Z23
21

Z13
21

„~D8^ 1!~C!…~Z21C^ 1! ~76!

5Z23
21

Z13
21~Z21C^ 1!~D ^ 1!~C!. ~77!

Now, theZi j commute with each other and~P3! with ~71! saysC12 commutes withZ13
21

Z23
21, so we

may use~73! to write

Z23
21

Z13
21~Z21C^ 1!~D ^ 1!~C!5R12R13R23. ~78!

Putting things together, we have the result. h
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Unitary representations of the quantum algebra
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Some time ago, Rideau and Winternitz introduced a realization of the quantum
algebra suq(2) on a real two-dimensional sphere, or a real plane, and constructed a
basis for its representations in terms ofq-special functions, which can be expressed
in terms of q-Vilenkin functions, and are related to littleq-Jacobi functions,
q-spherical functions, andq-Legendre polynomials. In their study, the values ofq
were implicitly restricted toqPR1. In the present paper, we extend their work to
the case of generic values ofqPS1 ~i.e.,q values different from a root of unity!. In
addition, we unitarize the representations for both types ofq values,qPR1 and
genericqPS1, by determining some appropriate scalar products. From the latter,
we deduce the orthonormality relations satisfied by theq-Vilenkin functions.
© 1999 American Institute of Physics.@S0022-2488~99!01806-X#

I. INTRODUCTION

As is well known, most special functions of mathematical physics admit extensions to a
q, which are calledq-special functions.1–3 In the same way as Lie algebras and their represe
tions provide a unifying framework for the former, quantum algebras4 are relevant to the study o
the latter~see, e.g., Ref. 5 and references quoted therein!.

Some time ago, Rideau and Winternitz6 introduced a realization of the quantum algeb
suq(2) on a real sphereS2 ~or, via a stereographic projection, on a real plane!, and constructed a
basis for its irreducible representations~irreps! in terms of some functionsCMNq

J (u,f)
}PMNq

J (cosu) exp (2i(M1N)f). The functionsPMNq
J (cosu) were calledq-Vilenkin functions

because, forq51, they reduce to functionsPMN
J (cosu) introduced by Vilenkin,7,8 and related to

Jacobi polynomials.
Rideau and Winternitz did establish various interesting results for theq-Vilenkin functions,

including their recursion relations, explicit expression, generating function, and symmetry
tions. They also compared them with otherq-special functions, such asq-hypergeometric series
little q-Jacobi functions,q-spherical functions, andq-Legendre polynomials. Recently, the latt
polynomials were further studied by Schmidt along similar lines.9

The realization of suq(2) onS2, introduced by Rideau and Winternitz, was used by one of
present authors~MIA ! to set up suq(2)-invariant Schro¨dinger equations in the usual framework
quantum mechanics.10 The corresponding radial equations can be easily solved for the ‘‘fr
suq(2)-invariant particle,10 as well as for the Coulomb10 and oscillator11 potentials.

Although not explicitly stated in Ref. 6, the values of the deformation parameterq, considered
there, are restricted toqPR1. Close examination indeed shows that the explicit form of

a!Electronic mail: mici@ccr.jussieu.fr
b!Directeur de recherches FNRS; electronic mail: cquesne@ulb.ac.be
31460022-2488/99/40(6)/3146/16/$15.00 © 1999 American Institute of Physics
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function QJq(h), h[cot2(u/2), entering the definition of theq-Vilenkin functions,6 is not valid
for half-integerJ values, wheneverq runs over the unit circle.

Though important both from theq-special function viewpoint, and from that of their applic
tions in quantum mechanics, the question of the suq(2) irrep unitarity was also left unsolved b
Rideau and Winternitz. They only noticed6 that their realization of suq(2) onS2 is not unitary with
respect to the scalar product used to unitarize the corresponding realization of su~2!, and that a
new scalar product should therefore be determined to cope with this drawback.

The purpose of the present paper is twofold: first, to find a solution forQJq(h) for generic
qPS1 ~i.e., for q different from a root of unity!, and second, to unitarize the representations
both qPR1, and genericqPS1. As a consequence, the explicit orthonormality relations of
q-Vilenkin and related functions will be established.

In Sec. II, the representations of suq(2) on S2, derived by Rideau and Winternitz, are briefl
reviewed. The functionQJq(h) is determined in Sec. III. The unitarization of the representati
is dealt with in Sec. IV. Section V contains the conclusion.

II. REPRESENTATIONS OF su q„2… ON S2

Let us consider functionsf (u,f) on a sphereS2, defined byx0
21y0

21z0
25 1

4. These functions

can also be viewed as functions on a real plane, via the stereographic projectionx5x0 /( 1
22z0),

y5y0 /( 1
22z0). In terms of spherical coordinates onS2 and polar ones on the plane, we have

x05 1
2 sinu cosf, y05 1

2 sinu sinf, z05 1
2 cosu,

x5r cosf, y5r sinf, r5cot
u

2
, ~2.1!

0<u<p, 0<f,2p, 0<r,`.

Instead of the real variablesx andy, one can use complex ones

z5x1 iy5reif, z̄5x2 iy5re2 if. ~2.2!

Functionsf (u,f) on S2 can thus be projected onto functionsf (r,f) on the real plane, or func
tions f (z,z̄) of a complex variable and its conjugate.

The suq(2) generatorsH3 , H1 , H2 satisfy the commutation relations4

@H3 ,H6#56H6 , @H1 ,H2#5@2H3#q[
q2H32q22H3

q2q21 , ~2.3!

and the Hermiticity properties

H3
†5H3 , H6

† 5H7 , ~2.4!

where in Eq.~2.3!, we assumeq5etPR1, or q5ei tPS1 ~but different from a root of unity!.
From H3 andH6 , one can construct a Casimir operator

C5H1H21@H3#q@H321#q5H2H11@H3#q@H311#q , ~2.5!

such that@C,H3#5@C,H6#50.
The generatorsH3 , H1 , H2 can be realized6 by the following operators, acting on function

f (z,z̄) or f (u,f),

H352z]z1 z̄] z̄2N5 i ]f2N,

H152z21@T#qqT̄2~N/2!2qT1~N/2!z̄@ T̄2N#q , ~2.6!
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H25z@T1N#qqT̄2N/21qT1~N/2!z̄21@ T̄#q ,

where

T5z]z52 1
2 ~sinu]u1 i ]f!, T̄5 z̄] z̄52 1

2 ~sinu]u2 i ]f!. ~2.7!

For future use, it is also convenient to writeH6 in terms of polar coordinates on the real plane

H657
e7 if

q2q21 H S r1
1

r Dqr]r7~N/2!2rq7 i ]f6~3N/2!2
1

r
q6 i ]f7~N/2!J . ~2.8!

Basis functionsCMNq
J (z,z̄) for the (2J11)-dimensional irrep of suq(2) satisfy the relations4

H3CMNq
J 5MCMNq

J , H6CMNq
J 5~@J7M #q@J6M11#q!1/2CM61,Nq

J ,
~2.9!

CCMNq
J 5@J#q@J11#qCMNq

J , M5$2J,2J11,...,J%, uNu<J,

whereJ, M andN are simultaneously integers or half-integers. Let us remark that, whenqPS1,
the existence of such a representation implies that the factorials do not vanish, hence thatq is not
a root of unity.

Following Rideau and Winternitz,6 let us writeCMNq
J (z,z̄) as

CMNq
J ~z,z̄!5NMNq

J QJq~h!q2NM/2RMNq
J ~h!z̄M1N, h5zz̄. ~2.10!

Here,NMNq
J is a constant, which can be expressed as

NMNq
J 5CJNqS @J1M #q!

@J2M #q! @2J#q! D
1/2

,

~2.11!

CJNq5
1

A2p
S @J1N#q! @2J11#q!

@J2N#q! D 1/2

g~J,N,q!,

in terms of some yet undetermined normalization constantg(J,N,q), andq-factorials, defined by
@x#q![@x#q@x21#q¯@1#q if xPN1, @0#q![1, and (@x#q!) 21[0 if xPN2. Equation~2.10! also
contains two functions ofh, QJq(h) and RMNq

J (h). The latter is a polynomial, whose explic
form is given by

RMNq
J ~h!5@J2N#q! @J2M #q!(

k

~2h!k

@k#q! @J2M2k#q! @J2N2k#q! @M1N1k#q!
, ~2.12!

the summation overk being restricted by the condition that all the factorials in the denominato
positive. The former is defined by the functional equation

QJq~q2h!~11h!5QJq~h!~11q22Jh!, ~2.13!

whose solution, only determined up to an arbitrary multiplicative factorf Jq(h) such that

f Jq~q2h!5 f Jq~h!, ~2.14!

will be discussed in detail for bothqPR1, and genericqPS1, in the next section.
In terms of spherical coordinates, Eq.~2.10! becomes6

CMNq
J ~u,f!5CJNqS @J2N#q!

@J1N#q! @2J#q! D
1/2

i 22J1M1Nq2NM/2PMNq
J ~cosu!e2 i ~M1N!f, ~2.15!
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where

PMNq
J ~j!5 i 2J2M2NS @J1M #q! @J1N#q!

@J2M #q! @J2N#q! D
1/2

h~M1N!/2QJq~h!RMNq
J ~h!,

~2.16!

j5cosu, h5
11j

12j
5cot2

u

2
,

are q-Vilenkin functions. For integerJ values, the functionsCM0q
J (u,f) are proportional to

q-spherical harmonics, whilePJq(j)[PM0q
J (j) areq-analogs of Legendre polynomials.

In the q→1 limit, the suq(2) realization~2.6! goes over into the su~2! realization

H352z]z1 z̄] z̄2N, H152]z2 z̄2] z̄1Nz̄, H25z2]z1] z̄1Nz, ~2.17!

the constantg(J,N,q) into g(J,N,1)51, and theq-Vilenkin functions into ordinary ones
PMN

J (j). The latter are given by Eq.~2.16!, where@x#q→x, andQJq(h)→QJ(h)5(11h)2J.
The operators~2.17! satisfy Eq.~2.4!, and the functionsCMN

J , J5uNu,uNu11,..., M52J,2J
11,...,J, form an orthonormal set with respect to the scalar product

^c1uc2&52E dzdz̄

~11zz̄!2 c1~z,z̄!c2~z,z̄!5
1

2 E0

p

du sinuE
0

2p

dfc1~u,f!c2~u,f!, ~2.18!

where the integral overz, z̄ extends over the whole complex plane.

III. DETERMINATION OF QJq „h…

Following Rideau and Winternitz,6 as a solution of Eq.~2.13!, we may consider the function

QJq~h!51F0~q2J;2;q2,2q22Jh!51F0~q22J;2;q22,2q22h!, ~3.1!

where1F0 is a basic hypergeometric series in the notations of Ref. 3.
For qPR1, use of theq-binomial theorem3 leads to the expressions

QJq~h!5)
k50

`
~11q2kh!

~11q22J12kh!
~3.2!

if 0 ,q,1, and

QJq~h!5)
k50

`
~11q22J22k22h!

~11q22k22h!
~3.3!

if q.1. For integerJ values, both expressions reduce to the inverse of a polynomial,

QJq~h!5)
k50

J21 S 1

11hq22J12kD , ~3.4!

whereas for half-integerJ values, we are left with convergent infinite products.
For genericqPS1 and integerJ values, Eq.~3.4! still remains a valid solution of Eq.~2.13!.

However, for half-integerJ values, the infinite products contained in Eqs.~3.2! and~3.3!, as well
as other expressions of1F0 in terms of infinite series or products, found in Refs. 1 and 3,
divergent. We therefore have to look for another solution to Eq.~2.13!.

For such a purpose, let us linearize Eq.~2.13! into
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KJq~q2h!2KJq~h!5 ln
11q22Jh

11h
, ~3.5!

by setting

KJq~h!5 ln QJq~h!. ~3.6!

In terms of the operatorX[h]h , Eq. ~3.5! can be rewritten as

~q2X21!KJq~h!5~q22JX21!ln~11h!. ~3.7!

Let us consider the difference equation

~qX2q2X!Lq~h![Lq~qh!2Lq~q21h!5 ln~11h!. ~3.8!

If we are able to find a solution to the latter, then

KJq~h![q2X~q22JX21!Lq~h!5Lq~q22J21h!2Lq~q21h! ~3.9!

will be a solution of Eq.~3.7!.
We will now proceed to demonstrate the following.
Lemma III.1:For 0,h,`, andq5ei t different from a root of unity, the function

Lq~h!5
1

2p i E0

` dt

t~11t !
ln~11htt/p!, i f 0,t,p, ~3.10!

Lq~h!52
1

2p i E0

` dt

t~11t !
ln~11ht2t/p!, i f 2p,t,0, ~3.11!

is a solution of Eq.~3.8!.
Proof: We note that if some functionLq(h) is a solution of Eq.~3.8! for q5ei t, 0,t,p,

then2Lq21(h) is also a solution of the same. Hence, Eq.~3.11! directly results from Eq.~3.10!.
It is also a simple matter to show that the integral on the right-hand side of Eq.~3.10! is conver-
gent. It therefore only remains to prove that the latter satisfies Eq.~3.8!. For such a purpose, w
have to separately consider the integral whenh is replaced byhei t, or by he2 i t.

Let us introduce a functionM (v) of a complex variablev, defined by

M ~v !5@v~11v !#21 ln~11he2 i tvt/p!, ~3.12!

where on the right-hand side, there appear two multivalued functionsvt/p, and lnw, wherew
511he2 i tvt/p.

For the functionvt/p, let us choose a branch cut along the positive real axis, so thatvt/p

5uvt/puexp(ita/p), wherev5uvuexp(ia), and 0,a,2p. On the two sides of such a cut, th
argument of the logarithm on the right-hand side of Eq.~3.12! takes the values

w1511he2 i tuvut/p if Rev.0, Imv510, ~3.13!

and

w2511hei tuvut/p if Rev.0, Imv520, ~3.14!

respectively.
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Considering next the function lnw, it is easy to show that its branch point atw50 and its
branch cut along the negative real axis in the complexw plane cannot be reached within th
truncatedv plane, since the condition exp@it(a/p21)#521 cannot be fulfilled for 0,t,p, and
0,a,2p.

Hence, when integrating the functionM (v) in the complexv plane, one should conside
contours avoiding the branch pointv50, the branch cut Rev.0, Imv50, and the simple pole a
v521. Let us consider the two vanishing coutour integrals

E
G1

M ~v !dv5E
G2

M ~v !dv50, ~3.15!

whereG1 andG2 are the paths in the upper and lower halves of thev plane, displayed on Fig. 1
The former consists of the upper halfCA

1 of a large circle of radiusA centered at the origin, and
described in the counterclockwise sense, the upper halvesCa

1 , Ca8
81 of two small circles of radius

a, a8, centered atv50 andv521, respectively, both described in the clockwise sense, and t
straight linesL1

1 , L2
1 , L3

1 lying just above the real axis, and going from2A to 212a8, from
211a8 to 2a, and froma to A, respectively. The latter pathG2 is defined in a similar way.

Taking now Eqs.~3.13! and ~3.14! into account, we obtain

2p i ~Lq~qh!2Lq~q21h!!5 lim
a→0
A→`

H E
L3

2
M ~v !dv2E

L3
1

M ~v !dvJ . ~3.16!

Owing to Eq.~3.15!, each of the integrals on the right-hand side of Eq.~3.16! can be rewritten in
terms of integrals along the other parts of the pathG2 or G1. Those alongL1

1 ~resp.L2
1) andL1

2

~resp.L2
2) obviously cancel. Furthermore,

lim
A→`

U E
CA

1
M ~v !dv2E

CA
2

M ~v !dvU; lim
A→`

ln A

A
50, ~3.17!

and

FIG. 1. Contours in the complexv plane used in the proof of Lemma III.1.
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lim
a→0

U E
Ca

1
M ~v !dv2E

Ca
2

M ~v !dvU; lim
a→0

at/p50, ~3.18!

so that

2p i ~Lq~qh!2Lq~q21h!!52E
C

a8
8

M ~v !dv522p i ResM ~21!52p i ln~11h!, ~3.19!

where Ca8
8 denotes the circle of radiusa8 centered atv521, and described in the counte

clockwise sense. Equation~3.19! completes the proof. j

The results of the present section can be collected into the following.
Proposition III.2: The functionQJq(h), appearing on the right-hand side of Eq.~2.10!, is

given by Eq.~3.4! for integerJ values, and eitherqPR1 or genericqPS1, and by Eqs.~3.2! and
~3.3! for half-integerJ values, andqPR1. For half-integerJ values, and genericqPS1, it can be
expressed as

QJq~h!5exp$Lq~q22J21h!2Lq~q21h!%, ~3.20!

whereLq(h) admits the integral representation given in Lemma III.1.

IV. UNITARIZATION OF THE REPRESENTATIONS OF su q„2… ON S2

In the present section, we will determine a new scalar product^c1uc2&q that unitarizes the
realization~2.6! of suq(2), andgoes over into the old onêc1uc2&, defined in Eq.~2.18!, when-
everq→1. For such a purpose, we shall first impose that Eq.~2.4! is satisfied by the realization
~2.6! with respect tô c1uc2&q . The residual arbitrariness in the measure will then be lifted
demanding that̂c1uc2&q satisfies the usual properties of a scalar product.

We shall successively consider hereunder the cases whereqPR1, and genericqPS1.

A. The case where q PR1

Let us make the following ansatz for^c1uc2&q ,

^c1uc2&q5E
0

`

drE
0

2p

df~Aqc1~r,f,q! f 1~r,q!qa1r]rc2~r,f,q!

1c1~r,f,q! f 2~r,q!qa2r]rAqc2~r,f,q!! , ~4.1!

in terms of the polar coordinatesr, f on the real plane, defined in Eq.~2.1!. Herea1 , a2 , and
f 1(r,q), f 2(r,q) are some yet undetermined constants and functions of the indicated argum
respectively, andAq[q22q]q is the operator that changesq into q21, when acting on any function
of q,

Aqc~r,f,q!5c~r,f,q21!. ~4.2!

It is easy to check that

^c1uH3c2&q5^H3c1uc2&q ~4.3!

with respect to~4.1!. Let us now impose the condition

^c1uH1c2&q5^H2c1uc2&q . ~4.4!

By combining Eqs.~2.6! and ~4.1!, the left-hand side of this condition can be written as
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^c1uH1c2&q5~q2q21!21E
0

`

drE
0

2p

dfHc1~r,f,q21! f 1~r,q!e2 if

3S 2S qa1r1
1

qa1r Dqr]r2~N/2!1qa1rq2 i ]f1~3N/2!1
1

qa1r
qi ]f2~N/2!D

3c2~qa1r,f,q!2c1~r,f,q! f 2~r,q!e2 ifS 2S qa2r1
1

qa2r Dq2r]r1~N/2!

1qa2rqi ]f2~3N/2!1
1

qa2r
q2 i ]f1~N/2!Dc2~qa2r,f,q21!J . ~4.5!

After integrating by parts and making some straightforward transformations, it becomes

^c1uH1c2&q5~q2q21!21E
0

`

drE
0

2p

dfe2 if H 2S S qa121r1
1

qa121r D
3 f 1~q21r,q!q2r]r212~N/2!c1~r,f,q21! Dc2~qa1r,f,q!

1S S rqi ]f1a1111~3N/2!1
1

r
q2 i ]f2a1212~N/2!Dc1~r,f,q21! D

3 f 1~r,q!c2~qa1r,f,q!1S S qa211r1
1

qa211r D
3 f 2~qr,q!qr]r111~N/2!c1~r,f,q! Dc2~qa2r,f,q21!

2S S rq2 i ]f1a2212~3N/2!1
1

r
qi ]f2a2111~N/2!Dc1~r,f,q! D

3 f 2~r,q!c2~qa2r,f,q21!J . ~4.6!

On the other hand, for realq values the right-hand side of Eq.~4.4! can be written as

^H2c1uc2&q5~q2q21!21E
0

`

drE
0

2p

dfe2 if

3H S H 2S r1
1

r Dq2r]r2~N/2!1rqi ]f1~3N/2!1
1

r
q2 i ]f2~N/2!J c1~r,f,q21! D

3 f 1~r,q!c2~qa2r,f,q!1S H S r1
1

r Dqr]r1~N/2!2rq2 i ]f2~3N/2!

2
1

r
qi ]f1~N/2!J c1~r,f,q! D f 2~r,q!c2~qa2r,f,q21!J . ~4.7!

It now remains to equate the right-hand side of Eq.~4.6! with that of Eq.~4.7!. Both of them
being some linear combinations of four different types of terms, containing one of the ope
q2 i ]f, qi ]f, q2r]r, or qr]r, acting on some function, respectively, it is sufficient to separa
equate such terms. The conditions on the first two classes of terms impose that

a1521, a251, ~4.8!
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while those on the last two lead to the equations

q21S q22r1
1

q22r D f 1~q21r,q!5S r1
1

r D f 1~r,q!,

~4.9!

qS q2r1
1

q2r D f 2~qr,q!5S r1
1

r D f 2~r,q!,

whose solutions are given by

f 1~r,q!5
B1~q!q21r

~11r2!~11q22r2!
, f 2~r,q!5

B2~q!qr

~11r2!~11q2r2!
, ~4.10!

in terms of two undetermined constantsB1(q), andB2(q).
Let us now further restrict the sesquilinear form~4.1!, where substitutions~4.8! and ~4.10!

have been made, by imposing that it is Hermitian, i.e.,

^c1uc2&q5^c2uc1&q . ~4.11!

By a straightforward calculation, similar to that carried out for condition~4.4!, it can be shown
that Eq.~4.11! leads to the relation

B2~q!5B1~q!. ~4.12!

As a consequence, there only remains a single undetermined constantB(q)[B1(q) in Eq. ~4.1!.
At this stage, it is important to notice that had we only considered a single term, instead o
in Eq. ~4.1!, it would have been impossible to fulfill condition~4.11!.

In addition, we remark that Eqs.~4.4! and ~4.11! imply that

^c1uH2c2&q5^H1c1uc2&q . ~4.13!

Hence, all the Hermiticity conditions~2.4! on the suq(2) generators are satisfied by the for
defined in Eqs.~4.1!, ~4.8!, ~4.10!, and ~4.12!. The functionsCMNq

J (z,z̄), defined in Eq.~2.10!,
and corresponding to a fixedN value, but differentJ and/orM values, are therefore orthogon
with respect to such a form.

To make^c1uc2&q into a scalar product, it only remains to impose that it is a positive defi
form. Since we also want that in the resulting Hilbert space, the functionsCMNq

J with givenJ and
N values, andM52J, 2J11,...,J, form an orthonormal basis for the suq(2) irrep characterized
by J, a condition that combines both requirements is

^CMNq
J uCMNq

J &q51, M52J,2J11,...,J. ~4.14!

By using Eqs.~2.5! and ~2.9! for MÞJ, Eq. ~4.14! can be transformed into the condition

^CJNq
J uCJNq

J &q51. ~4.15!

In Appendix A, the squared norm ofCJNq
J is calculated by using Eqs.~2.10!, ~2.11!, ~2.12!,

~3.2!, and ~3.3!, and by taking Eqs.~4.1!, ~4.8!, ~4.10!, and ~4.12! into account. The resulting
condition ~4.15! reads

ln q

q2q21 ~B~q!g~J,N,q21!g~J,N,q!1B~q! g~J,N,q!g~J,N,q21!!51. ~4.16!

Since in the limitq→1, g(J,N,q)→1, we may choose
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g~J,N,q!51, B~q!5B~q!5
q2q21

2 lnq
5

sinht

t
. ~4.17!

For q→1 or t→0, we find thatB(q)→1, so that̂ c1uc2&q→^c1uc2&, where the latter is given by
Eq. ~2.18!, as it should be.

The results obtained can be summarized as follows:
Proposition IV.1:For qPR1, the scalar product

^c1uc2&q5
q2q21

2 lnq E dzdz̄S c1~z,z̄,q21!
1

~11zz̄!~11q22zz̄!
q2z]z2 z̄] z̄21c2~z,z̄,q!

1c1~z,z̄,q!
1

~11zz̄!~11q2zz̄!
qz]z1 z̄] z̄11c2~z,z̄,q21! D , ~4.18!

or

^c1uc2&q5
q2q21

8 lnq E
0

p

du sinuE
0

2p

df

3S c1~u,f,q21!
1

sin2~u/2!1q22 cos2~u/2!
qsin u]u21c2~u,f,q!

1c1~u,f,q!
1

sin2~u/2!1q2 cos2~u/2!
q2sin u]u11c2~u,f,q21! D , ~4.19!

unitarizes the suq(2) realization~2.6!, whereN may take any integer or half-integer value. Th
functions CMNq

J (z,z̄), or CMNq
J (u,f), defined in Eqs.~2.10! and ~2.15!, where J5uNu, uNu

11,..., M52J, 2J11,...,J, andg(J,N,q)51, form an orthonormal set with respect to such
scalar product.

From Proposition IV.1, we easily obtain the following corollary.
Corollary IV.2: For qPR1, theq-Vilenkin functionsPMNq

J (j), defined in Eq.~2.16!, satisfy
the orthonormality relation

q2q21

4 lnq E
21

11

djS PMNq21
J8 ~j!

1

q1q212~q2q21!j
q~j221!]jPMNq

J ~j!

1PMNq
J8 ~j!

1

q1q211~q2q21!j
q2~j221!]jPMNq21

J
~j! D5

dJ8,J

@2J11#q
. ~4.20!

B. The case where q PS1

WheneverqPS1, the ansatz~4.1! does not work, because though Eq.~4.6! remains valid, Eq.
~4.7! is changed in such a way that both cannot be matched. Let us therefore change Eq.~4.1! into
the following ansatz

^c1uc2&q5E
0

`

drE
0

2p

df~c1(r,f,q) f 1(r,q)qa1r]rc2(r,f,q)

1Aqc1(r,f,q) f 2(r,q)qa2r]rAqc2(r,f,q)! , ~4.21!

wherea1 , a2 , f 1(r,q), f 2(r,q), andAq keep the same meaning as before.
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Condition ~4.3! is again automatically satisfied. Turning now to condition~4.4!, it is easy to
see that Eqs.~4.6! and ~4.7! remain valid, except for the interchange ofc1(r,f,q) with
c1(r,f,q21). Hence, Eq.~4.4! is also fulfilled by choosinga1 , a2 , f 1(r,q), and f 2(r,q) as
given in Eqs.~4.8!, and~4.10!.

A difference with the case whereqPR1 appears when imposing the Hermiticity conditio
~4.11!. The latter is now equivalent to the relations

B1~q!5B1~q!, B2~q!5B2~q!, ~4.22!

showing that the real constantsB1(q), andB2(q) remain independent. In the present case, ke
ing only one of the two terms on the right-hand side of Eq.~4.21! would therefore lead to a
well-behaved scalar product.

As shown in Appendix B, condition~4.15! now reads

ln q

q2q21 ~B1~q!ug~J,N,q!u21B2~q!ug~J,N,q21!u2!51. ~4.23!

Among the infinitely many solutions of this equation, we may select the most symmetrical

g~J,N,q!51, B1~q!5B2~q!5
q2q21

2 lnq
5

sint

t
. ~4.24!

Hence, wheneverq→1 or t→0, the limit of ^c1uc2&q is again^c1uc2&, as it should be.
In conclusion, we obtain the following proposition.
Proposition IV.3:For genericqPS1, the scalar product

^c1uc2&q5
q2q21

2 lnq E dzdz̄S c1~z,z̄,q!
1

~11zz̄!~11q22zz̄!
q2z]z2 z̄] z̄21c2~z,z̄,q!

1c1~z,z̄,q21!
1

~11zz̄!~11q2zz̄!
qz]x1 z̄] z̄11c2~z,z̄,q21! D , ~4.25!

or

^c1uc2&q5
q2q21

8 lnq E
0

p

du sinuE
0

2p

df

3S c1~u,f,q!
1

sin2~u/2!1q22 cos2~u/2!
qsin u]u21c2~u,f,q!

1c1~u,f,q21!
1

sin2~u/2!1q2 cos2~u/2!
q2sin u]u11c2~u,f,q21! D , ~4.26!

unitarizes the suq(2) realization~2.6!, whereN may take any integer or half-integer value. Th
functions CMNq

J (z,z̄), or CMNq
J (u,f), defined in Eqs.~2.10! and ~2.15!, where J5uNu,uNu

11,..., M52J,2J11,...,J, andg(J,N,q)51, form an orthonormal set with respect to such
scalar product.

Corollary IV.4: For genericqPS1, theq-Vilenkin functionsPMNq
J (j), defined in Eq.~2.16!,

satisfy the orthonormality relation
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q2q21

4 lnq E
21

11

djS PMNq
J8 ~j!

1

q1q212~q2q21!j
q~j221!]jPMNq

J ~j!

1PMNq21
J8 ~j!

1

q1q211~q2q21!j
q2~j221!]jPMNq21

J
~j! D5

dJ8,J

@2J11#q
. ~4.27!

V. CONCLUSION

In the present paper, we did extend the study of the suq(2) representations on a real two
dimensional sphere, carried out by Rideau and Winternitz,6 in two ways.

First, we did prove that such representations exist not only forqPR1, but also for generic
qPS1. For such a purpose, we did provide an integral representation for the functionsQJq(h),
entering the definition of theq-Vilenkin functions, wheneverJ takes any half-integer value.

Second, we did unitarize the representations by determining appropriate scalar produ
both ranges ofq values. Such scalar products are expressed in terms of ordinary integrals, in
of q-integrals, as is usually the case.5

The resulting orthonormality relations for theq-Vilenkin and related functions should play a
important role in applications to quantum mechanics, such as those considered in Refs. 10

APPENDIX A: PROOF OF EQ. „4.16…

The purpose of this appendix is to evaluate the squared norm of the functionCJNq
J (z,z̄) when

the scalar product~4.1! is used, and Eqs.~4.8!, ~4.10!, and~4.12! are taken into account.
From Eqs.~2.2!, ~2.10!, ~2.11!, and~2.12!, CJNq

J can be written in polar coordinates as

CJNq
J 5

CJNq

@J1N#q!
q2JN/2QJq~r2!rJ1Ne2 i ~J1N!f. ~A1!

Its squared norm can therefore be expressed as

^CJNq
J uCJNq

J &q5
p

~@J1N#q! !2 ~B~q!CJNq21CJNqq
2J2N21Iq1B~q!CJNqCJNq21qJ1N11Iq21! ,

~A2!

in terms of the integral

Iq5E
0

`

dhQJq21~h!
hJ1N

~11h!~11q22h!
QJq~q22h!, ~A3!

and the same withq replaced byq21.
By introducing Eqs.~3.2! and ~3.3! into Eq. ~A3!, we obtain

Iq5E
0

`

dhhJ1N)
k50

`
~11q2J12k12h!

~11q22J12k22h!
5q2~J11!~J1N11!B̃q2~J1N11,J2N11! ~A4!

if 0 ,q,1, and

Iq5E
0

`

dhhJ1N)
k50

`
~11q22J22k24h!

~11q2J22kh!
5q22J~J1N11!B̃q22~J1N11,J2N11! ~A5!

if q.1. In Eqs.~A4! and ~A5!, we denote byB̃q(x,y) Ramanujan’s continuousq-analog of the
beta integral2
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B̃q~x,y!5E
0

`

dttx21)
k50

`
~11qx1y1kt !

~11qkt !
, 0,q,1, ~A6!

to distinguish it from the discreteq-analog of the same, known asBq(x,y) @see e.g. Eq.~1.11.7!
of Ref. 3#.

From Eq.~5.8! of Ref. 2, B̃q(x,y) is given for genericx values by

B̃q~x,y!5
p

sinpx )
k51

`
~12qk2x!~12qx1y1k21!

~12qk!~12qy1k21!
. ~A7!

The values ofx, which appear in Eqs.~A4! and ~A5!, being x5J1N11PN1, we have to
calculate the limit of the right-hand side of Eq.~A7! whenx→mPN1. Using L’Hospital’s rule,
we find

lim
x→m

12qm2x

sinpx
5~21!m

ln q

p
, mPN1. ~A8!

Hence, forx5m, y5n, m,nPN1, Eq. ~A7! becomes

B̃q~m,n!5~21!m~ ln q!
Pk51

m21~12qk2m!

Pk51
m ~12qn1k21!

5
~ ln q!q2m~n1m21!/2@m21#q1/2! @n21#q1/2!

~q1/22q21/2!@n1m21#q1/2!
,

~A9!

where in the last step, we introducedq-factorials, defined as in Sec. II.
From Eqs.~A4!, ~A5!, and~A9!, it follows that for anyqPR1

Iq5
2~ ln q!qJ1N11@J1N#q! @J2N#q!

~q2q21!@2J11#q!
. ~A10!

By taking Eq. ~2.11! into account, the squared norm ofCJNq
J , defined in Eq.~A2!, therefore

becomes

^CJNq
J uCJNq

J &q5
ln q

q2q21 ~B~q!g~J,N,q21!g~J,N,q!1B~q!g~J,N,q!g~J,N,q21!! ,

~A11!

which proves Eq.~4.16!.

APPENDIX B: PROOF OF EQ. „4.23…

The purpose of this appendix is to evaluate the squared norm of the functionCJNq
J (z,z̄) when

the scalar product~4.21! is used, and Eqs.~4.8!, ~4.10!, and~4.22! are taken into account.
Since forqPS1, CJNq

J is still given by Eq.~A1!, its squared norm reads

^CJNq
J uCJNq

J &q5
p

~@J1N#q! !2 ~B1~q!uCJNqu2q2J2N21Iq81B2~q!uCJNq21u2qJ1N11Iq218 !.

~B1!

HereIq8 denotes the integral

Iq85E
0

`

dhFJq~h!hJ1N ~B2!

with
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FJq~h!5QJq~h!
1

~11h!~11q22h!
QJq~q22h!. ~B3!

According to whetherJ is integer or half-integer, we have to insert Eq.~3.4! or Eq.~3.20! into
Eq. ~B3!. In both cases, the result reads

FJq~h!5 )
p50

2J11
1

11q2J22ph
. ~B4!

This is obvious in the former case. In the latter, by using the propertyLq(h)52Lq(h), Eq. ~B3!
can be transformed into

FJq~h!5exp$2Lq~q2J11h!1Lq~qh!%
1

~11h!~11q22h!
exp$Lq~q22J23h!2Lq~q23h!%

5
1

~11h!~11q22h!
expH 2 (

p50

2J11

@Lq~q2J1122ph!2Lq~q2J2122ph!#

1@Lq~qh!2Lq~q21h!#1@Lq~q21h!2Lq~q23h!#J . ~B5!

Repeated use of Eq.~3.8! for various arguments then directly leads to the searched for result~B4!.
To evaluateIq8 for FJq(h) given by Eq. ~B4!, we cannot use the same method as t

employed in Appendix A to calculateIq , because in theq-analog of the beta integral, given in Eq
~A6!, q is assumed real. Let us therefore rewrite the integrand ofIq8 in the form

hJ1NFJq~h!5 (
p50

2J11 ap
~J!

h1q2p22J , ~B6!

where the coefficientap
(J) is the residue ofhJ1NFJq(h) at the poleh52q2p22N, i.e.,

ap
~J!5~21!J1N

qJ11

~q2q21!2J11 3
~21!pqN~2p22J!

@p#q! @2J2p11#q!
. ~B7!

Then

GJq~h![E dhFJq~h!hJ1N5~21!J1N
qJ11

~q2q21!2J11 (
p50

2J11
~21!pqN~2p22J!

@p#q! @2J2p11#q!
ln~h1q2p22J!.

~B8!

To calculate the values ofGJq(h) for h→` and h50, the following identities1 will be
useful:

~1;h!q
2J11[ (

p50

2J11 F2J11
p G

q

hp5 )
p50

2J

~11q2p22Jh!, ~B9!

d

dh
~1;h!q

2J115 (
p50

2J11 F2J11
p G

q

php215 (
p50

2J

q2p22J)
r 50
rÞp

2J

~11q2r 22Jh!, ~B10!

where
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FnpG
q

[
@n#q!

@p#q! @n2p#q!
~B11!

is a q-binomial coefficient. From Eq.~B9!, we obtain

~1;2q2N!q
2J115 (

p50

2J11

~21!pF2J11
p G

q

q2Np50, ~B12!

because on the right-hand side, the factor (12q2p22J12N) vanishes forp5J2N. Similarly, from
Eq. ~B10!, we get

d

dh
~1;h!q

2J11U
h52q2N

5 (
p50

2J11

~21!p21pF2J11
p G

q

q2N~p21!

5~21!J1N~q2q21!2J@J2N#q! @J1N#q!qN~2J21!, ~B13!

since on the right-hand side only the term corresponding top5J2N leads to a nonvanishing
result.

By noting that forh@1,

ln~h1q2p22J!. ln~h!1
q2p22J

h
1OS 1

h2D , ~B14!

it directly results from Eq.~B12! that

lim
h→`

GJq~h!50. ~B15!

Furthermore, from Eqs.~B12! and ~B13!, we obtain

GJq~0!5
~21!J1NqJ11 ln q

~q2q21!2J11 (
p50

2J11
~21!p~2p22J!qN~2p22J!

@p#q! @2J2p11#q!

5
2~21!J1NqJ11 ln q

@2J11#q! ~q2q21!2J11 (
p50

2J11

~21!ppF2J11
p G

q

qN~2p22J!

52
2@J1N#q! @J2N#q!qJ1N11 ln q

@2J11#q! ~q2q21!
. ~B16!

By taking Eqs.~B8!, ~B15!, and~B16! into account, we conclude that for genericqPS1, Iq8 ,
defined in Eq.~B2!, is given by

Iq85
2~ ln q!qJ1N11@J1N#q! @J2N#q!

~q2q21!@2J11#q!
. ~B17!

By combining this result with Eqs.~2.11!, ~4.15!, and~B1!, Eq. ~4.23! directly follows.
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On an application of Crum–Krein transform to expansions
in products of solutions of two Sturm–Liouville
equations

E. Kh. Khristov
Department of Mathematics and Informatics, Sofia University,
‘‘St. Kl. Ohridski,’’ J. Bourchier 5, 1164 Sofia, Bulgaria

~Received 10 July 1998; accepted for publication 1 December 1998!

By using the Crum–Krein transform we construct explicit formulas allowing us to
reduce the problem of expansions in products of solutions for two Sturm–Liouville
problems on the semiaxis with general boundary conditions to the same problem
for two Sturm–Liouville problems with zero boundary conditions. We also obtain
the transformation formulas for the correspondingL operators. ©1999 American
Institute of Physics.@S0022-2488~99!01306-7#

I. INTRODUCTION

Let us consider two self-adjoint Sturm–Liouville problems with a spectral parameterl5k2

for the equations

yn91~k22vn~x!!yn50, 0,x,`, n51,2 ~1.1!

with boundary conditions

yn8~0!2gnyn~0!50 ~85d/dx!. ~1.2!

Here and belowgn are finite real numbers and the real-valued potentialsvn(x) belong to the space
X1 , where

X15H f ~x!:E
0

`

~11x!u f ~x!udx,`J .

The main purpose of this paper is the construction of transforms which allow one to obta
expansions in productsY(x,k)5y1(x,k)y2(x,k) of solutions of the problems~1.1!, ~1.2! and the
operators associated with them, usually calledL operators, starting from the problems

yn91~k22r n~x!!yn50, 0,x,`, n51,2, ~1.3!

yn~0!50, ~1.4!

where r n(x)PX1 . For the problem~1.3!, ~1.4! the corresponding expansion formulas are w
known and their proofs are simpler, see, e.g., Ref. 1. Combining the results in this paper w
previous ones1–3 we obtain an algebraic scheme allowing us to reduce the problem of expa
in products of solutions for two radial Schro¨dinger equations~1.3! with r n

( l )(x)5 l ( l 11))x22

1r n(x), l 51,2,..., as well as those connected with~1.1! and~1.2! to the simplest casel 50 with
a boundary conditionyn(0)50 and purely continuous spectrum. Let us note that each of
problems~1.1!, ~1.2! and ~1.3!, ~1.4! can be treated separately for example using the metho
contour integration.1,4 In contrast with the case~1.3! and ~1.4! the spectral problem for theL
operator in the case~1.1! and ~1.2! leads to nonlocalk-dependent boundary conditions. Th
method we present here avoids the above difficulties.
31620022-2488/99/40(6)/3162/13/$15.00 © 1999 American Institute of Physics
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The interest in these topics is motivated mainly by the applications to the theory of the s
equations, see, e.g., Refs. 5–8. It is also known9 that the completeness of the products of solutio
of two Sturm–Liouville problems plays an important role in various theorems concerning
associated direct and inverse problems. Articles 10–12 are among the first where exp
formulas in terms of the squared Sturm–Liouville or Zakharov–Shabat eigenstates are d
Here we specifically mention paper 13, where expansions in products of solutions of two S
Liouville problems withvn(x)PL loc are considered~see also Ref. 1, where one can find a detai
bibliography and additional remarks about the spectral theory ofL operators!. As pointed out in
Refs. 14 and 15, the solution of the inverse scattering problem by using the Gelfand–Le
Marchenko equation for the operator~1.1! and ~1.2! is essentially different from that with a
boundary conditiony(0)50, which is confirmed in the present work as well. In Refs. 16 and
it has been shown that by using Crum–Krein transform18,19 the inverse problem for the operato
~1.1! and ~1.2! can be reduced to the inverse problem for the operator~1.3! and ~1.4!. Similar
transforms on a finite interval have been systematically developed in Refs. 20 and 21
semiaxis such transforms have been well known since the pioneer works 17,19 and 22; s
Ref. 23 where, in particular, these results are stated in an operator language.

Let us introduce some notations which we shall use later on, and outline our main resul
denote bywn(x,k) andhn(x,k) the regular and the Jost solutions of Eq.~1.3!, which are defined
by the conditions

wn~0,k!50, wn8~0,k!51, lim
x→`

hn~x,k!exp~2 ikx!51 ~ Im k>0!,

and let hn(k)5hn(0,k)5W(hn ,wn)(W( f ,g)5 f g82 f 8g) be the characteristic function of th
problem ~1.3!, ~1.4!. We also introduce the productsF(x,k)5w1(x,k)w2(x,k), H(x,k)
5h1(x,k)h2(x,k), andH(k)5H(0,k)5h1(k)h2(k). Furthermore, we define

H̃~x,k!5
4

p
k Im$H~x,k!H21~k!%. ~1.5!

As a result we obtain

H̃~0,k!50, H̃8~0,k!5
4

p H k2

uh1~k!u2 1
k2

uh2~k!u2J . ~1.6!

The following theorem deals with expansion formulas associated with the productsF(x,k) and
H(x,k).1

Theorem 1.1: Let the problems (1.3), (1.4) with purely continuous spectrum, i.e., hn(k)Þ0,
Im k>0, n51,2, be given, and the functionsF(x,k) and H̃(x,k) be constructed as above. The
for any absolutely continuous function fPX1 we have

f ~x!5E
0

`

H̃~x,k!~ f ,F8~k!!dk, f ~x!5E
0

`

F8~x,k!~ f ,H̃~k!!dk. ~1.7!

If, in addition, fPL1
05$ f PL15L1(0,̀ ):*0

` f (x)dx50% then

f ~x!52E
0

`

H̃8~x,k!~ f ,F~k!!dk, ~1.8!

where( f ,F8(k))5*0
` f (x)F8(x,k)dx, etc.

Now in connection with the problem~1.1!, ~1.2! we denote bycn(x,k) and f n(x,k) the
solutions of~1.1! for which
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cn~0,k!51, cn8~0,k!5gn , lim
x→`

f n~x,k!exp~2 ikx!51~ Im k>0!,

and leten(k)5 f n8(0,k)2gnf n(0,k)5W(cn , f n) be the characteristic function of the problem~1.1!,
~1.2!. Here we introduce the productsC(x,k)5c1(x,k)c2(x,k), F(x,k)5 f 1(x,k) f 2(x,k), and
E(k)5e1(k)e2(k).

Let us also define the real spaceN5L2(0,̀ ) % R{ f̂ 5( f (x),a) with a scalar product

~ f̂ ,ĝ!15~ f ,g!1ab, ~ f ,g!5E
0

`

f ~x!g~x!dx.

We will use that notation also in the case whenf PX1 ~or f PL1! andg(x)PL`5L`(0,̀ ). We
denote the corresponding spaces byN1 andN` . Let Ck5Ck(0,̀ ) be, as usual, the space o
functions f (x) with continuouskth derivatives andC0

k5C0
k(0,̀ ) be the space of functionsf (x)

PCk such that limx→` f ( l )(x)50, l 50,1,...,k. Let alsoNk5Ck
% R, N0

k5C0
k

% R. Next, we intro-
duce the functions fromN` ,

F̂̃~x,k!5~ F̃~x,k!,F̃~0,k!!, F̃~x,k!5
4

p
k Im$F~x,k!E21~k!% ~1.9!

and

Ĉ8~x,k!5~C8~x,k!,1/2!. ~1.10!

Here the analog of Theorem 1.1 is the following theorem.1,4

Theorem 1.2: Let the problems (1.1), (1.2) with purely continuous spectrum, i.e., en(k)Þ0,

Im k>0, n51,2, be given, and the functionsĈ8(x,k) and F̂̃(x,k) be constructed as above. The

for any function fˆ5( f (x),a)PN1 where f(x) is absolutely continuous the following expansi
formulas take place:

f̂ 5E
0

`

F̂̃~x,k!~ f̂ ,Ĉ8~k!!1 dk, f̂ 5E
0

`

Ĉ8~x,k!~ f̂ ,F̂̃~k!!1 dk, ~1.11!

and

f ~x!52E
0

`

F̃8~x,k!~ f ,C̃~k!!dk, ~1.12!

whereC̃(x,k)5C(x,k)21/2.
The article is organized in the following way. In Sec. I we show that the Crum operato

F~ v̂n ;x!5
def

vn~x!22
d2

dx2 ln zn~x!5r n~x!, ~ v̂n5~vn~x!,gn!!, ~1.13!

where zn(x)5c(x,k0), k05 i t0 , t0.0 generates transforms which reduce the expansion
Theorem 1.2 to those in Theorem 1.1 and vice versa. In Sec. III, starting from some well-k
results concerningL operators associated with the problems~1.3!, ~1.4!, we construct a one-
parameter family ofL operators~t0 being the parameter! associated with~1.1!, ~1.2!. The L
operators obtained here do not coincide with the ones given in Ref. 4 even though they ha
same decompositions of unity generated by the expansion formulas given in Theorem 1.2.
IV, some applications of our results to the scattering theory for the problem~1.1!, ~1.2! are given.
In particular, here we show that ifv̂15 v̂2 then the transform given in Sec. II can be obtained
a derivative ofF( v̂;x) with respect tov̂. Let us note that the restriction for a purely continuo
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spectrum of the problems considered is not essential in view of the results 1, 2 and is used
keep the size of the paper reasonable. In Sec. V, the general case when a discrete spectru
is considered in brief. Some well-known results concerning the Sturm–Liouville problems
sidered, which we use below without reference, can be found in Refs. 15, 17, and 24.

II. TRANSFORM OF THE EXPANSION FORMULAS

The basis for our constructions as well as for those in Refs. 1–3 is the following lemm
Lemma 2.1: Consider the equations

yn91~l2vn~x!!yn50, a,x,b, n51,2 ~2.1!

and construct the equations

yn
~1!91~l2r n~x!!yn

~1!50, r n~x!5vn~x!22
d2

dx2 ln zn~x!,

where zn(x) are solutions of (2.1) forl5l0 , zn(x)Þ0, a,x,b. Then

W~Z~x!,Y~x,l!!5~l02l!
d

dx
~Z~x!Y1~x,l!!,

~2.2!

W~Z1~x!,Y1~x,l!!5~l02l!21
d

dx
~Z1~x!Y~x,l!!,

where Y(x,l)5y1(x,l)y2(x,l), Y1(x,l)5y1
(1)(x,l)y2

(1)(x,l) and Z(x)5z1(x)z2(x), Z1(x)
5Z21(x).

Lemma 2.1 is a direct consequence of the well-known Crum’s lemma18 ~see also Lemma 2.2
below! in view of the identity8

W~Y~x,l!,Z~x,l0!!5
1

l2l0

d

dx )
n51,2

W~yn~x,l!,zn~x,l0!!.

Let us now consider, along with the problems~1.1!, ~1.2!, the problems~1.3!, ~1.4! where
r n(x) is defined as in~1.13!. The following lemma has been obtained in Refs. 16 and 17.

Lemma 2.2. Let z(x)5c(x,k0) be a solution of the Eq. (1.1) for k05 i t0 , t0.0, z(x)Þ0,
0<x,`. Then the potential r(x) defined by (1.13) belongs to X1 and the solutionsw(x,k) and
h(x,k) of ~1.3! are expressed via the solutionsc(x,k) and f(x,k) as follows:

w~x,k!5
W~z~x!,c~x,k!!

~k0
22k2!z~x!

, h~x,k!5
W~z~x!, f ~x,k!!

i ~k01k!z~x!
~2.3!

and

h~k!52 i ~k01k!21e~k!. ~2.4!

Here y(x)5z21(x) is the solution of Eq. (1.3) for k5k0 ,

y~x!;Ceik0x, x→`, ~2.5!

where C is a constant.
Let us denote as usual byL(X,Y) the space of bounded linear operators defined inX with

values inY. Now we introduce in the spaceX5X1 ~or X5L`! the operators
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A f 5 f ~x!52Z~x!E
x

`

Y8~ t ! f ~ t !dt, Ã f 5 f ~x!22Z8~x!E
x

`

Y~ t ! f ~ t !dt,

where

Y~x!5Z21~x!, Z~x!5C~x,k0!. ~2.6!

One can directly check that

AY50, ÃY850, ~2.7!

where the second equation follows from the first one due todA f (x)/dx5Ã f 8(x). Also, ~2.5!
leads toA,ÃPL(X1 ,X1) ~respectively,L(L` ,L`)!. By using the operatorsA andÃ we construct

operatorsÂ,Ẫ:X1→N1(L`→N`) in the following way:

Â f 5~A f ~x!,2~Y8, f !!, Ẫ f 5~Ã f ~x!,2~Y, f !!. ~2.8!

Next, we introduce the operators

Bf 5 f ~x!22Y~x!E
0

x

Z8~ t ! f ~ t !dt, B̃f 5 f ~x!12Y8~x!E
0

x

Z~ t ! f ~ t !dt.

In view of ~2.6! for the adjoint operatorsB* and B̃* we have

B* 5Ã, B̃* 5A. ~2.9!

Further on, we construct the operatorsB̂ and B̂̃:N1→X1(N`→L`) via

B̂ f̂ 5Bf ~x!2aY~x!, B̂̃ f̂ 5B̃f ~x!12aY8~x!. ~2.10!

From ~2.7! and ~2.9! it follows that

Ẫ5 B̂̃21, Â5B̂21. ~2.11!

The next theorem gives the general transformation formulas for the functionsĈ(x,k), F̂̃(x,k)
andF(x,k), H̃(x,k).

Theorem 2.1: Let the problems (1.1), (1.2) and (1.3), (1.4) be connected by the trans
(1.13). Then the following representations hold:

Ĉ8~x,k!5~k0
22k2!ẪF8~x,k!, F̂̃~x,k!5~k0

22k2!21ÂH̃~x,k!, ~2.12!

F8~x,k!5~k0
22k2!21B̂̃Ĉ8~x,k!, H̃~x,k!5~k0

22k2!B̂F̂̃~x,k!. ~2.13!

Proof: From ~2.11! it follows that the equalities in~2.13! are a direct consequence of~2.12!.
Let us prove ~2.12!. By using ~2.2! with Z15Y(x), @Y(x) is defined by ~2.6!#, Y1(x,l)
5F(x,k), Y(x,l)5C(x,k) and the first of the formulas in~2.3! we get

W~Y~x!,F~x,k!!5~k0
22k2!21

d

dx
~Y~x!C~x,k!!.

After integrating fromx to ` and having in mind~2.5! we obtain the first formula in~2.12!. The
second formula in~2.12! can be obtained in a similar way taking into account~2.4!. h
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Now we shall show how starting from the expansion formulas given in the Theorem 1.1
can derive the corresponding expansions in Theorem 1.2 and vice versa. We explain in mor
only the transition (1.12)↔(1.8). The transitions (1.11)↔(1.7) could be obtained analogous
and so we omit its proof here.

Proof of the transition(1.12)↔(1.8): First we show how starting from the expansion in~1.8!
one can obtain the one in~1.12!. In order to do that we putf (x)5B̃g(x)2Y8(x)*0

`g(x)dx in
~1.8!. Evidently f PL1

0. Let us mention here that iff (x)52*x
` f 8(t)dt, f 8(x)PX1 , then

~ f̂ ,Ĉ8~k!!15 1
2~a2 f ~0!!2~ f 8,C̃~k!!. ~2.14!

Now we construct the functionĜ0(x)5(G(x)52*x
`g(t)dt,G(0)). From ~2.13! and ~2.14! we

obtain

2~B̂Ĝ0 ,F8~k!!5~~B̂Ĝ0!8,F~k!!5~k0
22k2!21~g,C̃~k!!.

Therefore,~1.8! leads to

B̃g~x!2Y8~x!E
0

`

g~ t !dt52E
0

`

H̃8~x,k!~k0
22k2!21~g,C̃~k!!dk. ~2.15!

By applying the operatorÃ to both sides of~2.15! we obtain the expansion~1.12! in view of ~2.7!,
and the representationF̃8(x,k)5(k0

22k2)21ÃH̃8(x,k) which is a direct consequence of~2.12!. In
connection with deriving the expansion~1.8! from ~1.12! it is sufficient to mention that from
~2.13! it follows (g,F(k))5(k0

22k2)21(Ãg,C̃(k)) whereg(x)PL1
0. h

Remark 2.1:It can be proved~see, e.g., Refs. 1 and 2! that the system$F8(x,k),0,k,`% is
biorthogonal to the system$H̃(x,m),0,m,`%, i.e., if k,m.0 then there exists~in a distribu-
tional sense! the limit

~H̃~m!,F8~k!!5 lim
N→`

E
0

N

H̃~x,m!F8~x,k!dx5
sin 2N~m2k!

p~m2k!
5d~m2k!. ~2.16!

From the transformation formulas given in Theorem 2.1 and using the identity (B̂ f̂ ,B̂̃ĝ)1

5( f̂ ,ĝ)1 , we have that

~H̃~k!,F8~m!!5
k0

22k2

k0
22m2 ~ F̂̃~k!,Ĉ8~m!!1 .

The last relation together with~2.16! shows that the system$Ĉ8(x,k),0,k,`% is biorthogonal to

the system$ F̂̃(x,m),0,m,`% with respect to the scalar product (•,•)1 .

III. L OPERATORS FOR THE PROBLEMS „1.1…, „1.2…

In the present section we construct theL operators for which the expansions given in The
rem 1.2 are decomposition of unity. We shall use some of the well-known results from tL
operator theory related with the problem~1.3!, ~1.4! which we introduce in the beginning. Th
main result of this section is Theorem 3.2 below.

In Ref. 25 it has been shown that if one introduces the operator

Lx0
5

1

4 F2
d2

dx2 12s~r ;x!2E
x0

x

dt st~r ;t !2E
x0

x

dt D~r ;t !E
x0

t

dzD~r ;z!G ,

wheres(r ;x)5r 1(x)1r 2(x), D(r ;x)5r 1(x)2r 2(x) then the productY(x,k)5y1(x,k)y2(x,k) of
any two solutionsyn of ~1.3! satisfies the equation
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Lx0
Y~x,k!5lY~x,k!1B~x0 ;x,k!, l5k2, ~3.1!

where

B~x0 ;x,k!52
1

4 FW~y1~x!,y2~x!!U
x5x0

E
x0

x

D~r ;t !dt1~2l2s~r ;x0!!Y~x0 ,k!

12y18~x0 ,k!y28~x0 ,k!G .

Now let us introduce the operatorsL5Lx05` , L* 5(d/dx)Lx050*0
x , i.e.,

L5
1

4 F2
d2

dx2 12s~r ;x!1E
x

`

dt st~r ;t !2E
x

`

dt D~r ;t !E
t

`

dzD~r ;z!G ,

L* 5
1

4 F2
d2

dx2 12s~r ;x!1sx~r ;x!E
0

x

dt2D~r ;x!E
0

x

dt D~r ;t !E
0

t

dzG
with a definition domain

D~L!5D~L* !5~ f ~x!: f ~0!50,f ~x!PC0
2ùL1!.

Then the operatorL* is adjoint toL, i.e.,

~Lf ,g!5~ f ,L* g! for f ,gPD~L!. ~3.2!

It is well known7,25 that the functionH(x,k) @as well asH̃(x,k)# is a solution of the equation

LH~x,k!5k2H~x,k!, Im k>0, ~3.3!

whereH̃(x,k) satisfies the boundary conditions~1.6!. Similarly, the functionF(x,k) solves the
equation

L* F8~x,k!5k2F8~x,k!, ~3.4!

with boundary conditionsF(0,k)5F8(0,k)50, F9(0,k)52.
These equations together with Theorem 1.1 show1 that the expansions~1.7! are decomposi-

tions of unity for the operatorsL andL* , i.e.,

Lf ~x!52E
0

`

k2H̃~x,k!~ f ,F8~k!!dk for f ~x!PD~L!, ~3.5!

L* f ~x!52E
0

`

k2F8~x,k!~ f ,H̃~k!!dk for f ~x!PD~L!. ~3.6!

Let us now introduce the operators

L̂* 5 ẪL* B̂̃[ B̂̃21L* B̂̃, L̂5ÂLB̂[B̂21LB̂, ~3.7!

acting in the spaceN 0
2(N `

2 ) according to

L̂* f̂ 5~ÃL* B̃f ~x!12aÃL* Y8~x!,2~Y,L* B̃f !22a~Y,L* Y8!!, ~3.8!

L̂ f̂ 5~ALBf ~x!2aALY~x!,2~Y8,LBf !22a~Y8,LY!!. ~3.9!

From ~3.2! it follows that
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~L̂ f̂ ,ĝ!15~ f̂ ,L̂* ĝ!1 for f̂ PD~L̂!, ĝPD~L* !,

whereD(L̂)5B̂D(L) andD(L̂* )5 B̂̃D(L), i.e.,

D~L̂!5~ f̂ PN 0
2: f ~0!5a, f ~x!PC0

2ùL1!,

D~L̂* !5~ f̂ PN 0
2: f ~0!52~g11g2!a, f ~x!PC0

2ùL1!.

Now, having in mind Theorem 2.1, it is easy to obtain from Eqs.~3.3!, ~3.4! and decompo-
sitions ~3.5!, ~3.6! the following theorem.

Theorem 3.1: Let the operatorsL̂* ,L̂ be constructed as in (3.7). Then:~i! The function

F̂̃(x,k) defined by (1.9) is a solution of the equation

L̂F̂̃~x,k!5k2F̂̃~x,k!

and Ĉ8(x,k) defined by (1.10) is a solution of the equation

L̂* Ĉ8~x,k!5k2Ĉ8~x,k!

with a boundary conditionC8(0,k)5(g11g2)C(0,k), (C(0,k)51).
~ii ! The expansion formulas (1.11) are decompositions of unity for the operatorsL̂* and L̂,

i.e.,

L̂* f̂ 5E
0

`

k2Ĉ8~x,k!~ f̂ ,F̂̃~k!!1dk for f̂ PD~L̂* !, ~3.10!

L̂ f̂ 5E
0

`

k2F̂̃~k,x!~ f̂ ,Ĉ8~k!!1dk for f̂ PD~L̂!. ~3.11!

Next let us consider following Refs. 1 and 4 the operators

L̂v̂
* 5S Lv* S* ~x!

2
1

4

d

dxU
x50

c* D , ~3.12!

L̂v̂5S Lv 0

~•,S* !2
1

2
~g11g2!

d

dxU
x50

c* D , ~3.13!

where Lv5Lx05` , Lv* 5(d/dx)Lx050*0
x , (r n→vn) and S* (x)5 1

2w(x)2 1
2(g12g2)D(v;x),

c* 5 1
2s(v;0)1g1g2 , w(x)5sx(v;x)2D(v;x)*0

xD(v;t)dt. That is, for any function f̂
PN 0

2(N `
2 ) we have

L̂v̂
* f̂ 5~Lv* f ~x!1aS* ~x!, 1

4 f 8~0!1ac* !

and

L̂v̂ f̂ 5~Lv f ~x!,~ f ,S* !2 1
2~g11g2! f 8~0!1ac* !.

Then
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L̂v̂
* f̂ 5E

0

`

k2Ĉ8~x,k!~ f̂ ,F̂̃~k!!1dk for f̂ PD~L̂* !, ~3.14!

L̂v̂ f̂ 5E
0

`

k2F̂̃~k,x!~ f̂ ,Ĉ8~k!!1dk for f̂ PD~L̂!. ~3.15!

Theorem 3.2:Let the operatorsL̂* ,L̂ be constructed as in (3.7) and let the operatorsL̂v̂
* ,L̂v̂

be defined as in (3.12), (3.13). Then:

L̂* f̂ 5L̂v̂
* f̂ for f̂ PD~L̂* !, L̂ f̂ 5L̂v̂ f̂ for f̂ PD~L̂!, ~3.16!

where the explicit form of the operatorsL̂ and L̂* in terms ofvn(x),gn is given by the expres
sions

L̂* 5S Lv* S* ~x!

2
1

4

d

dxU
x50

1
1

4
~g11g2!U

x50
c* 2

1

2
~g11g2!2D , ~3.17!

L̂5S Lv 0

~•,S* !2
1

2
~g11g2!

d

dxU
x50

1~c* 1t0
2!ux50 2t0

2D . ~3.18!

Proof: By comparing~3.14!, ~3.15! with ~3.10!, ~3.11! we obtain straightforwardly~3.16!. In
view of ~2.5!, Eq. ~3.1! yields the equation

L̂Y~x!52t0
2Y~x!.

As a result, we find that

2ALY~x!50, 22~LY,Y8!52t0
2, 22~Y,L* Y8!5 1

2s~v;0!2 1
2~g1

21g2
2!,

2~Y,L* B̃g!52 1
4g8~0!1 1

4~g11g2!g~0!,

and

2~Y8,AB f !52~ f ,ÃL* Y8!2 1
2~g11g2! f 8~0!1~t0

21 1
2s~v;0!1g1g2! f ~0!.

By inserting these equalities in~3.8!, ~3.9! we obtain that ifg(0)52(g11g2)b then

2~Y,L* B̃g!22b~Y,L* Y8!)52 1
4g8~0!1c* b

and if f (0)5a then

2~Y8,LBf !22a~Y8,LY!)5~ f ,S* !2 1
2~g11g2! f 8~0!1c* f ~0!.

Thus we obtainS* (x)52ÃL* Y8(x) sincef (x) is an arbitrary function inC0
2. From here, in view

of ~3.16!, we conclude due to the arbitrariness off (x) that Lv* 5ÃL* B̃, Lv5ALB. h

Remark 3.1:From the above Theorem one can see that the relationsL̂ f̂ 5L̂ v̂ f̂ and L̂* f̂

5L̂ v̂
* f̂ do not hold in general~for an arbitrary functionf̂ in N 0

2! since from~3.17!, ~3.18! it
follows that the necessary and sufficient conditions for that are2t0

25 1
2s(v;0)1g1g2 , g11g2

50.
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IV. APPLICATIONS

In this section first we show that the operators generating the transforms in Sec.
functional derivative of the operator~1.13!,

F~ v̂;x!5
def

v~x!22
d2

dx2 ln z~x!5r ~x!, ~4.1!

where z(x)5c( v̂;x,k0)5c(x,k0). The potentialv̂5(v(x),g), which determines the problem
~1.1!, ~1.2! is considered as an element in the spaceN1 , the potentialr (x) in ~1.3! as an element
in X1 andF as an operatorF:N1→X1 . According to Lemma 2.2, the inverse toF( v̂;x) operator
G(r ;x):X1→N1 , is given by the expression

G~r ;x!5S r ~x!22
d2

dx2 ln y~r ;x!,2
d

dx
ln y~r ;x!U

x50
D , ~4.2!

wherey(r ;x)5c21( v̂;x,k0). The main result is the following.
Theorem 4.1:At any pointv̂PN1 there exists the derivative:

d

de
F~ v̂1eĝ;x!ue505

]F
] v̂

ĝ52 B̂̃ĝ ~ ĝ5~g~x!,b!!, ~4.3!

where ]F/] v̂5(]F/]v,]F/]g) and B̂̃ is defined by (2.10) forv̂15 v̂25 v̂. The operatorG is
differentiable at any point rPX1 and its derivative is

d

de
G~r 1e f ;x!ue5052 Ẫ f , ~4.4!

whereẪ is defined by (2.8) with r15r 25r .
Proof: Equation~4.1! yields

d

de
F~v1eg,g1eb;x!ue505g~x!22

d2

dx2 S c21~ v̂;x!
]c~ v̂;x!

]v
g~x! D

2
d2

dx2 S c21~ v̂;x!
]c~ v̂;x!

]g
b D . ~4.5!

In a standard way one obtains for any fixedk0 andg the following expression for the derivative

]c~ v̂;x,k0!

]v
g~x!5c~x,k0!E

0

x

c22~ t,k0!S E
0

t

c2~z,k0!g~z!dzD dt.

Therefore,

22
d2

dx2 S c21~x,k0!
]c~x,k0!

]v
g~x! D522Y8~x!E

0

x

Y21~ t !g~ t !dt22g~x!. ~4.6!

In order to obtain

22
d2

dx2 S c21~ v̂;x,k0!
]c~ v̂;x,k0!

]g D522Y8~x! ~4.7!
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it remains to mention that]c( v̂;x,k0)/]g5c(x,k0)*0
xc22(t,k0)dt. Now we derive~4.3! by

inserting~4.6! and~4.7! into the right-hand side of~4.5!. The representation~4.4! is obtained in a
similar manner. h

Let us denote byh( v̂;k) the phase shift of the problem~1.1!, ~1.2! where e( v̂;k)
5ue( v̂;k)uexp(ih(v̂;k)) and byd(r ;k) the phase shift of the problem~1.3!, ~1.4! whereh(r ;k)
5uh(r ;k)uexp(id(r;k)). Then from~2.4! it follows that

d~F~ v̂ !;k!5arctan
k

t0
1h~ v̂;k!, 0,k,`. ~4.8!

and

r~F~ v̂ !;k!5~k22k0
2!s~ v̂;k!, ~4.9!

where s( v̂;k)5(2/p)k2ue( v̂;k)u22 and r(r ;k)5(2/p)k2uh(r ;k)u22 are the spectral density o
the problems~1.1!, ~1.2! and ~1.3!, ~1.4!, respectively.

Now we recall~see, e.g., Ref. 24! that at any pointr PX1 whereh(r ;0)Þ0 there exists the
derivative

]d~r ;k!

]r ~x!
5

k

uH~r ;k!u
F~r ;x,k!. ~4.10!

Let us differentiate~4.8! with respect tov̂. According to~4.3! we have

S ]d~r ;k!

]r
,
]F
] v̂

ĝD5S ]h~ v̂;k!

] v̂
,ĝD

1

, ~4.11!

where]h( v̂;k)/] v̂5(]h( v̂;k)/]v(x),]h( v̂;k)/]g). By using the representations~2.12! and~4.9!
we find that]h( v̂;k)/] v̂5kuE( v̂;k)u21(C( v̂;x,k),1). Now let us replacef (x) in the expansion

~1.8! by f (x)5 B̂̃v̂ t(x,t) wherev̂(t)5(v(x,t),g(t)) is the family of differentiable int potentials
such thatv̂ t5(v t(x,t),g t(t))PN1 . Having in mind~4.11! we obtain

B̂̃v̂ t~x,t !5E
0

`

x8~x,k!h t~ v̂;k!dk, ~4.12!

where x(x,k)5k21uH(k)uH̃(x,k), h t( v̂;k)5(]h( v̂;k)/] v̂,v̂ t)1 . The condition r t(x,t)5

2 B̂̃v̂ t(x,t)PL1
0 yields I 1,t( v̂(t))50, I 1( v̂)5g1 1

2*0
`v(x)dx. Note thatI 1 determines14 the as-

ymptotics h( v̂;k)5k21I 1( v̂)1o(k21) as k→`. Now we putx50 in ~4.12! and use~1.6! to
obtain the trace formula

d

dt
$v~0,t !22g2~ t !%5

8

p E
0

`

kh t~ v̂;k!dk. ~4.13!

Note that ~4.13! could be obtained directly from the well-known Faddeev–Newton26,27 trace
formula

r t~0,t !5
8

p E
0

`

kd t~r ;k!dk ~4.14!

by implementing~4.1!. Let us here also make the remark that~4.14! follows from the expansion
~1.8! with f (x)5r t(x,t), boundary conditions~1.6! and the expression~4.10! for ]d(r ;k)/]r (x)
in contrast to the formula~4.13! which is not a direct consequence of~1.12!.
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V. TRANSFORMS IN THE CASE OF A DISCRETE SPECTRUM

In this section is given a generalization of the scheme for deriving transforms proposed i
II to the general case when we have a discrete spectrum. For the problem~1.3!, ~1.4! it is defined
by the zeros of the characteristic functionhn(k) at Imk.0. We put

sn5$kn, j :hn~kn, j !50,kn, j5 i tn, j ,tn, j.0, j 51,2,...,Nn%

ands5s1øs2 , s95s1ùs2 , s85s\s9. If kn, jPs8 then we put

H̃n, j~x!52mn, jH~x,kn, j !, mn, j54kn, j Ḣ
21~kn, j !, ~ ˙ 5]/]k!

and with eachkjPs9 we associate a pair of functions

H̃ j ,1~x!52pj~Ḣ~x,kj !1gjH~x,kj !!,H̃ j ,2~x!52pjH~x,kj !,

wherepj58kjḦ
21(kj ), qj5kj

212Ĥ(kj )(3Ḧ(kj ))
21. The analog of~1.7! here is the following

expansion formula:1

f ~x!5E
0

`

H̃~x,k!~ f ,F8~k!!dk1Skn, j Ps8H̃n, j~x!~ f ,F8~kn, j !!

1Skj Ps9$H̃ j ,1~x!~ f ,F8~kj !!1H̃ j ,2~x!~ f ,Ḟ8~kj !!%, ~5.1!

where f (x) is an absolutely continuous function inX1 .
In a similar way, for the problems~1.1!, ~1.2! we denote, as above;sn5$kn, j :en(kn, j )

50,kn, j5 i tn, j ,tn, j.0, j 51,2,...,Nn% ands5s1øs2 , s95s1ùs2 , s85s\s9. Note that un-
der the condition~1.13! the spectrumsn of ~1.1!, ~1.2! coincides with the spectrumsn of ~1.3!,
~1.4! which can be seen from~2.4!. Here we put

F̂̃n, j~x!52an, j F̂~x,kn, j !, an, j54kn, j Ė
21~kn, j ! ~kn, jPs8!

and

F̂̃ j ,1~x!52bj~ Ḟ̂~x,kj !1dj F̂~x,kj !!, F̂̃ j ,2~x!52bj F̂~x,kj !,

wherebj58kj Ë
21(kj ), dj5kj

212Ê(kj )(3Ë(kj ))
21(kjPs9).

The analog of~1.12! is the following expansion formula:4

f̂ 5E
0

`

F̂̃~x,k!~ f̂ ,Ĉ8~k!!1dk1Skn, j Ps8F̂̃n, j~x!~ f̂ ,Ĉn, j8 !1

1Skj Ps9$ F̂̃ j ,1~x!~ f̂ ,Ĉ8~kj !11 F̂̃ j ,2~x!~ f̂ ,Ĉ˙ 8~kj !1%, ~5.2!

where f̂ 5( f (x),a)PN1 .
Here we sketch only the proof of the transition (5.1)→(5.2). Since the transform related t

the continuous spectrum has already been obtained in Sec. II, here it is sufficient to consid
the transform of the expansion

f ~x!5H̃ j ,1~x!~ f ,F8~kj !!1H̃ j ,2~x!~ f ,Ḟ8~kj !!1H̃n,l~x!~ f ,F8~kn,l !! ~5.3!

in order to derive~5.2! starting from~5.1!. By using equality~2.4! where t0.tn, jtn, jPs we
obtain that the coefficientsan, j52(k01kn, j )

22mn, j (kn, jPs8) and bj52(k01kj )
22pj , dj

5qj22(k01kj )
21(kjPs9). Let us put in~5.3! f 5B̂ĝ, ĝ5(g(x),b)PN1. It follows from ~2.13!

that
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~B̂ĝ,F8~kn, j !!5~k0
22kn, j

2 !21~ ĝ,Ĉ8~kn, j !!1 ~kn, jPs!

and

~B̂ĝ,Ḟ8~kj !!5~k0
22kj

2!21~ ĝ,Ċ̂8~kj !!112kj~k0
22kj

2!22~ ĝ,Ĉ8~kj !!1 , ~kjPs9!.

Therefore, we obtain

B̂ĝ5
k01kj

k02kj
bj S Ḣ~x,kj !1S dj1

2kj

k0
22kj

2D H~x,kj !D ~ ĝ,Ĉ8~kj !!1

1
k01kj

k02kj
bjH~x,kj !~ ĝ,Ċ̂8~kj !!11

k01kn, j

k02kn,l
an,lH~x,kn,l !~ ĝ,Ĉ8~kn,l !!1 .

Finally, by applying the operatorÂ, in view of ~2.11! and ~2.12! we come to

ĝ5 F̂̃ j ,1~x!~ ĝ,Ĉ8~kj !11 F̂̃ j ,2~x!~ ĝ,Ċ̂8~kj !11 F̂̃n,l~x!~ ĝ,Ĉn,l8 !1 .

The case (5.2)→(5.1) can be treated just as above and so we omit the proof here.
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21J. Pöschel and E. Trubowitz,Inverse Spectral Theory, Pure and Applied Mathematics Vol. 130~Academic, New York,

1987!.
22L. D. Faddeev, UMN14, 57 ~1959!.
23P. A. Deift, Duke Math. J.45, 267 ~1978!.
24K. Chadan and P. C. Sabatier,Inverse Problems in Quantum Scattering Theory, 2nd ed.~Springer, Berlin, 1989!.
25F. Calogero,Stud. Math. Phys. (Essays in Honor of V. Bargman), edited by E. H. Lieb, B. Simon, and A. S. Wightma

~Princeton University Press, Princeton, NJ, 1976!, p. 23.
26L. D. Faddeev, DAN USSR115, 878 ~1957!.
27R. G. Newton, Phys. Rev.101, 1588~1956!.
                                                                                                                



-

e late
istical
, lead-
s. We
supe-
gebras,
artan

pact on
models
6 and

nway

far only

tra-
nduc-
paper

sym-

the

trix is
under-
educ-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 6 JUNE 1999

                    
Geometry and representations of the quantum supergroup
OSPq„1z2n …

H. C. Lee
Department of Physics and Center for Complex Systems, National Central University,
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R. B. Zhang
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The quantum supergroup OSPq(1u2n) is studied systematically. A Haar functional
is constructed, and an algebraic version of the Peter–Weyl theory is extended to
this quantum supergroup. Quantum homogeneous superspaces and quantum homo
geneous supervector bundles are defined following the strategy of Connes’ theory.
Parabolic induction is developed by employing the quantum homogeneous super-
vector bundles. Quantum Frobenius reciprocity and a generalized Borel–Weil theo-
rem are established for the induced representations. ©1999 American Institute of
Physics.@S0022-2488~99!00205-4#

I. INTRODUCTION

Quantized universal enveloping algebras of Lie superalgebras were introduced in th
1980s1,2 to describe the type of supersymmetries exhibited by some two-dimensional stat
mechanics models.3 Since then these quantum superalgebras have been intensively studied
ing to the development of an extensive theory on both the structure and representation
mention in particular that the quasi-triangular Hopf superalgebraic structure of the quantum
ralgebras was investigated in Ref. 4; the representation theory of the type I quantum superal
the gl(mun) super Yangians and the quantum affine superalgebras with symmetrizable C
matrices were developed in Ref. 5. The theory of quantum superalgebras had significant im
a range of areas of physics and mathematics. Its applications to two-dimensional integrable
in statistical mechanics and quantum field theory were extensively explored in Refs. 1 and
many other publications. The application to knot theory and three-manifolds7,8 has yielded many
new topological invariants, notably, the multi-parameter generalizations of Alexander–Co
polynomials.

The associated quantum supergroups are in contrast less studied in the literature. So
the quantum supergroup GLq(mun) has been systematically investigated.9 In Ref. 9, the structure
and representation theories of GLq(mun) were developed. The irreducible covariant and con
variant tensorial representations were studied in detail within the framework of parabolic i
tion, resulting in a quantum Borel–Weil theorem for these representations. The aim of this
is to treat the osp(1u2n) series of quantum supergroups at genericq.

The osp(1u2n) series of Lie superalgebras played an important role in the study of super
metry on de Sitter space.10 These Lie superalgebras, especially osp~1u32!, also featured promi-
nently in recent developments of string theory. An Inonu–Wigner contraction of osp~1u32! yields
the 11-dimensional Poincare´ superalgebra with two and five form central charges, which is
underlying symmetry ofM theory; the superalgebra osp~1u32! itself also plays an important role in
the theory of supermembranes.11 From a mathematical point of view, osp(1u2n) is also rather
exceptional amongst all the finite-dimensional simple Lie superalgebras in that its Cartan ma
symmetrizable, and the structure of its finite-dimensional representations is completely
stood. In particular, it is known that all finite-dimensional representations are completely r
ible.
31750022-2488/99/40(6)/3175/16/$15.00 © 1999 American Institute of Physics
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Many properties of osp(1u2n) carry over to the quantum case whenq is generic. It is par-
ticularly useful to recall that the Drinfeld version of Uq„osp(1u2n)… is, algebraically, a trivial
deformation of U„osp(1u2n)… in the sense of Gerstenhaber.~This fact is known to experts, an
may be easily inferred from results of Ref. 12.! Therefore,finite-dimensional representationsof
Uq„osp(1u2n)… are also completely reducible. This remains true for the Jimbo version
Uq„osp(1u2n)… at genericq. One way to see this is through the specialization of the indetermi
of the Drinfeld algebra to a generic complex parameter; the other is through the isomor
between Uq„osp(1u2n)… and U2q„so(2n11)… established by a kind of Bose–Ferm
transmutation.13 There is also an interesting connection between the representation theo
Uq„osp(1u2n)… and quantum para-statistics, details on which can be found in Ref. 14.

This paper will study structural and representation theoretical properties of the quantu
pergroup OSPq(1u2n), and also investigate its underlying geometries. This quantum superg
will be defined by its superalgebra of functions, which is theZ2-graded Hopf algebra generated b
the matrix elements of the vector representation of Uq„osp(1u2n)…. Two major results in the
structure theory are presented, namely, the existence of a left and right integral, which w
called a quantum Haar functional, and a quantum Peter–Weyl theorem.

Corresponding to each reductive subalgebra Uq(k) of Uq„osp(1u2n)…, we introduce a quan-
tum homogeneous superspace, which is defined by specifying its superalgebra of functionsAq

k . A
quantum homogeneous supervector bundle over the quantum homogeneous superspace is
from any given finite-dimensional Uq(k) module. We shall show that the space of sectionsGq

k(V)
of this bundle is projective and is of finite type both as a left and a right module overAq

k .
Therefore our definition of quantum homogeneous supervector bundles is consistent w
general definition of noncommutative vector bundles in Connes’ theory.15

Quantum homogeneous supervector bundles will be applied to develop a theory of in
representations for OSPq(1u2n). Amongst the results obtained are quantum versions of Frobe
reciprocity and the Borel–Weil theorem. The latter provides a concrete realization of fi
dimensional irreducible OSPq(1u2n) representations in terms of quantum analogs of ‘‘holom
phic’’ sections of quantum homogeneous supervector bundles.

We wish to point out that in the context of Lie supergroups at the classical level, the m
ematical theories of homogeneous superspaces and homogeneous supervector bundles w
ied in Refs. 16 and 17. The development of a Bott–Borel–Weil theory was also initiated
extensively investigated by Penkov and co-workers.17 However, complications arising from su
permanifold geometry render these subjects very difficult to study. So far as we are aware
aspects of the subjects remain to be fully developed. It seems that the Hopf algebraic ap
developed here and in Ref. 9 is also worth exploring at the classical level, and is likely to pr
a new method complementary to the geometric approach of Refs. 16 and 17.

The organization of the paper is as follows. In Sec. II we review some known facts a
Uq„osp(1u2n)…, which will be needed later. In Sec. III we study the quantum supergr
OSPq(1u2n). In Sec. IV we investigate the quantum homogeneous superspaces and qu
homogeneous supervector bundles determined by this quantum supergroup, while the last
applies results of Sec. IV to study the representation theory of OSPq(1u2n).

II. Uq„osp „1z2n ……

This section reviews some known results on the quantized universal enveloping a
Uq„osp(1u2n)…. Let E be then-dimensional Euclidean space spanned by the vectorse i , with the
inner product~,! defined by (e i ,e j )5d i j . We can express the simple roots of the Lie superalge
osp(1u2n) in terms of thee’s as

a i5e i2e i 11 , i 51,2,...,n21, an5en ,

wherean is the odd simple root. The Cartan matrixA5(ai j ) i , j 51
n of osp(1u2n) is then given by

ai j 52(a i ,a j )/(a i ,a i). An elementmPE will be called integral if
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l i5
2~m,a i !

~a i ,a i !
PZ, ; i ,n, l n5

~m,an!

~an ,an!
PZ,

and the set of all integral elements will be denoted byP. ~Note the unusual form ofl n .! Set
P15$mPPu l i ,l nPZ1%. Elements ofP1 will be called integral dominant.

The Jimbo version of the quantum superalgebra Uq„osp(1u2n)… is a Z2-graded complex as
sociative algebra generated by$ki

61,ei , f i ,i PNn%, Nn5$1,2,...,n%, subject to the relations

kiki
2151, kikj5kjki ,

kiej5q~a i ,a j !ejki , ki f j5q2~a i ,a j ! f jki ,
~1!

@ei , f j%5d i j

ki2ki

q2q
, ; i , j PI ,

~Ad ei !
12ai j ~ej !50, ~Ad f i !

12ai j ~ f j !50, ; iÞ j .

All the generators are chosen to be homogeneous, withki
61, ; i , andej , f j , j ,n, being even,

anden , f n being odd. For a homogeneous elementx, we define@x#50 if x is even, and@x#51
when odd. The graded commutator@.,.% represents the usual commutator when any one of the
arguments is even, and the anticommutator when both arguments are odd. The adjoint op
Ad is defined by

Ad ei~x!5eix2~21!@ei #@x#kixki
21ei ,

Ad f i~x!5 f ix2~21!@ f i #@x#kixki
21f i .

For x being a monomial inej ’s or f j ’s it carries a definite weightv(x)PH* . Then Adei(x)
5eix2(21)@ei @x#q(a i ,v(x))xei , and similarly for Adf i(x). For convenience, we will use the no
tationg to denote osp(1u2n), and Uq(g) to denote Uq„osp(1u2n)…. As is well known, this algebra
has the structures of aZ2-graded Hopf algebra. We will denote the comultiplication byD, the
counit bye, and the antipode byS.

The representation theory of Uq(g) was developed in Ref. 13. For any finite-dimension
Uq(g) module, there exists a homogeneous basis relative to which theki are represented by
diagonal matrices. Here we will only consider such finite-dimensional Uq(g) modules that the
eigenvalues of theki tend to 1 asq approaches 1. We will denote the set of all such Uq(g) modules
by Modq(g). Recall that all objects ofModq(g) are semi-simple.

If W(l) is a simple object ofModq(g), then there exists the unique~up to scalar multiples!
highest weight vectorv1 , such that

eiv150, kiv15q~l,a i !v1 , lPP1 ,

and the moduleW(l) is uniquely determined by the highest weightl. We will denote the lowest
weight of W(l) by l̄, and definel†52l̄. The dual module ofW(l) has highest weightl†.

The irreducible Uq(g) module with highest weighte1 plays a special role in the representati
theory of Uq(g). We denote this module byE, and refer to it as the vector module. Let us no
examine this module in some detail. Denote byw1 the highest weight vector ofE, which is
assumed to be even. Define

wi5 f i 21wi 21 , 1, i<n,

w05 f nwn , w2n5 f nwn ,

w2 j5 f jw2 j 21 , n. j >1.
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Then $wmum50,61,62,...,6n% forms a weight basis ofE. We will denote byt the irreducible
representation relative to this basis. The matrix elements of theei , f i andki can be immediately
written down. We have

t~ei !mn5dm idn,i 111dm,2 i 21dn,2 i ,

t~ f i !mn5dm,i 11dn i1dm,2 idn,2 i 21 , i ,n,

t~en!mn5dmndn02dm0dn,2n ,

t~ f n!mn5dm0dnn1dm,2ndn0 ,

t~kj !mn5dmnq~a j ,em!, 1< j <n,

wheree050, ande2 i52e i .
Let $wm* % be the basis ofE* defined bywm* (wn)5dmn . HereE* has a natural Uq(g)-module

structure with the Uq(g) action given by

xwm* 5(
n

~21!@x#dm0t„S~x!…mnwn* . ~2!

The lowest weight ofE is 2e1 . Thus the moduleE is self-dual. This implies that there exists
Uq(g)-module isomorphismM :E→E* , which is unique up to scaler multiples. Thew21* , being
the highest weight vector ofE* , will be identified withw1 so that this arbitrariness inM can be
removed. Now let

wm* 5(
n

wnM nm .

Then

Mmn5mmdm1n,0 , mm5H ~2q!m21, m.0,
~2q!n, m50,
~2q!2n1m, m,0.

~3!

It follows from earlier discussions that repeated tensor products ofE are completely reducible
Furthermore, every finite-dimensional irreducible Uq(g) module is embedded in someE^ k for at
least onek>0.

For later use, we consider two classes ofZ2-graded Hopf subalgebras of Uq(g). Correspond-
ing to any subsetQ of Nn , we introduce

Sk5$ki
61,i PNn ; ej , f j , j PQ%;

Sp5Skø$ej , j PNn\Q%.

The elements of each set generate aZ2-graded Hopf subalgebra of Uq(g). The subalgebra gener
ated by the elements ofSk will be denoted by Uq(k), and called a reductive subalgebra of Uq(g),
while that generated by the elements ofSp will be denoted by Uq(p) and called a parabolic
subalgebra. Note that Uq(k) is aZ2-graded Hopf subalgebra of Uq(p). If we replaceei by f i and
vice versa inSp , we obtain another set, which will generate aZ2-graded Hopf subalgebra o
Uq(g) having similar properties as Uq(p). Results presented in the remainder of the paper can
be formulated using such algebras.

Observe that there are two types of reductive subalgebras, depending on whetherQ contains
n. The first type arises whenn¹Q, and in this case, Uq(k) is the direct product of quantize
universal enveloping algebras associated with a series of ordinary~i.e., nongraded! Lie algebras of
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type A supplemented by the algebra generated by someki
61. The second type arises whenn

PQ. This time, Uq(k) is the direct product of the first type with a Uq„osp(1u2m)… for somem
,n. In both cases, the finite-dimensional representations of Uq(k) are completely reducible. This
fact will be of great importance to the main subject of the paper.

Let Vm be a finite-dimensional irreducible Uq(k) module. ThenVm is of highest weight type.
Let m be the highest weight andm̃ the lowest weight ofVm respectively. We can extendVm in a
unique fashion to a Uq(p) module, which is still denoted byVm , such that the elements ofSp\Sk

act by zero. It is not difficult to see that all finite dimensional irreducible Uq(p) modules are of this
kind.

Consider a finite-dimensional irreducible Uq(g) module W(l), with highest weightl and
lowest weightl̄. W(l) can be restricted in a natural way to a Uq(p) module, which is always
indecomposable, but not irreducible in general. It can be readily shown that

dimC HomUq~p!„W~l!,Vm…5H 1, l̄5m̃,

0, l̄Þm̃.

III. THE QUANTUM SUPERGROUP OSPq„1z2n …

There exist well-established methods for quantizing ordinary Lie groups in the
supersymmetric setting.~See Ref. 18 and references therein.! These methods can also be extend
to construct OSPq(1u2n), and this will be done here. However, we should point out that it is
general, much more difficult to study quantum supergroups. See Ref. 9 for details on GLq(mun).

We will show that the quantum supergroup OSPq(1u2n) admits a quantum Haar functiona
and also a Peter–Weyl basis. This, however, is an exception rather than the rule. It is know
the finite-dimensional representations of all the quantum superalgebras but Uq„osp(1u2n)… are not
completely reducible. This fact renders it impossible to construct Peter–Weyl bases for th
responding quantum supergroups@which are yet to be defined except GLq(mun)#.

Let us recall some general results aboutZ2-graded Hopf algebras. LetA be aZ2-graded Hopf
algebra with comultiplicationD, counite, and antipodeS. We define the finite dualA0 of A to be
a subspace ofA* such that for anyf PA0, Ker f contains a two-sided idealI of A which is of
finite codimension, i.e., dimA/I,`. Of course in the most general situation, there is no guara
that A0 will not be zero. But whenA0 is nontrivial, then it is also aZ2-graded Hopf algebra with
a structure dualizing that ofA. More explicitly, the multiplication is defined, forf, gPA0, a, b
PA, by

^ f g,a&5^ f ^ g,D~a!&5(
~a!

~21!@g#@a~1!#^ f ,a~1!&^g,a~2!&.

It is easy to see that the unit ofA0 is e. Denote the comultiplication, the counit, and the antipo
of A0 respectively byD0 , e0 andS0 . Then

^D0~ f !,a^ b&5(
~ f !

~21!@ f ~1!#@ f ~2!#^ f ~1! ,a&^ f ~2! ,b&5^ f ,ab&,

^S0~ f !,a&5^ f ,S~a!&, e0~ f !5^ f ,1A&.

Now we come back to the quantum supergroup OSPq(1u2n). As is well known, we cannot
define the quantum supergroup directly. Instead, we need to find the algebra of functions
IntroducetmnP„Uq(g)…* , m,n50,61,62,...,6n, defined by

tmn~x!5t~x!mn , ;xPUq~q!,
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where t is the vector representation of Uq(g). We call thetmn the matrix elements oft. Finite
dimensionality ofE implies thattmnP„Uq(g)…0, ;m, n.

We define the superalgebraTq(g) of functions on OSPq(1u2n) to be theZ2-graded subalgebra
of „Uq(g)…0 generated by the matrix elements of the vector representation of Uq(g), i.e., tmn ,
m,n50,61,62,...,6n. Then we have the following theorem.

Theorem 1: ~1! Tq(g) is a Z2-graded Hopf algebra.
~2! Let t(l) be the irreducible representation ofUq(g) with highest weightlPP1 , and let

t i j
(l) , i , j 51,2,...,dl (dl5dim t (l)), be the matrix elements of t(l). Then

Tq~g!5 %
lPP1

%
i , j 51

dl

Ct i j
~l! . ~4!

Proof: The Z2-graded bialgebra structure ofTq(g) is obvious, and the existence of the an
pode follows from the self-duality of the vector moduleE over Uq(g). Part ~2! immediately
follows from the complete reducibility of finite-dimensional representations of Uq(g). h

Let us now work out the explicit forms of the comultiplication and the antipode. The co
tiplication is given by

D0~ tmn!5(
s

~21!~dm01ds0!~dn01ds0!tms ^ tsn .

The antipode can be constructed from~2! by using the Uq(g)-module isomorphismM. We have

S0~ tmn!5~21!~dm01dn0!dm0~M 21tM !nm

5~21!~dm01dn0!dm0
m2mt2n,2m

m2n
,

wheremm is given by~3!.
Here we introduce more notations for later use. Let$wi

(l)u i 51,2,...,dl% be the homogeneou
basis ofW(l) with respect to which the representationt (l) is defined. We denote by$w̃i

(l)u i
51,2,...,dl% the basis ofW(l)* 5W(l†) such thatw̃i

(l)(wj
(l))5d i j . The Uq(g)-module structure

of W(l)* enables us to definet̃ i j
(l)PTq(g) by

xw̃i
~l!5(

j
t̃ j i

~l!~x!w̃j
~l! , ;xPUq~g!.

Then

t̃ j i
~l!5~21!@ i #~@ i #1@ j # !S0~ t i j

~l!!,

where@ i #50 or 1 depending on whetherwi is even or odd. Clearly thet̃ j i
(l) are linear combina-

tions of t i j
(l†) . Furthermore, thet̃ j i

(l) , ;lPP1 , also form a basis ofTq(g).
From here on, we will omit the subscript 0 fromD0 andS0 .
Let us now turn to the discussion of a Haar functional on the quantum supergroupTq(g). But

before embarking on this task, we first consider the notion of an integral on an arbitraryZ2-graded
Hopf algebraA. Let A* be its dual, which has a naturalZ2-graded algebraic structure induced b
the co-algebraic structure ofA. An even homogeneous element* lPA* is called a left integral on
A if

f •E l

5^ f ,1A&E l

, ; f PA* .

Similarly, an even homogeneous element* rPA* is called a right integral onA if
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E r

• f 5^ f ,1A&E r

, ; f PA* .

A straightforward calculation shows that the defining properties of the integrals are equival
the following requirements

S id^ E l DD~x!5E l

x, S E r

^ idDD~x!5E r

x, ;xPA. ~5!

where id is the identity map onA.
A Haar functional*PA* on A is an integral onA which is both left and right, and sends1A

to 1, i.e.,

~ i ! S E ^ idDD~x!5S id^ E DD~x!5E x, ;xPA,

~6!

~ i i ! E 1A51.

In the case ofTq(g), it is an entirely straightforward matter to show the following.
Theorem 2: The element*P„Tq(g)…* defined by

E 1Tq~g!51; E t i j
~l!50, 0ÞlPP1 ,

gives rise to a Haar functional onTq(g).
Denote by 2r the sum of the positive roots ofg. Let K2r be the product of powers ofki

61’s
such that

K2reiK2r
215q~2r,a i !ei , ; i .

Then it can be easily shown that

S2~x!5K2rxK2r
21, ;xPUq~q!.

We define the quantum superdimension of the irreducible Uq(g) moduleW(l) by

SDq~l!ªStr$t ~l!~K2r!%.

For quantum superalgebras other than the osp(1u2n) series, there exists a class of finit
dimensional irreducible representations, the typicals, of which the super-dimensions vanish
tically. Again, Uq„osp(1u2n)… is an exception, and we have the following important property:
any irreducible Uq„osp(1u2n)… moduleW(l) with highest weightlPP1 ,

SDq~l!Þ0.

Now the Haar functional* satisfies the following properties.
Lemma 1:

E t i j
~l! t̃ rs

~m!~21!@ j #@r #1@ i #1@ j #5d ir dlm

ts j
~l!~K2r!

SDq~l!
,

~7!

E t̃ i j
~l!t rs

~m!~21!@ j #@r #5d jsdlm

t̃ ir
~l!~K2r!

SDq~l!
.
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Proof: Consider the first equation. ThelÞm case is easy to prove: the integral vanish
because the tensor productW(l) ^ W(m†) does not contain the trivial Uq(g) module. Whenl
5m, we introduce the notations

f ir ;s j5E t i j
~l! t̃ rs

~l!~21!@ j #@r #1@ i #1@ j #; F@s, j #5~f ir ;s j! i ,r 51
dl ; C@ i , r #5~f ir ;s j!s, j 51

dl .

It is clearly true that Str(C@ i ,r #)5d ir .
Note that corresponding to eachxPUq(g), there exists anx̃P„Tq(g)…* defined by x̃(a)

5^a,x&, ;aPTq(g). The left integral property of* leads to

e~x!f ir ;s j5S x̃.E D t i j
~l! t̃ rs

~l!~21!@ j #@r #1@ i #1@ j #

5(
~x!

(
i 8,r 8

t i i 8
~l!

~x~1!!t r 8r
~l!

„S~x~2!!…f i 8r 8;s j~21!@x#~@ i #1@ j # !1@x~2!#~@ j #1@s# !,

i.e.,

e~x!F@s, j #5(
~x!

t ~l!~x~1!!F@s, j #t ~l!
„S~x~2!!…~21!@x~2!#~@ j #1@s# !, ;xPUq~g!.

Schur’s lemma forcesF@s, j # to be proportional to the identity matrix, and we have

C@ i , r #5d ir c,

for somedl3dl matrix c. The right integral property of* leads to

e~y!c5(
~y!

t ~l!~K2r!t ~l!~y~1!!t
~l!~K2r

21!ct ~l!
„S~y~2!!….

Again by using Schur’s lemma we conclude thatc is proportional tot (l)(K2r). Since its super-
trace is 1, we have

c5
t ~l!~K2r!

SDq~l!
.

This completes the proof of the first equation of the lemma. The second equation can be sh
exactly the same way. h

It is worth observing that this Lemma and part~2! of Theorem 1 provide a quantum analog
the Peter–Weyl theorem for OSPq(1u2n).

IV. QUANTUM HOMOGENEOUS SUPERVECTOR BUNDLES

In this section we will investigate the quantum homogeneous superspaces and quant
mogeneous supervector bundles arising from the quantum supergroup OSPq(1u2n) by adapting
the methods and techniques of Refs. 9 and 19 to the present context. Let us start by intro
two types of actions of Uq(g) on Tq(g). The first action will be denoted by+, which corresponds
to the right translation in the classical theory of Lie groups. It is defined by

x+ f 5(
~ f !

~21!@ f ~1!#@ f ~2!# f ~1!^ f ~2! ,x&, xPUq~g!, f PTq~g!. ~8!
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Straightforward calculations show that

x+~y+ f !5~xy!+ f , ~x+ f !~y!5 f ~yx!, ~ idTq~g! ^ x+ !D~ f !5D~x+ f !.

The other action, which corresponds to the left translation in the classical Lie group theory, w
denoted by•. It is defined by

x• f 5(
~ f !

^ f ~1! ,S21~x!& f ~2! . ~9!

It can be easily shown that

~x• f !~y!5~21!@x#@y# f ~S21~x!y!,

x•~y• f !5~xy!• f , x,yPUq~g!, f PTq~g!.

Furthermore, the two actions graded commute in the following sense

x+~y• f !5~21!@x#@y#y•~x+ f !, x,yPUq~g!, f PTq~g!.

Let V be a finite-dimensional module over Uq(k). We extend the actions+ and• trivially to
V^Tq(g): for any z5(v i ^ f iPV^Tq(g),

x•z5( ~21!@x#@v i #v i ^ x• f i ,

x+z5( ~21!@x#@v i #v i ^ x+ f i , xPUq~g!.

We now introduce two important definitions:

Aq
k
ª$ f PTq~g!ux+ f 5e~x! f , ;xPUq~k!%; ~10!

Gq
k~V!ª$zPV^Tq~g!ux+z5„S~x! ^ idTq~g!…z, ;xPUq~k!%. ~11!

The remainder of this section is devoted to studying the properties of these objects. Let
prove the following.

Proposition 1:~1! Aq
k is an infinite-dimensional subalgebra ofTq(g).

~2! Gq
k(V) is an infinite-dimensional supervector space if the weight of any vector of

Uq(g) integral, and is zero otherwise.
Proof: We first show thatAq

k is a subalgebra ofTq(g). Since Uq(k) is a Hopf subalgebra o
Uq(g), for anyxPUq(k), D(x)5( (x)x(1)^ x(2)PUq(k) ^ Uq(k). Hence

x+~ab!5(
~x!

~21!@x~2!#@a#$x~1!+a%$x~2!+b%5e~x!ab,

that is,abPAq
k .

Since the finite-dimensional representations of Uq(k) are completely reducible, the study o
properties ofGq

k(V) reduces to the case whenV is irreducible. LetVm be a finite-dimensiona
irreducible Uq(k) module with highest weightm and lowest weightm̃. Any elementzPGq

k(Vm)
can be expressed in the form

z5 (
lPP1

(
i , j

v i j
~l!

^ t̃ i j
~l! ,
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for somev i j
(l)PVm . Fix an arbitrarylPP1 . For any nonvanishingwPW(l), the following

linear map is clearly surjective:

HomC„W~l!,Vm…^ w→Vm ,

f ^ w°f~w!.

Thus there existf i
(l)PHomC„W(l),Vm… such thatv i j

(l)5f i
(l)(wj

(l)), where$wi
(l)% is the basis of

W(l) discussed before. Therefore, we can rewritez as

z5 (
lPP1

(
i , j

f i
~l!~wj

~l!! ^ t̃ i j
~l! .

The defining property ofGq
k(Vm) states that

l +z5„idTq~g! ^ S~ l !…z, ;l PUq~k!.

Thus we have

(
lPP1

(
i , j ,k

t jk
~l!

„S~ l !…f i
~l!~wj

~l!! ^ ~21!@ l #@f i
~l!

# t̃ ik
~l!5 (

lPP1

(
i , j

S~ l !f i
~l!~wj

~l!! ^ t̃ i j
~l! .

Recalling that thet̃ ki
(l) are linearly independent, the above is equivalent to

l f i
~l!~wj

l!5~21!@ l #@f i
~l!

#f i
~l!~ l wj

~l!!, ;l PUq~k!.

This equation is precisely the statement that thef i
(l) be Uq(k)-module homomorphisms of de

grees@f i
(l)#,

f i
~l!PHomUq~k!„W~l!,Vm…,HomC„W~l!,Vm…, ; i .

Thus finding sections inGq
k(Vm) is equivalent to finding, for alllPP1 , the homomorphisms

f (l)PHomUq(k)„W(l),Vm…. Note that each such homomorphismf (l) determinesdl linearly
independent sections:

z i
~l!5(

j
f~l!~wj

~l!! ^ t̃ i j
~l! .

However, whenm is not integral with respect to Uq(g), HomUq(k)„W(l),Vm…50, and hence

Gq
k(Vm) vanishes in this case.

Now consider the case withm50; we haveGq
k(Vm50)5Aq

k as supervector spaces. There is
homomorphism from the trivial representation of Uq(g), W(0)5C, onto V05C. This gives the
constant sections ofAq

k . Let g be the highest root ofg. Recall that in the classical situation,k is
reductive withN5r 2uQu independent central elements. This, transcribed to the quantum
implies the existence ofN linearly independent Uq(k) homomorphismsW(g)→C. As mentioned
above, each of these corresponds tod5dim(g) linearly independent sections. So the represen
tion W(g) determinesNd linearly independent sections. Further linearly independent sections
be obtained using the following lemma.

Lemma 2: Suppose there are nontrivialUq(k) homomorphisms W(l1)→Vm1
and W(l2)

→Vm2
. Then there is an induced nontrivialUq(k) homomorphism

W~l11l2!→Vm11m2
.
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For example, for any positive integerm, there exist (muN) ~partition ofm into <N parts! linearly
independent homomorphismsW(mg)→C. Thus we have proved that the algebraAq

k is infinite
dimensional.

Now let us consider the case with 0ÞmPP. It is an elementary exercise to verify thatVm is
Uq(k)-isomorphic to a Uq(k)-irreducible part ofW(l8), wherel8 is the dominant weight in the
Weyl group orbit ofm. Thus there is a nontrivial Uq(k) homomorphism

W~l8!→Vm ,

and this determines at leastdl8 linearly independent sections inGq
k(Vm). Further linearly inde-

pendent sections can be constructed explicitly using Lemma 2 which promises a family of h
morphisms

W~l81mg!→Vm , mPN1 .

This establishes thatGq
k(Vm) is infinite dimensional. h

Aq
k may be regarded as the quantum analog of the algebra of functions over the supe

OSP(1u2n)/K, whereK is the subgroup of OSP(1u2n) with Lie superalgebrak. Such homoge-
neous superspaces were studied in the work of Manin,16 Penkov,17 and others. Here we wish to
make some investigations into their quantum analogs.

As is well known, one cannot define a noncommutative~in the Z2-graded sense! space di-
rectly in geometrical terms. Instead, such a space has to be defined by specifying its alg
functions. We will takeAq

k as the algebra of functions over the quantum homogeneous super
which corresponds to OSP(1u2n)/K in the classical situation. Let us now study properties
Gq

k(V). First observe the following.
Theorem 3: Gq

k(V) furnishes a two-sidedAq
k module under the multiplication ofTq(g).

Proof: The left and right actions ofAq
k on Gq

k(V) are respectively defined by

az5(
r

~21!@a#@v i #v i ^ a fi , za5(
r

v i ^ f ia,

whereaPAq
k andz5( iv i ^ f iPGq

k(V). Now for pPUq(k),

p+~az!5(
~p!

~21!@p~2!#@a#$p~1!+a%$p~2!+z%5~21!@p#@a#a$p+z%5„S~p! ^ idTq~g!…az;

p+~za!5(
~p!

~21!@p~2!#@z#$p~1!+z%$p~2!+a%5$p+z%a5~S~p! ^ idTq~g!!za.

This completes the proof. h

WhenV is actually a Uq(g) module, theAq
k moduleGq

k(V) has a particularly simple structure
Proposition 2: Let W be a finite-dimensional leftUq(g) module, which we regard as a le

Uq(k) module by restriction. ThenGq
k(W) is isomorphic to Ŵ Aq

k either as a left or rightAq
k

module.
Proof: We first construct the rightAq

k module isomorphism. Being a left Uq(g) module,W
carries a natural rightTq(g) comodule structure with the comodule actiond:W→W^Tq(g) de-
fined by

d~w!~x!5xw, xPUq~g!, wPW. ~12!

@Here the notation requires some clarification. If we expressd(w)5( (w)w(1)^ w(2) , then
d(w)(x)5( (w)(21)@x#@w(1)#w(1)^w(2) ,x&.# Define h:W^Tq(g)→W^Tq(g) by the composition
of maps
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W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g!→W^Tq~g!,

where the last map is the multiplication ofTq(g). Thenh defines a rightAq
k module isomorphism,

with the inverse map given by the composition

W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g! ——→
~ id^ S^ id!

W^Tq~g! ^Tq~g!→W^Tq~g!,

where the last map is again the multiplication ofTq(g). It is not difficult to show that

x+h~z!5hS (
~x!

~x~1! ^ idTq~g!!x~2!+z D ,

x+h21~z!5h21S (
~x!

„S~x~1!! ^ idTq~g!…x~2!+z D , ;zPTq~g! ^ W, xPUq~g!.

ConsiderzPGq
k(W). We have

p+h~z!5hS (
~p!

~p~1! ^ idTq~g!!p~2!+z D 5hS (
~p!

~p~1!S~p~2!! ^ idTq~g!!z D
5e~p!h~z!, ;pPUq~k!.

Henceh„Gq
k(W)…,W^Aq

k . Conversely, given anyjPW^Aq
k , we have

p+h21~j!5h21S (
~p!

„S~p~1!! ^ idTq~g!…p~2!+j D
5h21S (

~p!
„S~p~1!!e~p~2!! ^ idTq~g!…j D 5„S~p! ^ idTq~g!…h

21~j!, ;pPUq~k!.

Thush21(W^Aq
k),Gq

k(W). Therefore the restriction ofh to Gq
k(W) provides the desired righ

Aq
k module isomorphism.

The left module isomorphism is given by the restriction toGq
k(W) of the linear mapk:W

^Tq(g)→W^Tq(g), which is defined by the following composition of maps

W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g! ——→
id^ P~S2

^ id!

W^Tq~g! ^Tq~g!→W^Tq~g!,

where

P:Tq~g! ^Tq~g!→Tq~g! ^Tq~g!,

a^ b°~21!@a#@b#b^ a. ~13!

The inverse mapk21 is given by

W^Tq~g! ——→
d ^ id

W^Tq~g! ^Tq~g! ——→
id^ P~S^ id!

W^Tq~g! ^Tq~g!→W^Tq~g!.
h

With the help of this Proposition, we can now prove the following important result.
Theorem 4: Gq

k(V) is projective and of finite type both as a left and right module over
superalgebraAq

k of functions on the quantum homogeneous superspace.
Proof: Since Uq(k) is a reductive subalgebra of Uq(g), all finite-dimensional representation

of Uq(k) are completely reducible. LetVs , s51,2,...,K,`, be the irreducible direct summands
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V such that their weights are all integral with respect to Uq(g). ThenGq
k(V)5 % sGq

k(Vs). Consider
any Vs , and denote its highest weight byms . There exists such am̂s in the Weyl group orbit of
g that is integral dominant with respect tog. Let W(m̂s) be the irreducible Uq(g) module with
highest weightm̂s , which can be regarded as a Uq(k) module in the natural way. There alway
exists a Uq(k) moduleVs

' such thatW(m̂s)5Vs% Vs
' . Write V'5 % sVs

' , andW5 % sW(m̂s). We
have

Gq
k~V! % Gq

k~V'!5Gq
k~W!>W^Aq

k ,

where the last step follows from Proposition 2. h

Recall that in classical differential geometry, the spaceH of sections of a vector bundle ove
a compact manifoldM furnishes a module over the algebraA(M ) of functions onM. It then
follows from Swan’s theorem that this module must be projective and is of finite type. Conve
any projective module of finite type overA(M ) is isomorphic to the space of sections of som
vector bundle overM. This result is taken as the starting point for studying vector bundle
noncommutative geometry: one defines a vector bundle over a noncommutative space in te
the space of sections which is required to be a finite-type project module over the noncomm
algebra of functions on the virtual noncommutative space. Therefore,Gq

k(V) will be called the
space of sections of a quantum supervector bundle over the quantum homogeneous sup
associated withAq

k .
Homogeneous supervector bundles at the classical level were studied in Refs. 16 and

will not enter the discussion of the subject, but merely mention that the subject proves
extremely rich and many aspects of it remain to be developed.

Following the classical terminology, we will call a quantum supervector bundle trivial if
sections form a free module over the superalgebra of functions on the quantum superspa
following proposition is an immediate consequence of Proposition 2.

Proposition 3: If theUq(k) module V is in fact a finite-dimensional leftUq(g) module, then
the quantum homogeneous supervector bundle with the space of sectionsGq

k(V) is trivial.

V. INDUCED REPRESENTATIONS

In this section we will investigate induced representations of the quantum super
OSPq(1u2n) by using results of the last section. The following proposition explains how quan
homogeneous supervector bundles enter representation theory.

Proposition 4:Gq
k(V) furnishes a leftUq(g) module under the• action, and also a rightTq(g)

comodule under the actionv5 idV^ (idTq(g) ^ S21)D.

Proof: For pPUq(k), xPUq(g), andzPGq
k(V), we have

p+~x•z!5~21!@p#@x#x•~p+z!5„S~p! ^ idTq~g!…~x•z!.

ThusGq
k(V) indeed furnishes a left Uq(g) module under the• action. TheTq(g) coactionv is just

the dual of this left Uq(g) action.
We call Gq

k(V) an induced Uq(g) module, and also an inducedTq(g) comodule. For such
induced modules, we have the following quantum analog of Frobenius reciprocity.

Theorem 5: Let W be aUq(g) module, the restriction of which furnishes aUq(k) module in
a natural way. Then there exists a canonical isomorphism

HomUq~g!„W,Gq
k~V!…>HomUq~k!~W,V!, ~14!

whereUq(g) acts on the left moduleGq
k(V) via the• action.

Proof: We prove the proposition by explicitly constructing the isomorphism, which we cl
to be the linear map
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F:HomUq~g!„W,Gq
k~V!…→HomUq~k!~W,V!, c°c~1Uq~g!!,

with the inverse map

F̄:HomUq~k!~W,V!→HomUq~g!„W,Gq
k~V!…, f°f̄5~f ^ S!d,

whered:W→W^Tq(g) is the rightTq(g) comodule action defined by~12!.
To verify our claim, we first need to demonstrate that the image ofF is contained in

HomUq(k)(W,V). ConsidercPHomUq(g)„W,Gq
k(V)…. For anypPUq(k) andwPW, we have

p„Fc~w!…5„S21~p!+c~w!…~1Uq~g!!,

where we have used the defining property ofGq
k(V). Note that

„S21~p!+c~w!…~1Uq~g!!5„p•c~w!…~1Uq~g!!.

The Uq(g)-module structure ofGq
k(V) and the given condition thatc is a Uq(g)-module homo-

morphism immediately leads to

p„Fc~w!…5~21!@c#@p#c~pw!~1Uq~g!!5~21!@c#@p#Fc~pw!, pPUq~k!; wPW.

Now consider F̄. We first show that the image Im(F̄) of F̄ is contained in
HomUq(g) „W,Gq

k(V)…. Note that Im(F̄),HomC„W,V^Tq(g)…. Some relatively simple manipula
tions lead to

„x•f̄~w!…5f̄~xw!,

„p+f̄~w!…5„S~p! ^ idTq~g!…f̄~w!, xPUq~g!, pPUq~k!, wPW.

Therefore, Im(F̄),HomUq(g)„W,Gq
k(V)…. Now we show thatF andF̄ are inverse to each other. Fo

cPHomUq(g)„W,Gq
k(V)…, andfPHomUq(k)(W,V), we have

~FF̄f!~w!5~ F̄f!~w!~1Uq~g!!5f~w!,

~ F̄Fc!~w!~x!5~21!@x#~@w#11!~Fc!„S~x!w…

5~21!@x#~@w#11!c„S~x!w…~1Uq~g!!

5~21!@x#~@w#1@c#11!
„S~x!•c~w!…~1Uq~g!!5c~w!~x!, xPUq~g!, wPW.

This completes the proof of the Proposition. h

Let Vm be a finite-dimensional irreducible Uq(p) module with highest weightm and lowest
weight m̃. SinceVm is a Uq(p) module the following is a well-defined subspace ofGq

k(Vm),

Oq~Vm!ª$zPGq
k~Vm!up+z5„S~p! ^ idTq~g!…z, ;pPUq~p!%.

We may regardOq(Vm) as the quantum analog of the space of ‘‘holomorphic sections.’’ Re
that the notationW(l) denotes the irreducible Uq(g) module with highest weightl. We have the
following result.

Theorem 6: There exists the followingUq(g) module isomorphism

Oq~Vm!>HW„~2m̃ !†
…, 2m̃PP1 ,

0, otherwise. ~15!
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Proof: EachzPOq(Vm) can be expressed in the form

z5 (
lPP1

(
i , j

v i j
~l!

^ t̃ i j
~l! ,

for somev i j
(l)PVm ( i , j 51,...,dl). Arguing as in the proof of Proposition 1 one concludes,

eachlPP1 , that there existf i
(l)PHomC„W(l),Vm… such thatv i j

(l)5f i
(l)(wj

(l)), where$wi
(l)% is

the basis ofW(l), relative to which the irreducible representationt (l) of Uq(g) is defined. Thus
we can rewritez as

z5 (
lPP1

(
i , j

f i
~l!~wj

~l!! ^ t̃ i j
~l! .

Similar reasoning as in the proof of Proposition 1 shows that thef i
(l) must be Uq(p)-module

homomorphisms of degree@f i
(l)#. It immediately follows from~4! that

f i
~l!5cif

~l!, ciPC,

andf (l) may be nonzero only when

l̄5m̃.

Hence, if2m̃¹P1 , we haveOq(Vm)50. When2m̃PP1 , we set

n5~2m̃ !†.

Then, we may conclude thatOq(Vm) is spanned by

z i5(
j

f~n!~wj
~n!! ^ t̃ i j

~l! , ~16!

which are obviously linearly independent. Furthermore,

x•z i5~21!@x#@f~n!#(
j

t j i
~n!~x!z j , xPUq~g!.

ThusOq(Vm)>W(n). More explicitly, the isomorphism is given by

W~n! ——→
~ id^ S!d

Oq„W~n!… ——→
f~n!

^ id
Oq~Vm!. ~17!

This completes the proof of the theorem. h

This result provides an analog of the celebrated Borel–Weil theorem for the quantum s
group OSPq(1u2n). For the classical Lie supergroups, the program of developing a Bott–Bo
Weil theory was extensively investigated by Penkov and co-workers.17 Also, a quantum Borel–
Weil theorem for the covariant and contravariant tensor representations of quantum GL(mun) was
obtained in Ref. 9.

Whenm50, the theorem implies that

$ f PTq~g!up+ f 5e~p! f , ;pPUq~p!%5Ce.

Combining this result with with Proposition 2, we obtain the following
Corollary: Let W be any finite-dimensionalUq(g) module. Then, asUq(g)-modules,

Oq~W!>e ^ W.
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Toroidal and level 0 U q8 „sl n 11̂… actions on U q„gl n 11̂…
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~1! Utilizing a braid group action on a completion of Uq(sln11̂), an algebra homo-
morphism from the toroidal algebra Uq(sln11,tor) (n>2) to a completion of
Uq(gln11̂) is obtained. ~2! The toroidal actions by Saito induces a level 0
Uq8(sln11̂) action on level 1 integrable highest weight modules of Uq(sln11̂). An-
other level 0 Uq8(sln11̂) action was defined by Jimboet al., in the casen51. Using
the fact that the intertwiners of Uq(sln11̂) modules are intertwiners of toroidal
modules for an appropriate comultiplication, the relation between these two level 0
Uq8(sln11̂) actions is clarified. ©1999 American Institute of Physics.
@S0022-2488~99!04806-9#

I. INTRODUCTION

In Refs. 1 and 2, a quantum toroidal algebra Uq(sln11,tor) was introduced. Up to now severa
results have been obtained on this algebra. In Ref. 2 the connection between toroidal modu
an extension of the double affine Hecke algebra3 was noticed and the Schur-type duality w

obtained. The vertex representations were constructed on level 1 Uq(gln11̂) modules by Saito.4 In
Ref. 5, toroidal actions were shown to be defined on any integrable highest weight mod

Uq(gln11̂), using the level—rank duality. Since the toroidal algebra has homomorphic imag

Uq(sln11̂) and Uq8(sln11̂), Uq(sln11̂) and Uq8(sln11̂) actions are defined on toroidal modules. T

known Uq8(sln11̂) actions obtained in this way have level 0~see Ref. 6!. Therefore level 0

Uq8(sln11̂) actions on Uq(sln11̂) modules are closely related to toroidal modules. In Refs. 7 an

the level 1 Uq(sln11̂) action on the fermionic Fock space9 and the level 0 Uq8(sln11̂) action via the
affine Hecke algebra were shown to be combined into a toroidal action. In Ref. 10, motivat

Ref. 11, a level 0 Uq8(sl2̂) action was defined on level 1 integrable Uq(sl2̂) modules, utilizing the
intertwiners and the representation of the affine Hecke algebra.

In this paper we obtain two results on these problems. In Sec. III, utilizing a braid g

action on a completion of Uq(sln11̂),12 an algebra homomorphism from the toroidal algeb

Uq(sln11,tor) (n>2) to a completion of Uq(gln11̂) is constructed. This implies that any highe

weight module of Uq(gln11̂) is a toroidal module. This result corresponds to the fact that

algebra homomorphism from Uq(sln11̂) to Uq(gln11) by Jimbo13 is neatly expressed in terms o
the braid group action by Lusztig.14 In Secs. IV and V, assuming a triangular decomposition of
toroidal algebra, we consider the level 1 toroidal modules by Saito. Utilizing the fact tha

intertwiners of Uq(sln11̂) modules are intertwiners of toroidal modules for an appropriate com

tiplication, we clarify the relation between the level 0 Uq8(sln11̂) action induced by the toroida
action and that in Ref. 10. Note that in Ref. 11, first, a Yangian action on level 1 integrable h

weight modules ofsl2̂ was constructed in terms of the currents and then the intertwining prop
of the vertex operators was used. Therefore our approach is closer to the original one. Cla
the connection between our results and Refs. 5, 7, and 8 would be interesting.
31910022-2488/99/40(6)/3191/20/$15.00 © 1999 American Institute of Physics
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II. DEFINITION OF ALGEBRAS

Let q be an indeterminate and setF5Q(q). Fix n>2.
Let (ai j )1< i , j <n be the Cartan matrix of typeAn and setk i j 51. Let Uq(sln11̂) ~Ref. 15! be

the F algebra defined by generatorsEi ,m , Fi ,m , hi ,r , ki
61, C61, D61 (1< i<n, mPZ, r

PZ\$0%) and relations,

C61central, C61C715D61D7151, DXi~z!D215Xi~z/q! ~X5E,F !, ~2.1!

ki
61ki

7151, Df i
6~z!D215f i

6~z/q!, ~2.2!

f i
6~z!f j

6~w!5f j
6~w!f i

6~z!, ~2.3!

12q2ai j C21k i j z/w

12qai j C21k i j z/w
f i

1~z!f j
2~w!5

12q2ai j Ck i j z/w

12qai j Ck i j z/w
f j

2~w!f i
1~z!, ~2.4!

f i
6~z!Ej~w!f i

6~z!215q7ai j
12q6ai j C2~1/2!7~1/2!~k i j z/w!61

12q7ai j C2~1/2!7~1/2!~k i j z/w!61 Ej~w!, ~2.5!

f i
6~z!F j~w!f i

6~z!215q6ai j
12q7ai j C~1/2!7~1/2!~k i j z/w!61

12q6ai j C~1/2!7~1/2!~k i j z/w!61 F j~w!, ~2.6!

@Ei~z!,F j~w!#5
d i j

q2q21 ~d~Cw/z!f i
2~z!2d~Cz/w!f i

1~w!!, ~2.7!

qai j ~12q2ai j k i j z/w!Ei~z!Ej~w!5~12qai j k i j z/w!Ej~w!Ei~z!, ~2.8!

q2ai j ~12qai j k i j z/w!Fi~z!F j~w!5~12q2ai j k i j z/w!F j~w!Fi~z!; ~2.9!

for i,j such thatai j 521,

Ei~z1!Ei~z2!Ej~w!2~q1q21!Ei~z1!Ej~w!Ei~z2!1Ej~w!Ei~z1!Ei~z2!1~z1↔z2!50,

~2.10!

Fi~z1!Fi~z2!F j~w!2~q1q21!Fi~z1!F j~w!Fi~z2!1F j~w!Fi~z1!Fi~z2!1~z1↔z2!50;

~2.11!

for i,j such thatai j 50,

@Ei~z!,Ej~w!#50, @Fi~z!,F j~w!#50, ~2.12!

where

Ei~z!5 (
mPZ

Ei ,m /zm, Fi~z!5 (
mPZ

Fi ,m /zm,

f i
6~z!5ki

71 expS 7~q2q21!(
r .0

hi ,7rz
6r D . ~2.13!

As is well known, this algebra is also described by the Chevally generatorsei , f i , ki
61(0< i

<n), andD61. Later we need its comultiplicationD0 determined by

D0~ei !5ei ^ 11ki ^ ei , D0~ f i !5 f i ^ ki
2111^ f i ,

D0~ki !5ki ^ ki , D0~D !5D ^ D. ~2.14!
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Uq(gln11̂) ~Ref. 16! is defined to be theF algebra generated byEi ,m , Fi ,m , ak,r , tk
61, C61,

D61 (1< i<n, 1<k<n11, mPZ, r PZ\$0%) with defining relations~2.1!, ~2.7!–~2.12! and the
following:

tk
61tk

7151, Dck
6~z!D215ck

6~z/q!, ~2.15!

ck
6~z!c l

6~w!5c l
6~w!ck

6~z!, ~2.16!

12q22C21z/w

12C21z/w

12q2u~k. l !C21z/w

12q22u~k, l !C21z/w
ck

1~z!c l
2~w!

5
12Cz/w

12q2Cz/w

12q2u~k. l !Cz/w

12q22u~k, l !Cz/w
c l

2~w!ck
1~z!, ~2.17!

ck
6~z!Ej~w!ck

6~z!215q7bk j
12q6~k2~1/2!1~1/2!bk j !C2~1/2!7~1/2!~z/w!61

12q6~k2~1/2!2~3/2!bk j !C2~1/2!7~1/2!~z/w!61 Ej~w!, ~2.18!

ck
6~z!F j~w!ck

6~z!215q6bk j
12q6~k2~1/2!2~3/2!bk j !C~1/2!7~1/2!~z/w!61

12q6~k2~1/2!1~1/2!bk j !C~1/2!7~1/2!~z/w!61 F j~w!. ~2.19!

Herebk j5dk j2dk j11 , u~•! is a step function, and

ck
6~z!5tk

71 expS 7~q2q21!(
r .0

ak,7rz
6r D . ~2.20!

In Eq. ~2.7!, f i
6(z) should be understood as follows:

f i
6~qiz!5c i

6~z!/c i 11
6 ~z!. ~2.21!

Let (ai j )0< i , j <n be the Cartan matrix of typeAn
(1) and setk i j 51 ((i , j )Þ(n,0),(0,n)), kn0

5k0n
215k. Let Uq(sln11,tor) ~Refs. 1 and 2! be theF algebra defined by generatorsEi ,m , Fi ,m ,

hi ,r , ki
61, C61, D61 (0< i<n, mPZ, r PZ\$0%), k61 and relations~2.1!–~2.12! and

k61 central, k61k7151. ~2.22!

Note that we include only one scaling elementD and its inverse among the generators.
Hereafter we shall write U for Uq(sln11̂) and let U1, U2, and U0 denote the subalgebras o

U generated byei (0< i<n), f i (0< i<n), andki
61 (0< i<n) andD61, respectively.

At the end of the section, for completeness, we shall prove the following lemma, thou
would be well known. The first claim enables us to identify U with the subalgebra of Uq(gln11̂)
generated byEi ,m, Fi ,m, hi ,r , ki

61 (1< i<n), C61, andD61.
Lemma 1: (1) The algebra homomorphism i: U→Uq(gln11̂) such that

Ei~z!°Ei~z!, Fi~z!°Fi~z!,

f i
6~qiz!°c i

6~z!c i 11
6 ~z!21, C°C, D°D, ~2.23!

is injective.
(2) Set b r5(k51

n11q(2k2n22)rak,r /@(n11)r # where @m#5(qm2q2m)/(q2q21). Let A6

(resp. A0) be the subalgebras of Uq(gln11̂) generated by i(U6) andb6r (r .0) (resp. tk
61, C61,

and D61). Then the multiplication map A2 ^ A0
^ A1→Uq(gln11̂) is an isomorphism of vecto

spaces.
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Before proving the lemma, we shall introduce some notations, which we shall also ne
Sec. IV A. LetA be theF algebra defined by generatorsEi ,m , Fi ,m , hi ,r , tk

61, C61, D61 (1
< i<n, 1<k<n11, mPZ, r PZ\$0%) and the relations

tk
61tk

7151, tkt l5t l tk , Dtk5tkD, tkf i
6~z!tk

215f i
6~z!, ~2.24!

tkEj~z!tk
215qbk jEj~z!, tkF j~z!tk

215q2bk jF j~z!, ~2.25!

and ~2.1!–~2.12!, where (ai j )1< i , j <n is the Cartan matrix of typeAn , k i j 51 andki5t i t i 11
21 . Let

furtherB be theF algebra generated bybr (r PZ\$0%), C61, andD61 with relations

C61 central, C61C715D61D7151, DbrD
215qrbr ,

@br ,bs#5d r 1s,0

~qn11C!r2~qn11C!2r

q2q21

@r #2

r @~n11!r #
. ~2.26!

Finally let j :Uq(gln11̂)→A^B/^C^ 121^ C& be the algebra homomorphism determined by

Ei~z!°Ei~z! ^̇ 1, Fi~z!°Fi~z! ^̇ 1,

ck
6~z!°~ tk

71
^̇ 1!expS 7~q2q21!(

r .0
âk,7rz

6r D ,

C°C^̇ 1, D°D ^̇ D, ~2.27!

wherex^̇ y denotes the image ofx^ y under the quotient mapA^B→A^B/^C^ 121^ C& and
âk,r5āk,r ^̇111^̇br with

āk,r5
1

@~n11!r # S (i 5k

n

@~n112 i !r #hi ,r2q2~n11!r (
i 51

k21

@ ir #hi ,r D . ~2.28!

Proof of Lemma 1:Letting z be the algebra homomorphism from U toA such that

Xi~z!°Xi~z! ~X5E,F,f6!, C°C, D°D, ~2.29!

setA65z(U6). Let furtherA0 be the subalgebra ofA generated bytk
61, C61, andD61. Then

Refs. 17 and 18 imply thatA2
^A0

^A1.A, A6.U6 and the vectorsPktk
mkCaDb (mk ,a,b

PZ) form a basis ofA0. Note that this triangular decomposition ofA proves the injectivity ofz.
Let B6 ~resp.B0) be the subalgebras ofB generated byb6r (r .0) ~resp.C61 andD61). Then
B2

^B0
^B1.B and the vectorsP r .0b

6r
mr (mrPZ>0 , mr50 if r @0) andCaDb (a,bPZ) form

bases ofB6 andB0, respectively. SetC05A0
^B0/^C^ 121^ C&. Then from the above proper

ties ofA andB we find thatA^B/^C^ 121^ C& has the triangular decomposition

~A2
^B2! ^C0

^ ~A1
^B1!.A^B/^C^ 121^ C&, ~2.30!

and a basis ofC0 is given by the elementsPktk
mkCaDb

^ Dc (mk ,a,b,cPZ).

Let j:A→Uq(gln11̂) be the algebra homomorphism such that

Xi~z!°Xi~z! ~X5E,F !, f i
6~qiz!°c i

6~z!c i 11
6 ~z!21,

tk→tk , C°C, D°D. ~2.31!
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From the above triangular decompositions ofA andA^B/^C^ 121^ C&, we find thatj +j and,
hence, i 5j+z are injective. Since b r ’s commute with i (U6), we have A6

5(mr
i (U6)P r .0b

6r
mr . Noting this, j ( i (y))5z(y) ^̇ 1(yPU6) and j (b r)51^̇ br , we find that

the mapj induces the isomorphismsA6.A6
^B6. This mapj also induces the injective ma

A0→C0. Therefore since Uq(gln11̂)5A2A0A1, we obtain~2!. j

III. HOMOMORPHISM FROM Uq„sl n 11,tor … TO A COMPLETION OF Uq„gl n 11̂…

A. Braid group action on a completion of U q„sl n 11̂…

Setting

Ur5$yPUuDyD215qry%, ~r PZ!, ~3.1!

put

Ukl5(
r>k
s> l

U2rUUs , ~k,l PZ>0!. ~3.2!

We introduce a linear topology on U by letting (Ukl) be a fundamental system of neighborhoo
of the origin. Then U is a topological algebra. Define Ur

6 similarly to Ur . Then the following
holds:

Ukl5(
r>k

U2r
2 U0(

s> l
Us

1 . ~3.3!

Therefore U is separated thanks to the triangular decomposition of U.18 We shall denote the
completion of U by Û.

Let Ti (1< i<n) ~Ref. 12! be the continuous algebra automorphisms of Uˆ determined by

Ei~z!°2Fi~z/Cq2!f i
2~z/q2!21, Fi~z!°2f i

1~z/q2!21Ei~z/Cq2!,

f i
6~z!°f i

6~z/q2!21, C61°C61, D6°D61, ~3.4!

Ej~z!° R du

u S Ei~u!Ej~z!2q
12q21u/z

12qu/z
Ej~z!Ei~u! D ,

F j~z!° R du

u S F j~z!Fi~u!2q21
12qz/u

12q21z/u
Fi~u!F j~z! D ,

f j
6~z!°f j

6~z!f i
6~z/q!, when u i 2 j u51, ~3.5!

Ej~z!°Ej~z!, F j~z!°F j~z!, f j
6~z!°f j

6~z!, when u i 2 j u.1. ~3.6!

Herer(du/u) denotes the operation which picks out the coefficient ofu0. Then they satisfy the
Coxeter relations,

TiTjTi5TjTiTj when u i 2 j u51,

TiTj5TjTi when u i 2 j u.1, ~3.7!

and have the following property:

TiTi 61Xi~z!5Xi 61~z/q!, ~X5E,F,f6!. ~3.8!
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Note that the inverseTi
21 is given byh+Ti+h whereh is the continuous algebra antiautomorphis

of Û determined by

Ei~z!°Ei~z21!, Fi~z!°Fi~z21!, f i
6~z!°f i

7~Cz21! C61°C61, D61°D61.
~3.9!

B. Homomorphism from U q„sl n 11,tor … to a completion of U q„gl n 11̂…

As in the case U, we introduce a separated linear topology on Uq(gln11̂) and denote its
completion by Ûq(gln11̂). Equation~3.3!, the corresponding one for Uq(gln11̂)kl and Lemma 1
give Ukl5UùUq(gln11̂)kl . Therefore we can identify Uˆ with the subalgebra of Uˆ

q(gln11̂).
Utilizing the above braid group action on Uˆ , we obtain the following theorem:

Theorem 1: Set

Ẽ0
~e!~z!52Tn

e
¯T1

eE1~zqe!, F̃0
~e!~z!52Tn

e
¯T1

eF1~zqe!,

f̃0
6,~e!~z!5Tn

e
¯T1

ef1
6~zqe!, ~e561!. ~3.10!

For e561, there exists an algebra homomorphism fe :Uq(sln11,tor)→Ûq(gln11̂) determined by

Ei~z!°Ei~z!, Fi~z!°Fi~z!, f i
6~z!°f i

6~z!, ~1< i<n!,

C°C, D°D,

E0~z!°cn11
1 ~z/me!

eẼ0
~e!~z!cn11

2 ~Cz/me!
2e,

F0~z!°cn11
1 ~Cz/me!

2eF̃0
~e!~z!cn11

2 ~z/me!
e,

f0
6~z!°f̃0

6,~e!~z!cn11
6 ~z/Cme!

ecn11
6 ~Cz/me!

2e,

k°~m0C2!e, ~3.11!

wherem05qn11 and me5m0(m0C)e.
Proof: As an example, we shall check the Serre relation~2.10! with ( i , j )5(0,n) for the case

e51. SetTw5Tn¯T1 . Thanks to~3.8!, we get

Tw
21En21~z/q!5En~z!, Tw

21En~z/q!52f̃0
1,~1 !~kz/C!Ẽ0

~1 !~kz!f̃0
2,~1 !~kz!21, ~3.12!

wherek5m0C2. Therefore applyingTw
21 to the Serre relation~2.10! with ( i , j )5(n,n21) of

Uq(gln11̂) and using the relations amongck
6(z), Ei(z), andFi(z), we obtain the desired rela

tion. j

Corollary 1: Let V be a Uq(gln11̂) module such that

V5 % mPZVm , Vm5$vPVuDv5qmv%, Vm5$0% ~m@0!.

If C acts as C0PF3 on V, then V has two Uq(sln11,tor) module structures wherek acts asm0C0
2

and (m0C0
2)21, respectively.

Corollary 2: The algebra homomorphism g:U→Uq(sln11,tor) such that

Ei~z!°Ei~z!, Fi~z!°Fi~z!, f i
6~z!°f i

6~z!, C°C, D°D, ~3.13!

is injective.
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Proof: The claim follows from the fact that the compositef e+g is the identity map from U to
the subalgebra U of Uˆ

q(gln11̂). j

IV. INTERTWINERS OF TOROIDAL MODULES

A. Level 1 toroidal modules by Saito

For mPF3, setUm5Uq(sln11,tor)/^k2m&. Hereafter we consider this algebra. We shall oft
usep5m0m instead ofm.

Let L i (0< i<n) be the fundamental weights ofsln11̂. Let furtherV(L i) be the irreducible
highest weight module ofU with highest weightL i and vL i

be its highest weight vector. Se
B15B/I , whereI is the left ideal generated bybr (r .0), C2q andD21. For mPZ, setWm

5V(L j ) ^B1 where j [m modn11. Let a i ’s be the simple roots ofsln11̂ and ~ u ! be the
standard symmetric bilinear form on the weight space ofsln11̂ normalized by (a i ua i)52. Set

ek5S (
i 5k

n

~n112 i !a i2 (
i 51

k21

ia i D /~n11!, ~1<k<n11!.

For 1<k<n11, let ]ek
be a linear operator onV(L j ) such that]ek

v5(ekun)v, wherev is a

weight vector with weightn. Then Wm is a Uq(gln11̂) module via the mapj if the U module
V(L j ) is extended to aA module by lettingtk acts asq]ek

1@m/(n11)#.
The results by Saito4 on level 1 toroidal modules can be stated as follows.
Proposition 1: Set a5(21)n21qn.
(1) For e561, the U module structure on V(L j ) (0< j <n) is extended to aUm

0
e module

structure by

E0~z!5aẼ0
~e!~z!, F0~z!5a21F̃0

~e!~z!, f0
6~z!5f̃0

6,~e!~z!. ~4.1!

(2) Lettinga r (r PZ\$0%) be the elements of F3 such that

a ra2r5
m r1m2r2m0

r 2m0
2r

~qr2q2r !~qrm0
r 2q2rm0

2r !
, ~4.2!

set

X6~z!5expS 7~q2q21!(
r .0

x7rz
6r D ,

xr5~qm0
2!r

~m/m0!r21

q2r21
ān11,r ^ 11a r1^ br . ~4.3!

Then the U module structure on Wm is extended to aUm module structure by

E0~z!5aX1~z!~Ẽ0
~1 !~z! ^ 1!X21~qz!21~~m0 /m!]en11

1m/~n11!
^ 1!,

F0~z!5a21~~~m/m0!]en11
1m/~n11!

^ 1!X1~qz!21~ F̃0
~1 !~z! ^ 1!X2~z!,

f0
6~z!5

X6~q21z!

X6~qz!
~f̃0

6,~1 !~z! ^ 1!. ~4.4!

We have chosen the above normalization ofE0(z) andF0(z) for a later convenience. Note that i
the casem5m0q2 the above result coincides with Theorem 1.
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B. Level 0 toroidal modules

Set V5Fn11 and let v1 ,...,vn11 be its standard basis.V@x,x21# is a U module by the
following:

Ei~qiz!5d~z/x!Eii 11 , Fi~qiz!5d~z/x!Ei 11i ,

f i
1~qiz!5 (

kÞ i ,i 11
Ekk1q21

12q2z/x

12z/x
Eii 1q

12q22z/x

12z/x
Ei 11i 11 ,

f i
2~qiz!5 (

kÞ i ,i 11
Ekk1q

12q22x/z

12x/z
Eii 1q21

12q2x/z

12x/z
Ei 11i 11 , ~1< i<n!,

C6151, D615q6q. ~4.5!

HereEi j ’s are matrix units,d(z)5(mPZzm, x acts by multiplication, andaq (aPF3) is a linear
operator onV@x,x21# defined byaqvex

m5amvex
m. We shall denote this representation b

(p,Vx).
Setp5m0m. The U module structure onVx is extended to aUm structure2 by

E0~z!5apqd~z/x!En111, F0~z!5a21d~z/x!E1n11p2q,

f0
1~z!5 (

kÞ1,n11
Ekk1q21

12q2z/px

12z/px
En11n111q

12q22z/x

12z/x
E11,

f0
2~z!5 (

kÞ1,n11
Ekk1q

12q22px/z

12px/z
En11n111q21

12q2x/z

12x/z
E11, ~4.6!

whereaPF3. We shall denote this representation by (pa ,Va).

C. Bialgebra structure of Um

In this subsection, fixingmPF3, we omit the subscriptm of Um .

1. Completion U m
^̂N and bialgebra structure of Um

Set ci5 i (n112 i ) (1< i<n) and putK5D2(n11)P1< i<nki
ci. Note that ((cia i ua j )52 for

1< j <n. For N>1 andr PZ, set

U^ N
r5$yPU^ NuK ^ Ny~K ^ N!215qry%. ~4.7!

We assume the following:
Assumption 1: (1) U is identified with the subalgebra ofU generated by Ei ,m, Fi ,m, hi ,r , k1

61

(1< i<n), C61 andD61 by the algebra homomorphism from Uto U determined by

Ei~z!°Ei~z!, Fi~z!°Fi~z!, f i
6~z!°f i

6~z! C°C, D°D. ~4.8!

(2) U has subalgebrasU2, U0, andU1 such that the multiplication mapU2
^U0

^U1→U is
an isomorphism of vector spaces and

U6,U65 % r>0U6ùU6r , U0,U0,U0 . ~4.9!

Set

U^ N
0l5(

s> l
U^ NU^ N

s , ~ l PZ>0!. ~4.10!
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We introduce a linear topology onU^ N by letting (U^ N
0l) l>0 be a fundamental system of neigh

borhoods of the origin.@Hereafter we shall simply say ‘‘introduce a linear topology by (U^ N
0l). ’’ #

The U^ N is a separated topological algebra. We denote its completion byÛ (N51) andU^̂ N

(N>2). Note that forN>2, the topology onU^ N is equivalent to the tensor product topology
Let D̄ I and D̄ II be the continuous algebra homomorphisms fromÛ to U^̂U determined by

D̄ I~C!5D̄ II~C!5C^ C, D̄ I~D !5D̄ II~D !5D ^ D,

D̄ I~f i
1~z!!5f i

1~z/C2! ^ f i
1~z!, D̄ I~f i

2~z!!5f i
2~z! ^ f i

2~z/C1!,

D̄ I~Ei~z!!5Ei~z! ^ 11f i
2~z! ^ Ei~z/C1!, D̄ I~Fi~z!!51^ Fi~z!1Fi~z/C2! ^ f i

1~z!,

D̄ II~f i
1~z!!5f i

1~z/C2! ^ f i
1~z!, D̄ II~f i

2~z!!5f i
2~z! ^ f i

2~z/C1!,

D̄ II~Ei~z!!5Ei~z! ^ 11f i
1~Cz! ^ Ei~C1z!, D̄ II~Fi~z!!51^ Fi~z!1Fi~C2z! ^ f i

2~Cz!,
~4.11!

whereC15C^ 1 andC251^ C. Let furthere:Û→F denote the continuous algebra homomo
phism determined by

e~Ei~z!!5e~Fi~z!!50, e~f i
6~z!!5e~C!5e~D !51. ~4.12!

Here F is given a discrete topology. Then (Û,D̄ i ,e) ( i 5I,II) are bialgebras. These are straigh
forward generalizations of the bialgebra structures found by Drinfeld forÛ. LetR5R1R0R2 be
the Gauss decomposition of the universalR matrix of U with D0 as a comultiplication.19 Letting

FI5R2, FII5s~R1!21, ~s~a^ b!5b^ a!, ~4.13!

set

D i~• !5Fi
21D̄ i~• !Fi , ~ i 5I,II !. ~4.14!

It is known19 that

~e ^̂ 1!Fi5~1^̂ e!Fi51, ~Fi !12~D0^̂ 1!Fi5~Fi !23~1^̂ D0!Fi , ~4.15!

D i~y!5D0~y!, ~ i 5I,II, yPU !, ~4.16!

and that (Û,D i ,e) ( i 5I,II) are bialgebras. SetD I
op5s+D I and FI

op5s(FI). For (D,F)

5(D I
op,FI

op), (D II ,FII), etc., we defineD (N):Û→U^̂ N11 (N>1) by

D~1!5D, D~N!5~D ^̂ 1^̂ N21!+D~N21! ~N>2! ~4.17!

andF(N)PU^̂ N (N>2) by

F~2!5F, F~N!5~F~2!!12~D ^̂ 1^̂ N22!F~N21!, ~N>3!. ~4.18!

Then the following holds:

D~N21!~y!5F~N!21D̄~N21!~y!F~N!, ~yPU!. ~4.19!
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Later we need the following property ofFI
op and FII .19 Set U>05U0U1 and U<0

5U2U0. Set furtherQ̄5 % i 51
n Za i , Q̄152Q̄25 % i 51

n Z>0a i , andd5( i 50
n a i . Fora5>0, <0,

mPZ andlPQ̄, put

Umd1l
a 5$yPUauDyD215qmy, kiyki

215q~a i ul!y, ~1< i<n!%.

Let M 6 be the closure of(m>0(lPQ̄6\$0%U2(md1l)
<0

^ Umd1l
>0 . Then

FI
op21PM 2 , FII21PM 1 . ~4.20!

2. Completion Um
^ N̂̃ and its representation Ŵ

For N>2 andmPZ, set

U^ N~m!5 (
( i 52

N
~ i 21!mi>m

U^Um2
^¯^UmN

. ~4.21!

Let U^ Ñ (N>2) be theF algebraU^ N on which a linear topology is introduced by (U^ N(m)).

ThenU^ Ñ is a separated topological algebra. We denote its completion byU^ N̂̃.
LetWi (1< i<N) beU modules such that

Wi5 % mPZWi ,m , Wi ,m5$wPWi uKw5qmw%, ~4.22!

and setW5W1^¯^WN . For mPZ setting

W~m!5 (
( i 52

N
~ i 21!mi>m

W1^W2,m2
^¯^WN,mN

, ~4.23!

introduce a separated linear topology onW by (W(m)). Then Ŵ, the completion ofW, is a

topologicalU^ N̂̃ module.
Remark 1:Ŵ5W in the case N52 andWN,m5$0% (m@0).

3. Um module structure on Ŵ

Lemma 2: (1) Lett be the identity map fromU^ Ñ to U^ N. Let further t̂:U^ N̂̃→U ^̂ N be the

continuous extension of the continuous algebra homomorphismt. Thent̂ is injective.

(2) If we identifyU^ N̂̃ with a subalgebra ofU^̂ N via the mapt̂, then the following holds:

D I
op~N21!~U!,U^ N̂̃, D II

~N21!~U!,U^ N̂̃. ~4.24!

Proof: ~1! For l PZ>0 , set

Ml5 (
S l i5 l

U2 ^ N
^U0^ N

^Ul 1
1

^¯^Ul N
1 . ~4.25!

Let m>0. Under the identification ofU^ N.(U2
^U0

^U1) ^ N with U2 ^ N
^U0^ N

^U1 ^ N, the
following holds:

U^ N~m!5 % l~U^ N~m!ùMl !, U0m
^ N5 % l>mMl . ~4.26!
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From this, we obtain

ù l~U^ N~m!1U0l
^ N!5U^ N~m!. ~4.27!

Utilizing the last equality, it is easy to show that any Cauchy sequence inU^ Ñ whose image unde

t converges to 0 inU^̂ N converges to 0 inU^ N̂̃.
~2! The claim can be easily shown forD̄ I

op andD̄ II instead ofD I
op andD II . Utilizing ~4.18! and

~4.20!, we can checkFI
op(N) , FII

(N)PU^ N̂̃. Therefore thanks to~4.19! we obtain the claim. j

The above lemma and~4.16! give the following.
Proposition 2:The completionŴ defined in Sec. IV C 2 is endowed withU module structures

via the comultiplicationsD1
op andD II . Their U module structures are the ones via the comultip

cationsD0
op andD0, respectively.

Remark 2: For(D I
op,FI

op), we can replace K by D in (4.7) and (4.22).

D. Intertwiners of toroidal modules

Let F ( j ) andC ( j ) (0< j <n) denote the intertwiners of U modules determined by

F~ j !:V~L j ! ^ Vx→V~L j 11!, C~ j !:Vx^ V~L j !→V~L j 11!,

F~ j !~vL j
^ v j 11!5vL j 11

, C~ j !~v j 11^ vL j
!5vL j 11

, ~4.28!

whereV(L j ) ^ Vx andVx^ V(L j ) are U modules via the comultiplicationD0, andLn11 should be
understood asL0 . As usual we define their components by

Fk,m
~ j ! u5F~ j !~u^ vkx

m!, Ck,m
~ j ! u5C~ j !~vkx

m
^ u!, ~4.29!

and set

Fk
~ j !~z!5 (

mPZ
Fk,m

~ j ! z2m, Ck
~ j !~z!5 (

mPZ
Ck,m

~ j ! z2m. ~4.30!

Proposition 3: For mPZ, set am5q2m. In the following, give V(L j ) ^ Va and Wm^ Va (resp.
Va^ V(L j ) and Va^ Wm) toroidal module structures via the comultiplicationD I (resp.D II) (see
Remark 1).

(1) For 0< j <n, F ( j ):V(L j ) ^ Vaj
→V(L j 11) and C ( j ):Vaj

^ V(L j )→V(L j 11) are inter-

twiners ofUm0
modules.

(2) Let p5m0mÞ1 and a r ’s be the ones defined in Proposition 1. Setting

Y6~z!5expS 7~q2q21!(
r .0

p~r 6r !/2

12pr a7rb7rz
6r D , ~4.31!

put

J~z!5Y1~qz!Y2~z!, S~z!5Y1~z!Y2~qz!. ~4.32!

For m5(n11)s1 j (sPZ, 0< j <n), defineF̃ (m):Wm^ Vam /ps→Wm11 and C̃ (m):Vam /ps^ Wm

→Wm11 by the generating series

F̃k
~m!~z!5Fk

~ j !~z! ^ J~z! and C̃k
~m!~z!5Ck

~ j !~z! ^ S~z!, ~4.33!

respectively. HereF̃k
(m)(z) and C̃k

(m)(z) are defined similarly toFk
( j )(z) andCk

( j )(z). ThenF̃ (m)

and C̃ (m) are intertwiners ofUm modules.

Proof: We consider the caseF̃ (m). In this proof, we giveWm^ Va ~resp.V(L j ) ^ Vx) a Um

~resp. U! module structure via the comultiplicationD̄ I . SetF̌ (m)5F̃ (m)FI
21 and F̄ ( j )5F ( j )FI

21
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so thatF̌k
(m)(z)5F̄k

( j )(z) ^ J(z). ThenF̄ ( j ):V(L j ) ^ Vx→V(L j 11) is an intertwiner of U mod-
ules and its explicit expression in terms of bosons is known.20 Utilizing the expression, it is
straightforward to showF̌ (m):Wm^ Vam /ps→Wm11 is an intertwiner ofUm modules. The claim
follows from this. j

V. LEVEL 0 Uq8 „sl n 11̂… action on level 1 U q„gl n 11̂… and Uq„sl n 11̂… modules

A. Completions of Vx
^ N

Following Ref. 10, we introduce two completions ofVx
^ N . For mPZ, set

VN@m#5spanH ve1
xm1^¯^ veN

xmNU(
i 52

N

~ i 21!mi>mJ , ~5.1!

VN@@m##5span$ve1
xm1^¯^ veN

xmNumax$m1 ,...,mN%>m%. ~5.2!

Introduce two linear topologies on the vector spaceVx
^ N by (VN@m#) and (VN@@m##). We denote

the thus obtained separated topological vector spaces byVN8 andVN , respectively, and letV̂N8 and
V̂N signify their completions. LetiN be the identity map fromVN8 to VN . Let further îN :V̂N8

→V̂N denote the continuous extension of the continuous linear mapiN . ~This map is shown to be
injective as in Lemma 2.! Note that our completions are a little bit different from those in Ref.

Lemma 3: The topology onVN8 is equivalent to the one by a family of subspaces(Vx
^ N(m))

defined in Sec. IV C 2.
Proof: The claim is easily checked using the equalityKvex

m5q2(n11)m1n22e12vex
m. j

Set

ve1 ,...,eN
~z1 ,...,zN!5 (

miPZ
ve1

xm1^¯^ veN
xmNz1

2m1
¯zN

2mN. ~5.3!

LetN N8 ~resp.NN) be the closure inV̂N8 ~resp.V̂N) of the span of the coefficients of the followin
generating series:

v ...,e i ,e i 11 ,...~ ...,zi ,zi 11 ,...!2~12q2!
~zi /zi 11!u~e i,e i11!

12q2zi /zi 11
v ...,e i ,e i 11 ,...~ ...,zi 11 ,zi ,...!

1q
12zi /zi 11

12q2zi /zi 11
v ...,e i 11 ,e i ,...~ ...,zi 11 ,zi ,...!, ~e iÞe i 11!,

v ...,e i ,e i 11 ,...~ ...,zi ,zi 11 ,...!1q2
12q22zi /zi 11

12q2zi /zi 11
v ...,e i 11 ,e i ,...~ ...,zi 11 ,zi ,...!, ~e i5e i 11!,

~5.4!
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where 1< i<N21. ThenNN5 îN(NN8 ). Note that in terms of theR matrix R(z)PEnd(V^ V)
3@@z## defined by

R~z!ve1
^ ve2

5 (
e18 ,e28

R~z!e1 ,e2

e18 ,e28ve
18

^ ve
28
,

5~12q2!
zu~e1,e2!

12q2z
ve1

^ ve2
2q

12z

12q2z
ve2

^ ve1
, ~e1Þe2!,

52q2
12q22z

12q2z
ve1

^ ve2
, ~e15e2!, ~5.5!

the generating series~5.4! are written as follows:

v ...,e i ,e i 11 ,...~ ...,zi ,zi 11 ,...!2 (
e i8,e i 118

R~zi /zi 11!e i ,e i 11

e i 118 ,e i8v ...,e
i 118 ,e

i8 ,...~ ...,zi 11 ,zi ,...!. ~5.6!

B. Level 0 U q8 „sl n 11̂… actions on V̂ N8 /N N8 and V̂N /NN

Let Uq8(sln11̂) be the subalgebra of Uq(sln11̂) generated byei , f i , andki
61 (0< i<n). Set

Uc508 5Uq8(sln11̂)/^k0¯kn21& and give this algebra a discrete topology.
Proposition 4: Let SN :V̂N8→V̂N8 be the homeomorphic linear map defined by

ve1 ,...,eN
~z1 ,...,zN!°ve1 ,...,eN

~z1 ,...,zN!Y )
i , j

h~zj /zi !, ~5.7!

where

h~z!5
~q2pz;p!`

~pz;p!`
, ~z;p!`5 )

m50

`

~12pmz!. ~5.8!

Let furthersN :Um→End (V̂N8 ) be the map defined by

sN~y!5SN
21+~paN21

^¯^ pa0
!D I

op~N21!~y!+SN , yPUm . ~5.9!

Then the following holds:

(1) V̂N8 is a Um module via the mapsN .
(2) N N8 is Um invariant and theUm action onV̂N8 induces aUm action onV̂N8 /N N8 .
(3) TheUm modulesV̂N8 and V̂N8 /N N8 are considered as Uc508 modules via the algebra homo

morphismw:Uq8(sln11̂)→Um determined by ei°Ei ,0 , f i°Fi ,0 , ki°ki .
Proof: ~1! Follows from Proposition 2 and Lemma 3. Thanks to Lemma A.3,~2! is proven if

we show

SN
21+~paN21

^¯^ pa0
!D̄ I

op~N21!~y!+SN~N N8
F!,N N8

F , yPUm . ~5.10!

~See Lemma A.3 for the definition ofN N8
F .) This is easily checked using~4.5!, ~4.6!, and~4.11!.

~3! Follows simply from the fact thatk0¯knPUm acts as 1 onV̂N8 . j

Proposition 5 (Ref. 10): For iÞ j , letting Ki j be the operator which interchanges zi and zj ,
setj i j 5q211(q2q21)@zj /(zi2zj )#(Ki j 21)PEnd F@z1

61,...,zN
61#. Set further

Yj5j j j 11¯j jNpq jj1 j
21

¯j j 21 j
21 , ~5.11!
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where p5m0m and pq j signifies the scale operator pq acting on the variable zj . Then

(
mi

~Ŷjve1
xm1^¯^ veN

xmN!z1
2m1

¯zN
2mN5Yjve1 ,...,eN

~z1 ,...,zN!, ~5.12!

define continuous linear operators Yˆ
j ’s on V̂N and the following holds.

(1) V̂N is given a topological Uc508 module structure by the map

e0°qN21(
j 51

N

Ŷj
211^ j 21

^ En11,1^ ~qEn11,n112E1,1! ^ N2 j ,

f 0°q2~N21!(
j 51

N

Ŷj~qE1,12En11,n11! ^ j 21
^ E1,n11^ 1^ N2 j ,

k0°~qEn11,n112E1,1! ^ N,

y°~p ^¯^ p!D0
op~N21!~y!, y5ei , f i ,ki , ~1< i<n!. ~5.13!

(2) NN is Uc508 invariant and the Uc508 action onV̂N induces a Uc508 action onV̂N /NN .
For the twoUc508 modulesV̂N8 /N N8 and V̂N /NN , we can show the following:
Proposition 6: The mapĩN :V̂N8 /N N8→V̂N /NN induced byîN is a homomorphism of Uc508

modules.

Proof: VN8 /N N8 is a topological Uc508 module; ĩN is continuous;V̂N /NN is separated. There-
fore the claim follows from the following two lemmas. j

Lemma 4: Let XN denote the span of the vectorsve1
xm1^¯^ veN

xmN (e1<¯<eN , miPZ).

Then(XN1N N8 )/N N8 is dense inV̂N8 /N N8 .
Proof: It is sufficient to showV̂N8 5XN1N N8 . Therefore the claim follows if we show th

following:

ve1
xm1^¯^ veN

xmNPXN1N N8 . ~5.14!

Let e i,e i 11 andYN be the the span of the coefficients ofv ...,e i ,e i 11 ,...(...,zi ,zi 11 ,...). Equation
~5.4! implies that the coefficients of

~12~zi /zi 11!m!v ...,e i 11 ,e i ,...~ ...,zi 11 ,zi ,...!

belong toYN1N N8 for any integerm. Hence the coefficients ofv ...,e i 11 ,e i ...(...,zi 11 ,zi ,...) be-

long to YN1N N8 . Using the last argument repeatedly, we can show~5.14!. j

Lemma 5: Fore1<¯<eN and y5ei , f i , ki
61 (0< i<n), the following holds:

ĩN~yv̇e1 ,...,eN
~z1 ,...,zN!!5y ĩN~ v̇e1 ,...,eN

~z1 ,...,zN!!, ~5.15!

where v̇e1 ,...,eN
(z1 ,...,zN) signifies the image ofve1 ,...,eN

(z1 ,...,zN) under the quotient mapV̂N8

→V̂N8 /N N8 .
Proof: The above equality clearly holds except fore0 and f 0 . The casee0 is shown in the

Appendix and the casef 0 is similarly proven. j

C. Level 0 U q8 „sl n 11̂… actions on V̂N and WN

Give WN a discrete topology. Setu0&5vL0
^ 1PW0 . Let rN :VN→WN be the linear map

defined by
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ve1 ,...,eN
~z1 ,...,zN!°F̃e1

~N21!~z1!¯F̃eN

~0!~zN!u0& )
0<k<N21

zN2k
sk Y )

i , j
h~zj /zi !, ~5.16!

wheresk is the integer part ofk/(n11). Then, as in Ref. 10, thanks to the commutation relati
among the intertwinersF̃ (m),

F̃e1

~m11!~z1!F̃e2

~m!~z2!/h~z2 /z1!

5 (
e18 ,e28

~z1 /z2!sm2sm11R~z1 /z2!e1 ,e2

e28 ,e18F̃e
28

~m11!
~z2!F̃e

18
~m!

~z1!/h~z1 /z2!, ~5.17!

the maprN is continuous and extends to a continuous linear mapr̂N :V̂N→WN . Moreover the
latter map inducesr̃N :V̂N /NN→WN .

Proposition 7: Let us regard theUm module WN as a Uc508 module via the mapw. Thenr̃N8

ª r̃N+ ĩN :V̂N8 /N N8→WN is a homomorphism of Uc508 modules.
Proof: In this proof, we complete tensor productsVb1

^¯^ Vbk
and Vb1

^¯^ Vbk
^ Wm

(biPF3) as in Sec. IV C 2. We give the completionsUm module structures via the comultipli
cationD I

op as in Proposition 2 and consider them as Uc508 modules via the mapw. Note that we
treat the completionV̂N8 in the same way~not as in Proposition 4!. To prove the proposition, it is
sufficient to show that the continuous linear mapr̂N+ îN+SN

21:V̂N8→WN is Uc508 linear. Note that
this map is determined by

ve1 ,...,eN
~z1 ,...,zN!°F̃e1

~N21!~z1!¯F̃eN

~0!~zN!u0& )
0<k<N21

zN2k
sk . ~5.18!

LetF andD̄ stand forFI
op andD̄ I

op, respectively. From (1^̂ N
^̂ e)F(N11)5F(N) and~4.20!, we

get F(N11)61(u^ u0&)5(F(N)61u) ^ u0& for uPV̂N8 . Moreover we haveD̄ (N)(y)(u^ u0&)
5(D̄ (N21)(y)u) ^ u0& for yPUc508 and uPV̂N8 since E0,mu0&5F0,mu0&50 (m>0) and
f0

2(z)u0&5u0&. Hence the continuous map from the completion ofVaN21
^¯^ Va0

to the

completion ofVaN21
^¯^ Va0

^ W0 defined byu°u^ u0& is Uc508 linear. SetF̃op(m)5F̃ (m)

+(1^ xsm)+s, (s(v ^ w)5w^ v). The linear map 1^ N2m21
^ F̃op(m):VaN21

^¯^ Vam
^ Wm

→VaN21
^¯^ Vam11

^ Wm11 extends continuously to a map between the completions and

latter map is shown to be an intertwiner of Uc508 modules. From the above we can show the cla
stated in the first part of the proof. j

From Propositions 6 and 7, we can show the following:
Theorem 2: RegardV̂N andWN asUc508 modules as in Propositions 5 and 7. Thenr̂N :V̂N

→WN is a homomorphism of Uc508 modules.
Proof: Since r̃N+ ĩN5 r̃N8 and the mapsĩN and r̃N8 are Uc508 linear, we get r̃N(yw)

5yr̃N(w) for yPUc508 andwPIm ĩN . Im ĩN is dense inV̂N /NN ; V̂N /NN andWN are separated
topologicalUc508 modules;r̃N is continuous. Thereforer̃N is a homomorphism ofUc508 modules.
The claim follows from this. j

Finally we consider the casem5m0 . Let ĝN :V̂N→V(L j ) ( j [N modn11) denote the con-
tinuous linear map defined by~5.16! with F̃ (m) andu0& replaced byF ( i )( i[m modn11) andvL0

,

respectively. Let furtherĝ:V̂ª% N>1V̂N→Hª% j 50
n V(L j ) signify the linear map obtained from

ĝN’s. We consider theUm0
modulesV̂ andH asUc508 modules via the mapw.

Theorem 3: Consider the casem5m0 (p5m0
2) and let V̂, H, and ĝ be as above. Then

ĝ:V̂→H is a surjective homomorphism of Uc508 modules.
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Proof: The surjectivity is shown as in Ref. 10. Thanks to Proposition 3~1!, Proposition 7
holds also for the mapV̂N8 /N N8→V(L j ) ( j [N modn11) induced byĝN+ îN . Therefore the re-
maining claim is proven as in Theorem 2. j

Remark 3: In Ref. 10, in the case n51, by showing that Kerĝ is Uc508 invariant, a Uc508

action was defined onH so thatĝ is a homomorphism of Uc508 modules. Therefore Theorem
clarifies the relation between the Uc508 module structure onH induced by the toroidal action4 and
the one by the approach of Ref. 10.

APPENDIX: PROOF OF LEMMA 5

The following is immediate. See Ref. 10 for~1! and ~4!.
Lemma A.1: For I,$1,...,N%, let KI be the set of generating series w(z1 ,...,zN)

5(wm1 ,...,mN
z1

2m1
¯zN

2mN such that wm1 ,...,mN
PVN@@M ##, where M5max$mi%iPI . For

I ,$1,...,N% and kP$1,...,N%, let AI ,k denote the algebra of formal power series in the variab
zi /zk ( i PI \$k%).

(1) If f is a formal series of the form f5((mi5mf m1 ,...,mr
zi 1

2m1
¯zi r

2mr (1< i 1,¯, i r<N,

f m1 ,...,mr
PF, mPZ) and wPK $ i 1 ,...,i r %

, then fw is a well defined formal series withV̂N as

coefficients.
(2) AI ,kKI,KI \$k% . Moreover AI ,k acts on KI when k¹I .
(3) Let i, jPI , iÞ j , k, lP$1,...,N%\I , kÞ l and wPKI . Let further f(z) and g(z) be formal

power series in z. Then for(x,y)5(zi /zk ,zi /zl) and (zi /zj ,zj /zk), the following holds:

f ~x!~g~y!w!5g~y!~ f ~x!w!5~ f ~x!g~y!!w.

(4) j i j
61KI,KI if i , j PI .

(5) Let i, jPI , iÞ j and kP$1,...,N%\I . If f PAI ,k satisfies fj i j 5j i j f when acted on Lauren
polynomials in zl (1< l<N), then fj i j uKI

5j i j f uKI
.

Lemma A.2: Let L be the set of generating series w(z1 ,...,zN)5(wm1 ,...,mN
z1

2mN
¯zN

2mN such

that wm1 ,...,mN
PVN@M #, where M5( i 52

N ( i 21)mi .
(1) Let B be the algebra of formal power series in the variables zi 11 /zi (1< i ,N). Then B

acts on L.
(2) Set ue1 ,...,eN

(z1 ,...,zN)5FI
op(N)21ve1 ,...,eN

(z1 ,...,zN). Then ue1 ,...,eN
(z1 ,...,zN)PL for

any e i , and ue1 ,...,eN
(z1 ,...,zN)5ve1 ,...,eN

(z1 ,...,zN) whene1<¯<eN .
Proof: ~1! is immediate.~2! follows from ~4.20!. j

Lemma A.3: LetN N8
F be the closure inV̂N8 of the span of the coefficients of the followin

generating series:

v ...,e i ,e i 11 ,...~ ...,zi ,zi 11 ,...!1q
12zi /zi 11

12q2zi /zi 11
v ...,e i 11 ,e i ,...~ ...,zi 11 ,zi ,...!, ~e i,e i 11!,

v ...,e i ,e i 11 ,...~ ...,zi ,zi 11 ,...!1q2
12q22zi /zi 11

12q2zi /zi 11
v ...,e i 11 ,e i ,...~ ...,zi 11 ,zi ,...!, ~e i5e i 11!,

~A1!

where1< i<N21. ThenFI
op(N)N N8 5N N8

F .
Proof: Let F(N) signify FI

op(N) . Firstly we consider the caseN52. Let e1,e2 . From the
definition we get
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ve1 ,e2
~z1 ,z2!1q

12z2 /z1

12q2z2 /z1
ve2 ,e1

~z1 ,z2!1~z1↔z2!PN 28
F . ~A2!

This implies

z2

12z2 /z1
ve1 ,e2

~z1 ,z2!1
qz2

12q2z2 /z1
ve2 ,e1

~z1 ,z2!2~z1↔z2!PN 28
F . ~A3!

Let N28 ~resp.N28
F) be the span of the coefficients of~5.4! ~resp.~A1! and ~A3!!. From

F~2!ve1 ,e2
~z1 ,z2!5ve1 ,e2

~z1 ,z2!, ~e1<e2!,

5ve1 ,e2
~z1 ,z2!2~q2q21!

z2 /z1

12z2 /z1
ve2 ,e1

~z1 ,z2!, ~e1.e2!, ~A4!

we obtainF(2)N285N28
F and, hence, the claim in the caseN52. Next we consider the caseN

.2. Equation~4.15! gives

F~N!5Fk,k11
~2! ~1^̂ k21

^̂ D I
op

^̂ 1^̂ N2k21!F~N21! for 1<k<N21. ~A5!

It is easy to check thatN28 is U invariant. Hence we obtain

F~N!Vx
^ k21

^ N28^ Vx
^ N2k21,Vx

^ k21
^F~2!N28^ Vx

^ N2k21. ~A6!

From this, we getF(N)N N8 ,N N8
F . The reverse inclusion is shown similarly. j

Hereafter we shall let[ denote the equality inV̂N modNN .
Lemma A.4: The action of e0 on the Uc508 moduleV̂N and that of E0,0 on theUm moduleV̂N8

satisfy the following relations:

~1! e0ve1 ,...,eN
~z1 ,...,zN!

[~2q!N21(
j 51

N

de j ,1
~21! j 21q2( j , i<Nde i ,1j j 21 j¯j1 j

3ve1 ,...,ê j ,...,eN ,n11~z1 ,...,ẑj ,...,zN ,zj /p!. ~A7!

~2! For e1<¯<eN ,

îN~E0,0ve1 ,...,eN
~z1 ,...,zN!!

[~2q!N21(
j 51

N

de j ,1
(2q)2~ j 21!q2( j , i<Nde i ,1 )

i 51

j 21
12q2zj /zi

12zj /zi
)

i 5 j 11

N S 12q2zi /zj

12zi /zj
D de i ,1

3ve1 ,...,ê j ,...,eN ,n11~z1 ,...,ẑj ,...,zN ,zj /p!. ~A8!

Here ˆ denotes the deletion of variables.
Proof: ~1! The definition ofj i j and ~5.4! give

j i i 11
21 v ...,e i ,e i 11 ,...~ ...,zi ,zi 11 ,...![2q2de i ,e i 11v ...,e i 11 ,e i ,...~ ...,zi 11 ,zi ,...!, ~e i>e i 11!.

~A9!

Using this equality, we get the claim.
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~2! Set f (z)5q21(12q2z)/(12z). Set furtherge(z)5q(12z)/(12q2z) for 1<e<n and
5q2(12q22z)/(12q2z) for e5n11. Then thanks to~4.19! we get

E0,0ue1 ,...eN
~z1 ,...,zN!5qN21(

j 51

N

de j ,1)i 51

j 21

f ~zj /zi ! )
i 5 j 11

N

f ~zi /zj !
de i ,1

3 )
i 5 j 11

N

ge i
~pzi /zj !ue1 ,...,e j 21 ,n11,e j 11 ,...,eN

~z1 ,...,zj /p,...,zN!,

~A10!

for any e i . Lemmas A.2 and A.3 imply

îNS )
i 5 j 11

N

ge i
~pzi /zj !ue1 ,...,e j 21 ,n11,e j 11 ,...,eN

~z1 ,...,zj /p,...zN!D
[~21!N2 j îN~ue1 ,...,ê j ,...,eN ,n11~z1 ,...,ẑj ,...,zN ,zj /p!!. ~A11!

In the casee1<¯<eN , thanks to Lemma A.1~1! and Lemma A.2, multiplying the abov
equation byP i 51

j 21f (zj /zi)P i 5 j 11
N f (zi /zj )

de i ,1 is meaningful. Hence we obtain the claim. j

Lemma A.5: Let1<t<s<N and w(z1 ,...,zN)PK $t,...,N% . If the coefficients of the generatin
series

w~z1 ,...,zi ,zi 11 ,...,zN!1q2
12q22zi /zi 11

12q2zi /zi 11
w~z1 ,...,zi 11 ,zi ,...,zN!, ~ t< i<s22!

belong toNN , then the following equality holds inV̂N :

(
j 5t

s

~2q! j 2tj j 21 j¯j t jw~z1 ,...,ẑj ,...,zN ,zj /p!

[(
j 5t

s

~21! j 2t)
i 5t

j 21
12q2zj /zi

12zj /zi
)

i 5 j 11

s
12q2zi /zj

12zi /zj
w~z1 ,...,ẑj ,...,zN ,zj /p!. ~A12!

Proof: This can be shown by induction ons2t. Thanks to Lemma A.1, the left hand side
rewritten as follows:

w~z1 ,...,ẑt ,...,zN ,zt /p!1~12q2! (
j 5t11

s

~2q! j 2t21j j 21 j¯j t11 j

3
zj /zt

12zj /zt
w~z1 ,...,zt21 ,zj ,zt11 ,...,ẑj ,...,zN ,zt /p!

2
1

P i .th~zi /zt!
(

j 5t11

s

~2q! j 2t21j j 21 j¯j t11 j w̄~z1 ,...,ẑj ,...,zN ,zj /p!, ~A13!

where
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w̄~z1 ,...,zN!5)
i .t

h~zi /zt!3w~z1 ,...,zN!PK $t11,...,N% . ~A14!

For t11< i , j <s, thanks to Lemma A.1, we obtain,

j i j

zj /zt

12zj /zt
w~z1 ,...,ẑt ,...,zi 21 ,zj ,zi ,...,ẑj ,...,zN ,zt /p!

[2q21
12q2zi /zt

12zi /zt

zj /zt

12zj /zt
w~z1 ,...,ẑt ,...,zi ,zj ,zi 11 ,...,ẑj ,...,zN ,zt /p!.

~A15!

Since the action ofj j 21 j¯j i 11 j on both sides of the above is well defined, we get the follow
equality:

j j 21 j¯j i j

zj /zt

12zj /zt
w~z1 ,...,ẑt ,...,zi 21 ,zj ,zi ,...,ẑj ,...,zN ,zt /p!

[2q21
12q2zi /zt

12zi /zt
j j 21 j¯j i 11 j

zj /zt

12zj /zt
w~z1 ,...,ẑt ,...,zi ,zj ,zi 11 ,...,ẑj ,...,zN ,zt /p!.

~A16!

Repeating this argument, the sum of the first two terms is found to be

)
i 5t11

s
12q2zi /zt

12zi /zt
w~z1 ,...,ẑt ,...,zN ,zt /p!.

Applying the assumption of the induction to the last sum, we obtain the claim. j
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Picard–Fuchs ordinary differential systems in N52
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In general, Picard–Fuchs systems inN52 supersymmetric Yang–Mills theories
are realized as a set of simultaneous partial differential equations. However, if the
quantum chromodynamics~QCD! scale parameter is used as a unique independent
variable instead of moduli, the resulting Picard–Fuchs systems are represented by a
single ordinary differential equation~ODE! whose order coincides with the total
number of independent periods. This paper discusses some properties of these
Picard–Fuchs ODEs. In contrast with the usual Picard–Fuchs systems written in
terms of moduli derivatives, there exists a Wronskian for this ordinary differential
system and this Wronskian produces a new relation among periods, moduli, and
QCD scale parameter, which in the case of SU~2! is reminiscent of the scaling
relation of prepotential. On the other hand, in the case of the SU~3! theory, there are
two kinds of ordinary differential equations, one of which is the equation directly
constructed from periods and the other is derived from the SU~3! Picard–Fuchs
equations in moduli derivatives identified with Appell’sF4 hypergeometric system,
i.e., Burchnall’s fifth-order ordinary differential equation published in 1942. It is
shown that four of the five independent solutions to the latter equation actually
correspond to the four periods in the SU~3! gauge theory and the closed form of the
remaining one is established by the SU~3! Picard–Fuchs ODE. The formula for this
fifth solution is a new one. ©1999 American Institute of Physics.
@S0022-2488~99!01106-8#

I. INTRODUCTION

It has been recognized that the low energy effective action ofN52 supersymmetric Yang–
Mills theory for any Lie gauge group including at most two derivatives and four fermion
dominated by a holomorphic function called prepotentialF.1 Perturbatively, this prepotential is
sum of the classical part and one-loop contribution, and further contributions from higher
diagrams are excluded by the nonrenormalization theorem inN52 theory. However,F was
expected to be affected by instantons and hence its nonperturbative determination was
standing problem.

In the case of SU~2! gauge theory, without any quark hypermultiplet, Seiberg and Witt2

showed that the vacuum configuration of theN52 action was parametrized by the moduliu
5^tr f2& ~f is a complex scalar field in the adjoint representation of the gauge group! and
singularities on this parameter space~moduli space! could split into pieces by instanton effec
This instanton corrected moduli space is often called quantum moduli space and Seibe
Witten2,3 identified the quantum moduli space with the moduli space of a certain elliptic curv
genus one. According to their ansatz, since the vacuum expectation valuea5^f& and its magnetic
dual can also be regarded as periods of a meromorphic one-form on the elliptic Riemann s
these periods can be calculated as a linear combination of solutions to Picard–Fuchs equati~for
a historical review and introduction of the Picard–Fuchs equation in mathematics, see G4!.
Once the periods are calculated, it is immediate to obtain the prepotential because of rigid
geometry. In this way, Klemmet al.5 determined the SU~2! prepotential.
32110022-2488/99/40(6)/3211/16/$15.00 © 1999 American Institute of Physics
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Seiberg and Witten’s approach toN52 supersymmetric SU~2! Yang–Mills theory2,3 was
extended to other higher rank gauge group cases coupled with or without q
hypermultiplets,5–16 and it was found that the quantum moduli spaces of those gauge the
could be identified with those of Riemann surfaces with certain genus. In these studies, g
algorithms to get Picard–Fuchs equations were developed,17–21but these equations are in gener
realized as a set of simultaneous partial differential equations~PDEs! in terms of moduli deriva-
tives. For this reason, it is not easy to solve Picard–Fuchs equations, especially, in highe
gauge goup cases.

However, if the quantum chromodynamics~QCD! scale parameter instead of moduli is us
as the unique independent variable, the resulting Picard–Fuchs systems will be represent
single ordinary differential equation~ODE! whose order coincides with the total number of ind
pendent periods. Then the problem solving Picard–Fuchs equations can be encoded i
language of ODE and therefore the study of periods are simplified. As another feature o
formalism, we remark that in contrast with the usual Picard–Fuchs systems written in ter
moduli derivatives there exists a Wronskian for these ordinary differential systems an
Wronskian produces a new relation among periods, moduli, and QCD scale parameter. Esp
in the case of SU~2! it is quite reminiscent of the scaling relation of the prepotential.22–24 This
relation is highly nonlinear in the case of higher rank gauge group, but it reflects the struct
the Picard–Fuchs ODE. Section II discusses these Picard–Fuchs ordinary differential sy
This realization of Picard–Fuchs systems via ODE becomes interesting when we cons
relation to hypergeometric differential equations in multiple variables. For example, in the ca
SU~3! gauge theory, we can find another ODE which gives equivalent periods. That is Burch
fifth-order equation directly constructed from Appell’sF4 hypergeometric differential equations.25

In general, the dimension of the solution space of a single ODE constructed from simulta
PDEs can exceed that of the original PDEs25 ~see also Srivastava and Karlsson26 and references
therein!, and Burchnall’s equation is the case. In addition, the extra solution which is n
solution to the original PDEs is known to have a very characteristic form. In the case of B
nall’s equation for the SU~3! gauge theory, since four of the five independent solutions are fo
to correspond to the four periods of the SU~3! gauge theory~this identification is explicitly
checked at the semiclassical regime! and these four periods are also solutions to the SU~3! Picard–
Fuchs ODE, it is possible to extract a differential equation only for the fifth solution~although the
fifth solution is irrelevant to the underlying physics!. The formula for this fifth solution obtained
in this way is a new one and takes a very different form compared with other fifth-order O
constructed from a set of PDEs, e.g., a product of two Bessel functions or Whittaker function~the
‘‘fifth solution’’ to these two cases are quite reminiscent of each other!. In our derivation, it is
crucial to notice that the fifth solution of the fifth-order ODE~that is, Burchnall’s equation!
associated with Appell’sF4 is constructed by ‘‘subtracting’’ the fourth-order equation satisfi
only by periods of the SU~3! Seiberg–Witten curve which are part of the solutions to the fif
order ODE. In Sec. III, we discuss these aspects of Burchnall’s equation as an application
SU~3! Picard–Fuchs ODE to a theory of hypergeometric equations. Section IV is a brief sum

Remark: When we simply say ‘‘Picard–Fuchs ODE,’’ it always means a single ordinar
differential equation in terms of QCD scale parameter derivatives.

II. PICARD–FUCHS ORDINARY DIFFERENTIAL SYSTEMS

A. The hyperelliptic curve

First, let us recall the exact solution to the SU(n11)(nPN) gauge theory as an example. O
the affine local coordinatesx,yPC, the hyperelliptic curve and the Seiberg–Witten different
are given by5–7,9,16

y25W̃SU~n11!
2 2z, lSW5

x]xW̃SU~n11!

y
dx, ~2.1!
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wherez5LSU(n11)
2(n11) and

W̃SU~n11!5xn112 (
i 52

n11

six
n112 i . ~2.2!

Equation ~2.2! shows the simple singularity with modulisi . This hyperelliptic curve can be
compactified to a Riemann surface of genusn after addition of infinity, hence there must b
noncontractible 2n cycles on this surface and these cycles can be chosen as the canonical
i.e., a iùa j5b iùb j50, a iùb j52b jùa i51d i , j . Then we introduce the period vector

P5S aDi

ai
D , ~2.3!

where

ai5 R
a i

lSW, aDi
5 R

b i

lSW. ~2.4!

Below, we often denote moduli asu[s2 andv[s3 .

B. Derivation of Picard–Fuchs ODE

A physically interesting behavior of periods is in the weak coupling region. Of course
study of periods can be proceeded by using Picard–Fuchs equations, and in general per
represented by series in moduli. However, by some rearrangement they are found to
striking feature in their form. Namely, they can be summarized as

periods5classical part1quantum corrections. ~2.5!

Equation~2.5! suggests that it is more convenient to construct periods as a series in QCD
parameterL rather than moduli. In a sense,~2.5! might be implied by Ito and Sasakura27 in their
observation of a general form of~a certain type of! Picard–Fuchs operators, which is summariz
schematically as

L5Lcl1LLL . ~2.6!

This equality means that the Picard–Fuchs operatorL is a sum of the operatorLcl whose kernel is
classical periods and some operatorLL . Once the classical periods are known, we can calcu
instanton corrected periods, that is, the kernel ofL, by assumingLL as a perturbation term fo
smallL ~at semiclassical regime!. However, since in the case of other gauge theories with hig
rank gauge groups the Picard–Fuchs system is represented by a set of PDEs, such pert
calculation involves technical problems, therefore another method to obtain instanton cor
periods should be developed. One of the candidates in view of the differential equation
construct Picard–Fuchs equations by regardingL as a unique independent variable instead
moduli. Then the resulting Picard–Fuchs equations will be expressed by an ordinary diffe
equation. Since the QCD scale parameter always appears in any gauge theory with or w
~massive! hypermultiplets, this formulation is convenient when we generalize the method to
ous gauge theories with any rank gauge group.

Now, let us consider the derivation of this ordinary differential equation. In general,k-times
differentiation oflSW over z gives

dklSW

dzk 5
polynomial in x

y2k11 dx, ~2.7!
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but the right-hand side can be decomposed into a sum of Abelian differentials and a total d
tive term, if the well-known reduction algorithm is used.17–21 Accordingly, collecting~2.7! for
variousk can generate a differential equation. In addition, since all independent periods sho
solutions to this equation, the order of the equation must coincide with the total number of
and in fact it is determined as 2n. This reduction method is easily confirmed, if the Seiber
Witten curves are hyperelliptic type. In this way, we get the Picard–Fuchs ODE in the form

F d2n

dz2n 1c2n21

d2n21

dz2n21 1¯1c0GP50, ~2.8!

whereci are functions in moduli.
Also when massive quarks are included, we can obtain a similar ordinary differential

tion, but in this case a mass dependent polynomial appears in the denominator of the righ
side of~2.7!. Reduction of such massive differential was also recognized by Marshakovet al.28 in
their construction of massive WDVV equations.

C. Examples of Picard–Fuchs ODE

Let us see examples of Picard–Fuchs ODE. The first one is the SU~2! case and then the
coefficients in~2.8! are given by

c15
1

z
, c05

1

16z~u22z!
. ~2.9!

Next, let us consider the SU~3! case. In this case, the coefficients are

c05
245~3z24u3127v2!

2z2D̃SU~3!

,

c15
45~1053z22538zu3140u613267zv2254u3v221458v4!

2z2D̃SU~3!

,

~2.10!

c25
1

4z2D̃SU~3!

@445 905z328~4u3227v2!31z2~2217 368u31734 589v2!

136z~676u62135u3v2229 889v4!#,

c35
1

zD̃SU~3!

@76 545z32162z2~244u32297v2!24~4u3227v2!3

19z~656u621080u3v2222 599v4!#,

whereD̃SU(3) is the product

D̃SU~3!5~15z24u3127v2!DSU~3! ~2.11!

with the discriminant

DSU~3!5@729z21~4u3227v2!2254z~4u3127v2!# ~2.12!

of the SU~3! hyperelliptic curve.
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We can easily obtain Picard–Fuchs ODE for SO~5! or Sp~4! gauge group in a similar manne
Though the Sp~4! hyperelliptic curve may be seen to be different from that of the SO~5! theory,
the isomorphism of Picard–Fuchs equations between these two theories could be observe
and Sasakura.27 Also in the case of Picard–Fuchs ODE, this isomorphism can be easily estab
by the same transformation.27

D. Wronskian

As is well known, the scaling relation of the SU~2! prepotential can be generated fro
Wronskian of the Picard–Fuchs equation, but this is valid only for this SU~2! theory because the
Picard–Fuchs equations in other gauge theories consist of partial differential equations. I
theories, ‘‘Wronskian’’ does not generally exist. However, our Picard–Fuchs ODE~2.8! admits a
Wronskian given by

WSU~n11!5U a1 ¯ an aD1 ¯
aDn

a18 ¯ an8 aD1
8

¯
aDn
8

] ] ] ]

a1
~2n21!

¯ an
~2n21! aD1

~2n21!
¯ aDn

~2n21!

U , ~2.13!

where85d/dz. Substituting~2.13! into ~2.8! shows thatWSU(n11) satisfies

WSU~n11!8 1c2n21WSU~n11!50, ~2.14!

which is integrated to give

WSU~n11!5const. expS 2E c2n21dzD , ~2.15!

where const. is the integration constant to be determined from the comparison of the lef
right-hand sides of~2.15! by asymptotic behavior of periods, but may depend on moduli bec
in our formulation moduli are regarded as constant.

Note that~2.15! produces a new nonlinear relation between periods and other parameter
example, in the case of the SU~2! theory with the normalization used by Klemmet al.,5 ~2.15!
gives

WSU~2!52
iu

2pz
, ~2.16!

which is a quite reminiscent expression with the homogeneity relation of prepotential.22–24 Simi-
larly, for the SU~3! theory, we have

WSU~3!5
15z2~4u3227v2!

z4DSU~3!
2 , ~2.17!

where the integration constant is normalized to 1 for convenience in Sec. III. Note that the r
singularities of~2.17! are the same as those of the SU~3! Picard–Fuchs ODE.

III. BURCHNALL’S EQUATION

A. Multiterm differential equation

Picard–Fuchs equations obtained in Sec. II can be shown to be classified in term
multiterm ordinary differential equation discussed by Burchnall in his study of the relation
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among hypergeometric differential equations in multiple variables and certain types of ord
differential equations.25 Here, multiterm ordinary differential equation is defined by:

Definition: The k-term ordinary differential equation is the differential equation taking
form

F f ~uz!1(
i 51

l

zigi~uz!GP50 ~3.1!

for some l, where f and gi are polynomial differential operators in the Euler derivativeuz

5zd/dz. k is the total number of f and nonzero gi .
For example, in terms of the Euler derivative, our SU~3! Picard–Fuchs ODE can be rewritte

as the four-term ODE with

f 52916~x2y!3~211uz!
2uz

2,

g15281~x2y!uz
2@43x252y260~x2y!uz14~23x113y!uz

2#,
~3.2!

g259@~386x2251y!uz
21144~2x27y!uz

3136~19x1y!uz
42~x2y!~10113uz!#,

g3525~113uz!~213uz!~2116uz!~116uz!,

wherex54u3/27 andy5v2.
According to Srivastava and Saran,29 who extended the work of Burchnall to four-term ODE

our SU~3! Picard–Fuchs ODE seems to be representable by a hypergeometric function
homogeneity formF(pz,qz,rz), wherep, q, and r are parameters. In this paper, we could n
specify this function, but since the kernel of the SU~3! Picard–Fuchs ODE is essentially written b
Appell’s F4 function, some property ofF4 may appear in our SU~3! Picard–Fuchs ODE as
four-term equation. Furthermore, more detailed study indicates that Picard–Fuchs ODE
rank gauge group can be classified as ak-term equation, butk seems to correspond to 23 ~rank of
the gauge group!.

Finally, note that the Picard–Fuchs ODE in SU~3! gauge theory has a factor (211uz)
2uz

2 in
f polynomial. Therefore, the indicial indices at semiclassical regime are degenerated to21 and 0.
This indicates that there are logarithmic solutions at this regime. Of course, similar obser
also holds for SO~5! and Sp~4! Picard–Fuchs ODEs.

B. Appell’s equations and Burchnall’s equation

As is well known, a hypergeometric function admits a lot of transformations and reduc
ties. For example, a Gaussian2F1 system has 24 solutions and Appell’sF1 has 60 solutions.
However, these solutions can be more systematically constructed, if we consider an equ
ODE. In fact, Srivastava and Saran succeeded in finding 120 solutions to the ODE for Lauric
FD

(3) function.29 Also in this sense, the study of ODE for a hypergeometric partial differen
system is interesting. The method used in these studies followed Burchnall’s work.25 In this paper,
we do not attempt to obtain all solutions to Burchnall’s equation~see below! like Kummer’s 24
solutions, but we can show that the five basic solutions to Burchnall’s equation, especial
extra solution which is not a solution to theF4 system, can be derived by using SU~3! Picard–
Fuchs ODE. Of course, it may also be interesting if this extra solution can be represen
Appell’s F4 , but we do not know whether it is possible or not. Nevertheless, we can establis
fifth solution as a simple formula. The reader should notice that the method presented in this
is to use a fourth-order ODE@SU~3! Picard–Fuchs ODE# satisfied by periods of Riemann surfac
in genus two@SU~3! Seiberg–Witten curve# and therefore our method is quite different from tho
mentioned above.

First, let us recall that the SU~3! Picard–Fuchs system5
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Fu x̃S u x̃2
1

3D2 x̃S u x̃1u ỹ2
1

6D S u x̃1u ỹ2
1

6D GP50,

~3.3!Fu ỹS u ỹ2
1

2D2 ỹS u x̃1u ỹ2
1

6D S u x̃1u ỹ2
1

6D GP50,

where we have introducedx̃54u3/(27LSU(3)
6 ) and ỹ5v2/LSU(3)

6 , and ux5x]/]x and uy

5y]/]y are Euler partial derivatives. In the terminology of Sec. III A,~3.3! consists of two
two-term equations and is nothing but the Appell’s differential system for the typeF4 hypergeo-
metric double series

F4~a,b;g,g8;x,y!5 (
m,n50

`
~a!m1n~b!m1n

~g!m~g8!n

xm

m!

yn

n!
, ~3.4!

wherea5b521/6, g52/3, andg851/2. However, by the scaling transformation

x̃5xz̃, ỹ5yz̃, x5
4u3

27
, y5v2, z̃5

1

LA2

6 , ~3.5!

we see that~3.3! turns to

@ux~ux1g21!2xz̃~ux1uy1a!~ux1uy1b!#F50,
~3.6!

@uy~uy1g821!2yz̃~ux1uy1a!~ux1uy1b!#F50,

whose analytic solution near (x,y)5(0,0) is given by

F~xz̃,yz̃!5 (
m,n50

`
~a!m1n~b!m1n

~g!m~g8!n

~xz̃!m

m!

~yz̃!n

n!
. ~3.7!

At first sight, sinceF(xz̃,yz̃) reduces toF4 for z̃→1, this scale transformation may be trivial, b
~3.6! was used as a starting point in Burchnall’s work on a set of partial differential equatio25

In fact, Burchnall noticed on the homogeneity relation ofF

~ux1uy2u z̃!F50, ~3.8!

where u z̃ is the ordinary differential operatoru z̃ 5 z̃d/dz̃, and finally arrived at the ordinary
differential equation of fifth order~see also Appendix A!

F f 022~x1y!z̃f 1~u z̃1a!~u z̃1b!1
1

2
~x2y!z̃f 2~u z̃1a!~u z̃1b!

1~x2y!2z̃2f 3~u z̃1a!~u z̃1a11!~u z̃1b!~u z̃1b11!GF50, ~3.9!

where

f 05u z̃ ~u z̃1g21!~u z̃1g821!~u z̃1g1g822!S u z̃1
g

2
1

g8

2
22D ,

f 15S u z̃1
g

2
1

g8

2 D S u z̃1
g

2
1

g8

2
2

1

2D S u z̃1
g

2
1

g8

2
21D ,

~3.10!

f 25~g2g8!~g1g822!S u z̃1
g

2
1

g8

2
2

1

2D ,

f 35S u z̃1
g

2
1

g8

2
11D .
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In contrast with the SU~3! Picard–Fuchs ODE, since Burchnall’s equation~3.9! is classified as a
three-term ODE, it reflects a consequence of the nature of two variables hypergeometric fu
in the formF(pz,qz), wherep andq are parameters.25

As a direct calculation shows,~3.9! cannot be expressed in the form@u z̃1K(x,y,z̃)#LF50,
whereK(x,y,z̃) is some function ofx, y, andz̃, andL is some differential operator of fourth orde
Accordingly, suchL does not exist and therefore the relation between our SU~3! Picard–Fuchs
ODE and Burchnall’s equation is nontrivial. However, note that the coefficient of highest pow
the Euler derivative corresponds to the discriminant of the SU~3! curve

D[@122~x1y!z̃1~x2y!2z̃2#5
1

729LSU~3!
12 @4u3227~v1LSU~3!

3 !2#@4u3227~v2LA2

3 !2#.

~3.11!

Therefore, in a sense Burchnall’s equation is reminiscent of the SU~3! Picard–Fuchs ODE, bu
these two are not completely equivalent. Clarifying the relation between these two equations
subject of the rest of the paper.

C. Four solutions at semiclassical regime

It would be instructive to get solutions explicitly aroundLSU(3)50(z̃5`), which is a regular
singular point of the equation. In the work of Burchnall, solutions of~3.9! were not calculated a
any singularities, but since~3.9! is a linear ordinary differential equation, it is easy to solve it
traditional Frobenius’s method under the assumptionF5 z̃ 2n(n50

` Anz̃ 2n for somen and An .
Then the indicial indices are determined as

n5a,b,a11,b11,~g1g812!/2 ~3.12!

or equivalently,

n1521/6, n255/6, n3519/12, ~3.13!

wheren1 andn2 are actually double roots. The solution forn3 is the subject of Sec. III D.
Equation~3.9! produces the recursion relations

~x2y!2r1A12~n i2a!~n i2b!f1A050,
~3.14!

~x2y!2rnAn2~n i1n2a21!~n i1n2b21!snAn211xnAn2250, n.1,

where

rn5~2n i12n2g2g822!~n i1n2a!~n i1n2b!~n i1n2a21!~n i1n2b21!,

sn5~n i1n2g2g8!~2n i12n2g2g8!@x~n i1n2g821!1y~n i1n2g21!#

1~n i1n21!~2n i12n2g2g822!@x~n i1n2g!1y~n i1n2g8!#, ~3.15!

xn5~n i1n22!~n i1n2g21!~n i1n2g821!~n i1n2g2g8!~2n i12n2g2g8!

with A051. Here, repeated indices are assumednot to be summed. If these recursion relations a
used, the solutions corresponding to respective indicial indices will be obtained, but we m
careful, because there are indicial indices which differ by unit among them, i.e.,a anda11, and
b andb11. For example, letn5a. Then the recursion relations produce thenth coefficient as a
linear combination ofA0 and A1 . Thus the solution is given by a linear combination
z̃ 2a(A01¯) and z̃ 2a21(A11¯), but the ‘‘indicial index’’ of the last series can be seen asa
11. Therefore, the last series can be also regarded as a solution corresponding to this in
fact, it is easy to see that explicit construction of the solution supports this observation. Of c
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in this case, since we would like to get a solution corresponding to the indexa, A1 can be set to
zero without loss of generality. For this reason,A1 is chosen as zero for the indicesa andb, while
that for a11, b11, and (g1g822)/2 should be determined from the first equation in~3.14!.

In this way, we get the regular series solutions (i 51,2)

w i5 z̃ 2n i (
n51

`

Ai ,nz̃ 2n, ~3.16!

where the first few coefficients are given by

Ai ,051,

A1,150,

A1,25
5

648~x2y!2 ,

A1,35
35~41x140y!

209 952~x2y!4 , ~3.17!

A2,15
5~5x14y!

48~x2y!2 ,

A2,25
35~157x21460xy1112y2!

15 552~x2y!4 ,

A2,35
385~18 671x31119 352x2y1105 504xy2112 352y3!

26 873 856~x2y!6 .

On the other hand, the degeneracy ofn1 andn2 produce the logarithmic solutions (j 51,2)

w̃ j5w j ln
1

z̃
1 z̃ 2n j (

n51

`

Bj ,nz̃ 2n, ~3.18!

where some ofBj ,n are

B1,150,

B1,252
17

1296~x2y!2 ,

B1,352
~11 761x111 216y!

1 259 712~x2y!4 ,

~3.19!

B2,15
49x1104y

144~x2y!2 ,

B2,25
14 273x2170 940xy128 268y2

46 656~x2y!4 ,

B2,35
41 936 917x31383 568 144x2y1472 854 144xy2179 210 112y3

161 243 136~x2y!6 .
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It is interesting to notice that these series are composed by a series in powers of 1/x2y)
527/(4u3227v2) which detects the discriminant of the semiclassical SU~3! curve. This feature is
useful when we consider the structure of the quantum moduli space of the SU~3! gauge theory.

For this purpose, let us recall the work of Klemmet al.5 In the course of the analysis of th
quantum moduli space of the SU~3! gauge theory, Klemmet al.5 found that the quantum modu
space could be better understood as the complex projective spaceCP2 with singularities which
correspond to the strong coupling regime. Then this space can be covered by the thre
~inhomogeneous! coordinates

P1 :S 4u3

27L6 :
v2

L6 :1D , P2 :S 4u3

27v2 :1:
L6

v2 D , P3 :S 1:
27v2

4u3 :
27L6

4u3 D , ~3.20!

whereL[LSU~3!. For this reason, periods should be obtained at each coordinate patch, hen
periods derived in this way are locally valid. However, our solutions have a~slightly! nice prop-
erty, because the basis of solution space are common both onP2 andP3 . That is, to get periods
on P2 , it is enough to further expandw i by v, while on P3 by largeu.

In fact, we can see that the four periods are expressed by linear combinations of~3.16! and
~3.18!. For example, to match periods on the patchP3 , let us definev i andV j by linear combi-
nations ofw i

ṽ15c1w11c2w2 , ṽ25c3w11c4w2 ,

Ṽ15ṽ1 ln
27

4u3z̃
1(

i 51

2

(
n51

`

ciBi ,nz̃ 2n i2n1c5w11c6w2 , ~3.21!

Ṽ25ṽ2 ln
27

4u3z̃
1(

i 51

2

(
n51

`

ci 12Bi ,nz̃ 2n i2n1c7w11c8w2 ,

where

c152F1S 2
1

6
,
1

6
;
1

2
;
27v2

4u3 D , c252
3

16u3 2F1S 5

6
,
7

6
;
1

2
;
27v2

4u3 D ,

c352F1S 1

3
,
2

3
;
3

2
;
27v2

4u3 D , c45
3

2u3 2F1S 4

3
,
5

3
;
3

2
;
27v2

4u3 D ,

c55c11 (
n51

`
~21/6!n~1/6!n

~1/2!nn! FcS n2
1

6D2cS 2
1

6D1cS n1
1

6D2cS 1

6D G S 27v2

4u3 D n

,

~3.22!

c65c22
3

16u3 (
n50

`
~5/6!n~7/6!n

~1/2!nn! F2c~1!22c~2!1cS n1
5

6D2cS 2
1

6D1cS n1
7

6D2cS 1

6D G
3S 27v2

4u3 D n

,

c75c31 (
n51

`
~1/3!n~2/3!n

~3/2!nn! FcS n1
1

3D2cS 1

3D1cS n1
2

3D2cS 2

3D G S 27v2

4u3 D n

,
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c85c41
3

2u3 (
n50

`
~4/3!n~5/3!n

~3/2!nn! F2c~1!22c~2!1cS n1
4

3D2cS 1

3D1cS n1
5

3D2cS 2

3D G
3S 27v2

4u3 D n

.

Here,c(x)5d ln G(x)/dx is the digamma function and2F1 is the hypergeometric function whos
series representation is given by

2F1~a,b;c;x!5 (
n50

`
~a!n~b!n

~c!n

xn

n!
, ~3.23!

where (* )n5G(* 1n)/G(* ) is the Pochhammer symbol. In order to make a contact with
normalization used by Klemmet al.,5 we rescale as

v152AuLṽ1 , v25
vL

u
ṽ2 ,

~3.24!

V152AuLṼ1 , V25
vL

u
Ṽ2 .

Then the periodsaj andaD j
can be given by

a15
1

2
~v11v2!, a25

1

2
~v12v2!,

aD1
52

i

4
~V113V2!2

i

p
~d1v12d2v2!, ~3.25!

aD2
52

i

4
~V123V2!2

i

p
~d1v11d2v2!,

where d15 i (523 ln 324 ln 2)/4 and d253i (113 ln 3)/4 are constants determined fro
asymptotic expansion of periods.5 The identification of periods by our solutions can be eas
established by expanding~3.25! at u5`. On the other hand, for largev, i.e., on the patchP2 ,w i

are expanded atv5` and then consider similar linear combinations.
In this way, we can check that the series solutions forv5v1 andv2 comprise in fact the four

periods.

D. The fifth solution

We have seen that the four solutions with indicial indicesn1 andn2 of Burchnall’s fifth-order
equation in fact yield the four periods of the SU~3! gauge theory. However, there exists an ex
solution in ~3.9!. Therefore, the appearance can be regarded as characteristic in the or
differential form of the partial differential system.

In this section, we show that it is possible to derive a fourth-order equation satisfied b
fifth solution with aid of the SU~3! Picard–Fuchs ODE and we derive the closed formula for
fifth solution as an application of the SU~3! Picard–Fuchs ODE.

First, let us rewrite~3.9! in the form

F d5

dz5 1cB,4

d4

dz4 1¯1cB,0GF50, ~3.26!
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wherez51/z̃ andcB,i are some functions inx, y, andz. As we have already seen in Sec. III C
since four of the five independent solutions to~3.9! are regarded as the four periods of the SU~3!
gauge theory, we can write the Wronskian for~3.26! as

WB5U a1 a2 aD1
aD2 h

a18 a28 aD1
8 aD2

8 h8

] ] ] ] ]

a1
~4! a2

~4! aD1

~4! aD2

~4!
h~4!

U , ~3.27!

where85d/dz and the fifth solution is denoted byh. Again from basic differential calculation,WB

is generated fromcB,4 and is found to be@cf. ~2.15!#

WB5
1

z85/12@x21~y2z!222x~y1z!#3 ~3.28!

up to the normalization of integration constant, which is irrelevant to the following discussi
Next, recall that the fourth-order derivatives of periods can be reduced to a linear combi

of lower order derivatives by using the SU~3! Picard–Fuchs ODE. Therefore, from~3.27! with the
SU~3! Picard–Fuchs ODE, we see that

WB5WSU~3!~h~4!1c3h-1c2h91c1h81c0h!, ~3.29!

whereci are given by~2.10!. From ~3.28! and ~2.17!, it is immediate to obtain the differentia
equation forh,

h~4!1c3h-1c2h91c1h81c0h5R, ~3.30!

where

R5
1

z37/12@5z29~x2y!#@x21~y2z!222x~y1z!#
. ~3.31!

It is interesting to note thath satisfies the SU~3! Picard–Fuchs ODE with a source term. It is no
easy to get a general solution to~3.30! ~see also Appendix B!

h5(
i 51

2

r iai1(
i 51

2

e iaDi
2a1E

0

Rw1

WSU~3!
dx1a2E Rw2

WSU~3!
dx2aD1

E
0

Rw3

WSU~3!
dx1aD2

E
0

Rw4

WSU~3!
dx,

~3.32!

wherer i ande i are integration constants, the integration symbol is the integration constan
integral, andwi are determinants defined by

w15Ua2 aD1
aD2

a28 aD1
8 aD2

8

a29 aD1
9 aD2

9
U , w25Ua1 aD1

aD2

a18 aD1
8 aD2

8

a19 aD1
9 aD2

9
U ,

w35Ua1 a2 aD2

a18 a28 aD2
8

a19 a29 aD2
9
U , w45Ua1 a2 aD1

a18 a28 aD1
8

a19 a29 aD1
9
U . ~3.33!
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WSU(3) in ~3.32! can be identified with~2.17!.
To summarize, we have succeeded in finding a closed representation of the fifth solut

using the SU~3! Picard–Fuchs ODE. It is interesting to compare~3.32! with the fifth solution of
other three-term differential equation discussed by Burchnall.25 In the case of a product of two
Bessel functions, for instance, the fifth solution is expressed by an integral of a product o
‘‘Wronskians’’ each of which is written by two other independent solutions.25 However, our fifth
solution does not admit such factorization, so~3.32! seems to imply the fact that the Appe
function F4 with parametersa5b521/6, g52/3, andg851/2 @or equivalently, the SU~3! pe-
riods# cannot be factored into a product of two~nontrivial! functions.

Remark: In the semiclassical regime, series representation of this fifth solution correspo
n3519/12 in (3.13), and this can be also seen from the terms not includingr i and e i in (3.32).

IV. SUMMARY

In this paper, we have discussed the Picard–Fuchs equations appearing inN52 supersym-
metric Yang–Mills theories in view of ordinary differential equation and realized Picard–F
equations as a system of ODEs. This construction has given a new relation among periods,
and QCD parameter by using the Wronskian and this is a systematic way to get such no
relation among periods in higher rank gauge group cases.

In the case of SU~3!, we have also found that Burchnall’s ordinary differential equation
Appell’s F4 is a candidate of Picard–Fuchs ODE by identifying the SU~3! QCD mass scale
parameter with the scaling variable used in Burchnall’s observation and confirmed that four
five solutions of Burchnall’s equation in fact coincide with SU~3! periods. As for the fifth solution,
it has been shown that it has a simple and closed form by using the SU~3! Picard–Fuchs ODE. Of
course, even if we consider arbitrary Riemann surface of genus two and try to get a similar
for the fifth solution to Burchnall’s equation, the derivation will be failed because we ca
always have an equation in fourth order like SU~3! Picard–Fuchs ODE. Note that the SU~3!
Seiberg–Witten curve is a specific choice and the appearance ofLSU(3) plays the central role in
the discussion.

Generalization of Burchnall’s construction of ordinary differential equation from a se
partial differential equations to Picard–Fuchs equations in other gauge theories is straightfo
but we do not know whether Burchnall type equations exist for Picard–Fuchs equations in
gauge theories. Studying these cases will open further aspects of Picard–Fuchs equatio
hypergeometric nature of the equations constructed from the homogeneous hypergeometr
tions in multiple variables.

Finally, as another direction, since our equation is ODE in contrast with the usual Pic
Fuchs systems, it may be possible to consider a relation to classicalW-algebras in view of
Picard–Fuchs ODE.30
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APPENDIX A: DERIVATION OF THE BURCHNALL’S EQUATION

In this appendix, we briefly review the derivation of Burchnall’s equation. The reader is
recommended to refer to the original paper.25

First, notice that from~3.6! it is easy to obtain

~u z̃1g1g822!uxuyF5~xz̃uy1yz̃ux!XF, ~A1!

whereX5(u z̃1a)(u z̃1b). We can also obtain
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UF[@u z̃ ~u z̃1g21!2~x1y!z̃X#F5~2ux1g2g8!uyF,
~A2!

U8F[@u z̃ ~u z̃1g821!2~x1y!z̃X#F5~2uy1g82g!uxF

and

ux~u z̃1g21!~u z̃1g821!F5@~u z̃1g821!uxuy1xz̃~u z̃1g8!X#F,
~A3!

uy~u z̃1g821!~u z̃1g21!F5@~u z̃1g21!uxuy1yz̃~u z̃1g!X#F.

Addition of the two equations in~A3! provides

VF[@u z̃ ~u z̃1g21!~u z̃1g821!2xz̃~u z̃1g8!X2yz̃~u z̃1g!X#F5~2u z̃1g1g822!uxuyF,

~A4!

thus

~u z̃1g1g822!VF5@4xyz̃2XX111xz̃XU1yz̃XU812~u z̃1g1g822!uxuy#F, ~A5!

whereX115(u z̃1a11)(u z̃1b11), and~A1! and ~A2! have been used. Moreover, from~A5!
we have

WF[@u z̃ ~u z̃1g1g822!~u z̃1g21!~u z̃1g821!2xz̃ @~u z̃1g1g821!~u z̃1g8!

1u z̃ ~u z̃1g21!#X2yz̃ @~u z̃1g1g821!~u z̃1g!1u z̃ ~u z̃1g821!#X

1~x2y!2z̃2XX11#F52~u z̃1g1g822!uxuyF. ~A6!

Therefore, the expected equation is given by rearrangement of

~2u z̃1g1g822!WF52~u z̃1g1g822!VF, ~A7!

i.e.,

@Y02xz̃Y1X2yz̃Y2X1~x2y!2z̃2~2u z̃1g1g812!XX11#F50, ~A8!

where

Y05u z̃ ~u z̃1g21!~u z̃1g821!~u z̃1g1g822!~2u z̃1g1g824!,

Y15~u z̃1g8!~u z̃1g1g821!~2u z̃1g1g822!1u z̃ ~u z̃1g21!~2u z̃1g1g8!, ~A9!

Y25~u z̃1g!~u z̃1g1g821!~2u z̃1g1g822!1u z̃ ~u z̃1g821!~2u z̃1g1g8!.

Of course~A8! is equivalent to~3.9!.

APPENDIX B: GENERAL SOLUTION TO FOURTH-ORDER ODE

This Appendix reviews a construction of a general solution to the fourth-order linear ord
differential equation

y~4!1P~x!y-1Q~x!y91R~x!y81S~x!y5T~x!, ~B1!

where85d/dx andP, Q, R, S, andT are some functions inx.
First, let T50 and letyi ( i 51,...,4) be the fundamental solutions to

y~4!1P~x!y-1Q~x!y91R~x!y81S~x!y50. ~B2!

Then we assume that the general solution to~B1! is represented in the form
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y5(
i 51

4

Ci~x!yi ~B3!

by using unknown coefficientsCi . Differentiating~B3!, we can obtain

y85(
i 51

4

Ci8yi1(
i 51

4

Ciyi8 , ~B4!

but we further assume that the first term in the right-hand side vanishes. Namely, we have

(
i 51

4

Ci8yi50 ~B5!

and

y85(
i 51

4

Ciyi8 . ~B6!

Repeating differentiation and imposing the vanishing of terms includingCi8 , we get

(
i 51

4

Ci8yi850, (
i 51

4

Ci8yi950 ~B7!

and

y95(
i 51

4

Ciyi9 , y-5(
i 51

4

Ciyi- . ~B8!

As for y(4), we assume

y~4!5(
i 51

4

Ci8yi-1(
i 51

4

Ciyi
~4! . ~B9!

Then from~B1!, ~B9!, and~B8!, we get

(
i 51

4

Ci8yi-5T. ~B10!

In this way, we can arrive at the matrix equation determining allCi

YC5T~0,0,0,T!, ~B11!

where

Y5S y1 ¯ y4

y18 ¯ y48

y19 ¯ y49

y1- ¯ y4-
D , C5S C18

]

C48
D . ~B12!

Consequently,Ci are given by
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C15c12E
0

Tw1

detY
dx, C25c21E

0

Tw2

detY
dx, C35c32E

0

Tw3

detY
dx, C45c41E

0

Tw4

detY
dx,

~B13!

whereci are integration constants, the integration symbol is the integration constant free in
and

w15Uy2 y3 y4

y28 y38 y48

y29 y39 y49
U , w25Uy1 y3 y4

y18 y38 y48

y19 y39 y49
U , w35Uy1 y2 y4

y18 y28 y48

y19 y29 y49
U , w15Uy1 y2 y3

y18 y28 y38

y19 y29 y39
U .

~B14!
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We prove a conjecture of Zuber on the signature of intersection forms associated
with affine algebras of type A, which is based on connections betweenN52
integrable models in two dimensions and certain class of graphs. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!03006-6#

I. INTRODUCTION

Let N>2 be a positive integer andl85(l18 ,...,lN218 ), 0,l i8,1, i 51,2,...,N21 with
(0, i ,N l i8,1. Define

pi~l8!ªl i81¯1lN218 2
1

N (
0, j ,N

j l j8 , i 51,2,...,N21

andpN(l8)ª2(1/N)(0, j ,N j l j8 . Define

qi~l8!ª2Npi~l8!1
N11

2
2 i

and

gi~l8!ª~21! i )
r 51

N

2 cosS pS pr~l8!2
i

ND D , i 51,2,...,N.

If S is a finite sequence of real numbers, we defineb1(S) @respectivelyb2(S), b0(S)# to be
the number of positive~respectively, negative, zero! elements inS. Let a(S)ªb1(S)2b2(S) and
denote byQl8 , Gl8 the following two sets:

Ql8ª$cos~pq1~l8!!,...,cos~pqN~l8!!%,

Gl8ª$g1~l8!,...,gN~l8!%.

Notice that since cos(pqi(l8)).0 iff qi(l8)P]2p2 1
2, 2p1 1

2 @for some integerp, b1(Ql8) is much
easier to calculate thanb1(Gl8) and the same is true forb2’s. The main theorem in this paper i
the following:

Theorem 1: Let l85(l18 ,...,lN218 ) be as above. Then:

b1~Ql8!5b1~Gl8!,b2~Ql8!5b2~Gl8!,b0~Ql8!5b0~Gl8!.

This theorem implies Zuber’s conjecture about the signature of intersection forms asso
with affine algebras of type A~cf. Ref. 1! which is the motivation of this paper. Note tha
b0(Ql8)5b0(Gl8) is already noticed in a slightly different form in Ref. 1.

Zuber’s conjecture appeared as Conjecture 2.5 of Ref. 1. It is based on the mysteriou
nections between integrable models with two supersymmetries (N52) in two dimensions~cf. Ref.

a!Electronic mail: xufeng@math.ou.edu
32270022-2488/99/40(6)/3227/8/$15.00 © 1999 American Institute of Physics
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2! and the class of graphs constructed in Ref. 1~see also Ref. 3!. In the special case when th
graphs are regular~cf. Sec. II C!, the conjecture can be proved~cf. p. 14 of Ref. 4! by combining
the results of Ref. 4 and Ref. 5. In fact, in Ref. 4, a connection between regular graph
singularity theory is established, and combined with Ref. 5 which is based on mixed H
structures, gives a rather indirect proof of Zuber’s conjecture in the special case when the
are regular. However, for other graphs in Ref. 1~see also Ref. 6!, the connection with singularity
theory, if any, is not clear at all. We also failed to prove Zuber’s conjecture by using the co
tion with Ref. 2 as mentioned in Ref. 1.

We came to the realization that a statement as in theorem 1 may be true by first obs
lemma 1~cf. Sec. II A! which was already noticed in a slightly different form in Ref. 1. We th
checked that theorem 1 is true explicitly in the case whenN53, 4 and some other cases whic
motivated us to give a general proof.

The idea of the proof of theorem 1 is as follows. Whenl8 changes,b1(Gl8) @respectively,
b2(Gl8)# may change only if some ofgi(l8)’s become 0 or change its sign, i.e.,gi(l8) intersect
the hyperplanes on whichgi(l8)50. By lemma 1 of Sec. II A, these hyperplanes are the sam
the hyperplanes on which someqj (l8)’s lie in Z11

2. Consider the domainDª$l8
5(l18 ,...,lN218 )u0,l i8,1,(0, i ,N l i8,1%. D is separated by the above hyperplanes into disjo
open regions. In each open region, the set of numbers compared in theorem 1 should b
pletely determined. In Sec. II A we determine these numbers in a given open region and fin
they miraculously satisfy theorem 1. In Sec. II B, we show that theorem 1 also holds for al8
PD which is on the boundary of the open region: this follows from Sec. II A and lemma 1. In
II C, after introducing Zuber’s conjecture, we show how theorem 1 implies that the conjectu
true. In Sec. III, we present our conclusions and questions.

II. THE PROOF

A. The interior case

We shall use the notations of Sec. I. Recall

D5H l85~l18 ,...,lN218 !ul i8.0, (
0, i ,N

l i8,1J .

For l8PD, recall

pi~l8!5l i81¯1lN218 2
1

N (
0, j ,N

j l j8

5
1

N
@~2l1822l282¯2~ i 21!l i 218 !1~N2 i !l i81¯1lN218 #

for i 51,2,...,N21. We have:

pi~l8!.
1

N
@~2l1822l282¯2~ i 21!l i 218 !#.2

1

N
~ i 21! (

0, j ,N
l j8.2

1

N
~ i 21!

and

pi~l8!,
1

N
@~N2 i !l i81¯1lN218 #,

1

N
~N2 i ! (

0, j ,N
l j8,

1

N
~N2 i !.

Similarly one can show (1/N)(12N),pN(l8),0. So we have:

1

N
~12 i !,pi~l8!,

1

N
~N2 i !,
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i 51,2,...,N. If for some i, qi(l8)52Npi(l8)1 1
2(N11)2 i 5 j 1 1

2 with j PZ, then

i 2 1
2N, i 1 j , i 1 1

2N21.

Define 0,r l8( i ),N11 to be the unique integer such that (1/N)(r l8( i )1 j 1 i )PZ. In fact, if
j 1 i ,0, r l8( i )52( j 1 i ), if 0< j 1 i ,N, r l8( i )5N2( j 1 i ), and if N<( j 1 i ), 3

2N, r l8( i )
52N2( j 1 i ). It follows that

gr l8
~ i !~l8!50.

We have the following lemma which, in a slightly different form also appeared on p. 1
Ref. 1.

Lemma 1: For anyl8 P D, the map i→r l8( i ) defined above from$ i uqi(l8)PZ1 1
2% to

$r ugr(l8)50% is a one to one and onto map. Moreover qi(l8)PZ1 1
2 iff gr l8

( i )(l8)50 and

r l8( i ) depends only on i and qi(l8).
Proof: By using definitions we have

gr~l8!5~21!r)
i 51

N

2 sinS p

N S qi~l8!1 i 1r 2
1

2D D .

If gr(l8)50, then there existsiª i l8(r ) such that

1

N S qi~l8!1 i 1r 2
1

2DPZ.

Let j PZ with qi(l8)1 i 1r 2 1
25 j 1 i 1r , thenqi(l8)52Npi(l8)1 1

2(N11)2 i PZ1 1
2. Us-

ing the fact that 0,upa2pbu,1 for any 1<aÞb<N, it is easy to see that such aniª i l8(r ) is
also unique. It is then easy to check that the mapi→r l8( i ) and r→ i l8(r ) are inverse to each
other. The rest of the lemma follows from the definitions ofr l8( i ).

Let b iª
1
2N2 i 1g i with g iPZ, i 51,2,...,N. Let Dgª$l8PDub i,Npi(l8),b i11,i

51,2,...,N%. Dg will be called open regions. It is clear that ifgÞg8, thenDgùDg850. Notice that
qi(l8)PZ1 1

2 iff l8 lies on the boundary of someDg , and by lemma 1,gr l8( i )(l8)50 iff l8 lies
on the boundary of someDg . SupposeDgÞB andl8PDg . Then we have:

~1! If i , j , thenb i>b j which follows from the fact thati , j , thenpi(l8).pj (l8) andb i

2b jPZ;
~2! b12bN<N which follows fromp1(l8)2pN(l8),1.
By ~1! we can assume that

b15¯5b i 1
.b i 1115¯5b i 2

.¯.b i t21115...5b i t
,

where 1< i 1, i 2,¯, i t5N. We determine the sign ofgr(l8) for a fixed 1<r<N. Since 0
,p1(l8)2pN(l8),1, there is at most onek1 1

2 with kPZ such that

pN~l8!2
r

N
,k1

1

2
,p1~l8!2

r

N
.

Also notice that if

b i2r

N
,k1

1

2
,

b i2r 11

N
,

then we have

g i2 i 2Nk,r ,g i2 i 2Nk11,
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which is impossible sincer, g i are integers. So if there is akPZ such that

pN~l8!2
r

N
,k1

1

2
,p1~l8!2

r

N
,

then there is a unique integer, denoted by 1< f (r )<t21, such that:

b i f ~r !11
112r

N
<k1

1

2
<

b i f ~r !
2r

N
,

and the sign ofgr(l8) is:

~21!r~21!kk8~21!~k21!~N2k8!5~21!r 1Nk2 i f ~r !,

wherek8ª$b j :b j,b f (r )%
]5N2 i f (r ) . If there is nok1PZ such that

pN~l8!2
r

N
,k11

1

2
,p1~l8!2

r

N
,

then there is akPZ such that:

k2
1

2
<

bN2r

N
,

b1112r

N
<k1

1

2
,

and the sign ofgr(l8) is:

~21!r 1kN.

We definef (r )5t in this case. Letsªr 1kN, then the signs of the set$gr(l8)% with 1< f (r )
<t21 are given by

~21!s2 i f ~r !

with g i f (r )11
112 i f (r )11<s<g i f (r )

2 i f (r ) , and the sign of the set$gr(l8)% with f (r )5t is given
by

~21!s2 i t

with g i 1
112 i 12N<s<g i t

2 i t . Now we determine the sign of cos(pqi(l8)). Recallb i5(N/2)
2 i 1g i , qi(l8)52Npi(l8)1(N11)/22 i , andb i,Npi(l8),b i11, we have

2g i2
1
2,qi~l8!,2g i1

1
2.

So cos(pqi(l8)).0 @respectively, cos(pqi(l8)),0# iff g iP2Z ~respectively,g iP2Z11). Re-
call from the introduction we have that for a finite sequenceS of real numbersa(S)5b1(S)
2b2(S). To save some writing for any integerx we define$x%ª@12(21)x#/2. Then thea of the
following sequence$cos(pqi(l8)),iu2111<i<iu% is

~21!g i u$ i u2 i u21%

and thea of the following sequence$(21)s2 i u,g i u11
112 i u11<s<g i u

2 i u% is

~21!g i u$g i u
2g i u11

1 i u112 i u%,
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where we definei u2150 if u51, andg i u11
2 i u115g i 1

2 i 12N if u5t. It follows that a(Gl8)
2a(Ql8) is given by

(
u51

t

~21!g i u~$g i u
2g i u11

1 i u112 i u%2$ i u2 i u21%!

5~21!g i 1~$g i 1
2g i 2

1 i 22 i 1%2$ i 1%!1~21!g i 2~$g i 2
2g i 3

1 i 32 i 2%2$ i 22 i 1%!

1...1~21!g i t21~$g i t21
2g i t

1 i t2 i t21%2$ i t212 i t22%!

1~21!g i t~$g i t
2g i t

1 i 1%2$ i t2 i t21%!.

By using

$g i u
2g i u11

1 i u112 i u%5$g i u
2g i u11

%1~21!g i u
2g i u11$ i u112 i u%,

which follows easily from the definition of$.%, we see that6$ i u112 i u% terms canceled each othe
in the above summation and the remaining terms are:

~21!g i 1$g i 1
2g i 2

%1~21!g i 2$g i 2
2g i 3

%1¯1~21!g i t$g i t
2g i 1

%

which is also 0 since$x%5@12(21)x#/2. So we have shown that

a~Gl8!2a~Ql8!50,

i.e.,

b1~Gl8!2b2~Gl8!5b1~Ql8!2b2~Ql8!.

Since

b1~Gl8!1b2~Gl8!5N5b1~Ql8!1b2~Ql8!,

it follows that theorem 1 is true forl8PDg .

B. The boundary case

Assumel8PD and l8 is on the boundary of someDg . Assume$qi(l8)uqi(l8)PZ1 1
2%

5$qk1
(l8),...,qks

(l8),s>1%. Let ki→r l8(ki) be as in lemma 1. We can choose a small nei
borhoodW of l8 such that for anymPW and lÞki , i 51,...,s @respectively,mÞr (ki), i 51,...,s#,
cos(pql(m)! @respectivelygm(m)# has the same sign as cos(pql(l8)) @respectivelygm(l8)# since
cos(pql(l8)) @respectivelygm(l8)# is not zero. Letm1PDgùW. We compareb1(Gl8) @respec-
tively b1(Ql8)# with b1(Gm1

) @respectively,b1(Qm1
)#. Sinceb1(Gm1

)5b1(Qm1
) by Sec. II A,

to proveb1(Gl8)5b1(Ql8) we just have to show that if cos(pqki
(m1)).0 for someki , 1< i

<s, thengr l8(ki )
(m1).0 and vice versa. Let us consider a small line segment with end pointsm1 ,

m2 which passes fromDg to its neighborDg8 , intersects the hyperplaneqki
(m)5qki

(l8) at m0 ,
and does not intersect any other hyperplanes. Then we have cos(pqki

(m0))50, so by lemma 1,
gr m0

(ki )
(m0)50. Again by lemma 1,r m0

(ki) depends only onki and qki
(m0)5qki

(l8), so

r m0
(ki)5r l8(ki). As m goes fromm1 to m2 on the above line segment, cos(pqki

(m)), gr l8(ki )
(m)

change their signs while the signs of all other cos(pqi(m)), gj (m)’s do not change. By Sec. II A
b1(Qm l

)5b1(Qm l
), l 51, 2, it follows that if cos(pqki

(m1)).0 for someki , 1< i<s, then
gr l8(ki )

(m1).0 and vice versa. So we have proved thatb1(Gl8)5b1(Ql8), and sinceb0(Gl8)
5b0(Ql8) by lemma 1, and bothGl8 and Ql8 haveN elements, theorem 1 is proved forl8
PD which lies on the boundary of someDg . By Sec.II A and II B theorem 1 is proved.
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C. Zuber’s conjecture

To describe Zuber’s conjecture, we have to introduce some notations from Ref. 1 to whi
reader is referred for more details.

Let L1 ,...,LN21 be the fundamental weights of SL(N). Let kPN. Recall that the set of
integrable weights of the affine algebra SL(N) at level k is the following subset of the weigh
lattice of SL(N):

P11
~h! 5$l5l1L11¯1lN21LN21ul iPN,l11¯1lN21,h%,

whereh5k1N. This set admits aZN automorphism generated by

s:l5~l1 ,l2 ,...,lN21!→s~l!5S h2 (
j 51

N21

l j ,l1 ,...,lN22D .

We then introduce the weightsei of the standardN-dimensional representation of SL(N)

e15L1 , ei5L i2L i 21 , i 52,...,N21, eN52lN21

endowed with the scalar product (ei ,ej )5d i j 21/N. We shall be concerned with type II class
graphs introduced in Sec. 1 of Ref 1. These graphs generalize the classicalA, D, E Dynkin
diagrams which may be regarded as related to the SL~2! algebra. The axioms on these graphs
given in Sec. 1.2 of Ref. 1 as follows.

~1! A set n of unu5n vertices is given. These vertices are denoted by Latin lettersa, b,... .
There exists an involutiona→a and the setn admits aZn grading denoted byt(a) such that
t(ā)52t(a) modN.

~2! A set of N21 commutingn3n matricesGp , p51,2,...,N21 is given. Their matrix
elements are assumed to be non-negative integers, so they may be regarded as adjacency
of N21 graphsgp . g1 is also assumed to be connected.

~3! The edges of the graphsgp are compatible with the gradingt in the sense that (Gp)ab

50 if t(b)Þt(a)1p modN.
~4! The matrices are transposed of one anotherGp

t 5GN2p and (Gp)ab5(Gp) b̄ā .
~5! As a consequence of axions~2! and~4!, the matricesGp are commuting normal matrice

and may thus be simultaneously diagonalized in a common orthonormal basis. This basis, d
by c (l,i ), is assumed to be labeled by the weightsl of SL(N), that are restricted toP11

(h) , for
some integerh.N, in a way that the eigenvaluesgp

(l) have the formgp
(l)5xp(M (l)), wherexp

is the ordinary character for thepth fundamental representation of the group SU(N), andM (l)
denotes the diagonal matrixM (l)5diag(ej(l))j51,...,N . Heree j (l)ªexp(2(2pi/h)(ej ,l), andi in
(l,i ) is an index integer, 1< i<ml with ml being the multiplicity of eigenvaluegp

(l) . The set of
(l,i )’s will be denoted by Exp.

There exists a special class of solutions known for allN andh.N, namely the fusion graphs
of the affine algebra SL(N) at levelk5h2N. The vertices are the integrable weights describ
above, i.e.,n5P11

(h) . The matricesGp are the Verlinde matrices, which describe the fusion by
pth fundamental representation. The fusion rules are given on p. 288 of Ref. 7. Their diag
ization is known, thanks to the Verlinde formula~cf. p. 288 of Ref. 7!, and the eigenvalues are th
gp

(l) , wherel takes all the values in5P11
(h) . We will call these graphsregular graphsin this

paper. In the case ofN52, these regular graphs reduce to theAh21 Dynkin diagrams.
More solutions are known~cf. Ref. 1!. In Ref. 6 ~in particular Theorem 3.10 and~5! of

Theorem 3.8!, infinite series of such graphs are constructed from the maximal conformal in
sions of the form SU(N),G with G being a simple and simply connected compact Lie grou

Given graphs of the previous type, letV be a complex vector space with a basisaa labeled by
the vertices of the setn. A bilinear formg is defined by:

gab5^aa ,ab&52dab1Gab
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in terms of the matrixGab5(p51
N21(Gp)ab . g will be called the intersection form. This is th

intersection form in the title of this paper.
The eigenvalue of the matrix (gab) with eigenvectorcp

(l,i ) is ~cf. ~34! of Ref. 1!:

g~l!5)
i 51

N S 11expS 2
2p i

h
~ei ,l! D D .

For (l,i )PExp define real numbers which depend only onl ~cf. ~46! of Ref. 1! by:

ql
~R!

ª

1

h (
j 51

N21

j ~l j21!1
~N2h!~N21!

2h
.

We can now state Zuber’s conjecture on the signature ofg ~cf. Conjecture 2.5 of Ref. 1!:
Zuber’s Conjecture. The signature of the bilinear form g for class II graphs is~x1,y2,z0!

where x is the number of ql
(R) which fall in an interval#2p2 1

2, 2p1 1
2@ for some pPZ ~p may

depend on ql
(R) ,! y is the number of those in an interval#2p811

2, 2p813
2@ for some p8PZ ~p8 may

depend onql
(R) , and t5n2r2s is the number of those ql

(R) which are half-integers.
We now prove this conjecture.
Let us first notice a simple consequence of the axioms on the graphs. It follows from P

sition 1.2 of Ref. 1 that Exp is invariant under the action ofs. In fact, if (a ca
(l,i )a is an

eigenvector of Gp with eigenvalue gp
(l) , then Proposition 1.2 of Ref. 1 implies tha

(a ca
(l,i ) exp(2pit(a)/N)a is an eigenvector of Gp with eigenvalue gp

(s(l)) . Since a
→exp(2pit(a)/N)a is an invertible map, it follows that the multiplicity of eigenvaluegp

(s(l)) is the
same as that of eigenvaluegp

(l) . We can therefore defines(l,i )5(s(l),i ). It follows that Exp
can be written as a disjoint union of the orbits under the action ofs. To prove Zuber’s conjecture
we just have to show it is true on each orbit.

Let (l,i )P Exp and letd be the smallest positive integer such thatsd(l)5l. Thend/N and
let N5dd1 . Let Gl8ª$g(s i (m)),i 51,2,...,d%, Ql8ª$cos(pqsi(m)

(R) ),i51,2,...,d%, we need to show

b1~Gl8 !5b1~Ql8 !,b0~Gl8 !5b0~Ql8 !,b2~Gl8 !5b2~Ql8 !.

Note that b0(Gl8)5b0(Ql8) was already noticed on p. 17 of Ref. 1. Letl8
5(l1 /h,...,lN21 /h), thenpi(l8)5(ei ,l)/h, i 51,2,...,N. To use theorem 1, we make use of t
following identities which follow from the definitions:

qs2 j ~l!
~R!

5qj~l8!

and

g~s j ~l!!5)
l 51

N S 11expS 1
2p i j

N
e l~l! D D

5)
l 51

N

2 cosS pS pl~l8!2
j

ND D3expS p i j 2(
l 51

N
1

h
~l,el !D

5~21! j)
l 51

N

2 cosS pS pl~l8!2
j

ND D
5gj~l8!.

Now it is clear that the size ofGl8 ~respectively,Ql8! is d1 times the size ofGl8 ~respectively,
Ql8! and we have:
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b1~Gl8!5d1b1~Gl8 !, b0~Gl8!5d1b0~Gl8 !, b2~Gl8!5d1b2~Gl8 !

and

b1~Ql8!5d1b1~Ql8 !, b0~Ql8!5d1b0~Ql8 !, b2~Ql8!5d1b2~Ql8 !.

By theorem 1, we have proved:

b1~Gl8 !5b1~Ql8 !, b0~Gl8 !5b0~Ql8 !, b2~Gl8 !5b2~Ql8 !.

Let us summarize the result in the following:
Corollary 1: Zuber’s Conjecture as stated above is true.

III. CONCLUSIONS AND QUESTIONS

In this paper we proved Zuber’s conjecture on the signature of certain intersection form
using theorem 1.

Our results imply that the infinite series of graphs which are constructed in Ref. 6 by
subfactors associated with conformal inclusions satisfy Zuber’s conjecture. This lends f
support to the idea that these graphs may be associated with the integrable models in Ref.
is the basis of Zuber’s conjecture. Such a relation is not very clear and should be very inter
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Given a sequence of numbers$an%, it is always possible to find a set of Feynman
rules that reproduce that sequence. For the special case of the partitions of the
integers, the appropriate Feynman rules give rise to graphs that represent the par-
titions in a clear pictorial fashion. These Feynman rules can be used to generate the
Bell numbersB(n) and the Stirling numbersS(n,k) that are associated with the
partitions of the integers. ©1999 American Institute of Physics.
@S0022-2488~99!03207-7#

I. INTRODUCTION

Thepartition of an integern is the set of all distinct ways to representn as a sum of positive
integers smaller than or equal ton. The number of elements in the partition ofn is designated
p(n). For example, since 5 can be represented as 111111111, 1111112, 11113, 11212,
114, 213, or simply 5, we havep(5)57. Definingp(0)51, we obtain a well-known formula for
the generating function of the numbersp(n).1

(
n50

`

p~n!xn5)
k51

`
1

12xk . ~1!

There is a simple graphical way to represent the partitions because there is a one
correspondence between thenth partition and the set of transitive nondirectedn-vertex graphs. A
graph is said to betransitive if for every path connecting two vertices there is an edge joining
two vertices. In Fig. 1 we display several transitive graphs and several nontransitive graph

In Fig. 2 we display the transitive graphs having from one through five vertices; note tha
number of suchn-vertex graphs equals the number of partitionsp(n): p(1)51, p(2)52, p(3)
53, p(4)55, p(5)57.

In the study of quantum field theory graphs are used to represent terms in a diagram
perturbation expansion. Here, one associates with each graph a numerical amplitude. This
tude is the product of the symmetry number, the vertex numbers, and a Feynman integral
graph.2 In this paper we will work in zero-dimensional space only so that Feynman inte
become trivial and are merely the product of the line amplitudes.

To illustrate the procedure of assigning amplitudes to graphs, let us consider the graphs
2. We associate symmetry numbers with each of the graphs shown in Fig. 2, take the
amplitudes and line amplitudes to be unity, and then sum over all graphs havingn vertices. We
obtain the resultB(n)/n!, whereB(n) is thenth Bell number.3 The Bell numbers B(0), B(1),
B(2), B(3),... are asequence of positive integers that begins 1, 1, 2, 5, 15, 52, 203, 877,...
Bell numberB(n) is the number oflabeledpartitions of the positive integern, which can be seen
by labeling all the vertices in Fig. 2 and counting the number of transitive nondirected gr
There is a simple generating functionG(x) for the Bell numbers:
32390022-2488/99/40(7)/3239/7/$15.00 © 1999 American Institute of Physics
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G~x!5exp~ex21!5 (
n50

`
B~n!

n!
xn. ~2!

From this representation one can derive a representation forB(n) in terms of a sum:

B~n!5
1

e (
k50

`
kn

k!
. ~3!

In quantum field theory there is a simple and general formal construction for the set
graphs in terms of the exponential of a derivative operator.4 For example,

expS a

2!

d2

dx2D expS g

4!
x4D U

x50

~4!

is the generating function for the set of all four-vertex vacuum diagrams, connected and d
nected, in which the line amplitude isa and the vertex amplitude isg. If we expand this expression
as a series in powers ofg, the coefficient ofgn is the sum over all four-vertex vacuum grap
containingn vertices with each graph weighted by its symmetry number.

We can generalize Eq.~4! to includen-point vertices and we can even extend these idea
include generalized lines havingm legs.5 The formula

expS a (
m51

`
Lm

m!

dm

dxmD expS g(
n51

`
Vn

n!
xnDU

x50

~5!

FIG. 1. Examples of~a! four transitive graphs and~b! four nontransitive graphs, each having four vertices.

FIG. 2. Transitive nondirected graphs having fromn51 ton55 vertices. Note that for each value ofn, the number of such
graphs isp(n), the number of elements in the partition of the integern.
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represents the set of all vacuum diagrams, connected and disconnected, constructed fromn-point
vertices whose amplitudes areVn and generalized lines havingm legs whose amplitudes areLm .
If we expand this expression as a formal power series in powers ofa, then the coefficient ofan is
the sum of the symmetry numbers of all graphs havingn lines, and if we expand this expressio
as a series in powers ofg, then the coefficient ofgn is the sum of the symmetry numbers of a
graphs havingn vertices. If we first take the natural logarithm of the expression in~5! and then
expand in formal power series ina or g, then the coefficients represent the sum of the symm
numbers of just theconnectedgraphs.4 Note that, in general, these formal power series
divergent series because the number of graphs grows like a factorial.

II. PARTITIONS

Given the general graph construction procedure in Eq.~5! one may ask whether it is possib
to find a quantum field theoretic set of Feynman rules for which the graphs in its perturb
expansion are the partition graphs in Fig. 2. Let us consider a field theory for which then-vertex
amplitudes and the coupling constantg are all unity. Note that this gives the potential

ex215 (
n51

`
Vn

n!
xn, ~6!

which implies thatVn51 for all n. Next, let us impose the requirement that there be only one k
of line, a line having justone end. We do so by takingLm50(m.1). ChoosingaL15z, we
construct from Eq.~5! the n-line vacuum graphs in this theory; these graphs are shown, for
number of lines ranging from one through five, in Fig. 3. Observe that the graphs in F
correspond, graph by graph, to the partition graphs in Fig. 2. From Eq.~5! we see that the
generating function for these graphs is

G~z!5expS z
d

dxD exp~ex21!U
x50

. ~7!

However, exp (zd/dx) is just the translation operator. Thus,~7! reduces immediately to

G~z!5exp~ez21!. ~8!

This argument reproduces the generating functionG(x) in ~2! for the Bell numbersB(n).

FIG. 3. The graphs in a field theory whosen-point vertex amplitudes are all unity and whose line amplitudes all van
except for lines having just one end. If the amplitude of such lines isz, then the coefficient ofzn gives alln-line graphs
contributing to the partition of the integern. These graphs correspond exactly to the partition graphs shown in Fig. 2.
correspondence is seen by exchanging lines and vertices.
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An alternative way to derive Eq.~8! is to argue that in the field theory described by~7! there
is only one connected graph havingn lines. This graph consists of then-point vertex to whichn
one-ended lines are attached. The symmetry number of this graph is just 1/n!. Thus, the gener-
ating function C(z) of the connected graphs is justC(z)5(n51

` zn/n! 5ez21. However, the
generating functionG(z) for the set of all connected and disconnected graphs is just the e
nential of the generating functionC(z) for the connected graphs. Thus, we have reproduced
result in ~8!.

Apparently, one can always translate the general problem of finding thenth term in a sequence
of numbers to the problem of constructing a set of Feynman rules that produces this sequen
example, let us ask whether there is a field theory~a set of Feynman rules! that reproduces directly
the amplitudes inC(z). This means that we want to find a quantum field theory whose gra
correspond to the connected graphs in Fig. 2. Let us return to Eq.~5! and consider a field theory
whose lines have two ends~Lm50 for mÞ2! and which may have all even vertices but no o
vertices. ChoosingL252 andg51 we find that the expansion of Eq.~5! as a series in powers o
a has the form

11aV21 1
2a

2~V413V2
2!1 1

6a
3~15V2

2115V2V41V6!

1 1
24a

4~105V2
41210V2

2V4135V4
2128V2V61V8!1¯ . ~9!

The graphs that give rise to this sequence of coefficients are shown in Fig. 4.
If we demand that the coefficient ofan agree with the coefficient ofzn in C(z), then we obtain

a sequence of algebraic equations for the vertex amplitudesV2 : V251. V413V2
251, 15V2

3

115V2V41V651, and so on. The solution to this system of equations isV251, V4522, V6

516, V852272, and so on. These are the tangent numberstn :

tanhx5 (
n51

`
tn

~2n21!!
x2n21. ~10!

To understand why the tangent numbers have appeared, note that upon integrating~10! with
respect tox we get

ln ~coshx!5 (
n51

`
tn

~2n!!
x2n. ~11!

Thus, from Eq.~5! we have

expS a
d2

dx2D exp@ ln ~coshx!#U
x50

5 (
n50

`
an

n!

d2n

dx2n coshxU
x50

5 (
n50

`
an

n!
5ea, ~12!

which is precisely the generating function that we tried to reproduce.

FIG. 4. The graphs in a theory whose Feynman rules allow for any number of even vertices but lines having only tw
Summing the amplitudes of these graphs gives the generating function in~9!.
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III. BELL NUMBERS

We can also examine alternative theories to the theory described in~7!. Suppose, for example
we construct a field theory with the same vertices but with a two-ended line instead of a one-
line,

G~z!5expS z

2!

d2

dx2D exp~ex21!U
x50

, ~13!

or even a generalized line havingM ends,

G~z!5expS z

M !

dM

dxM D exp~ex21!U
x50

. ~14!

It is easy to show that the coefficient ofzn in the power series expansion of~14! is proportional to
the nMth Bell number:

G~z!5 (
n50

`
1

n!
zn~M ! !2nB~nM!. ~15!

This line of thinking suggests that one can even construct a field theory whose lines hav
number of ends:

G~z!5exp~ezd/dx21! exp~ex21!ux50 ~16!

In this case we obtain the beautiful result that the coefficient ofzn is thesquareof the nth Bell
number:

G~z!5 (
n50

`
1

n!
zn@B~n!#2. ~17!

The graphs contributing to the generating function in~17! are shown in Fig. 5. The numbers o
these graphs are 1, 1, 4, 10, 33,..., which apparently is an unknown sequence. However, if w
the vertices for these graphs, then the number of corresponding graphs are given by the sq
the Bell numbers.

FIG. 5. The graphs in a theory whose Feynman rules allow forn-point vertices (n51,2,3,...) andm-legged lines (m
51,2,3,...). If the vertex amplitudes are all unity and them-legged line amplitude iszm, then the generating functionG(z)
for the graphs, as given in~17!, has a Taylor expansion for which the coefficient ofzn is @B(n)#2/n!. That is, the number
of labeled graphs of ordern is the square of thenth Bell number.
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IV. STIRLING NUMBERS

The labeled partitions of the integersn can be grouped into classes described by the Stir
numbersS(n,k).6 Let then be the number of objects andk be the number of groups. For exampl
consider the casen53. Given three numbers,x, y, andz, we can group these objectsoneway as
a sum of one group of three numbers (x1y1z), threeways as a sum of two groups of numbe
(x1y)1(z), (x1z)1(y), and (y1z)1(x), andoneway as a sum of three numbers (x)1(y)
1(z). Thus, we say thatS(3,1)51, S(3,2)53, and S(3,3)51. The Stirling numbers are al
integers:S(1,1)51, S(2,1)5S(2,2)51, S(4,1)51, S(4,2)57, S(4,3)56, S(4,4)51, S(5,1)51,
S(5,2)515, S(5,3)525, S(5,4)510, S(5,5)51, and so on. There is an elementary representa
for S(n,k) as a sum:

S~n,k![(
j 51

k
~21!k2 j j n

j ! ~k2 j !!
. ~18!

Recall that the Bell numberB(n) represents the total number of labeled partitions of
positive integern. Hence, summing with respect tok over the Stirling numbersS(n,k) gives
B(n):

B~n!5 (
k51

n

S~n,k!. ~19!

The Stirling numbers emerge nicely in terms of Feynman rules. Let us generalize E~7!
slightly so that each vertex has amplitudev instead of 1:

G~z,v !5expS z
d

dxD exp@v~ex21!#U
x50

. ~20!

If we now expand the generatingG(z,v) as a series in powers ofz andv, then the coefficient of
zn/n! and vk is precisely the Stirling numberS(n,k):

G~z,v !5 (
n50

`
zn

n! S (
k51

n

S~n,k!vkD . ~21!

If we setv51 in this equation and compare with Eq.~2!, then we recover Eq.~19!.

V. CONCLUSION

In this paper we have illustrated how one can impose purely combinatorial or topolo
constraints upon the dynamics of a quantum field theory. In particular, we have demons
examples of field theories that give rise to the various partitions of integers. If we introduce fu
structures in the underlying dynamics, such as Fermions~which give rise to directed graphs!, then
the method we have sketched here would shed insights to some very difficult problems in
binatorics, such as determining the number of partially ordered sets~posets!. We hope to study
these applications elsewhere.
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Connections and metrics respecting purification
of quantum states
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Standard purification interlaces Hermitian and Riemannian metrics on the space of
density operators with metrics and connections on the purifying Hilbert–Schmidt
space. We discuss connections and metrics which are well adopted to purification,
and present a selected set of relations between them. A connection, as well as a
metric on state space, can be obtained from a metric on the purification space. We
include a condition, with which this correspondence becomes one to one. Our
methods are borrowed from elementary* -representation and fiber space theory. We
lift, as an example, solutions of a von Neumann equation, write down holonomy
invariants for cyclic ones, and ‘‘add noise’’ to a curve of pure states. ©1999
American Institute of Physics.@S0022-2488~99!02107-6#

I. INTRODUCTION

In Ref. 1, see also Ref. 2, the monotone Hermitian and Riemannian metrics in the~finite
dimensional! spaces of all density operators are classified. Based on the theory of operator m3

they are indexed by a real function,f, operator monotone4 on (0,̀ ). These metrics play an
important role in domains like quantum information geometry, quantum versions of stati
estimation, and decision rules.5–7

D. Petz communicated his main results to us prior to publication, and about that tim
started to ask for the effect of a purifying lift to these metrics. There are clear reasons for this
of the present authors~A.U.! had defined 1986 in Ref. 8 an extension of the geometric phas9,10

see also Refs. 11 and 12, to curves of density operators by the help of a ‘‘parallelity condi
The condition singles out, up to a global gauge~or a global partial isometry!, a distinguished
‘‘parallel lift’’ within all purifying lifts of a curve of density operators. It turns out13 that a
connection form~a gauge potential!, here calledageo, is governing the transport of the purifyin
vectors, such that the parallelity condition results from the request for horizontality. In 199
Rudolph and one of the authors~J.D.! considered a large class of gauge potentials, includingageo,
which rests on a purification scheme and which enables variants of the geometric phase
curves of density operators. It seems natural to ask for a link between these objects:~a! the
connection forms just mentioned,~b! certain Hermitian~Riemannian! metrics on the purification
space, and, if respecting the symmetry of the scheme,~c! metrics induced from~b! on the space of
density operators.

Purification is essentially representation theory of observables and of the algebra in
they are contained. Principally one may use any unital* -representation of the ‘‘algebra of obser
ables’’ over which the states can be defined. Its Hilbert representation space should only b
enough to allow for a representation of the states by vectors. If this condition is fulfilled, tran
mechanism, its noncommutative phases, metrics, and other geometric objects can be con
by relying on their form and appearance in the pure state case.

a!Electronic mail: dittmann@mathematik.uni-leipzig.de
32460022-2488/99/40(7)/3246/22/$15.00 © 1999 American Institute of Physics
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In our paper we remain within an elementary setting: Our density operators live on a H
spaceH of finite dimensionn. In our convention, a density operator should not necessarily
normalized. We speak of ‘‘density operators’’ whether their trace is one or not. The algeb
observables is the algebraB(H) of all operators acting onH. The representation or purificatio
space,W, is identified with the algebra of operators and equipped with the Hilbert–Schmidt s
product.~In infinite dimensionsW will be the space of Hilbert–Schmidt operators.! We try to
emphasize the different meaning of operators by different notations: Operators acting onH are
denoted by lower case letters, those acting onW often by capital letters.@Some authors call the
operators ofB(W) ‘‘superoperators.’’# Section II is devoted to explaining our notation in mo
details. In our paper purification takes place in the standard representation ofB(H), i.e., in the
GNS-representation based on the trace. For that reason we called itstandard purification. In Sec.
III the formalism is extended to velocity vectors, i.e., to tangents, at density operators and a
purifications. Purification defines vertical tangents in a canonical way. A tangent, orthogonal
space of vertical tangents, is called horizontal, provided the tangent spaces carry a real
space structure, i.e., a Riemannian metric. Equivalently, within all purifying lifts of a given c
of density operators, those with the least length are horizontal.

Section IV exemplifies our task in defining horizontality by the real part of the Hilbe
Schmidt metric. As one knows, the Bures length of a curve of density operators and the Hi
Schmidt length of an horizontal lift are equal one to another. In deriving the parallelity cond
we meet some peculiarities with tangents of purifying vectors if they belong to density ope
with some vanishing eigenvalues. The reader will find a short account of the relation betwe
connection formageo ~Ref. 13! governing the geometric phase, and the Riemannian Bures m

Indeed, we devote some time to asking, and giving an affirmative answer to the follo
question: Is the topological metric of Bures Riemannian?14–16 Essential differential geometric
properties are in Ref. 17, see also Ref. 18 for dimH53. Relations to quantum information theor
can be seen in Refs. 19 and 20. However, a parameterization in terms of the operators’
elements remains cumbersome, except for dimH52.

Concerningageo, which extends the geometric phase to~closed! curves of density operators
examples are shown in Sec. VIII. There is a further issue to be mentioned: The gauge poten
the two-dimensional density operators21 living on a four-dimensional purification space, satisfi
the Yang–Mills equations. With a certain cosmological constant, it even is a solution o
combined Yang–Mills–Einstein equations.22 Meanwhile we know23 ageo satisfies the Yang–Mills
equations for every finite dimension of the supporting Hilbert spaceH. These findings may be
seen as extensions to mixed states of numerous examples relating the original Berry phase
monopoles, and the Wilczek and Zee phase24 to instantons.

Section VI is devoted to the class of connections introduced in Ref. 25, which are, so t
‘‘relatives’’ of ageo, compatible with the purification scheme. They are characterized by a fun
F, defined on (0,̀ ), and fulfilling F̄(1/t)52F(t). Some equations become more appealing
using the functionr, the arithmetic mean ofF̄ and 1. The connection formsa assign to every
tangentx at the lift wPW of %5ww* a value in the Lie algebra ofU(n). The action of the gauge
group induces the ‘‘canonical’’ connectionacan. The canonical connection is gained with th
choiceF50. The connectionageo is constructed withF(t)5(t21)/(t11). As we shall see, only
connections with realF can be obtained from an appropriate Hermitian metric. We believe
complete class is a more natural object at the complexified tangents. They all decomposu
2u* with u of type ~1,0!.

We specify the class of Hermitian metrics by another positive and real valued function,k, on
the positive half-axis. The metrical form for the tangents at a purifying vector,w, will be given by
the inverse of the~‘‘super’’ !operatork(Dw), whereD is the field of modular operators. There is a
antilinear operator, a modification of Tomita–Takasaki’sSw operator, which admits just the hor
zontal tangents as fix points. The connection adjusted to the metric is characterized by v
relations between the functionsk, F, and r. Moreover, every one of the Hermitian metrics co
sidered on the tangent space ofW is a lift of exactly one Hermitian form on the space of dens
operators. The latter depends on a functionf which is related tok. The Riemannian metric on th
                                                                                                                



to the
us

. These
ctors

ure, to
ssue in
ome
e
to the
oise’’

trace

r

e

begin-

3248 J. Math. Phys., Vol. 40, No. 7, July 1999 J. Dittmann and A. Uhlmann

                    
density operators is gained as the real part of the Hermitian one, and it corresponds
harmonic mean off (t) andt f (1/t). Further we discuss an additional condition, which enables
to assign a unique connection form to a given monotone Riemannian state space metric
metrics are induced from the Hilbert–Schmidt metric by some constraints on the purifying ve
replacing the orthogonality condition of the Bures case.

The starting point has been a set of connections, compatible with the purification proced
define reasonable parallel transports along curves of density operators. We return to this i
purifying horizontally solutions of von Neumann equations. Cyclic solutions give rise to s
holonomy invariants. There are constraints onF for extending the parallelity conditions to th
boundary, in particular to pure states. If they are fulfilled, the holonomy invariants reduce
well-known geometric phase of Berry for pure states. At the end we ask what happened if ‘‘n
is added to a closed path of pure states.

II. STANDARD PURIFICATION

We start by reviewing some basic ideas of the purification procedure. LetH be a complex
Hilbert space of finite dimensionn with scalar product̂ .,.& antilinear in its left argument.B(H)
denotes the* -algebra of linear operators acting onH. A state is a positive linear form over the
algebra which takes the value 1 at the identity ofB(H). Generally, a linear forml over our algebra
is uniquely represented by

l ~b!5Tr bv, ;bPB~H!.

The linear form is positive if and only ifv is a positive element ofB(H). We then callv a density
operator in accordance with its usage in physics. A density operator represents a state iff its
is one.

A purification of a positive linear form overB(H) is a lift to a pure linear form of a large
algebra. A way to do so is as follows: With another auxiliary Hilbert spaceH aux, with at least the
same dimension, we consider

H^H aux, n5dimH<H aux

and the inclusion~which, indeed, is a* -representation!

B~H!�B~H! ^ 1aux,B~H^H aux! ~1!

into the operator algebra of the extended Hilbert space. Let% be the density operator of a positiv
linear form l overB(H). A vectorc of H^H aux is said topurify l, and hence%, iff

l ~b![Tr b%5^c,b^ 1auxc& ;bPB~H!. ~2!

A distinguished way to choose the auxiliary Hilbert space is to require

H aux5H* , WªH^H* , ~3!

which results in thestandard purification, based on the standard representation ofB(H). In what
follows this choice is assumed, and we have to fix some notations and conventions at the
ning.

Let fPH. The elementf* PH* , is defined byf* (f8)5^f,f8&. In Dirac’s notation:

f↔uf&, f*↔^fu.

Being in finite dimensions, every operator is Hilbert–Schmidt, andW is canonically isomorphic to
B(H). This can be made explicit with two arbitrarily chosen orthonormal basesf1 ,f2 , . . . and
f18 ,f28 , . . . ofH in writing
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w5( uf j&^f j ,wfk8&^fk8u, wPW. ~4!

The Hilbert–Schmidt scalar product onW is

~w2 ,w1!ªTr w2* w15( ^w2fk8 ,f j&^f j ,w1fk8&. ~5!

The star operation inB(H) is equivalent with a conjugation inW,

w°w* or ~f ^ f̃* !* 5f̃ ^ f* .

We need some operators acting onW. The standard representation ofB(H) is the inclusion~1!,
specified by~3!, and acting as follows:

b°Lb , Lbwªbw, bPB~H!.

We also need the right multiplicationRb , i.e.,Rbw5wb. The right multiplication can be used t
implement the standard representation ofB(H* ). Notice the different meaning of the* -operations
onW5B(H) and onB(W) seen in

~Lb!* 5Lb* , ~Lbw!* 5~Rb!* w*

and in similar relations after exchangingLb andRb . Now, let l̂ be a linear form onB(W) and l
its restriction or reduction ontoB(H). The relation

l̂ ° l , l ~b!ª l̂ ~Lb!, bPB~H! ~6!

encodes the partial trace overH* onW. Focusing our attention on the purification procedure,
shall apply this well-known mapping mainly to linear functionals of rank one. In that case
essence of the reduction mapping to the factors ofW is contained in

~w2 ,LbRcw1!5Tr w2* bw1c. ~7!

Its left-hand-side defines a linear formB°(w2 ,Bw1) overB(W), and, varyingw1 andw2 within
W, one can get every linear functional of rank one. Presently we need to consider~7! with w1

5w25w and with eitherc or b the identity operator. Then, forBPB(W) and b,cPB(H), the
left- and the right-hand sides of~7! may be rewritten

l̂ ~B!5~w,Bw!, l ~b!5Tr ww* b, l 8~c!5Tr w* wc.

%5% lªww* is called thedensityor thedensity operatorof l, while w is said topurify l. In the
same spirit, a positive linear functionall̂ of rank one, which reduces tol, is apurification of l.

From now on, instead of switching forth and back between linear forms and their densitie
remain mainly with the latter. Accordingly we define the mappings

Pw5ww* , P8w5w* w.

The mappingP ~and similarly the mappingP8), is slightly more subtle than the reductio
mapping~6!. Its domain of definition isW. ThusP is composed of a Hopf bifurcation fromw to
the rank one density operatoruw)(wu, representing the linear formB→(w,Bw), followed by the
reduction~6!:

w°uw)~wu°ww* .
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Here we used Dirac’s notation relative to the scalar product~5! in W. P is a bundle projection,
where the bundle space isW and the base space is the cone of~not necessarily normalized! density
operators~i.e., positive trace class operators!. Being in finite dimension, the base space is t
positive cone ofB(H). The bundle fibers are manifolds. However, the dimension of the fi
vary with the ranknw of wPW. Therefore certain discontinuities occur if the rank is changin

All this can be seen by the ‘‘diagonal’’ form of~4!, which is the Gram–Schmidt decompo
sition of w. Let l1 ,l2 , . . . be thenw nonzero eigenvalues ofww* and f1 ,f2 , . . . their
orthonormal eigenvectors,

ww* 5( l j uf j&^f j u, lk.0.

There exists exactly one other orthonormal basis of vectors,f18 ,f28 , . . . of the same lengthnw ,
fulfilling

w5( Alkufk&^fk8u, w* w5( l j uf j8&^f j8u ~8!

and the positive numbersl j sum up to (w,w). From~8! one can read off the polar decompositio

w5Aww* v5vAw* w, v5( ufk&^fk8u. ~9!

The indexk runs from 1 tonw . One may callv the phase of w relative to%5ww* . The
projection operatorsv* v and vv* , attached to the partial isometryv, mapH onto the support
spaces ofw* w andww* , respectively. Later on we need the operatorJ5Jw ,

Jwx5vx* v5( uf j&^f j8 ,x* fk&^fk8u, ~10!

which, for completely entangledw, is the well-knownmodular conjugation. One easily establishe

~Jw!2x5~vv* !x~v* v !, ~Jx,y!5~Jy,x!. ~11!

If %>0 is a density operator, the setP21% consists of allw satisfying%5ww* . Along this fiber
the orthoframef18 ,f28 . . . in ~8! and ~9! varies arbitrarily. Thus the fiber at% is isomorphic,
though not canonically, to a complex Stiefel manifold.26 These isomorphisms are parametrized
the different possibilities to choose an orthoframe for the nonzero eigenvalues of%. Thestructure
or gauge groupof P21% consists of all unitaryuPB(H) acting byRu .

Iff % is already pure,%5uf&^fu, its purifications readsw5uf&^f8u. That is, the purifying
vectors are necessarily product vectors~‘‘unentangled’’ vectors!.

In case the rank of% is larger than one,w is calledentangledin the domain of quantum
information theory. Accordingly,complete entanglementof w is reached if the density operator%
is of maximal ranknw5dimH. In this case, in traditional* -representation theory,% is called
faithful andw separating. %5ww* is faithful iff w is invertible.

The set of all faithful% is the base space of a principal fiber bundle with free action of
unitariesRu . The fiber space consists of all invertiblew, the projection isP.

III. PURIFICATION AND TANGENTS

A smooth, oriented curve inW, passing throughw, defines atw a tangentor velocity vector
x. Hence the tangent space,Tw at w, may be identified withW if considered as a real linear spac

Assume thatw and the unitariesu depend smoothly on a parameter, and let us use a do
show parameter differentiation. The gauge transformationw°w8ªwu induces the relation
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x°x85xu1wu̇, x5ẇ, x85ẇ8. ~12!

Let us now considerP, and assumePw5%. P induces a mappingP* from the tangent space o
W into the density operator’s tangents.

Being a first-order problem, it is sufficient for the following to assume a curve as simp
possible, sayw(l)5w1lx. The curve is projected byP to a curve of density operators%l

5w(l)w* (l) of B(H). Differentiating atl50 results in a tangentP* x5j at %,

j5%̇, j5~ww* !•5xw* 1wx* . ~13!

A tangent vectorx at w is calledvertical iff P* x50. The real vector space of the vertical tange
at w is denoted byTw

ver. It is a straightforward and well-known exercise to show: The ga
transformationx°x8 of ~12! maps vertical tangents atw to vertical tangents atw8.

We look at vertical tangents as labels for the physical phase. The phase of a single sta
its density operator is not an observable. Which purifying vectorw we choose is physically
irrelevant. What can be observed are relative phases, for example in interference experimen
relative phases should depend on the way a density operator is changed to become anot
There should be a protocol according to which the tangents, and hence the phases, are tra
along a curve within the space of density operators. This can be achieved by the help of a p
transport.

The standard procedure is to split the tangent space at everyw into a direct sum of the vertica
and of an horizontal part. Respecting the complex linear structures, we restrict ourselves
compositions defined by the real part of an Hermitian metric: We assume at everyw a distin-
guished positive Hermitian sesquilinear form

w°~x2 ,x1!w , x1 ,x2PTw . ~14!

For completely entangledw it should be positive definite. Now Re(.,.)w , the real part of~14!,
converts the tangent space atw into a real Hilbert space. Thevelocitywith which a curve goes
throughw is the square root of (x,x)w with x the tangent at that point. In this setting, paral
transport is asking for a minimal velocity lift of a given tangent at the base space. This, in
induces a metrical structure at the base space: One calls thevelocity of a base space tangentthe
minimum of the velocities of all possible lifts.

Thus, thehorizontal part, xhor, of a tangentx at w is the unique element of the setx1Tw
ver with

the smallest velocity. This is in accordance with the definition ofTw
hor as the orthogonal comple

ment ofTw
ver in the real Hilbert spaceTw , the latter equipped with the scalar product Re(.,.)w .

There is a distinguished real subspace,Tw
Ver,Tw

ver, containing all tangents

x5wa, a52a* PW,

which are obviously vertical. Ifw is invertible~completely entangled!, every vertical tangent can
be uniquely expressed in that way. But generally,Tw

Ver is a proper subspace ofTw
ver. We call a

vertical tangentneutral iff it is orthogonal toTw
Ver with respect to Re(.,.)w . Hence, every tangen

x allows for an orthogonal decomposition

x5xhor1xver, xver5xneutral1xVer. ~15!

IV. PHASE TRANSPORT AND BURES METRIC

The most natural and simple choice for the Hermitian metric (x2 ,x1)w of ~14! is certainly the
Hilbert–Schmidt scalar product~5!. This choice is particularly interesting for several reasons

At first it gives a straightforward generalization of the geometric phase by the parallel t
port evolving from this choice. Indeed, one obtains a natural extension of the Fock,27, Berry,9

Simon,10 Wilczek and Zee24 parallel transport to density operators.
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Transport of state vectors along closed curves generates a holonomy problem. In the
between V. Fock and M. Berry this has become clear. B. Simons explained how to calcula
holonomy by the second Chern class of the Hilbert space if considered as a line bundle. T
an extensive literature on the transport of phases along curves and loops of pure states, see
for a selection of important results, applications, and references. Particular examples in usi
calculating the geometric phase can already be found in papers of decades past.

Second, one gets a Riemannian metric14 on the~not necessarily normalized! density operators
of B(H). Its distance function is the distance introduced by Bures29 in following a similar con-
struction of Kakutani30 in probability spaces. Being the infinitesimal version ofBures’ distance,
we call this Riemannian metricBures’ metric.

And, finally, already the choice

~x2 ,x1!w5~x2 ,x1!, ;w,

shows essential problems in deviating from a genuine fiber bundle.
We start by enumerating the tangentsy orthogonal toTw

Ver

~y,wa!1~wa,y!50, ;a1a* 50.

That condition straightforwardly comes down to

y* w5w* y ~16!

and y is orthogonal to all Ver-tangents iffw* y is Hermitian.~16! is the parallelity condition,8

which extends the transport condition for the geometric phase from pure to mixed states.
To decomposey in its neutral and horizontal part, we start by completing the two orthonor

systems of the Schmidt decomposition~8! arbitrarily and setl j50 if j .nw . By sandwiching~16!
between the orthobase$f i8% we get

Alk^f j8 ,y* fk&5Al j^f j ,yfk8&.

There evolve two conditions on the matrix elements:

j <nw , k.nw⇒^f j8 ,yfk&50.

k, j <nw⇒ ^f j8 ,y* fk&

Al j

5
^f j ,yfk8&

Alk

.

No restriction occurs forj .nw , k<nw . There is an Hermitiang such that

^f j ,gfk&5
^f j ,yfk8&

Alk

, k<nw .

One may choose the matrix elements ofg with indices both larger thannw arbitrarily but consis-
tent with g5g* .

The tangent y15gw is horizontal31,32 because it is orthogonal to all ver-tangentsx. Indeed,
xw* 1wx* 50 implies (gw,x)1(x,gw)5(g,xw* 1wx* )50. What remains to check is the cas
of a tangenty0 , real orthogonal to allgw, g5g* , and to all Ver-tangents. From the first conditio
it follows wy0* 1y0w* 50, hence verticality, and from the second we obtainw* y05y0* w. This is
equivalent with

^f j ,y0fk8&50, ; j ,k<nw

or
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y neutral ⇔w* y5yw* 50. ~17!

We conclude that every tangentx allows for a unique decomposition

x5gw1x01wa ~18!

in a horizontal, a neutral, and a vertical part whereg is Hermitian, a anti-Hermitian, andx0

satisfies~17!. With the extra conditions

^f j ,gfk8&5^f j ,afk8&50, k, j >nw ,

both g anda are unique. The last conditions are equivalent to the choice of maximal null-sp
i.e., minimal supportsfor g anda. They allow one to defineg anda uniquely.

The transformation property~12! implies

w°w85wu ⇒ a°a85u* au1u* u̇ , ~19!

so thatx°a is a connection form~gauge potential! a for the gauge groupu°Ru . However,
support properties may not change continuously. For parameter values at which the rankw is
changing, one has to understandg or a as equivalence class with respect to the kernel ofg°gw
or a°wa, respectively. Then~19! remains meaningful even in those cases.

In our next step we look atg anda. g, which describes the horizontal part of a tangent vec
x, can be expressed byjªP* x and%ªww* 5Pw. We need the pairx and%̃ªw* w to gaina.
We get

%g1g%5j, %̃a1a%̃5w* x2x* w. ~20!

The first equation32,31is obtained from~13!. To see the second one,13 insert~18! into its right-hand
side.

Apart from an obvious restriction onj, ~20! can be solved to getg or a, and several ways to
do so are well known. A review is in Ref. 33. The restriction in question reads^f,jf&50
wheneverf is in the null space of% for the first equation, and̂f8,jf8&50 wheneverf8 is in
the null space of%̃. Below we assume they are satisfied.

With the solvability conditions in mind we rewrite~20! as equations between operators
B(W). In order not to overload notations we abbreviate

L[L% , R[R% , L̃[L %̃ , R̃[R%̃ .

These are families of operators indexed by% or %̃.
Let us start now from~20!. The equations can be solved by

g5~L1R!21j, a5~ L̃1R̃!21~w* x2x* w!. ~21!

The operationally defined inverse exists by the solvability condition above. With two tangenj j

at % and their horizontal liftsxj
hor we get the Riemannian metric16,14 belonging to the Bures

distance

~j2 ,j1!Bures
ªRe~x1

hor,x2
hor!5 1

2Tr %~g1g21g2g1! ~22a!

or, equivalently,

~j2 ,j1!Bures5 1
2Tr j2g15 1

2Tr j2~L1R!21j1 . ~22b!
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There is a similar procedure with the second equation of~21! resulting in the connectionageo with
ageo(x)ªwa. The superscript ‘‘geo,’’ if used, is a reminder for the physical important geome
phase. From~21! we get

ageo5
L̃

L̃1R̃
~w21dw!2

R̃

L̃1R̃
~w21dw!* , ~23a!

wherew21 dw is the left canonical 1-form with values in the Lie algebra of GL(H). ageo takes
values in the Lie algebra of the gauge groupU(H) acting from the right viau°Ru .

Formula~23a! representsageoas the difference of two Hermitian conjugated parts of type~1,0!
and ~0,1!, respectively:

ageo5a1,02a0,1, a0,15a1,0* .

Another interesting equation expressesageo as sum of the canonical 1-formacan of the bundle
GL(H)/U(H) and a horizontal Ad-1-form25

ageo5
w21 dw2~w21 dw!*

2
1

L̃2R̃

L̃1R̃

w21dw1~w21dw!*

2
. ~23b!

Since the second form is horizontal, it can be rewritten in terms ofd% and we get

ageo5acan1w21S L2R

2~L1R!
d% D ~w21!* ~23b8!

5w21dw2w21S R

L1R
d% D ~w21!* . ~23c!

It becomes immediately clear thatageo(x)5acan(x) iff L j5Rj, wherejªwx* 1xw* , i.e., iff %

commutes with%̇.
This observation motivates the decomposition

T%5T %
i 1T %

' ~24!

of the tangent spaceT% into a direct sum, wherejPT %
i iff j commutes with%5ww* or,

equivalently, iff^f j ,jfk&50 for any two eigenvectorsf j , fk , of % with different eigenvalues.
On the other hand,jPT %

' iff it can be written as a commutatori @b,%# with a suitable Hermitian
b. ~24! is a well-known matrix decomposition: Assume% represented as block diagonal matr
every block belongs to just one eigenvalue. This induces a block representation of any maj.
One getsj i by setting zero every off-diagonal block ofj. If the entries in the diagonal blocks ar
set to zero, one obtainsj'. In our present field of interest Hu¨bner18 obtained a decomposition~24!
of the Bures Riemannian metric. For larger classes of metrics this has been done by Hasega
Petz~Refs. 34 and 35!.

This brings us back to the metric~22!. There is a solutiong1 commuting with% iff j1 does
so: The support% cannot be smaller than the support ofj. Hence 2g15%21j15j1%

21 is opera-
tional well defined. Inserting in~22b! results in

~j2 ,j1!Bures5 1
4Tr j2j1%

21, j1PT %
i . ~25!

Comparing this with the Riemannian metric

~j2 ,j1!can
ª

1
8Tr ~j2j11j1j2!%215Tr j2~L211R21!j1,

the inequality 4/(L1R)<(1/L)1(1/R) gives36
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~j,j!Bures<~j,j!can

and equality holds if and only ifjPT %
i , or, what is the same, ifj commutes with%.

Let f1 , . . . be a complete orthonormal eigenvector basis of%5ww* andj with eigenval-
uesl j and l̇ j , respectively. Then we get from~25! the following quadratic form:

1

4 ( dl j
2l j

215( dm j
2 , m jªAl j .

This is an Euclidean metric. However, restricted to the state space, wherel1 , . . . becomes a
probability vector, we get Fisher’s metric~‘‘Fisher–Rao metric’’!.37

If the Bures metric is restricted to a submanifold of mutual commuting states, the F
metric is obtained.Moreover,on any submanifold of commuting density operators, whether nor-
malized or not,the phase transport is holonomically trivial.

Indeed, we can form the lift%→w5A%. The assumed commutativity provides us wi
Hermitian and commutativew andx5ẇ, and with%5ww* 5w* w5%̃. Hence~21! comes down
to a(x)50, and the lift is horizontal. There is no room for a nontrivial phase.

We see a nontrivial geometric phase is definitely an effect of noncommutativity. We nee
them curves with mutually not commuting density operators.

V. AUXILIARY TOOLS

In order to extend our previous considerations to a larger class of connections25 we need some
auxiliary tools.

Looking at Eqs.~23! one can identify functions of L/R and L˜/R̃. These operators are relative
of L/R̃5Dw , the Tomita–Takesaki modular operator of the representationb°Lb with GNS-
vectorw. The operators are defined ifw21 exists, that is for completely entangledw. But, as~23!
shows, certain functions of these operators can be defined for everyw.

Let t° f (t) be a function defined for 0,t,`. We assume the existence of

f ~0!ª lim
t→0

f ~ t !, f ~`!ª lim
t→`

f ~ t !. ~26!

The assumption is necessary if we like to extend the formalism to density operators which a
invertible. Without it, we have to restrict ourselves to completely entangledw, i.e., to faithful
density operators.

To treat an example with the assumption~26!, we definef (L/R̃)5: f (D). The positive opera-
tors L and R̃commute. Letl j be the eigenvalue ofww* and ofw* w with the eigenvectorsf j and
f j8 . The eigenvectors, suitably chosen, collect in a complete orthonormal basis satisfyin
Gram–Schmidt decomposition~8!. l j is zero if j .nw and positive otherwise. Now

Lv jk5l jv jk , R̃v jk5lkv jk , v jkªuf j&^fk8u.

The elementsv jk constitute a complete orthonormal basis of the Hilbert–Schmidt spaceW. We
like f (D) to be diagonalizable with eigenvectorsv jk . RememberingD5L/R̃ we start with

f ~D!v jk5 f ~l j /lk!v jk , if lk.0.

The remaining possibility is done ‘‘by hand’’ in requiring

f ~D!v jk5 f ~`!v jk , if l j.0, lk50,

f ~D!v jk5 f ~1!v jk , if l j5lk50.
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With this conventionv j j is an eigenvector off (D) with eigenvaluef (1) for all j.
The same game is to play withf (L/R) and f (L̃/R̃). While the spectra off (L/R) and f (L̃/R̃)

coincide with that off (D), their eigenvectors are, respectively,

uf j&^fku5v j i v ik* , uf j8&^fk8u5v j i* v ik .

VI. A CLASS OF CONNECTIONS

Our aim is to describe a class of connections, essentially that of Dittmann and Rudo25.
These objects, as will be seen, are particularly well adapted to the purification of theH-system by
that ofW5H^H* . We assumew to be completely entangled, so that%5Pw is faithful ~invert-
ible!. Whether it is possible to skip this assumption, either by calculating modulo neutral tan
or by continuity arguments, depends on the asymptotic behavior of certain functions to be
duced below.

Let @0,̀ #{s°r (s)PC be a smooth function andr (1)51/2. Then

~r ~ L̃/R̃!y!* 5 r̄ ~R̃/L̃!y* .

Mimicking Eq. ~23a! we define the form

aª r̄ ~ L̃/R̃!~w21 dw!2r ~R̃/L̃!~w21 dw!* . ~27a!

It transforms like a connection and takes anti-Hermitian values. To be a connection it mus
the correct values at vertical vectors, i.e.,a(wa)5a, for all anti-Hermitiana. Thus we need to
have

r̄ ~ t !1r ~1/t !51, F~ t !ª r̄ ~ t !2r ~1/t !52F̄~1/t !, ~28!

to get a genuine connection with respect to the gauge group U(H) acting byu°Ru . Furthermore,
as a consequence ofr (1)51/2, one observes rescaling invariance of this connection form. Ind
a is invariant underw°l(w)w, wherel:W→R:

aw~x!5alw~dl~x!w1lx!,

so that there is no need to normalizew in calculatinga. The second equation in~28! introduces the
functionF used in Ref. 25 to label their gauge potentials, and we are allowed now to rewrite~27a!
in a manner known already from~23!:

a5acan1F~ L̃/R̃!
~w21 dw!1~w21 dw!*

2
~27b8!

5acan1w21~F~L/R! d% !~w21!* ~27b!

5w21 dw2w21~r ~R/L! d% !~w21!* . ~27c!

One returns to the Bures case by

a5ageo⇔r ~ t !5
t

11t
⇔F~ t !5~ t21!/~ t11!.

Before deriving expressions for the vertical and horizontal part of a given tangentx, we draw
an important conclusion:

The value of a connection at the lift of ai-tangent is independent of F, respectively, r.Indeed,
F(1)50 and Lx5Rx for these tangents, and we get from~27b’! immediately
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P* ~x!PT i⇒a~x!5acan~x!, ;F

allowing to extend a conclusion of Sec. IV:
On submanifolds with mutually commuting density operators the holonomy of every lo

trivial for the whole class of connections considered here.
Indeed, the lift%→A% is horizontal along every curve of commuting densities.
To obtain the vertical and horizontal part of a tangentx let us apply Eq.~27c! to x multiplied

by w from the left. We assumedw to be separating so that there are no nonvanishing ne
tangents. Therefore

xver5xVer5wa~x!5x2~r ~R/L!j!~w* !21 ~29a!

5x2r ~D21!~x1wx* w* 21! ~29b!

5x2r ~D21!@x1D1/2Jx#, ~29c!

remindingwx* (w* )215D1/2Jx5JD21/2x. ~29! reflects the decomposition of a general tang
into a vertical and a horizontal part, see~15!. We conclude

xhor5~r ~R/L!j!~w* !215r ~D21!@x1D1/2Jx#. ~30!

A connection forma regulates the change of the phasev along a horizontal lift,wt

5A% tv t , of a curve% t . We expressa by

a~ẇ!5a~A% v̇1~A% !•v !5a~A%vv* v̇1~A% !•v !

5v* v̇1v* a~A%•!v

5v* v̇1v* aS 1

AL1AR
%̇ D v

5v* v̇1v*
1

2

1

ALR
S F~L/R!1

AR2AL

AR1AL
D ~ %̇ !v.

and see that the horizontality ofwt is equivalent with

05 v̇v* 1
1

2

1

ALR
S F~L/R!1

AR2AL

AR1AL
D ~ %̇ !. ~31!

One observes, that there is one and only one connection in our setting with a global hor
section,%°A%. That connection is given by

F~ t !52
12At

11At
, r ~ t !5

At

11At
.

VII. CONNECTION AND METRIC

In this section we specify a class of Hermitian metrics~14! onW, which respects the purifi-
cation scheme. Our first task is to ask for Hermitian metrics on the complex manifoldW, the real
part of which is compatible with a given connection form of Sec. VI. We demand: At e
completely entangledwPW, the vertical tangents are real orthogonal to the horizontal one
the case where there exists a Hermitian metric doing this task, the functionsF andr characterizing
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the connection have to be real. In the next step we describe the Hermitian and Riemannian
one obtains by reduction from the purification space to that of~unnormalized! density operators.

Starting with a connection~27a!, ~28!, there is some freedom in the choice of the Hermit
metric. It is an interesting question in its own right, whether, by a reasonable condition
Hermitian metric becomes unique. We explain in the last part of this section how this can be
If we start from a Riemannian metric on the density operators, the uniqueness problem is
involved. Nevertheless, our additional condition solves it also, at least for the monotone Rie
ian metrics.

To start our little program we construct Hermitian metrics~14! by modifying the Hilbert
Schmidt scalar product onW by a functionk(D) of the modular operator. Like R and L th
modular operatorD depends onw. Our ansatz for the Hermitian product inTwW reads

~x2 ,x1!wª~x2 ,k~Dw!21x1!, ~32!

wherek is a real positive smooth function defined either only on 0,t,` or on the closed interva
0<t<`. We use the rules explained in Sec. V. There are two main merits with such a cho
the modified Hermitian metric: The symmetry group of the metric contains the unitary g
U(H)3U(H* ). The second is the rescaling invariance ofD under w°l(w)w, where l(w)
denotes~a sufficiently smooth! real function onW. Rescaling invariance is a further reason not
insist on normalized density operators.

In determining the connection form compatible with~32!, we follow the recipe of Sec. III. We
need the real-orthogonal complement of the vertical directions. They are to gain by the m
independence of verticality. Namely, if a tangentx is real orthogonal to all vertical ones,k(D)21x
is horizontal with respect to the Hilbert–Schmidt metric. Therefore, as shown in Sec. IV, w
allowed to writex5gw with a Hermitiang. Conclusion:

A tangent x is horizontal with respect to (32), if it can be represented as

x5k~D!~gw!5k~L/R!~g!w, g5g* . ~33!

The real space of horizontal tangents is the fix point set of an antilinear operator,Sw
k , acting

onW. Our notation is borrowed from that of the Tomita–Takesaki operatorSw5JAD, which will
be returned ifk[1. Our definition is

Sw
k
ªJk~D21!k~D!21AD5k~D!k~D21!21Sw . ~34a!

If this operator acts onx5k(D)(gw) the result isk(D)(g* w). Comparison with~33! establishes:
x is a fix point ofSw

k if and only if x is horizontal.
The square of the operator~34a! is J2; compare~11!. J2 is the identity ofW iff w is invertible.

Further, the adjoint ofSw
k with respect to~32! is ADJ and, as it should be, independent ofk.

~Tomita–Takesaki theory calls it ‘‘Fw . ’’ ! Finally we polar decompose~34a! to get the appropriate
modifications of the modular operator,D5Dw , and of the modular conjugation,J5Jw ,

Sw
k 5Jw

k uSw
k u, Dw

k
ªuSw

k u2, ~34b!

Dw
k 5k~D21!k~D!21D, Jw

k 5JAk~D21!k~D!21. ~34c!

We now ask for the connection coming with the metric. The connection form belongin
~32! annihilates all the horizontal vectors~33!. This reasoning, applied to~27a! or ~27b!, deter-
mines the functionr or F. The calculation shows, in accordance with~28!,

r ~ t !5
tk~1/t !

k~ t !1tk~1/t !
, respectively, F~ t !5

tk~1/t !2k~ t !

tk~1/t !1k~ t !
. ~35!
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Obviously, the functions r and F are real valuedif the connection is gained from a Hermitia
metric ~32!. A cross check of~35! is in setting k[1. We get r (t)5t/(11t) and F(t)5(t
21)/(t11) as it should be for the Bures case.

On the other hand, givenr or F, there is some freedom fork since the induced connectio
depends onk(t)/k(1/t) only.

k~ t !

k~1/t !
51⇔r ~ t !5

t

11t
, F~ t !5

~ t21!

~ t11!
, a5ageo,

k~ t !

k~1/t !
5t⇔r ~ t !5

1

2
, F~ t !50, a5acan.

In particular, there is no modification of the Tomita–Takesaki operators by~34! if the connection
is ageo. More generally, from~35! we get

k~ t !

k~1/t !
5t

r ~1/t !

r ~ t !
5t

12F~ t !

11F~ t !
~36!

and find, remarkably enough, the modified Tomita–Takesaki operators~34! depending onF only.
Further, by~36!, the positivity ofk enforces the inequality

21,F~ t !,1 ~37!

for F to be obtained from ak. In order to invert~36!, the inequality is also sufficient. Accordin
to ~28! one needs only to checkF,1 for real F. Then, givenF, the general solution of the
problem is

k~ t !ªAt~12F~ t !!q~ t !,

q being an arbitrary positive function fulfillingq(t)5q(1/t).
We started from a Hermitian metric onW, derived conditions for horizontality, and dete

mined the connection. Now we go back toH and to its density operators: We ask for th
Hermitian and Riemannian metric induced on the space of density operators. That is, wit
tangentsj andh at Pw5%, we are concerned with

~h,j!%ª~yhor,xhor!w , Re~h,j!%5
~h,j!%1~j,h!%

2
.

xhor andyhor are the horizontal lifts ofj andh. In the present paper theC-valuedR-linear form
j,h°(h,j)% is defined on the real tangents. Nevertheless, for obvious reasons, we call it
mitian.’’ Relying on ~30! we conclude

~yhor,xhor!w5Tr r ~L/R!~h!
r ~R/L!

Rk~L/R!
~j!5Tr h

r ~R/L!2

Rk~L/R!
j,

so that

~h,j!%5Tr h
Rk~L/R!

@Rk~L/R!1Lk~R/L!#2
j, ~38a!

wherer has been substituted byk by the aid of~35!. The real part is a Riemannian metric. B
standard rules we get
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Re~h,j!%5
1

2
Tr h

1

Rk~L/R!1Lk~R/L!
j. ~38b!

Petz36,1,2was able to classify all monotone Hermitian metrics on the state space, i.e., tho
which (•,•)% does not increase under the action of completely positive and unital mapping
the heart of his result is the characterization of a monotone metric by an operator mon
function, f, defined on 0,t,`, such that

~h,j!%5
1

4
Tr h

R21

f ~L/R!
j. ~39!

~The factor 1/4 is a normalization convention.! Note that this Hermitian metric becomes symm
ric, and hence a Riemannian one, if and only if the functionf satisfiesf (t)5t f (1/t). A function
with this algebraic property we call self-transposed, following the terminology for operator m
introduced in Ref. 3. Presently, however, the monotonicity of the metric~39! or of its real part is
notassumed. We need a more general frame. Having this in mind, we compare~39! with ~38a! and
obtain

f ~ t !5
~k~ t !1tk~1/t !!2

4k~ t !
. ~40!

This equation has a unique solution fork depending onf, therefore, every Hermitian metric~39!
can be reached by exactly one Hermitian metric~32! on the purification space. Indeed, the ha
monic mean off (t) and its transpose,t f (1/t), yields

1

f ~ t !
1

1

t f ~1/t !
5

4

k~ t !1tk~1/t !

so that one can insert this into the right-hand side of~40! to expressk by f:

k~ t !5 f ~ t !
4t2f ~1/t !2

@ f ~ t !1t f ~1/t !#2 . ~41!

Moreover, using~35! we get

r ~ t !5
f ~ t !

f ~ t !1t f ~1/t !
, F~ t !5

f ~ t !2t~1/t !

f ~ t !1t f ~1/t !
. ~42!

These equations describe the relation between the connection onW and the Hermitian metric
living on the density operators. It is Riemannian ifff is self-transposed.~41! yields f 5k in this
case, and~42! degenerates tor[1/2. Hence,if the induced Hermitian form is Riemannian, th
induced connection is necessarily the canonical one.This way we do not get an interestin
mapping from the class of Riemannian metrics to the class of connections. Especially, the fu
f (t)5(11t)/2 belonging to the Bures metric cannot be gained fromageo as one might expect.

Moreover, if we like to gain the connection formageo, r (t)5t/(t11), belonging to the
geometric phase, we need, according to~42!, t2f (1/t)5 f (t) or, equivalently,k(t)5k(1/t). If f is
operator monotone, so ist f (1/t). Therefore,t2f (1/t) is convex~lemma 5.2 of Ref. 3!. Thus,f is
convex and, as an operator monotone function, concave. Being convex and concave,f has to be
affine. An affine function on the positive real axis, fulfillingt2f (1/t)5 f (t), is a multiple oft.

If a5ageo and f is operator monotone with f(1)51, then f(t)5t.
However, fork(t)51 @respectively,k(t)52t/(t11)] we geta5ageo ~respectively,a5acan)

and obtain from~38b! for the real part
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Re~h,j!%5
1

4
Tr h

R21

f s~L/R!
j ~43!

with f s(t)5(11t)/2 ~respectively, f s(t)52t/(t11)). These f s are distinguished~self-
transposed! operator monotone functions. Moreover, in these cases~38b! restricted to the horizon-
tal vectors coincides with the real part of the Hilbert–Schmidt metric. This is the motivatio
deal in the following with the real part of the Hermitian metric induced on the state space.

First of all, this Riemannian metric is of the form~43! with a certain self-transposed functio
f s depending onk. From ~38b! we get

f s~ t !5
k~ t !1tk~1/t !

2
. ~44!

f s(t) is the harmonic mean off (t) and t f (1/t), with f given by ~40!.
Clearly, in starting with a self-transposedf s there is some arbitrariness in choosingk respect-

ing ~44!. Moreover, given a self-transposedf s , the only restriction forF is 2F(1/t)5F(t),1.
Indeed, Eqs.~35! and ~44! then have the unique solution

k~ t !5 f s~ t !~12F~ t !!. ~45!

In order to remove the arbitrariness in going fromf s to F and vice versa or fromf s to k, we
impose an additional requirement on the class~32! of Hermitian metrics (x,y)w . The aim is to
ensure that, givenf s , there is only onek and oneF fulfilling ~35! and ~44!. We shall prove that
we meet our goal for operator monotonef s by the following natural demand:

Condition HS: For x and y belonging to the horizontal spaces defined by the Hermitian m
(32), the real part, Re (x,y)w , of (x,y)w coincides with the real part,Re (x,y), of the Hilbert–
Schmidt product of x and y.

At first, by the aid of~33!, the condition HS becomes

Re~k~D!~gw!,g8w!5Re~k~D!~gw!,k~D!~g8w!!

with arbitrary Hermitiang andg8. It yields the constraint

k~ t !1tk~1/t !5k~ t !21tk~1/t !2. ~46!

Next, we have the following crucial observation, which one verifies straightforwardly:
There is a one-to-one correspondence between positive functions k fulfilling the cons

(46) and functions F with2F(1/t)5F(t),1. The correspondence is given by (35) and

k~ t !5
2t~12F~ t !

~11F~ t !!21t~12F~ t !!2
. ~47!

By ~44! or, equally well, by~45! we get the relation betweenF and f s ,

f s~ t !5
2t

~11F~ t !!21t~12F~ t !!2
. ~48!

Hence, under condition HS, a functionf s can be gained from ak iff f s has a representation~48!
with a suitableF, F(t),1. To explain which functionsf s can be reached, we rewrite relation~48!
into the equivalent form

11t

2
2 f s~ t !5

f s~1/t !~11t !2

4 S t21

t11
2F~ t ! D 2

.
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Therefore, necessary conditions forf s are f s(1)51, f s<(11t)/2 and, moreover,t°(11t)/2
2 f s(t) must be the square of a smooth function.

Now suppose we have such a pairf s ,F. We define an auxiliary smooth function

d~ t !ª
Af s~1/t !~11t !

2 S t21

t11
2F~ t ! D .

It fulfills

d~ t !25
11t

2
2 f s~ t !, Atd~1/t !1d~ t !50. ~49!

The second equation is a consequence ofF(1/t)52F(t) and f s(t)5t f s(1/t). F can be expressed
in terms ofd and f s by

F~ t !5
t21

t11
2

2

~11t !Af s~1/t !
d~ t !. ~50!

Conversely, for a given self-transposedf s , f s(1)51, the possibilities in choosingd with the
properties~49! enumerate via~50! the solutionsF of ~48! and2F(1/t)5F(t). But such anF may
not fulfill F(t),1 if we did not choose appropriately the signs ford in ~49!. The desired choice
may be neither unique nor possible. But if so, the functionk defined by

k~ t !ª
2

t11
~ f s~ t !1At f s~ t !d~ t !! ~51!

satisfies~44! and ~35!.
The question, which functionsf s , f (1)51, bounded by 0, f (t)<(11t)/2, can arise fromF

or, equivalently, from a Hermitian metric~32!, depends also on regularity requirements onF and
k. We do not discuss this in detail. Instead we have the following uniqueness result:

Lemma: For every self-transposed operator monotone function fs :(0,̀ )→R with f~1!51
there exists exactly one positive real analytic function k:(0,̀ )→R fulfilling (44) and (46). k and
its corresponding function F are given by

k~ t !5
2 f s~ t !

t11 S 11
t21

ut21u
AtA 11t

2 f s~ t !
21D , ~52!

F~ t !5
t21

t11 S 12
2At

ut21uA
11t

2 f s~ t !
21D ~53!

for tÞ1 and k~1!51, F~1!50.
We prove this assertion in the Appendix.~It should be emphasized thatk and F are real

analytic although the last formulas involve 1/ut21u, see the Appendix.! From this lemma we get
For every monotone Riemannian metric (43), f s(1)51, on the manifold of completely en

tangled states there exists exactly one Hermitian metric (32) satisfying the condition HS suc
the real part of the induced Hermitian metric is just the given monotone metric. For a given fs the
Hermitian metric and the corresponding connection form are obtained from (52) and (53).

The obtained connection we call the connection associated to the monotone Riem
metric. For the Bures metric we return to the Hilbert–Schmidt metric and the connection a
calledageo.

Since we used only certain properties of operator monotone functions this assertion wo
true for a larger class of metrics, but we will not deal with this problem.
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Although the condition HS seems to be natural, perhaps a short comment would be
while. The induced Riemannian metrics are obtained, essentially, by taking the real part
Hermitian metric of horizontally lifted vectors. But, because of HS, this is the same as the rea
of the Hilbert–Schmidt metric. Forgetting for a moment about the underlying Hermitian me
which forced horizontality, we can take the following point of view: The monotone metrics
obtained from the originally given Hilbert–Schmidt metric similarly to the Bures metric~Sec. IV!
whereas the deviation from the Bures metric is caused by some constraints on the purifyin

VIII. EXAMPLES

At first we look at curves of density operators satisfying a von Neumann equation

i %̇5@h,%#, h5h* , ḣ50 ~54!

and their lifts. We may think ofhPB(H) as of a given Hamiltonian and of the curve parame
t, as time. This interpretation is not obligatory:h may be the generator of any one-parame
group. ~The parametert should not be confused with the use of the same letter as a du
variable in several functions likef, k, r, F.! To fix a solution of~54!, we start at an initial time,t in ,
with an initial density operator% in . The solution may be written

% t5ut* % inut , utªexpi ~ t2t in!h. ~55!

Now a general liftwt is polar decomposed,wt5A% tv t , according to~9!.
Our aim is to prove the following:Given a connection form and an initial% in at tin there is

a t-independent Hermitian h˜ such that

utv t5expi ~ t2t in!h̃ ~56!

implies horizontality of wt . At first we see from~55! and ~56! the validity of a Schro¨dinger
equation inW,

iẇ5Hw, Hwªhw2wh̃. ~57!

By the help of our menagerie of equations it is not particularly difficult to prove the state
above and to obtain an expression forh̃. At first let us multiply~57! by w* from the right. By~30!

the condition for horizontality is in equatingiẇw* with r (R/L) i %̇. Now ~54! yields

r ~R/L!~h%2%h!5h%2wh̃w* .

This equation is sufficient to guarantee horizontality. Nowwh̃w* can be computed by~56! to
ut* A% inh̃A% inut . Therefore, our horizontality condition is the Ad-transform withut* of the equa-
tion

r ~Rin /Lin!~h% in2% inh!5h% in2A% inh̃A% in,

where R and L att5t in is indexed by in. In other words, if we chooseh̃ t-independent andv
according to~56!, we can satisfy the horizontality condition.

To get a uniqueh̃, we require the support ofh̃ to be smaller than that of% in . Finally, with the
help of ~28!, we get the expression

h̃5~AR/Lr ~L/R!1AL/Rr ~R/L!!h, t5t in . ~58!

Let us consider a solution~55! of ~54! from t in to tout. Then woutwin* is a gauge invariant.Its
trace inH,
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~win ,wout!5~win ,@expi ~ tout2t in!H#win!5Tr A% inA%outexp~ i ~ t in2tout!h!exp~ i ~ tout2t in!h̃!,
~59!

may be called arelative geometric phase. For pure states that object has been introduced in R
38. These authors called it the ‘‘non-cyclic geometric phase.’’ One may think of shortcuttin
in- and the out-state to a closed curve by a Fubini Study geodesic arc. Whether one has a
interpretation in our much more general case remains an open question.

For a cyclic solution of~54!, i.e., % in5%out, tcycle5tout2t in , the expressionwoutwin* is a
~pointed! holonomy invariant, i.e., it depends on the choice of% in . To change the in-state of ou
cyclic curve one has to perform aut-transformation. Consequently,all eigenvalues of woutwin* are
(absolute) holonomy invariants. of our cyclic curve. They are encoded in the traces

Tr ~woutwin* !m5Tr @% in exp~2 i t cycleh! exp~ i t cycleh̃!#m, ~60!

where exp(2itcycleh) commutes with% in .
There are a few examples where one can become more explicit. One of them is inadding

noise to a curve of pure states pt . In this important example one can study the influence
‘‘noise’’ on the geometric phase, and the behavior of gauge and holonomy invariants in co
from the interior to the extreme boundary of the cone of unnormalized density operators. F
purpose we fix two positive real numbers,a andb, and consider the curve of density operators%,

%5ap1b1, p5uc&^cu, ^c,c&51. ~61!

a1b is a simple andb, if n denotes the dimension ofH, a (n21)-fold eigenvalue of%. c, p and
% depend on a parametert, but we will not suppose a von Neumann equation.

Remark:The line element of this curve with respect to the metric induced from~32! is

ds25
2a~12t!

tk~1/t!1k~t!
dsBures

2 , tª
b

a1b
,

wheredsBures
2 denotes the Bures line element of the curve of pure statespt . h

All t-derivations will be indicated by a dot, in particular

%̇5a ṗ, ṗ5 ṗp1pṗ, pṗp50.

%̇ belongs toT'. As an application one calculates

R%ṗ5 ṗ~ap1b1!5~a1b! ṗp1bpṗ.

In this manner one gets

R%~pṗ!5bpṗ, R%~ ṗp!5~a1b! ṗp,

L%~pṗ!5~a1b!pṗ, L%~ ṗp!5b ṗp

and, finally, skipping the index ofL% andR% ,

~L/R!~pṗ!5S a1b

b D pṗ, ~L/R!~ ṗp!5S b

a1b D ṗp.

For instance,ṗp and ṗp are eigenvectors of LR with the eigenvalue (a1b)b. At this stage we
do not suppose a von Neumann equation~54! but rely on~31!. From the last equation andF(t)
52F(1/t), we get
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F~L/R! ṗ5FS b

a1b D ~ ṗp2pṗ!.

Hence, in solving~31! with ~61! we are faced with an equation

v̇v* 5
1

2

a

A~a1b!b
FFS b

a1b D1
Aa1b2Ab

Aa1b1Ab
G ~pṗ2 ṗp!, ~62!

which may be rewritten as

v̇* 5v* ~12m!~pṗ2 ṗp!, m5
1

2

a

A~a1b!b
FFS b

a1b D1
a12b

a G . ~63!

Can we go byb→0 to the pure states? A necessary condition is

F~0!521

or, equivalently,r (0)50. To be sufficient we additionally need the existence of

kª lim
b→0

m5 lim
l→0

11F~l!

2Al
5 lim

l→0
l21/2r ~l!. ~64!

Then the limitb→0 can be performed in~62!:

~vv̇* !pure5~12k!~pṗ2 ṗp!. ~65!

With ageo, or, more generally, withs.1/2 in r (l)5ls/(11ls), we getk50. With k50 we
obtain the Berry phase for pure states.

Indeed, imposinĝc,ċ&50 a la Berry9 and Fock27, we findv̇* c1v* ċ50 from ~63!. Hence,
with k50, the vectorv* c is t-independent. This yieldsw5uc&^wu, ẇ50. It then follows

Tr ~woutwin* !m5^c in ,cout&
m.

This is themth power of the Berry phase, because we had supposed the validity of Be
transport condition. Remark that this goes not through ifkÞ0 or if, as foracan, ~64! does not exist.

Something more can be said if~61! satisfies a von Neumann equation~54!. Computingh̃ with
this assumption by the help of~58! ends up with

h̃5h1m@~12pin!hpin1pinh~12pin!#. ~66!

Looking at h̃ as a block matrix with respect topin and 12pin , the deviation fromh is in
multiplying the off-diagonal blocks bym. If ~64! exists andk50 then the off-diagonal blocks
become zero at the pure state limit.

ACKNOWLEDGMENTS

The authors would like to thank P. M. Alberti, C. Crell, and M. B. Ruskai for valua
remarks. Our particular thanks go to De`nes Petz and Gerd Rudolph for enlightening and help
discussions. J.D. is grateful to H. B. Rademacher for valuable advice. The authors gra
acknowledge a stay at the ‘‘Stefan Banach International Mathematical Center,’’ Warszaw
one of us~A.U.! would like to thank the ‘‘Erwin Schro¨dinger International Institute for Math
ematical Physics,’’ Vienna, and the ‘‘1997 Elsag-Bailey – I.S.I. Foundation research meeti
quantum computation,’’ Torino, where part of the research was done.
                                                                                                                



l

t

d

,

ot

3266 J. Math. Phys., Vol. 40, No. 7, July 1999 J. Dittmann and A. Uhlmann

                    
APPENDIX: PROOF OF THE LEMMA OF SECTION VII

Every self-transposed operator monotone functionf s with f s(1)51 has a unique integra
representation

f s~ t !5m~$0%!
11t

2
1E

(0,1]

11x

2 S t

t1x
1

t

tx11D dm~x!

5
11t

2
1E

(0,1]
H 2

11t

2
1

11x

2 S t

t1x
1

t

tx11D J dm~x!

5
11t

2
2~12t !2E

(0,1]

x~ t11!

2~ t1x!~ tx11!
dm~x!, ~A1!

where m is a normalized positive Radon measure on@0,1#, see Ref. 3. If the measure is no
concentrated at 0, the last integral is strictly positive for alltPR1 . Its positive root, for the time
being denoted byt, is a real analytic function. Hence, every such functionf s can be represente
as

f s~ t !5
11t

2
2~ t21!2t~ t !2 ~A2!

with a certaint, positive or trivial. Therefore, (11t)/22 f s(t) has exactly two real analytic roots

d1~ t !5~ t21!t~ t !, d2~ t !52~ t21!t~ t !,

or is vanishing. The self-transposeness off s implies t(1/t)5Att(t) and both roots fulfill the
condition~49!. As explained in Sec. VII, a solution fork of our problem corresponds to such a ro
d, which leads via~50! to F(t),1. We infer: If selecting the rootd1 , the conditionF(t),1, t
.0, is equivalent tof s(t).1/2 for all t.1. Becausef s is monotone increasing andf s(1)51 the
latter inequality is true. On the other hand,F cannot fulfill F(t),1 for all t.1 if the rootd2 is
chosen, exceptd250. Otherwise we could concludef s(t).t/2 for all t.1. But the self-
transposeness effectsf s8(1)51/2 and f s must be concave. Therefore,dªd1 is the only real
analytic root leading to an appropriateF. Inserting

d~ t !5~ t21!t~ t !5
t21

ut21uA
11t

2
2 f s~ t !, d~1!50, ~A3!

into formulas~50!, ~51! yields ~53! and ~52!.

1D. Petz, Linear Algebr. Appl.244, 81 ~1996!.
2D. Petz and C. Sudar, J. Math. Phys.37, 2662~1996!.
3F. Kubo and T. Ando, Math. Ann.246, 205 ~1980!.
4W. Donoghue,Monotone Matrix Functions and Analytic Continuation~Springer, Berlin, 1974!.
5A. S. Holevo,Probabilistic and Statistical Aspects of Quantum Theory~North-Holland, Amsterdam, 1982!.
6R. S. Ingarden, H. Janyszek, A. Kossakowski, and T. Kawaguchi, Tensor37, 105 ~1982!.
7M. Ohya and D. Petz,Quantum Entropy and Its Use, Texts and Monographs in Physics~Springer, Berlin, 1993!.
8A. Uhlmann, Rep. Math. Phys.24, 229 ~1986!.
9M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 ~1984!.

10B. Simon, Phys. Rev. Lett.51, 2167~1983!.
11Y. Aharonow and J. Anandan, Phys. Rev. Lett.58, 1593~1987!.
12J. Anandan and L. Stodolsky, Phys. Rev. D35, 2597~1987!.
13A. Uhlmann, Lett. Math. Phys.21, 229 ~1991!.
14A. Uhlmann, in Quantum Groups and Related Topics, edited by R. Gieleraket al. ~Kluwer, Dordrecht, 1992!, pp.

267–274.
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In this paper we point out a close connection between the Darboux transformation
and the group of point transformations which preserve the form of the time-
dependent Schro¨dinger equation~TDSE!. In our main result, we prove that any pair
of time-dependent real potentials related by a Darboux transformation for the
TDSE may be transformed by a suitable point transformation into a pair of time-
independent potentials related by a usual Darboux transformation for the stationary
Schrödinger equation. Thus, any~real! potential solvable via a time-dependent
Darboux transformation can alternatively be solved by applying an appropriate
form-preserving point transformation of the TDSE to a time-independent potential.
The pre-eminent role of the latter type of transformations in the solution of the
TDSE is illustrated with a family of quasi-exactly solvable time-dependent anhar-
monic potentials. ©1999 American Institute of Physics.
@S0022-2488~99!00207-8#

I. INTRODUCTION

A considerable amount of research has been devoted over the past few years to th
solution of the time-dependent Schro¨dinger equation~TDSE! in 111 dimensions. Several modi
fications of the celebrated Darboux transformation for the stationary Schro¨dinger equation,1,2 have
been proposed in this respect in the literature. Matveev and Salle showed that the usual D
transformation for the stationary Schro¨dinger equation could also be applied to the TDSE with
time-dependent potential.3 An equivalent approach was followed by Bluman and Shtelen in Re
who considered a nonlocal transformation which is precisely the inverse map of the usual Da
transformation. The Darboux transform of a time-dependent potential is in general a com
valued function.~The explicit conditions for the resulting potential to be real-valued appear
recent paper by Bagrov and Samsonov.5! For this reason, several generalizations of the Darb
transformation mapping real potentials to real potentials have been proposed in the literatu
best known of these generalizations is the binary Darboux transformation described in R
which is in fact one of the main tools for finding exact solutions of integrable equations.

A seemingly unrelated method of constructing exact solutions of the TDSE which has p
remarkably successful is based on the use of point transformations which preserve the form
TDSE. The idea goes back to the work of Leach on the time-dependent harmonic oscil6

arising, e.g., in the study of the motion of charged particles in a Paul trap.7 The method was
subsequently extended by Bluman8,9 and Ray10 to obtain exact solutions of the TDSE for
quadratic potential with arbitrary time-dependent coefficients. The technique has also been
to time-dependent harmonic oscillators with a repulsive barrier,11 and to anisotropic time-
dependent harmonic potentials in 211 dimensions.12
32680022-2488/99/40(7)/3268/7/$15.00 © 1999 American Institute of Physics
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The main purpose of this paper is to characterize the most general time-dependent r
tential whose Darboux transform is real. A partial result along these lines for potentials ra
decreasing at spatial infinity was mentioned in Ref. 13. As noted in this reference, the
potentials are of limited interest regarded as solutions of the KP equation. However, potent
this type~and, more generally, of the type considered in this paper! are interesting from the poin
of view of exactly solving the time-dependent Schro¨dinger equation, as underscored by the rec
work of Bagrov and Samsonov.5,14

In this paper we show that the Darboux transformation for the TDSE is in fact closely re
to the point transformation method. To this end, in Sec. II we briefly review the Darboux t
formation and the point transformations preserving the form of the TDSE, applying the lat
construct a time-dependent anharmonic oscillator potential admitting a certain number of al
ically computable wave functions. In Sec. III we derive the main results of our paper, proving
any time-dependent real-valued potential for which the Darboux transformation yields a
potential may always be mapped to a time-independent potential by a form-preserving
transformation of the TDSE. Moreover, the Darboux transformation for any such potent
equivalent to a Darboux transformation for its associated time-independent potential, follow
the inverse of the corresponding point transformation. Finally, Sec. IV is devoted to our con
ing remarks and related open questions.

II. GENERAL BACKGROUND

In this section we summarize the basics of the Darboux and the form-preserving point
formations for the TDSE. Following Bagrov and Samsonov,5 we take as the starting point of th
Darboux transformation for the TDSE the intertwining relation

L~ i ] t2H0!5~ i ] t2H1!L, ~1!

where

Hi52]x
21Vi~x,t !, i 50,1, ~2!

andL is a first-order differential operator of the form

L5L1~x,t !]x1L0~x,t !.

It follows immediately from the intertwining relation~1! that if c0 solves the TDSE with Hamil-
tonianH0 , thenc15Lc0 will solve the TDSE with HamiltonianH1 . It is also easily verified that
the intertwining relation~1! will be satisfied if and only if

L5L1•~]x1xx!, V15V012xxx1 i ~ logL1! t , ~3!

wheree2x is a solution of the TDSE with the potentialV0 , andL15L1(t) is an arbitrary function.
The transformed potentialV1(x,t) is a real-valued function if and only if

Im xxxx50 ~4!

and

uL1u5expF22E
t0

t

Im xxx~x,s!dsG . ~5!

Without loss of generality, we shall assume from now on thatL1 is real and positive, and is
therefore given by the right-hand side of~5!.

Just as in the time-independent case, the Darboux transformation for the TDSE can
verted. Indeed, ifc1 is a solution of the TDSE with potentialV1 given by ~3!, the function
                                                                                                                



.

d

ients.

urely
s

3270 J. Math. Phys., Vol. 40, No. 7, July 1999 Finkel et al.

                    
c0~x,t !5
e2x~x,t !

L1~ t ! F E
x0

x

ex~y,t !c1~y,t !dy1c0~ t !G ~6!

with c0(t) given by

c0~ t !5 iL 1~ t !E
t0

t ex~x0 ,s!

L1~s!
~c1,x~x0 ,s!2xx~x0 ,s!c1~x0 ,s!!ds

solves the TDSE with potentialV0 . If the factorL1 is taken as unity, the mappingc1°c0 given
by ~6! reduces to the nonlocal transformation considered by Bluman and Shtelen in Ref. 4

The most general point transformation mapping the TDSE

~ i ] t1]x
22V0~x,t !!c0~x,t !50 ~7!

for any given potentialV0 into another TDSE with potentialV̄0 for the transformed wave function
c̄0 is defined by

x̄5
x

C~ t !
1B~ t !, t̄ 5E

t0

t ds

C2~s!
,

c0~x,t !5uCu21/2expF i

4
S Ċ

C
x222ḂCx1A~ t ! D G c̄0~ x̄, t̄ !, ~8!

V0~x,t !5
1

C2 V̄0~ x̄, t̄ !2
C̈

4C
x21S CB̈

2
1ḂĊD x2

1

4
~C2Ḃ21Ȧ!,

whereA, B, andCÞ0 are real-valued functions oft. Note that square-integrability is preserve
under the transformation~8!. As remarked before, the point transformation~8! has been employed
to construct exact solutions of the TDSE for quadratic potentials with time-dependent coeffic
The interest of the transformation~8! is not limited, however, to quadratic~or exactly solvable!
time-dependent potentials, as evidenced by the following example:

Example:Consider the two-parameter family of anharmonic oscillator potentials given by15–17

V̄~ x̄!5 x̄612a x̄41~a224n23!x̄2, ~9!

whereaPR andnPN. The sextic potential~9! is a well-known example of the class ofquasi-
exactly solvablepotentials, for which a certain subset of the spectrum can be computed by p
algebraic means; see Ref. 18 for an extensive review of the field. The firstn11 even bound state
of the potential~9! are of the form

f~ x̄!5expF2
1

4
x̄42

a

2
x̄2Gp~ x̄2!, ~10!

where p(s) is a polynomial ins of degree less than or equal ton which can be computed
algebraically. The point transformation~8! with A5B50 andC5v21/2, v5v(t) being a posi-
tive function, leads directly to the potentialV(x,t) given by

V~x,t !5v4x612av3x41S a224n232
3v̇222vv̈

16v4 Dv2x2. ~11!

The TDSE with potential~11! possessesn11 square-integrable solutions of the form
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c~x,t !5v1/4expF2 i S v̇

8v
x21EE

t0

t

v~s!dsD Gf~Avx!, ~12!

wheref( x̄) is an algebraic eigenfunction of the form~10! with eigenvalueE of the Hamiltonian

H̄52] x̄
21V̄~ x̄!.

The potential~11! thus provides a natural extension of the notion of quasi-exact solvability to
time-dependent case, in the sense that the associated TDSE admits a certain number of s
which can be determined algebraically. In particular, note that ifv(t) is of the form

v0~ t !5b@g1~g22~a224n23!b!1/2sin~4Abt1d!#21,

with dPR, b.0 andg2.(a224n23)b.0, the potential~11! reduces to a harmonic oscillato
with a periodic-in-time anharmonic perturbation, namely,

V0~x,t !5v0
4~ t !x612av0

3~ t !x41bx2.

III. THE REALITY CONDITION AND THE FORM-PRESERVING POINT
TRANSFORMATIONS

In this section we prove the main results of our paper, starting with the following theor
Theorem: Let e2x be a solution of the TDSE with potentialV0(x,t). If x satisfies the reality

condition ~4!, then V0(x,t) may be mapped to a time-independent potentialV̄0( x̄) by a point
transformation~8!.

Proof: Let x05Rex, x15Im x. The TDSE fore2x is then equivalent to the pair of rea
equations given by

x0,t1x1,xx22x0,xx1,x50, ~13!

V0~x,t !5x1,t2x0,xx2x1,x
2 1x0,x

2 . ~14!

If the reality condition~4! holds, i.e., ifx1 is of the form

x15a~ t !x21b~ t !x1c~ t !, ~15!

Eqs.~13! and ~14! reduce to

x0,t22~2ax1b!x0,x12a50, ~16!

V0~x,t !5~ ȧ24a2!x21~ ḃ24ab!x1 ċ2b21x0,x
2 2x0,xx . ~17!

The general solution of Eq.~16! is of the form19

x0522E
t0

t

a~s!ds1FS e4* t0

t a~s!dsx12E
t0

t

b~s!e4* t0

s a~r !drdsD , ~18!

whereF is an arbitrary real-valued function. Substituting this expression into~17!, we immedi-
ately conclude that the transformation~8! determined by

C~ t !5e24* t0

t a~s!ds, B~ t !52E
t0

t b~s!

C~s!
ds, A~ t !524c~ t !, ~19!

maps the potentialV0(x,t) into the time-independent potential
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V̄0~ x̄!5F82~ x̄!2F9~ x̄!. Q.E.D.

Thus, any potential for which the Darboux transformation yields another real-valued pot
may be mapped into a time-independent potential by a form-preserving point transformatio
easy to check that the transform ofe2x under the point transformation defined by~8!, ~15!, ~18!,
~19! is e2F, which is therefore an eigenfunction of the time-independent potentialV̄0( x̄). The next
Corollary shows that the usual Darboux transform of the associated time-independent po
generated byF is related to the Darboux transform of the original potential by the same p
transformation.

Corollary: Let e2x5e2x02 ix1 be a solution of the TDSE with potentialV0(x,t), with x
satisfying the reality condition~4!. LetD andT denote, respectively, the Darboux transformati
~3! and the point transformation~8! defined byx via Eqs. ~15!, ~18!, ~19!. Let D̄ denote the
Darboux transformation generated byF. Then

T +D5D̄ +T. ~20!

Remark:This result may be easily visualized with the help of the following commuta
diagram:

V0~x,t ! →
T

V̄0~ x̄!5F822F9

D↓ ↓D̄

V1~x,t ! →
T

V̄1~ x̄!5F821F9

.

Proof: The proof follows from a straightforward application of the appropriate formulas
the transformed potentials and wave functions. Q.E

The above Corollary shows, in particular, that the potentialV1(x,t) is the image under the
inverse of the form-preserving point transformationT determined by~8!, ~15!, ~18!, ~19! of a
time-independent potentialV̄1( x̄). Exact solutions of the TDSE with potentialV1 can therefore be
obtained simply by applying the point transformationT21 to solutions of the TDSE for the
time-independentpotentialV̄1 .

Another important consequence of the above Corollary is that, if the potentialV̄0 satisfies~for
instance! the condition

E
2`

`

uV̄0~ x̄!u~11ux̄u!dx̄,`, ~21!

then the time-dependent Darboux transformation~3! preserves the square-integrability of eige
functions. Indeed, ifV̄0 verifies ~21! then the time-independent Darboux transformationD̄ deter-
mined by a nonvanishing eigenfunction ofV̄0 preserves square integrability.20,21 The result stated
above then follows easily from~20!, the invertibility of T, and the fact that the form-preservin
point transformationT always preserves square integrability.

Example:It is straightforward to verify that all the examples of time-dependent poten
appearing in Refs. 4, 5, 14 which are solvable by means of a Darboux transformation are
the images of certain exactly solvable time-independent potentials under suitable form-pres
point transformations.

For instance, the free-particle potentialV0(x,t)50 admits a one-parameter family of solution

cl~x,t !5~11t2!21/4expF i

4 S tx2

11t2 14l arctant D GQl~x/A11t2!

satisfying the reality condition~4!, whereQl is a ~real-valued! solution of Weber’s equation
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Ql9~y!2S y2

4
1l DQl~y!50 ~22!

~see Ref. 14, Eq.~18!!. By the Theorem at the beginning of this section, it follows thatV0 is
related to a certain time-independent potentialV̄0 by a point transformation~8!. Indeed, in this
case we have

x152Im logcl52
tx2

4~11t2!
2l arctant,

so from ~19! it follows that

C5A11t2, B50, A54l arctant. ~23!

Substituting these formulas into~8! we find that

x̄5
x

A11t2
~24!

and

V̄0~ x̄!5
x̄2

4
1l ~25!

is a harmonic oscillator potential.
For all nPN, let Hn denote thenth Hermite polynomial. The functions22

Qn11/2~y!5 i ney2/4Hn~ iy /& !

are real-valued solutions of Weber’s equation~22! with l5n1 1
2 without zeros on the positive rea

semiaxis.23 Hence, for allnPN the Darboux transformation determined by the eigenfunct
cn11/2 of V0 is well-defined on the positive real semiaxis. From Eqs.~3!, ~5! and the definition of
cl , it follows that the transformed potentialV1 is given by

V1~x,t !52x0,xx522@ logQn11/2~ x̄!#xx5
2

11t2 S Qn11/282 ~ x̄!

Qn11/2
2 ~ x̄!

2
x̄2

4
2n2

1

2D ,

wherex̄ is given by~24!. Using standard identities for the derivatives of the Hermite polynomi
the reader can easily verify that this formula forV1(x,t) agrees with the corresponding expressi
given in Ref. 14. As stated in the Corollary, the potentialV1(x,t) is related by the point transfor
mation~8! defined by~23! to a time-independent potentialV̄1( x̄) obtained fromV̄0( x̄) by applying
a time-independent Darboux transformationD̄. From ~18! and the definition ofcl , it easily
follows that the functionF( x̄) generating the Darboux transformationD̄ is given by

F~ x̄!52 logQn11/2~ x̄!,

and therefore

V̄1~ x̄!5F82~ x̄!1F9~ x̄!52
Qn11/282 ~ x̄!

Qn11/2
2 ~ x̄!

2
x̄2

4
2n2

1

2
.

It is straightforward to check that the potentialsV1(x,t) andV̄1( x̄) are indeed related by the poin
transformation~8! determined by~23!.
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IV. CONCLUSIONS

In this paper, we have shown that the Darboux transformation for the time-dependent S¨-
dinger equation is essentially equivalent to the usual Darboux transformation for the stat
Schrödinger equation. Any~real! potentialV1(x,t) solvable via a time-dependent Darboux tran
formation starting from a real potentialV0(x,t) can alternatively be solved by applying a form
preserving point transformation to a time-independent potentialV̄1( x̄). As a matter of fact, al-
though a large number of methods and papers have been devoted in recent times to th
solution of the TDSE,24 most of the associated time-dependent Hamiltonians either are not o
standard form~2!, or are also obtainable from a time-independent Hamiltonian by a fo
preserving point transformation.

The interest of the Darboux transformation for the TDSE as a useful method to obtain
~quasi-!exactly solvable time-dependent potentials is therefore very limited. It should be n
however, that the Darboux transformation for the TDSE could still render helpful results i
starting potential is not a real-valued function but only the transformed potential is real.25 As a
final remark, we would like to stress that the Darboux transformation may still be usef
construct exact solutions to real-valued diffusion equations of the Fokker–Planck-type, for
no reality condition as Eq.~4! must be considered.
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Lifetimes of impurity states in crossed magnetic
and electric fields

Sébastien Gyger and Philippe A. Martin
Institut de Physique The´orique, Ecole Polytechnique Fe´dérale de Lausanne, CH-1015,
Lausanne, Switzerland
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We study the quantum dynamics of localized impurity states created by a point
interaction for an electron moving in two dimensions under the influence of a
perpendicular magnetic field and an in-plane weak electric field. All impurity states
are unstable in presence of the electric field. Their lifetimes are computed and
shown to grow in a Gaussian way as the electric field tends to zero. ©1999
American Institute of Physics.@S0022-2488~99!01807-1#

I. INTRODUCTION

A detailed understanding of the dynamics of electrons in two dimensions~2D! in crossed
magnetic and electric fields and in the presence of impurity scattering plays an important r
the context of the quantum Hall effect and transport theory.

We consider an electron of chargee and massm confined to the two-dimensional plane~x,y!
~without boundaries!. A uniform magnetic field of magnitudeB acts perpendicular to the plane an
an electric field of magnitudeE acts in thex direction. Moreover, an impurity located at the orig
scatters the electron with a short-range potentialV(x,y). WhenE50, the electron remains local
ized in the course of the time, both for the classical and the quantum dynamics. Class
modeling for instance the interaction with the impurity by a hard disk of radiusa, the electron
accomplishes the usual circular cyclotronic motion outside of the disk or bounces aroun
surface of the disk by a succession of segments of cyclotronic motion. Quantum mechanica
impurity potential, considered as a short-range perturbation of the pure magnetic problem~the
Landau Hamiltonian!, will preserve the essential spectrum~i.e., the infinitely degenerated Landa
levels! and create at most point spectrum in-between these levels~and possibly below them ifV is
attractive!.

When the electric field is applied, the situation changes. In the classical case, the cente
cyclotronic orbit acquires a constant drift of velocityE/B in they direction: the trajectories aroun
the disk get distorted by the acceleration imposed by the electric field and may eventually
the disk. In the quantum case, the Hamiltonian of the homogeneous system with the c
magnetic and electric fields has an absolutely continuous spectrum onR and this spectrum will
remain present after the introduction of the short-range impurity potential, in view of ge
theorems on the stability of the absolutely continuous spectrum under such perturbation
interesting result has recently been obtained for the classical dynamics: for nonzero bu
ciently small electric field, there exists a set of positive Lebesgue measure of trajectorie
remain trapped near the disk.1 The corresponding quantum mechanical question is whether p
spectrum can survive the switching on of the electric field and remain embedded into the co
ous spectrum, provided that this field is sufficiently weak. To our knowledge there is no de
answer to this question at the moment. The existence of an appreciable domain of the c
phase space supporting localized trajectories may be an argument in favor of a corresp
localized quantum state, but quantum interferences and tunneling phenomena may invalid
anticipation.

In this article, we bring a partial contribution to this problem by considering a point impu
acting as ad-potential. This model has been introduced by Prange2 in relation with the quantum
Hall effect~with the electron in a finite strip!. Our contribution consists of a proof that all localize
32750022-2488/99/40(7)/3275/8/$15.00 © 1999 American Institute of Physics
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states created by the impurity are turned into resonances and of an exact determination
lifetimes, shown to be of the order of exp„(uBu/ueu\)(D/E)2

… asE→0 whereD is the distance of
the resonance energy to the closest Landau level~for a more precise formula, see Sec. IV!.
However, if one allows for an impurity interaction which is not of potential form~i.e., an integral
kernel in configuration space!, one can have a point spectrum embedded into the continuum
give an example with a rank one perturbation~Sec. V!. A closely related analysis by E. H. Haug
and J. M. J. van Leeuwen3 will be discussed in our concluding remarks.

II. THE MODEL

We denoteH0 the 2D Hamiltonian of the electron in the crossed fields with potential ve
A5(0,Bx) in the Landau gauge

H05
1

2
px

21
1

2
~py2x!22mx, px52 i

]

]x
, py52 i

]

]y
. ~1!

Here H0 is written in dimensionless variables by choosingA\/ueBu as the unit of length and
\ueBu/m as the unit of energy, withm5EAm2/ueB3u\. Sincepy commutes withH0, there is a
direct integral decomposition ofH05* %dk Hk

0, with

Hk
052

1

2

d2

dx2 1
1

2
~k2x!22mx, kPR. ~2!

The spectral representation ofH0 is explicitly given in terms of the generalized eigenfunction

~xyunk&5
1

A2p
eikyun~x2k2m!, n50,1,..., kPR, ~3!

and spectral branches

en~k!5S n1
1

2D2mk2
m2

2
. ~4!

In ~3!, un are the usual normalized eigenfunctions of a harmonic oscillator of frequency equ
one,

un~x!5S 1

Ap2nn!
D 1/2

e2~1/2!x2
Hn~x!, ~5!

with Hn thenth Hermite polynomial. FormÞ0, the branchesen(k) are linear functions ofk, thus
without points of constancy, implying that the spectrum ofH0 is absolutely continuous onR.4 If
m50, en(k)5n1 1

2 are constant, the spectrum reduces to the infinitely degenerated Landau
andk labels the degeneracy in the corresponding subspaces.

The total HamiltonianH is obtained by formally adding toH0 the singular potentialV(x,y)
5ld(x,y), whered(x,y) is the two-dimensional Dirac function. It is well known that this si
gularity is too strong in 2D and a renormalization of the coupling constant is needed.5–7 Introduc-
ing the resolventsRz5(H2z)21 andRz

05(H02z)21, zPC, and solving the resolvent equatio
Rz5Rz

02Rz
0VRz leads to

Rz5Rz
02

Rz
0u00)~00uRz

0

g~z!
, ~6!

g~z!5l211~00uRz
0u00!, ~7!
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and from the spectral decomposition~3! of H0

~00uRz
0u00!5 (

n50

` E dk
u~00unk!&u2

en~k!2z
. ~8!

The n-summation in~8! diverges logarithmically sinceen(k);n, n→`. Following the same
procedure as in Ref. 7, it can be made finite by substracting out the diverging part and com
it with the coupling constant@using also the normalization of the functions~3!#

g~z!5 lim
N→`

S l211
1

2p (
n50

N
1

n1 1
2
D 1 lim

N→`
(
n50

N E dk u~00unk&u2S 1

en~k!2z
2

1

n1 1
2
D . ~9!

In the first term of~9! one choosesl5lN,0 be N-dependent and negative, and requires t
lN→0 in such a way that limN→`(lN

211(1/2p)(n50
N @1/(n11/2)#)5l r , wherel r is a finite

renormalized coupling constant. The limit of the second term in~9! exists~see Appendix A! so
that the model is defined by its resolvent~6! setting

g~z!5l r1 (
n50

` E dku~00unk&u2S 1

en~k!2z
2

1

n1 1
2
D . ~10!

Its spectrum will be determined by the nature of the singularities ofRz asz approaches the rea
axis. Whenm50, the model reduces to that studied in Ref. 7:

g~z!um505l r1
1

2p (
n50

` S 1

~n1 1
2!2z

2
1

n1 1
2
D ~11!

has one zeroe j in between each of the Landau levels,j 11/2,e j, j 13/2, j 50,1,..., and a zero
eg,1/2 lying below all Landau levels. These zeros give poles inRzum50 that correspond to
nondegenerate eigenvaluese j of Hum50 with normalized eigenvectorsc j ~impurity states!. As z
→e j , g(z)um50;aj (z2e j ) and (e j2z)^c j uRzum50uc j&→1. From~6! this determines the coeffi
cient aj to be

aj5u~00uRe j

0 um50uc j&u2. ~12!

The poles coming fromRz
0um50 correspond to the Landau levels that remain unaffected by

presence of the impurity~stability of the essential spectrum!.

III. WEAK ELECTRIC FIELD ASYMPTOTICS

In presence of the electric field, the boundary values ofg(z) asz5z6 ih approaches the rea
axis are obtained by an application of the Cauchy principal value formula~writing now explicitly
the m dependence in the arguments of the functions!

lim
h→01

g~z6 ih,m!5a~z,m!6 ib~z,m! ~13!

with

a~z,m!5l r1 (
n50

`

PE dku~00unk&u2S 1

en~k!2z
2

1

n1 1
2
D , ~14!

b~z,m!5
p

m (
n50

`

u~00unkn~z,m!&u2, ~15!
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wherekn(z,m) solvesen(k)5z, i.e.,

kn~z,m!5
1

m S n1
1

2
2z2

m2

2 D . ~16!

The functionsa~z,m! andb~z,m! will determine respectively the spectral shifts and the lifetimes
the impurity states asm→0. From now on we focus attention on thej th impurity state by studying
these functions in a neighborhood of the unperturbed energye j that does not contain the neare
Landau levels. Atm50, a(z,0) reduces to the expression~11! and vanishes ate j with
]a(z,0)/]zuz5e j

.0: the implicit function theorem ensures then that form small, a~z,m! has a
nearby zero atz5e j (m) and

a~z,m!5aj~m!„z2e j~m!…1O~„z2e j~m!…2!, aj~m!.0 ~17!

The spectral shifte j (m)2e j5e j
(1)m1O(m2) can itself be expanded inm and aj (m)5aj

1O(m) where aj has the value~12!.~One can verify that the linear correctione j
(1)m is also

obtained by formally applying the regular perturbation theory to the eigenvaluee j when the
electric field is switched on!.

We study now asympotic behavior ofb~z,m! asm→0 with z in a neighborhood ofe j . We
denoteD j5min(ej2(j11/2),j 13/22e j ),1/2 the gap betweene j and the nearest Landau leve
D j can be equal to either quantity depending on the value ofl r . For sake of definiteness assum
in the sequel thatD j5e j2( j 11/2).

Proposition:Setz2m2/25 j 11/21d, 0,d,1/2. Then

b~z,m!5
1

2Ap

2 j

j !

1

m S d

m D 2 j

e2~d/m!2
„11O~m2!…. ~18!

Proof: From ~3!, ~5!, ~15!, and~16! b~z,m! reads

b~z,m!5
1

2Ap

1

m (
n50

`
1

2nn!
e2„~n2 j 2d!/m)2

Hn
2S n2 j 2d

m D . ~19!

The control of these series necessitates an estimate of the Hermite polynomials when the
ment is of the same magnitude as their order. This is provided by the next lemma~proof in
Appendix B!.

Lemma:Let x be any real number not equal to a positive integer. Then there existsm0.0
such that

HnS n2x

m D52nS n2x

m D n

„12r n~m!…, 0,m<m0 ~20!

wherer n(m)>0 andr n(m)5O(m2) asm→0.
The lemma gives the upper bound

b~z,m!< (
n50

`

bn~m!5bj~m!S 11(
nÞ j

`
bn~m!

bj~m! D ~21!

with

bn~m!5
1

2Ap

2n

n!

1

m S n2 j 2d

m D 2n

e2„~n2 j 2d!/m…

2
. ~22!
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For nÞ j , the largest Gaussian factor in the ratiosbn(m)/bj (m) occurs whenn5 j 11. Factorizing
it out, we write these ratios in the form

bn~m!

bj~m!
5

1

m2 e2@~12d!22d2#/m2
cn~m!. ~23!

One checks from~22! and the above definition that thecn(m) are bounded asm→0 andcn(m)
<cn(1);nne2„n21O(n)… for n large. Hence the series(nÞ j

` cn(m) converges and is uniformly
bounded with respect tom, implying with ~21! and ~23! that

b~z,m!<bj~m!„11O~e2c/m2
!… ~24!

for someC.0. On the other hand, one concludes from~19! and the lemma that

b~z,m!>bj~m!„12r j~m!…2, r j~m!5O~m2!. ~25!

Combining~24! and ~25! gives the result of the proposition.

IV. SHAPE OF RESONANCES AND LIFETIMES

The time-dependent decay amplitude^c j u exp(2iHt)ucj& of the j th impurity state under a
weak electric field is given by the Fourier transform of the density of states

r j~z,m!5
1

2ip
lim

h→01

^c j u~Rz1 ih2Rz2 ih!uc j& ~26!

asm→0. One finds from~6!

r j5
1

2ip S f 1 f 2*

a2 ib
2

f 1* f 2

a1 ib D 1r j
05

b

p~a21b2!
R~ f 1 f 2* !1

a

p~a21b2!
J~ f 1 f 2* !1r j

0, ~27!

where all the functions depend on the energyz; r j
0(z,m) is the corresponding density of states

the crossed fields HamiltonianH0, a~z,m! andb~z,m! are the functions previously discussed a

f 6~z!5 lim
h→01

~00uRz6 ih
0 uc j&. ~28!

In view of ~17! and the fact thatb~z,m! tends to zero, the first term in the right-hand side of~27!
behaves as a Lorentzian in a neighborhood ofe j for m small,

b j~z,m!

p@~aj~m!„z2e j~m!…!21b j~z,m!2#
R„f 1~z! f 2* ~z!…;

1
2 G~m!

p@~z2e j !
21„

1
2 G~m!…2#

, ~29!

with

G j~m!52
b j~e j ,m!

aj
. ~30!

In ~29!, we have kept the dominant behavior asm→0 by evaluatingaj (m) and e j (m) at m50
and b~z, m!, f 6(z) at z5e j . The Lorentzian is properly normalized becau
limm→0R„f 1(e j ) f 2* (e j )…5u(00uRe j

0 um50uc j&u25aj by ~12!. The last two terms in~27! remain

bounded forz in a neighborhood ofe j . Moreover, these two terms vanish asm→0 since
limm→0 f 15 limm→0 f 2 is a real quantity and limm→0 r j

0(z,m)50 whenz is in between Landau
levels.
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In ~29!, G(m)5„(t(m)…21 is the inverse lifetime of thej th resonance so that by~30! and~18!
t j (m) has the form

t j~m!5CjmS m

D j
D 2 j

expS D j

m D 2

, ~31!

whereD j5e j2( j 11/2). The analysis and the results are similar ifD j5( j 1 3
2)2e j . The lifetime

of the resonance corresponding to the lowest energy stateeg is found to be tg(m)
5Cgm exp„(1/22eg)/m…

2.

V. CONCLUDING REMARKS

We have shown that all impurity states are delocalized under the influence of an electric
how weak it may be, but with Gaussian long lifetimes. This has to be compared with pure
resonances that have exponentially long lifetimes.8

Here the calculation has been performed with an attractived-potential.~The renormalization
procedure given in Section II requires a negative bare coupling constant!. The repulsive case is
studied in Ref. 3, with a potential with narrow support of diameterd. The infiniten-summations
are convergent, and the authors approximate them by finite sums up to a natural cutoff vN
determined by the ratio ofd to the magnetic length. The result for lifetimes are the same as o
In addition, they investigate current carrying states as well as the semi-classical regime.

The conclude we remark that our results are sensitive to the potential nature of the im
interaction. Consider, for instance, the modelH5H01luf&^fu obtained by adding a rank-on
interaction to the crossed fields Hamiltonian, withf(x,y) a square integrable function onR2,
namely the impurity interaction is represented by the nonlocal separable k
lf(x,y)f* (x8,y8). Energies and lifetimes of resonances are now found from the function

gf~z!5l211^fuRz
0uf& ~32!

in the place of~7! and

bf~z,m!5
p

m (
n50

`

u^funkn~z,m!&u2, ~33!

^nkuf&5 (
n50

` E dx un~x!f̃~x,k!, ~34!

wheref̃(x,k) is the Fourier transform off(x,y) with respect to they coordinate.~Here renor-
malization of the coupling constant is not needed.! Suppose now that

f̃~x,k!50, k>k0.0, ~35!

Then whenm is small enough~say m!D j /k0!, there exists a neighborhood ofe j such that
kn(z,m)>k0 for all n and thusbf(z,m) vanishes whenz is in this neighborhood. This implies tha
the j th impurity state remains an eigenvector ofH with an eigenvalue close toe j embedded in the
continuum. One sees on this example that the interaction has to be sufficiently nonlocal si
the condition~35! the support off(x,y) must extend on the wholey-axis.

APPENDIX A: EXISTENCE OF THE RENORMALIZED MODEL

Introducing~3! in ~10! ~using also parity of the functionun), we split the sum in two terms

(
n50

` E dk uun~2k!u2S 1

en~k2m!2z
2

1

n1 1
2
D 5I 11I 2 , ~A1!
                                                                                                                



ls

3281J. Math. Phys., Vol. 40, No. 7, July 1999 Lifetimes of impurity states in crossed . . .

                    
I 15 (
n50

`
1

~n1 1
2!n

z
E

uku<ng
dk uun~k!u2nzS km2~m2/2!1z

en~k2m!2z D ,

I 25 (
n50

` E
uku>ng

dk
uun~k!u2

en~k2m!2z
2 (

n50

` E
uku>ng

dk
uun~k!u2

n1 1
2

,

with

0,z, 1
4,

1
2,g5122z,1. ~A2!

One sees in the integrand ofI 1 that the fraction

UnzS z1km2m2/2

2z1~n11/2!2mk1m2/2D U,C,`

is bounded uniformly with respect tok and n for uku<ng, JzÞ0. Hence, since theun are nor-

malized, I 1<C (
n50

`

1/(n11/2)nz,`. For I 2 , since 1/uen(k2m)2zu<1/uJzu, it is sufficient to

show that (
n50

`

* uku>ngdkuun(k)u2,`. From the integral representation of the Hermite polynomia9

Hn~y!52n
1

Ap
E

2`

1`

dt~y1 i t !ne2t2, ~A3!

one deduces@using log(11y)<y#

Hn~k!<
2nkn

Ap
E dtS 11U t

kU D
n

e2t2<
2nkn

Ap
E dt enut/kue2t2<2n11knen2/4k2

. ~A4!

Noting thatn sufficiently large (n>n0) and uku.ng, g.1/2 impliese2(k2/2)(12n2/2k4)<e2k2/4,
one finds from~A4!

(
n5n0

` E
uku>ng

dkuun~k!u25
1

2pAp
(

n5n0

`
1

2nn! Euku>ng
dk e2k2

Hn
2~k!

<
1

2pAp
(

n5n0

`
2n

n!
e2~1/2!n2gE

uku>ng
dk e2k2/4k2n

<
8e4

p (
n5n0

`

2nn!e2~1/2!n2g
,`, ~A5!

where the last inequality follows fromukun<n!euku. The series~A5! converges forg.1/2.

APPENDIX B: PROOF OF THE LEMMA

The lemma is true by inspection for the casesn51,2,3. If n>4, one uses the formula~A3!,

HnS n2x

m D52nS n2x

m D n

f n~m!, f n~m!5
1

Ap
E dtS 11

imt

n2xD n

e2t2. ~B1!

The limited Taylor expansion off n(m) aroundm50 gives
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f n~m!511
1

2!
m2f n9~0!1

1

4!
m4f n8888~m̄ !, 0<m̄<m, ~B2!

with

f n9~0!52
n~n21!

~n2x!2 ,

f n8888~m̄ !5
n!

~n24!! ~n2x!4

1

Ap
E dt t4S 11 i

m̄t

n2xD n24

e2t2.

If x is not a positive integer, there existsC1 independent ofn, 0,C1,`, such thatf n9(0)
>2C1 . Moreover, one has forn>4 and using log(11y)<y

u f n8888~m̄ !u<
n!

~n24!! ~n2x!4

1

Ap
E dt t4S 11m̄U t

n2xU D
n24

e2t2

<
n!

~n24!~n2x!4

1

Ap
E dt t4e~n24!m̄utu/un2xue2t2

<C2,`,

with C2 independent ofn and of m̄ in compact sets. This leads to the conclusion of the lemm
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Optimal cloning of pure states, testing single clones
M. Keyla) and R. F. Wernerb)

Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstraße 3,
38106 Braunschweig, Germany

~Received 4 August 1998; accepted for publication 7 April 1999!

We consider quantum devices for turning a finite numberN of d-level quantum
systems in the same unknown pure states into M.N systems of the same kind, in
an approximation of theM-fold tensor product of the states. In a previous paper it
was shown that this problem has a unique optimal solution, when the quality of the
output is judged by arbitrary measurements, involving also the correlations between
the clones. We show in this paper, that if the quality judgment is based solely on
measurements of single output clones, there is again a unique optimal cloning
device, which coincides with the one found previously. ©1999 American Insti-
tute of Physics.@S0022-2488~99!03707-X#

I. INTRODUCTION

According to the well-known ‘‘no-cloning theorem’’1 perfect copying of quantum informatio
is impossible, i.e., there is no machine which takes a quantum system as input and produc
systems of the same kind, both of them indistinguishable from the input. However, from the
of view of practical applications in Quantum Information Theory this Theorem by itself is not
useful, because it only asserts that the cloning task cannot be performedexactly—but then no task
can be performed exactly by real devices. The fundamental importance of the No-Cloning
rem is expressed much better in stronger versions of the Theorem, which also give explicit
bounds on the error made in any attempt to build a cloning device. Some such bounds hav
established, as well.2,3 Even more insight into the cloning problem is given by results show
how to minimize the error, i.e., how to constructoptimal cloning devices.4–8 Other recent related
work can be found in Refs. 9–15.

In this paper we consider cloning devices, which take as input a certain numberN of identi-
cally prepared systems, and produce a larger numberM of systems as output. Again, the clonin
task is to make the output state resemble as much as possible a state ofM systems all prepared in
the same state as the inputs. This variant of the problem is of interest as a ‘‘quantum amp
It also has a better chance of reasonable success than a cloning device operating on sing
systems: In the limit of many input systems the device can make a good statistical estimate
input density matrix and hence produce arbitrarily good clones.

Different variants of this problem arise by different choices of the type of systems and th
of states which should be copied, e.g., pure versus mixed states, or a finite number of states
in a cryptographic protocol. In the present paper we are exclusively concerned with the clon
arbitrary unknown pure states.

A second choice to be made is the precise notion of approximation between the output
of the cloning device and the~inattainable! target state. Apart from technicalities the basic iss
here is whether the full states are compared, or only the one-clone marginals. Approxima
the first sense means that the expectations of all observables, including those testing corr
and entanglement between different clones, are close in the two states being compared.
other hand, approximation in the second sense means closeness of expectations of sing
observables only. Perhaps this second condition has more of the flavor of the No-Cloning

a!Electronic mail: M.Keyl@tu-bs.de
b!Electronic mail: R.Werner@tu-bs.de
32830022-2488/99/40(7)/3283/17/$15.00 © 1999 American Institute of Physics
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rem, since in that theorem, too, the requirement is that each single~!! clone be indistinguishable
from the input.

In Ref. 16 we showed that the pure state cloning problem with all-particle test criterion
unique optimal solution. In this paper we show the same for the single-particle test criterion
that the two optimal cloning devices are actually the same. The difference between the two
may not seem great. However, the result in the present paper required much heavier mathe
machinery, and we believe it to be considerably deeper. The reason is that one-particle test
do not exhaust the linear space ofM-particle observables. In particular, all correlations of t
cloner’s output are ignored by the test, which would make aunigueoptimal solution appear rathe
unlikely. Nevertheless, this is what we prove.

II. STATEMENT OF THE PROBLEM AND MAIN RESULT

Let us start with a precise formulation of the question we are going to consider. First of a
will study throughout this paper onlyd-level systems with arbitrary but finited. Hence the one-
particle Hilbert spaceH we are using isH5Cd. The Hilbert space for the input to the clonin
device is therefore theN-fold tensor productH^ N of H with itself. In fact, because we only
consider tensor powers of pure states as inputs, it suffices to take the subspace ofH^ N spanned by
vectors of the formw ^ N with wPH. This is precisely the ‘‘Bose’’ subspaceH1

^ N,H^ N, i.e., the
space of vectors invariant under all permutations. The output Hilbert space will beH^ M with
M.N. On this space we cannot impose ana priori symmetry restriction, although such a restri
tion will come outa posteriori, as a special property of optimal cloning devices.

A cloning mapis a completely positive, unital mapT:B(H^ M)→B(H1
^ N). This describes the

action of the device on observables. Its~pre-!dual, describing the same operation in terms of sta
will be denoted17 by T* :B* (H1

^ N)→B* (H^ M). If we identify states with density operators, th
means that tr(rT(A))5tr(T* (r)A) for arbitrary density operatorsr and observablesA. The input
of the cloning device areN systems, prepared independently according to the same states. Thus
the overall input state iss ^ N. We will assumes to be pure, i.e., the density matrix ofs is a
one-dimensional projection onto a wave vectorcPH, say. Thens ^ N is the projection onto the
vector c ^ N. The output of the cloning device is the stateT* (s ^ N), which is a~generally en-
tangled! state of M.N systems. Our aim is to designT so that the output statesT* (s ^ N)
approximate the product statess ^ M.

The one particle observables, on which the comparison will be based, will be writte
a(k)51^ (k21)

^ a^ 1^ (M2k)PB(H^ M), for all aPB(H). Thus the optimal cloning problem fo
arbitrary pure input statesT is to make the expectations

tr~a~k!T* ~s ^ N!!5tr~T~a~k!!s
^ N!5^c ^ N,T~a~k!!c

^ N&,

tr~a~k!s
^ M !5tr~as!5^c,ac&

as similar as possible for arbitrary one-particle observablesa and one-particle vectorsc. Of
course, when taking a supremum over such differences, the size ofa has to be constrained
somehow. We will choose the constraint 0<a<1, which is to say that the above two expressio
have an immediate interpretation as probabilities. The largest difference of such probabili
now the error functional for cloning maps, which we will seek to minimize:

Done~T!5 sup
a,c,k

u^c ^ N,T~a~k!!c
^ N&2^c,ac&u, ~1!

where the supremum is taken over allcPH with ici51, all operatorsaPB(H) with 0<a<1,
and all integers 1<k<M .

The corresponding quantity based on tests of the full output state~including correlations! is

Dall~T!5sup
A

sup
s,pure

utr~T~A!s ^ N!2tr~As ^ M !u,
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where the supremum is taken over allAPB(H^ M) with 0<A<1 and over all pure statess
PB* (H). Due to the properties of the trace normi•i1 this functional can be expressed by

Dall~T!5 sup
s,pure

iT* ~s ^ N!2s ^ Mi1 . ~2!

It turns out that there is exactly one cloning mapT̂ which minimizes this error functional. This ca
be proven with a minor adaptation of the arguments in Ref. 16, which start from a sli
different criterion, namely the maximization of the ‘‘fidelity’’F(T* )5sups,pure(s

^ MT* (s ^ N)).
The unique solutionT5T̂ minimizing ~2!, or maximizingF(T* ), is best expressed in terms of i
action on states, i.e.,

T̂* ~r!5
d@N#

d@M #
SM~r ^ 1M2N!SM . ~3!

Hered@N#5( N
d1N21) denotes the dimension of the symmetric subspaceH1

^ N , SM is the projection
fromH^ M toH1

^ M , andr is an arbitrary density operator onH1
^ N . In Ref. 16 we also computed

the one-site restriction of the output states of this cloner:

tr~ T̂~ak!s
^ N!5g~ T̂!s~a!1~12g~ T̂!!tr~a!/d,

where

g~ T̂!5
N

N1d

M1d

M

is the so-called Black Cow factor ofT̂, interpreted as a ‘‘shrinking factor of the Poincare´ sphere’’
in the discussions of the qubit (d52) case. This makes it easy to verify the case of equality in
following Theorem, which is our main result.

Theorem 1: For any cloning map T:B(H^ M)→B(H1
^ N) we have

Done~T!>
d21

d U12
N

N1d

M1d

M U
with equality iff T5T̂ with T̂ from Eq. (3).

III. FINDING THE OPTIMAL CLONING MAP

A. Reduction to the covariant case

In this section we will give the proof of our main theorem, apart from some group theore
Lemmas, which will be proved in Appendix A. Throughout, the symmetry of sitewise un
rotation of clones and input states will play a crucial role. The necessary background inform
on unitary representations of SU(d) will also be supplied in Appendix A.

We establish some notation first. By U(d) we will denote the group of unitaryd3d-matrices,
i.e., the unitary group on our underlying one-particle spaceH[Cd. Unitary representations of thi
group will be denoted by the letterp with suitable indices.ph is the defining representation o
Cd, and itsnth tensor power, acting onH^ N by the operatorsph

^ N(u)5u^ N is ph
^ N . The restric-

tion of this representation to the symmetric subspaceH1
^ N will be denoted bypN

1 . Thus a cloning
mapT:B(H^ M)→B(H1

^ N) is called U(d)-covariant, if

T~ph
^ M~u!Aph

^ M~u!* !5pN
1~u!T~A!pN

1~u!* . ~4!

This equation merely expresses thatT does not prefer any direction inH. It would be a natural
initial assumption for good cloning devices but, of course, in our case it will come out as a
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of the minimization: T̂ from Eq. ~3! is obviously covariant, becauseSM commutes with all
ph

^ M(u). It is convenient to state the covariance condition as a fixed point property: We defin
actiont of unitary rotations on cloning maps by

~tuT!~A!5pN
1~u!* T~ph

^ M~u!Aph
^ M~u!* !pN

1~u!, ~5!

so thatT is covariant iff tu(T)5T for all uPU(d). We denote byT̄ the average oftuT with
respect tou, i.e.,

T̄5E du tu~T!, ~6!

where ‘‘du’’ denotes the normalized Haar measure on U(d).
The fact that the cloning errorDonedoes not single out a direction onH either is expressed by

the—easily verified—equation

Done~tuT!5Done~T!. ~7!

Similarly, we can get an estimate ofDone(T̄): The functionalDone is defined as the supremum o
a set of convex expressions inT. Therefore, it is convex, andDone(T̄)<Done(T). So as long as we
are only interested in findingsomecloning map with minimalDone, we may restrict attention to
covariant ones.

There is a similar simplification, which we can make ‘‘without loss of cloning quality’’:Done

is invariant under a change of the ordering of the clones. That is to say, ifV:H^ M→H^ M is a
permutation operator, and if we definetVT by (tVT)(A)5T(V AV* ), we may replaceT by its
average over permutations without loss of cloning quality. That is, we may assume thattVT5T
for all permutationsV. We will refer to this property aspermutation invariance.

Our strategy is now to assume U(d)-covariance and permutation invariance ofT, and to show
that there is a unique solution to the variational problem with these additional properties
above convexity argument then implies that no other cloning map can do better. But sin
functionalDone is not strictly convex, we will need an extra step to establish uniqueness. Th
will do in Sec. III F by showing that any cloning map whose mean is the optimal covariant c
has to be covariant itself.

B. Reduction to the extremal covariant case

The functional Done involves only operatorsT(A) with A of the special formA5a(k)

51^ (k21)
^ a^ 1^ (M2k)PB(H^ M). Now due to permutation invarianceT(a(k)) does not depend

on k, and we have

T~a~k!!5
1

M
TS (

k
a~k!D . ~8!

What makes Eq.~8! useful is that on the right-hand sideT is now applied to one of the generato
of the representationph

^ N : we have exp(i(k51
M a(k))5(exp(ia))^M. BecauseT is covariant, we can

determine how the operators in Eq.~8! transform under U(d)-rotations:

pN
1~u!T~a~k!!pN

1~u!* 5T~~uau* !~k!!, ~9!

where the multiplication ofa andu on the right-hand side is in thed3d-matrices. This property
fixes the ‘‘transformation behavior’’ of the operatorsT(a(k)), and as we will see, this essential
fixes the tuple of operatorsT(a(k)). Of course,a51 in ~9! simply leads toT(1(k))5T(1)51. The
operatori 1 is the ~anti-Hermitian! generator of the subgroup of unitaries multiplying each vec
with the same phase. More interesting are the generators of SU(d), in which such trivial phases
have been eliminated. These generators, in other words the Lie algebrasu(d), are exactly the
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traceless anti-Hermitiand3d-matrices. In the qubit case (d52) su~2! is spanned by the Pau
matrices~multiplied by i!, and 3-tuples of operators transforming like the generators are know
physics literature as ‘‘vector operators.’’ It is well-known that, due to the simple reducibilit
SU~2!, each irreducible representation of SU~2! contains exactly one vector operator~up to a
factor!, namely the generators~angular momentum operators! of the representation themselves. S
all operatorsT(a(k)) are determined by the single numerical factor relating the operatorsT(a(k))
to the generators of the irreducible representationpN

1 .
It turns out that the same idea works in the SU(d)-case for arbitraryd. In order to state it

precisely, we need a notation for the Lie algebra representation associated with a unitary
sentation of a Lie group. We define]p(X) to be the anti-Hermitian generator of the on
parameter subgroup generated byX, i.e.,

]p~X!5
d

dt
p~etX!U

t50

. ~10!

Then the desired property of a representation is stated in the following definition:
Definition 2: Letp:G→B(Hp) be a finite dimensional unitary representation of a Lie gro

G with Lie algebrag. Theng is said to be nondegenerate inB(Hp) with respect top, if any linear
operator L:g→B(Hp) with the covariance propertyp(g)L(X)p(g)* 5L(gXg21) is of the form
L(X)5l]p(X), for some factorlPC.

As we argued above,su~2! is nondegenerate inevery irreducible representation of SU~2!.
However, ford>3 we can find representations containing degenerate copies of the generato
we have to make sure that the special representations occurring in the present problem ar
‘‘good’’ kind. This is the content of the following Lemma, proved in the Appendix.

Lemma 3:su(d) is nondegenerate inB(H1
^ N) with respect topN

1 .
Corollary 4: Let p:U(d)→B(Hp) be a unitary representation, and let T:B(Hp)

→B(H1
^ N) be a completely positive normalized andU(d)-covariant map, i.e., T(p(u)Ap(u)* )

5pN
1(u)T(A)pN

1(u)* . Then there is a numberv(T) such that

T~]p~a!!5v~T!(
k51

N

a~k! ,

for every aPB(H) with tr(a)50.
Given v(T) for p5ph

^ M , we can compute the cloning errorDone(T) as follows: Givena
PB(H) with 0<a<1, we can writea5a11a8 with tr a850. Then

T~a~k!!5a11
1

M
TS (

l 51

M

a~ l !8 D 5a11
v~T!

M S (
l 51

N

a~ l !8 D
and witha85a2a1 anda5(tr a)/d

T~a~k!!5
tr a

d S 12
Nv~T!

M D 11
v~T!

M S (
l 51

N

a~ l !D .

In any statecPH we get

^c,ac&2^c ^ N,T~a~k!!c
^ N&5~12g~T!!S ^c,ac&2

tr a

d D ,

whereg(T)5(N/M )v(T) is the Black-Cow factor already mentioned in Sec. II. With
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sup
c,a

S ^c,ac&2
tr a

d D5
d21

d

we get

Done~T!5
d21

d U12
N

M
v~T!U5 d21

d
u12g~T!u. ~11!

We remark that the largest possiblev(T), to be determined below, still makes the second term
the absolute value less than 1, so we could omit the absolute value signs. In any case, we w
seek to maximizev(T) from now on, ignoring the possibility ofv(T).M /N, anticipating that it
will be ruled out by the result of the maximization anyway.

An important observation about the Corollary and formula~11! is thatv is clearly anaffine
functional on the convex set of covariant cloning maps~i.e., v respects convex combinations!.
Whereas we previously used the convexity ofDone to conclude that averaging over rotations a
permutations~and hence a move toward the interior of the convex set of cloning maps! generally
improves the cloning quality, we now see that the optimum can be sought, as for any
functional, on the extreme boundary of the subset of covariant cloning maps. Therefore ou
steps will be aimed at the determination of the extremal U(d)-covariant and permutation invarian
cloning maps, and, subsequently the solution of the variational problem for these extremal

C. Convex decomposition of covariant cloning maps

For the first reduction step we use the close connection between the permutation opera
H^ M and the representationph

^ M . Let (ph
^ M)8 denote the algebra of all operators onH^ M

commuting with allph
^ M(u)[u^ M. This algebra consists precisely of the linear combinations

permutation unitaries~see Theorem IX.11.5 in Ref. 18!. So consider a reduction ofph
^ M into

irreducibles, i.e., an orthogonal decomposition of the identity into minimal projectionsEa

P(ph
^ M)8. Then due to covariance the operatorsT(Ea) commute with allpN

1(u), and because
the latter representation is irreducible, they must be multiples of the identity,T(Ea)5r a1, say.
BecauseT(VA)5T(AV) for permutation operatorsV, we also haveT(AEa)5T(EaAEa). Hence

Ta~A!5r a
21T~EaAEa! ~12!

is a legitimate cloning map in its own right~providedr aÞ0!. Moreover,

T~A!5(
a

T~AEa!5(
a

T~EaAEa!5(
a

r aTa~A! ~13!

is a convex decomposition of the givenT into such summands. Maximizingv(T)
5(a r av(Ta) thus means concentrating the coefficientsr a on thosea, for which v(Ta) is
maximal. At this stage it is perhaps already plausible that only the summandTa , for which Ea

5SM is the projection onto the symmetric subspace, will give the bestv(Ta), because this is the
space supporting the pure statess ^ M the cloner is supposed to approximate. In fact, for
optimization ofDall in Ref. 16 this idea leads directly to a simple solution. In the present cas
found no direct proof of this plausible statement.

We therefore have to enter into the further convex decomposition of eachTa . The output
states of this cloning map are supported byHa[EaH^ M, and we will restrictTa accordingly, i.e.,
we consider it as a covariant mapTa :B(Ha)→B(H1

^ N), which is covariant with respect to th
restricted representationpa5p ^ M�Ha andpN

1 .
As for any completely positive map, the convex decompositions ofTa are governed by the

Stinespring dilation.19 Since we are looking, more specifically, for decompositions into covar
completely positive maps, we have to invoke a ‘‘covariant’’ version of the Stinespring dila
Theorem,20 which is stated in Appendix B for the convenience of the reader. According to
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Theorem we can write a covariant completely positiveTa :B(Ha)→B(H1
^ N) as Ta(A)5V* (A

^ 1K)V, whereK is some auxiliary Hilbert space carrying a unitary representationp̃:U(d)
→B(K), andV:H1

^ N→Ha ^K is an isometry intertwining the respective representations, i.e

VpN
1~u!5~pa~u! ^ p̃~u!!V. ~14!

The convex reduction theory ofTa is now the same as the reduction theory ofp̃ into irreducibles:
if Fb is a minimal projection in the algebrap̃8, and hencep̃�FbK is irreducible, then
A°V* (A^ Fb)V is a covariant map, which cannot be further decomposed into a sum of cova
completely positive maps~see Appendix B!. Note thatV* (1^ Fb)V commutes with the irreduc
ible representationpN

1 , so that once again this summand is normalized up to a factor:V* (1
^ Fb)V5r b1. ThereforeTa5(b r bTab , where eachTab(A)5r b

21V* (A^ Fb)V is again an ad-
missible cloning map. The following statement summarizes the result of the decomposition
of T.

Proposition 5: Let T:B(H^ M)→B(H1
^ N) be a U(d)-covariant and permutation invarian

cloning map. Then T is a convex combination T5(ab r abTab such that each Tab is of the
following special form: Tab(A)5V* (A^ 1b)V, where V is an intertwining isometry betweenpN

1

and pa ^ pb , such thatpa :U(d)→B(Ha) is an irreducible subrepresentation ofph
^ M , and

pb :U(d)→B(Hb) is also an irreducible unitary representation.
This Proposition summarizes all that is needed for the further treatment of the varia

problem. However, we could have made a slightly stronger statement by eliminating the
niqueness introduced by the choice of the minimal projectionsEa . If the subrepresentationspa

andpa8 are unitarily equivalent, then they can be connected by a unitary, which is again a
combination of permutations. Hence the contribution of the termr aTa5(b r abTab to v(T)
depends only on the isomorphism type ofpa .

What we cannot assert in general, however, is thatV is determined by the isomorphism type
of pa andpb : Among the groups SU(d) only d52 is ‘‘simply reducible,’’ which means that the
space of intertwiners betweenpg andpa ^ pb is at most one dimensional for arbitrary irreducib
representationspa , pb , pg . In Sec. III D we will therefore focus on the qubit case, and sh
how to determinev(Tab) from the representations involved. This procedure will then be ge
alized to arbitraryd, and it will turn out that, perhaps surprisingly, in the general casev(Tab) also
depends onpa , pb only up to unitary equivalence.

D. Maximizing v in the case d 52

For d52 the representations of SU~2! are conventionally labeled by their ‘‘total angula
momentum’’ j 50,1/2,1,... . The irreducible representationp j has dimension 2j 11, and is iso-
morphic topN

1 with N52 j in the notation used above. Forj 51 we get the three-dimensiona
representation isomorphic to the rotation group, which is responsible for the importance o
group in physics. In a suitable basisX1 , X2 , X3 of the Lie algebrasu~2! we get the commutation
relations@X1 ,X2#5X3 , and cyclic permutations of the indices thereof. In thej 51 representation
]p1(Xk) generates the rotations around thek axis in 3-space. The Casimir operator of SU~2! is the
square of this vector operator, i.e.,C̃25(k51

3 Xk
2. In the representationp j it is the scalarj ( j

11), i.e., if we extend the representation]p of the Lie algebra to the universal enveloping algeb
~which also contains polynomials in the generators!, we get]p j (C̃2)5 j ( j 11)1. We can use this
to determinev(Tab) for arbitrary irreducible representations. This computation can be seen
elementary computation of a so-called 6j -symbol~see also Ref. 21 for a context in which the sam
computation arises!, but we will not need to invoke any of the 6j -machinery.

So letV be an intertwining isometry betweenpg andpa ^ pb , wherea,b,gP$0,1/2,...% label
irreducible representations. Thenv is defined by

v•]pg~Xk!5V* ~]pa~Xk! ^ 1b!V. ~15!
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We multiply this equation by]pg(Xk), use the intertwining property ofV in the form
V]pg(X)5(]pa(X) ^ 1b11a ^ ]pb(X))V, and sum overk to get

v•]pg~C̃2!5V* ~]pa~C̃2! ^ 1b!V1(
k

V* ~]pa~Xk! ^ ]pb~Xk!!V.

The tensor product in the second summand can be re-expressed in terms of Casimir oper

(
k

~]pa~Xk! ^ ]pb~Xk!!5
1

2 (
k

~]pa~Xk! ^ 1b11a ^ ]pb~Xk!!22 1
2]pa~C̃2! ^ 1b2 1

21a

^ ]pa~C̃2!.

Inserting this into the previous equation, using the intertwining property once again, and ins
the appropriate scalars for]p(C̃2)[C̃2(p)1, we find that v•C̃2(pg)5C̃2(pa)1 1

2(C̃2(pg)
2C̃2(pa)2C̃2(pb)), and hence

v5
1

2
1

C̃2~pa!2C̃2~pb!

2C̃2~pg!
. ~16!

Note that we have only used the fact that the Casimir operatorC̃2 is some fixed quadratic
expression in the generators. This is also true for SU(d). Hence Eq.~16! also holds in the genera
case. In particular, we have shown that for the purpose of optimizingv(Tab) only the isomor-
phism types ofpa andpb are relevant, but not the particular intertwinerV.

Specializing again to the cased52, we find

v5
1

2
1

a~a11!2b~b11!

2g~g11!
. ~17!

Hereg5N/2 is fixed by the numberN of input systems.a is constrained by the condition thatpa

must be a subrepresentation ofp j 51/2
^ M , which is equivalent toa<M /2. Finally, b is constrained

by the condition that there must be a nonzero intertwiner betweenpg and pa ^ pb . It is well
known that this condition is equivalent to the inequalityua2bu<g<a1b. This is the same as th
‘‘triangle inequality’’: the sum of any two ofa,b,g is larger than the third. The area of admissib
pairs ~a,b! is represented in Fig. 1.

FIG. 1. Area of admissible pairs~a,b!.
                                                                                                                



ls to
he
ure

n

d

imir
rm

he

3291J. Math. Phys., Vol. 40, No. 7, July 1999 Optimal cloning of pure states, . . .

                    
Sincex°x(x11) is increasing forx>0, we maximizev with respect tob in Eq. ~17! if we
chooseb as small as possible, i.e.,b5ua2gu. Then the numerator in Eq.~17! becomes

a~a11!2b~b11!52ag2g21max$g,2a2g%,

which is strictly increasing ina. Hence the maximum

vmax5
M12

N12
~18!

is attained for and only fora5M /2 andb5(M2N)/2.
Note that the seemingly simpler procedure of first maximizinga and then minimizingb to the

smallest value consistent witha5M /2 leads to the same result, but is fallacious because it fai
rule out possibly larger values ofv in the lower triangle of the admissible region in Fig. 1. T
same problem arises for higherd, and one has to be careful to find a maximization proced
which takes into account all constraints.

E. Maximizing v in the general case

Let us generalize now the previous discussion to arbitrary but finited. In this case irreducible
representations of U(d) are labeled, according to Appendix A 2 by their highest weightm
5(m1 ,...,md). Hence we can decomposeT:B(H^ M)→B(H1

^ N) as described in the Propositio
into the sumT5( (m,n)PW r m,nTm,n , taken over the set

W5$~m,n!PZ1
d 3Z1

d upm,ph
^ M and pN

1,pm^ pn%.

HereZ1
d is an abbreviation for the set of all possible highest weights of irreducible U(d) repre-

sentations, i.e.,Z1
d 5$(m1 ,...,md)um1>m2>...>md%.

Our task is now to determine (m,n)PW such thatv5v(Tm,n) becomes maximal. To this en
we consider in analogy to~15! the equation

v•]pN
1~X!5V* ~]pm~X! ^ 1n!V, ;XPsu~d!, ~19!

whereV is an intertwining isometry betweenpN
1 andpm^ pn . Note that Eq.~19! is valid only for

XPsu(d) @and not forXPu(d) in general#. Hence we have to consider the second-order Cas
operatorC̃2 of SU(d) which is given, according to Appendix A 5, by an expression of the fo
C̃25( jk gjkXjXk . This is all we needed in the derivation of Eq.~16! in the SU~2!-case. The
generalization to arbitraryd hence reads

v5
1

2
1

C̃2~pm!2C̃2~pn!

2C̃2~pN
1!

. ~20!

The concrete form ofC̃2(pm) as a function of the weightsm is given in Eq.~A8!, and will be
needed only later. SinceC̃2(pN

1) is a positive constant we have to maximize the function

W{~m,n!°F~m,n!5C̃2~pm!2C̃2~pn!PZ ~21!

on its domainW.
The first step in this direction is to reexpressF(m,n) in terms of the U(d) Casimir operators

C2 and C1
2. Note in this context that although Eq.~19! is, as already stated, valid only forX

Psu(d) the representationspm and pn are still U(d) representations. Hence we can apply t
equationC̃25C22(1/d)C1

2 given in Appendix A 5:

F~m,n!5C2~pm!2C2~pn!2
1

d
~C1

2~pm!2C1
2~pn!!. ~22!
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This rewriting is helpful, because the invariantsC1 turn out to be independent of the variation
parameters: Sincepm,ph

^ M , and ]ph
^ M(1d)5M1, we also haveC1(pm)5M . On the other

hand, the existence of an intertwining isometryV with VpN
15pm^ pnV implies

VC1~pN
1!15V]pN

1~C1!5~]pm~C1! ^ 1n11m^ ]pn~C1!!V5~C1~pm!11C1~pn!1!V

and thereforeC1(pN
1)5C1(pm)1C1(pn). SinceC1(pN

1)5N andC1(pm)5M we getC1(pn)
5N2M . Inserting this into Eq.~22! we find the functional

F~m,n!5F1~m,n!2
2MN2N2

d
, ~23!

where onlyF1 depends on the variational parameters, and is expressed explicitly@see Eq.~A7!# as

W{~m,n!°F1~m,n!5C2~pm!2C2~pn!5(
j 51

d

~mj
22nj

2!1 (
k51

d

~d22k11!~mk2nk!PZ,

~24!

which remains to be maximized overW.
To do this we have to express the constraints defining the domainW more explicitly. We have

already seen thatmPZ1
d has to satisfy the constraint( j 51

d mj5M . In addition we get, due to Eq
~A1!, md.0. To fix the constraints forn note that according to Eq.~A4! pN

1,pm^ pn is equiva-
lent topm,pN

1
^ p ñ . Here we have introducedñ5(ñ1 ,...,ñd)5(2nd ,...,2n1) as a notation for

the highest weight of the representationpn conjugate topn ~i.e.,pn5p ñ!. Now we can apply Eq.
~A3! to get

pN
1,pm^ pn⇔ñk5mk2mk

with

0<mk<mk2mk11;k51,...,d21, (
k51

d

mk5N.

In other words

W5$~m,n!uñ5m2m, and ~m,m!PW1%

with

W15H ~m,m!PZ1
d 3ZdU(

k51

d

mk5M , (
k51

d

mk5N and 0<mk<mk2mk11;k51,...,d21J .

The functionF1 can now be re-expressed in terms the new variables~m,m!. To this end note that
C2(pn)5C2(pn)5C2(p ñ). Hence we have

F1~m,n!5F1~m,ñ!5F1~m,m2m!

and therefore with Eq.~24!:

F1~m,ñ!5 (
k51

d

mk~2mk22k2mk!1~d11!(
k51

d

mk5F2~m,m!1~d11!N ~25!

with the new function
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W1{~m,m!°F2~m,m!5 (
k51

d

mk~2mk22k2mk!PZ. ~26!

Hence we have reduced our problem to the following Lemma:
Lemma 6: The function F2 :W1→Z defined in Eq. (26) attains its maximum for and only f

mmax5~M ,0,...,0! and mmax5H ~N,0,...,0! for N<M

~M ,0,...,0,N2M ! for N>M .

Proof: We consider a number of cases in each of which we apply a different strateg
increasingF2 . In these procedures we considerd to be a variable parameter, too, because ifmd

5md50, the further optimization will be treated as a special case of the same problem wd
reduced by one.

Case A:md.0, m i,mi2mi 11 for somei ,d.
In this case we apply the substitutionm i°(m i11), md°(md21), which leads to the chang

dF252~2m i1md1~d2 i 21!1mi 112md!>2~md1~d2 i 21!!.0

in the target functional. In this way we proceed until either allm i with i ,d satisfy the upper
bound with equality~Case B below! or md50, i.e., Case C or Case D applies.

Case B:md.0, m i5mi2mi 11 for all i ,d. In this case allmk , includingmd , are determined
by themk and by the normalization (md5N2m11md). Inserting these values intoF2 , and using
the normalization conditions, we getF2(m,n)5F3(m)22(M1dN)2N2 with

F3~m!52~N1d!m1

constrained by

m1>...>md>0, (
k

mk5M , and m12md<N.

This defines a variational problem in its own right. Any step increasingm1 at the expense of som
othermk increasesF2 . This process terminates either whenM5m1 , and all othermk50. This is
surely the case forM,N, because thenmd5N2m11md>N2M.0. This is already the fina
result claimed in the Lemma. On the other hand, the process may terminate becausemd reaches 0
or would become negative. In the former case we getmd50, and hence Case C or Case D. T
latter case ~termination at md51! may occur because the transformationm1°(m111),
md°(md21) changesmd5N2m11md by 22. There are two basic situations in which changi
bothm1 andmd is the only option for maximizingF3 , namelyd52 andm15m25¯5md . The
first case is treated below as Case E. In the latter case we have 15N2m11md5N. Then the
overall variational problem in the Lemma is trivial, because only one term remains, and one
has to maximize the quantity 2mk22k21, with trivial maximum atk51, m15M .

Case C:md50, md.0. Formd50, the numbermd does not enter in the functionF2 . There-
fore, the movemd°0 andm1°m11md , increasesF2 by m1md>0. Note that this is always
compatible with the constraints, and we end up in Case D.

Case D:md50, md50, d.2. Setd°(d21). Note that we could now use the extra co
straint md8<md8 , whered85d21. We will not use it, so in principle we might get a large
maximum. However, since we do find a maximizer satisfying all constraints, we still get a
maximum.

Case E: d52, m15m12m2 , m251. In this casem5(m1 ,m2) is completely fixed by the
constraints. We have:m11m25M and m11m25m12m2115N, hencem12m25N21. This
implies 2m15M1N21, 2m25M2N11 and sincem2>0 we getM>N21. If M5N21 holds
we getm15N215M , m250 and consequentlym15N21. Together withm2515N2M these
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are exactly the parameters whereF2 should take its maximum according to the Lemma. Hen
assumeM>N. In this casem251 implies thatF2 becomesNM23N24, which is, due toM
>N, strictly smaller thanF2(M ,0;N,0)52MN2N222N.

Uniqueness:In all cases just discussed the manipulations described lead to a strict incre
F2(m,m) as long as (m,m)Þ(mmax,mmax) holds. The only exception is Case C withm150. In this
situation there is a 1,k,d with mk.0. Hence we can apply the mapsd°d21 ~Case D! and
md°0 and m1°m11md ~Case C! until we get mdÞ0 ~i.e., d reachesk!. Since m150 the
corresponding~m,m! is not equal to (mmax,mmax). Therefore we can apply one of the manipu
tions described in Case A, Case B, or Case E which leads to a strict increase ofF2(m,m). This
shows thatF2(m,m),F2(mmax,mmax) as long as (m,m)Þ(mmax,mmax) holds. Consequently the
maximum is unique. h

With this result and Eqs.~20!, ~21!, ~23!, ~25!, and~26! we can easily calculatevmax:

vmax5v~ T̂!5
M1d

N1d

and with ~11! we getD(T)>D(T̂) with D(T̂! from Theorem 1.

F. Proving uniqueness

One part of the uniqueness proof is already given above: There is only one optimalcovariant
cloning map, namelyT̂. This follows easily from the uniqueness of the maximum found
Lemma 6 and from the fact that the representationpN

1 is contained exactly once in the tens
productpM

1
^ pM2n

1 @see Eq.~A3! and the discussion in Sec. III C#.
Suppose now thatT is a noncovariant cloning map, which also attains the best va

Done(T)5Done(T̂). Then we may consider the averageT̄ of T @see Eq.~6!#, which is also optimal
and, in addition, covariant. ThereforeT̄5T̂. The uniqueness part of the proof thus follows imm
diately from the following proposition:

Proposition 7: Each completely positive, unital map T:B(H^ M)→B(H1
^ N) satisfying the

equation T̄5T̂ equals T̂.
Proof: We trace back this statement to the main theorem of Ref. 16. To this end note

T̄5T̂ implies the equivalent equation for the preduals:

T̄* 5E tuT* du5T̂* ,

wheretu acts onT* by

tuT* ~s!5ph
^ M~u!* T* ~pN

1~u!spN
1~u!* !ph

^ M~u!.

Furthermore we know from the main theorem of Ref. 16 that tr(s ^ MT* (s ^ N))<d@N#/d@M # is
true for all pure statessPB* (H) and that equality holds iffT5T̂. Consequently we have

E S d@N#

d@M #
2tr~s ^ MtuT~s ^ N!! Ddu5

d@N#

d@M #
2tr~s ^ MT̄* ~s ^ N!!5

d@N#

d@M #
2tr~s ^ MT̂* ~s ^ N!!50.

Since the integral on the left-hand site of this equation is taken over positive quantitie
integrand has to vanish for all values ofuPU(d). This implies tr(s ^ MT(s ^ N))5d@N#/d@M # for
all pure statessPB* (H). However this is, according to Ref. 16, only possible ifT5T̂. h
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APPENDIX A: REPRESENTATIONS OF UNITARY GROUPS

Throughout this paper many arguments from representation theory of unitary groups are
In order to fix the notation and to state the most relevant theorems we will recall in this app
some well-known facts from representation theory of Lie groups. General references are the
of Barut and Raczka,22 Zhelobenko,23 and Simon.18

1. The groups and their Lie algebras

Let us consider first the group U(d) of all complexd3d unitary matrices. Its Lie algebrau(d)
can be identified with the Lie algebra of all anti-Hermitiand3d matrices. The exponential func
tion is then given by the usual matrix exponentialX°exp(X). u(d) is a real Lie algebra. Hence w
can consider its complexificationu(d) ^ C which coincides with the set of alld3d matrices and at
the same time with the Lie algebragl(d,C) of the general linear group GL(d,C). In other words
u(d) is a real form ofgl(d,C). A basis ofgl(d,C) is given by the matricesEjk5u j &^ku.

The set of elements of U(d) with determinant one forms the subgroup SU(d) of U(d). Its Lie
algebrasu(d) is the subalgebra ofu(d) consisting of the elements with zero trace. Hence
complexificationsu(d) ^ C of su(d) is the Lie algebra of trace-free matrices and coincides th
fore with the Lie algebrasl(d,C) of the special linear group SL(d,C). As well as in the U(d) case
this means thatsu(d) is a real from ofsl(d,C). The matricesEjk are no longer a basis forsl(d,C)
since theEj j are not trace free. Instead we have to considerEjk , j Þk andH j5Ej j 2Ej 11,j 11 ,
j 51,...,d21. The difference betweensl(d,C) andgl(d,C) is exactly the center ofgl(d,C), i.e., all
complex multiples of the identity matrix. In other words we havegl(d,C)5sl(d,C) % C1. A similar
result holds for the real forms:u(d)5su(d) % R1.

The ~real! span of alliE j j , j 51,...,d is a subalgebra ofu(d) which is maximal Abelian, i.e.,
a Cartan subalgebra ofu(d). We will denote it in the following byt(d) and its complexification
by tC(d),gl(d,C). The intersection oft(d) with su(d) results in a Cartan subalgebrast(d) of
su(d). We will denote the complexification bystC(d). Again the two algebrast(d) and st(d)
differ by the center ofu(d), i.e.,t(d)5st(d) % R1 andtC(d)5stC(d) % C1 in the complexified case

2. Representations

Consider now a finite-dimensional24 representationp:U(d)→GL(N,C) of U(d). It is char-
acterized uniquely by the corresponding representation]p:u(d)→gl(N,C) of its Lie algebra, i.e.,
we havep(exp(X))5exp(]p(X)). The representation]p can be extended by complex linearity
a representation ofgl(d,C) which we will denote by]p as well. Hence]p leads to a representa
tion p of the group GL(d,C). Similar notations we will adopt for representations of SU(d) and
SL(d,C).

Assume now thatp is an irreducible representation of GL(d,C). An infinitesimal weight ofp
~or simply a weight in the following! is an elementl of the dual oftC* (d) of tC(d) such that
]p(X)x5l(X)x holds for all XPtC(d) and for a nonvanishingxPCN. The linear subspace
Vl,CN of all suchx is called the weight subspace of the weightl. The set of weights ofp is not
empty and, due to irreducibility, there is exactly one weightm, called the highest weight, such th
]p(Ejk)x50 for all x in the weight subspace ofm and for all j ,k51,...,d with j ,k. The
representationp is ~up to unitary equivalence! uniquely determined by its highest weight. On th
other hand the weightm is uniquely determined by its valuesm(Ej j )5mj on the basisEj j of
tC(d). We will express this fact in the following as ‘‘m5(m1 ,...,md) is the highest weight of the
representationp.’’ For each analytic representation of GL(d,C) the mj are integers satisfying the
inequalitiesm1>m2>¯>md and the converse is also true: each family of integers with
property defines the highest weight of an analytic, irreducible representation of GL(d,C).
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In a similar way we can define weights and highest weights for representations of the
SL(d,C) as linear forms on the Cartan subalgebrastC(d). As in the GL(d,C)-case an irreducible
representationp of SL(d,C) is characterized uniquely by its highest weightm. However we
cannot evaluatem on the basisEj j since these matrices are not trace free. One possibility i
consider an arbitrary extension ofm to the algebratC(d)5stC(d) % C1. Obviously this extension is
not unique. Therefore the valuesm(Ej j )5mj are unique only up to an additive constant. T
circumvent this problem we will use usually the normalization conditionmd50. In this case the
integermj corresponds to the number of boxes in thejth row of the Young tableau usually used
characterize the irreducible representationp. Another possibility to describe the weightm is to use
the basisH j of stC(d). We get a sequence of integersl j5m(H j ), j 51,...,d21. They are related
to themj by l j5mj2mj 11 . Each sequencel 1 ,...,l d21 defines the highest weight of an irreducib
representation of SL(d,C) iff the l j are positive integers.

Finally consider the representationp̄ conjugate top, i.e., p̄(u)5p(u). If p is irreducible the
same is true forp̄. Hencep̄ admits a highest weight which is given by (2md ,2md21 ,...,
2m1). If p is a SU(d) representation we can apply the normalizationmd50. Doing this as well
for the conjugate representation we get (m1 ,m12md21 ,...,m12m2,0). In terms of Young tab-
leaus this corresponds to the usual rule to construct the tableau of the conjugate represe
Complete the Young tableau ofp to form ad3m1 rectangle. The complementary tableau rota
by 180° is the Young tableau ofp̄.

3. Tensor products of representations

Consider now two finite dimensional irreducible representationspm , pn of U(d) with highest
weightsm,n. Their tensor productpm^ pn is completely reducible. Ifr p denotes the multiplicity
of the irreducible representationp in pm^ pn then this means thatpm^ pn5 % pr pp. Hence to
decompose the representationpm^ pn we have to compute the integer valued functio
(m,n)°r p(m,n). There are several general schemes to do this~see, e.g., Chap. XII of Ref. 23!.
However we are only interested in the following special cases. The highest weight of the
sentationp1 :U(d){U°UPGL(d,C) ~denotedph in Sec. III A! is 15~1,0,...,0!. Consider the
N-fold tensor product of this representation. It can be decomposed as follows:

p1
^ N5 (

m11¯1md5N
md>0

r ~m1 ,...,md!pm1 ,...,md
, ~A1!

where pm1 ,...,md
denotes the irreducible representation with highest weight (m1 ,...,md). The

coefficientsr (m1 ,...,md) are determined by the following recurrence relation:

r ~m1 ,...,md!5r ~m121,...,md!1r ~m1 ,m221,...,md!1¯1r ~m1 ,...,md21!. ~A2!

Consider now theN-fold symmetric tensor product ofp1 ~denotedpN
1 in Sec. III A!. It is

irreducible with highest weightN15(N,0,...,0) ~hencepN
15pN1!. The tensor product of this

representation with an arbitrary irreducible representationpm @with highest weight m
5(m1 ,...,md)# is

pN1^ pm5 (
0<mk11<mk2mk11

m11¯1md5N

pm11m1 ,...,md1md
. ~A3!

From Eq. ~A3! we also get a condition forpN1 to be contained in an arbitrary tensor produ
pm^ pn which we need in Sec. III E: For arbitrary weightsm,n,p we have

pm,pn^ pp⇔pn,pp^ pm . ~A4!
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If two irreducible representationspm , pn of SU(d) are given we can characterize them,
described above, by their highest weightsm5(m1 ,...,md) andn5(n1 ,...,nd) using the normal-
izationsmd50 andnd50. After applying the stated theorems to the tensor product of the co
sponding U(d) representations we can restrict the summands in the resulting spectral dec
sition back to SU(d), i.e., we renormalize the highest weights (m1 ,...,md) to themd50 case.

4. Nondegeneracy of su„d …

We are now ready to discuss the group theoretic part of the proof of our main theorem
Lemma 3 which we have only stated in Sec. III. According to Definition 2 we have to show
each linear operatorL:su(d)→H1

^ N with the covariance property

pN
1~g!L~X!pN

1~g21!5L~gXg21! ~A5!

is of the formL(X)5l]p1
N (X) with a constant factorl. HerepN

1 is the irreducible representatio
of SU(d) introduced in Sec. III A.~Hence we havepN

15pN1 using the notation introduced in
Appendix A 3.!

To reformulate this statement note first that the mapg°pN
1(g)•pN

1(g21) can be interpreted
as a unitary representation of SU(d) on the representation spaceH1

^ N
^H1

^ N . In fact it is ~uni-
tarily equivalent to! the tensor productpN

1
^ pN

1. Since SU(d){g°g•g21PB(su(d)) is the
adjoint representation of SU(d) this implies that each mapX satisfying ~A5! intertwinespN

1

^ pN
1 and the adjoint representation Ad. Note second that the representation]pN

1 of the Lie
algebrasu(d) satisfies Eq.~A5! in an obvious way~with l51! hence we have to show that a
such intertwiners are proportional, or in other words that Ad is contained inpN

1
^ pN

1 exactly
once.

Let us discuss now the tensor productpN
1

^ pN
1. The irreducible representationpN

1 has high-
est weight (N,0,...,0) ~see Appendix A 2! and consequently the highest weight of its conjugate
(N,...,N,0). We can apply now Eq.~A3!, which shows that the adjoint representation who
highest weight is~2,1,...,1,0! is contained inpN

1
^ pN

1 exactly once. This shows together with o
previous discussion thatsu(d) is nondegenerate inH1

^ N with respect topN
1 .

5. The Casimir invariants

To each Lie algebrag we can associate its universal enveloping algebraG. It is defined as the
quotient of the full tensor algebra% nPN0

g^ n with the two sided idealI generated byX^ Y2Y

^ X2@X,Y#, i.e., G is an associative algebra. The original Lie algebrag can be embedded in it
enveloping algebraG by g{X°X1IPG. The Lie bracket is then simply given by@X,Y#
5XY2YX. MoreoverG is algebraically generated byg and1. Hence each representation]p of g

generates a unique representation]p of G simply by ]p(X1¯Xk)5]p(X1)¯]p(Xk). If ]p is
irreducible the induced representation]p is irreducible as well.

We are interested not in the whole algebra but only in its centerZ~G!, i.e., the subalgebra
consisting of allZPG commuting with all elements ofG. The elements ofZ~G! are called central
elements or Casimir elements. If]p is a representation ofG the representatives]p(Z) of Casimir
elements commute with all other representatives]p(X). This implies for irreducible representa
tions that all]p(Z) are multiples of the identity.

Consider now the caseg5gl(d,C). In this case we can identify the enveloping algebraG with
the set of all left invariant differential operators on GL(d,C) ~a similar statement is true for an
Lie group!. Of special interest for us are the Casimir elements belonging to operators of firs
second order. Using the standard basisEi j of gl(d,C) introduced in Appendix A 1 they are give
by

C15(
j 51

d

Ej j , C25 (
j ,k51

d

EjkEk j .
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Of courseC1
2 is as well of second order and it is linearly independent ofC2 . Hence each

second-order Casimir element ofG is a linear combination ofC2 andC1
2.

If ]p is an irreducible representation ofgl(d,C) with highest weight (m1 ,...,md) it induces, as
described above, an irreducible representation]p of G and the images of]p(C1) and]p(C2) are
multiples of the identity, i.e.,]p(C1)5C1(p)1 and]p(C2)5C2(p)1 with

C1~p!5(
j 51

d

mj , C2~p!5(
j 51

d

mj
21(

j ,k
~mj2mk!. ~A6!

Let us discuss now the Casimir elements of SL(d,C). Since SL(d,C) is a subgroup of
GL(d,C) its enveloping algebraS is a subalgebra ofG. However the corresponding Lie algebr
differ only by the center ofgl(d,C). Hence the centerZ~S! of G is a subalgebra ofZ~G!. Since
sl(d,C) is simple there is no first-order Casimir element and there is only one second-
Casimir elementC̃2 which is therefore a linear combinationC̃25C21aC1

2 of C1
2 andC2 . Obvi-

ously the factora is uniquely determined by the condition that the expression

C̃2~p!5C1~p!1aC1
2~p!5(

j 51

d

mj
21(

j ,k
~mj2mk!1aS (

j 51

d

mj D 2

~A7!

with ]p(C̃2)5C̃2(p)1 is invariant under the renormalization (m1 ,...,md)°(m11m,...,md

1m) with an arbitrary constantm. Straightforward calculations show thata521/d. Hence we get
C̃25C22(1/d)C1

2 and

C̃2~p!5
1

d S ~d21!(
j 51

d

mj
22(

j Þk

d

mjmk1d(
j ,k

~mj2mk!D . ~A8!

AlternativelyC̃2 can be expressed in terms of a basis (Xj ) j of sl(d,C). In fact there is a symmetric
second rank tensorgjkXj ^ XkPsl(d,C) ^ sl(d,C) such thatC̃2 coincides with the equivalenc
class ofgjk in S. In other wordsC̃25( jk gjkXjXk holds which leads to

C̃2~p!15(
jk

gjk]p~Xi !]p~Xj !

for an irreducible representationp of SU(d).

APPENDIX B: STINESPRING THEOREM FOR COVARIANT CP-MAPS

In this appendix we will state the covariant version of Stinespring’s theorem20 which we have
used in the proof of Theorem 1. However, as in the rest of the paper, we will restrict the discu
to finite dimensional Hilbert spaces~i.e., only cp-maps between finite von Neumann factors
considered!.

Theorem 8: Let G be a group with finite dimensional unitary representationsp i :G
→B(Hi)( i 51,2), and T:B(H2)→B(H1) a completely positive map with the covariance prope
p1(g)T(X)p1(g)* 5T(p2(g)Xp2(g)* ).

~1! Then there is another finite dimensional unitary representationp̃:G→B(H̃) and an inter-
twiner V:H1→H2^ H̃ with Vp1(g)5p2^ p̃V such thatT(X)5V* (X^ 1)V holds.

~2! If T5(a Ta is a decomposition ofT in completely positive terms, there is a decompositi
15(a Fa of the identity operator onH̃ into positive operatorsFaPB(H̃) with @Fa,p̃(g)#
50 such thatTa(X)5V* (X^ Fa)V.

We only sketch the main ideas of the proof. The first step is Stinespring’s theorem
general form:19 There exists a representationh:B(H2)→B(K) of the C* -algebraB(H2) on a
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Hilbert spaceK and a bounded operatorV:H1→K such thatT(X)5V* h(X)V holds. Up to
unitary equivalence there is exactly one such triple (K,V,p) such that the vectorsp(A)VcPK
with cPH1 andAPB(H2) spanK.

It is this uniqueness, from which the representationp̃ of G is constructed. Indeed, the objec
Vg5Vp1(g), andhg(X)5h(p2(g)Xp2(g)* ) form a Stinespring dilation of the completely pos
tive mapTg(X)5p1(g)* T(p2(g)Xp2(g)* )p1(g), which by covariance is equal toT. Hence by
‘‘uniqueness up to unitary equivalence’’ there is a unique unitary operatorUgPB(K) such that
Vg5Vp1(g)5UgV, andhg(X)5h(p2(g)Xp2(g)* )5Ugh(X)Ug* . This can be simplified a bit
further by the observation that according to the second equation the operatorŨg

5h(p2(g))* Ug commute with allh(X). It is easy to see that theUg are a representation, an
hence so isŨ: we have ŨgŨh5h(p2(g))* Ugh(p2(h)* )Uh5h(p2(g))* h(p2(g)p2(h)*
3p2(g)* )UgUh5h(p2(g)* p2(g)p2(h)* p2(g)* )Ugh5h(p2(gh)* )Ugh5Ũgh .

For a proof of part~1! we now only need to invoke the observation that all representation
B(H2) are of the formh. id^ 1 with K5H2^ H̃. ~Here ‘‘.’’ denotes a unitary equivalence
which we will include as a factor inV.! SinceŨg commutes with allh(X)5X^ 1, it is of the form
Ũg51^ p̃(g), which proves the assertion.

The second part of the theorem stated for a trivial groupG5$e% is also known as the
Radon–Nikodyn theorem coming with the Stinespring theorem. In general it asserts the ex
of a partition of the identity operator onK into operatorsF̃a commuting with allh(X), giving the
decomposition ofT as Ta5V* h(X)FaV. Again, we can write these asF̃a51^ Fa. Since the
FaV are uniquely determined by theTa, it is easy to see that covariance ofTa is equivalent to
Fa5p̃gFap̃g* .
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3M. Hillery and V. Bužek, ‘‘Quantum copying: Fundamental inequalities,’’ Phys. Rev. A56, 1212–1216~1997!.
4N. Gisin and S. Massar, ‘‘Optimal quantum cloning machines,’’ Phys. Rev. Lett.79, 2153–2156~1997!, quant-ph/
9705046.

5D. Bruß, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Machiavello, and J. A. Smolin, ‘‘Optimal universal and s
dependent cloning,’’ Phys. Rev. A57, 2368–2378~1998!, Los Alamos Report, quant-ph/9705038.

6D. Bruß, A. Ekert, and C. Machiavello, ‘‘Optimal universal cloning and state estimation,’’ Los Alamos Re
quant-ph/9712019.
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Tunneling of a massless field through
a 3D Gaussian barrier

Giovanni Modanesea)

European Centre for Theoretical Studies in Nuclear Physics and Related Areas,
Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (TN), Italy

~Received 29 July 1998; accepted for publication 26 January 1999!

We propose a method for the approximate computation of the Green function of a
scalar massless fieldf subjected to potential barriers of given size and shape in
space–time. This technique is applied to the case of a 3D Gaussian ellipsoidlike
barrier, placed on the axis between two pointlike sources of the field. Instead of the
Green function we compute its temporal integral, that gives the static potential
energy of the interaction of the two sources. Such interaction takes place in part by
tunneling of the quanta off across the barrier. We evaluate numerically the cor-
rection to the potential in dependence on the barrier size and on the barrier-sources
distance. ©1999 American Institute of Physics.@S0022-2488~99!04906-3#

I. INTRODUCTION

In Quantum Field Theory it is useful in several occasions to have a general expression
Euclidean two-point correlation function of a massless scalar fieldf in the presence of potentia
‘‘barriers’’ in space–time of the form

V~f~x!!5jJV~x!@f2~x!2f0
2#2, ~1!

JV(x) being the characteristic function of the 4-regionV where the potential has support (JV

51 for xeV, JV50 elsewhere!. The regionV can be multiple connected, thus represent
several barriers placed at different points in space–time.

Possible applications are connected for instance to the fact that a potential of the for~1!
represents a localized imaginary mass term (m2,0) in the action of the scalar fieldf. Terms of
this kind can be present in cosmological models with inflationary fields. It is also known that
quantum field with nonvanishing vacuum expectation value~VEV! has a global imaginary mas
term in its Lagrangian,1 which couples to the gravitational field as a cosmological term; one
show2 that if the VEV is not constant but depends onx, it becomes alocal cosmological term for
the gravitational field.

More generally, suppose we have a system of two interacting fields and regard one of th~or
its VEV! as a fixed external source. The coupling term of the two fields becomes a local con
for the dynamical field, a sort of external potential localized in the regions where the externa
has support. It is therefore important to study the tunneling of the dynamical field through
regions, that is, its Green functions. Note that in systems like this translational invarian
generally lost.

It is easy to check that the potentialV(f) in Eq. ~1! implements in fact a constraint in th
functional integral of the field; writing this integral as

z5E d@f#expF2E d4x~]f!22E d4xV~f!G ,
one sees that for largej the square of the field is forced to take the valuef0

2 within the regionV.

a!Electronic mail: modanese@science.unitn.it
33000022-2488/99/40(7)/3300/11/$15.00 © 1999 American Institute of Physics
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For a characteristic functionJV(x) like the one specified above we say that the constrain
imposed in a ‘‘sharp’’ way; in space–time the potential barrier looks like a step at the boun
of V. SmoothingJV we can obtain a smooth potential barrier. In the following we shall be m
interested in this second case.

Note that the potential~1! has the shape of a doublewell, as long as considered only
function of the fieldf, but regarded as a function ofx it is positive and reminds much more
barrier.

Let us focus on the case of weak fields, such thatf ~Ref. 4! can be disregarded with respe
to f2. If the productg[jf0

2 is small, then the effect of the barriers on field correlations is sm
too, and can be treated as a perturbation. One can solve the equation for the modified pro
G8(x1 ,x2)5^f(x1)f(x2)&V in closed form~see the Appendix!, finding thatG8 is given by a
double inverse Fourier transform, with the direct transform ofJV evaluated at (p1k),

G~x1 ,x2!5G0~x1 ,x2!1gG8~x1 ,x2!,

G0~x1 ,x2!5E d4ke2 ik~x12x2!,

G8~x1 ,x2!5E d4pE d4keipx1eikx2
J̃V~p1k!

k2p2 . ~2!

In finite-dimensional quantum mechanics computingG8(x1 ,x2) corresponds to compute th
Feynman transition amplitude, related in turn to the system’s wave function in the presen
barriers. In field theory the intuitive meaning ofG8(x1 ,x2) is less immediate. However, we ca
derive from G8(x1 ,x2) a quantity with a direct physical interpretation; the static poten
U(x1 ,x2) of the interaction of two pointlike sourcesq1 and q2 of the field f at rest. This
interaction is mediated by the exchange of quanta off. If the barriers are placed somewhe
between the sources, the interaction is clearly affected, but it still takes place—provide
productg is small—with the quanta off ‘‘tunneling’’ through the barriers~or passing over the
wells, depending on the interpretation!.

The leading contribution to the static potentialU(x1 ,x2) is obtained from~2! as follows.3 First
one definesJV(x) as the product of a 3D functionj V(x) and a function constant in time, then on
integrates overt1 andt2 , multiplies byq1q2 and divides by2T, taking the limit forT→`. The
result is

U~x1 ,x2!5U0~x1 ,x2!1gU8~x1 ,x2!

5
q1q2

ux12x2u
2g~2p!8q1q2E dpE dkeipx1eikx2

j̃ V~p1k!

k2p2 . ~3!

This formula is easily generalized to the case ofN chargesq1 ,...,qN , placed, respectively, a
x1 ,...,xN .

A limit case of the physical situation we are considering is represented by the electro
potential of pointlike charges in the presence of perfect conductors. In this case the field is e
zero within the regionV, andV has sharp boundaries—thusj V(x) is a step function andj̃ V(p) a
strongly oscillating function. Equation~3! could be applied to this case only if the parametersf0

andj could be chosen in such a way thatf0→0 andj→`, the productg5jf0
2 still being finite

and small. We know, however, that usually in an electrostatic system the change in po
energy due to the presence of perfect conductors is not just a small correction.~It can be computed
exactly, in principle, solving a classical field equation with suitable boundary conditions.!

The case of interest here is actually more subtle. In the followingj V(x) is supposed to be a
smooth function and bothf0 and j are taken to be finite. The field square has only a cer
probability to be equal tof0

2 within V. This probability is maximum at the center ofV and
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decreases towards the boundary ofV. Since j V(x) is smooth~a Gaussian function!, its Fourier
transform j̃ V(p) is smooth too, and the integral~3! can be computed numerically.

It is interesting to studyU8 in dependence on the geometrical features of the barrierV and on
the position ofq1 and q2 with respect to it. Take, for instance, a finite size barrier~Gaussian
ellipsoid, see Sec. II! lying on the axis joiningx1 to x2 . We may expect that if one of the tw
charges is close toV, thenuU8/U0u is larger, decreasing if both charges are far away fromV—or
if V is not on their axis. This behavior is confirmed and specified by our numerical results

The paper is organized as follows. In Sec. II we compute the leading correction to the
potential for a barrier with the shape of an ellipsoid. Due to the peculiar behavior of the integ
the procedure for numerical integration is not trivial and requires some care. We describ
detail. Results are given in Sec. III. They concern in particular the dependence of the correc
U(x1 ,x2) on the geometrical setting~size of the barrier and its position with respect to t
pointlike sources!. Far from exploring all the conceivable variations and related phenomeno
the main aim of this work is to show that the general technique can be successfully applied
cases.

II. THE CASE OF TWO STATIC SOURCES

Let us focus now on a configuration with two static sources and one barrier only. We c
our reference frame in such a way that the sources lie on thez-axis,

x15~0,0,L1!; x25~0,0,2L2!.

The spatial shape and size of the barrier are defined by the function

j V~x!5expS 2
x21y2

a2 2
z2

b2D . ~4!

This means that the regionV is like an ellipsoid centered at the origin, with simmetry axis alo
Oz, radius of the order ofa and thickness of the order ofb. We suppose thata.b, thus the
ellipsoid is ‘‘squeezed’’ on thexy-plane. More precisely, the regionV itself is not sharply defined
but the surfaces wherej V(x) is constant are ellipsoids. For instance, on the surface defined

x21y2

a2 1
z2

b2 51,

the functionj V(x) is constant and equal toe21.
The Fourier transform of~4! is

j̃ V~p!5p3/2a2b exp$ 1
4@2a2~px

21py
2!2b2pz

2#%. ~5!

The chargesq1 andq2 can be taken to be unitary and the distancesL1 andL2 expressed as
multiples of the ellipsoid radiusa: L1[n1a, L2[n2a. From ~3!, ~5! we obtain

U8~x1 ,x2!52~2p!8p3/2a2bE dpE dk
eikzn1a2 ipzn2a

k2p2 expF2
1

4
a2~p1k!xy

2 2
1

4
b2~pz1kz!

2G ,
whereVxy denotes the component of a vectorV in the planexy. In the following we shall be mos
interested in the case with one charge far from the barrier (n1@1), while the other charge is clos
to it ~typically in our numerical calculationsn2 ranges between 1 and 15!. Accordingly we set
n1

215«, n25n. After rescalingkz→«kz we obtain
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U8~x1 ,x2!52~2p!8p3/2
a3b

L1
E dpE dk

eikza2 ipzna

p2~kx
21ky

21«kz
2!

3expF2
1

4
a2~p1k!xy

2 2
1

4
b2~pz1«kz!

2G .
Then we eliminate any further dimensional parameters by rescalingk→2k/a andp→2p/a,

obtaining

U8~x1 ,x2!52~2p!8p3/2
4ab

L1
E dpE dk

eikz2 ipzn

p2~kx
21ky

21«kz
2!

exp@2~p1k!xy
2 2r2~pz1«kz!

2#,

wherer5b/a is the ratio between the thicknessb and the radiusa of the ellipsoid.
Next we introduce the polar variablesuk , up , uk , andfp . In the followingk andp will not

denote four-vectors anymore, butuku and upu, respectively. The square of the component of
vector (p1k) in the xy plane is

~p1k!xy
2 5p2 sin2 up1k2 sin2 uk12pk sinup sinuk cos~fk2fp!.

The other components are

kz5k cosuk ; pz5p cosup ;

kx
21ky

25kxy
2 5k2 sin2 uk .

Finally, introducing the variables

s5cosuk , t5cosup , f5~fk2fp!,

one obtains, remembering that the integrand is even ins,t, the following basic formula:

U8~x1 ,x2!52
~2p!10

Ap

ab

L1
2pE

0

2p

dfE
21

1

dsE
21

1

dtE
0

`

dkE
0

`

dp
cos~ks2npt!

12s2~12«2!

3exp@2r2~pt1«ks!22p2~12t2!2k2~12s2!22pk cosfA~12t2!~12s2!#

[2
~2p!11

Ap

ab

L1
E

0

2p

dfE
21

1

dsE
21

1

dtE
0

`

dkE
0

`

dp f~f,s,t,k,p;«,r,n!

[2
~2p!11

Ap

ab

L1
F~«,r,n!. ~6!

A. Preliminary study of the integrand

It is important to discuss in advance the case in whichr and« take values much smaller tha
1, that is,V is very thin and the distance of the first charge fromV is much larger thana. When
t ands approach11 or 21, for small values ofr the integral overk andp converges very slowly
at infinity and the factor cos(ks2npt) performs a large number of oscillations. For very smal«
there are many more oscillations ink than inp. ~In the limit r→0 the integral makes sense on
as a distribution. We shall never approach this limit, however.!

Let us set, for instance,s51, t51 andf5p/2 in the argument of the exponential in~6!. We
obtain the exponential factors

exp@2r2~pt1«ks!2#5exp@2~rp!2#exp@2~r«k!2#exp@22r2«kp#. ~7!
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The first factor on the r.h.s. of~7! has a range inp of the order ofr21 and the second factor ha
a range ink of the order of (r«)21. The third factor has a range inp, for fixed k, of the order of
(rA«k)21 and a range ink, for fixed p, of the order of (rA«p)21. Fortunately this latter factor is
not relevant; if its range is larger than the other two ranges then it does not play any role;

smaller then it is sufficient to refer to the other ranges.

FIG. 1. Dependence ofF(«,r,n) on n, in the rangen51 – 15, for«50.1 andr50.3. Errors are;0.01.

TABLE I. Integration ranges in the four domains, for some values of«,r.

e r K1 P1 K2 P2 K3 P3 K4 P4

0.1 0.3 12 10 80 10 12 10 80 10
0.1 0.1 10 10 100 25 20 20 120 40
0.1 0.032 10 10 600 20 20 60 600 60
0.1 0.01 20 20 1500 30 20 200 1500 20
0.032 0.032 10 10 2000 15 20 70 1800 8
0.032 0.01 12 12 6000 15 15 180 6000 25
0.01 0.032 10 10 7500 15 10 70 7500 9
0.032 0.0032 15 15 18000 15 15 650 18000 70
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As soon ass2 and t2 go away from 1, the number of oscillations of the integrand decrea
For instance, settings5t50.98 we obtain the exponential factors

;exp@2~rp!22~r«k!222r2«kp#exp@20.04p220.04k2#.

Whenr is much smaller than 1 the range of this product is determined by the second expon
and does not depend onr.

It is also easy to take into account the term proportional to cosf. After settingf5p that term
gives a positive contribution to the argument of the exponential; thus studying the range
resulting expression we obtain an upper limit valid for anyf.

B. Integration domains

Independently of the considerations above, it is possible to plot the integ
f (f,s,t,k,p;«,r,n) for several different values ofr and« and check the ranges of the expone
tials. In order to better control the oscillations off, we study it in 4 different domains of the
variabless,t,

FIG. 2. Comparison of the values ofF(«,r,n) for «50.1 andr50.3 ~white circles!, r50.1 ~black triangles!, and r
50.032~black circles!.
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Domain 1: t,se@0,12a#;

Domain 2: te@0,12a#;se@12a,1#;

Domain 3: te@12a,1#;se@0,12a#;

Domain 4: t,se@12a,12a#.

A typical value ofa employed in the program isa50.02. The total integration domain ins,t is
obtained by ‘‘reflecting’’ each of the domains above with respect to one axis and then refle
again the result with respect to the origin (s→2s, t→2t, s,t→2s, 2t). In each domaini there
is a maximum value for the variablesk andp, beyond whichf is equal to zero for any practica
purpose. Denoting byKi andPi these ranges, Table I shows the results found for some consid
values of« andr.

Since the integration overk andp is extended to wide ranges, the most reasonable techn
for the numerical computation of the integral~6! appears to be a Monte Carlo sampling of t
integrand. The sampling algorithm evaluates the average value off in each domain, extending th
values ofk and p up to the maximum range necessary for that domain. At the end the g
average is computed, weighing each single average with the ratio between the domain volu
the total volume. Denoting byf i the average off in the domaini and byVi the domain volume we
have

FIG. 3. Same as in Fig. 1, for«50.05. Errors are larger, as shown.
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F5(
i 51

4

f iVi58p@~12a!2K1P1f 11a~12a!K2P2f 21a~12a!K3P3f 31a2K4P4f 4#. ~8!

III. RESULTS OF THE NUMERICAL INTEGRATION

The contributions of the domains 2, 3, and 4 to the integralF ~compare~8!! are found to be
small with respect to the contribution of domain 1. The fluctuations of the average off in domains
2 and 4~wheres2 approaches 1! may be very large. In order to achieve a sufficient precision th
regions have been sampled with a large number of points~up to ;1010). The standard routine
‘‘ran2’’ ~Ref. 4! was used for random numbers generation.

The dependence of the integralF on the parameters« andr is very weak, thusU8 depends on
a, b and L1 mainly asab/L1 ~see Eq.~6!!. The study of the dependence ofU8 on n is more
difficult, because this dependence is entirely contained in the integralF and can be evaluated onl
numerically. One needs to insert in the program a cycle which samples the integrand for di
values ofn, typically between 1 and 15. This is possible because the rangesPi , Ki do not depend
on n.

The numerical evaluation ofF as a function ofn in the rangen51 – 15, with«50.1 andr
50.3, gives the results shown in Fig. 1. Withr50.1 andr50.032 one obtains very simila
results, thus confirming the weak dependence onr ~Fig. 2!. As expected varying« does not affect
much the value ofF either, since the dependence on the distanceL1 is already factorized out of the
integral ~compare Fig. 3!.

Figures 1, 2, 3 reveal an exponential behavior ofF(n) of the form

F~n!;exp~2mn1q!1b.

It is also clear just from the graphs that the exponential decrease ofF for large n leaves an
asymptotic valueF5b, with b in the interval 0.1–0.2. This is an interesting behavior, as it me
that the ‘‘shadow’’ produced by the barrier in the static field of the two sources has a
constant tail.

A least-squares fit of the data gives the results of Table II. Excluding from the fit the firs
points (n51,2) we obtain better estimates for the distribution tail and forb. The errors on the
parameters of the fit, in particular those onb, are small. They can be estimated knowing that
least-squares sum of the perceptual errorsS5(n$12@exp(2mn1q)1b#/F(n)%2 has a minimum
value Smin;0.05 and that its second partial derivatives at the minimum are of the orde
(]2S/]b2);4•102, (]2S/]m2);102, (]2S/]q2);10.

IV. CONCLUSIONS

Our technique for the computation of the Green function and the static potential of
pointlike sources appears to work well for weak fields, yielding reasonable results. The met
based upon a double 3D Fourier transform of the function which represents size and posi
space of the potential well or barrier. This double transform is necessary, due to the la

TABLE II. Results of the best fitF(n)5exp(2mn1q)1b.

b m q

«50.1 ~Fig. 1! 0.14 0.29 0.3
with n.2 0.12 0.24 0.1

«50.05 ~Fig. 3! 0.17 0.32 0.4
with n.2 0.16 0.26 0.1
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translational invariance of the system. Its numerical evaluation requires a preliminary ana
study and a subdivision of the integration volume in a few domains, because the range of t
exponential factors in the integrand varies considerably.

We studied the case of a smooth barrier with the form of a Gaussian ellipsoid in coord
and momentum space. For values ofr and « not much smaller than 1 a good precision was
obtained.~r is the ratio between the lengthsa and b of the ellipsoids axes and« is the ratio
between the length of the major axisa and the distanceL1 of the first source from the ellipsoid.!

Denoting byn the distance of the second source in units of the major axis, we found tha
correction to the interaction potential along the line joining the two sources and the barrier h
following form ~compare Eqs.~3!, ~6!!:

U5U01gU85
1

ux12x2u
2

~2p!11

Ap

gab

L1
F~«,r,n!

5
1

ux12x2u F12
~2p!11

Ap
gab~11n«!F~«,r,n!G .

The functionF depends very weakly onr and«. Its dependence onn is displayed in Figs. 1–3 and
shows an exponential decay followed by a constant tail.

The behavior summarized above is interesting in itself, being the result of a sort of ‘‘tu
ing’’ of the scalar field through a region where it is constrained or has imaginary mass. We
seen that the local imaginary mass term affects the propagation of the field also outside the
V where it has support. This feature is easily understood from the physical point of view; we
here a method for its quantitative evaluation.

ACKNOWLEDGMENT

This work has been partially supported by the A.S.P., Associazione per lo Sviluppo Sc
fico e Tecnologico del Piemonte, Turin, Italy.

APPENDIX: PROOF OF THE EXPRESSIONS FOR G8,U8

We give here the proof of Eqs.~2! and ~3! of the main text. Expanding the square in~1! we
obtain forW@J#,

W@J#5E d@f#expH 2E d4x@~]f!222jf0
2JV~x!f2~x!1jJV~x!f4~x!1jJV~x!f0

4#J .

The last term in the square bracket is constant with respect tof(x) and its exponential can b
factorized out of the functional integral. In a first instance—for weak fields—we can disregar
f4(x) term. We are then led to consider a quadratic functional integral, and the ‘‘mod
propagator’’G(x,y)5^f(x)f(y)&J , which by definition satisfies the equation

@]x
21gJV~x!#G~x,y!52~2p!4d4~x2y!, ~9!

whereg52jf0
2.0. Let us focus on the case whenf0

250 inside the regionsV i and let us take the
limit f0→0 andj→` in such a way thatg is finite and very small, so that the termgJV(x) in
Eq. ~9! constitutes only a small perturbation, compared to the kinetic term. Then we can se

G~x,y!5G0~x,y!1gG8~x,y!,

whereG0(x,y) is the propagator of the free scalar field, and we find immediately thatG8(x,y)
satisfies the equation

]x
2G8~x,y!52JV~x!G0~x,y!. ~10!
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Unlike G0(x,y), in generalG8(x,y) will not depend only on (x2y), because the sourc
breaks the translation invariance of the system. In order to go to momentum space it will the
be necessary to consider the Fourier transform ofG8(x,y) with respect to both arguments. W
defineG̃8(p,k) and J̃V(p) as follows:

G8~x,y!5E d4pE d4keipxeikyG̃8~p,k!

and

JV~x!5E d4peipxJ̃V~p!, G0~x,y!5E d4k
e2 ik~x2y!

k2 .

The right-hand side of~10! can be rewritten as

JV~x!G0~x,y!5E d4pE d4keipxJ̃V~p!
e2 ik~x2y!

k2 5E d4kE d4peikyeipx
J̃V~p1k!

k2 ,

and we obtain the following algebraic equation for the double Fourier transform of the first
correction to the propagator:

p2G̃8~p,k!5
J̃V~p1k!

k2 .

Transforming back, in conclusion we find Eq.~2! of the main text, namely,

G8~x,y!5E d4pE d4keipxeiky
J̃V~p1k!

k2p2 . ~11!

Therefore, if we know the Fourier transform of the characteristic functionJV of the space–time
region where the constraint is imposed, we can in principle compute the leading order corr
to the field propagator and thus toW@J#.

It is known5 that the vacuum-to-vacuum amplitudeW@J#5^01u02&J of a field system in the
presence of an external sourceJ is related to the logarithm of the systems’ ground state ener

E0@J#52T21 ln W@J#,

where the functional integral is supposed to be suitably normalized and the source va
outside the temporal interval@2T/2,1T/2#, with T eventually approaching infinity.~We use units
in which \5c51.)

An interesting application of~11! occurs in the case when the fieldf(x) also interacts withN
static pointlike sources placed atx1 ,x2 ...xN . Namely, let us add a further, linear coupling termSQ

to the action of the system,

SQ5E d4xQ~x!f~x!, with Q~x!5(
j 51

N

qjd
3~x2xj !.

The ground state energy of the system corresponds, up to a constant, to the static p
energy of the interaction of the sources through the fieldf. As before, it is obtained from the
functional average of the interaction term, computed keeping the constraint into account,

E0@J,Q#5U~x1 ,...,xN!52T21 ln^exp$2SQ%&J . ~12!
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Expanding~12! one finds that to leading order in theqjs, U(x1 ,...,xN) is given by a sum of
propagators integrated on time,

U~x1 ,...,xN!52T21 (
j ,l 51

N

qjqlE dtjE dtl^f~ t j ,xj !f~ t l ,xl !&J ,

wheret j ,t le@2T/2,1T/2#. Since the regionsV i are infinitely elongated in the temporal directio
the functionJ̃V(p1k) gets factorized as

J̃V~p1k!5~2p!4d~p01k0! j̃ V~p1k!. ~13!

Clearly the potential is disturbed by the presence of the ‘‘barriers’’j V(x). To first order ing
we can write

U~x1 ,...,xN!5U0~x1 ,...,xN!1gU8~x1 ,...,xN!

and taking into account Eqs.~11!, ~13! we find

U8~x1 ,...,xN!52T21 (
j ,l 51

N

qjqlE dtjE dtlG8~xj ,xl !

52~2p!4T21 (
j ,l 51

N

qjqlE dtjE dtlE d4pE d4k
eipxj 1 ikxl J̃V~p1k!

k2p2

52~2p!8T21 (
j ,l 51

N

qjqlE dtjE dtlE d4pE dk
eip0~ t j 2t l !1 ipxj 1 ikxl j̃ V~p1k!

~p0
21k2!~p0

21p2!
.

Changing to variablest5t j2t l ands5t j1t l and integrating we finally obtain the contribution o
the perturbation to the static potential energy@Eq. ~3! of the main text#,

U8~x1 ,...,xN!52~2p!8 (
j ,l 51

N

qjqlE dpE dkeipxj 1 ikxl
j̃ V~p1k!

k2p2 .
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Generalized adiabatic product expansion:
A nonperturbative method of solving
the time-dependent Schro ¨ dinger equation

Ali Mostafazadeha)

Department of Mathematics, Koc¸ University, Istinye 80860 Istanbul, Turkey

~Received 6 January 1999; accepted for publication 17 March 1999!

We outline a method based on successive canonical transformations which yields a
product expansion for the evolution operator of a general~possibly non-Hermitian!
Hamiltonian. For a class of such Hamiltonians this expansion involves a finite
number of terms, and our method gives the exact solution of the corresponding
time-dependent Schro¨dinger equation. We apply this method to study the dynamics
of a general nondegenerate two-level quantum system, a time-dependent classical
harmonic oscillator, and a degenerate system consisting of a spin 1 particle inter-
acting with a time-dependent electric fieldEW(t) through the Stark HamiltonianH
5l(JW•EW)2. © 1999 American Institute of Physics.@S0022-2488~99!02207-0#

I. INTRODUCTION

Recently, a method based on successive canonical transformations has been used t
exact solution of the Schro¨dinger equation

i
d

dt
uc~ t !&5H~ t !uc~ t !& ~1!

for a class of dipole Hamiltonians1–3 and time-dependent harmonic oscillators.4 For these systems
the Hamiltonian is a nondegenerate Hermitian operator. The purpose of the present artic
extend the application of this method to the cases where the Hamiltonian is non-Hermitia
involves degenerate eigenvalues.

Non-Hermitian Hamiltonians have been used to model a variety of physical systems invo
decaying states.5 The solution of the Schro¨dinger equation for a time-dependent two-level no
Hermitian Hamiltonian has been considered in Refs. 6 and 7. Another motivation for the stu
the Schro¨dinger equation for a time-dependent non-Hermitian Hamiltonian is the fact tha
solution of every linear ordinary differential equation~ODE! may be reduced to the solution of
system of first-order linear ODEs which can be written in the form of the time-dependent S¨-
dinger equation~1! or alternatively

uc~ t !&5U~ t !uc~0!&, ~2!

i
d

dt
U~ t !5H~ t !U~ t !, ~3!

U~ t !51, ~4!

whereU(t) is the evolution operator. For a general linear ODE the corresponding Hamilto
H(t) may be a non-Hermitian matrix with degenerate eigenvalues.

a!Electronic mail: amostafazadeh@ku.edu.tr
33110022-2488/99/40(7)/3311/16/$15.00 © 1999 American Institute of Physics
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The method ofadiabatic product expansiondeveloped in Refs. 1 and 2 does not directly app
to quantum systems with non-Hermitian Hamiltonians. In this article we shall present a gen
zation of this method which applies to arbitrary~possibly! non-Hermitian Hamiltonians with
degenerate as well as nondegenerate eigenvalues.

The organization of the article is as follows. In Sec. II we review the basic results conce
the adiabatic approximation for degenerate and non-Hermitian Hamiltonians. In Sec. III w
cuss the generalization of the method of adiabatic product expansion to these Hamiltonia
Sec. IV we use the results of Sec. III to study the solution of the Schro¨dinger equation for a
general nondegenerate non-Hermitian two-level Hamiltonian. In Sec. V, we apply the ge
results obtained in Sec. IV to treat the classical equation of motion for a harmonic oscillato
a time-dependent frequency. In Sec. VI, we discuss the application of the adiabatic p
expansion to study the quadrupole interaction of a spin 1 particle with a time-dependent e
field EW5(E1(t),E2(t),0). We show that the corresponding Hamiltonian which has a degen
and a nondegenerate eigenvalue is canonically equivalent to a Hamiltonian which has onl
degenerate eigenvalues. Furthermore, we show that if the direction of the electric field depe
a particular way on its magnitude, then our method yields the exact solution of the Schro¨dinger
equation. Finally we present our conclusions in Sec. VII.

II. ADIABATIC APPROXIMATION FOR NON-HERMITIAN HAMILTONIANS

Let H5H@R# be a parametric Hamiltonian which depends on a set of real parameteR
5(R1,R2,...,Rd) labeling the points of a smooth manifoldM. Let En@R# denote the eigenvalue
of H@R# andHn@R# be the degeneracy subspace associated withEn@R#. LetN denote the degree
of degeneracy ofEn@R#, i.e., the complex dimension ofHn@R#. We shall assume that the spe
trum of H@R# is discrete andN does not depend onR.

Now let ucn ,a;R& andufn ,a;R& form a complete biorthonormal basis of the Hilbert space8,9

This means thatucn ,a;R& with aP$1,2,...,N% form a basis ofHn@R#, in particular

H@R#ucn ,a;R&5En@R#ucn ,a;R&, ~5!

and ufn ,a;R& satisfy

H@R#†ufn ,a;R&5En* @R#ufn ,a;R&, ~6!

^fm ,b;Rucn ,a;R&5dmndab , ~7!

(
n

(
a51

N

ucn ,a;R&^fn ,a;Ru51. ~8!

Next suppose that the parametersRi depend on timet, then R(t) defines a curveC in the
parameter spaceM, and the Hamiltonian, its eigenvalues, and eigenvectors become time d
dent. In this case we use the notationH(t)ªH@R(t)#, En(t)ªEn@R(t)#, ucn ,a;t&
ªucn ,a;R(t)&, andufn ,a;t&ªufn ,a;R(t)&. We shall assume thatEn(t), ucn ,a;t& andufn ,a;t&
are smooth functions oft and that during the evolution of the system the eigenvalues of
Hamiltonian do not cross, i.e., ifEm(0),En(0), then for all tP@0,t#, Em(t),En(t), wheret
denotes the duration of the evolution of the system.

Differentiating both sides of Eq.~5! with respect tot, taking the inner product of both sides o
the resulting equation withufm ,b;t&, for arbitrarym andb, and using Eqs.~5!–~7!, we have

@Em~ t !2En~ t !#^fm ,b;tu
d

dt
ucn ,a;t&1^fm ,b;tuḢ~ t !ucn ,a;t&2dmndabĖ~ t !50. ~9!

Here a dot denotes differentiation with respect tot. For mÞn, Eq. ~9! reads
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^fm ,b;tu
d

dt
ucn ,a;t&5

^fm ,b;tuḢ~ t !ucn ,a;t&
En~ t !2Em~ t !

for mÞn. ~10!

Now let us express the solution of the Schro¨dinger equation~1! in the basis$ucn ,a;t&%. Then

uc~ t !&5(
n

(
a51

N

Ca
n~ t !ucn ,a;t&, ~11!

where Ca
n(t) are complex coefficients. Substituting Eq.~11! in the Schro¨dinger equation~1!,

taking the inner product of both sides of the resulting equation withufm ,b;t&, and making use of
Eqs.~5!, ~6!, ~7!, and~10!, we find

iĊb
m2EmCb

m1 (
a51

N

i K fm ,b;tU d

dt
cm ,a;t L Ca

m52 i (
nÞm

(
a51

N
^fm ,b;tuḢ~ t !ucn ,a;t&

En~ t !2Em~ t !
. ~12!

The special case of this equation withN51, i.e., the nondegenerate case, has been origin
derived by Garrison and Wright9 in their investigation of the adiabatic geometric phase10 for
non-Hermitian Hamiltonians.9,11–14

If the right-hand side of Eq.~12! is negligible, then one says that the system undergoe
adiabatic evolution.15,16,2,9,17In this case, the equations forCa

n decouple and their solution is give
by

Ca
n~ t !5 (

b51

N

Kab
n ~ t !Cb

n~0!, ~13!

whereKab
n (t) are entries of the invertible matrix

Kn~ t !ªe2 i *0
t En~s!dsP expF i E

R~0!

R~ t !
An@R#G , ~14!

P denotes the path-ordering operator,An is the matrix of one-forms with entries

Aab
n @R#ª i ^fn ,a;Ruducn ,b;R&, ~15!

d stands for the exterior derivative with respect toRi , and the line integral in Eq.~14! is evaluated
along the curveC defined byR(t). If C is a closed curve inM, the Hamiltonian has a periodic tim
dependence and the path-ordered exponential in Eq.~14!, which takes the form

P expF i R
C
An@R#G , ~16!

is thenon-Hermitiananalog of thenon-Abelian adiabatic geometric phase.18

Note that if the initial vectoruc~0!& is an eigenvector of the initial HamiltonianH(0), then the
adiabaticity of the evolution implies thatuc(t)& is an eigenvector ofH(t) for all tP@0,t#. In terms
of the time-evolution operatorU(t) of Eq. ~3! this is expressed by

U~ t !'U ~0!~ t !, ~17!

where

U ~0!~ t !ª(
n

(
a,b51

N

Kab
n ~ t !ucn ,a;t&^fn ,b;0u. ~18!
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One can easily show thatU (0)(t) is invertible, and its inverse is given by

U ~0!21
~ t !5(

n
(

a,b51

N

Kab
n21

~ t !ucn ,a;0&^fn ,b;tu, ~19!

whereKn21
(t) is the inverse ofKn(t).

III. ADIABATIC CANONICAL TRANSFORMATIONS AND THE GENERALIZED
ADIABATIC PRODUCT EXPANSION

Let g(t) be an invertible linear operator acting on the Hilbert space. Then the transforma

uc~ t !&→uc8~ t !&ªg~ t !uc~ t !&, ~20!

H~ t !→H8~ t !ªg~ t !H~ t !g~ t !212 ig~ t !
d

dt
g~ t !21, ~21!

U~ t !→U8~ t !ªg~ t !U~ t !g~0!21, ~22!

leave the form of the Schro¨dinger equation invariant. We shall call such a transformatio
canonical transformation.

Now let us investigate the consequences of the canonical transformation defined bg(t)
5U (0)(t)21. We shall call this transformation theadiabatic canonical transformation. Denoting
the transformed HamiltonianH8 by H (1), we have

H ~1!~ t !5 (
n,mÞn

(
a51

N

(
b51

M

Hab
~1!nm

~ t !ucn ,a;0&^fm ,b;0u, ~23!

where

Hab
~1!nm~ t !ª2Kac

~n!~ t !21Acd
nm~ t !Kdb

m ~ t !, Acd
nm~ t !ª i ^fnc;tu

d

dt
ucm ,d;t&. ~24!

Becauseg(0)5U (0)(0)2151, the transformed evolution operator is given by

U8~ t !5U ~0!~ t !21U~ t !. ~25!

Clearly if the adiabatic approximation is valid,H (1)(t)'0 andU8(t)'1.
Let us suppose thatH (1)(t) has a discrete spectrum and denote byEn1

(1)(t) andN1 the eigen-

values ofH (1)(t) and their degree of degeneracy. Furthermore, let$ucn1

(1) ,a1 ;t&,ufn
(1) ,a1 ;t&% be a

biorthonormal eigenbasis of the Hilbert space, i.e.,

H ~1!~ t !ucn1

~1! ,a1 ;t&5En1

~1!~ t !ucn1

~1! ,a1 ;t&,

H ~1!~ t !†ufn1

~1! ,a1 ;t&5En1

~1!* ~ t !ufn1

~1! ,a1 ;t&,

^fm1

~1! ,b1 ;tucn1

~1! ,a1 ;t&5dm1n1
da1b1

, (
n1

(
a151

N1

ucn1

~1! ,a1 ;t&^fn1

~1! ,a1 ;tu51.

ThenH (1)(t) shares the properties of the original HamiltonianH(t), and we can repeat the abov
analysis usingH (1)(t) in place of H(t). In this way the adiabatic approximation yields th
approximate evolution operator
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U ~1!~ t !5(
n1

(
a1 ,b151

N1

Ka1b1

~1!n1~ t !ucn1

~1! ,a1 ;t&^fn1

~1! ,b1 ;0u ~26!

for H (1)(t), whereKa1b1

(1)n1(t) are the entries of the matrixK (1)n1 obtained by replacingEn(t),

ucn ,a;t& and ufn ,a;t& in Eqs. ~14! and ~15! by En1

(1)(t), ucn1

(1) ,a1 ;t&, and ufn1

(1) ,a1 ;t&, respec-

tively.
Next we perform the adiabatic canonical transformation defined byg(t)5U (1)(t)21. This

leads to a transformed HamiltonianH (2)(t) which is related toH (1)(t) according to Eqs.~23! and
~24! with Kn, ucn ,a;t&, and ufn ,b;t& replaced byK (1)n1, ucn1

(1) ,a1 ;t&, and ufn1

(1) ,a1 ;t&. The

transformed evolution operator is given by

U ~1!~ t !21U ~0!~ t !21U~ t !.

Repeating this procedure we obtain, afterN successive adiabatic canonical transformation
transformed HamiltonianH (N)(t) and a transformed evolution operator which is given by

U ~N21!~ t !21U ~N22!~ t !21
¯U ~0!~ t !21U~ t !.

Here U (l )(t), with l P$1,2,...,N21%, denotes the approximate evolution operator obtained
performing adiabatic approximation on the HamiltonianH (l )(t).

If for someN the adiabatic approximation yields the exact solution of the Schro¨dinger equa-
tion for the HamiltonianH (N)(t), then by constructionH (N11)(t)50 andU (N11)(t)51. In this
case, the original evolution operator is given by

U~ t !5U ~0!~ t !U ~1!~ t !¯U ~N!~ t !. ~27!

If the adiabatic approximation fails for allH (N)(t), then there are two possibilities
~i! One obtains an infinite product expansion for the evolution operator

U~ t !5 )
l 50

`

U ~ l !~ t !ªU ~0!~ t !U ~1!~ t !¯U ~ l !~ t !¯ . ~28!

In this case, one may view Eq.~27! as ageneralizationof the adiabatic approximation.
~ii ! One obtainsH ( i )(t)5H ( j )(t) for somei and j with iÞ j . In this case a direct applicatio

of the method of adiabatic product expansion does not produce a solution. However, as w
see in Sec. IV, sometimes it is possible to modify this method by combining the adiabatic ca
cal transformation with other canonical transformations, so that one obtains a finite or an i
product expansion with distinct terms.

IV. APPLICATION TO TWO-LEVEL HAMILTONIANS

Two-level nondegenerate Hamiltonians provide the simplest nontrivial quantum systems
has been one of the main reasons for the study of these Hamiltonians since the early d
quantum mechanics. In this section we shall consider the most general nondegenerate tw
Hamiltonian which may or may not be Hermitian.

In an arbitrary basis of the Hilbert space (C2), the Hamiltonian is given by a two-by-two
complex matrixH̄. One can perform a quantum canonical transformation~21! defined byg(t)
5exp$i*0

t @tr H̄(s)#ds/2% to map the HamiltonianH̄ to a traceless Hamiltonian of the form

HªS a b

c 2aD , ~29!
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where trH̄ denotes the trace ofH̄, anda5a(t), b5b(t), c5c(t) are complex-valued smoot
functions oft.

We can easily solve the eigenvalue problem for the Hamiltonian~29!. The eigenvalues are
given by

E1~ t !ª2E~ t !, E2~ t !ªE~ t !,

where

EªAa21bc. ~30!

We shall demand that during the time interval@0,t# of interestEÞ0, so that the eigenvalues ar
nondegenerate. In particular, no level crossings occur. Then a possible choice for a biortho
eigenbasis is

uc1 ;R&5S 2b
a1ED , uc2 ;R&5S a1E

c D , ~31!

uf1 ;R&5
1

N* S 2c*
a* 1E* D , uf2 ;R&5

1

N* S a* 1E*
b*

D , ~32!

whereR5(a,b,c) andNª2E(a1E).
Next we computeU (0) andH (1). Using Eqs.~18!, ~14!, ~15!, and~23!, we find

U ~0!~ t !5K1~ t !uc1 ;t&^f1 ;0u1K2~ t !uc2 ;t&^f2 ;0u, ~33!

H ~1!~ t !5j~ t !uc1 ;0&^f2 ;0u1z~ t !uc2 ;0&^f1 ;0u, ~34!

where

K1~ t !ªK11
1 ~ t !5expS ih~ t !

2
2E

R~0!

R~ t !F ~2E!21S da1dE1
cdb

a1ED G D ,

K2~ t !ªK11
2 ~ t !5expS 2 ih~ t !

2
2E

R~0!

R~ t !F ~2E!21S da1dE1
bdc

a1ED G D , ~35!

h~ t !ª2E
0

t

E~s!ds,

j~ t !ªH11
12~ t !5S 2

ie22ia~ t !

2 D F11
a~ t !

E~ t !G d

dt F c~ t !

a~ t !1E~ t !G , ~36!

z~ t !ªH11
21~ t !5S ie2ia~ t !

2 D F11
a~ t !

E~ t !G d

dt F b~ t !

a~ t !1E~ t !G , ~37!

a~ t !ª
h~ t !

2
1

i

4 ER~0!

R~ t ! cdb2bdc

E~E1a!
. ~38!

The transformed Hamiltonian has the following matrix expression:

H ~1!~ t !5S a~1!~ t ! b~1!~ t !

c~1!~ t ! 2a~1!~ t !
D , ~39!
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where

a~1!~ t !ª2
b0j~ t !1c0z~ t !

2E0
, ~40!

b~1!~ t !ª2
b0

2j~ t !2~a01E0!2z~ t !

2E0~E01a0!
, ~41!

c~1!~ t !ª2
2~a01E0!2j~ t !1c0

2z~ t !

2E0~E01a0!
, ~42!

a0ªa(0), b0ªb(0), c0ªc(0), E0ªE(0), and wehave used Eqs.~31!, ~32!, and~34!.
Note that the transformed HamiltonianH (1)(t) is traceless, and one can obtainH (2)(t) by

substitutinga(1) for a,b(1) for b,c(1) for c, andE(1)
ªA(a(1))21b(1)c(1) for E in Eqs.~34!, and

~36!–~38!. Clearly this can be repeated indefinitely, and one can computeH (l ) for arbitrary l .
The adiabatic approximation corresponds to the cases where the matrix elements ofH (1)(t)

can be neglected. As seen from Eqs.~39! to ~42! this happens whenever bothj andz are negli-
gible. One can also check that if only one of these quantities is negligible, thenH (1)(t) is equal to
the other times a constant matrix. This means thatH (1)(t) has essentially stationary eigenvecto
and the adiabatic approximation would yield the solution of the Schro¨dinger equation forH (1). In
fact, it is not difficult to check that for the cases that eitherj or z is negligible,H (2)(t)'0. In
particular, settingj50 or z50 impliesH (2)(t)50 and the evolution operator is given by

U~ t !5U ~0!~ t !U ~1!~ t !. ~43!

Therefore, the conditionsj50 andz50 each define a class of exactly solvable two-level syste
In view of Eqs.~36! and ~37!, these are as follows.

Class 1: The two-level systems for whichc/(a1E)5m5constant, or alternativelyc
5m(mb1A4a21m2b2)/2.

Class 2: The two-level systems for whichb/(a1E)5n5constant, or alternativelyc5b/n2

2a2/b.
In generalj andz do not vanish and the adiabatic product expansion does not terminate.

is also a special class of two-level systems for which the product expansion has a pe
structure in the sense of case~ii ! of Sec. III. This is

Class 3: The two-level systems for whicha50.
Settinga50 in Eqs.~38!, ~35!, ~36!, and~37! and definingf (t)ª iAc(t)/b(t), we have

a~ t !5
h~ t !

2
1

i

4
lnS c0b~ t !

b0c~ t ! D , h~ t !52E
0

t
Ab~s!c~s!ds,

j~ t !52
f 0 ḟ ~ t !e2 ih~ t !

2 f ~ t !
, z~ t !5

ḟ ~ t !eih~ t !

2 f 0f ~ t !
,

where f 0ª f (0). Substituting these equations in Eq.~39!, we obtain

H ~1!~ t !5E~1!~ t !S cosh~ t ! f 0
21 sinh~ t !

f 0 sinh~ t ! 2cosh~ t !
D , ~44!

where

E~1!~ t !5
i ḟ ~ t !

2 f ~ t !
.
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This Hamiltonian has two interesting properties.
~1! If b05c0 , then f 05 i and

H ~1!~ t !5E~1!~ t !@sinh~ t !s21cosh~ t !s3#5E~1!~ t !eih~ t !s1/2s3e2 ih~ t !s1/2, ~45!

wheres i are Pauli matrices, and we have used the identity

e2 iws is je
iws i5cos~2w!s j1sin~2w!(

k51

3

e i jksk for iÞk. ~46!

In Eq. ~46!, w is an arbitrary complex variable ande i jk is the totally antisymmetric Levi–Civita
symbol withe12351. For the time periods during whichAb(t)c(t) is real,h(t), is real, and the
Hamiltonian~45! is anti-Hermitian. In particular, its eigenvectors are orthogonal. Up to a facto
i this Hamiltonian describes the interaction of a spin 1/2 magnetic dipole with a changing
netic field. This system has an SU~2! dynamical group.19,20,1,3For the time periods during which
Ab(t)c(t) is imaginary,h(t) is imaginary, and up to a factor ofi the Hamiltonian~45! describes
a quantum system with a SU~1,1! dynamical group. A Hermitian analog of such a system is
time-dependent generalized harmonic oscillator.21,20,22

~2! Performing the adiabatic canonical transformation on~45!, we arrive at the unexpecte
result

H ~2!~ t !5H~ t !. ~47!

Therefore, direct application of the method of adiabatic product expansion does not lea
solution.

Next we shall describe a modification of the method of adiabatic product expansion w
yields an infinite product expansion for the evolution operator of the Class 3 systems
involve distinct terms.

Consider the transformed Hamiltonian~44!. We can express this Hamiltonian using Eq.~39!
with

a~1!~ t !5E~1!~ t !cosh~ t !, b~1!~ t !5 f 0
21E~1!~ t !sinh~ t !, c~1!~ t !5 f 0E~1!~ t !sinh~ t !. ~48!

Although this Hamiltonian does not belong to Class 3, it can be canonically transformed
Hamiltonian which belongs to Class 3, i.e., its diagonal matrix elements vanish. This transf
tion is defined byg(t)5exp$i*0

t a(1)(s)dss3%. The corresponding transformed Hamiltonian is giv
by

H1~ t !5S 0 b1~ t !

c1~ t ! 0 D , ~49!

where

b1~ t !ªb~1!~ t !eig1~ t !, c1~ t !ªc~1!~ t !e2 ig1~ t !, g1~ t !ª2E
0

t

a~1!~s!ds. ~50!

The evolution operatorU1 of H1 is related to the evolution operator of the original HamiltonianH
according to

U1~ t !5expS i E
0

t

a~1!~s!dss3DU ~0!~ t !†U~ t !, ~51!

where we have used Eq.~22!.
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Now sinceH1 has the same form asH, we can repeat the above analysis usingH1 in place of
H. Performing an adiabatic canonical transformation onH1 we obtain the transformed Hamil
tonian

H1
~1!~ t !5S a1

~1!~ t ! b1
~1!~ t !

c1
~1! 2a1

~1!~ t !
D , ~52!

where

a1
~1!~ t !ªE1

~1!~ t !cosh1~ t !, b1
~1!~ t !ª f 1,0

21E1
~1! sinh1~ t !,

c1
~1!~ t !ª f 1,0E1

~1!~ t !sinh1~ t !, E1
~1!~ t !ªE~1!~ t !cosh~ t !,

~53!

f 1~ t !ª iAc1~ t !

b1~ t !
5 i f 0e2 ig1~ t !, f 1,0ª f 1~0!5 i f 0 ,

h1~ t !ª2E
0

t

E~1!~s!sinh~s!ds.

Clearly we can repeat this procedure indefinitely and construct an infinite product expansi
the evolution operator. Again if we compute only a finite number of terms in this expansion,
we obtain a generalization of the adiabatic approximation. The validity of this approximation
be checked by computing the transformed Hamiltonians. It is not difficult to show that the t
formed Hamiltonian obtained afterl adiabatic canonical transformations is of the form

H l
~1!~ t !5hl ~ t !S~ t !,

where

H l ~ t !5E~1!~ t !cosh~ t !cosh1~ t !cosh2~ t !¯cosh l 21~ t !,

h j~ t !ª2E
0

t

E~1!~s!cosh~s!cosh1~s!¯cosh j 21~s!sinh j 21~s!ds,

where j P$2,3,...,l 21% andS(t) is a two-by-two matrix of unit determinant. Clearly if for som
l , hl (t) is negligible, then the above-mentioned generalization of the adiabatic approximat
valid.

Finally let us note that in general the initial Hamiltonian~29! can be written in the form

H~ t !5a1~ t !s11a2~ t !s21a~ t !s3 , ~54!

with a15(b1c)/2 anda25 i (b2c)/2. Performing the canonical transformation~21! defined by
g(t)5exp$i*0

t a2(s)dss2%, we transform the Hamiltonian~54! into

H8~ t !5a8~ t !s11a8~ t !s35S a8~ t ! a8~ t !

a8~ t ! 2a8~ t !
D ,

where

a8~ t !ªa1~ t !cosj~ t !2a~ t !sinj~ t !, a8~ t !ªa1~ t !sinj~ t !1a~ t !cosj~ t !,

j~ t !ªE
0

t

a2~s!ds. ~55!
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Here we have used Eqs.~21! and~46!. Next we perform another canonical transformation, nam
the one defined byg(t)5exp$i*0

t a8(s)dss3%. This transformation maps the Hamiltonian~55! into

H9~ t !5a8~ t !eih8~ t !s3/2s1e2 ih8~ t !s3/2

5a8~ t !@cosh8~ t !s12sinh8~ t !s2#5a8~ t !S 0 eih8~ t !

e2 ih8~ t ! 0
D , ~56!

whereh8(t)ª2*0
t a8(s)ds. This Hamiltonian is not only a member of Class 3 Hamiltonians,

initially ~at t50! its off-diagonal matrix elements are equal. In particular, it has the properties
the above list. Note that we can carry out these canonical transformations on any two
Hamiltonian. Therefore, every two-level Hamiltonian is canonically equivalent to a Class 3 H
tonian of the form~56!. This means that the results obtained for Class 3 Hamiltonians app
arbitrary two-level Hamiltonians.

V. TIME-DEPENDENT SIMPLE HARMONIC OSCILLATOR

It is well-known that the solution of every second-order linear ODE23 can be reduced to the
classical equation of motion for a simple harmonic oscillator with a time-dependent frequ
v5v(t),

ẍ~ t !1v2~ t !x~ t !50. ~57!

It is also well-known that one can reduce both the classical and quantum equations of mot
a generalized harmonic oscillator to Eq.~57!.24,25,22,26This equation has, therefore, many physic
applications.25,27 Yet an exact analytic expression for the general solution of this equation is
known even for the case of real frequency.28 The lack of an exact analytic solution of Eq.~57! is
not surprising. One way to see this is to recall that the time-independent Schro¨dinger equation for
an arbitrary potentialV(x) in one dimension is given by

d2cn

dx2 1S \2@En2V~x!#

2m Dcn50, ~58!

whereEn andcn are the energy eigenvalues and eigenfunctions, respectively. Equation~58! can
be easily identified with Eq.~57! provided that one makes the change of variables:x→t, cn

→x, and$\2@E2V(x)#%/(2m)→v2(t). This shows that if one was able to find the exact analy
solution of Eq.~57! for arbitrary frequencyv, then one would have been able to find the gene
solution of the time-independent Schro¨dinger equation for any potentialV.

In the following we shall consider the case of an ordinary time-dependent harmonic osc
~57! with real frequency. In order to apply the results of Sec. IV to Eq.~57!, we first express it in
the form of a system of first-order ODEs. Defining,

uc~ t !&ªS x~ t !
v~ t ! D , v~ t !ª ẋ~ t !,

we can write Eq.~57! in the form of the Schro¨dinger equation~1! with a two-level Hamiltonian of
the form ~29! with

a50, b5 i , c52 iv~ t !2, E5v~ t !. ~59!
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Sincea50, this system belongs to the Class 3 of Sec. IV with

f ~ t !5v~ t !, h~ t !52E
0

t

v~s!ds,

~60!

H ~1!5E~1!~ t !S cosh~ t !
sinh~ t !

v0

v0 sinh~ t ! cosh~ t !
D , E~1!~ t !ª

i v̇~ t !

2v~ t !
.

Clearly, for real frequencyv(t) we can scale the time variablet so thatv051. Then the
transformed Hamiltonian~60! takes the form

H ~1!~ t !5E~1!~ t !@sinh~ t !s11cosh~ t !s3#5E~1!~ t !e2 ih~ t !s2/2s3eih~ t !s2/2. ~61!

Note that sinceh(t) is real, the Hamiltonian~61! is an anti-Hermitian matrix with orthogona
eigenvectors. Therefore, up to a factor ofi it describes a two-level spin system with a SU~2!
dynamical group.19,3 @Note that one can absorb the factor ofi in the definition of the time variable
t, i.e., by defining the imaginary time variabletª2 i t . Therefore, the dynamics given by th
Hamiltonian~61! may be viewed as the dynamics of a spin system with imaginary time.# This is
rather surprising, for it is well-known that the quantum harmonic oscillator has SU~1,1! dynamical
group and that its Schro¨dinger equation may be reduced to Eq.~57! by means of a quantum
canonical transformation corresponding to a time-dependent dilatation.26

In view of the fact thatE(1) is proportional to the derivative of lnv, we can make a change o
independent variable, namelyt→h. Note thath is the integral of a positive real function oft.
Hence, it is a monotonically increasing function oft. Making this change of variable the Schro¨-
dinger equation for the Hamiltonian~61! becomes

i
d

dh
Ũ~h!5H̃~h!Ũ~h!, Ũ~h!51,

whereŨ(h)ªU8(t(h)), U8(t) is the evolution operator for the the Hamiltonian~61!,

H̃~h!ªẼ~h!e2 ihs2/2s3eihs2/25Ẽ~h!~sinhs11coshs3!, ~62!

Ẽ~h!ª
iv8~h!

2v~h!
, v8ª

dv

dh
. ~63!

Up to a factor ofi, the Hamiltonian~62! describes the interaction of a spin 1/2 magnetic dip
with a changing magnetic field whose direction rotates uniformly in thex–z plane.

As we mentioned in Sec. IV for the Class 3 systemsH (2)(t)5H(t). Hence direct application
of the method of the adiabatic product expansion does not lead to a solution of the Schro¨dinger
equation for the Hamiltonian~61! or ~62!. In this case, either one constructs the modified adiab
product expansion of Sec. IV or examines the adiabatic series expansion of Ref. 2. The
yields a series expansion for the evolution operatorŨ(h) of the HamiltonianH̃(h), namely

Ũ~h!5T expS 2 i E
0

h
H̃~s!dsD

512 i E
0

h
H̃~s!ds1

~2 i !2

2 E
0

hE
0

h
T@H̃~s1!H̃~s2!#ds1 ds21¯1

~2 i !n

n!

3E
0

h
¯E

0

h
T@H̃~s1!¯H̃~sn!#ds1¯dsn1¯ , ~64!
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whereT stands for the time-ordering operator. SinceH̃(h) is proportional tov8(h), for slowly
varyingv one obtains an approximate expression forŨ(h) by computing a finite number of term
in this series. This is in fact another generalization of the adiabatic approximation, because
keeps only the first term in this series and neglects the other terms one is essentially negleH̃
or alternativelyH (1). As we explained above, this is just the adiabatic approximation. If one k
more terms in this series, then one obtains a better approximation than the adiabatic appr
tion.

VI. QUADRUPOLE INTERACTION OF A SPIN 1 PARTICLE WITH A CHANGING
ELECTRIC FIELD

Consider a spin 1 particle interacting with a changing electric fieldEW(t)
5(E1(t),E2(t),E3(t)) according to the Stark Hamiltonian

H~ t !5l@JW•EW~ t !#2, ~65!

wherel is a real coupling constant andJW is the angular momentum of the particle. The quadrup
interactions of the form~65! have been extensively studied for fermionic systems in relation w
the non-Abelian geometric phases29–31 ~See also Ref. 32.! The occurrence of non-Abelian geo
metric phases for the degenerate spin 1 systems has been pointed out in Ref. 33. For these
the particle has a definite angular momentumj 51 and the Hamiltonian is a 333 matrix. Using
the spinj 51 representation ofJi , we can express the Stark Hamiltonin~65! in the form

H5S lr 2

2 D S 112z2 &ze2 iu e22iu

&zeiu 2 2&ze2 iu

e2iu 2&zeiu 112z2
D , ~66!

wherer, u, andz are defined by

rªAE1
21E2

2, eiu
ª

E11 iE2

r
, zª

E3

r
.

In view of the general results of Ref. 33, ifrÞ0 then the Hamiltonian~66! has a degenerat
and a nondegenerate eigenvalue. In the following we shall consider the case whereE350. The
general caseE3Þ0 can be similarly treated.

If E350, thenz50 and

H5S lr 2

2 D S 1 0 e22iu

0 2 0

e2iu 0 1
D . ~67!

The eigenvalues of this Hamiltonian are given by

E150, E25lr 2. ~68!

For rÞ0, E1 is nondegenerate andE2 is doubly degenerate. A set of orthonormal eigenvectors
this Hamiltonian is given by

uc1 ;R&ª
1

&
S 21

0
e2iu

D , uc2,1;R&ª
1

&
S 1

0
e2iu

D , uc2,2;R&ªS 0
1
0
D , ~69!

whereR5(r ,u).
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Next we computeU (0)(t) for this system. In order to do this we first use Eq.~15! to calculate
An. In view of the fact that the Hamiltonian~67! is Hermitian,ufn ,a;R&5ucn ,a;R& and Eq.~15!
leads to

A152du, A25S 2du 0

0 0D . ~70!

Substituting Eqs.~70! into Eq. ~14! and making use of Eq.~68!, we find

K1~ t !5e2 i @u~ t !2u0#, K2~ t !5e2 ir~ t !S e2 i @u~ t !2u0# 0

0 1D , ~71!

where

u0ªu~0!, r~ t !ªlE
0

t

r ~s!2 ds. ~72!

Using Eqs.~18! and ~69!, we have

U ~0!~ t !5
1

2 S ~11e2 ir~ t !!eiu2~ t ! 0 ~211e2 ir~ t !!e2 iu1~ t !

0 2e2 ir~ t ! 0

~211e2 ir~ t !!eiu1~ t ! 0 ~11e2 ir~ t !!eiu2~ t !
D , ~73!

whereu6(t)ªu(t)6u0 .
Next we compute the HamiltonianH (1)(t). This involves the calculation ofAab

nm(t) and
Hab

mn(t) for mÞn. Using Eqs.~24! and ~69! we have

A11
125A11

2152 u̇, A12
125A21

2150,

H11
215H11

125 u̇eir~ t !, H12
125H21

2150.

Substituting these equations in Eq.~23! and using Eq.~69!, we obtain

H ~1!~ t !52 u̇~ t !S cosr~ t ! 0 2 i sinr~ t !

0 0 0

i sinr~ t ! 0 2cosr~ t !
D 52 u̇~ t !@sinr~ t !S21cosr~ t !S3#, ~74!

where

S2ªS 0 0 2 i

0 0 0

i 0 0
D , S3ªS 1 0 0

0 0 0

0 0 21
D . ~75!

It is not difficult to recognizeS2 and S3 as the Pauli matricess2 and s3 represented in a (0
11/2) representation of SU~2!. In view of this identification we can expressH (1)(t) in the form

H ~1!~ t !52 u̇~ t !eir~ t !S1/2S3e2 ir~ t !S1/2, ~76!

where
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S1ªS 0 0 1

0 0 0

1 0 0
D ,

and we have used Eq.~46!.
The HamiltonianH (1)(t) has the following interesting properties.
~a! For u50, i.e.,u5constant, the adiabatic approximation is exact andU(t)5U (0)(t).
~b! In view of Eq.~76! for u̇Þ0, H (1)(t) has three nondegenerate eigenvalues, namely2 u̇, 0,

andu̇. This is quite remarkable because it shows that the adiabatic canonical transformation
the degenerate Hamiltonian~67! into the nondegenerate Hamiltonian~76!.

~c! SinceS i is a representation of the Pauli matrixs i , the Hamiltonian~76! belongs to a
representation of the Lie algebra of SU~2!. This means that one can reduce the Schro¨dinger
equation for this Hamiltonian to that of the dipole Hamiltonian2,3

Hdp522u̇~ t !eir~ t !J1J3e2 ir~ t !J1.

~d! We can perform another canonical transformation, namely the one defined byg(t)
5exp@2ir(t)S1 /2# to transform the Hamiltonian~76! into

H ~1!8~ t !5
r ~ t !2

2
S12 u̇~ t !S3 , ~77!

where we have used Eqs.~76!, ~21!, and~72!. In particular if u̇ andr 2 happen to be proportional
i.e., for somecPR

u̇~ t !5cr~ t !2, ~78!

then H (1)8(t)5r (t)2( 1
2S12cS3). In this case the eigenvectors ofH (1)8(t) are constant and the

adiabatic approximation yields the exact solution of the Schro¨dinger equation forH (1)8(t). The
corresponding evolution operator is then given by

U ~1!8~ t !5expS i S 1

2
S12cS3D E

0

t

r ~s!2 dsD . ~79!

Having obtained the evolution operator forH (1)8(t) we can use Eq.~22! to obtain the evolution
operator forH (1)(t) andH(t). This yields the following expression for the evolution operator
H(t):

U~ t !5U ~0!~ t !eir~ t !S1/2U ~1!8~ t !, ~80!

whereU (0)(t) andU (1)8(t) are given by Eqs.~73! and ~79!.
The above analysis shows that the condition~78! defines a class of exactly solvable tim
dependent Stark Hamiltonians. Ifu5vt, for some constant frequencyv, this condition corre-
sponds to the case of the rotating electric fieldEW 5r (sinvt,cosvt,0) with magnituder.

VII. CONCLUSION

In this article we have extended the method of the adiabatic product expansion to
Hermitian and degenerate Hamiltonians. We showed that in general there were three poss
for the adiabatic product expansion.

~1! The expansion terminates after a finite number of iteractions. This happens when
the transformed Hamiltonians vanishes. In this case the method yields the exact solution
Schrödinger equation.
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~2! The expansion consists of an infinite number of distinct terms. In this case, the m
does not lead to an exact solution, but it gives rise to a generalization of the adiabatic ap
mation. This approximation is performed by keeping a finite number of terms in the pro
expansion. The general asymptotic behavior of the adiabatic product expansion has no
studied. However, one can interpret this approximation by recalling that the condition fo
termination of the product expansion corresponds to the validity of the conventional adia
approximation for one of the transformed Hamiltonians.

~3! The expansion involves terms which are not distinct. In this case the expansion do
lead to a solution. However, usually one can make another time-dependent canonical trans
tion after each adiabatic transformation and obtain an infinite product expansion with the p
ties of case~2! above.

We have considered some specific problems that one can attempt to solve using this m
We treated the case of a general nondegenerate two-level system and applied our general r
the more specific case of the classical equation of motion for a harmonic oscillator with a
dependent frequency. In this case, we showed that the adiabatic canonical transformation m
the corresponding two-level quantum system to a quantum system with an anti-Hermitian H
tonian. Although the direct application of the method of adiabatic product expansion did not
a solution, we could construct the modified adiabatic product expansion. We have also outli
adiabatic series expansion for the time-evolution operator of this system which led to an
generalization of the adiabatic approximation. Finally, we considered the application o
method to treat the quadrupole interaction of a spin 1 particle with a changing electric field
corresponding~Stark! Hamiltonian had a nondegenerate as well as a degenerate eigenvalu
showed that the adiabatic canonical transformation mapped this Hamiltonian to a Hamil
which had nondegenerate eigenvalues and belonged to a reducible (011/2) representation of the
Lie algebra of SU~2!. This means that we can directly use the results of Refs. 2 and 3 which
the Schro¨dinger equation for a nondegenerate Hamiltonian belonging to~an irreducible represen
tation of! the Lie algebra of SU~2!. Furthermore, we identified a class of exactly solvable spi
quadruple Hamiltonians.
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Geometric algebra and the causal approach
to multiparticle quantum mechanics

Shyamal Somaroo, Anthony Lasenby, and Chris Dorana)

Astrophysics Group, Cavendish Laboratory, Madingley Road,
Cambridge CB3 0HE, United Kingdom

~Received 28 January 1998; accepted 14 February 1999!

It is argued that geometric algebra, in the form of the multiparticle spacetime
algebra, is well suited to the study of multiparticle quantum theory, with advantages
over conventional techniques both in ease of calculation and in providing an intui-
tive geometric understanding of the results. This is illustrated by comparing the
geometric algebra approach for a system of two spin-1/2 particles with the nonrel-
ativistic approach of Holland@Phys. Rep.169, 294 ~1988!#. © 1999 American
Institute of Physics.@S0022-2488~99!00907-X#

I. INTRODUCTION

Geometric~Clifford! algebra is a powerful algebraic tool with applications throughout
fields of physics and engineering. The geometric algebra of space–time—the spacetime alg
STA—is well suited to describing many aspects of classical and quantum relativistic phys1–4

including gravitation.5 In Refs. 2 and 6 the multiparticle spacetime algebra~MSTA! was intro-
duced and applied to relativistic multiparticle quantum theory. In the present paper the alg
advantages of the MSTA approach are demonstrated through a comparison with work on a
approach to nonrelativistic multiparticle quantum theory based on the Pauli equation.7,8 We show
that the MSTA elucidates a number of features of the multiparticle causal theory and, in part
clarifies its geometric content.

The causal, or Bohmian, approach to quantum mechanics is an interpretation in whi
statistical results of quantum theory are recovered from an ensemble of deterministically ev
systems. The approach is based on establishing a connection between the wave equatio
deterministic model that is supposed to underlie the quantum process. In the case of one s
particle, this model consists of a classical spinning rigid body under the additional influenc
quantum potential.7 In this way physical properties can be associated with the quantum par
and equations for their evolution obtained from the conventional wave equation. Furthermo
variables~including spin! on which the wave function depends are consistently interpreted a
spatial position and orientation of the particle through this model.

In n-particle nonrelativistic quantum theory the wave function depends on a dynamical
figuration space of dimension 3n, as well as on a temporal parametert. To apply a causal
approach to this system one must first associate the wave function in configuration space wi
of physical properties. These are then interpreted as the properties of the individual particles
ensemble making up the system under consideration. Equations describing the evolution o
properties are then derived from the conventionaln-particle Pauli wave equation.

Holland7,8 has addressed the problem of extracting a set of physical properties from
n-particle wave function. His method is to construct a set of tensor variables from qua
combinations of the spinorial wave function. These tensor variables are more easily ass
with a set physical properties than the underlying spinorial degrees of freedom.

Here we show that the MSTA formulation of multiparticle quantum theory consider
simplifies the task of extracting these physical variables. Its lack of redundant mathem

a!Electronic mail: C.Doran@mrao.cam.ac.uk
33270022-2488/99/40(7)/3327/14/$15.00 © 1999 American Institute of Physics
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complications considerably simplifies calculations, as well as clarifying the relation betwee
spinorial and tensorial degrees of freedom. Furthermore, the method of construction readily
itself to an interpretation in terms of an underlying physical model, though such consideratio
not pursued here. In fact, since we are only concerned with nonrelativistic quantum theory,
fraction of the full power of the MSTA is brought into play here. An introduction to the MS
approach to relativistic multiparticle quantum theory is contained in Ref. 2~see also Ref. 6!.

We start with an outline of the MSTA and introduce our conventions and notations. We
give a schematic overview of Holland’s method of relating spinorial and tensorial variable
Sec. IV we study the one-particle case, giving a detailed account of the correspondence s
between the MSTA and Holland’s approach. In Sec. V we turn to the two-particle cas
discussed first in Ref. 8. We show how the various physical variables are found more easily
MSTA approach, and reveal their simple geometric origins. We end with a brief look at how
MSTA approach generalizes to then-particle case.

II. MULTIPARTICLE SPACE–TIME ALGEBRA

Spacetime algebra is the geometric, or Clifford, algebra of Minkowski space–time.
geometric and spacetime algebra have been widely discussed by many authors~see Refs. 1, 2, 9
and 10 for further material!. The multiparticle spacetime algebra~MSTA! was introduced to tackle
the problem of formulating relativistic multiparticle mechanics within geometric algebra.2,6 It is
the geometric algebra ofn-particle configuration space which, for relativistic systems, consist
n copies of Minkowski space–time. We usually refer to each copy as a ‘‘one-particle spac

An appropriate orthonormal basis for the MSTA is provided by the set$gm
a %, wherem50,...,3

labels the space–time vector, anda51,...,n labels the particle space. For cases where only
particle is present this index is often omitted. These vectors have an associative~geometric!
product denoted by juxtaposition. The symmetrized product is denoted by a dot and satisfi

gm
a
•gn

b5 1
2~gm

a gn
b1gn

agm
b !5hmndab, ~2.1!

where hmn5diag(1,2,2,2). Vectors from different particle spaces anticommute as a co
quence of their orthogonality. The remaining, antisymmetrized product is denoted by a wedg
generates a bivector,

gm
i `gn

j [ 1
2~gm

i gn
j 2gn

i gm
j !. ~2.2!

In this manner a basis for the entire MSTA can be constructed. This has 24n degrees of freedom
A general element of the MSTA is termed amultivector.

In this paper we deal only with nonrelativistic quantum mechanics. We therefore need to
out a preferred timelike vector for each of the particle spaces. We take this vector to beg0

a for each
a. Spatial vectors relative to these timelike vectors are modeled as bivectors through a ‘‘s
time split.’’3,4 For these we introduce the notation~with no sum overa!

s j
a[g j

ag0
a , j 51,...,3, a51,...,n. ~2.3!

For each particle space the set$s j
a% generates the geometric algebra of relative space, which

denoteG3 . Each has a basis of the form

1, $s j%, $ is j%, i , ~2.4!

where the volume elementi is defined by

i[s1s2s3 ~2.5!

and we have suppressed the particle-space indices. The notation reflects the fact that the ge
algebra of~relative! space is isomorphic to the Pauli algebra, though we stress that the$s j

a% are a
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basis set of vectors for three-space, and not abstract operators in spin-space. The even su
of the basis~2.4! is spanned by$1, is j% and is isomorphic to the quaternion algebra.

An important property of the$s j
a% is that, unlike space–time basis vectors, relative vec

from separate particle spaces commute. This follows immediately from their definition:

s i
as j

b5g i
ag0

ag j
bg0

b5g i
ag j

bg0
bg0

a5g j
bg0

bg i
ag0

a5s j
bs i

a ~aÞb!. ~2.6!

It follows that the$s j
a% generate the direct product spaceG3

n[G3^¯^G3 of n copies of the
geometric algebra of three-dimensional spaceG3 . All properties of this space follow from the
properties of the fully relativistic MSTA.

Within the Pauli algebra of space, an important role is played byrotors. These are elements o
the even subalgebra of the Pauli algebra satisfying the relation

RR̃51, ~2.7!

where the tilde denotes the operation of reversing the order of the vectors in any geometric p
in the MSTA. The operation of rotating a multivector is performed by

A°A85RAR̃, ~2.8!

which is easily shown to keep lengths and angles unchanged.
A spinor transforms single sidedly under the action of a rotor, and can be defined

element of a linear space that is closed under left multiplication by the rotor group. Traditio
Pauli spinors are either taken as complex column vectors acted on by the 232 Pauli matrices, or
as elements of a minimal left ideal of the Pauli algebra.11 A third approach, which turns out to b
very powerful in applications, is to represent spinors as elements of the even subalgebra
Pauli algebra. This space has four real dimensions, and is closed under the action of th
group. It is a straightforward matter to establish a 1↔1 map between Pauli column spinors a
elements of the even subalgebra.2,12 We start with the Pauli spin matrices in the form

ŝ15S 0 1

1 0D , ŝ25S 0 2 j

j 0 D , ŝ35S 1 0

0 21D , ~2.9!

where the carets denote that the$ŝ i% are explicitly matrices, andj is used for the scalar uni
imaginary of quantum mechanics since the symboli is already employed for the spatial volum
element. A column spinorca is then placed into a 1↔1 correspondence with an element of t
even subalgebra as follows:

ca5S a01 ja3

2a21 ja1D↔c5a01akisk . ~2.10!

The action of the quantum operators$ŝk% and j is now replaced by the operations

ŝkuc&↔skcs3 ~k51,...,3!, ~2.11!

j uc&↔c is3 . ~2.12!

Every calculation that can be performed with the column spinorca can also be performed
with the even elementc, and in practice the latter approach is usually easier. One reason fo
is the natural decomposition ofc into a density term and a rotor:

c5r1/2R, ~2.13!

where
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r[cc̃. ~2.14!

The rotorR is an instruction to rotate the fixed$s i% frame onto the frame of observables. Th
establishes a natural link with the description of a rotating rigid body.9,12

Nonrelativistic multiparticle spinors are formed from direct products of single particle spin
If we denote the even subalgebra ofG3 by G3

1 , we see that nonrelativistic MSTA spinors belon
to (G3

1)n5G3
1

^¯^G3
1 . An advantage of the MSTA approach is that this direct product c

cides with the geometric product already defined. At this point it is useful to introduce the no

is j
a5 i as j

a , ~2.15!

which removes some superscripts without introducing any ambiguity. Multiparticle spinors t
fore belong to the space generated by the elements$1, isj

a%. This space is closed under th
left-sided action of the group of rotors of the formR1R2,...,Rn, where eachRa denotes a copy of
the same rotor for each particle space.

In Eq. ~2.12! we saw that the role of the unit imaginary of traditional quantum theory is pla
by right multiplication byis3 . For then-particle case there will ben copies ofis3 , and right-
multiplication by all of these must yield the same result. This is achieved by introducing
n-particle ‘‘correlator’’2

En[ 1
2~12 is3

1is3
2!¯ 1

2~12 is3
1is3

n!, ~2.16!

which locks the various one-particle complex structures;

Enis3
15Enis3

25¯5Enis3
n[Jn . ~2.17!

The En andJn satisfy

EnEn5En , JnJn52En . ~2.18!

Correlating alln-particle statescP(G3
1)n by right-multiplying by the idempotentEn ensures that

the conventional complex structure is reproduced by the operation of right multiplication by a
the is3

a or Jn . The correlator also reduces the degrees of freedom in ann-particle spinor from 4n

to the expected 2n11. It is worth noting that one effect of the correlator is to ‘‘phase lock’’
one-particle phase-factors:

ea is3
1
En5ea is3

2
En5¯5eaJnEn . ~2.19!

This suggests an interesting substructure to the theory, which could prove useful in constru
suitable particle model for a causal interpretation.

As an example of the above scheme, consider the MSTA analog of the spin singlet st

ue&5
1

A2
H S 1

0D ^ S 0
1D2S 0

1D ^ S 1
0D J . ~2.20!

This is represented in the two-particle MSTA by the multivector

e5
1

A2
~ is2

12 is2
2!

1

2
~12 is3

1is3
2!. ~2.21!

It can be shown thate satisfies2

M1e5M̃2e ~2.22!
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for an arbitrary Pauli-even multivectorM. This result quickly establishes the rotation invariance
e, since under a rotation in two-particle space,e transforms as

e°R1R2e5R1R̃1e5e. ~2.23!

Throughout this paper superscripts on one-particle multivectors denote the one-particle
being referred to. For example,fk denotes a copy of the one-particle spinorf in the particle-k
space. Information regarding thekth particle is extracted from an arbitrary MSTA multivector b
projecting it onto the particle-k space. Following Holland, Pauli spin indices are denoted by lo
case lettersa–h, and matrices are denoted by ‘‘caretted’’ versions of symbols denoting
algebraic analogs. When considered as a matrix algebra generated by~2.9! over the complex field,
the Pauli algebra is denoted asP, with Pn being the correspondingn-copy direct product. The
rangei – l is used to denote spatial tensor indices, and the Einstein summation conventio
applies throughout unless stated otherwise.

III. THE CAUSAL APPROACH TO MULTIPARTICLE STATES

Conventionally, a nonrelativistic spin-1/2 particle is described by a Pauli spinorca, usually
viewed as a complex linear combination of the spin basis statesu↑& and u↓&, or more explicitly as
a 231 complex column matrix. Two spin-1/2 particles are described by a rank-2 spinor, or
tensor,cab. A basis for this is taken to be a complex linear combination of the direct produ
two copies of the spin basis$u↑&, u↓&%. We may also viewcab as a 431 complex column matrix by
considering the two separate spin indicesa and b in cab as one compounded indexD5@ab#,
D51,...,4. This extends to a rank-n spinorcabc..., which describes a system ofn spin-1/2 particles.
cabc... has 2n complex degrees of freedom and can be viewed as a 2n31 complex column matrix
cD, whereD is the compounded indexD5@abc...#.

Following Holland,8 a tensor can be constructed from a pair of spinorscD[cabc... and
je f g...[jQ of the same rank (2n) by first constructing the 2n32n complex matrix

AD
Q5Aabc...

e f g...[cabc...~je f g...!
T5cD~jQ!T, ~3.1!

where the superscriptT denotes matrix transposition. Spinor indices are raised and lowered b
spin metric13

eab5S 0 1

21 0D 5 j ŝ2 . ~3.2!

~Conventionally, raised or lowered indices on an object indicate different coordinate repre
tions of the same object. Here however, its significance is to indicate a distinct object w
carries the same information as the original but in a different form.!

Any 2n32n ~complex! matrix may be expanded in terms of a set of independent b
matrices$(êklm...)

D
Q% for the direct product ofn Pauli algebrasPn,

AD
Q5 (

k,l ,m,...
cklm...~ êklm...!

D
Q . ~3.3!

The basis matrices$(êklm...)
D

Q% carry both spinor indices~D and Q! and tensor indices
($k,l ,m,...%) which they inherit from the Pauli matrices. The complex expansion coeffici
cklm... are spatial tensors and may be determined fromA via

cklm...5
1

2n Tr@cDjQ~ êklm...!
Q

V#5
1

2n jQ~ êklm...!
Q

DcD, ~3.4!

where Tr denotes the matrix trace.
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If jQ is obtained directly fromcD thencklm... will characterize some of the information incD.
This is the basis of Holland’s approach. Note that, sinceA satisfies the relation

A25AD
QAQ

V5cD~jQ!TcQ~jV!T5AQ
QAD

V5Tr~A!A, ~3.5!

A therefore belongs to an ideal of the algebraPn. It is via this ‘‘ideal’’ characterization ofcD that
Holland associates the tensorscklm... with spinor degrees of freedom. We now study how ge
metric algebra both simplifies this scheme, and reveals much of the hidden geometry r
spinors to tensors. We start with an analysis of the one-particle setup.

IV. THE ONE-PARTICLE CASE

In the one-particle setup we expand the 232 complex matrixAa
b in terms of the Pauli

matrices:

Aa
b[ca~jb!T[s1ukŝk5R~s!1 jI~s!1@R~uk!1 jI~uk!#ŝk . ~4.1!

We can construct a MSTA version of this by first writing outAa
b explicitly in terms of the spinor

components

ca5S c1

c2D , ja5S j1

j2D . ~4.2!

The matrixAa
b then has components

Aa
b5S c1j2 2c1j1

c2j2 2c2j1D 5S c1 0

c2 0D S j2 0

2j1 0D T

. ~4.3!

By writing this as the product of two matrices, we can easily establish an equivalent expre
within the one-particle geometric algebra of space. First, we note the following equivalenc

S c1 0

c2 0D↔c 1
2~11s3!, ~4.4!

wherec is the Pauli-even multivector formed fromca according to Eq.~2.10!. Second, we need
the analog of matrix transposition for multivectors. It is easily confirmed that this is performe

MT5s2M̃s2 . ~4.5!

If we now denote the multivector equivalent ofAa
b by A, we find that

A5c 1
2~11s3!@ is2j 1

2~11s3!#T5c 1
2~11s3!s2

1
2~12s3!j̃~2 is2!s252c 1

2~s11 is2!j̃,
~4.6!

which immediately gives all of the componentss and $uk% by simply reading off the terms o
different grades. Each grade returns a genuine geometric object, since under the rotationc°Rc,
j°Rj, we find thatA transforms as

A°RAR̃, ~4.7!

which is the correct transformation law for geometric objects. The same approach extends
to the case where the rotorR includes Lorentz transformations. This is not such a surprise w
one considers that the algebraic manipulations described here closely resemble those
2-spinor calculus,13,14 which are designed to be fully relativistic. We can now give the follow
explicit formulas for thes and$uk%:
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R~s!52 1
2^c is2j̃&, I~s!5 1

2^c is1j̃&,
~4.8!

R~uk!52 1
2^cs1j̃sk&, I~uk!52 1

2^cs2j̃sk&,

where^M & denotes the result of projecting out the scalar part of the multivectorM.
Having established the correspondence between the matrix formalism and geometric a

it is now straightforward to consider the choices Holland makes forjb and the resulting tensor
obtained.8 The first choice is

jb5ca* ~4.9!

⇒ja5eabjb52eabc
a* . ~4.10!

The multivector analog of complex conjugation is defined by

c* 5s2cs2 , ~4.11!

so this choice corresponds to setting

j5~2 is2!s2cs252c is2 . ~4.12!

It follows that A is given by

A5c 1
2~11s3!c̃5 1

2cc̃1 1
2cs3c̃, ~4.13!

and from~4.8! we find

r[2s5cc̃, ~4.14!

S[2uksk5cs3c̃, ~4.15!

wherer andSare the symbols used by Holland. As expected, we have isolated the scalar d
cc̃ and the spin vectorcs3c̃. On decomposingc in the form

c5r1/2R5r1/2eis3u/2eis1w/2eis3x/2, ~4.16!

where we have written the rotorR in terms of the Euler angles, we see that the scalarr and the
vector

S5r@sin~u!cos~w!s11sin~u!sin~w!s21cos~u!s3# ~4.17!

are independent of the phasex. This pair of tensors therefore only embodies three of the f
degrees of freedom inc and consequently an additional characterization ofc is required. From our
geometric viewpoint it is clear that the only other tensors that can be obtained fromc are the
vectorscs1c̃ andcs2c̃, or their corresponding duals. To verify this, consider Holland’s ot
choice:

jb5cb⇒j5c. ~4.18!

On substituting this into~4.13! we find that

A52c 1
2~11s3!is2c̃52 1

2~c is2c̃1cs1c̃ !. ~4.19!

Clearly for this choice ofj, s50 and from~4.8!
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M[2R~u!52cs1c̃, N[2I~u!52cs2c̃, ~4.20!

whereM andN are Holland’s Cartan–Kramers vectors.
The mutual geometric relations ofM, N, andS are transparent from the geometric point

view, since the set is obtained by a rotation and dilation of the orthonormal basis$s1 ,s2 ,s3%. It
follows immediately that

r5uM u5uNu5uSu ~4.21!

and thatM, N, and S are mutually orthogonal. Since the phase factor exp$is3x/2% does not
commute with either ofs1 or s2 , the pair$M ,N% contain information about all four degrees
freedom inc. Indeed, any pair from the set$S,M ,N% contains information about all four degree
of freedom inc, and can be used to reconstructc ~and henceca, if required! up to an arbitrary
sign. The simple manner in which the triad$M ,N,S% is formed and understood in the geomet
algebra approach fully demonstrates its advantages.

V. THE TWO-PARTICLE CASE

Two-particle states are conventionally represented by rank-2 spinorscab. From these we
construct the matrix

Aab
cd5cab~jcd!

T, ~5.1!

which is a 434 complex matrix, where the transpose is understood to be with respect t
compounded index@cd#. This matrix can be expanded in the 16-dimensional basis

1cd
ab5da

cd
b

d , ~ ê1k!
ab

cd5ŝk
a

cd
b

d

~5.2!
~ ê2l !

ab
cd5da

cŝ l
b

d , ~ ê1kê2l !
ab

cd5ŝk
a

cŝ l
b

d

belonging toP2. With a suppression of spinor indices, we can write~following Ref. 8!

A5s11ckê1k1dkê2k1 f klê1kê2l . ~5.3!

These coefficients are not independent because of the relationA25Tr(A)A.
A complete basis for two-particle spin states, together with their MSTA analogs, is prov

by

S 1
0D ^ S 1

0D↔E,

S 0
1D ^ S 1

0D↔2 is2
1E,

S 1
0D ^ S 0

1D↔2 is2
2E,

S 0
1D ^ S 0

1D↔ is2
1is2

2E,

~5.4!

whereE5 1
2(12 is3

1is3
2) is the two-particle correlator. A rank-2 spinorcab can be expanded in

terms of this basis and hence mapped directly to the MSTA elementc5cEP(G3
1)2, where

c5~f12 is2
1f22 is2

2f31 is2
1is2

2f4!E ~5.5!
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andfn , n51,...,4 are the combinations of 1 andJ appropriate to the expansion ofcab. All MSTA
spinorscP(G3

1)2 contain an implicit factor ofE. This is only shown explicitly in cases where i
presence increases clarity.

We can again construct the matrixAab
cd by first introducing the MSTA analog of a 434

complex matrix in whichcab is the first and only nonzero column. The multivector equivalen
this is

c 1
2~11s3

1! 1
2~11s3

2!E5c 1
2~11s3

1! 1
2~11s3

1! 1
2~12 i 1i 2!. ~5.6!

The analog of the matrix transpose operation is now

MT5s2
1s2

2M̃s2
1s2

2 ~5.7!

and we find that the information contained inAab
cd can be encoded in the multivector

A5c 1
2~s1

11 is2
1! 1

2~s1
21 is2

2!Ej̃5c 1
2~s1

11 is2
1! 1

2~s1
21 is2

2!j̃~12 i 1i 2!. ~5.8!

The fact thatA satisfiesA5A 1
2(12 i 1i 2) is to be expected. The tensor productG3^G3 defines a

space of 64 real dimensions, whereas the productP^P defines a 16-dimensional complex spac
with 32 real dimensions. The spaceP^P therefore fails to provide a matrix representation of t
full algebraG3^G3 , the reason being that the two pseudoscalarsi 1 and i 2 are given the same
representation in terms of the unit imaginaryj. The only multivectors inG3^G3 which do corre-
spond directly to matrices inP^P are therefore those which contain a factor of the idempo
1
2(12 i 1i 2), which links the pseudoscalars together.

The quantities of interest are the complex tensor coefficientss, ck , dl , and f kl in ~5.3!. These
can all be recovered by taking appropriate traces of the form

1
4Tr~Aab

cdG
cd

e f!5 1
4jcdG

cd
abc

ab, ~5.9!

where G is some combination of the basis elements~5.2!. From the above scheme, a gene

matrix of the formAab
cdG

cd
e f will have a multivector equivalentM5M 1

2(12 i 1i 2). With this
multivector we have the explicit relations

R~ 1
4jcdG

cd
abc

ab!52^M &,
~5.10!

I~ 1
4jcdG

cd
abc

ab!522^Mi 1&.

The extra factor of 2 is required because of the presence of the factor of1
2(12 i 1i 2) in M.

We now have analogs for most of the operations performed on rank-2 spinors. Th
remaining operation is that of particle interchange

cab°cba. ~5.11!

The algebraic effect of this on the MSTA spinorc is

c°c I5~f12 is2
2f22 is2

1f31 is2
1is2

2f4!E. ~5.12!

This operation has no one-particle analog. As an algebraic operation it can be expressed

c→c I5EcE2 is2
1is2

2ĒcE5 1
2~12 isk

1isk
2!c, ~5.13!

whereĒ[ 1
2(11 is3

1is3
2). If we recall the definition of the MSTA rotation singlet state from Se

II,
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e[
1

A2
~ is2

12 is2
2!E, ~5.14!

we find that

eẽ5 1
2~11 isk

1isk
2!. ~5.15!

It follows that

c I5~12eẽ !c, ~5.16!

confirming that the antisymmetrized statec2c I5eẽc is a rotation singlet. Equation~2.23! en-
sures that the interchange operation is rotationally covariant,

R1R2~12eẽ !c5R1R2c2eẽc5~12eẽ !R1R2c, ~5.17!

as expected.
We are now in a position to give explicit MSTA formulas for the two-particle tensors c

structed in Ref. 8. Withc the direct map ofcab, according to Eq.~5.5!, we find that

r[cabc* ab52^cc̃&,

S1k[c* abe1k
ab

cdc
cd522~cJc̃ !•~ isk

1!,
~5.18!

S2k[c* abe2k
ab

cdc
cd522~cJc̃ !•~ isk

2!,

Skl[c* abe1k
ab

cde2k
cd

e fc
e f522~cc̃!•~ isk

1is l
2!.

The only terms involved in the MSTA approach are the scalar1 four-vector quantitiescc̃
5cEc̃ and the bivectorcJc̃. This information is summarized in the single multivector

A5c 1
2~11s3

1! 1
2~11s3

2!c̃, ~5.19!

as expected.
Holland interpretsSkl as a spin correlation tensor, an observation justified by that fact thaSkl

encodes the four-vector component of the ‘‘expectation,’’cEc̃, of the correlatorE in the MSTA
formulation. The quantitycJc̃ is a bivector on account of its even grade and reversion asym
try. Since we work in the closed algebra (G3

1)2, it can only haveisk
1 and isk

2 parts. We can
therefore write

cJc̃5 1
2~S1

11S2
2!, ~5.20!

whereS1
1 and S2

2 are one-particle bivectors. The subscripts indicate thatS1 and S2 are separate
variables, while the superscripts denote the particle spaces these quantities are expressed
quantity cJc̃ is the two-particle spin bivector whose one-particle projectionsS1 and S2 are the
spin bivectors of particle-1 and particle-2, respectively.2

One surprising result proved in Ref. 8 is that the spin bivectorsS1 and S2 have the same
magnitude,uS1u5uS2u. This result is obviously true for direct-product states, but it is not in
itively obvious why it should hold for general superpositions. It is therefore instructive to see
to prove the result in the MSTA. We start by noting that the components ofS1 are given by

2 1
2S1k5 1

2S1
1
•~ isk

1!5~cJc̃ !•~ isk
1!5~ c̃ isk

1c!•~ is3
1!. ~5.21!
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The implicit idempotentE on either side of the bivectorc̃ isk
1c5Ec̃ isk

1cE, acts as a projection
and implies thatc̃ isk

1c can only contain an equal linear combination ofis3
1 and is3

2. We can
therefore write

c̃ isk
1c5S1kJ, c̃ isk

2c5S2kJ. ~5.22!

From this we deduce that the magnitudes ofS1 andS2 are given by

uSau25SakSak522^SakJSakJ&522^c̃ isk
acc̃ isk

ac&, ~5.23!

wherea51,2 and no summation overa is implied. Sincecc̃ is even and reversion symmetric,
contains only a scalar and four-vector part. The four-vector part necessarily has the formB1C2,
whereB1 and C2 are bivectors in the separate one-particle spaces. Employing the one-p
identity

isk
1B1isk

15B1, ~5.24!

we see that~with no sum overa!

isk
acc̃ isk

a5 isk
a~^cc̃&1^cc̃&4!isk

a523^cc̃&1^cc̃&45cc̃24^cc̃&. ~5.25!

This result is independent of the labela, and upon substitution into~5.23! implies that uS1u2

5uS2u2. Specifically,

uSau2522^c̃~cc̃24^cc̃&!c&522^c̃cc̃c&12r2. ~5.26!

This result does not generalize to higher particle numbers.
In Ref. 8 the quantityV is defined as

uS1u25uS2u252V2r2, ~5.27!

and it follows from Eq.~5.26! that we can write

V5 3
2r

22^c̃cc̃c&. ~5.28!

Since the elementsSkl are the components of22^cc̃&4 , we can substitute

cc̃5 1
2~r2Sklisk

1is l
2! ~5.29!

into the preceding expression forV to obtain

V5 1
4~5r22SklSkl!, ~5.30!

recoveringV in terms of previously defined quantities. This result is not so easily deduced i
spin-tensor approach.

A second choice ofjcd considered in Ref. 8 is

jcd5c* dc. ~5.31!

The equivalent MSTA spinor is

j5~12eẽ !c is2
1is2

2, ~5.32!

leading to the new multivector

A85c 1
2~11s3

1! 1
2~11s3

2!c̃~12eẽ !5A~12eẽ !, ~5.33!
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whereA is as defined in Eq.~5.19!. This expression makes it immediately clear thatA8 contains
precisely the same information asA. This conclusion is much harder to reach in the ten
approach, where one is forced to consider each of the terms in the matrixcabc* dc and show that
they can be written in terms of thecabccd.

It is clear from the expressionscc̃ and cJc̃ that $r,S1k ,S2l ,Skl% are invariant under an
overall phase change ofc. Consequently, this set only encodes seven of the eight degre
freedom inc and some other form forj must be used to recover all of the information inc. The
MSTA approach enables us to immediately write down two further geometric entities which
up the phase information. These are

1
2W[c is2

1is2
2c̃, 1

2V[cJis2
1is2

2c̃. ~5.34!

With these we can proceed to give MSTA equivalents of the remaining tensors defined in R
The first set are formed by takingjab5cab , yielding the two new quantities

r̄[cabc
ab52^ is2

1is2
2c̃c&22^ is2

1is2
2c̃cJ& j 5^W&2 j ^V& ~5.35!

and

Tkl[cabe1k
ab

cde2k
cd

e fc
e f522^ is2

1is2
2c̃ isk

1is l
2c&12 j ^ is2

1is2
2c̃ isk

1is l
2cJ&

52W•~ isk
1is l

2!1 jV•~ isk
1is l

2!. ~5.36!

As expected,V andW are the only quantities necessary for the evaluation of these coeffici
Sinceis2

1is2
2 and is1

1is2
2 anticommute withJ, the phase transformationc→ceuJ implies that

W→cos~2u!W1sin~2u!V, V→cos~2u!V2sin~2u!W. ~5.37!

By taking scalar parts of these transformations we can deduce the behavior ofr̄ under phase
changes. Similarly, taking the four-vector parts gives us the phase transformation propert
the real and imaginary parts ofTkl .

The remaining quantities defined in Ref. 8 are obtained from the choicejab5cba . Again, the
MSTA equivalent for this choice,

j5~12eẽ !c ~5.38!

makes it clear that this choice yields nothing new, and that all of the tensor coefficients deriv
settingjab5cba can be recovered fromV andW.

One remaining MSTA construct is the scalar1 four-vector quantityc̃c. By its construction
this quantity is automatically invariant under rotations. The scalar term is just the densityr already
defined. The four-vector invariant is more interesting since it picks up phase information. In
of the decomposition~5.5! we have explicitly

c̃c5@r12is2
1is2

2~f1f42f2f3!#E, ~5.39!

which demonstrates that it is the complex quantityf1f4–f2f3 which picks up the phase infor
mation. The same information is encoded in the traceTkk , so c̃c yields no new information.

In summary, we see that all of the information required to completely encodec in tensor form
is contained in the set of multivectors

$cc̃, cJc̃, c is2
1is2

2c̃, c is2
1is2

2Jc̃%. ~5.40!

This is the complete set of distinct objects obtainable by taking any basis elementG of the direct
product of two Pauli algebras and forming the bilinear constructcGc̃. The other objects one
might try to construct would be of the formc is1

1c̃, but the presence of the idempotentE ensures
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that all quantities of this form vanish.~If one looks to construct models beyond those suggeste
quantum theory, however, one can contemplate not correlating the phases of the partic
which case such quantities would come into consideration.!

The set~5.40! is directly analogous to the one-particle set$r,iM ,iN,iS% which can be written
as

$cc̃, cJ1c̃, c is2c̃, c is2J1c̃%. ~5.41!

We are now in a position to appreciate just how systematic and simple the MSTA approach i
full set of distinct objects~5.40! could have been written down easily at the start of the analy
and all terms calculated simply with the MSTA, without requiring laborious matrix and te
manipulations. Furthermore, the MSTA approach is very amenable to generalization to
dimensions, as discussed in Sec. VI.

VI. EXTENSIONS AND FURTHER WORK

As in the one-particle and two-particle cases, then-particle spinorcabc... can be mapped
directly to an element in the direct product ofn Pauli-even algebras (G3

1)n. The ambiguity in the
complex structure for each of the factors in (G3

1)n requires the introduction of then-particle
correlatorEn defined at Eq.~2.16!. We find that the spinorc can be written as a combination o
2n terms:

c5S f1 (
a51

n

is2
afa1 (

a,b
is2

ais2
bfab1¯1 is2

1is2
2
¯ is2

nf12...nDEn , ~6.1!

where thef are complex combinations of 1 andJn . The tensor observables formed from tw
n-particle spinors are summarized in the multivector

A5c~ 1
2~s1

11 is2
1!¯ 1

2~s1
n1 is2

n!!j̃, ~6.2!

and it is clear that the various tensors one might construct correspond to the various mult
parts of bilinear constructs of the formcGc̃, whereG is some fixed set of MSTA basis element

For example, one of the key objects to analyze is the multivectorcJc̃. This has grade-2
grade-6,..., components, of which the grade-2 component is the multiparticle spin bivector2

S[2n21^cJnc̃&2 . ~6.3!

Interpretations for the other components ofcJc̃ can be made in terms of spin correlations b
tween particles. This approach to constructing tensors from spinors is clearly more econom
the matrix/tensor approach, which gets progressively worse with increasing particle number
the large degree of redundancy in the tensor coefficients contained in the various bilinea
structs.

A further advantage of the MSTA approach is that it is easily generalized to the relati
domain. A discussion of this is contained in Ref. 2 and further details are contained in Ref. 6
an extension is essential if this approach is to shed light on questions of nonlocality in Eins
Podolski–Rosen-~EPR!-type experiments—in particular a full analysis of these must incorpo
relativity, as this lies at the heart of the paradox. A simple model for two-particle relativistic
correlations is contained in Ref. 2, though more work is needed to extend this work to mod
EPR-type setup. Finally, it should be borne in mind that the MSTA is equally applicab
classical as well as quantum physics, and many of the techniques described here are us
studying multiparticle classical relativistic dynamics, a notoriously difficult subject.
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A differential-geometric interpretation of Kirchhoff’s
elastic rods
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In this article, Kirchhoff’s elasticity theory of rods is revisited but from a viewpoint
of Riemannian geometry. By means of the Cayley–Klein parameter, the theory
under clamped-end conditions can be regarded as a geometry of paths on some
geometrically distorted three-sphere produced by a constrained elastic energy func-
tional. Using this geometric formulation, the uniqueness of elasticae with pre-
scribed initial values of the strains can be easily shown. On the other hand, a family
of elasticae with prescribed values of orthonormal frames at two endpoints is dem-
onstrated to be parametrized by an open set inR3. In particular, a criterion of the
nonuniqueness of elasticae satisfying clamped-end conditions is given in terms of a
geometric concept—conjugate points. ©1999 American Institute of Physics.
@S0022-2488~99!01307-9#

I. INTRODUCTION

Over the last two decades, Kirchhoff’s elasticity theory has been extensively applied to
shapes of two-stranded polymers, like DNA~suggested by Fuller1!. Also, the theory provides
energetic explanations of supercoiling of DNA which is important for DNA functions like rec
bination, DNA being a torus knot observed under electron microscopy.2 Recently, an interesting
area from molecular biology deals with the study of a special case of Kirchhoff’s theory of w
the stress-free state is not a~twisted! straight line anymore.3–8 Some relaxed DNA observed i
experiments form a closed circle, such as SV40.4,5 Thus, intrinsically curved elasticity is needed
model circular DNA. Indeed, theoretically, one cannot simply ignore, for instance, base sta
and hydrogen bonding energies existing in DNA. Therefore, in this article we turn our attent
general elasticity theory, particularly with an emphasis on geometric methods.

An elastic rod isinextensible~resp.unshearable! if the length of its axis~resp. the normal
cross sections being normal to its axis! is unaltered while undergoing deformations. These
reasonable assumptions when we study conformations of DNA. Mathematically, an elastic r
be simplified to aframed curve(C,n) consisting of an immersed, unit-speed space curveC, called
axis, and a preferred unit normal vector fieldn defined alongC, called material direction. There
fore, it is easy to see that an unshearable elastic rod under deformation can be thought
framed curve being perturbed within the family of framed curves. How we take inextensibility
account will be demonstrated in Sec. III.

According to Kirchhoff’s theory, anelasticais a critical point of the so-calledelastic energy
functional,7

E5
1

2 E0

l

r1~v12k1!21r2~v22k2!21r3~v32k3!2 ds, ~1!

wherer1 andr2 are both calledbending stiffnessesandr3 is calledtwisting stiffness. All r i ’s are
assumed positive constants;v i ’s are calledstrains and v3 is specially calledtwisting density

a!Electronic mail: khu@math.ucla.edu
33410022-2488/99/40(7)/3341/12/$15.00 © 1999 American Institute of Physics
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~I will explain how the strains of an elastic rod can be computed!. Herek1 ,k2 are calledintrinsic
curvatures, andk3 is calledintrinsic twisting density. In fact, k i ’s are thev i ’s of the stress-free
state~and this state is also called relaxed state in molecular biology!. Also, s is the arc-length
parameter of the axis of an elastic rod andl is its length. The sum of the first two terms of~1! is
called bending energyand the remaining term alone is calledtwisting energy. An elastic rod is
called isotropic if r15r2 . It is obvious that, for example, if the largest stiffness isr3 , then
torsional fluctuations are less energetically favorable.

In the application to molecular biology, unless DNA is denatured, it is always possib
determine the axis of DNA as a curve traced out by the centers of base pairs. In fact, what
concerned with here is the so-called B-form DNA which occurs when DNA is fully hydrated
is in vivo. While a framed curve is employed to model such DNA, one may assume thatC is
exactly the axis and oriented by the 38– 58 direction of the leading backbone of the double hel
n is chosen to be parallel to the long axis of the plane containing a base pair, pointing
direction of the leading backbone.7 Thus, k3 represents the naturally helical structure of DN
Especially,k3 may be regarded as a constant because the structure is uniform. The bendi
twisting stiffnesses usually vary according to different environmental factors, such as tempe
pH, and ion concentration of solutions, because these factors have influence on the
stiffnesses.9

In this article, I continue the use of the Cayley–Klein parameter10 inspired by Li and Mad-
docks’ paper.6 By means of this parameter, the whole elasticity theory of rods can be transfo
to a geometry of paths on a geometrically distortedS3 governed by the elastic energy functiona
In particular, in the case ofintrinisically straight elasticity defined by eachk i50, the theory is
transformed exactly into the geometry of paths determined by the Dirichlet functional, whi
well understood in Riemannian geometry.

This geometric method is heavily applied to derive Euler–Lagrange equations in Sec. I~all
geometric calculations involved there can be found in Chern’s lecture notes!.11 We set up a
clamped-end variational principle such that the theory has no symmetry of rigid motionsR3

generically also a correspondence between deformations of elastic rods~satisfying three out of
four clamped-end conditions and length preserving! and variations of paths~with endpoints fixed!,
see Lemma 1. Additionally, regularity of elasticae is established and basic properties of ela
in the general case are developed. In Sec. IV, we formulate two questions. Physically, Que
asks if one can find an elastica whenever the initial values of the strains are known and whe
an elastica is unique; Question 2 asks the same thing if the boundary values of orthonormal
@i.e., conditions~13! and~14!# are given instead. Both answers to Question 1 are affirmative,
they are uncertain for Question 2—Theorems 4 and 5 are partial answers. Moreover, we
geometric criterion of the nonuniqueness of clamped-end elasticae~Theorem 6!. All geometry
terminologies used in Sec. IV can be found in Cheeger and Ebin’s book.12

Author’s apology.There exists a vast collection of papers on both elasticity theory and el
models on DNA. Therefore, I most sincerely apologize to those esteemed scientists whose
not mentioned in this article. I only list those papers having direct influence on this article.

II. THE GEOMETRIC FORMULATION OF ELASTIC ENERGY

Given a framed curve (C,n), one may assumee1 , the unit tangent vector ofC, e25n, and
e35e13e2 , which points in the direction of the major groove of DNA and is parallel to the s
axis of the base plane when modeling DNA is the concern.7 Arising from ~i,j,k! the standard basis
of R3, such an orthonormal frame (e1 ,e2 ,e3) gives a curve in SO~3!. Recall the double cove
p:SU~2!→SO~3! given byp(q) acting onR3 via q21xq, whereq21xq should be realized as
product of quaternions andxPR3 identified with the purely imaginary quaternions. Therefore,
aforementioned curve in SO~3! can be lifted to SU~2!, called theCayley–Klein parameter of
(C,n).

Using the factsq5q11 iq21 jq31kq4 , q215q̄ ~becauseqPS3!, and i 25 j 25k2521, i j
52 j i 5k, jk52k j5 i , ki52 ik5 j , one can derive some useful equations relatingei ’s of a
framed curve to its Cayley–Klein parameterq as follows:
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e15q21iq5S q1
21q2

22q3
22q4

2

2~q2q32q1q4!

2~q1q31q2q4!
D , ~2!

e25q21 jq5S 2~q1q41q2q3!

q1
22q2

21q3
22q4

2

2~q3q42q1q2!
D , ~3!

e35q21kq5S 2~q2q42q1q3!

2~q1q21q3q4!

q1
22q2

22q3
21q4

2
D . ~4!

The structure equations11 of (C,n) are given bydei5v i j ej , wherev i j is the connection
one-form satisfyingv i j 1v j i 50, 1< i , j <3. Then the strains are given byv15v12(e1), v2

5v13(e1), andv35v23(e1), wherev ..(e.) denotes the natural pairing between one-forms a
vector fields. Sok25v1

21v2
2, wherek is the~principal normal! curvature ofC. On the other hand

by means of~2!–~4!, one has

v152~ q̇1q41q̇2q32q̇3q22q̇4q1!52q̇•B1q, ~5!

v252~2q̇1q31q̇2q41q̇3q12q̇4q2!52q̇•B2q, ~6!

v352~ q̇1q22q̇2q11q̇3q42q̇4q3!52q̇•B3q, ~7!

where q̇ means the tangent vector of Cayley–Klein parameterq, the dot betweenq̇ and Biq
denotes the standard inner product ofR4, and

B1q5q4

]

]q1
1q3

]

]q2
2q2

]

]q3
2q1

]

]q4
,

B2q52q3

]

]q1
1q4

]

]q2
1q1

]

]q3
2q2

]

]q4
,

B3q5q2

]

]q1
2q1

]

]q2
1q4

]

]q3
2q3

]

]q4
.

One thus can obtain the Lie bracket of Biq and Bjq as follows:

@Biq, Bjq#52e i jkBkq, for all i , j ,k, ~8!

wheree i jk is the permutation sign of~ijk!. Equations~5!–~7! also suggest that we writeq̇ as

q̇5(
i 51

3
v i

2
Biq. ~9!

Notice that with respect to the standard orientation onS3,B1q,B2q,B3q forms a negatively
oriented basis ofTqS3. It is also worth emphasizing that if the Frene´t frame of C exists, then
v15k cosu, v25k sinu, andv35t2 u̇, wheret is the geometric torsion ofC andu is the angle
measured from the principal normal ofC to e2 . Thus, the relations are very useful in uncoveri
complete information of an elastica once its axis isnondegenerate, i.e., k.0.

Equipped with~5!–~7!, one can rewrite~1! as
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E~q!5
1

2 E0

l

r1~2q̇•B1q2k1!21r2~2q̇•B2q2k2!21r3~2q̇•B3q2k3!2 ds.

Because Biq’s, for 1< i<3, also form an orthonormal frame onS3 with respect to the standar
metric tensor written as

gstd5~s1!21~s2!21~s3!2,

wheres i is the one-form dual to Biq, one can introduce a change ofgstd immediately shown
below:

g5r1~s1!21r2~s2!21r3~s3!2.

Therefore, the elastic energy functional can be formulated as

E~q!52E
0

l

i q̇i2 ds22(
i 51

3 E
0

l

k i^q̇,Biq& ds1
1

2 (
i 51

3 E
0

l

r ik i
2 ds. ~10!

Here, the first term of~10! is four times the Dirichlet functional and the^•,•& in the second term
is the inner product on (S3,g).

III. EULER–LAGRANGE EQUATIONS OF ELASTIC ENERGY FUNCTIONAL

A. Clamped-end variational principle

In this article, we are interested in the elasticity ofclamped ends:

C~0!50, ~11!

C~ l !5~a1 ,a2 ,a3!, ~12!

„e1~0!,e2~0!,e3~0!…5~ i , j ,k!, ~13!

„e1~ l !,e2~ l !,e3~ l !…5~v1 ,v2 ,v3!, ~14!

where0 is the origin ofR3,ai ’s are real numbers satisfying( i 51
3 ai

2< l 2, and (v1 ,v2 ,v3) is a set
of orthonormal frame atC( l ).

Because of ~13!, we are interested in those Cayley–Klein parameters starting a
5(1,0,0,0)PS3,R4. The other endpoint of such a Cayley–Klein parameter correspondin
condition ~14! is usually denoted byx.

Lemma 1: The relation between deformations of framed curves and variations of
Cayley–Klein parameters is that a variation of curves on S3 starting at 1 and ending at a given
x can be realized as a deformation of framed curves satisfying (11), (13), and (14) and a pro
that each framed curve in the deformation has the same length, and vice versa.

Proof: A variation of curves onS3 starting at 1 and ending atx is a mappingh:@0,l #
3@0,1#→S3 satisfyingh(0,e)51 andh( l ,e)5x. By means of~2!–~4!, one may construct one
parameter families ofe1 and e2 corresponding tohe where he5h(•,e). Thus, one obtains a
deformation of framed curves with the required properties.

Conversely, suppose that a deformation of framed curves of equal lengths is give
H:@0, l #3@0, 1#→TR3 whereH(•,e)5(Ce ,ne) satisfies conditions~11!, ~13!, and~14!. With the
corresponding frames (e1

e ,e2
e ,e3

e) where (e1
e ,e2

e ,e3
e) is the orthonormal frame constructed b

(Ce ,ne), one can produce the associated one-parameter family of curves in SO~3! when compared
with ~i,j,k!. Notice that all curves of the family start and end at the same points, respectivel
means of the homotopy lifting property, these curves can be lifted to SU~2! which all start at 1 and
end atx. h
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Because the Cayley–Klein parameter only describes motion of the orthonormal frame
dition ~12! should be captured by incorporating a Lagrange multiplier with elastic energ
follows:

Ec~q!5E~q!2E
0

l

l•S e12
a

l Dds,

wherel is a vector-valued Lagrange multiplier, and the dot appearing in the integrand o
second term ofEc is the standard inner product ofR3.

B. The Euler–Lagrange equations

The structure equations of the standardS3 areds i5s j∧s i j , where the connection one-form
s i j 5e i jksk can be deduced from~8!. Let f i5Biq/Ar i and the dual one-formh i5Ar is i and
notice thatg5(h1)21(h2)21(h3)2.

Lemma 2: Let the structure equations of(S3,g) be written as dh i5h j∧h i j , whereh i j is the
connection one-form. Then

h i j 5e i jk

r i1r j2rk

Ar ir jrk

hk .

Proof: Sinceh i5Ar is i and

dh i5e i jk

r i

Ar ir jrk

h j∧hk ,

by means ofdh i5h j∧h i j , one has

h j∧S h i j 2e i jk

r i

Ar ir jrk

hkD 50.

By Cartan’s lemma,13 there exists~locally defined! functionsai jk ’s satisfyingai jk5aik j such that

h i j 2e i jk

r i

Ar ir jrk

hk5ai jkhk .

After rearrangement, due toh i j 1h j i 50, an identity is obtained

ai jk1ajik5e i jk

r j2r i

Ar ir jrk

.

Consider the following three equations:

ai jk1ajik5e i jk

r j2r i

Ar ir jrk

,

ajki1ak ji5e jki

rk2r j

Ar ir jrk

,

aki j1aik j5eki j

r i2rk

Ar ir jrk

.
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Now, we subtract the second equation from the sum of the first and third ones to get

ai jk5e i jk

r j2rk

Ar ir jrk

.

Thus, the expression ofh i j is obtained. h

Now, one can derive the differential-equation part of the Euler–Lagrange equations ofEc .
Lemma 3: An elastica must satisfy the following equation, where¹ is the covariant differen-

tiation on (S3,g) given by¹ f j
f i5h ik( f j ) f k ,

2¹ q̇q̇5~2l•e21r1k̇11r3k3v22r2k2v3!
f 1

Ar1

1~2l•e31r2k̇22r3k3v11r1k1v3!
f 2

Ar2

1~r3k̇31r2k2v12r1k1v2!
f 3

Ar3

. ~15!

Notice that the other part of the Euler–Lagrange equations is simply condition~12!.
Sketch of Proof:We will use physicists’ notation to help derive the equation:

dS 2E
0

l

i q̇i2 dsD 5E
0

l

^dq,24¹ q̇q̇&ds,

dS 22(
i 51

3 E
0

l

k i^q̇,Biq&dsD 5E
0

l K dq,2(
i 51

3 S k̇ iAr i f i1r ik ie ik j

v j

Ark

f kD L ds

and

dX2E
0

l

l•S e12
a

l DdsC5E
0

l K dq,
22l•e2

Ar1

f 11
22l•e3

Ar2

f 2L ds.

BecausedEc50, we obtain~15!. h

Componentwise, one has

r1v̇11~r32r2!v2v352l•e21r1k̇11r3k3v22r2k2v3 , ~16!

r2v̇21~r12r3!v1v352l•e31r2k̇22r3k3v11r1k1v3 , ~17!

r3v̇31~r22r1!v1v25r3k̇31r2k2v12r1k1v2 . ~18!

An immediate consequence is the regularity of solutions to the above Euler–Lagrange equ
when allk i ’s are assumed smooth.

Corollary 1: Each elastica is smooth, i.e., C andn are both C`.
Proof: Considering~15!, since it is elliptic of second order with respect toq, any solution to

~15! is smooth@notice that~15! differs from the equation of harmonic mappings14 by lower-order
terms with respect toq#. Then by~2! and ~3!, the result is obtained. h

In fact, a stronger regularity of elasticae can be also obtained—each elastica is~real! analytic
if eachk i is assumed analytic. This is because SU~2!, as a Lie group, is an analytic manifold; als
the metric tensorg is analytic. Therefore,q as a solution to~15! is an analytic mapping from@0, l #
to S3 ~by the same reason used in the proof of the last corollary!. Although the analyticity of
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solutions is obtained, it is hardly useful in helping us to understand elasticae in this a
Perhaps, the only usefulness isk.0 a.e. over@0, l # unlessk50 identically.15

No matter which regularity one is going to make use of, it is important to notice that alth
each elastica is smooth~or analytic!, the axis might yet have a discontinuity betweenC(k)(0) and
C(k)( l ) for somek if C(0)5C( l ), where C(k) denotes thekth-order derivative ofC. This is
becauseC has been parametrized over@0, l #, not S1.

C. Basic properties of elasticae

Now consider the inner product of 2¹ q̇q̇ with q̇. By means of~15!, one obtains

^2¹ q̇q̇,q̇&52l•S v1

2
e21

v2

2
e3D1

1

2 (
i 51

3

r i k̇ iv i . ~19!

The lhs is equal to the derivative ofi q̇i2 with respect tos and the first term of the rhs is exactl
the derivative of2 1

2l•e1 . Therefore,

i q̇i21
1

2
l•e15

c

2
1

1

2 (
i 51

3 E
0

s

r i k̇ iv i ,

wherec52i q̇(0)i21l• i .
Let total energyof (C,n) be defined by

H52i q̇i21l•e1 .

In the expression ofH, the term 2i q̇i2 can be regarded askinetic energyand the other terml
•e1 aspotential energysince it is the price one pays for fixing endpointC( l ).

An elastic rod isuniform if eachk i is a constant. Under such an assumption, total energy
conserved quantity for each elastica, known to G. Kirchhoff and A. Clebsch.16

Theorem 1: Total energy is a conserved quantity for a uniform elastica.
By ~16! and ~17!, one can writel as

l5l1e12l2e22l3e3 ,

wherel1 is potential energy, and

l25r1v̇11~r32r2!v2v32r1k̇12r3k3v21r2k2v3 ,

l35r2v̇21~r12r3!v1v32r2k̇21r3k3v12r1k1v3 .

Sincedl50, one obtains

l̇11l2v11l3v250, ~20!

l1v12l̇21l3v350, ~21!

l1v22l2v32l̇350. ~22!

Note ~20! is exactly~19! @we need~18! to verify the claim#. The importance of~21! and ~22! is
that they are bases from which one can solve for elasticae.@Observe that~16! and~17! still involve
e2 ande3 , respectively, and they make solving for elasticae more difficult.# Also, one may make
use of~21!, ~22! and ~18! to write a system of differential equations which is equivalent to
~differential equation part of! Euler–Lagrange equations, and then the regularity proved in C
ollary 1 is merely a direct application of Cauchy’s theorem of differential equations.17
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Recall that a relaxed state is a state of zero elastic energy. Thus,v i5k i for eachi. Using the
above expression ofl, we havel5l1e1 for a relaxed state.

Corollary 2: A relaxed state hasl5l1e1 wherel1 is a constant. Moreover, ifk1
21k2

2Þ0 at
some point in@0, l #, thenl150.

Proof: Equations~20!–~22! become

l̇150 and l1k15l1k250,

respectively. Therefore, one may conclude the corollary. h

To see the existence and uniqueness of a relaxed state, one has to know the diffe
equation of it:

q̇5(
i 51

3 Ar i

2
k i f i .

The above expression can be derived from the factsv i5k i , Biq5Ar i f i , and~9!.
Theorem 2: A relaxed state exists uniquely.
Proof: The result may be obtained by the fundamental theorem of differential equations.17 h

IV. MAIN RESULTS

Let us study the following two fundamental questions:
Question 1: Given a point1PS3 and a vectorvPT1S3, is there an elastica whose Cayley–

Klein parameter q satisfies q(0)51 and q̇(0)5v? Such an elastica (if it exists) should be uniq
with respect to the initial conditions.

Question 2: Given two points1, xPS3, is there an elastica whose Cayley–Klein parameter
connects these two points? Under what condition is such an elastica unique with respect
boundary conditions?

The answer to Question 1 is the following.
Theorem 3: There exists uniquely a solution curve to (15) satisfying the prescribed in

conditions q(0)51 and q̇(0)5v.
Sketch of Proof:On TS3, let ~q,p! be the canonical coordinates. A solution curve one se

thus corresponds to an integral curve of the following differential equations defined onTS3.

q̇5p,

ṗ5one-half of the r.h.s. of~15!.

By means of the fundamental theorem of differential equations, one obtains the result. h

A partial answer to Question 2 may be given as follows. LetV be the path space of all path
on S3 from 1 tox; here paths are assumed sufficient differentiability and parametrized over@0, l #.
While proving the next theorem, we do not need that eachk i is smooth, onlyC2. Therefore,
Corollary 1 can be restated as: The strains of each elastica areCk11 if all k i ’s areCk. This implies
that the axis of an elastica isCk13 and the material direction isCk12.

Once k1 , k2 , and k3 are written collectively ask5(k1 ,k2 ,k3), we defineP5C2@0, l #
3C2@0, l #3C2@0, l # with product topology whereC2@0, l # is topologized byC2-norm

iuiC25 max
xP@0, l #

uu~x!u1uu̇~x!u1uü~x!u, for uPC2@0, l #.

Let Vq be the space of all vector fields defined alongqPV andV5c qPVVq , wherec denotes the

disjoint union.
Lemma 4:V is a vector bundle overV.
Proof: Only the local triviality ofV is proved here. First, we pick an open neighborhoodO of

q in V ~equipped with compact-open topology! such that for anyq̃ in the neighborhood, there
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exists a unique minimal geodesic connectingq̃(s) and q(s) for all sP@0, l #. Therefore, using
parallel transport along these minimal geodesics, we can establish a one-to-one correspo
between vector fields defined alongq and q̃. Such a correspondence gives local triviality ofV as
a product ofO andVq . h

Let F be a functional

F:V3P→V

defined by

~q,k!°S q,¹ q̇q̇2(
i 51

3
a i

2Ar i

f i D ,

wherea i is the coefficient off i /Ar i of the rhs of~15!.
Theorem 4: Let q0 , from 1 to x, be a Cayley–Klein parameter of some elastica whos

intrinsic curvatures and twisting density arek1
0, k2

0, and k3
0, simply written ask05(k1

0,k2
0,k3

0)
PP. Then there is an open neighborhood ofk0 in P such that a family of solution curves to~15!
exists and is parametrized by the neighborhood.

Note, elasticae of the family have the samel.
Proof: Let q̃(e),21,e,1, be a curve inV such thatq̃(0)5q0 . The tangent vector toq̃ at

e50 is a vector fieldW defined alongq0 while it is realized onS3. Thus,

S ]

]q
¹ q̇q̇D ~q0 ,k0!5

]

]eU
e50

¹q8q85¹W¹q8q8 ue50

and the rhs of the last equality is equal to¹ q̇0
¹ q̇0

W1R(W,q̇0)q̇0 , whereR(•,•)• is the curvature
tensor of (S3,g), by means of the following identities:17

¹W̃¹q8q82¹q8¹W̃q82¹@W̃,q8 #q85R~W̃,q8 !q8 and ¹W̃q82¹q8W̃5@W̃,q8 #50,

where

W̃5V* S ]

]e D and q̃5V* S ]

]sD ,

andV is a one-parameter variation ofq0 which can be regarded as a realization of a curve inV on
S3. More precisely, if

d

deU
e50

q̃5WPTq0
V,

thenV is a mappingV:] 21,1@3@0, l #→S3 such thatV(e,0)51, V(e,l )5x for eP] 21,1@ ,V(0,
•)5q0 andW5W̃(0,•) @of course,q̇05q8 (0,•)#. Let us writeW5(Wi f i .

Similarly, one can compute

S ]

]q
f i D ~q0 ,k0!5

]

]eU
e50

f i5¹W̃f i ue505(
j ,k

e ik jWj

r i1rk2r j

Ar ir jrk

f k ,

S ]

]q
~2l•e2! D ~q0 ,k0!5

]

]eU
e50

~2l•e2!52~W1l•e12W3l•e3!,
                                                                                                                



ntion
n

c
lastica.
c
i fields

cludes
opic
a

to the
first

solves
whose

d x.
set in

3350 J. Math. Phys., Vol. 40, No. 7, July 1999 Kai Hu

                    
S ]

]q
~2l•e3! D ~q0 ,k0!5

]

]eU
e50

~2l•e3!52~W2l•e11W3l•e2!,

S ]

]q
v i D ~q0 ,k0!5

]

]eU
e50

ṽ i5
2

Ar i
S Ẇi1e ik jWjvkAr i

r j
D ,

whereṽ i52^q8 , f i&/Ar i . Therefore, we can write

]F

]q
~q0 ,k0!~W!5~¹ q̇0

!2W1R~W,q̇0!q̇02(
i 51

3

b i f i , ~23!

whereb i ’s are functions involved withWi ’s and their first-order derivatives~and of course also
with l, k i ’s, andv i ’s!.

Now, letK,Tq0
V andR denote the kernel and range of (]F/]q)(q0 ,k0), respectively. Then

K is finite dimensional andR has finite codimension since~23! is an elliptic differential equation
in W. Because there is a natural inner product onTq0

V defined by

^U,V&q0
5E

0

l

^U~s!,V~s!&ds,

one can identify the quotient spaceTq0
V/K with the orthogonal complement ofK in Tq0

V,
written asK'. Let V* be the image ofK' under the exponential map atq0 ,

Expq0
~U !PV defined by Expq0

~U !~s!5expq0~s! U~s!.

Then the restriction ofF to V* 3P ~if necessary, we also need to replaceV by the image ofR
under the corresponding exponential map whenV is regarded as a manifold! has]F/]q as an
isomorphism at (q0 ,k0). By the implicit function theorem, one obtains the theorem. h

The geometric picture of the proof of the above theorem is clearer if we restrict our atte
to the so-calledgeodesic elastica,18 especially in the case of intrinsically straight elasticity. A
elastica is called geodesic if its Cayley–Klein parameter is a geodesic on (S3,g). The reason for
considering geodesic elasticae is that given any two points onS3, there is always a geodesi
connecting them. However, not every geodesic can be a Cayley–Klein parameter of some e
Now if we consider the intrinsically straight elasticity, allb i ’s in ~23! are zero for a geodesi
elastica whose axis is not a straight line. This implies that the kernel is the space of Jacob
vanishing at endpoints. Therefore,x is a conjugate point of 1 alongq0 if the kernel is nontrivial.

Motivated by the last explanation of the proof of Theorem 4, let us call an elasticitygeometric
if every geodesic is a Cayley–Klein parameter of some elastica. Such a special category in
intrinsically straight elasticity and isotropic elasticity of zero intrinsic curvatures, but not isotr
O-ring elasticity3 defined byk1 being a constant andk25k350 because a geodesic being
Cayley–Klein parameter of someO-ring elastica must havev250 andv3 as a constant. Now
employing Theorem 4 alone, one can show that Question 2 has an affirmative answer
existence under some condition on intrinsic curvatures and twisting density. For this we
assume a geodesic elastica of some geometric elasticity whose Cayley–Klein parameter
Question 2, and then applying Theorem 4 to this elastica we are able to get an elastica
intrinsic curvatures and twisting density are close~with respect to the product topology ofP! to
those of the assumed geodesic elastica.

Using the proof of Theorem 4, one can also show the following.
Theorem 5: Suppose that there is an elastica whose Cayley–Klein parameter is from 1 to x,

say (q0 ,l0). Then there exists a family of solution curves to (15) also connecting 1 an
Moreover, along with the presumed elastica, such a family can be parametrized by an open
R3.
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Notice that in order to prove Theorem 5, we replaceF by

G:V3R3→V

defined by

~q,l!°S q,¹ q̇q̇2(
i 51

3
a i

2Ar i

f i D .

So, elasticae of the family have the same intrinsic curvatures and twisting density.
An interesting application of Theorem 5 is to demonstrate the following.
Theorem 6: Let q0 , from 1 to x, be a Cayley-Klein parameter of some geodesic elastica

geometric elasticity such that x is a conjugate point of 1 along q0 . Then there are two distinc
solution curves to (15) such that the corresponding elasticae satisfy the same conditions–
(14).

Proof: Consider the given geodesic elastica and all perturbed solutions obtained by Th
5, written asql . Since the integral*0

l e1(ql)ds is continuous inql ~or more accuratelyl!, it is
true that either~i! there are two different values ofl, sayla andlb , such that the elasticae whos
Cayley–Klein parameters areqla

, andqlb
, respectively, share the same endpoint@condition~12!#,

or ~ii ! the total integral ofe1 regarded as a mapping ofl is one-to-one. In the latter, sinceq0 is a
geodesic whose endpoints are conjugate to each other, there must be a variation ofq0 consisting
of geodesics from 1 tox.12 Since elasticae whose Cayley–Klein parameters areql exhaust neigh-
boring points of*0

l e1(q0)ds, there must be one elastica whose Cayley–Klein parameter is in
aforementioned geodesic variation such that its endpoint ats5 l lies in the image resulting from
the elasticae associated toql . Thus, the proof is completed. h
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The purpose of this paper is to develop variational integrators for conservative
mechanical systems that are symplectic and energy and momentum conserving. To
do this, a space–time view of variational integrators is employed and time step
adaptation is used to impose the constraint of conservation of energy. Criteria for
the solvability of the time steps and some numerical examples are given. ©1999
American Institute of Physics.@S0022-2488~99!01707-7#

I. INTRODUCTION

The purpose of this paper is to develop variational integrators for conservative mech
systems with adaptive time steps. The resulting algorithms are symplectic, energy preservin
they also preserve the momentum maps~Noether quantities! associated with symmetry groups.

An important idea for how to develop such integrators comes from the paper of Mar
Patrick, and Shkoller1 in which the space–time view is stressed. This viewpoint is very impor
for two main reasons:

~1! to avoid conflicts with well-known theorems~Ge and Marsden2!, which limit the possibility
that constant time steppingalgorithms be symplectic and energy and momentum preserv
and

~2! to give meaning to the termsymplecticin the context of adaptive time stepping algorithm
since the algorithm is not given by a single mapping associated with a constant time s

The basic algorithm itself consists of two parts. First, to update positions, the varia
approach of Veselov,3,4 and Moser and Veselov5 is adopted; these ideas were implemented
merically by Wendlandt and Marsden.6 Second, to compute the time steps themselves, en
preservation is imposed. Roughly speaking, we make use of the fact that time and ener
conjugate variables.

In this paper, our main purpose is the following:

~1! to set up the basic algorithm that implements these symplectic-energy-momentum~SEM!
integrators;

~2! to make precise the sense in which the algorithms are symplectic;
~3! to investigate the solvability conditions for the time step; and
~4! to give some simple numerical examples.

With regard to solving for the time step, we shall indicate how the solvability conditions
closely related to the positivity of the numerically computed kinetic energy. In particular, w
one is close to a location with zero velocity~roughly speaking, ‘‘turning points’’!, our solvability
criterion and examples indicate that one should move through such points using a criterion
33530022-2488/99/40(7)/3353/19/$15.00 © 1999 American Institute of Physics
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than energy preservation. Numerically, this causes a slight adjustment to the energy. Ho
should best treat these points requires further investigation.It is not the purpose of this paper t
give any extensive numerical tests or implementations of these methods. This is a nontrivial task,
but clearly needs to be done, and is planned for other publications.

In future papers we will also investigate the use of these ideas in our collision algorithms7 and
how one can incorporate dissipative effects.

II. BRIEF REVIEW OF VARIATIONAL INTEGRATORS

In this section, we recall some of the essential features of variational integrators th
needed in this paper. For additional details, see Refs. 6 and 1.

A. Limitations on mechanical integrators

There has been a large literature developing on the use of energy-momentum and sym
momentum integrators. We shall not attempt to survey this all here, but rather refer the rea
some of the recent literature, such as the collection of papers in Ref. 8 and Ref. 9. We do m
that for time stepping algorithms with fixed time steps, the theorem of Ge and Marsden2 has led to
a general division of algorithms into those that are energy-momentum preserving and tho
are symplectic-momentum preserving. One of our main points is that if one takes a space
view of variational integrators, as is advocated in Ref. 1, then one can have all three of
properties. Papers typified by Simo and Tarnow,10 Simo, Tarnow, and Wong,11 and Gonzalez12

have focused on energy preserving algorithms, but they presumably fail~except, perhaps, in
special cases, such as integrable systems! to be symplectic. Other approaches based on Hamilto
principle are those of Shibberu13 and Lewis.14 See also the work by Lee.15

B. Accuracy of solutions

We should, at the outset, make another point clear. We are not claiming anything abo
accuracy of individual trajectories. Indeed, it is well known that structure preservation alone
not guarantee this.~See, e.g., Refs. 16, 17.! For systems with complicated, unstable, or chao
trajectories, it is not clear that accuracy of individual trajectories is the correct question to
Rather, one should probably concentrate on statistical properties of solutions. These ar
questions that we do not attempt to address here, but one hopes that by preserving as muc
structure as possible, one is closer to addressing such issues. In some cases the advantage
symplectic is clear; for instance, the condition of being symplectic guarantees that the phase
volume is preserved and this can be an obvious limitation on many integrators; even afte
tively short times, one can see phase space volume not preserved in many integrators.

C. Some common integrators

In structural mechanics, theb50, g5 1
2 member of the widely used Newmark family is

variational integrator~see, for example, Ref. 11! and therefore is symplectic and momentu
preserving. In fact, the whole Newmark family of algorithms is variational.18 Our methods can be
used to make these integrators also preserve energy by using time-adaptive stepping. W
mention that the popular Verlet methods and shake algorithms are variational integrator~see
Refs. 6 and 18 for further discussion and references!.

D. Dissipation and constraints

While dissipation and forcing are of course very important, as we have mentioned, we
their discussion for future publications. One possibility is that dissipative effects can be dea
by means of product formulas, as in Refs. 19–21, for example. Another is to incorpora
dissipative effects into the variational principle, as in Refs. 18 and 22.

Constraints are also very important for integrators. We also do not discuss these in any
in this paper. However, we do mention that variational integrators handle constraints in a s
and efficient way.
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Variational methods also generalize to partial differential equations~PDE’s! using multisym-
plectic geometry with the result being a class of multisymplectic momentum integrators. Se
1 for details and numerical examples. This type of approach should ultimately be of u
elastodynamics as well as ocean dynamics, for example.

E. Symmetry and reduction

We should also mention that for mechanical systems with symmetry, the investigati
discrete versions of reduction theory, such as Euler–Poincare´ reduction,23 are of current
interest.24,25We will not be making use of this reduction theory in this paper, but it is related s
our integrators are intended to preserve symmetry. It would be of interest to develop time-a
integrators in the sense of the present paper in the general context of discrete reduction.

F. The discrete variational principle

Given aconfiguration space Q, a discrete Lagrangian is a map

Ld :Q3Q→R.

In practice,Ld is obtained by approximating a given Lagrangian as we shall discuss late
regardLd as given for the moment. The time step information will be contained inLd and we
regardLd as a function of 2 nearby points (qk ,qk11).

For a positive integerN, theaction sum is the mapSd :QN11→R defined by

Sd5 (
k50

N21

Ld~qk ,qk11!,

whereqkPQ andk is a nonnegative integer. The action sum is the discrete analog of the a
integral in mechanics.

The discrete variational principle states that the evolution equations extremize the ac
sum given fixed end points,q0 and qN . ExtremizingSd over q1 ,...,qN21 leads to thediscrete
Euler–Lagrange „DEL … equations:

D1Ld~qk ,qk11!1D2Ld~qk21 ,qk!50

for all k51,...,N21. We can write this equation in terms of a discretealgorithm

F:Q3Q→Q3Q

defined implicitly by

D1Ld +F1D2Ld50,

i.e.,

F~qk21 ,qk!5~qk ,qk11!.

If, for eachqPQ, D1Ld(q,q):TqQ→Tq* Q is invertible, thenD1Ld :Q3Q→T* Q is locally
invertible and so the algorithmF, which flows the system forward in discrete time, is well defin
for small time steps.

G. Variational algorithms are symplectic

To explain the sense in which the algorithm is symplectic, first define thefiber derivative ~or
the discrete Legendre transform! by

FLd :Q3Q→T* Q; ~q0 ,q1!°„q0 ,D1Ld~q0 ,q1!…,
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and define the two-formv on Q3Q by pulling back the canonical two-formVCAN5dqi∧dpi

from T* Q to Q3Q:

v5FLd* ~VCAN!.

The fiber derivative is analogous to the standard Legendre transform.
The coordinate expression forv is

v5
]2Ld

]qk
i ]qk11

j ~qk ,qk11!dqk
i ∧dqk11

j .

A fundamental fact is that
the algorithmF exactly preserves the symplectic formv.
One proof of this is to simply verify it with a straightforward calculation—see Ref. 6 for

details. Another is to derive the same conclusion directly from the variational structure, as is
in Ref. 1.

H. The algorithm preserves momentum

Recall thatNoether’s theoremstates that a continuous symmetry of the Lagrangian lead
conserved quantities, as with linear and angular momentum. A nice way to derive these c
vation laws~the way Noether did it! is to use theinvariance of the variational principle.

Assume that the discrete Lagrangian is invariant under the action of a Lie groupG on Q, and
let jPg, the Lie algebra ofG. By analogy with the continuous case, define thediscrete momen-
tum map, Jd:Q3Q→g* by

^Jd~qk,qk11!,j&ª^D1Ld~qk ,qk11!,jQ~qk!&.

A second fundamental fact is that

the algorithmF exactly preserves the momentum map.

I. Construction of mechanical integrators

Assume we have a mechanical system with a constraint manifold,Q,V, whereV is a real
finite-dimensional vector space, and that we have an unconstrained Lagrangian,L:TV→R which,
by restriction ofL to TQ, defines aconstrained Lagrangian, Lc:TQ→R. Roughly speaking,V is
a containing vector space in which the computer arithmetic will take place. In particular, co
nate charts onQ are not chosen for this purpose. In fact, apart from the use of the contai
vector spaceV, the algorithms developed here are independent of the use of coordinates oQ.

We also assume that we have a vector-valuedconstraint function, g:V→Rk, such that our
constraint manifold is given byg21(0)5Q,V, with 0 a regular value ofg. The dimension ofV
is denotedn and therefore, the dimension ofQ is m5n2k.

Define adiscrete, unconstrained Lagrangian, Ld :V3V→R in some consistent manne
such as

Ld~x,y!5LS gx1~12g!y,
y2x

h D , ~II.1!

wherehPR1 is the time step and 0<g<1 is an interpolation parameter.
The corresponding discrete Euler–Lagrange equations give an algorithm closely related~in

a sense made precise in Ref. 18! the Newmark algorithm for the standard choice of Lagrangia
given by kinetic minus potential energy. We get thecentral difference methodfor g51

2 and we get
the shakealgorithm with g51 ~the Verlet algorithm is the unconstrained version of the sha
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algorithm!. We also note that theMoser–Veselov discrete Lagrangianfor the rigid body is con-
structed using eitherg51 or g50 ~see Ref. 24 for details!.

We remark in passing that other choices for discrete Lagrangians are also possible, su

Ld~x,y!5sLS g1x1~12g1!y,
y2x

h D1~12s!LS g2x1~12g2!y,
y2x

h D ,

wheres, l1 , andl2 are between 0 and 1. These other choices, which give algorithms such
midpoint rule, are not investigated here~see Ref. 18!. Alternative choices, of which this is a
example, as well as issues of local truncation error and accuracy are investigated in Ref.

The unconstrained action sumis defined by

Sd5 (
k50

N21

Ld~xk ,xk11!.

ExtremizeSd :VN11→R subject to the constraintthat xkPQ,V for k51,...,N21, i.e., solve

D1Ld~xk ,xk11!1D2Ld~xk21 ,xk!1lk
TDg~xk!50

~no sum onk! with g(xk)50 for k51,...,N21. Here, thelk areLagrange multipliers, chosen to
enforce the constraints.

Thus, the algorithm is defined by starting withxk and xk21 in Q,V, i.e., g(xk)50 and
g(xk21)50, and solving

D1Ld~xk ,xk11!1D2Ld~xk21 ,xk!1lk
TDg~xk!50

subject tog(xk11)50, for xk11 andlk . In terms of theunconstrained Lagrangian, the algorithm
reads as follows:

1

h F]L

] ẋ S gxk211~12g!xk ,
xk2xk21

h D2
]L

] ẋ S gxk1~12g!xk11 ,
xk112xk

h D G
3~12g!

]L

]x S gxk211~12g!xk ,
xk2xk21

h D
1g

]L

]x S gxk1~12g!xk11 ,
xk112xk

h D1DTg~xk!lk50

together withg(xk11)50.
Example:If the continuous Lagrangian is

L~q,q̇!5 1
2 q̇TMq̇2V~q!

with constraintg(q)50, whereM is a constant mass matrix, andV is the potential energy, then
the DEL equations are

M S xk1122xk1xk21

h2 D1~12g!
]V

]q
„gxk211~12g!xk…

1g
]V

]q
~gxk1~12g!xk11!2DTg~xk!lk50

with g(xk11)50.
Wendlandt and Marsden6 show thatthe algorithm defined using Lagrange multipliers coi

cides with that defined intrinsically using the constrained discrete Lagrangian on Q3Q, so it is
symplectic and momentum preserving.
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J. An intrinsic variational viewpoint

Recall that given a Lagrangian functionL:TQ→R, we construct the correspondingaction
functional S on C2 curvesq(t) by ~using coordinate notation!

S~q~• !![E
a

b

LS qi~ t !,
dqi

dt
~ t ! D dt. ~II.2!

The action functional depends ona and b, but this is not explicit in the notation. Hamilton’
principle seeks the curvesq(t) for which the functionalS is stationary under variations ofqi(t)
with fixed endpoints. It will be useful to recall this calculation; namely, we seek curvesq(t) which
satisfy

dG„q~ t !…•dq~ t ![
d

deU
e50

S„q~ t !1edq~ t !…50 ~II.3!

for all dq(t) with dq(a)5dq(b)50. Abbreviatingqe[q1edq, and using integration by parts
the calculation is

dS~q~ t !!•dq~ t !5
d

deU
e50

E
a

b

LS qe
i ~ t !,

dqe
i

dt
~ t ! Ddt5E

a

b

dqi S ]L

]qi2
d

dt

]L

]q̇i Ddt1
]L

]q̇i dqiU
a

b

.

~II.4!

The last term in~II.4! vanishes sincedq(a)5dq(b)50, so that the requirement~II.3! for S to be
stationary yields theEuler–Lagrange equations

]L

]qi2
d

dt

]L

]q̇i 50. ~II.5!

Notice that the boundary term in the first variation of the action is the canonical one
piq̇

i . This is the starting point for the variational proof that the algorithm is symplectic. The
is to restrictS to the space of solutions and to use the general identityd2S50 to derive the
symplectic nature of flow of the Euler–Lagrange equations. The point is thatthis type of deriva-
tion also is valid for the discrete case, as is shown in Ref. 1.

We also mention that one can similarly give a derivation of the conservation of mome
maps entirely based on the variational principle as well.

We end this section with one further important remark. Namely, one may think tha
discrete symplectic form and momentum map that are conserved by the variational algorith
somehow ‘‘concocted’’ to be conserved. This is not the case. Indeed, one can, via the d
Legendre transform, transfer the algorithm to position-momentum space. Transferred to
variables, the algorithm will preserve thestandardsymplectic formdqi∧dpi and thestandard
momentum map. As M. West pointed out to us, to get a corresponding algorithm that is con
with the corresponding continuous Hamiltonian system onT* Q, and one that is also in line with
our discrete energy developed below, one should really use the map

~q0 ,q1!°„q0 ,2hD1Ld~q0 ,q1!…,

whereh is the time step, but this does not affect the results here.

III. REVIEW OF ENERGY AND SYMPLECTICITY CONSERVATION IN THE CONTINUOUS
CASE

The main issue addressed in the following section is how we can achieve conservat
energy using adaptive time steps. We shall see that apart from some exceptional circums
which we can algorithmically identify, one can achieve this.

To address these issues, we first consider the continuous time case.
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A. Conservation of energy

We will first recall how conservation of energy is derived directly from Hamilton’s princi
in the case whereL(q,q̇) is time independent. This provides a clue about how one should pro
with the time-adaptive steps.

Assume thatq(t) is a solution of the Euler–Lagrange equations. Lets«(t) be a family of
functions oft depending on the parameter« and withs0(t)5t and withs«(a)5a, s«(b)5b. Let

ds~ t !5
d

d«
s«U

«50

.

We consider the associated family of curvesq„s«(t)… which has the variation

dq~ t !5ds~ t !q̇~ t !.

Hamilton’s principle (d*L dt50) in this case gives us

E ]L

]q
dq1

]L

]q̇
~ ḋq!5E S ]L

]q
2

d

dt

]L

]q̇D dq. ~III.1!

Using the special form of the variation, this becomes

E ]L

]q
q̇ds2S d

dt

]L

]q̇D q̇ds dt50. ~III.2!

Equation~III.2! gives

]L

]q
q̇2

d

dt

]L

]q̇
q̇505

dE

dt
, ~III.3!

where, as usual,

E5
]L

]q̇
q̇2L~q,q̇!. ~III.4!

The point here is that we see a sense in which the HamiltonianH arises naturally when one
considers variations of the curveq(t) that are given by time reparametrizations.

B. Symplecticity in the space–time sense

In Ref. 1 it is shown how the variational principle naturally leads to boundary terms in
the continuous and the discrete case that leads to a deeper understanding of why the
Lagrange and Hamilton equations themselves preserve the symplectic structure, as well
discrete counterparts. We shall make use of this type of argument below in the discrete ca
help motivate the result, we make some relevant remarks here.

Consider a~possibly time dependent! Hamiltonian H(q,p,t) in the canonically conjugate
variablesqi , pi and introduce an extended HamiltonianH̄, a function ofq, p and two new real
variablesq0 andp0 by

H̄~q,p,q0 ,p0!5H~q,p,q0!1p0 .

Hamilton’s equations for this new autonomous Hamiltonian agree with the time-dependent
tions for the originalH if we identify q0 with the time andp0 with 2H. In addition, this leads one
to the conservation of the canonical symplectic structure in the space–time sense, namely

VH5v1dH∧dt,
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where v5( idqi∧dpi is the canonical symplectic form. What is interesting for us later is
following remark in caseH is time independent~so H is conserved!. Consider the flowF̄s of the
extended HamiltonianH̄, which is given by advancing the time by an amounts:

„q~ t !,p~ t !,t,H…°„q~ t1s!,p~ t1s!,t1s,H…,

where q and p advance by the flowFs of the original Hamiltonian system. Imagine, for lat
purposes, thats is a function of the initial point andt, so thatds is a nontrivial differential. Then
the statement that the flowF̄s preserves the symplectic form above reads:F̄s* VH5VH or, equiva-
lently,

Fs* v1dH∧d~ t1s!5v1dH∧dt.

CancellingdH∧dt, this reads

Fs* v1dH∧ds5V0 . ~III.5!

If we think of s as the time advancement, or the time step, then below we will prove a dis
analog of this identity, which is how we will interpret symplecticity in the time-dependent se

Following the arguments in the discrete case later, or the methods of Marsdenet al.,1 one can
also derive a Lagrangian version of this identity from the variational principle.

IV. THE VARIATIONAL ENERGY ALGORITHM

We consider a discrete Lagrangian that is~possibly! time dependent and has an associa
time steph1 that may be coupled to the current choice of points (q1 ,q2); we denote this discrete
Lagrangian byLh1

(q1 ,q2)ªLd(q1 ,q2 ,h1).
Given (q0 ,q1 ,h0), we seek to find (q1 ,q2 ,h1). In general, this will give us a way to pas

from data (qk21 ,qk ,hk21) to (qk ,qk11 ,hk).
This setup differs from the usual discrete Lagrangian procedures in the inclusion of tim

informationhk that is coupled to the current configuration data (qk ,qk11).
We will find q2 and h1 together, by solving an equation similar to the discrete Eul

Lagrange equation forq2 , while we solve for h1 using the equationEd(q0 ,q1 ,h0)
5Ed(q1 ,q2 ,h1) whereEd is the discrete energy function, defined below.

(a) The discrete action.One choice of discrete action is obtained by just using the follow
approximation to the action integral for the first two sets of points, (q0 ,q1 ,h0) and (q1 ,q2 ,h1):

@h0Ld~q0 ,q1 ,h0!1h1Ld~q1 ,q2 ,h1!#. ~IV.1!

One could also use other, more accurate methods to approximate the action integra
might lead to some interesting new, more accurate algorithms, but we shall not explore th
this paper.

(b) The discrete algorithm.To derive the algorithm, we consider the same discrete variati
principle as before, but now parametrized by the time step information:

]

]q1
@h0Ld~q0 ,q1 ,h0!1h1Ld~q1 ,q2 ,h1!#50. ~IV.2!

We also write this as

h0D2Ld~q0 ,q1 ,h0!1h1D1Ld~q1 ,q2 ,h1!50.

In this relation, the time stepsh0 ,h1 are held fixed. We will later derive the symplect
relation by considering variations of solutions, just as in the continuous case.
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A. The discrete energy

The above variational equation~IV.2! will be coupled with an energy equation that will enab
us to solve for bothq2 andh2 .

We define thediscrete energyas follows:

Ed~q0 ,q1 ,h0!52h0D3Ld~q0 ,q1 ,h0!2Ld~q0 ,q1 ,h0!52
]

]h0
@h0Ld~q0 ,q1 ,h0!#. ~IV.3!

This intrinsic definition is motivated in part by the fact that for Lagrangians of the form of kin
minus potential energy, and with the choice of discrete Lagrangian given by~II.1!, the discrete
energy is given by the expression one would naturally think of, namely it is easily verified th
this case, we have

Ed~q0 ,q1 ,h0!5
1

2 S q12q0

h0
D T

M S q12q0

h0
D1V„gq01~12g!q1…. ~IV.4!

In this case, this can also be written as

Ed~q0 ,q1 ,h0!5EXgq01~12g!q1 ,S q12q0

h0
D C, ~IV.5!

whereE(q,q̇) is the energy associated with the original LagrangianL(q,q̇). As pointed out to us
by Matt West, one can also motivate this definition of the energy using the variational prin
and a discrete version of the Hamilton-Jacobi equation.

The main second equation defining the algorithm is

Ed~q0 ,q1 ,h0!5Ed~q1 ,q2 ,h1!, ~IV.6!

or, with algorithmic notation,

Ek21ªEd~qk21 ,qk ,hk21!5Ed~qk ,qk11 ,hk!ªEk . ~IV.7!

For example, in the case the Lagrangian equals kinetic plus potential energy, the conditE0

5E1 is equivalent to

h1
25

~q22q1!TM ~q22q1!

2@E02V~gq11~12g!q2!#
. ~IV.8!

For this to remain meaningful as we compute, we need to make sure that thecomputed kinetic
energy

E02V„gq11~12g!q2… ~IV.9!

remains positive.
To realize this condition, one can consider verifying ita posteriorias follows.
~1! First compute the square of the new time steph1 .
~2! Substituteh1

2 in the relation

h0D2Lh0
~q0 ,q1!1h1D1Lh1

~q1 ,q2!50, ~IV.10!

which gives an implicit equation forq2 .
~3! Computeq2 implicitly.
~4! Verify from the formula forh1

2 that one gets a positive answer.
~5! If so, we proceed. If not, we keep the time step from the last iterate and proceed.
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This approach will of course induce an energy variation in such cases. As we shall see
in greater detail,this will only happen near ‘‘turning points;’’ that is, near points where th
velocity is nearly zero.

In the specific example, the equation forq2 reads

mF ~q12q0!

h0
2 2~12g!V8„gq01~12g!q1…Gh01F2

m

h1
2 ~q22q1!2gV8~gq11~12g!q2!Gh150.

We defineB(q0 ,q1 ,h0) to be

B~q0 ,q1 ,h0!ªFm
~q12q0!

h0
2 2~12g!V8~gq01~12g!q1!Gh0 ,

and we let, for notational convenience,u5gq11(12g)q2 . We then have

B5F2~12g!
M „E02V~u!…

~u2q1!TM ~u2q1!
~u2q1!1gV8~u!GA2

~u2q1!TM ~u2q1!

E02V~u!
. ~IV.11!

In the particular case whereg5 1
2 andq1 ,q2 are scalars, this expression simplifies to

B5FE02V~u!

u2q1
1

1

2
V8~u!GA2~u2q1!2M

E02V~u!
. ~IV.12!

In other words,

E02V~u!1
1

2
V8~u!~u2q1!2

AE02V~u!

A2M
B50. ~IV.13!

We solve the previous equation foru. Thenq2 follows in a straightforward way.

V. TIME STEP SOLVABILITY AND AN OPTIMIZATION METHOD

We have seen previously that the conditionE02V(u).0 should be verified in order to
compute the next time steph1 , givenh0 . To clarify the exposition, we writeE05K01V0 and we
takeV15V(u). It follows that

E02V~u!5K01V02V1 .

Our condition for solvability is therefore

K01V02V1.0. ~V.1!

If K0 is large and the time step small, then in this case~V.1! is automatically verified. Indeed
K0 large andV0.V1 implies that the computed kinetic energy is positive. Ifq1.q2 andh0 is not
so small, this is a rather delicate situation but can be explored by writing

1

2

~q12q0!Tm~q12q0!

h0
2 1V„gq01~12g!q1…2V„gq11~12g!q2…. ~V.2!

Taylor expanding the potential terms wheng5 1
2 gives

VS q01q1

2 D2VS q11q2

2 D52
1

2
V8S q01q1

2 D q22q0

2
. ~V.3!
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When the kinetic term is small, the condition should reduce to the condition thatq22q0 has the
same sign as2V8„(q01q1)/2…. This tells one in which directionq2 should move.

(a) An optimization method.An alternative strategy to deal with this issue of how to comp
the time steps near turning points, which is the one we adapt in this paper, is to ado
following optimization technique. Givenh0 , q0 , q1 we have to findh1 , q2 such thatq2 is
determined by the DEL equations

g~q0 ,q1 ,q2 ,h0 ,h1!ªh0D2L~q0 ,q1 ,h0!1h1D1L~q1 ,q2 ,h1!50 ~V.4!

and the energy condition

f ~q0 ,q1 ,q2 ,h0 ,h1!ªE~q1 ,q2 ,h1!2E~q0 ,q1 ,h0!50. ~V.5!

The basic equations we want to solve are thus

f ~q0 ,q1 ,q2 ,h0 ,h1!50, ~V.6!

g~q0 ,q1 ,q2 ,h0 ,h1!50, ~V.7!

to be solved for the variablesq2 andh1 as a function ofq0 , q1 , andh0 . The technique we use i
to minimize the quantity

B5@ f ~q0 ,q1 ,q2 ,h0 ,h1!#21@g~q0 ,q1 ,q2 ,h0 ,h1!#2 ~V.8!

over the variablesh1 , q2 , with the other variables given, andsubject to the constraint h1.0. As
above, this constraint means, in practice, that the computed kinetic energy is positive. Of c
this is then iterated and defines our algorithm as a map

~qk21 ,qk ,hk21!°~qk ,qk11 ,hk!.

This method may be implemented in a standard way using a quasi-Newton algorithm,
Ref. 27~see also Ref. 28!. Of course, other methods for efficiently solving the system of equat
~VIII.9 ! can be considered as well, but as we have mentioned, we do not carry out any ext
comparitive or implementation tests in this paper. In the simple examples we do give in the s
below, we use this optimization method.

VI. SYMPLECTIC NATURE OF THE ALGORITHM

We now show the sense in which the algorithm above is symplectic. This will be in the
of an identity that the mapping

F:Q3Q3R→Q3Q3R

defined by

~q0 ,q1 ,h0!°~q1 ,q2 ,h1!,

where, as we have seen,q2 andh1 are defined by

h0D2Ld~q0 ,q1 ,h0!1h1D1Ld~q1 ,q2 ,h1!50

and

Ed~q0 ,q1 ,h0!5Ed~q1 ,q2 ,h1!,

where we recall that the discrete energy is defined by
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Ed~q0 ,q1 ,h0!52Dh0
@h0Ld~q0 ,q1 ,h0!#.

To determine the symplectic nature of the mappingF̄, we follow the general line of reasoning i
Ref. 1. Namely, we consider the action sum

S5@h0Ld~q0 ,q1 ,h0!1h1Ld~q1 ,q2 ,h1!#

and take its full differential as a function of all the variables, keeping in mind thath1 andq2 are
functions of (q0 ,q1 ,h0). Using the definition of the discrete energy, we get

dS5h0D1Ld~q0 ,q1 ,h0!dq01h0D2Ld~q0 ,q1 ,h0!dq11h1D1Ld~q1 ,q2 ,h1!dq1

1h1D2Ld~q1 ,q2 ,h1!dq22Ed~q0 ,q1 ,h0!dh02Ed~q1 ,q2 ,h1!dh1 .

Because of the discrete Euler–Lagrange equations, this simplifies to

dS5h0D1Ld~q0 ,q1 ,h0!dq01h1D2Ld~q1 ,q2 ,h1!dq22Ed~q0 ,q1 ,h0!dh02Ed~q1 ,q2 ,h1!dh1 .

In view of the equations defining the algorithm, we can write this as

dS5UL
21F̄* UL

1 , ~VI.1!

where the one-formsUL
2 andUL

1 are defined by

UL
2~q0 ,q1 ,h0!5h0D1Ld~q0 ,q1 ,h0!dq02Eddh0

and

UL
1~q0 ,q1 ,h0!5h0D2Ld~q0 ,q1 ,h0!dq12Eddh0 .

Now notice that because of the definition ofEd , we have

UL
2~q0 ,q1 ,h0!1UL

1~q0 ,q1 ,h0!5d@h0Ld#2Eddh0 . ~VI.2!

Substituting~VI.2! into ~VI.1! gives

dS5d@h0Ld#2ud
11F̄* UL

1 , ~VI.3!

whereud
1 is the discrete analog of the canonical one form,pidqi , namely

ud
15Ud

11Eddh05h0D2Ld~q0 ,q1 ,h0!dq1 .

Taking the differential of~VI.3!, using d250 and the fact that pull back commutes with th
differential gives our final identity, namely

F̄* Vd5vd , ~VI.4!

where

Vd52dUd
1

is the discrete analog of the space–time symplectic form and where

vd52dud
1
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is the discrete analog of the phase space symplectic form. Notice that the identity~VI.4! is the
discrete analog of the identity~III.5! in the continuous case. Thus, we may interpret the iden
~VI.4! as the symplectic nature of the algorithm.

(a) Momentum conservation.We note that one proves conservation of momentum for a
rithms invariant under a symmetry group in the same way as usual, following, Ref. 1; we ne
repeat the argument.

VII. SUMMARY OF THE FEATURES OF THE ALGORITHM

In this section we summarize the three main features of the algorithm.

~1! The algorithm conserves energy.
~2! The algorithm is symplectic in the sense spelled out in the previous section.
~3! The algorithm conserves momentum.

We have designed it to preserve energy. The discrete version of the arguments given
continuous case shows the ‘‘space–time’’ sense in which the algorithm is symplectic, as we
explained.

VIII. NUMERICAL EXAMPLES

The first example is one-dimensional and integrable and the second example consists
first one coupled to an oscillator.

In each case, we will compare the constant time step method, which will show the orb
phase space and variations in the energy as a function of time, with the corresponding res
the adaptive time step algorithm.

A. One degree of freedom example

We will use a Lagrangian that is of the standard form kinetic minus potential, namely

L~q,q̇!5
m

2
q̇22V~q!,

whereq andq̇ are real numbers, with the corresponding discrete Lagrangian~with g5 1
2! given by

Ld~q0 ,q1 ,h!5
1

2
mS q12q0

h D 2

2VS q01q1

2 D ,

whereq0 , q1 , andh.0 are also real numbers. The corresponding energy, according to for
~IV.4! is given by

Eh~q0 ,q1!5
1

2
mS q12q0

h D 2

1VS q01q1

2 D .

(a) Constant time step algorithm.We find q2 using the DEL equations:

h@D2L~q0 ,q1!1D1L~q1 ,q2!#50. ~VIII.1 !

As hÞ0, Eq. ~VIII.1 ! leads to

m

h2 ~q12q0!2
1

2
V8S q01q1

2 D2
m

h2 ~q22q1!2V8S q11q2

2 D50 ~VIII.2 !

to be solved forq2 . Keepingh fixed, this is the variational integrator that we use for the cons
time step algorithm.
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(b) Adaptive time step algorithm.Given h0 , q0 , q1 we have to findh1 , q2 such thatq2 is
determined by the DEL equations

h0D2L~q0 ,q1 ,h0!1h1D1L~q1 ,q2 ,h1!50 ~VIII.3 !

and the energy condition

E~q0 ,q1 ,h0!5E~q1 ,q2 ,h1!. ~VIII.4 !

We write the energy condition as follows. Define

f ~q0 ,q1 ,q2 ,h0 ,h1!5E~q1 ,q2 ,h1!2E~q0 ,q1 ,h0!

5
1

2
m

~q22q1!2

h1
2 1VS q11q2

2 D2E~q0 ,q1 ,h0!. ~VIII.5 !

The energy equation is written this way becauseE0ªE(q0 ,q1 ,h0) will have been computed an
stored at the previous step.

The DEL equation~VIII.3 ! is written as follows:

g~q0 ,q1 ,q2 ,h0 ,h1!5h0B01h1F2m
q22q1

h1
2 2

1

2
V8S q11q2

2 D G , ~VIII.6 !

FIG. 1. Three initial conditions are studied for the particle in the double well potential. The orbits for both the fixed
step and the adaptive time step algorithms are plotted. The initial time step used in all cases ish050.1. The initial data is
~a! q05q150.74,~b! q05q150.995, and~c! q051.0, q151.0. The two orbits in each figure are nearly indistinguisha
to the eye, but the adaptive time step computation is somewhat more accurate.
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where

B05Fm
q12q0

h0
2 2

1

2
V8S q01q1

2 D G , ~VIII.7 !

again, a quantity that will have been computed at the previous step.
(c) The numerical technique.The basic equations we want to solve are the following:

f ~q0 ,q1 ,q2 ,h0 ,h1!50, ~VIII.8 !

g~q0 ,q1 ,q2 ,h0 ,h1!50, ~VIII.9 !

to be solved for the variablesq2 andh1 as a function ofq0 , q1 , andh0 . The technique we use i
to minimize the quantity

B5@ f ~q0 ,q1 ,q2 ,h0 ,h1!#21@g~q0 ,q1 ,q2 ,h0 ,h1!#2 ~VIII.10!

over the variablesh1 , q2 , with the other variables given, and subject to the constrainth1.0. As
mentioned in the general theory, this method is implemented using descent methods, fol
Byrd et al.27 and Zhuet al.28

(d) The double well potential.To illustrate the procedures, we choosem51 and take

V~q!5 1
2~q42q2!. ~VIII.11!

FIG. 2. The relatively large amplitude curve shows the~small! energy error for the constant time step algorithm as
function of time, while the lower curve shows the energy error for the adaptive time step algorithm. The initia
correspond to the three regions shown in the preceding figure.
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We study three regions of phase space as shown in Fig. 1. The axes show the com
positionq5(qk1qk11)/2 and the computed velocityq̇5(qk112qk)/hk as functions of time. The
orbit in Fig. 1~a! is a periodic orbit that oscillates around the stable equilibrium positioq
51/&, q̇50. That in Fig. 1~b! is a periodic orbit with high period just inside the homoclinic orb
in the positiveq half-space, while that in Fig. 1~c! is a periodic orbit just outside the homoclin
orbit.

The energy errors for both the constant time step and the adaptive time step algorith
shown in Fig. 2. The amplitude in the variation of the energy depends on the time step
smaller the time step, the smaller the amplitude, but we note that there is not a big difference
periods. The same sort of behavior can also be seen in the corresponding plots in Ref. 6.

The small changes in the energy are, we believe, due to the effect of the turning points
explained earlier. Of course, one can contemplate methods whereby these can be compen
reduced further, but we do not explore these issues in this paper.

B. A two degree of freedom example

Now we consider an oscillator coupled with our previous double well potential example
system now has chaotic orbits, so it is somewhat more interesting.

The continuous Lagrangian we choose is given by

L~x,y,ẋ,ẏ!5 1
2ẋ

22V~x!1 1
2ẏ

22 1
2y

21«xy, ~VIII.12!

where« introduces a small perturbation. This is a very simple example of a chaotic system a
as a perturbation of an integrable one. Shortly we will chooseV to be the potential used in th
preceding subsection.

Using the notation

FIG. 3. An orbit in the coupled double well–oscillator system. In this plot, the initial conditions used werex05y05x1

5y151.00,h050.1, ande50.01.
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q05~x0 ,y0!,q15~x1 ,y1!,

the corresponding discrete Lagrangian is

Ld~x0 ,y0 ,x1 ,y1 ,h0!5
1

2

~x12x0!2

h0
2 2VS x01x1

2 D1
1

2

~y12y0!2

h0
2 2

1

2 S y01y1

2 D
1eS x01x1

2 D S y01y1

2 D . ~VIII.13!

Given h0 , x0 , y0 , x1 , y1 we have to findh1 , x2 , y2 such that the DEL equations

h0D2L~x0 ,y0 ,x1 ,y1 ,h0!1h1D1L~x1 ,y1 ,x2 ,y2 ,h1!50 ~VIII.14!

and the energy condition

E~x0 ,y0 ,x1 ,y1 ,h0!5E~x1 ,y1 ,x2 ,y2 ,h1!. ~VIII.15!

We write the energy condition in the formf 50 as follows. Define

f ~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!5E~x1 ,y1 ,x2 ,y2 ,h1!2E~x0 ,y0 ,x1 ,y1 ,h0!

5
1

2

~x22x1!2

h1
2 1VS x11x2

2 D1
1

2

~y22y1!2

h1
2 1

1

2 S y11y2

2 D 2

2eS x11x2

2 D S y11y2

2 D2E~x0 ,y0 ,x1 ,y1 ,h0!. ~VIII.16!

The DEL equation~VIII.14! is written in the form of a systemg50, k50 as follows. Define
g by

g~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!5h0B01h1F2
x22x1

h1
2 2

1

2
V8S x11x2

2 D1
e

2 S y11y2

2 D G ,
~VIII.17!

where

FIG. 4. The energy behavior for the variational versus the symplectic-energy method in the coupled double well–o
system.
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B05Fx12x0

h0
2 2

1

2
V8S x01x1

2 D1
e

2 S y01y1

2 D G . ~VIII.18!

Definek by

k~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!5h0C01h1F2
y22y1

h1
2 2

1

2 S y11y2

2 D1
e

2 S x11x2

2 D G ,
~VIII.19!

where

C05Fy12y0

h0
2 2

1

2 S y01y1

2 D1
e

2 S x01x1

2 D G . ~VIII.20!

(e) The numerical technique.The basic equations we want to solve are the following:

f ~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!50, ~VIII.21!

g~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!50,

k~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!50, ~VIII.22!

to be solved for the variablesx2 , y2 andh1 as a function ofx0 , y0 , x1 , y1 andh0 .
The technique used is to minimize the quantity

B5@ f ~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!#21@g~x0 ,y0 ,x1 ,y1 ,x2 ,y2 ,h0 ,h1!#2 ~VIII.23!

over the variablesh1 , x2 , y2 , with the other variables given, and subject to the constrainth1

.0. This method is then implemented by the same method as in the preceding example.
(f ) The double well potential coupled with an oscillator.To illustrate the procedures, w

choose, as before,

V~x!5 1
2~x42x2!. ~VIII.24!

FIG. 5. The time step versus the iteration number for the symplectic-energy method.
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We study a single chaotic orbit shown in Fig. 3. The different projections of the orbit, to
x, ẋ and they, ẏ spaces and to the configuration spacex, y, are shown.

Figure 4 shows the energy behavior, as before, for the standard variational integrator
our symplectic-energy algorithm.

Finally, Fig. 5 shows how the time step varies with the iteration.
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Magnetohydrodynamic boundary layer on a flat plate:
Further analytic results

Bhimsen K. Shivamoggi and David K. Rollinsa)

Department of Mathematics, University of Central Florida, Orlando, Florida 32816

~Received 2 June 1998; accepted for publication 4 March 1999!

Further analytic results are deduced with the magnetohydrodynamic boundary layer
equations for a flat plate. The asymptotic behavior of the solutions is deduced using
the scaling group method. Then, an analytic perturbative procedure is used to
determine an approximate solution that exhibits this asymptotic behavior. ©1999
American Institute of Physics.@S0022-2488~99!02906-0#

I. INTRODUCTION

Greenspan and Carrier1 considered the flow of a viscous, electrically conducting, incompre
ible fluid past a semi-infinite flat plate in the presence of a magnetic field which is unifor
infinity and parallel to the stream. They reduced the boundary-layer equations then to a p
coupled nonlinear ordinary differential equations—

g91m~ f g82 f 8g!50, ~1!

f-1 f f 92
1

A2 gg950, ~2!

subject to the boundary conditions

h50: f 50, f 850, g50, ~3a!

h⇒`: f '2h, g'2h. ~3b!

Here, primes denote differentiation with respect to the independent variableh5 1
2yAU/nx;y mea-

sures the distance from the plate,x is the distance along the plate from the leading edge,U is the
undisturbed velocity, andn is the kinematic viscosity. Further, ifu andBx are thex components
of the velocity and magnetic fields, then

u5 1
2U f 8~h!, Bx5 1

2B0g8~h!,

B0 being the ambient magnetic field intensity. Finally,A[U/VA , whereVA is the Alfvén velocity
VA[B0 /A4pr, andm[4psn, r being the density ands the electrical conductivity of the fluid

For sub-Alfvénic flows (A,1), disturbances travel upstream of the plate, invalidating
notion of a boundary layer originating at the leading edge of the plate. As Greenspan and C1

pointed out, this can be clearly seen by considering the case with infinite electrical conduc
m⇒`. For this case, Eqs.~1! and ~2! becomeg5 f , f-1(11(1/A2)) f f 950, so that one need
A2.1 in order to preserve the usual boundary-layer situation. Reuter and Stewartson2 showed
that, for this case, the problem is mathematically ill posed, in the sense that it does not adm
solutions such thatf 9(0).0 andg8(0).0. Stewartson and Wilson3 showed further that, even fo
certain values ofA.1, the solutions turn out to be nonunique wheneverm,1.

a!Electronic mail: drollins@pegasus.cc.ucf.edu
33720022-2488/99/40(7)/3372/7/$15.00 © 1999 American Institute of Physics
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Equations~1! and ~2! are, on the other hand, highly nonlinear and, therefore, one may
anticipate explicit analytical solutions for them. In this paper, we first deduce the asym
behavior of the solutions of Eqs.~1! and ~2! using the scaling group method~Bluman and
Kumei4!. We then use an analytical perturbative procedure due to Benderet al.5 to determine an
approximate solution that has the above asymptotic behavior.

II. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

In order to find the asymptotic behavior of the solutions of~1!–~3!, note first that Eqs.~1! and
~2! admit solutions of the form

f ;
1

h
, g;

1

h
; ~4!

~4! implies that Eqs.~1! and ~2! have the scaling group

f̄ 5a21f , ḡ5a21g, h̄5ah. ~5!

We may therefore introduce the following canonical coordinates

s5 f h, t5h2
d f

dh
, q5hg. ~6!

The transformation from~s,t! to ( f ,h) is given differentially by

ds

t1s
5

dh

h
. ~7!

The transformation rules of the various derivatives are

d2f

dh2 52
2t

h3 1
1

h3 ~ t1s!
dt

ds
,

d3f

dh3 5
6t

h42
5

h4 ~ t1s!
dt

ds
1

1

h4 ~ t1s!2
d2t

ds2 1
1

h4 ~ t1s!
dt

ds S dt

ds
11D ,

~8!
dg

dh
52

q

h2 1
1

h2 ~ t1s!
dq

ds
,

d2g

dh2 5
2

h3 q2
3

h3 ~ t1s!
dq

ds
1

1

h3 ~ t1s!2
d2q

ds2 1
1

h3 ~ t1s!
dq

ds S dt

ds
11D .

In terms of the new variables~s,t,q!, the boundary-value problem~1!–~3! becomes

6t25~ t1s!
dt

ds
1~ t1s!2

d2t

ds2 1~ t1s!
dt

ds S dt

ds
11D22st1s~ t1s!

dt

ds

2
1

A2 q@2q23~ t1s!#
dq

ds
1~ t1s!2

d2q

ds2 1~ t1s!
dq

ds S dt

ds
11D50, ~9!

2q23~ t1s!
dq

ds
1~ t1s!2

d2q

ds2 1~ t1s!
dq

ds S dt

ds
11D1mFs~ t1s!

dq

ds
2q~ t1s!G50, ~10!

s50:t50, q50, ~11!
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s⇒`:t⇒`, q⇒`. ~12!

Nears50, Eqs.~9! and ~10! show that

t'l1s, q'l2sp, ~13!

with

6l125l1~l111!1l1~l111!2'0, ~14a!

2l223pl2~l111!1p~p21!l2~l111!2l2p~l111!2'0, ~15a!

or

l151,2, ~14b!

l152,l2 arbitrary and p5 1
3,

2
3. ~15b!

l151 turns out to be the spurious root. The rootp5 1
3 is to be discarded because we require fro

~6! and ~13! that 2p.1.
For l152, we obtain from~7! and ~13!,

s;h3. ~16!

Using ~16!, we have from~6!,

h⇒0: f ;h2, g;h ~17!

Nears⇒`, equations~9! and ~10! show that

t'l̃1s, q'l̃2s, ~18!

with

22l̃11l̃1~ l̃111!2
1

A2 l̃2@2l̃223l̃2~ l̃111!1l̃2~ l̃111!2#'0, ~19a!

2l̃223l̃2~ l̃111!1l̃2~ l̃111!2'0, ~20a!

or

l̃151, ~19b!

l̃2 arbitrary. ~20b!

Using ~19! and ~20!, we obtain from~7! and ~18!,

s;h2. ~21!

Using ~21!, we have from~6!,

h⇒`: f ;h, g;h. ~22!

Observe that the asymptotic behavior of the solutions, as exhibited by~17! and ~22!, is
independent of the Alfve´n numberA.
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III. AN ANALYTIC PERTURBATIVE SOLUTION

We now use a perturbative procedure due to Benderet al.5 to solve Eqs.~1! and ~2! analyti-
cally. This method has been used recently~Shivamoggi and Rollins6! to solve the Kadomtsev
equation for a heavy atom in a very strong magnetic field with very good results. We first re
Eqs.~1! and ~2! by ones that contain a parameterd, i.e.,

g91m@g8 f d2 f 8gd#50, ~23!

f-1 f 9 f d2
1

A2 g9gd50. ~24!

Note that Eqs.~1! and ~2! are recovered whend51, andd50 corresponds to the linear zeroth
order approximation. By identifyingd as the perturbation parameter, the solution~f,g! is then
expanded in a power series ind,

f 5 f 01d f 11d2f 21¯ ,
~25!

g5g01dg11d2g21¯ .

This then leads to a set of linear equations for (f n ,gn):O(1),

g091m~g082 f 08!50, ~26!

f 0-1 f 092
1

A2 g0950; ~27!

O(d),

g191m~g182 f 18!52m~g08• ln f 02 f 08• ln g0!, ~28!

f 1-1 f 192
1

A2 g1952 f 09• ln f 01
1

A2 g09• ln g0 , ~29!

etc.
Successive integrations of Eqs.~26! and ~27!, along with the use of~3!, lead to

g081m~g02 f 0!5a, ~30!

f 081 f 02
1

A2 g05ch, ~31!

wherec is an arbitrary constant and

a[g08~0!.0. ~32!

Using the boundary condition~3! at h⇒`, we obtain, from~31!,

c52e, ~33!

where

e[12
1

A2.0.

We have, from Eqs.~30! and ~31!,
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f 091~11m! f 081em f 052emh12e1a~12e!, ~34!

from which

f 05~D1es1h1D2es2h!2
2m1~22a!~12e!

me
12h, ~35!

where

s1,25
1
2@2~11m!6A~11m!224me#.

Using the boundary condition~3! at h50, we obtain

D152
1

s12s2
Fs2

2m1~22a!~12e!

me
12G ,

D25
1

s12s2
Fs1

2m1~22a!~12e!

me
12G . ~36!

We have from~32! and ~35! and ~36!, for smallh,

f 0' 1
2@a~12e!12e#h2, ~37a!

g0'ah. ~37b!

One may also obtain~37! directly from Eqs.~30! and ~31!.
Observe from~37a! that, for super-Alfve´nic flows (e.0), f 09(0).0, because

FIG. 1. Comparison of zeroth order approximate solution and numerical solution~bold! for nonlinear boundary value
problem for magnetohydrodynamic case.
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a~12e!12e.0,

on noting~32! and that (12e).0.
Further, we have from~31!, ~33!, and~35!, for largeh,

f 0'2h, ~38a!

g0'2h. ~38b!

One may also obtain~38! directly from Eqs.~30! and ~31!.
The agreement of~37! with ~17! on the one hand, and~38! with ~3b! on the other hand,

indicates that the asymptotic behavior~for bothsmall and largeh! of the solution of Eqs.~1! and
~2! can be accurately provided by the linearized versions of the latter. Indeed, the linearized~or the
zeroth-order! solution turns out to provide a reasonably accurate representation of the exa
merical solution of Eqs.~1! and ~2! elsewhere as well.

In Fig. 1, the zeroth-order approximate analytic solutionf 0 given in~35! is compared with the
exact numerical solution of Eqs.~1! and~2!. The agreement seems to be very good, even tho
f 0 is meant to be only a crude approximation to the exact solution. In fact, this feature
carryover from the hydrodynamic case. In the latter case,~35! reduces to

f 0~h!52e2h2212h, ~39!

in agreement with the one given by Benderet al.5 In Fig. 2, the zeroth-order approximate analy
solution given by~39! is compared with the exact numerical solution of the Blasius equation

FIG. 2. Comparison of zeroth order approximate solution and numerical solution~bold! for nonlinear boundary value
problem for hydrodynamic case.
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f-1 f f 950. ~40!

Again, the agreement seems to be very good.
Next, using~31! and ~35! in the O(d) equations~28! and ~29!, we see that a closed-form

analytic solution of these equations becomes very difficult to find.

IV. DISCUSSION

In this paper, we have deduced further analytic results with the magnetohydrodynamic b
ary layer equations~1! and ~2! for a flat plate. We first derived the asymptotic behavior of
solutions using the scaling group method~Bluman and Kumei4!. We then sought to use an analyt
perturbative procedure due to Benderet al.5 to determine an approximate solution. However, t
linearized~or the zeroth-order! solution of the boundary-layer equations~1! and~2! turned out to
provide not only the required asymptotic behavior~for both small and largeh! of the exact
numerical solution of Eqs.~1! and ~2!, but also a reasonably accurate representation of the e
numerical solution elsewhere.
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The Weierstrass–Enneper system for constant
mean curvature surfaces and the completely
integrable sigma model
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~Received 27 July 1998; accepted for publication 5 March 1999!

The integrability of a system which describes constant mean curvature surfaces by
means of the adapted Weierstrass–Enneper inducing formula is studied. This is
carried out by using a specific transformation which reduces the initial system to
the completely integrable two-dimensional Euclidean nonlinear sigma model.
Through the use of the apparatus of differential forms and Cartan theory of systems
in involution, it is demonstrated that the general analytic solutions of both systems
possess the same degree of freedom. Furthermore, a new linear spectral problem
equivalent to the initial Weierstrass–Enneper system is derived via the method of
differential constraints. A new procedure for constructing solutions to this system is
proposed and illustrated by several elementary examples, including a multi-soliton
solution. © 1999 American Institute of Physics.@S0022-2488~99!03307-1#

I. INTRODUCTION

Since the last century, the problems of surfaces and their deformations under various ty
dynamics have generated a great deal of interest and activity in several mathematical as
physical fields of research.1–9 In particular, surfaces with constant mean curvature have b
shown to play an essential role in several applications to nonlinear phenomena in such a
physics as two-dimensional gravity,4,10 quantum field theory,4,11 statistical physics,3,12 and fluid
dynamics.13,14 The Weierstrass–Enneper formula for inducing minimal surfaces has been st
for several years,15–17most recently by B. Konopelchenko and I. Taimanov.18,19 They established
a direct connection between certain classes of constant curvature surfaces and an integrab
dimensional Hamiltonian system~for a summary of their results, see Ref. 19!. In general, it was
shown by B. Konopelchenko18 that the following infinite-dimensional Hamiltonian system d
scribes constant mean curvature surfaces,

]c152H~ uc1u21uc2u2!c2 , ]̄c2522H~ uc1u21uc2u2!c1 , ~1.1!

where c1 and c2 are complex functions of the complex variables (z,z̄). The bar denotes the
complex conjugate,]5]/]z and ]̄5]/] z̄, and H denotes the constant mean curvature of
surface. One can assume, without loss of generality,H5 1

2. Then, system~1.1! takes the form

]c15pc2 , ]̄c252pc1 , p5uc1u21uc2u2, ~1.2a!

and its respective complex conjugate is

a!Electronic mail: bracken@CRM.UMontreal.ca
b!Electronic mail: grundlan@CRM.UMontreal.ca
c!Electronic mail: martina@le.infn.it
33790022-2488/99/40(7)/3379/25/$15.00 © 1999 American Institute of Physics
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]̄ c̄15pc̄2 , ]c̄252pc̄1 . ~1.2b!

The above system can be considered a variant of the original Weierstrass–Enneper~WE! system
and we will refer to it as such.

The system~1.2! determines a set of constant mean curvature surfaces obtained by th
lowing parametrization (z,z̄)→„X1(z,z̄),X2(z,z̄),X3(z,z̄)…

X11 iX252i E
z0

z

~ c̄1
2 dz82c̄2

2dz̄8!,

X12 iX252i E
z0

z

~c2
2 dz82c1

2dz̄8!, ~1.3!

X3522E
z0

z

~c2c̄1 dz81c1c̄2 dz̄8!.

Using the standard formulas, we find that the first fundamental form on the surface is give

V54p2 dzdz̄, ~1.4!

and the Gaussian curvature is18

K52
]]̄~ ln p!

p2 ~1.5!

in isothermic coordinates.
The results obtained in Ref. 19 give a certain indication suggesting complete integrabi

the WE system~1.2!. However, a systematic approach to its integrability still remains an o
problem. It will be shown here that the WE system~1.2! passes the Painleve´ test, which means tha
it satisfies the necessary condition for complete integrability. This fact will be deduced from
existence of a linear spectral problem for the WE system~1.2!. Moreover, the Lie algebra o
infinitesimal symmetries of the WE system~1.2! is spanned by the vector fields

a15], a25 ]̄, b5c1]c1
2c̄1]c̄1

1c2]c2
2c̄2]c̄2

~1.6!

and

aj5j]1 j̄ ]̄2 1
2@c1~ ]̄ j̄ !]c1

1c̄1~]j!]c̄1
1c2~]j!]c2

1c̄2~ ]̄ j̄ !]c̄2
#, ~1.7!

wherej(z) is an arbitrary analytic function andj̄( z̄) denotes its complex conjugate. Then, the
$aj% generates an infinite-dimensional Lie algebra, realizing the conformal symmetry prope
the system~1.2!. This algebra contains a Virasoro subalgebra,20 which has translations and dila
tions as special elements and sl~2! as unique simple subalgebras. The vector fieldb commutes
with the aj and it describes a scaling transformation involving only the dependent variablc i

and c̄ i .
To obtain a one-parameter subgroup, we integrateaj . Thus, we obtain the transformations

z8~l,z!5F21
„l1F~z!…5E

z0

z j@z8~l,w!#

j~w!
dw,

c18~l,c1!5c1S j̄~ z̄!

j̄„z̄8~l,z!…
D 1/2

, c28~l,c2!5c2S j„z8~l,z!…

j~z! D 1/2

,
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where

F~z!5E
c

z ds

j~s!
,

with z0 andc suitable complex numbers. Although the existence of a conformal symmetry
not imply in general complete integrability, it is, however, a strong indication in this directio

Moreover, the WE system~1.2! possesses several conserved quantities.10 The conservation of
current which is defined by

J5c̄1]c22c2]c̄1 ~1.8!

leads to interesting consequences. Differentiation ofJ gives

]̄J5 ]̄~ c̄1]c22c2]c̄1!5~ ]̄c̄1!]c21c̄1~ ]̄]c2!2~ ]̄c2!~]c̄1!2c2~ ]̄]c̄1!

5pc̄2]c21c̄1~ ]̄]c2!1pc1]c̄12c2~ ]̄]c̄1!. ~1.9!

The mixed derivatives obtained from~1.2! are

]]̄c̄15]~pc̄2!5~]p!c̄21p]c̄25~]p!c̄22p2c̄1 ,
~1.10!

]]̄c252]~pc1!52~]p!c12p]c152~]p!c12p2c2 .

Consequently, the derivative ofJ vanishes,

]̄J5pc̄2]c22uc1u2~]p!2p2c̄1c21pc1]c̄12uc2u2~]p!1p2c̄1c2

52p~]p!1p~ c̄2]c21c1]c̄1!52p~]p!1p~]p!50. ~1.11!

Note that]̄J50 holds even when no restriction has been placed on]p. Exactly the same situation
occurs for the conjugate equation,] J̄50. This means that the currentJ is an entire function.

In this paper, we examine certain aspects of complete integrability of the WE system~1.2! in
the context of a two-dimensional Euclidean sigma model. In particular, we focus on constru
a linear spectral problem for this system where the explicit form has not been known up to

This paper is organized as follows. In Sec. II, we perform the reduction of the original sy
to a certain second-order system of partial differential equations~PDEs!. In Sec. III, we present an
estimation of the degree of freedom of the general analytic solutions of both systems. This a
is carried out by means of the Cartan theory of systems in involution. In Sec. IV, a linear sp
problem is derived for the WE system via a two-dimensional nonlinear sigma model based
related second-order system. This procedure amounts to a new technique for generating
classes of solutions of the WE system which is illustrated with several examples in Sec V. S
VI contains final remarks and possible future developments.

II. THE SECOND-ORDER SYSTEM ASSOCIATED WITH THE WEIERSTRASS–ENNEPER
SYSTEM

In our investigation of the integrability of the WE system~1.2!, we subject it to severa
transformations in order to simplify its structure.

We start by introducing the new complex variable

r5
c1

c̄2

. ~2.1!

Using Eqs.~1.2! and the relationp5uc2u2(11uru2), one obtains
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]r5
]c1

c̄2

2
c1

c̄2
2 ]c̄25

pc2

c̄2

2
c1

c̄2
2 ~2pc̄1!5

p2

c̄2
2 5~11uru2!2c2

2. ~2.2!

Note that]r andc2
2 are related by a real function (11uru2)2. Consequently, they have the sam

polar angle in the complex plane. Dividing~2.2! by (11uru2)2 and taking the principal squar
root, one obtainsc2 . The complex conjugate ofc2 is found in the usual way by reflecting throug
the real axis. Using~2.1!, c1 can be obtained from the product ofr and c̄2 . This generates the
following transformation from the variabler into the set of variablesc i ,

c15er
~ ]̄r̄ !1/2

11uru2
, c25e

~]r!1/2

11uru2 ~e251!. ~2.3!

Let us now state the following proposition.
Proposition 1:If c1 andc2 are solutions of the system~1.2!, then the functionr defined by

~2.1! is a solution of the following second-order system,

]]̄r2
2r̄

11uru2 ]r]̄r50, ~2.4a!

]]̄r̄2
2r

11uru2 ]r̄]̄r̄50. ~2.4b!

Proof: Differentiation of Eq.~2.1! with respect toz̄ yields

]̄r5
]̄c1

c̄2

2
c1

c̄2
2 ]̄ c̄25~ c̄2!22@c̄2]̄c12c1]̄ c̄2#. ~2.5!

By an easy computation, one obtains from~2.2! and ~2.5!

]]̄r5
]]̄c1

c̄2

2
]̄c1

~ c̄2!2 ]c̄22
]c1

~ c̄2!2 ]̄ c̄212
c1

~ c̄2!3 ]c̄2]̄ c̄22
c1

~ c̄2!2 ]]̄c̄2

5~ c̄2!23@c̄2
2~]]̄c1!2c̄2]̄c1]c̄22c̄2]c1]̄ c̄212c1~]c̄2!~ ]̄c̄2!2c1c̄2~]]̄c̄2!#

5~ c̄2!23@c̄2
2~]]̄c1!1pc̄2c̄1]̄c12puc2u2]̄ c̄222puc1u2]̄ c̄22c1c̄2~]]̄c̄2!#, ~2.6!

and its respective complex conjugate equation is

]]̄r̄5~c2!23@c2
2~ ]̄]c1!1pc2c1]c̄12puc2u2]c222puc1u2]c22c̄1c2~ ]̄]c2!#. ~2.7!

Using ~1.2! the second derivatives~1.9! become

]]̄c̄15~c1]c̄11c̄2]c2!c̄22p2c̄1 ,

]̄]c15~ c̄1]̄c11c2]̄ c̄2!c22p2c1 ,
~2.8!

]]̄c252~c1]c̄11c̄2]c2!c12p2c2 ,

]̄]c̄252~ c̄1]̄c11c2]̄ c̄2!c̄12p2c̄2 .

Substituting~2.8! into ~2.6! and~2.7!, the following compact formulas for the mixedr derivatives
can be obtained:
                                                                                                                



.

3383J. Math. Phys., Vol. 40, No. 7, July 1999 The Weierstrass–Enneper system for constant . . .

                    
]]̄r5
2c̄1p

c̄2
3 ~ c̄2]̄c12c1]̄ c̄2!,

~2.9!

]̄]r̄5
2c1p

c2
3 ~c2]c̄12c̄1]c2!.

Substituting~2.1!, ~2.2!, ~2.5!, and~2.9! into the left-hand side of~2.4a!, one obtains

]]̄r2
2r̄

11uru2
]r]̄r5

2c̄1p

c̄2
3 ~ c̄2]̄c12c1]̄ c̄2!2

2c̄1c2

c̄2
2 ~11uru2!~ c̄2]̄c12c1]̄ c̄2!

5
2c̄1p

c̄2
3 ~ c̄2]̄c12c1]̄ c̄2!2

2c̄1p

c̄2
3 ~ c̄2]̄c12c1]̄ c̄2!50.

An analogous result holds for the conjugate equation~2.4b!. Q.E.D.
Similar formulas to those of~2.4! can be found in the literature10,11 in the context involving

conformal immersions of a Riemann surface inRn.
The converse of Proposition 1 can be formulated as follows.
Proposition 2:If r is a solution to the system~2.4!, then the functionsc1 andc2 defined by

~2.3! in terms ofr satisfy the WE system~1.2!.
Proof: Differentiating ~2.3! with respect toz, we obtain

]c15eH ]r
~ ]̄r̄ !1/2

11uru2
1r

~ ]̄r̄ !A21/2

2~11uru2!
]]̄r̄2r

~ ]̄r̄ !1/2

~11uru2!2 ~r]r̄1 r̄]r!J .

Substituting Eq.~2.4! into this expression, we get

]c15eH ]r
~ ]̄r̄ !1/2

11uru22uru2
~ ]̄ r̄ !1/2

~11uru2!2 ]rJ 5
~]r]̄r̄ !1/2

~11uru2!
c2 . ~2.10!

Multiplying both equations in~2.3! together, the following expression forp results:

p5
~]r]̄r̄ !1/2

~11uru2!
. ~2.11!

Therefore,

]c15
~]r]̄r̄ !1/2

~11uru2!
c25pc2 .

Similarly, differentiation of~2.3! with respect toz̄ gives

]̄c25eH ~]r!21/2

2~11uru2!
]̄]r2

~]r!1/2

~11uru2!2 ~r]̄r̄1 r̄ ]̄r!J . ~2.12!

Substituting~2.4! and ~2.11! into ~2.12!, we obtain

]̄c252
~ ]̄ r̄]r!1/2

~11uru2!
c152pc1 ,

which completes the proof. Q.E.D
In some cases, it is more convenient to deal with~2.4! than the original system~1.2!, since it

consists of only two equations for two dependent variablesr and r̄. For example, a very large
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class of solutions of~2.4! can be found simply by requiring the holomorphicity (]̄r50) or
antiholomorphicity~]r50! of the functionr. We will show later in Sec. V some examples of th
type of solution. In the context of differential geometry, the system~2.4! was introduced by
Kenmotsu in his seminal paper,15 and then often used by subsequent authors.10,18,19

It is worth noting that, as in the case of system~1.2!, the classical symmetry groups of~2.4!
are conformal and scaling transformations. The corresponding symmetry algebra is spann

a15j~z!], a25h~ z̄!]̄, a35r]p2 r̄] r̄ , ~2.13!

wherej and h are arbitrary functions of their arguments. This algebra can be decomposed
direct sum of two infinite-dimensional simple Lie subalgebras with direct sum a one-dimens
algebra generated bya3 . Assuming that the functionsj andh are analytic in a proper open subs
V of C, they can be developed in a Laurent series so we can provide a base for two cen
Virasoro algebras. Finite-dimensional subalgebras are spanned by$]%, $],z]%, $],z],z2]%,... and
$]̄%, $]̄,z̄]̄%, $]̄,z̄]̄,z̄2]̄%,..., respectively. In particular, the invariants of the one-dimensio
subalgebra$]% are given by$z̄,r%. Then, the invariant solutions are any antiholomorphic functio
r of z̄. A detailed study of solutions invariant under vector fields~2.13! is beyond the scope of th
present work, but there is no difficulty in treating them.

Finally, an interesting feature of the WE system~1.2! can be derived from the Gaussia
curvature~1.5!. It can be expanded in the following way:

p2K52 ]̄] ln ~p!52 ]̄S 1

p
]pD5

1

p2 ~]p!~ ]̄p!2
1

p
]̄]p.

Using the system of equations~1.2!, the differentiation of the functionp with respect toz and z̄,
respectively, yields

]p5c1~]c̄1!1c̄2~]c2!, ]̄p5c̄1~ ]̄c1!1c2~ ]̄c̄2!. ~2.14!

The mixed derivative ofp becomes

]̄]p5 ]̄c1]c̄11c1]̄]c̄11c̄2]̄]c21]c2]̄ c̄25 ]̄c1]c̄11]c2]̄ c̄22p3. ~2.15!

The product of the derivatives~2.14! is given by

]̄p]p5uc1u2~ ]̄c1!~]c̄1!1c1c2~]c̄1!~ ]̄c̄2!1c̄1c̄2~ ]̄c1!~]c2!1uc2u2~]c2!~ ]̄c̄2!.

Substituting these derivatives into the expression forp2K, we obtain the following result:

p4K5c1c2~]c̄1!~ ]̄c̄2!1c̄1c̄2~ ]̄c1!~]c2!2uc1u2~]c2!~ ]̄c̄2!2uc2u2~ ]̄c1!~]c̄1!1p4.
~2.16!

This gives an explicit form for the Gaussian curvatureK in terms of the functionsc1 andc2 .

III. THE ESTIMATION OF DEGREE OF INDETERMINANCY OF GENERAL SOLUTIONS

Now, let us demonstrate that the general analytic solutions of the Weierstrass–Enneper
~1.2! and system~2.4! possess the same degree of freedom. To this end, we employ Ca
theory of systems in involution.21 For more information on this subject, see Refs. 22–24.

For computational purposes, it is useful to examine the systems of Pfaffian forms equi
to the considered systems of equations~1.2! and~2.4!. We determine the Cartan numbers of the
systems and the numbers of arbitrary parameters admitted by the general solutions of the
equations.21
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A. The Weierstrass–Enneper system

If one introduces the following notation,

x15 z̄, x25z, u15c1 , u25c2 , u35c̄1 , u45c̄2 ,
~3.1!

u55]c1 , u65 ]̄c2 , u75 ]̄ c̄1 , u85]c̄2 ,

and

j15 ]̄c1 , j25]c2 , j35]c̄1 , j45 ]̄ c̄2 , ~3.2!

then system~1.2! takes the form

u55~u1u31u2u4!u2 , u75~u1u31u2u4!u4 ,
~3.3!

u652~u1u31u2u4!u1 , u852~u1u31u2u4!u3 .

If one chooses~3.2! as parameters, then, in terms of~3.1!, Eq. ~3.3! can be written as a system o
differential one-forms,

v15du12~j1dx11u5dx2!50,

v25du22~u6dx11j2dx2!50,

v35du32~u7dx11j3dx2!50,

v45du42~j4dx11u8dx2!50,
~3.4!

v55du52$@~j1u31u1u71u6u41u2j4!u21~u1u31u2u4!u6#dx1

1@~u5u31u1j31j2u41u2u8!u21~u1u31u2u4!j2#dx2%50,

v65du61$@~j1u31u1u71u6u41u2j4!u11~u1u31u2u4!j1#dx1

1@~u5u31u1j31j2u41u2u8!u11~u1u31u2u4!u5#dx2%50,

v75du72$@~j1u31u1u71u6u41u2j4!u41~u1u31u2u4!j4#dx1

1@~u5u31u1j31j2u41u2u8!u41~u1u31u2u4!u8#dx2%50,

v85du81$@~j1u31u1u71u6u41u2j4!u31~u1u31u2u4!u7#dx1

1@~u5u31u1j31j2u41u2u8!u31~u1u31u2u4!j3#dx2%50.

Here, we interpretz̄ andz as independent coordinatesx1 andx2, respectively, inR2 space. The
variablesu5(u1 ,...,u8) are considered as coordinates inR8 space. The quantityj5(j1,...,j4)
represents a vector of all first derivatives ofc i which do not appear in WE system~1.2!. If we
consider the variablesu and j as unknown functions ofx5(x1,x2), then, in terms of~3.1! and
~3.2!, the WE system~1.2! is equivalent to the system of differential one-forms~3.4!. After
exterior differentiation of~3.4! we obtain the following system of two-forms, modulo~3.4!,

V1[dv15dx1∧dj12@~j1u31u1u71u6u41u2j4!u21~u1u31u2u4!u6#dx1∧dx2,

V2[dv252@~u5u31u1j31j2u41u2u8!u11~u1u31u2u4!u5#dx1∧dx21dx2∧dj2,

V3[dv35@~u5u31u1j31j2u41u2u8!u41~u1u31u2u4!u8#dx1∧dx21dx2∧dj3,
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V4[dv45dx1∧dj41@~j1u31u1u71u4u61u2j4!u31~u1u31u2u4!u7#dx1∧dx2,
~3.5!

V5[dv552u2u3dj1∧dx11u2
2dx1∧dj42u1u2dj3∧dx22~u1u312u2u4!dj2∧dx2

1@u1u2„~u3u51u1j31j2u41u2u8!u41~u1u31u2u4!u8…2~u1u312u2u4!„~u3u5

1u1j31j2u41u2u8!u11~u1u31u2u4!u5…2u2u3„~j1u31u1u71u4u61u2j4!u2

1~u1u31u2u4!u6…1u2
2
„~j1u31u1u71u4u61u2j4!u3

1~u1u31u2u4!u7…#dx1∧dx2,

V6[dv652~2u1u31u2u4!dx1∧dj12u1u2dx1∧dj42u1u4dx2∧dj22u1
2dx2∧dj3

1@2u1
2
„~u3u51u1j31j2u41u2u8!u41~u1u31u2u4!u8…1u1u4„~u3u51u1j3

1j2u41u2u8!u11~u1u31u2u4!u5…2u1u2„~j1u31u1u71u4u61u2j4!u3

1~u1u31u2u4!u7…1„~j1u31u1u71u4u61u2j4!u2

1~u1u31u2u4!u6…~2u1u31u2u4!#dx1∧dx2,

V7[dv75u3u4dx1∧dj11~u1u312u2u4!dx1∧dj41u4
2dx2∧dj21u1u4dx2∧dj3

1@u1u4„~u3u51u1j31u4j21u2u8!u41~u1u31u2u4!u8…2u4
2

3„~u3u51u1j31u4j21u2u8!u11~u1u31u2u4!u5…2u3u4„~j1u31u1u71u4u6

1u2j4!u21~u1u31u2u4!u6…1~u1u312u2u4!„~j1u31u1u71u4u61u2j4!u3

1~u1u31u2u4!u7…#dx1∧dx2,

V8[dv852u3
2dx1∧dj12u2u3dx1∧dj42u3u4dx2∧dj22~2u1u31u2u4!dx2∧dj3

1@u3u4„~u3u51u1j31j2u41u2u8!u11~u1u31u2u4!u5…2~2u1u31u2u4!

3„~u3u51u1j31j2u41u2u8!u41~u1u31u2u4!u8…

1u3
2
„~j1u31u1u71u4u61u2j4!u21~u1u31u2u4!u6…

2u2u3„~j1u31u1u71u4u61u2j4!u31~u1u31u2u4!u7…#dx1∧dx2.

Note that the quantitiesj i enter linearly into the expressions~3.4! and ~3.5!.
The vector fieldsYj , j 51,2 which annihilate the one-formsvs and the two-formsVs , satisfy

the polar equations,

^vs4Yj&50, ^Vs4Y1 ,Y2&50, s51,...,8, j 51,2. ~3.6!

From conditions~3.6! one finds

Y15]x11(
r 51

4

ar]j r1j1]u1
1u6]u2

1u7]u3
1j4]u4

2@~j1u31u1u71u6u41u2j4!u2

1~u1u31u2u4!u6#]u5
1@~j1u31u1u71u6u41u2j4!u11~u1u31u2u4!j1#]u6

2@~j1u31u1u71u6u41u2j4!u41~u1u31u2u4!j4#]u7

1@~j1u31u1u71u6u41u2j4!u31~u1u31u2u4!u7#]u8
,

and
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Y25]x21(
r 51

4

br]jr1u5]u1
1j2]u2

1j3]u3
1u8]u4

2@~u5u31u1j31j2u41u2u8!u2

1~u1u31u2u4!j2#]u5
1@~u5u31u1j31j2u41u2u8!u11~u1u31u2u4!u5#]u6

2@~u5u31u1j31j2u41u2u8!u41~u1u31u2u4!u8#]u7

1@~u5u31u1j31j2u41u2u8!u31~u1u31u2u4!j3#]u8
,

where

a252„~u5u31u1j31j2u41u2u8!u11~u1u31u2u4!u5…,

a35„~u5u31u1j31j2u41u2u8!u41~u1u31u2u4!u8…,

b15„~j1u31u1u71u6u41u2j4!u21~u1u31u2u4!u6…,

b452„~j1u31u1u71u6u41u2j4!u31~u1u31u2u4!u7…,

and the quantitiesa1,a4,b2,b3 are arbitrary. Thus the number of free parameters in~3.6! is

N54. ~3.7!

Under the chosen notation~3.1! and ~3.2! the Pfaffian system~3.4! takes the abbreviated form

vs5dus2Gsm~x,j,u!dxm, s51,...,8, m51,2, ~3.8!

where

x5~x1,x2!, j5~j1,...,j4!, u5~u1,...,u8!,

andGsm depends linearly onj. The elements of the 834 matrix,

asr5S ]Gsm

]j r ~x,j,u!XmD , X5~X1,X2!PR2, ~3.9!

determine the values of the Cartan quasicharacterssi , i 51,2. The nonzero elements of the matr
(asr) are

a115X1 a515u3u2X1 a6152~2u1u31u2u4!X1

a225X2 a525~2u2u41u1u3!X2 a6252u1u4X2

a335X2 a535u1u2X2 a6352u1
2X2

a445X1 a545u2
2X1 a6452u1u2X1

a715u3u4X1 a8152u3
2X1

a725u4
2X2 a8252u2u3X1

a735u1u4X2 a8352~2u1u31u2u4!X2

a745~u1u312u2u4!X1 a8452u3u4X2.

Thus, the Cartan quasicharacters are given by
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s15maxXPR2 rank~asr!54, s25p2s150,

wherep is the number of coordinatesj, that is,p54. From the definition of the Cartan numberQ
one has

Q5s112s254. ~3.10!

Since the numberN of free parameters appearing in~3.6! equals 4, one hasQ5N. Thus, accord-
ing to Cartan’s theorem,21 system~3.4! @as well as~1.2!# is in involution. Its general analytic
solution exists in some neighborhood of a regular point (x0 ,j0 ,u0) and depends on four arbitrar
real analytic functions of one real variable.

B. The second–order system of PDEs

Now, for the system~2.4!, a similar analysis is performed. We demonstrate that locally
solution space of~2.4! has the same dimension as the system~1.2!. For computational purposes,
is useful to write Eqs.~2.4! in the form

u1,x1x22
2u2

11u1u2
u1,x1u1,x250,

~3.11!

u2,x1x22
2u1

11u1u2
u2,x1u2,x250,

where the following notation has been used:

x15z, x25 z̄, u15r, u25 r̄. ~3.12!

The system of differential one-forms corresponding to~3.11! can be written as follows:

v15du12u3dx12u5dx250,

v25du22u4dx12u6dx250,

v35du32j1dx12
2u2

11u1u2
u3u5dx250,

v45du42j2dx12
2u1

11u1u2
u4u6dx250,

~3.13!

v55du52
2u2

11u1u2
u3u5dx12j3dx250,

v65du62
2u1

11u1u2
u4u6dx12j4dx250,

v75du72u11dx12u12dx2,

v85du82u21dx12u22dx2,

where we use the standard notation

u35u1,x1, u45u2,x1, u55u1,x2, u65u2,x2, u75u1,x1x2, u85u2,x1x2, ~3.14!

and, for the sake of simplicity, introduce the additional notation
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u1152S u2u3u5

11u1u2
D

x1

52Fu3u4u51u2u5j11u2u3u7

11u1u2
2

~u2u3u5!~u2u31u1u4!

~11u1u2!2 G ,
u1252S u2u3u5

11u1u2
D

x2

52Fu3u5u61u2u5u71u2u3j3

11u1u2
2

~u2u3u5!~u2u51u1u6!

~11u1u2!2 G ,
u2152S u1u4u6

11u1u2
D

x1

52Fu3u4u61u1u6j21u1u4u8

11u1u2
2

~u1u4u6!~u2u31u1u4!

~11u1u2!2 G ,
u2252S u1u4u6

11u1u2
D

x2

52Fu4u5u61u1u6u81u1u4j4

11u1u2
2

~u1u4u6!~u2u51u1u6!

~11u1u2! G .
We choose as parameters

j15u1,x1x1, j25u1,x2x2, j35u2,x1x1, j45u2,x2x2. ~3.15!

As in the previous case, given the chosen notation~3.12!, the Pfaffian system~3.13! takes the form
~3.8!. Note that, in this case, the matrix~3.9! has the same dimension 834 as in the case of system
~1.2!. The nonzero elements of the matrix (asr) are

a1
35X1, a2

452X1, a3
552X2, a4

652X2.

Thus, the Cartan quasi-characters are given by

s15maxXPR2 rank~asr!54, s25p2s150,

wherep is the number of coordinatesj, that is,p54. Consequently, the Cartan numberQ equals

Q5s112s254. ~3.16!

After exterior differentiation system~3.13! with the chosen notation~3.12!, ~3.14!, and ~3.15!
takes the form

V l[dv l[0, l 51,2,7,8,

V3[dv352dx1∧dj12u11dx1∧dx2,

V4[dv452dx1∧dj22u21dx1∧dx2,

V5[dv55u12dx1∧dx21dx2∧dj3,

V6[dv65u22dx1∧dx21dx2∧dj4,

which is satisfied modulo~3.13!.
The vector fieldsYj , j 51,2, which annihilate the one-formsvs and the two-formsVs satisfy

the polar equations~3.6!. From these equations we have
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Y15]x11(
r 51

4

ar]jr1u3]u11u4]u21j1]u31j2]u412
u2u3u5

11u1u2
]u5

12
u1u4u6

11u1u2
]u6

1u11]u7
1u21]u8

,

~3.17!

Y25]x21(
r 51

4

br]jr1u5]u1
1u6]u2

12
u2u3u5

11u1u2
]u3

12
u1u4u6

11u1u2
]u4

1j3]u5

1j4]u6
1u12]u7

1u22]u8
,

where

b152u11, b252u21, a35u12, a45u22.

As in the previous case, we have four free parameters,a1,a2,b3,b4. Thus, we getQ5N and,
according to Cartan’s theorem, system~3.11! @as well as~2.4!# is in involution. Its general analytic
solution depends on four arbitrary real analytic functions of one real variable.

Note that, since the systems of one-forms~3.4! and~3.13! are equivalent to systems~1.2! and
~2.4!, respectively, the Cartan theorem implies the existence of the general analytic soluti
~1.2! and~2.4!. Now, if we interpretz̄ andz as coordinates in the complex planeC andc i andc̄ i

as complex and complex conjugate functions onC, then the general solutions of both systems~1.2!
and ~2.4! depend on two arbitrary complex analytic functions of one complex variable and
complex conjugate functions.

We have shown that systems~1.2! and~2.4! possess the same degree of freedom in term
their general analytic solutions. Using Cartan’s theorem, we can formulate the following co
sion.

Proposition 3:Suppose the systems~1.2! and ~2.4! are both in involution at regular point
(z0 ,j0 ,c0) and (z0 ,j0 ,r0), respectively. Then their general analytic solutions exist in so
neighborhood of these regular points and both depend on two arbitrary complex analytic fun
of one complex variable, and their complex conjugate functions.

Note that the mapping given by~2.1!, from the solution of~2.4! to the solution of~1.2!, does
not restrict the type of boundary value conditions imposed on~2.4! and ~1.2!.

IV. COMPLETE INTEGRABILITY OF THE WEIERSTRASS–ENNEPER SYSTEM IN THE
CONTEXT OF THE SIGMA MODEL

A. The linear spectral problem associated with the Weierstrass–Enneper system

The objective of this section is to demonstrate a connection between the Weierstrass–E
system~1.2! and the completely integrable Euclidean sigma model in two dimensions and, ne
derive through this link the linear spectral problem for the Weierstrass–Enneper system.

Let us identify~2.3! with the stereographic coordinate representation25 of the two-dimensional
Euclidean nonlinear sigma model

@S,]]̄S#50, ~4.1!

where the spin matrix

S5S s3 s̄1

s1 2s3
D , detS521,

belongs to the Hermitian space SU~2!/U~1!. In the stereographic coordinate representation,
matrix S is given by
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S5
1

11uru2 S 12uru2 2r̄

2r 211uru2D , ~4.2a!

where

s15
2r

11uru2 , s35
12uru2

11uru2 . ~4.2b!

By substituting the matrixS given by ~4.2! into ~4.1!, we obtain the following condition,

F r̄S ]̄]r2
2r̄

11uru2
]r]̄r D2rS ]]̄r̄2

2r

11uru2
]̄ r̄]r̄ D G I 50,

whereI is the unit matrix in this equation. This is identically satisfied whenever Eqs.~2.4! hold.
In terms of the complex functionsc i andc̄ i , i 51,2, which appear in~1.2!, the spin matrixS

takes the form

S5
1

p S 2uc1u21uc2u2 2c̄1c̄2

2c1c2 uc1u22uc2u2D . ~4.3!

From ~2.3!, we obtain that the inverse mapping of~4.3! is double valued and is provided by

c15
e

2
s1F ]̄S s̄1

11s3
D G1/2

, c25
e

2
~11s3!F]S s1

11s3
D G1/2

, e251, ~4.4a!

where

r5
s1

11s3
, r̄5

s̄1

11s3
. ~4.4b!

Proposition 4:If c1 andc2 are solutions of the WE system~1.2!, then the spin matrixSgiven
by ~4.3! is a solution of the sigma model equation~4.1!.

Proof: The results are directly obtained by substituting the spin matrixS given by ~4.3! into
the commutator~4.1! and assuming that the functionsc i satisfy ~1.2!. This computation leads to
a vanishing commutator~4.1!. Q.E.D.

The procedure for constructing solutions to~1.2! can be reduced to the following. Take an
solution of the sigma model~4.1! and substitute it into Eqs.~4.4b!. The functionr thus obtained
provides us, by means of transformation~2.3!, with solutionsc1 andc2 of the WE system~1.2!.
The possibility of constructing such solutions is demonstrated in the next section.

We now consider the possibility of constructing a linear spectral problem for the WE sy
~1.2!. Let us introduce a new set of complex functionsw1 andw2 :C→C which are related to the
complex functionsc1 andc2 in the following way:

c15 f ~z,z̄!w1 , c̄25 f ~z,z̄!w̄2 ,
~4.5!

c̄15 f̄ ~ z̄,z!w̄1 , c25 f̄ ~ z̄,z!w2 ,

for any complex functionf :C→C. From the definition~2.1!, it is evident that the transformatio
~4.5! leaves the functionsr and r̄ invariant,

r5
w1

w̄2
, r̄5

w̄1

w2
, ~4.6!
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and the structure of the spin matrixSgiven by~4.3! is also preserved. This means that there ex
a freedom which resembles a type of gauge freedom in the definition of ther variable, since the
numerator and denominator of~4.6! can be multiplied by any complex function. The crux of th
matter is that it is not required that the set of functionsw i satisfy the original system~1.2!, but that
the ratio ofw1 over w̄2 satisfy~2.4!. Let us express Eqs.~1.2! in terms ofw i andf. The derivatives
of c1 andc2 take the form

]c15~] f !w11 f ~]w1!, ]̄c25~ ]̄ f̄ !w21 f ~ ]̄w2!.

We define the variableq5uw1u21uw2u2, and from ~1.2a! it follows that p5u f u2q. Taking the
above into account we can write~1.2! as

~] f !w11 f ~]w1!5p f̄w2 , ~ ]̄ f̄ !w21 f̄ ~ ]̄w2!52p fw1 .

Solving the above equations for]w1 and ]̄w2 , respectively, we obtain the equations of motion

]w15q f̄2w22~] ln f !w1 , ]̄w252q f2w12~ ]̄ ln f̄ !w2 ,
~4.7!

]̄w̄15q f2w̄22~ ]̄ ln f̄ !w̄1 , ]w̄252q f̄2w̄12~] ln f !w̄2 .

Using ~4.7!, the differentiation of Eqs.~4.6! with respect toz and z̄, respectively, yields a pair o
relations similar to~2.3! which relate the functionsw i to r and a nonzerof,

w15er
~ ]̄r̄ !1/2

f ~11uru2!
, w25e

~]r!1/2

f̄ ~11uru2!
. ~4.8!

Relations~4.8! can also be obtained in a more straightforward way by substituting~4.5! into Eqs.
~2.3!. Note that as well as~2.3!, the transformations~4.8! are doubled valued. Now we ca
formulate the following.

Proposition 5: If the function r defined by~4.6! is a solution of the system~2.4!, then the
functionsw1 andw2 satisfy the following system of equations:

]w15q f̄2w2 , ]̄ w̄15q f2w̄2 ,
~4.9!

]̄w252q f2w1 , ]w̄252q f̄2w̄1 ,

for any functionf :C→C satisfying

] f 50. ~4.10!

Proof: Indeed, by an easy computation, one obtains from~4.6! and ~4.7! the first derivatives
of r and r̄,

]r5q2u f u2~ w̄2!22, ]r̄5~w2!22~w2]w̄12w̄1]w2!,
~4.11a!

]̄r5~ w̄2!22~ w̄2]̄w12w1]̄ w̄2!, ]̄ r̄5q2u f u2~w2!22,

and the second derivatives ofr and r̄,

]]̄r5~ w̄2!23@2q f̄2w̄1w̄2]̄w12q f̄2~q1uw1u22uw2u2!]̄w̄2#,
~4.11b!

]]̄r̄5~w2!23@2q f2w1w2]w̄12q f2~q1uw1u22uw2u2!]w2#.

Substituting expressions~4.11! into ~2.4!, we get a differential constraint for the functionf and its
respective complex conjugate
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~ f̄ 221!]̄ f̄ 50, ~ f 221!] f 50. ~4.12!

Thus, the general solution of system~4.12! is given by any antiholomorphic functionf such that
relation ~4.10! holds. Consequently, the equations of motion~4.7! become those in~4.9!. Q.E.D.

Proposition 6: If the boundary value problem for the WE system~1.2! is given by two
arbitrary complex analytic functions of one complex variable~and their complex conjugate func
tions!, then the solution of~1.2! is unique up to a gauge transformation~4.5!.

Proof: By virtue of Propositions 1 and 2, the map from Eqs.~1.2! to ~2.4! is one-to-one. The
map from Eqs.~2.4! to the sigma model~4.1! is also one-to-one because of the transformat
~4.2b!. The solution of the boundary value problem for~4.1! possesses a unique solution.25 Hence,
from Proposition 3 and Eqs.~4.5! and ~4.8!, it follows that the solution of the boundary valu
problem for WE system~1.2! is unique up to multiplication by any functionf ( z̄) satisfying~4.10!.
This means that the freedom of solutions to~1.2! and ~2.4! is the same, up to a gauge functio
f. Q.E.D.

Now we examine certain aspects of complete integrability of the equations of motion~4.9! in
the context of a two-dimensional Euclidean sigma model~4.1!.

As it was shown by A. V. Mikhailov in Ref. 26, Eq.~4.1! is a compatibility condition for the
two linear spectral problems

]F5
1

l11
UF, ]̄F5

1

l21
U†F. ~4.13!

Here,U5]SS, U†5S]̄S with Sgiven by~4.3!, andF(z,z̄,l) is a matrix of fundamental solutions
while l represents the spectral parameter. The denominators which contain the spectral pa
cannot be absorbed in the derivatives]F and ]̄F. Note that there is a direct connection betwe
the matrix eigenfunctionF(z,z̄,l) in expression~4.13! and the fieldsc i , through the mapping
~4.4! since there exists the relation26

S5F~z,z̄,0!. ~4.14!

Then we could say that the WE system~1.2! is completely integrable, because of the mappin
~4.3! and~4.4!. Indeed, by expressing the spin matrixS in terms of the functionsw i and w̄ i , one
obtains the explicit form of the linear spectral problem~4.13! for the equation of motion~4.9!

]F5
2

l11
MF, ]̄F5

2

l21
M†F, ~4.15!

where

M5S b/2 a

2c 2b/2D . ~4.16!

We introduce the following notation:

a52 f̄ 2w̄1
21

1

f̄ q2 @w̄1w̄2
2]~ f̄ w2!2w̄2uw2u2]~ f̄ w̄1!#,

b52F2 f̄ 2w̄1w21
1

f̄ q2 „w1uw2u2]~ f̄ w̄1!2w̄2uw1u2]~ f̄ w2!…G , ~4.17!

c52 f̄ 2w2
21

1

f̄ q2 @w1uw1u2]~ f̄ w2!2w1
2w2]~ f̄ w̄1!#.
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Making use of~4.5!, one can find an explicit form for the coefficients~4.17! in terms of the
functionsc i . The matrixM can be written in the form

M5A1
J

p2 A†, detM52
2J

p2 , ~4.18!

whereJ is the current~1.8! andA is a degenerate nilpotent matrix which can be decompose
follows,

A52c̄1c2s32c̄1
2s11c2

2s2 , s65 1
2~s16 is2!, ~4.19!

wheres1 , s2 , s3 are Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

However, in order to be able to use results from the inverse scattering method to con
soliton solutions of the WE system~1.2!, it is convenient to simplify the form of the linear spectr
problem~4.15!.

Proposition 7: For any bounded entire functionJ, the linear spectral problem for the W
system~1.2! has the form

]F5
2

l11
AF, ]̄F5

2

l21
A†F. ~4.20!

Proof: Indeed, if we substitute~4.18! into the system~4.15!, then the system takes the form

]F5
2

l11 S A1
J

p2 A†DF, ~4.21!

]̄F5
2

l21 S A†1
J̄

p2 ADF. ~4.22!

From the conservation of the current~1.11!, we obtain that the currentJ is a holomorphic function.
According to Liouville’s theorem ifJ(z) is an entire function, and ifuJ(z)u<M for all zPC, then
J(z)[ constant. Consequently, one can take the currentJ to be equal to zero, hence Eqs.~4.21!
and ~4.22! become~4.20!. The compatibility condition for the two equations in~4.20!, namely,

]̄A2]A†1@A, A†#50,

is satisfied, whenever the WE system~1.2! holds. Under these circumstances, the linear spec
problem~4.20! holds for the WE system~1.2!. So, matricesA andA† can be identified as the La
pair for the WE system. Q.E.D

Moreover, an interesting feature of the WE system~1.2! has been observed. Namely, th
system~4.20! has the WE system of equations as compatibility conditions for any functionJ(z),
not necessarily bounded. This fact can be easily verified by direct calculation.

Note that the system of Riccati equations corresponding to~4.20! is

]y52
2

l11
~ c̄11c2y!2, ]̄y5

2

l21
~ c̄22c1y!2,

wherey is a complex function~called the pseudopotential27 given by the ratio of the component
of the vectorF, that is,y5f1 /f2!. We conclude that the existence of the linear spectral prob
~4.20! for the WE system implies that this system is completely integrable.
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Finally, a property of the WE system~1.2! in the context of the sigma model is the existen
of a topological charge. Indeed, it is well known that the sigma model~4.1! possesses a topolog
cal charge,27–29which we denote byI. Making use of the currentJ, the transformations~4.3!, and
the equations of motion~1.2!, one finds that if the integral

I 5
i

8p E
C

Tr ~S•@]S,]̄S# ! dzdz̄52
i

2p E
C

1

p2 @ uJu22p4# dzdz̄ ~4.23!

exists, it is an integer, whereJ is given by Eq.~1.8!.

B. Reduction of the Weierstrass–Enneper system to a decoupled linear system

Now we discuss a set of conditions which allow the system~1.2! to become a linear decouple
system of equations.

Proposition 8:If the functionsc1 andc2 satisfy the overdetermined system composed of
equations of motion~1.2! and differential conditions

c̄1]̄c11c2]̄ c̄250, c̄2]c21c1]c̄150, ~4.24!

then the overdetermined system is equivalent to a linear decoupled system of the form

]̄]c i1p0
2c i50, ]]̄c̄ i1p0

2c̄ i50, i 51,2,
~4.25!

uc1u21uc2u25p0PR.

Proof: Making use of~1.2! and conditions~4.24! we obtain that the derivatives ofp given by
~2.14! vanish:

]p5c1~]c̄1!1c̄2~]c2!50, ]̄p5c̄1~ ]̄c1!1c2~ ]̄c̄2!50. ~4.26!

This means that if~4.24! holds, thenp is a real constant, sayp0 . Thus,

uc1u21uc2u25p0 ~4.27!

is a conserved quantity. Hence, the Weierstrass–Enneper system~1.2! becomes a linear system
which can be decoupled in terms of the functionsc i such that~4.25! holds. Q.E.D.

Let us now investigate the case in which all the derivatives of the functionsc i and c̄ i are
specified. This means that we supplement the WE system~1.2! with some additional differentia
constraints, so we can formulate the following.

If the conditions~4.24! hold, then we show that the system~1.2! can be extended to the syste
of the form

]S c1

c2
D5S pc2

a D , ]̄S c1

c2
D5S b

2pc1
D , ~4.28a!

and the respective conjugate system,

]S c̄1

c̄2
D 5S b̄

2pc̄1
D , ]̄S c̄1

c̄2
D 5S pc̄2

ā D , ~4.28b!

where the quantitiesa andb are assumed to be some polynomial functions expressible in term
c i andc̄ i , with constant coefficients. The system~4.28! will be called the augmented system. O
aim is to find an explicit form fora andb in such a way that they do not provide any addition
differential constraints onc i andc̄ i other than~1.2! and~4.24! when the compatibility conditions
for ~4.28! are added, namely,~2.8! and
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]]c15]~pc2!5~c1]c̄11c̄2]c2!c21p]c2 ,

]̄ ]̄ c̄15 ]̄~pc̄2!5~ c̄1]̄c11c2]̄ c̄2!c̄21p]̄ c̄2 ,
~4.29!

]̄ ]̄c252 ]̄~pc1!52~ c̄1]̄c11c2]̄ c̄2!c12p]̄c1 ,

]]c̄252]~pc̄1!52~c1]c̄11c̄2]c2!c̄12p]c̄1 .

Indeed, from the compatibility conditions~2.8! and ~4.29!, the analysis of the dominant terms
the c i and c̄ i functions leads to the requirement that all unknown derivativ
( ]̄c1 ,]c̄1 ,]c2 ,]̄c2), other than those appearing in~1.2!, have to be cubic in terms of the field
c i and c̄ i . Moreover, if one assumes that the discrete symmetry of the system~1.2!, invariant
under the reflection symmetry in the space of dependent and independent variables, name

c i→2c j , c̄ i→2c̄ j , iÞ j 51,2, ]→2 ]̄, ]̄→2], ~4.30!

can be extended to the augmented system~4.28!, then one obtains the following relations,

]c̄152p@ c̄2c̄11 c̄1c̄21 c̄4c11 c̄3c2#,

]̄c152p@c2c11c1c21c4c̄11c3c̄2#,
~4.31!

]c25p@c1c11c2c21c3c̄11c4c̄2#,

]̄ c̄25p@ c̄1c̄11 c̄2c̄21 c̄3c11 c̄4c2#.

It is assumed that theci , i 51,...,4, are constants to be determined from the compatibility co
tions for ~2.8! and~4.29!. Substituting~4.31! into ~4.29! leads us to a system of equations whi
are polynomial inc i and c̄ i . The unique solution of this system has the form

]S c1

c2
D5pS c2

2c1
D5 ]̄S c1

c2
D ~4.32a!

and its respective conjugate system

]S c̄1

c̄2
D 5pS c̄2

2c̄1
D 5 ]̄S c̄1

c̄2
D . ~4.32b!

Note that the same formula~4.32! can be found in Ref. 10. Under the conditions~4.24!, we
show that the system~1.2! admits a conserved quantity~4.27! with p a real constant. This mean
that in this case by virtue of~1.5!, the Gaussian curvatureK50, which implies the space is flat

Proposition 9:If the functionsc1 andc2 satisfy the overdetermined system composed of
WE system~1.2! and the following differential constraint,

2~ c̄1]̄c11c2]̄ c̄2!1~c1]c̄11c̄2]c2!50, ~4.33!

then the conserved quantityp is a real-valued function of a real argument (z1 z̄)/2 and

uc1u21uc2u25p„~z1 z̄!/2…. ~4.34!

Proof: Indeed, using the derivatives ofp, and taking into account~4.33!, we obtain

~]2 ]̄ !p5c1~]c̄1!1c̄2~]c2!2c̄1~ ]̄c1!2c2~ ]̄c̄2!50.
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This completes the proof. Q.E.D
Consequently, in the case when~4.33! holds, the first fundamental form~1.4! and the Gauss-

ian curvature~1.5! take the following form:

V54p2~x!dzdz̄, K52 p̈~x!/p2~x!,

respectively. Here, we introduce the notationp̈5d2p/dx2.

V. EXAMPLES AND APPLICATIONS

At this point, we would like to illustrate the proposed procedure for constructing solution
the WE system~1.2! with several elementary examples.

Now, let us discuss some classes of solutions to the WE system~1.2!, which can be obtained
directly by applying the transformation~2.3!. First, we consider the class of solutions whi
correspond to analytic choices of the functionr. It is easy to check that for this class of solutio
the conserved densityJ in ~1.11! is identically equal to zero.

~1! The simplest solutions of this type are given by

r5F ~z2z0!

l Gn

, ~5.1!

wherel andz0 are arbitrary real and complex numbers, respectively. From the point of vie
the sigma model, this form ofr corresponds to the instanton of chargeI 52n located atz0 and of
sizel. By virtue of the invariance of the system~1.2! under conformal transformations, we can s
without loss of generality,z050 andl51. Then, using~2.3! we find that the solutions of~1.2! are
given by

c15en1/2
znz̄~n21!/2

11uzu2n , c25en1/2
z~n21!/2

11uzu2n . ~5.2!

Each of these solutions belongs to a different topological sector of indexn. Furthermore, notice
that for all evenn, the solutions are double valued. Nevertheless, this fact has no influence o
surfaces parametrized by the relations~1.3!. Actually, the solutions~5.2! correspond to only one
constant mean curvature surface, which is coveredn times asz runs over the complex plane. Thi
surface is obtained~modulo translations! by revolving the curve

X25~X322!S X3

42X3
D 1/2

~5.3!

around the axisX3 . It possesses a conic point in~0,0,2!.
~2! Another class of solutions is provided by the analytic function

r5elz, ~5.4!

corresponding to a static domain wall in the isotropicO(3) magnet. The associated solution of t
system~1.2! is

c15el̄1/2
el̄ z̄/2

e2lz1el̄ z̄
, c25el1/2

e2lz/2

e2lz1el̄ z̄
. ~5.5!

Also in this case, the whole class of solutions parametrized byl represents a unique consta
mean curvature surface~modulo translations!, obtained from~1.3! by revolving the following
curve around theX3 axis:
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X352
X2

2

16A12X2
2

. ~5.6!

Many other solutions of~1.2! admittingr to be a meromorphic function can be found. For t
present, we do not discuss them.

~3! Let us assume now, as opposed to the previous cases, that the conserved current
in ~1.8! is a nonvanishing holomorphic function. In such a case, one can check that the maU
in the spectral problem~4.13! has a nonvanishing TrU2. The simplest choice is to put

U5g~z!s3 . ~5.7!

The solution of the corresponding spectral problem can be readily obtained:26

F5exp@2ixs3#s1 , ~5.8!

wheres i are Pauli matrices,x5Im *Gg(z) dzandG is an arbitrary curve in the domain in whichg
is analytic. Then, resorting to the relations~4.14! and~4.4!, one obtains the following solutions t
Eq. ~1.2!:

c152
e

2
ie2 ixḡ1/2, c25

e

2
ie2 ixg1/2. ~5.9!

The associated surface is given by the parametric equations

X15sin 2x1X10, X252cos 2x1X20,
~5.10!

X35v1X30 S v5ReE
G

f ~z! dzD ,

which describe a cylinder havingX3 as a symmetry axis. Nontrivial deformations of this type
solution can be found by using the recurrenceN-soliton wave function formula26 in expression
~4.14!.

Now, let us discuss a simple example to illustrate the construction introduced in Sec. I
~4! Consider the possibility wheref is real andf 5q21/2 with w i chosen to make] f 50. In this

case, from~4.9! one has

]w15q f̄2w25w2 , ]̄w252q f2w152w1 . ~5.11!

This system reduces to two second-order linear equations of the form~4.25!

]]̄w i1w i50, i 51,2.

For example, let us write a simple set of solutions to this equation

w152 iei ~z1 z̄!, w̄15 ie2 i ~z1 z̄!,

w25ei ~z1 z̄!, w̄25e2 i ~z1 z̄!.

Therefore, one has

q5uw1u21uw2u252, f 5
1

A2
.

Note that for these functionsw i , conditions~4.24! are identically satisfied. From~4.6!, we obtain
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r52 ie2i ~z1 z̄!.

It is also easy to show that for this class of solutionsr, Eqs. ~2.4! are identically satisfied.
Substituting the functionsr andf into Eqs.~4.8!, one obtains an explicit solution of the WE syste
~1.2!:

c152 i
e

A2
ei ~z1 z̄!, c25

e

A2
ei ~z1 z̄!.

This solution represents a phase plane wave since the argument is one-dimensionalx5z1 z̄, its
absolute value is constant, and the solution has exponential form.

~5! A special class of exponential solutions to~1.2! can be found to hold whenp is constant.
According to Proposition 8, we have to solve~4.25!. Thus, a vacuum solution takes the form

c15c1ei ~hz1kz̄!,
~5.12!

c25 ic1

h

p
ei ~hz1kz̄!,

wherec1 is a complex constant andh, k are real constants such that

uc1u25
p3

~p21h2!
, p5hk.

Due to the linearity of Eqs.~4.25!, we can look for a more general class of solutions wh
represent a superposition of exponential functions. The one-soliton solution of~4.25! is given by

c15c1ei ~h1z1k1z̄!1c2ei ~h2z1k2z̄!,
~5.13!

c25
i

p
~h1c1ei ~h1z1k1z̄!1h2c2ei ~h2z1k2z̄!!,

where theci are complex constants and thehi , ki are real constants which satisfy

h1k15p2, h2k25p2, h1h252p2,

and

uc2u25
p2uc1u2~11h1

2/p2!

11p2/h1
2 .

From ~2.1!, we obtain the expression forr corresponding to the one-soliton solutions,

r52 i
c1eih1~z1 z̄!1c2e2 ih1~z1 z̄!

c̄1eih1~z1 z̄!2 c̄2eih1~z1 z̄! ,

for which condition~2.4! is identically satisfied.
~6! Now, let us discuss the construction of multi-soliton solutions to the WE system~1.2!,

which can be obtained by exploiting the linear spectral problem~4.15!. According to the first step
of the procedure, we choose an antiholomorphic function of the form

f 5e~a2b!
~2z̄2a2b!z2a~ z̄2a!2b~ z̄2b!

uz2au21uz2bu2
, e561, a,bPR ~5.14!
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and look for a nontrivial solutionr of the system~2.4!,

r5
z2a

z2b
. ~5.15!

The substitution of~5.14! and ~5.15! into the relations~4.8! gives

w15
z2a

~2z̄2a2b!z2a~ z̄2a!2b~ z̄2b!
,

~5.16!

w25
z̄2b

~2z2a2b!z̄2a~z2a!2b~z2b!
.

Finally, from the solution of the linear spectral problem~4.15! and relations~4.14! and~4.4!, we
obtain an explicit one-soliton solution of the WE system~1.2!:

c15e~a2b!
z2a

uz2au21uz2bu2 , c25e~a2b!
z̄2b

uz2au21uz2bu2
. ~5.17!

A similar computation can be performed for the case in whichr satisfies~2.4! and has a more
general form than~5.15!:

r5)
j 51

N
z2aj

z2bj
, aj ,bjPR, ~5.18!

with distinct parameters such thata and b are replaced byaj and bj , respectively. The same
process is done with the functionf in ~5.14!. Thus, we can determine explicitly the correspondi
form of a multi-soliton solution by applying the recurrenceN-soliton wave function formula26 in
the expression~4.14! to obtain

c15e
P j 51

N ~z2aj !/~z2bj !

11P j 51
N u~z2aj !/~z2bj !u2 X(s51

N
1

~ z̄2bs! S )
j 51
j Þs

N
~ z̄2aj !

~ z̄2bj !
2)

j 51

N
~ z̄2aj !

~ z̄2bj ! D C1/2

,

~5.19!

c25
e

11P j 51
N u~z2aj !/~z2bj !u2 X(s51

N
1

~z2bs! S )
j 51
j Þs

N
~z2aj !

~z2bj !
2)

j 51

N
~z2aj !

~z2bj ! D C1/2

.

Note that this solution admits simple poles. The topological charge~4.23! for each of the instanton
solutions~5.19! corresponds toI 5eN.

VI. FUTURE OUTLOOK

In this paper, we have shown that the adapted WE system~1.2!, proposed by B.
Konopelchenko and I. A. Taimanov as a tool to induce constant mean curvature surfac
closely related to the nonlinear Euclidean sigma-model SU~2!. This link enabled us to propose
new approach to the construction of solutions, based on the intermediate system of equatio~4.9!
with which the sigma model~4.1! is associated.

Let us now consider a system of the form

]c15h~z,z̄!pc2 , ]̄ c̄15h~z,z̄!pc̄2 ,
~6.1!

]̄c252h~z,z̄!pc1 , ]c̄252h~z,z̄!pc̄1 ,
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whereh is assumed to be a real function ofz and z̄ not equal to one. Otherwise, we have t
previous case. We are interested in conditions under which system~6.1! becomes a completely
integrable one.

Making use of the transformation~2.1!, by calculations similar to those done in Sec. II, w
find

c15er
~ ]̄r̄ !1/2

h1/2~11uru2!
, c25e

~]r!1/2

h1/2~11uru2!
, e251, ~6.2!

and system~6.1! becomes

]̄]r5
2r̄

11uru2
]r]̄r1„]~ ln h!…~]r!, ~6.3a!

]]̄r5
2r

11uru2
]̄ r̄]r̄1„]̄~ ln h!…~ ]̄ r̄ !. ~6.3b!

The above form is more convenient to analyze than the equations~6.1!. Employing the
conditional symmetry method,30,31 we look for conditions necessary for solvability of a class
equations~6.3! which admit compatible first-order differential constraints. We consider here
simplest case where the differential constraints are based on an sl~2,C! representation. So, we
assume that they take the form of coupled Riccati equations~and their complex conjugate equa
tions! with nonconstant coefficients,

]r5A1
0~z,z̄!1A1

1~z,z̄!r1A1
2~z,z̄!r2,

~6.4!
]̄r5A2

0~z,z̄!1A2
1~z,z̄!r1A2

2~z,z̄!r2.

The compatibility condition for the system~6.4! requires appending to it the zero curvatu
conditions,

A@m,n#
l 1 1

2Cab
l Am

a An
b50, a,b,l 50,1,2 m,n51,2, ~6.5!

where (zm)5(z,z̄) andCab
l are structure constants of sl~2,C!. The brackets@m,n# denote here the

alternation with respect to the indicesm andn. We look for conditions on the functionh which
ensures that the overdetermined system composed of the equations~6.3!, differential constraints
~6.4!, and conditions~6.5! are in involution. These involutivity conditions give us the speci
differential restrictions on the class of functionh:

]̄]S 1

hD50. ~6.6!

The general solution of~6.6! is given by

h~z,z̄!5
1

r ~z!1r ~ z̄!
. ~6.7!

Here,r is an arbitrary real function. Then, system~6.1! becomes

]c15
p

r ~z!1r ~ z̄!
c2 , ]̄ c̄15

p

r ~z!1r ~ z̄!
c̄2 ,

~6.8!

]̄c252
p

r ~z!1r ~ z̄!
c1 , ]c̄252

p

r ~z!1r ~ z̄!
c̄1 ,
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and, consequently, system~6.3! takes the form

]̄]r5
2r̄

11uru2 ]r]̄r2
]r

r ~z!1r ~ z̄!
~]r!,

~6.9!

]]̄r̄5
2r

11uru2 ]̄ r̄]r̄2
]̄r

r ~z!1r ~ z̄!
~ ]̄ r̄ !.

It is easy to show that system~6.8! cannot be transformed into the original WE system~1.1!,
corresponding to constant mean curvature surfaces, by any change of independent va
Particular case of system~6.8! has been recently discussed.32

An analysis of system~6.9! similar to the one carried out in Sec. IV, can provide us with
explicit form of the spectral problem for~6.9!. Since system~1.1! constitutes a special case o
system~6.1!, it is evident that our approach can be applied to systems which describe much
diverse types of surfaces. This task will be undertaken in future work.
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Unitary deformations and complex soliton equations
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The generalized Lax-equationL̇5 i (AL2LB) leaves the spectrum ofL* L invari-
ant if A and B are self-adjoint operators. Consequently such equations possess
many conversed quantities. With the help of this scheme, complex equations of
Korteweg–de Vries type are derived. ©1999 American Institute of Physics.
@S0022-2488~99!03607-5#

Since the Lax-equation

L̇5PL2LP

is the infinitesimal form of the similarity transformationL→etPLe2tP, such equations leave
invariant the ‘‘spectrum’’ ofL,1 ensuring the existence of nontrivial conserved quantities. In m
cases this scheme leads to the complete integrability of the corresponding equation~see Ref. 2 for
a textbook account!. The following modification

L̇5PL2LQ, ~1!

of the Lax-equation arises in several situation. It was noted by Drinfeld and Sokolov,3 that the
spectrum of L1L2 is preserved by the following transformations:L1→etPL1e2tQ, L2

→etQL2e2tP. The infinitesimal form of these transformations are

L̇15PL12L1Q, L̇25QL22L2P.

With the choice ofL15]x
21u1f, L25]x

21u2f one obtains the Hirota–Satsuma equations4,5

Another example of this scheme is the constrained KP hierarchy~cKP!.6–10 Here the spectrum o
L1

21L2 is preserved by theL1→etPL1e2tQ, L2→etPL2e2tQ transformations. A somewhat differ
ent type of Eq.~1! occurs in the works of Semenov–Tian–Shansky on integrable lattice sys
ThereP andQ are related byQ5t(P), wheret is an automorphism which commutes with th
‘‘ R-matrix’’ of the problem~see, Ref. 11 for details!.

The generalized Lax-equation also arises ifL can be regarded as a linear operator on
Hilbert-spaceh. In this case one can try to preserve the spectrums ofL* L andLL* instead ofL ’s
one. In fact, it is fairly natural to associate the operatorL* L to L, since everyLPB(h) can be
uniquely written asL5UuLu, whereL ’s absolute valueuLu5(L* L)1/2 is a positive operator, while
U is a partial isometry.12

The spectrum ofL* L is not preserved by general similarity transformations ofL. However,
the transformation

L→eitPLe2 i tQ

does leave it invariant ifeitP and e2 i tQ are unitary, i.e., ifP and Q are self-adjoint operators
Indeed

a!Electronic mail: varga@math.klte.hu
34040022-2488/99/40(7)/3404/5/$15.00 © 1999 American Institute of Physics
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LL*→~eitPLe2 i tQ!~~e2 i tQ!* L* ~eitP!* !5eitPLL* e2 i tP.

These considerations suggest that it might be possible to obtain integrable equations
following form:

L̇5 i ~PL2LQ!, P5P* , Q5Q* . ~2!

As an illustration, we apply this method to theL5]x
21v(x)]x1u(x) operator, whereu(x) and

v(x) are complex functions. Ifv(x)50, then the obtained equations are simple reductions of
~complex! Hirota–Satsamura equations. Thev(x)50 constraint is not preserved by the even flo
of the hierarchy.

First, let us recall the Gelfand–Dickey13,2 construction of the Korteweg–de Vries~KdV!
hierarchy. Their starting point is the Schro¨dinger operator

L5]21u~x!,

(]5]x). Its square rootL1/2 is a pseudodifferential operator

L1/25]1 l 21
[1/2]]211 l 22

[1/2]]221 l 23
[1/2]]231¯ ,

where thel i
[1/2]’s are polynomials ofu and its derivatives. They are recursively determined by

condition (L1/2)25L. The crucial property ofL1/2 is that

@L,L1/2#50.

Then

05@L,Lk/2#5@L,~Lk/2!11~Lk/2!2#⇒@L,~Lk/2!1#52@L,~Lk/2!2#,

where (Lk/2)1 is a differential operator containing the non-negative powers of], while (Lk/2)2

consists of terms of negative powers of]. Since @L,(Lk/2)1# is a differential operator, and
@L,(Lk/2)2# cannot contain positive powers of], both expressions must be polynomials ofu and
its derivatives, so

] tk
L5] tk

u5@L,~Lk/2!1#52@L,~Lk/2!2#

is a partial differential equation foru(x,t).
With some minor modification, this scheme works for the generalized Lax-equation, to

the self-adjointness of operators has an important role, we use the self-adjoint derivationD5 i ]
instead of]. Let

L5D21v~x!D1u~x!,

whereu andv are complex functions ofx. Instead ofL1/2 ~which is not self-adjoint!, we would
like to obtain self-adjoint pseudodifferential operators

A5D1a01a21D211a22D221¯ ,

B5D1b01b21D211b22D221¯ ,

satisfying

i ~AL2LB!50.

So
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AL5LB⇒L21AL5B5B* 5L* AL21* ⇒A~LL* !5~LL* !A,

which implies that

A5~LL* !1/4, B5~L* L !1/4.

The operator equations

] tk
L5] tk

vD1] tk
u5 i $~Ak!1L2L~Bk!1%52 i $~Ak!2L2L~Bk!2% ~3!

generate integrable equations foru(x,t) andv(x,t). Note that the splittingX5X11X2 respects
self-adjointness, i.e.,X5X* ⇒(X15X1* ∧X25X2* ). This property would not be true, if the ad
joint was computed with respect to a more general (c1 ,c2)5*c̄1Fc2 dx inner product, whereF
is some pseudodifferential operator. In the KdV hierarchyv can be set to zero, since the ter
containing] drops out from

] tk
L5] tk

~]21u!52@~]21u!,~Lk/2!2#52@]21u,l 21
[1/2]]211 l 22

[1/2]]221¯#.

This reduction does not necessarily work in our case, since

2 i ~~Ak!2~D21u!2~D21u!~Bk!2!52 i ~~a21
[k] D211¯ !~D21u!2~D21u!~b21

[k] D211¯ !!

52 i ~a21
[k] 2b21

[k] !D,

so the constraintsv(x)50 can be violated by the evolution equation. Since the evolution ofLL*
andL* L have the usual Lax form

] tk
~LL* !5 i @~Ak!1 ,LL* #, ] tk

~L* L !5 i @~Bk!1 ,L* L#,

the standard machinery of the KdV equations2 can be applied. For example, the integrals
motion are

E resAk dx, E resBk dx, k51,2,3,. . . .,

where resX is the coefficient ofD21 in the pseudodifferential operatorX. The fact that Eq.~3!
can be embedded into the KdV hierarchy generated by the Lax-operator

L (4)5D41u3D31u2D21u1D11u0

ensures their integrability. The embedding is determined by the constraints

L (4)5LL* 5~D21vD1u!~D21D v̄1ū!5D41~v1 v̄ !D31¯ .

Since in the KdV hierarchy ofL (4) the constraintu350 is preserved by the evolution equation
the constraintv1 v̄50→Rv50 can be imposed on Eq.~3!, too. However, evenv50 is com-
patible with ~3! for odd k, as these equations are basically equivalent to the Hirota–Satsa
hierarchy.

Now we ~me and a symbolic algebra package! compute the explicit forms of the first few o
the hierarchy~3!. For the odd flows, we present only their constrained,v50 form, while for the
even flows,v ’s value is constrained to be pure imaginary (v5 iw).

~1! Flow:
]t1

u5u8.
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~2! Flow:
]t2

w52Fu8,

] t2
u5

i

2
~w-2w8~2w812w224u!2w~u82ū82w9!!.

~3! Flow:
]t3

u51
8~u-23ū-26uu816u8ū112uū8!.

~4! Flow:
]t4

u5]t4
w50.

~5! Flow:
]t5

u5 1
32$23u(5)15ū(5)15u-~3u2ū!15ū-~25u1ū!15u8~23u216uū1ū223u925ū9!15ū8~4u2

14uū23u923ū9!%.

The presented construction can be applied to other integrable systems, too. For exam
Kadomtsev–Petviashvilli type hierarchy2 can be derived without any difficulty. Let

L5D1u01u21D211u22D221¯ ,

]mL5 i ~BmL2LB̄m!, Bm5~LL* !1
m B̄m5~L* L !1

m .

Then the zero-curvature condition

]mBn2]nBm2 i @Bm ,Bn#50

provides the equations of a KP type hierarchy. The proof of the zero-curvature condition is a
the same as for the standard KP equations:

]mBn2]nBm2 i @Bm ,Bn#5 i S (
j 50

n21

~LL* !n212 j~@BmL2LB̄m#L* 1L@B̄mL* 2L* Bm# !~LL* ! j

2~n↔m!D
1

2@Bm ,Bn#

5 i ~@Bm ,~LL* !n#12@Bn ,~LL* !m#12@Bm ,Bn# !

5 i ~@Bn2~LL* !n,Bm2~LL* !m#15@~LL* !2
m ,~LL* !2

n # !50.

These computations are very similar to the ones which appear in the theory of the constrain
hierarchy.10 This is not surprising, since here we isospectrally deformLL* , while in the case of
the cKP hierarchyL1

21L2’s deformation is isospectral. The verification of the commutativity of
flows ]m is standard.

Finally we present another variation on the theme of this paper. We determine thoL

→etALe2tB transformations which generate isospectral deformations ofLL̄. Since LL̄

→etALe2tBetĀL̄e2tB̄, we obtain thatB5Ā. With the A5(LL̄)1
k/n , B5(L̄L)1

k/n choices, it is
possible to repeat the steps of the derivation of the Hirota–Satsamura type coupled KdV hie
Note, however, that this sort of scheme does not work for theLLT product. In that caseA andB
should satisfyB52AT, but this condition does not hold forA5(LLT)a and B5(LTL)a. So it
seems that it is possible to modify only the complex KdV equations.
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Under a constraint between the potentials and the eigenfunctions, the 333 AKNS
matrix spectral problem and its adjoint spectral problem associated with the three-
wave interaction equations are nonlinearized so as to be a new finite-dimensional
Hamiltonian system. A general scheme for generating involutive systems of con-
served integrals and their two new generators are proposed, by which the finite-
dimensional Hamiltonian system is further proved to be completely integrable in
the Liouville sense. Moreover, the involutive solutions of the three-wave interac-
tion equations are given. ©1999 American Institute of Physics.
@S0022-2488~99!00407-7#

I. INTRODUCTION

It has been known that there are several systematic approaches to obtain explicit solut
soliton equations, such as the inverse scattering transformation, the Hirota technique, the a
geometric method, the polar expansion solution method, etc.1–6 Some interesting explicit solution
have been found, the most important among which are pure-soliton solutions, finite-band so
and polar expansion solutions.

The observation that all the explicit solutions mentioned above have a finite numb
parameters, which means that they satisfy some kind of ordinary differential equations, su
an important approach to get new finite-dimensional integrable systems from soliton equ
Recently an effective method, the so-called nonlinearization of eigenvalue problems o
pairs,7–9 has been developed and applied to various soliton hierarchies associated with32
zero-trace matrix spectral problems, from which a considerable number of new finite-dimen
systems are obtained that are completely integrable in the Liouville sense. Another imp
application of the nonlinearization method is that it provides a way of solving soliton equa
integrable nonlinear partial differential equations, by separation of spatial and temporal var
At the same time the inter-relation between soliton equations and finite-dimensional inte
systems is revealed. The method is sometimes called the method of separation of variab
nonlinear partial differential equations, which generalizes the corresponding method for
ones.

A similar method, the restricted flow technique, for bi-Hamiltonian soliton hierarchie
proposed in Refs. 10, 11 and bi-Hamiltonian structures for the resulting finite-dimensiona
grable systems can also be worked out through a Miura map.11,12 There are attempts to apply th
nonlinearization method or the restricted flow technique to discrete systems in order to ge
grable symplectic maps.13–17

Very recently, the nonlinearization method has been generalized to discuss Lax pai
adjoint Lax pairs of soliton equations18–21 so that it may also be suitable for the cases of 232
nonzero-trace matrix spectral problems. It has been applied successfully to the hierarchy o
34090022-2488/99/40(7)/3409/22/$15.00 © 1999 American Institute of Physics
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Dym type equations and the Blaszak discrete soliton hierarchy,20,21 which correspond to 333
matrix spectral problems.

The key to the complete integrability of a finite-dimensional Hamiltonian system is the
tence of an involutive system of conserved integrals. However, it is difficult for us to search f
involutive system of conserved integrals of a given finite-dimensional Hamiltonian system. I
paper, based on the above works we are going to discuss the nonlinearization for a 333 AKNS
matrix spectral problem and its adjoint spectral problem associated with the three-wave inte
equations,1,22 from which a new finite-dimensional Hamiltonian system is obtained. Resortin
the characteristic polynomial of solution matrix of the stationary zero-curvature equation
propose a general scheme for generating involutive systems of enough conserved integral
resulting finite-dimensional Hamiltonian system. To prove the functional independence of
served integrals, two new generators of involutive systems of conserved integrals are intro
which are two natural generalizations of the 232 case.23 This shows that the finite-dimensiona
Hamiltonian system is completely integrable in the Liouville sense.

Consider then3n matrix spectral problem

cx5U~u,l!c, c5~c1,...,cn!T. ~1.1!

In order to derive the isospectral hierarchy associated with Eq.~1.1!, we proceed first to solve the
stationary zero-curvature equation,

Vx2@U,V#50, V5(
j >0

V~ j !l2 j , ~1.2!

which usually is equivalent to Lenard recursive equation

KGj 215JGj , JG2150, j >0. ~1.3!

HereK andJ are two skew-symmetric operators. The soliton hierarchyut5JGm has a Lax pair,
the spectral problem~1.1! and the auxiliary problem

c tm
5Vmc, Vm5~lmV!1 , ~1.4!

where the symbol1 stands for the choice of non-negative power ofl. The introduction of the
adjoint problem of Eq.~1.1!,

fx52U~u,l!Tf, f5~f1,...,fn!T ~1.5!

allows the calculation of the functional gradient of the eigenvalues with regard to the potenu
~see, e.g., Sec. III!. Usually such a functional gradient¹l j satisfies the following equation:

K¹l j5r~l j !J¹l j , r~l j !5c1l j1c2l j
2, 1< j <N, ~1.6!

wherel1 ,...,lN are the eigenvalues of Eqs.~1.1! and~1.5!, c1 andc2 are constants. The follow
ing two kinds of constraints:

G05(
j 51

N

¹l j , G215(
j 51

N

¹l j , ~1.7!

which are called the Bargmann and Neumann constraints, respectively, play a central role
process of nonlinearization of the eigenvalue problems~1.1! and~1.5!. From ~1.7! we can obtain
the relations

u5 f ~q,p! and g~q,p!50, u5 f ~q,p!, ~1.8!
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whereq5(q1
1,...,qN

1 ,...,q1
n ,...,qN

n )T, p5(p1
1,...,pN

1 ,...,p1
n ,...,pN

n )T, qj
i 5c i(l j ), pj

i 5f i(l j ), 1
< i<n, 1< j <N. Under the two constraints,N replicas of the spectral problems~1.1! and ~1.5!
associated withl1 ,...,lN are nonlinearized into two finite-dimensional Hamiltonian systems

qx5U~ f ~q,p!,L!q, px52U~ f ~q,p!,L!Tp, L5diag~l1 ,...,lN!, ~1.9!

qx5U~ f ~q,p!,L!q, px52U~ f ~q,p!,L!Tp, g~q,p!50, ~1.10!

which are called the Bargmann and Neumann systems, respectively. In the following, we p
a general scheme for generating conserved integrals of Eq.~1.9! or ~1.10!. Noticing the matrix
mI 2V is also a solution of the stationary zero-curvature equation~1.2!, which implies that
det(mI2V) is a constant with respect to the variablex, for each value of the spectral parameterl.
Here m is a parameter,I is an n3n matrix. Let us consider the characteristic polynomial
solution matrixV of Eq. ~1.2!,

det~mI 2V!5mn2Fl
~0!mn211Fl

~1!mn221¯1~21!nFl
~n21! , ~1.11!

where

Fl
~0!5tr V, Fl

~1!5 (
1< i , j <n

UVii Vi j

Vji Vj j
U,

Fl
~2!5 (

1< i , j ,k<n
UVii Vi j Vik

Vji Vj j Vjk

Vki Vk j Vkk

U ,..., Fl
~n21!5detV. ~1.12!

By using Eqs.~1.3!, ~1.6! and the corresponding constraint, Eqs.~1.12! are reduced to generatin
functions of the conserved integrals of the Bargmann system~1.9!, or the Neumann system~1.10!.
Sometimes some modifications are made, especially for the Neumann system. Thus we ea
the conserved integrals of the system~1.9! or ~1.10! from their generating functions.

The outline of the paper is as follows: In Sec. II, we shall reconstruct the soliton hiera
associated with the 333 AKNS spectral problem and establish their Hamiltonian structures
Sec. III, we shall introduce the Bargmann constraint between the potentials and eigenfun
Under the constraint, a new finite-dimensional Hamiltonian system is obtained by nonlineari
of the 333 AKNS spectral problem and its adjoint one. In Sec. IV, we shall show how the sch
is applied to generate involutive systems of conserved integrals of the finite-dimensional H
tonian system. Further we prove that the finite-dimensional Hamiltonian system is comp
integrable in the Liouville sense. In Sec. V, the representation of involutive solutions o
three-wave interaction equations and the soliton hierarchy is given. Finally in the Append
means of the generating functions of conserved integrals, we give the involutivity of cons
integrals. Then we introduce two new generators of involutive systems of conserved integra
prove the functional independence of conserved integrals.

II. THE SOLITION HIERARCHY AND HAMILTONIAN STRUCTURES

Let us consider the 333 AKNS matrix spectral problem

cx5U~u,l!c, c5S c1

c2

c3
D , U5S a1l u12 u13

u21 a2l u23

u31 u32 a3l
D , ~2.1!
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where the potentialu5(u12,u21,u13,u31,u23,u32)
T, l is a constant spectral parameter,a i8s(1

< i<3) are three distinct constants. Our aim is to engender the soliton hierarchy from the sp
problem~2.1!. To this end, we first solve the stationary zero-curvature equation,

Vx2@U,V#50, V5~Vi j !333 , ~2.2!

which is equivalent to

Vi jx1ui j ~Vii 2Vj j !1 (
k51
kÞ i , j

3

~uk jVik2uikVk j!2l~a i2a j !Vi j 50, iÞ j , ~2.3a!

Viix5 (
k51
kÞ i

3

~uikVki2ukiVik!, 1< i , j <3. ~2.3b!

Substitution the expansion

Vi j 5 (
n>0

Vi j
~n!l2n ~2.4!

into Eq. ~2.3!, we obtain the recurrence relations

Viix
~0!50, Vi j

~0!50, ~ iÞ j !,

Vi jx
~n!1ui j ~Vii

~n!2Vj j
~n!!1 (

k51
kÞ i , j

3

~uk jVik
~n!2uikVk j

~n!!2~a i2a j !Vi j
~n11!50, iÞ j ,

Viix
~n!5 (

k51
kÞ i

3

~uikVki
~n!2ukiVik

~n!!, 1< i , j <3,n>0. ~2.5!

By Eq. ~2.5! we have

Vii
~0!5b i~constant!, Vi j

~0!50, iÞ j ,

Vii
~1!50, Vi j

~1!5
b i2b j

a i2a j
ui j , iÞ j , ~2.6!

and require that

b iÞb j~ iÞ j !, Vi j
~n!uu5050, n>1, ~2.7!

where the condition~2.7! means to identify constants of the integration to be zero. HenceVi j
(n) is

uniquely determined. It is easy to calculate that

Vi j
~2!5

b i2b j

~a i2a j !
2 ui jx1

1

a i2a j
(
k51
kÞ i , j

3 S bk2b i

ak2a i
2

bk2b j

ak2a j
Duikuk j , iÞ j , ~2.8a!

Vii
~2!5 (

k51
kÞ i

3
bk2b i

~ak2a i !
2 uikuki . ~2.8b!

Equations~2.5!–~2.7! can be equivalently written as the Lenard form
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KGn215JGn , Gn215~V21
~n! ,V12

~n! ,V31
~n! ,V13

~n! ,V32
~n! ,V23

~n!!T, n>1, ~2.9a!

G05S b12b2

a12a2
u21,

b12b2

a12a2
u12,

b12b3

a12a3
u31,

b12b3

a12a3
u13,

b22b3

a22a3
u32,

b22b3

a22a3
u23D T

~2.9b!

with Gnuu5050. HereJ andK are two skew-symmetric operators,

J5S 0 a12a2 0 0 0 0

a22a1 0 0 0 0 0

0 0 0 a12a3 0 0

0 0 a32a1 0 0 0

0 0 0 0 0 a22a3

0 0 0 0 a32a2 0

D ,

K5~Klm!636 , Kml* 52Klm

with

K1152u12]
21u12, K125]22u12]

21u21, K135u12]
21u13, K145u322u12]

21u31,

K1552u132u12]
21u23, K165u12]

21u32, K2252u21]
21u21, K2352u232u21]

21u13,

K245u21]
21u31, K255u21]

21u23, K265u312u21]
21u32, K3352u13]

21u13,

K345]22u13]
21u31, K355u13]

21u23, K3652u122u13]
21u32, K4452u31]

21u31,

K455u212u31]
21u23, K465u31]

21u32, K5552u23]
21u23, K565]22u23]

21u32,

K6652u32]
21u32, ]5]/]x, ]]215]21]51.

Using the trace identity technique,24 we have

dHn

dui j
5Vji

~n! , Hn52
1

n
~a1V11

~n11!1a2V22
~n11!1a3V33

~n11!!, ~2.10!

where the potentialsui j ,iÞ j , are assumed to belong to the Schwartz spaceS(V), V
5(2`,`).

Now we introduce the auxiliary problem of the spectral problem~2.1!,

c tm
5V~m!c, V~m!5V~m!~u,l!5~lmV!1 , m>1. ~2.11!

The compatibility condition between Eqs.~2.1! and ~2.11! leads to the zero-curvature equatio
Ut2Vx1@U,V#50, that is the hierarchy of soliton equations with bi-Hamiltonian forms

utm
5Xm5K

dHm

du
5J

dHm11

du
, m>1, ~2.12!

where the vector fieldXm5KGm215JGm and Eq.~2.10! is used. The typical nonlinear system
the hierarchy is the famous three-wave interaction equations,
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ui jt 1
5

b i2b j

a i2a j
ui jx1 (

k51
kÞ i , j

3 S bk2b i

ak2a i
2

bk2b j

ak2a j
Duikuk j , iÞ j , 1< i , j <3, ~2.13!

which has important applications in physics.1,22,25

III. A FINITE-DIMENSIONAL HAMILTONIAN SYSTEM

In order to give the constraint between the potentials and the eigenfunctions, it is neces
calculate the functional gradient of the eigenvalue with respect to the potential. We introdu
adjoint spectral problem of~2.1!,

fx52U~u,l!Tf, f5~f1,f2,f3!T. ~3.1!

Suppose thatui j→ui j 1edui j , 1< iÞ j <3, denote]/]eue50 by a dot. The underlying intervalV
is ~2`, `! under the decaying condition at infinity. A direct calculation shows by Eqs.~2.1! and
~3.1! that

~fTċ !x5fTU̇c. ~3.2!

If l is an eigenvalue of the spectral problems~2.1! and~3.1!, the integration of the left-hand sid
of equality ~3.2! vanishes because of the boundary conditions. Then we have

E
V

fTU̇cdx50. ~3.3!

Let l1 ,...,lN beN distinct eigenvalues. Then the systems associated with spectral problems~2.1!
and ~3.1! can be written in the form

~ql
1,ql

2,ql
3!x5~ql

1,ql
2,ql

3!U~u,l l !
T, ~pl

1,pl
2,pl

3!x52~pl
1,pl

2,pl
3!U~u,l l !, ~3.4!

where ql
i5c i(l l), pl

i5f i(l l), 1< i<3, 1< l<N, are eigenfunctions. Noticing Eq.~3.4! and
U̇(u,l l)5U(du,dl l), we obtain by Eq.~3.3! that

E
V

~pl
1,pl

2,pl
3!U~du,dl l !~ql

1,ql
2,ql

3!Tdx50,

which implies that the functional gradient of the eigenvaluel l with regard to the potentialu is

¹l l5
dl l

du
5S dl l

du12
,

dl l

du21
,

dl l

du13
,

dl l

du31
,

dl l

du23
,

dl l

du32
D T

5~ql
2pl

1,ql
1pl

2,ql
3pl

1,ql
1pl

3,ql
3pl

2,ql
2pl

3!T,

~3.5!

where we assume that

E
V

~a1ql
1pl

11a2ql
2pl

21a3ql
3pl

3!dx521.

A direct calculation shows that the gradient¹l l satisfies the following equation:

K¹l l5l lJ¹l l . ~3.6!

As a matter of fact, we obtain from Eq.~3.4! that

~ql
1pl

1!x2~ql
2pl

2!x52u12ql
2pl

122u21ql
1pl

21u13ql
3pl

12u31ql
1pl

32u23ql
3pl

21u32ql
2pl

3, ~3.7!
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~ql
1pl

2!x1u32ql
1pl

32u13ql
3pl

25u12~ql
2pl

22ql
1pl

1!1l l~a12a2!ql
1pl

2. ~3.8!

Noticing Eqs.~3.7! and ~3.8!, we have

K11ql
2pl

11K12ql
1pl

21K13ql
3pl

11K14ql
1pl

31K15ql
3pl

21K16ql
2pl

3

5u12]
21~2u12ql

2pl
122u21ql

1pl
21u13ql

3pl
12u31ql

1pl
32u23ql

3pl
21u32ql

2pl
3!

1~ql
1pl

2!x1u32ql
1pl

32u13ql
3pl

25l l~a12a2!ql
1pl

2, ~3.9!

which implies that the sign of equality in the first row of Eq.~3.6! holds. In a similar way, we may
prove that other rows of Eq.~3.6! are also identical equations.

Now we consider the Bargmann constraint

G05(
l 51

N

¹l l , ~3.10!

which implies

ui j 5
a i2a j

b i2b j
^qi ,pj&, iÞ j , 1< i , j <3, ~3.11!

where^•,•& is the standard inner-product inRN, qi5(q1
i ,...,qN

i )T, pi5(p1
i ,...,pN

i )T. Substituting
Eq. ~3.11! into Eq. ~3.4!, we obtain a finite-dimensional Hamiltonian system

qx
i 5

]H

]pi , px
i 52

]H

]qi , 1< i<3, ~3.12!

with the Hamiltonian

H5a1^Lq1,p1&1a2^Lq2,p2&1a3^Lq3,p3&1
a12a2

b12b2
^q1,p2&^q2,p1&

1
a12a3

b12b3
^q1,p3&^q3,p1&1

a22a3

b22b3
^q2,p3&^q3,p2&,

whereL5diag(l1,...,lN). Moreover, we have from Eq.~3.4! that

@~ql
1,ql

2,ql
3!~pl

1,pl
2,pl

3!T#x50,

which implies

ql
1pl

11ql
2pl

21ql
3pl

35constant. ~3.13!

It is easy to see that Eq.~3.13! are the conserved integrals of the system~3.12!.

IV. THE INTEGRABILITY

In this section, we shall show how the characteristic polynomial of the solution matrix o
~2.2! is used to generate the involutive systems of conserved integrals of the finite-dimen
Hamiltonian system~3.12!. To this end, we first consider the characteristic polynomial

det~mI 2V!5m32Fl
~0!m21Fl

~1!m2Fl
~2! , ~4.1!

where
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Fl
~0!5tr V, Fl

~1!5 (
1< i , j <3

UVii Vi j

Vji Vj j
U, Fl

~2!5UV11 V12 V13

V21 V22 V23

V31 V32 V33

U . ~4.2!

It is easy to see thatFl
(0) ,Fl

(1) ,Fl
(2) are constants with respect to the variablex. For the sake of

convenience, we introduce a bilinear functionQ
i j

l on RN and its partial-fraction expansion an
Laurent expansion,

Q
i j

l5^~l2L!21qi ,pj&5(
l 51

N ql
ipl

j

l2l l
5 (

n>0
l2n21^Lnqi ,pj&.

By using Eqs.~2.9!, ~3.6! and the constraint~3.10!, we take the following restriction:

Gn5(
l 51

N

l l
n¹l l , ~4.3!

which is a special solution of Eq.~2.9! and can be written as follows:

Vi j
~n!5^Ln21qi ,pj&, iÞ j , 1< i , j <3, n>1. ~4.4a!

From Eq.~4.4a! and the third expression of Eq.~2.5!, we have

Vii
~n!5^Ln21qi ,pi&, 1< i<3,n>1. ~4.4b!

By utilizing Eqs.~2.4! and ~4.4!, we get

Vi j 5 (
n>1

^Ln21qi ,pj&l2n5Q
i j

l , iÞ j , 1< i , j <3, ~4.5a!

Vii 5b i1 (
n>1

^Ln21qi ,pi&l2n5b i1Q
ii

l , 1< i<3. ~4.5b!

Substituting Eq.~4.5! into Eq. ~4.2! yields generating functions of integrals of motion for E
~3.12!,

F̂l
~0!5Q

11

l1Q
22

l1Q
33

l , ~4.6!

F̂l
~1!5~b21b3!Q

11

l1~b11b3!Q
22

l1~b11b2!Q
33

l1 (
1< i , j <3

~Q
ii

lQ
j j

l2Q
i j

lQ
ji

l!, ~4.7!

F̂l
~2!5b2b3Q

11

l1b1b3Q
22

l1b1b2Q
33

l1 (
1< i , j <3

b62 i 2 j~Q
ii

lQ
j j

l2Q
i j

lQ
ji

l!1UQ
11

l Q
12

l Q
13

l

Q
21

l Q
22

l Q
23

l

Q
31

l Q
32

l Q
33

l

U ,

~4.8!

whereF̂l
(0) , F̂l

(1) , andF̂l
(2) are defined by
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F̂l
~0!5F̂l

~0!2b12b22b3 , F̂l
~1!5Fl

~1!2b1b22b1b32b2b3 ,

F̂l
~2!5Fl

~2!2b1b2b3 .

Substituting the Laurent expansion ofQ
ik

l into Eqs.~4.6!–~4.8!, respectively, we have

F̂l
~0!5 (

m>0
l2m21Fm

~0! , F̂l
~1!5 (

m>0
l2m21Fm

~1! , F̂l
~2!5 (

m>0
l2m21Fm

~2! , ~4.9!

where

Fm
~0!5^Lmq1,p1&1^Lmq2,p2&1^Lmq3,p3&, m>0, ~4.10!

F0
~1!5~b21b3!^q1,p1&1~b11b3!^q2,p2&1~b11b2!^q3,p3&, ~4.11a!

Fm
~1!5~b21b3!^Lmq1,p1&1~b11b3!^Lmq2,p2&1~b11b2!^Lmq3,p3&

1 (
1< i , j <3

(
l 51

m U^L l 21qi ,pi& ^Lm2 lqj ,pi&

^L l 21qi ,pj& ^Lm2 lqj ,pj&
U, m>1, ~4.11b!

F0
~2!5b2b3^q

1,p1&1b1b3^q
2,p2&1b1b2^q

3,p3&, ~4.12a!

F1
~2!5b2b3^Lq1,p1&1b1b3^Lq2,p2&1b1b2^Lq3,p3&

1 (
1< i , j <3

b62 i 2 jU^qi ,pi& ^qj ,pi&

^qi ,pj& ^qj ,pj&
U, ~4.12b!

Fm
~2!5b2b3^L

mq1,p1&1b1b3^L
mq2,p2&1b1b2^L

mq3,p3&

1 (
1< i , j <3

(
l 1n5m21

l ,n>0

b62 i 2 jU^L lqi ,pi& ^Lnqj ,pi&

^L lqi ,pj& ^Lnqj ,pj&
U

1 (
l 1n1s5m22

l ,n,s>0

U ^L lq1,p1& ^Lnq1,p2& ^Lsq1,p3&

^L lq2,p1& ^Lnq2,p2& ^Lsq2,p3&

^L lq3,p1& ^Lnq3,p2& ^Lsq3,p3&
U , m>2. ~4.12c!

In this way, we obtain the conserved integrals$Fm
( i )%, 0< i<2, of the Hamiltonian system~3.12!.

The Poisson bracket of two functions in the symplectic space (R6N,S i 51
3 dpi∧dqi) is defined as

$ f ,g%5(
j 51

N

(
i 51

3 S ] f

]qj
i

]g

]pj
i 2

] f

]pj
i

]g

]qj
i D 5(

i 51

3 S K ] f

]qi ,
]g

]pi L 2 K ] f

]pi ,
]g

]qi L D .

We can prove the following assertions:
Theorem 4.1: The functions$Fm

( i )%, 0< i<2, m>0, are in involution in pairs,$Fm
( i ) ,Fl

( j )%
50, 0< i , j <2, for anym,l>0.

Theorem 4.2:The 3N 1-formsdFl
( i ) , 1< l<N, 0< i<2, are linearly independent. The proo

of the above two theorems is given in the Appendix.
A direct calculation shows that the Hamiltonian functionH of the system~3.12! can be

rewritten as follows:
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H5g0F1
~0!1g1F1

~1!1g2F1
~2!1g3~b1

2F0
~0!2b1F0

~1!1F0
~2!!~b2

2F0
~0!b2F0

~1!1F0
~2!!

1g4~b1
2F0

~0!2b1F0
~1!1F0

~2!!~b3
2F0

~0!2b3F0
~1!

1F0
~2!!1g5~b2

2F0
~0!2b2F0

~1!1F0
~2!!~b3

2F0
~0!2b3F0

~1!1F0
~2!!, ~4.13!

where

g05
a1~b22b3!b1

21a2~b32b1!b2
21a3~b12b2!b3

2

~b12b2!~b22b3!~b12b3!
,

g152
a1~b22b3!b11a2~b32b1!b21a3~b12b2!b3

~b12b2!~b22b3!~b12b3!
,

g25
a1~b22b3!1a2~b32b1!1a3~b12b2!

~b12b2!~b22b3!~b12b3!
, g35

a22a1

~b12b2!3~b12b3!~b22b3!
,

g45
a12a3

~b12b3!3~b12b2!~b22b3!
, g55

a32a2

~b22b3!3~b12b2!~b12b3!
.

Hence the integrability of Eq.~3.12! is established resorting to Theorems 4.1 and 4.2.
Theorem 4.3: The finite-dimensional Hamiltonian system~3.12! is completely integrable in

the Liouville sense.

V. THE INVOLUTIVE REPRESENTATION OF SOLUTIONS

In this section, we shall give the involutive representation of solutions of the AKNS so
hierarchy. We first introduce the Lenard gradientsgl

( i ) defined recursively by

Kgl 21
~ i ! 5Jgl

~ i ! , gl
~ i !uu5050, 1< i<3, l>1, ~5.1!

with

g0
~1!5S u21

a12a2
,

u12

a12a2
,

u31

a12a3
,

u13

a12a3
,0,0D T

, ~5.2!

g0
~2!5S u21

a22a1
,

u12

a22a1
,0,0,

u32

a22a3
,

u23

a22a3
D T

, ~5.3!

g0
~3!5S 0,0,

u31

a32a1
,

u13

a32a1
,

u32

a32a2
,

u23

a32a2
D T

. ~5.4!

The correspondingmth order vector is represented by

Xm~u,v!5J~v1gm
~1!1v2gm

~2!1v3gm
~3!!, v5~v1 ,v2 ,v3!, ~5.5!

from which it is easy to see thatXm5Xm(u,b), b5(b1 ,b2 ,b3). Now we consider the canonica
system of theF̄m

(1)-flow with F̄m
(1)52Fm

(1) ,

]qi

]tm
5

]F̄m
~1!

]pi ,
]pi

]tm
52

]F̄m
~1!

]qi , 1< i<3, m>1. ~5.6!
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Then the systems~3.12! and ~5.6! are compatible and their Hamiltonian phase flowsgH
x ,g

F̄m

tm

commute,26 which imply that there exists the involutive solution26,9 of the consistent system o
Eqs.~3.12! and ~5.6!, represented by

qi~x,tm!5qH
x g

F̄m

tm qi~0,0!, pi~x,tm!5gH
x g

F̄m

tm pi~0,0!, 1< i<3.

Hereqi(0,0),pi(0,0), 1< i<3 are the given initial values.
Theorem 5.1: Let l1 ,...,lN be N distinct parameters. If (qi(x,t1),pi(x,t1)), 1< i<3, is an

involutive solution of the system of Eqs.~3.12! and ~5.6! with m51, then

ui j ~x,t1!5
a i2a j

b i2b j
^qi~x,t1!,pj~x,t1!&, 1< i , j <3, iÞ j , ~5.7!

solve the three-wave interaction equations

ui jt 1
5

b i2b j

a i2a j
ui jx1 (

k51
kÞ i , j

3 S bk2b i

ak2a i
2

bk2b j

ak2a j
Duikuk j1ai j ui j , iÞ j , 1< i , j <3, ~5.8!

whereai j 5^qi(0,0),pi(0,0)&2^qj (0,0),pj (0,0)&, iÞ j , 1< i , j <3, are constants independent
x,t.

Proof: Using Eqs.~4.10!, ~4.11a!, and~4.12a!, we have

^q1,p1&5
F0

~2!2b1F0
~1!1b1

2F0
~0!

~b12b2!~b12b3!
, ^q2,p2&5

2F0
~2!1b2F0

~1!2b2
2F0

~0!

~b12b2!~b22b3!
,

^q3,p3&5
F0

~2!2b3F0
~1!1b3

2F0
~0!

~b12b3!~b22b3!
,

which imply that ^qi ,pi&5^qi(0,0),pi(0,0)&, 1< i<3, are constants. Noticing Eqs.~3.12! and
~5.6! with m51, through direct calculations we get

^qi ,pj&x5~a i2a j !^Lqi ,pj&2
a i2a j

b i2b j
ai j ^q

i ,pj&1 (
k51
kÞ i , j

3 S ak2a i

bk2b i
2

ak2a j

bk2b j
D ^qi ,pk&^qk,pj&,

^qi ,pj& t1
5~b i2b j !^Lqi ,pj&, iÞ j ,1< i , j <3.

Combining these results together yield the desired three-wave interaction equations~5.8!.
Generally, we have the following fact:
Theorem 5.2:Let l1 ,...,lN be N distinct parameters. If (qi(x,tm),pi(x,tm)), 1< i<3, is an

involutive solution of the system of Eqs.~3.12! and ~5.6!, then

ui j ~x,tm!5
a i2a j

b i2b j
^qi~x,tm!,pj~x,tm!&, 1< i , j <3,iÞ j , ~5.9!

satisfy the soliton equations

utm
5Xm~u,b!1Xm21~u,s~0!!1¯1X0~u,s~m21!!, m>0, ~5.10!

with suitably chosen constant vectorss ( l )5(s1
( l ) ,s2

( l ) ,s3
( l )), 0< l<m21.

Proof: By using Eqs.~5.9! and ~5.6!, a direct calculation gives
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utm
5J(

l 51

N

l l
m¹l l . ~5.11!

Operating with the operator (J21K)m upon the constraintG05S l 51
N ¹l l , we have

Gm1 (
l 50

m21

~s1
~ l !gm2 l 21

~1! 1s2
~ l !gm2 l 21

~2! 1s3
~ l !gm2 l 21

~3! !5(
l 51

N

l l
m¹l l , ~5.12!

wheres i
( l ) , 0< l<m21, 1< i<3, are integral constants. Substituting Eq.~5.12! into Eq. ~5.11!

and noticing Eq.~5.5!, we obtain Eq.~5.10!. The proof is finished.

VI. SUMMARY AND CONCLUSIONS

The procedure for the nonlinearization of then3n matrix spectral problem and its adjoin
spectral problem has been described briefly. To illustrate the general principles, the nonlin
tion of the 333 AKNS matrix spectral problem and its adjoint spectral problem associated
the three-wave interaction equations is discussed in detail. The characteristic polynomial o
tion matrix of the stationary zero-curvature equation is used to generate involutive syst
enough conserved integrals of the resulting finite-dimensional Hamiltonian system. This sch
general, which is suitable for the other systems. It is interesting that the canonical equations
Fm

(1)-flow ~up to a constant factor! given by Fl
(1) of Eq. ~4.1! are exactly the nonlinearize

temporal parts of the Lax pairs and adjoint Lax pairs for soliton hierarchy related to the33
AKNS matrix spectral problem. The solutions of the three-wave interaction equations are re
to solving the two compatible systems of ordinary differential equations. Two generato
involutive systems of conserved integrals are introduced, from which the functional indepen
of conserved integrals is rigorously proved~see Appendix!. We point out that the method use
here is general, which is suitable for the cases ofn3n matrix spectral problems. Similar resul
will be left to a future publication. Moreover, we may also consider construction of action-a
variables for the finite dimensional integrable system and further give the finite-band solutio
the three-wave interaction equations, which will be discussed in other papers.

APPENDIX:

1. The proof of theorem 4.1

In order to prove theorem 4.1, We first introduce the notations

I l
~1!5~b21b3!Q

11

l1~b11b3!Q
22

l1~b11b2!Q
33

l , ~A1!

Tl
~1!5 (

1< i , j <3
~Q

ii

lQ
j j

l2Q
i j

lQ
ji

l!, ~A2!

I l
~2!5b2b3Q

11

l1b1b3Q
22

l1b1b2Q
33

l , ~A3!

Tl
~2!5 (

1< i , j <3
b62 i 2 j~Q

ii

lQ
j j

l2Q
i j

lQ
ji

l!, ~A4!
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Rl5UQ
11

l Q
12

l Q
13

l

Q
21

l Q
22

l Q
23

l

Q
31

l Q
32

l Q
33

l

U , ~A5!

and prove the following several assertions:
Lemma A.1:Let

I l~s!5s1Q
11

l1s2Q
22

l1s3Q
33

l , s5~s1 ,s2 ,s3!PC3. ~A6!

Then we have

$I m~s!,I l~t!%50, t5~t1 ,t2 ,t3!PC3, ~A7!

~m2l!$I m~s!,Rl%5~s12s2!@Q
12

m~Q
23

lQ
31

l2Q
21

lQ
33

l!2Q
21

m~Q
13

lQ
32

l2Q
12

lQ
33

l!#1~s12s3!

3@Q
13

m~Q
21

lQ
32

l2Q
22

lQ
31

l!2Q
31

m~Q
12

lQ
23

l2Q
13

lQ
22

l!#1~s22s3!

3@Q
23

m~Q
12

lQ
31

l2Q
11

lQ
32

l!2Q
32

m~Q
13

lQ
21

l2Q
11

lQ
23

l!#, ;l,mPC. ~A8!

Proof: By using the definition of the Poisson bracket, we have

$Q
ii

m ,Q
ii

l%5K ]Q
ii

m

]qi ,
]Q

ii

l

]pi
L 2K ]Q

ii

m

]pi ,
]Q

ii

l

]qi
L $Q

ii

m ,Q
j j

l%50, ~ iÞ j !,

which together with the equalities

]Q
i j

l

]qk 5d ik~l2L!21pj ,
]Q

i j

l

]pk 5d jk~l2L!21qi , 1< i , j ,k<3 ~A9!

leads to

$Q
ii

m ,Q
j j

l%50, 1< i , j <3. ~A10!

Resorting to Eq.~A10! and the bilinear property of the Poisson bracket, a direct calculation sh
that Eq.~A7! holds. Let

f 1~m,l!5~m2l!(
k51

3

sk
S K ]Q

kk

m

]qk ,
]Rl

]pk
L 2K ]Q

kk

m

]pk ,
]Rl

]qk
L D . ~A11!

It is easy to see that

~m2l!$I m~s!,Rl%5 f 1~m,l!. ~A12!
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In the following calculations of theMathematica, we usually writeQ
i j

l5Ql,i j for the sake of
convenience. By using theMathematica, we can verify Eq.~A8!,

a11@l2#ªQl,22Ql,332Ql,23Ql,32; a12@l2#ªQl,23Ql,312Ql,21Ql,33;

a13@l2#ªQl,21Ql,322Ql,22Ql,31; a21@l2#ªQl,13Ql,322Ql,12Ql,33;

a22@l2#ªQl,11Ql,332Ql,13Ql,31; a23@l2#ªQl,12Ql,312Ql,11Ql,32;

a31@l2#ªQl,12Ql,232Ql,13Ql,22; a32@l2#ªQl,13Ql,212Ql,11Ql,23;

a33@l2#ªQl,11Ql,222Ql,12Ql,21;

f 1@m2 ,l2#ªs1~a21@l#~Ql,212Qm,21!1a31@l#~Ql,312Qm,31!2a12@l#~Ql,122Qm,12!2a13@l#

3~Ql,132Qm,12!!1s2~a12@l#~Ql,122Qm,12!1a32@l#~Ql,322Qm,32!2a21@l#

3~Ql,212Qm,21!2a23@l#~Ql,232Qm,23!!1s3~a13@l#~Ql,132Qm,13!1a23@l#

3~Ql,232Qm,23!2a31@l#Ql,312Qm,31!2a32@l#~Ql,322Qm,32!);

g15~s12s2!~a12@l#Qm,122a21@l#Qm,21!1~s12s3!~a13@l#Qm,132a31@l#Qm,31!

1~s22s3!~a23@l#Qm,232a32@l#Qm,32!;

Simplify@ f 1@m,l#2g1#

Out@1#50.

Here the expression off 1@m2 ,l2# can be obtained by substituting Eq.~A5! into Eq. ~A11! and
using Eq.~A9! and the equality

^~m2L!21~l2L!21qi ,pj&5~m2l!21~Q
i j

l2Q
i j

m!. ~A13!

Lemma A.2:Let

Tl~s!5 (
1< i , j <3

s62 i 2 j~Q
ii

lQ
j j

l2Q
i j

lQ
ji

l!, s5~s1 ,s2 ,s3!PC3. ~A14!

Then we have

~m2l!$I m~s!,Tl~t!%5t3~s12s2!~Q
21

mQ
12

l2Q
12

mQ
21

l!1t2~s12s3!

3~Q
31

mQ
13

l2Q
13

mQ
31

l!1t1~s22s3!~Q
32

mQ
23

l2Q
23

mQ
32

l!, ~A15!

~m2l!$Tm~t!,Tl~s!%5t1s2W1~m,l!1t2s1W1~l,m!1t2s3W2~m,l!

1t3s2W2~l,m!1t1s3W3~m,l!1t3s1W3~l,m!,

;l,mPC,t5~t1 ,t2 ,t3!PC3, ~A16!

where
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W1~m,l!5Q
31

l~Q
13

mQ
22

m2Q
12

mQ
23

m!1Q
13

l~Q
32

mQ
21

m2Q
22

mQ
31

m!

1Q
32

m~Q
11

lQ
23

l2Q
13

lQ
21

l!1Q
23

m~Q
12

lQ
31

l2Q
11

lQ
32

l!,

W2~m,l!5Q
12

l~Q
21

mQ
33

m2Q
23

mQ
31

m!1Q
21

l~Q
13

mQ
32

m2Q
12

mQ
33

m!

1Q
13

m~Q
22

lQ
31

l2Q
21

lQ
32

l!1Q
31

m~Q
12

lQ
23

l2Q
13

lQ
22

l!,

W3~m,l!5Q
21

l~Q
12

mQ
33

m2Q
13

mQ
32

m!1Q
12

l~Q
23

mQ
31

m2Q
21

mQ
33

m!

1Q
23

m~Q
11

lQ
32

l2Q
12

lQ
31

l!1Q
32

m~Q
13

lQ
21

l2Q
11

lQ
23

l!.

Proof: In a way similar to the proof of Eq.~A8!, we can verify Eq.~A15!. Now we prove Eq.
~A16!. Let

f 2~m,l!5~m2l!(
k51

3 S K ]Tm~t!

]qk ,
]Tl~s!

]pk L 2 K ]Tm~t!

]pk ,
]Tl~s!

]qk L D . ~A17!

Then we have

~m2l!$Tm~t!,Tm~s!%5 f 2~m,l!. ~A18!

In the following, we shall prove by using theMathematicathat Eq.~A16! holds

b1@l2#5s3Ql,221s2Ql,33; b2@l2#5s3Ql,111s1Ql,33;

b3@l2#5s2Ql,111s1Ql,22;

c1@m2#5t3Qm,221t2Qm,33; c2@m2#5t3Qm,111t1Qm,33;

c3@m2#5t2Qm,111t1Qm,22;

f 2@m2 ,l2#ªc1@m#~b1@l#~Ql,112Qm,11!2s3Ql,12~Ql,212Qm,21!2s2Ql,13~Ql,312Qm,31!!

2t3Qm,21~b1@l#~Ql,122Qm,12!2s3Ql,12~Ql,222Qm,22!2s2Ql,13~Ql,322Qm,32!!

2t2Qm,31~b1@l#~Ql,132Qm,13!2s3Ql,12~Ql,232Qm,23!2s2Ql,13~Ql,332Qm,33!!

1c2@m#~b2@l#~Ql,222Qm,22!2s3Ql,21~Ql,122Qm,12!2s1Ql,23~Ql,322Qm,32!!

2t3Qm,12~b2@l#~Ql,212Qm,21!2s3Ql,21~Ql,112Qm,11!2s1Ql,23~Ql,312Qm,31!!

2t1Qm,32~b2@l#~Ql,232Qm,23!2s3Ql,21~Ql,132Qm,13!2s1Ql,23~Ql,332Qm,33!!

1c3@m#~b3@l#~Ql,332Qm,33!2s2Ql,31~Ql,132Qm,13!2s1Ql,32~Ql,232Qm,23!!

2t2Qm,13~b3@l#~Ql,312Qm,31!2s2Ql,31~Ql,112Qm,11!2s1Ql,32~Ql,212Qm,21!!

2t1Qm,23~b3@l#~Ql,322Qm,32!2s2Ql,31~Ql,122Qm,12!2s1Ql,32~Ql,222Qm,22!!

1b1@l#~c1@m#~Qm,112Ql,11!2t3Qm,12~Qm,212Ql,21!2t2Qm,13~Qm,312Ql,31!!

2s3Ql,21~c1@m#~Qm,122Ql,12!2t3Qm,12~Qm,222Ql,22!2t2Qm,13~Qm,322Ql,32!!
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2s2Ql,31~c1@m#~Qm,132Ql,13!2t3Qm,12~Qm,232Ql,23!2t2Qm,13~Qm,332Ql,33!!

1b2@l#~c2@m#~Qm,222Ql,22!2t3Qm,21~Qm,122Ql,12!2t1Qm,23~Qm,322Ql,32!!

2s3Ql,12~c2@m#~Qm,212Ql,21!2t3Qm,21~Qm,112Ql,11!2t1Qm,23~Qm,312Ql,31!!

2s1Ql,32~c2@m#~Qm,232Ql,23!2t3Qm,21~Qm,132Ql,13!2t1Qm,23~Qm,332Ql,33!!

1b3@l#~c3@m#~Qm,332Ql,33!2t2Qm,31~Qm,132Ql,13!2t1Qm,32~Qm,232Ql,23!!

2s2Ql,13~c3@m#~Qm,312Ql,31!2t2Qm,31~Qm,112Ql,11!2t1Qm,32~Qm,212Ql,21!!

2s1Ql,23~c3@m#~Qm,322Ql,32!2t2Qm,31~Qm,122Ql,12!2t1Qm,32~Qm,22

2Ql,22!!;

W1@m2 ,l2#ªa13@m#Ql,132a31@m#Ql,312a32@l#Qm,321a23@l#Qm,23;

W2@m2 ,l2#ªa21@m#Ql,212a12@m#Ql,122a13@l#Qm,131a31@l#Qm,31;

W3@m2 ,l2#ªa12@m#Ql,122a21@m#Ql,212a23@l#Qm,231a32@l#Qm,32;

g25t1s2W1@m,l#1t2s1W1@l,m#1t2s3W2@m,l#1t3s2W2@l,m#

1t1s3W3@m,l#1t3s1W3@l,m#;

Simplify@ f 2@m,l#2g2#

Out@2#50.

Lemma A.3:Under the same assumption as the Lemma A.2, we have

~m2l!$Tm~s!,Rl%5s1@Y1~m,l!2Y2~m,l!#1s2@Y3~m,l!2Y1~m,l!#

1s3@Y2~m,l!2Y3~m,l!#,

;l,mPC. ~A19!

where

Y1~m,l!5~Q
21

mQ
33

m2Q
23

mQ
31

m!~Q
13

lQ
32

l2Q
12

lQ
33

l!1~Q
13

mQ
32

m2Q
12

mQ
33

m!~Q
23

lQ
31

l2Q
21

lQ
33

l!,

Y2~m,l!5~Q
22

mQ
13

m2Q
12

mQ
23

m!~Q
21

lQ
32

l2Q
22

lQ
31

l!1~Q
21

mQ
32

m2Q
22

mQ
31

m!~Q
12

lQ
23

l2Q
13

lQ
22

l!,

Y3~m,l!5~Q
11

mQ
32

m2Q
12

mQ
31

m!~Q
13

lQ
21

l2Q
11

lQ
23

l!1~Q
13

mQ
21

m2Q
11

mQ
23

m!~Q
12

lQ
31

l2Q
11

lQ
32

l!.

Proof: Let

f 3~m,l!5~m2l!(
k51

3 S K ]T~s!m

]qk ,
]Rl

]pk L 2 K ]T~s!m

]pk ,
]Rl

]qk L D . ~A20!

Then we have

~m2l!$T~s!m ,Rl%5 f 3~m,l!. ~A21!

With the help of theMathematica, we can verify Eq.~A19!
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f 3@m2 ,l2#ªb1@m#~a11@l#~Ql,112Qm,11!1a21@l#~Ql,212Qm,21!1a31@l#~Ql,312Qm,31!!

2s3Qm,21~a11@l#~Ql,122Qm,12!1a21@l#~Ql,222Qm,22!1a31@l#~Ql,322Qm,32!!

2s2Qm,31~a11@l#~Ql,132Qm,13!1a21@l#~Ql,232Qm,23!1a31@l#~Ql,332Qm,33!!

2b1@m#~a11@l#~Ql,112Qm,11!1a12@l#~Ql,122Qm,12!1a13@l#~Ql,132Qm,13!!

1s3Qm,12~a11@l#~Ql,212Qm,21!1a12@l#~Ql,222Qm,22!1a13@l#~Ql,232Qm,23!!

1s2Qm,13~a11@l#~Ql,312Qm,31!1a12@l#~Ql,322Qm,32!1a13@l#~Ql,332Qm,33!!

1b2@m#~a12@l#~Ql,22Qm,12!1a22@l#~Ql,222Qm,22!1a32@l#~Ql,322Qm,32!!

2s3Qm,12~a12@l#~Ql,112Qm,11!1a22@l#~Ql,212Qm,21!1a32@l#~Ql,312Qm,31!!

2s1Qm,32~a12@l#~Ql,132Qm,13!1a22@l#~Ql,232Qm,23!1a32@l#~Ql,332Qm,33!!

2b2@m#~a21@l#~Ql,212Qm,21!1a22@l#~Ql,222Qm,22!1a23@l#~Ql,232Qm,23!!

1s3Qm,21~a21@l#~Ql,112Qm,11!1a22@l#~Ql,122Qm,12!1a23@l#~Ql,132Qm,13!!

1s1Qm,23~a21@l#~Ql,312Qm,31!1a22@l#~Ql,322Qm,32!1a23@l#~Ql,332Qm,33!!

1b3@m#~a13@l#~Ql,132Qm,13!1a23@l#~Ql,232Qm,23!1a33@l#~Ql,332Qm,33!!

2s2Qm,13~a13@l#~Ql,112Qm,11!1a23@l#~Ql,212Qm,21!1a33@l#~Ql,312Qm,31!!

2s1Qm,23~a13@l#~Ql,122Qm,12!1a23@l#~Ql,222Qm,22!1a33@l#~Ql,322Qm,32!!

2b3@m#~a31@l#~Ql,312Qm,31!1a32@l#~Ql,322Qm,32!1a33@l#~Ql,332Qm,33!!

1s2Qm,31~a31@l#~Ql,112Qm,11!1a32@l#~Ql,122Qm,12!1a33@l#~Ql,132Qm,13!!

1s1Qm,32~a31@l#~Ql,212Qm,21!1a32@l#~Ql,222Qm,22!1a33@l#~Ql,232Qm,23!!;

Y15a21@m#a12@l#2a12@m#a21@l#; Y25a13@m#a31@l#2a31@m#a13@l#;

Y35a32@m#a23@l#2a23@m#a32@l#; g35s1~Y12Y2!1s2~Y32Y1!1s3~Y22Y3!;

Simplify@ f 3@m,l#2g3#

Out@3#50.

Lemma A.4:

$Tm
~1! ,Tl

~1!%50, $Rm ,Rl%50, $Tm
~1! ,Rl%50, ;l,mPC. ~A22!

Proof: By Eqs.~A16! and ~A19!, we get that

$Tm
~1! ,Tl

~1!%5$Tm~t!,Tl~s!%ut5s5~1,1,1!50, $Tm
~1! ,Rl%5$Tm~s!,Rl%us5~1,1,1!50.

Let

f 4~m,l!5~m2l!(
k51

3 S K ]Rm

]qk ,
]Rl

]pk L . ~A23!

It is easy to see that

~m2l!$Rm ,Rl%5 f 4~m,l!1 f 4~l,m!. ~A24!
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The second expression of Eq.~A22! can be verified by theMathematica,

f 4@m2 ,l2#ªa11@m#~a11@l#~Ql,112Qm,11!1a11@l#~Ql,212Qm,21!1a31@l#~Ql,312Qm,31!!

1a12@m#~a11@l#~Ql,122Qm,12!1a21@l#~Ql,222Qm,22!1a31@l#~Ql,322Qm,32!!

1a13@m#~a11@l#~Ql,132Qm,13!1a21@l#~Ql,232Qm,23!1a31@l#~Ql,332Qm,33!!

1a21@m#~a12@l#~Ql,112Qm,11!1a22@l#~Ql,212Qm,21!1a32@l#~Ql,312Qm,31!!

1a22@m#~a12@l#~Ql,122Qm,12!1a22@l#~Ql,222Qm,22!1a32@l#~Ql,322Qm,32!!

1a23@m#~a12@l#~Ql,132Qm,13!1a22@l#~Ql,232Qm,23!1a32@l#~Ql,332Qm,33!!

1a31@m#~a13@l#~Ql,112Qm,11!1a23@l#~Ql,212Qm,21!1a33@l#~Ql,312Qm,31!!

1a32@m#~a13@l#~Ql,122Qm,12!1a23@l#~Ql,222Qm,22!1a33@l#~Ql,322Qm,32!!

1a33@m#~a13@l#~Ql,132Qm,13!1a23@l#~Ql,232Qm,23!1a33@l#~Ql,332Qm,33!!;

Simplify@ f 4@m,l#1 f 4@l,m##

Out@4#50.

Proposition A.5:

$F̂m
~ i ! ,F̂l

~ j !%50, 1< i , j <3,;l,mPC, ~A25!

with F̂l
(1)5I l

(1)1Tl
(1) , F̂l

(2)5I l
(2)1Tl

(2)1Rl .
Proof: It is easy to see that the equalities

F̂l
~0!5I l~s!us5~1,1,1! , I l

~1!5I l~s!us5~b21b3 ,b11b3 ,b11b2! ,

I l
~2!5I l~s!us5~b2b3 ,b1b3 ,b1b2! , Tl

~1!5Tl~s!us5~1,1,1! , Tl
~2!5Tl~s!us5~b1 ,b2 ,b3! .

Obviously $F̂m
(0) ,F̂l

(0)%50 from Eq. ~A7!. Using Eq.~A7! and the symmetry of Eq.~A15!, we
obtain

$I m
~ i ! ,I l

~ i !%50, $I m
~ i ! ,Tl

~ i !%1$Tm
~ i ! ,I l

~ i !%50, i 51,2, ~A26!

which together with the first expression of Eq.~A22! imply $F̂m
(1) ,F̂l

(1)%50 resorting to the
bilinear property of the Poisson bracket. Noticing Eqs.~A8!, ~A16!, and~A19!, we get that

$I m
~2! ,Rl%1$Rm ,I l

~2!%1$Tm
~2! ,Tl

~2!%50, $Tm
~2! ,Rl%1$Rm ,Tl

~2!%50, ~A27!

which together with Eqs.~A26! and~A22! lead up to$F̂m
(2) ,F̂l

(2)%50. In view of Eqs.~A7!, ~A8!,
and ~A15!, we obtain

$F̂m
~0! ,I l

~ i !%50, $F̂m
~0! ,Rl%50, $F̂m

~0! ,T~ i !%50, i 51,2,

$I m
~1! ,I l

~2!%50, $I m
~1! ,Rl%1$Tm

~1! ,Tl
~2!%50, $I m

~1! ,Tl
~2!%1$Tm

~1! ,I l
~2!%50. ~A28!

By using Eq.~A28! and the third expression of Eq.~A22!, we have

$F̂m
~0! ,F̂l

~ i !%50, $F̂m
~1! ,F̂l

~2!%50, i 51,2.
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The proof is completed.
Equation~4.9! and Proposition A.5 imply Theorem 4.1.

2. Two generators and the proof of Theorem 4.2

To prove Theorem 4.2, we introduce two generators of involutive systems of cons
integrals

G l
~ i j !5 (

k51
kÞ l

N Blk
~ i j !

l l2lk
, Blk

~ i j !5~ql
iqk

j 2qk
i ql

j !~pl
ipk

j 2pk
i pl

j !, ~A29!

Y l5(
s51
sÞk

N

(
k51
kÞ l

N
Alks

~l l2lk!~lk2ls!
, Alks5Uql

1 ql
2 ql

3

qk
1 qk

2 qk
3

qs
1 qs

2 qs
3
UUpl

1 pl
2 pl

3

pk
1 pk

2 pk
3

ps
1 ps

2 ps
3
U , ~A30!

which are two natural generalizations of the 232 case.22

Proposition A.6:

Q
ii

lQ
j j

l2Q
i j

lQ
ji

l5(
l 51

N
G l

~ i j !

l2l l
, 1< i , j <3, ~A31!

Rl5(
l 51

N
Y l

l2l l
. ~A32!

Proof: Put the partial-fraction expansion ofQ
i j

l , i.e.,

Q
i j

l5(
l 51

N ql
ipl

j

l2l l
, ~A33!

into the right-hand side of Eq.~A31!. The left-hand side of Eq.~A31! is obtained through direc
calculations on account of

1

~l2l l !~l2lk!
5

1

l l2lk
S 1

l2l l
2

1

l2lk
D . ~A34!

Substituting Eq.~A33! into Eq. ~A5! yields

Rl5(
l 51

N

(
k51

N

(
s51

N ql
1qk

2qs
3

~l2l l !~l2lk!~l2ls!Upl
1 pl

2 pl
3

pk
1 pk

2 pk
3

ps
1 ps

2 ps
3
U

5
1

6 (
l 51

N

(
k51

N

(
s51

N
Alks

~l2l l !~l2lk!~l2ls!
.

Resorting to Eq.~A34!, we get
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Rl5
1

6 (
l

(
k

(
sÞk

Alks

~lk2ls!~l2l l !
S 1

l2lk
2

1

l2ls
D

5
1

6 (
l

(
kÞ l

(
sÞk,l

Alks

lk2ls
F 1

l l2lk
S 1

l2l l
2

1

l2lk
D2

1

l l2ls
S 1

l2l l
2

1

l2ls
D G

5
2

6 (
l 51

N
Y l

l2l l
1

2

6 (
l

(
k

(
sÞk,l

Alks

~lk2ls!~l l2ls!~l2ls!

5
2

6 (
l 51

N
Y l

l2l l
1

2

6 (
l

(
kÞ l

(
sÞk,l

Alks

~l2ls!~l l2lk!
S 1

lk2ls
2

1

l l2ls
D

5(
l 51

N
Y l

l2l l
,

where it is used thatAllk5Alkl5Alkk50, Alks5Alsk5Askl . The proof is completed.
Proposition A.7:Let E1

( i ) , ...,EN
( i ) (0< i<2) defined as follows:

El
~0!5ql

1pl
11ql

2pl
21ql

3pl
3, ~A35!

El
~1!5~b21b3!ql

1pl
11~b11b3!ql

2pl
21~b11b2!ql

3pl
31G l

~12!1G l
~13!1G l

~23! , ~A36!

El
~2!5b2b3ql

1pl
11b1b3ql

2pl
21b1b2ql

3pl
31b3G l

~12!1b2G l
~13!1b1G l

~23!1Y l . ~A37!

Then

Fm
~ i !5(

l 51

N

l l
mEl

~ i ! , 0< i<2. ~A38!

Proof: By Proposition A.6 and Eq.~A33!, it is easy to see that

Fl
~ i !5(

l 51

N El
~ i !

l2l l
. ~A39!

Expanding (l2l l)
21 as a power series inl21 and substituting into Eq.~A39!, we obtain

Fl
~ i !5(

l 50

`

l2m21(
l 51

N

l l
mEl

~ i ! ,

which together with Eq.~4.9! givesFm
( i )5( l 51

N l l
mEl

( i ) .
Proposition A.8:The 3N 1-formsdEl

( i ) , 1< l<N, 0< i<2, are linearly independent.
Proof: Suppose that there exist 3N constantscl

( i ) , 1< l<N, 0< i<2, satisfying

(
l 51

N

~cl
~0!dEl

~0!1cl
~1!dEl

~1!1cl
~2!dEl

~2!!50. ~A40!

Then Eq.~A40! implies

(
l 51

N S cl
~0!

]El
~0!

]pi 1cl
~1!

]El
~1!

]pi 1cl
~2!

]El
~2!

]pi D 50, 1< i<3. ~A41!
                                                                                                                



,

3429J. Math. Phys., Vol. 40, No. 7, July 1999 A finite dimensional integrable system . . .

                    
In order to deduce all constantscl
( i )50, 1< l<N, 0< i<2, we demand the following equalities

which can be calculated directly:

~A42!

]2G l
~ i j !

]qi]pi 5S ql
j pl

j

l l2l1
,...,

ql
j pl

j

l l2l l 21
,(
k51
kÞ l

N qk
j pk

j

l l2lk
,

ql
j pl

j

l l2l l 11
,...,

ql
j pl

j

l l2lND T

, ~A43a!

]2G l
~ i j !

]qj]pj 5S ql
ipl

i

l l2l1
,...,

ql
ipl

i

l l2l l 21
,(
k51
kÞ l

N qk
i pk

i

l l2lk
,

ql
ipl

i

l l2l l 11
,...,

ql
ipl

i

l l2lND T

, 1< i , j <3,

~A43b!

]2G l
~ i j !/~]qk]pk!50, kÞ i , j . ~A43c!

Now we introduce the operator

Then we have from Eq.~A43! that

Ds
~ j !

]2G l
~ i j !

]qi]pi 5H S 1

l l2l1
,...,

1

l l2l l 21
,0,

1

l l2l l 11
,...,

1

l l2lN
D T

, l 5s

0, lÞs,1< i , j <3,

~A44a!

Ds
~ i !

]2G l
~1 j !

]q1]p1 50, Ds
~ j !

]2G l
~23!

]q1]p1 50, Ds
~3!

]2G l
~1 j !

]q2]p2 50, 2< i , j <3,iÞ j . ~A44b!

Acting with the operatorDs
( j )]/(]qi)uq5p50 , (1< i , j <3,1<s<N), upon Eq.~A41!, we get

cs
~1!1b1cs

~2!50, cs
~1!1b2cs

~2!50, cs
~1!1b3cs

~2!50, 1<s<N, ~A45!

in view of Eq. ~A44! and the following equality:

Ds
~ j !

]2Y l

]qi]piU
q5p50

50, q5~q1,q2,q3!, p5~p1,p2,p3!, 1< i , j <3,1< l ,s<N.

Equations~A45! imply cs
(1)5cs

(2)50, 1<s<N. Operating with]/(]qi) on Eq.~A41! and noticing
cl

(1)5cl
(2)50, we derivecl

(0)50, 1< l<N. Hence the 3N 1-formsdEl
( i ) , 0< i<2, 1< l<N, are

linearly independent.
The proof of Theorem 4.2: Assume that there exist 3N constantsbm

( i ) , 1<m<N, 0< i<2, so
that

(
m51

N

~bm
~0!dFm

~0!1bm
~1!dFm

~1!1bm
~2!dFm

~2!!50. ~A46!

Substituting Eq.~A38! into Eq. ~A46! and noting the independence of thedEl
( i ) , 1< l<N, 0< i

<2, we get
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(
m51

N

bm
~ i !l l

m2150, 1< l<N,0< i<2,

which impliesbm
( i )50, 1<m<N, 0< i<2, by utilizing that Vandermonde determinant is not ze

The proof is finished.
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Let (P,p,B,G) be aG-principal fiber bundle. The action ofG on the cotangent
bundleT* P is free and Hamiltonian. By Liberman and Marle@Symplectic Geom-
etry and Analytical Mechanics~Reidel, Dortrecht, 1987!# and Marsden and Ratiu
@Lett. Math. Phys.11, 161 ~1981!# the quotient spaceT* P/G is a Poisson
manifold. We will determine the Poisson bracket on the reduced Poisson mani-
fold T* P/G, and its symplectic leaves. ©1999 American Institute of Physics.
@S0022-2488~99!02606-7#

I. INTRODUCTION

When a Lie groupG acts on a manifoldQ, it may foliate it into the orbits under the action
The quotient with respect to this foliation isQ/G. Under certain assumptionsQ/G is a manifold
with smooth projection fromQ to Q/G. If Q is the phase space of a mechanical system,Q/G will
often play the role of a reduced phase manifold, the carrier manifold of a reduced system. F
reason there is some interest in how structures, and more generally properties ofQ, carry down to
Q/G. Assume thatQ is a Poisson manifold and thatG acts onQ, with a Hamiltonian and free
action. A result of Marsden and Ratiu2 shows that the Poisson bracket onQ, projects onto a
Poisson bracket on the quotient spaceQ/G. In particular, whenQ is the phase space of a me
chanical system, endowed with a free and Hamiltonian action of a Lie groupG, the quotient space
is a Poisson manifold.

Let G be a Lie group,G its Lie algebra, and (P,p,B,G) a G-principal bundle with total space
P, base spaceB, and a principal action on the left

F:G3P→P,

~g,p!°F~g,p!.

The canonical liftingF̂ of F to the cotangent bundleT* P is a free and Hamiltonian action. B
Refs. 1 and 2, the quotient spaceT* P/G has a unique Poisson structure for which the canon
projectiont:T* P→T* P/G is a Poisson map.

When a connection is given onP, we show thatT* P/G can be considered as a vector bund
overT* B with G* as typical fiber, and that its Poisson structure is the sum of three terms: th
one comes from the canonical symplectic structure ofT* B, the second one from the Lie–Poisso
structure onG* , and the third one involves the curvature of the connection onP. Finally we show
that the symplectic leaves ofT* P/G are bundles overT* B with coadjoint orbit inG* as a typical
fiber. These fiber bundles are introduced by Sternberg in Ref. 3, who has given their sym
structure, thus giving a symplectic formulation of the motion of a particule in a Yang–Mills fi
Weinstein4 has shown that these manifolds are reduced manifolds at 0PG* of the diagonal action
of G on the productT* P3O, whereO is a coadjoint orbit inG* . Note that Kummer5 has shown
that there is a symplectomorphism between the reduced symplectic manifold ofT* P at a
G-invariant pointmPG* , and the symplectic spaceT* B endowed with the symplectic form, sum
of its canonical symplectic form and of a magnetique term depending on the curvature
connection onP.
34310022-2488/99/40(7)/3431/8/$15.00 © 1999 American Institute of Physics
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Those authors~Sternberg, Weinstein, and Kummer!, were interested in the symplectic stru
tures of the leaves ofT* P/G, by considering each one separately. We are interested in the Po
structure ofT* P/G, which gathers together all of the symplectic structures of the leave
T* P/G.

Note also that Montgomery6 has given a global formula of the Poisson bracket onT* P/G,
without proof. One of the principal objects of this paper is to give a proof of this formula.

It is important to remark that the Poisson structure onT* P/G is useful especially for the stud
of the stability of some motions of a mechanical system, whose phase space isT* P, when a Lie
groupG of symmetry of the system acts freely on the configuration spaceP, which is the set of all
possible configurations of the mechanical system.

II. CONNECTION AND CANONICAL SYMPLECTIC FORM

Let (P,p,B,G) be aG-principal fiber bundle. This means we are given a free action, tha
suppose left action

F:G3P→P, ~g,p!°F~g,p!.

The canonical lift ofF is a free and Hamiltonian actionF̂ of G on T* P, with moment
mapping~see the definition in Refs. 1 or 7–9! J:T* P→G* , given for allzPT* P andjPG by

^J~z!,j&5^z,jP~qP~z!!&,

where qP :T* P→P is the canonical projection andjP is the fundamental vector field onP
associated withj, given by

jP~p!5
d

dt
F~exp~2tj!,p!u t50 .

Suppose we are given a connection onP ~see Refs. 10 and 11!. It is a G-equivariant one-form
v on P with values inG, Fg* v5Adgv, and such that for allpPP andjPG, v(jP(p))5j. The
tangent space atp splits into a direct sumTpP5VpP% HpP, whereVpP5kerTpp is the vertical
subspace andHpP5kerv is the horizontal subspace defined by the connection. Thenv restricted
to VpP is the inverse of the mapping

up :G→Vp ,

j°jP~p!.

The horizontal subspaceHpP is isomorphic toTp(p)B, therefore, the cotangent space atp splits
into the direct sumTp* P5Vp* P% Tp(p)* B. Thus we obtain a projection

kp :Tp* P→Tp~p!
* B,

which is the transpose of the horizontal lifting of vectors inTp(p)B to horizontal vectors inTpP.
Let zPTp* P, ZPTz(T* P) andX5TqP(Z)PTpP. Let z5zver1zhor, X5Xver1Xhor, be the

decompositions ofz andX relative to the direct sum decompositions given above, then the L
ville one-form evaluated onZ is

~aP!z~Z!5^z,X&5^z,Xver1Xhor&5^z,jP~p!&1^z,Xhor&.

Now, by definition ofJ,k and the connection one formv, we have

^z,jP~p!&5^J~z!,j&, ^z,Xhor&5^kp~z!,Tpp~X!&, v~jP~p!!5j,

therefore,
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~aP!z~Z!5^J~z!,j&1^kp~z!,Tpp~X!&5^J~z!,v~jP!&1^kp~z!,Tpp~X!&

5^J~z!,v~X!&1^kp~z!,Tpp~X!&

5^J~z!,~qP* v!~Z!&1^kp~z!,Tk~Z!&,

and then we have the following proposition.
Proposition II.1:The Liouville one-formaP and the canonical symplectic two-formdaP on

T* P, are expressed by the following formulas:

aP5^J,qP* v&1k* aB , daP5dJ∧qP* v1^J,qP* dv&1k* daB .

III. DECOMPOSITION OF THE COTANGENT BUNDLE

We denote byP̃5$(b,p)PT* B3P/qP(b)5p(p)%, the fiber product ofT* B andP overB.
Let p̂: P̃→P andp̃: P̃→T* B be the first and the second projections. Then the following diag
is commutative:

P̃
p̂

——→
P

p̃↓ ↓p

T* B qB
——→

B

and (P̃,p̃,T* B,G) is a G-principal fiber bundle. The mappingp̂ is a G-principal fiber bundles
homomorphism. The mappingṽ5p̂* v is then a connection onP̃. Let Ṽ be its curvature form.
We haveṼ5p̃* V, whereV is the curvature two-form ofv. It is a basic two-form onP̃ with
values inG, it can be thought as a two-form onT* B with values in the associated fiber bundle
P̃ with typical fiberG: P̃3GG ~see Ref. 10!.

Proposition III.1: ~Maurer–Cartan equation!. The curvature formV, satisfies the structure
equation of Maurer–Cartan:

for all pPP,X and YPTpP, V~X,Y!5dv~X,Y!1@v~X!,v~Y!#.

Proof: SinceTP5VP% HP, it is sufficient to consider the three following cases:
First case:X,Yare horizontal.

In this case,v(X)5v(Y)50, Xhor5X, andYhor5Y, the equality reduces to the definition o
V, V(X,Y)5dv(Xhor,Yhor).
Second case:X,Yare vertical.

In this case, there existj andj8 in G such thatX5jP(p) andY5jP8 (p)

v~X!5j and v~Y!5j8

Xhor5Yhor50 then V~X,Y!50.

On the other hand,

dv~X,Y!1@v~X!,v~Y!#5jP~v~jP8 !!2jP8 ~v~jP!!2v~@jP ,jP8 # !1@v~jP!,v~jP8 !#.

Now, v(jP) andv(jP8 ) are two constant functions onP, then the two first right terms cancel. W
have@jP ,jP8 #5@j,j8#P then,dv(jP ,jP8 )1@j,j8#52@j,j8#1@j,j8#50.
Third case:X horizontal andY vertical.
In this case,Xhor5X, Yhor50, v(X)50, andv(Y)5j, wherej is the unique element ofG, such
that jP(p)5Y.

We extendX to a horizontal vector field onP, which will be also denoted byX
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V~X,Y!5dv~Xhor,Yhor!50.

On the other hand,

dv~X,Y!1@v~X!,v~Y!#5X~v~jP!!2jP~v~X!!2v~@X,jP# !1@v~X!,v~jP!#5v~@X,j#!

SinceX is horizontal, then@X,jP# also, thereforev(@X,jP#)50. j

We assume thatG* is equipped with its canonical Lie–Poisson structure defined by
following bracket:

for f 1 and f 2 in C`~G* !, $ f 1 , f 2%~m!52^m,@dm f 1 ,dm f 2#&.

HereG** is identified withG and @,# is the Lie bracket onG.
We consider the following action on the productP̃3G* , for gPG,(b,p)P P̃ and
mPG* ,g((b,p),m)5((b,F(g,p)),Adg* m).

In this case, the mapping

c: P̃3G*→T* P, ~~b,p!,m!°b1 tvp~m!,

is a G-equivariant isomorphism with inverse

c21:T* P→ P̃3G* , z5zver1zhor°~zhor,
tu~z!!.

Thus,T* P is isomorphic toP̃3G* andT* P/G to the associated fiber bundleP̃3GG* , with base
spaceT* B and fiberG* . We denotepG* : P̃3GG*→T* B the canonical projection on the bas
space.

A. Moment mapping and canonical symplectic form

Let zPT* P andjPG,

^ tu~z!,j&5^z,u~j!&5^z,jP~p!&5^J~z!,j&.

The moment mappingJ is then identified with the second projection fromP̃3G* to G* , the
mappingk with the projectionp̃+pr1 , where pr1 : P̃3G*→ P̃ is the first projection, and the
mappingqP is identified withp̂+pr1 .

By proposition~II.1!, aP5^J,qP* v&1k* aB , then after identification ofT* P with P̃3G* ,
for all z5(b,p,m)P P̃3G*

aP~z!5^J,ṽ&1k* aB~b!.

A vector ZPTz( P̃3G* ) can be written asZ5(Z8,h), whereZ8PT(b,p)P̃ and hPTmG* [G* ,
h5TzJ(Z).

Let j5ṽ(Z8). In this case,

aP~Z!5^J,ṽ&~Z!1k* aB~b!~Z!5^m,j&1aB~b!~Tk~Z8!!.

Then, for allZ15(Z18 ,h1) andZ25(Z28 ,h2) in Tz( P̃3G* ),

daP~Z1 ,Z2!5dJ∧ṽ~Z1 ,Z2!1^m,dṽ~Z18 ,Z28!&1daB~b!~Tk~Z18!,Tk~Z28!!.

Now by the Maurer–Cartan equation~Proposition III.1!, applied toṼ, we have

dṽ~Z18 ,Z28!5Ṽ~Z18 ,Z28!2@ṽ~Z18!,ṽ~Z28!#,
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then, if ṽ(Z18)5j1 and ṽ(Z28)5j2 , we obtain

daP~Z1 ,Z2!5dJ∧ṽ~Z1 ,Z2!1^m,Ṽ~Z18 ,Z28!&2^m,@j1 ,j2#&1daB~b!~Tk~Z18!,Tk~Z28!!.
~1!

B. Covariant differential of a function

The connectionṽ on P̃ generates a connection on the associated bundleP̃3GG* , which is
given by a horizontal subbundleH( P̃3GG* ), complementary inT( P̃3GG* ) to the vertical sub-
bundleV( P̃3GG* )5kerpG* . Let h be the horizontal lifting of the tangent vectors onT* B to the
horizontal vectors onP̃3GG* .

Definition: We define the covariant differential of a functionf PC`( P̃3GG* ) on
ẑP P̃3GG* to be that covectordṽ f ( ẑ) on b5pG* ( ẑ)PT* B, given for allVbPTb(T* B) by

^dṽ f ~ ẑ!,Vb&5^d f~ ẑ!,hVb&.

This may be thought of as the horizontal part ofd f( ẑ). The vertical part may be thought of as a
element in the dual bundle toP̃3GG* which is the adjoint bundleP̃3GG, with base spaceT* B
and fiberG. This vertical part is the differential off with respect to the variablem̂ in the fiber
(G* ) ẑ throughẑ. Thus,

d f~ ẑ!5dṽ f ~ ẑ!1dm̂ f ~ ẑ!.

The associated fiber bundleP̃3GG is a bundle with base spaceT* B and typical fibreG. Then
every fiber over an elementbPT* B has a Lie algebra structure. We denote by@,# its Lie bracket.

IV. REDUCED POISSON BRACKET

Theorem IV.1: Let (P,p,B,G) be aG-principal fiber bundle, andv a connection onP. The
quotient spaceT* P/G has a unique Poisson structure for which the canonical projection
Poisson map, and after the identification ofT* P/G with P̃3GG* , the Poisson bracket of two
functions f 1 and f 2 in C`( P̃3GG* ), evaluated at a pointẑ in P̃3GG* , is

$ f 1 , f 2%~ ẑ!5daB~b!~dṽ f 1
]~ ẑ!,dṽ f 2

]~ ẑ!!1^ẑ,Ṽ~b!~dṽ f 1
]~ ẑ!,dṽ f 2

]~ ẑ!!&

2^ẑ,@dm̂ f 1~ ẑ!,dm̂ f 2~ ẑ!#&.

In this formula, the vectordṽ f ]( ẑ) is the unique vector inTb(T* B), associated todṽ f ( ẑ) by the
isomorphism generated by the symplectic formdaB , betweenT* (T* B) andT(T* B). The two-

form Ṽ is considered as a two-form onT* B with values inP̃3GG, by the mapping

~Vb ,Wb!°~b,Ṽ~hVb ,hWb!!,

wherebPT* B, Vb and WbPT* B, and hVb ,hWb are their corresponding horizontal liftings
with respect to the connectionṽ.

Proof: Let tG* : P̃3G*→ P̃3GG* , be the canonical projection, which maps a po
z5(b,p,m)P P̃3G* , to its G orbit, ẑ5tG* (z)P P̃3GG* .
As show by Marsden and Ratiu in Ref. 2, the quotient space of a Poisson manifold by a H
tonian and free action of a Lie group, has a unique Poisson structure, for which the proje
which sends a point to its orbit, is a Poisson map.

The associated fiber bundleP̃3GG* is endowed with the unique Poisson structure for wh
the projectiontG* is a Poisson map. Then, iff 1 , f 2 are inC`( P̃3GG* ), we have

$ f 1 , f 2%~ ẑ!5daP~z!~d~ f 1+tG* !],d~ f 2+tG* !]!.
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Now,

d fi~ ẑ!5dṽ f i~ ẑ!1dn̂f i~ ẑ! for i 51,2,

and by formula~1!, we have

daP~z!~d~ f 1+tG* !],d~ f 1+tG* !]!5dJ∧ṽ~d~ f 1+tG* !],d~ f 2+tG* !]!1^J~z!,Ṽ~z!

3~dṽ~ f 1+tG* !],dṽ~ f 2+tG* !]!&2^J~z!,@dm~ f 1+tG* !],dm

3~ f 2+tG* !]#&1daB~b!~dṽ~ f 1+tG* !],dṽ~ f 2+tG* !]!.

The quadruple (P̃3G* ,tG* ,P̃3GG* ,G) is a G-principal fiber bundle~see Kobayashi and
Nomizu11!. The connection one-formṽ on P̃ can be thought of as a one-form onP̃3G* ~depend-
ing only on coordinates inP̃!. For i 51,2 fi+tG* is a G-invariant function onP̃3G* . There is an
isomorphism between the set of functions onP̃3GG* and the set ofG-invariant functions on
P̃3G* . Then,d( f i+tG* )(z)] is the horizontal lifting ofd fi

]( ẑ) to P̃3G* . It is then a horizontal
vector. We have then

ṽ~d~ f i+tG* !]!50 dJ∧ṽ~d~ f 1+tG* !],d~ f 2+tG* !]!50.

On the other hand the moment mappingJ is the second projection fromP̃3G* to G* . It generates
a mappingJ̃ from P̃3GG* on P̃3GG* , which is the identity mapping. Then,

$ f 1 , f 2%~ ẑ!5daB~b!~dṽ f 1
]~tG* ~z!,dṽ f 2

]~tG* ~z!!!1^J̃~ ẑ!,Ṽ~b!~dṽ f 1
]~tG* ~z!!,dṽ f 2

]~tG* ~z!!!&

2^J̃~ ẑ!,@dm̂ f 1~tG* ~z!!,dm̂ f 2~tG* ~z!!#&

5daB~b!~dṽ f 1
]~ ẑ!,dṽ f 2

]~ ẑ!!1^ẑ,Ṽ~b!~dṽ f 1
]~ ẑ!,dṽ f 2

]~ ẑ!&2^ẑ,@dm̂ f 1~ ẑ!,dm̂ f 2~ ẑ!#&.
j

V. SYMPLECTIC LEAVES

Let us recall a result of Sternberg.3 Let (F,VF) be a symplectic manifold with symplecti
form VF , on which a Lie groupG acts by a Hamiltonian action on the right, with aG-equivariant
momentJF :F→G* . Then the choice of a connection onP determines a symplectic structure o
the associated bundleP̃3GF. The symplectic form onP̃3GF is

s5pF* daB2^J̃F ,pF* Ṽ&1ṼF ,

whereJ̃ is the mapping onP̃3GF with values inP̃3GG* generated by theG-equivariant moment
mapJF , which makes the following diagram commutative:

P̃3F
idP̃3JF

——→ P̃3G*

↓ ↓

P̃3GF J̃F
——→

P̃3GG*

The curvature two-formṼ on P̃ is equivariant and cancels on vertical vector fields. It can

considered as a two-form onT* B with values in P̃3GG ~see Ref. 10!. The form ṼF is the
two-form on P̃3GF generated by theG-invariant symplectic two-formVF . The mapping
pF : P̃3GF→T* B is the canonical projection on the base space.
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Let us takeF5O a coadjoint orbit inG* , with its canonical symplectic two-formVO , given
for all mPO andj,zPG, by

VO~m!~jO ,zO!52^m,@j,z#&.

Then the moment mapJO is equal to2 iO , whereiO is the injection ofO in G* . Consequently the
mapping 2 J̃O is the injection of P̃3GO in P̃3GG* : we have J̃O( ẑ)52 ẑ. The symplectic
two-form on the symplectic spaceP̃3GO, evaluated at a pointẑP P̃3GO, b5pO( ẑ)PT* B, and
Ẑ1 ,Ẑ2PTẑ( P̃3GO) is

s~ Ẑ1 ,Ẑ2!5daB~TpO~ Ẑ1!,TpO~ Ẑ2!!1^ẑ,Ṽ~TpO~ Ẑ1!,TpO~ Ẑ2!!&2^ ẑ,@ Ẑ1ver,Ẑ2ver#&.

Theorem V.1: The symplectic leaves ofP̃3GG* are the symplectic fiber bundlesP̃3GO,
associated to the principal fiber bundleP̃, with base spaceT* B and typical fiber a coadjoint orbi
O in G* .

Proof: The symplectic leaves ofT* P/G are the Marsden–Weinstein reduced spaces~see Ref.
12! J21(m)/Gm , wheremPG* andGm its isotropy subgroup with respect to the coadjoint act
of G on G* . By Marle13 the reduced spaceJ21(m)/Gm is symplectomorphic to the symplecti
spaceJ21(O)/G, whereO is the coadjoint orbit containingm. After identification ofT* P with
P̃3G* , the moment mappingJ, is the second projection fromP̃3G* to G* . Therefore,

J21~O!5 P̃3O and J21~O!/G5 P̃3GO.

Let us takeẑP P̃3GO, b5pO( ẑ)PT* B, f 1 and f 2 in C`( P̃3GO), and let us denote by,Ẑf i
the

value onẑ, of the Hamiltonian vector field associated tof i , for i 51,2, then

s ẑ~ Ẑf 1
,Ẑf 2

!5daB~b!~TpO~ Ẑf 1
!,TpO~ Ẑf 2

!1^ẑ,Ṽ~b!~TpO~ Ẑf 1
!,TpO~ Ẑf 2

!!&

2^ẑ,@~ Ẑf 1
!ver,~ Ẑf 2

!ver#&

5daB~b!~dṽ f 1
]~tO~z!!,dṽ f 2

]~tO~z!!!1^ẑ,Ṽ~b!~dṽ f 1
]~tO~z!!,dṽ f 2

]~tO~z!!!&

2^ẑ,@dm̂ f 1
]~tO~z!!,dm̂ f 2

]~tO~z!!#&

5$ f 1 , f 2%T* P/G .

We see that the restriction of the Poisson bracket ofP̃3GG* to P̃3GO, is equal to the Poisson
bracket generated by the symplectic form onP̃3GO. This proves the theorem V.1. j

VI. EXAMPLE

Let G5SO(3), be therotation group of the Euclidean three spaceR3 about its origin, and let
K5S1 be the rotation group of the planeR2 considered as a subgroup ofG, by identification with
elements of the form

S a 2b 0

b a 0

0 0 1
D , a21b251.

Let us consider the actionF of K on G given by the restriction of the left translations ofG to
K3G

F:K3G→G, ~k,g!°kg.
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The set of orbits SO(3)/S1 can be identified withS2. Let pK :SO(3)→S2, be the canonical
projection which sends an elementAPSO(3) to itsK orbit. In this case (G,pK ,S2,S1) is a
S1-principal fiber bundle with total space SO~3! and base spaceS2. The Lie algebra so~3! of
SO~3!, endowed with its Lie bracket

@A,B#5AB2BA,

is identified withR3 endowed with the vector product3 ~see Ref. 7!. The tangent fiber bundle to
SO~3! is identified with SO(3)3R3 ~see Ref. 1!. The Lie algebra ofS1 is identified withR, with
trivial Lie bracket. The mapping which sends (A,a),APSO(3) anda5(a1 ,a2 ,a3)PR3, to a3 , is
a connection on (SO(3),pK ,S2,S1). Its curvature two-form is the mappingV, evaluated at a pair
((A,a),(A8,a8))PTSO(3)3TSO(3), is~by Ref. 10!

V~~A,a!,~A8,a8!!52~a3a8!35a1a282a2a18 .

The orbit set of the canonical liftingF̂ of F to the cotangent bundleT* SO(3), is afiber bundle
with base spaceT* S2 and typical fiber R. The covariant differential of a function
f PC`(T* SO(3)/S1) is the differential with respect to (s,(a1 ,a2)), where sPS2 and
(a1 ,a2)PTs* S2.

The reduced Poisson bracket of two functionsf 1 and f 2PC`(T* SO(3)/S1), evaluated at a
point (s,(a1 ,a2),a3)PT* SO(3)/S1, is

$ f 1 , f 2%5daS2~d~s,~a1 ,a2!! f 1
] ,d~s,~a1 ,a2!! f 2

]!1^a3 ,2~d f13d f2!3&

5^dsf 1 ,d~a1 ,a2! f 2~s!&2^dsf 2 ,d~a1 ,a2! f 1~s!&2^a3 ,~d f13d f2!3&

5^dsf 1 ,d~a1 ,a2! f 2~s!&2^dsf 2 ,d~a1 ,a2! f 1~s!&2a3S ] f 1

]a1

] f 2

]a2
2

] f 1

]a2

] f 2

]a1
D .

The Lie bracket on the Lie algebra ofS1 is trivial. Then the symplectic leaves of the reduc
cotangent bundle to SO~3! are all diffeomorphic toT* S2. j
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Cauchy analysis of the linearized skew sector of the
massive nonsymmetric gravitational theory

P. Bakia) and J. O. Maloa)

Department of Physics, University of Nairobi, Box 30197, Nairobi, Kenya
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Cauchy analysis of the linearized field equations of the skew sector of the massive
nonsymmetric gravitational theory shows that small perturbations give rise to
bounded accelerations thereby ensuring good asymptotic behavior for the skew part
of the fundamental tensor. ©1999 American Institute of Physics.
@S0022-2488~99!04406-0#

I. INTRODUCTION

The nonsymmetric gravitational theory~NGT! arose out of a reinterpretation of Einstein
unified field theory1,2 as purely a theory of gravitation.3–5 However, the original versions of NGT
were confronted with perturbative consistency problems due to the absence of a massles
invariance in the skew sector of the theory. The only gauge invariance was that associate
general covariance of the theory6–8 which was clarified by Damouret al., who showed that the
wave solutions of the weak-field equations did not decrease at large distances from the
along the forward light cone.9,10 They proposed that the theory should reduce to the mas
Kalb–Ramond theory, which does not require gauge invariance for well behaved positive e
solutions.

The theory was subsequently altered to massive nonsymmetric gravitational t
~MNGT!11–13 by requiring that the linearized field equations reduce to those of a massive K
Ramond field,14 guaranteeing that the linearized fields are well behaved asymptotically far
the source.15 A study of the instabilities of the linearized MNGT showed that the instabilities a
from the fact that small skew sector perturbations lead to unboundedly large accelerat16

However, it will be shown that such instabilities may not in fact exist.
The organization of the paper is as follows: Section II presents an overview of the skew

of MNGT on a general relativity~GR! background, while in Sec. III the linearized field equatio
are expressed in 311 decomposed form. The analysis of these equations is carried out in Se
while in the Appendix we give the mathematical details of Sec. III.

II. THE LINEARIZED SKEW SECTOR OF MNGT

The linearized MNGT presented here is that due to Clayton,15 in which the dynamics of the
theory are determined from the first-order action (G5c51):

S5E d4xH 2ĝmnRmn
NS~G!2ĝmn]@mWn#1 l̂ mGm1

1

2
lĝ~mn!WmWn1

1

4
m2ĝ@mn#g@mn#J 1SM ~1!

where the quantities with a caret are densitized, and

dSM

dgmn 5T̂mn

a!Electronic mail: physics@ken.healthnet.org
34390022-2488/99/40(7)/3439/7/$15.00 © 1999 American Institute of Physics
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is the matter stress energy tensor derived from the variation of the matter actionSM , that acts as
a source in the gravitational field equations. The analysis of the theory is carried out in the c
of the Palatini formalism and takes place at the level of the field equations. Thus perform
variation of the action with respect togmn yields the field equations:

dS

dĝmn 5Rmn
NS1]@mWn#2

1

2
lWmWn2

1

4
m2S g@mn#2gamgnbg@ab#1

1

2
gnmg@ab#g@ab#D5T̂mn2

1

2
gmnT̂.

~2!

If one considers all the antisymmetric parts of the fundamental tensor as perturbations
a symmetric GR background,15,7,13 i.e.,

gmn→g~mn!1hmn ~3!

and also the affine connections as:

Gmn
a → H a

mnJ 1gmn
a , ~4!

wherehmn andgmn
a are the perturbed quantities, andg(mn) and$mn

a % are the symmetric backgroun
metric and christoffel symbols, respectively; with the fundamental tensor defined by

gmngan5dm
n . ~5!

Following Eq.~2!, the field equations of MNGT expanded to first order about a GR backgro
yields

1Rmn1
1

l
¹ [m¹ah@mn#]2

1

2
m2h@mn#5T̂mn2

1

2
gmnT̂, ~6!

where the first-order correction to Ricci-like tensor in NGT is given by

1Rmn5¹agmn
a 2¹ (ngam)

a . ~7!

By ignoring symmetric GR perturbations, the antisymmetric part of~6! is obtained as:

¹ag@mn#
a 1

1

l
¹ [m¹ah@mn#]2

1

2
m2h@mn#5

1

2
~¹aFmna1m2h@mn#!22¹a¹ [mh@an#]

1
1

l
@11 2

3 l#¹ [m¹ah@an#]

5T̂@mn# , ~8!

where

Fmna5~]mhna1]ahmn1]nham!. ~9!

If one expands the action~1! to second order, ignores the surface terms, and imposes the co
ibility conditions following the removal of the torsion vectorWmn from the dynamics,15 then one
obtains the action as:

S5 1
12F

mnaFmna2 1
4m

2h@mn#h@mn#2¹ah@mn#¹mh@am#~2 1
2l1 1

3!¹nh@mn#¹ah@ma# . ~10!

And by choosingl5 3
4 one obtains kinetic terms identical to those of Kalb–Ramond theory o

GR background, giving the skew sector action
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Ss5
1

12F
mnaFmna2 1

4m
2h@mn#h@mn#2h@mn#h@ab#Rambn , ~11!

where0Rambn designates the background curvature. By taking a variation of the action~11! with
respect toh@mn# one obtains the linearized field equations

¹aFmna1m2h@mn#24h@ab#Rambn52T̂@mn# . ~12!

III. 311 DECOMPOSITION OF THE LINEARIZED FIELD EQUATIONS

One considers space–time as composed of three-dimensional spacelike surface an
embedded in four-dimensional Riemann space. If one treats these spacelike surfaces as
ment of a family of surfaces to which one could define non-null normal vectorsnm such that

nnnm5e561, ~13!

where the components of the normal vectors are denoted by

nm5~0,0,0,eN!, nm5S 2
Na

N
,

1

ND , ~14!

m,n,...50,1,2,3 anda,b,...51,2,3, then the metric tensor of the hypersurface, written in term
the skew part of the 3-metrichab takes the form

dS25hab dxa dxb ~15!

and the skew metric tensorhmn of space–time is given by

dS25hmn dxm dxn, ~16!

the two being related as

dS25hmn dxm dxn5hab~dxa1Nadx0!~dxb1Nb dx0!1e~N dx0!2, ~17!

where N and Na are, respectively, the lapse function and shift vector, and the quantityx0 is
timelike. In the same way the 311 split of metric tensor leads to:

hmn53hmn , h0d5Nd ,
~18!

hg05Ng , h005NhNh,

with its inverse as

hmn5hab1
e

N2 NaNb, h0d52e
Na

N2 ,

~19!

hg052e
Nb

N2 , h0052
e

N2 .

Since our primary goal is to express the field equations~12! in 311 decomposed form, we
perform the split of the background curvature into components parallel or perpendicular
normal vector to the hypersurface by making use of the projection tensor as in Appendix A.
one obtains the components of the background curvature tensor as

Rcdba5
3Rcdba1e~KdaKcb2KdbKca!, ~20!

Rdab
m nm5~Kdbua2Kdaub!, ~21!
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Rdrb
m nmnr5ṅ~d;b!1KdaKb

a2eṅdṅb1& Kab . ~22!

Equations~20! and~21! are analogous to the Gauss–Codazzi equations. The quantitiesKda , Kcb ,
etc. denote extrinsic curvatures while & denotes the Lie derivative. By choosing the coord
such that theXa5constant lines are normal to the hypersurface, one obtainsNa50 and Eqs.
~20!–~22! simplify to

Rcdab5
3Rcdab1e~KdaKcb2KdbKca!, ~23a!

Rdab
0 5

e

N
~Kdbua2Kdaub!, ~23b!

Rdon
0 5

e

N
~Kdb,o2N,dub!1eKcdKb

c . ~23c!

Equations~23a!–~23c! are then used to rewrite the linearized field equations~12! in 311 decom-
posed form as in Appendix B, resulting in two sets of field equations:

3Rcdab2KdaKcb1KdbKca50, ~24a!

Kdb,02N,dub1NKcdKb
c50. ~24b!

IV. ANALYSIS OF THE DECOMPOSED FIELD EQUATIONS

An examination of the field equations shows the following.
~a! The linearized field equations~24a! contain only the spiral derivatives of the metric tenso

and their corresponding extrinsic curvatures and consequently the initial values of, say,hcb and
Kcb cannot be chosen freely. Thus the equations play the role of constraint equations. Th
equations are also connected by 4 Bianchi identities, thus reducing the actual number o
straints to 10.

~b! Since the highest time derivative occurs in Eq.~24b! namely Kdb,0 and given that the
equation has no curvature terms the antisymmetric components of the fundamental tensor
good asymptotic behavior. This contrasts with what had been found by Clayton,16 who showed by
an examination of the exact field equations of MNGT near initially GR field configuration,
arbitrarily small antisymmetric sector fields lead to large accelerations, thereby giving the
bility of linearization instability of MNGT. Our results suggest that the existence of such
instability is suspect on these grounds.

Now since it had been shown16 that small skew sector data lead to nonsingular evolution
the majority of the possible choices of perturbatively small skew sector initial data, we are
opinion that our results would be a good starting point for probing the phenomenological r
on galaxy dynamics, i.e., whether the collapse of a spherically symmetric matter would be
ingular.

V. CONCLUSION

It has been shown that the linearized field equations of MNGT have a dynamical part w
leads to bounded accelerations, thus giving promising results to the effect that the skew par
fundamental tensor exhibits good fall-off.

Thus our results effectively strengthen the view that the skew part of the fundamental
could be considered just as a perturbation of the symmetric GR background in the linear ap
mation.
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APPENDIX A: 3 11 DECOMPOSITION OF BACKGROUND CURVATURE TENSOR

In order to decompose tensors into components parallel or perpendicular to the normal
to the hypersurface, one defines a projection tensorPmn5hmn2enmPn which has the properties17

PmnPm
n 5Pma , Pmnnm50,

Pcd5hcd , Pcd5hcd, ~A1!

hn
050, Pm

d 5dm
d .

Since curvature tensors are obtained from covariant derivatives of normal vectors, we may
the 311 dimensional split of the background curvature tensorRambn by making use of projection
tensors as follows:

~Tduaub2Tcubua!Pn
dPr

aPl
b5~Ts;hPg

sPd
h!;jPn

g~Pr
dPl

j 2Pl
d Pd

j !

5~Ts;h;j2Ts;j;h!Pn
sPr

hPl
j 1Ts;h~Pg

hPd
h!;Pn

g~Pr
dPl

j 2Pl
d Pr

j !,

~A2!

where, say,Td , etc., are three vectors andTdua etc refer to 3-dim covariant derivative of the thre
vectors. From this equation one obtains the relation

3RcdabT
cPn

dPr
aPl

b5RcshjT
cPn

sPr
hPl

j 1e~KlnKrc2KnrKlc!T
c. ~A3!

Since the equation holds for every vectorTc, one obtains the relation

Rcdab5
3Rcdba1e~KdaKcb2KdbKac!, ~A4!

analogous to the Gauss equation. Now since the covariant derivative of the projection tensoPmn;g

is given by

Pmn;g52~ ṅmnn1nmṅn!ng1e~Kmgnn1Kmgnm! ~A5!

and the covariant derivatives of the vectorT is given by

Pm
g Pn

dTg;d5Pd
cPn

dTcud , ~A6a!

Tcud5Tc,d23Gcd
m Tm ~A6b!

we have that

~nj;s;h2nj;h;s!Pn
j Pr

sPl
h5@~nj;gPs

g ! ;h2~nj;gPh
g ! ;s#Pn

j Pr
sPl

h

5~Kjh;s2Kjs;h!Pn
j Pr

sPl
h5~Kdbua2Kdaub!Pn

cPr
aPl

b ,

from which we obtain the expression

Rdab
m nm5~Kdbua2Kdaub!. ~A7!

Analogously from
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~nj;s;h2nj;h;s!Pn
jnsPl

h5@~eṅjns2Kjs! ;h2e~ ṅjnh2Kjh! ;s#nsPn
j Pl

h

5ṅj;hPn
hPl

h1Kjsn;h
s Pn

j Pl
h2eṅmṅl1Knl;sns2Kjh~Pn

j Pl
h! ;sns,

from which it follows that

Rdrb
m nmnr5ṅ~d;b!1KdaKb

a2eṅdṅb1& Kdb , ~A8!

where & denotes the Lie derivative andKdb , etc., are the extrinsic curvature tensors
Now for the special case when the shift vectorNa50, Eqs.~A4!–~A8! simplify to

Rcdab5
3Rcdab5e~KdaKcb2KdbKca!, ~A9a!

Rdab
0 5

e

N
~Kdbua2Kdaub!, ~A9b!

Rd0n
0 5

e

N
~Kdb,02N,dub!1eKcdKb

c , ~A9c!

which are the decomposed components of the background curvature tensor0Rambn .

APPENDIX B: DECOMPOSITION OF FIELD EQUATIONS

The decomposed background curvature tensor~A9! may be used to rewrite the linearized fie
equations~12! in 311 decomposed form as follows:

¹aFmna1m2h@mn#24h@ab# 3Rcdab14h@ab#e~KdaKcb2KdbKca!522T̂@mn# , ~B1!

¹aFmna1m2h@mn#24h@ab#
e

N
~Kdbua2Kdaub!522T̂@mn# , ~B2!

¹aFmna1m2h@mn#24h@ab#
e

N
$~Kdb,02N,dub!1KcdKb

c%522T̂@mn# . ~B3!

Now since each of these equations are equal, we may subtract Eq.~B2! from the remaining two
and after some rearrangement, we end up with two sets of field equations:

3Rcdab2KdaKcb1KdbKca50, ~B4!

and

Kdb,02N,dub1NKcdKb
c50, ~B5!

which are, respectively, the constraint equations and the evolution equations.
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Almost-complex and almost-product Einstein manifolds
from a variational principle
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It is shown that the first-order~Palatini! variational principle for a generic nonlinear
metric-affine Lagrangian depending on the~symmetrized! Ricci square invariant
leads to an almost-product Einstein structure or to an almost-complex anti-
Hermitian Einstein structure on a manifold. It is proved that a real anti-Hermitian
metric on a complex manifold satisfies the Ka¨hler condition on the same manifold
treated as a real manifold if and only if the metric is the real part of a holomorphic
metric. A characterization of anti-Ka¨hler Einstein manifolds and almost-product
Einstein manifolds is obtained. Examples of such manifolds are considered.
© 1999 American Institute of Physics.@S0022-2488~99!03107-2#

I. INTRODUCTION

Almost-complex and almost-product structures are among the most important geom
structures which can be considered on a manifold.1–4 The aim of this paper is to show tha
structures of this kind appear in a natural way from a variational principle based on a genera
of Lagrangians depending on the Ricci square invariant constructed out of a metric and a
metric connection; in particular we will show that an anti-Hermitian metric and its special
the so-called ‘‘anti-Ka¨hlerian’’ metric, appear naturally from our variational principle. Manifol
with such metrics are much less studied than the familiar Hermitian and Ka¨hlerian cases. We hop
that our variational principle and ‘‘the universality of the Einstein equations’’~see below! will
provide an additional motivation for investigating these manifolds.

Let M be a differentiable manifold of dimensionn andL(M ) be its frame bundle, a principa
fiber bundle overM with group GL(n;R). Let G be a Lie subgroup of GL(n;R). A differentiable
subbundleQ of L(M ) with structure groupG is called aG-structure on M.2,4 The classification
and integrability ofG-structures have been studied in differential geometry; algebraic-topolo
conditions onM which are necessary for the existence of aG-structure onM can be given in terms
of characteristic classes~see, for example, Ref. 5!. We also recall that there is a natural one-to-o
correspondence between pseudo-Riemannian metrics of signatureq on M and
O(p,q;R)-structures onM, with p1q5n. An O(p,q;R)-structure is integrable if and only if the
corresponding pseudo-Riemannian metric has vanishing Riemann curvature. IfG5GL(p;R)
3GL(q;R), then theG-structure is called analmost-product structure;3,6,7 if G5O(r ,s;R)
3O(k,l ;R), then theG-structure is called a(pseudo-) Riemannian almost-product structure.3,8,9 If
n is even, n52m, and one considers GL(m;C) as a subgroup of GL(2m;R), then a
GL(m;C)-structure is called analmost-complex structure;3,4 if, moreover, one considers O(m;C)
as a subgroup of GL(m;C), then an O(m;C)-structure defines analmost-complex anti-Hermitian
structure.10–14

We will here use an equivalent description of theseG-structures. LetM be a manifold andP
be an endomorphism of the tangent bundleTM satisfying P25I , where I5identity. Then P

a!On leave from the Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50-204 Wroclaw, P
Electronic mail: borow@ift.uni.wroc.pl

b!Permanent address: Steklov Mathematical Institute, Russian Academy of Sciences, Vavilov St. 42, GSP-1,
Moscow, Russia.
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defines an almost-product structure onM. If g is a metric onM such thatg(PX,PY)5g(X,Y) for
arbitrary vectorfieldsX and Y on M, then the triple (M ,g,P) defines a~pseudo-! Riemannian
almost-product structure. Geometric properties of~pseudo-! Riemannian almost-product structure
have been studied in Refs. 1, 3, 6, 8, 9, and 15–19. If, moreover,g is an Einstein metric@i.e.,
Ric (g)5gg holds, where Ric (g) is the Ricci tensor andg is a constant#, then the triple (M ,g,P)
shall be called analmost-product Einstein manifold.

Analogously, ifJ is an endomorphism of the tangent bundleTM satisfyingJ252I , thenJ
defines an almost-complex structure onM. An almost-complex structure is integrable if and on
if it comes from a complex structure~see Ref. 20!. If g is a metric onM such thatg(JX,JY)
52g(X,Y) for arbitrary vectorfieldsX andY on M, then the triple (M ,g,J) defines an almost-
complex anti-Hermitian structure. The metricg in this case is called aNorden metricand in
complex coordinates it has the form

ds25gabdzadzb1gāb̄dzādzb̄,

wheregāb̄5ḡab . This canonical form differs from the well-known form of a Hermitian met

ds252gab̄dzadzb̄. We will show ~Theorem 4.2! that the condition¹J50, where¹ is the Levi–
Civita connection, is equivalent in this case to analyticity of the metric:]̄cgab50. Such anti-
Hermitian metrics shall be calledanti-Kählerian metricssince for a Hermitian metric the cond
tion ¹J50 defines a Ka¨hlerian metric.

If g is an Einstein metric, i.e., Ric (g)5gg holds, then the almost-complex anti-Hermitia
manifold (M ,g,J) is called ananti-Hermitian Einstein manifold. We will consider an important
particular class of such manifolds, namely those characterized byanti-Kählerian Einstein metrics.
Let us stress that we treatthe wholecomplex manifold as a real manifold and in this way we g
a real Einstein metric with signature (m,m). Another approach to complex Einstein equatio
dealing with areal sectionof a complex manifold and aiming to get the Lorentz signature,
been considered in Refs. 21–26.

TheseG-structures can be conveniently defined as a triple (M ,g,K), whereg is a metric onM
and K is a ~1,1! tensor field onM such thatK25eI and g(KX,KY)5eg(X,Y) for arbitrary
vectorfieldsX andY on M ~eÞ0 is a real constant!. We shall also call themK-structures. If e51,
then K defines an almost-product structure onM; if e521, thenK defines an almost-comple
structure onM. The more general casee.0 can be reduced toe51 by a suitable rescaling, while
the casee,0 is reduced toe521. In any coordinate system one hasKa

mKn
a5edn

m and KtgK
5eg, whereKt is the transpose matrix,m,n,a51,2,...,n5dim (M ), and dn

m is the Kronecker
symbol.

One can then define a new metrich by the relationh(X,Y)5g(KX,Y), or equivalentlyh
5gK, i.e., in local coordinateshmn5gmaKn

a . Then the following holds:

~g21h!25eI . ~1.1!

The relation~1.1! for e511 or 21 is equivalent to (h21g)25eI and there is a one-to-on
correspondence between theG-structure (M ,g,K) and theG-structure (M ,h,K21). Hence the
G-structure given by the triple (M ,g,K) can be equivalently described by the triple (M ,g,h),
whereg andh are metrics onM satisfying~1.1!. We call such metricstwin metricsor dual metrics.

In this paper, starting from a manifoldM endowed with a metrich5(hmn) and a symmetric
linear connectionG5(Gmn

a ), we obtain aK-structure as

Km
a5hanSmn ,

whereSmn[R(mn)(G) is the symmetric part of the Ricci tensor of the given connectionG. The
general idea is the following. Let us first setgmn5R(mn)(G). According to the results of our earlie
paper,27 one can show thatg is, in fact, a new metric and thath andg are ‘‘twin metrics’’ if one
assumes a suitable variational principle based on the action
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A~G,h!5E
M

f ~S!Ah dx ~1.2!

and imposes independent variations over the metric and the connection. Heref (S) is a given
function of one real variable, which we assume to be analytic, while the scalarS5S(G,h) is the
Ricci square invariant

S5hmahnbSabSmn .

If f is a generic analytic function andn.2, one gets either a~pseudo-! Riemannian almost-produc
structure or an almost-complex structure. In fact, as we shall see below~Theorem 2.4!, the
Euler–Lagrange equations for~1.2! are generically equivalent to the following system of equ
tions for two metricshmn andgmn :

~h21g!25
c

n
I , ~1.3!

Ric ~g!5g, ~1.4!

where the real numberc is a root of the equation

f 8~S!S2
n

4
f ~S!50. ~1.5!

As an example, if one takesf (S)5„nS1c(82n)…2, thenS5c is a solution of~1.5! if nÞ8 and
another~degenerate! solution isS5c(n28)/n. Turning to the general discussion, ifc.0, then, as
it was explained above, solutions of~1.3! and~1.4! are in one-to-one correspondence with almo
product Einstein manifolds (M ,g,P), while for c,0 one gets anti-Hermitian Einstein manifold
(M ,g,J).

Before proceeding further let us explain why the action~1.2! is interesting and important in
mathematical physics and especially in the theory of gravity.

As is well known, gravitational Lagrangians which are nonlinear in the scalar curvature
metric give rise to equations with higher~more than second! derivatives or to the appearance
additional matter fields.28,29 This strongly depends on having taken a metric as the only b
variable and the equations ensuing from such Lagrangians show an explicit dependence
Lagrangian itself. An important example of a nonlinear Lagrangian leading to equations
higher derivatives is given by Calabi’s variational principle,30 which shall be discussed in
forthcoming paper.

It was shown in Ref. 31 that, in contrast, working in the first-order~Palatini! formalism, i.e.,
assuming independent variations with respect to a metric and a symmetric connection, the
large class of Lagrangians of the formf (R), where R is the scalar curvature, the equatio
obtained are almost independent on the Lagrangian, the only such dependence being,
encoded into constants~cosmological and Newton’s ones!. In this sense the equations obtained a
‘‘universal’’ and turn out to be Einstein equations in generic cases. Considering nonlinear
tational Lagrangians which still generate Einstein equations is particularly important since
provide a simple but general approach to governing topology in dimension two32 and in view of
applications to string theory.33

In a previous paper of ours27 this discussion was extended to the case of Lagrangians wit
arbitrary dependence on the square of the symmetrized Ricci tensor of a metric and a~torsionless!
connection, finding roughly that the universality of Einstein equations also extends to this cl
space–times. In this case, however, new important properties appear: as we have alread
tioned above, depending, in fact, on the form of the Lagrangian and on the signature of the m
one gets an almost-product Einsteinian structure or an almost-complex Einsteinian structu
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pological and geometrical obstructions for the global existence of a solution of the varia
problem for this class of Lagrangians will be here considered in Secs. V and VI.

Recently there has been some interest in the problem of signature change in g
relativity;34–36 the nonstandard signature~1012! has been considered also in superstring the
~F-theory37! and extra timelike dimensions in Kaluza–Klein theory are considered in Refs. 38
Our results seem, therefore, to show new aspects of this problem which can be relevant a
quantum gravity. For a mathematical consideration of metrics with arbitrary signature whic
be relevant to mathematical physics, see, for examples Refs. 41–43.

This paper is organized as follows. In the next section it will be shortly recalled how to
Eqs. ~1.3! and ~1.4! from the action~1.2!. In Sec. III it is shown that Eq.~1.3! can be always
solved locally for any given metricg, in particular satisfying~1.4!. In Sec. IV we discuss the
K-structures. In Sec. V we discuss the problems of the global existence as well as the classi
of almost-product Einstein manifolds. In Sec. VI we prove that a real anti-Hermitian metric
complex manifold satisfies the Ka¨hler condition on the same manifold treated as a real manifo
and only if the metric is the real part of a holomorphic metric on this manifold. Finally,
consider also examples of almost-product Einstein manifolds and anti-Ka¨hlerian Einstein mani-
folds. Theorems of Sec. III are proved in the Appendix.

II. FIELD EQUATIONS

In this section we shall present in a more geometrical form the results of our earlier pa27

which form the basis of the further results presented hereafter. Consider, in the first-order~Pala-
tini! formalism, the family of actions

A~G,h!5E
M

f ~S!Ah dx, ~2.1!

whereM is ann-dimensional manifold (n.2) endowed with a metrichmn and a torsionless~i.e.,
symmetric! connectionGmn

s ; the Lagrangian density isL5 f (S)Ah, where f (S) is a given func-
tion of one real variable, which we assume to be analytic andAh is a shorthand forudet (hmn)u1/2;
and the scalarS is the symmetric part of Ricci square-invariant, considered as a first-order s
concomitant of a metric and~torsionless! connection, i.e.,

S5S~h,G!5hmahnbSabSmn ~2.2!

beingSmn5R(mn)(G) the symmetric part of Ricci tensor, defined according to

Rmns
l ~G!5]nGms

l 2]sGmn
l 1Gan

l Gms
a 2Gas

l Gmn
a ,

Rms~G!5Rmns
n ~G! ~a,m,n,...51,...,n!.

Following Ref. 27, the Euler–Lagrange equations of the action~2.1! with respect to indepen
dent variations ofh andG are

f 8~S!habSmaSnb2 1
4 f ~S!hmn50, ~2.3!

¹l„f 8~S!AhhmahnbSab…50, ~2.4!

where¹l is the covariant derivative with respect toG. Transvecting~2.3! with hmn tells us that the
scalarS has to obey the following real analytic equation,

f 8~S!S2
n

4
f ~S!50, ~2.5!
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which allows the description of the general features of the nonlinear system~2.3! and ~2.4! and
tells us, in turn, thatS is generically forced to be a constant. More precisely, it was shown in
27 that whenever~2.5! admits an~isolated! simple rootS5c, then the system is ‘‘essentiall
equivalent’’ to Einstein equations for a new metricg with a cosmological constant, in the precis
sense which is hereafter described in greater detail. Consider, in fact, any solution

S5c ~2.6!

of Eq. ~2.5! and assume thatf 8(c)Þ0. Then Eq.~2.4! reduces to

¹l~AhhmahnbSab!50, ~2.7!

while Eq. ~2.3! reduces to

habSmaSnb5ehmn , ~2.8!

where a new constante depending onc arises according to the rule

e5 f ~c!/4f 8~c!5c/n. ~2.9!

From ~2.8! the regularity condition

@det~Smn!#25en@det~hmn!#2 ~2.10!

follows, which entails, in particular, that det (Smn)Þ0 providedeÞ0. Under this last hypothesis, le
Smn be the inverse matrix ofSmn , so that from~2.8! we have

hmahnbSab5eSmn. ~2.11!

By using ~2.10! and ~2.11!, we finally rewrite~2.7! as follows:

¹l@Audet~Sab~G!!uSmn~G!#50, ~2.12!

which will be considered as a new equation inG.
Let us recall now the following well-known result, essentially due to Levi-Civita: forn.2,

any metricg, and any symmetric connectionG, the general solution of the equation

¹a~Aggmn!50 ~2.13!

considered as an equation forG is the Levi-Civita connectionG5GLC(g), i.e., locally

Gmn
s ~g!5 1

2g
sa~]mgna1]ngma2]agmn!. ~2.14!

Therefore, the Ricci tensorRmn(G) of G is automatically symmetric and, in fact, identical to th
Ricci tensorRmn(g) of the metricg itself.

We can then prove the following:
Proposition 2.1: Let us assume thatdet (Sab)Þ0. Then a connectionG satisfies Eq. (2.12) if

and only if there exists a metric gmn such that

Rmn~g!5gmn ~2.15!

and G5GLC(g) is the Levi-Civita connection of g.
Proof: Let G be a connection satisfying Eq.~2.12! and let us set

gmn5Smn~G!. ~2.16!
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The tensorfieldg is a metric due to the condition det (Sab)Þ0. Then it follows thatG has to be the
Levi-Civita connection of the metricg; moreover, one has

Smn~G!5R~mn!~G!5Rmn~g!, ~2.17!

so that~2.15! follows from ~2.16! and ~2.17!.
Conversely, let us give a metricgmn satisfying ~2.15! and let us takeG5GLC(g). One has

again relations~2.17!. From ~2.17! and ~2.15! it follows then that~2.16! holds. Thereforegmn

5Smn(G) and det„Smn(G)…5det (gmn)Þ0. Hence we see that Eq.~2.12! reduces to~2.13!, which
is satisfied sinceG5GLC(g). Our claim is then proved. ~Q.E.D.!

According to the previous discussion, we see that the Euler–Lagrange equations~2.3! and
~2.4! are hence equivalent to the following equations for two metricsh andg:

habgmagnb5ehmn , ~2.18!

Rmn~g!5gmn , ~2.19!

which are, in fact, nothing but Eqs.~1.3! and ~1.4! of the Introduction. The relation between th
system~2.18! and ~2.19! and the Euler–Lagrange equations in the form~2.3! and ~2.4! or ~2.11!
and ~2.12! is given by settinggmn5R(mn)(G).

We will now use the description of~pseudo-! Riemannian almost-product structures a
almost-complex structures with a Norden metric in terms of a pair of metrics~twin or dual
metrics!. Let us consider a triple (M ,h,K), whereM is a differentiable manifold,h is a metric on
M, andK is a ~1,1! tensorfield onM such that the following holds:

K25eI , KthK5eh.

As we said in the Introduction, such a triple defines a~pseudo-!Riemannian almost-product struc
ture if e51, while it defines an almost-complex structure with a Norden metrich if e521. The
triple (M ,h,K) admits an equivalent description as another triple (M ,h,g), whereg is a metric on
M satisfying the relation (h21g)25eI or the equivalent relation (g21h)25cI, because of the
following elementary proposition.

Proposition 2.2: Let K and h be real n3n matrices ande511 or 21. Then the matrices K
and h satisfy the relations

ht5h, dethÞ0, K25eI , KthK5eh ~2.20!

if and only if there exists a real matrix g such that g and h satisfy the relations

ht5h, dethÞ0, gt5g, ~h21g!25eI . ~2.21!

Moreover, one has

g5hK ~2.22!

and

~K21!25e l , K21tgK215eg. ~2.23!

Proof: If one has~2.20!, then defineg by ~2.22! and check~2.21! and ~2.23!. Conversely, if
one has~2.21!, then defineK5h21g and check~2.20!. The claim is proved. ~Q.E.D.!

We can therefore state the following theorem.
Theorem 2.3: Let M be a n-dimensional manifold, n.2, with a metric h and a symmetric

connectionG and let us consider the Euler–Lagrange equations (2.3) and (2.4) for the actio
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(2.1). Let us assume that the analytic function f(S) is such that Eq. (2.5) has an isolated root
5c with f8(c)Þ0. Setting then gmn5R(mn)(G), the Euler–Lagrange equations imply the rela
tions (h21g)25eI , Ric (g)5g. Therefore,

(i) if e.0, after rescaling and denoting P5g21h one gets an almost-product Einstein man
fold (M ,g,P), i.e.,

Ric ~g!5gg,

P251, g~PX,PY!5g~X,Y!, X,YPx~M !.

(ii) If c ,0, after rescaling and denoting J5g21h one gets instead an anti-Hermitian Einste
manifold (M,g,J), i.e.,

Ric ~g!5gg,

J252I , g~JX,JY!52g~X,Y!, X,YPx~M !.

Here x(M ) is the Lie algebra of vectorfields on M.
Notice that the signatures of the metricsh and g in the almost-product case can be,

principle, arbitrary, while in the almost-complex case the signature is (m,m). In any case they will
be lower-semicontinuous functions, so that without any restriction we can assume that they
constant in the neighborhood of a generic point; in particular, they will not change in conn
components of the manifold. In the next section we will therefore study the equation (h21g)2

5eI for a generic point on the manifold, i.e., study it algebraically as a matrix equation.
Remark:Notice thate50 corresponds to the caseS50, which holds iff f (0)50. Then we

have to distinguish two subcasesf 8(0)50 and f 8(0)Þ0. In the first subcase both Eqs.~2.3! and
~2.4! are automatically satisfied and no condition forg and G arise. Therefore, any pair (g,G)
solves this subcase. Whenf 8(0)Þ0, then ~2.3! is instead equivalent to the algebraic equati
@h21S(G)#250, which leads to analmost-tangentstructure,44 while ~2.4! remains unchanged. W
shall not discuss this case in the present paper.

III. SOLUTIONS OF THE MATRIX EQUATIONS

Let us then consider the matrix equation

~h21g!25eIn , ~3.1!

whereh and g are symmetric nondegenerate realn3n matrices,In is the identity matrix inn
dimensions, ande is a nonvanishing real number.

In order to solve Eq.~3.1! we first notice that it is manifestly Gl(n,R)-invariant under the
canonical right-action (h,g)°(AthA,AtgA), whereAt denotes the matrix transpose toA. More
exactly, transformingh andg as metrics one can observe thatP5h21g transforms by a similarity
transformationP→A21PA @i.e., as a~1,1! tensor#. Equation~3.1! is also invariant under the
transformation (h,g,e)°(g,h,e21). Moreover, we have„det (g)/det (h)…25en, so that whenn is
even there are no restrictions on the sign ofe, while e has to be positive whenn is odd.

It is always possible to rescaleg by Aueu and reduce~3.1! to the canonical form (h21g)2

56In .
Whene is positive, Eq.~3.1! admits always the trivial solutiong5Aeh; however, this does

not exhaust all the possible solutions. Let us first observe, in fact, by standard minimal-polyn
arguments~see, e.g., Ref. 45!, that the matrix equation

P25In ~3.2!

admits only solutions of the formP5M 21DkM for some nonsingular matrixM, where the
matricesDk ~Jordan forms! are diagonal,
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Dk5S 2I k 0

0 In2k
D , ~3.3!

andk50,...,n. This result can be restated as follows:if an automorphism P of the vector spaceRn

satisfies (3.2), then there exists a basis in which P is represented by one of the matrices Dk . The
non-negative integerk is an invariant of this authomorphism. In fact, such an automorphis
(P25 id) represents an almost-product structure onRn. The set of all solutions of the equatio
(h21g)25In is then described by the following theorem~compare Ref. 45, Th. 4.5.15, case II b!:

Theorem 3.1: Let g5gt and h5ht be two real (symmetric) nondegenerate matrices (m
rics). Then the following are equivalent:

~a! (h21g)25In .
~b! The two metrics h and g are simultaneously diagonalizable with61 on the diagonal, i.e.,

there exists a real nondegenerate matrix R such that

h5RtDhR, g5RtDgR,

and Dh and Dg are diagonal matrices with11 or 21 on the diagonal.
The proof of this theorem is given in the Appendix.
Let us proceed to discuss the case (h21g)252In . It is known that ifJ is anyn3n real matrix

satisfying the relation

J252In , ~3.4!

thenn must be even,n52m, J can be represented as

J5MJoM 21

whereJo is the canonical form

Jo5S 0 Im

2Im 0 D , ~3.5!

andM is a nondegenerate real matrix. In fact, one deals with a complex structure and the
Jo gives the canonical complex structure onR2m. The following holds true:

Theorem 3.2:Let h5ht and g5gt be two2m32m real (symmetric) nondegenerate matric
(metrics). Then the following are equivalent:

~a! (h21g)252I2m .
~b! There exists a real nondegenerate matrix R such that

h5RtS Im 0

0 2Im
DR, g5RtS 0 Im

Im 0 DR,

i.e., in the appropriate coordinate system the two metrics g and h take the following cano
forms:

Kh5S Im 0

0 2Im
D , Kg5S 0 Im

Im 0 D .

This proof is also given in the Appendix.
From Theorems 3.1 and 3.2 it follows that locally for any given metricg one can construct a

twin metrich. If g satisfies Ric (g)5g, this means that locally one produces an almost-produc
an almost-complex Einsteinian structure.
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IV. K -STRUCTURES AND KÄ HLER-LIKE MANIFOLDS

We first present here a formalism which at once describes properties of various stru
important in differential geometry, such as almost-complex and almost-product structures
mitian and anti-Hermitian metrics, Ka¨hler manifolds and locally decomposable manifolds, e
and then, in the next sections, consider in more detail the pseudo-Ka¨hlerian and anti-Ka¨herian
metrics.

Let M be a smooth manifold,TM its tangent bundle, andx(M ) the algebra of vectorfields on
M. A (K,e)-structure~K-structurein short! on M is a field of endomorphismsK on TM such that
K25eI , wheree561. Thuse51 corresponds to an almost-product structure, whilee521 pro-
vides an almost-complex structure.

Let ¹:x(M )3x(M )→x(M ) be a connection, denoted by (X,Y)→¹XY. A K-structure is
integrableiff there exists a linear torsionless connection onM such that¹K50, or, equivalently,
the Nijenhuis tensorN,

N~X,Y!5@KX, KY#2K@KX, Y#2K@X, KY#1e@X, Y#,

vanishes. IfK is integrable, then there exists an atlas of adapted coordinate charts onM in which
K takes a canonical form~see e.g., Ref. 4!.

Definition 1:A five-tuple (M ,K,g,e,s) is called a (K,g)-manifold if g is a metric onM and
K is a K-structure,K25eI , such that

g~KX,KY!5sg~X,Y! ~4.1!

for all vectorfieldsX and Y on M. Here s561. In this case, we shall say that the metricg is
K-compatible~or a K-metric in short!.

The definition above unifies the following four cases: the casee51, s51 corresponds to a
~pseudo-! Riemannian almost-product structure; the casee51, s521 provides an almost para
Hermitian structure; the casee521, s51 is known as an almost-~pseudo!-Hermitian structure;
and, finally, the casee521, s521 corresponds to an almost-complex structure with a Nor
metric.

Introduce a~0,2! tensorfieldh, the twin of g, by

h~X,Y!5g~KX,Y!. ~4.2!

Then

h~X,Y!5esh~Y,X!, h~KX,KY!5sh~X,Y!. ~4.3!

Notice that fores51 the twin tensor is a metric~and this is, in fact, the case we have obtain
from our variational principle!, while for es521 the twin tensor is a two-form~and one deals
with an almost-Hermitian or almost para-Hermitian structure!.

Let c be a~0,3! tensorfield defined by the formulas

c~X,Y,Z!5g„~¹XK !Y,Z…[~¹Xh!~Y,Z!. ~4.4!

In a coordinate languagecamn is nothing but¹ahmn . It possesses the following properties:

c~X,Y,Z!52sc~X,KY,KZ!5sec~X,Z,Y!. ~4.5!

Notice that the classification of almost-Hermitian structures,46 Riemannian almost-produc
structures15 as well as almost-complex structures with a Norden metric11 is based on algebraic
properties ofc: namely, one decomposesc into irreducible components under the action of t
appropriate group. The most restrictive class is Ka¨hler-like, when simplyc50. If the tensorfieldc
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vanishes, then automatically¹K50 for a torsionless~Levi-Civita! connection and the Nijenhui
tensorN is forced to vanish, too@Refs. 3 and 7, cf. also formulas~6.7!#. Therefore, the corre-
spondingK-structure is integrable. It leads to the following definition:

Definition 2: A metric g on a (K,g)-manifold is called aKähler-like metricif ¹K50, i.e.,

¹X~KY!5K¹XY, X,YPx~M !, ~4.6!

where¹ is the Levi-Civita connection ofg itself.
If e521, s51, then aK-metric is called a Ka¨hler metric. Ife51, s51 then aK-metric shall

be called apseudo-Ka¨hlerian metric@it is also called a~pseudo-! Riemannian locally decompos
able metric#. The casee51, s521 shall be considered in a forthcoming publication47 ~see also
Refs. 48 and 43!. Our results on anti-Ka¨hlerian manifolds~e521, s521! will be presented in
Secs. VI and VII. The following Proposition extends Proposition 3.6 in Ref. 20 to an arbi
(K,g,e,s)-structure.

Proposition 4.1: The Riemann curvature R(X,Y)Z and the Ricci tensor S(X,Y) of a Kähler-
like manifold~M,K,g! satisfy the following properties:

R~X,Y!+K5K+R~X,Y!, R~KX,KY!5sR~X,Y!, ~4.7!

S~KX,KY!5sS~X,Y!, ~s2e!S~X,Y!5tr @V°K„R~X,KY!V…#. ~4.8!

Proof: The proof is a simple repetition of the proof of Proposition 3.6 in Ref. 20, provided
suitably takes into account formulas~4.3!. ~Q.E.D.!

Consider now the twinF of the Ricci tensorS:

F~X,Y!5S~KX,Y!. ~4.9!

Then,

F~X,Y!5esF~Y,X!, F~KX,KY!5sF~X,Y!. ~4.10!

Notice that the symmetry property ofF is exactly the same as forh. Therefore, we conclude th
following:

Lemma 4.2: A Ka¨hler-like manifold is Einstein iff the dual of S is proportional to the dual
g, i.e., F(X,Y);h(X,Y).

Notice that fores521 both twinsF andh are two-forms. This lemma in the Ka¨hlerian case
leads to a necessary condition on the first Chern class for a manifold to have an Einstein–¨hler
metric.30,49 Recall the Goldberg conjecture50 ~see also Refs. 51 and 52! saying that almost-Ka¨hler
Einsteinian manifold is a complex one. It means that an Einstein almost-Hermitian manifold
a closed Ka¨hler form is automatically Hermitian, i.e., its almost-complex structure is integra
An extension of the Goldberg conjecture to the other Ka¨hler-like manifolds will be discuss
elsewhere.47

V. ALMOST-PRODUCT EINSTEIN MANIFOLDS

In this section we consider the problems of the global existence and classification of a
product Einstein manifolds. At the beginning we shall recall some basic facts about al
product and~pseudo-! Riemannian almost-product structures.

The simplest examples of almost-product structures are product manifolds, i.e., man
which are the Cartesian product of two manifolds

M5M13M2 . ~5.1!

In this case the tangent bundle splits asTM5TM1% TM2 and P5P22P1 , wherePi are the
corresponding projections onTMi , i 51,2. More generally, giving an almost-product structure
equivalent to splitting the tangent bundle into two complementary subbundles~distributionsor
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almost-foliations!: TM5V% H; in this caseP5PV2PH . P is integrable iff both the distributions
are integrable~i.e., they arefoliations!. Integrable almost-product structures are also calledlocally
product manifolds3 since locally they have the form~5.1!. It means that locally~around any point!,
there exists an adapted coordinate system (xa,ya), a51,...,k and a51,...,n2k, such that the
tensorfieldP takes the canonical form~3.3!, i.e., P]a52]a andP]a5]a .

Similarly, one can consider other structures: for example, a~pseudo-! Riemannian product
manifold as a product of two~pseudo-! Riemannian manifolds,

~M ,g!5~M1 ,g1!3~M2 ,g2!, ~5.2!

whereg5g1% g2 . More generally, an almost-product~pseudo-! Riemannian structure (M ,P,g) is
integrable iff¹gP50 for the Levi-Civita connection¹g of g. In this case we speak of alocally
decomposable~pseudo-! Riemannian manifold; in the present article we shall, however, propos
call it a pseudo-Ka¨hler manifold. For locally decomposable~pseudo-! Riemannian structures bot
foliations aretotally geodesic.3,7 In an adapted coordinate system the metricg ‘‘separates the
variables’’ ~see Refs. 3 and 7!

ds25gab~x!dxadxb1gab~y!dyadyb. ~5.3!

The twin metric has the formh5h1*h2 , i.e.,

dsh
25gab~x!dxadxb2gab~y!dyadyb:

Since¹m
g hab[cmab50, then we have in this caseG(g)5G(h). In fact, this property gives an

equivalent definition of pseudo-Ka¨hler manifolds, providedg andh are twin metrics.
Recall that an almost-product Einstein manifold is a triple (M ,g,P), whereg is a metric and

P is a ~1,1! tensorfield which satisfy

Ric ~g!5gg, ~5.4!

P25I , g~PX,PY!5g~X,Y!, X,Yex~M !. ~5.5!

Notice that P5I and P52I give trivial examples of an almost-product structure. Nontriv
examples are given by the following:

Proposition 5.1: Let(Mn,g) be an Einstein manifold satisfying (5.4) with an indefinite me
g of signature q,1<q,n. Then there exists on Mn a nontrivial almost-product structure P
satisfying (5.5) and therefore one gets an almost-product Einstein manifold (M,g,P).

Proof: If g is a pseudo-Riemannian metric onM, then it was proved in Ref. 17 that there ex
a ~strictly! Riemannian metrich and an almost-product structureP on M such thatg(X,Y)
5h(PX,Y) andh(PX,PY)5h(X,Y) for all vectorfieldsX andY on M. Therefore, one gets th
relations~5.5!. The almost-product structureP is nontrivial since ifP56I , theng56h; but, in
fact, the metricg is pseudo-Riemannian whileh is strictly Riemannian. ~Q.E.D.!

It follows from the proposition above that any manifold with a strictly pseudo-Rieman
Einstein metric serves as an example of a pseudo-Riemannian almost-product Einsteinian
fold.

It should also be noted that construction ofP for a given pseudo-Riemannian metricg is not
a canonical one~and, in fact, depends on a choice of some ‘‘background’’ Riemannian metri
M!. Therefore, a single~possibly Einstein! pseudo-Riemannian metric leads, in principle, to s
eral almost-product~Einsteinian! manifolds. It makes a striking difference between the soluti
of our variational problem corresponding to the positive roots of the fundamental equation~2.5!
and those corresponding to the negative roots. In the second case, as we shall see in
section, there are further topological obstructions for the existence of an almost-complex str

Let M be a pseudo-Ka¨hler manifold, i.e.,~locally! in adapted coordinate systems (xa,ya) the
metric g splits asg5g1% g2 , wheregab5g1(x) and gab5g2(y). If both metrics in~5.3! are
Einstein,
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Rab~g1!5ggab , Rab~g2!5ggab , ~5.6!

for the same constantg, then it follows

RAB~g!5ggAB . ~5.7!

Therefore, one has the following.
Proposition 5.2: A pseudo-Ka¨hlerian manifold is Einstein iff in any adapted coordinat

(xa,ya) both metrics are Einslein for the same constantg.
Proof: See Refs. 3 and 7. ~Q.E.D.!
Interesting examples of locally product~pseudo-! Riemannian manifolds which are not local

decomposable are given bywarped productspace–times.53–55 Given two ~pseudo-! Riemannian
manifolds (Mi ,gi), i 51,2, and a smooth functionu: M1→R, on the product manifoldM5M1

3M2 put the metricg5g1% e2ug2 . The resulting~pseudo-! Riemannian manifoldM5M1

3uM2 is called awarped productmanifold. It is, of course, an almost-product~pseudo-! Rie-
mannian manifold and it is conformal to a locally decomposable one. It is an interesting
intriguing fact that many exact solutions of Einstein equations~including, e.g., Schwarzschild
Robertson–Walker, Reissner–Nordstro¨m, de Sitter, etc.,! and alsop-brane solutions~see, e.g.,
Ref. 56! are, in fact, warped product space–times.55 Therefore, these exact solutions provid
beautiful examples of almost-product Einstein manifolds. Some other examples are provid
the Kaluza-Klein-type theories,n1m decompositions, and more generally so-calledsplit
structures.57 The explicit form of the zeta function on product spaces and of the multiplica
anomaly has been derived recently in Ref. 58.

There are topological restrictions on a~paracompact! manifold M for the existence of an
almost-product structure of rankk, which are the same as for the existence of a~strictly! pseudo-
Riemannian metric of signature (k,n2k), which are again the same as for the existence o
k-dimensional distribution. For example, for the existence of a metric with Lorentz signature
compact manifoldM ~i.e., for the existence of a nowhere-vanishing vectorfield!, the necessary and
sufficient condition is that the Euler characteristic number vanishes.

VI. ANTI-KÄ HLERIAN MANIFOLDS

Now we consider in some detail the case of aK-metric withe521, s521, which we call an
anti-Kählerian metric.

Definition 3: A triple (M ,g,J), whereJ is an almost-complex structure and the metricg is
anti-Hermitian: g(JX,JY)52g(X,Y),X,Yex(M ) is called ananti-Kählerian manifold if ¹J
50, where¹ is the Levi-Civita connection.

We will prove that a real anti-Hermitian metric on a complex manifold satisfies the Ka¨hler
condition¹J50 on the same manifold treated as a real manifold if and only if the metric is
real part of a holomorphic metric on this manifold.

Let (M ,J) be a 2m-dimensional almost-complex real manifold and letg be an anti-Hermitian
metric onM. We extendJ, g, and the Levi-Civita connection¹ by C-linearity to the complexifi-
cation of the tangent bundleTCM5TM ^ C. We use the same notation for the complex extend
g, J, and¹. Then the Levi-Civita connection is the mapping (X,Y)→¹XY, whereX andY are now
complex vectorfields~i.e., sections ofTCM !. Then the~complex extended! torsion tensorT van-
ishes,

T~X,Y!5¹XY2¹YX2@X, Y#50,

and the ordinary formulas are valid for the connection,

¹Xg~Y,Z!5Xg~Y,Z!2g~¹XY,Z!2g~Y,¹XZ!50, ~6.1!

and for the Riemann tensor,
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R~X,Y!Z5@¹X ,¹Y#Z2¹@X,Y#Z, ~6.2!

whereX, Y, Z are complex vectorfields. For the sake of clarity, we stress that for the mome
are just complexifying the tangent bundle, but we do not assume the almost-complex structuJ is
integrable. Let us now fix a~real! basis$X1 ,...,Xm ,JX1 ,...,JXm% in each tangent spaceTxM .
Then, the set$Za ,Zā%, whereZa5Xa2 iJXa , Zā5Xa1 iJXa , forms a basis for each complex
fied tangent spaceTxM ^ C. Unless otherwise stated, little Latin indicesa,b,c,... runfrom l to m,
while Latin capitalsA,B,C,... run through 1,...,m, 1̄,...,m̄; for notational convenience we sha
also use bar capital indices and we shall assumeA% 5A. One hasJZa5 iZa andJZā52 iZā . We
setgAB5g(ZA ,ZB)5gBA . Then the following holds:

Proposition 6.1: Let(M ,J) be an almost-complex manifold and g be an anti-Hermitian me
on it. Then the complex extended metric g (in the complex basis constructed above) satis
following conditions:

gab̄5gb̄a50, ~6.3!

gĀB̄5ḡAB . ~6.4!

Proof: Since the metricg is anti-Hermitian, we have

g~Za ,Zb̄!52g~JZa ,JZb̄!52g~ iZa ,2 iZb̄!52g~Za ,Zb̄!.

Therefore,gab̄50, which proves~6.3!. The proof of~6.4! is well known. In fact, we have

gāb̄5g~Zā ,Zb̄!5g~Xa1 iJXa ,Xb1 iJXb!

5g~Xa ,Xb!2g~JXa ,JXb!1 ig~JXa ,Xb!1 ig~Xa ,JXb!

and

gab5g~Xa2 iJXa ,Xb2 iJXb!5g~Xa ,Xb!2g~JXa ,JXb!2 ig~JXa ,Xb!2 ig~Xa ,JXb!.

Therefore, we getgāb̄5ḡab . Similarly we consider the other components ofgAB and thence we
prove ~6.4!. ~Q.E.D.!

It is customary to write a metric satisfying~6.3! and ~6.4! as

ds25gabdzadzb1gāb̄dzādzb̄ . ~6.5!

We define now the complex Christoffel symbolsGAB
C as

¹ZA
ZB5GAB

C ZC . ~6.6!

It is known1,3,20 that if ¹J50, then the torsionT and the Nijenhuis tensorN satisfy the identity

T~JX,JY!5 1
2N~X,Y! ~6.7!

for any vectorfieldsX andY. Since the complex extended Levi-Civita connection¹ has no torsion,
the complex Christoffel symbols are symmetric. In this case the complex structureJ is integrable
so that the real manifoldM inherits the structure of a complex manifold. Let us now recall~see,
e.g., Ref. 20! that there is a one-to-one correspondence between complex manifolds an
manifolds with an integrable complex structure. This means that there exist real, adapted~local!
coordinates (x1,...,xm,y1,...,ym) such that

JS ]

]xaD5
]

]ya , JS ]

]yaD52
]

]xa .
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Settingza5xa1 iya and takingXa5]/]xa one gets

Za5Xa2 iJXa52]/]za52]a , Zā5Xa1 iJXa52]/] z̄a52] ā ,

where]A5]/]zA andzā5 z̄a. It appears thatza’s form a complex~analytic! coordinate chart on
M. Now from ~6.1! one gets

GAB
C 5 1

2g
CD~ZAgDB1ZBgDA2ZDgAB!5gCD~]AgDB1]BgDA2]DgAB!. ~6.8!

Notice that the relation~6.1! is valid for the complex extended metricg and complex vector
fields X, Y, Z if and only if it is valid for real vectorfields.

Theorem 6.2: Let M be an m-dimensional complex manifold, thought as a real
dimensional manifold with a complex structure J. Let us further assume that M is provided w
anti-Hermitian metric g. We extend J, g and the Levi-Civita connection¹ by C-linearity to the
complexified tangent bundle TCM . Then the following conditions are equivalent:

(i)

¹X~JY!5J¹XY, ~6.9!

where X and Y are arbitrary real vectorfields.
(ii) The (complex) Christoffel symbols satisfy

GAB
C 50 except f or Gab

c and G
āb̄

c̄
5Ḡab

c . ~6.10!

(iii) There exists a local complex coordinate system(z1,...,zm) on M such that the compo
nents of the complex extended metric gab in the canonical form (6.5) are holomorphic function

] c̄gab50. ~6.11!

Proof: From ~6.6! we have

ḠAB
C 5G

ĀB̄

C̄
.

The connection satisfies the conditions

¹ZB
~JZc!5J¹ZB

Zc5 i¹ZB
~Zc!,

¹ZB
~JZc̄!5J¹ZB

Zc̄52 i¹ZB
~Zc̄!,

if and only if

GBc̄
a 5GBc

ā 50. ~6.12!

This proves the equivalence between~i! and~ii !. Then, for the Christoffel symbols~6.8! by taking
~6.3! into account one gets

Gbc̄
a 5gaD~]bgDc̄1] c̄gDb2]DgDc̄!5gad] c̄gbd , ~6.13!

and from~6.12! it follows that

] c̄gbd50. ~6.14!

The other relations~6.12! also are reduced to~6.14! or its complex conjugated. Therefore, th
relation~6.14! is equivalent to~6.11!. This proves the equivalence between~i! and~iii !. Our claim
is hence proved. ~Q.E.D.!
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We have proved that a real anti-Hermitian metric on a complex manifold satisfies the K¨hler
condition¹J50 on the same manifold treated as a real manifold if and only if the metric is
real part of a holomorphic metric on this manifold. Therefore, there exists a one-to-one corre
dence between anti-Ka¨hler manifolds and complex Riemannian manifolds with a holomorp
metric as they were defined in Ref. 23~see also, Ref. 13!. It should be also remarked that th
theory of complex manifolds with holomorphic metric~so-calledcomplex Riemannianmanifolds!
has become one of the cornerstones of the twistor theory.25 This includes anonlinear graviton,21

ambitwistorformalism,23 and theory ofH-spaces.59

From an algebraic viewpoint, let us mention that we have been dealing with the follo
construction. LetV be a real vector space with a complex structureJ and letG be a complex-
valued bilinear form onV. Let us set

F~X,Y!5G~X,Y!2G~JX,JY!2 iG~X,JY!2 iG~JX,Y!.

Then we have

F~JX,JY!52F~X,Y!.

Now one takes the real~or imaginary! part of F to get a real anti-Hermitian bilinear form onV.

VII. ANTI-KÄ HLERIAN EINSTEIN MANIFOLDS

In this section we consider the problems of the global existence and classification of
Hermitian Einstein manifolds. Recall that an anti-Hermitian Einstein manifold is a triple (M ,g,J)
whereg is a metric andJ is a ~1,1! tensorfield which satisfy

Ric ~g!5gg, ~7.1!

J252I , g~JX,JY!52g~X,Y!, X,YPx~M !. ~7.2!

Then the metricg has necessarily the signature (m,m) ~see Sec. III!, being 2m5dim M . Let us
show that by taking the real part of a holomorphic Einstein metric on a complex manifo
complex dimensionm one can get a real Einstein manifold of real dimension 2m.

From ~4.8! we have for the Ricci tensor

Ric ~g!~JX,JY!52Ric ~g!~X,Y!, X,Yex~M !.

Therefore, analogously to~6.3!, we have

Rab̄50. ~7.3!

We shall not attempt here to consider solutions of Einstein equations for a generic me
the form ~6.5!, but consider only the case whengab is a holomorphic function:

] c̄gab50. ~7.4!

From ~7.4! and ~4.7! we get for the Riemann tensor

RABC
D 50 except for Rabc

d and R
āb̄c̄

d̄
5R̄abc

d . ~7.5!

The ~complex! Einstein equations

RAB~g!5ggAB ~7.6!

are hence equivalent to a pair of equations
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Rab~gcd!5ggab , ~7.7a!

Rāb̄~gc̄d̄!5ggāb̄ . ~7.7b!

To get a real solution of Einstein equations~7.1! from ~7.7! one uses real coordinates (xm), m
51,...,2m on M, i.e., za5xa1 ixm1a, a51,...,m, and writes the metric~6.5! as

ds25gabdzadzb1gāb̄dzādzb̄5gmndxmdxn, ~7.8!

wheregmn is a real metric. We have hence proved the following theorem:
Theorem 7.1: If ~M,g,J! is an anti-Kählerian manifold, i.e., a complex manifold of compl

dimension m with a holomorphic metric gab(z),a,b51,...,m, and a real metric gmn(x),m,n
51,...,2m, defined by (7.8), then the holomorphic metric gab(z) satisfies (7.7a) if and only if the
real metric gmn(x) is a solution of the Einstein equations (7.1):

Rmn~g!5ggmn . ~7.9!

As an example, one can take a complex analytic continuation of any real analytic solut
Einstein equations. A simple example is

ds25dzadza1
~zadza!2

12zaza 1complex conj.5gmndxmdxn. ~7.10!

This metricgmn on ‘‘the complex sphere,’’w1
21¯1wm11

2 51 ~which can be interpreted as
quadricz1

21¯1zm11
2 2zm12

2 50 in CPm11 if one takeswi5z i /zm12 ,), gives a solution of the
Einstein equations~7.8! and provides an example of an anti-Hermitian Einstein manif
(M ,g,J).

In particular, form52 we get a real solution of Einstein equations on the four-dimensio
real manifold (w1

21w2
21w3

251,wiPC) with a metric of signature~1122!.
Notice also that any Einstein metric on a compact Riemannian manifoldMn leads to an

anti-Kählerian Einstein metric on another real manifoldM2n. It follows from the known fact60

that any Einstein metric is analytic in a certain atlas onMn. Therefore there exists a comple
analytic continuation of the metric to a complex manifold of complex dimensionn which is a real
anti-Kählerian manifoldM2n.
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APPENDIX: PROOF OF THEOREMS 3.1 AND 3.2

Proof of Theorem 3.1:The proof (b)⇒(a) follows obviously from the fact that each tw
diagonal matrices with61 on their diagonals do satisfy our equation, which is invariant under
appropriate transformation.

The converse (a)⇒(b) is less obvious. As we already know, there exists a real nondegen
matrix M such

h21g5MDkM
21. ~A1!

From this one gets
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g̃5h̃Dk ,

whereg̃5MtgM and h̃5MthM. Sinceg̃, h̃, andDk are symmetric matrices one has hence

h̃Dk5Dkh̃. ~A2!

Let us now representh̃ in block form:

S h̃11 h̃12

h̃12
t h̃22

D ,

whereh̃11
t 5h̃11, h̃22

t 5h̃22, andh̃11 is a k3k matrix. Then from~A2! we obtain

S h̃11 2h̃12

h̃12
t 2h̃22

D 5S h̃11 h̃12

2h̃12
t 2h̃22

D
Thereforeh̃1250 and one gets

h̃5S h̃11 0

0 h̃22
D , g̃5Dkh̃5S h̃11 0

0 2h̃22
D . ~A3!

Now we make use of the fact that any real nondegenerate symmetric matrix ist-congruent to a
diagonal matrix whose diagonal elements are equal to11 or 21 i.e.,h115S1

t Dh11
S1 ~and analo-

gouslyh225S2
t Dh22

S2!, whereDh11
~resp.Dh22

! is a diagonal matrix with61 along the diagonal.
Therefore one has

h̃5StS Dh11 0

0 Dh22

D S, g̃5StS Dh11 0

0 2Dh22

D S,

where S5(0
St

S2

0 ). Notice thatS commutes withDk , i.e., SDk5DkS. Taking thenR5SM the

theorem is proved. ~Q.E.D.!
Proof of Theorem 3.2:To prove (b)⇒(a), check thatKh

21Kg5Jo and then make use of th
appropriate transformation properties.

In order to prove the converse (a)⇒(b), in full analogy with the previous case one makes u
of the fact thath21g5MJoM 21. Now this leads to the condition~with the same notation!

h̃Jo52Joh̃. ~A4!

Writing then h̃ in block form,

h̃5S a b

bt dD ,

one has from~A4!

S 2b a

2d btD 5S bt d

2a 2bD
Thereforea52d, b5bt and we have
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h̃5S a b

b 2aD , ~A5a!

g̃5h̃Jo5h̃5S 2b a

a bD . ~A5b!

Let us further show that there exists a real matrixS such that

SJo5JoS, ~A6!

h̃5StKhS, ~A7a!

g̃5StKgS. ~A7b!

To be sure that~A6! holds, take the matrixS in the form

S5S s u

2u sD ,

wheres and u are realm3m matrices to be determined from the conditions~A7a! and ~A7b!.
Equation~A7a! reads as

S sts2utu stu1uts

uts1stu utu2stsD 5S a b

b 2aD , ~A8a!

while the equation~A7b! gives

S 2uts2stu sts2utu

sts2utu stu1utsD 5S 2b a

a bD . ~A8b!

Notice that Eq.~A8a! is equivalent to~A8b! so that we are left with the following conditions:

sts2utu5a, stu1uts5b.

This last equation can be rewritten in the complex form

~s1 iu ! t~s1 iu !5a1 ib.

Now it is known ~see, for example, Ref. 45! that any nondegenerate symmetric complex ma
a1 ib can be represented in the form

a1 ib5NtN,

whereN is a ~nondegenerate! complex matrix. Takings1 iu5N and R5SM21 the theorem is
proved. ~Q.E.D.!
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Null particle solutions in three-dimensional „anti- … de Sitter
spaces
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We obtain a class of exact solutions representing null particles moving in three-
dimensional~anti-! de Sitter spaces by boosting the corresponding static point
source solutions given by Deser and Jackiw. In de Sitter space the resulting solution
describes two null particles moving on the~circular! cosmological horizon, while in
anti-de Sitter space it describes a single null particle propagating from one side of
the universe to the other. We also boost the Ban˜ados–Teitelboim–Zanelli black
hole solution to the ultrarelativistic limit and obtain the solution for a spinning null
particle moving in anti-de Sitter space. We find that the ultrarelativistic geometry of
the black hole is exactly the same as that resulting from boosting the Deser–Jackiw
solution when the angular momentum of the hole vanishes. A general class of
solutions is also obtained which represents several null particles propagating in the
Deser–Jackiw background. The differences between the three-dimensional and
four-dimensional cases are also discussed. ©1999 American Institute of Physics.
@S0022-2488~99!03907-9#

I. INTRODUCTION

Although the Einstein equations still hold in three-dimensional space–time, the natu
gravity is quite different from that in four-dimensional space–time. Because the Einstein
Riemann tensors are equivalent in three-dimensional space–time, general relativity is dyna
trivial there. That is, the vacuum space–time is flat. The localized sources have effects only
global geometry. In 1984, Deser, Jackiw, and ’t Hooft1 investigated in detail the Einstein gravit
with static point sources in three-dimensional space–time. For a single static particle, the
etry is given by cutting a sector out of the Euclidean two-plane along two straight lines
identifying the edges to form a cone. Gravity theories with lightlike sources and spacelike s
in three-dimensional flat space–time have also been analyzed in Refs. 2 and 3, respective

When a nonvanishing cosmological constant is introduced to the three-dimensional Ei
gravity, some significant changes occur. In this case, the space–time has constant curvat
corresponds either to de Sitter or to anti-de Sitter space. In the de Sitter space, the stat
particle solution is a sphere minus a wedge with the edges identified. This is because th
space is a sphere in a three-dimensional covering space. To obtain the effect of a point parti
can cut the sphere from the location of the source along two great circles. On a sphere, the
meet again at the antipodal point. By identifying along the cuts, this procedure automa
creates a ‘‘mirror’’ source. There is no pure one-particle solution globally. For the anti-de S
case, the two-space is a hyperboloid. This can be cut along two lines and the cuts ident
produce single particle solutions. Deser and Jackiw4 have obtained a metric~hereafter denoted the

a!Electronic mail: cai@wormhole.snu.ac.kr
b!Electronic mail: J. B. Griffiths@Lboro.ac.uk
34650022-2488/99/40(7)/3465/11/$15.00 © 1999 American Institute of Physics
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DJ solution! and confirmed the above geometrical picture for static point sources by dir
solving the Einstein equations with a cosmological constant.

In this paper we investigate the Einstein gravity with null particle sources in the th
dimensional de Sitter and anti-de Sitter spaces. Initially, we employ the boost method that w
used by Aichelburg and Sexl5 to derive the gravitational field generated by a photon. By boos
the Schwarzschild solution to the ultrarelativistic limit in which the velocity of the source
proaches the speed of light and the mass is scaled to zero in an appropriate manner, Aic
and Sexl derived a solution describing an impulsive gravitational wave propagating in
space–time. This method has subsequently been widely used to investigate the gravitation
generated by various null sources moving in flat space–times~for a brief review see Ref. 6 and
references cited therein!. Due to the fact that the four-dimensional~anti-! de Sitter space can b
represented as a four-dimensional hyperboloid embedded in a five-dimensional flat space
Hotta and Tanaka7 succeeded in obtaining exact solutions for null particles moving in~anti-! de
Sitter space–times by boosting the Schwarzschild–~anti-!de Sitter solutions. The impulsive wav
surfaces generated have been discussed in detail by Podolsky´ and Griffiths.8 Further they consid-
ered more general gravitational wave solutions in~anti-! de Sitter spaces.9 These can be inter
preted as impulsive gravitational waves generated by an arbitrary distribution of null particles
with arbitrary multipole structure.

The plan of this paper is as follows. In Sec. II, we will introduce the DJ solution and boos
space–time to the ultrarelativistic limit in the three-dimensional de Sitter and anti-de Sitter s
and then analyze the resulting geometries. We will also boost the Ban˜ados–Teitelboim–Zanell
~BTZ! black hole10 in the anti-de Sitter space in Sec. III. Although the BTZ black hole solutio
quite different from the DJ solution globally, we find that, when the angular momentum o
BTZ black hole vanishes, the resulting geometries are equivalent to each other. In Sec. IV w
consider the null-particle solution in the DJ background, and further confirm the result de
using the boost method. A brief discussion of the main results is included in Sec. V.

II. BOOSTING THE DJ SOLUTIONS IN THE „ANTI-… DE SITTER SPACES

The three-dimensional Einstein equations with a nonvanishing cosmological constant c
written as

Rmn2 1
2Rgmn1Lgmn58pTmn , ~1!

whereL denotes the cosmological constant andTmn the energy–momentum tensor of the sourc
Here the gravitational constantG has been set to one.

The solutions which describe a static point particle at the origin in the~anti-! de Sitter spaces
were found to be4

ds252N2~R!dt21F~R!~dR21R2 df2!, ~2!

where

F~R!5
4a2

LR2@~R/R0!a1~R/R0!2a#2 ,

~3!

N~R!5
~R/R0!a2~R/R0!2a

~R/R0!a1~R/R0!2a ,

R0 is an integration constant anda5124M . The constantM is the mass of the point particle
Performing a simple coordinate transformation in~2! gives

ds252~12Lr 2/a2!dt21a22~12Lr 2/a2!21 dr21r 2 df2. ~4!
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WhenL.0, the solution~4! has a cosmological event horizon atr c5a/AL with surface gravity
k5AL. Whena51, that is for the vacuum caseM50, the DJ solution~4! reduces to the familiar
form

ds252~12Lr 2!dt21~12Lr 2!21 dr21r 2 df2, ~5!

which is just the three-dimensional de Sitter (L.0) or anti-de Sitter (L,0) space in static
coordinates.

Similar to the case in four dimensions, the three-dimensional~anti-! de Sitter space can also b
represented as a hyperboloid embedded in a four-dimensional flat space–time. Let us first c
the case of the de Sitter space.

~i! In de Sitter space.In this case, the hyperboloid satisfies

2Z0
21Z1

21Z2
21Z3

25a2, ~6!

where a251/L. The de Sitter space can be expressed as the following SO~1,3! invariant line
element satisfying the constraint~6!:

dsdS
2 52dZ0

21dZ1
21dZ2

21dZ3
2. ~7!

Obviously, when we parametrize the hypersurface~6! with the following coordinates:

Z05Aa22r 2 sinh~ t/a!, Z15r cosf,
~8!

Z356Aa22r 2 cosh~ t/a!, Z25r sinf,

the metric~5! can be deduced from~7!. When boosting the DJ solution in the de Sitter space~7!,
it is appropriate first to expand the solution~4! up to the first order of the massM ~higher order
contributions will vanish due to the boost!. This yields

ds2'dsdS
2 18MLr 2 dt21

8M

~12Lr 2!2 dr2, ~9!

wheredsdS
2 denotes the de Sitter space~5!. Using the coordinates~8!, we can rewrite~9! as

ds25dsdS
2 1

8M

~Z3
22Z0

2!2 F ~a21Z0
22Z3

2!~Z3dZ02Z0dZ3!21
a4

~a21Z0
21Z3

2!
~Z3dZ32Z0dZ0!2G .

~10!

We now make a Lorentz boost in theZ1 direction, that is, a Lorentz transformation

Z0→
Z01vZ1

A12v2
, Z1→

vZ01Z1

A12v2
, Z2→Z2 , Z3→Z3 , ~11!

wherev is the boost velocity. To obtain a result of physical interest, the mass must be redu
zero in an appropriate way. Following Ref. 5, we scale mass as

M5pA12v2, ~12!

wherep is a constant which can be interpreted as the energy of the null particle. Substitutin~11!
and ~12! into ~10!, we obtain

ds25dsdS
2 1

8pA12v2

~Z3
22z2!2 F ~a21z22Z3

2!~Z3 dz2zdZ3!21
a4

~a21z22Z3!
~Z3dZ32z dz!2G ,

~13!
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wherez25(Z01vZ1)2/(12v2). Using the identity

lim
v→1

1

A12v2
f ~z2!5d~Z01Z1!E

2`

`

f ~z2!dz, ~14!

and taking the limitv→1 in ~13!, we obtain

ds25dsdS
2 28ppuZ2ud~Z01Z1!~dZ01dZ1!2. ~15!

This looks like an impulsive wave solution in the de Sitter space, located on the surfaceZ01Z1

50, Z2
21Z3

25a2 which at any time is a circle of constant radius.
In order to further analyze this solution, it proves convenient to use the follow

coordinates:8

Z05
1

2h
@a22h21~x2a!21y2#, Z15

a

h
~x2a!,

~16!

Z35
1

2h
@a21h22~x2a!22y2#, Z25

a

h
y.

Further we can put

x5r cosf, y5r sinf, ~17!

with rP@0,̀ ), fP@0,2p). The de Sitter space can then be described as

dsdS
2 5

a2

h2 ~2dh21dr21r2 df2!, ~18!

which is in conformally flat form. The solution~15! can then be rewritten as

ds25dsdS
2 28ppausinfu@d~h2r!~dh2dr!21d~h1r!~dh1dr!2#. ~19!

This looks like two impulsive wave fronts. However, as pointed out in Ref. 8 in the fo
dimensional case, both components are required for the conformal picture to be geode
complete. Becauser>0, the termd(h2r) does not vanish forh>0 only, while d(h1r) is
required forh<0. From~19!, it is clear that the particles are located on the circler5uhu which
is the cosmological horizon of the de Sitter space.

It can then be shown that the energy–momentum tensor is only nonzero at the two
Z01Z150, Z250, Z356a, which thus represent two null particles. At all other points on t
null surface, the impulsive component can in fact be removed by a discontinuous coor
transformation. The solution can thus be represented as a three-dimensional de Sitter sp
along the cosmological horizonZ01Z150, with the two halves reattached in such a way as
create two null particles at the pointsZ250, or y50, or f50,p, which are at opposite points o
the horizon. This situation is very like that in the four-dimensional case, in which instead o
circle the wave surface is spherical and the particles are located at opposite poles. The sig
difference, however, is that in the four-dimensional case the Weyl tensor has some no
components on the spherical surface and these can be interpreted as describing gravitation
components generated by the null particles. In the three-dimensional theory such free gravit
waves cannot occur.

~ii ! In anti-de Sitter space.We now turn to the case of the three-dimensional anti-de S
space. This can be regarded as a hyperboloid

2Z0
21Z1

21Z2
22Z3

252a2, ~20!
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embedded in an SO~2,2! invariant four-dimensional flat space–time

dsadS
2 52dZ0

21dZ1
21dZ2

22dZ3
2, ~21!

wherea2521/L.0. Obviously, the anti-de Sitter space~5! can be parametrized by the followin
coordinates:

Z05Aa21r 2 sin~ t/a!, Z15r cosf,
~22!

Z35Aa21r 2 cos~ t/a!, Z25r sinf.

We now boost the DJ solution in the anti-de Sitter space. Again expanding the solution up
first order in the massM and using the coordinates~22!, we arrive at

ds25dsadS
2 1

8M

~Z0
21Z3

2!2 F ~Z0
21Z3

22a2!~Z3dZ02Z0dZ3!2

1
a4

~Z0
21Z3

22a2!
~Z3dZ32Z0dZ0!2G . ~23!

Repeating the same steps as in the case of the de Sitter space, that is, using the Lorentz
mation ~11!, rescaling the mass as~12!, and taking the limitv→1, finally we can obtain

ds25dsadS
2 28ppuZ2ud~Z01Z1!~dZ01dZ1!2. ~24!

Comparing with~15!, it is easy to see that the expression for the apparent impulsive part i
same as that in the de Sitter space. However, the interpretation is quite different. In this ca
impulsive component is given by the surfaceZ01Z150, Z2

22Z3
252a2, which at any time is a

hyperbola. Let us now analyze this solution.
In the anti-de Sitter space, introduce first the following coordinates:

Z05
1

2x
@a22h21x21~y2a!2#, Z15

a

x
~y2a!,

~25!

Z25
1

2x
@a21h22x22~y2a!2#, Z35

a

x
h,

and then use

x5r cosf, y5r sinf. ~26!

This produces the anti-de Sitter space written in the conformally flat form

dsadS
2 5

a2

r2 cos2 f
@2dh21dr21r2 df2#. ~27!

The solution~24! can be rewritten in these coordinates as

ds25dsadS
2 2

8ppausinfu
cos2 f

@d~h2r!~dh2dr!21d~h1r!~dh1dr!2#. ~28!

Here it should be stressed that the solution~28! does not mean two impulses again. As in the
Sitter case,d(h2r) works only for h.0 while d(h1r) for h,0. The two components ar
required for globally geodesic completeness. From~28!, it is clear that the impulsive component
located on the liner5uhu, or x21y25h2. However, this is not a circle—according to~27! it is
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conformal to a circle, and the coordinatef is restricted to2p/2,f,p/2. In fact it is a hyper-
bola. It can then be shown that this solution represents a single null particle located atZ250 on
the null surfaceZ01Z150, i.e., aty50, x5h ~or x52h). The particle thus clearly propagate
from one side of the universe to the other and~since this space–time contains closed timel
lines! may then be considered to propagate back in the opposite direction.

Thus, by boosting the DJ solutions, we have obtained two kinds of exact solutions desc
null particles moving in the three-dimensional de Sitter and anti-de Sitter spaces.~In Sec. IV we
will further confirm these results by directly solving the Einstein equations.! Although static
particles only have effect on the global geometry, which is quite different from the situation i
four-dimensional case, we still find that the boost method is sufficiently powerful to derive
particle solutions from their corresponding static particle solutions. In Sec. III we will boos
BTZ black hole solution in the anti-de Sitter space. In the static situation, this is quite diff
from the DJ solution from the aspect of global properties. However, the resulting ultrarelati
geometry is found to be identical, at least in the nonrotating case.

III. BOOSTING THE BTZ BLACK HOLE SOLUTION IN THE ANTI-DE SITTER SPACE

Due to the special properties of three-dimensional gravity, it was a surprising discovery
Bañados, Teitelboim, and Zanelli10 claimed that they found a black hole solution in the Einst
gravity with a negative cosmological constant. The solution they found is

ds252N2~r !dt21N22 dr21r 2~Nf~r !dt1df!2, ~29!

where

N2528M1
r 2

a2 1
16J2

r 2 , Nf52
4J

r 2 . ~30!

Here21/a2 denotes the negative cosmological constant. The integration constantsM andJ can be
interpreted as the mass and angular momentum of the black hole. This black hole has two h
at

r 6
2 54Ma2F16A12S J

MaD 2G , ~31!

providedM.0 andJ,Ma. This solution is asymptotically an anti-de Sitter space–time and
be constructed by identifying some discrete points in the three-dimensional anti-de Sitter sp
is of interest to note, however, that when the mass and angular momentum of the hole van
solution does not reduce to the anti-de Sitter space. Rather, the anti-de Sitter space–time~5! can
only be obtained from~29! in the limit as 8M→21 andJ→0.

Before boosting the BTZ solution, it is first appropriate to expand it about the backgrou
the anti-de Sitter space. To achieve this, we expand the BTZ solution~29! to first order in the mass
term 8M11 and the angular momentumJ. The result is

ds2'dsadS
2 1~8M11!dt21

8M11

~11r 2/a2!2 dr228J dt df. ~32!

Using the coordinates in~22!, the above metric can be rewritten as

ds25dsadS
2 1

~8M11!a2

~Z0
21Z3

2!2 F ~Z3dZ02Z0dZ3!21
a2

Z3
21Z0

22a2 ~Z3dZ31Z0dZ0!2G
2

8Ja

~Z3
21Z0

2!~Z3
21Z0

22a2!
~Z3dZ02Z0dZ3!~Z1dZ22Z2dZ1!. ~33!
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We now make a Lorentz boost~11! in theZ1 direction, rescaling the mass and angular moment
as

8M1158pA12v2, J5sA12v2. ~34!

We then proceed to the ultrarelativistic limitv→1. In this case, the two constantsp ands can be
interpreted physically as the energy and spin angular momentum of the resulting null pa
respectively. It may be observed that, in this limit, the inequalityJ,Ma mentioned above is
strictly violated. This is because the massM and angular momentumJ are rescaled in differen
ways. However, the limit is still an exact solution even though it is not strictly the limit of a
rotating black hole. Using this procedure in~33!, we obtain

ds25dsadS
2 18pp~Z32AZ32a2!d~Z01Z1!~dZ01dZ1!2

2
8ps

a FZ22
Z2Z3

AZ3
22a2Gd~Z01Z1!~dZ01dZ1!2. ~35!

The two linear terms in the solution~35! can be removed by the following discontinuous line
transformation:

Z2→Z22
4ps

a
UQ~U !,

Z3→Z324ppUQ~U !,

U→U,

V→V216p2p2UQ~U !18ppZ3Q~U !1
16p2s2

a2 UQ~U !2
8ps

a
Z2Q~U !, ~36!

whereU5Z01Z1 , V5Z02Z1 , andQ is the Heaviside step function. Therefore, the solution~35!
can be reduced to

ds25dsadS
2 28ppuZ2ud~Z01Z1!~dZ01dZ1!21

8psZ3

a
sign~Z2!d~Z01Z1!~dZ01dZ1!2.

~37!

It is now easy to see that whens50, that is when the angular momentum vanishes in the orig
BTZ solution, the solution~37! is identical to~24!. Thus, both ultrarelativistic limits of the DJ
solution forL,0 and the spinless BTZ solution are equivalent to each other. Obviously, the
term in ~37! is the spin effect of the null particle. In the coordinates~25! and~26!, we can rewrite
~37! as

ds25dsadS
2 1S 28ppa

usinfu
cos2 f

1
8ps sign~ tanf!

cosfucosfu D @d~h2r!~dh2dr!21d~h1r!~dh1dr!2#

5dsadS
2 1S 28ppa

usinfu
cos2 f

1
8ps

cos2 f
sign~sinf! D @d~h2r!~dh2dr!21d~h1r!~dh1dr!2#

~38!

which is clearly identical to~28! whens50.
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IV. NULL PARTICLES IN THE DJ BACKGROUND

In this section we will directly solve the Einstein equations with null particle sources
re-obtain some of the results of previous sections that were derived by the boost method.
11 Dray and ’t Hooft considered a particle moving with the speed of light on the Schwarzs
black hole horizon, and investigated the back reaction of the particle on the geometry. In this
the particle produces an impulsive gravitational wave located on the Schwarzschild ho
Loustóand Sa´nchez12 and Sfetsos13 further extended the work of Dray and ’t Hooft to nonvacuu
backgrounds and investigated the conditions that should be satisfied when an impulsive w
introduced into curved space–times. The null particle solution in the BTZ background~29! has
already been considered in Ref. 13.

Here we first note that the DJ solution~4! can be rewritten, after rescaling the coordinater, as

ds252~12Lr 2!dt21~12Lr 2!21 dr21a2r 2 df2. ~39!

Further definingf85af with f8P@0,2pa), we have

ds252~12Lr 2!dt21~12Lr 2!21 dr21r 2 df82, ~40!

which is obviously equivalent to the de Sitter space locally, but has a deficit angled5(1
2a)2p. We will first discuss solutions with null particles located on the cosmological horizo
the de Sitter case (L51/a2.0). The metric~39! or ~40! also can be regarded as a hypersurfa
embedded in the flat space–time~7! with

Z05Aa22r 2 sinh~ t/a!, Z15r cos~af!,
~41!

Z356Aa22r 2 cosh~ t/a!, Z25r sin~af!.

Introducing the null coordinates

u5et/aF~r !, v5e2t/aF~r !, ~42!

where the functionF(r ) is defined as

F~r ![expS 2
1

a E dr

~12r 2/a2! D5S a2r

a1r D
1/2

, ~43!

we can reexpress the DJ solution~40! as

ds252A~u,v !du dv1r 2~u,v !df82, ~44!

where

A~u,v !5
~a22r 2!

2F2~r !
, r ~u,v !5

a~12uv !

11uv
. ~45!

We can now consider the effect of null particles located on the null surfaceu50 which is clearly
the cosmological horizonr 5a. In this three-dimensional theory, this horizon is circular. Follo
ing Refs. 11 and 13, we can adopt the coordinate shift method on the background~40!. That is, the
following ansatz is employed: Foru,0 the space–time is still the background~44! while for
u.0 the space–time is~44! with v shifted asv→v1 f (f8). The functionf (f8) which will be
determined later describes the effect of the sources. Using this approach, the new solution
form

ds252A~u,v !du dv22A~u,v ! f ~f8!d~u!du21r 2~u,v !df82, ~46!
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which comes from~44! after making the coordinate shift:

u→u, v→v2 f ~f8!Q~u!, f8→f8. ~47!

For this solution to be consistent with the Einstein equations, the following conditions mu
satisfied atu50:13

A,v5r ,v
2 5Tvv50, ~48!

d2f

df822
r ,uv

2

2A
f 5

8pr 2

A
T̃uu , ~49!

where T is the energy–momentum tensor of matter generating the DJ geometry, that i
cosmological constant and possibly some static point particles, andT̃ is the energy–momentum
tensor of any null particles located on the surface. Here it should be noticed that the only
vanishing component of the energy–momentum tensor for null particles isT̃uu , and that this is
zero everywhere except at the points where the particles are located.

At the u50 null surface—that is, on the cosmological horizonr c5a51/AL for the DJ
(L.0) solution~40!—it is easy to see that the conditions~48! are satisfied and

A~u,v !uu5052a2, r ,uv
2 uu50524a2. ~50!

Then ~49! reduces to

d2f

df82 1 f 54pT̃uu . ~51!

It may immediately be observed that a solution withf 54pr, wherer is a constant, represent
a uniform distribution of null matter~of densityr! over the circular horizon. Since Eq.~51! is
linear, this component can always be added to other components. However, we will igno
possibility in the remainder of this section.

In those parts of the null surface on whichT̃uu50, Eq. ~51! has the solution

f 5c sin~f81v8!5c sina~f1v!, ~52!

wherec andv85av are arbitrary constants. This solution forf around the circular horizon ca
always be removed by a discontinuous coordinate transformation. However, solutions des
several discrete particles can be constructed by patching different sections of the sine wav
with different amplitude and phase. Points at whichf is C0 but has a discontinuous first derivativ
can be interpreted as points at which null particles are located. The energy of each particle
represented by the jump in the derivative off, and the energy–momentum tensorT̃uu is given by
a d function. On considering~38!, it may be observed that discontinuities inf may also be
permitted. These represent point particles with spin and, in this case, the energy–mom
tensorT̃uu contains a derivative of ad function.

For example, consider the case in whichn particles each of energypi , i 51¯n, are located
at pointsf5f i around the circular wave. The solution is then given by

f 5ci sina~f1v i ! for f i 21<f<f i , ~53!

wheren11→1. It is then possible to choose the 2n arbitrary constantci andv i such that

ci 11 sina~f i1v i 11!2ci sina~f i1v i !50,
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ci 11 cosa~f i1v i 11!2ci cosa~f i1v i !5
4ppi

a
. ~54!

By choosing the constants appropriately, it is possible to construct solutions in whichn(>2) null
particles of arbitrary energy are distributed arbitrarily around the circular wave.

In particular, we can consider the two-particle solution in which the particles are locat
opposite ends of a diameter of the circle. Since 0<f8,2pa around the circle, we may conside
the particles to be located at points given byf850 andf85pa. We may also restrict attention
to the case in which the two particles have identical energyp. Such a solution can be constructe
by the above method in which

c15c25
2pp

a
cosec

pa

2
, v15

~12a!p

2a
, v25

~123a!p

2a
. ~55!

This solution represents two null particles propagating in the DJ (L.0) background. In the cas
in which a51, the background is the de Sitter space and the solution can alternatively be w
in the form

f 5
2pp

a
usinfu. ~56!

This is clearly identical~after some rescaling! to the solution~19! that was obtained by boostin
two static particles in the de Sitter background, and thus confirms this solution.

It may also be observed that, in the particular case in whicha51/2, the deficit angle inf8 is
p and a one-particle solution atf50 can easily be constructed using

f 5c sin~f/2!,

where

0<f<2p. ~57!

It is also possible to obtain solutions for null particles propagating in the DJ background
L,0. However, the Dray–’t Hooft11 method cannot be directly used in this case. Neverthel
equivalent equations can be obtained and these will include, fora51, the special cases~28! of a
null particle and~38! of a spinning null particle propagating in an anti-de Sitter space.

V. CONCLUSION AND DISCUSSION

We have investigated null particle solutions in the three-dimensional de Sitter and a
Sitter spaces by boosting the corresponding static point source solutions~DJ solutions!4 in the
~anti-! de Sitter backgrounds. For the de Sitter case, the resulting solution describes tw
particles located at opposite points on the cosmological horizon which forms a circle of co
size. For the anti-de Sitter case, the solution describes a single null particle located at the p
symmetry of a propagating hyperbola. We have also boosted the BTZ black hole solution
ultrarelativistic limit. Although the BTZ black hole is quite different from the DJ solution globa
we have found that these two ultrarelativistic limits are equivalent to each other when the a
momentum of the hole is zero. This means that the boost method may lose some memory
original solution in the process of the boost. In addition, we believe that the angular moment
the hole gives the spin effect of the corresponding null particle.

By using the coordinate shift method, we have also obtained null particle solutions i
background. Whena51, the DJ (L.0) solution reduces to the de Sitter space, and the res
obtained include that derived using the boost method. It may be observed that the boost m
indeed is very powerful in the derivation of null particle solutions, not only in flat space–time
also in the~anti-! de Sitter space in three dimensions as well as four.
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Due to the special properties of the geometry in three-dimensional space–time, the na
Einstein gravity is rather different from that in four dimensions. The static point source solu
given in Ref. 1 in flat space–time and in Ref. 4 in~anti-! de Sitter space, clearly demonstrate t
differences in the local and global aspects from the four-dimensional Schwarzschild
Schwarzschild-~anti-!de Sitter solutions. By comparing the null particle solution given by De
and Steif2 in three-dimensional flat space–time and some results given in this paper, we
observe some similarities as well as some differences in the null particle solutions in thre
four dimensions. The main difference in four-dimensional space–time is that the null par
generate impulsive gravitational waves which are forbidden in three-dimensional theories. I
some interest to further compare spacelike source solutions in three- and four-dimensional
times. Furthermore, it also might be interesting to discuss the geodesics and particle scatte
the null particle solutions in the~anti-! de Sitter space.
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Canonical general relativity: Matter fields in a general
linear frame

M. A. Claytona)

9 Hurndale Ave., Toronto, Ontario M4K 1R6, Canada

~Received 18 November 1998; accepted for publication 29 January 1999!

Building on the results of previous work@M. A. Clayton, ‘‘Canonical general
relativity: Diffeomorphism constraints and spatial frame transformations,’’ J. Math.
Phys.39, 3805–3816~1998!#, we demonstrate how matter fields are incorporated
into the general linear frame approach to general relativity. When considering the
Maxwell one-form field, we find that the system that leads naturally to canonical
vierbein general relativity has the extrinsic curvature of the Cauchy surface repre-
sented by gravitational as well as nongravitational degrees of freedom. Neverthe-
less the metric compatibility conditions are undisturbed, and this apparent
derivative-coupling is seen to be an effect of working with~possibly orthonormal!
linear frames. The formalism is adapted to consider a Dirac Fermion, where we find
that a milder form of this apparent derivative-coupling appears. ©1999 American
Institute of Physics.@S0022-2488~99!03407-6#

I. INTRODUCTION

In Ref. 1 we gave a detailed description of the surface geometry and canonical struct
general relativity~GR! in a general linear frame, using two different choices of the diffeom
phism constraints; the ‘‘unprimed’’ constraints which are compatible with a coordinate fr
gauge choice, and the ‘‘primed’’ constraints which are compatible with an orthonormal~or Lor-
entz! frame gauge choice. These arose from considering an action that allows one to tre
metric and vierbein fields independently. Specializing to a surface-normal frame, we were le
Hamiltonian formalism that treats the spatial frame as initial data that is independent of the s
metric degrees of freedom, and with atlas fields (N,Na,Na

b) that enforce the Hamiltonian, mo
mentum and frame constraints respectively. The unprimed:H andHa , and primed:H8 and
H8a , constraints are related by nontrivial factors involving the generators of infinitesimal f
transformations:Ja

b . This work is essentially an extension of this, showing that the Hamilton
description of matter fields minimally coupled to general relativity is compatible with the gen
linear frame formalism. Note that, as in Ref. 2, we have specialized somewhat by choo
surface-normal frame and assuming the existence of a spatial coordinate frame, thereby c
a minimal representation of the evolution of the spatial hypersurface in spacetime. Operat
this should be seen as no particular limitation since any numerical scheme would certainly
from such a point of view.~For alternative points of view, see Refs. 3 and 4.!

We shall see that, as expected, the addition of matter fields poses no great difficulty
somewhat surprising feature that appears is the breakdown of DeWitt’s ‘‘Riemannian Structu5

since matter fields enter into the definition of the momenta conjugate to the frame fields~also
occurring for any tensor field that behaves nontrivially under frame transformations!. This is
operationally due to the presence of derivatives of the frame field in the matter action, en
through the nonvanishing structure ‘‘constants’’CAB

C . Despite this mixing of gravitational and
matter sectors, we show that the evolution of the spatial metric is identical to that required
compatibility equations~i.e., the definition of the extrinsic curvature is unaltered! and the field
equations are equivalent to those derived in a coordinate frame. Thus this form of deriv

a!Electronic mail: Michael.A.Clayton@cern.ch
34760022-2488/99/40(7)/3476/14/$15.00 © 1999 American Institute of Physics
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coupling is benign in the sense that the light cone structure of the theory is undisturbed5—trivially
because it is a coordinate frame theory that has been rewritten. Despite naive expectatio
works because the matter stress-energy tensor remains independent of second-derivative
gravitational variables.

The ‘‘unprimed’’ system of constraints is closely related to coordinate frame approache
evolution equations and Lie transport act solely on the components of tensors with the
playing a passive role. To be specific, infinitesimal spatial diffeomorphisms are defined to
the frame unaffected and change the tensor components in the usual manner,6 j:Ta→Lj@T#a .
Writing Einstein’s equations in terms of the components of the metricgab , frame Ei

a , and
extrinsic curvatureKab of a spacelike hypersurfaceS, we have

d'@g#ab52Kab , d'@Ei
a#50, ~1a!

d'@K#ab52Rab1¹a¹b@N#/N2KKab12KacK
c
b1 1

2T̄ab
M , ~1b!

whered' is the moving frame generalization~see the discussion in Sec. III B of Ref. 1 for mo
details! of the surface-covariant normal derivative operator.7 We have added a matter stres
energy contributionT̄ABªTAB2 1

2gABT to ~1! for later reference, and have chosen 16pG5c51.
Lowercase Greek and Latin letters represent spacetime and spatial coordinate compone
upper and lower case Roman letters indicate spacetime and spatial frame components,
tively. Symmetric and antisymmetric projection on any pair of indices is indicated by, for
ample,T(ab)ª

1
2(Tab1Tba) andT[ab]ª

1
2(Tab2Tba). Densities with respect to the spatial metr

are represented as boldfaced symbols, and densities with respect to the determinant of the
vierbein with an underline. We also use4¹A for the space–time covariant derivative and¹a for
the intrinsic surface covariant derivative.

In the Hamiltonian system the action ofL is represented on phase space by the momen
constraintHa as LjW@•#→$•,Ha@ja#%. We make use of the notation, for example,Ha@ja#
ª*Sd3xjaHa , and $•,•% is the Poisson bracket given by~32! of Ref. 1. The Hamiltonian con-
straintH represents the operatord' on phase space, and reproduces~1! weakly,

$gab ,HGR@ f #%52 f kab , $Ei
a ,HGR@ f #%50, ~2a!

$kab ,HGR@ f #%52 f Rab1¹a¹b@ f #2 f kkab12 f kack
c
b2 1

4 f gabHGR, ~2b!

$kab8 ,HGR@ f #%52 f Rab1¹a¹b@ f #2 f kkab8 12 f k(a
ckcb)8 2 1

4 f gabHGR1 f k(a
cJ [cb)]

GR . ~2c!

The extrinsic curvatureKab is equivalently represented on phase space by the two tensors~pab

andpa
i are the momenta conjugate togab andEi

a , respectively!,

kabª2~pab2 1
4gabp!, kab8 ª2 1

2g (acp
c
iE

i
b) , ~3!

and the weak equivalence of~2b! and ~2c! guarantee that the evolution equations reprod
Einstein’s equations~1!. The generators of frame transformations onS: Ja

b , act, for example on
a covector field, as$Ta ,Jb

c@vc
b#%5Dṽ@T#a52vb

aTb , and satisfy the Lie algebra ofgl(3,R),

$Ja
b ,Jc

d@vd
c#%5Dṽ@J#a

b . ~4!

Note thatJ (ab)
GR 522(kab2gabk)12(kab8 2gabk8), so that its weak vanishing implies thatkab

'kab8 . The constraint algebra consists of~4! combined with

$H@ f #,Ja
b@vb

a#%50, $Ha@ f a#,Ja
b@vb

a#%5E
S
d3x faDṽ@H#a , ~5a!

$H@ f #,H@g#%5~ f ¹a@g#2g¹a@ f # !gabHb , ~5b!
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$H@ f #,Ha@ga#%5E
S
dxfL gW @H#, $Ha@ f a#,Hb@gb#%5E

S
d3xf aL gW @H#a . ~5c!

This result was also derived in Ref. 2 using the geometric arguments of Teitelboim,8,9 and is a
fairly straightforward generalization of that found elsewhere~see, for example, Ref. 7!.

We then noted@from the form of~1a! or ~2a!# that these generators are not very convenien
one wishes to consider the restriction to orthonormal frames onS, since the choicegab5dab is not
left invariant by the actions ofd' andL ~and thereforeH andHa!. There are, however, alter
native representations of these operators in which the spatial frame plays a more active r
particular, we represent an infinitesimal diffeomorphism byL8 which acts on a frame a
L8 jW @Ei

a#5D¹̃j@Ei
a#, and on the components of tensors as the covariant derivative,L8 jW @T#a

5jb¹b@T#a ; the action on the tensor itself is identical to that ofL: L jW @Taua#5L8 jW @Taua#. The
action ofL8 on the components of the spatial metric vanishes due to metric compatibility, a
therefore consistent with the limit to orthonormal spatial frames—note though that it is no lo
consistent with the limit to a coordinate frame. Similarly we define the operatord'8 to act on the
frame as:d'8 @Ei

a#5D K̃@Ei
a#52Kb

aEi
b , and on the components of tensors asd'8 5d'1D K̃ .

Using these, Einstein’s equations~1! appear as

d'8 @g#ab50, d'8 @Ei
a#5D K̃Ei

b52Kb
aEi

b , ~6a!

d'8 @K#ab52Rab1¹a¹b@N#/N2KKab1 1
2T̄ab

M . ~6b!

The action ofd'8 andL8 are represented on phase space by the primed Hamiltonian cons
H8 and the primed momentum constraintHa8 , respectively~which correspond to a particula
choice of mixing of the unprimed constraints with the frame rotation generators!,

$gab ,H8GR@ f #%50, $Ei
a ,H8GR@ f #%5D k̃8@Ei

a#52k8b
aEi

b , ~7a!

$kab ,H8GR@ f #%52 f Rab1¹a¹b@ f #2 f k8kab2 1
4 f gabH8 GR2k8(a

cJ [b)c]
GR , ~7b!

$kab8 ,H8GR@ f #%52 f Rab1¹a¹b@ f #2 f k8kab8 2 1
4 f gabH8 GR2 f k8(a

cJ [b)c]
GR , ~7c!

and the constraint algebra for this primed system consists of~4! combined with~also derived in
Ref. 2!,

$H8@ f #,Ja
b@vb

a#%50, $Ha8@Na#,Ja
b@vb

a#%5E
S
d3xNaDṽ@H8#a , ~8a!

$H8@ f #,H8@g#%5E
S
d3x~ f ¹a@g#2g¹a@ f # !~gabH8b2E¹b@J# [ab] !, ~8b!

$H8@ f #,H8a@ga#%5E
S
d3x~ fL gW @H8#2 f gaD k̃8@H8#a12ga¹c@ f kab8 #J [bc] !, ~8c!

$H8a@ f a#,Hb8@gb#%52E
S
d3x fagbRc

dabJ d
c . ~8d!

As we shall see, including matter presents no great difficulties. In Sec. II, we consider a
field as a brief demonstration of how matter fields fit into the generalized structure. In Sec.
one-form~gauge! field is introduced, transforming nontrivially under spatial frame rotations,
an additional constraint generating U~1! transformations appears. We find nontrivial mixing of t
Maxwell canonical pair with that of the spatial vierbein, mixing that, at least superficially
sembles derivative-coupling. We will see that this is a manifestation of the gauge choice and
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‘‘true’’ derivative-coupling since the metric compatibility conditions are unaffected. Finally
Sec. IV, the spatial frame is constrained to be orthogonal in order to introduce a Dirac fiel

In all three cases the matter action is added to that of vacuumGR: SGR→SGR1SM, and since
both sets of vacuumGR constraints: (HGR,H a

GR) and (H8 GR,H a8
GR), are equivalent to the

components of the Einstein tensor: (22G'
' ,22G'

a), we find that the additively combined
vacuumGR and matter constraints are weakly equivalent to adding (T'

' ,T'
a) to these. The

matter stress-energy tensor is derived from the matter actionSM via

TAB5
2

E S dSM

dgAB 2
1

2
gABgCD

dSM

dgCDD5
1

A2g
S gACEm

B

dSM

dEm
C

2gABEm
C

dSM

dEm
C
D ; ~9!

the equivalence of these two forms is a basic consistency requirement for the generalize
ment considered herein. By an argument of Floreanini and Percacci,10 we know that once the
matter action has been properly written in a general linear frame these forms will be cons
Note though that in~9! we consider the metric and vierbein degrees of freedomindependently,
which will not work with the E–D system—only the second form is applicable. We will sh
~briefly! that the matter field equations and the stress-energy tensor determined from both fo
~9! are properly generated via a variational principle. Also that the action of the constrain
phase space properly generates spatial diffeomorphisms once matter has been incorporated
canonical formalism, and~2! and~7! are properly extended to reproduce~1! and~6!, respectively,
with the appropriate stress-energy tensor.

One of the unfortunate aspects and at the same time strengths of diffeomorphism inv
theories is the great arbitrariness in parameterizing configuration and momentum space fiel
‘‘all-encompassing’’ formalism would have to include canonical transformations that relate
ferent parameterizations. The content of the ‘‘geometric’’ derivations of the constraint algebr8,9,2

is that the algebra is fixed by the reduction of the space–time equations to the evolution of
quantities, that is, the algebra is a reflection of the spacetime diffeomorphism invariance
details of the algebra will change depending on the parameterization of phase space and the
of constraints, but is always of a fixed form once these choices are made. The point of this
is not to advocate any particular parameterization, merely to make it clear that there is actu
wider range of possibilities than heretofore considered. Within this wider class one finds th
Einstein–Dirac system may be treated in a particular limit, and not as an awkward constr
that seemingly must be invented solely to deal with Fermion fields. Thus we find tha
Einstein–Dirac~E–D! system is operationally no different than the Einstein–Klein Gordon~E–
KG! or Einstein–Maxwell~E–M! systems; there is no more derivative-coupling in the E
system than in the E–M system. Indeed the mixing of canonical variables is necessary in o
retrieve the correct surface frame transformation generators, while retaining the metric co
ibility conditions at the level of the field equations.

II. A SCALAR FIELD

This example is a trivial extension of the vacuum GR results, included as a straightfo
example of how the extension of the results of Ref. 1 outlined in Sec. I proceeds. Its simplic
due to the fact that we have chosen canonical coordinates for the scalar field that do not tra
under changes of spatial frame. Note that this isnot necessary; we could just as well chosen
parameterize the scalar field action in terms of a densitized scalar field, in which case some
structure that we will encounter in Sec. III would have appeared.

The scalar field Lagrangian density with self-coupling potentialV@f# is

Lf5E~ 1
2g

AB 4¹A@f#4¹B@f#2V@f#!

5
E

2N
~] t@f#2Naea@f#!22

1

2
Ngab¹a@f#¹b@f#2NV@f#, ~10!
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from which we derive@from either form of Eq.~9!#,

TAB
f 54¹A@f#4¹B@f#2 1

2gABgCD 4¹C@f#4¹D@f#1gABV@f#, ~11a!

T̄AB
f 54¹A@f#4¹B@f#2gABV@f#. ~11b!

Using the field equations forf,

dSf

df
5EgAB 4¹A@4¹B@f##2Edf@V#, ~12!

it is straightforward to demonstrate that the conservation law4¹B@Tf#B
A50 is satisfied.

From ~10! we see that the phase space of the scalar field may be parameterized
conjugate pair,~f,P!, where

Pª
E

N
~] t@f#2Naea@f#!5Ee'@f#. ~13!

As a result, the Poisson bracket for the extended system is$F,G%5$F,G%GR1$F,G%f , where
$.,.%GR is theGR sector Poisson bracket given in Ref. 1 and

$F,G%fªE
S
d3xS dF

df~x!

dG

dP~x!
2

dG

df~x!

dF

dP~x! D . ~14!

Since neither the extrinsic curvature nor time derivatives of the spatial metric or frame app
the Lagrangian density~10!, we see that the definitions ofkab andkab8 in ~3! are undisturbed, and
the frame rotation generators are identical to those in vacuumGR, Ja

b5JGRa

b . Thus we find
that

Hf5H8f5 1
2E~Pf!21 1

2Egab¹a@f#¹b@f#1EV@f#5Tf'

' , ~15a!

Ha
f5Ha8

f5Pf¹a@f#5Tf'

a , ~15b!

are added to theGR constraints.
Hamilton’s equations for the scalar field,

$f,H%5NPf1Na¹a@f#, $Pf ,H%5E¹a@Ngab¹b@f##2Ndf@V#1E¹a@NaPf#, ~16!

are equivalent to~12!, and noting that$gab,HM@ f #%5$gab,Ha
M@ f a#%50 and $Ei

a ,HM@ f #%
5$Ei

a ,Ha
M@ f a#%50, we see that neither of~2a! nor ~7a! are altered. Using~with similar defini-

tions with primes for Poisson brackets of the primed constraints!

$pa
i ,Hf@ f #%5Ya

b@ f #Eb
i2

1
2Y@ f #Ea

i , $pab ,Hf@ f #%5Xab@ f #2gabX@ f #, ~17a!

$pa
i ,Hb

f@ f b#%5Wa
b@ fW#Eb

i2
1
2W@ fW#Ea

i , $pab ,Hc
f@ f c#%5Zab@ fW#2gabZ@ fW#, ~17b!

where

Wa
b@ fW#5W8a

b@ fW#52 f aH b
f , Zab@ fW#5Zab8 @ fW#50, ~18a!

Xab@ f #5Xab8 @ f #52 1
2 f Tab

f 52 1
2 f ~ T̄ab2gabT̄!2 1

2 f gabH f, ~18b!

Yab@ f #5Y8ab@ f #52 f Tab
f 52 f ~ T̄ab2gabT̄!2 f gabH f, ~18c!
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it is straightforward to show that the evolution of the extrinsic curvature is correctly gener
That is, we find thatHGR→HGR1H f and 1

2 f T̄ab
f is appended to the right-hand sides of~2b!,

~2c!, ~7b!, and~7c! in accordance with~1! and~6!. The unprimed and primed constraint algebr
are identical to~44! and ~49!, respectively, of Ref. 1 withH5HGR1H f andHa5H a

GR1H a
f ,

or, equivalently,~40! and ~45! combined withHU(1)
A 50.

III. MAXWELL FIELDS

Since the vector potential of the Einstein–Maxwell system is a one-form field, it is assoc
to GLM through a~co-!vector representation ofGL~4,R!, and therefore results in a nontrivia
contribution toJ a

b . This means that the primed and unprimed cases may no longer be cons
together; the unprimed system is considered in Sec. III A and the primed in Sec. III B. We
see that although the details of the calculation are nontrivial, the results are a fairly straightfo
extension of those of vacuumGR.

The components of the field strength tensor:FªdA5 1
2FABuA∧uB, are derived from the

one-formAªAAuA by

FAB54¹A@A#B24¹B@A#A5eA@AB#2eB@AA#2CAB
CAC , ~19!

and the standard Lagrangian density is

LA52 1
4EgACgBDFABFCD5N~ 1

2g
abF'aF'b2 1

4FabF
ab!, ~20!

whereFab5¹aAb2¹bAa , and

F'a5~] t@Aa#2AbEb
i] t@Ei

a#2LNW @A#a!/N2¹a@A'#2A'¹a@ ln~N!#. ~21!

The Maxwell field equations derived from~20! are

dSM

dAA
5E 4¹B@F#BA50, ~22!

and making use of the variation of the field strength tensor with respect to the spatial fram

dEFAB52 4¹C@A# [BEC
mdEm

A]12AC
4¹ [B@EC

mdEm
A] #, ~23!

we find that the stress-energy tensor as determined by either form of~9! is

TAB
A 5T̄AB

A 52gCDFACFBD1 1
4gABFBCFBC . ~24!

From the field equations~22! and using the Bianchi identity,4¹A@F#BC14¹C@F#AB14¹B@F#CA

50, we find that the conservation laws,4¹B@TA#B
A50, are satisfied. Note that despite the pre

ence of the structure constantsCAB
C in the field strength tensor~19!; the variation of the action

~20! using ~23! doesnot lead to any terms containing the second-derivative of the frame.
We see from~20! and ~21! that the momenta conjugate toAa are

dLA

d] t@Aa#
5gabF'b5:Pa. ~25!

The phase space of the Maxwell field may be parameterized by the conjugate pair (Aa ,Pa), and
the Poisson bracket is extended by~summation overa is assumed!

$F,G%AªE
S
d3xS dF

dAa~x!

dG

dPa~x!
2

dG

dAa~x!

dF

dPa~x! D . ~26!
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However, we also find that the ‘‘geometrodynamical momentum’’ conjugate toEi
a as given in

~30! of Ref. 1 becomes

pa
iª22Ka

bEb
i2PaAbEb

i1
1
2A

bPbEa
i , ~27!

the first term of which is the ‘‘gravitational momentum.’’5 Thus we find that the gravitational an
nongravitational fields are mixed, and DeWitt’s supermetric is no longer block-diagona
defining

kabª2 1
2~P(aAb)2

1
2gabP

cAc!, ~28!

we now have@cf. the discussion following~33! of Ref. 1#,

Kab'ākab1~12ā!~kab8 1kab!, ~29!

where the unprimed case corresponds toā51 and the primed case toā50. In addition, the
generators of frame transformations become

Ja
b52gacpbc2pdb

a2pa
iE

i
b1pdb

a2PaAb , ~30!

which correctly generate frame transformations on the vector field sector,

$Aa ,Jb
c@vc

b#%5Dṽ@A#a , $Pa,Jb
c@vc

b#%5Dṽ@P#a, ~31!

and satisfy~4!.
The Lagrange multiplierA' enforces the U~1! constraint,

HU(1)
A 52E¹a@P#a, ~32!

and we find

$HU(1)
A @a#,HU(1)

A @b#%50, $HU(1)
A @a#,Ja

b@vb
a#%50, ~33!

and the nonvanishing brackets,

$Aa ,HU(1)
A @a#%5¹a@a#, $Pa,HU(1)

A @a#%50, ~34a!

$pa
i ,HU(1)

A @a#%52~PaEb
i2

1
2P

bEa
i !¹b@a#. ~34b!

This additional constraint is appended to the standard forms of the Hamiltonian via an add
atlas field,aªNA' , as~and similarly for the primed system!,

HA5E
S
d3x~NH1NaHa1Na

bJb
a1aHU(1)

A !. ~35!

To determine the form of the other constraints appearing in~35! we follow the development in
Ref. 1; choosingKab5kab (ā51) leads to the unprimed system that closely resembles the c
dinate frame approach~Sec. III A!, whereas choosingKab5kab8 1kab (ā50) leads to the primed
case~Sec. III B!.

A. The unprimed system

Since for the unprimed systemKab5kab , the results follow from identifying the Hamiltonian
and momentum constraints from the Maxwell Hamiltonian, leading to the following addition
the unprimed constraints:

HA
ª

1
2EPaPa1 1

4EFabFab5TA'

' , ~36a!
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Ha
A
ªPbFab2Aa¹b@P#b5TA'

a1AaHU(1)
A . ~36b!

From these it is straightforward to determine

$Aa ,HA@ f #%5 f Pa , $Pa,HA@ f #%52E¹b@ f Fab#, ~37a!

$Aa ,Hb@ f b#%5L fW @A#a , $Pa,Hb@ f b#%5EL fW @P#a, ~37b!

and, using~34!, Hamilton’s equations for the Maxwell field are found

$Aa ,H%5NPa1L NW @A#a1D Ñ@A#a1¹a@a#, ~38a!

$Pa,H%52E¹b@NFab#1EL NW @P#a1D Ñ@P#a. ~38b!

The combination of these with theU~1! constraint~32! is equivalent to~22!.
Using the definitions in~17! we find

Wa
b@ fW#52L fW @AbPa#2 f aHb

A , Zab50, ~39a!

Ya
b@ f #52 f T̄ab

A 2 f PaPb2Ab¹c@ f Fca#, Xab@ f #52 1
2 f T̄ab

A . ~39b!

Noting thatT̄ªgabT̄ab5H A, it is straightforward to show that$kab ,H%5 1
2 f T̄ab2 1

4gabH A, and
therefore the correct extension of~2b! is generated. In order to check the extension of~2c!, note
that we now must compute$kab8 1kab ,H@ f #%, which correctly results in the additional contribu
tions, 1

2 f T̄ab2 1
4 f gabH A2 f kkab12 f k(a

ckcb)1 f k(a
cJ [cb)]

A .
It is now possible to compute the algebra of the unprimed constraints, finding~4!, ~33!, ~5a!,

~5b!, and

$HU(1)
A @a#,H@ f #%50, $HU(1)

A @a#,Ha@ f a#%52E
S
d3xaL fW @HU(1)

A #, ~40a!

$H@ f #,H@g#%5~ f ¹a@g#2g¹a@ f # !gab~Hb2AbHU(1)
A !. ~40b!

B. The primed system

After some algebra, the primed constraints found to be

H8A5 1
2EPaPa1 1

4EFabFab1E~ka
bkb

a2k2!12E~ka
bk8b

a2k8k!, ~41a!

H8a
A5Pb¹a@A#b , ~41b!

which are related to~36! via combinations of the frame rotation generators given in Eq.~45! of
Ref. 1, and therefore the combined constraints are equivalent to the Einstein equationsG'

A

5 1
2T

'
A . Their action on the Maxwell phase space is found to be

$Aa ,H8A@ f #%5 f Pa1 f D k̃81k̃@A#a , $Pa,H8A@ f #%52E¹b@ f Fab#1 f D k̃81k̃@P#a, ~42a!

$Aa ,Ha8
A@ f a#%5 f b¹b@A#a5L

fW
8@A#a , $Pa,Ha8

A@ f a#%5E¹b@ f bPa#5L
fW
8@P#a. ~42b!

Note that the actions~37! and~42! are those ofd' andL andd'8 andL8 respectively. Hamilton’s
equations for the Maxwell sector are straightforward to find, and, as in the case of vacuumGR~see
~52! of Ref. 1!, are weakly equivalent to~38! when one makes the replacements,N5N8, Na

5Na8 , andNa
b5N8a

b1¹b@N8#a1N8ka
b .

Since$Ei
a ,H8A@ f #%5Dk̃@Ei

a#, the action of the Hamiltonian constraint on the frame is
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$Ei
a ,H8@ f #%5 f D k̃81k̃@Ei

a#, ~43!

properly reproducing the evolution of the vierbein in accordance with~6a!. Again making use of
the definitions in~17!, we find

Wab8 @ fW#52 f aH b8
A1¹c@ f cP[bAa] #1¹c@PcA(bf a)#2¹c@Acf (bPa)#, ~44a!

Xab8 @ f #52 1
2 f T̄ab

A 1 1
2 f gab~ka

bkb
a2k2!

1 f gab~k8a
bkb

a2k8k!1 f k (a
cJ [b)c]

GR 1 f ~k8(a
c1k (a

c!J [b)c]
A , ~44b!

Yab8 @ f #52 f T̄ab2 f PaPb1Ab¹c@ f Fa
c#22 f ~ka

ckbc8 2kkab8 !

2 f gab~ka
bkb

a2k2!1 f ~ka
c2da

ck!J [bc]
GR , ~44c!

Zab8 @ fW#5 1
2~¹c@Pcf (aAb)#1¹c@ f cP(aAb)#2¹c@Acf (aPb)# !, ~44d!

and, noting thatk (a
cJ [cb)]

A 5 1
8P

cPcAaAb2 1
8A

cAcPaPb , it is straightforward to show that the
appropriate additions to~7b! and ~7c! are generated from these. The primed constraint alge
consists of~4!, ~33!, ~8a!, ~8d!, and

$HU(1)
A @a#,H8@ f #%50, $HU(1)

A @a#,Ha8@ f a#%52E
S
d3xaL

fW
8@HU(1)

A #, ~45a!

$H8@ f #,H8@g#%5E
S
d3x~ f ¹a@g#2g¹a@ f # !~gabH8b2E¹b@J# [ab]2AaHU(1)

A !, ~45b!

$H8@ f #,H8a@ga#%5E
S
d3x~ fWLgW @H8#2 f gaD k̃81k̃@H8#a12ga¹c@ f ~k8ab1kab!#J[bc] !.

~45c!

IV. DIRAC SPINORS

In order to consider the introduction of a self-gravitating Dirac spinor, we need to do s
preparatory work. The conditions for the existence of a spin structure on a manifold
known,11,12 however, since we are primarily interested in the initial-value formalism, the rele
result is that any globally hyperbolic spacetime or space–time that admits a Cauchy surface
a spin structure.13 The general theory of spinors in curved spacetime~see, for example, Ref. 6!
requires the introduction of an SL~2,C! principle bundle—a Dirac spinor is associated to it throu
the product of a vector and conjugate vector representations of SL~2,C!. One may introduce spin
frames, and would then develop formalism to deal with the initial-value problem similar to
14.

Here we will pursue a more straightforward, operationally-oriented path. We note that a
spinor is associated directly to the Lorentz group through a spinor representation,15 and so we will
reduce the general linear frame bundleGLM to the Lorentz frame bundleLM , with structure
group O~1,3!. ~In fact, for the initial value problem we will be considering time and space orien
frames, and so have in effect reduced this further toL↑

1M with structure group the proper Lorent
group, L↑1(1,3)5$LPO(1,3)udet(L)511,L0

0.0%.! Elements ofGL~4,R! are specialized to
O~1,3! asMB

A→LA
B and uM 21uB

A→LB
A5hAChBDLD

C , whereLA
CLB

C5dB
A5LC

BLC
A .

Given a Lorentz transformationL, the spinorc transforms asc→S(L)c, and the gamma
matrices satisfy the Dirac relations~we make use of the definitions and identities in Appendix
of Ref. 16!, $gA,gB%52hAB, and LA

BgB5S21(L)gAS(L). Writing an infinitesimal Lorentz
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transformation asLA
B'dB

A1vA
B , wherevA

B are the antisymmetric generators ofso~1,3!, for the

spinor representation we haveS(L)'12 1
4i v̂, wherev̂ªvA

BsB
A , andsAB

ª i 1
2@gA,gB# satisfy

the commutation relations

@sAB,sCD#522i ~sAChBD2sADhBC1sBDhAC2sBChAD!. ~46!

Therefore the action of the generator of frame rotationsD on the spinor is

Dṽ@c#52 1
4i v̂c, ~47!

and, using~46!, it is straightforward to show that these generators satisfy the algebra

@Dṽ1
,Dṽ2

#c52D [v1 ,v 2̃]@c#. ~48!

The covariant derivative operates on these spinors as

4¹A@c#5eA@c#1 1
4iGAC

B sC
Bc5eA@c#1 1

4i
4G̃Ac, ~49!

and, as usual,@4¹A ,gB#50.
The curved space–time Dirac action is~see Sec. 7.10.2 of Ref. 15!,

SD5E d4x det~EA
m!c̄~ i 1

2g
A 4¹JA2m!c, ~50!

where we employ the standard notationc̄ 4¹JAcªc̄ 4¹A@c#24¹A@c̄#c. A variation of~50! with
respect toc̄ andc leads to the Dirac equation

igA 4¹A@c#2mc50, ~51!

and its adjoint, respectively. As a consequence, the vectorJA
ªc̄gAc, constructed from a solution

to the Dirac equation, is covariantly conserved,4¹A@J#A50. In a surface-adapted frame th
becomes ] t@Ec†c#2E¹a@Nac†c#1E¹a@Nc†aac#50, which has the usual quantum
mechanical probabilistic interpretation. Unlike the scalar and Maxwell field examples, the s
is not dimensionless after one has chosen 16pG5c51. Indeed, the remaining length scale may
interpreted as the Planck lengthLP ~or \!. Here eitherc has dimensionlength21/2, or we have
taken \51. Note in particular that we will introduce neithergm

ªEm
AgA nor the coordinate

components of the spacetime metric.
Using the variation of the ‘‘spin-connection’’ with respect to the vierbein,

dĜA5dEm
AED

mĜD1~hBD
4¹A@ED

mdEm
C#2hBD

4¹C@ED
mdEm

A#1hAD
4¹B@ED

mdEm
C# !sCB,

~52!

and the second form of~9!, we find the stress-energy tensor,

TAB
D 5 i 1

2c̄g (A
4¹JB)c, TD5mc̄c. ~53!

Once again we find that there are no terms containing second derivatives of either the
metric or frame, albeit trivially because the Dirac action~50! only contains terms that are at most
linear in first-order derivatives of these fields. The conservation laws,4¹B@TD#B

A50, follow from
the use of~51!, the Bianchi identities of the Riemann tensor, and the wave equation satisfie
the Fermion field, (hAB 4¹A

4¹B1m22 1
4R)c50, where we have used@4¹A , 4¹B#c

5 1
4iR

C
DABsD

Cc5 1
4iR̂ABc and R̂ABsAB522R.
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A. The initial value formalism

To specialize the primed system to orthonormal frames is a simple matter of replacinggab by
dab in all results and ignoring anything related to the (gab,pab) part of phase space~ending up
with a description of canonical tetradGR similar to that discussed in Ref. 17!. In addition, it will
be useful to introduce~using the conventions of Sec. 1.1 of Ref. 16!, b5g0 and aa5g0ga, in
terms of which we have s0a5 iaa, and the spin matrices: sab

ª2 i 1
2@aa,ab#, satisfying the reduced version of~46!,

@sab,scd#52i ~dbcsda1dbdsac1dcasbd1ddascb!. ~54!

We define the reduction of the operator~47! that generates infinitesimal O~3! frame rotations by

Dṽc5 i 1
4v̂c, where v̂5vabs

ab, ~55!

and the surface-covariant derivative as

¹a@c#5ea@c#1 i 1
4Ĝac, ~56!

whereĜaªdbdGac
b sbc. The commutator of two surface-covariant derivatives acting on a sp

results in@¹a ,¹b#c5 1
4iR̂abc5 1

4iRcdabs
cdc.

Decomposing the four-dimensional spin connection results ini 1
4

4Ĝa5 i 1
4Ĝa1 1

2Kaba
b and

i 1
4

4Ĝ'5 1
2aaaa2 i 1

4Ĉ' , and so we have

4¹a@c#5¹a@c#1 1
2Kaba

bc, ~57a!

4¹'@c#5
1

N
] t@c#2

1

N
Na¹a@c#2

i

4N
¹a@N#bsabc1 1

2aaaac1
i

4N
Eai] t@Ei

b#sabc.

~57b!

~The quantityĈ'ªdbcC'a
bsac, whereC'a

b , is given in ~18b! of Ref. 1, and its role in the
surface covariant normal derivative is discussed in Sec. III B of the same reference.!

Using these and introducing the ‘‘half-densitized’’ spinor fields~since det(gab)5det(dab)[1,
densities of this type will not appear, and there should be no confusion with the bold
quantities of earlier sections!,

cªE1/2c, c†
ªE1/2c†, ~58!

from ~50! it is straightforward to deduce the curved spacetime Dirac Lagrangian,

LD5E
S
d3x~ i 1

2c†]J tc1 i 1
2NEc†aa¹J ac2mNc†bc2 i 1

2ENac†¹J ac1 1
4¹a@N#bc†sabc

2 1
4Eai] t@Ei

b#c†sabc!. ~59!

In order to perform the Legendre transform to obtain the E–D Hamiltonian, we need to c
an appropriate set of canonical coordinates in the Fermionic sector. In a flat space–time
straightforward; one finds that~discarding a total time derivative from the action! the real and
imaginary parts ofc are canonically conjugate, and one can introduce complex coordinate
phase space and use the quantum-mechanical symplectic form18 for a four component vector. In a
curved space–time one finds that it is the densitized imaginary part ofc that is conjugate to the
real part, however, introducing the half-densitized spinors~58! allows the flat spacetime construc
tion to proceed. Using the inner product onS ~written first in covariant form, and then specialize
to a surface-normal frame!,
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~c,f!S5E
S
dS~x!nAc̄gAf5E

S
dxc†f, ~60!

to define theL2(S) pairing and therefore the quantum-mechanical symplectic form, the intro
tion of (c,c†) as complex coordinates on the Dirac sector of phase space results in the P
bracket,

$F,G%D52 i E
S
dxS dF

dc~x!

dG

dc†~x!
2

dG

dc~x!

dF

dc†~x! D . ~61!

On a fixed gravitational background, the result of the Legendre transformation would
drop the first term in~59! and the negative of what remains isHD. For the E–D system, we find
that the final term in~59! contributes to the conjugate momentum of the vierbein, leading to

pa
iª22Ka

bEb
i1

1
4c

†sabcEbi , ~62!

and once again the ‘‘geometrodynamical momentum’’ is not equal to the ‘‘gravitational mo
tum.’’ However, unlike the Maxwell case, the definition of the extrinsic curvature on phase s
is undisturbed@Kab5kab8 and~7a! is unaltered#; we find only a contribution to the frame rotatio
generators,

J[ab]ª2p[aiE
i
b]1

1
4c

†sabc. ~63!

@Note that it is possible, and indeed somewhat simpler, to represent these rotation operator
S a5 1

2e
abcJ [bc] , making use of the spin matricessa

ª

1
2e

abcsbc5sa1, wheresa are the Pauli spin
matrices. We do not do so here simply because we wish to present results that are as sim
possible to those of the GL~3,R! case.# In addition to generating infinitesimal frame rotations
the GR sector of phase space, we find that

J@ṽ#5E
S
dxvbaJ[ab] , ~64!

generates frame rotations on the Dirac sector

$c,J@ṽ#%5 i 1
4v̂c5Dṽ@c#, ~65!

and thegl~3,R! algebra~4! is reduced to that ofso~3!,

$J@Ñ#,J@M̃ #%5E
S
d3xNbaD M̃@J# [ab] . ~66!

The resulting E–D Hamiltonian is once again in standard form,

H5E
S
d3x~N8H81N8aHa81Nba8 J[ab] !, ~67!

whereH85H8GR1HD andHa85Ha8
GR1Ha

D ~using the primedGRconstraints withgab replaced
by dab!, and

HD52 1
2iEc†aa¹J ac1mc†bc5TD'

' , Ha
D5 i 1

2Ec†¹J ac5TD'
a2E¹b@JD[ab] #, ~68!

arise from the Legendre transformation of~59!. Note that the equivalence of these with the E–
stress-energy tensor components~53! is achieved by making use of the Dirac equation~51! to
remove time derivatives of the spinor. Also note that the presence of the derivative of the
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frame rotation generator in the momentum constraint is consistent with the relationship be
the unprimed and primed constraints in~45b! of Ref. 1. From~68! we find

$c,HD@ f #%52 f E1/2aa¹a@c#2 1
2¹a@ f #aac2 im fbc, $c,Ha8

D@ f a#%5Lf8@c#, ~69!

whereL8 acts as described in Ref. 1,

Lf8@c#5E1/2f a¹a@c#1D¹̃ f@E1/2#c5E1/2f a¹a@c#1 1
2¹a@ f #ac. ~70!

Note that infinitesimal spatial diffeomorphisms act on the frame as$Ei
a ,Hc8@ f c#%

52¹a@ f #aEi
b ; if one mixes in a spatial frame rotation so that only the symmetric part¹ (a@ f #b)

appears, then the resulting generator acting onc reproduces the action that is used, for examp
in Ref. 19.

From ~69! one finds Hamilton’s equations forc,

$c,H%5E1/2~Na2Naa!¹a@c#1 1
2~¹a@N#a2aa¹a@N# !c2 imNbc1 1

4i v̂c, ~71!

which are equivalent to~51!. Again making use of the definitions~17! we find ~we have used,
$sab,ac%522eabcg5!,

Wa
b@ fW#52 f aH b

D2 1
4¹c@ f cc†sb

ac#2 1
4¹c@ f ac†sc

bc#1 1
4¹c@ f bc†sacc#, ~72a!

Ya
b@ f #5 1

2i f c†aa¹J bc1 1
8¹c@ f c†$ac,sb

a%c#, ~72b!

and using~53! to find

T̄ab
D 52 1

2id (acc
†ac¹J b)c1 1

2d (acKb)dc†scdc1 1
2dabmc†bc, ~73!

we find that contributions to~7b! and ~7c! are generated to properly reproduce the E–D fi
equations. The constraint algebra combines~66! with ~8!, replacinggab→dab everywhere in the
latter. @Note that the derivation of the constraint algebra in Ref. 2 could be generalized t
Einstein–Dirac system along the lines of Ref. 20 note however the different parameterizat
the spinor part of phase space and the resulting difference in the form of~68!.#

V. DISCUSSION

The intent of the preceding1 and present paper is to describe the Hamiltonian dynamic
general relativistic~vacuum and matter coupled! systems with respect to moving frames. Th
extended system of dynamical spatial metricand frame fields encompasses the following tw
natural limits: If we choose the diffeomorphism constraints to act on the components of te
with the usual Lie action and fix the spatial frame to be a coordinate frame, we recove
standard coordinate frame approach to canonical general relativity. If we choose the spatial
to be equal to the unit matrix and mix the diffeomorphism generators with the frame transfo
tion generators to be compatible with this choice, we recover the orthonormal frame appro
canonical general relativity. Clearly there are also a variety of intermediate choices ava
however this enlarged arena provides a bridge over which one may pass from the standar
dinate frame approach to the Lorentz~or orthonormal! frame approach that is more natural for th
description of the Einstein–Dirac system.

In this generalized structure, we find that matter fields naı¨vely appear to be derivative-couple
since the momenta conjugate to the spatial frame fields are not~in general! independent of the
matter fields. This sort of derivative-coupling turns out to be benign since the field equation
equivalent to the coordinate frame approach to the model in question. Indeed this featu
necessary part of the frame approach, and will appear whenever the matter fields behave n
ally under frame transformations. In this way we understand that the derivative-coupling
Einstein–Dirac system is a necessary feature, merely reflecting the need to work with
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orthonormal frames in order to define the system. We also end up with a simpler description
Einstein–Dirac system than that given in Ref. 21~note, however, their use of anticommutin
fermions!, and a much more natural system than that found in Ref. 22, where primary impor
is still given to the coordinate components of the metric tensor. A more detailed examinat
the Einstein–Dirac system in adjoint form~in the spirit of Ref. 23! is underway, and by adopting
harmonic coordinate conditions and choosing the frame to fix the Local Lorentz gauge, w
able to prove local existence and uniqueness results.
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I. INTRODUCTION

The oscillator group has interesting features from the viewpoints of both differential geom
and physics~see, for instance, Refs. 1–12!. It was introduced by Streater,1 who named it so
because its Lie algebra can be identified to that generated by the differential operators ass
with the harmonic oscillator problem, acting on functions of a variable. The oscillator group i
only simply connected four-dimensional non-Abelian solvable Lie group which admits a
invariant Lorentzian metric.3,4 Moreover, it is8 an example of homogeneous space–time, which
causal space satisfies the so-called causal continuity.

Levichev studied in Ref. 5 the oscillator group with the biinvariant Lorentzian metric
given in Refs. 6 and 8, proving that this group~which geometrically is a Lorentzian symmetr
space and physically is related to an isotropic electromagnetic field! provides a solution of the
sourceless Einstein–Yang–Mills equations.

On the other hand, generalizing the classical characterization by Cartan13 of Riemannian
symmetric spaces as the spaces of parallel curvature, Ambrose and Singer14 gave a characteriza
tion of Riemannian homogeneous spaces in terms of a~1,2! tensor fieldS, called homogeneous
Riemannian structure in Ref. 15, satisfying certain differential equations~see~1! below!. In Refs.
16 and 17, we have extended this concept to the pseudo-Riemannian case.

In Ref. 12, all of the homogeneous Lorentzian structures corresponding to a family o
invariant metrics on the general oscillator groups have been obtained, and the reductive d
positions for the non-bi-invariant metrics in that family have been determined.

In this paper we consider the four-dimensional oscillator group equipped with its u
Lorentzian bi-invariant metric and we determine all the homogeneous Lorentzian structure
and all the associated reductive pairs. There appear six types of such pairs, and we prove t
of them are solutions of the Einstein–Yang–Mills equations. They have sources except
particular case, where the symmetric pair appears as a solution of the sourceless Einstein–
Mills equations.

II. PRELIMINARIES

Ambrose and Singer14 gave a characterization for a connected, simply connected and
plete Riemannian manifold to be homogeneous, in terms of a~1,2! tensor fieldS, called in Ref. 15
a homogeneous Riemannian structure. In Ref. 16 it is defined ahomogeneous pseudo-Riemanni
34900022-2488/99/40(7)/3490/9/$15.00 © 1999 American Institute of Physics
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structureon a pseudo-Riemannian manifold~M,g! as a tensor fieldSof type ~1,2! such that being
¹ the Levi-Civita connection andR its curvature tensor, the connection¹̃5¹2S satisfies the
Ambrose–Singer equations

¹̃g50, ¹̃R50, ¹̃S50. ~1!

In Ref. 16 it is proved thatif ~M,g! is connected, simply connected and geodesically complete
it admits a homogeneous pseudo-Riemannian structure if and only if it is a reductive homoge
pseudo-Riemannian manifold, which means thatM5G/H, whereG is a connected Lie group
acting transitively and effectively onM as a group of isometries,H is the isotropy group at a poin
oPM , and the Lie algebrag of G may be decomposed into a vector space direct sum of the
algebrah of H and an Ad(H)-invariant subspacem, that is g5h% m, Ad(H)m,m. ~If G is
connected andM is simply connected thenH is connected, and the latter condition is equivalen
@h,m#,m!.

Let ~M,g! be a connected, simply connected and geodesically complete pseudo-Riem
manifold, and suppose thatS is a homogeneous pseudo-Riemannian structure on~M,g!. We fix a
point oPM and putm5To(M ). If R̃ is the curvature tensor of the connection¹̃5¹2S, we can
consider the holonomy algebrah̃ of ¹̃ as the Lie subalgebra of antisymmetric endomorphisms
(m,go) generated by the operatorsR̃ZW , whereZ,WPm. Then, according to the Ambrose–Sing
construction,14,15 a Lie bracket is defined in the vector space direct sumg̃5 h̃% m by

@U,V#5UV2VU, U,VP h̃,

@U,Z#5U~Z!, UP h̃, ZPm, ~2!

@Z,W#5R̃ZW1SZW2SWZ, Z,WPm,

and we say that (g̃,h̃) is thereductive pairassociated with the homogeneous pseudo-Rieman
structureS. The connected and simply connected Lie groupG̃ whose Lie algebra isg̃ acts tran-
sitively on M as a group of isometries andM[G̃/H̃, whereH̃ is the connected Lie subgroup o
G̃ whose Lie algebra ish̃. The setK of the elements ofG̃ which act trivially onM is a discrete
normal subgroup ofG̃, and the Lie groupG5G̃/K acts transitively and effectively onM as a
group of isometries, with isotropy groupH5H̃/K. ThenM is ~diffeomorphic to! the reductive
homogeneous pseudo-Riemannian manifoldG/H.

On the other hand, we consider~see e.g., Ref. 18, p. 134! the Einstein–Yang–Mills equation
on a Lorentzian manifold~M,g!,

r 2 1
2sg1Lg5kT, ~3!

whereg denotes the metric tensor,r the Ricci tensor, ands the scalar curvature ofg, L andk the
cosmological and gravitational constants, respectively, andT the stress-energy tensor of the gau
field with field strengthF, given by

T~X,Y!5g21~ i XF,i YF !2 1
4g~X,Y!iFi2, ~4!

i denoting the interior product.
Let g be the Lie algebra with generatorsP,X,Y,Q, and brackets

@X,Y#5P, @Q,X#5Y, @Q,Y#52X.

The corresponding simply connected Lie groupG is called theoscillator group.
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III. LORENTZIAN HOMOGENEOUS STRUCTURES AND REDUCTIVE DECOMPOSITIONS

Consider the bi-invariant Lorentzian metricg on the oscillator groupG given in the basis
$P,X,Y,Q%, by

g5S 1

1

1

1

D . ~5!

Let $h,a,b,j% be the dual basis to$P,X,Y,Q%. The Levi-Civita connection¹ of g is determined
by 2g(¹WU,V)5g(@W,U#,V)2g(@U,V#,W)1g(@V,W#,U) for all U,V,WPg. So, we obtain
that ¹ is given by

¹WP50,

¹WX52 1
2b~W!P1 1

2j~W!Y,

¹WY5 1
2a~W!P2 1

2j~W!X,

¹WQ5 1
2b~W!X2 1

2a~W!Y,

for everyWPg. The nonvanishing components of the curvature tensor field, for which we a
the conventionRWUV5¹@W,U#V2¹W¹UV1¹U¹WV, are given by

RQXX52 1
4P, RQXQ5 1

4X, RQYY52 1
4P, RQYQ5 1

4Y.

Thus, the only nonvanishing component of the Ricci tensor isr (Q,Q)5 1
2 and the scalar curvatur

is s50.
In Ref. 12 all the homogeneous Lorentzian structures on the general oscillator grou

determined by solving the Ambrose–Singer equations~1!. As a consequence, we have all th
homogeneous Lorentzian structures on the four-dimensional oscillator group.

Proposition: All the homogeneous Lorentzian structures on~G,g! are given by

S5u ^ ~a∧b!1r ^ ~a∧j!1s ^ ~b∧j!, ~6!

wherer, s, andu are left invariant 1-forms on G satisfying the conditions

¹̃u50,

¹̃r5s∧u2 1
2a ^ u1 1

2j ^ s, ~7!

¹̃s52r∧u2 1
2b ^ u2 1

2j ^ r,

with ¹̃5¹2S.
Proof: Expression~6! follows from the equations¹̃g50 and¹̃R50 in ~1!. Conditions~7! are

equivalent to the equation¹̃S50. ~See Theorem 4.1 in Ref. 12.! h

By ~6!, we can write the following general expression for the homogeneous Lorentzian
tures on~G,g!:

S5~a1h1a2a1a3b1a4j! ^ ~a∧b!1~b1h1b2a1b3b1b4j! ^ ~a∧j!

1~c1h1c2a1c3b1c4j! ^ ~b∧j!, a1 ,...,c4PR.
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Equations~7! give us, after some long but straightforward calculations, the relations to be sat
by the coefficients. Ifa1Þ0 ~we denote this case as~i!!, we get the expression ofS in terms of
a1 ,a2 ,a3 ,a4 ,

S5~a1h1a2a1a3b1a4j! ^ ~a∧b!

1S 2a3h2
a2a3

a1
a2S a3

2

a1
1

1

2Db1S a3

2a1
2

a3a4

a1
D j D ^ ~a∧j!

1S a2h1S a2
2

a1
1

1

2Da1
a2a3

a1
b1S a2a4

a1
2

a2

2a1
D j D ^ ~b∧j!.

If a150, some tedious computations lead to another five cases, and the coefficients in the si
~i!–~vi! are as follows:

~i! ~ii ! ~iii ! ~iv! ~v! ~vi!

a1 Þ0 0 0 0 0 0

a2 PR 0 0 0 0 0

a3 PR 0 0 0 0 0

a4 PR 1
2

1
2

1
2 Þ 1

2 Þ 1
2

b1 2a3 0 0 0 0 0

b2 2
a2a3

a1

0 0 PR 0 0

b3 2
a3

2

a1
2

1
2

2 1
2 2 1

2 Þ2 1
2 2 1

2 2a4

b4
a3

2a1
2

a3a4

a1

0 PR PR PR 0

c1 a2 0 0 0 0 0

c2
a2

2

a1
1

1
2

Þ 1
2

1
2

1
2

2
2b2

2

2b311

1
2 a4

c3
a2a3

a1

0 0 2b2 0 0

c4 2
a2

2a1
1

a2a4

a1

PR PR 2
2b2b4

2b311
PR 0

In case~i!, making the changex5a1Þ0, y5a2 /a1 , z5a3 /a1 , w5a42 1
2, we can write the

family of homogeneous Lorentzian structures as

S~x,y,z,w!5~xh1xya1xzb1~w1 1
2!j! ^ ~a∧b!

2~xzh1xyza1~xz21 1
2!b1zwj! ^ ~a∧j!

1~ xyh1~xy21 1
2!a1xyzb1ywj! ^ ~b∧j!,

x,y,z,wPR, xÞ0.
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In cases~ii !–~vi! one arrives~after some changes of notations for the coefficients! to the following
families:
~ii !

S~q,c!5
1
2j ^ ~a∧b!2 1

2b ^ ~a∧j!1~qa1cj! ^ ~b∧j!, q,cPR, qÞ 1
2.

~iii !

S~b,c!5
1
2j ^ ~a∧b!1~2 1

2b1bj! ^ ~a∧j!1~ 1
2a1cj! ^ ~b∧j!, b,cPR.

~iv!

S~k,t,b!5
1
2j ^ ~a∧b!1~ka1~ t2 1

2!b1bj! ^ ~a∧j!

1~~ 1
22~k2/t !!a2kb2~kb/t !j! ^ ~b∧j!, k,t,bPR, tÞ0.

~v!

S~a,b,c!5aj ^ ~a∧b!1~2 1
2b1bj! ^ ~a∧j!1~ 1

2a1cj! ^ ~b∧j!,

a,b,cPR, aÞ 1
2.

~vi!

Sa5a~j ^ ~a∧b!2b ^ ~a∧j!1a ^ ~b∧j!!, aPR, aÞ 1
2.

Next, we determine¹̃5¹2S. We however omit the expression of¹̃ for the sake of brevity.
Then, in each case we calculate the curvatureR̃, and so we obtain generators of the holonom
algebrah̃ of ¹̃, which will be expressed in terms of the basis$P,X,Y,Q% of g.

In case~i!, we have that the only not always null curvature operators areR̃XY5wU, R̃QX

5xzU and R̃QY52xyU, where

U5S 0 z 2y 0

0 0 1 2z

0 21 0 y

0 0 0 0

D .

If y5z5w50 then R̃50, but if eithery, z, or w is not zero then the holonomy algebrah̃ is
one-dimensional and generated byU.

In case~ii !, the holonomy algebrah̃ is generated by the vector

V5S 0 0 1 0

0 0 0 0

0 0 0 21

0 0 0 0

D ,

and the only nonvanishing curvature operator isR̃QY5(q2 1
2)V.

In case~iii ! ~and ~v!! we deduceR̃50.
In case~iv!, the holonomy algebrah̃ is generated by
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U5S 0 2t k 0

0 0 0 t

0 0 0 2k

0 0 0 0

D ,

and the curvature of¹̃ is determined byR̃QX5U and R̃QY52(k/t)U.
In case~vi!, the holonomy algebrah̃ has two generators

U5S 0 1 0 0

0 0 0 21

0 0 0 0

0 0 0 0

D , V5S 0 0 1 0

0 0 0 0

0 0 0 21

0 0 0 0

D ,

and the curvature is determined by the operatorsR̃QX5(a22 1
4)U, R̃QY5(a22 1

4)V. If a52 1
2

then R̃50 and if aÞ2 1
2, then h̃ is two-dimensional and Abelian.

Through the usual identification ofg with the tangent space at the identity ofG, we consider
m5g and use~2! in order to obtain the Lie bracket ofg̃5 h̃% g in each case. In particular, we wi
have the reductive pair (g̃,h̃) associated with each homogeneous structure.

We next explicitly give those brackets. Some cases are broken in two subcases accor
whether the dimension of the holonomy algebra depends on the particular values of the
cients in the corresponding homogeneous structure.

Case (i1). ~x,y,z,wPR; xÞ0; y,z,wnot all null!. The reductive decomposition associat
with S(x,y,z,w) is g̃(x,y,z,w)5 h̃% g5^$U,P,X,Y,Q%&, with not always null brackets

@U,X#5zP2Y, @U,Y#52yP1X, @U,Q#52zX1yY,

@P,X#52xzP1xY, @P,Y#5xyP2xX, @P,Q#5xzX2xyY,

@X,Y#5wU1~x~y21z2!11!P2xyX2xzY,

@Q,X#5xzU2zwP2xyzX1~w1xy211!Y,

@Q,Y#52xyU1ywP2~w1xz211!X1xyzY.

Case (i2) ~xÞ0; y5z5w50). The reductive decomposition associated withS(x,0,0,0) is g̃x

50% g5^$P,X,Y,Q%&, with nonvanishing brackets

@P,X#5xY, @P,Y#52xX, @X,Y#5P, @Q,X#5Y, @Q,Y#52X.

Case (ii) ~q,cPR; qÞ 1
2!. The reductive decomposition associated toS(q,c) is g̃(q,c)5 h̃% g

5^$V,P,X,Y,Q%&, with nonvanishing brackets

@V,Y#5P, @V,Q#52Y, @X,Y#5~q1 1
2!P,

@Q,X#5~q1 1
2!Y, @Q,Y#5~q2 1

2!V1cP2X.

Case (iii) (b,c,PR). The reductive decomposition associated withS(b,c) is g̃(b,c)50% g

5^$P,X,Y,Q%&, with nonvanishing brackets

@X,Y#5P, @Q,X#5bP1Y, @Q,Y#5cP2X.
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In this case, one obtains the Lie algebra of the oscillator group. In fact, puttingX̃5X2cP, Ỹ
5Y1bP, we have@X̃,Ỹ#5P, @Q,X̃#5Ỹ, @Q,Ỹ#52X̃.

Case (iv)~k,t,bPR; tÞ0!. The reductive decomposition associated withS(k,t,b) is g̃(k,t,b)

5 h̃% g5^$U,P,X,Y,Q%&, with Lie brackets given by

@U,X#52tP, @U,Y#5kP, @U,Q#5tX2kY, @X,Y#5~12~k21t2!/t !P,

@Q,X#5U1bP1kX1S 12
k2

t DY, @Q,Y#52
k

t
U2

kb

t
P1~ t21!X2kY.

Case (v)~a,b,cPR; aÞ 1
2!. The reductive decomposition associated toS(a,b,c) is g̃(a,b,c)50

% g5^$P,X,Y,Q%&, with nonvanishing brackets

@X,Y#5P, @Q,X#5bP1~a1 1
2!Y, @Q,Y#5cP2~a1 1

2!X.

Case (v i 1) ~aPR; aÞ 1
2,2

1
2!. The reductive decomposition associated withSa is g̃a5 h̃% g

5^$U,V,P,X,Y,Q%&, with nonvanishing brackets

@U,X#5P, @U,Q#52X, @V,Y#5P, @V,Q#52Y, @X,Y#52aP,

@Q,X#5~a22 1
4!U12aY, @Q,Y#5~a22 1

4!V22aX.

In particular, if a50, one hasS50, and the associated reductive pair (g̃,h̃) is a symmetric
pair, which defines the oscillator group as a symmetric Lorentzian space.

Case (v i 2) (a52 1
2). The reductive decomposition associated toS2(1/2) is g̃2(1/2)50% g

5^$P,X,Y,Q%&, with nonvanishing brackets

@X,Y#52P, @Q,X#52Y, @Q,Y#5X,

which also gives the Lie algebra of the oscillator group.

IV. CURRENTS, AND EINSTEIN–YANG–MILLS EQUATIONS

We consider the connection formv on g̃, which is theh̃-component of the canonical 1-form
on g̃, and we obtain, in each case, the curvature formF5dv and then!F, where! denotes the
Hodge operator with respect to the Lorentzian metricg. The following table provides the values o
F and!F for the cases with nontrivial holonomy,

F5dv !F

(i1) (2wa∧b1xza∧j2xyb∧j) ^ U 2(wh∧j1xzh∧b1xyh∧a) ^ U

~ii ! (q2 1
2)(b∧j) ^ V (q2 1

2)(h∧a) ^ V

~iv! (a∧j2(k/t)b∧j) ^ U 2(h∧b1(k/t)h∧a) ^ U

(vi1) (a22 1
4)((a∧j) ^ U1(b∧j) ^ V) (a22 1

4)(2(h∧b) ^ U1(h∧a) ^ V)

Moreover, as the second Yang-Mills equation isD!F5J, whereJ denotes the current, ap
plying the usual formula19 one obtains for all the cases

J5D!F5d!F1v∧!F2!F∧v5d!F. ~8!

Thus, the currents are given, respectively, by
J

(i1) (xzh∧a∧j2xyh∧b∧j1wa∧b∧j) ^ U

~ii ! (q2 1
2)(h∧b∧j1ca∧b∧j) ^ V

~iv! (h∧a∧j2(k/t)h∧b∧j1b(11(k/t)2)a∧b∧j) ^ U

(vi1) 2a(a22 1
4)((h∧a∧j) ^ U1(h∧b∧j) ^ V)
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On the other hand, we consider the metric ong̃ which is the direct product of the metricg0 on
g and the metric onh̃ for which the basic vectors~U and/orV! are unitary.

Now we haveiFi252w2 in the case (i1) and iFi250 in the remaining cases. We ne
compute the stress-energy tensorT, given by~4!, and we express it in terms of the basis$P,X,Y,Q%
of g. In case (i1) we have

T5S 0 0 0 2 1
2w

2

0 1
2w

2 0 2xyw

0 0 1
2w

2 2xzw

2 1
2w

2 2xyw 2xzw x2~y21z2!

D .

In cases~ii !, ~iv!, and (vi1), the only nonvanishing component isT(Q,Q), which is, respectively,
(q2 1

2)
2, 11(k/t)2, and 2(a22 1

4)
2.

It is then a matter of calculation to see that the field equations~3! are satisfied in cases~ii !,
~iv!, and (vi1), and in the case (i1) if w50 and y21z2Þ0, and to obtain the correspondin
cosmological and gravitational constants.

Theorem: The Lorentzian reductive pairs( g̃,h̃) determined by the homogeneous Lorentz
structures on the four-dimensional oscillator group, in cases( i 1) (with w50 and y21z2Þ0), (ii),
(iv) and (vi1) above, are solutions of the Einstein–Yang–Mills equations for an electromagneti
gauge field with cosmological constantL50, and gravitational constantk given, respectively, by

1

2x2~y21z2!
,

1

2~q2 1
2!

2
,

t2

2~k21t2!
,

1

4~a22 1
4!

2
.

The gauge algebrah̃ is Abelian and two-dimensional in the last case and one-dimensional in
other three cases. The currents are given in the table following (8). They are nonvanishing
in the case (vi1) for a50.

If a50 in case (vi1), the associated symmetric pair (g̃,h̃) appears as a solution of th
Einstein–Yang–Mills equations for a sourceless gauge field with cosmological constantL50 and
gravitational constantk54 ~see Levichev5!.
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Radial conformal motions in Minkowski space–time
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A study of radial conformal Killing fields~RCKF! in Minkowski space–time is
carried out, which leads to their classification into three disjointed classes. Their
integral curves are straight or hyperbolic lines admitting orthogonal surfaces of
constant curvature, whose sign is related to the causal character of the field. Oth-
erwise, the kinematic properties of the timelike RCKF are given and their applica-
tions in kinematic cosmology is discussed. ©1999 American Institute of Physics.
@S0022-2488~99!00507-1#

I. INTRODUCTION

The study of vector~and tensor! fields in a Lorentzian metric is a key issue, both from t
theoretical and practical points of view. Infinitesimal transformations, fluid flows, eigendirec
of a given 2-tensor field, critical points, continuous symmetries, directions attached to coor
systems, light propagation and polarization in a medium, geodesic and accelerated observ
some examples of basic concepts which are described using vector fields. This work is dev
analyzing in the Minkowski space–time the main properties of a particular type of fields tha
have calledradial conformal motions.

There are several reasons for carrying out such a study:~i! homothetic and hyperbolic radia
motions belong to this kind of fields,~ii ! conserved quantities along null geodesics are obtai
from conformal Killing vectors, with particular expressions for the radial case,~iii ! isotropic
distribution functions of photons verifying the Liouville equation can be built from these c
served quantities and,~iv! this study can be easily extended to any conformally flat space–
and used to obtain its conformal factor imposing a given kinematic property of the field~geodesic,
homogeneous expansion, etc.!; in fact, Infeld–Schild work on kinematic cosmology1 tacitly in-
volves the concept of timelike radial conformal Killing field~RCKF! in the geodesic case.

Firstly, in Sec. II, we introduce the concept of RCKF and obtain its general expression an
type of subalgebra generated by them; we also present a study of their causal character ac
to the different domains of the space–time. We continue with a classification of these fields r
to the sign of a quantity invariant by internal conformal transformations of the Minkowski m
~Sec. III!. The associated integral curves are plotted in Sec. IV and we show that the ortho
hypersurfaces of the field have constant curvature whose sign is related to its causal ch
~Sec. V!. In Sec. VI, we focus on timelike RCKF and discuss their kinematic properties poin
out their connection with the Milne’s interpretation of the cosmological recession velocity in
Minkowski space–time.2 Finally, in Sec. VII, we comment on several applications of the pres
study. Some of these results have been presented, without proof, in the E.R.E., annual S
relativity meeting.3

II. RADIAL CONFORMAL KILLING FIELDS

Let us consider a radial vector field

j5a~ t,r ,u,w!
]

]t
1b~ t,r ,u,w!

]

]r

a!Electronic mail: alicia.herrero@uv.es
b!Electronic mail: antonio.morales@uv.es
34990022-2488/99/40(7)/3499/10/$15.00 © 1999 American Institute of Physics

                                                                                                                



s

al

elds

compo-

3500 J. Math. Phys., Vol. 40, No. 7, July 1999 A. Herrero and J. A. Morales

                    
in the Minkowski space–time,

h52dt^ dt1dr ^ dr1r 2h, ~1!

with h5du ^ du1sin2 u dw^dw, the metric on the 2-sphere.
The equationLjh}h expresses thatj is a conformal Killing field~or conformal motion! of h,

whereLj represents the Lie derivative with respect toj. This condition leads to that the function
a andb are independent of the angular coordinatesu andw, resulting in

a~ t,r !5a~ t21r 2!1bt1c, b~ t,r !5r ~2at1b!, ~2!

wherea, b, andc are arbitrary constants.
Proposition 1: In the Minkowski space–time, the general form of a RCKF is

j5~a~ t21r 2!1bt1c!
]

]t
1r ~2at1b!

]

]r
, ~3!

with a, b, and c as arbitrary constants.
Consequently,j can be obtained as linear combination of~the generators of! the timelike

translationj15(]/]t), the dilationj25t(]/]t)1r (]/]r ), and the special nonlinear conform
transformation along thet-axis j35(t21r 2)(]/]t)12tr (]/]r ), that is

j5aj31bj21cj1 .

The Lie brackets of these generators,

@j1 ,j2#5j1 , @j1 ,j3#52j2 , @j2 ,j3#5j3

give us the type of the Lie algebra generated by RCKF. In fact, if we consider the vector fi

e15j12 1
4j3 , e25j2 , e352j12 1

4j3 ,

then, their commutation relations are

@e1 ,e2#52e3 , @e2 ,e3#5e1 , @e3 ,e1#5e2

showing that this Lie algebra is isomorphic to the pseudo-orthogonal algebra AO~1,2!; then we
have the following result:

Proposition 2: RCKF generate a three-dimensional Lie algebra of Bianchi type VIII.
Note that using null coordinates,u5t1r and v5t2r , expression~3! is written in a com-

pletely symmetric form

j5~au21bu1c!
]

]u
1~av21bv1c!

]

]v
, ~4!

where each null coordinate appears separately and in the same way in the corresponding
nent of the fieldj.

From ~3! and ~4! we have

P[2h~j,j!5@a~ t21r 2!1bt1c#22r 2~2at1b!25~au21bu1c!~av21bv1c!. ~5!

The discussion of the sign ofP will give the causal character ofj in the different regions of the
space–time~domains of causality ofj!. It is convenient to introduce the quantity

D[b224ac

that make this discussion easier. The results are shown in Table I and plotted in Fig. 1.
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III. A CLASSIFICATION OF THE RADIAL CONFORMAL MOTIONS

In order to classify the RCKF in equivalence classes, it is convenient to take in accou
degree of freedom of the null coordinates$u,v%. Then we consider the coordinates

ū5ū~u!, v̄5 v̄~v !, ū5u, w̄5w

verifying the condition

ūuv̄v5S ū2 v̄
u2v D 2

~6!

to obtain a conformally flat form of the Minkowski metric~1!,

TABLE I. Causal character of the fieldj given by ~3! or ~4! for the different values of the constantsa and D5b2

24ac.

Causal character of a radial conformal Killing vector

a50 b50 timelike everywhere
bÞ0 null on the light cone at the point~t52(c/b), r 50!,

timelike inside of the light cone and
spacelike outside of the light cone. See Fig. 1~i!

aÞ0 D,0 timelike everywhere
D50 timelike everywhere except for the light cone on~t52(b/2a), r 50!

where it is null. See Fig. 1~ii !
D.0 null on the light cones at the points (t6 ,r 50), t65(2b6AD)/2a,

timelike inside or outside of the two light cones and
spacelike in other domains. See Fig. 1~iii !

FIG. 1. Domains of causality of a RCKFj according to the values of the coefficienta andD5b224ac. The different
possibilities for the causal character, Timelike, Spacelike or Null, in each domain, are abbreviated with the capita
T, S, or N, respectively.
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h5F~ ū,v̄ !F2
1

2
~dū^ dv̄1dv̄ ^ dū!1S ū2 v̄

2 D 2

hG ,
where theinternal conformal factor, F, is

F5
1

ūuv̄v
5uūvv̄ ~7!

with subindexes denoting derivation with respect to the coordinates.
The integration of Eq.~6! with respect toū(u), considering thev-coordinate as a paramete

gives

ū~u!5
v̄v~u2v !

11~u2v !A
1 v̄, ~8!

whereA is an arbitrary function ofv. Now, taking into account thatū does not depend onv, the
derivative of~8! with respect tov gives the following system of equations forA and v̄:

HAv̄vv2Avv̄v1A2v̄v50
2Av̄v1 v̄vv50. ~9!

If A50 the solution of Eqs.~8! and ~9! is linear, ū(u)5pu1q and v̄(v)5pv1q, wherepÞ0
andq are arbitrary constants. In the generic case,AÞ0, the solution has the form

ū~u!5
p

u1q
1m, v̄~v !5

p

v1q
1m, ~10!

wherepÞ0, q andm are arbitrary constants; the internal conformal factorF results from Eq.~7!,

F~ ū,v̄ !5
p2

~ ū2m!2~ v̄2m!2 .

Therefore, takingū5 t̄ 1 r̄ and v̄5 t̄ 2 r̄ , we obtain the following proposition:
Proposition 3: The nonlinear coordinate transformations t5̄ t̄ (t,r ), r̄ 5 r̄ (t,r ), that maintain

invariant the diagonal form of the Minkowski metric, except for an internal conformal factor F
given by

t̄ 5
2p~ t1q!

r 22~ t1q!2 1m, r̄ 5
pr

r 22~ t1q!2

with pÞ0, q and m as arbitrary constants. Then, this factor is

F~ t̄ , r̄ !5
p2

~ r̄ 22~ t̄ 2m!2!2
.

Note that, theseinternal conformal transformationsin the Minkowski space–time, given b
~10!, also maintain invariant the form~4! of the RCKF, that is

j5~ āū21b̄ū1 c̄!
]

]ū
1~ āv̄21b̄v̄1 c̄!

]

] v̄
,

where the new constantsā, b̄, and c̄ are obtained from the following matricial relation:
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S ā

b̄
c̄
D 5MS a

b
c
D with M[

1

p S 2q2 q 21

2q~p1mq! 2~p12mq! 2m

2~p1mq!2 m~p1mq! 2m2
D . ~11!

Moreoverb224ac5b̄224āc̄ and we have the following proposition:
Proposition 4: The form of a RCKF is invariant by the internal conformal transformati

given in Proposition 3. Moreover, the quantityD5b224ac is also invariant by these transfor
mations.

Since det(M)51, the internal conformal transformations of the Minkowski metric are rep
sented as orthogonal transformations on the algebra of the RCKF, considering its Killing foK
as a metric. Hence,D is invariantly defined from the scalar product associated withK, that isD
5K(j,j). The invariance of this quantity suggests us the possibility of a classification o
RCKF depending on the sign ofD, which will be used to denote these classes. The classeD
50, D.0 andD,0 can be represented by the fieldsj1 , j2 , andj31j1 , respectively.

Note that the fieldsj1 and j3 belong to the classD50 because the internal conform
transformation from Proposition 3 withp521, q50 andm arbitrary lets us write the fieldj3 as
a timelike translation field in the new coordinates

j35~ t21r 2!
]

]t
12tr

]

]r
5

]

] t̄
[j̄1

as it follows from expression~11!. The metrich in these coordinates has the form

h~ t̄ , r̄ ,u,w!5
1

@ r̄ 22~ t̄ 2m!2#2
diag~21,1,r̄ 2, r̄ 2 sin2 u!. ~12!

Another interesting example is the equivalence between the fieldsj2 andj32j1 in the class
D.0. From Proposition 3 and Eq.~11!, an internal conformal transformation withp522mÞ0
andq51 lets us writej32j1 as the dilation field in the new coordinates (t̄ , r̄ ),

j32j15~ t21r 221!
]

]t
12tr

]

]r
5 t̄

]

] t̄
1 r̄

]

] r̄
[j̄2

and now the metrich is written in the form,

h~ t̄ , r̄ ,u,w!5
4m2

@ r̄ 22~ t̄ 2m!2#2
diag~21,1,r̄ 2, r̄ 2 sin2 u!. ~13!

Then, as it is shown in last examples, we have the following result:
Proposition 5: The fieldsj32kj1 , with k50,11,21, may be taken as representatives of t

equivalence classesD50, D.0, and D,0, respectively.
Note that the representatives taken in the above proposition are obtained only from the

j1 andj3 , and then, they are not a basis of the radial conformal Killing algebra. But they gen
by commutation the complete algebra, becausej2 is, up to a constant factor, the Lie bracket of a
pair of these representatives.
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IV. INTEGRAL CURVES ASSOCIATED WITH A RADIAL CONFORMAL MOTION

The integral curves of a RCKFj given by ~3! are the solution of the differential equation

dt

a~ t21r 2!1bt1c
5

dr

r ~2at1b!
, ~14!

which has the following implicit form:

a~ t22r 2!1bt2vr 1c50. ~15!

So, the integral curves are a one-parameter family of straight or hyperbolic lines, depending
constantsa, b, andc of the field and on the parameterv. Whena50, Eq.~15! represents straigh
lines in the$t,r%-plane~Fig. 2!. WhenaÞ0, Eq. ~15! can be written in the form

S t1
b

2aD 2

2S r 1
v

2aD 2

5
D2v2

4a2 ,

which represents a hyperbolic line for each value of the parameterv except whenv25D that
corresponds to the light cone at the point (t52b/2a, r 52v/2a). The vertexes of each hyper
bola are the points@t52(b/2a), r 65(2v6Av22D)/2a# if D<0 or v2.D.0 and the points
@t65(2b6AD2v2)/2a, r 52v/2a# if D.0 andv2,D. We must consider only the part of th
hyperbolic branches withr .0. Some of these integral curves are plotted in Fig. 3 for the diffe
values ofD. Note that in the caseD.0 there exist a double family of hyperbolic lines, Fig. 3~iii !.

The vector fieldj25t(]/]t)1r (]/]r ) is called ~the generator of! a dilation transformation
since its integral curves are a radial congruence of straight lines@Figs. 1~i! and 2~ii !#. And the
vector field j35(t21r 2)(]/]t)12tr (]/]r ) is identified as~the generator of! an acceleration
transformation along thet-axis, because each integral curve forvÞ0 can be seen as a hyperbol
relativistic motion whose accelerationa has constant length,uau52ua/vu @Figs. 1~ii ! and 3~ii !#.

V. ORTHOGONAL SURFACES TO A RADIAL CONFORMAL KILLING FIELD

Let us consider the covectorj* associated by the metric to a RCKFj given by ~3!, that is

j* 52~a~ t21r 2!1bt1c!dt1r ~2at1b!dr.

This 1-form is integrable,j* ∧dj* 50, and admits as a potential the following function:

s~ t,r !5H b~ t22r 2!12ct if a50

a~ t22r 2!2c

2at1b
if aÞ0

~16!

FIG. 2. Integral curves associated with a RCKFj given by expression~3! with a50.
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that is,j* }ds and the surfacesSs5$(t,r ,u,w)/s5constant% are orthogonal to the fieldj. Let us
consider a domain where the field is not null on any point. The metric may be written usin
coordinates and another coordinatev orthogonal toj, h(dv,j)50. Such a coordinate has th
expression

v~ t,r !5
a~ t22r 2!1bt1c

r
~17!

for any value ofa, according to Eq.~15!. In order to express the flat metric in these coordina
we need the inverse transformation of Eqs.~16! and ~17!, which is
~i! For a50,

t~s,v!5H s

2c
if b50

2
c

b
1

v

b
Abs1c2

v22b2 if bÞ0,

r ~s,v!5Abs1c2

v22b2. ~18!

~ii ! For aÞ0,

FIG. 3. Integral curves associated with a RCKFj given by expression~3! with aÞ0, according to the sign of
D5b224ac.
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t~s,v!5
1

s22v2 F ~D2v2!s2
b

2a
~s22D!6

v

2a
A~s22D!~v22D!G ,

r ~s,v!5
As22D

2a~s22v2!
@2sAv22D6vAs22D#, ~19!

wheres[2as1b and the1 ~2! sign in thet coordinate corresponds to the1 ~2! sign in ther
coordinate.

Thenh, written in the coordinates (s,v,u,w), has the following diagonal form:

h~s,v,u,w!5H r 2~s,v!diagS b22v2

4~bs1c2!2 ,
1

v22b2,1,sin2 u D if a50

r 2~s,v!diagS D2v2

4~as21bs1c!2 ,
1

v22D
,1,sin2 u D if aÞ0.

~20!

Note that these coordinates (s,v,u,w) are not, in general, conformally flat coordinates. If w
consider the coordinate transformations~18!, ~19! and Proposition 3, the resulting relation betwe
(s,v) and (t̄ , r̄ ) allows us to recover, from expression~20!, the metric forms~12! and ~13!
presented in Sec. III.

From ~20!, the induced metric on the surfacesSs by the Minkowski metric has the form

g~v,u,w!5r 2~s,v!diagS 1

v22D
,1,sin2 u D .

The Riemann double 2-form of curvatureR of this induced metric can be expressed asR
5@K(s)/2#g∧g, where∧ denotes the exterior product of double 1-forms andK(s) is given by

K~s!5H 2b2

bs1c2 for a50

2a

as21bs1c
for aÞ0.

~21!

Therefore each surfaceSs (s5constant) has constant sectional curvature,K(s). If we take into
account expressions~5! and ~16!, we obtain

P5H bs1c2 if a50

as21bs1c

a
~2at1b!2 if aÞ0

~22!

and the sectional curvature ofSs can be written in the form

K~s!52
1

P
~2at1b!2

whose sign depends on the causal character of the fieldj, and the following result follows.
Proposition 6: In the Minkowski space–time, the surfaces orthogonal to a RCKF are thre

dimensional spaces with constant curvature, which will be negative or positive if the fie
timelike or spacelike, respectively; except for the fieldj5(]/]t) (timelike everywhere), whos
orthogonal 3-spaces are flat.
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VI. TIMELIKE RADIAL CONFORMAL MOTIONS

The case of timelike RCKF is specially interesting because they are associated with par
but in general noninertial, observers in Minkowski space–time. We are going to study
kinematical properties. The shear and the vorticity of~the unit vectoru associated with! a timelike
RCKF are zero. The expansion is

u5
3~2at1b!

AP

with P given by ~5!, and the acceleration has the form

a5
2ar

P
~2r ~2at1b!dt1~a~ t21r 2!1bt1c!dr !.

Note thath(a,a)54a2/(v22D) is constant along each integral curve, as we can see f
~15!. This agrees with the fact that the integral curves associated with a timelike RCKF de
hyperbolic or inertial motions. Then we have the following proposition in the Minkowski spa
time:

Proposition 7: In the Minkowski space–time, the acceleration of a timelike RCKF has co
stant length on each integral curve, that is

uau5
2uau

Av22D
,

wherev is given by~15!.
Note that, in inertial coordinates, a timelike RCKF~3! is geodesic iffa50. And it will have

null expansion~that is, it will be a Killing vector field! iff the constantsa andb are equal to zero.
Let us consider the 4-velocity of a timelike RCKF,

u5
j

AP
5

1

A12v2 S ]

]t
1v

]

]r D ,

the velocity v relative to the inertial observer]/]t is given by the quotient between the comp
nentsj1 andj0 of the field,

v5
r ~2at1b!

a~ t21r 2!1bt1c
. ~23!

From Fig. 1, we can clearly see that when we are approaching~inside the timelike regions! to
the light cones where the fieldj is null, the relative velocity v→1. In particular, whena5c50 we
have v5r /t. This corresponds to the geodesic fieldj2 and adapting coordinates to it, th
Minkowski metric is written

h52dt21
t2

S 12
r2

4 D 2 @dr21r2~du21sin2 udw2!#, ~24!

which has the form of a Robertson–Walker metric with expansion factorR(t)5t. This is Milne’s
expression of the flat metric used to give a kinematic interpretation of the Hubble law.2 The
timelike coordinatet represents the proper time of the geodesic radial congruence associate
the fieldj25]/]t; and, according to Proposition 6, the surfacest5constant are spaces of neg
tive constant curvature.
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Expression~24! can be obtained from~20! redefining the (s,v) coordinates in the following
way:

s5t2, v5
r

4
1

1

r
.

In this sense, Milne’s interpretation of the recession velocity of galaxies can be understood
ing coordinates to a RCKF in Minkowski space–time.

VII. DISCUSSION AND COMMENTS

We have analyzed the main properties of the RCKF in Minkowski space–time. In a co
mally flat space–time, whose metric can be locally written asg5e2lh, the form of the RCKF will
be given by the same expression~3! or ~4! as for the Minkowski space–time. But the accelerati
and expansion of these fields will depend on the functionl and its first derivatives. So, additiona
conditions imposed on these kinematic properties lead to a differential equation for this funcl
that can be used to determine it. For instance, imposing that a conformally flat space–time
a geodesic RCKF, the corresponding differential equation allows one to obtain the conf
factor of the Robertson–Walker metric found by Infeld and Schild1 in their work on kinematic
cosmology.

Therefore, it is natural to wonder whether the existence of a RCKF with certain kinem
properties can characterize the Robertson–Walker metrics and other generalized nonhomo
conformally flat cosmological models. In fact, Robertson–Walker universes are those confo
flat space–times which admit a timelike geodesic RCKF.3 Other kinematic properties over thes
RCKF ~nongeodesic with homogeneous expansion or admitting homogeneous ortho
3-spaces! could be used to characterize generalized conformally flat cosmologies. We shal
develop this idea further.4
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The Lovelock gravity extends the theory of general relativity to higher dimensions
in such a way that the field equations remain of second order. The theory has many
constant coefficients with noa priori meaning. Nevertheless, it is possible to reduce
them to two: the cosmological constant and Newton’s constant. In this process one
separates theories in even dimensions from theories in odd dimensions. In a previ-
ous work, gravitational collapse in even dimensions was analyzed. In this work
attention is given to odd dimensions. It is found that black holes also emerge as the
final state of gravitational collapse of a regular dust fluid. ©1999 American
Institute of Physics.@S0022-2488~99!03306-X#

I. INTRODUCTION

A generalization of Einstein gravity to other dimensions while keeping the same degre
freedom~the field equations for the metric remain of second order! is given by the Lovelock
action.1 The theory can also be considered as an extension of Einstein–Hilbert action~see, e.g.,
Ref. 2!, in which new terms make their appearance by taking into the action the Euler densi
the spaces with dimensions lower than the space in consideration.

In a previous work3 we have studied gravitational collapse in Lovelock gravity for a spacet
with even dimensions, thus extending the Oppenheimer–Snyder collapsing model. Followi
work of Refs. 2 and 4, the reason for separating even from odd dimensions in the Lovelock
comes naturally in aD-dimensional spacetime when one considers embedding the Lorentz g
SO(D21,1) into the anti-de Sitter group SO(D21,2). The Lovelock theory then branches in
two distinct classes, with Lagrangians for even dimensions and Lagrangians for odd dimen
One also finds in this way that the number of constants, that proliferates when one goes to
and higher dimensions, reduces drastically to two: the cosmological constantL and Newton’s
constantG.

In this work we study gravitational collapse in odd-dimensional spacetimes and show
black holes form from regular initial data consisting of a dust fluid. We follow closely
nomenclature and the division of sections made in Ref. 3. In Sec. II the Lovelock gravit
restricted coefficients in odd-dimensional spacetimes is presented. In Sec. III we display the
solutions in odd dimensions found in Ref. 4. In Sec. IV we find some cosmological or int
matter solutions for perfect fluids. In Sec. V we match the solutions found in Sec. IV to
solutions of Sec. III. In Sec. VI we show that black holes can form through gravitational col
in Lovelock odd-dimensional gravity. In Sec. VI we comment on the formation of naked si
larities and in Sec. VII we present some conclusions. In the paper we usually doG5c51.

II. THE LOVELOCK THEORY

The most general action inD>3 spacetime dimensions that yields the same degree
freedom of Einstein’s theory is the so-called Lovelock action, given by1,2
35090022-2488/99/40(7)/3509/10/$15.00 © 1999 American Institute of Physics
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S5E LD5k (
p50

@~D21!/2#

apE
M

ea1¯aD
Ra1a2∧¯∧Ra2p21a2p∧ea2p11∧¯∧eaD1Sm , ~2.1!

whereRab5dvab1vc
a∧vcb is the curvature two-form,ea is the local frame one-form, andvab is

the spin connection, withai50,1,...,D21. The symbol@ # over the summation symbol means o
should take the integer part of (D21)/2. Sm is a phenomenological action that describes
macroscopic matter sources.

In general, the constant coefficientsap are arbitrary. However, it is shown in Ref. 4 th
taking certain special choices one is able to get simple meaningful solutions. Following Ref.
first considers embedding the Lorentz group SO(D21,1) into the anti-de Sitter group SO(D
21,2), and then separates into two distinct classes of Lagrangians: Lagrangians for even
sions and Lagrangians for odd dimensions.

For odd dimensions,D52n21, one can find a construction similar to the Chern–Sim
action construction in three dimensions. One starts with the Euler density in one dimension
D,

E2n5keA1¯A2n
R̂A1A2∧¯∧R̂A2n21A2n, ~2.2!

with A1 ,A250,1,...,2n21 being the anti-de Sitter indices.R̂AB is the anti-de Sitter curvature
two-form constructed with the SO(D21,2) connectionWAB. Equation~2.2! is a local exact form,
and can be written as an exterior derivative of a Lagrangian in 2n21 dimensions, i.e.,E2n

5dL2n21 ; see Ref. 4. Decomposing the connectionWAB into the connection underD rotations
wab and inner translationsea, one finds the anti-de Sitter curvatureR̂ in terms of the Lorentz
curvatureR:

R̂ab5Rab1
1

l 2 ea∧eb, ~2.3!

where l is a scale factor that is to be related to the cosmological constantl 2521/L. Using Eq.
~2.3!, one finds that the Lagrangian in Eq.~2.2! can be put in the form

L2n215k (
p50

n21

apea1¯aD
Ra1a2∧¯∧Ra2p21a2p∧ea2p11∧¯∧eaD, ~2.4!

where the coefficients are given by

ap5
1

D22p S n21
p D l 2D12p, ~2.5!

and, for convenience, one can choosek as

k5
D22

16pGn
lD22. ~2.6!

Given the action~2.1!, the field equations are obtained by the variation with respect to
one-formsea. Under the assumption of zero torsion, the variation with respect to the spin
nection vab vanishes identically. Although the equations have powers in the curvatures,
remain by construction second order in the metric. The field equations are given by

2k (
p50

@~D21!/2#

ap~D22p!ea1¯aD
Ra1a2∧¯∧Ra2p21a2p∧ea2p11∧¯∧eaD215QaD

, ~2.7!
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whereQaD
is a (D21)-form associated with the energy momentum tensorTb

a through the fol-
lowing expression:

Qi5
1

~D21!!
Ti

a1ea1¯aD
ea2∧¯∧eaD. ~2.8!

III. EXTERIOR VACUUM SOLUTIONS

In the vacuum all components of the energy–momentum tensor vanish, so that the
equations~2.7! are given by

2k (
p50

ap~D22p!ea1¯aD
Ra1a2∧¯∧Ra2p21a2p∧ea2p11∧¯∧eaD2150. ~3.1!

Inserting the coefficientsap and the constantk given in ~2.5! and ~2.6! in Eq. ~3.1! one gets for
odd dimensions (D52n21),

~Ra1a21 l 22ea1∧ea2!∧¯∧~Ra2n23a2n221 l 22ea2n23∧ea2n22!ea1a2¯a2n21
50. ~3.2!

We consider now a static, spherical symmetric spacetime. One can write the metric in the f
ing form:

ds1
2 52g2~r 1!dt1

2 1g22~r 1!dr1
2 1r 1

2 dVD22
2 , ~3.3!

where t and r are the time and radial coordinates anddVD22
2 is the arc element of a unit (D

22) sphere. The subscript1 reminds that~3.3! is to be viewed as an exterior solution. Wit
metric ~3.3! and Eqs.~3.1! and~3.2!, Bañados, Teitelboim, and Zanelli found the following exa
solution forD52n21:4

ds1
2 52@12~M11!2/~D21!1~r 1 / l !2#dt1

2 1
dr1

2

12~M11!2/~D21!1~r 1 / l !2 1r 1
2 dVD22

2 .

~3.4!

These solutions describe black holes. We will show that they also represent the exterior v
solution to a collapsing~or expanding! dust cloud in Lovelock’s odd-dimensional theory, as in t
even-dimensional case.3

IV. INTERIOR MATTER SOLUTIONS

The interior spacetime is modeled by a homogeneous collapsing~or expanding! dust cloud,
whose metric is described by Friedmann–Robertson–Walker inD dimensions,

ds252dt21a2~ t !F dr2

12kr2 1r 2dVD22
2 G . ~4.1!

The coordinatest andr are comoving coordinates~we omit throughout the subscript2 to indicate
an interior solution!. Note that thatk has dimension of 1/@ length#2. The energy–momentum tenso
for a perfect fluid is given by

Tab5~r1p!uaub1pgab , ~4.2!

where r is the energy–density,p the pressure, andua is the D velocity of the fluid. From
~4.1!–~4.2! and Lovelock equations~2.7!, we obtain
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2B
d

dt S ȧ

aD1
k

a2 5r1p, ~4.3!

~D21!BS ȧ

aD F2
k

a2 1
d

dt S ȧ

aD G5 ṙ, ~4.4!

where

B[~D22!!(
p

ap2p~D22p!S ȧ21k

a2 D p21

, ~4.5!

where the coefficientsap are given in~2.5!, andk is given in~2.6!. Equations~4.3!–~4.4! have a
first integral given by

ȧ252k2S a

l D
2

1S a0

l D 2F 8p l 2r0

~D22!! ~D22!G
2/~D21!

, ~4.6!

wherer0 anda0 are constants. Equations~4.3!–~4.4! also have a second integral, i.e., the soluti
of Eq. ~4.6! is given by~see also Ref. 5!

a~ t/ l !5
l

r S
AH S 1

l D
D23F8pr0~a0r S!D21

~D22!! ~D22! G J 2/~D21!

2krS
2 sin~b1t/ l !, ~4.7!

whereb is an arbitrary phase that will be neglected henceforward.
The Ricci quadratic scalar and the Kretschmann scalar are given by

RabR
ab52~D21!2S ä

aD 2

1~D21!F ä

a
1~D22!

ȧ21k

a2 G2

, ~4.8!

RabcdR
abcd5~D21!F S ä

aD 2

1S ȧ21k

a2 D 2G , ~4.9!

respectively.
We now assume a dust fluid,p50. For such an equation of state we have

r5r0S a0

a DD21

, ~4.10!

wherer0 anda0 are the constants defined above.
Inserting Eq.~4.7! in Eq. ~4.10!, we obtain the evolution of the density in the dust model

r~ t/ l !5r0F a0r S / l

AH S 1

l
D D23F8pr0~a0r S!D21

~D22!! ~D22!
G J 2/~D21!

2krS
2G D21

sin2~D21!~ t/ l !. ~4.11!

We see that the density~4.11! and the curvature scalars~4.8!–~4.9! diverge att/ l 5p, which
represents the formation of a singularity.

V. JUNCTION CONDITIONS

Now we match the exterior and interior spacetimes found in Secs. III and IV, respect
across an interface of separationS. The junctions conditions are6
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ds1
2 ] S5ds2

2 ] S , ~5.1!

Kab
1 ] S5Kab

2 ] S , ~5.2!

whereKab is the extrinsic curvature,

Kab
6 52ne

6
]2x6

e

]ja ]jb2ne
6Ggd

e
]x6

g

]ja

]x6
d

]jb , ~5.3!

andne
6 are the components of the unit normal vector toS in the coordinatesx6 , andj represents

the intrinsic coordinates inS. The subscripts6 represent the quantities taken in the exterior a
interior spacetimes. Both the metrics and the extrinsic curvatures in~5.1!–~5.2! are evaluated atS.
The metric intrinsic toS is written as

dsS
2 52dt21R2~t!dVD22

2 , ~5.4!

wheret is the proper time onS and dVD22
2 denotes the line element on aD22-dimensional

sphere.
Using the junction condition~5.1!, metric ~5.4!, and the exterior metric~3.4!, we obtain

r 1] S5R~t!, ~5.5!

and

@12~M11!2/~D21!1~r 1 / l !2# ṫ1
2 2@12~M11!2/~D21!1~r 1 / l !2#21ṙ 1

2 51, ~5.6!

where•[d/dt, and both equations are evaluated atS. From now on, we will usually omit the
subscriptS to denote evaluation at the interface. Using~5.5! in ~5.6!, we find

dt1

dt
5

A@12~M11!2/~D21!1~R/ l !2#1Ṙ2

@12~M11!2/~D21!1~R/ l !2#
. ~5.7!

The unit normal toS in the exterior spacetime is

ne
15S 2

dr1

dt
,
dt1

dt
, 0,...,0D . ~5.8!

From ~5.3! we then get

Kuu
1 5RAF12~M11!2/(D21)1S R

l D 2G1Ṙ2, ~5.9!

In what follows the other components ofKab
1 are not needed.

The unit normal toS in the interior spacetime is

ne
25S 0,

a

A12kr2
, 0,...,0D , ~5.10!

and from~5.3! we have

Kuu
2 5R~t!A12krS

2 . ~5.11!

Using the junction condition~5.1! for the interior spacetime yieldsarS5R(t). From the condition
Kuu

1 5Kuu
2 , ~5.9! and ~5.11!, we obtain
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Ṙ21S R

l D 2

1krS
2 5~M11!2~D21!. ~5.12!

Multiplying Eq. ~4.6! by r S
2 , we get

Ṙ21S R

l D 2

1krS
2 5S R0

l D 2F 8p l 2r0

~D22!! ~D22!G
2/~D21!

. ~5.13!

Comparing Eqs.~5.12! and ~5.13!, we have

M5S 1

l D
D23F8pr0~a0r S!D21

~D22!! ~D22! G21, ~5.14!

which is the mass of the cloud expressed in terms of the constants given in the problem.

VI. BLACK HOLE FORMATION

In order to study black hole formation in this theory, we work with the solution found in~4.7!.
The interior and exterior metrics are given in~4.1! and in ~3.4!, respectively, and as we hav
shown in Sec. V, it is possible to make a smooth junction between both spacetimes.
complete, we treat the casesD>3. The caseD53 reduces to the collapse studied in Ref. 7.

For convenience, we rewrite Eqs.~4.6!–~4.9! and~4.11! in terms of the massM. We thus have

a~ t/ l !5
l

r S
A~M11!2/~D21!2krS

2 sin~ t/ l !, ~6.1!

for the scale factor,

r~ t/ l !5r0F a0r S / l

A~M11!2/~D21!2krS
2 GD21

sin2~D21!~ t/ l !, ~6.2!

for the density, and

RabR
ab52

~D21!2

l 4 1
~D21!

l 4 H 211~D22!
@~M11!2/~D21!2krS

2 #cos2~ t/ l !1krS
2

@~M11!2/~D21!2krS
2 #sin2~ t/ l ! J 2

,

~6.3!

and

RabcdR
abcd5

~D21!

l 4 H 11F @~M11!2/~D21!2krS
2 #cos2~ t/ l !1krS

2

@~M11!2/~D21!2krS
2 #sin2~ t/ l ! G2J , ~6.4!

for the quadratic Ricci and Kretschmann scalars, respectively. In this work we restrict the v
of the quantitykrS

2 , assumingkrS
2 50, 6 1

2. These values have no special meaning, although
krS

2 positive and large enough there is no solution at all. Note also that the expression~5.14! for
the mass is independent of the value chosen forkrS

2 .
Gravitational collapse occurs forp/2<t/ l<p. The timet/ l 5p/2 marks the onset of collapse

At this moment there are no singularities in spacetime, as the curvature scalars~6.3!–~6.4! and the
density~6.2! indicate. In fact, the singularity appears only att/ l 5p, where all these quantitie
blow up.

To know whether a black hole has formed or not, one has to search for the appearanc
apparent horizon and an event horizon. The apparent horizon is defined to be the boundar
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region of trapped two-spheres in spacetime. To find this boundary on the interior spacetim
looks for two spheresY[a(t)r 5const whose outward normals are null, i.e.,“Y–“Y50. Using
metric ~4.1!, this yields

da~ t !

dt
52

A12kr2

r
. ~6.5!

Using ~6.1! in ~6.5! gives the evolution of the apparent horizon in comoving coordinates,

A~M11!2/~D21!2krS
2

12krS
2 ~r /r S!2 S r

r S
D52

1

cos~ t/ l !
. ~6.6!

Now, the apparent horizon first forms at the surfacer S . Then, forr 5r S , Eq. ~6.6! gives the time
t/ l at which the apparent horizon first forms. On the other hand, one should also be able to fi
formation time of the apparent horizon on the surfaceS through an equation onS, Eq. ~5.12!.
Indeed, at the junction one hasR5a(t)r S . Then, from junction condition~5.12! and Eq.~6.5! we
have that the apparent horizon first forms when

RAH

l
5A~M11!2/~D21!21. ~6.7!

Now, using~6.1!, the time of formation of the apparent horizon can be found through the equ

RAH

l
5a~ tAH!

r S

l
5A~M11!2/~D21!2krS

2 sinS tAH

l D . ~6.8!

Given a dimensionD and anM, one can obtainRAH through Eq.~6.7!. Then Eq.~6.8! gives
implicitly tAH , the time of the formation of the apparent horizon on the surfaceS for a givenk.
For instance, forD53, M50.25, andkrS

2 50 we findtAH / l 52.68. Putting this value back in Eq
~6.6! we verify that everything checks.

The event horizon, being a null spherical surface, is determined through the null out
lines of the metric~4.1!, i.e.,

dt

dr
5

a~ t !

A12kr2
. ~6.9!

Equation~6.9! can be put in the following integral form:

A~M11!2/~D21!2krS
2 E

0

r 1 /r S d~r /r S!

A12krS
2 ~r /r S!2

5 lnF tan~x1!

tan~x0!G , ~6.10!

wherex[(1/2)t/ l . Now, the timex1 is to be precisely equal to the formation time of the appar
horizon, since one expects that in vacuum both horizons coincide.8 One has then to integrat
~6.10! to find the timex0 at which the event horizon first forms, atr 50. For instance,D53, M
50.25, andkrS

2 52 1
2 we obtaint0 / l 51.96. A plot in comoving coordinates (t/ l ,r /r S) shows the

evolution of the apparent and event horizons in Fig. 1. There we repeat the numerical calcu
for the same value ofD andM, but with krS

2 50 andkrS
2 5 1

2, as is shown in lines~b! and~c!. In
Fig. 2 we show the formation of the apparent and event horizons forD525, andM50.25 and
krS

2 50. IntermediateD dimensions have a similar behavior. Making a matching to the vac
exterior spacetime one finds the usual Penrose diagram for gravitational collapse and forma
a black hole in an anti-de Sitter background; see Fig. 3.

To study what happens to external observers we note that a light signal emitted fro
surfacer 1] S at the exterior timet1 obeys the null condition
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dr1

dt1
512~M11!2/~D21!1S r 1

l D 2

~6.11!

@see Eq.~3.4!#. This light ray arrives at a pointr 1 at time t1 given by

t1

l
5

t1] S

l
1

1

2~M11!2/~D21!22
lnF ~r 1 / l !2@2~M11!2/~D21!22#

~r 1 / l !1@2~M11!2/~D21!22#
G

r 1] S / l

r 1 / l

. ~6.12!

Thus,t1 / l→` whenr 1] S / l→A(M11)2/(D21)21, so the collapse to the event horizon appe
to take an infinite amount of time to an exterior observer, and the collapse tor 150 is unobserv-
able from the outside. Also, the redshift from the dust edge is given by

z5
dt1

dt
215

1

A12krS
2 1Ṙ

21. ~6.13!

When the dust edge crosses the event horizon we haveṘ52A12krS
2 , so z→`. Thus the

collapsing dust will fade from sight, as the redshift of the light from its surface diverges.

FIG. 1. Gravitational collapse inD53 dimensions in an asymptotically anti-de Sitter spacetime. The interior dust clou
comoving coordinates (t/ l ,r /r S) fills the whole diagram. The left side represents the center of the cloudr /r S50; the right
side the surface of the cloudr /r S51. The evolution of the event horizon~dashed line! and apparent horizon~full line! are

drawn. The singularity occurs att/ l 50. M50.25 was used. The three different cases are~a! krS
2 52

1
2, ~b! krS

2 50, and~c!

krS
2 5

1
2.
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VII. NAKED SINGULARITIES

To study the presence of naked singularities, i.e., singularities not hidden by an event ho
we analyze Eqs.~3.4!, ~6.1!–~6.4!, and ~5.14!. Naked singularities appear only whenM,0.
Although solutions with negative mass are usually considered unphysical, they will be st
here because these generalize the three-dimensional solutions found in Refs. 9, 10, and 7
model adopted here, it is useful to separate two distinct classes.

FIG. 2. The dimensionally continued Oppenheimer–Snyder collapse inD525 dimensions in an asymptotically anti-d
Sitter spacetime.M50.25 andkrS

2 50 were used. See the subtitle of Fig. 1 for a more detailed explanation.

FIG. 3. Penrose diagram for the collapse of a dust cloud in an asymptotically anti-de Sitter spacetime. Each poin
diagram represents aD22 sphere~eh5event horizon, ah5apparent horizon!.
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~1! If l remains finite~in which caseLÞ0!, for anyD>3 the curvature scalars~6.3!–~6.4! will
blow up whent/ l 5p, indicating the formation of a curvature naked singularity.

~2! If we take the limitl→` ~in which caseL50!, we see from the exterior metric~3.4! that the
event horizon is no longer present, and the collapse will form a naked singularity. Takin
limit on Eqs.~6.3!–~6.4!, we have

RabRab5
~D21!~D22!

t4 F ~M11!2/~D21!

~M11!2/~D21!2krS
2 G2

, ~7.1!

RabcdR
abcd5

D21

t4

~M11!2/~D21!

~M11!2/~D21!2krS
2 . ~7.2!

For anyD.3, both~7.1!–~7.2! will vanish because from Eq.~5.14!, M5211O( l 2D13), so in
the limit we haveM521. Also, from Eq.~6.1! we have in the limit,a(t)5A2kt, so that the only
possible solution is whenkrS

2 ,0. Note also thatM521 implies that the exterior metric~3.4! is
a Minkowski one, although the interior density~6.2! is nonzero everywhere in the dust cloud. S
at t/ l 5p we will have r→` in a flat Mikowski spacetime. This is analogous to a Newton
singularity.

For D53 we haveM58pr0(a0r S)221 anda(t)5A8pr0a0
22kt, so that Eqs.~7.1!–~7.2!

will be finite but nonzero and the collapse will form a naked conical singularity.10,7

VIII. CONCLUSIONS

We have analyzed gravitational collapse in Lovelock gravity for odd-dimensional spacet
We have showed that gravitational collapse of a regular initial nonrotating dust cloud procee
form event and apparent horizons, and terminates at a spacelike curvature singularity.
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Desingularization of Jacobi metrics and chaos in general
relativity

Marek Szydłowski
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Cracow, Poland

~Received 29 June 1998; accepted for publication 4 February 1999!

It has been proposed by Wheeler and deWitt to look at the evolution of three-
metrics as a geodesic flow on the superspace. Since then a lot of attention has been
paid towards better understanding the geometric structure of the superspace. In
particular it has been appreciated that the minisuperspace can in a natural way be
equipped with the Jacobi metric. However the Jacobi metric is degenerate on cer-
tain codimension one hypersurfaces~boundary sets! leading to severe difficulties.
The dynamics of minisuperspace models is a special case of dynamics of simple
indefinite mechanical systems. It is proved that trajectories of an indefinite me-
chanical system (M ,g,V), with the natural Lagrangian, are pregeodesics with re-
spect to the Jacobi metricgE52uE2Vug, whereM is the configuration space,g the
metric defined by the kinetic energy form,V a potential function, andE the total
energy of the system. In this paper we also propose to use Eisenhart’s principle as
an alternative geometrical construction on minisuperspace. Then the dynamics of
general relativity is mapped onto a geodesic flow on a smooth manifold without
boundary. Hence Eisenhart’s proposal seems to be the right way to desingulariza-
tion of motion in the Jacobi metric which is nontractable in the Jacobi picture.
Different methods of desingularizing of the Jacobi metric through the isometric
embedding into a more dimensional flat space with the Lorentzian signature is also
presented. ©1999 American Institute of Physics.@S0022-2488~99!01007-5#

I. INTRODUCTION

Mechanical systems with natural Lagrange functions are described by the Lagrangian
type L5(1/2)gabq̇aq̇b2V(p), whereV:M→R is a potential function. The classical Maupertu
principle states that trajectories of a mechanical system with the total energyE5(1/2)gabq̇aq̇b

1V(p) are geodesics of the Jacobi metricgE
J 52(E2V)g, whereg is a Riemannian metric on a

smooth manifoldM being the configuration space of the system. Letg be given by the kinetic
energy formK(v)5(1/2)g(v,v), for everyvPTxM , xPM . The Jacobi metricgE

J is determined
on a submanifoldME5$xPM :V(x),E% which is called anadmissible configuration space~see,
for instance, Refs. 1 and 2!.

In the previous work,3 we have generalized the Maupertuis principle by admitting the c
when g is a Lorentz metric onM; in such a case the Jacobi metric is of the formgE

J 52uE
2Vug, and consequently we have included into the admissible configuration space the regio
which V(x)>E, xPM . According to our previous terminology, the above described mechan
system with the natural Lagrange function is called asimple mechanical system~SMS!. If the
kinetic energy formK is positive definite the system is said to beclassical; if K is indefinite the
system is said to berelativistic. In the present work we further study the trajectories of su
systems~with respect to the Jacobi metric! and investigate their behavior when they pass throu
the singular boundary (V(x)5E).

Relativistic systems appears in applications to general relativity and cosmology whe
kinetic energy form is indefinite and the metric has the Lorentz signature. For instance,
so-called ADM formulation of general relativity, the dynamics of space–time reduces to the
of a dynamical system with a suitable potential function which is determined by the geome
35190022-2488/99/40(7)/3519/21/$15.00 © 1999 American Institute of Physics
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spacelike sections of space–time.4 In the case of homogeneous anisotropic cosmological mo
the potential function is determined by the Lie algebras of the corresponding isometry g
acting on spacelike sections of space–time.5 In all these cases the admissible configuration sp
contains regions withV(x)>E, and the Jacobi metricgE

J degenerates on the singular bounda
V(x)5E.

The status of the Maupertuis principle in classical mechanics is rather ambiguous.~Some
authors call this principle the Jacobi principle.6! Arnold in his beautiful book,1 quoting Jacobi who
said that ‘‘in almost all textbooks, even in the best ones, this principle is presented in such
that it is impossible to understand it,’’ ironically admitted that also he himself did not wan
damage this tradition, and restricted the usefulness of the Maupertuis principle to the case
E.Vmax(x). However, the investigation of classical dynamical systems with degenerate J
metrics~for the cases in whichV(x)<E!! began with the works of Wintner7 and Seifert.8 Inter-
esting results in this domain were obtained by Kozlov.9–11 In the present work, we give the proo
of a theorem which can be regarded as a rigorous formulation of the generalized~to the caseE
<V(x)! Maupertuis principle for dynamical systems with the natural Lagrange functions.

It is worthwhile to mention that the Maupertuis principle, for the case with the indefi
kinetic energy form~i.e., for relativistic mechanical systems!, was implicitly used by Misner in his
minisuperspace construction12 ~and earlier by DeWitt in his concept of superspace!.13 Misner’s
idea was to define the space of spatially homogeneous and closed solutions of Einstein’s
tions. Analogously, the Maupertuis principle can be regarded as defining the space of solut
the Euler–Lagrange equation~geodesics with respect to the Jacobi metric are ‘‘points’’ in t
space!. Other examples of relativistic~low-dimensional! mechanical systems are shown in Table
In these systems we can find or suspect complex~chaotic! behavior of trajectories in the phas
space. One should expect that this behavior has a counterpart in the behavior of geodesic
space with the Jacobi metric.14,15

It was proposed by Wheeler and deWitt to look at the evolution of three-metrics as a geo
flow on the superspace. Since then a lot of attention has been paid towards better understa
the geometric structure of the superspace, which turned out to be nontrivial~a metrizable stratified
union of manifolds which itself is not a manifold!. In particular it has been appreciated that t
minisuperspace can in a natural way be equipped with the Jacobi metric.@To see this one should
replace, in Misner’s formulas~47!–~49!, the conformal factorf 2(gA) by our 2uE2Vu. In this case,
Misner’s supertimel coincides with our parameters.# However the Jacobi metric is degenerate
certain codimension one hypersurfaces~boundary sets! leading to severe difficulties.

It is worthwhile to mention that in the paper by Baierleinet al.16 we can find that genera
relativity is governed by a Jacobi-type action. This fact was fully discussed in the pap
Barbour17 in the context of construction of general relativity as a special case of timeless Ma
geometrodynamics. Earlier Kuchar18 showed that it is a possibility of general reduction of geom
rodynamical phase space to a mini phase space by the group of motion.

The Hamiltonian function of simple mechanical systems has the form

H~p,q!5 1
2g

abpapb1V~q!. ~1!

This function determines the first integral of motion,H5E5const, whereE is the total energy of
the system. Trajectories of simple mechanical systems live in the phase space

V5$~q,q̇!PR2n:gi j q̇
i q̇ j52~E2V~q!!%. ~2!

Positive definiteness of kinetic energy confines the motion of classical systems to a certain d
D of configuration space with nonempty boundary]D,

D5]Dø$qPRn:E2V~q!.0%, ~3!

where]D5$qPRn:E2V(q)50%.
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In the case of relativistic systems the wholeRn is accessible as a configuration space and]D
plays the role of a boundary set, i.e., in any neighborhood of its elements one can find
belonging to D1 or to D2 , where D15$qPRn:E2V(q).0%, and D25$qPRn:E2V(q)
,0%.

According to the classical Maupertuis principle the trajectories of SMS are mapped
broken geodesics of the Jacobi metricgE

J 52(E2V(q))g.3 The matching procedure at the boun
ary ]D is provided by Kozlov’s theorem.9–11 These theorems describe the behavior of geode
~images of physical trajectories! in a close vicinity of the boundary]D. Two properties are
fundamental here:~1! trajectories reach the boundary transversally and~2! after the reflection from
the boundary the motion takes place along the same trajectory~at the vicinity of the boundary!.3

This means, in particular, that not every piecewise geodesic curve in Jacobi geometry repre
physical trajectory of the system, e.g., curves composed with pieces of boundary on whicdsJ

2

50. Therefore the direct approach from the Jacobi principle leads to unphysical orbits.
alternative for this approach one can consider motion in the covering space~see Ref. 3! ~in QT
space, in the Synge terminology,Q is a normal configuration space,T is a space of absolute time!.

In other words the mapping of trajectories via the Maupertuis–Jacobi principle doe
provide a one-to-one correspondence. The demand of having an affinely parametrized g
introduces a new time-parameters defined asds52(E2V(q))dt. By virtue of the energy con-
servation a tangent vector is normalized to unity in intD and is zero at the boundary]D. The
Maupertuis principle has been formulated only for systems with empty boundary]D50 and
therefore is useless in realistic applications. In our previous papers19 the problem of simple clas

TABLE I. Examples of simple relativistic dynamical systems of two-dimensional configuration space. In these s
low-dimensional systems we find or suspect complex~chaotic! behavior of trajectories in the phase space. Two identi
trajectories of the system starting at slightly different positions~initial conditions! diverge in time. Such sensitive depen
dence on initial conditions is the main characteristic of chaotic systems and means that they are difficult to pred
long time scales, practically over the Lyapunov characteristic time.

Relativistic system Hamilton function Remarks

Friedman–Robertson–Walker
cosmology coupled to real

H5
1
2(2p1

21p2
2)1

1
2(2q1

21q2
21m2q1

2q2
2)50 m5consta

free massive scalar field

Single scalar field evolving in the
idealized de Sitter space L5e3nt@

1
2 Ḟ22

1
2e22nt(¹F)21

1
2m2F22

1
4lF42(m2/4l)#

F(x,y,z,t)-scalar
fieldb

Charged particle in uniform
magnetic field and
linearly polarized
gravitational wave

H5
1
2~p1

22p2
2!2

1

2

~x1!2

12a sin@n~x12x0!#
[

1

2

a, amplitude
of a wave;
v, angular
frequency
of a wave;
V, Larmor
angular frequency
of a charged
particle;n5v/V,
relative frequency
of wave.c

Friedmann–Robertson–Walker
model with conformally
coupled massive, real,
self-interacting scalar field

H5
1

2
[ 2~p1

21kq1
2!1~p2

21kq2
2!1m2q1

2q2
21

l

2
q2

4

1
L

2
q1

4][0

L,l,m5const;
k50, 61d

aReference 40.
bReference 41.
cReference 42.
dReference 43.
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sical systems was reduced to the problem of broken geodesics on the manifolds with boun
However, the Jacobi metric is degenerate at the boundary. This circumstance is a source o
difficulties. It is convenient to treat the configuration space as a so-called differential spa
constant dimension3 on which geodesics are appropriately continued through the set of degen
of the metric. One should bear in mind, however, that behavior of geodesics on space
boundaries can be substantially different from that on smooth manifolds.

In the case of simple indefinite mechanical systems~SIMS! one is able to transfer Kozlov’s
results concerning behavior of geodesics in the neighborhood of]D. The Jacobi metric is now
analogous to the case of SDMS but the conformal factor is taken with an absolute valgE

J

52uE2V(q)ug. In the regionsD1 , ]D, and D2 the tangent vector is normalized~i.e., iui2

5gab
J uaub! to 11, 0, and21, respectively. Now the problem of simple relativistic systems

reduced to the problem of matched geodesics on manifolds with a singular set. First we co
geodesics of the metricsgE

152(E2V(q)) andgE
2522(E2V(q)) separately but in wholeRn.

Then we match them along]D so that the tangent vector at the boundary]D lies on a cone
defined by a kinetic energy form.

Generally, if one wishes to see trajectories of simple classical~or relativistic! mechanical
systems as geodesics in configuration space one obtains tractable although complicated g
cal structure having curvature singularities at the boundary]D.

In this paper we propose to use the so-called Eisenhart’s principle as an alternative t
reducing the dynamics to a geodesic flow. This principle maps the trajectories of Hamilt
systems into geodesics on a certain~fictitious! extended configuration space. We present
details of this construction and apply it to minisuperspace.

The extended minisuperspace can be treated as a stationary ‘‘space–time,’’ where th
tional fictitious dimension plays the role of ‘‘time.’’ This approach has several advantages:

~i! The dynamics is mapped onto a geodesic flow on a smooth manifold without the boun
hence one can use standard theory of smooth manifolds;

~ii ! The identification of trajectories of the system with geodesics on an extended configu
space is one-to-one~bijective!, this property is not shared by the Jacobi metric pictu
where not every piecewise geodesic motion on the Jacobi space corresponds to the p
motion of the system;

~iii ! Eisenhart’s proposal seems to be the right way to desingularize motion in the Jacobi
~e.g., the dynamics of homogeneous cosmological models near the initial singularity! which
is nontractable in the Jacobi picture;

~iv! the interrelation between Jacobi’s and Eisenhart’s pictures is displayed; the latter pro
a quotient structureMEis/Gu , whereGu is the translation group with respect to the fic
tious ‘‘time’’ variable u.

As indicated by the line consequently developed in a series of the papers3,19 our ultimate goal
is to provide a geometrical model of the dynamics of mechanical systems which would be
both for analytical and numerical analysis of complex motions. Special emphasis is put o
invariant indicators of sensitive dependence on initial conditions. Moreover, we find it attract
see the dynamics of mechanical systems as geodesics in space–times. One can ima
behavior of a simple mechanical system as a motion of a particle in a certain effective pot
This way of building up physical intuition permits most of the classical physics~including clas-
sical field theory!. However, one can reproduce such motions in potential wells as the free~geo-
desic! motions in some fictitious spaces or space–times. This leads us to Eisenhart’s geom
the subject of this paper—in which the motion of a fictitious particle~representing state of th
system! is governed by the Fermat principle of the shortest arrival time. The classical re
concerning the formulation of dynamics in terms of Riemannian geometry can be found in
20.

Recently this principle has been extensively used by Pettiniet al.21,22 in their efforts to de-
velop appropriate geometric tools for investigating the deterministic chaos and its conne
with the foundations of statistical mechanics. Eisenhart’s principle is very promising in the
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of being free from many of problems inherent to the standard~Maupertuis–Jacobi! approach. This
principle states that the trajectories of SMS are geodesics in a certainn11-dimensional space
where the additional dimension is a fictitious one. In other words the motion of SMS ca
represented as a free motion in a certain fictitious ‘‘space–time’’ in which the additional di
sion is treated as ‘‘time.’’

In Sec. II, we show the existence and uniqueness of geodesics of the Jacobi metric p
through the singular boundary on which the conformal factorufu vanishes, and the metricḡ is
degenerate. In Sec. III, we study trajectories of simple dynamical systems to formulate th
eralized Maupertuis–Jacobi theorem. In Secs. IV–VII the advantages and obstacles of the
lation of dynamics in terms of the Eisenhart geometry are presented. It is pointed out th
approach is attractive in the context of the formulation of a local instability criterion. In Sec.
we find the one-to-one correspondence between the trajectories of simple mechanical syste
trajectories of particles or photons in the stationary space–times. In Sec. IX the interconne
between integrability of the original dynamics and integrability in its different models is give
Sec. X we summarize our main results.

II. THE EXISTENCE AND UNIQUENESS OF GEODESICS OF THE JACOBI GEOMETRY
THROUGH THE CONFORMAL SINGULARITY

Let us consider a pair~M,g!, where M is a smooth manifoldM and g a smooth semi-
Riemannian metric onM. Let also ḡ5 f g be a conformal metric onM with f :M→R being a
smooth function onM. On the setJ of points inM at which the functionf vanishes the metricḡ
is degenerate; this set is called aconformally singular set.

Lemma 1: Ifdim M.1, and zero is a regular value of f (i.e., for every pPM such that
f (p)50, one has(d f )pÞ0), the conformally singular setJ5 f 21(0) is closed and is a boundary
in M.

Proof: The setJ is a ((dimM )21)-dimensional submanifold ofM. h

Let us consider a manifoldM carrying the metricḡ5 f g, wheref 52(E2V). We assume tha
dp( f )Þ0, i.e., that the particle does not enter tangentially into the conformally singular sJ.
~There are systems in which such a particle tangentially enters the setJ, for instance dynamica
systems of the mixmaster type in relativistic cosmology.19 This phenomenon is connected with th
appearance of chaos, e.g., in the series of the Kasner epochs.! For simplicity, let us assume tha
(d f )(v).0 ~this is not a general restriction since we can always change the direction of m
multiplying by 21!.

Let us notice that Lemma 1~and in particular the assumption that zero is a regular value of !
is not required in proofs in Sec. III.

Definition 1: A C0-curve g:(2e,e)→M is a pregeodesic through pPJ if g(0)5p, and
gu~2e,0! and gu~0,1e! are pregeodesics in M\J. If g is a geodesic in M\J we call it geodesic
through pPJ.

Recall that a pregeodesic inM is a smooth curveg:I→M, I ,R which can be reparam
etrized to a geodesic.

Now we shall prove the following theorem.
Theorem 1: For any aPR\$0%, vPTpM , such that g(v,v)50, and v(E2V).0, there

exists the unique geodesic of the connection¹ ḡ ,

g:~2e,e!→M

satisfying the following conditions:

~a! u f u+g(s)g8(s)→v, for s→0;
~b! u f ug(g8,g8)[a, for sÞ0 or gE(g8,g8)[a, for sÞ0;
~c! u f u+g.0, for sÞ0,

where¹ ḡ denotes a Levi–Civita connection with respect to metricḡ; andv( f )5v•gradf repre-
sents a directional derivative along vectorv ~f is a smooth function!.
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In the proof of this theorem we shall use Larsen’s theorem 4.1~Ref. 23! which describes the
behavior of geodesics in the neighborhood of conformally singular set. However, the p
situation is essentially different from that investigated by Larsen. First, we are considerin
behavior of geodesics with respect to the Jacobi metric in their passing through the singu
Geodesics in our sense are more general than those of Larsen, namely, as geodesics w
continuous curves which, beyond the singular set, are geodesics in the usual sense. Sec
show that a geodesic~with respect to the Jacobi metric! can pass through the singular set with
a priori chosen velocityv ~not necessarilyv50, as in the Larsen case!. Let us notice that forg
positive definite, ifa50, the existence ofg is violated, but this case is excluded by the conditi
of v50, the uniqueness ofg is violated~the freedom remains to make an affine reparametr
tion!, but this is excluded by the conditionv(E2V).0.

Proof: We shall construct a geodesic passing through the singular set by joining togethe
geodesics in the usual sense. LetaPR, vPTpM , pPJ, g(v,v)50. Let us also assume tha
v( f )5v(2(E2V)).0. Of course, (2v)(2 f ).0. From Larsen’s theorem it follows that ther
exists the unique geodesics~with respect to the metricḡ! g̃1 :@0,e#→M such that

~1a! ~2 f !+g̃1~s!g̃18~s!→2v, for s→0;

~2a! 2ḡ~ g̃18 ,g̃18![a,

~3a! 2 f +g̃1.0.

Let g1 :(e,0#→M be given byg1(s)5g̃1(2s). It can be easily seen that formulas~1a! and
~3a! lead to (2 f )+g1(s)g18(s)→1v, for s→0 and2 f +g1.0, respectively.

Once more, by using Larsen’s theorem, we easily see that there exists the curveg2 :@0,e#
→M such that

~1b! f +g2~s!g28~s!→v, for s→0;

~2b! ḡ~g28 ,g28![a,

~3b! f +g2.0.

Now, we define the curveg:(2e,e)→M , wherep5g(0)PJ(M ), by

g~s!5 Hg1~s! for sP~2e,0!

g2~s! for sP@0,e!
.

Let us notice thatg is a geodesic satisfying conditions~a!–~c! of the theorem. The uniquenes
of g is the consequence of Larsen’s theorem, and it should be understood in the following
if s:(2 ē,ē)→M is another geodesic satisfying the above conditions thens5g on (2 ē,ē)
ù(2e,e). h

We can also see that from~2a! and~2b! it follows that the velocity vectorg8(s) changes the
sector of the cone, when passing through the singular set~at s50!, i.e., if before reaching the
singular set,g8(s) is timelike with respect to the metricḡ, then after passing through the singul
set it becomes timelike with respect to the metric2ḡ, i.e., spacelike with respect to the metricḡ.

Let the symbol Im~ ! denote an image of the set with respect to some mapping, then geod
g1 and g2 , out of which g is composed, are such that Img1 is a subset of the subspaceM 2

ª$xPM : f (x)<0%, and Img2 is a subset of the subspaceM 1ª$xPM : f (x)>0%.
Let us consider the classical case wheng is a Riemann metric and one hasE2V>0. In this

case,g(v,v)50 implies thatv50, and consequently theorem 1 describes the behavior of the
velocity geodesics in a neighborhood of the singular set. The conditionE2V>0 means that the
geodesic formed from joining together the geodesicsg1 andg2 is such that both Img1 and Img2

are subsets ofM 1 . From the uniqueness of this geodesic it follows that Img15Im g2, and
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g1(s)5g2(2s), for sP(2e,0). Therefore, the mechanical system approaches the singular sJ,
attaining at it the zero velocity, and then goes back along the same trajectory. Such a behav
been demonstrated by Kozlov, for libration motions, with the help of topological methods11,24

Examples of classical simple mechanical systems can be found in Refs. 3, 11.

III. TRAJECTORIES IN THE GENERALIZED MAUPERTUIS–JACOBI METRIC

Let g:I→M , whereI 5(a,b), be a trajectory of a simple mechanical system, i.e.,g satisfies
the Euler–Lagrange equation

¹g8~ t !g8~ t !52~gradV!g~ t !, 8[
d

dt
, ~4!

with tPI . Equation~4! is defined on the configuration spaceM ~which is a smooth manifold!
carrying the metricg5(1/2)K(v,v), vPTxM , xPM ~which in general is semi-Riemannian!.
There exists a differentially continuous~this means continuous onM and smooth onM \J!
reparametrization ofg(t), g1(s)5g+t(s), such thatg1(s) is a geodesic with respect to the Jaco
metric gE

J 52uE2Vu ~see Ref. 3!.
Let us consider the global reparametrization given by

ds

dt
52uE2V~g~ t !!u, ~5!

i.e.,

s52E
0

t

uE2V~g~ t !!udt. ~6!

Let us further consider the setI 0,I of singular parameter values of the curveg:I→M ,

I 05$tPI :g~ t !ùJÞB%5$tPI :E2V~g~ t !!50%.

A priori we can distinguish the following cases:

~i! I 0 is a set of isolated points;
~ii ! I 0 contains intervals and eventually isolated points;
~iii ! I 05I .

In each of these cases, we must reparametrize the curveg(t) so as to obtain a geodesic wit
respect to the Jacobi metric.

~i! In this case, one can see from Eq.~5! that (ds/dt)u I \I 0
>0 and (ds/dt)u I 0

50, and we can
define the functiont5t(s) which is the inverse function ofs5s(t). It can be seen thatg1(s)
5(g+t)(s) is a geodesic with respect to the metricḡ.

~ii ! Let, for simplicity, I 0 consist of one interval~a,b!. In this case, the functions5s(t) is
constant on the intervalI 0 and strictly increasing elsewhere. We define the function

s* ~ t !5 H s~ t ! for t<a
s~ t1b2a! for t.a. ~7!

This function is strictly monotonic, thereforeg* (s* )5g(t(s* )), wheret(s* ) is the inverse
function of s* (t), is a geodesic with respect to the metricḡ. If I 0 consists of more than on
interval we proceed analogously.@Of course, the functions* (t) can be interpreted as a function o
a parameter on the quotient space if the appropriate equivalence relation identifies points
interval ~a,b!.# With isolated points ofI 0 we proceed as in~i!.
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~iii ! This is a ‘‘singular case’’ in which Img is contained in the setJ ands[0 ~and evidently,
as the assumption of Lemma 2.1 that zero is the regular value off is not satisfied!. Let us notice
that if V[E on an open subsetU,M then ḡ50 on U and all curves onU can be formally
regarded as geodesics with respect to the Jacobi metricḡ. @Of course, in this case the Maupertu
principle is devoid of any practical meaning since the solutions of the Euler–Lagrange eq
are, from the beginning,~nontrivial! geodesics with respect to the original metricg.#

There are reasons to believe that the conditionI 0,I means the existence of a period in whic
trajectories of the system behave in a chaotic unpredictable manner. For instance, the evolu
the Bianchi IX world model, according to the first and second Belinsky–Khalatnikov–Lifs
approximations, consists in periods of evolving along the boundaryV5E and oscillating around
it.25 The reparametrization given by~7! is of purely formal character; it reduces the functions(t)
to the strictly monotonic functions* (t). In this way we remove from our analysis a certa
maybe interesting, part of the evolution. However, it is justified because this part is beyon
control of the Jacobi metric. Moreover, this strategy could be regarded as an approximatio
complex~chaotic! behavior by the regular behavior.

We can see that in all cases the trajectory of the original simple mechanical system c
reparametrized to a geodesic with respect to the Jacobi metric. Therefore, we can formul
main result.

Theorem 2 „Generalized Maupertuis–Jacobi Theorem…: Every trajectory of any simple
mechanical system(M ,g,V), where dim M.1, is a pregeodesic with respect to the Jacobi met
gE52uE2Vug of type (i) or (ii). Every pregeodesic with respect to the Jacobi metric pas
through a point of the boundary setJ is a trajectory of the system(M ,g,V).
Let us notice that the reparametrization of trajectories of a simple mechanical system le
geodesics with respect to the Jacobi metrics described in the preceding section.

In our model of dynamics the time parameters is distinguished. It seems to be against t
spirit of relativity; however, in agreement with Synge’s intuition,26 the natural parameters, for
classical mechanical systems, has to be regarded as the proper time of the system, analog
the proper time of the relativity theory~which in this theory is naturally distinguished!.

The aim of our construction of geometry of cosmological dynamics is to show the effec
ness of representing trajectories in terms of geodesics for description of complexity in its dy
cal behavior. It is very important because the standard dynamical criteria, like the Lyap
exponents or the Kolmogorov–Sinai entropy, depend on time parametrization. From the
hand one would like to regard the phenomenon of chaos as an intrinsic property of the syst~or
as an intrinsic property of the orbit which could be recognized by investigating a fragment o
orbit!. Such chaos would be by definition invariant with respect to the change of variables~time
and phase variables!. It was demonstrated by Cornish and Levin27 that fractal basin boundarie
provide an important means of characterizing chaotic systems in an observer independent m
In our case laws of dynamics are geodesics principles in the configuration space and ther
need for time~for deeper discussion of the role of time in the Jacobi geometry, see Ref. 17!.

IV. EISENHART’S GEOMETRY AS A MODEL OF DYNAMICS

The Eisenhart principle states that there is a one-to-one correspondence between traj
qi(t) of the system~1! and geodesics of the metric,

ds25gi j dqidqj1
1

2~V~q!1b!)
du2, ~8!

whereb is constant. The demand that trajectories are mapped bijectively into geodesics
metric ~8! and conservation of energy produce together the following three relations:

~i! The relation between coordinate timet and the metric intervals
t5as, a5const; ~9!
                                                                                                                



nfigu-
al

-
efinite
like or

ial is

curs

are

nd

enhart’s
r
ne

ppro-
rests

3527J. Math. Phys., Vol. 40, No. 7, July 1999 Desingularization of Jacobi metrics and chaos . . .

                    
~ii ! The relation between the fictitious ‘‘time’’u and time coordinatet,
du

dt
52~V~q!1b!; ~10!

~iii ! Interrelation between the constantsa and b @obtained by combining~i!, ~ii !, and the
Hamiltonian constraintH5E2conservation of energy#,

1

a2 5gi j q̇
i q̇ j12~V~q!1b!52~E1b!. ~11!

Sometimes one may wish to map the trajectories into null geodesics in an extended co
ration space. This is, of course possible but then relation~i! loses its sense since the metric interv
is null, ~ii ! and~iii ! hold as above but formallya5` and henceb52E. In the case of non-null
geodesics the relation~ii ! rewritten as

u522E Tdt12~E1b!t ~12!

reveals the connection with the Hamilton–Jacobi principle~for details see Ref. 28!.
Let us note thatds2>0, i.e., Eisenhart’s metric~8! is definite for classical as well as relativ

istic systems in contrast with the Maupertuis–Jacobi principle where the Jacobi metric is ind
for relativistic systems. It means that the geodesics of Eisenhart’s metric are either space
null.

The determinant of Eisenhart’s metric is equal togEis5(2(V(q)1b))21g, hence ifgi j is
Euclidean,gi j

Eis will change its signature to Lorentzian wheneverV(q)1b,0. Eisenhart’s metric
is singular atV(q)52b. If we reduce the dynamics to null geodesics thenb52E and in this
case singularity of Eisenhart’s metric coincides with that of the Jacobi metric. If the potent
bounded as in the case of a harmonic oscillator, then we can chooseb so thatV(q)1bÞ0 and
singularity is avoided. If the potential is not bounded then metric singularity inevitably oc
along certain codimension two hypersurfaces. In Eisenhart’s geometry withgi j 5d i j ~an appropri-
ate extension to a general case is straightforward! nonzero components of the Riemann tensor

R0i0 j5@8~b1V~q!!#23F23S ]V

]xi D 2

12~V~q!1b!
]2V

]xi]xj G ~13!

and the Ricci scalar reads

R5
~b1V~q!!22

m F2
3

2
~¹V!21~V~q!1b!DVG , ~14!

where ¹ and D are operators of gradient and Laplacian inRn, respectively. The last formula
remains valid for the general form of the metricgi j with appropriate understanding of gradient a
Laplacian. Thus it can be seen that the singular setDsing5$V(q)52b% introduces a host of
curvature singularities. It means that if we wish to have a simple geometric interpretation~geo-
desics! of physical systems~with often a complex dynamical behavior! the price we have to pay
is the appearance of singular structures as was the case in Jacobi geometry. However, Eis
approach has an advantage that the metricgEis is not singular on crossingDsing in the same manne
like the Jacobi metricgJ was along]D when the conformal factor was zero. Now, only o
component (g00

Eis) changes its sign acrossDsing thus changing the signature ofgEis. Such a behavior
is more familiar and can become tractable, as it will be commented later on. Moreover by a
priate choice of the constantb one can move the singular set outside the domain of one’s inte
~in the Jacobi geometry]D was fixed by fixedE! and in the case whenV(q) is bounded the
problem can be even desingularized.
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Let us note that formulas~13! and~14! are explicitly independent of dimension of the spa
One can also see that in the vicinity of critical points of the potential the sign of the Ricci s
is determined by the LaplacianDV(q), i.e., it is negative in the neighborhood of the maximu
and positive near the minimum. These properties are the same as for the Ricci scalar in the
geometry. In the particular case when the potential is a harmonic function the Ricci scalar t
simple form

R52 3
2~¹ ln V~q!!2, ~15!

i.e., it is negative everywhere independently of the number of dimensions.

V. MINISUPERSPACE AS A SPACE OF GEODESICS IN EISENHART’S GEOMETRY

The notion of minisuperspaceMS has been introduced about 20 years ago with the aim
providing an adequate state space for the construction of a wave function for gravity und
restriction to homogeneous degrees of freedom.12 In particular homogeneous anisotropic cosm
logical models can be viewed as geodesics on this minisuperspace. The minisuperspace i
natural setting for studying chaos because the evolution equations provided by the Einste
equations reduce here to the ordinary differential equations. In the case of a full superspa
could expect complex spatiotemporal behavior leading to the so-called metric turbulence.

The division between space and time in general relativity comes through foliating the sp
time manifoldM4 into spacelike hypersurfacesS t . The metricgmn on M4 induces a metricg i j on
S t ~the first fundamental form ofS t! and can be parametrized in the form

gmn5S NiN
i2N2 Nj

Ni g i j
D ,

whereN and Ni are called a lapse function and a shift vector, respectively. In the 311 ADM
formalism, dynamical evolution of geometries~three-metricsgA5g i j ! on spacelike hypersurface
of constant timeS is governed by the Hamilton equations derived from the Hamiltonian12

H5 1
2Gi jkl p

i j pkl1VG , ~16!

where GAB5Gi jkl 5
1
2(g ikg j l 1g i l g jk2g i j gkl) is the ultralocal metric onMS, the potential is

equalVG5 1
2g

(3)R, where(3)R is the Ricci scalar onS. The momentap i j are defined as equal t
the second fundamental form onS t : p i j 5(1/2N)(Ni u j1Nj u i2(]g i j /]t)) and ‘‘u’’ denotes cova-
riant differentiation with respect tog i j .

Our idea is to transfer the classical construction of Eisenhart’s geometry to the minis
space. Eisenhart’s metric can be viewed as ‘‘static’’ with respect to an additional dimensu
treated as a new ‘‘time’’ dimension (G00

Eis component refers to this dimension!. This extended
minisuperspaceMSEis admits a Killing vectorju

a5d0
a which is associated with cyclic nature o

variableu. In other wordsMSEis is invariant with respect to translation groupGu :u→u1Du. We
can use this fact to build a quotient structureMSEis/Gu with the property that homogeneou
cosmological solutions are geodesics on this space. One can show that the metric on this q
space is

dŝ25
11a22G00

Eis

2G00
Eis dl2, ~17!

where dl25GABdgAdgB. If we reduce the problem to null geodesics, i.e., formallya5` the
metric ~17! takes the form of so called optical metric.~A similar construction but for a differen
purpose has been used by Abramowiczet al.29! It means that the reduction ofMSEis to lower
dimensional space occurs according to Fermat’s principle; null geodesics in a space (MSEis,GEis)
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with topologyMSEis5R3MS will be projected toMS. The metric onMS is (GAB /2G00) and
hence the affine parameterl along the geodesics is exactly the same as coordinateu.

The quotient structure can be identified with the Jacobi geometry with the metricGAB
J

52VGGAB . Closer look at Misner’s discussion of minisuperspace12 reveals that it is exactly the
Jacobi geometry withE50. However the occurrence of metric singularities on the set]D5$VG

50% is the major obstruction against this idea.
Let us consider a class of homogeneous cosmological models which admit the Hamil

formulation ~i.e., Bianchi class A types, see also Ref. 30 for Hamiltonian formulation of cla
models!. In Bogoyavlenskii coordinates31 we have

H5T~pi ,qj !1 1
4VG~qi !,

T~pi ,qj !52(
i , j

3

pipjqiqj2(
i 51

3

pi
2qi

2,

VG~qi !52(
i , j

3

ninjqiqj2(
i 51

3

ni
2qi

2, ~18!

whereniP$21,0,11% are constants which distinguish between various Bianchi types. An im
tant group of models in class A systems is represented by so called Mixmaster m
@B(IX) —n15n25n351 and B(VIII) —n15n252n351#. As it has been noticed by Misne
trajectories of these models near the initial singularity concentrate aroundVG'0. In the Jacobi
picture ~which is a standard view on the minisuperspace! the trajectories are thus concentrat
around singularities of the Jacobi metric. If we represent the dynamics in Eisenhart’s pictu
problem disappears. As discussed in Sec. IV Eisenhart’s metric changes its signature upon
ing the singular setDsing5$VG(q)52b%. Let us rewrite Eisenhart’s metric as

dsEis
2 52~Vg~q!1b!du21GABdgAdgB. ~19!

In this notationVG(q)1b plays the role of a lapse function which is positive for someu.u0 ,
zero for u5u0 , and negative foru,u0 . Hence Eisenhart’s space is a space with a varia
signature. Such spaces have been contemplated by Elliset al.32

VI. LOCAL INSTABILITY OF BIANCHI IX MODELS

Appropriate tools for describing the local instability constitute a necessary prerequisi
discussing the sensitive dependence on initial conditions~SIDC!. It is well known that Poincare´
and Lyapunov have introduced two different notions of stability.~The discussion of various
notions of stability can be found in Szebehely.33! Lyapunov was interested in the behavior of t
separation vector connecting the points on neighboring trajectories labeled with the same v
time ~or arc-length parameter!. Poincare´, on the other hand, introduced what is now called orb
stability as measured by the normal component of the separation vector. In our approach
using the notion of stability in the sense of Poincare´ rather than the Lyapunov conception.

The great advantage of the geometrical model lies in a possibility of formulating the cr
of local instability in terms of geometrical invariants. The simplest~but qualitative! invariant
measure of separation of initially close geodesics averaged over all two-directions cont
tangent and normal vectors is the Ricci scalarR. Since Eisenhart’s metric is non-negative
defined, the~sufficient! criterion of local instability is very simple,R,0. Local instability implies
the property of sensitive dependence on initial conditions.

Let us apply this criterion~in Eisenhart’s picture! for dynamics of the Bianchi IX model nea
the initial singularity. Eisenhart’s metric~8! has the following form:
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ds25GABdgAdgB1
du2

2V~x,y,z!1a22 , ~20!

where V(x,y,z)5 1
4(2xy12xz12yz2x22y22z2) is the potential in Bogoyavlenski

coordinates,31 gA5diag(x,y,z) and the minisuperspace metricGAB is read off from the kinetic
energy form

T5
1

4 S ẋ

x

ẏ

y
1

ẋ

x

ż

z
1

ẏ

y

ż

zD ,

i.e.,

GAB5
1

2xyzF 0 z y

z 0 x

y x 0
G ~21!

and if V50, metric~20! is a Minkowski metric which is geodesically complete. Note that thb
constant is determined by the Hamiltonian constraint to beb51/2a2.

The Ricci scalar in Eisenhart’s metric takes the form

R52
4a2

~112a2V~x,y,z!!2 $2~113a2!V~x,y,z!13a2@x2V,x
2 1y2V,y

2 1z2V,z
2 #

12V~x,y,z!~11a2V~x,y,z!!16a2~xyV,xV,y1xzV,xV,z1yzV,yV,z!%.

It can be seen from the above formula that in the vicinity ofV(x,y,z)'0 states which correspon
to a dynamical regime approximated by a series of the Kasner epochs, the Ricci scalar is n
and singularity-free. This allows us to hope that invariant description of the sensitive depen
on initial conditions in terms of curvature invariants of Eisenhart’s metric is a right wa
desingularize the standard Jacobi approach to minisuperspace.

VII. DESINGULARIZATION OF THE JACOBI METRIC THROUGH AN ADDITIONAL
DIMENSION

As it was mentioned before the Jacobi metric is degenerate on the boundaryE2V(q)50 of
space admissible for motion which in turn leads to a metric singularity. The occurrence o
metric singularity is the major obstruction against the idea of using the sectional curvatu
detecting local instability. Having the Jacobi metricgE

J 52uE2V(q)ug, one may perform an
isometric embedding of the space with the Jacobi metric into the flat Euclidean space wi
metric

ds25gi j dzidzj1~zn11!22~zn12!2, ~22!

where

zi5qiA2uE2V~q!u,

zn115 1
2~r 221!A2uE2V~q!u,

zn125 1
2~r 211!A2uE2V~q!u,

r 25gi j q
iqj .

The Jacobi geometry is now realized on the null cone
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gi j z
izj1~zn11!22~zn12!250.

The vertex of the cone is the relic from the singular boundary set]D in the Jacobi metric.
On the other hand there is a consistent description of calculations of the geometrical qua

and invariant functionals of the metric on the conical defects. To elucidate this problem,
recall that a cone is everywhere flat space except the tip where its curvatureR is singular.
Obviously, calculations by means of standard formulas of the Riemannian geometry cannot
this d-like singularity, and the other methods must be used to obtain a correct result~for details see
Ref. 34!. Therefore initially dangerous singularities of the Jacobi metric takes the weak form
which there is some procedure of regularization in calculation of invariants of curvature.

Let us consider the spaceM with Eisenhart’s metricgEis for a simple indefinite mechanica
system and because metricgEis is stationary with respect to a given timelike Killing vectorY, and
M admits a global space–time splittingU3R adapted toY. Roughly speaking, this means thatM
admits a global coordinate system (q1 ,...,qn ,u) with (q1 ,...,qn)PU open subset ofRn, tPR
andY5]/]u. The Killing property ofY is given by the fact that the coefficients of the metricM
do not depend on the ‘‘time’’ variableu. The existence of the Killing vector in turn can be us
to build a quotient spaceMEis/Gu , whereGu is a group of symmetry generated by the Killin
vector. The metric onMEis/Gu can be established on the base of the following theorem:

Theorem 3„A timelike extension of Fermat’s principle in GR…: Let (M, g) be a stationary
space–time with a Lorentzian signature(2,1,...,1) then the problem of geodesics o
(n11)-dimensional space–time

dS E dsn11
2 D50

can be reduced to the geodesics problem on n-dimensional fictitious conformally rescale
mannian space with the metric

d l̄ 25
11hg00

2g00
dl2, dS E d l̄ n

2D50,

where dl25gi j dqidqj , g5g00du21dl2—metric of space–time, h5const;h is positive for time-
like geodesics, negative for spacelike geodesics, and h50 for null geodesics.

If we put h5a22 we obtainn-dimensional metric onMEis/Gu . It is natural to identify this
metric d l̄ 2 as the Jacobi metric for a simple mechanical system 2(E2V)gi j . After this compari-
son we can obtain a theorem which establishes one-to-one correspondence between trajec
simple definite systems and trajectories of fictitious particles in space–time with the Eise
geometry.

VIII. TRAJECTORIES OF SIMPLE MECHANICAL SYSTEMS FROM THE MOTION OF A
FICTITIOUS PARTICLE IN A STATIONARY BACKGROUND

The results of the previous section show that the study of a simple mechanical system
translated into the study of the test particle and photon motion in space–times of general rel
There are several advantages of doing so. The majority of problems can be reduced to prob
geodesic motions, for which the notion of differential geometry on manifolds often gives
transparent and deeper insight into the underlying symmetry. Moreover, a geodesic motion
also formulated as a Hamiltonian system, and all the techniques of searching for integrals
oped for Hamiltonian dynamics can be used to obtain integrals which do not admit an ob
geometrical interpretation.

On the metric manifold, metric~8! ~not necessarily Riemannian! is written in the condensed
form, and then the geodesic motion is determined by the Hamiltonian
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H5
1

2m
g~P,P!5

1

2m
gmnPmPn ~23!

which is equivalent to the geometrical equations of motion in terms of covariant derivative
Let us consider a particle trajectory with the momentum componentsPm in the space–time

manifold with coordinatesxn (m,n50,...,3 andx05u, xi5qi!. The corresponding mass parame
m is given by the condition

m252gmnPmPn, ~24!

wherem represents the rest mass.
From hereafter we assume that space–timeM with Eisenhart metric has the Lorentzia

signature~2111! ~the minus sign refers to the ‘‘time’’u direction!. The results for the Euclid-
ean signature can be reinterpreted in a simple way. Any trajectoryxm(l) may be conveniently
regarded as an integral curve of the following equations:

m
dxm

dl
5Pm5gmnPn , ~25!

wherel is an affine parameter along geodesics, andPm is determined from Eq.~24! as a function
of xn.

Without any loss of generality we can consider only the case of a stationary~static! metric~8!.
This metric is characterized by the existence of a timelike Killing vectorKm. Thus, it is possible
to choose a frame of reference with a fictitious time coordinate

x05u, ~26!

with respect to which we haveKm5d0
m . This means that the corresponding partial derivative

the metric is zero, i.e.,]gmn /]x050. Thus, the vector fieldPm is stationary, i.e.,]Pm/]x050.
This allows us to include directly a projected trajectory given by

m
dxi

dl
5Pi , ~27!

into the n-dimensional quotient manifoldM/G, whereG is a group of ‘‘time’’ transformations
u→u1Du. The coordinate Killing vector (]/]u)—the generator of the infinitesimal group o
isometry—is associated with the action of this group.

This quotient manifold has an induced positively-defined metric with componentsg i j which
can be read out from the full (n11)-dimensional metric by decomposing it to the form

ds25g00du212g0idudxi1g i j dxidxj5g00du21g i j dxidxj5g00du21dl2.

This is equivalent to setting

g005A, g0i50, gi j 5g i j .

Now, let us introduce a new conformally modified positive definite metric

d l̂25ĝi j dxidxj , ~28!

on the quotientM/G space by setting

d l̂25
11hg00

2g00
dl2, ~29!
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whereh5const. For a null geodesich50, whereas for timelike geodesicsh.0, andh,0 for a
spacelike one.

Our aim is to find one-to-one correspondence between the motion of particles or phot
space–time background and trajectories of a simple mechanical system. Thus, it is nat
compare the above metric with the Jacobi metric; then we obtain

11hg00

2g00
52~E2V!. ~30!

Metric ~29! is a positive definite metric on the quotient spaceM/G of the dimensionn. The
constanth in ~29! is related to the proper energy defined as the total energy of the particle p
massĒ5E/m. Notice thatu is a cyclic coordinate for the system with LagrangianL5(m/2)
3(ds/dl)2.

Thus, the corresponding momentum has to be conserved

P05
]L

]S du

dl D 5mg00

du

dl
52mĒ52m

1

Ah
. ~31!

This implies the relation betweenh and Ē,

E5mĒ5m
1

Ah
→h5Ē22. ~32!

From ~29!, ~30!, and~32! we obtain

h52a25Ē22. ~33!

Let us notice that in the Eisenhart geometry we study the spacelike geodesics and thush,0 or Ē
is pure imaginary.

If a→`, i.e., for the case of null geodesics we haveb52E andh50. Relations~32! and~33!
establish the one-to-one correspondence between the Jacobi geometry of simple classical
cal systems and the geometry of fictitious particles moving in the space–time with the Eis
metric.

In the special caseh50, the metric~29! coincides with the so-called Fermat or optical metr
Abramowicz et al.29 studied the role of this optical reference geometry for describing a
particle trajectory in the conformally projected three-space with metric~29! for h50. With such a
projection in the static space–time null lines of the four-dimensional manifold correspond t
three-dimensional space geodesics. One can easily see this fact considering Fermat’s prin
its relativistic formulation.35 This principle states that ifM5R3( is a static space–time with th
metric g5g00dt21gi j dxidxj , whereS is a 3-manifold of constant time with Riemannian met
(3)g, andg00,0 is a smooth function. Neither functiong00 nor metric(3)g depend ont. Thus, the
null geodesics of (M,g), when projected onto(, are precisely the Riemannian geodesics of
3-geometry

S ( ,
~3!g

2g00
D , ~34!

and, furthermore, the affine parameterl ~i.e., the arc length! along the projected geodesics ing
metric is precisely the static time coordinatet measured along the null geodesics in (M,g). The
above principle has a simple generalization to the case of non-null geodesics.36

On the other hand, we can regard the variational principle in the reduced space
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dE d l̂250⇔dE n2~x1,...,xn!dl250, ~35!

as the variational principle in geometrical optics considering the problem of a light beam
inhomogeneous medium characterized by the refraction factorn(xj ) in space with metricdl2.
Therefore, instead of studying the problem of geodesics~null, spacelike or timelike! in the Eisen-
hart metric, one can equivalently investigate the problem of geodesics in a Riemannian or p
Riemannian manifold with metric~29!. The possibility of such a reduction appears as a con
quence of ‘‘the static form’’ of the space–time metric. From the mathematical point of view
reduced space corresponds to the conformally adjusted quotient space metric.

IX. INTEGRABILITY OF DYNAMICS IN DIFFERENT GEOMETRIES

There are several definitions of integrability. Generally, integrability means that the sy
under consideration possesses a sufficiently large number of first integrals. To be more pre
Hamiltonian system withn degrees of freedom is integrable if it possessesn functionally inde-
pendent first integrals which are in involution or which form a solvable Lie algebra. It is nece
to specify a class of functions which contains these first integrals as well as to define a dom
their definition.

The Maupertuis or Eisenhart geometry are only some geometrical models of given dyna
behavior. Of course, a given dynamics can admit many models, and different time paramet
be distinguished by different models. The only fact that matters is the existence of an isomor
between the original dynamics and its model. Unfortunately, discovering a certain property
of the models~e.g., existence of a first integral! we also find that this property cannot necessa
belong to any model. However if we want to prove nonintegrability in the original dynamics
enough to find a single model of this dynamics in which the system is nonintegrable.

In this section interconnections between the property of existence of the first integ
different Eisenhart and Jacobi geometries are considered. To illustrate this let us consider a
case of a simple mechanical system given by the Hamiltonian

H5 1
2g

abpapb1V, ~36!

wheregab is a constant metric. Let,

HJ5
1

4~E2V!
gabpapb5EJ5

1

2
~37!

be the Hamiltonian for the Jacobi flow onME . Then one can formulate the following theorem
Theorem 4: If F (qa,pa) is a first integral of (36) then F is the first integral of (37) for HJ

51/2.
Proof: Let F(qa,pa) be a first integral of~36!. Then,

gabpb

]F

]qa2
]V

]qa

]F

]pa
50.

Thus,

1

2~E2V!
gabpb

]F

]qa2
1

2~E2V!

]V

]qa

]F

]pa
50,

and we can write for points onME ,

]HJ

]pa

]F

]qa2
]HJ

]qa

]F

]pa
50
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for HJ51/2.
From the other hand one can also prove the following:
Theorem 5: If F (qa,pa) is a first integral of (37) then F(qa,pa) is a first integral of (36) on

setME5$(q,p):E2V.0%.
Proof: BecauseF is a first integral of~37!, then

1

4~E2V!
gabpb

]F

]qa2
1

E2V
HJ

]V

]qa

]F

]pa
50.

Taking points (q,p)P$HJ51/2% we obtain that

gabpb

]F

]qa2
]V

]qa

]F

]pa
50,

i.e., thatF is a first integral of~36! onME .
Finally one can formulate the following conclusions concerning the property of existence

first integral in the original SMS and its geometrical model based on the Jacobi geometry.

~1! The existence of a first integral of SMS gives us the first integral in the Jacobi geometr
they are only partial first integrals on the energy levelHJ51/2.

~2! The first integrals ofHJ determines the first integrals ofH ~i.e., SMS! but they are only partial
first integrals on setHJ51/2.

~3! If we find a first integralF for HamiltonianHJ ~i.e., in the Jacobi geometry! and for any value
of total energyE, i.e.,;EPR the commutator$HJ,F%50 thenF is also the first integral ofH.

The analogous relations can be established in Eisenhart’s geometry model of dynamics.
consider the Hamiltonian for the Eisenhart metric in the unified form

HE5
1

2
gabpapb , a,b51,...,n11, ~38!

where metricgab has the block diagonal form

One can consider, without loss of the generality, a special form of this metric, namegi j

5d i j . Then equations of motion take the form

dqi

ds
5pi ,

dpi

ds
52

]V

]qi pu
2,

du

ds
52~V1b!pu ,

dpu

ds
50, ~39!

and

ds25gi j dqidqj1
1

2~V1b!
du2.
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It is easy to notice that our system has the first integralpu5guudqu/ds5du/ds/@2(V1b)#
5const, which gives us the relation between the natural Eisenhart parameter and addition
ableu:(du/ds)'2(V1b).

If the original SMS has a first integral, sayF(qi ,q̇i), then

q̇i
]F

]qi 2
]V

]qi

]F

]q̇i 50, ~40!

where the dot denotes differentiation with respect to mechanical timet.
From ~39! we obtain thatq̇i5pi /a and q̇i5A2(E1b)(dqi /ds) which from ~40! implies

1

a2 pi

]F

]qi 2
]V

]qi

]F

]pi
50.

Therefore if we choosea51 then the first integral of SMSF(qi ,q̇i) gives us the first integra
for geodesic motion in the Eisenhart geometryF̃(qi ,pi).

The advantage of Eisenhart’s picture of dynamics is that the first integral of geodesic m
determines~in contrast to the Jacobi geometry! all first integrals of the original system. Therefo
from searching the first integral for the geodesic flow we simply obtain first integrals o
original system. This fact is a consequence of the following theorem:

Theorem 6: If F (qi ,q̇i) is a first integral of equations of motion for SMS, then F(qi ,ṗi) is a
first integral of the Hamiltonian equation with the Eisenhart Hamiltonian HE5 1

2@(pi
212(V

1b)pu
2# which corresponds to pu5a2.

Moreover, ifG(qi ,pi) is a first integral of equations of motion for HamiltonianHE which is
independent onu andpu , thenG(qi ,q̇i) is the first integral of the original equations of motion f
SMS.

Proof: The fact thatG(qi ,pi) is the first integral for HamiltonianHE implies the relation

pi

]G

]qi 2
]V

]qi pu
2 ]G

]pi
50.

After substitution of~39! into above formula we obtain

aq̇i
]G

]qi 2
]V

]qi

pu
2

a

]G

]q̇i 50.

Now if we put pu
2/a251 we obtain the condition for existence of the first integral of SMS.

It seems that our results concerning integrability in the original dynamics and in its m
can be generalized to the case of anygi j .

X. CONCLUSIONS

There are reasons to believe that Szydłowskiet al.’s paper3 together with the present wor
provide a strong mathematical basis for the Maupertuis principle as applied to simple mech
systems. Until now this principle could be only used for (E2V).0 which strongly limited its
physical relevance. Now, this limitation has been removed, and in this way the Maupertuis
ciple has obtained the universal character. Theorem 2 reduces the investigation of the traje
of a simple mechanical system to the problem of geodesics with respect to the Jacobi
These geodesics are obtained by ‘‘gluing together’’ two corresponding geodesics~in the usual
sense!. Owing to this procedure singular points are treated on equal footing with other~regular!
points. The Maupertuis principle understood in this way has a global character. Moreover
was pointed out by Barbour17 the Maupertuis principle is more general than Newton’s laws si
it is, in the natural way, valid also for relativistic systems, which is not true as far as New
laws are concerned.
                                                                                                                



ation
ctions,

ew of
-
trics
rspace
amiliar
s

etry of
sis

ls can
g
viation

ms. In
on in a
echan-
riate

ntext.
idean,
insler

prob-
nciple

. The
ition of
oints
pends
s
g that
where

epends

math-
in
as the

o
and

n the
nown
can

ld.
t
m has

3537J. Math. Phys., Vol. 40, No. 7, July 1999 Desingularization of Jacobi metrics and chaos . . .

                    
It would be interesting to elucidate interconnection between the topology of the configur
space and the behavior of trajectories of relativistic mechanical systems. Such interconne
for the caseE.V were investigated by Kozlov.11

We have demonstrated the attractiveness of Eisenhart’s principle from the point of vi
constructing invariant criteria of local instability in general relativity~at least as limited to homo
geneous degrees of freedom!. The key idea is to map the evolution of homogeneous three-me
under the action of Einstein’s equations to a geodesic motion in extended minisupe
equipped with Eisenhart’s metric. The correspondence between the Eisenhart and more f
Jacobi pictures was discussed. The latter approach is known~together with associated problem!
since seminal works of Wheeler and DeWitt37 and Misner.12 The transition betweenMSEis and
MSJ is accomplished by constructing a quotient spaceMSEis/Gu , whereGu is the group of
translations inu.

We have shown that Eisenhart’s approach effectively desingularizes the Jacobi geom
the minisuperspace in the vicinity ofV'0 states. This is of a fundamental importance for analy
of Mixmaster cosmological models near the initial singularity. The dynamics of these mode
be approximated by a series of Kasner epochs, for whichV'0. This condition has been creatin
serious difficulties for the Jacobi approach—the appearance of infinities in the geodesic de
equation.

Eisenhart’s metric can prove useful also on the ground of classical mechanical syste
particular we are able to restate classical mechanical problems in terms of geodesic moti
‘‘static space–time.’’ It can produce a feedback between the results obtained in classical m
ics and theory of relativity to build up a better physical intuition of various problems. Approp
results will be presented in separate papers.

Geometrization according to the Eisenhart’s principle should be perceived in a wider co
Namely, one is able to build geometrical models of dynamics in different spaces, e.g., Eucl
Riemannian, Weyl spaces with affine connection, Einstein–Cartan spaces with torsion, F
spaces, etc.38 The effectiveness of using the Finsler spaces for geometrizing the dynamical
lems in rotating frames, where centrifugal forces do not allow us to use the Maupertuis pri
directly, was demonstrated by Pettini.21

Our considerations were strongly focused on the invariant measures of local instability
sensitive dependence on initial conditions is the one of the properties appearing in the defin
chaotic behavior.14 It has been stated by Wiggins as a demand that any two arbitrarily close p
evolved under the action of a dynamical system should eventually diverge. This property de
on the metric structure of the space~and also on its topology! in which we embed the trajectorie
of the system. The advantage of such a formulation of the SDIC is that one is not demandin
the separation be exponentially fast. In fact there are known examples of chaotic systems
the divergence of trajectories is slower than exponential. Moreover the rate of separation d
on the choice of time variable which can be arbitrary in general relativity.

If we construct a geometric model of the dynamics then we can capture this beautiful
ematical idea of the SDIC~see Ref. 14! in terms of geometric curvature invariants. The ma
problem is to make these quantities regular, i.e., to circumvent the divergencies appearing
artifacts of the construction. In this respect Eisenhart’s picture~although not the only one or by n
means the best one! is promising since it allows us to make the singular sets movable
sometimes even regularize the problem completely.

Although it was not our key point here the results of our paper could be perceived i
context of invariant characterization of chaos. Therefore some remarks are in order. It is k
that in the case of a manifold without boundary local instability criterion for a geodesic flow
be formulated in terms of sectional curvatures39 Ku;ng(u,u),0, whereKu;n is a sectional curva-
ture in two directions spanned on a tangent vectoru and a normaln to geodesic. The above
condition can be formulated in a more practical way by means of invariant polynomials~one of
which is the Ricci scalar!. This should hold for every two-direction in every point of the manifo
Wheneverg(u,u).0, i.e., positive definite metric~e.g., Eisenhart’s metric! or spacelike tangen
vector, a standard instability criterion for geodesics is recovered meaning that the syste
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SDIC property. Of course, it is not sufficient for chaos to occur. Namely, one demands th
invariant submanifolds be compact~or closed!. In our example of the harmonic oscillator there
no chaos despite the negative curvature Eisenhart’s space. The reason is that the Eisenhar
is not compact here. One should stress that although the approach sketched above has alre
discussed in the context of the Jacobi geometry by many people~including ourselves! it has not
been properly appreciated that the whole idea does not work for spaces with boundaries.
cases the boundary effects can~and often are! dominant. Moreover very little is known abou
mathematical properties of the manifolds with boundaries, so it is dangerous to transfer he
intuition acquired by studying smooth~and often compact! manifolds. The Eisenhart’s geometr
depicted in this paper has an advantage of being boundary free and one may hope that i
toward a right way to proceed in quest for geometric indicators of SDIC.
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We extend Witten’s proof on positive mass conjecture to five-dimensional Lorent-
zian manifolds with a rigorous treatment in mathematics. ©1999 American In-
stitute of Physics.@S0022-2488~99!00707-0#

I. INTRODUCTION

Let N be an (n11)-dimensional Lorentzian manifold with Lorentzian metricg̃ of signature
~21,1,...,1!, which satisfies the Einstein equations

R̃ab2
R̃

2
g̃ab5Tab , ~1.1!

whereR̃ab , R̃ are the Ricci and scalar curvatures ofg̃, respectively,Tab is a symmetric tensor
field which is interpreted physically as the energy-momentum tensor of matter. Choosi
orthonormal frame$ea% with e0 timelike. Then, physically,T00 is interpreted as the local mas
density, andT0i is interpreted as the local angular momentum.

Definition 1.1: A spacelike hypersurface M of N is called asymptotically flat of ordert if there
is a compact set K,M such that M2K is the disjoint union of a finite number of subse
M1 ,...,Mk—called the ‘‘ends’’ of M—each diffeomorphic to the complement of a contrac
compact set in Rn. Under the diffeomorphism the metric of Ml,N is of the form

gi j 5d i j 1ai j ~1.2!

in the standard coordinates$xi% on Rn, where

ai j 5O~r 2t!, ]kai j 5O~r 2t21!, ] l]kai j 5O~r 2t22!. ~1.3!

Furthermore, the second fundamental forms of M satisfy

hi j 5O~r 2t21!, ]khi j 5O~r 2t22!. ~1.4!

We will often identify the end Ml,M with the corresponding set Ml,Rn.
For spacelike asymptotically flat hypersurfaceM, we can define the total energy and the to

momentum. These quantities include contributions from both the matter and the gravitationa
itself. They are defined in each asymptotic endMl as limits over the sphereSR,l of radiusR in
Ml,Rn.

Definition 1.2: Total energy of end Ml is defined as

El5 lim
R→`

Cn
21E

SR,l

~] jgi j 2] igj j !dV i , ~1.5!

total linear momentum of end Ml is defined as

a!Electronic mail: xzhang@math08.math.ac.cn
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plk5 lim
R→`

Cn
21E

SR,l

2~hik2d ikhj j !dV i , ~1.6!

whereCn54(n21)vn21 . When the asymptotic ordert.(n22)/2, these quantities are finite
also Bartnik proved thatEl is independent on the choice of asymptotic coordinates.1

Definition 1.3: M is satisfied the dominant energy condition if for each point pPM and for
each timelike vector e0 at p, T(e0 ,e0)>0 and T(e0, ! is a nonspacelike covector, see Ref. 2. T
has the following consequences: if$eaua50,1,...,n% is an adapted orthonormal frame field at
PM with e0 normal to M and e1 ,...,en tangent to M, then

T00>uTabu, T00>~Ti
0T0i !1/2. ~1.7!

~Here, and henceforth, repeated indices are summed with Latin indices running from 1 ton and
Greek indices running from 0 ton.!

Now we give the statement ofn-dimensional~generalized! positive mass conjecture.
Positive Mass Conjecture I: Let N be an(n11)-dimensional Lorentzian manifold with

Lorentzian metric g˜ of signature~21,1,...,1!, M,N be an n-dimensional spacelike asymptotica
flat hypersurface of ordert.(n22)/2. If the dominant energy condition holds on M, then,
each end Ml ,

El>uPl u[S (
k51

n

plk
2 D 1/2

.

If El 0
50 for some l0 , then M has only one end and N is flat along M.

When the spacelike hypersurface is maximal, i.e.,H50, the ~generalized! positive mass
conjecture states that

Positive Mass Conjecture II: Let M be an n-dimensional asymptotically flat manifold of o
t.(n22)/2. If the scalar curvature R>0, then, on each end Ml , El>0. If El 0

50 for some l0 ,
then M is isomorphic to Rn.

In general relativity, space–time is a four-dimensional Lorentzian manifold, i.e.,n53, the
positive mass conjecture was originally conjectured more than 30 years ago by physicists3 Sub-
sequently, a great many people worked on this problem and proved various special cases. I
Schoen and Yau used a geometrical method to prove this conjecture for the case of m
spacelike hypersurface~Conjecture II!.4 Using an auxiliary equation introduced by Jang,5 they
generalized their proof to the nonmaximal spacelike hypersurface case~Conjecture I!,6 and finally
solving this long-standing problem. They have also applied their method to prove the po
action conjecture.7 Two years later, Witten presented a simple new proof of the Conjecture
using spinors although several points of his argument come from physical intuition and re
justification.8 Soon later, Parker and Taubes gave a complete, rigorous and self-contained p
the Conjecture I, based on Witten’s formulation.9 The higher dimensional positive mass conje
tures have been studied only in the maximal hypersurface case~Conjecture II!; Schoen gave a
detail n-dimensional proof of his work with Yau which proved the Conjecture II through the
of volume minimizing hypersurface.10 The proof they gave works forn<7 in which dimensions
they have complete regularity of volume minimizing hypersurfaces. Bartnik proved Conject
for n-dimensional spin manifolds following Witten’s approach.1

However, it has not appeared in the literature for the proof of higher dimensional Po
Mass Conjecture I~nonmaximal hypersurface case!. Although, in principle, Witten’s proof carries
over to all dimensions, by assuming a spin structure, there still exists one technical difficulty:
to prove positivity of induced metriĉ,&5(e0.,) ~see Sec. II for details! on spinor bundle along a
spacelike hypersurface? Whenn53, Parker and Taubes prove it in terms of representation of
group SL(2,C)>Spin0~3,1!. We shall prove it forn54 in terms of representation of spin grou
HU~1,1!>Spin0~4,1! where H denotes the field of quaternious. We expect this fact is true fo
spin group Spin0(n,1) by direct calculations in the Clifford algebra which do not need to inv
special representations, and we shall address it elsewhere.
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The positive mass conjecture for the five-dimensional Lorentzian manifold is interested
context of the Kaluza–Klein theory. In this paper, we shall prove

Theorem 1.1: Let N be a five-dimensional Lorentzian manifold with Lorentzian metric g˜ of
signature~21,1,1,1,1!, M,N be a spin spacelike asymptotically flat hypersurface of the or
t.1. If the dominant energy condition holds on M, then, on each end Ml ,

El>uPl u[S (
k51

4

plk
2 D 1/2

.

If El 0
50 for some l0 , then M has only one end and N is flat along M.

We refer to Ref. 11 for the positive mass theorem on a class of ‘‘modified asymptoticall
manifolds’’ which satisfy ‘‘modified energy condition,’’ and to Ref. 12 for nonspin space
hypersurface in five-dimensional Lorentzian manifolds.

II. HU„1,1… REPRESENTATION AND SPINORS

In this section, we assumeN is a five-dimensional Lorentzian manifold with Lorentzian met
of signature~21,1,1,1,1!, andM is a spin spacelike hypersurface inN. We shall show there is a
globally defined HU~1,1! bundleS alongM. With the help of HU~1,1! Hermitian structure onS,
we construct a subbundle of End(S) which is exactly the cotangent bundle ofN. This gives a
natural definition of Clifford multiplication, and induce a positively define Spin~4! invariant Her-
mitian metric onS. We describe them first at the level of linear algebra and then globally on
manifold M.

DenoteH as the field of quaternious. The hyperunitary group HU~1,1! is defined to be the
subgroup of GL(2,H) that fixes the standardH-Hermitian symmetric form

~p,q!5 p̄1•q12 p̄2•q2 ,

where p5(p1 ,p2) t, q5(q1 ,q2) tPH2. The group HU~1,1!5Spin0~4,1! is the double covering
group of connected Lorentz groupSO(4,1), see Ref. 13, p. 272. LetV be the fundamenta
representation of HU~1,1! on H2. For anyXPEnd(V), denoteX* the adjoint ofX under HU~1,1!
Hermitian structure. We note that anyAPHU(1,1) if and only ifAA* 5I , A* A5I . On End(V),
we define the operator

RT~X!5Re$Trace~X!%. ~2.1!

Proposition 2.1: RT is well-defined, i.e., RT is independent on the choice of basis. More
for any X,YPEnd(V),

RT~X* Y!5RT~YX* !5RT~XY* !.

Proof: Choosing a basis, we can write

X5S x11 x12

x21 x22
D , Y5S y11 y12

y21 y22
D .

Then,

X* 5S x̄11 2 x̄21

2 x̄12 x̄22
D ,

and

Y* 5S ȳ11 2 ȳ21

2 ȳ12 ȳ22
D ,

wherex11, x12, x21, x22, y11, y12, y21, y22 are quaternious numbers. We haveRT(X)5Re(x11

1x22). Changing basis,X changes toA21XA for someAPHU(1,1). So, for proving the first par
of the proposition, we need only show thatRT(A21XA)5RT(X).

Let A5(c d
a b), thenAPHU(1,1) gives that
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uau22ubu251, udu22ucu251, ac̄2bd̄50.

We note thatxy5 ȳx̄, Re(x)5Re(x̄), Re(x̄y)5Re(xȳ) for any quaternious numbersx, y. Therefore,

RT~A21XA!5RT~A* XA!

5Re~ āx11a2 c̄x21a1āx12c2 c̄x22c2b̄x11b1d̄x21b2b̄x12d1d̄x22d!

5Re~ uau2x̄112ucu2x̄222ubu2x̄111udu2x̄222cāx̄211db̄x̄211ac̄x̄122bd̄x̄12!

5Re~ x̄111 x̄22!5RT~X!.

For the proof of the second part, since

RT~X* Y!5Re~ x̄11y112 x̄12y122 x̄21y211 x̄22y22!,

RT~YX* !5Re~y11x̄112y12x̄122y21x̄211y22ȳ22!,

RT~XY* !5Re~x11ȳ112x12ȳ122x21ȳ211x22ȳ22!.

Hence it follows. h

Corollary 2.1: On End(V), inner product

^X,Y&52 1
2RT~X* Y! ~2.2!

is independent on the choice of basis.
Set

:5$XPEnd~V!:X5X* %. ~2.3!

It is independent on the choice of basis since (A* XA)* 5A* X* A5A* XA for any XP:, A
PHU(1,1).

Proposition 2.2: On:, Trace(X) is independent on the choice of basis.
Proof: Choosing a basis, letX be given by a matrix as above. Then,X5X* gives thatx11

5 x̄11, x225 x̄22, x1252 x̄21. Hence x11, x22 are real numbers, andRT(X)5x111x22

5Trace(X). h

Proposition 2.3: Set

:05$XP:, Trace~X!50%, ~2.4!

then (:0 ,i i)5(R4,1,g̃), where g̃is the standard Lorentzian metric on R4,1.
Proof: Choosing a basis, and takex115x0 , x2252x0 , x125x11x2i 1x3 j 1x4k[x, x0 , x1 ,

x2 , x3 , x4 are all real numbers. It givesX5X* 5(
2 x̄

x0
2x0

x ) for any XP:0 . Obviously,

iXi25^X,X&52x0
21x1

21x2
21x3

21x4
25g̃(X,X). Hence we can identify any X

5(x0 ,x1 ,x2 ,x3 ,x4)PR4,1 as an element in:0 with norm iXi , under a basis, which is given b
the matrix

X5S x0 x

2 x̄ 2x0
D , ~2.5!

where x5x11x2i 1x3 j 1x4k. Moreover, this identification does not depend on the choice
basis. h

The spinors for Spin0(4,1)5HU(1,1) structure is defined byV. This space has a HU~1,1!
invariant Hermitian inner product defined by
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~f,c!5 j̄1•h12 j̄2•h2 ~2.6!

for f5(j1 ,j2) tPV, c5(h1 ,h2) tPV. This inner product is not positive definite.
We define the Clifford multiplication map ‘‘.’’

.:R4,1
^ V→V

X.f5Xf,

whereX is the correspondent element in:0 for point in R4,1, choosing a basis, given by the matr
~2.5!. Obviously,X.Y.1Y.X.522g̃(X,Y)•Id. So by the universal property of Clifford algebr
the map ‘‘•’’ can be extended to a quaternious representation of Clifford algebra Cl~4,1!, hence to
the group HU~1,1!.

Choosing an orthonormal basis$ea% on R4,1 with e0 timelike, let $ea% be its dual basis. The
choice of a timelike covectore0 yields a diagram

Sp~1!3Sp~1! →
â

HU~1,1!

r1↓ ↓r2

SO~4! →
a

SO~4,1!,

where the maps are defined as follows: writex5x11x2i 1x3 j 1x4kPH>R4, X5(
x̄

x0
2x0

x )P:0

>R4,1, for p,qPSp(1), APHU(1,1), aPSO(4),

r1~~p,q!!x5pxq̄, r2~A!X5AXA* ,

â~~p,q!!5S p 0

0 qD , a~a!X5S x0 ax

2ax 2x0
D .

The double-covering mapr1 is well-known. Now it is easy to checkr1 is also a double-
covering map. Moreover,dr2 :hu(1,1)>so(4,1) given bydr2(eaeb)52ea∧eb. Finally,

r2+â~~p,q!!X5S x0 pxq̄

2qx̄p̄ 2x0
D 5a+r1~~p,q!!X.

The above diagram allows us to regardV as Spin~4!5Sp~1!3Sp~1! representation and givesV

an another Hermitian structure. The Clifford multiplicatione05(
1

21
):V→V gives an isomor-

phism V>V, the new Hermitian structure onV is given by this isomorphism together with th
isomorphismV>V̄* given by the HU~1,1! structure. In another word, there is another Hermit
inner product onV given by

^f,c&5~e0.f,c!5 j̄1•h11 j̄2•h2 ~2.7!

for f5(j1 ,j2) tPV, c5(h1 ,h2) tPV. Hence this new inner product is positive definite a
Sp~1!3Sp~1! invariant. Now it is easy to derive the following two propositions

Proposition 2.4: For any XPR4,1, spinorsf,cPV, we have(X.f,c)5(f,X.c).
Proposition 2.5: For any x5(x1 ,x2 ,x3 ,x4)PR4 regarded as an embedding in X5(0,x)

PR4,1, we havê x.f,c&52^f,x.c&, and ^e0.f,c&5^f,e0.c&.
If M is a spin spacelike hypersurface inN, the above algebra facts carry over to vector bund

once a spin structure is chosen. LetF(N) denote theSO(4,1) frame bundle of the cotangen
bundle ofN and leti :M→N be the inclusion. The required spin structure is a lift of the bun
i * F(N) to a HU~1,1! bundle overM. But
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i * F~N!5F~M !3aSO~4,1!,

so we need only lift theSO(4) frame bundle ofM to an Sp~1!3Sp~1! bundle F(M )̃ . The

obstruction to such anF(M )̃ is the Stiefel–Whitney classv2(M ).

SinceM is spin,v2(M )50, F(M )̃ exists. The number of such liftsF(M )̃ is then classified by
H1(M ,Z2). Choosing one, we obtain the desired HU(1,1) bundle

i * F~N!̃5F~M !̃3 âHU~1,1!

over M and the associated spin vector bundle

i * F~N!̃3rV5F~M !̃3 r̄V,

wherer is the representationV of HU(1,1), andr̄ is its restriction to Sp~1!3Sp~1!. This vector
bundle—denotedS—carries the inner products~,! and ^,&. Sections ofS are called hypersurface
spinors alongM. Proposition 2.3 impliesT* N>:0(S), so the Clifford multiplication is globally-
defined onM.

The metric connection¹̃ on F(N) determines connections oni * F(N)̃ and its associated

bundle. The resulting connection~also denoted! ¹̃ on S is compatible with the metric~,! but not
compatible with the metriĉ,&. Let ¹ be the Riemannian connection onF(M ). It also induces a

connection¹ on S5F(M )̃3 r̄V. We shall show that¹ is compatible witĥ ,&.
Fix a pointpPM and an orthonormal basis$ea% of TpN with e0 normal ande1 , e2 , e3 , e4

tangent toM. Extende1 , e2 , e3 , e4 to an orthonormal frame in a neighborhood ofp in M such

that (¹ iej )p50. Extend this to a local orthonormal$ea% for N with (¹̃0ej )p50. Let $ea% be the
dual coframe. Then

~¹̃ ie
j !p52hi j e

0, ~¹̃ ie
0!p52hi j e

j ,

wherehi j 5^¹̃ ie0 ,ej&, 1< i , j <4, are the components of the second fundamental form atp. We
have the following relations about two connections onS:

¹̃ i5¹ i1
1
2hji e

0.ej . ~2.8!

Proposition 2.6: The induced connection¹ on S is compatible with the metric^,& and (,).
Proof: In the above frame we have,

d~~f,c!* ei !5~~¹̃ if,c!1~f,¹̃ ic!!* 1

5~~¹ if,c!1~f,¹ ic!1~ 1
2hi j e

0.ej .f,c!1~f, 1
2hi j e

0.ej .c!!* 1

5~~¹ if,c!1~f,¹ ic!!* 1.

d~^f,c&* ei !5d~~e0.f,c!* ei !

5~~2hi j e
j .f,c!1~e0.¹̃ if,c!1~e0.f,¹̃ ic!!* 1

5~~2hi j e
j .f,c!1~e0.¹ if,c!1~e0.f,¹ ic!

1~e0. 1
2 hi j e

0.ej .f,c!1~e0.f, 1
2 hi j e

0.ej .c!!* 1

5~^¹ if,c&1^f,¹ ic&!* 1.
h
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Finally, let Q:R42Kl→Ml be the diffeomorphism which definesMl . The pullback bundle

Q l* F(M )̃ is trivial over the endMl and the bundleU l* S extends trivially over all ofR4. The
Q l

21—pullbacks of the constant sections of the bundleR43S over R4 then provide a set of
‘‘constant spinors’’ over theMl .

III. THE WITTEN–DIRAC OPERATOR

In a local orthonormal coframe$ei% of M, Dirac operatorD and the Witten–Dirac operatorD̃
are defined by

D5ei .¹ i , D̃5ei .¹̃ i ,

respectively, where ‘‘.’’ denotes Clifford multiplication. Obviously,D is self-adjoint under the
metric ^,&. And we have the following Lichnerowicz formula:

D* D5D25¹* ¹1
R

4
, ~3.1!

whereR is the scalar curvature ofM.
Lemma 3.1: For anyfPG(S), we have

D̃f5Df1
H

2
e0.f, ~3.2!

where H5(hii is the mean curvature of M.
Proof: Sincehi j 5hji , andei .ej .52ej .ei ., for iÞ j , then~2.8! gives

D̃f5ei .¹̃ if5ei .¹ if1
1

2
hi j e

i .e0.ej .f5Df1
H

2
e0.f.

In terms of~2.8!, ~3.2!, we can prove
Lemma 3.2:

d~^ei .f,c&* ei !5~^Df,c&2^f,Dc&!* 15~^D̃f,c&2^f,D̃c&!* 1,

d~^f,¹̃ ic&* ei !5~^¹̃ if,¹̃ ic&2^f,~2¹̃ i1hi j e
0.ej .!¹̃ ic&!* 1.

Hence,

D* 5D, D̃* 5D̃, ¹̃ i* 52¹̃ i1hi j e
0.ej .

Now we derive two Weitzenbo¨ck formulas, the second was given by Witten.8,9

Theorem 3.1:For any fPG(S),

D̃2f5¹* ¹f1 1
4~R1H2!f2 1

2¹ iHe0.ei .f ~3.3!

5¹̃* ¹̃f1 1
2~T001T0ie

0.ei .!f. ~3.4!

Proof: Since
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¹ i~e0.f!5~¹̃ i2
1
2hi j e

0.ej .!~e0.f!

52hi j e
j .f1e0.¹̃ if1 1

2hi j e
j .f

5e0.~¹̃ i2
1
2hi j e

0.ej .!f5e0.¹ if,

then Lemma 3.1 and the Lichnerowicz formula~3.1! show

D̃2f5S D1
H

2
e0.D S Df1

H

2
e0.f D

5D2f1
H2

4
e0.e0.f1

1

2
ei .¹ iHe0.f

5¹* ¹f1
R

4
f1

H2

4
f2

1

2
¹ iHe0.ei .f.

But

¹̃* ¹̃f5~2¹̃ i1hi j e
0.ej .!¹̃ if

5~2¹ i1
1
2hi j e

0.ej .!~¹ if1 1
2hike0.ek.f!

5¹* ¹f2 1
4hi j hikej .ek.f2 1

2¹ i~hi j e
0.ej .f!1 1

2hi j e
0.ej .¹ if

5¹* ¹f1
1

4 (
i , j

hi j
2 f2

1

2
¹ ihi j e

0.ej .f.

Therefore the second formula can be derived in terms of the following~Gauss and Codazzi!
equations

T005
1

2 S R2(
i j

hi j
2 1H2D , T0i5(

j
¹ jhi j 2¹ iH.

h

The integral forms of Weitzenbo¨ck formula are

E
M

u¹̃fu21^f,R̃f&2uD̃fu25
1

2 E]M
^f,@ei ,ej #.¹̃ jf&* ei , ~3.5!

whereR̃5 1
2(T001T0ie

0.ei .), and@ei ,ej #5ei .ej .2ej .ei .

IV. BOUNDARY VALUE PROBLEM

In this section, we assumeM is a spin spacelike asymptotically flat hypersurface of ordet
.1 in the five-dimensional Lorentzian manifoldN. We shall study the infinity boundary valu
problem for the Witten–Dirac equation. We shall simplify the original arguments in Ref. 9.

First, we recall a lemma in Ref. 9, which can be easily extended to our case.
Lemma 4.1: Suppose M is asymptotically flat andf, $f i% are C1 hypersurface spinors along

M which satisfy

¹̃f50, ¹̃f i50 for each i.

~i! If limx→` f(x)50, where the limit is taken along M in one asymptotic end, thenf50.
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~ii ! If $f i% are linearly independent in some end, then they are linearly independent e
where on M.

Proof: We sketch the proof in spirit of Ref. 9.~i! Since¹̃f50, i.e.,¹ if52 1
2hi j e

0.ej .f, and
h5O(r 2t21), this givesud lnufi<Cr2t21 on the complement of the zero set off. Integrating this
along a path fromx0PM gives

uf~x!u>uf~x0!ueC~ ux0u2t2uxu2t!.

Takingx to be the first zero off along the path of integration, or taking the limit asuxu→` if no
such zero exists, shows thatf(x0)50. Hencef50 on the ends. On the compact setK, sinceh is
bounded, we have

uf~x!u>uf~x0!ueC~ ux0u2uxu!.

Hencef50 on K by taking the path to the ends.~ii ! It follows from the first part. h

Now we define the weightedCk spaceCt
k(S) as the set ofCk hypersurface spinorsf for

which the norm

ifiC
t
k5(

i 50

k

sup~r 2t1 i u¹ ifu!

is finite. The weighted Ho¨lder spaceCt
k,a(S) is defined for 0,a,1 as the set offPCt

k(S) for
which the norm

ifiC
t
k,a5ifiC

t
k1sup

x,y
H ~min$r ~x!,r ~y!%!2t1k1a

u¹kf~x!2¹kf~y!u
r ~x,y!a J

is finite. Here, the supremum is over allxÞy such thaty is contained in a normal coordinat
neighborhood ofx, and¹kf(y) is the spinor atx obtained by parallel transport along the rad
geodesic fromx to y. Note that the definitions of the weighted spaces depend on the ‘‘dist
function’’ r, and thereby on a choice asymptotic coordinates. However, it is easy to see thr is
uniformly equivalent to the geodesic distance from an arbitrary fixed point inM as r→`, so all
choices ofr define equivalent norms.

If M is asymptotically flat of ordert.1 with asymptotic coordinates$dxi% on the end.
Orthonormalizing$dxi% yields an orthonormal coframe

ei5dxi1 1
2aikdxk1O~r 2t21!. ~4.1!

The connection coefficients of$dxi% are

Gk j l5
1
2~] jgkl1] lgk j2]kgjl !5O~r 2t21!,

thus we obtain

¹ j5] j2
1
4Gk j ldxk.dxl .1O~r 22t21!. ~4.2!

Denotee0 asdx0, then

D̃5dxj .] j2
1

4
Gk j ldxj .dxk.dxl .1

H

2
dx0.1O~r 22t21!. ~4.3!

ThereforeD̃ gives the maps for the following weighted Ho¨lder spaces:
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C2t
2,a~S!→D̃ C2t21

1,a ~S!→D̃ C2t22
0,a ~S!.

For constant spinorf0 , ] jf050, we have

D̃f05ej .¹ jf01
H

2
e0.f052

1

4
Gk j ldxj .dxk.dxl .f01

H

2
dx0.f01O~r 22t21!.

HenceD̃f0PC2t21
1,a (S), andD̃2f0PC2t22

0,a (S).
Lemma 4.2: If M is asymptotically flat of ordert.1 and the dominant energy condition hold

on M, then the map

D̃2:C2t
2,a~S!→C2t22

0,a ~S! ~4.4!

is an isomorphism.

Proof: Note that (14(R1H2)2 1
2¹ iHe0.ei .)PC2t22

0,a (S), thus we only need to show that th

kernel ofD̃2 on C2t
2,a(S) is trivial since, by~3.3! and Theorem 9.2~d!,14 the injectivity impliesD̃2

is an isomorphism. LetfPC2t
2,a(S) satisfy D̃2f5¹̃* ¹̃f1R̃f50. Then

E
M

u¹̃fu21^R̃f,f&5E
]M

^f,¹̃ if&* ei .

But ^f,¹̃ if&5^f,(¹ if1 1
2hi j e

0.ej .f)&5O(r 22t21), and Vol(]M )5O(r 23) by ~1.2! and

~1.3!. Hence the right-hand side of the above integral vanishes. Therefore¹̃f50 on M. Hence
f50 by Lemma 4.1~i!, and the proof of the lemma is complete. h

Theorem 4.1: If M is asymptotically flat of ordert.1 and the dominant energy conditio
holds on M, then for any constant spinorf0 on ends, the following boundary value problem h
a unique solutionfPC2,a(S):

H D̃f50
lim
r→`

f5f0 . ~4.5!

Proof: Since D̃2f0PC2t22
0,a (S). By Lemma 4.2, there is uniquef1PC2t

2,a(S) such that

D̃2f152D̃2f0 . Thenf5f11f0 satisfiesD̃2f50. Let c5D̃fPC2t21
1,a (S), then

E
M

u¹̃cu21^R̃c,c&5E
]M

^c,¹̃ ic&* ei5E
]M

O~r 22t23!50.

Therefore¹̃c50 onM. Hencec50 by Lemma 4.1~i!. Thusf is the unique solution of~4.5!.h

V. POSITIVE MASS CONJECTURE

In this section, we shall prove the Positive Mass Conjecture.
Theorem 5.1: Let N be a five-dimensional Lorentzian manifold with Lorentzian metric g˜ of

signature (21,1,1,1,1), M,N be a spin spacelike asymptotically flat hypersurface of ordet
.1. If the dominant energy condition holds on M, then, on each end Ml ,

El>uPl u[S (
k51

4

plk
2 D 1/2

.

If El 0
50 for some l0 , then M has only one end and N is flat along M.
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Proof: For endMl , let constant spinorf0Þ0 on Ml , andf050 on other ends. Denotef
5f11f0 , wheref1PC2t

2,a(S), as the corresponding solution of~4.5! for this f0 . Then ~3.5!
gives, under the coframe$ei% choosen in~4.1!,

2E
M

u¹̃fu21^f,R̃f&5E
]M`

^f,@ei ,ej #.¹̃ jf&* ei5E
]M`

^f0 ,@ei ,ej #.¹̃ jf0&* ei1( ,

where

( 5E
]M`

~^f1 ,@ei ,ej #.¹̃ jf0&1^f0 ,@ei ,ej #.¹̃ jf1&1^f1 ,@ei ,ej #.¹̃ jf1&!* ei

5E
]M`

^f1 ,@ei ,ej #.¹ jf0&* ei1E
]M`

K f1 ,
1

2
hjk@ei ,ej #.e0.ek.f0L * ei

1E
]M`

^2¹ jf0 ,@ei ,ej #.f1&* ei1E
]M`

d~^f0 ,@ei ,ej #.f1&* ~ei∧ej !!

1E
]M`

K f0 ,
1

2
hjk@ei ,ej #.e0.ek.f1L * ei1E

]M`

^f1 ,@ei ,ej #.¹̃ jf1&* ei

52 ReE
]M`

^f1 ,@ei ,ej #.¹ jf0&* ei1E
]M`

^f1 ,@ei ,ej #.¹ jf1&* ei

1ReE
]M`

hjk^f1 ,@ei ,ej #.e0.ek.f0&* ei1
1

2 E]M`

hjk^f1 ,@ei ,ej #.e0.ek.f1&* ei .

Sincef15O(r 2t), ¹ jf15O(r 2t21), ¹ jf05O(r 2t21), andhi j 5O(r 2t21), then(50. Now
it is easy to see that̂f,ei .ej .f& is pure imaginary foriÞ j . On the other hand,uei2dxi u
5O(r 2t), so we can replace the$ei% by $dxi% in the above integral without changing the value
the limit. And noteGk j l5Gkl j , we obtain

E
M

u¹̃fu21^f,R̃f&5
1

2
ReE

]M`

~^f0 ,@dxi ,dxj #.¹̃ jf0&1O~r 22t21!!* dxi

5ReE
]M`

K f0 ,2
1

4
Gk j l~d i j 1dxi .dxj .!dxk.dxl .f0L * dxi

1ReE
]M`

K f0 ,
1

2
hjk~d i j 1dxi .dxj .!dx0.dxk.f0L * dxi

5
1

4
ReE

]M`

^f0 ,~G j i j 1Gk j ldxi~2d jk1dxk.dxj .!dxl .!f0&* dxi

1
1

2
ReE

]M`

^f0 ,hjk~d i j 1dxi .dxj .!dx0.dxk.f0&* dxi

5
1

4
ReE

]M`

^f0 ,~G j i j 1~2G j j l dxi .dxl .2Gk j jdxi .dxk.!!f0&* dxi

1
1

2 E]M`

^f0 ,~hik2d ikhj j !dx0.dxk.f0&* dxi
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5
1

4 E]M`

^f0 ,~g j i j 22G j j i 1G i j j !f0&* dxi

1
1

2 E]M`

^f0 ,~hik2d ikhj j !dx0.dxk.f0&* dxi

5
C4

4
~^f0 .Elf2&1^f0 ,plkdx0.dxk.f0&!.

But plkdx0.dxk.5( p̄l

0
0
pl), where pl5pl11pl2i 1pl3 j 1pl4k, has real eigenvaluesl56uPl u.

Now we takef0 to be the eigenspinor of eigenvalue2uPl u with uf0u51. In terms of this constan
spinor, we finally obtain

El2uPl u54C4
21E

M
u¹̃fu21^f,R̃f&>0.

Thus the proof of the first part is complete.
Now supposeE150. Take constant spinors$c1cuc51,2% which form a basis onM1 and

c1c50 on all other endsMl . Let cc be the solutions ofD̃cc50 constructed from this data b

Theorem 4.1. The vanishing ofE1 then implies¹̃cc50 andcc→0 uniformly on each end excep
M1 . But this contradicts Lemma 4.1~i! unlessM1 is the only end ofM. By Lemma 4.1~ii !, $cc%
are linearly independent everywhere onM, so in a local frame$ei% of M,

05~¹̃ i¹̃ j2¹̃ j ¹̃ i2¹̃@ei ,ej #
!cc52 1

4 R̃ab i j e
a.eb.cc .

This implies

R̃ab i j 50, 1< i , j <4, 0<a,b<4. ~5.1!

Then Einstein’s equations giveT005
1
2(R̃i j i j 50. And the dominant energy condition show

uTabu<uT00u50. HenceR̃ab50. This together with~5.1! implies

R̃abgd50, 0<a,b,g,d<4.

ThereforeN is flat alongM. And we complete the proof of Theorem. h
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Two-parameter nonstandard deformation of 2 32 matrices
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We introduce a two-parameter deformation of 232 matrices without imposing any
condition on the matrices and give the universalR-matrix of the nonstandard quan-
tum group which satisfies the quantum Yang–Baxter relation. Although in the
standard two-parameter deformation the quantum determinant is not central, in the
nonstandard case it is central. We note that the quantum group thus obtained is
related to the quantum supergroupGLp,q(1u1) by a transformation. ©1999
American Institute of Physics.@S0022-2488~99!03806-2#

I. INTRODUCTION

Recently the matrix groups of all 232 nonsingular matrices likeGL(2), GL(1u1), etc., were
generalized in two ways as the standard deformation1–3 andh-deformation.4–7 Both are based on
the deformation of the algebra of functions on the groups generated by coordinate function
commute.

In standard deformation of matrix groups, these commutation relations are determined
matrix R so that the functions do not commute but satisfy the equation

R̂~T^ T!5~T^ T!R̂,

such that, they coincide with the matrix groups for particular values of the deformation param
In the h-deformation, this property is the same as the standard deformation. The structure
matrix groups is important in both deformations since the classical~or super! matrix groups are
obtained in some limit of the deformation parameters. In this work we shall construct a
parameter deformation of 232 matrices without imposing any such condition on the matrices
as in Ref. 8 and obtain a two-parameter generalization of their results.

We briefly describe the content of this work. In Sec. II we introduce the groupGp,q of the
232 matrices by using anR matrix. Section III is devoted to the corresponding Hopf algebra
Sec. IV we give the universal enveloping algebra of this nonstandard quantum group.

II. Gp,q MATRICES

Let

T5S a b

c dD
be a 232 matrix with entries belonging to an algebraA. We assume that the quantum grou
equation~no-grading!

R̂~T^ T!5~T^ T!R̂ ~1!

holds, where
35530022-2488/99/40(7)/3553/8/$15.00 © 1999 American Institute of Physics
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R̂5S 2q 0 0 0

0 p212q 1 0

0 qp21 0 0

0 0 0 p21

D . ~2!

Equation~1! explicitly gives the following relations:

ab52qba, db5qbd,

ac52pca, dc5pcd,
~3!

bc5pq21cb, b2505c2,

ad5da1~p212q!bc,

wherep andq are nonzero complex numbers withpq61Þ0.
It can be checked that the matrixR5PR̂, whereP is the usual permutation matrix, satisfie

the quantum Yang–Baxter equation

R12R13R235R23R13R12 ~4!

and the matrixR̂ satisfies the braid group equation

R̂12R̂23R̂125R̂23R̂12R̂23. ~5!

We now assume that the matrix elementsa andd of T are invertible. Then it is possible to
define the inverse ofT. To this end, we introduce

D15ad2p21bc, D25da1q21cb. ~6!

Then one obtains

TR
215S D1

21d 2qD1
21b

pD2
21c D2

21a
D , ~7a!

as the right inverse ofT. After some calculations we get

D1d5dD1 , D2a5aD2 ,

Dkb52q2bDk , Dkc52p2cDk , k51,2.

Using these relations we obtain

TL
215S dD1

21 q21bD2
21

2p21cD1
21 aD2

21 D 5TR
21. ~7b!

Thus the proper left and right inverses ofT are equal.
It is easily verified thata2D2

21 for all values ofp andq, commutes witha,d, and anticommutes
with b,c. Furthermorea2D2

21 is invertible. Therefore we obtain

S~T!5T215S d21 2a21ba21

2d21cd21 a21 D S d2D1
21 0

0 a2D2
21D . ~8!

We now consider the element
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D~T!5ad212bd21cd215a2D2
21. ~9!

D(T) cannot be regarded as a quantum determinant since it anticommutes withb andc. However,
we may regard the element

D~T!5a@D~T!2d21bd21c#d215@D~T!#2 ~10!

as the quantum determinant ofT whereD(T) is given by~9!.
In fact, it is easy to check that the matrix elements of the product matrixTT8 satisfy relations

~3! for any two commuting quantum matricesT and T8 whose elements obey~3!. As a conse-
quence of this argument, we have the following relation:

D~TT8!5D~T!D~T8!.

This result means thatD(T) is central.
This case appears strange from the point of view of quantum group theory.2 However, it

becomes clear from the point of view of the corresponding two-parameter quantum superg9

We know, from the work of Ref. 9, that the quantum superdeterminant of any supermat
GLp,q(1u1) belongs to the center of the algebra generated by the matrix elements of the
matrix. In the Appendix, we shall show that this nonstandard quantum group is related
quantum supergroupGLp,q(1u1) by a transformation. So we may expect that the quantum su
determinant in two-parameter nonstandard deformation must again be a central element.

Now let thenth power ofT be

Tn5S An Bn

Cn Dn
D . ~11!

Then it is easy to check the following relations:

AnBn52qnBnAn , DnBn5qnBnDn ,

AnCn52pnCnAn , DnCn5pnCnDn , ~12!

Bn
2505Cn

2, qnBnCn5pnCnBn ,

and

AnDn5DnAn1~p2n2qn!CnBn . ~13!

The proof of relation~13! is rather lengthy but straightforward.
Let us finally note the following. If the sumT1T8 of two Gp,q matricesT andT8 is required

to be aGp,q matrix then the equation

R̂8~T^ T8!5~T8^ T!R̂21 ~14!

holds, where

R̂85R̂212~p2q21!I . ~15!

Equation~14! explicitly reads

a8a5pqaa8, dd85pqd8d, d8a5ad8,

b8a52pab8, c8a52qac8, bd85pd8b,

bb852b8b, cc852c8c, cd85qd8c,
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a8b52qba81~p212q!b8a, a8c52pca81~pq21!ac8, ~16!

b8c5pq21cb81~q212p!ad8, bc85pq21c8b1~p2q21!d8a,

db85qb8d1~q2p21!bd8, dc85pc8d1~pq21!d8c,

a8d5da81~p212q!~bc81b8c!.

Note that the matrixR85PR̂8 again satisfies the quantum Yang–Baxter relation~4!, whereP is
the usual permutation matrix.

III. THE HOPF ALGEBRA STRUCTURE OF Gp,q

LetA be an algebra generated by the elementsa, b, c, andd satisfying the relations~3!. Then
A is the quoitent algebra

A5C@a,b,c,d#/J,

whereC@a,b,c,d# is the free noncommutative algebra generated bya, b, c, andd andJ is the ideal
in C@a,b,c,d# generated by the relations~3!.

The usual coproduct on the algebraA is defined by

D:A→A^A

such that

D~ t i
j !5t i

k^ tk
j , T5~Tj

i ! ~17!

~sum over repeated indices! and the counit

e:A→C

such that

e~ t i
j !5d i

j . ~18!

The algebraA is now the matrix bialgebra generated by 1 andT5(t j
i ), and it is a Hopf algebra

with the antipodeS(T) which is given by~8!. To give a proof of this, one has to verify th
following:

~ id ^ D!+D5~D ^ id !+D,

~ id ^ e!+D5~e ^ id !+D, ~19!

m+@~ id ^ S!+D#5m+@~S^ id !+D#,

wherem denotes the multiplication mapping

m~a^ b!5ab

for any a,bPA. The proof follows directly.

IV. UNIVERSAL ENVELOPING ALGEBRA OF Gp,q

In this section we shall construct the quantum enveloping algebra in analogy with the
approach.2

We consider the matricesL6 with the generatorsU6 , V6 , andX6 ,
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L15S U1 lX1

0 V1
D , L25S U2 0

2lX2 V2
D , ~20!

wherel5q2p21. The matricesL6 satisfy the following relations:

R̂L1
6L2

65L2
6L1

6R̂, ~21!

R̂L1
1L2

25L2
2L1

1R̂, ~22!

whereL15L ^ I andL25I ^ L. These relations give

@U1 ,U2#5@V1 ,V2#5@U6 ,V6#50,

U1X652q71X6U1 , V1X65q71X6V1 ,
~23!

U2X652p61X6U2 , V2X65p61X6V2 ,

X1X22qp21X2X15
U1V22V1U2

q2p21 , X6
2 50.

The coproduct of the generators is given by

D~L6!5L6
^̇L6, ~24!

where ^̇ denotes tensor product and matrix multiplication. Explicity, the action of the copro
D on the generators is

D~U6!5U6 ^ U6 ,

D~V6!5V6 ^ V6 ,
~25!

D~X1!5X1 ^ U11V1 ^ X1 ,

D~X2!5X2 ^ V21U2 ^ X2 .

The co-unit is given by

e~L6!5I . ~26!

Explicitly,

e~U6!5e~V6!51,
~27!

e~X6!50.

The co-inverse is given by

S~U6!5U6
21, S~V6!5V6

21,

S~X1!52U1
21X1V1

21, ~28!

S~X2!5V2
21X2U2

21.

Therefore one can easily verify that the algebraUp,q(U6 ,V6 ,X6) is a Hopf algebra generated b
1, U6 , V6 , X6 satisfying the relations~23!.
                                                                                                                



an

:

ical
n the

planes

ted

3558 J. Math. Phys., Vol. 40, No. 7, July 1999 S. Çelik and S. Çelik

                    
The coproduct ofU6 andV6 together with the fact that they commute implies that they c
be written as exponentials of commuting operators,

U15q2~H/2!p~N/2!, U25p~H/2!q2~N/2!,

V15q2~H/2!p2~N/2!, V25p~H/2!q~N/2!, ~29!

@H,N#50.

The commutation relations ofU6 andV6 with X6 in terms of new generators give the following

@H,X6#562X6 , @N,X6#50,
~30!

X1X22qp21X2X15S p

qD ~H11!/2

@N#pq ,

where

@N#pq5
~pq!~N/2!2~pq!~2N/2!

~pq!~1/2!2~pq!~21/2! . ~31!

Moreover, the coproduct is now

D~H !5H ^ 111^ H,

D~N!5N^ 111^ N,
~32!

D~X1!5X1 ^ q2~H/2!p~N/2!1q2~H/2!p2~N/2!
^ X1 ,

D~X2!5X2 ^ p~H/2!q~N/2!1p~H/2!q2~N/2!
^ X2 .
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APPENDIX

A. Nonstandard quantum planes

In this section, we shall consider quantum planes which are similar to quantum super
introduced by Manin.3

~1! Quantum planeAp : This plane, or, rather the polynomial function ring on it is genera
by coordinatesx andu with the commutation rules

xu52pux, u250, ~A1!

where p is a complex number. The coordinates anticommute forp51 and commute forp
521.

~2! Quantum planeAq* : This plane is generated by coordinatesw and y with commutation
rules

w250, wy5q21yw, ~A2!

whereq is a complex number. The quantum planeAq* is dual to the quantum planeAp .
Note that the relations~A1! and ~A2! are equivalent to the relations
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R̂~X^ X!52q~X^ X!, R̂~Y^ Y!5p21~Y^ Y!.

B. Nonstandard quantum deformation of 2 32 matrices with nonstandard quantum
planes

Let G be a matrix Lie group of rank 2 andT be any element ofG, i.e.,

T5S a b

c dD
with entries belonging to an algebraA.

We consider linear transformationsT with the following properties:

T:Ap→Ap , T:Aq*→Aq* . ~A3!

The action ofT on points ofAp andAq* is

S x̄

ū
D 5S a b

c dD S x
u D , S w̄

ȳ D 5S a b

c dD S w
y D . ~A4!

We assume that the matrix elements ofT commute with the coordinates ofAp and Aq* . As a

consequence of the linear transformations in~A3! the vectors (
ū

x̄
) and (ȳ

w̄) should belong toAp and
Aq* , respectively. This imposes~p,q! commutation relations among the entries ofT in ~3!.

Note that it can be checked that the maps

d:Ap→G^ Ap , d* :Aq*→G^ Aq* ~A5!

such that

d~X!5T^ X, i.e., d~xi !5t i
j
^ xj , X5S x

u D ,

d~Y!5T^ Y, i.e., d~yi !5t i
j
^ yj , Y5S w

y D ~A6!

define the co-action of the quantum groupGp,q on the nonstandard quantum planesAp andAq* ,
respectively.

Finally, one can show that the matrix quantum group~3! is isomorphic to the quantum
supergroupGLp,q(1u1). Indeed, if we define the transformation

T85TD, ~A7!

whereT is a matrix whose the matrix elements satisfy~3! and

D5S 1 0

0 gD , D25I , ~A8!

and we assume thatg commutes witha and d, and anticommutes withb and c, then T8

PGLp,q(1u1) as discussed in Ref. 9. In this caseD(T8)5T8 ^̇T8, etc., are unchanged. One eas
sees that whenp5q, these relations go back to those of Ref. 8.

1V. G. Drinfeld, in Proceedings of the IMS, Berkeley, 1986~unpublished!.
2N. Y. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Leningrad Math. J.1, 193 ~1990!.
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4S. L. Woronowicz, Rep. Math. Phys.30, 259 ~1991!.
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L1239 ~1992!; V. Karimipour, Lett. Math. Phys.30, 87 ~1994!.

6A. Aghamohammadi, M. Khorrami, and A. Shariati, J. Phys. A28, L225 ~1995!.
7S. Çelik, Lett. Math. Phys.42, 299 ~1997!, and references therein.
8S. Majid and M. J. Rodriguez-Plaza, J. Math. Phys.36, 7081~1995!.
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Closed forms for the exponential mapping on matrix Lie
groups based on Putzer’s method

F. Silva Leitea)
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P. Crouchb)
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We present closed forms for the exponential of some infinitesimal generators of Lie
groups which play an important role in physics and engineering applications. These
explicit forms are based on the Putzer’s method. We also compare this methodol-
ogy and results with related work by other authors. ©1999 American Institute of
Physics.@S0022-2488~99!00607-6#

I. INTRODUCTION

Lie groups arise most often in engineering applications as the configuration space of me
cal systems and in physics as symmetry groups associated with conservation laws. We
Sattinger and Weaver,1 for an introduction to the role of Lie groups in various fields of mathem
ics and physics. After Heisenberg in 1932, the neutron and the proton in nuclear physics
being treated as two states of ansu(2) doublet, the nucleon. In this sense, the proton and neu
are seen as families of particles that can be transformed into one another by the operation
symmetry group SU~2!. Later, the discovery of quarks from which other particles could be b
replaced the role of SU~2! by that of SU~3!. The evolution of particle physics has led to th
introduction of larger and more complex Lie groups. For instance, the 21-dimensional symp
groupSP(3,R) is the dynamical group in the microscopic theory of nuclear collective motion~see,
for instance, Rowe2 for additional sources regarding the role of the symplectic group in phys!.
Many of these applications rely crucially on the use of the exponential mapping. Althoug
existence of an exponential mapping is guaranteed on any Lie group, finding a closed form
exponential is a difficult issue. One way to circumvent this problem is by using approxim
methods. We refer to the survey paper by Moler and Van Loan3 for an account of several method
to compute the matrix exponential together with an analysis on the efficiency of the ex
algorithms.

For some low-dimensional Lie groups however, there are explicit formulas for the expon
mapping, the most notable one being the Rodrigues’ formula for the exponential on the ro
groupSO(3,R). The motion of a charged particle under the action of an electromagnetic fie
given by a differential equation evolving on the Lorentz groupSO(1,3). For this Lie group, Zeni
and Rodrigues presented in Ref. 4 an explicit formula for the exponential mapping. More re
we became aware of the work of Barut, Zeni, and Laufer,5 generalizing the ideas in Ref. 4 t
orthogonal groups and presenting a closed form for the exponential mapping for the con
group O~2,4!. As pointed out in their work, the Cayley–Hamilton theorem applied to the gen
tors of orthogonal groups produces either even or odd powers, which amounts to a great
fication for the series defining the exponential. This remarkable characteristic of orthogonal g
is shared by other classical Lie groups as will be explained in Sec. II. Although in the pr

a!Electronic mail: fleite@mat.uc.pt; Fax:~351!39-832568.
b!Electronic mail: peter.crouch@asu.edu; Fax:~1! 602-965 2267.
35610022-2488/99/40(7)/3561/8/$15.00 © 1999 American Institute of Physics
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paper the Cayley–Hamilton theorem also plays an important role, we take a different route
that of Barut, Zeni, and Laufer in Ref. 5 and use instead the Putzer’s method.6 This is key for
finding closed forms for the exponential mapping on any matrix Lie group, without havin
concern ourselves about the minimal polynomial of a matrix or its Jordan canonical form
drawback in this method is that one assumesa priori that the eigenvalues of the matrix to b
exponentiated are known. But this was also an assumption in the work of Barut, Zeni, and L
In Sec. II we define a large class of Lie algebras having a symmetric spectrum. This class co
the Lie algebras that appeared in Refs. 4 and 5. The symmetric property of the spectrum c
erably reduces the amount of work to be implemented. In Sec. III we briefly describe Pu
algorithm and illustrate how to obtain closed forms for the exponential of infinitesimal gener
for Lie groups playing a role in physics, including the 21-dimensional symplectic group.

II. PROPERTIES OF P-SKEW-SYMMETRIC MATRICES

Let Gl (n,R) denote the set of alln3n matrices with real entries andP be anyn3n orthogo-
nal matrix, i.e.,P satisfiesPT5P21. Define the following set:

G5$XPGl ~n,R!:XTPX5P%, ~1!

whereXT stands for the transposeX. G is an algebraic closed subgroup of the general linear
groupGL(n,R), consisting of the invertible matrices inGl (n,R), and soG is itself a Lie group
~Helgason7!. The infinitesimal generators ofG are the matrices belonging to its Lie algebra. Th
Lie algebra can be identified with the tangent space ofG at the identityI n , that consists of all
vectors that are tangent, at the identity, to curvest→X(t) in G, passing through the identity a
time t50. This geometric interpretation of the Lie algebra of a Lie group is enough to find the
algebraL of G. Indeed, differentiating both sides ofXT(t)PX(t)5P with respect tot one gets

dXT~ t !

dt
PX~ t !1XT~ t !P

dX~ t !

dt
50.

Now evaluating att50 having into consideration thatX(0)5I and makingdX(t)/dtu t505A, it
follows that the Lie algebra ofG is defined by

L5$APGl ~n,R!:ATP52PA%. ~2!

The Lie bracket onL is the commutator. It follows from the definition ofL that, if APL then
ATPL. For the particular situation whenP5I , L is the set of skew-symmetric matrices. Fro
now on we will refer to the matrices inL asP-skew-symmetric.

Now consider the following set of matrices associated withL:

J5$APGl ~n,R!:ATP5PA%. ~3!

It also happens that ifAPJ thenATPJ. However,J is not closed under the commutator and
does not have the structure of a Lie algebra. Instead,J is closed under the product$A,B%5AB
1BA and possesses another interesting algebraic structure, namely the structure of a
algebra.~For details concerning Jordan algebras see, for instance, Jacobson.8! WhenP5I ,J is just
the set of symmetric matrices. We will refer to the matrices inJ asP-symmetric.

The matrices belonging toL and those belonging toJ have remarkable properties. We sta
with a decomposition theorem that generalizes a very well known result in matrix theory, na
that every square real or complex matrix can be uniquely decomposed as the sum of a
symmetric matrix and a symmetric matrix.

Theorem 1: If P256I and L andJ are defined, respectively, by (2) and (3), then

Gl ~n,R!5L%J. ~4!
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Proof: ClearlyLùJ5$0%. Also any matrixAPGl (n,R) may be written uniquely as

A5 1
2~A2PATP!1 1

2~A1PATP!.

If we make 1
2(A2PATP)5A1 and 1

2(A1PATP)5A2 , a trivial calculation shows that ifP25I
thenA1PL andA2PJ, while if P252I thenA1PJ andA2PL. h

Lemma 2: If APL and BPJ, then
(a) A2 jPJ and A2 j 11PL, ; j PN;
(b) BjPJ, ; j PN;
(c) @L,L#,L, @L,J#,J, @J,J#,L.
Proof: ~a! May be easily proven by induction onj, ~b! is a consequence of the fact thatJ is

closed under$•,•% and ~c! follows easily from the definitions ofL andJ. h

Theorem 3: P-skew symmetric matrices have a symmetric spectrum.
Proof: This is a consequence of the fact that ifATP52PA, then det(A2lI)5(21)n det(A

1lI). h

Corollary 4: If An3n is a P-skew-symmetric matrix, then
(a) trace (A)50;
(b) If n is odd, det(A)50;
(c) The characteristic polynomial of A decomposes as

det~A2lI !5l r~l2k1C2l2k221¯1C2k22l21C2k!, ~5!

where r equals the number of zero eigenvalues of A and the coefficients C2 ,...,C2k may be written
in terms of the nonzero eigenvalues of A, 6l1 ,6l2 ,...,6lk , in the following way:

C2l5~21! l (
1< i 1, i 2,¯, i l<k

l i 1
2 l i 2

2
¯l i l

2, l 51,..., k. ~6!

Proof: ~a!, ~b! and first part of~c! are immediate consequences of theorem 3. Formula~6! can
be proven by induction in the order of matrixA or, alternatively, we may use the fact that th
spectrum ofA is symmectic associated with the well known result, that the coefficients of
characteristic polynomial of a matrixA are the elementary symmetric functions of its eigenv
ues. h

The coefficients of the characteristic polynomial of a general matrix may be written in t
of the traces of its powers, as shown in Barut, Zeni, and Laufer.5 Unfortunately, that formula is
very difficult to unravel, even though the traces of its powers may be easily computed i
knows the eigenvalues of the matrix. Equation~6! gives a more usable formula for the coefficien
of the characteristic polynomial of aP-skew-symmetric matrix. Nevertheless, the following pa
ticular cases can be easily proven:

C252(
i 51

k

l i
252

1

2
trace~A2!,

C45 (
1< i , j <k

l i
2l j

25
1

8
~ trace~A2!!22

1

4
trace~A4!,

C65 (
1< i , j ,s<k

l i
2l j

2ls
25

1

48
~ trace~A2!!32

1

8
trace~A4!trace~A2!1

1

6
trace~A6!,

C2k5~21!kl1
2l2

2
¯lk

2. ~7!
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Note that the formula forC2 is a particular case of the well known formulaC2

5 1
2@(trace(A))22trace(A2)#, when trace(A)50 ~see, for instance, Ref. 7, p. 192 and Ref. 5! and

C2k5(21)kl1
2l2

2
¯lk

2, coincides with (21)k det(A), whenever det(A)Þ0.
Particular cases ofP-skew-symmetric matrices are the following:

~1! P5I p,q5F I p 0

0 2I q
G , with p1q5n.

In this case,G is the orthogonal group O(p,q). This was the case treated in Barut, Zeni, a
Laufer.5

The particular situation whenp51 andq53, corresponds to the case when the Lie groupG
is the Lorentz group and has been analyzed by Zeni and Rodrigues in Ref. 4.
Whenp5n andq50, i.e.,P5I , the Lie algebra ofG consists of the skew-symmetric matr
ces inso(n,R).

~2! P5Jm5F 0 I m

2I m 0 G , with 2m5n.

In this caseG is the symplectic groupSP(2n,R). The Lie algebra ofG consists of the set o
Hamiltonian matrices.

~3! Although the Lie algebra of skew-Hermitian matricesu(n) was not considered here, it may b
embedded intoso(2n,R) through the mapping

A1iB→F A B

2B AG,
and, consequently, the results in this section extend directly to the complex Lie groupsn)
and SU(n).

The last corollary has great impact in the structure of the exponential ofP-skew-symmetric
matrices. This was already pointed out by Barut, Zeni, and Laufer in Ref. 5, for the situation
the Lie groupG is an orthogonal group. Indeed, ifAPL, the power series defining its exponenti
may be split into even and odd powers as

etA5(
j 50

1`
t2 jA2 j

~2 j !!
1(

j 50

1`
t2 j 11A2 j 11

~2 j 11!!
,

where the first sum belongs toJ and the second belongs toL.
Also, if APL, we may apply corollary 4 and the Cayley–Hamilton theorem to write

Ar~A2k1C2A2k221¯1C2k22A21C2kI !50

or

An52C2An222¯2C2k22An2~2k22!2C2kA
r .

As a consequence, ifn is even~odd!, r is also even~odd! andAn12 j is a linear combination of the
successive even~odd! powers ofA, from Ar(Ar 11) up to An22(An21).

The coefficients in this linear combination may be obtained recursively from the coeffic
appearing in the characteristic polynomial ofA. To see these recurrence relations we index
coefficients so that if

An52~C2!0An222¯2~C2k22!0An2~2k22!2~C2k!0Ar ,

then

An12 j52~C2! jA
n222¯2~C2k22! jA

n2~2k22!2~C2k! jA
r ,

An12 j 1152~C2! jA
n212¯2~C2k22! jA

n2~2k23!2~C2k! jA
r 11.

A simple calculation shows that
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~C2! j5~C2!0~C2! j 211~C4! j 21 ,

~C4! j5~C4!0~C2! j 211~C6! j 21 ,

A

~C2k22! j5~C2k22!0~C2! j 211~C2k! j 21 ,

~C2k! j5~C2k!0~C2! j 21 .

This was the approach used by Zeni and Rodrigues in Ref. 4 and by Barut, Zeni, and Lau
Ref. 5 to obtain closed forms for the exponential ofSO(1,3), the Lorentz group, and forSO(p,q)
whenp1q56. We point out that the closed forms presented in Barut, Zeni, and Laufer,5 for the
orthogonal group are only valid when a certain discriminant is nonzero, which corresponds
case when one does not allow repeated eigenvalues for the matrixA. Using the Putzer’s method
finding a closed form for the exponential of a matrixA is a simple and clear process, as long
there are methods to evaluate its eigenvalues. In the next section we illustrate Putzer’s met
particular Lie algebras ofP-skew-symmetric matrices.

III. APPLICATIONS OF PUTZER’S METHOD

In this section we revisit an old method to calculate the exponential of a square matrixA. The
following theorem can be directly derived from the original work of Putzer,6 later referred as the
Putzer’s method. Although this method has been around for more than three decades, it
been fully incorporated into the literature. Among the few references we could find are Apo9

and, more recently, Horn and Johnson.10

Theorem 5 „Putzer’s theorem…: If ln1C1ln211¯1Cn21l1Cn50 is the characteristic
polynomial of a square matrix A, then

eAt5 f 1~ t !I 1 f 2~ t !A21¯1 f n~ t !An21,

where the vector functionj5@ f 1 f 2¯ f n#T is the solution of the differential equation

x~n!1C1x~n21!1¯1Cn21ẋ1Cnx50 ~8!

that satisfies

x~0!5e1 , ẋ~0!5e2 ,...,x~n21!~0!5en .

Remark 6:It is clear from Putzer’s theorem that the coefficient functionsf i , i 51,2,...,n, of
the polynomial representation of the matrix exponentialetA, are linearly independent solutions o
the samenth order linear differential equation with constant coefficients. The roots of the as
ated characteristic polynomial are the eigenvalues ofA. So, if one knows the eigenvalues ofA,
finding a closed form foretA reduces to differentiation of elementary functions and solvin
system ofn algebraic linear equations inn unknowns, having a coefficient matrix which
invertible. Although the eigenvalues of a generaln3n matrix, with n.4, cannot be determined
analytically, for matrices with additional structure it may be possible to compute directly
eigenvalues even whenn.4. In particular, for matrices with a symmetric spectrum, like the o
presented in Sec. II, it is possible to compute directly the eigenvalues of matrices up to or
covering a range of very interesting cases.

To compute the polynomial representation ofetA, when

ln1C1ln211¯1Cn21l1Cn50,
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is the characteristic polynomial ofA, it is an immediate consequence of Putzer’s theorem that
simply has to follow the steps outlined in the following algorithm:

~1! Construct a fundamental set of solutions,$w1(t),w2(t),...,wn(t)% of the scalar differential
equation

x~n!1C1x
~n21!1¯1Cn21ẋ1Cnx50.

~This is a relatively straightforward matter if one knows the eigenvalues ofA.!
~2! Construct the invertible matrix

M5F w1~0! w2~0! ... wn~0!

ẇ1~0! ẇ2~0! ... ẇn~0!

A A ... A

w1
~n21!~0! w2

~n21!~0! ... wn
~n21!~0!

G.
~3! Compute the 13n matrix function

@w1~t! w2~t! ¯ wn~t!#M
21.

~4! The coefficientsf 1(t), f 2(t),...,f n(t) for the polynomial representation ofetA form the row of
the matrix in step~3!.

Next we illustrate the use of this algorithm for finding closed forms for the exponential o
infinitesimal generators of some matrix Lie groups, with emphasis in those important in ph
Our first example was chosen to complement the result presented in Barut, Zeni, and Lauf5 As
already mentioned earlier, their results are only valid when the matrix to be exponentiate
distinct eigenvalues. Here we consider the repeated eigenvalues case. We also present on
three nondegenerated cases for the exponential of infinitesimal generators of the 12-dime
symplectic groupSP(3,R).

Any mathematical software package like Mathematica, Maple or Matlab may be used
cessfully to work out other examples. In some cases the formulas may be further simp
simply by multiplying by det(M) or some factor in det(M). This seems to play the role of th
discriminant in Zeni and Rodrigues4 and Barut, Zeni, and Laufer.5

In the following we assume thata, b, andc are nonzero real numbers.
Example 1: Infinitesimal generators of the orthogonal groupSO(2,4). If s(A)

5$6 ib,6 ib,6c%, then

etA5 f 1~ t !I 1 f 2~ t !A1 f 3~ t !A21 f 4~ t !A31 f 5~ t !A41 f 6~ t !A5,

where

f 1~ t !5
c2~2b21c2!

~b21c2!2 cosbt1
bc2

2~b21c2!
t sinbt1

b4

~b21c2!2 coshct,

f 2~ t !52
c2

2~b21c2!
t cosbt1

c2~5b213c2!

2b~b21c2!2 sinbt1
b4

c~b21c2!2 sinhct,

f 3~ t !52
2b2

~b21c2!2 cosbt2
b22c2

2b~b21c2!
t sinbt1

b2

~b21c2!2 coshct,

f 4~ t !5
b22c2

2b2~b21c2!
t cosbt2

5b42c4

2b3~b21c2!2 sinbt1
2b2

c~b21c2!2 sinhct,

f 5~ t !52
1

~b21c2!2 cosbt2
1

2b~b21c2!
t sinbt1

1

~b21c2!2 coshct,
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f 6~ t !5
1

2b2~b21c2!
t cosbt2

3b21c2

2b3~b21c2!2 sinbt1
1

c~b21c2!2 sinhct.

Example 2: Infinitesimal generators of the symplectic groupSP(3,R). If s(A)5$a6 ib,
2a6 ib,6ci%, then

etA5 f 1~ t !I 1 f 2~ t !A1 f 3~ t !A21 f 4~ t !A31 f 5~ t !A41 f 6~ t !A5,

where

f 1~ t !5
c2~22a212b21c2!

~b21~a2c!2!~b21~a1c!2!
coshat cosbt

1
c2~a41b2~b21c2!2a2~6b21c2!!

2ab~b21~a2c!2!~b21~a1c!2!
sinhat sinbt

1
~a21b2!2

2~b21~a2c!2!~b21~a1c!2!
~cosct1sinct!,

f 2~ t !5
2c2~5a41b2~b21c2!2a2~10b213c2!!

2a~a21b2!~b21~a2c!2!~b21~a1c!2!
sinhat cosbt

1
c2~a415b413b2c22a2~10b21c2!!

2b~a21b2!~b21~a2c!2!~b21~a1c!2!
coshat sinbt

1
~a21b2!2

2c~b21~a2c!2!~b21~a1c!2!
~cosct2sinct!,

f 3~ t !5
2~a22b2!

~b21~a2c!2!~b21~a1c!2!
coshat cosbt

1
2a416a2b22b41c4

2ab~b21~a2c!2!~b21~a1c!2!
sinhat sinbt

1
22~a22b2!

~b21~a2c!2!~b21~a1c!2!
~cosct1sinct!,

f 4~ t !5
5a4210a2b21b42c4

2a~a21b2!~b21~a2c!2!~b21~a1c!2!
sinhat cosbt

1
2a4110a2b225b41c4

2b~a21b2!~b21~a2c!2!~b21~a1c!2!
coshat sinbt

1
22~a22b2!

c~b21~a2c!2!~b21~a1c!2!
~cosct2sinct!,

f 5~ t !5
21

~b21~a2c!2!~b21~a1c!2!
coshat cosbt

1
a22b22c2

2ab~b21~a2c!2!~b21~a1c!2!
sinhat sinbt

1
1

2~b21~a2c!2!~b21~a1c!2!
~cosct1sinct!,
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f 6~ t !5
23a21b21c2

2a~a21b2!~b21~a2c!2!~b21~a1c!2!
sinhat cosbt

1
a223b22c2

2b~a21b2!~b21~a2c!2!~b21~a1c!2!
coshat sinbt

1
1

2c~b21~a2c!2!~b21~a1c!2!
~cosct2sinct!.
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Second-order second-degree Painleve ´ equations related
with Painleve´ I–VI equations and Fuchsian-type
transformations

U. Muğana) and A. Sakka
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

~Received 3 February 1998; accepted for publication 2 April 1999!

One-to-one correspondence between the Painleve´ I–VI equations and certain
second-order second-degree equations of Painleve´ type is investigated. The trans-
formation between the Painleve´ equations and second-order second-degree equa-
tions is the one involving the Fuchsian-type equation. ©1999 American Institute
of Physics.@S0022-2488~99!01507-8#

I. INTRODUCTION

Painlevé,1 Gambier,2 and Fuchs3 addressed a question raised by E. Picard concerning
second-order first-degree ordinary differential equations of the form

v95F~z,v,v8!, ~1.1!

whereF is rational inv8, algebraic inv, and locally analytic inz, and have the property that a
movable singularities of all solutions are poles. Movable means that the position of the sing
ties varies as a function of initial values. A differential equation is said to have the Pai´
property if all solutions are single valued around all movable singularities. Within the Mo¨bius
transformation, Painleve´ and his school found 50 such equations. Among all these equations
them are irreducible and define classical Painleve´ transcendents, PI, PII,...,PVI,4 and the remaining
44 equations are either solvable in terms of known functions or can be transformed into one
6 equations. These equations maybe regarded as the nonlinear counterparts of some
special equations. For example, PII has solution which has similar properties as Airy’s funct5

Although the Painleve´ equations were discovered from strictly mathematical considerations,
have appeared in many physical problems, and possess a rich internal structure. The prope
the solvability of the Painleve´ equations have been extensively studied in the literature.6–11

The Riccati equation is the only example for the first-order first-degree equation which h
Painlevéproperty. Before the work of Painleve´ and his school, Fuchs3,4 considered the equation o
the form

F~z,v,v8!50, ~1.2!

whereF is polynomial inv andv8 and locally analytic inz, such that the movable branch poin
are absent, that is, the generalization of the Riccati equation. Briot and Bouquet4 considered the
subcase of~1.2!, that is, the first-order binomial equations of degreemPZ1 :

~v8!m1F~z,v !50, ~1.3!

whereF(z,v) is a polynomial of degree at most 2m in v. It was found out that there are six type
of equations of the form~1.3!. But, all these equations are either reducible to a linear equatio
solvable by means of elliptic functions.4 Second-order binomial-type equations of degreem>3,

a!Electronic mail: mugan@fen.bilkent.edu.tr
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~v9!m1F~z,v,v8!50, ~1.4!

whereF is polynomial inv andv8 and locally analytic inz, were considered by Cosgrove,12 who
found out that there are nine classes. Only two of these classes can have an arbitrary degrem, and
the others can have the degrees of three, four, and six. As in the case of first-order binomi
equations, all nine classes are solvable in terms of the first, second, and fourth Painleve´ transcen-
dents, elliptic functions, or by quadratures. Chazy,13 Garnier,14 and Bureau15 considered the third-
order differential equations possessing the Painleve´ property of the following form:

v-5F~z,v,v8,v9!, ~1.5!

whereF is assumed to be rational inv,v8,v9 and locally analytic inz. But, in Ref. 15 the specia
form of F(z,v,v8,v9),

F~z,v,v8,v9!5 f 1~z,v !v91 f 2~z,v !~v8!21 f 3~z,v !v81 f 4~z,v !, ~1.6!

where f k(z,v), k51,...,4, are polynomials inv of degreek with analytic coefficients inz, was
considered. In this class, no new Painleve´ transcendent was discovered since, and all of them
be solved either in terms of known functions or one of the six Painleve´ transcendents.

Second-order second-degree Painleve´ type equations of the following form,

~v9!25E~z,v,v8!v91F~z,v,v8!, ~1.7!

where E and F are assumed to be rational inv,v8 and locally analytic inz, were subject the
articles.16,17 A special case of~1.7!, given as

v95M ~z,v,v8!1AN~z,v,v8!, ~1.8!

was considered in Ref. 16, whereM andN are polynomials inv8 of degree 2 and 4, respectively
rational inv, and locally analytic inz, and no new Painleve´ transcendent was found. In Ref. 1
the special form of~1.7!, E50 and thusF polynomial inv andv8, was considered and six distinc
classes of equations denoted by SD-1,...,SD-VI, were obtained by using thea-method. Also, these
classes can be solved in terms of classical Painleve´ transcendents~PI,...,PVI!, elliptic functions, or
solutions of linear equations.

Let v(z) be a solution of any of the 50 Painleve´ equations, as listed by Ince,4 each of which
takes the form

v95P2~v8!21P1v81P0 , ~1.9!

where P0 ,P1 ,P2 are functions ofv, z, and a set of parametersa. The transformation, that is
Lie-point symmetry, which preserves the Painleve´ property of ~1.9!, of the form u(z;â)
5 f „v(z:a),z… is the Möbius transformation:

u~z;â !5
a1~z!v1a2~z!

a3~z!v1a4~z!
, ~1.10!

where v(z;a) solves ~1.9! with a set of parametersa and u(z;â) solves ~1.9! with a set of
parametersâ. Lie-point symmetry can be generalized by involvingv8(z;a), that is, the transfor-
mation of the formu(z;â)5F„v8(z;a),v(z;a),z…. The only transformation which containsv8
linearly is the one involving the Riccati equation, that is,

u~z;â !5
v81av21bv1c

dv21ev1 f
, ~1.11!

wherea,b,c,d,e,fare functions ofz only.
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In Ref. 6, the transformation of type~1.11! was used and the aim was to finda,b,c,d,e,fsuch
that ~1.11! defines a one-to-one invertible map between solutionsv of ~1.9! and solutionsu of
some second-order equations of the Painleve´ type. An algorithmic method was developed
investigate the transformation properties of the Painleve´ equations, and some new second-deg
equations of Painleve´ type related with PIII and PVI were also found. Therefore, second-de
equations are important in determining the transformation properties of the Painleve´ equations.18,6

Moreover, second-degree equations of Painleve´ type appear in physics.19–21Furthermore, second
degree equations also appear as the first-integral of some of the third-order Painleve´-type equa-
tions.

Instead of considering the transformation of the form~1.11! one may consider the following
transformation:

u~z;â !5
~v8!m1( j 51

m Pj~z,v !~v8!m2 j

( j 51
m Qj~z,v !~v8!m2 j , ~1.12!

wherePj ,Qj are polynomials inv, whose coefficients are meromorphic functions ofz and satisfy
the Fuchs theorem4,22 concerning the absence of the movable critical points. A second-o
second-degree algebraic differential equation of the form

a1~v9!21a2v9v81a3v9v1a4~v8!21a5v8v1a6v250, ~1.13!

whereaj , j 51,2,...,6, are meromorphic functions ofz, was considered by P. Appell.23 In Ref. 22,
it was shown that Appell’s condition for solvability of~1.13! is a necessary and sufficient cond
tion for ~1.13! to have its solutions free of movable branch points. Also, in Ref. 22, some a
gous conditions were applied to irreducible first-order algebraic equations of the second d
and necessary and sufficient conditions for the solutions of such equations to be free of m
branch points were obtained. A first-order algebraic differential equation of degreen>1 is given
as

a1~z,v !~v8!n1a2~z,v !~v8!~n21!1¯1an21~z,v !v81an~z,v !50, ~1.14!

where the functionsai(z,v), i 51,...,n, are assumed to be polynomials inv, whose coefficients are
analytic functions ofz. The necessary and sufficient conditions for the solutions of~1.14! to be
free from movable branch points are given by the Fuchs theorem@Ref. 4~Chap. XIII! and Ref. 22
~theorem 1.1!#. The Fuchs theorem shows that, apart from the other conditions, the irredu
form of the first-order algebraic differential equation of the second degree is

a1~z!~v8!21@a2~z!v21a3~z!v1a4~z!#v81@a5~z!v41a6~z!v31a7~z!v21a8~z!v1a9~z!#50,
~1.15!

whereai(z), i 51,2,...,9, are analytic functions ofz anda1(z)Þ0. Let

F~v !ªA0v41A1v31A2v21A3v1A4 , ~1.16!

where

A054a1a52a2
2, A154a1a622a2a3 ,

A254a1a722a2a42a3
2, A354a1a822a3a4 , ~1.17!

A454a1a92a4
2,

It is known that whenF(v)Þ0, there are unique monic polynomialsF1(v),F2(v) such that

F~v ![A~z!F1~v !@F2~v !#2, ~1.18!
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whereA(z) is an analytic function andF1(z) has no multiple roots. In Ref. 22 it was show
~theorem 6.2! that the solutions of the equation~1.15! are free of movable branch points if an
only if the following conditions hold:

~ i ! F1~v ! divides G1~v !ª~a2v21a3v1a4!
]F1

]v
22a1

]F1

]z
,

~ i i ! A050 and A1Þ0 imply a250, ~1.19!

~ i i i ! A05A15A250 and A3Þ0 imply a250.

The conditions of the Fuchs theorem are satisfied if and only if the conditions~1.19! are satisfied.
In this article, we investigate one-to-one correspondence between PI–PVI and some s

order second-degree Painleve´-type equations such that the transformation involving Eq.~1.15! is
used and given by

u5
~v8!21~a2v21a1v1a0!v81b4v41b3v31b2v21b1v1b0

~c2v21c1v1c0!v81d4v41d3v31d2v21d1v1d0
, ~1.20!

whereaj ,bk ,cj ,dk , j 50,1,2,k50,1,2,3,4, are functions ofz and a set of parametersa. By using
the transformations of the form~1.20!, second-order second-degree Painleve´-type equations which
are labeled as SD-I.a, SD-I.b, SD-I.c, SD-I.d, and SD-I.e in Ref. 17, can be obtained from
PIII and PV, PIV, PII, PI, respectively. In the following sections, we first present the procedu
obtain these known equations, and for each Painleve´ equation we provide an example of a secon
order second-degree Painleve´-type equation that has not been considered in the literature.

The procedure used to obtain second-degree Painleve´-type equations and one-to-one corr
spondence with PI–PVI is as follows: Given Eq.~1.9!, determineaj ,bk ,cj ,dk , j 50,1,2,3,k
50,1,2,3,4, by requiring that~1.20! defines a one-to-one map between the solutionv of ~1.9! and
solution u of some second-degree equation of the Painleve´ type. Let Ajªcju2aj , Bkªdku
2bk. Then the transformation~1.20! can be written as

~v8!25~A2v21A1v1A0!v81B4v41B3v31B2v21B1v1B0 . ~1.21!

It should be noted that if Eq.~1.21! is reducible, that is, if there exits a nontrivial factorizatio
then it can be reduced to a Riccati equation. If it is not reducible, then its solutions are fr
movable branch points provided that the conditions given in~1.19! are satisfied. Differentiating
Eq. ~1.21! and using~1.9! to replacev9 and ~1.21! to replace (v8)2, one gets

Fv81C50, ~1.22!

where

F5~P122A2v2A1!~A2v21A1v1A0!1P2~A2v21A1v1A0!212P024B4v32~3B31A28!v2

2~2B21A18!v2~B11A08!12P2~B4v41B3v31B2v21B1v1B0!,
~1.23!

C5~B4v41B3v31B2v21B1v1B0!@P2~A2v21A1v1A0!12P122A2v2A1#

2P0~A2v21A1v1A0!2~B48v41B38v31B28v21B18v1B08!.

There are two cases to be distinguished:
~I! F50: Equation~1.22! becomes

C50. ~1.24!
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If the solutions of the equation~1.21! are free of movable branch points, that is, the conditio
given in ~1.19! are satisfied, then one obtains the Painleve´-type equation of degreen.1 related
with PI–PVI equations. To obtain the second-degree Painleve´-type equations, one should redu
the equation~1.24! to a linear equation inv. If ~1.24! is reduced to an equation which is quadra
in v, then one obtains the second-order fourth-degree Painleve´-type equations related with PI–
PVI, which are not considered in this article. Hence, one can findaj ,bk ,cj ,dk such that~1.24!
reduces to a linear equation inv,

A~u8,u,z!v1B~u8,u,z!50, ~1.25!

then, substitutev52B/A into Eq.~1.21! to determine the second-order second-degree equatio
the Painleve´ type for u.

~II ! FÞ0: If F divides C, then ~1.21! can be reduced to a Riccati equation and hence
solutions are free of movable branch points. Then, one can substitutev852C/F in Eq. ~1.21!
and obtain the following equation forv:

C21~A2v21A1v1A0!FC2F2~B4v41B3v31B2v21B1v1B0!50. ~1.26!

Finding aj , bk , cj , anddk such that~1.26! reduces to a quadratic equation inv,

A~u8,u,z!v21B~u8,u,z!v1C~u8,u,z!50. ~1.27!

Solving the equation~1.27! for v and substituting into equation~1.22! yields a second-orde
second-degree Painleve´-type equation foru.

It turns out that PI admits transformations discussed in cases I and II, and PII–PVI admi
transformations of case II.

Second-order second-degree Painleve´-type equations were studied mainly by Bureau a
Cosgrove.16,17 But, as mentioned before, in both articles the special form of the second-d
Painlevé-type equations was considered, and no new Painleve´ transcendent was found. In Refs. 2
and 25 the transformation~1.11! was used to obtain one-to-one correspondence between PI
and certain second-degree Painleve´-type equations. Some of these second-degree equations
been obtained previously, but most of them had not been considered in the literature before.
article, we investigate the transformation of type~1.20! to obtain the one-to-one corresponden
between PI–VI and the second-order second-degree Painleve´-type equations. By using the trans
formation of type~1.11! and the procedure described above, it is possible to obtain all of
second-degree equations given in Ref. 17 except the ones which can be solvable in te
elliptic functions or solutions of linear equations. In addition to known equations which are re
with Painlevéequations through the transformation~1.20!, it is possible to obtain some new
second-degree equations of the Painleve´ type. Since the calculations are extremely tedious,
new second-degree Painleve´-type equation for each Painleve´ equation, PI–PVI, is given. Through
out this article8 denotes the derivative with respect toz and• denotes the derivative with respe
to x.

II. PAINLEVÉ I

Let v(z) be a solution of PI equation,

v956v21z. ~2.1!

Then, for PI the equation~1.22! takes the form of

~f3v31f2v21f1v1f0!v81c5v51c4v41c3v31c2v21c1v1c050, ~2.2!

where
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f352~A2
212B4!, f25A2813B313A1A2212,

f15A1812B21A1
212A0A2 , f05A081B11A0A122z,

c552A2B4 , c45B481A1B412A2B316A2 , ~2.3!

c35B381A1B312A2B216A1 , c25B281A1B212A2B116A01zA2 ,

c15B181A1B112A2B01zA1 , c05B081A1B01zA0 .

Case I: F50: One should choosecj50, j 50,1,2, dk50, k51,2,3,4,b45 1
2a2

2, b352 1
3a28

1a1a224, b252 1
2a181 1

2a1
21a0a2 , b152a081a0a122z. One can always absorbb0 andd0 in u

by a proper Mo¨bius transformation. Hence, without loss of generality, one can setb050 andd0

52. The only possibility to reduce the equationC50 to a linear equation inv is to setc5

5c45c35c250. Therefore, one obtainsa25a15a05b45b250, b3524, and b1522z.
Then the equation~1.20! becomes

2u5~v8!224v322zv, ~2.4!

and the linear equation forv reads

v1u850. ~2.5!

Equation~2.4! with the condition~2.5! satisfies corollary 6.3 in Ref. 22, and hence its solutions
free of movable branch points. By following the procedure discussed in the Introduction, on
get the following second-order second-degree equation foru(z):

~u9!2524~u8!322~zu82u!. ~2.6!

Equation~2.6! was first obtained by Cosgrove17 and labeled as SD-I.e.
Case II: FÞ0: As an example, letf i50, i 51,2,3, f0Þ0, andc l50, l 52,3,4,5. These

choices imply thatAj50, j 50,1,2,B45B250, andB354. Then, Eq.~1.26! becomes

~B18v1B08!22~B122z!2~4v31B1v1B0!50. ~2.7!

To reduce the equation~2.7! to a quadratic equation forv, one has to taked1Þ0 and, hence,
without loss of generality,b150 andd151. Moreover,d0 andb0 are the solutions of the follow-
ing equations:

d08~b0822zd08!50, ~d08!214d0
31b050, ~b08!224z2~d08!250. ~2.8!

Here, we only consider the cased0850; then d05m and b0524m3, where m is a constant.
Therefore, the equations~1.21! and ~1.22! become

~v8!254v31uv1m~u14m2! ~2.9!

and

v85
2u8

~u22z!
~v1m!, ~2.10!

respectively, and the quadratic equation forv takes the form of

4~u22z!2v22@~u8!214m~u22z!2#v2m~u8!21~u14m2!~u22z!250. ~2.11!
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Let u(z)522(ex/(y21)16m2) andz5ex26m2. Then the equations~2.9! and~2.11! give one-
to-one correspondence between solutionsv(z) of PI and solutionsy(x) of the following second-
order second-degree Painleve´-type equation

$4y~y21!~ ÿ2 ẏ!2~ ẏ2y11!@~7y24!ẏ15y~y21!#112me2xy3~y21!2%2

5~y12!2$@~ ẏ2y11!2112me2xy2~y21!2#2132e5xy4~y21!3%. ~2.12!

III. PAINLEVÉ II

Let v(z) be a solution of PII equation

v952v31zv1a. ~3.1!

Then, for PII, the equation~1.22! takes the following form:

~f3v31f2v21f1v1f0!v81c5v51c4v41c3v31c2v21c1v1c050, ~3.2!

where

f354~B41 1
2A2

221!, f25A2813B313A1A2 ,

f15A1812B212A0A21A1
222z, f05A081B11A0A122a,

c552A2~B411!, c45B481A1B412A2B312A1 , ~3.3!

c35B381A1B312A2B212A01zA2 , c25B281A1B212A2B11zA11aA2 ,

c15B181A1B112A2B01zA01aA1 , c05B081A1B01aA0 .

Here, we only consider the casef i50, i 51,2,3,f0Þ0, andc l50, l 53,4,5.c550 implies that
eitherA250 or B4521.

Case i: If A250, then one obtainsA15A050, B451, B350, B25z and f05B122a, c2

51, c15B18 , c05B08 . With these choices, the equation~1.26! yields

~v21B18v1B08!22~B122a!2~v41zv21B1v1B0!50. ~3.4!

To reduce the equation~3.4! to a quadratic equation inv, one possibility is to set the coefficient
of v4 and v3 to zero. Then, one obtainsB152a1e, wheree561, and by using the prope
Möbius transformation, one may takeB052u1 1

4z
2. Hence, the equations~1.21! and ~1.22! be-

come

~v8!25v41zv21~2a1e!v12u1
z2

4
~3.5!

and

v85eS v212u81
z

2D , ~3.6!

respectively. The quadratic equation inv is

4u8v22~2a1e!v14~u8!212~zu82u!50. ~3.7!

The equations~3.5! and ~3.7! give one-to-one correspondence between solutionsv(z) of PII and
solutionsu(z) of the equation
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~u9!2524~u8!322u8~zu82u!1 1
16~2a1e!2. ~3.8!

The equation~3.8! was first obtained by Cosgrove17 and labeled as SD-I.d.
Case ii: If B4521, then one obtainsA252e, A150, A05ez, B350, B252z and f0

5B122a1eÞ0, c254eB112ea21, c15B1814eB01ez2, c05B081eaz, where e561.
Then the equation~1.26! becomes

~c2v21c1v1c0!212ef0~v21 1
2z!~c2v21c1v1c0!1f0

2~v41zv22B1v2B0!50.
~3.9!

To reduce the equation~3.9! to a quadratic equation inv one may set the coefficients ofv4 andv3

to zero. Thus one obtainsB150, and without loss of generality one may takeB05 1
4(u2z2).

Therefore, the equations~1.21! and ~1.22! give

~v8!25e~2v21z!v82v42zv21 1
4~u2z2!, ~3.10!

and

v85
e

~2a2e! F ~2a2e!v21uv1
e

4
u81

1

2
~2a2e!zG , ~3.11!

respectively, and the quadratic equation inv is

~4uv1eu8!254~2a2e!2u. ~3.12!

The equations~3.10! and~3.12! give one-to-one correspondence between solutionsv(z) of PII and
solutionsu(z) of the following second-order second-degree Painleve´-type equation:

@4uu923~u8!218zu214~2a2e!2u#2564u5. ~3.13!

IV. PAINLEVÉ III

Let v(z) be a solution of PIII equation

v95
1

v
~v8!22

1

z
v81gv31

1

z
~av21b!1

d

v
. ~4.1!

Then, for PIII, the equation~1.22! takes the following form:

~f4v41f3v31f2v21f1v1f0!v81c6v61c5v51c4v41c3v31c2v21c1v1c050,
~4.2!

where

f452g22B42A2
2, f35

2a

z
2B32A1A22A282

1

z
A2 , f252S A181

1

z
A1D ,

f15
2b

z
1B11A0A12A082

1

z
A0 , f05A0

212B012d,

c652A2~B41g!, c552S B481
2

z
B41A2B31gA11

a

z
A2D ,

c45A0B42B382
2

z
B32A2B22gA02

a

z
A1 , ~4.3!
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c35A0B32B282
2

z
B22A2B12

b

z
A22

a

z
A0 ,

c25A0B22B182
2

z
B12A2B02

b

z
A12dA2 ,

c15A0B12B082
2

z
B02

b

z
A02dA1 , c05A0~B02d!.

As an example, letA050, A152/z, B1522b/z, andB052d. Then one getsf05f15f250
and c05c15c250. Moreover, if f45c650, then eitherA250, B45g or A252Ag, B4

52g, whereg can be taken with either sign.
Case i: If A250, B45g, then equation~1.26! takes the following form:

~c5v21c4v1c3!21
2

z
f3v~c5v21c4v1c3!2f3

2S gv41B3v31B2v22
2b

z
v2d D50.

~4.4!

To reduce the equation~4.4! to a quadratic equation inv one may set the coefficients ofv4 andv3

to zero. Then, one obtainsB35(2/z)(a12Ag), and without loss of generality, one may tak
B25u. With these choices the quadratic equation inv takes the following form,

8@gz3u812~a1Ag!~a13Ag!#v218@~a12Ag!~zu81u!14gb#v

1z2~zu812u!2116gdz250, ~4.5!

and the transformations~1.21! and ~1.22! become

~v8!25
2

z
vv81gv41

2

z
~a12Ag!v31uv22

2b

z
v2d ~4.6!

and

v85
21

4zAg
@4gzv214~a1Ag!v1z2u812zu#, ~4.7!

respectively. Then, the transformations~4.5! and ~4.6! give one-to-one correspondence betwe
solutionsv(z) of PIII and solutionsy(x) of the following second-order second-degree Painle´-
type equation

x2~ ÿ!2524~ ẏ!2~xẏ2y!2
gd

16
~xẏ2y!1

b

16
~a12Ag!ẏ1

1

256
@gb22d~a12Ag!2#,

~4.8!

wherey(x)5 1
16@z2u(z)11# andx5z2. The equation~4.8! was first obtained by Cosgrove17 and

labeled as SD-I.b~with A150).
Case ii: A252Ag, B452g: The equation~1.26! takes the form of

~c5v21c4v1c3!21
2

z
f3v~Agzv11!~c5v21c4v1c3!

1f3
2S gv42B3v32B2v21

2b

z
v1d D50. ~4.9!
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One may set the coefficients ofv4 and v3 to zero in order to reduce the equation~4.9! to a
quadratic equation inv. Then, one obtainsB3522Ag/z, and without loss of generality one ca
takeB25u. Then, the equation~1.21! becomes

~v8!25
2

z
v~Agzv11!v82gv42

2Ag

z
v31uv22

2b

z
v2d. ~4.10!

By using the linear transformationy(x)5z2u(z)11, 2x5z2, and m5a22Ag, the equation
~1.22! can be written as

v85Agv21
1

z SAg

m
y11D v1

1

2m
~ ẏ22bAg!, ~4.11!

and the quadratic equation forv is

4y~gy2m2!v214z@Agy~ ẏ22bAg!12bm2#v1z2@~ ẏ22bAg!214dm2#50. ~4.12!

The equations~4.10! and ~4.12! give one-to-one correspondence between solutionsv(z) of PIII
and solutionsy(x) of the following equation:

x2@2y2ÿ2yẏ224~dm22gb2!y28b2m2#25~y214bmx!2@y~ ẏ!224~gy2m2!~dy1b2!#.
~4.13!

V. PAINLEVÉ IV

Let v(z) be a solution of PIV

v95
1

2v
~v8!21

3

2
v314zv212~z22a!v1

b

v
. ~5.1!

Then, for PIV the equation~1.22! takes the following form,

~f4v41f3v31f2v21f1v1f0!v81c6v61c5v51c4v41c3v31c2v21c1v1c050,
~5.2!

where

f453~12B42 1
2A2

2!, f358z22B322A1A22A28 ,

f254~z22a!2B22 1
2A1

22A0A22A18 , f152A08 , f05 1
2A0

21B012b,

c652 3
2A2~B411!, c552~B481 1

2A1B41 3
2A2B314zA21 3

2A1!,

c45 1
2A0B42B382 1

2A1B32 3
2A2B222~z22a!A22 3

2A024zA1 , ~5.3!

c35 1
2A0B32B282 1

2A1B22 3
2A2B122~z22a!A124zA0 ,

c25 1
2A0B22B182 1

2A1B12 3
2A2B02bA222~z22a!A0 ,

c15 1
2A0B12B082 1

2A1B02bA1 , c05 1
2A0~B022b!.

As an example, letA050 andB0522b. Then one getsf05f15c05c150. Moreover, setting
f45f35c65c550, one has the following two distinct cases:~i! A250, A150, B451, B3

54z or ~ii ! A252e, A154ez, B4521, B3524z, wheree561.
Case i: In this case Eq.~1.26! takes the form of
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~c4v21c3v1c2!22f2
2~v414zv31B2v21B1v22b!50. ~5.4!

To reduce the equation~5.4! to a quadratic equation inv, one may set the coefficients ofv4 and
v3 to zero. Then, one obtainsB254(z22a1e) and, hence, without loss of generality, one c
chooseB15u. Then the equations~1.21! and ~1.22! become

~v8!25v414zv314~z22a1e!v21uv22b ~5.5!

and

v85
2e

4
~4v218zv1u8!, ~5.6!

respectively. The equations~5.5! and

8@u818~a2e!#v2116~zu82u!v1~u8!2132b50 ~5.7!

give one-to-one correspondence between solutionsv(z) of PIV and solutionsu(z) of the follow-
ing equation:

~u9!254~zu82u!22 1
2@~u8!2132b#~u818a28e!. ~5.8!

The transformationu58(y2mz), wherem5 1
3(a2e), transforms the equation~5.8! to the fol-

lowing equation,

~y9!2524~y8!314~zy82y!212~6m22b!y824m~2m21b!, ~5.9!

which was first obtained by Cosgrove17 and labeled as SD-I.c.
Case ii: In this case Eq.~1.26! can be written as follows:

@~c41ef2!v21~c312ezf2!v1c2#25f2
2@~B214z2!v21B1v22b#. ~5.10!

It is clear that if one setsc41ef250, then the equation~5.10! reduces to a quadratic equation
v. Thus, one should takeB2524z2 and, without loss of generality,B15u. Then, the equations
~1.21! and ~1.22! become, respectively,

~v8!252ev~v12z!v82v424zv324z2v21uv22b ~5.11!

and

v85
e

12m
@12mv223~u28mz!v2~eu812zu24b!#, ~5.12!

wherem5 1
3(a1e). The equations~5.11! and

9u2v212u~3eu816zu212b272m2!v1~eu812zu24b!21288bm250 ~5.13!

give one-to-one correspondence between solutionsv(z) of PIV and solutionsu(z) of the follow-
ing second-order second-degree Painleve´-type equation:

@3uu922~u8!222e~zu22b112m2!u822~4z223e!u228~6m22b!zu116~6m22b!2#2

5227@u2216m~2m21b!#2@eu812zu12b212m2#. ~5.14!
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VI. PAINLEVÉ V

Let v(z) be a solution of PV:

v95
3v21

2v~v21!
~v8!22

1

z
v81

a

z2 v~v21!21
b~v21!2

z2v
1

g

z
v1

dv~v11!

v21
. ~6.1!

Then, for PV, Eq.~1.22! takes the form of

~f5v51f4v41f3v31f2v21f1v1f0!v81c7v71c6v6

1c5v51c4v41c3v31c2v21c1v1c050, ~6.2!

where

f55
2a

z2 2B42
1

2
A2

2, f453B41
3

2
A2

22
6a

z2 2A282
1

z
A2 ,

f352B31B21
1

2
A1

212A1A21A0A21A281
1

z
A22A182

1

z
A11

2

z2 @3a1b1gz1dz2#,

f252B11B21
1

2
A1

212A0A11A0A21A181
1

z
A12A082

1

z
A02

2

z2 @a13b1gz2dz2#,

f153B01
3

2
A0

21
6b

z2 1A081
1

z
A0 , f052S 2b

z2 1B01
1

2
A0

2D ,

c752
1

2
A2S B41

2a

z2 D , c65B4S 3

2
A21

1

2
A12

2

zD2
1

2
A2B31

a

z2 ~3A22A1!2B48 ,

~6.3!

c55B4S 1

2
A11

3

2
A01

2

zD1B3S 3

2
A21

1

2
A12

2

zD2
1

2
A2B2

2
A2

z2 ~3a1b1gz1dz2!1
a

z2 ~3A12A0!1B482B38 ,

c45B3S 1

2
A11

3

2
A01

2

zD1B2S 3

2
A21

1

2
A12

2

zD2
1

2
A2B12

1

2
A0B4

2
A1

z2 ~3a1b1gz1dz2!1
A2

z2 ~a13b1gz2dz2!1
3a

z2 A01B382B28 ,

c35B2S 1

2
A11

3

2
A01

2

zD1B1S 3

2
A21

1

2
A12

2

zD2
1

2
A2B02

1

2
A0B3

2
A0

z2 ~3a1b1gz1dz2!1
A1

z2 ~a13b1gz2dz2!2
3b

z2 A21B282B18 ,

c25B1S 1

2
A11

3

2
A01

2

zD1B0S 3

2
A21

1

2
A12

2

zD
1

A0

z2 ~a13b1gz2dz2!1
b

z2 ~A223A1!1B182B08 ,
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c15B0S 3

2
A01

1

2
A11

2

zD2
1

2
A0B11

b

z2 ~A123A0!1B08 , c05
21

2
A0S B02

2b

z2 D .

As an example, let

A15
22

z
~zA011!, A25

1

z
~zA012!,

~6.4!

B352S 2B213B114B02
2g

z
14d D , B45B212B113B02

2g

z
12d,

and letf05f15c05c150. Then, Eq.~7.2! can be written as

f5v81c7v21~c613c7!v2c250, ~6.5!

and the equation~1.26! can be written as

@c7v21~c613c7v2c21 1
2f5~A2v21A1v1A0!#2

5f5
2@~B41 1

4A2
2!v41~B31 1

2A1A2!v31~ 1
4B2A1

21 1
2A0A2!v2

1~B11 1
2A0A1!v1~B01 1

4A0
2!#. ~6.6!

Herec050 implies that eitherA050 or B052b/z2.
Case i: A050: Equations~6.4! and f05f15c150 imply that A1522/z, A252/z, and

B0522b/z2. If B45(m221)/z2, wherem512A2a andA2a can take either sign, and withou
loss of generalityB15(1/z2)(4u1gz2m216b), then Eq.~6.6! reduces to the following qua
dratic equation forv:

Av21Bv1C50, ~6.7!

where

A58m2@2~zu81u!1dz22m212b#1~4u2gz23m212b!2,

B52~4u2gz23m212b!@4~zu82u!1m222b#24m2~4u1gz2m216b!, ~6.8!

C5@4~zu82u!1m222b#218bm2.

The equations~1.21! and ~1.22! respectively become

~v8!25
1

z2 @2zv~v21!v81~m221!v41~4u2gz23m212b12!v3

2~8u12dz223m216b11!v21~4u1gz2m216b!v22b#, ~6.9!

and

v85
1

2mz
@2mA2av22~4u2gz23m212b12m!v2~4zu824u1m222b!#. ~6.10!

The equations~6.9! and~6.7! define one-to-one correspondence between solutionsv(z) of PV and
solutionsu(z) of the following second-order second-degree Painleve´-type equation:
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z2~u9!2524~u8!2~zu82u!22d~zu82u!22@d~m222b!2 1
4g

2#~zu82u!

1 1
2g~m212b!u81 1

8@g2~m222b!2d~m212b!2#. ~6.11!

The equation~6.11! was first obtained by Cosgrov17 and labeled as SD-I.b.
Case ii: B052b/z2: ThenA052(m21)/z, B152 1

2A0A1 , where (m21)2522b. With out
loss of generality, letB25(1/z2)@u26(m21)226(m21)2112gz22dz2#. Then Eq.~6.4! im-
plies thatB45(1/z2)(u2m2), B35(22/z2)@u1gz2m(2m21)#. With these choices, the equa
tion ~6.6! becomes

Av21Bv1C50, ~6.12!

where

A5u@u222~m212a!u1~m222a!2#,

B524mzuu822~u1gz!@u222~m212a!u1~m222a!2#, ~6.13!

C52@zu822m~u1gz!#21~u22dz212gz!~u1m222a!2.

The equation~1.21! can be written as follows,

@zv82~v21!~mv2m21!#25uv422~u1gz!v31~u22dz212gz!v2, ~6.14!

and the equation~1.22! becomes

v852
1

z~u1m222a!
$m~u2m212a!v2

1@zu82u22gmz1~2m21!~m222a!#v2~m21!~u1m222a!%. ~6.15!

Let u(z) be a solution of the following second-order second-degree equation of Painleve´ type:

@2uu92~u8!212du212gu22d~m222a!222g2~m212a!#2

58@u22gz~m222a!2#2$u~u8!21~2du1g2!

3@u222~m212a!u1~m222a!2#%. ~6.16!

Then Eqs.~6.12! and ~6.14! give one-to-one correspondence between solutionsv(z) of PV and
u(z) of the equation~6.16!.

VII. PAINLEVÉ VI

Let v(z) be a solution of PVI

v95
1

2 S 1

v
1

1

v21
1

1

v2zD ~v8!22S 1

z
1

1

z21
1

1

v2zD v8

1
v~v21!~v2z!

z2~z21!2 S a1
bz

v2 1
g~z21!

~v21!2 1
dz~z21!

~v2z!2 D . ~7.1!

Then, for PVI, Eq.~1.22! takes the form of

~f6v61f5v51f4v41f3v31f2v21f1v1f0!v81c8v8

1c7v71c6v61c5v51c4v41c3v31c2v21c1v1c050, ~7.2!
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where

f65
2a

z2~z21!22B42
1

2
A2

2, f552~z11!B41~z11!A2
22

4a~z11!

z2~z21!22A282
~2z21!

z~z21!
A2 ,

f45
z

~z21!
A22

~2z21!

z~z21!
~A12A2!1

1

2
A1

21A0A21~z11!A1A22
3

2
zA2

21B21~z11!B3

23zB41~z11!A282A181
2

z2~z21!2 @a~z214z11!1bz1~dz1g!~z21!#,

f35
z

~z21!
~A12A2!2

~2z21!

z~z21!
~A02A1!12A0A122zA1A212B122zB3

1~z11!A182A082zA282
4

z~z21!2 @~a1b!~z11!1~g1d!~z21!#,

f25
z

~z21!
~A02A1!1

~2z21!

z~z21!
A01

3

2
A0

22~z11!A0A12zA0A22
1

2
zA1

213B02~z11!B1

2zB22zA181~z11!A082
2

z~z21!2 @az1b~z214z11!1~gz1d!~z21!#,

f152F2~z11!B01~z11!A0
21

4b~z11!

~z21!2 1zA081
z

~z21!
A0G ,

f05zFB01
1

2
A0

21
2b

~z21!2G ,
c852

1

2
A2FB41

2a

z2~z21!2G ,
c75B4F ~z11!A21

1

2
A12

~2z21!

z~z21! G2
1

2
A2B31

a

z2~z21!2 @2~z11!A22A1#2B48 , ~7.3!

c65B4F3

2
~A02zA2!1

2z

~z21!
1

2~2z21!

z~z21! G1B3F ~z11!A21
1

2
A12

2~2z21!

z~z21! G
2

1

2
A2B21~z11!B482B381

a

z2~z21!2 @2~z11!A12A0#

2
A2

z2~z21!2 @a~z214z11!1bz1~dz1g!~z21!#,

c55B3F3

2
~A02zA2!1

2z

~z21!
1

2~2z21!

z~z21! G1B2F ~z11!A21
1

2
A12

2~2z21!

z~z21! G2
1

2
A2B1

2B4F1

2
zA11~z11!A01

2z

~z21!G1
2a~z11!

z2~z21!2 A02
A1

z2~z21!2 @a~z214z11!1bz

1~dz1g!~z21!#1
2A2

z~z21!2 @~a1b!~z11!1~g1d!~z21!#1~z11!B382zB482B28 ,
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c45B2F3

2
~A02zA2!1

2z

~z21!
1

2~2z21!

z~z21! G1B1F ~z11!A21
1

2
A12

2~2z21!

z~z21! G2
1

2
A2B0

2B3F1

2
zA11~z11!A01

2z

~z21!G1
1

2
zA0B42

A0

z2~z21!2 @a~z214z11!1bz

1~dz1g!~z21!#1
2A1

z~z21!2 @~a1b!~z11!1~g1d!~z21!#

2
A2

z~z21!
@az1b~z214z11!1gz~z21!1d~z21!#1~z11!B282zB382B18 ,

c35B1F3

2
~A02zA2!1

2z

~z21!
1

2~2z21!

z~z21! G1B0F ~z11!A21
1

2
A12

2~2z21!

z~z21! G1
1

2
zA0B3

2B2F1

2
zA11~z11!A01

2z

~z21!G1
2b~z11!

~z21!2 A21
2A0

z~z21!2 @~a1b!~z11!

1~g1d!~z21!#2
A1

z~z21!
@az1b~z214z11!1~gz1d!~z21!#1~z11!B182zB282B08 ,

c25B0F3

2
~A02zA2!1

2z

~z21!
1

2~2z21!

z~z21! G2B1F1

2
zA11~z11!A01

2z

~z21!G
1

1

2
zA0B21~z11!B082zB181

b

~z21!2 @2~z11!A12zA2#

2
A0

z~z21!
@az1b~z214z11!1~gz1d!~z21!#,

c15
b

~z21!2 @2~z11!A02zA1#1
1

2
zA0B12B0F ~z11!A01

1

2
zA11

2z

~z21!G2zB08 ,

c05
z

2
A0FB02

2b

~z21!2G .
As an example, let

A15
21

z~z21!
@~z221!A012#, A25

1

z~z21!
@~z21!A012#,

B35
21

z3~z21!
@z2~z221!B21z~z21!~z21z11!B11~z21!~z31z21z11!B022gz222d#,

~7.4!

B45
1

z3~z21!
@z2~z21!B21z~z221!B11~z21!~z21z11!B022gz22d#,

andf05f15c05c150. Then, the equation~7.2! takes the following form,

f6v81c8v21@c71~z11!c8#v1
1

z2 c250, ~7.5!

and the equation~1.26! can be written as
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S c8v21@c71~z11!c8#v1
1

z2 c21
1

2
f6~A2v21A1v1A0! D 2

5f6
2@~B41 1

4 A2
2!v41~B31 1

2 A1A2!v31~B21 1
4 A1

21 1
2 A0A2!v2

1~B11 1
2 A0A1!v1~B01 1

4 A0
2!#. ~7.6!

The equationc050 implies that eitherA050 or B052b/(z21)2.
Case i: A050: Then, the equationf050 implies thatB0522b/(z21)2 and then the equa

tions f15c150 are satisfied identically. LetB45(m221)/z2(z21)2, wherem512A2a and
A2a can take either sign, and without loss of generality, letB252@1/z2(z21)2#@4(z11)u
1(b2a1Aa)(3z11)1(g2d)(3z21)#. Then the equation~7.6! reduces to the following qua
dratic equation forv:

Av21Bv1C50,

A54m2@4z~z21!u814u12nz2k#1@4u22l~z21!1n2m2#2,
~7.7!

B52z@4u22l~z21!1n2m2#@4~z21!u824u2n#24m2z@4u12~g1b!~z21!1n14b#,

C5z2@4~z21!u824u2n#218bm2z2,

wherek5a2b1g2d2A2a11, l5a1d2A2a, and n5b1g2a2d1A2a. The equation
~1.21! can be written as

@z~z21!v82v~v21!#25m2v41@4u22l~z21!1n2m2#v32@4~z11!u13nz2k#v2

1z@4u12~g1b!~z21!1n14b#v22bz2, ~7.8!

and the equation~1.22! becomes

v85
1

2mz~z21!
$2mA2av22@4u22l~z21!1n2m212m#v2z@4~z21!u824u2n#%.

~7.9!

Equations~7.7! and ~7.8! give one-to-one correspondence between solutionsv(z) of PVI and
solutionsu(z) of the following second-order second degree equation of Painleve´ type:

z2~z21!2~u9!2524u8~zu82u!214~u8!2~zu82u!1k~u8!21l~g1b!~zu82u!

1 1
4@4~g2b!~m22l!1n2#u81 1

4@l2~g2b!1~g1b!2~m22l!#.

~7.10!

The equation~7.10! was first obtained by Cosgrove17 and labeled as SD-I.a.
Case ii: B052b/(z21)2: ThenA052(m21)/(z21), B05 1

4A0
2, andB152 1

2A0A1 , where
(m21)2522b. Without loss of generality, let

B25
1

z2~z21!2 @zu2m2~z214z11!12mz~z12!2~z21z21!12gz~z21!12d~z21!#.

~7.11!

Then one obtainsB45@1/z2(z21)2#(u2m2) and B35@21/z2(z21)2#@(z11)(u22m2)12mz
1l(z21)#, wherel52g12d21. With these choices the equation~7.6! yields the following
quadratic equation forv:
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Av21Bv1C50, ~7.12!

where

A5u@u222~m212a!u1~m222a!2#,

B52„4mz~z21!uu81@~z11!u1l~z21!#@u222~m212a!u1~m222a!2#…, ~7.13!

C52„z~z21!u82m@~z11!u1l~z21!#…21@zu12g~z21!21l~z21!#~u1m222a!2.

The equations~1.21! and ~1.22! become

@z~z21!v82mv21~mz2z1m!v2~m21!z#2

5uv42@~z11!u1l~z21!#v31@zu12g~z21!21l~z21!#v2, ~7.14!

and

v85
21

z~z21!~u1m222a!
$m~u2m212a!v21@z~z21!u82z~u1m222a!

2ml~z21!1m~m222a!~z11!#v2~m21!z~u1m222a!%, ~7.15!

respectively. Letu(z) be a solution of the following second-order second-degree equatio
Painlevétype:

@4z2u2u922z2u~u8!214zu2u81P4~u!#2

5F ~z11!

~z21!
u22l~m222a!G2

@4z2u~u8!21Q4~u!#,

P4~u!ªu41~l24g2m222a!u31@l2~m212a!1~l24g!~m222a!2#u2l2~m222a!2,

~7.16!

Q4~u!ª@u212~l24g!u1l2#@u222~m212a!u1~m222a!2#.

Then, the equations~7.12! and~7.14! gives one-to-one correspondence between solutionsv(z) of
PVI andu(z) of the equation~7.16!.

1P. Painleve´, Bull. Soc. Math. Fr.28, 214 ~1900!; Acta. Math.25, 1 ~1912!.
2B. Gambier, Acta Math.33, 1 ~1909!.
3R. Fuchs, Math. Ann.63, 301 ~1907!.
4E. L. Ince,Ordinary Differential Equations~Dover, New York, 1956!.
5N. P. Erugin, Dokl. Akad. Nauk BSSR2 ~1958!.
6A. S. Fokas and M. J. Ablowitz, J. Math. Phys.23, 2033~1982!.
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Classification of differential calculi on Uq„b1…, classical
limits, and duality

Robert Oeckl
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, United Kingdom

~Received 27 July 1998; accepted for publication 5 March 1999!

We give a complete classification of bicovariant first order differential calculi on
the quantum enveloping algebraUq(b1) which we view as the quantum function
algebraCq(B1). Here,b1 is the Borel subalgebra ofsl2 . We do the same in the
classical limitq→1 and obtain a one-to-one correspondence in the finite dimen-
sional case. It turns out that the classification is essentially given by finite subsets of
the positive integers. We proceed to investigate the classical limit from the dual
point of view, i.e., with ‘‘function algebra’’U(b1) and ‘‘enveloping algebra’’
C(B1). In this case there are many more differential calculi than coming from the
q-deformed setting. As an application, we give the natural intrinsic four-
dimensional calculus ofk-Minkowski space and the associated formal integral.
© 1999 American Institute of Physics.@S0022-2488~99!00807-5#

I. INTRODUCTION

One of the fundamental ingredients in the theory of noncommutative or quantum geom
the notion of a differential calculus. In the framework of quantum groups the natural notion i
of a bicovariant differential calculus as introduced by Woronowicz.1 Due to the allowance of
noncommutativity the uniqueness of a canonical calculus is lost. It is therefore desirable to c
the possible choices. The most important piece is the space of one-forms or ‘‘first order dif
tial calculus’’ to which we will restrict our attention in the following.~From this point on we will
use the term ‘‘differential calculus’’ to denote a bicovariant first order differential calculus.!

Much attention has been devoted to the investigation of differential calculi on quantum g
Cq(G) of function algebra type forG a simple Lie group. Natural differential calculi on matr
quantum groups were obtained by Jurco2 and Carow-Watamuraet al.3 A partial classification of
calculi of the same dimension as the natural ones was obtained by Schmu¨dgen and Schu¨ler.4 More
recently, a classification theorem for factorisable cosemisimple quantum groups was obtai
Majid,5 covering the generalCq(G) case. A similar result was obtained later by Baumann a
Schmitt.6 Also, Heckenberger and Schmu¨dgen7 gave a complete classification onCq(SL(N)) and
Cq(Sp(N)).

In contrast, forG not simple or semisimple the differential calculi onCq(G) are largely
unknown. A particularly basic case is the Lie groupB1 associated with the Lie algebrab1

generated by two elementsX,H with the relation@H,X#5X. The quantum enveloping algebr
Uq(b1) is self-dual, i.e., is nondegenerately paired with itself.8 This has an interesting conse
quence:Uq(b1) may be identified with~a certain algebraic model of! Cq(B1). The differential
calculi on this quantum group and on its ‘‘classical limits’’C(B1) andU(b1) will be the main
concern of this paper. We pay hereby equal attention to the dual notion of ‘‘quantum ta
space.’’

In Sec. II we obtain the complete classification of differential calculi onCq(B1). It turns out
that ~finite dimensional! differential calculi are characterized by finite subsetsI ,N. These sets
determine the decomposition into coirreducible~i.e., not admitting quotients! differential calculi
characterized by single integers. For the coirreducible calculi the explicit formulas for the
mutation relations and braided derivations are given.

In Sec. III we give the complete classification for the classical function algebraC(B1). It is
35880022-2488/99/40(7)/3588/16/$15.00 © 1999 American Institute of Physics
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essentially the same as in theq-deformed setting and we stress this by giving an almost one-to
correspondence of differential calculi to those obtained in the previous section. In contrast
ever, the decomposition and coirreducibility properties do not hold at all.~One may even say tha
they are maximally violated.! We give the explicit formulas for those calculi corresponding
coirreducible ones.

More interesting perhaps is the ‘‘dual’’ classical limit, i.e., we viewU(b1) as a quantum
function algebra with quantum enveloping algebraC(B1). This is investigated in Sec. IV. It turn
out that in this setting we have considerably more freedom in choosing a differential calculus
the bicovariance condition becomes much weaker. This shows that this dual classical limit
sense ‘‘unnatural’’ as compared to the ordinary classical limit of Sec. III. However, we can
establish a correspondence of certain differential calculi to those of Sec. II. The decompo
properties are conserved while the coirreducibility properties are not. We give the formulas f
calculi corresponding to coirreducible ones.

Another interesting aspect of viewingU(b1) as a quantum function algebra is the connect
to quantum deformed models of space–time and its symmetries. In particular, thek-deformed
Minkowski space coming from thek-deformed Poincare´ algebra9,10 is just a simple generalization
of U(b1). We use this in Sec. V to give a natural four-dimensional differential calculus. The
show ~in a formal context! that integration is given by the usual Lesbegue integral onRn after
normal ordering. This is obtained in an intrinsic context different from the standardk-Poincare´
approach.

A further important motivation for the investigation of differential calculi onU(b1) and
C(B1) is the relation of those objects to the Planck-scale Hopf algebra.11,12 This shall be devel-
oped elsewhere.

In the remaining parts of this introduction we will specify our conventions and pro
preliminaries on the quantum groupUq(b1), its deformations, and differential calculi.

A. Conventions

Throughout,k denotes a field of characteristic 0 andk(q) denotes the field of rational func
tions in one parameterq overk. k(q) is our ground field in theq-deformed setting, whilek is the
ground field in the ‘‘classical’’ settings. Within Sec. II one could equally well viewk as the
ground field withqPk* not a root of unity. This point of view is problematic, however, wh
obtaining ‘‘classical limits’’ as in Secs. III and IV.

The positive integers are denoted byN while the non-negative integers are denoted byN0 . We
defineq-integers,q-factorials, andq-binomials as follows:

@n#q5 (
i 50

n21

qi , @n#q! 5@1#q@2#q¯@n#q , F n
mG

q

5
@n#q!

@m#q! @n2m#q!
.

For a function of several variables~among themx! over k we define

~Ta,xf !~x!5 f ~x1a!, ~¹a,xf !~x!5
f ~x1a!2 f ~x!

a
,

with aPk and similarly overk(q)

~Qm,xf !~x!5 f ~qmx!, ~]q,xf !~x!5
f ~x!2 f ~qx!

x~12q!
,

with mPZ.
We frequently use the notion of a polynomial in an extended sense. Namely, if we ha

algebra with an elementg and its inverseg21 @as inUq(b1)# we will mean by a polynomial in
g,g21 a finite power series ing with exponents inZ. The length of such a polynomial is th
difference between highest and lowest degree.

If H is a Hopf algebra, thenHop will denote the Hopf algebra with the opposite product.
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B. Uq„b1… and its classical limits

We recall that, in the framework of quantum groups, the duality between enveloping al
U(g) of the Lie algebra and algebra of functionsC(G) on the Lie group carries over to
q-deformations. In the case ofb1 , theq-deformed enveloping algebraUq(b1) defined overk(q)
as

Uq~b1!5k~q!^X,g,g21& with relations,

gg2151, Xg5qgX,

DX5X^ 11g^ X, Dg5g^ g,

e~X!50, e~g!51, SX52g21X, Sg5g21

is self-dual. Consequently, it may alternatively be viewed as the quantum algebraCq(B1) of
functions on the Lie groupB1 associated withb1 . It has two classical limits, the envelopin
algebraU(b1) and the function algebraC(B1). The transition to the classical enveloping algeb
is achieved by replacingq by e2t andg by etH in a formal power series setting int, introducing
a new generatorH. Now, all expressions are written in the form( jaj t

j and only the lowest orde
in t is kept. The transition to the classical function algebra on the other hand is achieved by
q51. This may be depicted as follows:

The self-duality ofUq(b1) is expressed as a pairingUq(b1)3Uq(b1)→k with itself,

^Xngm,Xrgs&5dn,r@n#q!q2n~n21!/2q2ms ;n,r PN0 m,sPZ.

In the classical limit this becomes the pairingU(b1)3C(B1)→k,

^XnHm,Xrgs&5dn,rn!sm ;n,m,r PN0 sPZ. ~1!

C. Differential calculi and quantum tangent spaces

In this section we recall some facts about differential calculi along the lines of Ma
treatment in Ref. 5.

Following Woronowicz,1 first order bicovariant differential calculi on a quantum groupA ~of
function algebra type! are in one-to-one correspondence to submodulesM of kere,A in the
categoryA

AM of ~say! left crossed modules ofA via left multiplication and left adjoint coaction

axv5av, AdL~v !5v ~1!Sv ~3! ^ v ~2! ;aPA,vPM .

More precisely, given a crossed submoduleM, the corresponding calculus is given byG
5kere/M ^ A with da5p(Da21^ a) ~p the canonical projection!. The right action and coaction
on G are given by the right multiplication and coproduct onA, the left action and coaction by th
tensor product ones with kere/M as a left crossed module. In all of what follows, ‘‘differenti
calculus’’ will mean ‘‘bicovariant first order differential calculus.’’
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Alternatively,5 given in addition a quantum groupH dually paired withA ~which we might
think of as being of enveloping algebra type!, we can express the coaction ofA on itself as an
action ofHop using the pairing

hxv5^h,v ~1!Sv ~3!&v ~2! ;hPHop,vPA.

Thereby we change from the category of~left! crossedA-modules to the category of left module
of the quantum doubleAqHop.

In this picture the pairing betweenA andH descends to a pairing betweenA/k1 ~which we
may identify with kere,A) and kere,H. Further quotientingA/k1 by M ~viewed inA/k1) leads
to a pairing with the subspaceL,kerecH that annihilatesM. L is called a ‘‘quantum tangen
space’’ and is dual to the differential calculusG generated byM in the sense thatG>Lin(L,A) via

A/~k11M ! ^ A→Lin~L,A! v ^ a°^•,v&a ~2!

if the pairing betweenA/(k11M ) andL is nondegenerate.
The quantum tangent spaces are obtained directly by dualising the~left! action of the quantum

double onA to a ~right! action onH. Explicitly, this is the adjoint action and the coregular acti

hxx5h~1!xSh~2! , axx5^x~1! ,a&x~2! ;aPAop,h,xPH,

where we have converted the right action to a left action by going fromAqHop-modules to
HqAop-modules. Quantum tangent spaces are subspaces of kere,H invariant under the projec
tion of this action to kere via x°x2e(x)1. Alternatively, the left action ofAop can be converted
to a left coaction ofH being the comultiplication~with subsequent projection ontoH ^ kere).

We can use the evaluation map~2! to define a ‘‘braided derivation’’ on elements of th
quantum tangent space via

]x :A→A ]x~a!5da~x!5^x,a~1!&a~2! ;xPL,aPA.

This obeys the braided derivation rule

]x~ab!5~]xa!b1a~2!]a~1!xxb ;xPL,aPA.

Given a right invariant basis$h i% i PI of G with a dual basis$f i% i PI of L we have

da5(
i PI

h i•] i~a! ;aPA,

where we denote] i5]f i
. ~This can be easily seen to hold by evaluation againstf i; i .)

II. CLASSIFICATION ON Cq„B 1… AND Uq„b1…

In this section we completely classify differential calculi onCq(B1) and, dually, quantum
tangent spaces onUq(b1). We start by classifying the relevant crossed modules and then pro
to a detailed description of the calculi.

Lemma II.1: (a) Left crossed Cq(B1)-submodules M#Cq(B1) by left multiplication and left
adjoint coaction are in one-to-one correspondence to pairs (P,I), where PPk(q)@g# is a polyno-
mial with P(0)51 and I,N is finite. codimM,` iff P51. In particular codimM5(nPIn if
P51.

(b) The finite codimensional maximal M correspond to the pairs(1,$n%) with n the codimen-
sion. The infinite codimensional maximal M are characterized by(P,B) with P irreducible and
P(g)Þ12q2kg for any kPN0 .

(c) Crossed submodules M of finite codimension are intersections of maximal ones. I
ticular M5ùnPIM

n, with Mn corresponding to(1,$n%).
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Proof: ~a! Let M#Cq(B1) be a crossedCq(B1)-submodule by left multiplication and lef
adjoint coaction and let(nXnPn(g)PM , wherePn are polynomials ing,g21 ~every element of
Cq(B1) can be expressed in this form!. From the formula for the coaction~~A1!, see Appendix!
we observe that for alln and for all t<n the element

XtPn~g!)
s51

n2t

~12qs2ng!

lies in M. In particular this is true fort5n, meaning that elements of constant degree inX lie
separately inM. It is therefore enough to consider such elements.

Let now XnP(g)PM . By left multiplication XnP(g) generates any element of the for
XkP(g)Q(g), wherek>n andQ is any polynomial ing,g21. ~Note thatQ(qkg)Xk5XkQ(g).)
We see thatM contains the following elements:

]

Xn12P~g!

Xn11P~g!

XnP~g!

Xn21P~g!~12q12ng!

Xn22P~g!~12q12ng!~12q22ng!

]

XP~g!~12q12ng!~12q22ng!...~12q21g!

P~g!~12q12ng!~12q22ng!...~12q21g!~12g!.

Moreover, ifM is generated byXnP(g) as a module then these elements generateM as a vector
space by left multiplication with polynomials ing,g21. ~Observe that the application of th
coaction to any of the elements shown does not generate elements of new type.!

Now, let M be a given crossed submodule. We pick, among the elements inM of the form
XnP(g) with P of minimal length, one with lowest degree inX. Then certainly the elements liste
above are inM. Furthermore for any element of the formXkQ(g), Q must containP as a factor
and fork,n, Q must containP(g)(12q12ng) as a factor. We continue by picking the smalle
n2 , so thatXn2P(g)(12q12ng)PM . Certainlyn2,n. Again, for any element ofXlQ(g) in M
with l ,n2 , we have thatP(g)(12q12ng)(12q12n2g) dividesQ(g). We proceed by induction
until we arrive at degree zero inX.

We obtain the following elements generatingM as a vector space by left multiplication wit
polynomials ing,g21 ~renamen15n):

]

Xn111P~g!

Xn1P~g!

Xn121P~g!~12q12n1g!

]
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Xn2P~g!~12q12n1g!

Xn221P~g!~12q12n1g!~12q12n2g!

]

Xn3P~g!~12q12n1g!~12q12n2g!

Xn321P~g!~12q12n1g!~12q12n2g!~12q12n3g!

]

P~g!~12q12n1g!~12q12n2g!~12q12n3g!¯~12q12nmg!.

We see that the integersn1 ,...,nm uniquely determine the shape of this picture. The polynom
P(g) on the other hand can be shifted~by g andg21) or renormalized. To determineM uniquely
we shift and normalizeP in such a way that it contains no negative powers and has unit con
coefficient.P can then be viewed as a polynomialPk(q)@g#.

We see that the codimension ofM is the sum of the lengths of the polynomials ing over all
degrees inX in the above picture. Finite codimension corresponds toP51. In this case the
codimension is the sumn11¯1nm .

~b! We observe that polynomials of the form 12qjg have no common divisors for distinctj.
Therefore, finite codimensional crossed submodules are maximal if and only if there is jus
integer (m51). Thus, the maximal left crossed submodule of codimensionk is generated byXk

and 12q12kg. For an infinite codimensional crossed submodule we certainly needm50. Then,
the maximality corresponds to irreducibility ofP.

~c! This is again due to the distinctness of factors 12qjg. h

Corollary II.2: (a) Left crossed Cq(B1)-submodules M#kere,Cq(B1) are in one-to-one
correspondence to pairs (P,I) as in Lemma II.1 with the additional constraint(12g) divides P(g)
or 1PI . codimM,` iff P51. In particular codimM5((nPIn)21 if P51.

(b) The finite codimensional maximal M correspond to the pairs(1,$1,n%) with n>2 the
codimension. The infinite codimensional maximal M correspond to pairs(P,$1%) with P irreduc-
ible and P(g)Þ12q2kg for any kPN0 .

(c) Crossed submodules M of finite codimension are intersections of maximal ones. I
ticular M5ùnPIM

n, with Mn corresponding to(1,$1,n%).
Proof: First observe that(nXnPn(g)Pkere if and only if (12g) divides P0(g). This is to

say that that kere is the crossed submodule corresponding to the pair~1,$1%! in Lemma II.1. We
obtain the classification from the one of Lemma II.1 by intersecting everything with this cro
submodule. In particular, this reduces the codimension by one in the finite codimensional ch

Lemma II.3: (a) Left crossed Uq(b1)-submodules L#Uq(b1) via the left adjoint action and
left regular coaction are in one-to-one correspondence to the set$N0→$1,2,3%%3$N→$1,2%%.
Finite dimensional L are in one-to-one correspondence to finite sets I,N and dimL5(nPIn.

(b) Finite dimensional irreducible L correspond to$n% with n the dimension.
(c) Finite dimensional L are direct sums of irreducible ones. In particular L5 % nPIL

n with Ln

corresponding to$n%.
Proof: ~a! The action takes the explicit form

gxXngk5q2nXngk, XxXngk5Xn11gk~12q2~n1k!!,

while the coproduct is

D~Xngk!5(
r 50

n Fnr G
q

q2r ~n2r !Xn2rgk1r
^ Xrgk,
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which we view as a left coaction here. Let nowL#Uq(b1) be a crossedUq(b1)-submodule via
this action and coaction. For(nXnPn(g)PL invariance under the action byg clearly means that
XnPn(g)PL ;n. Then from invariance under the coaction we can conclude that ifXn( jajg

j

PL we must haveXngjPL ; j , i.e., elements of the formXngj lie separately inL and it is
sufficient to consider such elements. From the coaction we learn that ifXngjPL we haveXmgj

PL ;m<n. The action byX leads toXngjPL⇒Xn11gjPL except ifn1 j 50. The classification
is given by the possible choices we have for each power ing. For every positive integerj we can
choose whether or not to include the span of$Xngj u;n% in L and for every nonpositive integer w
can choose to include either the span of$Xngj u;n% or just $Xngj u;n<2 j % or neither, i.e., for
positive integers~N! we have two choices while for nonpositive~identified withN0) ones we have
three choices.

Clearly, the finite dimensionalL are those where we choose only to include finitely ma
powers ofg and also only finitely many powers ofX. The latter is only possible for the nonpositiv
powers ofg. By identifying positive integersn with powers 12n of g, we obtain a classification
by finite subsets ofN.

~b! Irreducibility clearly corresponds to just including one power ofg in the finite dimensional
case.

~c! The decomposition property is obvious from the discussion. h

Corollary II.4: (a) Left crossed Uq(b1)-submodules L#kere,Uq(b1) via the left adjoint
action and left regular coaction (with subsequent projection tokere via x°x2e(x)1) are in
one-to-one correspondence to the set$N→$1,2,3%%3$N0→$1,2%%. Finite dimensional L are in
one-to-one correspondence to finite sets I,N\$1% and dimL5(nPIn.

(b) Finite dimensional irreducible L correspond to$n% with n>2 the dimension.
(c) Finite dimensional L are direct sums of irreducible ones. In particular L5 % nPIL

n with Ln

corresponding to$n%.
Proof: Only a small modification of Lemma II.3 is necessary. Elements of the formP(g) are

replaced by elements of the formP(g)2P(1). Monomials with nonvanishing degree inX are
unchanged. The choices for elements of degree 0 ing are reduced to either including the span
$Xku;k.0% in the crossed submodule or not. In particular, the crossed submodule charact
by $1% in Lemma II.3 is projected out. h

Differential calculi in the original sense of Woronowicz are classified by Corollary II.2 w
from the quantum tangent space point of view the classification is given by Corollary II.4. I
finite dimensional case the duality is strict in the sense of a one-to-one correspondenc
infinite dimensional case on the other hand depends strongly on the algebraic models we
the function or enveloping algebras. It is therefore not surprising that in the present purely
braic context the classifications are quite different in this case. We will restrict ourselves
finite dimensional case in the following description of the differential calculi.

Theorem II.5: (a) Finite dimensional differential calculiG on Cq(B1) and corresponding
quantum tangent spaces L on Uq(b1) are in one-to-one correspondence to finite sets I,N\$1%. In
particular dimG5dimL5(nPIn.

(b) CoirreducibleG and irreducible L correspond to$n% with n>2 the dimension. Such aG
has a right invariant basish0 ,...,hn21 so that the relations

dX5h11~qn2121!h0X, dg5~qn2121!h0g,

@a,h0#5da ;aPCq~B1!,

@g,h i #qn212 i50 ; i , @X,h i #qn212 i5 Hh i 11 i f i ,n21
0 i f i 5n21

hold, where@a,b#pªab2pba. By choosing the dual basis on the corresponding irreducible L
obtain the braided derivations
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] i : f :5:Qn212 i ,gQn212 i ,X

1

@ i #q!
~]q,X! i f : ; i>1,

]0 : f :5:Qn21,gQn21,Xf 2 f :

for f Pk(q)@X,g,g21# with normal orderingk(q)@X,g,g21#→Cq(B1) given by gnXm°gnXm.
(c) Finite dimensionalG and L decompose into direct sums of coirreducible, respectiv

irreducible ones. In particularG5 % nPIG
n and L5 % nPIL

n with Gn and Ln corresponding to$n%.
Proof: ~a! We observe that the classifications of Lemma II.1 and Lemma II.3 or Corollary

and Corollary II.4 are dual to each other in the finite~co!dimensional case. More precisely, fo
I ,N finite the crossed submoduleM corresponding to (1,I ) in Lemma II.1 is the annihilator of the
crossed submoduleL corresponding toI in Lemma II.3 and vice versa.Cq(B1)/M andL are dual
spaces with the induced pairing. ForI ,N\$1% finite this descends toM corresponding to
(1,I ø$1%) in Corollary II.2 andL corresponding toI in Corollary II.4. For the dimension ofG
observe dimG5dim kere/M5codimM .

~b! Coirreducibility ~having no proper quotient! of G clearly corresponds to maximality ofM.
The statement then follows from parts~b! of Corollaries II.2 and II.4. The formulas are obtaine
by choosing the basish0 ,...,hn21 of kere/M as the equivalence classes of

~g21!/~qn2121!,X,...,Xn21.

The dual basis ofL is then given by

g12n21,Xg12n,...,qk~k21!
1

@k#q!
Xkg12n,...,q~n21!~n22!

1

@n21#q!
Xn21g12n.

~c! The statement follows from Corollaries II.2 and II.4 parts~c! with the observation

kere/M5kere/ ù
nPI

Mn5 % nPI kere/Mn.

h

Corollary II.6: There is precisely one differential calculus on Cq(B1) which is natural in the
sense that it has dimension 2. It is coirreducible and obeys the relations

@g,dX#50, @g,dg#q50, @X,dX#q50, @X,dg#q5~q21!~dX!g,

with @a,b#qªab2qba. In particular we have

d: f :5dg:]q,gf :1dX:]q,Xf : ; f Pk~q!@X,g,g21#.

Proof: This is a special case of Theorem II.5. The formulas follow from~b! with n52. h

III. CLASSIFICATION IN THE CLASSICAL LIMIT

In this section we give the complete classification of differential calculi and quantum tan
spaces in the classical case ofC(B1) along the lines of the previous section. We pay particu
attention to the relation to theq-deformed setting.

The classical limitC(B1) of the quantum groupCq(B1) is simply obtained by substituting
the parameterq with 1. The classification of left crossed submodules in part~a! of Lemma II.1
remains unchanged, as one may check by going through the proof. In particular, we get a
spondence of crossed modules in theq-deformed setting with crossed modules in the class
setting as a map of pairs (P,I )°(P,I ) that converts polynomialsk(q)@g# to polynomialsk@g# ~if
defined! and leaves setsI unchanged. This is one-to-one in the finite dimensional case. Howe
we did use the distinctness of powers ofq in part ~b! and~c! of Lemma II.1 and have to accoun
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for changing this. The only place where we used it, was in observing that factors 12qjg have no
common divisors for distinctj. This was crucial to conclude the maximality~b! of certain finite
codimensional crossed submodules and the intersection property~c!. Now, all those factors be
come 12g.

Corollary III.1: (a) Left crossed C(B1)-submodules M#C(B1) by left multiplication and left
adjoint coaction are in one-to-one correspondence to pairs(P,I ), where PPk@g# is a polynomial
with P(0)51 and I,N is finite.codimM,` iff P51. In particular codimM5(nPIn if P51.

(b) The infinite codimensional maximal M are characterized by(P,B) with P irreducible and
P(g)Þ12g for any kPN0 .

In the restriction to kere,C(B1) corresponding to Corollary II.2 we observe another diff
ence to theq-deformed setting. Since the condition for a crossed submodule to lie in kee is
exactly to have factors 12g in the X-free monomials this condition may now be satisfied mo
easily. If the characterizing polynomial does not contain this factor it is now sufficient to have
any nonempty characterizing integer setI and it need not contain 1. Consequently, the m
(P,I )°(P,I ) does not reach all crossed submodules now.

Corollary III.2: (a) Left crossed C(B1)-submodules M#kere,C(B1) are in one-to-one
correspondence to pairs (P,I) as in Corollary III.1 with the additional constraint(12g) divides
P(g) or I nonempty.codimM,` iff P51. In particular codimM5((nPIn)21 if P51.

(b) The infinite codimensional maximal M correspond to pairs(P,$1%) with P irreducible and
P(g)Þ12g.

Let us now turn to quantum tangent spaces onU(b1). Here, the process to go from th
q-deformed setting to the classical one is not quite so straightforward.

Lemma III.3: Proper left crossed U(b1)-submodules L,U(b1) via the left adjoint action
and left regular coaction are in one-to-one correspondence to pairs (l,I) with lPN0 and I,N
finite. dimL,` iff l 50. In particular dimL5(nPIn if l 50.

Proof: The left adjoint action takes the form

XxXnHm5Xn11~Hm2~H11!m!, HxXnHm5nXnHm,

while the coaction is

D~XnHm!5(
i 51

n

(
j 51

m S n
i D S m

j DXiH j
^ Xn21Hm2 j .

Let L be a crossed submodule invariant under the action and coaction. The~repeated! action ofH
separates elements by degree inX. It is therefore sufficient to consider elements of the fo
XnP(H), where P is a polynomial. By acting withX on an elementXnP(H) we obtain
Xn11(P(H)2P(H11)). Subsequently applying the coaction and projecting on the left-hand
of the tensor product ontoX ~in the basisXiH j of U(b1)) leads to the elementXn(P(H)2P(H
11)). Now thedegree ofP(H)2P(H11) is exactly the degree ofP(H) minus 1. Thus we have
polynomials XnPi(H) of any degreei 5deg(Pi)<deg(P) in L by induction. In particular,
XnHmPL for all m<deg(P). It is thus sufficient to consider elements of the formXnHm. Given
such an element, the coaction generates all elements of the formXiH j with i<n, j <m.

For givenn, the characterizing datum is the maximalm so thatXnHmPL. Due to the coaction
this cannot decrease with decreasingn and due to the action ofX this can decrease at most by
when increasingn by 1. This leads to the classification given. Forl PN0 and I ,N finite, the
corresponding crossed submodule is generated by

Xnm21Hl 1m21,Xnm1nm2121Hl 1m22,...,X~( i ni !21Hl and X~( i ni !1kHl 21 ;k>0 if l .0

as a crossed module. h

For the transition from theq-deformed~Lemma II.3! to the classical case we observe that t
space spanned bygs1,...,gsm with m different integerssiPZ maps to the space spanned
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1,H,...,Hm21 in the prescription of the classical limit~as described in Sec. I B, i.e., the classic
crossed submodule characterized by an integerl and a finite setI ,N comes from a crossed
submodule characterized by this sameI and additionallyl other integersj PZ for which Xkg12 j is
included. In particular, we have a one-to-one correspondence in the finite dimensional cas

To formulate the analog of Corollary II.4 for the classical case is essentially straightfor
now. However, as forC(B1), we obtain more crossed submodules than those from
q-deformed setting. This is due to the degeneracy introduced by forgetting the powers ofg and just
retaining the number of different powers.

Corollary III.4: (a) Proper left crossed U(b1)-submodules L,kere,U(b1) via the left
adjoint action and left regular coaction (with subsequent projection tokere via x°x2e(x)1) are
in one-to-one correspondence to pairs (l,I) with lPN0 and I,N finite where lÞ0 or IÞB.
dimL,` iff l 50. In particular dimL5((nPIn)21 if l 50.

As in the q-deformed setting, we give a description of the finite dimensional differen
calculi where we have a strict duality to quantum tangent spaces.

Proposition III.5: (a) Finite dimensional differential calculiG on C(B1) and finite dimen-
sional quantum tangent spaces L on U(b1) are in one-to-one correspondence to nonempty fin
sets I,N. In particular dimG5dimL5((nPIn)21.

The G with 1PN are in one-to-one correspondence to the finite dimensional calculi
quantum tangent spaces of the q-deformed setting (Theorem II.5(a)).

(b) The differential calculusG of dimension n>2 corresponding to the coirreducible one o
Cq(B1) (Theorem II.5(b)) has a right invariant basish0 ,...,hn21 so that

dX5h11h0X, dg5h0g,

@g,h i #50; i , @X,h i #5H 0 if i 50 or i 5n21

h i 11 if 0, i ,n21

hold. The braided derivations obtained from the dual basis of the corresponding L are give

] i f 5
1

i ! S ]

]XD i

f ; i>1,

]0f 5S X
]

]X
1g

]

]gD f

for f PC(B1).
(c) The differential calculus of dimension n21 corresponding to the one in (b) with 1 re

moved from the characterizing set is the same as the one above, except that we seth050 and
]050.

Proof: ~a! We observe that the classifications of Corollary III.1 and Lemma III.3 or Corol
III.2 and Corollary III.4 are dual to each other in the finite~co!dimensional case. More precisel
for I ,N finite the crossed submoduleM corresponding to (1,I ) in Corollary III.1 is the annihilator
of the crossed submoduleL corresponding to (0,I ) in Lemma III.3 and vice versa.C(B1)/M and
L are dual spaces with the induced pairing. For nonemptyI this descends toM corresponding to
(1,I ) in Corollary III.2 andL corresponding to (0,I ) in Corollary III.4. For the dimension ofG
note dimG5dim kere/M5codimM .

~b! For I 5$1,n% we choose in kere,C(B1) the basish0 ,...,hn21 as the equivalence classe
of g21,X,...,Xn21. The dual basis inL is thenH,X,...,(1/k!)Xk,...,1/(n21)!Xn21. This leads
to the formulas given.

~c! For I 5$n% we get the same as in~b! except thath0 and]0 disappear. h

The classical commutative calculus is the special case of~b! with n52. It is the only calculus
of dimension 2 with dgÞ0. Note that it is not coirreducible.
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IV. THE DUAL CLASSICAL LIMIT

We proceed in this section to the more interesting point of view where we conside
classical algebras, but with their roles interchanged, i.e., we viewU(b1) as the ‘‘function alge-
bra’’ and C(B1) as the ‘‘enveloping algebra.’’ Due to the self-duality ofUq(b1), we can again
view the differential calculi and quantum tangent spaces as classical limits of theq-deformed
setting investigated in Sec. II.

In this dual setting the bicovariance constraint for differential calculi becomes much we
In particular, the adjoint action on a classical function algebra is trivial due to commutativity
the adjoint coaction on a classical enveloping algebra is trivial due to cocommutativity. In e
the correspondence with theq-deformed setting is much weaker than in the ordinary case of
III. There are much more differential calculi and quantum tangent spaces than in theq-deformed
setting.

We will not attempt to classify all of them in the following but essentially contend ourse
with those objects coming from theq-deformed setting.

Lemma IV.1: Left C(B1)-subcomodules#C(B1) via the left regular coaction areZ-graded
subspaces of C(B1) with uXngmu5n1m, stable under formal derivation in X.

By choosing any ordering in Cq(B1), left crossed submodules via left regular action a
adjoint coaction are in one-to-one correspondence to certain subcomodules of C(B1) by setting
q51. Direct sums correspond to direct sums.

This descends tokere,C(B1) by the projection x°x2e(x)1.
Proof: The coproduct onC(B1) is

D~Xngk!5(
r 50

n S n
r DXn2rgk1r

^ Xrgk,

which we view as a left coaction. Projecting on the left-hand side of the tensor product ontogl in
a basis Xngk, we observe that coacting on an element(n,kan,kX

ngk we obtain elements
(nan,l 2nXngl 2n for all l, i.e., elements of the form(nbnXngl 2n lie separately in a subcomodul
and it is sufficient to consider such elements. Writing the coaction on such an element as

(
t

1

t!
Xtgl 2t

^ (
n

bn

n!

~n2t !!
Xn2tgl 2n,

we see that the coaction generates all formal derivatives inX of this element. This gives us th
classification,C(B1)-subcomodules#C(B1) under the left regular coaction areZ-graded sub-
spaces withuXngmu5n1m, stable under formal derivation inX given byXngm°nXn21gm.

The correspondence with theCq(B1) case follows from the trivial observation that the c
product ofC(B1) is the same as that ofCq(B1) with q51.

The restriction to kere is straightforward. h

Lemma IV.2: The process of obtaining the classical limit U(b1) from Uq(b1) is well defined
for subspaces and sends crossed Uq(b1)-submodules,Uq(b1) by regular action and adjoint
coaction to U(b1)-submodules,U(b1) by regular action. This map is injective in the finit
codimensional case. Intersections and codimensions are preserved in this case.

This descends tokere.
Proof: To obtain the classical limit of a left ideal it is enough to apply the limiting process~as

described in Sec. I B! to the module generators.~We can forget the additional comodule structur!
On the one hand, any element generated by left multiplication with polynomials ing corresponds
to some element generated by left multiplication with a polynomial inH, that is, there will be no
more generators in the classical setting. On the other hand, left multiplication by a polynom
H comes from left multiplication by the same polynomial ing21, that is, there will be no fewe
generators.
                                                                                                                



s of

o-
rs for

from

tial
-

rs

s in
e we
ming

3599J. Math. Phys., Vol. 40, No. 7, July 1999 Classification of differential calculi on . . .

                    
The maximal left crossedUq(b1)-submodule#Uq(b1) by left multiplication and adjoint
coaction of codimensionn (n>1) is generated as a left ideal by$12q12ng,Xn% ~see Lemma
II.1!. Applying the limiting process to this leads to the left ideal ofU(b1) ~which is not maximal
for nÞ1) generated by$H1n21,Xn% having also codimensionn.

More generally, the picture given for arbitrary finite codimensional left crossed module
Uq(b1) in terms of generators with respect to polynomials ing,g21 in Lemma II.1 carries over by
replacing factors 12q12ng with factorsH1n21 leading to generators with respect to polyn
mials in H. In particular, intersections go to intersections since the distinctness of the facto
different n is conserved.

The restriction to kere is straightforward. h

We are now in a position to give a detailed description of the differential calculi induced
the q-deformed setting by the limiting process.

Proposition IV.3: (a) Certain finite dimensional differential calculiG on U(b1) and quantum
tangent spaces L on C(B1) are in one-to-one correspondence to finite dimensional differen
calculi on Uq(b1) and quantum tangent spaces on Cq(B1). Intersections correspond to intersec
tions.

(b) In particular, G and L corresponding to coirreducible differential calculi on Uq(b1) and
irreducible quantum tangent spaces on Cq(B1) via the limiting process are given as follows:G
has a right invariant basish0 ,...,hn21 so that

dX5h1 , dH5~12n!h0 ,

@H,h i #5~12n1 i !h i ; i , @X,h i #5H h i 11 if i ,n21

0 if i 5n21

holds. The braided derivations corresponding to the dual basis of L are given by

] i : f :5:T12n1 i ,H

1

i ! S ]

]XD i

f : ; i>1,

]0 : f :5:T12n,Hf 2 f :

for f Pk@X,H# with the normal orderingk@X,H#→U(b1) via HnXm°HnXm.
Proof: ~a! The strict duality betweenC(B1)-subcomodulesL#kere given by Lemma IV.1

and Corollary II.4 andU(b1)-modulesU(b1)/(k11M ) with M given by Lemma IV.2 and
Corollary II.2 can be checked explicitly. It is essentially due to mutual annihilation of factoH
1k in U(b1) with elementsgk in C(B1).

~b! L is generated by$g12n21,Xg12n,...,Xn21g12n% and M is generated by$H(H1n
21),X(H1n21),Xn%. The formulas are obtained by denoting withh0 ,...,hn21 the equivalence
classes ofH/(12n),X,...,Xn21 in U(b1)/(k11M ). The dual basis ofL is then

g12n21,Xg12n,...,
1

~n21!!
Xn21g12n.

h

In contrast to theq-deformed setting and to the usual classical setting the many freedom
choosing a calculus leave us with many two-dimensional calculi. It is not obvious which on
should consider to be the ‘‘natural’’ one. Let us first look at the two-dimensional calculus co
from theq-deformed setting as described in~b!. The relations become

@dH,a#5da, @dX,a#50, ;aPU~b1!,

d: f :5dH:¹1,Hf :1dX:
]

]X
f :
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for f Pk@X,H#.
We might want to consider calculi which are closer to the classical theory in the sens

derivatives are not finite differences but usual derivatives. Let us therefore demand

dP~H !5dH
]

]H
P~H ! and dP~X!5dX

]

]X
P~X!

for polynomialsP and dXÞ0 and dHÞ0.
Proposition IV.4: There is precisely one differential calculus of dimension 2 meeting

conditions. It obeys the relations

@a,dH#50, @X,dX#50, @H,dX#5dX,

d: f :5dH:
]

]H
f :1dX:

]

]X
f :

where the normal orderingk@X,H#→U(b1) is given by XnHm°XnHm.
Proof: Let M be the left ideal corresponding to the calculus. It is easy to see that f

primitive elementa the classical derivation condition corresponds toa2PM and a¹M . In our
caseX2,H2PM . If we take the ideal generated from these two elements we obtain an ideal oe
of codimension 3. Now, it is sufficient without loss of generality to add a generator of the
aH1bX1gXH. a and b must then be zero in order not to generateX or H in M, i.e., M is
generated byH2,XH,X2. The relations stated follow. h

V. REMARKS ON k-MINKOWSKI SPACE AND INTEGRATION

There is a straightforward generalization ofU(b1). Let us define the Lie algebrabn1 as
generated byx0 ,...,xn21 with relations

@x0 ,xi #5xi , @xi ,xj #50 ; i , j >1.

Its enveloping algebraU(bn1) is nothing but~rescaled! k-Minkowski space as introduced in Re
10. In this section we make some remarks about its intrinsic geometry.

We have an injective Lie algebra homomorphismbn1→b1 given byx0°H andxi°X. This
is an isomorphism forn52. The injective Lie algebra homomorphism extends to an injec
homomorphism of enveloping algebrasU(b1)→U(bn1) in the obvious way. This gives rise to a
injective map from the set of submodules ofU(b1) to the set of submodules ofU(bn1) by taking
the preimage. In particular this induces an injective map from the set of differential calcu
U(b1) to the set of differential calculi onU(bn1) which are invariant under permutations of th
xi i>1.

Corollary V.1: There is a natural n-dimensional differential calculus on U(bn1) induced from
the one considered in Proposition IV.4. It obeys the relations

@a,dx0#50 ;aPU~bn1!, @xi ,dxj #50, @x0 ,dxi #5dxi ; i , j >1

d: f :5 (
m50

n21

dxm :
]

]xm
f :

where the normal ordering is given by

k@x0 ,...,xn21#→U~bn11! via xn21
mn21

¯x0
m0°xn21

mn21
¯x0

m0.

Proof: The calculus is obtained from the ideal generated by

x0
2,xixj ,xix0 ; i , j >1
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being the preimage ofX2,XH,X2 in U(b1). h

Let us try to push the analogy with the commutative case further and take a look at the
of integration. The natural way to encode the condition of translation invariance from the cla
context in the quantum group context is given by the condition

S E ^ idD +Da51E a ;aPA

which defines a right integral on a Hopf algebraA.13 ~Correspondingly, we have the notion of
left integral.! Let us formulate a slightly weaker version of this equation in the context of a H
algebraH dually paired withA. We write

E ~h2e~h!!xa50 ;hPH,aPA,

where the action ofH on A is the coregular actionhxa5a(1)^a(2) ,h& given by the pairing.
In the present context we setA5U(bn1) andH5C(Bn1). We define the latter as a gene

alization ofC(B1) with commuting generatorsg,p1 ,...,pn21 and coproducts

Dpi5pi ^ 11g^ pi , Dg5g^ g.

This can be identified~upon rescaling! as the momentum sector of the fullk-Poincare´ algebra
~with g5ep0). The pairing is the natural extension of~1!,

^xn21
mn21

¯x1
m1x0

k ,pn21
r n21

¯p1
r 1gs&5dmn21 ,r n21

¯dm1 ,r 1
mn21!¯m1!sk.

The resulting coregular action is conveniently expressed as~see also Ref. 10!

pix: f :5:
]

]xi
f : , gx: f :5:T1,x0

f :

with f Pk@x0 ,...,xn21#. Due to cocommutativity, the notions of left and right integral coincid
The invariance conditions for integration become

E :
]

]xi
f :50 ; i P$1,...,n21% and E :¹1,x0

f :50.

The condition on the left is familiar and states the invariance under infinitesimal translations
xi . The condition on the right states the invariance under integer translations inx0 . However, we
should remember that we use a certain algebraic model ofC(Bn1). We might add, for example
a generatorp0 to C(Bn1) that is dual tox0 and behaves as the ‘‘logarithm’’ ofg, i.e., acts as an
infinitesimal translation inx0 . We then have the condition of infinitesimal translation invarian

E :
]

]xm
f :50

for all mP$0,1,...,n21%.
In the present purely algebraic context these conditions do not make much sense. In fa

would force the integral to be zero on the whole algebra. This is not surprising, since w
dealing only with polynomial functions which would not be integrable in the classical case e
In contrast, if we had for example the algebra of smooth functions in two real variables
conditions just characterize the usual Lesbegue integral~up to normalization!. Let us assumek
5R and suppose that we have extended the normal ordering vector space isomo
R@x0 ,...,xn21#>U(bn1) to a vector space isomorphism of some sufficiently large class of fu
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tions onRn with a suitable completionÛ(bn1) in a functional analytic framework~embedding
U(bn1) in some operator algebra on a Hilbert space!. It is then natural to define the integration o
Û(bn1) by

E : f :5E
Rn

f dx0¯dxn21 ,

where the right-hand side is just the usual Lesbegue integral inn real variablesx0 ,...,xn21 . This
integral is unique~up to normalization! in satisfying the covariance condition since, as we ha
seen, these correspond just to the usual translation invariance in the classical case via
ordering, for which the Lesbegue integral is the unique solution. It is also theq→1 limit of the
translation invariant integral onUq(b1) obtained in Ref. 14.

We see that the natural differential calculus in Corollary V.1 is compatible with this inte
tion in that the appearing braided derivations are exactly the actions of the translation gen
pm . However, we should stress that this calculus is not covariant under the fullk-Poincare´
algebra, since it was shown in Ref. 15 that inn54 there is no such calculus of dimension 4. O
results therefore indicate a new intrinsic approach tok-Minkowski space that allows a bicovarian
differential calculus of dimension 4 and a unique translation invariant integral by normal ord
and Lesbegue integration.
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APPENDIX: THE ADJOINT COACTION ON Uq„b1…

The coproduct onXn is

D~Xn!5(
r 50

n Fnr G
q

grXn2r
^ Xr ,

~ id^ D!D~Xn!5(
r 50

n

(
i 50

r Fnr G
q
F ri G

q

grXn2r
^ giXr 2 i

^ Xi .

From this we get

AdL~Xn!5(
r 50

n

(
s50

r Fnr G
q
F rsG

q

grXn2rSXs
^ gsXr 2s

5(
r 50

n

(
s50

r Fnr G
q
F rsG

q

grXn2r~2g21X!s
^ gsXr 2s

5(
t50

n

(
s50

n2t F n
t1sG

q
F t1s

s G
q

gt1sXn2t2s~2g21X!s
^ gsXt

5(
t50

n

(
s50

n2t Fnt G
q
Fn2t

s G
q

gt1sXn2t2s~2g21X!s
^ gsXt

5(
t50

n Fnt G
q

gtXn2t
^ Xt(

s50

n2t Fn2t
s G

q

qs~s11!/2~2q2ng!s

5(
t50

n Fnt G
q

gtXn2t
^ Xt )

u51

n2t

~12qu2ng!,
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where we have used

(
i 50

n Fni G
q

qi ~ i 11!/2xi5)
j 51

n

~11qjx!,

which can be easily checked by induction. Using the property

AdL~agn!5AdL~a!~1^ gn! ;nPZ,

we obtain for any polynomialP in g,g21,

AdL~XnP~g!!5(
t50

n Fnt G
q

gtXn2t
^ XtP~g!)

u51

n2t

~12qu2ng!. ~A1!
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Representations of the Weyl group and Wigner functions
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Bases for SU~3! irreps are constructed on a space of three-particle tensor products
of two-dimensional harmonic oscillator wave functions. The Weyl group is repre-
sented as the symmetric group of permutations of the particle coordinates of these
spaces. Wigner functions for SU~3! are expressed as products of SU~2! Wigner
functions and matrix elements of Weyl transformations. The constructions make
explicit use of dual reductive pairs which are shown to be particularly relevant to
problems in optics and quantum interferometry. ©1999 American Institute of
Physics.@S0022-2488~99!01506-6#

I. INTRODUCTION

Considerable progress has been made in the development of systematic algorithms fo
puting matrix elements of the infinitesimal generators of Lie groups in an arbitrary represen
Much less is known about the matrices of finite group elements other than those of SU~2!, and the
related groups E~2!, HW~1!, and SU~1,1!.1

The matrix elements of finite SU~2! transformations are the well-known WignerD functions.
These functions are used in many areas of physics, notably in nuclear, atomic, and mo
spectroscopy. Recently, it has been shown that the Wigner functions of SU~2! ~Ref. 2! and higher
unitary groups3 are needed in the analysis of quantum interferometers. Because of the Peter
theorem, Wigner functions also play a central role in the theory of harmonic analysis.

We consider here the Wigner functions for SU~3!; such functions are needed, for example,
computing SU~3! Clebsch–Gordan coefficients in an SO~3! basis.4 Expressions for SU~3! Wigner
functions were first derived, to our knowledge, by Chaco´n and Moshinsky,5 in terms of SU~2!
Wigner functions and matrix elements of Weyl reflection operators. Matrix elements of
Weyl reflections were derived by Macfarlaneet al.6 and Mukunda and Pandit.7 The latter gave the
matrix elements as products of three SU~2! Clebsch–Gordan coefficients. Chaco´n and Moshinsky
gave expressions for matrix elements of other Weyl reflections as SU~2! Racah coefficients. Thes
results raise the question: what does the Weyl group have to do with SU~2!? The answer appear
to be that basis states for SU~3! irreps ~irreducible representations! are naturally expressed in a
SU~2!-coupled basis, and elements of the Weyl group for SU~3!, which is isomorphic to the
permutation groupS3 , act on such states as SU~2! recoupling operators. More explicitly, if on
constructs basis states for SU~3! by SU~2! coupling the wave functions for three particles
two-dimensional harmonic oscillator states, then the Weyl reflection operators permute the
dinates of the particles. A similar interpretation of the Weyl reflections was given by Gal
Lipkin8 as the permutations of a coupled system of three spin-1

2 quarks.
In deriving our results, we make use of two mutually commuting subgroups, U~3! and U~2!,

of U~6!. When acting within the space of a fully symmetric representation of U~6!, these sub-
groups are said to form adual reductive pair.9 Such dual pairs are particularly relevant f

a!Permanent address: Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia.
36040022-2488/99/40(7)/3604/12/$15.00 © 1999 American Institute of Physics
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describing the properties of three particles in a two-dimensional harmonic oscillator or
spin-half quarks. An overview of these and other dual pairs and their uses in optics and qu
interferometry is given in the Discussion section at the end of this paper.

II. PARAMETRIZATION OF SU „3…

Many parametrizations of SU~3! elements are possible. The most useful ones would appe
arise from factorization of SU~3! group elements into products of subgroup elements wh
Wigner functions are known. Three obvious candidates for suitable subgroups are the
SU(2)12, SU(2)13, and SU(2)23, the three SU~2! subgroups whose root systems are subsyst
of the SU~3! root system shown in Fig. 1. We denote an element of SU(2)i j by Ri j (a,b,g),
where~a,b,g! are the standard Euler angles.

Murnaghan10 has shown that a possible parametrization of an elementgPSU(3) is given by

g~a1 ,b1 ,a2 ,b2 ,a3 ,b3 ,d1 ,d2!5e2 i ~h1d11h2d2!R23~a1/2,b1 ,2a1/2!

3R13~a2/2,b2 ,2a2/2!R12~a3/2,b3 ,2a3/2!, ~1!

whereh1 andh2 are elements of the Cartan subalgebra.
A similar parametrization, with a different ordering, was proposed by Recket al.3 These

authors showed that one can factor a generalN3N unitary matrix as a product of U~2! matrices
and an overall phase, with the added insight that each U~2! transformation can be realized expe
mentally as an optical element.

In this paper, we choose a parametrization that takes advantage of the fact that, in a ca
basis, one constructs U(N) irreps in a basis that reduces a particular U(N21) subgroup. Thus, an
arbitrary SU(N) matrix is factored

~2!

whereXN21 andYN21 are SU(N21) matrices;I N22 is the (N22)3(N22) identity matrix. For
SU~2! @with the indices ordered~z,x,y!# this gives the usual factorizationR(a,b,g)
5Rz(a)Ry(b)Rz(g). For gPSU(3), weobtain

g~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!5R23~a1 ,b1 ,g1!R12~a2 ,b2 ,a2!R23~a3 ,b3 ,g3!. ~3!

The parameters in this expression are derived for an arbitrarygPSU(3) in the Appendix, by a
method communicated to us by J. Repka.

FIG. 1. Three SU~2! subsystems of the SU~3! root system.
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All of the above factorizations enable one to express the SU~3! Wigner functions in terms of
matrix elements of finite SU~2! transformations.

III. BASIS STATES

A. Highest weight states

An SU~3! irrep is characterized by a highest weight~l,m! and a corresponding highest weig
stateuf~l,m!&, defined as follows. The su~3! Lie algebra is spanned in the usual way by the sub
of u~3! operators

Ĉi j , i , j raising operators,

Ĉi j , i . j lowering operators, ~4!

ĥ15Ĉ112Ĉ22, ĥ25Ĉ222Ĉ33, Cartan operators,

where the$Ĉi j % operators satisfy the commutation relations

@Ĉi j , Ĉkl#5d jkĈil 2d i l Ĉk j . ~5!

The highest weight stateuf~l,m!& then satisfies the equations

Ĉi j uf~l,m!&50, i , j ,
~6!

ĥ1uf~l,m!&5luf~l,m!&, ĥ2uf~l,m!&5muf~l,m!&.

Without loss of generality, we suppose thatuf~l,m!& is also an eigenstate of the operatorĈ33

with zero eigenvalue. It then satisfies the equations

Ĉ11uf~l,m!&5~l1m!uf~l,m!&, Ĉ22uf~l,m!&5muf~l,m!&, Ĉ33uf~l,m!&50. ~7!

The Hilbert space,H(l,m), for the SU~3! irrep with highest weight~l,m! thereby becomes a Hilber
space for a U~3! irrep of highest weight (l1m,m,0).

B. The Gel’fand–Tsetlin basis

To use the factorization of Eq.~3! in computing Wigner functions, we need a basis for t
Hilbert spaceH(l,m) that reduces the SU~3!.SU~2!23 subgroup chain. Such a basis is the so-cal
canonical or Gel’fand–Tsetlin basis;11

H Up q
r L [Ul1m m 0

p q
r

L ;
l1m>p>m>q>0

p>r>q J , ~8!

which reduces the chain

U~3!

~l1m,m,0!
.

U~2!23

~p,q!
.

U~1!3

r , ~9!

where U~1!3,U~2!23 is the subgroup whose Lie algebra is spanned byĈ33.
The Gel’fand states are eigenstates of the weight operators; i.e.,

ĈiiUp q
r L 5n iUp q

r L , i 51,2,3, ~10!
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with

n15l12m2p2q, n25p1q2r , n35r . ~11!

One sees that the components of a weightn5(n1 ,n2 ,n3) add up tol12m. They are linearly
dependent and insufficient to define a state uniquely. However, the Gel’fand-Tsetlin state
reduce the subgroup chain

U~3!

~l1m,m,0!
.

SU~2!23

I
.

U~1!23

M , ~12!

and have SU(2)23 quantum numbers,I andM, related top, q, andr by

I 5 1
2~p2q!, M5 1

2~n22n3!5 1
2~p1q!2r . ~13!

Thus, the weightn and the SU(2)23 angular momentumI together uniquely define a basis sta
and, with the above relationships betweenn, I andp, q, r, we can relabel a Gel’fand–Tsetlin sta

unI &[Up q
r L . ~14!

We shall refer to the basis$unI &% either as a Gel’fand–Tsetlin basis or as a weight basis.

C. An SU „2…-coupled realization

The Gel’fand–Tsetlin states can be constructed explicitly as three-particle SU~2!-coupled
products of two-dimensional harmonic-oscillator states.

The construction makes use of a well-known duality relationship~discussed by Moshinsky
and Chaco´n5! between U~3! and U~2! as commuting subgroups of U~6!. Let $aim

† ,aim ; i
51,...,3,m51,2% denote~two-dimensional! harmonic oscillator raising and lowering operators f
three particles. The operators$aim

† ajn% then span a u~6! Lie algebra. This algebra has two mutual
commuting subalgebras: u~3! spanned by the operators

Ĉi j 5 (
m51

2

aim
† ajm , ~15!

andu(2) spanned by

B̂mn5(
i 51

3

aim
† ain . ~16!

The algebras u~3! and u(2) are examples of a so-calleddual pair.9 The use of a dual pair
„u(N),u(n)… and the corresponding direct sum subalgebra u(N)1u(n),u(Nn) are well known,
for example, in the classification of states ofN particles in ann-dimensional harmonic oscillator
cf., for example, the paper by Hagen and MacFarlane12 which presents a method for deriving th
SU(m)3SU(n) content of SU(mn) and provides tables for the SU~6!→SU~3!3SU(2) branching
rules.

Now observe that, ifu0& is the state in which all particles are in their respective harmo
oscillator ground states, the state

uf~l,m!&5~a11
† !l~a11

† a22
† 2a12

† a21
† !mu0& ~17!

satisfies all the conditions of Eq.~6!. Thus, uf~l,m!& is an ~unnormalized! SU~3! highest weight
state. But it also satisfies
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B̂12uf~l,m!&50,
~18!

B̂11uf~l,m!&5~l1m!uf~l,m!&, B̂22uf~l,m!&5muf~l,m!&,

which means thatuf~l,m!& is simultaneously a highest weight state foru(2) with highest weight
(l1m,m) and a highest weight state for u~3! with highest weight (l1m,m,0), cf. Eq. ~7!.
Moreover, since the u~3! andu(2) operators commute with one another, we can identify all
desired SU~3! basis states with those of the subset of U(3)3U(2) states that are ofU~2! highest
weight. This result is a special case of a general result for dual pairs;9 for any N and n, the
commuting algebras u(N) and u(n) have a complete set of highest weight states in comm
within the carrier space of a fully symmetric irrep of the Lie algebra u(Nn) @i.e., an irrep of
highest weight~s,0,...!, where s, equal tol12m in the present case, is the total number
harmonic oscillator quanta#.

It is well known that basis states for ansu(2) irrep of spinsi are given by

usi ,mi&5
~ai1

† !si1mi~ai2
† !si2mi

A~si1mi !! ~si2mi !!
u0&. ~19!

These states are also a basis for au(2) irrep of highest weight (2si ,0). They are tensor product
of pairs ofu(1) irreps ofu(1) spin (si1mi) and2(si2mi), respectively. A Gel’fand basis fo
SU~3! can likewise be constructed from triple tensor products ofsu(2) irreps.

Theorem: The weight basis, defined by Eqs.~8!–~14!, can be expressed, to within arbitra
phase factors:

unI &5@ u 1
2 n1& ^ @ u 1

2 n2& ^ u 1
2 n3&]

I ] l/2
l/2 ,

5 (
m1m2m3~N!

~ 1
2 n3 ,m3 ; 1

2 n2 ,m2uI ,N!~ I ,N; 1
2 n1 ,m1u 1

2 l, 1
2 l!u 1

2 n1 ,m1&u
1
2 n2 ,m2&u

1
2 n3 ,m3&,

~20!

with n5(n1 ,n2 ,n3).
Proof: It follows, from Eq. ~15!, that

Ĉii unI &5n i unI &. ~21!

Thus, the statesunI & have the same weights as their Gel’fand–Tsetlin counterparts. It remai
show that a stateunI &, defined by Eq.~20!, has SU(2)23 angular momentumI.

Consider a set of states for particles 2 and 3 which span an irrep of u(2)3u(2),u(3)
3u(2), where the u~2!,u~3! subalgebra is spanned by the operators$Ĉ23,Ĉ32,Ĉ22,Ĉ33%. If the
two-particle states transform according to a u~2! irrep ~p,q! then, by duality, they also belong t
u(2) irreps of the same highest weight,~p,q!. Thus, if a state has su~2! angular momentumI
5(p2q)/2, it also hassu(2) angular momentumI. It follows that thesu(2)-coupled two-particle
state,

@ u 1
2n2& ^

1
2n3] N

I , ~22!

belongs to au(2) irrep ~p,q! with

p1q5n21n3 , p2q52I , ~23!

and therefore to the u~2! irrep with the same labels~p,q! and to the irrep with angular momentum
I 5 1

2(p2q) of the subalgebra su~2!,u~2!. This completes the proof.
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IV. MATRIX ELEMENTS OF WEYL OPERATORS

The Weyl group is generated by reflections of the roots in the hyperplanes perpendicu
each of the roots. Leta i j denote the SU~3! root whose root vector isĈi j and letPi j denote the
reflection in the line perpendicular toa i j . Then, for example,

P12:a12→a21, a13→a23, a32→a31, ~24!

andP12
2 51. Thus, one obtains the known result that the Weyl group for SU~3! is isomorphic to the

symmetric groupS3 of permutations of three objects and that the subset of reflections corres
to transpositions.

By writing Eq. ~20! in the form

CnI~123![^123unI &5@cn1
~1! ^ @cn2

~2! ^ cn3
~3!# I #l/2

l/2 , ~25!

we obtain representations of the Weyl group for SU~3! in which, for example,

@P12CnI #~123!5^123uP12unI &5CnI~213!,

@P13CnI #~123!5CnI~321!, ~26!

@P132CnI #~123!5@P12P13CnI #~123!5CnI~312!.

It follows that

@P12CnI #~123!5@cn1
~2! ^ @cn2

~1! ^ cn3
~3!# I #l/2

l/2

5(
I 8

~21!~n322I 22I 812m2l!/2A~2I 11!~2I 811!

3H n1/2 n3/2 I 8

n2/2 l/2 I J @cn2
~1! ^ @cn1

~2! ^ cn3
~3!# I 8#l/2

l/2 , ~27!

where$d
a

e
b

f
c% is a Wigner 6-j symbol. Thus, we obtain the matrix elements

^n8I 8uP12unI &5dn
18 ,n2

dn
28 ,n1

dn
38 ,n3

~21!~n322I 22I 812m2l!/2A~2I 11!~2I 811!H n1/2 n3/2 I 8

n2/2 l/2 I J .

~28!

In a similar way one determines that

^n8I 8uP123unI &5dn
18 ,n3

dn
28 ,n1

dn
38 ,n2

~21!~n11n222I 812l!/2A~2I 11!~2I 811!H n1/2 n2/2 I 8

n3/2 l/2 I J
~29!

and

^n8I 8uP132unI &5dn
18 ,n2

dn
28 ,n3

dn
38 ,n1

~21!~n112I 12m1l!/2A~2I 11!~2I 811!H n1/2 n3/2 I 8

n2/2 l/2 I J .

~30!
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To check these results, it is useful to apply them to the highest weight state. We find t

P12U~l1m,m,0!
m

2 L 5~21!mU~m,l1m,0!
l1m

2 L ,

P123U~l1m,m,0!
m

2 L 5U~0,l1m,m!
l

2L , ~31!

P132U~l1m,m,0!
m

2 L 5~21!mU~m,0,l1m!
l1m

2 L ,

consistent with the known action on the highest weight shown in Fig. 2. As expected, Weyl
elements map extremal states into other extremal states.

V. WIGNER FUNCTIONS

Matrix elements of SU(2)23 group elements are given immediately in the$unI &% basis as
SU~2! Wigner functions; viz.,

^n8I 8uR23~a,b,g!unI &5dn
18 ,n1

d I 8ID~n282n38!/2,~n22n3!/2

I
~a,b,g!, ~32!

whereDM ,N
I is a standard SU~2! Wigner function.

To evaluate matrix elements of the other SU(2)i j subgroups, we make use of the fact~noted
by Chaco´n and Moshinsky5! that the different SU(2)i j subgroups are Weyl transforms of on
another. Thus, for example, the infinitesimal generators of SU(2)12

Ĉ12, Ĉ21, 1
2~Ĉ112Ĉ22!, ~33!

are related to those of SU(2)23 by

Ĉ125P132Ĉ23P132
215P132Ĉ23P123. ~34!

It follows that

R12~a,b,g!5P132R23~a,b,g!P123. ~35!

Similarly, one finds that

R13~a,b,g!5P12R23~a,b,g!P12. ~36!

FIG. 2. The action of Weyl group elements on the highest weight of an SU~3! irrep.
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Thus, with the parametrization given by Eq.~3!, we obtain the SU~3! Wigner functions

Dn8I 8,nI
~lm!

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

5( D
~n282n38!/2,~t22s3!/2

I 8
~a1 ,b1 ,g1!^~n18 ,t2 ,s3!I 8uP132u~s3 ,n18 ,t2!J&

3D
~n182t2!/2,~n12s2!/2

J
~a2 ,b2 ,a2!^~s3 ,n1 ,s2!JuP123u~n1 ,s2 ,s3!I &

3D~s22s3!/2,~n22n3!/2
I ~a3 ,b3 ,g3!, ~37!

where the sum is over alls, t, and J values allowed by Eqs.~11!, ~13!, and the betweennes
conditions~8!.

VI. MATRIX ELEMENTS OF SO „3…

If SO~3!,SU~3! is the subgroup whose infinitesimal generators are the angular mome
operators

L̂z52 i ~Ĉ232Ĉ32!, L̂x52 i ~Ĉ312Ĉ13!, L̂y52 i ~Ĉ122Ĉ21!, ~38!

then we have the identities

L̂z52Î y , L̂x522F̂y , L̂y52T̂y , ~39!

whereÎ y , T̂y andF̂y belong to the Lie algebras of SU(2)23, SU(2)13, and SU(2)12, respectively.
Thus, with the standard parametrization of an SO~3! element

V~a,b,g!5e2 iaL̂ze2 ibL̂ye2 igL̂x, ~40!

we have the identity

V~a,b,g!5R23~0,2a,0!R12~0,2b,0!R23~0,2g,0!5R23~0,2a,0!P132R23~0,2b,0!P123R23~0,2g,0!,

~41!

and the matrix elements

^n8I 8uV~a,b,g!unI &5(
stJ

d
~n282n38!/2,~t32s3!/2

I 8
~2a!

3^~n18 ,t3 ,s3!I 8uP132u~s3 ,n18 ,t3!J&d~n182t3!/2,~n12s2!/2

J
~2b!

3^~s3 ,n1 ,s2!JuP123u~n1 ,s2 ,s3!I &d~s22s3!/2,~n22n3!/2
L ~2g!,

~42!
wheredMN

I is a reduced SU~2! Wigner function.

VII. DISCUSSION

We have derived matrix elements of Weyl group elements and expressions for SU~3! Wigner
functions by making use of the dual actions of U~3! and U~2! on the carrier spaces of symmetr
representations of U~6!.

The groups U~3! and U~2! are special cases of U(N) and U(n) groups that form dual pairs on
the carrier spaces of fully symmetric irreps@i.e., irreps of highest weight~s,0,...!# of U(N3n);
they are also dual on a direct sum of such spaces.

The essential property of a dual pair9,13 is that the constituent groups are the centralizers
each other’s actions on a specified vector space. The classic example is the Schur–Weyl p14 of
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unitary, U(n), and symmetric,SN , groups which have commuting actions on theN-fold tensor
product,CN3n, of a complexn-dimensional vector space,Cn. The Schur–Weyl duality has bee
used effectively to relate the characters of unitary groups, which are infinite Lie groups, to
of the finite symmetric groups. It also underlies the famous Littlewood–Richardson rules15 for
tensor products and the methods of King, Wybourne, and others16 for inferring branching rules.

Another famous dual pair comprises the orthogonal, O(N), and symplectic, Sp(n,R), groups
acting on theN-fold tensor productHN3n of the n-dimensional harmonic oscillator Hilbert spac
Hn.17 Whereas the Schur–Weyl duality relates the properties of a finite-dimensional irrep of
group to those of a discrete group, the symplectic-orthogonal duality relates the properties
infinite-dimensional irrep of a noncompact Lie group to those of a compact Lie group. This d
was used, for example, to infer the Sp(n,R)→U(n) branching rules from known properties o
O(N).18

It is interesting to note that U(n)3U(N) and Sp(n)3O(N) are both direct products of dua
pairs on a common harmonic oscillator Hilbert spaceHN3n. Thus, one has the useful concept
dual subgroup chains

Sp~n,R!.U~n!↔O~N!.U~N!, ~43!

involving the two dual pairs Sp(n,R)3O(N) and U(n)3U(N). These duality relations have bee
used19 to relate the representations and tensor products of U(N) in an O(N) basis to those of
Sp(n,R) in a U(n) basis. They also play an essential role in the microscopic theory of nu
collective motion20 with HN3n regarded as the Hilbert space forN-particles in ann-dimensional
space.

It should be mentioned that dual subgroup chains were discovered long ago by Brauer21 who
extended the Schur–Weyl duality by observing that the centralizer of the orthogonal sub
O(n),U(n) on CN3n is a group~also an algebra! that contains the symmetric groupSN as a
subgroup@cf. Ref. 13 for a discussion of the O(n) –Brauer duality#.

The physical significance of several of the above dual pairs is illustrated effectively by a
cations to optics and quantum interferometry, applications which motivated the present inve
tion.

It has long been known that geometrical optics is an application of Hamiltonian mecha
Moreover, in the linear approximation, the transformation of a light beam by an optical ele
such as a lens, is an Sp~2,R! transformation. This observation is important because it means
the combined effects of many optical elements can be inferred by matrix multiplication.
importantly, one can go beyond the linear approximation to compute the aberrations of an
system and how to correct them. The techniques for doing this have been developed into a
by Dragt and his students22 and have revolutionized the design of charged-particle and op
beam systems; an introduction to the subject has been given by Guillemin and Sternberg.23

We note that there also exists a dual group action on optical systems. If a beam of li
charged particles is polarizable or has intrinsic spin degrees of freedom, then, in addition
symplectic group action on its spatial phase-space coordinates, there is a dual orthogona
action on its polarization state. Thus, for example, for light, with two linearly independent p
izations, or for spin-half particle beams, one has a dual Sp(2,R)3O(2) action on the combined
space-spin degrees of freedom.@Note that we mean by Sp~2,R! the rank-2 group of real canonica
transformation of a four-dimensional phase space; some authors denote the same gr
Sp~4,R!.# Thus, one can extend the dynamical group for an optical system from Sp~2,R! to the
direct product group Sp(2,R)3O(2) and thereby admit polarizing~spin rotation! as well as
focusing elements. One can further extend the dynamical group to Sp(4,R).Sp(2,R)3O(2) to
include combinations of the two.@It is of interest to note that a general polarizing element is
restricted to O~2! and may induce a U~2! transformation that lies inside Sp~4,R! but which does
not commute with the group Sp~2,R! of spatial transformations.#

Such extensions are relevant for describing the quantum interference of light or pa
beams. In this case, one is interested in the detailed quantum states of many-photon~many-
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particle! system. Thus, one is interested in the unitary representations of the dynamical grou
as we have shown explicitly for U~3!3U~2! in Sec. III C, the irreps of a dynamical group a
determined by those of its dual and vice versa.

It has recently been proposed that quantum interferometers should be analyzed in te
unitary groups.2,3 A typical quantum interferometer comprises a sequence of elements in w
two input modes of the electromagnetic field~beams! are transformed linearly into two outpu
modes. It has been shown that the transformation of the two modes by such an optical ele
a U~2! transformation@an SU~2! transformation together with a phase shift#.2 It has also been
shown2 that a so-calledactive interferometer can similarly be represented by an SU~1,1! transfor-
mation@note that SU~1,1! is isomorphic to Sp~1,R!# and that a linear optical system, comprisingn
input modes, is represented by an SU(n) transformation.3

The use of dual pairs provides a natural framework for the extension of these metho
include polarization and optical elements whose parameters depend on the polarization stat
input fields. To include polarization, one simply extends the U(n) group to U(n)3U(2) and to
include combinations of polarizers and beam splitters, for example, one extend
U(2n).U(n)3U(2). This is particularly relevant in the quantal context because the input s
available tos photons, when there aren input modes and two linearly independent polarizatio
for each photon, span an irrep of highest weight~s,0,...! of the group U(2n). The duality prop-
erties imply that the subrepresentations available to the subgroup U(n)3U(2), on restriction of
the U(2n) representation~s,0,...!, are the so-called two-rowed irreps of type (l1 ,l2,0,...)
3(l1 ,l2) ~i.e., irreps whose highest weights have no more than two nonzero components!. This
follows simply because a U~2! weight has only two components and the two subgroups, U(n) and
U~2!, being each other’s duals, have highest weight states in common. This results in an eno
simplification in the analysis of a multi-mode interferometer.@Note that, as usual, the SU(n) labels
are obtained by taking differences of U(n) labels, so that the U(n) irrep (l1 ,l2,0,...) restricts to
the SU(n) irrep (l12l2 ,l2,0,...).#

An important application of SU~3! interferometry is the experimental test of Bell’s theore
without inequalities, known as the GHZ test.24 Standard tests of Bell’s theorem, designed to t
the hypotheses of local realism against quantum theory, involve spacelike-separated measu
of two polarization-correlated fields, and local realism establishes an upper bound on the p
degree of correlations between the two fields. The GHZ test, in its ideal form, yields one e
mental result for local realism and an entirely different result for quantum theory. Thus, a
ticular observation determines which theory is correct, and an inequality is not necessary.
context of SU~3! Wigner functions, the important aspect of the GHZ test is that three polariza
correlated fields are used, and therefore U~3!3U~2!, accounting for three fields and two polariz
tions, is appropriate here.

Consider, for example, the SU(n) transformations of a one-rowed irrep,~l,0,...!, by a system
which ignores the polarization. For such an irrep, the highest weight state can be identifie
the state

uf~l,0,...!&5~a11
† !lu0&. ~44!

of maximum polarization. Hence, all states of the SU(n) irrep with this highest weight state hav
maximum polarization. Thus, the SU~2! coupling becomes trivial and basis states for the irrep
labelled simply and uniquely by their weights. It follows that the basis states of the gener
version of the theorem of Sec. III C are simply the states

un&5
~a11

† !n1

An1!

~a21
† !n2

An2!
¯

~an1
† !nn

Ann!
u0&. ~45!

The elements of the Weyl group are seen to act on such states by simply permuting the c
nents$n i% of the weights.
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For the general two-rowed irreps one must include explicit SU~2! coupling, as shown for
SU~3! in Sec. III C. For example, basis states for a two-rowed irrep of U~4! are highest weight
states of the dual algebra U~2! and have the general form

@ u 1
2n1& ^ @ u 1

2n2& ^ @ u 1
2n3& ^ u 1

2n4&]
I ] J] l/2

l/2 . ~46!

Thus, computing matrix elements of Weyl group elements for any two-rowed SU(n) irrep never
involves more than SU~2! recoupling.
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APPENDIX: FACTORIZATION OF AN SU „3… ELEMENT

Claim: Any elementgPSU(3) can be parametrized and expressed as a product

g~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!5R23~a1 ,b1 ,g1!R12~a2 ,b2 ,a2!R23~a3 ,b3 ,g3!, ~A1!

whereR23(a,b,g)PSU(2)23, R12(a,b,a)PSU(2)12, and the$SU(2)i j % are the subgroups o
SU~3! defined by the subsystems of roots shown in Fig. 1.

Proof: First observe that any SU~3! matrix can be brought to the form

S * * *

* * *
0 * *

D ~A2!

by an SU(2)23 transformation; viz.

S 1 0 0

0 Y* Z*

0 2Z Y
D S x * *

y * *
z * *

D 5S x * *
A12uxu2u * *

0 * *
D , ~A3!

whereY5y(12uxu2)2
1
2, and Z5z(12uxu2)2

1
2 and we have used the fact thatuxu21uyu21uzu2

51. A subsequent SU(2)12 transformation then brings the matrix to SU(2)23 form; i.e.,

S x* A12uxu2u 0

2A12uxu2u x 0

0 0 1
D S x * *

A12uxu2u * *

0 * *
D 5S 1 0 0

0 * *
0 * *

D . ~A4!

Thus, we determine that

S x* A12uxu2u 0

2A12uxu2u x 0

0 0 1
D S 1 0 0

0 Y* Z*

0 2Z Y
D S x * *

y * *
z * *

D 5S 1 0 0

0 * *
0 * *

D . ~A5!

Inversion of this equation gives

S x * *
y * *
z * *

D 5S 1 0 0

0 Y 2Z*

0 Z Y*
D S x 2A12uxu2 0

A12uxu2 x* 0

0 0 1
D S 1 0 0

0 * *
0 * *

D , ~A6!
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which proves the claim with suitably chosen parameter values; e.g.,

x5e2 ia2 cos~b2/2!, A12uxu25sin~b2/2!. ~A7!
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A special irreducible matrix representation of the real
Clifford algebra C„3,1…
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434 Dirac ~gamma! matrices@irreducible matrix representations of the Clifford
algebrasC(3,1), C(1,3), C(4,0)# are an essential part of many calculations in
quantum physics. Although the final physical results do not depend on the applied
representation of the Dirac matrices~e.g., due to the invariance of traces of prod-
ucts of Dirac matrices!, the appropriate choice of the representation used may
facilitate the analysis. The present paper introduces a particularly symmetric real
representation of 434 Dirac matrices~Majorana representation! which may prove
useful in the future. As a by-product, a compact formula for~transformed! Pauli
matrices is found. The consideration is based on the role played by isoclinic
2-planes in the geometry of the real Clifford algebraC(3,0) which provide an
invariant geometric frame for it. It can be generalized to larger Clifford algebras.
© 1999 American Institute of Physics.@S0022-2488~99!04606-X#

I. INTRODUCTION

Dirac ~gamma! matrices used within many calculations in quantum physics can be under
as representations of Clifford algebras. In four-dimensional Minkowski or Euclidean space
are representations of the Clifford algebrasC(3,1), C(1,3) orC(4,0), respectively. While there is
no problem to write down sets of complex 434 Dirac matrices which form irreducible represe
tations of these Clifford algebras, a set of real 434 Dirac matrices~Majorana representation!,
which we will be interested in, can only be obtained for the Clifford algebraC(3,1)1–4 ~further
material on real Clifford algebras can be found in Ref. 5, Chap. 13, Refs. 6–11!. These matrices
obey the standard relation

gmgn1gngm52hmn1, ~1!

wherehmn , m,n51,...,4 are the elements of the diagonal matrixh with diag(h)5(1,1,1,21) and
1 is the 434 unit matrix. An explicit representation of real gamma matrices is provided by
following expressions~adapted from Ref. 4!:

g15S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D , ~2!

g25S 0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D , ~3!

a!Electronic mail: scharnh@physik.hu-berlin.de
36160022-2488/99/40(7)/3616/16/$15.00 © 1999 American Institute of Physics

                                                                                                                



tal

al

e
ming
effort
on the
dinate
alcula-
such a
ucible
o
ion
ly

la for
bra

3617J. Math. Phys., Vol. 40, No. 7, July 1999 A special irreducible matrix representation of . . .

                    
g35S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D , ~4!

g45S 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

D . ~5!

But, Eq. ~1! is invariant under orthogonal transformationsO of the gamma matrices

gm8 5OgmOT ~6!

and any other set of congruent@by virtue of ~6!# gamma matricesgm8 will also be equally appro-
priate as representation ofC(3,1). ~The general situation is described by Pauli’s fundamen
theorem.12,13! Now, let us denote the real linear vector spaceR4 in which the elements of the
Clifford algebra C(3,1) act as operators byV ~spinor space!. Then, the matricesgm can be
understood as representations of the generators ofC(3,1) with respect to a certain orthonorm
basis inV which defines in it a rectangular coordinate system. Any transformation~6! of the
gamma matrices corresponds to an orthogonal transformation inV and consequently to a chang
of the coordinate system inV. The concrete shape of the gamma matrices changes in perfor
these transformations. In explicit calculations in which gamma matrices occur the required
may depend on the explicit shape of the gamma matrices. Therefore, in dependence
physical problem under consideration one may ask whether it is possible to find a coor
system in which the gamma matrices assume a particularly convenient shape for some c
tional purpose. The detailed requirements certainly may depend on the purpose. From
problem, recently we have been led to ask ourselves whether it is possible to find an irred
representation of the real Clifford algebraC(3,1) which is particularly symmetric with respect t
the indexm of the gamma matricesgm8 . Indeed, it is possible to find an orthogonal transformat
which transforms the gamma matrices~2!–~5! into the following expressions which are obvious
particularly symmetric with respect to the index of the gamma matricesk51,2,3 ~1 and0 are the
232 unit and null matrices, respectively;w0 is some arbitrary real constant; cf. Sec. V!,

gk85
1

)
S 1 Fk

Fk 21D , Fk5S f ~2wk! f ~wk!

f ~wk! 2 f ~2wk!
D , ~7!

f ~w!5cosw1sinw5& cosS w2
p

4 D , ~8!

wk5w~k!5w01
2p

3
k, ~9!

g485S 0 21

1 0 D . ~10!

As a by-product, from the above expressions one obtains the following compact formu
transformed Pauli matrices@irreducible matrix representations of the complex Clifford alge
C(3,0); cf. Appendix B#.
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sk85
1

)
S 1 &e2 iwk

&eiwk 21 D . ~11!

It is the purpose of the present article to systematically derive the above expressions rely
certain information not applied previously within the present context. The discussion is acco
nied by references to the relevant but scattered literature.

Our considerations will be guided by the following idea. Related to the Clifford alge
C(3,0), it should be possible to find an expression for the set of the gamma matricesgk8 , k
51,2,3 which is particularly symmetric with respect to the indexk. We approach the problem b
noting that each gamma matrixgk has 2 two-dimensional eigenspaces related to the eigenva
r51 andr521 ~which are orthogonal to each other!. Any coordinate system inV stands in a
certain geometric relation to all the eigenspaces of the gamma matrices whose mutual rela
an invariant under any transformation~6!. Now, the idea consists in finding such a coordina
system inV with respect to which all the eigenspaces of the gamma matrices lie in a particu
symmetric way. Then, one may expect that the explicit expressions for the gamma matricgk8
reflect this symmetry. Therefore, in Sec. II we start with some observations concerning the
spaces of the generators of the Clifford algebraC(3,0) ~more precisely, in using this term w
always mean the generators of its irreducible representations!.

II. ISOCLINIC 2-PLANES IN R 4

To begin with, let us discuss some aspects of the geometry of 2-planes in the affine spR4

which we also denote byV for simplicity. We restrict our consideration to 2-planes containing
point x5(0,0,0,0)@i.e., to the Grassmann manifoldG(2,4), for a related review see Ref. 14#. We
will rely here on the general multidimensional matrix formalism presented in Ref. 15, Cha
Sec. 3~also see Ref. 16, Chap. III, Sec. 3.3! which we specialize toR4 . In the following we will
start with some material which provides the necessary information on those aspect of the f
ism of Refs. 15 and 16 which is relevant for the present paper.

For our purposes, a pointx of a given 2-planeA can be described in terms of the equatio

x5At , ~12!

where A is a 432 matrix whose two columns are given by the coordinates of two line
independent vectors spanning the 2-planeA while t is the two-component vector of the coord
nates of the pointxPA. Two 2-planesA and B can intersect inV in various ways. In order to
study their relation, to each pair of linesX,A, Y,B the angle they enclose can be calculat
Once a lineX,A is fixed, for any arbitrary lineY,B the angle enclosed assumes values betw
somea0>0 andp/2. In general,a0 may lie between some minimal and some maximal value
the so-calledstationary angles (principal angles)amin , amax—which are characteristic for the
geometry of the pair of 2-planesA, B. Now, from an extremum principle a 232 matrix

W5~ATA!21~ATB!~BTB!21~BTA! ~13!

can be constructed17 for whose eigenvaluesw1 andw2 the equations

w15cos2 amax, ~14!

w25cos2 amin ~15!

apply. If the 2-planesA, B are given by means of Eq.~12! in terms of two orthonormal vector
each, Eq.~13! simplifies to the form35

W5~ATB!~BTA!. ~16!

If the matrix W is proportional to the unit matrix~i.e., w15w25w)
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W5w1, ~17!

the 2-planesA andB are said to be~mutually! isoclinic.41 Then, to each vectorxPA a unique line
in B exists ~determined by the orthogonal projection ofx onto B) which encloses withx the
~stationary! angle a5arccosAw.48 Finally, we would like to mention that under some natu
bijection betweenR4 and C2 ((z1 ,z2)5(x11 ix2 ,x31 ix4)PC2 , (x1 ,x2 ,x3 ,x4)PR4) two iso-
clinic 2-planes inR4 correspond to two lines through the origin inC2 ~Ref. 23, Sec. 1-7, p. 51
theorem 1-7.4!.

Now, the above formalism can be used to analyze the geometry of the set of 6
dimensional eigenspaces of the generators of the Clifford algebraC(3,0) ~i.e., more precisely, the
generators of its irreducible representation!. After some calculation using, e.g., the explicit repr
sentations of the gamma matrices~2!–~4! one finds that all their six eigenspaces are pairw
isoclinic 2-planes~some choice for the matricesA describing the eigenspaces is given in Appen
A!. Of course, the two eigenspaces of a given gamma matrixgk are orthogonal to each other. Bu
any other two eigenspaces are pairwise isoclinic with an~stationary! anglea5p/4. Consequently,
we can find, at maximum, a set of three eigenspaces of the gamma matricesgk , k51,2,3, whose
elements are pairwise isoclinic with the anglep/4.54 Such a set of 2-planes is called anequian-
gular frame ~Ref. 22, Pt. I, Sec. 5, p. 40!. With respect to the aim of the present paper, in
following we will just be interested in such sets.

III. THE CLIFFORD ALGEBRA C„3,0… AND EQUIANGULAR FRAMES

We begin this section with some necessary information taken from Ref. 2258 and specialized
to the present needs~in the following the term ‘‘adapted quote’’ always means that the origi
text is quoted exactly except that any reference to the general multidimensional spaceR2n has
been specialized toR4). The following definition will be used: ‘‘Aset of mutually isoclinic
2-planesin R4 is characterized by the property that every two 2-planes of the set are isoclinic
each other. A set of mutually isoclinic 2-planes inR4 is called amaximalset if it is not subset of
a larger set of mutually isoclinic 2-planes’’~this is an adapted quote from Ref. 22, Pt. I, Sec. 3
19!.60

In order to make contact with the formalism used in Ref. 22 which we will rely on in
further discussion we need to rewrite the defining equation~12! for a 2-planeA in one of the
following two ~alternative! ways:

x(3,4)5Ãx(1,2) , Ã5A% ~Ā!21, ~18!

x(1,2)5AM x(3,4) , AM 5Ā~A% !21. ~19!

Here, the notationx(1,2)5(x1 ,x2)T, x(3,4)5(x3 ,x4)T is used and the 232 matricesĀ, A% are
related to the matrixA in the following way:

A5S Ā

A%
D . ~20!

Equation~18! @~19!# is valid for any 2-plane which is isoclinic but not identical to the 2-pla
O(3,4) : x(1,2)50 @O(1,2) : x(3,4)50# ~this entails that the 2-planeA intersects the 2-planeO(3,4)

@O(1,2)# in the pointx5(0,0,0,0) only and, therefore, ensures the invertibility ofĀ @A% #).
According to Wong~Ref. 22, Pt. I, Sec. 7, p. 54, theorem 7.2; also see Ref. 23, Sec. 1

43!, every maximal set of mutually isoclinic 2-planes inR4 is of dimension 2 and is congruen
~i.e., related by an orthogonal transformation inR4) to the maximal set given by

x(3,4)5B̃~l0 ,l1!x(1,2)5@l0B̃01l1B̃1#x(1,2) , ~21!
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B̃05S 21 0

0 1D , B̃15S 0 1

1 0D , ~22!

or

x(1,2)5BM ~l0 ,l1!x(3,4) , ~23!

BM ~l0 ,l1!5B̃~l0 ,l1!215
1

l0
21l1

2 B̃~l0 ,l1!5B̃~l08 ,l18!,

~24!

ln85
ln

l0
21l1

2 , n51,2,

wherel0 , l1 are two real parameters.64

Both of the 2-planesO(1,2) : x(3,4)50 andO(3,4) : x(1,2)50 belong to this maximal set~Ref. 22,
Pt. I, Sec. 2, p. 16, lemma 2.2!. Equations~21! and~23! entail that the matrixB to be inserted in
the corresponding Eq.~12! reads, e.g.~we have chosen particularly simple expressions!,

B~l0 ,l1!5
1

A11l0
21l1

2 S 1

B̃~l0 ,l1!
D , ~25!

or

B~l08 ,l18!5
1

A11l08
21l18

2 S B̃~l08 ,l18!

1 D . ~26!

Furthermore, Wong finds that~adapted quote! ‘‘in R4 , any maximal set of mutually isoclinic
2-planes which contains the 2-planeO(1,2) corresponds to a linear subspace of the linear spac
all 232 matrices’’ ~Ref. 22, Pt. I, Sec. 3, p. 20, lemma 3.2!. Now, in this two-dimensional
subspace a matrix basis can be chosen in such a way that the 2-planes described by the e
of the basis and the 2-planeO(1,2) ~or O(3,4)) form an equiangular frame~Ref. 22, Pt. I, Sec. 3, p
24, lemma 3.3 and p. 40!. As one may convince oneself easily by means of the explicit exp
sions given in Appendix A, each equiangular frame built from the eigenspaces of the g
matrices contains a basis of one and the same maximal set of mutually isoclinic 2-planes.

For the purpose of the present paper it appears to be useful to consider two disjoint e
gular framesV connected with the gamma matrices~2!–~4!—one (V1) related to the three
eigenspaces to the eigenvaluer51, and the other one (V21) related to the three eigenspaces
the eigenvaluer521. The following theorem by Wong will be helpful then~F is any maximal
set of mutually isoclinic 2-planes inR4 ; the following is an adapted quote; the indices have a
been changed to conform to the notation used in the present article!: ‘‘If the angles between any
2-plane ofF and the three 2-planes of an equiangular frame areuk (1<k<3), then

cos2 2u11cos2 2u21cos2 2u351. ~27!

Conversely, given any set of three anglesuk (1<k<3) such that 0<uk<p and ( cos2 2uk51,
then there exists a unique 2-plane isoclinic to each of the three 2-planes of a given equia
frame, making anglesuk with them, and this 2-plane belongs toF’’ @Ref. 22, Pt. I, Sec. 5, p. 41
theorem 5.3~b!#. From this insight we conclude that, obviously, to each equiangular frameV1

@V21# two uniquely determined 2-planesA16 @A216# exist which lie in a particularly symmetric
way ~isoclinic! relative to the elements ofV1 @V21#. For A16 , A216 it holds
                                                                                                                



g
gamma

to

m-

c-

ix A

3621J. Math. Phys., Vol. 40, No. 7, July 1999 A special irreducible matrix representation of . . .

                    
u15u25u35usym, cos 2usym56
1

)
. ~28!

For the corresponding eigenvalue of the matrixW, Eq. ~17!, one obtains

w5cos2 usym5
1

2
~11cos 2usym!5

1

2 S 16
1

)
D 5w6 . ~29!

The two different values ofusym ~and w)) will not cause any major difference in the followin
considerations as both cases are related by a simple permutation of the indices of the
matrices.

IV. CHANGE OF THE COORDINATE SYSTEM

We may now set out to determine the position of the 2-planesA16 , A216 using the formulas
given in Secs. II and III. For the 2-planesA16 , A216 we can apply a general ansatz according
Eqs.~21!, ~23!, ~25!, ~26! and calculate the eigenvalue of the matrixW for each of the three pairs
given by one of the elements of the equiangular frameV1 @V21# and A16 @A216#. For each
eigenvaluer of the gamma matrices~2!–~4!, this leads to a set of three equations for the para
etersl0 , l1 which have to be solved simultaneously taking into account Eq.~29!. These equations
read forr51 ~in sequence for the indicesk51, k52 andk53 of the gamma matrices, respe
tively!

w65
l08

21~11l18!2

2~11l08
21l18

2!
, ~30!

w65
~12l08!21l18

2

2~11l08
21l18

2!
, ~31!

w65
l08

21l18
2

11l08
21l18

2 , ~32!

and forr521,

w65
l0

21~12l1!2

2~11l0
21l1

2!
, ~33!

w65
~11l0!21l1

2

2~11l0
21l1

2!
, ~34!

w65
l0

21l1
2

11l0
21l1

2 . ~35!

~Equations~30!–~32! @~33!–~35!# have been derived using the expressions given in Append
and Eq.~26! @~25!#.! The solution of the above equations reads forr51,

l0852l1852l6 , ~36!

and forr521,

l052l15l6 . ~37!
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Here,

l656)w6 , ~38!

which entails

2l6l7521. ~39!

Now, we may assume that the explicit representations for the gamma matrices~2!–~5! are
related to the natural basis inV from which two pairs of basis vectors can be selected which de
the orthogonal 2-planesO(1,2) , O(3,4) . In order to obtain a particularly symmetric representat
for the gamma matrices it appears to be advantageous now to go over to an orthonorma
from which two pairs of basis vectors can be chosen which define the orthogonal 2-planesA16 ,
A216 . This change of the basis inV is associated with an orthogonal transformationO in V
which transforms the gamma matrices in accordance with Eq.~6!. We start by choosing an
appropriate orthonormal basis inV from which the matricesA16 , A216 describing the 2-planes
A16 , A216 can be built@we simply insert the solutions~36! and ~37! into Eqs.~26! and ~25!,
respectively#,

A165
1

A112l6
2 S l6 l6

l6 2l6

1 0

0 1

D , ~40!

A2165
1

A112l6
2 S 1 0

0 1

2l6 2l6

2l6 l6

D . ~41!

One immediately recognizes that the 2-planesA16 , A216 are orthogonal to each other. Furthe
more, by virtue of Eq.~39! it holds A165A217 . Of course, the above choice for the matric
A16 , A216 is not unique and any orthonormal basis which is related to the basis used
above equations by a rotation within the 2-planesA16 , A216 is equally well suited. In fact,
further below we will use exactly this freedom to obtain our final result~7!–~10!.

The transition from the natural basis inV which is related to the 2-planesO(1,2) , O(3,4) to the
basis which is given in terms of Eqs.~40! and ~41! and which is related to the 2-planesA16 ,
A216 is described by the orthogonal transformationO6 ,

O65
1

A112l6
2 S l6 l6 1 0

l6 2l6 0 1

1 0 2l6 2l6

0 1 2l6 l6

D , ~42!

which leads viagm9 5O6gmO6
T to the correspondingly transformed expressions for the gam

matricesgm @of course, for our choice~42! it holds O65O6
T #. After some algebra@taking into

account Eq.~39!# one finds

g169 52g279 56
1

) S 1 0 2l6 2l7

0 1 2l7 l6

2l6 2l7 21 0

2l7 l6 0 21

D , ~43!
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g369 56
1

) S 1 0 1 1

0 1 1 21

1 1 21 0

1 21 0 21

D , ~44!

g495S 0 0 21 0

0 0 0 21

1 0 0 0

0 1 0 0

D . ~45!

From Eq.~43! one immediately recognizes that the two cases differing by the sign in Eq.~28! are
related to each other by a permutation of the gamma matrices with the indicesk51 andk52.

V. RESIDUAL ROTATIONS

Although in Sec. IV we have performed the transformation to a coordinate system whic
in a particularly symmetric way with respect to the equiangular framesV1 , V21 built from the
eigenspaces of the gamma matrices, at first glance the transformed expressions~43!, ~44! do not
seem to exhibit any particular symmetry with respect to the indexk51,2,3 of the gamma matri
ces. However, the expected symmetry is there and we are going to reveal it now. Let us r
ourselves that the choice of the new basis~coordinate system! was not unique and we hav
disregarded for the moment the remaining freedom to perform rotations within the 2-planesA16 ,
A216 . Any such rotation can be described by the orthogonal transformation

O~b1 ,b21!5S cosb1 2sinb1 0 0

sinb1 cosb1 0 0

0 0 cosb21 2sinb21

0 0 sinb21 cosb21

D , ~46!

whereb1 and b21 are the independent rotation angles within the orthogonal 2-planesA16 and
A216 , respectively~for the sake of completeness we mention that in addition to the ab
rotations an inversion within one of the 2-planesA16 , A216 may be considered!. Again, we can
write down the further transformed gamma matricesgm8 5O(b1 ,b21)gm9 O(b1 ,b21)T. For brev-
ity, we give the relatively simple expressions forg368 andg48 only,

g368 ~w!56
1

) S 1 0 f ~2w! f ~w!

0 1 f ~w! 2 f ~2w!

f ~2w! f ~w! 21 0

f ~w! 2 f ~2w! 0 21

D , ~47!

g48~ w̄ !5S 0 0 2cosw̄ sinw̄

0 0 2sinw̄ 2cosw̄

cosw̄ sinw̄ 0 0

2sinw̄ cosw̄ 0 0

D . ~48!

Here,w5b11b21 and w̄5b12b21 . The gamma matricesgk68 , k51,2,3, do not depend onw̄
while g48 does not depend onw. The functionf is given by
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f ~w!5cosw1sinw5& cosS w2
p

4 D . ~49!

Symmetry considerations now suggest that any set of~three! rotationsO(b1 ,b21) among whose
elementsw5b11b21 changes by a multiple of 2p/3 (mod 2p) will lead to a set of three gamm
matrices with the indicesk51,2,3. Consequently, in order to describe this set we can write

w~k!5w01
2p

3
k5wk , ~50!

wherew0 is some real constant. Any three gamma matrices given by Eqs.~47!, ~49!, and~50! can
be chosen to serve as an irreducible representation of the real Clifford algebraC(3,0). If we
choosew050, Eqs.~47!, ~49!, and~50! exactly reproduce the set of gamma matrices~43!, ~44!,
i.e.,

g368 S 2p

3 D5g169 , g368 S 4p

3 D5g269 . ~51!

Furthermore, for the sake of simplicity it seems to be convenient to setw̄50 and to varyw
exclusively.@Such an orthogonal transformation is called aClifford translation~Ref. 23, Sec. 2-6,
p. 102! and has special properties. In this context, also note Ref. 66.# This way the final result
@Eqs.~7!–~10!, also see Appendix B for some related consideration# quoted in Sec. I is obtained
@where we have omitted, for simplicity, the6 sign on the right-hand side of Eq.~47! which relates
to the two inequivalent irreducible representations ofC(3,0) ~Ref. 2, p. 1657!#. The generators of
the real Clifford algebraC(3,0) are found from one of them by means of a discreteZ6;Z2

3Z3 subgroup of the orthogonal groupO(4) ~in other words, theZ6 subgroup realizes a permu
tation among the gamma matrices!. The Clifford translation in the spinor spaceV with b1

5b215p/3 corresponds to a rotation by 2p/3 around the axis~1,1,1! in the vector spaceR3,0

associated with the Clifford algebraC(3,0) ~it is an element of the group Spin~3!!.
We want to extend our discussion now to the real Clifford algebraC(3,2), which is the larges

Clifford algebra admitting an irreducible representation by means of 434 matrices. From Eqs
~47!, ~51! we can calculate the product

g368 ~w1!g368 ~w2!g368 ~w3!5S 0 1 0 0

21 0 0 0

0 0 0 21

0 0 1 0

D , ~52!

which is found to be independent of the choice ofw0 . Allowing an arbitrary value forw̄, g58 can
then be calculated and reads

g585g58~ w̄ !5g368 ~w1!g368 ~w2!g368 ~w3!g48~ w̄ !

5g48S w̄2
p

2 D

5S 0 0 2sinw̄ 2cosw̄

0 0 cosw̄ 2sinw̄

sinw̄ 2cosw̄ 0 0

cosw̄ sinw̄ 0 0

D ,

~53!
g58

2521.
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Finally, the charge conjugation operatorC (CT52C, Cgm8 C2152gm8
T) can be given byC

5g48(w̄). In difference to theC(3,0) subalgebra of the Clifford algebraC(3,2), which is gener-
ated by relying on Eq.~50! @a variation ofw by 2p leads to just one copy of the generators
C(3,0)#, the C(0,2) subalgebra can be represented byg485g48(w̄), g585g48(w̄6p/2) @a variation
of w̄ by 2p leads to two copies of the generators ofC(0,2)#.67 In this context, note

g48~ w̄ !52g48~ w̄1p!. ~54!

For w50, the second generator of the real Clifford algebraC(0,2) is obtained from the first by
means of a discreteZ8;(Z2)3 subgroup of the orthogonal groupO(4). A rotation ~46! in the
spinor spaceV with b152b215p/4 corresponds to a rotation byp/2 in the vector spaceR0,2

associated with the Clifford algebraC(0,2) @it is an element of the group Spin~2!#.

VI. DISCUSSION

According to Pauli’s fundamental theorem12,13 any set of~in general, complex! 434 gamma
matricesgm , which represent the Clifford algebraC(3,1), is related to our expressions forgm8
@Eqs.~7!–~10!# by means of a nonsingular transformationS (gm5Sgm8 S21). Therefore, any such
set can, in principle, be written in a form analogous to Eqs.~7!–~10! ~of course, in general such
representation may look fairly cumbersome!. It is clear, that this consideration of the~complex!
Clifford algebraC(3,1) immediately carries over with little change to the Clifford algebraC(1,3)
and does not require any further special investigation. Furthermore, it seems natural to exp
the discussion of the real Clifford algebraC(3,1) performed in the present paper can appropria
be generalized also to other Clifford algebras. Of course, the simpler and rather trivial case
real Clifford algebraC(2,1) which is presented in Appendix C carries the traces of the struc
found for C(3,0). On the other hand, one should expect that these structures themselves a
traces of more general structures of Clifford algebras which containC(3,0) as a subalgebra. Let u
emphasize at this point that the mathematical tools we have relied on in Secs. II and III a
specific to the present case~although, we have specialized them to the present case, for simpl!
and they can also be used in more general situations. As interesting as this may be, it g
beyond the purpose of the present study and, therefore, will not be investigated here.
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APPENDIX A: DESCRIPTION OF THE EIGENSPACES OF gk

In this Appendix we give some explicit expressions for the matricesAk,r which define via Eq.
~12! the eigenspace~i.e., the 2-planeAk,r) of the gamma matrixgk , k51,2,3, to the eigenvalue
r51,21. We rely on orthonormal basis vectors for each eigenspace.

A1,15
1

& S 1 0

0 1

0 1

1 0

D , ~A1!

A1,215
1

& S 1 0

0 1

0 21

21 0

D , ~A2!
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A2,15
1

& S 1 0

0 1

1 0

0 21

D , ~A3!

A2,215
1

& S 1 0

0 1

21 0

0 1

D , ~A4!

A3,15S 1 0

0 1

0 0

0 0

D , ~A5!

A3,215S 0 0

0 0

1 0

0 1

D . ~A6!

From Eqs.~12!, ~18!–~20! one easily recognizes that for the 2-planesA3,1, A3,21 holds A3,1

5O(1,2) , A3,215O(3,4) (O(1,2) :x(3,4)50, O(3,4) :x(1,2)50).

APPENDIX B: TRANSFORMED PAULI MATRICES

As Pauli matrices@irreducible matrix representations of the complex Clifford algebraC(3,0)#
play a significant role in theoretical physics, in this Appendix we wish to comment on the
vation of a particularly symmetric expression for these 232 matrices by means of the approa
discussed in the main part of the paper. The standard expressions for the Pauli matrices r

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~B1!

In order to make contact with the main part of the paper it turns out to be useful to represe
complex numbers which are entries of the matrices~B1! by means of 232 matrices using the rule

z5a1 ib→S a 2b

b a D . ~B2!

This leads to a set of three real 434 matrices which are congruent to the gamma matrices g
by Eq.~7!. In order to obtain the desired final result we have to subject the latter gamma ma
to a further orthogonal transformation—an inversion@mentioned below Eq.~46!#. Then the rule
~B2! can be reversed yielding the following transformed Pauli matrices (k51,2,3):

sk85
1

)
S 1 &e2 iwk

&eiwk 21 D , ~B3!

wk5w~k!5w01
2p

3
k. ~B4!
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Here,w0 is some arbitrary real constant which, however, has been shifted with respect to E~9!.

APPENDIX C: THE CASE OF THE REAL CLIFFORD ALGEBRA C„2,1…

In the present Appendix we want to illustrate the formalism used in the main part of the
in the rather trivial case of the real Clifford algebraC(2,1). We display the equations~including
the notation! in close analogy to the discussion performed in the main part of the paper. We
with some explicit expressions for the gamma matrices@sk are the standard Pauli matrices~B1!#,

g15s35S 1 0

0 21D , ~C1!

g25s15S 0 1

1 0D , ~C2!

g35 is25S 0 1

21 0D . ~C3!

The eigenspaces of the gamma matricesg1 , g2 are described by the following matrices:

A1,15
1

&
S 1
1D , ~C4!

A1,215
1

&
S 1

21D , ~C5!

A2,15S 1
0D , ~C6!

A2,215S 0
1D . ~C7!

It is clear that the angle between the eigenspaces~lines, 1-planes! which relate to different gamma
matricesg1 , g2 is p/4 ~cf. Fig. 1!.68 Each line through the originx5(0,0) is ~trivially ! isoclinic
to each other such line. Therefore, the analogs of Eqs.~21!, ~23! are

x25lx1 , ~C8!

x15l8x2 , l85l21. ~C9!

Equations~25!, ~26! are mirrored by

B~l!5
1

A11l2 S 1
l D , ~C10!

and

B~l8!5
1

A11l82 S l8
1 D . ~C11!
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Of course, to each set of the eigenspaces$A1,1,A2,1%, $A1,21 ,A2,21% two linesA16 , A216 exist,
respectively, which lie symmetric with respect to the elements of the set~cf. Fig. 1!. The analog
of Eq. ~27! reads (uk are the angles between the two eigenspaces to the eigenvaluer51 @r
521# andA16 @A216#)

cos2 2u11cos2 2u251. ~C12!

For A16 , A216 the relations@in analogy to Eqs.~28!, ~29!#

u15u25usym, cos 2usym56
1

&
, ~C13!

and

w5cos2 usym5
1

2
~11cos 2usym!5

1

2 S 16
1

&
D 5w6 ~C14!

are valid.
In analogy to Eqs.~30!–~35!, in order to determine the linesA16 , A216 we have to solve the

following equations forr51 ~in sequence for the indicesk51, k52 of the gamma matrices
respectively!

w65
~11l8!2

2~11l82!
, ~C15!

w65
l82

11l82 , ~C16!

and forr521,

w65
~12l!2

2~11l2!
, ~C17!

FIG. 1. Geometry of the eigenspaces of the gamma matricesg1 , g2 @~C1!, ~C2!#.
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w65
l2

11l2 . ~C18!

@Equations~C15!, ~C16! @~C17!, ~C18!# have been derived using Eq.~C11! @~C10!#.# The solution
of the above equations reads forr51,

l85l6 , ~C19!

and forr521,

l52l6 . ~C20!

Here,

l6562&w6 , ~C21!

which entails

l6l7521. ~C22!

Inserting Eqs.~C20! and ~C22! into Eqs.~C11! and ~C10!, respectively, one finds

A165
1

A11l6
2 S l6

1 D , ~C23!

A2165
1

A11l6
2 S 1

2l6
D ~C24!

~cf. Fig. 1; it holdsA115A212 , A125A211). The orthogonal transformation leading to the ne
coordinate system consequently reads

O65
1

A11l6
2 S l6 1

1 2l6
D . ~C25!

This way the following final result is obtained:

g168 56
1

&
S 1 1

1 21D , ~C26!

g268 56
1

&
S 1 21

21 21D , ~C27!

g385S 0 21

1 0 D . ~C28!

It is clear that in the present case there is no residual continuous symmetry which has
exploited in Sec. V of the main part of the paper which is dealing with the real Clifford alg
C(3,1).
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It is shown that aN3N real symmetric@complex Hermitian# positive definite
matrix V is congruent to a diagonal matrix modulo a pseudo-orthogonal@pseudo-
unitary# matrix in SO(m,n)@SU(m,n)#, for any choice of partitionN5m1n. It is
further shown that the method of proof in this context can easily be adapted to
obtain a rather simple proof of Williamson’s theorem which states that ifN is even
then V is congruent also to a diagonal matrix modulo a symplectic matrix in
Sp(N,R)@Sp(N,C)#. Applications of these results considered include a generaliza-
tion of the Schweinler–Wigner method of ‘‘orthogonalization based on an extre-
mum principle’’ to construct pseudo-orthogonal and symplectic bases from a given
set of linearly independent vectors. ©1999 American Institute of Physics.
@S0022-2488~99!00307-2#

I. INTRODUCTION

It is well known that anN-dimensional real symmetric@complex Hermitian# matrix V is
congruent to a diagonal matrix modulo an orthogonal@unitary# matrix.1 That is,V5S†DS, where
D is diagonal andSPSO(N)@SPSU(N)#. If, in addition, V is also positive definite, new poss
bilities arise for establishing its congruence to a diagonal matrix. ForN even, it was shown by
Williamson2 some 60 years ago, and subsequently by several authors,3,4 that such aV is also
congruent to a diagonal matrix modulo a symplectic matrix in Sp(N,R)@Sp(N,C)#. That is,V
.0 implies V5S†D8S, where D8 is diagonal andSPSp(N,R)@SPSp(N,C)#. Williamson’s
theorem has recently been exploited in defining quadrature squeezing and symplectically co
formulation of the uncertainty principle for multimode states.5 In this work we establish ye
another kind of congruence of a real symmetric@complex Hermitian# positive definite matrix to a
diagonal matrix valid, for both odd and even dimensions. We show that anN-dimensional real
symmetric @complex Hermitian# positive definite matrixV is congruent to a diagonal matri
modulo a pseudo-orthogonal@pseudo-unitary# matrix. That is,V.0 impliesV5S†D9S, whereD9
is diagonal andSPSO(m,n)@SPSU(m,n)#, for any choice of partitionN5m1n. A simple
proof of this result is given. The strategy adopted in proving this result, with appropriate m
cation, works for the Williamson case as well, and affords a particularly simple proof of Willi
son’s theorem. Needless to add that the diagonal entries of neitherD8 nor D9 correspond to the
eigenvalues ofV.

The theorems established here play a crucial role in enabling one to construct ps
orthogonal and symplectic bases from a given set of linearly independent vectors via an ext
principle in the spirit of the work of Schweinler and Wigner.6 In an important contribution to the
age old ‘‘orthogonalization problem’’—the problem of constructing an orthonormal set of ve

a!Electronic mail: simon@imsc.ernet.in
b!Electronic mail: scsp@uohyd.ernet.in
c!Electronic mail: vssp@uohyd.ernet.in
36320022-2488/99/40(7)/3632/11/$15.00 © 1999 American Institute of Physics
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from a given set of linearly independent vectors—Schweinler and Wigner proposed an orth
mal basis which, unlike the familiar Gram–Schmidt basis~which depends on the particular initia
order in which the given linearly independent vectors are listed!, treats all the linearly independen
vectors on an equal footing and has since found important application in wavelet analysis.7 More
significantly, they showed that this special basis follows froman extremum principle. In this work,
we exploit our results on congruence to obtain generalizations of the Schweinler–Wigner
mum principle leading to pseudo-orthogonal and symplectic bases from a given set of lin
independent vectors. Conversely, the extremum principle, once formulated, can be interpret
procedure for finding the appropriate congruence transformation to effect the desired diago
tion.

II. CONGRUENCE OF A POSITIVE MATRIX UNDER PSEUDO-ORTHOGONAL
„PSEUDO-UNITARY… TRANSFORMATIONS

The fact that a real symmetric@complex Hermitian# matrix is congruent to a diagonal matri
modulo an orthogonal@unitary# matrix is well known. While congruence coincides with conjug
tion in the real orthogonal and complex unitary cases, they become distinct when more g
sets of transformations are involved. A question which naturally arises is whether congruen
diagonal form can also be achieved through a pseudo-orthogonal@pseudo-unitary# transformation.
The answer to this question turns out to be in the affirmative with the caveat that the ma
question be positive definite, and can be formulated as the following theorem:

Theorem 1: Let V be a real symmetric positive definite matrix of dimensionN. Then, for any
choice of partitionN5m1n, there exists anSPSO(m,n) such that

STVS5D25diagonal ~and .0!. ~1!

Proof: We begin by recalling that the group SO(m,n) consists of all real matrices whic
satisfySTgS5g, detS51, where

Consider the matrixV21/2gV21/2 constructed from the given matrixV. SinceV21/2gV21/2 is real
symmetric, there exists a rotation matrixRPSO(N) which diagonalizesV21/2gV21/2,

RTV21/2gV21/2R5diagonal[L. ~2!

This may be viewed also as a congruence ofg usingV21/2R, and signatures are preserved und
congruence.~Indeed, signatures are the only invariants if we allow congruence over the full l
groupGL(N,R).) As a consequence, the diagonal matrixL can be expressed as the product o
positive diagonal matrix andg,

RTV21/2gV21/2R5D22g5D21gD21. ~3!

HereD is diagonal and positive definite.
Taking the inverse of the matrices on both sides of~3! we find that the diagonal entries o

gD25D2g are the eigenvalues ofV1/2gV1/2 and that the columns ofR are the eigenvectors o
V1/2gV1/2. SinceV1/2gV1/2, gV, and Vg are conjugate to one another, we conclude thatD2 is
determined by the eigenvalues ofgV;Vg.

DefineS5V21/2RD. It may be verified thatS satisfies the following two equations:

STgS5g,

STVS5D25diagonal. ~4!
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The first equation says thatSPSO(m,n) and the second says thatV is diagonalized through
congruence byS. Hence the proof.

By replacing the superscriptT by †, the group SO(m,n) by SU(m,n), and RPSO(N) by
UPSU(N) in the statement and proof of the above theorem, we have the following the
which applies to the complex case.

Theorem 2: Let V be a Hermitian positive definite matrix of dimensionN. Then, for any
partition N5m1n, there exists anSPSU(m,n) such that

S†VS5D25diagonal ~and .0!. ~5!

III. A SIMPLE PROOF OF WILLIAMSON’S THEOREM

It turns out that the above procedure when applied to the real symplectic group of
canonical transformations leads a particularly simple proof of Williamson’s theorem.

Theorem 3: Let V be a 2n-dimensional real symmetric positive definite matrix. Then th
exists anSPSp(2n,R) such that

STVS5D2.0,

D25diag~k1 ,k2 ,...,kn ,k1 ,k2 ,...,kn!. ~6!

Proof: Note that the 2n-dimensional diagonal matrixD has onlyn independent entries. Th
group Sp(2n,R) consists of all real matricesS which obey the condition

STbS5b, b5S 0 1

21 0D , ~7!

with 1 and 0 denoting then3n unit and zero matrices, respectively. Even thoughSTbS5b may
appear to suggest that detS561, it turns out that detS51. In other words, Sp(2n,R) consists of
just one connected~though not simply connected! piece. Indeed, for everyn>1 the connectivity
property of Sp(2n,R) is the same as that of the circle.

The most generalSPGL(2n,R) which solves STVS5D2 is S5V21/2RD, where R
PO(2n). Note that none of the factorsD, R or V21/2 is an element of Sp(2n,R). However, a
V-dependent choice ofD,R can be so made that the productV21/2RD is an element of Sp(2n,R)
as we shall now show.

SincebT52b, it follows thatM5V21/2bV21/2 is antisymmetric. Hence there exists anR
PSO(2n) such that8

RTV21/2bV21/2R5S 0 V

2V 0 D , V5diagonal.0. ~8!

Define a diagonal positive definite matrix

D5S V21/2 0

0 V21/2D . ~9!

Then we have

DRTV21/2bV21/2RD5b. ~10!

Now defineS5V21/2RD. It may be verified thatS enjoys the following properties:

STbS5b,

STVS5D25diagonal. ~11!
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The first equation says thatSPSp(2n,R) and the second one says thatV is diagonalized by
congruence throughS. This completes the proof of the Williamson theorem. To appreciate
simplicity of the present the reader may like to compare it with two recently published proo
the Williamson theorem.4

We wish to explore the structure underlying the above proof a little further so tha
relationship betweenD and S in ~11! on the one hand and the eigenvalues and eigenvecto
bV21 ~or V21/2bV21/2) on the other becomes transparent. Again consider the matrixM
5V21/2bV21/2. It is a real, nonsingular, antisymmetric matrix and hence its eigenvaluesiva and
eigenvectorsha have the following properties:

Mha5 ivaha , a51,...,2n;

vk.0, k51,...,n; vn1k52vk ;

hn1k5hk* ; k51,...,n. ~12!

The eigenvectorsha can be chosen to be orthonormal even when the eigenvaluesiva are
degenerate. Arrange the eigenvectorsha as columns of a matrixU. The matrixU thus obtained
clearly belongs to the unitary groupU(2n), and satisfies

U†MU5L, L5S iV 0

0 2 iV D , ~13!

whereV5diag(v1,...,vn).0. Now define the following 2n32n unitary matrices:

S5S 0 1

1 0D , D5
1

&
S 1 2 i

1 i D . ~14!

These two matrices have the propertiesS251, US5U* , andSD5D* ~* denotes the complex
conjugate of a matrix!. As a useful consequence of these properties we have

U* D* 5U* SSD* 5UD. ~15!

We find that the unitary matrixUD is real;UDPO(2n).
Now considerS5V21/2UDD, whereD is a diagonal matrix to be determined. It follows fro

the definition ofS and the reality ofUDPO(2n) that

STVS5S†VS5D2. ~16!

Further, recalling thatU†MU5L we obtain

STbS5S†bS5DD†U†MUDD5DD†LDD5DS O V

2V ODD. ~17!

It is now evident that the following choice forD ensures thatS is an element ofSPSp(2n,R):

D5S V21/2 O

O V21/2D . ~18!

This completes our analysis of the manner in whichS andD are related to the eigenvalues an
eigenvectors of the matrixbV21.

As in the pseudo-orthogonal case, by replacing the superscriptT by † in the statement and
proof of Theorem 3, one obtains the following result:
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Theorem 4: Let V be a 2n-dimensional Hermitian positive definite matrix. Then there ex
an SPSp(2n,C) such that

S†VS5D2.0,

D25diag~k1 ,k2 ,...,kn ,k1 ,k2 ,...,kn!. ~19!

An immediate consequence of the theorems stated above is that for a real symmetric@complex
Hermitian# positive definite matrix we can not talk aboutthecanonical form under congruence, fo
there arem1n possible choices of SO(m,n)@SU(m,n)#, and in the case of even dimension o
more choice coming from Williamson’s theorem. Needless to add that for the same matrixV, the
diagonal matrixD will be different for different choices.

IV. ORTHOGONALIZATION PROCEDURES

Assume that we are given a set of linearly independentN-dimensional vectorsv1 ,...,vN . Let
G denote the associated Gram matrix of pairwise inner products,Gi j 5(v i ,v j ). The Gram matrix
is Hermitian by construction, and positive definite by virtue of the linear independence o
given vectors. The orthogonalization problem, i.e., constructing a set of orthonormal vectors
the given set of linearly independent vectors, amounts to finding a matrixS that solves

S†GS51, i.e., G215SS†. ~20!

Each suchS defines an orthogonalization procedure.
Let us arrange the set ofN vectors as the entries of a rowv5(v1 ,v2 ,...,vN), and let z

5(z1 ,z2 ,...,zN) represent a generic orthonormal basis. The orthonormal set of vectorsz corre-
sponding to a chosenS are related to the given set of linearly independent vectors througz
5vS. Clearly, there are infinitely many choices forS satisfying~20!; given anS satisfying~20!,
anyS85SU, whereU is an arbitrary unitary matrix also satisfies~20!. Thus the freedom available
for the solution of the orthonormalization problem is exactly as large as the unitary group UN),
and this was to be expected.

Schweinler and Wigner6 posed and answered the following question: is there a way of
criminating between various choices ofS that solves~20! and hence between various orthogon
ization procedures? They argued that a particular choice of orthogonalization procedure
correspond ultimately to the extremization of a suitable scalar function over the manifold
orthonormal bases, with the given linearly independent vectors appearing as parameters
function. Different choices of onthonormal bases will then correspond to different functions
extremized. They preferred the function to be symmetric under permutation of the given ve
As an example they considered the following function which is quartic in the given vectors

m~z!5(
k

S (
l

u~zk ,v l !u2D 2

. ~21!

They showed that the extremum~maximum in this case! value ofm(z) is given by tr(G2), and
this value corresponds to the orthonormal basisz5vU0P21/2, whereU0 is the unitary matrix
which diagonalizesG: U0

†GU05P. We may refer to this as the Schweinler–Wigner basis,
the functionm(z) as the Schweinler–Wigner quartic form. It is clear thatU0 and hence the
Schweinler–Wigner basis is essentially unique if the eigenvalues of the Gram matrixG are all
distinct. We may note in passing that, unlike the Gram–Schmidt orthogonalization procedu
Schweinler–Wigner procedure is democratic in that it treats all the linearly independent vecv
on an equal footing.

The content of the work of Schweinler and Wigner has recently been reformulated9 in a
manner that offers a clearer and more general picture of the Schweinler–Wigner quartic
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m(z) and of the orthonormal basis which maximizes it. This perspective on the orthogonaliz
problem plays an important role in our generalizations of the Schweinler–Wigner extre
principle, and hence we summarize it briefly.

Since every orthonormal basis is the eigenbasis of a suitable Hermitian operator, it
interest to characterize the Schweinler–Wigner basis in terms of such an operator. Given l
independentN-dimensional vectorsv5(v1 ,v2 ,...,vN), the operatorM̂5( jv jv j

† is Hermitian
positive definite. In ageneric orthonormalbasis z, it is represented by a Hermitian positiv
definite matrixM (z):M (z) i j 5(zi ,M̂zj ). Under a change of orthonormal basisz→z85zS, M (z)
transforms as follows:

M ~z!→M ~z8!5S†M ~z!S, SPU~N!. ~22!

Recall that U(N) acts transitively on the set of all orthonormal bases and that tr(M (z)2)
5 (

j ,k
uM (z) jku2 is invariant under such a change of basis, and hence is independent ofz. The

Schweinler–Wigner quartic formm(z) can easily be identified as(
k

(M (z)kk)
2. In view of the

above invariance, maximization of(
k

(M (z)kk)
2 is the same as minimization of(

j Þk
uM (z) jku2. The

absolute minimum of(
j Þk

uM (z) jku2 equals zero, and obtains whenM (z) is diagonal. Thus, the

orthonormal basis which maximizes(
k

(M (z)kk)
2 is the same as the one in whichM̂ is diagonal,

and we arrive at the following important conclusion of Ref. 9:
Theorem 5: The distinquished orthonormal basis which extremizes the Schweinler–W

quartic formm(z) over the manifold of all orthonormal bases is the same as the orthonormal
in which the positive definite matrixM (z) becomes diagonal.

Important for the above structure is the fact that the invariant tr(M (z)2) is the sum of non-
negative quantities, and therefore a part of it is necessarily bounded. It is precisely this pro
which can be traced to the underlying unitary symmetry, that is not available when we
generalize the Schweinler–Wigner procedure to construct pseudo-orthonormal and sym
bases wherein the underlying symmetries are the noncompact groupsSO(m,n) and Sp(2n,R)
respectively.

V. LORENTZ BASIS WITH AN EXTREMUM PROPERTY

In this section we show how the Schweinler–Wigner procedure can be generalized to
struct pseudo-orthonormal basis based on an extremum principle. We begin with the case
vectors.

We are given a set of linearly independent realN-dimensional vectorsv5(v1 ,...,vN) and we
want to construct out of it a pseudo-orthonormal basis@SO(m,n) Lorentz basis withN5m1n#,
i.e., a set of vectorsz5(z1 ,...,zN) satisfying

Let M̂5(
j
v jv j

T as before, and let the symmetric positive definite matrixM (z):M (z) i j

5(zi ,M̂zj ) representM̂ in a generic pseudo-orthonormalbasisz. Under a pseudo-orthogona
change of basisz→z85zS, the matrixM (z) transforms as follows:

M ~z!→M ~z8!5STM ~z!S, SPSO~m,n!. ~24!

SinceSTgS5g ~or gST5S21g) by definition, we have

S: gM~z!→gM~z8!5S21gM~z!S. ~25!
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That is, asM (z) undergoes congruence,gM(z) undergoes conjugation. Thus, tr(gM(z)) l ,
l 51,2,..., are invariant. In what follows we shall often leave implicit the dependence ofM on the
generic pseudo-orthonormal basisz.

Consider the invariant tr(gM(z)gM(z)) corresponding tol 52. Write M5Meven1Modd,
where

Meven5 1
2~M1gMg!, Modd5 1

2~M2gMg!. ~26!

In the above decomposition we have exploited the fact thatg is, like parity, aninvolution.
With M expressed in the~m,n! block form

M5S A C

CT BD , AT5A, BT5B, ~27!

we have

Meven5S A 0

0 BD , Modd5S 0 C

CT 0 D . ~28!

Symmetry ofM implies thatModd andMevenare symmetric. Further,Modd andMevenare trace
orthogonal; tr(ModdMeven)50. Thus,

tr~gMgM!5tr~Meven!22tr~Modd!2, ~29!

which can also be written as

tr~MgMg!5tr~M2!22 tr~Modd!2. ~30!

A few observations are in order:

~1! In contradistinction to the original unitary case, the invariant in the present case is no m
sum of squares. This can be traced to the noncompactness of the underlyingSO(m,n) sym-
metry. As one consequence,(

k
(Mkk)

2 is not bounded. As an example, consider the simp

casem51, n51 and let

M5Sa 0

0 bD, a,b.0. ~31!

Under congruence by theSO(1,1) element

S5Scoshm sinhm
sinhm coshmD, ~32!

the value of(
k

(Mkk)
2 changes froma21b2 to a21b212ab sinh2 m cosh2 m, which grows

with m without bounds, showing that(
k

(Mkk)
2 and hence tr(M2) is not bounded. Thus, in

contrast to the unitary case, extremization of the Schweinler–Wigner quartic form(
k

(Mkk)
2

will make no sense in the absence of further restrictions.
~2! The structure of the invariant tr(gMgM) in ~30! suggests the further restriction needed to

imposed; within the submanifold of pseudo-orthogonal basesz which keep tr(M (z)odd)2 ~and
hence tr(M (z)2)) at a fixed value we can maximize(

k
M (z)kk

2 . In particular we can do this

within the submanifold which minimizes tr(M (z)odd)2, and hence tr(M (z)2). Clearly, zero is
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the absolute minimum of the nonnegative object tr(M (z)odd)2. But by Theorem 1 there exist
a Lorentz basisz in which M (z) is diagonal and henceM (z)odd50. Thus the minimum
tr(M (z)odd)250, and hence the minimum of tr(M (z)2), namely, tr(gM(z)gM(z)), is attain-
able.

The above observations suggest the followingtwo step analog of the Schweinler–Wigner
extremum principle for Lorentz bases. Choose the submanifold of Lorentz bases which minim
the quartic form tr(M (z)odd)2, and maximize the Schweinler–Wigner quartic formm(z)
5(

k
(M (z)kk)

2 within this submanifold. Clearly, the first step takesM to a block-diagonal form,

and the second one diagonalizes it. Thus we have established the following generaliza
Theorem 5 to the pseudo-orthonormal case:

Theorem 6: The distinquished pseudo-orthonormal basis which extremizes the ‘‘Schwein
Wigner’’ quartic formm(z) over the submanifold of pseudo-orthonormal bases which minim
the quartic form tr(M (z)2) is the same as the pseudo-orthonormal basis in which the pos
definite matrixM (z) becomes diagonal.

The submanifold under reference consists of Lorentz bases which are related to one a
through the maximal compact~connected! subgroup of SO(m,n), namely SO(m)3SO(n). This
subgroup consists of matrices of the block-diagonal form

S R1 0

0 R2
D , R1PSO~m!, R2PSO~n!, ~33!

and this is precisely the subgroup of SO(m,n) transformations that do not mix the even and o
parts ofM (z).

To conclude this section we may note that the above construction carries over to the co
case, with obvious changes like replacingT by † and SO(m,n) by SU(m,n).

VI. SYMPLETIC BASIS WITH AN EXTREMUM PROPERTY

Our construction in the pseudo-orthogonal case suggests a scheme by which the Schw
Wigner extremum principle can be generalized to construct a symplectic basis. Suppose t
are given a set of linearly independent vectorsv5(v1 ,v2 ,...,v2n) in R2n. The natural symplectic
structure in R2n is specified by the standard symplectic ‘‘metric’’b defined in ~7!. Let z
5(z1 ,z2 ,...,z2n) denote a generic symplectic basis. That is, (zj ,bzk)5b jk , j ,k51,2,...,2n. The
real symplectic group Sp(2n,R) acts transitively on the set of all symplectic bases.

To generalize the Schweinler–Wigner principle to the symplectic case, we begin be de

M̂5 (
j 51

2n

v jv j
T . Let M (z):M (z) i j 5(zi ,M̂zj ) be the symmetric positive definite matrix representi

the operatorM̂ in a generic symplecticbasisz. Under a symplectic change of basisz→z85zS,
SPSp(2n,R), the matrixM (z) undergoes the following transformation:

M ~z!→M ~z8!5STM ~z!S, SPSp~2n,R!. ~34!

SinceSTbS5b implies bST5S21b, we have

S: bM ~z!→bM ~z8!5S21bM ~z!S. ~35!

That is, under a symplectic change of basisM (z) undergoes congruence, butbM (z) undergoes
conjugation. Hence tr(bM (z))2l , l 51,2,...,n are invariant.~Note that tr(bM (z))2l 1150 in view
of bT52b, M (z)T5M (z).)

Sinceib is an involution we can use it to separateM (z) into even and odd parts,

M ~z!5M ~z!even1M ~z!odd,
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M ~z!even5 1
2~M ~z!1bM ~z!bT!,

M ~z!odd5 1
2~M ~z!2bM ~z!bT!. ~36!

The even and odd parts ofM (z) satisfy the symmetry properties

bM ~z!evenbT5M ~z!even, bM ~z!oddbT52M ~z!odd. ~37!

Further.M (z)odd andM (z)even are trace orthogonal; tr(M (z)oddM (z)even)50.
The structure of the even and odd parts ofM (z) may be appreciated by writingM (z) in the

block form

M ~z!5S A C

CT BD , AT5A, BT5B. ~38!

We have

M ~z!even5S 1
2~A1B! 1

2~C2CT!

2 1
2~C2CT! 1

2~A1B!
D ,

M ~z!odd5S 1
2~A2B! 1

2~C1CT!

1
2~C1CT! 1

2~B2A!
D . ~39!

Now consider the invariant2tr(bM (z)bM (z))5tr(bTM (z)bM (z)). We have

tr~bTM ~z!bM ~z!!5tr~M ~z!even!22tr~M ~z!odd!2, ~40!

which can also be written as

tr~bTM ~z!bM ~z!!5tr~M ~z!2!22 tr~M ~z!odd!2. ~41!

The structural similarity of this invariant to that in the pseudo-orthogonal case should be a
ciated.

Now, by an argument similar to the pseudo-orthogonal case one finds that, owing
noncompactness of Sp(2n,R), the function tr(M (z)2) and hence the Schweinler–Wigner quar

form (
k51

2n

(M (z)kk)
2 is unbounded ifz is allowed to run over the entire manifold of all symplect

bases. For instance, in the lowest dimensional casen51 with M chosen to be

M5S a u

d bD , a,b.0, ab2ud.0, ~42!

under congruence by the Sp(2,,R) matrix

S5S m 0

0 1/m D , ~43!

the value of(
k

(Mkk)
2 changes froma21b2 to m2a21(1/m2)b2 which, by an appropriate choic

of m, can be made as large as one wishes.
However, it follows from~41! that over the submanifold of symplectic bases which lea

tr(M (z)odd)2 fixed, the function tr(M (z)2) remains invariant and so the quartic form((M (z)kk)
2

is bounded within this restricted class of symplectic bases and hence can be maximiz
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particular the nonnegative tr(M (z)odd)2 can be chosen to take its minimum value. Williams
theorem implies that there are symplectic bases which realize the absolute min
tr(M (z)odd)250.

We can now formulate theanalog of the Schweinler–Wigner extremum principle for symplec
tic basesin the following way: Take the subfamily of symplectic bases in which tr(M (z)odd)2 and
hence tr(M (z)2) is minimum. @This minimum of tr(M (z)2) equals the invariant
tr(bTM (z)bM (z))#. Then maximize the Schweinler–Wigner quartic formm(z)5(

k
(M (z)kk)

2

within this submanifold of symplectic bases. This will lead, not just to a basis in whichM (z) is
diagonal, but to one whereM (z) has the Williamson canonical formM (z)
5diag(k1,...,kn ;k1,...,kn). We have thus established the following generalization of
Schweinler–Wigner extremum principle to the symplectic case.

Theorem 7: The distinguished symplectic basis which extremizes the ‘‘Schweinler–Wign
quartic formm(z) over the submanifold of symplectic bases which minimize the quartic f
tr(M (z)2) is the same as the symplectic basis in which the positive definite matrixM (z) assumes
the Williamson canonical diagonal.

Note that onceM (z)odd50 is reached, as implied by tr(M (z)odd)250, M (z) has the specia
even form

S A C

2C AD , AT5A, CT52C, ~44!

so that A1 iC is Hermitian. The subgroup of symplectic transformations which do not
M (z)even with M (z)odd, and hence maintain the propertyM (z)odd50 have the special form

S5S X Y

2Y XD , X1 iYPU~n!. ~45!

This subgroup, isomorphic to the unitary group U(n), is the maximal compact subgroup10 of
Sp(2n,R). Thus, diagonalizingM (z) using symplectic change of basis, after it has reached
even form, is the same as diagonalizing ann-dimensional Hermitian matrix using unitary tran
formations.

VII. CONCLUDING REMARKS

To conclude, we have shown that anN3N real symmetric@complex Hermitian# positive
definite matrix is congruent to a diagonal form modulo a pseudo-orthogonal@pseudo-unitary#
matrix belonging to SO(m,n)@SU(m,n)#, for any choice of partitionN5m1n. The method of
proof of this result is adapted to provide a simple proof of Williamson’s theorem. An impo
consequence of these theorems is that while a real-symmetric@complex-Hermitian# positive defi-
nite matrix has a unique diagonal form under conjugation, it has several different can
diagonal forms under congruence. The theorems developed here are used to formulate a
mum principle a la´ Schweinler and Wigner for constructing pseudo-orthonormal@pseudo-unitary#
and symplectic bases from a given set of linearly independent vectors. Conversely, the ext
principle thus formulated can be used for finding the congruence transformation which b
about the desired diagonalization.

It is interesting that pseudo-orthonormal basis and symplectic basis could be construc
extremizingprecisely the same Schweinler–Wigner quartic form m(z)5(

k
(M (z)kk)

2 that was

originally used to construct orthonormal basis in the unitary case. However, it must be bo
mind that the similarity in the structure of the quartic form to be extremized in the three c
considered is only at a formal level. In reality, the three quartic forms are very different ob
for they are functions over topologically very different manifolds;z runs over the group manifold
U(N) of orthogonal frames in the original Schweinler–Wigner case, the group manifold SO(m,n)
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of pseudo-orthogonal frames in the Lorentz case, and over the group manifold Sp(2n,R) in the
symplectic case. This has the consequence that, unlike the orthogonal case, this quartic
unbounded in the noncompact SO(m,n)@SU(m,n)# and Sp(2n,R) cases. Insight into the struc
ture of these groups was used to achieve constrained extremization within a natural m
compact submanifold.

1See, for instance, F. C. Gantmacher,The Theory of Matrices~Chelsea, New York, 1960!, Vol. 1.
2J. Williamson, Am. J. Math.58, 141~1936!; 59, 599~1936!; 61, 897~1936!. Williamson’s results are more general tha
the theorem quoted, and obtain all the different canonical forms a real symmetric~not necessarily positive definite!
matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a
that should appeal to physicists, in V. I. Arnold,Mathematical Methods of Classical Mechanics~Springer, New York,
1978!, Appendix 6.

3J. Moser, Commun. Pure Appl. Math.11, 81 ~1958!; A. Weinstein, Bull. Am. Math. Soc.75, 814 ~1971!; N. Burgoyne
and R. Cushman, Celest. Mech.8, 435 ~1974!; J. Laub and K. Meyer,ibid. 9, 213 ~1974!.

4A. J. Dragt, F. Neri, and G. Rangarajan, Phys. Rev. A45, 2572~1992!; E. C. G. Sudarshan, C. B. Chiu, and G. Bhamat
ibid. 52, 43 ~1995!.

5R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A36, 3868~1987!; R. Simon, N. Mukunda, and B. Dutta
ibid. 49, 1567~1994!; Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys.45, 471~1995!; Arvind, B. Dutta,
N. Mukunda, and R. Simon, Phys. Rev. A52, 1609~1995!.

6H. C. Schweinler and E. P. Wigner, J. Math. Phys.11, 1693~1970!.
7See, for instance, C. K. Chui,Wavelet Analysis and its Applications~Academic, San Diego, 1992!.
8Just as the diagonal form is the canonical form for real symmetric matrices under rotation,is2^ K, with K diagonal, is
the canonical form for a real antisymmetric matrix under rotation. FurtherK can be chosen to be non-negative,
general, and positive definite when the antisymmetric matrix is nonsingular.

9S. Chaturvedi, A. K. Kapoor, and V. Srinivasan, J. Phys. A31, L367 ~1998!.
10R. Simon, N. Mukunda, and B. Dutta, Phys. Rev. A49, 1567~1994!.
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Invariant Painleve´ analysis and coherent structures
of two families of reaction-diffusion equations

Ugur Tanriver and S. Roy Choudhurya)

Department of Mathematics, University of Central Florida, Orlando, Florida 32816-1364

~Received 25 June 1998; accepted for publication 12 March 1999!

Exact closed-form coherent structures~pulses/fronts/domain walls! having the form
of complicated traveling waves are constructed for two families of reaction–
diffusion equations by the use of invariant Painleve´ analysis. These analytical so-
lutions, which are derived directly from the underlying PDE’s, are investigated in
the light of restrictions imposed by the ODE that any traveling wave reduction of
the corresponding PDE must satisfy. In particular, it is shown that the coherent
structures~a! asymptotically satisfy the ODE governing traveling wave reductions,
and ~b! are accessible to the PDE from compact support initial conditions. The
solutions are compared with each other, and with previously known solutions of the
equations. ©1999 American Institute of Physics.@S0022-2488~99!01907-6#

I. INTRODUCTION

There has been considerable interest in coherent structure solutions of nonintegrable no
partial differential equations~NLPDEs!1–10 since these provide an organizing structure to
space of solutions. In a very rough sense, this is somewhat analogous to the way in which fa
of soliton solution act as basic building blocks for the solution space of integrable equa
Recent work, primarily in the context of generalized Ginzburg–Landau amplitude equatio
pattern-forming systems, has included the existence of pulse~solitary wave!, front ~shock! and
domain wall coherent structures using center manifold techniques,11,12as well as investigations o
periodic and quasi-periodic solutions.13–17 Another, more physics-oriented, approach was dev
oped by van Saarloos18,19 to investigate linear and nonlinear marginal stability of fronts. T
approach has been comprehensively reviewed by van Saarloos and Hohenberg20 in the context of
generalized Ginzburg–Landau equations. Using the idea that spatio-temporal coherent s
solutions of NLPDEs, whether periodic, quasi-periodic, or chaotic, must obey the unde
singularity structure, Conte and co-workers21,22 have used ideas related to the Painleve´ test for
integrability23,24 and its modifications25 to derive families of solutions of the complex cubic an
quintic Ginzburg–Landau equation. Also, using phase-plane techniques on the ordinary di
tial equation~ODE! which must be satisfied by any traveling wave solution to the real Ginzbu
Landau equation, Powellet al.26 have rederived and significantly elucidated several of van S
loos’ results18,19 in a completely different manner. In addition, they use simple analytic solut
of the PDE obtained using truncated Painleve´ expansions,27 together with ideas from phase-plan
analysis, as well as absolute versus convective instability of waves.28 As a result, they show tha
front/pulse solution of the PDE must satisfy the traveling wave reduced ODE asymptotically.
also derive conditions for the accessibility of the solutions from compact support initial condi

In this paper, we consider coherent structures of the reaction-diffusion equation

ut5uxx1
u

b
~b1u!~12u!, ~1!

which has been considered in Refs. 4, 18 and 19. Note that other work on coherent struct

a!Author for correspondence. Electronic mail: choudhur@longwood.cs.ucf.edu
36430022-2488/99/40(7)/3643/11/$15.00 © 1999 American Institute of Physics
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various reaction-diffusion equations is summarized in those papers, as well as in Section 1
26. For the purposes of comparison, we shall also consider coherent structures of the two f
of reaction-diffusion equations

ut5bu2~12u!1Duxx ~2!

and

ut5bu~12u!1Duxx . ~3!

Of these,~3! is the famous Fisher–Kolmogorov equation,29,30 while ~2! has second- and third
order nonlinearities, which is also true of~1!. The primary difference between~1! and ~2!/~3! is
that the parameterb in the former adjusts the relative strength of the second- and third-o
nonlinearities, while these strengths are fixed in~2! and ~3!.

To date, the approaches to the treatment of coherent structures may broadly be classifi
three groups. First, there is the qualitative phase-plane/center manifold analysis of the tra
wave reduced ODEs to prove the existence of coherent structures. The second approach
of actual construction of coherent structures via numerical simulation of the traveling wav
duced ODEs. The third approach comprises containment arguments wherein, starting fro
correct boundary condition at one end of the interval, one shows that at the other end the s
asymptotes to a constant value. It thus corresponds to a coherent structure, rather than sho
to infinity. Such containment arguments may often involve delicate analysis. The coherent
tures derived in this paper are, in a sense, an attempt to connect the first two approac
providing quantitative analytical expressions for nontrivial coherent structures. Clearly, thes
herent structures are also of relevance in modeling the physics of the problems under co
ation, although that is not the purpose of this paper. In fact, the next natural question to co
is their actual use in modeling applications. Some discussion regarding this follows the deri
of the coherent structures in Sec. IV.

In Sec. II we use invariant Painleve´ expansions truncated at different orders to obtain n
trivial families of analytic solutions of the reaction-diffusion equations. Two points are w
noting in this context. First, the invariant Painleve´ analysis24 builds in invariance to the Mo¨bius or
homographic group ‘‘a priori.’’ In turn, this leads to simpler compatibility equations for th
coefficients~the so-called Painleve´–Bäcklund equations! yielding more general solutions tha
obtained for~1! from the use of truncated noninvariant Painleve´ expansions.31 Second, although
truncated invariant Painleve´ expansions have been used fairly widely in recent years to de
analytic solutions~see Refs. 32–34, for instance!, the Painleve´–Bäcklund equations which resul
from ~1! and which are solved to obtain analytic solutions are quite complicated. Having obt
analytic solutions of the PDE in Sec. II, we next consider the properties of the ordinary differ
equation governing traveling wave solutions in Sec. III. In Sec. IV, we discuss the compatibil
the PDE solutions and solutions derived earlier with those of the ODE, as well as access
from initial conditions. We also give numerical examples of various coherent structure solu

II. INVARIANT TRUNCATION PROCEDURE AND SPECIAL SOLUTIONS

A. Truncation procedure

For a NLPDE that is algebraic inu and its derivatives

E~u,x,t !50 ~4a!

around a movable singular manifold

F2F050, ~4b!

one looks, in the invariant Painleve´ formulation,24 for a solution as an expansion of the form
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u5x2a(
j 50

`

ujx
j , ~5!

where the coefficientsuj are invariant under a group of homographic~Möbius! transformations on
F. The expansion variablex, which must vanish as (F2F0), is chosen to be

x[
c

cx
5S Fx

F2F0
2

Fxx

2Fx
D 21

, c5~F2F0!Fx
21/2.

The variablex satisfies the Riccati equations

xx511 1
2Sx2, ~6a!

x t52C1Cxx2 1
2~CS1Cxx!x

2, ~6b!

and the variablec satisfies the linear equations

cxx52 1
2Sc, ~7a!

c t5
1
2Cxc2Ccx . ~7b!

Note that the systems of equations~6! and ~7! are equivalent to each other. In~6! and ~7!, the
quantitiesS ~Schwarzian derivative! andC ~the ‘‘dimension of velocity’’ or celerity! are defined
by

S5
Fxxx

Fx
2

3

2 S Fxx

Fx
D 2

, ~8a!

C52
F t

Fx
, ~8b!

and are invariant under the group of homographic~Möbius! or fractional linear transformations18

F→
aF1b

cF1d
, ad2bc51. ~9!

These homographic invariants are linked by the cross-derivative condition (Fxxxt5F txxx)

St1Cxxx12CxS1CSx50. ~10!

B. Solutions via invariant Painleve ´ analysis

We apply the above formalism to~1!. The leading-order dominant balance yieldsa52. Using
~5!, truncated at the constant term

u5u0x221u1x211u2 , ~11!

in ~1!, and eliminating the derivatives ofx using ~6! yields a set of coupled nonlinear parti
differential equations~the Painleve´–Bäcklund equations! order by order in powers ofx. These are
given in Appendix A. The first four equations yield

u050,

u150 or 6A2b. ~12!
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Inspection of~A5!–~A7! in Appendix A shows the need for further assumptions to allow th
solutions. Making the further assumption31–34 that C is a constant yields

~a! 213b23b222b31~3A2b13&b5/213&b3/2!C22&b3/2C350,

or C5C1[
2&22&b

2Ab
, C5C2[

2&1&b

2Ab
~13a!

or C5C3[
2&1&b

2Ab
for u15A2b,

with

S5
C2

6
2

b

3
2

1

3b
2

1

3
52Q2, ~13b!

or

~b! u250, 1, or 2b for u150 ~14!

@this yields only trivial constant solutions using~11!#. The cross-derivative condition~10! is now
satisfied identically. The Schro¨dinger equation~6a! yields

c~x,t !5A~ t !cosQx1B~ t !sinQx

and hence, using~6b!,

x[
c

cx
5

c1 cos~Qj!2c2 sin~Qj!

2Q@c2 cos~Qj!1c1 sin~Qj!#
~15a!

with

j5x2Ct. ~15b!

Hence, using~12! and ~13! in ~11!, traveling wave special solutions of~1! ~for u15A2b! are

u~1!56
A2b

x
1

1

6
~222b2CA2b!, ~16!

where x is given by ~15a!, and C has one of the values in~13a!. A solution may be derived
analogously foru152A2b, and a similar, less interesting, solution may be obtained using~11!,
~12!, and~14! ~for u250, 1 or 2b!. Note thatC andQ are connected via~13b!, and henceQ is
~implicitly ! a function ofb.

A similar process applied to~2! yields a solution

u1
~2!56

A2D/b

x
1S 2D7CA2D/b

6D D , ~17a!

wherex is given by~15!, with

S5
C222Db

6D2 [2Q2, ~17b!

andC is a solution of the cubic
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2bS 1

3
7

C

3A2bD
D 3

22bS 1

3
7

C

3A2bD
D 2

6A2D

b
CS C222Db

6D2 D50. ~17c!

For instance, withD51, b52, we obtainC521, or C52.
By contrast, the same procedure applied to~3! yields simpler, relatively trivial, traveling wave

solutions. For completeness, we include a solution of~2! obtained earlier31 using noninvariant
Painlevéanalysis:

uII
~2!5gA2D

b F a1A2D/beAb/2D j1

agj11~2Dg/b!e
Ab/2D j11d

G , ~18a!

where

j1[x1AbD

2
t, ~18b!

anda, g, andd are constants. Note that the discussion of this solution later in this paper is
as is the framework of that discussion.

C. Preliminary discussion

We shall consider the behavior of the solutions~16!–~18! further in the next two sections
However, we first need to consider some results for the ODEs, derived from traveling
reductions, of the underlying PDEs~1! and ~2!. This will be done in Sec. III. At this point, we
make some preliminary observations regarding the solutions~16!–~18! which will be needed in
Sec. III.

We note that we have aperiodic hyperbolic functions in~16! ~corresponding to a coheren
structure! for Q imaginary or, from~13a! and ~13b!,

0,b,A 3
2 or b,2A 3

2 for C5C1 ,

b.0 or 232A6,b,231A6 for C5C2 , ~19!

b.0 for C5C3 .

For these cases, limj→6` x561/uQu from ~15!, so that~16! yields

lim
j→6`

u~1!56A2buQu1 1
6~222b2CA2b!. ~20!

For instance, for the first value ofC[C1 given by ~13a!, this becomes

lim
j→1`

u~1!51, lim
j→2`

u~1!50. ~21!

Note that the solutionu(1) tends to different values asj→6`, and these values are independe
of the constantsc1 andc2 in ~15a!. Thus, the solutions~16! represent front solutions of~1!.

Similarly, considering the solutionu1
(2) of ~2!, if the roots of~17c! for C areC4 , C5 , andC6

~say!, then Q in ~17b! may be imaginary for some ranges ofb and D. For these cases,Q
[ i uQu, and limj→6` x561/uQu, so that~17! yields

lim
j→6`

u1
~2!56A2D

b
uQu1

1

3
6

C

6D
A2D

b
. ~22!
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Note thatu1
(2) tends to different values asj→6` and thus corresponds to a front solution of~2!.

For instance, withD51, b52, C561 and the upper sign,

lim
j→52`

u1
~2!50, lim

j→`

u1
~2!51.

It may be shown in an analogous manner that the solutionsuII
(2) in ~18! are also front solutions

of ~2!. In the next section, we shall consider some properties of the ODE obtained by perfo
traveling wave reductions on the reaction-diffusion equations~1! and ~2! before returning to
discuss the solutions in this section further. We shall refer to~20!–~22! further during that dis-
cussion.

III. ANALYSIS OF TRAVELING WAVE REDUCED ODE

We shall look for traveling wave reductions of the PDE’s~1! and~2!. We present the result
for ~2! since the algebra is somewhat easier. The treatment for~1! is analogous.

Looking for traveling wave solutions of~2! of the form

u~x,t !5u~z![u~x2Ct! ~23a!

yields the ordinary differential equation

2Cu85bu2~12u!1Du9, ~23b!

where the prime denotesd/dz. Note that we usez as an explicit traveling wave variable ‘‘a
priori ,’’ as distinct from the analogous variablej which emerged ‘‘a posteriori’’ in Sec. II from
the Painleve´ analysis.

Treating~23! as a dynamical system in the (u,u8)[(u,v) plane in the standard way, we fin
the fixed~critical! points in the (u,v) plane:

~u0,0![~0,0!, ~24a!

~u1,0![~1,0!, ~24b!

whose linear stability is governed by the eigenvalues~which are also the spatial wave numbers
z space!

l0
1,250,

2C

D
, ~25a!

l1
1,25

2C/D6AC2/D214b/D

2
. ~25b!

Since b and D are positive, the fixed point (u1,0) is thus a saddle-point, while (u0,0) is a
nonhyperbolic fixed point. The system~23! may thus have a heteroclinic orbit connecting (u0,0)
and (u1,0). In the context of the underlying PDE~2!, this corresponds to a front solution con
nectingu0(u1) andu1(u0) asz goes from2` to 1`. From ~22!, we see that the solutions~17!
of the PDE~directly obtained from the PDE! are indeed heteroclinic orbits of~23!. For instance,
with D51, b51, C561, and the lower sign in~22!, limj→1` u1

(2)50 and limj→2` u1
(2)51, so

that this front solutionuII
(2) is a heteroclinic orbit of~23! joining (u0,0) to (u1,0) asz→6`. Note

that for some PDEs~such as the long-wave equations35! this may not happen automatically—th
integrated version of the traveling wave reduced ODE may contain unknown constants o
gration which must be chosen to ensure this. An analogous treatment of~1! yields the traveling
wave reduced ODE
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2Cu85u91
u

b
~b1u!~12u!, ~26!

which, treated as a dynamical system in (u,u8)[(u,v), has fixed points (u0,0)5(0,0), (u1,0)
5(1,0) and (u2,0)5(2b,0). As for ~2!, it may be shown using~20! and ~21! that the front
solutionsu(1) of ~1! correspond to heteroclinic orbits of~26! joining two of the above fixed points
For instance, forC[C1 , limj→2` u(1)50, limj→` u(1)51, so that the front solutionu(1) of ~1! is
a heteroclinic orbit of~26! joining (u0,0) to (u1,0) asz→6`. Once again, this need not happe
automatically, as it does not for the long-wave equations,35 for instance.

As extensively investigated and stressed by Powellet al.26 the front solutions represented b
the heteroclinic orbits of the traveling wave reduced ODEs~23! and ~26! need not correspond to
fronts obtained directly from the PDE~1!. We shall now consider this further.

IV. DISCUSSION

In this section, we consider further features of the solutionsu(1) andu1
(2) @in ~16! and~17!# of

~1! and~2! obtained by use of invariant Painleve´ expansions. Powellet al.26 have, among numer
ous other things, made the points that coherent structure solutions such as~16! and~17!, which are
directly obtained from a PDE,~a! must asymptotically satisfy the ODE governing traveling wa
reductions, and~b! be accessible to the PDE from compact support initial conditions. Conside
the traveling wave reduced ODE~23! obtained from~2!, we havez[x2Ct→2` as t→` ~for
C.0!, and sou tends to the saddle-point (u1,0) in ~24b! along its unstable manifold. From~25b!,
the eigenvalue along this direction is

FIG. 1. Real part ofu–(1) for b51, C5C–1, c155∧(1/2), c25Pi.

FIG. 2. Real part ofu–(1) for b51, C5C–3, c155∧(1/2), c25Pi.
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lODE5l1
1 5

2C/D1AC2/D214b/D

2
. ~27!

By the Unstable Manifold Theorem,36 ~27! gives the time asymptotic spatial wave number of t
front solutions~2! @along the global unstable manifold of (u1,0)# satisfying the ODE~23! and
with solution valuesu0 andu1 for t→7`. Inspection of the solutionsu1

(2) in ~17! reveals that the
wave number (lPDE[uQu) of these solutions obtained directly from the PDE are exactly the s
aslODE @this may be seen from~17b! and ~27!, using the fact thatC satisfies~17c!#. In Sec. III,
we verified that the values of~a! uPDE for j→6`, and~b! uODE for z→6` are matched; here we
see that the resulting time asymptotic wavenumbers in the ODE and PDE solutions are a
same. Thus, as conjectured in Powellet al., the solutions obtained via Painleve´ analysis are indeed
the so-called nonlinear solutions;19 note that Powellet al. equivalently think ofC as a function of
l, instead ofl as a function ofC as done here. As pointed out by both Powellet al.26 and Marcq
et al.22 for the GL equation, this is because the Painleve´ analysis builds in ‘‘a priori’’ the singu-
larity structure which must be satisfied by any coherent structure solution of the PDE.

Although the front solutions~16! and~17! satisfy the traveling wave reduced ODEs~26! and
~23!, we must also check the accessibility of these solutions to the PDEs~1! and~2! from compact
support initial conditions as stressed in Ref. 26. Following the treatment of absolute versu
vective instability in Ref. 28, we find the temporal growth rate at any fixedx spatial position

s5u2ClPDEu[U2CuQu52CF2Db2C2

12D2 G1/2U. ~28!

FIG. 3. Real part of Frontu–(1) for b51, C5C–3, c155∧(1/2), c25Pi.

FIG. 4. Real part ofu–(2)I for D51, beta52, C521, Q5 i /2, c155∧(1/2), c25Pi.
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Thus, we expect that the front which emerges asymptotically in time from compact support
conditions corresponds to the root of~17c! for which we have the maximum temporal growth ra
For instance, withD51, b52, we obtainC521 or 2 from ~17c!. From ~17b!, uQu5 1

2 for C
521, anduQu50 for C52. Thus the maximums occurs forC521.

Analogous results apply to the wave numbers and temporal growth rates of the solutio~16!
obtained directly from the PDE~1! and its traveling wave reduced ODE~26!. The algebra is
harder, but is tractable using a computer algebra system.

One should note that some of the results obtained by phase-plane analysis of the tra
wave reduced ODE are equivalent to those obtained by van Saarloos’ linear and nonlinea
ginal stability analysis and steepest envelope technique.29 For completeness, this treatment
summarized in Appendix B for Eq.~2!. An analogous treatment holds for~1!.

Finally, let us consider plots of the solutions of~1! and ~2! given by ~16! and ~17!, and
compare them further to predictions from the traveling wave reduced ODEs. For both~16! and
~17!, we choose representative parameter values corresponding to the front solutions dis
earlier. Note that we may choose the constantsc1 and c2 to make~16! and ~17! correspond to
physically relevant real solutions. We pick arbitraryc1 and c2 values instead, and plot the re
parts of the solutions.

Figures 1 and 2 show the real part ofu(1) @given by~16!# for b51, c15A5, c25p, and~a!
C5C1 for Fig. 1 and~b! C5C3 for Fig. 2. Note that the primary difference between these p
is that the former, withC5C1 , corresponds to a front connecting the states 0 and 1 oru0 andu1

asj→6`, while the latter front withC5C3 connects the state21 and 0@note that the third fixed
point (u2,0)5(2b,0) of ~26! is ~21,0! for b51#. Figure 3 shows the same front as Fig. 2, but
~x,t! coordinates. Note the rightward propagation of the front~towards largerx! ast increases due
to the phase speedC5C353/& being positive.

Figures 4 and 5 show the solution~17! of the PDE~2! for c15A5, c25p, D51, b52, Q
5i/2, andC521 @note thatQ56 i /2, andC521 or 2 by~17b! and~17c!—we pickQ5 i /2 and
C521#. The solution corresponds to a front joining the states 0 and 1@or the fixed points (u0,0)
and (u1,0) of Eq.~23! given in ~24!#. In Fig. 5, note the leftward propagation of the front due
the negative phase speedC521.

In conclusion, we have derived two nontrivial families of analytical solutions of~1! and ~2!,
which may sometimes be coherent structures, and analyzed several of their properties. A
tioned in Sec. I, these analytical solutions act as a sort of bridge between two of the co
approaches to the analysis of coherent structures. These two approaches are, first, proof
existence of coherent structure solutions of the traveling wave reduced ODEs, and, secon
struction of coherent structures by numerical simulations of these ODEs. The analytical so
may also be of relevance in modeling the physics of the problem under consideration. Altho

FIG. 5. Real part ofu–(2)I for D51, beta52, C521, Q5 i /2, c155∧(1/2), c25Pi.
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is not the purpose of this article to consider detailed modeling issues, some of the appr
which may be relevant to modeling of reaction-diffusion equations include those in Ref. 29,
3 of Ref. 37, Chap. 6 of Ref. 38, as well as numerous research papers. Related modeling iss
other nonlinear PDEs are discussed, for instance, in Chap. 10 of Ref. 39~this also discusses
nonintegrable equations, not just integrable equations as the chapter title might seem to in!,
and the recent review article by Balmforth.40
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APPENDIX A

The equations obtained at different powers ofx are

O~x26!: u050, ~A1!

O~x25!: u0
2u150, ~A2!

O~x24!: 6u02u0
21

u0
2

b
2

3u0u1
2

b
2

3u0
2u2

b
50, ~A3!

O~x23!: 22Cu012u122u0u11
2u0u1

b
2

u1
3

b
2

6u0u1u2

b
24u0x50, ~A4!

O~x22!: u014Su02Cu12u1
21

u1
2

b
22u0u21

2u0u2

b
2

3u1
2u2

b
2

3u0u2
2

b
2u0t12u0Cx22u1x

1u0xx50, ~A5!

O~x21!: 2CSu01u11Su122u1u21
2u1u2

b
2

3u1u2
2

b
2u1t1u1Cx2u0Sx22Su0x2u0Cxx

1u1xx50, ~A6!

O~x0!:
1

2
S2u02

1

2
CSu11u22u2

21
u2

2

b
2

u2
3

b
2u2t2

1

2
u1Sx2Su1x2

1

2
u1Cxx1u2xx50.

~A7!

APPENDIX B: VAN SAARLOOS’ TECHNIQUE

The tail of the coherent structure must obey the linear RD equation~2! as x→` ~sinceu
→0 or 1! so that

ut5Duxx . ~B1!

Consider the behavior of a linear mode

u5exp@ i ~v2 is!t1 i ~k2 il!z#,

wherez5x2Ct andC is the front speed. For this mode to be part of a persistent front, it m
have zero temporal growths50 in a frame moving at speedC. This gives the dispersion relatio

iv2 iC~k2 il!52D~k2 il!2. ~B2!
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For a nonoscillatory mode withv50, separating the real and imaginary parts of~B2! yields either
~a! k50, l52C/D, or ~b! l52C/(2D), k252(C/2D)2. Case~b! with imaginaryk implies no
coherent structures, so we have

l52C/D,

which is equal tolPDE. Various other features discussed in the text may also be derived by
approach~see Refs. 18, 19, and 26!.
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Frequency analysis based on general periodic functions
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Following the sine–cosine function, the sawtooth wave, square wave, triangular
wave, trapezoidal wave, and so on become new easily generated periodic functions
in modern electronics. Similar to Fourier’s idea, a natural question is whether a
signal can be considered as a superposition of easily generated functions with
different frequencies. Therefore it is necessary to generalize Fourier analysis based
on sine–cosine functions into frequency analysis based on general periodic func-
tions. In this paper, we introduce the frequency series and frequency transformation
based on general periodic functions. We discuss when a frequency system is a
complete system or an unconditional basis inL2@2p,p#, and when a frequency
transformation can be carried out inL2(2`,1`). For practical convenience al-
most all easily generated functions in electronics are considered carefully as ex-
amples. As a new and practical generalization of classical Fourier analysis, these
results will become a theoretical foundation for the technique of easily generated
function analysis in signal processing. ©1999 American Institute of Physics.
@S0022-2488~99!02706-1#

I. INTRODUCTION

In 1807 the French mathematician J. B. J. Fourier asserted that any function with perip
can be expressed as a trigonometric series, and that any nonperiodic function can be expre
a trigonometric integral. This great idea has had an important influence upon science an
nology. In electronics, Fourier analysis has been playing an important role, and a signal is
considered as a superposition of many sine and cosine functions with different frequencies
ever, with the development of electronic technique, the sawtooth wave, square wave, tria
wave, trapezoidal wave, and so on become new easily generated periodic functions. For ex
it is quite convenient to get a system of square waves with different frequencies from a co
high-frequency pulse by counters. A practical question arises naturally:Can a signal be consid-
ered as a superposition of other periodic functions (such as square waves) with different fre
cies?

In order to answer this practical question, we need to introduce the frequency analysis
on general periodic functions in mathematics, which is a natural generalization of Fourier an
based on the sine and cosine functions. Considering the fact that the theory for Fourier se
L2@2p,p# and the theory for Fourier transformation inL2(2`,1`) are both simple and im-
portant, we shall develop a theory for general frequency series inL2@2p,p# and a theory for
general transformation inL2(2`,1`). In the following, we shall discuss when a frequen
system is a complete system or an unconditional basis inL2@2p,p#, and when a frequency
transformation can be carried out inL2(2`,1`). For practical convenience, almost all eas
generated functions in electronics are considered carefully as examples. The conclusions
paper will provide a theoretical foundation for the technique of easily generated function an
in electronics.

a!Electronic mail: weiyuch@bltda.com.bta.net.cn
36540022-2488/99/40(7)/3654/31/$15.00 © 1999 American Institute of Physics
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The results show that frequency analysis based on general periodic functions has a
relation with the Dirichlet multiplication in number theory.

In this paperL2@2p,p# denotes the real Hilbert space of functions with the period 2p which
are quadratically integrable on@2p,p#. It is well known thatL2@2p,1p# can be decompose
into three mutually orthogonal subspaces:

L2@2p,1p#5constant function subspace% Leven
2 @2p,1p# % Lodd

2 @2p,1p#

5span$1% % span$cosnx%n51
`

% span$sinnx%n51
` ,

whereLeven
2 @2p,1p# is the subspace of even functions with the mean-value 0, andLodd

2 @2p,
1p# is the subspace of odd functions.

II. A FREQUENCY SYSTEM IN L 2
†2p,p‡

In this section we suppose that the function

F~x!5 (
n51

`

A~n!cos~nx!1B~n!sin~nx! ~1!

is a given nonzero element inL2@2p,p#, whereA(n) andB(n) denote its Fourier coefficients
We shall show that the frequency system based on the functionF(x),

F~x!,F~2x!,F~3x!,...,F~nx!,..., ~2!

is linearly independent, weakly convergent to zero, and incomplete inL2@2p,p#.
Lemma:Suppose thatf andg are two arithmetical functions andh is their Dirichlet product,1

i.e.,

h5 f * g. ~3!

Then we have

h50⇔ f 50 or g50. ~4!

In this paper, as an example, the notationh50 means that

h~n!50 for n51,2,3,... . ~5!

Proof: From the definition of Dirichlet multiplication, it follows obviously that

f 50 or g50⇒h50. ~6!

Now let us consider

h50⇒ f 50 or g50. ~7!

There are three cases.
~1! If f (1)Þ0, theng5h* f 2150. Here21 denotes the inverse of an arithmetical functio1

Similarly, if g(1)Þ0, then f 5h* g2150.
Therefore relation~7! holds in this case.

~2! Suppose that

f ~n!5g~n!50 for n,k ~8!

and thatf (k)Þ0, wherek is a positive integer greater than 1.
Then we have
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h~k2!5 f ~k!g~k!50⇒g~k!50,

h~k~k11!!5 f ~k!g~k11!50⇒g~k11!50,

¯ ¯ ¯ ,

h~k~k1 i !!5 f ~k!g~k1 i !50⇒g~k1 i !50,

¯ ¯ ¯ ,

wherei is any non-negative integer. Therefore we haveg50.
Similarly, suppose that

f ~n!5g~n!50 for n,k ~9!

and thatg(k)Þ0, wherek is a positive integer greater than 1.
For the same reason, we havef 50. Therefore relation~7! holds in this case as well.

~3! Suppose that

f ~n!5g~n!50 for any positive integern. ~10!

In fact we already havef 5g50 and therefore relation~7! holds obviously in this case. In on
word, relation~7! holds always.
This completes the proof of the lemma. h

Proposition 1:We have

(
n51

`

c~n!F~nx!50⇔c50, ~11!

wherec(n) is a real-valued arithmetical function.
Proof: If

c50, ~12!

the conclusion is trivially true.
Let us consider the case

(
n51

`

c~n!F~nx!50. ~13!

Putting ~1! in ~13!, we have

(
n51

`

~a~n!cosnx1b~n!sinnx!50, ~14!

where

a~n!5(
dun

AS n

dD c~d!5A* c~n!,

b~n!5(
dun

BS n

dD c~d!5B* c~n!,

Heredun means thatd is a factor ofn.
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From ~14!, we obtain that

a5b50.

SinceF(x) is a nonzero element, we have

AÞ0 or BÞ0. ~15!

By the lemma, we obtain that

c50, ~16!

This completes the proof. h

Consequence:If a function c(x)PL2@2p,p# can be expressed as a frequency series ba
on F(x):

c~x!5c~1!F~x!1c~2!F~2x!1c~3!F~3x!1¯1c~n!F~nx!1¯ , ~17!

then the coefficientsc(n) are unique.
Proposition 2:The frequency system$F(nx)%n51

` converges weakly to 0.
Proof: Suppose thatc(x)PL2@2p,1p# is an arbitrary function, and its Fourier series is

c~x!5a01(
l 51

`

a~ l !cos~ lx !1b~ l !sin~ lx !. ~18!

We have

u^F~nx!,c~x!&u5pU(
l 51

`

A~ l !a~nl !1(
l 51

`

B~ l !b~nl !U
<pA(

l 51

`

A2~ l !A(
l 51

`

a2~nl !1pA(
l 51

`

B2~ l !A(
l 51

`

b2~nl !

<pA(
l 51

`

A2~ l !A(
l 5n

`

a2~ l !1pA(
l 51

`

B2~ l !A(
l 5n

`

b2~ l !→0~as n→`!.

Therefore we have

^F~nx!,c~x!&→0 ~as n→`!. ~19!

This completes the proof. h

Proposition 3:The frequency system$F(nx)%n51
` is incomplete inL2@2p,1p#.

Proof: There are two cases.
~1! If A(1)Þ0 or B(1)Þ0, then there exists a nonzero elementc(x)52B(1)cosx

1A(1)sinx such that

E
2p

p

F~nx!c~x!dx50 for n51,2,3,... . ~20!

~2! If A(1)5B(1)50, we have

E
2p

p

F~nx!cosx dx50 for n51,2,3,... . ~21!

In one word, the frequency system$F(nx)%n51
` is incomplete inL2@2p,1p#. h
                                                                                                                



n-

e

3658 J. Math. Phys., Vol. 40, No. 7, July 1999 Yuchuan Wei

                    
Now that the frequency system is incomplete inL2@2p,1p#, we shall develop the problem
in its odd function subspaceLodd

2 @2p,1p# in the following section.

III. A FREQUENCY SYSTEM IN L odd
2

†2p,1p‡

In this section we suppose that the function

Y~x!5 (
n51

`

B~n!sinnx ~22!

is a given nonzero element inLodd
2 @2p,1p#, whereB(n) denotes its Fourier coefficients.

We shall show that the frequency system$Y(nx)%n51
` may be an orthogonal basis, an unco

ditional basis, a complete system, or an incomplete system inLodd
2 @2p,1p#. Let us see a simple

example.
Example: If Y(x)5sinx1ksin 2x, where k is a real number, then inLodd

2 @2p,1p# the
frequency system$Y(nx)%n51

` is:

~1! an orthogonal basis whenk50;
~2! an unconditional basis when 0,uku,1;
~3! a complete system, but not a basis, whenuku51;
~4! an incomplete system whenuku.1.

Proof of the example:
~1! This is clear.
~2! This follows from Proposition 18, which we shall introduce.
~3! Let us consider the completeness first.
Suppose thatc(x)PLodd

2 @2p,1p# is a function such that

E
2p

p

c~x!Y~nx!dx50 for n51,2,3,... . ~23!

The Fourier series ofc(x) can be expressed as

c~x!5 (
n51

`

b~n!sinnx. ~24!

From relation~23!, we obtain that

b~n!1kb~2n!50, ~25!

or

b~n!5~2k!b~2n!, ~26!

for all positive integern.
Thus for an arbitrary positive integerl, we have

b~ l !5~2k!b~2l !5~2k!2b~22l !5¯5~2k!mb~2ml !5¯ . ~27!

Sinceb(n)→0 asn→`, we have

b~ l !50. ~28!

Since l is an arbitrary positive integer, we obtainc(x)50. This completes the proof of th
completeness.
However, the frequency system is not a basis ofLodd

2 @2p,1p#.
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If it is a basis, the function sinx can be expressed as a frequency series:

sinx5 (
n51

`

D~n!Y~nx!, ~29!

whereD(n) are coefficients.
PuttingY(x)5sinx1ksin 2x in ~29!, we obtain that

sinx5D~1!sinx1~kD~1!1D~2!!sin 2x1D~3!sin 3x1~kD~2!1D~4!!sin 4x1¯ . ~30!

Considering the coefficients of the terms sin 2mx (m50,1,2,...), we obtain that

D~1!51, ~31!

and

D~2m!1kD~2m21!50 for m51,2,3,... . ~32!

Thus we obtain that

D~2m!5~2k!m for m51,2,3,... . ~33!

ThereforeD(2m) does not converge to 0 asm increases, and henceD(n) does not converge to 0
either asn increases. This is a contradiction.

So the conclusion should be that the frequency system is not a basis ofLodd
2 @2p,1p#.

~4! The frequency system is not complete inLodd
2 @2p,1p#, because there exists a functio

c~x!5sinx1S 2
1

kD sin 2x1S 2
1

kD 2

sin 4x1S 2
1

kD 3

sin 8x1¯1S 2
1

kD m

sin 2mx1¯

~34!

such that

E
2p

p

c~x!Y~nx!dx50 for n51,2,3,... . ~35!

This completes the proof of the example. h

Proposition 4: The frequency system$Y(nx)%n51
` is an orthonormal basis ofLodd

2 @2p,
1p# if and only if

Y~x!56
1

Ap
sinx. ~36!

Proof: If part is clear.
Next let us consider the only-if part. If$Y(nx)%n51

` is an orthonormal basis ofLodd
2 @2p,

1p#, then the function sinx has a frequency series based onY(x):

sinx5 (
n51

`

D~n!Y~nx!, ~37!

where the coefficientsD(n) are determined by

D~n!5E
2p

p

sinxY~nx!dx. ~38!
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It follows that

D~1!5pB~1!, ~39!

D~n!50 for n52,3,4,... . ~40!

Thus we have

sinx5pB~1!Y~x! ~41!

5pB~1! (
n51

`

B~n!sinnx. ~42!

From ~42!, we obtain that

B~1!56
1

Ap
, ~43!

B~n!50 for n52,3,4,..., ~44!

i.e.,

Y~x!56
1

Ap
sinx ~45!h

Proposition 5:The frequency system$Y(nx)%n51
` is incomplete inLodd

2 @2p,1p# if Y(x)’s
first Fourier coefficientB(1)50.

Proof: It is because

E
2p

p

Y~nx!sinx dx50, ~46!

for n51,2,3,... . h

Proposition 6:If B(1)Þ0, then the frequency system

Y~x!,Y~2x!,Y~3x!,¯ ,Y~nx!,... ~47!

and the function system

g1~x!,g2~x!,g3~x!,...,gn~x!,... ~48!

are biorthogonal, where the functionsgn(x) are defined by

gn~x!5
1

p (
dun

B21S n

dD sindx ~49!

for n51,2,3,... . HereB21 denotes the Dirichlet inverse ofB(n).
Proof: For any two positive integersm andn, we have
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^Y~mx!,gn~x!&5K (
k51

`

B~k!sin~mkx!,
1

p (
dun

B21S n

dD sindxL
5 (

mud,dun
B21S n

dDBS d

mD

55
0 m†n

0
n

m
52,3,...

1
n

m
51

5 H0
1

mÞn
m5n5dmn ,

wherem†n denotes thatm is not a factor ofn, anddmn is the Kronecher’s delta symbol. Thi
completes the proof. h

Proposition 7:If a function c(x)PLodd
2 @2p,1p# has a frequency series based on the fu

tion Y(x) ~with B(1)Þ0!:

c~x!5 (
n51

`

D~n!Y~nx!, ~50!

then the coefficientsD(n) can be determined uniquely by

D~n!5E
2p

p

c~x!gn~x!dx, ~51!

wheregn(x) are the biorthogonal functions defined by~49!.
Proof: This proposition follows from Proposition 6 obviously. h

In the following sections, we shall discuss what properties the functionY(x) need possess s
that its frequency system is a complete system or an unconditional basis.

IV. A COMPLETE SYSTEM IN L odd
2

†2p,1p‡

We shall discuss what properties the functionY(x) need possess so that its frequency syst
is a complete system inLodd

2 @2p,1p#.
Definition: The subsetW of Lodd

2 @2p,1p# is defined by

W5H Y~x!PLodd
2 @2p,1p#:Y~x!5 (

n51

`

B~n!sinnx, with (
l 51

` S (
mn51

uB21~n!B~m!u D 2

,`.J
Proposition 8:If Y(x)PW, then

~1! the series

sinx5 (
n51

`

B21~n!Y~nx! ~52!

converges unconditionally in the sense of the norm ofL2@2p,1p#;
~2! the frequency system$Y(nx)%n51

` is complete inLodd
2 @2p,1p#.

Proof:
~1! In fact we have
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(
n51

`

B21~n!Y~nx! ~53!

5 (
n51

`

B21~n! (
m51

`

B~m!sin~mnx! ~54!

5(
l 51

`

(
mn5 l

B21~n!B~m!sin lx ~55!

5sinx. ~56!

From ~54! to ~55!, the summation order was changed. But this does not matter for the s
encountered here are unconditionally convergent in the sense of the norm ofL2@2p,p#. The
reason for unconditional convergence is that the series

(
l 51

`

(
mn5 l

uB21~n!B~m!usin lx

is convergent, and its norm square

p(
l 51

` S (
mn5 l

uB21~n!B~m!u D 2

,`. ~57!

~2! From ~52!, it follows that

sinmx5 (
n51

`

B21~n!Y~mnx! ~58!

for m51,2,3,... .
Since the sine function system$sinnx%n51

` is complete inLodd
2 @2p,1p#, so is the frequency

system$Y(nx)%n51
` . h

Definition: The subsetY of Lodd
2 @2p,1p# is defined by

Y5H Y~x!: Y~x!5 (
n51

`

B~n!sinx,

where B~n! is quadratically summable and completely multiplicative.J
If Y(x)PY, one says thatY(x) is an odd function with quadratically summable and complet
multiplicative Fourier coefficients, or an odd WQSCMFC function. Here the term thatB(n) is
quadratically summable means that

(
n51

`

B2~n!,`.

The term thatB(n) is completely multiplicative means thatB(1)51 andB(m)B(n)5B(mn) for
any two positive integers.1

Proposition 9: Yis a subset ofW, i.e., Y,W.
Proof: SinceB(n) is completely multiplicative, we have andB21(n)5m(n)B(n).1 It follows

that
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(
l 51

` S (
mn5 l

uB21~n!B~m!u D 2

5(
l 51

`

B2~ l !S (
mn5 l

um~n!u D 2

<(
l 51

`

B2~ l !d2~ l !

<(
l 51

`

B2~ l !d* d~ l !5S (
l 51

`

B2~ l !D 4

,`.

Here d(n) denotes the number of positive divisors of a positive integern, called the divisor
function.1 We have used the relation

d* d~n!5(
mun

d~m!dS n

mD>(
mun

d~n!5d2~n!. ~59!

Therefore we obtain thatY,W. h

Proposition 10:If Y(x)PY, and

c~x!5 (
n51

`

b~n!sinnx

is a function inLodd
2 @2p,1p# with

(
n51

`

b2~n!d~n!,`, ~60!

thenc(x) can be expressed as a frequency system based onY(x):

c~x!5 (
n51

`

D~n!Y~nx!,

where

D~n!5(
dun

mS n

dDBS n

dDb~d!5B21* b~n!. ~61!

Proof: This proof is similar to that in Ref. 2. With the help of Ref. 2, readers should hav
difficulties in constructing a complete proof except for the use of a new inequality

(
j 51

`

B2~ j !d3~ j !<S (
j 51

`

B2~ j !D 8

,`. ~62!

It is because

d* d* d* d~n!>d2* d2~n!5(
mun

d2~m!d2S n

mD>(
mun

d2~n!5d3~n!. ~63!

Proposition 11:If Y(x)PY, the orthonormalized functions of the frequency system$Y(nx)%
can be given explicitly by

en~x!5
1

iY~x!i
1

Ab~n!
(
dun

mS n

dDBS n

dDY~dx!, ~64!
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where the arithmatical functionb(n) is defined by

b~n!5(
dun

m~d!B2~d!. ~65!

Proof: Since this proof has little difference from that in Ref. 2, we omit it. Obviously
orthonormal system$en%n51

` is an orthonormal basis ofLodd
2 @2p,1p#. h

Proposition 12:If Y1(x)PY, Y2(x)PY, and that their Fourier coefficients areB1(n) and
B2(n), respectively, then the two functions are related by

Y1~x!5 (
n51

`

D12~n!Y2~nx!, ~66!

Y2~x!5 (
n51

`

D21~n!Y1~nx!, ~67!

where

D12~n!5(
dun

mS n

dDB2S n

dDB1~d!5B1* B2
21~n!, ~68!

D21~n!5(
dun

mS n

dDB1S n

dDB2~d!5B2* B1
21~n!. ~69!

Proof: From Proposition 10, we can obtain this proposition easily. h

As examples, let us consider several basic wave forms, which are frequently used and
generated in electronics.

Example 1:The I-sawtooth wave. The I-sawtooth waveYIsa(x) is a function defined on
~2`,1`! with the period 2p, whose value in one period is given by

YIsa~x!5 H ~p2x!/2
0 x50

0,x,2p
. ~70!

FIG. 1. The I-sawtooth wave, the II-sawtooth wave, the three-valued function, and the trapezoidal wave.
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See Fig. 1. By the way, in Fig. 1 the graphs of four functions are arranged in the following o

S YIsa~x! YIIsa~x!

Y~a,a;x! Ytra~a,a;x!
D .

Its Fourier series is3

YIsa~x!5sinx1 1
2 sin~2x!1 1

3 sin~3x!1¯1
1

n
sin~nx!1¯ ~71!

5 (
n51

`

BIsa~n!sin~nx!. ~72!

Its Fourier coefficient

BIsa~n!51/n ~73!

is completely multiplicative, so the I-sawtooth waveYIsa(x) is an odd WQSCMFC function, i.e.
YIsa(x)PY.

Therefore the sine function can be considered as a superposition of I-sawtooth wave
different frequencies:

sinx5YIsa~x!2 1
2YIsa~2x!2 1

3YIsa~3x!1¯1
m~n!

n
YIsa~nx!1¯ . ~74!

The frequency system based on the I-sawtooth

YIsa~x!, YIsa~2x!, YIsa~3x!,...,YIsa~nx!,... ~75!

is complete inLodd
2 @2p,1p#. ~However whether it is a basis ofLodd

2 @2p,1p# is still unknown.!
Its biorthogonal system is

1

p
sinx,

1

p
~sin 2x2 1

2 sinx!,
1

p S sin 3x2
1

3
sinxD ,...,

1

p (
dun

d

n
mS n

dD sindx,..., ~76!

and its orthonormalized system is

A 6

p3 YIsa~x!, A 8

p3 S YIsa~2x!2
1

2
YIsa~x! D , A 27

4p3 S YIsa~3x!2
1

3
YIsa~x! D ,...,

A 6

p3

1

Ab~n!
(
dun

d

n
mS n

dDYIsa~dx!,...,

where

b~n!5(
dun

m~d!

d2 . ~77!

Example 2:The II-sawtooth wave. The II-sawtooth waveYIIsa(x) is a function defined on
~2`,1`! with the period 2p ~Fig. 1!, whose value in one period is given by

YIIsa~x!5 H x/2 2p,x,p
0 x52p,p. ~78!
                                                                                                                



3666 J. Math. Phys., Vol. 40, No. 7, July 1999 Yuchuan Wei

                    
Its Fourier series is3

YIIsa~x!5sinx2
1

2
sin~2x!1

1

3
sin~3x!1¯1

~21!n11

n
sin~nx!1¯ ~79!

5 (
n51

`

BIIsa~n!sin~nx!. ~80!

Its Fourier coefficient

BIIsa~n!5
~21!n11

n
5

u~n!

n
~81!

is not completely multiplicative, so the II-sawtooth waveYIIsa(x) is not a WQSCMFC function,
i.e., YIIsa(x) is not in the setY. Hereu is the arithmetical function defined by

u~n!5~21!n11. ~82!

Furthermore, it is not difficult to prove thatYIIsa(x) is not in the setW either@hint: see~94!#. Still,
the frequency system based on the II-sawtooth

YIIsa~x!, YIIsa~2x!, YIIsa~3x!,...,YIIsa~nx!,... ~83!

is a complete system inLodd
2 @2p,1p# ~see Proposition 13!. Its biorthogonal system is

1

p
sinx,

1

p S sin 2x1
1

2
sinxD ,

1

p S sin 3x2
1

3
sinxD ,...,

1

p (
dun

d

n
u21S n

dD sindx,..., ~84!

and its orthonormalized system is

A 6

p3 YIIsa~x!, 4A 2

5p3 S YIIsa~2x!1
1

4
YIIsa~x! D , A 27

4p3 S YIIsa~3x!2
1

3
YIIsa~x! D ,

A 20

3p3 S YIIsa~4x!1
3

10
YIIsa~2x!1

1

5
Y~x! D ,... .

Hereu21 is the Dirichlet inversion ofu, which is given explicitly by

u21~n!5 Hm~n! l 50
2l 21m~2k11! l 51,2,3... . ~85!

Here l andk are determined by

n52l~2k11!. ~86!

Proposition 13:The frequency system based on the II-sawtooth wave, i.e.,$YIIsa(nx)%n51
` , is

a complete system inLodd
2 @2p,1p#, but it is not a basis ofLodd

2 @2p,1p#.
Proof:
~1! It is complete inLodd

2 @2p,1p#.
Suppose that there exists a functionc(x)PLodd

2 @2p,1p# such that

^YIIsa~nx!,c~x!&50 for n51,2,3,... . ~87!

From the definitions of the two sawtooth waves, we have the relation
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YIIsa~x!5YIsa~x!2YIsa~2x!. ~88!

Thus we obtain that

^YIsa~nx!,c~x!&5^YIsa~2nx!,c~x!& for n51,2,3,... . ~89!

Furthermore, for an arbitrary positive integerl we have

^YIsa~ lx !,c~x!&5^YIsa~2lx !,c~x!&5¯5^YIsa~2mlx !,c~x!&5¯ , ~90!

wherem50,1,2,... . Due to Proposition 2,YIsa(nx) converges weakly to zero, and we have

^YIsa~ lx !,c~x!&50. ~91!

Since$YIsa(nx)%n51
` is complete, we have

c~x!50. ~92!

This completes the proof about the completeness.
~2! It is not a basis ofLodd

2 @2p,1p#.
If it is a basis ofLodd

2 @2p,1p#, by Proposition 7, sinx can be expressed as a frequen
series:

sinx5YIIsa~x!1
1

2
YIIsa~2x!2

1

3
YIIsa~3x!1¯1

u21~n!

n
YIIsa~nx!1¯ . ~93!

But this is impossible, becauseu21(n)/n does not converge to zero. In fact, forn52m, m
51,2,3,..., we always have

u21~n!

n
5

1

2
. ~94!

Therefore it is not a basis ofLodd
2 @2p,1p#.

Example 3:A periodic three-valued function. Suppose thatY(a,a;x) is a three-valued func-
tion of the period 2p ~Fig. 1!, the value in one period of which is given by

Y~a,a;x!5H 0 2p,x,2p1a,2a,x,a,2p2a,x,p
2a 2p1a,x,2a
a a,x,p2a,

~95!

wherea.0 and 0<a,p/2.
The Fourier series ofY(a,a;x) is3

Y~a,a;x!5
4a

p S cosa sinx1
1

3
cos 3a sin 3x1

1

5
cos 5a sin 5x1¯ D ~96!

5 (
n51

`

B~n!sinnx, ~97!

where the Fourier coefficients

B~n!5H 4a

p

cosna

n
, n51,3,5,...

0, n52,4,6,... .

~98!
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Proposition 14: Y(a,a;x) is an odd WQSCMFC function, i.e.,Y(a,a;x)PY if and only if

~0! a50, a5
p

4
, ~99!

~1! a5
p

4
, a5

&p

4
, ~100!

or

~2! a5
p

6
, a5

)p

6
. ~101!

Proof: It is easy to verify that in the case~0!, ~1! or ~2!, the functionY(a,a;x) is an odd
WQSCMFC function indeed.

Now let us prove that except for the three casesY(a,a;x) is not an odd WQSCMFC function
If Y(a,a;x) is an odd WQSCMFC function, then its Fourier coefficients

B~n!5H 4a

p

cosna

n
, n51,3,5,...

0, n52,4,6,...

~102!

are a completely multiplicative arithmetical function. FromB(1)51 it follows that

a5
p

4

1

cosa
.

From B2(3)5B(9) it follows that

S cos 3a

cosa D 2

5
cos 9a

cosa
. ~103!

Equation~103! has three solutions in@0,p/2!:

a50, a5
p

4
, or a5

p

6
.

The associated value ofa is

a5
p

4
, a5

&p

4
, or a5

)p

6
.

Thus there exist at most three WQSCMFC function among allY(a,a;x) with a.0 and 0<a
,p/2.
This completes the proof. h

For convenience, we call the three functions

YS 0,
p

4
;xD5Ysq~x!, ~104!

YS p

4
,
&p

4
;xD5Yp/4~x!, ~105!
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YS p

6
,
)p

6
;xD5Yp/6~x!, ~106!

odd square wave,p/4 three-valued function, andp/6 three-valued function, respectively, whic
are common in electronics. See Fig. 2. By the way, in Fig. 2 the graphs of six function
arranged in the following order:

S Ysq~x! Xsq~x!

Yp/4~x! Xp/4~x!

Yp/6~x! Xp/6~x!
D .

Regarding the three-valued functions the following questions are still open.
Questions:
~1! In the case~0!, ~1!, or ~2!, is the frequency system$Y(a,a;nx)% a basis ofLodd

2 @2p,
1p#?

~2! Except for the case~0!, ~1!, and ~2!, is the frequency system$Y(a,a;nx)% a complete
system inLodd

2 @2p,1p#?
By Proposition 12, the sawtooth waveYIsa(x) and the odd square wavesYsq(x) are related by

YIsa~x!5Ysq~x!1
1

2
Ysq~2x!1

1

4
Ysq~4x!1¯1

1

2m Ysq~2m!1..., ~107!

and

Ysq~x!5YIsa~x!2 1
2 YIsa~2x!. ~108!

V. AN UNCONDITIONAL BASIS IN L odd
2

†2p,1p‡

We shall discuss what properties a function need possess so that its frequency syste
unconditional basis ofLodd

2 @2p,1p#.
Definition: A function setB is defined by

FIG. 2. The odd and even square waves,p/4 three-valued functions, andp/6 three-valued functions.
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B5H Y~x!: Y~x!5 (
n51

`

B~n!sinnxwhere B~n! satisfies (
n51

`

uB~n!u,`, (
n51

`

uB21~n!u,`J .

Obviously,B is a subset ofW.
Proposition 15:If Y(x)PB, then

~1! the series

sinx5 (
n51

`

B21~n!Y~nx! ~109!

converges absolutely and uniformly in@2p,p#;
~2! the frequency system$Y(nx)% is an unconditional basis ofLodd

2 @2p,1p#.
Proof:

~1! In fact we have

(
n51

`

B21~n!Y~nx! ~110!

5 (
n51

`

B21~n! (
m51

`

B~m!sin~mnx! ~111!

5(
l 51

`

(
mn5 l

B21~n!B~m!sin lx ~112!

5sinx. ~113!

Since

(
n51

`

uB21~n!u (
m51

`

uB~m!sin~mnx!u< (
n51

`

uB21~n!u (
m51

`

uB~m!u,`,

by Weierstrass M-test, we obtain that the series~109! converges absolutely and uniformly i
@2p,p#.

~2! Suppose thatc(x)PLodd
2 @2p,1p# is an arbitrary function and thatb(n) denotes its

Fourier coefficients. In fact, we have

c~x!5 (
n51

`

b~n!sinnx ~114!

5 (
n51

`

b~n!(
l 51

`

B21~ l !Y~nlx! ~115!

5 (
n51

` S (
dun

b~d!B21S n

dD DY~nx! ~116!

5 (
n51

`

D~n!Y~nx!, ~117!

where
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D~n!5(
dun

b~d!B21S n

dD5B21* b~n!. ~118!

From~115! to ~116!, the summation orders were changed. But this does not matter becau
the following series

(
n51

`

b~n!(
l 51

`

B21~ l !Y~nlx!5 (
n51

`

b~n!(
l 51

`

B21~ l ! (
m51

`

B~m!sin~nlmx!

5 (
k51

` S (
nlm5k

b~n!B21~ l !B~m! D sin~kx!

are unconditionally convergent inL2@2p,p#, or one can say, they have sums independen
order. The reason for the unconditional convergence is that the series

(
k51

` S (
nlm5k

ub~n!B21~ l !B~m!u D sin~kx! ~119!

is convergent, the norm of which is

I (
k51

` S (
nlm5k

ub~n!B21~ l !B~m!u D sin~kx!I ~120!

5I (
m51

`

uB~m!u(
l 51

`

uB21~ l !u (
n51

`

ub~n!usin~nlmx!I ~121!

< (
m51

`

uB~m!u(
l 51

`

uB21~ l !u I (
n51

`

ub~n!usin~nlmx!I ~122!

5 (
m51

`

uB~m!u(
l 51

`

uB21~ l !uAp (
n51

`

b2~n! ~123!

,`. ~124!

We can obtain the uniqueness of the series~117! by the consequence of Proposition 1.
Therefore$Y(nx)% is an unconditional basis ofL2@2p,p#.
This completes the proof. h

Example:The function

Y~x!5sinx2
1

22 sin 2x1
1

32 sin 3x1¯1
~21!n11

n2 sinnx1..., ~125!

is an element ofB, sinceB(n) satisfy that

B~1!51, (
n51

`

uB~n!u5
p2

6
, (

n51

`

uB21~n!u5
18

p2 . ~126!

Definition: The function setYa is defined by
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Ya5H Y~x!:Y~x!5 (
n51

`

B~n!sinnx,

where B~n! is absolutely summable and completely multiplicativeJ.
If Y(x)PYa , one says thatY(x) is an odd function with absolutely summable and complet
multiplicative Fourier coefficients, or an odd WASCMFC function.

Here the term thatB(n) is absolutely summable means that

(
n51

`

uB~n!u,`.

Proposition 16: Ya is a subset ofB, i.e., Ya,B.
Proof: If B(n) is completely multiplicative, we have

(
n51

`

uB21~n!u5 (
n51

`

um~n!B~n!u< (
n51

`

uB~n!u,`. ~127!

Additionally, we haveYa,Y.
Example:Trapezoidal wave. The trapezoidal waveYtra(a,a;x) is a function of the period 2p

~Fig. 1!, the value in one period of which is given by

Ytra~a,a;x!55
ax/a for2a<x<a
a for a<x<p2a
2a for2p1a<x<2a
a~p2x!/a for p2a<x<p
2a~p1x!/a for2p<x<2p1a,

~128!

where

0,a<p/2,a.0. ~129!

Its Fourier series is3

Ytra~a,a;x!5
4a

pa S sina sinx1
1

32 sin 3a sin 3x1
1

52 sin 5a sin 5x1¯ D5 (
n51

`

B~n!sinnx,

where

B~n!5H 4a

pa

1

n2 sinna, n51,3,5,...

0, n52,4,6,... .

~130!

Proposition 17:The functionYtra(a,a;x) is an odd WASCMFC function if and only if

~0! a5
p

2
, a5

p2

8
, ~131!

~1! a5
p

4
, a5

&p2

16
, ~132!

or
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~2! a5
p

3
, a5

)p2

18
. ~133!

Proof: This proof is similar to that of Proposition~14!. h

For convenience, we call the three functions

YtraS p

2
,
p2

8
;xD5Ytri~x!, ~134!

YtraS p

4
,
&p2

16
;xD5Yp/4tra~x!, ~135!

YtraS p

3
,
)p2

18
;xD5Yp/3tra~x!, ~136!

odd triangular wave,p/4 trapezoidal wave, andp/3 trapezoidal wave, respectively, which a
common in electronics. See Fig. 3. By the way, in Fig. 3 the graphs of six functions are arr
in the following order:

S Ytri~x! Xtri~x!

Yp/4tra~x! Xp/4tra~x!

Yp/3tra~x! Xp/3tra~x!
D .

Proposition 18:If the Fourier coefficientsB(n) of Y(x)PLodd
2 @2p,1p# satisfy that

B~1!51, (
n52

`

uB~n!u,1, ~137!

thenY(x)PB.
Proof: In fact we have

FIG. 3. The odd and even triangular waves,p/4 trapezoidal waves, andp/3 trapezoidal waves.
                                                                                                                



d

3674 J. Math. Phys., Vol. 40, No. 7, July 1999 Yuchuan Wei

                    
S (
n51

`

B~n!D 21

5S 11 (
n52

`

B~n!D 21

511~21! (
n52

`

B~n!1¯1~21!mS (
n52

`

B~n!D m

1¯5 (
n51

`

B21~n!.

Therefore we obtain that

(
n51

`

uB21~n!u<11 (
n52

`

uB~n!u1¯1S (
n52

`

uB~n!u D m

1¯5
1

12(n52
` uB~n!u

,`.

This completes the proof. h

Proposition 19:For p/2>a.arcsin(p2/821), the frequency system$Ytra(a,a;nx)% is an
unconditional basis ofLodd

2 @2p,1p#.
Proof: It does not matter taking

a5
p

4

a

sina
. ~138!

The Fourier coefficients ofYtra(a,(p/4)a/sina;x) is

YtraS a,
p

4

a

sina
;xD5sinx1

1

32

sin 3a

sina
sin 3x1

1

52

sin 5a

sina
sin 5x1¯ . ~139!

5 (
n51

`

B~n!sinnx. ~140!

Obviously we haveB(1)51. Also we have

(
n52

`

uB~n!u5
1

sina S usin 3au
32 1S usin 5au

52 D1¯ D<
1

sina S 1

32 1
1

52 1¯ D5
1

sina S p2

8
21D,1.

By Proposition~18!, we obtain this proposition. Here we have

arcsinS p2

8
21D8arcsin~0.233 70!813°318. ~141!

VI. A COMBINATIVE FREQUENCY SYSTEM IN L 2
†2p,p‡

Since the case of the even function subspaceLeven
2 @2p,p# is similar to the case of the od

function subspaceLodd
2 @2p,1p#, let us return directly to the whole spaceL2@2p,p#, and draw

our general conclusions.
Suppose that

X~x!5 (
n51

`

A~n!cosnx ~142!

is a given function inLeven
2 @2p,1p#, and

Y~x!5 (
n51

`

B~n!sinnx ~143!

is a given function inLodd
2 @2p,1p#.
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Generally, if the frequency system

Y~x!,Y~2x!,Y~3x!,...,Y~nx!,... ~144!

is a complete system~an unconditional basis! in Lodd
2 @2p,1p#, and the frequency system

X~x!,X~2x!,X~3x!,...,X~nx!,... ~145!

is a complete system~an unconditional basis! in Leven
2 @2p,1p# as well, then the combinative

frequency system

1,X~x!,Y~x!,X~2x!,Y~2x!,...,X~nx!,Y~nx!,... ~146!

is a complete system~an unconditional basis! in the whole spaceL2@2p,p#.
If the combinative frequency system~146! is a complete system inL2@2p,p#, then its

orthonormalized system is an orthonormal basis ofL2@2p,p#, and any functionf (x)PL2

@2p,p# can be approximated by a linear combination of finite functions in~146! with an arbitrary
mean-square error.

If the combinative frequency system~146! is an unconditional basis, then any functionf (x)
PL2@2p,p# can be expressed as a combinative frequency series based onX(x) andY(x):

f ~x!5C01 (
n51

`

C~n!X~nx!1D~n!Y~nx!, ~147!

where the coefficientsC0 , C(n), andD(n) can be determined by

C05E
2p

p

f ~x!dx, ~148!

C~n!5E
2p

p

f ~x!hn~x!dx, ~149!

D~n!5E
2p

p

f ~x!gn~x!dx. ~150!

Here

hn~x!5(
dun

A21S n

dD cosdx, ~151!

gn~x!5(
dun

B21S n

dD sindx ~152!

are the biorthogonal functions ofX(nx) andY(nx), respectively.
Speaking concretely, the complete combinative frequency systems of practical importan

~1! the square wave system2

1,Xsq~x!,Ysq~x!,Xsq~2x!,Ysq~2x!,...,Xsq~nx!,Ysq~nx!,..., ~153!

~2! the p/4 three-valued function system

1,Xp/4~x!,Yp/4~x!,Xp/4~2x!,Yp/4~2x!,...,Xp/4~nx!,Yp/4~nx!,..., ~154!

~3! the p/6 three-valued function system
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1,Xp/6~x!,Yp/6~x!,Xp/6~2x!,Yp/6~2x!,...,Xp/6~nx!,Yp/6~nx!,..., ~155!

and so on. Here the functions

Xsq~x!5YsqS x1
p

2 D , ~156!

Xp/4~x!5Yp/4S x1
p

2 D , ~157!

Xp/6~x!5Yp/6S x1
p

2 D , ~158!

are called even square wave,p/4 three-valued function,p/6 three-valued function, respectively
See Fig. 2.

The unconditional bases of the practical importance are
~1! the triangular wave basis

1,Xtri~x!,Ytri~x!,Xtri~2x!,Ytri~2x!,...,Xtri~nx!,Ytri~nx!,..., ~159!

~2! the p/4 trapezoidal wave basis

1,Xp/4tra~x!,Yp/4tra~x!,Xp/4tra~2x!,Yp/4tra~2x!,...,Xp/4tra~nx!,Yp/4tra~nx!,..., ~160!

~3! the p/3 trapezoidal wave basis

1,Xp/3tra~x!,Yp/3tra~x!,Xp/3tra~2x!,Yp/3tra~2x!,...,Xp/3tra~nx!,Yp/3tra~nx!,..., ~161!

and so on.
Here the functions

Xtri~x!5YtriS x1
p

2 D , ~162!

Xp/4tra~x!5Yp/4traS x1
p

2 D , ~163!

Xp/3tra~x!5Yp/3traS x1
p

2 D , ~164!

are called even triangular wave,p/4 trapezoidal wave, andp/3 trapezoidal wave. See Fig. 3. I
fact, for a.13°318, a general trapezoidal wave system

1,Xtra~a,a;x!,Ytra~a,a;x!,Xtra~a,a;2x!,Ytra~a,a;2x!,...Xtra~a,a;nx!,Ytra~a,a;nx!,...
~165!

is an unconditional basis ofL2@2p,p#, where the function

Xtra~a,a;x!5YtraS a,a;x1
p

2 D ~166!

is called even trapezoidal wave.
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VII. A FREQUENCY TRANSFORMATION IN L 2
„R…

In this section, we shall introduce inL2(R) the frequency transformation based on gene
periodic functions, which is a generalization of Fourier transformation based on sine–c
functions.

L2(2`,1`) or L2(R) denotes the space of quadratically integrable functions onR5(2`,
1`). It is well known thatL2(R) can be decomposed into an even function subspaceLeven

2 (R)
and an odd function subspaceLodd

2 (R):

L2~R!5Leven
2 ~R! % Lodd

2 ~R!. ~167!

By Plancherel’s theory,4 Fourier transformationF and its inverse transformationF21 are two
bounded linear operators fromL2(R) to itself, i.e.,FPB(L2(R)), F21PB(L2(R)). B(L2(R))
denotes the Banach space of all the bounded linear operators fromL2(R) to itself.

That is to say, for any two functionsf (x), f̂ (v)PL2(R), we have

f̂ ~v!5~Ff !~v!5
1

A2p
E

2`

1`

f ~x!e2 ivx dx ~168!

⇔

f ~x!5~F21 f̂ !~x!5
1

A2p
E

2`

1`

f̂ ~v!eivx dv. ~169!

Strictly speaking, when the integrations in~168! and~169! do not exist,*2`
1` should be considered

to be limN→` *2N
N , where the limit is in the sence of the norm inL2(R), see Ref. 4.

In the even function subspaceLeven
2 (R), Fourier transformationF and its inversionF21 be-

come Fourier cosine transformationFcos and its inversionFcos
21. That is to say, for any two func

tions f even(x), a(v)PLeven
2 (R), we have

a~v!5~Fcosf even!~v!5
1

A2p
E

2`

1`

f even~x!cos~vx!dx ~170!

⇔

f even~x!5~Fcos
21a!~x!5

1

A2p
E

2`

1`

a~v!cos~vx!dv. ~171!

In the odd function subspaceLodd
2 (R), there exist similar Fourier sine transformation and

inversion.
Next let us introduce the transformation based on general periodic functions step by s
In this section we suppose thatX(x)PL2@2p,p# and Y(x)PL2@2p,p# are a given even

function and a given odd function with period 2p. Their Fourier series are

X~x!5 (
n51

`

A~n!cosnx, Y~x!5 (
n51

`

B~n!sinnx.

Their Fourier coefficients satisfy
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(
n51

`

uA~n!u
1

An
,`, (

n51

`

uA21~n!u
1

An
,`,

(
n51

`

uB~n!u
1

An
,`, (

n51

`

uB21~n!u
1

An
,`.

Definition: The functionsX̃(x) and Ỹ(x) are called the dual functions ofX(x) and Y(x),
respectively, which are defined on~2`,`! by

X̃~x!5
1

2p (
n51

`

A21~n!
1

n
cosS x

nD , ~172!

Ỹ~x!5
1

2p (
n51

`

B21~n!
1

n
sinS x

nD . ~173!

Proposition 20:The functionsX̃(x) and Ỹ(x) are bounded and infinitely differentiable i
~2`,1`!.

Proof: We have

uX̃~x!u<
1

2p (
n51

` UA21~n!
1

n
cosS x

nD U ~174!

<
1

2p (
n51

`

uA21~n!u
1

n
. ~175!

Therefore the functionX̃(x) is bounded. By Weierstrass M-test, the series~172! converges abso
lutely and uniformly in~2`,`!. By properties of a uniformly convergent series, the functionX̃(x)
is infinitely differentiable.

The case of the functionỸ(x) is similar.
Definition: The operatorT(n):L2(R)→L2(R) is defined by

T~n! f ~x!5 f S x

nD , ~176!

where f (x)PL2(R) andn is any positive integer.
Proposition 21:

~1! The operatorT(n) is a bounded linear operator, i.e.,T(n)PB(L2(R)), and its normiT(n)i
5An.
~2! For any two positive integersm andn, we have

T~m!T~n!5T~mn!, ~177!

that is to sayT(n) is completely multiplicative.
Proof: This proposition is clear from the definition. h

Proposition 22:The operator series

S5 (
n51

`

A~n!
1

n
T~n!, ~178!

S215 (
n51

`

A21~n!
1

n
T~n! ~179!

converge absolutely in the sense of the norm inB(L2(R)), and are mutually inverse.
Proof: Because
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(
n51

` IA~n!
1

n
T~n!I< (

n51

`

uA~n!u
1

n
iT~n!i5 (

n51

`

uA~n!u
1

An
,`, ~180!

(
n51

` IA21~n!
1

n
T~n!I< (

n51

`

uA21~n!u
1

n
iT~n!i5 (

n51

`

uA21~n!u
1

An
,`, ~181!

the two operator series converge absolutely in the sense of the norm inB(L2(R). ThusS andS21

are two bounded linear operators defined onL2(R), i.e., SPB(L2(R)), S21PB(L2(R)).
Furthermore, we have

SS215S21S ~182!

5 (
n51

`

A~n!
1

n
T~n! (

m51

`

A21~m!
1

m
T~m! ~183!

5 (
k51

`
1

k
T~k!(

nuk
A~n!A21S k

nD ~184!

5T~1!5I , ~185!

where I is the identical operator. In other words, the operatorsS and S21 are mutually
inverse. h

Proposition 23:For any two functionsf even(x), C(v)PLeven
2 (R), we have

C~v!5~Wevenf even!~v!5E
2`

1`

f even~x!X̃~vx!dx ~186!

⇔

f even~x!5~Weven
21 C!~x!5E

2`

1`

C~v!X~vx!dv. ~187!

Here Weven:Leven
2 (R)→Leven

2 (R) is called the transformation based on the even period func
X(x), andWeven

21 :Leven
2 (R)→Leven

2 (R) is its inverse.
Proof: Let us consider the case⇒.
First we have

C~v!5~Wevenf even!~v!

5E
2`

1`

f even~x!X̃~vx!dx

5
1

2p E
2`

1`

f even~x! (
n51

`

A21~n!
1

n
cosS xv

n Ddx,

5
1

2p (
n51

`

A21~n!
1

n E2`

1`

f even~x!cosS xv

n Ddx

5
1

2p (
n51

`

A21~n!
1

n
TnE

2`

1`

f even~x!cos~xv!dx

5
1

A2p
(
n51

`

A21~n!
1

n
TnFcosf even~x!5

1

A2p
S21Fcosf even~x!.
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In one word, inLeven
2 (R) the operatorWeven can be decomposed into two operators:

Weven5
1

A2p
S21Fcos.

Since both operatorsS21 andFcos have inverse operators, the operatorWevenhas inverse operato
as well:

Weven
21 5A2pFcos

21S. ~188!

Since all the operatorsS, S21, Fcos, andFcos
21 are bounded linear operators, so areWevenandWeven

21 ,
i.e.,

Weven,Weven
21 PB~Leven

2 ~R!!. ~189!

Therefore we have

f even~x!5Weven
21 C~v!

5A2pFcos
21SC~v!

5A2pFcos
21(

n51

`

A~n!
1

n
T~n!C~v!

5A2pFcos
21(

n51

`

A~n!
1

n
CS v

n D
5E

2`

`

cos~vx! (
n51

`

A~n!
1

n
CS v

n Ddv

5 (
n51

`

A~n!
1

n E2`

`

cos~vx!CS v

n Ddv

5 (
n51

`

A~n!E
2`

`

cos~nvx!C~v!dv

5E
2`

`

C~v! (
n51

`

A~n!cos~nvx!dv

5E
2`

`

C~v!X~vx!dv.

The case⇐ is similar. This completes the proof.
Similarly, we have the following two propositions.
Proposition 24:The operator series

R5 (
n51

`

B~n!
1

n
T~n!, ~190!

R215 (
n51

`

B21~n!
1

n
T~n! ~191!

converge absolutely in the sense of the norm inB(L2(R)), and are mutually inverse.
Proposition 25:For any two functionsf odd(x), D(v)PLodd

2 (R), we have
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D~v!5~Woddf odd!~v!5E
2`

1`

f odd~x!Ỹ~vx!dx ~192!

⇔

f odd~x!5~Wodd
21D !~x!5E

2`

1`

D~v!Y~vx!dv. ~193!

whereWodd:Lodd
2 (R)→Lodd

2 (R) denotes the transformation based on odd periodic functionY(x),
andWodd

21:Lodd
2 (R)→Lodd

2 (R) denotes its inverse.
Proposition 26:For any functionf (x)PL2(2`,1`), we have

f ~x!5E
2`

`

C~v!X~vx!1D~v!Y~vx!dv, ~194!

where

C~v!5E
2`

`

f ~x!X̃~vx!dx, ~195!

D~v!5E
2`

`

f ~x!Ỹ~vx!dx. ~196!

Proof: Combining Propositions 23 and 25, we obtain this one easily.
Definition: The two functionsW(x) andW̃(x) are defined on~2`,1`! by

W~x!5X~x!1Y~x!, ~197!

W̃~x!5X̃~x!1Ỹ~x!, ~198!

Proposition 27:For any two functionsf (x), f 8(v)PL2(2`,1`), we have

f 8~v!5E
2`

1`

f ~x!W̃~vx!dx ~199!

⇔

f ~x!5E
2`

1`

f 8~v!W~vx!dv. ~200!

Proof: Combining Propositions 23 and 25, we obtain this one easily. By the way, this t
formation is a generalization of Hartley transformation.5

Definition: The two complex-valued functionsZ(x) and Z̃(x) are defined on~2`,1`! by

Z~x!5X~x!1 iY~x!, ~201!

Z̃~x!5X̃2 iỸ. ~202!

Proposition 28:For any two functionsf (x), f̄ (v)PL2(2`,1`), we have
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f̄ ~v!5~W f !~v!5E
2`

1`

f ~x!Z̃~vx!dx ~203!

⇔

f ~x!5~W21 f̄ !~x!5E
2`

1`

f̄ ~v!Z~vx!dv. ~204!

W:L2(R)→L2(R) is called the transformation based on the periodic functionsX(x) and Y(x),
andW21:L2(R)→L2(R) is its inversion.

Proof: Combining Propositions 23 and 25, we obtain this one easily.
The relation between the transform based onX(x) and Y(x) and Fourier transform of the

same functionf (x)PL2(R) is

f̄ 5C~v!2 iD ~v! ~205!

5
1

A2p
S21a~v!2 iR21b~v! ~206!

5
1

A2p
(
n51

` FA~n!21
1

n
aS v

n D2 iB~n!21
1

n
bS v

n D G , ~207!

where the even functiona(v) and the odd functionb(v) are defined byf (x)’s Fourier transform

f̂ ~v!5a~v!2 ib~v!. ~208!

The dual functions of square waves, triangular waves, andp/4 trapezoidal waves are shown
Figs. 4, 5, 6, respectively.

VIII. CONCLUSIONS AND QUESTIONS

From the above discussion, under certain conditions we conclude that a function with p
2p may be expressed as a frequency series of general periodic functions, and that a nonp

FIG. 4. The dual functions of square waves,X̃sq(x) and Ỹsq(x)(---).
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function can be expressed as a frequency integral of general periodic functions. This is a n
practical generalization of classical Fourier analysis based on sine–cosine functions.6 In electron-
ics, we can say in many cases that a signal can be considered as a superposition of easily g
functions with different frequencies. The results in this paper make it possible to represent a
by use of square waves, triangular waves, and trapezoidal waves. This forms a theoretica
dation for the technique of easily generated function analysis in modern electronics.

However, regarding the frequency analysis based on general periodic functions, there
of work to do.7 The central questions are:
~1! What is the sufficient and necessary condition for a combinative frequency sy
1,$X(nx),Y(nx)%n51

` to be
~1! a complete system;
~2! a basis;
~3! an unconditional basis;
in L2@2p,p#?
~2! What is the sufficient and necessary condition for a function inL2(R) to be expressed as
frequency integral~see~194!!?

FIG. 5. The dual functions of triangular waves,X̃tri(x) and Ỹtri(x)(---).

FIG. 6. The dual functions ofp/4 trapezoidal waves,X̃p/4tra(x) and Ỹp/4tra(x)(---).
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Furthermore what aboutLp@2p,1p# andLp(R) ~such asp51! instead ofL2@2p,1p# and
L2(R)?

Obviously these questions are quite challenging ones for mathematicians.
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Comment on ‘‘Generalized W` symmetry algebra
of the conditionally integrable nonlinear evolution
equation’’ †J. Math. Phys. 36, 3492 „1995…‡

Wen-Xiu Maa)

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong,
People’s Republic of China

~Received 5 August 1997; accepted for publication 15 December 1998!

Two remarks on an inverse operator of a differential operator]x and on symmetries
of two kinds of differential equationsD(u)50 and]xD(u)50 are pointed out and
then a few of remarks about the paper ‘‘GeneralizedW` symmetry algebra of the
conditionally integrable nonlinear evolution equation’’@Y. Lou and J. P. Weng, J.
Math. Phys.36, 3492 ~1995!# are presented. It is in particular shown that if we
consider]x

21 to be a linear and right inverse operator of]x , the vector fieldssn
u( f )

proposed in the above paper are not certain to be symmetries of the Jimbo–Miwa–
Kadomtsev–Petviashvili system under consideration. Moreover the commutators of
a generalizedW` algebra established among these vector fields do not always hold.
Therefore the vector fieldssn

u( f ) do not provide an example of application of the
formal series ansatz in the above paper. ©1999 American Institute of Physics.
@S0022-2488~99!03606-3#

I. INTRODUCTION

It is interesting to construct a kind of symmetries involving an arbitrary function of cer
independent variable for nonlinear integrable equations. They often constitute a class of g
ized W` algebra

@sm
u ~ f 1!,sn

u~ f 2!#5asm1n2 l
u ~~m1b! f 1f 2t2~n1b! f 1t f 2!, ~1!

where l is a natural number,a, b are two arbitrary constants, and we assume that an invo
specific independent variable is the time variablet. Some typical examples have been consider
including the Kadomtsev–Petviashvili equation,1 the Davey–Stewartson equation,2 the Hirota’s
bilinear equations,3 and three-wave resonant interaction system,4 etc.

Recently Lou and Weng considered the above-mentioned generalizedW` symmetry algebras
for conditionally integrable nonlinear equations.5 They took the Jimbo–Miwa–Kadomtsev
Petviashvili ~JMKP! system of equations~see Ref. 6 for more information about the JMK
system! as an illustrative example. This system is a combination of the so-called Jimbo–
equation and the Kadomtsev–Petviashvili equation:

K0~u!5uxxxy13~uuy!x13uxx]x
21uy13uxuy12uyt23uxz50,

~2!
K1~u!5~uxxx16uux!x13uyy24uxt50.

For the JMKP system~2!, Lou and Weng5 proposed a hierarchy of symmetriessn
u( f ) involving an

arbitrary functionf 5 f (z) defined by:

sn
u~ f !5]xsn

w~ f !uu5wx
, n>0, ~3!

a!Electronic mail: mawx@math.cityu.edu.hk
36850022-2488/99/40(7)/3685/6/$15.00 © 1999 American Institute of Physics
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sn
w~ f !5

An

n! (
k50

n11

f ~n112k!~z!~ 1
3 ]x

2]y1]x
21wx]x]y1]x

21wxy]x1]x
21wxx]y

1]x
21wy]x

21 2
3 ]x

21]y] t2]z!
k~ytn!uH050,H150 , n>0, ~4!

whereAn are constants andf ( i )(z)5(]z)
i f (z), i>0, and they pointed out that these symmetr

constituted a generalizedW` algebra:

@sm
u ~ f 1!,sn

u~ f 2!#5 1
4sm1n23

u ~~m11! f 1 ḟ 22~n11! f 2 ḟ 1!, ~5!

where ḟ i5]zf i , i 51,2. The vector fieldssn
w( f ) defined by~4! are also regarded as symmetries

the following potential JMKP system

H05H0~w!5wxz2
1
3wxxxy2wxywx2wywxx2

2
3wyt50,

~6!
H15H1~w!5wxxxx16wxwxx13wyy24wxt50,

which is a starting point to construct the symmetriessn
u( f ) of the JMKP system~2!.

In this comment, we intend to provide two remarks on an inverse operator of a differe
operator]x and on relations between symmetries of two kinds of differential equationsD(u)
50 and]xD(u)50, and then a couple of remarks about Lou and Weng’s work in Ref. 5
shown that if we consider the inverse operator]x

21 to be a linear operator and a right inver
operator of]x , the vector fieldssn

u( f ) and sn
w( f ) defined by~3! and ~4! are not certain to be

symmetries of the JMKP system~2! and the potential JMKP system~6!, respectively, whateve
boundary condition is imposed on the potentialu. Moreover it is verified that the symmetr
algebra defined by~5! does not always hold, and that a symmetry relation

su~ f !5]xs
w~ f !uu5wx

~7!

is not always correct between the systems~2! and~6!, although the system~6! may be generated
from the system~2! after settingu5wx . Only additional natural conditions]y]x

215]x
21]y ,

] t]x
215]x

21] t and]z]x
215]x

21]z are needed in proving our above statements. Therefore the v
fields sn

u( f ) do not provide an example of application of the formal series ansatz in Ref. 5

II. TWO OBSERVATIONS

Observation 1:Let us first make a remark on definitions of an inverse operator of]x , where
x is a coordinate ofRn. Since we have a nonempty kernel of]x , we cannot make any definition
of an inverse operator]x

21 such that the inverse operator]x
21 mapsC`(Rn) into C`(Rn) and

satisfies the conditions of]x
21]x5]x]x

2151, the most natural left and right inverse conditions
an inverse operator]x

21. However we can take a quotient space of the spaceC`(Rn) under
ker(]x) as a new domain of definition of]x . If we view the differential operator]x as a mapping
from the quotient space to the same quotient space,]x :@ f #°@]xf #, where

@ f #5$gPC`~Rn!u]xg5]xf %,

the operator]x is still not injective and thus an inverse operator of]x will not be well defined over
the whole quotient space. In order to obtain one-to-one correspondence of]x , we can make the
following:

]x :C`~Rn!/ker~]x!→C`~Rn!, @ f #°]xf ; ~8!
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]x
21:C`~Rn!→C`~Rn!/ker~]x!, f °F E

0

x

f ~¯ ,x8, ¯ !dx8G . ~9!

This definition satisfies the left and right inverse conditions:]x
21]x5]x]x

2151. But over the
quotient space, we cannot keep the same differential operation]x : ]x( f g)5]x( f )g1 f ]x(g). This
is to say, the equality

]x~@ f #@g# !5~]xf !@g#1@ f #~]xg!5]x@h#,

where @ f #@g#5@h# is a multiplication onC`(Rn)/ker(]x), will make no sense. There is a
unavoidable problem: how to define@ f #@g#5@h#, f @g# and@ f #g such that (]xf )@g#1@ f #(]xg) is
the same function as]xh(5]x@h#).

Nevertheless we can define a left and right inverse operator of]x from some subspace o
C`(Rn) to the same subspace, or a right inverse operator of]x from the whole space of smoot
functions to the same whole space of smooth functions, and the differential operation]x does not
need to be changed over function spaces. In Sec. III, we use the latter definition to explain
problems because the former definition is not suitable for our discussion.

Observation 2:Let us secondly make a remark on symmetries of two kinds of system
differential equations. Differentiating a given system of differential equationsD(u,ux ,...)50
with respect tox leads to the system of differential equations]xD(u,ux ,...)50. We call it a
derivative system of the original system. For their symmetry algebras, we can have the foll
result.

Two symmetry algebras of the systems of differential equationsD(u,ux ,...)50 and
]xD(u,ux ,¯)50 are not certain to be the same.

Let us take a scalar equationut5ux as an illustrative example to show the above statem
This moment, the derivative equation reads asutx5uxx . We choose a symmetrys(u)5u2 of the
equationut5ux . A direct computation gives rise to

s tx2sxx5~u2! tx2~u2!xx52u~utx2uxx!12ux~ut2ux!.

This does not equal to zero if we choose a solutionu(x,t)5ex1t1et to the derivative equation
utx5uxx . Thereforeu2 is not a symmetry of the derivative equationutx5uxx .

On the other hand, we choose a symmetrys(u)5ux1et of the derivative equationutx

5uxx . But thes(u)5ux1et does not satisfy the linearized equation of the equationut5ux and
thus it is not a symmetry of the equationut5ux . Therefore it follows that the above statement
true.

III. COUNTEREXAMPLES

Let us now turn to discussion on the results in Lou and Weng’s work of Ref. 5. We claim
conditions on]x

21:

]x
21:C`~R4!→C`~R4! being linear, ]x]x

2151,
~10!

]y]x
215]x

21]y ,] t]x
215]x

21] t, ]z]x
215]x

21]z ,

which may be achieved, for example, by defining

~]x
21f !~x,y,t,z!5E

0

x

f ~x8,y,t,z!dx8. ~11!

Note that we have]x
21050, since]x

21 is a linear mapping.
What we would like to show now is that under the definition of~10! for ]x

21, both the vector
fields given in Ref. 5,
                                                                                                                



t

r
n

mal

3688 J. Math. Phys., Vol. 40, No. 7, July 1999 Wen-Xiu Ma

                    
s0
u~ f !5 f ux with ḟ 5]zf Þ0, ~12!

su
4~1!52uxxt14]x

21utt13uxyy13]x
21uyz16ux]x

21ut16uut

112uy]x
21uy13ux]x

22uyy13u]x
21uyy , ~13!

are not symmetries of the JMKP system~2!. Actually from the JMKP system~2! itself, we easily
find its linearized system:

K08~u!@s#ªsxxxy13~usy1suy!x13sxx]x
21uy13uxx]x

21sy13sxuy13uxsy12syt23sxz50,
~14!

K18~u!@s#ª~sxxx16usx16sux!x13syy24sxt50.

The substitution of the vector field~12! into the expression ofK08(u)@s# in the first equation of
~14! leads to

K08~u!@s0
u~ f !#5 f ]xK0~u!13 f uxx]x

21uxy23 f uxxuy23 ḟ uxx . ~15!

Choose a solutionv(x,t)52 sech2(x1t) to the Korteweg–de Vries equation

v t5
1
4vxxx1

6
4vvx . ~16!

This moment,vxxÞ0 and vxx has and only has two zero points. The functionu(x,y,t,z)
5v(x,t) is a solution to the JMKP system~2!, and hence from~15! we have

~K08~u!@s0
u~ f !# !uu5v523 ḟ vxxÞ0, ~17!

noticing that]x
21050. This implies thats0

u( f ) is not a symmetry whileḟ Þ0.
Let us now choose a solutionu(x,y,t,z)5g(t,z) whereg is an arbitrary function satisfying

ġtt5]zgttÞ0. This moment, we have

~K08~u!@s4
u~1!# !uu5g5~K08~u!@4]x

21gtt16ggt# !uu5g

5~2]y] t23]x]z!~4]x
21gtt16ggt!

58]y] t]x
21gtt212ġtt

58] t]x
21]ygtt212ġtt5212ġttÞ0, ~18!

which shows thats4
u(1) is not a symmetry of the JMKP system~2!, either.

Moreover, we can show that the vector field given in Ref. 5,

s4
w~1!52wxxt14]x

21wtt13wxyy13]x
21wyz16wxwt16wy

213wx]x
21wyy ,

is itself not a symmetry of the potential JMKP system~6! at all. This is obvious by observing tha

s4
w~1!uw5g~ t,z!54]x

21gtt , ~H08~w!@s4
w~1!# !uw5g~ t,z!54ġtt , ~19!

where an arbitrary functiong5g(t,z) is always a solution to the potential JMKP system~6!. It
also implies that the formal series does not truncate in this case.

We point out that the explicit expressions forsn
u( f ) andsn

w( f ) for 0<n<4 in Ref. 5 may
not be generated from the general formulas~3! and~4!, if we view the involved inverse operato
]x

21 as a normal inverse operator, for example, as in~11!. Nevertheless they satisfy the recursio
relation@see~11! in Ref. 5# in the formal series ansatz, which is one of two conditions for a for
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series to be a symmetry~the other is that the series must truncate!. This implies that they can be
generated from the formulas~3! and ~4! but we have to choose a special integration constant
]x

21 each time.
Next, we want to verify that the commutator relation~5! is not always correct form1n>3,

besides its being incomplete due to making no sense form1n,3. For example, we can work ou

@s0
u~ f !,s4

u~1!#uu5g~ t,z!50 ~20!

and can further find that

@s0
u~ f !,s4

u~1!#Þ 1
4s1

u~25 ḟ !, ~21!

in virtue of the quantities

1
4s1

u~25 ḟ !52 5
4 ḟ uy2 15

16 f̈ ~ tux1 2
3!,

1
4s1

u~25 ḟ !uu5g~ t,z!52 5
8 f̈ ,

where f̈ 5(]z)
2f . Hence two sides of~21! cannot be balanced. This implies that our statemen

true.
In addition, the vector field

s0
w~ f !5 f wx1y ḟ

is always a symmetry of~6! for any f. Therefore we see that the relation~7!, i.e., su( f )
5]xs

w( f )uu5wx
, between symmetries of the JMKP system~2! and the potential JMKP system~6!

is not appropriate. The reason is that the system~6! is generated from the system~2! through not
only a Miura transformationu5wx , but also an integration ofx and an application of the lef
inverse condition]x

21]x51 ~which actually could not be imposed!. Let us now recall the secon
observation in Sec. II and the nonexistence of a left and right inverse linear operator]x

21 on the
whole space of smooth functionsC`(Rn). Therefore we cannot obtain the relationsu( f )
5]xs

w( f )uu5wx
between symmetries of the JMKP system~2! and the potential JMKP system~6!.

What we can get underu5wx is that if sw is a symmetry of the derivative potential JMK
system]xH0(w)50 and]xH1(w)50, whereH0 andH1 are defined by~6!, thensu5swuu5wx

is
a symmetry of the JMKP system~2!. In the work of Ref. 5, the authors mix up two systems of t
potential JMKP system and the derivative potential JMKP system above, which actually
different symmetry algebras in view of the second observation in Sec. II. The similar conf
appeared in the discussion of symmetries of the Kadomtsev–Petviashvili equation in Ref.

IV. DISCUSSIONS

We remark that the JMKP system~2! is not a system of evolution equations with an evoluti
variablez, and so is not the potential JMKP system~6!, either. For an evolution equation or
system of evolution equations:ut5K(x,u), which does not depend explicitly on the evolutio
variablet, a kind of more general symmetry algebras than Virasoro symmetry algebras has
considered in Ref. 8. However it has also been shown9 that any Laurent polynomial time
dependent symmetry ofut5K(x,u) has to be of polynomial time-dependent form. Therefore
ut5K(x,u), there does not exist any symmetry of the following form:

s~ f !5(
i 50

N
]N2 i f ~ t !

]tN2 i Si~x,u!,

wheref is an arbitrary function of the time variable butSi(x,u), 0< i<N, do not depend explic-
itly upon the time variable except the space variables. If we consider at variable-coefficient
system of evolution equations:ut5K(t,x,u), there appears a different situation.10,11For example,
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there exist Laurent polynomial time-dependent symmetries and much higher-degree poly
time-dependent symmetries, even for a system of evolution equations in 111 dimensions.10,11

One might ask whether or not the vector fields defined by~3! and~4! could become symme
tries of the corresponding systems, under other conditions on]x

21. The answer is still no. Actually
our conditions~10! on ]x

21 are the best possible set of conditions which gives a well-defi
inverse operator of]x . If we consider]x

21 to be an indefinite integration operator as in Ref. 5, i
]x

21: f °@*0
x f (...,x8,...)dx8# by using the notation in Sec. II, then we will meet some unsolva

difficulties in keeping reasonable differential operations as specified in Sec. II. But it is ess
to keep differential operations when we make computation about, for example, Lie–Ba¨cklund
symmetries. Therefore strictly speaking, there is no possibility which gives a definition of]x

21

being an indefinite integration operation while discussing symmetries. Nevertheless one
disregard differential operations such as]x( f g)5]x( f )g1 f ]x(g) in order to view]x

21 as an
indefinite integration operation. But the vector fields defined by~3! and ~4! are still not able to
become symmetries of the corresponding systems, because our counterexamples can ho
integration constants are chosen to be zero, one of all choices of integration constants. H
one can even require some special integration constants to be introduced such that the sy
conditions are satisfied. If so, there are at least two problems which cannot be solved. Th
problem is that the vector fields involving]x

21 are not already well defined, since the integrati
constants have not been chosen before checking symmetry conditions. The second problem
the integration constants selected in this way will most likely depend on solutions of the or
systems, because the symmetry conditions always contain solutions. Thus the symmetry
fields themselves will sometimes be determined only after solutions of the original system
given. This causes the symmetry vector fields not to be well defined. For the case of the JMK
the potential JMKP systems, the vector fields defined by~3! and~4! are exactly such examples,
]x

21 is viewed as an indefinite integration operator. There are some other similar situations
the situation of the modified KP equation, which is pointed out in Ref. 12.

In conclusion, what we have pointed out so far is that the vector fields defined by~3! and~4!
cannot always become symmetries of the corresponding systems in any possible sense of]x

21. We
are in doubt that such formal series as defined by~3! and ~4! could become Lie–Ba¨cklund
symmetries~except Lie-point symmetries! of differential equations. At least for evolution equ
tions not explicitly depending on the evolution variable, there must be no such kind of symme
in Lie-point form or Lie–Bäcklund form, involving an arbitrary function of the evolution variab
~see Ref. 9!.
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Response to ‘‘Comment on ‘Generalized W` symmetry
algebra of the conditionally integrable nonlinear
evolution equation’ ’’ †J. Math. Phys. 40, 3685 „1999…‡

Sen-yue Loua)
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Ningbo 315211, People’s Republic of China

Jian-ping Weng
Department of Physics, Lishui Normal College, Lishui 323000,
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~Received 24 October 1998; accepted for publication 15 December 1998!

To verify the correctness of the high order symmetries for the Jimbo–Miwa–
Kadomtsev–Petviashvilli system~JMKP! and the potential JMKP~PJMKP! system
given in our paper@J. Math. Phys.36, 3492–3497~1995!#, Ma’s definition of]x

21

may be used only for the generalnonkernelsolutions of the models. For some types
of special solutions which are the kernels of some differential operators, one has to
use ]x

21 as the indefinite operator and selected the integral functions
appropriately. ©1999 American Institute of Physics.@S0022-2488~99!01207-4#

In Ref. 1, the author tries to solve the]x
21 problem and give some remarks on Lou a

Weng’s paper.2 However, the main results of the paper are not correct or not self-consisten
~i! On one hand, the author claims that it is sufficient to define a right inverse of]x and

H ]x
21:C`~ iR4!→C`~ iR4! being linear, ]x]x

21521,

]y]x
215]x

21]y , ]y]x
215]x

21]y , ]y]x
215]x

21]y ,
~1!

is the only condition on the operator]x
21 and

]x
21050. ~2!

On the other hand, all the results of the paper are illustrated by taking the solutions as some
forms which are the kernels of the differential operators (]x , ]y , ]z and ]j , j5x1t). It is
impossible to obtain these solutions if one uses~2! and~1! only though they are really solutions

~ii ! s4
w(1) ands4

u(1) are really symmetries of the PJMKP and JMKP, respectively. If
uses Ma’s definition of the operator to check the correctness ofs4

w(1) ands4
u(1), onemust take

w andu being generalnonkernelsolutions of the PJMKP and JMKP systems. We do check
conclusion both by hand and by computer algebras. Because it is too long to write the
verification procedures down here, I suggest the readers who are interested in this prob
check the conclusions by using some nontrivial~nonkernel! solutions, say, general multisolito
solutions. The single plane soliton solutions read

w52k1 tanhS k1x1k2y1
1

2

k2~4k1
41k2

2!

k1
2

z1
1

4

4k1
413a2

2

k1
t D ~3!

a!Electronic mail: sylou@public.nbptt.zj.cn
36910022-2488/99/40(7)/3691/2/$15.00 © 1999 American Institute of Physics
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for potential JMKP and

u52k1
2 sech2S k1x1k2y1

1

2

k2~4k1
41k2

2!

k1
2

z1
1

4

4k1
413a2

2

k1
t D ~4!

for JMKP. The correspondings4
w(1) ands4

u(1) read

s4
w~1!5

3

2

16k1
8140k1

4k2
215k2

4

k1
2

sech2S k1x1k2y1
1

2

k2~4k1
41k2

2!

k1
2

z1
1

4

4k1
413a2

2

k1
t D , ~5!

s4
u~1!523

16k1
8140k1

4k2
215k2

4

k1
sech2S k1x1k2y1

1

2

k2~4k1
41k2

2!

k1
2

z1
1

4

4k1
413a2

2

k1
t D

3tanhS k1x1k2y1
1

2

k2~4k1
41k2

2!

k1
2

z1
1

4

4k1
413a2

2

k1
tD . ~6!

The general multisoliton solutions of the models can be found in literature, say, in Ref. 3.
~iii ! The explanation of the observation 2 in Ref. 1 is not correct. It is known that if

equationsF(u)50 andG(v)50 are related by a Ba¨cklund transformationB(u,v)50, then the
symmetries of two equations are related byBu8s

u1Bv8s
v50. The author usesut5ux and v tx

5vxx as a simple illustrative example~the author used the same notation for two equation!. The
solutions of these two equations may be related in two ways.~1! v5u1 f (t) for arbitrary f (t) that
means ifsu is a symmetry ofut5ux then it must also be a symmetry ofv tx5vxx . The author’s
special example issu5u2. So u2 ~but not v2!!) must also be a symmetry ofv tx5vxx . ~2! u
5vx that means ifsv is a symmetry ofv tx5vxx , then su5sx

v must be a symmetry of theu
equation. The author’s confusion comes from his using the same notations ofu andv.

~iv! If one uses the trivial~kernel! solutions as a special examples and the authors’ defini
of ]x , many important traditional conclusions related to symmetries and Ba¨cklund transformations
will be destroyed. Say, in the proof procedures of the hereditary property of the recursion o
tors of ~111!-dimensional integrable models, one has to use the condition,u(x→`,t)50, which
is not valid foru is selected as a special kernel of differential operators.4

In summary, to verify the correctness of the high order symmetries for the JMKP an
PJMKP system Ma’s definition of]x

21 may be used only for the generalnonkernelsolutions of the
models. For some types of special solutions which are the kernels of some differential ope
one has to use]x

21 as an indefinite operator and selected the integral functions appropriatel

1W-x. Ma, ‘‘Comment on ‘GeneralizedW` symmetry algebra of the conditionally integrable nonlinear evolution eq
tion,’ ’’ J. Math. Phys.40, 3685~1999!.

2S-y. Lou and J-p. Weng, ‘‘GeneralizedW` symmetry algebra of the conditionally integrable nonlinear evolution eq
tion,’’ J. Math. Phys.36, 3492~1995!.

3H-y. Ruan and S-y. Lou, ‘‘Higher dimensional dromion structures: Jimbo–Miwa–Kadomtsev–Petviashvili system
Math. Phys.38, 3123~1997!.

4C-h. Gu, B-l. Guo, Y-s. Li, C-w. Cao, C. Tian, G-z. Tu, and M-l. Ge,Soliton Theory and its Application~Zhejiang,
China, 1990!, pp. 216–267.
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Comment on ‘‘Geometric phase, bundle classification, and
group representation’’ †J. Math. Phys. 37, 1218 „1996…‡

H. Azad
Department of Mathematical Sciences, King Fahd University of Petroleum & Minerals,
Dhahran, Saudi Arabia

M. N. Qureshi
Azad Jammu & Kashmir University, Muzaffarabad, Pakistan

M. Ziad
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

~Received 30 April 1998; accepted for publication 11 January 1999!

This note is a comment on the mathematical aspects of the paper by Mostafazadeh
@J. Math. Phys.37, 1218~1996!#. Its aim is to remove some of the ambiguities and
mistakes of the paper by making more transparent the mathematics involved in the
calculation of topological charges. ©1999 American Institute of Physics.
@S0022-2488~99!03406-4#

I. INTRODUCTION

In his paper,1 Mostafazadeh discusses at length the relevance of the Borel–Weil–Bott the
to Berry–Simon theory2 and computations involving Chern classes as well as generators fo
second de Rham cohomology of flag manifolds. However, there are some conceptual error
paper which may be a hindrance to a proper understanding. For example, on p. 1226~line 2! of
Ref. 1, one finds the statement that a flag manifoldK/L of a compact Lie groupK is a submanifold
of K/T, T being a maximal torus ofK, which is not true as both are homogeneous spaces o
same groupK. At the infinitesimal level, i.e., the level of tangent spaces, the above state
holds. However, as a vector space has no topology, one must work directly with the mani
one wants to compute Chern numbers. Also, the Chern number for the determinant bundleCPN

is calculated to be 2 whereas it is (N11). In this note we rectify these mistakes. As the conce
relating to Chern numbers and their actual computations are important for physics, it is de
to explain them in a clearer and more rigorous manner. We do this in Secs. II and III. We r
two key examples in detail; later we give the precise statements in the most general form, om
all proofs, and refer instead to the literature. All of this goes back essentially
Borel–Hirzebruch.3

II. TWO BASIC METHODS FOR OBTAINING GENERATORS OF COHOMOLOGY

The following examples illustrate two basic methods for obtaining cohomology generat
~I! Let M be a complex manifold,$Ui% i PI an open covering ofM and f i :Ui⇒C holomorphic

functions such that on the intersectionUi j 5UiùU j , gi j 5 f i / f j is nonzero. The system of func
tions defines a line bundleL on M,4 namely, we identify (p,z)PUi3C with (q,w)PU j3C if and
only if p5q and w5gji (p)z. The functions$ f i% represent a sections, called the canonica
section, of this bundle.4 A norm on this bundle is given by a family of functions

w i :Ui→R.0

such that onUiùU j , we have

w i /w j5ugji u.
36930022-2488/99/40(7)/3693/4/$15.00 © 1999 American Institute of Physics
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The form

C~L!5
i

2p
]]̄ log @N~s!22#5

i

2p (
a,b

]2

]za] z̄b
@ log N~s!#22dza∧dz̄b

represents the Chern class ofL.
A standard way of obtaining line bundles is by using the functions which define a subma

of codimension 1. For example, consider complex projective spaceP1(C) with homogeneous
coordinates@z0 :z1#. Let U05$@z0 :z1#:z0Þ0%, U15$@z0 :z1#:z1Þ0%. Let p5@0:1#. To the point
p there correspond the functionsf 051 on U0 and f 15z0 /z1 on U1 , so gi j 5(zj /zi) ( i , j 50,1)
and the norm of the canonical sections represented by the functions$ f 0 , f 1% is isi5uz0u/uzu. So

C~L!5
i

2p
]]̄ log

uzu2

uz0u2
5

i

2p
]]̄ logS 11Uz1

z0
U2D .

It represents a generator ofH2(P1,Z). All generators ofH2(M ,Z), M a flag manifold—we define
this term in Sec. III—are obtained in an analogous manner.

~II ! Another way of obtaining generators of cohomology uses representation theory of g
It is illustrated by the following example.

Consider the flag manifold

F1,25$~ l ,p!:l ,p, l and p being lines and planes inC3 passing through the origin%.

Let e0 ,e1 ,e2 be the standard basis ofC3, let l 05Ce0 , p05C^e0 ,e1&, andj05(l 0 ,p0). SoF1,2

is the orbit ofj0 under the natural action of SL~3,C!. The stabilizer ofj0 in G5SL(3,C) is the
groupB of upper triangular matrices, soG/B>G•j05F1,2.

Now the basic representations of SL~3,C! are C35V and ∧2(V) and their highest weigh
vectors ~i.e., those lines which areB invariant! are v1 and v1∧v2 , where v15(1,0,0)T, v2

5(0,1,0)T, T being the transpose. Consider the formsv̄a and v̄b on G defined by

v̄a5 i ]]̄ logig•v1i ,

v̄b5 i ]]̄ logig•~v1∧v2!i .

Let p:G→G/B5F1,2 be the natural map. The formsv̄a ,v̄b descend to formsva andvb on F1,2

in the sense thatp* va5v̄a , p* vb5v̄b . These forms generateH2(G/B,R) and the projective
lines dual to these forms have the following explicit description.

Let

La5K S x y 0

z t 0

0 0 1
D :S x y

z t D PSL~2,C!L ,

Lb5K S 1 0 0

0 x y

0 z t
D :S x y

z t D PSL~2,C!L .

We havePa5La , j0>P1(C) andPb5Lb•j0>P1(C) and moreover*Pb
va5dab

: see Ref. 5.
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III. FLAG MANIFOLDS AND THEIR COHOMOLOGY: TOPOLOGICAL CHARGES

Let G be a complex semisimple Lie group andB a Borel subgroup ofG; so B is a maximal
connected solvable subgroup ofG. A homogeneous space of the formG/P, where the group
P.B, is a flag manifold. These are precisely those complex compact homogeneous space
are simply connected and are embeddable in some projective space.

In this section, we give a precise description of the second de Rham cohomology o
manifolds and give a formula for the Chern class of line bundles on flag manifolds; this for
involves the so-calledtopological chargesassociated to line bundles. The results are due or
nally to Borel–Hirzebruch.3 We will just state the results, as all the proofs are in Ref. 3; they
also given, from a different point of view, in Ref. 5. We assume familiarity with the theory
weights and roots as set forth in Refs. 6 and 7.

Let G be a complex reductive group,B a Borel subgroup ofG,T a maximal torus ofG
contained inB,R the roots ofT in G, R1 the positive system of roots defined by the pair (B,T),
andS the corresponding system of simple roots.

One knows that for eachaPR1 there existXa ,X2aPLie(G) such that the map

S 0 1

0 0D °Xa , S 0 0

1 0D °X2a

extends to an isomorphism of SL~2,C! onto the Lie algebra generated byXa ,X2a . Hence there
exists a homomorphismwa from SL~2,C! onto a subgroupLa of G whose Lie algebra is generate
by Xa ,X2a .

The groupK generated bywa(SU(2)) ~a simple! is a maximal compact subgroup ofG. Let
p,S and Pp5P be the corresponding parabolic subgroup. SoPp is generated byB andLa(a
Pp). Let j05ePPG/P. ForaPS\p we haveLa•j0>P1(C)>S2: denote this projective line by
Pa . Let $va :aPS% be the fundamental dominant weights,ra the irreducible representation wit
highest weightva , andv a highest weight vector therein. Letv̄a be the form onG defined by

v̄a5 i ]]̄ logira~g!•vi2.

For aPS\p, the formv̄a is the pull-back of aK-invariant form, which we also denote byva , on
G/P; namely, if s is a local cross section of the natural mapG→G/P, then va(j)
5 i ]]̄ logira(s(j))•vi2. Using these forms, we have the following description ofH2(G/P) and
H2(G/P):

Theorem: The projective linesPa(>S2)(aPS\p) form a basis of H2(G/P) and the forms
va(aPS\p) form a basis of H2(G/P). Moreover,

1

2p E
Pb

va5da,b .

For a proof, see Refs. 3 and 5.
Now consider a characterx of the parabolic groupP of G. This character gives rise to a lin

bundle Lx ~over G/P! which is by definitionG3C/;, where the equivalence relation; is
defined by

~g,z!;~g1 ,z1!⇔g15gp, z15x~p!21z

for somepPP.
Take a local nonvanishing sections of the bundleLx . The Chern classC(Lx) of Lx is

represented by

i

2p
]]̄ log @N~s!#22,
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N being a norm onLx . SoC(Lx)5(aPS\p na@va#.
Proposition: We have na52^x,ǎ&PZ.
For a proof, see Ref. 5.
These integers are what are called topological charges in the physics literature and to

Mostafazadeh refers toward the end of Ref. 1.
Finally, let us determine the charge of the anticanonical bundle ofPn(C), i.e., the Chern class

of the line bundle detTCPn. Certainly this can be done using the above formula. However,
more instructive to proceed directly. This is quite standard~see, e.g., Ref. 4!. For the sake of
completeness, we give a derivation in the present setup. For this, notice that if we are give
nonvanishing sectionssa of a line bundleL, defined on open setsUa which cover the manifoldM,
then the map

~j,z!°~zsa~j!!

is an isomorphism ofUa3C ontop21(Ua), p:L→M being the projection all of whose fibers a
lines, so the transition functions ofL are given by

gba~j!5sa~j!/sb~j!.

For the computation of the Chern classC(K(Pn)) of the canonical bundleK(Pn) of Pn, we take
the open sets

Ui5$@z0 :¯ :zn#:ziÞ0%, i 50,1,...,n

and onUi the differential formv i defined by

v i5d~z0 /zi !∧¯∧d~zi 21 /zi !∧d~zi 11 /zi !¯∧d~zn /zi !.

So v i5(zi /z0)2(n11)(21)iv0 . Rescalingv i may assume thatv i5(zi /z0)2(n11)v0 . Therefore
v i /v05(zi /z0)2(n11) and sog0i5(z0 /zi)

n11. Hence

gi j 5gi0g0 j5~zi /zj !
n11.

On the other hand, the line bundle@H# defined by the hyperplanez050 is given onUi by the
functionsz0 /zi , so its transition functionsgi j̃ are gi j̃ 5(z0 /zi)/(z0 /zj )5(zj /zi). Thereforegi j

5(gi j̃ )
2(n11), so

K~Pn!52~n11!@H#

and hence∧nTPn5(n11)@H#.
So the Chern number of the determinant bundle ofPn is (n11).

1A. Mostafazadeh, J. Math. Phys.3, 1218~1996!.
2M. V. Berry, Proc. R. Soc. London, Ser. A392, 392 ~1984!.
3A. Borel and F. Hirzebruch, Am. J. Math.80, 459 ~1958!.
4P. Griffiths and J. Harris,Principles of Algebraic Geometry~Wiley, New York, 1994!.
5H. Azad, R. Kobayashi, and M. N. Qureshi, J. Algebra196, 620 ~1997!.
6R. Steinberg, ‘‘Lectures on Chavalley groups,’’ Yale University 1967.
7R. Slansky, Phys. Rep.79, 1 ~1981!.
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~Received 19 October 1998; accepted for publication 11 January 1999!

@S0022-2488~99!03506-9#

Azadet al.,1 have informed me of a mistake in Eq.~64! of my paper, Ref. 2, which has led t
another mistake in Eq.~61!. These equations only hold forN51. For arbitraryN, they must be
changed to

c1~TCPN!5x~CPN!5N11, ~1!

~2!

respectively. Equation~1! can be easily inferred from the computation of the total Chern clas
TCPN which can be found in Example 6.3 of Ref. 3. Equation~2! follows from Eq.~1! using the
arguments given in Sec. IV of Ref. 2, below Eq.~61!.

Note that the mistake that occurred in Eqs.~61! and~64! does not change any of the concl
sions of Ref. 2.

1H. Azad, M. N. Qureshi, and M. Ziad~unpublished!.
2A. Mostafazadeh, J. Math. Phys.37, 1218–1233~1996!.
3T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep.66, 213 ~1980!.
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Asymptotics of the scattering coefficients
for a generalized Schro ¨ dinger equation

Tuncay Aktosun
Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105

Martin Klaus
Department of Mathematics, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061

~Received 5 October 1998; accepted for publication 11 February 1999!

The generalized Schro¨dinger equationd2c/dx21F(k)c5@ ikP(x)1Q(x)#c is
considered, whereP andQ are integrable potentials with finite first moments andF
satisfies certain conditions. The behavior of the scattering coefficients near zeros of
F is analyzed. It is shown that in the so-called exceptional case, the values of the
scattering coefficients at a zero ofF may be affected byP(x). The location of the
k-values in the complex plane where the exceptional case can occur is studied.
Some examples are provided to illustrate the theory. ©1999 American Institute of
Physics.@S0022-2488~99!03007-8#

I. INTRODUCTION

In this paper we consider the generalized Schro¨dinger equation

d2c~k,x!

dx2 1F~k!c~k,x!5@ ikP~x!1Q~x!#c~k,x!, xPR, ~1.1!

where the properties ofF will be detailed below. The functionsP andQ satisfy

PPL1
1~R!, QPL1

1~R!, ~1.2!

whereL1
1(R) is the class of measurable functionsf such that*2`

` dx u f (x)u(11uxu),1`. For the
majority of the paper,P andQ need not be real valued; if they are, this will be stated explici
In applications,k may correspond to a wave number whileF(k) may represent energy. Th
coefficientP(x) may represent the absorptive properties of a medium, andQ(x) may be a restor-
ing force density or a potential for an external force. Some special cases of~1.1! are

~A! F(k)5k2 with P(x)[0,
~B! F(k)5k2 with P(x)Ó0,
~C! F(k)5k211/(4b2) with b.0.
Case~A! corresponds to the well-known quantum-mechanical case of the Schro¨dinger equa-

tion on the line with potentialQ(x). Case~B! was studied by Jean and Jaulent,1–4 and more
recently by Sattinger and Szmigielski,5 and by us6 when P is real valued. Case~C! has been
investigated by Kaup7 in connection with the inverse scattering transform for an evolution eq
tion ~a long-wave water equation resembling the Boussinesq equation! by Tsutsumi8 and, more
recently, under the assumption that*2`

` dx P(x)50, by Sattinger and Szmigielski.9

Our interest in~1.1! is motivated by various inverse problems associated with~1.1!. In study-
ing such problems, one needs to know the asymptotics of various quantities as the paramk
approaches certain special values, in particular asF(k)˜` or ask˜k0 , wherek0 is a zero ofF.
In this paper we will only be concerned with the second situation. We will callk0PC a critical
value of~1.1! if F(k0)50. Here,C denotes the complex plane. The quantities whose asympt
we will study are the transmission and reflection coefficients associated with~1.1!. Before we
define these quantities we list the assumptions onF:
37010022-2488/99/40(8)/3701/9/$15.00 © 1999 American Institute of Physics
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~H1! Supposingk0 is a critical value of~1.1!, there exists a setS,C such thatF(k) is
continuous onS, F(k)Þ0 onS\$k0%, and the mapk°m(k)5AF(k) is one-to-one forkPS. Here
the branch of the square root is such that 0<argm,p, wherem5m(k).

~H2! There is a pathP(k0) in S containingk0 on whichm takes on real non-negative value
Note that, by~H1!, D5m~S! is a subset of the closed upper-half complex planeC1. ~H2!

indicates that there is ane.0 so that@0,e#PD. In cases~A! and ~B!, k050 is the only critical
value. We may then chooseS5$k:0<argk,p%ø$0%, so thatm(k)5k andD5S. For the path
P(k0) we may take the interval@0,1`!. In case~C! the critical values arek056 i /(2b). The disk
$k: uk2 i /(2b)u<1/(2b)% can then be used asS near the critical point1 i /(2b) and we have
D5$m: umu<1/(2b), 0<argm,p%ø$0%. As the pathP(k0) we can take the imaginary interva
i @0,1/(2b)#. The modifications for the other critical point are obvious.

For kPS, ~1.1! possesses the solutionsf l(k,x) and f r(k,x), the so-called Jost solutions from
the left and from the right, respectively, that are uniquely defined by their spatial asympt
namely,

f l~k,x!5eimx@11o~1!#, f l8~k,x!5 imeimx@11o~1!#, x˜1`, ~1.3!

f r~k,x!5e2 imx@11o~1!#, f r8~k,x!52 ime2 imx@11o~1!#, x˜2`, ~1.4!

where the prime indicates the derivative with respect to the spatial variablex. For k
PP(k0)\$k0% the Jost solutions obey

f l~k,x!5
1

T~k!
eimx1

L~k!

T~k!
e2 imx1o~1!, x˜2`, ~1.5!

f r~k,x!5
1

T~k!
e2 imx1

R~k!

T~k!
eimx1o~1!, x˜1`, ~1.6!

which define the transmission coefficientT and the reflection coefficientsR from the right andL
from the left, respectively. These quantities will collectively be referred to as scattering c
cients. It is also possible to define the scattering coefficients in terms of certain Wronskians
Jost solutions. For example, letting@ f ;g#5 f g82 f 8g denote the Wronskian, from~1.1! and~1.3!–
~1.6! we get

2im

T~k!
5@ f r~k,• !; f l~k,• !#. ~1.7!

In analogy with the usual Schro¨dinger equation, given a critical valuek0 we will distinguish
between two cases: We say that the generic~exceptional! case occurs atk5k0 if and only if
f l(k0 ,x) and f r(k0 ,x) are linearly independent~dependent!. In the exceptional case, we letg
denote the nonzero constant defined as,

g5
f l~k0 ,x!

f r~k0 ,x!
. ~1.8!

From ~1.7! we see thatk0 corresponds to the exceptional case if and only if

F~k0!50, lim
k˜k0

m~k!

T~k!
50.

In short, we will say thatk0 is an exceptional value if it corresponds to the exceptional case
~1.1!.

The behavior of the scattering coefficients of~1.1! at the critical valuesk0 does not seem to
have been studied in detail before, except in cases~A! and ~B!. In these two cases it is
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known6,10–13 that there are two ways in whichT(k) can behave ask˜0: either T(k)5 ick
1o(k) for some nonzeroc, or T(k)5T(0)1o(1) with T(0)Þ0. The former corresponds to th
generic case and the latter corresponds to the exceptional case. In case~C! a detailed investigation
of the behavior of the scattering coefficients neark0561/(2b) does not seem to have been do
before. This is one of our goals in this paper, and particular attention will be paid to the e
tional case. In connection with a statement made in Theorem 2.6 of Ref. 9 regarding case~C! with
b51

2, we would like to comment that while it is true that for reflectionless potentials only
exceptional case can occur atk56 i , there are also potentialsP(x) andQ(x), in particular real
ones, which are not reflectionless and for which the exceptional case occurs. This will b
cussed in more detail in Sec. III.

This paper is organized as follows. In Sec. II we prove our main result concerning
behavior of the scattering coefficients at a critical value~Theorem 2.2! and apply it to cases
~A!–~C! ~Corollary 2.3!. We also present some information about the location of the except
k-values in the complex plane. In Sec. III we consider case~C! in more detail, show that one mus
not identify the exceptional case with the reflectionless case, and provide four examples ill
ing the location of the exceptionalk-values and other aspects of the theory.

II. ASYMPTOTICS OF THE SCATTERING COEFFICIENTS

In this section we study the asymptotic behavior of the scattering coefficients ask˜k0 , where
k0 is a critical value of~1.1!. In doing so we will only be concerned with the leading terms of
asymptotic expansions. Our main result is presented in Theorem 2.2. For its proof, we firs
some results about the usual Schro¨dinger equation.

Consider the pair of Schro¨dinger equations

d2f j~m,x!

dx2 1m2f j~m,x!5Vj~x!f j~m,x!, j 51,2, ~2.1!

whereVjPL1(R). Herem is allowed to range over all ofC1; it is not restricted toD defined
earlier. Lett j denote the transmission coefficient andr j and l j denote the reflection coefficient
from the right and left, respectively, for the potentialVj . Let gj ; l(m,x) andgj ;r(m,x) denote the
corresponding Jost solutions of~2.1! from the left and right, respectively. It is known10,11,13that

gj ; l~2m,x!5t j~m!gj ;r~m,x!2r j~m!gj ; l~m,x!, mPR,

gj ;r~2m,x!5t j~m!gj ; l~m,x!2 l j~m!gj ;r~m,x!, mPR. ~2.2!

Since m appears asm2 in ~2.1!, gj ; l(2m,x) and gj ;r(2m,x) are also solutions of~2.1!, and
gj ; l(2m,x)5e2 imx@11o(1)# asx˜1` andgj ;r(2m,x)5eimx@11o(1)# asx˜2`.

Proposition 2.1:Suppose thatVj P L1(R) for j 51,2. Then the scattering coefficients of~2.1!
satisfy

1

t2~m!
5

1

t1~m!
1

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;l~m,x!g1;r~m,x!, mPC1\$0%, ~2.3!

l 2~m!

t2~m!
5

l 1~m!

t1~m!
2

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;l~m,x!g1;r~2m,x!, mPR\$0%, ~2.4!

1

t2~m!
5

1

t1~m!
1

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;r~m,x!g1;l~m,x!, mPC1\$0%, ~2.5!

r 2~m!

t2~m!
5

r 1~m!

t1~m!
2

i

2m E
2`

`

dx @V2~x!2V1~x!#g2;r~m,x!g1;l~2m,x!, mPR\$0%. ~2.6!
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Proof : First, let us note that~2.3! and~2.5! are given on p. 329 of Ref. 13, and some formu
related to~2.4! and~2.6! can be also found there. We will give a different proof which yields b
~2.3! and~2.4! simultaneously. The proof of~2.5! and~2.6! is similar and hence will be omitted
By the variation of parameters formula,g2;l(m,x) obeys the integral equation

g2;l~m,x!5g1;l~m,x!1E
x

`

dyG~m;x,y!@V2~y!2V1~y!#g2;l~m,y!, ~2.7!

where

G~m;x,y!5
g1;l~m,x!g1;r~m,y!2g1;r~m,x!g1;l~m,y!

@g1;l~m,• !;g1;r~m,• !#
. ~2.8!

Note that the Wronskian in~2.8! is related to the transmission coefficient as

t j~m!52
2im

@gj ; l~m,• !;gj ;r~m,• !#
. ~2.9!

Now ~2.3! and ~2.4! follow by letting x˜2` in ~2.7! and using~1.4!, ~1.5!, ~2.2!, and~2.9!. j

In the next theorem, the behavior of the scattering coefficients of~1.1! is analyzed at critical
k-values.

Theorem 2.2:SupposeP,QPL1
1(R) andF(k) satisfies~H1! and~H2!. If k0PC is a critical

value of ~1.1!, then we have the following.
~i! In the generic case we have

T~k!52
2im

@ f l~k0 ,• !; f r~k0 ,• !#
1o~m!, k˜k0 in S, ~2.10!

L~k!5211o~1!, R~k!5211o~1!, k˜k0 in P~k0!.

~ii ! In the exceptional case, using the constantsa andv defined by

a5 lim
k˜k0

k2k0

m~k!
, v5g2112aE

2`

`

dx P~x! f l~k0 ,x!2,

we distinguish two subcases:~a! If a exists and is finite andvÞ0, then

T~k!5
2g

v
1o~1!, k˜k0 in S, ~2.11!

L~k!5
2g22v

v
1o~1!, k˜k0 in P~k0!, ~2.12!

R~k!5
22v

v
1o~1!, k˜k0 in P~k0!. ~2.13!

~b! If lim
k˜k0

u(k2k0)/m(k)u51` and*2`
` dx P(x) f l(k0 ,x)2Þ0, then

T~k0!50, L~k0!521, R~k0!521.

In the exceptional case, ifa exists andv50, then the scattering coefficients are not continuou
k0 ; if a does not exist, then, in general, the scattering coefficients are not continuous atk0 .

Proof: In ~2.3!–~2.6! we replaceV1(x) by ik0P(x)1Q(x) andV2(x) by ikP(x)1Q(x) and
note that because of~1.2! we haveVjPL1

1(R) for j 51,2 instead of justVjPL1(R). The stronger
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assumption allows us to take the limitm˜0 in ~2.3!–~2.6!. Thanks to Proposition 2.1 we can mak
full use of the results12 known in the caseP(x)[0. For g1;l(m,x) andg2;r(m,x) in ~2.3!–~2.6!,
we substitutef l

@0#(m,x) and f r
@0#(m,x), respectively, where the latter two are the Jost solution

d2w~m,x!

dx2 1m2w~m,x!5@ ik0P~x!1Q~x!#w~m,x!. ~2.14!

Let T@0#(m), R@0#(m), andL @0#(m) denote the scattering coefficients associated with~2.14!. Then
from ~2.3! we get

1

T~k!
5

1

T@0#~m! F12
k2k0

2m
T@0#~m!E

2`

`

dx P~x! f r
@0#~m,x! f l~k,x!G , mPD\$0%. ~2.15!

WhenP,QPL1
1(R), we have

u f r
@0#~m,x!u<C~11max$0,x%!e~ Im m!x, mPC1, ~2.16!

u f l~k,x!u<C~11max$0,2x%!e2~ Im m!x, kPS, ~2.17!

whereC is a constant independent ofx and k. Hence, by the Lebesgue dominated converge
theorem, the integral on the right-hand side in~2.15! converges ask˜k0 . Now ~2.10! follows
from ~2.9!, ~2.15!, and the fact that in the generic case we have

@ f l~k0 ,• !; f r~k0 ,• !#5@ f l
@0#~k0 ,• !; f r

@0#~k0 ,• !#Þ0.

In the exceptional case we obtain~2.11! by using~2.15!–~2.17! along with the fact that

f r
@0#~0,x!5 f r~k0 ,x!5

1

g
f l~k0 ,x!, ~2.18!

and ~cf. Ref. 12!

T@0#~0!5
2g

g211
,

whereg is the constant in~1.8!. The statementT(k0)50 in part~b! follows directly from~2.15!.
Turning toL(k), from ~2.4! we get

L~k!

T~k!
5

L @0#~m!

T@0#~m!
1

k2k0

2m E
2`

`

dx P~x! f r
@0#~2m,x! f l~k,x!. ~2.19!

Using ~2.16! and~2.17! one can show that the integral in~2.19! has a finite limit ask˜k0 . In the
generic case, we haveL @0#(0)521 and

lim
k˜k0

T~k!

T@0#~m!
5

@ f l
@0#~0,• !; f r

@0#~0,• !#

@ f l~k0 ,• !; f r~k0 ,• !#
51,

lim
k˜k0

T~k!

m
5

22i

@ f l~k0 ,• !; f r~k0 ,• !#
.

Thus~2.19! implies thatL(k0)521. To prove~2.12! we use~2.18!, ~2.19!, and the fact that in the
exceptional case we have
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L @0#~0!5
g221

g211
.

The arguments leading to~2.13! and in case~b! are similar. j

The implications of Theorem 2.2 for the special cases~A!–~C! are as follows.
Corollary 2.3: SupposeP,QPL1

1(R) and F(k) satisfies~H1! and ~H2!. If k0PC is an ex-
ceptional value, then we have the following.

~i! In case~A!, we havek050 and

T~k0!5
2g

g211
, L~k0!5

g221

g211
, R~k0!5

12g2

g211
. ~2.20!

~ii ! In case~B!, we havek050, m(k)5k, a51, and~2.11!–~2.13! hold.
~iii ! In case~C!, k056 i /(2b) and F(k) vanishes linearly atk0 ; hencea50. In this case

~2.20! holds.
Next we address the question of where in the complex plane the possible exceptionalk-values

can occur. Of course, in order for ak-value to correspond to the exceptional case, it must firs
a critical value, and this depends onF(k). In the next proposition, without referring to any speci
form of F(k), we present some sufficient conditions which ensure that the exceptionalk-values
cannot occur off the imaginary axis.

Proposition 2.4:AssumeP(x)Ó0, Q(x) andP(x) are real valued, andP,QPL1
1(R). If k0 is

an exceptional value but not purely imaginary, then*2`
` dx P(x)u f 1(k0 ,x)u250. If Q(x)>0, or

P(x)<0, orP(x)>0, then the exceptionalk-values for~1.1! can occur only on the imaginary axis
Proof: Recall that in the exceptional case the Jost solutions of~1.1!, f l(k0 ,x) and f r(k0 ,x),

are linearly dependent and hencef l(k0 ,x) remains bounded asx˜6`. Moreover, sinceF(k0)
50, one can show@cf. ~2.11! of Ref. 14# that f l8(k0 ,x)5o(1/x) asx˜6`. Thus, from~1.1!, after
integrating by parts and using

lim
x˜6`

f l8~k0 ,x! f l~k0 ,x!* 50,

where* denotes complex conjugation, we obtain

E
2`

`

dx u f l8~k0 ,x!u21E
2`

`

dx Q~x!u f l~k0 ,x!u252 ik0E
2`

`

dx P~x!u f l~k0 ,x!u2.

Since the right-hand side has to be real, both assertions follow. j

III. SPECIAL CASE „C… AND EXAMPLES

We first consider case~C! in some more detail and discuss the implications of our results
the work of Sattinger and Szmigielski.9 To establish the connection between the notation used
and that used in Ref. 9, we note that in Ref. 9 the special caseF(k)5k211 was considered with
the notationE25k211 ~i.e., E in Ref. 9 corresponds tom here!, and a complex uniformization
parameterz was used to expressE andk as

E5
1

2 S z1
1

zD , k5
1

2 S z2
1

zD .

Then two sets of solutions of~1.1!, c6(x,z) andf6(x,z), having specific asymptotic behavior
were defined. We state here only their connection with the Jost solutions of~1.1!. We have

c1~x,z!5 f l~k,x!, c2~x,z!5T~k! f r~k,x!2R~k! f l~k,x!,

f1~x,z!5 f r~k,x!, f2~x,z!5T~k! f l~k,x!2L~k! f r~k,x!.
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These definitions imply that

f1~x,z!5a~z!c2~x,z!1b~z!c1~x,z!,

f2~x,z!5c~z!c2~x,z!1d~z!c1~x,z!,

with

a~z!5
1

T~k!
, b~z!5

R~k!

T~k!
, c~z!52

L~k!

T~k!
, d~z!5

T~k!22L~k!R~k!

T~k!
.

The quantities

r 1~z!5
b~z!

a~z!
, r 2~z!5

c~z!

d~z!
,

were called generalized reflection coefficients in Ref. 9. In terms of our scattering coefficien
have

r 1~z!5R~k!, r 2~z!5
L~k!

L~k!R~k!2T~k!2 .

Now let us apply Theorem 2.2 and Corollary 2.3 to the problem studied in Ref. 9. The cr
points arek56 i , corresponding toz56 i . In the notation of Ref. 9, generically one hasr 6( i )
5r 6(2 i )521; on the other hand, in the exceptional case, one has

r 1~6 i !5
12g6

2

g6
2 11

, r 2~6 i !5
12g6

2

g6
2 11

.

Hereg1 andg2 are the constants in~1.8! at the critical pointsi and2 i , respectively. Thus, we
see that potentials need not necessarily be reflectionless in order to violater 1(6 i )521 or r 2

(6 i )521. In fact, in the next example we show that even rather simple potentials may
nontrivial reflection in the exceptional case. The following examples involve potentials of the

P~x!5H b1 , 0,x,1,

b2 , 21,x,0,

0, elsewhere,

Q~x!5H a1 , 0,x,1,

a2 , 21,x,0,

0, elsewhere,

~3.1!

wherea6 andb6 are parameters.
Example 3.1:In ~3.1! let us useb152, b25b with b>0, a151, a250, and choose

F(k)5k211. We can solve~1.1! and evaluate the scattering coefficients explicitly. The criti
points arek56 i . Letting k5 i (12e), ask˜ i so thate˜0 through positive values, we obtain

2im

T~k!
5Ab cos 1 sinAb1sin 1 cosb1O~Ae!. ~3.2!

There are an infinite number of positiveb-values that cause the leading term in~3.2! to vanish, and
each suchb-value causesk5 i to yield the exceptional case. The smallest isb56.77194̄, the next
two values areb536.3663̄andb585.7127̄~the overline means that the last digit may have be
affected by round-off!. For b56.77194̄we getT( i )520.901744̄and L( i )520.432166̄; for b
536.3663̄ we get T( i )50.851046̄and L( i )520.525091̄; and for b585.7127̄ we get T( i )
520.842793̄andL( i )520.538224̄.

Example 3.2:In ~3.1! let b15b25b, a15a250, and chooseF(k)5k2. Then we are in the
exceptional case for everyb>0. The only critical value isk050 and we havef l(k0 ,x)51 and
g51 @cf. ~1.8!#, and
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1

T~k!
5e2ikFcos~2s!2

2ik1b

2s
sin~2s!G , ~3.3!

wheres5Ak22 ikb. Hence

1

T~0!
512b,

which is in agreement with~2.11!. If b51, thenv50 anda51 in Theorem 2.2, and~3.3! gives

T~k!5
3i

2k
1O~1!, k˜0.

This shows thatT(k) can be discontinuous at a critical value.
We conclude with two examples illustrating the location of possible exceptionalk-values; in

these examples, unless otherwise indicated,F(k) is not assumed to have any special form.
Example 3.3:In ~3.1! let b151 and b25a15a2521. Settingk5k0 and F(k0)50 we

solve ~1.1! to find the Jost solutionf l(k0 ,x) and then impose the condition thatf l(k0 ,x) be
bounded asx˜2`; that is, we demand thatf l8(k0 ,21)50. This is a necessary condition fork0

to be an exceptional value for any given functionF(k). A straightforward calculation shows tha
the ~possibly! exceptional values are given by the solutions of the equation

A211 ik0 tanhA211 ik01A212 ik0 tanhA212 ik050.

This equation has infinitely many roots on the imaginary axis located symmetrically abou
origin and, as can be seen numerically, one symmetric pair of roots on the real axis. The tw
roots arek0561.355̄, and the imaginary roots closest to zero arek05614.139̄i . The correspond-
ing Jost solutionf l(k0 ,x) is given by

f l~k0 ,x!5H cosh~A211 ik0~12x!!, 0<x<1,

coshA211 ik0

coshA212 ik0

cosh~A212 ik0~x11!!, 21<x<0,

and on each of the intervals~2`,21! and~1,1`!, f l(k0 ,x) is constant and obtained by continuit
This example shows the possibility of real as well as purely imaginary exceptional values. Th
imaginary roots above would be critical values for case~C! if b50.035̄. The two real roots are no
critical values for any of cases~A!–~C!. In accordance with Proposition 2.4, one can verify th
*21

1 dx P(x)u f l(k0 ,x)u250.
Example 3.4:In ~3.1! let b15b251, a150, anda2521. Then the~possibly! exceptional

values satisfy

Aik0 tanhAik01A212 ik0 tanhA212 ik050.

There are again infinitely many purely imaginary roots; there are also complex roots, one p
which is k0561.1008̄10.5i . The corresponding Jost solutionf l(k0 ,x) is given by

f l~k0 ,x!5H cosh~Aik0~12x!!, 0<x<1,

coshAik0

coshA212 ik0

cosh~A212 ik0~x11!!, 21<x<0,
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and foruxu.1, f l(k0 ,x) is constant and obtained by continuity. This example shows the possi
of exceptional values that are neither real nor purely imaginary. In case~C! only the purely
imaginary roots could be critical values for suitableb.
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On the dynamics of the Holstein model from the
anticontinuous limit
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We consider the Holstein model describing an electron interacting with a lattice of
identical oscillators. We remark that the on site system~i.e., the system in which
the interaction between the different sites of the lattice vanishes! is integrable and
anisocronous. This allows us to apply some recent Nekhoroshev-type results to
show that corresponding to the majority of initial data in which the electron prob-
ability is concentrated on a finite number of sites, the electron probability distribu-
tion is approximatively constant for times growing exponentially with the inverse
of the coupling parameter. Moreover, for the same times, the total energy of the
oscillator system is approximatively constant. ©1999 American Institute of Phys-
ics. @S0022-2488~99!00308-4#

I. INTRODUCTION

In this paper we consider the adiabatic Holstein model describing one electron in inter
with an infinite lattice of identical oscillators. It will be studied as a classical~infinite dimensional!
nonlinear dynamical system. Scaling suitably time and the oscillator’s variables, the equati
the system can be written in the form

2 i ċ i52qic i2e@~c i2c i 21!1~c i2c i 11!#

q̈i52v2qi1uc i u2
, i PZ ~1.1!

whereqi are the oscillator’s variables, anduc i u2 is the probability of finding the electron at sitei;
e is the coupling between the different sites, andv the frequency of the oscillators.

The present work was stimulated by a paper by Hennig,1 where the dynamics of the Holstei
model in the casev@1 was studied. Hennig applied the Nekhoroshev-type techniques of R
to show that ifv is large enough, then there is no exchange of energy between the oscill
system and the electron system for times growing exponentially withv. He also presented som
numerical simulations showing that ife is small enough also each of the probability amplitud
uc i u2 remain constant. Finally he gave an heuristic explanation of such a phenomenon.

In the present paper we prove rigorously, at least in some quite general situation, and fo
times, the constancy of the electron probability distribution, i.e., of the quantitiesuc i u2. More
precisely, we will consider the class of initial data in which the electron probability distribu
uc i u2 is essentially localized at a finite number of sites. We will prove that, providede is below
some threshold~which could be explicitly computed!, then corresponding to the majority of suc
initial data the quantitiesuc i u2 are approximately constant, and moreover the total harm
energy of the oscillators is approximately constant for very long times, namely, for times of
exp(Ce2a) with positiveC anda.

The result is obtained in two steps. First, we consider the anticontinuous limite50 in which
the system is decoupled into infinitely many identical systems with two degrees of freedo~on
site system!. Our starting point is the remark that the on site system is an integrable Hamilto

a!Electronic mail: BAMBUSI@MAT.UNIMI.IT
37100022-2488/99/40(8)/3710/8/$15.00 © 1999 American Institute of Physics
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system. So, first of all we introduce its action angle variables. In this way it becomes clear th
on site system is anysocronous, i.e., the frequencies of its motion depend on the initial da
come to the second step; to explain in a simple way the key idea consider initial data in whi
electron probability is concentrated at one single site of the lattice, say the siteī . It turns out that,
in the on site system, the phase of the electron’s probabilityc ī rotates with a frequency which
depends on the initial datum and therefore, in general, is nonresonant withv. Moreover, the
phases related toc i iÞ ī do not move at all. Then one can hope to use perturbation theory to s
that also wheneÞ0 the total energy of the oscillator’s system and the electron probabilitiesuc i u2

are essentially constant. The situation is similar when the electron probability is concentrate
finite number of sites.

To show that this is actually what happens we use a Nekhoroshev-type result whic
recently proved by the author3 ~for an improved version applicable to PDE’s, see Ref. 4!. In Ref.
3 a perturbation of an infinite dimensional system withn,` frequencies was considered, and
was proven that there existsn functions which remain approximatively constant when the sys
is subjected to a smooth perturbation. In the present case such functions aren21 electron prob-
abilities and the total harmonic energy of the oscillator system. Exploiting also the conservat
the total probability of finding an electron in the lattice we are able to conclude that the w
probability distribution of the electron is approximatively constant for the considered times.

Finally we recall that Holstein model was already studied from the anticontinuous lim
Aubry5 who proved that, providede is small enough, the Holstein model has quasiperiodic bre
ers, i.e., quasiperiodic localized solutions. Such solutions physically correspond to the situa
which one of the oscillators perform large amplitude oscillations while the other is approx
tively at rest; the electron probability distribution is constant, but the phases rotate uniform

The paper is organized as follows: in Sec. II we discuss the on site dynamics; in Sec.
recall the main abstract theorem of Ref. 3, state and prove the main result of the presen
~freezing of the electron’s probabilities, and of the oscillator’s energy!. Finally in Sec. IV we
discuss some possible extensions of these results.

II. THE ON SITE DYNAMICS

Consider the adiabatic Holstein model~1.1!, definexi , andyi as the real and imaginary par
of c i ; then it is easy to verify that~1.1! are the Hamilton’s equations of

Hª(
i

Hos~pi ,qi ,xi ,yi !1
1

2
e(

i
@~xi2xi 21!21~yi2yi 21!2#, ~2.1!

where

Hos~pi ,qi ,xi ,yi ! ª
pi

21v2qi
2

2
1qi

xi
21yi

2

2
, ~2.2!

and (pk ,qk),(xi ,yi) are canonically conjugated variables.
Remark 2.1: The quantity( i(xi

21yi
2)/2 is a constant of motions for the dynamics of t

Holstein model. It represents the probability of finding an electron in the lattice, so it shou
subjected to the normalization condition

(
i

xi
21yi

2

2
51.

For simplicity in the following we will drop this condition.
We begin by studying the on site dynamics described by the Hamiltonian~2.2!. It is imme-

diate to realize that the system~2.2! is integrable. Indeed the action (xi
21yi

2)/2, is a constant of
motion, and the Hamiltonian itself is the second constant.
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Fix i, then one can explicitly construct action angle variables forHos in two steps. First define
the variables (Ji ,f i) by

xi5AJi cosf i , yi5AJi sinf i ;

the Hamiltonian of the on site system takes the form

Hos5
pi

21v2qi
2

2
1qiJi . ~2.3!

Then the canonical transformation

Qi5qi1
Ji

v2 , Pi5pi , Ji85Ji , f i85f i1
Pi

v2

~with generating functionPi(qi1(Ji8/v
2))1Ji8f i) reduces the Hamiltonian~2.3! to the form

Pi
21v2Qi

2

2
2

1

2v2 Ji
2, ~2.4!

where we omitted the prime fromJ. The main feature of this Hamiltonian is that it clearly show
that it is integrable and that the frequency of the electron’s system isJi /v2, which depends on the
electron density at the considered site.

Remark 2.2: The quantity

Ji5
xi

21yi
2

2

is the probability of finding an electron at the site i of the lattice.
The integration of this system is immediate and gives

Pi~ t !5Pi ,0 cos~vt !2vQi ,0 sin~vt !,

Qi~ t !5Qi ,0 cos~vt !1
Pi ,0

v
sin~vt !,

Ji~ t !5Ji ,0 , f i8~ t !5
Ji

v2 t1f i ,08 .

So, along with the solutions the electron densityJi is a constant of motion, the correspondin
phasef8 rotates uniformly, and the variablesPi ,Qi oscillate with frequencyv around zero. In
terms of the original variables the solution appears as follows: the phase of the electron rota
moreover performs an oscillation with frequencyv, while the oscillator still oscillates with fre-
quencyv, but around the shifted equilibrium positionqi52Ji /v2.

III. THE COMPLETE SYSTEM

We use now perturbation theory to study the dynamics of the complete system. W
concentrate on the situation in which the electron’s probability is concentrated at a finite nu
of sites of the lattice. Moreover, in order to avoid the singularity introduced by the action a
coordinates we prefer to give the main statement in terms of the original variablesp,q,x,y. So, in
the statement of the forthcoming theoremJi must be interpreted as a short notation for (xi

2

1yi
2)/2; moreover we will denote by
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h0ª(
i

1

2 S pi
21v2S qi1

Ji

v2D 2D
the total harmonic energy of the oscillators.

We fix a subsetL,Z with cardinalityn,` and ann-dimensional vectorn5$n i% i PL which
fulfills the following diophantine condition

un•k1v l u>
g

u~k,l !ut
, ;~k,l !PZn11\$0%, ~3.1!

whereu(k,l )uªu l u1(uki u, andg andt are strictly positive constants.
We will prove the following:
Theorem 3.1:There exists a positivee* , and positive constants C1 ,...,C4 with the following

properties: assumeueu,e* , and consider an initial datum satisfying

uJi~0!2n iv
2u<C1e, ; i PL; (

i ¹L
Ji~0!<C1e, h0~0!,`; ~3.2!

then, along the corresponding solution one has

uJi~ t !2Ji~0!u<C2e1/2~t11!e, ; i PL,

(
i ¹L

Ji~ t !<C2e, uh0~ t !2h0~0!u<C2e1/2~t11!h0~0!, ~3.3!

for exponentially long times, namely, for the times t fulfilling

utu<C3 expS C4

e D 1/2~t11!

. ~3.4!

The proof will be obtained by applying the normal form theorem of Ref. 3. Before goin
the details we recall the result of Ref. 3 that will be applied here. We simplify slightly its state
since for the present application we need only to deal with a strongly symplectic space.

Consider a strongly symplectic Banach spaceP, i.e., a Banach space endowed by a sk
symmetric nondegenerate formV. Then one can define the applicationP{X°V(X,.)PP* ,
which is injective. We recall thatV is said to be strongly nondegenerate if such a map is
surjective. In this case the Poisson tensorJ which is the inverse of this map is a linearbounded
operator. It follows that the Hamiltonian vector fieldXf of a C` function f ~which is defined by
XfªJd f ) is also of classC`. Consider the complexificationPC of P; we will denote by
BR(z),PC the ball of radiusR with center atz. Moreover, given a setG,P we will denote

GRª ø
zPG

BR~z!.

On a setG consider a Hamiltonian function

H5hv1 f . ~3.5!

Fix a positiveR; we will assume that bothhv and f extend to complex analytic functions onGR .
The main abstract result of Ref. 3 ensures that, ifhv generates a quasiperiodic flow which leav
invariantGR , andf is small, the system has a certain number of approximate constants of m
for times growing exponentially with a power of the inverse of the size off.

To give a precise statement we write more explicitly the assumptions. We will denote bF t

the flow generated by the Hamiltonian vector field ofhv . We assume
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~1! F t(Gr),Gr , for any r<R;
~2! F t is quasiperiodic, namely, there exists a group actionC:Tn3GR˜GR and ann dimensional

real vectorv such that
Ft ~z!5Cv1t,v2t,...,vnt~z!, ;zPGR .

Moreover, there exists functionsI 1 ,...,I n analytic in GR whose Hamiltonian vector fields
generate the flowsCf1,0,0,...,0¯C0,0,...,0,fn

.
~3! The frequency vector is diophantine, namely there exist positiveg andt such that

uv•ku>
g

ukut
, ;kPZn\$0%.

~4! Denote byTn1 is the set of thef’s belonging to the complexified torus such thatuIm fiu
<s. There exist positives and r * .R/2 such thatC extends to an analytic mapC:Tn1 is
3Gr

*
˜GR .

~5! Finally we assume that there exists a finite constante f such that

1

R
sup

zPGR

iXf~z!i<e f . ~3.6!

Then Corollary 4.2 of Ref. 3 states that
Theorem 3.2: Under the above assumptions there exists positive constantse* , C5 ,C6 ,C7 ,

independent of R, such that, providede f<e* , then along the solutions of the Cauchy problem
(3.5), with initial data inGR/4 , one has

uI i~z~ t !!2I i~z~0!!u<C5e f
1/~t11! sup

zPGR

uI i~z!u, i 51,...,n

for all times t<min$T0,T* %, where T0 is the escape time of the solution from the domainG3R/8 ,
and

T*ª
C7

e f
expFC6

e f
G1/~t11!

.

Proof of theorem 3.1:We will apply the above theorem 3.2, and then we will show that
escape timeT0 is larger thanT* . We prepare the system by introducing ‘‘action angle’’ variab
(Ji ,f i),(Pi ,Qi) for the on site system at the sitesi PL; making a translation of the actionJi ,
namely, introducing the variables

I iªJi2n iv
2,

the Holstein model assumes the form

H5hv1 f 11 f 21 f 3 ,

where

hvª5h02(
i

n i I i ,

f 1ªeH int , f 2ª2(
i PL

I i
2

2v2 , f 3ª2(
i ¹L

Ji
2

2v2 ,

where
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H int5
1

2 (
i

@~xi2xi 21!21~yi2yi 21!2#,

and, for i PL, xi and yi must be intended as functions of the action angle variables, while
i ¹L, the symbolsPi , Qi , andJi must be intended as short notations for their complete exp
sion. We fix a parameterR and define the norm of a sequence

z5~$Pi ,Qi ,I i ,f i% i PL ,$pi ,qi ,xi ,yi% i ¹L!

by

izi2
ª(

i PL

uPi u21v2uQi u2

2
1(

i ¹L

upi u21v2uqi u2

2
1max

i PL
uI i u21max

i PL
R2uf i u21R(

i ¹L

uxi u21uyi u2

2

and defineP as the completion of set of sequences with compact support in this norm. We c
the domainG,P to be the set

H zPP:h0~z!<2E, I i50, ; i PL, Ji5
xi

21yi
2

2
50, ; i ¹LJ .

And we extend it to the complex using again the parameterR.
It is now easy to computee f . To this end remark thatH int is a bounded polynomial of the

variablesx,y, so it is analytic as a function of these variables. Since the change of vari
involving action angle variables is also analytic,H int is analytic also as a function of thes
variables. MoreoverH int is independent of thep,q variables. It follows that there exists a consta
independent ofe andR which bounds the norm of the Hamiltonian vector field off 1 . Concerning
the vector field off 2 , it has onlyf components. It is linear inJ, and therefore it is bounded by
constant timesR2. Finally considerf 3 ; the corresponding vector field is a cubic polynomial inx,y
and therefore the square of its norm is bounded by a constant timesR timesR3. It follows that we
have

1

R
iXf i<CS e

R
1e1RD

with a suitable constantC. ChoosingR5Ae we have

e f5C8Ae. ~3.7!

We define now the group actionC. We denote byc1 ,c2 ,cn11 the angles on the torus. The
(P,Q,J,f,p,q,x,y)ªCc1 ,c2 ,cn11

(P0 ,Q0 ,J0 ,f0 ,p0 ,q0 ,x0 ,y0) is defined by

I i5I i ,0 , i PL, f i~c j i
!5f0,i1c j i

, i PL,

Pi~c1!5P0,i cosc12vQ0,i sinc1 , i PL,

Qi~c1!5Q0,i cosc11
P0,i

v
sinc1 , i PL,

qi~c1!5S q0,i1
Ji

2

v2D cosc11
p0,i

v
sinc12

Ji

v2 , i ¹L,

pi~c1!52vS q0,i1
Ji

v2D sinc11
p0,i

v
cosc1 , i ¹L,
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xi~c1!5x0,i cosS pi~c1!2pi ,0

v2 D1y0,i sinS pi~c1!2pi ,0

v2 D , i ¹L,

yi~c1!5x0,i sinS pi~c1!2pi ,0

v2 D1y0,i cosS pi~c1!2pi ,0

v2 D , i ¹L,

where j i is defined byj iP@2,...,n11#, i , i 8 implies j i, j i 8 .
So it is possible to apply theorem 3.2 obtaining the estimates~3.3! for times which are the

minimum between the escape time fromG3R/8 and the times~3.4!. To bound the escape tim
remark that the functionh0 can be used as a Lyapunov functions to show that the variablesP,Q
cannot leave their domains for the times we are interested in. The same is obviously true
variablesI i . To bound also the escape time for the variables$xi ,yi% i ¹L just use the information
that ( i(xi

21yi
2)/2 is a constant of motion. This allows us to conclude that

(
i ¹L

xi~ t !21yi~ t !2

2
<(

i ¹L

xi~0!21yi~0!2

2
1(

i PL
uI i~ t !2I i~0!u

but the latter quantity is estimated by~3.3!, and therefore also the variablesxi ,yi cannot escape
from their domain. So the theorem is proven. j

IV. DISCUSSION

So, we have proved that, providede is small enough, and corresponding to the majority
initially localized electron probability distributions, the electron probabilitiesuc i u2 and the total
energy of the oscillators are essentially constant for very long times. One can ask what h
corresponding to the other initial data.

We expect that the electron probability distribution should be essentially constant corres
ing to any initial datum withuc i u2 concentrated at a finite number of sites. Namely we expect
there is no need of the diophantine condition~3.1!. The reason is that the Holstein model appe
as a perturbation of the Hamiltonian

h02(
i

J i
2

2v2 ,

which is quasiconvex as a function ofJi and h0 . For quasiconvex systems with finitely man
degrees of freedom Nekhoroshev theory ensures that the actions are approximatively c
under perturbation, and for exponentially long times. This of course requires the develo
of the geometric part of Nekhoroshev theorem. The Holstein model however is infinite di
sional; we recall that the extension of the geometric part of Nekhoroshev’s theorem to
infinite dimensional systems has been carried out~following the finite dimensional proof by
Lochak6! Refs. 2 and 7. We expect the techniques of Ref. 7 to be applicable to the presen
However, since there is not a general theorem which is directly applicable to Holstein mode
should repeat the whole argument of Ref. 7. For this reason we limited ourselves to deal w
much simpler nonresonant case.

For what concerns probability distributions which are not concentrated, we have not a p
idea, but we expect that~in general! there should not be an analog of theorem 3.1.

In the present paper we limited ourselves to the one electron Holstein model. Howeve
easy to see that also the on site dynamics of theM electron Holstein model is integrable, and th
its Hamiltonian, in terms of action angle variables has exactly the form~2.4!. So, one can expec
theorem 3.1~and its possible extensions! to hold also in theM electron case. However, its proo
is much more difficult in the case ofM electrons. This is due to the singularities that app
introducing action angle variables, which are much harder in theM electron case. We expect tha
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it should be possible to overcome such difficulties using the techniques developed by Nieder8

which avoid completely the introduction of action angle variables~see also Ref. 9!.
Finally we remark that the case where the linear restoring force for the oscillators is s

tuted by a nonlinear force~as Ref. 5!, can also be dealt with by the same techniques develo
here. Indeed also in this case the on site system is integrable. However, since the explici
duction of action angle variables cannot~in general! be done, the proof of theorem 3.1 would tu
out to be slightly more difficult. On the contrary the case of a nonlinear interaction bet
different sites can be treated without additional difficulties.
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Phase-space representation of quantum state vectors:
The relative-state approach and the displacement-
operator approach

Masashi Ban
Advanced Research Laboratory, Hitachi, Ltd., Akanuma 2520, Hatoyama,
Saitama 350-0395, Japan
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Phase-space representation of quantum state vectors has been recently formulated
by means of the relative-state method developed by the present author@J. Math.
Phys.39, 1744~1998!#. It is, however, pointed out by Mo” ller that the displacement-
operator method provides another basis of phase-space representation of quantum
state vectors@J. Math. Phys.~to appear!#. Hence the relation between the relative-
state approach and the displacement-operator approach is discussed, both of which
yield equivalent phase-space representations. ©1999 American Institute of Phys-
ics. @S0022-2488~99!02407-X#

I. INTRODUCTION

Phase-space functions that represent quantum state vectors are very useful for inves
physical and chemical properties of quantum mechanical systems.1 Furthermore, measuremen
processes of quantum states of light can be described in terms of phase-space functions. H
is important to formulate a phase-space representation of quantum state vectors from t
principles of quantum mechanics without introducing additional assumptions. The present
has recently formulated the phase-space representation by means of the relative-state me2 It
has been shown that under certain conditions, the results become equivalent to those obta
Torres-Vega and Frederick3 and Harriman.4 The phase-space representation obtained by mean
the relative-state method provides the mathematical and physical basis of their results. Mo” ller has
recently pointed out that besides the relative-state method, there is another method for obta
phase-space representation of quantum state vectors.5 In fact, he has formulated the phase-spa
representation by means of the displacement-operator method and shown that under certa
ditions, the relative-state method and the displacement-operator method yield the equ
phase-space representations. This short note that discusses the relation between these two
is a response to the comment by Mo” ller.5

II. PHASE-SPACE REPRESENTATIONS

A. The relative-state approach

We first summarize the phase-space representation of quantum state vectors formula
means of the relative-state method.2 Let S be a relevant quantum system that we describe
physical properties, and letSr be a reference system. In some cases, a reference system repr
a measurement apparatus for the relevant quantum system. The sets of the position eigen
the relevant and reference quantum systems are denoted as$ux&uxPR% and$ux& r uxPR%, whereR
stands for the set of all real numbers.6 Then we introduce a state vectoruv(r ,k;s)&& of the
compound quantum systemS1Sr ,2
37180022-2488/99/40(8)/3718/5/$15.00 © 1999 American Institute of Physics
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uv~r ,k;s!&&5
1

A2p
E

2`

`

dx eikxUx1
1

2
~11s!r L ^Ux2

1

2
~12s!r L

r

5
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxux& ^ ux2r & r , ~1!

which is the simultaneous eigenstate of operatorsx̂^ 1̂r21̂^ x̂r and p̂^ 1̂r11̂^ p̂r with eigenval-
uesr andk. The state vectoruv(r ,k;s)&& is called the relative-state vector.2

Since we investigate the properties of the relevant quantum systemS and the reference
quantum systemSr is irrelevant, we fix some state vectoruf& r of the reference quantum syste
that may be arbitrarily chosen. In this case, the relevant quantum system is described in te
the reduced relative-state vectors,

uv~r ,k;s!&5 r^fuv~r ,k;s!&&5
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxf* ~x2r !ux&, ~2!

wheref(x)5 r^xuf& r is an arbitrary wave function normalized as*2`
` dx uf(x)u251. It is easy to

see that the set of the reduced relative-state vectors,$uv(r ,k;s)&ur ,kPR%, becomes an overcom
plete system.2 Hence any quantum state vectoruc& of the relevant system is represented by t
phase-space functioncs(r ,k;s)5^v(r ,k;s)uc& which is normalized as*2`

` dr*2`
` dkucs(r ,k)u2

51. The position and momentum operators,x̂ and p̂, are represented by

^v~r ,k;s!ux̂uc&5F1

2
~11s!r 1 i

]

]kGcs~r ;k!, ~3!

^v~r ,k;s!u p̂uc&5F1

2
~12s!r 2 i

]

]r Gcs~r ;k!. ~4!

The average values and fluctuations of the phase-space variables,r and k, with respect to the
probability densityucs(r ,k)u2, are given byr̄ 5xc2xf , k̄5pc1pf , (Dr )25(Dxc)21(Dxf)2

and (Dk)25(Dpc)21(Dpf)2, where we setxc5^cux̂uc&, pc5^cu p̂uc&, (Dxc)25^cux̂2uc&
2(^cux̂uc&)2, and so on.

The phase-space functioncs(r ;k) depends on the quantum stateuf& r of the reference system
Thus, besides the intrinsic fluctuation of the relevant system, the additional fluctuation is
duced in the phase-space representation. For example, the fluctuation of the phase-space
r is given by (Dxc)21(Dxf)2, but not (Dxc)2, where (Dxc)2 is the intrinsic fluctuation and
(Dxf)2 is the additional one. Such an additional fluctuation can be attributed to the effect o
measurement apparatus which is used to obtain the information about the position and mom
of the relevant system. In the fuzzy-space formulation,7,8 the quantum stateuf& r characterizes the
finite accuracy of the position and momentum variables. Therefore, the phase-space repres
is the operational description of the relevant quantum system rather than the intrinsic descri9

We can investigate the physical and chemical properties of the relevant quantum sys
terms of the phase-space functioncs(r ,k) and the differential operators12(11s)1 i ]/]k and
1
2(12s)2 i ]/]r . It is shown that under certain conditions,2 these results become equivalent
those obtained by Torres-Vega and Frederick3 and Harriman.4 The properties of the phase-spa
representation obtained by the relative-state method have been investigated in detail.2

B. The displacement-operator approach

We next introduce the phase-space representation of quantum state vectors obtained
displacement-operator approach.1,5 The displacement operatorD̂s(r ,k) used in this approach is
given by

D̂s~r ,k!5exp@ i ~kx̂2r p̂2 1
2skr!#, ~5!
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where the parameters determines the operator ordering; the standard orderingD̂1(r ,k)
5e2 ir p̂eikx̂ for s51, the antistandard orderingD̂21(r ,k)5eikx̂e2 ir p̂ for s521, and the symmet-
ric ordering D̂0(r ,k)5ei (kx̂2r p̂) for s50.10 Using the displacement operatorD̂s(r ,k), Mo” ller
introduces a state vectoruV(r ,k;s)& to formulate the phase-space representation of the rele
quantum system,

uV~r ,k;s!&5
1

A2p
D̂s~r ,k!ux&5D̂s~r ,k!uV~0,0;s!&, ~6!

whereux& is an arbitrary normalized state vector of the relevant quantum systemS. In particular,
if ux& is a vacuum state,uV(r ,k;s)& becomes the Glauber coherent state, except for the p
factor and the normalization constant.11 It is easy to see that the set$uV(r ,k;s)&ur ,kPR% becomes
an overcomplete system. Thus a quantum state vectoruc& of the relevant system is represented
the phase-space function c̃s(r ,k;s)5^V(r ,k;s)uc& which is normalized as
*2`

` dr*2`
` dkuc̃s(r ,k)u251. We obtain the phase-space representation of the canonical po

and momentum operators,

^V~r ,k;s!ux̂uc&5F1

2
~11s!r 1 i

]

]kG c̃s~r ;k!, ~7!

^V~r ,k;s!u p̂uc&5F1

2
~12s!r 2 i

]

]r G c̃s~r ;k!, ~8!

which are identical with those obtained by the relative-state approach@see Eqs.~3! and~4!#. This
result indicates that the relative-state approach and the displacement-operator approach y
equivalent phase-space representations of quantum state vectors of the relevant system. W
remark that the phase-space representation by the displacement-operator approach depen
quantum stateux&. This arbitrariness is equivalent to that in the relative-state approach. Thu
displacement-operator approach also yields the operational description of the relevant sys

III. RELATION BETWEEN THE RELATIVE-STATE APPROACH AND THE
DISPLACEMENT-OPERATOR APPROACH

We have found that the phase-space representation obtained by the relative-state me
equivalent to that obtained by the displacement-operator method. The equivalence resul
fact that the state vectoruV(r ,k;s)& introduced by Mo” ller is identical with the reduced relative
state vectoruv(r ,k;s)&. In fact, using the normalizability of the wave functionf(x), we obtain

uv~r ,k;s!&5
1

A2p
e2 i ~11s!kr/2E

2`

`

dx eikxf* ~x2r !ux&

5e2 ir p̂
1

A2p
ei ~12s!kr/2E

2`

`

dx eikxf* ~x!ux&

5e2 ir p̂e2kx̂
1

A2p
ei ~12s!kr/2E

2`

`

dx f* ~x!ux&

5ei ~kx̂2r p̂2skr/2!
1

A2p
E

2`

`

dx f* ~x!ux&

5D̂s~r ,k!uv~0,0;s!&5
1

A2p
D̂s~r ,k!ug&, ~9!
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where the normalized state vectorug& of the relevant system is given by

ug&5E
2`

`

dxf* ~x!ux&. ~10!

Hence, if we identify the state vectorug& in the relative-state method with the state vectorux& in the
displacement-operator method@or equivalentlyf* (x)5x(x) ~Ref. 5!#, we obtain the equality
uv(r ,k;s)&5uV(r ,k;s)& and thus the equivalence is obvious.

We now consider the relation between the relative-state approach and the displac
operator approach from the probabilistic point of view. Suppose that the relevant system
pure quantum state described by a statistical operatorr̂5uc&^cu. Although we can consider a
mixed quantum state, we confine ourselves to investigating a pure quantum state since
interested in the phase-space representation of quantum state vectors. From the general t
the operational quantum mechanics,12,13 the probabilityP(X,Y) that the phase-space variablesr
andk take values respectively in the subsetsX andY of the setR is given by

P~X,Y!5Tr@M̂~X,Y!r̂#5^cuM̂~X,Y!uc&. ~11!

The operatorM̂(X,Y) defined on the Hilbert spaceH is a positive operator-valued measu
~POVM!, but not a projection-valued measure in general. In the phase-space representat
tained by the relative-state method or the displacement-operator method, the POVM is giv

M̂~X,Y!5E
r PX

drE
kPY

dk uv~r ,k;s!&^v~r ,k;s!u5E
r PX

drE
kPY

dk uV~r ,k;s!&^V~r ,k;s!u.

~12!

Then we obtain the phase-space probability

P~X,Y!5E
r PX

drE
kPY

dk ucs~r ,k!u25E
r PX

drE
kPY

dk uc̃s~r ,k!u2, ~13!

which indicates that the probability amplitude in phase space is given bycs(r ,k) or c̃s(r ,k). It is
important to note that the POVMM̂(X,Y) given by Eq.~12! is not a projection-valued measur
because of the nonorthogonality of the state vectorsuv(r ,k;s)& and uV(r ,k;s)&.

It is well known that any POVM is made some projection-valued measure by extend
Hilbert space~the Naimark theorem!.13 The operatorsx̂^ 1̂r21̂^ x̂r and p̂^ 1̂r11̂^ p̂r of the
compound systemS1Sr are commutable and thus represent simultaneously measurable q
ties, the eigenstate of which is given by the relative-state vectoruv(r ,k;s)&& @see Eq.~1!# in the
sense of Ref. 6. The projection operator14

N̂~X,Y!5E
r PX

drE
kPY

dk uv~r ,k;s!&&^^v~r ,k;s!u ~14!

describes the simultaneous measurement, where the measurement outcomes ofx̂^ 1̂r21̂^ x̂r and
p̂^ 1̂r11̂^ p̂r belong toX andY. Then it is easy to see that this operator satisfies the relatio

P~X,Y!5Tr@M̂~X,Y!r̂#5Tr Trr@N̂~X,Y!r̂ ^ ŝ r #, ~15!

where we have useduv(r ,k;s)&5 r^fuv(r ,k;s)&& and Trr is the trace operation over the referen
systemSr . This result indicates that the projection operatorN̂(X,Y) is the Naimark extension o
the POVMM̂(X,Y) in the sense of Ref. 6. In Eq.~15!, ŝ r5uf& rr ^fu is called the Naimark state
In particular, whenuf& r is the vacuum state, the projection operatorN̂(X,Y) describes the bal-
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anced homodyne detection and the heterodyne detection.15–17 Therefore, we have found that th
relative-state approach corresponds to the Naimark extension of the displacement-opera
proach.

In conclusion, it is shown that the quantum state vectoruV(r ,k;s)& used in the displacement
operator approach is equivalent to the reduced relative-state vectoruv(r ,k;s)&. Thus it is obvious
that the relative-state approach and the displacement-operator approach yield equivalent
space representations of quantum state vectors. From the probabilistic point view, the relativ
approach corresponds to the Naimark extension of the displacement-operator approach.
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A one-dimensional model for n-level atoms coupled
to an electromagnetic field

Zorawar S. Bassia) and André LeClair
Newman Laboratory, Cornell University, Ithaca, New York 14853

~Received 1 February 1999; accepted for publication 4 May 1999!

A model forn-level atoms coupled to quantized electromagnetic fields in a fibrillar
geometry is constructed. In the slowly varying envelope and rotating wave approxi-
mations, the equations of motion are shown to satisfy a zero curvature representa-
tion, implying integrability of the quantum system. ©1999 American Institute of
Physics.@S0022-2488~99!02808-X#

I. INTRODUCTION

The interaction of radiation with two-level atoms has been extensively studied under va
approximations. In one spatial dimension, the reduced Maxwell–Bloch equations resulting
the slowly varying envelope and rotating wave approximations are known to be qua
integrable.1 In this paper we generalize the one-dimensional case of two-level atoms to th
n-level atoms.

In the first of two main parts, we construct the fully quantumn-level model. The system
consists ofn-level atoms distributed in a fibrillar geometry, interacting with radiation throug
minimally coupled Hamiltonian. In the remaining section we apply the approximations, and
that the Heisenberg equations of motion for the reduced system satisfy the so-called zero cu
representation. This implies that the system is integrable and can be solved by the quantum
scattering method.

II. MATHEMATICAL BACKGROUND

Let us first recall thesln Lie algebra. Then221 generators, written as

$Ei j ,Hmu1< iÞ j <n, 1<m<r %, ~2.1!

wherer 5n21 is the rank, satisfy the following brackets~in the Chevalley basis!:

@Ei j ,Ekl#5H dk jEil 2d i l Ek j if d i l dk j50

(
m5 i

j 21

Hm~ i , j ! if d i l dk j51J , ~2.2a!

@Ei j ,Hm#5~d jm2d im2d jm111d im11!Ei j , ~2.2b!

@Ha ,Hb#50. ~2.2c!

The set spanned by$Hm% is the Cartan subalgebra.@Note that in the bracket~2.2a! a term of the
form d iÞ jEkk is formally equal to zero, even thoughEkk has not been defined. The set$Ei j u1
< i , j <n% satisfying the first relation in~2.2a! is a basis for the algebragln .] A representationr
of sln will be denoted as

$Ei j
r 5r~Ei j !,Hm

r 5r~Hm!%. ~2.3!

a!Electronic mail: zorawar@mail.lns.cornell.edu
37230022-2488/99/40(8)/3723/9/$15.00 © 1999 American Institute of Physics
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The r 3r Cartan matrixA has the explicit form

Auv52duv2duv212duv11 . ~2.4!

It is a symmetric matrix with diagonal elements 2 and nearest off-diagonal elements21. We now
proceed to build our quantum system.

III. THE INTERACTING n-LEVEL HAMILTONIAN

We model a freen-level atom as having a single electron with eigenstatesui&, i 51,2,...,n, and
energiese1.e2.¯.en . The energy splitting between statesui& andu i 11& will be denoted byv i

or v i i 11 ,

v i5v i i 115e i2e i 11 , 1< i ,n. ~3.1!

The second notation can be generalized as follows:

v i j 5e i2e j , 1< i , j <n. ~3.2!

The notationv i is only defined for the energy splitting between successive states.
To define various atomic operators, we first introduce fermion creation and destructio

erators$bi ,bi
†% for 1< i<n. The operatorbi

†(bi) creates~destroys! an electron in thei th level.
These operators satisfy the algebra

$bi ,bj%5$bi
† ,bj

†%50, $bi ,bj
†%5d i j . ~3.3!

The atomic operators can now be written as

Oi j 5bi
†bj , 1< i , j <n ~3.4!

or linear combinations of theOi j ’s. The action ofOi j on an atomic stateuk& is given by

Oi j uk&5bi
†bj uk&5dk ju i &. ~3.5!

From ~3.3! the general commutator for theO operators is

@Oi j ,Okl#5Oi l d jk2Ok jd i l . ~3.6!

Operators of the formOi , j are referred to as raising operators. These cause a transition from
lower energy stateuj& to the higher energy stateui&. Similarly the operatorsOj . i are lowering
operators. We also define a set of commuting operators, denotedHm , as follows:

Hm5Omm2Om11m11 , 1<m<r . ~3.7!

The set$OiÞ j ,Hm% satisfies~2.2!, thus forming a representation ofsln . ~We shall often use the
notationXa,b(Xa.b) to meanXab with a,b(a.b) for X any quantity, operator,c number, etc.!

The free atomic Hamiltonian can be written as

H0
atom5 (

u51

r S (
v51

u

evDHu1S (
v51

n

evD bn
†bn . ~3.8!

We will choose the arbitrary lowest state energyen to be such that(v51
n ev50. In terms of the

v i ’s and the inverse Cartan matrixA21, this means setting

en52 (
v51

r

Arv
21vv , ~3.9!
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which implies

(
v51

u

ev5 (
v51

r

Auv
21vv . ~3.10!

The atomic Hamiltonian~3.8! thus takes the form

H0
atom5 (

1<u,v<r
Auv

21vvHu . ~3.11!

To couple the atom to an electromagnetic field we make use of the minimal coupling
scription~see any standard text on quantum mechanics, e.g., Ref. 2!. The standard Hamiltonian is

H5H0
f1H0

atom1H int , ~3.12!

where

H0
atom5

1

2me
pW •pW 1V~xW !, ~3.13!

H int52
e

2me
~pW •AW ~xW !1AW ~xW !•pW !1

e2

2m
AW ~xW !•AW ~xW !, ~3.14!

and H0
f is the free field Hamiltonian. The Hamiltonian~3.13! is identified with ~3.11!, i.e., the

exact eigenstates and energies of~3.13! are taken to be$u i &,e i%, i 51,...,n. If the spatial variation
of the vector potentialAW is small across the atom, we can take its value at a fixed pointxW0 inside
the atom. Using

pW 52 ime@xW ,H0
atom#, ~3.15!

we get

2
e

2me
^aupW •AW ~xW !1AW ~xW !•pW ub&5 i ~eb2ea!AW ~xW0!•^audW ub&, ~3.16!

wheredW 5exW is the electric dipole operator. SincedW is a vector operator and the atomic states
assumed to be parity eigenstates, we have^ i udW u i &50. The nonzero matrix elements can be para
etrized as follows (i , j ):

^ i udW u j &5di j e
ia i j n̂i j , ^ j udW u i &5di j e

2 ia i j n̂i j , ~3.17!

wheredi j >0 and then̂i j ’s are unit vectors. We will consider the situation wheren̂i j is indepen-
dent of i,j due to some symmetry of the system and writen̂[n̂i j . The dipole operator can b
expanded in terms of the raising and lowering operators as

dW 5n̂(
i , j

~di j e
ia i jOi j 1di j e

2 ia i jOj i !, ~3.18!

which gives for the interaction Hamiltonian

H int52 iAW ~xW0!•n̂(
i , j

v i j di j ~Oi j e
ia i j 2Oj i e

2 ia i j !1
e2

2me
AW ~xW0!•AW ~xW0!. ~3.19!
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To reduce this system to a one-dimensional model, we make use of the fibrillar geometr
atom can be thought of as an impurity in an optical fiber of cross-sectional areaA and lengthL,
with L@AA. Taking the fiber along thex̂ direction, the reduced field action is found to be~see
Ref. 3 for details!

SMaxwell5E dx dt1
2~] tf] tf2]xf]xf!, ~3.20!

wheref is a dimensionless scalar field defined through

AW •n̂5A4p

Aeff
f. ~3.21!

HereAW is the vector potential depending only on thex coordinate andAeff is the effective fiber
cross-sectional area. The fieldf satisfies the commutation relation

@f~x,t !,] tf~x8,t !#5 id~x2x8!. ~3.22!

From the action the free field Hamiltonian is found to be

H0
f5E dx

1

2
@~] tf!21~]xf!2#1

2pe2

meAeff
f2~x0!, ~3.23!

where the last term is the quadratic potential term taken fromH int . Now the interaction Hamil-
tonian is

H int52
i

2
f~x0!(

i , j
v i j b i j ~Oi j e

ia i j 2Oj i e
2 ia i j !, ~3.24!

where~explicitly showing\ andc!

b i , j5A 16p

\cAeff
di j . ~3.25a!

For 1<m<r we define

bm5A 16p

\cAeff
dmm115bmm11 . ~3.25b!

The b parameters are the important dimensionless coupling constants of the model. The s
neous decay rateG i j

s 51/t i j
s of a single excited atom from the stateui& to the stateuj& is given by

G i j
s 5

b i j
2

4
v i j . ~3.26!

Next to make the transition to a continuous system. ForN atoms positioned atx5xm , m

51,...,N, let dW m5e(xW2xWm) andOi j (xm) be the dipole and transition operators for the atom atxm .
The matrix elements ofdW m are independent of the position, however, the orientationn̂ can vary
from atom to atom. The operatordW m can be written in terms of the single atom matrix elements

dW m5n̂m(
i , j

di j ~Oi j ~xm!eia i j 1Oj i ~xm!e2 ia i j !. ~3.27!
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For simplification, we suppose the situation where all atoms are alignedn̂m5n̂ ~e.g., by an
external electric field!, giving

H int52
i

2 E dx f~x!(
i , j

v i j b i j ~Oi j ~x,t !eia i j 2Oj i ~x,t !e2 ia i j !, ~3.28!

where we have introduced the space-dependent~continuous! transition operators

Oi j ~x,t !5 (
m51

N

Oi j ~xm ,t !d~x2xm!. ~3.29!

The discrete operatorOi j (xm ,t) acts only on the atom atxm to cause a transition fromuj& to ui&.
@Note the abuse of notation, we are using the same symbolOi j for both the continuous and
discrete operators. Henceforth only the continuous versionOi j (x,t) will appear.# A time depen-
dence in~3.29! signifies that theOi j operators are to be treated as Heisenberg operators.
continuousHm(x,t) operators are defined similarly. The general commutator for the space–
transition operators is

@Oi j ~x,t !,Okl~x8,t !#5~Oi l ~x,t !d jk2Ok j~x,t !d i l !d~x2x8!, ~3.30!

from which it is easily seen that the algebra~or now more appropriately current algebra! satisfied
by the set$OiÞ j (x,t),Hm(x,t)% is identical to thesln algebra~2.2!. The free atomic Hamiltonian
takes the form

H0
atom5E dx (

1<u,v<r
Auv

21vvHu~x,t !. ~3.31!

The complete Hamiltonian for the system is thereforeH0
atom1H0

f1H int , with H0
atom, H0

f , andH int

given by ~3.31!, ~3.23!, and~3.28!, respectively.

IV. TWO APPROXIMATIONS AND INTEGRABILITY

We now make use of two approximations common in quantum optics to further sim
H int—these being the slowly varying envelope and rotating wave approximations.4

In the slowly varying envelope approximation, one assumes that near resonant photon
energies'v i j are most relevant. Then the scalar fieldf can be expanded about the vario
resonances as

f~x,t !'(
i , j

~e2 iv i j ~ t2x!c i j ~x,t !1eiv i j ~ t2x!c i j
† ~x,t !!, ~4.1!

wherec i j (x,t) andc i j
† (x,t) are destruction and creation fields with mode expansions

c i , j~x,0!5
1

A2v i j
E dke

A2p
âi j ~ke!e

ikex, ~4.2a!

c i , j
† ~x,0!5

1

A2v i j
E dke

A2p
âi j

† ~ke!e
2 ikex, ~4.2b!

and

âi j ~ke!5ai j ~ke1v i j !, âi j
† ~ke!5ai j

† ~ke1v i j !. ~4.3!
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Hereai j (ai j
† ) is the usual photon destruction~creation! operator.~Note that we are only consid

ering right-moving plane waves.! The operatorâi j (ke) (âi j
† (ke)) destroys~creates! a photon with

energy

uku5uke1v i j u'v i j . ~4.4!

Thus ke acts as an ‘‘envelope’’ vector about thev i j resonance. The photon operators sati
standard commutation relations

@ âi j ~k!,âkl
† ~k8!#5@ai j ~k!,akl

† ~k8!#5d ikd j l d~k2k8!. ~4.5!

In writing ~4.1! and the above commutation relations, we have assumed that all resonancv i j

$ 1
2(n

22n) in total! are distinct~i.e., v i j 5vkl⇔ i 5k and j 5 l ) and sharp. From~4.5! the compo-
nent fields satisfy

@c i j ~x,t !,ckl
† ~x8,t !#5

1

2v i j
d ikd j l d~x2x8!, ~4.6!

with all other commutators zero.
The rotating wave approximation reduces the number of interactions inH int . Using ~4.1! in

H int we obtain terms with both photon creation (a†) and atomic raising (Oi , j ) operators~or
photon destruction and atomic lowering$a,Oj . i%), or two photon creation~destruction! operator
terms inH0

f . Such high frequency terms lead to vacuum fluctuations and higher order proc
The rotating wave approximation sets these processes to zero. We also set to zero term
form c i , jOk, l ~or c i , j

† Ol .k) for ( i , j )Þ(k,l ) since they give no contribution to lowest order
perturbation theory. So we only retain those terms which pair creation/lowering or destru
raising operators~and creation/destruction operators inH0

f) and connect states with approximate
equal energy.

Combining these two approximations we get

H int52
i

2 E dx(
i , j

b i j v i j ~c i j e
ia i jOi j e

2 iv i j ~ t2x!2c i j
† e2 ia i jOj i e

iv i j ~ t2x!!, ~4.7!

H0
f522i E dx(

i , j
v i j c i j

† ]xc i j . ~4.8!

The free field Hamiltonian follows from the field action, which using

ukeu2!v i j
2 ⇒u]xc i j u!v i j uc i j u, u] tc i j u!v i j uc i j u, ~4.9!

approximates to

E dx dt1
2~~] tf!22~]xf!2!'2i E dx dt(

i , j
v i j c i j

† ~]x1] t!c i j . ~4.10!

@In ~4.8! we have dropped the quadratic term that appears in~3.23!. For electric fields small
compared withe/a0

2, this term is negligible in relation toH int .] The phasese6 ia i j ande6 iv i j x can
be absorbed into$c i j ,c i j

† % and $Oi j ,Oj i % i , j , respectively, without changing the commutatio
relations. The time-dependent phasee2 iv i j t (e1 iv i j t) cancels the time dependence ofOi , j (Oj . i)
coming from the free atomic Hamiltonian. Thus we can setH0

atom to zero and consider the mode
defined by the complete Hamiltonian

H522i E dx(
i , j

v i j c i j
† ]xc i j 2

i

2 E dx(
i , j

v i j b i j ~c i jOi j 2c i j
†Oj i !. ~4.11!
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Finally we rescalec i j andc i j
† as

c i j˜
c i j

A2v i j

, c i j
†
˜

c i j
†

A2v i j

, ~4.12!

which gives for the commutator~4.6!,

@c i j ~x,t !,ckl
† ~x8,t !#5d ikd j l d~x2x8!, ~4.13!

and defining

ṽ i , j5
1

2&
b i jAv i j 5AG i j

s

2
, ṽm5ṽmm11 ~1<m<r !, ~4.14!

the Hamiltonian~4.11! becomes

H52 i E dx(
i , j

c i j
† ]xc i j 2 i E dx(

i , j
ṽ i j ~c i jOi j 2c i j

†Oj i !. ~4.15!

The first interaction term,c i jOi j , causes an atomic transition from a lower energy stateuj& to a
higher energy stateui&, along with the absorption of a photon of energy'v i j . The second term
c i j

†Oj i , causes a transition from a higher energy stateui& to a lower energy stateuj&, along with the
creation of a photon of energy'v i j .

From H we can obtain the Heisenberg operator equations of motion. Explicitly we find

] tOk, l52(
j . l

ṽ l j c l jOk j1(
i ,k

ṽ ikc ikOi l 1(
i , l
iÞk

ṽ i l c i l
†Oki2(

j .k
j Þ l

ṽk jck j
† Oj l 1ṽklckl

† (
m5k

l 21

Hm ,

~4.16a!

] tOl .k5] tOk, l
† 52(

j . l
ṽ l j c l j

†Ojk1(
i ,k

ṽ ikc ik
†Ol i 1(

i , l
iÞk

ṽ i l c i lOik

2(
j .k
j Þ l

ṽk jck jOl j 1ṽklckl (
m5k

l 21

Hm , ~4.16b!

] tHm522ṽmm11~cmm11Omm111cmm11
† Om11m!2 (

j .m11
ṽm j~cm jOm j1cm j

† Ojm!

2 (
i ,m

ṽ im11~c im11Oim111c im11
† Om11i !1 (

i ,m
ṽ im~c imOim1c im

† Omi!

1 (
j .m11

ṽm11 j~cm11 jOm11 j1cm11 j
† Ojm11!, ~4.16c!

~] t1]x!ck, l5ṽklOlk , ~4.16d!

~] t1]x!ck, l
† 5ṽklOkl . ~4.16e!

Each term in the equations of motion for the atomic operators has a simple physical interpre
For example, consider the raising operatorOk, l . The first summation in~4.16a! is a sum over all
atomic and photon operator pairs, where the photon field destroys a photon of energyv l , j , and
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the atomic~raising! operator causes a transition from the lower stateuj& to the higher stateuk&. The
change in energy of the system corresponding to the atomic/field pair beingvkl @as it is for every
other term in~4.16a!#. If we think of a field destroying~creating! a photon of energyv i , j as
‘‘connecting’’ atomic statesui& to uj& ~uj& to ui&!, along withOi , j (Oj . i) connectinguj& to ui& ~ui& to
uj&! andHm connectingum& to um& and um11& to um11&, then ~4.16a! is, aside fromc-number
factors, a sum over all atomic/field pairs connectingul& to uk& through some intermediate state, i.e
u l &˜u j &˜uk&. A similar interpretation follows forOl .k andHm .

These equations of motion have a zero curvature representation~Refs. 5 and 6!

] tAx2]xAt5@Ax ,At#, ~4.17!

whereAx andAt are matrices of quantum operators given by

Ax5m (
1<m,n<r

Amn
21HnHm

r 1m(
i , j

~Oi j Ei j
r 1Oj i Eji

r !

1(
i , j

ṽ i j ~2c i j
† Ei j

r 1c i j Eji
r !2

1

m (
1<m,n<r

Amn
21ṽn

2Hm
r , ~4.18a!

At5
1

m (
1<m,n<r

Amn
21ṽn

2Hm
r 2(

i , j
ṽ i j ~2c i j

† Ei j
r 1c i j Eji

r !, ~4.18b!

providedthat theṽ i , j ’s satisfy

ṽ i , j
2 5ṽ i ,k

2 1ṽk, j
2 , ~4.19!

for any intermediate value ofk,i ,k, j . This is trivially satisfied byṽ i i 11 , in which case there is
no suchk. HereAmn

21 is the inverse Cartan matrix, and$EiÞ j
r ,Hm

r % are matrices in any represen
tation r of sln satisfying~2.2!. Requiring~4.17! to be valid for all values of the arbitrary spectr
parameterm, is equivalent to the equations of motion~4.16! @of course provided~4.19! is satis-
fied#. This equivalence can be shown by making use of the commutation relations~2.2!. The
equations of motion~4.16c! for theHm operators can be rewritten in a more compact form

] tHm52 (
u51

r

Amu (
u, l<n

(
k51

u

ṽkl~Oklckl1Olkckl
† !. ~4.20!

The constraint~4.19! arises in forming a zero curvature representation for the field ($c i j ,c i j
† %)

equations of motion, and reduces the number of free parameters tor 5n21, these being
$ṽm%1<m<r . The definition~4.14! shows that the constraint is equivalent to the requirement
the spontaneous decay rate~for a single atom! from ui& to u j &, G i j

s , be equal to the sum of the deca
ratesG ik

s andGk j
s for any intermediate stateuk&,

G i , j
s 5G i ,k

s 1Gk, j
s . ~4.21!

The equations of motion for the atomic operators have the zero curvature representation~4.17!
independent of the constraint.

Having obtained a zero curvature representation, the system can now be solved us
quantum inverse scattering method~see Ref. 7 and references therein!. In particular, from~4.17!
and ~4.18! one can construct a quantum monodromy matrixT(m) depending on the spectra
parameterm, with the property that its trace, i.e., the transfer matrixt(m)5Tr T(m), commutes
for arbitrary values ofm, @t(m),t(l)#50. Furthermore, this commutation relation implies th
@H,t(m)#50, which when expanded inm leads to an infinite set of quantum conservation law
hence integrability of the model. Eigenstates and eigenvalues ofH can then be constructed wit
the algebraic Bethe ansatz.
                                                                                                                



ns

3731J. Math. Phys., Vol. 40, No. 8, August 1999 A one-dimensional model for n-level atoms . . .

                    
1V. I. Rupasov, Pis’ma Zh. Eksp. Teor. Fiz.36, 115 ~1982! @JETP Lett.36, 142 ~1982!#.
2G. Baym,Lectures on Quantum Mechanics~Addison–Wesley, New York, 1990!.
3A. LeClair, Phys. Rev. A56, 782 ~1997!.
4L. Allen and J. H. Eberly,Optical Resonance and Two-Level Atoms~Dover, New York, 1987!.
5L. A. Dickey, Commun. Math. Phys.88, 27 ~1983!.
6L. A. Dickey, Commun. Math. Phys.87, 505 ~1983!.
7V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,Quantum Inverse Scattering Method and Correlation Functio
~Cambridge University Press, Cambridge, 1993!.
                                                                                                                



roach
posed
yson.

ticle,

ption

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 8 AUGUST 1999

                    
Magnetic monopole in the Feynman’s derivation
of Maxwell equations

A. Bérard and Y. Grandati
L.P.L.I. Institut de Physique, 1 Boulevard D. Arago, F-57070, Metz, France

H. Mohrbach
L.P.L.I. Institut de Physique, 1 Boulevard D. Arago, F-57070, Metz, France
and M.I.T, Center for Theoretical Physics, 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139-4307
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In 1992, Dyson published Feynman’s proof of the homogeneous Maxwell equa-
tions assuming only the Newton’s law of motion and the commutation relations
between position and velocity for a nonrelativistic particle. Recently Tanimura
gave a generalization of this proof in a relativistic context. Using the Hodge duality
we extend his approach in order to derive the two groups of Maxwell equations
with a magnetic monopole in flat and curved spaces. ©1999 American Institute
of Physics.@S0022-2488~99!00408-9#

I. INTRODUCTION

Various ways exist to present the Maxwell equations. The usual one is the historical app
in which the empirical basis for each equation is first given. Another remarkable way is ex
in an old unpublished work of Feynman, reported more recently in an elegant paper by D1

His proof of Maxwell equations is shown assuming only the Newton’s law of motion:

Fi5m
d2xi

dt2
, ~1!

the commutation relations between position and velocity for a simple nonrelativistic par
without reference to an action or variational principle:

@xi ,xj #50, ~2!

and

m@xi ,ẋ j #5 i\d i j . ~3!

From this assumption he deduced thatFW has the form of the Lorentz force:

Fi~xk,ẋk,t !5q$Ei~xk,t !1@ ẋW∧BW ~xk,t !# i%, ~4!

where the fields satisfy the first group of Maxwell equations:

div BW 50,
~5!

]BW

]t
1rotWEW 50.

The remaining two other equations are claimed to be a definition of charge density% and
current densityjW. This is a nontrivial and very interesting result because first, the basic assum
37320022-2488/99/40(8)/3732/6/$15.00 © 1999 American Institute of Physics
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appears to restrict the interaction of a nonrelativistic particle to the electromagnetic on
second, there is no need for the existence of Hamiltonian or Lagrangian formalism. Note ho
that Hojman and Shepley2 showed how under certain conditions, an action could be associat
the Feynman’s commutation relations using a Helmholtz variational inverse problem.3

Since then, several other authors have contributed to the success of this Feynman’s pr
tion. In particular, Tanimura4 has proposed a generalization in a Lorentz covariant form wit
scalar evolution parametert and an extension to the case of non-Abelian gauge theories.
recent letter5 we have explained how, if a sO3 Lie algebra structure is required, a Poinca´
magnetic momentum and a Dirac magnetic monopole can be introduced in three dimensio

In this letter, we extend Tanimura’s work in the four-dimensional formalism to find the
Maxwell equations which appear as a consequence of the Jacobi identities. The main
devoted to the demonstration of the generalized Maxwell equations with a magnetic mon
which requires the Hodge duality of the electromagnetic tensorFmn. In this context the duality
between the electric and magnetic fields is also due to the Jacobi identities. The case of a
space is rapidly treated as a direct application of this formalism.

In this approach we can naturally introduce the fiber bundle formalism and particularl
tangent bundle structure~not the cotangent fiber bundle!. This is, however, not essential for ou
purpose. The space where we work is the configuration space in the physicist’s language.

II. MAXWELL EQUATIONS IN D54

Assume a particle of massm moving in the Minkowski space with positionxm(t) (m
51,2,3,4) depending on the parametert. Contrary to Dyson, we do not postulate the Newt
equation of motion. Instead we consider at the starting point a natural commutation relatio

@xm,xn#50, ~6!

with the following property:

d

dt
@xm,xn#5@ ẋm,xn#1@xm,ẋn#. ~7!

Differentiating ~6! with respect to time gives:

@ ẋm,xn#1@xm,ẋn#50, ~8!

which implies

@xm,ẋn#5
gmn~x!

m
, ~9!

wheregmn(x) is a symmetric tensor. A symplectic structure is then defined on the tangent b
like Souriau6 in his symplectic classical mechanics.

Following Tanimura4 we consider in Secs. I and II the case wheregmn(x) is the metric tensor
of the Minkowski space:

gmn~x!5gmn. ~10!

We also require that the brackets satisfy the relations:

@A,B#52@B,A#,

@A,BC#5@A,B#C1B@A,C# ~Leibnitz rule!, ~11!

@A,@B,C##1@B,@C,A##1@C,@A,B##50 ~Jacobi identity!,
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where the quantitiesA, B, andC can be equal toxm or ẋm.
Combining Eqs.~9!–~11! we get:

@xm, f ~xr!#50,

@xm, f ~xr,ẋr!#5
1

m

] f ~xr,ẋr!

] ẋm , ~12!

@ ẋm, f ~xr!#52
1

m

] f ~xr!

]xm .

On another hand, differentiating~9! gives:

@xm,ẍn#52@ ẋm,ẋn#5
q

m2 Fmn, ~13!

whereF is an antisymmetric tensor andq will be associated to the electric charge of the parti
in the following.

Using the Jacobi identity~11! and the relations~12! we easily find thatFmn is only position
coordinates dependent and then deduce the first group of Maxwell equations:

]mFnr1]nFrm1]rFmn50. ~14!

Contracting two indices we find:

]nFn
m52]nFm

n52 j m, ~15!

which is the second group of Maxwell equations. Contrary to the three-dimensional cas
second group of Maxwell equations is not imposed as a definition of the matter as in Ref. 1
it is a direct consequence of the formalism.

Note that by integrating~13! we get also the equation of motion:

mẍm5qFmn~x!ẋn1Gm~x!, ~16!

where the fieldGm(x) satisfies

]mGn2]nGm50. ~17!

Taking the divergence of the ‘‘current density’’ we obtain the current density conservation

]m j m5@ ẋm , j m#5@ ẋm ,@ ẋn@ ẋm,ẋn###50. ~18!

We finally see that Tanimura’s approach contains all the Maxwell equations in the presence
electric source. In Sec. III we extend this formalism by introducing the Hodge duality of
electromagnetic tensor.

III. MAXWELL EQUATIONS WITH MAGNETIC MONOPOLE

Instead of~13! we choose for the definition of the gauge curvature:

@xm,ẍn#52@ ẋm,ẋn#5
1

m2 ~qFmn1g* Fmn!, ~19!

whereg will be interpreted as the magnetic charge of the Dirac monopole. The* operation is the
Hodge duality.

As usually we deduce the equation of motion by integrating~19!,
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mẍm5~qFmn~x!1g* Fmn~x!!ẋv1Gm~x!

and in the same manner as Sec. II we find:

]mGn2]nGm50. ~20!

The Jacobi identity between the velocities~11! gives the following relation between the electr
magnetic tensor and his dual:

q~]mFnr1]nFrm1]rFmn!1g~]m* Fnr1]n* Frm1]r* Fmn!50, ~21!

that is:

]mFnr1]nFrm1]rFmn5gNmnr,
~22!

]m* Fnr1]n* Frm1]r* Fmn52qNmnr,

whereNmnr is a tensor to be interpreted.
Using the differential forms language defined on the Minkowski space (M4) we write the

preceding equations in a compact form:

dF5gN,
~23!

d* F52qN,

whereF and* FP∧2(M4) andNP∧3(M4).
If we put:

gN52* k,
~24!

qN5* j ,

wherej andkP∧1(M4), we deduce:

dF5 j ,
~25!

dF52* k,

d being the usual codifferential,

d:∧k~M4!˜∧k21~M4!,

defined here as

d5~2 !k~42k11!11~* d* !.

Interpreting the 1-formsj andk as the electric and magnetic four-dimensional current densities
obtained the two groups of Maxwell equations in the presence of a magnetic monopole. No
the Jacobi identity imposes a proportionality relation between the two currents.

As in the absence of monopole we find the conservation of the two current densities:

]m j m5@ ẋm , j m#5d j 50,
~26!

]mkm5@ ẋm ,km#5dk50,

giving the following possible choice for the currents:
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km5rmẋm,
~27!

j m5reẋ
m,

whererm andre are evidently the magnetic and the electric charge densities.
Remark: The differential forms used in this part are of course singular differential fo

which are naturally associated to the electric and magnetic current densities of point part
These densities are then represented also by singular 1-forms defined throughout the
Minkowski space.

IV. APPLICATION TO A CURVED SPACE

Like Tanimura4 we now consider in~9! a general metric tensor,

@xm,ẋv#52
gmn~x!

m
.

Differentiating this last equation we obtain

m@xm,ẍn#52m@ ẋm,ẋn#52]rgmnẋr.

Following the previous parts we define a new tensorWmn(x,ẋ) and its dual, both position and
velocity dependent, such that

@xm,ẍn#52@ ẋm,ẋn#5
1

m2 ~qWmn~x,ẋ!1g* Wmn~x,ẋ!!, ~28!

which implies

q@xr,Wmn#1g@xr,* Wmn#5m2~]mgrn2]ngrm! ~29!

or

qWmn1g* Wmn5m~]mgrn2]ngrm!ẋr1qFmn~x!1g* Fmn~x!. ~30!

Integrating~28! and using~30! we recover the Lorentz force:

Fm~x,ẋ,t!5m
dẋm

dt
52mGnrm~x!ẋnẋr2qFnmẋv2g* Fnmẋv1Gm~x,t!. ~31!

The Christoffel symbols are defined by

Gnrm5 1
2~]rgnm2]ngrm2]mgrn! ~32!

and the Hodge duality is

* Fmn5
1

2A2g
emnrsFrs .

On another side, like Tanimura in the case without Hodge duality, we easily obtain

@ ẋm ,ẋn#52
1

m2 ~qFmv1g* Fmn!.

Requiring that the Jacobi identities~11! are also satisfied in this context, and introducingxm

5gmvxv, we can then demonstrate that
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@ ẋm ,@ ẋn ,ẋr##1@ ẋn ,@ ẋr ,ẋm##1@ ẋr ,@ ẋm ,ẋn##50,
~33!

@xm ,@ ẋn ,ẋr##1@ ẋn ,@ ẋr ,xm##1@ ẋr ,@xm ,ẋn##50,

and that the antisymmetric tensorsFnm obeys the same equation as in the Minkowski case:

q~]mFnr1]nFrm1]rFmn!1g~]m* Fnr1]n* Frm1]r* Fmn!50.

Such an equation is not possible for the tensorWmn, because it is also velocity dependent.
Repeating the same computation as in Sec. III we again arrive at

dF5 j ,
~34!

dF52* k.

V. CONCLUSION

The Tanimura covariant extension of Feynman’s formalism is a good approach for the
of gauge theories with magnetic monopoles, the two groups of Maxwell equations being a
consequence of the different Jacobi identities. We have presented two ways to find this resu
first one is an improvement of Tanimura’s deduction. The second one is narrowly connected
Hodge duality and to the presence of a magnetic monopole. The case without Hodge dual
be retrieved by setting the magnetic current density equal to zero. The generalization to a
space is direct. The problem of the physical meaning of thist parameter is still open.
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We present in detail a class of solutions to the 4D SU~`! Moyal–anti-self-dual
Yang–Mills ~ASDYM! equations~an effective 6D theory! that are related tore-
ductionsof the generalized Moyal–Nahm equations using the Ivanova–Popov an-
satz. The former yields solutions to the ASDYM/SDYM equations for arbitrary
gauge groups in four dimensions. A further dimensional reduction of the above
effective 6D equations yields solutions to the Moyal–anti-self-dual gravitational
equations in four dimensions. The self-dual Yang–Mills/self-dual gravity case re-
quires a separate study. The SU~2! Toda lattice and SU~`! ~continuous! Moyal–
Toda lattice equations are derived from the Moyal–Nahm equations. An explicit
map taking the Moyal heavenly form~after a rotational Killing symmetry reduction
of the Moyal heavenly equations! into the SU~2! Toda lattice field is found. Finally,
the generalized Moyal–Nahm equations are conjectured that contain the~continu-
ous! SU~`! Moyal–Toda lattice equations, after a suitable reduction process. Em-
beddings of the different types of Moyal–Toda lattice equations into the Moyal–
Nahm equations are described. ©1999 American Institute of Physics.
@S0022-2488~99!00508-3#

I. INTRODUCTION

The quantization program of the 3D continuous Toda theory~2D Toda molecule! is a chal-
lenging enterprise that we believe would enable us to understand many of the features
quantum dynamics and spectra of the quantum self-dual membrane.1 This is based on the obse
vation that the light-cone-gauge~spherical! supermembrane moving in a D-dimensional fl
space–time background has a correspondence with aD21 SU~`! super Yang–Mills~SYM!
theory, dimensionally reduced to one temporal dimension; i.e., with an SU~`! supersymmetric
gauge quantum mechanical model~matrix model!.2,3

It was shown in Ref. 1 that exact~particular! solutions of theD511 light-cone~spherical!
supermembrane, related to theD510 SU~`! SYM theory, could be constructed based on
particular class of reductions of the SYM equations from higher dimensions to four dimens4

In particular, solutions of theD510 YM equations given by theD510 YM potentials,Am , can
be obtained in terms of the 4D YM potentials,Ai , that obey theD54 self-dual YM ~SDYM!
equations. Dimensional reductions of the latter SU~`! SDYM equations to one temporal dimen
sion are equivalent to the SU~`! Nahm equations in the temporal gaugeA050.

Finally, the embedding of the continuous SU~`! Toda equation into the SU~`! Nahm equa-
tions was performed in Ref. 1 based on the connection between theD55 self-dual membrane an
the SU~2! Toda molecule/chain equations.5 A continuous Toda theory in connection to self-du

a!Electronic mail: castro@ctsps.cau.edu
37380022-2488/99/40(8)/3738/23/$15.00 © 1999 American Institute of Physics
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gravity was also found by Chapline and Yamagishi6 in the description of a three-dimension
version of anyon superconductivity. Based on the theory of gravitational instantons, a 3D
describing the condensation of quasi-particles~chirons! with properties related to fractional sta
tistics was found.

The classical Toda theory can be obtained also from a rotational Killing symmetry reduc7

of the 4D self-dual gravitational~SDG! equations expressed in terms of first heavenly form t
furnish ~complexified! self-dual metrics of the form:ds25(]xi] x̃ jV)dxidx̃j for xi5y,z; x̃ j5 ỹ,z̃
andV is the first heavenly form. The latter equations can, in turn, be obtained from a dimen
reduction of the 4D SU~`! SDYM equations, an effective 6D theory~Refs. 8 and 9 and reference
therein!. The Lie algebra su~`! was shown to be isomorphic~in a basis-dependent limit! to the Lie
algebra of area-preserving diffeomorphisms~diffs! of a 2D surface,sdi f f(S) by Hoppe.2 It is for
this reason that a Weyl–Wigner–Moyal~WWM! quantization of the reductions of the first hea
enly equation will be used in this letter.

Using our results of Ref. 10 based on Ref. 11 we have shown that a Weyl–Wig
Groenwold–Moyal ~WWGM!12 quantization approach yields a straightforward quantizat
scheme for the 3D continuous Toda theory~2D Toda molecule!. Supersymmetric extensions ca
be carried out following Ref. 8 where we wrote down the supersymmetric analog of the hea
equations for SD supergravity.

There are some differences between our results and those which in general have appe
the literature. Among these are~i! one isnot taking the limit of\˜0 while havingN5` in the
classical SU~N!. Recently, Fairlie13 has written solutions to Moyal–Nahm equations, with\Þ0
for the eight transverse membrane coordinates inD511 in terms of spinors using the WWM
formulation.~ii ! We are working with the generalized Moyal–Nahm equations involving a Mo
bracket wrt anenlargedphase space,q,p,q8,p8 and not with the standard SU~2! Moyal–Nahm
equations involving a Moyal bracket wrtq,p only. We have\Þ0, N5` simultaneously.~iii ! The
connection with the self-dual membrane andW` algebras was proposed in Ref. 1. The results
Ref. 11 become very useful in the implementation of the WWM quantization program and i
embedding of the SU~2! Moyal–Nahm solutions into the generalized Moyal–Nahm equati
studied in the present work.

In the next section we present in detail a class of solutions to the 4D SU~`! Moyal anti-self-
dual Yang–Mills equations that are related toreductionsof the generalized Moyal–Nahm equa
tions using the Ivanova–Popov ansatz. The former yields solutions to the anti-self-dual Y
Mills ~ASDYM!/SDYM equations for arbitrary gauge groups. A further dimensional reduc
yields solutions to the Moyal anti-self-dual gravitational equations. The self-dual Yang–Mills
dual gravity case requires a separate study.

We write down the explicit Moyal quantization of all the equations involved in the Ivano
Popov construction.4 In particular, deformations of the ordinary Laplace equation in four dim
sions are required. This is necessary in order to write down the equation governing the de
tions of the scalar field involved in the construction of Ref. 4, and which is mapped into the M
deformed continuous Toda field via deformations of the twistor transform. Deformation
twistor surfaces have yet to be constructed. For comments in that direction we refer to the w
Strachan and Takasaki14,15 in their study of higher-dimensional integrable models.

In Sec. III the SU~2! Toda lattice and~continuous! SU~`! Moyal–Toda lattice-type equation
are derived from Moyal–Nahm equations. By ‘‘SU~`! Moyal’’ one means the Moyal deforma
tions of the symplectic diffeomorphisms in four dimension instead of two. This will be expla
in detail in the text. The Legendre-like transform between solutions to the rotational K
symmetry reductions of the 4D Moyal heavenly equations and the SU~2! Toda lattice equations is
studied, in particular, the explicit map taking the Moyal heavenly form into the SU~2!. The Toda
lattice field is found.

Finally, in Sec. IV, the generalized Moyal–Nahm equations are provided thatcontain the
~continuous! SU~`! Moyal–Toda lattice-type equations after a suitable reduction. Embedding
the different types of Moyal–Toda lattice equations into the Moyal–Nahm equations are pro

The most salient feature of the generalized Moyal–Nahm equation is that it involve
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effective 8D theory associated with symplectic diffeomorphisms of a 4D manifold. This
effective theory may have an important role in understanding the quantum dynamics of th
supermembrane based on the the m~atrix! membrane models and their integrability properties.3,13

In the conclusion we discuss~among other things! briefly how deformation quantization
techniques for higher-dimensional volume forms, the Zariski quantization,16 may be used to quan
tize p branes. Other types of deformations are possible, like those which give up theassociative
character of the Moyal product, the so-calledq deformations, and which can be used to constr
deformations of the self-dual membrane~we refer to Ref. 17!. We expect that aq-Moyal defor-
mation program of the self-dual membrane might yield important information about how to q
tize the full membrane theory beyond the self-dual exactly integrable sector and that the pa
soliton spectrum of the underlying conformal affine Toda models will shed some light ont
particle content of the more general theory.1,10

Note: Sometime after this work was completed we were informed18 based on Strachan’
work14 that a map from the master equation involving the Moyal deformations of the SD
equations to Strachan’s SU~2! Toda lattice equation~a Toda lattice model whose discrete spaci
is given by multiples of\! could be obtained by a suitable dimensional reduction. However,
latter reduction isnot a rotational Killing symmetry reduction studied in this work; i.e, the p
ticular dimensional reduction of the effective 6D master equation isnot a Moyal deformation of
the heavenly equation~although the heavenly equation can be obtained from the master equa!.
The results of Ref. 18 are based on atwo-step process whereafter performing the WWGM map,
an explicit introduction of\ is put in by hand. More on this shall be explained in the text.

Remark:In this paper we use the following abbreviations: ‘‘Moyal–Nahm equation’’ sta
for ‘‘the Moyal deformation of the Nahm equation;’’ ‘‘Moyal–Toda equation’’ means ‘‘the Moy
deformation of the Toda equations,’’ etc.

II. THE SU„`… MOYAL ASDYM/SDYM EQUATIONS

We will study in this section the Moyal 4D SU~`! ASDYM/SDYM in connection to the
ASDG/SDG equations and the continuous 2D Toda molecule. To begin with, the Moyal brac
two YM potentialsAy ,Aỹ , for example, can be expanded in powers of\ as in Ref. 14:

$Ay ,Aỹ%q,p[(
s50

`
~21!2\2s

~2s11!! (
l 50

2s11

~21! l~Cl
2s11!@]q

2s112 l]p
l Ay#@]p

2s112 l]q
l Aỹ#, ~1!

whereCl
2s11 are the binomial coefficients.

The crucial difference between the solutions of the SU~2! Moyal–Nahm equations11 and the
generalized Moyal–Nahm case is that onemusthave anextra explicit dependence on anotherset
of phase space variables,q8,p8. In particular, thosereductionsof the generalized Moyal–Nahm
equations that are linked to the Moyal–Toda equations must have an extrat dependence for the
YM potentials. The continuous Toda molecule equation as well as the usual Toda system m
written in the double commutator form of the Brockett equation:19

]L~t,t !

]t
5†L, @L, H#‡. ~2!

HereL has the form

L[A11A25Xo~2 iu !1X11~e(r/2)!1X21~e(r/2)!, ~3!

with the connectionsA6 taking values in the subspacesGo%G61 of someZ-graded continuum Lie
algebraG5 % mGm of a novel class. HereH5Xo(k) is a continuous limit of the Cartan element
the principal sl~2! subalgebra ofG. The functionsk(t,t),u(t,t),r(t,t) satisfied certain equation
given in Ref. 19.
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Upon the elimination ofu one obtains the Toda equation. A naive look at~2! might beg the
question: Where is thet dependence? Thet dependence isencodedin the continuum algebra
commutation relations of the generators that are parametrized by a family of functions depe
on botht and t. It is in this fashion that thet dependence makes its presence in~2!.

To implement the WWM prescription, one may consider the case whenG is a group of
unitary operators acting in the Hilbert space of square integrable functions on the line,L2(R1).
Then, G is now the associated~continuum! Lie algebra of self-adjoint operators acting in th
Hilbert space,L2(R1). The following operator-valued quantities depend on the two coordinatt
and t, obey the operator version of the Brockett equation, and, after the WWM map, read

]L̂~t,t !

]t
5

1

i\
[ L̂,

1

i\
@ L̂,Ĥ#]↔ ]L

]t
5ˆL,$L,H%‰, ~4!

whereL(t,t,q,p;\) andH(t,t,q,p;\) are the corresponding elements in the phase space
performing the WWM map. The main problem with this approach is that we donot have repre-
sentations of the continuumZ-graded Lie algebras in the Hilbert space,L2(R1), and, conse-
quently, we cannot evaluate the matrix elements^q2(j/2)uL̂(r ,t)uq1(j/2)&;^Ĥ&. For this reason
we have to return to another method to solve this problem.

The quantitiesL andH are defined as

L~t,t,q,p;\![E
2`

`

dj K q2
j

2UL̂~t,t !Uq1
j

2L expF i jp

\ G , ~5!

H~t,t,q,p;\![E
2`

`

dj K q2
j

2UĤ~t,t !Uq1
j

2L expF i jp

\ G . ~6!

The latter matrix elements, if known, suffice to determine the quantitiesL andH associated with
the 2D continuous Toda molecule equation.

Despite not knowing the explicit operator form ofL̂(t,t) and Ĥ(t,t) acting in the Hilbert
space,L2(R1), one may still write down solutions for the continuous Moyal–Toda equation. T
can be achieved starting from the original Moyal SDYM/ASDYM equations associated with
SU~`! group in D54 and looking for solutions. Ivanova and Popov,4 in a summary of YM
equations inD>4, have discussed that solutions to the ASDYM/SDYM equations inD54 for an
arbitrary Lie group,G, which arelinked to the Nahm equations, may be obtained from the ans

Am52hmn
a Ta„f~xm!…]nf, hmn

a 5ebg
a , hm0

a 52h0m
a 5dm

a . ~7!

The t’Hooft matrices obey the quaternionic algebra:hml
a hln

b 52dabdmn2eabghmn
g . The

function f obeys]m]mf50 ~ASDYM! andf5xmxm ~SDYM!, and the three Lie algebra-value
scalar functionsTa(f)5Ta

A(f)LA , for a51,2,3, satisfy the Nahm equations wrt thef function:

eabg

dTg

df
56@Ta ,Tb#, ~8!

where the6 corresponds to the SDYM/ASDYM case. Notice that the simple reflectionTa

˜2Ta converts the SDYM to the ASDYM solutions with the proviso that nowf obeys the 4D
Laplace equation. It is very important to emphasize that Ivanova and Popov used a Euc
space–time signature. This will become important later on when we discuss other results ob
in a ~11,22! signature.

The Ivanova–Popov ansatz, for Euclidean signatures, will yield solutions to the Moyal d
mations of the anti-self-dual gravitational equations in four dimensions from dimensional r
tions of the SU~`! ASDYM equations. However, this will not be the case for the self-d
gravitational equations that can be obtained from reductions of the SU~`! SDYM equations. The
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Ivanova–Popov ansatz will not yield solutions to the Moyal deformations of the SDG equa
Another type of solutions will be required. For signatures 212, the situation is reversed. More o
this issue will be clarified in the next sections.

A WWM quantization requires writing down the symbol map of theoperatorsacting in the
Hilbert space,L2(R1), associated with the three Lie-algebra-valued functions,T̂a , so the Moyal–
Nahm equations are

eabg

]Tg

]f
56$Ta ,Tb%Moyal , ~9a!

with Ta„f(xm;q,p,\);q,p,\…5symbol@ T̂a#, where T̂a is a representation of the Lie-algebr
valued operators inL2(R1). Shortly we will explain whyf acquires also aq,p,\ dependence.

Rigorously speaking one should writeTa@G# to include the explicit dependence ofTa on the
Lie algebraG involved initially in the construction. In the case thatG5SU(`), one is required
then to extendthe symplectic diffeomorphisms in two to four dimensions. The Moyal brac
involves now a generalized phase spaceqi ,pi for i 51,2. ForG5SU(2) the fact that the dual o
the SU~2! Lie algebra isR3 allows us to establish thecorrespondenceamong the three scalarsTa

with the three componentsX,Y,Z of a four-vector, after fixing the gaugeA050, replacingf by t
and making the correspondenceAx↔X, Ay↔Y, Az↔Z. In this way one retrieves the SU~2!
Moyal–Nahm equations

]X

]t
5$Y,Z%, . . .

for the three vector-valued functionsXi5Xi(t;q,p,\). Notice that, before, the Moyal–Nahm
functions,Ta , arescalar-valued as well asf.

Furthermore, if Moyal deformations of the Toda equations are related to the Moyal–N
equations via the Lax pair formalism, the scalarf(xm) will require, in general, a deformation o
the typef(xm;qi ,pi ,\) obeying a deformation of the Laplace equation. The latter equation i
general, modified to include\ corrections and derivatives acting on the phase space coordina
well. A natural deformation of the Laplace equation is simply given by]m* ]mf(xm;q,p,\)50.
Writing explicitly, the above equation yields

(
n50

`
1

n! S i\

2 D n

v i 1 j 1v i 2 j 2
¯v i nj n~] i 1

] i 2
¯] i n

]m!~] j 1
] j 2

¯] j n
]m!f~xm;q,p,\!50. ~9b!

Equations~9a! and ~9b! are thedefiningMoyal deformations of the Ivanova–Popov equatio
The deformed YM potentialAm obtained from the ansatz~7! will then be equal to the Moyal sta
product:

Am52hmn
a Ta@f~xm,q,p,\!;q,p,\#* ]nf~xm,q,p,\!, hmn

a 5ebg
a , hm0

a 52h0m
a 5dm

a .
~9c!

Equations~9a!–~9c! are the Moyal deformations of the Ivanov–Popov construction. A partic
solution to the deformed Laplace equation could be of the typef5(\nfn . The\50 limit yields
the ordinary Laplace equation for the functionf0(xm) and the othersfn(xm,q,p) contain an extra
q,p dependence also.

This can be explicitly seen when one performs a direct Moyal quantization program of a
equations involved in the Ivanova–Popov construction. Operators are mapped into functi
phase space via the symbol map. Products of operators are mapped into the Moyal star pro
their corresponding symbols and this involves derivatives of arbitrary order wrtq,p. Furthermore,
a suitable ordering prescription must be specifieda priori. Therefore, a Moyal quantization of th
Ivanov–Popov construction induces aq,p,\ dependence on the scalarf and it deforms the
                                                                                                                



sform

l

-
ons

l

es
rect

e

3743J. Math. Phys., Vol. 40, No. 8, August 1999 Moyal–Nahm equations

                    
original Laplace equation. We shall go back to this issue when we discuss the twistor tran
mapping the nonlinear 3D Toda equation into the 3D Laplace equation for the scalarf.

A particular class of solutions of the SU~2! Moyal–Nahm equations, Eq.~9a!, in terms of the
Jacobi elliptic functions wrt theundeformedf has been given by11

T15sn@f#F i

2
p~q221!2\S b1

1

2DqG , T25dn@f#F2
1

2
p~q211!2 i\S b1

1

2DqG ,
~10!

T35cn@f#F2 ipq2\S b1
1

2D G , b5const,

where the~undeformed! scalar functionf has a correspondence withone, and only one, tempora
parameter,f˜t. When one replacesf˜t, the ansatz of~7! gives thatA050, Ai;Ti , and, as
expected, the SU~2! Moyal–Nahm equations involve the three components of afour-vector and
the derivatives are taken wrt the temporal variablet that doesnot transform as a scalar likef.

It is important also to remark that iff acquires a deformationf(xm;q,p,\), the solutions to
~9a! given by Eqs.~10! no longer hold. This is because the Moyal brackets affect also theq,p
terms contained inf5f(xm,q,p,\). To find solutions to the set of Eqs.~9a! and ~9b! is a very
difficult enterprise, mainly because thedeformedscalar fieldf obeys a very complicated differ
ential equation. In the undeformed case,f obeys the ordinary Laplace equation and the soluti
of ~9a! given by Eqs.~10! will be valid then. For the deformedf5f(xm,q,p,\) case, the
Moyal–Ivanov–Popov equations read after using the chain rule

eabg

]Tg

]f
56$Ta ,Tb%Moyal5Tab@~]qf!~]fTa!;~]pf!~]fTb!; . . .;]qTa ,]pTb , . . .#, ~11a!

whereTab is a very complicated function of the derivatives ofTa ,Tb wrt the f function and the
q,p variables. Also required is the knowledge of the derivatives off wrt the q,p variables. This
involves first finding a solution to Eq.~9b! prior to writing ~11!. There is, however, a crucia
condition needed to be imposed on the solutions to the deformed Laplace equation if Eq.~11a! is
a meaningful set of differential equations involvingsolelyfunctions off,q,p,\. The lhs of~11a!
involves solelyf,q,p,\; therefore, the rhs of~11a! must also. This requires to set the derivativ
]qf]pf to be of the form~11c! such that the Moyal–Nahm equations have indeed the cor
homogeneous form:

eabg

]Tg

]f
56$Ta ,Tb%Moyal5Fab@f,q,p,\#. ~11b!

For this last equation to hold one requires to fix thefirst derivatives off wrt theq,p variables to
have the form

]qf5Fq~f!, ]pf5Fp~f!⇒]q
2f5Fq~f!]fFq~f!, ]p

2f5Fp~f!]fFp~f!¯ ,
~11c!

]p]qf5]q]pf⇒Fp~f!]fFq~f!5Fq~f!]fFp~f!.

The mixed space–time derivatives are

]m]qf5~]mf!„]fFq~f!…, ]m]pf5~]mf!„]fFp~f!…¯ . ~11d!

Hence, the equation (]m* ]m)f50 will involve an infinite number of derivative terms of th
form

]m
2 f, ~]mf!2, ]f

n Fq~f!, ]f
n Fp~f!, . . . . ~11e!
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In other words, the meaningful set of solutions to the Moyal–Nahm equations~9a!, ~11a!, and
~11b! are parametrized by a family of solutions to the deformed Laplace equation and the
turn, are given by a family~moduli! of functionsFq(f),Fq(f) that restrict thefirst derivatives of
f wrt the q,p variables to be of the form~11c!. Without these homogeneity conditions, Eq.~9a!
could not have the desired form~11b!.

Things simplify considerably in the undeformed scalarf case because the rhs’s of the Moya
Nahm equations yieldordinary derivatives wrt theq,p variables so that Eq.~10!, for example,
will be a valid solution for any scalarf obeying the 4D Laplace equation: one hasfactorized
completely thef dependence from theq,p one in the Moyal–Nahm functionsTa . No restrictions
like ~11c! will be needed.

By SU~2! Moyal–Nahm it is meant that the solutions~10! in Ref. 11 were obtained by
performing the WWM map which takes su~2! Lie-algebra-valued operators belonging to the H
bert space,L2(R1), into functions ofq,p. Before hand, the Wolf representation of the su~2!
Lie-algebra-valued generators, in matrix form using the Pauli spin matrices,Ai

ata , needs to be
used prior to evaluating the WWM map, i.e, it was essential to use a representation which
the three Pauli spin SU~2! matrices into three known operators inq̂,p̂. It is in this sense that one
may speak of the solutions~10! to the SU~2! Moyal–Nahm equations.

Since representations of SU~`! in terms of operators in the Hilbert spaceL2(R) arenot known
~as far as we know!, one cannot evaluate explicitly the WWM map. In addition, SU~`! requires
use of theextendedphase space which implies that the Moyal bracket to be used in~9! will be the
one wrt theqi ,pi phase space coordinates rather than toq,p. We have symplectic diffeomor
phisms in four dimensions instead of two dimensions. Therefore, the generalized Moyal–
equations require anextra set of variablesq8,p8 that must be introduced to account for th
area-preserving diffeomorphisms algebra associated with a 4D manifold instead of a
dimensional surface~sphere, torus!. So, now we haveTa(f;q,p,\;q8,p8). The Moyal brackets
are then computed wrt theenlargedphase space involving theq,p andq8,p8. We shall discuss
this in detail in the last section.

Nevertheless, the generalized ‘‘SU~`!’’ Moyal–Nahm equations admitreductionsto the con-
tinuous Moyal–Toda equations and equations directly linked to the 4D SU~`! Moyal ASDYM/
SDYM equations. We refrain from using the term SU~`! Moyal–Nahm because it isnot really a
WWM quantization of the classical SU~`! Nahm equations but, instead, one has Moyal deform
tions of the algebra of symplectic diffeomorphisms in 4D. Such algebra is an infinite dimens
extension of the area-preserving diffeomorphisms of a two-dimensional surface.20

The ASDYM equations in 4D Euclidean space–time readFyỹ1Fzz̃50 andFyz50, Fỹz̃50.
For signature~11,22! the situation isreversed; the SDYM equations are the ones of the for
Fyỹ1Fzz̃50 instead. The Moyal deformed YM potentials are related to the Moyal heavenly
as follows:9,10

] z̃Aỹ5] w̃Aỹ5] w̃]wV1 1
2, ~12a!

] ỹAz̃5]wAz̃5] w̃]wV2 1
2, ~12b!

w5z1 ỹ, ]w5]z5] ỹ , w̃5 z̃2y, ] w̃5] z̃52]y , ~13!

whereV is a solution of the Moyal heavenly equation:

$V ,w ,V ,w̃%q,p561↔$] z̃1Az̃ ,] ỹ1Aỹ%50. ~14!

The 21 is assigned to the ASDYM in four dimensions with signature 212 related to anti-self-
dual gravity. The11 is assigned to the SDYM in four dimensions with signature 212 related to
self-dual gravity. For Euclidean signatures, the situation isreversed: The 21 is assigned to the
SDYM in four dimensions with signature 410 related to self-dual gravity. The11 is assigned to
the ASDYM in four dimensions with signature 410 related to anti-self-dual gravity. The impo
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tant thing to remember is that the scalar field obeying deformations of the Laplace equation
solution connected to self-dual gravity in 212 that corresponds precisely to the ASDYM equ
tions in 410 given by Ivanova and Popov.

The Moyal deformed YM potentials in terms of the Moyal–Nahm functionsTa are obtained
directly from the ansatz~9c! and, finally, the Moyal heavenly form, up to an integratio
‘‘constant’’ f (q,p) is

V~w,w̃,q,p,\!5E S Aỹ2
1

2
w̃D dw1E S Az̃1

1

2
wD dw̃ ~15!

with

ỹ5x22 ix3, z̃5x01 ix1, y5x21 ix3, z5x02 ix1, ~16a!

and

Aỹ5A22 iA3 , Az̃5A01 iA1 . ~16b!

Equation~15! is the main equation of this section. It establishes the direct relation betw
solutions of the 4D Moyal heavenly equation in terms of the Moyal YM potentials via solution
the Moyal–Nahm equations~9a!. The relation between the YM potentials and the Moyal–Na
functions is provided by Eqs.~9c! and~16b!. We shall go back to Eq.~15! in Sec. III C when we
discuss the Legendre-like transform relating rotationally Killing symmetry reductions of the
Moyal heavenly equations~from four to three dimensions!, given by V, to solutions of the 2
11 SU~2! Lattice equations. The latter are obtained from Moyal deformations of the SU~2! Nahm
equations derived by Strachan.14

These reductions of the Moyal SU~2! SDYM/ASDYM equations in four dimensions, a
effective6D theory, to a final 4D equation, the Moyal heavenly equation given in Eq.~13!, are also
compatible with the fact that the Toda equations for SU(N) are obtained from particular reduc
tions of Nahm equations which, in turn, can be represented in a Lax pair form:

L5T1~f!1 iT2~f!, iT3~f!5M ,
dL

df
5@L,M #. ~17!

Consequently, in theN5` limit, one can recast the continuous Moyal–Toda equations in
double commutator form after establishing the followingcorrespondence~which arenot identifi-
cations! @see~4!#:

L~u,r!↔T11 iT2 , iT35M↔$L,H%,
]L
]t

5ˆL,$L,H%‰, ~18!

where theTa obey ~9!.
The meaning of Eq.~18! is the following: The data$T1 ,T2 ,T3%, the Moyal–Nahm functions

can be mapped into the three functions$L,H,M% belonging to the Lax–Brockett formalism o
continuumZ-graded Lie algebras.19 Equation~18! establishes the correspondence among th
data: a functional embedding of the dataTa , parametrized by one functionf, into the data
$L,H,M% parametrized by the three functions:u,r,k. With r being the~Moyal deformations of
the! continuous Toda field. Finding the differential equations for the remaining two functionsu,k
in the Moyal deformed case and eliminating them to arrive at the final equation involving s
the continuous Moyal–Toda fieldr is a highly nontrivial matter. This will involve Moyal defor
mations of continuumZ-graded Lie algebras. This subject has not been studied to our knowle
In Sec. IV we shall go back to the Lax–Brockett formalism.

The reason that one can make the correspondences~which arenot identifications! given by
~18! is because there are continuum Lie algebras that are isomorphic to Poisson bracket a
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;su(̀ ), which correspond to the Lie algebras of area-preserving diffeomorphisms of the s
or torus.19. It is in this sense that the correspondence of Eq.~18! is implemented. There are tw
ways to retrieve Moyal–Toda equations: one way is to use the Lax–Brockett double comm
form, and another is to use the Lax representations for the SU~`! Nahm equations. The corre
spondence between these two constructions of the Moyal equations originates from the fa
there is a Legendre-like transform that maps solutions of the 211 continuous Toda equation t
those of the 3D Laplace equation, i.e.,r˜f.

The 211 continuous Toda equation occurs in the theory of self-dual Einstein spaces an
a well-known Eguchi–Hanson solution.21 Prasad22 ~and discussed by Chapline in Ref. 6! has
shown that by a change of variables one can transform the Toda equation into a three-dime
Laplace equation for a certain functionf5f(r) related to the two-center gravitational instant
of Gibbons and Hawking.21 So the correspondence dictated by Eq.~18! is a reflection of the
Legendre-like map which takes the Toda fieldr to f obeying the Laplace equation after
dimensional reduction from 211 to 2 dimensions. The Legendre-like transform determines
correspondence given in~18!, once the suitable maps from the remainingu,k functions tof are
found.

As stated earlier, a subtlety will now arise. Due to the Moyal deformations of the T
equations, it is expected then that an accompanyingdeformationof the Laplace equation for the
scalar fieldf follows. The Prasad map takingf˜r must be deformed as well. Therefore on
should be forced to include\ corrections to the scalarf(x;\). Similar considerations have bee
found in Ref. 18after employing the WWGM map: an explicit introduction of\ was made
afterwards. Nevertheless, the correspondence given by Eq.~18! still holds once the deformed ma
from f ~obeying deformations of Laplace equation! to r ~obeying deformations of the Tod
equation! is found. Similar arguments apply to remaining functionsu,k; these also acquire\
corrections. The Prasad6,22 map will be studied in Sec. III A.

The sort of dimensional reductions of the 4D SU~`! ASDYM/SDYM equations that we are
studying in this section requires that one perform a series of coordinate redefinitions and d
sional reductions from the effective 6D theory to a 4D one:

$x0,x1,x2,x3;q,p%˜$y,z,ỹ,z̃;q,p%˜$w,w̃;q,p%˜$t,t;q,p%. ~19!

The Laplace equation fixes the family of~undeformed! functions f. Due to the dimensiona
reduction, the 4D Laplace operatordegeneratesto zero. This can be verified by simple inspectio

w5x02 ix11x22 ix3, w̃5x01 ix12x22 ix3, w* Þw̃,
~20!

]05]w1] w̃ , ]152 i ]w1 i ] w̃ , ]25]w2] w̃ , ]352 i ]w2 i ] w̃ .

One can verify the Laplace operator acting on~the undeformed! f:

]0
21]1

21]2
21]3

25]y] ỹ1]z] z̃5]w] w̃2]w] w̃[0, ~21!

hence, as a result of the dimensional reduction,f(w,w̃), the 4D Laplace operator acting on~the
undeformed! f degenerates to zero, i.e.,any function of the formf5f(w,w̃) obeysautomatically
the 4D Laplace equation.

If one wishes, one may restrict the solutions of the 4D Laplace equation,]m]mf(w,w̃)50, for
arbitrary functionsf to those obeying the 2D Laplace equation instead:

]t
2f1] t

2f5]w] w̃f50⇒f5 f ~w!1g~w̃!, w[t1 i t , w̃5t2 i t . ~22!

In this fashion one can remove the arbitrariness of the~undeformed! f.
It is important to emphasize thatw̃Þw* and thatt,t are complexvalued since the Moya

heavenly equations are defined incomplexified4D space–time. A real slice may be taken
choosingw̃5w* , which implies thatt,t must be real and from~20! we learn in this case tha
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(x0)* 5x0; (x1)* 5x1 and (x2)* 52x2; (x3)* 52x3. The general solution to the 2D~complexi-
fied in general! ~undeformed! Laplace equation for the~undeformed! f is f5 f (t1 i t )1g(t
2 i t ) for f ,g arbitrary.

The SDYM equations require a separate study since in this case~the undeformed! f5yỹ
1zz̃ is fixed and does not obey the Laplace equation. A different kind of reduction other tha
Ivanova–Popov ansatz, via the Moyal–Nahm equations, is necessary to obtain the Moya
equations from the 4D SU~`! SDYM equations.

To finalize this section we point out that the SU~2! Toda lattice equations can be derived fro
the SU~2! Moyal–Nahm equations involving a fieldC5C(t,t,\) with t5z11z2 . This has
been shown in Ref. 14 and discussed in Ref. 18 in the constructions of a master inte
equation that contains the Kadomtsev–Petviashvili~KP! and Korteweg–de Vries~KdV! hierar-
chies. The explict relation between rotational Killing symmetry reductions ofV and the SU~2!
lattice Toda field,C, will be studied further in Sec. III C. We proceed now to study the Moya
Toda equations in the next section.

III. THE MOYAL–TODA EQUATIONS

A. A continuous Moyal–Toda equation and the Legendre transform

In this section we shall display the different forms of the Moyal–Toda equations tha
related to the quantitiesL(u,r) andH(k) in Eqs. ~5!, ~6!, and ~18! and theTa@f,q,p,\#. We
return now to this discussion. After the WWM map is performed,u,r,k acquire an additional
dependence onq,p,\. To illustrate this, let us look at the operator form of the original continu
Toda equation:

]2r̂

]t2 5
]2er̂

]t2 . ~23!

Given an operator,r̂(t,t), acting in the Hilbert space of square integrable functions on
line, of the form

r̂5(
mn

rmn~t,t !~ q̂mp̂n1 p̂mq̂n1¯ !, ~24a!

with a Weyl ordering prescription imposed on the monomials inq̂mp̂n,

q̂p̂˜q̂p̂1 p̂q̂, q̂p̂2
˜q̂p̂21 p̂2q̂12p̂q̂p̂¯ . ~24b!

More complicated operators are also possible that are not necessary sums of monomia
WWM map converting operators,r̂(t,t), into functions in phase space~making use of the symbo
map! yields

symbol @ r̂#5r~ t,t,q,p,\!, symbol @er̂#5e* r511r1
r* r

2!
1

r* r* r

3!
1¯ . ~25!

Hence, the putative Moyal continuous Toda molecule equations reads

]2r

]t2 5
]2e* r

]t2 . ~26!

The Moyal star product of two functions of phase space of dimension 2n whose symplectic form
has the inversev IJ is defined

f * g5 (
n50

`
1

n! S i\

2 D n

v i 1 j 1v i 2 j 2
¯v i nj n~] i 1

] i 2
¯] i n

f !~] j 1
] j 2

¯] j n
g!. ~27!
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Whenv i j is the inverse of the symplectic form in two dimensions, the derivatives are taken
theq,p variables only. To recover the 211 continuous Toda requires replacing the lhs of~26! by
(]t)

2 by ]z1
]z2

and settingr(z1 ,z2 ,t,q,p,\):

]2r

]z1]z2
5

]2e* r

]t2 . ~28!

The Prasad transformation6,22 maps the 3D Laplace equation~obtained from the solutions
associated with the translational Killing symmetry reductions of a self-dual Euclidean Ein
space7! to the continuous Toda equation:

~]z] z̄1]U
2 !S50↔ ]2r

]z1]z2
52

]2er

]t2 . ~29!

@Notice thesign difference in Eq.~29! as compared with Eq.~28!.# HereS is now a function of
z5x1 iy , z̄5x2 iy , andU. Chapline6 has performed the Legendre transform betweenS andr for
those solutions of the continuous Toda equation related with the Eguchi–Hanson instanto

r~z,z̄,t !5 ln
t22a2

~11zz̄!2 , er5~ t22a2!e22 ln(11zz̄), t.a. ~30a!

The reason we exponentiated the solution~30a! will become clear next when we discuss th
embedding of the Liouville equation into the continuous Toda one. The Liouville field will be
this case,fL52 ln(11zz̄).

The Prasad change of variables22 allows us to transform the Toda equation into the 3
Laplace equation as Eq.~29! shows. The functionS5S(r) corresponding to the Eguchi–Hanso
instanton solution~30a! written in terms of the new coordinates~after the Prasad transform! is

S5
1

2 (
i 51

2

ln
Ri1U2Ui

Ri2U1Ui
, 2`,U,`; Ri

25~U2Ui !
214~z2zi !~ z̄2 z̄i !. ~30b!

Here xi ,yi ,Ui are the locations of the two-quasiparticles~two-center instanton of
Gibbons-Hawking21! for i 51,2.

The most general solution to the ordinary classical continuous Toda equations has been
by Saveliev.19 The Eguchi–Hanson instanton solution is precisely the one related to the
known embeddingof the Liouville equation into the continuous Toda equations.19 It is given that

]2c0

]t2 5
]2ec0

]t2 . ~31!

One may plug in the ansatz which will automatically reproduce the Liouville equation:

ec05~ 1
2t

21bt1c!efL⇒]z1
]z2

fL~z1 ,z2!5efL, ~32a!

after performing the dimensional reductiont5z11z2 . So, in the\50 limit, Eqs.~26! and~28!
reduce to the ordinary classical continuous Toda molecule~chain! equations. Equation~31! is the
the relevant one to map Moyal deformations ofr into the 3D deformed Laplace equation~29!. The
embedding relation betweenr andfL in the Moyal deformed case is

]2r

]z1]z2
5

]2e* r

]t2 , e* r5S 1

2
t21bt1cDe* fL⇒]z1

]z2
fL~z1 ,z2 ,q,p,\!5e* fL ~32b!

with fL(z1 ,z2 ,q,p,\) and r(z1 ,z2 ,t,q,p,\) obeying Eq.~28!. The last expression of Eq
~32b! is the Moyal deformation of the Liouville equation.
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The star logarithm operation allows us to express

r5 ln* F S 1

2
t21bt1cDe* fLG5 ln* F S 1

2
t21bt1cD G1 ln* @e* fL#

5 ln* F S 1

2
t21bt1cD G1fL⇒ ]2r

]z1]z2
5]z1

]z2
fL . ~32c!

Equations~32! are the relevant ones to extend the results of Eqs.~29! and~30! to the Moyal
case when we deform the 3D Laplace equation (] i* ] i)S50 for a Moyal deformed functionS
5(z,z̄,U,q,p,\). The Moyal–Prasad map yields the continuous Moyal–Toda equation~28!
whose particular Eguchi–Hanson instanton-inspired solutions will be deformations of Eq.~30a!
and ~30b!. The natural expansionsfL5(\nfn(z1 ,z2 ,q,p) and r5(\nrn(z1 ,z2 ,t,q,p) will
generate solutions to~32b! and~28! to all orders in\ by an infinite number of iterations. To eac
order in\n one performs the Moyal–Prasad map~change of coordinates22! yielding the values of
S5(\nSn(z,z̄,U,q,p) which solve the deformed 3D Laplace equation~to that given order in\n!.
It is a very difficult and challenging enterprise to achieve this in practice; i.e, to find the Mo
Prasad transform toall orders in\ in closedform!

The above equations~26!, ~28!, and~32! were obtained from the operator form of the origin
continuous Toda equation. In general, at the quantum level, the forms of the operator equat
motion arenot the same as those of the original classical field. A modification of~26! will be
presented shortly where the rhs is modified; i.e., there will be derivatives of infinite order w
t variable that originate from deformations of the continuum graded Lie algebras as a res
replacing ordinary Poisson bracket by Moyal brackets.

The\50 limit of ~26! yields on the rhs the ordinary exponential,er, because in the classica
limit the Moyal star product becomes the ordinary pointwise product of functions. Since i
classical limit Eq.~26! involves a differential equation wrt the variablest,t only, the classical
limit of ~26! does not determine theq,p dependence ofr(t,t,q,p,\50), which may be com-
pletely arbitrary. Assuming thatr admits an expansion in powers of\: r5(\nrn(t,t,q,p), one
can impose the condition that the zeroth-order term does not depend onq,p: r0(t,t,q,p)
[rclass(t,t). In this fashion the\50 limit reproduces the classical continuous Toda equation
rclass(t,t).

Another way to obtain the continuous Moyal–Toda equations directly should be to pe
the master Legendre transform mapping, if indeed it exists, betweenV(y8,ỹ8,z8,z̃8,\) obeying
the rotationally Killing symmetry reductions of the Moyal SDG equations9,21 to r(t[z1

1z2 ,t,q,p,\)1,9 obeying the continuous Moyal–Toda equations. The immediate problem
this is that thenumberof variables does not match.r has five whereasV has four. Nevertheless
an embedding of one into the other is possible as we shall see. Strachan14 has shown that the
SU~2! Moyal–Nahm equations admit a reduction to the SU~2! Toda lattice~which yields the
classicalcontinuous Toda equation in the\50 limit!. Therefore, reductions of the SU~2! gener-
alized Moyal–Nahm equations should yield the continuous Moyal–Toda lattice-type equa
This shall be studied in Sec. IV.

We shall continue shortly with the Strachan ansatz and write down a more general eq
than~26! and~28! which contains derivatives of infinite order wrt thet variable; i.e., the operato
equations of motion for the quantized Toda fielddiffer from the classical counterpart. Th
Legendre-like transform will be discussed also. The study of the geometry associated with
Moyal deformations has been given in Ref. 23.

B. Strachan’s reduction of the SU „2… Moyal–Nahm equations to the SU „2… lattice Toda
equations

It is known that the ordinary continuous Toda equation may be obtained from axial-symm
reductions of the SU~`! classical Nahm equations. This fact permitted Strachan to construct S~2!
Toda lattice equations from Moyal deformations of the SU~2! Nahm equations by replacing th
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Poisson bracket by the Moyal bracket.14 If one writes the Moyal–Nahm equations of the typ
given~with the plus sign! by Eq.~8!, replacingf˜t and imposing the axial-symmetry reduction
of the form

T15X15h~t,t5q,\!cosp, T25X25h~t,t5q,\!sinp, T35X35z~t,t,\!, ~33!

allows thedecouplingof the cosp,sinp terms after computing the Moyal bracket and after elim
nating the functionz(t,t). Strachan arrived at

]2c

]t2 5
1

4 FD2D21

\ G2

ec5
]2

]t2 ec1
\2

3

]4

]t4 ec1O~\2n!¯ . ~34!

The shift operatorsD,D21 andc(t,t,\) are defined:

Dc5c~ t1\!, D21c5c~ t2\!, ec/2[h~t,t !. ~35!

In general, the 211 Toda lattice equation for the fieldc(z1 ,z2 ,t,\) reads

]2c

]z1]z2
5

1

4 FD2D21

\ G2

ec, ~36!

upon the reduction 211 to 2 dimensions,t5z11z2 , one recovers~34!.
Equations~34! and ~36! will be referred to from now on as theD52 andD5211 SU~2!

lattice Toda equations, respectively. They involve one field only,c, in the same way that the
Liouville equation is tantamount to an sl~2! Toda field equation. In the classical limit,\50 one
recovers theclassical continuousSU~`! Toda molecule equation as expected. This can be see
expandingc(t,t,\)5c01\2c21¯ . The \50 limit reproduces again the classical continuo
Toda equation for the fieldc0(t,t), as Eq.~26! does forr(t,t,q,p,\50)5rclass(t,t).

It is an interesting question~although not the right question to ask! if one could find a
representation of the su~2! Lie algebra in terms ofq̂,p̂ operators that would yield Strachan
solutions after performing the WWM map of the operator equations associated with the~2!
Nahm equations. The solutions~33! clearly differ from those presented in Eq.~10!, not only in the
t functional dependence implicit in the elliptic functions but also in the dependence of the
space variables.

The reason that one shouldnot view Strachan’s construction as a direct WWGM quantizat
of the SU~2! Toda field, a Liouville theory, is because the discrete-differential equations~34! and
~36! represent really a SU~2!/SL~2! Toda lattice theory which discrete-spatial spacings in multip
of \: the field c is evaluated at discrete jumpst,t6\,. However, there is continuous tempor
dynamics represented by the]t derivatives. See the important work of Dimakiset al.24 on this
respect. The rhs of~34! and~36! is a forward/backward discrete difference operator in jumps o\
~although the variablet is continuous! which can be expanded into an infinite number of deriv
tives, a nonlocal expression. The Moyal product is also nonlocal due to the infinite numb
derivatives.

Therefore, rigorously speaking one must refer to the discrete-differential Strachan’s eq
as the SU~2! lattice Toda equation obtained from axial-symmetry reductions of the SU~2! Moyal–
Nahm equations andnot as a direct WWM quantization of the SU~2! Liouville equation. It has
been speculated by Reuter23 that the discrete operator arising from the Moyal brackets migh
one source of nonlocalities in quantum mechanics.

From the form of~10! one should notice that a WWGM quantization program of Ref. 11 isnot
the same as the Strachan construction14 and that of Ref. 18. In general, one may alter the opera
form of the quantum field equations of motion from the original classical field equations
example, the operator equations may be different from Eqs.~23! and read instead
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]2r̂

]t2 5
1

4 FD2D21

\ G2

er̂5
]2

]t2 er̂1O~\2n!¯ . ~37!

We may have again a discrete-differential operator equations of motion: the rhs involves d
tives of infinite order of the operatorr̂(t,t) wrt the t variable. In general, upon quantization th
structure of the Lie algebra could itself be modified as well. This occurs in the study of qua
groups and quantum Lie algebras where quantum integrability requires deformations of th
sical Lie algebraic structures.

In view of this, a modification of the Moyal continuous Toda equation~a further deformation
of the Strachan’s Toda lattice equations by introducing the star exponential! is

]2r

]t2 5
1

4 FD2D21

\ G2

e* r5
]2

]t2 e* r1O~\2n! . . . , ~38!

and is obtained after performing the WWM map of Eq.~37!. The Moyal star product is taken wr
theq,p variables only. The extra dependence on the two phase space variables,q,p, is due to the
WWM symbol map taking operators into functions in phase space. Thet parameter is the one tha
encodes the continuum Lie algebra generators and commutation relations.

An even further deformation of~38! is as well

~]t* ]t!r~t,t,q,p,\!5
1

4 FD2D21

\ G2

e* r5
]2

]t2 e* r1O~\2n! . . . , ~39!

where the operators on the lhs of~39! are deformed as well, similarly to the deformations
Laplace equation~9a! using Moyal star products of differentials. Equation~38! is an extension of
Strachan’s SU~2! lattice Toda equation for the fieldc(t,t,\); in particular, the latter SU~2! lattice
Toda equation can beembeddedinto Eq. ~38!. This shall be studied in the next subsectio
Equation~39! is an extension, on both sides of the equation, of the original Moyal–Toda equ
given by Eq.~26!. Both the rhs and the lhs of~26! have been extended in Eq.~39!.

Once again, reinserting thez1 ,z2 dependence on ther we have finally the following discrete
differential equation:

~]z1* ]z2
!r~z1 ,z2 ,t,q,p,\!5

1

4 FD2D21

\ G2

e* r. ~40!

This is the more general equation of all the equations presented in this subsection contain
others as special limiting cases.

Concluding this subsection, we shall refer to the three discrete-differential Equations~38!-~40!
as equations of the continuous Moyal–Toda lattice type. Equation~26! is the continuous Moyal–
Toda equation obtained directly from a WWM quantization of the classical continuous
equation. Equation~32b! is the Moyal–Liouville equation and, finally, Eqs.~34! and~36! are the
SU~2! Toda lattice equations in 2 and 211 dimensions obtained from axial symmetry reductio
of the SU~2! Moyal–Nahm equationsa la Strachan.16 It is very important todistinguishamong
these families of equations. The continuous Moyal–Toda lattice equation given by~40! contains
all others as special cases. In this sense Eq.~40! is a sort of master discrete-differential equatio

We have learned from Strachan that the SU~2! Toda lattice equation iscontainedin the SU~2!
Moyal–Nahm equations and, similarly, one would expect that the SU~`! ~continuous! Moyal–
Toda lattice equations should becontainedin the generalizedMoyal–Nahm equations. It is pre
cisely for this reason that the generalized Moyal–Nahm equations must depend on anextraset of
phase space variables as argued earlier. This will be studied in Sec. IV where, in particul
shall provide a plausible embedding of the Moyal–Toda lattice equations into the gener
Moyal–Nahm equations.
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In conclusion, after these steps are taken, the Strachan ansatz is a very special case of
general Ivanova–Popov ansatz for the three functions,Ta . Solutions to~34! and ~36! may be
obtained through iterations after expanding in even powers of\: co1\2c21¯ . In this way an
infinite, but known, number of differential equations yields iteratively the solutions forc2n . To
solve this system is another matter.

C. The Moyal heavenly equation and the SU „2… Toda lattice

Before we begin this section we must emphasize that the results of Refs. 14 and 18 a
different from the results of this section, mainly because the results of Ref. 18 donot involve a
rotational Killing symmetry reduction of the Moyal heavenly equations; i.e., this involves a
ticular class of dimensional reductions of the Moyal SDYM master equations that doesnot lead to
the Moyal heavenly equations~although the Moyal heavenly equation can be obtained by ano
reduction!. The authors of Ref. 18 based their work on the results by Strachan14 on the Toda/KP
hierarchies and obtained the SU~2! Toda lattice equation from adifferent route than the one
described here. The equations in Refs. 14 and 18 are the SU~2! Toda lattice equations whos
discrete spacing is a multiple of\. When\50 one recovers the continuous Toda equations, or
so-called Boyer–Finley equations obtained originally from Killing symmetry reductions of
heavenly equations.

As discussed earlier in Sec. II, we can conclude that Eqs.~15! and ~33! alreadycontain the
required map from theV heavenly form obeying the Moyal heavenly equation, after a suita
rotational Killing symmetry reduction from four dimensions to three, to the 211 SU~2! Toda
lattice field equations for a fieldc obeying Strachan equation~36!. This can also be achieved vi
the Lax pair formalism. This automatically solves the problem of finding the Legendre-like t
form from ~rotational Killing symmetry reductions of! V to the 211 SU~2! Toda lattice field
c(z1 ,z2 ,t;\).

Hence, Eq.~15! yields V5V@Ai #. The Strachan solution corresponds to the particular c
whenf is replaced byt, which implies thatAi is replaced byXi and, finally, the remaining Eqs
~33! give the explicit relationsAi5Xi in terms of c(t[z11z2 ,t,\),z(t[z11z2 ,t,\) with
expc/2[h(t[z11z2 ,t,\).

To relateV with r is not that straightforward. There is an obstruction if one wishes to s
the map fromV to the continuous Toda fieldr(z1 ,z2 ,t,q,p,\). The numberof variables does
not match. However, one can ‘‘embed’’ bothV andc into r(z1 ,z2 ,t,q,p,\); i.e., embedding
the solutions to the SU~2! Toda lattice equations into the continuous Moyal–Toda lattice o
The embedding process is based on the following facts:

It has been known for some time that rotational Killing symmetry reductions of the self-
gravitational or heavenly equations lead to the continuous Toda equations.7 The relation between
rotational Killing symmetry reductions ofV(y8,ỹ8,z8,z̃8,\) obeying the 4D Moyal SDG equa
tions andr(z1 ,z, ,t,q,p,\) obeying the 211 continuous Moyal–Toda lattice equation should
defined as the embedding map:10,25

V~y8,ỹ8,z8,z̃8,\![ (
n50

` F \

ỹ8G
n

Vn~r[y8ỹ8;z8,z̃8!

˜r~z1 ,z2 ,t,q,p,\!

5 (
n50

n5`

(
l 50

l 5n

(
m52 l

m51 l

\nrn
lm~z1 ,z2 ,t !Ylm~u,w!,

q5cot~u/2!cosw, p5cot~u/2!sinw. ~41!

The clear problem with Eq.~41! is that thenumbersof variables donot match:r requiresfive
whereasV requiresfour. For this reason one should refer to Eq.~41! as an embedding relatio
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betweenV and r. Let us proceed with the terms appearing in the expansion of ther field in
spherical harmonics. The limits inl are defined with the proviso that in the limit\50 the
zeroth-order terms will survive only giving

r0
00~t,t !Y00~u,w![rclass~t,t !, lim\50 e* r5erclass(t,t), lim\50 r5rclass~t,t !, ~42!

and, as expected, the zeroth-order terms donot depend onq,p. We have also performed th
stereographic projection mapping the sphere into the complex plane~phase space ofq,p!. This
implies that the embedding relation, up to thenth order, map must establish the corresponden

F 1

ỹ8G
n

Vn~r[y8ỹ8;z8,z̃8!˜(
l 50

l 5n

(
m52 l

m51 l

rn
lm~z1 ,z2 ,t !Ylm~u,w!. ~43!

It is essential not to confuse the prime variablesy8,z8 . . . with the variablesy,z , . . . . A
detailed discussion of the maps between the primed and unprimed variables was given in R
based on Ref. 25:

$V ,z8 ,V ,y8% z̃8 ỹ851↔$V ,w ,V ,w̃%q,p51. ~44!

The inverse symbol map takes functions of phase space into operators inL2(R) and Moyal
brackets into commutators leading to the operator equations

1

i\
@V̂ ,z8 ,V̂ ,y8#51̂↔ 1

i\
@V̂ ,w ,V̂ ,w̃#51̂, ~45a!

where

V~w,w̃,q,p,\!5( ~\!nVn~w,w̃,q,p!. ~45b!

Extreme care must be takennot to setVn as a function ofu[ww̃ and q,p. If this is wrongly
assumed, then the rhs of~45a! will be zero instead of 1. This corrects an erratum in Ref. 10. A
example of the coordinate transformation~a field-dependent coordinate transformation up to
roth order! between the primed and unprimed variables associated with the particular so
V5V05z8z̃81y8ỹ8 is9

z̃85q, ỹ85p, z85w1
l

q
, y85w̃2

l

p
, ~46!

with l a complex constant. Asn runs the coordinate transformation varies and one speaks
field-dependent transformation to thenth order. Notice in~46! that r 5 ỹ8y85pw̃2l which is not
equal toww̃.

The discrepancy, which at first sight might be troublesome, is that the number of variab
V and r does not match. It is only after theq,p dependence is factorized in~41! that one can
match the variables inVn(r ,z8,z̃8) with those in rn

lm(t,z1 ,z2). However, thecn(z1 ,z2 ,t)
belonging to the 211 SU~2! Toda lattice equation admits a perfect match with the numbe
variablesVn(r ,z8,z̃8). For this reason, when one speaks of the Legendre-like transform from
V, obeying the rotational Killing symmetry reductions of the Moyal heavenly equation, to
Moyal–Toda lattice-type equations, one must refer to Strachan’s SU~2! Toda lattice equation~36!
as discussed at the beginning of this subsection.

The embedding of the SU~2! Toda lattice equations~34! and~36! into the continuous Moyal–
Toda lattice-type equations~38!–~40! requires us to find a particular subset of solutions to thern

lm

such that the following factorization condition occurs:
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(
l 50

l 5n

(
m52 l

m51 l

rn
lmYlm5cnf n~q,p!5rn~z1 ,z2 ,t,q,p! ~47!

~no sum overn!, where the functionscn are precisely those solving Strachan equations~34! and
~36! after expandingc in powers of\; i.e., therefore, one has embedded the SU~2! Toda lattice
equation into the continuous Moyal–Toda lattice ones. Solving forrn

lm in ~47! yields

rn
lm~z1 ,z2 ,t !;cn~z1 ,z2 ,t !E dw d~cosu!Ylm~w,u! f n~q,p!. ~48!

Hereq,p were given in terms ofw,u in ~41!. The f n(q,p) functions in principle can be determine
from the differential equations obtained after inserting Eq.~47! into ~38! and after replacing]t

2 by
]z1

]z2
on the lhs of~38!.

Concluding this subsection, by sorting out the signature subtleties used by different auth3,8

the transformation of rotational Killing symmetry reduction of the 4D Moyal heavenly equat
into the 211 SU~2! Toda lattice field equations is attained in a two-step process by using
~15! and ~33!. In this fashion one establishes the sought-after relation between~reductions of! V
and „c(t,t,\),z(t,t,\)… after the three YM potentialsAi involved in ~15! are replaced by the
Moyal–Nahm functionsXi defined in~33!. This is probably one of the most relevant results of t
work. The embedding ofc obeying the SU~2! lattice equations~34! and ~36! into ther obeying
the continuous Moyal–Toda lattice equation~38! was also provided through the factorizatio
conditions~47! and ~48!.

IV. THE GENERALIZED MOYAL–NAHM EQUATIONS, MOYAL DEFORMATIONS OF
LOOP ALGEBRAS, SYMPLECTIC DIFFEOMORPHISMS IN 4D AND CONTINUUM
LIE ALGEBRAS

A. Reductions of Moyal–Nahm equations

We have been studyingreductionsof the generalized Moyal–Nahm equations related to
Moyal deformations of the SU~`! ASDYM/SDYM equations in four dimensions, an effective 6
theory. The most general Moyal–Nahm equations require, at least, an extra set ofq8,p8 coordi-
nates and hence one has an effective 8D theory where the Moyal bracket is taken wrt the e
phase space, i.e., the Weyl–Wigner–Moyal formalism involves mapping operator-valued q
ties living in a 4D space–time@belonging to a Hilbert space ofL2(R2), instead ofL2(R1)# into
functions of the enlarged phase space,q,p,q8,p8. Instead of dealing with Moyal deformed sym
plectic diffeomorphisms of a two-dimensional surface, one is now dealing with Moyal defo
symplectic diffeomorphisms in four dimensions. Therefore the effective theory is now 8D in
of 6D!

We definethe generalized Moyal–Nahm equations as

eabg

]Tg

]f
5$$Ta ,Tb%%, Ta@f~xm;q,p,q8,p8,\!;q,p,q8,p8;\#, ~49!

where now the Moyal bracket must be taken wrt an enlarged phase spaceq,p,q8,p8. There is an
explict and implicitqi ,pi ,\ dependence in the Moyal–Nahm functions. The Moyal bracket off ,g
wrt the enlarged phase space is compactly written as

$$ f ,g%%[
1

\
f „sin@\~]Qq]W p2q↔p1]Qq8]

W
p82q8↔p8!#…g. ~50!

Expanding the sine function in powers of\ one retrieves the infinite derivative terms. The WW
map takes self-adjoint operator-valued quantities, living in the Hilbert spaceL2(R2),Â(xm), into
real-valued functions in phase spaceA(xm;q,p,q8,p8;\):
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A~xm;q,p,q8,p8;\![E
2`

`

d2jK qW 2
jW

2
UÂ~xm!UqW 1

jW

2L expF i jW .pW

\
G , qW 5~q,q8!, pW 5~p,p8!,

~51!

UqW 1
jW

2L 5Uq11
j1

2 L ^Uq21
j2

2 L¯ . ~52!

Imagine representing now the SU~2! Lie-algebra-valued YM potentials~matrices! in terms of
operators inq̂,p̂,q̂8,p̂8 and performing afterwards the WWM map.

The relevant algebra is now the Moyal deformations of symplectic diffeomorphisms in
dimensions instead of two. For this reason it is incorrect to say that one has ‘‘SU~`!’’ Moyal–

Nahm equations. For example, the generators are labeled asVm
l ,kW , wherekW5(k1 ,k2),20 and obey

the infinite-dimensional generalization of thew` algebra~area-preserving diffeomorphisms of th
plane!:

@Vm
l ,kW ,Vn

j , lW#5@~ j 11!m2~ l 11!n#Vm1n
l 1 j ,kW1 lW1kW3 lWVm1n

l 1 j 11,kW1 lW . ~53!

This algebra of symplectic diffeomorphisms in four dimensions has a realization in term
ordinary Poisson brackets wrt theq,p,q8,p8 enlarged phase space variables. The Moyal defor
tions are obtained by replacing ordinary Poisson brackets by Moyal ones. If one had a prese
of the SU~2! algebra as linear operators inL2(R2), instead of the known representations
L2(R1),11 one could then evaluate the WWM map~51! and obtain solutions to the generalize
Moyal–Nahm equations as it was done in Ref. 11.

Another type of generalized Moyal–Nahm equation one could write is such where inste
having a Moyal bracket wrt the enlarged phase space, one has apartial Moyal bracket wrt one se
of q,p variables:

eabg

]Tg

]f
5$Ta ,Tb%q,p , Ta@f~xm;q,p,q8,p8,\!;q,p,q8,p8;\#. ~54!

Theproblemwith Eq. ~54! as such is that it doesnot determine the functional dependence on t
q8,p8 variables since there is no differential operators which involve now theq8,p8 variables. For
this reason we shoulddisregard~54! as a valid equation.

We shall study the reductions of~49! with the goal of obtaining the continuous Moyal–Tod
lattice-type equations~38!–~40!. First, one replacesf by t and, as usual,A050, Ai;Ti . Second,
one imposes the reduction conditiont5q8 while recurring to an ansatz that allows one to decou
the cosp8, sinp8 terms, after computing the Moyal bracket in~49! and ~50!, giving, finally, an
equation involvingonly the t,t,q,p variables. If we set

T15R~t,t5q8,q,p,\!cosp8, T25R~t,t5q8,q,p,\!sinp8, T35z~t,t5q8,\!. ~55!

After plugging ~55! into ~49!, the terms in cosp8, sinp8 decouple and, eliminatingz, one
obtains the following highly nontrivial equation for the functionR, after computing the Moyal
bracket wrt the enlarged phase space variables:

]2 ln R

]t2 5aS D2D21

\ D 2

R21bS D2D21

\ D (
n51

`

~\!nCi 1 . . .i n
~] i 1

¯] i n21
R!~] j 1

¯] j n
R!. ~56!

The second terms on the rhs of~56! contain mixed derivatives of infinite order wrt thet,q,p
variables. Herea, b and Ci 1 . . .i n

are constants. The Strachan SU~2! Toda lattice equation is
recovered automatically by dropping the extraq,p dependence onR @so that the second term o
the rhs of~56! becomes zero# and by equatingR25er.
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Due to the extraq,p dependence the situation changes drastically. In order to obtai
equation like~38! it is required to establish thenew functional relation between theR and r
functions. The previous relationR25er does not work, for example, if one sets

R* R5e* r⇒ r

2
Þ ln R. ~57!

The lhs of Eq.~56! will no longer be (1/2)]t
2r. Furthermore, if~57! was the correct relation

betweenR andr, the rhs of~56! would not equal the rhs of~38! despite the fact that the rhs of~56!
contains the same type of infinite derivative terms as Eq.~38! does. This is because@after using the
relationship~57!# thecoefficientson the rhs of Eqs.~56! and~38! differ. This could be fixed easily
by adding terms onbothsides of Eq.~56! with the appropriate coefficients so that the rhs of~56!
equals precisely the corresponding term of Eq.~38!:

S D2D21

\ D 2

R* R5S D2D21

\ D 2

e* r.

However, there is still no assurance that the lhs of~56!, after the addition of those terms whic
rendered the rhs of~56! in the required form given by Eq.~38!, will have also the sought-after
form,

]2 ln* R

]t2 5
1

2

]2r

]t2 , ~58a!

where thestar logarithm andstar square root are defined as

ln* ~e* r![r, R* R5e* r⇒R5@e* r#
*
1/2, ln* R5 ln* @e* r#

*
1/25 1

2 r. ~58b!

In other words, it is not clear that one can adjustboth sides of Eq.~56!, by adding terms on
both sides simultaneously, to match the required form of the continuous Moyal–Toda l
equation~38!. It would have been very fortuitous that the simultaneous addition of terms on
sides of the equation~56! would lead exactly to the continuous Moyal–Toda lattice equation~38!.

Therefore, by inspection, the ansatz proposed in~55! does not seem to work if one wishes
find a direct relation betweenR and r. This could be remedied by introducing two auxilia
functions as we shall see shortly. Although it isundesirableto introduce extraneous functions int
this construction, the use of two auxiliary functions seems to work in principle. The source o
problem is to find to the new functional relationship betweenR andr that will render both sides
of Eq. ~56! correctly. Nevertheless, matters are not final. Equation~56! is per sesatisfactory in the
sense that it yields a well-defined differential equation for theR function with an infinite number
of derivative terms. Imposing the condition

1

2

]2r

]t2 5
]2 ln R

]t2 ⇒ 1

2
r5 ln R1F~ t,q,p,\!t1G~ t,q,p,\! ~59!

fixes r in terms ofR and two auxiliary functions,F,G. Solving forR yields

R5er/22Ft2G5er/2e2F(t,q,p,\)t2G(t,q,p,\). ~60!

Inserting this new value forR into the rhs of~56! and equating it to the rhs of~38! determines
another differential equation for theF,G functions in conjunction with the original Moyal–Tod
lattice equation. A coupled set of differential equations forr andF,G is obtained in this fashion
Eqs.~38!, ~56!, and~59!, three equations for three functions.
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The main question now will be to see whether or not this system of coupled differe
equations is self-consistent and has well-defined nontrivial and nonsingular solutions, in part
whether, or not Eq.~59! is in factcompatiblewith the remaining two equations~38! and~56!. This
very difficult question remains to be answered.

B. Embeddings of the Moyal–Toda equations

It is also reasonable to look for other ways of embedding the continuous Moyal–Toda l
equations into the Moyal–Nahm equations that donot require a direct decoupling of the cosp8,
sinp8 functions, for example, integrating out thep8 variable without the need to reduce th
generalized Moyal–Nahm equations.

The use of theTa was successful earlier in obtaining the SU~2! Toda lattice equation from the
Moyal–Nahm equations after one imposing the reductionq5q8, p5p8 conditions and replacing
f by t and settingt5q. It is reasonable to ask if other embeddings/reductions are possible
continuous Moyal–Toda equation~26! admits the following embedding into the Moyal–Nah
equations for thosespecialsolutions ofr satisfying thereductioncondition:r(t,t,q,p,\)5r(t
6 i t ,q,p,\), where in addition one restricts the solutions of the deformed Laplace equation fo
scalarf to have the trivial values:t6 i t . For this very restricted case one has the followi
relations:

]T3

]f
5

]2r

]f2 ⇒r~f,q,p,\!5E T3 df1F~q,p,\!f1G~q,p,\!, ~61a!

$T1 ,T2%52
]2

]f2 e* r(f,q,p,\), r5r~f,q,p,\!, q5q8,p5p8, ~61b!

]2r

]f2 52
]2

]f2 e* r(f,q,p,\). ~61c!

Following similar arguments as above yields a system of differential equations to solve f
three functionsr(f,q,p,\),F,G. One can infer directly from Eq.~61c!

r1e* r5A~q,p,\!f1B~q,p,\!. ~62!

In this simpler case we have an implicit equation forr. If one were able to invert this last equatio
one will have then an expression of the formr5r(f,q,p,\) that would have been a particula
solution to Eq.~61c! related to the embedding displayed by Eqs.~61a! and~61b!. It is not an easy
task to invert the latter equation. Furthermore, the full-fledged theory requires us to use
general solutions for the deformed scalarf obeying the deformations of Laplace equation~9b!.
The choicet6 i t was the trivial one.

Finally, a natural embedding of the continuous Moyal–Toda lattice-type equations~38!–~40!
into the generalized Moyal–Nahm equations~49! is to setq85t and to replace as usual th
functionf by t so that the ansatz in~7! yieldsA050 andAi(t,q85t,p8,q,p,\) is replaced byTi

for i 51,2,3. Given a solution to the generalized SU~2! Moyal–Nahm equations~using Moyal
brackets wrt the extended phase space variables! for the three potentialsAi , one selects the
particular equation

]A3

]t
5$$A1 ,A2%%, A65

1

&
~A16 iA2!. ~63!

A partial integration taken wrt thep8 variable only yields the embedding relations

E
2`

1`

dp8
]A3

]t
5

]2r~t,t,q,p,\!

]t2 , ~64!
                                                                                                                



e

ntial
ble

f the
e
set

the
es like
omor-
lism
ybe a

us

ions

he data
,
tions
s
d

s and
art
s has

uous
.
m Lie

s of
inuum
ebras

f

3758 J. Math. Phys., Vol. 40, No. 8, August 1999 C. Castro and J. Plebański

                    
E
2`

1`

dp8ˆ$A1 ,A2%‰5
1

4 S D2D21

\ D 2

e* r5] t
2e* r(t,t,q,p,\)1

1

3
~\!2] t

4e* r1¯ . ~65!

There are some total derivative terms wrtp8 which vanish after integration, but not all of th
terms appearing on the lhs of~65! are total derivatives. From Eq.~64! one learns that

r5E
2`

1`

dp8E
t850

t85tA3 dt81F~ t,q,p,\!t1G~ t,q,p,\!. ~66!

The functionsF, G are not arbitrary, but are part of the system of three coupled differe
equations given by Eqs.~63!–~65!. The embedding is characterized by integrating out the varia
p8 without imposing a reduction on the Moyal–Nahm equations~49! to decouple thep8 variable
directly. In all these embeddings, two auxiliary functions are required.

It is warranted to see whether or not is possible to find a Killing symmetry reduction o
generalized Moyal–Nahm equations~49! directly to the continuous Moyal–Toda lattice-typ
equations~38!–~40! without the need to recur to auxiliary functions and avoid the complicated
of coupled differential equations. The essence of the problem lies in the fact that thet variable
plays two different roles. In one case, like in the rotational Killing symmetry reduction of
heavenly equation, it behaves like an ordinary space–time variable and, in another, it behav
an internal phase space variable associated with the Lie algebra of the area-preserving diffe
phisms of the sphere. It seems very difficult to reconcile both roles within the WWGM forma
without returning to the coupled system of differential equations. We believe that there ma
reduction~other than the axial symmetry reduction proposed above! of the generalized Moyal–
Nahm equations that successfully decouples thep8 variable and that reproduces the continuo
Moyal–Toda lattice equationswithout the introduction of auxiliary functions.

C. Continuum Lie algebras and the Lax–Brockett formalism

To finalize matters we recall again the Lax–Brockett formalism ofZ-graded continuum Lie
algebras19 which is perhaps the most geometrical of all approaches.

The data$Ta% for three Moyal–Nahm functions need to be related to the three funct
$L,H,M% required in the Lax–Brockett formalism of continuumZ-graded Lie algebras.19 Equa-
tion ~18! establishes the correspondence among these data: a functional embedding of t
$Ta% ~parametrized by one function,f! into the data$L,H,M% ~parametrized by three functions
u,r,k!. However, this is only possible if one can construct the three twistorlike transforma
which map the now-deformed scalar fieldf(xm;qi ,pi ,\) into the now-deformed three function
appearing in Eqs.~2!–~4!: r,u,k depending ont,t;qi ,pi ,\. One of them is the Moyal deforme
continuous Toda field:r.

Presumably this should be related to the problem of deformations of twistor surface
Kodaira–Spencer deformation theory.14 Unfortunately, we cannot say more on this matter. A st
will be in constructing Moyal deformations of continuum Lie algebras. We are unaware if thi
ever been done. A construction will provide the functional relations of$L,H,M% in terms of
u,r,k. The Lax–Brockett formalism of the Moyal–Nahm equations should yield the contin
Moyal–Toda equation forr ~26! after the elimination ofu,k as it occurs in the undeformed case19

For this reason, it is of tantamount importance to construct representations of continuu
algebras and for that matter representations of SU~`! as well. A WWM quantization will then
provide the functional relations of$L,H,M% in terms ofu,r,k.

The main solution to the problem of writing down Moyal–Toda equations from reduction
Moyal–Nahm equations requires the construction of Moyal deformations of the graded cont
Lie algebras. There are other Moyal deformations related to the infinite-dimensional loop alg
associated withw` algebras. For example, the loop algebra ofsdi f f(R2), the algebra of maps o
the circle intow` , in the basis of functionsxs1mys2m is
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@vm
s ~s!,vn

t ~s8!#5@~ t2n!~s1m!2~s2m!~ t1n!#vm1n
s1t21~s!

]

]s
d~s2s8!. ~67!

These loop algebras may admit Moyal deformations as well since the Moyal deformation
centerlessw` algebrais the centerlessW` algebra.26–28 Central extensions can be added as w
Hence, the Moyal deformations of the algebra~67! will be just the infinite-dimensional loop
algebra associated withW` .

Moyal deformations of theZ-graded continuum Lie algebras19 ought to be very relevant in the
Moyal quantization program of the continuous Toda theory. Especially in regards to determ
the differential equations for theu(t,t,q,p,\) andk(t,t,q,p,\) appearing directly in the Lax–
Brockett double commutator formalism. More on this shall be said in a forthcoming publica

V. CONCLUSION

We have explicitly presented in Sec. II a class of solutions to the Moyal SU~`! ASDYM
equations in four dimensions that are related to thereductionsof the generalized Moyal–Nahm
equations via the Ivanova–Popov ansatz. A dimensional reduction yields solutions to the
deformations of the ASDG equations. The SDYM and SDG case requires a separate stud

Since the ASDYM equations studied by Ivanova and Popov4 in Euclidean 4D correspond to
the SDYM equations in 212 dimensions studied in Ref. 9, one can write down the transforma
that maps the rotational Killing symmetry reductions of the 4D Moyal heavenly equations g
by Eq. ~14! into the 211 SU~2! Toda lattice equations given by Eq.~36!. A two-step process is
required to attain such a map and it is explicitly given by Eqs.~15! and ~33!. This is one of the
most relevant results of this work.

Threedifferent types of Toda equations have been studied.~i! The continuous Moyal–Toda
equation~26! and the Moyal–Liouville equation~32b!. Two types of discrete-differential equa
tions, ~ii ! the SU~2! Toda lattice ~34! and ~36! and ~iii ! the continuous Moyal–Toda lattic
equations, Eqs.~38!–~40!. The generalization of the Prasad transformation6,22 to the Moyal case
mapping deformations of the 3D Laplace equation to the continuous Moyal–Toda equatio~26!
was discussed in Sec. III A.

Finally, the generalized Moyal–Nahm equations~49! have been provided that shouldcontain
the continuous Moyal–Toda lattice-type equations after a suitable reduction, similar to th
performed by Strachan14 which yields the SU~2! Toda lattice from the SU~2! Moyal–Nahm
equations. Unfortunately, this reduction requires the introduction of two auxiliary fields. Fu
details of the reductionwithoutauxiliary fields is currently under investigation. Embeddings of
various forms of the Moyal–Toda equations into the Moyal–Nahm equation were also pro
and, again, the introduction of two auxiliary fields was required.

The project for the future is to study the Lax–Brockett formalism of the generalized Mo
Nahm equations. Unfortunately we lack an explicit knowledge of the form of theL,M functions
in terms of the deformedr,u,k fields. If we did, then one could apply the Lax–Brockett form
ism ~18! to the Moyal–Nahm equations to obtain directly the Moyal–Toda equations forr upon
eliminating theu,k fields. Presumably, this could be a realization of deformations of twi
surfaces.15 The connection to Kodaira–Spencer deformation theory14 is unknown at the moment

Other Moyal deformations applied to higher extended objects,p-branes, remain to be studied
the so-called Moyal–Nambu–Poisson algebras related to deformations of the volume form
natural deformation quantization technique is the Zariski product16 which generalizes the Moya
product top-branes. Octonionic29 and quaternionic Moyal–Nahm equations can be constructe
well using the octonionic/quaternionic structure constants instead of theeabg tensor density. The
fact that the generalized Moyal–Nahm equations require eight dimensions may have an im
role in understanding the quantum dynamics of the 11D membrane13 and the role ofW`

algebras.25
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Central charge and the Andrews–Bailey construction
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From the equivalence of the bosonic and fermionic representations of finitized
characters in conformal field theory, one can extract mathematical objects known as
Bailey pairs. Recently Berkovich, McCoy, and Schilling have constructed a ‘‘gen-
eralized’’ character formula depending on two parametersr1 and r2 , using the
Bailey pairs of the unitary modelM (p21,p). By taking appropriate limits of these
parameters, they were able to obtain the characters of modelM (p,p11), N51
model SM(p,p12), and the unitaryN52 model with central chargec53(1
22/p). In this letter we computed the effective central charge associated with this
‘‘generalized’’ character formula using a saddle point method. The result is a
simple expression in dilogarithms which interpolates between the central charges of
these unitary models. ©1999 American Institute of Physics.
@S0022-2488~99!02307-5#

I. INTRODUCTION

More than a decade since its creation, two-dimensional conformal field theory~CFT!1 and its
integrable perturbations2 still remain as one of the most active research topics in modern phy
A current focus is in the study of various bases of the Hilbert space in CFT. Different choic
the basis would lead to a different representation for the partition function of the CFT defin
a compact manifold such as a torus or a cylinder. This partition function is usually written in t
of characters of the Virasoro or some extended algebras. The ‘‘bosonic’’ form of these cha
formulas are well known for the minimal models of CFT~e.g., see Refs. 3–8, and referenc
therein!. Recently the Stony Brook group has constructed numerous new character formu
minimal CFT based on fermionic quasiparticles.9–12 For several CFTs, more than one ‘‘ferm
onic’’ expression exists for the same conformal character. In these cases, the different expr
are related to the different integrable perturbations of the same CFT. These developments
support to the idea of a massless scatteringS-matrix description of CFT.13–16The construction of
the quasiparticle basis of the Hilbert space is also apparently related to the problem of dia
izing the infinite set of local integrals of motion in CFT.17,18 For a description in terms of othe
bases see Refs. 19–21.

The equivalence of the bosonic and fermionic character formulas gives rise to bea
q-series identities of the Rogers–Ramanujan type.22–24Such identities were proven by Schur25 and
Andrews26 by establishing identities for families of polynomials whose limiting case yields
Rogers–Ramanujan identities. This method was applied to the character identities of the
minimal models by Melzer in Ref. 27, where he proposed a finitization of fermionic char
formulas to match the bosonic polynomials of Ref. 28. In Ref. 29, several classes ofq-series
identities were proven using Andrews’ generalization30 of Bailey’s lemma.31 The key observations
in Ref. 29 were that Bailey pairs can be extracted from finitized characters~which must be in the
general bosonic form of Ref. 32!33 and several series of CFT@including subsets ofM (p,p11),
M (p,p12), andM (p,kp11)# are ‘‘linked’’ on a so-called Bailey’s chain.30 The equivalence
proof for all members of a series is a straightforward application of Bailey’s lemma, once a
is established for a single member.30

In a remarkable paper,34 the procedure of Ref. 29 was repeated using a more general for
the Andrews–Bailey construction which contains two parametersr1 andr2 .30,31 From the~dual!
37610022-2488/99/40(8)/3761/12/$15.00 © 1999 American Institute of Physics
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Bailey pairs for the unitary minimal modelM (p21,p), the more general construction gives
‘‘generalized’’ character formula@Eq. ~4.19! of Ref. 34# depending on the two parameters. Thr
specializations of these parameters lead to known results:

~ i!:r1˜`, r2˜`;

~ ii !:r1˜`, r25finite; ~1.1!

~ iii !:r15finite, r25finite.

In the first case, the ‘‘generalized’’ character formula becomes the character for the next mo
the unitary series, i.e.,M (p,p11) with central charge 126/p(p11). Case~ii ! leads to fermionic
character formula forN51 supersymmetric modelSM(p,p12) with central charge3

2212/p(p
11), while case~iii ! gives the fermionic character of unitaryN52 model with central charge
c53(122/p). It is amazing that this ‘‘generalized’’ character formula connects the unitary m
els with their supersymmetric counterparts. In fact, this construction~and its generalizations! can
also be applied to other minimal modelsM (p,p8).29,11,35–37A natural question~raised in Ref. 34!
which needs addressing is whether this construction has any connection to massless reno
tion group flows between these CFT.13,38

In this paper, we shall attempt to understand this ‘‘generalized’’ character formula fo
unitary series by computing the associated ‘‘generalized’’ effective central charge. In Sec.
give a brief review of the construction detailed in Ref. 34 and establish our notations.
generalized effective central charge is calculated in Sec. III via a saddle point approxim
following Refs. 39, 40, 9, and special cases are treated. A discussion of our result is giv
Sec. IV.

II. THE ANDREWS–BAILEY CONSTRUCTION OF THE UNITARY MODELS

The unitary CFTM (p21,p) is the continuum limit of the (p21)-states RSOS lattice model28

at its critical point between regimes III and IV.41 The equivalence of the associated bosonic a
fermionic finitized characters can be written as27

Br ,s
~L,p!5Fr ,s

~L,p! . ~2.1!

The bosonic side has the form

Br ,s
~L,p!~q!5 (

j 52`

` S qj ~ jp~p21!1pr2~p21!s!F L

@ 1
2 ~L1s2r !#2p j G

q

2q~ jp2s!~ j ~p21!2r !

3F L

@ 1
2 ~L2s2r !#1p j G

q
D , ~2.2!

where@n# denotes the integer part ofn, and

F n
mG

q

5H ~q!n

~q!m~q!n2m
for 0<m<n

0 otherwise,

~2.3!

is the usualq-binomial coefficient with

~a!n5
~a!`

~aqn!`
, ~a!`5)

l 50

`

~12aql !. ~2.4!
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One should note that this finitized character is equal to the one-dimensional configuration s
the underlying RSOS model in regime III, defined on a square lattice of sizeL,28 and can be used
to compute local height probabilities. In the limitL˜`, ~2.2! becomes the character formula3 for
the irreducible representation generated by the primary fieldF (r ,s) , with normalizationx r ,s(q)
511(N>1 aNqN.

There are two forms for the fermionic characterFr ,s
(L,p) , depending on the finite parameterL.

Let Cp23 and I p23 stand for, respectively, the Cartan and incidence matrices of the Lie alg
Ap23 . Furthermore denote thei unit vector in Rp23 as eW i , and seteW i50W for i ,1 or i .(p
23). Then

Fr ,s
~L,p!~q!

5q2~1/4!~s2r !~s2r 21! (
mW P2Zp231QW r ,s

q~1/4!mW TCp23mW 2~1/2!AW r ,smW )
i 51

p23 F 1
2 ~ I p23mW 1uW r ,s1LeW1! i

mi
G

q

,

~2.5!

wheremW T5(m1 ,...,mp23). WhenL1r 2s is even,

AW r ,s5eW s21 , uW r ,s5eW s211eW p2r 21 , ~2.6!

QW r ,s5~r 21! (
i 51

p23

eW i1~eW s221eW s241¯ !1~eW p2r1eW p122r1¯ !;

and whenL1r 2s is odd,

AW r ,s5eW p2s21 , uW r ,s5eW p2s211eW r , ~2.7!

QW r ,s5~s21! (
i 51

p23

eW i1~eW r 211eW r 231¯ !1~eW p2s1eW p122s1¯ !.

These two forms yield the sameq-series in the limitL˜`. Proofs of the fermionic sums are give
in Refs. 42–46.

Two sequences$an% and $bn% form a ~bilateral! Bailey pair relative toa if they satisfy the
relation

bn5 (
j 52`

n
a j

~q!n2 j~aq!n1 j
. ~2.8!

If we setL52l 1r 2s12x, then from~2.1! we can read off a~bilateral! Bailey pair relative to
a5qr 2s12x as

an5H qj ~ jp~p21!1pr2~p21!s! for n5p j –x
2q~ jp2s!~ j ~p21!2r ! for n5p j –r –x
0 for otherwise

, ~2.9a!

bn5H 1

~aq!2n
Fr ,s

~2n1r 2s12x,p!~q! for >0

0 otherwise.

~2.9b!

An important step in the Andrews–Bailey construction of the unitary models is to de
another Bailey pair relative toa,
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An5H qj 2p2s j1x~s2r 2x! for n5p j2x

2qj 2p2s j1x~s2r 2x! for n5p j2r 2x
0 otherwise

~2.10a!

Bn5H 1

~aq!2n
qn2

anFr ,s
~2n1r 2s12x,p!~q21! for n>0

0 otherwise,

~2.10b!

which are dual to~2.9!.30,34 Here

Fr ,s
~L,p!~q21!

5q~1/4!~s2r !~s2r 21! (
mW P2Zp231QW r ,s

q~1/4!mW TCp23mW 1~1/2!~AW r ,s2uW r ,s2LeW1!mW

3 )
i 51

p23 F 1
2 ~ I p23mW 1uW r ,s1LeW1! i

mi
G

q

. ~2.11!

This dual transformation (q˜q21) takes us from theM (p21,p) finitized characters to the
M (1,p) finitized characters.10,44The nonunitary minimal modelM (1,p) has actually zero operato
content in the usual range ofr and s, but admits nontrivial finitizations. In fact, up to som
prefactors,~2.11! is the finitization47 of theZp22 parafermions48 which describe the critical poin
between regimes I and II of the RSOS model.28

The Andrews–Bailey construction tells us that if~2.10! is a ~bilateral! Bailey pair, then

An85S ~r1!n~r2!n~aq/r1r2!n

~aq/r1!n~aq/r2!n
DAn , ~2.12a!

Bn85 (
m52`

n S ~r1!m~r2!m~aq/r1r2!n2m~aq/r1r2!m

~q!n2m~aq/r1!n~aq/r2!n
DBm ~2.12b!

also forms a~bilateral! Bailey pair with respect toa. Now using the defining relation~2.8! with
this new Bailey pair and taking the limitn˜`, one easily obtains the formula

~aq/r1!`~aq/r2!`

~aq!`~aq/r1r2!`
(

j 52`

`

qj ~ jp2s!1x~s2r 2x!S ~r1!p j2x~r2!p j2x~aq/r1r2!p j2x

~aq/r1!p j2x~aq/r2!p j2x

2
~r1!p j2r 2x~r2!p j2r 2x~aq/r1r2!p j2r 2x

~aq/r1!p j2r 2x~aq/r2!p j2r 2x
D

5 (
n50

`

~r1!n~r2!n~aq/r1r2!n
qn2

an

~aq!2n
Fr ,s

~2n1r 2s12x,p!~q21!. ~2.13!

We shall refer to the expression in~2.13! as the ‘‘generalized’’ character formula, and we w
compute the effective central charge associated with it in Sec. III. In the limiting case~i! ~and
setting x50!, ~2.13! becomes the character formula forxs,r

(p,p11) , where 1<r<(p22) and 1
<s<(p21). Similarly, the ‘‘generalized’’ character~2.13! yields characters for theN51 super-
symmetric modelSM(p,p12) in the case~ii ! ~with r252qr 2s11/2!, while case~iii ! ~for example
with r152yq1/2 andr252y21q1/2 for r 5s51 in the Neveu–Schwarz sector! leads to charac-
ters of theN52 model with central chargec53(122/p).34 Repeating the Andrews–Baile
construction starting from~2.1! and takingL52l 1r 2s12x11, another ‘‘generalized’’ characte
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can be obtained. The latter becomes the character formula forxs,r 12
(p,p11) in case~i!, and gives more

characters for the supersymmetric models in the cases of~ii ! and~iii ! ~please see Ref. 34 for mor
details!. Since this second ‘‘generalized’’ character leads to the same central charge as~2.13!, it
will not be considered further in this work.

III. EFFECTIVE CENTRAL CHARGE

In this section, we shall calculate the asymptotic behavior of~2.13! asq˜12. This method of
computing the effective central charge for CFT fermionic characters are by now standard.39,40,9,43

Therefore we will be brief with the procedure, but detailing in places where our calculation d
from the norm. First we shall predict the asymptotic growth of the ‘‘generalized’’ character u
a physical argument. Subsequently we will derive this asymptotic behavior directly from
character formula.

A. Asymptotic behavior of the ‘‘generalized’’ character

Characters in CFT admit an interpretation as the partition function of the model defined
cylinder with conformal boundary conditions on its rims.49 The modular invariance property o
these character formulas give us precise information about their asymptotic behavior. The w
assumption in this section will be that~2.13! also gives the cylindrical partition function for som
quantum field theory with appropriate boundary conditions labeleda and b. Note thata and b
depend on the values ofr ands, as well asr1 andr2 . Define the modular parameter

q5e2p i t, q̃5e22p i /t,

with

t5
iR

2pL
~3.1!

for a cylinder of lengthL and circumferenceR. If we take the~imaginary! time coordinate to be
in the R direction and space in theL direction, the generalized character~2.13! can be written as

xs,r
~p!~r1 ,r2 ;t!5TrPe2RHab~r1 ,r2up!/L5TrPqHab~r1 ,r2up!, ~3.2!

whereHab is the~normalized! dimensionless Hamiltonian of the field theory with open bound
conditionsa andb. The trace is taken over the sector of the Hilbert space with boundary cond
P along the circumference of the cylinder. For the cases~1.1!, Hab becomesL02D(s,r ) where
D(s,r ) is the appropriate conformal dimension for each unitary model. If instead we take sp
be compactified in theR direction and time to evolve in theL direction, then the partition function
will be

xs,r
~p!~r1 ,r2 ;t!5^aue2LHP~r1 ,r2up!/Rub&, ~3.3!

whereHP is the dimensionless Hamiltonian with closed boundary conditionP. Here ^au and ub&
represent the boundary states at the ends of the cylinder. Note that extra prefactors~in powers of
q! due to normalization have been dropped from the right-hand side of~3.3!, as they are irrelevan
in the following limit ~whereq˜121!. In the limit L˜`, the inner product~3.3! is dominated by
the ground state ofHP with energyE0 ,

lim
L˜`

xs,r
~p!~r1 ,r2 ;t!;gagbq̃E0/4p2

, ~3.4!

where we denote the contributions from each boundary asga andgb . ~3.4! is our prediction of the
asymptotic behavior of~2.13!.
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The fermionic form of the generalized character~2.13! is most suitable for taking the
asymptotic limitq˜12. The important thing to notice here is that for fixedp, E0 depends only on
the parametersr1 andr2 , and is independent ofr ands. Standard arguments9 ~related to ther and
s independence ofE0! give us the freedom to remove the restrictionQW r ,s and linear terms in the
exponent ofq from the fermionic sum in this limit. Thus to compute the asymptotic behavio
the generalized character, i.e., to obtain the leading exponent ofq̃, we could just concentrate o
the simplest case of the identity representationx1,1

(p)(r1 ,r2 ;t). To implement the special limits
~1.1! in this case, let us parametrizer1 andr2 as

r152
q1/2

A
, r252

q1/2

B
, ~3.5!

thus we have

~ i! A50, B50,

~ ii ! A50, B51, ~3.6a!

~ iii ! A51, B51,

with x50 and a51 for all three cases. With our choice of parametrization, the limits~1.1!
actually become~i! r1˜2`, r2˜2` and ~ii ! r1˜2`, r25finite. However, we can still
obtain the same conformal characters from~2.13!. Here we specialized to the case ofy51 for the
N52 CFT. The limits~ii ! and ~iii ! used here lead to the Neveu—Schwarz characters for
supersymmetric models. We will not consider the Ramond sector, although it can be treate
straightforward generalization of the computation presented here. A convenient parametriza
the ground state energyE0 is

E0~A,Bup!52
p2

6
c̃~A,Bup!. ~3.7!

From ~3.4!, we shall interpretc̃ as the ‘‘generalized’’ effective central charge, and expect tha
the limits ~3.6!, it will take on the values of 126/p(p11), 3/2212/p(p11), and c53(1
22/p), respectively.

B. Effective central charge

After all the simplifications mentioned above, theq-series we shall consider is

x̃1,1
~p!~A,B;q!5 (

n50

`

(
m1 ,...,mp2350

` S 2
q1/2

A D
n

3S 2
q1/2

B D
n

~AB!n
qmW TCp23mW 22nm11n2

~q!2n
)
i 51

p23 F ~ I p23mW 1neW1! i

2mi
G

q

. ~3.8!

If the coefficients in this seriesx̃1,1
(p)5(aM qM behave likeaM;e2pAMc̃/6 for largeM, then asq

˜12, x̃1,1
(p) diverges likeq̃2 c̃/24. In other words one can obtain the ‘‘generalized’’ central cha

c̃ from the asymptotic growth of the coefficientaM . The latter is computed by applying the sadd
point method to

aM215 R dq

2p i
x̃1,1

~p!~A,B;q!q2M5 R dq

2p i (n
(
mW

f ~n,mW ;q!. ~3.9!

The saddle point occurs at the point where the derivatives of
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log f ~n,mW ;q!'E
0

n

logS 11
qk

A Ddk1E
0

n

logS 11
qk

B Ddk1n log~AB!

2E
0

2n

log~12qk!dk1~n222nm11mW TCp23mW 2M !logq

1 (
i 51

p23 S E
0

~ I p23mW 1neW1! i
2E

0

~ I p23mW 1neW122mW ! i
2E

0

2mi D log~12qk!dk ~3.10!

with respect ton, m1 ,...,mp23 andq are all zero. In deriving the expression in~3.10!, sums such
as log$(q)n% and log$(2q1/2/A)n% were approximated by integrals. There are several ways to m
this approximation. Ultimately, the difference between the various approximation schem
equivalent to a difference in the linear terms in the exponent ofq, and do not influence the
quadratic terms. Since the asymptotic growth is not expected to depend on the linear te
explained above, we have the freedom to use the following two~different! approximations:

log$~q!n%;E
0

n

log~12qk!dk, ~3.11a!

logH S 2
q1/2

A D
n
J ;E

0

n

logS 11
qk

A Ddk. ~3.11b!

This combination of approximations was chosen to simplify the algebra after differentiation
Let us define

v i5q22mi, wi5q~ I p23mW 1neW1! i. ~3.12!

The differentiation with respect tomi andn produced the following set of relations for their sadd
point valuesm̄i and n̄:

~12yi !
25 )

j 51

p23

yj
I i j , ~3.13a!

q2n̄d1,i~12xi !
25 )

j 51

p23

xj
I i j , ~3.13b!

~12q2n̄!25~A1qn̄!~B1qn̄!q2n̄x1 , ~3.13c!

where

xi5
~12w̄i !v̄ i

12 v̄ i w̄i
, yi5

~12w̄i !

12 v̄ i w̄i
. ~3.14!

It is easy to show that in the special cases of~3.6!, ~3.13! reduces to a system of algebra
equations governed by the algebrasAp22 , Ap21 , andDp21 , respectively. For these algebras, t
corresponding systems of equations are solved in the literature, and are known to be relate
Thermodynamic Bethe Ansatz~TBA! approach~see, e.g., Refs. 50–54!. Here we can easily write
down the solution foryi as
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yi5

sin2~11 i !
p

p

sin2
p

p

. ~3.15!

One can also show that

xi5
sin2~p212 i !u

sin2 u
~3.16!

satisfies~3.13! with the closure conditions

xp2251, ~3.17a!

x05
sin2~p21!u

sin2 u
5q22n̄, ~3.17b!

x215
sin2 pu

sin2 u
5~11Aq2n̄!~11Bq2n̄!, ~3.17c!

~3.17d!

The parameteru is related toA andB by the relation

~A1B!sinu1AB sin~p21!u5sin~p11!u. ~3.18!

To compute logf(n,mW ;q) at the stationary point with respect tomi and n, we first rewrite it
using the relations

E
0

z̄

log~12qk!dk5
1

logq FL~12qz̄!1
1

2
log~12qz̄!logqz̄G , ~3.19a!

E
0

z̄

logS 11
qk

A Ddk5
1

logq FLS qz̄

qz̄1A
D 2LS 1

11AD1
1

2
logA logS 11A

qz̄1AD G1
z̄

2
logS 11

qz̄

A D .

~3.19b!

The Rogers dilogarithm in~3.19! is defined by55

L~z!5Li 2~z!1
1

2
logz log~12z!, Li 2~z!52E

0

z log~12w!

w
dw ~3.20!

andL(1)5p2/6. The five terms relation for the dilogarithm in our case can be written as

L~12wi !2L~12v iwi !2L~12v i
21!5L~12yi

21!2L~12xi
21!. ~3.21!

Hence we have

log f ~n,mW ;q!u
n5n̄
mW 5m̄W '2M logq2

p2c̃~A,Bup!

6 logq
, ~3.22!

where
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c̃~A,Bup!5
1

L~1! S LS 1

11AD1LS 1

11BD1LS 12
1

x0
D2LS 1

11Ax0A
D 2LS 1

11Ax0B
D

1 (
i 51

p23 FLS 12
1

xi
D2LS 12

1

yi
D G1

1

2
logA logS 11Ax0A

11A D 1
1

2
logB logS 11Ax0B

11B D D .

~3.23!

By differentiating~3.22! with respect toq, we found the saddle point value ofq to be

q̄5e2Ap2c̃/6M. ~3.24!

This leads to the expected asymptotic behavior ofaM for large M, and hence we can interpre
c̃(A,Bup) as a ‘‘generalized’’ effective central charge for~2.13!. The sums in~3.23! can be further
simplified using dilogarithm sum rules55,56 to yield

(
i 51

p23

LS 12
1

yi
D5S p251

6

pDL~1!, ~3.25!

LS 12
1

x0
D1 (

i 51

p23 FLS 12
1

xi
D G5~p21!L~1!2p~p21!u212Li 2S 2

sin~p21!u

sinu
,pu D

1 logS sin~p21!u

sinu D logS sinpu

sinu D , ~3.26!

where

Li 2~r ,u!5Re$Li 2~reiu!%52
1

2 E0

r log~122x cosu1x2!

x
dx. ~3.27!

The resultant expression for the ‘‘generalized’’ central charge is

c̃~A,Bup!5
1

L~1! FLi 2~2A!1Li 2~2B!2Li 2S 2A
sin~p21!u

sinu D2Li 2S 2B
sin~p21!u

sinu D
1S 42

6

pDL~1!2p~p21!u212Li 2S 2
sin~p21!u

sinu
,pu D G . ~3.28!

The simple expression in~3.28! is the main result of this letter. It gives the effective central cha
associated with the ‘‘generalized’’ character formula~2.13! in terms of dilogarithm functions. The
expressions in~3.23! and ~3.28! are valid forA>0 andB>0.

C. Special cases

Consider the domainA50, andB5sin(p11)u/sinu follows from ~3.18!. To implement the
special case~i!, we take the limitB˜0, thus yieldingu5p/(p11). Consequently by using th
identity55

Li 2~2 cosu,u!5S p

2
2u D 2

,

we obtainedc̃(0,0up)5126/p(p11), which is the central charge of the unitary modelM (p,p
11). In the limit ~ii !, takingB51 we foundu5p/(p12). Using the limit
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Li 2S 2
sin~p21!u

sinu D12Li 2S 2
sin~p21!u

sinu
,pu D U

u5p/~p12!

5
2

3
p222

~2p11!

~p12!2 p2,

we recover the central charge of theN51 unitary modelc̃(0,1up)5 3
2212/p(p12).

It is interesting thatc̃(0,Bup) is a smooth monotonic function ofB between the above two
limits. In particular for the case ofp53, we have a function which connects the central charge
the Ising and tricritical Ising model, while the ‘‘generalized’’ character~2.13! takes us from the
tricritical Ising characterx1,1

(4,5)1x1,4
(4,5) to the Ising characterx1,1

(3,4) . Hence it is desirable to com
pare c̃(0,Bu3) with the known ground state scaling functionC(r ) obtained from TBA.13 Recall

that the latter is a function of a scaling parameterr, with UV limit ( r˜0) 7
10 and IR limit (r

˜`) 1
2, respectively. Therefore to compare the two expressions, we need to find a parametr

of the variableB in terms of r. This can always be done since one can in principle invert
function c̃(0,Bu3) to obtain the parametrizationB(r )5 c̃21(C(r )). However we were unable to
expressB(r ) in a simple and closed form. This is perhaps not surprising sinceC(r ) is written as
an integral involving two pseudoenergiese1 and e2 , which in turn are given by two coupled
integral equations involvingr. Only in the UV or IR limits do we get a simplification of th
integral equations, which then allow us to writeC in terms of dilogarithms.13 Hence the param-
etrizationB(r ), which yields an expression forC(r ) in terms of dilogarithms for generalr, is
likely to be complicated. It is also unclear at this stage whether this parametrization admi
physical interpretations.

Now let us focus on the other domainA5B. The relation ~3.18! tells us A5@cos(p
11)u/2#/@cos(p21)u/2#. Of course in the limiting case~i!, A˜0, we foundu5p/(p11) as
before. Once againc̃(A,Aup) is a smooth monotonic function ofA. For theN52 supersymmetric
limit ~iii !, taking A˜1, we getu50 and c̃(1,1up)53(122/p) as expected. Hencec̃(A,Bup)
indeed give us a function which interpolates between the central charges of an unitary mod
its supersymmetric counterparts.

IV. DISCUSSION

In this work, we have studied the asymptotic behavior of the ‘‘generalized’’ character for
xs,r

(p)(r1 ,r2 ;q) ~2.13! in the limit q˜12. In this limit, we show that theq-series diverges like
q̃2 c̃/24 and we found a simple expression~3.28! for the ‘‘generalized’’ effective central chargec̃
in terms of dilogarithms. In the limiting cases~i!, ~ii !, and~iii !, c̃ yields the central charges of th
unitary models and their supersymmetric counterparts.

Having stated our conclusion, we shall take the liberty to indulge in some~pure! speculations.
Of course it is not surprising that we can find a function which reproduces the correct c
charges in the various limits. Indeedxs,r

(p)(r1 ,r2 ;q) also becomes the corresponding CFT char
ters in these limits. But what isa priori not expected from the Andrews–Bailey construction
that the ‘‘generalized’’ character~2.13! would exhibit the asymptotic behavior found in Sec. I
The prediction for this behavior was based on the assumption that~2.13! gives the partition
function for some quantum field theory. This field theory must be invariant under intercha
roles of space and time. This suggests thatxs,r

(p)(r1 ,r2 ;q), when multiplied by a suitable facto
qDs,r (r1 ,r2up), may be modular covariant. It would be very interesting to show directly from~2.13!
that

qDs,r ~r1 ,r2up!xs,r
~p!~r1 ,r2 ;q!5 (

s8,r 8
Ss,r

s8,r 8~r1 ,r2up!q̃Ds8,r 8~r1 ,r2up!xs8,r 8
~p!

~r1 ,r2 ;q̃!

for some ‘‘generalized’’S-matrix. Presumably the elements of thisS-matrix ~if it exits! can be
calculated from the nonperturbative corrections to the saddle point.57,58 This computation would
be much more involved than that in Sec. III since the elements ofS depend onr ands

Another interesting puzzle is the nature of the quantum field theory with the HamiltoniaHP

discussed in Sec. III. From~3.7!, the ground state energy ofHP(r1 ,r2up) is proportional to
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c̃(A,Bup) which is written in terms of dilogarithms. This seems to indicate thatHP(r1 ,r2up) is
the Hamiltonian for a~maybe irrational! CFT which interpolates between theN50, N51 and
N52 unitary models. Last, it is worth investigating whether the approach taken here can be
to the trinomial analog of Bailey’s lemma.37,12
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The implementation of modular invariance on the torus as a phase space at the
quantum level is discussed in a group-theoretical framework. Unlike the classical
case, at the quantum level some restrictions on the parameters of the theory should
be imposed to ensure modular invariance. Two cases must be considered, depend-
ing on the cohomology class of the symplectic form on the torus. If it is of integer
cohomology classn, then full modular invariance is achieved at the quantum level
only for those wave functions on the torus which are periodic ifn is even, or
antiperiodic ifn is odd. If the symplectic form is of rational cohomology classn/r ,
a similar result holds—the wave functions must be either periodic or antiperiodic
on a torusr times larger in both directions, depending on the parity ofnr. Appli-
cation of these results to the Abelian Chern–Simons theory is discussed. ©1999
American Institute of Physics.@S0022-2488~99!04007-4#

I. INTRODUCTION

Since the pioneer work by Dirac1 on the quantization of constrained systems, much work
been done on this subject, and plenty of methods have been developed to face this interest
many times, difficult problem. Roughly speaking, the different methods can be classified int
types, depending on whether the quantization of the corresponding unconstrained system
performed and then the constraints imposed at the quantum level~the ‘‘quantize-first’’ method! or
the constraints are first imposed and then the quantization of the resulting ‘‘reduced’’ sys
performed~the ‘‘constrain-first’’ method!. An example of the former is given by the abov
mentioned paper by Dirac,1 while the latter was originated by the work of Faddeev.2 Many other
procedures derive from these two, adapted to the properties of the particular system und
sideration. Thus, for instance, the Becchi–Rouet–Stora–Tyutin~BRST! quantization is a
‘‘quantize-first’’ technique adapted to the covariant quantization of gauge invariant syst3

Also, the method proposed by Ashtekar4 was designed to simplify the form of the quantu
constraints in quantizing gravity. Alternatively, symplectic or Marsden–Weinstein reduction5 is a
specific technique developed to obtain a reduced classical phase space, which is the startin
for ~some sort of! geometric quantization.6

The main drawback of the ‘‘constrain-first’’ method lies in the fact that the classical p
space could not be properly defined as a differential manifold or, even more, the classical eq
37730022-2488/99/40(8)/3773/18/$15.00 © 1999 American Institute of Physics
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of motion might have no general solution. In addition, all the problems that geometric quantiz
encounters in dealing with nontrivial phase spaces must be considered~anomalies, i.e., the lack o
invariant polarizations, the search for operators compatible with the polarization, etc.!.

The troubles with the ‘‘quantize-first’’ methods appear in the implementation of the qua
constraints; only quadratic constraints can be directly imposed due to normal-order ambig
Besides, finding the operators that preserve the quantum constraints is a nontrivial problem

In Ref. 7 a method for studying quantum systems with constraints on a group-theor
framework, Algebraic Quantization on a Group~AQG!, was introduced. AQG is a ‘‘quantize
first’’ method in which both the unconstrained systems and the constraints are supposed to b
with in a group setting. This could seem, at first instance, a severe restriction but, in practice
of the interesting cases can be treated with this formalism, and the advantages it provid
numerous. In particular, there are no ambiguities in the imposition of quantum constraints~even
for nonpolynomical ones!, and there is an operative characterization for the operators that
serves the quantum constraints.

Another advantage of AQG is the possibility of implementing the nontrivial topology o
phase space as a ‘‘contraint subgroup’’ that contains the first homotopy group of the phase
made of discrete transformations, which can be easily addressed in this formalism.

In Ref. 8 the quantization of the Heisenberg–Weyl~HW! group with constraints was consid
ered and the particular case of the HW group on the torus was studied. Now, we wish to
ment modular invariance on the torus at the quantum level. In general, the modular invaria
a conformal theory formulated on a Riemannian surface of genusg,Sg , refers to the quotient
group Diff(Sg)/Diff 0(Sg), where Diff(Sg) is the group of diffeomorphisms ofSg and the sub-
script 0 designates the normal subgroup of diffeomorphisms connected to the identity~see, e.g.,
Refs. 9 and 10!.

Clearly, modular transformations on the torus are the SL(2,Z) subgroup of the group
SL(2,R)'Sp(2,R) of linear symplectic transformations of the plane that preserves the t
Therefore we can implement them in the formalism of Algebraic Quantization on a Grou
considering the Schro¨dinger group~or Weyl-Symplectic group, see Ref. 11! WSp(2,R) as the
symmetry group of the unconstrained system and imposing the appropriate constraints to o
torus as the~reduced! symplectic manifold, pretty much in the same manner as in Ref. 8. The
expect to obtain modular transformations as good operators, i.e., those preserving the
space of wave functions satisfying the constraints. However, to obtain full modular invarianc
must impose some restrictions on the parameters of the theory. As in Ref. 8, three differen
should be considered, depending on the cohomology class of the symplectic form on the
which can be integer, fractional, or irrational. Only the integer and fractional cases will be
sidered here, since the irrational one requires techniques from noncommutative geometry12 and
lies beyond the scope of this paper.

These results are applied to 211D Abelian Chern–Simons theory and compared with
ones obtained in the literature.

The present paper is organized as follows: In Sec. III we study the Schro¨dinger group without
constraints and compute the metaplectic~or spinor! representation with the help of a higher-ord
polarization. Section IV is devoted to the determination of the constrained Hilbert space and
operators when the phase-space is constrained to be a torus. Two cases are considered, th
which the symplectic form on the torus is of integer cohomology classn ~Sec. IV A!, where full
modular invariance is obtained only when the wave functions are periodic forn even or antiperi-
odic for n odd, and the case of symplectic form of rational cohomology classn/r ~Sec. IV B!,
where full modular invariance is obtained only when the wave functions are periodic fornr even
or antiperiodic fornr odd. Here periodicity and antiperiodicity are understood in a torus whic
r times larger in both directions. Finally, Sec. V is devoted to the application of our study
11D Abelian Chern–Simons theory.

In the Appendix, we study the representations of the subgroupT of constraints both for the
integral and fractional case.
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II. ALGEBRAIC QUANTIZATION ON A GROUP

Algebraic Quantization on a Group~AQG! ~see Refs. 7 and 8! is a group-theoretical procedur
developed for quantizing systems with constraints~both first and second class! in a first-quantize-
then-constrain basis. The starting point is the groupG̃ of quantum symmetries of the uncon
strained system, which is a central extension by U~1! of the groupG of classical symmetries of the
unconstrained system. FromG̃, a subgroupT, called the structure group, is selected for defini
the constraints. For convenience,T is chosen to include the U~1! subgroup of the central extension
which accounts for the phase invariance of quantum mechanics@U~1! equivariance#, in such a way
thatG̃/T is the classical reduced phase space of the constrained system.~To be precise,G̃ contains
in general symmetries without symplectic content, like time translations or rotations, so thaG̃/T
is the reduced presymplectic manifold of the constrained system.!

The quantum Hilbert spaceHT for the constrained system is defined by selecting, from
Hilbert spaceH associated with a unitary irreducible representation U(G̃) of G̃, those wave
functions that transform irreducibly under a given unitary irreducible representationD(T) of T.
We shall say that these wave functions satisfy theT-function condition~or T-equivariance condi-
tion!, which has the general form:

Ca~gT* g!5Da~gT!Ca~g!, ;gTPT, ~1!

where the indexa in D ranges over the setT̂, the Pontryagin dual ofT—that is, the set of all
unitary irreducible representations ofT. Precisely stated,a will be allowed to vary along the
subsetT̂U,T̂ of those representations which are contained in the restriction of U(G̃) to T;
otherwise the constraints would be inconsistent and the constrained Hilbert spaceHT would be
trivial. In particular, the representationDa, when restricted to the subgroup U(1),T, should be
the natural~faithful! representation of U~1!, Da(z)5z, ;zPU(1). That is, theT-equivariance
condition must contain the U~1!-equivariance condition. Complex functions on the group satis
ing the T-equivariance condition can be identified with sections of the vector bundle assoc
with the principal bundleT˜G̃˜G̃/T through the representationDa of T.13

Both the unitary irreducible representations U(G̃) andD(T) can be obtained, for instance, b
using the Group Approach to Quantization~GAQ! technique~see Ref. 7 and references therein!,
which uses the method of polarizations~see below! to reduce the left-regular representation of t
group acting on U~1!-equivariant complex functions on the groupG̃.

An important concept that we are forced to introduce is the notion ofgood operators, defined
as those preserving the constrained Hilbert spaceHT . It is clear that, sinceHT is in general
smaller thanH, not all operators inG̃ will preserve it; otherwise the representation U(G̃) would
be reducible. It is difficult to give a general characterization of these operators~for instance, there
can be operators preservingHT which belong neither toG̃ nor to its enveloping algebra, escapin
to any algebraic or differential characterization!, but we can find all good operators inG̃ simply by
considering thelittle group of the representationDa(T) of T—that is, the subgroupGgood of
elementsgg that send the representationDa(T) to an equivalent one under the adjoint action:

Dgg

a ~gT![Da~gg* gT* gg
21!'Da~gT!, ;gTPT, ;ggPGgood. ~2!

Note that this definition generalizes the~sufficient! ones given in Refs. 7 and 8. For instance, in t
case in which the representationDa(T) is one dimensional~in particular, if T is Abelian!, the
definition above givesDgg

a (T)5Da(T), and the sufficient condition given in Ref. 8,

@Ggood,T#,kerDa~T!, ~3!
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also proves to be necessary. This characterization reproduces the standard one for the
first-class constraints, for whichT5C3U(1), whereC is the subgroup of constraints@U~1! only
accounts for the phase-invariance of quantum mechanics#. If we choose forC the trivial represen-
tation @for U~1! the natural representation must always be chosen#, then

@Ggood,C#,C. ~4!

This condition givesGgood as the normalizer of the constraints, as is usually the case~see, e.g.,
Ref. 4!. However, if a nontrivial representation ofC is chosen, the subgroup of good operators c
be smaller that the normalizer of the constraints, revealing a strong dependence ofGgood on the
representationDa(T) of T and, therefore, we should use the more precise notationGgood

a for the
subgroup of operators preserving the reduced Hilbert spaceHT

a . Note that, from the very defini-
tion of little group, Ggood

a ,NT , ;aPT̂U , whereNT is the normalizer ofT in G̃, so that the
appropriate place to look for good operators will be inNT .

It is useful to examine the case in whichC is an invariant subgroup ofG̃ and we chooseD(T)
to be the restriction of U(G̃) to T @or U(G̃) to be the induced representation byD(T)#. Then the
constraints are trivial, i.e., they do not imply additional restrictions on the wave functions, an
constrained and unconstrained Hilbert spaces coincide. Moreover, the subgroup of good op
turns out to be the wholeG̃. In this case,C is called a gauge group~see Ref. 14!.

A separate study is warranted by the case whenT cannot be written asC3U(1), for instance
when T is a nontrivial central extension ofC by U~1!. In this case,C contains canonically
conjugated variables, and the constraints are ofsecond class. This case, also contemplated in Re
7 and 8, will be studied in Sec. IV B.

It should be noted that the same program can be carried out considering the Lie algebrG̃ of
G̃ and T of T, when these are simply connected groups. In this case, the treatment be
simpler, since the representationsdU(G̃) anddD(T) are easier to obtain. In general, however, t
treatment is more involved, not only because the good operators can lie in the enveloping a
but also because the constraints themselves can be defined through higher-order diff
equations.15 But all these cases can be handled with a direct generalization of AQG.

Thus, AQG can be applied to constrained systems, irrespective of the type~first or second
class! of constraints. Some examples of application of AQG can be found in Ref. 7, where p
in a two-particle system was introduced to obtain both bosonic and fermionic quantization
diffeomorphism constraints to obtain the bosonic string.

Other interesting examples for applying AQG are those systems in which the configurat
phase spaces are multiply connected and the groupG̃ of quantum symmetries of the simpl
connected counterpart~universal covering! is known. If P is a multiply connected phase spa
which is homogeneous under a groupG of symmetries, thenP is locally diffeomorphic to a
coadjoint orbit ofG, or to a coadjoint orbit of a central extension ofG by U~1! or R, G̃.16 For the
first case, ifH is the isotropy group ofP, G/H is locally diffeomorphic toP. If we chooseG
appropriately~taking coverings, if necessary! in such a way thatG/H is simply connected, thenP
is the quotient ofG/H by p1(P), the first homotopy group ofP. For the cases in whichP is
locally diffeomorphic to a coadjoint orbit of a central extensionG̃ of G, and ifG̃ is chosen~taking
coverings! in such a way that this orbit is simply connected, thenP is the quotient ofG̃/H by
p1(P)3U(1) ~or R!. ThenC5p1(P) andT5C3U(1).

However, if P is not the cotangent bundle of any configuration space~as, for instance, the
sphere or the torus as symplectic manifolds!, then it could well happen thatp1(P), as a subset of
G̃ ~we should not forget that all operations of taking quotients are done inG̃, and therefore we
must consider the embeding ofp1(P) in G̃, and this could not be a group!, contains canonically
conjugated pairs. In this case,T is a central extension ofC by U~1! and the constraints are o
second class. However, if the representationD of T is finite dimensional~see the Appendix!, even
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thoughT defines second-class constraints, the treatment follows as though they were first
yet non-Abelian.

III. THE SCHRÖDINGER GROUP

As mentioned in Sec. I, we shall replace the HW group used in Ref. 8 with the Schro¨dinger
group, which coincides with the Weyl-Symplectic group W Sp(2,R) in one dimension. It was firs
studied by Niederer17 as the maximal kinematical invariance group of the Schro¨dinger equation
with general quadratic potential. The complete classification of its unitary irreducible repres
tions was given in Ref. 18. Mathematically it can be obtained from the Galilei~or from the
Newton! group by replacing the time parameter with the three-parameter group SL(2,R). The
interest of the SL(2,R) group in the present work lies in the fact that it constitutes the maxi
finite subgroup of the diffeomorphisms~in fact symplectomorphisms! group of the phase spaceR2

~see Ref. 19, where some physical meaning is given to the representations considered ‘‘u
cal’’ in Ref. 18!.

To perform a global-coordinate treatment of the problem, we shall start by considering
tricesSPGL(2,R) instead of SL(2,R), and the condition for these matrices to belong to SL(2R)
will appear naturally. A group law for the Schro¨dinger group can be written as:

xW95xW81
S8

uS8u1/2xW ,

S95S8S, ~5!

z95z8z exp
imv

2\ F2A8x28x12B8x28x21C8x18x11D8x18x2

uS8u1/2 G ,
where

xW5~x1 ,x2!PR2, S5S A B

C DD PGL~2,R!, uSu[AD2BC

andmv/\. is an adimensional constant parametrizing the central extensions of the HW grou~we
write it in this form for later convenience!. The factoruS8u21/2 in the semidirect action of GL(2,R)
is needed in order to have a proper central extension.

Let us quantize this system using GAQ, whose principal ingredients will be introduce
needed~see Ref. 7 for details!. From the group law, the left-invariant vector fields associated w
the coordinatesx1 ,x2 ,A,B,C,D,z,

X̃x1

L 5uSu21/2FA
]

]x1
1C

]

]x2
1

mv

2\
~2Ax21Cx1!JG ,

X̃x2

L 5uSu21/2FD
]

]x2
1B

]

]x1
1

mv

2\
~2Bx21Dx1!JG ,

~6!

X̃A
L5A

]

]A
1C

]

]C
, X̃B

L5A
]

]B
1C

]

]D
, X̃C

L 5B
]

]A
1D

]

]C
,

X̃D
L 5B

]

]B
1D

]

]D
, X̃z

L5 i z
]

]z
[J,

as well as the right-invariants ones,
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X̃x1

R 5
]

]x1
1

mv

2\
x2J, X̃x2

R 5
]

]x2
2

mv

2\
x1J,

X̃A
R5A

]

]A
1B

]

]B
1

1

2
x1

]

]x1
2

1

2
x2

]

]x2
,

X̃B
R5C

]

]A
1D

]

]B
1x2

]

]x1
,

~7!

X̃C
R5A

]

]C
1B

]

]D
1x1

]

]x2
,

X̃D
R5C

]

]C
1D

]

]D
2

1

2
x1

]

]x1
1

1

2
x2

]

]x2
,

X̃z
R5J,

can be obtained. The commutation relations for the~left! Lie algebra are:

@X̃A
L ,X̃B

L#5X̃B
L ,

@X̃A
L ,X̃x2

L #521
2X̃x2

L ,

@X̃A
L ,X̃C

L#52X̃C
L ,

@X̃B
L ,X̃x1

L #50,

@X̃A
L ,X̃D

L #50,
@X̃B

L ,X̃x2

L #5X̃x1

L ,

@X̃B
L ,X̃C

L #5X̃A
L2X̃D

L ,
@X̃C

L ,X̃x1

L #5X̃x1

L , ~8!

@X̃B
L ,X̃D

L #5X̃B
L ,

@X̃C
L ,X̃x2

L #50,

@X̃C
L ,X̃D

L #52X̃C
L ,

@X̃D
L ,X̃x1

L #52
1

2
X̃x1

L ,

@X̃x1

L ,X̃x2

L #5
mv

\
J, @X̃D

L ,X̃x2

L #5 1
2X̃x2

L .

@X̃A
L ,X̃x1

L #5 1
2X̃x1

L ,

From these commutation relations we see that two linear combinations of vector fields c
introduced,X̃A

L2X̃D
L and X̃A

L1X̃D
L ~the same for the right-invariant vector fields!, in such a way

that X̃A
L1X̃D

L is a central generator, which is also horizontal~see below!, and therefore is a gaug
generator~see Ref. 14!. In fact, it coincides with its right version, as is always the case fo
central generator.

We define the Quantization 1-formQ as the vertical component~dual to the vertical generator
J, in this basis! of the canonical 1-form of the Lie algebra:

Q5
mv

2\
~x2dx12x1dx2!1

dz

i z
. ~9!
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The 2-formdQ defines a presymplectic form onG̃, and its value at the identity,S5dQue , is a
2-co-cycle of the Lie-algebra, and it can be used to characterize the central extension~when the
groupG̃ is simply connected!. A subalgebra is said to behorizontal if it lies in the kernel ofQ.
Thecharacteristic subalgebrais defined asGQ5KerQùKerdQ, and in this case it has the form

GQ5^X̃A
L1X̃D

L ,X̃A
L2X̃D

L ,X̃B
L ,X̃C

L &. ~10!

Note thatdQ/(KerdQ) defines a true symplectic form inR2.
We define the representation U(G̃) of G̃ to be given by the left regular representation

complex wave functions overG̃, satisfying the U~1!-function conditionJC5 iC ~phase invari-
ance of quantum mechanics!. This representation is obviously reducible, and additional res
tions should be imposed on the wave functions in order to obtain an irreducible represen
These are accomplished by the polarizationP, defined as a maximal horizontal left subalgebra
G̃. The conditionXLC50,;XLPP leads, in most of the cases, to an irreducible representa
U(G̃) acting on the Hilbert spaceH of complex polarized functions on the group satisfying t
U~1!-function condition.

However, there are groups, called anomalous~Ref. 11!, for which this representation U(G̃) so
obtained is not irreducible, and a generalization of the concept of polarization is required for
This task is acomplished by means of higher-order polarizations~see Refs. 11, 20, and 21!, which
admit elements of the left enveloping algebra to enter into them.

The system we are studying is an example of an anomalous system~see Refs. 11 and 21!, and
a higher-order polarization is required to obtain an irreducible representation. There are ess
two of them,2 given by

PHO5 K X̃A
L1X̃D

L ,X̃A
L2X̃D

L 2
i\

2mv
~X̃x1

L X̃x2

L 1X̃x2

L X̃x1

L !,X̃B
L1

i\

2mv
~X̃x1

L !2,

X̃C
L 2

i\

2mv
~X̃x2

L !2,X̃x1

L or X̃x2

L L . ~11!

~There are another two, if we allow for complex coordinates, but all of them lead to equiv
representations.! If we choose, for instance,X̃x1

L to be in the polarization, the polarization equ

tions are

~X̃A
L1X̃D

L !C50, X̃B
LC50,

~X̃A
L2X̃D

L !C52 1
2C, ~12!

X̃x1

L C50, X̃C
L C5

i\

2mv
~X̃x2

L !2C.

The first of these equations has as solutions those complex wave functions on the
GL(2,R) which are defined on SL(2,R), as expected. Therefore, the solutions of this equa
have the form:

C5C~a,b,c,d,x1 ,x2!, ~13!

where

a[
A

AAD2BC
, b[

B

AAD2BC
, c[

C

AAD2BC
, and d[

D

AAD2BC
, with ad2bc51.
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To proceed further in solving the polarization equations, it is convenient to introduce
charts on SL(2,R). We choose them to be the ones defined byaÞ0 and cÞ0, respectively.
~Certainly they really correspond to four contractible charts:a.0, a,0 andc,0, c.0, but the
transition functions between each pair of these charts are trivial, so we shall consider them
one chart.! The first chart contains the identity elementI 2 of SL(2,R), and the second contains

J[S 0 1

21 0D .

The solutions to the polarization equations are given by:
For aÞ0:

C5za21/2expS imv

2\
xyDx~t,y!, ~14!

wherex[x1 , y[x22tx1 , andt[c/a, with x satisfying the Schro¨dinger-like equation

]x

]t
5

i\

2mv

]2x

]y2 . ~15!

For cÞ0:

C̃5zc21/2expS 2
imv

2\
x̃ỹD x̃~ t̃,ỹ!, ~16!

wherex̃[x2 , ỹ[x12 t̃x2 , and t̃[a/c, with x̃ satisfying the Schro¨dinger-like equation

]x̃

]t̃
52

i\

2mv

]2x̃

] ỹ2 . ~17!

The elementJ represents a rotation ofp/2 in the plane (x1 ,x2), and takes the wave functio
from one local chart to the other.~In fact, up to a factor,J represents the Fourier transform passi
from thex1 representation to thex2 representation.! Obviously,J45I 2 , but acting withJ on the
wave functions we obtain:

C~J* g!5~21!1/4C̃~g!, ~18!

from which the resultC(J4* g)52C(g) follows, that is, the representation obtained for t
subgroup SL(2,R) is two-valued. This representation is the well-knownmetaplecticor spinor
representation. The metaplectic representation is for SL(2,R) as the1

2-spin representation is fo
SO~3! ~see Ref. 22 and references therein, and also Ref. 16!. We refer the reader to Ref. 19 for
detailed study of the Schro¨dinger group, including the nonanomalous representations and a p
cal interpretation for them.

IV. THE SCHRÖDINGER GROUP ON THE TORUS

Once we have obtained the polarized wave functions and therefore fixed the unitar
irreducible representation U(G̃) of G̃ and the unconstrained Hilbert spaceH, we have to impose
the appropriate constraints to reduce the phase space to a torus. This task is achieved
structure groupT, which is a fiber bundle with baseGLW [$ekW ,kWPZ3Z% and fiber U~1!, whereekW

are translations ofxW by an amount ofLW kW[(k1L1 ,k2L2), in such a way thatG̃/T is essentially the
torus.@As was commented before,G̃/T in this case is a presymplectic manifold, which, once
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kernel of the~pre!symplectic formdQ ~containing the SL(2,R) subalgebra! is removed, turns out
to be a torus.# The fibration ofT by U~1! depends on the values ofm, v, L1 , andL2 , and is, in
general, nontrivial.

The following task is to obtain the irreducible representations ofT. These are studied in deta
in the Appendix, and here we shall report only the main results. The form of the representati
T depends strongly on its structure as U~1! bundle with baseGLW ~which plays the role of con-
straintsC!, and this is determined by the character of the adimensional parametermvL1L2/2p\,
in such a way that:

~i! Integer Case:mvL1L2/2p\5nPZ. In this caseT is Abelian,T5GLW 3U(1), andtherefore
all its representations are one dimensional.

~ii ! Fractional Case:mvL1L2/2p\5n/r , wheren and r are relative prime integers~with r
.1). In this caseT is not Abelian, but its representations are of finite dimension.

~iii ! Irrational Case:mvL1L2/2p\5r, wherer is an irrational number. In this case,T is not
Abelian and possesses representations~the ones which are compatible with the U~1!-
function condition! of infinite dimension.

The irrational case will not be considered here, since its study requires techniques
noncommutative geometry,12 and therefore lies beyond the scope of the present work. The
interesting properties of this case, in particular, of the groupC* -algebra generated by the elemen
of T, denotedirrational rotation algebra, is that it is not a type I algebra23 ~in fact it is a type IÌ
algebra!.

Although normally the integer and fractional cases are used in physical applications
Abelian Chern–Simons theory~see Sec. V! or the quantum Hall effect~integer and fractional!,
there exists works24 where the irrational case has been use to study the quantum Hall effect,
techniques ofC* -algebras and cyclic cohomology to explain the integrality of the conductanc
the quantum Hall effect~see also Ref. 12!.

A. The integer case

We shall consider first the integer case, for whichmvL1L2/2p\5nPZ and the structure
group isT5GLW 3U(1), GLW being a subgroup isomorphic toZ3Z. This case leads to a symplect
form on the torus of integer cohomology classn ~and therefore the torus is quantizable accord
to Geometric Quantization!, andn can be interpreted as the Chern number of a U~1!-bundle over
the torus~see Ref. 8!.

The representations ofT @compatible with the U~1!-function condition# for the integer case are
easily computed~see the Appendix!, and have the form:

DwW ~ I 2 ,k1L1 ,k2L2 ,z!5zei ~w1k11w2k2!e2 ipnk1k2, ~19!

wherew1 ,w2P@0,2p) parametrize the inequivalent representations of the subgroupGLW 'Z3Z.
They are the analog of vacuum angles in quantum chromodynamics~see, e.g., Ref. 25!.

The T-function conditions are written asCwW (gT* g)5DwW (gT)CwW (g), ;gTPT. They can be
interpreted as periodic boundary conditions, selecting those wave functions inH which are qua-
siperiodic, i.e., picking up a phaseeiw1 when translated byL1 and eiw2 when translated byL2 .
This condition reduces toC0(gT* g)5zC0(g) if the trivial representation forGLW is chosen
~strictly periodic boundary conditions!. As in Ref. 8, the rest of nonequivalent representations
be obtained by acting with those finite translations which are not good operators. We a
interested in their explicit form, so we refer the interested reader to Ref. 8 for the details
computations.

The solutions to theT-function condition for the trivial representation are those functionsC of
the form ~14! for which x(t,y) is of the form:

x0~t,y!5 (
k50

n21

akDk
0~t,y!, ~20!
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with

Dk
0~t,y!5expF i2pkS y

L2
2

d

2n
tkD G (

qPZ
expS i2pnqF y

L2
2

d

2n
t~k21nq!G D , ~21!

d[L1 /L2 andak , k50,1,...,n21 being arbitrary coefficients. We can write these in a form wh
resembles the one obtained in Ref. 8, where we considered only the Heisenberg–Weyl sub

Dk
0~t,y!5expS i

dL2
2t

4pn

d2

dy2DDk
0~y!, ~22!

with Dk
0(y)5ei2pk(y/L2)(qPZ d(y2(q/n)L2).

For the local chart atJ(cÞ0), we could follow the same procedure or simply transform
wave function acting withJ. The result obtained is completely analogous to the one obtaine
the local chart at the identity. Therefore, the constrained Hilbert spaceHT is finite dimensional,
with a basis ofn independent functions,$Dk

0%k50
n21.

Now we have to compute thegood operators, those preserving the Hilbert spaceHT of
polarized wave functions verifying theT-function condition. We should look for good operators
the normalizer ofT in G̃. In this case~this result is also valid for the fractional case!, we have:

NT5H S S a b

c dD ,x1 ,x2 ,z D PG̃ such thata,bd21,cd,dPZ,x1 ,x2PR,zPU~1!J , ~23!

which implies thatNT is the semidirect product of SL(2,Z) by the HW group.
SinceT is Abelian, the characterization~2! reduces to~3!, and this leads to the condition:

~a21!
w1

2p
1cd

w2

2p
1nS 2a

x2

L2
1cd

x1

L1
2

1

2
acd D5kPZ,

~d21!
w2

2p
1bd21

w1

2p
1nS 2bd21

x2

L2
1d

x1

L1
2

1

2
dbd21D5k8PZ. ~24!

With regard to the HW subgroup~i.e., with a5d51 andb5c50), we get the same result as
Ref. 8:x15k1(L1 /n) andx25k2(L2 /n), with k1 ,k2PZ. This implies that

W[$z~ĥ1!k1 /n~ ĥ2!k2 /n,k1 ,k2PZ,zPU~1!%,Ggood
wW , ~25!

with ĥ1[e(1,0) and ĥ2[e(0,1) , for any values of the vacuum anglesw1 andw2 . These operators
can be interpreted as the Wilson loops in a Chern–Simons theory on the torus~see Sec. V and
Refs. 25 and 26!.

When studying the SL(2,R) subgroup~i.e., with x15x250), we can proceed in two ways
Either we can determine for which values ofw1 andw2 we obtain the full modular group SL(2,Z)
as good operators, or we can computeGgood

wW for given values ofw1 andw2 .
In the first case, from~24! we easily deduce that modular invariance is achieved forw1

52pm1 , w252pm2 if n is even and forw15p(2m111), w25p(2m211) if n is odd, with
m1 ,m2PZ. Clearly, since the vacuum angles are defined modulo 2p these correspond tow1

5w250, or periodic boundary conditions forn even and tow15w25p, or antiperiodic boundary
conditions forn odd. This is an interesting result, since it reflects the fact that good oper
really depend on the particular representationDwW of T we are considering.

The groupGgood of good operators for these cases would be obtained by taking the produ
elements of SL(2,Z) with those ofW given by ~25!. But from ~24! we see that there are a fe
more good operators which cannot be obtained in this way. Altogether, we obtain the follo
group of good operators forw15w250 with n even and forw15w25p with n odd:
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Ggood5H S S,
1

n
SJmLW kW ,z D such thatSPSL~2,Z!,m50,1,2,3,kWPZ3Z,zPU~1!J . ~26!

The computation ofGgood
wW for arbitrary values ofw1 ,w2 is a bit more involved. We have see

that the subgroupW given in ~25! is always included inGgood
wW , so we have only to consider th

SL(2,Z) subgroup. It is easy to see that if bothw1/2p and w2/2p are irrational, then only the
identity matrix in SL(2,Z) is a good operator, so there is no hint of modular invariance for
case. Ifw1/2p is irrational andw2/2p5p/q is rational~the case obtained by interchanging 1 a
2 is analogous!, then only the subgroup of modular transformations of the form

S 1 eqd21k

0 1D
are good operators, withkPZ and withe51 for n even ande52 for n odd. If w2/2p5p1 /q1 and
w2/2p5p2 /q2 are rational, then the good operators are given by the subgroup of modular
formations satisfying the following diophantine equations:

~a21!
p1

q1
1cd

p2

q2
2n

acd

2
5kPZ,

~27!

bd21
p1

q1
1~d21!

p2

q2
2n

dbd21

2
5k8PZ.

B. The fractional case

For the fractional case, we shall restrict ourselves to the determination of the subgro
good operators. The computation of the explicit form of the constrained wave functions c
performed along the guidelines of Sec. IV A~they are essentially the ones given in Ref. 8 for t
HW group!, using the representations ofT given in the Appendix. The dimension of the Hilbe
space turns out to benr, and it can be considered to be ann dimensional Hilbert space made o
vector-valued wave functions,r being the dimension of the vector space.

To determine the subgroupGgood of good operators, we make use of the characterization~2!
for the little group, where now, since the representations are of dimensionr, the equivalence can
be established through a nontrivial unitary matrixV(gg).

First, we compute, for

gg5S S a b

c dD ,x1 ,x2 ,z8D PNT ,

gg* ~ I 2 ,k1L1 ,k2L2 ,z!* gg
215~ I 2 ,~ak11bd21k2!L1 ,~cdk11dk2!

3L2 ,zei2p~n/r !@~2a~x2 /L2!1cd~x1 /L1!!k11~2bd21~x2 /L2!1d~x1 /L1!!k2#!,

~28!

and then we must find for whichggPNT we have

DwW ~gg* gT* gg
21!5V~gg!DwW ~gT!V~gg!†, ;gTPT, ~29!

where the representationsDwW for the fractional case~obtained in the Appendix!, are given by

DwW ~ I 2 ,k1L1 ,k2L2 ,z!5zei ~w1k11w2k2!e2 ip~n/r !k1k2Ar
k1Br

k2. ~30!
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We proceed as in the integer case, computing first the good operators in the HW sub
Then the previous equation is written:

expF i2p
n

r S 2
x2

L2
k11

x1

L1
k2D GAr

k1Br
k25V~gg!Ar

k1Br
k2V~gg!†. ~31!

This equation is the same one which states the equivalence of the representationsD (m1 ,m2) and
D (0,0) and, therefore, making use of the results given in the Appendix, we find thax1

5k(L1 /n) andx25k8(L2 /n), with k,k8PZ. This implies that the subgroupW given in ~25! is
included inGgood

wW for all values ofw1 ,w2P@0,2p/r ).
As far as the SL(2,Z) subgroup is concerned, we shall determine only the conditions u

which full modular invariance is obtained as good operators, and for this purpose we shall
use of the fact that SL(2,Z) is generated by two modular transformations:

g1[S 1 1

0 1D , g2[S 1 0

1 1D . ~32!

Determining under which conditions these two transformations are good operators will t
when the theory is fully modular invariant. Forg1 we obtain the condition:

expF i2pk2S w1

2p
2

nk2

2r D GAr
k11k2Br

k25V~g1!Ar
k1Br

k2V~g1!†, ;k1 ,k2PZ. ~33!

For this condition to hold, it is necessary thatw150 if nr is even, orw15p/r if nr is odd. For the

first case, the unitary matrixV(g1) has the formV(g1) i j 5v r
( i 21)2/2d i j , and, for the second, we

haveV(g1) i j 5v r
( i 21)/2nv r

( i 21)2/2d i j .
For g2 to be a good operator, we obtain the condition:

expF i2pk1S w2

2p
2

nk1

2r D GAr
k1Br

k11k25V~g2!Ar
k1Br

k2V~g2!†, ;k1 ,k2PZ. ~34!

Again, for this condition to hold it has to bew250 if nr is even orw25p/r if nr is odd. The
unitary matrixV(g2) has the form:

V~g2!5V5
1

Ar S 1 v r
~r 21!~r 22!/2 ... ... 1

1 1 ... ...

v r 1 ... ...

v r
3 v r ... ... ]

] ] ] ] v r
~r 21!~r 22!/2

v r
~r 21!~r 22!/2 ... ... 1 1

D if nr is even

V~g2!5Ar
1/2nV if nr is odd,

where (Ar
1/2n) i j 5eip@( i 21)/r #d i j .

It should be stressed that the values ofwW for which full modular invariance is obtaine
correspond to wave functions which are periodic ifnr is even, or antiperiodic ifnr is odd, where
these boundary conditions should be understood with respect to translations byrL 1 and rL 2 .

Note also that the matrix representationV(g1) andV(g2) obtained forg1 andg2 @and there-
fore for the whole SL(2,Z) group# corresponds to their action on ther-dimensional vector space
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The complete action of any modular transformation on the wave functions~through nr3nr
matrices! decomposes, thus, in a tensor product of ann3n matrix and anr 3r matrix, each one
acting on different indices of the wave functions.26

This structure of tensor product of the Hilbert space suggests a duality under the interc
of n andr. Indeed, the set of Wilson loops~25! for the theories characterized byn/r andr /n are
isomorphic. Since all the information of the theory is contained in the Wilson loops, we coul
that the two theories are equivalent. The casen/r 51 would, of course, be self-dual. Moreover,
pointed out in Ref. 27, if we denote byAn/r the ~group! algebra generated byA andB satisfying

AB5ei2p~n/r !BA, ~35!

then we haveA1/(nr)5An/r3Ar /n . Therefore, the algebra of Wilson loops, besides being the s
for a theory withT5An/r and T5Ar /n , is given by the direct product of both~commuting!
algebras. From the point of view of noncommutativeC* -algebras, the algebrasAn/r andAr /n are
strongly Morita equivalent, which means, in particular, that they possess the same represe
theory23 ~see also Ref. 12!.

V. 211D ABELIAN CHERN–SIMONS THEORY

As a first application of our results, let us consider a pure topological field theory on the
Let M be a globally hyperbolic three-dimensional manifold,M5S3R, whereS is an orient-

able two-dimentional manifold.
The action for an Abelian Chern–Simons~ACS! theory is given by28,25,26

SACS5
k

4p E
M

~A∧dA!, ~36!

whereA is a one-form inM which takes values on the Lie algebraK of an Abelian Lie groupK.
It is straightforward to check that the actionSACS is invariant under gauge transformationsA
˜A1 iU 21dU for any ~single-valued! U:M˜K.

The equations of motion are:

dA[F50, ~37!

the solution of which is the vector spaceVACS of all flat connections onM. A generic element
APVACS can be written in the form (A0 ,iU 21¹U1a(t)), wherea is a map fromR to the fiber
of T* (S) ^K.

This vector space of solutions can be endowed with a~pre-!symplectic structure by means o
a ~pre-!symplectic form

VACS~A8,A!5E
S
J5

k

4p E
S
A8∧ A, ~38!

where Jm[(k/4p)emnsAn8As is a divergenceless current which ensures the independenc
VACS(A8,A) on the chosen Cauchy factorization ofM , M5S3R.

Since the exterior derivatived commutes with the pullback operator* , if f is a diffeomorphism
of M, andA8, APVACS, thenA81 f * A is also a solution of~37!.

With this information, we can propose a quantizing groupG̃ACS for this theory, the compo-
sition law of which is

f 95 f 8+ f , f , f 8, f 9PDiff ~M !,

A95 f 21* A81A, ~39!
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z95zz8 expVACS~ f 21* A8,A!,

i.e., the extension by U~1! of the semidirect productVACS^ sDiff( M ). The characteristic subgrou
~generated by the kernel ofVACS, see Sec. III! of this group proves to beGV5$( f ,A,1)/A
5(A0 ,iU 21¹U) for someU:M˜K%,G̃ACS, which contains thegauge group Ggauge of the
theory, constituted by all~single-valued! U:M˜K. @To be precise, here,Ggaugeis the orbit at the
identity of Map(M ,K) on VACS, under the actionA˜A1 iU 21dU. Including the group
Map(M ,K) explicitly in G̃ACS requires a slight modification of the notion of gaug
transformation29 ~see also Ref. 14 for a discussion on the definition ofgauge group!.# Thus, the
polarization conditions~which contain the characteristic subgroup! imply that wave functions
depend only on topological and gauge invariant quantities. For this kind of theory, sta
approaches claim that all gauge-invariant information of a connection can be extracted fro
Wilson loopsdefined by

W~A,g!5expE
g
A, ~40!

for any loop g in S. Since connectionsA are flat, the Wilson loops will depend only on th
homotopy class@g#Pp1(S) of the corresponding loopg. For this reason the normal subgrou
Diff 0(M ),Diff( M ) of diffeomorphism ofM connected to the identity acts trivially on the Wilso
loops. Therefore the diffeomorphisms that really matter in~39! are the quotient Diff(M )/Diff 0(M )
called themodular group~see Refs. 9 and 10! of the Riemann surfaceS ~note that all diffeomor-
phisms of theR part of M are connected to the identity!.

It should be stressed that ifp1(S)50 @which implies thatH1(S)50# then the ACS theory is
trivial since all connections are of the formA5 iU 21dU for some~always single-valued! U:M
˜K. This implies thatGV5GACS[VACS^ sDiff( M ) andG̃ACS5GACS3U(1), that is, the central
extension is trivial~another way of seeing this is that since the homotopy group ofM is trivial, all
Wilson loops are trivial!. Therefore we assume thatS is a multiply connected oriented two
dimensional manifold. What makes the theory nontrivial in this case is the fact that the g
group,Ggauge, is smaller than its simply connected counterpartḠgauge in the universal covering

spaceM̄ of M , constituted by allŪ:M̄˜K, with M̄5S̄3R, andS̄ the universal covering spac
of S. In fact, the groupGgauge,Ḡgauge is made of those elementsŪPḠgauge verifying Ū+@g#

5Ū, where here@g# represents the natural action~as diffeomorphism! of the homotopy class

@g#Pp1(M ) on M̄ .
For the present case,S5S13S1 andK5U(1). ThespaceVACS is made of connections of th

form (A0 ,ig21¹g1a(t)), whereU is single-valued on the torus. The solution manifold, th
which remains once the quotient by the characteristic subgroupGV is taken, is parametrized b
the variablesa1(t), a2(t) modulo an integer, defining a torus. The reason is thatGV also contains
the global (large) gauge transformations~see for instance Ref. 26 and references therein!,

aj˜aj1kj , kjPZ. ~41!

These large gauge transformations are clearly seen to come from transformations of th
U5exp(ikjx

j), with kjPZ and$xj% a set of local coordinates on the torus, in such a way that 0
2p are identified. The reason of the restriction ofkj to integers is the conditionŪ+@g#5Ū. This
indicates that the gauge groupGgaugeis a disconnected group, withGgauge/Ggauge

0 5Z3Z, Ggauge
0

being the connected component of the identity.
For this reason, in the quantum theory the operator associated with the variablesA ~more

precisely,a! are not properly defined~they arebad operators, see Sec. II!. We must resort to
single-valued~good! operators of the form:
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W~A!5expS 2p i (
j 51

2

njaj D , ~42!

wherenjPZ should be interpreted as the winding number of a pathg around the cyclej. Remem-
ber that for the torus, the homotopy classes@g# are generated by two elements,@g j #, j 51,2,
representing loops~with winding number one! around each one of the two cycles of the torus. T
modular group proves to be Diff(T2)/Diff 0(T2)5SL(2,Z).

At this point it should be stressed that the resulting theory corresponds to a quantum me
cal system with phase space a torus parametrized by (q,p)[(a1 mod 1,a2 mod 1).

According to this equivalence, we could have studied this system in the framework of
by starting with the group HŴ sDiff( R23R) with structure groupT a fiber bundle with base
Z3Z and fiber U~1!, whereZ3Z is the subgroup of Diff(R23R) of translations by (k1L1 ,k2L2),
with k1 ,k2PZ. Since the only relevant diffeomorphisms at the final theory on the torus will be
modular transformations SL(2,Z),SL(2,R), it is enough to start with HŴ sSL(2,R), which is
the Schro¨dinger group. Thus, all the results of Sec. IV apply here. Of course, we could
started directly with HŴ sSL(2,Z), but this group, being disconnected, is more difficult
quantize than the Schro¨dinger group~in particular, finding a polarization for this group is
difficult task!. In addition, we think that showing how SL(2,Z) emerges as good operators is
very illustrative way of studying the problem.

In summary

~1! The coupling constantk plays the same role as the quantityf[mvL1L2/2p\ in the Schro¨-
dinger group on the torus, determining the character of the resulting~finite-dimensional!
Hilbert space.

~2! The set of Wilson loops~42! takes part of the set of good operators in our language. M
precisely, they are the analog of the setW given in ~25!.

~3! The group of large gauge transformations is the analog of the structure groupT. When the
coupling constantk is fractional, this gauge group is calledanomalous26 because of its non-
Abelian character due to the nontrivial fibration for this case, as oposed to the original Ab
gauge groupK.

~4! The nonequivalent representations ofT, parametrized by the indicesw1 ,w2 ~vacuum angles!,
characterize the nonequivalent quantizations of the theory.

The Chern–Simons theory constitutes a particular example of a drastic reduction of the
ber of original infinite~field! degrees of freedom to a finite number~which, in addition, contain a
finite number of states, due to the compactness of the phase space when restricted to the t!, as
a consequence of a huge gauge invariance which kills all of them except for the topologic

A. Further comments

Comparing our results with those in the literature, we find full agreement with Ref. 25, in
context of U~1! Chern–Simon theory on the torus, as far as the integer case is concerned. F
fractional case, an apparent discrepance with the results in Ref. 25 appears: In our no
modular invariance is obtained only forn even~and any value ofr! and vacuum anglesw15w2

50. However, the agreement is achieved if we realize that the proper range of inequi
vacuum angles in Ref. 25 should be@0,2p/r ).

This problem was also studied in Ref. 26@also in the context of U~1! Chern–Simons theory
and anyons on the torus#, where full modular invariance was obtained for both the integer
fractional case, but they claimed that the vacuum angles always have to be1

2 disregarding the
parity of the coupling constant~the equivalent of ourn/r ). A more detailed analysis of thei

results reveals that the vacuum angles they introduce are defined modulo 1/nr, and (12 mod 1/nr)
is 0 for evennr and 1/2nr for odd nr, corresponding to periodic and antiperiodic bounda
conditions, respectively. Therefore, their results completely agree with ours.
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In Ref. 27, a non-Abelian Chern–Simons theory is considered, with gauge group SL(R).
When restricted to the torus, they obtained essentially the same results as ours and those
25 and 26~with the above-mentioned remarks! with respect to the Hilbert space and the set
observables~good operators!, because the reduced phase space of the theory is almost the sp
flat connections of an Abelian gauge group.
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APPENDIX: UNITARY AND IRREDUCIBLE REPRESENTATIONS OF T

The structure subgroupT, as defined in Sec. IV, is a U~1! bundle with baseGLW , and can be
written as

T5$~ I 2 ,k1L1 ,k2L2 ,z!PG̃/k1 ,k2PZ,zPU~1!%, ~A1!

with group law derived from the group law of the Schro¨dinger group:

~ I 2 ,k18L1 ,k28L2 ,z8!* ~ I 2 ,k1L1 ,k2L2 ,z!5S I 2 ,~k181k1!L1 ,~k281k2!L2 ,z8z

3expF i
mvL1L2

2\
~k18k22k28k1!G D . ~A2!

To determine the structure ofT, we compute the group commutator of two elements:

@~ I 2 ,k18L1 ,k28L2 ,z8!,~ I 2 ,k1L1 ,k2L2 ,z!#5S I 2,0,0,expF i
mvL1L2

\
~k18k22k28k1!G D , ~A3!

from which we see that its structure depends on the value ofmvL1L2/2p\, in such a way that
there are three possibilities:

~i! Integer Case:mvL1L2/2p\5nPZ.
~ii ! Fractional Case:mvL1L2/2p\5n/r , n,r PZ and relative prime~with r .1).
~iii ! Irrational Case:mvL1L2/2p\5r, with r an irrational number.

Let us study the integer and fractional case separately. The irrational case will not be c
ered here~see Ref. 12 for a detailed study of this case!.

1. Integer case

In this case,T is an Abelian group, and thereforeT5GLW 3U(1) and all its representations ar
of dimension 1. As stated above, we shall consider only those representations, which restri
U~1!, are the natural representations, and these have the form:

DwW ~ I 2 ,k1L1 ,k2L2 ,z!5zei ~w1k11w2k2!e2 ipnk1k2, ;k1 ,k2PZ, ;zPU~1!, ~A4!

where the range of inequivalent representations, since they are one-dimensional, is given
by w1 ,w2P@0,2p). Note that, except for the terme2 ipnk1k2 this is the product of the natura
representation of U~1! times a representation ofGLW 'Z3Z. This extra term is only a coboundar
coming from the fact that we have used Bargmann’s cocycle in the group law of the Schro¨dinger
group, and Bargmann’s cocycle does not satisfy the conditions given in Ref. 8 for the po
cocycles for the HW group on the torus. Note, thus, that this restriction can be relaxe
introducing this coboundary term in the representations ofT.
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2. Fractional case

In this case,T is not Abelian, and the commutator of two elements has the form:

@~ I 2 ,k18L1 ,k28L2 ,z8!,~ I 2 ,k1L1 ,k2L2 ,z!#5~ I 2,0,0,v
r

k18k22k28k1!, ~A5!

where v r[ei2p(n/r ) is an r th root of unity. Note that ifunu.r , then v r5ei2p(n/r )5ei2p(q/r ),
whereq5n modr . Sincen andr are relative prime,q andr turn out also to be relative prime and
therefore, we can use either of the two pairs to characterizeT.

The groupT admits a nontrivial characteristic subgroup~see Ref. 8!, of the form:

GC5$~ I 2 ,rk1L1 ,rk2L2 ,eipnrk1k2!/k1 ,k2PZ%. ~A6!

The characteristic subgroup can be identified in this case with the Casimir elements ofT which are
not in U~1!, i.e., those elements ofT @not belonging to U~1!# which commute with all other
elements inT. In fact, the center ofT is given byGC3U(1).

If we quotientT by GC , we obtain a group which is ageneralized Clifford group G2
r ~see Ref.

30 for the definition and the study of representations of generalized Clifford groups! times U~1!.
Therefore, the representations ofT can be obtained from those ofGC and G2

r @and the natural
representation of U~1!#.

The representations ofGC , being isomorphic toZ3Z, are characterized by two ‘‘vacuum
angles’’w1 ,w2 , whose range of nonequivalence should be determined. The representationsG2

r

are studied in detail in Ref. 30, so that here we shall give only the results. It should be rem
however, that in Ref. 30v r is an arbitraryr th root of unity, and different choices for it giv
inequivalent representations ofG2

r , whereas here the value ofv r is givena priori ~it is determined
by the fact thatT is a subgroup ofG̃), so that the representation ofG2

r is uniquely determined. In
addition, sincen and r are relative prime,v r is a primitive r th root of unity, implying that the
representation ofG2

r associated with it is of dimensionr, either for prime or nonprimer.
The r-dimensional unitary irreducible representation ofG2

r can be constructed with the aid o
two r 3r matrices,Ar andBr :

~Ar ! i j 5v r
i 21d i j , ~Br ! i j 5d i ,~ j mod r !11 , i , j 51,2,...,r , ~A7!

verifying ArBr5v rBrAr , andAr
r5Br

r5I r . Putting together this representation ofG2
r and that of

GC'Z3Z, we can build a representation for the entireT, of the form:

DwW ~ I 2 ,k1L1 ,k2L2 ,z!5zei ~w1k11w2k2!e2 ip~n/r !k1k2Ar
k1Br

k2, ;k1 ,k2PZ,;zPU~1!. ~A8!

One would naı¨vely expect that the range of nonequivalent representations would bew1 ,w2

P@0,2p), as in the integer case. However, since the representations are not one dimensiona
could be nontrivial unitary transformations relating representations in this interval and, ther
reducing the range on nonequivalence.

Thus, we have to determine the minimum values ofm1 ,m2 for which the representation
D (m1 ,m2) is equivalent to the trivial representationD (0,0), i.e., there exists a unitary matrixV such
that D (m1 ,m2)5VD(0,0)V†. Studying separately the cases (m1,0) and (0,m2), and after a few
computations, we obtain:

~i! D (m1,0) is equivalent toD (0,0) for m152p/r , with V5Br
m0.

~ii ! D (0,m2) is equivalent toD (0,0) for m252p/r , with V5Ar
1/n .

Here (Ar
1/n) i j [v r

( i 21)/nd i j 5ei2p@( i 21)/r #d i j , and 0,m0,r is an integer solution of the dio
phantine equation:

11nm05rk, kPZ, ~A9!
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which has always two solutions in the range$2(r 21),...,0,...,r 21%, provided n and r are
relative prime~this is a particular case of the Bezout lemma, forgcd(n,r )51, which in turn can
be proven using Euclidean division of integers, see, for instance, Ref. 31!. Note that (Ar

1/n)n

5Ar and (Bm0)n5Br
21, so that these matrices can be considered as thenth roots of the matrices

Ar andBr
21, respectively.

Therefore, the range of nonequivalent representations ofT is reduced tow1 ,w2P@0,2p/r ).
This fact will be of extreme importance for the determination of the good operators in the
tional case.
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We construct a free field realization of vertex operators of the diluteAL models
along with the Felder complex. ForL53, we also study anE8 structure in terms of
the deformed Virasoro currents. ©1999 American Institute of Physics.
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I. INTRODUCTION

The diluteAL model1,2 is an integrable lattice model obtained by an RSOS restriction of
face model of typeA2

(2) .3 It possesses several intriguing features. Among others, we are inter
in the following points.

~i! At criticality, the dilute AL model in regime 21 is described by conformal field theor
~CFT!, which belongs to the Virasoro minimal unitary series with the central chargec51
26/(L(L11)). The Andrews–Baxter–Forrester~ABF! model in regime III is known to be a
different off-critical lattice model having the same critical behavior. While the ABF model
responds to the~1,3!-perturbation of the minimal unitary CFT, the diluteAL model corresponds to
the ~1,2!-perturbation of the same CFT.

~ii ! In the particular case ofL53, the model falls within the same universality class as
two-dimensional Ising model in a magnetic field. The elliptic nome in the Boltzmann we
plays the role of a magnetic field, as opposed to the usual role as a temperaturelike variable
field theory limit, the scattering process of particles exhibits anE8 structure.

In Ref. 4, bosonization of the ABF model in regime III was achieved. By ‘‘bosonization’’
mean a free field realization of vertex operators~VOs! of the model as formulated in Ref. 5. It wa
also found that the deformed Virasoro algebra~DVA ! proposed earlier in Ref. 6 arises natural
in such a way that the VOs play the role of deformed chiral primary fields for DVA.~More
specifically, the VOs of type I and type II correspond to the simplest primary fieldsf21 andf12,
respectively. Analogs of generalfmn are obtained by a fusion procedure.7 For an interpretation of
the VOs as intertwiners for elliptic algebras, see Ref. 8.! The Becchi–Rouet–Stora–Tyuti

a!Electronic mail: snowy@gokutan.c.u-tokyo.ac.jp
b!Electronic mail: jimbo@kusm.kyoto-u.ac.jp
c!Electronic mail: konno@mis.hiroshima-u.ac.jp
d!Electronic mail: odake@azusa.shinshu-u.ac.jp
e!Electronic mail: shiraish@momo.issp.u-tokyo.ac.jp
37910022-2488/99/40(8)/3791/36/$15.00 © 1999 American Institute of Physics
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~BRST! resolution of Fock spaces, which singles out irreducible representations of the Vir
algebra, carries over to the deformed version as well. Thus Ref. 4 presents an off-critical
version of the~1,3!-perturbation of the minimal unitary CFT in the free field picture. In this pa
we study a similar problem for the~1,2!-perturbed CFT by bosonizing the diluteAL model. For
this purpose we adapt the construction of Refs. 5, 4, and 9 to the case ofA2

(2) .
In the trigonometric limit, bosonization of VOs has been given in Refs. 10 and 11 u

representation theory of the quantum affine algebraUq(A2
(2)). In principle, we are to follow its

elliptic analog on the basis of the face-type elliptic algebra.12,8 Because of some technical diffi
culties in dealing with the latter, we take here a more pedestrian way and solve the exc
relations directly to obtain the bosonic realizations of VOs. In the course, we use the e
Drinfeld currents obtained by a ‘‘dressing’’ procedure.8

In view of points~i! and ~ii ! above, it is natural to expect that a different deformation of
Virasoro algebra arises from the diluteAL models. Such a deformation was found in Ref.
through bosonization of theA2

(2) affine Toda field theory.~See Refs. 14 and 15 for more gener
deformedW algebras including the caseA2l

(2) .) To make a distinction from the original DVA o
Ref. 6, we use the symbolVx,r(A2

(2)) to denote the DVA of Ref. 13. In the original case, t
generating function of DVA~hereafter referred to as the ‘‘DVA current’’! can also be obtained
from ‘‘fusion’’ of the VOs.16–18In the same way, we reproduce the current ofVx,r(A2

(2)) by taking
residues of products of the bosonized VOs in the present case.

For the diluteAL models in regime 21, the space of states of the corner transfer matrix is
analog of the minimal unitary representation2 for Vx,r(A2

(2)). In order to obtain them from the Foc
spaces, we consider a Felder-type resolution using the elliptic currents of typeA2

(2) as screening
currents. Unlike the case of the ABF models, the BRST charges are not simply a pow
screening operators. Such a complication seems to be common in the higher rank situation19 We
prove the nilpotency of BRST charges with the help of the Feigin–Odesskii algebra.19 Assuming
a cohomological property of the resulting complex, we write down integral expressions fo
two-point local height probabilities~LHPs! and traces of general product of the VOs.

In the case of the diluteA3 model, it is of some interest to see how Zamolodchikov’sE8

structure of scattering process20 looks like that in the free field picture. What plays the role of t
Zamolodchikov–Faddeev operator for creation/annihilation of bound states is the DVA curr16

Specializing toL53, we introduce eight kinds of DVA currents by suitably fusing the elemen
current ofVx,r(A2

(2)). We then find a curious similarity between the operator product expans
of these currents and the so-calledT-system ofE8 type for the transfer matrix.21,22 At present we
do not understand its proper meaning.

This paper is organized as follows. In Sec. II, we review the definition of the diluteAL model
and give a brief description of the vertex operator approach. In Sec. III, we give bosonizat
the VOs. We derive the current forVx,r(A2

(2)) from them and state a conjecture for the K
determinant formula forVx,r(A2

(2)). We also present a Felder-type BRST complex of the F
spaces. Section IV is devoted to an application of the bosonization to the calculation of the
In Sec. V, regarding theVx,r(A2

(2)) current as the ZF operator for the particles in theA3 model, we
discuss a similarity between theT-system and the ‘‘bootstrap’’ of the ZF operators. Appendix
is a summary of the operator product expansion formulas for the elliptic currents and VO
Appendix B, we prove the nilpotency of the BRST charges. Appendix C is devoted to an
sition of the fusion properties of the deformedW currents forAN21

(1) , which should be compared
with those for the DVA currents associated with the diluteA3 model in Sec. V.

II. THE DILUTE A L MODELS

A. Boltzmann weights

Throughout this paper we fix a positive integerL>3. In the diluteAL model, the local
fluctuation variablesa,b,..., take one of theL states 1,2,...,L, and those on neighboring lattic
sites are subject to the conditiona2b50,61. The Boltzmann weights can be found in Ref. 2, E
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~3.1!. For our purpose it is convenient to use the parametrization given in Appendix A of R
which is suitable in the ‘‘low-temperature’’ regime. With some change of notation we recal
formula below.

Let x5e22pl/e, r 5p/(2l), andu52uorig /(2l), wherel,e are the variables used in Ref.
anduorig stands for ‘‘u’’ there. We shall restrict ourselves to the ‘‘regime 21’’ defined by

0,x,1, r 52
L11

L12
, 2

3

2
,u,0. ~2.1!

Along with the variableu, we often use the multiplicative variable

z5x2u.

Changing an overall scalar factor we put the Boltzmann weights in the form

WS a b

c d
UuD 5r~u!W̄S a b

c d
UuD ,

wherer(u) will be specified in~2.4! below. To give the formula for theW̄ factors, let us set

@u#5xu2/r 2uQx2r~x2u!, @u#15xu2/r 2uQx2r~2x2u!, ~2.2!

where

Qp~z!5~z;p!`~pz21;p!`~p;p!` ,

~z;p1 ,...,pk!`5 )
n1 ,...,nk50

`

~12p1
n1
¯pk

nkz!.

Then we have

W̄S a61 a

a a71
UuD 51,

W̄S a a61

a a61
UuD 5W̄S a61 a61

a a
UuD 52S @6a13/2#1@6a21/2#1

@6a11/2#1
2 D 1/2 @u#

@11u#
,

W̄S a61 a

a a
UuD 5W̄S a a

a a61
UuD 5

@6a11/21u#1

@6a11/2#1

@1#

@11u#
,

W̄S a a71

a61 a
UuD 5~Ga

1Ga
2!1/2

@1/21u#

@3/21u#

@u#

@11u#
,

W̄S a a

a61 a
UuD 5W̄S a a61

a a
UuD 52~Ga

6!1/2
@6a212u#1

@6a11/2#1

@1#

@11u#

@u#

@3/21u#
,

W̄S a a61

a61 a
UuD 5

@62a112u#

@62a11#

@1#

@11u#
2Ga

6
@62a21/22u#

@62a11#

@u#

@3/21u#

@1#

@11u#
,

W̄S a a

a a
UuD 5

@31u#

@3#

@1#

@11u#

@3/22u#

@3/21u#
1Ha

@1#

@3#

@u#

@11u#
.
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Here

Ga
65

S~a61!

S~a!
, S~a!5~21!a

@2a#

@a#1
, Ha5Ga

1
@a25/2#1

@a11/2#1
1Ga

2
@a15/2#1

@a21/2#1
. ~2.3!

We chooser(u) so that the partition function per site of the model equals 1. Explicitly it is gi
by2

z~r 21!/rr~u!5
r1~u!

r1~2u!
, r1~u!5

~x2z,x3z,x2r 13z,x2r 14z;x6,x2r !`

~x5z,x6z,x2rz,x2r 11z;x6,x2r !`
, ~2.4!

wherez5x2u, and we have introduced the notation

~a1 ,...,an ;p1 ,...,pk!`5)
j 51

n

~aj ;p1 ,...,pk!` . ~2.5!

Graphically we represent the Boltzmann weights as follows:

For definiteness we list below the basic properties of the Boltzmann weights:
The Yang–Baxter equation

(
g

WS a b

g c
UuDWS a g

f e
Uv DWS g c

e d
Uu1v D 5(

g
WS a b

f g
Uu1v DWS b c

g d
Uv DWS f g

e d
UuD ;

unitarity

(
g

WS a b

g c
UuDWS a g

d c
U2uD 5dbd ;

crossing symmetry

WS b d

a c
U2 3

2
2uD 5AS~a!S~d!

S~b!S~c!
WS a b

c d
UuD ;

and initial condition

WS a b

c d
U0D 5dbc .

B. Vertex operators

Hereafter we assume thatL is odd. The model has ground states labeled by odd integel
51,3,...,L22.2 They are characterized as configurations in which all heights take the same
b. If L54m61, then the possible values areb5 l (1< l<2m21, l : odd) or b5 l 11(2m11< l
<L22,l : odd).

Consider the corner transfer matricesA(z),B(z),C(z),D(z) corresponding to the NW, SW
SE, and NE quadrants, respectively. In the infinite volume limit, we have
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C~z!5A~z!5z2H, B~z!5D~z!5AS~k!x3HzH,

with k denoting the value of the central height. The operatorH ~the corner Hamiltonian! is
independent ofz. We denote byLl ,k the space of eigenstates ofH in the sector where the centra
height is fixed tok and the boundary heights are in the ground statel. It was found in Ref. 2 that
the generating function of the spectrum ofH coincides with the character of the Virasoro minim
unitary series. Namely,

trLl ,k
~qH!5x l ,k~q!, ~2.6!

where

x l ,k~q!5
qD l ,k2c/24

~q;q!`
(
j PZ

~qL~L11! j 21~~L11!l 2Lk! j2qL~L11! j 21~~L11!l 1Lk! j 1 lk!,

c512
6

L~L11!
, D l ,k5

~~L11!l 2Lk!221

4L~L11!
.

Consider next the half-infinite transfer matrix extending to infinity in the north. We deno
by

F~k,k1e!~z!:Ll ,k1e˜Ll ,k ~e50,61!.

Likewise we denote by

F* ~k1e,k!~z21!:Ll ,k˜Ll ,k1e ~e50,61!

the half-infinite transfer matrix extending to infinity in the west. We shall also write

F~k,k1e!~z!5Fe~z!, F* ~k1e,k!~z!5Fe* ~z!,

and call them vertex operators~VOs! of type I.

Intuitive graphical arguments based on the properties of the Boltzmann weights lead
following formulas. For details we refer the reader to Refs. 23 and 4,

F~a,c!~z2!F~c,d!~z1!5(
g

WS a g

c d
Uu12u2DF~a,g!~z1!F~g,d!~z2! ~zj5x2uj !,

wHF~a,b!~z!w2H5F~a,b!~wz!, F* ~b,a!~z!5AS~a!

S~b!
F~b,a!~x23z!,

(
g

F* ~a,g!~z!F~g,a!~z!51, F~a,b!~z!F* ~b,c!~z!5dac .
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As explained in Ref. 5, multipoint local height probabilities are expressed as traces of
Consider neighboringn11 lattice sites in a row. LetPl(a0 ,...,an) denote the probability of
finding these local variables to be (a0 ,...,an). Then we have

Pl~a0 ,...,an!5Zl
21S~an!trLl ,an

~x6HF* ~an ,an21!~z!¯F* ~a1 ,a0!~z!F~a0 ,a1!~z!¯F~an21 ,an!~z!!.

~2.7!

Here the nomalization factorZl is

Zl5 (
k51

L

S~k!x l ,k~x6!,

which can be expressed in product of theta functions with conjugate modulus.2 In the simplest
casen50, the one-point functionPl(k) is given byPl(k)5Zl

21S(k)x l ,k(x
6).

Remark:We follow mostly the notation of Ref. 9 but there are minor changes. TheF(z21) in
Ref. 9 corresponds toF(z) in the present notation. We have also reversed the orientation of e
of the Boltzmann weights.

III. BOSONIZATION OF VERTEX OPERATORS

A. Bosons

In this section we present a bosonic realization of vertex operators. The working cl
follows Refs. 4 and 9. We set

@n#x5
xn2x2n

x2x21 ,

and introduce the oscillatorsan (nÞ0) andP,Q satisfying the commutation relations

@an ,am#5
@n#x~@2n#x2@n#x!

n

@rn#x

@~r 21!n#x
dn1m,0 ,

~3.1!
@P,iQ#51.

Notice that@2n#x2@n#x5@3n#x@n/2#x /@3n/2#x . We shall also use

an85~21!n
@~r 21!n#x

@rn#x
an .

We denote by

Fl ,k5C@a21 ,a22 ,...#u l ,k&

the Fock space generated by

u l ,k&5epl ,kiQu0,0&, Pu l ,k&5pl ,ku l ,k&,

wherepl ,k is

pl ,k52
l

2
A r

r 21
1kAr 21

r
52 lAL11

2L
1kA L

2~L11!
. ~3.2!

@Recall thatr 52(L11)/(L12).] These Fock spaces are graded by
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d5 (
n51

`
n2

@n#x~@2n#x2@n#x!

@~r 21!n#x

@rn#x
a2nan1

1

2
P22

1

24
,

which satisfies@d,an#52nan , @d,iQ#5P and du l ,k&5(D l ,k2c/24)u l ,k&. For later use, we
define the operatorsl̂ ,k̂:Fl ,k˜Fl ,k by

l̂ uFl ,k
5 l 3 idFl ,k

, k̂uFl ,k
5k3 idFl ,k

.

B. Vertex operators

In Refs. 10 and 11, a bosonic realization of the level-one representation of the quantum
algebraUq(A2

(2)) and associated vertex operators have been obtained. We shall conside
elliptic counterparts.

The elliptic version of the Drinfeld currents are constructed from the trigonometric ones
‘‘dressing’’ procedure described in Ref. 8. Applying it to the present case ofUq(A2

(2)), we obtain

x1~z!:Fl ,k˜Fl 22,k , x2~z!:Fl ,k˜Fl ,k21 ,

x1~z!5:expS 2 (
nÞ0

an

@n#x
z2nD :3eSA r

r 21 iQzA r
r 21 P1

r
2~r 21! D , ~3.3!

x2~z!5:expS (
nÞ0

an8

@n#x
z2nD :3eS 2Ar 21

r iQz2Ar 21
r P1

r 21
2r D . ~3.4!

The elliptic version of VOs~of type I and type II! are defined in terms of their trigonometr
ones and a ‘‘twistor’’ given by an infinite product of the universalR matrix.24 They satisfy the
commutation relations of the type~3.11!–~3.13! in Sec. III C. As we do not know how to evaluat
the twistor in the bosonic realization, we have solved relations~3.11!–~3.13! directly for
Fe(z),Ce* (z). We obtain the following.

Type I:

Fe~z!:Fl ,k˜Fl ,k2e ,

F2~z!5:expS 2 (
nÞ0

an8

@2n#x2@n#x
z2nD :3eSAr 21

r iQzAr 21
r P1

r 21
2r D , ~3.5!

F0~z!5x~12r !/2r R
C0

dz1F2~z!x2~z1!
1

A@ k̂11/2#1@ k̂21/2#1

@u2u11 k̂#1

@u2u111/2#
, ~3.6!

F1~z!5x~12r !/r R R
C1

dz1dz2F2~z!x2~z1!x2~z2!

3AS~ k̂21!

S~ k̂!

1

@ k̂21/2#1@2k̂22#

@u2u112k̂23/2#

@u2u111/2#

@u12u21 k̂#1

@u12u211/2#
. ~3.7!

Type II:

Ce* ~z!:Fl ,k˜Fl 22e,k ,
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C2* ~z!5:expS (
nÞ0

an

@2n#x2@n#x
z2nD :3eS 2A r

r 21 iQz2A r
r 21 P1

r
2~r 21! D , ~3.8!

C0* ~z!5 ixr /2~r 21! R
C0*

dz1C2* ~z!x1~z1!
1

A@~ l̂ 11!/2#1* @~ l̂ 21!/2#1*

@u2u12 l̂ /2#1*

@u2u121/2#*
,

~3.9!

C1* ~z!5xr /~r 21! R R
C1

*
dz1dz2C2* ~z!x1~z1!x1~z2!

3AS* ~ l̂ /221!

S* ~ l̂ /2!

1

@~ l̂ 21!/2#1* @ l̂ 22#*

@u2u12 l̂ 13/2#*

@u2u121/2#*

@u12u22 l̂ /2#1*

@u12u221/2#*
.

~3.10!

Herez5x2u, zj5x2uj , dzj5dzj /(2p izj ) and

@u#* 5xu2/~r 21!2uQx2r 22~x2u!, @u#1* 5xu2/~r 21!2uQx2r 22~2x2u!, S* ~a!5~21!a
@2a#*

@a#1*
.

The poles of the integrand of~3.6!–~3.10! and the integration contours are listed in the followi
table (n50,1,2,...). For example,C0 is a simple closed contour that encirclesx112rnz (n>0) but
not x2122rnz (n>0).

Inside Outside

C0 z15x112rnz z15x2122rnz

C1 z15x112rnz z15x2122rnz

z25x112rnz1 z25x2122rnz,x2122rnz1 , x222r (n11)z1

C0* z15x2112(r 21)nz z15x122(r 21)nz

C1* z15x2112(r 21)nz z15x122(r 21)nz

z25x2112(r 21)nz1 z25x122~r21!nz, x122~r21!nz1, x2222~r21!~n11!z1

C. Commutation relations and inversion identities

The VOs given above satisfy the following commutation relations:

Fe2
~z2!Fe1

~z1!5 (
e18 ,e28

e181e285e11e2

WS k̂ k̂1e18

k̂1e2 k̂1e11e2
Uu12u2D Fe

18
~z1!Fe

28
~z2!, ~3.11!

Ce1
* ~z1!Ce2

* ~z2!5 (
e18 ,e28

e181e285e11e2

W* S l̂ /2 l̂ /21e1

l̂ /21e28 l̂ /21e11e2
Uu12u2D Ce

28
* ~z2!Ce

18
* ~z1!,

~3.12!

Fe2
~z2!Ce1

* ~z1!5t~u12u2!Ce1
* ~z1!Fe2

~z2!. ~3.13!

Here we have set~for z5x2u)
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W* S a b

c d
UuD 5W̄S a b

c d
UuD U

r˜r 21

3r* ~u!, ~3.14!

z2r /~r 21!r* ~u!5
r1* ~u!

r1* ~2u!
, r1* ~u!5

~x3z,x4z,x2rz,x2r 11z;x6,x2r 22!`

~z,xz,x2r 13z,x2r 14z;x6,x2r 22!`
, ~3.15!

t~u!5z
Qx6~2xz21!Qx6~2x2z21!

Qx6~2xz!Qx6~2x2z!
. ~3.16!

Note that

r* ~u!52r~u!ur˜r 213z
Qx6~xz21!Qx6~x2z21!

Qx6~xz!Qx6~x2z!
.

We do not present the tedious but straightforward verification of~3.11!–~3.13!.
For the description of correlation functions we need also the ‘‘dual’’ VOs. Define

Fe* ~z!5gAS~ k̂!21F2e~x23z!AS~ k̂!, ~3.17!

Ce~z!5g* 21AS* ~ l̂ /2!C2e* ~x23z!AS* ~ l̂ /2!21, ~3.18!

where

g215
~x;x2r !`

~x2;x2r !`
2 ~x2r 21;x2r !`~x2r ;x2r !`

4

~x5,x6,x2r ,x2r 11;x6,x2r !`

~x2,x3,x2r 13,x2r 14;x6,x2r !`
,

g* 5
~x21;x2r 22!`

~x22;x2r 22!`
2 ~x2r 21;x2r 22!`~x2r 22;x2r 22!`

5

~x3,x4,x2r ,x2r 11;x6,x2r 22!`

~x,x6,x2r 13,x2r 14;x6,x2r 22!`
.

Then we have

Fe2
~z!Fe1

* ~z!5de1 ,e2
3 id, Ce1

~z1!Ce2
* ~z2!5

de1 ,e2

12z1 /z2
1¯ ~z1˜z2!, ~3.19!

(
e

Fe* ~z!Fe~z!5 id, (
e

Ce* ~z2!Ce~z1!5
1

12z1 /z2
1¯ ~z1˜z2!. ~3.20!

D. Deformed Virasoro algebra

Brazhnikov and Lukyanov13 pointed out that one can associate to the algebraA2
(2) a deformed

Virasoro algebra~DVA ! which is different from the one found in Ref. 6. The original DVA of Re
6, associated withA1

(1) , arises also as a ‘‘fusion’’ of VOs.16 Let us discuss this point in the prese
case ofA2

(2) .
Let

L6~z!5:expS 6 (
nÞ0

ln~x63/2z!2nD :3x62Ar ~r 21!P,

L0~z!52
@r 21/2#x

@1/2#x
:expS (

nÞ0
ln~x2n/22xn/2!z2nD :, ~3.21!

T~z!5L1~z!1L0~z!1L2~z!,
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where

ln5~21!n~x2x21!
@~r 21!n#x

@2n#x2@n#x
an5~x2x21!

@rn#x

@2n#x2@n#x
an8 ,

@ln ,lm#5~x2x21!2
1

n

@n#x@rn#x@~r 21!n#x

@2n#x2@n#x
dm1n,0 .

ThenT(z) is obtained from VOs by fusing them,

Fe2
~xr 13/2z8!Fe1

* ~x2r 13/2z!5S 12
z

z8D ~21!e111de1 ,e2
T~z!•x12r

~x,x6,x522r ,x622r ;x6!`

~x3,x4,x222r ,x322r ;x6!`

1¯ ~z8˜z!. ~3.22!

The T(z) satisfies the DVA of Ref. 13

f S z2

z1
DT~z1!T~z2!2 f S z1

z2
DT~z2!T~z1!

5~x2x21!
@r 11/2#x@r #x@r 21#x@r 23/2#x

@1/2#x@3/2#x
S dS x3

z2

z1
D2dS x23

z2

z1
D D

1~x2x21!
@r #x@r 21/2#x@r 21#x

@1/2#x
S dS x2

z2

z1
DT~xz2!2dS x22

z2

z1
DT~x21z2! D , ~3.23!

where f (z) is

f ~z!5expS 2 (
n.0

~x2x21!2
1

n

@n#x@rn#x@~r 21!n#x

@2n#x2@n#x
znD

5
1

12z

~x222rz,x322rz,x4z,x5z,x2rz,x2r 11z;x6!`

~x522rz,x622rz,xz,x2z,x2r 13z,x2r 14z;x6!`
. ~3.24!

The notation of Ref. 13 is related to ours byxBL5x3/2, b/Q5r , 1/(Qb)512r , g(z)5 f (z),
V(z)5T(z). In what follows we call this algebraVx,r(A2

(2)). The relation~3.23! is invariant under

r °12r , x°x, T~z!°2T~z!. ~3.25!

We remark thatT̃(z)52L1(z)1L0(z)2L2(z) also satisfies~3.23!, which is obtained from
type II VOs,

Ce1
~xr 2113/2z8!Ce2

* ~x2~r 21!13/2z!5
1

12z8/z
~21!e111de1 ,e2

T̃~2z!

3~2x2r !
~x2,x3,x522r ,x622r ;x6!`

~x5,x6,x222r ,x322r ;x6!`
1¯ ~z8˜z!.

Let us discuss some features ofVx,r(A2
(2)).

Conformal limit:In the conformal limit (x5e\
˜1,r : fixed!, ~3.23! admits two limits13 related

by ~3.25!,

T~z!5322r 1\2~8r ~r 21!z2L~z!1 1
6r ~r 21!~122r !1~22r !2!1O~\4!, ~3.26!

T~z!52122r 1\2~28r ~r 21!z2L̃~z!1 1
6r ~r 21!~122r !2~11r !2!1O~\4!, ~3.27!
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whereL(z),L̃(z) are the Virasoro currents with the central chargesc,c̃, respectively,

c512
3~22r !2

r ~r 21!
512

6

L~L11!
, c̃512

3~11r !2

r ~r 21!
.

In the free boson realization~3.21!, T(z) and T̃(z) have ‘‘natural’’ expansions~3.26! and
~3.27!, respectively, by the following identification:

ln52\Ar ~r 21!Axrn2x2rn

2\rn

x~r 21!n2x2~r 21!n

2\~r 21!n

1

xn211x2n an ,

P5a02
22r

2Ar ~r 21!
5ã02

r 11

2Ar ~r 21!
,

L~z!5:
1

2
~]f~z!!2:1

22r

2Ar ~r 21!
]2f~z!,

L̃~z!5:
1

2
~]f̃~z!!2:1

r 11

2Ar ~r 21!
]2f̃~z!,

where@an ,am#5ndn1m,0 , ]f(z)5(nPZ anz2n21 and]f̃(z)5]f(z)ua0˜ã0
. On the other hand

T(z) has an expansion of the form~3.27! with

P5ã02
r 11

2Ar ~r 21!
1

ip~2n11!

2\Ar ~r 21!
~nPZ!.

Kac determinant:Let T(z)5(nPZ Tnz2n, and letU6 be the algebra generated by$Tn%6n.0 .
As usual, the Verma module of highest weightlPC is defined as the free leftU2-module
generated by a vectorul& such thatTnul&50 (n.0) andT0ul&5lul&. Likewise the right Verma
module is defined bŷluTn50 (n,0), ^luT05l^lu, and^lul&51. At level N there arep(N)
~the number of partition! independent states,T2n1

T2n2
¯T2nl

ul& (n1>n2>¯>nl.0, ( i 51
l ni

5N). Let us number these states by the reverse lexicographic ordering for (n1 ,n2 ,...,nl), i.e.,
ul;N,1&5T2Nul&, ul;N,2&5T2N11T21ul&,...,ul;N,p(N)&5T21

N ul&. Similarly we define
^l;N,1u5^luTN , ^l;N,2u5^luT1TN21 ,... ,̂ l;N,p(N)u5^luT1

N .
We conjecture that the Kac determinant at levelN is given by

det~^l;N,i ul;N, j &!1< i , j <p~N!5 )
l ,k>1
lk<N

S ~l2l l ,k!~l2l̃ l ,k!

3
~xrl 2x2rl !~x~r 21!l2x2~r 21!l !

xl211x2 l D p~N2 lk !

, ~3.28!

where

l l ,k5x2 lr 12k~r 21!1xlr 22k~r 21!2
@r 21/2#x

@1/2#x
,

l̃ l ,k52xl ~r 21!22kr2x2 l ~r 21!12kr2
@r 21/2#x

@1/2#x
.

                                                                                                                



of the

3802 J. Math. Phys., Vol. 40, No. 8, August 1999 Hara et al.

                    
We remark that in the free boson realizationT0u l ,k&5l l ,ku l ,k& and T0ea iQu2k,l /2&
5l̃ l ,ke

a iQu2k,l /2&, where

a5
ip~2n11!

2\Ar ~r 21!
~nPZ!.

E. Felder complex

The Fock spacesFl ,k themselves do not give a bosonic realization of the space of statesLl ,k

of the corner Hamiltonian. For this we need a cohomological construction using an analog
Felder complex:25

¯ ——˜

X22

F2L2 l ,k ——˜

X21

Fl ,k˜

X0

F2 l ,k˜

X1

Fl 22L,k˜

X2

¯ , ~3.29!

XjXj 2150.

In the case of the algebraA1
(1) , Lukyanov and Pugai constructed the coboundary mapXj as a

power of a single operator~Ref. 4, see also Ref. 26!. In our case, the formula forXj is a little more
involved.

Set

Q15 R
uzu51

dzx1~z!
@u1 l̂ /2#*

@u11/2#*
,

Q2
~a!5 R R

uz1u5uz2u51
dz1dz2x1~z1!x1~z2!

1

@u111/2#* @u211/2#*

3
@u12u2#*

@u12u211#* @u12u221/2#*
f 2

~a!~u11 l̂ /2,u21 l̂ /2!,

where

f 2
~a!~u1 ,u2!5@2a11#* @a21/2#* @u12a#* @u21a21#* @u12u21a21/2#*

2@2a21#* @a11/2#* @u11a#* @u22a21#* @u12u22a21/2#* .

These operators are mutually commutative~see Lemma B1!. We define ‘‘BRST charges’’Ql

(1< l<L21) as follows:

Ql5H Q1Q2
~1!
¯Q2

~m! ~ l 52m11!

Q2
~~L11!/22m!

¯Q2
~~L23!/2!Q2

~~L21!/2! ~ l 52m!
.

Note thatQL5QlQL2 l .
We prove the following propositions in Appendix B~Propositions B2 and B3!.
Proposition 3.1: Suppose l8 is odd and l8[ l modL (1< l<L21). On the spaceFl 8,k , Ql is

expressed as

Ql5 R ¯ R
uz1u5¯5uzl u5R

dz1¯dzlx1~z1!¯x1~zl !Hl~u1 ,...,ul !, ~3.30!

Hl~u1 ,...,ul !56h̄l~u1 ,...,ul ! )
1< i , j < l

@ui2uj #*

@ui2uj11#* @ui2uj21/2#*
, ~3.31!
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where h̄l(u1 ,...,ul) is holomorphic, symmetric and satisfies hl̄(u11v,...,ul1v)5h̄l(u1 ,...,ul).
We have

Hl~u11r 21,...,ul !5Hl~u1 ,...,ul !, ~3.32!

Hl~u11t,...,ul !5Hl~u1 ,...,ul !e
2p i ~ l 21!/~r 21!, ~3.33!

wheret5p i / logx.
Hence~3.30! does not depend onR.0.

Proposition 3.2: Under the same condition as above, we have

QlQL2 l50 ~1< l<L21!.

Let us callCl ,k the cochain complex~3.29! defined by

X2 j5Ql : Fl 22 jL ,k˜F2 l 22 jL ,k ,

X2 j 115QL2 l : F2 l 22 jL ,k˜Fl 22~ j 11!L,k .

In the conformal limit wherex˜1 and z5x2u are kept fixed, this complex formally tends t
Felder’s complex25 for the minimal unitary series. In view of this, it is natural to expect that

H j~Cl ,k!5KerXj /Im Xj 2150 ~ j Þ0!. ~3.34!

By the Euler–Poincare´ principle, the 0th cohomologyH0(Cl ,k) then has the same character as
space of statesLl ,k @see~2.6!#,

trH0~Cl ,k!~qd!5trLl ,k
~qH!.

Henceforth we assume~3.34! and make an identification

H0~Cl ,k!5Ll ,k , d5H.

Proposition 3.3: Under the same assumption as in Proposition 3.1, we have onFl 8,k

@Fe~z!,Ql #50 ~e50,6 !, ~3.35!

@T~z!,Ql #50. ~3.36!

Proof: ~3.36! is a consequence of~3.35! and ~3.22!. Let us show

F2~z!Ql5QlF2~z!.

The left ~respectively, right! hand side is well defined if we chooseR!1 ~respectively,R@1) in
~3.30!. As meromorphic functions we haveF2(z)x1(zj )5x1(zj )F2(z), and the product has no
poles. SinceQl does not depend onR, the conclusion follows.

Next let us prove~3.35! with e50. The casee51 can be shown similarly. Dropping irrel
evant constants we consider

F08~z!5 R
C0

dz8F2~z!x2~z8!
@u2u81 k̂#1

@u2u811/2#
.

As meromorphic functions we have

x2~z!x1~z8!5x1~z8!x2~z!5
z1z8

~z1xz8!~z1x21z8!
:x2~z!x1~z8!:.
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We use the expression~3.30! with x2uzu,R,x22uzu. Taking into account the symmetry in th
integration variablesz1 ,...,zl , we obtain

@F08~z!,Ql #5 l R ¯ R
uz1u5¯5uzl u5R

dz1¯dzlHl~u1 ,...,ul !~resz852xz1

1resz852x21z1
!F2~z!x2~z8!x1~z1!¯x1~zl !

@u2u81 k̂#1

@u2u811/2#
dz8.

By noting the identity

:x1~z!x2~2x21z!ªx22r 11:x1~z2r 22z!x2~2x2r 21z!:,

we can rewrite the right-hand side as follows:

l R ¯ R
uz2u5¯5uzl u5R

dz2¯dzl S R
C1

dz1A~z1 ,z!x1~z2!¯x1~zl !Hl~u1 ,...,ul !

2 R
C2

dz1A~x2r 22z1 ,z!x1~z2!¯x1~zl !Hl~u1 ,...,ul ! D , ~3.37!

where

A~z1 ,z!5resz852xz1
F2~z!x2~z8!x1~z1!

@u2u81 k̂#1

@u2u811/2#
dz8

5
holomorphic function

~2x2z1 /z,2x2rz/z1 ;x2r !`
:F2~z!x2~2xz1!x1~z1!:.

The contours forz1 are (n>0)

Inside Outside

C1 z152x2r (n11)z z152x2222rnz

C2 z152x212rnz z152x22r (n11)z

Moreover the product :x2(2xz1)x1(z1):x1(zj ) is holomorphic inz1 for ux2rzj u,uz1u. In view of
the periodicity~3.32!, the two terms of~3.37! cancel out by shifting the contourz1˜x2r 22z1 .h

IV. LOCAL HEIGHT PROBABILITIES

We present here a calculation of the local height probabilities~LHPs! for the diluteAL models
in the regime 21.

A. Two-point LHP

We have already mentioned the result~2.6! about the one-point function. As the next simple
case, let us consider the probabilityPl(a2e,a) of finding two neighboring local height variable
to bea2e, a(e50,6):

Pl~a2e,a!5
1

Zl
S~a!trLl ,a

~x6HFe* ~z!Fe~z!!

5
1

Zl
gAS~a!S~a2e!trLl ,a

~x6HF2e~x23z!Fe~z!!. ~4.1!
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Note thatPl(a2e,a) is independent ofz. From~4.1! and the property of the type I VO~3.20!, we
have the following relations:

(
e561,0

Pl~a2e,a!5
S~a!x l ,a~x6!

Zl
, Pl~a2e,a!5Pl~a,a2e!, Pl~0,1!50.

The evaluation of the trace yields the following expressions:

Pl~a21,a!52
S~a21!x~12r !/r

@a2 1
2#1@2a22#

R R
C1~1!

dw1 dw2 I~w1 ,w2!

3
@v12 1

2#@v122a1 3
2#@v12v21a#1

@v11 1
2#@v12 1

2#@v12v21 1
2#

,

Pl~a,a!5
S~a!x~12r !/r

@a1 1
2#1@a2 1

2#1

R
C0~x23!

dw1 R
C0~1!

dw2 I~w1 ,w2!
@v12a1 3

2#1@v22a#1

@v111#@v22 1
2#

,

Pl~a11,a!52
S~a!x~12r !/r

@a1 1
2#1@2a#

R R
C1~x23!

dw1 dw2 I~w1 ,w2!

3
@v122a11#@v12v21a11#1@v21 1

2#

@v111#@v12v21 1
2#@v22 1

2#
.

Herewi5x2v i ( i 51,2) and

I~w1 ,w2!5trLl ,a
~x6HF2~x23!x2~w1!F2~1!x2~w2!!

5Ol ,a~w1 ,w2!
~x5,x6;x6,x2r !`

2

~x2r 13,x2r 14;x6,x2r !`
2

3
~x2r 12w1 ,x2r 12/w1 ,x2r 21w2 ,x2r 12/w2 ;x3,x2r !`

~x4w1 ,x4/w1 ,xw2 ,x4/w2 ;x3,x2r !`
~x6,w2 /w1 ,x6w1 /w2 ;x6!`

3
Gx6~x2r 21,w2 /w1!Gx6~x2,w2 /w1!

Gx6~x2r 22,w2 /w1!Gx6~x,w2 /w1!
,

whereOl ,a(w1 ,w2) is the zero-mode contribution

Ol ,a~w1 ,w2!5~x6!D l ,a2c/24~x3w1w2!~ l ~L11!2aL!/~2~L11!!1L/~4~L11!!

3(
j PZ

~x3w1w2!2L j~~x6!L~L11! j 22~ l ~L11!2aL! j

2~x6!L~L11! j 21~ l ~L11!1aL! j 1 la~x3w1w2!2 l !,

and

Gx6~A,z!5~x6A;x6,x2r !`
2 ~Az;x6,x2r !`~x6A/z;x6,x2r !` .

The contoursC1(1),C0(x23)øC0(1),C1(x23) are chosen as follows (n,m>0): For all the
contours, the polesw15x413m12rn, w25x413m12rn, x416m12r (n11)w1 , x116(m11)12rnw1 are
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inside and the polesw15x2423m22rn, w25x2123m22rn, x226m22r (n11)w1 , x2126m22rnw1 are
outside. In addition,

Inside Outside

C1(1) w15x2112r (n11) w15x2122rn

w25x112rnw1 w25x2122rn,x2122rnw1 , x222r (n11)w1

C0(x23)øC0(1) w15x2212rn w15x2422rn

w25x112rn w25x2122rn

C1(x23) w15x2212rn w15x2422rn

w25x112rn, x112rnw1 w25x122r (n11), x2122rnw1 , x222r (n11)w1

B. General case

Integral representation of theN-point correlation functions can be derived in a similar mann
It is written in terms of the traces of the type I vertex operators as in~2.7!:

Zl
21S~k!trLl ,k

~Fe1
* ~x6z1!¯FeN

* ~x6zN!FeN
~x6zN!¯Fe1

~x6z1!x6H!. ~4.2!

Here we give only the integral formula for the traces over the Fock module in a general situ

trFl ,k
~Fe1

~z1!¯FeN
~zN!x6H!. ~4.3!

We assume( t51
N e t50. Otherwise~4.3! vanishes.

First we prepare several functions,

F~z!5
~x512rz;x6,x2r !

~x7z;x6,x2r !
, G~z!5

F~z!

F~xz!F~x21z!
,

H~z!5
~x8z,x9z,x912rz,x1012rz;x6,x6,x2r !

~x11z,x12z,x612rz,x712rz;x6,x6,x2r !
.

Definehen
(zn ,$wn,i%,k̂) (en50,1) by normal-ordering the integrand of~3.6! and ~3.7!,

Fen
~zn!5 R S )

i PI ~e!
dwn,i D :F2~zn! )

i PI ~e!
x2~wn,i !:hen

~zn ,$wn,i%,k̂!,

I ~0!5$1%,I ~1 !5$1,2%.

Explicitly we have

h0~z,w,k!5
x~2u22v1k11/2!~k21/2!/r 22k11/2~xz2!~12r !/2r

A@k11/2#1@k21/2#1

~2x2kz/w,2x2r 22kw/z;x2r !`

~xw/z,xz/w;x2r !`

,
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h1~z,w1 ,w2 ,k!

5AS~k21!

S~k!

x$4~k21!~u2v11k21/2!1~k21/2!~2v122v21k11/2!%/r 223k15/2~xz2/w1!~12r !/r

@k21/2#1@2k22#

3
~x2r 21w2 /z,x4k23z/w1 ,x2r 24k13w1 /z;x2r !`

~xw2 /z,xw1 /z,xz/w1 ;x2r !`

3
~x2w2 /w1 ,2x2kw1 /w2 ,2x2r 22kw2 /w1 ;x2r !`

~xw2 /w1 ,x2r 22w2 /w1 ,xw1 /w2 ;x2r !`
S 12

w1

w2
D .

We use the symbol̂̂ A(z)B(w)&& to denote the normal ordering factors

A~z!B~w!5^^A~z!B~w!&&:A~z!B~w!:.

~See the list in Appendix A.!
With this notation we have

trFl ,k
~Fe1

~z1!¯FeN
~zN!x6H!

5 R ¯ R )
1<m<N
emÞ2

S )
j PI ~em!

dwm, j D hemS zm ,$wm, j%,k1(
t51

m

e tD
3 )

1<m,n<N
^^F2~zm!F2~zn!&& )

1<m,n<N
i PI ~en!; j PI ~em!

^^x2~wm, j !x2~wn,i !&&

3 )
1<n,m<N

j PI ~em!

^^F2~zn!x2~wm, j !&& )
1<m,n<N

j PI ~em!

^^x2~wm, j !F2~zn!&&

3trFl ,kS :F2~z1!¯F2~zN! )
1<m<N
j PI ~em!

x2~wm, j !:x
6HD , ~4.4!

where

trFl ,kS :F2~z1!¯F2~zN! )
1<m<N
j PI ~em!

x2~wm, j !:x
6HD

5 )
1<m,n<N

H~zn /zm! )
1<m,n<N

i PI ~en!, j PI ~em!

G~wn,i /wm, j !

3 )
1<n,m<N

j PI ~em!

F~zn /wm, j !F~wm, j /zn!3
x6~pl ,k

2 /421/24!

~x6;x6!`

3S S )
1<m<N
j PI ~em!

wm, j D Y S )
1<n<N

znD D A~r 22!/rpl ,k

3S )
1<m<N
j PI ~em!

wm, j )
1<n<N

znD ~r 21!/~2r !

, ~4.5!
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wherepl ,k is given in ~3.2!. The following are the list of poles of the integrand as functions
wm, j . The contour fordwm, j encircles only those denoted ‘‘inside’’ (a,bPZ>0):

Inside Outside

h0(zm ,wm,1 ,k) wm,15x112rbzm wm,15x2122rbzm

h1(zm ,wm,1 ,wm,2 ,k) wm,15x112rbzm wm,15x2122rbzm

wm,25x112rbwm,1 wm,25x2122rbwm,1 ,x2122rbzm

^^x2(wm, j )F2(zn)&& wm, j5x112rbzn

^^F2(zn)x2(wm, j )&& wm, j5x2122rbzn

^^x2(wm, j )x2(wn,i)&& wm, j5x112rbwn,i

wm, j5x2212r (11b)wn,i

G(wn,i /wm, j ) wm, j5x712rb16awn,i

wm, j5x2r (11b)16(11a)wn,i

wm, j5x412r (11b)16awn,i

F(zn /wm, j ) wm, j5x712rb16azn wm, j5x2722rb26azn

The formula for theN-point correlation function~4.2! can be obtained through specializing~4.5!
and noting

H~x3z!H~z!5
1

F~x2z!F~xz!
.

Since the result is lengthy we do not present it here.

V. DISCUSSION

As was discussed in the main text, the DVA for the diluteAL model@which we have denoted
by Vx,r(A2

(2))] exactly coincides with the one found by Brazhnikov and Lukyanov.13 In Ref. 13,
Vx,r(A2

(2)) with uxu51 was treated as the Zamolodchikov–Faddeev~ZF! algebra for the
Bullough–Dodd model (A2

(2) Toda field theory!. We regardVx,r(A2
(2)) with 0,x,1, r 52(L

11)/(L12) as the ZF algebra for the diluteAL model~restricted face model!, and apply the idea
of bootstrap method to study the fusion of theVx,r(A2

(2)) currentT(z).
The two-dimensional Ising model at the critical temperatureT5Tc is described by thec

51/2 minimal CFT. Perturbing it by a magnetic field while keeping the same temperaturT
5Tc), an off-critical integrable model is obtained.20 A fascinating feature of this theory is that th
Lie algebraE8 appears as a hidden symmetry; one can check that the integrals of motioPs

appear at the exponents ofE8 , s51,7,11,13,17,19,..., the bootstrap program closes within e
particles, the mass ratios are given by the Perron–Frobenius vector for the incidence matrixE8 ,
and so on. Further discussions of the model as thef1,2-perturbation of thec51/2 CFT can be
found in Ref. 27. It is argued that the diluteA3 model is in the universality class of the magnet
perturbed Ising model.1 As in the case of the ABF model,4 our free field realization for the dilute
A3 model properly reduces to that of thec51/2 CFT, including the VOs,Vx,r(A2

(2)), and the
Felder complex. Our description of the diluteA3 model, therefore, provides a lattice analog of t
f1,2-perturbation of thec51/2 CFT.

In this section, we study anE8 structure arising fromVx,r(A2
(2)) for the diluteA3 model (r

58/5). We construct eight fused DVA currentsT(a)(u) (a51,2,...,8) from the fundamenta
Vx,r(A2

(2)) currentT(z) using a bootstrap procedure. We show that these fused currents obey
of relations which resembles the so-called level-two restrictedT-system of typeE8

(1) .21

The T-system of typeE8
(1)21 is written as

Tm
~a!~u2 1

20!Tm
~a!~u1 1

20!5Tm21
~a! ~u!Tm11

~a! ~u!1gm
~a!~u!)

b;a
Tm

~b!~u!, ~5.1!
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where Tm
(a)(u) (a51,2,...,8) denotes the eigenvalues of the transfer matrix, the symbolb;a

means thatb and a are adjacent nodes in the Dynkin diagram ofE8 , and g(a)(u)’s are some
functions.~We have rescaled theu variable of Ref. 21 to fit the present notation.! If the face model
is restricted, then we have the truncation 1<m<l . The integerl is called level. If l 52,
T2

(a)(u) becomes proportional to the identity, and~5.1! reduces to

T1
~a!~u2 1

20!T1
~a!~u1 1

20!5f~a!~u!1g1
~a!~u!)

b;a
T1

~b!~u!, ~5.2!

with some functionsf (a)(u). This is called the level-two restrictedT-system of typeE8
(1) . In Ref.

22, theT-system in~5.2! is realized in terms of the ‘‘quantum’’ transfer matrix for the diluteA3

model.
Now we come back to the deformed Virasoro algebraVx,r(A2

(2)) for the dilute A3 model.
Before going into the technical details, let us roughly state the type of formulas we fin
Vx,r(A2

(2)) with r 58/5.
Definition 5.1: Define the eight DVA currents T(a)(u) (a51,2,...,8) corresponding to the

simple roots of E8 by

T~a!~u!5Tā~u!, a51,2,3,4,5,

T~6!~u!5 f 13̄~u22u1!T1~u1!T3̄~u2!u
u25u23/20

u15u111/20,

T~7!~u!5T2~u!,

T~8!~u!5 f 12̄~u22u1!T1~u1!T2̄~u2!u
u25u24/20

u15u19/20.

Here the fused DVA currents Tn(u), Tn̄(u) and the structure function fmn̄(u) are defined in
Definition 5.5 below.

Proposition 5.2: The following relations hold:

f ~1!~u1 ,u2!T~1!~u1!T~1!~u2!u
u25u21/20

u15u11/205T~2!~u!, ~5.3!

f ~2!~u1 ,u2!T~2!~u1!T~2!~u2!u
u25u21/20

u15u11/205g~2!~u1 ,u2!T~1!~u1!T~3!~u2!u
u25u

u15u , ~5.4!

f ~3!~u1 ,u2!T~3!~u1!T~3!~u2!u
u25u21/20

u15u11/205g~3!~u1 ,u2!T~2!~u1!T~4!~u2!u
u25u

u15u , ~5.5!

f ~4!~u1 ,u2!T~4!~u1!T~4!~u2!u
u25u21/20

u15u11/205g~4!~u1 ,u2!T~3!~u1!T~5!~u2!u
u25u

u15u , ~5.6!

f ~5!~u1 ,u2!T~5!~u1!T~5!~u2!u
u25u21/20

u15u11/205g~5!~u1 ,u2 ,u3!T~4!~u1!T~6!~u2!T~8!~u3!u
u15u
u25u
u35u

,

~5.7!

f ~6!~u1 ,u2!T~6!~u1!T~6!~u2!u
u25u21/20

u15u11/205g~6!~u1 ,u2!T~5!~u1!T~7!~u2!u
u25u

u15u , ~5.8!

f ~7!~u1 ,u2!T~7!~u1!T~7!~u2!u
u25u21/20

u15u11/205T~6!~u!, ~5.9!

f ~8!~u1 ,u2!T~8!~u1!T~8!~u2!u
u25u21/20

u15u11/205T~5!~u!, ~5.10!
                                                                                                                



rs

tween

ther

on, we

3810 J. Math. Phys., Vol. 40, No. 8, August 1999 Hara et al.

                    
with appropriate functions f(a), g(a) ~see Definition 5.15!. Both sides are regarded as operato
on the cohomology H0(Cl ,k). Likewise we have the relations

vu22u12 3
2b f ~a!~u1 ,u2!T~a!~u1!T~a!~u2!u

u25u21/201r /2

u15u11/202r /25c~a!id, ~5.11!

for a51,2,...,8,where c(a)’s are some constants and the symbolv b is defined below in~5.14!.
We notice that~5.3!–~5.11! for the fusedVx,r(A2

(2)) currents look very similar to theT-system
~5.2! arising from the analytic Bethe ansatz. There is, however, an obvious discrepancy be
them; while theT-system~5.2! comprises two terms,~5.3!–~5.11! consists of only one term. More
precisely, the right-hand side of~5.3!–~5.10! corresponds to the second term in~5.2!, whereas that
of ~5.11! corresponds to the first term. In the left-hand side, the spectral parametersu12u2 of
~5.3!–~5.10! and~5.11! differ by r. Such a shift byr is irrelevant in theT-system~5.2!, because the
transfer matrix eigenvaluesTm

(a)(u) ~with appropriate normalization! are periodic,Tm
(a)(u1r )

5Tm
(a)(u). This is a reflection of the quasiperiodicity of the Boltzmann weights. On the o

hand, theVx,r(A2
(2)) currentsT(a)(u) are by no meansdoubly quasiperiodic; we haveT(a)(u

1p i / logx)5T(a)(u) but T(a)(u1r )ÞT(a)(u).
We have not understood yet the reason why we have such similarities between theT-system

for the Bethe ansatz and the exchange relations for the DVA. For the purpose of comparis
summarize in Appendix C the fusions of the DVA current and the ‘‘T-system’’ for the algebra
AN21

(1) .
In the rest of this section, we briefly sketch the derivation of Proposition 5.2.

A. Operator product expansions

Let r be generic for a while. We set

r * 5r 21, ~5.12!

@u#x5
xu2x2u

x2x21 , ~5.13!

vub5
@u#x

@u1r * 11#x
5

1

v2u2r * 21b
. ~5.14!

In this section we prefer to use the additive notation and writef (u) for the structure functionf (z)
(z5x2u) in ~3.24!. It satisfies the relations:

Lemma 5.3:

~ i !
f ~u2 1

2! f ~u1 1
2!

f ~u!
5

vu2r * 21/2b
vu21/2b

,

~ i i ! f ~u! f S u6
3

2D5
v6u2r * b

v6ub
v6u2r * 11/2b

v6u11/2b
,

~ i i i ! f ~u21! f ~u! f ~u11!5
vu2r * 21b

vu21b
vu2r * 21/2b

vu21/2b
vu2r * b

vub
.

The operatorsL6(z), L0(z) are defined by~3.21!.
Lemma 5.4: The operator product expansions (OPEs) amongL i(u) are
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f ~u22u1!L i~x2u1!L j~x2u2!5:L i~x2u1!L j~x2u2!:

3

¦

1 ~ i , j !5~1,1 !

vu12u22r * b
vu12u2b

~ i , j !5~1,0!

vu12u22r * b
vu12u2b

vu12u22r * 11/2b
vu12u211/2b

~ i , j !5~1,2 !

vu12u22r * 21b
vu12u221b

~ i , j !5~0,1 !

vu12u22r * 21/2b
vu12u221/2b

~ i , j !5~0,0!

vu12u22r * b
vu12u2b

~ i , j !5~0,2 !

vu12u22r * 21b
vu12u221b

vu12u22r * 23/2b
vu12u223/2b

~ i , j !5~2,1 !

vu12u22r * 21b
vu12u221b

~ i , j !5~2,0!

1 ~ i , j !5~2,2 !

.

B. Fused Vx ,r„A 2
„2…

… currents Tn„u … and Tn̄„u …

Suggested by the bootstrap program for generalr, we introduce the following fused current
of Vx,r(A2

(2)).
Definition 5.5: Define the fused DVA currents Tn(u) and Tn̄(u) by

T0~u!5T0̄~u!5 id, T1~u!5T1̄~u!5T~x2u!,

Tn~u!5 )
1< i , j <n

f ~uj2ui !•T1~u1!T1~u2!¯T1~un!u
1< i<n

ui5u1~~n21!/2!r* 2~ i 21!r* ,

Tn̄~u!5 )
1< i , j <n

f ~uj2ui !•T1~u1!T1~u2!¯T1~un!u
1< i<n

ui5u1~~n21!/2!~r* 21/2!2~ i 21!~r* 21/2! .

Define the structure functions for Tn(u), Tn̄(u) by

f mn~u!5)
i 51

m

)
j 51

n

f S u1
n2m

2
r * 2~ j 2 i !r * D ,

f m̄n̄~u!5)
i 51

m

)
j 51

n

f S u1
n2m

2 S r * 2
1

2D2~ j 2 i !S r * 2
1

2D D ,

f m̄n~u!5 f nm̄~u!5)
i 51

m

)
j 51

n

f S u1
n11

2
r * 2

m11

2 S r * 2
1

2D2 j r * 1 i S r * 2
1

2D D .

These fused DVA currents enjoy the ZF exchange relations.
Lemma 5.6: As meromorphic functions, the following exchange relations hold:

f mn~v2u!Tm~u!Tn~v !5 f nm~u2v !Tn~v !Tm~u!,
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f m̄n̄~v2u!Tm̄~u!Tn̄~v !5 f n̄m̄~u2v !Tn̄~v !Tm̄~u!,

f mn̄~v2u!Tm~u!Tn̄~v !5 f n̄m~u2v !Tn̄~v !Tm~u!.

Lemma 5.7:

~ i ! vu2v61b f ~v2u!T1~u!T1~v !uu5v715
7T1~v71/2!

v21/2bv21b
,

~ i i ! vu2v63/2b f ~v2u!T1~u!T1~v !uu5v73/25
7 id

v1/2bv21bv23/2b
,

~ i i i ! vu12u221bvu22u321b f ~u22u1! f ~u32u1! f ~u32u2!T1~u1!T1~u2!T1~u3!u
u35u221

u25u121

5
id

v1b V1

2B V2
1

2B v21bv21b V2
3

2B v22b
.

We need the analyticity properties of the operator products.~Some details of the derivation ar
given in Appendix C for the case ofAN21

(1) .)
Lemma 5.8: The product fmn(v2u)Tm(u)Tn(v) has poles only at

u2v55
S m1n

2
2kD r * 21

S m1n

2
2kD r * 2

3

2

2S m1n

2
2kD r * 11

2S m1n

2
2kD r * 1

3

2

k51,2,...,min~m,n!.

All the poles are simple.
Lemma 5.9: The product fm̄n̄(v2u)Tm̄(u)Tn̄(v) has poles only at

simple pole:

u2v5H S m1n

2
2kD S r * 2

1

2D2
3

2

2S m1n

2
2kD S r * 2

1

2D1
3

2

k51,2,...,min~m,n!,

and

poles with multiplicitymin(min(m,n),min(l,m1n2l)):

u2v5H S m1n

2
2 l D S r * 2

1

2D21

2S m1n

2
2 l D S r * 2

1

2D11
l 51,2,...,m1n21.

Lemma 5.10: The product fm̄n(v2u)Tm̄(u)Tn(v) has poles only at
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u2v55
n21

2
r * 1S m11

2
2 l D S r * 2

1

2D21

n21

2
r * 1S m11

2
2kD S r * 2

1

2D2
3

2
l 51,2,...m,

2
n21

2
r * 2S m11

2
2 l D S r * 2

1

2D11 k51,2...,min~m,n!.

2
n21

2
r * 2S m11

2
2kD S r * 2

1

2D1
3

2

All the poles are simple.

C. The case of the dilute A 3 model

The parameters for the diluteA3 model are given by

L53, r 52
L11

L12
5

8

5
, r * 5

3

5
.

For L53, we expect to have the following extra symmetry forTn(u).
Conjecture 5.11: As operators acting on the BRST cohomology H0(Cl ,k) (k51,2,3, l

51,2), we have

~ i ! T3~u!5
T2~u!

v 2
10bv 3

10b
,

~ i i ! T4~u!5
2T1~u!

v2 9
10bv2 4

10bv2 3
10bv 3

10bv 2
10bv 8

10b
,

~ i i i ! T5~u!5
2 id

v2 15
10bv2 10

10bv2 9
10bv2 4

10bv2 3
10bv 2

10bv 3
10bv 8

10bv 9
10bv 14

10b
.

One of the grounds for this Conjecture 5.11 is the degeneration of the structure functions
Lemma 5.12: For r* 53/5, we have

~ i ! f 13~u!5 f 12~u!
vu2 7

10bvu2 12
10b

vu2 4
10bvu2 9

10b
,

~ i i ! f 14~u!5 f 11~u!
vu2 10

10bvu2 15
10b

vu2 1
10bvu2 6

10b
,

~ i i i ! f 15~u!5
vu2 13

10bvu2 18
10b

vu1 2
10bvu2 3

10b
.

Using Lemmas 5.12, 5.8, 5.9, and 5.10, we can check that the replacementTm(u)↔T52m(u)
will not affect the analyticity in any of the OPEs acting on the BRST cohomology space.

To obtain the correct proportionality constants in Conjecture 5.11, we calculat
^ l ,kuTm(u)u l ,k& for k51,2,3, l 51,2.
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D. Fusions of T2„u … at r * 53/5

If we study the bootstrap forE8-symmetric particles carefully,20 we realize that it is helpful to
consider the fusions ofT2(u).

Lemma 5.13: For r* 53/5, the following equalities hold.

~ i ! f 22~u22u1!T2~u1!T2~u2!u
u25u21/20

u15u11/20

5
v2 8

10bv2 7
10bv2 2

10bv 3
10b

v2 5
10bv2 4

10bv2 3
10b

f 13̄~u22u1!T1~u1!T3̄~u2!u
u25u23/20

u15u111/20

5
v2 8

10bv2 7
10bv2 2

10bv 3
10b

v2 5
10bv2 4

10bv2 3
10b

f 3̄1~u22u1!T3̄~u1!T1~u2!u
u25u211/20

u15u13/20 ,

~ i i ! f 22~u22u1!T2~u1!T2~u2!u
u25u27/20

u15u17/20

5
v2 8

10b

v2 5
10bv2 3

10bv2 2
10b

f 12̄~u22u1!T1~u1!T2̄~u2!u
u25u24/20

u15u19/20

5
v2 8

10b

v2 5
10bv2 3

10bv2 2
10b

f 2̄1~u22u1!T2̄~u1!T1~u2!u
u25u29/20

u15u14/20.

To prove these, we use

5
2r * 2 3

250, T2~u!5v 2
10bv 3

10bT3~u!,

and Lemma 5.7.

E. T5̄„u …, T6̄„u …, T7̄„u … at r * 53/5

The fused DVA currentsT5̄(u), T6̄(u), T7̄(u) for r * 53/5 can be rewritten as follows.
Lemma 5.14: For r* 53/5, we have

T5̄~u!5V2
1

2B v21bS v2 6
10bv2 7

10b

v2 12
10bv2 13

10b
D 2

vu282u221b f 2̄1~u22u1! f 2̄1~u282u1! f 2̄2̄~u32u1!

3 f 11~u282u2! f 12̄~u32u28! f 12̄~u32u2!T2̄~u1!T1~u2!T1~u28!T2̄~u3!uu15u13/20

u25u21/2

u285u11/2

u35u23/20

,

T6̄~u!5V2
1

2B v21b
v2 6

10bv2 7
10b

v2 12
10bv2 13

10b

v2 6
10bv2 7

10bv2 8
10b

v2 12
10bv2 13

10bv2 14
10b

vu282u221b f 3̄1~u22u1!

3 f 3̄1~u282u1! f 3̄2̄~u32u1! f 11~u282u2! f 12̄~u32u28!

3 f 12̄~u32u2!T3̄~u1!T1~u2!T1~u28!T2̄~u3!uu15u13/20

u25u211/20

u285u19/20

u35u24/20

,
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T7̄~u!5 f 5̄2~u22u1!T5̄~u1!T2~u2!u
u25u

u15u5V2
1

2 B v21bS v2 6
10bv2 7

10bv2 8
10b

v2 12
10bv2 13

10bv2 14
10b

D 2

3vu282u221b f 3̄1~u22u1! f 3̄1~u282u1! f 3̄3̄~u32u1! f 11~u282u2!

3 f 13̄~u32u28! f 13̄~u32u2!T3̄~u1!T1~u2!T1~u28!T3̄~u3!uu15u14/20

u25u21/2

u285u11/2

u35u24/20

.

F. Structure functions

In accordance with the currentsT(a)(u), we introduce the following structure functions.
Definition 5.15: Define f(a) (a51,2,...,8),g(a) (a52,3,...,6)by

f ~a!~u1 ,u2!5 f āā~u22u1! ~1<a<5!,

g~a!~u1 ,u2!5 f a21 a11 ~u22u1! ~2<a<4!,

g~5!~u1 ,u2 ,u3!5V2
1

2B v21b
v2 6

10bv2 7
10b

v2 12
10bv2 13

10b

v2 6
10bv2 7

10bv2 8
10b

v2 12
10bv2 13

10bv2 14
10b

v2 4
10bv2 5

10bv2 6
10bv2 7

10b

v2 10
10bv2 11

10bv2 12
10bv2 13

10b

3 f 4̄3̄S u22u11
3

20D f 4̄1S u22u12
11

20D f 4̄1S u32u11
9

20D f 4̄2̄S u32u12
4

20D
3vu32u2b f 3̄1S u32u21

6

20D f 3̄2̄S u32u22
7

20D f 11~u32u211!

3 f 12̄S u32u21
7

20D ,

f ~6!~u1 ,u2!5V2
1

2B v21bS v2 6
10bv2 7

10bv2 8
10b

v2 12
10bv2 13

10bv2 14
10b

D 2
@u12u22 1

10#x

@ 16
10#x

Vu12u22
1

10B
3 f 13̄S u22u11

4

10D f 3̄3̄S u22u12
3

10D f 11S u22u11
11

10D f 3̄1S u22u11
4

10D ,

g~6!~u1 ,u2!5 f 5̄2~u22u1!,

f ~7!~u1 ,u2!5
v2 5

10bv2 4
10bv2 3

10b

v2 8
10bv2 7

10bv2 2
10bv 3

10b
3 f 22~u22u1!,

f ~8!~u1 ,u2!5V2
1

2B v21bS v2 6
10bv2 7

10b

v2 12
10bv2 13

10b
D 2Vu12u22

1

10B f 12̄S u22u12
5

20D
3 f 2̄2̄S u22u11

8

20D f 11S u22u12
18

20D f 2̄1S u22u12
5

20D .

Collecting all the information together, we easily obtain the ‘‘T-system’’ with theE8 symme-
try stated in Proposition 5.2.
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APPENDIX A: OPERATOR PRODUCT EXPANSIONS

We list the normal ordering relations. For operatorsA(z),B(w) that have the form :exp~linear
in boson!:, we use the notation

A~z!B~w!5^^A~z!B~w!&&:A~z!B~w!:

and write down only the part̂̂ A(z)B(w)&&,

^^x1~z1!x1~z2!&&5z1
r /~r 21!~12z2 /z1!

~x22z2 /z1 ,x2r 21z2 /z1 ;x2r 22!`

~x21z2 /z1 ,x2rz2 /z1 ;x2r 22!`
,

^^x2~z1!x2~z2!&&5z~r 21!/r~12z2 /z1!
~x2z2 /z1 ,x2r 21z2 /z1 ;x2r !`

~xz2 /z1 ,x2r 22z2 /z1 ;x2r !`
,

^^x6~z1!x7~z2!&&5z1
21 11z2 /z1

~11xz2 /z1!~11x21z2 /z1!
,

^^F2~z1!x2~z2!&&5z1
2~r 21!/r ~x2r 21z2 /z1 ;x2r !`

~xz2 /z1 ;x2r !`
,

^^x2~z2!F2~z1!&&5z2
2~r 21!/r ~x2r 21z1 /z2 ;x2r !`

~xz1 /z2 ;x2r !`
,

^^F2~z1!x1~z2!&&5^^x1~z2!F2~z1!&&5~z11z2!,

^^C2* ~z1!x1~z2!&&5z1
2r /~r 21!

~x2r 21z2 /z1 ;x2r 22!`

~x21z2 /z1 ;x2r 22!`
,

^^x1~z2!C2* ~z1!&&5z2
2r /~r 21!

~x2r 21z1 /z2 ;x2r 22!`

~x21z1 /z2 ;x2r 22!`
,

^^C2* ~z1!x2~z2!&&5^^x2~z2!C2* ~z1!&&5~z11z2!,

^^F2~z1!F2~z2!&&5z1
~r 21!/r ~x2z2 /z1 ,x3z2 /z1 ,x2r 13z2 /z1 ,x2r 14z2 /z1 ;x6,x2r !`

~x5z2 /z1 ,x6z2 /z1 ,x2rz2 /z1 ,x2r 11z2 /z1 ;x6,x2r !`
,

^^C2* ~z1!C2* ~z2!&&5z1
r /~r 21!

~z2 /z1 ,xz2 /z1 ,x2r 13z2 /z1 ,x2r 14z2 /z1 ;x6,x2r 22!`

~x3z2 /z1 ,x4z2 /z1 ,x2rz2 /z1 ,x2r 11z2 /z1 ;x6,x2r 22!`
,

^^F2~z1!C2* ~z2!&&5z1
21 ~2x4z2 /z1 ,2x5z2 /z1 ;x6!`

~2xz2 /z1 ,2x2z2 /z1 ;x6!`
,

^^C2* ~z2!F2~z1!&&5z2
21 ~2x4z1 /z2 ,2x5z1 /z2 ;x6!`

~2xz1 /z2 ,2x2z1 /z2 ;x6!`
.

As meromorphic functions we have
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x1~z1!x1~z2!5
@u12u211#*

@u12u221#*
@u12u221/2#*

@2u11u221/2#*
x1~z2!x1~z1!,

x2~z1!x2~z2!5
@u12u221#

@u12u211#

@u12u211/2#

@2u11u211/2#
x2~z2!x2~z1!,

x6~z1!x7~z2!5x7~z2!x6~z1!,

F2~z1!x2~z2!5
@u12u211/2#

@2u11u211/2#
x2~z2!F2~z1!,

F2~z1!x1~z2!5x1~z2!F2~z1!,

C2* ~z1!x1~z2!5
@u12u221/2#*

@2u11u221/2#*
x1~z2!C2* ~z1!,

C2* ~z1!x2~z2!5x2~z2!C2* ~z1!,

F2~z1!F2~z2!5r~u22u1!F2~z2!F2~z1!,

C2* ~z1!C2* ~z2!5r* ~u12u2!C2* ~z2!C2* ~z1!,

F2~z1!C2* ~z2!5t~u22u1!C2* ~z2!F2~z1!.

Herer(u), r* (u), andt(u) are given respectively by~2.4!, ~3.15!, and~3.16!.

APPENDIX B: BRST CHARGES

We give here a proof of the properties of BRST charges stated in Sec. III E. The metho
proper adaptation of Ref. 19 to the present situation.

1. Feigin–Odesskii algebra

First let us prepare the notation. LetÃn be the set of all functionsF(u1 ,...,un) which is
holomorphic onCn, symmetric inu1 ,...,un , and enjoys the quasiperiodicity properties (r * 5r
21),

F~u11r * ,u2 ,...,un!5~21!nF~u1 ,u2 ,...,un!, ~B1!

F~u11t,u2 ...,un!5~21!nF~u1 ,u2 ,...,un!expS 2p i

r * S nu12(
j 52

n

uj2
n21

2
1n

t

2D D , ~B2!

wheret5p i / logx. Clearly,

Ã15Cf 1 , f 1~u!5@u#* .

We have also dimÃ252. If FPÃn is not identically 0, then it hasn zeroes$u1
( j )% j 51

n modZr *
% Zt satisfying

(
j 51

n

u1
~ j !5(

j 52

n

u21
n21

2
.

Let FPÃm , GPÃn . Following the line of Ref. 19, we define the*-productF* GPÃm1n by
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~F* G!~u1 ,...,um1n!

5SymS F~u12n,...,um2n!G~um11 ,...,um1n! )
1< i<m

m11< j <m1n

@ui2uj11#* @ui2uj21/2#*

@ui2uj #* D .

Here the symbol Sym stands for the symmetrization.Ã5 % n50
` Ãn equipped with the*-product is

an associative graded algebra with unit. We denote byA5 % n50
` An (An5ÃnùA) the subalgebra

of Ã generated byÃ1 and Ã2 .
Let us say that a functionF(u1 ,...,un) has the property~P! if either n51,2, orn>3 and

F~u1 ,...,un!uuj 2ui5uk2uj 51/2[0 for any distinct i , j ,k.

Lemma B.1: (i) Elements of A have the property (P).
(ii) A is commutative.

Proof: From the definition of* we can verify that, ifFPÃm andGPÃn have the property~P!,
then so doesF* G. Hence~i! follows.

Let gPA2 be an element linearly independent fromf 1* f 1PA2 . To see~ii !, it suffices to show
that f 1* g5g* f 1 . Seth5 f 1* g2g* f 1 . A simple check shows thath(u11,u,u21)50. By sym-
metry and the property~P!, h(u1 ,u2 ,u221) viewed as a function ofu1 has zeroes atu211,u2

21/2,u222. Since their sum is different from 2u2 modZr * % Zt, we haveh(u1 ,u2 ,u221)[0.
By symmetry, this implies thath(u1 ,u2 ,u3) has four zeroesu15u261,u361. Henceh[0. h

2. BRST charges

For FPAn , we define

Q~F !5 R ¯ R )
j 51

n
dzj

@uj1
1
2#*

x1~z1!¯x1~zn!

3S )
1< i , j <n

@ui2uj #*

@ui2uj11#* @ui2uj21/2#* DF~u11 l̂ /2,...,un1 l̂ /2!,

where the contour isuz1u5¯5uznu51. Because of the quasiperiodicity~B2!, the integrand is
single valued. Using the exchange relation

x1~z1!x1~z2!52
@u12u211#*

@u22u111#*
@u12u221/2#*

@u22u121/2#*
x1~z2!x1~z1!

along with l̂ x1(z)5x1(z)( l̂ 22), we find

Q~F !Q~G!5Q~F* G!. ~B3!

Now set

f 1~u!5@u#* ,

f 2
~a!~u1 ,u2!5@2a11#* @a21/2#* @u12a#* @u21a21#* @u12u21a21/2#*

2@2a21#* @a11/2#* @u11a#* @u22a21#* @u12u22a21/2#* ,

and introducehlPAl (1< l<L) by

h2m115 f 1* f 2
~1!

*¯* f 2
~m! S 0<m<

L21

2 D ,
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h2m5 f 2
~~L11!/22m!

*¯* f 2
~~L23!/2!

* f 2
~~L21!/2! S 1<m<

L23

2 D .

We havehL5hl* hL21 (1< l<L21). We define the BRST charges by

Ql5Q~hl !.

Propositions 3.1 and 3.2 reduce to the following assertions.
Proposition B.2: hl(u1 ,...,ul) can be written as

hl~u1 ,...,ul !5h̄l~u1 ,...,ul !35 )
i 51

l Fui1
2 l 11

2 G* ~ l : odd!

)
i 51

l Fui1
L2 l 11

2 G* ~ l : even!

, ~B4!

where h̄l are holomorphic and satisfies

h̄l~u11r * ,...,ul !5~21! l 21h̄l~u1 ,...,ul !,

h̄l~u11t,...,ul !5h̄l~u1 ,...,ul !3expS 2p i

r * (
j 52

l S u12uj1
t

2D D .

Moreover it is translationally invariant, i.e.,

h̄l~u11v,...,ul1v !5h̄l~u1 ,...,ul !.

Proposition B.3: We have hL[0.
Proof of Proposition B.3:Let 0<m<(L23)/2. In the equalityhL5h2m11* hL22m21 we set

u152m21. Using Proposition B.2, we find that each summand in the symmetrization~B.3!
vanishes. Similarly, if we setu15m, then each summand ofhL5hL22m21* h2m11 vanishes.
ThereforehL hasL21 zeroesu150,1,̄ ,(L23)/2,21,22,...,2(L21)/2.

SupposehL did not vanish identically. From the quasiperiodicity,hL has a zero atu1

5( j 52
L uj1L21. By symmetry,u15u22( j 53

L uj2(L21) must also be a zero. This is a co
tradiction. h

In the next subsection we prove Proposition B.2.

3. Proof of proposition B.2

We prove Proposition B.2 for oddl 52m11. The statement is obvious form50. Assuming
m>1 we proceed by induction onm.

Lemma B.4: For m51,...,(L21)/2 we have

h2m11~m,m61,u3 ,...,u2m11![0. ~B5!

Proof: We use the property

f 2
~a!~6a,6a11!50. ~B6!

In the definition ofh2m115h2m21* f 2
(m) , set u15m,u25m11. Using the induction hypothesi

h2m21(m21,...)[0 and f 2
(m)(m,m11)50, we see that each summand vanishes. Similarly if

setu15m,u25m21 in h2m115 f 2
(m)

* h2m21 and usef 2
(m)(2m,2m11)50, the result is zero.h

Lemma B.5: For t52,3,...,we have
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h2m11~m,u2 ,...,u2m11!u
t<s<m

u2s115u2s11/2[0. ~B7!

Taking t5m11 we obtain the first assertion of Proposition B.2.
Proof: Denote the left-hand side of~B7! by gt . We showgt[0 by induction ont.
Let t52, and consider first

h2m11~m,m61/2,u3 ,...,u2m11!u
2<s<m

u2s115u2s11/2. ~B8!

As a function ofu3 , ~B8! has 2m11 zeroes atm11,m21,m71/2 andu2s11,u2s21/2 (2<s
<m). Comparing with the quasiperiodicity, we conclude that~B8! vanishes identically. This
means thatg2 as a function ofu2 has 2m12 zeroes atm61,m61/2 andu2s11,u2s21/2 (2
<s<m). Thereforeg2[0.

Suppose we have showngt[0, and consider

gt115h2m11~m,u2 ,...,u2t ,u2t11 ,u2t12 ,u2t1211/2,...,u2m ,u2m11/2!. ~B9!

From the induction hypothesis, it vanishes foru2t115u2t11/2. By symmetry it vanishes for

u25u361/2,...,u2t1161/2.

It also vanishes foru25m61 and u25u2s21/2,u2s11 (t11<s<m). Since the number of
zeroes exceed 2m11, we concludegt11[0. h

In the case of evenl, we note that

f 2
~~L21!/2!~u1 ,u2!5@2#* FL

2G* Fu11
L21

2 G* Fu21
L21

2 G* Fu12u22
L

2G*
has a zero atu15(12L)/2. Using this the proof goes similarly.

Lemma B.6: The function hl̄ in (B4) is translationally invariant.
Proof: Consider

h̄l~u11v,...,ul1v !.

It is holomorphic and doubly periodic inv, hence it is a constant. The conclusion follows
settingv50. h

APPENDIX C: DEFORMED W ALGEBRA FOR slN

We discuss here the fusion of the deformedW algebra~DWA! associated withslN .28,29

1. Basic current

Fix complex numbersx,r * PC, 0,uxu,1. We keep the notation@u#x ~5.13! and vub ~5.14!.
In this appendix we consider the case of ‘‘generic’’r * i.e., we assume thatm,nPZ,@m1nr* #x

50 impliesm5n50.
In the free field realization, the simplest current of DWA for the algebraslN is presented in the

form

W~1!~u!5(
i 51

N

L i~u!.

EachL i(u) is a normally ordered exponential of bosonic oscillators. Their explicit formul
irrelevant here@see, e.g., Ref. 28, Eq.~2!, whereinz5x2u, q5x2r* 12, t5x2r* in the present
notation#. We need only the following normal ordering rule for their products:
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f ~u,v !L i~u!L j~v !5:L i~u!L j~v !:35
vu2v212r * b

vu2v21b
~ i , j !

1 ~ i 5 j !

vu2v2r * b
vu2v b

~ i . j !,

~C1!

where the structure functionf (u,v)5 f (v2u) is given by

f ~u!5
1

~12x2u!

~x2~u1N21!,x2~u111r* !,x2~u2r* !;x2N!`

~x2~u11!,x2~u1N1r* !,x2~u1N2r* 21!;x2N!`

.

Lemma C.1: We have the exchange relation as meromorphic functions

f ~u,v !W~1!~u!W~1!~v !5 f ~v,u!W~1!~v !W~1!~u!. ~C2!

Both sides are regular except for simple poles at u2v561 modG, where G5(p i / logx)Z.
Notice that the poleu5v which appears in~C1! is canceled in~C2!. In general, each matrix
element of the product

)
1<s,t<m

f ~us ,ut!3W~1!~u1!¯W~1!~um!

is a rational function ofx2ui with at most simple poles atui2uj561 (i , j ).

2. Fused currents

Let l5(l1 ,...,l l)(l1>¯>l l.0) be a partition. We identifyl with a Young diagram. For
j ,s51,2,..., we attach a variableu( j ,s) to the box on thej th row andsth column ofl:

For partitionsl5(l1 ,...,l l), m5(m1 ,...,mm), we set

f l,m~u,v !5 )
1< j < l

1<s<l j

)
1<k<m
1<t<mk

f ~u~ j ,s!,v~k,t !!. ~C3!

We shall associate ‘‘fused’’ currentsWl(u) with eachl. First consider the case of a sing
row diagraml5(m).

Definition C.2:

W~m!~u!5S )
1<s,t<m

f ~us ,ut!3W~1!~u1!¯W~1!~um! D U
1<s<m

us5u2~s21!r*
.

In view of the remark after Lemma C.1, the right-hand side is well-defined. Alternati
W(m)(u) can be defined inductively as

W~m!~u!5 f ~m21!,~1!~u,u8!W~m21!~u!W~1!~u8!u u85u2~m21!r* ~C4!
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5 f ~1!,~m21!~u,u8!W~1!~u!W~m21!~u8!u u85u2r* . ~C5!

Lemma C.3: We have

f ~1!,~m!~u,v !W~1!~u!W~m!~v !5 f ~m!,~1!~v,u!W~m!~v !W~1!~u!. ~C6!

Both sides of (C6) are regular except for simple poles(modG) at u2v521, 12(m
21)r * .

Proof: The exchange relation~C6! is obvious. Let us verify the statement about the posit
of poles by induction onm. The casem51,2 can be verified by direct calculation. Suppose it
true form21. Using the expressions~C4! and~C5! and the induction hypothesis, we see that
possible poles inu are confined to

$v21,v112~m22!r * ,v612~m21!r * %ù$v61,v2r * 21,v112~m21!r * %

5$v21,v112~m21!r * %.
h

Arguing similarly, we have
Lemma C.4:

f ~m!,~n!~u,v !W~m!~u!W~n!~v !5 f ~n!,~m!~v,u!W~n!~v !W~m!~u!. ~C7!

Both sides of (C7) are regular except for simple poles(modG) at

u2v512 j r * ~max~0,n2m!< j <n21!

5211 j r * ~max~0,m2n!< j <m21!.

For a general partitionl5(l1 ,...,l l), we define
Definition C.5:

Wl~u!5S )
i 51

l 21

vui2ui 1121b• )
1< i , j < l

f ~l i !,~l j !
~ui ,uj !•W~l1!~u1!¯W~l l !

~ul !DU
1< i< l

ui5u2~ i 21!

.

This definition makes sense by Lemma C.3. We have

f l,m~u,v !Wl~u!Wm~v !5Wm~v !Wl~u! f m,l~v,u!. ~C8!

In the case of a single column diagraml5(1a), W(1a)(u) coincides with the fundamenta
DWA currentsWa(z) in Refs. 28 and 29 up to a numerical factor and a shift ofu @see~C10!
below#.

We remark that another fused current can be constructed similarly by replacingu( j ,s)5u
2( j 21)2(s21)r * with u2( j 21)1(s21)r (r 5r * 11).

3. Tableaux sum

Let l be a partition. Denote by SST~l! the set of semistandard tableaux of shapel on the
letters$1,2,...,N%. For TPSST(l), we set

LT~u!5: )
1< j < l

1<s<l j

LT~ j ,s!~u~ j ,s!!:,

whereT( j ,s)P$1,...,N% signifies the letter in the (j ,s)th position ofT.
The currentWl(u) is given explicitly as follows.
                                                                                                                



n

d

3823J. Math. Phys., Vol. 40, No. 8, August 1999 Free field approach to the dilute AL models

                    
Proposition C.6: We have

Wl~u!5dl (
TPSST~l!

cT•LT~u!.

The coefficients dl , cT are given by

dl5 )
11 j ,k

vk2 j 212l j r * blk

vk2 j 21blk

•)
k52

l v2lk21r * blk

vr * blk21
,

cT5)
j 51

l P i 51
N v21bwji

v21bl j

•)
j ,k

vk2 j 2l j r * blk

vk2 j 212l j r * blk

)
j ,k

)
i 51

N vk2 j 211~sk,i 212sj ,i 21!r * bwk,i

vk2 j 1~sk,i 212sj ,i !r * bwk,i

,

where wji is the number of the letter i in the jth row of T (1< j < l , 1< i<N), sji 5wj 11¯

1wji , and

vubn5vubvu1r * b¯vu1~n21!r * b .

We omit the proof. Notice thatcT0
51 for the tableauT0 with T0( j ,s)5 j for all j,s.

Example.

W~m!~u!5 (
w1 ,... ,wN>0

w11¯1wN5m

P i 51
N v21bwi

v21bm
•LT~u!, ~C9!

whereT5(1w1,2w2,...,NwN),

W~1a!~u!5d~1a! (
1< i 1,¯, i a<N

:L i 1
~u!¯L i a

~u2a11!:. ~C10!

4. Wl„u … in terms of W
„1a

…
„u …

Wl(u) can also be obtained fromW(1a)(u). First note the following fact which can be show
similarly as Lemma C.4.

Lemma C.7:We have

f̃ ~1a!,~1b!~u,v !W~1a!~u!W~1b!~v !5 f̃ ~1b!,~1a!~v,u!W~1b!~v !W~1a!~u!, ~C11!

where f̃l,m(u,v) is defined similarly as in (C3) with f(u,v) replaced by

f̃ ~u,v !5
vu2v21b
vu2v2r * b

f ~u,v !5
vv2u21b

vv2u2r * b
f ~u,v !.

Both sides of (C11) are regular except for simple poles(modG) at

u2v5r * 2 j ~max~0,b2a!< j <b21!

52r * 1 j ~max~0,a2b!< j <a21!.

We remark that the exchange relation~C8! holds true withf l,m(u,v) replaced byf̃ l,m(u,v).
Returning to the generall, denote bym1>¯>mm its column lengths~hence the transpose

diagram isl85(m1 ,...,mm)).
Lemma C.8:
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Wl~u!5S )
i 52

m

vui 212ui2r * b2m i11

3 )
1< i , j < l

f ~1m i !,~1m j !~ui ,uj !•W~1m1!~u1!¯W~1mm!~um!DU
1< i<m

ui5u2~ i 21!r* .

Proof: Let l̄ be the diagram obtained by removing the last column ofl so that l8

5(l̄8,mm). We show

Wl~u!5vu2v2~m21!r * b2mm11f l̄,~1mm!~u,v !Wl̄~u!W~1mm!~v !uv5u2~m21!r* ~C12!

by induction onmm . The lemma follows by repeated use of this equation.
If mm51, then~C12! is immediate from the definition. Assuming the statement is true formm

(mm21>mm11>2) we consider~C12! with l85(l̄8,mm11). We have

vu2v2~m21!r * b2mmf l̄,~1mm11!~u,v !Wl̄~u!W~1mm11!~v !

5vu2v2~m21!r * b2mm11vu2v82mm2~m21!r * b21f l̄,~1mm!~u,v ! f l̄,~1!~u,v8!

3vv2v82mmb f ~1mm!,~1!~v,v8!Wl̄~u!W~1mm!~v !W~1!~v8!uv85v2mm
. ~C13!

Let us verify that the right-hand side of~C13! ~before specializationv85v2mm) is regular at
v5u2(m21)r * , v85u2mm2(m21)r * . From the induction hypothesis,

vu2v2~m21!r * b2mm11f l̄,~1mm!~u,v !Wl̄~u!W~1mm!~v !

is regular atv5u2(m21)r * , and

vv2v82mmb f ~1mm!,~1!~v,v8!W~1mm!~v !W~1!~v8!

is regular atv85v2mm . Finally Lemma C.7 implies that

f̃ l̄,~1!~u,v8!Wl̄~u!W~1!~v8!

is regular atv85u2mm2(m21)r * , and

vu2v82mm2~m21!r * b21
f l̄,~1!~u,v8!

f̃ l̄,~1!~u,v8!

5vu2v82mm2~m21!r * b21 )
1<k<m21

1< j <mk

vu2v82~ j 21!2kr* b

vu2v82 j 2~k21!r * b

is also regular~sincemm21>mm11).
We letv5u2(m21)r * in ~C13! and change the order of specialization. Using the induc

hypothesis for the diagraml̃85(l̄8,mm), we obtain

vu2v82mm2~m21!r * b21vu2~m21!r * 2v82mmb

3 f l̄,~1!~u,v8! f ~1mm!,~1!~u2~m21!r * ,v8!Wl̃~u!W~1!~v8!uv85u2mm2~m21!r*

5 f l̃,~1!~u,v8!Wl̃~u!W~1!~v8!uv85u2mm2~m21!r* 5Wl~u!.

h
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5. Rectangular diagrams

For a rectangular Young diagraml5(ma), we write Wm
(a)(u)5W(ma)(u). The following

relations may be viewed as an analog of theT-system for the transfer matrices discussed in R
21.

Proposition C.9:

f ~ma!,~ma!~u,v !Wm
~a!~u!Wm

~a!~v !uv5u2r*

5~21!a21f ~~m11!a!,~~m21!a!~u,v !Wm11
~a! ~u!Wm21

~a! ~v !uv5u2r* , ~C14!

f̃ ~ma!,~ma!~u,v !Wm
~a!~u!Wm

~a!~v !uv5u21

5~21!m21Cm
~a! f̃ ~ma11!,~ma21!~u,v !Wm

~a11!~u!Wm
~a21!~v !uv5u21 , ~C15!

where

Cm
~a!5 )

1<s,t<m

va212~s2t !r * b
va2~11s2t !r * b

.

Both sides of (C14), (C15) are well defined.
We sketch below the proof of~C14!. First we check the regularity of both sides atv5u

2r * . For the right-hand side, this can be shown from Lemma C.4. For the left-hand side, w
Lemma C.7 to find that

f̃ ~ma!,~ma!~u,v !Wm
~a!~u!Wm

~a!~v !

has poles of order at most 2(m21) at u5v2r * . Since

f ~ma!,~ma!~u,v !

f̃ ~ma!,~ma!~u,v !
5O~@u2v1r * #x

2~m21!! ~u˜v2r * !,

the desired regularity follows. In the same way~using Lemma C.4! we see that

f ~ma!,~~m21!a!~u,v !Wm
~a!~u!Wm21

~a! ~v !

has poles of order at most (a21) at u5v2r * .
Consider the expression

A[ f ~ma!,~~m21!a!~u,u8! f ~ma!,~1a!~u,v ! f ~~m21!a!,~1a!~u8,v !Wm
~a!~u!Wm21

~a! ~u8!W1
~a!~v !.

From the definition ofWl(u), we have

A5vu82v2~m21!r * ba21f ~ma!,~ma!~u,u8!Wm
~a!~u!Wm

~a!~u8!

1O~ vu82v2~m21!r * ba! ~v˜u82~m21!r * !

5vu2v2mr* ba21f ~~m11!a!,~~m21!a!~u,u8!Wm11
~a! ~u!Wm21

~a! ~u8!

1O~ vu2v2mr* ba! ~v˜u2mr* !.

Writing y5u2v2mr* , y85u82v2(m21)r * and multiplying both sides byvu2u82r * ba21

we have the equality of the form
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w~y,y8!5vyba21vy2y8ba21c~y2y8!1O~ya! ~y˜0!

5vy8ba21vy2y8ba21c8~y2y8!1O~y8a! ~y8˜0!,

where w(y,y8), c(y2y8), and c8(y2y8) are regular neary5y850. This implies that
(21)a21c(0)5c8(0), and~C14! follows.
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Exact solutions of the Dirac equation in a nonfactorizable
metric

M. N. Hounkonnoua) and J. E. B. Mendy
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et de Sciences Physiques (IMSP), B.P. 613 Porto-Novo, Be´nin
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We present the covariant generalization of the Dirac equation in a nonfactorizable
metric and give the corresponding exact solutions in terms of special functions as
well as the explicit form of the spinor solution. Then we treat the particular case of
the Weyl equation for the neutrinos. ©1999 American Institute of Physics.
@S0022-2488~99!02807-8#

I. INTRODUCTION

One of the most exciting challenges of the present day relativistic quantum theory rem
undoubtedly, the task of finding exact solutions of the Dirac equation in the presence of ex
fields. This can be explained by the intense research made in the subject.1–13 The motivations for
these activities are diverse and evident in view of the wide role of the Dirac equation in m
physics, for example, for investigating the spin2 1

2 particle and for the necessity of analysis
synchrotronic radiation.6

To this purpose, many systems have been subjects of considerable interest and stud
pioneering investigation could be the work by Brill and Wheeler in 1957,1 who considered the
Dirac equation in a central gravitational field associated with a diagonal metric. Using a n
diagonal tetrad, these authors constructed the generalized angular momentum operator se
the variables in the Dirac equation.

In a remarkable paper entitled ‘‘Criteria of separability of the variables in the Dirac equatio
in gravitational fields,’’ which appeared in 1987,10 Shishkin and Andrushkevich provided th
necessary and sufficient conditions, based on rigorous theorems, for separability of the va
for a diagonal tetrad gauge, and deduced the operators that determine the dependence of t
function on the separated variables. In the same year, Barut and Duru2 gave exact solutions of the
Dirac equation in spatially flat Robertson–Walker space–times for models of expanding uni
and discussed the current decomposition. In 1989, Shishkin and Villalba analyzed the poss
of using the method of separation of variables in the Dirac equation in the presence of ex
vector fields.6 Later, Villalba and Percoco3 presented exact solutions and separation of variable
the Dirac and Weyl equations in a universe filled with radiation, an arbitrary expansion o
Robertson–Walker metric and in open flat and closed expanding cosmological Robertson–W
universes. In Ref. 4, the author gave exact solutions of the Dirac equation in a static red
Einstein space and analyzed the asymptotic behavior of the spinor solution. In Ref. 11, Sh
and Cabos considered the separation of variables in the Dirac equation for the case of a gen
of connections of the Dirac particle with the external fields, using Cartesian coordinates, wh
in Ref. 7 there are presented the possibilities of using the method of algebraic separa
variables in the Dirac equation in the presence of gravitational fields. The same techniqu
used5 in the local rotating diagonal gauge in spherical coordinates and exact solutions a
tained, the energy spectrum computed and its dependence in the intensity of the Aharonov
and the magnetic monopole strengths analyzed. Let us also mention that exact solutions
Dirac equation and the structure of metric functions were given8 in the presence of gravitationa

a!Electronic mail: hounkon@syfed.bj.refer.org
38270022-2488/99/40(8)/3827/16/$15.00 © 1999 American Institute of Physics
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fields for massless neutrinos and in terms of special functions for electric neutral particles
anomalous electric and magnetic moments.9

Here, we provide exact solutions of the Dirac equation in a nonfactorizable metric, usin
method of separation of variables adopted in Ref. 7. The general study of solutions to the
equation in a curved space–time is clearly of physical interest. Indeed, such analysis
prerequisite for the quantization of the corresponding quantum field theory. In turn, the qua
field theory enables the representation of associated quantum processes, such as particle
through gravitational acceleration, or pair creation in the presence of strong gravitational
existent either close to black holes or during stellar gravitational collapse, or at the initial c
tions of the Universe. Even though these issues have been well studied in specific curved
times, such as the Schwarschild solution,14 an analysis within a general class of space–ti
metrics could add new insight into the physics of such phenomena.

In Sec. III, the general class of metrics used in the present paper is introduced, for whi
Dirac equation may explicitly be solved through separation of variables. These metrics are
sented by

ds252dt21a2~ t !~dx21b2~x!@dy21c2~y!dz2# !, ~1!

wherea(t), b(x) andc(y) area priori arbitrary functions of the local coordinatest, x andy. This
general class of metrics includes as particular cases well-established examples, which the
could belong to other general classes of models. Thus, for example, the usual Fried
Lemaı̂tre–Roberston–Walker homogeneous and isotropic metric of standard cosmology is
above form~whether in Cartesian or spherical coordinates!, and, more generally, the choice~1!
also includes general classes of Kantowski–Sachs metrics15 for anisotropic cosmologies. More
over, some examples of metrics used in models for stellar gravitational collapse are16 of the form
~1!. As a matter of fact, even when particularizing to specific functionsa(t), b(x) andc(y) later
on, some of the considered examples correspond to these well-established curved space
Finally, it may also be worth pointing out thata priori, the above class of metrics solves Einstein
equations for specific distributions of energy-momentum of matter in space–time, in the pre
of which the study of the quantized Dirac field may be of interest. Though no specific exa
will be provided, this avenue could be pursued in future work. The paper is organized as fo
In Sec. II, we present the covariant generalization of the Dirac equation in the nonfactor
metric. In Sec. III, exact solutions of the Dirac equation and the explicit form of the sp
solution are obtained. Finally, in Sec. IV, we give an exact solution of the Weyl equation co
ering the same nonfactorizable metric.

II. DIRAC EQUATION IN A NONFACTORIZABLE METRIC

We consider the nonfactorizable metric12

ds252dt21a2~ t !~dx21b2~x!@dy21c2~y!dz2# !, ~2!

and the covariant generalization of the Dirac equation

$ḡm~]m2Gm!1m%C̃50. ~3!

The Gm are the spinor connections satisfying the relation

Gm52 1
4~]mha

r1Gsm
r ha

s!gnrhb
ngbga. ~4!

The ḡm are the Dirac matrices associated with the line element~2! and are related to the
ga-standard flat Dirac matrices as follows:

ḡm5ha
mga, ḡm5hm

a ga . ~5!
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The tetrad componentsha
m are defined as7

gmn5ha
mhb

nhab, gmn5hm
a hn

bhab , ~6!

wheregmn andhab are the metrics given by~2! and the Minkowski space–time, respectively. T
following anticommutation relations hold:

@ ḡm,ḡn#152gmn1, @ga,gb#152gab1. ~7!

We can write

hm
a 5diag~1,a,ab,abc!, gmn5diag~1,a2,a2b2,a2b2c2!. ~8!

So, Eq.~4! can be decompose as

G050, G15 1
2a.tg

0g1, G25 1
2ba.tg

0g21 1
2b.xg

1g2, ~9!

G35 1
2bca.tg

0g31 1
2cb.xg

1g31 1
2c.yg

2g3, ~10!

and the Dirac equation~3! rewrites as

H g0] t1
1

a
g1]x1

1

ab
g2]y1

1

abc
g3]z1mJ C50, ~11!

whereC̃ is related toC by

C̃5a23/2b21c21/2C. ~12!

Since the metric~2! is a function only of variablest, x andy, we can set

C5C~ t,x,y!exp~ ikzz!. ~13!

Using the method of separation of variables,7 we transform~11! as a sum of two first-orde
differential operators commuting as follows:

@K̂1 ,K̂2#150, $K̂11K̂2%F50, 2K̂1F5K̂2F5kF, ~14!

wherek is a constant of separation, and

K̂152 i ~abg0] t1bg1]x1abm!g1g0, K̂252 i S g2]y1
1

c
g3]zDg1g0, ~15!

C5g1g0F. ~16!

Let consider the suitable representation of Dirac matrices:13

g05S 2 i 0

0 i D , gk5S 0 sk

sk 0 D , k51,2,3. ~17!

There exists a unitary transformationS that connects Dirac matrices and the spinorF in the
diagonal gauge to Dirac matrices and the spinorF8:

gm
˜g8m5S21gmS, F˜F85S21F, ~18!

such that the matrixS is given by
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S5 1
2~ I 1g1g21g2g31g3g1!. ~19!

Substituting~18! into ~14! and expressingg8m in terms ofgm, we obtain

~abg3] t1bg0]x1abmg3g01 ik !F850, ~20!

S g1g3g0]y1
1

c
g2g3g0]z2 ik DF850. ~21!

Equation~21! splits into two first-order differential equations as

S s2]y1
ikz

c
s12 ik DF1850, S 2s2]y2

ikz

c
s12 ik DF2850, ~22!

where

F85S F18

F28
D . ~23!

Using the algebra of Pauli matrices and taking into account the form of~22!, we obtain

S ]y1
kz

c Dx12kx250, S ]y2
kz

c Dx21kx150. ~24!

It is easy from~22! to see that the spinorF8 has the following structure:

F85S U~ t,x!x1~y!

U~ t,x!x2~y!

V~ t,x!x1~y!

2V~ t,x!x2~y!

D exp~ ikzz!. ~25!

Eliminating x1 andx2 from the system~24!, respectively, we obtain

dyy
2 x11S 2

kz

c2 dyc2
kz

2

c2 1k2Dx150, dyy
2 x21S kz

c2 dyc2
kz

2

c2 1k2Dx250. ~26!

To apply the method of the separation of variables, it is convenient to rewrite Eq.~20! as

F ~ag0] t1am!g3g01S g0]x1
ik

b D GF850. ~27!

The auxiliary functionj defined by

F85F ~ag0] t1am!g3g01S g0]x2
ik

b D Gj, ~28!

and the substitution of Eq.~28! into Eq. ~27! give

F ~ag0] t1am!~2ag0] t1am!1S g0]x1
ik

b D S g0]x2
ik

b D Gj50. ~29!

Equation~29! reduces to

@K̂3 ,K̂4#150, $K̂31K̂4%j50, ~30!
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with

K̂35~ag0] t1am!~2ag0] t1am!, K̂45S g0]x1
ik

b D S g0]x2
ik

b D , ~31!

2K̂3j5K̂4j5l2j. ~32!

From Eq.~32!, we can expressj as follows

j5S S1~ t !R1~x!C1~y,z!

S1~ t !R1~x!C2~y,z!

S2~ t !R2~x!C3~y,z!

S2~ t !R2~x!C4~y,z!

D , ~33!

such that the spinorF8 can be written as

F85A0S S1~ t !R1~x!x1~y!

S1~ t !R1~x!x2~y!

S2~ t !R2~x!x1~y!

2S2~ t !R2~x!x2~y!

D exp~ ikzz!, ~34!

whereS1(t), S2(t), R1(x) andR2(x) satisfy

S ]x1
k

bDR15lR2 , S ]x1
k

bDR252lR1 , ~35!

~a] t1 iam!S252 ilS1 , ~a] t2 iam!S152 ilS2 . ~36!

Eliminating R1 ,R2 from ~35!, andS1 ,S2 from ~36!, we have

S ]xx
2 2

k

b2 ]xb2
k2

b2 1l2DR150, S ]xx
2 1

k

b2 ]xb2
k2

b2 1l2DR250, ~37!

S ] tt
2 1m21

l2

a2DS150, S ] tt
2 1m21

l2

a2DS250. ~38!

III. EXACT SOLUTIONS OF DIRAC EQUATION

As already discussed in Sec. I, many works have been devoted to the problem of finding
solutions to the Dirac equation in external fields and recently some exact solutions have
obtained using different techniques and methods.2,4 One of the most effective and powerful too
in solving systems of partial differential equations is the method of separation of variables.6 That
is, of course, not just restricted to scalar equations such as the Hamilton–Jacobi, Helmho
Laplace–Beltrami equations of mathematical physics, but also applies to systems of part
ferential equations such as the Dirac equation in flat or curved space–time. In the last ca
method allows us to reduce the problem to solving a system of ordinary differential equati

The study of the behavior of relativistic particles obeying the Dirac equation in curved s
in particular in expanding universes, is of considerable importance in astrophysics and cosm
Such investigations go back to Fock,17 Tetrode,18 Schrodinger,19,20 and McVittie21 and enable us
to quantize the relativistic spin2 1

2 electron field in curved background and study the effect
gravity in atomic spectra.22 Thus, the Dirac equation in the zero-momentum limit has been so
by Isham and Nelson23 who proposed a quantization and obtained a mass of the order o
Universe, so the equation has a different interpretation than the electron. Barut and Duru2 have
been interested in the behavior of the electrons and neutrino in curved spaces and obta
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exact solution for arbitrary momentum and mass, in spatially flat Robertson–Walker space–
Parker24 studied the pair creation of2 1

2 particles~massive and massless! in Robertson–Walker
universes. He showed that for massless neutrinos, as a result of conformal invariance, there
pair creation. Here, we consider the four-dimensional nonfactorizable metric~2! and the final
equations~37! and~38!. To find exact solutions to these equations in terms of special functio
not always easy. It depends on the analytical expressions of the metric functionsa(t), b(x) and
c(y). In this section, we restrict our analysis to some interesting particular cases correspon
the most relevant situations in astrophysics and cosmology2,17–21,24,25such as the Robertson
Walker space–times or the Friedman–Robertson–Walker metric, which lead to exact solut
terms of special functions.

~i! c(y)5by, whereb is arbitrary constant. Substituting this expression into~26!, we obtain

dyy
2 x11S 2

kz

by2 2
kz

2

b2y2 1k2Dx150, dyy
2 x21S kz

by2 2
kz

2

b2y2 1k2Dx250, ~39!

which have solutions

x15d1y1/2Ckz /b11/2~ky! and x25d2y1/2Ckz /b21/2~ky!, ~40!

whereC is the general solution of the cylindrical Bessel equation.26 The relation between the
constantsd1 andd2 can be obtained in a straightforward way, by substituting~40! into ~24!.

~ii ! c(y)5b exp(ay), wherea andb are arbitrary constants. The system~26! takes the form

dyy
2 x11S 2

kz

b exp~ay!
2

kz
2

b2 exp~2ay!
1k2Dx150, ~41!

dyy
2 x21S kz

b exp~ay!
2

kz
2

b2 exp~2ay!
1k2Dx250. ~42!

Making the change of variables

z52b21kza
21 exp~2ay!, x1,25z1/2x̃1,2, ~43!

Eqs.~41! and ~42! take the form

dyy
2 x̃11S 2

1

4
2

1

2z
1

1
41k2/a2

z2 D x̃150, dyy
2 x̃21S 2

1

4
1

1

2z
1

1
41k2/a2

z2 D x̃250. ~44!

Taking into account~43!, we get the solutions26

x15d1~exp~2ay!! ik/a exp~2pe2ay!M S 11
ik

a
,11

2ik

a
,2pe2ayD , ~45!

x25d2~exp~2ay!! ik/a exp~2pe2ay!M S ik

a
,11

2ik

a
,2pe2ayD , ~46!

p5kzb
21a21, ~47!

whereM (a,b,z) is the confluent hypergeometric function.
~iii ! c(y)5tan(ay). In this case, we get

dyy
2 x11S 2

kza1kz
2

sin2~ay!
1kz

21k2Dx150, dyy
2 x21S kza2kz

2

sin2~ay!
1kz

21k2Dx250. ~48!
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Making the change of variables

u5sin2~ay!, ~49!

and putting

x15sinq1~ay! f ~y!, x25sinq2~ay!g~y!, ~50!

where

q15
1

2
1S 1

4
1

kz

a
1

kz
2

a2D 1/2

, q25
1

2
1S 1

4
2

kz

a
1

kz
2

a2D 1/2

, ~51!

the system~48! becomes

u~12u!duu
2 f 1S 1

2
1q12~11q1!uDduf 2S q1

2

4
2

kz
21k2

4a2 D f 50, ~52!

u~12u!duu
2 g1S 1

2
1q22~11q2!uDdug2S q2

2

4
2

kz
21k2

4a2 Dg50. ~53!

The solutions of these equations can be expressed in terms of hypergeometric functions o
F(a,b,z).26 So, taking into account Eq.~49!, they are given by

x15d1 sinq1~ay!FS 1

2
q11

~kz
21k2!1/2

2a
,
1

2
q12

~kz
21k2!1/2

2a
,q11

1

2
,sin2~ay! D , ~54!

x25d2 sinq2~ay!FS 1

2
q21

~kz
21k2!1/2

2a
,
1

2
q22

~kz
21k2!1/2

2a
,q21

1

2
,sin2~ay! D . ~55!

~iv! c(y)5cot(ay). The system~26! transforms to

dyy
2 x11S kza2kz

2

cos2~ay!
1kz

21k2Dx150, dyy
2 x21S 2

kza1kz
2

cos2~ay!
1kz

21k2Dx250. ~56!

The solutions of~56! can be obtained from Eqs.~54! and ~55! by making the identification

ay˜ay1
p

2
. ~57!

Thus, these solutions take the forms

x15d1 cosq1~ay!FS 1

2
q11

~kz
21k2!1/2

2a
,
1

2
q12

~kz
21k2!1/2

2a
,q11

1

2
,cos2~ay! D , ~58!

x25d2 cosq2~ay!FS 1

2
q21

~kz
21k2!1/2

2a
,
1

2
q22

~kz
21k2!1/2

2a
,q21

1

2
,cos2~ay! D , ~59!

where

q15
1

2
1S 1

4
2

kz

a
1

kz
2

a2D 1/2

, q25
1

2
1S 1

4
1

kz

a
1

kz
2

a2D 1/2

. ~60!

~v! c(y)5tanh(ay). In this case, the system~26! rewrites as
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dyy
2 x11S 2

kza1kz
2

sinh2~ay!
2kz

21k2Dx150, dyy
2 x21S kza2kz

2

sin2~ay!
2kz

21k2Dx250. ~61!

Making the change of variables

v52sinh2~ay!, ~62!

and following the analog way as in~iii !, we transform~61! to get

v~12v !dvv
2 f 1S 1

2
1q12~11q1!v Ddv f 2S q1

2

4
2

kz
22k2

4a2 D f 50, ~63!

v~12v !dvv
2 g1S 1

2
1q22~11q2!v Ddvg2S q2

2

4
2

kz
22k2

4a2 Dg50. ~64!

The solutions of these equations can be also expressed in terms of hypergeometric func
GaussF(a,b,z). Thus, taking into account Eq.~62!, they are given as

x15d1 sinhq1~ay!FS 1

2
q11

~kz
22k2!1/2

2a
,
1

2
q12

~kz
22k2!1/2

2a
,q11

1

2
,2sinh2~ay! D , ~65!

x25d2 sinhq2~ay!FS 1

2
q21

~kz
22k2!1/2

2a
,
1

2
q22

~kz
22k2!1/2

2a
,q21

1

2
,2sinh2~ay! D . ~66!

~vi! c(y)5coth(ay). The system~26! rewrites as

dyy
2 x11S kza1kz

2

cosh2~ay!
2kz

21k2Dx150, dyy
2 x21S 2kza1kz

2

cosh2~ay!
2kz

21k2Dx250. ~67!

We can obtain from Eqs.~65! and ~66! the solutions of~67! by making the identification

ay˜ay1
ip

2
. ~68!

Thus, we get

x15d1 coshq1~ay!FS 1

2
q11

~kz
22k2!1/2

2a
,
1

2
q12

~kz
22k2!1/2

2a
,q11

1

2
,cosh2~ay! D , ~69!

x25d2 coshq2~ay!FS 1

2
q21

~kz
22k2!1/2

2a
,
1

2
q22

~kz
22k2!1/2

2a
,q21

1

2
,cosh2~ay! D , ~70!

whereq1 andq2 are given by~51!.
~vii! c(y)5sin(ay). The system~24! becomes

S dy1
kz

sin~ay! Dx12kx250 and S dy2
kz

sin~ay! Dx21kx150. ~71!

It is enough to consider the solutions of the system~71! whenk andkz are positive; the other thre
cases can be obtained by interchanging the roles ofx1 andx2 . Considering the ansatz

x15~sin~ay!!kz /a sinS ay

2 D f ~y! and x25~sin~ay!!kz /a cosS ay

2 Dg~y!, ~72!
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and making the change of variables

u5cos~ay!, ~73!

we obtain the differential equations

~12u2!duu
2 f 1S 2122S 11

kz

a DuDduf 2S S kz

a
1

1

2D 2

2
kz

2

a2D f 50, ~74!

~12u2!duu
2 g1S 122S 11

kz

a DuDdug2S S kz

a
1

1

2D 2

2
kz

2

a2Dg50, ~75!

whose solutions are given in terms of Jacobi polynomialsPn
(a,b) .26 Thus, taking into account Eqs

~72! and ~73!, we get

x15d1~sin~ay!!kz /a sinS ay

2 D Pn
(kz /a11/2,kz /a21/2)

~cos~ay!!, ~76!

x25d2~sin~ay!!kz /a cosS ay

2 D Pn
(kz /a21/2,kz /a11/2)

~cos~ay!!, ~77!

wheren reads as

n5
k

a
2

kz

a
2

1

2
. ~78!

~viii ! c(y)5cos(ay). The system~37! becomes

S dy1
kz

cos~ay! Dx12kx250 and S dy2
kz

cos~ay! Dx21kx150. ~79!

Their solutions can be obtained by analogy with~76! and ~77!, making the identification

ay˜ay2
p

2
, ~80!

such that

x15d1~2cos~ay!!kz /aFsinS ay

2 D2cosS ay

2 D GPn
(kz /a11/2,kz /a21/2)

~sin~ay!!, ~81!

x25d2~2cos~ay!!kz /aFcosS ay

2 D1sinS ay

2 D GPn
(kz /a21/2,kz /a11/2)

~sin~ay!!, ~82!

wheren is given by~78!.
~ix! c(y)5sinh(ay). Substituting it into~24!, we obtain

S dy1
kz

sinh~ay! Dx12kx250 and S dy2
kz

sinh~ay! Dx21kx150. ~83!

Considering the ansatz

x15~sinh~ay!!kz /a sinhS ay

2 D f ~y!, x25~sinh~ay!!kz /a coshS ay

2 Dg~y!, ~84!
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and making the change of variables

u52cosh~ay!, ~85!

we obtain the differential equations

~12u2!duu
2 f 1S 122S 11

kz

a DuDduf 2S S kz

a
1

1

2D 2

1
kz

2

a2D f 50, ~86!

~12u2!duu
2 g1S 2122S 11

kz

a DuDdug2S S kz

a
1

1

2D 2

1
kz

2

a2Dg50, ~87!

whose solutions are also given in terms of Jacobi polynomialsPn
(a,b) , taking into account Eqs

~84! and ~85!, as

x15d1~sinh~ay!!kz /a sinhS ay

2 D Pn
(kz /a21/2,kz /a11/2)

~2cosh~ay!!, ~88!

x25d2~sinh~ay!!kz /a coshS ay

2 D Pn
(kz /a11/2,kz /a21/2)

~2cosh~ay!!, ~89!

wheren reads as

n5
ik

a
2

kz

a
2

1

2
. ~90!

~x! c(y)5cosh(ay). Here the system~24! becomes

S dy1
kz

cosh~ay! Dx12kx250 and S dy2
kz

cosh~ay! Dx21kx150. ~91!

As in the previous case, using Eqs.~88! and ~89! and making the identifications

ay˜ay2
ip

2
, kz˜ ikz , ~92!

we get

x15d1~2 i cosh~ay!! ikz /aFsinhS ay

2 D2 i coshS ay

2 D GPn
( ikz /a21/2,ikz /a11/2)

~ i sinh~ay!!, ~93!

x25d2~2 i cosh~ay!! ikz /aFcoshS ay

2 D2 i sinhS ay

2 D GPn
( ikz /a11/2,ikz /a21/2)

~ i sinh~ay!!, ~94!

wheren is given by

n5
ik

a
2

ikz

a
2

1

2
. ~95!

The metrics associated to cases~vii!–~x! can be identified as particular cases of Robertso
Walker spaces–times.3

When n is not an integer value, we have to express the Jacobi polynomials in terms o
Gauss hypergeometric functions, by means of the relation26
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Pn
(a,b)~x!5

G~n1a11!

G~n11!G~a11!
FS 2n,n1a1b11,a11,

12x

2 D . ~96!

Now we proceed to analyze the system of Eq.~35!. These equations can be solved in terms
special functions for the following cases.

~i! b(x)5bx, whereb is an arbitrary constant. Substituting this expression into~37!, we
arrive at

dxx
2 R11S 2

k

bx2 2
k2

b2x2 1l2DR150 and dxx
2 R21S k

bx2 2
k2

b2x2 1l2DR250, ~97!

which have solutions

R15c0x1/2Ck/b11/2~lx! and R25c0x1/2Ck/b21/2~lx!, ~98!

whereC is the general solution of the cylindrical Bessel equation.
~ii ! b(x)5b exp(ax), wherea andb are arbitrary constants. The system~37! leads to

dxx
2 R11S 2

k

b exp~ax!
2

k2

b2 exp~2ax!
1l2DR150, ~99!

dxx
2 R21S k

b exp~ax!
2

k2

b2 exp~2ax!
1l2DR250. ~100!

Since Eqs.~99! and ~100! have the same structure as the system~41! and ~42!, we obtain

R15c1~exp~2ax!! il/a exp~2pe2ax!M S 11
il

a
,11

2il

a
,2pe2axD , ~101!

R25c1~exp~2ax!! il/a exp~2pe2ax!M S il

a
,11

2il

a
,2pe2axD , ~102!

whereM (a,b,z) is the confluent hypergeometric function, andp reads as

p5kb21a21. ~103!

~iii ! b(x)5sin(ax). We have the new system

S dx1
k

sin~ax! DR12kR250 and S dx2
k

sin~ax! DR21kR150, ~104!

from which we deduce

R15c2~sin~ax!!k/a sinS ax

2 D Pn
(k/a11/2,k/a21/2)~cos~ax!!, ~105!

R25c2~sin~ax!!k/a cosS ax

2 D Pn
(k/a21/2,k/a11/2)~cos~ax!!, ~106!

wheren reads as

n5
l

a
2

k

a
2

1

2
. ~107!
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~iv! b(x)5cos(ax). Substituting this expression into~35!, and making the identification with
~105! and ~106!,

ax˜ax2
p

2
, ~108!

the solutions take the forms

R15c3~2cos~ax!!k/aFsinS ax

2 D2cosS ax

2 D GPn
(k/a11/2,k/a21/2)~sin~ax!!, ~109!

R25c3~2cos~ax!!k/aFcosS ax

2 D1sinS ax

2 D GPn
(k/a21/2,k/a11/2)~sin~ax!!, ~110!

wheren is given by~107!.
~v! b(x)5sinh(ax). The system~35! gives

S dx1
k

sinh~ax! DR12kR250 and S dx2
k

sinh~ax! DR21kR150. ~111!

As from the system~83!, we obtain

R15c4~sinh~ax!!k/a sinhS ax

2 D Pn
(k/a21/2,k/a11/2)~2cosh~ax!!, ~112!

R25c4~sinh~ax!!k/a coshS ax

2 D Pn
(k/a11/2,k/a21/2)~2cosh~ax!!, ~113!

wheren is given by

n5
il

a
2

k

a
2

1

2
. ~114!

~vi! b(x)5cosh(ax). Substituting this expression into~35!, and making the identification with
~112! and ~113!,

ax˜ax2
ip

2
, k˜ ik, ~115!

the solutions take the form

R15c5~2 i cosh~ax!! ik/aFsinhS ax

2 D2 i coshS ax

2 D GPn
( ik/a21/2,ik/a11/2)~ i sinh~ax!!, ~116!

R25c5~2 i cosh~ax!! ik/aFcoshS ax

2 D2 i sinhS ax

2 D GPn
( ik/a11/2,ik/a21/2)~ i sinh~ax!!, ~117!

wheren is given by

n5
il

a
2

ik

a
2

1

2
. ~118!
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For the cases~vii! b(x)5tan(ax), ~viii ! b(x)5cot(ax), ~ix! b(x)5tanh(ax) and ~x! b(x)
5tan(ax), we obtain the same solutions as in~iii ! c(y)5tan(ay), ~iv! c(y)5cot(ay), ~v! c(y)
5tanh(ay) and ~vi! c(y)5coth(ay) by changing

k˜l and kz˜k. ~119!

Note that the different cases~iii ! b(x)5sin(ax), ~v! b(x)5sinh(ax), ~vii! c(y)5sin(ay) and
~ix! c(y)5sinh(ay) correspond to the Friedman–Robertson–Walker metric,12 where we have
introduced an arbitrary constanta.

Now we proceed to analyze the systems~38!. We consider three special models f
expansion.2

~i! a(t)5bt. This model also considered by Schro¨dinger2 here leads to

S dtt
2 1m21

l2

b2t2DS150. ~120!

Changing the variablet to

z52imt, ~121!

Eq. ~120! becomes

S dzz
2 2

1

4
1

l2

b2z2DS150. ~122!

We recognize the Whittaker differential equation which gives the solution, by taking into acc
~121!, as follows

S15b1Wk,m~2imt!, where k50, m5A1

4
2

l2

b2. ~123!

Using the Whittaker function identities26

zWk,m8 ~z!5S z

2
2kDWk,m~z!2Wk11,m~z!, ~124!

from ~36!, we get

S252
ib1b

l
W1,m~2imt!. ~125!

~ii ! a(t)5eat, an inflationary universe. Substituting the above expression into~38!, we arrive
at

~dtt
2 1m21l2e22at!S150. ~126!

Introducing the new coordinatesz by

z5
l

a
e2at, ~127!

Eq. ~126! becomes the Bessel equation

~z2dzz
2 1zdz1z21m2!S150. ~128!

Taking into account Eq.~127!, we obtain
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S15b2JimS l

a
e2atD . ~129!

Using the Bessel function identities26

d

dz
Jn~z!52Jn11~z!1

n

z
Jn~z!, ~130!

and from~36! we get

S25
ib2

l S lJim11S l

a
e2atD2 im~a11!JimS l

a
e2atD D . ~131!

~iii ! a(t)5bAt, a model of a radiation-dominated universe. Substituting the above expre
into ~38!, we obtain

S dtt
2 1m21

l2

b2t DS150. ~132!

Making a change of variables

t5 iz2, ~133!

Eq. ~132! takes the form

S dzz
2 2

1

z
dz24m2z21

4il2

b2 DS150. ~134!

Putting

S1~z!5e2v/2F~v ! and v52mz2, ~135!

we can write Eq.~134! as follows:

S vdvv
2 2vdv1

il2

mb2DF50. ~136!

Taking into account~133! and ~135!, the solution of~136! is given by the confluent hypergeo
metric function1F1(a,b,z):

S1~ t !5b3eimt
1F1S 0,

2 il2

mb2 ,22imtD . ~137!

Using the confluent hypergeometric function identities26

b 1F18~a,b,z!5b 1F1~a,b,z!2~b2a!1F1~a,b11,z!, ~138!

and from~36! we get

S25
bb3

A4il2
eimt~A4i t 2 im21! 1F1S 0,

2 il2

mb2 ,22imtD2
lb3

bm2A t

4i 1F1S 0,
2 il2

mb2 11,22imtD .

~139!

The different cases~i!, ~ii ! and ~iv! are analyzed by Barutet al.,2 consideringb51 andc
51.
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IV. SOLUTION OF THE WEYL EQUATION

Neutrinos in the nonfactorizable metric~2! are described by the Weyl equation which corr
sponds to the massless limit of the Dirac equation. The chirality condition, in the represen
~17!, reads

~12 ig5!C̃850, g55g0g1g2g3 . ~140!

The Weyl spinor can be expressed in terms of the solution of the Dirac equation as follow

~11 ig5!C̃85Cw . ~141!

The matrixg5 commutes with the matrix transformationS. Therefore, we can write

~11 ig5!C̃5C0 . ~142!

Taking into account~12!, ~16! and ~34!, the relation~142! takes the form

C05A0a23/2b21c21/2eikzzS h
ih D , ~143!

where

h5S ~ i 21!~S2R11 iS1R2!x12~11 i !~S2R12 iS1R2!x2

~ i 21!~S2R11 iS1R2!x11~11 i !~S2R12 iS1R2!x2
D . ~144!

The solution in this gauge can be obtained applying the unitary transformation~18! to the spinor
~143!.

In this paper, we have used the algebraic method of separation of variables to sho
possibility of separating Dirac equation in a nonfactorizable metric in terms of two comm
first-order differential operators. We have given analytical solutions in terms of special func
setting conditions on the metric functionsa(t), b(x) andc(y). Some particular cases correspo
to the Friedman–Robertson–Walker metric12 and to the Robertson–Walker spaces–times.3
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One-loop stress-tensor renormalization in curved
background: The relation between z-function
and point-splitting approaches, and an improved
point-splitting procedure

Valter Morettia)

Department of Mathematics, Trento University, and Istituto Nazionale di Fisica Nucleare,
Gruppo Collegato di Trento, I-38050 Povo (TN), Italy

~Received 12 February 1999; accepted for publication 22 March 1999!

We conclude the rigorous analysis of a previous paper@V. Moretti, Commun. Math.
Phys. 201, 327 ~1999!# concerning the relation between the~Euclidean! point-
splitting approach and the localz-function procedure to renormalize physical quan-
tities at one-loop in~Euclidean! Quantum Field Theory in curved space–time. The
case of the stress tensor is now considered in generalD-dimensional closed mani-
folds for positive scalar operators2D1V(x). Results obtained formally in previ-
ous works@in the caseD54 andV(x)5jR(x)1m2# are rigorously proven and
generalized. It is also proven that, in static Euclidean manifolds, the method is
compatible with Lorentzian-time analytic continuations. It is proven that the result
of the z-function procedure is the same obtained from an improved version of the
point-splitting method which uses a particular choice of the termw0(x,y) in the
Hadamard expansion of the Green’s function, given in terms of heat-kernel coef-
ficients. This version of the point-splitting procedure works for any value of the
field massm. If D is even, the result is affected by an arbitrary one-parameter class
of ~conserved in absence of external source! symmetric tensors, dependent on the
geometry locally, and it gives rise to the general correct trace expression containing
the renormalized field fluctuations as well as the conformal anomaly term. Further-
more, it is proven that, in the caseD54 andV(x)5jR(x)1m2, the given proce-
dure reduces to the Euclidean version of Wald’s improved point-splitting procedure
provided the arbitrary mass scale present in thez-function is chosen opportunely. It
is finally argued that the found point-splitting method should work generally, also
dropping the hypothesis of a closed manifold, and not depending on thez-function
procedure. This fact is indeed checked in the Euclidean section of Minkowski
space–time forA52D1m2 where the method gives rise to the correct Minkowski
stress tensor form2>0 automatically. ©1999 American Institute of Physics.
@S0022-2488~99!01008-7#

I. INTRODUCTION

In a previous paper,1 we have considered the relationship between thez-function and the
point-splitting procedures in renormalizing some physical quantities: effective Lagrangian,
tive action, and field fluctuations. The more interesting quantity, namely, the stress tensor,
object of the present paper. The aim of this paper is hence twofold. First we want to g
rigorous mathematical foundation as well as a generalization of several propositions conta
Ref. 2 where they have been stated without rigorous proof. This is a quite untrivial task be
it involves an extension of the heat kernel theory considering the derivatives of its
‘‘asymptotic’’ expansion. As we shall see shortly, this is the core of all the analyticity prope
of the generalized tensorialz-functions involved in the stress-tensor renormalization proced

a!Electronic mail: moretti@science.unitn.it
38430022-2488/99/40(8)/3843/33/$15.00 © 1999 American Institute of Physics
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Second, we want to study the relation between our technique and the more usual point-s
procedure in depth. This is another open issue after the appearance of Ref. 2. We know, t
practical examples, that these two approaches agree essentially in several concrete cases,
now, no general proof of this fact has been given. Anyhow, it was conjectured by Wald3 that, in
general, these two approaches should lead to the same results. The extension of thez-function
approach to the stress tensor has been introduced in Ref. 2 formally. This paper contains
of mathematical consistence of the method in a generalized case as well as a general proo
agreement between the two approaches under our hypotheses on the manifold and the fi
erator.

It is a well-known fact that the point-splitting procedure faces some difficulties in the ca
a field which is massless. Indeed, in such a case, one cannot make use of the Schwinger
algorithm to fixw0 in the Hadamard expansion3,4 and, at least in the massless conformally coup
case, the point-splitting procedure has been improved in order to get both the conformal an
and the conservation of the renormalized stress tensor.3 Recently, Wald has argued that such
improved procedure, which picks outw0[0, can be generalized in more general cases.5 Differ-
ently from the point-splitting procedure, the localz-function approach seems to work without
distinguish between different values of mass and coupling with the curvature. This fact m
more intriguing the issue of the relation between the two procedures.

This paper is organized as follows. In the first part, we shall recall the main features o
classical theory of the stress tensor to the reader and we shall introduce the main ideas con
the renormalization of the stress tensor via thez-function. In a second part, first we shall develo
further the theory of the heat-kernel expansion in order to build up the theory of thez-function of
the stress tensor. All the work is developed in a closedD-dimensional manifold for a quite genera
Euclidean motion operator of a real scalar field. Successively, we shall state and prove s
theorems concerning generalizations of several mathematical conjecture employed in Ref.
final part of this work is devoted to investigating the relation between the two considered
niques and to introduce a generalized point-splitting procedure. Indeed, within that part, we
give a proof of the agreement of the two approaches, introducing an improved point-sp
procedure which is quite similar and generalizes that pointed out in Refs. 3 and 5. We sh
that our prescription gives all the expected results~it gives the trivial stress tensor in Minkowsk
space–time, the conformal anomaly, and a conserved stress tensor, in general, producing
ment with the result of the field fluctuations renormalization!. A final summary ends the work. In
the Appendix, the proofs of some theorems and lemmata are reported.

II. PRELIMINARIES

Within this section, we state the general mathematical hypotheses we shall deal with an
quickly, we review the main physical ideas concerning the classical stress tensor and its on
renormalization via point-splitting4–6 and via localz-function.2

We assume all the definitions and theorems given in Ref. 1 and we shall refer to
definitions and theorems throughout all parts of this work.

A. General hypotheses and notations

The hypotheses we shall deal with in this work are the same as in Ref. 1. Therefore, from
on,M is a Hausdorff, connected, oriented,C` RiemannianD-dimensional manifold. We suppos
also thatM is compact without boundary~namely, is ‘‘closed’’!. Concerning the operators, w
shall consider real elliptic differential operators with the Schro¨dinger form ‘‘Laplace–Beltrami
operator plus potential’’

A852D1V:C`~M!˜L2~M,dmg!, ~1!

where, locally,D5¹a¹a, and¹ means the covariant derivative associated to the metric con
tion, dmg is the Borel measure induced by the metric, andV is a real function belonging to
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C`(M). We assume thatA8 is bounded below by someC>0 ~namely A is positive!. ~See
sufficient conditions in Ref. 1.! These are thegeneral hypotheseswhich we shall refer to through
out the paper.

Moreover, in the most part of the theorems, we shall use also the fact that theinjectivity radius
of the manifoldr is strictly positive in closed manifolds~see Ref. 1 for further comments on th
point!.

As general remarks, we remind the reader that, as in the previous work, ‘‘holomorphic’
‘‘analytic’’ are synonyms throughout this paper, natural units\5c51 are used, and the symbo
A indicates the only self-adjoint extension of the essentially self-adjoint operatorA8. In the
practice, as seen in Ref. 1,A coincides with the Friedrichs self-adjoint extension ofA8. Also, R
indicates the scalar curvature. Moreover, the symbols(x,y) means one-half the squared geod
sical distance ofx from y which is continuous everywhere andC` in any convex normal neigh
borhood.

Concerning derivative operators, we shall employ the notations in a fixed local coord
system,

Dx
a
ª

] uau

]x1a1
¯]xDaDU

x

, ~2!

where themultindexa is defined byaª(a1 ...,aD), a i>0 is any natural number (i 51,...,D),
anduauªa11¯1aD . Moreover,nk will indicate the multindex (0,̄ 0,n,0,̄ 0) where the only
nonvanishing number isnPN which takes thekth position.

Concerning the definitions of the metric-connection symbols and curvature tensors, we
follow the notations and conventions employed in Ref. 1 which are the same employed in R
either for Riemannian or Lorentzian signature.

B. Physical background and classical definitions

All quantities related toA8 we have considered in Ref. 1 and the averaged stress tenso
consider here, forD54, appears in~Euclidean! Quantum Field Theory~QFT! in curved back-
ground and concerns the theory of quasifree scalar fields. In several concrete cases of Q
form of V(x) is m21jR(x), wherem2 is the square mass of the considered field,R is the scalar
curvature of the manifold, andj is a real parameter. As usual theconformal couplingis defined
by4,6,7

jDª~D22!/@4~D21!#. ~3!

Similarly to the physical quantities considered in Ref. 1, also the stress tensor is for
obtained from the Euclidean functional integral

Z@A8#ªE Dfe2~1/2!*MfA8@g#fdmg5:e2Seff@A8#. ~4!

HereSeff is the ~Euclidean! effective action of the field.~Here, we use the opposite sign conve
tions in defining the effective action and thus the stress tensor, with respect the conve
employed in Ref. 2. Our conventions are the same as used in Ref. 8.!

The integral above can be considered as a partition function of a field in a particular qua
state corresponding to a canonical ensemble.8,9 The direct physical interpretation as a partitio
function should work provided the manifold has a static Lorentzian section obtained by an
cally continuing some global temporal coordinatex05t of some global chart into imaginar
valuest˜ i t and considering~assuming that they exist! the induced continuations of the metr
and relevant quantities. It is required also that]t is a global Killing field of the Riemannian
manifold generated by an isometry groupS1 . Finally, it is required that]t can be continued into
a ~generally local! timelike Killing field ] t in the Lorentzian section~see Refs. 9 and 8!. Then one
assumes thatkBb is the inverse of the temperature of the canonical ensemble quantum stb
                                                                                                                



red

f

e
oduces

and,
to the
nstein
dures

in

oint

3846 J. Math. Phys., Vol. 40, No. 8, August 1999 Valter Moretti

                    
being the period of the coordinatet. The limit case of vanishing temperature is also conside
and, in that case, the manifold cannot be compact. Similar interpretations hold for the~analytic
continuations of! the stress tensor.

Formally4,8–11we haveZ@A8,g#ª@det(A8/m2)#21/2, where our definition of the determinant o
the operatorA8 is given by thez-function approach4,8–11 as pointed out in Ref. 1. The scalem2

present in the determinant is necessary for dimensional reasons9 and plays a central role in th
z-function interpretation of the determinant and in the consequent theory. Such a scale intr
an ambiguity which remains in the finite renormalization parts of the renormalized quantities
dealing with the renormalization of the stress tensor within the semiclassical approach
quantum gravity, it determines the presence of quadratic-curvature terms in effective Ei
equations.2 Similar results are discussed in Refs. 3–6 employing other renormalization proce
~point-splitting!.

Coming to the~Euclidean! classicalstress tensorTab(x), it is defined~e.g., see Ref. 7! as the
locally quadratic form of the field obtained by the usual functional derivative once the fieldf is
fixed:

Tab@f,g#~x!ª
2

Ag

d

dgab~x! S 1

2 EIAg~x!fA8@g#f dDxD . ~5!

This functional derivative can be rigorously understood in terms of a Gaˆteaux derivative for
functionals on realC`(I) symmetrictensor fieldsgab and the integration above is performed
the open setI containingx where the considered coordinate system is defined. Equation~5! means
that, and this is the rigorous definition of thesymmetrictensor fieldTab@f,g#(x), for any C`

symmetrictensor fieldhab with compact support contained inI

2
d

daU
a50

SI@g1ah#5
1

2 EIAg~x!Tab@f,g#~x!hab~x!dDx, ~6!

where

SI@f,g#ª
1

2 EIAg~x!fA8@g#f dDx. ~7!

In the case

A852D1m21jR~x!1V8~x!, ~8!

V8 being aC` function which does not depend on the metric, a direct computation ofTab(x)
through this procedure gives

Tab@f,g#~x!5¹af~x!¹bf~x!2 1
2gab~x!@¹cf~x!¹cf~x!1~m21V8~x!!f2~x!#

1j@„Rab~x!2 1
2gab~x!R~x!…f2~x!1gab~x!¹c¹

cf22¹a¹bf2~x!#. ~9!

As is well known,Tab given in ~9! and evaluated onf is conserved(¹aTab[0) providedf is a
sufficiently smooth~customaryC`! solution of the Euclidean motion, namely,A8f[0, andV8
[0. More generally for the solution of Euclidean motion, in local coordinates and for any p
xPM one finds

¹aTab@f,g#~x!52 1
2f

2~x!¹bV8~x!. ~10!

Another important classical property is the following one. Whenever the fieldf is massless and
conformally coupled@i.e., V8(x)[m250 andj5jD#, the Euclidean actionSM is invariant under
local conformal transformations and it holds also
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gabT
ab@f,g#~x!50 ~11!

everywhere, for smooth fieldsf which are solutions of the~Euclidean! motion equations. Equa
tions ~10! and~11! can be checked for the tensor in~9! directly, holding our general hypothese

Actually, the requirement ofA8 positive is completely unnecessary for all the definitions a
results given above which hold true in anyC` Riemannian as well asLorentzianmanifold. In our
approach, the Lorentzian stress tensor is obtained by analytic continuation of the Euclidean
pointed out above.

Passing to the quantum-averaged quantities, following Schwinger,12 theone-loop stress tenso
averaged on the quantum state determined by the Feynman propagator obtained from the
function of A8 can beformally defined by4,5,8,9

^Tab~xuA8!&ª
2

Ag

d

dgab~x!
Seff5Z@A8,g#21E Dfe2~1/2!*MfA8@g#fdmgTab@f,g#~x!. ~12!

It is well known that the right-hand sides of~12! and the corresponding quantity in the Lorentzi
section are affected by divergences whenever one tries to compute them by trivial procedu4,6,8

For instance, proceeding as usual~e.g., see Ref. 5!, interpreting the functional integral o
f(x)f(y) as a Green’s function ofA8 ~the analytic continuation of the Feynman propagato!,
G(x,y), and then defining an off-diagonal quantum averaged stress tensor,

^Tab~x,y!&5Z@A8,g#21E Dfe2~1/2!*MfA8@g#fdmgOab~x,y!f~x!f~y!5Oab~x,y!G~x,y!,

~13!

whereOab(x,y) is an opportune bivectorial differential operator~see Ref. 5!, the limit of coinci-
dence of argumentsx andy, necessary to get^Tab(x)&, trivially diverges. One is therefore force
to remove these divergencesby handand this is nothing but the main idea of thepoint-splitting
procedure. Within the point-splitting procedure~10! is requested also for the quantum-averag
stress tensor at least in the caseV850. Conversely, the property~11! generally does not hold in
the case of a conformally coupled massless field: aconformal anomalyappears.3–6

Another approach to interpret the left-hand side of~12! in terms of localz-function was
introduced in Ref. 2 without rigorous mathematical discussion. Anyhow, this approach ha
duced correct results and agreement with point-splitting procedures in several concrete c2,13

and it has pointed out a strong self-consistence and a general agreement2 with the general axiom-
atic theory of the stress tensor renormalization built up by Wald.5 ~It is anyway worth stressing
that Wald’s axiomatic approach concerns the Lorentzian theory and thus any comparison in
an analytical continuation of the Euclidean theory. In such a way all the issues related
locality of the theory cannot be compared directly with the generalz-function approach.! More-
over, differently from the known point-splitting techniques, no difficulty arises dealing with
case of a massless conformally coupled field.

Similarly to the cases treated in Ref. 1, thedefinitionof the formal quantity on the left-hand
side of ~12!2 given in terms of thez-function and heat kernel contains an implicitinfinite renor-
malizationprocedure in the sense that the result is finally free from divergences.

C. The key idea of the z-function regularization of the stress tensor

The key idea ofz-function regularization of the stress tensor concerns the extension of th
of the z-function from the effective action to the stress tensor employing some manipulatio
the series involved in thez-function technique. We remind the reader that formally one has9,8,1

Seff@A#m25
1

2

d

dsU
s50

H 2 (
j PN

8S l j

m2D 2sJ . ~14!
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Herem is the usual arbitrary mass scale necessary for dimensional reasons. Actually, the i
above holds true in the sense of the analytic continuation. Then, one can try to give some m
to the following formal passages:

^Tab~x!&m25
2

Ag~x!

d

dgab~x!

1

2

d

dsU
s50

H 2 (
j PN

8S l j

m2D 2sJ
5

1

2

d

dsU
s50

H 2 (
j PN

8
2

Ag~x!

d

dgab~x! S l j

m2D 2sJ
5

1

2

d

dsU
s50

H s

m2 (
j PN

8S l j

m2D 2~s11! 2

Ag~x!

dl j

dgab~x!J . ~15!

The functional derivative ofl j has been computed in Ref. 2, at least formally. The passages a
are mathematically incorrect most likely; anyhow, in Ref. 2 it was conjectured that the series
last line of ~15! converges and it can be analytically continued into a regular func
Zab(s,xuA/m2) in a neighborhood ofs50. Then, one candefinethe renormalized averaged on
loop stress tensor as

^Tab~x!&m2ª
1

2

d

dsU
s50

Zab~s,xuA/m2!. ~16!

The explicit form ofZab found in Ref. 2 following the route above was

Zab~s,xuA/m2!52
s

m2 zab~s11,xuA/m2!1sgab~x!z~s,xuA/m2!, ~17!

wherezab(s,xuA/m2) is the analytic continuation of the series

(
j PN

8S l j

m2D 2s

Tab@f j ,f j* ,g#~x!, ~18!

and

Tab@f,f* ,g#~x!ª2
2

Ag~x!

d

dgab~x!

1

2 EIfA8@g#f* dmg . ~19!

However, no proof of the convergence of the series above was given in Ref. 2 for the genera
but the method was checked in concrete cases, where it was found that the series above co
really as supposed. In Ref. 2, it was shown also that, assuming reasonable mathematical pr
of the involved functions, this approach in four-dimensional operatorsA852D1jR(x)1m2

should produce a stress tensor which is conserved and gives rise to the conformal anomaly.
2, it was also~not rigorously! proven that the ambiguity arising from the presence of the arbit
scalem2 gives rise to conserved geometric terms added to the stress tensor, in agreeme
Wald’s axioms.

We expect that the not completely rigorous procedures employed in Ref. 2 make sens
vided the usual heat-kernel ‘‘asymptotic’’ expansion att˜0 can be derived in the variables whic
range in the manifold producing a similar expansion~this result is not trivial at all! and provided
the series~18! can be derived under the symbol of summation~also this fact is not so obvious!.
Therefore, in the next parts of this work, we shall investigate also similar issues before we
and generalize results found in Ref. 2.
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III. THE LOCAL z-FUNCTION AND THE ONE-LOOP STRESS TENSOR

In this part and within our general hypotheses, we develop a rigorous theory of thez-function
of the stress tensor and give a rigorous proof of some properties of particular tensorialz-functions
introduced in Ref. 2.

The first subsection is devoted to generalizing some properties of the heat-kernel conc
the smoothness of several heat-kernel expansions necessary in the second subsection.

A. The smoothness of the heat-kernel expansion and the z-function

A first very useful result, which we state in the form of a lemma, concerns the smoothne
the heat-kernel expansion fort˜0 ~Theorem 1.3 of Ref. 1! and the possibility of deriving term by
term such an ‘‘asymptotic expansion.’’

Before stating the result it is worth stressing that, in the trivial caseuau5ubu50, the statement
of the lemma below and the corresponding proof include the point (a2) in Theorem 1.3 of Ref. 1
given without proof there.

Lemma 3.1: Let us assume our general hypotheses onM and A8. For any uPM there is an
open neighborhood Iu centered on u such that, for any local coordinate system defined therein
any couple of points x, yPI u , for any couple of multindicesa, b, and for any integer N.D/2
12uau12ubu ~D/212 if uau5ubu50! the heat-kernel expansion (a) of Theorem 1.3 in Ref. 1
be derived term by term obtaining@hP(0,1) is fixed arbitrarily as usual#

Dx
aDy

bK~ t,x,y!5Dx
aDy

bH e2s~x,y!/2t

~4pt !D/2 (
j 50

N

aj~x,yuA!t j J 1
e2hs~x,y!/2t

~4pt !D/2 tN2uau2ubuOh,N
~a,b!~ t;x,y!,

~20!

where the derivatives are computed in the common coordinate system given above and th
tion (t,x,y)°Oh,N

(ab)(t;x,y) belongs to C0(@0,1`)3I u3I u) at least, and for any positive con
stant Kh,N

(a,b) and 0<t,Kh,N
(a,b) , one gets

uOh,N
~a,b!~ t;x,y!u,MKh,N

~a,b!utu, ~21!

MKh,N
(a,b) being a corresponding positive constant not dependent on x,yPI u and t.

Proof: See the Appendix. h

The next lemma concerns the possibility of interchanging the operatorsDx
a ,Dy

b with the
symbol of series in the eigenvector expansion for the heat-kernel given in~b! of Theorem 1.1 in
Ref. 1.

Lemma 3.2: Within our hypotheses on M and A8, the eigenvector expansion of the heat kern
given in (b) of Theorem 1.1 inRef. 1,

K~ t,x,yuA!5(
j 50

`

e2l j tf j~x!f j* ~y!, ~22!

where tP(0,1`), x,yPM, and the real numbersl j (0<l0<l1 ,<l2 ,<¯) are the eigenval-
ues of A with corresponding orthogonal normalized eigenvectorf j , can be derived in x and y
passing the derivative operators under the symbol of series. Indeed, in a coordinate system
in a sufficiently small neighborhood Iu of any point uPM, for x,yPI u , for tP(0,1`) and for
any couple of multindicesa,b,

Dx
aDy

bK~ t,x,yuA!5(
j 50

`

e2l j tDx
af j~x!Dy

bf j* ~y!. ~23!

Moreover, for any T.0 the following upper bounds hold:
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ue2l j tDx
af j~x!Dy

bf j* ~y!u<PT
~a,b!e2l j ~ t22T!, ~24!

uDx
aDy

bK~ t,x,yuA!2Dx
aDy

bP0~x,yuA!u<PT
~a,b!(

j PN
8e2l j ~ t22T! ~25!

<QT
~a,b!e2l~ t22T!, ~26!

where x,yPI u and tP(2T,1`), PT
(a,b) and QT

(a,b) are positive constants which do not depend
t,x,y, P0(x,yuA) is the integral kernel of the projector onto the kernel of A, l is the value of the
first strictly positive eigenvalue, the prime on the summation symbol indicates that the summ
on the vanishing eigenvalues is not considered, and, finally,

PT
~a,b!5@ sup

xP Ī u

iDx
aK~T,x,.uA!iL2~M,dmg!#@ sup

yP Ī u

iDy
bK~T,.,yuA!iL2~M,dmg!#. ~27!

Therefore, the convergence of the series in (23) is absolute in a uniform sense for (t,x,y) bel
in any set@g,1`)3I u3I u , g.0.

Proof: See the Appendix. h

Remark:The right-hand side of~25! can be also written down as

PT
~a,b!E

M
dmg~z!$K~ t22T,z,zuA!2P0~z,zuA!%5PT

~a,b! Tr$K ~ t22T!2P0%. ~28!

The two lemmata above enable us to state and prove a theorem concerning the derivab
the z-function. First of all, let us give some definitions~in the following we shall refer to Defini-
tions 2.1 and 2.2 in Ref. 1!.

Definition 3.1: Let us assume our general hypotheses onM and A8. Fixing a sufficiently
small neighborhood Iu of any point uPM, considering a coordinate system defined in Iu and
choosing a couple of multindicesa,b, the off-diagonal derived local z-function of the operator
A is defined for x,yPI u , Res.D/21uau1ubu, as

z~a,b!~s,x,yuA/m2!ªDx
aDy

bz~s,x,yuA/m2!, ~29!

provided the right-hand side exists, where both derivatives are computed in the coordinate
defined above.

Definition 3.2: Let us assume our general hypotheses onM and A8. Fixing a sufficiently
small neighborhood Iu of any point uPM, considering a coordinate system defined in Iu and
choosing a couple of multindicesa,b, thederived local z-function of the operator A is defined fo
xPI u , Res.D/21uau1ubu, as

z~a,b!~s,xuA/m2!ª$Dx
aDy

bz~s,x,yuA/m2!%x5y , ~30!

provided the right-hand side exists, where both derivatives are computed in the coordinate
defined above.

Remark:The use of a common coordinate system either forx and y is essential in these
definitions.

The following theorem proves that the given definitions make sense.
Theorem 3.1: Let us assume our general hypotheses onM and A8. The local off-diagonal

z-function of the operator A defined for x,yPM, Res.D/2, m.0 ~m being a constant with the
dimension of a mass!,

z~s,x,yuA/m2!5
1

G~s!
E

0

1`

d~m2t !~m2t !s21$K~ t,x,yuA!2P0~x,yuA!%, ~31!
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can be derived in x and y under the symbol of integration in a common coordinate system d
in a sufficiently small neighborhood Iu of any point uPM, providedRes is sufficiently large. In
particular, for any choice of multindicesa,b and x,yPI u , it holds
~a! for Res.D/21uau1ubu the derived localz-functions are well defined holding

Dx
aDy

bz~s,x,yuA/m2!5
1

G~s!
E

0

1`

d~m2t !~m2t !s21Dx
aDy

b$K~ t,x,yuA!2P0~x,yuA!%. ~32!

Moreover, the right-hand side of (32) defines an s-analytic function which belongs to C0($s
PCuRes.D/21uau1ubu%3I u3I u) together with all its s-derivatives.
~b! Whenever xÞy are fixed in Iu ,

~1! the right-hand side of (32) can be analytically continued in the variable s in the w
complex plane.

~2! Varying sPC and (x,y)P(I u3I u)2DI u
, the s-continued function in (31) defines an e

erywhere s-analytic function which belongs to C`(C3$(I u3I u)2DIu%) @whereDI u
ª$(x,y)PI u

3I uux5y%# and it holds inC3$(I u3I u)2DIu%

Dx
aDy

bz~s,x,yuA/m2!5z~a,b!~s,x,yuA/m2!, ~33!

where the functionz on the left-hand side and the functionz (a,b) on the right-hand side are the
respective s-analytic continuations of the initially definedz-function (31) and the right-hand sid
of (32).

~3! Equation (32) holds also when the left-hand side is replaced by the s-continued fun
z (a,b) for Res.0, or everywhere provided Dx

aDy
bP0(x,yuA)50 in the considered point (x,y).

~c! Whenever x5y is fixed in Iu ,
~1! the right-hand side of (30) can be analytically continued in the variable s in the com

plane obtaining a meromorphic function with possible poles, which are simple poles only, sit
in the points

sj
~a,b!5D/21uau1ubu2 j , j 50,1,2,..., if D is odd;

sj
~a,b!5D/21uau1ubu2 j , j 50,1,2,...,D/2211uau1ubu, if D even.

These poles and the corresponding residues are the same as for the set of analytic fun
labeled by the integer N.D/212uau12ubu ~N.D/212 if uau5ubu50),

RN~s,x!m
0
22ª

m2s

~4p!D/2G~s! (j 50

N E
0

m0
22

dt

3$Dx
aDy

be2s~x,y!/2taj~x,yuA!%x5yt
s212D/21 j , ~34!

defined for xPI u and Res.D/21uau1ubu and then continued in the s-complex plane. m0 is an
arbitrary strictly positive mass scale which does not appear in the residues.

~2! Varying xPI u , the s-continued function belongs to C0
„(C2P(a,b))3M… together with all

its s derivatives, P(a,b) being the set of the actual poles (each for some x) among the points
above. Moreover, for any coordinate xk and (s,x)P$C2(P(a,b)øP(a11k,b)øP(a,b11k))%3I u ,
(]/]xk)z (a,b)(s,xuA/m2) exists, is continuous in (s,x) with all of its s derivatives, analytic in
variable s and

]

]xk z~a,b!~s,xuA/m2!5z~a11k ,b!~s,xuA/m2!1z~a,b11k!~s,xuA/m2!, ~35!

wherez (a,b) is the analytic continuation of the initially defined function (30).
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~d! For x,yPI u , the analytic continuations of the right-hand sides of (29) and (30) are w
defined in a neighborhood of s50 and it holds, and the result does not depend on the value
m0.0 and m.0,

@Dx
aDy

bz~s,x,yuA/m2!#s501Dx
aDy

bP~x,y!5dDdx,y lim
s˜0

RN~s,x!m
0
22, ~36!

whereus50 means the analytic continuation fromRes.D/21uau1ubu to s50 of the considered
function and N is any integer.D/212uau12ubu ~D/2 wheneveruau5ubu50!. Finally, we have
defineddD50 if D is odd and 1 otherwise, dx,y50 if xÞy or 1 otherwise.

Sketch of Proof:The proof of this theorem is a straightforward generalization of the proo
Theorem 2.2 in Ref. 1, so we just sketch this proof. As in the proof of Theorem 2.2 in Ref. 1
main idea is to break off the integration in~31! for Res.D/2 as

z~s,x,yuA/m2!5
m2s

G~s!
E

0

1`

dt ts21@K~ t,x,yuA!2P0~x,yuA!# ~37!

5
m2s

G~s!
E

0

m0
22

$¯%1
m2s

G~s!
E

m0
22

1`

$¯%, ~38!

where m0.0 is an arbitrary mass cutoff. Then one studies the possibility of computing
derivative passingDx

a andDy
b under the symbol of integration in both integrals on the right-ha

side above. This is possible provided the absolute values of the derived integrand arex,yuniformly
bounded by integrable functions dependent ona,b in general, for any choice ofa and b. This
assures also the continuity of the derivatives because the derivatives of the integrands a
tinuous functions. The analyticity ins can be proved by checking the Cauchy–Riemann conditi
passing the derivative under the symbol of integration once again. Thes-derivatives of the inte-
grand at any order can still be proven to be bounded with the same procedure. Then the p
similar to the proof of Theorem 2.2 of Ref. 1. One uses Lemma 3.2 and~26! ~choosing 2T
,m0

22! in place of the corresponding formula~99! of Ref. 1, to prove that the latter integral on th
right-hand side of~38! can be derived under the symbol of integration obtaining ans-analytic
function continuous with all of itss-derivatives, forsPC andx,yPI u . The former integral can be
studied employing Lemma 3.1 and, in particular,~20!. The requirementN.D/212 in the expan-
sion in Ref. 1 has to be changedN.D/212uau12ubu in the present case. The requirement in t
point ~a! Res.D/21uau1ubu arises by the term withj 50 in the heat-kernel expansion when a
the derivatives either inx and iny act on the exponential producing a factort2uau2ubu and posing
x5y in the end. Equation~101! and the successive ones of Ref. 1 have to be changed emplo
Oh

(a,b) in place ofOh and ts211N2D/22uau2ubu in place ofts211N2D/2.
The requirementDx

aDy
bP0(x,yuA)50 in ~b3! is simply due to the divergence of the integr

*
0
m0

22

dtts21 for s<0.
Equation~36! is essentially due to the presence of the factor 1/G(s) in all considered integrals

which vanishes with a simple zero ass˜0. h

Comments:
~1! The right-hand side of~36!, for x5y and whenD is even, has the form

Dx
aDy

baD/2~x,yuA!1¯

~4p!D/2 , ~39!

where the dots indicate a finite number of further terms consisting of derivatives of produ
heat-kernel coefficients and powers ofs(x,y), computed in the coincidence limit of the argu
ments. In the caseuau5ubu50, this agrees with the found result for the simple localz-function
given in Ref. 1.
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~2! It is worth noticing that the right-hand side of~36! proves that the procedures o
s-continuingDx

aDy
bz(s,x,yuA/m2) and that of taking the coincidence limit of argumentsx,y gen-

erally do not commute. This means that, understanding both sides in the sense of the an
continuation, in general

z~a,b!~s,x,yuA/m2!ux5yÞz~a,b!~s,xuA/m2!. ~40!

Above the coincidence limit is takenafter the analytic continuation. Obviously, whenever Rs
.D/21uau1ubu,

z~a,b!~s,x,yuA/m2!ux5y5z~a,b!~s,xuA/m2!. ~41!

~3! The point ~b2! proves that, forxÞy, the Green’s function of any operatorAn, n
50,1,2,..., defined in Ref. 1 via localz-function, isC` as one could have to expect.

A second and last theorem concerns the possibility of computing the derived localz-functions
through a series instead of an integral.

Theorem 3.2: Within our hypotheses onM and A8 and m.0, the (off-diagonal and not)
derived localz-function can be computed as the sum of a series. Indeed, choosing a cou
multindicesa,b, in a common coordinate system defined in a sufficiently small neighborho
any point uPM, one has, in the sense of the punctual convergence,

z~a,b!~s,x,yuA/m2!5 (
j PN

8S l

m2D 2s

Dx
af j~x!Dy

bf j* ~y!, ~42!

z~a,b!~s,xuA/m2!5 (
j PN

8S l

m2D 2s

Dx
af j~x!Dx

bf j* ~x!, ~43!

providedRes.3D/21uau1ubu and (x,y)PI u3I u .
Proof: First of all it is worth stressing that, in the considered domain fors, the functions are

continuous in all variables and

z~a,b!~s,x,yuA/m2!ux5y5z~a,b!~s,xuA/m2!. ~44!

So, we perform our proof in the general casexÞy, and then consider the coincidence limit
arguments. Therefore, from Theorem 3.1., for Res.D/21uau1ubu, one has

z~a,b!~s,x,yuA/m2!5
m2s

G~s!
E

0

m0
22

dt ts21Dx
aDy

b$K~ t,x,yuA!2P0~x,yuA!%

1
m2s

G~s!
E

m0
22

1`

dt ts21Dx
aDy

b$K~ t,x,yuA!2P0~x,yuA!%. ~45!

Herem0.0 arbitrarily. Let us focus attention on the second integral. It can be written also

m2s

G~s!
E

m0
22

1`

dt (
j PN

8ts21Dx
af j~x!Dy

bf j* ~y!e2l j t, ~46!

where we have used Lemma 3.2. We want to show that it is possible to interchange the sym
series with that of integration. We shall prove a similar fact for the other integral in~45!, then the
well-known formula (a.0)

a2s5
1

G~s!
E

0

1`

dt ts21e2at ~47!
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will complete the proof of the theorem.
To prove the possibility of interchanging the integration with the summation in the inte

~46!, it is sufficient to show that the absolute value of the function after the summation sym
integrable in the measure*dt3( j . Then Fubini’s theorem allows one to interchange the integ
tions. From Lemma 3.2, we know that, fort.2T.0,

(
j PN

8uts21Dx
af j~x!Dy

bf j* ~y!e2l j tu<PT
~a,b!(

j PN
8tRes21e2l j ~2t22T!

<QT
~a,b!tRes21e2l~ t22T!, ~48!

where l is the first strictly positive eigenvalue ofA. We choose the constantT,m0
22/2. The

t-integration in@m0
22,1`) of the last line above is finite for anysPC. Thus, a part of Fubini’s

theorem proves that the function after the summation symbol in~46! is integrable in the produc
measure.

Let us perform a similar proof for the first integral on the right-hand side of~45!. It can be
written down

m2s

G~s!
E

0

m0
22

dt(
j PN

8ts21Dx
af j~x!Dy

bf j* ~y!e2l j t. ~49!

We want to show that it is possible to interchange the symbol of series with that of integr
PosingT5t/4 we have, fortP(0,m0

22#,

(
j PN

8uts21Dx
af j~x!Dy

bf j* ~y!e2l j tu<Pt/4
~a,b!tRes21 Tr$Kt/22P0%, ~50!

where for~27!

PT
~a,b!

ª@ sup
xP Ī u

iDx
aK~T,x,.uA!i #@ sup

yP Ī u

iDy
bK~T,.,yuA!i #.

Employing~20! of Lemma 3.1 and taking account of the finite volume of the manifold one fi
that there is a positive constantA such that, fortP(0,m0

22#,

PT
~a,b!<AT2D2uau2ubu. ~51!

This is due to the leading order fort˜0 of the heat-kernel expansion~20!. This upper bound,
inserted in~50! with T5t/4, together with thex-integral of the heat-kernel expansion~19! in
Theorem 1.3 of Ref. 1, entails

(
j PN

8uts21Dx
af j~x!Dy

bf j* ~y!e2l j tu<BtRes2123D/22uau2ubu, ~52!

whereB is a positive constant.
As in the previously considered case, for Res.3D/21uau1ubu, we can interchange the

symbol of integral with that of series also in the second integral of~45!. Then ~47! entails the
thesis. h

Notice that, in the caseuau5ubu50, the convergence of the series~43! arises for Res
.D/2, and it is uniform as is well known.1 Actually, our theorem uses a quite rough hypothes
Nevertheless, this is enough for the use we shall make of the theorem above.

Following the way traced out in Theorem 1.3, we can give a precise definition concernin
z-function of the stress tensor. We shall assume, more generally than in Ref. 2,A8ª2D1V
whereV(x)ªm21jR1V8(x) and V8 is real belongs toC`(M) and does not depend on th
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metric. Moreover, in this paper we consider a generalD-dimensional manifold rather than th
more physical caseD54 studied in Ref. 2. Also, as required by our general hypotheses,A8 must
be positive. It is worth stressing that this does not entail necessarilym21jR(x).0 everywhere
also whenV8[0, and neitherV(x).0 everywhere in the general case~see Ref. 1!.

B. The z-regularized stress tensor and its properties

For future convenience, let us define the symmetric tensorial field in a local coordinate
tem,

Tab@f,f* ,g#~x!ª
2

Ag~x!

d

dgab~x!

1

2 EIfA8@g#f* dmg , ~53!

wherefPC`(M) and the functional derivative has been defined in Theorem 1.2. The pr
form of Tab@f,f* ,g#(x) reads, in our case,

Tab@f,f* ,g#~x!5 1
2„¹af~x!¹bf* ~x!1¹af* ~x!¹bf~x!…

2 1
2gab~x!@¹cf~x!¹cf* ~x!1~m21V8~x!!ufu2~x!#1j@„Rab~x!

2 1
2gab~x!R~x!…ufu2~x!1gab~x!¹c¹

cufu2~x!2¹a¹bufu2~x!#. ~54!

A few trivial manipulations which make use ofA8f j5l jf j lead us to a simpler form for
Tab@f j ,f j* ,g#(x), namely

Tab@f j ,f j* ,g#~x!5 1
2 „¹af j~x!¹bf j* ~x!1¹af j* ~x!¹bf j~x!…2j¹a¹buf j u2

1S j2
1

4Dgab~x!Duf j u2~x!1jRab~x!uf j u22
gab~x!

2
l j uf j u2~x!. ~55!

Following the insights given in Sec. II C of this work as well as Ref. 2, we can give
following definition.

Definition 3.3: Within our hypotheses onM and A8ª2D1m21jR1V8(x) defined above
(m,jPR), the local z-function of the stress tensoris the symmetric tensorial field defined
local coordinates as

Zab~s,xuA/m2!ª2
s

m2 zab~s11,xuA/m2!1sgab~x!z~s,xuA/m2!, ~56!

wherezab(s,xuA/m2) is defined as the sum of the series below, in a sufficiently small neigh
hood Iu of any point uPM for Res.3D/212,

(
j PN

8S l j

m2D 2s

Tab@f j ,f j* ,g#~x!, ~57!

and Tab@f j ,f j* ,g#(x) is defined in (53) and (55) with respect to a base of smooth orthog
normalized eigenvector of A.

Comments:
~1! The definition given above makes sense since the relevant series converges fos

.3D/212 because of Theorem 3.2. Notice that the given definition does not depend on th
of smooth orthogonal normalized eigenvectors ofA ~take account that each eigenspace has fi
dimension as follows from Theorem 1.1 in Ref. 1!.

~2! The fact that the coefficientsZab(s,xuA/m2) do define a tensor is a direct consequence
~55! and ~57!. This can be trivially proven for Res.3D/212, where one can make use of th
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series~57! which trivially defines a tensor since all terms of the sum are separately compone
a tensor. Then, the proven property remains unchanged after the analytic continuation for va
s where the series does not converge.

~3! It is worthwhile noticing that the final expression ofTab , and thusZab self, does not
contain eitherm2 or V8 explicitly.

~4! A definition trivially equivalent to~56! ~up to analytic continuations in the variables! is
given by posing directly, for Res.3D/212,

Zab~s,xuA/m2!5s(
j PN

8H 2

m2 S l j

m2D 2~s11!

Tab@f j ,f j* ,g#~x!1gab~x!S l j

m2D 2s

f j~x!f j* ~x!J .

~58!

~5! Due to the uniqueness theorem for analytic functions and Theorem 3.2, each compon
Zab can be built up, within opportune regions, employing the heat-kernel in the fashion of T
rem 3.1. Following this route, by Theorem 3.1, one proves trivially that the symmetric tens
field Zab(s,xuA/m2) is continuous together for all of itss derivatives as a function of~s,x!. In
particular, each component defines a meromorphic function of the variables wheneverx is fixed.
Therefore, let us consider thesimplepoles which may appear in thes-continued components o
Zab(s,xuA/m2). One has to rewrite each component of this tensorial field in terms of sim
z-functions and derivedz-functions via Theorems 1.1 and 1.2. Once this has been done, one
that the only functions which really appear inZab are z (1a,1b), z (1b,1a), and z, each function
evaluated ats11 @see~59!#. The simple localz-function evaluated ins11 admits possible simple
poles in the pointssj with sj5D/22 j 21 where j 50,1,..., wheneverD is odd, otherwisej
50,1,...,D/221 wheneverD is even. Anyhow, the factors in ~56! cancels out the possible pole
s50, which may appear inz(s11) whenD is even. The functionsz (1c,1d)(s11,xuA/m2) have
been considered in Theorem 1.1 and their possible simple poles may arise insj with sj5D/2
1u1au1u1bu212 j 5D/22 j 11 and j 50,1,... wheneverD is odd, otherwisej 50,1,...,D/211
wheneverD is even. Once again, because of the factors on the right-hand side of~56!, any
possible simple pole ats50 is canceled out.

The last comment above can be stated as a theorem.
Theorem 3.3: In our general hypotheses onM and A8, (a) each component o

Zab(s,xuA/m2) can be analytically continued into a mesomorphic function of s whenever
fixed. In particular, in the sense of the analytic continuation, it holds, for x belonging
sufficiently small neighborhood of any point uPM,

Zab~s,xuA/m2!5
s

m2 @z~1a,1b!~s11,xuA/m2!1z~1b,1a!~s11,xuA/m2!#

1
2s

m2 F S j2
1

4Dgab~x!D1jRab~x!2j¹a¹bGz~s11,xuA/m2!. ~59!

(b) The possible poles of each component of Zab(s,xuA/m2), which are simple poles only, are
situated in the points

sj5D/22 j 11, j 50,1,2,..., if D is odd;

sj5D/22 j 11, j 50,1,2,...,D/2, if D even.

(c) Varying xPI u and sPC the s-analytically continued symmetric tensorial fie
(s,x)°Zab(s,xuA/m2) defines an s-analytic tensorial field of C0((C2P)3I u) together with all
its s derivatives, whereP is the set of the actual poles (each for some x) among the points l
above.

Proof: Sketched above. h
                                                                                                                



uld be
ectrum

ion
s

has

y)

3857J. Math. Phys., Vol. 40, No. 8, August 1999 One-loop stress-tensor renormalization in . . .

                    
Remark:Equation~59! could be used as an independent definition of thez-function of the
stress tensor. The important point is that it does not refer to any series of eigenvectors. It co
considered as the starting point for the generalization of this theory in the case where the sp
of the operatorA is continuous provided the functions on the right-hand side of~59! are defined in
terms oft integrations of derivatives of the heat kernel.

Definition 3.4: In our general hypotheses onM and A8 and for xPI u where Iu is a suffi-
ciently small neighborhood of uPM, the one-loop renormalized stress tensoris defined in a
local coordinate system in Iu by the set of functions(a,b51,...,D),

^Tab~xuA!&m2ª
1

2

d

dsU
s50

Zab~s,xuA/m2!, ~60!

where the tensorial field Zab which appears on the right-hand side is the s-analytic continuat
of that defined above andm2.0 is any fixed constant with the dimensions of a squared mas.

We can state and prove the most important properties of^Tab(xuA)&m2 in the following
theorem. These results generalize previously obtained results2,13 for a more general operatorA and
for any dimensionD.0.

Theorem 3.4: In our general hypotheses onM and A8, the functions x°^Tab(xuA)&m2

defined above satisfy the following properties.
(a) The functions x°^Tab(xuA)&m2 (a,b51,2,...,D) define a C` symmetric tensorial field on

M.
(b) This tensor isconservedfor V8[0, and, more generally,

¹a^Tab~xuA!&m252 1
2^f

2~xuA!&m2¹bV8~x! ~61!

everywhere inM.
(c) For any rescalingm2°am2, wherea.0 is a pure number, one has

^Tab~xuA!&m2˜^Tab~xuA!&am25^Tab~xuA!&m21~ ln a!tab~xuA!, ~62!

where tab(xuA)5Zab(0,xuA)/2, which coincides also with the residue of the pole ofzab(s
11,xuA) at s50, is a, conserved for V8[0, symmetric tensor not dependent onm built up by a
linear combination of product of the metric, curvature tensors, V8(x) and their covariant deriva-
tives evaluated at the point x. In general, it satisfies

¹atab~xuA!52dD

aD/221~x,xuA!

2~4p!D/2 ¹bV8~x!, ~63!

wheredD50 when D is odd anddD51 otherwise. In terms of heat-kernel coefficients one
also

tab~xuA!5
dD

~4p!D/2 H aD/221,~ab!~x,xuA!1
gab~x!

2
aD/2~x,xuA!

1F S j2
1

4Dgab~x!D1jRab~x!2j¹a¹bGaD/221~x,xuA!J , ~64!

where we have employed the notations (using the same coordinate system both for x and

aj ,~ab!~x,xuA!ª 1
2@~¹~x!a¹~y!b1¹~y!a¹~x!b!aj~x,yuA!#ux5y . ~65!

~d! Concerning the trace of̂Tab(xuA)&m2 one has
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gab~x!^Tab~xuA!&m25S jD2j

4jD21
D2m22V8~x! D ^f2~xuA!&m21dD

aD/2~x,xuA!

~4p!D/2 2P0~x,xuA!.

~66!

Above, ^f2(xuA)&m2 is the value of the averaged quadratic fluctuations of the field compute
the z-function approach.1,13

@The coefficient (4jD21)21 above is misprinted in Ref. 13 where (2jD)21 appears in place
of it.#

Sketch of Proof:Barring the issue concerning the smoothness, the property~a! is a trivial
consequence of the corresponding fact forZab(s,xuA/m2) discussed in Comment~2! after Defi-
nition 3.3. The tensorial field belongs toC` because of theC` smoothness of the function
(s,x)°Zab(s,xuA/m2) for (s,x)PJ03I u , whereJ0 and I u are respectively neighborhoods ofs
50 in C and uPM. Indeed, first of all, no pole ats50 arises in the functions
(s,x)°Zab(s,xuA/m2) and in theirx derivatives. This is because, considering~56! and ~c2! of
Theorem 3.1, one notices that if any pole appears in the variousz (a,b) functions used building up
Zab , it has to be a simple pole. Anyhow, the factors makes the global functionsZab regular at
s50. Using recursively~c2! of Theorem 3.1 one has that each functionx°Zab(s,xuA/m2) is C`

in a neighborhood ofu for any fixeduPM ands50. More generally, this result holds fors fixed
in a neighborhood of 0 because, by~c1! of Theorem 3.1, one has that no pole can arise in an o
disk centered ins50 with radiusr5 1

2. The functionsZab and all theirx derivatives are also
s-analytic for x fixed in a neighborhood of 0. Then, we can conclude that any func
(s,x)°Zab(s,xuA/m2) is C` in a neighborhood of (0,u) for any fixeduPM. The C` smooth-
ness of the stress tensor then follows trivially from~60! directly.

The property~b! can be proved as follows. From the point~c2! of Theorem 3.1 and taking
account of ~a! of Theorem 3.3 and the definition~60!, we have that~b! holds true if
¹aZab(s,xuA/m2)52Z(s,xuA/m2)¹bV8(x) for the considered pointx and sPC away from the
poles, the functionZ on the right-hand side of the field fluctuations~see Definition 2.7 in Ref. 1!.
By the theorem of the uniqueness of the analytic continuation, if one is able to prove su
identity for Res sufficiently large, this assures also the validity of¹aZab(s,xuA/m2)
52Z(s,xuA/m2)¹bV8(x) everywhere in the variables. Therefore, let us prove that there is a
M.0 such that¹aZab(s,xuA/m2)52Z(s,xuA/m2)¹bV8(x) for Res.M and this will be enough
to prove the point~b!. To get this goal we represent¹aZab(s,xuA/m2), employing~59! for each
function Zab . Then we make recursive use of~35! of Theorem 3.1 and obtain¹aZab(s,xuA/m2)
written as a linear combination of functionsz (a,b)(s11,xuA/m2). Finally we can expand all thes
functions in series of the form~43! of Theorem 3.2, provided Res.M for an opportuneM.0.
Taking account of the comment~4! after Definition 3.3, the explicit expression of the final ser
of ¹aZab(s,xuA/m2) reads, for Res.M,

¹aZab~s,xuA/m2!5s(
j PN

8
2

l j
S l j

m2D 2s

¹aH Tab@f j ,f j* ,g#~x!1
l jgab~x!

2
f j~x!f j* ~x!J . ~67!

Finally, using the form of thez-function of the field fluctuations given in Ref. 1, one has to pro
that for anyxPM,

¹aH Tab@f j ,f j* ,g#~x!1
l jgab~x!

2
f j~x!f j* ~x!J 52

1

2
f j~x!f j* ~x!¹bV8~x!. ~68!

This is nothing but the generalized ‘‘conservation law’’ of the stress tensor for the action

Sj@f,f* #5
1

2 EM@fA8@g#f* 2l jff* #dmg . ~69!
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Indeed,~68! holds when the fieldf satisfies the motion equations for the action aboveA8f
5l jf. This is satisfied by theC` eigenfunctions ofAf j with eigenvaluel j . Therefore~68!
holds true and~b! is proven.

Concerning the point~c!, ~62! with tab(xuA)5Zab(0,xuA)/2 arises as a direct consequence
the definition~60!, noticing that, from Theorem 2.3,Z(s,xuA/m2) is analytic ats50 and, from
~56!, ~60! can be written down also:

^Tab~xuA!&m25
1

2

d

dsU
s50

Zab~s,xuA!1
1

2
Zab~0,xuA!ln m2, ~70!

Similarly, from Definition 3.3, one sees also thatZ(s,xuA/m2)/2 evaluated ats50 takes contri-
bution only from the possible pole ats51 of the functions°zab(s,xuA/m2) ~the remaining
simplez function is regular fors50! and coincides with the value of residue of the pole of t
function ats50. WhenD is odd, no pole ofs°zab(s,xuA/m2) arises ats51 because of~c! of
Theorem 3.1. This is the reason for thedD on the right-hand side of~64!. The form ~64! of tab

assures that it is built up as a linear combination of product of the metric, curvature te
V8(x), and their covariant derivatives, everything evaluated at the same pointx. The property~63!
is consequence of¹aZab(s,xuA/m2)52Z(s,xuA/m2)¹bV8(x) proven during the proof of~b!,
employing the pole structure of the functionZ(s,x) given in Ref. 1. Notice also thattab is
symmetric by construction. Therefore, we have to prove~64! and this concludes the proof of~c!.
It is sufficient to show that

lim
s˜0

szab~s11,xuA!5
dD

~4p!D/2 H aD/221,~ab!~x,xuA!1
gab~x!

2
aD/2~x,xuA!

1F S j2
1

4Dgab~x!D1jRab~x!2j¹a¹bGaD/221~x,xuA!J .

From ~a! of Theorem 3.3 this is equivalent to

lim
s˜0

s
1

2
@z~1a,1b!~s11,xuA!1z~1b,1a!~s11,xuA!#

1 lim
s˜0

sF S j2
1

4Dgab~x!D1jRab~x!2j¹a¹bGz~s11,xuA/m2!

5
dD

~4p!D/2 H aD/221,~ab!~x,xuA!1
gab~x!

2
aD/2~x,xuA!

1F S j2
1

4Dgab~x!D1jRab~x!2j¹a¹bGaD/221~x,xuA!. ~71!

The proof of this identity is very straightforward so we sketch its way only. Using Theorem
it is sufficient to consider the decomposition for large Res ~and a similar decomposition inter
changinga with b!:

sz~1a,1b!~s11,x,yuA/m2!ux5y5
s

G~s11!
E

0

1`

dt tsDx
1aDy

1b@K~ t,x,yuA!2P0~x,yuA!#ux5y

5
s

G~s11!
E

0

m0
22

Dx
1aDy

1b$¯%U
x5y

1
s

G~s11!
E

m0
22

1`

Dx
1aDy

1b$...%U
x5y

.

~72!
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Then, we can expand the integrand of the first integral in the second line of~72! using ~20! of
Lemma 3.1 and we can continue both integrals in the second line of~72! as far ass50. A direct
computation proves that, because of the presence of the factors, only the first integral in~72!,
expanded as said above, gives a contribution. The contribution arises from the terms
heat-kernel expansion which, once integrated int ~taking account of the factorts in the integrand!,
have a pole fors50. This pole is canceled out by the factors giving a finite result. The terms
which have no pole ats50 vanish due to the factors, in the limit s˜0. A similar procedure can
be employed concerning the second limit in~71!. In performing calculations, it is worth to re
member that¹ (x)as(x,y) and ¹ (y)bs(x,y) vanish in the limit x˜y, and, furthermore,
¹ (x)a¹ (y)bs(x,y)ux5y52gab(y). Summing all contributions, one obtains~64!.

Concerning the point~d!, the proof is dealt with as follows. Starting from~55! one finds

gabTab@f j ,f j* ,g#5¹cf j¹
cf j* 1H jR1Fj~D21!2

D

4 GDJ uf j u22
D

2
l j uf j u.

Then, employing the identities 2¹cf* ¹cf5Dufu22fDf* 2f* Df and (2D1jR1m2

1V8)f j5l jf j , we have also

gabTab@f j ,f j* ,g#5Fj~D21!2
D22

4 GDuf j u22~m21V8!ufu21
22D

2
l j uf j u.

SincejD5(D22)/@4(D21)#, we have finally

gabTab@f j ,f j* ,g#5F jD2j

4jD21
D2m22V8G uf j u21

22D

2
l j uf j u.

From Definition 3.3, this entails that, for Res sufficiently large,

gabZab~s,xum2!5
2

m2 F jD2j

4jD21
D2m22V8Gsz~s11,xuA/m2!12sz~s,xuA/m2!. ~73!

The function (s,x)°sz(s11,xuA/m2) is C` in a neighborhood of (0,u) for any uPM. The
proof is similar to that given in~b! above for (s,x)°Zab(s,xum2). Finally, employing Definition
3.4 also taking account of Definition 2.7 in Ref. 1 and~34! in Theorem 2.2 in Ref. 1@i.e., ~74!
below#, one finds~66!. h

Comments:
~1! Concerning the point~b! which generalizes the classical law~10!, we stress that this resu

is strongly untrivial. We have not put this result somewhere ‘‘by hand’’ in the definitions
hypotheses we have employed. Notice also that, in the caseV8[0, the tensorTab@f j ,f j* ,g# we
have used in the definitions is not conserved. Nevertheless, the final stress tensor is con
This should mean that the localz-function approach is quite a deep approach.

~2! Concerning the point~c!, we notice that this result is in agreement with Wald’s axiom5

and, on a purely mathematical ground, it reduces the ambiguity allowed by Wald’s the
Indeed, Wald’s theorem involves at least two arbitrary terms dependent on two free param
Recently it has been proven that in the case of massive fields which are not conformally co
such an ambiguity should be much larger.14 The point~d! proves that the corresponding ambigui
related to the field fluctuations is consistent with that which arises from the stress tensor. A
ing the z-function procedure, the only ambiguity remaining is just that related to the in
arbitrary mass scalem. On the other hand, there is no physical evidence that thez-function
procedure is the physically correct one and thus one cannot conclude that this method get
the ambiguity pointed out by Waldet al.

~3! Concerning the point~d!, we notice that, in the casej5jD and V8[m250, the usual
conformal anomaly8,9 arises providedD is even and the kernel ofA is trivial. Anyhow, in the case
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Ker A is untrivial, the trace anomaly takes a contribution from the null modes also whenD is odd.
In any cases, for the anomalous term, it holds@~34! in Theorem 2.2 in Ref. 1#

dD

aD/2~x,xuA!

~4p!D/2 2P0~x,xuA!5z~0,xuA/m2! ~74!

also forjÞjD .
Let us consider some issues related to the physical interpretations of the theory. SuppS1

acts as a globally one-parameter isometry group on the Riemannian manifoldM giving rise to
closed orbits with periodb.0. Suppose also that there exist aD21 embedded submanifoldS
which, barring fixed points, intersects each orbit just once and is orthogonal to the Killing v
field of the isometry groupK ~notice that any submanifoldSt , obtained by the action onS of the
isometry group on the points ofS, remains orthogonal to the Killing vector field!. In this case the
Riemannian metric is said to bestatic, the parameter of the groupt is said to be theEuclidean time
of the manifold with periodb, and the submanifoldS is said to be theEuclidean spaceof the
manifold.

As is well known,b is interpreted as the ‘‘statistical mechanics’’ inverse temperature of
quantum state; anyway, it has no direct physical meaning because it can be changed by re
the normalization of the Killing vectorK everywhere by a constant factor. The physical tempe
ture, which, in principle, may be measured by a thermometer, is the local rescaling-inv
Tolman temperatureTTª1/@A(K,K)b#.

WheneverM is static andS is endowed with a global coordinate system (x1,...,xD21)[xW ,
M is endowed with a natural coordinate system (t,xW ), tP(0,b), xWPS2F, whereF is the set of
the fix points of the group~which, anyhow, may be empty!. This coordinate system is obtained b
the evolution of the coordinates onS along the orbits of the isometry group and is almost glo
in the sense that is defined everywhere onM except for the set of the~coincident! endpoints of
each orbit atxW constant including the fix points of the group. This set has anyway neglig
measure. Coordinates (t,xW ) given above are said to bestatic coordinates. Notice that, in these
coordinates,]tgab50 and gta50 for a51,...,D21 everywhere. Local static coordinates a
defined similarly.

The important result is that, under our general hypotheses, supposing also thatM is static and
admits static coordinates (t,xW ) andV8 does not depend ont, one has that the stress tensordepends
on xW only and satisfies everywhere

^Tta~xW uA!&m25^Tat~xW uA!&m250 ~75!

for a51,...,D21. The remarkable point as far as the physical ground is concerned is tha
result allows one to look for analytic continuations towards Lorentzian metrics performing
analytical continuationt˜ i t and without encountering imaginary components of the contin
stress tensor. Notice that also^f2(xuA)&m2 and the effective LagrangianLeff(xuA)m2 ~see Definition
2.5 in Ref. 1! do not depend on the temporal coordinate and, moreover, all results contain
Theorem 3.4 hold true in the Lorentzian section of the manifold, considering the trivial an
continuations of all the terms which appear in the thesis. One has the following theorem.

Theorem 3.5:Within our hypotheses onM and A, supposeM is static with Euclidean time
tP(0,b) (b.0) and V8 is invariant under Euclidean time displacements. In this case, for
m2.0 and any point xPM,

^Tab~xuA!&m2Ka~x!sb~x!50, ~76!

whereK is the Killing vector field associated to the timet and s(x) is any vector orthogonal to
K at x. Furthermore, denoting the Lie derivative alongK by L~K!, it holds everywhere onM
(away from fixed points concerning (77))

L~K!c^T
ab~xuA!&m250, ~77!

L~K!^f2~xuA!&m250, ~78!
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L~K!Leff~xuA!m250. ~79!

Finally, all the results of Theorem 3.4 hold in the Lorentzian section provided one conside
Lorentzian-time-continued quantities in place of the corresponding Riemannian ones every.

Sketch of Proof:In the given hypotheses and fixedxPM @x different from any fixed point in
such a case, the thesis being trivial since K(x)50#, let us consider a generally local coordina
systemxW on the Euclidean spaceS around the intersection of the orbit passing fromxPM. This
induces a natural local coordinate system onM, (t,xW ) @wheretP(0,b)#, which includes the same
point x. In our hypotheses~76! is trivially equivalent to~75! in the considered coordinate system

Concerning the form of thez-function of the stress tensor given in Definition 3.3, taki
account of~54!, sincegta(x)50 and]tgab(x)50, only the first line of~54! and the last term in
the last line may produce the considered components of the stress tensor. Actually, the depe
from t of the eigenfunctionsf j of the operatorA can be taken of the formeivt with vPR just
because]t5K is a Killing field as we shall prove shortly. Then, the last term in the last line
~54! immediately vanishes concerning the considered components because the argumen
covariant derivatives~which commute on scalar fields! does not depend ont ; furthermore, taking
account thatA is real and thusf j andf j* correspond to the same eigenvalue, one sees tha
contribution coming from the first line of~54! computed forbÞa5t andaÞb5t vanishes when
one sums overj to get the stress tensorz-function. The validity of~77!–~79! is also obvious
working in local static coordinates where the Lie derivative reduces to the ordinaryt derivative
and taking account of the imaginary exponential dependence formt of the modes. In fact, this
dependence is canceled out directly in the variousz-functions due to the product off j andf j* ~or
corresponding derivatives! which appear in their definitions.

Let us finally prove that one can define the normalized orthogonal eigenvectors ofA8 ~and
thusA! in order to have the dependence fromt said above. Remembering that each eigenfunc
of A is a C`(M) function, and working in the local coordinate system around the orbit ox
considered above wheregab does not depend ont, one trivially has that

A8]tf jk j
5]tA8f jk j

5l j]tf jk j
, ~80!

wheref jk j
is an eigenvector ofA with eigenvaluel j . This holds in the considered coordinat

and, therefore, choosing different local coordinate systems inS and reasoning similarly, the abov
identity can be proven to holdalmosteverywhere onM provided]tf jk j

is interpreted as the
C`(M) scalar field (K,¹f jk j

). Remembering that the dimension of each eigenspacedj is finite
~Theorem 1.1. in Ref. 1!, it must be

]tf jk j
~x!5 (

l j 51

dj

ckj l j
f j l j

~x!, ~81!

almost everywhere. Remembering that locally]tgab50 and, sincegta50, g5(K,K) h ~whereh
is the determinant of the metric induced onS!, one finds from~81!

ckjhj
* 1chjkj

5E
M

]t$f jk j
* ~x!f jh j

~x!%dmg~x!

5E
0

b

dt
d

dt ES
f jk j

* ~t,p!f jh j
~t,p!„K~p!,K~p!…1/2dn~p!,

wherep is any point on the submanifoldS andn is its ~finite! Riemannian measure induced the
from the metric. We have passed the derivative through the symbol of integration empl
Fubini’s theorem and Lebesgue’s dominate convergence theorem. The right-hand side
identity above vanishes, taking account that, for any fixedp,
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lim
t˜01

f~t,p! jk j
5 lim

t˜b
f~t,p! jk j

~82!

because the orbits of the coordinatet are closed and the functions are continuous in the wh
manifold. Therefore, the matrix of the coefficientscpq is anti-Hermitian. Finally, in the considere
eigenspace, we can choose an orthogonal base of smooth normalized eigenfunctions wh
matrix above is represented by a diagonal matrix, the eigenvalues beingiv j l j

, v j l j
PR and l j

51,2,...,dj . In the new base one rewrites~81!, in local coordinates,

]tf jk j
~x!5 iv jk j

f jk j
~x!, ~83!

and this entails trivially, withv jk j
52pnjk j

/b, njk j
PZ by ~82!,

f jk j
~x!5eiv jk j

tw jk j
~x1,...,xD21!. ~84!

We leave to the reader the simple proof of the last statement of our theorem which can be
out in local coordinates. h

As a final remark notice that changes in the periodb of the manifold which correspond to
actual increases of the proper length of the orbits~and not to a simple rescaling of the normaliz
tion of the Killing vector!, in general produceconical singularitiesin the fixed points of the Lie
group provided they exist. In such a case the manifold fails to be smooth and, in gener
theorems proven in this work and in Ref. 1 may not hold.

IV. THE RELATION BETWEEN THE z-FUNCTION AND THE POINT-SPLITTING TO
RENORMALIZE THE STRESS TENSOR. AN IMPROVED FORMULA FOR THE
POINT-SPLITTING PROCEDURE

Similarly to the previous work, we prove here that, in our general hypotheses, a part
~improved! form of the point-splitting procedure can be considered as a consequence o
z-function technique.

A. The point-splitting renormalization

Let us summarize the point-splitting approach to renormalize the one-loop stress tenso4–6 in
the Euclidean case. First of all, we want to rewrite~9! into a more convenient form. Employing th
motion equationsA8f[0 one can rewrite the right-hand side of~9! as

Tab@f,g#~x!5~122j!@¹af~x!¹bf~x!1f~x!¹a¹bf~x!#

1S 2j2
1

2Dgab~x!@¹cf~x!¹cf~x!1f~x!Df~x!#

1Fgab~x!

D
f~x!Df~x!2f~x!¹a¹bf~x!G

2jFRab~x!2
gab~x!

D
R~x!Gf2~x!2

V8~x!1m2

D
gab~x!f2~x!. ~85!

Notice that the first two lines on the right-hand side of~85! produce a vanishing trace in the ca
of j5jD„ª(D22)/@4(D21)#…; the third and the fourth lines have separately a vanishing tr
not depending onj. Finally, the trace of the last line is2@V8(x)1m2#f2(x) trivially. It is
obvious that, in the case of conformal coupling~j5jD , V8[m250!, the trace of the stress tenso
vanishes. Conversely, forjÞjD one also obtains

gab~x!Tab~x!5S jD2j

4jD21
D2m22V8~x! Df2~x!. ~86!
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This is nothing but theclassicalversion of~66!. The most important difference is the lack of th
trace anomaly term which is related to the last two terms on the right-hand side of~66!.

The point-splitting procedure can be carried out employing the expression above for the
tensor ~actually one expects that the same final result should arise starting from differen
equivalent expressions of the stress tensor!. The basic idea is very simple.4–6,15,16Onedefinesthe
a,b component of the one-loop renormalized stress tensor in the pointy as the result of the
following limit:

^Tab~y!&ª lim
x˜y
Dab~x,y!$^f~x!f~y!&2H~x,y!%, ~87!

where the quantum average of the couple of fields is interpreted as the Green’s function
field equation corresponding to the quantum state one is considering, and H(x,y) is a Hadamard
local fundamental solution5,6,17 which has just the task of removing the argument-coincide
divergences from the Green’s functionand from its derivativesand does not depend on th
quantum state. The operatorDab(x,y) ‘‘splits’’ the point y and it is written down following~85!,
after an opportune symmetrization of the arguments~again, the final result should not depend
this symmetrization procedure!,

Dab~x,y!5
122j

2
@ I a

a8¹~x!a8¹~y!b1I b
b8¹~x!b8¹~y!a1¹~y!a¹~y!b1I a

a8I b
b8¹~x!a8¹~x!b8#

1S 2j2
1

2D gab~y!

2
@2I c

c8¹~x!c8¹
~y!c1Dx1Dy#

1
1

2 Fgab~y!

D
~Dx1Dy!2¹~y!a¹~y!b2I a

a8I b
b8¹~x!a8¹~x!b8G

1jFRab~y!2
gab~y!

D
R~y!G2

V8~y!1m2

D
gab~y!. ~88!

Above I a
b85I (y)a

(x)b8(y,x) is a generic component of the bitensor of parallel displacement fromy to
x, so the~co!tangent space at the pointx is identified with the fixed~co!tangent space at the poin
y.

What one has to fix, in order to use~87! on a particular quantum state, is the Hadama
solution H. It is known that, in the caseD is even, this solution is not unique5,6 and is determined
once one has fixed the termw0(x,y) @see Comment~2! of Theorem 2.6 in Ref. 1#. This term,
differently from the case of the renormalization of the field fluctuations, is not completely
trary. Indeed, it is possible to show that there are termsw0 producing a left-hand side of~87!
which is not conserved.5 Moreover, the massless conformally coupled case, and, more gene
the casem50 andV8[0, involves some difficulties for the choice ofw0 . FormÞ0, it is possible
to fix w0 through the Schwinger–deWitt algorithm4 obtaining a conserved renormalized stre
tensor.4,5 This is not possible form50 because Schwinger–deWitt’s algorithm becomes sing
in that case. Anyhow, there is a further prescription due to Adler, Lieberman, and Ng18 ~see also
Refs. 3 and 5! which seems to overcome this drawback: this is the simplest choicew0(x,y)[0.
However, in the case of a massless conformally coupled field at least, as pointed out by3

another drawback arises: the above prescription cannot produce a conserved stress tenso
theless, as proven in Ref. 3, in the case of~analytic in the cited reference! either a Lorentzian or
Riemannian manifold, it is still possible to add a finite term on the right-hand side of~87! which
takes account of the failure of the conservation law in order to have a conserved final left
side. This further term carries also a contribution to the trace of the final tensor which then f
vanish and coincides with the well-known conformal anomaly. In Ref. 5, it has been argue
such an improved procedure can be generalized to any value ofm andj getting
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^Tab~y!&ªgab~y!Q~y!1 lim
x˜y
Dab~x,y!$^f~x!f~y!&2H~0!~x,y!%, ~89!

where H~0! is the Hadamard solution determined by the choicew0[0 andQ is a term fixed by
imposing both the conservation of the left-hand side of~89! and the request that the renormaliz
stress tensor vanishes in the Minkowski vacuum. Employing the localz-function approach, we
shall find out a point-splitting procedure which, in the case of a compact manifold, gener
Wald’s one for a general operator2D1V in D.1 dimensions in a Riemannian, not necessa
analytic, manifold and gives an explicit expression forQ automatically.

B. Local z-function and point-splitting procedure. An improved point-splitting
prescription

In this part of the work we shall state a theorem concerning the relation between th
considered techniques proving their substantial equivalence within our general hypotheses

Theorem 4.1: Let us assume our general hypotheses onM and A8 and suppose also D
.1.

(a) The renormalized strees tensor^Tab(yuA)&m2 defined in Definition 3.4 can be also com
puted as the result of a point-splitting procedure. Indeed one has, for anym2.0,

^Tab~yuA!&m25 lim
x˜y
Dab~x,y!$G~x,yuA!2Hm2~x,y!%1

gab~y!

D S dD

aD/2~y,yuA!

~4p!D/2 2P0~y,yuA! D ,

~90!

whereDab is defined in (88), G(x,yuA)ªm22z(1,x,yuA/m2) is the m2-independent ‘‘Green’s
function’’ of A defined in Ref. 1, P0(y,yuA) is the C` integral kernel of the projector on the kerne
of A andHm2(x,y) is defined as (the summation appears for D>4 only)

Hm2~x,y!5 (
j 50

D/222

~D/22 j 22!! S 2

s D D/22 j 21 aj~x,yuA!

~4p!D/2 2
aD/221~x,yuA!

~4p!D/2 ~2g1 ln m2!

2
2aD/221~x,yuA!2aD/2~x,yuA!s

2~4p!D/2 lnS s

2 D . ~91!

if D is even, and (the summation appears for D>5 only)

Hm2~x,y!5 (
j 50

~D25!/2
~D22 j 24!!! Ap

2~D23!/22 j S 2

s D D/22 j 21 aj~x,yuA!

~4p!D/2

1
a~D23!/2~x,yuA!

~4p!D/2 A2p

s
2

a~D21!/2~x,yuA!

~4p!D/2 A2ps ~92!

if D is odd.
(b) Hm2 is a particular Hadamard local solution of the operator A8 truncated at the orders

L,M,N. Indeed, one has

Hm2~x,y!5
UD

~4p!D/2~s/2!D/221 (
j 50

L

uj~x,y!s j~x,y!

1dDS (
j 50

M

v j~x,y!s j D lnS s

2 D1dD(
j 50

N

wj~x,y!s j , ~93!

wheredD50 if D is odd anddD51 if D is even; UD50 for D52 and UD51 otherwise; and
furthermore,
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~1! L5D/222, M51, and N50 for D even, and L5(D21)/2 when D is odd.
~2! The coefficients uj andv j of the above Hadamard expansion are completely determine

fixing the value as x̃ y of the coefficient of the leading divergent term in order that this exp
sion for L,M ,N˜1` defines a Green’s function formally. Using our conventions, this mea

u0~y,y!5
4pD/2

D~D22!vD
, ~94!

for D>3,vD being the volume of the unitary D-dimensional disk, and

v0~y,y!5
1

4p
~95!

for D52.
~3! The coefficients wj , when D is even, are completely determined by posing

w0~x,y!ª2
aD/221~x,yuA!

~4p!D/2 @2g1 ln m2#. ~96!

Proof: See the Appendix. h

Comments:
~1! WheneverD is even, the logarithm in~93! contains a dimensional quantity. At first sigh

this may look like a mistake. Actually, this apparent drawback means that the third summat
~93! has to contain terms proportional to lnm2 which can be reabsorbed in the second summa
transforming the argument of the logarithm froms/2 into the nondimensional onesm2/2. Indeed,
the term on the right-hand side of~96! makes this job concerning the termv0 in ~93!. Since~93!
is computed up toM51, one may expect the presence of a corresponding termw1 in the last
summation in~93!. Actually, this term gives no contribution to the stress tensor employing~90!
and~88! as one can check directly, taking into account that in any coordinate system aroun
xPM ~with an obvious meaning of the notations!

I b
a8~x,y!ux5y5db

a8 ~97!

and

¹~x!a¹~x!bs~x,y!ux5y52¹~x!a¹~y!bs~x,y!ux5y

5¹~y!a¹~y!bs~x,y!ux5y52¹~y!a¹~x!bs~x,x8!ux5y5gab~y!. ~98!

In particular, one can check that each line on the right-hand side of~88! vanishes separately whe
it is evaluated forx˜y on the considered terms of the Hadamard expansion. This is the reas
have putN50 in ~93! and we have omitted the corresponding term in~91!. Notice that, con-
versely, in the usual version of point-splitting procedure,4,3,5 the termw1(x,y) is necessary. Simi-
larly, the terms of ordersn ln s with n.1 give no contribution to the stress tensor and thus
have omitted them in~93!.

~2! In the caseD is odd, the expansions~92! and~93! do not consider terms corresponding
sk1(1/2) with k51,2,... . In fact, these terms give no contribution to the stress tensor via~90! and
~88!. Also in this case, each line on the right-hand side of~88! gives a contribution which vanishe
separately forx˜y. Since~88! and~90! involve that the result does not depend on the coordin
system, one can check this fact working in Riemannian normal coordinates centered iny.

~3! The point-splitting procedure suggested in Ref. 5 forD54, differently from our proce-
dure, requiresw0[0 rather than~96!. Actually, the functions which appears in Ref. 5 is define
as two times our functions. Therefore, taking into account that the argument of the logarithm
the second line of~91! is a quarter of Wald’s one, Wald’s prescription corresponds to tak
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w0(x,y)2v0(x,y)ln 450 in our case. Actually, as clarified in Ref. 3, the logarithm argum
which appear in Wald’s prescription has to be understood as ln(s/u2), whereu is the unit of length
employed. In our formalism, this corresponds, in particular, to performing the changes lns/2)
˜ ln@s/(2u2)# and lnm2

˜ln(m2 u2) in ~91!. Equation ~91! with the changes above entails th
Wald’s prescription, namelyw0(x,y)2v0(x,y)ln 450, is satisfied provided one fixes am2 such
that 2g1 ln(m2 u2/4)50, namelym52e2g/u.

This proves that, under our hypotheses, our prescription generalizes Wald’s when the l
understood in the Euclidean section of the manifold. Moreover, our prescription, different
Ref. 5, gives explicitly the form of the Hadamard local function to subtract to the Green’s fun
in the general case as well as an explicit expression for the termQ in ~89!, in terms of heat-kerne
coefficients and, trivially, for any choice of the value ofm2.

~4! Rescaling the parameterm2, the expression of the final stress tensor changes by taki
term (lna)tab(y). We know the explicit form of such a term; indeed, it must be that given in
point ~c! of Theorem 3.4. Notice also that the obtained point-splitting method, also concernin
rescaling ofm2, agrees with the corresponding point-splitting procedure for computing the
fluctuations given in Ref. 1. For example, the point~d! of Theorem 3.4 holds, provided both side
are renormalized with the point-splitting procedures above and the same value ofm2 is fixed.

~5! The point-splitting procedure we have found out uses the heat-kernel expansion in
rem 1.3 of Ref. 1 and nothing further. This expansion can be built up also either in nonco
manifolds or manifolds containing boundary, essentially because it is based upon local co
ations~see discussion in Ref. 3 concerning Schwinger–deWitt’s expansion!. Therefore, it is natu-
ral to expect that the obtained procedure, not depending on thez-function approach, may work in
the general case~namely, it should produce a symmetric conserved stress tensor with the k
properties of the trace also in noncompact or containing boundary manifolds!, provided the
Green’s function of the considered quantum state has the Hadamard behavior.

~6! As a final comment, let us check on the found point-splitting method in the Euclid
section of Minkowski space–time which is out of our general hypotheses, without referring
z-function approach. In this case, forA52D1m2, one has that the heat-kernel referred to g
bally flat coordinates reads

K~ t,x,yuA!5
e2s/2t

~4p!2t2 e2m2t, ~99!

and thus, supposingm2.0,

aj~x,yuA!5
~21! jm2 j

j !
. ~100!

As is well known, the~Euclidean! Green’s function of Minkowski vacuum can be comput
directly:

G~x,yuA!5E
0

1`

K~ t,x,y!dt5
2m

~4p!2As/2
K1S 2Asm2

2 D . ~101!

Expanding K1 in powers and logarithms ofs one gets

G~x,yuA!5
2

~4p!2s
1

1

~4p!2 H m21
m4

4
s1s2f ~s!J lnS s

2 D1
m2

~4p!2 ~2g211 ln m2!1sg~s!,

~102!

wheref andg are smooth bounded functions. Then, employing~90!, ~93!, and~100!, it is a trivial
task to prove that,providedthe choicem5me23/4 is taken in~96!, one getŝ Tab(y)&[0 as it is
expected. In particular, one finds alsoQ(y)[m4/(128p2) for the coefficient ofgab(y) in ~89! and
                                                                                                                



the

g

en’s

math-
ss
elation

n
ralize

t-kernel

e is

n
efined
ann-
are

yed
his
ther in
dure

ially
e Uni-

20,

of

3868 J. Math. Phys., Vol. 40, No. 8, August 1999 Valter Moretti

                    
in the last line of~90!. For a general value ofm2, the computation of the stress-tensor trace via
formula in ~d! in Theorem 3.4 reproduces the correct Coleman–Weinberg results19 for the field
fluctuations still obtained by the localz function approach13 as well as by using the point-splittin
formula given in Theorem 2.6 in Ref. 1.

The casem50 is much more trivial. In this case the heat kernel is given by~99! with m
50, and thus onlya0(x,y)[1 survives in the heat-kernel expansion. In this case,A is not positive
defined but positive only, the manifold is not compact, and the Minkowski vacuum Gre
function can still be computed integrating the heat-kernel despite that the localz-function does not
exist. Moreover, the Green’s function coincides with the Hadamard local solution 2/@(4p)2s#.
Furthermore,Q(y)[0, and thus our procedure gives a vanishing stress tensor as well.

V. SUMMARY AND OUTLOOKS

In this paper we have concluded the rigorous analysis started in Ref. 1 concerning the
ematical foundation of the theory of the localz-function renormalization of the one-loop stre
tensor introduced in Ref. 2. The other important point developed herein has been the r
between the localz-function approach and the~Euclidean! point-splitting procedure.

Concerning the first point, we have proven that thez-function theory of the stress tensor ca
be rigorously defined, at least in closed manifold, giving results which agree with and gene
previous results concerning thez-function renormalization of the field fluctuations.1 On the math-
ematical ground, we have also proven a few new theorems about the smoothness of the hea
expansions.

Concerning the second proposed goal, we have found out that the two methods~z-function
and point-splitting! agree essentially, provided a particular form of point-splitting procedur
employed. Within the hypotheses of a Riemannian compactC` manifold, this point-splitting
procedure is a natural generalization~in any D.1 and for a larger class of Euclidean motio
operators! of Wald’s improved procedure presented in Ref. 3 and also discussed in Ref. 5 d
in a Lorentzian manifold~but the same arguments employed can be trivially extended to Riem
ian manifolds!. Our procedure also gives explicitly the form of the various terms which
employed in the point-splitting procedure in terms of the heat-kernel expansion.

In our opinion, the found point-splitting procedure should work also without the emplo
hypotheses and independently from thez-function procedure. We have anyhow checked t
conjecture in the Euclidean Minkowski space–time, proving that it holds true as expected ei
the casem50 or m.0. Moreover, the obtained results concerning the point splitting proce
should be trivially generalized for static Lorentzian manifolds at least.
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APPENDIX: PROOF OF SOME LEMMATA AND THEOREMS

Proof of Lemma 3.1:Let us consider the form of the heat-kernel as it was built up in Ref.
Sec. 4, Chap. VI. This construction holds also in the case of an operatorA8ª2D1V and not only
A8ª2D as pointed out in Ref. 1. In our notations, one has by~45! in Sec. 4 of Chap. VI of Ref.
20

FN~ t,x,y!5
e2s~x,y!/2t

~4pt !D/2 x„s~x,y!…(
j 50

N

aj~x,yuA!t j , ~A1!

N.D/212 is a fixed integer.
@Actually, equation~45! in Sec. 4 of Chap. VI of Ref. 20 is misprinted in Ref. 20 because

the unnecessary presence of the operatorLx on the right-hand side of the first line of~45! in Sec.
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4 of Chap. VI of Ref. 20. Since the absence of this operator in the correct formula, we cann
the second line of~45! in a direct way. In fact, in Ref. 1 we have used a different~but equivalent
in practice! form of the remaining of the heat-kernel expansion with respect to that which ap
in ~45!. Some other parts of Sec. 4 of Chap. VI in Ref. 20 contain several other misprints lik
requirementFPC0(M3M3@01`)) in Lemma 2 in Ref. 20, which has to be corrected intoF
PC1

„M3M3@01`)….# Also,

K~ t,x,yuA!5FN~ t,x,y!1~FN* F !~ t,x,y,!, ~A2!

whereFN is theC`
„(0,1`)3M1M… parametrix defined in Ref. 1.

The remaining proportional toOh,N in ~20! of Lemma 3.1 of Ref. 1 is therefore (FN* F)
3(t,x,y). We remind the reader thats(x,y) is one-half the squared geodesical distance„d(x,y)…
from x to y and defines an everywhere continuous function onM3M which is alsoC` in the set
of the pointsx,y such thatd(x,y),r . Herex(u) is a non-negativeC`(@0,1`)) function which
takes the constant value 1 foruuu,r 2/16 and vanishes foruuu>r 2/4, r being the injectivity radius
of the manifold. The convolution* has been defined in Sec. 4 of Chap. VI of Ref. 20,

~G* H!~ t,x,y!ªE
0

t

dtE
M

dmg~z!G~t,x,z!H~ t2t,z,y!, ~A3!

whenever the right-hand side makes sense.
Finally, the functionF which appears in~A2! is defined by a uniformly convergent series

@0,T#3M3M for any T.0 @see~43! in Sec. 4 of Chap. VI of Ref. 20#.

F~ t,x,y!ª(
l 51

`

@~Ax82]/]t !FN#* l~ t,x,y! ~A4!

~B* l meansB* B* ...* Bl times!. This function belongs toCL
„@0,1`)3M3M… provided M

.D/212L ~see Ref. 20!. Equation~A2! satisfies the heat-kernel equation providedF is C1 in all
variables, namelyN.D/212.

Let us consider~A2!. The remainder of the ‘‘asymptotic’’ expansion of the heat kernel co
puted up to the coefficientaN(x,yuA)(N.D/212) is just the second term on the right-hand sid
It can be explicitly written down~see Ref. 20!

~FN* F !~ t,x,y!5E
0

t

dt t2D/2~ t2t!N2D/2E
M

dmg~z!FN~t,x,z!F~ t2t,z,y!

3e2s~x,z!/2te2s~z,y!/2~ t2t!. ~A5!

Here FN(t,x,z) defines a function which belongs toC`(@0,1`)3M3M) and vanishes
smoothly whenever the geodesical distance betweenx and z is sufficiently large, i.e.,d(x,z)
>r /2, due to the presence of the functionx in the expression of the parametrics~A1!. F defines
an everywhere continuous function which belongs also toCL provided N.D/212L and the
geodesical distance betweeny andz is sufficiently short, i.e.,d(y,z),r , andtP@0,1`).

Then let us pick out a pointuPM. We can find a geodesically spherical open neighborh
of u,Ju , with a geodesic radiusr 0,r /8. By the definition of the functionx, it holds x„s(x,y)…
51 wheneverx,yPJu and thus the coefficientx can be omitted in the heat-kernel expansi
working with any coordinate system defined in a neighborhood ofJu ~e.g., normal Reimannian
coordinates!. From now on concerning the pointsx andy we shall work within such a coordinat
system in the neighborhoodJu . Notice also that, by the triangular inequalityd(x,y)
@5A2s(x,y)#,r /4 wheneverx,yPJu .

Now, let us supposeN.D/212uau12ubu. This entails FPCuau1ubu and thus alsoF
PCuau1ubu provided the distance of its arguments defined on the manifold is less thanr and t
P(0,1`). We can apply operatorsDx

a andDy
b to both sides of~A2!. The action of the derivatives
                                                                                                                



e

side

re

ates
ve
e

us
ns

of
y
g

nte-
,

3870 J. Math. Phys., Vol. 40, No. 8, August 1999 Valter Moretti

                    
~A2! produces the first term on the right-hand side of~20! at least~notice thatx[1 in our
hypotheses!. Let us focus attention on the action of the derivatives on the remaining in~A2!. Our
question concerns the possibility of passing these under the integration symbol in~A5!. The action
of the derivatives can be carried under integration symbols~obtaining also anx,y-continuous final
function if the derivatives of the integrand are continuous! provided, for any fixed choice of a
couple of of multindicesa,b, the derivatives of the integrand are locallyx,y-uniformly bounded by
an integrable function~dependent on the multindices in general!. We shall see that this is the cas
after we have manipulated the integral opportunely. Notice that the derivatives~with respect to the
manifold variables! of the functionF do exist because the second integral on the right-hand
of ~A5! takes contribution only from the pointsz such as bothd(y,z),r and d(x,z),r are
fulfilled as required above. Indeed, it must bed(x,y),r /2, otherwise,FN(t,x,z) smoothly van-
ishes as pointed out above, and, taking account ofd(x,y),r /4, the triangular inequality entails
alsod(y,z)<d(x,z)1d(x,y),r /21r /453r /4.

Now, let us fix a new open neighborhood ofu, I u , such that its closure is contained inJu , and
fix T.0. Barring t°t2D/2, all functions of t,x,y,z and all their ~x,y,z-!derivatives we shall
consider are bounded in the compact@0,T#3 Ī u3 Ī u3M where we are working because these a
continuous therein. We can rearrange the expression~A5! into

~FN* F !~ t,x,y!5E
0

t

dtt2D/2~ t2t!N2D/2E
SD21

dvW E
0

1`

drrD21J~x,vW ,r!

3e2r2/2tFM„t,x,z~x,r,vW !…F„t2t,z~x,r,vW !,y…3e2s„z~x,r,vW !,y…/2~ t2t!.

~A6!

where, to determine the position ofz, we have employed a spherical system of normal coordin
r,vW centered in anyx, r is the distance ofz from x, its range is maximized in the integrals abo
because the integrand vanishes smoothly forr.r /2, and thus all the functions contained in th
integrand are well-defined within$rP@0,1`)%. vW is a unitary (D21)-dimensional vector and
dmg(z)5drdvW rD21J(x,vW ,r), dvW is the natural measure onSD21. The functionJ is continuous
and bounded inĪ u3SD213$rP@0,r /2#% together with all derivatives.

Then, we can change variablesr°r/At5:r8 obtaining

~FN* F !~ t,x,y!5E
0

t

dt~ t2t!N2D/2E
SD21

dvW E
0

1`

dr8r8D21J~x,vW ,t1/2r8!

3e2r82/2FM„t,x,z~x,t1/2r8,vW !…F„t2t,z~x,t1/2r8,vW !,y…

3e2s„z~x,ṫ1/2r8,vW !,y…/2~ t2t!. ~A7!

The formal action of the operatorsDx
a andDy

b under the integration produces a sum of continuo
and bounded functions~now the functiont°t2D/2 has disappeared and the remaining functio
and theirx,y,z-derivatives are bounded since they are product of bounded functions!. Also, it
changes (t2t)N2D/2 into several terms of the form (t2t)N2D/22Li ~where eachLi<uau1ubu),
because of the derivatives of the second exponential. These functions oft are continuous and
bounded beingN.D/21uau1ubu>Li in our hypotheses. We can bound the absolute value
these functions byCe2r82/2, whereC is a sufficiently large constant. This function is triviall
integrable in the measure we are considering. Thisx,y,t-uniform bound assures that, concernin
the x,y-derivatives ofFN* F, one can interchange the symbols of derivatives with those of i
grals and also that the derivative of (t,x,y)°(FN* F)(t,x,y) are continuous functions in (0
1`)3Iu3Iu .

In order to finish this proof, let us consider a finer estimate ofOh,N
(a,b)(x,y). We have the

inequality20 for tP@0,t#
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d2~x,y!

t
<

d2~x,z!

t
1

d2~z,y!

t2t
, ~A8!

and thus, picking out anyhP(0,1) and posingdª12hP(0,1), we get~notice thatt2t>0!

e2s~x,z!/2te2s~z,y!/2~ t2t!<e2hs~x,y!/2t~e2ds~x,z!/2te2ds~z,y!/2~ t2t!!<e2hs~x,y!/2te2ds~x,z!/2t.
~A9!

We can use this relation in thex,y-derivatives of~A7!, obtaining

uDx
aDy

b~FN* F !~ t,x,y!u<(
i

e2hs~x,y!/2tE
0

t

dt~ t2t!N2D/22LiE
SD21

dvW E
0

1`

dr8r8D21e2dr82/2Ci ,

~A10!

where the coefficientsCi are upper bounds of the absolute values of the continuous func
missed in the integrand andLi<uau1ubu. We can execute the integral int obtaining, for 0,t
<T andx,yPI u ~remember thatN.D/21uau1ubu!

uDx
aDy

b~FN* F !~ t,x,y!u<e2hs~x,y!/2t(
i

Ci ,d8 tN112Li2D/2<
Cd

~4p!D/2 e2hs~x,y!/2ttN112D/22uau2ubu,

~A11!

whereCd is a positive constant sufficiently large which depends onT,a,b in general. This proves
the remaining part of the thesis posing Kh,N

(a,b)
ªT andMh,N

(a,b)
ªCd . Indeed, the remainingOh,N

(a,b)

we wanted to compute coincides withDx
aDy

b(FN* F) just up to the factor
(4pt)2D/2tN2uau2ubu exp(2hs/2t). Oh,N

(a,b) can be defined int50 asOh,N
(a,b)(0;x,y)50, obtaining

a continuous function in@0,1`)3I u3I u . h

Proof of Lemma 3.2 :Let us consider an eigenvectorf j and fix TP(0,1`) and consider a
neighborhood ofuPM,Ju where a coordinate system is defined. In the following,x and y are
points in a new neighborhood ofu,I u , such that its closure is contained inJu . These points are
represented by the coordinate system given above and the derivative operators are referred
coordinates. From Theorem 1.3 of Ref. 1, it holds

e2Tl jf j~x!5E
M

dmg~z!K~T,x,zuA!f j~z!. ~A12!

We can derive both sides of the equation above employing operatorsDx
a . Since, for a fixedT the

derivatives of K are bounded@(x,z)°K(T,x,zuA) is C` and Ī u3M is compact in our
hypotheses1#, we can pass the derivative operator under the integral symbol obtaining

uDx
af j~x!u5uel j TE

M
dmg~z!Dx

aK~ t,x,zuA!f j~z!u<el l j TiDx
aK~T,x,.uA!iL2~M,dmg! ,

~A13!

where we have made use of the Cauchy–Schwarz inequality and we have taken acco
if j i51 @from now on we omit the indexL2(M,dmg) in the norms because there is no ambig
ity#. The functionx°iDx

aK(T,x,.uA)i , for xP Ī u is continuous from Lebesgue’s dominate co
vergence theorem sinceDx

aK(T,x,yuA) defines a continuous function inx and y and there is a
constant~dependent onT, in general! MT such thatuDx

aK(T,x,zuA)u2<MT for ~x,z! which belong
in the compactĪ u3M and the measure of the manifold is finite. The same results holds when
one keeps fixedy in I u and integrates overx. Therefore, let us define

PT
~a,b!

ª@ sup
xP Ī u

iDx
aK~T,x,.uA!i #@ sup

yP Ī u

iDy
bK~T,.,yuA!i # ~A14!
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and we have, for anyx,yPI u , thel j -uniform upper bound

ue2l j tDx
af j~x!Dy

bf j* ~y!u<PT
~a,b!e2l j ~ t22T!. ~A15!

The found inequality proves that the absolute values of the terms of the series

(
j PN

8e2l j tDx
af j~x!Dy

bf j* ~y! ~A16!

arex,y-uniformly bounded, for (x,y,t)PI u3I u3(2T,1`), by terms of the convergent series~see
~30! in Ref. 1!

(
j PN

8e2l j ~ t22T!PT
~a,b!5PT

~a,b!E
M

dmg~z!$K~ t22T,z,zuA!2P0~z,zuA!%

5PT
~a,b! Tr$K~ t22T!2P0%.

This holds for any choice of the multindicesa,b and this entails~23!, ~25!, and ~26!. The final
upper bound~26! is a trivial consequence of~99! in Ref. 1 and the fact that the manifold has
finite measure. h

Sketch of Proof of Theorem 4.1:Let us fix a coordinate system in a neighborhoodI u of a point
uPM. All the following considerations will refer to these coordinates, and in particular
couple of pointsx,y within that neighborhood. Then, let us consider the expression~58! for the
z-function of the stress tensor. Employing the eigenvalue equationAf j5l jf j one can rearrange
~58! into

Zab~s,yuA/m2!5 (
j PN

8
2s

m2 S l j

m2D 2~s11!

Tab8 @f j ,f j* ,g#~y!, ~A17!

where~C.C. means the complex conjugation of the terms already written!

Tab8 @f j ,f j* ,g#~y!5~122j!
1

2
~¹af j~y!¹bf j* ~y!1f j~y!¹a¹bf j* ~y!1C.C.!

1S 2j2
1

2D gab~x!

2
~¹cf j~y!¹cf j* ~y!1f j~y!Df j* ~y!1C.C.!

1
1

2 S gab~y!

D
f j~y!Df j* ~y!2f j~y!¹a¹bf j* ~y!1C.C.D

1jS Rab~y!2
gab~y!

D
R~y! D uf j~y!u22

V8~y!1m2

D
gab~y!uf j~y!u2

1
l j

D
gab~y!uf j~y!u2. ~A18!

The stress tensor is then given by~60! in Definition 3.4 after the analytic continuation in th
variables of Zab(s,yuA/m2) given in ~A17!. Employing Theorem 3.2 and~A18! and ~A17!, we
can write down the expression ofZab(s,yuA/m2), employing also functionsz@a,b#(s,yuA/m2)
defined as in Definition 3.2 with the difference that covariant derivatives are employed inste
ordinary derivatives. We get, omitting the argumentsy andA/m2 in the variousz-functions for the
sake of brevity,
                                                                                                                



e

sign

3873J. Math. Phys., Vol. 40, No. 8, August 1999 One-loop stress-tensor renormalization in . . .

                    
Zab~s,yuA/m2!5~122j!
s

m2 ~z~1a,1b!~s11!1z~1b,1a!~s11!1z@1a11b,0#~s11!

1z@0,1a11b#~s11!!1S 2j2
1

2D sgab~y!gcd~y!

m2 ~2z~1c,1d!~s11!

1z@0,1c11d#~s11!1z@1c11d,0#~s11!!1
s

m2 Fgab~y!gcd~y!

D
~z@0,1c11d#~s11!

1z@1c11d,0#~s11!!2z@0,1a11b#~s11!2z@1a11b,0#~s11!G
1

2sj

m2 S Rab~y!2
gab~y!

D
R~y! D z~s11!2

V8~y!1m2

D

2sgab~y!

m2 z~s11!

1
2sgab~y!

D
z~s!. ~A19!

First of all, we notice that the term proportional togab(y) in ~90! arises from the last term abov
via item ~c! of Theorem 2.2 in Ref. 1.

Let us consider the contribution to the stress tensor due to the termsz (1a,1b)(s11,yuA/m2).
Similarly to ~101! in Ref. 1, we can define, for anym0

2.0 fixed andN integer.D/214, taking
account of Lemma 3.1 above:

z~1a,1b!~N,s11,x,yuA/m2,m0
22!ª

m2s

G~s11!
E

0

m0
22

dt ts
e2hs~x,y!/2t

~4pt !D/2 tN22Oh,N
~1a,1b!

~ t;x,y!

1
m2s12

G~s11!
E

m0
22

1`

dt ts¹~x!a¹~y!b@K~ t,x,yuA!2P0~x,yuA!#.

~A20!

Similarly to Lemma 2.1 in Ref. 1, one can prove that the function ofs,x,y defined above is
continuous in a neighborhoodI 3I u3I u , whereI is a complex neighborhood ofs50 with all of
its s derivatives, in particular, it iss-analytic therein. Employing Lemma 3.1 and the item~a! of
Theorem 3.1 one can write also, for Res11.D/214,

z~1d,1b!~s11,x,yuA/m2!5z~1a,1b!~N,s11,x,yuA/m2,m0
22!2S m

m0
D 2s12 ¹~x!a¹~x!bP0~x,yuA!

~s11!G~s11!

1
m2s12

~4p!D/2G~s11! (j 50

N

¹~x!a¹~y!bS E
0

m0
22

dt ts2D/21 je2s/2taj~x,yuA! D .

~A21!

In particular, for Res11.D/214, the left-hand side above is continuous inx,y and thus we can
take the coincidence limit forx˜y. Noticing that one can also pass the derivatives under the
of integration on the right-hand side and that¹ (x)a¹ (y)bs(x,y)ux5y52gab(y) and
¹cs(x,y)ux5y50, we get for the right-hand side of the expression above multiplied by 2s/m2 and
evaluated forx5y
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2s

m2 z~1a,1b!~N,s11,y,yuA/m2,m0
22!2

2s

m2 S m

m0
D 2s12 P0ab~x,yuA!

~s11!G~s11!

1
2s

m2

m2s12

~4p!D/2G~s11! (j 50

N H ajab~y,yuA!m0
22~s2D/21 j 11!

s2D/21 j 11

1
gab~y!

2

aj~y,yuA!m0
22~s2D/21 j !

s2D/21 j J ,

where ajab(y,yuA)ª¹ (x)a¹ (y)baj (x,yuA)ux5y , and Pjab(y,yuA)ª¹ (x)a¹ (y)bP0(x,yuA)ux5y .
The contribution to the stress tensor, namely, to (d/ds)us50Zab(s,yuA/m2)/2 of the considered
term, is then obtained by continuing the result above as far ass50, executing thes derivative and
multiplying for (122j)/2 the final result. Taking account thatz(N,s,x,yuA/m2,m0

22) is smooth in
a neighborhood ofs50, this leads to, apart from the unessential factor (122j),

d

dsU
s50

2s

m2 z~1a,1b!~s11,yuA/m2!

5
1

m2 z~1a,1b!~N,1,y,yuA/m2,m0
22!2

P0ab~y,yuA!

m2

1
1

~4p!D/2 (
j 50,j ÞD/221

N
ajab~y,yuA!

m0
2 j 2D12~ j 2D/211!

1dDS g12 ln
m

m0
D a~D/221!ab~y,yuA!

~4p!D/2

1
gab~y!

~4p!D/2 (
j 50,j ÞD/2

N
aj~y,yuA!

m0
2 j 2D~ j 2D/2!

1dDgab~y!S g12 ln
m

m0
D aD/2~y,yuA!

~4p!D/2 . ~A22!

Let us consider the first line on the right-hand side of~A19! for a moment. The other term
different from z (1a,1b)(s11) can be undertaken to a procedure similar to that developed ab
The important point is that, once one has performed such a procedure, all terms with a
gab(y) similar to the terms in the last line of~A22! cancel out each other, and thus, in the fin
expression of the first line on the right-hand side of~A18!, no term with a factorgab(y) survives.
The same fact happens for the second and third lines of~A19!. Since z (1a,1b)

3(N,1,y,yuA/m2,m0
22) and the derivatives of heat-kernel coefficients are continuous inx,y we

can compute the right-hand side of~A22! as a limit of coincidence:

d

dsU
s50

2s

m2 z~1a,1b!~s11,yuA/m2!

5 lim
x˜y

H 1

m2 z~1a,1b!~N,1,x,yuA/m2,m0
22!2

P0ab~x,yuA!

m2

1
1

~4p!D/2 (
j 50,j ÞD/221

N
ajab~x,yuA!

m0
2 j 2D12~ j 2D/211!

1dDS g12 ln
m

m0
D a~D/221!ab~x,yuA!

~4p!D/2

1
gab~y!

~4p!D/2 (
j 50,j ÞD/2

N
aj~x,yuA!

m0
2 j 2D~ j 2D/2!

1dDgab~y!S g12 ln
m

m0
D aD/2~x,yuA!

~4p!D/2 . ~A23!

Moreover, since the function in the limit is continuous, the same limit can be compute
identifying the tangent space atx with the tangent space aty and thus introducing the bitenso

I a
a85I (y)a

(x)a8(y,x) of parallel displacement fromy to x as usual. Employing~A21! we finally get
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~122j!
d

dsU
s50

2s

m2 z~1a,1b!~s11,yuA/m2!

5 lim
x˜y

~122j!I a
a8¹~x!a8¹~y!bH 1

m2 z~1,x,yuA/m2!2HN~x,y!J 1~122j!gab~y!H8~y!,

~A24!

where, as we said above, the final term proportional togab(y) gives no contribution to the fina
stress tensor because it cancels against similar terms in the first line of~A18!. The explicit form of
HN reads

HN~x,y!5(
j 50

N
aj~x,yuA!

~4p!D/2 E
0

m0
22

t j 2D/2e2s~x,y!/2t2
1

~4p!D/2 (
j 50,j ÞD/221

N
aj~x,yuA!

m0
2 j 2D12~ j 2D/211!

2dD

aD/221~x,yuA!

~4p!D/2 Fg1 lnS m

m0
D 2G . ~A25!

The same procedure has to be used for each term on the right-hand side of~A18! except for the
last term which, as it stands, produces the last term on the right-hand side of~90!. Summing all
contributions, one gets~90! with HN in place of Hm2. Anyhow, executing the integrations abov
using the results~52!–~58! in Ref. 1 (D.1), expanding HN in powers and logarithm ofs and
taking account of Comments~1! and~2! after Theorem 4.1 above, we have that, in the expans
of HN one can take account only of the terms pointed out in the item~a! of Theorem 4.1; these ar
the only terms which do not contain the arbitrary parameterm0

2 ~which cannot remain in the fina
result!. Therefore, the part of HN which gives contributions to the final stress tensor coincides w
Hm2 given in ~91! and ~92!.

This proves the point~a! of Theorem 4.1. The point~b! is trivially proven by a direct com-
parison between~23!–~25! in Ref. 1 and the equation for the coefficients of the Hadamard lo
solution given in Chap. 5 of Ref. 17 which determines completely the coefficientsuj andv j of the
local solution once the values of the coefficients of the leading divergences are fixed forx˜y, and
the coefficientswj oncew0 has been fixed. In performing this comparison, concerning the
malization conditions~94! and ~95! in particular, notice that the measure used in the integ
employed in Ref.~17! is the Euclidean onednx instead of our measureAg(x)dnx. h
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Let (l 2k2)u52u91q(x)u2k2u5d(x), xPR, ]u/]uxu2 iku˜0, uxu˜`. As-
sume that the potentialq(x) is real valued and compactly supported:q(x)
5q(x), q(x)50 for uxu>1, *21

1 uqudx,`, and thatq(x) produces no bound
states. Letu(21,k) and u(1,k), ;k.0 be the data. It is shown that under the
above assumptions these data determineq(x) uniquely. © 1999 American Insti-
tute of Physics.@S0022-2488~99!02108-8#

I. INTRODUCTION

For several decades, the following inverse problems of practical interest are open. Let

¹2u1k2u1k2v~x!u52d~x!, in R3, ~1.1!

u satisfies the radiation condition at infinity, andv(x) is a compactly supported piecewise-smoo
function, suppv,R2

3
ª$x:x3,0%.

The data are the valuesu(x1 ,x2,0,k) for all x̂ª(x1 ,x2)PR2 andk.0.
~IP1! The inverse problem is the following.
Given the data, findv(x).
Uniqueness of the solution to this problem is not proved. IP1 is not overdetermined: the

is a function of three variables, andv(x) is also.
A similar inverse problem can be formulated: Let

¹2u1k2u2q~x!u50, in R3, ~1.2!

u5eika–x1A~a8,a,k!
eikr

r
1oS 1

r D , rªuxu˜`, a85
x

r
, ~1.3!

where aPS2 is a given unit vector,q(x) is a real-valued piecewise-smooth functio
suppq(x),Baª$x:uxu<a%, andS2 is the unit sphere.

~IP2! Given A(a8,a0 ,k) for all a8PS2, all k.0 and a fixeda5a0PS2, find q(x).
The uniqueness of the solution to~IP2! is not proved.
The third problem is the following.
Let

¹2u1k2u2q~x!u52d~x!, in R3; ~1.4!

u satisfies the radiation condition, andq(x) is the same as in~IP2!.
The data are the valuesu(x,k)u uxu5a .
~IP3! Given the data u(x,k)u uxu5a for all k.0 and all x on the sphere Saª$x:uxu5a%, find

q(x).
Uniqueness of the solution to~IP3! is not proved.
An overview of inverse problems and references one can find in Refs. 1–3.

a!Electronic mail: ramm@math.ksu.edu
38760022-2488/99/40(8)/3876/5/$15.00 © 1999 American Institute of Physics

                                                                                                                



a

he

moge-

l-

-

3877J. Math. Phys., Vol. 40, No. 8, August 1999 Inverse problem for an inhomogeneous . . .

                    
Our purpose in this paper is to study the one-dimensional analog of~IP3! and to prove for this
analog a uniqueness theorem. The one-dimensional analog of~IP3! corresponds to a plasm
equation in a layer.

Let

lu2k2uª2u91q~x!u2k2u5d~x!, xPR1, ~1.5!

]u

]uxu
2 iku˜0, uxu˜`. ~1.6!

Assume thatq(x) is a real-valued function,

q~x!50, for uxu.1, qPL`@21,1#. ~1.7!

Suppose that the data,

$u~21,k!,u~1,k!%, ;k.0, ~1.8!

are given.
The inverse problem analogous to~IP3! is the following.
~IP! Given the data~1.8!, find q(x).
This problem, as well as~IP1!–~IP3!, is of practical interest. One can think about finding t

properties of an inhomogeneous slab~the governing equation is a plasma equation! from the
boundary measurements of the field, generated by a point source inside the slab.

In the literature there are many results concerning various inverse problems for the ho
neous version of Eq.~1.5!, but it seems that no results concerning~IP! are known.

Assume that the self-adjoint operatorl 52d2/dx21q(x) in L2(R) has no negative eigenva
ues@this is the case whenq(x)>0, for example#. The operatorl is the closure inL2(R) of the
symmetric operatorl 0 defined onC0

`(R1) by the formulal 0u52u91q(x)u. Our result is the
following.

Theorem 1: Under the above assumptions IP has, at most, one solution.

II. PROOF OF THEOREM 1

The solution to~1.5!–~1.6! is

u5H g~k!

@ f ,g#
f ~x,k!, x.0,

f ~k!

@ f ,g#
g~x,k!, x,0.

~2.1!

Here f (x,k) andg(x,k) solve homogeneous version of Eq.~1.5! and have the following asymp
totics:

f ~x,k!;eikx, x˜1`, g~x,k!;e2 ikx, x˜2`, ~2.2!

f ~k!ª f ~0,k!, g~k!ªg~0,k!, ~2.3!

@ f ,g#ª f g82 f 8g522ika~k!, ~2.4!

where the prime denotes differentiation with respect to thex variable, anda(k) is defined by the
equation

f ~x,k!5b~k!g~x,k!1a~k!g~x,2k!. ~2.5!
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It is known ~see, for example, Ref. 4! that

g~x,k!52b~2k! f ~x,k!1a~k! f ~x,2k!, ~2.6!

a~2k!5a~k!, b~2k!5b~k!, ua~k!u2511ub~k!u2, kPR, ~2.7!

a~k!511OS 1

kD , k˜`, kPC1 ; b~k!5OS 1

kD , uku˜`, kPR, ~2.78!

@ f ~x,k!,g~x,2k!#52ikb~k!, @ f ~x,k!,g~x,k!#522ika~k!, ~2.8!

a(k) is analytic inC1 , b(k), in general, does not admit analytic continuation fromR, but if q(x)
is compactly supported, thena(k) andb(k) are analytic functions ofkPC\0.

The functions

A1~k!ª
g~k! f ~1,k!

22ika~k!
, A2~k!ª

f ~k!g~21,k!

22ika~k!
, ~2.9!

are the data; they are known for allk.0. Therefore one can assume the functions

h1~k!ª
g~k!

a~k!
, h2~k!ª

f ~k!

a~k!
, ~2.10!

to be known for allk.0, because

f ~1,k!5eik, g~21,k!5eik, ~2.11!

as follows from the assumption~1.7! and from~2.2!.
From ~2.10!, ~2.6!, and~2.5!, it follows that

a~k!h1~k!52b~2k! f ~k!1a~k! f ~2k!52b~2k!h2~k!a~k!1h2~2k!a~2k!a~k!,
~2.12!

a~k!h2~k!5b~k!a~k!h1~k!1a~k!h1~2k!a~2k!. ~2.13!

From ~2.12! and ~2.13!, it follows that

2b~2k!h2~k!1h2~2k!a~2k!5h1~k!, ~2.14!

b~k!h1~k!1a~2k!h1~2k!5h2~k!. ~2.15!

Eliminating b(2k) from ~2.14! and ~2.15!, one gets

a~k!h1~k!h2~k!1a~2k!h1~2k!h2~2k!5h1~k!h1~2k!1h2~2k!h2~k!, ~2.16!

or

a~k!5m~k!a~2k!1n~k!, kPR, ~2.17!

where

m~k!ª2
h1~2k!h2~2k!

h1~k!h2~k!
, n~k!ª

h1~2k!

h2~k!
1

h2~2k!

h1~k!
. ~2.18!
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Problem~2.17! is a Riemann problem~see Ref. 5 for the theory of this problem! for the pair
$a(k),a(2k)%, the functiona(k) is analytic inC1ª$k:kPC,Im k.0% anda(2k) is analytic in
C2 . The functionsa(k) anda(2k) tend to one ask tends to infinity inC1 and, respectively, in
C2 ; see Eq.~2.78!.

The functiona(k) has finitely many simple zeros at the pointsik j , 1< j <J, kj.0, where
2kj

2 are the negative eigenvalues of the operatorl defined by the differential expressionlu
52u91q(x)u in L2(R).

The zerosik j are the only zeros ofa(k) in the upper half-planek.
Define

inda~k!ª
1

2p i E2`

`

d ln a~k!. ~2.19!

One has

inda5J, ~2.20!

whereJ is the number of negative eigenvalues of the operatorl, and, using~2.10!, ~2.20! and
~2.18!, one gets

indm~k!522@ indh1~k!1 indh2~k!#522@ indg~k!1 ind f ~k!22J#. ~2.21!

Sincel has no negative eigenvalues, it follows thatJ50.
In this case indf (k)5 indg(k)50 ~see Lemma 1 below!, so indm(k)50, and a(k) is

uniquely recovered from the data as the solution of~2.17!, which tends to one at infinity; see Eq
~2.78!. If a(k) is found, thenb(k) is uniquely determined by Eq.~2.15!, and so the reflection
coefficientr (k)ªb(k)/a(k) is found. The reflection coefficient determines a compactly suppo
q(x) uniquely ~see Ref. 2!.

To make this paper self-contained, let us outline a proof of the last claim using an argu
different from the one given in Ref. 2.

If q(x) is compactly supported, then the reflection coefficientr (k)ªb(k)/a(k) is meromor-
phic. Therefore, its values for allk.0 determine uniquelyr (k) in the whole complexk plane as
a meromorphic function. The poles of this function in the upper half-plane are the numberik j ,
j 51,2,...,J. They determine uniquely the numberskj , 1< j <J, which are a part of the standar
scattering data$r (k),kj ,sj ,1< j <J%, wheresj are the norming constants.

Note that if a( ik j )50 then b( ik j )Þ0: otherwise Eq.~2.5! would imply f (x,ik j )[0, in
contradiction to the first relation~2.2!.

If r (k) is meromorphic, then the norming constants can be calculated by the formusj

52 i @b( ik j )/ȧ( ik j )#52 i Resk5 ik j
r (k), where the dot denotes differentiation with respect tok,

and Res denotes the residue. So, for compactly supported potential, the values ofr (k) for all k
.0 determine uniquely the standard scattering data, that is, the reflection coefficient, the
states2kj

2, and the norming constantssj , 1< j <J. These data determine the potential unique
Theorem 1 is proved. h

Lemma 1:If J50 then indf 5 indg50.
Proof: We prove indf 50. The proof of the equation indg50 is similar. Since indf (k) equals

the number of zeros off (k) in C1 , we have to prove thatf (k) does not vanish inC1 . If f (z)
50, zPC1 , thenz5 ik, k.0, and2k2 is an eigenvalue of the operatorl in L2(0,̀ ), with the
boundary conditionu(0)50.

From the variational principle one can find the negative eigenvalues of the operatol in
L2(R1) with the Dirichlet condition atx50 as consecutive minima of the quadratic function
The minimal eigenvalue is

2k25 infE
0

`

@u821q~x!u2#dxªk0 , uPH̊1~R1!, iuiL2~R1!51, ~2.22!
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whereH̊1(R1) is the Sobolev space ofH1(R1) functions, satisfying the conditionu(0)50.
On the other hand, ifJ50, then

0< infE
2`

`

@u821q~x!u2#dxªk1 , uPH1~R!, iuiL2~R!51. ~2.23!

Since any elementu of H̊1(R1) can be considered as an element ofH1(R) if one extendsu to the
whole axis by settingu50 for x,0, it follows from the variational definitions~2.22! and ~2.23!
that k1<k0 . Therefore, ifJ50, thenk1>0, and thereforek0>0. This means that operatorl on
L2(R1) with the Dirichlet condition atx50 has no negative eigenvalues. This means thatf (k)
does not have zeros inC1 , if J50. ThusJ50 implies indf (k)50.

Lemma 1 is proved. h

Remark 2:The above argument shows that, in general,

ind f <J and indg<J, ~2.24!

so that~2.21! implies

indm~k!>0. ~2.25!

Therefore the Riemann problem~2.17! is always solvable.

1A. G. Ramm,Multidimensional Inverse Scattering Problems~Longman/Wiley, New York, 1992!, pp. 1–385; Russian
translation of the expanded monograph~Mir, Moscow, 1994!, pp. 1–496.

2A. G. Ramm, ‘‘Property C for ODE and applications to inverse scattering,’’ Z. Anal. Angew.18, 331–348~1999!.
3A. G. Ramm,Property C for ODE and Applications to Inverse Problems, to appear in Proceedings of the Internation
Conference on Operator Theory, Fields Institute Communications.

4V. A. Marchenko,Sturm–Liouville Operators and Applications~Birkhäuser, Boston, 1986!.
5F. Gakhov,Boundary Value Problems~Pergamon, New York, 1966!.
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Spin-mass content of the Bhabha particle and the group
chain SU„4…'Sp „4…'SU„2…3U„1…

Yu. F. Smirnova)
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04510 México D.F., México

Anju Sharmab)
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The relativistic particles described by the Bhabha equation~Bhabha particles! can
possess several values of masses (M t5n/2t) and spinss<n/2. In order to find the
spin-mass content of such particles corresponding to the general irrep^n1n2& of the
group Sp(4);O(5) which is the symmetry group of the Bhabha equation, the
noncanonical chain of groupsSp(4).SUs(2)3Ut(1) is considered. In this paper,
we construct the basis of the irrep^n1n2& in a boson realization form using the
method of elementary permissible diagrams. This is achieved by the introduction of
special ‘‘symplectic’’ bosons. The maximum and minimum values of spins are
established for each value oft. The multiplicity of degenerate pairs (s,t) can be
easily calculated with the help of the generating function obtained in this paper.
© 1999 American Institute of Physics.@S0022-2488~99!01908-8#

I. INTRODUCTION

The Lorentz-invariant Bhabha equation1 describes a free relativistic particle of arbitrary sp
in terms of a single equation linear in 4-momentum, with the orthogonal groupO(5) as its
symmetry group. The equation and its properties were extensively studied in the 1970’s by K
and Nieto in a series of papers.2 Interest in the Bhabha equation has been increased recentl3 by
the fact that all relativistic equations for particles with spins.1/2 ~Duffin–Kemmer, Fierz–Pauli,
Bargmann–Wigner equations!, are particular cases of the Bhabha equation~sometimes with ad-
ditional conditions!. Recently, a simpler way was proposed4 by a research group including th
present authors, to ‘‘derive’’ the Bhabha equation in a Lorentz-covariant way, and to stu
properties using the canonical chain of orthogonal groupsO(5).O(4).O(3).O(2). Theequa-
tion is written in terms of the generatorsLm5 (m51,2,3,4) of the groupO(5) as4

~2icL i5pi12cL45p01nmc2!c50, ~1!

with the indexi taking valuesi 51,2,3. The quantityn is related to the spin such thatn/2 gives the
maximum possible spin value the particle can possess though the general spin range
n/2, n/221¯ to 0 or 1

2 depending on whethern is even or odd.
It is well known1,2,4 that Eq.~1! is not a single mass equation but describes several stat

the particle~Bhabha particle! with different masses associated with each spins.1,2,4 The masses
were found to be inversely proportional to the eigenvaluest of the operatorL45 such that4

M t5
n

2t
. ~2!

a!Electronic mail: smirnov@nuclecu.unam.mx
b!Electronic mail: anju@fenix.ifisicacu.unam.mx
38810022-2488/99/40(8)/3881/14/$15.00 © 1999 American Institute of Physics
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The general algorithm to find out the values of spins compatible with given massM t , was
suggested in Refs. 1, 2, 4. But to the best of our knowledge, a closed group theoretical solu
this problem does not exist in the literature.

The difficulty in finding such a general solution arises due to the fact that the generatoL45

responsible for several mass states of the Bhabha particle, is nondiagonal in the canonica
chainO(5).O(4).O(3).O(2) used in Refs. 2, 4. In order to find the spin-mass content of
Bhabha particles, it is necessary to use a basis adapted to a chain of subgroups for which
operatorS2 and the generatorL45 would simultaneously be diagonal. Therefore in this paper,
propose to use the noncanonical group chain,

Sp~4!.SUs~2!3Ut~1!, ~3!

to find out the solution of the spin-mass content problem mentioned above.
In group reduction~3!, Sp(4) is a group isomorphic toO(5), SUs(2) is the group of the

usual spin and the groupUt(1) is generated by the operatorL45 which is identical to the operato
T0 corresponding to the sign-spin projection considered in Ref. 5 in the framework of the s
multiplet schemeSU(4).SUs(2)3SUt(2).

To the best of our knowledge the group reduction~3! has so far not been used in relativist
problems, although it was used widely in the nuclear shell model to describe the effects
isotopic invariant pairing interaction between nucleons of both kinds in the same nuclear s6

In order to construct the basis adapted to the chain~3!, we use in contrast to the previou
works,6 the classical method of elementary permissible diagrams~epd’s!7–9 applied to the boson
representation of the states corresponding to the group chain,

U~4!.Sp~4!.SUs~2!3Ut~1!. ~4!

The paper is organized as follows: In Sec. II, we give a realization of the generators of g
belonging to chain~4! in terms of the boson creation and annihilation operators. In the proces
generators of the group complementary toSp(4) are also constructed. In Sec. III, we calculate t
epd’s using a ‘‘trial and error’’ method by considering some of the lowest irreps ofU(4).5 In
order to obtain the basis vectors with a definiteSp(4) symmetry, the so called ‘‘symplecti
bosons’’ are used which correspond to a modified form of the bosons introduced earlier in
10, 11 for systems with the orthogonal and symplectic symmetry. Section IV is concerned wi
structure of the basis corresponding to the chain~4!. The generating function for this basis
constructed, and the completeness of the latter is verified by the calculation of its dimens
Sec. V we deal with the spin-mass content of the Bhabha particle, i.e., the maximum and
mum values of spins for a given massM t are established. The multiplicity of eachs,t combi-
nation can be easily found from the generating function. Some final remarks are given
conclusion.

II. GROUP CHAIN SU„4…'Sp „4…'SUs„2…3Ut„1…

A. Boson realization

In order to construct the basis for theSp(4) irrep ^v1,v2& (v1>v2>0) in an explicit form,
it is convenient to embed the groupSp(4) into the groupU(4) and to use the standard boso
realization for the latter. To obtain the generalSp(4) irrep ^v1,v2&, it is sufficient to consider its
embedding into theU(4) irrep $h%5$h1h2h3h4% with the Young scheme containing only tw
rows of lengthv1 andv2, i.e.,

$h%[$v1v2%5$v1v200%. ~5!
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For the realization of such aU(4) irrep it is enough to use two kinds of creation a
annihilation boson operatorshst

1 ,hst
2 and jst

1 ,jst
2 , where the projectionss and t of the usual

spin s and the sign-spint take the values61/2.
The boson operators satisfy the standard commutation relations

@hst
k ,hs8t8

k8 #5@jst
k ,js8t8

k8 #50, @jst
k ,hs8t8

k8 #5dkk8dss8dtt8 . ~6!

The generators of theU(4) group are expressed in terms of boson operators as follows

Ast,s8t85 (
k51,2

hst
k js8t8

k . ~7!

It was shown in Ref. 12 that they can also be chosen in a tensor form,

Sm5 (
k51

2

@hk3jk#m0
10 , Tn5 (

k51

2

@hk3jk#0n
01 ,

Rmn5 (
k51

2

@hk3jk#mn
11 , m,n50,61, ~8!

N52(
k51

2

@hk3jk#00
00.

HereSm andTn are the operators of the ordinary and sign spin, respectively. The creation o
tors hst are the components of a double tensor operator of rank 1/2 with respect to bothSUs(2)
andSUt(2) groups,

hst5Vst
~1/2!~1/2! . ~9!

The annihilation operators are connected with another tensor of the same rank 1/2, 1/2,

jst5~21!12s2tW2s2t
~1/2!~1/2!5hst

† . ~10!

The tensor product of two operators into a common double tensor of the ranksr 1 andr 2 with
respect to the groupsSUs(2) andSUt(2) is denoted as follows:

@h3j#r1r2

r 1r 2 5 (
s1s2 ,t1t2

K 1

2
s1

1

2
s2Ur 1r1L K 1

2
t1

1

2
t2Ur 2r2L Vs1t1

~1/2!~1/2!Ws2t2

~1/2!~1/2! , ~11!

where^ j 1m1 j 2m2u jm& are the usual Clebsch–Gordan coefficients. The commutation relatio
the operators~8! are of the form

@Sm ,Rm8n#5&^1m81mu1m1m8&Rm1m8n ,

@Tn ,Rmn8#5&^1n81nu1n1n8&Rm,n1n8 ,
~12!

@Rmn ,Rm8n8#5dn,2n8

1

4&
~21!12nSm1m8^1m1m8u1m1m8&

1dm,2m8

1

4&
~21!12mTn1n8~1n1n8u1n1n8!.
                                                                                                                



t
ie

. The
agram

the
s

chain

3884 J. Math. Phys., Vol. 40, No. 8, August 1999 Y. F. Smirnov and A. Sharma

                    
The operatorN in ~8! commutes with the rest of the generators. If we remove from the se~8!
the operatorsN, T1 , T21 , R10, R00, and R210, the remaining 10 operators form a closed L
algebra. It follows from~12! that

@S0 ,@h3j#mn
r 1r 2#5m@h3j#mn

r 1r 2 ,

~13!
@T0 ,@h3j#mn

r 1r 2#5n@h3j#mn
r 1r 2 .

Thus, if we takeS0 ,T0 as the weight~Cartan! generators, the generator@h3j#mn
r 1r 2 corresponds to

the root~mn!. As a result, we obtain the root diagram for these 10 generators given in Fig. 1
two Cartan generators correspond to the center of this figure. It is known that such a di
corresponds to the Lie algebra for theSp(4).SO(5) group.

Using the expression~12! we can verify that all commutation relations necessary to form
Sp(4) group, are satisfied by the operatorsSm , T0 , Rm,61 , m50,61. Therefore these operator
can be considered as the generators of the subgroupSp(4) of the groupU(4).

It should be noted that the antisymmetric bilinear combination,

I 5@h13h2#00
015 1

2 ~h11
1 h22

2 2h21
1 h12

2 1h12
1 h21

2 2h22
1 h11

2 !, ~14!

commutes with all theSp(4) generators, i.e., it is anSp(4) invariant.

B. Group complementary to Sp „4…

In order to construct the polynomial basis in terms of epd’s corresponding to the
Sp(4).SUs(2)3Ut(1), it is necessary first to find out the form of the groupG complementary
to Sp(4).9,12 It should be noted in this connection that the groupU(4) is complementary to the
groupU(2) defined by the generators

F15A12, F25A21, F05 1
2 ~A112A22!5 1

2 ~N12N2!, N5A111A22, ~15!

which satisfy the standard commutation relations for theSU(2) group,

@F0,F6#56F6, @F1,F2#52F0, ~16!

and commute with the number operatorN,

FIG. 1. Root diagram for theSp~4! group.
                                                                                                                



lso

the

e

e
he

ted

3885J. Math. Phys., Vol. 40, No. 8, August 1999 Spin-mass content of the Bhabha particle and . . .

                    
N5N11N2, Ni5Aii . ~17!

Here and below we use the notation

Akk85(
st

hst
k jst

k8 . ~18!

The irrep of theU(2) group is characterized by the same partition@n1n2# as the irreps of the
U(4) group9,12 where (n1n2) is the highest weight of this irrep. Alternatively, this irrep can a
be enumerated by the quantum numbersN5n11n2 and

f 5 1
2 ~n12n2!, ~19!

giving the eigenvaluef ( f 11) for theSUF(2) Casimir operator,

F25F2F11F0~F011!. ~20!

The basis vectors of the irrep are labeled by the quantum numberf which is the eigenvalue of the
operatorF0. SinceSp(4) is a subgroup ofU(4), it commutes with the generators of theU(2)
group mentioned above.

Thus the groupG complementary toSp(4) must contain this groupU(2) @or SUF(2)] as its
subgroup. The additional operators commuting with theSp(4) generators are of the form

K15I 5@h13h2#00
01,

K25~ I !†52@j13j2#00
01, ~21!

K05 1
2 ~N14!.

They satisfy the commutation relations

@K0 ,K6#5K6 , @K2 ,K1#52K0 , ~22!

which are typical for the generators of the noncompact groupSUK(1,1). The generatorsK com-
mute with the generatorsF given in ~15!. Therefore we can consider the direct product of
groupsSUF(2) andSUK(1,1) as a maximal group commuting with the groupSp(4). It is known
that this direct product is identical to the noncompact groupO* (4). Thus we can say that th
groupG complementary toSp(4) is of the form

G5O* ~4!5SUK~1,1!3SUF~2!, ~23!

with k and f giving the irreps of subgroupsSUK(1,1) andSUF(2), respectively. Now it is
necessary to prove that the characteristics of the irreps ofG are connected unambiguously to th
signature^n1n2& of the correspondingSp(4) irrep. It should be noted that the reduction of t
U(4) irrep $n1n2% into theSp(4) irrep is of the form

$n1n2%5^n1n2&1^n121,n221&1¯1^n12n2,0&. ~24!

This means that the ket,

u$n11r ,n21r %^n1n2&¯&;K1
r u$n1n2%^n1n2&¯&, ~25!

with fixed values ofn1, n2 and r 50,1,2,. . . ,` ~the remaining quantum numbers are substitu
by dots!, gives the basis of the infinite dimensional unitary irrep of the groupSUK(1,1) belonging
to the positive discrete series. By action of theSUK(1,1) Casimir operator,
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K25K1K22K0~K021!, ~26!

on ket ~25!, and by taking into account that the lowest weight vectoru$n1n2%^n1n2&¯& is anni-
hilated by the lowering generatorK2 ,

K2u$n1n2%^n1n2&¯&50, ~27!

we obtain

K2u$n11r ,n21r %^n1n2&¯&52k~k21!u$n11r ,n21r %^n1n2&¯&, ~28!

where

k5 1
2 ~n11n214!. ~29!

Thus the ket~25! corresponding to the chainU(4).Sp(4).SUs(2)3Ut(1), which is labeled by
the symbols$n11r ,n21r % and^n1n2& for the irreps of these groups, can be characterized sim
taneously by the quantum numbers

k5 1
2 ~n11n214!, f 5 1

2 ~n12n2!, ~30!

giving the irreps of theSUK(1,1) andSUF(2) groups~The value ofr determines the ‘‘projec-
tion’’ K0 of the non-compact momentK.)

According to ~30! the symbolsk and f of the O* (4) irreps can be expressed in a uniq
manner through theSp(4) irrep ^n1n2&, and thus the groupsSp(4) andO* (4) are complemen-
tary. Our result agrees with that of Quesne13 where she dealt with the general symplectic gro
Sp(2n) and foundO* (2n) as its complementary group.

Returning to our problem of the construction of the basis for theSp(4) irrep^n1n2&, we want
to construct at first the boson basis for theU(4) irrep $n1n2%, and then to select in this basis th
part corresponding to the first term̂n1n2& in the expansion~24!, i.e., to construct the vectors~25!
with r 50 satisfying the relation~27!.

C. The basis corresponding to the chain SU„4…'Sp „4…'SUs„2…3Ut„1…

In view of the previous section, the basis vectors of theSp(4) irrep ^n1n2& corresponding to
the chainU(4).Sp(4).SUs(2)3Ut(1) can be written in the form of the following ket:

u$n1n2%^n1n2&Gsst; f f&, ~31!

where the quantum numbersn1 andn2 label the irreps of theU(4) andSp(4) group as well as the
O* (4) group complementary toSp(4). Themultiple irreps (s,t) of the subgroupsSUs(2) and
Ut(1) belonging to the givenSp(4) irrep^n1n2& are distinguished by the symbolG. The quantum
numberf given in~30! represents the irrep of theSUF(2) group,f is the weight of the vector~31!
with respect to this group (2 f <f< f ).

We shall construct the vectors~31! of the highest weight with respect to bothSUS(2) and
SUF(2) groups~i.e.,s5s,f5 f ). The vectors with smaller values ofs andf can be obtained by
applying the lowering operatorsS21 andF2 to the highest weight vectorPn1n2

st (h1,h2)u0&.
The polynomialPn1n2

st (h1,h2) which for brevity we denote byP, satisfies the following
conditions:

N1Pu0&5n1Pu0&, N2Pu0&5n2Pu0&,

S1Pu0&50, S0Pu0&5sPu0&,

F1Pu0&50, F0Pu0&5 f Pu0&,
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K0Pu0&5 1
2 ~n11n214!Pu0&, ~32!

K2Pu0&50. ~33!

By substitutingj˜]/]h in the expression for each generator, the set of above equations~32!,
~33! can be considered as differential equations onP-polynomials and then solved. In a wa
similar to Refs. 7–9, we shall seek the solution of the polynomialP as a product of the powers o
the so called elementary permissible diagrams~epd’s! Wi such that

P5)
i

Wi
ki~h1,h2!, ~34!

where Wi
ki(h1h2) are the polynomials of the lowest powersni

1 ,ni
2 satisfying Eqs.~32! with

definite values of spinsi and the projection of the sign-spint i , which cannot be reduced to
product of the powers of simpler solutions. Since all generators in~32! are first-order differential
operators, it is clear that the monomial~34! satisfies Eqs.~32! if they are satisfied by the epd’
Wi(h

1,h2).
Since s5( ikisi , t5( ikit i , it is obvious that the independent vectors~31! with the same

values ofs and t are characterized by different sets of the epd powersk1 ,k2 ... . A full set of
epd’s, their powers, spins andt-values will be established below. In the next section, we cons
only the solution of the equations~32!. The problem of the construction of polynomials~mono-
mials! P satisfying the condition~33! is postponed until Sec. IV.

III. ELEMENTARY PERMISSIBLE DIAGRAMS

In order to find out the epd’s, we use the ‘‘trial and error’’ approach and start with few o
lowest irreps$1%, $2%, $11% of U(4).

The irrep $1% is realized in a space of four boson operatorshst
1 (s,t56 1

2). As mentioned
above, we are interested in the epd’s with the maximum spin projections i5si and the maximum
value off i5 f i . Therefore we select as the first two epd’s the operators

a5h11
1 and b5h12

1 , ~35!

corresponding tos5s511/2, f5f511/2,t511/2 and21/2, respectively. In~35! and below
the values ofs andt are substituted by the signs1 or 2 of these projections. The operatorshst

2

can not be used as epd’s because they correspond tof521/2.
For n52, there exist twoU(4) irreps with partitions$2% and$11%. The symmetric irrep$2% is

characterized by the values of the ordinary and sign spinss5t50 ands5t51.5 Thus the list of
the states with varioust and the maximal spin projectionss5s is of the form

. ~36!

It is clear from this list that the first three vectors can be expressed in terms of the epd’sa and
b introduced in~35!. However, the last vector withs5t50 can not be reduced to the epd’s~35!.
It should be considered as a new independent epd of the form

t s5s Expression in terms of epd’s

1 1 a2

0 1 ab
21 1 b2

0 0 c
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c5(
st

K 1

2
s

1

2
2sU00L K 1

2
t

1

2
2tU00L hst

1 h2s2t
1 5h11

1 h22
1 2h12

1 h21
1 . ~37!

The U(4) irrep $2% corresponds to the valuef 51, and thus the vector~37! is characterized by
f5 f 51. The combinationsh1h2,h2h2 correspond tof50 and21, respectively, and should
thus be omitted.

For the realization of the antisymmetricU(4) irrep$11%, both kinds of boson operatorsh1 and
h2 are necessary. This irrep contains the states withs51, t50 ands50, t51.5 They cannot be
expressed in terms of epd’s~35! and ~37!. Therefore all of them should be considered as n
epd’s. Their list with the corresponding (t,s)2 values is given below:

. ~38!

The expressions for the epd’sd, e and f in terms of the boson operators can be found in Tabl
As for the epdI , it coincides with theSp(4) invariant~14!. It is clear that the inclusion of this

epd in the monomial~34! does not change itsSp(4) symmetry, but only increases its powe
Therefore this epd can not be present in the construction of the vectors~31! we are interested in
It can be contained in the vectorsu$h1h2%^n

1n2&¯& with n11n2,h11h2 . Thus we do not
consider the epdI further.

Using a procedure similar to what is done for the casesn51,2, it can be easily shown that a
U(4) irreps corresponding ton53,4 do not give rise to any new epd’s but can be construc
usinga, b, c, d, e and f . However, for the partition$31% for n54, we notice that there are tw
states occurring with the spins51 and t50, which can be constructed using epd’s in thr
possible ways:ea2, db2 and c f . This implies that out of these three possibilities only two a
independent. In fact, it can be easily proved that

c f5Iab2ea22db2. ~39!

TABLE I. Elementary permissible diagrams for theU~4! group.

epd n1 n2 s t

Relation with
quantities
in Ref. 14a

a5h11
1 1 0 1

2
1
2

AS1/2T1/2

b5h12
1 1 0 1

2 2
1
2

AS1/2T21/2

c5h11
1 h22

1 2h12
1 h21

1 2 0 0 0 A2

d5h11
1 h21

2 2h21
1 h11

2 1 1 0 1 BT

e5h12
1 h22

2 2h22
1 h12

2 1 1 0 21 BT21

f 5h11
1 h12

2 2h12
1 h11

2 1 1 1 0 BS

aFor details see Secs. IV B and IV C of the text.

t s5s epd

1 0 d
0 0 I

21 0 e
0 1 f
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This suggests that out of 6 epd’s given in Table I only five are independent. In other w
the relation~39! means that the monomials~34! can not contain epd’sc and f simultaneously.
Further analysis shows~see Sec. IV! that the set of epd’s given in Table I, is complete. In th
connection we can conclude that the basis of theSp(4) irrep ^n1n2& can be split into two parts
The first part consists of monomials~34! which do not contain the epdf ; the second one include
monomials in which the epdc is absent.

Symplectic bosons

We now turn our attention to the problem of how the monomials of the form~34! satisfying
the ‘‘symplecticity’’ condition ~33! can be constructed.

Here we follow the concept of the modified or ‘‘traceless’’ bosons for the orthogonal
symplectic groups suggested and developed in Refs. 9–11. We introduce new creation op
which we call the ‘‘symplectic bosons,’’ viz.,

ast
115hst

1 2~21!1/22sK1

1

N11
j2s2t

2 ,

~40!

ast
215hst

2 2~21!1/21sK1

1

N11
j2s2t

1 ,

where operatorsK1 and N are given in Eqs.~21! and ~17!, respectively. They satisfy the com
mutation relations

@ast
k1 ,as8t8

k81

#50, k,k851,2. ~41!

We then replace the ordinary boson operatorsh1,2 by the symplectic onesa1,21 in the epd’s given
in Table I ~and denote epd’s with primes!, and thus in the process we modifyPn1n2

st (h1,h2) to
Pn1n2

st (a11,a21). Similarly, the raisingSUK(1,1) generatorK1 gets modified into

K18 5(
st

~21!1/22sast
11a2s2t

21 , ~42!

which can be simplified to

K18 5
1

~N21!~N22!
K1

2 K2 . ~43!

SinceK18 commutes withPn1n2
st (a11a21) both being constructed out of the commuting operat

a1,21, we can write

K18 Pn1n2
st

~a11a21!u0&5Pn1n2
st

~a11a21!K18 u0&50, ~44!

which is equated to zero because of~43!. Therefore we obtain

1

~N21!~N22!
K1

2 K2Pu0&50. ~45!

Since @(N21)(N22)#21K1
2 5@(N21)(N22)#21I 2 does not vanish identically, the state

Pn1n2
st (a11,a21)u0& satisfy the symplecticity condition~33!.

Thus these states correspond to the irrep^n1n2& of Sp(4) and $n1n200% of U(4), as we
require a partition involving two numbers to characterize the general irreps ofSp(4) and four
numbers for irrepsU(4).5,9 It can be easily verified that the other conditions~32! on polynomials
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Pn1n2
st (a11,a21) remain unchanged by the introduction of symplectic bosons in the epd’s of T

I. Our task now is to construct the basis vectors of theSp(4) irrep ^n1n2& as polynomials
~monomials! of these epd’s.

IV. STRUCTURE OF THE BASIS, GENERATING FUNCTION AND THE DIMENSION OF
THE Sp „4… IRREP

A. Structure of the basis

As mentioned earlier in Sec. III, the epd’sc8 and f 8 can not occur simultaneously in a bas
vector, i.e., if the powerg of c8 is nonvanishing then the powerw of the epdf 8 is vanishing, and
vice versag50 if wÞ0. Thus the polynomial basis states can be distributed into two subse

I . Pn1n2~a11,a21!u0&5a8ab8bc8gd8de8eu0&, ~46!

II . Pn1n2~a11,a21!u0&5a8ab8bd8de8e f 8fu0&, ~47!

wherea,b,g,d,e,w>0 are non-negative integers. Our aim now is to find out these exponen
terms of the fixed values of quantum numbersn1, n2, s andt. We consider the cases~46! and~47!
separately.

~i! Case I. From Table I and expression~46!, we obtain the following relations:

n15a1b12g1d1e, n25d1e,
~48!

s5 1
2 ~a1b!, t5 1

2 ~a2b!1d2e.

Solving them with respect toa,g,d,e we obtain

a52s2b, g5 1
2 ~n12n2!2s,

~49!
d5 1

2 ~n21t2s1b!, e5 1
2 ~n22t1s2b!,

where the non-negative integerb>0 is a free parameter here. Sinceg>0 is also a non-negative
integer, the spin valuess are restricted in this part of the basis by the condition

s< 1
2 ~n12n2!. ~50!

~ii ! Case II. Similar to~48! we have in this case the relations

n15a1b1d1e1w, n25d1e1w,
~51!

s5 1
2 ~a1b!1w, t5 1

2 ~a2b!1d2e.

From here we obtain the following expressions fora,d,e,w:

a5n12n22b, d5 1
2 ~n21t2s1b!,

~52!
e5 1

2 ~n12t2s2b!, w5s2 1
2 ~n12n2!,

where the non-negative integerb>0 is again a dummy variable here. Sincew is also a non-
negative integer, we obtain for this part of the basis the condition

s> 1
2 ~n12n2!. ~53!
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Thus the two parts~46! and ~47! of the basis of theSp(4) irrep ^n2n2& can be rewritten in the
following form:

Pn1n2~a11,a21!u0&5a82s2bb8bc8(n12n2)/22sd8(n21t2s1b)/2e8(n22t1s2b)/2u0&,

for s<
~n12n2!

2
, ~54!

5a8n12n22bb8bd8(n21t2s1b)/2e8(n12t2s2b)/2f 8s2(n12n2)/2u0&,

for s.
~n12n2!

2
, ~55!

with the non-negative integerb being a dummy variable. It plays the role of an additional quant
number to distinguish independent polynomialsPn1n2(a11,a21) corresponding to the same value
of the quantum numberss andt. The possible values ofb are determined by the requirement th
all powers of the epd’s in expressions~54!, ~55! are non-negative integers. We shall discuss this
more detail in Sec. V.

We now turn our attention to the generating function for the basis~54!, ~55!.

B. The generating function

The generating functionF(AB;ST) for the group reductionSp(4).SUs(2)3Ut(1) is de-
fined in the following way:14

F~AB;ST!5 (
n1n2st

n~n1n2st!An12n2
Bn2

SsTt, ~56!

such that the coefficientn(n1n2st) in its power expansion gives the number of states with giv
values ofs andt in the Sp(4) irrep ^n1n2&.

To construct the generating function~56! we start with the basis states~46!, ~47!. The con-
tribution of each epd into the generating function can be characterized by a definite combi
of the quantitiesA,B,S,T which are given in the last column of Table I. As a result, the con
butions of vectors~46! and~47! into a generating function can be represented by the express

Aa1b12gBd1eS(a1b)/2T(a2b)/21d2e ~57!

and

Aa1bBd1e1wS(a1b)/21wT(a2b)/21d2e, ~58!

respectively. The independent summation of both of these expressions ona, b, g, d, e andw from
0 to infinity and unification of the two results, gives the following formula for the genera
function:

F~AB;ST!5
1

~12AS1/2T1/2!~12AS1/2T21/2!

1

~12BT!~12BT21!
H 1

12A2
1

1

12BS
21J .

~59!

The last term (21) is included in the curly brackets in order to avoid the double counting of
states withg5w50. The above formula is in agreement with the corresponding generating
tion ~2.6! found in Ref. 14 using a different approach. This coincidence means that our basis~54!,
~55! is complete. However, it can also be verified by the calculation of the dimension of theSp(4)
irrep ^n1n2&.
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C. The dimension

It was demonstrated above that the structure of the basis~54!, ~55! is described by the
generating function~59!. We now calculate the dimension of the irrep^n1n2&. It is clear that this
dimension can be found by the formula

dim^n1n2&5(
st

n~n1n2st!~2s11!. ~60!

In order to calculate it, we can do the power expansion of the function~59! in terms of the
monomials~57!, ~58!, and then select the terms with the fixed powersn12n2 andn2 of parameters
A andB, respectively. As a result the number of summation indices decreases up to 3.

At last we add the factor (2s11) into the resulting sum in correspondence with~60!, and
substituteA5B5S5T51. Such a procedure is first applied to~58! given the following restric-
tions: a1b5n12n2, d1e1w5n2. Using a, w and j5e1w as summation indices and takin
into account that 2s115n12n212w11, we obtain the following expression:

N15 (
a50

n12n2

(
j50

n2

(
w50

j

~n12n212w11!5
1

6
~n12n211!~n211!~n212!~3n12n213!, ~61!

for the contribution of the vectors~47! into the dimension of theSp(4) irrep ^n1n2&. To obtain
~61!, the well known identities were used,

(
k51

n

k5
1

2
n~n11!, (

k51

n

k25
1

6
n~n11!~2n11!. ~62!

In a similar manner, the contributionN2 of the vectors~46! into dim^n1n2& can be found to give
the following result:

N25 1
6 ~n12n2!~n12n211!~n12n221!~n211! . ~63!

We obtain the total dimension as

dim^n1n2&5N11N25 1
6 ~n12n211!~n211!~n11n213!~n112!, ~64!

which coincides with the standard expression for theSp(4) irrep dimension.

V. SPIN-MASS CONTENT OF THE BHABHA PARTICLES

As mentioned in the Introduction, the Bhabha equation~1! describing a free particle of arbi
trary spin,1–4 with Sp(4) as its symmetry group, represents several mass states occurring fo

spin which can take values12(n
11n2), 1

2(n
11n2)21, . . . ,0 or1

2 depending on whethern11n2 is
even or odd. In this section, we find all possible values of spins which a particle of massM t can
take. SinceM t is proportional to 1/t @see Eq.~2!# we need to find the maximum and minimu
values ofs for a given t in order to find spin-mass content of the Bhabha particles. Thi
facilitated by taking into account various limitations on the non-negative integer powers of
epd appearing in the polynomials~54!, ~55!.

First of all, it should be noted that the root diagram shown in Fig. 1 is symmetric with res
to the substitutionT0 by 2T0 andT0 by S0 @these transformations are the elements of the gr
of Weyl reflections forSp(4)#. It means that at2t the same values of spins are as admissible a
for t. Therefore we can restrict ourselves to the consideration of only the non-negative val
t. Besides, the maximum possible value oft is identical to the largest possible value of spins in
the Sp(4) irrep ^n1n2&. Both t ands are simultaneously integer or half-integer.
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The maximum possible value of spin,Smax, for a givent can be calculated using the restri
tions inherent to the part of the basis corresponding tos> 1

2(n
12n2). By noting the fact that each

of the powers in~55! are non-negative integers, we have

~1! b>0, ~2! b<n12t2s, ~3! b>2n22t1s, ~4! b<n12n2. ~65!

It follows from ~2! and ~3! above that the largest possible value ofs is equal to (n11n2)/2.
Therefore fort we obtain

2 1
2 ~n11n2!<t< 1

2 ~n11n2!. ~66!

In the interval 1
2(n

12n2)<t< 1
2(n

11n2), the maximum value of spinSmax corresponds to the
cross point of the boundaries determined by inequalities~1! and ~2!, i.e.,

Smax5n12t. ~67!

For 0<t< 1
2(n

12n2) the valueSmax corresponds to the cross-point of the boundaries determ
by inequalities~2! and ~3!, i.e.,

Smax5
1
2 ~n11n2!. ~68!

If t,0 we obtain

Smax5n12utu, for 1
2 ~n12n2!<utu< 1

2 ~n11n2! ~69!

and

Smax5
1
2 ~n11n2!, for 0<utu< 1

2 ~n12n2!, ~70!

because of symmetry with respect to the reflectiont˜2t mentioned before.
The minimum value of spinSmin at givent is contained in the part of the basis~54! corre-

sponding tos< 1
2(n

12n2). In this case, there exists the following limitations:

~1! b>0, ~2! b<n22t1s, ~3! b>2n22t1s, ~4! b<2s. ~71!

All possible ~non-negative! values oft can be distributed in two parts:

~ i ! 1
2 ~n11n2!>t>n2, ~ i i ! n2>t>0. ~72!

In the first case, the valueSmin corresponds to the cross-point of the boundaries determined b
inequalities~1! and ~2!, i.e.,

Smin5t2n2, for 1
2 ~n11n2!>t>n2. ~73!

In the second case the valueSmin corresponds to an admissible point which is closest to
cross-point of boundaries determined by the inequalities~1! and~4!, i.e.,Smin50, 1/2 or 1 depend-
ing on the parity ofn1 andn2. In order to establish the exact value ofSmin it is necessary to take
into account that in correspondence with~49! b can ‘‘jump’’ only by 2 units and has the sam
parity asn21t2s. Therefore the valueSmin50, i.e., bmin50, exists only ifn21t is even. At
n21t5odd, we obtainSmin51. If n11n25odd, when all spins are half-integers, we haveSmin

51/2. We can summarize these results as follows:

Smin5utu2n2, for utu> 1
2 ~n12n2!, ~74!

Smin50, if n11n25even, n21utu5even, ~75!
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Smin51 , if n11n25even, n21utu5odd, ~76!

Smin5
1
2 , if n11n25odd. ~77!

Thus each mass state can take spins whose value ranges fromSmax,Smax21, . . . ,Smin , given
by ~69!, ~70!, ~74!–~77!. The exclusion to these rules occurs for the irrep^n1n1&. In this case, the
limitation ~4! in ~65! allows only one valueb50. It follows from ~49! that the spins jumps by 2
units in this case. Thus in correspondence with limitation~2! in ~65! we obtain

s5n12utu,n12utu22, . . . ,1 or 0, ~78!

for n12utu5 odd or even, respectively.
In general, all the values ofs exceptSmin andSmax are degenerate. The multiplicity of eac

pair (s,t) is equal to the values ofb at the given values ofn1, n2, s andt. It can also be found
using the generating function described in Sec. IV. Because of the unique possible valueb50, all
combinations of (s,t) in the irrep^n1n1& are not degenerate.

VI. CONCLUSION

In the present paper, the basis of the generalSp(4) irrep ^n1n2& adapted to the noncanonica
group chainSp(4).SUs(2)3Ut(1) is constructed. Since the groupSp(4).SO(5) is a symme-
try group of the Bhabha equation,1–4 the study of such a basis allows us to solve naturally
problem of finding the spin-mass content of the Bhabha particles, i.e., to determine what va
spin s are compatible with a definite mass valueM t5n/2t. The multiplicity of each pair (s,t)
can be easily calculated using the generating function for this basis found in Sec. IV. The n
nonical basis discussed in this paper is also useful to consider the nonrelativistic limit o
Bhabha equation in an interaction with the external fields and to obtain some intrinsic prop
of the Bhabha particles~magnetic moment etc.!.15 After knowing the explicit form of the basis, i
is possible to calculate the matrix elements of theSp(4) group generators in order to rewrite th
Bhabha equation~1! in a matrix form. Because of the shortage of the space we do not discu
in this paper.

ACKNOWLEDGMENTS

The authors are thankful to Professor M. Moshinsky and Professor A. G. Nikitin for valu
discussions and remarks. The paper is supported partly by the Russian Foundation of Fund
Research~Grant No. RFFI N 99-01-01163!.

1H. J. Bhabha, Rev. Mod. Phys.17, 200 ~1945!.
2R. A. Krajcik and M. M. Nieto, Phys. Rev. D10, 4049~1974!; 11, 1442~1975!; 11, 1459~1975!; 13, 924 ~1976!; 14,
418 ~1976!; 15, 433 ~1977!.

3R. K. Loide, I. Ots, and R. Saar, J. Phys. A30, 4005~1977!.
4M. Moshinsky, A. G. Nikitin, A. Sharma, and Yu. F. Smirnov, J. Phys. A31, 6045~1998!.
5M. Moshinsky and Yu. F. Smirnov, J. Phys. A29, 6027~1996!.
6B. H. Flowers, Proc. R. Soc. London, Ser. A212, 248 ~1952!; K. T. Hecht, Nucl. Phys.63, 177 ~1965!; J. C. Parikh,
Nucl. Phys.63, 214 ~1965!; K. Ahmed and R. T. Sharp, J. Math. Phys.11, 1112 ~1970!; Yu. F. Smirnov and V. N.
Tolstoy, Rep. Math. Phys.4, 97 ~1973!.

7M. Moshinsky and V. Bargmann, Nucl. Phys.23, 77 ~1961!.
8M. Moshinsky, J. Patera, R. T. Sharp, and P. Winternitz, Ann. Phys.~N.Y.! 95, 139 ~1975!.
9M. Moshinsky and Yu. F. Smirnov,The Harmonic Oscillator in Modern Physics~Harwood Academic, Amsterdam
Netherlands, 1996!.

10N. Y. Vilenkin, Special Functions and Theory of Group Representations~American Mathematical Society Translation
Providence, RI, 1968!.

11M. A. Lohe and C. A. Hurst, J. Math. Phys.12, 1882~1971!.
12M. Moshinsky and C. Quesne, Phys. Lett. B29, 482 ~1969!.
13C. Quesne, J. Math. Phys.14, 366 ~1973!.
14N. Hambli, J. Michelson, and R. T. Sharp, J. Math. Phys.37, 3022~1996!.
15A. Sharma, M. Moshinsky, and Yu. F. Smirnov, J. Phys. A31, 10017~1998!.
                                                                                                                



e
these

ecially

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 8 AUGUST 1999

                    
Time-asymptotic traveling-wave solutions to the nonlinear
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We consider the Vlasov–Poisson–Ampe`re system of equations, and we seek solu-
tions for the electric fieldE(x,t) that are periodic in space and asymptotically
almost periodic in time. Introducing the representationE(x,t)5T(x,t)1A(x,t)
~where T and A are, respectively, the transient and time-asymptotic parts ofE!
enables us to decompose the nonlinear Poisson equation into atransient equation
and atime-asymptotic equation. We then study the latter in isolation as a bifurca-
tion problem forA with the initial condition andT as parameters. We show that the
Fréchet derivative at a generic bifurcation point has a nontrivial null space deter-
mined by the roots of aVlasov dispersion relation. Hence, the bifurcation analysis
leads to a general solution forA given ~at leading order! by a discrete superposition
of traveling-wave modes, whose frequencies and wave numbers satisfy the Vlasov
dispersion relation, and whose amplitudes satisfy a system of nonlinear algebraic
equations. In applications, there is usually a finite number of roots to the dispersion
relation, and the equations for the time-asymptotic wave amplitudes reduce to a
finite dimensional bifurcation problem in terms of the amplitude of the initial con-
dition. © 1999 American Institute of Physics.@S0022-2488~99!01208-6#

I. INTRODUCTION

The subject of this work is the well-known Vlasov–Poisson–Ampe`re ~VPA! system of equa-
tions

] f a

]t
1v

] f a

]x
1

qa

ma
E

] f a

]v
50, ~1a!

]E

]x
54p(

a
qaE dv f a , ~1b!

]E

]t
524p(

a
qaE dvv f a , ~1c!

for the propagation of longitudinal electric signals in a collisionless plasma. Here,E(x,t) is the
macroscopic longitudinal electric field, anda51,...,NS are the indexes of theNS different species
of particles present in the plasma, each with chargeqa , massma and single-particle distribution
function f a(x,v,t). A large body of recent mathematical literature1–4 has produced extensiv
results on existence, uniqueness, and regularity of both classical and weak solutions to
equations. However, any concrete calculation of these solutions is made very difficult, esp
in the long-time limit, by the strong nonlinearity of the problem.

a!Permanent address: University of Virginia, Charlottesville, Virginia 22903-2442.
38950022-2488/99/40(8)/3895/23/$15.00 © 1999 American Institute of Physics
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Physically, the nonlinearity in the VPA system corresponds to the self-consistent fee
from the electric field on the distribution functions. Interestingly, in many wave-propaga
problems we expect this feedback to become less and less important in the long-time
because the anharmonic mixing of the single-particle trajectories makes the plasma less a
able to exchange energy with the electric field in any coherent fashion. This fact was first p
out in the physics literature by O’Neil.5 In a classic paper, he argued that a sinusoidal perturba
to a thermal equilibrium will, in general, either Landau damp to a zero electric field6 or lead to a
nonzero time-asymptotic solution for the electric field, depending on the amplitude of the
disturbance and on the magnitude of the Landau damping rate. O’Neil assumed the n
time-asymptotic solution forE to be given by a single traveling wave of constant amplitude,
in more realistic physical situations one can reasonably conjecture that the final state w
comprised of more than one wave mode. In fact, this scenario has been confirmed by a sig
amount of experimental and numerical evidence.7–9 Recent rigorous investigations10–12 have
shown that the nonlinear VPA system does indeed admit undamped traveling-wave solutio
those suggested in the physics literature. Particularly relevant to what will follow are the no
early superimposed traveling-wave BGK-type13 solutions obtained by Buchanan and Dorning12

However, it is not known whether any of these solutions can be reached as time-asymptotic
of solutions to the initial value problem for the VPA system.

In this article we develop a new procedure for the analysis of the long-time behavior o
solutions to the VPA system for a certain class of initial conditions. Our method is based o
representation of the electric field as the sum of a transient term and a time-asymptotic ter
correspondingly, on the decomposition of the VPA problem into a transient part and a
asymptotic part. This decomposition turns out to be fruitful in a number of ways, not all of w
will be explored in this paper. For instance, we shall not analyze the transient problem,
seems amenable to a relatively straightforward perturbation analysis14 since most of the well-
known secularities in the VPA problem are associated with time-asymptotic evolution. We
focus, instead, on the time-asymptotic part of the problem; the basic idea will be to show th
time-asymptotic part can be studiedin isolation as a bifurcation problem for the time-asymptot
electric field with the initial condition and the transient field playing the role of parameters.
main result shows thatif the VPA system possesses a nonzero small-amplitude time-asym
solution ~in a sense that will be defined below!, then the corresponding electric field is given
leading order by a superposition of traveling-wave modes associated with the roots of a ‘
asymptotic’’ Vlasov dispersion relation. This dispersion relation is completely determined b
initial condition and by the transient electric field, and the same is true for the amplitudes of
traveling-wave modes, which satisfy a nonlinear system of algebraic equations.

II. PRELIMINARIES

Throughout this studyE and f a will be assumed to be boundedC1 functions of their argu-
ments, withf a>0. In fact, it is enough to assumef a to be bounded and non-negative at time ze
since then the Vlasov equation implies thea priori bounds

0< f a~x,v,t !< sup
~x,v !

f a~x,v,0![Ma . ~2!

We also shall assumef a and v f a to be integrable functions ofv on R so that the charge an
current densities are well defined. BothE and thef a will be spatially 2p-periodic. In this case it
is easy to show that replacing the Ampe`re equation by its spatially averaged form

dE0

dt
522(

a
qaE

2p

1p

dxE dvv f a ~1c8!

~whereE0(t) is thek50 spatial Fourier component ofE(x,t)! yields a system of equations whic
is completely equivalent to Eqs.~1!. Hence, we shall write the VPA system in the compact fo
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] f a

]t
1v

] f a

]x
1

qa

ma
E

] f a

]v
50, ~3a!

E5L~ f 1 ,...,f NS
!, ~3b!

whereL is defined by its spatial Fourier components

Lk~ f 1 ,...,f NS
![5

4p

ik (
a

qaE dv f a,k kÞ0

E0~0!24p(
a

qaE
0

t

dtE dvv f a,0 k50

~4!

which have been obtained from Eq.~1b! and~1c8! for kÞ0 andk50, respectively. Here, thef a,k

are the spatial Fourier components off a , andE0(0) is an assigned initial condition forE0(t). The
spatially uniform part of the Poisson equation, Eq.~1b!, reduces to the zero-charge condition

(
a

qaE
2p

1p

dxE dv f a50. ~5!

From the Vlasov equation it follows immediately that this condition is satisfied as long as it h
at t50.

The distribution functions satisfy initial conditions of the form

f a~x,v,0!5Fa~x,v ![Fa~v !1ha~x,v !, ~6!

where theFa(v) correspond to a Vlasov equilibrium and satisfy the conditions

q5(
a

qaE Fa~v !dv50, ~7!

j 5(
a

qaE vFa~v !dv50. ~8!

The functionha in Eq. ~6! will be taken to have no spatially uniform part, so that

E
2p

1p

dxha~x,v !50. ~9!

Equations~7! and ~9! ensure that thef a(x,v,0), and thus thef a(x,v,t), satisfy Eq.~5!. Clearly,
once thef a(x,v,0) are chosen, all the initial Fourier components for the fieldEk(0) with kÞ0 are
automatically assigned via the Poisson equation.

The characteristic system for the Vlasov equation, Eq.~3a!, is given by Newton’s equations
(dx/dt)5v, (dv/dt)5(qa /ma)E(x,t). All the electric fieldsE appearing in this paper will be
such that these equations have global classical solutions that can be extended indefinitt
according to classic theorems on ODEs.15 Then, the general solution to the Vlasov equation can
written as

f a~x,v,t !5Fa~x0
E~x,v,t !,v0

E~x,v,t !![fa~E,Fa!, ~10!

where we have introduced the the ‘‘inverse trajectories’’x0
E(x,v,t),v0

E(x,v,t) determined by
Newton’s equations; these functions associate with each phase-point (x,v) the initial condition
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(x0
E ,v0

E) at time zero that leads to (x,v) at time t. We shall use the notationf a(x,v,t)
5fa(E,Fa) whenever we want to emphasize the functional dependence of the distribution
tion on E and the initial condition. Similarly, we shall write

fa8 ~E,Fa!5
]

]v
@Fa~x0

E~x,v,t !,v0
E~x,v,t !!#. ~11!

Substituting Eq.~10! into Eq. ~3b! reduces the problem to a single nonlinear equation forE

E5N~E,Fa ,ha!, ~12!

where we have defined

N~E,Fa ,ha![L~ f1~E,F1!,...,fNS
~E,FNS

!!. ~13!

Equation~12! will be called the VPA equation; here, of course, the Vlasov equation has bec
part of the definition ofN ~through Eqs.~10! and ~4!!.

III. A – T DECOMPOSITION

As mentioned in our introductory discussion, we shall seek solutions forE that are the sum of
a transientpart and atime-asymptoticpart, of the form

E~x,t !5T~x,t !1A~x,t !. ~14!

Since our interest is in periodic traveling-wave solutions, all the functions involved will be
sumed to be continuously differentiable and periodic inx. As far as the time variable is concerne
a very general class of functions that have the representation in Eq.~14! is given by theasymp-
totically almost periodic continuous~a.a.p.c.! functions oft.16 Let AP be the set of all thealmost
periodic continuous~a.p.c.! functions oft uniformly with respect tox.17 Let T be the set of all the
continuous functions oft on R1g(x,t) such that limt˜1` g(x,t)50 uniformly in x. The space of
the a.a.p.c. functions oft on R1 ~uniformly with respect tox, periodic and continuously differen
tiable in x! is given by the direct sumAP1T. Here, we shall focus on the subspaceW,AP
1T of the functions that are also continuously differentiable int, i.e.,

W[$WPC1~R3R1! s.t. W5A1T, APAP, TPT %. ~15!

As shown by Fre´chet,16 a.a.p.c. functions enjoy many of the classic properties of almost peri
functions. In particular, ifW(x,t) is a.a.p.c. int then it is bounded and uniformly continuous o
R1; in fact,AP, T andW can be made into Banach spaces with the supnorm

iWi5 sup
I ,R1

uWu, ~16!

whereI[@2p,1p#. Moreover, themean valueof W,

M t@W~x,t !#5 lim
s˜`

1

s E
0

s

W~x,t !dt ~17!

is always well defined and coincides with the mean value of the a.p.c. part ofW, as follows from
the fact thatM t@T(x,t)#50 ;TPT ~this will be referred to as ‘‘Fre´chet’s Lemma’’16 in what
follows!. The existence of the mean is very important because it makes it possible to ass
with each a.a.p.c.W its Fourier–Bohr coefficients,
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w~l,x!5M t@W~x,t !e2 ilt#5 lim
s˜`

1

s E
0

s

W~x,t !e2 iltdt ~18!

which, of course, coincide with the Fourier–Bohr coefficients of the a.p.c. part ofW. For this latter
part we know that there exist at most a countably infinite set of real numbersl i such that
w(l,x)[0 ;lÞl i .17 Hence, with each a.a.p.c. functionW there is associated a unique Fourie
Bohr series

W~x,t !;( wi~x!eil i t ~19!

~here wi(x)[w(l i ,x)!. The series in Eq.~19! coincides with the Fourier–Bohr series for th
a.p.c.~time-asymptotic! part ofW and determines it uniquely. Of course, itdoes notdetermine the
whole function W, whose transient part has been averaged away in the computation of the
ficientswi . In fact, the Fourier–Bohr series of an a.a.p.c. function gives an explicit represen
of the fundamental projection operatorPa :W˜AP such that

PaE5A. ~20!

By associating with anyEPW its a.p.c. partA, Pa will play a major role in what follows,
enabling us to ‘‘sort out’’ the essential features of long-time wave propagation from less int
ing ~and more complicated! transient phenomena.

Of course, the validity of the assumption thatE(x,t)PW is far from obvious, since there
seems to be no easy way to prove rigorouslya priori that the problem admits an asymptotic a.p
state. On the contrary, it could be argued that the intricacies of the nonlinear particle dynami
always generate some ‘‘noise,’’ which cannot be reasonably expected to be a.a.p.c. in tim
are thinking here of the particles belonging to the thin stochastic layers generated by mul
resonances in the phase plane, as described by Rechester and Stix18 and by Buchanan and
Dorning.12 On the other hand, Buchanan and Dorning12 obtained solutions thatare a.p.c. to
leading orderin the field amplitude, and showed that the noise coming from the stochastic l
vanishes exponentially with that amplitude. Motivated by these results, we study the evolut
initial conditions that produce asmall time-asymptotic state, and show that theapproximate
solution for E(x,t) is a.a.p.c. in time, with an error that is negligible with respect to the tim
asymptotic field amplitude.

Let us substitute the a.a.p.c. representation ofE, Eq. ~14!, into the nonlinear VPA equation
Eq. ~12!; in order to ensure that this equation is well defined, we need to assume that the in
in dt in Eq. ~4! is bounded~and thus a.a.p.c.~Ref. 17!! in time. This implies the necessar
condition

4p(
a

qa lim
s˜`

1

s E
0

s

dtE dvv f a,0~v,t!50 ~21!

which can also be obtained directly by taking the time-average of the Ampe`re equation, Eq.~1c!.
We now apply the projection operatorPa introduced above to both sides of Eq.~12! in order to
decompose the problem into its transient and time-asymptotic components. This yields th
lowing system of two coupled equations for the time-asymptotic fieldA and the transient fieldT:

A5Pa N~A1T,Fa ,ha!, ~22a!

T5~ I 2Pa!N~A1T,Fa ,ha!. ~22b!

Our strategy will be to focus on the ‘‘asymptotic equation,’’ Eq.~22a!. We shall show that it is
possible to obtain important information about the structure of solutions to Eq.~22a! indepen-
dentlyof the details ofT. This will be done in the following steps:
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~1! First, we shall show that the asymptotic equation can be studied as an infinite-dimen
bifurcation problem, because it possesses a manifold of vanishing solutions correspon
different choices of the initial perturbationha and of the corresponding transient fieldT.

~2! Then, we shall show that there is a natural way to linearize Eq.~22a!, which leads to a
time-asymptotic linear equation, whose solutions are very different from those found in
traditional linear theory. In particular, the time-asymptotic linear theory will yield results
are perfectly consistent with the undamped nonlinear multiple traveling-wave solution
cently discovered by Buchanan and Dorning.12

~3! Finally, we shall exploit the properties of the time-asymptotic linear operator in orde
reduce the original nonlinear problem to a lower-dimensional system of bifurcation equa
for the amplitudes of the leading-order Fourier–Bohr coefficients ofA.

IV. PURELY TRANSIENT ANALYSIS

We want to show that the time-asymptotic equation, Eq.~22a!, is satisfied by the zero time
asymptotic fieldA[0 independently of the choice of the initial condition. SubstitutingA[0 into
Eq. ~22a! gives the equation

PaN~T,Fa ,ha!50, ~23!

which in turn entails the analysis of the Vlasov equation for a purely transient field

] f a

]t
1v

] f a

]x
1

qa

ma
T

] f a

]v
50. ~24!

Of course, the general solution of this equation has the formf a
T(x,v,t)

5Fa(x0
T(x,v,t),v0

T(x,v,t)), where the@x0
T(x,v,t),v0

T(x,v,t)# give the ‘‘inverse particle trajec-
tory,’’ i.e., the starting point at time zero for a particle that arrives at the point (x,v) at time t
under the influence of the electric fieldT. The fundamental observation is that, as thetransient T
dies away, it acts on the particles more and more weakly, so that the trajectories tend asy
cally to straight lines ast˜`. This suggests that in the long-time limit the distribution functi
must approach some kind of Vlasov equilibrium, at least in a coarse-grained sense, so that E~23!
is satisfied.

To establish this, let us consider Newton’s equations for the purely transient, spatially pe
field T: ẋ5v, v̇5T(x,t) ~where we have setqa /ma51 to avoid excessive notational detail!. For
the initial value problem with the initial conditionsx(0)5x0 , v(0)5v0 , these equations can b
written in the integral form

x~ t !2x05v0t1E
0

t

dtE
0

t

dt8T~x~t8!,t8!, ~25a!

v~ t !2v05E
0

t

dt T~x,~t!,t!. ~25b!

We want the field T(x,t) to decay fast enough, ast˜`, that both supxuT(x,t)u and
* t

`dt8 supxuT(x,t8)u be integrable over the positive real axis. This will be ensured w
supxuT(x,t)u tends to zero at least as fast ast2h as t˜`, with h.2. Under this condition, it
follows immediately from Eq.~25b! that

lim
t˜`

v~ t !5v01E
0

`

dt T~x~t!,t!, ~26!

where the integral on the right-hand side is a function only of the initial point (x0 ,v0) of the
trajectoryx(t) in phase space. Hence, we shall write Eq.~26! in the form
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lim
t˜`

v~ t !5v01H~x0 ,v0![v` . ~27!

Then, Eq.~25a! can be rewritten immediately as

x~ t !2x05v`t1E
0

t

dtE
t

`

dt8T~x~t8!,t8!. ~28!

Thus, under the above conditions onT,

lim
t˜`

@x~ t !2v`t#5x01E
0

`

dtE
t

`

dt8T~x~t8!t8! ~29!

which will be written in the form

lim
t˜`

@x~ t !2v`t#5x01G~x0 ,v0![x` . ~30!

Equations~27! and ~30! express the fact that, ast goes to infinity andT(x,t) tends to zero,
each trajectory tends asymptotically to the straight line trajectory starting att50 from the ‘‘fic-
titious’’ phase point (x` ,v`). That is,

@x~ t !,v~ t !# ——˜

t˜`

@x`1v`t,v`#. ~31!

Now, we want to obtain an analogous result for the ‘‘inverse’’ trajector
@xT(x,v,t),vT(x,v,t)#. This requires a slightly more sophisticated analysis, which leads to
following theorem:

Theorem 1: If there is a numberh.2 such that bothsupxuT(x,t)u andsupxu(dT/dx)(x,t)u go
to zero as t2h as t̃ `, then the corresponding inverse trajectories can be written in the for,

x0
T~x,v,t !5x2vt1G̃~x2vt,v !1t1~x,v,t !, ~32a!

v0
T~x,v,t !5v1H̃~x2vt,v !1t2~x,v,t !, ~32b!

where G̃,H̃PC(I 3R1) and limt˜` t1(x,v,t)5 limt˜` t2(x,v,t)50, uniformly in x andv.
Proof: The proof of this result is based on the fact that, by definition,x0

T(x,v,t) andv0
T(x,v,t)

must satisfy the Vlasov equations

]x0
T

]t
1v

]x0
T

]x
1T

]x0
T

]v
50, ~33!

]v0
T

]t
1v

]v0
T

]x
1T

]v0
T

]v
50, ~34!

which can be written in the integral form

x0
T~x,v,t !5x2vt2E

0

t

dt FT
]x0

T

]v G
~x2v~ t2t!,v !

, ~35!

v0
T~x,v,t !5v2E

0

t

dt FT
]v0

T

]v G
~x2v~ t2t!,v !

. ~36!
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In this case, it is not immediately obvious that one can taket˜` in the limits of integration, as
was done for Eqs.~25!. The core of the proof will be precisely the determination of appropr
bounds on the growth in time of (]x0

T/]v) and (]v0
T/]v), in order to show that the integrands o

the right-hand sides of Eqs.~35! and~36! are, indeed, integrable at infinity. The superscript ‘‘T’’
will be dropped for the remainder of this proof.

Let us consider, first, the ‘‘direct’’ trajectories, written in the formx(x0 ,v0 ,t),v(x0 ,v0 ,t).
We shall exploit the decay properties ofT in order to obtain bounds on the growth in time of th
partial derivatives]x/]x0 , ]v/]x0 , ]x/]v0 , and]v/]v0 . To begin, we take the derivative wit
respect tox0 of both sides of Eq.~25a!,

]x

]x0
~x0 ,v0 ,t !511E

0

t

dtE
0

t

dt8
]x

]x0
~x0 ,v0 ,t8!Tx~x~x0 ,v0 ,t8!,t8!, ~37!

whereTx(x,t)[(]T/]x)(x,t). Now, let us multiply both sides of Eq.~37! by Tx(x(x0 ,v0 ,t),t),
rename the variablet as t8 and integrate indt8 from 0 to t. We obtain

g~x0 ,v0 ,t !5h~x0 ,v0 ,t !1E
0

t

dt8Tx~x~x0 ,v0 ,t8!,t8!E
0

t8
dt g~x0 ,v0 ,t!, ~38!

where we have defined

g~x0 ,v0 ,t ![E
0

t

dt8
]x

]x0
~x0 ,v0 ,t8!Tx~x~x0 ,v0 ,t8!,t8! ~39!

and

h~x0 ,v0 ,t ![E
0

t

dt8Tx~x~x0 ,v0 ,t8!,t8!. ~40!

The second term on the right-hand side of Eq.~38! is then integrated by parts, yielding

E
0

t

dt8Tx~x~x0 ,v0 ,t8!,t8!E
0

t8
dt g~x0 ,v0 ,t!5h~x0 ,v0 ,t !E

0

t

dt8g~x0 ,v0 ,t8!

2E
0

t

dt8g~x0 ,v0 ,t8!h~x0 ,v0 ,t8!

5E
0

t

dt8g~x0 ,v0 ,t8!E
t8

t

dt Tx~x~x0 ,v0 ,t!,t!.

~41!

Thus, Eq.~38! can be written as a Volterra equation, i.e.,

g~x0 ,v0 ,t !5h~x0 ,v0 ,t !1E
0

t

dt8K~x0 ,v0 ,t,t8!g~x0 ,v0 ,t8!, ~42!

where the ‘‘kernel’’K(x0 ,v0 ,t,t8) is given by

K~x0 ,v0 ,t,t8![E
t8

t

dt Tx~x~x0 ,v0 ,t!,t!. ~43!

Due to the integrability ofuTxu,
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uK~x0 ,v0 ,t,t8!u<E
t8

t

dtuTx~x~x0 ,v0 ,t!,t!u<E
t8

`

dt uTx~x~x0 ,v0 ,t!,t!u[H~x0 ,v0 ,t8!.

~44!

Hence, Eq.~42! implies the inequality

ug~x0 ,v0 ,t !u<uh~x0 ,v0 ,t !u1E
0

t

dt8H~x0 ,v0 ,t8!ug~x0 ,v0 ,t8!u. ~45!

Then, from Gronwall’s inequality it follows that

ug~x0 ,v0 ,t !u<C~x0 ,v0!eB~x0 ,v0![M ~x0 ,v0!,`, ~46!

where

C~x0 ,v0!<E
0

`

dt8uTx~x~x0 ,v0 ,t8!,t8!u ~47!

and

B~x0 ,v0![E
0

`

dt8H~x0 ,v0 ,t8!. ~48!

Now, let us go back to Eq.~37!, and to the corresponding equation for]v/]x0 which is
obtained by taking the partial derivative of Eq.~25b! with respect tox0 . According to Eq.~39!,
these equations can be written in the form

]x

]x0
~x0 ,v0 ,t !511E

0

t

dt g~x0 ,v0 ,t!, ~49a!

]v
]x0

~x0 ,v0 ,t !5g~x0 ,v0 ,t !. ~49b!

From the bound onug(x0 ,v0 ,t)u in Eq. ~46! it follows immediately that

U ]x

]x0
~x0 ,v0 ,t !U<11Mt, ~50a!

U ]v
]x0

~x0 ,v0 ,t !U<M . ~50b!

Here, M is defined as supx0 ,v0
M (x0 ,v0) which exploits the fact thatM (x0 ,v0) is a uniformly

bounded function of (x0 ,v0), as follows from Eqs.~46!, ~47!, ~48!, and from the integrability
properties ofTx . Equations~50! give the result sought: under the conditions on the time integ
bility of Tx(x,t), we have found that]x/]x0 and]v/]x0 can grow at most linearly in time.

Using a completely analogous procedure to find similar bounds on the derivatives]x/]v0 and
]v/]v0 we obtain

U ]x

]v0
~x0 ,v0 ,t !U<Nt, ~51a!

U ]v
~x0 ,v0 ,t !U<N. ~51b!
]v0
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Here,N[supx0 ,v0
N(x0 ,v0), where

N~x0 ,v0![11D~x0 ,v0!eB~x0 ,v0!. ~52!

B(x0 ,v0) is the same quantity that was defined in Eq.~48! andD(x0 ,v0) satisfies

D~x0 ,v0!<E
0

`

dt8t8uTx~x~x0 ,v0 ,t8!,t8!u. ~53!

From the inequalities in Eqs.~50! and~51!, we easily obtain similar bounds on the time growth
the derivatives of the ‘‘inverse’’ functionsx0 andv0 . These bounds follow from the fact that th
Jacobian matrix of@x0(x,v,t),v0(x,v,t)# ~viewed as a function fromR2 ontoR2! is the inverse of
the Jacobian of the inverse function@x(x0 ,v0 ,t),v(x0 ,v0 ,t)# for each givent, and that this latter
has determinant equal to one. We find

U]x0

]x
~x,v,t !U<N, ~54a!

U]v0

]x
~x,v,t !U<M , ~54b!

U]x0

]v
~x,v,t !U<Nt, ~55a!

U]v0

]v
~x,v,t !U<11Mt. ~55b!

By combining the decay properties ofT with Eqs. ~55!, it is easy to see that the integrand
T(]x0 /]v) andT(]v0 /]v) in the integrals in Eqs.~35! and~36! are integrable overR1. Hence,
by adding and subtracting the corresponding integrals on@ t,`), we can write

x0~x,v,t !'x2vt1G̃~x2vt,v !, ~56a!

v0~x,v,t !'v1H̃~x2vt,v !, ~56b!

where the symbol' is used to indicate that the two sides are equal up to certain tran
functions of (x,v,t) that disappear in the time-asymptotic limit, uniformly with respect tox andv.
The functionsG̃ and H̃ are given by

G̃~x,v ![E
0

`

dt T~x1vt,t!
]x0

]v
~x1vt,v,t!, ~57a!

H̃~x,v ![E
0

`

dt T~x1vt,t!
]v0

]v
~x1vt,v,t!, ~57b!

and are clearly continuous~x0 and v0 being C1 according to standard theorems on ordina
differential equations!. h

Equations~32! tell us that the inverse particle trajectories at long times tend asymptotica
the straight-line paths (x2vt,v), but with one important qualification. Because of the effects
the transient, the phase point that is mapped backwards along the each straight-line trajeis

not (x,v) itself, but the ‘‘surrogate’’ pointxT[x1G̃(x,v), vT[v1H̃(x,v). Of course, the two
functionsG̃ andH̃ are not known explicitly, since that would require the complete solution of
nonlinear Vlasov equations forx0

T and v0
T , Eqs.~33! and ~34!. The essential point, here, is tha
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these functions exist and do not depend explicitly ont. It is worth noting that there is a relationshi
between the functionsG̃,H̃ and the functionsG,H introduced in Eqs.~27! and~30!. Equations~56!
imply that

x0'x~x0 ,v0 ,t !2v~x0 ,v0 ,t !t1G̃~x~x0 ,v0 ,t !2v~x0 ,v0 ,t !t,v !, ~58a!

v0'v~x0 ,v0 ,t !1H̃~x~x0 ,v0 ,t !2v~x0 ,v0 ,t !t,v !. ~58b!

Taking the limit t˜` and using Eq.~31! yields

x05x`1G̃~x` ,v`!, ~59a!

v05v`1H̃~x` ,v`!, ~59b!

where (x` ,v`) are the quantities defined in Eqs.~27! and ~30!.
Substituting Eqs.~32! into the initial conditionFa yields the solutionf a

T to Eq. ~24! in the
form

f a
T~x,v,t !5Fa

T~x2vt,v !1ga
T~x,v,t !, ~60!

where

Fa
T~x,v ![Fa~x1G̃~x,v !,v1H̃~x,v !!, ~61!

and

ga
T~x,v,t !5Fa~x0

T ,v0
T!2Fa

T~x2vt,v !. ~62!

Clearly, ga
T(x,v,t)˜0 uniformly as t˜`, since according to Eqs.~32! the two terms on the

right-hand side of Eq.~62! become identical in this limit. This means that, ast goes to infinity,f a
T

can be obtained by advection along straight-line trajectories, as long as we replace the
conditionFa by the modified functionFa

T that contains the effects of the transient fieldT.
It follows from Eq.~60! that f a

T can be replaced in Eq.~23! by a spatially uniform equilibrium
that yields the same values for macroscopic quantities in the time-asymptotic limit. To be ex
let us consider any integral of the form

E
R
duG~v,u! f a

T~x,u,t !, ~63!

which can be either a charge or current density (G(v,u)51,u), or any higher moment (G(v,u)
5un), or a filtered distribution function.19 Substituting Eq.~60! into Eq. ~63! and introducing the
spatial Fourier series ofFa

T , it is easy to see that for allkÞ0,

lim
t˜`

E
R
duG~v,u! f a,k

T ~u,t !5 lim
t˜`

E
R
duG~v,u!Fa,k

T ~u!e2 ikut50 ~64!

by the Riemann–Lebesgue Lemma. Hence,

lim
t˜`

E
R
duG~v,u! f a

T~x,u,t !5E
R
duG~v,u!Fa

T~u!, ~65!

where
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Fa
T~v !5Fa,0

T ~v !5
1

2p E
2p

1p

dxFa~x1G̃~x,v !,v1H̃~x,v !!. ~66!

The charge and current densities associated withFa
T are

rT5
1

2p (
a

qaE
R
dvE

2p

1p

dxFa~x1G̃~x,v !,v1H̃~x,v !!, ~67!

j T5
1

2p (
a

qaE
R
dvE

2p

1p

dx vFa~x1G̃~x,v !,v1H̃~x,v !!. ~68!

Changing the integration variables to (x0 ,v0)5@x1G̃(x,v),v1H̃(x,v)# and noting that this
transformation preserves the area in phase space~since it is the time-limit of a Hamiltonian flow!,
we get

rT5
1

2p (
a

qaE
R
dv0E

2p

1p

dx0Fa~x0 ,v0!, ~69!

j T5
1

2p (
a

qaE
R
dv0E

2p

1p

dx0@v01H~x0 ,v0!#Fa~x0 ,v0!. ~70!

Since the spatially uniform part of the initial conditionFa(x,v) has been taken to be a Vlaso
equilibrium, it is easy to see that Eqs.~69! and ~70! reduce to

rT50, j T5 j `
T , ~71!

where

j `
T[

1

2p (
a

qaE
R
dv0E

2p

1p

dx0H~x0 ,v0!Fa~x0 ,v0!. ~72!

WheneverT is a solution of the self-consistent VPA equation, Eq.~12!, j `
T50, as follows directly

from the time-and-space averaged Ampe`re equation, Eq.~21!. In general, let us define the sub
spaceTL,T of the transient fields that satisfy the hypotheses of Theorem 1 and for whicj `

T

50. Then, Eq.~71! leads directly to the main result of this section:
Theorem 2: For any choice ofFa and TPTL the time-asymptotic equation, Eq. (22a), has t

solution A[0.

V. VANISHING ASYMPTOTIC STATES

Theorem 2 can be given the following interpretation: the asymptotic equation, Eq.~22a!,
possesses an infinite dimensional manifold of vanishing solutions with respect to the initia
dition Fa(x,v), viewed as an infinite dimensional parameter in the Banach spaceS of all the
C1(R3R) functions such that

iFaiS[sup
x
E

R
dv~11uvu!uFa~x,v !u,`. ~73!

In Eq. ~6! Fa(x,v) was written as the sum of a spatially uniform Vlasov equilibriumFa(v) and
another functionha(x,v); in many situations it is convenient to considerFaPS as fixed and study
how the solutions to the VPA problem depend onha . Physically, this corresponds to assuming
given ‘‘background equilibrium’’ and varying a spatially dependent perturbation. Theorem 2
us thatA[0 is a solution to Eq.~22a! for all haPS. Schematically, if we consider theha-A plane
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~where each axis represents an infinite dimensional space! this ‘‘basic solution branch’’A[0 can
be drawn as the horizontal line along theha axis. We shall call these solutionsvanishing
asymptotic states.

It is important to emphasize that these vanishing asymptotic states do not necessarily
spond to solutions of the complete system, Eqs.~22!. In fact, it is not at all certain that ifA50 is
substituted into Eq.~22b! the equation that results forT from Eq. ~23!,

T5N~T,Fa ,ha! ~74!

will possess a solution inT. Whenever it does possess such a solution for an initial perturba
ha , we shall say that the corresponding point on the zero solution branch for the asym
equation, Eq.~22a!, is accessibleto the system. Clearly, at least one vanishing asymptotic sta
always accessible, namely the ‘‘origin’’A[ha[0. Any other accessible vanishing asympto
state~a.v.a.s. from now on! will correspond, physically, to strongly Landau damped evolutio6

with the field damping completely to zerobefore trapping effects are able to sustain travelin
wave propagation.

Let us consider a generic a.v.a.s.A[0, ha5ha
0, associated with a transient fieldT5T0 such

that the nonlinear Ampe`re equation, Eq.~74! is satisfied. The corresponding distribution functio
f a

T0 will be the solution of the Vlasov equation, Eq.~24!, with the initial condition f a
T0(x,v,0)

[F a
0(x,v)[Fa(v)1ha

0(x,v), whereFa(v) is a given Vlasov equilibrium. We now introduc
the following definition:

Definition 1: An a.v.a.s. (A,T,ha)5(0,T0 ,ha
0) will be called critical if in every ~arbitrarily

small! neighborhood of (0,T0 ,ha
0) in AP3T3S there is a point (A,T01dT,ha

01dha) such that
the initial perturbationha

01dha generates a solution to the VPA problem in which the elec
field has transient partT01dT andnonzerotime-asymptotic partA.

Obviously, this situation is physically very interesting, especially in the class of problems
fall under the label of ‘‘nonlinear Landau damping;’’20 in these cases, we expect an a.v.a.s. of t
kind to mark the transition between solutions that Landau damp completely and solution
contain a nonzero small-amplitude asymptotic part. Another important example of a c
a.v.a.s. is found whenever the background equilibriumFa allows undamped traveling wave solu
tions for perturbations of arbitrarily small amplitude. Examples are the recently discovered s
amplitude BGK and BGK-type solutions.10,12 In these cases, of course, the critical a.v.a.s. is gi
by the ‘‘origin’’ ( A,T,ha)5(0,0,0).

Now, the fact thatA[0 provides a solution to the asymptotic equationin isolation for any
choice of ha , suggests that the asymptotic equation itself may be amenable to abifurcation
analysisat the critical states. In fact, if we consider the asymptotic equation alone, in an arbit
small neighborhood of a critical a.v.a.s. the solution to the equation cannot be unique, sinc
Definition 1 bothA[0 and the nonzero asymptotic solutions to the VPA system correspondin
ha

01dha satisfy the equation. Thus, according to a rather general definition in nonlinear an
~e.g., Ref. 21, p. 151!, A[0, ha5ha

0 is abifurcation pointfor the asymptotic equation. Of cours
this is not true in general for the complete VPA system, for example, it is not true wheneve
solution to the initial value problem is known to be unique. In summary, we have the follo
theorem:

Theorem 3: Every critical a.v.a.s for the VPA initial value problem corresponds to a bif
cation point for the asymptotic Ampe`re equation, Eq. (22a).

VI. TIME-ASYMPTOTIC LINEAR ANALYSIS

Let us now consider a given critical a.v.a.s.h0[(0,T0 ,ha). Instead of carrying out the
bifurcation analysis of Eq.~22a! at h0 directly, we shall study the equivalent problem compris
of the countable set of equations for the Fourier–Bohr coefficients ofA,

ak,v i
5Nk,v i

~A1T,Fa ,ha!. ~75!
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These equations correspond to all thek andv i such thatak,v i
Þ0; by definition, the Fourier–Bohr

coefficientsNk,v i
of the nonlinear operatorN coincide with those ofPaN. The double-indexed

sequencesy[$ym,h% of Fourier–Bohr coefficients of functions that are periodic in space and a
in time are characterized by the Riesz-type condition22 Sm,huym,hu2,`, where it is understood
that the index-set forh can be any countable subset of the real axisR, and not just the integers
With the supnorm,

iyi5sup
m,h

uym,hu, ~76!

the set of all they is a Banach space, which we shall denotel b . The sequence of nonlinea
time-asymptotic equations, Eq.~75!, can be reformulated as a single functional equation inl b by
writing a5$ak,v i

% for the double sequence of the Fourier–Bohr coefficients ofA and defining
N(a)[$Nk,v i

(A1T,Fa ,ha)%. Then, Eq.~75! becomes

a5N~a!. ~77!

Here, we are not explicitly writing the dependence ofN on the transient fieldT, which is being
treated as a free parameter along withFa andha .

In a local analysis, the natural question is whether there is any appropriatelinear approxima-
tion to the nonlinear problem under consideration. We answer this question by first estab
the following result:

Lemma 1: For EPW, FaPS and kÞ0,

Nk,v i
~E,Fa ,ha!5

2

k (
a

qa
2

ma
lim

s˜`

1

s E
0

s

dtE
2p

1p

dx e2 iv i t2 ikxE~x,t !PE
R
dv

fa8 ~E,Fa!

v i1kv

5
2

k (
a

qa
2

ma
lim
n˜`

lim
s˜`

1

s E
0

s

dtE
2p

1p

dx e2 iv i t2 ikxE~x,t !E
Vn,i

c
dv

fa8 ~E,Fa!

v i1kv
,

~78!

where fa8 (E,Fa)5] f a /]v(x,v,t) was defined in Eq. (11) andVn,i
c represents the real axisR

minus the one-dimensional sphere of radius rn,1/n centered at 2v i /k,
Vn,i[B@2(v i /k),r n#.

Proof: The Fourier–Bohr coefficientsNk,v i
are given by

Nk,v i
~E,Fa ,ha!5

4p

ik (
a

qa lim
s˜`

1

s E
0

s

dt e2 iv i tE
R
dv f a,k~v,t !, ~79!

The properties off a enable us to apply Fubini’s theorem and rewrite this equation as

Nk,v i
~E,Fa ,ha!5

4p

ik (
a

qa lim
s˜`

lim
n˜`

E
Vn,i

c
dv

1

s E
0

s

dt e2 iv i t f a,k~v,t !. ~80!

We substitute into the right-hand side of Eq.~80! the expression forf a that is given by the Vlasov
equation in integro-differential Fourier-transformed form

f a,k~v,t !5ha,k~v !e2 ikvt2
qa

ma
E

0

t

dt
1

2p E
2p

1p

dxe2 ik@x1v~ t2t!#E~x,t!
] f a

]v
~x,v,t!. ~81!

The term proportional toha,k(v) does not contribute to Eq.~80! by the Riemann–Lebesgu
Lemma. After an integration by parts, we are left with
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2
2

k (
a

qa
2

ma
lim

s˜`

1

s
PE

R
dv

e2 iv is

v i1kv E0

s

dte2 ikv~s2t !E
2p

1p

dxe2 ikxE~x,t !
] f a

]v
~x,v,t !

1
2

k (
a

qa
2

ma
lim

s˜`

1

s
PE

R
dvE

0

s

dt
e2 iv i t

v i1kv E2p

1p

dxe2 ikxE~x,t !
] f a

]v
~x,v,t !. ~82!

Here, the twov-integrals, taken separately, would not be well-defined if the principal values
not been introduced via Eq.~80!. The first term in Eq.~82! can be greatly simplified by noting tha
it contains the last term on the right-hand side of Eq.~81! evaluated att5s. Hence, that whole
term vanishes in the limits˜`, since 1/s multiplies functions that are bounded ins. Finally, via
another change in the order of integration~based on Fubini’s theorem, and also on the Lebes
dominated convergence theorem! in order to bring the limitn˜` inside the integrals indt anddx,
we are left with the expression for theNk,v i

on the first line in Eq.~78!.
In order to obtain the second expression in Eq.~78!, we need to change the order of the lim

s˜` andn˜`. This can be done most conveniently in Eq.~79! in order to take advantage o
the properties off a . Thus, we break thev integration in Eq.~79! into two parts, onVn,i andVn,i

c ,
respectively. Asn˜`, the part onVn,i vanishes, since

U lim
s˜`

1

s E
0

s

dte2 iv i tE
Vn,i

dv f a,k~v,t !U< 2Ma

n
~83!

due to thea priori bound in Eq.~2!. Taking the limitn˜` we obtain the following expression fo
Nk,v i

(E,Fa ,ha):

Nk,v i
~E,Fa ,ha!5

4p

ik (
a

qa lim
n˜`

lim
s˜`

E
Vn,i

c
dv

1

s E
0

s

dt fa,k~v,t !. ~84!

Then, the same procedure that was applied to Eq.~80! ~with minor adaptations! leads to the
expression on the second line in Eq.~78!. h

The fact that the order of the limitsn˜` ands˜` in Eq. ~78! can be changed is crucial fo
the next Lemma, which shows that the explicit dependence onE in Eq. ~78! actually involves only
the asymptotic partA, while the term containingT vanishes.~Of course, the transientT still
appears implicitly through the distribution functionf a , which is determined byboth AandT via
the Vlasov equation.!

Lemma 2: For any choice of EPW, FaPS and kÞ0,

2

k (
a

qa
2

ma
lim
n˜`

lim
s˜`

1

s E
0

s

dt e2 iv i tE
2p

1p

dx e2 ikxT~x,t !E
Vn,i

c
dv

fa8 ~E,Fa!

v i1kv
50. ~85!

Proof: Integrating by parts gives

U E
Vn,i

c
dv

] f a

]v
~x,v,t !

v i1kv
U5U2F f a~x,v,t !

v i1kv G
2~v i /k!2r n

2~v i /k!1r n

1kE
Vn,i

c
dv

f a~x,v,t !

~v i1kv !2U
<

4pMa

r n
1

k

r n
2 E

R
dvu f au<

4pMa

r n
1

kM̃

r n
2 [Ma,n , ~86!

where we have exploited thea priori bound onf a(x,v,t) and the fact that the total number o
particlesM̃ must be conserved~as follows from integrating the Vlasov equation over the wh
phase plane!. Hence, in the second line of Eq.~78!,
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U lim
s˜`

1

s E
0

s

dt e2 iv i tE
2p

1p

dx e2 ikxT~x,t !E
Vn,i

c
dv

fa8 ~E,Fa!

v i1kv U
< lim

s˜`

1

s E
0

s

dtuT~x,t !u2pMa,n52pMa,nM t@ uT~x,t !u#50, ~87!

where the mean valueM t was defined in Eq.~17! and M t@ uT(x,t)u# is zero sinceT(x,t) is a
transient. Thus Lemma 2 is proved. Clearly sinceMa,n diverges in the limitn˜`, the order in
which the two limits are taken in Eq.~85! is crucial. h

According to Eqs.~78! and ~85!, when kÞ0 the Fourier–Bohr coefficientsNk,v i
can be

rewritten as

Nk,v i
~A1T,Fa ,ha!5 lim

s˜`

1

s E
0

s

dt
1

2p E
2p

1p

dxe2 iv i t2 ikxAE~k,v i !~A1T,Fa ,ha!, ~88!

where we have introduced the notation

E~k,v i !~E,Fa ,ha![
4p

k (
a

qa
2

ma
PE

R
dv

fa8 ~E,Fa!

v i1kv
. ~89!

We next considerk50 which we excluded from Lemmas 1 and 2. There are two possibili
v i50 andv iÞ0. However, it is not necessary to study the former case sincea0,050 follows
immediately from the fact that the VPA system conserves energy. Indeed, ifa0,0 were nonzero the
corresponding time-asymptotic electric field, being uniform in both space and time, clearly w
accelerate all the particles to infinite energies. Thus, we do not consider this case; for the
reason, we exclude the possibility ofv50 being an accumulation point for thev i . Then, fork
50 there must exist alPR such thatk50, v i<l⇒ak,v i

50, which in fact is a well-known
sufficient condition for the spatial averageA0(t) to have an almost periodic primitive~Ref. 17, p.
74!. Hence, we next consider the remaining case,k50, v iÞ0, under this condition. The analogue
of Lemmas 1 and 2 are developed immediately using the same arguments employed in
Lemmas, with Eq.~81! for the kth Fourier component replaced by

f a,0~v,t !5Fa~v !2
qa

ma
E

0

t

dt
1

2p E
2p

1p

dx E~x,t!
] f a

]v
~x,v,t!, ~90!

which is obtained via the time integration of thek50 component of the Vlasov equation. Subs
tuting Eq. ~90! into Eq. ~4! and carrying out steps analogous to those implemented abovek
Þ0 leads to an expression identical to Eq.~88!, with

E~0,v i !~E,Fa ,ha![
4p

v i
2 (

a

qa
2

ma
E

R
dvfa~E,Fa!. ~91!

Thus, Lemmas 1 and 2 have been extended to include the casek50.
Equation~88! combined with Eq.~89! for kÞ0 and Eq.~91! for k50 leads directly to the

following theorem;
Theorem 4: Given a critical a.v.a.s.h0PAP3T3S, let E(k,v i )(E,Fa ,ha) be continuous in

E at h0 . Then, Nk,v i
(A1T,Fa ,ha) is Fréchet-differentiable with respect to A ath0 , the deriva-

tive being

Lk,v i
~T0 ,Fa ,ha

0 !A[ lim
s˜`

1

s E
0

s

dt
1

2p E
2p

1p

dxe2 iv i t2 ikxAE~k,v i !~T0 ,Fa ,ha
0 !. ~92!
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Proof: ClearlyLk,v i
is a continuous linear operator, and due to Eq.~88! @Lemmas 1 and 2# and

the continuity ofE(k,v i ) at h0 ,

uNk,v i
~T01A,Fa ,ha

0 !2Nk,v i
~T0 ,Fa ,ha

0 !2Lk,v i
~T0 ,Fa ,ha

0 !Au

5U lim
s˜`

1

s E
0

s

dt
1

2p E
2p

1p

dxe2 iv i t2 ikxA@E~k,v i !~T01A,Fa ,ha
0 !2E~k,v i !~T0 ,Fa ,ha

0 !#U
<iAiiE~k,v i !~T01A,Fa ,ha

0 !2E~k,v i !~T0 ,Fa ,ha
0 !i5o~ iAi !. ~93!

h

The sequenceLk,v i
A defines a linear operatorLa[$Lk,v i

(T0 ,Fa ,ha
0)A% on l b . Introducing

M (a)[N(a)2La enables us to write Eq.~77! in the form

~ I 2L !a5M ~a!. ~94!

The operator (I 2L) represents the linear approximation~at the given critical a.v.a.s.! to the
original nonlinear equation, Eq.~77!. Hence, the first step in the analysis of the nonlinear prob
will be the study of the invertibility of this linear operator. Specifically, we must determine
null space of (I 2L); hence, we must study thelinearized time-asymptotic equation

~ I 2L !a50. ~95!

Before proceeding with the general analysis of this equation, we consider a particularly s
case for which the analysis is straightforward. It is provided by the a.v.a.s.ha[0, i.e., the zero
field solution

A~x,t !5T0~x,t ![0, f a
T0~x,v,t !5fa~0,Fa!5Fa~v ! ~96!

for whichE(k,v i )(T0 ,Fa ,ha
0), which appears in Eq.~92!, can be calculated immediately. From E

~89! and Eq.~91! it is

E~k,v i !~0,Fa,0![
4p

k (
a

qa
2

ma
PE

R
dv

Fa8~v !

v i1kv
~97!

for kÞ0, and

E~0,v i !~0,Fa,0![
4p

v i
2 (

a

qa
2

ma
E

R
dvFa~v !5

vp
2

v i
2 ~98!

for k50, wherevp is the plasma frequencythat corresponds to the equilibriumFa(v). The
expressions given in Eqs.~97! and~98! are both constants and can be moved out of the integ
in Eq. ~92!. Thus, Eq.~95! takes the simple form

ak,v i
D0~k,v i !50, ~99!

where

D0~k,v i ![12
4p

k (
a

qa
2

ma
PE

R
dv

Fa8 ~v !

v i1kv
~100!

for kÞ0 and D0(0,v i)[vp
2/v i

2 ~for k50!. D0(k,v i) is the well-known Vlasov dielectric
function,23 and Eq.~99! is trivial to solve; it implies thatak,v i

50 except for all the choices ofk
andv i that satisfy theVlasov dispersion relation
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D0~k,v i !50. ~101!

In general the linear operator in Eq.~95! is determined byE(k,v i )(T0 ,Fa ,ha
0) through Eq.

~92!, andE(k,v i )(T0 ,Fa ,ha
0) in turn is determined solely by the initial condition and the transi

field T0 via the distribution functionf a
T0 at the a.v.a.s. However,f a

T0 generally will not be a simple
Vlasov equilibrium because the transientT0 is nonzero and affects the distribution functio
Unfortunately, it is very difficult to solve exactly both the nonlinear Ampe`re equation forT0 , Eq.
~74!, and the Vlasov equation forf a

T0, Eq. ~24!. However, it is possible, without doing this, t
obtain important results on the asymptotic linear operator by exploiting the general proper
particle motion in a transient field. If we define a Vlasov equilibriumFa

T0 according to Eq.~66!,

Eq. ~65! shows that thisFa
T0 yields the same values for macroscopic quantities as the distribu

functions f a
T0 in the time asymptotic limit. We now raise the question of whether these Vla

equilibriaFa
T0 yield the same values asf a

T0 for the integrals in Eqs.~89! and~91! and therefore the
same linearized operatorLk,v i

. In fact, we have the following result:
Theorem 5: At a given critical a.v.a.s.h0 ,

Lk,v i
~T0 ,Fa ,ha!A5@12D~k,v i !#ak,v i

, ~102!

where

D~k,v i ![12
4p

k (
a

qa
2

ma
PE

R
dv

Fa
T08~v !

v i1kv
~103!

for kÞ0 and D(0,v i)[12vp
2(T0)/v i

2 (for k50). Here Fa
T08 is the velocity derivative of the

time-asymptotic Vlasov equilibrium defined in Eq. (66) andvp
2(T0) is the corresponding plasma

frequency.
Proof: We shall consider the casekÞ0; the casek50 is straightforward. After substituting

Eq. ~60! into Eq.~92! and explicitly writing out the expression forE(k,v i ), Eq.~89!, we can change
the order of the limitss˜` and n˜` according to Lemma 1. Then the term containing t
functionsga

T0 vanishes by Fre´chet’s Lemma16 and we are left with

4p

k (
a

qa
2

ma
lim
n˜`

lim
s˜`

1

s E
0

s

dt
1

2p E
2p

1p

dx e2 iv i t2 ikxA~x,t !E
Vn,i

c
dv

]

]v
@Fa

T0~x2vt,v !#

v i1kv
.

~104!

By applying the convolution theorem to the integral indx this becomes

4p

k (
a

qa
2

ma
lim
n˜`

lim
s˜`

1

s E
0

s

dte2 iv i t(
k8

Ak2k8~ t !E
Vn,i

c
dv

]

]v
@F

a,k8

T0 ~v !e2 ik8vt#

v i1kv
. ~105!

It can be easily seen that the term corresponding tok850 gives Eq.~102!. Hence, it will be
enough to show that all the terms withk8Þ0 are equal to zero in order to establish the result.
integration by parts gives
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E
Vn,i

c
dv

]

]v
@F

a,k8

T0 ~v !e2 ik8vt#

v i1kv
5kE

Vn,i
c

dv
F

a,k8

T0 ~v !e2 ik8vt

~v i1kv !2 2
1

r n
FFa,k8

T0 S 2
v i

k
2r nDei ~~k8/k!v i1k8r n!t

1F
a,k8

T0 S 2
v i

k
1r nDei ~~k8/k!v i2k8r n!tG . ~106!

Now, the first term on the right-hand side vanishes in the time-asymptotic limit by the Riem
Lebesgue Lemma. When the other terms are substituted into Eq.~105!, they generate quantitie
proportional to the Fourier–Bohr coefficientsak2k8,ṽ i

, whereṽ i[2(12(k8/k))v i6k8r n . Since
A is almost periodic, all these coefficients will be equal to zero except those correspond
some very special choices of the radiir n such thatṽ i belongs to the countable set of nonze
frequencies ofA. However, since the set of these ‘‘bad radii’’ has zero measure inR, we can
always pick the sequencer n ~when introducing the family of spheres in Eq.~78!! in such a way
that ak2k8,ṽ i

50;n; thus, the limit forn˜` in Eq. ~105! also will be zero, which proves the
assertion. h

The conclusion of this analysis is that the operator (I 2L) can be written component-wise a

~ I 2L !a[$ak,v i
D~k,v i !%. ~107!

Exploiting the regularity and integrability ofFa
T0, it is easy to see that the functionD(k,v i) is

bounded, i.e., there is a constantM̂ such that

uD~k,v i !u<M̂ . ~108!

This implies thatI 2L mapsl b into l b and is continuous, since

(
k,v i

uak,v i
D~k,v i !u2<M̂2(

k,v i

uak,v i
u2,` ~109!

and

i~ I 2L !ai5sup
k,v i

uak,v i
D~k,v i !u<M̂ iai . ~110!

The null space ofI 2L consists of those sequences whose only nonzero entries correspond to
of real indexes (k,v i) that satisfy thetime-asymptotic Vlasov dispersion relation

D~k,v i !50 ~111!

which is determined by the asymptotic Vlasov equilibriaFa
T0 corresponding to the transient fiel

T0 at the critical a.v.a.s. under consideration.
It is important to note that in most physically relevant situations there is only afinite number

N of such pairs. In these cases the linear operatorI 2L has a finite-dimensional null spaceK
[Ker(I 2L), with dim(K)5N, and I 2L is a Fredholm operator. A good example is given by
the Vlasov dispersion curve for the Maxwellian~Fig. 1!, whose features are quite representative
what one encounters in most applications. There is acutoff wave number kd such that fork.kd

Eq. ~111! has no solution at all; hence, given any wave numberk<kd , Eq. ~111! has a finite
numberNk of simple real rootsl1(k), l2(k)¯lNk

(k). Since the basic wave number isk51,

there will be%5@kd# admissible wave numbers before cutoff, for a total ofN5(k51
% Nk possible

modes.
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VII. TIME-ASYMPTOTIC FIELD SOLUTION

Now that we have carried out the analysis of the linearized time-asymptotic problem, w
ready for our final step, which is simply to show that the solution to the linearized pro
provides~as should be expected! a leading order solution forA to thenonlinear time-asymptotic
equation, Eq.~22a!. Since the Fre´chet derivative at the a.v.a.s. has a nontrivial null-space an
not invertible, the simplest thing to do is to apply the classical method of analysis known a
Alternative Method.24 To do this, we decompose the spacel b into the direct sum ofK and its
complementH. From Eq.~107! it follows immediately thatRg(I 2L)5@Ker(I 2L)#'5H. Let us
consider the two projectorsQK andQH associated, respectively, withK andH. QK is the operator
that starts from any element ofl b and annihilates all the entries except for those that have on
theN pairs of indexes that satisfy the Vlasov dispersion relation. Conversely,QH cancels only the
entries that have such indexes. Let us defineC[QKa andF[QHa, so thata5C1F. Then, a
standard procedure24 leads from Eq.~94! to the two equations,

QKM ~C1F!50, ~112!

~ I 2L !F5QHM ~C1F!. ~113!

In the language of bifurcation theory, Eq.~112! is thebifurcation equation, while Eq.~113! is the
auxiliary equation. It is easy to verify that when the operatorI 2L is restricted to the subspaceH,
it is invertible; from Eq.~107! it follows immediately that givenbPH,

~ I 2L !21b5H bk,v i

D~k,v i !
J , ~114!

whereD(k,v i)Þ0 ;bk,v i
sincebPH. Then, the auxiliary equation, Eq.~113! can be written as

a fixed point problem forF,

F5~ I 2L !21QHM ~C1F!. ~115!

Here, we are not interested in a detailed fixed point analysis of this equation, since we hav
assuming from the beginning that an asymptotically almost periodic solution to the VPA pro

FIG. 1. The Vlasov dispersion curve for a Maxwelliane–p plasma withTe5Tp , and the rootsv(k) of the corresponding
dispersion relation for a basic wave numberk0 and its harmonics;k is in units of the inverse Debye lengthkD[1/lD and
v is in units of the plasma frequencyvp .
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does exist. In fact, the existence and uniqueness of the solution forA implies that the solutions for
F andC must also exist and be unique. What is important is that Eqs.~112! and~115! enable us
to write the general form of the nonlinear solution for the time-asymptotic fieldA, as expressed in
the following theorem:

Theorem 6: Let hPAP3T3S be a critical a.v.a.s., and letE(k,v i )(E,Fa ,ha) be continuous
in E ath. Then, the general solution to the time-asymptotic equation, Eq. (22a), in a neighbo
of h in AP3T3S is given by

A~x,t !5(
k,v i

ck,v i
eikx1 iv i t1o~ iAi !, ~116!

where k andv i satisfy the time-asymptotic Vlasov dispersion relation, Eq. (111), and the am
tudesck,v i

satisfy the bifurcation equation

QKM ~C1F~C!!50, ~117!

whereF(C)5o(iAi) is determined by the auxiliary equation, Eq. (115).
Proof: In the light of the previous results, the proof reduces to establishing Eq.~116!. For any

pair (k,v i) such thatD(k,v i)Þ0, Eq. ~115! gives

fk,v i
5@D~k,v i !#

21Mk,v i
~A1T0 ,Fa ,ha!, ~118!

where

Mk,v i
~A1T0 ,Fa ,ha!5Nk,v i

~A1T0 ,Fa ,ha!2Lk,v i
~T0 ,Fa ,ha!A. ~119!

Mk,v i
(A1T0 ,Fa ,ha) coincides with the expression on the first line in Eq.~93! ~since

Nk,v i
(T0 ,Fa ,ha)50 at the a.v.a.s.! and

ufk,v i
u<uD~k,v i !

21uuMk,v i
~A1T0 ,Fa ,ha!u

<uD~k,v i !
21uiAiiE~k,v i !~T01A,Fa ,ha!2E~k,v i !~T0 ,Fa ,ha!i5o~ iAi !. ~120!

The decompositiona5C1F corresponds to the decomposition of the time-asymptotic fieldA in
the form

A~x,t !5AK~x,t !1AH~x,t !, ~121!

where

AK~x,t !;(
k,v i

ck,v i
eikx1 iv i t, AH~x,t !;(

k,v i

fk,v i
eikx1 iv i t. ~122!

Since these Fourier–Bohr series can be summeduniformly ~e.g., via the Fejer–Bochner summ
tion method! Eq. ~120! implies that

iAHi5o~ iAi ! ~123!

and Eq.~116! follows immediately. h

As previously mentioned, in most cases of physical interestK is finite-dimensional, so that Eq.
~117! reduces to a finite system ofN nonlinear algebraic equations for the amplitudesck,v i

.
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VIII. CONCLUSION

The general solution for a small-amplitude time-asymptotic electric field near a critical a.
is given by Eq.~116! as a superposition of undamped traveling-wave modes, whose freque
and wave numbers satisfy the time-asymptotic Vlasov dispersion relation, Eq.~111!. Remarkably,
this result holds regardless of the details of the transient fieldT. Of course,T determines the
time-asymptotic Vlasov equilibriumFa

T0, and also the amplitudesak,v i
via the nonlinear operato

M in Eqs. ~115! and ~117!. In this sense, the results reported here represent the first step
study of the initial value problem for the VPA system near a critical a.v.a.s.; a complete qu
tative analysis requires the study of the transient equation, Eq.~22b!, and then of the bifurcation
equation, Eq.~117!. An example of how this can be done has recently been given by the au
in Ref. 20 ~see also Ref. 14! where they derived an approximate solution forf a from a ‘‘tran-
siently linearized’’ Vlasov equation. That equation was solved analytically by applying Ha
tonian perturbation theory in order to determine the characteristics associated with a
asymptotic fieldA of the form given by Eq.~116!. Here, however, we have developed a mu
more general framework for the rigorous analysis of the long-time behavior of waves propa
in plasmas. This framework relies on two essential results of the analysis we have reporte

First, the fact that critical points for the VPA initial value problem are bifurcation points
the time-asymptotic equation opens an interesting new perspective on the study of no
Landau damping, and in particular on the transition between initial conditions that Landau
to a zero electric field and those that lead to a nonzero time-asymptotic field.20

Second, the determination of the time-asymptotic linearized operatorLk,v i
provides a new and

more solid foundation for the nonlinear analysis of the VPA system. By computing the Fou
Bohr coefficientsNk,v i

in the form of Eq.~88!, we have been able, in effect, to take the limit

˜` before linearizing the nonlinear Ampe`re equation. As a consequence, we have obtaine
linear approximation to the time-asymptotic VPA problem which is very different from the tr
tional linear theory6,25,26 and which is uniformly valid in the time-asymptotic limit. Indeed, th
linearization is not about an initial unperturbed Vlasov equilibriumFa , but about thetime-
asymptoticVlasov equilibriumFa

T0, that incorporates the cumulative effects of the transient fi
T0 . It is very significant that the correspondingnonlinearsolution for the time-asymptotic electri
field, Eq.~115!, is formally so similar~especially in terms of the Vlasov dispersion relation! to the
multiple-wave BGK-type nonlinear solutions12 which have been traditionally regarded as t
natural candidates to describe long-time plasma-wave propagation.
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Conformal behavior of the Lorentz–Dirac equation
and Machian particle dynamics

Sebastiano Sonegoa)
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and International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
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It is shown that the self-interaction force on a pointlike electric charge in curved
space-time has conformal weight21. Motivated by this result, a conformally co-
variant version of the Lorentz–Dirac equation is presented, where the particle mass
is treated as a position- and time-dependent quantity. This feature suggests that the
underlying dynamics is Machian. ©1999 American Institute of Physics.
@S0022-2488~99!04607-1#

I. INTRODUCTION

Let us consider a point particle with electric chargee, tracing out a world linexm(t) in a
four-dimensional space–time (M,gab), wheret is the particle proper time.1 It is known, from the
classic analysis of DeWitt–Brehme–Hobbs,2,3 that the particle experiences an electromagne
self-interaction force

Fa5 2
3e

2da1 1
3e

2ka
bRbcv

c1e2vbE
2`

r

dt8 f aba8v
a8. ~1.1!

In this equationva is the four-velocity of the particle, the one-formda is defined as

daª v̈a2vav̇bv̇b, ~1.2!

where (̄ )•
ªva¹a(¯), ka

b5da
b1vavb is the projector onto the three-space orthogonal tova,

Rab is the Ricci tensor, andf aba8 is a bi-tensor associated with the presence of ‘‘tails’’ in t
electromagnetic field.2,4 Thus, there are three contributions toFa : One, the so-called von Lau
force, is proportional toda and represents a simple covariant generalization of the usual for

F5 2
3e

2v̈ ~1.3!

due to the self-field of the charge.5–7 The second term was discovered by Hobbs3 and has no
counterpart in special relativity, being proportional to the Ricci curvature of space–time. Re
ably, the Hobbs force is not associated with the accelerationv̇a and vanishes in vacuum, i
Einstein’s field equationGab5kTab is assumed to hold. Finally, we have a third term that depe
on the entire past history of the particle and on the property of waves of being backscattered
space–time curvature,2,4 summarized by the quantityf aba8 . This contribution is usually very
small.8

The behavior of the von Laue term under a conformal transformation9

gab˜g̃ab5e22Fgab ~1.4!

has been investigated by Fulton, Rohrlich, and Witten.10 They found thatda changes in a rathe
messy way. This result seems to suggest that there is no simple conformally covariant ge
zation of the Lorentz–Dirac equation. In Sec. II of the present paper it is shown that, takin

a!Electronic mail: sebastiano.sonego@dic.uniud.it
39180022-2488/99/40(8)/3918/7/$15.00 © 1999 American Institute of Physics

                                                                                                                



l-

uation
nd the

. This
ent.
d the
nfor-

d the

3919J. Math. Phys., Vol. 40, No. 8, August 1999 Conformal behavior of the Lorentz–Dirac . . .

                    
account the Hobbs term, the ‘‘bad behavior’’ ofda under a conformal transformation is neutra
ized by counterterms coming from the Ricci tensor, so thatFa transforms intoF̃a5eFFa , i.e.,Fa

has conformal weight21 ~see Ref. 11, p. 447, for the definition of conformal weight!. This
conclusion makes the existence of a conformally covariant version of the Lorentz–Dirac eq
much more plausible, because the self-interaction force no longer causes any problem, a
only obstruction is due to the presence of the particle mass in the equation of motion
difficulty is circumvented in Sec. III by allowing the possibility that mass is position depend
Finally, the implications of such an hypothesis on the formulation of a Machian dynamics, an
possibility that general relativity corresponds only to a particular gauge choice in a wider co
mally covariant theory, are discussed in Sec. IV.

II. TRANSFORMATION OF THE SELF-INTERACTION FORCE

Let us treat separately the local contributions—the von Laue and Hobbs forces—an
nonlocal tail term.

A. Local terms

First of all, let us express the accelerationaaªvb¹bva in (M,gab) in terms of the corre-

sponding oneãa5 ṽb¹̃bṽa in (M,g̃ab). Requiring thatgabv
avb5g̃abṽ

aṽb521, it must beṽa

5eFva. Remembering that, for a genericXa ,

¹̃bXa5¹bXa2Cc
baXc , ~2.1!

where

Cc
ba5gbag

cd¹dF2dc
b¹aF2dc

a¹bF ~2.2!

~see Ref. 11, pp. 445–446!, one obtains by straightforward calculations

ãa5aa2ka
b¹bF. ~2.3!

Next, let us computev̈a :

v̈a5vc¹caa5vc¹c~ka
b¹bF!1vc¹cãa . ~2.4!

The two terms on the right-hand side of Eq.~2.4! are, separately,

vc¹c~ka
b¹bF!5ka

bvc¹c¹bF1aavb¹bF1vaab¹bF

5ka
bvc¹c¹bF1ka

c¹cFvb¹bF

1vakbc¹bF¹cF1ãavb¹bF1e2Fṽaãb¹bF ~2.5!

and

vc¹cãa5e2Fṽb¹̃bãa1e2Fṽaãb¹bF2vb¹bFãa , ~2.6!

where Eqs.~2.1!–~2.3! have been used. Furthermore,

abab5kbc¹bF¹cF12kbc¹cFãb1kbcãbãc , ~2.7!

where we have used the propertyvaãa5 ṽaãa50. Placing Eqs.~2.4!–~2.7! into the definition of
da , Eq. ~1.2!, we get

da5e2Fd̃a1vcka
b¹c¹bF1ka

c¹cFvb¹bF. ~2.8!
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Thus, the von Laue force does not change by a simple rescaling under a conformal transform
However, let us now consider the Hobbs term. We have

Rbc5R̃bc22¹b¹cF2gbcg
de¹d¹eF22¹bF¹cF12gbcg

de¹dF¹eF ~2.9!

~see Ref. 11, p. 446!, and consequently

1
2ka

bRbcv
c5 1

2ka
bR̃bcv

c2ka
b¹b¹cFvc2ka

b¹bFvc¹cF. ~2.10!

Combining Eqs.~2.8! and ~2.10! we obtain finally

da1 1
2ka

bRbcv
c5e2F~ d̃a1 1

2k̃a
bR̃bcṽ

c!. ~2.11!

Therefore, under a conformal transformation the local part ofFa , i.e., thesumof the von Laue and
Hobbs forces, is just rescaled.

B. Nonlocal term

Let us first remember thatf aba85¹bvaa82¹avba8 , wherevaa8 is a bi-tensor satisfying the
wave equation2

gbc¹b¹cvaa82Ra
bvba850, ~2.12!

together with the Lorentz gauge condition¹avaa850. Equation~2.12! can be regarded as
particular case of the field equation for the vector potentialAa ,

gbc¹b¹cAa2Ra
bAb2¹a¹bAb524pJa , ~2.13!

when there are no sources~i.e., Ja50! and¹aAa50. By an easy but tedious calculation one c
check that Eq.~2.13! is conformally invariant, i.e., it holds in (M,gab) iff the corresponding
equation

g̃bc¹̃b¹̃cAa2R̃a
bAb2¹̃a¹̃bAb524p J̃a ~2.14!

holds in (M,g̃ab), provided that one definesJ̃aªe2FJa .12 ~This is, of course, related to th
conformal invariance of the Maxwell equations for the electromagnetic fieldFab5¹aAb

2¹bAa .11,12! For Eq.~2.12!, then, one has that

g̃bc¹̃b¹̃cvaa82R̃a
bvba82¹̃a¹̃bvba850 ~2.15!

and

¹̃avaa852g̃bcCa
bcvaa8522¹̃aFvaa8 . ~2.16!

Choosingvaa85 ṽaa81¹aLa8, whereLa8 satisfies the condition

g̃ab¹̃a¹̃bLa8522¹̃aFvaa8 , ~2.17!

and replacing into Eq.~2.15!, we find that

g̃bc¹̃b¹̃cṽaa82R̃a
bṽba850. ~2.18!

Since f̃ aba85¹̃bṽaa82¹̃aṽba85 f aba8, we have for the tail term,
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e2ṽbE
2`

t̃

dt̃8 f̃ aba8ṽ
a85eFe2vbE

2`

t

dt8 f aba8v
a8, ~2.19!

where we have used the property dt̃5e2F dt, which follows from~1.4!.

III. CONFORMALLY COVARIANT LORENTZ–DIRAC EQUATION

Putting together Eqs.~2.11! and ~2.19!, one finds thatF̃a5eFFa . This result should not be
surprising, because one can writeFa5eFab

(self)vb, where Fab
(self) is the self-field of the particle

evaluated at its position, after mass renormalization has been performed.2 Since Maxwell equa-
tions are conformally covariant, one expects thatF̃ab

(self)5Fab
(self) , so thatF̃a5eFab

(self)ṽb5eFFa , as
we have indeed just shown.

Far from representing a small general-relativistic effect, the Hobbs term is then concep
very important, as it guarantees a ‘‘good behavior’’ ofFa under conformal transformations, whic
the von Laue term alone has not. In a conformally covariant perspective, it is improper to r
Fa as composed of three terms, because two of them mix under a conformal transformation
are then just two contributions: The local one, given by the sum of the von Laue and the H
forces, and the nonlocal integral.

In all the previous calculations it has been assumed thatẽ5e. This hypothesis simultaneousl
guarantees the ‘‘good behavior’’ of the radiation reaction under conformal transformations
the conformal covariance of the inhomogeneous Maxwell equation¹bFba524pJa . It seems to
suggest a topological origin for charge~see, e.g., Ref. 13!.

The properties of the Lorentz–Dirac equation5,6

maa5eFabv
b1Fa ~3.1!

under the conformal transformation~1.4! have been investigated in Ref. 10, where it was c
cluded that Eq.~3.1! is not conformally covariant, unless one rewrites it in terms of ten
densities. Our analysis suggests that such result, based on the exclusion of the Hobbs term
be reconsidered. However, since

mãa52mka
b¹bF1e2F~eFabṽ

b1F̃a!, ~3.2!

it seems that even taking into account the full expression of the radiation reaction, Eq.~3.1! still
fails to be conformally covariant. This conclusion rests upon an implicit hypothesis, though—
the massm do not change under a conformal transformation. If we drop this assumption,10 and
require instead that

m̃5eFm, ~3.3!

then we must rewrite Eq.~3.2! in terms of the proper time derivative of momentump̃a5m̃ṽa ,
namely,

ṽb¹̃bp̃a52¹̃am̃1eFabṽ
b1F̃a , ~3.4!

where we have used the propertyk̃a
b5ka

b. Since, by Eq.~2.3!,

ṽb¹̃bp̃a1¹̃am̃5eF~vb¹bpa1¹am!, ~3.5!

we now have that the modified Lorentz–Dirac equation

vb¹bpa52¹am1eFabv
b1Fa ~3.6!

is conformally covariant.
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IV. DISCUSSION AND OUTLOOKS

The conformal covariance of Eq.~3.6! relies on the transformation law~3.3! for mass, that
might seem odd at first sight. However, one may convincingly argue that Eq.~3.3! must be correct
on heuristic grounds, assuming that at least part of the mass is of electromagnetic origin5–7 Of
course, for a classical point charge the electromagnetic mass is actually divergent, but o
nevertheless express it formally asmem5 lime˜0 e2/2e, where e is the radius of a three
dimensional ball centered on the particle, measured in the comoving frame.2 Then m̃em

5 lim ẽ˜0 e2/2ẽ5eFmem, with F evaluated at the particle position. More generally, the ene
densityu of the electromagnetic field in any given reference frame transforms asu˜ũ5e4Fu, as
one can easily see from the expressionu5gab(EaEb1BaBb)/8p, where Ea and Ba are the
electric and magnetic fields, and recalling the transformation laws ofEa and Ba .12 Since a
three-dimensional volume element is rescaled by the factor e23F under the conformal transfor
mation ~1.4!, it follows that the mass–energy of the electromagnetic field contained into a s
region changes according to Eq.~3.3!. It is then natural to require thatany mass, independent o
its nature, transform in the same way. It should also be pointed out that the transformatio
~3.3! guarantees that the Hamilton–Jacobi and Klein–Gordon equations for free massive pa
are conformally covariant.14

The conformally covariant generalization~3.6! of the Lorentz–Dirac equation contains th
force 2¹am, which is however not observed in Nature. This problem is not as serious as it
look, because one can always ‘‘gauge away’’ such a term by a suitable choice ofF. In order to
have a better understanding of this point, let us consider a neutral particle~since the issue is clearly
unrelated to the presence of a charge! with equation of motion

ṽb¹̃bp̃a52¹̃am̃ ~4.1!

in the space–time (M,g̃ab). If we chooseF such that e2Fm̃5const we have, in a space–tim
(M,gab) with gab5e2Fg̃ab , thatgabpapb5const andvb¹bpa50, which is the usual description
of a free neutral particle given by general relativity. The latter can thus be regarded as a pa
gauge choice within a wider conformally covariant framework.

One can also take a different standpoint. Suppose that the geometry of space–time isg̃ab and
that the particle massm̃ is point dependent. A natural choice of units in which to express sp
and time measurements is then, e.g.,L̃5e2/m̃c2 ~the so-called classical radius of the particle! and
T̃5e2/m̃c3, wherec is the speed of light. Other choices will lead to the same dependence ofL̃ and
T̃ on m̃. But then, themeasuredspace and time intervals will not agree with those computed
the basis of the metricg̃ab , essentially because the unitsL̃ andT̃ are not constant with respect t
g̃ab , due to their dependence onm̃. However, one can introduce aphenomenologicalmetricgab ,
which is so defined that the unitsL̃ andT̃ are constant with respect to it. Of course, such a me
is justgab5e2Fg̃ab , with en2F5const /m̃. It is not hard to realize that this argument is complete
general, in the sense that it can be extended to units based, e.g., on the atomic size and li
and can be used to argue that the metric adopted in general relativity might not have a funda
status.15

The physical meaning of the force2¹̃am̃ in (M,g̃ab) can be found by rewriting the equatio
of motion ~4.1! in the equivalent form

m̃ãa52ka
b¹̃bm̃. ~4.2!

In the Newtonian limit, Eq.~4.2! givesm̃ã52“̃(m̃c2), which shows that one can identify2¹̃am̃
with a covariant generalization of the Newtonian gravitational force, andF5c2 ln(m̃/const) with
the corresponding gravitational potential. Remarkably, an equation like~3.3!, with F the gravita-
tional potential, was suggested by Nordstro¨m already in 1913, within the context of a conformal
flat theory of gravity.16 The present discussion highlights the fact that Einstein’s choice of f
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incorporating gravity into the metrical structuregab of space–time is only one among infinite
many possible ‘‘gauges’’ that are selected by fixing the conformal factor.

In the space–time (M,g̃ab) gravity is identified with the effect of a position- and time
dependent inertia. Actually, one might well dispense with the notion of gravity, and think on
terms of a mass field. This point of view leads to some conceptual advantages. For exam
allows one to give a unified description of dynamics for massive and massless particles.

plying both sides of Eq.~4.1! by m̃ we obtainp̃b¹̃bp̃a52¹̃a(m̃2/2). Thus, massive particles ar

affected by the force2¹̃am̃, while massless ones simply move on null geodesics. In the pre
context, gravity appears as just one manifestation of mass, therefore massless particles
affected by it. Furthermore, sinceF depends on the distribution of matter~as we know from the
Newtonian limit!, so doesm̃, because of Eq.~3.3!. In other words, the inertia of a particle i
(M,g̃ab) depends on the arrangement of the other bodies; thus, particle dynamics in (M,g̃ab) is
Machian.17 From the knowledge of the field equation forF and using Eq.~3.3!, one could write
down a field equation form̃ ~as, for example, in the Hoyle–Narlikar theory18,19!, but this inves-
tigation is beyond the scope of the present article, so let us limit ourselves to a few qual
remarks.

There are essentially two contributions to the massm̃ of a particle. One is due to local matte
such as, e.g., a nearby planet or a star. This is usually very small—a fraction of the order oF/c2

of the total mass—but, since matter is not distributed homogeneously, it leads to a po
dependentm̃ and is responsible for gravitational forces. The other comes from the large-
distribution of matter in the universe, which gives a constantF ~at least, constant over scales o
which particle motion is usually analyzed! that has a much larger magnitude than the one du
local matter, because of the enormous number of sources. This accounts for a bulk, const
of m̃—what is commonly meant by ‘‘inertia’’ of the particle. Thus, one would expect that
contribution toF/c2 due to cosmological matter be of order 1, i.e., thatGM/Rc2;1, whereG, M,
and R are Newton’s gravitational constant, the mass, and the radius of the visible univers
latter two quantities being defined asM;rR3 andR;c/H, with r andH the values of the mean
density and of the Hubble parameter, respectively. This relation, when rewritten asGr/H2;1,
expresses essentially the so-called ‘‘flatness problem,’’19 that seems therefore to find a natur
explanation in a Machian framework.
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We investigate the stability of the coupled soliton solutions of a two-component
Z(2) vector field model, in contraposition to similar solutions of aZ(2)3Z(2)
model recently introduced. We demonstrate that the coupled soliton solutions of the
Z(2) model are classically unstable. ©1999 American Institute of Physics.
@S0022-2488~99!01107-X#

Z(2) field theoretical models play a very important role in condensed matter physics.
have been used to describe a wide range of physical systems exhibiting phase transitions in
break ofZ(2) symmetry. Examples1 of such systems are uniaxial antiferromagnets like Rb2NiF4

or K2MnF4, systems presenting order–disorder transitions on bipartite lattices like inb-brass, or
liquid–gas transitions, etc. On the other hand, topological defects may be generated in
transitions involving broken symmetry. They are low-energy, spatially localized, solutions o
field equations, which are topologically stable. They are of fundamental importance for a v
of physical phenomena in the systems where they appear. As an example of their importan
mention the quasi-one-dimensional organic systemtrans-polyacetylene. The relevant topologic
defect here, the soliton, is responsible for a tremendous increase in the conductivity to
metallic levels of this insulator when charged solitons are introduced by doping.2

In this work we are interested in double soliton solutions for coupled scalar fields in
dimensional space–time. Such solutions have been recently investigated in a class of s
defined by a very specific potential.3–5 These works have shown that there are solutions of
second order equations of motion that are also solutions of some first order differential equ
Also, the important issue of the stability of the soliton solutions has been addressed.4 It was found
that the soliton solutions of those systems, if they exist, are intrinsically stable when they
satisfy the first order equations. This is also important for condensed matter systems. For in
there is evidence that solitons in coupled scalar field theories may be important to de
ferroelectric crystals5 and hydrogen-bonded chains.6 And it is known that stable solutions pla
relevant role at the quantum level.

Other issues concerning stability of the soliton solutions for coupled scalar fields hav
cently been considered in Ref. 7, for the class of systems introduced in Refs. 3–5. As we
however, in the past aZ(2) coupled scalar field model was shown to present very similar cou
soliton solutions.8 Furthermore, the motivations presented in that work are closely related t
basic motivations introduced in more recent work.3–5 For this reason, because thatZ(2) model
and its soliton solutions are closely related to the models introduced in Refs. 3–5, it s
important to investigate the classical or linear stability of the soliton solutions found in Ref.
order to identify possible distinctions in these two approaches. This is our main motivation
39250022-2488/99/40(8)/3925/5/$15.00 © 1999 American Institute of Physics
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here we present a detailed analysis of the stability of the coupled soliton solitons found in R
Although the problem seems to be hard to handle, here we offer a simple and general w
investigating the issue of stability. Unfortunately, however, we conclude that the solutions
in Ref. 8 are always unstable.

We start with the Lagrangian density8

L5 1
2]af]af1 1

2]ax]ax2U~f,x!, ~1!

where the potential is

U~f,x!5lf41lx412lf2x22~m1n!f22~m2n!x22g. ~2!

The gradient of the potential with respect to the fields is given by

¹f,xU5S 22~m1n!f14lfx214lf3

22~m2n!x14lf2x14lx3 D . ~3!

The potential has stationary points at (f,x)5(6A(m1n)/2l,0). These points are~nondegener-
ate! minima when the Hessian of the potential is definite positive. The Hessian is given by

HessU5S 12lf214lx222~m1n! 8lfx

8lfx 12lx214lf222~m2n!
D . ~4!

Substituting the value of the stationary points, we see that

HessU5S 4~m1n! 0

0 4n
D . ~5!

Thus, in order for the stationary points above to be minima of the potential, we require

n.0, m.2n. ~6!

The equations of motion corresponding to the Lagrangian are obtained as the Euler–La
equations of the functional*L. We are looking for static soliton solutions, and may thus neg
time. The functional becomes

Ec@f,x#5E dxH 1

2 S ]f

]x D 2

1
1

2 S ]x

]x D 2

1U~f,x!J . ~7!

The Euler–Lagrange equations are@we write Dx for (d2/dx2)]

2DxS f
x D2¹f,xU50. ~8!

The soliton solutions connect the two minima of the potential at (f,x)
5(6A(m1n)/2l,0). There are two sets of static soliton solutions,

f̄56Am1n

2l
tanhAm1nx, ~9!

x̄50, ~10!

which together with Eq.~6! requires that

n.0, m1n.0, l.0. ~11!
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The second set of solutions is given by

f̄56Am1n

2l
tanhA4nx, ~12!

x̄56Am23n

2l
sechA4nx, ~13!

implying in this case@with Eq. ~6!#

n.0, l.0, m23n.0. ~14!

The first pair of solutions can be investigated easily. The calculations follow the same
already introduced in Ref. 3 for the related pair of solutions. Therefore, here we will f
attention on the stability analysis of the coupled solitons of the second solution set.

Classical stability may be discussed in the following way: If we are to have stable soliton
second variation ofEc@f,x# evaluated at the solution should be a positive differential opera
We obtain thus

Hess~Ec@f,x#!5S 2Dx 0

0 2Dx
D 1HessU, ~15!

as can be most easily seen from Eq.~8! and noting thatD is linear. We will call this operatorŜ.
Its lowest eigenvalue will be denoted byE0(m,n,l). We will show that

E0~m,n,l!,0. ~16!

This way we establish that the soliton solutions are always unstable.
For the second solution pair we get the Hessian,

Hess~Ec@f,x#!5S 12lf̄214lx̄222~m1n! 8lf̄x̄

8lf̄x̄ 12lx̄214lf̄222~m2n!
D . ~17!

In order to decouple the corresponding eigenvalue equations we need to diagonalize the
matrix. After some algebra we find for its eigenvalues

V652m212n116n f 62A16n2f 214n~m25n! f 1~m22n!2

52n$d2618 f 6A16f 214~d25! f 1~d22!2%, ~18!

wheref 5 f (x) stands for tanh2(A4nx) andd5m/n. Notice thatf (x) varies in@0,1!, andn.0 and
d.3 are parameters@see Eq.~14!#. The operatorŜ is now

Ŝ5S 2Dx1V1 0

0 2Dx1V2
D . ~19!

Notice thatV6 now only depends ond andn. To eliminate the dependence onn, write

V6~x!54nU6~A4nx!,

and in the operator substitutex5y/A4n. It is easy to see thatŜ now becomes

Ŝ54nS 2Dy1U1~y! 0

0 2Dy1U2~y!
D . ~20!
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Now restrict attention toU2 and drop the subscript. We write

Ud5 1
2d2314 f 2 1

2A16f 214~d25! f 1~d22!2, ~21!

where f 5tanh2(y) andd.3.
We wish to derive an upper estimate for the lowest eigenvalue of the equation

~2Dy1Ud~y!!c~y!5e~d!c~y!. ~22!

Notice that Ud(2`)5Ud(`)51 and thatUd is well-shaped. It is known that in the one
dimensional case there isalwaysat least a bound eigenstate.9 That is, there is an eigenfunctionc
with associated eigenvalue less than 1, and with the property that*c* cdy51. Our estimate relies
on the following observation. LetU1 andU2 be two potentials as above, but with the property t
for all y: U1(y)<U2(y). The associated eigenvalues,l1 and l2 then satisfy the same relation
l1<l2 .

For d.3, the potentialUd(y) is a ~weakly! decreasing function ofd,

]Ud

]d
<0.

It then follows that if we denote byld the lowest eigenvalue associated withUd ,

ld<l3 , ~23!

wherel3 stands for the cased53. It is an easy calculation to show that

U3~y!512
2

cosh2~y!
. ~24!

The corresponding eigenvalue equation

~2Dy1U3~y!!c~y!5e~3!c~y! ~25!

is easily solvable~see Refs. 3 and 10!. The calculations lead to only one bound state ate0(3)
50 and a continuous spectrumec(3).1. Thereforel350 and by~23!

ld,0. ~26!

In fact, we can show that we have here a strict inequality. Notice thatHd52Dy1Ud implies that
Hd5H31(Ud2U3). Now takec0 to be the groundstate eigenfunction ofH3 . It follows that

E
2`

1`

c0* ~y!Hdc0~y!dy5E
2`

1`

c0* ~y!H3c0~y!dy1E
2`

1`

c0* ~y!@Ud~y!2U3~y!#c0~y!dy.

Since (Ud(y)2U3(y))<0 for yP(2`,1`), we have that *2`
1`c0* (y)@Ud(y)

2U3(y)#c0(y)dy,0. Also, since c0 is not the ground state ofHd for d.3, then
*2`

1`c0* (y)Hdc0(y)dy.ld . With *2`
1`c0* (y)H3c0(y)dy50 it follows that

ld,0. ~27!

Alternatively, we see that the limitd˜3 transforms the second pair of solutions~12! and ~13!
back to the first pair~9! and ~10!, for which we havel350. Thus, unicity of the ground stat
allows writing ld<0 for d>3, or betterld,0 for d.3, which is the region in parameter spa
where the second pair of solutions appears. This concludes our demonstration thatE0(m,n,l)
,0 for all parameter values that respect Eq.~14!, and thus that the soliton solutions discussed h
are always unstable.
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We prove the central limit theorem for the cavity field in the case of the Hopfield
model. © 1999 American Institute of Physics.@S0022-2488~99!00908-1#

I. INTRODUCTION

During a long period of time the theory of disordered systems has been widely discus
the physics literature. One of the first systems of this type which has been extensively inves
is spin glass. It is a disordered spin system with a zero average random interaction among
The mean field model of spin glass is analyzed and many interesting results are found
physics literature.1 The problem, as usual, is to study the thermodynamic behavior of the m
and this has been done, computing the limiting averaged free-energy. The most frequently a
method for solving such a problem is the replica calculation which until now has not found
rigorous support. For a long time there were only a few rigorous results~see Refs. 2 and 3! in this
field, dealing only with the high-temperature region. Then in Refs. 4 and 5 we introduce
alternative rigorous method, the cavity method, which can work also in the low-temper
region. In this paper we solve some problems connected with the application of this appro
the Hopfield model.6 The Hamiltonian of this model is

H52
1

2 (
i , j 51

N

I i j s is j1(
i 51

N

his i , ~1!

where

I i j 5
1

N (
m51

p

j i
mj j

m , p5aN ~a.0! ~2!

with j i
m561 being independent random variables with zero mean.

One of the main points of the usual mean field theory~e.g., the Curie–Weiss model! was that
the simple equality

^s1&5K tanhS b(
i 52

N

I i j s i1bh1D L ~3!

~valid for any interactionI i j ) can be rewritten as

^s1&5tanhS b(
i 52

N

I i j ^s i&1bh1D . ~4!
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This relation follows from the factorization of the second correlation function in the therm
namic limit

u^s is j&2^s i&^s j&u˜0 as N˜`. ~5!

This property in the usual mean field theory is valid in the whole temperature region, if we a
the Hamiltonian some proper ‘‘symmetry breaking field.’’

It was rather natural to expect that in the mean-field-type model of spin glass~1! relations
similar to ~4! and ~5! are also valid if we introduce some proper ‘‘symmetry breaking field.’’

In Ref. 4, using some special kind of infinitesimal field, it was shown that for
Sherrington–Kirkpatrick~SK! model7 the relation~5! is equivalent to the self-averaging proper
of the Edwards–Anderson order parameter

Eˆ~qN2E$qN%!2
‰˜0 as N˜`, ~6!

where

qN5
1

N (
i 51

N

^s i&
2. ~7!

Deriving ~5! from ~6! and studying the moments of the random variable^s1&, it was proved
that if ~6! is true, then in distribution

^s1&5tanhS b(
i 52

N

I i j ^s j&01bh1D . ~8!

Here and below the symbol^¯&0 means the average with respect to the Gibbs measure, c
sponding to the Hamiltonian~1!, if we set heres150.

This idea was developed in Ref. 8, where the infinitesimal field was replaced by an ord
Gaussian one that, in particular, allows us to derive on the basis of Griffith’s lemma an imp
relation, valid for almost all values ofb andhi ,

1

N (
i 51

N

hi~s i2^s i&!˜0 as N˜`,

in the Gibbs measure and probability. This relation simplifies considerably the method of R
and allows us to prove that~6! is equivalent to~8! in a more natural way. The further developme
of this method allows us to prove that~6! and~8! for the SK model are valid for a large region o
parameters, including the low temperatures.9

The same method was used in Ref. 5, where we derived~8! from ~6!. Similar ideas were used
later by M. Talagrand10,11 to prove ~8! for the SK model with a high temperature and for t
Hopfield model with smalla’s. Analogous results were found in Ref. 12.

Now let us recall that in the case of the SK model

I i j 5
1

AN
Ji j ,

where$Ji j % are independent~Gaussian! random variables with zero mean. Since^s j&0 does not
depend onJ1 j and the Lindeberg condition in the form

EH N22(
j 52

N

^s j&0
4J˜0 as N˜` ~9!
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is trivial due to the bounded values of spins$s j%, the central limit theorem gives us immediate
that the cavity field(I 1 j^s j&0 converges in distribution to the Gaussian random variable. T
from ~8! we obtain the relation

q̄N5E$^s1&0
2%5E tanh2 b~JAq̄Nu1h1!

e2u2/2du

A2p
dm~h1!1o~1! ~ q̄N5E$qN%!,

which gives us the so-called replica symmetric equation forq̄.
However, in the case of the Hopfield interaction~2!, the situation is more complicated. If w

write in a natural way

(
i 52

N

I 1 j^s i&05 (
m52

p j1
m

AN
^t1

m&0

with

t1
m5

1

AN
(
i 52

N

j i
ms i , ~10!

then ^t1
m&0 , like in the SK case, are independent of$j1

m%. However, to apply the central limi
theorem now we have to check the condition of the type

EH N22 (
m52

p

^t1
m&0

4J˜0 as N˜`. ~11!

Sincet1
m can be of the orderAN, the property~11! is much less trivial then~9!. The main aim

of the present paper is to prove~11!. In fact, we prove a stronger condition on^t1
m&0 ~see Lemma

1 below!.
The paper is organized as follows. In Sec. II we describe exactly the model and the res

Sec. III we prove the main results, and in the Appendix we prove some auxiliary results.

II. THE MODEL AND THE MAIN RESULTS

Define H as a sum of two Hamiltonians

H5H01H1, ~12!

where

H052
J

2N (
m5s11

p

(
i , j 51

N

j i
mj j

ms is j2«1 (
m5s11

p

gmtm1«2(
i 51

N

his i ,

~13!

H152
J~11dNz!

2N (
n51

s

(
i , j 51

N

j i
nj j

ns is j2h1(
i 51

N

j i
1s i2 (

n52

s

gntn,

s5@ log1/2N# is the number of the patterns which are expected to be condensed,J, h1, «1 , and«2

are positive parameters,dN5s22/3, z is an independent random variable uniformly distributed
the interval~1,2!, and variablesgm,hi are independent Gaussian random variables with zero m
and variance 1.

The Hamiltonian H0 contains the contribution of the noncondensed patterns and the H
tonian H1 includes terms due to the condensed patterns. The random variablesgm,hi play the role
of ‘‘symmetry breaking fields’’~we need them for technical reasons! and after thermodynamic
limit N˜` we send«1 ,«2˜0.
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The variabletm is just a convenient notation for the following linear combination of spin

tm[
1

AN
(
i 51

N

j i
ms i , m51,...,p. ~14!

We will use also notations

mm[
1

AN
tm, r N5p21 (

m5s11

p

^tm&2, UN5N21 (
m5s11

p

~ tm!2,

qN5N21(
i 51

N

^s i&
2, r̄ N5E$r N% q̄N5E$qN%. ~15!

The main result of the paper is the lemma, which allows us to overcome one of the
technical difficulties, arising in the Hopfield model, if we try to generalize to it the meth
proposed in Refs. 4 and 9 for the SK model. This difficulty is connected to the fact tha
variablestm, which play here the role of ‘‘spins’’ of the SK model, are unbounded.

Lemma 1: Consider the set

M[$m5~m1,...,mp!: max
n>s11

umnu>4dN%,

wheredN5s21/35dN
1/3. Let xM(m) be the characteristic function of the setM:

xM~m!5 H1, mPM,
0, otherwise.

Then for any n.0 there exists a constant Cn independent of N such that

Prob$^xM~m!&<e2bJNdN
2 /4%>12CnN2n. ~16!

Moreover, if we add to the HamiltonianH any HamiltonianH̃ which is symmetrical with
respect to the variables$j1

m%m.s ,$j2
m%m.s ,...,$jN

m%m.s and the free energies of the sumsHa

1H̃~H1H̃! satisfy the large deviation bounds of the type

Prob$u f ~H1H̃!2E/z f ~H1H̃!%u.«%<DnN2n,

then the estimate of the probability (16) is valid for Gibbs averages with respect toH1H̃.
Here and below the symbolE/z$¯% means the average with respect to all random variable

the problem exceptz.
Remarks:
~1! This lemma allows us to treatmn (n.s) like variables satisfying inequalities

umnu<4dN
1/2, ~17!

because the measure ofmn satisfying the opposite inequality decays exponentially with probab
1, starting from some large enoughN, and so thosemn can add only exponentially small contr
butions in our estimates. In particular,

EH (
n5s11

p

^~mn!4&J <16dNEH (
n5s11

p

^~mn!2&J <16dNE$iJ i%5constdN . ~18!
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~2! The other important corollary of Lemma 1 is the formula, analogous to the formu
integration by parts, which usually is used for Gaussian variables.

Proposition 1: Let t1
m be defined by (10). Then for anym1 ,...,mk.s, m iÞm j , and any

bounded function F1($s%,$j i
m%),...,Fl($s%,$s i

m%) which do not depend onj1
m ,

Nk/2E$j1
m1
¯j1

mk^t1
m1
¯t

1

mk1F1~$s%,$j i
m%!&¯^t

1

mkl 2111
¯t r

mkFl~$s%,$j i
m%!&%

5Nk/2EH ]k

]j1
m1
¯]j1

m1
^t1

m1
¯t

1

mk1F1~$s%,$j i
m%!&¯^t

1

mkl 2111
¯t1

mkFl~$s%,$j i
m%!&J 1R,

~19!

with

uRu<dN
1/2
•~2l !k11 maxuF1u¯maxuFl u•~21Aa!k.

The same relations are valid for the HamiltonianHa and any perturbed HamiltonianHa

1H̃ with perturbationH̃, if this perturbation is symmetrical with respect toj1
m in the sense of

Lemma 1 and for any k, p,

E1/pH K S ]kH̃

]j1
m1
¯]j1

mkD 2pL J <
Ck,p

Nk . ~20!

with the constant Ck,p independent of N. Here and below the symbol]/]j1
m means the formal

derivative, which can be obtained if we replacej1
m by a continuous variable.

Lemma 1 and Proposition 1 allow us to prove a bit different variant of the main theore
Ref. 5.

Theorem 1: Consider the Hopfield model of the form (12) and (13). Set

DN5EH ~Np!21 (
m.s,i>1

Š~ tm2^tm&!~s i2^s i&!‹2J . ~21!

Then for almost all values of parameters J, h1, «1 , «2 , a, andb, parameters q̄N , r̄ N satisfy the
system of equations

r̄ N5
$q̄N1«1

2J2b2~12q̄N!2%

~12bJ~12q̄N!!2 1O~DN
1/2!1o~1!,

~22!

q̄N5EH E dv exp~2v2/2!

A2p
tanh2 bS „a r̄ N~«1!…1/2v1h1j1

11J(
n51

s

cnj1
n1«2h1D J

1O~DN
1/2!1o~1!,

where

r̄ N~«1!5J2r̄ N1
2Jb«1

2

12bJ~12q̄N!
1«1

2

and parameters cn satisfy the equations

cn5EH E dv exp~2v2/2!

A2p
j1

m tanhbS „a r̄ N~«1!…1/2v1h1j1
11J(

n51

s

cnj1
n1«2h1D J

1O~DN
1/2!1o~1!.
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To study the influence of the ‘‘condensed’’ patterns we use the following.
Lemma 2: Consider the ‘‘approximate’’ Hamiltonian of the form

Ha~c!5H02J~11dNz! (
n51

s

cn(
i 51

N

j i
ns i2 (

n51

s

gntn2h1(
i 51

N

j i
1s i1J~11dNz!

N

2 (
n51

s

~cn!2,

~23!

where H0 is defined by formula (13) andc[(c1,...,cs). Then the free energies of the initia
HamiltonianH and the ‘‘approximate’’ HamiltonianHa satisfy the inequality

0<min
c

E/z$ f „Ha~c!…%2E/z$ f ~H!%<
const

logN
, ~24!

and for almost all J, h1, «1 , «2 ,

r̄ N* [EH p21 (
m5s11

p

^tm&*
2 J 5 r̄ N1o~1!, q̄N* [EH N21(

i 51

N

^s i&*
2 J 5q̄N1o~1!. ~25!

Here and everywhere below we use notation

H
*
a 5Ha

„c* ~z!…

for the Hamiltonian Ha computed at the pointc* (z)[„c
*
1 (z),...,c

*
s (z)… which provides the

minimum value of the mean free energyE/z$ f „Ha(c1,...,cs)…%, and the symbol̂¯&* for the
respective Gibbs average. Thus the symbolsq̄N* , r̄ N* are the values of order parameters compu
by means of this Gibbs measure.

Remarks:
~1! Lemma 2 allows us to substitute the Hamiltonian H with H

*
a , which is linear with respect

to the firsts patterns.
~2! Since the Hamiltonian evidently has the form

H
*
a 5H1

J~11zdN!N

2 (
n51

s

~mn2c
*
n !2,

it is easy to see that it satisfies conditions of Lemma 1 and Proposition 1 for the pert
Hamiltonians, and the estimates~19! are also valid for thê¯&* averages.

Using Lemmas 1 and 2 and Proposition 1, one can prove Theorem 1 by the method pro
in Ref. 5. One of the main steps in the proof is given by the lemma about the properties
cavity field, which needs some extra definitions for its statement.

Define the HamiltonianF~t!, interpolating between systems ofN21 andN spins,

F~t!5H1
a2

Jt

AN
(
m51

p

j1
mt1

m , ~26!

where

H1
a5H1

02
J

2N (
m5s11

p

~ t1
m!22J~11zdN! (

n51

s

c
*
n (

i 52

N

j i
ns i2h1(

i 52

N

j i
1s i

1
JN~11zdN!

2 (
n51

s

~c
*
n !22 (

n52

s

gnt1
n . ~27!

It is easy to see that ift5s1 , thenF~t! coincides with Ha.
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Consider also the corresponding partition function

Z~t!5 (
s2 ,...,sN

e2bF~t!, ~28!

and define the relative free energy

u~t!5 ln
Z~t!

Z~0!
. ~29!

Lemma 3: The function u(t) can be represented in the form

u~t!5bJt (
n5s11

p j1
n

AN
^t1

n&01bJt (
m51

s

j1
mc

*
m 1~^UN&02a r̄ N!

t2~bJ!2

2
1RN~t!, ~30!

where ^¯&t is the Gibbs averaging, corresponding to the HamiltonianF~t!, UN is defined by
(15), and the remainder RN can be estimated as

E$RN
2 %<constDN1o~1!. ~31!

Remarks:
~1! Since^t1

n&0 do not depend onj1
n , using Lemma 1, one can prove that the cavity field@the

first sum on the rhs of~30!# converges in distribution tobJtAar Nn1 , wheren1 is a Gaussian
random variable with zero mean and variance 1.

~2! At the present time there exists a proofs of Lemma 3~see Refs. 5 and 10!. Thus, in this
paper we omit the proof of his lemma and the derivation of the equations~22!.

III. PROOFS OF LEMMAS 1 AND 2 AND PROPOSITION 1

Proof of Lemma 1:For givenm<s andn>s11 consider the set

Amn5$m5~m1,...,mp!:~11dNz!ummu<umnu23dN%. ~32!

Its Gibbs measure is

amn5^u~ umnu2~11dNz!ummu23dN!&, ~33!

whereu(m)5 1
2(11signm).

Let us assume that for anyn we have proved the estimate

Prob$amn<e2bJNdN
2 /5%>12Cn8N

2n. ~34!

Consider the set

A[ ø
m51

s

ø
n5s11

p

Amn5$m5~m1,...,mp!:~11dNz!min
m<s

ummu< max
n>s11

umnu23dN%. ~35!

Then it follows from~34! that the Gibbs measurêxA(m)& of the setA satisfies the estimate

Prob$^xA~m!&<s~p2s!e2bJNdN
2 /5<e2bJNdN

2 /6%>12s~p2s!Cn8N
2n>12Cn22N2~n22!,

whenN is large enough. Then we use the inequality

^xM~m!&5^xMùA~m!&1^xMùĀ~m!&<^xA~m!&1^xMùĀ~m!&. ~36!
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However,

MùĀ[$m:~11dNz!min
m<s

ummu> max
n>s11

umnu23dN , max
n>s11

umnu.4dN%

,$m:~11dNz!min
m<s

ummu>dN%

,H m:~11dNz!2(
m<s

~mm!2>sdN
2 J . ~37!

By using the definition~15! of mm and then the result of Ref. 13, we get that for anyd̃.0 @in our
cased̃5(logN)1/6/(11dNz)2(11Aa)2] the probability of the event

H (
m<s

~mm!2>~11Aa!21d̃J ,H 1

N (
i , j

Ji j s is j>~11Aa!21d̃J ,$iJ i>~11Aa!21d̃%

is less thane2N2/3d̃4/3 const. Therefore the probability to have the last set in~37! nonempty is also
less thene2N2/3 const. Thus~36!, ~37!, and~34! prove ~16!.

Now we are left to prove~34!.
To this end we use the standard representation

expH bJNS ~11dNz!
~mm!2

2
1

~mn!2

2 D J 5„~2pbJN!21~11dNz!…1/2E dxdy

3expH bJNS xmm1ymn2
x2

2~11dNz!
2

y2

2 D J
~38!

and study

a1
mn5

*u~ uyu2uxu22dN!exp$bJNFN,mn~x,y!%dxdy

* exp$bJNFN,mn~x,y!%dxdy
, ~39!

whereFN,mn(x,y) is a random function defined by the formulas

FN,mn~x,y![ f N,mn~Jx,Jy!2
x2

2~11dNz!
2

y2

2
,

f N,mn~x,y![
1

bJN
log(

$s%
exp$2bHmn~s;x,y!,% ~40!

with the Hamiltonian Hm,n(s;x,y) of the form

Hmn~s;x,y!52NJ (
m8Þn;m8.s

~mm8!22NJ~11zdN! (
m8Þm;m8<s

~mm8!22(
i 51

N

his i

2«1AN (
n8.s

gn8mn82AN (
m8<s

gm8mm82Nxmm2Nymn.

Then we use the inequality which follows from the Laplace method:
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*u~ uyu2uxu22dN!exp$bJN~mmx1mny2x2/2~11dNz!2y2/2!%dxdy

* exp$bJN~mmx1mny2x2/2~11dNz!2y2/2!%dxdy

>~u~ umnu2~11dNz!ummu23dN!2e2NbJdN
2 /2~21dNz!!. ~41!

Indeed, ifumnu2(11dNz)ummu23dN,0, this inequality is trivial.
If umnu2(11dNz)ummu23dN>0, then theu-function on the rhs of~41! is equal to 1 and the

ratio on the lhs is equal to

12
*D exp$bJN~2~x2x* !2/2~11dNz!2~y2y* !2/2!%dxdy

* exp$bJN~2~x2x* !2/2~11dNz!2~y2y* !2/2!%dxdy
,

where D5$(x,y):uyu2uxu22dN<0% and x* 5(11dNz)mm, y* 5mn. In our case (umnu2(1
1dNz)ummu23dN>0) and so (x* ,y* )¹D. According to the Laplace method, the last ratio in t
above formula can be estimated from above:

*D exp$bJN~2~x2x* !2/2~11dNz!2~y2y* !2/2!%dxdy

* exp$bJN~2~x2x* !2/2~11dNz!2~y2y* !2/2!%dxdy

<expH bJN max
D

F2
~x2x* !2

2~11dNz!
2

~y2y* !2

2 G J <e2NbJdN
2 /2~1dNz!.

Thus, we obtain that

a1
mn5

*u~ uyu2uxu22dN!exp$bJNFN,mn~x,y!%dxdy

* exp$bJNFN,mn~x,y!%dxdy

5
($s% exp$2bHmn~s;0,0!%*u~ uyu2uxu22dN!ebJN~mmx1mny2x2/2~11dNz!2y2/2! dxdy

2pbJN~11zdN!21/2($s%e
2bH~s!

>
($s% exp$2bHmn~s ;0,0!%u~ umnu2~11dNz!ummu23dN!*ebJN~mmx1mny2x2/2~11dNz!2y2/2! dxdy

2pbJN~11zdN!21/2($s%e
2bH~s!

2e2NbJdN
2 /2~21dNz!

5am,n2e2NbJdN
2 /2~21dNz!.

So,

amn<a1
mn1e2NbJdN

2 /2~21dNz!. ~42!

Now we apply the Laplace method to the integral on the rhs of~39! @let us recall that evidently
u(]/]x) f N,mn(x,y)u,u(]/]y) f N,mn(x,y)u<1 and thereforeFN,mn(x,y) has bounded derivatives i
the field of interest#. We have

a1
mn5

* uyu2uxu>2dN
exp$bJNFN,mn~x,y!%dxdy

* exp$bJNFN,mn~x,y!%dxdy

<exp$bJN@ max
uyu2uxu>2dN

FN,mn~x,y!2max
x,y

FN,mn~x,y!#%. ~43!

We will show below that
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max
uyu2uxu>2dN

FN,mn~x,y!2max
x,y

FN,mn~x,y!<2z
dNdN

2

2
. ~44!

From this inequality, using~43! and the fact that 1<z<2, we get

a1
mn<e2bJNdNdN

2 /2, ~45!

if N is large enough. This inequality together with~42! prove ~34! and thus Lemma 1.
Now let us show~44!. Denote byEmn$¯% the average with respect to all random paramet

of the problem exceptgm, gn, andz and rewriteFN,mn(x,y) as

FN,mn~x,y!5Emn$FN,mn~x,y!%1RN,mn~x,y!, RN,mn~x,y![FN,mn~x,y!2Emn$FN,mn~x,y!%.

Then we have

max
uyu2uxu>2dN

FN,mn~x,y!2max
x,y

FN,mn~x,y!

< max
uyu2uxu>2dN

Emn$FN,mn~x,y!%2max
x,y

Emn$FN,mn~x,y!%12 max
x,y

uRN,mn~x,y!u%. ~46!

To proceed further, we use the following proposition.
Proposition 2: Let f(x,y) be a smooth function, satisfying the symmetry conditions

f ~x,y!5 f ~y,x!, f ~x,y!5 f ~2x,y!. ~47!

Consider the function F(x,y) of the form

F~x,y![ f ~x,y!2
x2

2~11d!
2

y2

2
~d.0!. ~48!

Then

maxF~x,y!2 max
uxu<uyu22d

F~x,y!>
2dd2

~11d!
. ~49!

We prove this proposition in the Appendix.
Let us remark that

max
uyu2uxu>2dN

Emn$FN,mn~x,y!%2max
x,y

Emn$FN,mn~x,y!%

< max
uyu2uxu>2dN

Emn$FN,mn~x,y!%ugm5gn50

2max
x,y

Emn$FN,mn~x,y!%ugm5gn5012S U gm

AN
U1U«1gn

AN
U D .

Now we apply Proposition 2 to the functionEmn$FN,mn(x,y)%ugm5gn50 and use also the
estimate

2S U gm

AN
U1U«1gn

AN
U D <

12dNz

11zdN
zdNdN

2 . ~50!
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Sincegm andgn are Gaussian random variables, this estimate is valid with probability la

than 12e2N constdN
2dN

4
. Thus,

max
uyu2uxu>2dN

Emn$FN,mn~x,y!%2max
x,y

Emn$FN,mn~x,y!%

<2
2dNzdN

2

11zdN
1

dNzdN
2 ~12zdN!

11zdN

52zdNdN
2 52zdN

2 ~51!

with the same probability.
If also

2 max
x,y

uRN,mn~x,y!u<z
dN

2

2
, ~52!

then~46! and~51! imply ~44!. Thus, we obtain that the probability of~45! is bounded from above
by the sum of probabilities of~50! and ~52!.

Now we are faced with the problem of estimating the probability of~52!. To this aim let
us remark, that sinceu(]/]x) f N,mnu,u(]/]x) f N,mnu<1, all the extremal points ofFN,m,n(x,y) are
inside the square$(x,y):uxu,uyu<1%. Besides, for any~x,y! from this square there existi,j ,
~u i u,u j u<M , M[@4&dN

22#) such that

f N,mn~x,y!2E/z$ f N,mn~x,y!%5 f N,mnS i

M
,

j

M D2E/zH f N,mnS i

M
,

j

M D J 1 f N,mn~x,y!

2 f N,mnS i

M
,

j

M D1E/zH f N,mnS i

M
,

j

M D J 2E/z$ f N,mn~x,y!%

5 f N,mnS i

M
,

j

M D2E/zH f N,mnS i

M
,

j

M D J 1R11R2 , ~53!

where

uR1,2u<AS x2
i

M D 2

1S y2
j

M D 2

<
1

&M
<

dN
2

8
.

Thus, for our goal it is enough to estimate the probability of the event

U f N,m,nS i

M
,

j

M D2E/zH f N,m,nS i

M
,

j

M D J U< dN
2

4
, ~54!

because this inequality and~53! imply ~52!.
Since, according to Ref. 14, the probability of the last event for fixed~i,j! can be estimated a

ProbH u f N,mn~xk ,yk!2E/z$ f N,mn~xk ,yk!%u<
dN

2

4 J >12DnN2n,

and the number of the events of such a type is 4M2, the probability of the inequality~52! is more
then 124M2DnN2n>12Cn8N

22n. On the other hand, sincegn, gm are Gaussian random var
ables, the probability of~50! is more then 12e2N constdN

2 . Therefore the inequalities~42!–~54! and
the last conclusions prove~34!, that, as it was mentioned above, implies~16!.

For the perturbed Hamiltonian the proof is the same.
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Proof of Proposition 1:To simplify formulas we prove formula~19! in the casel 51. The
general case for this formula and also its modification for the perturbed Hamiltonian can be p
similarly.

Let us introduce the vectorūPRk, ū[(u1 ,...,uk), and define H(ū) to be equal to the Hamil-
tonianH

*
a , if we substitute in the latterj1

m1,...,j1
mk by u1j1

m1,...,ukj1
mk. Let

f~u1 ,...,uk![Nk/2^t1
m1
¯t1

mkF1~$s%,$j i
m%!&H~ ū ! .

Consider

EH E
0

1

¯E
0

1

du1¯dukj1
m1
¯j1

mk
]k

]u1¯]uk
f~u1¯uk!J

5EH E
0

1

¯E
0

1

u2¯duk j1
m1
¯j1

mk
]~k21!

]u2¯]uk
„f~1,u2¯uk!2f~0,u2¯uk!…J .

Sincef(0,u2 ...uk) does not depend onj1
m1, the second term on the rhs of the last relation af

averaging with respect toj1
m1 becomes zero. Repeating this procedurek21 times more, we get

EH E
0

1

¯E
0

1

du1¯dukj1
m1
¯j1

mk
]k

]u1¯]uk
f~u1¯uk!J 5E$j1

m1
¯j1

mkf~1,...,1!%.

Therefore

E$j1
m1
¯j1

mkf~1,...,1!%5EH j1
m1
¯j1

mk
]k

]u1¯]uk
f~1¯1!J 1Rm1¯mk

~f!

5Nk/2EH ]k

]j1
m1
¯]j1

mk
^t1

m1
¯t1

mkF1~$s%,$j1
m%!&H~ 1̄!J 1Rm1¯mk

~f!,

~55!

where

uRm1¯mk
~f!u<Nk/2EH max

uu1u,...,uuku<1

]k11

]2u1¯]uk
f~u1¯uk!J 1¯

1Nk/2EH max
uu1u,...uuku<1

]k11

]u1¯]2uk
f~u1¯uk!J . ~56!

Now we should remark that since the HamiltonianH
*
a contains j1

m only in the form
N21/2j1

ms1(Jt1
m1«1gm), after differentiation with respect toj1

m this term will appear in a numbe
of places. Thus, we obtain

Rm1 ,...,mk
<constE$N21/2^ut1

m1u~ ut1
m1u1«1ugm1u!2

•ut1
m2u~ u~ t1

m2u1«1ugm2
u!¯ut1

mku~ u~ t1
mku

1«1ugmk
u!uF1~$s%,$j i

m%!u&H
*
a 1S

m1 ,...,mk

1 %¯1E$N21/2^ut1
m1u~ u~ t1

m1u1«1ugm1
u!

•ut1
m2u~ u~ t1

m2u1«1ugm2
u!¯ut1

mku~ u~ t1
mku1«1ugmk

u!2uF1~$s%,$j i
m%!u&H

*
a 1S

m1 ,...,mk

k %

~57!

with Sm1,...,m

i of the form

k
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Sm1 ,...,mk

i 5
u1~m1 ,...,mk!

AN
t1
m1s11¯1

uk~m1 ,...,mk!

AN
t1
mks1 .

By using the inequalitiesuSm1,...,mk

i u<k and then the bound~17!, we obtain the estimate

uRm1 ,...,m1
u<constdNE$^„~ t1

m1!21«1
2gm1

2
…„~ t1

m2!21«1
2gm2

2
…¯„~ t1

mk!2«1
2gmk

2
…&%

5constdN
1/2EH p2k (

m1 ,...,mk5s11

p

^„~ t1
m1!21«1

2gm1

2
…„~ t1

m2!21«1
2gm2

2
…¯„~ t1

m2!2«1
2ggk

2
…&J

<constdN
1/2E$~aiJi1a«1

2!k%5O~dN
1/2!. ~58!

Proposition 1 is proved.
Proof of Lemma 2:It is easy to see that for anyc

Ha~c!2H5
J~11zdN!N

2 (
n51

s

~mn2cn!2.

Then, on the basis of the Bogolyubov inequality

1

N
^HN

~2!2HN
~1!&H2

< f N~H2!2 f N~H1!<
1

N
^HN

~2!2HN
~1!&H1

, ~59!

we have for anycn

J~11zdN!

2 (
n51

s

^~mn2cn!2&Ha~c!< f N„H
a~c!…2 f N~H!<

J~11zdN!

2 (
n51

s

^~mn2cn!2&. ~60!

Taking the minimum with respect to allc and averaging with respect to all random parameter
the problem, exceptz, we get

J~11zdN!

2
E/zH K (

n51

s

~mn2 c̃n!2L
Ha~ c̃!

J <E/z$min
cn

f N„H
a~c!…%2E/z$ f N~H!%

<
J~11zdN!

2
E/zH K (

n51

s

~mn2^mn&!2L J , ~61!

wherec̃ is a random minimum point of the functionf N„H
a(c)…. Integrating by parts with respec

to the variables$gn%n51
s , it is easy to obtain

E/zH K 1

2 (
n51

s

~mn2^mn&!2L J 5E/zH 1

2bAN
(
n51

s

gm^mn&J
<E1/2H 1

4N (
n51

s

~gn!2J E1/2H 1

N (
n51

s

^tn&2J
<S s

pD 1/2

E1/2$iJ i%.

Substituting this estimate in~61!, we get
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J~11zdN!

2
E/zH K (

n51

s

~mn2 c̃n!2L
Ha~ c̃!

<E/z$min
cn

f N„H
a~c!…%2E/z$ f N~H!%<constS s

pD 1/2

.

~62!

Now to prove Lemma 2 we are left to prove that

uE/z$min
cn

f N„H
a~c!…%2min

cn

E/z$ f N„H
a~c!…%u<o~1! as N˜`. ~63!

Since evidently for fixedN fN„H
a(c)… and E/z$ f N„H

a(c)…% tend to infinity, asc˜`, these
functions take their minimal values at the finite extremal points. But the extremal condition
these functions have the formcn5^mn&Ha(c) andcn5E/z$^m

n&Ha(c)% and sinceumnu<1 to prove
~63! it is enough to prove that

Prob$X%[ProbH sup
ucnu<1

u f N„H
a~c!…2E/z$ f N„H

a~c!…%u<
2J

logNJ <o~1!. ~64!

But, using once more the fact that the derivatives of the functionsf N„H
a(c)… andE/z$ f N„H

a(c)…%
are bounded, we obtain that

u f N„H
a~c1!…2 f N„H

a~c2!…u<JAsS ( ~c1
n2c2

n!2D 1/2

and so, ifuc1
n2c2

nu<(2k)21(k[@s logN#), then

u f N„H
a~c1!…2 f N„H

a~c2!…u<
Js

2k
<

J

2 logN
.

Therefore

sup
ucnu<1

u f N„H
a~c!…2E/z$ f N„H

a~c!…%u< sup
u j 1u,...,u j su<k

U f NXHaS j 1

k
,...,

j s

k D C2E/zH f NXHaS j 1

k
,...,

j s

k D CJ U
1

J

logN
.

Thus,

Prob$X%< (
j 1 ,...,j s

Prob$Xj 1 ,...,j s
%, ~65!

where j 1 ,....j s are integer numbers from the interval (2k,k) andXj 1 ,...,j s
is the notation of the

event

U f NXHaS j'
k

,...,
j s

k D C2E/zH f NXS j 1

k
,...,

j s

k D CJ U> J

logN
.

According to the result of Ref. 14, the probability of the last event can be estimate
D1N21 log2 N. Thus, on the basis of~65!,

Prob$X%<D1N21~2k11!s<D1 exp$s log~2k11!12 log logN2 logN%

5D1 exp$const@ logN#1/2~ log logN!2 logN%

<N21/2,
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and we obtain~63! which joined with~62!, proves~24!.
Now let us prove relations~25!. To this end we use
Lemma 4: Consider the sequence of convex random functions$ f n(t)%n51

` ( f n9(t)>0) in the
interval ~a,b!. If functions fn are self-averaging, i.e., uniformly in t

lim
n˜`

E$~ f n~ t !2E$ f n~ t !%!2%50,

and bounded(uE$ f n(t)%u<C uniformly in n,tP(a,b)), then for almost all t,

lim
n˜`

E$@ f n8~ t !2E$ f n8~ t !%#2%50, ~66!

i.e., the derivatives fn8(t) are also self-averaging ones for almost all t.
In addition, if we consider another sequence of convex functions$gn(t)%n51

` (gn9>0) which
are also self-averaging uniformly in t,

lim
n˜`

E$„gn~ t !2E$gn~ t !%…2%50

and

lim
n˜`

uE$ f n~ t !%2E$gn~ t !%u50, ~67!

uniformly in t, then for all t which satisfy~66!,

lim
n˜`

uE$ f n8~ t !%2E$gn8~ t !%u50, lim
n˜`

E$@gn8~ t !2E$g8~ t !%#2%50. ~68!

We prove Lemma 4 in the Appendix. Now let us note that, using this lemma and~24!, we obtain

bE/z$~12qN* !%52E/zH ] f N~Ha!

]«2
J 52E/zH ] f N~H!

]«2
J 1o~1!5bE/z$~12qN!%1o~1!,

bE/z$~^U&* 2ar N* !%52E/zH ] f N~Ha!

]«1
J 52EH ] f N~H!

]«1
J 1o~1!5bE/z$~^U&2ar N!%1o~1!,

~69!

E/z$^UN&* %1 (
m51

s E
1

2

dz„c
*
n ~z!…2

522E/zH ] f N~Ha!

]J J 522E/zH ] f N~H!

]J J 1o~1!5EH ^UN&1 (
m51

s

^~mm!2&J 1o~1!,

Remark also that

(
m51

s E
1

2

dz„
*
n ~z!2

…522
1

dN
E

1

2

dz E/zH ] f N~Ha!

]z J
522

1

dN
E/z$~ f N~Ha!uz522 f N~Ha!uz51!%

522
1

dN
E/z$~ f N~H!uz522 f N~H!uz51!%1o~1!

522
1

dN
E

1

2

dz E/zH ] f N~H!

]z J 1OS 1

logNdN
D5EH (

m51

s

^~mm!2&J 1o~1!.
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These relations, joined to~69!, prove~25!.

APPENDIX: PROOF OF PROPOSITION 2 AND LEMMA 4

Proof of Proposition 2:Due to the symmetry of the problem we can restrict ourselves to
case whenx andy are positive.

If x.0 andy.x12d, considerx85y andy85x. Then

F~x8,y8!2F~x,y!5 f ~y,x!2
y2

2~11d!
2

x2

2
2 f ~x,y!1

x2

2~11d!
1

y2

2

5
d

2~11d!
~y22x2!

>4d2
d

2~11d!
. ~A1!

Proposition 2 is proved.
Proof of Lemma 4:Denote

dn
~1![ max

a<t<b
Eˆ@ f n~ t !2E$ f n~ t !%#2

‰, dn
~2![ max

a<t<b
Eˆ@gn~ t !2E$gn~ t !%#2

‰,

dn
~3![ max

a<t<b
uE$ f n~ t !%2E$gn~ t !%u, «n5@max$dn

~1! ,dn
~2! ,dn

~3!%#1/3.

Then, using the convexity off n(t), we have

f n8~ t !2E$ f n8~ t !%<
f n~ t1«n!2 f n~ t !

«n
2E$ f n8~ t !%

52
f n~ t !2E$ f n~ t !%

«n
1

f n~ t1«n!2E$ f n~ t1«n!%

«n

1FE$ f n~ t1«n!%2E$ f n~ t !%

«n
2E$ f n8~ t !%G . ~A2!

Denote also

Rn
1~ t ![

E$ f n~ t1«n!%2E$ f n~ t !%

«n
2E$ f n8~ t !%

and prove thatRn
1(t)˜0 for almost allt. To this end we study

E
a1

b1
Rn

1~ t !dt5FFn~b11«n!2Fn~b1!

«n
2Fn8~b1!G2FFn~a11«n!2Fn~a1!

«n
2Fn8~a1!G , ~A3!

whereFn(t)[*a
t E$ f n(t)% dt and (a1 ,b1) is some subinterval of~a,b!. It is evident that

0<Fn9~ t !5E$ f n8~ t !%<2~b2b1!21FE$ f n~b!%2EH f nS b1b1

2 D J G .
Therefore ifn is large enough to provide«n<(b2b1)/2, then, according to the Taylor formula
the rhs of~A3! is of orderO(«n). Thus, sinceRn

1(t)>0, it follows from ~A3! thatRn
1(t)˜0 for

almost allt.
On the other hand, similarly to~A2! we get that
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f n8~ t !2E$ f n8~ t !%>2
f n~ t2«n!2E$ f n~ t2«n!%

«n
1

f n~ t !2E$ f n~ t !%

«n
1Rn

2~ t !

andRn
2(t)[E$ f n(t)%2E$ f n(t2«n)%/«n2E$ f n8(t)%˜0 for almost allt. Then

E$@ f n8~ t !2E$ f 8~ t !%#2%<2EH S f n~ t1«n!2E$ f n~ t1«n!%

«n
D 2J

12EH S f n~ t2«n!2E$ f n~ t2«n!%

«n
D 2J 14EH S f n~ t !2E$ f n~ t !%

«n
D 2J

1~Rn
2~ t !!21~Rn

1~ t !!2<8«n1„Rn
2~ t !…1„Rn

1~ t !…2˜0

for almost allt.
By the same way,

E$@gn8~ t !2E$ f n8~ t !%#2%<2EH S gn~ t1«n!2E$ f n~ t1«n!%

«n
D 2J

12EH S gn~ t2«n!2E$ f n~ t2«n!%

«n
D 2J 14EH S gn~ t !2E$ f n~ t !%

«n
D 2J

1~Rn
2~ t !!21~Rn

1~ t !!2

52EH S gn~ t1«n!2E$gn~ t1«n!%

«n
D 2J

12EH S gn~ t2«n!2E$gn~ t2«n!%

«n
D 2J 14EH S gn~ t !2E$gn~ t !%

«n
D 2J

12S E$gn~ t1«n!%2E$ f n~ t1«n!%

«n
D 2

12S E$gn~ t2«n!%2E$ f n~ t2«n!%

«n
D 2

14S E$gn~ t !%2E$ f n~ t !%

«n
D 2

1„Rn
2~ t !…21„Rn

1~ t !…2

<16«n1~Rn
2~ t !!21~Rn

1~ t !!2. ~A4!

On the other hand,

Eˆ@gn8~ t !2E$ f n8~ t !%#2
‰5Eˆ@gn8~ t !2E$gn8~ t !%#2

‰1@E$gn8~ t !%2E$ f n8~ t !%#2.

Therefore~A4! proves~67! and ~68!.
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The special quasiperiodic solution of the (211)-dimensional Kadometsev–
Petviashvili equation is separated into three systems of ordinary differential equa-
tions, which are the second, third, and fourth members in the well-known confocal
involutive hierarchy associated with the nonlinearized Zakharov–Shabat eigen-
value problem. The explicit theta function solution of the Kadometsev–Petviashvili
equation is obtained with the help of this separation technique. A generating func-
tion approach is introduced to prove the involutivity and the functional indepen-
dence of the conserved integrals which are essential for the Liouville integrability.
© 1999 American Institute of Physics.@S0022-2488~99!04207-3#

I. INTRODUCTION

The confocal involutive system was first used systematically by J. Moser1 in the investigation
of soliton equations such as the Korteweg–de Vries~KdV! equation. Various new kinds of con
focal involutive systems are obtained by the approach of nonlinearization of eigen
problems2–4 or constrained flows,5,6 which are useful tools in the study of (111)-dimensional
soliton equations. The mechanism of the technique is that the finite-parametric solution~such as
the finite-band solution! to a soliton equation could be separated into two systems of ordi
differential equations~ODEs!, which are two members in the associated confocal involutive
tem. There are at least two useful applications. First, it provides an effective way in the num
analysis and the graphic presentation of solutions, where only numerical solution of ODE
algebraic calculations are concerned. As examples on the Dirac-Nonlinear Schro¨dinger~NS! sys-
tem and the Toda lattice, see Refs. 7 and 8. Second, it provides another way to get the
expressions of quasiperiodic solutions by means of the Riemann theta functions resorting
elliptic variables and the Abel–Jacobi coordinates, in contrast with that of the Baker fun
approach.9,10

In the present paper, we are going to extend the (111) framework to the Kadometsev
Petviashvili~KP! equation, one of the typical (211)-dimensional soliton equations:

wt5
1
4~wxx13w2!x1 3

4]x
21wyy . ~1.1!

It is well-known that Eq.~1.1! is the compatible condition of two overdetermined linear equatio
the Lax pair. Together with its conjugate version, the Lax pair is nonlinearized into the co
nonlinear Schro¨dinger~NS! equation and the coupled modified Korteweg-de Vries~mKdV! equa-
tion, which are the second and the third members, respectively~theX2 flow and theX3 flow! in the
Ablowitz–Kaup–Newell–Segur~AKNS! hierarchy.11–13
39480022-2488/99/40(8)/3948/23/$15.00 © 1999 American Institute of Physics
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The AKNS hierarchy is the isospectral class of the Zhakharov–Shabat~ZS! eigenvalue prob-
lem. In order to separate theX2 andX3 flows, consider the nonlinearized ZS eigenvalue proble
which is completely integrable with a series of involutive integrals$Fk%

3. According to the
terminology suggested by Moser,1 the integrals are called confocal since their generating func
has the form:

(
k50

`
Fk

lk11 5(
j 51

N
Ej

l2a j
,

which gives confocal quadrics inRN. The coupled NS equation~the X2 flow! has a Lax pair,
which is nonlinearized into theH1 flow andH2 flow; while the Lax pair of the coupled mKdV
equation~the X3 flow! is nonlinearized into theH1 flow and H3 flow. It turns out that$Hk% is
essentially the confocal involutive system$Fk% with some modifications~see Sec. V below!. Thus
the special solution of the KP equation is separated into three members in the confocal inv
system:

Specifically, letx, y, t be the variables of theH1 , H2 , andH3 flow, and (p(x,y,t),q(x,y,t)) be
a compatible solution of the flows. Then

w~x,y,t !52^p,p&^q,q&52^Ap,q&14H1 ~1.2!

solves the KP equation~1.1! ~see Sec. VII below!.
A deeper understanding of the nonlinearized ZS eigenvalue problem is necessary in re

the above framework. The Liouville integrability plays a central role in the whole structure
have introduced an effective way, the generating function flow method, to prove:

~i! the involutivity of $Fk%;
~ii ! the functional independence ofF0 ,...,FN21 ;

which are essential for the Liouville integrability. The functional independence means a suffi
number of integrals, which is important and usually difficult to verify. Some results are obta
by Ma et al.14,15 It should be noted that the well-known three-body problem was proved non
grable by Bruns16,17 since it has an insufficient number of integrals. The generating function
method is also effective in calculating the evolution equations of the Abel–Jacobi coordi
which give a clear dynamic picture of the KP flow,Xk flow, andHk flow ~see Sec. VIII below!.
The explicit expression of the finite-band potential and the solution to the KP equation by m
of the Riemann theta function are obtained as a consequence~see Sec. X and XI!.

II. PRELIMINARIES

The AKNS hierarchy of soliton equations is the isospectral class of the Zakharov–S
eigevalue problem:

xx5Ux, U5S l

2
u

v 2
l

2

D . ~2.1!
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As the basis of investigating the zero-curvature form of the AKNS equation:

Vx2@U,V#5Ut[U* S ut

v t
D ,

we have the fundamental identity:

Vx2@U,V#5U* $P~K2lJ!g%, ~2.2!

where U* is the differential of the map (u,v)T
˜U(u,v), P is the projective mapg

5(g1,g2,g3)T
˜(g1,g2)T, and (]5]x)

V5S g3 g2

g1 2g3
D , K5S 0 ] 2u

] 0 22v

2u v ]
D , J5S 0 1 0

21 0 0

0 0 0
D . ~2.3!

The Lenard gradients$gj% and the AKNS vector fields$Xj% are defined recursively by

Kgj5Jgj 11 , Jg2150,
~2.4!

Xj5PJgj5~gj
2,2gj

1!T.

The explicit recursive formulas for the first two componentsgj
1, gj

2 are evident. In order to
eliminate the ambiguity in determining the third componentgj

3 since the existence of]21, con-
sider

gl5(
j 50

`

gj 21l2 j , g215~0,0,12!
T, ~2.5!

which satisfies (K2lJ)gl50. By Eq. ~2.2!, V5s(gl) solves the stationary Lax equationVx

2@U,V#50, thus dets(gl) is a constant along thex flow. We adopt:

dets~gl!52gl
1gl

22~gl
3!252 1

4. ~2.6!

This implies the explicit recursive formula forgj
3 by comparing the coefficients ofl2s. Thus we

have

gm11
1 52]gm

1 12vgm
3 ,

gm11
2 5]gm

2 12ugm
3 , ~2.7!

gm11
3 52 (

j 1k5m
j ,k>0

gj
1gk

21gj
3gk

3.

The first few members are:

g215S 0
0
1

2
D , g05S v

u
0
D , g05S 2vx

ux

2uv
D ,
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g25S vxx22uv2

uxx22u2v
uvx2uxv

D , g35S 2vxxx16uvvx

uxxx26uvux

2uxxv2uvxx1uxvx13u2v2
D , ~2.8!

X05S u
2v D , X15S ux

vx
D , X25S uxx22u2v

2vxx12uv2D , X35S uxxx26uvux

vxxx26uvvx
D .

Using the bi-Hamiltonian structureJg45Kg3 , we have

X45S uxxxx28uvuxx26ux
2v24uuxvx22u2vxx16u3v2

2vxxxx18uvvxx16uvx
214vuxvx12v2uxx26u2v3D .

III. THE ZS–BARGMANN SYSTEM

ConsiderN copies of the linear ZS equation~2.1!:

]xS pj

qj
D5S 1

2a j u

v 2 1
2a j

D S pj

qj
D , j 51,...,N, ~3.1!

with distinct eigenvaluesl5a1 ,...aN . Let A5diag(a1,...,aN). It is proved in Ref. 3 that the
reflectionless potential is expressed by the squared sum of eigenfunctions:

u~x!52^p,p&52(
j 51

N

$pj~x!%2,

~3.2!

v~x!5^q,q&5(
j 51

N

$qj~x!%2.

Thus in the reflectionless case, what the solution (pj ,qj )
T of the linear Eq.~3.1! satisfies, is

actually a system of nonlinear equations:

px5
1

2
Ap2^p,p&q52

]H1

]q
,

qx52
1

2
Aq1^q,q&p5

]H1

]p
, ~3.3!

H152 1
2 ^Ap,q&1 1

2 ^p,p&^q,q&.

This procedure is called nonlinearization of the eigenvalue problem, which is developed
general approach to produce new finite-dimensional integrable systems from infinite-dimen
ones~soliton hierarchies!.2–4

Now consider the problem of integrability of the ZS–Bargmann system~3.3!. The functional
gradient

¹a j5S da j /du
da j /dv D5S qj

2

2pj
2D

is extended to¹a j5(qj
2,2pj

2,pjqj )
T, which satisfies the Lenard eigenvalue problemK

2a j J)¹a j50. The condition~3.2! is put in the general form~the Bargmann constraint!:
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g01cg215(
j 51

N

¹a j , ~3.4!

where the third component^p,q&5c/2 gives nothing essential since^p,q& is a conserved integra
of the x flow. The solution of the Lenard eigenvalue problem with general parameterl is con-
structed as

Gl5g211(
j 51

N
1

l2a j
¹a j , ~3.5!

~K2lJ!Gl50. ~3.6!

Actually,

~K2lJ!Gl5JS g02(
j 51

N

¹a j D 5J~cg21!50.

By the fundamental identity~2.2!, the Lax equation along thex flow

Vx2@U,V#50 ~3.7!

has a solutionVl5s(Gl):

Vl5S 1

2
0

0 2
1

2

D 1(
j 51

N
e j

l2a j
, s~¹a j !5e j5S pjqj 2pj

2

qj
2 2pjqj

D , ~3.8!

which is called the Lax matrix of the ZS–Bargmann system~3.3!. Equation~3.7! implies that
Fl5detVl is invariant along thex flow. Therefore, we have the generating function of integrals
Eq. ~3.3!,

Fl52
1

4
2Ql~p,q!1Ql~p,p!Ql~q,q!2Ql

2~p,q!52
1

4
1 (

k50

`

l2k21Fk , ~3.9!

whereQl(j,h)5^(lE2A)21j,h&, and

F052^p,q&,

F152^Ap,q&1^p,p&^q,q&2^p,q&2, ~3.10!

Fk52^Akp,q&1 (
i 1 j 5k21

^Aip,p&^Ajq.q&2^Aip,q&^Aj p,q&.

Specifically,

H15 1
2F11 1

2F0
2.

Regard the generating functionFl as a Hamiltonian in the symplectic space (R2N,dp∧dq).
The canonical equation is

d

dtl
S pk

qk
D5

2

l2ak
VlS pk

qk
D , k51,...,N. ~3.11!
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Proposition 3.1:The Lax matrixVm satisfies the Lax equation along theFl flow:

d

dtl
Vm5

2

l2m
@Vl ,Vm#, ;l,mPC. ~3.12!

Proof: Since

ek5S pk

qk
D ~pk ,qk!S 0 21

1 0 D ,

by Eq. ~3.11! we have

d

dtl
ek5

2

l2ak
@Vl ,ek#.

d

dtl
Vm5 (

k51

N
1

m2ak

2

l2ak
@Vl ,ek#

5
2

l2m (
k51

N S 1

m2ak
2

1

l2ak
D @Vl ,ek#

5
2

l2m
@Vl ,Vm2Vl#5RHS.

Corollary 3.2: (Fm ,Fl)50, ;l,mPC;

~F j ,Fk!50, ; j ,k50,1,2,... .

Proof: Equation~3.12! implies thatFm5detVm is invariant along thetl flow. And the deriva-
tive of the functionFm along theFl flow is exactly the Poisson bracket.

IV. ELLIPTIC COORDINATES AND FUNCTIONAL INDEPENDENCE

It is easy to see that each one ofFl , Vl
12, andVl

21, as a rational function ofl, has simple
poles ata j ’s, since the coefficient of (l2a j )

22 is zero inFl . We have

Fl5Ql~p,p!Ql~q,q!2H Ql~p,q!1
1

2J 2

52
b~l!

4a~l!
,

Vl
1252Ql~p,p!52^p,p&

m~l!

a~l!
, ~4.1!

Vl
215Ql~q,q!5^q,q&

n~l!

a~l!
,

where

a~l!5)
k51

N

~l2ak!, b~l!5)
k51

N

~l2bk!,

m~l!5 )
k51

N21

~l2mk!, n~l!5 )
k51

N21

~l2nk!.

The roots$mk% and$nk% are defined as elliptic variables.
                                                                                                                



3954 J. Math. Phys., Vol. 40, No. 8, August 1999 Cao, Wu, and Geng

                    
Proposition 4.1:The elliptic coordinates satisfy the evolution equations along thetl flow:

1

2AR~mk!

dmk

dtl
5

m~l!

a~l!~l2mk!m8~mk!
,

~4.2!

1

2AR~nk!

dnk

dtl
5

2n~l!

a~l!~l2nk!n8~nk!
,

where

R~l!5a~l!b~l!5)
k51

2N

~l2lk!, ~4.3!

with lk5ak , lN1k5bk , (k51,...,N)
Proof: Substitutel5mk , nk , respectively, in Eq.~4.1!. We have

Vmk

115
AR~mk!

2a~mk!
, Vnk

115
AR~nk!

2a~nk!
.

In the second and third components of Eq.~3.12!,

d

dtl
Vm

125
24

l2m
~Vl

12Vm
112Vl

11Vm
12!,

d

dtl
Vm

215
4

l2m
~Vl

21Vm
112Vl

11Vm
21!,

let m5mk andm5nk , respectively. After some calculations we have Eq.~4.2!.
By means of the interpolation formula for polynomials with degree not more thang215N

22, we have (s51,...,g)

(
k51

g mk
g2s

2AR~mk!

dmk

dtl
5

lg2s

a~l!
,

(
k51

g nk
g2s

2AR~nk!

dnk

dtl
5

2lg2s

a~l!
.

For fixedl0 , introduce the quasi-Abel–Jacobi coordinates:

f̃s5 (
k51

g E
l0

mk mg2s dm

2AR~m!
, c̃s5 (

k51

g E
l0

nk ng2s dn

2AR~n!
, ~s51,...,g!. ~4.4!

Proposition 4.2:~Straightening of theFl flow!

df̃s

dtl
5

lg2s

a~l!
,

dc̃s

dtl
5

2lg2s

a~l!
. ~4.5!

Corollary 4.3: ~Straightening of theFk flow!. Let tk be the variable of theFk flow. Then
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df̃

dt0
50, S df̃

dt1
,
df̃

dt2
,...,

df̃

dtN21
D 5S 1 A1 A2 ¯ AN22

1 A1 ¯ AN23

� � ]

� A1

1

D , ~4.6!

anddf̃/dtk52dc̃/dtk , whereAj8s are the coefficient in the expansion

lN

a~l!
5

1

~12a1l21!¯~12aNl21!
511(

j 51

`

Ajl
2 j , ~4.7!

which could be represented through the power sums ofak , sl5(k51
N ak

l :

A15s1 , A25 1
2~s21s1

2!, A35 1
6~2s313s2s11s1

3!,

with the recursive formula:

Ak5
1

k S sk1 (
i 1 j 5k
i , j >1

siAj D . ~4.8!

Proof: According to the definition of the Poisson bracket:

df̃

dtl
5~f̃,Fl!5 (

k50

`
1

lk11 ~f̃,Fk!5 (
k50

`
1

lk11

df̃

dtk
.

With the supplementary definitionA051, A2 j50, (j 51,2,3,...), the comparison of the coeffi
cients ofl2k21 in Eq. ~4.5! yields df̃s /dtk5Ak2s , and

df̃

dtk
5~Ak21 ,Ak22 ,...,Ak2g!T. ~4.9!

The proof of Eq.~4.8! is elementary, resorting to the expansion(1
` k21skl

2k of the RHS of Eq.
~4.7!.

Proposition 4.4: F0 ,F1 ,...,FN21 given in Eq.~3.10! are functionally independent.
Proof: We need only prove the linear independence of the differentialsdF0 ,dF1 ,...,dFN21 .

Recall the expression of the Poisson bracket by means of the symplectic structurev25dp∧dq:18

~H,F !5v2~ IdF,IdH !.

Suppose(k50
N21 ckdFk50. Let H5f̃s , we have

05 (
k50

N21

ckv
2~ IdFk ,Idf̃s!5 (

k50

N21

ck~f̃s ,Fk!5 (
k51

N21

ck

df̃s

dtk
.

Hence c15¯5cN2150 since the coefficient determinant is equal to 1 by Eq.~4.6!. Thus
c0dF050. And c050 since

dF052( ~qkdpk1pkdqk!Þ0.
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Note: Corollary 3.2 and the present Proposition complete the proof of the Liouville inte
bility of the ZS–Bargmann system~3.3! with the HamiltonianH15 1

2F11 1
2F0

2 and N integrals
F0 ,F1 ,...,FN21 , which are involutive in pairs and functionally independent.

V. THE POLYNOMIAL INTEGRALS ˆHk‰

Introduce another set of polynomial integrals$Hk% for the ZS–Bargmann system~3.3! recur-
sively by:

H05 1
2F0 ,

~5.1!

Hk115 1
2Fk1112 (

i 1 j 5k
HiH j .

The first few members are

H05 1
2F0 , H15 1

2F11 1
2F0

2,

H25 1
2F21F1F01F0

3,
~5.2!

H35 1
2F31F2F01 1

2F1
213F1F0

21 5
2F0

4,

H45 1
2 F41F3F01F2F113F2F0

213F1
2F0110F1F0

317F0
5.

HereH1 is exactly the Hamiltonian for the ZS–Bargmann system~3.3!. Equation~5.1! is equiva-
lent to

Hl5 1
2~Fl1 1

4!12Hl
2,

or

24Fl5~124Hl!2, ~5.3!

whereHl5(k50
` Hkl

2k21 is the generating function of$Hk%.
Proposition 5.1:$Hk% satisfies the Liouville conditions of completely integrability:

~ i! ~Hl ,Hm!50, ;l,mPC,
~5.4!

~H j ,Hk!50, ; j ,k50,1,2,...;

~ ii ! H0 ,H1 ,...,HN21 are functionally independent.

Proof: Since$a j% are the only poles ofFl , the expansion

24Fl5124(
k50

`

Fkl
2k21511OS 1

l D
convergent absolutely outside the circle:

ulu.max~ ua1u,...,ua1u!.

Thus for sufficiently largeulu we solve

124Hl5A24Fl. ~5.5!

According to the Leibniz rule for the Poisson bracket, we obtain
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~Hl ,Hm!5
1

16AFlFm

~Fl ,Fm!50,

for sufficiently largeulu andumu. By the principle of analytic continuation, Eq.~5.4! is valid for any
l andm. From Eq.~5.3! we have

1
2dFl5~124Hl!dHl ,

1

2 S dF0

dF1

]

dFN21

D 5S 1

24H0 1

¯ ¯ ¯

24HN22 ¯ 24H0 1

D S dH0

dH1

]

dHN21

D .

Thus the linear independence ofdH0 ,...,dHN21 is equivalent to that ofdF0 ,...,dFN21 , which
completes the proof of the functional independence ofH0 ,...,HN21 .

The explicit form ofHk by means of canonical coordinatesp,q is obtained through substitut
ing the expression~3.10! into Eq. ~5.2!. The first few are as follows:

H052 1
2^p,q&,

H152 1
2^Ap,q&1 1

2^p,p&^q,q&,
~5.6!

H252 1
2^A

2p,q&1 1
2^Ap,p&^q,q&1 1

2^p,p&^Aq,q&2^p,p&^p,q&^q,q&,

H352 1
2^A

3p,q&1 1
2^A

2p,p&^q,q&1 1
2^Ap,p&^Aq,q&1 1

2^p,p&^A2q,q&2^Ap,p&^p,q&^q,q&

2^p,p&^Ap,q&^q,q&2^p,p&^p,q&^Aq,q&1 1
2^p,p&2^q,q&212^p,p&^p,q&2^q,q&.

VI. RELATION OF Hk AND Xk

The kernel ofJ is of dimension 1 with the generatorg21 . ExertingJ21K on Eq.~3.4! k times
gives

(
j 51

N

a j
k¹a j5gk1c1gk211¯1ckg01ck11g21 , ~6.1!

since each time there is an extra termcig21 . Hence we have

05(
j 51

N

a~a j !¹a j5gN1cN1gN211¯1cNNg01cN,N11g21 , ~6.2!

where

a~l!5)
j 51

N

~l2a j !5 (
k50

N

aN2kl
k, ~a051!,

~6.3!

cN,N2 i5(
k5 i

N

aN2kck2 i , cN,N115 (
k50

N

aN2kck11 .

Acting with PJ on Eq.~6.2! yields:
Proposition 6.1:Let (p(x),q(x)) be a solution of the ZS–Bargmann system~3.3!. Then
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S u
v D5 f ~p,q!5S 2^p,p&

^q,q& D ~6.4!

solves theNth stationary AKNS equation

XN1cN1XN211¯1cNNX050. ~6.5!

Proposition 6.2:The coefficients in Eq.~6.1! are given by:

ck524Hk21 . ~6.6!

Furthermore,

gl5
1

124Hl
Gl . ~6.7!

Proof: Define the generating function of$ck% by

cl511 (
k51

`

ckl
2k.

Multiplied by l2k21 and summed with respect tok from 0 to `, Eq. ~6.1! becomes

Gl5g211S Ql~q,q!

2Ql~p,p!

Ql~p,q!
D 5clgl .

Thuss(Gl)5cls(gl) andFl52 1
4cl

2 due to Eq.~2.6!, which yieldscl5124Hl and Eq.~6.6!
by comparing with Eq.~5.3!.

Denote the solution variety of Eqs.~3.3! and~6.5! byN andM, respectively. By Proposition
6.1 f mapsN intoM. Consider the canonical equation of theHk flow:

d

dtk
S p
qD5S 2

]Hk

]q
]Hk

]p

D 5I¹Hk ~6.8!

and the solution of the initial value problem:

S p~tk!

q~tk!
D5hk

tkS p0

q0
D . ~6.9!

Specifically,t15x. It is well-known18 that the involutivity (H j ,Hk)50 implies the commutativ-
ity of hj

t j andhk
tk. HenceI¹Hk can be regarded as a vector field onN. The importance ofHk is

that the differentialf * mapsI¹Hk exactly into the AKNS vector fieldXk restricted toM, where

f * ~p,q!S dp
dqD5

d

deU
e50

f ~p1edp,q1edq!5S 22^p,dp&
2^q,dq& D .

Proposition 6.3:

f * ~ I¹Hl!5PJgluM , lPC,
~6.10!

f * ~ I¹Hk!5XkuM , k50,1,2,... .
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Proof: From the canonical Eq.~3.11! of the tl flow we get

d

dtl
^p,p&54Vl

11Ql~p,p!14Vl
12Ql~p,q!52Ql~p,p!,

~6.11!
d

dtl
^q,q&54Vl

21Ql~p,q!24Vl
11Ql~q,q!522Ql~q,q!.

Thus

f * ~ I¹Fl!5 f * H d

dtl
S p
qD J 5

d

dtl
S 2^p,p&

^q,q& D522S Ql~p,p!

Ql~q,q! D .

By Eqs.~5.3!, ~3.5!, and~6.7!:

¹Hl5 1
2¹Fl14Hl¹Hl ,

f * ~ I¹Hl!5
1

2~124Hl!
f * ~ I¹Fl!5

21

124Hl
S Ql~p,p!

Ql~q,q! D5
1

124Hl
PJGl5PJgl .

Hence we have the first part of Eq.~6.10!. The second part is obtained by comparing the coe
cients of the same powerl2k21.

Corollary 6.4: ~i! In the casek52, denotet15x, t25y. Let (p(x,y),q(x,y)) be a compat-
ible solution of

S p
qD

x

5I¹H1 , S p
qD

y

5I¹H2 .

Thenu(x,y)52^p,p&,v(x,y)5^q,q& solves the coupled NS equation:

S u
v D

y

5X25S uxx22u2v
2vxx12uv2D . ~6.12!

~ii ! In the casek53, denotet15x, t35t. Let (p(x,t),q(x,t)) be a compatible solution of

S p
qD

x

5I¹H1 , S p
qD

t

5I¹H3 .

Thenu(x,t)52^p,p&, v(x,t)5^q,q& solves the coupled mKdV equation:

S u
v D

t

5X35S uxxx26uuxv
vxxx26uvvx

D . ~6.13!

VII. THE KP EQUATION

In this section, the special solution of the KP equation is first separated into two AKNS
X2 andX3 , and then into three confocal flowsH1 ,H2 ,H3 .

Proposition 7.1:Let u(x,y,t),v(x,y,t) be a compatible solution of the coupled NS equat
~6.12! and the coupled mKdV~6.13!. Then

w~x,y,t !522u~x,y,t !v~x,y,t ! ~7.1!

solves the KP equation:

wt5
1
4~wxx13w2!x1 3

4]x
21wyy . ~7.2!
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Proof: A direct calculation gives:

wtx5wxxxx1
3
2~w2!xx16~uxxxvx1uxvxxx12uxxvxx!,

3
4wyy5

3
4wxxxx1

3
4~w2!xx16~uxxxvx1uxvxxx12uxxvxx!.

The difference gives Eq.~7.2!
Theorem 7.2:Let (p(x,y,t),q(x,y,t)) be a compatible solution of three systems of ODE

S p
qD

x

5I¹H1 , S p
qD

y

5I¹H2 , S p
qD

t

5I¹H3 , ~7.3!

whereH j ’s are given explicitly by Eq.~5.6!. Then

w~x,y,t !52^p,p&^q,q&52^Ap,q&14H1 ~7.4!

solves the KP equation~7.2!.
Proof: Since the flow operators defined by Eq.~6.9! h1

x ,h2
y ,h3

t commute, we write the com
patible solution in two ways:

S p
qD5h1

xh2
yHh3

t S p0

q0
D J 5h1

xh3
t Hh2

yS p0

q0
D J , ~7.5!

and regard the quantities in the parentheses$•% as initial values. Then, as a function of~x,y! and
~x,t!, respectively,

~u~x,y,t !,v~x,y,t !!5~2^p,p&,^q,q&!

Eqs.~6.12! and ~6.13! simultaneously by Corollary 6.4. According to Proposition 7.1,

w522uv52^p,p&^q,q&

is a solution to Eq.~7.2!.

VIII. EVOLUTION PICTURE VIA THE ABEL–JACOBI COORDINATES

The shape of Eq.~4.4! suggests the consideration of the holomorphic differential

ṽs5
lg2sdl

2AR~l!
, s51,...,g, ~8.1!

on the hyperelliptic curveG:

j224R~l!50, ~8.2!

with genusg5N21 since degR52N by Eq. ~4.3!. For the samel, there are two points on
different sheets of the Riemann surfaceG:

r~l!5~l,2AR~l!!, r2~l!5~l,22AR~l!!.

At infinity, the affine equation~8.2! is transformed into~z5l21, ĵ5zNj!:

ĵ224R* ~z!50, ~8.3!

with
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R* ~z!5z2NR~z21!5)
j 51

2N

~12l j z!.

The two infinities are represented as:

` l5~z50,ĵ5~21! l2!, l 51,2. ~8.4!

Take the canonical basis of cycles onG:a1 ,...,ag ;b1 ,...,bg . Let C5(Cjs) be the inverse of the
periodic matrix (Ask):

C5~Ask!g3g
21 , Ask5E

ak

ṽs . ~8.5!

Then for the normalized holomorphic differential

v j5(
s51

g

Cjsṽs , v5~v1 ,...,vg!T5Cṽ,

we have

E
ak

v j5d jk , E
bk

v j5Bjk . ~8.6!

According to the Riemannian bilinear relation,19 the matrixB5(Bjk) is symmetric and has posi
tive definite imaginary part, and is used to construct the Riemannian theta function ofG:

u~z!5 (
zPZg

exppA21~^Bz,z&12^z,z&!, zPCg.

For fixedl0 , the Abel–Jacobi coordinates are defined as

f5 (
k51

g E
r~l0!

r~mk!

v, c5 (
k51

g E
r~l0!

r~nk!

v. ~8.7!

Lemma 8.1:Let Sk5l1
k1¯1l2N

k . Then the coefficients of

1

AR* ~z!
5 (

k50

`

Lkz
k ~8.8!

satisfy the recursive formula:

L051, L15 1
2S1 ,

~8.9!

Lk5
1

2k S Sk1 (
i 1 j 5k
i , j >1

SiL j D .

Proof: Since2 ln(12t)5(k51
` k21tk, we have

ln
1

AR* ~z!
52

1

2 (
j 51

2N

ln~12l j z!5 (
k51

`
1

2k
Skz

k.

By differentiating with regard toz and comparing the coefficients ofzk, we get Eq.~8.9!.
                                                                                                                



,

h the

the

3962 J. Math. Phys., Vol. 40, No. 8, August 1999 Cao, Wu, and Geng

                    
Let C1 ,...,Cg be the column vectors ofC defined by Eq.~8.5!. Then by direct calculations
the coefficients in

1

2AR* ~z!
~C1z1C2z1¯1Cgzg!5 (

k51

`

Vkz
k ~8.10!

are

Vk5 1
2~Lk21C11¯1Lk2gCg! ~8.11!

with additional definedL2s50, (s51,2,...). Specifically,

V050, V15 1
2C1 ,

~8.12!
Vk5 1

2~Lk21C11¯1L1Ck211Ck!, ~k51,...,g!.

Proposition 8.2:The tk flow is straightened by the Abel–Jacobi coordinates:

df

dtk
5Vk ,

dc

dtk
52Vk . ~8.13!

Proof: By Eqs.~4.1!, ~4.3!, and~5.3! we have

AR~l!5a~l!~124Hl!. ~8.14!

Since the derivative of a function along a Hamiltonian flow is equal to its Poisson bracket wit
Hamiltonian, Eq.~5.3! implies

d

dtl
5

1

2~124Hl!

d

dtl
. ~8.15!

Therefore, from Eqs.~4.5!, ~8.14!, and~8.10! we get

df̃

dtl
5

lg

2AR~l!
~l21,...,l2g!T,

df

dtl
5C

df̃

dtl
5

lg

2AR~l!
~C1l211¯1Cgl2g!5 (

k51

`

Vkl
2k21.

Hence we obtain the first part of Eq.~8.13! after comparing the coefficients ofl2k21, while the
second part is obtained similarly.

The straightened equations~8.13! are easily integrated by quadratures:f5f01(Vktk . And
the evolution picture of the confocal flow and AKNS flow becomes very simple through
‘‘window’’ of the Abel–Jacobi coordinatesf ~as well asc!:

confocal Hk : f5f01Vktk ,
~8.16!

AKNS Xk : f5f01V1x1Vktk .

Specifically,

ZS–Bargmann
Stationary AKNSJ : f5f01V1x,
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coupled NS: f5f01V1x1V2y,
~8.17!

coupled mKdV: f5f01V1x1V3t,

KP: f5f01V1x1V2y1V3t.

The corresponding explicit solutions are obtained by some inversion procedures fromf,c to the
coordinatesu, v, andw via the elliptic coordinates$mk% and$nk%.

IX. INVERSION FROM f,c TO ˆmk‰,ˆnk‰

The Abel mapA:Div(G)˜J(G)5Cg/T is defined by:

A~P!5E
P0

P

v, AS ( nkPkD5( nkA~Pk!, ~9.1!

whereP05r(l0) is fixed, Div~G! is the divisor group, and the latticeT is spanned by the periodi
vectors$d j ;Bj%, which are the column vectors ofE and (Bjs) defined by Eq.~8.6!. The definition
of Abel–Jacobi coordinates is rewritten as

f5AH (
j 51

g

r~m j !J , c5AH (
j 51

g

r~n j !J . ~9.2!

According to the Riemann theorem,19 there exists a constant vectorK such that
~i! u(A(r(l))2f2K) has exactlyg zeros atl5m1 ,...,mg ;
~ii ! u(A(r(l))2c2K) has exactlyg zeros atl5n1 ,...,ng .

And we have the inversion formula:

(
j 51

g

m j
s5I s~G!2(

l 51

2

Res
l5` l

lsd ln u~A~r~l!!2f2K !,

~9.3!

(
j 51

g

n j
s5I s~G!2(

l 51

2

Res
l5` l

lsd ln u~A~r~l!!2c2K !,

where

I s~G!5(
j 51

g E
aj

lsv j .

In the neighborhood of̀ l ( l 51,2), since the two-valued functionl2NAR(l) tends to
(21)l due to Eq.~8.4!, we have (z5l21):

l2NAR~l!5~21! lAR* ~z!,

By Eq. ~8.1! we get:

v5Cṽ5~21! l 21
z21 dz

zAR* ~z!
~C1z1¯1Cgzg!.

With the help of Eq.~8.10! we obtain:

v5~21! l 21(
k51

`

Vkz
k21 dz, ~9.4!
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A~r~z21!!52h l1~21! l 21(
k51

`
1

k
Vkz

k, ~9.5!

where

h l5 È
l

P0
v.

Hence we have the power series expansions near` l in the local coordinatez5l21:

ln u~A~r~l!!2f2K !5 ln uS f1K1h l1~21! l (
k51

`
1

k
Vkz

kD 5 ln u~f1K1h l !1 (
k51

`

f k
l zk,

ln u~A~r~l!!2c2K !5 ln uS 2c2K2h l1~21! l 21(
k51

`
1

k
Vkz

kD 5 ln u~2c2K2h l !

1 (
k51

`

f̂ k
l zk. ~9.6!

Here the factu(z)5u(2z) is used. The power sums are obtained after substituting Eq.~9.6! into
Eq. ~9.3!:

(
j 51

g

m j
s5I s~G!2s fs

12s fs
2,

~9.7!

(
j 51

g

n j
s5I s~G!2s f̂s

12s f̂s
2.

The coefficientsf k
l , f̂ k

l in the Taylor expansions~9.6! are calculated by the chain rule of differen
tiation. Denote] j5]/]z j , ] jk

2 5]2/]z j]zk , etc. Adopting the Einstein summation conventio
finally we get:

(
j 51

g

m j5I 1~G!1V1
j ] j ln

u1

u2
,

(
j 51

g

m j
25I 2~G!1V2

j ] j ln
u1

u2
2V1

j V1
k] jk

2 ln u1u2 ,

(
j 51

g

m j
35I 3~G!1V3

j ] j ln
u1

u2
2

3

2
V2

j V1
k] jk

2 ln u1u21
1

2
V1

j V1
kV1

r ] jkr
3 ln

u1

u2
,

(
j 51

g

m j
45I 4~G!1V4

j ] j ln
u1

u2
2S 4

3
V3

j V1
k1

1

2
V2

j V2
kD ] jk

2 ln u1u21V2
j V1

kV1
r ] jkr

3 ln
u1

u2

2
1

6
V1

j V1
kV1

r V1
i ] jkri

4 ln u1u2 ,

~9.8!

(
j 51

g

n j5I 1~G!2V1
j ] j ln

u1*

u2*
,
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(
j 51

g

n j
25I 2~G!2V2

j ] j ln
u1*

u2*
2V1

j V1
k] jk

2 ln u1* u2* ,

(
j 51

g

n j
35I 3~G!2V3

j ] j ln
u1*

u2*
2

3

2
V2

j V1
k] jk

2 ln u1* u2* 2
1

2
V1

j V1
kV1

r ] jkr
3 ln

u1*

u2*
,

(
j 51

g

n j
45I 4~G!2V4

j ] j ln
u1*

u2*
2S 4

3
V3

j V1
k1

1

2
V2

j V2
kD ] jk

2 ln u1* u2* 2V2
j V1

kV1
r ] jkr

3 ln
u1*

u2*

2
1

6
V1

j V1
kV1

r V1
i ] jkri

4 ln u1* u2* ,

where (l 51,2)

u l5u~f1K1h l !5uS ( Vktk1f01K1h l D ,

~9.9!

u l* 5u~2c2K2h l !5uS ( Vktk2c02K2h l D .

Since$m j% and$nk% appear symmetrically in Eq.~9.2!, what we can expect to get in the inversio
formula is only the symmetric function of$m j% or $n j%.

Denotex5t1 , y5t2 , t5t3 . By the chain rule of differentiation for composition function
Eq. ~9.8! is further simplified as:

(
j 51

g

m j5I 1~G!1]x ln
u1

u2
,

(
j 51

g

m j
25I 2~G!1]y ln

u1

u2
2]x

2 ln u1u2 ,

(
j 51

g

m j
35I 3~G!1S ] t1

1

2
]x

3D ln
u1

u2
2

3

2
]y]x ln u1u2 ,

(
j 51

g

m j
45I 4~G!1~]t4

1]y]x
2!ln

u1

u2
2S 4

3
] t]x1

1

2
]y

21
1

6
]x

4D ln u1u2 ,

~9.10!

(
j 51

g

n j5I 1~G!2]x ln
u1*

u2*
,

(
j 51

g

n j
25I 2~G!2]y ln

u1*

u2*
2]x

2 ln u1* u2* ,

(
j 51

g

n j
35I 3~G!2S ] t1

1

2
]x

3D ln
u1*

u2*
2

3

2
]y]x ln u1* u2* ,

(
j 51

g

n j
45I 4~G!2~]t4

1]y]x
2!ln

u1*

u2*
2S 4

3
] t]x1

1

2
]y

21
1

6
]x

4D ln u1* u2* .
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X. RELATION BETWEEN ˆmk‰, ˆnk‰, AND „u ,v …5f „p ,q …

Proposition 10.1:Let u52^p,p&, v5^q,q&. Then

1

u

du

dtl
5

m~l!

AR~l!
,

1

v
dv
dtl

5
2n~l!

AR~l!
. ~10.1!

Proof: By Eqs.~8.15!, ~6.11!, ~4.1!, and~8.14!, we have

d

dtl
^p,p&5

1

2~124Hl!

d

dtl
^p,p&5

Ql~p,p!

124Hl
5

^p,p&m~l!

~124Hl!a~l!
5

^p,p&m~l!

AR~l!
.

The calculation forv is similar.
Proposition 10.2:Let

sk5(
j 51

g

m j
k , ŝk5(

j 51

g

n j
k , Sk5(

j 51

2N

l j
k . ~10.2!

Then

1

u

du

dtk
5Tk ,

1

v
dv
dtk

52T̂k ~k50,1,2,...!, ~10.3!

whereTk ,T̂k are determined, respectively, by the recursive formulas:

~ i! T051, T15 1
2S12s1 ,

~10.4!

Tk5
1

k S 1

2
Sk2skD1

1

k (
i 1 j 5k
i , j >1

S 1

2
Si2s i DTj ,

~ ii ! T̂051, T̂15 1
2S12ŝ1 ,

~10.5!

T̂k5
1

k S 1

2
Si2ŝ i D1

1

k (
i 1 j 5k
i , j >1

S 1

2
Si2ŝ i D T̂j , .

Proof: By a way quite similar to the proof of Eq.~8.9!, we have Eq.~10.4! based on Eq.~10.1!
and the expansion:

m~l!

AR~l!
5l21 expH (

k51

`

k21S 1

2
Sk2skDl2kJ 5 (

k50

`

Tkl
2k21.

Equation~10.5! is proved with slight adjustment.
Substituting Eq.~9.10! into Eq. ~10.3! in the case ofk51, we have

ux

u
5N12]x ln

u1

u2
,

vx

v
52N12]x ln

u1*

u2*
, ~10.6!

with

N15 1
2S12I 1~G!. ~10.7!

Thus
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u5u0eN1x
u2

u1
5u0eN1x

u~(Vktk1f01K1h2!

u~(Vktk1f01K1h1!
,

~10.8!

v5v0e2N1x
u2*

u1*
5v0e2N1x

u~(Vktk2c02K2h2!

u~(Vktk2c02K2h1!
,

whereu0 ,v0 are independent ofx5t1 , but dependent~if we consider the next flows! upon y
5t2 , t5t3 ,t4 ,... . Nevertheless, for theH1 flow, exceptx5t1 , no other independent variable
t2 ,t3 ,... appear. Thus we have:

Proposition 10.1:The stationary AKNS equation~6.5! has solution

u~x!5u~0!eN1x
u~V1x1f01K1h2!u~f01K1h1!

u~V1x1f01K1h1!u~f01K1h2!
,

~10.9!

v~x!5v~0!e2N1x
u~V1x2c02K2h2!u~c01K1h1!

u~V1x2c02K2h1!u~c01K1h2!
,

which is called the finite-band potential of the ZS spectral problem~2.1!.
Consider theH1 , H2 , andH3 flow. Substitute the expressions ofu,v of Eq. ~10.8! into w

522uv. By Theorem 7.2, we have the solution of KP:

w~x,y,t !5C~y,t !
u2u2*

u1u1*
.

The ‘‘coefficient’’ C(y,t) is determined by lettingx50. Thus we obtain:

w~x,y,t !5w~0,y,t !
u2u2*

u1u1*
S u1u1*

u2u2*
D

x50

.

Proposition 10.2:The KP equation has a special solution in the form:

w~x,y,t !5w~0,y,t !
u~V1x1V2y1V3t1f01K1h2!u~V1x1V2y1V3t2c02K2h2!

u~V1x1V2y1V3t1f01K1h1!u~V1x1V2y1V3t2c02K2h1!

•

u~V2y1V3t1f01K1h1!u~V2y1V3t2c02K2h1!

u~V2y1V3t1f01K1h2!u~V2y1V3t2c02K2h2!
. ~10.10!

We list the first members of Eq.~10.3! for later use:

ux

u
5S1,

uy

u
5

1

2
S21

1

2
S1

2,

ut

u
5 1

3S31 1
2S2S11 1

6S1
3, ~10.11!

ut4

u
5 1

4S41 1
3S3S11 1

8S2
21 1

4S2S1
21 1

24S1
4,

where (k5 1
2Sk2sk . It is more convenient to represent the remainders in terms ofu and its

derivatives:

ux

u
5S S1

2
2s1D ,

uy

u
5

1

2 S S2

2
2s2D1

1

2 S ux

u D 2

,
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ut

u
5

1

3 S S3

2
2s3D1

uyux

u2 2
1

3 S ux

u D 3

, ~10.12!

ut4

u
5

1

4 S S4

2
2s4D1

utux
2 1

1

2 S uy

u D 2

2
uyux

2

u3 1
1

4 S ux

u D 4

.

XI. ANOTHER FORM OF ALGEBRO-GEOMETRIC SOLUTION OF KP

In order to derive another form of the explicit solution of KP, we take the initial value
h4

t(p0 ,q0)T and consider

S p
qD5h1

xh2
yh3

t h4
t4S p0

q0
D ,

u52^p,p&, v5^q,q&, w522uv.

The introduction oft4 is convenient in the proof of some important facts. Since in the final res
there is not4 and the initial data can be chosen arbitrarily, we may lett450 in the end. Substitute
Eq. ~9.10! into the second of Eq.~10.12!:

2
uy

u
5

S2

2
2I 2~G!2]y ln

u1

u2
1]x

2 ln u1u21S ux

u D 2

5
S2

2
2I 2~G!2~]y1]x

2!ln
u1

u2
12]x

2 ln u11S ux

u D 2

. ~11.1!

By Eqs.~10.8! and ~10.6! we have

2~]y1]x
2!ln

u1

u2
5~]y1]x

2!ln u2N2 , N25]y ln u0 . ~11.2!

Substitute this into Eq.~11.1!. By using Eq.~6.12!, we have:

]x
2 ln u11uv1

1

2 S S2

2
2I 2~G!2N2D50. ~11.3!

Hence we obtain the solution of the KP equation:w522uv.
Theorem 11.1:The KP equation~7.2! has the solution:

w~x,y,t !52]x
2 ln u~V1x1V2y1V3t1D !1w0 , ~11.4!

where the constantsD andw0 are

D5f01K1 È
1

P0
v, w05

S2

2
2I 2~G!2N2 .

Proof: Sinceu0 ~thereforeN2! in Eq. ~10.8! is independent ofx, the only thing required to
prove is the independence ofN2 with regard toy andt. Substitute Eq.~9.10! into the third equation
of Eq. ~10.11!:
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3
ut

u
5

S3

2
2I 3~G!2S ] t1

1

2
]x

3D ln
u1

u2
1

3

2
]y]x ln u1u213

uyux

u2 2S ux

u D 3

5
S3

2
2I 3~G!2S ] t1

1

2
]x

31
3

2
]y]xD ln

u1

u2
13]y]x ln u113

uyux

u2 2S ux

u D 3

. ~11.5!

Again by Eqs.~10.8! and ~10.6! we have

2S ] t1
1

2
]x

31
3

2
]y]xD ln

u1

u2
5S ] t1

1

2
]x

31
3

2
]y]xD ln u2N3 ,

~11.6!
N35] t ln u0 .

Put it into Eq.~11.5!. Taking advantage of Eqs.~6.12! and~6.13!, after some calculations we ge

]y]x ln u11~uxv2uvx!1
1

3 S S3

2
2I 3~G!2N3D50. ~11.7!

Note thatN3 is independent ofx. Acting with ]y ,]x on Eqs.~11.3! and ~11.7!, respectively, the
difference of the results gives]yN250, which meansN2 is independent ofy.

To prove the independence ofN2 with regard tot, we treat the fourth member of Eq.~10.11!
with the expressions4 in Eq. ~9.10!:

4
ut4

u
5

S4

2
2I 4~G!2~]t4

1]y]x
2!ln

u1

u2
1S 4

3
] t]x1

1

2
]y

21
1

6
]x

4D ln u1u2

14
utux

u2 12S uy

u D 2

2
4uyux

2

u3 1S ux

u D 4

.

Once more by Eqs.~10.8! and ~10.6! we get

2S ]t4
1]y]x

21
4

3
] t]x1

1

2
]y

21
1

6
]x

4D ln
u1

u2
5S ]t4

1]y]x
21

4

3
] t]x1

1

2
]y

21
1

6
]x

4D ln u2N4 ,

~11.8!
N45]t4

ln u0 .

With the same technique, after tedious calculations we obtain

1

12
~8] t]x13]y

21]x
4!ln u11S uxxv1uvxx2uxvx2

5

2
u2v2D1

1

4 S S4

2
2I 4~G!2N4D50.

~11.9!

Exert 12]x,8] t1]x
3,3]y on Eqs.~11.9!, ~11.3!, ~11.7!, respectively, and cancel the terms containi

the derivatives of lnu1. Finally we have

054] tN21]yN355] tN2 ,

since ] tN25]yN35] t]y ln u0. Thus N2 is independent oft. This completes the proof of the
theorem.

Note: The algebro-geometric solution of the coupled NS is suggested by Eqs.~10.8! and
~11.2!:
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u~x,y!5u~0,0!eN1x1N2y
u~V1x1V2y1f01K1h2!u~f01K1h1!

u~V1x1V2y1f01K1h1!u~f01K1h2!
,

~11.10!

v~x,y!5v~0,0!e2N1x2N2y
u~V1x1V2y2c02K2h2!u~c01K1h1!

u~V1x1V2y2c02K2h1!u~c01K1h2!
.

The only thing which should be discussed is the constantN2 in the expression ofv(x,y).
The solution of KP in the form of Eq.~11.4! is obtained in Ref. 9. And the solution of NS i

the form of Eq.~11.10! coincides with those found in Refs. 20–23.
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A new integrable Davey–Stewartson-type equation
Attilio Maccari
Technical Institute ‘‘G. Cardano,’’ Piazza della Resistenza 1,
00015 Monterotondo, Rome, Italy
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A new integrable nonlinear partial differential equation~PDE! in 211 dimensions
is derived starting from the Konopelchenko–Dubrovsky equation. We use an as-
ymptotically exact reduction method based on Fourier expansion and spatio-
temporal rescaling and obtain a new integrable Davey–Stewartson-type equation.
In order to demonstrate the integrability of the new equation by the inverse scat-
tering method, we apply the reduction technique to the Lax pair of the
Konopelchenko–Dubrovsky equation and find the corresponding Lax pair of the
new equation. The new equation reduces to the Davey–Stewartson or the nonlinear
Schrodinger equation by appropriate limits. ©1999 American Institute of Phys-
ics. @S0022-2488~99!04407-2#

I. INTRODUCTION

As it has been known for some time, very large classes of nonlinear evolution partial d
ential equations~PDEs! in 111 and 211 dimensions, with a dispersive linear part, can
reduced, by a limiting procedure involving the wave modulation induced by weak nonl
effects, to a very limited number of ‘‘universal’’ nonlinear evolution PDEs. These model e
tions @of which the nonlinear Schrodinger~NLS! equation in 111 dimension is the most impor
tant# appear in many applicative fields~in plasma physics, nonlinear optics, hydrodynamics, e!
because this reduction technique is able to take into account weakly nonlinear effects. The
equations are integrable, since it is sufficient that the very large class from which they are o
able contain just one integrable equation, because it is clear from this method that the prop
integrability is inherited through the limiting technique.1–5 This last statement about the integr
bility is based on heuristic considerations and could not be characterized as rigorous th
indeed, no precise definition of integrability is available for nonlinear evolution PDEs.5

The reduction method provides a powerful tool to understand the integrability of kn
equations and to derive new integrable equations likely to be relevant in applicative conte
can be also applied to construct approximate solutions for weakly nonlinear ordinary differ
equations.6,7

The first step of the reduction method is to consider the linearized equation, i.e., the eq
obtained after neglecting all the nonlinear terms. The linear evolution is best described by F
modes, as they have a constant amplitude and a well defined group velocity~in 211 dimensions!
V5(V1(K,K2),V2(K1 ,K2)) depending on the wave numbersK1 ,K2 . Subsequently, we introduc
the slow variables

j5ep~x2V1t !, h5ep~y2V2t !, t5eqt, ~1.1!

wherep,q.0, ande is the expansion parameter, supposed to be sufficiently small. If now
introduce the nonlinear terms, the amplitude of the Fourier mode becomes a slowly va
function of space and time and then the rescaled variablesj,h,t account for the need to look o
larger space and time scales, in order to determine the effects of the nonlinear terms.

In precedent papers, this method has been applied to certain integrable equations i11
dimensions. The most interesting results are that the Davey–Stewarston equation8,9 is the typical
39710022-2488/99/40(8)/3971/7/$15.00 © 1999 American Institute of Physics
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model equation in 211 dimensions and new integrable nonlinear PDEs can be obtained tog
with their Lax pair.10–12 Moreover, the reduction method has been used to derive an equati
applicative relevance in plasma physics.13,14

In this paper we consider the Konopelchenko–Dubrovsky~KD! equation15,16 ~integrable by
means of the spectral transform17,18!

Ut2Uxxx26bUUx1 3
2a

2U2Ux23Wy13aUxW50, ~1.2a!

Wx5Uy , ~1.2b!

whereU5U(x,y,t), W5W(x,y,t), the subscripts denote partial differentiation anda,b are real
parameters.

Applying the reduction method, a new class of integrable equations depending on tw
parameters~a,b! can be derived

iCt1L1C1CF1Cx50, ~1.3a!

L2x5L3uCu2, Fj5xh7~ uCu2!h , ~1.3b!

where the linear differential operators are given by

L15S b22a2

4 D ]2

]j22a
]2

]j]h
2

]2

]h2 , ~1.3c!

L25S b21a2

4 D ]2

]j2 1a
]2

]j]h
1

]2

]h2 , ~1.3d!

L356
1

4 S b21a21
8b2~a21!

~a22!22b2D ]2

]j2 6S a1
2b2

~a22!22b2D ]2

]j]h
6

]2

]h2 , ~1.3e!

andC5C(j,h,t) is complex whileF5F(j,h,t), x5x(j,h,t) are real. If we takej5h, we
recover the nonlinear Schrodinger~NLS! equation.

The paper is organized as follows. In the next section we apply the reduction method
KD equation~1.2! and obtain the new Eq.~1.3!. We demonstrate that the equation reduces to
Davey–Stewartson equation ifa50, bÞ0 or aÞ0, b50 and to the NLS equation ifj5h.

In Sec. III we discuss in some detail how the reduction method can be applied to the La
of the KD equation. We demonstrate that the Lax pair of the new Eq.~1.3! is

Lŵ50, ŵt1Aŵ50, ~1.4a!

with

L5S ]h1
~a2 ib !

2
]j

22a2 ib

A2u~a22!22b2u
C

22a1 ib

A2u~a22!22b2u
C* ]h1

~a1 ib !

2
]j

D , w5S w1

w2
D , ~1.4b!

and

A5S a1]jj1a2x1a3uCu21a4F a5Cj1a6C]j1a7Ch

b5Cj* 1b6C* ]j1b7Ch* b1]jj1b2x1b3uCu21b4F
D , ~1.4c!

where
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a152
ib2

2
, a257S a

2b
2

a2

4b
2

b

4
1

i

2D , a35
a2

4b
2

a

2b
1

b

4
2

b

u~a22!22b2u
,

a45
a221 ib

2b
, a55

~a221 ib !~ ia2b!

2A2u~a22!22b2u
, a65

~22a2 ib !b

A2u~a22!22b2u
,

a75 i
~a221 ib !

A2u~a22!22b2u
, b15

ib2

2
, b257S a

2b
2

a2

4b
2

b

4
2

i

2D ,

b35a3 , b45
a222 ib

2b
, b55

~22a1 ib !~ ia1b!

2A2u~a22!22b2u
,

b65a6 , b75 i
~22a1 ib !

A2u~a22!22b2u
. ~1.4d!

II. A NEW INTEGRABLE NONLINEAR PDE IN 2 11 DIMENSIONS

The linear dispersive part of the Konopelchenko–Dubrovsky Eq.~1.2! admits as a solution a
Fourier mode, with a group velocityV„K …5(V1(K1 ,K2),V2(K1 ,K2)),

V1~K1 ,K2!53S K1
21

K2
2

K1
2D , V2~K1 ,K2!52

6K2

K1
, ~2.1!

where

V„K …5
]v

]K
, ~2.2!

andv5v(K1 ,K2) is the dispersion relation. The envelope of a wave packet concentrated a
a valueK travels with the constant group velocity~2.1! and gets slowly dispersed.

We introduce a formal asymptotic Fourier expansion

U~x,y,t !5 (
n52`

n51`

egncn~j,h,t;e!exp$ in~K1x1K2y2vt !%, ~2.3!

with gn5unu, for nÞ0, g05r rational number to be determined later on andc2n(j,h,t;e)
5cn* (j,h,t;e) @recall thatU(x,y,t) is real#. An analogous treatment is assumed forW(x,y,t),

W~x,y,t !5 (
n52`

n51`

egnfn~j,h,t;e!exp$ in~K1x1K2y2vt !%. ~2.4a!

The functionscn(j,h,t,e)’s depend on the parametere and we suppose that thecn’s remain
finite in the limit e˜0 and moreover they can be expanded in power series ofe, i.e.,

cn~j,h,t;e!5(
i 50

`

e icn
~ i !~j,h,t!. ~2.4b!

In the following for simplicity we use the abbreviationscn
(0)5cn for nÞ0,1, c1

(0)5C, c0
(0)

5C0 ~andfn
(0)5fn for nÞ0,1, f1

(0)5f, f0
(0)5F!.

The final goal is to obtain the evolution equation for the modulation amplitudeC
5C(j,h,t) and to understand how it is modified by choosing different wave numbers. We i
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the expansions~2.2!–~2.3! into the KD Eq.~1.2! and consider the different equations obtain
considering the coefficients of the Fourier modes exp(in(K1 x1K2y2vt)). From Eq.~1.2b!, we get

f5
K2

K1
C, f~p!5

i

K1
S K2

K1
Cj2ChD , f~2p!5

1

K1
2 S Cjh2

K2

K1
CjjD , ~2.5a!

Fj5C0,h . ~2.5b!

In Eq. ~1.2a!, we separate the contributions from the linear and nonlinear parts,egnDncn

5e2Fn , whereDn is a linear differential operator acting oncn(j,h,t) andFn is the contribution
of the nonlinear part. The operatorDn is

Dn5~2 inv1eq]t2V1ep]j2V2ep]h!2~ inK11ep]j!
3

23~ inK21ep]h!S K2

K1
2

i

K1
ep]h1

iK 2

K1
2 ep]j1

1

K1
2 e2p]jh2

K2

K1
3 e2p]jjD 1o~e3p!. ~2.6!

It is easily seen that the firstFn have the following explicit form:

F056S b2a
K2

K1
D ~ uCu2!je

p13a~ uCu2!hep1o~ep12,ep12r !, ~2.7a!

F253i ~aK222bK1!C21o~ep!, ~2.7b!

F1526ibK1C0Ce r 2113iaK1Fce r 211 3
2a

2iK 1uCu2Ce

13i ~aK222bK1!c2C* e1o~ep1r 21,e2p!. ~2.7c!

After taking q52, p51, r 52 for the proper balance of terms, we obtain at the lowest order
n50 andn52,

V1C0,j1V2C0,h13Fh13a~ uCu2!h16S b2a
K2

K1
D ~ uCu2!j50, ~2.8a!

c2
~0!5S b

K1
22

aK2

2K1
3 DC2, ~2.8b!

and forn51,

iCt1S 3K123
K2

2

K1
3DCjj16

K2

K1
2 Cjh2

3

K1
Chh23aK1FC1xC50, ~2.8c!

where

x56bK1C01NuCu2, ~2.9a!

and

N52
3

2
a2K11

3

2
a2

K2
2

K1
326ab

K2

K1
2 16

b2

K1
. ~2.9b!

From Eq.~2.5b!, we get

6bK1Fj5xh2NuCuh
2. ~2.10!
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Substituting~2.9a! into ~2.8a!, we obtain

V1xjj1V2xjh13xhh5F36bK1S a
K2

K1
2b D1V1NG

3~ uCu2!jj1@V2N218abK1#~ uCu2!jh13N~ uCu2!hh . ~2.11!

If in Eqs. ~2.8c!–~2.10!–~2.11! we seta50, bÞ0 or aÞ0, b50 then after trivial rescalings we
obtain the Davey–Stewartson equation. Moreover, we get the unidimensional NLS equatioj
5h.

If aÞ0, bÞ0, after the cosmetic rescaling

j852
a

2)b
j, h85

1

)
h, x85K1x, F8523aK1

2F, ~2.12a!

t85
t

K1
, C85AuNuK1C, ~2.12b!

and with the introduction of two real parameters,

a5
aK2

bK1
, b5

aK1

b
, ~2.12c!

we arrive at the model equation of Davey–Stewartson-type~1.3!.
Integrable Davey–Stewartson-type equations has been extensively investigated by

authors.19–22 A very detailed list of Davey–Stewartson equations integrable by the inverse
tering method has been recently given.23 Equation ~1.3! does not appear in these papers. W
expect that this new equation be integrable by the inverse scattering method, because it h
obtained from an integrable equation and the property of integrability is supposed to keep th
the application of the reduction method. The integrability of Eq.~1.3! will be explicitly demon-
strated in the next section.

III. THE LAX PAIR FOR THE MODEL NONLINEAR PDE

In order to demonstrate the integrability of the new Eq.~1.3! by the inverse scattering spectr
transform, we apply the reduction method to the Lax pair of the KD equation. The Lax ope
are

L5
]

]y
1

]2

]x2 1aU~x,y,t !
]

]x
1bU~x,y,t !, Lw~x,y,t !50, ~3.1!

A524
]3

]x326aU~x,y,t !
]2

]x223bUx~x,y,t !2
3

2
abU2~x,y,t !13bW~x,y,t !

23aUx~x,y,t !
]

]x
2

3

2
a2U2~x,y,t !

]

]x
26bU~x,y,t !

]

]x
13aW~x,y,t !

]

]x
, ~3.2!

w t~x,y,t !1Aw~x,y,t !50. ~3.3!

We introduce an asymptotic Fourier expansion

w~x,y,t !5 (
n52`

n51`

egnwn~j,h,t;e!expS i
n

2
z1~l1x1l2y1l3t ! D , ~3.4!
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where n is odd, z5K1x1K2y2vt, gn12511gn , gn5g2n for n.0, the wn(j,h,t;e)’s are
functions which parametrically depend one and remain finite ife˜0 and l1 ,l2 ,l3 are real
constants to be determined later on. Substituting the expression forw(x,y,t) in Eq. ~3.1!, the
coefficients of the Fourier modes generate a series of relations. Obviously, each relation m
valid for a given order of approximation ine. In particular, for the fundamental harmonic
w6(x,y,t)5w61(x,y,t), considering termsO(e0) in ~3.1! and~3.3!, the constantsl1 ,l2 ,l3 can
be fixed,

S 6
iK 1

2
1l1D 2

1S 6
iK 2

2
1l2D50, ~3.5a!

S 7
iv

2
1l3D24S 6

iK 1

2
1l1D 3

50, ~3.5b!

and then

l152
K2

2K1
, l25

K1
2

4
2

K2
2

4K1
2 , l352

K2
3

2K1
3 1

3

2
K2K1 . ~3.6!

The new spectral problem is obtained by means of the successive ordere for Eq. ~3.1!,

w1,h1S iK 12
K2

K1
Dw1,j1Fb2

a

2 S K2

K1
1 iK 1D GCw250, ~3.7a!

w2,h2S iK 11
K2

K1
Dw2,j1Fb2

a

2 S K2

K1
2 iK 1D GC* w150. ~3.7b!

With the rescaling~2.12!, we obtain

w1,h1S a2 ib

2 Dw1,j1
22a2 ib

A2u~a22!22b2u
Cw250, ~3.8a!

w2,h1
a1 ib

2
w2,j1

22a1 ib

A2u~a22!22b2u
C* w150. ~3.8b!

The spectral problem can be again obtained, when we consider the temporal evolution Eq.~3.3! at
the same ordere. Only if we take into account the next orders of approximation of Eq.~3.3!, i.e.,
the ordere2, the temporal evolution can be determined. However, new quantities, the corre
w̃6(j,h,t) of ordere to the fundamental harmonicsw6(j,h,t), appear. These unknown quan
ties can be eliminated in Eq.~3.3! taking advantage of the relation obtained from Eq.~3.1!,
considering terms of ordere2. This elimination is possible only because Eqs.~3.1! and ~3.3! are
identical at the orderse and e2. After a lengthy calculation we arrive at the final form for th
operatorA which is given in Eqs.~1.4c!–~1.4d!. The compatibility condition between equation
~1.4a!,

Lt5@L,A#5LA2AL, ~3.9!

leads to the new integrable Eq.~1.3!.

IV. CONCLUSION

The reduction method is a powerful tool to identify new nonlinear PDEs integrable tha
also likely to be applicable in a regime of weak nonlinearity.
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In this paper, we have derived a new integrable nonlinear evolution Davey–Stewartso
equation from the KD equation, by means of a reduction method based on Fourier expansi
space–time rescalings. It reduces to the ordinary Davey–Stewartson equation for appr
values of its parameters. Moreover, we have applied the reduction method to the Lax pair
original equation and have demonstrated the integrability property of the new equation, by
iting the corresponding Lax pair.
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Equivalence classes of perturbations in cosmologies
of Bianchi types I and V: Formulation

Zbigniew Banach
Centre of Mechanics, Institute of Fundamental Technological Research,
Department of Fluid Mechanics, Polish Academy of Sciences,
Swietokrzyska 21, 00-049 Warsaw, Poland

~Received 20 October 1998; accepted for publication 10 March 1999!

In this paper we deal for the first time with gauge-invariant perturbations of aniso-
tropic cosmological models of Bianchi types I and V from a unified point of view.
Motivated by Ehlers’ pioneering concepts, the key idea is to identify the gauge-
invariant perturbations with the equivalence classes of tangents to one-parameter
families of exact solutions to Einstein’s field equations. For cases where these
models are filled with a nonbarotropic perfect fluid, we show that a set of 26
‘‘geometrically’’ independent, not identically vanishing gauge-invariant variables,
denoted collectively byD and referred to as the complete set of basic variables, can
be used to extract the equivalence classes of tangents fromD in a unique way. The
setD is complete because it has the following property: any gauge-invariant quan-
tity is obtainable linearly from the basic variables through purely algebraic and
differential operations. Mathematically, this approach to the gauge problem is a
nontrivial example of the general scheme that we have described in our two pre-
vious papers@Int. J. Theor. Phys.36, 1787, 1817~1997!#, and the new concepts
developed were also applied to the construction of a complete set of basic gauge-
invariant variables for the cases of a fixed background de Sitter space–time and an
almost-Robertson–Walker universe model. Arguments are given that there are a
number of advantages to be gained by replacing the coordinate-based method of
Bardeen or the covariant formalism of Ellis and Bruni by the present one. ©1999
American Institute of Physics.@S0022-2488~99!03608-7#

I. INTRODUCTION

Beginning from Einstein’s theory of gravity, considerable efforts have been expend
attempts to define gauge-invariant perturbations of homogeneous and isotropic cosmologica
els. The coordinate-based method of Bardeen1 and the covariant formalism of Ellis and Bruni2 are
a selection of the more important comprehensive treatments. In the pioneering paper by Ba1

before introducing a set of gauge-invariant variables, a separation was made of the metric a
matter perturbations into scalar, vector, and tensor parts. However, as noted already by E
Matravers,3 ‘‘that separation is non-locally defined4 and is in effect dependent on the coordina
choice made~for example, the Bardeen formalism is gauge invariant only if one restricts co
nate changes to the vector kinds when vector modes are investigated, and to the scalar kin
the scalar modes are the theme of interest!.’’ Consequently, the coordinate-based analysis
cosmological perturbations, while it helps us understand some important problems,1 is not a fully
gauge-invariant activity.

As an alternative to this line of development, Ellis and Bruni2 proposed a covariant treatme
of perturbations in Robertson–Walker space–times. After a brief outline of the Stewart–W
approach to gauge-invariant perturbations~see Lemma 2.2 in Ref. 5!, the basic idea of Ellis and
Bruni was to introduce geometrically defined exact variablesA ~i.e., these variables are meanin
ful in any space–time! such that their valuesA0 in a Robertson–Walker universe vanish. The
because of Lemma 2.2 of Stewart and Walker,5 the quantityA itself is a gauge-invariant pertur
bation in an almost-Robertson–Walker universe, and its physical significance is apparent t
39780022-2488/99/40(8)/3978/17/$15.00 © 1999 American Institute of Physics
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the covariant definition. As in the work of Bruniet al.6 and Dunsbyet al.7 ~see also the method o
Ellis et al.8!, we shall refer to such quantities ascovariant gauge-invariant variables. It was the
aim of Dunsby9 to further extend this approach to perturbations of Bianchi type-I cosmolog
models. In his paper he illustrates one of the main advantages of using the covariant app
Since the Stewart–Walker lemma is valid for any background space–time, one can often co
the same gauge-invariant variables in perturbing different universe models; in particular, cov
gauge-invariant variables can be easily identified in perturbing homogeneous anisotropic s
times. Thus, it is easy to see from Dunsby’s analysis of the Bianchi type-I model that the cov
extension to Bianchi type V is very straightforward.

Recently, Banach and Piekarski10,11 introduced new geometric techniques to develop lin
perturbation theory for an arbitrary system of diffeomorphism-invariant, covariant
equations.12,13 Given the nonlinear field equations of Einstein’s gravity theory, these techni
were applied to the study of infinitesimal perturbations in Robertson–Walker univ
models.14–19 In this and the companion paper,20 we demonstrate how the Banach–Piekarski f
malism can be used to address the issue of describing the equivalence classes of pertu
~tangents! in a Bianchi type-I or Bianchi type-V universe21,22 dominated by a nonbarotropi
perfect fluid.23,24 The crucial point to observe is that, for the aforementioned matter source
background models, a satisfactory~i.e., unique! characterization of cosmological perturbations c
be obtained if one defines in a suitable way 26 ‘‘geometrically’’ independent, not identi
vanishing gauge-invariant variables. The set consisting of thesebasic variables, denoted byD and
referred to as thecomplete set, is important because it enables one to divide the infinitesi
perturbations into physically relevant equivalence classes: two infinitesimal perturbationsdF0 and
dF08 are said to be equivalent if there is a vector fieldv on the space–time manifoldX such that
dF08 differs from dF0 by the action of the Lie derivativeLv on the background solutionF0 to
nonlinear field equations.25 Thus, it appears thatdF0 anddF01LvF0 represent the same pertu
bation ofF0 , and clearlydF0 satisfies the linearized field equations if and only ifdF01LvF0

does.26 The situation may therefore be summarized as follows. The object of most physical in
is not just one perturbationdF0 , but a whole equivalence class of all perturbationsdF08 that are
equivalent todF0 . The equivalence class ofdF0 is denoted@dF0# and is called thegauge-
invariant perturbationassociated withdF0 . Here, we prove that the complete set of basic va
ables, namelyD, provides a mathematically simplest representation of the gauge-invariant p
bation @dF0#. As a matter of fact,@dF0# is uniquely determined fromD and vice versa. This
important property ofD serves to illustrate one of the key features of the present formalism:
is, because we start with a complete set of basic gauge-invariant variables, valid for an a
Bianchi type-I or almost-Bianchi type-V universe model, it is possible to identify@dF0# with D
and thereby exploit the theory based onD as afundamental conceptfor the description of infini-
tesimal perturbations.

Since the perturbations of anisotropic cosmological models have been studied befo
several authors,9,27–31the natural question is the following: why do we need yet another forma
for cosmological perturbations when there are already so many on the market? First, note
Refs. 9 and 27–31 the equivalence classes of perturbations~tangents! are not explicitly described
This is, without a doubt, a very important problem to consider.25 Second, the previous pape
concentrated upon the Bianchi type-I background model and thus did not analyze linear pe
tions in a Bianchi type-V cosmology. Third, a decisive motivation for our work appears in
following crucial fact:20 a knowledge ofD is all one needs in the sense that ifA denotes any
gauge-invariant tensor field defined onX, then A is obtainable linearlyfrom the basic gauge
invariant variablesD throughpurely algebraic and differential operations. By contrast, as dis-
cussed in a companion paper,20 one may observe that any description that chooses, at the ou
to introduce covariant gauge-invariant variables or to start with Lemma 2.2 of Stewar
Walker5 is necessarily incomplete. Finally, the technique we present here could also be use
resolve disagreements between the results of different existing formalisms. Specifically, w
able to explain the coordinate-based method of Tomita and Den,27 Den,28,29 and Noh and
Hwang30,31 in such a way that the objections raised to this method by Ellis and Matravers3 do not
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apply. For more details, one should consult Ref. 20. To sum up, in our opinion, the pr
formulation of linear perturbation theory iscanonicalbecause it provides a complete framewo
both for constructing all gauge-invariant variables and for determining the equivalence clas
perturbations.

In a separate paper,32 we will derive a full set of propagation equations that involves onlyD.
These equations are deterministic, i.e., the local existence and uniqueness of solutions
demonstrated for ‘‘arbitrary’’ initial data. As a consequence, if we introduce@dF0# and describe
@dF0# in terms ofD, then we will remove the necessity for finding a satisfactory specific gaug
for referring to spurious ‘‘gauge mode’’ solutions. However, one expected feature from su
approach is that since the unperturbed shear tensor does not vanish, the dynamics of lin
perturbations will be extremely complicated. Thus, except for some particularly simple situa
@e.g., the background spatial curvature is negligible~Bianchi type-I space–times!, the metric is
axially symmetric in both the background and the perturbed model, the ratio of pressure to e
density in the background is independent of time, etc.#, we may be no longer able to analyze th
propagation equations analytically. The implications of this observation are considered in
detail in Sec. V.

Here we proceed as follows. Restricting attention to the case of a nonbarotropic perfec
in Sec. II a number of tensor fields appropriate to the specification of infinitesimal perturba
are introduced. Within the covariant formalism, in Sec. III the background models are b
reviewed: Bianchi types I and V. The aim in Sec. IV is to prove that the equivalence class
perturbations~tangents! can be described in terms of a finite set of gauge-invariant variab
Section V is for final remarks.

It is assumed throughout that the space–time metric has signature~2, 1, 1, 1!, and the
speed of light is taken to be unity (c51). We choose units so that the Einstein gravitatio
constant equals one (k58pG51). Lower case Greek charactersa,b,g,..., refer to space–time
indices. By definition,Tab is the energy–momentum tensor that takes the perfect fluid form

II. LINEARIZATION PROCEDURE

A. Field equations for nonbarotropic perfect fluids

In general relativity, the metric of space–time is assumed to obey Einstein’s field equa
given by

Rab2 1
2R

m
mgab1Lgab5Tab , ~2.1!

in the standard notation. Consider the case of a perfect fluid. Ifua is the four-velocity of the fluid
~normalized byuaua521), we find that the energy–momentum tensorTab can be decompose
as

Tab5~e1p!uaub1pgab , ~2.2!

wheree is the energy density andp is the pressure. Additionally, as we are considering nonba
tropic perfect fluids,23,24 it will be natural to introduce a number flux densityNa. This density is
required to satisfy the continuity equation:

Na
;a50. ~2.3!

DecomposingNa with respect toua, we immediately see that

Na5nua. ~2.4!

In the rest frame of the fluid,n is the number density. Another useful quantity is the tempera
of the fluid; we denote this temperature byT. For nonbarotropic perfect fluids, we regardn andT
as independent quantities and postulate the following equations of state:
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e5e~n,T!, p5p~n,T!. ~2.5!

Because of the first law of thermodynamics,24 the problem of explicitly determining these equ
tions of state reduces to the problem of explicitly expressing the specific free energy in termn
andT @see, e.g., Eqs.~5.17! and~5.18! in Ref. 17#. However, the present general form of Eqs.~2.5!
suffices for our purposes here.

It will be convenient to take the contravariant formgab of the metricgab to be more funda-
mental and the covariant formgab as derived from it by the relations

gamgmb5da
b , ~2.6!

whereda
b is the Kronecker delta. As a result of this convention, a perfect fluid flow in a cu

space–time is described by giving the fieldsgab, ua, n, and T. For brevity, we denote thes
primary fields byF:

Fª$gab,ua,n,T%. ~2.7!

Ultimately, therefore, the system of equations for the specification ofF consists of Eqs.~2.1!–
~2.6!, the others being only consequences of them.

B. Infinitesimal perturbations

Quite often, the treatment of nonbarotropic perfect fluids by means of exact, nonlinea
equations is far too cumbersome and unnecessarily detailed. Fortunately, the most practica
lems can be adequately treated in the much simpler framework of linear perturbation theor
basic assumption of this theory,which seems necessary in order to give a clear idea of what
perturbation method is to be~see, e.g., the discussion in Sec. 7.1 of Ref. 25!, may be formulated
as follows: Consider an open intervalIª(2d,d) of R, d.0; then, for eachePI there exists a
classicalsolution,

Fe~xm!ª$gab~xm,e!,ua~xm,e!,n~xm,e!,T~xm,e!% ~2.8!

of the exact, nonlinear field equations. The parametere appearing in this definition measures th
size of the perturbation, in the sense thatFe(x

m) depends continuously and differentiably one
PI for each (xm), and

F0~xm!ªFe~xm! ue50 ~2.9!

is a background solution. Now, putting Eqs.~2.8! and ~2.9! together, we have

F0~xm!ª$qab~xm!,wa~xm!,n0~xm!,T0~xm!%, ~2.10!

where

qab~xm!ªgab~xm,e! ue50 , wa~xm!ªua~xm,e! ue50 , ~2.11a!

n0~xm!ªn~xm,e! ue50 , T0~xm!ªT~xm,e! ue50 , T0.0. ~2.11b!

Here we postulate thatF0 is obtainable from a solution of the ‘‘unperturbed’’ cosmologic
equations and that the forms ofqab, wa, n0 , andT0 are consistent with the background spac
time geometry, which is that of a Bianchi type-I or Bianchi type-V space–time.21,22

SinceFe depends differentiably onePI , it will be possible to define the perturbation ofF0 by
the formula

dF0ª$Gab,Ua,n0M ,T0K%, ~2.12!

in which
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Gab
ªS ]gab

]e D
e50

, Ua
ªS ]ua

]e D
e50

, ~2.13a!

Mª

1

n0
S ]n

]e D
e50

, Kª

1

T0
S ]T

]e D
e50

. ~2.13b!

We call dF0 the infinitesimal perturbationof F0 . It is important to stress that the infinitesim
perturbation so defined has the absolute geometrical meaning independent of any particular
of the coordinate system (xm) in X.10,11 So as to derive a closed set of governing equations
perturbation for the system, we must first differentiate Einstein’s field equations~2.1! and the
equation of balance of number density~2.3! with respect toe at e50 and then apply the defini
tions of various quantities involved. In this way, we obtain a linear equation fordF0 , i.e., an
equation that can be expressed in the form26

Y~dF0!50, ~2.14!

whereY is a linear differential space–time operator acting ondF0 . As to the explicit character-
ization ofY, it will be considered in a separate paper.32

Given the background space–time metricqab (qamqmb5da
b) and a geometrically preferre

~unperturbed! four-velocity wa (waªqamwm), the tensorgabªqab1wawb projects into the
local rest spaces of comoving observers:

gab
ªqab1wawb, ga

bªda
b1wawb . ~2.15!

With the help of these projection tensors, we find that the metric and velocity perturba
namelyGab andUa, have the covariant irreducible decompositions,

Gab5wawbQ1waQb1wbQa12Dgab12Fab, ~2.16a!

Ua5Vwa1Va, ~2.16b!

where the scalars (Q,D,V), the spatial vectors (Qa,Va), and a spatial two-tensorFab ~which is
symmetric and trace-free! are related toF0 anddF0 by

QªwmwnGmn, Qa
ª2wmga

nGmn, ~2.17a!

Dª

1
6gmnGmn, Fab

ª

1
2g

a
mgb

nGmn2Dgab, ~2.17b!

Vª2wmUm, Va
ªga

mUm. ~2.17c!

Associated withdF0 is the object

J~dF0!ª$Q,Qa,D,Fab,V,Va,M ,K%, ~2.18!

which we also call theinfinitesimal perturbationof F0 . This object contains the same informatio
as dF0 , and we can useWªJ(dF0) in place ofdF0 . Such is indeed the case because, a
specifying the background solution~i.e., F0), dF0 is uniquely determined fromW, and con-
versely. DefiningY(W) by Y(W)ªY(dF0), it follows that if Y(dF0)50, then

Y~W!50. ~2.19!

In the present paper, however, we consider the infinitesimal perturbations ofF0 from a purely
geometric point of view. Consequently,dF0 andW are not necessarily assumedto satisfy Eqs.
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~2.14! and~2.19!. This observation serves as an alternative, and in certain respects a more g
and enlightening, starting point from which one could introduce and describe the equiva
classes of perturbations.10,11

III. CHARACTERIZATION OF THE BACKGROUND MODELS: BIANCHI TYPES I AND V

In this section we recall the more relevant properties of anisotropic background mod
Bianchi types I and V; the discussion will be confined only to what is necessary for our
However, before briefly describing these background models, we have to define a few math
cal quantities. Thus, it is assumed that“a is the covariant derivative based upon the backgrou
metricqab . We use the standard kinematical decomposition of“a . More explicitly, adot denotes
the covariant derivative along the unperturbed fluid flow lines and aslash corresponds to the
three-dimensional covariant derivative defined by totally projecting the covariant derivativ“a

orthogonal towa, so, for example,Ȧa¯ªwb
“bAa¯ and Aa¯ubªgm

agn
b¯“nAm¯

. For
Aa¯ub , a certain care is needed if the tensorAa... itself is not totally orthogonal towa, but this
will not be a problem here. As usual, round brackets enclosing indices denote symmetrizati
square brackets denote antisymmetrization.

Let hab be the projection tensor into the tangent three-spaces orthogonal toua (habªgab

1uaub⇒ha
mhm

b5ha
b and ha

bub50). Then the first covariant derivative of the four-veloci
vector can be written as

ua;b5vab1sab1 1
3uhab2aaub , ~3.1!

where vab is the vorticity tensor (vab5v@ab# , vabub50), sab is the shear tensor (sab

5s (ab) , gabsab50,sabub50), u is the expansion, andaa is the acceleration (aaua50). In an
exact Bianchi type-I or Bianchi type-V universe model, the following conditions are automati
satisfied:

vab50, aa50, ~3.2a!

habu ;b50, habn;b50, habT;b50. ~3.2b!

Moreover, if dab is the background shear tensor@dabª(sab)e50# andH is the average rate o
expansion@Hª

1
3(u)e50#, it will be possible to verify that9,22

ḋab13Hdab50. ~3.3!

Settingda
bªdb

a
ªqamdmb ~anddab

ªqamdm
b), focus now on the eigenvalue equation,

da
ml p

m5~Hp2H !l p
a , p51,2,3, ~3.4!

with eigenvectorsl p
m ( l p

mwm50) and eigenvaluesHp2H. We shall refer toHp as the expansion in
the p direction. Evidently, sinceHp is a scalar,33 the spatial gradient ofHp vanishes:

Hpua50, p51,2,3. ~3.5!

Note that21,22

k~2H12H22H3!50, ~3.6!

wherek is the constant. By an appropriate choice of units, the value ofk can be made to be 0 o
21. The corresponding solutions for the background metricqab represent, respectively, a Bianc
type-I space–time and a Bianchi type-V space–time. If the eigenframe$ l p

m% of dab is known, the
objectsl m

p dual tol p
m are completely determined froml m

p l q
m5dq

p andl m
p wm50. However, owing to
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the fact that the eigenvectorsl p
m are not uniquely defined by Eq.~3.4!, the additional question

arises of how to normalizel p
m . This question can be answered most easily in a special coord

system in which the line element of Bianchi models takes the form21,22

ds252dt21„R1~ t !…2~dx1!21e2kx1
@„R2~ t !…2~dx2!21„R3~ t !…2~dx3!2#, ~3.7!

whereRp , p51,2,3, are the expansion factors related toHp , p51,2,3, by

Hp5
1

Rp

dRp

dt
5Ṙp /Rp , ~3.8!

and wheretªx0 andk is the~constant! spatial curvature (k50,21). In such a coordinate system
bothda

0 andd0
a vanish,dp

q equals (Hp2H)dp
q ~wherep51,2,3 andq51,2,3),wa is given by

wa5da
0 , and we postulate thatl p

m5dm
p ~hencel m

p 5dp
m).

Writing Bª( 1
6)(2H12H22H3) and Cª(1/2A3)(H22H3) and remembering thatHª( 1

3)
3(u)e50 , one finds the expansionsHp , p51,2,3, to be

H15H12B, ~3.9a!

H25H2B1)C, H35H2B2)C. ~3.9b!

Now, letRab be the Ricci tensor of the connection defined by the metricqab , and suppose tha
R is the curvature scalar (RªqmnRmn). Since the extrinsic curvaturekabªwaub has the prop-
ertiesk(ab)5kab andk@ab#50, there exists a family of three-surfacesS' everywhere orthogona
to the unperturbed fluid flow vectorwa; these are instantaneous surfaces of simultaneity for all
fundamental observers.2 Motivated by the above observations, it proves useful to introduce
following quantity:

6k

~R1!2ª26H21dmndmn1R12wmwnRmn526H216~B21C2!1R12wmwnRmn .

~3.10!

This quantity acquires a special significance:2 it is the Ricci scalar of the three-dimension
surfaces (k50,21).

With these preparations behind us, the coupled system of governing equations for the
ground may be written as21,22

H22B22C21
k

~R1!2 5
1

3
~e01L!, ~3.11a!

2Ḣ13~H21B21C2!1
k

~R1!2 52p01L, ~3.11b!

Ḃ13HB50, Ċ13HC50, ~3.11c!

kB50, kH5k~Ṙ1 /R1!, ~3.11d!

ṅ013n0H50, ~3.11e!

where@see Eqs.~2.5! and ~2.11!#

e05e~n0 ,T0!, p05p~n0 ,T0!. ~3.12!
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Equation~3.11e! is the standard equation of balance ofn0 . In the case whenk50, the conditions
~3.6! and ~3.11d! are automatically satisfied, and thus they are not needed to determin
propagation of interesting quantities along the flow lines. Note that the result of differentiatin
first of Eqs. ~3.11! with respect to time and then using~3.11b!–~3.11d! is the equation of the
conservation of energy:

ė013H~e01p0!50. ~3.13!

Another remark is also in order. Instead of considering Eq.~3.3!, we may equivalently conside
the scalar equations~3.11c!.

This remark brings to an end our description of the background models.

IV. ANALYSIS OF THE GAUGE PROBLEM

A. Equivalence classes of perturbations „tangents …

In Einstein’s theory of gravity, the action of the diffeomorphism group on the space–
manifoldX induces an action on the space of field configurations onX, and the only thing that has
an immediate physical meaning is the quotient space of orbits,34 i.e., two field configurations are
regarded as equivalent if they are connected by a diffeomorphism transformation. With
framework of a linear approximation, these facts imply that two infinitesimal perturbationsdF0

and dF08 , not necessarily satisfying Eq. (2.14), characterize the same perturbation of the ba
ground solutionF0 if ~and only if! there exists a vector fieldv5vm(]/]xm) on the space–time
manifold X, such thatdF082dF0 is theLie derivativeLvF0 of F0 with respect tov.4,5 As to the
explicit specification ofLvF0 , puttingwªwm(]/]xm) andqªqmn@(]/]xm) ^ (]/]xn)# and recall-
ing the definition~2.10! of F0 , we obtain35

LvF0ª$~Lvq!ab,~Lvw!a,Lvn0 ,LvT0%, ~4.1!

where (Lvq)ab and (Lvw)a are the components ofLvq andLvw.
Let P be the set whose elements are arbitrary, linear perturbations ofF0 ; thus dF0PP.

Obviously,P carries a natural structure of a vector space. The setPL consisting ofLvF0 for all
vector fieldsv on X may be considered as the subspace ofP. Given the objectJ(dF0) as in Eq.
~2.18!, we denote byW the collection ofJ(dF0), wheredF0PP, and byW,W8, and similar
symbols the elements ofW. Moreover, we introduce the following subspace ofW:

WLª$J~dF0!;dF0PPL%. ~4.2!

KnowingF0 , elementary inspection shows that the correspondencedF0°J(dF0) is a linear map
that assigns to eachdF0PP an elementJ(dF0)PW; we denote this map byJ:P˜W. Since for
everyWPW there is just onedF0PP such thatW5J(dF0), the mapJ:P˜W can be said to be
one-to-oneandonto. The similar remark concerns the restriction ofJ to PL , still denoted byJ. As
suggested by the definition~4.2!, the subspaceWL of W is the image ofPL underJ. Clearly,W
belongs toWL if and only if W equalsJ(LvF0) for somev. In order to simplify our notation, we
abbreviate J(LvF0) as LvF0 .

The next stage in the discussion is to calculateLvF0 . First of all, projecting the vector fieldva

on X along and orthogonal to the background fluid four-velocitywa, we obtain the decomposition
of va, namely,

va5qwa1qa, ~4.3!

in which the scalarq and the spatial vectorqa are given by

qª2wmvm, qa
ªga

mvm. ~4.4!
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With the help of the definition ofLv ,35 we then find from Eqs.~2.17! and~2.18! thatLvF0 can be
written as

LvF05$Qv ,Qv
a ,Dv ,Fv

ab ,Vv ,Vv
a ,M v ,Kv%, ~4.5!

where

Qvª2q̇, Qv
a
ªq̇a2Hqa2da

mqm2gamq um , ~4.6a!

Dvª2Hq2 1
3q

m
um , ~4.6b!

Fv
ab
ª2dabq1 1

3g
abqm

um2gm(aqb)
um , ~4.6c!

Vvª2q̇, Vv
a
ª2q̇a1Hqa1da

mqm, ~4.6d!

M vª23Hq, Kvª
1

T0
Ṫ0q. ~4.6e!

The notation and conventions are based on those of Secs. II and III. In obtaining Eqs.~4.6!, we
have used the fact that the form ofF0 is consistent with exact anisotropic cosmological solutio
of Einstein’s field equations, namely spatially homogeneous cosmologies of Bianchi ty
and V.

The net upshot of these considerations may be stated very neatly. In linear perturbation
the object of most physical interest is not just one perturbationdF0PP, but a whole equivalence
class of all perturbationsdF 08PP that are equivalent todF0 : two infinitesimal perturbations
dF0PP and dF 08PP are said to be equivalent ifdF082dF0 equalsLvF0 for some v. The
equivalence class ofdF0PP is denoted@dF0# and is called thegauge-invariant perturbation
associated withdF0 . In this way, we verify that the gauge-invariant perturbations are elemen
P/PL , the quotient spaceof P by PL . Another route to discussing the gauge problem is
introduce the equivalence class@W# of WPW: two infinitesimal perturbationsWPW and W8
PW, not necessarily satisfying Eq. (2.19), will be taken to be equivalent if there is a vector fie
va5qwa1qa on X such thatW85W1LvF0 . Then we have thegauge-invariant perturbation
@W# associated withW and thequotient spaceW/WL , which consists of@W# for all WPW.

The essential point in the theory of gauge-invariant perturbations is to describe the elem
P/PL orW/WL explicitly. These issues will be considered in Secs. IV B and IV C.

B. Basic gauge-invariant variables

In an almost-Bianchi type-I or almost-Bianchi type-V universe model, we have ‘‘absolute
‘‘prior geometric’’ elements~e.g., the background solutionF0 , the average rate of expansionH,
the background shear tensordab , the eigenframe$ l p

m% of dab , etc.!, and we can use these absolu
elements and the equivalence classes of perturbations to introducelocal gauge-invariant variables
By analogy with the general discussion in Sec. 4.2 of Ref. 10, the gauge-invariant qu
Ā(x,W) is such a linear and local algebropartial differential operation onW that, for each space–
time point x and each vector fieldv on X, the ‘‘gauge mode’’ perturbationLvF0 of F0 can be
added toW without the need of replacingĀ(x,W) by Ā(x,W1LvF0):

Ā~x,W!5Ā~x,W1LvF0!. ~4.7!

Because of this, the value ofĀ(•,W8) at xPX is independent of the choice ofW8P@W# and the
objectsA(x,@W#)ªĀ(x,W) define a ‘‘function’’ @W#°A(•,@W#) on the quotient spaceW/WL .
Here the most important examples ofx°A(x,@W#), which actually work and which provide th
mathematically simplest representation of@W#, are given by
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xªQ12V, GªK1
1

3HT0
Ṫ0M , ~4.8a!

Vª2
1

2
Q1

1

3H2 ~ḢM2HṀ !, ~4.8b!

Va
ª23H~Va1Qa!1gamM um , ~4.8c!

Vab
ªZ̈ab13HŻab12dm

adb
nZmn22dm

(aZb)ndm
n12@gm(aV̇b)# um

14Hgm(aVb)
um24dm(aVb)

um12dm
(agb)nVm

un12~2dab
um2gn(adb)

mun!Vm, ~4.8d!

Sabmn
ª

k

~R1!2 Zs[agb][ mgn]
s1@~gs[aZb][ mgn]l! us# ul , ~4.8e!

Qp
ª l m

p l n
p~ Żmn12glmVn

ul!, ~4.8f!

Qq
pq
ª2 l q

n~ l l
ql mun

p 1 l l
pl mun

q !~ Żml12gt(mVl)
ut!1 l q

nl l
ql m

p @~ Żlm12gt(mVl)
ut! un

22dt
[mZl] t

un1~dmtgns2gmtdns!Zsl
ut2dm

nutZ
tl# ~pÞq!, ~4.8g!

V r
pq
ª l r

nl (l
p l m)

q @~ Żlm12gt(lVm)
ut! un12~gl

sdmt2dl
sgmt!gnkZsk

ut12dl
nusZms#1 l r

n~ l m
p l nul

q

1 l m
q l nul

p !~ Żlm12gt(lVm)
ut!1 l r un

n l l
pl m

q ~ Żlm12gt(lVm)
ut! ~pÞq,rÞp,rÞq!, ~4.8h!

where

Zab
ª

2

3
~M23D !gab1

2

3H
Mdab22Fab. ~4.9!

In keeping with the notation of Sec. III, the quantityZ̈ab is the covariant derivative ofŻab along
wm and the tensor fieldsl pun

m and l mun
p are the spatially totally projected covariant derivatives ofl p

m

and l m
p . Also, it appears from Eqs.~4.8f! and~4.8g! thatwe do not adoptthe Einstein summation

convention for repeated Latin indices.
According to Eqs.~4.8g! and~4.8h!, we have the conditionpÞq for Qq

pq and the conditions
pÞq, rÞp, andrÞq for V r

pq ; moreover,V r
pq5V r

qp . It is clear, from the manner in which th
objectsQp, Qq

pq , and V r
pq are defined@see Eqs.~4.8f!–~4.8h!#, that the sets$Qp%, $Qq

pq%, and
$V r

pq% consist ofscalar gauge-invariant variables; these sets may be written as

$Qp%ª$Q1,Q2,Q3%, ~4.10a!

$Qq
pq%ª$Q2

12,Q3
13,Q1

21,Q3
23,Q1

31,Q2
32%, ~4.10b!

$V r
pq%ª$V3

12,V2
13,V1

23%. ~4.10c!

Now, if we make use of Eq.~4.8e!, we verify that a complete set of symmetry conditions f
Sabmn is Sabmn5S@ab#@mn#, Sa@bmn#50, andwaSabmn50; thus, there are six linearly independen
not identically vanishing, components in$Sabmn%. An alternative viewpoint is to expressSabmn in
terms of

SªgmnglsSmlsn ~4.11a!

and
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Sab
ªgmn~Smabn2 1

3g
abglsSmlsn!. ~4.11b!

The symmetries ofSabmn imply

Sab5Sba, gmnSmn50, wmSma50. ~4.12!

Through Eqs.~4.11a! and ~4.11b!, we can completely describe the tensor fieldSabmn, since this
tensor field is atotally spatial quantity:

Sabmn52 1
3Sgm[agb]n22gm[aSb]n12gn[aSb]m. ~4.13!

Next, returning to the definitions~4.8c! and ~4.8d! of Va andVab, and using Eq.~4.8f! for Qp,
we easily recognize that

wmVm50, wmVma50, Vab5Vba, ~4.14a!

l m
p l n

pVmn5Q̇p1~3H12Hp!Qp ~p not summed!. ~4.14b!

Consequently, the formulas~4.8c! really provide only three independent equations for the de
mination of $Va%, and the set$Vab% is uniquely specified by giving$Qp% and $ l m

p l n
qVmn;p

,q%. As regards the definition~4.8a! of x, an equation forx can be obtained from the relatio
x52@](uaua)/]e#e50 with the resultx5Q12V50, which is a direct consequence ofumum5
21. Thus the gauge-invariant quantityx will not be significant to us in considering linearizatio
about the universe models of Bianchi types I and V.

Let us summarize the situation. For each@W#, consider the set

w~@W# !ª$x,G,V,S,Va,Vab,Sab,Qp,Qq
pq ,V r

pq%. ~4.15!

From the discussion presented above it clearly follows that this set consists of gauge-inv
variables. Besides, the total number of independent, not identically vanishing, ‘‘scalar funct
in w~@W#! is 26 @ f n :X˜R (n51,2,...,26)#. For reasons to become clear later,20 we shall refer to
w~@W#! as thecompleteset of basic gauge-invariant variables associated with@W#. In order to
obtainw~@W#!, we have used one representative member of@W#, namely, the infinitesimal pertur
bationW5J(dF0) of F0 given by Eq.~2.18!. However, the value ofw~@W#! does not depend on
the choice ofW8P@W# and the objectsw(@W#),WPW, indeed define a function on the quotie
spaceW/WL :

@W#°w~@W# !. ~4.16!

The key steps on which the derivation of this result rests are, first, the observation th
individual quantities appearing on the right-hand sides of Eqs.~4.8! are obtained by means o
linear, algebropartial differential operations onW, and second, the fact that all these quantit
vanishif W is a trivial, ‘‘gauge mode’’ perturbation ofF0 , i.e., if W equalsLvF0ªJ(LvF0) for
somev. Under the foregoing statements, our construction ofw~@W#! is valid in the class of
spatially homogeneous, nonaxisymmetric cosmologies of Bianchi types I and V (H1ÞH2 , H1

ÞH3 , H2ÞH3) with a nonbarotropic perfect fluid as the source. Its usefulness will appear i
putably in Sec. IV C, where we prove that Eqs.~4.8!–~4.15! support an interpretation o
W°w(@W#) as a ‘‘coordinate system’’ onW/WL .

We now give a necessary word concerning the special cases. Whendab50, we reduce
immediately to the situation in almost-Robertson–Walker universe models.2 Surprisingly enough,
the definition ofw~@W#! for this situation~see Refs. 18 and 19! differs considerably from tha
presented here. A similar remark holds for the case when the metricqab is axially symmetric
(R1ÞR25R3); this case must be treated separately as well. We finally mention the followin
we begin from thegeneralBianchi type-I background model,9 some of the formulas~4.8! simplify
enormously; we can then set
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k50, l pun
m 50, l mun

p 50, ~4.17a!

dab
um50, da

bum5db
a

um50, dabum50. ~4.17b!

Moreover, with this choice of the model, we can introduce

Vm
ab
ª~ Żab12gn(aVb)

un! um12~gs
(adb)n2ds

(agb)n!gmlZsl
un , ~4.18!

in place of Eqs.~4.8g! and~4.8h!. For k50, the essential five properties of the quantityVm
ab are

that it ~a! is gauge invariant,~b! contains the same information asQq
pq and V r

pq , ~c! is defined
without making any explicit or implicit reference to the eigenframe$ l p

m% of dab , ~d! has the
symmetry propertiesVm

ab5Vm
ba and wmVm

ab5wmVn
maqnb50, and~e! satisfies the condition o

the form

l a
pl b

pl q
mVm

ab5 l q
mQp

um ~p not summed!. ~4.19!

Despite these conclusions, our motive for not preferring to replaceQq
pq and V r

pq by Vm
ab when

k50 is that we have not found a way to do so generally; ifk521, the construction ofw~@W#!
based on the shear eigenframe appears to us to be canonical.

C. Completeness of the set w„†W‡… of basic gauge-invariant variables

We denote byD the set consisting ofw~@W#! for all @W#PW/WL and byD, D8, and similar
symbols the elements ofD. A function w fromW/WL ontoD, defined by Eqs.~4.8!–~4.15!, is a
linear map that assigns to each@W#PW/WL an elementw(@W#)PD; thus,D carries a canonica
structure of a vector space induced by that ofW/WL . More precisely,D is a function space in
which the usual operations of addition and scalar multiplication are introduced. A necessa
sufficient condition thatw be a one-to-one mapping ofW/WL onto D is that w~@W#! equals a
zero-vector ofD if and only if @W# equals a zero-vector of the quotient spaceW/WL , i.e., if and
only if @W# can be identified with@LvF0#, wherev is an arbitrary vector field on the space–tim
manifold X. For essentially obvious reasons, it will be convenient to call this condition anatural
condition for the existence of a ‘‘coordinate system’’ onW/WL . Now, after these preparations
we are in a position to formulate the following theorem.

Theorem: Let F0 be a nonaxisymmetric Bianchi type-I or Bianchi type-V solution of t
nonlinear field equations~2.1!–~2.6!; in other words, suppose that this solution is such thatH1

ÞH2 , H1ÞH3 , and H2ÞH3 . Then the linear mappingw:W/WL˜D defined as in Sec. IV B
satisfies anatural conditionfor the existence of a ‘‘coordinate system’’ onW/WL . Thus, for each
DPD there is just one@W#PW/WL such thatD5w(@W#), and the mappingw:W/WL˜D is
one-to-one and onto. Put somewhat differently, one can introduce the inverse ofw, namely,
w21:D˜W/WL , by settingw21

„w(@W#)…5@W#.
Sketch of the proof:A straightforward but tedious application of Eqs.~4.5!–~4.15! yields the

identity w(@LvF0#)50, so the proof of the theorem reduces to showing that if@W#PW/WL

belongs to thekernelof w, denoted by kerw, then the representative member of@W#, namelyW,
is an element ofWL . Thus, assume thatWP@W#, the infinitesimal perturbation ofF0 has the
property thatw(@W#)50, i.e., satisfies the conditions of the form

x50, G50, V50, S50, ~4.20a!

Va50, Vab50, Sab50, ~4.20b!

Qp50, Qq
pq50, V r

pq50, ~4.20c!

where the objectsx throughV r
pq are given by Eqs.~4.8! and ~4.11!. Under the foregoing condi-

tions to guide us, we wish to demonstrate that there exists a vector fieldv5va(]/]xa) on the
space–time manifoldX such that
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Wª$Q,Qa,D,Fab,V,Va,M ,K%,

equalsLvF0ª$Qv ,Qv
a ,Dv ,Fv

ab ,Vv ,Vv
a ,M v ,Kv%, i.e.,

Q5Qvª2q̇, ~4.21a!

Qa5Qv
a
ªq̇a2Hqa2da

mqm2gamq um , ~4.21b!

D5Dvª2Hq2 1
3q

m
um , ~4.21c!

Fab5Fv
ab
ª2dabq1 1

3g
abqm

um2gm(aqb)
um , ~4.21d!

V5Vvª2q̇, ~4.21e!

Va5Vv
a
ª2q̇a1Hqa1da

mqm, ~4.21f!

M5M vª23Hq, ~4.21g!

K5Kvª
1

T0
Ṫ0q. ~4.21h!

For our purposes here, we have used the definitions~4.6! and the decompositionva5qwa1qa of
va with respect to the background fluid four-velocitywa.

~a! To start with, let

qª2
1

3H
M ~4.22!

be a candidate for the timelike part ofva, and define the spacelike partqa of va by saying that
it satisfies the differential equations36

q̇a2Hqa2da
mqm52Va ~a50,...,3!. ~4.23!

The definitions~4.22! and~4.23! trivially prove Eq.~4.21g! for M and Eq.~4.21f! for Va. Because

of G50 andV50, K equalsT0
21Ṫ0q, Q equals 2q̇, and Eqs.~4.21h! and~4.21a! hold. Then we

may conclude fromx50 that Eq.~4.21e! is valid for V as well. By using the definition~4.8c! of
Va and substituting the formulas~4.21f! and~4.21g! onto the left-hand side ofVa50, we imme-
diately derive Eq.~4.21b! for Qa.

~b! At this stage of the proof, since the objectsQ, Qa, V, Va, M, andK may be written in the
desired form, it remains to show that the conditionsS50,Vab50,Sab50,Qp50,Qq

pq50, and
V r

pq50 yield Eqs.~4.21c! and~4.21d! for D andFab. The key step in the derivation of these tw
equations is simply this. According to the considerations in Sec. IV B, an equivalent statem
S50 and Sab50 is Sabmn50. Given the definitions~4.8e! and ~4.9! of Sabmn and Zab, we
recognizeSabmn50 as the condition for

Zab
ª

2

3
~M23D !gab1

2

3H
Mdab22Fab522~Hq1D !gab22qdab22Fab. ~4.24!

This condition implies that there exists aspacelikevector fieldza on X (waza50), not necessar-
ily equal toqa, such that

Zab52gm(azb)
um . ~4.25!
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For further details, and for the more general situations and conditions that also lead to the r
like Eq. ~4.25!, see the discussion on pp. 351–353 in Ref. 37. Now, in order to emphasize thza

may differ fromqa, we introduce the following vector field onX:

ca
ªza2qa. ~4.26!

Using the obvious identitiesgmndmn50 andgmnFmn50 and exploiting Eqs.~4.24!–~4.26!, we
then obtain

D52Hq2 1
3q

m
um2 1

3~gmnDmn! ~4.27a!

and

Fab52dabq1 1
3g

abqm
um2gm(aqb)

um1 1
3g

ab~gmnDmn!2Dab, ~4.27b!

whereDab is the spatial symmetric two-tensor related toca by

Dab
ªgm(acb)

um . ~4.28!

If, without in any way restricting the generality of the conclusion, we demonstrate thatDab can be
set equal to zero, Eqs.~4.21c! and ~4.21d! will be derived, and this derivation will complete th
proof of the theorem.

~c! To see how the identityDab50 can result fromw(@W#)50, by means of Eqs.~4.8d! and

~4.8f!–~4.8h! we must carefully analyze the consequences of substitutingVa52q̇a1Hqa

1da
mqm andZab52@gm(aqb)

um1Dab# onto the left-hand sides ofVab50,Qp50,Qq
pq50, and

V r
pq50; we are thereby led to a set of differential constraints forDab. However, before exploiting

these constraints, some comments are in order. Equations~4.23! and ~4.25! leave a residual
‘‘gauge’’ freedom in defining the spatial vector fieldsqa and za on X, i.e., qa and za are not
uniquely determined from these equations. Thus, in particular, given any choice ofqa consistent
with Eq. ~4.23!, we can replaceqa by qa1aa, whereaa is such thatwmam50 and ȧa2Haa

2da
mam50. Also, a significant feature follows immediately from Eq.~4.25!. Let ya be a vector

field on X. Then, providedwmym50 and gm(ayb)
um50, the spacelike vector fieldza can be

replaced byza1ya.
~d! The gauge-invariant variables have as simple a form as possible if expressed in term

coordinate system (xa) for which ds2 is given by Eq.~3.7!. Under this choice of coordinates, th
differential conditionsVab50,Qp50,Qq

pq50, andV r
pq50 can be solved for

Dab
ªgm(azb)

um2gm(aqb)
um , ~4.29!

by using Eqs.~3.6! and ~3.11d!, and then the tensor field,

D̄ab
ªgm(a~zb)1yb)! um2gm(a~qb)1ab)! um5Dab1gm(ayb)

um2gm(aab)
um , ~4.30!

can be set equal to zero by suitably constructingaa andya:

Dab
˜D̄ab50. ~4.31!

Taken together with the previous results, this completes the proof of the theorem. j

Remark:The detailed analysis of the differential constraints forDab, which is purely techni-
cal and requires the introduction of many auxiliary formulas, is available on request.

In virtue of the implication (@W#Pkerw)⇒(@W#5@LvF0# for some v), the mapping
@W#°w(@W#) is very important: it establishes one possible sense in which the present app
to linear perturbation theory determines potentially everything, namely, that one can e
@W#PW/WL from Dªw(@W#)PD in a unique way. There is, however, another sense in wh
one would like to have the basic gauge-invariant variables,
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w~@W# !ª$x,G,V,S,Va,Vab,Sab,Qp,Qq
pq ,V r

pq%,

determine everything. This would be to show that any gauge-invariant tensor field defined oX is
obtainable linearly from the basic variables through purely algebraic and differential opera
Moreover, we should ask the following questions. What is the relationship between the not
basic gauge-invariant variables introduced here and in Refs. 10 and 11 and the notion of co
gauge-invariant variables arising from consideration of the standard theory of Ellis and Brun2 Is
Lemma 2.2 of Stewart and Walker5 sufficient to define an almost-Bianchi type-I or almost-Bianc
type-V universe model, or do new principles remain to be found? How do our ideas relate
coordinate-based method of Tomita and Den,27 Den,28,29 and Noh and Hwang?30,31 Within the
framework here set up, can we find a closed set of linear ‘‘propagation’’ equations that inv
only D? If it does exist and ifD is a classical solution to these propagation equations, will one
able to constructW, which satisfies the condition~2.19!, and is such thatD5w(@W‡…? These and
similar questions will be formulated and answered in separate papers~see, e.g., Ref. 20!.

V. FINAL REMARKS

In this paper, we have developed a theory of cosmological perturbations in anisotropic
ground models of Bianchi types I and V, based on the geometric approach of Banac
Piekarski.10,11 For the case of a nonbarotropic perfect fluid, we derived a complete set of
gauge-invariant variables and concluded with an analysis showing how this set can be u
determine the equivalence class of perturbations~tangents!. When considering an arbitrary syste
of diffeomorphism-invariant, covariant field equations, the establishment of an analytic descr
of the equivalence classes of tangents must be regarded as the primary problem in any co
formulation of linear perturbation theory, which is why a construction of the setw~@W#! of basic
gauge-invariant variables is of fundamental importance.10,11 An additional reason for the math
ematical and physical relevance of this construction arises from the fact that, as it will b
cussed in a companion paper,20 the appropriate local algebropartial differential operations
w~@W#! enable us to define all gauge-invariant variables.

In the covariant approach2,9 usually taken to the development of linear perturbation theory,
key result that makes the study of covariantly defined gauge-invariant quantities possible
Stewart–Walker lemma~see Lemma 2.2 in Ref. 5!. This states that if$A(xm,e);ePI % is a C1

curve of geometrical objects determinable tensor algebraically from the fieldsFe(x
m),ePI , and

their first-, second-, or higher-order covariant derivatives with respect togab(xm,e), then the
linear perturbationdA0 of a quantityA0ª(A)e50 on (X,qab), namely,dA0ª(]A/]e)e50 , is
gauge invariant if and only if one of the following three conditions holds:~i! A0 vanishes,~ii ! A0

is a constant scalar, or~iii ! A0 is a constant linear combination of products of Kronecker delt
How our variables are related with the gauge-invariant variables of Stewart and Walke5 To

see this~more details will be given in Ref. 20!, we need to computedA0 by differentiating
A(xm,e) with respect toe at e50. Proceeding in this way and using the definition of a compl
set, we can show that any of gauge-invariant variablesdA0 is uniquely determined from a knowl
edge ofF0 andw~@W#! alone. However, in the case of interest to us—namely the constructio
w~@W#! and$dA0% for anisotropic background models of Bianchi types I and V—the convers
not true. More precisely, while the set$dA0% Stewart and Walker5 uses as a basic set consists
gauge-invariant quantities, it does not provide a complete framework for definingw~@W#! ~i.e.,
describing the equivalence classes of perturbations!, unless supplemented by the extra conditi
dab50 that restricts the space–time geometry to Robertson–Walker universe models. By w
have said above, the conclusion is simply this: the construction ofw~@W#! is superior to the
construction of$dA0%.

Another remark is also in order. The result of Stewart and Walker,5 that the linear perturbation
of some quantity only makes sense if the corresponding unperturbed quantity either is a co
scalar or vanishes or is a constant linear combination of products of Kronecker deltas, eme
an immediate consequence of their definition ofdA0 . Of course, this result has the well-know
corollary that since the existence of$dA0% is completely dependent on the background chose
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gauge-invariant formulation of linear perturbation theory by means of$dA0% will ‘‘almost al-
ways’’ be impossible. Fortunately, in our previous papers,10,11 we introduced the notion of a
complete set of basic gauge-invariant variables in a way that eliminated any explicit or im
reference to the properties of the background and thus presented a satisfactory method o
coming this apparent difficulty. Consequently, for an arbitrary choice ofF0 , linear perturbation
theory can be formulated via the introduction ofw~@W#! in a manner that does not require th
existence of$dA0%.

Next, we mention the following. The considerations of Sec. 4.2 in Ref. 10 allow us to p
that nondegenerate linear perturbation theory for which sufficiently many gauge-invariant
ables do exist that the equivalence classes of perturbations are completely determined by t~at
least in principle! is a theory with sufficiently many tensor fields onX. Thus, when introducing the
notion of a ‘‘coordinate system’’ onW/WL , it is not necessary to impose restrictions onF0 .
Nevertheless, there is some confusion in the literature on this point since it is known math
cally that in the case of, for instance, almost-Robertson–Walker universe models, the setw~@W#!
differs considerably from that obtained here.18,19 This point is resolved by remarking that th
precise form ofw~@W#! is dependent on the choice ofF0 , while the existence ofw~@W#! is not.

Finally, because of the general results in Sec. 4 of Ref. 11, we should understand clea
a complete set of propagation equations can be obtained directly in terms of the basic
invariant variables. The mathematical description of these equations, while elementary, is fo
too elaborate to present here. However, we plan to return to it in a later paper.32 Compared with
the Robertson–Walker case, we have one new feature of the cosmological perturbation
spatially anisotropic background. The nonvanishing background shear causes extremely c
cated couplings between (G,V,S), Va, (Vab,Sab), and (Qp,Qq

pq ,V r
pq). Thus, except for some

particularly simple situations, the analytical solutions of the propagation equations are very
cult to get, and we have to content ourselves with the numerical analysis. Certain assum
greatly simplify the discussion, e.g., the requirement that the metric is axially symmetric i
background. Unfortunately, from the viewpoint of the present paper, the typical conseque
these assumptions is that the symmetry properties ofF0 and the definition ofw~@W#! aresubstan-
tially changed, so it is not a generic strategy. Our basic philosophy was not to derive and s
simple system of differential equations for the specific gauge-invariant variables, but rath
formulate the mathematical principles underlying the theory of gauge-invariant perturba
@W#PW/WL in anisotropic cosmological models.

Perhaps the most interesting concrete application of our findings is to the problem
semiclassical descriptionin which the background geometry is taken in the classical framew
and the gauge-invariant perturbations are considered asquantum variables. For more details, one
should consult Ref. 20.
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Equivalence classes of perturbations in cosmologies
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In the preceding paper, 26 gauge-invariant variables were defined that characterize
an almost-Bianchi type I or almost-Bianchi type V universe filled with a nonbaro-
tropic perfect fluid. One can think of these basic variables, denoted collectively by
D, as having at least two aspects. First,D gives an explicit~i.e., analytical! repre-
sentation of the equivalence class of perturbations. In fact, this equivalence class is
uniquely determined fromD and vice versa. Second, any gauge-invariant quantity
with respect to a Bianchi type I or Bianchi type V background model is obtainable
linearly fromD through purely algebraic and differential operations. Among many
other things, the above properties ofD facilitate new insights into the question of
why a standard and well-known formulation based on the Stewart–Walker lemma
does not enable one to describe the equivalence classes of perturbations and to find
gauge-invariant variables independent ofD. If we pose an analogous question in
regard to almost-Robertson–Walker universe models, a different but none-the-less
instructive answer is obtained. In this case, the Stewart–Walker lemma provides a
complete framework both for constructing all gauge-invariant variables and for
determining the equivalence classes of perturbations. Because of the sometimes
confusing statements in the literature, nontrivial comparisons with other work on
linear perturbations in anisotropic background models are made. We also present
what we believe are some interesting applications of our ideas to the subject of
quantum field theory in curved space–time. ©1999 American Institute of Phys-
ics. @S0022-2488~99!01607-2#

I. INTRODUCTION

In this paper, we continue the systematic investigation of an almost-Bianchi type I or ty
universe dominated by a nonbarotropic perfect fluid, i.e., a general perfect fluid with two ess
thermodynamic variables. Therefore, it should not be surprising that, to avoid the risk of app
to be repetitive and even trite,without further commentwe shall use here those symbols a
notions which either appear for the first time in Ref. 1 or are reasonably standard, and the a
proceeds in a way similar to that already made familiar.

Recalling the result of Banach,1 one can show that a set of 26 ‘‘geometrically’’ independe
not identically vanishing gauge-invariant variables, denoted collectively byD and referred to as
the complete set of basic variables, can be used to extract the equivalence classes of t
~perturbations! from D in a unique way. This paper will focus upon the study of another impor
property of D which can be characterized by the following observation: any gauge-inva
quantity with respect to a Bianchi type I or type V background model is obtainablelinearly from
the basic variablesD through purely local ~i.e., algebraic and differential! operations. Among
many other things, the above observation facilitates new insights into the question of wh
Stewart–Walker lemma~see Lemma 2.2 in Ref. 2! does not enable oneto find gauge-invariant
variables independent ofD. Denoting bydA0 the linear perturbation of a geometric backgrou
quantityA0 , this lemma states that fordA0 to be invariant under the action of an ‘‘infinitesima
diffeomorphism’’3 A0 must either be a constant scalar, vanish, or be a linear combinatio
39950022-2488/99/40(8)/3995/16/$15.00 © 1999 American Institute of Physics
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products of Kronecker deltas with constant coefficients. However, ifA0 satisfies one of these thre
conditions, then the gauge-invariant quantitydA0 can be expressed locally in terms ofF0 andD,
and a knowledge ofdA0 is not necessaryto describe an almost-Bianchi type I or type V univer
model.

For these models, the converse is not true. More precisely, a problem which begins: ‘‘
complete, finite set$dA0% of covariantly defined, gauge-invariant quantitiesdA0 with a simple
geometric and physical meaning, that code the information we need to determine the equiv
classes of perturbations, and extractD from F0 and$dA0% in a unique way’’will be impossible to
solve. By what we have said above, the conclusion is simply this: the construction ofD is superior
to the construction of$dA0%. However, if we pose an analogous question in regard to alm
Robertson–Walker universe models, a different but none-the-less instructive answer w
obtained.4,5 In this case, the inverse problemhas a positive solution, and we conclude that the
Stewart–Walker lemma provides a complete framework both for constructingall ‘‘geometrically’’
independent, not identically vanishing gauge-invariant variables and for determining the e
lence classes of perturbations~see Ref. 5, pp. 289–292!.

Various motivations lie behind such a careful analysis of the properties ofD. To begin with,
for an arbitrary background space–time (X,qab), there does not appear to be any natural cho
of dA0 , nor does there appear to be any unified treatment of the exact and the linearized
Thus in particular, the covariant formalism of Ellis and Bruni6 cannot be extended to this case.
might seem that the lack of an acceptable method for obtaining sufficiently many cov
gauge-invariant variables7 would pose an insurmountable obstacle to the formulation of lin
perturbation theory in general. However, in our previous papers,8,9 ~see also Ref. 1!, we introduced
the notion of a gauge-invariant variable in a way that eliminated any explicit or implicit refer
to Lemma 2.2 of Stewart and Walker2 and thus presented a satisfactory means of overcom
these apparent difficulties. Moreover, we have found an intriguing result:8,9 the construction of a
‘‘coordinate system’’ onP/PL orW/WL does not depend on the specific symmetry propertie
the background space–time geometry chosen; in other words, the setD can be proven to exist fo
any possible choice of the background.

To define a set of gauge-invariant variables, most analysis of inhomogeneities in an exp
universe have categorized the metric and matter perturbations into three distinct types:
vector, and tensor perturbations.10–15 Such an approach to the gauge problem has been critic
by Ellis and Matravers16 on the grounds that~i! they doubt the value of introducing the idea
‘‘gauge-invariant harmonic amplitudes’’ into general relativity at all and~ii ! if one is to introduce
it, then one should accept a concept which is completely dependent on the coordinate choic
~for example, the Bardeen formalism10 is gauge invariant only if one restricts coordinate chan
to the vector kinds when vector modes are investigated, and to the scalar kind when the
modes are the theme of interest!. The present formalism enables us to reformulate the coordin
based method of Bardeen10 in terms of properties of the complete setD. This reformulation is both
fully covariant and gauge invariant; thus it sidesteps the usual problems andresolves disagree-
mentsbetween the results of different existing formalisms.

Are there at least possible concrete applications of our ideas? With regard to this ques
is an important—and conceptually and mathematically nontrivial—challenge to examine the
of using asemiclassical description17–21 in which the background geometry is taken in the cla
sical framework and the gauge-invariant perturbations are considered asquantum variables.
Progress towards this goal has been slow, mainly because of the fact that a ‘‘presymplectic
space structure’’19 v̄ defined on the spaceP of infinitesimal perturbationsdF0 is not necessarily
nondegenerate. When it is degenerate, we must reduceP by taking the ‘‘symplectic quotient’’ of
(P,v̄),22 thereby producing a quotient spaceP/PL on which there is defined a nondegenera
symplectic vector space structurev. The complete setD of basic gauge-invariant variables shou
be of great use in the study of these problems; up to the present, one has simply never su
in going beyond the self-evident observation thatv̄ always is gauge invariant, i.e., for any pair
linearized solutionsdF0 anddF08 of Eq. ~2.14! in Ref. 1, the quantityv̄(dF0 ,dF08) depends only
upon the gauge equivalence class ofdF0 anddF08 . Indeed, it would appear that one is now in
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position to formulate, for the first time, a sensible prescription—valid for an arbitrary Lagran
field theory—for constructingv from v̄ andD.

The program of this paper is as follows. Section II introduces a number of geometric
ground quantitiesA0 satisfying one of the three conditions in the Stewart–Walker lemma and
shows that from a knowledge ofD alone, together with the information aboutF0 , one can
compute the linear perturbations of these quantities, namely$dA0%. In Sec. III we compare our
results with Bardeen’s and with other treatments of gauge-invariant perturbations in aniso
background models. Specifically, we relate our work to Tomita and Den,11 Den,12,13 and Noh and
Hwang14,15 on the Bardeen nonlocal approach,10 and to Dunsby23 on the Ellis–Bruni covariant
method.6 In Sec. IV we demonstrate how the entire formalism can be adapted naturally i
semiclassical description. Section V is for final remarks.

II. RELATIONSHIP WITH THE STEWART–WALKER LEMMA

Let $A(xm,e); ePI % be a curve of geometrical objects determinable tensor-algebraically
the fieldsFe(x

m), ePI , and their first-, second-, or higher-order covariant derivatives with res
to gab(xm,e), and suppose thatA(xm,e) depends continuously and differentiably one. In this way
of thinking, it will be convenient to regard$Fe(•); ePI % not as a one-parameter family of exa
solutions to the nonlinear field equations, but rather as an arbitraryCr curve~r sufficiently large!
in the function space$F~•!% passing through the background solutionF0(•). With the notation
A0ª(A)e50 , we can introduce the quantitydA, denoted in the Introduction bydA0 , which
represents thelinear perturbationof A0 :

dAªS ]A

]e D
e50

. ~2.1!

As shown already by Ehlers,24 this linear perturbation is gauge invariant~i.e., invariant under the
action of an ‘‘infinitesimal diffeomorphism’’3,25! if and only if the following condition holds for
each vector fieldv on X:26

LvA050. ~2.2!

According to the Stewart–Walker lemma~see Lemma 2.2 in Ref. 2!, in order to satisfy the above
condition, it is necessary to use a scalarA that is constant in the unperturbed space–time (X,qab),
or any tensorAa ... that vanishes in (X,qab), or a tensor whose ‘‘background value’’ is a consta
linear combination of products of Kronecker’s deltasda

b .
Having made these general remarks, we wish now to provide representative examples

gauge-invariant quantitiesdA. Next, we will prove that, for thegeneralBianchi type I or type V
background model (k50,21), a knowledge of the complete set of basic variables, namely

w~@W# !ª$x,G,V,S,Va,Vab,Sab,Qp,Qq
pq ,V r

pq%, ~2.3!

determinesdA in a unique way. If the background spatial curvaturek vanishes~Bianchi type I
space–times!, the setw~@W#! can be replaced by

w1~@W# !ª$x,G,V,S,Va,Vab,Sab,Vm
ab ,Qp%. ~2.4!

The mathematical details of our construction ofw~@W#! andw1(@W#) are given in Sec. IV B of
Ref. 1 @see especially Eqs.~4.8!, ~4.11!, and ~4.18!#. For simplicity, we abbreviatew~@W#! asD
andw1(@W#) asD1 .

A. Discussion of the case when H1ÞH2ÞH3ÞH1

From the above analysis plus the definitionhabªgab1uaub and the decomposition ofua;b

@see Eq.~3.1! in Ref. 1# we conclude that the simplest physical objectsA(•,e) satisfying fore
50 the condition~2.2! can be described as follows:
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~1! The specific entropy:

sªentropy per particle. ~2.5!

~2! The normalized curvature scalars:

Aª
1

n2/3F2
2

3
~u!21smnsmn1Rm

m12umunRmnG , ~2.6a!

Bª
1

n2/3F2
2

3
~u!21smnsmn12~e1L!G , ~2.6b!

Cª
1

n2/3@22~u!224umu ;m23smnsmn26~p2L!#. ~2.6c!

~3! The orthogonal spatial gradients ofn anduªum
;m :

Xa
ªhabn;b , Za

ªhabu ;b . ~2.7!

~4! The acceleration:

aa
ªubua

;b . ~2.8!

~5! The spatial two-tensor associated withsab :

Eabªhm
ahn

b~ulsmn;l1usmn!. ~2.9!

~6! The normalized trace-free curvature tensor:

Aab
ª2

1

3
Ahab1

1

n2/3F2
2

9
~u!2hab2

1

3
usab1sa

msmb1Rmnhmahnb1Rl
mtnuluthmahnbG .

~2.10!

Several points concerning these definitions should be noted. First, we assume that ther
the specific entropy, i.e., the entropy per particle. We denote this entropy bys. If Fe(•) is a
solution of the nonlinear field equations, and such iscertainly the case whene50, thensªs
(•,e) satisfies the property that (nsua) ;a50. After combining this property ofs with the equation
of balance of number density, we derive that the nonbarotropic perfect fluid is lo
adiabatic:27,28

uas;a50. ~2.11!

That is, entropy is constant along the flow lines of the fluid. In this way, we arrive at the follo
conclusion: the specific entropys is a scalar that isconstant in the unperturbed space–tim
(X,qab).

Second, it can be shown that thesameconclusion concernsA, B, andC. More precisely, if
e50, we have kn0;k(R1)23 and A5B5C5(n0)22/3@6k/(R1)2#5constant; thus the Lie
derivatives26LvA0 , LvB0 , andLvC0 vanish. ForeÞ0, providedFe(•) satisfies the nonlinear field
equations,A equalsB and C is dynamically related toB, am, and vmn by C5B24n22/3(a;m

m

1vmnvmn). Under these circumstances, in the special case of vanishing vorticity~and only then!
the quantityn2/3B acquires a special significance:6 it is the Ricci scalar3R of the three-dimensiona
spacesS' everywhere orthogonal to the fluid flow vectorua; that is,vmn50⇒3R5n2/3B. For
this reason, we callB ~as well asA andC! the normalized curvature scalar.~By way of digression,
the meaning ofn2/3B whenvmnvmnÞ0 is discussed in Appendix B of Ref. 6.!
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Third, the important physical variable turns out to be the orthogonal density gradienXa

defined by one of Eqs.~2.7!. Ellis and Bruni,6 Bruni et al.,29 Dunsbyet al.,30 and Dunsby23 gave
the first systematic treatment of the properties of this variable. From the viewpoint of the fo
ism developed by Ellis and Bruni,6 both quantities in Eqs.~2.7! are gauge invariant, as they vanis
in the Bianchi type I and type V universes@Xa>e(dXa) andZa>e(dZa)]. Interpreting Eq.~2.8!,
this equation defines the standard kinematic quantity which vanishes in the background, an
gauge invariant. As regardsEab @see Eq.~2.9!#, this quantity isalso gauge invariant, because o
the condition1 (Eab)e505ḋab13Hdab50. Note thatEab is constructed from the shear tens
sab and thatEab5Eba , gabEab50, andEabub50.

Next, using the definition~2.10! of Aab (Aab5Aba, gabAab50,Aabub50), we obtain
(Aab)e5050; thus dAab is gauge invariant. If vab50, the tensorAab, which we call the
normalized trace-free curvature tensor, is related to the trace-free part of the Ricci tensor3Rab of
S' . In fact, given a unit timelike vectorua, we can define at each point the three-curvature ten
3Rm

anb and its trace3Rabª
3Rm

amb . Whenua is hypersurface-orthogonal, these are the Riem
and Ricci tensors of three-surfacesS' , but in generalvabÞ0⇒3R@ab#Þ0, and these tensors d
not have all the usual symmetries of Riemann and Ricci~more details in Refs. 29 and 31!. Let ua

be the fluid four-velocity and suppose thatvab50. Then we can split3Rab into its trace3R
5n2/3A and its symmetric trace-free part3Rab5n2/3(gamgbnAmn). The tensor field (Aab)e50

vanishes because (3Rm
anb)e50 equals@k/(R1)2#(gm

ngab2gm
bgan).

Finally, it is easy to find many further gauge-invariant quantities by finding more com
invariantly defined quantities that vanish in the background, for example, the vorticity; the
thogonal spatial gradients ofT, e, p, s, n2/3A, n2/3B, andn2/3C; the divergence of the acceleratio
and its spatial gradient; and so on:

vabªhm
ahn

bu@m;n# , ~2.12a!

Pa
ªhabT;b , X̄a

ªhabe;b , ~2.12b!

Ya
ªhabp;b , Ea

ªhabs;b , ~2.12c!

Ca
ªhab~n2/3A! ;b , C̄a

ªhab~n2/3B! ;b , ~2.12d!

C̃a
ªhab~n2/3C! ;b , ~2.12e!

Jªam
m , Ja

ªhabJ ;b . ~2.12f!

Together with the variablesdC andZa, these will not be significant to us in considering linea
ization around the Bianchi type I and type V universes, for there aresimpler gauge-invariant
quantities which can be used to determine them@see Eqs.~2.17a!–~2.17k!#.

Before calculatingdA for the quantities defined by Eqs.~2.5!–~2.10! and~2.12!, let us intro-
duce the following notation:1

e0ªe~n0 ,T0!, p0ªp~n0 ,T0!, ~2.13a!

eTª
]e0

]T0
, pTª

]p0

]T0
, ~2.13b!

Nªumn;m1num
;m , ~2.13c!

gW +QW ª(
p51

3

@~ l p
ml p

ngmn!Qp#, ~2.13d!
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dW +QW ª(
p51

3

@~ l p
ml p

ndmn!Qp#. ~2.13e!

From Eq.~2.13c! we obtainN0ª(N)e5050, so that the linear perturbationdN of N0 is gauge
invariant. However, if$Fe(•); ePI } is a one-parameter family of exact solutions to the nonlin
field equations, thenN(•,e)50 anddN vanishes identically. With all these preparatory remarks i
mind, it is only a matter of labor to prove that

dN5 1
2n0~gW +QW ! ~2.14a!

and that the linear perturbations ofs, A, B, Xa, aa, Eab , andAab at e50 are related to the
gauge-invariant variablesG, V, S, Va, Vab, Sab, andQp in Dªw(@W#) @see Eq.~2.3!# by32

ds5
eT

n0
G, ~2.14b!

dA5
2

~n0!2/3 S 2

3
Vm

um2
1

3H
dm

nVn
um2SD , ~2.14c!

dB5
2

~n0!2/3 H 2F 3k

~R1!22e02L GV2H~gW +QW !1
1

2
~dW +QW !1T0eTGJ , ~2.14d!

dXa5n0Va, ~2.14e!

daa52
1

3H
V̇a1

1

3
S Ḣ

H221D Va2
1

3H
da

mVm2gamV um , ~2.14f!

dEab52
1

6
gab~gW +QW !˙2

1

2
Hgab~gW +QW !1V̇dab1

1

2
dab~gW +QW !

1
1

2
gamgbnVmn1

1

3H
dm(aVm

ub)2
1

3H
gn(adm

b)V
n

um , ~2.14g!

dAab52
1

~n0!2/3F2Sab1
1

9
gabVm

um2
1

3
gm(aVb)

um2
1

3H
dabVm

um

1
1

3H S gm(adb)
n2

2

3
gabdm

nDVn
um1

1

3H
dm(aVb)

um1
2

3H
~gn(adb)

mun2dab
um!VmG .

~2.14h!

Equations~2.14g! and ~2.14h! yield the conditions

gmn~dEmn!50, gmn~dAmn!50 ~2.15a!

and

dmn~dEmn!5~dmndmn!V̇1 1
2~dmndmn!~gW +QW !1 1

2~dW +QW !˙13H~dW +QW !, ~2.15b!

where we have used the identity~4.14b! of Ref. 1.
Given all these results, especially Eqs.~2.14a!–~2.14h!, it is now obvious mathematicallyhow

to extractdN, ds, dA, dB, dXa, daa, dEab , anddAab from a knowledge ofF0 andD alone. At
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the same time, we may interpret some of the above formulas in another way by noticing thaG, V,
S, Va, Vab, andSab areuniquelydetermined fromF0 , ds, dA, dB, dXa, dEab , dAab, andQp

(p51,2,3). Thus, the set

w2~@W# !ª$x,ds ,dB,dA,dXa,dEab ,dAab,Qp,Qq
pq ,V r

pq% ~2.16!

constitutes anewcomplete set of basic gauge-invariant variables; this set contains all signifi
information about@W#. Since the specification ofw2(@W#) for each @W# is mathematically
equivalent to the specification ofW°w(@W#), it can also be interpreted as a construction of
alternative ‘‘coordinate system’’1 onW/WL . Nevertheless, it should be stressed that ifdmndmn

Þ0 anddW +QW Þ0, then Eqs.~2.14a!, ~2.14b!, ~2.14d!, ~2.14e!, ~2.14g!, and ~2.15b! are not suffi-
cient to expressV andVab in terms ofonly F0 , dN, ds, dB, dXa, anddEab . Similarly, in our
model,serious difficultieswould arise if we attempt to define a meaningful set of gauge-invar
variablesdA for the determination ofQp, Qq

pq , andV r
pq . Put somewhat differently, knowledge o

the setD allows one to compute$dA%, but knowledge of the set$dA% does not permit one
inversely to computeD. Moreover, except for some ‘‘particularly simple’’ situations (dab50; see
Refs. 4 and 5!, we may be no longer ableto represent the equivalence classes of perturbation
means of$dA%.

Turning now to the formulas~2.12! and the quantitiesC andZa in Eqs.~2.6c! and ~2.7!, the
corresponding linear perturbationsdA are determined by the relations

dvab52
1

3Hn0
gm[a~dXm! ub] , ~2.17a!

dPa52
1

3Hn0
Ṫ0~dXa!1

1

eT
n0T0gab~ds! ub , ~2.17b!

dX̄a5
1

n0
~e01p0!~dXa!1n0T0gab~ds! ub , ~2.17c!

dYa52
1

3Hn0
ṗ0~dXa!1

1

eT
n0T0pTgab~ds! ub , ~2.17d!

dZa523H~daa!2
1

n0
@~dXa!˙14H~dXa!1da

m~dXm!2gam~dN! um#, ~2.17e!

dEa5gab~ds! ub , ~2.17f!

dC5 1

H
~dB!˙1dB2

2

H~n0!2/3 H dmn~dEmn!2
2

n0
F k

~R1!22
1

2
~e01p0!G~dN!

1n0T0~ds!˙1S n0Ṫ02
1

eT
T0pTṅ0D ~ds!J , ~2.17g!

dCa5
4k

n0~R1!2 ~dXa!1~n0!2/3gab~dA! ub , ~2.17h!

dC̄a5
4k

n0~R1!2 ~dXa!1~n0!2/3gab~dB! ub , ~2.17i!

dC̃a5
4k

n0~R1!2 ~dXa!1~n0!2/3gab~dC! ub , ~2.17j!
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dJ5~dam! um , dJa5gab@~dam! um# ub . ~2.17k!

Given these linear perturbations, we might now say justifiably thatthey all can be generated from
F0 , dN, ds, dA, dB, dXa, daa, anddEab via a local algebropartial differential transformation,
that, in linear perturbation theory, Eqs.~2.14! aresuperior to those just obtained.

The analysis so far has been for an almost-Bianchi type I or type V universe model (k50,
21). However, in the case of a Bianchi type I cosmology (k50), it proves useful, as we alread
mentioned,1 both to replaceQq

pq andV r
pq by a new gauge-invariant quantityVm

ab @see Eq.~4.18!
in Ref. 1# and to write Eq.~2.16! in the more convenient form

w3~@W# !ª$x,ds,dB,dA,dXa,dEab ,dAab,Vm
ab ,Qp%. ~2.18!

Now, consider a tensor fieldEabm (E@ab#m50,gabEabm50,uaEabm5uaEbma50) defined in
terms of the shear tensorsab by

Eabmªht
ahl

bhn
mstl;n . ~2.19!

If k50, this tensor field vanishes in the background, and we obtain the result thatdEabm is a
gauge-invariantquantity. Proceeding through the same steps as lead to the formulas~2.14! and
~2.17!, we verify that a knowledge ofF0 and$V,Va,Vm

ab ,Qp%,D1 is all we needto determine
dEabm :

dEabm5gmnVndab1
2

3
@dm(agb)n2gm(adb)n#Vn1

2

3H
@ds

mds(agb)n2dm(adb)n#Vn

2
1

6
gab~gW +QW ! um1dabV um1

1

2
gangbsVm

ns . ~2.20!

Then, from Eq.~4.19! in Ref. 1, we get

gab~dEabm!50, ~2.21!

as it should be. Alternatively, within the framework here set up,Vm
ab is obtainable fromF0 , ds,

dB, dXa, dEabm , andQp (p51,2,3) through purely algebraic and differential operations, so
@W# can be described by means of the gauge-invariant variablesQp and x (x
52@](uaua)/]e#e5050) and the following system of linear perturbations:

Eª$ds,dB,dA,dXa,dEab ,dAab,dEabm%. ~2.22!

Thus, as in an almost-Bianchi type V universe model discussed before, the net upshot o
considerations is simply this. Since thescalarfieldsQp (p51,2,3)are not expressible in terms o
$dA% unless the background shear takes a simple form@dabª(sab)e5050#,

Qp52l a
pl b

pF 1

3n0
~dN!gab1gamgbn~dsmn!G , ~2.23!

the theory based onE or $dA%5Eø$dA% alone seems to besomewhat less completethan that
based onx, E, andQp (p51,2,3):

w4~@W# !ª$x,E,Qp%. ~2.24!

Focus now, for specifity, on the magnetic partHab of the Weyl tensorCabmn . Restricting
attention to the Bianchi type I background model, this part ofCabmn vanishes in (X,qab) since
(vab)e5050 and (Eabm)e5050. By writing Hab in the form @see, e.g., Eq.~4.19! in Ref. 33#

Hab52a(avb)1unhlt
n(aEb)lt1ha

mhb
sunhlt

n(mvs)l;t , ~2.25!
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wherehabmn is the space–time permutation tensor andva5gabvb is the vorticity vector (vab

5habmnvmun), we then see that,to linear order, Hab is completelydetermined by givingdvab

anddEabm :

dHab5elt
(a@dEb)lt1~dvb)l! ut#. ~2.26!

Hereelt
a stands for the background value ofunhlt

na .
To sum up, the notion of a gauge-invariant variable introduced by Banach1 and Banach and

Piekarski8,9 generalizesthe notion of a gauge-invariant variable arising from the approach
Stewart and Walker.2 For the case of nonaxisymmetric cosmologies of Bianchi types I an
(H1ÞH2 , H1ÞH3 , H2ÞH3), it is this generalization which enables us to define satisfactorily
concept of a ‘‘coordinate system’’ onW/WL and to replace$dA% by D. Our reasons for presentin
the detailed construction ofD are twofold. First,@W# is uniquely determined fromD and con-
versely. Second, ifA0ª(A)e50 satisfies one of the three conditions in the Stewart–Wa
lemma, then a knowledge ofD consequently permits us to calculatedA. The natural question
arises as to the possibility of recasting the mathematical formalism in such a way thatD is
obtainable from$dA%. However, we have seen that such a reformulationis not possible, i.e., the
acceptance of$dA% as fundamental gauge-invariant quantities in place ofD involves the sacrifice
of some information originally contained in ourcompletesetD. Thus, despite the desirability o
having only$dA% as gauge-invariant variables, this sacrifice of the informational content o
formalism would be unacceptable, as far as the basic structure of the theory and the equiv
classes of perturbations are concerned.

B. Almost-Robertson–Walker universe models

In exact Robertson–Walker space–times (k50,61), the shear tensordabª(sab)e50 van-
ishes identically, so thatdsab is a gauge-invariant quantity. Ifdab50, the formula~2.23! may be
used to expressQp (p51,2,3) in terms ofdN anddsab , and from Eqs.~4.8d!, ~4.8g!, ~4.8h!, and
~4.18h! of Ref. 1 we obtain directly

Vab5
2

n0
F1

3
~dN!˙12H~dN!Ggab12@~dsmn!˙13H~dsmn!#gmagnb, ~2.27a!

Qq
pq52l q

n@2~ l l
ql m

p ! un~dset!1 l l
ql m

p ~dset! un#gemgtl, ~2.27b!

V r
pq52l l

pl m
q gmeglt@ l r

n~dset!# un24l r ul
n l (m

p l n)
q F 1

3n0
~dN!gml1gmeglt~dset!G , ~2.27c!

Vm
ab52F 1

3n0
~dN!gab1galgbt~dslt!G

um
. ~2.27d!

These results are the statement that a knowledge of gauge-invariant variablesdN and dsab

determinesVab, Qp, Qq
pq , V r

pq , andVm
ab . Thus, for almost-Robertson–Walker universe mode

we need not introduce the gauge-invariant objectsVab, Qp, Qq
pq , V r

pq , and Vm
ab to represent

@W#, since the following set, much simpler than that appropriate for the nonaxisymmetric cas@see
Eqs.~2.16! and ~2.18!#, is found to give such a representation:4,5

wRW~@W# !ª$x,dN,ds,dB,dA,dXa,dsab ,dAab%. ~2.28!

To the extent that$Fe(•); ePI % is an arbitrary curve in the function space$F~•!% passing through
the background solutionF0(•) ~i.e., thatx50 anddNÞ0), this set consists of 17 ‘‘geometri
cally’’ independent, not identically vanishing gauge-invariant components.
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As demonstrated in Sec. 4.2 of Ref. 5, any gauge-invariant quantity is obtainable linearly
wRW(@W#) through purely algebraic and differential operations. To illustrate this propert
wRW(@W#), let Eab be the electric part of the Weyl tensor. Then (Eab)e5050 and the linear
perturbationdEab is gauge invariant. Appeal to the identity

Eab5 1
3 usab2samsm

b1 1
3 hab~smnsmn!2 1

2 @Rmnhm
ahn

b2 1
3hab~Rmnhmn!#1n2/3hamhbnAmn

~2.29!

shows that

dEab5H~dsab!1~n0!2/3gamgbn~dAmn!2 1
2 d@Rmnhm

ahn
b2 1

3hab~Rmnhmn!#, ~2.30!

where

dFRmnhm
ahn

b2
1

3
hab~Rmnhmn!G5~n0!2/3@gamgbn~dAmn!#1~dsab!˙13H~dsab!

1
1

3Hn0
gm(a@~dXm!˙# ub)2

1

9Hn0
gab@~dXm!˙# um

1
1

3n0
S 42

Ḣ

H2D gm(a~dXm! ub)2
1

9n0
S 42

Ḣ

H2D gab~dXm! um

2
1

12H2 ~n0!2/3H @~dB! ua# ub2
1

3
gabgmn@~dB! um# unJ

2
1

3Hn0
H @~dN! ua# ub2

1

3
gabgmn@~dN! um# unJ

1
1

6H2 n0T0H @~ds! ua# ub2
1

3
gabgmn@~ds! um# unJ . ~2.31!

Obviously, Eqs.~2.30! and~2.31! give a relationship fordEab in terms ofwRW(@W#). The extra
assumption which can be made here is thatdF0 satisfies the condition~2.14! of Ref. 1. Under
these circumstances, the left-hand side of Eq.~2.31! equals zero anddEab is given by

dEab5H~dsab!1~n0!2/3gamgbn~dAmn!. ~2.32!

The treatment of other gauge-invariant variables follows similar lines.
SincewRW(@W#) is a subset of$dA%, it should be clear from our discussion above that

only essential structure of linear perturbation theory used in the definition of almost-Rober
Walker universe models (dab50) was Lemma 2.2 of Stewart and Walker.2 However, in more
general cases—such as infinitesimal perturbations of anisotropic cosmological m
(dabÞ0)—this lemma does not provide a complete framework for describing the equiva
classes of perturbations or for constructing all gauge-invariant quantities, and the basic co
notions, and ideas are qualitatively different~see, e.g., Refs. 8 and 9!.

III. ANALYSIS OF OTHER APPROACHES

A. Covariant methods

Within the framework of a covariant formalism, the perturbations of homogeneous and
tropic cosmological models have been studied by several authors~Ellis and Bruni,6 Ellis et al.,31

Bruni et al.,29 and Dunsbyet al.30!. Beginning from Eq.~2.2! and the Stewart–Walker lemma, th
basic idea of these authors was to introduce a set$A% of geometrically defined exact variablesA
such thatLvA050 for each vector fieldv on X. This definition of$A% is relatively broad and
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includes, for example, studies of the meaning ofLvA050 whenA0Þ0. However, in practice,
references toL0A0 usually include the assumption thatA0 vanishesin a Robertson–Walker
universe model. Understood in this more limited sense, the quantityA itself is a gauge-invarian
perturbation in an almost-Robertson–Walker universe, and its physical significance is ap
through the covariant definition. As in the work of Bruniet al.,29 we shall refer to such quantitie
ascovariant gauge-invariant variables.

The purpose of Dunsby23 was to further extend this approach to perturbations of Bianchi t
I cosmological models. His conclusion that it should be possible to give a more general arg
for the utility of a covariant formalism relies on a number of observations:~i! that the Stewart–
Walker lemma is valid for any background space-time;~ii ! that one can often consider the sam
gauge-invariant variables in perturbing different universe models;~iii ! that covariant gauge
invariant variables can be easily identified in perturbing homogeneous anisotropic space–
~iv! that the differential equations governing these variables provide a unified treatment f
exact and the linearized theory; and~v! that the covariant extension to Bianchi type V is ve
straightforward. There may also be other important observations that we have failed to no

How do our concepts relate to the covariant method? IfA is a gauge-invariant quantity with
respect to homogeneous background space-times~i.e., if A has the property thatA050), then from
a knowledge ofwRW(@W#) or w~@W#! alone, together with a specification ofF0 , one can compute
A approximately; the approximation takes place by neglecting higher-order terms in the
expression forA @A>e(dA)#. As regards the details, the considerations of Secs. II A and
were partly devoted to a systematic first-order expansion of the covariant gauge-invariant va
A (A050).

We see two main disadvantages in following this covariant approach. First, even in the c
Robertson–Walker background models, the covariant gauge-invariant variables do not pro
complete framework for determining the equivalence classes of perturbations and for iden
all gauge-invariant quantities. Specifically, by means of the definition~2.28! of wRW(@W#), we
obtains0Þ0 and (n0)2/3A05(n0)2/3B056k/R2 (k50,61). Second, the construction of Refs. 2
and 29–31 has the feature that it appears to depend on our choice of (X,qab), and—as already
remarked—in the absence of three-dimensional homogeneous hypersurfaces, simply no
‘‘preferred’’ choice of covariant gauge-invariant variables is available. This poses a pot
serious difficulty for the formulation of linear perturbation theory in general. Fortunately, g
the alternative construction of Banach and Piekarski,8,9 this difficulty can be resolved by modify
ing the definition of a gauge-invariant variable and by formulating the theory via the introdu
of D.

B. Harmonic decompositions for an almost-Bianchi type I universe model

In a spatially flat anisotropic universe, a completely general perturbation of the gravita
field can be written as a linear combination of perturbations associated with individual s
harmonics~for review see Refs. 10–15!. The metric perturbations and the matter perturbations
classified into three types, i.e., scalar, vector, and tensor according to the properties of infinit
gauge transformations. For example, a scalar representation of the perturbation in the contra
metric tensor is given by1

Q5Q0H, Qa5QLHa, D5DLH, ~3.1a!

Fab5
1

3
FTgabH2

1

n
FTgm(aHb)

um , ~3.1b!

whereQ0 , QL , DL , andFT are the expansion coefficients~amplitudes! whose covariant spatia
gradients vanish. Explaining Eqs.~3.1! still further, n is a wave number~not to be confused with
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the number density, also denoted byn! which sets the spatial scale of the perturbationṅ
Þ0,nua50), H is a scalar harmonic independent of time (Ḣ50), andHa is a spatial vector
related toH by

Ha
ª2

1

n
gabHub . ~3.2!

We can take the scalar harmonics as being eigenfunctions of the covariantly defined La
Beltrami operator:34

gab@~Hua! ub#52n2H. ~3.3!

For zero background curvature (k50), H is the usual plane wave.12 Another remark is also in
order. Since we study only the linear perturbations, there is no coupling between different
numbers. Consequently, we drop the eigenvalue indexn from theH’s and omit the symbol(n that
could actually be a summation over a discrete set or an integral over a continuously v
index.29

The variations of expansion coefficients in Eqs.~3.1! under the gauge transformationsW
˜W8ªW1LvF0 are obtained if we decompose the vector fieldv and the infinitesimal pertur-
bationW8 harmonically. Writingqª2wava in the formq5q0H (q0ua50,q̇0Þ0) and denot-
ing by qLHa the scalar part ofqa

ªga
bvb (qLua50,q̇LÞ0), we conclude that the final result fo

the changes in the amplitudes of the metric perturbations is

Q085Q012q̇0 , ~3.4a!

QL85QL1nq01q̇L1
Ḋ

2D
qL , ~3.4b!

DL85DL2Hq02
n

3
qL , ~3.4c!

FT85FT2
3

2
S H1

Ḋ

2D
Dq01nqL , ~3.4d!

whereDªn2.
For the scalar type, only two independent gauge-invariant quantities can be constructe

the metric tensor amplitudes alone, since there are two gauge functions and four metric
amplitudes. In our covariant notation, by inspection of Eqs.~3.4!, these are conveniently taken a

F1ª
1

2
Q012F S 3H1

Ḋ

2D
D 21S DL1

1

3
FTD G ˙

, ~3.5a!

F2ª2QL1
1

n
ḞT22nS 3H1

Ḋ

2D
D 21S DL1

1

3
FTD

2
3

n
F S 3H1

Ḋ

2D
D 21S DL1

1

3
FTD S H1

Ḋ

2D
D G ˙

. ~3.5b!

The recognition thatF1 andF2 are important in the context of an almost-Bianchi type I unive
model goes back at least to Den,12 and Eqs.~3.5a! and~3.5b! are equivalent to the central formula
~3.7! and ~3.8! of his paper. We also defineF by
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Fª

1

n
HF2 . ~3.6!

This quantity is directly associated with the perturbation of the intrinsic curvature of a zero-
hypersurface~i.e., FH in Bardeen’s paper10! in isotropic models:

dab50⇒Ḋ522HD. ~3.7!

As emphasized in the Introduction~see also Ref. 1!, there are a number of importantprima
faciequestions that can be asked of any gauge-invariant formulation of linear perturbation t
In the context of a harmonic decomposition ofW, the following question is particularly relevan
At what stage in the procedure is it ‘‘necessary’’ to make a harmonic decomposition corres
ing to that made by Bardeen10 and Den?12 In particular, must this be done before defining a seA
of gauge-invariant amplitudes, or can the objects1 Ā(x,W) with a propertyĀ(x,W)5Ā(x,W
1LvF0) be constructed first and then a notion of gauge-invariant amplitudes extracted afterw
This is closely related to the question of whether the key quantitiesF1 andF2 are to be intro-
duced before, or after, effectively describing the equivalence classes of perturbations. None
previous approaches to this problem has yielded an argument which entirely carries conv
although Ellis and Matravers16 claim that the splitting of gauge-dependent quantities into sca
vector, and tensor parts is of heuristic value only.

With the foregoing observations to guide us, we now seek an interpretation of how D
variablesF1 and F2 adapt to our formalism, and to this end introduce the following sc
representation ofV, Va, S, andgW +QW :

V5V0H, Va5V1Ha, ~3.8a!

S5S0H, gW +QW 5Q0H. ~3.8b!

It is important to stress that sinceV, Va, S, andgW +QW are gauge-invariant quantities, the amp
tudesV0 , V1 , S0 , andQ0 areautomaticallygauge invariant. Thus the objections raised to h
monic decompositions by Ellis and Matravers,16 that ‘‘there is considerable effort going on a
present into distinguishing if anisotropies are due to scalar, vector, or tensor modes; but this
a fully covariant and gauge-invariant activity,’’ do not apply here. Using the definitions ofV, Va,
S, and gW +QW @see Eq.~2.13d! and Eqs.~4.8! and ~4.11a! of Ref. 1# and analyzing the gauge
dependent objects1 Q, Qa, D, Fab, Va, andM harmonically, it is illustrative to expressF1 andF2

in terms ofV0 , V1 , S0 , andQ0 . After a fair amount of algebraic calculation, we then obtain

F152V01F 1

D
S 3H1

Ḋ

2D
D 21

S0G ˙

, ~3.9a!

F25
1

3H
V11

1

2n
Q01

3

n
FH

D
S 3H1

Ḋ

2D
D 21

S0G ˙

2
1

n
S 3H1

Ḋ

2D
D 21

S0 . ~3.9b!

At first sight, these results seem highly mysterious, for how could one extractF1 andF2 from
V0 , V1 , S0 , andQ0 in a unique way ifF1 andF2 depend on the metric tensor amplitudes alon
The key is the general observation of Sec. II, showing thatw~@W#! determines everything.

In the case of other gauge-invariant amplitudes@see, e.g., Eqs.~3.9! and~3.10! in Ref. 12 or
Eqs. ~30!–~39! in Ref. 14#, the procedure will be the same. First, separatew~@W#! into scalar,
vector, and tensor parts: this will define a complete setAC of gauge-invariant amplitudes. Secon
following the method outlined in Refs. 10–15, construct another set of gauge-invariant ampl
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that describes what one is interested in~e.g., energy density perturbation amplitudes, veloc
perturbation amplitudes, etc.!. Finally, show that this set is obtainable linearly fromAC through
purely algebraic and differential operations.

It is clear from the above analysis that the existence of a setA of gauge-invariant amplitude
(AC,A) is an immediate consequence of the existence ofw~@W#!. Because of this, the issue o
how to interpret decompositions like~3.1! is irrelevant to the geometric~i.e., intrinsic! definition
of an almost-Bianchi type I universe. Put somewhat differently, the general theory of g
invariant perturbations8,9 is a theory offields, not amplitudes. Although in appropriate circum
stances harmonic functions may be available and useful,35 they play no fundamental role in eithe
the formulation or interpretation of the theory.

IV. APPLICATION OF D TO QUANTUM FIELD THEORY IN CURVED SPACE–TIME

Among the issues that can be studied systematicallyonly with this sort of approach, the
examination of the effect of using asemiclassical descriptionin which the background geometr
is taken in the classical framework and the gauge-invariant perturbations are considered aquan-
tum variablespresents a most intriguing challenge. Clearly, there are many ways of perfor
this task, but a very natural way consists in applying the methods of symplectic geometr
geometric quantization.18 For a Lagrangian formulation of covariant field theories,17 the important
object is a ‘‘presymplectic form’’F0°v̄(F0u•,•) defined on the spaceG of field configurations
F0 on X. Such a presymplectic form can be used to construct a real-valued, bilinear functio
two ‘‘infinitesimal perturbations’’dF0PP and dF08PP of F0 , denotedv̄(F0udF0 ,dF08). This
functional satisfies the property that whenF0PG is a solution to the nonlinear field equations a
dF0 anddF08 solve the linearized field equations, thenv̄(F0udF0 ,dF08) is gauge invariant, i.e., we
have

v̄~F0udF01LvF0 ,dF081Lv8F0!5v̄~F0udF0 ,dF08!, ~4.1!

wherev andv8 are two arbitrary36 vector fields onX. In other words, the two-formv̄(•u•,•) fails
to be a symplectic form onGS,G, the space of solutions to the nonlinear field equations, bec
it is degenerate; equivalently, for eachF0PGS , the setPS,P consisting of classical solutions t
Eq. ~2.14! of Ref. 1 is unsuitable to serve as phase space of linear perturbation theory bec
is ‘‘too large.’’

However, with the help of a complete setD of basic gauge-invariant variables, we can try
prove thatv̄(F0udF0 ,dF08) depends only on1 Dªw(@J(dF0)#) andD8ªw(@J(dF08)#), i.e., that
there exists a bilinear functionalv(F0uD,D8) of DPDS,D and D8PDS,D related to
v̄(F0udF0 ,dF08) by

v~F0uD,D8!5v̄~F0udF0 ,dF08!. ~4.2!

If this reduction process gives rise to asymplectic structurev(F0u•,•): DS3DS˜R via
(D,D8)°v(F0uD,D8), it will be possible to find a quantum theory in which the functio
v(F0uD,•) on the ‘‘classical phase space’’

DSª$w~@J~dF0!# !; dF0PPS% ~4.3!

are represented~irreducibly! by operatorsv̂(F0uD,•) satisfying the following commutation rela
tions ~see Ref. 19, p. 37!:

@v̂~F0uD,• !,v̂~F0uD8,• !#52 iv~F0uD,D8! Î , ~4.4!

where Î denotes the identity operator and where we choose units so that\51.
The above discussion has laid out the basic mathematical framework of the geometric f

lation of quantum field theory on a background space–time. In attempting to find concre
amples ofv, our idea is to begin with the usual Hilbert Lagrangian densityLHªA2g(R22L)
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and the background metricsqab of constant curvature~de Sitter and anti-de Sitter space–time!.
However, since the construction ofv for these cases is not immediate, it will be presented i
separate paper.

V. FINAL REMARKS

The notion of a complete set of basic gauge-invariant variables has a number of indep
connotations. One such connotation is that of being a representative of@W#, the equivalence clas
of perturbations. In Sec. IV B of Ref. 1, we denoted this representative of@W# by w~@W#! @see Eq.
~4.15!#. Another connotation of the term ‘‘complete set’’ is one where the appropriate l
algebropartial differential operations onw~@W#! enable us to obtain all gauge-invariant quantiti
There is yet a third connotation of this term arising from consideration of the dynamic equa
governing linearized perturbations. As a matter of fact, ifW satisfies the condition~2.19! of Ref.
1, a deterministic system of propagation equations can be derived that involves onlyw~@W#!.
Conversely, ifD is a classical solution to these propagation equations, one will be able to con
W which satisfies the condition~2.19! of Ref. 1 and is such thatD5w(@W#).

Mathematically, this approach to the gauge problem is a nontrivial example of the ge
scheme that we have described in our two previous papers,8,9 and the new concepts develope
were also applied to theexplicit definition of a complete setD of basic gauge-invariant variable
for the case of an almost-Robertson–Walker universe model.4,5 Details of the description of a ga
of massive collisionless particles are given in Ref. 4, where we study the gauge problem
broader context, i.e., for different general-relativistic models such as the Einstein–Liouville
tem. We can also obtain~see Sec. 5 in Ref. 9! an analytical form ofD for the infinitesimal
perturbation of the metric tensor itself~pure gravity! defined on a fixed background de Sitt
space–time and obeying the linearized empty-space Einstein equations with non-negative
logical constantL; the caseL50 corresponds to linear perturbation theory in Minkowski spac
time.

On these grounds, it was possible to show that when the Stewart–Walker lemma2 does not
provide a completely satisfactory algorithm to describe@W# in terms of$dA%, this difficulty can
be cured by working instead withD. The construction of Ref. 1 gives rise to a significant enlar
ment of the class of gauge-invariant quantities admitted by the theory. Because of this, our m
not only generalizesthe covariant formalism of Ellis and Bruni,6 but alsoexplains in a fully
covariant and gauge-invariant manner what Bardeen’s major paper10 is about. Moreover, the
existence ofD fits in well with the Hájı́ček–Isham view21 of quantum field theory thatonly
gauge-invariant objects should be quantized. Finally, it appears that our main ideas are b
modifiable. For example, we can introduce the notion of an ‘‘infinitesimal gauge-invariant
able’’ for all Lagrangian field theories with local symmetries. Roughly speaking,17 a local sym-
metry is a field variation on space–time about the field configurationF—such as the gauge
transformations of Yang–Mills theory or the diffeomorphisms of general relativity—that keep
action S@F# invariant @see Eq.~2.1! in Ref. 17# and that is ‘‘local’’ in a suitable sense. Thi
definition is certainly required for the deepest understanding of the gauge problem, and wo
expected to be capable of yielding a natural generalization of the notion of a completeD
previously obtained ‘‘only’’ for the case of diffeomorphism-invariant, covariant field theories8,9

To sum, the importance ofD cannot be overemphasized. The information contained i
complete set is all-inclusive—it is equivalent to specifying all equivalence classes of pert
tions, to constructing all gauge-invariant variables, and to obtaining all imaginable types o
sentations of linear perturbation theory. If the set of basic gauge-invariant variables is k
there remains not a single perturbational attribute that is not completely and precisely deter

ACKNOWLEDGMENTS

I am grateful to Dr. S. Piekarski for his continuous interest in my work and many discuss
Also, I would like to thank the anonymous referee for a critical reading of the original manus
and valuable suggestions on clarifying the exposition.
                                                                                                                



y-

R.

4010 J. Math. Phys., Vol. 40, No. 8, August 1999 Zbigniew Banach

                    
1Z. Banach, J. Math. Phys.40, 3978~1999!.
2J. M. Stewart and M. Walker, Proc. R. Soc. London, Ser. A341, 49 ~1974!.
3R. M. Wald,General Relativity~University of Chicago Press, Chicago, 1984!.
4Z. Banach and S. Piekarski, Gen. Relativ. Gravit.28, 1335~1996!.
5Z. Banach and S. Piekarski, Ann. Inst. Henri Poincare´: Phys. Theor.65, 273 ~1996!.
6G. F. R. Ellis and M. Bruni, Phys. Rev. D40, 1804~1989!.
7We define these variables in Sec. III A and in the Introduction of Ref. 1.
8Z. Banach and S. Piekarski, Int. J. Theor. Phys.36, 1787~1997!.
9Z. Banach and S. Piekarski, Int. J. Theor. Phys.36, 1817~1997!.

10J. M. Bardeen, Phys. Rev. D22, 1882~1980!.
11K. Tomita and M. Den, Phys. Rev. D34, 3570~1986!.
12M. Den, Prog. Theor. Phys.77, 653 ~1987!.
13M. Den, Prog. Theor. Phys.79, 1110~1988!.
14H. Noh and J. Hwang, Phys. Rev. D52, 1970~1995!.
15H. Noh and J. Hwang, Phys. Rev. D52, 5643~1995!.
16G. F. R. Ellis and D. R. Matravers, Gen. Relativ. Gravit.27, 777 ~1995!.
17J. Lee and R. M. Wald, J. Math. Phys.31, 725 ~1990!.
18N. M. J. Woodhouse,Geometric Quantization~Clarendon, Oxford, 1991!, 2nd ed.
19R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics~University of Chicago

Press, Chicago, 1994!.
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Gödel-type space–times in induced matter gravity theory
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Five-dimensional~5D! generalized Go¨del-type manifolds are examined in the light
of the equivalence problem techniques, as formulated by Cartan. The necessary and
sufficient conditions for local homogeneity of these 5D manifolds are derived. The
local equivalence of these homogeneous Riemannian manifolds is studied. It is
found that they are characterized by three essential parametersk, m2, andv: iden-
tical triads (k,m2,v) correspond to locally equivalent 5D manifolds. An irreducible
set of isometrically nonequivalent 5D locally homogeneous Riemannian general-
ized Gödel-type metrics are exhibited. A classification of these manifolds based on
the essential parameters is presented, and the Killing vector fields as well as the
corresponding Lie algebra of each class are determined. It is shown that the gen-
eralized Go¨del-type 5D manifolds admit maximal group of isometryGr with r
57, r 59, or r 515 depending on the essential parametersk, m2, and v. The
breakdown of causality in all these classes of homogeneous Go¨del-type manifolds
are also examined. It is found that in three out of the six irreducible classes the
causality can be violated. The unique generalized Go¨del-type solution of the in-
duced matter~IM ! field equations is found. The question as to whether the induced
matter version of general relativity is an effective therapy for these types of causal
anomalies of general relativity is also discussed in connection with a recent work
by Romero, Tavakol, and Zalaletdinov. ©1999 American Institute of Physics.
@S0022-2488~99!00108-5#

I. INTRODUCTION

The field equations of the general relativity theory, which in the usual notation are writt
the form

Gab5kTab , ~1.1!

relate the geometry of the space–time to its source. The general relativity theory, howeve
not prescribe the various forms of matter, and takes over the energy-momentum tensorTab from
other branches of physics. In this sense, general relativity~GR! is not a closed theory. The
separation between the gravitational field and its source has been often considered as on
sirable feature of GR.1–3

Recently, Wesson and co-workers4,5 have introduced a new approach to GR in which t
matter and its role in the determination of the space–time geometry are given from a p
five-dimensional geometrical point of view. In their five-dimensional~5D! version of general
relativity the field equations are given by

ĜAB50. ~1.2!

a!Electronic mail: lenyj@cbpf.br
b!Electronic mail: reboucas@cbpf.br
c!Electronic mail: teixeira@cbpf.br
40110022-2488/99/40(8)/4011/17/$15.00 © 1999 American Institute of Physics
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Henceforth, the five-dimensional geometrical objects are denoted by overhats, and Latin lett
5D indices and run from 0 to 4. In this new approach to GR the 5D vacuum field equations~1.2!
give rise to both curvature and matter in four dimensions. Indeed, it can be shown5 that it is always
possible to rewrite the 15 field equations~1.2! as a set of equations such that 10 of which a
precisely Einstein’s field equations~1.1! in four dimensions with aninducedenergy-momentum

kTab5
fa;b

f
2

«

2f2 H f* gab*

f
2gab** 1ggdgag* gbd* 2

ggdggd* gab*

2
1

gab

4
@g* gdggd* 1~ggdggd* !2#J ,

~1.3!

where the Greek letters denote 4D indices and run from 0 to 3,g44[«f2 with «561, fa

[]f/]xa, a star denotes]/]x4, and a semicolon denotes the usual 4D covariant deriva
Obviously, the remaining five equations~a wave equation and four conservation laws! are auto-
matically satisfied by any solution of the 5D vacuum equations~1.2!. Thus, not only the matter bu
also its role in the determination of the geometry of the 4D space–time can be considered t
a five-dimensional geometrical origin. This approach unifies the gravitational field with its so
~not just with a particular field! within a purely 5D geometrical framework. This 5D version
general relativity is often referred to as induced matter gravity theory~IM gravity theory, for
short!. The IM theory has become a focus of a recent research field.6 The basic features of the
theory have been explored by Wesson and others,7–11whereas the implications for cosmology an
astrophysics have been investigated by a number of researchers.12–32 For a fairly updated list of
references on IM gravity theory and related issues we refer the reader to Ref. 6.

In general relativity, the causal structure of 4D space–time has locally the same qual
nature as the flat space–time of special relativity—causality holds locally. The global que
however, is left open and significant differences can occur. On large scale, the violati
causality is not excluded. Actually, it has long been known that there are solutions to the Ei
field equations which possess causal anomalies in the form of closed timelike curves. The f
solution found by Go¨del33 in 1949 might not be the first, but it certainly is the best known exam
of a cosmological model which makes it apparent that general relativity, as it is normally fo
lated, does not exclude the existence of closed timelike world lines, despite its Lorentzian
acter which leads to the local validity of the causality principle. Owing to its striking proper
Gödel’s model has a well-recognized importance and has to a certain extent motivated the
tigations on rotating cosmological Go¨del-type models and on causal anomalies in the framew
of general relativity34–52 and other theories of gravitation.53–63

Two recent articles have been concerned withfive-dimensionalGödel-type space–times. Firs
in Ref. 64 the main geometrical properties of five-dimensional Riemannian manifolds end
with a 5D counterpart of the 4D Go¨del-type metric of general relativity were investigated. Amo
several results, an irreducible set of isometrically nonequivalent 5D homogeneous~locally! Gödel-
type metrics were exhibited. Therein it was also shown that, apart from the degenerated¨del-
type metric, in all classes of homogeneous Go¨del-type geometries there is breakdown of causal
As no use of any particular field equations was made in this first paper, its results hold for a
Gödel-type manifolds regardless of the underlying 5D Kaluza–Klein gravity theory. In the se
article65 the classes of 5D Go¨del-type space–times discussed in Ref. 64 were investigated fro
more physical viewpoint. Particularly, the question was examined as to whether the in
matter theory of gravitation permits the family of noncausal solutions of Go¨del-type metrics
studied in Ref. 64. It was shown that the IM gravity excludes this class of 5D Go¨del-type non-
causal geometries as solution to its field equations.

In both articles64,65 the 5D Gödel-type family of metrics discussed is the simplest 5D class
geometries for which the sectionu5const~u is the extra coordinate! is the 4D Go¨del-type metric
of general relativity. Actually, the 5D Go¨del-type line element of both papers does not depend
the fifth coordinateu, and therefore, as regards the IM theory, a radiationlike equation of sta
an underlying assumption of both articles. However, it is well known6 that the dependence of th
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5D metric on the extra coordinate is necessary to ensure that the 5D IM theory permi
induction of matter of a very general type in four dimensions.

In this work, on the one hand, we shall examine the main geometrical properties of a cl
generalizedGödel-type geometries in which the 5D metric depends on the fifth coordinate,
eralizing therefore the results found in Ref. 64. On the other hand, we shall also investiga
question as to whether the induced matter gravity theory, as formulated by Wesso
co-workers,4,5 admits these generalized Go¨del-type metrics as solutions to its field equations, th
also extending the investigations of Ref. 65.

The outline of this article is as follows. In the next section we present a summary of
important prerequisites for Sec. III, where using the equivalence problem techniques as form
by Cartan66 we derive the necessary and sufficient conditions for local homogeneity of this
of 5D generalized Go¨del-type manifolds. In Sec. III we also exhibit an irreducible set of isome
cally nonequivalent homogeneous generalized Go¨del-type metrics. In Sec. IV we discuss th
integration of the Killing equations and present the Killing vector fields as well as the corresp
ing Lie algebra for all homogeneous generalized Go¨del-type metrics. In the last section we exam
ine whether the IM field equations permit solutions of this generalized Go¨del-type class of geom
etries. The unique solution of this type is found therein. The question as to whether the IM v
of general relativity rules out the existence of closed timelike curves of Go¨del type is also dis-
cussed~Sec. V! in connection with a recent paper by Romeroet al.67

II. PREREQUISITES

The arbitrariness in the choice of coordinates in the metric theories of gravitation gives r
the problem of deciding whether or not two manifolds whose metricsg andg̃ are given explicitly
in terms of coordinates, viz.,

ds25gmndxmdxn and ds̃25g̃mndx̃mdx̃n, ~2.1!

are locally isometric. This is the so-called equivalence problem~see Ref. 66 for the local equiva
lence ofn-dimensional Riemannian manifolds, and Refs. 68 and 69 for the special casen54 of
general relativity!.

The Cartan solution66 to the equivalence problem for Riemannian manifolds can be sum
rized as follows. Twon-dimensional Lorentzian Riemannian manifoldsMn andM̃n are locally
equivalent if there exist coordinate and generalizedn-dimensional Lorentz transformations suc
that the followingalgebraicequations relating the frame components of the curvature tensor
their covariant derivatives:

RA
BCD5R̃A

BCD ,

RA
BCD;M1

5R̃A
BCD;M1

,

RA
BCD;M1M2

5R̃A
BCD;M1M2

, ~2.2!

]

RA
BCD;M1 ...M p11

5R̃A
BCD;M1 ...M p11

are compatible asalgebraicequations in (xm,jA). Here and in what follows we use a semicolo
to denote covariant derivatives. Note thatxm are coordinates on the manifoldMn while jA

parametrize the group of allowed frame transformations@n-dimensional generalized Lorentz grou
usually denoted70 by O(n21,1)]. Reciprocally, Eqs.~2.2! imply local equivalence between th
n-dimensional manifoldsMn andM̃n .
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In practice, a fixed frame is chosen to perform the calculations so that only coordinates a
in the components of the curvature tensor, i.e., there is no explicit dependence on the para
jA of the generalized Lorentz group.

Another important practical point to be considered, once one wishes to test the local e
lence of two Riemannian manifolds, is that before attempting to solve Eqs.~2.2! one can extract
and compare partial pieces of information at each step of differentiation as, for exampl
number$t0 ,t1 ,...,tp% of functionally independent functions of the coordinatesxm contained in the
corresponding set

I p5$RA
BCD ,RA

BCD;M1
,RA

BCD;M1M2
,...,RA

BCD;M1M2 ...M p
%, ~2.3!

and the isotropy subgroup$H0 ,H1 ,...,Hp% of the symmetry groupGr under which the set corre
spondingI p is invariant. They must be the same for each stepq50,1,...,p if the manifolds are
locally equivalent.

In practice it is also important to note that in calculating the curvature and its cova
derivatives, in a chosen frame, one can stop as soon as one reaches a step at whichpth
derivatives~say! are algebraically expressible in terms of the previous ones, and the res
isotropy group~residual frame freedom! at that step is the same isotropy group of the previo
step, i.e.,Hp5H (p21) . In this case further differentiation will not yield any new piece of info
mation. Actually, ifHp5H (p21) and, in a given frame, thepth derivative is expressible in term
of its predecessors, for anyq.p the qth derivatives can all be expressed in terms of
0th,1st,...,(p21)th derivatives.66,69

Since there aretp essential coordinates, in five dimensions clearly 52tp are ignorable, so the
isotropy group will have dimensions5dim(Hp), and the group of isometries of the metric w
have dimensionr given by ~see Ref. 66!

r 5s152tp , ~2.4!

acting on an orbit with dimension

d5r 2s552tp . ~2.5!

III. HOMOGENEITY AND NONEQUIVALENT METRICS

The line element of the five-dimensionalgeneralizedGödel-type manifoldsM5 we are con-
cerned with is given by

dŝ25dt212H~x!dtdy2dx22G~x!dy22F̃2~ ũ!2~dz̃21dũ2!, ~3.1!

whereH(x), G(x), andF̃(ũ) are arbitrary real functions. By a suitable choice of coordinates
line element~3.1! can be brought into the form

dŝ25@dt1H~x!dy#22dx22D2~x!dy22F2~u!dz22du2, ~3.2!

whereD2(x)5G1H2 andu clearly is a new fifth coordinate.
At an arbitrary point ofM5 one can choose the following set of linearly independent o

forms ÛA:

Û05dt1H~x!dy, Û15dx, Û25D~x!dy, Û35F~u!dz, Û45du, ~3.3!

such that the Go¨del-type line element~3.2! can be written as

dŝ25ĥABÛAÛB5~Û0!22~Û1!22~Û2!22~Û3!22~Û4!2. ~3.4!
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Here and in what follows capital letters are 5D Lorentz frame indices and run from 0 to 4; the
raised and lowered with Lorentz matricesĥAB5ĥAB5diag(11,21,21,21,21), respectively.

Using as input the one-forms~3.3! and the Lorentz frame~3.4!, the computer algebra packag
CLASSI,6,71 e.g., gives the following nonvanishing Lorentz frame componentsR̂ABCD of the cur-
vature:

R̂01015R̂020252
1

4 S H8

D D 2

, ~3.5!

R̂01125
1

2 S H8

D D 8
, ~3.6!

R̂12125
D9

D
2

3

4 S H8

D D 2

, ~3.7!

R̂34345
F̈

F
, ~3.8!

where the prime and the dot denote, respectively, derivative with respect tox andu.
For 5D ~local! homogeneity from Eq.~2.5! one must havetq50 for q50,1,...,p, that is, the

number of functionally independent functions of the coordinatesxm in the setI p must be zero.
Therefore, from Eqs.~3.5–3.8! we conclude that for 5D homogeneity it is necessary that

H8

D
5const[22v, ~3.9!

D9

D
5const[m2, ~3.10!

F̈

F
5const[k. ~3.11!

The above necessary conditions are also sufficient for 5D local homogeneity. Indeed,
these conditions the nonvanishing frame components of the curvature reduce to

R̂01015R̂020252v2, ~3.12!

R̂12125m223v2, ~3.13!

R̂34345k. ~3.14!

Following Cartan’s method for the local equivalence, we calculate the first covariant derivat
the Riemann tensor. One obtains the following non-null covariant derivatives of the curvat

R̂0112;15R̂0212;25v~m224v2!. ~3.15!

Clearly, regardless of the value of the constantk, the first covariant derivative of the curvature
algebraically expressible in terms of the Riemann tensor. Moreover, the number of functio
independent functions of the coordinatesxm among the components of the curvature and its fi
covariant derivative is zero (t05t150). As far as the dimension of the residual isotropy group
concerned, we distinguish three different classes of locally homogeneous 5D generalized¨del-
type curved manifolds, according to the relevant parametersm2, v, andk, namely,72
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~1! dim(H0)5dim(H1)52 when

~a! vÞ0, any realk, m2Þ4v2;
~b! v50, kÞ0, m2Þ0;

~2! dim(H0)5dim(H1)54 when

~a! vÞ0, any realk, m254v2;
~b! v50, k50, m2Þ0;
~c! v50, kÞ0, m250;

~3! dim(H0)5dim(H1)510 whenv5k5m250.
Thus, from Eqs.~2.4! and ~2.5! one finds that the locally homogeneous 5D generali

Gödel-type manifolds admit a~local! Gr , with eitherr 57, r 59, or r 515 acting on an orbit of
dimensiond55, that is, on the manifoldM5 .

The above results can be collected together in the following theorems:
Theorem 1: The necessary and sufficient conditions for a five-dimensional genera

Gödel-type manifold to be locally homogeneous are those given by Eqs. (3.9–3.11).
Theorem 2: The five-dimensional homogeneous generalized Go¨del-type manifolds are locally

characterized by three independent real parameters, v, k, and m2: identical triads (v,k,m2)
specify locally equivalent manifolds.

Theorem 3: The five-dimensional locally homogeneous generalized Go¨del-type manifolds
admit group of isometry Gr with

~i! r 57 if either of the above conditions (1a) and (1b) is fulfilled;
~ii ! r 59 if one of the above set of conditions (2a), (2b), and (2c) is fulfilled;and
~iii ! r 515 if the above condition (3) is satisfied.

We shall now focus our attention on the irreducible set of isometrically nonequivalent h
geneous generalized Go¨del-type metrics. These nonequivalent classes of metrics can be obt
by a similar procedure to that used by Rebouc¸as and Tiomno,41 namely by integrating Eqs
~3.9–3.11!, and eliminating through coordinate transformations the nonessential integration
stants taking into account the relevant parameters according to the above Theorem 2. For t
of brevity, however, we shall only present the irreducible classes without going into deta
calculations. It turns out that one ought to distinguish six classes of metrics according
following.

Class I: m2.0, any realk,vÞ0. The line element for this class of homogeneous general
Gödel-type manifolds can always be brought@in cylindrical coordinates (r ,f,z)] into the form

dŝ25@dt1H~r !df#22D2~r !df22dr22F2~u!dz22du2 ~3.16!

with the metric functions given by

H~r !5
2v

m2 @12cosh~mr!#, ~3.17!

D~r !5m21 sinh~mr!, ~3.18!

F~u!5H a21 sin~au! if k52a2,0,
u if k50,
a21 sinh~au! if k5a2.0.

~3.19!

According to Theorem 3, the possible isometry groups for this class are eitherG7 ~for m2

Þ4v2) or G9 ~whenm254v2), irrespective of the value ofk.
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Class II: m250, any realk,vÞ0. The line element for this class can be brought into the fo
~3.16!, with the metric functionF(u) given by ~3.19!, but now the functionsH(r ) andD(r ) are
given by

H~r !52vr 2 and D~r !5r . ~3.20!

For this class from Theorem 3 there is a groupG7 of isometries, regardless of the value ofk.
Class III: m2[2m2,0, any realk,vÞ0. Similarly for this class the line element reduces

~3.16! with F(u) given by ~3.19! and

H~r !5
2v

m2 @cos~mr !21#, ~3.21!

D~r !5m21 sin~mr !. ~3.22!

From Theorem 3, regardless of the value ofk for this class there is a groupG7 of isometries.
Class IV: m2Þ0, any realk, andv50. We shall refer to this class as degenerated Go¨del-type

manifolds, since the cross term in the line element, related to the rotationv in 4D Gödel model,
vanishes. By a trivial coordinate transformation one can makeH50 with D(r ) given, respec-
tively, by ~3.18! or ~3.22! depending on whetherm2.0 or m2[2m2,0. The functionF(u)
depends on the sign ofk and is again given by~3.19!. For this class according to Theorem 3 o
may have either aG7 for kÞ0, or aG9 for k50.

Class V: m250, kÞ0, andv50. By a trivial coordinate transformation one can makeH
50, D5r , and F(u)5a21 sin (au) or F(u)5a21 sinh (au) depending on whetherk,0 or k
.0, respectively. From Theorem 3 there is a groupG9 of isometries.

Class VI: m250, k50, andv50. From~3.12–3.14! this corresponds to the 5D flat manifold
Therefore, one can makeH50, D(r )5r , andF(u)5u. Theorem 3 ensures that there is a gro
G15 of isometries.

IV. KILLING VECTOR FIELDS

In this section we shall present the infinitesimal generators of isometries of the 5D hom
neous generalized Go¨del-type manifolds, whose line element~3.16! can be brought into the

Lorentzian form~3.4! with ÛA given by

Û05dt1H~r !df, Û15dr, Û25D~r !df, Û35F~u!dz, Û45du, ~4.1!

where the functionsH(r ), D(r ), andF(u) depend upon the essential parametersm2, k, andv
according to the above classes of locally homogeneous manifolds.

Denoting the coordinate components of a generic Killing vector fieldK̂ by K̂u

[(Q,R,S,Z̄,U), whereQ, R, S, Z̄, andU are functions of all coordinatest,r ,f,z,u, then the 15
Killing equations

K̂ ~A;B![K̂A;B1K̂B;A50 ~4.2!

can be written in the Lorentz frame~3.4!–~4.1! as

Tt50, Tu2Ut50, ~4.3!

Rr50, Ur1Ru50, ~4.4!

Uu50, ~4.5!

D~Tr2Rt!2Hr P50, ~4.6!
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DPu1Uf2HUt50, ~4.7!

Tf1HrR2DPt50, ~4.8!

Rf2HRt2Dr P1DPr50, ~4.9!

Pf2HPt1DrR50, ~4.10!

Tz2FZt50, ~4.11!

FZr1Rz50, ~4.12!

Zz1UFu50, ~4.13!

Uz1FZu2ZFu50, ~4.14!

DPz1F~Zf2HZt!50, ~4.15!

where the subscripts denote partial derivatives, and where we have made

T[HS1Q, P[DS, and Z[FZ̄ ~4.16!

to make easier the comparison and the use of the results obtained in Ref. 42. To this end w
that with the changesu˜z andU˜Z the above equations~4.3–4.10! are formally identical to the
Killing equations~4!–~11! of Ref. 42. However, in the equations~4.3–4.10! the functionsT,R,P,U
depend additionally on the fifth coordinateu. Taking into account this similitude, the integratio
of the Killing equations~4.3–4.15! can be obtained in two steps as follows. First, by analogy w
~4!–~11! of Ref. 42 one integrates~4.3–4.10!, but at this step instead of the integration consta
one has integration functions of the fifth coordinateu. Second, one uses the remaining equatio
~4.11–4.15! to achieve explicit forms for these integration functions and to obtain the last c
ponentU of the generic Killing vectorK.

We have used the above two-step procedure to integrate the Killing equations~4.3–4.15! for
all classes of homogeneous generalized Go¨del-type manifolds. However, for the sake of brevit
we shall only present the Killing vector fields and the corresponding Lie algebras without g
into details of calculations, which can be verified by using, for example, the computer al
programKILLNF , written in CLASSI by Åman.71

Class I: m2.0, any realk,vÞ0. In the integration of the Killing equation for this gener
class one is led to distinguish two different subclasses of solutions depending on whethm2

Þ4v2 or m254v2. We shall refer to these subclasses as classes Ia and Ib, respectively.
Class Ia: m2.0, any realk,m2Þ4v2. In the coordinate basis in which~3.16! is given, a set

of linearly independent Killing vector fieldsKN ~N is an enumerating index! is given by

K15] t , K25
2v

m
] t2m]f , ~4.17!

K352
H

D
sinf] t1cosf] r2

Dr

D
sinf]f , ~4.18!

K452
H

D
cosf] t2sinf] r2

Dr

D
cosf]f , ~4.19!

K55sinz]u1
Fu

F
cosz]z , ~4.20!
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K65cosz]u2
Fu

F
sinz]z , ~4.21!

K75]z . ~4.22!

The Lie algebra has the following nonvanishing commutators:

@K2 , K3#52mK4 , @K2 , K4#5mK3 , @K3 , K4#5mK2 , ~4.23!

@K5 , K6#52kK7 , @K5 , K7#52K6 , @K6 , K7#5K5 . ~4.24!

Therefore the corresponding algebra isLIa5Lk% t % so(2,1). Here and in what follows the sym
bols % and� denote and direct and semidirect sum of subalgebras, and the subalgebraLk is so~3!
for k,0, so~2,1! for k.0, andt2

�so(2) fork50. For the present classLk is generated byK5 ,
K6 , andK7 , the symbolt is associated to the time translationK1 , and finally the infinitesimal
generators of subalgebra so~2,1! areK2 , K3 , andK4 .

Class Ib: m254v2, any realk,vÞ0. For this class the Killing vector fields are

K15] t , K25] t2m]f , ~4.25!

K352
H

D
sinf] t1cosf] r2

Dr

D
sinf]f , ~4.26!

K452
H

D
cosf] t2sinf] r2

Dr

D
cosf]f , ~4.27!

K552
H

D
cos~mt1f!] t1sin~mt1f!] r1

1

D
cos~mt1f!]f , ~4.28!

K652
H

D
sin~mt1f!] t2cos~mt1f!] r1

1

D
sin~mt1f!]f , ~4.29!

K75sinz]u1
Fu

F
cosz]z , ~4.30!

K85cosz]u2
Fu

F
sinz]z , ~4.31!

K95]z , ~4.32!

whose Lie algebra is given by

@K1 , K5#52mK6 , @K1 , K6#5mK5 , @K2 , K3#52mK4 , ~4.33!

@K2 , K4#5mK3 , @K3 , K4#5mK2 , @K5 , K6#5mK1 , ~4.34!

@K7 , K8#52kK9 , @K7 , K9#52K8 , @K8 , K9#5K7 . ~4.35!

So, the corresponding algebra for this case isLIb5Lk% so(2,1)% so(2,1). As in the previous class
the subalgebraLk depends on the sign ofk, and here is generated byK7 , K8 , andK9 . The two
subalgebras so~2,1! are generated by the Killing vector fieldsK1 ,K5 ,K6 andK2 ,K3 ,K4 .

Class II: m250, any realk,vÞ0. For this class the Killing vector fields turn out to be th
following:
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K15] t , K25]f , ~4.36!

K352vr sinf] t2cosf] r1
1

r
sinf]f , ~4.37!

K452vr cosf] t1sinf] r1
1

r
cosf]f , ~4.38!

K55sinz]u1
Fu

F
cosz]z , ~4.39!

K65cosz]u2
Fu

F
sinz]z , ~4.40!

K75]z . ~4.41!

The Lie algebra has the following nonvanishing commutators:

@K2 , K3#5K4 , @K2 , K4#52K3 , @K3 , K4#52vK1 , ~4.42!

@K5 , K6#52kK7 , @K5 , K7#52K6 , @K6 , K7#5K5 . ~4.43!

Therefore, the corresponding algebra for this case isLII5Lk%L4 . The subalgebraL4 is generated
by K1 , K2 , K3 , andK4 . This algebraL4 is soluble and does not contain Abelian 3D subalgeb
it is classified as type III withq50 by Petrov.73 The subalgebraLk is the same as the previou
classes and is generated byK5 , K6 , andK7 .

Class III: m2[2m2,0, any realk,vÞ0. For this class the set of linearly independent Killin
vector fields we have found is given by

K15] t , K25
2v

m
] t1m]f , ~4.44!

K352
H

D
sinf] t1cosf] r2

Dr

D
sinf]f , ~4.45!

K452
H

D
cosf] t2sinf] r2

Dr

D
cosf]f , ~4.46!

K55sinz]u1
Fu

F
cosz]z , ~4.47!

K65cosz]u2
Fu

F
sinz]z , ~4.48!

K75]z . ~4.49!

The Lie algebra has the following nonvanishing commutators:

@K2 , K3#5mK4 , @K2 , K4#52mK3 , @K3 , K4#5mK2 , ~4.50!

@K5 , K6#52kK7 , @K5 , K7#52K6 , @K6 , K7#5K5 . ~4.51!
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Thus, the corresponding algebra for this case isLIII 5Lk% t % so(3). Here t is associated to the
Killing vector field K1 , whereas the subalgebra so~3! corresponds toK2 , K3 , andK4 . AgainLk

is generated byK5 , K6 , andK7 .
Class IV: m2Þ0, any realk,v50. In the integration of the Killing equation for this gener

class one is led to distinguish two different subclasses according tokÞ0 or k50. We shall denote
these subclasses as classes IVa and IVb, respectively.

Class IVa: m2Þ0, kÞ0, v50. This class corresponds to the so-called degenerated G¨del-
type manifolds. One obtains for this class the following Killing vector fields:

K15] t , K25]f , ~4.52!

K35cosf] r2
Dr

D
sinf]f , ~4.53!

K452sinf] r2
Dr

D
cosf]f , ~4.54!

K55sinz]u1
Fu

F
cosz]z , ~4.55!

K65cosz]u2
Fu

F
sinz]z , ~4.56!

K75]z , ~4.57!

whereD(r )5(1/m)sinhmr for m2.0, or D(r )5(1/m)sinmr for m2[2m2,0, and the function
F(u) for kÞ0 is given by~3.19!. The Lie algebra has the following nonvanishing commutato

@K2 , K3#5K4 , @K2 , K4#52K3 , @K3 , K4#52m2K2 , ~4.58!

@K5 , K6#52kK7 , @K5 , K7#52K6 , @K6 , K7#5K5 , ~4.59!

where one should substitute2m2 by m2 if m2,0. So, the corresponding Lie algebra isLIVa

5Lk% t %Lm , whereLm is so~2,1! for m2.0, and so~3! for m252m2,0. The subalgebraLk

~generated byK5 , K6 , andK7) is so~3! for k,0, and so~2,1! for k.0. Againt is associated to the
Killing vector field K1 .

Class IVb: m2Þ0, k50, v50. We shall refer to this class as doubly degenerated Go¨del-type
manifolds. One obtains for this class the following Killing vector fields:

K15] t , K25]f , ~4.60!

K35cosf] r2
Dr

D
sinf]f , ~4.61!

K452sinf] r2
Dr

D
cosf]f , ~4.62!

K55sinz]u1
1

u
cosz]z , ~4.63!

K65cosz]u2
1

u
sinz]z , ~4.64!
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K75]z , ~4.65!

K85u sinz] t1t sinz]u1
1

u
t cosz]z , ~4.66!

K95u cosz] t1t cosz]u2
1

u
t sinz]z , ~4.67!

where againD(r )5(1/m)sinhmr for m2.0, or D(r )5(1/m)sinmr for m2[2m2,0.
The Lie algebra has the following nonvanishing commutators:

@K2 , K3#5K4 , @K2 , K4#52K3 , @K3 , K4#52m2K2 , ~4.68!

@K5 , K7#52K6 , @K6 , K7#5K5 , @K1 , K8#5K5 , ~4.69!

@K1 , K9#5K6 , @K5 , K8#5K1 , @K6 , K9#5K1 , ~4.70!

@K7 , K8#5K9 , @K7 , K9#52K8 , @K8 , K9#52K7 , ~4.71!

where one should substitute2m2 by m2 if m2,0. So, the corresponding Lie algebra isLIVb

5t3
�so(2,1)%Lm , whereLm is generated byK2 , K3 , K4 , and is either so~2,1! or so~3! depend-

ing on whether m2.0 or m252m2,0. The subalgebrat3
�so(2,1) is generated by

K1 ,K5 ,K6 ,K7 ,K8 ,K9 .
Class V: m250, kÞ0, v50. A set of linearly independent Killing vector field for this class

K15] t , K25]f , ~4.72!

K35cosf] r2
1

r
sinf]f , ~4.73!

K452sinf] r2
1

r
cosf]f , ~4.74!

K55sinz]u1
Fu

F
cosz]z , ~4.75!

K65cosz]u2
Fu

F
sinz]z , ~4.76!

K75]z , ~4.77!

K85r sinf] t1t sinf] r1
1

r
t cosf]f , ~4.78!

K95r cosf] t1t cosf] r2
1

r
t sinf]f , ~4.79!

whereF(u) depends upon the sign ofk and is given by Eq.~3.19!.
The Lie algebra has the following nonvanishing commutators:

@K2 , K3#5K4 , @K2 , K4#52K3 , @K5 , K6#52kK7 , ~4.80!

@K5 , K7#52K6 , @K6 , K7#5K5 , @K1 , K8#52K4 , ~4.81!
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@K1 , K9#5K3 , @K4 , K8#52K1 , @K3 , K9#5K1 , ~4.82!

@K2 , K8#5K9 , @K2 , K9#52K8 , @K8 , K9#52K2 . ~4.83!

So, the corresponding Lie algebra isLV5t3
�so(2,1)%Lk , whereLk is generated byK5 , K6 ,

K7 , and is either so~2,1! or so~3! depending on whetherk.0 or k,0. The subalgebrat3
�so(2,1)

is generated byK1 ,K2 ,K3 ,K4 ,K8 ,K9 .
Class VI: m250, k50, v50. From~3.12!–~3.14! this case corresponds to the 5D flat ma

fold whose Lie algebra isLVI5so(4,1) since it clearly has the well-known 15 Killing vector field
namely five translations, four space–time rotations, and six space rotations.

It is worth noting that none of the above Lie algebras is semi-simple, but some of
subalgebras are. Besides, most of the simple subalgebras are noncompact. The 3D subal
~3! present in all classes is compact, though.

The number of Killing vector fields we have found for each of the above six classes m
explicit that the 5D locally homogeneous generalized Go¨del-type manifolds admit a group o
isometryG7 when~1a!: m2Þ4v2, any realk,vÞ0, or when~1b!: m2Þ0, kÞ0, v50. GroupsG9

of isometry occur when~2a!: m254v2, any realk,vÞ0, or ~2b!: m2Þ0, k50, v50, or when
~2c!: m250, kÞ0, v50. Clearly whenm25v5k50 there isG15. These possible groups are
agreement with Theorem 3 of the previous section. Actually the integration of the Killing e
tions constitutes a different way of deriving that theorem. Furthermore, these equations also
that the isotropy subgroupH of Gr is such that dim(H)52 when the above conditions~1a! and
~1b! are satisfied, while the conditions~2a!–~2c! lead to dim(H)54, also in agreement with the
previous section. Clearly dim(H)510 whenm25v5k50.

V. CAUSAL ANOMALIES AND FINAL REMARKS

In this section we shall initially be concerned with the problem of causal anomalies in
generalized Go¨del-type manifolds. Then we proceed by examining whether the IM gravity all
solutions of generalized Go¨del-type metrics~3.16!. Finally, we conclude by addressing to th
general question as to whether the IM gravity theory rules out the 4D noncausal Go¨del-type
solutions to Einstein’s equations of general relativity.

In the first three of the six classes of homogeneous generalized Go¨del-type manifolds we have
discussed in Sec. III, there are closed timelike curves. Indeed, the analysis made in a p
paper64 can be easily extended to the generalized 5D Go¨del-type manifolds of the present article
To this end, we write the line element~3.16! in the form

ds25dt212H~r !dtdf2dr22G~r !df22F2~u!dz22du2, ~5.1!

where G(r )5D22H2 and (r ,f,z) are cylindrical coordinates. Now, the existence of clos
timelike curves of the Go¨del-type depends on the behavior ofG(r ). Indeed, ifG(r ),0 for a
certain range ofr (r 1,r ,r 2 , say!, Gödel’s circles74 u,t,z,r 5const are closed timelike curves

Since one can always makeH50 for the generalized Go¨del-type manifolds of classes IV, V
and VI, thenG(r ).0 for all r .0. Thus there are no closed timelike Go¨del’s circles in these
classes of manifolds.

On the other hand, following the above-outlined reasoning it is easy to show~see Ref. 64 for
details! that for each of the remaining three classes~classes I–III! one can always find a critica
radius r c such that for allr .r c one hasG(r ),0, making clear that there are closed timeli
curves in these families of homogeneous generalized Go¨del-type manifolds. However, in wha
follows we shall show that these types of noncausalcurvedmanifolds are not permitted in th
context of the induced matter theory.

In the Lorentz frameÛA given by ~4.1! the nonvanishing frame components of the Einst
tensorĜAB5R̂AB2 1

2RĥAB are
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Ĝ0052
D9

D
1

3

4 S H8

D D 2

2
F̈

F
, ~5.2!

Ĝ025
1

2 S H8

D D 8
, ~5.3!

Ĝ115Ĝ225
1

4 S H8

D D 2

1
F̈

F
, ~5.4!

Ĝ335Ĝ445
D9

D
2

1

4 S H8

D D 2

, ~5.5!

where the prime and dot denote derivative with respect tor andu, respectively.
The field equations~1.2! require thatĜ0250, which in turn implies that

H8

D
5const[22v. ~5.6!

Inserting~5.6! into ~5.4!, ~5.5!, and~5.2! one easily finds that the IM field equations are fulfille
if and only if the independent parametersv, k, andm2 @see Eqs.~3.9! and ~3.10!# vanish identi-
cally, which leads to the only solution given by

H5a, D5br1c, and F5bu1g, ~5.7!

where,a, b, c, b, andg are arbitrary real constants. However, these constants have no ph
meaning, and can be taken to bea5c5g50 andb5b51 by a suitable choice of coordinate
Indeed, if one performs the coordinate transformations

t5 t̄ 2
a

b
f̄, r 5 r̄ 2

c

b
, ~5.8!

f5
f̄

b
, z5

z̄

b
, u5ū2

g

b
, ~5.9!

the line element~5.1! becomes

dŝ25d t̄22dr̄22 r̄ 2df̄22dz̄22dū2, ~5.10!

in which we obviously haveG( r̄ )5 r̄ 2.0 for r̄Þ0. The line element~5.10! corresponds to a
manifestly flat 5D manifold, making it clear that the underlying manifold can be taken to b
simply connected Euclidean manifoldR5, and therefore asG( r̄ ).0 no closed timelike circles are
permitted. Furthermore, the above results clearly show that the IM theory does not adm
curved5D Gödel-type metric~3.16! as solution to its field equations~1.2!.

However, in a recent work McManus17 has shown that a one-parameter family of solutions
the field equations~1.2! previously found by Ponce de Leon75 was in fact flat in five dimensions
And yet, the corresponding 4D induced models were shown to be a perfect fluid fam
Friedmann–Robertson–Walker curved models~see Refs. 11, 13, 19 and also 76–78, where ot
Riemann-flat solutions are also discussed!.

Therefore a question which naturally arises here is whether the above 5D flat metric, wh
the only solution to the IM field equations, can similarly give rise to any 4Dcurvedspace–time.
However, from~5.10! one obviously has that the corresponding 4D space–time is nothing bu
Minkowski flat space~this result can also be derived by using a computer algebra package as
CLASSI71,69 to calculate the 4D curvature tensor form25v50). In brief, the only solution of the
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IM field equations~1.2! of generalized Go¨del-type is the 5D flat space~5.7!, which gives rise only
to the 4D Minkowski~flat! space–time, whose topology can be taken to be the simply conne
EuclideanR5, in which no closed timelike curves are permitted.

Although the above results can be looked upon as if the induced matter theory works
effective therapy for the causal anomalies which arise when one starts from the specific g
ized 5D Gödel-type family of metrics~5.1!, this does not ensure that the induced matter versio
general relativity is an efficient treatment for the causal anomalies~solutions with closed timelike
curves! in general relativity as it has been conjectured in Ref. 65. Actually, in a recent p
~which unfortunately was not initially noticed by Rebouc¸as and Teixeira65! Romeroet al.67 ~see
also Ref. 79! have shown that the induced matter 5D scheme is indeed general enough to
generate all solutions to 4D Einstein field equations. This is ensured by a theorem d
Campbell80 which states that any analyticn-dimensional Riemannian space can be locally emb
ded in a (n11)-dimensional Ricci-flat space. In our context this amounts to saying that there
exist a five-dimensional Ricci-flat space which locally gives rise to the 4D Go¨del noncausal
solution of Einstein equations of general relativity. Thus, what still remains to be done rega
Gödel-type spaces is to find out this 5D Ricci-flat space which gives rise~locally! to the 4D
Gödel-type space–times of general relativity.

To conclude, it is worth stressing some features of the local underlying embedding o
induced matter theory. Any Riemann-flat manifold obviously is also Ricci-flat. The reverse,
ever, does not necessarily hold, and one can have Ricci-flat spaces which are not Riemann-
the generalized 5D Go¨del-type geometries we have discussed in this paper the condition
Ricci-flatness (R̂AB50) necessarily leads to Riemann-flat spaces. Remarkably many solutio
the field equations~1.2! are indeed Riemann-flat~see Refs. 11, 17, 19, and 75–78!. From a purely
mathematical 5D point of view all Riemann-flat spaces are locally equivalent~locally isometric!.
However, from the viewpoint of the 5D induced matter gravity all the above-referred
Riemann-flat solutions give rise to physically~and geometrically! distinct 4D
space–times.11,17,19,75–78On the other hand, in the light of the equivalence problem technique
have discussed in Sec. II, these 5D Riemann-flat examples also show that all 5D Cartan
~2.3! can vanish identically, with or without the vanishing of the corresponding~induced! 4D
Cartan scalars.
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Geodesic completeness of orthogonally transitive
cylindrical space–times
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In this paper a theorem is derived in order to provide a wide sufficient condition for
an orthogonally transitive cylindrical space–time to be singularity free. The appli-
cability of the theorem is tested on examples provided by the literature that are
known to have regular curvature invariants. ©1999 American Institute of Phys-
ics. @S0022-2488~99!02708-5#

I. INTRODUCTION

The issue of establishing whether a Lorentzian manifold is geodesically complete is n
principle a simple one since there is no Hopf–Rinow theorem that could settle the matte
happens in the Riemannian case. One could think that regularity of the curvature invariants
be helpful, but there are known examples of space–times with regular invariants, su
Taub-NUT,1 that enclose geodesics that are not complete in their affine parametrization du
phenomenon called imprisoned incompleteness.

Taking completeness of causal geodesics~g completeness! as a definition of the absence o
singularities~no observer in free fall leaves the space–time in a finite proper time!, one can resort
to many theorems in the literature~cf. Refs. 1 and 2, and references therein! in order to determine
whether a space–time is singular. But on the contrary, theorems that provide large fami
nonsingular space–times are not very usual3,4 and in principle the proof of geodesic completene
involves cumbersome calculations.5

Instead of dealing with general Lorentzian manifolds, we shall approach orthogonally t
tive cylindrical space–times6 since they have provided many examples of regular manifolds~cf.
Refs. 7 and 8! in inhomogeneous cosmology.9

Our aim will be the generalization of the theorem on diagonal orthogonally transitive c
drical space–times in Ref. 4 to nondiagonal models and thereby comprise all known nonsi
cylindrical perfect fluid space–times in the literature.

First we shall show that the second-order system of geodesic equations can be reduced
use of constants of motion to three first-order equations plus two quadratures. This fac
simplify the analysis of the prolongability of the geodesics and will enable us to write a suffi
condition for completeness of orthogonally transitive cylindrical space–times in a theorem.

II. GEODESIC EQUATIONS

We shall write the metric of an orthogonally transitive cylindrical space–time in a chart u
isotropic coordinatest, r for the subspace orthogonal to the orbits of the isometry group
coordinatesf, z adapted to the commuting generators of the group of isometries. The metric
be determined by four functions,g, f, A, r, of the coordinatest, r,

ds25e2g~ t,r !$2dt21dr2%1r2~ t,r !e2 f ~ t,r !df21e22 f ~ t,r !$dz1A~r ,t !df%2 ~1!

and we shall assume that these functions areC2 in their range,

a!Electronic mail: lfernandez@etsin.upm.es
40280022-2488/99/40(8)/4028/7/$15.00 © 1999 American Institute of Physics
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2`,t,z,`, 0,r ,`, 0,f,2p. ~2!

The axis will be located where the norm of the axial Killing field vanishes,

05D5g~j,j!5r2~ t,r !e2 f ~ t,r !1e22 f ~ t,r !A2~r ,t !, ~3!

which means that bothA andr must vanish on the axis, sincef is a smooth function.
Since the choice of isotropic coordinates is not unique, we can take advantage of this fr

to have r 50 as the equation for the axis. In order to avoid conical singularities, the u
requirement10 will be imposed in order to have a well-defined axis,

lim
r˜0

g~gradD,gradD!
4D

51. ~4!

Denoting by a dot differentiation with respect to the affine parameter, two of the four sec
order geodesic equations,

ẍi1G jk
i ẋ j ẋk50, ~5!

can be integrated, taking into account that there are two first integrals of the geodesic m
associated with the generators of the isometries. These are the angular momentum around
L, and the linear momentum along the axis,P, of a test particle of unit mass,

L5e2 f ~ t,r !r2~ t,r !ḟ1e22 f ~ t,r !A~ t,r !$ż1A~ t,r !ḟ%, ~6!

P5e22 f ~ t,r !$ż1A~ t,r !ḟ%. ~7!

The affine parametrization is determined, up to an affinity of the real line, by the prescri

d5e2g~ t,r !$ ṫ22 ṙ 2%2$L2PA~ t,r !%2r22~ t,r !e22 f ~ t,r !2P2e2 f ~ t,r !, ~8!

whered is one for timelike, zero for null, and minus one for spacelike geodesics. Since w
dealing just with causal geodesics, for our purposesd will always be positive. After writingż,ḟ as
functions ofL andP, the second-order equations int and r,

ẗ1gt~ t,r ! ṫ212gr~ t,r ! ṫ ṙ 1gt~ t,r ! ṙ 22P2e2$ f ~ t,r !2g~ t,r !% f t~ t,r !

1e22$ f ~ t,r !1g~ t,r !%
$L2PA~ t,r !%2

r2~ t,r ! H r t~ t,r !

r~ t,r !
1 f t~ t,r !1

PAt~ t,r !

L2PA~ t,r !J , ~9!

r̈ 1gr~ t,r ! ṫ212gt~ t,r ! ṫ ṙ 1gr~ t,r ! ṙ 21P2e2$ f ~ t,r !2g~ t,r !% f r~ t,r !

2e22$ f ~ t,r !1g~ t,r !%
$L2PA~ t,r !%2

r2~ t,r ! H r r~ t,r !

r~ t,r !
1 f r~ t,r !1

PAr~ t,r !

L2PA~ t,r !J , ~10!

can be rearranged in a form that will be useful afterwards,

$e2g~ t,r ! ṫ%
˙
2e22g~ t,r !F~ t,r !Ft~ t,r !50, ~11!

$e2g~ t,r !ṙ %
˙
1e22g~ t,r !F~ t,r !Fr~ t,r !50, ~12!

F~ t,r !5eg~ t,r !Ad1P2e2 f ~ t,r !1$L2PA~ t,r !%2
e22 f ~ t,r !

r2~ t,r !
, ~13!

which have the same structure as in the diagonal case.
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If at least one of the constantsL, P, d is different from zero, the system is equivalent to thr
equations of first order for future-pointing~past-pointing! geodesics,

ṫ56e22g~ t,r !F~ t,r !coshj~ t,r !, ~14!

ṙ 5e22g~ t,r !F~ t,r !sinhj~ t,r !, ~15!

j̇~ t,r !52e22g~ t,r !$6Ft~ t,r !sinhj~ t,r !1Fr~ t,r !coshj~ t,r !%, ~16!

parametrizing~8! by a functionj(t,r ). More explicitly, the last equation takes the form,

j̇52
e2g

Ad1L2r22e22 f1P2e2 f H coshjS dgr1L2
e22 f

r2 hr1P2e2 fqr D
6sinhjS dgt1L2

e22 f

r2 ht1P2e2 fqtD J , ~17!

h5g2 f 2 ln r1 lnuLu, L5L2PA, q5g1 f , ~18!

which will be useful for deriving prolongability conditions for causal geodesics. The minus~plus!
sign corresponds to past-pointing~future-pointing! geodesics.

Note that the general equations are obtained from those of the diagonal case just replaL
by L, which can be therefore considered as a sort of ‘‘effective angular momentum’’ in the
where the Killing fields are not orthogonal.

III. PROLONGABILITY OF THE GEODESICS

In this section we shall introduce two theorems on causal geodesic completeness of or
nally transitive cylindrical space–times. Null coordinates,

u5
t1r

2
, v5

t2r

2
, ~19!

will play an important role in the results.
Theorem 1: An orthogonally transitive cylindrical space–time endowed with a metric wh

local expression in terms ofC2 metric functionsf, g, A, r is given by~1! such that the axis locate
at r 50 has complete future causal geodesics if the following set of conditions is fulfilled:

~1! For large values oft and increasingr,

~a! H gu>0
hu>0
qu>0,

~b! either H gr>0 or ugr u&gu

hr>0 or uhr u&hu

qr>0 or uqr u&qu .

~2! For LÞ0 and large values oft and decreasingr,

~a! dgv1P2e2 fqv1L2
e22 f

r2 hv>0,
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~b! either dgr1P2e2 fqr1L2
e22 f

r2 hr<0 or dgr1P2e2 fqr

1L2
e22 f

r2 hr&dgv1P2e2 fqv1L2
e22 f

r2 hv .

~3! For large values of the time coordinatet, constantsa, b exist such that

that

2g~ t,r !

g~ t,r !1 f ~ t,r !1 ln r2 lnuLu
g~ t,r !2 f ~ t,r !

J >2 lnut1au1b.

~4! The limit lim
r˜0

(A/r) exists.

A theorem can be obtained for past-pointing geodesics just changing the sign of the
derivatives in the previous one.

Theorem 2: An orthogonally transitive cylindrical space–time endowed with a metric wh
local expression in terms ofC2 metric functionsf, g, A, r is given by ~1! such that the axis is
located atr 50 has complete past causal geodesics if the following set of conditions is fulfi

~1! For small values oft and increasingr,

~a! H gv<0
hv<0
qv<0,

~b! either H gr>0 or ugr u&2gv

hr>0 or uhr u&2hv

qr>0 or uqr u&2qv .

~2! For LÞ0 and small values oft and decreasingr,

~a! dgu1P2e2 fqu1L2
e22 f

r2 hu<0

~b! either dgr1P2e2 fqr1L
2e22 f

r2 hr<0 or dgr1P2e2 fqr

1L2
e22 f

r2 hr&Udgu1P2e2 fqu1L2
e22 f

r2 huU.
~3! For small values of the time coordinatet, constantsa, b exist such that

that

2g~ t,r !

g~ t,r !1 f ~ t,r !1 ln r2 lnuLu
g~ t,r !2 f ~ t,r !

J >2 lnut1au1b.

~4! The limit lim
r˜0

(A/r) exists.

The theorems in Ref. 4 can be seen to be subcases of the ones introduced here.

IV. PROOF OF THE THEOREMS

In order to achieve prolongability of causal geodesics we just have to impose thatṫ remains
finite for finite values of the affine parameter. The radial velocity,ṙ , need not be considered sinc
it cannot become singular ifṫ is not singular too. The other derivatives,ż andḟ, are quadratures
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of smooth functions oft andr and therefore they only may turn singular ift or r become so. We
shall focus on future-pointing geodesics. The analysis for past-pointing geodesics is entirely
lar.

A way of preventing the hyperbolic functions ofj from becoming singular is to require thatj

does not grow indefinitely. Therefore for large values ofj, j̇ must eventually become negativ
Since the constants,L, P, d may vanish independently, one is not to expect compensations
tween them. Hence their respective terms in~17! have to become negative for large values
positivej as it is stated in conditions~1a! and ~1b!, taking into account that coshj5sinhj1e2j

and that therefore the terms in the negative exponential ofj ~1b! need not be negative but just o
the same order as those in~1a!.

By imposing condition~4! in the theorem, we require that the geometry of the space–tim
the vicinity of the axis is determined byr and not byA. Hence for negative decreasingj the axis
could be singular only for geodesics withLÞ0, since the termsA/r are finite at the axis. Geo
desics with zero angular momentum just crossr 50 and reappear with positivej and polar angle
f1p and hence need not be taken into account. In this case we can therefore allow com
tions between the nonzeroL term and the other ones. Splitting coshj asej2sinhj, the condition

for j̇ to become positive for large values oft and negativej is stated in~2a! for the terms in sinhj
and in~2b! for the terms inej, that can be at most of the same order as the former ones since
are exponentially damped.

No further conditions need be imposed onj̇. But ṫ could turn singular also for thee22gF

term. A way of preventing it is to impose a growth slower than linear forṫ due to each of the three
terms (d,L,P) for large values oft. This is done in condition~3!.

The condition ong must be refined since we have not yet considered the geodesics that c
be parametrized byj. These are those with zeroF, that is, null geodesics with zeroż andḟ. Since
ṫ5u ṙ u for such geodesics, the equations of geodesic motion,

ẗ1gt ṫ
212gr ṫ ṙ 1gtṙ

250, ~20!

r̈ 1gr ṫ
212gt ṫ ṙ 1gr ṙ

250, ~21!

can be reduced to a single one that can be integrated,

ẗ12gt ṫ
212gr ṫ ṙ 50⇒~e2gṫ !

˙
5K, ~22!

which, in order to havet extendible to arbitrary values of the affine parameter, can be contro
by imposing at most linear growth forṫ as it is done in condition~3!.

V. COMPLETENESS OF SEVERAL CYLINDRICAL MODELS

Since all known diagonal cylindrical perfect fluid models~Refs. 11–14! with regular curva-
ture invariants have already been shown to be geodesically complete,4 we shall only be concerned
about the nondiagonal ones. To our knowledge there are just two, and both can be derive
Einstein space–times using the Wainwright–Ince–Marshman generation algorithm for stif
fect fluids.15

~1! Mars:16 It is the first known nonsingular nondiagonal cylindrical cosmological mode
the literature. In another context it was previously published by Letelier.17 In isotropic coordinates
the metric functions can be written as

g~ t,r !5 1
2 ln cosh~2at!1 1

2aa2r 2, f ~ t,r !5 1
2 ln cosh~2at!,

r~ t,r !5r , A~ t,r !5ar2, ~23!

wherea is a constant anda.1. If a51 the pressure and the density of the fluid vanish.
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All functions are even int and therefore the analysis of past-pointing geodesics is equiva
to that of future-pointing ones and shall be omitted. The derivativesgu ,qu in condition ~1a! are
positive for positivet whereashu also needs large radial coordinate.

The derivativesgr ,qr in condition~1b! are positive regardless oft andhr is positive for large
r.

Conditions ~2a!, ~2b! are satisfied whenr is small andt is positive since theL term is
dominant for smallr.

The functions in condition~3! are all positive except for the lnr term in h whenr decreases.
But this can be bounded by a logarithm oft and therefore the condition is fulfilled. The ratioA/r
tends to zero for decreasingr and hence condition~4! in theorem 1 is satisfied. Hence th
space–time is causallyg complete.

~2! Griffiths–Bičák:18 The previous model is comprised in this one forc50 after a redefini-
tion of constants. The metric functions can be written as

g~ t,r !5 1
2 ln cosh~2at!1 1

2a
2r 21 1

2V~ t,r !, f ~ t,r !5 1
2 ln cosh~2at!,

~24!
r~ t,r !5r , A~ t,r !5ar2,

whereV is a function that is obtained from a solution,s, of the wave equation

V r5r ~s t
21s r

2!, V t52rs ts r ,
~25!

s~ t,r !5bt1&cAA~a21r 22t2!214a2t21a21r 22t2

~a21r 22t2!214a2t2 .

The analysis of the geodesics of this space–time can be dealt with easily since

Vu5r ~s t1s r !
2, Vv52r ~s t2s r !

2, ~26!

and thereforeV contributes with an additional positive term to conditions~1a!, ~1b! in theorem 1,
that were already checked for Mars space–time. On the contrary,V adds a negative term in
conditions~2a!, ~2b! but it is negligible for smallr.

Finally, the contribution ofV to g grows at most asAt for large t and is therefore negligible
compared to the other terms in condition~3!.
A similar reasoning is valid for theorem 2, although the metric functionV is not even in time.

Hence these space–times are geodesically complete.
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We introducethe canonical supermomentum tensorsmSikl(P;v t) and gSikl(P;v t)
for matter and gravitation, respectively. These tensors give kinds of thequasilocal
quantitieswhich have recently been considered in the framework of general rela-
tivity though usually constructed in some special cases and for the mass only. Our
method to construct the quasilocal quantities~i.e., superenergy and supermomen-
tum tensors! is very general and does not require introducing any supplementary
elements into general relativity. It merelyextracts covariant datafrom the suitable
canonical objects which exist in the framework of the standard general relativity.
Having given a constructive definition of the canonical supermomentum tensors for
gravitation and matter, we apply the canonical gravitational supermomentum tensor

gSikl(P;v t) for the local analysis of theplane and plane-frontedgravitational
waves. Next, we apply the canonical supermomentum tensorsgSikl(P;v t) and

mSikl(P;v t), gravitation and matter, to local and global analysis of the Friedman,
Schwarzschild, and Kerr space–times. We show that the canonical angular super-
momentum tensors and integral angular supermomentahave better geometric and
physical propertiesthan the canonical objects which describedensitiesof the an-
gular momenta and integral quantities determined by these densities. ©1999
American Institute of Physics.@S0022-2488~99!02907-2#

I. INTRODUCTION

It is well known that in the framework of thestandard1 general relativity~GR! the gravita-
tional field hasnontensorial strengthGkl

i 5$kl
i % as well as it hasno energy-momentum tensor. One

can only attribute to this field the so-calledgravitational energy-momentum pseudotensors. The
best of the possible gravitational energy-momentum pseudotensors seems to be thecanonical
gravitational energy-momentum pseudotensorEt i

k proposed by Einstein.2,3

Some years ago4,5 we introduced thecanonical gravitational superenergy tensorinto GR to
avoid difficulties connected with a lack of any gravitational energy-momentum tensor in
theory. This tensor was generalized to matter fields, too.4,5

The superenergy tensors of gravitation and matter give a kind of so-called ‘‘quasilocal
tities’’ ~see, e.g., Refs. 6–10! usually constructed in some particular cases and for mass~or
energy! only. However, these ‘‘quasilocal quantities’’ usually demand introduction of so
supplementary structures, apart from the metric, intoGR.

Our method of construction of the ‘‘quasilocal quantities’’—the superenergy~and supermo-
mentum! tensors—is very general and does not require introducing of any supplementary ele
into GR. It is a generalization of an early idea by Pirani11 and it onlyextracts covariant datafrom
the suitable canonical objects which exist in the framework of the standard1 GR.

In Refs. 12 and 13 the gravitational, canonical superenergy tensorgSi
k(P;v l) has been used to

the local analysis of thecylindrical, plane, and plane-fronted gravitational wavesand the canoni-
cal superenergy tensorsmSa

b(P;v l) andgSa
b(P;v l) of matter and gravitation were used in Ref

a!Electronic mail: garecki@wmf.univ.szczecin.pl
40350022-2488/99/40(8)/4035/21/$15.00 © 1999 American Institute of Physics
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4,5,14,15 for local and global superenergetic analysis of the Friedman cosmological mode
the Schwarzschild space–time.

In this paper we want to generalize the idea of the canonical superenergy tensors ontoangular
momentumand introducethe canonical angular supermomentum tensors.

As it is known,16 the situation with the angular momentum inGR is much more difficult and
obscure than with the energy-momentum.17 For example, even matter fielddoes not possess an
angular momentum tensor densitybecause coordinates$xi% do not formany radius vector in some
general components.

The canonical angular supermomentum tensors which we introduce in this paper aour
proposalfor the nonexistent inGR angular momentum tensors, matter and gravitation.

Our convention is the same as in our previous paper,15 i.e., we use the metric signatur
~12 22! and the Latin indices run over the values 0, 1, 2, 3;¹ i means covariant derivative an
] i or ,i denote partial derivative]/]xi ; and ª means ‘‘by definition.’’ Round brackets mea
symmetrization and square brackets mean alternation, i.e., (aucub)5 1

2(acb1bca) and @aucub#
5 1

2@acb2bca#. Our convention for the Riemann curvature and Ricci tensors and for the Ein
equations,

GikªRik2
1

2
gikR5

8pG

c4 Tik5:bTik ,

follow the standard textbooks.3

In Sec. II we present our constructive definition of the canonical angular supermome
tensors. This definition uses normal coordinates18–20 and it is a straightforward generalization o
our definition of the canonical superenergy tensors given in final form in Ref. 15. We calcula
analytic form of the canonical supermomentum tensors of gravitationgSabc(P;v l) and matter

mSabc(P;v l).
In Sec. III we give the most natural physical interpretation of tensorsgSabc(P;v l) and

mSabc(P;v l). The physical interpretation follows the line developed in Ref. 15.
In Sec. IV we present some applications of the canonical angular supermomentum t

gSabc(P;v l) andmSabc(P;v l). At first, we apply the canonical, gravitational angular supermom
tum tensorgSabc(P;v l) to local analysis of the plane and plane-fronted gravitational waves. T
we apply the both canonical angular supermomentum tensorsgSabc(P;v l) and mSabc(P;v l),
gravitation and matter, to analysis of the Friedman and Schwarzschild space–times. Fina
apply the gravitational angular supermomentum tensorgSabc(P;v l) to the analysis of the station
ary Kerr space–time.

In Sec. V we give conclusions.
In Appendix A we review the Bergmann–Thomson expression for the angular moment

GR. In Appendix B we present the results of our calculations concerning plane and plane-fr
gravitational waves. Appendix C is devoted to the angular supermomentum in special rela

II. CANONICAL ANGULAR SUPERMOMENTUM TENSORS IN GENERAL RELATIVITY

In analogy with the definition of the canonical superenergy tensors given in Ref. 15 i
normal coordinatesNCS„P… we define theangular supermomentum tensor

S~a!~b!~c!~P!ª lim
V˜P

*V@M ~a!~b!~c!~y!2M ~a!~b!~c!~P!# dV

1/2M

5~2 ! lim
V˜P

*V@M ~a!~b!~c!~y!2M ~a!~b!~c!~P!# dV

1/2*Vs~P;y! dV
, ~1!

where
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M ~a!~b!~c!~y!ªMikl~y!ei
~a!~y!ek

~b!~y!el
~c!~y!, ~2!

and

M ~a!~b!~c!~P!ªMikl~P!ei
~a!~P!ek

~b!~P!el
~c!~P!5Mikl~P!d i

adk
bd l

c5Mabc~P! ~3!

arephysical or tetrad componentsof the field Mikl5(2)Mkil which describes angular momen
tum. Heree(a)

i (y), ek
(b)(y) are the components of the orthonormal tetrade(a)

i (P)5da
i and its dual

ek
(b)(P)5dk

b , respectively, such thate(a)
i (P)ek

(b)(P)5da
b and the tetrads are parallelly propagat

along geodesics throughP. In ~1! V is a sufficiently small domain which surroundsP and it has
the following properties:

E
V

yi dV50, E
V

yiyk dV5d ikM , ~4!

where

M5E
V

~y0!2 dV5E
V

~y1!2 dV5E
V

~y2!2 dV5E
V

~y3!2 dV ~5!

is a common value of the moments of inertia of the domainV with respect to the subspacesyi

50 (i 50,1,2,3).
Of course, we can writeM in a covariant form as

M5~2 !E
V

s~P;y! dV, ~6!

where

s~P;y!8 1
2~y02

2y12
2y22

2y32
!

denotes the two-pointworld functionintroduced by J. L. Synge.21 We have used this fact in Eq
~1! already. The symbol8 means that an equation is valid only in some special coordinates

For all quantities attached to the pointP there isan equality between tetrad and norm
components. We use this and skip tetrad brackets for indices of any quantities attached to the
P; for example, we will writeSabc(P) instead ofS(a)(b)(c)(P) and so on.

For matter, asmMikl(y)5(2)mMikl(y), we take

mMikl~y!5Augu~yiTkl2ykTil !, ~7!

where Tik5Tki are the components of the symmetric energy-momentum tensor of matte~the
source terms in the Einstein equations! and$yi% denote normal coordinates. Equation~7! gives the
total matter angular momentum density, spinorial and orbital.22

It is interesting to note that the normal coordinates$yi% form the components of thelocal
radius vectororiginating fromP ~a global radius vector does not exist inGR!. So, the components
of the mMikl(y) form a tensor density.

For the gravitational field we prefer the formula given in Ref. 22, which is closely conne
with the canonical energy-momentum complex~see, e.g., Ref. 15 and Appendix A!

gMikl~y!5FU
k@ l i #~y!2FU

i @ lk#~y!1yiAuguBTtkl2ykAuguBTt i l , ~8!

where

FU
k@ l i #

ªgkm
FUm

@ l i # ~9!
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and

BTtkl
ªgE

kit i
l1

g,p
mk

Augu
FUm

@ lp# . ~10!

Here

FUi
@kl#5a

gia

Augu
@~2g!~gkaglb2glagkb!# ,b ~11!

are the so-calledvon Freud superpotentialsand

Et i
k5a$d i

kgms~Gmr
l Gsl

r 2Gms
r G rl

l !1g,i
ms@Gms

k 2 1
2~G tp

k gtp2G t l
l gkt!gms2

1
2~ds

kGml
l 1dm

k Gsl
s !#%

~12!

are the components of theEinstein canonical energy-momentum pseudotensorof the gravitational
field. Herea5c4/16pG51/2b.

One can interpret~8! as a sum of thespinorial and orbital angular momentum densityof the
gravitational field~see Appendix A!.

Remark:The Landau–Lifschitz formula

gMikl5~2g!~yi
LLtkl2yk

LLt i l !, ~13!

where LLtkl5LLt lk denote the components of the so-called ‘‘Landau–Lifschitz gravitatio
energy-momentum pseudotensor’’3 is not useful for our purposes. It is because, when applied t
~1!, it gives trivial result

gSikl~P;v l !50, ~14!

which isnot satisfactoryfrom the physical point of view. This is a consequence of the followi
the formula~13! does not include any spinorial angular momentum of the gravitational field.

Substituting the following expansions up to the third order,23

Mikl~y!5yi T̂kl2ykT̂il 1 1
2~2T̂kl

,pyiyp22T̂il
,pykyp!1R3 , ~15!

ei
~a!~y!5êi

~a!2 1
6R̂

p
limêp

~a!ylym1R3 , ~16!

and so on into~1!, we get the following componentsmSabc(P) of the matter angular supermo-
mentum tensor

mSabc~P!52~dapT̂bc
,p2dbpT̂ac

,p!52~dap¹pT̂bc2dbp¹pT̂ac!, ~17!

or, in a covariant form,

mSabc~P;v l !52@~2v̂av̂p2ĝap!¹pT̂bc2~2v̂bv̂p2ĝbp!¹pT̂ac#. ~18!

Herev i is the four velocity (v iv i51) of an observerO which is at rest at the beginningP of
the normal coordinatesNCS„P… andgab8hab denotes the components of the local metric. A h
over a quantity means the value of the quantity at the pointP, for example,T̂ab5Tab(P).

After substitution expansion~8! ~up to the third order! and ~16! into ~1!, we get, for gravita-
tional field,

gSabc~P;v l !5d l t
gM̂ abc

,l t . ~19!

Equation~19! can be covariantly written in the following form:
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gSabc~P;v l !5a~2v̂pv̂ t2ĝpt!@b~ ĝcaĝbr2ĝcbĝar!¹ (tÊpr)12ĝar¹ (tR̂
(c

r
b)

p)22ĝbr¹ (tR̂
(c

r
a)

p)

1 2
3ĝ

bc~¹ r R̂
r
(t

a
p)2b¹ (pÊt)

a !2 2
3ĝ

ac~¹ r R̂
r
(t

b
p)2b¹ (pÊt)

b !#. ~20!

We will call tensors~18! and ~20! the canonical, angular supermomentum tensorsof matter
and gravitation, respectively.

It is very interesting to note thatonly spinorial part Sikl5FU
i @kl#2FU

k@ i l # of the canonical
angular momentum pseudotensorgMikl(y) gives nonzero contribution to the tensorgSabc(P;v l).
The orbital part Oikl5yiAuguBTtkl2ykAuguBTt i l givesno contributionto the tensorgSabc(P;v l).

In vacuum, whenTik50⇒EikªTik2 1
2gikT50, the canonical angular supermomentum ten

gSabc(P;v l) given by ~20! simplifies to give

gSabc~P;v l !52a~2v̂pv̂ t2ĝpt!@ ĝar¹ (tR̂
(b

r
c)

p)2ĝbr¹ (tR̂
(a

r
c)

p)#. ~21!

Remarks:

~1! It follows from the formulas~18!, ~20!, and~21! that the canonical angular supermomentu
tensorsmSabc(P;v l) andgSabc(P;v l) do not require any radius vectorto be constructed.

~2! It also follows from the formulas~7! and ~8!–~12! that

mMabc~P!5mM̂abc50, gMabc~P!5gM̂abc50.

Despite that the above quantities vanish, we have manifestly introduced them into the defi
~1! of the canonical angular supermomentum tensors to emphasize their relative character

III. PHYSICAL INTERPRETATION OF THE CANONICAL ANGULAR SUPERMOMENTUM
TENSORS

Following the line developed in Ref. 15, we give, in our opinion, the most natural phy
interpretation of the canonical angular supermomentum tensorsgSabc(P;v l)5(2)gSbac(P;v l)
andmSabc(P;v l)5(2)mSbac(P;v l).

A. Matter canonical angular supermomentum tensor mSabc
„P;v l

…

In sufficiently small surroundings of the pointP, we consider the differences

mM ~a!~b!~c!~y!2mM ~a!~b!~c!~P!5mMikl~y!ei
~a!~y!ek

~b!~y!el
~c!~y!2mM̂ ikl êi

~a!êk
~b!êl

~c!

5@yi T̂kl2ykT̂il 1~yi T̂kl
,p2ykT̂il

,p!yp1R3#

3~ êi
~a!2 1

6R̂
t
risêt

~a!yrys1R3!

3~ êk
~b!2 1

6R̂
u

ekdêu
~b!yeyd1R3!~ êl

~c!2 1
6R̂

v
f lgêv

~c!yfyg1R3!

2mMabc~P!

5yaT̂bc2ybT̂ac1~yaT̂bc
,p2ybT̂ac

,p!yp1R3 . ~22!

In every previous expansionR3 denotes the remainder of the third order.
Integrating the differences~22! over a sufficiently small domainV with the same properties a

the domainV which occurs in the formulas~1!, we obtain

E
V

@M ~a!~b!~c!~y!2M ~a!~b!~c!~P!# dV'mSabc~P;v l !• 1
2E

V
~yd!2 dV

5mSabc~P;v l !• 1
2M5:mSabc~P;v l ;V!. ~23!
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Here mSabc(P;v l ;V)5(2)mSabc(P;v l ;V) is a tensorwhose components givethe approximate
values of the relative angular momentuminside the domainV.

We can easily notice that this tensormSabc(P;v l ;V) is the product of:

~1! the tensormSabc(P;v l), which depends only on the matter and gravitational fields and f
velocity of the observerO, and,

~2! the term 1
2*V(yd)2 dV5: 1

2M , which depends on the common valueM of the moments of
inertia of the domainV only.

The supermomentum tensor of mattermSabc(P;v l) is exactly the first term in this product.

B. Gravitational canonical angular supermomentum tensor gSabc
„P;v l

…

For a gravitational field, the canonical angular momentum pseudotensorgMnmk has the form
given by ~8!–~12!, i.e.,

gMnmk5Augu~xngmi
Et i

k2xmgni
Et i

k!1xn
FUi

@kl#gim
,l2xm

FUi
@kl#gin

,l1gim
FUi

@kn#2gin
FUi

@km# .
~24!

As for the case of matter fields, let us consider the differences

gM ~a!~b!~c!~y!2gM ~a!~b!~c!~P!5gMnmk~y!en
~a!~y!em

~b!~y!ek
~c!~y!2gM̂nmkên

~a!êm
~b!êk

~c!

5@~FÛ
m@kn#

,r2FÛ
n@km#

,r !y
r1 1

2~FÛ
m@kn#

,rs2FÛ
n@km#

,rs!y
rys1R3#

3~ ên
~a!2 1

6R̂
e
indêe

~a!yiyd1R3!~ êm
~b!2 1

6R̂
n

f mgên
~b!yfyg1R3!

3~ êk
~c!2 1

6R̂
j
pktêj

~c!ypyt1R3!2gMabc~P!

5~FÛ
b@ca#

,r2FÛ
a@cb#

,r !y
r1

1

2!
~FÛ

b@ca#
,pt2FÛ

a@cb#
,pt!y

pyt1R3 .

~25!

Integrating these differences over the domainV with the same properties as the domainV
used in Sec. III A, we have

E
V

@gM ~a!~b!~c!~y!2gM ~a!~b!~c!~P!# dV'gSabc~P;v l ! 1
2E

V
~yd!2 dV

5gSabc~P;v l ! 1
2M5:gSabc~P;v l ;V!. ~26!

Here gSabc(P;v l ;V)5(2)gSabc(P;v l ;V) is a tensor whose components give theapproximate
valuesof the ~relative! gravitational canonical angular momentuminside the domainV.

The tensorgSabc(P;v l ;V) also factorizes onto a product of the two terms: the gravitatio
canonical supermomentum tensorgSabc(P;v l) and the term1

2M which depends on the~common!
value of the moments of inertia of the domainV with respect to the subspacesyi50
( i 50,1,2,3).

IV. APPLICATION OF THE CANONICAL, ANGULAR SUPERMOMENTUM TENSORS IN
GR

A. Plane and plane-fronted gravitational waves „pp-waves …

By linearly polarized, plane gravitational wave we understand the solution to the Ein
vacuum equations which, in coordinates (t,x,y,z), has the line element of the form24

ds25dt22L2~e2bdx21e22bdy2!2dz25dudv2L2~e2bdx21e22bdy2!, ~27!
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where

L5L~u!, b5b~u!, u5t2z, v5t1z.

The Einstein equations for~27! reduce just to one equation,

L91~b8!2L50, ~28!

for the two metric functions L5L(u), b5b(u). Hereb8ªdb/du, L8ªdL/du, and so on. A
plane wave described by~27! and ~28! propagates in the positive direction of thez axis.

By a suitable coordinate transformation~see, e.g., Ref. 14! one can bring the line elemen
given by ~27! and ~28! to the following form:

ds252~Y22X2!
F~U !

2
dU212dUdV2dX22dY2 ~29!

with an arbitrary functionF5F(U)5F(t2z).
The plane-fronted gravitational wave with parallel rays~pp-wave; see, e.g., Ref. 25! is a

generalization of the plane wave and has the following line element in coordinates (U5t
2z, V,X,Y)

ds252H~X,Y,U !dU212dUdV2dX22dY2, ~30!

where

DHªS ]2

]X2
1

]2

]Y2D H50. ~31!

The vector field tangent to theV-lines is covariantly constant and null.
Let us calculate the components of the canonical, gravitational angular supermomentu

sor gSabc(P;v l) given by~21! for the line element~30! and~31!. To simplify calculations we use
the null coreper

q05HdU1dV, q15dU, q25dX, q35dY. ~32!

After some tedious calculations we obtain that the components of the tensor

gSabc~P;v l !5~2 !gSbac~P;v l !

do not vanish in the null coreperand they do not vanish inany other coreper, too~for results of
the performed calculations, see Appendix B!. It means that the plane-fronted and plane grav
tional wavespossess and carryangular supermomentum. For the sake of comparison, we calc
the components of the canonical angular momentum pseudotensor~24! for pp and plane waves
which, in the null coreper~32!, give

gMnmk50, ~33!

i.e., they giveno angular momentum. However, the components of the pseudotensorgMnmk in the
coordinates (t,x,y,z), for example,do not vanish. This is not surprising because the compone

gMnmk form neither a tensor nor any other geometric object. On the contrary, the components

gSabc(P;v l), as being the components of a tensor,do not vanish in any coordinatesand, therefore,
they givea coordinate independent, covariant characteristicof the plane and plane-fronted grav
tational waves. This characteristic depends on the gravitational field and on the four-velocityv i of
an observerO only.
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B. Friedman universes

Friedman universes~[ Friedman cosmological models! are the solutions to the Einstei
equations with the Friedman–Lemaiˆtre–Robertson–Walker line element~FLRW line element!
which, in the comoving coordinatesx05ct, x15r , x25q, x35w, reads

ds25c2dt22R2~ t !F dr2

~12kr2!
1r 2~dq21sin2 qdw2!G , ~34!

where thecurvature index k50,61 andR5R(t) is thescale factor. The parametert represents
universal time called thecosmic time.

The scale factorR(t) satisfies Einstein field equations~sometimes calledFriedman equations!

3Ṙ2

c2R2
1

3k

R2
5

e

2a
, ~35!

Ṙ2

c2R2 1
2R̈

c2R2 1
k

R2 5~2 !
p

2a
. ~36!

In ~35! and ~36! e is the energy density of the cosmological fluid andp is the pressure;
ṘªdR/dt, R̈ªd2R/dt2.

The canonical angular supermomentum tensorsmSabc(P;v l) and gSabc(P;v l), similarly as
with canonical superenergy tensorsgSi

k(P;v l), mSi
k(P;v l), aredefined locallyand they depend

on the four-velocityv i (v iv i51) of an observerO being at rest at the pointP.
If the vector fieldv i (v iv i51) is given over a certain domainV of space–time or over the

whole space–time, then one can uniquely determine tensor fieldsgSabc(x;v l) and mSabc(x;v l)
@this is by performing the ‘‘averaging’’ given by~1! at every point of the domainV or at every
point of the entire space–time and by using the fieldv i to present the obtained results in
covariant way#.

In the framework of Friedman cosmologythere always existssuch a vector field: it is just the
four-velocity v i of the isotropic or fundamental observersbeing at rest in comoving coordinate
This vector field isgeometrically and physically distinguishedin the case of Friedman cosmolog
it forms timelike, geodesic, and hypersurface-orthogonal congruence.

So, in Friedman universes, one can introduceunique tensor fieldsgSabc(x;v l), mSabc(x;v l)
and, in analogy to global superenergetic quantities considered in Refs. 4, 13, and 15, o
defineglobal angular supermomentum

Sab
ª

1

c Et5const
~gSab01mSab0!Augu drdqdw ~37!

of matter and gravitation.
As we restrict ourselves to the analysis of the global angular supermomentum comp

given by ~37! in this paper, we just need to give the components

mSab0~x;v l !5~2 !mSba0~x;v l ! and gSab0~x;v l !5~2 !gSba0~x;v l ! ~38!

of the tensorsmSabc(x;v l) andgSabc(x;v l) which determine these global quantities.
After very simple but something lengthly calculations, we obtain, for Friedman universe

mSab0~x;v l !505gSab0~x;v l !. ~39!

It follows from ~39! that the components

Sab0~x;v l !ªmSab0~x;v l !1gSab0~x;v l ! ~40!
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and the componentsSab5(2)Sba of the global, canonical angular supermomentum of the Fri
man universestrivially vanish. It can also be seen from~39! that theglobal, canonical angular
supermomentaof gravitation

gSab
ª

1

c Et5const
gSab0~x;v l !Augu drdqdw ~41!

and matter

mSab
ª

1

c Et5const
mSab0~x;v l !Augu drdqdw ~42!

also trivially vanish for these universes since their integrands vanish. These results seem
quite reasonable and somehow expected.

For the sake of comparison, we give here also the componentsgMik0 and mMik0

5Augu(xiTk02xkTi0) of the canonical quantities which give the angular momentum of gravita
and matter, respectively.

The set$xi% ( i 50,1,2,3) here is the global, comoving coordinates (ct,x,y,z) in which the
FLRW line element is given by

ds25c2dt22R2~ t !
~dx21dy21dz2!

@11k~x21y21z2!/4#2
. ~43!

Global coordinates (ct,x,y,z) are closely related to the Cartesian coordinates in a flat space–
They have to be applied here if one wants to obtain any reasonable global results by
canonical angular momentum pseudotensorgMikl5(2)gMkil given by~8!–~12! or by ~24! and by
using matter angular momentum geometric object26

mMikl5Augu(xiTkl2xkTil ).
After some calculations@especially lengthy for componentsgM ik05(2)gMki0] we obtain

mM1205~2 !mM21050, mM1305~2 !mM31050, mM2305~2 !mM32050,

mM0105~2 !mM1005~2 !
xR3e

u3 5~2 !
6aRx

u3 ~Ṙ21k!,

~44!

mM0205~2 !mM2005~2 !
yR3e

u3 5~2 !
6aRy

u3 ~Ṙ21k!,

mM0305~2 !mM3005~2 !
zR3e

u3 5~2 !
6aRz

u3 ~Ṙ21k!,

where

uª11
k~x21y21z2!

4
5:11

kr2

4
. ~45!

gM1205~2 !gM21050, gM1305~2 !gM31050, gM2305~2 !gM32050,

gM0105~2 !gM1005~2 !
2ax

u2 FR

u S 6Ṙ22
k2r 2

2 D1Ṙkt1kRG ,
~46!

gM0205~2 !gM2005~2 !
2ay

u2 FR

u S 6Ṙ22
k2r 2

2 D1Ṙkt1kRG ,
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gM0305~2 !gM3005~2 !
2az

u2 FR

u S 6Ṙ22
k2r 2

2 D1Ṙkt1kRG .
From ~44!–~46! it follows that the componentsMik05(2)Mki0 of the canonical angula

momentum complex of matter and gravitationMikl
ªMMikl1gMikl , which satisfieslocal conser-

vation laws

Mikl
,l50,

in coordinates (ct,x,y,z) are

M1205M1305M23050,

M0105~2 !
2ax

u2 FR

u S 9Ṙ22
k2r 2

2 D1Ṙkt1
3kR

u G ,
~47!

M0205~2 !
2ay

u2 FR

u S 9Ṙ22
k2r 2

2 D1Ṙkt1kR5
3kR

u G ,
M0305~2 !

2az

u2 FR

u S 9Ṙ22
k2r 2

2 D1Ṙkt1kR1
3kR

u G .
This leads to the conclusion that the global, canonical angular momentum of the Frie

universes

Mik5
1

c Et5const
~mMik01gMik0! dxdydz ~48!

vanishes. The same results hold for the globalmatter canonical angular momentum

mMik5
1

c Et5const
mMik0 dxdydz ~49!

and for the globalgravitational canonical angular momentum

gMik5
1

c Et5const
gM ik0 dxdydz ~50!

separately: they all vanish in coordinates (ct,x,y,z), too. So, we have the same global results@in
coordinates (ct,x,y,z)] for canonical angular momentum and canonical angular supermome
in the case of the Friedman universes.

However, the canonical angular supermomenta possess much better geometric propert
the canonical angular momenta. Namely, we have the following.

~1! The components ofgSikl(x;v t) and mSikl(x;v t) and the components ofSikl(x;v t)
5gSikl(x;v t)1mSikl(x;v t) form tensors. Because of this the canonical angular supermome

gSikl(P;v t), mSikl(P;v t), andSikl(P;v t)5gSikl(P;v t)1mSikl(P;v t) are localizedand

gSik0~x;v t!50, mSik0~x;v t!50, Sik0~x;v t!5gSik0~x;v t!1mSik0~x;v t!50, ~51!

independent of the coordinates (x1,x2,x3) which have been used for the parametrization of spa
t5const. So, the global angular supermomenta vanish, i.e.,

Sik50, gSik50, mSik50, ~52!
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independent of the coordinates used within the spacest5const.
~2! The components of the canonical angular supermomentum tensorsdo not dependon the

so-called ‘‘radius vector’’ whichdoes not exist globallyin the framework ofGR. On the contrary,
the canonical angular momentagMikl andMikl5gMikl1mMikl explicitly depend on ‘‘radius vec-
tor’’ and form neither a tensor nor any other geometric objects. So, they must be used only i
special coordinatesin order to give physically meaningful results. In the case of the Friedm
universes these are the coordinates (ct,x,y,z) in which theFLRW line element is in the form
given by ~43!. Moreover, even the matter canonical angular momentum object

mMikl5Augu~xiTkl2xkTil !

cannot beany tensor density defined globallybecause it needs a globalradius vector xW5xi] i to be
a tensor density. However, radius vectordoes not exist globallyin the framework ofGR.

C. Schwarzschild space–time

The static, spherically symmetric space–time in the coordinates (x05ct, x15r , x25q, x3

5w) has the line element given by3

ds25en~r !c2dt22el~r !dr22r 2~dq21sin2 qdw2!. ~53!

In the exterior regionr>r * , the Einstein equations demand

en5e2l512
2Gm

c2r
5:12

r g

r
, ~54!

where m is the mass of a spherical star~source of the gravitational field! having ‘‘radius’’ r
5r * .r g . Herer gª2Gm/c2 is theSchwarzschild radius.

As a source of the gravitational field we have taken a normal static and spherical star
consists of perfect fluid with the energy-momentum tensorTik5Tki in the form

Tik5~e1p!uiuk2gikp. ~55!

It is known that one can join smoothly the interior and the exterior Schwarzschild solutions o
star surface and obtaincomplete Schwarzschild space–time. In the complete Schwarzschil
space–time there exists a distinguished timelike unit vector fieldv i :v iv i51, orthogonal to the
spatial slicesx05ct5const. So, similarly as in the case of Friedman cosmological models,
can obtain unique tensor fieldsgSabc(x) andmSabc(x).

After some calculations, from~53!, ~54!, and ~21!, outside of the star, i.e., in the domainr
.r * , whereTik50, we get

mSabc~x!50, gS010~x!5~2 !gS100~x!5~2 !a
r g

2

6r 4~r 2r g!
. ~56!

The other components of thegSikl(x) vanish in the domain.
On the other hand, inside the star, whereTikÞ0, for the line element~1! and for the energy-

momentum tensor~55! we get from~18! and ~20!

mS0105~2 !mS100Þ0, mS1225~2 !mS2125mS133sin2 q5~2 !mS313sin2 qÞ0,
~57!

gS0105~2 !gS100Þ0, gS1225~2 !gS212Þ0, gS1335~2 !gS313Þ0,

which is independent of any specific form of the interior solutions. The remaining compone
the tensorsmSabc(x) andgSabc(x) vanish identicallyin the case. It can be seen from~56! and~57!
that physically most important, spatial components
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S125~2 !S21, S135~2 !S31, S235~2 !S32

of the global angular supermomentumSik5(2)Ski ~matter and gravitation! in the complete
Schwarzschild space–time

Sik
ªE

x05ct5const
~mSik01gSik0!Augu drdqdw ~58!

are trivially equal to zero. By trivially we mean by means of the fact that their integrands

S120
ªmS1201gS120, S130

ªmS1301gS130, S230
ªmS2301gS230

identically vanish. We find this result quite reasonable. The same is correct for theexterior and
interior Schwarzschild solutions separately. The analogical results can be obtained for the
angular supermomentum of matter

mSik
ªE

x05const
mSik0Augu drdqdw, ~59!

andgravitation

gSik
ªE

x05ct5const
gSik0Augu drdqdw. ~60!

The final results

S125S135S2350, gS125gS135gS2350, mS125mS135mS2350

are independentof the spatial coordinates used for parametrization of the slicesx05ct5const.
One can compare the above results with the results of calculations of the global a

momentum of the Schwarzschild space–time by using canonical, angular-momentum co
given by Bergmann and Thomson~see Appendix A!

Mi jk5~2 !M jik5xBT
i K jk2xBT

j Kik1FU
i @ jk#2FU

j @ ik#5~xF
i U j @kl#2xF

j Ui @kl#! ,l5:M @ i j #@kl#
,l .

~61!

However, while using the complex~61!, one should take the isotropic Cartesian coordinatesx0

5ct, x15x, x25y, x35z) ~because the canonical angular momentum complex forms neith
tensor nor any other geometric object!. In these coordinates the exterior Schwarzschild line e
ment is of the form3

ds25F12r g/4r

11r g/4rG2

c2dt22S 11
r g

4r D 4

~dx21dy21dz2!, ~62!

where

r 5rS 11
r g

4r D 2

,

~63!
r25x21y21z2,

or, asymptotically, whenr˜` (⇔r˜`)

ds25S 12
r g

r D c2dt22S 11
r g

r D ~dx21dy21dz2!. ~64!
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The asymptotic form~64! of the exterior Schwarzschild line element is sufficient to calcul
the componentsMik5(2)Mki of the global angular momentum of the complete Schwarzsc
space–time because they are determined by surface integrals over boundary of a spatialx0

5ct5const~see Appendix A and Refs. 3 and 22!:

Mik5 R
over a sphereS2 with R˜`

M @ ik#@0a#nar 2 dV. ~65!

From ~64! and ~65! we get, after some calculations,

M125M135M2350. ~66!

So, at least in asymptotically Lorentzian coordinates, we have equivalent global results conc
angular momentum and angular supermomentum. However, one should emphasize that
pressions~18!, ~20!, and ~21! of Sec. II are tensorialand are defined withoutany use of radius
vector. This means they can be applied for any other spatial coordinates used for parametr
of the spacex05ct5const and give the same results, i.e.,

S125S135S2350, gS125gS135gS2350, mS121mS135mS2350.

D. Stationary Kerr space–time

We use the Kerr space–time inBoyer–Lindquist coordinates x05t, x15r , x25u, x35w ~see,
e.g., Refs. 3 and 27! in which the line element reads as

ds25S 12
r gr

r2 D dt22
r2

D
dr22r2du22S r 21a21

r gra2

r2
sin2 u D sin2 udw21

2r gra

r2
sin2 udwdt,

~67!

where

Dªr 22r gr 1a2, r2
ªr 21a2 cos2 u, r gª2mG. ~68!

Herem is the mass of the source andM5ma, its angular momentum.
The nonvanishing components28

gSabc(P;v l) of the canonical gravitational angular superm
mentum tensor~21! for the line element~67! and ~68! are

gS1305~2 !gS310, gS1335~2 !gS313, gS1215~2 !gS211
gS1225~2 !gS212,

gS2305~2 !S320, gS2335~2 !gS323, gS0105~2 !gS100, gS0135~2 !gS103, ~69!

gS0205~2 !gS200, gS0235~2 !gS203, gS0315~2 !gS301, gS0325~2 !gS302.

One can get the components ofgSabc(P;v l) in other coordinates by using the tensor transform
tion rule.

The analysis of the asymptotic behavior of the nonzero components of the tensor

gSabc(x;v l) determined by~69! shows that they are at least of the 0(r 24) order. So, the integrals29

Sik5
1

c Ex05t5const
gSik0Augu drdudw, Augu5r2 sinu, ~70!

which give the components of the global angular supermomentum for Kerr space–timeare con-
vergent. These components are also independent of time.

Of all the integrals~70!, which give global angular supermomentum thespatial components

S125~2 !S21~50!, S135~2 !S31Þ0, S235~2 !S32Þ0,
                                                                                                                



um

re
be

al
endent
except

r Kerr
entum
mely,

4048 J. Math. Phys., Vol. 40, No. 8, August 1999 Janusz Garecki

                    
are most physically important.
It is interesting to compare~69! with the components of the canonical angular moment

object~8! for Kerr space–time in Boyer–Lindquist coordinates. After some calculations30 we get
that the following components of the canonical angular momentum objectgMikl5(2)gMkil given
by ~8! do not vanish:31

gM0105~2 !gM100, gM0115~2 !gM101, gM0125~2 !gM102, gM0135~2 !gM103,

gM0205~2 !gM200, gM0215~2 !gM201, gM0225~2 !gM202, gM0235~2 !gM203,

gM0305~2 !gM300, gM0335~2 !gM303,

gM1215~2 !gM211, gM1225~2 !gM212, ~71!

gM2305~2 !gM320, gM2315~2 !gM321, gM2325~2 !gM322, gM2335~2 !gM323,

gM1305~2 !gM310, gM1315~2 !gM311, gM1325~2 !gM312,

gM1335~2 !gM313.

Here more compoments are different from zero than in~69!. Moreover, these components a
nontensorial. Therefore, the components ofgMikl in any other system of coordinates must
calculated separately.

Having analyzed the asymptotic behavior of the components~71! at spatial infinity we con-
clude that the integrals32

Mik5
1

c Ex05t5const
gM ik0 drdudw, ~72!

which represent the components of the global angular momentum are convergentiff i,k
51,2,3; (M1250), i.e., only the integrals which representspatial componentsof the global an-
gular momentum are convergent. The convergent integrals are also independent of time.

So, for the most important spatial componentsMik we have similiar result as for the spati
componentsSik—the integrals which represent these components are convergent and indep
of time. However, the values and dimension of the corresponding convergent integrals,
S125M1250, are, of course, different.

In order to conclude, we notice that the components of thegSabc(P;v l) havebetter geometri-
cal properties~form a tensor! than the components ofgMikl andgive better convergenceof the
corresponding integrals which represent global quantities for Kerr space–time~all Sik are conver-
gent, but not allMik).

The superiority of the superenergetic quantities over canonical energetic quantities fo
geometry is more explicit if we compare the canonical superenergy and linear supermom
with canonical energy and momentum, all calculated in the Boyer–Lindquist coordinates. Na
we can see that the superenergy densitygesªgSikv ivk is apositive-definite scalarand the integrals

Si5
1

c Ex05const
gSi

0~P;v l !Augu drdudw, ~73!

which represent global superenegetic quantities are convergent (S0.0,S15S250,S3Þ0). In
consequence, they have very good physical sense.

On the other hand, the integrals

Pi5
1

c Ex05t5const
EKi

0 drdudw, ~74!
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which give the global energetic quantities for Kerr space–time,are divergentin Boyer–Linquist
coordinates~exceptP15P250). So, the integrals~74! have no physical sensein the Boyer–
Lindquist coordinates. It is not surprising because canonical energy-momentum complexEKi

k

5Augu(Ti
k1Et i

k) can only be used in asymptotically flat coordinates.

V. CONCLUSION

In this paper we have generalized the idea of the canonical superenergy tensors and intr
the canonical angular supermomentum tensorsfor matter and for gravitation. Similarly as it wa
in the case of the canonical superenergy tensors, the canonical supermomentum

gSikl(P;v t) and mSikl(P;v t) which were introduced in the paper have much better geomet
properties than the canonical angular momentum pseudotensorgMikl and the canonical objec

mMikl . Moreover, the canonical angular supermomentum tensorsmSikl(P;v t) and gSikl(P;v t) of
matter and gravitation, and their sumSikl5mSikl1gSikl do not require any radius vectorto be
defined. The canonical angular supermomentum tensors, as well as canonical superenergy
considered in our previous papers, areour proposalas substitutesfor the angular momentum
tensors of matter and gravitation inGR ~which actually do not exist!. We want to emphasize tha
the canonical angular supermomentum tensors introduced and considered in the paper acon-
structed locally, defined pointwise, and explicitly depend on the four-velocityv i of an observerO
being at rest at the beginningP of the applied normal coordinatesNCS„P…. This means they are
the most appropriate for thelocal analysisof the gravitational and matter fields. However, if the
exists a distinguished, unit, timelike vector fieldvW , then these tensors can also be used for
global analysisof the gravitational and matter fields. Such a situation appears to be vali
nearly all models of space–time~Friedman, Schwarzschild, and Kerr! we dealt with in this paper.

In the paper we applied the canonical angular supermomentum tensorgSikl(P;v t)
5(2)gSkil(P;v l) to the local analysis of the vacuum solutions to the Einstein equations w
correspond to theplane and plane-frontedgravitational waves. We obtainedfully covariant results
in this case. Then, as already mentioned, we applied the canonical supermomentum tenso

mSikl~x;v t!, gSikl~x;v t!

and their sum

Sikl~x;v t!5mSikl~x;v t!1gSikl~x;v t!

for the global analysis of the Friedman universes and Schwarzschild space–time. Thes
extremely important applications since the Friedman universes area cornerstoneof relativistic
cosmology and the Schwarzschild solution is ofprimary astrophysical interest. As a result of
calculations, we obtained that the global, canonical angular supermomentatrivially vanish for both
Friedman universes in all comoving coordinates and for Schwarzschild space–time. It seem
a very reasonable result.

Comparing our results with the results obtained by using the canonical angular mom
pseudotensorgMikl and canonical angular momentum complexMikl5gMikl1mMikl , matter and
gravitation, we conclude that inGR, the canonical angular supermomentum tensors aremuch
better toolsfor the analysis~in particular, for the local analysis! of the gravitational and matte
fields than the canonical angular momentum objects. The same is true when we comp
energetic and superenergetic quantities for Friedman universes5,13,15 and for gravitational
waves.12,14

Finally, we used the tensorgSabc(P;v l) for the analysis of the stationary Kerr space–tim
which is of great importance for relativistic astrophysics. This example can also be conside
a proof of the superiority of the canonical angular supermomentum tensorgSabc(P;v l) to canoni-
cal, angular momentum objectgMikl .
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APPENDIX A: BERGMANN–THOMSON ANGULAR MOMENTUM IN GR

The canonical Bergmann–Thomson total angular momentum density, matter and gravi
can most easily be obtained in the following way. At first, let us transform the Einstein equa
written in mixed form and multiplied byAugu,

AuguGi
k5bAuguTi

k , ~A1!

to the so-calledsuperpotential form

EKi
k5FUi

@kl#
,l , ~A2!

where

EKi
k
ªAugu~Ti

k1Et i
k!

is thecanonical, Einstein energy-momentum complex, matter and gravitation, andFUi
@kl# arevon

Freud superpotentials.
From ~A2!, after series of operations, we get theBergmann–Thomson energy-momentu

complexBTK jk, matter and gravitation. At first, we form the following quantity:

gi j
EKi

k5gi j
FUi

@kl#
,l5~gi j

FUi
@kl#! ,l2FUi

@kl#gi j
,l ~A3!

or

gi j
EKi

k1FUi
@kl#gl

,l5FU j @kl#
,l . ~A4!

Then, we write~A4! in the form

BTK jk5FU j @kl#
,l , ~A5!

where

BTK jk
ªEK jk1FUi

@kl#gi j
,l5:Augu~Tjk1BTt jk! ~A6!

is the Bergmann–Thomson energy-momentum complex, matter and gravitation, which satisfie
local conservation laws

BTK jk
,k50. ~A7!

Here BTt jkÞBTtk j are the components of the so-calledBergmann–Thomson energy-momentu
pseudotensorof the gravitational field.22

Finally, from ~A5! we get

xi
BTK jk2xj

BTKik5xi
FU j @kl#

,l2xj
FUi @kl#

,l5~xi
FU j @kl#2xj

FU j @kl#! ,l2FU j @kl#1FUi @k j #,
~A8!

or

xi
BTK jk2xj

BTKik1BTSi jk5M @ i j #@kl#
,l , ~A9!

where
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BTSi jk
ªFUi @ jk#2FU j @ ik#5

a

Augu
@~2g!~gk jgil 2gkigjl !# ,l5:

a

Augu
g@ i j #@kl#

,l ~A10!

and

M @ i j #@kl#
ªxi

FU j @kl#2xj
FUi @kl#. ~A11!

The quantity

xi
BTK jk2xj

BTKik1BTSi jk5:BTMi jk ~A12!

is theBergmann–Thomson angular momentum complex~matter and gravitation! and the quantities
M @ i j #@kl# aresuperpotentials.22

One can interpret physically the angular momentum complex~A12! as a sum of theorbital
part

xi
BTK jk2xj

BTKik5Augu~xiTjk2xjTik!1Augu~xi
BTt jk2xj

BTTik!

of the angular momentum density of matter and gravitation~matter part includes also spi
density22! and aspinorial part

BTSi jk5FUi @ jk#2FU j @ ik#5
a

Augu
g@ i j #@kl#

,l ~A13!

of the gravitational angular momentum density given by~8! of Sec. II. From~A5! we have

2BTK @ i j #5Augu~BTt i j 2BTt j i !5BTSi jk
,k5S a

Augu
D

,k

g@ i j #@kl#
,l , ~A14!

because the dynamical energy-momentum tensor of matterTik is symmetric:Tik5Tki. Equation
~A14! justifies the above physical interpretation of the pseudotensorBTSi jk5(2)BTSjik as a quan-
tity which describescanonical spin densityof the gravitational field.33–35

From ~A9! we have the following expression for the componentsMik5(2)Mki of the global
angular momentum~matter and gravitation! of an isolated system equipped with asymtotica
Lorentzian coordinates

BTMik5
1

c R
over sphere havingR˜`

~xi
FU j @0a#2xj

FUi @0a#!nar 2 dV, ~A15!

where r 25x21y21z2, na are the components of the unit~exterior! normal to the sphere, an
dV5sinududw.

APPENDIX B: COMPONENTS OF gSabc
„P;v l

… FOR GRAVITATIONAL WAVES

Here we give the components

gSabc~P;v l !5~2 !gSbac~P;v l ! ~B1!

of the canonical, gravitational supermomentum tensor for the line element~30! and ~31! and for
the line element~29!. In order to simplify the calculations we used thenull coreper

q05HdU1dV, q15dU, q25dX, q35dY. ~B2!
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After long ~but rather simple! calculations, we obtain the following nonzero compone

gSabc(P;v l) in this coreper:

gS1205~2 !gS2105~2 !
4av1

3
~v2Hxxu1v3Hxyu!,

gS1215~2 !gS21150, gS1225~2 !gS2125~2 !
4

3
a~v1!2Hxxu ,

gS1235~2 !gS2135~2 !
4a

3
~v1!2Hxyu ,

gS1305~2 !gS3105~2 !
4a

3
v1~v2Hxyu1v3Hyyu!,

gS1315~2 !gS31150, gS1325~2 !gS3125~2 !
4

3
a~v1!2Hxyu ,

gS1335~2 !gS3135~2 !
4a

3
~v1!2Hyyu , gS2305~2 !gS32050,

gS2325~2 !gS32250, gS2315~2 !gS32150, gS2335~2 !gS32350,

gS0105~2 !gS1005
4a

3
~v2!2Hxxu1

4a

3
~v3!2Hyyu1

8a

3
v2v3Hxyu1

2a

3
~Hxxu1Hyyu!,

~B3!

gS0115~2 !gS10150, gS0125~2 !gS1025
4a

3
v1~v2Hxxu1v3Hxyu!,

gS0205~2 !gS2005~2 !
16a

3
~v2!2Hxxx2

16a

3
~v3!2Hyyx24av0v2Hxxu24av0v3Hxyu

2
32a

3
v2v3Hxxy2

8a

3
~Hxxx1Hyyx!,

gS0215~2 !gS20150,

gS0225~2 !gS2025~2 !4av0v1Hxxu2
16a

3
v1v2Hxxx2

16a

3
v1v3Hxxy12aHxxu ,

gS0235~2 !gS2035~2 !4av0v1Hxyu2
16a

3
v1v2Hyxx2

16a

3
v1v3Hyyx12aHxyu ,

gS0305~2 !gS3005~2 !4av0v2Hxyu24av0v3Hyyu2
32a

3
v2v3Hyyx2

16a

3
~v2!2Hxxy

2
16a

3
~v3!2Hyyy2

8a

3
~Hxxy1Hyyy!,

gS0315~2 !gS30150,
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gS0325~2 !gS3025~2 !4av0v1Hxyu2
16a

3
v1v2Hxyx2

16a

3
v1v3Hxyy12aHxyu ,

gS0335~2 !gS3035~2 !4av0v1Hyyu2
16a

3
v1v2Hyyx2

16a

3
v1v3Hyyy12aHyyu .

In the above formulas~B3!,

Hxª
]H

]X
, Hxxª

]2H

]X2 , Hxyª
]2H

]X]Y
,

and so on;v i , (i 50,1,2,3) is the four-velocity of an observerO being at rest at the originP of the
NCS„P… adapted to the coordinates (t,x,y,z).

For the plane wave

H~X,Y,U !5~Y22X2!
F~U !

2

in the null coreper we have

gS1205~2 !gS2105
4a

3
v1v2F8, gS1215~2 !gS21150,

gS1225~2 !gS2125
4a

3
~v1!2F8, gS1235~2 !gS21350,

gS1305~2 !gS3105~2 !
4a

3
v1v3F8, gS1315~2 !gS31150,

gS1325~2 !gS31250, gS1335~2 !gS3135~2 !
4a

3
~v1!2F8,

gS23k5~2 !gS32k50, k50,1,2,3;

gS0105~2 !gS1005
4a

3
F8~v32

2v22
!, gS0115~2 !gS10150, ~B4!

gS0125~2 !gS1025~2 !
4a

3
v1v2F8, gS0135~2 !gS1035

4a

3
v1v3F8,

gS0205~2 !gS20054av0v2F8, gS0215~2 !gS20150,

gS0225~2 !gS20252aF8~2v0v121!, gS0235~2 !gS20350,

gS0305~2 !gS3005~2 !4av0v3F8, gS0315~2 !gS30150,

gS0325~2 !gS30250, gS0335~2 !gS30352aF8~122v0v1!,

F8ªdF/dU.
It is seen from the above results that the plane-fronted and plane gravitational wavespossess

and carryangular supermomentum.
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APPENDIX C: ANGULAR SUPERMOMENTUM IN SPECIAL RELATIVITY

In Minkowski space–time equipped with Lorentzian coordinates (x05ct, x15x, x25y, x3

5z) we have from~1!

mSikl~P;v t!52~2v ivp2h ip!]pT̂kl22~2vkvp2hkp!]pT̂il

52~d ip]pT̂kl2dkp]pT̂il !

52~] i T̂kl2]kT̂il !52~] i T̂
kl2]kT̂

il !52~¹ i T̂
kl2¹kT̂

il !, ~C1!

wherev i8d0
i andTik5Tki are the components of the energy-momentum tensor andd ik

ª2v ivk

2h ik is an auxilliary, positive-definite metric.
By comparison of the structure of the angular supermomentum tensormSikl(P;v t)

5(2)mSkil(P;v t) given by~C1! with the structure of the angular momentum~Carthesian! tensor
of matter

mMikl5~2 !mMkil5xiTkl2xkTil , ~C2!

one can easily derive a simple rule of construction of the tensormSikl(P;v t) from the angular
momentum~Cartesian! tensor of mattermMikl :

xi⇒2] i52¹ i . ~C3!

Of course, one can consider the tensor field

mSikl~x!82@] iT
kl~x!2]kT

il ~x!#52@¹ iT
kl~x!2¹kT

il ~x!#

and define the global angular supermomentummSik5(2)mSki of matter by means of the follow
ing integrals:

mSik
ª

1

c Ex05ct5const
mSik0~x! dxdydz. ~C4!

If the matter energy-momentum tensorTik5Tki is diagonal~for example, for a perfect fluid!, then
we have from~C4! ~as a trivial result!

mS125mS135mS2350. ~C5!

Similar results can be obtained in this case for the spatial componentsmM12, mM13, mM23 of the
global ~orbital! angular momentum of matter

mMik
ª

1

c Ex05ct5const
mMik0 dxdydz, ~C6!

namely,

mM125mM135mM2350. ~C7!

1By ‘‘standard general relativity’’ we mean general relativity without any supplementary element like tetrads, s
metric, or an arbitrary vector field.

2Calledcanonicalbecause it can be obtained as canonical one from a suitable Lagrangian~see Ref. 3!.
3L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields~Pergamon, Oxford, 1975!.
4J. Garecki, inProceedings: Einstein Centenary Symposium, Vol. II ~Duhita Publishers c/o Einstein Foundation Intern
tional, Nagpur, 1981!.

5J. Garecki, Int. J. Theor. Phys.35, 2195~1996!.
6O. B. Zaslavskii, Class. Quantum Grav.13, L63 ~1996!.
7Z. D. Christodoulou and S. T. Yau, Contemp. Math.71, 9 ~1988!.
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Scale symmetries of spherical string fluids
E. N. Glassa) and J. P. Krisch
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

~Received 8 March 1999; accepted for publication 18 May 1999!

We consider homothetic maps in a family of spherical relativistic star models. A
generalization of Vaidya’s radiating metric provides a fluid atmosphere of radiation
and strings. The similarity structure of the string fluid is investigated. ©1999
American Institute of Physics.@S0022-2488~99!03308-3#

I. INTRODUCTION

Metric symmetries have always played a large role in the development of exact solutio
the Einstein field equations. Often a choice of metric symmetry is made based on an as
symmetry of the matter distribution, i.e., spherical symmetry for astrophysical objects or cyl
cal symmetry for a simple string.1 A homothetic motion~homothety! describes the symmetry o
scale transformations, and homothetic symmetry has been called ‘‘similarity of the first kind
Cahill and Taub.2 One must distinguish betweengeometricaland physicalself-similarity. Geo-
metrical similarity is a property of the space–time metric, whereas physical similarity is a pro
of the matter fields. These need not be equivalent and the relationship between them also d
on the nature of the matter. Yavuz and Yilmaz3 recently investigated inheritance symmetri
wherein the stress energy inherits metric symmetries of the type

Ljgab52Cgab ,

whereLj is the Lie derivative along the vectorj. Some of the possibilities are

C5C(xa), j is a conformal Killing vector,

C51, j is a homothetic vector,

C50, j is a Killing vector.

Carter and Henriksen4 have introduced the idea ofkinematic self-similarityin the context of
relativistic fluid mechanics and an extended analysis has been given by Coley.5 A kinematic
self-similarity vector satisfies the conditions

Ljua5constua ,

Ljhab52hab ,

wherehab5gab2uaub is the first fundamental form of the three-spaces orthogonal toua. The
case constÞ1 is called ‘‘similarity of the second kind.’’

In this work we apply the ideas of scaling and homothety to a string fluid atmosphere.
our primary interest is in the extended Schwarzschild mass functionm(u,r ) and the related string
atmosphere, we apply scaling to the mass in two different ways. First, we assume diffusive
transport and investigate the symmetries of the diffusion equation and second, we investig
scaling properties of the metric and from those derive mass transport equations.

In Sec. II we briefly describe the Schwarzschild string fluid atmosphere. Section III studie
symmetry map which takes the diffusion equation to an ordinary differential equation.

a!Permanent address: Physics Department, University of Windsor, Ontario N9B 3P4, Canada.
40560022-2488/99/40(8)/4056/8/$15.00 © 1999 American Institute of Physics
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diffusion solutions are found. Geometric symmetries, homothetic and conformal, are develo
Sec. IV. Mass transport is discussed in Sec. V. One of the results of the homothetic analy
new self-similar solutions to the Einstein equations.

Our sign conventions are 2Ac;@ab#5AeR
e
cab , and Rab5Re

abe. Latin indices range over
(0,1,2,3)5(u,r ,q,w). Overdots abbreviate]/]u, and primes abbreviate]/]r . Overhead carets
denote unit vectors. We use units whereG5c51. Einstein’s field equations areGab

528pTab , and the metric signature is~1,2,2,2!.

II. STRING FLUID ATMOSPHERE

Recently, Glass and Krisch6,7 showed that there can be a spherically symmetric string fl
atmosphere outside a Schwarzschild horizon. The space–time metric is

dsGK
2 5A du212 du dr2r 2~dq21sin2 q dw2!, ~1!

whereA5122m(u,r )/r . Initially m(u,r )5m0 provides the vacuum Schwarzschild solution
the regionr .2m0 . The metric can be written in a natural basis as

gab
GK5 v̂av̂b2 r̂ ar̂ b2q̂aq̂b2ŵaŵb , ~2!

where the unit vectors are defined by

v̂adxa5A1/2du1A21/2dr, v̂a]a5A21/2]u , ~3a!

r̂ a dxa5A21/2dr, r̂ a]a5A21/2]u2A1/2] r , ~3b!

q̂a dxa5r dq, q̂a]a52r 21]q , ~3c!

ŵa dxa5r sinq dw, ŵa]a52~r sinq!21]w . ~3d!

v̂a is hypersurface-orthogonal withhab the first fundamental form of the hypersurface,

habdxadxb5~gab
GK2 v̂av̂b!dxadxb52A21dr22r 2~dq21sin2 q dw2!. ~4!

The kinematics of thev̂a flow are described by

v̂ ;b
a 5aav̂b1sa

b2~Q/3!~ r̂ ar̂ b1q̂aq̂b1ŵaŵb!, ~5!

where

aa5@ṁ/r 1A] r~m/r !#A23/2r̂ a, ~6a!

sa
b5~Q/3!~22r̂ ar̂ b1q̂aq̂b1ŵaŵb!, ~6b!

Q5~ṁ/r !A23/2. ~6c!

The string distribution is described by a string bivectorSab . Spherical symmetry demand
that the averaged string bivector will describe a world-sheet in either the~u,r! or the~q,w! plane.
The string bivector is timelike and given by

Sac5 r̂ av̂c2 r̂ cv̂a, ~7!

whereSacSc
b5 v̂av̂b2 r̂ ar̂ b. The two-surfaces spanned bySab are orthogonally transitive to the

two-surfaces spanned by the dual bivector

Sab* 5q̂aŵb2q̂bŵa , ~8!
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which follows from the Frobenius surface-forming condition satisfied bySab . It is also true that
Sa*

cScb* 5q̂aq̂b1ŵaŵb .
The Einstein tensor computed from~1! can be written as a two-fluid systemGab

null1Gab
matter.

Gab5~2ṁ/r 2!l al b2~2m8/r 2!~ v̂av̂b2 r̂ ar̂ b!1~m9/r !~q̂aq̂b1ŵaŵb!, ~9!

wherel adxa5du. The Einstein field equationsGa
b;a50 are satisfied for arbitrarym(u,r ).

In Glass and Krisch6,7 mass transport was modeled by diffusion, and the diffusion equa
used is given by

ṙ5D r 22] r~r 2] rr!, ~10!

whereD is the positive coefficient of self-diffusion~taken to be constant!.

III. SIMILARITY MAP OF THE DIFFUSION EQUATION

There is a similarity technique explained by Bluman and Cole8 that maps the diffusion equa
tion into an ordinary differential equation. Our primary interest is in the Schwarzschild m
functionm(u,r ). New functional solutions form(u,r ) are new solutions to the field equations f
the parameter extended radiating atmosphere. The behavior ofm(u,r ) describes the string fluid
atmosphere beyond the Schwarzschild horizon through the relationsṁ54pDr 2r8 and 4pr
5m8/r 2. The mass function obeys a diffusion equation

ṁ5Dr 2] r~r 22] rm! ~11!

with homogeneous solutionmhom(r )5m01 4
3pr 3r0 which can be added to each time-depend

solution.
The similarity technique~for a fully general analysis see Bluman and Kumei9! requires one to

introduce an independent dimensionless variable. A standard choice in diffusion problems
Boltzmann transformation:10

h5r ~4Du!21/2. ~12!

@Note that as a mapping from~u,r! to (u21/2,h) the Jacobian is singular implying a breakdown
the 121 mapping alongr.# The argument of the equation,m(u,r ), is replaced by a dimensionles
function F(h): We look for a general solution of the form

m~u,r !ªc0r aubF~h!. ~13!

The constantc0 is intended to map the dimensions ofr aub to mass for arbitrary constantsa and
b. Upon substituting Eq.~13! into the diffusion equation~11! we obtain the ordinary differentia
equation

Fhh12@~a21!h211h#Fh1@a~a23!h2224b#F50, ~14!

whereFh abbreviatesdF/dh.
There are many analytic solutions of Eq.~14! which depend on the values ofa andb. The

choicea5b50 has the differential equationFhh12(h21/h)Fh50 with solution

F~h!5k01k1@2he2h2
1~Ap/2!erf~h!#, ~15!

where erf(h)ª(2/Ap)*0
h exp(2s2)ds, limh˜0 erf(h)52h/Ap. This is the mass solution given i

Eq. ~40! of Glass and Krisch7 ~with k050 and with the homogeneous solutionmhom added!. At
fixed timeu, it describes a mass with valuemhom1c0k1 ash˜`. At late timesc0k1 is radiated
away. There is no length scale in this description so themhom atmosphere is unbounded.
                                                                                                                



f

of the
s distri-

n in

4059J. Math. Phys., Vol. 40, No. 8, August 1999 Scale symmetries of spherical string fluids

                    
Other choices can be made, for examplea5n, b52n/2. This choice has const3rnu2n/2

5hn and one can solve Eq.~14! or see directly from Eq.~13! that

F~h!5h2n.

If we write F(h)5h2nH(h) thenH(h) satisfies the casea5b50 and we have a new family o
solutions parametrized byn:

F~h!5h2n@k01k1@2he2h2
1~Ap/2!erf~h!##. ~16!

Solution ~15! is included here whenn50.

IV. SYMMETRIES

Because the string fluid naturally lives on a two-dimensional world sheet, the question
symmetries of these two-dimensional subspaces is interesting. We examine how the mas
bution and stress energy content reflect the separate two-surface symmetries

Lj~ v̂av̂b2 r̂ ar̂ b!52m~ v̂av̂b2 r̂ ar̂ b!,
~17!

Lj~ q̂aq̂b1ŵaŵb!52n~q̂aq̂b1ŵaŵb!.

For similarity of the second kind, the map action must be

Ljv̂a5g v̂a , gÞ1,

Lj r̂ a5 r̂ a , ~18!

Lj~ q̂aq̂b1ŵaŵb!52~q̂aq̂b1ŵaŵb!.

A. Homothetic map

The similarity vector which preserves the distinct two-surfaces of the matter distributio
Eq. ~17! is

ja]a5@nu01~2m2n!u!] ]u1nr ] r , ~19!

with kinematic transformations

Ljv̂a5m v̂a , Lj r̂ a5m r̂ a , ~20a!

Ljq̂a5nq̂a , Ljŵa5nŵa , ~20b!

when the metric functionA satisfies (kª2m/n21)

cȦ/A1rA8/A1k2150, ~21!

with c(u)ªu01ku. The constraint~21! requires the mass function to have the form

r 22m~u,r !5c~22k!/k f ~c/r k!, ~22!

wheref is an arbitrary function.
If m5n5k51 then the map is homothetic withLjgab52gab .
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B. Another homothetic map

The casek50 requires a separate solution. The metric functionA satisfies

u0Ȧ/A1rA8/A51. ~23!

Constraint~23! has the integral

r 22m~u,r !5r 1e2u/u0 f̃ ~eu/u0r 0 /r ! ~24!

with f̃ an arbitrary function. Whenn51 andm51/2 theu dependence is eliminated fromja and
the transformation acts on the~q,w! two-surfaces homothetically

Lj~ q̂aq̂b1ŵaŵb!52~q̂aq̂b1ŵaŵb!

but preserves the scale of the string two-surfaces,

Lj~ v̂av̂b2 r̂ ar̂ b!5 v̂av̂b2 r̂ ar̂ b .

C. Interpreting the scale parameter

Under the action of the homothetyja]a5(u01u)]u1r ] r the acceleration ofv̂a, given in Eq.
~6a!, has the following Lie derivative: withab5ar̂b, aª@ṁ/r 1A] r(m/r )#A23/2,

Lja
b5S aj

a
21Dab, ~25!

whereajª@(u01u)]u1r ] r #a. Similarly the rate-of-shear given in Eqs.~6b! and ~6c! obeys

Ljs
a

b5S Qj

Q
21Dsa

b , ~26!

whereQj5@(u01u)]u1r ] r #Q.
There is no information to be gained by analyzing the scaling properties of the Raychau

equation

a;b
b 2sabs

ab2Q2/32Q ,av̂a52Rabv̂
av̂b,

since it is identically satisfied bygab
GK .

D. Conformal map

The casem5n5k51, with c5u01u, has an interesting conformal symmetry. We see fr
Eq. ~22! that A5(c/r ) f (c/r )5F(c/r ). Metric ~1! is written as

dsGK
2 5F~c/r !du212 du dr2r 2 dV2. ~27!

We define a new coordinateyªr /c and rewrite~27! as

dsGK
2 5@F~1/y!12y#du212c du dy2y2c2 dV2. ~28!

Now we factor outc2 and introduce a new time coordinatedwªdu/c to obtain

dsGK
2 5c2@~F12y!dw212 dw dy2y2 dV2#.

Upon choosingF(1/y)5122M (y)/y22y, M (y) arbitrary, we have
                                                                                                                



of the
ve and

metries.

ave

at

4061J. Math. Phys., Vol. 40, No. 8, August 1999 Scale symmetries of spherical string fluids

                    
dsGK
2 5e2w@~122M /y!dw212 dw dy2y2dV2#. ~29!

The argument above shows that the similarity transformation generated by vectorja]a5(u0

1u)]u1r ] r conformally relates the radiating string atmosphere of metric~1! to a previously
identified family of static string atmospheres,7 i.e.,

Ljgab
GK52e2wgab

static. ~30!

E. Similarity of the second kind

For similarity vectorja]a5(u1u0)]u1r ] r the metric functionA must satisfy

~u01u!Ȧ/A1rA8/A5g21. ~31!

Equation~31! has solution

r 22m~u,r !5r 2~u01u!gh@~u01u!/r #, ~32!

whereh is an arbitrary function andgÞ1.

V. MASS TRANSPORT

The mass functions found by similarity analysis obey certain transport equations. Most
transport equations have the form of the ‘‘telegrapher’’ equation. This can describe dispersi
lossy electromagnetic wave motion.11 Some forms have been interpreted by Kac12 as a random
Poisson process. Mass transport through the atmosphere is affected by the homothetic sym
The transport equations can be constructed from the similarity solutions of Sec. IV.

A. k50 homothety

Differentiation of Eq.~23!, a constraint on the mass function, yields an inhomogeneous w
equation

Ä23Ȧ/u02~r /u0!2¹2A522A/u0
2. ~33!

B. k51 homothety

Recall metric functionA5122m(u,r )/r . One can see directly from Eq.~22! that A
5(c/r ) f (c/r )5F(c/r ) with c5u01u. A, and thusm/r , satisfies a wave equation on the fl
tangents to thev̂av̂b2 r̂ ar̂ b two-spaces. Definingt5 ln(c) andz5 ln(r) we have

A5F~t2z!. ~34!

It is clear thatA, generated by homothetyja]a5(u01u)]u1r ] r , satisfies the wave equation

]2A

]t22
]2A

]z2 50. ~35!

Alternatively, we can find a wave equation on the curved manifold by writing

]F/]u5~1/r !F̂, ]F/]r 52~c/r 2!F̂

whereF̂ is the derivative ofF with respect to its argument. It follows that

Ä5~1/r 2!F9 , ~r 2A8!85~c2/r 2!F9 .

Thus
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Ä2vs
2¹2A50 ~36!

where¹25r 22(]/]r )r 2(]/]r ) andvs5r /c. The wave speed varies withu and r.
If vs were constantv, then Eq.~36! would have the general solution

A~u,r !5
f ~r 2vu!

r
1

g~r 1vu!

r
~37!

in terms of two arbitrary functionsf andg. SubstitutingA5 f /r into ~36! one finds

~v22vs
2! f950.

This reflects ‘‘damped, yet relatively undistorted, progressing wave solutions,’’13 a special case o
the telegrapher’s equation.

For new time coordinatet°u1u05et/t0 and withAtª]A/]t, Eq. ~36! transforms to

Att2At /t02~r /t0!2¹2A50. ~38!

C. k>2 two-surface symmetry

With A5122m(u,r )/r 5c (22k)/kr 21f (c/r k) we can write

A5r 12kH~c/r k!, Hª~c/r k!~22k!/k f .

Differentiation yields

Ä5k2r 123kĤ

and

~r 2A8!85~12k!~22k!r 12kH23k~12k!cr 122kĤ1k2c2Ĥ.

It follows that

~r 2A8!85~12k!~22k!A23~12k!cȦ1c2Ä.

Transforming to a new time coordinateet/t05c5u01ku yields the inhomogeneous wave equ
tion

Att1~223/k!At /t02~r /t0!2¹2A5~121/k!~2/k21!A/t0
2, ~39!

whereAtª]A/]t.

D. Similarity of the second kind

Differentiation of the constraint on metric functionA, Eq. ~31!, yields the homogeneous wav
equation

Ä1vsS g21

r D Ȧ2vs
2¹2A1vs

2S g21

r 2 D ~rA8!50, ~40!

wherevs5r /(u01u) andgÞ1. As above, the wave speed varies withu and r.

VI. DISCUSSION

Similarity is physically important since scaling behavior may offer clues about possible
tionships between macroscopic and microscopic physics~i.e., Ehrenfest’s classical adiabatic in
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variants and quantization rules!. Using scaling, one can model long term behaviors with sin
solutions to the field equations in which only the scaling variable changes as a function of
Self-similar behavior is an important aspect of many evolutionary processes both linea
nonlinear.14 The simplifications of the nonlinear field equations of general relativity are a g
example of the value of similarity methods. In addition, we have seen that the special hom
of fluid two-surfaces can be associated with self-similar behavior in the fluid parameters.

In this paper our primary interest is in the extended Schwarzschild mass functionm(u,r ) and
the related string atmosphere. We applied scaling to the mass in two different ways. Fir
assumed a mass transport and investigated the scaling properties and second, we investig
scaling properties of the metric and from those derived mass transport equations. In the firs
assuming diffusive mass transport with a Boltzmann scaling variable, we developed a new
of diffusive mass functions and the associated family of string atmospheres. In the second c
examined the scaling symmetries of the orthogonal two-surfaces~u,r! and~q,w!. A two-parameter
similarity generator acted separately on the~u,r! two-surface containing the string fluid and th
orthogonal~q,w! two-surface subject to the mass parameter obeying a constraining first
differential equation. The similarity map affects all metric components equally when the pa
eters are both equal to 1. For this case, where the transformation is a homothety for the
space–time, the mass constraint conformally relates a radiating string atmosphere and
atmosphere. Other parameter choices could be made, for example, the choices which remo
dependence from the generator. This time independent mapping acts on the~q,w! two-surface
homothetically while preserving the scale of the~u,r! string two-surface. For all the paramet
choices associated with the scaling action of the generator, a mass transport equation is i
This equation is, in general, the telegrapher’s equation. The telegrapher’s equation and the
sion equation have both macroscopic and microscopic interpretations.12,15,16 The appearance o
both of these mass transport equations in conjunction with the description of a macroscopic
fluid atmosphere is suggestive of the quantum nature of the fundamental string fluid bits
classical continuum fluid describes only the averaged fluid behavior, with the mass tra
equations suggesting the underlying quantum nature of the fluid.
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It is shown that the Levi-Civita metric can be obtained from a family of the Weyl
metric, theg metric, by taking the limit when the length of its Newtonian image
source tends to infinity. In this process a relationship appears between two funda-
mental parameters of both metrics. ©1999 American Institute of Physics.
@S0022-2488~99!02507-4#

I. INTRODUCTION

One of the most interesting metrics of the family of Weyl solutions1 is the so-calledg
metric.2,3 This metric, which is also known as the Zipoy–Voorhees metric,4 is continuously linked
to the Schwarzschild space–time through one of its parameters and corresponds to a sol
the Laplace equation in cylindrical coordinates. Its Newtonian image source5 is given by a finite
rod of matter. For a particular value of the mass density of the rod, the metric becomes sphe
symmetric~Schwarzschild metric!.

In this article we show that by extending the length of the rod to infinity we obtain
Levi-Civita space–time. At the same time a link is established between the parameterg/2, mea-
suring the mass density of the rod in theg metric, and the parameters, which is thought to be
related to the linear energy density of the source of the Levi-Civita space–time.5 Sinces is the
real source, not the Newtonian image source, andg/2 measures the line mass density of t
Newtonian image source, not of the real source, our result illustrates further the difficultie
pearing in the interpretation of the Levi-Civita metric as representing an infinite line ma
densitys.6

In Sec. II we describe theg metric. In Sec. III we show that it has a limit on the Levi-Civi
space–time. In Sec. IV some other limits are studied in order to build a limiting diagram fo
g metric. Finally Sec. V presents our conclusions.

II. THE g METRIC

In cylindrical coordinates, static axisymmetric solutions to Einstein’s equations are give
the Weyl metric1

ds25e2l dt22e22l@e2m~dr21dz2!1r2 df2#, ~2.1!

a!Postal address: Apartado 80793, Caracas 1080A, Venezuela; electronic mail: laherrera@telcel.net.ve
b!Electronic mail: fmpaiva@symbcomp.uerj.br
c!Electronic mail: nos@lacesm.ufsm.br
40640022-2488/99/40(8)/4064/8/$15.00 © 1999 American Institute of Physics
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with

l ,rr1r21l ,r1l ,zz50, ~2.2!

and

m ,r5r~l ,r
2 2l ,z

2 !, ~2.3!

m ,z52rl ,rl ,z , ~2.4!

where a comma denotes partial derivation. Observe the most amazing fact, as Synge write1 that
~2.2! is just the Laplace equation forl in Euclidean space. Theg metric is defined by2

e2l5FR11R222m

R11R212mGg

, ~2.5!

e2m5F ~R11R212m!~R11R222m!

4R1R2
Gg2

, ~2.6!

where

R1
25r21~z2m!2, R2

25r21~z1m!2 ~2.7!

and g is a constant. It is worth noticing thatl as given by~2.5! corresponds to the Newtonia
potential of a line segment of mass densityg/2 and length 2m, symmetrically distributed along the
z axis. The particular caseg51 corresponds to the Schwarzschild metric. This is more easily s
using Erez–Rosen coordinates,4 given by

r25~r 222mr!sin2 u, z5~r 2m!cosu, ~2.8!

which yields the line element2

ds25F dt22F21@G dr21H du21~r 222mr!sin2 u df2#, ~2.9!

where

F5S 12
2m

r D g

, ~2.10!

G5S r 222mr

r 222mr1m2 sin2 u D g221

, ~2.11!

H5
~r 222mr!g2

~r 222mr1m2 sin2 u!g221
. ~2.12!

Now, it is easy to check thatg51 corresponds to the Schwarzschild metric. The total mass o
source isM5gm,2,3 and its quadrupole momentQ is given by

Q5
g

3
M3~12g2!, ~2.13!

so thatg.1(g,1) corresponds to an oblate~prolate! spheroid. We shall now show thatelongat-
ing the Newtonian image source to infinity we obtain the Levi-Civita space–time. To achieve
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use will be made of the Cartan scalars. In Sec. III these scalars are obtained for theg metric, and
are compared to the corresponding quantities of the Levi-Civita metric in the limitm˜`.

III. THE LEVI-CIVITA LIMIT

Since the limitm˜` taken on theg metric in the form~2.1! diverges, we use the Carta
scalar approach to obtain a finite limit.7,8

It is known9 that the so-called 14 algebraic invariants~and even all the polynomial invariant
of any order! are not sufficient for locally characterizing a space–time, in the sense tha
metrics may have the same set of invariants and not be equivalent. As an example, al
invariants vanish for both Minkowski and plane-wave9 space–times and they are not the same
complete local characterization of space–times may be done by the Cartan scalars. Brie
Cartan scalars are the components of the Riemann tensor and its covariant derivatives~up to
possibly the tenth order! calculated in a constant frame.10,9,11,12

Therefore it is possible to establish unambiguously the local equivalence between two
metrics by comparing their respective Cartan scalars, in other words: Two metrics are equ
if and only if there exist coordinate and Lorentz transformations which transform the C
scalars of one of the metrics into the Cartan scalars of the other. It should be stresse
although the Cartan scalars provide a local characterization of the space–time, global pro
such as topological defects do not probably appear in them.

In practice, the Cartan scalars are calculated with the Karlhede algorithm,11 using the spinorial
formalism. For the purpose here, the relevant quantities are the Weyl spinorCA , and its first
covariant symmetrized derivative¹CAB8 , which represent the Weyl tensor and its covaria
derivative. Due to the amount of calculations, the computer algebra systemsSHEEP/CLASSI10,9 and
MAPLE were used throughout this section.

In order to calculate the Cartan scalars for theg metric, we take the line element in spheric
coordinates@Eq. ~2.9!# written in the same tetrad basis used in Ref. 2. In the zeroth order we
that the Ricci spinor and curvature scalar vanish and the Weyl spinor satisfies the relatioC0

5C4 , C152C3 , C2Þ0. It can be easily shown that this corresponds to a Petrov type I me
which therefore has no isotropies. For putting these Cartan scalars in a canonical form, two
transformations are done, which in the spinorial formalism are given by

1

&
F1 i

i 1G , FA 0

0 1/AG . ~3.1!

The first transformation puts the zeroth-order Cartan scalars in the form:C08Þ0, C1850, C28
Þ0, C3850, C48Þ0. The second transformation withA5(C48/C08)

1/8 gives finally: C095C49 ,
C1950, C29Þ0, C3950, which is the canonical form for Petrov type I metrics.

We come out with two independent functions of the coordinatesr andu @Eqs.~3.2! and~3.3!#.
So, up to zeroth order, the isometry group is of dimension 42252 ~where 4 is the dimension o
the space–time!. Since the metric is independent of the coordinatest andf, its isometry group is
of dimension 2. Therefore, the first-order Cartan scalars will present no new information
isometries and the Karlhede algorithm ends in the first order, with theCA , and¹CAB8 in the
canonical basis defined by the transformation~3.1!.

Instead of calculating the first-order Cartan scalars in the canonical basis, for computa
reasons they were calculated in the initial basis and afterwards transformed to the canonica
Finally, to have the Cartan scalars in the cylindrical coordinate system one has to inve
coordinate transformation from cylindrical to spherical given by Eq.~2.8! ~this leads tor
5@A(z2m)21r21A(z1m)21r212m#/2 and cosu5@A(z1m)21r22A(z2m)21r2#/2m)
and apply it to the Cartan scalars, remembering that they transform like scalars.

In the canonical basis, in cylindrical coordinates, the zeroth-order Cartan scalars ofg
metric @Eqs.~2.1! and ~2.5!–~2.7!# are ~dropping the primes!:
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C25
e2l

e2m

mg~R11R222gm!

~R11R212m!~R11R222m!R1R2
, ~3.2!

C05C452C2

Af 21g2

2R1R2~R11R222gm!
, ~3.3!

where

f 25$@~R12R222m!~R12R212m!g2

2~R11R212m!~R11R222m!#~R11R2!

22~R11R226gm!R1R2%
2, ~3.4!

g25~g221!2~R12R2!2~R11R212m!~R11R222m!~R12R212m!~R12R222m!
~3.5!

andR1 andR2 are given by Eq.~2.7!. The first-order Cartan scalars are too long and will not
shown.

Note that the Cartan scalars depend only on the coordinatesr andz, while the line element
depends on these coordinates and the differentials of the four coordinates. Also, they tra
like scalars while the metric components transform like tensor components. Finally, the m
usually has features that are due to the nonessential coordinates~like the singularity on the
Schwarzschild horizon! while, on the other hand, since only the essential coordinates appe
the Cartan scalars, they do not present such problems. So, in principle, a coordinate system
found which provides a well-behaved limit for the Cartan scalars while the metric still dive
Due to this fact it is easier to investigate limits using the Cartan scalars rather than using th
element.

The first step is to investigate the limits usingC2 ; later we shall investigate whether the oth
Cartan scalars share the same limits. After a lengthy but straightforward calculation the le
term in the series expansion ofC2 asm˜` is:

22~g21!m2~g22g!r22~g22g11!g~12g!, ~3.6!

which is either divergent or finite depending on the value ofg. Nevertheless, this expressio
suggests that a finite limit may arise for all values ofg if we define a new radial coordinater̄ by
m2(g22g)r22(g22g11)5 r̄22(g22g11) that is,

r52bmar̄, ~3.7!

where

a5
g22g

g22g11
~3.8!

and

b5
2g

g22g11
. ~3.9!

The constantb was introduced to provide the correct power of 2 in the limiting Cartan scala
Indeed, noting that2 1

3<a,1 and using Eq.~3.7! in Eq. ~3.2!, a lengthy but straightforward
calculation shows that in the$t,r̄,z,f% coordinate system one has:
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lim
m˜`

C25 1
2r̄

22~g22g11!g~12g!, ~3.10!

which is finite. Similarly, one finds that all Cartan scalars have a finite limit in this new coord
system. The question now is to find out to which metric this set of Cartan scalars belongs. T
not a straightforward task, but fortunately, calling

g52s ~3.11!

and r̄5r we are led to following set of Cartan scalars:

c25~122s!sr 22~4s222s11!, ~3.12!

c05c45~4s21!c2 , ~3.13!

¹c0185¹c5085&~8s224s11!~4s21!~2s21!sr 23~4s222s11!, ~3.14!

¹c1085¹c4185&~4s21!~2s21!sr 23~4s222s11!, ~3.15!

¹c2185¹c3085&~4s222s11!~2s21!sr 23~4s222s11!, ~3.16!

which are the Cartan scalars of the Levi-Civita space–time13

ds25r 4s dt22r 8s224s~dr21dz2!2
r 224s

a
df2. ~3.17!

This shows that in the$t,r̄,z,f% coordinate system, the limit of theg metric asm˜` is
locally the Levi-Civita metric, provided the radial coordinatesr̄ and r are identified and the
parameterg divided by 2 of theg metric is identified with the density parameters of the
Levi-Civita metric, i.e., Eq.~3.11! holds.

We use the wordlocally since the Cartan scalars provide a local characterization of the m
Furthermore, there is a parametera in the Levi-Civita metric which does not appear in its Cart
scalars since it is a topological defect and can be eliminated by a coordinate transformatio
studying the global properties of the limit one has to investigate the metric~or the line element!
directly. In fact one may ask whether, using the$t,r̄,z,f% coordinate system, the Levi-Civita limi
can be obtained directly from the line element of theg metric.

In the $t,r̄,z,f% coordinate system, theg metric may be written as

ds25e2l dt22e22le2m22bm2a dr̄22e22le2m dz22e22l22bm2ar̄2 df2, ~3.18!

wherel andm are expressed with ther̄ coordinate. The limit of the componentgr̄ r̄ is precisely
the grr of the Levi-Civita metric but the other metric components diverge. Now, the diverge
can be easily removed by similar transformations on the coordinatest, z, andf, given by

t522b~g211!m2b t̄ , ~3.19!

z52bmaz̄, ~3.20!

f52bg2
mbg

1

Aa
f̄. ~3.21!

In the $ t̄ ,r̄,z̄,f̄% coordinate system theg metric becomes:
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ds25e2l222~g211!bm22b d t̄22e22le2m22bm2a dr̄22e22le2m222bm22a dz̄2

2e22l22~b1g2b!m2~a1gb!r̄2
1

a
df̄2 ~3.22!

and its limit asm˜` is precisely the Levi-Civita metric~3.17!. The only drawback of this limit
is the introduction of an infinite topological defect. In other words, the limit of theg metric in the

$ t̄ ,r̄,z̄,f̄% coordinate system is the Levi-Civita metric only locally. This confirms the result
found previously with the Cartan scalars. Whether a coordinate system for theg metric exists
which provides a global limit into the Levi-Civita metric, i.e., with a finite topological defect
still an open question.

IV. A LIMITING DIAGRAM FOR THE g METRIC

We shall now study the limit we have just found, find other limits in the coordinate sys
of Sec. III, and discuss some limits known in the literature in order to build the limiting diag
for the g metric shown in Fig. 1.

A. Limits in the Schwarzschild coordinates

In the usual Schwarzschild coordinates, in the limitm˜0, the Schwarzschild line elemen
tends to Minkowski. The limitm˜` diverges. This can be easily checked by hand or from
Cartan scalars.7

B. The Geroch limits

In 1969 Geroch14 showed that in the coordinate system~Geroch coordinates! defined by

x5r 1m4/3, r5m4/3u, t85t, w85w, ~4.1!

FIG. 1. Limiting diagram for theg metric. In brackets are the coordinate systems where each limit works.g means the
original $t,r,z,f% cylindrical coordinate system for theg metric; LC means the Levi-Civita coordinate system$ t̄ ,r̄,z̄,f̄%,
i.e., theg coordinate system plus the coordinate transformation given by Eqs.~3.7! and~3.19!–~3.21!; S means the usua
Schwarszchild coordinates and G the Geroch coordinates first used to find the Minkowskian limit of Schwarzschi
asterisk means that the limit is local, i.e., it was taken with the Cartan scalars and/or on the line element but a top
defect was found.
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the limit of the Schwarzschild metric asm˜` is the Minkowski space–time. He also present
a coordinate system where the limit is a Kasner space–time. These results show that the
a space–time as some parameter goes to infinity is a coordinate-dependent process.

Later, Paiva, Rebouc¸as, and MacCallum7 reobtained these limits by using the Cartan sca
technique, and extended the results presenting new limits of the Schwarzschild metric and
oping an approach to find all limits of a given space–time~see also Refs. 8, 15, and 16!

C. Limits in the g coordinates

We shall callg coordinates the original$t,r,z,f% cylindrical coordinates used for theg
metric @Eqs. ~2.1! and ~2.5!–~2.7!#. Its is known17 that in this coordinate system the limitg
˜`, m˜0 with gm5const leads to the Curzon metric and, as shown in Sec. II, the limg
˜1 leads to Schwarzschild. Besides one can easily see that asg˜0 the g metric tends to
Minkowski. The coordinate systems in which the Curzon and Schwarzschild metrics are exp
when obtained as limit of theg metric will also be calledg coordinates.

In theg-coordinate system, the line elements of Curzon~see Ref. 17! and Schwarzschild tend
to Minkowski asm˜0 ~this arises directly from the line element!. Although the Schwarzschild
line element ing coordinates diverges asm˜` it can be shown that its Cartan scalars~those of
the g metric with g51! tend to zero, which is locally Minkowski.

D. Limits in the LC coordinates

We have shown that in the coordinate system$ t̄ ,r̄,z̄,f̄% the limit, asm˜`, of theg metric
is locally the Levi-Civita metric. This new coordinate system will therefore be called Levi-C
coordinates or LC coordinates for short, for both theg metric and the Levi-Civita metric~although
the metric equivalence is only local!. Coincidently, this is the usual coordinate system for
Levi-Civita metric.

As g˜0 or g˜1, theg metric in LC coordinates tends to Minkowski or Schwarzschild,
can be seen directly from the line element~3.22!. The last one giving Schwarzschild in LC
coordinates.

The limits of the Levi-Civita metric ass˜0 ands˜1/2 giving locally Minkowski can be
directly found from the line element in LC coordinates.

As m˜0, the Schwarzschild line element in LC coordinates diverge but its Cartan sc
tend to 0, i.e., locally Minkowski.

Finally, the LC-coordinate system turns out to be a new coordinate system~Geroch coordi-
nates is the old one! where the Schwarzschild line element tends to Minkowski asm˜`. The
equivalence is local since an infinite topological defect appears. This limit can also be don
the Cartan scalars.

One could point out that it is not proved that all limits found with the line element can
found with the Cartan scalars and vice-versa. Nevertheless, for our purposes, i.e., finding
specific limits, this proof is not necessary. In fact, both the line element and Cartan scala
equivalent local representations of the space–time according to Cartan’s equivalence the12

Therefore, limits found with one or the other are limits of the space–time. As a matter of fac
Levi-Civita limit of the g metric was found here using both approaches.

V. CONCLUSION

We have seen so far that by extending the length of the Newtonian image source ofg
metric to infinity we arrive at the Levi-Civita space–time. The amazing fact is that the finite
does not represent thereal source of theg metric ~it is just its Newtonian image source!, whereas
the infinite line singularity is thought to be the real source of the LC space–time. The link bet
the parametersg ands(g52s) appearing in the limiting process is quite consistent with previ
results,14,7 in the sense that the Schwarzschild metric (g51) leads~locally! to Minkowski space–
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time asm˜` and the Levi-Civita metric (m˜`) leads~locally! also to Minkowski ifs51/2. It
should be interesting to find out if restrictions ons, based on the existence of timelike circul
geodesics18 in LC (s,1/4), appear in theg metric.

We shall now proceed to the interpretation of the limiting diagram of theg metric ~Fig. 1!. In
order to build this diagram, we introduced a new coordinate system for this metric~the LC
coordinates! and found two new limits asm˜`: Schwarzschild̃ Minkowski in g coordinates
and LC coordinates andg metric˜ Levi-Civita in LC coordinates.

One notices, that as it is presented, the diagram is quite consistent. It supports the
interpretations ofs as being the density in the Levi-Civita metric;g/2 and 2m, respectively, as the
density and the length in theg metric;m as the mass in the Schwarzschild solution, andM as the
mass in the Curzon solution.

Note that from theg metric one can reach Minkowski either through Levi-Civita by maki
m˜` and thens˜1/2 or through Schwarzschild by makings˜1/2 and thenm˜`. The limit
s˜0 is similar; the difference being that, since the mass in theg metric is 2sm, the limit s
˜0 leads to Schwarzschild with zero mass, which is Minkowski.

To extend this work one should use the Cartan scalar techniques developed in Refs. 7
to find all limits of theg metric. The main difficulty is computational, since in the present case
many Cartan scalars are different from zero and they depend on more than one coordina
parameter. Afterwards one should do the same with the other metrics appearing on the di
Finally, one should find a single coordinate system which provides all the limits on the dia
and does not present an infinite topological defect. This would help the understanding
topological defects in the Levi-Civita metric.
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A subclass of a recently discovered class of solutions in multidimensional gravity
with intersectingp-branes related to Lie algebras and governed by a set of har-
monic functions is considered. This subclass in case of three Euclideanp-branes
~one electric and two magnetic! contains a cosmological solution toD511 super-
gravity related to hyperbolic Kac–Moody algebraF3 ~of rank 3!. This solution
describes the non-Kasner power-law inflation. ©1999 American Institute of
Physics.@S0022-2488~99!02007-1#

I. INTRODUCTION

Here we consider a recently discovered class of solutions with intersectingp-branes.1 These
solutions are governed by a set of harmonic functions. The number of harmonic functio
general is less than the number ofp-branes~as it takes place in orthogonal case2–16!. The solutions
correspond to a block-orthogonal set ofp-brane vectorsUs @see~2.17! below# and may be con-
sidered as a Majumdar–Papapetrou type extension for the extremal limit of ‘‘block-orthogo
black holes recently found in Ref. 17~for ‘‘orthogonal’’ black holes see Refs. 18–23 and refe
ences therein.!

For the one-block case the solution is governed by one harmonic function and for a s
configuration may be related to some simple finite dimensional Lie algebra or infinite dimens
hyperbolic Kac–Moody~KM ! algebra.24,25 The affine KM algebras do not appear among t
solutions from Ref. 1.

Let us consider the simplest example ofD511 supergravity26 ~corresponding to M-theory27!.
It is known3–5 that the orthogonal~or A11A1) intersection rules for the M-theory read

3ù351, 3ù652, 6ù654 ~1.1!

~here we are counting dimensions of world sheets and their intersections!. For the simplestA2

5sl(3) Lie algebra the intersection rules are modified as follows:1

3ù350, 3ù651, 6ù653. ~1.2!

The rules~1.2! are obtained from~1.1! by a shift of one unit.~For 3ù350 the ‘‘truncated’’ theory
or without the Chern–Simons term should be considered!. These modified rules may be written fo
a wide class of models and Lie algebras~finite or hyperbolic! and are defined by Dynkin
diagrams.1,23

a!Electronic mail: ivas@rgs.phys.msu.su
b!Electronic mail: sungwon@mm.ewha.ac.kr
c!Electronic mail: rgs@com2com.ru
40720022-2488/99/40(8)/4072/12/$15.00 © 1999 American Institute of Physics
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Hyperbolic algebras appeared in different areas of mathematical physics, e.g. in or
gravity28 (F3 hyperbolic algebra!, supergravity:29,30 (E10 hyperbolic algebra!,31 (F3 hyperbolic
algebra!, strings, etc.~see also Ref. 32, and references therein!. In Ref. 31 it was shown that the
chiral reduction of a simple (N51) supergravity from four dimensions to one dimension giv
rise to the hyperbolic algebra of rank 3~namelyF3).

In Ref. 1 we considered some examples of hyperbolic intersection rules for the hype
KM algebras of rank 2. These examples were suggested for so-calledBD models withD>14,23

containingD211 scalar fields with negative kinetic terms. (B11 is the truncated bosonic sector o
D511 supergravity.B12 is the 12-dimensional model33 corresponding to the low energy limit o
F-theory.34!

Here an example of cosmological solution inD511 supergravity with threep-branes~two
magnetic and one electric! that have intersection rules corresponding to the hyperbolic KM a
braF3 is constructed.

II. THE MODEL

We consider a model governed by the action11

S5E dDzAugu H R@g#2habgMN]Mwa]Nwb2 (
aPD

ua

na!
exp@2la~w!#~Fa!2J , ~2.1!

whereg5gMN dzM
^ dzN is a metric,w5(wa)PRl is a vector of scalar fields, (hab) is a sym-

metric nondegeneratel 3 l matrix (l PN), ua561, Fa5dAa is a na-form (na>1), la is a
one-form onRl : la(w)5laawa, aPD, a51, . . . ,l . HereD is some finite set.

We consider a manifold

M5M03M13¯3Mn , ~2.2!

with a metric

g5e2g(x)g01(
i 51

n

e2f i (x)gi , ~2.3!

whereg05gmn
0 (x)dxm

^ dxn is a metric on the manifoldM0 , andgi5gmini

i (yi)dyi
mi ^ dyi

ni is a

Ricci-flat metric on the manifoldMi (Ric@gi #50), i 51, . . . ,n. Any manifold M n is oriented
and connected anddn[dim M n , n50, . . . ,n. Let

t i[Augi~yi !udyi
1` . . . `dyi

di , «~ i ![sign~det~gmini

i !!561 ~2.4!

denote the volumedi-form and signature parameter, respectively,i 51, . . . ,n. Let V5Vn be a set
of all subsets of$1, . . . ,n%, uVu52n. For anyI 5$ i 1 , . . . ,i k%PV, i 1, . . . , i k , we denote

t~ I ![t i 1
` . . . `t i k

, d~ I ![(
i PI

di , «~ I ![)
i PI

«~ i !. ~2.5!

We also putt~B!5«~B!51 andd(B)50.
For fields of forms we consider the following composite electromagnetic ansatz:

Fa5 (
I PVa,e

F (a,e,I )1 (
JPVa,m

F (a,m,J), ~2.6!

where

F (a,e,I )5dF (a,e,I )`t~ I !, ~2.7!
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F (a,m,J)5e22la(w)* ~dF (a,m,J)`t~J!! ~2.8!

are elementary forms of electric and magnetic types, respectively,aPD, I PVa,e , JPVa,m , and
Va,e,V, Va,m,V. In ~2.8! * 5* @g# is the Hodge operator on (M ,g). For scalar functions we
put

wa5wa~x!, Fs5Fs~x!, ~2.9!

sPS.
Here and below

S5SetSm , Sv5øaPD$a%3$v%3Va,v , ~2.10!

v5e,m.
Due to ~2.7! and ~2.8!

d~ I !5na21, d~J!5D2na21, ~2.11!

for I PVa,e , JPVa,m .

A. The sigma model

Let d0Þ2 and

g5g0~f![
1

22d0
(
j 51

n

djf
j , ~2.12!

i.e., the generalized harmonic gauge is used.
We impose the restriction on setsVa,v . These restrictions guarantee the block-diagonal st

ture of a stress-energy tensor~like for the metric! and the existence ofs-model representation.11

We denotew1[$ i u i P$1, . . . ,n%, di51%, and n15uw1u ~i.e., n1 is the number of one-
dimensional spaces amongMi , i 51, . . . ,n).

Restriction 1:Let 1a! n1<1 or ~1b! n1>2 and for anyaPD, vP$e,m%, i , j Pw1 , i , j , there
are noI ,JPVa,v such thati PI , j PJ and I \$ i %5J\$ j %.

Restriction 2 (only for d051,3): Let ~2a! n150 or ~2b! n1>1 and for anyaPD, i Pw1 there
are noI PVa,m , JPVa,e such thatĪ 5$ i %tJ for d051 andJ5$ i %t Ī for d053. Here and in what
follows

Ī [$1, . . . ,n%\I . ~2.13!

It was proved in Ref. 11 that equations of motion for the model~2.1! and the Bianchi identities
dF s50, sPSm , for fields from ~2.3! to ~2.12!, when Restrictions 1 and 2 are imposed, a
equivalent to equations of motion for thes-model governed by the action

Ss5E dd0xAug0u H R@g0#2ĜABg0mn]msA]nsB2(
sPS

«se
22UA

s sA
g0mn]mFs]nFsJ , ~2.14!

where (sA)5(f i ,wa), the index setS from ~2.10!, target space metric

~ĜAB!5S Gi j 0

0 hab
D , ~2.15!

with
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Gi j 5did i j 1
didj

d022
, ~2.16!

vectors

~UA
s !5~did i I s

,2xslaas
!, ~2.17!

wheres5(as ,vs ,I s), xe511, xm521;

d i I 5(
j PI

d i j ~2.18!

is the indicator ofi belonging toI: d i I 51 for i PI andd i I 50 otherwise; and

«s5~2«@g# !(12xs)/2«~ I s!uas
, ~2.19!

sPS, «@g#[sign det(gMN). More explicitly ~2.19! reads «s5«(I s)uas
for vs5e and «s

52«@g#«(I s)uas
for vs5m.

B. Exact solutions in a block-orthogonal case

Let us define the scalar product as follows:

~U,U8!5ĜABUAUB8 , ~2.20!

for U,U8PRN, where (ĜAB)5(ĜAB)21. The scalar products~2.20! for vectorsUs were calcu-
lated in 11

~Us,Us8!5d~ I sùI s8!1
d~ I s!d~ I s8!

22D
1xsxs8laas

lbas8
hab[Bss8, ~2.21!

where (hab)5(hab)21; s5(as ,vs ,I s) ands85(as8 ,vs8 ,I s8) belongs toS.
Let

S5S1t . . .tSk , ~2.22!

SiÞB, i 51, . . . ,k, and

~Us,Us8!50 ~2.23!

for all sPSi , s8PSj , iÞ j ; i , j 51, . . . ,k. Relation~2.22! means that the setS is a union ofk
nonintersecting~nonempty! subsetsS1 , . . . ,Sk . According to ~2.23! the set of vectors (Us,s
PS) has a block-orthogonal structure with respect to the scalar product~2.20!, i.e., it splits intok
mutually orthogonal blocks (Us,sPSi), i 51, . . . ,k.

Here we consider exact solutions in the model~2.1!, when vectors (Us,sPS) obey the block-
orthogonal decomposition~2.22!, ~2.23! with scalar products defined in~2.21!.1 These solutions
may be obtained from the corresponding solutions of thes-model,1 that are presented in th
Appendix.

The solution reads:

g5UH g01(
i 51

n

Uig
iJ , ~2.24!
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U5S )
sPS

H
s

2d(I s)«sns
2D 1/(22D)

, ~2.25!

Ui5)
sPS

H
s

2«sns
2d i I s , ~2.26!

wa52(
sPS

las

a xs«sns
2 ln Hs , ~2.27!

Fa5(
sPS
F sdas

a , ~2.28!

where Ric@g0#5Ric@gi #50,

F s5nsdHs
21`t~ I s!, for vs5e, ~2.29!

F s5ns~* 0dHs!`t~ Ī s!, for vs5m, ~2.30!

Hs are harmonic functions on (M0 ,g0) coinciding inside blocks of matrix (Bss8) from ~2.21!
(Hs5Hs8 , s,s8PSj , j 51, . . . ,k! and relations

(
s8PS

Bss8«s8ns8
2

521 ~2.31!

for the matrix (Bss8) ~2.21!, parameters«s ~2.19! and ns are imposed,sPS, i 51, . . . ,n; a

51, . . . ,l . Herela
a5hablba , * 05* @g0# is the Hodge operator on (M0 ,g0) and Ī is defined in

~2.13!.
In deriving the solutions the following relations for contravariant components ofUs-vectors

were used:11

Usi5d i I s
2

d~ I s!

D22
, Usa52xslas

a , ~2.32!

s5(as ,vs ,I s).
Thus, we obtained the generalization of the solutions from Ref. 11 to the block-ortho

case@here we eliminate the misprint with sign in Eq.~5.19! in Ref. 11#.
Remark 1:The solution is also valid ford052, if Restriction 2 is replaced by Restriction 2* .
Restriction 2* (for d052): For anyaPD there are noI PVa,m , JPVa,e such thatĪ 5J and

for n1>2, i , j Pw1 , iÞ j , there are noI PVa,m , JPVa,e such thati PI , j P J̄, I \$ i %5 J̄\$ j %.
It may be proved using a more general form of the sigma-model representation~see Remark

2 in Ref. 11!.

III. SOLUTIONS RELATED TO LIE ALGEBRAS AND INTERSECTION RULES

Here we put

~Us,Us!Þ0 ~3.1!

for all sPS and introduce the quasi-Cartan matrixA5(Ass8)

Ass8[
2~Us,Us8!

~Us8,Us8!
, ~3.2!
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s,s8PS. From ~2.23! we get a block-orthogonal structure ofA:

A5S A(1) . . . 0

A�A

0 . . .A(k)

D , ~3.3!

whereA( i )5(Ass8,s,s8PSi), i 51, . . . ,k. Here we tacitly assume that the setS is ordered,S1

, . . . ,Sk and the order inSi is inherited by the order inS.
We note that due to~2.23! the relation~A5! may be rewritten as

(
s8PSi

~Us,Us8!«s8ns8
2

521, ~3.4!

sPSi , i 51, . . . ,k. Hence, parameters (ns ,sPSi) depend upon vectors (Us,sPSi), i
51, . . . ,k.

For detA( i )Þ0 relation~3.4! may be rewritten in the equivalent form

«sns
2~Us,Us!522 (

s8PS

Ass8
( i ) , ~3.5!

sPSi , where (Ass8
( i ) )5A( i )

21 . Thus, Eq.~3.4! may be resolved in terms ofns for certain«s561,
sPSi .

In what follows we consider the block-orthogonal decomposition to be irreducible, i.e.
any i the block (Us,sPSi) does not split into two mutually orthogonal subblocks. In this case
matrix A( i ) is indecomposable~or irreducible! in the sense that there is no renumbering of vect
which would bringA( i ) to the block diagonal formAi5diag(A( i )8 ,A( i )9 ).

Let A be the generalized Cartan matrix.24,25 In this case

Ass8P2Z1[$0,21,22, . . . % ~3.6!

for sÞs8 andA generates generalized symmetrizable Kac–Moody algebra.24,25

Now we fix i P$1, . . . ,k%. From ~3.3! and ~3.6! we get

A( i )
ss8P2Z1 , ~3.7!

s,s8PSi , sÞs8. There are three possibilities forA( i ) : ~a! detA( i ).0, ~b! detA( i ),0 and ~c!
detA( i )50. For detA( i )Þ0 the corresponding Kac–Moody algebra is simple, sinceA( i ) is
indecomposable.25

A. Finite dimensional Lie algebras

Let detA( i ).0. In this caseA( i ) is the Cartan matrix of a simple finite-dimensional Lie algeb

andA( i )
ss8P$0,21,22,23%, sÞs8. The elements of inverse matrixA( i )

21 are positive~see Chap. 7
in Ref. 25! and hence we get from~3.5!

«s~Us,Us!,0, ~3.8!

sPSi .

B. Hyperbolic Kac–Moody algebras

Let detA( i ),0. Among irreducible symmetrizable matrices satisfying~3.7! there exists a large
subclass of Cartan matrices, corresponding to infinite-dimensional simple hyperbolic gene
Kac–Moody~KM ! algebras of ranksr 52, . . .,10.24,25

For the hyperbolic algebras the following relations are satisfied:
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«s~Us,Us!.0, ~3.9!

sPSi . This relation is valid, since (A( i )
21)ss8<0, s,s8PS, for any hyperbolic algebra.35

It was shown in Ref. 1 that affine KM algebras with detA( i )50 do not appear in the
solutions.1

C. Intersection rules

From the orthogonality relation~2.23! and ~2.21! we get

d~ I sùI s8!5D~s,s8! ~3.10!

wheresPSi , s8PSj , iÞ j , and

D~s,s8![
d~ I s!d~ I s8!

D22
2xsxs8las

•las8
. ~3.11!

Herel•l8[hablalb8 . Let

N~a,b![
~na21!~nb21!

D22
2la•lb , ~3.12!

a,bPD. The matrix~3.12! is called the fundamental matrix of the model~2.1!.23 For s1 ,s2PS,
s1Þs2 , the symbol of orthogonal intersection~3.11! may be expressed by means of the fund
mental matrix23

D~s1 ,s2!5D̄x̄s1
x̄s2

1n̄as1
xs1

x̄s2
1n̄as2

xs2
x̄s1

1N~as1
,as2

!xs1
xs2

, ~3.13!

whereD̄5D22, n̄a5na21, x̄s5
1
2(12xs). More explicitly ~3.13! reads

D~s1 ,s2!5N~as1
,as2

!, vs1
5vs2

5e, ~3.14!

D~s1 ,s2!5n̄as1
2N~as1

,as2
!, vs1

5e, vs2
5m, ~3.15!

D~s1 ,s2!5D̄2n̄as1
2n̄as2

1N~as1
,as2

!, vs1
5vs2

5m. ~3.16!

This follows from the relations

d~ I s!5D̄x̄s1n̄as
xs , ~3.17!

equivalent to~2.11!. Let

K~a![na212N~a,a!5
~na21!~D2na21!

D22
1la•la , ~3.18!

aPD.
The parameters~3.18! play a rather important role in supergravitational theories, since

are preserved under Kaluza–Klein reduction2 and define the norms ofUs vectors:

~Us,Us!5K~as!, ~3.19!

sPS.
Here we putK(a)Þ0, aPD. Then, we obtain the general intersection rule formulas
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d~ I s1
ùI s2

!5D~s1 ,s2!1 1
2K~as2

!As1s2 ~3.20!

s1Þs2 , where (As1s2) is the quasi-Cartan matrix~3.2! ~see also~6.32! from Ref. 23!.
In most models includingD511 supergravity,D512 theory,33 D,11 supergravities,2

K(a)52 and~3.20! has the following form

d~ I s1
ùI s2

!5D~s1 ,s2!1As1s2, ~3.21!

s1Þs2 , and getAs1s25As2s1, i.e., the Cartan matrix is symmetric.

IV. EXAMPLES

A. Hyperbolic algebra of rank three

Now we consider the example of the solution corresponding to the hyperbolic KM algebF3

with the Cartan matrix

A5S 2 22 0

22 2 21

0 21 2
D . ~4.1!

The hyperbolic algebraF3 corresponding to~4.1!, is an infinite dimensional Lie algebra generat
by the ~Serre! relations24,25

@hi ,hj #50, @ei , f j #5d i j hj , ~4.2!

@hi ,ej #5Ai j ej , @hi , f j #52Ai j f j , ~4.3!

~adei !
12Ai j ~ej !50 ~ iÞ j !, ~4.4!

~adf i !
12Ai j ~ f j !50 ~ iÞ j !. ~4.5!

F3 containsA1
(1) affine Kac–Moody subalgebra~it corresponds to the Geroch group! andA2

subalgebra.
The calculation of inverse matrix gives us

A2152S 3

2
2 1

2 2 1

1 1 0

D , ~4.6!

and, hence,

(
j 51

3

Ai j
2152

9

2
,25,22, ~4.7!

for i 51,2,3, respectively.
Now we construct an example of the solution with theA-matrix ~4.1! for D511 supergravity

governed by the action~in the bosonic sector!

S5E d11zAugu H R@g#2
1

4!
~F4!2J 1cE A3`F4`F4, ~4.8!

wherec5const,F45dA3.
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We consider a configuration with threep-branes, one electric and two magnetic. We den
S5$s1 ,s2 ,s3%, vs1

5vs3
5m, vs2

5e and getd(I s1
)5d(I s3

)56, d(I s2
)53. From intersection

rules ~3.21! we obtain

d~ I s1
ùI s2

!50, d~ I s2
ùI s3

!51, d~ I s1
ùI s3

!54. ~4.9!

For the manifold~2.2! we putn55 andd152, d254, d35d451, d552. The corresponding set
for p-branes are the following:I s1

5$1,2%, I s2
5$4,5%, I s3

5$2,3,4%.
The corresponding solution reads

g5H212$2dt^ dt1H9g11H13g21H4g31H14g41H10g5%, ~4.10!

F45
dH

dt H ns1
t3`t4`t51

ns2

H2
dt`t4`t51ns3

t1`t5J , ~4.11!

where

ns1

2 5 9
2, ns2

2 55, ns3

2 52 ~4.12!

@see relations~3.5! and~4.7!#, all metricgi are Ricci-flat (i 51, . . . ,5) with the Euclidean signa
ture @this agrees with relations~3.9! and ~2.19!#, and

H5ht1h0.0, ~4.13!

h,h0 are constants.@We remind that here (Us,Us)52.]
The solution~4.10!–~4.13! satisfies not only equations of motion for the truncated mo

~without the Chern–Simons term!, but also the equations of motion for the ‘‘total’’ model~4.8!,
since the only modification related to ‘‘Maxwell’s’’ equations

d* F45constF4`F4, ~4.14!

is trivial due toF4`F450 ~sincet i`t i50).
The metric~4.10! may be also rewritten using the synchronous time variablets ,

g52dts^ dts1 f 3/5g11 f 21/5g21 f 8/5g31 f 22/5g41 f 2/5g5, ~4.15!

where f 55hts5H25.0, h.0, ts.0. The metric describes the power-law ‘‘inflation’’ inD
511. It is singular forts˜10. It is interesting to note that the powers in scale-factorsf 2a i do not
satisfy Kasner-like relations:36 ( i 51

5 dia i5( i 51
5 di(a i)

251. For flatgi the calculation of the Rie-
mann tensor squared gives us~see Refs. 37, 38!

RMNPQ@g#RMNPQ@g#5Ats
24 , ~4.16!

whereA5231.0714.

B. A 3 Lie algebra

Here we present for comparison the solution ofD511 supergravity corresponding toA3 Lie
algebra with the Cartan matrix

A5S 2 21 0

21 2 21

0 21 2
D . ~4.17!
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The calculation of inverse matrix gives in this case

(
j 51

3

Ai j
215

3

2
,2,

3

2
, ~4.18!

for i 51,2,3, respectively.
Like in the example mentioned above we consider threep-branes, one electric and two mag

netic, i.e., in this caseS5$s1 ,s2 ,s3%, vs1
5vs3

5m, vs2
5e, d(I s1

)5d(I s3
)56, d(I s2

)53. From
intersection rules~3.21! we obtain

d~ I s1
ùI s2

!51, d~ I s2
ùI s3

!51, d~ I s1
ùI s3

!54. ~4.19!

For the manifold~2.2! we putn55 andd152, d253, d351, d452, d552. The corresponding
sets forp-branes are the following:I s1

5$1,2,3%, I s2
5$3,5%, I s3

5$2,3,4%.
The corresponding solution reads

g5H16/3$dr ^ dr1H23g11H26g21H210~2dt^ dt!1H23g41H24g5% ~4.20!

F45
dH

dr H ns1
t4`t51

ns2

H2
dr`dt`t51ns3

t1`t5J , ~4.21!

where

ns1

2 5 3
2, ns2

2 52, ns3

2 5 3
2. ~4.22!

Here the metricsgi are Ricci-flat (i 51,2,4,5) with the Euclidean signature, and

H5cr1c0.0, ~4.23!

c,c0 are constants. So, we obtained the multidimensional ‘‘cosmological’’ solution with the
clidean ‘‘time’’ r.

V. DISCUSSION

Here we obtained the example of the cosmological solution with three Euclidean inters
p-branes~one electric and two magnetic! satisfying intersection rules for the hyperbolic Kac
Moody Lie algebraF3 @see ~3.21! and ~4.1!#. The correspondingA3 solution contains three
pseudo-Euclideanp-branes. The difference in sign rules~restriction on«s) for finite and hyper-
bolic algebras is a consequence of inequalities for elements of the inverse Cartan matrixAi j

21

.0 for simple~or semisimple! finite dimensional Lie algebra andAi j
21<0 ~for simple hyperbolic

KM algebra!. In this paper the hyperbolic KM algebraF3 appeared only on the simplest level
the Cartan matrix~governing the intersection rules! but the full structure of the algebra, includin
Serre relations~4.4! and~4.5!, was not used. We may suppose that at the second step a more
penetrating into a ‘‘structure’’ of infinite dimensional hyperbolic algebras will be achieved w
general cosmological solutions related to hyperbolic Toda-lattices will be considered.
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APPENDIX: BLOCK-ORTHOGONAL SOLUTIONS IN THE s-MODEL

Equations of motion corresponding to~2.14! have the following form:

Rmn@g0#5ĜAB]msA]nsB1(
sPS

«se
22UA

s sA
]mFs]nFs, ~A1!

ĜABD@g0#sB1(
sPS

«sUA
s e22UC

s sC
g0mn]mFs]nFs50, ~A2!

]m~Aug0ug0mne22UA
s sA

]nFs!50, ~A3!

sPS. HereD@g0# is the Laplace-Beltrami operator corresponding tog0.
Proposition 1:Let (M0 ,g0) be Ricci-flatRmn@g0#50. Then the field configuration

g0, sA5(
sPS

«sU
sAns

2 ln Hs , Fs5
ns

Hs
, ~A4!

sPS, satisfies the field equations~A1!–~A3! with V50 if ~real! numbersns obey the relations

(
s8PS

~Us,Us8!«s8ns8
2

521, ~A5!

sPS, functionsHs.0 are harmonic, i.e.,

D@g0#Hs50, ~A6!

sPS andHs are coinciding inside blocks:

Hs5Hs8 ~A7!

for s,s8PSi , i 51, . . . ,k.
The Proposition can be readily verified by a straightforward substitution of~A4!–~A7! into

equations of motion~A1!–~A3!. In the special~orthogonal! case, when any block contains on
one vector~i.e., all uSi u51) the Proposition coincides with Proposition 1 of Ref. 11. In the gen
case vectors inside each blockSi are not orthogonal. The solution under consideration depend
k independent harmonic functions. For a given set of vectors (Us,sPS) the maximal numberk
arises for the irreducible block-orthogonal decomposition~2.22!, ~2.23!, when any block (Us,s
PSi) does not split into two mutually-orthogonal subblocks.
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Connection with torsion from Ashtekar–Barbero
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A natural three-dimensional covariant derivative with torsion emerges from the
Ashtekar–Barbero connection in the canonical approach to general relativity. The
torsion is related to the extrinsic curvature when the Barbero–Immirzi parameterb
does not vanish. Alternatively, torsion can be avoided, but at the price of a nonva-
nishing covariant derivative of the triad field. The properties of both cases are
discussed. ©1999 American Institute of Physics.@S0022-2488~99!01108-1#

I. INTRODUCTION

Nonperturbative quantum gravity, or loop quantum gravity,1 emerges from mixing genera
relativity and quantum mechanics. More precisely, it comes from implementing and extendin
Dirac method2 for constrained systems to the Hamiltonian formulation of general relativity
terms of the Ashtekar–Barbero variables3,4 ~for instance, the Dirac approach does not provid
mechanism for defining the measure of the Hilbert space!. This theory has two non trivial aspec
as a quantum theory of the gravitational field. First, it is a nonperturbative quantum approac5 for
describing the gravitational field. Second it shows that the quantum nature of the gravitationa
is associated to loop-like excitations, as opposed to point-like ones from usual quantum
theory. When these nontrivial facts are put together, several striking results follow from the
quantum gravity approach to the gravitational field~see Refs. 6, 7, and 8 for a complete review!.
All of them show a discrete nature ofspaceat Planck lengthl P5AG\/c3.

The success of the quantum theory motivates us to investigate in detail the classical
lation on which the quantization is based and, in particular, the geometry defined by this fo
ism. In this paper therefore, we focus on some aspects of the geometry of general relati
terms of real Ashtekar–Barbero variables.3,4 In Sec. II, it is shown that a natural three-dimension
covariant derivative with torsion onS comes from the Ashtekar–Barbero connection, the tors
is related to the extrinsic curvatureKa

i . This covariant derivative kills~the inverse of! the triad
field ea

i . Alternatively, we introduce a mechanism for avoiding torsion related to the definitio
a different covariant derivative. The relationship with the Cartan framework is clarified in
cases.

II. THE CONNECTION

We begin by recalling a few facts on affine connections~see for instance Ref. 9!. Let ei

5ea
i dxa ( i 51,2,3) be the set of 1-forms dual to the orthonormal frameei5ei

a(]/]xa)5ei
a]a of

the tangent space of a three-dimensional manifoldS, wherexa (a51,2,3) are local coordinates o
the manifold. If“ is an affine connection we have, in the orthonormal frameei ,

“ei
ej5:2a i j

kek ; ~1!

a!Electronic mail: merced@fis.cinvestav.mx
40840022-2488/99/40(8)/4084/5/$15.00 © 1999 American Institute of Physics
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therefore the connection is completely determined by the 33333527 coefficients of the affine
connectiona i j

k. By plugging the definition ofei in Eq. ~1! and using the properties of the affin
connection, we get

ec
kei

b~]bej
c2Aba

cej
a!52a i j

k,
~2!

“]b
]a5:2Aba

c]c ,

where the orthonormality conditionej
aea

i 5d j
i has been used.Aba

c are the coefficients of the affin
connection with respect to the coordinate frame. The following step is to compute the an
metric and symmetric parts ofa i j

k:

a@ i j #
k
ª

1
2~a i j

k2a j i
k!5e[ i

a ej ]
b ]aeb

k1ec
kei

aej
bTab

c,
~3!

a~ i j !
k
ª

1
2~a i j

k1a j i
k!5e( i

a ej )
b ]aeb

k1ec
kei

aej
bKab

c.

Tab
c
ª

1
2(Aab

c2Aba
c) andKab

c
ª

1
2(Aab

c1Aba
c) are the torsion tensor and the symmetric part

the coefficientsAab
c, respectively. The seta@ i j #

k and a ( i j )
k determineTab

c and Kab
c ~and vice

versa! through Eq.~3!. Up to now we have been concerned with general aspects of affine
nections. We now specialize to the Levi-Civita connectionD. This connection is given in a
coordinate frame by

Tab
c50,

~4!
Kab

c[Gab
c52 1

2q
ce~]aqbe1]bqea2]eqab!,

whereqab5ea
i eb

j d i j is the three-dimensional metric onS. Therefore, in the case of the Levi-Civit
connection Eq.~3! reduces to

v@ i j #
k
ªe[ i

a ej ]
b ]aeb

k ,
~5!

v~ i j !
k
ªe( i

a ej )
b ]aeb

k1ec
kei

aej
bGab

c.

Nevertheless, frequently it is necessary to compute covariant derivatives acting on both in
and space indices. The most general covariant derivative involvingSO(3) and space indices i
given by

Dalb
i
ª]alb

i 1e i
jkAa

j lb
k1Aab

clc
i , ~6!

so this expression can be computed once we have specified the rule to get the expressionAa
i

andAab
c (9127 quantities!. The usual way to specify them is through theintrinsic geometry of

S. In this case we are forced to look at the action of the covariant derivative on the triad fieei
a

~or the inverseea
i ). The most general allowed possibility is given by

Daeb
i 5]aeb

i 1ei
jkAa

j eb
k1Aab

cec
i 5tab

i , ~7!

wheretab
i is the triadity of the covariant derivative, i.e., the action of the covariant derivative

~the inverse of! the triad fieldeb
i . Therefore,Aa

i and Aab
c are completely determined once th

triadity tab
i is given together with the other nine quantities, for instance, the value of the to

tensor Tab
c. One option is to choosetab

i50 and Tab
c50. This election determinesAa

i [Ga
i

5Ga
i @e# via

] [aeb]
i 1e i

jkG [a
j eb]

k 50, ~8!

andAab
c is given by
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Aab
c5Gab

c52 1
2q

ce~]aqbe1]bqea2]eqab!, ~9!

with qab5ea
i eb

j d i j .
Before continuing, it is important to emphasize some properties of the framework w

dealing with. In general, the covariant derivative~6! is well defined once we haveAa
i andAab

c

@which are obtained through~7!#. What are the differences between vanishing and nonvanis
triadity tab

i in ~7!? The difference is that when the covariant derivative kills~the inverse of! the
triad,Daeb

i 50 ~and therefore we have vanishing triadity!, we are in the Cartan framework, whil
when tab

iÞ0 we are out the Cartan framework. This fact can be seen from~7!. When tab
i is

vanishing, the antisymmetric part of~7! reads as

] [aeb]
i 1e i

jkA[a
j eb]

k 1Tab
cec

i 50, ~10!

which is one of Cartan’s structure equations. Whentab
iÞ0 this last equation does not hold. W

now relate these notions to the fields of canonical gravity.
Non perturbative quantum gravity is based on the following canonical pair of phase

variables,3,4

Aa
i
ªGa

i 1bKa
i ,

~11!

Ẽi
a
ª„det~eb

i !…ei
a ,

whereAa
i is the Ashtekar–Barbero connection@in fact, whenb5 i , the initial formulation due to

Ashtekar,Aa
i comes from the ADM formalism of the~self-dual sector! of the Plebanski action10#,

Ẽi
a is the densitized triadei

a , and b is the Barbero–Immirzi parameter.4,11,12 In the Ashtekar
formulation of general relativity the covariant derivative is defined to act on internal indices
The extension of the covariant derivative to act on space indices is usually defined by choo
torsion-free extension.4,5 In this paper, we explore the different ways in which this extension
be made. As we have mentioned, we have the possibility of working within the Cartan frame
or not. Therefore, we can define two covariant derivatives that act on space indices as wel
we explore both alternatives. Let us consider first the Cartan framework. Here, the triadity
vanish and we need to specify the torsion in order to determine completely the full cov
derivative given by~6!. It is clear that if we choose

tab
i50,

~12!
Tab

c5A@ab#
c52be i

jkK [a
j eb]

k ei
c ,

then @by using~7!# the connectionsAa
i , Aab

c are

Aa
i 5Ga

i 1bKa
i ,

~13!
Aab

c5Kab
c1Tab

c5Gab
c22T(a

c
b)2be i

jkK [a
j eb]

k ei
c .

The covariant derivativeD kills the metricqab , Daqbc50. Of course, we have alsoDad i j 50.
Note that the torsion has here a geometric origin: it depends on the extrinsic curvatureKa

i . The
fact that the Ashtekar–Barbero connection has torsion and that this is related to the ex
curvature means that the foliation of spacetime plays a double role: defining the new var
through the connectionAa

i , and inducing geometric nonvanishing torsion on the three-dimensi
connection. Of course, the torsion appears only in the case of a nonvanishing Barbero-Im
parameter.

There is a second possibility for defining the covariant derivative~6!, taking into account the
Ashtekar–Barbero connectionAa

i . This second covariant derivative hasno torsion, but has non-
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vanishing triadity. In this sense there is a mechanism for avoiding torsion, but it should be
that this is a different covariant derivative than the one considered before, and most importa
arenot in the Cartan framework in this last case. Concretely,

tab
i5be i

jkKa
j eb

k ,
~14!

Tab
c5A@ab#

c50,

with Aa
i andAab

c given @using ~7!# by

Aa
i 5Ga

i 1bKa
i ,

~15!
Aab

c5Gab
c.

Even thoughD has nonvanishing triadity, the covariant derivative kills the metricqab , Daqbc

50. Of course, alsoDad i j 50 holds. On the other hand, as we have mentioned, the cova
derivative based in the Ashtekar–Barbero connectionAa

i acts only on internal indices. It is usuall
stated in the literature4,5 that the covariant derivative can be extended to act on space indic
well, and that such an extension can be chosen free of torsion. The last covariant derivat
have defined is precisely this extension, but in this case the covariant derivative does not
triad field, i.e., the covariant derivative hasnonvanishing triadity.

III. CONCLUDING REMARKS

We have shown that two natural covariant derivatives arise from the Ashtekar–Barbero
nection. One of these covariant derivatives kills the inverse triad fieldea

i ~and of course the
three-dimensional metricqab) and has torsion. The torsion is related to the extrinsic curvatur
S. The Barbero–Immirzi parameter enters in the value of the torsion. Therefore, the torsion
puregeometricorigin as opposed to models where the torsion is put by hand. This structure s
the Cartan framework. Alternatively, there is a way for avoiding torsion, which is related to
definition of a different covariant derivative. The covariant derivative is well defined, but this
sits outside the Cartan framework. A deeper analysis of the implications of these remarks w
made here, but it would be interesting to develop it in a future work. For instance, the role
torsion in the 311 decomposition of the spacetime needs to be clarified~the torsion might change
the expressions of the constraints of the Hamiltonian formalism as well as the equations of m
for the canonical fields!.
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One-instanton prepotentials from WDVV equations in N52
supersymmetric SU „4… Yang–Mills theory
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Prepotentials inN52 supersymmetric Yang–Mills theories are known to obey
nonlinear partial differential equations called Witten–Dijkgraaf–Verlinde–
Verlinde ~WDVV ! equations. In this paper, the prepotentials at the one-instanton
level in N52 supersymmetric SU~4! Yang–Mills theory are studied from the
standpoint of WDVV equations. Especially, it is shown that the one-instanton pre-
potentials are obtained from WDVV equations by assuming the perturbative pre-
potential and by using the scaling relation as a subsidiary condition but are deter-
mined without introducing the Seiberg–Witten curve. In this way, various one-
instanton prepotentials which satisfy both WDVV equations and the scaling
relation can be derived, but it turns out that among them there exist one-instanton
prepotentials which coincide with the instanton calculus. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01708-9#

I. INTRODUCTION

A class of developments of quantum field theory in the 1990s may be represented b
keywords:N52 supersymmetry and duality. For example, the mirror symmetry1–4 established in
the beginning of the nineties was based on the~trivial! isomorphism between left and right U~1!
currents of~2,2!-superconformal field theory,5,6 and this isomorphism predicted the existence o
pair of Calabi–Yau manifolds whose axes of the Hodge diamond were exchanged. Ca
et al.3,4 skillfully used the consequence expected from this duality of the Hodge structure
showed that the number of rational curves on the Calabi–Yau quintic three-fold could be
mined from mirror symmetry. The coincidence of their result with mathematically rigo
results1,7,8 was a great surprise!

On the other hand, also in the recent studies of low-energy effective dynamics ofN52
supersymmetric Yang–Mills theory,N52 supersymmetry and duality play a crucial role. Befo
the arrival of Seiberg and Witten’s proposal of using electro-magnetic duality for the descr
of the low-energy effective action of SU~2! gauge theory,9,10 though it has been known that th
prepotential which is a generating function of the low-energy effective action is not renorma
beyond one-loop in perturbative calculation due toN52 supersymmetry,11–13actually the prepo-
tential was expected to receive instanton corrections.14 Unfortunately, such corrections were not s
extensively discussed, but thanks to their proposal, it made it possible to extract informat
instanton effects from a Riemann surface and periods of meromorphic differential on it. Na
the low-energy effective theory turned out to be parametrized by a Riemann surface. The v
of their proposal was discussed by Klemmet al.15 with the aid of the Picard–Fuchs equation a
the instanton corrections to the prepotential were revealed. The instanton corrections obta
this way showed extremely good agreement with the prediction of instanton calculus.16–21

However, deeper and striking features of prepotentials ofN52 supersymmetric Yang–Mills
theories may be nicely interpreted in terms of differential equations satisfied by prepotentia
instance, it is well known that the prepotentials satisfy a Euler equation called a sc
relation,22–26 and, in fact, this simple equation simplified and accelerated the study of prep
tials. As for another characteristic equation, we can mention that there is a nonlinear sys
40890022-2488/99/40(8)/4089/10/$15.00 © 1999 American Institute of Physics
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partial differential equations called Witten–Dijkgraaf–Verlinde–Verlinde~WDVV !
equations27–31 ~rigorously speaking, the WDVV equations inN52 Yang–Mills theory are not
equivalent to those arising in two-dimensional topological field theory32–35!. Actually, these equa-
tions hold not only in four-dimensional gauge theories but also in higher dimensions ev
hypermultiplets are included.28,29 Accordingly, it becomes possible to regard the prepotential
various gauge theories as a member of solutions to WDVV equations. Then, what is the
general solution~function form of prepotentials! to the WDVV equations? Unfortunately, w
cannot precisely know the answer to this question, but Bradenet al.36 partially found the answer
They assumed the function form of the prepotential which is expected from known example
found a new prepotential which is considered as that in five-dimensional gauge theory, alt
their study was restricted to the perturbative part. Of course, among the solutions found by
we can see the existence of the prepotential in four-dimensional Yang–Mills theory. This see
indicate that the prepotentials can be constructed without introducing the Riemann surfac
vided the WDVV equations are used. Finding whether nonperturbative prepotentials are av
from WDVV equations without using the Riemann surface is the subject of this paper.

The paper is organized as follows. In Sec. II, the construction of a perturbative soluti
WDVV equations for SU~4! gauge theory in four dimensions discussed by Bradenet al.36 is
summarized. We can see that the perturbative prepotential is, in fact, obtained from W
equations. In Sec. III, we add the nonperturbative part for this perturbative prepotential and
solve the WDVV equations. Though the nonperturbative part satisfies a nonlinear differ
equation, restricting it at the one-instanton level, we can reduce it to a linear differential equ
satisfied by the one-instanton prepotential. For this reason, the one-instanton prepotential is
tigated in this paper. To solve this equation, the scaling relation is used as a subsidiary con
but it turns out that there are miscellaneous solutions which do not contradict both W
equations and the scaling relation. In Sec. IV we compare our result with the prediction o
one-instanton calculus. It is shown that among our one-instanton prepotentials obtained
WDVV equations there are one-instanton prepotentials which agree with the prediction of in
ton calculus. In this way, we conclude that it is possible to obtain a nonperturbative prepo
from WDVV equations without relying on the Riemann surface. Section V is a brief summa

II. PERTURBATIVE PREPOTENTIAL FROM WDVV EQUATIONS

In this section, we briefly outline the construction to get perturbative prepotential
WDVV equations in the SU~4! gauge theory presented by Bradenet al.36 Note that the SU~4!
model is the simplest and nontrivial example for a study of WDVV equations.

In this case, the WDVV equations for the prepotentialF take the form

~Fi !~Fk!
21~Fj !5~Fj !~Fk!

21~Fi !, i , j ,k51,...,3, ~2.1!

where

~Fi ![~Fi ! jk5
]3F

]ai]aj]ak
~2.2!

are the matrix notations and in this paper the brackets are always added as (Fi) when ‘‘Fi ’’ mean
matrices. The coordinatesai are the periods of the SU~4! gauge theory~see the Appendix!.

Bradenet al.36 considered the perturbative prepotential in the form

Fper~a1 ,a2 ,a3!5 (
i , j 51

4

f ~ai j !, ai j 5ai2aj , (
i 51

4

ai50. ~2.3!

Of courseFper may depend on the mass scaleL[LSU(4)
8 of the theory, but we can ignore it

dependence for the moment becauseL-differentiation is not included in the WDVV equation
~2.1!.
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Under the assumption~2.3!, we can find that whenFper satisfies~2.1! there is a functional
relation

g~a12!g~a34!2g~a13!g~a24!1g~a14!g~a23!50, ~2.4!

where

g~a![S ]3f

]a3D 21

. ~2.5!

With the aid of several conditions, we can conclude thatg is an odd function with

g~0!5g9~0!50, ~2.6!

where the prime means the differentiation over the argument.36

There are several functions enjoying the properties~2.4! and ~2.6!, but a function which is
necessary for us among them is the function of the formg(a)5a. Namely,

f ~a!5
a2

2
ln a1O~a2!. ~2.7!

Note thatO(a2) term cannot be fixed from the WDVV equations because they are third-o
differential equations. Namely, the classical part is not fixed. It is easy to see that substitutin~2.7!
back to~2.3! in fact yields the perturbative part of the SU~4! prepotential~in a suitable normal-
ization!.

Marshakovet al.29 give a general proof that the perturbative prepotentials in various ga
theories satisfy WDVV equations, but this is also confirmed by Ito and Yang30 in their study of
these equations.

III. ONE-INSTANTON PREPOTENTIALS

A. Differential equations for one-instanton prepotentials

Next, let us consider whether nonperturbative prepotentialF is available from the WDVV
equations by assuming the form

F~a1 ,a2 ,a3 ,L!5Fper~a1 ,a2 ,a3!1Fins~a1 ,a2 ,a3 ,L!, ~3.1!

where

Fins~a1 ,a2 ,a3 ,L!5 (
k51

`

Fk~a1 ,a2 ,a3!Lk. ~3.2!

In order to derive differential equations forFins, we assume thatFper is already given by~2.3!
with ~2.7!.

Then substitutingF into ~2.1! we can obtain a single nonlinear differential equation forFins,
but if we restrict only the casek51 ~one-instanton level!, the equation reduces to

]1
3F1

a12a13a14
2

]2
3F1

a12a23a24
1

]3
3F1

a13a23a34
1

6]1]2]3F1

a14a24a34
2

A012]2]3
2F11A021]2

2]3F1

a12a13a23a24a34

2
A102]1]3

2F12A201]1
2]3F1

a12a13a14a23a34
1

A120]1]2
2F11A210]1

2]2F1

a12a13a14a23a24
50, ~3.3!

where] i[]/]ai and
                                                                                                                



4092 J. Math. Phys., Vol. 40, No. 8, August 1999 Yűji Ohta

                    
A0125a1a223a2
222a1a314a2a31a1a41a2a422a3a4 ,

A02152a1a22a1a324a2a313a3
22a1a412a2a42a3a4 ,

A10253a1
22a1a224a1a312a2a32a1a42a2a412a3a4 ,

~3.4!
A20152a1a224a1a32a2a313a3

212a1a42a2a42a3a4 ,

A12053a1
224a1a22a1a312a2a32a1a412a2a42a3a4 ,

A21054a1a223a2
222a1a31a2a322a1a41a2a41a3a4 .

B. The solutions

In order to solve~3.3!, let us introduce the new variables

x5a12, y5a13, z5a14. ~3.5!

In addition, using Euler derivativesux5x]/]x, etc., we can rewrite~3.3! as

L~ux ,uy ,uz!F150, ~3.6!

where

L~ux ,uy ,uz!5yz~y2z!ux~ux21!~ux22!1z~4xy23y222xz1yz!~ux21!uxuy

1z~3x224xy2xz12yz!~uy21!uxuy2xz~x2z!uy~uy21!~uy22!

2y~3x22xy24xz12yz!~uz21!uxuy2y~4xz1yz23z222xy!~ux21!uxuz

16~x2y!~x2z!~y2z!uxuyuz1x~xz14yz23z222xy!~uy21!uyuz

1x~3y212xz24yz2xy!~uz21!uyuz1xy~x2y!uz~uz21!~uz22!. ~3.7!

Here, suppose thatF1 is given by

F15xn1yn2zn3F~x,y,z!, ~3.8!

where

F~x,y,z!5 (
i , j ,k50

`

Bexi ,eyj ,ezk
xexiyeyjzezk ~3.9!

and the expansion coefficients are assumed to be independent ofx, y, andz. In ~3.9!, ex , etc. are
signature symbols~the choice of signatures depends on where the convergence region is!, e.g.,
ex56. Then from~3.3! we get the differential equation forF,

L~ux1n1 ,uy1n2 ,uz1n3!F50, ~3.10!

and the indicial equations forn i :

n1~n122n221!~n11n223n322!50, n2~2n12n211!~n11n223n322!50,

n2~n222n321!~3n12n22n312!50, ~n22n3!~n1
22n12n1n21n2n3!50,

n1~n1
223n115n223n1n21n32n1n314n2n312!50, ~3.11!
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n3
2~n323n223!15n1n2n313n2n322n1

2n312n1n312n31n1n250,

n3
2~n32n223!22n2

2n313n1n2n313n2n313n1n212n350.

The sets of possiblen i are thus given by

n [~n1 ,n2 ,n3!5~22,22,22!,~21,21,21!,~0,21,21!4,~0,0,0!2,~0,0,1!,~0,0,2!2,

~0,1,0,!,~0,1,1!,~0,2,0!2,~1,0,0!2,~1,0,1!,~1,0,2!,~2,0,0!2, ~3.12!

where the superscript means degeneracy, e.g., (0,0,0)2 is composed of two~0, 0, 0!, but we do not
discuss the consequence of degeneracy in this paper. For the indices~3.12!, it is straightforward to
obtain F. Though we have expressedF in ~3.9! as an infinite series, actually we can restr
possible terms in~3.9! by considering the degree counting of the one-instanton prepotential

C. Scaling relation for one-instanton prepotential

If the WDVV equations can, in fact, yield a physically acceptable prepotential, the prep
tial obtained from those equations must also satisfy the fundamental homogeneity condition
the scaling relation.22–26 Therefore, we may use it as a subsidiary condition for the problem
to solve WDVV equations in gauge theory.

To see this, first, let us recall the scaling relation22–26

(
i 51

3

ai

]F
]ai

1LSU~4!

]F
]LSU~4!

52F. ~3.13!

We need a scaling relation forF1 , not for F itself, but in order to extract it from~3.13!, the
L-dependence of perturbative prepotential which cannot be fixed from WDVV equations mu
included appropriately. For this, our choice here is

Fper5 (
i , j 51

4 ai j
2

2
ln

ai j

LSU~4!
. ~3.14!

Then from~3.13!, F1 is found to satisfy

(
i 51

3

ai

]F1

]ai
16F150, ~3.15!

which indicates thatF1 is a homogeneous function of degree26.
In the variables~3.5!, ~3.15! becomes

x]xF11y]yF11z]zF116F150. ~3.16!

Accordingly, from~3.8!, ~3.9!, and~3.16! it must be always true that

n11n21n31exi 1ey j 1ezk526. ~3.17!

D. Examples of one-instanton prepotentials

We now have enough information to construct explicit one-instanton prepotentials whic
not contradict WDVV equations and the scaling relation.

To begin with, let us consider the casee [(ex ,ey ,ez)5(1,1,1). In this case, we can easil
find that there exists only one solution which satisfies~3.17!. It is the solution withn5(22,
22,22), and thus
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F15
B0,0,0

x2y2z2 . ~3.18!

However, whene5(2,2,2) or one entry ofe differs from the others, e.g.,e5(2,2,1),
the situation changes, in particular, drastically in the latter case. In the former case, it is easy
that F consists of a finite number of terms for all indices in~3.12!, but in the latter caseF is
generally represented by an infinite number of terms as long as~3.17! is satisfied. We do not know
whether it is possible to find any physical meaning for this type of one-instanton prepotentia
it may be interesting to recall that a similar one was observed in the one-instanton prepote
the five-dimensional gauge theory.26

Since the latter case mentioned above is slightly intractable, let us consider an example
former case instead. In the case ofn5(21,21,21) with e5(2,2,2), for instance, we have

F15
1

xyzFB0,21,22S 1

yz2 1
1

y2zD1B21,0,22S 1

xz2 1
1

x2zD
1B21,22,0S 1

x2y
1

1

xy2D1B21,21,21

1

xyzG . ~3.19!

Note that~3.19! includes the one-instanton prepotential of the form~3.18!.
In a similar manner, we can construct one-instanton prepotentials for all other possible

of n i , which do not contradict both WDVV equations and the scaling relation, but it would no
necessary to explicitly show them here. However, we should point out that since~3.3! is a partial
differential system, we can expect that there exist more and more various solutions. In fac
observation is right, and we can show that also in the variables

~x,y,z!5~a12,a23,a24!,~a13,a23,a34! ~3.20!

we can construct miscellaneous one-instanton prepotentials. Among them one-instanton pr
tials of the form~3.18! are included.

Remark: The function form of the one-instanton prepotentials can be determined by s
the WDVV equations, but its numerical factors, i.e., instanton expansion coefficients, a
obtained because they correspond to integration constants. In order to determine them
necessary to rewrite the scaling relation as a relation between prepotential and moduli.
substituting the one-instanton prepotential obtained from WDVV equations into this scaling
tion, we will be able to get the expansion coefficients. Of course, in this case the moduli m
represented as a function of periods and its expansion coefficients must be determined. Ho
since knowing moduli is equivalent to introducing a Seiberg-Witten curve, this method bas
scaling relation represented by using moduli is not preferable in the formalism of WDVV e
tions because prepotentials available from WDVV equations should be determined without
duction of Seiberg–Witten curves. Accordingly, when the determination of instanton expan
coefficients is required, they should be determined from the result of instanton calculus.

IV. ONE-INSTANTON PREPOTENTIAL FROM INSTANTON CALCULUS

We have derived one-instanton prepotentials by solving the WDVV equations in the pre
section. Though these one-instanton prepotentials satisfy the WDVV equations and the
relation, unfortunately, in view of WDVV equations, we cannot determine which ones are p
cally acceptable. For this reason, in order to extract physically meaningful one-instanton p
tentials among them, we must compare our result with the one-instanton prediction of ins
calculus.

In the case of SU~4! gauge theory, a one-instanton contribution for prepotential is gi
by17,18
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F15
D48

D4
, ~4.1!

where we have omitted the numerical normalization factor and

D485(
i 51

4

)
k, l 51
k,lÞ i

4

~ak2al !
2, D45 )

k, l 51

4

~ak2al !
2. ~4.2!

The closed form of the one-instanton prepotential for SU(Nc) gauge theory is also obtained b
solving Picard–Fuchs equations37 and direct calculation of period integrals.38,39

Note that~4.1! is a sum of~3.18! and those for~3.20!:

F15
1

~a12a13a14!
2 1

1

~a12a23a24!
2 1

1

~a13a23a34!
2 ~4.3!

up to constant factors. Accordingly, we can conclude that the WDVV equations can yield ph
prepotential without introducing a Riemann surface.

V. SUMMARY

In this paper, we have discussed the nonperturbative prepotential ofN52 supersymmetric
SU~4! Yang–Mills theory from the standpoint of WDVV equations. Especially, we have foun
differential equation for a one-instanton prepotential and constructed its solutions. The met
get prepotentials based on WDVV equations is fascinating in the point that the prepotentia
be obtained without introducing Seiberg–Witten curves, but it has been shown that unfortu
too many prepotentials exist in contrast with the approach based on Seiberg–Witten curves
uniquely determines a prepotential. Nevertheless, we have succeeded in showing tha
instanton prepotentials which coincide with the one-instanton calculus can be obtained
WDVV equations.

As for another aspect of WDVV equations, we should mention a connection to topolo
field theory in two dimensions. From the appearance of WDVV equations, it may be natu
think that the low-energy effective theory is actually a kind of topological field theory, but
must notice thata priori there is no reason that the effective theory must be a topological
theory. Therefore, topological or not topological: that is the question.

An approach to argue this implication more explicitly is to regard the Seiberg–Witten cu
often identified with spectral curves of integrable system as if they were superpotentials of
logical CP1 model.31 Although this observation strongly relies on the existence of a Riem
surface~Seiberg–Witten curve!, it enables us to find a connection to topological field theo
specifically, topological string theory at genus zero level.31 Then, even if we do not assume
Riemann surface, can we find a topological nature of the effective theory? Probably W
equations give the answer, but the study is a subject in the future.
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APPENDIX: THE SU „4… SEIBERG–WITTEN SOLUTION

In this Appendix, we briefly summarize the SU~4! Seiberg–Witten solution. The SU~4!
Seiberg–Witten curve is given by the hyperelliptic curve of genus three40–43

y25~x42ux22vx2w!22LSU~4!
8 , ~A1!
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where (x,y)PC2 is the local coordinate, andu, v, and w are moduli of the theory. Then th
Seiberg–Witten differential and its periods are given by

lSW5
x]xW

y
dx, W5x42ux22vx2w ~A2!

and

ai5 R
a i

lSW, aDi
5 R

b i

lSW, i 51,2,3, ~A3!

respectively, wherea i and b i are the canonical bases of the one-cycles on the curve and
numerical normalization factor of the Seiberg–Witten differential is ignored. It is convenie
use the period vector

P5S aDi

ai
D . ~A4!

In general, these periods satisfy Fuchsian differential equations and in the case at han
are given by15,18,44,45

L1P[@]v
22]u]w#P50,

L2P[@4]u
222u]u]w2v]v]w2]w#P50,

~A5!
L3P[@v]w

2 12u]v]w24]u]v#P50,

@4~u2124w!]u
219v2]v

2216~LSU~4!
8 2w2!]w

2 112uv]u]v232uw]u]w13v]v216w]w11#P

50,

which can be summarized as

Fuv~uv21!2
v2

uw
uuuwGP50,

F ~2uu1uv11!uw2
4w

u2 uu~uu21!GP50, ~A6!

F ~2uu13uv14uw21!22
16LSU~4!

8

w2 uw~uw21!GP50,

whereuw5w]w , etc., are Euler derivatives, provided the first, second, and last equations in~A5!
are chosen as independent equations. Note that the third one in~A5! is not an independen
equation because (v]wL11]vL21]uL3)P50.

Introducing new variablesx, y, andz by

x5
LSU~4!

8

4w2 , y5
v2

4uw
, z5

w

u2 , ~A7!

we find that~A6! is converted into

@~8ux11!2264x~2ux1uy2uz!~2ux1uy2uz11!#P50,
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@uy~2uy21!22y~uy12uz!~2ux1uy2uz!#P50, ~A8!

@~2ux1uy2uz!~4uz21!24z~uy12uz!~uy12uz11!#P50.

This system~A8! further simplifies to

@ux
22x~2ux1uy2uz21/2!~2ux1uy2uz11/2!#P̃50,

@uy~uy21/2!2y~uy12uz11/2!~2ux1uy2uz21/2!#P̃50,

@~2ux1uy2uz21/2!uz2z~uy12uz11/2!~uy12uz13/2!#P̃50 ~A9!

by P5x21/8z1/4P̃. An analytic solution around (x,y,z)5(0,0,0) is given by

P̃5 (
m,n,p50

`
~1/2!n12p~21/2!2m1n2p

~1!m~1/2!n

xm

m!

yn

n!

zp

p!
, ~A10!

which is known as the type 54b Srivastava and Karlsson’s~Gaussian! hypergeometric function in
three variables,46 and we denote it by

G54b@a,b;g,d;x,y,z#5 (
m,n,p50

`
~a!n12p~b!2m1n2p

~g!m~d!n

xm

m!

yn

n!

zp

p!
, ~A11!

which recovers Horn’sH4 for p50. Note thatG54b satisfies

@~ux1g21!ux2x~2ux1uy2uz1b!~2ux1uy2uz1b11!#G54b50,

@~uy1d21!uy2y~uy12uz1a!~2ux1uy2uz1b!#G54b50, ~A12!

@~2ux1uy2uz1b!uz2z~uy12uz1a!~uy12uz1a11!#G54b50.
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It is shown that there exists a one-to-one correspondence between the real solutions
of the Einstein vacuum field equations linearized about the Minkowski metric and
the ~complex! metric perturbations whose curvature to first order in the metric
perturbation is self-dual. It is also shown that the self-duality condition of the
curvature to first order in the metric perturbation is equivalent to a set of first-order
equations for the metric perturbation whose solution is given by a scalar potential
that obeys the wave equation. ©1999 American Institute of Physics.
@S0022-2488~99!00808-7#

I. INTRODUCTION

Every real solution of the source-free Maxwell equations, in flat or curved space–time,
real part of a self-dual~or an anti-self-dual! Maxwell field. This fact allows us to find all the
solutions of the source-free Maxwell equations~which constitute a set of second-order part
differential equations for the vector potential! by solving the self-duality conditions~which are a
set of first-order partial differential equations for the vector potential! and in this manner one ca
demonstrate that in flat space–time or in a curved space–time that admits a geodetic and
free null congruence defined by a repeated principal null direction of the curvature, every so
of the source-free Maxwell equations can be locally expressed in terms of a single complex
potential.1 The resulting expression coincides with one previously obtained by means of
approaches~see, e.g., Refs. 2–4!.

The linearized Einstein vacuum field equations are similar to the source-free Maxwell
tions in several ways. In fact, if the background space–time is flat, then the curvature tensor
order in the metric perturbation,Kabgd , obeys equations analogous to the source-free Max
equations. Moreover, in the case of a flat background, the tensor fieldKabgd is invariant under the
gauge transformationshab°hab12¹ (ajb) and, making use of spherical or cylindrical coord
nates, it can be expressed in terms of a single complex scalar potential that satisfies th
equation.5,6 On the other hand, an expression for the metric perturbations of flat space–time
an algebraically special solution of the Einstein vacuum field equations in terms of a com
scalar potential has been obtained by various approaches7,3,8 which, however, do not demonstra
that every solution of the Einstein vacuum field equations linearized about these backgroun
be written in that form. It may be recalled that, by contrast, in the standard treatment o
Einstein vacuum field equations linearized about the Minkowski metric, by imposing an a
priate gauge condition, one finds that each Cartesian component of the metric perturbation s
the wave equation~see, e.g., Refs. 9 and 10!.

In this paper we show that, by analogy with the electromagnetic case, every real solut
the Einstein vacuum field equations linearized about the Minkowski metric is the real par
metric perturbation whose curvature tensor to first order in the metric perturbation,Kabgd , is
self-dual ~or anti-self-dual! and that if Kabgd is self-dual, then the metric perturbation can
expressed in terms of a complex scalar potential that satisfies the wave equation.
40990022-2488/99/40(8)/4099/7/$15.00 © 1999 American Institute of Physics
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II. SELF-DUALITY AND THE LINEARIZED EINSTEIN VACUUM FIELD EQUATIONS

In the linearized Einstein theory it is assumed that, in a suitable coordinate system, the
of the space–time can be written in the form

gab5hab1hab , ~1!

where hab , the metric perturbation, represents a small deviation of the metricgab from the
Minkowski metric (hab)5diag(1,21,21,21). The tensor field

Kabgd[ 1
2$]a]ghbd2]b]ghad1]b]dhag2]a]dhbg% ~2!

is the first-order contribution inhab to the curvature tensor corresponding to the metricgab and is
invariant under the gauge transformations

hab°hab1]ajb1]bja , ~3!

whereja is an arbitrary vector field. From Eq.~2! it follows thatKabgd possesses the symmetrie
of the Riemann curvature tensor

Kabgd52Kbagd52Kabdg5Kgdab , ~4!

Kabgd1Kadbg1Kagdb50, ~5!

and

]aKbgde1]bKgade1]gKabde50. ~6!

Conversely, ifKabgd satisfies Eqs.~4!–~6!, then there exists locally a symmetric tensor fieldhab ,
defined up to the gauge transformations~3!, such that Eq.~2! holds.

Defining the right dualKabgd* of Kabgd by means of

Kabgd* [ 1
2Kab

rsersgd , ~7!

whereeabgd is completely antisymmetric withe012351 and the indices are raised and lowered
means ofhab andhab , one finds that

Kabgd* 52Kbagd* 52Kabdg* ~8!

and

Kabgd* 2Kgdab* 5 1
2~eabdrKg

r1ebagrKd
r1egbdrKa

r1edagrKb
r!, ~9!

where we have made use of the symmetric tensor field

Kab[Kagb
g. ~10!

Moreover,

Kabgd* 1Kadbg* 1Kagdb* 52ebgdrKa
r ~11!

and

]aKbgde* 1]bKgade* 1]gKabde* 50. ~12!

Thus, Kabgd* possesses all symmetries ofKabgd if and only if Kab50, i.e., if the linearized
Einstein vacuum field equations are satisfied.

Let hab be a real metric perturbation such thatKab50. Then, the complex tensor field
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Pabgd[Kabgd2 iK abgd* ~13!

is self-dual,

Pabgd* 5 iPabgd , ~14!

and, according to the preceding paragraph, satisfies Eqs.~4!–~6!. Hence, there exists a comple
symmetric tensor field,hab

c , such that

Pabgd[ 1
2$]a]ghbd

c 2]b]ghad
c 1]b]dhag

c 2]a]dhbg
c % ~15!

and the original metric perturbationhab coincides with the real part ofhab
c up to a gauge trans

formation ~3!.
Conversely, given a~complex! symmetric tensor fieldhab

c such that the tensor field~15!
satisfies the self-duality condition@Eq. ~14!#, then the real and imaginary parts ofPabgd , being
linear combinations ofPabgd and its complex conjugate, satisfy Eqs.~4!–~6!. If Kabgd denotes the
real part ofPabgd , then denoting the complex conjugation by a bar, from Eq.~14! we see that

Kabgd* 5
1

2
~Pabgd* 1Pabgd* !52

1

2i
~Pabgd2Pabgd!,

i.e., the right dual of the real part ofPabgd is minus the imaginary part ofPabgd and, therefore,
Kabgd and Kabgd* satisfy Eqs.~4!–~6!, which implies thatKab50. Thus, the real part ofhab

c

satisfies the linearized Einstein field equations. The tensorKabgd is related to the real part ofhab
c

according to Eq.~2!.

III. INTEGRATION OF THE SELF-DUALITY CONDITIONS

In what follows, it will be convenient to make use of the spinor formalism. Letting

]AB8[
]

]xAB8
~16!

(A,B,...50,1; A8,B8,...508,18) where the xAB8 are ~complex! coordinates such that th
Minkowski metric is given by

ds25habdxadxb5eABeC8D8dxAC8dxBD8, ~17!

the spinor equivalent of Eq.~2! is given by

KAA8BB8
CC8DD85 1

2eABeCD]S
(A8]

R(C8huSRuB8)
D8)1 1

2 eA8B8e
CD] (A

S8]R(C8hB)RS8
D8)

1 1
2eABeC8D8]S

(A8]
(CuR8uhuSu

D)
B8)R81

1
2eA8B8e

C8D8] (A
S8] (CuR8uhB)

D)
S8R8 ,

wherehABA8B85hBAB8A8 is the spinor equivalent ofhab , the parentheses denote symmetrizat
on the indices enclosed, and the indices between bars are excluded from the symmetr
Therefore, the self-duality conditions~14! amount to

]S
(A8]

(CuR8uhuSu
D)

B8)R850, ] (A
S8] (CuR8uhB)

D)
S8R850, ~18!

or, equivalently,

]S
(A8H

CD
uSuB8)50, ] (A

S8HCD
B)S850 ~19!

with
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HCD
AB8[] (CuR8uhA

D)
B8R85] (CuR8uhD)

AR8B8 . ~20!

Since the background metric is flat, Eqs.~19! are locally equivalent to the existence of a symm
ric spinor fieldLAB such that

HABCD85]CD8LAB . ~21!

There always exists a~possibly complex! vector fieldjAB8 such that

LAB52] (A
C8jB)C8 ~22!

~actually, there are an infinite number of such vector fields!. Then making use of Eqs.~20!–~22!
one finds that under the gauge transformationhABA8B8°hABA8B81]AA8jBB81]BB8jAA8 @see Eq.
~3!#, HABCD8 is transformed into

] (A
R8@hB)CR8D81]B)R8jCD81] uCD8ujB)R8#5HABCD81]CD8] (A

R8jB)R85HABCD82]CD8LAB50.
~23!

Thus, by means of the gauge transformations~3!, the self-duality conditions~18! can be reduced
to the first-order differential equations

] (A
R8hB)CR8D850. ~24!

Conditions~24! are similar to the~gauge-independent! equations for the vector potential of
self-dual electromagnetic field,¹ (A

R8FB)R850 ~see, e.g., Ref. 1!, with an extra tensor index and
as in the case of the latter equations in a flat background, the solution of Eq.~24! is given, modulo
gauge transformations, by a scalar potential that satisfies the wave equation. In order to pro
assertion, we start by considering Eq.~24! with A5B50, which yields]0

R8h0CR8D850. These
equations are locally equivalent to the existence of a set of functions,MCD8 , such that

h0CR8D85]0R8MCD8 . ~25!

The symmetry ofh00R8D8 in the primed indices and Eq.~25! give 05h00
R8

R85]0
R8M0R8 , hence,

there exists locally a functiona such that

M0R85]0R8a. ~26!

Equation~24! with A50, B51, andC50 gives]0
R8h10R8D81]1

R8h00R8D850, or, making use of
Eqs. ~25! and ~26!, 05]0

R8h10R8D81]1
R8]0R8]0D8a5]0

R8(h10R8D82]1R8]0D8a), which is lo-
cally equivalent to the existence of two functionsmA8 such that

h10R8D85]1R8]0D8a1]0R8mD8 . ~27!

Since h10R8D8 must coincide with h01D8R8 , from Eqs. ~25! and ~27! it follows that
]1R8]0D8a1]0R8mD85]0D8M1R8 . Applying ]0

D8 to both sides of the last equation one finds th
]0R8]0

D8mD850; hence,

]0
D8mD85 f ~x1A8!, ~28!

where f is some function of two variables. By expressing Eq.~28! in the form ]0D8„m
D8

1 1
2 f (x1A8)x0D8

…50, one finds that there exists locally a functionb such that mD8

1 1
2 f (x1A8)x0D85]0

D8b and substituting this expression into Eq.~27! we obtain

h10R8D85]1R8]0D8a1]0R8„]0D8b2 1
2 f ~x1A8!x0

D8…. ~29!
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Equation~24! with A50 andB515C yields 05]0
R8h11R8D81]1

R8h01R8D8 or, equivalently,
making use of Eq.~29!, 05]0

R8h11R8D81]1
R8h10D8R85]0

R8(h11R8D82]1R8]1D8a2]1R8]0D8b

2 1
2]1R8 f (x1A8)x0

D8), hence

h11R8D85]1R8]1D8a1]1R8]0D8b1 1
2]1R8 f ~x1A8!x0

D81]0R8nD8 , ~30!

where thenD8 are some functions. From the symmetry ofh11R8D8 on the primed indices we obtai
the condition 05h11R8

R85]0R8„n
R82]1

R8b1 1
6]1S8 f (x1A8)x0S8x0R8

…, therefore

nR85]1R8b2 1
6]1S8 f ~x1A8!x0S8x0

R81]0R8g, ~31!

whereg is some function. Substituting Eq.~31! into Eq. ~30! we find that

h11R8D85]1R8]1D8a1]1R8]0D8b1]0R8]1D8b1]0R8]0D8g

1 1
6]1R8 f ~x1A8!x0

D81
1
6]1D8 f ~x1A8!x0

R8 . ~32!

Considering now Eq.~24! with A5B51 and C50, using Eq. ~29! we obtain 0
5]1

R8h10R8D85]0D8]1
R8]0R8b2 1

2]1D8 f (x1A8), which implies that

]1
R8]0R8b5 1

2]1D8 f ~x1A8!x0D81g~x1A8!, ~33!

whereg is some function of two variables, and from Eq.~24! with A5B5C51 and Eqs.~32! and
~33! it follows that 05]1

R8h11R8D85]0D8„]1
R8]0R8g1 1

6]1R8]1S8 f (x1A8)x0R8x0S8

1]1S8g(x1A8)x0S8
…, which implies that

]1
R8]0R8g52 1

6]1R8]1S8 f ~x1A8!x0R8x0S82]1S8g~x1A8!x0S82b~x1A8!, ~34!

whereb is some function of two variables.
Making use of the definitions

j̃0A8[2 1
2]0A8a2 1

2 f A8 , j̃1A8[2 1
2]1A8a2]0A8b1 1

2]1S8 f A8x
0S81gA8 , ~35!

where f A8 andgA8 are functions ofx1A8 only such that

]1
A8 f A85 f , ]1

A8gA85g, ~36!

from Eqs.~25!, ~26!, ~29!, ~32!, ~35!, and~36! we find that

h00R8D852]0R8j̃0D82]0D8j̃0R8 ,

h10R8D852]1R8j̃0D82]0D8j̃1R8 , ~37!

h11R8D852]1R8j̃1D82]1D8j̃1R81]0R8]0D8g1]1R8]1D8 f S8x
0S8

2 1
3]1R8 f x0

D82
1
3]1D8 f x0

R81]1R8gD81]1D8gR8

52]1R8j̃1D82]1D8j̃1R81]0R8]0D8c,

where

c[g1 1
6]1A8]1B8 f C8x

0A8x0B8x0C81]1A8gB8x
0A8x0B81bA8x

0A8, ~38!

andbA8 are functions ofx1A8 only such that
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]1
A8bA85b. ~39!

Then, from Eqs.~34!, ~36!, ~38!, and~39! it follows that the scalar potentialc satisfies the wave
equation

]1
R8]0R8c50. ~40!

Thus, Eqs.~37! show that, in effect, the solution of Eqs.~24! and, therefore, of the self-dualit
conditions~18! is locally given, modulo gauge transformations, by a single scalar potential
obeys the wave equation.

It may be noticed that the complex vector field~35! satisfies the conditions] (A
C8j̃B)C850,

which means thatj̃AB8 is the vector potential of a self-dual electromagnetic field and that
conditionHABCD850 is preserved under the gauge transformation given byj̃AB8 @cf. Eqs.~22! and
~23!#; in other words, the metric perturbationhABA8B81]AA8j̃BB81]BB8j̃AA8 also satisfies Eq.
~24!, as can be directly verified.

The preceding result can also be expressed in a covariant form. IfoA is anyconstantspinor,
then the solution of the self-duality conditions~14! and ~15! is locally given, modulo gauge
transformations, by

hABC8D85¹C
C8¹

D
D8~coAoBoCoD!, ~41!

wherec is a solution of the wave equation

¹AA8¹
AA8c50, ~42!

and any real solution of the Einstein vacuum field equations linearized about the Minko
metric is locally given, modulo gauge transformations, by the real part of the perturbation giv
Eq. ~41!. The covariant expression for the metric perturbations of an algebraically special so
of the Einstein vacuum field equations given in Ref. 8~which is equivalent to the expression
found in Refs. 7 and 3! reduces to Eq.~41! when the multiple principal spinor of the backgroun
conformal curvature is constant. As pointed out in the Introduction, the derivations presen
Refs. 3, 7, and 8 do not demonstrate that all the metric perturbations of the algebraically s
vacuum space–times are given by the formula obtained in those works. If the constant spioA

in Eq. ~41! corresponds to the null direction] t1]z , then the first-order curvatureKabgd corre-
sponding to the real part of the perturbation~41! agrees with the expression obtained in Ref. 6
direct integration in circular cylindrical coordinates of the equations for the curvature in
linearized Einstein theory.

From Eq.~41! it also follows that¹ (M
D8hAB)C8D85¹ (M

D8¹C
C8¹

D
D8(coAoB)oCoD) is ~the

spinor equivalent of! a Lanczos potential for the first-order curvature~see, e.g., Ref. 11!. The
metric perturbation, the Lanczos potential, and the curvature are given by second, third, and
derivatives, respectively, of the scalar potentialc.

As a simple example, we can consider a potentialc independent ofx008. Then Eq.~40!

reduces to]018]108c50, or, takingu[x118, v[x008, z[x018, and z̄[x108,

]z]z̄c~u,z,z̄ !50. ~43!

The only nonvanishing component ofh11R8D85]0R8]0D8c @cf. Eq. ~37!# is

h1118185]z]zc[F~u,z,z̄ !. ~44!

By virtue of Eq.~43!, ]z̄F50; therefore,F5F(u,z) and
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~hab1hab
c !dxadxb52dudv22dzdz̄1h111818du2

52dudv22dzdz̄1F~u,z!du2 ~45!

is a ~possibly complex! solution of the linearized Einstein vacuum field equations, whereF(u,z)
is an arbitrary function. The real part of the metric~45!,

2dudv22dzdz̄1 1
2@F~u,z!1F~u,z!#du2, ~46!

is also a solution of the linearized Einstein vacuum field equations, which turns out to be an
solution of the Einstein vacuum field equations, as can be easily seen by applying the X
poulos theorem,12 taking into account that the metric~46! is of the form (hab1 l al b)dxadxb, with
l a being a null vector field with respect to the metrichab . The metric~46! corresponds to the
well-known pp waves.

IV. CONCLUDING REMARKS

As we have shown, the Einstein vacuum field equations linearized about the Minko
metric, which are a set of second-order partial differential equations for the metric perturb
can be reduced to a set of first-order partial differential equations whose solution is lo
determined, modulo gauge transformations, by a scalar potential. It would be desirable to
analogous results in the case of curved backgrounds, but then the perturbation of the curv
no longer gauge-invariant and, therefore, the self-duality of the curvature perturbation h
gauge-invariant meaning. Moreover, when the background is not flat, the self-duality of th
vature perturbation is a very strong condition that may not be satisfied, modulo gauge tra
mations, by all the solutions of the linearized Einstein vacuum field equations~see, e.g., Ref. 13!.
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The singular continuous spectrum of the Liouville operator of quantum statistical
physics is, in general, properly included in the difference of the spectral values of
the singular continuous spectrum of the associated Hamiltonian. The absolutely
continuous spectrum of the Liouvillian may arise from a purely singular continuous
Hamiltonian. We provide the correct formulas for the spectrum of the Liouville
operator and show that the decaying states of the singular continuous subspace of
the Hamiltonian do not necessarily contribute to the absolutely continuous sub-
space of the Liouvillian. ©1999 American Institute of Physics.
@S0022-2488~99!00208-X#

I. INTRODUCTION

The Liouville operator is the starting point of both classical and quantum statistical phys1,2

since it generates the evolution of statesr:

] tr52 iLr.

The formal relation between the Liouville operatorL and its corresponding HamiltonianH is
given by the Poisson bracketsLr5 i $H,r% for classical systems and by the commutatorLr
5@H, r# for quantum systems. Herer denotes the density function or the density operator.

It is well known that the Liouville operatorL ~also called the Liouvillian! corresponding to an
essentially self-adjoint HamiltonianH is also essentially self-adjoint.3 Moreover, the spectrum
s(H) of H determines the spectrums~L! of L which consists of the differences between t
spectral values ofH:

s~L!5$l2l8:l,l8Ps~H !%. ~1!

It may therefore be natural to expect a similar relation to hold separately for each part
spectrum of the Hamiltonian and the Liouvillian, namely for the point spectrum, the absol
continuous spectrum, and the singular continuous spectrum:

sp~L!5$l2l8:l,l8Psp~H !% ~2!
41060022-2488/99/40(8)/4106/13/$15.00 © 1999 American Institute of Physics
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sac~L!5$l2l8:l,l8Psac~H !% ~3!

ssc~L!5$l2l8:l,l8Pssc~H !%. ~4!

Twenty years ago, Spohn4 argued that formulas~2!–~4! hold true. The objective of this pape
is to demonstrate that formulas~3! and ~4! are not true. Spohn’s proof concerning the singu
spectrum~4! is based on the argument that the set$l2l8:l,l8Pssc(H)% has Lebesgue measur
zero, because the setssc(H) has Lebesgue measure zero. This is, however, not true, as ca
shown on a simple example of an operator with Cantor spectrum. Another example contra
explicitly Spohn’s assertion has been found by L. Bos and B. S. Pavlov5 who constructed an
example of a Hamiltonian with purely singular spectrum for which the spectrum of its Liouvi
has an absolutely continuous component. Bos and Pavlov’s example has been generalized
by M. Gadella and two of us~IA and ZS!.6

Let us remark here that the problem of finding a Hamiltonian with pure singular spec
such that the corresponding Liouvillian has nonempty absolutely continuous spectrum redu
the problem of finding a singular measure on the real line with absolutely continuous convo
square. The answer to this problem is known since 1938 when N. Wiener and A. Win7

constructed a singular continuous measurem for which the convolutionm* m is absolutely con-
tinuous. However, the Wiener–Wintner paper7 as well as many other refinements and general
tions of their construction8 remained unnoticed by the physics community.

We show that it is always possible to find a Hamiltonian with purely continuous sing
spectrum concentrated on an arbitrary thin set, precisely on the set of Hausdorff dimensio
for which the spectrum of the Liouvillian has nontrivial absolutely continuous component. In
the Liouvillian corresponding to a Hamiltonian with purely singular continuous spectrum
have even a purely absolutely continuous spectrum.

The interest of this discussion goes beyond the result of Spohn. A possible consequenc
nonequivalence between the Hilbert space and the Liouville space description of quantu
chanics hinted by I. Prigogine.9 For example, time and entropy operators do exist as superop
tors on the Liouville space,10,11 while they cannot exist as operators on the Hilbert space of w
functions.12 This may also have profound consequences from the point of view of scatt
theory and resonance behavior that are under present investigation.

In Sec. II we provide basic notion, facts, and notations from the spectral theory of self-a
Hamiltonian operators in Hilbert space and the associated Liouville operators in the Hil
Schmidt space, and establish the relation between the spectral measure of the Liouville o
and the spectral measure of the corresponding Hamiltonian operator. In Sec. III we pro
counterexample which shows that the singular continuous spectrum of the Liouvillian is pro
included in the differences of the spectral values of the singular continuous spectrum
Hamiltonian and correct formula~4!. In Sec. IV we show that the absolutely continuous spectr
of the Liouvillian may arise from a pure singular continuous Hamiltonian and correct formula~3!.
Finally, we show that the decaying states of the singular spectrum of the Hamiltonian d
necessarily contribute to the possible absolutely continuous subspace of the associated Liou

II. BASIC FACTS FROM THE SPECTRAL THEORY OF THE HAMILTONIAN AND
LIOUVILLIAN OPERATORS

We collect here the basic facts and notions and define the notation we employ.
Let H be a Hilbert space andH the self-adjoint Hamiltonian operator onH. For a given

HamiltonianH we define the corresponding LiouvillianL as the essentially self-adjoint operat
L5H ^ I 2I ^ H defined on the Hilbert tensor product spaceH^H3, whereH3 denotes the dua
space ofH ~usually identified withH! and I is the identity operator onH. Recall that the space
H^H3 is isometrically isomorphic with the spaceBH2 of all Hilbert–Schmidt operators onH with
the scalar product (A,B)5tr(A†B). In the sequel we shall use Dirac’s notationu f &^gu for the
tensor product of elementsf PH, gPH3.
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Let us denote by$El% the spectral family ofH, i.e., H5*2`
` l dEl , and let$El% denote the

the spectral family of the Liouvillian. Then we have

Elu f &^gu5E
2`

`

uEl1l8 f &d^El8gu. ~5!

Denote byHp the closed linear hull of all eigenvectors ofH. The continuous subspace ofH is
Hc5H*Hp . Recall that the singular continuous subspaceHsc of Hc consists of allf PHc for
which there exists a Borel setB0 of Lebesgue measure zero such that*B0

dEl f 5 f . By Hac

5Hc*Hsc we shall denote the absolutely continuous subspace ofHc . Recall also thatHp , Hc ,
Hsc, andHac are closed linear subspaces ofH which reduce the operatorH. The spectra of the
corresponding reductions ofH will be called respectively point, continuous, singular continuo
and absolutely continuous spectrum ofH, and will be denoted bysp(H), sc(H), ssc(H), and
sac(H) correspondingly.13

Let m5m f denote, for a givenf PH, the spectral measure ons(H) determined by the
nondecreasing functionl°^ f ,El f &. Let f 5 f p1 f sc1 f ac be the decomposition off corresponding
to the direct sumHp%Hsc%Hac. Puttingmp5m f p

, msc5m f sc
, andmac5m f ac

we obtain the Jordan
decomposition ofm,

m5mp1msc1mac, ~6!

onto the point, singular continuous, and absolutely continuous component. Conversely, giv
three finite Borel measuresmp , msc, and mac, wheremp is concentrated on a countable set
points and the other two measures are respectively singular and absolutely continuous, o
always construct a Hilbert spaceH and a self-adjoint operatorH such that these measures a
spectral measures associated with somef PH. Moreover, the point, singular, and absolute
continuous spectrum ofH coincide withmp , msc, andmac, respectively. This can be proved b
takingH as the direct sumL2(R,mp) % L2(R,msc) % L2(R,mac) andH as the operator of multipli-
cation byl.13

The spectral measure of a self-adjoint operatorH5*s(H)l dEl on a Hilbert spaceH corre-
sponding to an elementhPH is

F~l!5^h,Elh& for lPR. ~7!

Since the Liouville operator corresponding to this self-adjoint operatorH is defined onH
^H3 by L5H ^ I 2I ^ H, it follows from ~5! that

~ uh&^hu,Eluh&^hu!5E
2`

`

^h,El1l8h&d^h,El8h&. ~8!

Formula~8! can be written as

F~l!5E
2`

`

F~l1l8!dF~l8!, ~9!

where

F~l!5~ uh&^hu,Eluh&^hu! ~10!

is the distribution function associated with the Liouville operatorL for the operatoruh&^hu.
The relation between the spectral measuremL of the Liouville operator and the spectra

measure of the Hamiltonian operatorH is given by the following.
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Lemma 1: The measuremL associated to the distribution function (10) of the Liouville ope
tor is the convolution of the measurem associated to the distribution function (7) of the Ham
tonian operator with the reflectionm̄ of m with respect to 0, i.e.,

mL5m* m̄,

wherem̄(D)5m(2D)5m($2x:xPD%), for each Borel setD.
We remind the reader that the convolutionm1* m2 of the Borel measurem1 with the Borel

measurem2 is defined as the composition of the productm13m2 with the measurable maps:R
3R˜R given by

s~x,y!5x1y, ~11!

i.e., (m1* m2)(D)5m13m2(s21D), for every Borel subsetD of the real line.
Proof: Let us denote bym1*̄ m2 (m1 andm2 are Borel measures onR! the composition of the

measurem13m2 with the measurable mapd:R3R˜R given by

d~x,y!5x2y. ~12!

Since we have

mL5m *̄ m,

the assertion of the lemma follows from a more general property

m1*̄ m25m1* m̄2 . ~13!

To prove~13! let us define~measurable! transformationt:R3R˜R3R:

t~x,y!5~x,2y!. ~14!

We want to show first that

m13m̄25~m13m2!+t. ~15!

For that, we need only to show this identity for sets of the formA3B, where A and B are
measurable sets. Indeed, we have

„~m13m2!+t…~A3B!5~m13m2!@ t21~A3B!#

5~m13m2!~A3~2B!!

5m1~A!m2~2B!

5m1~A!m̄2~B!5~m13m̄2!~A3B!, ~16!

which proves~15!. Therefore, taking any measurable setC we have

m1*̄ m2~C!5~m13m2!d21~C!

5E E
$~x,y!:x2yPC%

dm13m2

5E E
t21$~x,y!:x1yPC%

dm13m2

5E E
$~x,y!:x1yPC%

dm13m̄25m13m̄2„s
21~C!…5m1* m̄2~C!. ~17!
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j

III. THE SINGULAR CONTINUOUS SPECTRUM OF THE LIOUVILLIAN IS PROPERLY
INCLUDED IN THE DIFFERENCES OF THE SPECTRAL VALUES OF THE
SINGULAR CONTINUOUS SPECTRUM OF THE HAMILTONIAN

We provide a counterexample to formula~4! for the singular continuous spectrum of th
Liouville operator, which shows that the singular continuous spectrumssc(L) of the Liouville
operator is properly included in the differences of the spectral values of a Hamiltonian with p
singular continuous spectrum.

Consider a Hamiltonian operatorH for which s(H) is a Cantor set. The existence of su
operators is guaranteed by the above construction of the Hamiltonian with given spectral me
Let us note, however, that there are more ‘‘physical’’ examples of Hamiltonians with Canto
spectrum. For example, there is an absolutely summable sequence$an% such that the spectrum o
the Hamiltonian

H52
d2

dx2 1 (
n50

`

an cos~x22n! ~18!

is the Cantor set~see Ref. 14 and references therein!. Suppose thats(H)5C, whereC is the
Cantor set on the interval@0, 1#. According to the general property of spectra of functions of
Hamiltonian~see Ref. 3! we have~1!.

However, according to a theorem of Steinhaus,15 we have

$l2l8:l,l8PC%5@21 1#, ~19!

as@21, 1# is a set of nonzero Lebesgue measure. Formula~19! contradicts~4!. This property of the
Cantor set does not, however, imply that the spectrum of the Liouvillian is absolutely contin
To show this let us consider the well-known ‘‘devil’s staircase’’ distribution functionF(l) on the
Cantor setC.16 We remind the reader thatF(l) has constant value equalk/2n on each interval
which is removed in thenth step of the iterative construction of the Cantor set16 ~k are such that
the fractionk/2n is nonreducible!. @The ‘‘devil’s staircase’’ is defined as follows: it is12 on the
interval ~1

3,
2
3!,

1
4 on ~1

9,
2
9!,

3
4 on ~7

9,
8
9!,

1
8 on ~ 1

27,
2
27!,

3
8 on ~ 7

27,
8
27!,

5
8 on ~19

27,
20
27!,

7
8 on ~25

27,
26
27!, and so on.#

It is well known and not difficult to check thatF(l) is a nondecreasing continuous function su
that F(l)50 for l<0 andF(l)51 for l>1.

The Hamiltonian with spectral measuredF(l) is the multiplication operator

H f ~l!5l f ~l! ~20!

on the Hilbert spaceL(@0, 1#,dF). The spectral projectorsEl of H are

H5E
0

1

ldEl ,

El f ~l8!51@0,l! f ~l8!,

where

1@0,l!~l8!5 H1,
0,

0<l8,l
otherwise.

The spectral measuredF corresponds to the cyclic vectore51:

F~l!5^e,Ele&.
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The spectral measure of the Liouvillian which corresponds toH ~20! is ~10!:

F~l!5~ ue&^eu,Elue&^eu!.

From the general properties of the convolution and Lemma 1, the functionF~l! is continuous.
We shall show that it is, however, not absolutely continuous. In order to show this, let us co
the Fourier–Stieltjes transform

F̂~ t !5E
0

1

eitl dF~l!. ~21!

Let us find the explicit expression forF̂(t):

F̂~ t !5E
0

1

eitl dF~l!5
1

2 E0

1/3

eitl dF~3l!1
1

2 E2/3

1

eitl dF~3l22!

5
1

2 E0

1

eitl/3 dF~l!1
1

2 E0

1

eitl/3eit2/3dF~l!

5
1

2
@11e2i t /3#F̂S t

3D
5

1

2
@11e2i t /3#

1

2
@11e2i t /32

#F̂S t

32D
5S )

k51

`
1

2
@11e2i t /3# D F̂~0!. ~22!

In the first identity in the second row, we have used the fact thatF(l) satisfies functional equation
of the De Rham type~compare with Ref. 17!:

F~l!5H 1
2F~3l!, 0<l, 1

3,
1
2,

1
3<l, 2

3,
1
2F~3l22!1 1

2,
2
3<l<1.

~23!

SinceF̂(0)51, we obtain

F̂~ t !5)
k51

`

@11e2i t /3#. ~24!

Choosingtn5p3n we see that

F̂~ tn!5 )
k5n11

`
1

2
@11e2p i /3k2n

#5)
k51

`
1

2
@11e2p i /3k

# ~25!

does not depend onn. Moreover,F̂(tn) is nonzero. Indeed, takingn0 such thatp/3n,1/2n, for
n.n0 , and using the equalityPn51

` cos (t/2n)5(sint)/t we have
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uF̂~ tn!u5)
k51

`

cos
p

3k.)
k51

n0

cos
p

3k )
k5n011

`

cos
1

2k

5)
k51

n0

cos
p

3k )
k51

`

cos
22n0

2k

52n0 sin
1

2n0 )
k51

n0

cos
p

3k.0. ~26!

This means that the Fourier transformF̂(t) does not converge to zero ast˜`. The same is

true for the Fourier transformF̂(t) of F~l! becauseuF̂(t)u5uF̂(t)u2. Therefore, in view of the
Riemann–Lebesgue lemma,F(l) as well asF~l! cannot be purely absolutely continuous. In fa
one can show, moreover, thatF~l! is purely singular continuous. The proof of this fact, which h
been communicated to us by Professor O. G. Smolyanov, is given in the Appendix. Therefo
singular continuous spectrum has Lebesgue measure zero.

Therefore, the singular continuous spectrumssc(L) of the Liouville operator being a set with
Lebesgue measure zero is properly included in the set of differences

ssc~H !2ssc~H !5@21, 1#.

Therefore formula~4! for the singular continuous spectrum ofL should be corrected to

ssc~L!,$ssc~H !2ssc~H !%. ~48!

IV. THE ABSOLUTELY CONTINUOUS SPECTRUM OF THE LIOUVILLIAN MAY ARISE
FROM A PURE SINGULAR CONTINUOUS HAMILTONIAN

Using the results from Ref. 18 on convolutions of singular measures we shall show tha
possible to find Hamiltonians with purely singular spectral measures concentrated on a se
Hausdorff dimension zero. Therefore, the associated Liouvillian has nontrivial absolutely co
ous subspace.

Let us recall that thep-dimensional Hausdorff measure,p>0, on subsetsE of R is defined to
be the number

xp~E!5 lim
«˜0

infH (
n51

`

uI nup:E, ø
n51

`

I n , uI nu,«, n51,2,...J , ~27!

where the infimum is taken over the coverings ofE by intervals of the length not greater than«
~uI nu denotes the length of the intervalI n).

An important property of the Hausdorff measure is that for each setE there is a valuep0 such
thatxp(E)5` for p,p0 andxp(E)50 for p.p0 . This valuep0 is called theHausdorff dimen-
sion of the setE.

The Hausdorff dimension of any open subset ofR is equal 1. Hausdorff dimensions small
than one characterize fractal sets. For example, the Hausdorff dimension of the Cantor set i
to log 2/log 3.

The key point in the further construction is a result on Ref. 18 which shows that one
construct two Cantor-type subsetsE1 andE2 of the unit intervalI 5@0, 1# such that

E11E25$l1l8:lPE1 ,l8PE2%5I ~28!

and

xp~E1!5xp~E2!50, ~29!
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for anyp.0. Moreover, thenatural probability measures, i.e., constructed in the same way as
Cantor measure,m i , supported onEi , i 51,2, have the property that the convolutionm1* m2 is
Lebesgue onI.

Let us take two such singular measuresm1 andm2 on I and define

m5m11m̄2 ,

which is a singular measure with supportE1øE2 .
We define, as before, a Hamiltonian with spectrumE1øE2 and m as the spectral measur

given by the multiplication operatorH f (l)5l f (l) on the Hilbert spaceL2(I ,m). Its spectral
resolutionH5*s(H)l dEl can be given explicitly if we define projectorsEl as the operators o
multiplication by the indicators1@0,l# $projectors on the spacesL2(@0,l#,m)%. Thene[1 is the
corresponding cyclic vector andm(@0,l#)5^e,Ele&.

The Liouvillian corresponding toH has the spectral projectorsEl and the measure generate
by (ue&^eu,Elue&^eu) is given by the convolution ofm and m̄. We have

m* m̄5~m11m̄2!* ~m11m̄2!5~m11m̄2!* ~m̄11m2!5m1* m̄21m1* m21m̄2* m̄11m̄2* m2 .

Here, m1* m2 is an absolutely continuous measure by the hypothesis. Becausem̄2* m̄1

5m̄1* m̄2 andm̄1 ,m̄2 are reflections ofm1 ,m2 , thenm̄2* m̄1 is also absolutely continuous. Thes
two convolutions form the absolutely continuous part of the spectral measure of the Liouvi

In view of the result of the previous section, formula~3! for the absolutely continuous spec
trum of L should be corrected to

sac~L !5$sac~H !2sac~H !%ø$@ssc~H !2ssc~H !#\ssc~L!%. ~38!

V. DECAYING STATES IN THE SINGULAR CONTINUOUS SUBSPACE OF THE
HAMILTONIAN

The survival amplitude of a wave functionc in the Hilbert spaceH is

^c,Utc&5K c,E
2`

`

e2 ilt dElcL 5E
2`

`

e2 ilt diElci25m̂c~ t !.

This is the Fourier transformm̂c of the measuremc corresponding to the distribution functio
iElci2. From the Riemann–Lebesgue lemma, ifc is in the absolutely continuous subspace ofH
it decays:

^c,Utc&˜0 as t˜`.

This is well known in quantum mechanics. See, for example, Ref. 19.
There may exist, however, decaying statesc, m̂c˜0, as t˜`, in the singular continuous

subspace ofH as well. Do the decaying states inHsc give rise necessarily to absolutely continuo
subspace of the associated Liouville operator? The following counterexample shows that t
no such necessity. We shall construct a Borel probability measurem on R such thatm̄5m ~m is
symmetric with respect to zero!, the measuresm and m* m are singular continuous, an
lim
t˜`

m̂(t)50, wherem̂ is the Fourier transform ofm.

Let mn be the Borel probability measure onR defined by the formula

mn5 1
2d~2/9!n1 1

2d2~2/9!n,

whereda denotes the normalized measure concentrated at the pointa. The function cos„t( 2
9)

n
… is

the Fourier transform of the measuremn and the function
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FN~ t !5 )
n50

N

cosXtS 2

9D nC
is the Fourier transform of the convolutionm0* m1*¯* mN . Evidently, the sequenceFN(t) con-
verges uniformly to the function

F~ t !5 )
n50

`

cosXtS 2

9D nC ~30!

on any segment inR. Therefore, the sequencem0* m1*¯* mN weakly converges to some Bore
probability measurem on R and the Fourier transformm̂ of this measure coincides withF.

Now we shall check thatm andm* m are singular and that

lim
t˜`

F~ t !50. ~31!

The continuity of the measuresm and m* m follows from condition~31!, which we shall prove
below.

The support of the measurem0* m1*¯* mN is the set

H (
j 50

N
« j

~9/2! j :« jP$0,1%J .

Hence, the compact set

K5H (
j 50

`
« j

~ 9
2!

j
:« jP$0,1%J

is the support ofm. From the last formula it is easy to see that for anynPZ1 the setK is a subset

of the union of 2n segments of the length18
7 ( 2

9)
n (K,@2 9

7,
9
7#, K,@2 9

7,2
5
7#ù@ 5

7,
9
7#, K,@2 9

7,

2 73
63#ù@2 53

63,2
5
7#ù@ 5

7,
53
63#ù@ 73

63,
9
7#,...). Therefore, the setK1K is contained in the union of 4n

segments of the length36
7 ( 2

9)
n. So, for anyn, the Lebesgue measure ofK1K does not exceed

36
7 ( 8

9)
n. Hence, the Lebesgue measure ofK1K is zero and, consequently, the measuresm and

m* m are singular (K1K is the support ofm* m). It remains to prove~31!. This property was
proved by Erdo¨s20 ~see also Ref. 21! for a wide class of functionsF(t) of the form~30!, where the
number2

9 can be any rational value which is not reciprocal of an integer.
Remark:The number 9 in the definitions ofF and mn can be replaced by an arbitrary od

integern>9. The Hausdorff dimension of the supportK of measurem in this case is equal to
(ln 2)/(lnn) @the Hausdorff dimension of the support of the measurem* m does not exceed
2(ln 2)/(lnn)]. So there exists a measure with desired properties and with arbitrary small H
dorff dimension of the support.

VI. CONCLUDING REMARKS

Our main result is to prove the correct relations between the spectra of the Liouville
Hamiltonian operator:

sp~L!5$l2l8:l,l8Psp~H !% ~2!

sac~L!5$sac~H !2sac~H !%ø$@ssc~H !2ssc~H !#\ssc~L!%. ~38!

ssc~L!,@ssc~H !2ssc~H !#. ~48!
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The appearance of absolutely continuous spectrum of the Liouvillian from Hamiltonians
purely singular continuous spectra is very surprising. It shows that even in the conven
formulation the statistical description in Liouville space is not entirely equivalent to the w
function description in the original Hilbert space. This nonequivalence was mentioned to us
Prigogine several times.9 In addition to the time and entropy operators10,11 mentioned in the
Introduction, our results show that it is always possible to construct Hamiltonians for whic
scattering states may exist, because of the absence of absolutely continuous spectrum, wh
corresponding Liouvillians may have scattering states because of the absolutely continuou
trum, contrary to the general belief that scattering theory is equivalent in both Hilbert and
ville space.2

These facts show that the Liouville space formulation of quantum mechanics contains
possibilities than the formulation in the Hilbert space of wave functions corresponding to a H
tonian operator. This is in fact true as the Liouville operator admits extensions beyon
Hilbert–Schmidt space which are nonreducible to wave function evolutions.23
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APPENDIX: SINGULARITY OF THE CONVOLUTION SQUARE
OF THE CANTOR MEASURE

Theorem „O. G. Smolyanov…: Let m be the Cantor measure on the interval@0, 1# and n
5m* m. Then there exists a Borel set A,@0, 2# of the Lebesgue measure zero such thatn(A)
51.

Proof: Let A05@0, 1#,

An5 1
3An21ø~$ 2

3%1 1
3An21!, for n51,2,...,

and put

f n5~ 2
3!

n1An
, for n50,1,2,... .

Denote bymn the measure with the densityf n , i.e.,

mn~B!5E
B

f n~x!dx,

whereB is a Borel subset of@0, 1#. It is easy to see thatgn5
df

f n* f n is the density of the convolution

nn5
df

mn* mn .
The sequence$mn% converges weakly~see Ref. 22! to the Cantor measurem and consequently

nn˜n weakly.
To prove thatn is singular with respect to the Lebesgue measure it is enough to show th

sequence of densities$gn% converges to 0 in Lebesgue measureu•u, i.e., for each«.0,

u$x:gn~x!>«%u˜0 as n˜`.

Note that
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g0~x!5H x, xP@0,1#,
22x, xP@1,2#,
0, otherwise,

and

gn~x!55
3
4gn21~3x!, xP@0,2

3#
3
2gn21~3x22!, xP@ 2

3,
4
3#

3
4gn21~3x24!, xP@ 4

3,2#

0, otherwise.

Observe that

u$x:gn~x!>«%u<2•32n card$k:ck
n>«%,

whereck
n5

df

max$gn(x):xP@2(k21)/3n,2k/3n#%, for n50,1,2,...,k51,...,3n. Therefore, in order to
prove thatgn˜0 in measure, it is sufficient to show that for eachr PN

32n card$k:ck
n>22r%˜0 as n˜`.

Next observe that, for eachn, ck
n can only assume values 2j ( 3

4)
n, j 50,...,n, and denote

a j
n5card$k:ck

n52 j~ 3
4!

n%.

Then

card$k:ck
n>22r%5 (

$ j :2 j ~
3
4!n>22r %

a j
n .

Note that

2 j~ 3
4!

n>22r⇔ j /n>22 log2 32r /n.

Since 22 log2 3.2
5, then for eachr there is n0(r ) such that 22 log2 32r/n.2

5, for each n
.n0(r ). Therefore

card$k:ck
n>22r%< (

j .2n/5
a j

n ,

for n.n0(r ). Consequently, we need only to prove that

32n (
j .2n/5

a j
n
˜0 as n˜`. ~A1!

Notice first thata j
n are the coefficients in the binomial expansion of

cn~x!5
df

~21x!n5a0
n1a1

nx1¯1an
nxn, ~A2!

i.e., a j
m52n2 jn!/ j !(n2 j )!, which can be proved by induction. Indeed,~A2! is true for n50.

Now, assume that~A2! is true for somen. It is obvious thatan11
n1151 anda0

n1152a0
n52n11. If

j P$1,...,n%, then
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a j
n1152a j

n1a j 21
n 52•2n2 j

n!

j ! ~n2 j !!
12n2 j 11

n!

~ j 21!! ~n2 j 11!!

52n112 j
~n11!!

j ! ~n112 j !!
,

which implies that~A2! is also true forn11.
Let us now assume thatn/5PN and evaluate~A1! using the Cauchy form of the Taylo

formula

32n (
j .2n/5

a j
n532n

cn
~2n/5!~u!~12u!2n/521

~2n/521!!

<32n
n! ~21u!3n/5~12u!2n/521

~3n/5!! ~2n/521!!

<32n
n!23n/5

~3n/5!! ~2n/521!!
,

where 0,u,1. Hence, using Stirling formula we get

32n (
j .2n/5

a j
n5

2n/5A2pn

A2p3n/5A2n/5
32n

nn23n/5

~3n/5!3n/5~2n/5!2n/5 a~n!

5c~n!S 321
23/5

~3/5!3/5~2/5!2/5D n

,c~n!pn,

wherea(n)˜1 asn˜`, c(n)<constAn, andp,1. Since the right-hand side goes to 0, asn
˜`, this ends the proof of the theorem.
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Anomalies and analytic torsion on hyperbolic manifolds
A. A. Bytsenko,a) A. E. Gonçalves,b) and M. Simõesc)
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Caixa Postal 6001, Londrina–Parana, Brazil
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The global additive and multiplicative properties of the Laplacian onj-forms and
related zeta functions are analyzed. The explicit form of zeta functions on a product
of closed oriented hyperbolic manifoldsG\Hd and of the multiplicative anomaly are
derived. We also calculate in an explicit form the analytic torsion associated with a
connected sum of such manifolds. ©1999 American Institute of Physics.
@S0022-2488~99!01407-3#

I. INTRODUCTION

The additive and multiplicative properties of~pseudo-! differential operators as well as prop
erties of their determinants have been studied actively during recent years in the mathemati
physical literature. The anomaly associated with product of regularized determinants of ope
can be expressed by means of the noncommutative residue, the Wodzicki residue1 ~see also Refs.
2 and 3!. The Wodzicki residue, which is the unique extension of the Dixmier trace to the w
class of~pseudo-! differential operators,4,5 has been considered within the noncommutative g
metrical approach to the standard model of the electroweak interactions6–8 and the Yang–Mills
action functional. Some recent papers along these lines can be found in Refs. 9–12.

The product of two~or more! differential operators of Laplace type can arise in high
derivative field theories~for example, in higher derivative quantum gravity13!. The zeta function
associated to the product of Laplace-type operators acting in irreducible rank 1 symmetric
and the explicit form of the multiplicative anomaly have been derived in Ref. 11.

Under such circumstances we should note that the conformal deformation of a metric a
corresponding conformal anomaly can also play an important role in quantum theories with
derivatives. It is well known that evaluation of the conformal anomaly is actually possible onl
even-dimensional spaces and up to now its computation is extremely involved. The genera
ture of such an anomaly in curvedd-dimensional spaces~d even! has been studied in Ref. 14. W
briefly mention here analysis related to this phenomenon for constant curvature space
conformal anomaly calculation for thed-dimensional sphere can be found, for example, in Ref.
The explicit computation of the anomaly~of the stress-energy tensor! in irreducible rank 1 sym-
metric spaces has been carried out in Refs. 16–18 using the zeta-function regularization
Selberg trace formula.

Recently the topology of manifolds have been studied by means of quantum field t
methods. New invariants related to three-manifolds19 can be constructed within the framework
Chern–Simons gauge theory and can be specified in terms of the axioms of topological qu
field theory. Also, an important role is played by semiclassical approximations for Chern–Si
theory associated with partition functions involving quadratic functionals. It has been show
fact, that the analytic or Ray–Singer torsion~a topological invariant!20 occurs within quantum

a!Electronic mail: abyts@fisica.uel.br
b!Electronic mail: goncalve@fisica.uel.br
c!Electronic mail: simoes@npd.uel.br
d!Electronic mail: williams@math.umass.edu
41190022-2488/99/40(8)/4119/15/$15.00 © 1999 American Institute of Physics
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field theory as the partition function of a certain quadratic functional.21,22 Recall that Ray–Singe
torsionTan(X) is defined for every closed Riemannian manifoldX and orthogonal representatio
x of p1(X). The definition of the torsion involves the spectrum of the Laplacian on twi
j-forms. It has been proved in Refs. 23 and 24 that whenx is acyclic and orthogonal the valu
Tan(X) coincides with the so-called Reidemeister torsion, which can be computed from a tw
cochain complex of a finite complex by taking a suitable alternating product of determinan25

The purpose of the present paper is to investigate the spectral zeta functions associate
product and Kro¨necker sum of Laplacians onj-forms and to calculate in an explicit form th
analytic torsion on closed oriented hyperbolic manifoldsG\Hd and on a connected sum of suc
manifolds.

II. THE SPECTRAL ZETA FUNCTION AND THE TRACE FORMULA

We shall be working with irreducible rank 1 symmetric spacesX5G/K of noncompact type.
ThusG will be a connected noncompact simple split rank 1 Lie group with finite center andK,G
will be a maximal compact subgroup. Up to local isomorphism we chooseX
5SO1(d,1)/SO(d). Thus the isotropy groupK of the base point~1,0,...,0! is SO(d); X can be
identified with hyperbolicd-spaceHd, d5dimX. It is possible to viewHd, for example, as one
sheet of the hyperboloid of two sheets inRd11 given byq(x)52x0

21x1
21¯1xd

2521, x0.0,
with the metric induced by the quadratic formq(x). Let G,G be a discrete, co-compact, torsio
free subgroup, and letx(g)5trace„x(g)… be the character of a finite-dimensional unitary rep
sentationx of G for gPG. Let L ( j )[DG

( j ) be the Laplacian onj-forms acting on the vector bundl
V(XG) over XG5G\G/K induced byx. Note that the nontwistedj-forms onXG are obtained by
taking x51. One can define the heat kernel of the elliptic operatorL( j )5L ( j )1b( j ) by

Tr~e2tL~ j !
!5

21

2p i
TrE

C0
e2zt~z2L~ j !!21 dz, ~2.1!

whereC0 is an arc in the complex planeC; the b( j ) are endomorphisms of the vector bund
V(XG). By standard results in operator theory there exist«,d.0 such that for 0,t,d the heat
kernel expansion holds

vG
~ j !~ t,b~ j !!5(

l 50

`

nl~x!e2~l l
~ j !

1b~ j !!t5 (
0< l< l 0

al~L~ j !!t2 l1O~ t«!, ~2.2!

where$l l
( j )% l 50

` is the set of eigenvalues of operatorL ( j ) andnl(x) denote the multiplicity ofl l
( j ) .

Eventually we would also like to takeb( j )50, but for now we consider only nonzero mode
b( j )1l l

( j ).0, ; l :l0
( j )50, b( j ).0.

Let a0 ,n0 denote the Lie algebras ofA, N in an Iwasawa decompositionG5KAN. Since the
rank of G is 1, dima051 by definition, saya05RH0 for a suitable basis vectorH0 . One can
normalize the choice ofH0 by b(H0)51, whereb:a0˜R is the positive root which definesn0 ;
for more detail see Ref. 26. SinceG is torsion free, eachgPG2$1% can be represented unique
as some power of a primitive elementd:g5d j (g), where j (g)>1 is an integer andd cannot be
written asg1

j for g1PG, j .1 an integer. TakinggPG, gÞ1, one can findtg.0 andmgPM

5
def

$mgPKumga5amg ,;aPA% such thatg is G conjugate tomg exp(tgH0), namely for someg
PG, ggg215mg exp(tgH0). Additionally, letxs(m)5trace„s(m)… be the character ofs, for s a
finite-dimensional representation ofM.

Theorem 2.1: (Fried’s trace formula27) For 0< j <d21,

Tr~e2tL~ j !
!5I ~ j !~ t,b~ j !!1I ~ j 21!~ t,b~ j 21!!1H ~ j !~ t,b~ j !!1H ~ j 21!~ t,b~ j 21!!, ~2.3!

where
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I ~ j !~ t,b~ j !!5
defx~1!Vol~G\G!

4p E
R
ms j

~r !e2t@r 21b~ j !1~r02 j !2# dr, ~2.4!

H ~ j !~ t,b~ j !!5
def 1

A4pt
(

gPCG2$1%
x~g!tg j ~g!21C~g!xs j

~mg!expH 2Fb~ j !t1~r02 j !2t1
tg
2

4tG J ,

~2.5!

r05(d21)/2, and the function C(g), gPG, defined onG2$1% by

C~g!5
def

e2r0tgudetn0
„Ad~mgetgH0!2121…u21. ~2.6!

For Ad denoting the adjoint representation of G on its complexified Lie algebra, one can com
tg as follows:28

etg5max$ucuuc5an eigenvalue of Ad~g!%. ~2.7!

HereCG is a complete set of representatives inG of its conjugacy classes; Haar measure onG
is suitably normalized. In our caseK.SO(d), M.SO(d21). For j 50 ~i.e., for smooth func-
tions or smooth vector bundle sections! the measurem0(r ) corresponds to the trivial represent
tion of M. For j >1 there is a measurems(r ) corresponding to a general irreducible representa
s of M. Let s j be the standard representation ofM5SO(d21) on L jC(d21). If d52n is even,
thens j (0< j <d21) is always irreducible; ifd52n11, then everys j is irreducible except for
j 5(d21)/25n, in which casesn is the direct sum of two~1/2!-spin representationss6:sn

5s1
% s2. For j 5n the representationtn of K5SO(2n) on LnC2n is not irreducible,tn5tn

1

% tn
2 is the direct sum of~1/2!-spin representations. The Harish-Chandra Plancherel mea

ms j
(r ) are given by the following theorem.
Theorem 2.2:Let the group G5SO1(2n,1). Then

ms j
~r !5S 2n21

j D pr

24n24G~n!2 )
i 52

j 11 F r 21S n1
3

2
2 i D 2G

3 )
i 5 j 12

n F r 21S n1
1

2
2 i D 2G tanh~pr ! for 0< j <n21, ~2.8!

ms j
~r !5S 2n21

j D pr

24n24G~n!2 )
i 52

2n2 j F r 21S n1
3

2
2 i D 2G

3 )
i 52n2 j 11

n F r 21S n1
1

2
2 i D 2G tanh~pr ! for n< j <2n21, ~2.9!

and ms j
(r )5ms2n2 j 21

(r ).
For the group G5SO1(2n11,1) one has

ms j
~r !5S 2n

j D p

24n22GS n1
1

2D 2 )
i 51

j 11

@r 21~n112 i !2# )
i 5 j 12

n

@r 21~n2 i !2# for 0< j ,n,

~2.10!
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ms j
~r !5S 2n

j D p

24n22GS n1
1

2D 2 )
i 51

2n2 j 11

@r 21~n112 i !2#

3 )
i 52n2 j 12

n

@r 21~n2 i !2# for n11< j <2n21. ~2.11!

We should note that the reason for the pair of terms$I ( j ),I ( j 21)%, $H ( j ),H ( j 21)% in the trace
formula Eq.~2.3! is thatt j satisfiest j uM5s j % s j 21 .

Finally, using the result of Theorem 2.2, we have

ms j
~r !5C~ j !~d!P~r ,d!3 H tanh~pr ! for d52n,

1 for d52n11,

5C~ j !~d!35 (
l 50

d/221

a2l
~ j !~d!r 2l 11 tanh~pr ! for d52n,

(
l 50

~d21!/2

a2l
~ j !~d!r 2l for d52n11,

~2.12!

C~ j !~d!5S d21
j D p

22d24G~d/2!2 , ~2.13!

where theP(r ,d) are even polynomials@with suitable coefficientsa2l
( j )(d)# of degreed21 for

GÞSO(2n11,1), and of degreed52n11 for G5SO1(2n11,1).29,26

A. Case of the trivial representation

For j 50 we takeI (21)5H (21)50. Sinces0 is the trivial representationxs0
(mg)51. In this

case, Fried’s formula~2.3! reduces exactly to the trace formula forj 50:28,30

vG
~0!~ t,b~0!!5

x~1!vol~G\G!

4p E
R
ms0

~r !e2~r 21b~0!1r0
2
!t dr1H ~0!~ t,b~0!!, ~2.14!

wherer0 is associated with the positive restricted~real! roots ofG ~with multiplicity! with respect
to a nilpotent factorN of G in an Iwasawa decompositionG5KAN. The functionH (0)(t,b(0)) has
the form

H ~0!~ t,b~0!!5
1

A4pt
(

gPCG2$1%
x~g!tg j ~g!21C~g!e2@b~0!t1r0

2t1tg
2/~4t !#. ~2.15!

B. Case of zero modes

It can be shown31 that the Mellin transform ofH (0)(t,0) ~b(0)50, i.e., the zero modes case!,

h~0!~s!5
defE

0

`

H ~0!~ t,0!ts21dt, ~2.16!

is a holomorphic function on the domain Res,0. Then, using the result of Refs. 29 and 26 o
can obtain on Res,0
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h~0!~s!5 (
gPCG2$1%

x~g!tg j ~g!21C~g!E
0

` e2~r0
2t1tg

2/~4t !!

A4pt
ts21 dt

5
~2r0!1/22s

Ap
(

gPCG2$1%
x~g!tg j ~g!21C~g!tg

s11/2K1/22s~ tgr0!, ~2.17!

whereKn(s) is the modified Bessel function, and finally

h~0!~s!5
sin~ps!

p
G~s!E

0

`

cG~ t12r0 ;x!~2r0t1t2!2s dt. ~2.18!

Here cG(s;x)[d„logZG(s;x)…/ds, and ZG(s;x) is a meromorphic suitably normalized Selbe
zeta function.32–37,30,38,29

III. THE MULTIPLICATIVE ANOMALY

In this section the product of the operators onj-forms ^Lp
( j ) ,Lp

( j )5L ( j )1bp
( j ) , p51,2, will be

considered. We are interested in multiplicative properties of determinants, the multiplic
anomaly.39,2,3 The multiplicative anomalyF(L1

( j ) ,L2
( j )) reads

F~L1
~ j ! ,L2

~ j !!5detz@ ^

p
Lp

~ j !#@detz~L1
~ j !!detz~L2

~ j !!#21, ~3.1!

where we assume a zeta-regularization of determinants, i.e.,

detz~Lp
~ j !!5

def

expS 2
]

]s
z~suLp

~ j !!Us50D . ~3.2!

Generally speaking, if the anomaly related to elliptic operators is nonvanishing, then the re
log det(̂ Lp

( j ))5Tr log(^Lp
( j )) does not hold.

A. The zeta function of the product of Laplacians

The spectral zeta function associated with the product^Lp
( j ) has the form

z~su ^

p
Lp

~ j !!5(
l>0

nl)
p

2

~l l
~ j !1bp

~ j !!2s. ~3.3!

We shall always assume thatb1
( j )Þb2

( j ) , say b1
( j ).b2

( j ) . If b1
( j )5b2

( j ) , then z(su ^Lp
( j ))

5z(2suL( j )) is a well-known function. Forb1
( j ) ,b2

( j )PR, set b15
def

(b1
( j )1b2

( j ))/2, b25
def

(b1
( j )

2b2
( j ))/2, thusb1

( j )5b11b2 andb2
( j )5b12b2 .

Theorem 3.1:11 The spectral zeta function can be written as follows:

z~su ^

p
Lp

~ j !!5~2b2!1/22s
Ap

G~s!
E

0

`

vG
~ j !~ t,b1!I s21/2~b2t !dt, ~3.4!

where the integral converges absolutely forRes.d/4.
This formula is a main starting point to study the zeta function. It expressesz(su ^Lp

( j )) in
terms of the Bessel functionI s21/2(b2t) and vG

( j )(t,b1), where the trace formula applies t

vG
( j )(t,b1). Let Bp( j )5„r0(p)2 j …21bp

( j ) andA5
def

x(1)vol(G\G)C( j )(d)/4.
Theorem 3.2:For Res.d/4 the explicit meromorphic continuation holds:
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z~su ^

p
Lp

~ j !!5A (
l 50

d/221

@a2l
~ j !~d!„Fl

~ j !~s!2El
~ j !~s!…1a2l

~ j 21!~d!„Fl
~ j 21!~s!2El

~ j 21!~s!…#

1I~ j !~s!1I~ j 21!~s!, ~3.5!

where

El
~ j !~s!5

def

4E
0

` drr 2 j 11

11e2pr )
p

„r 21Bp~ j !…2s, ~3.6!

which is an entire function of s,

Fl
~ j !~s!5

def

„B1~ j !B2~ j !…2s
l ! ~2B1~ j !B2~ j !/„B1~ j !1B2~ j !…! l 11

~2s21!~2s22!¯„2s2~ l 11!…

3FXl 11

2
,
l 12

2
;s1

1

2
;S B1~ j !2B2~ j !

B1~ j !1B2~ j ! D
2C, ~3.7!

I~ j !~s!5
def

~2b2!1/22s
Ap

G~s!
E

0

`

H ~ j !~ t,b1!I s21/2~b2t !ts21/2dt, ~3.8!

and F(a,b;g;z) is the hypergeometric function.
The goal now is to compute the zeta function and its derivative ats50. Thus we have

Fl
~ j !~0!5

~21! l 11

l 11 S 2B1~ j !

B1~ j !1B2~ j ! D
l 11

FXl 11

2
,
l 12

2
;
1

2
;S B1~ j !2B2~ j !

B1~ j !1B2~ j ! D
2C

5
~21! l 11

2~ l 11! (
p

2

Bp~ j ! l 11, ~3.9!

El
~ j !~0!54E

0

` drr 2l 11

11e2pr 5
~21! l

l 11
~12222l 21!B2l 12 , ~3.10!

I~ j !~0!50, ~3.11!

whereB2n are the Bernoulli numbers.
Proposition 3.3: A preliminary form of the zeta functionz(su ^ pLp

( j )) at s50 is

z~0u ^

p
Lp

~ j !!5A (
l 50

~d/2!21
~21! l 11

2~ l 11! F(
p

„a2l
~ j !~d!Bp~ j ! l 111a2l

~ j 21!~d!Bp~ j 21! l 11
…

1~22222l !B2l 12„a2l
~ j !~d!1a2l

~ j 21!~d!…G . ~3.12!

Proposition 3.4: The derivative of the zeta function at s50 has the form

z8~0u ^

p
Lp

~ j !!5A (
l 50

~d/2!21 F(
m

4

„a2l
~ j !~d!Em

~ j !1a2l
~ j 21!~d!Em

~ j 21!
… G , ~3.13!

where
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E1
~ j !5 l ! „B1~ j ! l 111B2~ j ! l 11

…(
k50

l
~21!k11

k! ~ l 2k!! ~ j 112k!!
, ~3.14!

E2
~ j !5B2~ j ! l 11S B1~ j !2B2~ j !

2B1~ j ! D ~21! l

~ l 11!! (
k51

`
~ l 1k11!!

~k11!!
snS B1~ j !2B2~ j !

B1~ j ! D k

, ~3.15!

E3
~ j !5 log„B1~ j !B2~ j !…

~21! l

2~ l 11!
„B1~ j ! l 111B2~ j ! l 11

…

24E
0

` r 2l 11 log~„r 21B1~ j !…/„r 21B2~ j !…!dr

11e2pr , ~3.16!

E4
~ j ![

d

ds
I~ j !~s!U

s50

5E
0

`

@H ~ j !~ t,b1
~ j !!1H ~ j !~ t,b2

~ j !!#t21 dt, ~3.17!

andsn5
def

(k51
n k21.

B. The residue formula and the multiplicative anomaly

The value of F(L1 ,L2) can be expressed by means of the noncommutative Wodz
residue.1 Let Op , p51, 2, be invertible elliptic~pseudo-! differential operators of real nonzer
ordersa and b such thata1bÞ0. Even if the zeta functions for operatorsO1 , O2 andO1

^O2 are well defined and if their principal symbols satisfy the Agmon–Nirenberg condition~with
appropriate spectra cuts!, one has in general thatF(O1 ,O2)Þ1. For such invertible elliptic op-
erators the formula for the anomaly of commuting operators holds:

A~O1 ,O2!5A~O2 ,O1!5 log„F~O1 ,O2!…5
res@„log~O1

b
^O2

2a!…2#

2ab~a1b!
. ~3.18!

More general formulas have been derived in Refs. 2 and 3. Furthermore, the anomaly
iterated consistently. Indeed, using Eq.~3.18! we have

A~O1 ,O2!5z8~0uO1O2!2z8~0uO1!2z8~0uO2!,

A~O1 ,O2 ,O3!5z8~0u ^

j

3

Oj !2(
j

3

z8~0uOj !2A~O1 ,O2!,

• • • • • • • • • • • ~3.19!

A~O1 ,O2 ,...,On!5z8~0u ^

j

n

Oj !2(
j

n

z8~0uOj !2A~O1 ,O2!

2A~O1 ,O2 ,O3!...2A~O1 ,O2 ,...,On21!.

In particular, forn52 andOp[Lp
( j ) the anomaly is given by the following theorem.

Theorem 3.5:The explicit formula for the multiplicative anomaly is

A~L1
~ j ! ,L2

~ j !!5A (
l 50

~d/2!21

@V l
~ j !1Vl

~ j 21!#, ~3.20!

where
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V l
~ j !5

a2l
~ j !~d!~21! l

2 F l

2
„B1~ j !2B2~ j !…2B2~ j ! l 211

l ~ l 21!

4
„B1~ j !2B2~ j !…3B2~ j ! l 22

1 (
p53

l
l !

~p11!p! ~ l 2p!! S 1

p
1

1

p21
1 (

q51

p22
1

p2q21D „B1~ j !2B2~ j !…p11B2~ j ! l 2pG .

~3.21!

We note that for the four-dimensional space withG5SO1(4,1), one derives from Theorem
3.5 the result

A~L1
~ j ! ,L2

~ j !52AG
~ j !~b1

~ j !2b1
~ j !!22AG

~ j 21!~b1
~ j 21!2b1

~ j 21!!2, ~3.22!

which also follows from Wodzicki’s formula~3.18!, where we should setAG
( j )5Aa21

( j )(4)/4.

IV. THE CONFORMAL ANOMALY AND ASSOCIATED OPERATOR PRODUCTS

In this section we start with a conformal deformation of a metric and the conformal ano
of the energy stress tensor. It is well known that~pseudo-! Riemannian metrics gmn(x) and g̃mn(x)
on a manifoldX are ~pointwise! conformal if g̃mn(x)5exp(2f )gmn(x), f PC`(R). For constant
conformal deformations the variation of the connected vacuum functional~the effective action!
can be expressed in terms of the generalized zeta function related to an elliptic self-a
operatorO:13

dW52z~0uO!logm25E
XG

^Tmn~x!&dgmn~x!dx, ~4.1!

where^Tmn(x)& means that all connected vacuum graphs of the stress-energy tensorTmn(x) are to
be included. Therefore Eq.~4.1! leads to

^Tm
m~x!&5„Vol~XG!…21z~0uO!. ~4.2!

The formulas~3.5! and ~3.9!–~3.11! give an explicit result for the conformal anomal
namely,

^Tm
m~x!&~O5 ^L

p
~ j !!5

1

~4p!d/2G~d/2! (
l 50

~d/2!21
~21! l 11

2~ l 11! H(
p

@a2l
~ j !~d!Bp~ j ! l 11

1a2l
~ j 21!~d!Bp~ j 21! l 11#1~22222l !B2l 12„a2l

~ j !~d!1a2l
~ j 21!~d!…J ,

~4.3!

whered is even. ForB1,2( j )5B( j ) andB1,2( j 21)5B( j 21), the anomaly~4.3! has the form

^Tm
m~x!&~L~ j ! ^L~ j !!5

1

~4p!d/2G~d/2! (
l 50

~d/2!21
~21! l 11

2~ l 11!
$@a2l

~ j !~d!B~ j ! l 111a2l
~ j 21!~d!B~ j 21! l 11#

1~22222l !B2l 12„a2l
~ j !~d!1a2l

~ j 21!~d!…%. ~4.4!

Note that for a minimally coupled scalar field of massm, B(0)5r0
21m2. The simplest case

is, for example,G5SO1(2,1).SL(2,R); besidesX5H2 is a two-dimensional real hyperboli
space. Then we haver0

251/4, a20
(0)51, and finally
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^Tm
n ~xPG\H2!&~L~0! ^L~0!!52

1

4p S b1
1

3D . ~4.5!

For reald-dimensional hyperbolic space the scalar curvature isR(x)52d(d21). In the case
of the conformally invariant scalar field we haveB(0)5r0

21R(x)(d22)/@4(d21)#. As a con-
sequence,B(0)5 1

4 and

^Tm
m~xPG\Hd!&~L~0! ^L~0!!5

1

~4p!d/2G~d/2!

3 (
l 50

~d/2!21
~21! l 11

l 11
a2l

~0!~d!$222l 221~12222l 21!B2l 12%. ~4.6!

Thus in conformally invariant scalar theory the anomaly of the stress tensor coincides wit
associated with operator product. This statement holds not only for hyperbolic spaces con
above, but for all constant curvature manifolds as well.17

V. PRODUCT OF EINSTEIN MANIFOLDS

In this section we consider the problem of the global existence of zeta functions on~pseudo-!
Riemannian product manifolds, a product of two Einstein manifolds40,41

~X,g,P!5~X1 ,g1 ,P1! ^ ~X2 ,g2 ,P2!, ~5.1!

whereg5g1^ g2 and the metricg separates the variables, i.e.,

ds25gab~x!dxa
^ dxb1gmn~y!dym

^ dyn. ~5.2!

The tangent bundle splits asTX5TX1% TX2 andP5P11P2 , wherePp(p51,2) are the corre-
sponding projections onTXp ,

P25Id, g~PX,PY!5g~X,Y!, X,YPG~X!, ~5.3!

G(X) being the Lie algebra of vector fieldsX andY on X. The trivial examples of an almost
product structure are given by the choicesP56Id ~6 identity!.

We recall some facts about Einstein manifolds. An almost-product~pseudo-! Riemannian
structure (X,g,P) is integrable iffDP50 for the Levi–Civita connectionD of g. The two inte-
grable complementary subbundles, i.e., both foliations, are totally geodesic.40,41Let X be a pseudo-
Kähler manifold. Such a manifold is an Einstein manifold iff in any adapted coo¨rdinates (xa,ya)
both metricsg1 andg2 are Einstein metrics for the same constantl,40–42 i.e.,

Ric~g!5lg. ~5.4!

Our consideration will be restricted to only locally decomposable manifolds. A wide clas
~pseudo-! Riemannian manifolds includes nonlocally decomposable manifolds as well, whic
given by warped product space–times.43–45 Note that many exact solutions of Einstein equatio
~associated with Schwarzschild, Robertson–Walker, Reissner–Nordstro¨m, de Sitter space–times!
andp-brane solutions are, in fact, warped product space–times.

A. The explicit form of the zeta function

We study the zeta function

z~suL~ j !
%L~k!!5zG1\X^ G2\X

~s!5
1

G~s!
E

0

`

vG1

~ j !~ t !vG2

~k!~ t !ts21 dt, Res.d. ~5.5!
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Let B5B1( j )1B2(k), Ap5
def

x(1) vol (Gp\G)C( j )(d)/4, yp(s;z)5
def

s/21(21)p21z, p51,2(s,z
PC). The explicit construction gives more, namely the following.

Theorem 5.1:The functionz(suL( j )
^L(k)) admits an explicit meromorphic continuation toC

with at most a simple pole at s51,2,...,d. In particular on the domainRes,1,

z~suL~ j !
%L~k!!5

p2

2
A1A2@C~ j !~d!1C~ j 21!~d!#@C~k!~d!1C~k21!~d!#

3 (
m50

n21

(
l 50

m

(
m50

n21

(
n50

m
@a2m

~ j ! ~d!1a2m
~ j 21!~d!#@a2m

~k!~d!1a2m
~k21!~d!#

~m2 l !! ~m2n!!

3
*0

`r 2~m2 l ! sech2~pr !Km2n~s2 l 2n21;r 21B,p!dr

~s21!~s22!¯„s2~ l 11!…„s2~ l 12!…¯„s2~ l 111n11!…

1C~ j !~d!V1 sin~ps! (
m50

n21

@a2m
~ j ! ~d!1a2m

~ j 21!~d!#E
R
r 2m11 tanh~pr !

3F E
0

`

CG2
~r02k1t1Ar 21B;x2!~2tAr 21B1t2!2s dt1E

0

`

CG2
~r02k11

1t1Ar 21B;x2!~2tAr 21B1t2!2sdtGdr1C~ j !~d!V2 sin~ps!

3 (
m50

n21

@a2m
~k!~d!1a2m

~k21!~d!#E
R
r 2m11 tanh~pr !F E

0

`

CG1
~r02 j 1t

1Ar 21B;x1!~2tAr 21B1t2!2s dt1E
0

`

CG1
~r02 j 111t1Ar 21B;x1!

3~2tAr 21B1t2!2sdtGdr1
1

2p3iG~s!
E

Rez5«

dzFsinpS z1
s

2D G
3FsinpS s

2
2zD GGS z1

s

2DGS s

2
2zD F E

0

`

~CG1
~r02 j 1t1B1

1/2;x1!~2tB1
1/2

1t2!2y1~s,z!1CG1
~r02 j 111t1B1

1/2;x1!~2tB1
1/21t2!2y1~s,z!!dtG

3F E
0

`

~CG2
~r02k1t1B2

1/2;x2!~2tB2
1/21t2!2y2~s,z!1CG2

~r02k111t

1B2
1/2;x2!~2tB2

1/21t2!2y2~s,z!!dtG , ~5.6!

for any 2 1
2<«< 1

2. For a, d.0, nPN, the entire functionKn(s;d,a) of s is defined by

Kn~s;d,a!5
defE

R

r 2n sech2~ar !dr

~d1r 2!s . ~5.7!

All of the integrals are entire functions of s.
The simplest case is, for example,G5SO1(2,1).SL(2,R); besidesX5H2 is a two-

dimensional real hyperbolic space. Then forj 5k50, G15G25G, we havea20
(0)(2)51 and

ms0(r )5pr tanh(pr) and for Res,1 we have
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z~suL~0!
%L~0!!5

pA1
2

2~s21!~s22!
E

0

`

sech2~pr !K0~s22;r 21B,p!dr1
2

p
A1 sin~ps!

3E
R
r tanh~pr !drE

0

`

cGS 1

2
1t1Ar 21B;x D ~2tAr 21B1t2!2s dt

1
1

2p3iG~s!
E

Rez5«

FsinpS z1
s

2D GFsinpS s

2
2zD GGS z1

s

2D
3GS s

2
2zDdzE

0

`

cGS 1

2
1t1B0

1/2;x D ~2tB0
1/21t2!2y1~s;z!dt

3E
0

`

cGS 1

2
1t1B0

1/2;x D ~2tB0
1/21t2!2y2~s;z! dt, ~5.8!

whereB5 1
212b(0) andB(0)5 1

21b(0).

VI. QUADRATIC FUNCTIONAL WITH ELLIPTIC RESOLVENT AND ANALYTIC TORSION

Let x:p1(XG)°O(V,^•,•&v) be a representation ofp1(XG) on a real vector spaceV. The
mappingx determines~on the basis of a standard construction in differential geometry! a real flat
vector bundlej overXG and a flat connection mapD on the spaceV(XG ,j) of differential forms
on XG with values inj. One can say thatx determines the space of smooth sections in the ve
bundleL(TXG)* ^ j.

Let D j denote the restriction ofD to the spaceV j (XG ,j) of j- forms and let

H j~D !5ker~D j !@ Im~D j 21!#21 ~6.1!

be the corresponding cohomology spaces. There exists a canonical Hermitian structure
bundlex which we denote bŷ•,•&V . The above-mentioned Hermitian structure determines
eachxPXG a linear map̂ •,•&x :jx^ jx°R, and the diagram for linear maps hold~see Ref. 46 for
details!

„Lp~TxXG!* ^ jx…^ „Lq~TxXG!* ^ jx…°
∧

Lp1q~TxXG!* ^ ~jx^ jx! °
^•,•&x

Lp1q~TxXG!* , ~6.2!

where the image ofvx^ tx under the first map has been denote by^vx∧tx&x .
We define the quadratic functionalSD on V j (XG ,j) by

SD~v!5E
XG

^v~x!∧~D jv!~x!&x . ~6.3!

One can construct from the metric onXG and Hermitian structure inj a Hermitian structure in
L(TxXG)* ^ j and the inner productŝ•,•& j in the spaceV j (XG ,j). Thus

SD~v!5^v,Tv& j , T5* D j , ~6.4!

where~* ! is the Hodge-star map. Recall that the mapT is formally self-adjoint with the property
T25D j* D j . Let (Jp ,Dp) be a complex, i.e., a sequence of vector spaceJp and linear operatorsDp

acting from the spaceJp to the spaceJp11 (J215Jd11) and satisfyingDp11Dp50 for all p
50,1,...,d. Let us define the adjoint operatorsDp* :Jp11°Jp by ^a,Dpb&p115^Dp* a,b&p . For the
functional ~6.3! there is a canonical topological elliptic resolventR(SD) ~a chain of linear maps!

0°
0

V0~XG ,j!°

D0

¯ °

Dd22

Vd21~XG ,j! °

Dd21

ker~SD!°
0

0. ~6.5!
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From Eq.~6.5! it follows that for R(SD) we haveHp
„R(SD)…5Hd2p(D) and ker(SD)[ker(T)

5ker(D j ).
Let us choose an inner product^•,•&Hp in each spaceHp

„R(SD)…. The partition function ofSD

associated to points in the moduli space of flat gauge fieldsv(x) on XG with the resolvent~6.5!
can be written in the form~see, for example, Ref. 46!

Z~b![Z„b;R~SD!,^•,•&H ,^•,•&…5I~b,z,h!t~XG ,x,^•,•&H!1/2, ~6.6!

whereb5 il, lPR, I(b,z,h) is known function ofb. The functionz appearing in the partition
function above can be expressed in terms of the dimensions of the cohomology spaces ofD,

z[z~0uuTu!52 (
p50

d

~21!p dimHp
„R~S!…5~21!n11(

q50

n

~21!q dimHq~D !. ~6.7!

The dependence ofh5h(0uTD) on the connection mapD can be expressed with the help
formulas for the index of the twisted signature operator for a certain vector bundle oveXG

^ @0,1#.47 It can be shown that46

h~suB~ l !!52h~suTD~ l !!, ~6.8!

where theB( l ) are elliptic self-adjoint maps onV(XG ,j) defined onj-forms by

Bj
~ l !5~2 i !l~ j !~* D ~ l !1~21! j 11D ~ l !* !. ~6.9!

In this formula l( j )5( j 11)( j 12)1n11 and for the Hodge star-map we have used t
* a∧b5^a,b&vol . From the Hodge theory

dim kerB~ l !5 (
q50

d

dimHq~D ~ l !!. ~6.10!

The metric dependence ofh enters throughLr(TXG) andh(0uTD(0)), whereLr(TXG) is ther 8th
term in Hirzebruch’sL-polynomial~see Ref. 47 for details! andD (0) is an arbitrary flat connection
map onV(XG ,j). For d53 the only contribution of theL-polynomial isL051 and the metric
dependence ofh is determined alone byh(0uTD(0)).

The factort(XG ,x,^•,•&H) is independent of the choice of metric g onX.46 In fact, this
quantity is associated with the analytic~Ray–Singer! torsionTan(XG) ~Ref. 20! of the represen-
tation x of p1(XG) constructed using the metric g. IfH0(D)Þ0 andHq(D)50 for q51,...,n,
d52n11 the dimension ofX, then the product

t~XG ,x,^•,•&H!5Tan~XG!•Vol~XG!2dim H0~D !, ~6.11!

is independent of the choice of metric g, i.e., the metric dependence of the Ray–Singer t
Tan(XG) factors out as Vol(XG)2dim H0(D).

A. Connected sum of three-manifolds

Recall that an embedding of the cohomologyH(XG ;j) into V(XG ;j) as the space of har
monic forms induces a normu•uRS on the determinant line detH(XG ;j). The Ray–Singer norm
i•iRS on detH(XG ;j) is defined by20

i•iRS5
def

u•u )
j 50

dim X FexpS 2
d

ds
z~suL~ j !!U

s50
D G ~21! j j /2

, ~6.12!

where the zeta functionz(suL( j )) of the Laplacian acting on the space ofj-forms orthogonal to the
harmonic forms has been used. For a closed connected orientable smooth manifold of odd
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sion and for any Euler structurehPEul(X) the Ray–Singer norm of its cohomological torsio
Tan(XG ,h)PdetH(XG ;j) is equal to the positive square root of the absolute value of the m
dromy of j along the characteristic classc(h)PH1(XG):48 iTan(XG)iRS5udetj c(h)u1/2. In the
special case where the flat bundlej is acyclic @Hq(XG ;j)50 for all q# we have

@Tan~XG ,h!#25udetjc~h!u )
j 50

dim X FexpS 2
d

ds
z~suL~ j !!U

s50
D G ~21! j 11 j

. ~6.13!

If j is unimodular, thenudetj c(h)u51 and the torsionTan(XG) does not depend on the choice ofh.
For odd-dimensional manifold the Ray–Singer norm is a topological invariant: it does not de
on the choice of metric onX andj, used in the construction. But for even-dimensionalX this is not
the case.49

Suppose the flat bundlej is acyclic. The analytic torsionTan(G\H3) can be expressed in term
of the Selberg zeta functionsZj (s,x j ). Indeed the Ruell zeta function in three dimensions as
ciated with the closed oriented hyperbolic manifoldXG5G\H3 has the form

Rx~s!5)
j 50

2

Zj~ j 1s,x j !
~21! j

5
Z0~s,x0!Z2~21s,x2!

Z1~11s,x1!
. ~6.14!

The functionRx(s) extends meromorphically to the entire complex planeC.50 For the Ray–Singer
torsion one gets51

@Tan~G\H3!#25Rx~0!5
@Z0~2,x0!#2

Z1~1,x1!
expS 2

Vol~F!

3p D , ~6.15!

where Vol~F! is a volume of the fundamental domainF of G\H3. In the presence of nonvanishin
Betti numbersbj5bj (XG) we have51,52

@Tan~G\H3!#25
~b12b0!! @Z0

b0~2,x0!#2

@b0! #2Z1
~b12b0!

~1,x1!
expS 2

Vol~F!

3p D . ~6.16!

In Chern–Simons theory the partition function at levelk (l52pk) depends on a framing
~i.e., on a trivialization of the normal bundle to the link! of twice the tangent bundle as a Spin~6!
bundle, henceforth referred to as two-framing. In particular, for the SU~2! theory in the large
k-limit the partition function for a connected sumX5XG,1#XG,2#¯#XG,N can be written as
follows:53

Z~X!5
^ l 51

N Z~XG,l !

@Z~S3!#N21 . ~6.17!

Equation~6.17! holds for any given two-framings amongXG,p and XG,q , p,q<N, the induced
two-framing onXG,p#XG,q , and a canonical two-framing onS3. Since the Ray–Singer torsion o
S3 is to be equal to one,Z(S3)5&pk23/2, the partition function associated with the semiclassi
approximation (k˜`) takes the form

Zsc~X!5S k3

2p2D ~N21!/2

^

l 51

N

Zsc~XG,l !5&pk23/2
^

l 51

N

uRx~ l !~0!u1/2, ~6.18!

while in the presence of nonvanishing Betti numbersbjl 5bj (XG,l) one gets

Zsc~X!5&pk23/2
^

l 51

N F ~b1l2b0l !! ~Z0
~b0l !~2,x0!!2

~b0l ! !2Z1
~b1l2b0l !~1,x1!

G 1/4

expF2
1

12p
%

l 51

N

Vol~Fl !G . ~6.19!
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In the case of nontrivial characters,b0(XG,l)50. If b150, then Eq.~6.15! holds.
For the trivial character one hasb051 ~for any closed manifold! and b150 for an infinite

number ofXG5G\H3. The functionR(s) has a zero ats50 of order 4.27 However, there is a clas
of compact sufficiently large hyperbolic manifolds which admit arbitrarily large values ofb1(XG).
Sufficiently large manifoldsXG contain a surfaceSwhose fundamental groupp1(S) is infinite and
such thatp1(S),p1(XG).

It seems that the most important problem in three-topology is the classification proble
general, hyperbolic manifolds have not been completely classified and therefore a syst
computation is not yet possible. However, this is not the case for certain sufficiently large
folds, the Haken manifolds.54 There exists an algorithm for the enumeration of all Haken ma
folds and there exists an algorithm for recognizing homeomorphy of the Haken manifolds.55 Both
algorithms depend on normal surface theory in the manifold, developed primarily by H
These manifolds give an essential contribution to the partition function~6.19!.

VII. CONCLUDING REMARKS

We have obtained an explicit formula for the multiplicative anomaly~Theorem 3.5!. The
anomaly is equal to zero ford52 and for the odd-dimensional cases. We have preferred to l
discussion here on various particular cases in detail and emphasize the general picture. It s
us that the explicit results for the anomaly~3.20! and~3.22! are not only interesting as mathema
cal results, but are very important in several physical examples where the determinant of a p
of differential operators is not equal to the product of the corresponding functional determ
~see, for example, Ref. 56!. Because a large amount of recent activity has involved the calcula
of the conformal anomaly of dilaton coupled matter, it would also be of great interest to gene
our results to the dilaton-dependent trace anomaly.

We have also considered product structures on closed real hyperbolic manifolds. In fa
explicit form of the zeta function on product spaces~Theorem 5.1! is derived. As an example th
zeta function associated with the Kro¨necker sum of Laplacians on twisted forms is calculated
the two-dimensional case.

Finally, the explicit formulas for analytic torsionTan(XG) ~a topological invariant! on mani-
folds of the formXG5G\Hd and on a connected sum of such manifolds are derived. Thus
results enable one to calculate the Chern–Simons partition function appearing in the semic
approximation for the Witten invariant. We have also discussed briefly the fact that for H
manifolds a larger influence, due to their Betti numbers, is exerted on the form of the pa
function. We hope that proposed discussion of this invariant will be interesting in view of fu
applications to concrete problems in quantum field theory.
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Matrix representation of octonions and generalizations
Jamil Daboula) and Robert Delbourgob)

School of Mathematics and Physics, University of Tasmania, Hobart, Australia
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We define a special matrix multiplication among a special subset of 2N32N
matrices, and study the resulting~nonassociative! algebras and their subalgebras.
We derive the conditions under which these algebras become alternative nonasso-
ciative, and when they become associative. In particular, these algebras yield spe-
cial matrix representations of octonions and complex numbers; they naturally lead
to the Cayley–Dickson doubling process. Our matrix representation of octonions
also yields elegant insights into Dirac’s equation for a free particle. A few other
results and remarks arise as byproducts. ©1999 American Institute of Physics.
@S0022-2488~99!03108-4#

I. INTRODUCTION

Complex numbers and functions have played a pivotal role in physics for three centurie
the other hand, their generalization to other Hurwitz algebras does not seem to have fir
interest of physicists to the same extent, because there is still nocompellingapplication of them.
Thus, despite the fascination of quaternions and octonions for over a century, it is fair to sa
they still await universal acceptance. This is not to say that there have not been valiant attem
find appropriate uses for them. One can point to their possible impact on quantum mechan
Hilbert space,1 relativity and the conformal group,2 field theory and functional integrals,3 internal
symmetries in particle physics,4 color field theories,5 and formulations of wave equations.6

In all these cases, there is nothing that stands out and commands our attention; rath
attempts to describe relativistic physics in terms of quaternions and octonions look rathe
trived if not forced, especially for the case of octonions. In this paper we describe a generali
of octonions that allows for Lie algebras beyond the obvious SU~2! structure that is connecte
with quaternions. We do not presume that they will lead to new physics, but we do think the
at least provide a new avenue for investigation.

Since octonions are not associative, they cannot be represented by matrices with the
multiplication rules. In this paper, we give representations of octonions and other nonasso
algebras by special matrices, which are endowed with very special multiplication rules; thes
can be regarded as an adaptation and generalization of Zorn’s multiplication rule.7 These matrix
representations suggest generalizations of octonions to other nonassociative algebras, w
turn, lead one almost automatically to a construction of new algebras from old ones, with d
the number of elements; we have called these ‘‘double algebras.’’ Closer inspection revea
our procedure can be made to correspond to the Cayley–Dickson construction method,8 except
that in our case the procedure seems rather natural, once one accepts the multiplicatio
whereas the Cayley–Dickson rule looksad hocat first sight.

II. DEFINITIONS, NOTATIONS, AND A REVIEW OF THE OCTONION ALGEBRA O
The Cayley or the octonion algebraO is an eight-dimensional nonassociative algebra, wh

is defined in terms of the basis elementsem (m50,1,2,...,7) and their multiplication table.e0

a!Permanent address: Department of Physics, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel; e
mail: daboul@bgumail.bgu.ac.il

b!Electronic mail: Bob.Delbourgo@utas.edu.au
41340022-2488/99/40(8)/4134/17/$15.00 © 1999 American Institute of Physics
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stands for the unit element. We can efficiently summarize the table by introducing the follo
notation @in general, we shall use Greek indices~m,n,...! to include the 0 and latin indice
( i , j ,k,...) when we exclude the 0#:

êk[e41k , for k51,2,3. ~1!

The multiplication rules among the basis elements of octonionsem can be expressed in the form

2e4ei5eie45êi , e4êi52êie45ei , e4e452e0 , ~2!

eiej52d i j e01e i jkek , ~3!

êi êj52d i j e02e i jkek ~ i , j ,k51,2,3!, ~4!

2êjei5ei êj52d i j e42e i jk êk . ~5!

We can formally summarize the rules above by

emen5gmne01 (
k51

7

gmn
k ek , gmnªdiag~1,21,...,21!, g i j

k 52g j i
k , ~6!

where m,n50,1,...,7, andi , j ,k51,...,7. The multiplication properties are sometimes displa
graphically by a circle surrounded by a triangle, but we shall not bother to exhibit that.

The multiplication law~3! shows that the first four elements form a closedassociativesub-
algebra ofO, which is known as thequaternion algebra,

Q[^e0 ,e1 ,e2 ,e3&R , ~7!

while the other rules~2!, ~4!, and~5! show thatO can be graded as follows:

O5Q% Q̂, where Q̂ªe4Q. ~8!

O is a nonassociative algebra. Now a measure of the nonassociativity in any algebraA is provided
by theassociator, which is defined for any three elements, as follows:

~x,y,z!ª~xy!z2x~yz!, for x,y,zPA. ~9!

In particular, the associators for the octonion basis are

~ei ,ej ,ek!52e i jkl el , ~10!

wheree i jkl are totally antisymmetric9 and equal to unity for the following seven combinations5

1247, 1265, 2345, 2376, 3146, 3157, and 4576. ~11!

The quaternionic subalgebraQ. It is very well known that the quaternions form an associat
subalgebraQ, which can be represented by the Pauli matrices:

e0˜s051, and ej˜2 is j ~ j 51,2,3!, ~12!

where, as usual,

s05S 1 0

0 1D , s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~13!

It is trivial to check that the above map is an isomorphism:
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eiej⇔2s is j52~d i j 1 i e i jksk!⇔2d i j 1e i jkek . ~14!

III. NONASSOCIATIVE MULTIPLICATION

In contrast toQ, the Cayley algebraO cannot be represented by matrices with the us
multiplication rules, becauseO is not associative. However, as we demonstrate below,
possible to represent octonions by matrices, provided one defines a special multiplicatio
among them.

A. Zorn’s representation of octonions

Zorn7 gave a representation of the octonions8 in terms of 232 matricesM, whose diagonal
elements are scalars and whose off-diagonal elements are three-dimensional vectors:

O{x˜S a a

b b D , ~15!

and invoked a peculiar multiplication rule for these matrices.7 With a slight modification of the
rule adopted by Humphreys,10 p. 105, our rule is

S a a

b b D * S a8 a8

b8 b8
D 5S aa81a–b8 aa81b8a2b3b8

a8b1bb81a3a8 bb81b–a8
D . ~16!

We propose to adapt this multiplication law to octonions and also replace the necessary
dimensional basis vectorsv̂k by Pauli matricessk (k51,2,3), so that the octonions can b
represented by the following ordinary 434 matrices:

e0⇔V0[S 1 0

0 1D , ek⇔Vk[S 0 2sk

sk 0 D ~k51,2,3!,

~17!

e4⇔V4[S i 0

0 21D , êk⇔V̂k[S 0 isk

isk 0D .

@Note the equality ofVk (k51,2,3) to the Dirac matricesgk , andV4 to ig0 in the Pauli–Dirac
representation.# It can be shown by explicit multiplication, that the above map~17! becomes an
isomorphism, provided we define the modified product rule, which we denote byk:

S a A

B b DkS a8 A8

B8 b8
D 5S aa81 1

2 Tr~AB8! aA81b8A1
i

2
@B,B8#

a8B1bB82
i

2
@A,A8# bb81 1

2 Tr~BA8!
D , ~18!

where @A,B#[AB2BA is the commutator ofA and B. Of course,A5a–s and B5b–s are
traceless: TrA5Tr B50.

In particular, the above multiplication rule yields the following relations:

S 0 hs i

js i 0 DkS 0 h8s j

j8s j 0 D 5S hj8d i j jj8
i

2
@s i ,s j #

2hh8
i

2
@s i ,s j # jh8d i j

D
5d i j S hj8 0

0 jh8
D 1e i jk S 0 2jj8sk

hh8sk 0 D , ~19!
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which are helpful for checking the multiplication rules~2!–~5!, by substituting the appropriat
coefficients,h andj.

B. The standard conjugate of octonions

Usually, octonions are studied over the field of real numbersR,

x5 (
m50

7

xmem[x01x, for xmPR, ~20!

although later we will find it interesting to deal with their complex extension. The stan
conjugate x̄of an octonion overR is defined by

x̄ªx0e02(
i 51

7

xiei[x02x. ~21!

The reason for this definition is that the product ofx̄ with x yields a positive definite norm:

n~x!5xx̄5 x̄x5 (
m50

7

xm
2 >0. ~22!

Moreover, this norm obeys the decomposition law,

n~xy!5n~x!n~y!. ~23!

However, with complex octonions@real x˜complexz in ~20!#, we shall still formally define the
conjugate z̄of z, to be

z̄ªz0e02(
i 51

7

ziei , for zmPC. ~24!

It follows that the productzz̄ is again proportional to unity:

n~z!5zz̄5 z̄z5 (
m50

7

zm
2 PC, ~25!

but n(z) ceases to be real, in general; thereforen(z) should simply be regarded as a sca
function, but not a norm.

It is interesting to calculaten(z) by using the matrix representation~26!: First, we note that if
z is mapped into the matrixZ, then z̄ will be mapped intoZ̄, as follows:

z˜Z[ (
m50

7

zmVm5S a A

B b D , z̄˜Z̄[S b 2A

2B a D , ~26!

whereA5a–s andB5b–s, with

a5z01 iz4 , b5z02 iz4 , ak52zk1 iz41k , bk5zk1 iz41k ~k51,2,3!. ~27!

Second,

zz̄↔ZkZ̄5S a A

B b DkS b 2A

2B a D 5S ab2
1

2
Tr~AB! D S 1 0

0 1D 5n~z!I 434 . ~28!

Therefore, we reproduce the expression~25!, as expected:
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n~z!ª
1

4
Tr~ZkZ̄!5ab2

1

2
Tr~AB!5ab2a–b5 (

m50

7

zm
2 . ~29!

C. Hermitian conjugate of octonions

Sinces i are Hermitian matrices,all our representation matricesVk are anti-Hermitian, with
the exception of the identityV0 ~which is Hermitian, of course!:

Vk
†52Vk , k51,2,...,7. ~30!

This fact enables us to prove that the following ‘‘hermiticity’’ property also holds for thek
products:

~VmkVn!†5Vn
†kVm

† , for m,n50,1,...,7. ~31!

First, we note that this equality holds trivially for (V0kVm)†5Vm
† 5Vm

† kV0
† . Second, we

prove ~31! for j ,kÞ0 by using~6! and noting thatg i j
k are real and antisymmetric inj, k, so that

~V jkVk!
†52d jkV01(

i 51

7

g jk
i V i

†52dk jV01(
i 51

7

gk j
i V i5VkkV j5Vk

†kV j
† , j ,k51,...,7.

~32!

The conjugation property~31! of Vm suggests the following formal definition for theHermitian
conjugateof the octonionic basis:

e0
†5e0 , ej

†52ej ~ j 51,2,...,7!, ~33!

whereupon the ‘‘number operators’’ become equal to the identity element:

Nmªem
† em5emem

† 5e051 ~no summation! ~m50,1,...,7!. ~34!

We can now define theHermitian conjugateof the complex octonionsz in a natural way, by

z†
ª (

m50

7

z̄mem
† 5 z̄0e02(

i 51

7

z̄iei[ z̄02 z̄, where ziPC. ~35!

We then calculate

zz†[~z01z!~ z̄02 z̄!5uz0u21~ z̄0z2z0z̄!2zz̄

5 (
m50

7

uzmu22 (
k51

7

~z0z̄k2zkz̄0!ek1 (
1< i , j

7

~zi z̄j2zj z̄i !eiej

5N~z!12i(
k5 i

7

TS z̄0zk1 (
1< i , j <7

zi z̄jg i j
k Dek , ~36!

where

N~z!5 (
m50

7

uzmu2. ~37!
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The definitionN(z) is perfectly reasonable for a norm, although the decomposition law~23! is not
satisfied. We see that the ‘‘space components’’ (zz†) i of zz† are pure imaginary. To understan
why this is expected on general grounds, it is useful to introduce the concept of aHermitian
octonion: y†5y, which signifies that

ȳ05y0 , ȳi52yi ~ i 51,...,7!, ~38!

so thaty0 must be real and all the space components must be pure imaginary.
Sincezz† is Hermitian by~31!, we see that its space components can only be pure imagin

If we wish to get rid of these components and retain only the zero component, we must a
standard conjugate. Thus, we may define theHermitian normby

N~z!5~zz†1zz†!/2. ~39!

Hence, ifz is mapped intoZ, thenz† will be mapped intoZ†, which is obtained by the standar
Hermitian conjugation of the matrixZ.

One of the main insights gained by using the matrix representation is when we calcula
Hermitian norm. If

z˜Z5zmVm5S a A

B b D , then z†
˜Z†5S ā B†

A† b̄
D . ~40!

The product

ZkZ†5S a A

B b DkS ā B†

A† b̄
D 5S aā1 1

2 Tr~AA†! ab†1b̄A1
i

2
@B,A†#

āb1bA†2
i

2
@A,B†# bb̄1 1

2 Tr~BB†!
D . ~41!

The zero component ofzz† is proportional to the trace ofZkZ†, so that the newHermitian norm
can be expressed in terms of the representation matricesZ as follows:

N~z!5 1
4 Tr~ZkZ†!5 1

2~ uau21ubu2!1 1
4„Tr~AA†!1Tr~BB†!…

5
1

2S uau21ubu21 (
k51

3

~ uaku21ubku2!D 5 (
m50

7

uzmu2,

~42!

in accordance with~37!. For realzm we getb˜ā, B˜2A† in ~26!. Therefore,AB˜2AA†

52a–sā–s52a–ā. Thus, the formally defined scalar reduces to a conventional norm:

N~z!5ab2A•B5uau21a–ā˜uau21 (
k51

3

uaku25 (
m50

7

xm
2 [n~z!>0. ~43!

D. Nonassociative algebras from Lie algebras

The main advantage of our matrix representation over the Zorn vector representation
our multiplication rule can be generalized toany number n of dimensions, whereas the Zorn rule
is restricted, since it is defined in terms of vector producta3b, which only applies to 3-vectors

In particular, givenany representation of ann-dimensional Lie algebrag in terms of Hermit-
ian N3N matriceslk(k51,2,...,n), we can then define 2n12 different 2N-dimensional matrices
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e0⇔V0[S 1 0

0 1D , ek⇔Vk[S 0 2lk

lk 0 D ~k51,...,n!,

ê0⇔Vn12[S i 0

0 2 i D , êk⇔V̂k[S 0 ilk

ilk 0D . ~44!

If we multiply these matrices using thek rule, we end up with a closed algebra, which we sh
call the double algebra gD, with the following product rules for their basis elements (V̂0

[Vn12):

2V̂0Vk5VkV̂05V̂k , V̂0V̂k52V̂kV̂05Vk , V̂0V̂052V0 ,

V iV j52d i j V01 f i jkVk , V̂ iV̂ j52d i j V02 f i jkVk , ~45!

2V̂ jV i5V iV̂ j52d i j V̂02 f i j V̂k .

Above, thef i jk are the structure constants of the Lie algebrag, defined as usual by

@Li ,L j #5 i f i jkLk . ~46!

The matrices~44! can be regarded as thek- matrix representation of the following~nonassocia-
tive! abstract algebra:

2ê0ek5ekê05êk , ê0êk52êkê05ek , ê0ê052e0 , where ê0[en12 , ~47!

eiej52d i j e01 f i jkek , ~48!

êi êj52d i j e02 f i jkek , ~49!

2êjei5eiêj52d i j ê02 f i jk êk . ~50!

These rules~47!–~50! can all be summarized by (m,n50,1,2,...,2n12),

emen5gmne01 (
k51

2n12

gmn
k ek , gmnªdiag~1,21,...,21!, g i j

k 52g j i
k . ~51!

We note from~44! that theem , m50,1,...,n correspond to asubalgebrag1 of gD. The rules
~47! show that the double algebragD is obtained fromg1 simply by adding a new element, calle
ê0 , and defining the otherêk . This Lie algebra example then automatically leads us to a m
general doubling procedure, which can be applied toany algebraand not just to those constructe
from Lie algebras. In fact, this doubling idea is exactly the procedure that is known a
Cayley–Dickson process, as we shall see below.

IV. DEFORMED MULTIPLICATION AND THE Ak ALGEBRA

Begin with the following subset of 2N32N-matrices:

AªH S a A

B b D UA,BPMN3NJ , ~52!

where theN3N matricesa and b in the first and fourth quadrants are proportional to u
matrices.
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Among these matrices we may define a more general multiplication rule than that giv
~18!.11 We shall still denote it byk since it only introduces two complexdeformation parameters
l0 andl ~their values will be restricted as we impose further conditions on the subalgebra!:

XkX8[S a A

B b DkS a8 A8

B8 b8
DªS aa81l0A•B8 aA81b8A2l@B,B8#

a8B1bB81l@A,A8# bb81l0B•A8
D . ~53!

As before,@A,B#[AB2BA denotes the commutator, butA•B may now be chosen to be an
suitablebilinear map into an appropriate fieldF. For example, one might defineA•B by A•B
[Tr(AB)/N, or if A andB belong to a Lie algebra, then one could takeA•B to be the adjoint
trace:A•BªTr(adA adB), where ad denotes the adjoint representation.12

Whenl50 andl051 the multiplication rule~53! looks almostlike the usual one for matri-
ces. However, it still yields nonassociativity, since we are replacing matrix products, such aAB,
by A•B times the unit matrix. But in any case, it is evident that with thek product the setA
becomes a closed algebra, which we denote byAk.13

A. Complex numbers from real

Before continuing, let us consider the simplest example of the above matrices, name
caseN51. In this circumstance, the matricesA andB become simplecommutingnumbers,a and
b. If we specialize further, and chooseb5a andb52a to be real, we end up with two-paramet
matrices. Their products are

XkX8[S a a

2a a DkS a8 a8

2a8 a8
DªS aa82l0aa8 aa81a8a

a8a1aa8 aa82l0aa8
D , ~54!

and this is nothing but the multiplication rule of two complex numbersz andz8, provided that we
setl051 and identifya anda with the real and imaginary parts ofz. Thus, asubalgebraof Ak

for N5l051 becomes isomorphic to the complex numbersC:

Ak{X5S a a

2a a D⇔z[a1 iaPC. ~55!

B. Simple and Hermitian conjugates

The attractive feature of the generalization~53! is that most results and definitions needed
octonions apply almost automatically toAk. For example, for every elementXPAk we can
define a conjugate elementX̄, as follows:

X̄5S a A

B b DªS b 2A

2B a D . ~56!

By substitutingA8˜2A, B8˜2B, a8˜b, andb8˜a in ~53!, we get immediately

XkX̄5S a A

B b DkS b 2A

2B a D 5~ab2l0A•B!S 1 0

0 1D[n~X!I 2N32N , ~57!

wheren(X)PC. In the meantime, we should again look uponn(X) simply as a scalar function
defined by the mapAk

˜C in ~58!. Later, we shall study the conditions onAk under whichn(X)
becomes a norm.

V. SUBALGEBRAS OF Ak

The algebraAk has several interesting subalgebras.
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~i! An obvious subalgebra is the one obtained by choosing both matricesA and B to be
traceless:

A0
k
ªH S a A

B b D UTr A5Tr B50J . ~58!

~ii ! This subalgebra has, in turn, another subalgebraAA
k,A0

k , in which A and B become
antisymmetric matrices.

~iii ! A third subalgebra, which we denote byA1
k , is obtained by choosingb5a and B

52A:

A1
k
ªH S a A

2A a D J . ~59!

It is easily verified that products of such matrices stay in the same class:

XkX85S a A

2A a DkS a8 A8

2A8 a8
D

5S aa82l0A•A8 aA81a8A2l@A,A8#

2aA82a8A1l@A,A8# aa82l0A•A8
D PA1

k . ~60!

Moreover,A1
k has an interesting property.

Proposition 1: The subalgebraA1
k is flexible for all matrices A.

To put this result into perspective, we note that all Abelian or anticommutative algebra
flexible; thus, ifyx56xy, thenx(yx)56(yx)x5(xy)x, so that (x,y,x)50. Therefore, it is of
interest to show thatA1

k , which is neither Abelian nor anticommutative, is also flexible.
Proof: We shall prove the above assertion by explicit multiplication. However, to simplify

calculations we first note that the multiples of unity added to each element do not affe
associators:

~X1a1,Y1b1,Z1g1!5~X,Y,Z!, ~61!

where 1 is the identity matrix. This follows immediately from the linearity of associators:

~X1a1,Y,Z!5~X,Y,Z!1a~1,Y,Z!5~X,Y,Z!. ~62!

The property~61! is helpful for calculating associators of the subalgebraA1
k , since we can set the

a’s equal to zero, when calculating the associators.
We now calculate explicitly the associator (X1 ,X2 ,X3) for general matrices fromA1

k , but
using only those witha i50, i.e.,

Xi5S 0 Ai

2Ai 0 D PA1
k , for i 51,2,3. ~63!

We get

~X1 ,X2 ,X3![~X1X2!X32X1~X2X3!5S p P

2P pD 2S q Q

2Q q D 5S p2q P2Q

Q2P p2q D , ~64!

where

p5ll0~@A1 ,A2#•A3!, ~65!
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P52l0~A1•A2!A31l2
†@A1 ,A2#,A3‡ ~66!

and

q5ll0~A1•@A2 ,A3# !, ~67!

Q52l0~A2•A3!A11l2
†A1 ,@A2 ,A3#‡. ~68!

Therefore, the elements of the associator (X1 ,X2 ,X3) are

p2q5ll0~@A1 ,A2#•A32A1•@A2 ,A3# !50, ~69!

P2Q52l0„~A1•A2!A32~A2•A3!A1…1l2~†@A1 ,A2#,A3‡2†A1,@A2 ,A3#‡!

52l0„~A1•A2!A32~A2•A3!A1…1l2
†A2 ,@A3 ,A1#‡. ~70!

In other words,the associator~X,Y,X! vanishes identically, for anyl, l0 , A15A3 andA2 ,

~X,Y,X!50, for X,YPA1
k . ~71!

h

~iv! As a fourth subalgebra, letg be a given Lie algebra of dimensionn, and letVg be the
algebra spanned by the representation matrices ofg. Then, we can define a subalgebra ofAk via

gD
ªH S a A

B b D UA,BPVgJ . ~72!

Clearly the off-diagonal elements, such asaA81b8A1l@B,B8#, of the products,XkX8 belong
to Vg . Hence,gD are subalgebras ofA0 . Moreover, half ofgD, obtained by the intersection ofgD

with A1
k , will be a subalgebra ofgD:

g0
D
ªH S a A

2A a D UAPVgJ ,gD,A1
k . ~73!

The commutators of the elements ofg0
D constitute a Lie algebra, which is isomorphic to t

original algebrag.

VI. GRADING OF Ak

Proposition 2: The algebraAk can be graded, as follows:

Ak5A1
k

%A2
k5A1

k
% KA1

k5A1
k

% KkA1
k , ~74!

where the ‘‘grading matrix’’ is

K[S 1 0

0 21D . ~75!

Observe thatKkX5KX for any XPAk. Also, of course,

Ah
kkAh8

k
#Ahh8

k . ~76!

Proof: Every matrixXPAk can be decomposed, as follows:

X[S a A

B b D 5S a1 A1

2A1 a1
D 1S a2 A2

A2 2a2
D[X11X̂2 ~77!
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[X11KX2 , ~78!

where

a6[
1

2
~a6b!, A7[

1

2
~A6B!, K[S 1 0

0 -1D . ~79!

The first set of matrices~with b5a and B52A) constitutes the subalgebraA1
k , which we

defined earlier in~59!. The second set of matrices~with b52a andB5A) will be calledA2
k .

SinceA1
k is a subalgebra ofAk, clearlyA1

kA1
k5A1

k . The rest of the inclusion relations~76!,
namely,

X̂kX̂8PA1
k , XkX̂8PA2

k , X̂kX8PA2
k , ~80!

follow immediately from the equalities~85!–~87!, which we shall prove below. h

Proposition 3: The following equalities hold for any X,X8PA1
k :

KXK5X̄, ~81!

~KX!k~KX8!5X8kX̄, ~82!

Xk~KX8!5K~X̄kX8!, ~83!

~KX!kX85K~X8kX!. ~84!

Proof: The proof follows simply by explicit matrix multiplication, using~60!:

KXkKX85S a A

A 2a DkS a8 A8

A8 2a8
D 5S aa81l0A•A8 aA82a8A2l@A,A8#

2aA81a8A1l@A,A8# aa81l0A•A8
D

5S a8 A8

2A8 a8
DkS a 2A

A a D[X8kX̄PA1
k , ~85!

Xk~KX8!5S a A

2A a DkS a8 A8

A8 2a8
D 5S aa81l0A•A8 aA82a8A1l@A,A8#

aA82a8A1l@A,A8# 2aa82l0A•A8
D

5S 1 0

0 21D H S a 2A

A a DkS a8 A8

2A8 a8
D J 5K~X̄kX8![X̄kX8̂PA2

k , ~86!

KXkX85S a A

A 2a DkS a8 A8

2A8 a8
D 5S aa82l0A•A8 aA82a8A1l@A,A8#

aA82a8A1l@A,A8# 2aa82l0A•A8
D

5S 1 0

0 21D H S a8 A8

2A8 a8
DkS a A

2A a D J 5K~X8kX!PA2
k . ~87!
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A. Matrix representation of the Cayley–Dickson process

If we multiply the grading matrixK by a real or complex scalarv, and letm[v2, we get

vopªvK, vopvopªv215m1. ~88!

Therefore, using the relations~81!–~84!, we get the multiplication rule

~X11vopX2!k~X31vopX4!5~X1kX31mX4kX2!1vop~X̄1kX41X3kX2!, ;XiPA1
k .
~89!

This is exactly the multiplication rule given by Cayley and Dickson, where one starts wit
abstract algebraB and defines an abstract operatorvop, and essentiallypostulatesthe following
multiplication rule:8

~b11vopb2!~b31vopb4!5~b1b31mb4b̄2!1vop~ b̄1b41b3b2!, biPB, ~90!

whereb̄iPB is the conjugate ofbi , andvop¹B, such thatvop
2 5m•1.

Observe that thek multiplication rule provides an explicit matrix representation of t
Cayley–Dickson process,8 provided that the original algebraB can be represented byA1

k .

B. Composition algebras from 2 32 matrices

One may wonder what happens if we allow the rudimentary 232 matrices to contain arbitrary
complex elements. Since

XkX8[S a a

b b DkS a8 a8

b8 b8
DªS aa81l0ab8 aa81b8a

a8b1bb8 bb81l0ba8
D , ~91!

whenX85X̄ this product yields a ‘‘norm,’’

X* X̄5n~X!S 1 0

0 1D , where n~x!5ab2l0ab. ~92!

It is easy to check, by explicit multiplication, that the following identity holds for anyl0PC:

n~x!n~x8!5~ab2l0ab!~a8b82l0a8b8!

5~aa81l0ab8!~bb81l0ba8!2l0~aa81b8a!~a8b1bb8!5n~xx8!, ~93!

which informs us that the standard norm~92! for N51 obeys the composition law.
Clearly, the norm~92! is degenerate for anyl0PC, if we allow X to be any 232 matrix.@For

example, simply choosingb5a5b51 and a5l0 will yield an xÞ0 with n(x)5ab2l0ab
50.] The question then arises, when is the normn(x) in ~92! nondegenerate? We can certain
guarantee thatn(x) is nondegenerate, if we restrictX to have the following special form:

X5S z w

2w̄ z̄D , and Rl0.0, ~94!

whence

n~x!5uzu21l0uwu2Þ0, for Rl0Þ0. ~95!

@Of course, there exist a few equivalent variations of the conditions~94!. For instance, we can
replace2w̄ by w̄, but demand thatRl0,0.]
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Anyhow, this means that we are dealing with a division algebra, which must therefore b
of the four possibilities. BecauseXPM232 , we may expand it in terms of Pauli matrices, getti

X5S z w

2w̄ z̄D 5z1S 1 0

0 1D 1 iw2S 0 1

1 0D 1 iw1S 0 2 i

i 0 D 1 iz2S 1 0

0 21D
[x0s02 ix–s↔x0e01 (

k51

3

xkek , where wi ,ziPR. ~96!

Sincee0˜s0 andej˜2 is j j 51,2,3 are known representations of the quaternions, we conc
that this is the quaternion algebra over thereal field R, as expected. Indeed, the matrix~96! is the
usual representation ofQ in terms of standard matrices. Later on we shall describe ano
representation by nonstandard matrices.

VII. CONDITIONS ON DEFORMATION PARAMETERS

Previously we showed thatA1
k is flexible. We now ask under what conditionsA1

k can
become alternative.

For this, we must have (X1 ,X1 ,X3)50. By settingX25X1 and noting Eq.~70!, we get the
condition

†A1 ,@A3 ,A1#‡5
l2

l0
5„~A1•A1!A32~A1•A3!A1…. ~97!

This condition can be satisfied ifl25l0/4 andAi5ai–s: Indeed, for suchAi , we get

†A2 ,@A3 ,A1#‡5†a2–s,2i @a33a1#–s‡524†a23@a33a1#‡–s

54„~a2–a3!a12~a2–a1!a3…–s

54„~A1•A2!A32~A2•A3!A1…, ~98!

where we used (A•B)5 1
2 Tr(AB). Hence, we can havel56 1

2Al0. For the special choicel0

521, we getl561/2.
This sign ambiguity is the origin of the nonuniqueness of thek product.14

VIII. SUMMARY

Our algebras provide concrete the matrix representation of a big class of nonasso
algebras. They may suggest new constructions in the future. One such possibility, which le
notions of triality, is described in Appendix A, but anyhow the formulation~18! and its deforma-
tions ~53! permit generalizations that have an obvious affinity to higher symmetry groups, r
than the simple case of SU~2!. We also believe that our treatment of hermiticity and norm for
complex case is reasonable; we illustrate their utility with reference to the Dirac equati
Appendix B.
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APPENDIX A: THE L PRODUCT

In this appendix we try another type of product, which we denote byL, where the commu-
tators@B,B8# in the k product are now replaced by the standard matrix productsBB8.
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Let us first consider the simplest case,N51, where the matricesA andB become scalars, so
that we shall first deal with 232 matrices:

X[S a a

b b D . ~A1!

We define the new matrix product, as follows:

XLX8[S a a

b b DLS a8 a8

b8 b8
DªS aa81l0ab aa81b8a1lbb8

a8b1bb81hlaa8 bb81l0ba8
D , ~A2!

whereh, l, l0 are arbitrary complex numbers. We now ask the question, whether for su
product, we can define for everyX a conjugateX̄, such thatXLX̄5n(X)•1, wheren(X) is some
quadratic form ofX, i.e., n(sX)5s2n(X).

Let us try the following ansatz:

X̄[S b1g 2a

2b a1d D . ~A3!

We want to determineg and d, and derive conditions ona, b, a,b, by demanding thatXLX̄
}1:

XLX̄5S a a

b b DLS b1g 2a

2b a1d D 5S a~b1g!2l0ab da2lb2

gb2hla2 b~a1d!2l0abD
5n~X!S 1 0

0 1D , where n~X!5a~b1g!2l0ab. ~A4!

This condition is obeyed, if

da2lb250, gb2hla250, and ag5bd. ~A5!

We cannot satisfy these conditions for generala andb. ~For example, ifa50 andbÞ0, thend
would be infinite.! Thus, forhÞ0 we must assume that either botha andb are zero or both are
unequal to zero. But forh50 we must demandb50. With these restrictions, we get

d~X!5l
b2

a
, g~X!5hl

a2

b
, and

b

a
5

g

d
5h

a3

b3 . ~A6!

An additional condition can be obtained by demanding that the adjoint operation is an invol
so thatX% 5X, whence
                                                                                                                



-
the

ove

4148 J. Math. Phys., Vol. 40, No. 8, August 1999 J. Daboul and R. Delbourgo

                    
X% 5S a1d~X!1g~X̄! a

b b1g~X!1d~X̄!
D

5S a1lS b2

a
2h

a2

b D a

b b1lS h
a2

b
1

b2

2aD D
5S a a

b b D 5X. ~A7!

Thus, we get the new condition

b35ha3, or b5ja, where j5h1/3. ~A8!

Note that for eachh we have three cubic rootsj. Substituting~A8! into the third equality in~A6!,
we get

a5b and g5d. ~A9!

Hence,a can be any complex number as long asb5ja. Finally, by noting all the above condi
tions, we get for everyhPC three sets of 232 matrices, which are closed algebras under
productL:

X~j!5H S a a

ja a D J , j5h1/3PC. ~A10!

For these matrices, the adjoint and the corresponding quadratic form are

X̄[S a1j2la 2a

2ja a1j2laD , ~A11!

and

n~X!5a~b1g!2l0ab5a21hla
a2

b
2l0ab5a21j2laa2jl0a2. ~A12!

Note thatn(X) is quadratic inX, i.e., N(sX)5s2N(X), sPC.
For the special caseb52a, or j521, we obtain a known quadratic form,11

n~X!5a21laa1l0a2. ~A13!

Proceeding to larger matrices, let

XLX8[S a A

B b DLS a8 A8

B8 b8
DªS aa81l0A•B8 aA81b8A1lBB8

a8B1bB81hlAA8 bb81l0B•A8
D , hPC.

~A14!

One can readily check that such matrices yield closed algebras with respect to the abL
product. By restrictingB to bejA, we get the following subalgebra:

X~j!5H S a A

jA a D J , j5h1/3PC. ~A15!
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We can check, using~A14!, that products of two such matrices yield a matrix of the same ty

XLX8[S a A

jA a DLS a8 A8

jA8 a8
D 5S aa81jl0A•A8 aA81a8A1j2lAA8

j~a8A1aA8!1hlAA8 aa81jl0A•A8
D .

~A16!

However, if we replace thescalar a in Eqs. ~A11! and ~A12! by a matrix A, we do not get an
adjoint nor a bilinear form, since the appropriate items do not stay scalar, as they should.

Finally, we note that if we replace the simple productsAA8 in ~A16! by anticommutators
$A,A8%/2, and if we make the scalar productsA•A8 symmetric, i.e.,

S a A

jA a DLSS a8 A8

jA8 a8
DªS aa81jl0A•A8 aA81a8A1j2l$A,A8%/2

j~a8A1aA8!1hl$A,A8%/2 aa81jl0A•A8
D ,

then the product becomes Abelian. Therefore the new algebra will automatically becomeflexible.
One can similarly symmetrize the more general product~112! by defining,XLSX8ª(XLX8
1X8LX)/2, and also get a flexible algebra.

APPENDIX B: APPLICATION TO THE DIRAC EQUATION

In momentum space, the free Dirac equation reads as

PC[~p02p–a2mb!C5S p02m 2p–s

2p–s p01mDC50, ~B1!

and it can be rewritten in terms of octonions as follows:

pc[~p01 ip–ê1 ime4!c50, ~B2!

where we have used the correspondence

ak5S 0 sk

sk 0 D 52 i V̂k⇔2 i êk , b5S 1 0

0 21D 52 iV4⇔2 ie4 . ~B3!

Notice that we cannot write the Dirac equation in terms of quaternions alone, since we requi
different basis elements: (e0 ,e4 ,êk ; k51,2,3) or (e0 ,e4 ,ek ; k51,2,3).

The octonionp is nicely Hermitian (p5p†) and has zero norm:

pp̄5n~p!5p0
22p22m250. ~B4!

Therefore the solutionc of theDirac octonionic equation~B2! is elegantly given by the standar
conjugate ofp, namely,

c5 p̄[p02 ip–ê2 ime4⇔C5 P̄5S p01m p–s

p–s p02mD . ~B5!

The first and second columns ofC are proportional to the positive energy solutionsu1(p) and
u2(p), while the third and fourth columns yield the negative energy solutionsv1(p) andv2(p), if
we replacem by 2m, because

~p02p–a2mb!ui~p!50, ~p02p–a1mb!v i~p!50 ~ i 51,2!. ~B6!

Therefore thephysicalandnormalizablesolutions can be expressed as
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Cp[~u1uu2uv1uv2!5
1

A2m~p01m!
S p01m p–s

p–s p01mD⇔ p01m2 ip–ê

A2m~p01m!
, ~B7!

ensuring that

ūi~p!uj~p![ui†~p!buj~p!5d i j and v̄ i~p!v j~p![v i†~p!bv j~p!52d i j ~ i , j 51,2!.
~B8!
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On Lie algebras all nilpotent subalgebras of which are
Abelian
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Ernst-Moritz-Arndt-Universita¨t, Institut für Mathematik und Informatik,
Fr.-L.-Jahn-Strasse 15a, D-17489 Greifswald, Germany
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By Kirillov’s theorem, every non-Abelian nilpotent Lie algebra contains the three-
dimensional Heisenberg algebraH(3) as a subalgebra.@R. Schimming, Arch.
Math. 24, 65–74 ~1988!#. Here we are interested in a sufficient condition for a
non-nilpotent Lie algebra to contain a subalgebra isomorphic toH(3). Explicitly,
we show: Every indecomposable non-nilpotent Lie algebraL of dimension dimL
>3 with a nonvanishing centerZ(L)Þ$0% contains a non-Abelian nilpotent sub-
algebra and hence a copy ofH(3). © 1999 American Institute of Physics.
@S0022-2488~98!02410-4#

I. MOTIVATION BY THE YANG–MILLS EQUATIONS

The given problem stems from the study of constant Yang–Mills potentials. These
examples of Huygens’s-type differential equations with constant coefficients and examp
harmonic differential operators.1

The Yang–Mills equations on a Riemannian manifold (E,g) for a potentialA5Aadxa with
values in some Lie algebraL are given by

DaFab[]aFab1@Aa ,Fab#50,

where @•,•# denotes the commutator inL, Fab5]aAb2]bAa1@Aa ,Ab# are the field strength
components,]a5]/]xa the partial derivatives with respect to local coordinatesxa of xPE, g
5gabdxadxb denotes a Riemannian metric, andDa is the corresponding covariant derivative.
the Yang–Mills potentialA has constant componentsAa then the Yang–Mills equationsDaFab

50 collapse to the algebraic equations

@Aa ,Fab#5@Aa ,@Aa,Ab##50.

A general solution of the Yang–Mills equations is not available. It depends on the structu
the Lie algebraL and the signature of the metricg whether or not there exists a nontrivial solutio
of these equations~i.e., potentialsA with Fab[@Aa ,Ab#Þ0 andDaFab50). One should con-
sider the structure of Lie algebras in detail. For special types of Lie algebras, like Ab
nilpotent, compact, and for all Lie algebras of dimL<5 we can decide whether or not there exis
a nontrivial solution for the constant Yang–Mills equations.2–4 The following holds true:

~1! If a subalgebraM of a Lie algebraL admits a nontrivial solution of the Yang–Mills equation
then so doesL.

~2! Every Yang–Mills potentialA with values in a two-step nilpotent Lie algebraL is a constant
Yang–Mills potential.

Example:The Heisenberg algebraH5H(2m11) has as the only nonvanishing structu
relations@Xj ,Yj #5Z for j 51,...,m with respect to a base$X1 ,...,Xm ,Y1 ,...,Ym ,Z%. Hence it is
two-step nilpotent, i.e.,

@H,@H,H##50,
41510022-2488/99/40(8)/4151/6/$15.00 © 1999 American Institute of Physics
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and so every element ofH(2m11) is a constant Yang–Mills potential.
Corollary: Every non-Abelian nilpotent Lie algebraL admits a nontrivial solution of the

Yang–Mills equations.
It would be desirable to know if a given non-nilpotent Lie algebras contains a~non-Abelian!

nilpotent subalgebra, because then it is easy to find out whether or not there exists a no
solution of the constant Yang–Mills equations. The work on low-dimensional Lie algebras5,6 leads
to the conjecture that an indecomposable Lie algebra with a nonvanishing center cont
non-Abelian nilpotent subalgebra. This conjecture will be the subject of the present paper.

II. PRELIMINARIES ON THE STRUCTURE OF LIE ALGEBRAS

In this section we give a brief survey of the most important definitions and theorems whic
need in the following. We refer the reader to the literature for the proofs of the lemmas
theorems.

We denote the direct sum of vector spaces byu, the direct sum of Lie algebras by%, and the
semidirect sum of Lie algebras by*.

Definition: A Lie algebraL is calleddecomposableif we can decompose it into the direct su
of two ideals. OtherwiseL is calledindecomposable.

Now we define solvable and nilpotent Lie algebras.
Definition: Let L be a Lie algebra. LetL (0)

ªL and L (n11)
ª@L (n),L (n)# with nPN. Then

(L (n))nPN is called thederived seriesof L. The Lie algebraL is calledsolvableif there exists a
kPN such thatL (k)5$0%. Let L0

ªL andLn11
ª@L,Ln# with nPN. Then (Ln)nPN is called the

lower central seriesof L. The Lie algebraL is callednilpotent if there exists akPN such that
Lk5$0%.

Remark:There holdsL (1)5L15:L8. L8 is called thecommutator algebra of L.
Lemma 2:Nilpotent and solvable Lie algebras satisfy the following:

~i! Let LÞ$0% be a nilpotent Lie algebra. ThenZ(L)Þ$0% ~Ref. 7, p. 111!.
~ii ! A Lie algebraL is solvable if and only if@L,L# is nilpotent~Ref. 7, p. 117!.
~iii ! There exists a maximal solvable ideal inL, the so-calledradical R5RL . Similarly there

exists a maximal nilpotent ideal inL, the so-callednilradical N5NL ~Ref. 7, pp. 114, 175!.

Lemma 3:The centerZ(L)5$XPLu(;YPL)@X,Y#50%, the nilradicalNL and the radicalRL

arecharacteristic idealsof a Lie algebraL, i.e., they are invariant under all derivations ofL ~Ref.
8, pp. 155, 210!.

Beyond this we need the following.
Lemma 4:A characteristic ideal in an ideal ofL is an ideal ofL as well ~Ref. 8, p. 155!.

Nilpotent and solvable Lie algebras contain—in contrast to semisimple or simple Lie algeb
many ideals.

Definition: A Lie algebraL is calledsemisimpleif the radical is trivial,RL5$0%, and it is
calledsimpleif it is not Abelian and contains no ideals exceptL and $0%.

Obviously, every simple Lie algebra is semisimple as well. One can show that every
simple Lie algebra is the direct sum of simple ideals~Ref. 7, p. 126!. Furthermore, we need th
following.

Lemma 5:Let LÞ$0% be a semisimple Lie algebra. Then there holds:

~i! @L,L#5L ~Ref. 7, p. 127!.
~ii ! Z(L)5$0% ~Ref. 8, p. 201!.

All ~finite-dimensional! Lie algebras are composed from semisimple and solvable Lie algeb
Levi’s theorem: Every Lie algebraL is isomorphic to a semidirect sum of its radicalR with

a semisimple subalgebraS, i.e., L>R*S ~Ref. 7, p. 146!.
Thus, Lie algebras can be classified by means of classification of the following objects

~1! solvable Lie algebrasR,
~2! semisimple Lie algebrasS ~or rather simple Lie algebras, since every semisimple Lie alge

can be decomposed into the direct sum of simple ideals!,
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~3! semidirect sums of solvable Lie algebras with a semisimple one.

Simple Lie algebras are completely classified nowadays. The solution of the other two probl
still lacking.5,6,9

One important result in the theory of representations of Lie algebras is the following.
Weyl’s theorem: A finite-dimensional representationf:S˜gl(V) of a semisimple Lie alge-

bra S on a finite-dimensional vector spaceV is completely reducible~Ref. 10, p. 28!.
Corollary: Let S be a semisimple Lie algebra,V a finite-dimensionalS-module. The vector

spaces

V0ª$vPVuS.v50%, Veffªspan S•V

areS-invariant subspaces andV5V0uVeff .
Proof: The action ofSon V, S3V˜V, (X,v)°X•v5:f(X)(v), defines a representationf

of S in V. By the Weyl’s theorem this representation is completely reducible, i.e., every sub
ule has a complement. Obviously,V0 and Veff are S-submodules ofV. We show thatV is the
direct sumV5V0uVeff : Choose a subspaceV1#Veff such thatVeff5(V0ùVeff)uV1. ThenS•V
5S•Veff5S•V1#V1, hence Veff#V1 and thereforeV0ùVeff5$0%. On the other sideV5V0

1Veff : Choose a submoduleW#V such thatV5(V01Veff)uW. Then S•W#WùVeff5$0%.
ThereforeW#V0 , henceW5$0%. h

We will also need the following:
Lemma 6:Let H be a nilpotent subalgebra ofL and letM#L be an (adH)-invariant sub-

space. Then

M0ª$YPM u~;XPH !'nPN: ~ad X!nY50%

is an (adH)-invariant subspace ofM with a complement inM, i.e., there exists an
(ad H)-invariant subspaceM1#M such thatM5M0uM1 .

Proof: We use the weight-decomposition of a~real! Lie algebra with respect to a nilpoten
subalgebra. For details see Ref. 11, Chap. VII and Ref. 13, Chap. I.10. First we consid
complexificationMC5M ^ RC of M and its generalized weight-decomposition with respect
HC5H ^ RC:

MC5 (
lPL

Ml
C ,

where

Ml
C5$XPMCu~;YPHC!'nPN: ~ad Y2l~Y!IdMC!nX50%,

andL is the set of complex weights with respect toHC. More precisely there holds:

MC5M0
C~HC!u(

j 51

m

Ml j

C ~HC!, l jÞ0 for 1< j <m.

We also know that

M0~H ! ^ RC>M0
C~H !>M0

C~HC!.

We define the conjugationc on the complexificationLC5L ^ RC of the Lie algebraL by c(X
1 iY)5X2 iY with X, YPL. Further, we use the following.

Lemma:

~i! If lPL is a weight then so isl̄+c. Moreover,c(Ll
C)5L

l̄+c

C
.

~ii ! Ll
CuL

l̄+c

C
is c-invariant.
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~iii ! Let XPLl
C , then the real and imaginary parts ofX are inLù(Ll

CuL
l̄+c

C
).

With l alsol̄+c is in L and the two root spaces are conjugated to each other in the real cas
define the class@l#ª$l,l̄+c% and the corresponding real root spaces ofM by M @l#

ªMù(Ml
CuM

l̄+c

C
).

Hence in the real case we have the following generalized weight-decomposition:

M5M0u(
j 51

m

M @l j #
5:M0uM1 , l jÞ0 for 1< j <m. h

III. THE RESULT ON LIE ALGEBRAS WITH ONLY ABELIAN NILPOTENT
SUBALGEBRAS

In this section we prove our main result:
Theorem: An indecomposable non-nilpotent Lie algebraL of dimension dimL>3 with a

nontrivial centerZ(L)Þ$0% contains a non-Abelian nilpotent subalgebra.
The following is logically equivalent:
Theorem: A non-nilpotent Lie algebraL of dimension dimL>3 with a nontrivial center

Z(L)Þ$0% all of whose nilpotent subalgebras are Abelian is decomposable. Moreover,Z(L) is a
direct summand ofL, i.e., there exists an idealI in L with L5Z(L) % I .

Proof: By Levi’s theorem the following cases have to be considered:

~1! L is non-nilpotent and solvable.
~2! L is isomorphical to a semidirect sum of its radicalRÞ$0% and a semisimple subalgebraS

Þ$0%, i.e., L>R*S.

Notice that the case of a semisimple Lie algebraL is canceled, because then the assump
Z(L)Þ$0% is not satisfied.

Case 1:Let L be a non-nilpotent solvable Lie algebra and denote the nilradical ofL by N.
Generally, @R,L##N ~Ref. 7, p. 175!. In particular, for solvableL we haveL8#N. Let us
consider the factor algebraL/N. For X, YPL there holds

@X1N,Y1N#5@X,Y#1N#L81N#N1N5N,

i.e., the quotientL/N is Abelian. Next we consider the canonical projectionp:L˜L/N. Let H be
a Cartan subalgebra ofL. The image of a Cartan subalgebra under a subjective Lie alg
homomorphism is a Cartan subalgebra and a nilpotent Lie algebra is its only Cartan suba
~Ref. 7, p. 131!. SinceL/N is an Abelian Lie algebra it is the only Cartan subalgebra inL/N and
therefore p(H)5L/N. Thus L5N1H, on the one hand. On the other hand we haveL
>NuL/N. So we find inH a subalgebraH̄ that is isomorphic top(H), because by assumptio
H is Abelian. Hence we get a direct sum of vector spacesL5NuH̄. In particular,@N,H̄##N and
N is an ideal inL. ThereforeL5N*H̄ is a semidirect sum of Lie subalgebras ofL.

Let us apply Lemma 6 to the caseM5N. The vector space

N05$YPNu~;XPH̄ !'nPN:~ad X!nY50%

is an (adH̄)-invariant subspace with a complementN1 in N: N5N0uN1 , where N1 is
(ad H̄)-invariant as well. We show:L1ªN0*H̄ is nilpotent, i.e., there exists annPN with L1

n

5$0%. Namely, L1
15@L1 ,L1#5@H̄,N0#, because H̄ and N0 are Abelian. Further,L1

1

5@H̄,N0##N0 becauseN0 is invariant under the action of adH̄. Induction with respect ton gives
L1

n5@L1 ,L1
n21#5@H̄,L1

n21#5(ad H̄)nN0 , sinceL1
n21#N0 for n.1. By definition ofN0 we know

that for everyYPN0 there exists annPN such that (adX)nY50 for all XPH̄. ThusN0*H̄ is
nilpotent, and so by assumption Abelian. Therefore,@N0 ,H̄#5$0%. Next we show:N05Z(L). By
definition of N0 we obtain the inclusionZ(L)#N0 . The other inclusionN0#Z(L) is proved as
follows:
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@N0 ,L#5@N0 ,N*H̄#5@N0 ,N#1@N0 ,H̄#50,

since@N0 ,H̄#5$0% andN, and therefore alsoN0 , is Abelian by assumption. HenceN0#Z(L).
Our next goal is to show:N15L8. On the one hand,

L85@L,L#5@N*H̄,N*H̄#5@N,N#1@H̄,H̄#1@H̄,N#5@H̄,N#,

@H̄,N#5@H̄,N0uN1#5@H̄,N0#1@H̄,N1##N1 ,

becauseN0*H̄ is Abelian andN1 is invariant under the action of (adH̄). One the other hand, le
us apply the construction ofN1 by the proof of Lemma 6. Namely,

Na
C
ª$YPNCu~;XPH̄C!'nPN:~ad X2a~X!!nY50%

with a complex weight 0ÞaP(H̄C)* . Then for aYPNa
C there exists aXPH̄C with a(X)Þ0 and

an nPN with

05~a~X!2ad X!nY5 (
k50

n S n
kDa~X!n2k~2ad X!kY5a~X!nY

2 (
k51

n S n
kDa~X!n2k~2ad X!k21@X,Y#.

From this it follows

Y5a~X!2n(
k51

n S n
kDa~X!n2k~2ad X!k21@X,Y#.

ThereforeNa
C#L8C and hence

N1
C
ª (

0ÞaP~H̄C!*
Na

C#L8C and so N1#L8.

Finally, we get the decompositionN5Z(L) % L8 with N05Z(L) andN15L8 as well as

L5N*H̄5~N0% N1!*H̄5N0% ~N1*H̄ !5Z~L ! % ~L8*H̄ !.

~Note: @N0 ,N1*H̄#50 andN1*H̄ is a subalgebra ofL.! Therefore, hereZ(L)Þ$0% is direct
summand inL.

Case 2:We consider the Levi decompositionL5R*S with a radicalR5RLÞ$0% and a
semisimple subalgebraSÞ$0%. There holds@R,L##R and @S,S#5S.

From case 1 we knowR5NR*H̄R with NR5Z(R) % R8, and thereforeR5(Z(R)
% R8)*H̄R . In particular,Z(R)ùR85$0%. Thus,

L85@L,L#5@R*S,R*S#5@R,R#1@S,S#1@S,R#

5R81S1@S,R#5R81S1@S,NR*H̄R#5R81S1@S,NR#1@S,H̄R#

5R81S1@S,Z~R! % R8#1@S,H̄R#

5R81S1@S,Z~R!#1@S,R8#1@S,H̄R#.

From the Jacobi identity it follows@S,R8#5@S,@R,R###@@S,R#,R##@R,R#5R8. Therefore

L85R81S1@S,Z~R!#1@S,H̄R#.
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We can takeR as anS-module with respect to the action of ad, because@S,R##@L,R##R. It
follows that@S,NR##NR , sinceNR is a characteristic ideal inR, i.e., NR is a S-submodule ofR.
By Weyl’s theorem it follows thatNR has aS-module complement. As we know from case 1, w
can assume thatH̄R is this module complement. Therefore, we obtain

R5NR1̇H̄R , @S,H̄R##H̄R .

There holds@S,Z(R)##Z(R) becauseZ(R) is a characteristic ideal inR. By Weyl’s theorem we
conclude thatZ(R)5V01̇Veff with

V05$XPZ~R!u~ad S!•X50%

5$XPZ~R!u~;UPS!@X,U#50%

5$XPRu~;VPR!@X,V#50∧~;UPS!@S,U#50%

5$XPLu~;YPL !@X,Y#50%5Z~L !

and

Veff5span~ad S!.Z~R!5@S,Z~R!#,

i.e., Z(R)5Z(L)1̇@S,Z(R)# and, in particular,Z(L)ù@S,Z(R)#5$0%. SinceZ(R)ùR85$0%,
@S,Z(R)##Z(R) and @S,H̄R##H̄R , we obtain

L85R81̇S1̇@S,Z~R!#1̇@S,H̄R#,

i.e., the sum is direct. WithZ(R)5Z(L)1̇@S,Z(R)# then we concludeL8ùZ(L)5$0%. So, we
obtainL as the direct sum of vector spaces:

L5R1̇S5Z~L !1̇@S,Z~R!#1̇R81̇H̄R1̇S5Z~L !1̇I .

If L8#I with L5Z(L)1̇I thenI is an ideal inL: @ I ,L##L8#I , and henceL5Z(L) % I is a direct
sum of ideals inL.

Actually, we have shown the assertion thatZ(L) is a direct summand inL, if every nilpotent
subalgebra ofL is abelian. The theorem is proven. h
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The particles with a scattering matrixR(x) are defined as operatorsF i(z) satisfy-

ing the relation( i 8, j 8Ri , j
j 8,i 8(x1 /x2)F i 8(x1)F j 8(x2)5F i(x2)F j (x1). The algebra

generated by those operators is called a Zamolochikov algebra. We construct a new
Hopf algebra by adding half of the Faddeev–Reshetikhin–Takhtajan–Semenov-
Tian-Shansky~FRTS! construction of a quantum affine algebra with thisR(x).
Then we double it to obtain a new Hopf algebra such that the full FRTS construc-
tion of a quantum affine algebra is a Hopf subalgebra inside. Drinfeld realization of
quantum affine algebras is included as an example. ©1999 American Institute of
Physics.@S0022-2488~99!04107-9#

I. INTRODUCTION

In physics, the particles with a scattering matrixR(x) in End(V) ^ End(V) are defined with
the operatorsF i(x) index by a linear independent basis ofV such that

(
i 8, j 8

Ri , j
j 8,i 8~x1 /x2!F i 8~x1!F j 8~x2!5F i~x2!F j~x1!,

whereV is a vector space andx is a parameter inC. This naturally gives an algebra with thes
current generatorsF i(x), which we will call a Zamolochikov algebra. However this algebra is
given a Hopf algebra structure. We construct a Hopf algebra on this algebra by adding stru
coming from the structures of the affine quantum groups.

The definition of quantum groups discovered by Drinfeld and Jimbo is presented as a
mation of the simple Lie algebra by the basic generators and the relations based on th
coming from the corresponding Cartan matrix. The extension of the realization of the
Kac–Moody algebraĝ associated to a simple Lie algebrag as a central extension of the corr
sponding loop algebrag^ C@ t,t21# has two different approaches. The first approach was given
Faddeev, Reshetikhin, and Takhtajan,1 who obtained a realization of the quantum loop alge
Uq(g^ C@ t,t21#) via a canonical solution of the Yang–Baxter equation depending on a param
zPC. This approach was completed by Reshetikhin and Semenov-Tian-Shansky2 by incorporating
the central extension in the previous realization. We call this approach FRTS construction
second approach was given by Drinfeld, who3 gave a realization of the quantum affine algeb
Uq(g) and its special degeneration called the Yangian. As an algebra, this realization is equ
to the FRTS construction4 through certain Gauss decomposition for the case ofUq(gl̂(n)). Al-
though we cannot extend the conventional comultiplication to the current operators of Drinf
derive a closed comultiplication formula, Drinfeld also gave the Hopf algebra structure for s
formulation,4 which5,6 we used to study vertex operators and zeros and poles of the qua
current operators. In the Drinfeld realization of quantum affine algebras, the structure consta
certain rational functionsgi j (z). In Ref. 6, we generalize this type of Hopf algebras by substi
ing gi j (z) by other functions that satisfy the functional property ofgi j (z).

In this paper, we will use the idea of FRTS construction to define a Hopf algebra genera
a current operator valued matrix onV,L(x), such that

R~x1 /x2!L1~x1!L2~x2!5L2~x2!L1~x1!R~x1 /x2!,
41570022-2488/99/40(8)/4157/8/$15.00 © 1999 American Institute of Physics
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whereL1(x)5L(x) ^ 1 andL2(x)51^ L(x); and the commutation relation between the partic
and this new operator matrixL(x) is presented as

F~x1!1L~x2!25R~~x1 /x2!qc/2!21L~x2!2F~x1!1 .

This relation can be interpreted as thatF(x) is an intertwiner for the algebra generated byL(x).7

With this we can define a comultiplication on the algebra generated byL(x) andF(x), where the
comultiplication for L(z) comes from FRTS construction and the comultiplication ofF(x) is
defined as

D~F~z!!5F~x! ^ 11L~xqc1/2! ^ F~zqc1!,

which is a generalization of Drinfeld construction. Then combining the idea of FRTS constru
and Drinfeld realization, we give a double for such a construction, where the FRTS constr
is a Hopf subalgebra and Drinfeld realization is a special case of our realization with c
diagonalR(x). This paper is basically a result of the combination of the two approaches
FRTS construction and the Drinfeld realization.

This paper contains two additional sections. In Sec. II we define the Zamolochikov al
and present its Hopf algebra extension. Section III describes the double of such a construct
the related examples.

II. HOPF ALGEBRA EXTENSION OF A ZAMOLOCHIKOV ALGEBRA

Let V be the vector spaceCn. Let x be a parameter inC. A function valuedR-matrix R(x) is
a function valued operator in End(V) ^ End(V), which satisfies the so-called Yang–Baxter equ
tion:

R12~z!R13~z/w!R23~w!5R23~w!R13~z/w!R12~z!,

whereR12(x)( i j 5 f i j (x)ai ^ bj ^ 15R(x) ^ 1, R13(x)5( i j f i j (x)ai ^ 1^ bj , R23(x)5( i j f i j (x)1
^ ai ^ bj51^ R, and R(x)5 f i j (x)( i j ai ^ bj . We also require thatR(x) satisfies the unitary
condition

R21~z!215R~z21!,

whereR21(z)5 f i j (x)( i j bj ^ ai .
Definition 2.1:The associative algebraP@R(x)# is an algebra generated by operatorsF i(x)

index by a linear independent basisei of V. Let F(x)5(F i(x) ^ ei . The commutation relations
are presented as

R~x1 /x2!F~x1!1F~x2!25F~x2!2F~x1!1 ,

where

F~x1!1F~x2!25( F i~x1!F j~x2!ei ^ ej , F~x2!2F~x1!15( F j~x2!F i~x1!ei ^ ej .

As explained in Sec. I, this system is used in the description particles (F i(x)) in physics with
the scattering matrixR(x) and in some other context. This relation is also satisfied by the ve
operators for quantum affine algebras,7,8 etc., and this type of system also appeared in describ
the elliptic type of algebras.9 However, they are all described as algebras, not Hopf algeb
Following the idea in Refs. 6, 10–12 we would like to extend this algebra with additional cu
operators coming from the FRTS construction to give a Hopf algebra structure to such a s

Definition 2.2:The algebraEP@R(x)# is an associative algebra generated byF i(x) indexed
by a linear independent basisei of V,l i j (x) indexed by the linear independent basisei j of End(V)
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and a central elementc. Let F(x)5F i(x) ^ ei and the operator valued matrixL(x)5( l i j (x)
^ ei j , such thatL(x) is invertible. They satisfy the commutation relations:

R~x1 /x2!F~x1!1F~x2!25F~x2!2F~x1!1 ,

F~x1!1L~x2!25R~qc/2x1 /x2!21L~x2!2F i~x1!1 ,

R~x1 /x2!L~x1!1L~x2!25L~x2!2L~x1!1R~x1 /x2!.

Here

F~x1!1L~x2!25( F i~x1!Lkl~x2!ei ^ ekl , L~x2!2F i~x1!15( Lkl~x2!F i~x1!ei ^ ekl ,

L~x1!1L~x2!25PL~x1!2L~x2!1P5( Li j ~x1!Li~x2!ei j ^ ekl ,

andP is the permutation operator.
Theorem 2.1: The algebra EP@R(x)# has a Hopf algebra structure, which is given by th

following formulas.
CoproductD,

~0! D~qc!5qc
^ qc,

~1! D~F i~z!!5F i~z! ^ 11( Li j ~zqc1/2! ^ F j~zqc1!,

~2! D~Li j ~z!!5( Lik~zq2c2/2! ^ Lk j~zqc1/2!,

where c15c^ 1 and c251^ c.
Counit e,

e~qc!51, e~Li j ~z!!5d i j ,

e~F i
6~z!!50.

Antipode a,

~0! a~qc!5q2c,

~1! a~F i~z!!5( 2~L~zq2c/2!21! i j F j~zq2c!,

~2! a~L~z!!5~L~z!!21.

We will use the notation to denote the comultiplication,

DF~x1!5F~x1! ^̄ 11L~x1qc1/2! ^̄ F~x1qc1!,

D~L~x2!5~L~x2q2c2/2! ^̄ L~x2qc1/2!!

Proof: For the comultiplication above we have that
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DF~x1!1DL~x2!25~F~x1! ^̄ 11L~x1qc1/2! ^̄ F~x1qc1!!1~L~x2q2c2/2! ^̄ L~x2qc1/2!2

5R~x1 /x2q~c11c2!/2!21~L~x2q2c2/2! ^̄ L~x2qc1/2!!2~F~z! ^̄ 1!1

1R~x2 /x1q~c11c2!/2!21~L~x2q2c2/2! ^̄ L~x2qc1/2!!2~L~x1qc1/2!

^̄ F~x1qc1!!1 ,

R~x1 /x2!DF~x1!1DF~x2!25R~x1 /x2!~F~x1! ^̄ 11L~x1qc1/2! ^̄ F~x1qc1!!1~F~x2! ^̄ 1

1L~x2qc1/2! ^̄ F~x2qc1!!2

5~F~x2! ^̄ 1!2~F~x1! ^̄ 1!1

1~L~x2qc1/2! ^̄ F~x2qc1!!2~F~x1! ^̄ 1!11~L~x1qc1/2!

^̄ F~x1qc1!!1~L~x2qc1/2! ^̄ F~x2qc1!!21R21~x2 /x1!21L~x1qc1/2!

^̄ F~x1qc1!)1~F~x2! ^̄ 1!2

5DF~x2!2F~x1!1 .

Similarly, we can prove the rest of the theorem by direct calculation.
This construction of comultiplication follows partially the idea of constructing comultipli

tions for the quantum Lie algebra,10 where the cases without the parameterx are given. With our
construction, we can extend the Hopf algebra structures to the special Zamolochikov a
Zn,k(j,t), which is defined as the algebra generatedF(z) with a Belavin ellipticR-matrix R(z).9

We expect that the new Hopf algebra structure should be very useful in the study of the
sentation theory of the elliptic Zamolochikov algebras and hopefully even the related Skl
elliptic algebras.

III. THE DOUBLE OF EP†R„x …‡

In this section, we will present a double of the algebraEP@R(x)# following the Drinfeld
realization of the quantum affine algebraUq(sl̂(2)).

Definition 3.1:The algebraDEP@R(x)# is an associative algebra generated byF i(x) indexed
by a linear independent basisei of V,l i j (x) and l i j* (x) indexed by the linear independent basisei j

of End(V), F* (x) indexed by a linear independent basisei* of V* , the dual space ofV, and a
central elementc. Let F(x)5F i(x) ^ ei , F* (x)5F i* (x) ^ ei* the operator valued matrixL(x)
5( l i j (x) ^ ei j , L* (x)5( l i j* (x) ^ ei j , such thatL(x) andL* (x) are invertible. They satisfy the
commutation relations:

R~x1 /x2!F~x1!1F~x2!25F~x2!2F~x1!1 ,

F~x1!1L~x2!25R~qc/2x1 /x2!21L~x2!2F i~x1!1 ,

R~x1 /x2!L~x1!1L~x2!25L~x2!2L~x1!1R~x1 /x2!.

R~x1 /x2!L* ~x1!1L* ~x2!25L* ~x2!2L* ~x1!1R~x1 /x2!,

R~x1 /x2q2c!L~x1!1L* ~x2!25L* ~x2!2L* ~x1!1R~x1 /x2qc!,

F* ~x2!2F* ~x1!15F* ~x1!1F* ~x2!2R21~x2 /x1!,

L* ~x2!2F* ~x1!15F* ~x1!1L* ~x2!2R21~q2c/2x2 /x1!,
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F~x1!1F~x2!2* 2F* ~x2!2F~x1!151/~q2q21!~L* ~wqc/2!d~z/wq2c!2d~z/wqc!L* ~zqc/2!,

L~x1!1F* ~x2!2R21~q2c/2x2 /x1!5F* ~x2!2L~x1!1 ,

R~qc/2x1 /x2!L* ~x1!1F~x2!25F~x2!2L* ~x1!1 .

Here F(x1)1L(x2)25(F i(x1)Lkl(x2)ei ^ ekl , L(x2)2F i(x1)15(Lkl(x2)F i(x1)ei ^ ekl ,
L(x1)1L(x2)25PL(x1)2L(x2)1P5(Li j (x1)Li(x2)ei j ^ ekl , and the others are defined in th
same way.P is the permutation operator.d(z) is the distribution with the support at 1.

Theorem 3.1:DEP@R(x)# has an Hopf algebra structure. The comultiplicationD, the counit
e and the antipode a are given by the following formulas.

CoproductD,

~0! D~qc!5qc
^ qc,

~1! D~F i~z!!5F i~z! ^ 11( Li j ~zqc1/2! ^ F j~zqc1!,

~2! D~Li j ~z!!5( Lik~zq2c2/2! ^ Lk j~zqc1/2!,

~3! D~F i* ~z!!51^ F i* ~z!1( F j* ~zqc2! ^ Li j* ~zqc2/2!,

~2! D~Li j* ~z!!5( Lik* ~zqc2/2! ^ Lk j* ~zq2c1/2!,

where c15c^ 1 and c251^ c.
Counit e,

e~qc!51e~L~z!!5e~L* ~z!!5I ,

e~F~z!!505e~F* ~z!!.

Antipode a,

~0! a~qc!5q2c,

~1! a~F~z!!52L~zq2c/2!21F~zq2c!,

~2! a~F* ~z!!52F* ~zq2c!L* ~zq2c/2!21,

~3! a~L~z!!5L~z!21,

~4! a~L* ~z!!5L* ~z!21.

Proof:

DF* ~z!1DF~w!2* R21~w/z!5~1^ F* ~z!1F* ~zqc2! ^ L* ~zqc2/2!!1~1^ F* ~w!1F* ~wqc2!

^ L* ~wqc2/2!!2R21~x1 /x2!

5~1^ F* ~w!2~1^ F* ~z!11~F* ~wqc2! ^ L* ~wqc2/2!!2~1

^ F* ~z!!11~F* ~zqc2! ^ L* ~zqc2/2!!1~1^ F* ~w!!2R~z/w!21
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1~1^ F* ~w!1F* ~wqc2! ^ L* ~wqc2/2!!2~1^ F* ~z!1F* ~zqc2!

^ L* ~zqc2/2!!11~F* ~wqc2! ^ L* ~wqc2/2!!2~F* ~zqc2!

^ L* ~zqc2/2!!1 ,

DF* ~z!1DL* ~w!2R21~q2~c11c2!/2w/z!5~1^ F* ~z!1F* ~zqc2! ^ L* ~zqc2/2!!1~L* ~wqc2/2!

^ L* ~wq2c1/2!!2R21~q2~c11c2!/2w/z!

5DL* ~w!2DF* ~z!1 ,

DL~z!1DF* ~w!2R21~q2~c11c2!/2w/z!5~L~zq2c2/2! ^ L~zqc1/2!1~1^ F* ~w!1F* ~wqc2!

^ L* ~wqc2/2!!2R21~q2~c11c2!/2w/z!

5~1^ F* ~w!!2~L~zq2c2/2! ^ L~zqc1/2!1

1~L~zq2c2/2! ^ L~zqc1/2!1~F* ~wqc2!

^ L* ~wqc2/2!!2R21~q2~c11c2!/2w/z!

5~1^ F* ~w!!2~L~zq2c2/2! ^ L~zqc1/2!1

1~F* ~wqc2! ^ L* ~wqc2/2!!2~L~zq2c2/2!

^ L~zqc1/2!1

5D~F* ~w!!2D~L~x1!!1 ,

R~q~c11c2!/2z/w!DL* ~z!1DF~w!25R~q~c11c2!/2z/w!~L* ~zqc2/2! ^ L* ~zq2c1/2!!1~F~w! ^ 1

1L~wqc1/2! ^ F~wqc1!!2

5~F~w! ^ 1!2~L* ~zqc2/2! ^ L* ~zq2c1/2!!1

1R21~q2~c11c2!/2w/z!~L* ~zqc2/2!

^ L* ~zq2c1/2!!1L~wqc1/2! ^ F~wqc1!)2

5DF~w!2DL* ~z!1 ,

DF~z!1DF~w!2* 2DF* ~w!2DF~z!15~F~z! ^ 11L~zqc1/2! ^ F~zqc1!!1~1^ F* ~w!

1F* ~wqc2! ^ L* ~wqc2/2!!22~1^ F* ~w!1F* ~wqc2!

^ L* ~wqc2/2!!2~F~z!11L~zqc1/2! ^ F~zqc1!!1

5011/~q2q21!~L* ~wqc1/21c2!d~z/wq2c12c2!

^ L* ~wqc2/2!2d~z/wqc12c2!L~zqc1/2!! ^ L* ~wqc2/2!

1L~zqc1/2! ^ ~1/~q2q21!~L* ~wqc2/2!d~z/wq2c21c1!

2d~z/wqc11c2!L~zqc11c2/2!1~L~zqc1/2!

^ F~zqc1!!1~F* ~wqc2! ^ L* ~wqc2/2!!22~F* ~wqc2!

^ L* ~wqc2/2!!2~L~zqc1/2! ^ F~zqc1!!1 .

Because

~L~zqc1/2
^ 1!1~F* ~wqc2!! ^ 1!2R21~q2c11c2w/z!5~F* ~wqc2!! ^ 1)2~L~zqc1/2

^ 1!1 ,
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and

~R21~q2c11c2w/z!!21~1^ F~zqc1!!1L* ~wqc2/2!)25L* ~wqc2/2!)2~1^ F~zqc1!!1 ,

we have that

DF~z!1DF~w!2* 2DF* ~w!2DF~z!1

51/~q2121!~DL~z/wq~c11c2!/2d~z/wq2~c11c2!!2d~z/wqc!DL* ~zq~c11c2!/2!.

Similar calculation gives the complete proof for the theorem.
In all the setting above,l i j (z), l i j* (z), F i(z), andF i* (z) are functional operators, namely th

operator depending the variablez. On the other hand, we can assume thatz is a formal variable and
l i j (z)5(nPZ l i j (n)z2n, l i j* (z)5(nPZ l i j* (n)z2n, F i(z)5(nPZ F i(n)z2n, F i* (z)
5(nPZ F i* (n)z2n. We can define an algebraDZP@R(x)#.

We assume that the entries ofR(z) are meromorphic functions. LetR8(z)5R(z) f (z), where
f (z) is the common divisor of all the functionsF(z), such thatF(z)R(z) has no poles.

Definition 3.2:The algebraDZP@R(x)# is an associative algebra generated byF i(x) indexed
by a linear independent basisei of V,l i j (x), andl i j* (x) indexed by the linear independent basisei j

of End(V), F* (x) indexed by a linear independent basisei* of V* , the dual space ofV, and a
central elementc. Let F(x)5F i(x) ^ ei , F* (x)5F i* (x) ^ ei* the operator valued matrixL(x)
5( l i j (x) ^ ei j , L* (x)5( l i j* (x) ^ ei j , such thatL(x) and,L* (x) are invertible. They satisfy the
commutation

R8~x1 /x2!F~x1!1F~x2!25 f ~x1 /x2!F~x2!2F~x1!1 ,

F~x1!1L~x2!25R~qc/2x1 /x2!21L~x2!2F i~x1!1 ,

R~x1 /x2!L~x1!1L~x2!25L~x2!2L~x1!1R~x1 /x2!.

R~x1 /x2!L* ~x1!1L* ~x2!25L* ~x2!2L* ~x1!1R~x1 /x2!,

R~x1 /x2q2c!L~x1!1L* ~x2!25L* ~x2!2L* ~x1!1R~x1 /x2qc!,

f ~x2 /x1!F* ~x2!2F* ~x1!15F* ~x1!1F* ~x2!2R218 ~x2 /x1!,

L* ~x2!2F* ~x1!15F* ~x1!1L* ~x2!2R21~q2c/2x2 /x1!,

F~x1!1F~x2!2* 2F* ~x2!2F~x1!151/~q2q21!~L* ~wqc/2!d~z/wq2c!2d~z/wqc!L* ~zqc/2!,

L~x1!1F* ~x2!2R21~q2c/2x2 /x1!5F* ~x2!2L~x1!1 ,

R~qc/2x1 /x2!L* ~x1!1F~x2!25F~x2!2L* ~x1!1 .

Here F(x1)1L(x2)25(F i(x1)Lkl(x2)ei ^ ekl , L(x2)2F i(x1)15(Lkl(x2)F i(x1)ei ^ ekl ,
L(x1)1L(x2)25PL(x1)2L(x2)1P5(Li j (x1)Li(x2)ei j ^ ekl , and the others are defined in th
same way as above.P is the permutation operator.d(z)5(nPZ zn. The operatorR(z) andR21(z)
are expanded in appropriate directions.

If the poles of the matrix ofR(z) are beyond a finite disk around zero, we can always imp
the condition thatl kl(n)505 l kl* (2n)5 l i j (0)5 l j i* (0), for n,0, i , j . Then the condition of the
invertibility is equivalent and requires thatl i i (0) andl i i* (0) are invertible.

Example 3.1:Let V be one dimensional, andR(z)5z2wq2/zq22w. Let l 11(n)505 l 11*
(2n), for n,0. Then the algebraDZP@R(x)# is the quantum affine algebraUq(sl̂(2)). If we
chooseR(z) to be other functions with the propertyR(z)5(R(z21)21, then it is an algebra
defined in Ref. 6 as a generalization of the the quantum affine algebraUq(sl̂(2)).
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Example 3.2: Let V5Cn and R(z)5((z2wq2)/(zq22w)eii ^ eii 1( u i 2 j u51(z
2wq21)/(zq212w)(ej , j ^ ei ,i)1( u i 2 j u.1 eii ^ ej j . Let l kl(n)505 l kl* (2n)5 l i j (0)5 l j i* (0), for
n,0, i , j . Then the algebraDZP@R(x)# is an algebra, whose quotient~modular the cubic
relations! is Uq(sl̂(n)). If we substitutez2wq2/zq22w and (z2wq21)/(zq212w) by other
functions, it will be the generalization ofUq(sl̂(n)) without the cubic relations.6

Example 3.3:Let V5Cn and R(z) be the projection of the universalR-matrix R of
Uq(sl̂(n)). Let l kl(n)505 l kl* (2n)5 l i j (0)5 l j i* (0), for n,0, i , j . The operatorL(z) can be
identified with the operator (id̂pV)R21(zqc/2) and L* (z) with the operator (id
^ pV)R21(z21q2c/2). The subalgebra generated byL(z) andL* (z) is isomorphic toUq(sl̂(n)).
We conjecture that the algebraDZP@R(x)# is isomorphic toUq(sl̂(n11)). This is because when
q goes to 1, this algebra degenerates intosl̂(n11). Such a formulation should have application
construction of quantum W-algebras.13 Also if we takez50, it becomes that in Refs. 11 and 1

From the definition, we can see both the subalgebra generated byF(z), L(z), andL* (z) and
the subalgebra generated byF* (z), L(z), andL* (z) are the Hopf algebras. If we takeR(z) to be
the projection of the universalR-matrix R of Uq(sl̂(n)) on finite dimensional representations, w
will derive unconventional Hopf algebras from those subalgebras.

Our new algebras can be viewed as a simple generalization of the Drinfeld realization
quantum affine algebraUq(sl̂(2)), where the functiong(z) is substitute by a matrixR(z), the
operators are substituted by the vector valued operators and the relations looks the same. H
such a generalization is highly nontrivial in the sense that all the Hopf algebra structure
preserved, in the other words, those new algebras are Hopf algebras, whose comultipli
counit, and antipode symbolically are the same. These new Hopf algebras should be very u
various applications in mathematics and physics, for example, the study of the represe
theory of the elliptic Zamolochikov algebras.15
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Conservation laws for linear equations on braided
linear spaces

M. Klimeka)

Institute of Mathematics and Computer Science, Technical University of Cze¸stochowa,
ul.Da̧browskiego 73, 42-200 Cze¸stochowa, Poland

~Received 29 April 1999; accepted for publication 11 May 1999!

The properties of linear equations on braided linear spaces are investigated and
conservation laws for them are derived. The conserved currents are given in the
explicit form. The procedure is then applied to scalar wave equations on a quantum
plane and onq-Minkowski space. ©1999 American Institute of Physics.
@S0022-2488~99!02208-2#

I. INTRODUCTION

In the classical field theory we can derive conservation laws for linear equations usin
Takahashi–Umezawa method.1 We have shown previously that it can be extended to models
lattices2–4 and on quantum Minkowski spaces by Podles´ and Woronowicz.5–10 The aim in this
paper is to develop a similar procedure for linear equations on braided linear spaces.

The class of braided linear spaces was introduced by Majid11 as braided Hopf groups with a
full structure of the Hopf group consistent with a braided tensor product:

~a^ c!~b^ d!5aC~c^ b!d.

The important examples of braided linear spaces areq-Euclidean andq-Minkowski space en-
dowed, respectively, with action of theSOq(4) andq-Poincare´ algebra. Forq-Minkowski space
investigated equations include the scalar, spinor and vector wave equations.12,13 In the last section
we show how to obtain the conserved currents for a scalar wave equation onq-Minkowski space.

Let us notice that technically the procedure of the derivation of the conserved currents i
similar to the method introduced for discrete space and for quantum Minkowski spaces men
earlier.

The paper is organized as follows: In Secs. II and III we reformulate the Leibnitz rule
braided differential calculus. It appears that the deformation is given by a certain transform
operator. This operator differs from the ones investigated earlier in discrete and noncomm
models. Nevertheless, the properties of the transformation operator are analogous. The
exists the inverse transformation operator due to the bi-invertibility of theR matrix. This operator
is then used in the modification of the Leibnitz rule. In Sec. IV we solve uniquely and expli
a certain operator equation for the operatorGm that enables us to construct the conserved curre
in Sec. V. Section VI includes an application of the presented method to wave equations
quantum plane and onq-Minkowski space.

II. BRAIDED LINEAR SPACES

Let us begin with a brief sketch of properties of braided covector space. This structur
braided Hopf algebra defined by generators 1,xi ( i 51,...,n) and relations of the braided grou
structure:

xixj5~R8! i j
klxlxk , ~1!

a!Electronic mail: klimek@matinf.pcz.czest.pl
41650022-2488/99/40(8)/4165/12/$15.00 © 1999 American Institute of Physics
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Dxi5xi ^ 111^ xi , ~2!

exi50, Sxi52xi , ~3!

C~xi ^ xj !5xk^ xlRi j
lk , ~4!

where bi-invariant matrixR fulfills QYBE and besides the first inverseR21 there also exists the
second inverseR̃:

~R21!kl
i j Rab

kl 5Rkl
i j ~R21!ab

kl 5da
i db

j , ~5!

R̃al
ibRjb

ak5Ral
ibR̃jb

ak5d j
i d l

k . ~6!

The matrixR8 defining the commutation rule for coordinates~1! is an invertible matrix given by
the formula11

R85P1PP j Þ i~PR2l j !, ~7!

with P the permutation matrix andl i the nonzero eigenvalue of the minimal polynomial ofPR:

P j~PR2l j !50.

Differentiation on braided linear space was defined by Majid14,15 as an infinitesimal transla
tion, and this leads to the following properties of partial derivatives:

] i] j5~R8!kl
i j ] l]k, ~8!

] ixj5d j
i 1Rjl

kixk]
l . ~9!

We shall consider the functions of coordinates on braided linear spaces understood as a
power series:

f ~xW !5(
l 50

`

ak0¯klxk0
¯xkl

. ~10!

For functions, the commutation rule~9! transforms into the Leibnitz rule given by Majid11,14,15in
the form

] i~ f g!5~] i f !g1•C21~] i
^ f !g, ~11!

where the inverse braiding looks as follows on monomials of arbitrary order@ei is a basic covector
that means (ei) j5d j

i #:

C21~] i
^ x1¯xk!5e1

i x2¯xkxk11~PR!12¯~PR!k,k11^ ]k11. ~12!

It is easy to deduce that the Leibnitz rule~11! can be rewritten similarly to the ones appeari
in the discrete calculus4 and in the differential calculus on quantum Minkowski space by Pod´
and Woronowicz.5,10 In this formula the deformation of the classical Leibnitz rule is described
the transformation operatorz j

i :

] i~ f g!5~] i f !g1~z j
i f !] jg. ~13!

The transformation operator for braided differential calculus is defined by formula~12! and on an
arbitrary monomial of the first order is given by
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z j
i xk5Rk j

li xl . ~14!

We extend thez operator to arbitrary function~10! using its multiplicity property, namely,

z j
i ~ f g!5~zk

i f !~z j
kg!. ~15!

Let us be reminded that in the classical differential calculus the transformation operator
identity operator:

z j
i 5d j

i .

For the discrete calculus it is the shift operator on the lattice in the given direction,4 while on the
quantum Minkowski space it is defined by its multiplicity and action on monomials of the
order.5

Now we can modify the Leibnitz rule~13! in such a way as to obtain on the right-hand si
operators acting only on one of the functions in the product. To this aim we use the in
transformation operatorz2:

z j
kzk

2 i5z j
2 kzk

i 5d j
i . ~16!

The existence of the inverse operator is due to the bi-invertibility of theR matrix, and it is defined
by its action on monomials of the first order:

z j
2 ixk5R̃k j

l i xl , ~17!

and the multiplicity property:

z j
2 i~ f g!5~z j

2 kf !~zk
2 ig!. ~18!

The properties of the transformation operatorsz and z2 imply the following modified Leibnitz
rule:

]k@~zk
2 i f !g#5~2]† i f !g1 f ~] ig!5 f ~2]Q† i1] i !g, ~19!

where we have denoted as a conjugated derivative,

]† i
ª2]kzk

2 i . ~20!

We see that after modification we deal with the Leibnitz rule, where the right-hand si
analogous to the classical differential calculus:

] i~ f g!5 f ~2]Q† i1] i !g,

with the exception that classically]† i52] i , while in our noncommutative case it is deformed
the inverse transformation operator~19!, ~20!.

Let us notice that the form of the modified Leibnitz rule for braided differential calculus~19!
is identical with the formulas derived for discrete and quantum models; the only differen
enclosed in the explicit formula for the transformations operatorsz andz2.

III. LINEAR EQUATIONS ON BRAIDED LINEAR SPACES

We shall consider equations of the form

L~]!F50, ~21!
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L~]!5L01(
l 51

N

Lm1¯m l
]m1

¯]m l. ~22!

They are linear equations with coefficients~which may be matrices! fulfilling the following con-
ditions:

(
mk

]mkLm1¯mk¯m l
50, ~23!

(
mk

z j
mkLm1¯mk¯m l

5Lm1¯ j¯m l
, ~24!

wherel 51,...,N, k51,...,l .
The class of equations obeying~23!, ~24!, in general, admits the coefficients depending

coordinates. It includes equations with constant coefficients such as, for example, a scalar,
and vector wave equation onq-Minkowski space.12,13 For constant coefficients the condition~23!
can be replaced with stronger one:

] iLm1¯m l
50, ~25!

for l 51,...,N and i 51,...,N.
Finally, due to the commutation relation for partial derivatives~8!, the coefficients of Eq.~21!

fulfill the symmetry condition, namely,

~R8!mkmk11
i j Lm1¯mkmk11¯m l

5Lm1¯ j i¯m l
, l 51,...,N. ~26!

In earlier papers we investigated an analogous class of equations on discrete spaces
quantum Minkowski space. The properties~23!, ~24! of coefficients together with the modifie
Leibnitz rule~19! allowed us to derive the conservation laws for arbitrary linear equation fulfil
these conditions. The crucial point in the construction, just as in the classical procedure of
hashi and Umezawa,1 is the solution of an operator equation for the operatorGm :

(
m

~2]Q† m1]m!+Gm~],]Q†!5L~]!2L~]Q†!, ~27!

where the operatorL(]Q†) of the conjugated equation looks as follows:

L~]Q†!5L01(
l 51

N

]Q† m1
¯]Q† m lLm1¯m l

. ~28!

We introduced the notation for the product ‘‘+’’ to underline the way it acts on monomials o
derivatives:

~2]Q† m1]m!+@n1 ,...,n l #a~xW !@r1 ,...,rk#ª2@n1 ,...,n l ,m#a~xW !@r1 ,...,rk#

1@n1 ,...,n l #]
ma~xW !@r1 ,...,rk#, ~29!

where we have denoted the monomials of derivatives as follows:

@r1 ,...,rk#ª]r1
¯]rk, ~30!

@n1 ,...,n l #ª]Q† n1
¯]Q† n l. ~31!
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IV. THE CONSTRUCTION OF THE Gm OPERATOR

The above equation~27! for theGm operator can be uniquely solved according to the follo
ing proposition.

Proposition 4.1: The unique solution of (27) in the class of polynomials of derivatives]Q† and
] for the equation operatorL fulfilling (23), (24) is of the form

Gm~],]Q†!5Lm1 (
l 51

N21

(
k50

l

]Q† m1
¯]Q† mkLm1¯mkmmk11¯m l

]mk11
¯]m l. ~32!

Proof: the proof for braided differential calculus is analogous to the one conducted in Re
5 for discrete and quantum differential calculi so we enclose the shortened version in Appen

Additionally, as the condition~23! is weaker than the condition for constant coefficients~25!,
we conclude that for this case theGm operator is given by the analogous proposition.

Proposition 4.2: The unique solution of (27) in the class of polynomials of derivatives]Q† and
] for the equation operatorL with constant coefficients fulfilling (24), (25) is of the form

Gm~],]Q†!5Lm1 (
l 51

N21

(
k50

l

]Q† m1
¯]Q† mkLm1¯mkmmk11¯m l

]mk11
¯]m l. ~33!

Proof: this is a corollary valid by Proposition 4.1.
The construction of theGm operator enables us to derive the conservation laws for lin

equations in classical commutative models. This is not the case for equations on the discr
noncommutative spaces due to the deformation of the Leibnitz rule.

We introduce the operatorĜm ,

Ĝm~],]Q†!5zQm
2 jL j1 (

l 51

N21

(
k50

l

]Q† m1
¯]Q† mkzQm

2 jLm1¯mkj mk11¯m l
]mk11

¯]m l, ~34!

which for a pair of arbitrary functionsF andG is connected with theGm operator by the equality

(
m

]mF Ĝm~],]Q†!G5(
m

F~2]Q† m1]m!+Gm~],]Q†!G. ~35!

The operatorĜm shall be used in an explicit construction of the conserved currents in the
way the operatorGm was applied in the classical procedure for commutative differential calcu

V. THE CONSERVATION LAWS FOR LINEAR EQUATIONS ON BRAIDED LINEAR
SPACES

We use the properties of theĜm operator derived in the previous section to prove the follo
ing proposition which allows us to obtain the conservation law for arbitrary equation obe
conditions~23!, ~24!.

Proposition 5.1: Let us assume that functionF is an arbitrary solution of equation (21) with
coefficients fulfilling (23), (24), which means

L~]!F50, ~36!

and functionF8 solves the conjugated equation

F8L~]Q†!50. ~37!

Then
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Jm5F8Ĝm~],]Q†!F, ~38!

where the operatorĜm is defined by (34), is a current that obeys the conservation law on bra
linear space:

(
m

]mJm50. ~39!

Proof: The conservation law results from the modified Leibnitz rule~19!, and from the
properties of theĜ andG operators:

(
m

]mJm5(
m

]mF8 Ĝm~],]Q†!F5F8S (
m

~2]Q† m1]m!+Gm~],]Q†! DF5F8„L~]!2L~]Q†!…F

50. ~40!

Thus, the conservation law for an arbitrary linear equation fulfilling~23!, ~24! is valid provided
functionsF8 andF are solutions of the corresponding equations:

L~]!F50, F8L~]Q†!50. ~41!

Let us notice that for Eqs.~21! with constant coefficients fulfilling stronger conditions~24!, ~25!
the Proposition 5.1 is also valid due to Proposition 4.2. The formula~38! shall be used in example
enclosed in the next section.

VI. APPLICATIONS

We shall now apply the general formulas of Propositions 4.2 and 5.1 to scalar wave equ
on two braided linear spaces: on quantum plane and on theq-Minkowski space, which is the mos
interesting from the physical point of view.

A. The conserved currents for scalar wave equation on a quantum plane

The commutation relations for derivatives and coordinates on a quantum plane lo
follows:11

yx5qxy, ]y]x5q21]x]y. ~42!

The Leibnitz rule~13! in differential calculus is defined by the followingR matrix:

R5F q2 0 0 0

0 q q221 0

0 0 q 0

0 0 0 q2

G , R85q22R. ~43!

It is easy to check the explicit form of the transformation operator for monomials of the first o

zx
xx5q2x, zx

xy5qy, zy
xx5~q221!y, zy

xy50, ~44!

zy
yy5q2y, zy

yx5qx, zx
yy50, zx

yx50. ~45!

These formulas together with the condition~16!, yield the inverse transformation operator, whi
can be described explicitly on monomials of the first order as

zx
2 xx5q22x, zx

2 xy5q21y, zy
2 xx5~q2221!y, zy

2 xy50, ~46!
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zy
2 yy5q22y, zy

2 yx5q21x, zx
2 yy50, zx

2 yx50. ~47!

We shall investigate the wave equation on a quantum plane:

hF5]a]bgbaF5~]x]y1q]y]x!F50. ~48!

From the general formula for theGm operator~32!, we obtain in our case the following
operator of the first order:

Gx5q]Q† y1]y, Gy5]Q† x1q]x. ~49!

The modifiedG operator looks as follows~34!:

Ĝx5]Q† xzQ x
2 y1q ]Q† yzQ x

2 x1qzQ x
2 y]x1zQ x

2 x]y, ~50!

Ĝy5]Q† xzQ y
2 y1q ]Q† yzQ y

2 x1qzQ y
2 y]x1zQ y

2 x]y. ~51!

Having constructed theĜm operator we are able to derive the conservation laws and exp
conserved currents for the wave equation. To this aim we need the solutions of~48! and of its
conjugation:

F8hQ †5F8~]Q† y]Q† x1q]Q† x]Q† y!50. ~52!

Let us notice that the function

F~x,y!5f1~x!1f2~y!, ~53!

wheref1 andf2 are arbitrary functions is always a solution for the equation~48!. More solutions
can be produced from the above solutionF using the symmetry operators that transform solutio
into solutions. The set of symmetry operators for~48! includes momentaPx5]x, Py5]y; rotation
operator M5x]x2y]y; dilatation operatorD5x]x1y]y; and conformal boostsKx5(xy)]x

2qyD andKy5(xy)]y2xD.
These operators are quantum deformations for conformal algebra on two-dimensional

Additionally, one can show that the operators from infinite-dimensional set:

Lm5xm]x, L̃n5yn]y, n,m.1, ~54!

also produces the solution from the solution of the wave equation~48!.
According to Proposition 5.1 we obtain the currents connected with deformed confo

algebradvP$Px,Py,M ,D,Kx,Ky%:

Jm
v5F8Ĝm~],]Q†!dvF, ~55!

which fulfill the conservation law:

]xJx
v1]yJy

v50. ~56!

The operatorsLm and L̃n add to the set of conserved currents the following expressions:

Jm
m5F8Ĝm~],]Q†!LmF, J̃m

n 5F8Ĝm~],]Q†!L̃nF, n,m.1. ~57!

B. The conserved currents for scalar wave equation on q-Minkowski space

Let us now pass to the scalar wave equation onq-Minkowski space. We have studied th
equation in Ref. 16 within the framework given by Azca´rraga, Kulish, and Rodenas.17,18 Now we
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would like to derive conservation laws using the formalism by Majid, the more interesting th
Ref. 19 he introducedq-conformal algebra in the scalar and spinor representation and showe
it is also a braided Hopf algebra.

We shall follow the notations of Majid from the mentioned paper. The momenta fulfill
conditions

pipj5~R8!kl
i j plpk, ~58!

pixj52d j
i 1xk~R21! l j

ikpl . ~59!

The q-conformal algebra includes momentap, rotations l1 and l2, dilatation operators, and
special conformal generatorsc. They form braided Hopf algebra with algebraic relations~written
in vector form!:

l1
6l2

6R5Rl2
6l1

6 , l1
1l2

2R5Rl2
2l1

1 , ~60!

l1
1p25

1

l
R21

21p2l1
1 , l1

2p25lRp2l1
2 , ~61!

sp5
1

l
ps, l6s5sl6, ~62!

and for special conformal generators we have

c2c15c1c2R8, sc5lcs, ~63!

l1
1c25lc2l1

1R21, l1
2c25

1

l
c2l1

21R21, ~64!

with the following commutation relation between momenta and special conformal generato

pc5cp1
l1s212 l2s

q2q21 . ~65!

We see from~59! that in our case the transformation operatorsz andz2 for 2p look as follows:

z j
i xm5~R21! jm

ik xk , ~66!

z j
2 ixm5R̂jm

ik xk , ~67!

where the matrixR̂ is the second inverse ofR21 fulfilling the condition

R̂al
ib~R21! jb

ak5~R21!al
ibR̂jb

ak5d j
i d l

k . ~68!

Now, the scalar wave equation onq-Minkowski space is of the form

hF5pipjgji F50. ~69!

The set of symmetry operators for the above equation includes momentap, rotation operatorsl6,
dilatations, and conformal boostsK5c1(x1l1

1s212x1l1
2s)/(q2q21), wherex1l1

6 is a vector with

components (x1l1
6)k5xml k

6 m
.

The momenta and rotations commute with the d’Alembert operator~69! due to the following
properties ofR andR8 matrices,11
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gkaRjl
ia5

1

l2 ~R21! jk
iagal , gkaR̃jl

ia5l2Rjk
iagal , ~70!

gaiRjl
ak5

1

l2 ~R21! i l
akgja , gaiR̃j l

ak5l2Ril
akgja , ~71!

Rjl8
akgai5~R821! i l

akgja . ~72!

The above formulas also yield the explicit expression for the matrixR̂ used in the construction o
the inverse operator~67!:

R̂kl
i j 5

1

l2 gjaglb~R21!ka
ib . ~73!

The dilatation operator does not commute with the d’Alembert operator, but it belongs to th
of symmetry operators due to the relation

hs5l2sh. ~74!

Let us notice that we have modified the special conformal generators so as to obtain the sym
operatorsK without imposing any condition on rotation operatorsl6.

To derive the conservation law we construct theGm operator

Gm~p,pª†!5pQ † jgj m1gm j p
j , ~75!

where

p† j52pkzk
2 j .

The modified operatorĜm includes thez2 operator~67!:

Ĝm~p,pª†!5pQ † kzQm
2 jgk j1zQm

2 jgjkpk. ~76!

Now we can write down the currents following Proposition 5.1:

Jm
v5F8Ĝm~p,pª†!dvF, ~77!

with dvP$p,l1,l2,s,K %.
They obey the conservation law:

(
m

pmJm
v50. ~78!

VII. FINAL REMARKS

Let us notice that noncommutative spaces were studied by Doplicher, Fredenh
Roberts20,21 and Madore and Mourad in Ref. 22 in the context of quantization of Minkow
space–time.

In the paper we have considered the fundamental properties of free field-theoretic mod
a class of noncommutative spaces includingq-Minkowski space. We obtained the conservati
laws for a wide class of linear equations on braided linear spaces. In this paper we have ex
the results derived in Refs. 3–6 for discrete spaces and for quantum Minkowski spaces.

The next step after the construction of conserved currents is to investigate the integ
motion. In classical field theory as well as for discrete spaces,3,4 they are produced from the tim
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component of conserved current by integrating over space-like dimensions. In the noncom
tive case the rules of integration still need further development. For braided linear spac
global integration was introduced in papers by Chryssomalakos23,24and Kempf and Majid.25 In the
mentioned construction the main feature of global integration is its invariance with respe
translations. Thus, integrals of the functions that have a proper asymptotic behavior yie
vanishing boundary terms. In the derivation of integrals of motion we should apply the g
integral over space-like dimensions. To this aim we shall formulate the Fubini theorem in w
we express the global integral over whole space as a sequence of the iterated integrals.
constructed iterated integrals, we will be able to follow the classical method and use con
currents in the derivation of an analog of the integral of motion for specific noncommut
spaces.

APPENDIX: THE UNIQUE SOLUTION OF THE OPERATOR EQUATION „27…

Proof of the Proposition 4.1:We denote the monomials of derivatives by formulas~30!, ~31!.
Due to the modified Leibnitz rule~19!, we should consider the solution of the operator equa
~27! in the form of the polynomial of orderN21 with arbitrary coefficients:

Gm~],]Q†!5am
0 1 (

l 51

N21

(
k50

l

@m1 ,...,mk#amm1¯m l

k @mk11 ,...,m l #, ~A1!

where the coefficientsak can depend on coordinates of covectorsxW .
The condition~27! applied to the above polynomial yields the equations for coefficie

amm1¯m l

k :

(
m

~2]Q† m1]m!+Gm~],]Q†!52 (
l 51

N21

(
k50

l

(
m

@m1 ,...,mk ,m#amm1¯m l

k @mk11 ,...,m l #

1 (
l 51

N21

(
k50

l

@m1 ,...,mk#(
m

~zn
mamm1¯m l

k !@n,mk11 ,...,m l #

1 (
l 51

N21

(
k50

l

@m1 ,...,mk#(
m

~]mamm1¯m l

k !@mk11 ,...,m l #2(
m

@m#am
0

1(
m

~zn
mam

0 !@n#1(
m

~]mam
0 !5L~]!2L~]Q†!. ~A2!

The resulting set of equations for functionsamm1¯m l

k is of the form

am
0 5Lm , ~A3!

]aaam
0 1zm

n an
05Lm , ~A4!

zm
aaam1 ...m l

0 1]aaamm1 ...m l

0 5Lmm1¯m l
, ~A5!

2amm1¯m l

k 1zmk11

a aam1¯mkmmk12¯m l

k11 1]aaam1¯mkmmk11¯m l

k11 50, ~A6!

amm1¯m l

l 1]aaam1¯m lm
l 5Lm1¯m lm

, ~A7!

with l 51,...,N21, k50,...,l 21.
We begin to solve this set of equations by deriving the coefficientsamm1¯m l

0 from Eqs.

~3!–~5!. Namely, forl 5N21 we have
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zm
aaam1¯mN21

0 5Lmm1¯mN21
. ~A8!

Applying the inverse operatorz2 and using the property of coefficients~24!, we obtain:

amm1¯mN21

0 5Lmm1¯mN21
. ~A9!

We insert this solution into~A5! for l 5N22 and solve the next equation:

zm
aaam1¯mN22

0 1]aLamm1¯mN22
5Lmm1¯mN22

. ~A10!

By assumption~23! after usingz2 operator and~24!, we deriveamm1¯mN22

0 as

amm1¯mN22

0 5Lmm1¯mN22
. ~A11!

Passing to the next equation from the subset~A5! and solving them in the similar way, we obta
the unique solution for coefficientsa0:

am
0 5Lm , amm1¯m l

0 5Lmm1¯m l
, l 51,...,N21. ~A12!

This R8-symmetric solution for initial coefficients allows us to evaluate the remaining ones u
~A6!, ~A7!, namely, we obtain thea1 coefficients after writing the subset~A6! for k50 and
solving it the way we solved the subset~A3!–~A5! for a0. The result is unique and looks a
follows:

amm1m2¯m l

1 5Lm1mm2¯m l
, l 51,...,N21. ~A13!

The same method applied to subsets of~A6!, ~A7! for k51,...,N22 produces the unique solutio
of the set of equations for coefficients in the form

amm1¯m l

k 5Lm1¯mkmmk11¯m l
, l 51,...,N21. ~A14!

The derivation of the explicit formulas for a unique solution of the coefficients of the operatoGm

concludes the proof of Proposition 4.1.
Let us notice once more that in the derivation of coefficients for theGm operator the crucial

factors were the properties of coefficients of the equation~21!, which enabled us to solve th
equation~27! in the explicit form.
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system’’ †J. Math. Phys. 39, 6086 „1998…‡
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In a recent paper Liu1 considered the complete Schwarzschild interior and exterior solutio
harmonic coordinates. There he argued about the necessity to keep the integration constaC1 in
Rex, in contrast with previous treatments~Refs. 1–5 and 8 of Ref. 1!. The purpose of this
comment is to show that the above conclusion cannot be traced from the matching con
between the vacuum exterior and the uniform density interior perfect fluid, as claimed in R
The reason for this is that the last condition in Eqs.~7! of Ref. 1, namelyRin8 ~a! 5 Rex8 ~a!, is not
required by the junction conditions atr 5a, as will be shown in what follows.

The junction of two space–times along a timelike hypersurfaceS can be done applying the
Darmois–Israel matching procedure,2,3 which requires the continuity across the junction of bo
the first and second fundamental forms~induced metric and extrinsic curvature! of the junction
hypersurface.

In the standard coordinates, the metric~1! of Ref. 1 induces the three-metric given by the li
element

dsS
2 5E~r !dt22r 2~du21sin2 udf2! ~1!

on the junction hypersurfacer 5a, which has the normaln51/AG]/]r and the nonvanishing
extrinsic curvature components

K0052
E8

2AG
, K225

r

AG
, K335

r

AG
sin2u. ~2!

The continuity of both~1! and ~2! implies that the metric functionG is continuous andE is C1

across the junction. It is not to be expected that starting from the metrics written in other c
nate systems the conditions onE and G will be weakened. However, constraints on the n
function R introduced by the coordinate transformation~2!–~5! of Ref. 1 will also emerge.

In the harmonic coordinate system the normal vector toS has the componentsnm

5(ln R)8/AG(0,X1 ,X2 ,X3). The metric~6! of Ref. 1 ~with a missing square on the last brack
corrected! induces the first fundamental form

dsS
2 5E~r !dt22

r 2

R2~r !
dX2. ~3!

This is still expressed in terms of the four space–time coordinates. When written in terms
coordinatest, u, and f, intrinsic to S, the continuity of the induced metric again implies th

a!Visiting position, supported by the Hungarian State Eo¨tvös Fellowship.
41770022-2488/99/40(8)/4177/2/$15.00 © 1999 American Institute of Physics
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continuity of the metric functionE alone. The extrinsic curvature tensor in the new coordin
system is found either by direct computation or by transforming its components~2! from standard
to harmonic coordinates. The nonvanishing components areK00 given in ~2! and

Kii 5
~Xj

21Xk
2!r

R4AG
, Ki j 52

XiXjr

R4AG
, ~4!

whereiÞ j Þk take the values 1,2,3. The junction condition on the extrinsic curvature at arb
radius implies thatG, R, andE8 should be continuous. Altogether we find thatG andR areC0 and
E is C1. Thus the last relation in~7! of Ref. 1 does not hold.

The condition

Ein8 5Eex8 , ~5!

though not listed among the continuity conditions~7! of Ref. 1, was fulfilled when imposing tha
the pressure vanishes on the junction. Indeed, Eq.~5! is a substitute for the requirement that th
radial pressures on the two sides ofS are equal, which was demonstrated for generic spheric
symmetric static space–times in another context.4

Our criticism does not affect the main result of Ref. 1, which is the solution ofRin of the
second-order differential equation~22! of Ref. 1. The arguments about the integration consta
however, should be reviewed. Requiring only the continuity ofR and nothing more, one of the
constantsC1 and C2 can be freely specified, in particularC150 can be chosen, in accordanc
with Refs. 1–5 and 8 of Ref. 1. Of course, the continuity ofR8 across the junction of the interio
and exterior Schwarzschild solutions can be imposed as an additional requirement for oth
poses@e.g., for having a smooth functionR(r ) as in Ref. 1#, but it is not a consequence of th
junction conditions.

1Q. H. Liu, J. Math. Phys.39, 6086~1998!.
2G. Darmois, inMémorial des Sciences Mathe´matiques~Gauthier-Villars, Paris, 1927!, Fascicule 25, Chap. V.
3W. Israel, Nuovo Cimento BXLIV , 4349~1966!.
4L. Á. Gergely, Phys. Rev. D58, 084030~1998!.
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Response to ‘‘Comment on ‘The complete Schwarzschild
interior and exterior solution in the harmonic
coordinate system’ ’’ †J. Math. Phys. 40, 4177 „1999…‡

Quan-Hui Liu
Department of Physics, Hunan University, Changsha 410082, People’s Republic of China
and Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735,
Beijing 100080, People’s Republic of Chinaa)

~Received 10 March 1999; accepted for publication 17 March 1999!

@S0022-2488~99!01508-X#

The preceding comment1 applied the Darmois–Israel matching condition to the Schwarzsc
interior and exterior solution in the harmonic coordinate system, and correctly pointed ou
from this matching condition, one of the constantsC1 andC2 in Eqs.~13! and~23! of my paper2

can be freely specified, in particularC150 can be chosen.
If only imposing the Darmois-Israel matching condition on the complete harm

coordinates,2 there are in fact infinite choices. I agree with Weinberg3 that the particular choice
C150 is a ‘‘convenient’’ one. But we cannot use only this choice while keeping silent on
other possibilities. I used one half of the Darmois–Israel matching condition, the extri
curvature and anad hoc condition, the metric components, are continuous. It is equivalen
imposeRin8 (a)5Rex8 (a) on the Darmois–Israel matching condition to uniquely determineC1 and
C2 . We are confident that it is a good and reasonable choice. Furthermore, evenC1 andC2 can be
freely specified; we must carefully specify them. For example, a bad choiceC250 is presented in
the Darmois–Israel matching condition. For our purpose of treating a star ofr 5a with a
59M /4Þ0,2 this choice means that all the interior coordinates vanish, the metric componen
singular, the proper time undefinable, and the whole interior gravitational field appears sin

a!Mailing address. Electronic mail: liuqh@itp.ac.cn
1L. Á. Gergely, J. Math. Phys.40, 4177~1999!.
2Q-H. Liu, J. Math. Phys.39, 6086~1998!.
3S. Weinberg,Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity~Wiley, New
York, 1972!, p. 181.
41790022-2488/99/40(8)/4179/1/$15.00 © 1999 American Institute of Physics
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Erratum: ‘‘Hirota bilinear approach to a new integrable
differential-difference system’’ †J. Math. Phys. 40, 2001
„1999…‡

Xing-Biao Hu
State Key Laboratory of Scientific and Engineering Computing, Institute of
Computational Mathematics and Scientific Engineering Computing, Academia Sinica,
P.O. Box 2719, Beijing 100080, China

Yong-Tang Wu
Department of Computing Studies, Hong Kong Baptist University, Kowloon Tong,
Hong Kong, China

Xian-Guo Geng
Department of Mathematics, Zhengzhou University, Henan 450052, China

~Received 13 April 1999; accepted for publication 13 April 1999!

@S0022-2488~99!02308-7#

There are some mistakes in Eqs.~11!, ~12!, ~15! and the formula~A4!. The correct ones
should be

ut~n11!1ut~n21!1ut~n!1 3
4„u~n11!2u~n21!…21 1

4„u~n11!1u~n21!22u~n!…2

1 1
4„v~n!21…50, ~11!

@~3Dt
2eDn13Dt

22eDn11! f ~n!• f ~n!# f ~n!22@~12eDn! f ~n!• f ~n!#„Dt
2f ~n!• f ~n!…

1Dt
2@~eDn21! f ~n!• f ~n!#• f 2~n!50, ~12!

ut~n!1~T11T211!21@ 3
4„u~n11!2u~n21!…21 1

4„u~n11!1u~n21!22u~n!…2

1 1
4„v~n!21…#50, ~15!

~Dt
3Dza•a!a22~DzDta•a!~Dt

2a•a!5Dt
2~DzDta•a!•a2. ~A4!

In this case,~10! and~11! can be reduced to the equation found in Ref. 1. However, we can d
the following z flow from ~13! and ~14! by viewing t as an auxiliary variable:

Uzz~n!1Uz~n!„Uz~n21!2Uz~n11!…54eU~n12!2U~n21!24eU~n11!2U~n22!,

whereU(n)5 ln(f(n11)/f(n)). A Lax pair for it could be easily obtained from the bilinear Ba¨ck-
lund transformation~16!–~18!:

4l2eU~n13!2U~n!cn131lUz~n11!cn122cn111~v12l21g3!cn50,

cnz1Uz~n!cn1l21cn211mcn50,

where we have setU(n)5 ln(g(n11)/g(n)), f (n)5cng(n11).
The mistakes that appeared in~11!, ~12!, ~15!, and~A4! do not affect all the other deduction

and calculations in the paper.

1X. B. Hu and Y. T. Wu, Phys. Lett. A246, 523 ~1998!.
41800022-2488/99/40(8)/4180/1/$15.00 © 1999 American Institute of Physics
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theories for the Schro ¨ dinger and Dirac equations’’
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Radosław Szmytkowski
Technical University of Gdan´sk, Atomic Physics Division, ul. Narutowicza 11/12,
80952 Gdan´sk, Poland

~Received 12 March 1999; accepted for publication 12 March 1999!

@S0022-2488~99!00708-2#

Equations~141! and ~157! should read

Âb
~6 !5~g~7 !!2an

~6 !b̂~7 !Âb
~7 !b̂~7 !an

~7 ! , ~141!

Rb
6~E!5c\g~6 !(

k

Pbk
~6 !Pbk

~6 !†

Ebk2E
2

b~6 !

~g~7 !!2I1~b~6 !!2 . ~157!
41810022-2488/99/40(8)/4181/1/$15.00 © 1999 American Institute of Physics
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Point and line boundaries in scalar Casimir theory
Alfred Actora)

Department of Physics, The Pennsylvania State University, Fogelsville, Pennsylvania 18051

~Received 6 February 1998; accepted for publication 16 April 1999!

A simple image-charge construction enables one to insert point or line boundaries
~or planar or hyperplanar boundaries when sufficiently many spatial dimensions are
available! at or into the central point, line, plane etc., of a great range of spatial
backgrounds in quantum field theory which have appropriate symmetry. This non-
trivial construction~which provides among other things the exact vacuum stress
tensorTmn of the quantum field ifTmn can be computed for the original background
prior to point, line,..., insertion! works if all directionsxi perpendicular to the
inserted object are symmetric underxi˜2xi . In other respects the symmetric
spatial background can be quite arbitrary. While the inserted object experiences~by
symmetry! no net Casimir force from the background, it does exert Casimir forces
throughout this background which were originally not present. In addition to gen-
eral theory, detailed examples are given~which include exact fieldTmn’s and exact
Casimir force densities! for arbitrary spatial dimension. First: point and line bound-
aries in otherwise empty space; then a planar boundary with a semi-infinite line
extending from one side; finally, parallel planar boundaries with a point boundary
halfway between them. Only scalar quantum fields are analyzed here; however the
extension to the electromagnetic Casimir effect is discussed qualitatively. ©1999
American Institute of Physics.@S0022-2488~99!03807-4#

I. INTRODUCTION

A simple image-charge construction enables one to insert a point boundary or a line bou
into existing appropriately symmetric spatial backgrounds in quantum field theory~QFT!. This
construction involves reflection through the point or line to be occupied by the inserted bou
and the required background symmetry is thereby determined: The spatial background m
invariant underxi˜2xi in all directionsxi perpendicular to the inserted object.~All spatial
directions are perpendicular to a point.! Otherwise the spatial background can be quite arbitra
Image-charge constructions are, of course, very familiar for planar boundary surfaces. The m
here is an extension, of what one routinely does for planar surfaces, to reflections in two and
dimensions. Hyperplanes can similarly be inserted into appropriate backgrounds when suffi
many dimensions are available. However, our attention here will be limited to point and
boundaries in scalar QFT.

By symmetry the inserted object~point, line,...! experiences nonet Casimir force from the
symmetric background into which it has been inserted. This balanced situation keeps the
ematics manageable and enables our simple but general construction to work.~In a nonsymmetric
background the inserted object will experience a net Casimir force and one is confronted wit
more difficult problem.! The inserted object will, of course, exert~symmetrically in directions
perpendicular to itself! Casimir forces throughout the original background which were nonexis
prior to its insertion. These additional Casimir forces may be complicated. Nonetheless,
shall see, if one can calculate the vacuum stress tensorTmn for the original background, then on
can also calculateTmn for the substantially more complicated system with inserted point or
boundary. FromTmn all Casimir forces can straightforwardly be obtained, including the n
forces exerted by the point or line boundary.

a!Electronic mail: aaa2@psu.edu
41850022-2488/99/40(9)/4185/23/$15.00 © 1999 American Institute of Physics
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The image-charge construction presented here at a far more general level was first notic1 for
the symmetric background called empty space. Otherwise these point and line boundary co
tions can~to the author’s knowledge! be found nowhere in the literature. Because this met
provides quantitative access to many Casimir systems that could not previously be solved e
its description in some detail should be of interest to other workers in this area of QFT.

A secondary topic in this article will be the use of point and line boundary insertions in
scalar quantum field already distorted by an existing background to test the following hypot
~1! Distinct Dirichlet boundary~or background! objects mutuallyattract. ~2! Distinct Neumann
boundary objects mutuallyattract. ~3! Distinct Dirichlet and Neumann objects mutuallyrepel.
This behavior has been observed for a variety of boundary geometries~in Refs. 2 and 3 and relate
unpublished calculations4!. A typical Dirichlet ~Neumann!—hereafter we useD(N)—object is
understood to be a spatial surface on which the scalar quantum fieldf̂ must satisfyD(N) bound-
ary conditions. The characterization ‘‘distinct’’ used above is important and means the objec
a geometrical sense, uniquely defined. For comparison, in this context a cylindrical or sph
surface shouldnot be imagined as consisting of two or more~obviously quite nonunique! pieces
glued together. However, a plane with a line projecting from one side can reasonably be th
of as consisting of two distinct pieces, even though these pieces touch.

As will be seen, in the explicit examples considered in this paper rules~1!–~3! above hold
unambiguously. This gives us additional confidence in the robustness of these rules an
~qualitative! independence of the geometric details of the boundaries involved.

The author has a preference forD over N boundary conditions in scalar QFT. One reason
that the notion of aD object can be generalized in an apparently deep way by introducing3,5 a
potentialV5V(xY ,t)>0 into the wave equationhf̂50 for a massless scalar field;

@h1V~xY ,t !#f̂50. ~1.1!

This brings great flexibility into the subtle process of coupling a quantum field to backgr
structures which~partially or completely! expel it from those regions of space they occupy. Su
a natural and compelling generalization ofN boundary conditions seems to be impossible.

Another point to mention concerningN boundary conditions is an occasional sensitivity of t
Casimir forces associated with them to one’s choice of stress tensor. Scalar fields do not
unique stress tensor. Commonly employed are the canonical (Tmn) and improved (umn) tensors. In
the past~see Ref. 2 and unpublished work! one has noticed the existence of~a few! boundary
geometries for whichTmn andumn yield different Casimir force densities whenN conditions are
involved. However, this seems never to happen when onlyD conditions are involved. This line o
inquiry will be continued here for backgrounds with point and line boundaries. Again we fin
evidence for ambiguous Casimir forces in pure Dirichlet systems, but some indication of
ambiguity when one or more boundary objects are Neumann.

The contents of this paper are now described. Section II presents the construction of is
point and line boundaries in free space~of arbitrary dimensiond! for a massless scalar field
Nonzero field massM.0 does not introduce any particular problems and we chooseM50
merely for simplicity. Reference 1 discussed this same problem forM>0 but only in terms of heat
kernels. Here we present a more complete discussion beginning with the field modes and
with the vacuum stress tensor of a scalar field distorted by an isolated point or line bound
d-dimensional~and otherwise empty! space. Periodic arrays of these objects are also easily
structed and this is briefly discussed.

In Sec. III we show how ind dimensions to insert a line boundary perpendicular to an exis
arbitrary one-dimensional~1D! background—say a 1D potentialV5V(xd) with the line boundary
parallel to thexd axis. This is illustrated by a simple example: an infinite planar boundary wi
semi-infinite line boundary extending from one side. TheTmn andumn of the distorted field are
calculated and the nonuniform Casimir force density exerted by the projecting line on the pl
determined.
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Section IV discusses and solves the problem of inserting point and line boundaries in
symmetry midplane of a symmetric~but otherwise arbitrary! 1D background—say a 1D symme
ric potentialV5 f (x1

2) with midplanex150. This is illustrated by a fairly complicated exampl
parallel planar boundaries with a point boundary in the midplane.Tmn andumn for the distorted
quantum field between the planes are calculated, and from these the nonuniform Casimi
densities exerted by the point boundary on the planes are found.

Section V outlines the general point and line boundary construction procedure for an arb
background potentialV5V(xY ) having the required symmetry. Interesting examples here wo
include the insertion of a point boundary at the center of a spherical or rectangular cavity, or
boundary through the center of these cavities, or a line boundary along the axis of a circu
rectangular waveguide, and so on. All of these calculations and many others are straightforw
our method, but for lack of space no additional examples can be presented here.

Further discussion will be found in Sec. VI, including comments on the relevance of
scalar field considerations to the electromagnetic case.

II. POINT AND LINE BOUNDARIES IN FREE SPACE

To illustrate the construction procedure for point and line boundaries consider what c
done with the ordinary plane-wave modes of QFT ind spatial dimensions.

Free space:

f~xY ukY !0d5~2p!2d/2eikY•xY,

all xY , 2`,k1,2,...,d,`. ~2.1!

Planar boundary at x150: hD,N571,

f~xY ukY !1,d21[~2p!2d/2@eik1x11he2 ik1x1#ei ~k2x21¯1kdxd!,

k1>0, 2`,k2,...,d,`,

x1>0 or <0, 2`,x2,...,d,`,

D: f~x150!1,d2150,

N: ]1f~x150!1,d2150, ;kY . ~2.2!

Line boundary along the xd axis uY 5(x1 ,x2 ,...,xd21)50: hD,N571,

f~xY ukY !d21,1[~2p!2d/2@eikY•uY1he2 ikY•uY #eikdxd,

k1>0, 2`,k2,...,d,`,

x1>0 or <0, 2`,x2,...,d,`,

D: f~uY 50!d21,150, ;kY ,

N: ] if~uY 50!d21,150, i 51,2,...,d21. ~2.3!

Point boundary at xY50: hD,N571,

f~xY ukY !d0[~2p!2d/2@eikY•xY1he2 ikY•xY#,

k1>0, 2`,k2,...,d,`,
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x1>0 or <0, 2`,x2,...,d,`,

D: f~xY50!50, ;kY

N: ] if~xY50!50, i 51,...,d. ~2.4!

In Eqs. ~2.2!–~2.4! and throughout this paper the symbolh distinguishes Dirichlet~D! from
Neumann~N! boundary conditions:hD521 and hN511. Moreover a labelpq5(0,d),(1,d
21),(2,d22),...,(d21,1), (d,0) is attached tofpq to emphasize the systematics.p represents
the number of dimensionsx1 ,x2 ,...,xp in which an image-charge construction is used, andq
5d2p the remaining dimensionsxp11 ,...,xd unused for this purpose. Between Eqs.~2.2! and
~2.3! a number of boundary~hyper! objects ind.3 dimensions have been left out: specifica
those withp52,...,d22. We could work with these objects exactly as we do with plane, line,
point boundaries. However, having no interest in these objects at this time we shall leave
entirely out of our discussion. Note that theD modes~2.2!–~2.4! all vanish on the objects on
which they are supposed to vanish, while theN modes have vanishing normal derivatives on the
same objects.~All directions are normal to a point.! Moreover the choiceh50 in Eqs.~2.2!–~2.4!
eliminates the boundary objects altogether.

The complete orthonormal sets of modes~2.1!–~2.4! are delta-function normalized:

E ddk f~xY ukY !f̄~yY ukY !5d~xY2yY !, ~2.5!

wherek1 ,...,kd have the ranges given in Eqs.~2.1!–~2.4! for f5fpq(xY ukY ). It is understood in Eq.
~2.5! that xY andyY lie in the same spatial hemisphere, i.e., bothx1 ,y1>0 or bothx1 ,y1<0. Thus
d(x11y1) vanishes and Eq.~2.5! results. Similarly,

E ddk f~xY ukY !f̄~xY ukY8!5d~kY2kY8!, ~2.6!

where terms containingd(kY1kY8) vanish becaused(k11k18) vanishes. Completeness and orth
normality are the reasons whyxY andkY in each of Eqs.~2.2!–~2.4! are restricted to a hemispher
x1>0 or x1<0 andk1>0.

Some standard information on spatial heat kernels is restated briefly in the Appendix
definition ~A1! becomes here

K~ tuxY ,yY !pq[E ddk e2tkY2
f~xY ukY !pqf̄~yY ukY !pq .

With the help of the formula

1

2p E
2`

`

dk e2tk2
eik~x2y!5

1

A4pt
e2~x2y!2/4t, ~2.7!

one easily verifies from modes~2.1! to ~2.4! the spatial heat kernels listed below.
Free space:

K~ tuxY ,yY !0d[kd~ tuxY2yY !5~2p!2dE
2`

`

ddk eikY•~xY2yY !e2tkY2
5~4pt !2d/2e2~xY2yY !2/4t. ~2.8!

Planar boundary at x150:

K~ tuxY ,yY !1,d21[@k1~ tux12y1!1hk1~ tux11y1!#kd21~ tux22y2 ,...,xd2yd!. ~2.9!
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Line boundary along the xd axis:

K~ tuxY ,yY !d21,1[$kd21~ tux12y1 ,...,xd212yd21!

1hkd21~ tux11y1 ,...,xd211yd21!%k1~ tuxd2yd!. ~2.10!

Point boundary at xY50:

K~ tuxY ,yY !d0[kd~ tuxY2yY !1hkd~ tuxY1yY !. ~2.11!

Again, in these formulash521 for D andh511 for N boundary conditions. Alsokn always
means the free-space heat kernel~2.8! for n spatial dimensions. One verifies thatk1 satisfies the
free 1D heat equation

~2]x
2!k1~ tux6y!5~2]y

2!k1~ tux6y!5] tk1~ tux6y!. ~2.12!

Each of the heat kernels~2.8!–~2.11! therefore satisfies the free-space heat equation

~2Dx!Kpq5~2Dy!Kpq5] tKpq . ~2.13!

Moreover theKpq all fulfill the boundary conditions they are supposed to satisfy. Thus they ar
correct heat kernels for these systems.

The heat kernels~2.9!–~2.11! were deduced in Ref. 1 without any discussion of the mo
fpq . The derivation here is more complete. In Ref. 1 it was observed that the heat kerne
infinite arrays of equally spaced points or lines can also be obtained quite simply. For exam
mode language the isolated-point modes~2.4! can be replaced by

f~xY ukY !d0[~2p!2d/2 (
b52`

`

@eikY•~xY1bBY !1heikY•~2xY1bBY !#, ~2.14!

where BY is any constant vector. Heref(xY5mBY ukY )d0
D 50 for any integerm; also ] if(xY

5mBY ukY )d0
N 50 for i 51,...,d and any integerm. Thus theD(N) modes~2.14! represent infinite

arrays of Dirichlet~Neumann! points atxY5mBY . More complicated arrays of point boundaries c
be similarly introduced.1 The heat kernel obtained from modes~2.14! and Eq.~2.7! is

K~ tuxY ,yY !d05~4pt !2d/2(
b

$e2~xY2yY1bBY !2/4t1he2~xY1yY1bBY !2/4t%.

Actually one obtains here a double sum(b,b8 rather than(b and (b2b8)BY in the exponents rathe
thanbBY . But the sum overb8 is totally redundant and can simply be discarded, this step amo
ing to nothing more than a constant~infinite! renormalization ofKd0 which has no effect on
boundary conditions, the heat equation, or other essential properties ofKd0 .

The same device with slight modification in Eqs.~2.3! and~2.10! leads to explicit modes and
heat kernels for infinite arrays of line boundaries with equal spacing. Due to a lack of spa
further discussion of arrays of point and line boundaries will be given in this article.

A. Vacuum stress tensor for an isolated point boundary

It is helpful to know the vacuum stress tensors of isolated point and line boundaries as
are, after all, prototypical boundary objects. Let us consider the point boundary atxY50 in d
dimensions, using some formulas collected in the Appendix for the canonical and improved
tensorsTmn andumn . The calculations are fairly similar to ones presented in Ref. 2. Ultravi
regularization is performed by discarding the free-space termkd(tuxY2yY ) in Eq. ~2.11!. From the
remaining~purely boundary! term

hK~ tuxY ,yY !point[hkd~ tuxY1yY ! ~2.15!
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in Kd0 we obtain using Eq.~A3! and the convenient formula

~r 2!sG~2s!5E
0

`

dt ts21e2r 2/t, ~2.16!

the regularized mode sum

(
n

~wn
2!2sfn~xY !f̄n~yY !reg5

1

G~s!
E

0

`

dt ts21h~4pt !2d/2e2~xY1yY !2/4t

5h
G~2s1d/2!

G~s!~4p!d/2 F1

4
~xY1yY !2Gs2d/2

. ~2.17!

Henceforth we drop the label ‘‘reg’’ on the mode sum. From Eq.~2.17! one verifies

(
n

1

vn
] ifn~xY !] j f̄n~xY !52h

GS d11

2 D
~A4pr !d11 Fd i j 2~d11!

xixj

r 2 G , r 5uxY u.

Here the right-hand side is unchanged when] ifn(xY )] j f̄n(xY ) on the left is replaced by
(] i] jfn(xY ))f̄n(xY ) or by fn(xY )] i] j f̄n(xY ). Then using mode-sum formulas forTmn ,umn in the
Appendix we find

T0050, u0052h
1

2d
~d21!

GS d11

2 D
~A4pr !d11

; ~2.18!

Tii 5du i i 52h
1

2

GS d11

2 D
~A4pr !d11 F22~d11!

xi
2

r 2G ; ~2.19!

Ti j 5du i j 5h

GS d13

2 D
~A4pr !d11

xixj

r 2 ; iÞ j ~2.20!

with T0i5u0i50. umn is traceless as it should be. BothTmn andumn are conserved as they shou
be: ] iTi j 50.

The results~2.18!–~2.20! of course display the physical boundary divergences~see, e.g., Refs
6–8! known to be inseparable from boundaries~unless these divergences cancel away!. Here
T0050 merely because of cancellation.T0050 doesnot mean the point boundary has no effect
the vacuum energy distribution in its vicinity. There is no unique stress tensor for a scalar
and u00 does not vanish. DimensionallyTmn and umn must be constructed from 1/r d11 and
xixj /r d13 making the presence of theser˜0 divergences in Eqs.~2.18!–~2.20! inevitable. Physi-
cally, boundary divergences represent the extreme distortion of the quantum field by the
boundary away from the spatial uniformity it would possess in the absence of this bou
object.

Before leaving the point boundary we mention the connection between the exact bou
term ~2.15! in the heat kernel and the heat kernel expansion for boundary problems~see, e.g., Ref.
9!
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K~ tuxY ,xY !; (
n>0

~4pt !~n2d!/2@an~xY !1bn~xY !#, t˜01

where a051, b050. Here thean(xY ) are functionsof xY characterizing bulk properties of th
distorted quantum field. Thebn(xY ) aredistributionsdefined only on the boundary surfaces, ea
distribution characterizing the field distortion near that particular boundary surface~but less well
than the exact heat kernel does this!. From the exact heat kernel

K~ tuxY ,xY !d05~4pt !2d/2@11he2xY2/t#

and the limit

lim
t˜01

1

Apt
e2x2/t5d~x!,

we see that for the isolated point boundarya051 ~as it must! while

bd~xY !5h22dd~x1!d~x2!¯d~xd!.

All other an ,bn vanish.

B. Vacuum stress tensor for an isolated line boundary

The heat kernel~2.10! for the infinite line boundary along thexd axis is UV regularized by
discarding the free-space term. What remains is

hK~ tuxY ,yY ! line[hkd21~ tuuY 1vY !k1~ tuxd2yd!,
~2.21!

uY 5~x1 ,...,xd21!, vY 5~y1 ,...,yd21!,

leading to the regularized mode sum for the isolated line boundary

(
n

~vn
2!2sfn~xY !f̄n~yY !5h

G~2s1d/2!

G~s!~4p!d/2 2d22s@~uY 1vY !21~xd2yd!2#s2d/2. ~2.22!

Thus

(
n

1

vn
] ifn~xY !] j f̄n~xY !52h

GS d11

2 D
~A4pu!d11 Fd i j 2~d11!

xixj

u2 G , i , j Þd,

~2.23!
u25x1

21x2
21¯1xd21

2 ,

(
n

1

vn
]dfn~xY !]df̄n~xY !52(

n
vnufnu25h

GS d11

2 D
~A4pu!d11

, ~2.24!

(
n

1

vn
] ifn~xY !] j f̄n~xY !50 for i 5d, j Þd or iÞd, j 5d. ~2.25!
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The right-hand sides of Eqs.~2.23! and ~2.25! are unchanged when on the left] ifn] j f̄n is
replaced by (] i] jfn)f̄n or by fn(] i] j f̄n). The right-hand side of Eq.~2.24! changes sign when
]dfn]df̄n is replaced by (]d]dfn)f̄n or by fn(]d]df̄n). One then verifies the vacuum stre
tensors

T0052Tdd5h
1

2

GS d11

2 D
~A4pu!d11

, ~2.26!

u0052udd5h
22d

2d

GS d11

2 D
~A4pu!d11

, ~2.27!

Tii 5du i i 52h
1

2

GS d11

2 D
~A4pu!d11 F32~d11!

xi
2

u2G , i ,d, ~2.28!

Ti j 5du i j 5h

GS d13

2 D
~A4pu!d11

xixj

u2 , iÞ j , i , j ,d, ~2.29!

Tid5u id50, i ,d, ~2.30!

with T0m5u0m50 for m51,2,...,d. Hereumn is traceless as it should be and bothTmn andumn are
conserved as they should be.

From the exact heat kernel~2.10! for the isolated line boundary

K~ tuxY ,xY !d21,15~4pt !2d/2@11he2uY 2/t#;~4pt !2d/21h
1

2dApt
d~x1!¯d~xd21!,

t˜01

we can read off the coefficientsan ,bn in the heat-kernel expansion for this system.

III. LINE BOUNDARY PERPENDICULAR TO EXISTING ONE-DIMENSIONAL
BACKGROUND

Our line boundary construction works when, in all spatial directions perpendicular to the
space is symmetric. If the line boundary is to be positioned along thexd axis then we need
symmetry underxi˜2xi for i 51,...,d21. There is no need for spatial symmetry alongxd . In
fact we can insert the line boundary into an arbitrary background potentialV(xd).

The modes for a line boundary parallel toxd in an arbitrary 1D background potentialV
5V(xd) are

f~xY uqY ,n!5~2p!~12d!/2@eiqY •uY1he2 iqY uY #fn~xd!,

uY 5~x1 ,...,xd21!, qY 5~k1 ,...,kd21!,

k1>0, 2`,ki,`,

x1>0 or <0, 2`,xi,`, i 52,...,d21, ~3.1!
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wherefn(xd) satisfies

@2]d
21V~xd!#fn~xd!5kn

2fn~xd!. ~3.2!

The set$fn(xd)% is complete inxd . With momentum allowed to have the range indicated
modes~3.1! are orthonormal and complete. The heat kernel is

K~ tuxY ,yY !d21,15K1~ tuxd ,yd!$kd21~ tuuY 2vY !1hkd21~ tuuY 1vY !%, ~3.3!

K1~ tuxd ,yd![(
n

e2tkn
2
fn~xd!f̄n~yd!, ~3.4!

wherevY 5(y1 ,...,yd21) andkd21 is the free-space heat kernel. If the factor~3.4! is known one
can computeTmn ,umn directly from Eq.~A3!.

As a simple but nontrivial example of this construction let us attach a perpendicular
infinite line boundary to one side of an infinite plane. The plane is positioned atxd50 and the line
lies along the positivexd axis. Our goal is to calculateTmn andumn in the half spacexd.0. These
tensors are known~see, e.g., Ref. 2! in xd,0 where there are no boundary objects. FromTmn ,umn

we can find the Casimir force density on the plane exerted by the projecting semi-infinite
boundary.

The xd mode factorfn(xd) in Eq. ~3.1! is, in xd>0,

fd~xd!5
1

A2p
@eikdxd1ge2 ikdxd# ~3.5!

whereg521(11) for a Dirichlet ~Neumann! plane atxd50. The heat kernel inxd ,yd>0 is

K~ tuxY ,yY !d21,15@k1~ tuxd2yd!1gk1~ tuxd1yd!#$kd21~ tuuY 2vY !1hkd21~ tuuY 1vY !%. ~3.6!

Discarding the free-space term we are left with

K~ tuxY ,yY !d21,d5gKplane1hK line1hgKpoint, ~3.7!

whereKpoint andK line are defined by Eqs.~2.15! and ~2.21! and

gK~ tuxY ,yY !plane[gk1~ tuxd1yd!kd21~ tuuY 2vY ! ~3.8!

is the regularized heat kernel for an isolated plane positioned atxd50. The vacuum stress tenso
computed from Eq.~3.7! obviously have the form

Tmn5Tmn plane
g 1Tmn line

h 1Tmn point
hg ~3.9!

with a similar formula forumn . Each term in Eq.~3.9! is separately conserved as are the sepa
terms inumn . The latter are separately traceless as well.

Perhaps the most interesting quantity to look at is the perpendicular Casimir force/area

F~x1 ,...,xd21!/A[ lim
e˜0

@Tdd~xd52e!2Tdd~xd5e!# ~3.10!

on the boundary plane atxd50. BecauseTdd plane50 for anyxdÞ0,2 this plane’s distortion of the
quantum field does not contribute to the Casimir force acting on either side of it~quite appropri-
ately!. This leaves the Casimir force acting on the plane due to the field distortion inxd.0 caused
by the semi-infinite line, and by the pointlike juncture of this line with the plane. As Eq.~3.9!
displays very explicitly this juncture acts as an independent boundary object in addition
plane and the line. We find
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F~x1 ,...,xd21!/A5h
1

2
~112g!

GS d11

2 D
~A4pu!d11

, ~3.11!

whereu25x1
21¯1xd21

2 . ThusTmn predicts that aD line and aD plane attract, as do aN line and
a N plane. However, aD line repels aN plane, and aN line repels aD plane. See Fig. 1.

Using Eq. ~3.10! with Tdd˜udd we obtain the Casimir force/area on the plane atxd50
predicted by the improved vacuum stress tensor,

F8~x1 ,...,xd21!/A5h
1

2d
~22d12g!

GS d11

2
D

~A4pu!d11
. ~3.12!

FIG. 1. The example in Sec. III ford53 spatial dimensions.~a! A semi-infinite line boundary~along the positivex3 axis!
extends at right angles from one side of an infinite planar boundary~occupying thex1x2 plane!. ~b!, ~c! Side view: The
semi-infiniteD(N) line attracts~repels! the D plane according to Eq.~3.11! ~force density not to scale!.
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Using the symbolFplane,line8 we see here thatFNN8 is ~attractive, 0, repulsive! for (d,4, d54, d
.4) andFND8 is ~repulsive, 0, attractive! for (d,4, d54, d.4). The force densitiesFNN and
FND disagree with this. On the other hand,FDD8 5FDD andFDN8 5FDN for all spatial dimensions
d>2.

IV. POINT OR LINE BOUNDARY IN THE CENTRAL PLANE OF A SYMMETRIC
ONE-DIMENSIONAL BACKGROUND

We now consider a background ind-dimensional space represented by an arbitrary poten
of the formV5 f (x1

2). The directionsx2 ,...,xd are translation invariant and free. The non-negat
potential functionf (x1

2)>0 can be otherwise quite arbitrary, but it is symmetric underx1˜

2x1 . This symmetry enables one to easily insert a planar,..., line or point boundary int
central planex150. We show how to calculateTmn ,umn for the resulting system from the hea
kernel for the original background. Then as a detailed example we perform these calculatio
a point boundary midway between two parallel planes. This system and others like it have
been investigated to our knowledge. The exact stress-tensor results agree with our qua
expectations concerning Casimir forces acting between distinctD andN objects.

A. Arbitrary background

The modes for the original spatial backgroundprior to inserting the point or line boundar
into the planex150 have the form

f~xY un,qY !5fn~x1!~2p!~12d!/2eiqY •uY ,

uY 5~x2 ,...,xd!, qY 5~k2 ,...,kd!, ~4.1!

2`,ki,`, i 52,...,d

@2]1
21 f ~x1

2!#fn~x1!5kn
2fn~x1!. ~4.2!

The corresponding background heat kernel is

K~ tuxY ,yY !5K1~ tux1 ,y1!kd21~ tuuY 2vY !, ~4.3!

K1~ tux1 ,y1![(
n

e2tkn
2
fn~x1!f̄n~y1!, ~4.4!

wherevY 5(y2 ,...,yd) andkd21 is the free-space heat kernel. Thex1 heat kernel~4.4! satisfies

@2]1
21 f ~x1

2!#K1~ tux1 ,y1!5] tK1~ tux1 ,y1! ~4.5!

and similarly in y1 . Because of the symmetry of the operator2]1
21 f (x1

2) under x1˜2x1 it
follows thatfn(2x1) is also a solution of Eq.~4.2!, andK1(tu2x1 ,y1) is a solution of Eq.~4.5!.
Obvious properties of the free-space factorkd21 in Eq. ~4.3! then lead to the conclusion that bo
K(tu6xY ,yY ) satisfy the full heat equation@2Dx1V# K5] tK for this system, and similarly inyY .

1. Point boundary at x Y 50

To insert a point boundary atxY50 we define the new heat kernel

K~ tuxY ,yY !d0[K~ tuxY ,yY !1hK~ tu7xY ,6yY ! ~4.6!

with hD521, hN511 as usual. This heat kernel satisfies the full heat equation as well asD or
N boundary conditions at the pointx1 ,...,xd50. Thus it represents the modified system with
point boundary atxY50 in addition to the 1D background structure described byV5 f (x1

2). The
~orthonormal, complete! modes for the same system are
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f~xY un,qY !d05~2p!~12d!/2@fn~x1!eiqY •uY1hfn~2x1!e2 iqY •uY # ~4.7!

with now k2>0, x2>0 or <0. Kd0 can be obtained directly from these modes.
Using Eq.~A3! we can now computeTmn ,umn for the modified system ifK1(tux1 ,y1) for the

original system without point boundary is known. Even ifK1 is unknown, Eq.~4.6! reveals a very
fundamental property of Casimir forces: InsertedD andN point boundaries exert equal but opp
site Casimir forces throughout the symmetric background into which they have been inserte
is evident from the structure of Eq.~4.6!. Consider the canonical vacuum stress tensor comp
from Eq. ~4.6!,

Tmn5Tmn background1hTmn point, ~4.8!

where the notation is hopefully obvious.Tmn backgroundis computed fromK(tuxY ,yY ) and Tmn point

from K(tu2xY ,yY ). These tensors are separately conserved. Clearly the contribution from the
boundary to any Casimir force/area acting on a boundary surface, or to any Casimir force d
acting on diffuse~Dirichlet-like! background structure represented byV5 f (x1

2), will be equal but
opposite forD,N points simply becausehD521 andhN511. Exactly the same statements c
be made about the improved vacuum stress tensorumn .

Another comment on Eq.~4.8! concerns UV renormalization. The free-space part ofTmn will
be found inTmn backgroundand only this part of the tensor~4.8! needs UV renormalization.Tmn point

is UV finite by construction. This will be illustrated by the example to follow.

2. Line boundary along the x d axis

To insert a line boundary into the symmetry planex150 ~along thexd axis! we define the hea
kernel

K~ tuxY ,yY !d21,15k1~ tuxd ,yd!$K1~ tux1 ,y1!kd22~ tuaY 2bY !1hK1~ tu7x1 ,6y1!kd22~ tuaY 1bY !%,
~4.9!

aY 5~x2 ,...,xd21!, bY 5~y2 ,...,yd21!.

Kd21,1 satisfies both the heat equation andD or N boundary conditions along thexd axis. The
corresponding modes are

f~xY un,qY !d21,15~2p!~12d!/2eikdxd@fn~x1!eiqY •aY 1hfn~2x1!e2 iqY •aY #. ~4.10!

From Kd21,1 we can calculateTmn ,umn for the new system with line boundary along thexd axis
if we know K1 for the original background without this line. As for an inserted point it is obvio
that D and N boundary lines exert equal but opposite Casimir forces throughout the ori
background.

B. Parallel-plane background

Let us now specialize to a familiar background: two static parallel planar boundariesx1

56L/2. The distortion of the quantum field between and outside these walls is such that eac
experiences an inward uniform force/area10,2 ~the same forD or N conditions!

F/A5

dGS d11

2 D z~d11!

~A4pL !d11
. ~4.11!

After point or line boundary insertion in the central planex150 the local Casimir force
F1(x2 ,...,xd)/A on the planes is nonuniform. Far from the point/line boundaryF1 /A becomes of
course the uniform force~4.11!. However near the point/line boundaryF1(x2 ,...,xd)/A is signifi-
cantly position dependent. As we shall see, if aD(N) point is positioned between parallelD walls
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the attractive Casimir force/area between the latter is locally strengthened~weakened!. If a D(N)
point is positioned between parallelN walls the attractive force/area between the latter is loca
weakened~strengthened!.

Note that we assumed>2 henceforth, specificallyexcludingone spatial dimensiond51 from
discussion. The obvious reason is that all boundaries are points in one dimension. Becau
knows how to handle the static two-boundary problem ford51, one can as easily deal withN
static boundaries at arbitrary positions. There is no reason to apply the far more powerf
equally more specialized method of this paper.

The modes for the parallel-plane background are given by Eq.~4.1! with

fn~x1!5
1

A2L
@ein~p/L !~x11L/2!1ge2 in~p/L !~x11L/2!#,

D: g521, n51,2,3,...,

N: g51, n50,1,2,... . ~4.12!

All the D modes vanish atx156L/2, and beyond these planes atx15(p11/2)L with p any
integer where one might imagine otherD planes if one so chooses. However we shall imag
empty space out beyond the planes atx156L/2, so modes other than the ones~4.12! are appro-
priate in these regions. For theN modes]1]n vanishes atx15(p11/2)L, p any integer.

The heat kernel for the parallel-plane background is~see, e.g., Ref. 2! given by Eq.~4.3! with

K1~ tux1 ,y1!5~4pt !21/2 (
n52`

`

@e2~n2L1x12y1!2/4t1ge2~n2L1L1x11y1!2/4t#. ~4.13!

Here we discard a constant term for Neumann planes coming from then50 constant mode in Eq
~4.12!, which seems to play no physical role. Note thatK1D with g521 vanishes atx156L/2 or
y156L/2. Also]1K1N vanishes atx156L/2 or y156L/2. Both ofK1(tu6x1 ,y1) satisfy the 1D
free heat equation inx1 , and similarly iny1 . ConsequentlyK(tu6xY ,yY ) satisfies the complete hea
equation inxY , and likewise forK(tuxY ,6yY ) in variableyY .

Inserting a point boundary between the planes atxY50 by means of Eq.~4.6! we obtain a
canonical vacuum stress tensor for the resulting system having the form~4.8!;

Tmn5Tmn planes1hTmn point, 2L/2<x1<L/2 ~4.14!

and similarly for umn . The field tensorTmn planes between parallel planes computed~with UV
renormalization! from the background heat kernel~4.3! with factor ~4.13! is well known ~again
see, e.g., Ref. 2!. This tensor is conserved; therefore the remaining tensorTmn point describing the
additional distortion of the quantum field by the inserted point boundary is separately cons
Tmn planescontains the only free-space contribution toTmn and only this part ofTmn needs renor-
malization. The uniform force~4.11! is obtained fromTmn planes.

Tmn point is computed without renormalization from

hK~ tu2xY ,yY !point5h~4pt !2d/2 (
n52`

`

$e2~n2L1x11y1!2/4t1ge2~n2L1L1x12y1!2/4t%e2~uY 1vY !2/4t.

~4.15!

From Eq.~A3! and this heat kernel we find
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h(
n

~vn
2!2sfn~xY !f̄n~yY !point5h

G~2s1d/2!

G~s!~4p!d/2 2d22s (
n52`

`

$@~n2L1x11y1!21~uY 1vY !2#s2d/2

1g@~n2L1L1x12y1!21~uY 1vY !2#s2d/2%. ~4.16!

This basic mode sum yields all terms inTmn point. UV renormalization is unnecessary because
the presence of (uY 1vY )2 in every term on the right. Thus@0#s2d/2 never occurs in the limitxY
˜yY ~except atxY5yY50, which produces the boundary divergences inseparable from the
boundary!. In the corresponding mode sum forTmn planes one has @(n2L1x12y1)21(uY
2vY )2#s2d/2 under the sum and then50 term needs renormalization. Because@0#s2d/2 never
occurs in Eq.~4.16! on the boundary planesx156L/2, Tmn point is finite on these planes. Th
boundary divergences inTmn inseparable from the boundary planes are found only inTmn planes,
just as the boundary divergences associated with the point boundary are found only inTmn point.
These comments can be repeated for the improved vacuum stress tensorumn .

Some helpful intermediate formulas in a moderately tedious calculation are

h(
n

1

vn
H u]1fnu2

~]1
2fn!f̄n or fn~]1

2f̄n!J
point

5h

GS d11

2 D
~4p!~d11!/2 (

n52`

` H @d~nL1x1!22u2#@~nL1x1!21u2#2~d13!/2

7gFdS nL1
L

2D 2

2u2GF S nL1
L

2D 2

1u2G2~d13!/2J , ~4.17!

h(
n

1

vn
H ] ifn]1f̄n or fn] i]1f̄n

]1fn] if̄n or ~]1] ifn!f̄n
J

point

5h

GS d13

2 D
~4p!~d11!/2 ~2xi ! (

n52`

` H ~nL1x1!@~nL1x1!21u2#2~d13!/2

7gS nL1
L

2D F S nL1
L

2D 2

1u2G2~d13!/2J for i .1, ~4.18!

h(
n

1

vn
$] ifn] j f̄n or ~] i] jfn!f̄n or fn] i] j f̄n%point

5h

GS d11

2 D
~4p!~d11!/2 (

n52`

` H 2d i j @~nL1x1!21u2#2~d11!/2

2gd i j F S nL1
L

2D 2

1u2G2~d11!/2

1~d11!xixj@~nL1x1!21u2#2~d13!/2

1g~d11!xixjF S nL1
L

2D 2

1u2G2~d13!/2J i , j .1. ~4.19!

As a check on these expressions one can verify that each satisfies anyD or N boundary condition
on the planes it should satisfy. The identity~for p5 integer)
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(
n52`

` S nL1
L

2D 2p11F S nL1
L

2D 2

1u2G2s

50 ~4.20!

is helpful. Another useful intermediate formula is

h(
n

1

vn
u¹Y fnupoint

2 5h

GS d11

2 D
~4p!~d11!/2 (

n52`

` H @~nL1x1!21u2#2~d11!/2

1gF ~122d!S nL1
L

2D 2

13u2GF S nL1
L

2D 2

1u2G2~d13!/2J . ~4.21!

From the mode-sum formulas in the Appendix we now find relatively easily the compon
of Tmn point in the region2L/2<x1<L/2:

T00 point5hg

GS d11

2 D
2~4p!~d11!/2 (

n52`

` F2dS nL1
L

2D 2

1u2GF S nL1
L

2D 2

1u2G2~d13!/2

, ~4.22!

T11 point5h

GS d11

2 D
2~4p!~d11!/2 (

n52`

`

$@~d21!~nL1x1!222u2#

3@~nL1x1!21u2#2~d13!/22g@~nL1L/2!21u2#2~d11!/2%, ~4.23!

Tii point5h

GS d11

2 D
2~4p!~d11!/2 (

n52`

`

$@~nL1x1!21u2#2~d13!/2

3@22~nL1x1!222u21~d11!xi
2#1g@~nL1L/2!21u2#2~d13!/2

3@~d22!~nL1L/2!223u21~d11!xi
2#%, i .1, i not summed, ~4.24!

T1i point5hxi

GS d13

2 D
~4p!~d11!/2 (

n52`

`

~nL1x1!@~nL1x1!21u2#2~d13!/2, i .1, ~4.25!

Ti j point5h

GS d13

2 D
~4p!~d11!/2 xixj (

n52`

` H @~nL1x1!21u2#2~d13!/21gF S nL1
L

2D 2

1u2G2~d13!/2J ,

iÞ j and i , j .1, ~4.26!

T0i50, i>1. ~4.27!

In the limit L˜` the tensorTmn point becomes the tensor~2.18!–~2.20! for an isolated point
boundary atxY50. Tmn point is conserved as it should be.

The improved vacuum stress tensorumn point is
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u00 point5h

GS d11

2 D
2d~4p!~d11!/2 (

n52`

`

$@~nL1x1!21u2#2~d11!/2~12d!

1g@~nL1L/2!21u2#2~d13!/2@~122d!~nL1L/2!22~d22!u2#%, ~4.28!

u11 point5h

GS d11

2 D
2d~4p!~d11!/2 (

n52`

`

$@~nL1x1!21u2#2~d13!/2@~d21!~nL1x1!222u2#

1g@~nL1L/2!21u2#2~d13!/2@2~d22d11!~nL1L/2!21~d22!u2#%, ~4.29!

u i i point5
1

d
Tii point,

i .1, i not summed, ~4.30!

u i1 point5
1

d
Ti1 point, i .1, ~4.31!

u i j point5
1

d
Ti j point,

iÞ j and i , j .1. ~4.32!

umn point is conserved, and forL˜` this tensor reduces to the isolated point boundary tensor g
in Eqs.~2.18!–~2.20!.

From the formulaf i(xY )52] jTi j (xY ) for the local force density within the boundary-distorte
quantum field we see thatf 1(xY )50 ~because]mTmn50) everywhere away from the boundarie
~i.e., in empty space!. HoweverTmn and umn are discontinuous across the boundary planes
Casimir forces act on these planes. The Casimir force/area on the plane atx152L/2 computed
from Tmn is

F1~u!/A[ lim
e˜0

FT11S x152
L

2
2e D2T11S x152

L

2
1e D G

5d

GS d11

2 D z~d11!

~A4pL !d11
2T11 pointS x152

L

2D ~4.33!

with

T11 point~x152L/2!5h

GS d11

2 D
2~4p!~d11!/2 (

n52`

` F S nL1
L

2D 2

1u2G2~d13!/2

3H ~d212g!S nL1
L

2D 2

2~21g!u2J . ~4.34!

Here we remind the reader thatT1150 outside the parallel planes, and the first term on the ri
in Eq. ~4.33! ~second equality!, i.e., the uniform force~4.11! between parallel planes, comes fro
T11 planes. The negative of Eq.~4.34! gives the additional nonuniform force/area on the left bou
ary plane due to the point boundary in the middle. At positionu50 on this plane ‘‘beneath’’ or
nearest the point boundary the force/area~4.34! is strongest, and larger in magnitude than the fi
term in Eq.~4.33!,
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T11 point~x152L/2!uu505h~d212g!

GS d11

2 D z~d11!

~A4pL !d11
@2d1121#.

The identity

(
n52`

`

~n11/2!2s52@2s21#z~s!

is useful here. Figure 2 depicts the situation for parallel Dirichlet planes with a Dirichle
Neumann point midway between them.

The Casimir force/area on the plane atx152L/2 computed fromumn is given by

F18~u!/A5d

GS d11

2 D z~d11!

~A4pL !d11
2u11 pointS x152

L

2D ~4.35!

FIG. 2. The example in Sec. IV B ford53 spatial dimensions.~a! A point boundary midway between parallel infinit
boundary planes.~b!, ~c! Side view: AD(N) point boundary attracts~repels! the parallelD planes enclosing it according
to Eq. ~4.33! ~force density not to scale!.
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with

u11 point~x152L/2!5h

GS d11

2 D
2~4p!~d11!/2 (

n52`

` F S nL1
L

2D 2

1u2G2~d13!/2

3H 1

d
@d212g~d22d11!#S nL1

L

2D 2

1
1

d
@221g~d22!#u2J .

~4.36!

The constant term in eq.~4.35!—again the uniform force~4.11!—comes fromu11 planes. The
additional nonuniform force/area on the left plane due to the point boundary atxY50 is the
negative of Eq.~4.36!.

An important question is: For what backgrounds doTmn andumn predict the same nonuniform
force density on the boundary planes due to the point, and for which backgrounds are thes
densities different? A comparison of Eqs.~4.34! and ~4.36! shows that forg521

T11 pointS x152
L

2D5u11 pointS x152
L

2D , g521 ~4.37!

while for g51 these two functions ofu2 are somewhat different. Thus for parallel Dirichlet plan
with a Dirichlet or Neumann point halfway between them,Tmn andumn predict identical Casimir
force densities on the planes. For parallel Neumann planes the predicted force densities
identical. Thetotal force Fpoint on thex152L/2 plane due to the point boundary is finite;

Fpoint[E
2`

`

dx2¯dxdF2T11 pointS x152
L

2D G5hg
p

2d12L2 .

Interestingly the force computed from2u11 point(x152L/2) is exactly the same. Note thatFpoint

is an attractive inward force forhg51 ~D planes andD point or N planes andN point! and a
repulsive outward force forhg521 ~D planes andN point or N planes andD point!.

V. GENERAL CASE

For completeness we now summarize the most general versions of the point boundary a
boundary constructions.

A. Point boundary insertion

If the spatial background is symmetric underxY˜2xY @in particular if this background is
described by a potentialV(xY ) with the propertyV(2xY )5V(xY )# then a point boundary can b
inserted atxY50. By now it should be quite obvious how. The heat kernelK(tuxY ,yY ) for the original
background satisfies by assumption

@2Dx1V~xY !#K~ tu6xY ,yY !5] tK~ tu6xY ,yY ! ~5.1!

and similarly inyY . Moreover

K~ tu2xY ,2yY !5K~ tuxY ,yY !. ~5.2!

Thus the modified heat kernel

K~ tuxY ,yY !d0[K~ tuxY ,yY !1hK~ tu7xY ,6yY ! ~5.3!
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satisfies the background heat equation~5.1!. It also manifestly vanishes atxY50 for hD521,
while ¹Y Kd0 vanishes atxY50 for hN511. ThusKd0 correctly represents the modified system
original background1point boundary atxY50.

B. Line boundary insertion

If the spatial background is symmetric underuY˜2uY whereuY 5(x1 ,x2 ,...,xd21), then a line
boundary can be inserted along thexd axis. The background can be arranged in any fash
parallel to thexd axis. The background heat kernelK(tuuY ,xd ;vY ,yd) has to satisfy

@2Dx1V~uY ,xd!#K~ tu6uY ,xd ;vY ,yd!5] tK~ tu6uY ,xd ;vY ,yd! ~5.4!

and similarly inyY5(vY ,yd). The potentialV satisfiesV(2uY ,xd)5V(uY ,xd) and consequently

K~ tu2uY ,xd ;2vY ,yd!5K~ tuuY ,xd ;vY ,yd!. ~5.5!

Then the modified heat kernel

K~ tuxY ,yY !d21,1[K~ tuuY ,xd ;vY ,yd!1hK~ tu7uY ,xd ;6vY ,yd! ~5.6!

satisfies the background heat equation~5.5! and moreoverD or N boundary conditions along th
xd axis.

The heat kernels~5.3! and ~5.6! obviously lead to vacuum stress tensors of the form

Tmn5Tmn
BG1hDTmn . ~5.7!

HerehDTmn is computed from the second term in Eqs.~5.3! and~5.6! andTmn
BG from K(tuxY ,yY ) for

the original background. UV renormalization has to be performed onTmn
BG, not onDTmn . Point

and line boundary insertion does not affect UV renormalization, and this is expressed b
UV-finite nature of DTmn . The additional Casimir force densityf i(xY ) acting throughout the
quantum field due to this field’s additional distortion by the point or line boundary is given

f i~xY !52h] jDTi j .

Equal but opposite force densities are exerted byD andN point or line boundaries.

VI. DISCUSSION

A. Quantum scalar field

In this article we have shown quite explicitly how to insert point and line boundaries into
central point, line, plane,..., of symmetric~but otherwise arbitrary! backgrounds in scalar QFT
The spatial background is required to be invariant under reflection through the inserted
along every directionxi perpendicular to this object. Such a construction is familiar for pla
boundaries but not for point and line boundaries. If one is able to compute the heat
K(tuxY ,yY ) for the original background system—and therefore the vacuum stress tensorTmn and all
Casimir force densities within this system—then one can also calculateK,Tmn , and all Casimir
force densities for the substantially more complicated system with a point or line boundary
center.

We used point and line boundary insertion to investigate the conjectured rules for
Casimir theory discussed in Sec. I: DistinctD objects attract; distinctN objects do the same
distinct D andN objects repel. These rules were found to be obeyed in the detailed examp
Secs. III and IV. Strong indications that these rules hold at a very general level could be disc
in the general mathematics.

Are global Casimir energy considerations at all useful for studying point and line bounda
Let us return to the parallel planes~DD or NN! with a D or N point boundary between them. Th
four boundary configurationsDDD,DND,NDN,NNNproduce identical spectra in the quantu
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field. Consequently the~unrenormalized! global vacuum energyEvac5(vn/2 between the plane
cannot distinguish among them. One soon realizes this is only to be expected. The point bo
between the planes causes afinite shift in the infinite ~even after renormalization! vacuum energy
between the infinite planes.~For finite planes one might wish to rethink this—see below.!

Another way to formulate the preceeding comment is as follows: Imagine displacing s
the point boundary~keeping it in the midplane between the parallel planar boundaries! away to
infinity. Done slowly this costs no energy because no field excitation occurs. Yet with the
boundary out of sight at infinity the system appears to be just two parallel planes distortin
quantum field everywhere. Evidently no change in vacuum energy is involved. Exactly the
argument applies to a line boundary inserted between parallel planes.

These remarks for the parallel-plane example have an obvious extension to more comp
backgrounds. If an inserted point or line boundaryis not ‘‘confined’’ by its symmetric background
in the sense that itcan ~at least in one direction! be displaced away to infinity with no expenditu
of energy, then global vacuum energy considerations will be insensitive to the insertion
point or line boundary.

On the other hand, if an inserted point or line boundaryis confined by its symmetric back
ground in the sense that itcannotbe displaced to infinity without expenditure of energy, th
global vacuum energy considerations should be helpful. Take for example a finite spherical
The method of this paper enables one to insert a point boundary at the center of this cavit
line boundary diametrically through the center. Neither the point nor the line can be disp
without expending energy. The vacuum energy within the cavity is finite and therefore
capable of detecting the insertion of either point or line. Very similar comments apply to
cavities with other shapes.

The method of this paper can very straightforwardly be extended to scalar QFT at
temperature. The notation the author would choose for this purpose is reviewed in Ref. 11

B. Quantum electromagnetic field

What about fields other than scalar ones? Fermion boundary conditions on planes an
extended surfaces are not a clearly organized subject. Thus we leave these aside and
gauge fields—especially the electromagnetic field in four space–time dimensions. Many C
calculations in electromagnetic theory have been done using Green functions. The latter
course, bilocal functions closely related to heat kernels and mode sums like~A3! with s51. Thus
the constructions presented in this paper can be applied to the electromagnetic field, much
uses the image-charge constructions associated with planar metallic surfaces. This is, of
important because the electromagnetic~EM! field is the one quantum field everyone believes
The EM vacuum state is understood to pervade all of space, and the Casimir effect prov
wonderfully direct way to locally access and manipulate this vacuum state, and hence to
verify its existence. Naturally, when studying the static EM Casimir effect one chooses space
three dimensional.

Technically it is clear that the methods of this paper straightforwardly modified to the
problem enable one to insert metal point and line boundaries into preexisting appropriately
metric metal and/or dielectric spatial backgrounds. We cannot undertake a technical discus
this here; however we hope to present a relatively full account elsewhere. Still there are use
general things which can be said about the EM problem.4 The present article concludes with
brief account of these aspects.

A vacuum EM fluctuation can be any classical EM field, including ones which do not sa
the vacuum Faraday’s and Ampere’s laws.@Of course, the further a given quantum fluctuation
from being a solution of these Maxwell equations, the more brief will be its existence, w
reduces its influence.# Vacuum EM fluctuations of course have to satisfy charge conservatio
the presence of backgrounds one can think in terms of distinct electric and magnetic secto
discuss quantum fluctuations in these sectors separately as we shall do. It is known~although
nowhere in the literature adequately discussed! that the electric and magnetic sectors in the E
Casimir effectcompete, with electric quantum fluctuations giving rise to attractive Casimir for
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and magnetic quantum fluctuations to repulsive Casimir forces between metal boundary o
~See, e.g., Refs. 12 and 13 for early work suggesting this.! The seemingly unpredictable depe
dence of the static EM Casimir effect on boundary geometry14–17 arises from this competition
between electric and magnetic sectors.

There exists an interesting analogy between the scalar and EM Casimir effects. A scala
interacting with a Dirichlet object is in some sense analogous to the electric vacuum
interacting with a usual~i.e., electric charge! metal object. Just as distinctD objects have an
attractive Casimir effect in scalar QFT, the electric vacuum sector always gives rise to attr
between distinct metal objects.4,12,13

Distinct N objects in scalar QFT also have an attractive Casimir effect. Such objects c
spond to ‘‘magnetic monopole metal’’ objects in EM theory, with the magnetic vacuum sect
the role of the scalar field. Of course the magnetic vacuum sector interacting with monopole
objects is just the dual of the electric sector with metal objects, so it must have the
behavior.18

The Casimir repulsion2,3 between distinctD and N objects in scalar QFT has an analog
electromagnetism. For example, parallel metal and monopole-metal planes repel.18 This system is
the only one discussed in the literature known to the author involving both metal and mon
metal boundaries. However, basic physical arguments4 rather convincingly reveal that distinc
metal and monopole metal objects must necessarily have a repulsive Casimir effect.

Returning to the insertion of metal point and line boundaries into symmetric background
reader might ask how physically relevant such small boundaries can be. The answer
question provides useful insight into the electromagnetic Casimir effect.

1. Metal point boundary

Idealized as a tiny metal sphere, such a boundary has little effect on the magnetic v
sector. The boundary condition on the magnetic field at the surface of metal isB'50. Essentially
all field lines of any vacuum fluctuation are already parallel to the ‘‘surface’’ of the metal p
thus B'50 causes little distortion of any nearby quantum fluctuation of the magnetic fi
Presumably there is no room on the surface of a metal point for currents to flow to cancel intr
B' from vacuum fluctuations—but neither are such induced currents needed. It is such in
surface currents on metal objects~which cancel intrudingB' from magnetic vacuum fluctuations!
which make the magnetic vacuum sector exert repulsive forces between distinct metal objec
metal points we see this magnetic repulsion mechanism is strongly suppressed.

The effect of the metal point boundary on the electric vacuum sector is quite pronounce
metal boundary conditionEi50 at the metal point strongly distorts nearby vacuum fluctuation
the electric field, bending field lines so they radially approach the metal point. Induced el
surface charges are of course responsible for this. It seems physically reasonable for i
surface charges to find room to exist even where surface currents cannot. In general the
electric field lines of vacuum fluctuations can be ‘‘opened’’ by induced charges on a given
object, or by induced charges on two distinct metal objects. The latter mechanism is what
the electric vacuum sector attractive. This mechanism still functions for metal point bound
while as we have seen magnetic vacuum repulsion is hardly present for metal points. Th
expects that small metal objects will always experience attractive Casimir forces from
nearby metal objects. For example, two metal points attract,12 and a metal point will be attracte
to a metal plane.13 Moreover, a small metal object between parallel metal planes should a
these planes much as in the scalar example of Sec. IV B.

Such considerations suggest an interesting modification of the standard experiment,19,20 veri-
fying the static Casimir force between parallel uncharged metal plates. Let these plates ha
A and separationL. Insertion into the midplane of a small uncharged metal object should mo
the usual Casimir forceFCas5A@c/L4# on one plane19,20 as follows:

FCas5A
c

L4 1
d

L2 . ~6.1!
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Here the constantd.0 fixing the strength of the metal point’s attraction to either metal plate
be approximately calculated. Even if the second term in Eq.~6.1! is small relative to the first, it
may well be detectable because of the quite different power ofL involved. Moreover, one could
displace the small metal object nearer to one plane than the other and observe the resulting
in FCas. Further, this object could be moved laterally through the space between the pa
planes, which should result in a transient increase inFCas. Successful observation of any of the
effects would make the already convincing experimental Casimir effect even more compel

2. Metal line boundary

Idealized as a thin long wire, a metal line boundary also has little effect on the mag
vacuum sector, but a strong effect on the electric vacuum sector. Thus metal wires will expe
attractive Casimir forces from other nearby metal objects. Additional modifications of the sta
Casimir effect suggest themselves, e.g., positioning an uncharged metal wire between the
planes, or moving the wire laterally through the space between these planes.

A final comment recalls the different~for some boundary configurations! Casimir forces
obtained fromTmn andumn for a scalar quantum field. A similar situation exists in EM theory. O
way to view this situation is that the Casimir effect provides in principle a way to disting
experimentally between different stress tensors.

An article discussing the EM Casimir effect from the perspective presented above
preparation.
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APPENDIX: MODE SUMS FOR THE VACUUM STRESS TENSOR

In a convenient and general notation the spatial heat kernel for a scalar field interactin
a static background is defined by

K~ tuxY ,yY ![(
n

e2tvn
2
fn~xY !f̄n~yY !, ~A1!

@2Dx1V~xY !#fn~xY !5vn
2fn~xY !. ~A2!

The spatial modesfn(xY ) are understood to comprise a complete orthonormal set, selected
other such sets by the background potentialV(xY ). This potential represents either softened D
richlet boundary structure, or actual Dirichlet boundary conditions on one or more surfaces@In a
formal way one might also think ofV(xY ) as representing Neumann boundary conditions as w#
In any caseV(xY ) couples the quantum field to the classical background. The heat kernel~A1! by
construction satisfies Eq.~A2! in xY and inyY separately.

From the heat kernel~A1! one can obtain quite directly a number of important local phys
quantities, in particular the canonical and improved vacuum stress tensorsTmn and umn . These
tensors consist of a number of terms, each having a mode-sum representation which can b
directly from

(
n

~vn
2!2sfn~xY !f̄n~yY !5

1

G~s!
E

0

`

dt ts21K~ tuxY ,yY !. ~A3!

Here the Mellin transform ofK introduces ultraviolet singularities att50 which must be removed
from the mode sum on the left~UV regularization!. Aside from this, an explicit calculation of th
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bilocal mode sum~A3! for a given system yields straightforwardlyTmn andumn , Casimir force
densities throughout the spatial background of this system, and so on.

Explicit mode-sum formulas forTmn andumn are given in Ref. 2. We list these again here f
a massless scalar field withV(xY )50:

T005
1

4 (
n

vnufnu21
1

4 (
n

1

vn
u¹Y fnu2,

Tii 5
1

2 (
n

1

vn
u] ifnu22

1

4 (
n

1

vn
u¹Y fnu21

1

4 (
n

vnufnu2, i not summed,

T0i5u0i5
i

4 (
n

@~] ifn!f̄n2fn~] if̄n!#,

Ti j 5
1

4 (
n

1

vn
@] ifn] j f̄n1] jfn] if̄n#, iÞ j

u005
2d21

4d (
n

vnufnu21
1

4d (
n

1

vn
u¹Y fnu2,

u i i 5
d11

4d (
n

1

vn
u] ifnu21

1

4d (
n

vnufnu22
1

4d (
n

1

vn
u¹Y fnu2

2
d21

8d (
n

1

vn
@fn] i

2f̄n1~] i
2fn!f̄n#,

i not summed,

u i j 5
d11

8d (
n

1

vn
@] ifn] j f̄n1] jfn] if̄n#2

d21

8d (
n

1

vn
@fn] i] j f̄n1~] i] jfn!f̄n#,

iÞ j .
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Partially solvable quantum many-body problems
in D-dimensional space „D51,2,3,...…

F. Calogero
Dipartimento di Fisica, Universita` di Roma I ‘‘La Sapienza,’’ 00185 Roma, Italy,
and Instituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy

~Received 2 September 1998; accepted for publication 14 June 1999!

A simple technique employed almost three decades ago to manufacture partially
solvable quantum many-body problems is revisited.@A quantum problem is ‘‘par-
tially solvable’’ if ~only! some of its eigenvalues and eigenfunctions can be exhib-
ited#. The models thereby generated are characterized by Hamiltonians of normal
form, i.e., standard kinetic plus momentum-independent potential energy; in most
cases the latter features three-body, in addition to two-body and one-body, interac-
tions. The setting refers toD-dimensional space; the examples focus onD51, D
52, and D>2, and include generalizations of, and additional results on, cases
recently discussed in the literature, as well as new models. ©1999 American
Institute of Physics.@S0022-2488~99!02409-3#

I. INTRODUCTION

Several recent papers1–8 have presented and discussed partially solvable quantum many-
problems.~We call ‘‘partially solvable’’ a quantum problem if some of, but not all, its eigenvalu
and eigenfunctions can be exhibited; for simplicity attention is hereafter restricted to bound
and discrete eigenvalues.! This prompted us to revisit a simple technique employed almost t
decades ago9 to manufacture partially solvable quantum many-body problems. We thereby
erate a variety of such models. They are characterized by Hamiltonians of normal form
standard kinetic energy and momentum-independent potential energy; in most cases th
features three-body, in addition to two-body and one-body~and possibly some special ‘‘N-body’’!,
interactions. The setting refers toD-dimensional space, and attention is restricted to rotat
invariant Hamiltonians. The examples focus onD51, D52, and D>2. We exhibit a fairly
general class of models, which is then specialized to specific examples. These include gene
versions of cases discussed in the literature,1–10 as well as new partially solvable quantum man
body problems. Moreover, in some cases, our treatment of known models goes beyond p
findings, inasmuch as the collection of eigenstates we exhibit is larger than that previously k

In Sec. II we display for convenience a representative list of the partially solvable m
treated in this paper. Section III explains the main idea and reports the basic formulas from
the various models are then easily obtained, and exhibited as specific examples, in S
Section V contains some concluding remarks and hints at future developments.

The relations of the specific models exhibited herein with previous findings1–11 are discussed
below, in Sec. IV, on a case-by-case basis. The notation is defined at the beginning of Sec.
it is sufficiently self-evident to allow direct browsing through Sec. II.

II. A REPRESENTATIVE LIST OF PARTIALLY SOLVABLE QUANTUM MANY-BODY
PROBLEMS IN D-DIMENSIONAL SPACE

In this section we present, for convenience, a representative list of the partially sol
quantum many-body problems treated in this paper. We only report here those with one-
and three-body interactions, for whose definition the reader is referred, if need be, to~3.1! with
~3.2! @and let us also recall thatpartial solvability entails the capability to exhibit at least on
42080022-2488/99/40(9)/4208/19/$15.00 © 1999 American Institute of Physics
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solution of the stationary Schro¨dinger equation~3.3!#. These results are derived, and explained
somewhat more detail, in Sec. IV, where we also report more general models than those dis
here, including some that include certain special ‘‘N-body’’ potentials.

The first model we report@see ~4.1b!, ~4.3b!, and ~4.3c!# is characterized by translation
invariant interactions:

uj
~1!~rW !50, ~2.1a!

ujk
~2!~rW1 ,rW2!5ujk

~2!~r 12!5@~mj1mk!/~4mjmk!#@a jk~a jk1D22!/r 12
22b jk~2a jk1D21!/r 12#,

~2.1b!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~rW12,rW13!

5~mj 1
!21@~rW12•rW13!/~r 12r 13!

2#@a j 1 j 2
2b j 1 j 2

r 12#@a j 1 j 3
2b j 1 j 3

r 13#. ~2.1c!

Here and belowD is the dimensionality of space andmj are the particle masses; theN(N21)
constantsa jk5ak j , b jk5bk j are largely arbitrary~say, nonnegative!, andrW jk[rW j2rWk .

The second and third models@see~4.7c! with ~4.10b! and ~4.10d!, and again~4.7c! but with
~4.11b! and ~4.11d!# read

uj
~1!~r !52mja

2r 2, ~2.2a!

ujk
~2!~rW1 ,rW2!5ujk

~2!~r 1 ,r 2!

5gjka$@~mj1mk!/~8mjmk!#$~gjk21!a cosh@2a~r 12r 2!#/sinh2@a~r 12r 2!#

22~D21!$r 22r 1 exp@a~r 12r 2!#%/@r 1r 2$12exp@a~r 1r 2!#%#%

1a$r 12r 2 exp@a~r 12r 2!#%/$12exp@a~r 12r 2!#%%, ~2.2b!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!

5~mj 1
!21gj 1 j 2

gj 1 j 3
$12exp@a~r 12r 2!#%21$12exp@a~r 12r 3!#%21;

~2.2c!

and, withuj
(1)(r ) given again by~2.2a!,

ujk
~2!~rW1 ,rW2!5ujk

~2!~r 1 ,r 2!

5gjkb@~mj1mk!/~4mjmk!#$~gjk21!b@r 1
2~b21!1r 2

2~b21!#/~r 1
b2r 2

b!2

1~b1D22!@r 1
b222r 2

b22#/~r 1
b2r 2

b!%, ~2.3a!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21gj 1 j 2

gj 1 j 3
r 1

2~b21!/@~r 1
b2r 2

b!~r 1
b2r 3

b!#.

~2.3b!

Here theN(N21)/2 constantsgjk5gk j are also largely arbitrary~nonnegative!, as well as the two
constantsa andb.

The fourth model we report@see~4.14a!–~4.14c!# reads

uj
~1!~rW !5uj

~1!~r !5v j~r !, ~2.4a!

ujk
~2!~rW1 ,rW2!5@~mj1mk!/~4mjmk!#gjk~gjk21!~r 1

21r 2
2!/~rW1•rW2!2, ~2.4b!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5~mj 1
!21gj 1 j 2

gj 1 j 3
~rW2•rW3!/@~rW1•rW2!~rW1•rW3!#. ~2.4c!
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In these formulasv j (r ) are rotation-invariant one-body potentials~arbitrary, but solvable in
D-dimensional space for arbitrary angular momentum!, and theN(N21)/2 constantsgjk5gk j are
again arbitrary nonnegative numbers.

The fifth model we report@see~4.21a!–~4.21c!#

ujk
~2!~rW1 ,rW2!5@~mj1mk!/~4mjmk!#~r 1

21r 2
2!@gjk~gjk21!/~rW1•rW2!21g̃ jk~ g̃ jk21!/~ ẑ•rW1∧rW2!2#,

~2.5a!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5~mj 1
!21@~rW2•rW3!$gj 1 j 2

gj 1 j 3
/@~rW1•rW2!~rW1•rW3!#

1g̃ j 1 j 2
g̃ j 1 j 3

/@~ ẑ•rW1∧rW2!~ ẑ•rW1∧rW3!#%

1~ ẑ•rW2∧rW3!$gj 1 j 2
g̃ j 1 j 3

/@~rW1•rW2!~ ẑ•rW1∧rW3!#

2g̃ j 1 j 2
gj 1 j 3

/@~ ẑ•rW1∧rW2!~rW1•rW3!#%#, ~2.5b!

again with~2.4a!, see above, and theN(N21) constantsgjk5gk j , g̃ jk5g̃k j arbitrary nonnegative
numbers. In this caseD52 ~while in the other cases displayed above the dimensionalityD of
space is arbitrary!, and we employ the definitionẑ•rW j∧rWk[xjyk2yjxk .

In the case of the first three models, exact formulas are given in Sec. IV for~at least! one
eigenvalue and the corresponding eigenfunction; for the last two, large families of eigenvalu
eigenfunctions are given, depending onN quantum numbers~the completeenergy spectrum and
set of eigenfunctions depends generally onND quantum numbers!.

Finally let us re-emphasize that not all these models are quite new; for a discussion o
aspect on a case-by-case basis, including of course the attribution of due credits, see Sec

III. MAIN IDEA AND BASIC RESULTS

Notation: D-dimensional vectors are denoted by superimposed arrows, sayrW j , with the usual
~Euclidean! definitions for the scalar productrW j•rWk and the modulusr j[(rW j•rW j )

1/2. Indices gen-
erally run from 1 toN, for N-body problems. Unless otherwise indicated, bothD and N are
arbitrary positive integers. We denote bymj the mass of thej th particle, and generally write the
quantum many-body Hamiltonian as follows:

H52(
j 51

N

~2mj !
21D j1U~rW1 ,...,rWN!, ~3.1!

with D j[¹W j•¹W j , ¹W j[]/]rW j ~hence we have chosen units so that\51). The potential energy
U(rW1 ,...,rWN) will be conveniently split up into multibody contributions as follows:

U~rW1 ,...,rWN!5 (
n51

N

U ~n!~rW1 ,...,rWN!, ~3.2a!

U ~1!~rW1 ,...,rWN!5(
j 51

N

uj
~1!~rW j !, ~3.2b!

U ~2!~rW1 ,...,rWN!5~1/2! (
j ,k51; j Þk

N

ujk
~2!~rW j ,rWk!5 (

1< j ,k<N
ujk

~2!~rW j ,rWk!, ~3.2c!
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U ~3!~rW1 ,...,rWN!5~1/2! (
j 1 , j 2 , j 351; j 1Þ j 2 , j 2Þ j 3 , j 3Þ j 1

N

uj 1 j 2 j 3

~3! ~rW j 1
,rW j 2

,rW j 3
!

5 (
j 1 , j 2 , j 351; j 1Þ j 2 , j 1Þ j 3 , j 2, j 3

N

uj 1 j 2 j 3

~3! ~rW j 1
,rW j 2

,rW j 3
!, ~3.2d!

and so on~but in fact consideration will be mainly focused on problems with up to three-b
interactions, except possibly for some special ‘‘N-body’’ contributions, see below!. Note that, as
indicated by these formulas,ujk

(2)(rW1 ,rW2)5uk j
(2)(rW2 ,rW1), uj 1 j 2 j 3

(3) (rW1 ,rW2 ,rW3)5uj 1 j 3 j 2

(3) (rW1 ,rW3 ,rW2). We

do not assumea priori all particles to be equal, indeed we allow them to have different masses
interactions; and for simplicity we pay no attention hereafter to the statistics obeyed by ide
particles~this gap can be easily filled by the diligent reader!.

We seek solutions of the stationary Schro¨dinger equation

@H2E#C~rW1 ,...,rWN!50, ~3.3!

using for the eigenfunctionC(rW1 ,...,rWN) the ansatz

C~rW1 ,...,rWN!5F~rW1 ,...,rWN!c~rW1 ,...,rWN!, ~3.4a!

F~rW1 ,...,rWN!5 )
n51

N

F ~n!~rW1 ,...,rWN!, ~3.4b!

F ~1!~rW1 ,...,rWN!5)
j 51

N

f j
~1!~rW j !5expF (

j 51

N

w j
~1!~rW j !G , ~3.4c!

F ~2!~rW1 ,...,rWN!5 )
j 51,k51; j Þk

N

@ f jk
~2!~rW j ,rWk!#

1/2

5 )
1< j ,k<N

@ f jk
~2!~rW j ,rWk!#

5expF ~1/2! (
j ,k51; j Þk

N

w jk
~2!~rW j ,rWk!G

5expF (
1< j ,k<N

w jk
~2!~rW j ,rWk!G , ~3.4d!

and so on~in fact we shall hardly go beyond, see below!. Note that these formulas imply
f jk

(2)(rW1 ,rW2)5 f k j
(2)(rW2 ,rW1) and likewisew jk

(2)(rW1 ,rW2)5wk j
(2)(rW2 ,rW1), as well as

f j
~1!~rW !5exp@w j

~1!~rW !#, f jk
~2!~rW1 ,rW2!5exp@w jk

~2!~rW1 ,rW2!#, ~3.5a!

entailing

¹W f j
~1!~rW !5 f j

~1!~rW !¹W w j
~1!~rW !, D f j

~1!~rW !5 f j
~1!~rW !$Dw j

~1!~rW !1@¹W w j
~1!~rW !#2%, ~3.5b!

and analogous formulas forf jk
(2)(rW1 ,rW2) andw jk

(2)(rW1 ,rW2). In the following we employ thef or w
notation according to convenience.

The ansatz~3.4! is of course highly redundant; we take advantage of this by making ap
priate choices for the ‘‘correlation factors’’F (n)(rW1 ,...,rWN), see below. The idea is to impose th
C(rW1 ,...,rWN), see~3.4!, satisfy the Schro¨dinger equation~3.3!, and to identify the correspondin
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potentialU(rW1 ,...,rWN), see~3.1! and~3.2!, and the energy eigenvalueE; there will be cases when
to a specific potential U(rW1 ,...,rWN), there correspond different eigenfunctio
Cm1 ,m2, ...

(rW1 ,...,rWN), labeled by one or more quantum numbersm1 ,m2 ,..., andcorrespondingly
energy eigenvaluesEm1 ,m2 ,... ~possibly degenerate, see below!.

Let us then insert theansatz~3.4! into the Schro¨dinger equation~3.3!. There are two ap-
proaches, which we like to set out explicitly so as to avoid misunderstandings. Firstly we o
via ~3.1!, the following formulas:

~H̃2Ẽ!c50, ~3.6!

with

H̃52(
j 51

N

~2mj !
21D j2 i (

j 51

N

@WW j~rW1 ,...,rWN!•¹W j1¹W j•WW j~rW1 ,...,rWN!#1Ũ~rW1 ,...,rWN!,

~3.7a!

Ũ~rW1 ,...,rWN!2Ẽ5U~rW1 ,...,rWN!2E2(
j 51

N

~2mj !
21@VW j~rW1 ,...,rWN!#2, ~3.7b!

where

VW j~rW1 ,...,rWN!5@F~rW1 ,...,rWN!#21¹W jF~rW1 ,...,rWN!, ~3.7c!

WW j~rW1 ,...,rWN!52 i ~2mj !
21VW j~rW1 ,...,rWN!. ~3.7d!

Note that in the right-hand-side of~3.7a! ¹W j is an operator, so that

¹W j•WW jc5WW j•~¹W jc!1c~¹W j•WW j !. ~3.8!

These formulas entail the following~trivial! Remark:If the Schro¨dinger equation (3.3) with
(3.1) is solvable, also solvable is the Schro¨dinger equation (3.6) with (3.7).Indeed the two
problems are related by the unitary transformationF21(H2E)F5(H̃2Ẽ) @we allow for the
possibility to choseẼÞE, so that neitherU(rW1 ,...,rWN) nor Ũ(rW1 ,...,rWN) contain anadditive
constant; a requirement which makes sense only if both potentials vanish asymptotically#. The
~also trivial! classical counterpart of thisRemarkstates thatthe two classical problems charac
terized by the Hamiltonians

H~pW 1 ,...,pW N ;rW1 ,...,rWN!5(
j 51

N

~2mj !
21pj

21U~rW1 ,...,rWN!, ~3.9a!

H̃~PW 1 ,...,PW N ;rW1 ,...,rWN!5(
j 51

N

~2mj !
21Pj

212(
j 51

N

PW j•WW j~rW1 ,...,rWN!1Ũ~rW1 ,...,rWN!,

~3.9b!

are equivalent [they entail the same evolution for the particle positions rW j (t)]. Indeed they are
related by thecanonical transformation pW j5PW j2 iVW j (rW1 ,...,rWN), rW j5RW j , with WW j (rW1 ,...,rWN) re-
lated toVW j (rW1 ,...,rWN) by ~3.7d!, and of courseŨ(rW1 ,...,rWN) related toU(rW1 ,...,rWN) by ~3.7b!.
Note that theseRemarkshold for anarbitrary choice of theN D-vector functionsVW j (rW1 ,...,rWN),
provided they admit the representation~3.7c!. They entail the possibility to introduce solvab
many-body problems, by starting from a trivially solvable problem@say, from ~3.1! with
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U(rW1 ,...,rWN) given by~3.2a! whereU (n)(rW1 ,...,rWN)50 for n.1 anduj
(1)(r ) in ~3.2b! are solvable

one-body potentials# and getting a new,apparentlynontrivial, Hamiltonian via~3.7! or ~3.9!. This
is not the route we follow below.

The second approach is, perhaps, less trivial. It is based on another set of formula@also
equivalent, via~3.4!, to ~3.3! with ~3.1!#:

2(
j 51

N

~2mj !
21@D j12VW j~rW1 ,...,rWN!•¹W j #c~rW1 ,...,rWN!50, ~3.10!

VW j~rW1 ,...,rWN!5 (
n51

N

VW j
~n!~rW1 ,...,rWN!, ~3.11!

U~rW1 ,...,rWN!2E5(
j 51

N

~2mj !
21(

n51

N

@F~rW1 ,...,rWN!#21D jF~rW1 ,...,rWN!, ~3.12a!

U~rW1 ,...,rWN!2E5(
j 51

N

~2mj !
21H (

n51

N

@F ~n!~rW1 ,...,rWN!#21D jF
~n!~rW1 ,...,rWN!

1 (
m,n51;mÞn

N

VW j
~m!~rW1 ,...,rWN!•VW j

~n!~rW1 ,...,rWN!J , ~3.12b!

U~rW1 ,...,rWN!2E5(
j 51

N

~2mj !
21H (

n51

N

¹W j•VW j
~n!~rW1 ,...,rWN!

1 (
m,n51

N

VW j
~m!~rW1 ,...,rWN!•VW j

~n!~rW1 ,...,rWN!J , ~3.12c!

where

VW j
~n!~rW1 ,...,rWN!5@F ~n!~rW1 ,...,rWN!#21¹W jF

~n!~rW1 ,...,rWN!5¹W j log@F ~n!~rW1 ,...,rWN!#. ~3.13!

The equivalence among~3.12a! and ~3.12b! is consistent with the definition~3.4b!; likewise, the
equivalence among~3.12b! and~3.12c! is entailed by the definition~3.13! @note that in the double
sum in the right-hand-side of~3.12b! the ‘‘diagonal’’ term withm5n is omitted while it is instead
present in the double sum in the right-hand-side of~3.12c!#.

The modified Schro¨dinger equation~3.10! provides a convenient starting point for the trea
ment ofcompletely solvablemodels, including the well-knownone-dimensionalcase withequal
particles and two-body inverse-square potentials~possibly with an additional interaction, fo
instance a harmonic oscillator potential, or a ‘‘Coulomb-type’’ potential, depending only on
global coordinate( j 51

n xj
2).11,7 Hereafter we set insteadc(rW1 ,...,rWN)51, and thereby satisfy

~3.10! trivially. We moreover setF (n)(rW1 ,...,rWN)51 for 2,n,N, namely we restrict only to
F (1)(rW1 ,...,rWN), F (2)(rW1 ,...,rWN) and F (N)(rW1 ,...,rWN) ~with a specialansatz for this latter, see
below! our freedom to chose, compatibly with theansatzen~3.4c!, ~3.4d! etc., nontrivial ‘‘corre-
lation factors’’ F (n)(rW1 ,...,rWN) @which then determine the ‘‘partially solvable’’ potentia
U(rW1 ,...,rWN) via ~3.12!, see below#. To explain this restriction let us emphasize that, for 2n21
<N, a nontrivial presence of the ‘‘correlation factor’’F (n)(rW1 ,...,rWN) yields up to (2n21)-body
interactions in the corresponding partially solvable potential@see~3.12! and below#.

Hence@from ~3.12b!#
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U~rW1 ,...,rWN!2E5(
j 51

N

~2mj !
21$@F ~1!#21D jF

~1!1@F ~2!#21D jF
~2!

1@F ~N!#21D jF
~N!12VW j

~1!
•VW j

~2!12VW j
~1!
•VW j

~N!12VW j
~2!
•VW j

~N!%. ~3.14!

To preserve rotation-invariance we moreover set@see~3.4c!#

f j
~1!~rW !5 f j

~1!~r !5exp@w j
~1!~rW !#5exp@w j

~1!~r !# ~3.15a!

so that

@F ~1!~rW1 ,...,rWN!#21D jF
~1!~rW1 ,...,rWN!5@ f j

~1!9~r j !1~D21! f j
~1!8~r j !/r j #/ f j

~1!~r j !

5w j
~1!9~r j !1@w j

~1!8~r j !#
21~D21!w j

~1!8~r j !/r j ,

~3.15b!

VW j
~1!5rW j f j

~1!8~r j !/@r j f j
~1!~r j !#5w j

~1!8~r j !rW j /r j . ~3.15c!

Of course appended primes denote differentiations with respect to the argumentr j .
We moreover set

F ~N!~rW1 ,...,rWN!5F ~N!~r!5exp@F~r!#, ~3.16a!

r25(
j 51

N

2mjr j
2, ~3.16b!

so that

(
j 51

N

~2mj !
21@F ~N!~r!#21D jF

~N!~r!5@ F̈ ~N!~r!1~ND21!Ḟ ~N!~r!/r#/F ~N!~r!

5F̈~r!1@Ḟ~r!#21~ND21!Ḟ~r!/r, ~3.16c!

VW j
~N!52mjrW jḞ~r!/r, ~3.16d!

where of course superimposed dots denote differentiation with respect to the argumenr. In
particular in the following we generally set~unless we state otherwise!

F ~N!~r!5exp~2ar2/2!, F~r!52ar2/2, Ḟ~r!52ar, F̈~r!52a, ~3.17a!

so that

(
j 51

N

~2mj !
21@F ~N!~r!#21D jF

~N!~r!5a2r22aND, ~3.17b!

VW j
~N!522mjarW j . ~3.17c!

To complete the construction of the potentialU(rW1 ,...,rWN), see~3.14!, we must still assign the
two-body correlation functionsf jk

(2)(rW1 ,rW2) or w jk
(2)(rW1 ,rW2), see~3.4d!. The discussion of various

specific choices for these functions, as well as for the functionsf j
(1)(r ) or w j

(1)(r ), is postponed to
the following section.

We end this section by rewriting the expression forU(rW1 ,...,rWN) andE, see~3.14!, entailed by
the choices made so far, see~3.15! and ~3.16! with ~3.17!:
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U~rW1 ,...,rWN!5(
j 51

N

uj
~1!~r j !1 (

j ,k51; j ,k

N

ujk
~2!~rW j ,rWk!1 (

j 1 , j 2 , j 351; j 1Þ j 2 , j 1Þ j 3 , j 2, j 3

N

uj 1 j 2 j 3

~3! ~rW j 1
,rW j 2

,rW j 3
!,

~3.18a!

E5(
j 51

N

Ej
~1!1 (

j ,k51 j : j ,k

N

Ejk
~2!1 (

j 1 , j 2 , j 351; j 1Þ j 2 , j 1Þ j 3 , j 2, j 3

N

Ej 1 j 2 j 3

~3! , ~3.18b!

uj
~1!~r !52mja

2r 22aD1$~2mj !
21@ f j

~1!9~r !1~D21! f j
~1!8~r !/r #

22ar f j
~1!8~r !1Ej

~1! f j
~1!%/ f j

~1!~r !, ~3.18c!

ujk
~2!~rW1 ,rW2!5@ f jk

~2!~rW1 ,rW2!#21$@~mj1mk!/~4mjmk!#@~D11D2! f jk
~2!~rW1 ,rW2!

12$@w j
~1!8~r 1!/r 1#~rW1•¹W 1!1@wk

~1!8~r 2!/r 2#~rW2•¹W 2!% f jk
~2!~rW1 ,rW2!#

2a@~rW1•¹W 1!1~rW2•¹W 2!# f jk
~2!~rW1 ,rW2!1Ejk

~2! f jk
~2!~rW1 ,rW2!%, ~3.18d!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5Ej 1 j 2 j 3

~3! 1~mj 1
!21@¹W 1w j 1 j 2

~2! ~rW1 ,rW2!#•@¹W 1w j 1 j 3

~2! ~rW1 ,rW3!#. ~3.18e!

Let us re-emphasize that we are still free to choose at our convenience the one-body fu
f j

(1)(r ) @or w j
(1)(r ), see~3.5a!# and the two-body functionsf jk

(2)(rW1 ,rW2) @or w jk
(2)(rW1 ,rW2), see~3.5a!#,

as well as the energy constantsEj
(1) , Ejk

(2) , andEj 1 j 2 j 3

(3) ; we have on the other hand committe

ourselves to the simple choice~3.17! for F~r!. Cases in which a more general choice forF~r! is
convenient will also be specially mentioned and considered below. It is easily seen that thi
entail the following modifications: in~3.18c! the term 2mja

2r 22aD must be replaced by

$F̈(r)1@Ḟ(r)#21(ND21)Ḟ(r)/r%/N @see~3.17b! and~3.16c!#, and in the other two places, i

~3.18c! and~3.18d!, where the constanta appears, it must be replaced by2Ḟ(r)/r @see~3.17c!
and ~3.16d!#, of course always withr defined by~3.16b!. These modifications mar the interpre
tation ofuj

(1)(r ),ujk
(2)(rW1 ,rW2), respectively,uj 1 j 2 j 3

(3) (rW1 ,rW2 ,rW3) as one-, two- respectively three-bod

potentials; this is why we prefer to write~3.18! as we did, rather than in the more general fo
entailed by these modifications. But we must also emphasize that, even though the formula~3.18!
seems to provide a natural distinction between one-, two- and three-body interactions, the
are cases~see below! when parts, say, of the potentialujk

(2)(rW1 ,rW2) are more naturally interprete
as one-body contributions: this is generally the case wheneverujk

(2)(rW1 ,rW2), or parts of it, separate
into additive contributions of two functions each depending only upon one of the two argum
rW1 andrW2 . Hence a more complete analysis, including a proper separation in one-, two-, thre
possiblyN-body potentials, can only be made after we specify, in the following section, va
choices for the functionsf j

(1)(r ) and f jk
(2)(rW1 ,rW2).

IV. EXAMPLES

In this section we derive various examples of partially solvable quantum many-body
lems. Our main tool are the equations~3.18! displayed at the end of the preceding Sec. III, whi
are now implemented by making specific choices for the two-body ‘‘correlation functio
f jk

(2)(rW1 ,rW2) and the ‘‘one-body’’ functionsf j
(1)(r ) @or equivalentlyw jk

(2)(rW1 ,rW2) and w j
(1)(r ), see

~3.5a!#. Let us re-emphasize the large freedom in the choice of these functions, and corre
ingly of the ‘‘energies’’ Ej

(1) , Ejk
(2) , and Ej 1 j 2 j 3

(3) ; the only restriction is that the wave functio

C(rW1 ,...,rWN), see~3.4!, benormalizable~possibly up to the free motion of the center of mass
the many-body system, see below!.

We conveniently subdivide this section into four parts, treating thereby four different cla
of partially solvable many-body problems.
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A. Models of type A „translation invariant …

Let us set

Ej
~1!5Ej 1 j 2 j 3

~3! 50, a50, f j
~1!~r !51, w j

~1!~r !50, ~4.1a!

entailing @see~3.18c!#

uj
~1!~r !50, ~4.1b!

and let us moreover set

f jk
~2!~rW j ,rWk!5 f jk

~2!~r jk!5 f k j
~2!~r jk!, ~4.1c!

where we introduce the convenient short-hand notation

rW jk[rW j2rWk , r jk[~rW jk•rW jk!1/2[r k j . ~4.1d!

Then @see~3.18d!#

ujk
~2!~rW1 ,rW2!5ujk

~2!~r 12!

5$@~mj1mk!/~4mjmk!#@ f jk
~2!9~r 12!1~D21! f jk

~2!8~r 12!/r 12#

1Ejk
~2! f jk

~2!~r 12!%/ f jk
~2!~r 12!, ~4.1e!

and ~see~3.18e!!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~rW12,rW13!5~mj 1
!21@~rW12•rW13!/~r 12r 13!#w j 1 j 2

~2! 8~r 12!w j 1 j 3

~2! 8~r 13!.

~4.1f!

Hence, by choosingf jk
(2)(r ) as an~appropriate; see examples below! solution of the equation

@~mj1mk!/~4mjmk!#@ f jk
~2!9~r !1~D21! f jk8~r !/r #1Ejk

~2! f jk
~2!~r !5v jk~r ! f jk

~2!~r !, ~4.2a!

with v jk(r ) arbitrarily given~andEjk
(2) appropriately chosen, see examples below!, one obtains

ujk
~2!~r !5v jk~r !. ~4.2b!

Note that~4.2a! is just the two-bodyD-dimensional Schro¨dinger equation~after separation of the
two-body center-of-mass motion! for the j th and kth particles, with the pair potentialujk

(2)(r )
5v jk(r ), r being the~scalar! interparticle distance. It is thus seen that solutions~i.e., eigenvalues
and eigenfunctions! of many-body problemswith arbitrary translation- and rotation-invariant pa
potentials can be found, provided solutions of the corresponding problem are knownin the two-
body context, and additional,appropriate three-body interactions are also present. On the o
handpartially solvable two-body problemscan easily be manufactured by choosing appropria
a two-body wave function and computing the corresponding potential. In this manner it is e
manufacture a large zoo ofpartially solvable rotation- and translation-invariant quantum man
body problems.

For instance by choosing

f jk
~2!~r !5r a jk exp~2b jkr !, ~4.3a!

we conclude that theN-body problem without one-body interactions, with the long-range tw
body interactions

ujk
~2!~r !5@~mj1mk!/~4mjmk!#@a jk~a jk1D22!/r 22b jk~2a jk1D21!/r #, ~4.3b!
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and the long-range three-body interactions

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~rW12,rW13!

5~mj 1
!21@~rW12•rW13!/~r 12r 13!

2#@a j 1 j 2
2b j 1 j 2

r 12#@a j 1 j 3
2b j 1 j 3

r 13#, ~4.3c!

is partially solvable, possessing a ground state with energy

E52 (
j ,k51; j ,k

N

@~mj1mk!/~4mjmk!#b jk
2 ~4.3d!

and eigenfunction

C~rW1 ,...,rWN!5expF2 (
j ,k51; j ,k

N

b jkr jkG )
j ,k51; j ,k

N

~r jk!a jk. ~4.3e!

Here theN(N21) constantsa jk5ak j andb jk5bk j arearbitrary, except for the conditions

a jk.0, (
k51,kÞ j

N

b jk.0, ~4.3f!

which are sufficient to guarantee that the eigenfunction~4.3e! be normalizable~in the N-body
center-of-mass frame!.

Let us however emphasize that these results are not new: they essentially coincide with
of Ref. 9, except for the specific example given above, and the fact that here we kept arbitra
dimensionalityD of space~in Ref. 9 attention focused on the physicalD53 case, although it was
emphasized there that the extension to different space dimensionality is easy!. Let us also note tha
the results, as given here, hold only forD>2; the one-dimensional case requires a~marginally!
modified treatment because in that case the derivative ofr 125ux12x2u with respect tox1 or x2 has
a discontinuity atx15x2 ~for an example belonging to this case see Ref. 10!.

Let us finally focus on the special case with

f jk
~2!~r !5r gjk, w jk

~2!8~r !5gjk /r , w jk
~2!9~r !52gjk /r 2 ~4.4!

@namely, the case~4.3a! with b jk50 and, for notational convenience,a jk5gjk5gk j], but now
without settingF(r)50 @as entailed above by the choice~3.17! with a50]. As noted above@see
after ~3.18e!#, and using~4.4!, this entails the replacement

@ f jk
~2!~rW1 ,rW2!#21$2a@~rW1•¹W 1!1~rW2•¹W 2!# f jk

~2!~rW1 ,rW2!%⇒gjkḞ~r!/r ~4.5a!

on the right-hand side of~3.18d!, as well as the replacement

2mja
2r 22aD⇒$F̈~r!1@Ḟ~r!#21~ND21!Ḟ~r!/r%/N ~4.5b!

on the right-hand side of~3.18c!. Hence in this special case the partially solvable potential can
written as follows:

U~rW1 ,...,rWN!5a2(
j 51

N

2mjr j
21 (

j ,k51; j ,k

N

@~mj1mk!/~2mjmk!#gjk~gjk1D22!/r jk
2

1 (
j 1 , j 2 , j 351; j 1Þ j 2 , j 1Þ j 3 , j 2, j 3

N

~mj 1
!21gj 1 j 2

gj 1 j 3
@~rW j 1 j 2

•rW j 1 j 3
!/~r j 1 j 2

r j 1 j 3
!2#

1u~N!~r!, ~4.6a!
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with r defined by~3.16b!, andu(N)(r) a ~largely arbitrary! function ~‘‘ N-body potential’’!. The
corresponding eigenfunction@see~3.3!# reads

C~rW1 ,...,rWN!5xm~r! )
j ,k51; j ,k

N

~r jk!gjk, ~4.6b!

with energy, see~3.3!,

E5Em , ~4.6c!

the two quantitiesxm(r)5 log@F(r)# andEm being related by the eigenvalue equation

2ẍm~r!2~ND211G!ẋm~r!/r1@a2r21u~N!~r!#xm~r!5Emxm~r!, ~4.6d!

or equivalently, viaxm(r)5r (12ND2G)/2cm(r), by the Schro¨dinger-type equation

2c̈m~r!@~ND1G21!~ND1G23!/41a2r21u~N!~r!#cm~r!5Emcm~r!. ~4.6e!

Here

G5 (
j ,k51; j ,k

N

gjk , ~4.6f!

a is an arbitrary constant@which has been conveniently reintroduced on the right-hand sid
~4.6a! as well as in~4.6d! and~4.6e!#, the dots denote of course differentiation with respect to
global radial variabler, see~3.16b!, m is a quantum number, and the eigenvalue equation~4.6d!
and~4.6e! is constrained by the requirements that~4.6b! benormalizable, sufficient conditions for
the existence of a discrete infinity of such solutions, parametrized, say, bym50,1,2,..., are the
requirement that all the ‘‘coupling constants’’gjk be non-negative,gjk>0, and that the potentia
a2r21u(N)(r) be confining. The two~well-known! cases in which the solutionsxm(r) or cm(r)
can be explicitly exhibited in terms of known functions~in fact, elementary functions and La
guerre polynomials!, and the corresponding eigenvalues easily computed, forall values of the
quantum numberm, are those characterized by the presence of centrifugal and harmonic or a
tive Coulomb potentials~this latter not being confining, but possessing an infinite sequenc
bound states due to its long range!, corresponding, respectively, toaÞ0, u(N)(r)5l2/r2, or a
50, u(N)(r)5l2/r22q2/r; but in these two cases the partial solvability of thisN-body problem,
as detailed above, is not a new result: it had already been demonstrated~in the equal-particle case
mj5m, gjk5g) by Khare.8

B. Models of type B

Let us set

f j
~1!~r !51, w j

~1!~r !50, Ej
~1!5aD, Ej 1 j 2 j 3

~3! 50, ~4.7a!

and

f jk
~2!~rW1 ,rW2!5 f jk

~2!~r 1 ,r 2!, w jk
~2!~rW1 ,rW2!5w jk

~2!~r 1 ,r 2!. ~4.7b!

Then

uj
~1!~r !52mja

2r 2, ~4.7c!
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ujk
~2!~rW1 ,rW2!5ujk

~2!~r 1 ,r 2!5@~mj1mk!/~4mjmk!#$w jk,11
~2! ~r 1 ,r 2!1@w jk,1

~2! ~r 1 ,r 2!#2

1w jk,22
~2! ~r 1 ,r 2!1@w jk,2

~2! ~r 1 ,r 2!#21~D21!@w jk,1
~2! ~r 1 ,r 2!/r 1

1w jk,2
~2! ~r 1 ,r 2!/r 2#%2a@r 1w jk,1

~2! ~r 1 ,r 2!1r 2w jk,2
~2! ~r 1 ,r 2!#1Ejk

~2! ,

~4.7d!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21w j 1 j 2,1

~2! ~r 1 ,r 2!w j 1 j 3,1
~2! ~r 1 ,r 3!, ~4.7e!

where of coursew jk,1
(2) (r 1 ,r 2)[]w jk

(2)(r 1 ,r 2)/]r 1 , w jk,2
(2) (r 1 ,r 2)[]w jk

(2)(r 1 ,r 2)/]r 2 , w jk,11
(2) (r 1 ,r 2)

[]2w jk
(2)(r 1 ,r 2)/]r 1

2 and so on.
We now specialize further the choice of the functionsf jk

(2)(r 1 ,r 2) @or w jk
(2)(r 1 ,r 2), see~3.5a!#

by setting

f jk
~2!~r 1 ,r 2!5 f jk

~2!@x j~r 1!2xk~r 2!#, w jk
~2!~r 1 ,r 2!5w jk

~2!@x j~r 1!2xk~r 2!#, ~4.8a!

so that

w jk,1
~2! ~r 1 ,r 2!5x j8~r 1!ẇ jk

~2! , ~4.8b!

w jk,11
~2! ~r 1 ,r 2!5@x j8~r 1!#2ẅ jk

~2!1x j9~r 1!ẇ jk
~2! , ~4.8c!

w jk,2
~2! ~r 1 ,r 2!52xk8~r 2!ẇ jk

~2! , ~4.8d!

w jk,22
~2! ~r 1 ,r 2!5@xk8~r 2!#2ẅ jk

~2!2xk9~r 2!ẇ jk
~2! , ~4.8e!

where the superimposed dots denote differentiation with respect to the argument of thw jk
(2)

functions, which is always the quantity@x j (r 1)2xk(r 2)#, and appended primes denote differe
tiation with respect tor 1 or r 2 , as the case may be.

With this choice

ujk
~2!~rW1 ,rW2!5ujk

~2!~r 1 ,r 2!

5@~mj1mk!/~4mjmk!#@$@x j8~r 1!#21@xk8~r 2!#2%$ẅ jk
~2!1@ẇ jk

~2!#2%

1$x j9~r 1!2xk9~r 2!1~D21!@x j8~r 1!/r 12xk8~r 2!/r 2#%ẇ jk
~2!#

2a@r 1x j8~r 1!2r 2xk8~r 2!#ẇ jk
~2!1Ejk

~2! , ~4.8f!

where the argument of the functionsw jk
(2) is always@x j (r 1)2xk(r 2)#, and

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21@x j 1

8~r 1!#2ẇ j 1 j 2

~2! ẇ j 1 j 3

~2! , ~4.8g!

where the argument ofw j 1 j 2

(2) is x j 1
(r 1)2x j 2

(r 2) and likewise the argument ofẇ j 1 j 3

(2) is x j 1
(r 1)

2x j 3
(r 3).

Let us now make the choice

f jk
~2!~x!5xgjk, ẇ jk

~2!~x!5gjk /x, ẅ jk
~2!~x!52gjk /x2, ~4.9a!

where theN(N21)/2 constantsgjk5gk j>0 are non-negative but otherwise arbitrary. Then
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ujk
~2!~r 1 ,r 2!5@~mj1mk!/~4mjmk!#@gjk~gjk21!@x j~r 1!2xk~r 2!#22$@x j8~r 1!#21@xk8~r 2!#2%

1gjk@x j~r 1!2xk~r 2!#21$x j9~r 1!2xk9~r 2!1~D21!@x j8~r 1!/r 12xk8~r 2!/r 2#%#

2agjk@x j~r 1!2xk~r 2!#21@r 1x j8~r 1!2r 2xk8~r 2!#1Ejk
~2! , ~4.9b!

uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21gj 1 j 2

gj 1 j 3
@x j 1

8~r 1!#2@x j 1
~r 1!2x j 2

~r 2!#21@x j 1
~r 1!2x j 3

~r 3!#21.

~4.9c!

Let us finally make two simple choices for the functionsx j (r ), namely

x j~r !5exp~2ar ! ~4.10a!

or

x j~r !5r b ~4.11a!

@we leave as an exercise for the diligent reader to explore the more general choicex j (r )
5cj r

bj exp(2ajr) involving 3N arbitrary constants#. The first choice,~4.10a!, yields

ujk
~2!~r 1 ,r 2!5gjka$@~mj1mk!/~8mjmk!#$~gjk21!a cosh@2a~r 12r 2!#sinh2@a~r 12r 2!#

22~D21!$r 22r 1 exp@a~r 12r 2!#%/@r 1r 2$12exp@a~r 12r 2!#%#%

1a$r 12r 2 exp@a~r 12r 2!#%/$12exp@a~r 12r 2!#%%, ~4.10b!

Ejk
~2!52@~mj1mk!/~4mjmk!#gjka2, ~4.10c!

uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21gj 1 j 2

gj 1 j 3
$12exp@a~r 12r 2!#%21$12exp@a~r 12r 3!#%21.

~4.10d!

These potentials, which must be complemented by~4.7c!, of course lack translation invariance
and they are singular whenever two particles are at the same distance from the origin~the two-
body potential is however nonsingular in the special casegjk51). It is easily seen that the
conditionsgjk>0, a.0, a>0 are sufficient to guarantee normalizability of the~ground-state!
eigenfunctionC(rW1 ,...,rWN), given by~3.4! with c51, F (n)51 for all values ofn exceptn52 and
n5N, F (N) given by~3.17a! with ~3.16b! andF (2) given by~3.4d! with ~4.8a!, ~4.9a!, and~4.10a!.
~Necessary and sufficientconditions can also be easily obtained; this is left as an easy exercis
the diligent reader.! The corresponding~ground-state! energy is given by~3.18b! with Ej

(1)

5aD, Ej 1 j 2 j 3

(3) 50 @see~4.7a!# andEjk
(2) given by ~4.10c!.

The second choice,~4.11a!, yields

ujk
~2!~r 1 ,r 2!5gjkb@~mj1mk!/~4mjmk!#$~gjk21!b@r 1

2~b21!1r 2
2~b21!#/~r 1

b2r 2
b!2

1~b1D22!@r 1
b222r 2

b22#/~r 1
b2r 2

b!%, ~4.11b!

Ejk
~2!5abgjk , ~4.11c!

uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21gj 1 j 2

gj 1 j 3
r 1

2~b21!/@~r 1
b2r 2

b!~r 1
b2r 3

b!#. ~4.11d!

Likewise these potentials, which must again be complemented by~4.7c!, lack translation invari-
ance and are singular whenever two particles are at the same distance from the origin; ag
two-body potential becomes nonsingular~except at the origin! in the special casegjk51. And it is
again easily seen that the conditionsgjk>0, a.0, b>0 aresufficientto guarantee normalizability
of the ~ground-state! eigenfunctionC(rW1 ,...,rWN), given by~3.4! with c51, F (n)51 for all values
of n exceptn52 andn5N, F (N) given by ~3.17a! with ~3.16b! and F (2) given by ~3.4d! with
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~4.8a!, ~4.9a! and~4.11a!. ~Necessary and sufficientconditions can also be easily obtained; this
left as an easy exercise for the diligent reader.! The corresponding~ground-state! energy is given
by ~3.18b! with Ej

(1)5aD, Ej 1 j 2 j 3

(3) 50 @see~4.7a!# andEjk
(2) given by ~4.11c!.

The special case of equal particles,mj5m, gjk5g, is particularly interesting, but it is no
new; it was introduced and discussed by Ghosh,4 who moreover made the very interesting obs
vation that the three-body contributions cancel out neatly forb51 or b52 @in these two cases
U (3)(rW1 ,...,rWN), as given by~3.2d! with ~4.11d!, vanishes#. Hence in these special cases t
Hamiltonian~3.1! only features one-body and two-body interactions, see~4.7c! ~with mj5m) and
~4.11b! ~with mj5m, gjk5g).

Let us finally emphasize that the eigenstate constructed herein is again the ground s
would be easy to also construct a sequence of other eigenstates for this ‘‘Ghosh mode
~4.11!, by using the more generalansatz~3.16! rather than the special choice~3.17!; but since this
has already been done by Ghosh,4 we do not discuss this development here~the diligent reader
may easily extend the Ghosh result to the case of unequal particles treated here!. It would more-
over be easy, in this case~4.11a!, to introduce more generalN-body potentials depending on th
global radiusr, see~3.16b!, in analogy with the treatment given at the end of the preceding
IV A @the main change would be the replacement in~4.6b! of G with bG, see~4.6f!#. But such an
extension of the Ghosh treatment is not new; it has been given, in the equal particles camj

5m, gjk5g), and for the two explicitly solvable potentials~centrifugal plus harmonic or plus
Coulomb! by Khare.8 Further extensions to the case of unequal particles, and of more ge
potentials—for which an analytic solution would however be generally available only for
discrete eigenvalue—are left for the diligent reader.

C. Models of type C

Let us seta50 @entailingF (N)51, see~3.17!; the choiceaÞ0 yields no additional general
ity, see below#, Ejk

(2)5Ej 1 j 2 j 3

(3) 50, and

f jk
~2!~rW j ,rWk!5~cjk!gjk ~4.12a!

with

cjk5ck j[rW j•rWk , ~4.12b!

so that

@ f jk
~2!~rW1 ,rW2!#21@D11D2# f jk

~2!~rW1 ,rW2!5gjk~gjk21!~r 1
21r 2

2!/c12
2 , ~4.12c!

¹W 1w jk
~2!~rW1 ,rW2!5gjkrW2 /c12, ¹W 2w jk

~2!~rW1 ,rW2!5gjkrW1 /c12, ~4.12d!

~rW1•¹W 1!w jk
~2!~rW1 ,rW2!5~rW2•¹W 2!w jk

~2!~rW1 ,rW2!5gjk . ~4.12e!

@The diligent reader is invited to explore the results that obtain by setting, more generally,

f jk
~2!~rW j ,rWk!5 f jk

~2!~cjk!, ~4.13!

rather than~4.12a!.#
Hence from~3.18d! we get

ujk
~2!~rW1 ,rW2!5@~mj1mk!/~4mjmk!#$gjk~gjk21!~r 1

21r 2
2!/c12

2 12gjk@w j
~1!~r 1!/r 11wk

~1!~r 2!/r 2#%,
~4.12f!

and from~3.18e!
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uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21gj 1 j 2

gj 1 j 3
c23/~c12c13!. ~4.12g!

Via ~3.18a! it is clear that the second term on the right-hand side of~4.12f! should actually be
included in the one-body potential. Hence we conclude that the partially solvable potentia
this case given by~3.18a! with

uj
~1!~rW !5uj

~1!~r !5v j~r !, ~4.14a!

ujk
~2!~rW1 ,rW2!5@~mj1mk!/~4mjmk!#gjk~gjk21!~r 1

21r 2
2!/~rW1•rW2!2, ~4.14b!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5~mj 1
!21gj 1 j 2

gj 1 j 3
~rW2•rW3!/@~rW1•rW2!~rW1•rW3!#. ~4.14c!

In these formulasv j (r ) are arbitrary ~rotation-invariant! one-body potentials, and theN(N
21)/2 constantsgjk are arbitrary non-negative numbers. The eigenvalues are given by~3.18b!
with Ejk

(2)5Ej 1 j 2 j 3

(3) 50, and the corresponding eigenfunctionsC(rW1 ,...,rWN) are given by~3.4!, with

c51, F (n)51 for n.2 andf jk
(2)(rW j ,rWk) given by~4.12a! and~4.12b!. The ‘‘one-body eigenvalues

and eigenfunctions’’Ej
(1) and f j

(1)(r ) are the solutions of the one-body problem that obtains fr
~4.14a!, ~4.12f!, ~3.18a!, and~3.18c!:

2~2mj !
21@ f j

~1!9~r !1~D211Gj ! f j
~1!8~r !/r #1v j~r ! f j

~1!~r !5Ej
~1! f j

~1!~r !, ~4.15a!

with

Gj5 (
k51;kÞ j

N

@~mj1mk!/~2mk!#gjk , ~4.15b!

or equivalently, viaf j
(1)(r )5r (12D2Gj )/2c j (r ),

2~2mj !
21$c j9~r !2@~D1Gj21!~D1Gj23!/4#r 22c j~r !%1v j~r !c j~r !5Ej

~1!c j~r !.
~4.15c!

For given one-body potentialsv j (r ), these one-body Schro¨dinger equations possess genera
an infinity of eigenvalues and correspondingly of eigenfunctions, parametrized by quantum
bersm j , that take discrete values, saym j50,1,2,..., if the potentialv j (r ) is confining. Hence we
see that the partially solvable potential we have manufactured,~3.18a! with ~4.14!, has a known
set of eigenvalues and eigenfunctions@assuming the one-dimensional Schro¨dinger equations
~4.15! are solvable# which is parametrized byN quantum numbers; while thecompletespectrum,
and the correspondingcompleteset of eigenfunctions, is generally parametrized byND quantum
numbers.@The fact that one getsall eigenvalues and eigenstates forD51 is trivial: it is clear from
~4.14b! and ~4.14c! that for D51 the two-body and three-body potentials reduce to one-b
potentials, hence theN-body problem separates intoN decoupled one-body problems.#

For instance for

v j~r !52mja j
2r 2, ~4.16a!

the eigenvalues of~4.15! are

Ej
~1!5a j~D1Gj12m j !, ~4.16b!

with m j50,1,2,..., and the corresponding eigenfunctionsc j (r ) are the well-known harmonic os
cillator wave functions, see~4.15c! with ~4.16a!. Of course if some of the~non-negative! quanti-
ties a j coincide, or are integer multiples of each other, the spectrum of the many-body pro
see~3.3! and ~3.18b! with Ejk

(2)5Ej 1 j 2 j 3

(3) 50, is degenerate.
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There is a variant of the approach of this Sec. IV C which is worth mentioning. It is obta
by setting

f j
~1!~r !51, w j

~1!~r !50, Ej
~1!50, ~4.17a!

namely eliminating the one-body contributions, and using@instead of ~3.17! with a50, see
above#, the ‘‘N-body’’ ansatz~3.16!. The corresponding partially solvable potential then read

U~rW1 ,...,rWN!5a2(
j 51

N

2mjr j
21 (

j ,k51; j ,k

N

ujk
~2!~rW j ,rWk!

1 (
j 1 , j 2 , j 351; j 1Þ j 2 , j 1Þ j 3 , j 2, j 3

N

uj 1 j 2 j 3

~3! ~rW j 1
,rW j 2

,rW j 2
!1u~N!~r!, ~4.17b!

with ujk
(2)(rW1 ,rW2), respectively,uj 1 j 2 j 3

(3) (rW1 ,rW2 ,rW3) given by~4.14b!, respectively,~4.14c!, r defined

by ~3.16b!, andu(N)(r) a ~largely arbitrary! ‘‘ N-body potential.’’ The corresponding eigenfun
tion @see~3.3!# reads

Cm~rW1 ,...,rWN!5xm~r! )
j ,k51; j ,k

N

~rW j•rWk!
gjk, ~4.17c!

and the corresponding equations for the energy eigenvalueE, see~3.3!, and for the functions
wm(r)5 log@F(r)#, are exactly the same as in Sec. IV A, see~4.6c!–~4.6f!. Hence in this variant,
as in the analogous model treated at the end of Sec. IV A, the set of eigenvalues and eige
tions is parametrized by only one quantum numberm @rather than byN of them, see for instance
~4.16b!#; moreover, only for the choicea50, u(N)(r)52q2/r is it possible to obtain explicitly
all the eigenvalues and eigenfunctions of~4.6d! and ~4.6e! @the other solvable case,aÞ0,
u(N)(r)50, is of no interest here, since it is a special case of the ‘‘less partially’’ solvable
discussed above, see~4.14! with ~4.16a!#.

The models considered in this Sec. IV C are, to the best of our knowledge, new.

D. Models of type D

In this section we restrict attention totwo-dimensionalspace,D52, and we set, as above,

cjk5ck j[rW j•rWk[xjxk1yjyk , ~4.18a!

and, in addition,

sjk52sk j[ ẑ•rW j∧rWk[xjyk2yjxk . ~4.18b!

The notationẑ•rW j∧rWk is formally three-dimensional, with the unit vectorẑ[(0,0,1) orthogonal to
the plane in which all the vectorsrW j[(xj ,yj ,0) lie, and the symbol∧ denoting the standard
three-dimensionalvector product; it entailsẑ∧rW j[(2yj ,xj ,0) and it underlines the rotation
invariant character of the~pseudoscalar! quantitysjk , see~4.18b!.

We then seta50 ~as in the preceding Sec. IV C, the choice of an arbitrary value fora entails
no increase in generality, see below!, and, as a natural generalization of~4.12a!,

f jk
~2!~rW j ,rWk!5~cjk!gjkusjku g̃ jk, ~4.18c!

so that

@ f jk
~2!~rW1 ,rW2!#21@D11D2# f jk

~2!~rW1 ,rW2!5~r 1
21r 2

2!@gjk~gjk21!/c12
2 1g̃ jk~ g̃ jk21!/s12

2 #,
~4.18d!
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¹W 1w jk
~2!~rW1 ,rW2!5gjkrW2 /c122g̃ jk~ ẑ∧rW2!/s12, ¹W 2w jk

~2!~rW1 ,rW2!5gjkrW1 /c121g̃ jk~ ẑ∧rW1!/s12,

~4.18e!

~rW1•¹W 1!w jk
~2!~rW1 ,rW2!5~rW2•¹W 2!w jk

~2!~rW1 ,rW2!5gjk1g̃ jk . ~4.18f!

@Again, as in the preceding Sec. IV C, the diligent reader is invited to explore the results
obtain by setting, more generally,

f jk
~2!~rW j ,rWk!5 f jk

~2!~cjk ,sjk!, ~4.19!

rather than~4.18c!.#
Hence from~3.18d! we get

ujk
~2!~rW1 ,rW2!5@~mj1mk!/~4mjmk!#$~r 1

21r 2
2!@gjk~gjk21!/c12

2 1g̃ jk~ g̃ jk21!/s12
2 #

12~gjk1g̃ jk!@w j
~1!~r 1!/r 11wk

~1!~r 2!/r 2#%, ~4.20a!

and from~3.18e! we get

uj 1 j 2 j 3

~3! ~r 1 ,r 2 ,r 3!5~mj 1
!21@gj 1 j 2

gj 1 j 3
c23/~c12c13!1g̃ j 1 j 2

g̃ j 1 j 3
c23/~s12s13!

1gj 1 j 2
g̃ j 1 j 3

s23/~c12s13!2g̃ j 1 j 2
gj 1 j 3

s23/~s12c13!#. ~4.20b!

As in the preceding Sec. IV C, via~3.18a! it is again clear that the second term on t
right-hand side of~4.20a! should be considered part of the one-body potential. Hence we conc
that the partially solvable potential is now given by~3.18a! with

uj
~1!~rW !5uj

~1!~r !5v j~r !, ~4.21a!

ujk
~2!~rW1 ,rW2!5@~mj1mk!/~4mjmk!#~r 1

21r 2
2!@gjk~gjk21!/~rW1•rW2!21g̃ jk~ g̃ jk21!/~ ẑ•rW1∧rW2!2#,

~4.21b!

uj 1 j 2 j 3

~3! ~rW1 ,rW2 ,rW3!5~mj 1
!21@~rW2•rW3!$gj 1 j 2

gj 1 j 3
/@~rW1•rW2!~rW1•rW3!#

1g̃ j 1 j 2
g̃ j 1 j 3

/@~ ẑ•rW1∧rW2!~ ẑ•rW1∧rW3!#%

1~ ẑ•rW2∧rW3!$gj 1 j 2
g̃ j 1 j 3

/@~rW1•rW2!~ ẑ•rW1∧rW3!#

2g̃ j 1 j 2
gj 1 j 3

/@~ ẑ•rW1∧rW2!~rW1•rW3!#%#. ~4.21c!

In these formulas theN functionsv j (r ) are arbitrary~rotation-invariant! one-body potentials, and
theN(N21) constantsgjk andg̃ jk are arbitrary nonnegative numbers. The eigenvalues are g

by ~3.18b! with Ejk
(2)5Ej 1 j 2 j 3

(3) 50, and the corresponding eigenfunctionsC(rW1 ,...,rWN) are given by

~3.4!, with c51, F (n)51 for n.2 and f jk
(2)(rW j ,rWk) given by ~4.18a!–~4.18c!. The ‘‘one-body

eigenvalues and eigenfunctions’’Ej
(1) and f j

(1)(r ) are the solutions of the one-body problem th
obtains from~4.21a!, ~4.20a!, and~3.18c!:

2~2mj !
21@ f j

~1!9~r !1~11Gj ! f j
~1!8~r !/r #1v j~r ! f j

~1!~r !5Ej
~1! f j

~1!~r !, ~4.22a!

with

Gj5 (
k51;kÞ j

N

@~mj1mk!/~2mk!#~gjk1g̃ jk!, ~4.22b!

or equivalently, viaf j
(1)(r )5r 2(11Gj )/2c j (r ),
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2~2mj !
21$c j9~r !2@~Gj

221!/4#r 22c j~r !%1v j~r !c j~r !5Ej
~1!c j~r !. ~4.22c!

These last developments have followed closely the analogous treatment given in the pre
Sec. IV C. Also applicable, practicallyverbatim, are the subsequent observations given the
except that one must now setD52. It is thus seen that for the potential we have now manu
tured, see~4.21!, partial solvability generally entails the possibility to exhibit eigenvalues a
eigenfunctions depending onN quantum numbers, whilecomplete solvabilitywould require
knowledge of eigenvalues and eigenfunctions depending on 2N quantum numbers. In particula
for the one-body potential~4.16a!, the treatment of the preceding Sec. IV C remains applica
@including ~4.16b!#, up to trivial modifications.

The special case with equal particles,mj5m, a j5a @see~4.16a!#, g̃ jk5g, and moreover
gjk50, is not new: the partially solvable potential corresponding to this case has been intro
and discussed by Murthy, Bhaduri, and Sen.1,5 The set of eigenvalues and eigenfunctions exhibi
in these papers is however, for largeN, much smaller than the set exhibited herein: it depends
3, rather thanN, quantum numbers.

There also is, in close analogy to the elaboration reported at the end of the precedin
IV C, the variant of this treatment that is obtained by adopting~4.17a! and using theansatz~3.16!
instead of~3.17!. We leave the derivation of the corresponding formulas to the diligent reade
changes relative to the treatment given at the end of Sec. IV C entail essentially the replacem
~4.14! with ~4.21!, the insertion of an additional factor (sjk) g̃ jk in ~4.17c!, and the replacement o
gjk with gjk1g̃ jk in the definition~4.6f! of G ~and of course the specializationD52). But the
results so obtained are not quite new: they have been previously given by Khare,8 in the case of
equal particles (mj5m, g̃ jk5g) with moreovergjk50, and with special attention focused on th
completely solvable ‘‘N-body’’ Coulomb and centrifugal potentials.

V. FINAL REMARKS AND OUTLOOK

Clearly the technique described in this paper yields easily a much larger gamut of pa
solvable quantum many-body problems than the examples presented above. In selectin
examples, we have been mainly motivated by ‘‘aesthetic’’ considerations, and/or the inte
demonstrate how to cover in a unified manner several cases recently treated in the litera1–8

Applications have not been discussed: this is of course the most interesting direction for
developments.

We did not treat ‘‘few-body’’ problems, such as those characterized by a relatively s
number of particles, sayN53 or N54. For some special variants, applicable to such problems
the technique used herein the interested reader is referred to the original paper where th
nique was introduced.9

Another technique to manufacture completely or partially solvable quantum many-body
lems, so much investigated in the literature that we refrain from mentioning any reference
since any appropriate list should be too long, relies on the introduction of~collective! coordinates
such that the many-body Schro¨dinger equation becomesseparable. These models tend to b
farther from physics, because they generally give rise to many-body forces that do not se
have any counterpart in nature, or break important invariance properties such as physic~i.e.,
three-dimensional! rotation invariance. We have, by and large, avoided to present models o
type, except to the extent we used the overall radial coordinater, see~3.16b!, mainly to make
contact with the recent literature.

Let us finally emphasize that several of the examples presented above are character
potentials which are homogeneous functions of degree22 in the particle coordinates@see for
instance ~2.1! with b jk50, ~2.3!, as well as~2.4! and ~2.5! with an appropriate choice—
‘‘centrifugal’’—of the one-body potentialsv j (r )]. Obviously for such potentials the introductio
of an overall radial coordinate such asr, see~3.16b!, allows separation of the problem into
~generally easily solvable! ‘‘radial’’ part involving a single coordinate and a~generally much more
difficult! ‘‘angular’’ part, for which sometimes one very simple~generally, just constant! solution
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can be found~in fact the potentials may be adjusted so that such a solution exist!. Several classes
of partially solvable potentials which have appeared in the literature are of this kind. In
examples provided above it has been generally possible to go somewhat beyond this
approach.

1M. V. N. Murthy, R. K. Bhaduri, and Diptiman Sen, ‘‘Novel correlations in two dimensions: some exact solutio
Phys. Rev. Lett.76, 4103–4106~1996!.

2N. Gurappa, C. Nagaraja Kumar, and Prasanta K. Panigrahi, ‘‘New exactly and conditionally exactly solvableN-body
problems on one dimension,’’ Mod. Phys. Lett. A11, 1737–1744~1996!.

3A. Khare, ‘‘A class of exact solutions forN anyons in aN-body potential,’’ Phys. Lett. A221, 365–369~1996!.
4P. K. Ghosh, ‘‘Calogero-Sutherland type models in higher dimensions,’’ Phys. Lett. A229, 203–207~1997!. This very
interesting paper is marred by two misprints: in Eq.~10!, g(g21) should readg2, and in Eq.~11! 4 should be replaced
by 2 andr j by r j2r k .

5R. K. Bhaduri, A. Khare, J. Law, M. V. N. Murthy, and D. Sen, ‘‘Novel correlations in two dimensions: two-b
problem,’’ J. Phys. A30, 2557–2576~1997!.

6A. Khare and K. Ray, ‘‘A quantum many-body problem in two dimensions: ground state,’’ Phys. Lett. A230, 139–143
~1997!.

7A. Khare, ‘‘Exact solution of anN-body problem in one dimension,’’ J. Phys. A29, L45–L49 ~1996!; F. Calogero,
‘‘Exact solution of anN-body problem in one dimension: two comments,’’ibid. 29, 6455–6457~1996!; A. Khare,
‘‘Reply to comment ‘Exact solution of anN-body problem in one dimension’,’’ibid. 29, 6459–6460~1996!.

8A. Khare, ‘‘Exact ground state of severalN-body problems with anN-body potential,’’ J. Math. Phys.40, 2640–2646
~1999!.

9F. Calogero and C. Marchioro, ‘‘Exact bound states of someN-body systems with two- and three-body forces,’’ J. Mat
Phys.14, 182–184~1973!.

10F. Calogero and C. Marchioro, ‘‘Exact ground state of some one-dimensionalN-body systems with inverse~‘‘Coulomb-
like’’ ! and inverse-square~‘‘centrifugal’’ ! pair potentials,’’ Phys. Rev. Lett.27, 86–88~1971!.

11F. Calogero, ‘‘Solution of the one-dimensionalN-body problem with quadratic and/or inversely quadratic pair pot
tials,’’ J. Math. Phys.12, 419–436~1971!; ibid. 37, 3646~E! ~1996!.
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An estimation theoretical characterization of coherent
states

Akio Fujiwaraa)

Department of Mathematics, Osaka University, 1-16 Machikane-yama, Toyonaka,
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We introduce a class of quantum pure state models called the coherent models. A
coherent model is an even-dimensional manifold of pure states whose tangent space
is characterized by a symplectic structure. In a rigorous framework of noncommu-
tative statistics, it is shown that a coherent model inherits and expands the original
spirit of the minimum uncertainty property of coherent states. ©1999 American
Institute of Physics.@S0022-2488~99!02509-8#

I. INTRODUCTION

Quantum estimation theory, originated in optical communications, offers a rigorous app
toward the optimization of detection processes in quantum communication systems.1,2 It aims to
find, for a given smooth parametric family of density operators~a model! P5$ru ;u
5(u1,...,un)PQ,Rn%, the optimum measurement~positive operator-valued measure! M
5$M (B);B is a Borel set inRn% for the parameteru under the unbiasedness condition: For
uPQ,

E û j Tr ruM ~dû !5u j , j 51,...,n.

Here Tr denotes the operator trace. Normally a more tractable~weaker! condition is adopted,
called the local unbiasedness condition: A measurementM is called locally unbiased at a give
point u if M satisfies atu the above equality and its formal differentiation,

]

]u i E û j Tr ruM ~dû !5d i
j , i , j 51,...,n.

It is well known that whenn51, the quantum Crame´r–Rao inequality with respect to the sym
metric logarithmic derivative~SLD! offers the achievable lower bound~i.e., the bound attained by
a certain measurement! of the variance of estimation. This is also regarded as a rigorous mo
cation of the uncertainty relation. Whenn>2, on the other hand, a matrix version of the SL
Cramér–Rao inequality itself does not always have an absolute significance because the
bound cannot be attained, in general, unless the model has commutative SLDs. We therefo
deal with the minimization problem of the scalar quantity trGVu@M # with respect toM, where tr
denotes the matrix trace on the parameter spaceQ,G a real symmetric positive matrix represen
ing the weight, andVu@M # the covariance matrix atu with respect to a locally unbiased measur
mentM whose~i, j! entry is

a!Electronic mail: fujiwara@math.wani.osaka-u.ac.jp
b!Electronic mail: nagaoka@is.uec.ac.jp
42270022-2488/99/40(9)/4227/13/$15.00 © 1999 American Institute of Physics
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~Vu@M # ! i j 5E ~ û i2u i !~ û j2u j !Tr ruM ~dû !.

If there is a numberC such that trGVu@M #>C holds for allM, C is called a Crame´r–Rao-type
bound or simply a CR bound. The CR boundC may depend on bothG and u. The problem of
finding the achievable CR bound is, in general, a hard one and has been solved only in
special models such as the quantum Gaussian model3,2 and the two-dimensional spin-1

2 model.4,5

Holevo showed that if a model having the right logarithmic derivative~RLD! exhibits a
certain ‘‘nice’’ property of a tangent space, the CR bound based on the RLD is expressed o
terms of the SLDs~Ref. 2, p. 280!. Moreover it was shown that this gives the achievable
bound for the Gaussian model of quantum oscillators. Motivated by these facts and that th
Fisher information is well defined also for pure state models,6 we will introduce a class of pure
state models called the coherent models,7 each having a ‘‘nice’’ tangent space, and will explo
their parameter estimation theory.

The construction of the paper is as follows. In Sec. II, we explore some basic characte
inherent in pure state models that are closely related with Holevo’s commutation operator. I
III, a special class of pure state models, called the coherent models, is introduced of whi
SLD tangent space forms an invariant subspace with respect to the commutation operator.
IV, we derive a CR bound, called the generalized RLD bound, for a model that has an inv
SLD tangent space with respect to the commutation operator. Here the model is not assume
pure. In Sec. V, we show that for a coherent model, there exists a random measurement tha
the generalized RLD bound. In Sec. VI, the above results are demonstrated in two simple co
models: a canonical squeezed state model and a spin coherent state model. In the final se
give conclusions.

II. COMMUTATION OPERATOR

In the study of noncommutative statistics, Holevo introduced useful mathematical tools
the square summable operators and the commutation operators associated with quantum st
here give a brief summary: for details, consult Ref. 2. LetH be a separable complex Hilbert spa
that corresponds to a physical system of interest, and letr be a fixed density operator. We defin
a real Hilbert spaceLh

2(r) associated withr by the completion ofBh(H), the set of bounded
self-adjoint operators, with respect to the pre-inner product^X,Y&r5Re TrrXY. Letting r
5( j sj uc j&^c j u be the spectral representation, an elementXPLh

2(r) can be regarded as an equiv
lence class of such self-adjoint operators~called square summable operators! satisfying
( j sj iXc j i2,` @so thatc jPDom(X) if sjÞ0# under the identificationX1;X2 if X1c j5X2c j for
sjÞ0. The spaceLh

2(r) thus provides a convenient tool to cope with unbounded observables
L2(r) be the complexification ofLh

2(r). Note thatL2(r) is also regarded as the completion
B~H!, the set of bounded operators, with respect to the pre-inner product,

^X,Y&r5 1
2 Tr r~YX* 1X* Y!.

ThusL2(r) is regarded as a complex Hilbert space with the inner product^•,•&r . We further
introduce two sesquilinear forms onB~H! by

~X,Y!r5Tr rYX* , @X,Y#r5
1

2i
Tr r~YX* 2X* Y!,

and extend them toL2(r) by continuity.
The commutation operatorDr :L2(r)˜L2(r) with respect tor is defined by @X,Y#r

5^X,DrY&r , which is formally represented by the operator equationr(DrX)1(DrX)r5(1/i )
3(rX2Xr). ~To be precise, this definition is different from Holevo’s original definition by
factor of 2.! The operatorDr is a complex-linear bounded skew-adjoint operator. Moreover, s
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the forms@•,•#r and^•,•&r are real on the real subspaceLh
2(r), this subspace is invariant unde

the operation ofDr . Thus,Dr can also be regarded as a real-linear bounded skew-adjoint ope
when restricted toLh

2(r) asDr :Lh
2(r)˜Lh

2(r).
Our main concern lies in the case wherer is pure. In this case the above setting is consid

ably simplified as follows: Letr5uc&^cu. Then, forX,YPL2(r),

^X,Y&r5 1
2$^Y* cuX* c&1^XcuYc&%,

@X,Y#r5
1

2i
$^Y* cuX* c&2^XcuYc&%,

~X,Y!r5^Y* cuX* c&.

HereXc, for example, stands for the vectorX1c, whereX1 is an arbitrary representative ofX. ~It
is independent of the choice of a representative.! In particular, ifX,YPLh

2(r), we have

^X,Y&r5Rê YcuXc&5Rê XcuYc&, ~1!

@X,Y#r5Im^YcuXc&52Im^XcuYc&, ~2!

~X,Y!r5^YcuXc&5^XcuYc&. ~3!

It should be noted that operatorsX andY ~whether bounded or not! are identified with each othe
in L2(r) iff Xc5Yc andX* c5Y* c. In particular, self-adjoint operatorsX andY are identified
in Lh

2(r) iff Xc5Yc.
Lemma 1: Letr5uc&^cu. Then for all XPLh

2(r),

~DrX!c5 i ~X2^cuXc&I !c,

where I denotes the identity inLh
2(r).

Proof: For XPLh
2(r), let Z be the element inLh

2(r) having a representativeZ15 i (uXc&
3^cu2uc&^Xcu). ThenZc5 i (X2^cuXc&I )c. On the other hand, forYPLh

2(r), we have

^YcuZc&5 i $^YcuXc&2^cuXc&^cuYc&%,

and hencêY,Z&r5@Y,X#r because of~1! and ~2!. ThusZ5DrX, which completes the proof.h

Note that Lemma 1 does not implyDrX5 i (X2^cuXc&I ), since the right-hand side is not
self-adjoint element inL2(r) unless it equals 0.

Let us introduce a linear subspace,

Th~r!5$XPLh
2~r!;^I ,X&r50%,

of Lh
2(r). Herer is not necessarily pure. This subspace is itself a real Hilbert space with the

product^•,•&r . Now consider again the special case thatr is pure:r5uc&^cu. Then from Lemma
1, we obtain the important relation:

~DrX!c5~ iX !c, XPTh~r!. ~4!

This equation, combined with~1!, implies thatDr is a unitary transformation on (Th(r),
^•,•&r). In particular,Dr is nondegenerate onTh(r), and so is the skew-symmetric bilinear for
@•,•#r . In other words, the real linear spaceTh(r) is regarded as a symplectic space8 with the
symplectic form@•,•#r . We also note thatDr

252I on Th(r) @I denotes the identity operato
acting onTh(r)#, sinceDr is unitary and skew adjoint. Indeed, Eq.~4! immediately leads to
(Dr

2X)c52Xc, and henceDr
2X52X for all XPTh(r), whereasDrXÞ iX, as mentioned earlier

In other words,Dr is an almost complex structure onTh(r).
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III. COHERENT MODEL

Let P5$ru ;u5(u1,...,un)PQ% be ann-dimensional model, whereru are not necessarily
pure for the present, andQ is an open subset ofRn. We assume the following regularity cond
tions.

~a! The parametrizationu°ru is assumed to be appropriately smooth and nondegenera
that the derivatives$]ru /]u j% j 51

n exist in trace class and form a linearly independent set at e
point u.

~b! There exists a constantc such that

U ]

]u j Tr ruXU2

<c^X,X&ru
,

for all XPB(H) and j.
From the condition~b!, the linear functionalsX°(]/]u j )Tr ruX can be extended to continu

ous linear functionals onL2(ru).
Given a model that satisfies~a! and~b!, thesymmetric logarithmic derivative~SLD! Lu, j

S in the
j th direction is defined by the requirement that

]

]u j Tr ruX5^Lu, j
S ,X&ru

, Lu, j
S PL2~ru!,

for all XPL2(ru). It is easily verified thatLu, j
S PLh

2(ru); so the definition is formally written as
]ru /]u j51/2(Lu, j

S ru1ruLu, j
S ). The SLDs belong toTh(ru), since^I ,Lu, j

S &ru
5(]/]u j )Tr ru50,

and the SLD Fisher information matrix defined byJu
S5@^Lu, j

S ,Lu,k
S &ru

# gives a Crame´r–Rao in-

equalityVu@M #>(Ju
S)21, whereM is an arbitrary locally unbiased measurement for the param

u; see Ref. 2, p. 276.
In the rest of this section, we restrict ourselves to pure state models. Some remarks

order. First, by differentiating the identityru
25ru , we see that the element inLh

2(ru) having a
representative 2]ru /]u j gives the SLDLu, j

S . Thus, for a pure state model, the condition~a!
implies ~b!. Second, associated with a pure state model$ru ;uPQ% is, at least locally, a smooth
family $cu ;uPQ% of normalized vectors inH such thatru5ucu&^cuu. In what follows, we shall
frequently use this representation.

A convenient way of finding SLDs for a pure state modelru is as follows: LetLu, j
A be the

antisymmetric logarithmic derivative~ALD ! satisfying

]

]u j Tr ruX5@Lu, j
A ,X#ru

, Lu, j
A PTh~ru!,

for all XPL2(ru), or formally ]ru /]u j5(Lu, j
A ru2ruLu, j

A )/2i . ~This definition is different from
Ref. 6 by a factor ofi.! Then the SLD is given byLu, j

S 52DuLu, j
A , whereDu5Dru

, since

^Lu, j
S ,X&ru

5@Lu, j
A ,X#ru

. Note that sinceDu
252I on Th(ru), thenLu, j

A 5DuLu, j
S , which assures

the existence and the uniqueness of the ALD for a pure state model. The advantage of the
the ALD is this: Every pure state model can be expressed in the formru5Uur0Uu* , where$Uu%u

is a smooth family of unitary operators~which do not necessarily form a group representation!, so
that the ALD is explicitly given by

Lu, j
A 52i ~Au, j2^I ,Au, j&ru

!,

whereAu, j is the skew-adjoint element inL2(ru) having a representative (]Uu /]u j )Uu* , the local
generator ofUu . For a group covariant pure state model, the generator of the group is us
obvious.
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Let T u
S(P) be the real-linear subspace ofTh(ru) spanned by the SLDs$Lu, j

S % j . Since the
tangent vectors of the manifoldP at the pointru are faithfully represented by the elements
T u

S(P) via the correspondence (]/]u j )u°Lu, j
S , we call T u

S(P) the SLD tangent spaceof the
modelP at u. A pure state modelP5$ru ;uPQ% is calledlocally coherentat u if T u

S(P) is Du

invariant. The model is calledcoherentif it is locally coherent for alluPQ.
When the Hilbert spaceH is finite dimensional, the totality of pure states forms a comp

projective space and is an example of coherent model. The Riemannian metric on the
induced by the SLD Fisher information matrixJu

S is identical to the Fubini–Study metric up to
constant factor6 and hence is a Ka¨hler metric. The associated fundamental 2-form9 in this case is
nothing but the symplectic structure@•,•#r .

Theorem 2: Consider a pure state model of the formru5Ug(u)r0Ug(u)* , where$Ug ;gPG% is
a projective unitary representation of a Lie groupG and g(•):u°g(u) is the parametrization of
the elèments ofG by a local coordinate system satisfying g(0)5e (: the unit element). This mode
is coherent iff it is locally coherent atr0 .

Proof: We only need to prove the if part. LetLu :G˜G be the left translation byg(u)21 that
mapsh°g(u)21h. Then its differential (dLu)g(u) :Tg(u)(G)˜Te(G) is represented by a nonsin
gular real matrixaj

k(u) such that (dLu)g(u)(@]g(u)/]u j #u)5(kaj
k(u)@]g(u)/]uk#u50 . Now

since ru1Du5Ug(u)rDu8Ug(u)* , where Lu„g(u1Du)…5g(Du8), we find that ]ru /]u j

5(kaj
k(u)Uu@]ru /]uk#u50Uu* . This implies that the SLDs atu are given by Lu, j

S

5(kaj
k(u)UuL0,k

S Uu* . As a consequence,

Lu, j
S cu5(

k
aj

k~u!UuL0,k
S c0 . ~5!

Here we have set asru5ucu&^cuu with cu5Uuc0 . Now supposeP is locally coherent atr0 .
Then the vector (D0L0,k

S )c05 iL 0,k
S c0 @see~4!# belongs to the real linear span of$L0,k8

S c0%k851
n ;

hence, the vector (DuLu, j
S )cu5 iL u, j

S cu belongs to the real linear span of$Lu, j 8
S cu% j 851

n because of
~5! and the nonsingularity of the matrixaj

k(u). This implies thatP is locally coherent at every
point u. h

It is clear from the definition that ifP is locally coherent atu, thenT u
S(P) forms a symplectic

space with the symplectic form being the restriction of@•,•#ru
. In particular, the dimensionality o

T u
S(P) is necessarily even~sayn52m!, and it has a symplectic basis$L̃u, j

S % j 51
2m , satisfying

@ L̃u, j
S ,L̃u,k

S #ru
5H 21, if j is odd andk5 j 11,

1, if j is even andk5 j 21,

0, otherwise.

Furthermore, sinceDu is unitary onT u
S(P) with respect to the inner product^•,•&ru

, we can take

$L̃u, j
S % to be orthonormal. Such a basis, which we shall call anormalizedru-symplectic basis,

satisfies

Du3
L̃u,1

S

L̃u,2
S

L̃u,3
S

L̃u,4
S

]

L̃u,2m21
S

L̃u,2m
S

4 53
0 1

21 0

0 1

21 0

�

0 1

21 0

4 3
L̃u,1

S

L̃u,2
S

L̃u,3
S

L̃u,4
S

]

L̃u,2m21
S

L̃u,2m
S

4 . ~6!
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Thus, the SLD tangent space of a coherent model is decomposed into two-dimen
Du-invariant subspaces. This suggests the importance of studying two-dimensional coheren
els.

Now, let us characterize a two-dimensional coherent model.
Theorem 3: For a two-dimensional pure state modelP5$ru5ucu&^cuu;uPQ%, the follow-

ing three conditions are equivalent.

~a! P is locally coherent atu.
~b! Lu,1

S cu and Lu,2
S cu are linearly dependent.

~g! Lu,1
A cu and Lu,2

A cu are linearly dependent.

Before going to the proof, we should remark that the condition~b! does not conflict with the fac
that Lu,1

S and Lu,2
S are linearly independent due to the nondegeneracy of the parametriz

u°ru . Indeed, the linear independence of$Lu,1
S ,Lu,2

S % is concerned with the real linear structu
of Lh

2(ru) and is equivalent to the real linear independence of$Lu,1
S cu ,Lu,2

S cu%. On the other hand
the condition~b! asserts the complex linear dependence of the same vectors.

Proof: The proof relies essentially on~4!. We only need to show that (a)⇔(b), since
(b)⇔(g) is obvious from the identityLu, j

S cu52(DuLu, j
A )cu52 iL u, j

A cu . Let w jªLu, j
S cu , and

assume~a! first. Then there exist real numbersx, y such thatDuLu,1
S 5xLu,1

S 1yLu,2
S . This is

equivalent toiw15xw11yw2 and leads to~b!. Assume~b! in turn. Recalling the real linea
independence of$w1 ,w2%, we see that there exist real numbersx, ysatisfyingw25(x1 iy)w1 with
yÞ0. It then follows thatiw152(x/y)w11(1/y)w2 andDuLu,1

S 52(x/y)Lu,1
S 1(1/y)Lu,2

S . Simi-
larly, DuLu,2

S is shown to be a real linear combination of$Lu,1
S ,Lu,2

S %, and thus~a! is verified. h

The following corollary, whose proof is now straightforward from Theorem 3 and~4!, offers
a mostly useful method to treat group covariant coherent models as exemplifed in Se
Moreover, Eq.~7! in the corollary reveals a close connection with the conventional definitio
coherent states.10 Indeed, this fact gave a motive for the nomenclature of the coherent mode

Corollary 4: Let P5$ru5ucu&^cuu;uPQ% be a two-dimensional pure state model and
T u

A(P) be the real linear span of ALDs$Lu,1
A ,Lu,2

A % at u. ThenP is locally coherent atu iff there
exist nonzero elements X1 ,X2 in T u

A(P), satisfying

~X11 iX2!cu50. ~7!

Moreover, (7) is also necessary and sufficient for$cXj% j 51,2 to form a normalizedru-symplectic
basis ofT u

S(P)@5T u
A(P)# with a common normalizing constant c. Under the condition (7),

linear relations,

Lu,1
A 5c11X11c12X2 , Lu,2

A 5c21X11c22X2 ,

imply

Lu,1
S 5c12X12c11X2 , Lu,2

S 5c22X12c21X2 .

IV. GENERALIZED RLD BOUND

Throughout this section we consider ann-dimensional modelP5$ru% of general~i.e., not
necessarily pure! states satisfying the regularity conditions~a! and ~b! presented in Sec. III.

Let L1
2 (r) denote the completion ofB~H! with respect to the preinner product (•,•)r . Since

(X,X)r<2^X,X&r , thenL2(r),L1
2 (r). The right logarithmic derivative~RLD! Lu, j

R in the j th
direction of a modelP5$ru%, when it exists, is defined by the requirement that

]

]u j Tr ruX5~Lu, j
R ,X!ru

, Lu, j
R PL1

2 ~ru!,
                                                                                                                



-

tion

ition

t the

rity

hat

4233J. Math. Phys., Vol. 40, No. 9, September 1999 A characterization of coherent states

                    
for all XPL1
2 (ru), or, formally, ]ru /]u j5(Lu, j

R )* ru5ruLu, j
R . The covariance matrix of an ar

bitrary locally unbiased estimatorM is then bounded from below as

Vu@M #>~Ju
R!21, ~8!

whereJu
R5@(Lu, j

R ,Lu,k
R )ru

# is the RLD Fisher information matrix~Ref. 2, p. 279!. When a real
positive definite matrixG is specified as the weight for the estimation accuracy, the total devia
is bounded from below as

tr GVu@M #>CR
ªtr G Re~Ju

R!211tr absG Im~Ju
R!21, ~9!

where tr absA denotes the absolute sum of the eigenvalues of matrixA; see Ref. 2, p. 284. The
RLD thus gives a CR bound and plays a crucial role in optical communication theory.3,2

The RLD exists iff there is a constantc such that

U ]

]u j Tr ruXU2

<c~X,X!ru
, ~10!

for all XPB(H). Thus, the RLD does not always exist for a model satisfying the weaker cond
~b!. In particular, it never exists for a pure state modelru5ucu&^cuu. To see this, let us fix au
arbitrarily and take a vectorxPH such that^cuux&50 and ^]cu /]u j ux&Þ0. @This is indeed
possible becausecu and ]cu /]u j are linearly independent, owing to (]/]u j )^cuucu&50 and
(]/]u j )ucu&^cuuÞ0.# Then X5ux&^cuu satisfies (X,X)ru

50 and (]/]u j )TrruXÞ0. It is, how-
ever, important to notice that what is needed in estimation theory is not the RLD itself bu
inverse of the RLD Fisher information matrix, as indicated by~8! and ~9!.

In his book~Ref. 2, p. 280!, Holevo has shown that when a model satisfying the regula
conditions~a! and ~10! has aDu-invariant SLD tangent space, the (Ju

R)21 is expressed only in
terms of SLDs; so is the CR bound~9!. We generalize this result to a wider class of models t
satisfy only the weaker conditions~a! and ~b!.

Theorem 5: Suppose we are given an n-dimensional modelP5$ru% having aDu-invariant
SLD tangent spaceT u

S(P). Then for all locally unbiased measurements M atu,

Vu@M #>~Ju
S!211 i ~Ju

S!21Du~Ju
S!21,

where Du5@@Lu, j
S ,Lu,k

S #ru
#.

Proof: Let us introduce a family of inner products onL2(ru) having a parametereP(0,1#:

~X,Y!ru

~e!5~12e!~X,Y!ru
1e^X,Y&ru

.

Since

e^X,X&ru
<~X,X!ru

~e!<~22e!^X,X&ru
,

there exists, for eache, a unique operatorLu, j
(e)PL2(ru) that satisfies

]

]u j Tr ruX5~Lu, j
~e! ,X!ru

~e! ,

for all XPL2(ru). Then, in a quite similar way to the derivation of the quantum Crame´r–Rao
inequality, we have

Vu@M #>~Ju
~e!!21, Ju

~e!5@~Lu, j
~e! ,Lu,k

~e! !ru

~e!#. ~11!
                                                                                                                



l-
erent

taking
o a
ound at
,

-

4234 J. Math. Phys., Vol. 40, No. 9, September 1999 A. Fujiwara and H. Nagaoka

                    
Now, observing the identity (X,Y)ru

(e)5^X,Y&ru
1 i (12e)@X,Y#ru

, and using the definition of

Dru
5Du , we see that, for allYPL2(ru),

]

]u j Tr ruY5^Lu, j
S ,Y&ru

5~Lu, j
~e! ,Y!ru

~e!5^$I1 i ~12e!Du%Lu, j
~e! ,Y&ru

.

Then Lu, j
S 5$I1 i (12e)Du%Lu, j

(e) ; hence (Lu, j
(e) ,Lu,k

(e) )ru
(e)5^Lu, j

S ,$I1 i (12e)Du%
21Lu,k

S &ru
. Let us

introduce Dirac’s notation uLu, j
S & for the Hilbert space „L2(ru),^•,•&ru

…, and let Gu

ª@ uLu,1
S &,...,uLu,n

S &]. Then Gu* Gu5Ju
S andGu*DuGu5Du . And the matrixJu

(e) can be written in
the formJu

(e)5Gu* $I1 i (12e)Du%
21Gu . Thus, from the assumption thatT u

S(P) is Du invariant,
the inverse ofJu

(e) is explicitly given by

~Ju
~e!!215~Ju

S!21Gu* $I1 i ~12e!Du%Gu~Ju
S!215~Ju

S!211 i ~12e!~Ju
S!21Du~Ju

S!21. ~12!

Combining~11! and ~12!, and taking the limite↓0, we have the theorem. h

Theorem 5 asserts that even for a model that does not have the RLDs, the lime↓0(Ju
(e))21

indeed gives a generalization of (Ju
R)21 as long as the SLD tangent space isDu invariant. Then, by

using Theorem 5 and an analogous argument to the derivation of~9!, we obtain the CR bound,

CR5tr G~Ju
S!211tr absG~Ju

S!21Du~Ju
S!21, ~13!

for models each having aDu-invariant SLD tangent spaceT u
S(P). This may be called a genera

ized RLD bound. We will show in the next section that this bound is achievable in a coh
model.

V. OPTIMAL ESTIMATION FOR TWO-DIMENSIONAL COHERENT MODELS

We now proceed to a parameter estimation for a pure coherent model. In particular,
into account the symplectic structure~6! of the SLD tangent space, we restrict ourselves t
two-dimensional case. We note that as long as we are concerned with the achievable CR b
each point on the model$ru%, we can take the weight asG5I without loss of generality. In fact
let M be a locally unbiased measurement for the parameteru5(u1,u2) and let p( û1,û2)dû

5Tr ruM (dû) be the corresponding joint distribution. The coordinate transformationh i

5( jhj
i u j , whereH5@hj

i # is a real regular matrix, then induces another measurementN(dĥ),
which corresponds to the joint distributionq(ĥ1,ĥ2)dĥ5p( û1,û2)dû and is locally unbiased for
the parameterh5(h1,h2). In this case, trVh@N#5tr( tHH)Vu@M #. Thus, the parameter estima
tion for u with the weightG5 tHH is equivalent to that forh with the weightI.

Now suppose we are given a two-dimensional coherent modelP5$ru ;u5(u1,u2)PQ%. Let
$Li% be the dual basis of the SLDs:Li5( j J

i j Lu, j
S with Ji j being the~i, j! entry of (Ju

S)21. Then

~Ju
S!215F ^L1,L1&ru

^L1,L2&ru

^L2,L1&ru
^L2,L2&ru

G
and

~Ju
S!21Du~Ju

S!215F 0 @L1,L2#ru

@L2,L1#ru
0

G .

Thus the generalized RLD bound~13! for G5I can be rewritten in the form

CR5^L1,L1&ru
1^L2,L2&ru

12u@L1,L2#ru
u. ~14!
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We will show that the boundCR is achievable. In what follows, we fix au5(u1,u2) arbitrarily.
Let us consider a random measurement as follows. We first introduce a linear transform

f: T u
S(P)˜T u

S(P) by

f~X!5^L1,X&ru
L11^L2,X&ru

L2.

Since f is symmetric and positive definite, it has positive eigenvaluesl1 ,l2 , and mutually
orthogonal unit eigenvectorsA1 ,A2 satisfyingf(An)5lnAn , n51,2. We next take positive num
bersp1 ,p2 satisfyingp11p251. Now letting

E jEn~dj!, n51,2

be the spectral decompositions of arbitrarily fixed representatives ofAn , we define a generalized
measurement,

M ~n,dj!5pnEn~dj!.

This has the following physical interpretation: Select one of the two ‘‘observables’’A1 ,A2 ac-
cording to the probabilityp1 ,p2 , respectively, and measure it in a usual sense.

Now suppose we have selectedAn and have obtained an outcomej. We identify this result
with a pair of real quantities,

û i~n,j!5u i1
j

pn
^Li ,An&ru

, i 51,2.

The pair$û i(n,j)% i 51,2 satisfies the local unbiasedness condition atu:

(
n51

2 E û i~n,j!Tr ruM ~n,dj!5u i , i 51,2, ~15!

(
n51

2 E û i~n,j!
]

]u j Tr ruM ~n,dj!5d j
i , i , j 51,2. ~16!

To prove~15!, we used the fact thatAnPT u
S(P), i.e., ^I ,An&ru

50. To prove~16!, observe that

E j
]

]u j Tr ruEn~dj!5^Lu, j
S ,An&ru

,

so that the left-hand side of~16! becomes

(
n51

2

^Li ,An&ru
^Lu, j

S ,An&ru
5^Li ,Lu, j

S &ru
5d j

i .

With this measurementM,

tr Vu@M #5 (
n51

2 E @~ û1~n,j!2u1!21~ û2~n,j!2u2!2#Tr ruM ~n,dj!

5 (
n51

2
1

pn
@^L1,An&ru

2 1^L2,An&ru

2 #.

In the second equality, we used the fact that
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E j2 Tr ruEn~dj!5^An ,An&ru
51.

Since, for given m1 ,m2.0, m1 /p11m2 /p2 takes the minimum (Am11Am2)2 at
pn5Amn/(Am11Am2), we see

min
$pn%

tr Vu@M #5@A^L1,A1&ru

2 1^L2,A1&ru

2 1A^L1,A2&ru

2 1^L2,A2&ru

2 #2

5@A^A1 ,f~A1!&ru
1A^A2 ,f~A2!&ru

#2

5@Al11Al2#2

5^L1,L1&ru
1^L2,L2&ru

12A^L1,L1&ru
^L2,L2&ru

2^L1,L2&ru

2 . ~17!

The last equality follows from the fact that the tracel11l2 and the determinantl1l2 of the linear
transformationf are independent of the choice of the basis that representsf in a matrix form.

The random measurement presented above was first introduced in Ref. 5 by one of the
authors. In that paper, it was also shown that the problem of finding the achievable CR bou
an arbitrary two-parameter faithful spin-1

2 model can be reduced to an easy minimization proble
Interestingly, the explicit solution of the minimization problem, i.e., the achievable CR bo
turns out to be identical to the quantity~17!, although the model treated there is not pure nor h
in general, aDr-invariant tangent space.

Now we establish the relation between~14! and ~17! for a coherent model.
Theorem 6: For a two-dimensional coherent model$ru5ucu&^cuu%, the lower bound (14) is

identical to (17). In other words, the generalized RLD bound (14) is achievable.
Proof: By Theorem 3,L1cu andL2cu are linearly dependent. Therefore

detF ^L1cuuL1cu& ^L1cuuL2cu&

^L2cuuL1cu& ^L2cuuL2cu&
G50,

which leads to

~ Im^L1cuuL2cu&!25^L1cuuL1cu&^L
2cuuL2cu&2~Rê L1cuuL2cu&!2.

By ~1! and ~2!, this can be read as

u@L1,L2#ru
u25^L1,L1&ru

^L2,L2&ru
2^L1,L2&ru

2 ,

which proves the theorem.
It should be noted that a more convincing result has been obtained by Matsumoto11 He

proved that the CR bound~13! is achievable for a 2m-dimensional coherent model with a
arbitrary weightG.

It is also worth noting that the achievability of~14! is closely related to the Heisenber
uncertainty relation. By a coordinate transformation, we can assume that the SLD Fisher
mation matrix is diagonal at a fixedru5ucu&^cuu. Then there exist nonzero real numbersc1 ,c2

and a normalizedru-symplectic basis$L̃1
S ,L̃2

S% such thatL j
S5cj L̃ j

S . ThenL j5L̃ j
S/cj , and, by~7!,

~c1L11 ic2L2!cu50.

This is nothing but the equality condition for the Heisenberg uncertainty relation. So we ha

^L1,L1&ru
^L2,L2&ru

5u@L1,L2#ru
u2.
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This equation, combined with the assumption that^L1,L2&ru
50, gives another proof of Theorem

6 for an orthogonal parametrization atru .

VI. EXAMPLES

In this section we calculate the achievable CR bounds for canonical and spin coherent m
Throughout this section, adjoint operators and complex conjugate numbers are denoted b
* , respectively, according to the convention in physics. Also, we use the same letter for b
square summable operator and the corresponding element inLh

2(r).

A. Canonical squeezed state model

The canonical squeezed state12,13 is defined by

rq,p5D~q,p!u0&jj^0uD†~q,p! ~q,pPR!,

whereD(q,p)5exp(za†2z*a) denotes the shift operator withz5(q1 ip)/&, anda anda† are
annihilation and creation operators, respectively, witha5(Q1 iP)/&. Further,u0&j5exp@(ja†2

2j*a2)/2#u0& is the squeezed vacuum withu0& the Fock vacuum, andj is a complex number tha
represents the squeezing ratio: letj5seiu.

Comparing the identitybuz&j5buz&j with Corollary 4, where uz&j5D(q,p)u0&j , b
5a coshs2a† eiu sinhs, andb5z coshs2z*eiu sinhs, we see thatrq,p is a two-dimensional co-
herent model, and a normalizedrq,p-symplectic basis is given by

L̃1
S5&@~Q2qI !~coshs2cosu sinhs!2~P2pI !sinu sinhs#,

L̃2
S5&@~P2pI !~coshs1cosu sinhs!2~Q2qI !sinu sinhs#.

The SLDs atrq,p are calculated by operating2Dq,p to ALDs at rq,p . By expanding ALDs,
Lq

A52(P2pI), Lp
A522(Q2qI) into linear combinations ofL̃1

S , L̃2
S , and using the relations

Dq,pL̃1
S5L̃2

S , Dq,pL̃2
S52L̃1

S , we have

Lq
S52@~Q2qI !~cosh 2s2cosu sinh 2s!2~P2pI !sinu sinh 2s#,

Lp
S52@~P2pI !~cosh 2s1cosu sinh 2s!2~Q2qI !sinu sinh 2s#.

The corresponding SLD Fisher information matrix becomes

Jq,p
S 52Fcosh 2s2cosu sinh 2s 2sinu sinh 2s

2sinu sinh 2s cosh 2s1cosu sinh 2sG .
Then from~17!, we have

min
M

tr Vq,p@M #5cosh 2s11.

B. Spin coherent state model

The spin coherent state14,15 in the spinj representation is defined by

ru,w5R~u,w!u j &^ j uR†~u,w!, ~0<u<p, 0<w,2p!,

where~u, w! is the polar coordinate system~the north pole isu50 and thex axis corresponds to
w50!, R(u,w)5exp@iu(Jx sinw2Jy cosw)# the rotation through an angle2u about an axis
(sinw,2cosw,0), anduj& the highest weight state with respect toJz that corresponds to the nort
pole.
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SinceJ1u j &5(Jx1 iJy)u j &50, we find thatru,w is a two-dimensional coherent model, and
normalized r0,0-symplectic basis is L̃1

S(0,0)5A2/jJx , L̃2
S(0,0)5A2/jJy . A normalized

ru,w-symplectic basis is then calculated as

L̃k
S~u,w!5R~u,w!L̃k

S~0,0!R†~u,w!,

wherek51,2.
On the other hand, the generators of rotations about axes (sinw,2cosw,0) and (cosw,sinw,0)

at u50 are i (Jx sinw2Jy cosw) and i (Jx cosw1Jy sinw), respectively. Therefore ALDs for the
model atru,w are given by

Lu
A~u,w!5R~u,w!$22~Jx sinw2Jy cosw!%R†~u,w!

52A2 j $L̃1
S~u,w!sinw2L̃2

S~u,w!cosw%,

Lw
A~u,w!5R~u,w!$22~Jx cosw1Jy sinw!sinu%R†~u,w!

52A2 j $L̃1
S~u,w!sinu cosw1L̃2

S~u,w!sinu sinw%.

The SLDs atru,w are calculated by operating2Du,w to ALDs, to obtain

Lu
S~u,w!5A2 j $L̃1

S~u,w!cosw1L̃2
S~u,w!sinw%,

Lw
S~u,w!52A2 j $L̃1

S~u,w!sinu sinw2L̃2
S~u,w!sinu cosw%.

Sinceru,w-symplectic basis$L̃k
S(u,w)%k51,2 is orthonormal, the SLD Fisher information matr

and the matrixD are easily calculated:

Ju,w
S 5F2 j 0

0 2j sin2 uG , Du,w5F 0 22 j sinu

2 j sinu 0 G .
We thus have

min
M

tr Vu,w@M #5
1

2 j S 11
1

sinu D 2

.

VII. CONCLUSIONS

We introduced a class of quantum pure state models called the coherent models. Th
characterized by a symplectic structure of the tangent space, and have a close connection
conventional generalized coherent states in mathematical physics. A Crame´r–Rao-type bound for
a coherent model was derived by an analogous argument to the derivation of the right logar
derivative bound. Moreover, by an argument of random measurement, this lower bound was
to be achievable.
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Exact solutions of Dirac equation for neutrinos
in presence of external fields
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Unité de Recherche en Physique The´orique (URPT), Institut de Mathe´matiques et de
Sciences Physiques (IMSP), B.P.613 Porto-Novo, Republic of Benin

~Received 20 July 1998; accepted for publication 11 March 1999!

Exact solutions of the Dirac equation in a chiral representation for neutrinos in the
presence of external stresses are investigated in terms of special functions, using
the algebraic method of the separation of variables in Cartesian, cylindrical, and
spherical coordinates. ©1999 American Institute of Physics.
@S0022-2488~99!02408-1#

I. INTRODUCTION

It is in the neutrino physics domain that most inconsistencies with the standard mod
found. From the results presented in the standard model, it seems clear that neutrinos have
a window toward new physics. It is nowadays very interesting to study the neutrino beam
means of electromagnetic fields in order to understand their space distributions and to give
solutions of the Dirac equation for them.

The investigations of methods giving exact solutions of the Dirac equation with or wit
external interactions1–30 have excited great interest in the past few years because of the usefu
of solvable problems to build a consistent and comprehensible theory, and to find an ad
mathematical framework for the interpretation of numerous experimental results.

The methods used in the most fundamental works on this Dirac equation in the prese
external interaction are essentially based on the quaternionic approach proposed by Hauto29 the
Stäckel separation method developed by Bagrovet al.,22 the shift operator method,25 the algebraic
method proposed by Komarov and Romanov,30 and the algebraic method of the separation
variables adopted by Shishkinet al.6 Our aim in this paper is to present the theory of neutrinos
external fields from this latter point of view.

Despite the remarkable results attained in these previous works, using one or the othe
mentioned methods, the large set of representations adapted to various situations does no
us to elaborate on a unified mathematical framework for the exact solutions in the standard
of coordinates like Cartesian, cylindrical, and spherical.

Clearly, it is not often explained in these works why a matrix or geometric representation
to solve the Dirac equation in one system of coordinates is not quite adapted to solve the
problem in other systems of coordinates! What kind of mathematical difficulties occur and o
us to choose specific representations for a specific system of coordinates! To discuss this e
we opt here to work in a unique representation, whatever the coordinate system considere

The algebraic method of the separation of variables6 consists of reducing the Dirac operator
a sum of two commuting differential operators following the scheme

$HD%C⇒$HD%GG21C⇒$K̂11K̂2%F, with C5GF, ~1!

$K̂11K̂2%F50, ~2!

@K̂1 ,K̂2#25K̂1K̂22K̂2K̂150, ~3!

a!Electronic mail: hounkon@syfed.bj.refer.org
42400022-2488/99/40(9)/4240/15/$15.00 © 1999 American Institute of Physics
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where HD is the initial Dirac operator; andK̂1 and K̂2, the searched commuting differentia
operators, depend on a set of variables.

C and F are the initial spinor, solution of the Dirac equation, and the searched sp
corresponding to the operatorK̂11K̂2, respectively.

Thus the initial problem is equivalently reduced to solve the following:

K̂1F5lF52K̂2F, ~4!

wherel is a constant of separation.
Here, we have shown that, adapting this algebraic method of separation of variables in a

representation, it is possible to give exact solutions in terms of special functions to Dirac eq
with various external fields in different systems of coordinates such as a Cartesian, cylindric
spherical one.

The paper is organized as follows. In Sec. II, considering the system of Cartesian coord
exact solutions to the Dirac equation in the presence of four types of external fields are gi
terms of confluent hypergeometric functions. In Sec. III, the same problem is consider
cylindrical coordinates. In Sec. IV, we discuss the difficulties arising when the spherical co
nates are considered in a chiral representation.

II. CARTESIAN COORDINATES

In Cartesian coodinates, the Dirac equation for a neutrino of massm in external electromag-
netic field reads as follows in chiral representation:

$gx
0] t1gx

1]x1gx
2]y1gx

3]z1m1ge i jkgx
i gx

j Hk%Cx50, ~5!

where

gx
05S 0 I

I 0D , gx
k5S 0 2sk

sk 0 D , ~k51,2,3!; ~6!

g is the coupling constant;Hk the external electromagnetic field; andCx the spinor solution of the
Dirac equation;

e i jk5H 11, if ~ i jk ! is an even permutation of~123!;

21, if ~ i jk ! is an odd permutation of~123!;

0, otherwise.

Using the algebraic method of the separation of variables, we can write Eq.~5! as follows:

$K̂xy1K̂zt%Fx50, K̂xyFx5lFx52K̂ztFx , ~7!

where

K̂xy5gx
1]y2gx

2]x1mgx
1gx

22gHz~x,y!, ~8!

K̂zt5gx
0gx

1gx
2] t1gx

3gx
1gx

2]z2gHz~z,t !, ~9!

and

Cx5gx
1gx

2Fx . ~10!

The magnetic vectorHz reads as
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Hz5Hz~x,y!1Hz~z,t !. ~11!

Applying the condition¹HI z50 on Eq. ~11!, we find thatHz(z,t)5Hz(t), and if we fix our
attention to time-independent fields, this term can be omitted.

lFx52K̂ztFx establishes the relationship between the different spinor composents oFx

andCx , and the value of the constant of separationl, which satisfies the relationl25E22kz
2 .

From lFx52K̂ztFx , we find

Fx5S j1

j2

h1

h2

D 5S E1kz

l
h1

2E1kz

l
h2

h1

h2

D . ~12!

Substituting Eqs.~6! and ~11! in ~7!, we obtain

@gx
1]y2gx

2]x1mgx
1gx

22gHz~x,y!2l#Fx50. ~13!

This equation splits into a system of ordinary differential equations, mixing the two-compo
spinorsh andj as follows:

~s2dx2 ikys
1!h2~gHz~x!1l1 ims3!j50, ~14!

~2s2dx1 ikys
1!j2~gHz~x!1l1 ims3!h50. ~15!

Now, we are going to solve these equations to obtain the explicit expressions ofh1 , h2 , j1 , and
j2, for some relevant external fieldsHz .

~i! Hz is a constant magnetic field:Hz5b.
In this case, Eqs.~14! and ~15! become

~s2dx2 ikys
1!h2~gb1l1 ims3!j50, ~16!

~2s2dx1 ikys
1!j2~gb1l1 ims3!h50. ~17!

Inserting ~12! into the spinor equation~16!, and using the standard representation for the P
matrices, we obtain

~dx1ky!h22 i ~gb1l1 im!S E1kz

l Dh150, ~18!

~dx2ky!h12 i ~gb1l1 im!S E2kz

l Dh250, ~19!

where

h5S h1

h2D . ~20!

From ~19!, we have
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h25
2 i

~gb1l1 im!S E2kz

l D ~dx2ky!h1 , ~21!

which we insert into~18! to obtain a second-order differential equation forh1 ,

F d2

dx2
2ky

21~gb1l1 im!2Gh150. ~22!

The solution of this equation reads as

h15c1 exp@Aky
22~gb1l1 im!2x#1c2 exp@2Aky

22~gb1l1 im!2x#. ~23!

Substituting~23! into ~21!, and using~12!, we have

h25
2 i

~gb1l1 im!S E2kz

l D $c1@Aky
22~gb1l1 im!22ky#exp@Aky

22~gb1l1 im!2x#

2c2@Aky
22~gb1l1 im!21ky#exp@2Aky

22~gb1l1 im!2x#%, ~24!

j15
E1kz

l
$c1 exp@Aky

22~gb1l1 im!2x#1c2 exp@2Aky
22~gb1l1 im!2x#%, ~25!

j25
i

~gb1l1 im!
$c1@Aky

22~gb1l1 im!22ky#exp@Aky
22~gb1l1 im!2x#

2c2@Aky
22~gb1l1 im!21ky#exp@2Aky

22~gb1l1 im!2x#%. ~26!

~ii ! Hz linearly depends on spatial coordinatex: Hz5bx.
Substituting the field expression into the spinor equation~14! with the standard representatio

for Pauli matrices, and taking into account~12!, we obtain

~dx1ky!h22 i ~gbx1l1 im!S E1kz

l Dh150, ~27!

~dx2ky!h12 i ~gbx1l1 im!S E2kz

l Dh250. ~28!

From ~28!, we have

h25
2 i

~gbx1l1 im!S E2kz

l D ~dx2ky!h1 , ~29!

which we insert into~27! to obtain a second-order ordinary differential equation forh1 ,

F d2

dx2
2ky

21~gbx1l1 im!2Gh150. ~30!

Making the change of variables,
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gbx1l1 im5Agb

2
y, ~31!

we reduce~30! to a parabolic cylinder equation,31

F d2

dy2
1

y2

4
2

ky
2

2gbGh150, ~32!

whose solution can be written in terms of confluent hypergeometric functionsM (a,b,z):31

h15c1 expS 2 iy2

4 D M S 1

4
2

iky
2

4gb
,
1

2
,

i

2
y2D 1y expS ip

4 D c2 expS 2 iy2

4 D M S 3

4
2

iky
2

4gb
,
3

2
,

i

2
y2D .

~33!

Substituting~33! into ~29!, and using~12! and the recurrence relation

M 8~a,b,z!5
a

b
M ~a11,b11,z!, ~34!

we obtain explicit expressions for other components of the 4-spinorFx :

h25

i expS 2 iy2

4 D
Agb

2
y S E2kz

l
D
Fc1S M S 1

4
2

iky
2

4gb
,
1

2
,

i

2
y2D S iAgb

2
y1kyD 2 iyA2gbS 1

2
2

iky
2

2gb
D

3M S 5

4
2

iky
2

4gb
,
3

2
,

i

2
y2D D 2c2 expS ip

4
D S M S 3

4
2

iky
2

4gb
,
3

2
,

i

2
y2D S A2gb2 iAgb

2
y2

2ykyD 2 iA2gbS 3

6
2

iky
2

6gb
D y2M S 7

4
2

iky
2

4gb
,
5

2
,

i

2
y2D D G , ~35!

j15
E1kz

l Fc1 expS 2 iy2

4 D M S 1

4
2

iky
2

4gb
,
1

2
,

i

2
y2D 1y expS ip

4 D c2 expS 2 iy2

4 D
3M S 3

4
2

iky
2

4gb
,
3

2
,

i

2
y2D G , ~36!

j252 i

expS 2 iy2

4 D
Agb

2
y

Fc1S M S 1

4
2

iky
2

4gb
,
1

2
,

i

2
y2D S iAgb

2
y1kyD 2 iyA2gbS 1

2
2

iky
2

2gb
D

3M S 5

4
2

iky
2

4gb
,
3

2
,

i

2
y2D D 2c2 expS ip

4 D S M S 3

4
2

iky
2

4gb
,
3

2
,

i

2
y2D

3S A2gb2 iAgb

2
y22ykyD 2 iA2gbS 3

6
2

iky
2

6gb
D y2M S 7

4
2

iky
2

4gb
,
5

2
,

i

2
y2D D G . ~37!

~iii ! The magnetic fieldHz is inversely proportional to the spatial coordinatex: Hz(x)
5b/x. Substituting the field expression into~14! and taking into account~12!, we obtain
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~dx1ky!h22 i S gb

x
1l1 imD S E1kz

l Dh150, ~38!

~dx2ky!h12 i S gb

x
1l1 imD S E2kz

l Dh250. ~39!

If we eliminateh2 from ~39! and ~38!, we find a second-order differential equation as follows

F d2

dx2
2ky

21S gb

x
1l1 imD 2Gh150, ~40!

whose solution can be expressed in terms of confluent hypergeometric functions as follow

h15expS 2y

2 D Fa1y1/21mM S 1

2
1m2 k̃,112m,yD1a2y1/22mM S 1

2
2m2 k̃,122m,yD G , ~41!

where

y52Aky
22~l1 im!2x, k̃5

gb~l1 im!

Aky
22~l1 im!2

,

m5A1

4
2g2b2. ~42!

Inserting~41! into ~39!, and using~12! and the recurrence relation~34!, the other components o
the 4-spinor are explicitly determined as

h25

2 il k̃y expS 2y

2 D
~2g2b21 k̃y!~l1 im!~E2kz!

Fa1S M S 1

2
1m2 k̃,112m,yD

3S 2gb~l1 im!

k̃
y1/21m1

2gb~l1 im!

k̃
S 1

2
1m D y21/21m2kyy

1/21mD
1

2gb~l1 im!

k̃

~ 1
2 1m2 k̃!

112m
y1/21mM S 3

2
1m2 k̃,212m,yD D 1a2S M S 1

2
2m2 k̃,122m,yD

3S 2gb~l1 im!

k̃
y1/22m1

2gb~l1 im!

k̃
S 1

2
2m D y21/22m2kyy

1/22mD
1

2gb~l1 im!

k̃

~ 1
22m2 k̃!

122m
y1/22mM S 3

2
2m2 k̃,222m,yD D G , ~43!

j15

~E1kz!expS 2y

2 D
l Fa1y1/21mM S 1

2
1m2 k̃,112m,yD1a2y1/22mM S 1

2
2m2 k̃,122m,yD G ,

~44!
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j25

i k̃y expS 2y

2 D
~2g2b21 k̃y!~l1 im!

Fa1S M S 1

2
1m2 k̃,112m,yD S 2gb~l1 im!

k̃
y1/2 1m

1
2gb~l1 im!

k̃
S 1

2
1m D y21/2 1m2kyy

1/2 1mD
1

2gb~l1 im!

k̃

~ 1
2 1m2 k̃!

112m
y1/2 1mM S 3

2
1m2 k̃,212m,yD D

1a2S M S S 1

2
2m2 k̃,122m,yD S 2gb~l1 im!

k̃
y1/2 2m

1
2gb~l1 im!

k̃
S 1

2
2m D y21/2 2m2kyy

1/2 2mD
1

2gb~l1 im!

k̃

~ 1
2 2m2 k̃!

122m
y1/2 2mM S 3

2
2m2 k̃,222m,yD D G . ~45!

~iv! The magnetic field depends exponentially on the spatial coordinatex: Hz(x)5b expax.
Here, substituting field expression into~14! and taking into account~12!, we obtain

~dx1ky!h22 i ~gb expax1l1 im!S E1kz

l Dh150, ~46!

~dx2ky!h12 i ~gb expax1l1 im!S E2kz

l Dh250. ~47!

Making the change of variablesv5expax, and eliminatingh2 from ~47! and ~46!, leads to

F d2

dv2
1

1

v
d

dv
1

~l1 im!22ky
2

a2v2
1

2gb~l1 im!

a2v
1

g2b2

a2 Gh150. ~48!

Writing

h15c~v !z, ~49!

reduces Eq.~48! to a canonic form:

F d2

dv2
1q~v !Gz50. ~50!

Then, the change of variablesz5(22igb/a)v permits us to obtain the solution of the Whittak
equation31 as follows:

h15a1 expS igb

a
v D vmM S 1

2
1m2k,112m,

22igb

a
v D

1a2 expS igb

a
v D v2mM S 1

2
2m2k,122m,

22igb

a
v D , ~51!
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where

m5Aky
22~l1 im!2

a2
, k5

~ il2m!

a
. ~52!

Putting~51! into ~47!, and using~12! and the recurrence relation~34!, we explicitly determine the
other components ofFx :

h25

2 il expS igb

a
v D

~gbv1l1 im!~E2kz!
Fa1M S 1

2
1m2k,112m,

22igb

a
v D ~ igbv11m1amvm2kyv

m!

1a1a8v11mS 1
2 1m2k

112m
D M S 3

2
1m2k,212m,

22igb

a
v D

1a2M S 1

2
2m2k,122m,

22igb

a
v D ~ igbv12m2amv2m2kyv

2m!

1a2a8v12mS 1
2 2m2k

122m
D M S 3

2
2m2k,222m,

22igb

a
v D G , ~53!

j15
E1kz

l Fa1 expS S igb

a
v D vmM S 1

2
1m2k,112m,

22igb

a
v D

1a2 expS igb

a
v D v2mM S 1

2
2m2k,122m,

22igb

a
v D G , ~54!

j25

i expS igb

a
v D

~gbv1l1 im!
Fa1M S 1

2
1m2k,112m,

22igb

a
v D ~ igbv11m1amvm2kyv

m!

1a1a8v11mS 1
2 1m2k

112m
D M S 3

2
1m2k,212m,

22igb

a
v D

1a2M S 1

2
2m2k,122m,

22igb

a
v D ~ igbv12m2amv2m2kyv

2m!

1a2a8v12mS 1
2 2m2k

122m
D M S 3

2
2m2k,222m,

22igb

a
v D G , ~55!

wherea8522igb.

III. CYLINDRICAL COORDINATES

The Dirac equation in cylindrical coordinates for the neutrino of massm in an external
magnetic field, expressed in chiral representation, reads as

H gx
0] t1gx

1] r1
gx

2

r
]u1gx

3]z1m1ggx
1gx

2HJ Cx50. ~56!

Following the pairwise scheme of variable separation, we transform Eq.~56! to

F2gx
2] r1

gx
1

r
]u1mgx

1gx
22gH1lGFx50, ~57!
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@gx
0gx

1gx
2] t1gx

3gx
1gx

2]z2l#Fx50, ~58!

whereFx is related toCx by

Cx5gx
1gx

2Fx . ~59!

From Eq.~58!, we find the following relations:

l25E22kz
2 , Fx5S j1

j2

h1

h2

D 5S 2
E1kz

l
h1

E2kz

l
h2

h1

h2

D . ~60!

The Eq.~57! splits into a system of ordinary differential equations, mixing the two-compon
spinorsh andj as follows:

S s2dr2
iku

r
s1Dh2~gH2l1 im!j50, ~61!

S 2s2dr1
iku

r
s1D j2~gH2l1 im!h50, ~62!

involving the new system of equations,

S dr1
ku

r Dh21 i ~gH2l1 im!S E1kz

l Dh150, ~63!

S dr2
ku

r Dh11 i ~gH2l1 im!S E2kz

l Dh250, ~64!

which are more adapted to our situation.
Let us now analyze its solutions in terms of special functions, providing a concrete pre

tion for the external magnetic field.
~i! H is a constant magnetic field:H5b.
From ~64!, we have

h25
il

~gb2l1 im!~E2kz!
S dr2

ku

r Dh1 , ~65!

which we insert into~63! to obtain a second-order differential equation forh2 ,

F d2

dr2
2

ku~ku21!

r 2
1~gb2l1 im!2Gh150, ~66!

whose solution can be written as follows:

h15cr1/2Hku21/2
~1! @~gb2l1 im!r #; ~67!

Ha
(1)(r ) is the Hankel function of the first kind. Substituting~67! into ~65!, and using~60! and the

following recurrence relation:
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H
m

8(1)
~z!5Hm21

(1) ~z!2
m

z
Hm

(1)~z!, ~68!

we completely defined the three other components of the 4-spinorFx :

h25
il

E2kz
cr21/2Hku11/2

~1! @~gb2l1 im!r #, ~69!

j152
E1kz

l
cr1/2Hku21/2

~1! @~gb2l1 im!r #, ~70!

j25 icr 1/2Hku11/2
~1! @~gb2l1 im!r #. ~71!

~ii ! The magnetic fieldH is inversely proportional to the spatial coordinater: H5a/r . Sub-
stituting the field expression into~63! and ~64!, and if eliminatingh2 from these equations, we
find a second-order differential equation:

F d2

dr2
2

ku~ku21!2g2a2

r 2
22~l2 im!g

a

r
1~l2 im!2Gh150. ~72!

Then, the change of variablesr52i (l2 im)r permits us to obtain the solution

h15c0 expS 2r

2 D r1/21mM S 1

2
1m2k,112m,r D1c1 expS 2r

2 D r1/22mM S 1

2
2m2k,122m,r D ,

(73)

where

m5Aku~ku21!2g2a21 1
4, k5 iga. ~74!

Inserting~73! into ~63!, and using~60! and the recurrence relation~34!, we have the three othe
components of the 4-spinorFx ,

h25

22lr expS 2r

2 D
~2iga2r!~E2kz!

Fc0S M S 1

2
1m2k,112m,r D S 21

2
r1/21m1S 1

2
1m D rm21/22kurm21/2D

1

1
2 1m2k

112m
r1/21mM S 3

2
1m2k,212m,r D D

1c1S M S 1

2
2m2k,122m,r D S 21

2
r1/22m1S 1

2
2m D r2m21/22kur2m21/2D

1

1
2 2m2k

122m
r1/22mM S 3

2
2m2k,222m,r D D G , ~75!
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j152
E1kz

l Fc0 expS 2r

2 D r1/21mM S 1

2
1m2k,112m,r D

1c1 expS 2r

2 D r1/22mM S 1

2
2m2k,122m,r D G , ~76!

j25

22r expS 2r

2 D
2iga2r

Fc0S M S 1

2
1m2k,112m,r D S 21

2
r1/2 1m1S 1

2
1m D rm21/22kurm21/2D

1

1
2 1m2k

112m
r1/21mM S 3

2
1m2k,212m,r D D

1c1S M S 1

2
2m2k,122m,r D S 21

2
r1/22m1S 1

2
2m D r2m21/22kur2m21/2D

1

1
2 2m2k

122m
r1/22mM S 3

2
2m2k,222m,r D D G . ~77!

Now, we are going to solve the Dirac equation for a neutrino with anomalous electric
action.

~iii ! The electric fieldE5e is applied along thez axis.
The Dirac equation takes the form

H gx
0] t1gx

1] r1
gx

2]u

r
1gx

3]z1m1ggx
3gx

0eJ Cx50. ~78!

Applying the pairwise scheme of variable separation, we can write Eq.~78! as follows:

S gx
1gx

3gx
0] r1

gx
2gx

3gx
0]u

r
1ge2l DFx50, ~79!

~gx
3] t1gx

0]z2mgx
3gx

02l!Fx50, ~80!

whereFx is related toCx by

Cx5gx
3gx

0Fx . ~81!

From Eq.~80!, we find the relations

l25E22kz
21m2, Fx5S j1

j2

h1

h2

D 5S 2 i ~E1kz!

m2l
h1

2 i ~E2kz!

m1l
h2

h1

h2

D . ~82!

The 4-spinor Eq.~79! splits into a system of ordinary differential equations, mixing the tw
component spinorsh andj as follows:
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S s2] r1
]u

r
s1Dh1 i ~ge2l!j50, ~83!

S s2] r1
]u

r
s1D j1 i ~ge2l!h50, ~84!

which can be transformed to a simple system,

S dr2
ku

r Dh21 i ~ge2l!S E1kz

m2l Dh150, ~85!

S dr1
ku

r Dh12 i ~ge2l!S E2kz

m1l Dh250. ~86!

If we eliminateh2 from ~86! and ~85!, we find a second-order ordinary differential equation,

F d2

dr2
2

ku~ku11!

r 2
1~ge2l!2Gh150, ~87!

whose solution is given by

h15cr1/2Hku11/2
~1! @~ge2l!r #. ~88!

Substituting~88! into ~86!, and using~82! and the recurrence relation~68!, we determine the othe
components of the 4-spinorFx :

h25
i ~m1l!

kz2E
cr1/2Hku21/2

~1! @~ge2l!r #, ~89!

j15
i ~E1kz!

l2m
cr1/2Hku11/2

~1! @~ge2l!r #, ~90!

j25cr1/2Hku21/2
~1! @~ge2l!r #. ~91!

IV. DISCUSSIONS

In each case, the original Dirac spinorCx in chiral representation should be faithfully reco
ered using relations~6! and ~10! in Cartesian coordinates or~59!, ~81! in cylindrical coordinates
and the explicit expressions for the 4-spinorFx components, obtained in the various system
coordinates for a specific applied field.

For instance, in the cylindrical coordinates, the explicit structure of the Dirac 4-spinorCx for
the neutrino with an anomalous electric interaction is given by
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Cx5gx
3gx

0Fx5S j1x

j2x

h1x

h2x

D , ~92!

where

j1x5
i ~E1kz!

m2l
cr1/2Hku11/2

~1! @~ge2l!r #, ~93!

j2x5 2cr1/2Hku21/2
~1! @~ge2l!r #, ~94!

h1x5cr1/2Hku11/2
~1! @~ge2l!r #, ~95!

h2x5
i ~m1l!

E2kz
cr1/2Hku21/2

~1! [ ~ge2l!r ]. ~96!

At the opposite of Cartesian and cylindrical coordinates that have been worked out to
standard ordinary differential equations whose solutions are obtained in terms of special
ematical functions for the set of magnetic field expressions, the system of spherical coord
showed some difficulties in exhibiting exact finite physical analytical solutions. The introdu
of spherical symmetry in a chiral representation has contributed to elevating the order of or
differential equations governing a single spinor component. From a second-order differ
equation in the case of Cartesian and cylindrical coordinate systems, we return back to a
complicated greater order differential equation.

Indeed, in spherical coordinates, the Dirac equation for a neutrino with anomalous e
interaction takes the form

H gx
0] t1gx

1] r1
gx

2

r
]u1

gx
3

r sinu
]w1m1ggx

1gx
0EJ Cx50. ~97!

By the pairwise scheme of variable separation, we transform~97! to

F2gx
1] t2gx

0] r1mgx
1gx

01gE1
k

r GFx50, ~98!

F2gx
2gx

1gx
0]u1

gx
3gx

1gx
0

sinu
]w2kGFx50, ~99!

and

Cx5gx
1gx

0Fx . ~100!

If we consider, for example, a field inversely varying with respect to the spatial coordinater: E
5e/r , and substituting it into~98!, we obtain
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~ is1E1dr !h2S ge1k

r
2ms1D j50, ~101!

~ is1E2dr !j1S ge1k

r
1ms1Dh50, ~102!

which can be reduced to

5 m

~ge1k!2

r 2
2m2 F 2

d2

dr2
1

~ge1k!

r 2 S iE1

2m
~ge1k!

r

~ge1k!2

r 2
2m2D d

dr
1

2imE

r

~ge1k!3

r 3

~ge1k!2

r 2
2m2

2E2G1m6
3h115 m

~ge1k!2

r 2
2m2 F 2

~ge1k!

r

d2

dr2
1

~ge1k!

r 2 S 11

2m
~ge1k!2

r 2

~ge1k!2

r 2
2m2D d

dr

1
ge1k

r S 2E21

2imE

r

~ge1k!

r

~ge1k!2

r 2
2m2D G1

ge1k

r 6 h250, ~103!

and

5 m

~ge1k!2

r 2
2m2 F 2

d2

dr2
1

~ge1k!

r 2 S iE1

2m
~ge1k!

r

~ge1k!2

r 2
2m2D d

dr
1

2imE

r

~ge1k!3

r 3

~ge1k!2

r 2
2m2

2E2G1m6
3h215 m

~ge1k!2

r 2
2m2 F 2

~ge1k!

r

d2

dr2
1

~ge1k!

r 2 S 11

2m
~ge1k!2

r 2

~ge1k!2

r 2
2m2D d

dr

1
ge1k

r S 2E21

2imE

r

~ge1k!

r

~ge1k!2

r 2
2m2D G1

ge1k

r 6 h150. ~104!

These equations can be solved using either numerical integration methods or infinite serie
tions.

Thus, the spherical coordinates clearly show the limitation of using a chiral representat
find exact solutions in terms of special functions for a Dirac equation in the presence of ex
fields.
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The results obtained in this paper prove again that the general algebraic method of the
ration of variables developed by Shishkinet al.7 constitutes one of the most appropriate a
powerful techniques in searching for exact solutions to the Dirac equation.
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in nonrelativistic quantum mechanics

M. N. Hounkonnoua)

Institut de Mathe´matiques et de Sciences Physiques, Universite´ Nationale du Be´nin,
B. P. 613 Porto-Novo, Be´nin

M. Hounkpe
Institut de Mathe´matiques et de Sciences Physiques, Universite´ Nationale du Be´nin,
B.P. 613 Porto-Novo, Be´nin, and Department of Polical Science, Yale University,
New Haven, Connecticut

J. Shabanib)

UNESCO, Regional office B. P. 3311, Dakar, Senegal

~Received 20 January 1999; accepted for publication 23 March 1999!

We introduce and perform a systematic study of a new exactly solvable model of
sphere interactions in quantum mechanics : thed8 interaction, formally given by
2D1ad8(uxu2R), xPR3, R.0, aPR. We also consider the cases of ad8
plus a Coulomb interaction and finitely manyd8-sphere interactions with support
on concentric spheres. For all these models, we provide basic properties and discuss
the stationary scattering theory. We also briefly discuss thed8-sphere interaction of
the second type. ©1999 American Institute of Physics.@S0022-2488~99!02508-6#

I. INTRODUCTION

In recent years, there has been a lot of interest in the study of sphere interactions in qu
mechanics, both from the mathematical point of view and for their application in mode
physical phenomena.1–11

So far, these studies focused on thed-sphere interactions and their various generalizations
this paper we provide a new exactly solvable model of sphere interactions : thed8-sphere inter-
action formally given in three dimensions by the Hamiltonian

H52D1ad8~ uxu2R!, xPR3, R.0, aPR.

As indicated in Ref. 12, this model is different from thed-sphere interaction of the secon
type introduced in Refs. 1,3 and inadequately called the ‘‘d8-sphere interaction.’’

The paper is organized as follows. In Sec. II, we give a rigorous mathematical definitionH
using the theory of self-adjoint extensions of symmetric closed operators in Hilbert space
obtain the basic properties ofH, including the resolvent equation, the spectral properties, and
scattering data. In Secs. III and IV, we generalize the results of Sec. II to the case of ad8-sphere
plus a Coulomb interaction and finitely manyd8-sphere interactions, respectively. In Sec. V, w
introduce and briefly discuss thed8-sphere interaction of the second type.

II. THE d8-SPHERE INTERACTION

A. Definition of the Hamiltonian

Consider the radial Schro¨dinger equation for ad8-sphere interaction given by the forma
expression

a!Electronic mail: hounkon@syfed.bj.refer.org
b!On leave of absence from University of Burundi, Faculty of Science, B. P. 2700 Bujumbura, Burundi.
42550022-2488/99/40(9)/4255/19/$15.00 © 1999 American Institute of Physics
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hl ,a l
f l~k,r ![F2

d2

dr2
1

l ~ l 11!

r 2
1a ld8~r 2R!G f l~k,r !5k2f l~k,r !, ~1!

and assume that the functionf l(k,r ) is continuous atr 5R, i.e.,

f l~k,R1!5 f l~k,R2![ f l~k,R!. ~2!

This assumption implies that the derivativef l8(k,r ) is discontinuous atr 5R, since otherwise
the operatorhl ,a l

would coincide with the free Hamiltonian corresponding to the partial wavl.

Therefore, atr 5R, the functionf l8(k,r ) may be defined by

f l8~k,R![ 1
2 @ f l8~k,R1!1 f l8~k,R2!#. ~3!

Let us integrate Eq.~1! from r 5R2« to r 5R1« and take the limit when«˜01 . We obtain
the following boundary condition:

S 11
a l

2 D f l8~k,R1!2S 12
a l

2 D f l8~k,R2!50. ~4!

From the above discussion, it follows that ad8-sphere interaction may be fully characteriz
by the boundary conditions~2! and ~4!.

Let us now provide a rigorous mathematical definition of a quantum Hamiltonian descr
a d8-sphere interaction.

Consider inL2(R3) the closed and non-negative operator,

Ḣ52D,

D~Ḣ !5$ f PH2,2~R3!u f „]K~O,R!̄…5 f 8„]K~O,R!̄…50%, ~5!

whereHm,n(V) is the Sobolev space of indices (m,n) andK(O,R)̄ is the closed ball of radiusR
centered at the origin ofR3.

We decomposeL2(R3) with respect to angular momenta,

L~R3!5L2
„~0,̀ !;r 2dr) ^ L2~S2!, ~6!

and introduce the unitary transformation,

U:H L2~~0,̀ !;r 2dr !˜L2
„~0,̀ !;dr…[L2

„~0,̀ !…,

f °~U f !~r !5r f ~r ! ,
~7!

in order to get the following representation ofL2(R3):

L2~R3!5 %
l 50

`

U21L2
„~0,̀ !…^ @Yl

2 l , . . . ,Yl
l #, ~8!

where@•••# denotes the linear span of spherical harmonics.
With respect to the decomposition~8!, Ḣ reads as

Ḣ5 %
l 50

`

U21ḣlU ^ 1, ~9!

where
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ḣl52
d2

dr2
1

l ~ l 11!

r 2
,

D~ ḣl !5$ f PL2
„~0,̀ !…/ f , f 8PACloc„~0,̀ !…; f ~01!50, if l 50;

f ~R6!5 f 8~R6!50; 2 f 91 l ~ l 11!r 22f PL2
„~0,̀ !…%; l PN0 , ~10!

andACloc(V) denotes the set of the locally absolutely continuous functions onV,R.
Thus, the adjointḢ! of Ḣ is

Ḣ!5 %
l 50

`

U21ḣl
!U ^ 1, ~11!

where

ḣl
!52

d2

dr2
1

l ~ l 11!

r 2
,

D~ ḣl
!!5$ f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !\$R%!; f ~01!50, if l 50;

2 f 91 l ~ l 11!r 22f PL2
„~0,̀ !…%; l PN0 . ~12!

In particular, the equation

ḣl
!c l~k!5k2c l~k!, Im~k!.0, l PN0 , ~13!

has two linearly independent solutions,

c l
(1)~k,r !5H Gl~k,R!Fl~k,r ! ; r ,R,

0 ; r .R ,
~14!

c l
(2)~k,r !5H 0 ; r ,R,

Fl~k,R!Gl~k,r ! ; r .R,
~15!

where

Fl~k,r !5GS l 1
3

2D S k

2D 2 l 21/2

r 1/2Jl 11/2~kr !, ~16!

Gl~k,r !5
ip

2
GS l 1

3

2D 21S k

2D l 11/2

r 1/2Hl 11/2
(1) ~kr !, ~17!

andJn(.), @resp.,Hn(•)# denote the Bessel~resp., Hankel! functions of ordern.13 Thereforeḣl has
deficiency indices~2,2!, and consequently all self-adjoint~s.a.! extensions ofḣl are given by a
4-parameter family of s.a. operators.14

In this paper, we consider a special one-parameter familyhl ,a l
of s.a. extensions ofḣl defined

by

hl ,a l
52

d2

dr2
1

l ~ l 11!

r 2
,
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D~hl ,a l
!5H f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !\$R%!;

f ~01!50 , if l 50 ; f ~R1!5 f ~R2!5 f ~R!;

S 11
a l

2 D f 8~R1!2S 12
a l

2 D f 8~R2!50;

2 f 91 l ~ l 11!r 22f PL2~~0,̀ !!J ; 2`,a l,` , l PN0 ~18!

The casea l50 coincides with the free kinetic energy Hamiltonianhl ,o for a fixed angular
momentuml.

Let a5$a l% l PN0
and introduce inL2(R3) the operator

Ha5 %
l 50

`

U21hl ,a l
U ^ 1 . ~19!

By definition, Ha is the rigorous mathematical formulation of the formal expressionH5
2D1ad8(uxu2R). Actually, it provides a slight generalization ofH, sincea may depend onl
PN0.

The casea50 leads to the free Hamiltonian,

Ho52D, D~Ho!5H2,2~R3!. ~20!

Next, we introduce the free resolvent,

gl ,k5~hl ,o2k2!21, Im~k!.0, ~21!

with integral kernel

gl ,k~r ,r 8!5H Fl~k,r 8!Gl~k,r ! ; r 8<r ,

Fl~k,r !Gl~k,r 8! ; r 8>r .
~22!

B. The resolvent equation

Theorem 2.1:
~i! The resolvent ofhl ,a l

is given by

~hl ,a l
2k2!215~hl ,o2k2!211l l~k!~f̃ l~2 k̄!,.!f l~k!,

k2Pr~hl ,a l
! , Im~k!.0 , l PN0 , ~23!

where

l l~k!5a lF12
a l

2
gl ,k8 ~R,R!G21

, ~24!

f l~k,r !5H Gl~k,R!Fl~k,r ! ; r<R,

Fl~k,R!Gl~k,r ! ; r>R,
~25!

f̃ l~k,r !5H Gl8~k,R!Fl~k,r ! ; r ,R,

Fl8~k,R!Gl~k,r ! ; r .R,
~26!
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we note thatf l(k,r )5gl ,k(R,r ), Im(k).0.
~ii ! The resolvent ofHa is given by

~Ha2k2!215~Ho2k2!211 %
l 50

`

%
m52 l

l

l l~k!

3~ u•u21f̃ l~2 k̄!Yl
m ,• !u•u21f l~k!Yl

m

k2Pr~Ha! , Im~k!.0. ~27!

Proof: Sinceḣl has deficiency indices~2,2!, it follows from Krein’s formula14 that the resol-
vent of hl ,a l

is given by

~hl ,a l
2k2!215~hl ,o2k2!211 (

i , j 51

2

m i j ~k!~c l
( j )~2 k̄!,.!c l

( i )~k!,

k2Pr~hl ,a l
! , Im~k!.0 , l PN0 , ~28!

wherec l
(m) ; m51,2 are defined by~14! and ~15!, respectively.

For the determination of them i j , we proceed as follows. LetgPL2
„(0,̀ )… and define the

function

x l~k,r !5„~hl ,a l
2k2!21g…~r !. ~29!

Sincex lPD(hl ,a l
), it follows thatx l should satisfy the boundary conditions in~18!.

The implementation of these boundary conditions gives

m~k!5
a l

12
a l

2
gl ,k8 ~R,R!

S Gl~k,R!Gl8~k,R! Gl~k,R!Fl8~k,R!

Fl~k,R!Gl8~k,R! Fl~k,R!Fl8~k,R!
D . ~30!

Inserting~30! into ~28!, we reduce the expression~28! to ~23!.
Equation~27! follows from ~19! and ~23!.
We note that det@m(k)#50. This means thatḣl is not the maximal commun part ofhl ,a l

and
hl ,o .

Next, we should like to provide some additional information on the domain ofhl ,a l
and to

show that thed8-sphere interaction is in fact a local interaction.
Theorem 2.2:The domainD(hl ,a l

) consists of functions of the type

w l~k,r !5Fl~k,r !1l l~k!Fl8~k,R!gl ,k~R,r !, ~31!

wherel l(k) is defined by~24!, FlPD(hl ,o), andk2Pr(hl ,a l
), Im(k).0.

The decomposition~31! is unique and withw lPD(hl ,a l
) of this form, we obtain

~hl ,a l
2k2!w l5~hl ,o2k2!Fl . ~32!

Furthermore, ifw lPD(hl ,a l
) andw l50 in an open setO,(0,̀ ), thenhl ,a l

w l50 inO which
means that thed8-sphere interaction is a local interaction.

Proof: One may follow step by step15 where a similar result was obtained for point intera
tions.
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C. Spectral properties

Spectral properties of hl ,a l
are provided by the following theorem wher

s(.) , sess(.) , sac(.) , ssc(.) andsp(.) denote the spectrum, essential spectrum, absolutely
tinuous spectrum, singularly continuous spectrum, and point spectrum, respectively.

Theorem 2.3:For all a lP(2`,`), we have the following results:

• sess~hl ,a l
!5sac~hl ,a l

!5@0,̀ !, ~33!

• ssc~hl ,a l
!5B, ~34!

• sp~hl ,a l
!ù@0,̀ !5B. ~35!

Negative eigenvalues ofhl ,a l
are obtained from the equation

12
a l

2
gl ,iA2E
8 ~R,R!512

a l

2

d

dr
@rI l 11/2~A2Er !Kl 11/2~A2Er !# r 5R50; E,0, ~36!

which implies that

sp~hl ,a l
!5H B, if a l<2~2l 11!,

$Eo%, if a l.2~2l 11!,
~37!

whereEo is a solution of~36! and I n(•) , Kn(•) are modified Bessel functions.13

Proof: Equations~33! and ~34! follow from Weyl’s theorem Ref. 16, p. 112 and Ref. 1
theorem XIII.20, respectively.

For k>0, consider the functionf l(k,r )PD(hl ,a l
). By inspection, we may show that th

equation

2 f l9~k,r !1 l ~ l 11!r 22f l~k,r !5k2f l~k,r ! ~38!

can be solved uniquely in terms of Bessel functions which do not belong toL2
„(0,̀ )…. This yields

Eq. ~35!.
The bound state equation~36! obtained by using a Bessel function ansatz in~38! and the

boundary conditions in~18! can be analyzed using monotonicity properties of the modified Be
functions, and indeed one proves Eq.~37!.

Next we briefly discuss resonances ofhl ,a l
.

Following, e.g., Ref. 17 we define the resonances ofhl ,a l
as the poles of the resolvent~23! in

the unphysical sheet Im(k),0, i.e., as solutions of the equation

12
a l

2
gl ,k8 ~R,R!50, Im~k!,0. ~39!

First we discuss the solutions located on the negative imaginaryk axis. Letk5 ix, x.0. Then
analytic continuation of Bessel functions in~39! yields

2
2

a l
5

d

dr
@rI l 11/2~xr !Kl 11/2~xr !# r 5R . ~40!

This equation can be analyzed using monotonicity properties of the modified Bessel functi
We prove that in each fixed partial wave, Eq.~40! has exactly one solutionx.0 if a l

,2(2l 11). The casea l52(2l 11) gives a zero energy resonance, i.e.,xo50.
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A systematic study of the solutions located off the imaginary axis can be carried out fo
ing, e.g., the techniques used in Ref. 1 in the case ofd-sphere interactions.

Here, we simply note that in each fixed partial wave,hl ,a l
has an infinite number of reso

nances off the imaginary axis.

D. Stationary scattering theory for the pair „h l ,a l
; h l ,o…

For k>0, let us define the functions

Fl ,a l
~k,r !5Fl~k,r !1l l~k!Fl8~k,R!gl ,k~R,r !, ~41!

whereFlPD(hl ,o) andgl ,k andl l(k) are defined by~22! and ~24! respectively.
By inspection, we show that the functionFl ,a l

fulfills the following conditions:

Fl ,a l
~k,R1!5Fl ,a l

~k,R2![Fl ,a l
~k,R!, ~42!

S 11
a l

2 DFl ,a l
8 ~k,R1!2S 12

a l

2 DFl ,a l
8 ~k,R2!50, ~43!

2Fl ,a l
9 ~k,r !1 l ~ l 11!r 22Fl ,a l

~k,r !5k2Fl ,a l
~k,r !. ~44!

Consequently, the functionsFl ,a l
(k,r ) constitute a set of generalized eigenfunctions ass

ated withhl ,a l
or in other words,Fl ,a l

(k,r ) are the scattering wave functions ofhl ,a l
.

As usual, the phase shifts ofhl ,a l
may be obtained through the asymptotic behavior

Fl ,a l
(k,r ) as r˜`. Indeed, one has18

Fl ,a l
~k,r !

k.0,

˜

r˜`

Al~k!sinS kr2
lp

2 D1l l~k!Fl~k,R!Fl8~k,R!Bl~k!expF2 i S kr2
lp

2 D G
5@Al~k!2 iBl~k!l l~k!Fl~k,R!Fl8~k,R!#sinS kr2

lp

2 D
1l l~k!Bl~k!Fl~k,R!Fl8~k,R!cosS kr2

lp

2 D
5@C1,l

2 ~k!1C2,l
2 ~k!#1/2 sinS kr2

lp

2
1d l ,a l

~k! D1o~1!, ~45!

which defines the phase shifts by

d l ,a l
~k!52arctan

C2,l~k!

C1,l~k!
,

52arctan
Bl~k!l l~k!Fl~k,R!Fl8~k,R!

Al~k!2 iBl~k!l l~k!Fl~k,R!Fl8~k,R!
, ~46!

where we have used the notations18

Al~k!522 lk2 l 21G~2l 12!G~ l 11!21, ~47!

Bl~k!5
1

kAl~k!
. ~48!
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The on-shell scattering matrix is defined by

Sl ,a l
~k!5exp@2id l ,a l

~k!#

5122ikBl
2~k!l l~k!Fl~k,R!Fl8~k,R!. ~49!

The corresponding effective range expansion reads19 as

@~2l 11!!! #2k2l 11cotd l ,a l
~k!52al ,a l

21 1
1

2
r l ,a l

k21o~k4!, ~50!

where the coefficientsal ,a l
and r l ,a l

are called the partial wave scattering length and effec
range parameters, respectively.

A straightforward computation yields

al ,a l
5l l~0!~ l 11!R2l 11••• . ~51!

The on-shell scattering amplitudef a(k,v,v8) corresponding toHa is given by

f a~k,v,v8!54p(
l 50

`

(
m52 l

l Sl ,a l
~k!21

2ik
Yl

m~v8 !̄Yl
m~v!

54p(
l 50

`

(
m52 l

l

f l ,a l
~k!Yl

m~v8 !̄Yl
m~v!

k>0; v , v8PS2, ~52!

where the partial wave scattering amplitudef l ,a l
(k) is given by

f l ,a l
~k!52Bl

2~k!l l~k!Fl~k,R!Fl8~k,R!. ~53!

The on-shell scattering operatorSa(k) in L2(S2) corresponding toHa is defined by

„Sa~k!f…~v!5f~v!2
k

2p i ES2
dv8 f a~k,v,v8!f~v8!

k>0; v , v8PS2, ~54!

which means thatSa(k) reads as

Sa~k!5112ik(
l 50

`

(
m52 l

l

f l ,a l
~k!~Yl

m ,.!Yl
m~v!. ~55!

III. THE d8-SPHERE PLUS COULOMB INTERACTION

In this section we consider the system formally given by

2D1guxu211ad8~ uxu2R!, gPR, R.0, xPR3. ~56!

A. Defintion of the Hamiltonian

Consider inL2(R3) the operator

Ḣg52D1guxu21

D~Ḣg!5$ f PH2,2~R3!/ f ~]K~O,R!̄ !5 f 8~]K~O,R!̄ !50%. ~57!
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Using the decomposition~8! we can writeḢg in the form

Ḣg5 %
l 50

`

U21ḣl ,gU ^ 1, ~58!

where

ḣl ,g52
d2

dr2
1

l ~ l 11!

r 2
1

g

r
,

D~ ḣl ,g!5$ f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !! ;

f ~01!50 if l 50; f ~R6!5 f 8~R6!50;

2 f 91 l ~ l 11!r 22f 1gr 21f PL2~~0,̀ !!% , gPR,l PN0 . ~59!

The adjointḢg
! of Ḣg is defined by

Ḣg
!5 %

l 50

`

U21ḣl ,g
! U ^ 1, ~60!

where

ḣl ,g
! 52

d2

dr2
1

l ~ l 11!

r 2
1

g

r
,

D~ ḣl ,g
! !5$ f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !\$R%!; f ~01!50 if l 50;

2 f 91 l ~ l 11!r 22f 1gr 21f PL2~~0,̀ !!% ; gPR , l PN0 . ~61!

A direct computation shows that the equation

ḣl ,g
! c l ,g~k!5k2c l ,g~k!, Im~k!.0, l PN0 , ~62!

has two linearly independent solutions:

c l ,g
(1)~k,r !5H Gl ,g~k,R!Fl ,g~k,r ! ; r ,R,

0 ; r .R,
~63!

c l ,g
(2)~k,r !5H 0 ; r ,R,

Fl ,g~k,R!Gl ,g~k,r ! ; r .R,
~64!

where

Fl ,g~k,r !5r l 11exp~ ikr ! 1F1S l 111
ig

2k
;2l 12;22ikr D , ~65!

Gl ,g~k,r !5G~2l 12!21GS l 111
ig

2kD ~22ik !2l 11exp~ ikr !3US l 111
ig

2k
; 2l 12; 2ikr D ,

~66!

and1F1(a;b;z), U(a;b;z) denote~ir!regular confluent hypergeometric functions, respectively13
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As in the short range case (g50), ḣl ,g has deficiency indices~2,2! and consequently all its
self-adjoint~s.a.! extensions are given by a four-parameter family of s.a. operators.

In this section we will consider the following one-parameter family of s.a. extensions ofḣl ,g ,

hl ,g,a l
52

d2

dr2
1

l ~ l 11!

r 2
1

g

r
,

D~hl ,g,a l
!5H f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !\$R%!;

f ~01!50, if l 50 ; f ~R1!5 f ~R2![ f ~R!;

S 11
a l

2 D f 8~R1!2S 12
a l

2 D f 8~R2!50;

2 f 91 l ~ l 11!r 22f 1gr 21f PL2~~0,̀ !!J ;

2`,a l,` , gPR , l PN0 . ~67!

The casea l50 yields the free Coulomb Hamiltonianhl ,g,o for a fixed angular momentuml.
The formal expression~56! is therefore represented by the following Hamiltonian inL2(R3):

Hg,a5 %
l 50

`

U21hl ,g,a l
U ^ 1. ~68!

The casea50 leads to the Coulomb Hamiltonian

Hg,o[Hg52D1
g

uxu
; D~Hg!5H2,2~R3!. ~69!

Next we introduce the free resolvent,

gl ,g,k5~hl ,g2k2!21 , kÞ2
ig

2n
, nPN , Im~k!.0 , l PN0 , ~70!

with integral kernel

gl ,g,k~r ,r 8!5H Fl ,g~k,r 8!Gl ,g~k,r ! ; r 8<r ,

Fl ,g~k,r !Gl ,g~k,r 8! ; r 8>r .
~71!

B. The resolvent equation

Theorem 3.1:The resolvent ofhl ,g,a l
is given by

~hl ,g,a l
2k2!215~hl ,g2k2!211l l ,g~k!~f̃ l ,g~2 k̄!,.!f l ,g~k!,

k2Pr~hl ,g,a l
! , Im~k!.0 , l PN0 , gPR, ~72!

where

l l ,g~k!5a lF12
a l

2
gl ,g,k8 ~R,R!G21

, ~73!
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f l ,g~k,r !5H Gl ,g~k,R!Fl ,g~k,r ! ; r<R,

Fl ,g~k,R!Gl ,g~k,r ! ; r>R ,
~74!

f̃ l ,g~k,r !5H Gl ,g8 ~k,R!Fl ,g~k,r ! ; r ,R,

Fl ,g8 ~k,R!Gl ,g~k,r ! ; r .R ,
~75!

we note thatf l ,g(k,r )5gl ,g,k(R,r ), Im(k).0.
Proof: One can follow step by step the proof of Theorem 2.1.
Theorem 3.2:The domainD(hl ,g,a l

) consists of functions of the type

w l ,g~k,r !5Fl ,g~k,r !1l l ,g~k!Fl ,g8 ~k,R!gl ,g,k~R,r !; ~76!

Fl ,gPD(hl ,g,a l
) andk2Pr(hl ,g,a l

), Im(k).0.
The decomposition~76! is unique and withw l ,gPD(hl ,g,a l

) of this form, we obtain

~hl ,g,a l
2k2!w l ,g5~hl ,g2k2!Fl ,g . ~77!

Moreover, ifw l ,gPD(hl ,g,a l
) andw l ,g50 in an open setO,(0,̀ ), thenhl ,g,a l

w l50 in O.

C. Spectral properties

In a similar way to Sec. II, we obtain the following results.
Theorem 3.3:For all a lP(2`,`) andgPR, we have the following:

• sess~hl ,g,a l
!5sac~hl ,g,a l

!5@0,̀ !, ~78!

• ssc~hl ,g,a l
!5B, ~79!

• sp~hl ,g,a l
!ù@0,̀ !5B. ~80!

The negative eigenvalues ofhl ,g,a l
are obtained from the equation

12
a l

2
gl ,g,iA2E8 ~R,R!50, E,0, ~81!

which has at most one solutionEo,0 for g>0 and infinitely many forg,0.
Proof: Similar to the proof of Theorem 2.3

D. Stationary scattering theory for the pair „h l ,g,a l
; h l ,g…

For k>0 let us define the function

Fl ,g,a l
~k,r !5Fl ,g~k,r !1l l ,g~k!Fl ,g8 ~k,R!gl ,g,k~R,r !, ~82!

whereFl ,g andl l ,g(k) are defined by~65! and ~73!, respectively.
A straightforward calculation shows thatFl ,g,a l

(k,r ) are the scattering wave functions o
hl ,g,a l

.
For the determination of the phase shifts ofhl ,g,a l

, we follow the strategy of Sec. II D and us
the asymptotic behavior of hypergeometric functions given in Ref. 18.

The Coulomb modified phase shiftd l ,g,a l

(c) (k) is given by
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d l ,g,a l

(c) ~k!52arctan
Bl ,g~k!l l ,g~k!Fl ,g~k,R!Fl ,g8 ~k,R!

Al ,g~k!2 iBl ,g~k!l l ,g~k!Fl ,g~k,R!Fl ,g8 ~k,R!
, ~83!

where we have used the notations19

Al ,g~k!522 lexp~pg/4k!k2 l 21G~2l 12!UGS l 111
ig

2kD U, ~84!

Bl ,g~k!5
1

kAl ,g~k!
. ~85!

We note that the total phase shiftd l ,g,a l
(k) corresponding tohl ,g,a l

splits up into

d l ,g,a l
~k!5d l ,g,a l

(c) ~k!1d l ,g~k!, k.0, gPR, ~86!

where

d l ,g~k!5argGS l 111
ig

2kD , k.0, gPR ~87!

represents the pure Coulomb phase shift.
The Coulomb modified on-shell scattering matrix elements are given by

Sl ,g,a l

(c) ~k!5exp@2id l ,g,a l

(c) ~k!#5122ikBl ,g
2 ~k!l l ,g~k!Fl ,g~k,R!Fl ,g8 ~k,R!. ~88!

The corresponding partial wave scattering amplitudes are given by

f l ,g,a l

(c) ~k!5~2ik !21~Sl ,g,a l

(c) ~k!21!52Bl ,g
2 ~k!l l ,g~k!Fl ,g~k,R!Fl ,g8 ~k,R! . ~89!

The Coulomb modified effective range expansion corresponding tohl ,g,a l
reads20 as

G~2l 12!21~2k!2lUGS l 111
ig

2kD Uexp~2pg/2k!3@kcotd l ,g,a l

(c) ~k!2 ik1exp~pg/2k!hg~k!#

52
1

al ,g,a l

(c)
1o~k2! k.0, gPR, ~90!

whereal ,g,a l

(c) is the Coulomb modified scattering length and the functionhg(k) is defined by

hg~k!5gUGS 11
ig

2kD U2F ik

g
1 lnS 2k

i ugu D1CS 11
ig

2kD G . ~91!

In Eq. ~91!, C(z) denotes a digamma function.13

In the short range case (g50), Eq. ~90! simplifies to

GS l 1
3

2D S k

2D 2l 11 p

2
cotd l ,a l

~k!52
1

al ,a l

1o~k2!, ~92!

whereal ,a l
is given by~51!.

Using the properties of the hypergeometric functions, one may obtain explicitlyal ,g,a l

(c) in the

expansion~90!.
Indeed, a tedious but straightforward calculation gives
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2
1

al ,g,a l

(c)
55

12a l@rI n~y!Kn~y!# r 5R8

a lg
2nG~2l 12!2@r 1/2I n~y!# r 5R8 @r 1/2I n~y!# r 5R

; g>0,

21 ipa l@rJn~z!Hn
(2)~z!# r 5R8

2a l ugu2nG~2l 12!2@r 1/2Jn~z!# r 5R8 @r 1/2Jn~z!# r 5R

; g<0 ,

~93!

where we have used the notationsn52l 11, y5(4gr )1/2 andz5(4ugur )1/2.
In the short range caseg50, we obtain

2al ,a l

21 5

22
a l

2l 11

2a l~ l 11!R2l 11
52@l l~0!~ l 11!R2l 11#21. ~94!

IV. FINITELY MANY d8-INTERACTIONS WITH SUPPORT ON CONCENTRIC SPHERES

In this section, we study in dimensionsn53 the case ofN2d8-interactions with support on
concentric spheres of radii 0,R1,•••,RN formally given by

2D1(
j 51

N

a jd8~ uxu2Rj !, Rj.0, xPR3. ~95!

A. Defintion of the Hamiltonian

Consider inL2(R3) the closed, symmetric and non-negative operator,

H̃52D,

D~H̃ !5$ f PH2,2~R!/ f ~]K~O,Rj !̄ !5 f 8~]K~O,Rj !̄ !50 , 1< j <N%. ~96!

Using the decomposition~8!, we can writeH̃ in the form

H̃5 %
l 50

`

U21hl ,$R%U ^ 1, ~97!

where

hl ,$R%52
d2

dr2
1

l ~ l 11!

r 2
,

D~hl ,$R%)5$ f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !!; f ~01!50 if l 50;

f ~Rj 6!5 f 8~Rj 6!50; 2 f 91 l ~ l 11!r 22f PL2~~0,̀ !!%. ~98!

The adjointH̃! of H̃ is given by

H̃!5 %
l 50

`

U21hl ,$R%
! U ^ 1, ~99!

where
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hl ,$R%
! 52

d2

dr2
1

l ~ l 11!

r 2
,

D~hl
!!5$ f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !\$R%!; f ~01!50 if l 50;

2 f 91 l ~ l 11!r 22f PL2~~0,̀ !!%; l PN0 ,

$R%5$R1 , . . . ,RN%, ~100!

A straightforward computation shows that the equation

hl ,$R%
! c l~k!5k2c l~k!, Im~k!.0, ~101!

has 2N linearly independent solutions,

c l , j
(1)~k,r !5H Gl~k,Rj !Fl~k,r ! ; r ,Rj ,

0 ; r .Rj ,
~102!

c l , j
(2)~k,r !5H 0 ; r ,Rj ,

Fl~k,Rj !Gl~k,r ! ; r .Rj ,
~103!

Thereforehl ,$R% has deficiency indices (2N,2N) and consequently all self-adjoint~s.a.! exten-
sions ofhl ,$R% are given by a 4N2-parameter family of s.a. operators.

In this paper, we consider a specialN-parameter family of s.a extensions ofhl ,$R% correspond-
ing to the formal expression~95!.

We introduce inL2
„(0,̀ )… the following family of closed extensions ofhl ,$R% :

hl ,$a l %,$R%52
d2

dr2
1

l ~ l 11!

r 2
,

D~hl ,$a l %,$R
%)5$ f PL2~~0,̀ !!/ f , f 8PACloc~~0,̀ !\$R%!;

f ~01!50 if l 50 ; f ~Rj 1!5 f ~Rj 2![ f ~Rj !;

S 11
a j l

2 D f 8~Rj 1!2S 12
a j l

2 D f 8~Rj 2!50 ;

2 f 91 l ~ l 11!r 22f PL2~~0,̀ !!% ;

$a l%5$a1l , . . . ,aNl% , 2`,a j l ,` , l PN0 . ~104!

Following, e.g., Ref. 15, Chap. II 3 we note that there exists an intermediate opera
L2

„(0,̀ )… with deficiency indices (N,N) which is a proper extension ofhl ,$R% .
A simple integration by parts shows thathl ,$a l %,$R% is symmetric. Moreover, sincehl ,$a l %,$R%

may be obtained as an extension of an operator with deficiency (N,N) and theN boundary
conditions in~104! are symmetric and linearly independent, it follows from Ref. 21, Theorem
p. 4.30 thathl ,$a l %,$R% is self-adjoint.

The casea j l 50 for all j 51, . . . ,N ~i.e., $a l%50) coincides with the free kinetic energ
Hamiltonianhl ,o,$R%[hl ,o for a fixed angular momentuml.

By definition the operatorH $a l %,$R% given in L2(R3) by
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H $a l %,$R%5 %
l 50

`

U21hl ,$a l %,$R%U ^ 1 ~105!

describesN2d8-interactions with support on concentric spheres of radii 0,R1, . . . ,RN . The
case$a l%50 yields the free Hamiltonian

Ho,$R%[Ho52D, D~Ho!5H2,2~R3!. ~106!

B. The resolvent equation

Theorem 4.1:The resolvent ofhl ,$a l %,$R% is given by

~hl ,$a l %,$R%2k2!215~hl ,o2k2!211 (
j , j 851

N

l j j 8~k!~f̃ l , j 8~2 k̄!,.!f l , j~k!

k2Pr~hl ,$a l %,$R
%), Im~k!.0, l PN0 , ~107!

where

@l~k!# j j 8
21

5Fa j l
21d j j 82

1

2
gl ,k8 ~Rj ,Rj 8!G , ~108!

f l , j~k,r !5H Gl~k,Rj !Fl~k,r ! ; r<Rj ,

Fl~k,Rj !Gl~k,r ! ; r>Rj ,
~109!

f̃ l , j~k,r !5H Gl8~k,Rj !Fl~k,r ! ; r ,Rj ,

Fl8~k,Rj !Gl~k,r ! ; r .Rj ,
~110!

1< j <N .

Proof: Equation~107! follows from Krein’s formula.14

In order to determine the factorsl j j 8(k) we proceed as follows
Let gPL2

„(0,̀ )… and define the function

x̃ l~k,r !5~~hl ,$a l %,$R
%2k2!21g)~r !, ~111!

wherek is chosen in such a way that det@l(k)#Þ0. Sincex̃ lPD(hl ,$a l %,$R
%), it follows from Eq.

~104! that x̃ satisfies the following conditions:

x̃ lPACloc„~0,̀ !…, ~112!

S 11
a j l

2 D x̃ l8~k,Rj 1!2S 12
a j l

2 D x̃ l8~k,Rj 2!50, ~113!

~~hl ,$a l %,$R
%2k2!x̃ l)~r !52x̃ l9~k,r !1

l ~ l 11!

r 2
x̃ l~k,r !2k2x̃ l~k,r !5g~r !,

r .0, rÞRj , 1< j <N. ~114!

The implementation of these conditions gives the factorsl j j 8(k).
The resolvent ofH $a l %,$R% may be easily obtained using Eq.~105! and ~107!. We get
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~H $a l %,$R%2k2!215~Ho2k2!21

1 %
l 50

`

%
m52 l

l

(
j , j 851

N

l j j 8~k!

3~ u•u21f̃ l , j 8~2 k̄!Yl
m ,.!u•u21f l , j~k!Yl

m

kPr~H $a l %,$R%!, Im~k!.0, l PN0 . ~115!

The following theorem provides additional information on the domain ofhl ,$a l %,$R% and shows
that hl ,$a l %,$R% describes a local interaction.

Theorem 4.2:The domainD(hl ,$a l %,$R%) consists of functions of the type

w̃ l~k,r !5Fl~k,r !1 (
j , j 851

N

l j j 8~k!Fl8~k,Rj 8!gl ,k~Rj ,r !, ~116!

whereFlPD(hl ,$a l %,$R%) andk2Pr(hl ,$a l %,$R%), Im(k).0.

The decomposition~116! is unique and withw̃ lPD(hl ,$a l %,$R%) of this form, we obtain

~hl ,$a l %,$R%2k2!w̃ l5~hl ,o2k2!Fl . ~117!

Moreover if w̃ lPD(hl ,$a l %,$R%) andw̃ l50 in an open setO,(0,̀ ), thenhl ,$a l %,$R%w̃ l50 inO,
which means thathl ,$a l %,$R% describes a local interaction.

C. Spectral properties

Theorem 4.3:For all j 51, . . . ,N, let a j l P(2`,`) and assume thata j l Þ0. Thenhl ,$a l %,$R%

has at mostN eigenvalues which are all negative and simple. The remaining part of the spe
is purely absolutely continuous and covers the non-negative real axis,

sess~hl ,$a l %,$R%!5sac~hl ,$a l %,$R%!5@0,̀ !, ~118!

ssc~hl ,$a l %,$R%!5B. ~119!

Proof: One may follow step by step2 where a similar result was obtained for finitely man
d-interactions with support on concentric spheres.

D. Stationary scattering theory for the pair „h l ,ˆa l ‰,ˆR‰
; h l ,o…

For k>0, let us define the functions

Fl ,$a l %,$R%~k,r !5Fl~k,r !1 (
j , j 851

N

l j j 8~k!Fl8~k,Rj 8!gl ,k~Rj ,r !. ~120!

One can easily show thatFl ,$a l %,$R% are the scattering wave functions ofhl ,$a l %,$R% .
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As usual, the phase shifts ofhl ,$a l %,$R% may be obtained through the asymptotic behavior
Fl ,$a l %,$R%(k,r ) as r˜`. Indeed, using Ref. 18, we obtain

Fl ,$a l %,$R%~k,r !

k.0

˜

r˜`

Al~k!sinS kr2
lp

2 D

1 (
j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!Bl~k!expF2 i S kr2
lp

2 D G
5FAl~k!2 iBl~k! (

j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!GsinS kr2
lp

2 D
1Bl~k! (

j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!cosS kr2
lp

2 D
5@C̃1,l

2 ~k!1C̃2,l
2 ~k!#1/2sinS kr2

lp

2
1d l ,$a l %,$R%~k! D1o~1!, ~121!

which defines the phase shifts by

d l ,$a l %,$R%~k!52arctan
C̃2,l~k!

C̃1,l~k!

52arctan

Bl~k! (
j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!

Al~k!2 iBl~k! (
j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!

, ~122!

whereAl(k) andBl(k) are defined by~47! and ~48!, respectively.
Using Eq.~122!, we can now compute the other scattering data. Indeed, we obtain the

lowing results.
~i! The on-shell scattering matrix,

Sl ,$a l %,$R%~k!5exp@2id l ,$a l %,$R
%~k!]

5122ikBl
2~k! (

j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!. ~123!

~ii ! The partial wave scattering length,

al ,$a l %,$R%5 (
j , j 851

N

l j j 8~0!~ l 11!Rj
l 11Rj 8

l . ~124!

~iii ! The partial wave scattering amplitude,

f l ,$a l %,$R%~k!52Bl
2~k! (

j , j 851

N

l j j 8~k!Fl~k,Rj !Fl8~k,Rj 8!. ~125!
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V. THE d8-SPHERE INTERACTION OF THE SECOND TYPE

In this section, following Refs. 1,12, we provide another exactly solvable model that we
the d8-sphere interaction of the second type.

This model is obtained by formally interchanging the role off and f 8 in the boundary condi-
tions atr 5R in ~18!.

The radial quantum Hamiltonian describing this model is therefore defined by

hl ,b l
52

d2

dr2
1

l ~ l 11!

r 2
,

D~hl ,b l
!5$ f PL2

„~0,̀ !…/ f , f 8PACloc„~0,̀ …\$R%!; f ~01!50, if l 50 ;

f 8~R1!5 f 8~R2![ f 8~R!;

S 11
b l

2 D f ~R1!2S 12
b l

2 D f ~R2!50;

2 f 91 l ~ l 11!r 22f PL2~~0,̀ !!% ; 2`,b l,` , l PN0 . ~126!

Now we can apply the techniques used in the previous sections in order to carry
systematic study of this model.

In particular, we can show that the resolvent ofhl ,b l
is given by

~hl ,b l
2k2!215~hl ,o2k2!211l̂ l~k!„f l~2 k̄!,•…f̃ l~k!,

k2Pr~hl ,b l
!, Im~k!.0, l PN0 , ~127!

where

l̂ l~k!52b lF11
b l

2
gl ,k8 ~R,R!G21

, ~128!

andf l , f̃ l are defined by~25! and ~26!, respectively.
We also note that the domainD(hl ,b l

) consists of functions of the form

ŵ l~k,r !5Fl~k,r !1l̂ l~k!Fl~k,R!f̃ l~k,r !, ~129!

and thathl ,b l
describes a local interaction.
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Degeneracy and para-supersymmetry of Dirac Hamiltonian
in „211…-space–time
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The quantum mechanics of a spin1
2 particle on a locally spatial constant curvature

part of a (211)-space–time in the presence of a constant magnetic field of a
magnetic monopole has been investigated. It has been shown that these two-
dimensional Hamiltonians have the degeneracy group ofSL(2,c), and para-
supersymmetry of arbitrary order or shape invariance. Using this symmetry we
have obtained its spectrum algebraically. The Dirac’s quantization condition has
been obtained from the representation theory. Also, it is shown that the presence of
angular deficit suppresses both the degeneracy and shape invariance. ©1999
American Institute of Physics.@S0022-2488~99!00409-0#

I. INTRODUCTION

Quantum theories, particularly quantum gravity in (211)-dimensions provide us with a use
ful field of investigation not only for theoretical and mathematical issues, but also in some c
for actual physical problems.1,2 In the past decade many interesting physical problems in
11)-gravity have been solved, such as classical scattering, quantum scattering, bound sta
scalar and spinor point particle both in the presence and absence of a magnetic monopole a
magnetic vortex.3–6 In Ref. 6 some interesting results have been obtained in studying qua
scattering and bound states of a scalar charged particle in the background metric correspon
(211)-manifold both with local and global constant curvature in the presence of a mag
monopole, which satisfy the coupled Einstein–Maxwell equations.

Here in this article we investigate the quantum mechanics of a charged spin1
2 point particle on

a (211)-space–time with spatial part of local constant curvature in the presence of a co
magnetic field of a magnetic monopole. We show that these two-dimensional Hamiltonians
the degeneracy group ofSL(2,c) type and para-supersymmetry of arbitrary order or shape inv
ance. Using these symmetries we have obtained their spectra algebraically. Also, the Dirac
tization follows naturally from the representation theory. In the case of local constancy o
curvature, the presence of angular deficit suppresses both the degeneracy and shape inva

The paper is organized as follows: In Sec. II we briefly describe the (211)-space–time
metric of Ref. 6 and assume that angular deficit is absent. Section III is devoted to the alg
of the manipulation of the Dirac operator in these spacetimes. The Dirac operator has been
in terms of the generators of thesl(2,c) Lie algebra, which reduces the familiar Dirac operator
theS2 in special case.7 In Sec. IV we obtain the left and right invariant generators of theSL(2,c)
Lie group in terms of Euler’s angles,8 where after eliminating thec coordinate we get the
eigenspectrum of massless Dirac operator together with its degeneracy which is in agreeme
those of Ref. 7 in the special case ofS2. Also, as a special case, we obtain the massless D
operator in the presence of a magnetic vortex.5,9 In Sec. V we add the constant magnetic field

a!Electronic mail: jafarzadeh@ark.tabrizu.ac.ir
b!Electronic mail: moayedi@ark.tabrizu.ac.ir
42740022-2488/99/40(9)/4274/16/$15.00 © 1999 American Institute of Physics
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the magnetic monopole. Using again the representation of theSL(2,c) Lie group we obtain the
eigenspectrum of a charged spin1

2 particle algebraically together with its degeneracy group. A
special case we obtain the monopole harmonics.10–12Also we obtain the familiar Dirac quantiza
tion from the representation theory. In Sec. VI, using the right invariant generators and elimin
the coordinatec, we obtain the raising and lowering operators of the magnetic charge. Using
we show the presence of the para-supersymmetry of arbitrary orderp, or equivalently, the shape
invariance symmetry associated with the Dirac operator in the presence of a magnetic mon
Finally in Sec. VII we add the angular deficit to the background space–time metric which lea
the suppression of both degeneracy and the shape invariance symmetry. Thus we obt
eigenspectrum by solving the Dirac operator by usual method which is in agreement wi
result of Ref. 4 for the special case of the cone.

II. „211…-SPACE–TIME WITH LOCAL SPATIAL CONSTANT CURVATURE

In (211) dimensions the Einstein–Hilbert action of gravity coupled to matter and ele
magnetic field, together with the cosmological term can be written as6

S5E d3xA udet gmnu H 1

4pG
~R12L!1

1

4
FmnFmn2LMJ , ~2.1!

whereLM is the matter Lagrangian corresponding to a very massive point particle with maM
located in the origin. We have rescaledG by a factor of 4. As it is shown in Ref. 6, the followin
(211)-space–time metric corresponds to a massive point massM together with non-negative
cosmological constantL and magnetic monopole field

ds25dt22
1

2l S du21~12GM!2
sin2 au

a2 df2D , ~2.2!

wherea andl satisfy the following relation:

L5a2l, ~2.3!

andGM satisfies the conditionGM,1. The parametera in Eq. ~2.3! chooses one of the value
0,1, i. In the case ofa51, l is a positive real number and we have

0<u,p, 0<f,2p.

For a5 i , l is a negative real number and (211)-space–time metric~2.2! is Euclidean. In this
case we have 0<u,` and the range off is the same asa51 case. Finally fora50, l is a
positive real number again andu plays the role of the radial variable6 and the range of the
coordinatef is the same asa51, i case. The magnetic monopole field corresponding to
system~2.1! is

B5g~12GM!a sinau, ~2.4!

with

g55
1

2ApGl
if a50 and 1

21

2ApGulu
if a5 i

~2.5!

which extremizes the Einstein–Hilbert action given in~2.1!. In other words they are the solutio
of the Einstein–Maxwell equation which extremizes this action. The magnetic field given in~2.4!
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is the magnetic field of a magnetic monopole located in the origin of theR3 Euclidean space
where the constant curvature spatial part of the space–time is embedded in it. The corresp
magnetic potential one-formA in the coordinatesu andf is

A52g~12GM!cosaudf. ~2.6!

In the next section after introducing the abstract Dirac operator we write it on the spatia
of metric ~2.2! in the caseM50.

III. DIRAC OPERATOR ON TWO-DIMENSIONAL SPACES WITH GLOBAL CONSTANT
CURVATURE

The massless Dirac operator on a givend-dimensional Riemannian manifold with metricgmn

can be written as7,8

D52 igaEa
m~]m1 1

8vmab@ga,gb# !, ~3.1!

wherega,s are the generators of the flat Clifford algebra which satisfy the following anticom
tation relation,

$ga,gb%52dab, a,b51,...,d. ~3.2!

Also Ea
m ,vmab are d-beins and spin connections, respectively, which satisfy the following r

tions:

Ea
mgmnEb

n5dab , Ea
mem

b 5da
b ,

~3.3!
]men

a2Gmn
l el

a1vmaben
b50.

Here in this article we are concerned with the manifolds described by metric~2.2! and gauge
potential~2.6!. We also assume thatM vanishes in the rest of the article except in the last sect
Then the spatial part of the metric~2.2! reads

ds~2!
2 5

1

2l S du21
sin2 au

a2 df2D , ~3.4!

it is clear from the above metric that the spatial part consists of a two-dimensional manifo
global constant curvature. Using Eqs.~3.3! we obtain the following expression for the nonvanis
ing components of zwei-beins and spin connections associated with metric~3.4!:

E1
u5A2l, E2

f5A2l
a

sinau
,

vf1252cosau. ~3.5!

By using Eq.~3.1!, we obtain the Dirac operator on a manifold described by metric~3.4! as
follows:

D252 iA2lg1S ]u1
1

2

a

tanau D2 iA2lg2
a

sinau
]f . ~3.6!

For a51, D2 becomes the Dirac operator on the two-dimensional sphereS2.7 It is more conve-
nient to consider the two-dimensional manifold~3.4! as a submanifold of the three-dimension
manifold M3 with the line element,
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ds~3!
2 5dr21a2r 2S du21

sin2 au

a2 df2D , ~3.7!

which is parametrized with the following local coordinates:

x15r sinau cosf, x25r sinau sinf, x35r cosau. ~3.8!

Now we considerr 5constant submanifold ofM3 with the following metric:

ds~2!
2 5a2r 2S du21

sin2 au

a2 df2D . ~3.9!

For a51 and r 5(1/A2l).0 this submanifold coincides with the special case ofa51 of the
two-dimensional manifold with metric~3.4!, while for a50, with the assumption of
lima˜0,r˜` ar 5finite5(1/A2l), it is the same as thea50 case of metric~3.4!. Finally for a
5 i , with the assumptionr 5(1/A2ulu).0 it changes to thea5 i case of metric~3.4!. Now we try
to define the Dirac operator on the manifoldM3 . Using Eq.~3.3!, for nonvanishing components o
3-beins and spin connections we get

E1
u5

1

ar
, E2

f5
1

r sinau
, E3

r 51,

vu135a,vf215cosau,vf235sinau. ~3.10!

Finally, using the relations~3.1! and ~3.10! the Dirac operator associated with metric~3.7! reads

D352 ig1
1

ar S ]u1
1

2

a

tanau D2 ig2
1

ar

a

sinau
]f2 ig3S ] r1

1

r D . ~3.11!

It is straightforward to see that the Dirac operatorD3 yields

S 2 ig3D31
1

r D U
r 5constant

52 iG1
1

ar S ]u1
1

2

a

tanau D2 iG2
1

ar

a

sinau
]f , ~3.12!

with Ga defined as

Ga52 ig3ga, a51,2,

which satisfy the following Clifford algebra

$Ga,Gb%52dab. ~3.13!

Assuming the equivalence of the metric of submanifold given in~3.9! with the two-dimensional
metric ~3.4! and also replacingar with 1/A2l, we can deduce that the operator~3.12! is the same
as Dirac operatorD2 given in ~3.6!. In terms of local coordinates~3.8! the operatorD3 can be
written as

D352 is i] i , ~3.14!

wheres i , s are Pauli matrices. Using the identity (s ixi /r )25I , we have

D35S s ixi

r D 2

D352 i
s ixi

r S ] r1
i

r
e i jks ixj]kD . ~3.15!
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Now, comparing the operator~3.15! with ~3.11!, it follows that the operatorg3 has the following
form:

g35
s ixi

r
. ~3.16!

Using the relations~3.12! and~3.15! together with the relation~3.11! the Dirac operatorD2 over
two dimensional manifold with metric~3.4! can be represented as

D25
1

r
2

i

r
e i jks ixj]k5A2l~s1I 11s2I 21as3I 31aI !, ~3.17!

whereI is a 232 identity matrix and the differential operatorsI i with i 51,2,3 in~3.17! have the
following form:

I 15 i S sinf]u1
a

tanau
cosf]fD ,

I 25 i S 2cosf]u1
a

tanau
sinf]fD , ~3.18!

I 352 i ]f ,

and satisfy the followingsl(2,c) Lie algebra:

@ I 1 ,I 2#5 ia2I 3 , @ I 2 ,I 3#5 i I 1 , @ I 3 ,I 1#5 i I 2 . ~3.19!

It is clear that fora51 this algebra becomes ansu(2) Lie algebra, fora5 i we getsu(1,1) Lie
algebra, and finally fora50 we getiso~2! Lie algebra.6,13

IV. DEGENERACY GROUP OF THE DIRAC OPERATOR ON TWO-DIMENSIONAL
MANIFOLDS WITH GLOBAL CONSTANT CURVATURE

In order to obtain the degeneracy group of the Dirac operatorD2 over the two-dimensiona
manifold with metric~3.4! we need to know the left and right invariant generators ofSL(2,c)
group which have the following form in the Eulerean coordinates:6

L1
~L !5 i S sinf]u1

a

tanau
cosf]f2

a

sinau
cosf]cD ,

L2
~L !5 i S 2cosf]u1

a

tanau
sinf]f2

a

sinau
sinf]cD ,

L3
~L !52 i ]f ,

~4.1!

L1
~R!5 i S sinc]u1

a

tanau
cosc]c2

a

sinau
cosc]fD ,

L2
~R!5 i S 2cosc]u1

a

tanau
sinc]c2

a

sinau
sinc]fD ,

L3
~R!52 i ]c ,
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where 0<f,2p, 0<c,4p and 0<u,p for a51, while 0<u,` whena50,i. It is rather
well known that both left and right invariant generators satisfysl(2,c) Lie algebra denoted by
sl(2,c)L andsl(2,c)R , respectively and also they commute with each other. That is we hav

@L1
~L ! ,L2

~L !#5 ia2L3
~L ! , @L2

~L ! ,L3
~L !#5 iL 1

~L ! , @L3
~L ! ,L1

~L !#5 iL 2
~L ! ,

@L1
~R! ,L2

~R!#5 ia2L3
~R! , @L2

~R! ,L3
~R!#5 iL 1

~R! , @L3
~R! ,L1

~R!#5 iL 2
~R! , ~4.2!

@L „L …,L „R…#50.

Now, using the generators~4.1! we define the following new bases:

K1
~L !

ªL1
~L !

^ I 1 1
2as1 K2

~L !
ªL2

~L !
^ I 1 1

2as2 , K3
~L !

ªL3
~L !

^ I 1 1
2s3 ,

~4.3!
K1

~R!
ªL1

~R!
^ I , K2

~R!
ªL2

~R!
^ I , K3

~R!
ªL3

~R!
^ I .

Using the commutation relations~4.2! and the properties of Pauli matrices it is rather straightf
ward to show that the newly defined left and right invariant operators~4.3! also satisfysl(2,c) Lie
algebra separately and commute with each other. Now, the operatorF defined as

FªA2l~s1L1
~L !1s2L2

~L !1as3L3
~L !1aI !, ~4.4!

commute with all the generators given in~4.3!, that is

@F,K „L …#50, @F,K „R…#50. ~4.5!

Therefore, in order to obtain the eigenspectrum of operatorF, we need the set of commutativ
operators expressed in terms of operators~4.3!, which are

$K3
~R! ,K3

~L ! ,K1
~L !21K2

~L !21a2K3
~L !2,K1

~R!21K2
~R!21a2K3

~R!2%.

Then, we have the following simultaneous eigenvalue equations:

K3
~R!C5qC, K3

~L !C5mC,

~K1
~R!21K2

~R!21a2K3
~R!2!C5a2l ~ l 11!C, ~4.6!

~K1
~L !21K2

~L !21a2K3
~L !2!C5a2 j ~ j 11!C.

Obviously the operatorsK3
(R) and K̇3

(L) have the following differential form;

K3
~R!5S 2 i ]c 0

o 2 i ]c
D ,

~4.7!

K3
~L !5S 2 i ]f1 1

2 0

o 2 i ]f2 1
2

D .

Therefore, the two component spinorC reads

C5S aei ~m21/2!f1 iqc f 1~u!

bei ~m11/2!f1 iqc f 2~u! D . ~4.8!
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In Eq. ~4.8! a andb are constants andf 1 and f 2 are functions of variableu. In order the spinorC
to become a periodic function off with period 2p, the quantum numberm must be a half-integer
number. Now, using the left and right invariant generators~4.1! we have

L1
~L !21L2

~L !21a2L3
~L !25L1

~R!21L2
~R!21a2L3

~R!2

52H ]u
21

a

tanau
]u1

a2

sin2 au
~]f

2 1]c
222 cosau]f]c!J . ~4.9!

The operator~4.9! yields the following eigenvalue equation:14

2H ]u
21

a

tanau
]u1

a2

sin2 au
~]f

2 1]c
222 cosau]f]c!J Ynq

l ~u,f,c!5a2l ~ l 11!Ynq
l ~u,f,c!,

~4.10!

where the eigenfunction~4.10!, that isYnq
l (u,f,c) reads

Ynq
l ~u,f,c!5einf1 iqcPnq

l ~cosau!. ~4.11!

On the other hand, the operatorsK1
(L)21K2

(L)21a2K3
(L)2 and K1

(R)21K2
(R)21a2K3

(R)2 may be
represented in the form

K1
~R!21K2

~R!21a2K3
~R!25S L1

~R!21L2
~R!21a2L3

~R!2 0

0 L1
~R!21L2

~R!21a2L3
~R!2D ,

~4.12!
K1

~L !21K2
~L !21a2K3

~L !2

5S L1
~L !21L2

~L !21a2L3
~L !21 3

4 a21a2L3
~L ! a~L1

~L !2 iL 2
~L !!

a~L1
~L !1 iL 2

~L !! L1
~L !21L2

~L !21a2L3
~L !21 3

4 a22a2L3
~L !D ,

where the operatorsL1
(L)1 iL 2

(L) andL1
(L)2 iL 2

(L) are the raising and lowering operators of indexn
of eigenfunction~4.11!, that is we have

~L1
~L !1 iL 2

~L !!Ynq
l ~u,f,c!5Aa2~ l 1n11!~ l 2n!Yn11q

l ~u,f,c!,

~L1
~L !2 iL 2

~L !!Ynq
l ~u,f,c!5Aa2~ l 2n11!~ l 1n!Yn21q

l ~u,f,c!.

Summarizing the above explanation the eigenfunctionC of eigenvalue Eq.~4.6! read

C5C l , j 5 l 6
1
2,m,q~u,f,c!5VS 6Al 6m1 1

2Ym2~1/2!q
l ~u,f,c!

Al 7m1 1
2Ym1~1/2!q

l ~u,f,c!
D , ~4.13!

whereV is constant of normalization. Note that in Eq.~4.13!, q takes integer values becausem can
take on only half-integer values as said before.14 Now, by taking the operatorF of Eq. ~4.4! to the
power 2 we arrive at

F252l~K1
~L !21K2

~L !21a2K3
~L !21 1

4a
2I !52l~ j 1 1

2!
2a2I .

Therefore, we have the following eigenvalue equation:

FC l , j 5 l 61/2,m,q~u,f,c!56A2l~ j 1 1
2!

2a2C l , j 5 l 61/2,m,q~u,f,c!. ~4.14!

Now, transfering the factoreiqc which appears in the wave function~4.13! to the left of the
operatorF and eliminating it from both sides of Eq.~4.14!, we get
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F~q!C l , j 5 l 61/2,m,q~u,f!56A2l~ j 1 1
2!

2a2C l , j 5 l 61/2,m,q~u,f!, ~4.15!

whereF(q) andC l , j 5 l 6
1
2,m,q(u,f) are

F~q!5A2lS a~12 i ]f! e2 ifS 2]u1 i
a

tanau
]f1q

a

sinau D
eifS ]u1 i

a

tanau
]f1q

a

sinau D a~11 i ]f!
D ,

C l , j 5 l 61/2,m,q~u,f!5VS 6Al 6m1 1
2e

i ~m21/2!fPm2~1/2! q
l ~cosau!

Al 7m1 1
2e

i ~m11/2!fPm1~1/2! q
l ~cosau!

D . ~4.16!

Now we consider the limiting case ofq˜0. In this limit the operatorF(q) becomes the same a
the operatorD2 in ~3.17!, that is we have

lim
q˜0

F~q!5D2 .

Specially fora51 we get the Dirac operator onS2,7 and the eigenfunction introduced in~4.16!
becomes the wellknown spinor harmonics.10

There is another interesting limiting case: to leta˜0 andl˜` but a l to remain finite, that
is

lim
a˜0,l˜`

a l 5k.

In this limit u plays the role of radial coordinate and we have14

lim
a˜0,l˜`

Pnq
l ~cosau!5Jun2qu~kr !,

whereJun2qu(kr) is the Bessel function with indexun2qu. In brief, we have

Zk,m,q~r ,f!5 lim
a˜0,l˜`

C l , j 5 l 61/2,m,q~u,f!5V8S 6ei ~m21/2!fJum21/22qu~kr !

ei ~m11/2!fJum11/22qu~kr ! D , ~4.17!

whereV8 is the new constant of normalization. The operatorF(q), in the limit of a˜0 reads

lim
a˜0

F~q!5A2lS 0 e2 ifS 2] r1
i

r
]f1

q

r D
eifS ]r 1

i

r
]f1

q

r D 0
D . ~4.18!

In this limit the operatorF(q) has the following eigenvalue:

E56A2lk.

The operator~4.18! is exactly the Dirac operator of a very light spin1
2 particle in the presence o

magnetic vortex with gauge potentialA5ef q/r .9 The wave function~4.17! is the eigenstate
associated with the scattering of a massless fermion from a vortex. It is obvious that in th
q50, ~4.17! and ~4.18! represent the wave function and the Dirac operator of a free mas
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fermion on two dimensional flat space, respectively. In the next section we obtain the eige
trum of the Dirac operator in the presence of the magnetic monopole~2.4! for the special case o
M50.

V. THE DIRAC OPERATOR ON A TWO-DIMENSIONAL MANIFOLD WITH GLOBAL
CONSTANT CURVATURE IN THE PRESENCE OF THE MAGNETIC FIELD OF A
MAGNETIC MONOPOLE

The massless Dirac operator on a Riemannian manifold with metricgmn in the presence of
gauge fieldAm is15

D~A!52 igaEa
m~]m1 1

8vmab@ga,gb#1 ieAm!. ~5.1!

Therefore, using the beins and spin connections given in~3.5! and considering the gauge potenti
A52g cosaudf we obtain the following expression for the Dirac operator:

D2~A!52 iA2lg1S ]u1
1

2

a

tanau D2 iA2lg2
a

sinau
~]f2 ieg cosau!. ~5.2!

Now we try to obtain the Dirac operatorD2(A) given in ~5.2! from the Dirac operator on the
manifold described by the metric~3.7! and by the gauge field with connection

Ar50, Au50, Af52g cosau. ~5.3!

Using the beins and spin connections given in~3.10! and gauge field connection~5.3!, the Dirac
operator on the manifold~3.7! in the presence of gauge field~5.3! reads

D3~A!52 ig1
1

ar S ]u1
1

2

a

tanau D2 ig2
1

ar

a

sinau
~]f2 ieg cosau!2 ig3S ] r1

1

r D . ~5.4!

It is straightforward to show that the following relation between the operatorsD2(A) andD3(A)
holds,

D2~A!5S 2 ig3D3~A!1
1

r D U
r 5constant

. ~5.5!

The gauge field~5.3! has the following form in the Cartesian-type coordinates~3.8!,

Ai5ge i j 3

xjx3

r ~x1
21x2

2!
, i , j 51,2,3, ~5.6!

where it satisfies the following gauge condition:

r–A50.

In the local coordinates~3.8! together with the gauge connection~5.6!, the Dirac operator can be
written as

D3~A!5s i S 1

i
] i1eAi D . ~5.7!

With further little algebra one can show that the Dirac operator given in~5.7! takes the following
form:

D3~A!5S s ixi

r D 2

D3~A!52 ig3S ] r2
1

r
s.r3S 1

i
“1eAD D . ~5.8!
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Finally using the relation~5.5! between the operatorsD2(A) andD3(A), the Dirac operator on the
two-dimensional manifold~3.4! and in the presence of magnetic field of a magnetic monopo

D2~A!5F~eg!2aA2legg3. ~5.9!

Therefore, according to Sec. IV, we have the following eigenvalue equation:

D2~A!C l , j 5 l 61/2,m,q~u,f!56A2la2@~ j 1 1
2!

22q2#C l , j 5 l 61/2,m,q~u,f!, ~5.10!

whereq is equal to the product of electric and magnetic charge, that is

q5eg.

Therefore, the Dirac quantization condition follows naturally from the finite representation o
SL(2,c) Lie group. Also j 1 1

2>q and for j 1 1
25q the operator~5.9! becomes noninvertible. It is

clear that fora51, the operatorD2(A) becomes the Dirac operator onS2 in the presence of
magnetic field of magnetic monopole11,12 with monopole harmonics as its eigenfunctions.

VI. PARA-SUPERSYMMETRY AND SHAPE INVARIANCE OF THE DIRAC EQUATION

In this section using the left and right invariant generators introduced in Sec. IV, we t
investigate the shape invariance symmetry and para-supersymmetry of the two-dimensiona
operator. Here it is more convenient to work with bases$J1

(R) ,J2
(R) ,J3

(R)% rather than with
$L1

(R) ,L2
(R) ,L3

(R)% which are defined as

J6
~R!5L1

~R!6 iL 2
~R!5e6 icS 6]u1 i

a

tanau
]c2 i

a

sinau
]fD ,

~6.1!
J3

~R!5L3
~R!52 i ]c .

Clearly these new bases have the following commutation relations:

@J1
~R! ,J2

~R!#52a2J3
~R! ,

@J3
~R! ,J6

~R!#56J6
~R! . ~6.2!

Using the relations~4.9! and ~4.10! we arrive at

~J1
~R!

^ I !~J2
~R!

^ I !C l , j 5 l 61/2,m,q~u,f,c!5a2~ l 2q11!~ l 1q!C l , j 5 l 61/2,m,q~u,f,c!,
~6.3!

~J2
~R!

^ I !~J1
~R!

^ I !C l , j 5 l 61/2,m,q~u,f,c!5a2~ l 1q11!~ l 2q!C l , j 5 l 61/2,m,q~u,f,c!.

The above relations indicate thatJ1
(R)

^ I andJ2
(R)

^ I are raising and lowering operators of inde
q, respectively, that is,

J1
~R!

^ IC l , j 5 l 61/2,m,q~u,f,c!5Aa2~ l 1q11!~ l 2q!C l , j 5 l 61/2,m,q11~u,f,c!,
~6.4!

J2
~R!

^ IC l , j 5 l 61/2,m,q~u,f,c!5Aa2~ l 2q11!~ l 1q!C l , j 5 l 61/2,m,q21~u,f,c!.

Now by transfering eiqc, which is only c dependent factor in the eigenspin
C l , j 5 l 61/2,m,q(u,f,c), to the left-hand sides of the lowering and raising operator in~6.4! we
arrive at
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J1
~R!~q! ^ IC l , j 5 l 61/2,m,q~u,f!5Aa2~ l 1q11!~ l 2q!C l , j 5 l 61/2,m,q11~u,f!,

~6.5!
J2

~R!~q! ^ IC l , j 5 l 61/2,m,q~u,f!5Aa2~ l 2q11!~ l 1q!C l , j 5 l 61/2,m,q21~u,f!,

whereJ6
(R)(q) read

J6
~R!~q!56

]

]u
2 i

a

sinau

]

]f
2q

a

tanau
. ~6.6!

But J1
(R)(q) ^ I and J2

(R)(q) ^ I are still raising and lowering operators of indexq of the eigen-
spinorsC l , j 5 l 61/2,m,q(u,f) and the relations~6.5! indicate thatC l , j 5 l 61/2,m,q(u,f) can form the
basis for a representation of para-supersymmetry of orderp, where p is an arbitrary integer.
According to Refs. 13 and 16, the nonunitary para-supersymmetric algebra of orderp can be
generated by parafermionic generators of orderp, denoted byQ1 andQ2 and a bosonic generato
H, which satisfy the following relations:

Q1
pQ21Q1

p21Q2Q11¯1Q1Q2Q1
p211Q2Q1

p52pQ1
p21H, ~6.7a!

Q2
pQ11Q2

p21Q1Q21¯1Q2Q1Q2
p211Q1Q2

p52pQ2
p21H, ~6.7b!

Q1
p115Q2

p1150, ~6.7c!

@H,Q1#5@H,Q2#50. ~6.7d!

By introducing the operators,

X1~q!ªJ1
~R!~q! ^ I , X2~q!ªJ2

~R!~q! ^ I , HqªHq^ I , ~6.8!

we can represent the generatorsQ1 , Q2 , andH by the following (p11)3(p11) matrices of the
form:

~Q1!qq8ªX2~q!dq11,q8 ,

~Q2!qq8ªX1~q821!dq,q811 , ~6.9!

~H !qq8ªHqdq,q8 q,q851,...,p11,

where each element of these matrices is a 232 matrix. In ~6.9! we need to choose the Hamilto
niansH, with q51,...,p11 so that the generators~6.9! satisfy the para-supersymmetric algebra
relations~6.7!. The generatorsQ1 , Q2 , andH, as defined in~6.9!, satisfy the Eq.~6.7c!, but Eqs.
~6.7a! and ~6.7b! lead to the following equations:

X1~p22!¯X1~1!X1~0!X2~1!1¯1X1~p22!X2~p21!X1~p22!X2~p23!¯X1~0!

1X2~p!X1~p21!X1~p22!¯X1~0!52pX1~p22!X1~p23!¯X1~0!H1 , ~6.10a!

X1~p21!¯X1~1!X1~0!X2~1!1X1~p21!¯X1~2!X1~1!X2~2!X1~1!1¯

1X1~p21!X2~p!X1~p21!X1~p22!¯X1~1!52pX1~p21!X1~p22!¯X1~1!H2 ,

~6.10b!

X2~1!¯X2~p21!X2~p!X1~p21!1X2~1!¯X2~p22!X2~p21!X1~p22!X2~p21!

1¯1X2~1!X1~0!X2~1!X2~2!¯X2~p21!52pX2~1!X2~2!¯X2~p21!Hp ,

~6.10c!
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X2~2!¯X2~p21!X2~p!X1~p21!X2~p!1¯1X2~2!X1~1!X2~2!X2~3!¯X2~p!

1X1~0!X2~1!X2~2!¯X2~p!52pX2~2!X2~3!¯X2~p!Hp11 . ~6.10d!

Finally Eq. ~6.7d! imply the following equations:

HqX2~q!5X2~q!Hq11 ,
~6.11!

Hq11X1~q21!5X1~q21!Hq .

Now, defining the HamiltoniansHq , q51,...,p as

Hq5 1
2X2~q!X1~q21!1 1

2CqI q51,2,...,p,
~6.12!

Hp115 1
2X1~p21!X2~p!1 1

2CpI .

By definitions ~6.12! relations ~6.11! are satisfied for the special caseq5p. In order for the
relations~6.11! to be satisfied forq51,...,p21, too, we need to choose the constantsCq as

Eq112Eq5Cq2Cq11 , ~6.13!

where

Eqªa2@ l ~ l 11!2q~q21!#. ~6.14!

To obtain the relation~6.13! we have used the following shape invariance property between
operatorsX6(q):

X1~q21!X2~q!2X2~q11!X1~q!5Eq2Eq11 . ~6.15!

Substituting~6.12! in formula ~6.10a!, and also using the shape invariance property~6.15! we
obtain

C15
1

p
@~12p!E11E21E31¯1Ep#. ~6.16!

Finally combining~6.13! with ~6.16! we obtain

Cq5
1

p (
q851

p

Eq82Eq . ~6.17!

From ~6.17! we can see that the following relation among the constantsCq holds

C11C21¯1Cp50.

Using the substitution~6.12! and the shape invariance property~6.15! together with the constant
Cq given in ~6.17! one can straightforwardly show that Eqs.~6.10b!, ~6.10c!, ~6.10d! are satisfied,
too. Also using the result given in~6.17! and the shape invariance relation~6.15! it follows that the
HamiltoniansHq are isospectral and we have

HqC l , j 5 l 61/2,m,q21~u,f!5EC l , j 5 l 61/2,m,q21~u,f!, q51,...,p11, ~6.18!

with

E5
1

2p (
q51

p

Eq . ~6.19!
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SubstitutingEq in ~6.19! and by using the relation~6.14! we get

E5 1
6a

2@3l ~ l 11!112p2#. ~6.20!

In a similar manner by substituting~6.14! in ~6.17! we have

Cq5 1
3a

2@3q~q21!112p2#. ~6.21!

Substituting the constantsCq in ~6.21!, and also using the relations~6.6! and ~6.8! after the
substituting~6.12! we obtain the explicit differential form of the HamiltonianHq as

Hq52
1

2 F ]2

]u2 1
a

tanau

]

]u
1

a2

sin2 au

]2

]f22
2i ~q21!a2

sinau tanau

]

]f
2

~q21!2a2

sin2 au
1

1

3
a2~p221!G ^ I .

~6.22!

The bases of the representation of para-supersymmetric algebra of orderp can be represented b
column matrix with (p11) row, that is

~C l , j 5 l 61/2,m~u,f!!qªC l , j 5 l 61/2,m,q~u,f!, q50,1,...,p, ~6.23!

whereC l , j 5 l 61/2,m(u,f) is the eigenvector of paraboson operatorH with eigenvalueE, that is

HC l , j 5 l 61/2,m~u,f!5EC l , j 5 l 61/2,m~u,f!. ~6.24!

It follows rather trivially from the commutation relations~6.7d! and also from the relations~6.7c!
that Q1

qC l , j 5 l 61/2,m(u,f) andQ2
qC l , j 5 l 61/2,m(u,f) for q51,...,p are eigenstates of the boson

generatorH with the corresponding eigenvalueE. Hence, it follows that

C l , j 5 l 61/2,m,q~u,f!5
X2~q11!

AEq11

X2~q12!

AEq12

¯

X2~q81q!

AEq81q

C l , j 5 l 61/2,m,q81q~u,f!,

q50,1,...,p2q8. ~6.25!

The representation of para-supersymmetry algebra of orderp is valid even for the special case o
a50. Using the relation~4.17! in the limiting cases ofa˜0 andl˜` we arrive at the following
shape invariance relations:

S ]

]r
2

i

r

]

]f
2

q

r D ^ IZk,m,q~r ,f!5kZk,m,q11~r ,f!,

~6.26!

S 2
]

]r
2

i

r

]

]f
2

q

r D ^ IZk,m,q~r ,f!5kZk,m,q21~r ,f!.

Note that in the limiting case ofa50 there is neither any highest nor lowest state in the real
tion of para-supersymmetry, since there is no first order differential operator which can kill a
the Bessel functions. In this case we can have a para-supersymmetry of infinite order wh
Bessel functions form its bases.

VII. SOLUTION OF THE DIRAC EQUATION ON THREE-DIMENSIONAL MANIFOLDS
WITH A LOCAL CONSTANT CURVATURE

For nonvanishingM, the spatial part of the metric given in~2.2! describes a two-dimensiona
manifold with local constant curvature. In this section we try to solve the Dirac equation of a
massM and chargee on the manifold with metric~2.2!, in the presence of magnetic field wit
connection~2.6!. The angular deficit due to the presence of a very heavy point massM destroys
the global constancy of the curvature, hence we lose both the degeneracy and
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supersymmetry. Therefore, we cannot solve the Dirac equation by the algebraic metho
longer. Thus we have to solve it by an ordinary method of solution of coupled first order d
ential equations. In a flat (211)-space–time one can represent the Diracg matrices as4,5

g05s3 , g15 is2 , g252 is1 , ~7.1!

wherega, a50,1,2 close the Clifford algebra as

$ga,gb%52hab, a,b50,1,2. ~7.2!

The Minkowski metrichab has the following signature:

hab5diag~1,2,2 !.

One can write the metric~2.2! in the following form:

ds25dt22r2S b22du21
sin2 au

a2 df2D , ~7.3!

wherer2 andb are defined as

b512GM,

r25
~12GM!2

2l
.

Sincel is negative whena5 i we haver2,0, hence the metric~7.3! is Euclidean while for other
values ofa it is Minkowskian. We can choose the three-beins associated with the metric~7.3! as

em
a 5S 1 0 0

0 r
1

b
cosf r

1

b
sinf

0 2r
sinau

a
sinf r

sinau

a
cosf

D . ~7.4!

With the above choice of 3-beins we can compare our results in a special case with those
4. The inverse of matrix~7.4! is

Ea
m5S 1 0 0

0
b

r
cosf 2

1

r

a

sinau
sinf

0
b

r
sinf

1

r

a

sinau
cosf

D . ~7.5!

According to Ref. 4, the Dirac equation in (211)-space–time for a fermion with massM and
electric chargee, in the presence of a gauge field with gauge connectionAm is

F igaEa
mS ]m2

i

2
vm

b gb1 ieAmD2MGC~ t,u,f!50, ~7.6!

wherevm
a is given by

ekmn]men
a5ekmnebc

a vm
b en

c . ~7.7!
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Hence

vm
a 5S 0 0 0

0 0 0

b cosau21 0 0
D . ~7.8!

Therefore, the Dirac Eq.~7.6! can be written as

H i Fg0] t1
1

r
guS b]u2

a

2 sinau
~12b cosau! D1

1

r

a

sinau
gf~]f1 ieAf!G2MJ C~ t,u,f!50,

~7.9!

wheregu andgf are defined as

gu5cosfg11sinfg2, gf52sinfg11cosfg2.

In the limiting case ofa˜0, the coordinateu becomes similar to a radial coordinater and the
Dirac equation~7.9! in the absence of gauge fieldAf becomes exactly the Dirac equation ass
ciated with a massive fermion on a (211)-space–time dimension with conical spatial part.4 Now
let the Dirac spinor have the following time dependence

C~ t,u,f!5e2 iEtC~u,f!,

together with the followingf dependence:

C~u,f!5S ei ~m21/2!f f 1~u!

ei ~m11/2!f f 2~u! D , ~7.10!

wherem is a half-integer number. One can show that the functionsf 1(u) and f 2(u) satisfy the
following differential equations:

H ~12z2!
d2

dz222z
d

dz
2

1

12z2 S S m

b D 2

1S eg6
1

2D 2

22
m

b S eg6
1

2D zD J f 1,2~z!

52S r2

a2b2 ~E22M2!1S e2g22
1

4D D f 1,2~z!, ~7.11!

with z defined as

z5cosau.

Now defining

r2

a2b2 ~E22M2!1~e2g22 1
4!5c~c11!,

with c as a real number, one can give the solutions of Eq.~7.11! in terms of hypergeometric
functions.17 In the limiting cases ofa,e˜0 andc˜` such that the productac remains constan
we obtain17

lim
a˜0,c˜`,e˜0

f 1,2~u!5Jum/b7
1
2u~acr !. ~7.12!

Writing the half-integer numberm as

m5n1 1
2,
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with n as an arbitrary integer the Dirac Eq.~7.9! takes the following solution in the abov
mentioned limit:

C~ t,r ,f!5e2 iEt expi ~n1 1
22 1

2s3!fS AJu~1/b!~n1~12b!/2!u~acr !

BJu~1/b!~n1~12b!/2!11u~acr ! D , ~7.13!

where A and B are arbitrary constants. The solution~7.13! is eigenstate of Dirac Hamiltonian
associated with a fermion on (211) spacetime with conical spatial part4 with corresponding
eigenvalues,

E56AM21
1

r2 b2a2c2. ~7.14!
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On a purported local extension of the quantum formalism
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It is widely believed that Bell has proved there can be no consistent local extension
of the quantum formalism. Against this, Angelidis has presented a hidden variable
theory which, he claims, makes precisely the same predictions as the quantum
formalism and which also satisfies locality. In this note, we argue that Angelidis’
theory does not live up to its inventor’s claims. ©1999 American Institute of
Physics.@S0022-2488~99!02607-9#

I. INTRODUCTION

Since the early days of quantum mechanics, a number of physicists have doubted w
quantum mechanics was a complete theory and wondered whether it was possible to ext
quantum formalism by adjoining hidden variables.1 In 1952, Bohm answered this question in th
affirmative2 and in doing so refuted von Neumann’s influential yet flawed proof that no s
extension was possible.3 However, Bohm’s hidden variable theory has not won wide supp
partly because the theory isnonlocal: there is instantaneous action at a distance. Since there
obvious problem reconciling such nonlocal theories with Relativity, hidden variable the
would look much more promising if they also satisfied locality. Accordingly, the question a
whether or notlocal hidden variable theories are possible assumes great significance. In 196
appeared to prove that this question had a negative answer:4 He showed that any local hidde
variables theory is incompatible with certain quantum mechanical predictions. Since these p
tions have been borne out by the experiments of Aspect and others5 the prospects for hidden
variable theories have looked grim.

Angelidis disagrees.6 He claims to have done to Bell what Bohm did to von Neummann:
has found a theory which is local and which generates a family of probability functions con
ing uniformly to the probability function generated by quantum mechanics. If this were true,
Angelidis’ theory would be a counterexample to Bell’s theorem and a promising path would
again be open to hidden variable theorists.

Unfortunately, Angelidis’ theory fails to live up to his claims: As formulated, the theory d
not make the same predictions as quantum mechanics, and while there is a natural extensio
theory which does make the same predictions, the extension isnot local. Bell’s Theorem stands

II. ANGELIDIS’ THEORY

The disagreement between Angelidis and Bell can most easily be understood by cons
the following thought experiment, due originally to Einstein, Podolsky, and Rosen and
simplified by Bohm.7 In this experiment, photonsg1 andg2 , created by the spontaneous annih
lation decay of the nonfactorizable singlet stateug1g2&, are emitted in opposite directions an
arrive at polarizersP1 andP2 , respectively. Behind each polarizer lies a photon detector. Ifa and
b represent the angles of polarization ofP1 and P2 then, according to quantum mechanics, t
probability that both detectors register a photon is 1/2 cos2(a2b). Could a local hidden variable
theory assign the same probabilities to this experiment as quantum mechanics?

To answer this, we need to know just what locality entails. First, let us fix our terminol
Let QF stand for the classical quantum formalism. LetpT

12(a,b) be the probability that a theory
42900022-2488/99/40(9)/4290/6/$15.00 © 1999 American Institute of Physics
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T assigns to both detectors registering a photon given that the angles of polarization area andb.
Let l represent our hidden variable andL the set of values the hidden variable could take.
p* 1(l,a)(p2* (l,b)) be the chance that the photon passes throughP1(P2) given that the system
is in statel and the angle of polarization isa~b!. Finally, let r~l! be a weight function which
represents the chance that the hidden variable takes the valuel.

Bell and Angelidis agree that any local theory should meet the following constraints:

~L1 ! pT
12~a,b!5E

L
r~l!p* 1~l,a!p* 2~l,b!,

where the functionp* 1 must not depend upon the variableb and the functionp* 2 must not
depend upon the variablea.

~L2! The specified rangeL of the variablel must depend upon neither the variablea nor the
variableb.

~L3! The functionr must depend upon neither the variablea nor the variableb.8

Bell’s claim is that no hidden variable theory which meets constraints~L1!–~L3! can yield the
same statistical predictions as QF. According to Bell, the QF probability functionpQF

12 cannot be
represented, either precisely or arbitrarily closely in the form

;a,bF1/2 cos2~a2b!5E
L

r~l!p* 1~l,a!p* 2~l,b!dl.

According to Angelidis, you can. Consider the theoryT which consists of the following four
postulates:

~P1! p* 1~l,a!5cos2~l2a!,

~P2! p* 2~l,b!5cos2~l2b!,

~P3! r~l,m!ª1/2Fd~l2m!1dS l2m1
p

2 D G ,
~P4! Lª$lu2`,l,1`%.

One can think of the hidden variablel as a common plane of polarization of the two photo
emitted when the atom decays. The functionsp* i(l,g) represent the probabilities that a photo
will be detected at wingi ( i 51 or i 52! given that the photons are plane polarized in thel
directionor in the l2 1

2p direction, and the polarizerPi is set in theg direction.
The third postulate is the ‘‘conditional probability distribution for the spherically symme

singlet stateug1 ,g2& to spontaneously disintegrate into two back to back photons plane-pola
in a specificbut randomly chosen direction, given by a variablem, out of all the equally likely
choices of directions...’’9 d is simply the Dirac delta function and the final postulate does noth
more than specify the range ofl.

T generates a family of functionspm
12 such that

pm
12~a,b!5E

L
r~l,m!p* 1~l,a!p* 2~l,b!dl51/4@11cos 2~m2a!cos 2~m2b!#,

and families of functionspm
1 andpm

2 such that

pm
15E

L
r~l,m!p* 1~l,a!dl5 1

2,
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pm
25E

L
r~l,m!p* 2~l,b!dl5 1

2.

Finally, theoryT entails the following important sentence~S!:

~S! ~;e.0!~'h.0!~;mPM !~;a,bPD !@~ um2au

,h!∨~ um2bu,h!˜upm
12~a,b!2p12~a,b!u,e#.

A logically equivalent way of writing this sentence is

~S! ~;e.0!~'h.0!~;mPM !~;a,bPD !@~mPSaøSb!˜upm
12~a,b!2p12~a,b!u,e#

whereSa5$mu2h1a,m,a1h% andSb5$mu2h1b,m,b1h%.
According to Angelidis,~S! ‘‘expresses theformal definitionof the uniform convergence o

the family of functions$pm
12umPM % to the functionpQF

12.’’
Angelidis bases his physical interpretation of this theory around~S!: ‘‘For anychosen values

of a andb, whenever a value ofm, characterising the random direction of the common plane
polarization of a single pair of back to back photons,happens by pure chanceto belong to subse
Sa or Sb , this single pair of back to back photons gets through polarisersP1 andP2 and causes
a coincidence count with probability given by avalueof the QF probability functionpQF

12.’’ 10

So if m is close to eithera or b, then the chance of a coincidence count is close to the ch
predicted by QF. But what ifm is not close toa or b? Well, in that case,~S! is still true just
because the antecedant is false. However, we cannot infer that the ‘‘single pair of back to
photons withm1PM causes a coincidence count with probability1

2 cos2(a12b1). But the single
pair of back to back photons withm1PM may fall inside another subset, say,Sa4 or Sb4 of the set
M... so that it causes a coincidence count with a different probability1

2 cos2(a42b4).’’ Angelidis
concludes that ‘‘The universal quantifiers (;mPM ) and (;a,bPD) occurring in the prefix of
the sentenceS take into account thewhole array of such possibilities... so that the detecto
accordingly register coincidence~and single! counts with the same probabilities as those given
QF for eachandeverypair of back to back photons emitted by the source.’’11

This ends the summary of Angelidis’ theory. I shall now argue that the paper contain
flaws: ~1! Angelidis’ family of functions doesnot converge uniformly to the QF probability
function; ~2! Angelidis’ theory does not predict the same probability count as those given b
for each and every pair of back to back photons emitted by the source.

III. UNIFORM CONVERGENCE

Let us examine a little more closely Angelidis’ notion of uniform convergence.
We know when a countable sequence of functions$qnunPN% defined on some domainD

uniformly converges toq: they converge uniformly if, for any small numbere we please, there is
ann such that anyqn8 ~with n8 larger thann! is within ane of q for anyvalue ofq andqn8. More
formally:

~;e.0!~'nPN!~;n8PN!~n8.n˜;ab$uqn~a,b!2q~a,b!u,e%!.

However, since Angelidis’ theory deals with the uniform convergence of anuncountable
family of functions, the definition must be extended to cover this case. So when does t
$ f mumPM %, with M uncountable, converge tog?

Angelidis extends the definition of uniform convergence by introducing the notion of a d
tion: N is adirection in X precisely when~a! N is a set of subsets ofX partially ordered by reverse
inclusion;~b! for anyx,yPN there is azPN with z#x andz#y. Example: ifX is the set of real
numbers, then the set of basic neighborhoods containing the number 0 is a direction inX.12

Then Angelidis’ definition ofuniform convergenceis as follows: LetD2 be a subset ofR2,
and letN be a direction inM. The family of functions$ f mumPM % is said to converge uniformly
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to g on D2 if for every e.0 there exists anh.0 ~with h depending only one! corresponding to
a basic neighborhoodNh in N such that for anym in M and anyx in D2 wheneverthe values of
m are inNh then u f m(x)2g(x)u,e holds. In symbols this becomes,

~;e.0!~'h.0!~;mPM !~;xPD2!~mPNh˜upm
12~a,b!2p12~a,b!u,e#.

Now, it isn’t at all clear what theNh are supposed to be here. Angelidis tells us that they
basic neighborhoods~unlike Angelidis’Nx! and it is natural to think that they are basic neighb
hoods ofh. But then, why quantify over the variableh? And indeed, it would be perfectly all righ
to say that$ f mumPM % uniformly converges tof h iff, for any e there is some basic neighborhoo
of h such that anym in Nh , u f m(x)2 f h(x)u,e. But hereh is a namefor an element ofR—it is
not a free variable which can be quantified over; nor is there any reason whyh has to be greate
than zero.

The ambiguity of theNh allows Angelidis to make a serious mistake in his formal definit
of uniform convergence. Angelidis claims that sentence~S! expresses the formal definition o
uniform convergence. Recall that this sentence is

~S! ~;e.0!~'h.0!~;mPM !~;a,bPD !@~ um2au

,h!∨~ um2bu,h!˜upm
12~a,b!2p12~a,b!u,e#.

.

In this caseNh5$mua2h,m,a1h%. Again, this significantly differs from Angelidis’ own
definition ofSa on p. 1645, whereSa5$mua22e,m,a12e%. For Nh the subscript is an index
of the distance froma that them in Nh are allowed to be. ForSa the subscript tells us which valu
of D the m in Sa are close to.

Worse still,~S! doesnot express the notion of uniform convergence. For~S! says that ifm is
close toa or is close tob then pm

12 is close top12 at ~a,b!. We require something more o
uniform convergence—we require that ifm be close toa or b then pm

12 be close top12 for all
values of these functions. To see how short of uniform convergence Angelidis’ definition
consider the family of functions$qm(a)ªa2m%. Let q(a) be the zero function~soq(a)50 for
all a!. Now, by lettingh5e it is easy to see that

~;e.0!~'h.0!~;mPR!~;aPR!~ um2au,h˜uqm~a!2q~a!u,e!.

So, if m is close toa thenqm is close toq at a. But there is no reasonable sense ofuniform
convergenceon which the family of functions can be said to converge to the zero function. T
for any m and for anyx, if m is sufficiently close tox then the functionqm is sufficiently close to
the functionq at the pointa—but this is a far cry from implying that the functionqm is close to
q for all values ofa.

It is clear that a family of functionsf m will not uniformly converge to the functiong if there
is somee such that, for everym there is somea,b with u f m(a,b)2g(a,b)u>e. For in such a
case, the family is always at least ane away fromg at some point̂a,b&. In Angelidis’ theory, we
can find ane such thate equals 1/4. For, for anym let a5m145 and letb5m245. Now,

pQF
12~a,b!51/2 cos2~a2b!51/2 cos2~90!50

while

pm
12~a,b!51/4@11cos 2~m2a!cos 2~m2b!#51/4@11cos 2~245!cos 2~45!#51/4.

Since every one of Angelidis’ functions is at least 1/4 away from the QF function at s
point ^a,b&, the set does not uniformly converge to the QF function.
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IV. ON THE STATISTICAL PREDICTIONS OF ANGELIDIS’ THEORY

In this section we argue that Angelidis’ theory does not make the same statistical predi
for the EPRB experiment as the quantum formalism.

Suppose we fix ana and ab and repeat the EPRB experiment many times. Then w
proportion of coincidence counts does Angelidis’ theory say we should expect? There has
suspicious change of notation in Angelidis’ paper which makes this question surprisingly dif
to answer.pQF

12(a,b), is the chance that both detectors fire given the polarizers are set at a
a andb, respectively, according to QF. We would expect any rival theory to QF to yield a sim
probability function. But Angelidis’ theory actually yields a set of probability functio
pm

12(a,b). Moreover, the superscriptm no longer represents atheory ~as it does in
‘‘ pQF

12(a,b)’’ !. Rather, it has come to represent the direction of polarization of the two pho
This is odd. We expected any competitor of QF to produce a functionpT

12(a,b) as close to
pQF

12(a,b) as is compatible with experimental error. Butpm
12(a,b) tells us only the chance of a

coincidencegiventhat the common plane of polarization of the two photons ism. In order to work
out the chance of a coincidence full stop, we need a weight functionr* (m) which tells us how
likely it is that the atom will decay into two photons plane polarized in them direction. The chance
of a coincidence will then be equal to*mr* (m)pm

12(a,b)dm. But Angelidis never tells us wha
this weight function is. Accordingly, it is hard to see how his theory manages to make
statistical predictions at all for the EPRB experiment he is attempting to model.

Angelidis seems to think that there is no need for him to specify this weight function
seems to think that sentence~S! contains all the information we need to know. Recall that~S! says
that, when hidden variablem happens by pure chance to be close toa or b, then the two photons
get through their respective polarizers with a probability close topQF

12(a,b). But, as Angelidis
admits, the conditional sentence~S! tells us nothing about what happens whenm is not close to
either a or b. However, ‘‘the single pair of back-to-back photons withmPM may fall inside
another subset, say,Sa4 or Sb4 of the setM, that is,mPSa4 OR mPSb4 , so that it causes a
coincidence count with a different probability12 cos2(a42b4), determined by the consequent inS
deduced fromS ~by modus ponens! under another value assignment.’’13 He goes on to add ‘‘The
universal quantifiers (;mPM ) and (;a,bPD) occurring in the prefix of the sentenceS take into
account thewholearray of such possibilities so that the detectors accordingly register coincid
~and single counts! with the same probabilities as those given by QF foreachandeverypair of
back to back photons emitted by the source.’’

This is not so. Angelidis’ explanation of how to interpret the physical significance ofS is not
complete. Standard quantum mechanics tells us that if a particulara andb are chosen so thata
andb are at right angles then we will never, no matter how many times we repeat the exper
register photons at both polarizers. Now, it is true that, on those particular occasions wh
back to back photons are emitted so that their common plane of polarizationm is very close to
either a or b, then the chance of a correlation will be very small. But what happens on t
occasions wherem is not close to the settings of either of the polarizers? It is true, as Ange
says, that thereexistsan a* such thata* is close tomand that, had been the casethat the
polarizer had been placed at anglea* then the probabilities ascribed byT to a coincidence coun
are the same as that ascribed by quantum mechanics. But this does not tell us what we wa
know! The situations where polarizer 1 is set at anglea* is adifferentphysical situation from the
one that was under consideration. We need to know what happens when polarizers are
particular settingsa andb and the hidden variablem is not close to either. Angelidis’ advice tha
we choose ana* close tom simply dodges the question. In effect, Angelidis is only consider
experiments wherem is close to one of the two polarizer settings. This information is not suffic
to tell us what proportion of coincidences we should expect if the polarizers are set ata andb and
the experiment repeated many times.

Perhaps, though, Angelidis could augment his theory so thatm alwaysis close to one of the
two polarizer settings. Should Angelidis accept the postulate the value of the hidden variabm is
always close to the angle of one of the two polarizers, then his theory would both asc
probability to a coincidence count and, sincepm

12(a,b) approaches arbitrarily close t
                                                                                                                



The
ticu-
ack

hich
s such,
nsion

. Rosen,

Phys.
nt: A

t the
tailed by
in the

4295J. Math. Phys., Vol. 40, No. 9, September 1999 On a purported local extension of the . . .

                    
pQF
12(a,b), this probability can be made arbitrarily close to the probabilities ascribed by QF.

trouble with this proposal is that it straightforwardly violates the postulates of locality. In par
lar, it violates~L3!, which effectively forbids that the angle of polarization of the two back to b
photons be a function of the settings of the polarizers themselves.

V. CONCLUSION

The conclusion of this paper is clear: Angelidis has failed to provide us with a theory w
is both local and which makes the same predictions as the standard quantum formalism. A
Angelidis’ theory simply leaves Bell’s theorems untouched and the prospects for a local exte
of the quantum formalism look as slim as ever.

1The most famous attack on the completeness of quantum mechanics comes from A. Einstein, B. Podolsky, and N
‘‘Can quantum-mechanical description of physical reality be considered complete?’’ Phys. Rev.47, 777–780~1935!.

2D. Bohm, ‘‘A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I,’’ Phys. Rev.85, 166–179
~1952!.

3J. von Neumann,Mathematical Foundations of Quantum Mechanics~Princeton University Press, Princeton, 1955!.
4J. S. Bell, ‘‘On the Einstein–Podolsky–Rosen paradox’’ Physics~Long Island City, NY! 1, 195–200~1964!.
5See A. Aspect, P. Grangier, and G. Roger, ‘‘Experimental tests of realistic local theories via Bell’s Theorem,’’
Rev. Lett.47, 460–463~1981!; ‘‘Experimental realisation of Einstein–Podolsky–Rosen–Bohm Gedankenexperime
new violation of Bell’s inequalities,’’49, 91–94~1982!.

6T. D. Angelidis, ‘‘A local extension of the quantum formalism,’’ J. Math. Phys.34, 1635–1653~1993!.
7D. Bohm,Quantum Theory. ~Prentice–Hall, Englewood Cliffs, NJ, 1951!.
8After all, if a theory did maker depend upon either of these variables, then the theory is effectively saying tha
setting of the polarizers influences the way in which the singlet state decays. That these three conditions are en
locality is widely accepted. See, for example, J. P. Jarrett, ‘‘On the physical significance of the locality conditions
Bell arguments,’’ Nous18, 569–589~1984!.

9T. D. Angelidis, ‘‘A local extension of the quantum formalism,’’ J. Math. Phys.34, 1642~1993!.
10T. D. Angelidis, ‘‘A local extension of the quantum formalism,’’ J. Math. Phys.34, 1646~1993!.
11T. D. Angelidis, ‘‘A local extension of the quantum formalism,’’ J. Math. Phys.34, 1646~1993!.
12Angelidis makes a mess of the definition ofN. He lets eachNx be thesetof basic neighborhoods containingx, and then

defines directionN as$NxuxPX% thus making a direction a set of sets of subsets ofX. This conflicts with his own use
of the symbolNx in the very next paragraph. Moreover, it is not true that for any twoNx andNy there is anNz which
is contained in both.N is not even a directed set.

13T. D. Angelidis, ‘‘A local extension of the quantum formalism,’’ J. Math. Phys.34, 1646~1993!.
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On one generalization for the projection matrices method
in the S-matrix factorization problem

Dmitry I. Muravyev
Samara State Architecture and Civil Engineering Academy, Department of Physics,
Molodogvardeyskaya 194, Samara 443001, Russia

~Received 20 August 1998; accepted for publication 22 January 1999!

A boundary value problem for a 232 S-matrix is solved by the method of projec-
tion matrices. TheS-matrix is assumed to be diagnoalized by orthogonal matrix
U(k2)5V(k2)/AdetV(k2), where matrix elements ofV(k2) are polynomials. The
equation detV(k2)50 has roots of any order. The example is considered for the
roots with order 2. ©1999 American Institute of Physics.
@S0022-2488~99!00605-2#

I. INTRODUCTION

The factorization of theS-matrix into Jost matrices can be considered as the Riemann–Hi
boundary value problem for a half-plane. Its solution can be expressed in terms of an i
integral in the scalar case.1 The boundary value problem is reduced to a system of singular inte
equations in the matrix case.2 It does not seem to be the most optimal way for physical appl
tions.

Projection matrices were used for factorization of the 232 rationalS-matrix in Ref. 3. Thus,
the boundary value problem was solved without using a system of the singular integral equ
It follows from Ref. 4 that projection matrices can be applied in other cases.

In Ref. 5 the boundary value problem was solved with the following assumption. The32
S-matrix can be diagonalized by orthogonal matrixU(k2) on the real axis:

U~k2!5S cos«~k2! sin«~k2!

2sin«~k2! cos«~k2!
D 5

1

AdetV~k2!
V~k2!, ~1!

V~k2!5S QN~k2! PM~k2!

2PM~k2! QN~k2!
D , ~2!

wherePM(k2) andQN(k2) are the polynomials ink of the degree 2M and 2N, respectively, and
Im PM(k2) and ImQN(k2)50 at Imk50. In addition, all roots of the equation

detV~k2!5QN
2 ~k2!1PM

2 ~k2!50 ~3!

have order 1. However, the formulas for the projection matrices are not obtained in the case
the roots have any other order.

It should be pointed out that the minimum order of roots can be set in advance. For exa
if tan @«(k2)/j# is approximated by rational function, then the minimum order of any root of Eq~3!
is j, j 51,2,...,j ,1`.

In this paper generalization of the results of Ref. 5 is suggested. The boundary value pr
is solved by method of projection matrices in the case when the roots of Eq.~3! have any order.

The formulation of the problem is presented in Sec. II. The general form of the soluti
discussed in Sec. III. Projection matrices are calculated in Sec. IV. The example for the root
order 2 is considered in Sec. V. Section VI contains conclusions.
42960022-2488/99/40(9)/4296/7/$15.00 © 1999 American Institute of Physics
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II. THE FORMULATION OF THE PROBLEM

Let us assume that the matrixS(k) is known on the realk axis:

S~k!5U~k2!S~0!~k!UT~k2!, Im k50, ~4!

whereU(k2) is defined by~1! and ~2!. Without generality loss one can suppose that the poly
mials PM(k2), andQN(k2) have no zeros simultaneously. The matrixS(0)(k) has the form

S~0!~k!5S exp@ i2d1~k!# 0

0 exp@ i2d2~k!#
D , Im k50,

where

d j~6`!50, d j~2k!52d j~k!, Im d j~k!50, j 51,2, Imk50.

The Hölder condition should be assumed to be valid for the diagonal elements@S(0)(k)# j j on the
real axis:

u@S~0!~k1!# j j 2@S~0!~k2!# j j u<Auk12k2um, A.0, 0,m<1, j 51,2.

Let there be two numerical sets as well:

D j5$k j
~ i !% i 51

mj , 0,k j
~1!,k j

~2!,¯,k j
~mj !,1`, mj,1`, j 51,2.

The number of the elements in the setD j and behavior ofd j (k) at the pointk50 are related
according to the Levinson’s theorem:

d j~10!5H 0, D j5B,

pmj , D jÞB,
j 51,2.

Here, the case when 0PD1 or 0PD2 is not considered because it is not significant to the ma
problem.

The piecewise analytical matrixF(k) ~i.e., when matrix elements are the piecewise analyt
functions! has to be constructed in the complexk-plane. The boundary values ofF(k) must be
continuous on the real axis and they meet the condition

F1~k!5S21~k!F2~k!, Im k50, ~5!

whereF1(k) is analytical at Imk.0, F2(k) at Imk,0. In addition,

F1* ~k!5F1~2k* !5F2~k* !, ~6!

detF1~ ik j
~b!!50, b51,2,...,mj , j 51,2, ~7!

lim
k˜6`

F1~k!5E, ~8!

whereE is the matrix unit.

III. THE GENERAL FORM OF THE SOLUTION.

Let us consider properties of the roots of Eq.~3!. Since the polynomialsPM(k2) andQN(k2)
depend onk2 and ImPM(k2) and ImQN(k2)50 at Imk50, the following statement takes place.

If il1 is any root of Eq.~3!, 2 il1 , il1* , 2 il1* are the roots of this equation.
It is easy to prove that
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Re~ il1!Þ0 ~9!

and

Im ~ il1!Þ0. ~10!

If ~9! or ~10! is false, thenPM
2 (2l1

2), QN
2 (2l1

2)>0. The polynomialsPM(k2) andQN(k2) have
no common zeros, thus

QN
2 ~2l1

2!1PM
2 ~2l1

2!.0,

i.e., il1 is not a root of Eq.~3!. Consequently, conditions~9! and~10! are true for any root of Eq.
~3!.

Let g1 be an order of the rootsil1 , 2 il1 , il1* , 2 il1* . Based on Eq.~3!,

(
j 51

a

g j5L, L5max$M ,N%, ~11!

anda is of particular importance for the solution of the boundary value problem.
For convenience Eq.~3! is rewritten as two equations:

QN~k2!1 iPM~k2!50, ~12!

QN~k2!2 iPM~k2!50.

For definiteness, letil j be the root of~12! and Im(ilj).0, j 51,2,...,a
Let us find the solution of the boundary value problem in the form

F1~k!5V~k2!G1~k!W1~k2!3¯3Wa~k2!C, ~13!

C5@ lim
k˜6`

k22LV~k2!#21, ~14!

Wj~k2!5Wj
~1!~k2!3¯3Wj

~g j !~k2!, j 51,2,...a, ~15!

Wj
~ i !~k2!5Pj

~ i !
1

k21l j
2 1~E2Pj

~ i !!
1

k21l j*
2 , i 51,2,...,g j , j 51,2,...,a, ~16!

~Pj
~ i !!25Pj

~ i ! , Pj
~ i !ÞE,0, i 51,2,...,g j , j 51,2,...,a, ~17!

~Pj
~ i !!* 5E2Pj

~ i ! , i 51,2,...,g j , j 51,2,...,a. ~18!

G1(k) is the diagonal matrix. It satisfies to conditions

G1~k!5„S~0!~k!…21G2~k!, Im k50, ~19!

G1* ~k!5G1~2k* !5G2~k* !, ~20!

detG1~ ik j
~b!!50, b51,2,...,mj , j 51,2, ~21!

lim
k˜6`

G1~k!5E. ~22!

The matrix elements@G1(k)# j j can be calculated with the formulas of the scalar boundary va
problem:
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@G1~k!# j j 5P6~ j ,k! expS 1

i2p E
2`

1`

ln @exp„2 i2d j~k8!…P2
2 ~ j ,k8!#

dk8

k82k7 i0D , j 51,2,

~23!

P6~ j ,k!5H 1, D j5B,

)
b51

mj

~k7 ik j
~b!!/~k6 ik j

~b!!, D jÞB,
j 51,2. ~24!

Let us show thatF1(k) in the form ~13! satisfies to conditions~5!–~8!. Really, taking into
account~1!, ~4!, and~19! it is easy to check~5!. To convince oneself that~6! is correct, we must
use~2!, ~14!–~16!, ~18!, and~20!. Some steps are required for the proof of~7!. From ~17!,

detPj
~ i !50, SpPj

~ i !51, i 51,2,...,g j , j 51,2,...,a. ~25!

Furthermore, from~16! and ~25!

detWj
~ i !~k2!5~k21l j

2!21~k21l j*
2!21, i 51,2,...,g j , j 51,2,...,a. ~26!

Property~7! is true since~2!, ~15!, ~16!, ~21!, and~26! are valid. Condition~8! is evident because
of ~2!, ~11!, ~14!–~16!, and~22!.

The explicit form of the projection matricesPj
(b) must be chosen in such a way thatF1(k)

will have no poles in the pointsk5 il j , il j* , b51,2,...,g j , j 51,2,...,a.

IV. THE CONSTRUCTION OF THE PROJECTION MATRICES

Let us prove that

V~k2!F P0)
j 51

a
1

~k21l j
2!g j

1~E2P0!)
j 51

a
1

~k21l j*
2!g jGC5E, ~27!

where

P05
1

2 S 1 2 i

i 1 D , P0
25P0 , P0* 5E2P0 . ~28!

Sinceil j and2 il j , j 51,2,...,a, are the roots of Eq.~12! and taking into account~2!, ~14!, and
~28!

V~k2!P0)
j 51

a
1

~k21l j
2!g j

C5@QN~k2!1 iPM~k2!#P0)
j 51

a
1

~k21l j
2!g j

C5P0 . ~29!

The complex conjugation of~29! at Imk50 produces

V~k2!~E2P0!)
j 51

a
1

~k21l j*
2!g j

C5@QN~k2!2 iPM~k2!#~E2P0!)
j 51

a
1

~k21l j*
2!g j

C5E2P0 .

~30!

Thus,~27! results from~29! and~30!. Formula~27! gives an important presentation of the matr
V(k2):

V~k2!5C21F P0)
j 51

a

~k21l j
2!g j1~E2P0!)

j 51

a

~k21l j*
2!g jG . ~31!
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Let us fix four rootsil1 , 2 il1 , il1* , and 2 il1* . Their order isg1 . Let us consider the
matrix

X11
~1! ~k!5V~k2!A1

~1!~k!, ~32!

A1
~1!~k!5G1~k!W1

~1!~k2!5G1~k!FP1
~1!

1

k21l1
2 1~E2P1

~1!!
1

k21l1*
2G , ~33!

where the projection matrixP1
(1) is computed from the formulas

P1
~1!5

1

SpY1
~1! Y1

~1! , ~34!

Y1
~1!5@G1~ il1!#21P0@G1~ il1!#* . ~35!

Formulas~34! and ~35! are in complete accordance with condition~18!.
Let us show that

~E2P0!G1~ il1!P1
~1!50. ~36!

Insertion of~34! and~35! into ~36! proves the validity of this equation. The complex conjugati
of ~36! in terms of~18!, ~20!, and~28! results in

P0G1~ il1* !~E2P1
~1!!50. ~37!

It will be obvious from~31!–~33!, ~36!, and ~37! that matrixX11
(1)(k) has no poles at the point

k5 il1 , il1* . Thus X11
(1)(k) is analytical at Imk.0 except the cases whenk5` ~in a general

case!.
Let us rewrite the matrixX11

(1)(k) in the form

X11
~1! ~k!5C21F P0~k21l1

2!g121)
j 52

a

~k21l1
2!g11~E2P0!~k21l1*

2!g121)
j 52

a

~k21l1*
2!g1GZ11

~1!

3~k!, ~38!

Z11
~1! ~k!5@P0~k21l1

2!1~E2P0!~k21l1*
2!#A1

~1!~k!, ~39!

where ~31! should be taken into account. According to~33!, ~36!, ~37!, and ~39!, the matrix
Z11

(1)(k) has no poles at the pointsk5 il1 , il1* . In addition, it follows from~21!, ~26!, ~33!, and
~39! that

detZ11
~1! ~ il1!5detG1~ il1!Þ0. ~40!

For all projection matricesPj
( i ) , i 51,2,...,g j , j 51,2,...,a, the formulas can be written now base

on ~31!–~40!.
Let us assume that the matrixXn1

( j ) (k) is computed:

Xn1
~ j ! ~k!5V~k2!An

~ j !~k!, j 50,1,2,...,gn21,

where

An
~ j !~k!5G1~k!W1~k2!3¯3Wn21~k2!3Wn

~1!~k2!3¯3Wn
~ j !~k2!, j 50,1,2,...,gn21,

~41!
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An
~gn!

~k![An11
~0! ~k!, n,a, A1

~0!~k![G1~k!, W0~k2![E, Wn
~0!~k2![E. ~42!

The projection matrixPn
( j 11) can be computed from the formulas

Pn
~ j 11!5

1

SpYn
~ j 11! Yn

~ j 11! , j 50,1,2,...,gn21, ~43!

Yn
~ j 11!5@Zn1

~ j ! ~ iln!#21P0@Zn1
~ j ! ~ iln!#* , j 50,1,2,...,gn21, ~44!

Zn1
~ j ! ~k!5@P0~k21ln

2! j1~E2P0!~k21ln*
2! j #An

~ j !~k!, j 50,1,2,...,gn21. ~45!

It should be pointed out that

detZn1
~ j ! ~ il j !Þ0, j 50,1,2,...,gn21.

So far asF1(k) can be written in the form

F1~k!5Xa1

~ga!
~k!C,

the formulas~13!–~16!, ~23!, ~24!, and~41!–~45! give the solution of the boundary value proble
given in Sec. II.

V. THE EXAMPLE

Let us assume that

S~0!~k!5S ~k1 ik!~k1 iw!

~k2 ik!~k2 iw!
0

0 1
D , w,k.0, tan

«~k2!

2
5

k2

ak21b
, Im a,Im b50.

The function tan«(k2) has the form

tan«~k2!5P2~k2!/Q2~k2!, P2~k2!52k2~ak21b!, Q2~k2!5~ak21b!22k4.

Equation~12! is rewritten as

@k2~a1 i !1b#250.

Let il1 and2 il1 be the roots of this equation and Im(il1).0. The order ofil1 is g152. Since
g15L5max$2,2%52, two projection matrices have to be constructed@see~11!, ~13!, ~15!, and
~16!#.

The solution of the boundary value problem has the form

F1~k!5V~k2!G1~k!FP1
~1!

1

k21l1
2 1~E2P1

~1!!
1

k21l1*
2GFP1

~2!
1

k21l1
2 1~E2P1

~2!!
1

k21l1*
2GC,

G1~k!5S k2 ik

k1 iw
0

0 1
D , C5

1

114a2 S 21 22a

2a 21 D .

The matrixP1
(1) is computed from~34! and ~35!:

P1
~1!5

1

~l11w!~l1* 2k!1~l1* 1w!~l12k!
S ~l11w!~l1* 2k! 2 i ~l11w!~l1* 2w!

i ~l12k!~l1* 2k! ~l1* 1w!~l12k!
D .
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According to~41!, ~42!, and~45!:

Z11
~1! ~k!5@P0~k21l1

2!1~E2P0!~k21l1*
2!#G1~k!FP1

~1!
1

k21l1
2 1~E2P1

~1!!
1

k21l1*
2G .

L’Hospital’s rule is convenient to be used to computeZ11
(1)( il1):

Z11
~1! ~ il1!5P0B1H,

B5G1~ il1!P1
~1! , H5

l1*
22l1

2

i2l1
~E2P0!

d

dk
G1~k!U

k5 il1

P1
~1!1~E2P0!G1~ il1!~E2P1

~1!!.

The matrixH has the structure

H5
1

4l1~l11w!2 S h11 ih22

2 ih11 h22
D ,

and its elements can be computed using formulas

h1152~l1*
22l1

2!~w1k!@P1
~1!#1112l1~l11w!~@P1

~1!#11* ~l12k!2 i @P1
~1!#21~l11w!!

52~l1*
22l1

2!~w1k!@P1
~1!#1112l1~l11w!~l12k!,

h225 i ~l1*
22l1

2!~w1k!@P1
~1!#1212l1~l11w!~@P1

~1!#11~l11w!1 i @P1
~1!#12~l12k!!

5 i ~l1*
22l1

2!~w1k!@P1
~1!#1212l1~l11w!2.

The matrix (P0B) does not impact on the final result. However, it is required to compute@Z11
(1)

3( il1)#21. The result is@see~43! and ~44!#

P1
~2!5

1

h11h22* 1h11* h22
S h22h11* 2 ih22h22*

ih11h11* h22* h11
D .

VI. CONCLUSION

The discussion above showed that the projection matrices method appears to perform
the case when the roots of Eq.~3! have any order. This is especially important because
minimum order of the roots can be set in advance. In addition, the class of the unitary matric
which the boundary value problem can be solved without using the system of the singular in
equations is extended.

1F. D. Gakhov,Boundary Value Problems~Pergamon, Oxford, 1966!.
2N. P. Vekua,System of Singular Integral Equations~Noordhoff, Groningen, 1967!.
3T. Fulton and R. G. Newton, Nuovo Cimento3, 677 ~1956!.
4G. N. Chebotarev, Uch. Zapiski Kazan. Univ., Mat.116, 31 ~1956! ~in Russian!.
5A. F. Krutov, D. I. Muravyev, and V. E. Troitsky, J. Math. Phys.38, 6 ~1997!.
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Classical mechanics and geometric quantization on an
infinite dimensional disc and Grassmannian

O. T. Turgut
Institut Mittag-Leffler, Aurava¨gen 17, S-182 62, Djursholm, Sweden
and Department of Physics, Bogazici University, 80815 Bebek, Istanbul, Turkeya!

~Received 7 December 1998; accepted for publication 2 February 1999!

We discuss the classical mechanics on the Grassmannian and the disc modeled on
the idealL(2,̀ ). We apply methods of geometric quantization to these systems.
Their relation to a flat symplectic space is also discussed. ©1999 American
Institute of Physics.@S0022-2488~99!01808-3#

I. INTRODUCTION

We will analyze geometric quantization of a classical system which has as its phase spa
infinite-dimensional Grassmannian or the disc modeled on the idealL(2,̀ )(H1 ,H2). There are
two motivations for our work. The classical dynamics studied should correspond to the larNc

limit of a quantum system which requires a logarithmic renormalization. Its quantization sh
give us an understanding of this system in the Schro¨dinger picture. This picture has some adva
tages over the scattering matrix, as is well known in the physics literature. The second is to
and understand infinite-dimensional systems; their quantization should lead to some inte
mathematical questions. A good example is typical two-dimensional field theory models, wh
not require a renormalization but only a normal ordering.1,2 It will be interesting to develop the
necessary tools for a more complicated systems, and perhaps give a more precise mea
renormalized field theories. We should add that, in this article, we do not study any part
Hamiltonian or associated delicate domain problems. In some sense we have only made an
to study part of the kinematics. The full understanding will require studying a specific mod

II. THE DISC AND THE GRASSMANNIAN

Our approach is inspired from the discussion of the Grassmannian in the book by Pressl
Segal3 and closely follows our previous work.2 We will extend some of our previous ideas to th
case.

Let H be a separable infinite-dimensional complex Hilbert space;H2 andH1 are two or-
thogonal isomorphic subspaces withH5H2 %H1 . Physically, one can think of these two spac
as the decomposition of the one-particle Hilbert space into positive and negative energy s

Define the discD11(H2 ,H1) to be the set of all operatorsZ:H1˜H2 such that 12Z†Z
.0 andZ is in L(2,̀ )(H1 ,H2). We refer to the Appendix for the idealsL(2,̀ ) andL(1,̀ ).

Since the spaceL(2,̀ )(H1 ,H2) is contractible, the set ofZ for the disc can be taken as
coordinate system. It is an infinite-dimensional complex manifold, modeled on a Banach s

In a similar spirit, we define the Grassmannian to be the set of closed subspacesW of H, such
that the projection Pr1 :W˜H1 is Fredholm and the projection Pr2 :W˜H2 is in
L(2,̀ )(W,H2). We first define natural group actions on these spaces. These group actions a
to prove that these are manifolds.~Generalizations of this kind have been pointed out in Ref
and explored in Ref. 4 for the idealsLp. See also Ref. 5.!

We introduce the following pseudo-unitary group which is a subset of the invertible oper
from H to H:

a!After March 1999.
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U11~H2 ,H1!5$gugeg†5e, g21 exists and@e,g#PL~2,̀ !%. ~1!

Heree5(0
21

1
0) with respect to the decompositionH5H2 %H1 . If we decompose the matrix

into block forms,

g5S a b

c dD , ~2!

we havea:H2˜H2 , b:H1˜H2 , c:H2˜H1 , andd:H1˜H1 . Then, the off-diagonal ele
mentsb andc are inL(2,̀ ) and the diagonal elementsa andd are bounded operators. In fact, the
are invertible operators, since their spectrum does not contain zero. The conditions on th
diagonal elements imply some control over how muchH1 andH2 mix with each others.

We define an action of U11(H2 ,H1) on the discD11 :

Z°g+Z5~aZ1b!~cZ1d!21. ~3!

The condition 12Z†Z.0 implies thatcZ1d is invertible and bounded. Since the space ofL(2,̀ )

is a two-sided ideal, (aZ1b)(cZ1d)21 is still in L(2,̀ ). Thus our action is well defined.
The stability subgroup of the pointZ50 is U(H2)3U(H1),U(H6) being the group ofall

unitary operators onH6 . Moreover, any pointZ is the image of 0 under the action of the grou
g+(Z50)5bd21. @Note thatbd21 is in L(2,̀ ) andd†d511b†b implies that 12(bd21)†bd21

.0.# We therefore see that D11 is a homogeneous space and given by the quotient

D115U11~H2 ,H1!/U~H2!3U~H1!. ~4!

It is possible to view Gr11 as a coset space of complex Lie groups. Incidentally this
define a complex structure on Gr11 which will be useful for geometric quantization. Define
subset of the general linear group

GL115$gug is invertible; @e, g#PL~2,̀ !%. ~5!

When we decomposeg into 232 submatricesg12,g21PL(2,̀ ) while g11 andg22 are Fredholm.
This is a Banach–Lie group modeled onL(2,̀ )(H1 ,H2). We take the space of all endomo
phisms onH with the same condition on the off-diagonals, EndL(2,̀ )(H), and give it the natural
topology under the norm iAi15i@e,A#1i1i@e,A#iL(2,̀ ). The invertible elements o
EndL(2,̀ )(H) are a group, open under this topology, and it has a tangent space which come
the natural imbedding. It is straightforward to define the ‘‘Borel subgroup’’

B115H b5S b11 b12

0 b22
D UbPGL11J . ~6!

This is the stability group ofH2 under the action of GL11 onH. Thus the Grassmannian~which
is the orbit ofH2! is the complex coset space,

Gr115GL11 /B11. ~7!

It will be convenient to use the following operators for the points on D11 ,F:H˜H,

F5122S ~12ZZ†!21 2~12ZZ†!21Z

Z†~12ZZ†!21 2Z†~12ZZ†!21ZD . ~8!

One can see that under the transformationZ°g+Z,F°g21Fg. HereF satisfieseF†e5F and
F251. Also, F2ePL(2,̀ ), so that as an operatorF does not differ frome in an arbitrary way.

We can equivalently define the Grassmannian to be the following set of operators onH:
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Gr115$FuF5F†;F251;F2ePL~2,̀ !%. ~9!

SinceF251 and it is self-adjoint, it can be diagonalized by the action of

U11~H!5$gug†g51;@e, g#PL~2,̀ !%. ~10!

Let us splitg into 232 blocks:

g5S g11 g12

g21 g22
D . ~11!

The convergence condition on@e,g# is the statement that the off-diagonal blocksg12 andg21 are
in L(2,̀ ). It then follows thatg11 andg22 are Fredholm operators. The Fredholm index ofg11 is
opposite to that ofg22; this integer is a homotopy invariant ofg and we can decompose U11(H)
into connected components labeled by this integer.

We can see that U11(H) is a real form of this group. GL11(H) is the topological product of
U11(H) and the contractible space of positive definite elements by using the fact
EndL(2,̀ ) (H) has the square root of positive elements well defined and continuous und
topology. ~We can show that U11 is a deformation retract of GL11 , similar to the finite-
dimensional case.!

With the projectiong˜geg†, we see that Gr11 is a homogeneous space of U11(H):

Gr115U11~H!/U~H2!3U~H1!. ~12!

Any FPGr11 can be diagonalized by an element of U11(H), F5geg†; this g is ambiguous up
to right multiplication by an element that commutes withe. Such elements form the subgroup

U~H2!3U~H1!5H huh5S h11 0

0 h22
D ; h11

† h11515h22
† h22J . ~13!

Each pointFPGr11 corresponds to a subspace ofH: the eigenspace ofF with eigenvalue21.
Thus Gr11 consists of all subspaces obtained fromH2 by an action of U11 .

To define the tangent space at each point we can use the action of the group on itself. F
purposes it is better to take the group action on the left. Since the stability subgroup oe is
U(H2)3U(H1), in both cases the tangent space is isomorphic to the corresponding off-dia
algebras. In each case this is equivalent toL(2,̀ )(H1 ,H2) as a vector space, due to the Herm
ticity ~or pseudo-Hermiticity! condition.

Any given uPU11 defines a vector at a given point, and a vector field can be expand
terms of the local set of vectors. The action of a vector field onF is given by Vu(F)(F)
5@u(F),F#5g@g21u(F)g,e#g21. The tangent space has a set of vectors which are given b
completion of the finite rank operators insideL(2,̀ ). This is also an ideal insideB5B(H) and is
a separable Banach space under the same norm asL(2,̀ ); we will denote this set by (L(2,̀ )) (0).
The tangent space has a noncanonical decomposition at each point which is isomorp
(L(2,̀ )) (0)1L(2,̀ )/(L(2,̀ )) (0); the second part is a ‘‘transversal piece.’’ As we will see, t
quotient will be important for the dynamical system we have in mind.

We introduce the cotangent space as a formal expressiondF via its contraction with the
vector field at a given point;dF(Vu(F))5Vu(F)(F). ~The dual space requires more care
infinite dimensions. We can think of the norm dual ofL(2,̀ ), yet this space does not have a simp
characterization. If we assume that the tangent space is, in fact, the norm dual of the cot
space, we have a simple description of the cotangent space. We refer to Gohberg and Krein
details.6 In this article we will leave the question of the dual open, and use one-forms only w
we have an explicit formula.!

We would like to think of the D11 and Gr11 as classical phase spaces. To do this we nee
introduce a Poisson bracket. We will search for a symplectic form on this space. It is tempt
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generalize the finite-dimensional formula to this case. If we write downV5( i /4)TrFdF∧dF we
see that the trace, in general, does not exist. However, one can see that the divergence
rithmic, in fact the formal expressionFdF∧dF belongs toL(1,̀ ). Hence we can replace th
ordinary trace by the Dixmier trace. The Dixmier trace is used in noncommutative geometr
a masterful presentation of its properties we refer to the book and lecture notes by Conne7

Each choice of the trace will give another symplectic form. They all agree on the ‘‘me
able’’ part of the idealL(1,̀ ). Since the ‘‘measurable’’ elements do not form an ideal, we can
assume that the symplectic form is independent of the choice of the limit point.

Another important point is to remember that the Dixmier trace vanishes on the ideal gen
by the completion of finite rank operators, (L(1,̀ )) (0). In the applications one expects that t
operators we have to consider are pseudo-differential operators on manifolds. The phy
relevant group of transformations is modeled on pseudo-differential operators which belong
specific ideals that we have defined. In the case of classical pseudo-differential operato
Dixmier trace is uniquely defined; it is equal to the Wodzicki residue of the pseudo-differe
operator, as shown by Connes.8 An interesting application of a new trace to the class of ellip
pseudodifferential operators is given in Ref. 9, and to chiral anomaly in Ref. 10. An intere
discussion of the central extensions and Schwinger terms are given in Ref. 11.

In this article we will consider the general case, and show the dependence of the sym
form to this limiting processv explicitly on our definition of the symplectic form:

Vv5
i

4
Trv FdF∧dF. ~14!

The existence of such a trace is the reason for our choiceL(2,̀ ). One can check that the abov
form is closed; it is not so obvious that it is nondegenerate. In fact, it vanishes whenever the
of the contractions with the vectors at a given point is in the completion of the finite rank ope
insideL(2,̀ ),(L(2,̀ )) (0)ÞL(2,̀ ). This completion is a separable Banach space, and an ideal in
B as well, whereasL(2,̀ ) is a nonseparable Banach space.

The above form is invariant under the action of U11(H) for the Gr11 and invariant under the
action of U11(H2 ,H1) for the D11 . The formal expression is defined as

i Vu
i Vv

Vv5
i

8
Trv F†@u, F#,@v, F#‡. ~15!

One can show the invariance using this expression immediately~see below!. Thus, Gr11 and D11

are both homogeneous manifolds with an invariant closed two-form similar to the fi
dimensional case.

Unfortunately, this form is degenerate; it vanishes on the part of the tangent space
corresponds to (L(2,̀ )) (0). ~This means that we throw away a large part of the symplectic m
fold. Perhaps a physically more appropriate choice is to use a combination, which kee
information about the ‘‘small’’ directions. Although this can be done we will focus on the ab
symplectic form.! To see this let us calculate the contraction ofVv at a pointF, with a vector field
which belongs to the part (L(2,̀ )) (0). Let us assume that this vector is generated byu acting from
the left. The condition for the vector of be in (L(2,̀ )) (0) is simply @e,g21ug#P(L(2,̀ )) (0) at the
point F5geg21:

i Vu
Vv5

i

8
Trv F†@u,F#,dF‡. ~16!

We will show that the contraction of this one-form with an arbitrary vector on the tangent s
at the same pointF is zero, hence the form is zero. Any such vector on the tangent is a
generated by the left action with a Lie algebra elementv,
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i Vv
i Vu

Vv5
i

8
Trv e†@e, g21ug#,@e, g21vg#‡. ~17!

Using

F e,S B L~2,̀ !

L~2,̀ ! B D G5S 0 L~2,̀ !

L~2,̀ ! 0 D
and similarly for the other part, we have

S 0 L~2,̀ !

L~2,̀ ! 0 D S 0 ~L~2,̀ !!~0!

~L~2,̀ !!~0! 0 D 5S ~L~1,̀ !!~0! 0

0 ~L~1,̀ !!~0!D , ~18!

where we use (L(2,̀ )) (0)L(2,̀ )P(L(1,̀ )) (0) ~see the Appendix for a proof!. The Dixmier trace
vanishes on (L(1,̀ )) (0) and this shows that the form is zero. In general, since the tangent spac
the direction given by (L(2,̀ )) (0), the cotangent space has one-forms which do not vanish on t
If L is a form such thatL(Vu)Þ0, thenL5 i YVv has no solution for the vectorY. If we assume
that the de Rham theory makes sense on these spaces, since D11 is contractible, andp1(Gr11)
50, we would expect that there is a functionf such thatL5d f , and this will show that one canno
obtain a Hamiltonian vector field for any given functionf in general. Nevertheless, as we will se
for the relevant part of the space, that is for ‘‘large’’ motions, directions which belong
L(2,̀ )/(L(2,̀ )) (0), the form is nondegenerate. This will allow us to define classical dynamics
certain systems.

Before we continue, let us point out an important observation. For clarity let us concentra
Gr11 . There is an interesting leaf of Gr11 which corresponds to the orbit ofe under the following
subgroup:

U11
~0!5S B ~L~2,̀ !!~0!

~L~2,̀ !!~0! B D . ~19!

We denote this orbit by Gr11
(0) . Since the connected components are still labeled by the inte

each connected component of Gr11 has the connected component of Gr11
(0) inside. If we take

Gr11
(0) ’s own tangent space, generated by U11

(0) , the symplectic form vanishes on this orbit using t
fact that (L(2,̀ )) (0)L(2,̀ )P(L(1,̀ )) (0) ~see the Appendix for a proof!. The same remarks apply t
the disc D11 , and we spare the reader the details.

Since the group action preserves the two fromVv the Lie derivative along the direction of an
vector field generated by the group action gives us zero. This raises the possibility of findin
moment maps which would generate the infinitesimal action of U11(H2 ,H1) and U11(H),
respectively. We can start with the finite-dimensional answer; one can check that to avo
divergence the finite-dimensional answer has to be modified as2Trv

e u(F2e), where u is a
Hermitian matrix which is in the Lie algebra of U1(H) for the Gr11 and a pseudo-Hermitian
(u†5eue) operator which belongs to U11(H2 ,H2) for D11 . We use a conditionally convergen
trace for the variableF2e if we think of the group acting from the left. To see that the abo

expression makes sense consideruP(L(2,̀ )
B

B
L(2,̀ )

), andF2eP(L(2,̀ )
L(1,̀ )

L(1,̀ )
L(2,̀ )

). ~HereB is the space of

bounded operators!. As a result,u(F2e)P(L(2,̀ )
L(1,̀ )

L(1,̀ )
L(2,̀ )

). Let us defineM5F2e. Formally the
equation for the group action is satisfied,

2Trv
e udF5Vv~Vu , !, Vu~F!5@u, F#, ~20!

but we must be careful since ifg21ugP(L(2,̀ )) (0), the right-hand side vanishes as we ha
shown. The only way to satisfy this equation is to show that whenever the right-hand side
ishes, the left vanishes as well. This can be checked as follows:
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d fu~Vv!5Trv
e u@v,F#5Trv

e g21ug@e, g21vg#, ~21!

for any vPU11 . By the same argument as above, we see that the resulting expression ins
trace is of class (L(1,̀ )) (0). Hence the trace is also zero.

We notice that the form corresponding to the moment map2Trv
e (uM(0)) for any uPU11

when contracted with the elements of the tangent space ofD1
(0) or Gr11

(0) also gives zero. This is
in some sense the orbit one can neglect; we can think of it as the null orbit. This shows th
cannot take the separable part in our definition of the group U11 , denoted as (U11)(0), if we use
the Dixmier trace. In a recent preprint,12 it is argued that there is no positive trace on the id
(L(2,̀ )) (0). This implies that a similar construction cannot be achieved for the group (U11)(0).

However, it is not enough to show that the moment functions satisfy a consistent equ
Normally in the Hamiltonian formalism we are given a function and asked to find the vector
generated by this function. Our discussion shows that this vector field at every point is
determined in the equivalence classL(2,̀ )/(L(2,̀ )) (0). It is easy to see that if we take, instead
u, a vector generated byu1v such thatg21vgP(L(2,̀ )) (0), 2d fu5 i /8 TrvF†@u1v, F#,dF‡

5 i /8 TrvF@@u, F#,dF#1 i /8 Trv †@v,F#,dF‡ for the last piece is zero by the previous argume
This implies that the moment functions do not have unique vector fields; they generate the m
in the ‘‘transversal direction’’L(2,̀ )/(L(2,̀ )) (0) with an undetermined piece in (L(2,̀ )) (0). Let us
look at the infinitesimal part of this evolution for two different choices of the vector field in
equivalence class,DF5t@u, F# and D8F5t@u8,F#. The difference of these two infinitesima
evolutions is given byDF2D8F5@u2u8,F#5g@g21(u2u8)g,e#g21. Since the ambiguity is a
result of the difference, which satisfies@g21(u2u8)g,e#P(L(2,̀ )) (0), this term is in the orbit
D11

(0) , or in the same connected component of Gr11
(0) . Thus the difference of the infinitesima

evolutions can be conjugated to the orbit D11
(0) , or to the same connected component of Gr11

(0) . This
implies that the relevant space for the classical dynamics is not the original quotient we loo
but a smaller one, given by U11 /U11

~0! . In fact as we will see later on, this reduction has
interesting consequence. But, for the moment, we will continue to use the ‘‘unreduced
space.’’

To talk about classical evolution, we will make the proposal that this type of classical sys
is defined through an equivalence relation. We will assume that two dynamical evolution
equivalent if they could be conjugated to the ‘‘null’’ orbit, D11

(0) , for D11 , and to the same
connected component of Gr11

(0) , for Gr11 . Another way to think about this is that the dynamics
the ‘‘small’’ directions cannot be determined. The moment functions we consider only dete
the evolution under equivalence.

This feature will affect the dynamics generated by Hamiltonians of more complicated
tions. The generic Hamiltonians we have in mind are quadratic functions of the variableM5F
2e plus a moment map. We think of the moment map as the free part of the Hamiltonian si
generates the group action up to an equivalence, and the quadratic piece as an ‘‘interactio

Formally we can write the Hamiltonians as

h5 i Trv
e uM1Trv

e K̂~M !M , ~22!

where K̂ is a linear operator which acts on the variableM. If we specify a basis, it can be
expressed as„K̂(M )M …p

k5( i jkK jl
ikM i

jM p
l . The summability properties of the kernelK jl

ik should be
such that the resulting operator is in the idealL(1,̀ ). For example, this can be achieved if the m
K̂ produces an operator in the group U11 . Notice that it is important to use the Dixmier trac
again. As we mentioned in the moment maps, since the symplectic formVv vanishes upon
contraction with elements of the tangent space in the ‘‘small’’ directions, the interaction H
tonian must have the same property. As one can check, this form of the Hamiltonian,
differentiated, gives a form which vanishes on the same subspace. This will impose certai
ditions on the choice of kernels. Interactions which are ‘‘too weak’’ will not affect the equat
of motion.
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Let us give a typical interaction Hamiltonian. We can take two moment functions and
their products

(
i j

Ki j Trv
e uiM Trv

e ujM . ~23!

If the sum is over a finite number of terms, then clearly this is a well-defined expressio
general, one should be able to chooseKi j such that the above expression is finite. For the
Hamiltonians, one can directly calculate the equations of motion by using the Poisson b
relations among the moment functions only. As we will see later on, they also have a si
description in the quantum case.

A word of caution should be said here. Typically, the Hamiltonians are more singular tha
symplectic form, and they require further renormalizations. This implies a choice of doma
the Hamiltonian. This should restrict the accessible regions of the phase space, or the true
space of the theory, and it may change the formulation of the problem drastically. In real ph
systems, we expect these problems to modify the precise formulation of the field theory. I
work, we do not discuss this more difficult problem. In some sense this is part of the kinem
although interactions may even change this.

There will always be vector fields generating the equations of motion up to equivalenc
infinite dimensions determination of the integral curves and their completeness are highly
trivial issues; the answer depends on the Hamiltonian as well. This is the classical version
unitarity condition in quantum mechanics.

From general principles we expect that the Poisson brackets of the moment function
provide a realization of the corresponding Lie algebra possibly with a central extension. W
calculate the Poisson bracket of two moment functions using a formal manipulation and it gi

$ f u , f v%5 f 2 i @u,v#2 i Trv
e @e, u#v. ~24!

This is a central extension of the full group, indexed by the choice of limit processv. ~Note that
there is no ambiguity in this relation since the right-hand side is the same for equivalent ch
of the vector fields.! One can explicitly check thatcv(u,v)5Trv

e @e, u#v satisfiescv(u,v)
52cv(v,u) and the cocycle condition,cv(u,@v, w#)1cv(v,@w, u#)1cv(w,@u, v#)50. Since
the central term vanishes on the ideal (L(1,̀ )) (0) it will not be there whenu or vPU11

(0) . The actual
computation should be done with care, due to infinite dimensionality. One can see that th
sides of the equation after explicit calculation give the same result, hence they are identic
will leave the details to the reader.

This gives us a symplectic realization of the Lie algebra of U11(H) for Gr11 and
U11(H2 ,H1) for D11 except a central term. Since the calculation of the both sides are act
zero wheneverg21ug or g21vgPU11

(0) , this expression should be thought of as a realization
the ‘‘large’’ part of the Lie algebra.@It is more natural to look into the spaces which are mode
on the quotientsL(2,̀ )/(L(2,̀ )) (0). Since (L(2,̀ )) (0) is closed, the quotient is well defined. Later o
we will consider this point of view.# Let us consider this central extension for the pseudodif
ential operators~pointed out to me by Mickelsson!; then we have Trv@e,u#v5Res(@e,u#v). We
recall that the residue is actually defined for all pseudodifferential operators and it sa
Res@A, B#50.13,14 This implies that, in fact Trv @e, u#v5]f(u,v), for f(u)5Res(eu), hence
the central extension is trivial.

Because of the infinite dimensionality, an attempt to remove the central term, in the ge
case, will result in a divergent expression. This gives us the Lie algebra of the nontrivial c
extension of U11 corresponding tov. We expect that these extensions are not equivalen
general, for different choices ofv, but they all agree on the subset modeled on the ‘‘measurea
elements—this is not a subalgebra ofU11, so one cannot reduce it to this case.
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III. QUANTIZATION

We continue to think of classical mechanics in geometric terms.15,16 Let us assume that th
phase space,G, is a smooth manifold. If we have a Poisson structure on the algebra of sm
functions C`(G), we can introduce classical dynamics. Quantization of this classical syste
given by a representation of the Poisson algebra of smooth functions by self-adjoint opera
a Hilbert space. This is an overambitious program; in general, there is no way to find s
representation. The difficulties and various methods have been well explained in
literature.17–19 In this article we will follow our point of view in Ref. 2. We will find a represen
tation of the Poisson algebra of moment functions. Any composite function, which is related
product of two moment maps, can be quantized by giving an ordering rule. We will not attem
establish this idea in the present article.

Before we proceed further, we need to make a digression and introduce a generalize
terminant.’’ It does not satisfy all the properties of a determinant. As we will see, to think of
a determinant simplifies the calculations. Let us define detv(11A) for APL(1,̀ ) as

detv~11A!5exp„Trv~A!…. ~25!

@One way to motivate this definition is the following. Let us take the determiant form
log det(11A)5Tr log(11A). We replace the trace by the Dixmier trace, and define log dev(1
1A)5:Trv log(11A)5Trv(A2 1

2A
21 1

3A
32¯)5Trv(A) since all the higher terms are inL1 and

the Dixmier trace vanishes on them. This gives the above formula again.# One can see that i
satisfies the multiplicative property of the determinants,

detv„~11A!~11B!…5detv~11A!detv~11B!, ~26!

due toL(1,̀ )L(1,̀ )PL1 and Trv vanishes on the trace class operatorsL1. An interesting property
is that detv never vanishes.

We will use this to provide a representation of the Borel subroup onC, and attempt to follow
the geometric quantization program.

We will introduce anad hoc representation, which comes from the geometric quantiza
performed in Ref. 2, of the Lie algebra of the group U11(H2 ,H1) on the space of ‘‘holomorphic
functions’’ on D11 :

f̂ 2uC~Z!52 i\FLVu
C~Z!2

1

\
Trv~gZ!C~Z!G , ~27!

whereuPUI 1(H2 ,H1), andVu5Vu
Z]Z1Vu

Z†
]Z† is the formal vector field generated by the acti

of 2u. ~The author is not aware of a well-established definition of holomorphicity for infi
dimensions. We assume that the algebraic operations on the coordinateZ after the application of
a dual element, if it is finite, provides a holomorphic function. This will be used for the Gr
mannian as well. It is easier to define the Lie derivative directly, by using the action of th
algebra on the disc. We define this as

LVu
C~Z!5 lim

t˜0

C„Z1t~aZ1b2ZgZ2Zd!…2C~Z!

t
, ~28!

where

u5S a b

g d D ~29!

is the decomposition ofu into block form; a†52a, b†5g, and d†52d; and, further,g,b
PL(2,̀ ). We notice that this differs from the finite-dimensional answer by a constant term, w
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is infinite in this case. The changes introduced in the functions are all ‘‘holomorphic,’’ so
action of the operators corresponding to the moment functions preserve the ‘‘holomorp
condition.’’ In order to show that this is the correct representation, we need to prove tha
commutation relations are satisfied acting on these set of functions.

Let us check that the commutation relations will give us a realization of the Poisson br
relations satisfied by the moment maps:

@ f̂ 2u1
, f̂ 2u2

#C~Z!5 i\ f̂ @u1 ,u2#C~Z!1 i\ Trv
e ~@e, u1#u2!C~Z!. ~30!

A calculation shows that

@ f̂ 2u1
, f̂ 2u2

#C~Z!5\2~Lu1
Lu2

2Lu2
Lu1

!C~Z!1\@~Lu1 Trv g2Z!2~Lu2
Trv g1Z!#C~Z!.

~31!

For simplicity we useLu instead ofLVu
. This is equal to

@ f̂ 2u1
, f̂ 2u2

#C~Z!5\2L@u1 ,u2#C~Z!1\ Trv$g~@u1 , u2# !Z%C~Z!1\ Trv~g1b22g2b1!C~Z!.
~32!

The last term, which is a constant multiple, can be rewritten as Trv
e @e, u1#u2 . Hence we see tha

it is a representation of the Poisson bracket relations~24!.
This representation can, in fact, be integrated to a representation of the group action

space of holomorphic functions:

rv~g21!C5detv
21/\~d21cZ11!C„~aZ1b!~cZ1d!21

…. ~33!

These representations are labeled byv, the choice of limit point, and\. Since the determinan
never vanishes and is actually given by an exponential,\ is any real number.~This point of view
on quantization for finite-dimensional homogeneous spaces appeared in Ref. 20.! To justify this,
we will compute the infinitesimal form of the representation and show that it is given by
operators corresponding to the moment maps. We write explicitly

r~g21!C~Z!5e2~1/\!Trv~d21cZ!C~g+Z! ~34!

and evaluate

lim
t˜0

H rv~11tu!2rv~1!

t J C~Z!5\FLVu
2

1

\
Trv~gZ!GC~Z!. ~35!

So, we see that the infinitesimal form is given by the moment map operators. We still ha
check that this is a representation:

rv~g1!rv~g2!C~Z!5cv~g1 ,g2!rv~g1g2!C~Z!, ~36!

where cv(g1 ,g2) is a central term, which satisfies cv(g1g2 ,g3)cv(g1 ,g2)
5cv(g1 ,g2g3)cv(g2 ,g3). Since the disc is topologically trivial, the central extension can
described by specifying a function from the Cartesian product of the group toC. An explicit
calculation, which is given in the Appendix, shows that the group property is satisfied w
central term,

cv~g1 ,g2!5detv
1/\@~d1d2!21c1b211#5expS 1

\
Trv@~d1d2!21c1b2# D . ~37!
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However, there is still one more point we need to consider. Recall that the orbit ofe corresponding
to the subgroupU11

(0) ,D11
(0) , when considered as a submanifold with its own tangent space, ha

dynamics under our choice of the symplectic form. Hence the Poisson algebra of momen
restricted on this submanifold is trivially true, being zero on both sides, whereas the represe
space we choose, when restricted to the subspaceD11

(0) , provides a nontrivial representation of th
Poisson algebra of moment maps. This can be rectified by selecting a subspace of holom
functions which remain constant on the orbitD11

(0) . As a result, we define the quantum Hilbe
space to be

HQ5$C~Z!uC~Z! holomorphic on D11 and CuD
11
~0!5constant%. ~38!

This condition is consistent with the assumption that the dynamics along the directions (L(2,̀ )) (0)

is unimportant. If we considere to be the ‘‘vacuum’’ configuration, its orbit under U11
(0) is equiva-

lent to this ‘‘vacuum’’ configuration.
For this choice of the quantum Hilbert space, we will exhibit a class of wave functions

are unable to prove that these are the only possible ones. Since the wave functions sh
constant on the orbit D11

(0) , it suggests the use of the Dixmier trace again.
We can compose polynomials in the variableZ. The interesting thing is to note that we can g

up to quadratic terms only inside the Dixmier trace. For any choice ofAiPL(2,̀ ), and any two
Bj ,BkPB(H), we can form

Trv~AiZ! and Trv~BjZBkZ!. ~39!

Using the generalized Ho¨lder inequality,21 we have the inequalities

uTrv~AiZ!u<iAi iL~2,̀ !iZiL~2,̀ ! and uTrv~BkZBjZ!u<iBkiiBj iiZiL~2,̀ !
2 . ~40!

These show the continuity inZ and with respect toAi andBj ,Bk . We can compose products o
these kinds of functions:

C~Z!5)
i , j ,k

Trv~BjZBkZ!Trv~AiZ!. ~41!

The reader can verify that any higher power ofZ is irrelevant, so these are the only combinatio
we can make. Various superpositions of these functions will give us the set of wave func
@One should perhaps compare this with the analysis given in Ref. 2. There, the holomorphic
functions can be constructed using the analogy with the finite-dimensional case. We can u
fact that the dual ofL2 is itself and the dual ofL1 is B~H!. We can write down a genera
holomorphic function as sums and products of the expressions of the f
Tr(AZ),Tr(B1ZB2Z¯BmZ), whereAPL2 andBkPB(H) for all k51,...,m. Not all of them are
linearly independent of course. With the appropriate inner product the quantum Hilbert
constructed out of these functions is isomorphic to the usual Fock space and it is a sep
Hilbert space.#

We also would like to point out an interesting property of our wave functions. Since we
obtained them through the Dixmier trace, we effectively perform ‘‘logarithmic wave func
renormalization.’’

The quantum Hilbert space may be very large, or maybe very small; it depends on the s
the space of ‘‘holomorphic functions’’ on D11 , and the inner product. It is not clear how on
should introduce a measure to define an inner product in this quantum Hilbert space. Th
Hilbert space is only justified by thinking of this as a quantization of a classical system. It s
be possible to extend the work in Ref. 22 to this case. Once this is done, the completion
above set of wave functions with respect to this measure will be the quantum Hilbert spaceHQ .

Next we will construct the quantum operators for the Gr11 . Our approach will be somewha
ad hocagain. Since Gr11 is topologically nontrivial, it may not be possible to represent wa
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functions as functions on the Grassmannian. It is natural to introduce them as section
complex line bundle. However, we will see that there are nonconstant holomorphic functio
this Grassmannian.~This can be contrasted with Refs. 3 and 2. There, the finite-dimens
Grassmannians are dense inside the full Grassmannian, and it is well known that on a c
complex manifold there are no nonconstant holomorphic functions. In our case, complet
finite rank objects will not be equal to the full space.! For the quantization of our classical system
we actually need the sections of a line bundle. For this it is better to think of Gr11 as a quotient
of another pair of groups as in the case discussed by Refs. 3 and 2. It is possible that the ex
is nontrivial both topologically and algebraically. Essentially, we will enlarge ‘‘numerator’’ a
‘‘denominator’’ by the same amount. This will keep the same ratio. We define the group G˜

11 :

G̃115$~g,q!uqPGL~H2!; gPGL11~H!, g11q
2121PL~1,̀ !%. ~42!

Here,g11 denotes the mappingg11:H2˜H2 in the block form of the matrixgPGL11(H). One
can prove that the set ofq’s which satisfies this condition is not empty using the definition of
group GL11 following Pressley and Segal.3 We can give a topology to this space using the t
topologies inherited from the bounded andL(1,̀ ). ~Notice that the extension for any two-side
ideal is mentioned in Ref. 3 on p. 98.!

Here G̃11 is a complex Banach–Lie group under the multiplication (g,q)(g8,q8)
5(gg8,qq8). We introduce B˜11 , a closed complex subgroup of G˜

11 ;

B̃115$~b,t !ubPB11 , tPGL~H2!, b11t
2121PL~1,̀ !%. ~43!

There is an action of B˜
11 on G̃11 . Since this action does not involve anything but multiplicati

in the group, it is holomorphic. We enlarged GL11(H) and B11 with the same set of elements
thus the quotient is still the same:

B̃11˜G̃11˜Gr11. ~44!

In this case as well, there are subgroups corresponding to completions of the finite rank ele
These subgroups now can be written as

G̃11
~0! 5$~g~0!,q!uqPGL~H2!; g~0!PGL11

~0! ~H!, g11
~0!q2121P~L~1,̀ !!~0!%. ~45!

Existence can be proved along the same lines. The stability subgroup also changes to B˜
11
(0) , which

is defined similarly. One can see that G˜
11
(0),G̃11 as a closed subset. This subgroup will correspo

to the null orbit, and it will not have any extension.
Now, we can introduce the holomorphic line bundle corresponding to the represen

r(b,r )5detv
1/\(b11r

21). There is no condition for the number\ to be an integer at this stage
since our definition for detv has an exponential, it never vanishes, and the value of\ could be any
real number. We denote the line bundle as (G˜

113rC)/B̃11 . A section of this line bundle can b
identified with equivariant functions:

c:G̃11˜C such thatc~gb,qr !5r~b,r !c~g,q!. ~46!

Let us exhibit the functions which would satisfy this condition. They are given by genera
determinants very similar to the case discussed in Ref. 2. As an example we start with

c~g,q!5detv
1/\~g11q

21!. ~47!

One can see that this is an equivariant function on the space G˜
11 , using the properties of the

Dixmier trace. There is no restriction on the value of\ due to holomorphicity, since the expo
nential is an entire function except possibly due to a topological obstruction. We can com
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more functions of this type, if we allow ‘‘mixing’’ of the elements ofg11 with the elements of
g21, in a controlled way. One can see that if we assume that the mixing is allowed by finite
operators, the result will not change. More than that, it will not change if we use elemen
(L(2,̀ )) (0). To get different functions we need to mix them by elements ofL(2,̀ )/(L(2,̀ )) (0):

detv„~12AiS!g11q
211Aig21q

21
… ~48!

for AiPL(2,̀ )(H1 ,H2) and the mappingS:H2˜H1 is an isometric isomorphism which i
given by mapping one set of orthonormal basis elements into the other~it can simply be taken as
sendinge2 i˜ei!. This form is guessed from the system studied in Refs. 2 and 3. Howeve
have two problems with this form. When we useAiSg11, this expression is not convergent und
the Dixmier trace. The second is that we want our wave functions to be constant when th
restricted to the null orbit. As we will see, this is not possible for the above form of the func
due to the termAiSg11. One can see that dropping this term does not change the equivar
condition thanks to the Dixmier trace again. This means an infinite multiplicative renormaliza
At the same time we see that it is simpler to just multiply with the function Trv(Aig21q

21), since
it is invariant under the action of B11 , hence it descends to a function on the quotient, Gr11 . A
similar argument shows that we can do better, we may add even a nonlinear term, which
invariant. Any higher-order addition vanishes. We can write down a general expression,

detv
1/\~g11q

21!Trv~Aig21q
21!Trv~Bjg21q

21Bkg21q
21!, ~49!

whereBj ,BkPB(H1 ,H2). For clarity, we will prove that this form is equivariant and satisfies
the requirements.

Let us look at the action by an element of B11 ;

detv
1/\
„~gb!11~qr !21

…Trv„Ai~gb!21~qr !21
…Trv„Bj~gb!21~qr !21Bk~gb!21~qr !21

…

5detv
1/\~g11b11r

21q21!Trv~Aig21b11r
21q21!Trv~Bjg21b11r

21q21Bkg21b11r
21q21!

5detv
1/\
„g11~11I !q21

…Trv„Aig21~11I !q21
…Trv„Bjg21~11I !q21Bkg21~11I !q21

…

usingb11r
21511I for I PL(1,̀ );

detv
1/\
„g11q

21~11qIq21!…Trv~Aig21q
211Aig21Iq

21!Trv„~Bjg21q
211Bjg21Iq

21!

3~Bkg21q
211Bkg21Iq

21!…

5detv„g11q
21~11qIq21!…Trv~Aig21q

21!Trv~Bjg21q
21Bkg21q

21!….

In the last line we have usedL(1,̀ )L(2,̀ )PL1 and the Dixmier trace vanishes on them. As a res
we get

exp
1

\
„Trv~g11g

2121!1Trv~b11r
2121!…Trv~Aig21q

21!Trv~Bjg21q
21Bkg21q

21!, ~50!

where we use (11I )(11qIq21)511I 1qJq211IqJq21 and the last term is zero inside th
Dixmier trace forg11q

21511I , I PL(1,̀ ). This is the equivariance condition we want. We c
take a product over the trace part only, and this will not change the result.

We need to check that when we reduce the wave function onto the ‘‘small’’ orbit, that is t
subgroup G˜ 11

(0) , the resulting wave functions are just constant. This is necessary for consis
with the classical Poisson bracket calculation as we will see. Let us note the following: in fac
system is invariant under a larger symmetry. This will be discussed in the next section, a
will see that the correct phase space is smaller.

One can see that we can compose a product wave function; in general, we define, as
case of D11 ,
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detv
1/\~g11q

21!)
i , j ,k

Trv~Aig21q
21!Trv~Bjg21q

21Bkg21q
21!. ~51!

These and their various superpositions are the most general wave functions we can constru
next step is to complete these sets of wave functions with respect to an inner product to
quantum Hilbert space.~Notice that in our previous work2 we could have used the trace cla
operators for the mixing ofg11 andg21, not only the finite rank ones. Various superpositions
the wave functions described in that work will lead to a similar general form given here w
finite rank matrix used for the mixing. The finite rank operators are dense in the trace class a
determinant uses the ordinary trace. We can extend the wave functions in that case to the o
mixing elements in the trace class operators. This should actually be done by using the
product in the quantum Hilbert space, but we expect some dominance property with respec
parameters. In fact, the above claim is known to be true, hence there is no loss of generality
case.! Notice that still there could be an integrality condition on\, due to the fact that the firs
Chern class of the line bundle corresponding to the representationr should be inH2(Gr11 ,Z).

Let us note that the form of the wave function for the disc and the Grassmannian are qu
same—this is unlike the previous case studied in Ref. 2. We can, in fact, set up a one-
correspondence between the elements of the two quantum Hilbert spaces; for any choiceAi

PL(2,̀ ) andBj ,Bk , which are operators in B(H2 ,H1) we have a wave function on the disc an
on the Grassmannian. This suggests in some natural sense a boson–fermion corresponden
think of the disc corresponding to a bosonic and the Grassmannian to a fermionic syste
course, this correspondence is only at a formal level, since we only have a set theoretical r
between the two quantum Hilbert spaces. One also has to check the inner products, to ma
that the linearly independent choices are mapped to each other in the same manner. This s
be a reasonable expectation. Its physical meaning is not so obvious to the author; it maybe
the fact that we have thrown away a large part of the phase space, which may have a
physical information about the system. We will see some further evidence of the equivale
these two systems in this quantization scheme, when we look at these problems in a differe
in the next section.~There is larger stability subgroup as we will see in the next section, an
seems to suggest a simpler solution.!

The above wave functions carry a representation of the group G˜
11 which comes from the left

action;

r ~g8,q8!c~g,q!5c~g821g,q21q8!. ~52!

This group action is well defined. We give a proof for completeness: Let us denote the in
element acting from the left by (l,r )PG11 . For simplicity we drop the products and compute t
following expression:

detv
1/\
„~lg!11q

21r 21
…Trv„Ai~lg!21q

21r 21
…Trv„Bj~lg!21q

21r 21Bk~lg!21q
21r 21

…. ~53!

We expand the products

detv
1/\
„~l11g111l12g21!q

21r 21
…Trv„Ai~l21g111l22g21!q

21r 21
…

3Trv„Bj~l21g111l22g21!q
21r 21Bk~l21g111l22g21!q

21r 21)…

5detv
1/\
„~11I !~11rJr 21!1l12g21q

21r 21
…

3Trv„Ail21~11I !r 211Ail22g21q
21r 21

…

3Trv@Bjl21~11I !r 211Bjl22g21q
21r 21#@Bkl21~11I !r 211Bkl22g21q

21r 21#

5detv
1/\~11I 1J1l12g21q

21r 21!3Trv„Ai~l21r
211l22g21!q

21r 21

3Trv@Bjl21r
211Bjl22g21q

21r 21#@Bkl21r
211Bkl22g21q

21r 21#,
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where we useg11q
21511I and l11r

21511J. Notice also that we used the vanishing of t
Dixmier trace whenever the resulting multiplication is in the trace class operators—and this
case, for example, for products of the kindl21I and for other similar terms. All the terms in th
above expression are actually in the idealL(1,̀ ) except 1, hence we have the result well defin

Clearly the action of a group element on a general wave function follows directly from
result. It follows immediately from the above formula that when we restrict to the subspace˜

11
(0)

for the wave function elements and the group element multiplying from the left, the expre
inside the determinant gives us 1. This shows that the representation is trivial.

For completeness we will prove that we have a true representation of the group G˜
11 on this

space of wave functions. This is a technical step and it can be skipped. We will compare the
of the group elements and show that

c„l~sg!,r ~sq!…5c„~ls!g,~rs!q…, ~54!

hence when we apply the left multiplication on the left this gives us a representation. We ha
group action by (l,r ) given by the above formula that we have already calculated:

detv
1/\~l11r

21!detv
1/\~g11q

211l12g21q
21r 21!Trv Ai~l21r

211l22g21q
21r 21!

3Trv„Bj~l21r
211l22g21q

21r 21!Bk~l21r
211l22g21q

21r 21!….

We can act with the element (s,s) on this; it is better to break the terms into separate parts:

detv
1/\~l11r

21!detv
1/\
„~s11g111s12g21!q

21s211l12~s21g111s22g21!q
21~rs!21

…

3detv
1/\~l11r

21!detv
1/\~s11s

21!detv
1/\
„g11q

211s12g21q
21s21

1l12s21~rs!211l12s22g21q
21~rs!21

….

We compare this with the action of the group element (ls,rs) on the same wave function:

detv
1/\
„~ls!11~rs!21

…detv
1/\
„g11q

211~ls!12g21q
21~rs!21

…

5detv
1/\~l11s11s

21r 211l12s21s
21r 21!detv

1/\
„g11q

211l11s12g21q
21s21r 21

1l12s22g21q
21~rs!21

…

5detv
1/\~l11r

21!detv
1/\~s11s

21!detv
1/\
„g11q

211l12s21~rs!211s12g21q
21s21

1l12s22g21q
21~rs!21

….

These two expressions are the same, hence we have a group action on this part of th
function.

Let us check the next term:

Trv~Ai„l21r
211l22~s21g111s22g21!q

21~rs!21
…!

5Trv~Ai„l21r
211l22s21~rs!211l22s22g21q

21~rs!21
…!.

Let us compare this with the direct application of the product:

Trv~Ai„~ls!21~rs!211~ls!22g21q
21~rs!21

…!

5Trv~Ai„l21s11s
21r 2111l22s21~rs!211l21s12g21q

21~rs!211l22s22g21q
21~rs!21

…!

5Trv~Ai„l21r
211l22s21~rs!211l22s22g21q

21~rs!21
…!.

These two expressions are the same. Let us look at the last type of term:
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Trv~Bj„l21r
211l22~s21g111s22g21!q

21~rs!21
…Bk„l21r

211l22~s21g111s22g21!q
21~rs!21

…!

5Trv~Bj„l21r
211l22s21~rs!211l22s22g21q

21~rs!21
…Bk„l21r

211l22s21~rs!21

1l22s22g21q
21~rs!21

…!.

If we look at the action of the product,

Trv~Bj„~ls!21~rs!211~ls!22g21q
21~rs!21

…Bk„~ls!21~rs!211~ls!22g21q
21~rs!21

…!

5Trv~Bj„l21r
211l22s21~rs!211~l21s121l22s22!g21q

21~rs!21
…Bk~l21r

21

1l22s21~rs!211~l21s121l22s22!g21q
21~rs!21

…!

5Trv~Bj„l21r
211l22s21~rs!211l22s22g21q

21~rs!21
…

3Bk„l21r
211l22s21~rs!211l22s22g21q

21~rs!21
…!,

where we used the vanishing of the Dixmier trace onL1 and some rearrangements on all the abo
calculations. We see that this term also respects the group action.

The above representation factors through the subgroup which corresponds to the elemes of
GL(H2), with detv (s) well defined. These are the elements in the subgroup,sP11L(1,̀ ). Notice
that for a fixed elementg, the freedom we have to choose differentq’s which satisfy the deter-
minant condition is isomorphic to GL115$qPGL(H2)uq511L(1,̀ )%, although we could not
find a way to reduce it to this group everywhere. Hence our representations can actua
reduced to the representations of another group, which is a central extension of the group11 .
The extension is trivial on the subgroup GL11

(0) ; this can be seen by noticing thatsP1
1(L(1,̀ )) (0) will give us detv(s)51. We can construct a commutative diagram, as we have d
in Ref. 2, to show that this gives us a representation of a central extension of the group G11 .
This is more transparent if we look in the Lie algebra level, and also this gives us a chan
compare the central term we have in the case of moment maps. The Lie algebra we n
consider is clearly$(u,r )ur PEnd(H2) u112r PL(1,̀ )%. One can see that the Lie brack
@(u,r ),(v,s)#5(@u, v#,@r , s#) is well defined, and this is the infinitesimal form of the grou
G̃11 . One can see immediately that the set of possibler’s is isomorphic to the set ofr
PGL(H2) such thatr PL(1,̀ ). We can construct a central extension of the original Lie algebra
using, (u,r )°„u,Trv(u112r )…. We give the trivial Lie bracket to the complex numbers. Und
this map, the commutator goes to

„@u, v#,Trv~@u, v#112@r , s# !…5„@u, v#,Trv
e ~@e, u#v !…, ~55!

where we used

Trv~u11v112v11u111u12v212v12u212@r ,s# !

5Trv~u11v112rs2v11u111sr!1Trv~u12v212v12u21!

5Trv„~u112r !v111r ~v112s!…2Trv„v11~u112r !1~v112s!r …1Trv
e ~@e, u#v !

5Trv
e ~@e, u#v !

since all the terms, as grouped, are inL(1,̀ ) and we use the Dixmier trace properties. Note that t
is the same central extension in the case of moment maps that we have been using. We w
by an explicit calculation that our representations can be reduced to representations of this a
Let us first compute the infinitesimal action; for simplicity we drop the product signs:

L~u,r ! detv
1/\~g11q

21!Trv~Aig21q
21!Trv~Bjg21q

21Bkg21q
21!. ~56!

It is again easier to use the derivation property of the Lie derivative and compute individual t
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L~u,r ! detv
1/\~g11q

21!5
21

\
Trv„~u11g111u12g21!q

212g11q
21r …detv

1/\~g11q
21!

5S 2
1

\
Trv~u112r !2

1

\
Trv~u12g21q

21! Ddetv
1/\~g11q

21!.

In a similar way we get

L~u,r ! Trv~Aig21q
21!5Trv„Ai~u211u22g21q

212g21q
21r !… ~57!

and

L~u,r ! Trv~Bjg21q
21Bkg21q

21!5Trv„Bj~u211u22g21q
212g21q

21r !Bk~u211u22g21q
21

2g21q
21r !….

We define a new representation and, using the above expressions, check that it is, in fac
pendent of the choice of the Lie algebra elementr:

r̂@~u, r !#5L~u,r !1
1

\
Trv~u112r !, ~58!

acting on the same set of wave functions. Using the above expression, we compute the ac
the Lie algebra element (u,r 1s), wheresPL(1,̀ ) and this is the freedom we have. It is aga
simpler to check this on each basic piece:

„r̂@~u,r 1s!#detv
1/\~g11q

21!…f~Ai ,Bj ,Bk ,g,q!

5FL~u,r 1s!1
1

\
Trv„u112~r 1s!…Gdetv

1/\~g11q
21!f~Ai ,Bj ,Bk ,g,q!

52
1

\
Trv~u12g21q

21!detv
1/\~g11q

21!f~Ai ,Bj ,Bk ,g,q!.

For the other terms we only use the Lie derivative part since the scalar part is used in the
expression already:

L~u,r 1s!Trv~Aig21q
21!5Trv~Ai„u211u22g21q

212g21q
21~r 1s!…!

5Trv„Ai~u211u22g21q
21!2Aig21q

21r …

5L~u,r ! Trv~Aig21q
21!

by using the fact that, everytimes is multiplied with an element, the resulting term is in the ide
of trace class operators, and the Dixmier trace vanishes on them. The other term,

L~u,r 1s! Trv~Bjg21q
21Bkg21q

21!, ~59!

can be shown to be independent ofs by using the same reasoning as above. Hence, we can de
the representation we have asr̂ (u).

If we compute the commutator,

„r̂~u! r̂~v !2 r̂~v ! r̂~v !…c~g,q!5F r̂~@v,u# !2
1

\
Trv~@u, v#112@r ,p# !Gc~g,q!. ~60!

The last term is independent of the choices ofr,p and equal to2(1/\)Trv
e @e,u#v as we have seen

before.
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Hence the representations that we have obtained can be reduced to the representation
central extension of the Lie group U11(H). This is the quantization of our classical system; it m
not be possible to express the central term corresponding to the group in this form, sin
extension may have a topological twist in general. We are not able to answer this que
although the discussion in the last section hints that the correct phase space is topologically
This will imply that the central extension actually comes from a central term, globably defin

IV. FLAT GEOMETRY AND QUANTIZATION

In this section we will introduce a classical system which appears to be unrelated at first
This point of view was suggested by Rajeev in our discussions. We consider the set of ele
Z̄ such that they belong to the following quotient spaceL(2,̀ )(H1 ,H2)/„L(2,̀ )(H1 ,H2)…(0)

@equivalence classes of Z:H1˜H2 and ZPL(2,̀ )(H1 ,H2) under
Z2Z8P„L(2,̀ )(H1 ,H2)…(0)#. There is a natural quotient norm,

iuZ̄ui5 inf
Z0P~L~2,̀ !!~0!

iZ1Z0iL~2,̀ !, ~61!

whereZ is a representative in the equivalence class ofZ̄.
There is a natural product fromL(2,̀ )3L(2,̀ )

˜L(1,̀ ), and this reduces to the quotien
L(2,̀ )/(L(2,̀ )) (0)3L(2,̀ )/(L(2,̀ )) (0)

˜L(1,̀ )/(L(1,̀ )) (0) given by Z̄Z̄85ZZ8. The natural product
B(H)3L(2,̀ )

˜L(2,̀ ) also descends to the quotient B(H)3„L(2,̀ )/(L(2,̀ )) (0)
…

˜L(2,̀ )/(L(2,̀ )) (0).
The Dixmier trace is nondegenerate on this quotient space. We will use this important f

introduce an obvious symplectic form,

Ṽv5 i Trv dZ̄∧dZ̄†. ~62!

This flat geometry has a simple symmetry group given by rotations and translations.~This
may not be the most general action, but it is the obvious one.! Due to the quotient we can allow
for slight deviations from unitary transformations and write a general transformation as

Z̄°eZ f211 l , ~63!

whereePGL(H2), f PGL(H1) such thate†e21, f †f 21PK(H), andl PL(2,̀ ). One can check
that this is, in fact, a group under the obvious composition law, which we call as the affine g
A11 . This action is well defined and transitive. One can immediately check that the group a
preserves the symplectic form due to the extra conditions we have:

Ṽv5 i Trv edZ̄f 21∧ f 21†dZ̄†e†5 i Trv~e†e!dZ̄∧~ f †f !21dZ̄†5Ṽv , ~64!

using the fact that the producte†edZ̄'dZ̄ and the same forf ~see the Appendix for a proof!.
It is again natural to find the moment maps generating this action. We can find them usi

infinitesimal form of the group action,Ṽ(e, f ,l )(Z̄)5aZ2Zd1b̄. @Here we denote the Lie algebr
elements by the same lettera,b,d, but they now satisfya†1a511K, d†1d511K whereK is
a compact operator, andb̄PL(2,̀ )/(L(2,̀ )) (0), yet we denote the moment maps byF (e, f ,l ) to imply
that they are coming from the affine action. We hope that this does not cause too much conf#
Hence,

F ~e, f ,l !5 i Trv~aZ̄Z̄†2Z̄dZ̄†1b̄Z̄†1Z̄b̄†!. ~65!

If we compute$F (e1 , f 1 ,l 1) ,F (e2 , f 2 ,l 2)%, we will see that there is a central term. Since we will
this calculation below to make connection with the previous section, we postpone the resu
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Geometric quantization gives us immediately the following general set of wave functio

C~ Z̄,Z̄†!5e2~1/\!TrvZ̄Z̄†

)
i , j ,k

Trv~Āi Z̄!Trv~BjZ̄BkZ̄!, ~66!

whereĀiPL(2,̀ ) andBj ,k are bounded. Naturally, this set of wave functions carries a repre
tation of the central extension of the above group action, via the same type of operators w
found before:

F̂c~ Z̄!5SL~a,d,b!2
1

\
Trv~b̄†Z̄! Dc~ Z̄!. ~67!

~We skip a detailed derivation of this formula, but the reader can verify it by using stan
geometric quantization!.

This system has an interesting connection to our discussions on the previous section.
recall the disc case. One can recover the symplectic form for the disc using the following K¨hler
potential,iTrv log(12ZZ†), just as in the finite-dimensional case. Let us expand the Ka¨hler form,
and use the properties of the Dixmier trace. We see that the result is a simple expression:iTrvZZ†.
This is the result for a flat system, except for degeneracies. If we look at the quotient, as abo
result is the same as the Ka¨hler potential of the above system.

We can also apply the quotient homomorphism to our pseudo-unitary group action; this

Z̄°aZd211bd21. ~68!

Let us show that the group property is preserved under this mapping:

g2°~g1°Z!5a2~a1Z̄d1
211b1d1

21!d2
211b2d2

21

5a2a1Z̄~d2d1!211a2b1~d2d1!21

5~a2a11b2b1!Z~d2d11c2c1!211~a2b11b2d1!~d2d11c2c1!21

5~g2g1!°Z.

This gives us an embedding of U11(H2 ,H1) into the affine group. Another interesting point is
look at the moment maps, and expand Trvu(F2e) in the variableZ, by using the expression o
F in terms ofZ. The properties of the Dixmier trace can be used to see that most of the
vanish; the result is the same as the moment maps of the flat system:

f u5 i Trv~aZZ†2ZdZ†1bZ1Z†b†!. ~69!

Of course, it is natural to go to the quotient again, and we getFu5F (a,d,bd21) . We can now
compute to see the Poisson bracket of these two moment maps, using the flat Poisson br

$Fu ,Fv%5 i Trv„@a1 , a2#Z̄Z̄†2Z̄@d1 , d2#Z̄†1~a2b12a1b21b1d22b2d1!Z̄†1Z̄~a2b12a1b2

1b1d22b2d1!†
…1 i Trv~b1b2

†2b2b1
†!.

One can verify that the last term is a central term which is equal to the central term we have
before.

The above set of wave functions is equivalent to the wave functions on the disc and they
the same representation of the central extension of the quotient group. This shows that the
we studied without the reduction can be put into a slightly bigger flat system.

The same question then arises for the Grassmannian. Its coordination will show that in
coordinate neighborhood, the symplectic form is given by the flat one, and similarly the mo
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functions will look like the flat geometry. Certainly, the quotient point of view, us
U11 /~U11!~0!, implies that there is a similar simplification. Now we will try to present an alter
tive point of view in the Grassmannian which keeps the complex structure. Consider the follo
subgroup:

G̃~11,0!5H ~g,q!UgPS B L~2,̀ !

~L~2,̀ !!~0! B D J . ~70!

This is a closed subgroup, hence the quotient is a holomorphic manifold. Notice that the
sentation we have introduced for the subgroupB̃11 actually extends to a representation of th
larger group:

detv
1/\
„~gl!11s

21q21
…5detv

1/\~g11l11s
21q211g12l21s

21q21!. ~71!

Notice that the last term is actually zero under the Dixmier trace and the rest follows as b
showing that it is a one-dimensional holomorphic representation. The next thing is to chec
the remaining part of the wave function is, in fact, invariant under the groupG̃(11,0) . Thus, we
will have a line bundle on this smaller quotient, which is the physically relevant phase spac
us only check one of the terms,

Trv„Ai~gl!21s
21q21

…5Trv„Ai~g21l11s
21q211g22l21s

21q21!…5Trv~Aig21q
21!,

by using the fact that the last term is in (L(1,̀ )) (0) ~and similarly for the other type of term!. Hence
we can consider the set of functions as the sections of a line bundle on the quotient,G̃11 /G̃(11,0) .
Since we already know that for B11 the quotient cancels out theq parts, for the above form also
we get

G̃11 /G̃~11,0!'GL11 /GL~11,0!5S B L~2,̀ !

L~2,̀ ! B D Y S B L~2,̀ !

~L~2,̀ !!~0! B D'L~2,̀ !/~L~2,̀ !!~0!.

~72!

This shows that the relevant part of the phase spaces for the disc and the Grassmannia
equal size. We are not able to provide a link with this and the coordinate description at the p
moment. Our guess is that Grassmannian also has the same embedding into a flat syst
manifests the possible equivalence of the two systems. We hope to clarify some of these is
a future publication.
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APPENDIX: MISCELLANEOUS RESULTS

The definitions of the operator ideals will be given. Let us start with the definition ofL(2,̀ ).
Operator ideals contain compact operators, thus they are given by the summability proper
the singular values of the operators. Ifmn(A)5nth eigenvalue ofuAu, then we define a new norm
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iAiL~2,̀ !5sup
N

(n51
N mn~A!

( i 51
N 1/n1/2 . ~A1!

The set of allAPK(H) for which the above norm is finite is denoted byL(2,̀ ). It is a symmetri-
cally normed ideal.6 Since the sequence 1/n1/2 is regular, the same ideal can be defined through
asymptotic behavior of the singular values. In fact, the set of operators inL(2,̀ ) can be defined as
APK(H) such thatmn(A)5O(n21/2). This also gives a simple characterization of the complet
of the finite rank operators insideL(2,̀ ), denoted as (L(2,̀ )) (0); AP(L(2,̀ )) (0) iff mn(A)
5o(n21/2). @The symbol mn5O(pn) means that, lim supn˜`mn /pn,` and mn5o(pn)
iff lim n˜`mn /pn50.# One can define the norm forL(1,̀ ) in the same way replacing the sequen
1/n1/2 by 1/n. This is not a regular sequence, so the completions of finite rank operators are
by the behavior of the partial sums;sN(A)5Sn51

N mn(A), sN(A)5O(logN). If mn(B)
5o(1/n), then it implies thatsN(B)5o(logN), henceBP(L(1,̀ )) (0). However, the converse i
not true.

We give a proof thatA, BPL(1,̀ ), thenABPL1. Let us assume that the hypothesis is true
implies thatA, BPL2 as well. However, we know thatL2L2PL1, hence the result.

Next, we will prove that ifAPL(2,̀ ) andBP(L(2,̀ )) (0), thenABP(L(1,̀ )) (0).
We will use the inequalities satisfied by the singular values:

mn1m~AB!<mn~A!mm~B!. ~A2!

Choosen1m52N1 j , where j 50,1 and look at the following limit:

lim sup
N˜`

~2N1 j !m2N1 j~AB!< lim sup
N˜`

~2N1 j !1/2mN~A!~2N1 j !1/2mN1 j~B!. ~A3!

Now we can use

lim
N˜`

„N1/2mN~A!…5a,` and lim
N˜`

„~N1/2mN~B!…50 ~A4!

in the above expression to get

lim
N˜`

~2N1 j !m2N1 j~AB!50, ~A5!

and this implies that the product is in the closure,ABP(L(1,̀ )) (0). One can imitate the abov
proof to show thatA,BPL(2,̀ ), thenABPL(1,̀ ); we leave this to the reader.

Let us use the same idea to show thatK(H)L(2,̀ ),(L(2,̀ )) (0):

lim sup
2N1 j

~2N1 j !1/2m2N1 j~AK!< lim sup
2N1 j

~2N1 j !1/2mN~A!mN1 j~K !50 ~A6!

by using the fact that limNmN(K)50 for a compact operatorK.
In the second part we will prove some of the properties of the conditional Dixmier tra

which are identical to the usual trace conditions. We define the conditional trace as

Trv
e A5Trv

e S a11 a12

a21 a22
D 5

1

2
„Trv~a11!1Trv~a22!…5

1

4
Trv@A1eAe# ~A7!

for A5(a21

a11
a22

a12). Notice that we have absorbed a factor of1
2 into the definition to make the formula

involving this trace look simpler. First property,

Trv
e AB5Trv

e BA ~A8!
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if all the individual terms in the products(kaikbki are in the idealL(1,̀ ). This is easy to see if we
use the definition of the conditional trace, and

S a11 a12

a21 a22
D S b11 b12

b21 b22
D 5S a11b111a12b21 *

* a21b121a22b22
D . ~A9!

If each of the terms appearing in the diagonal parts is independently inL(1,̀ ), we can use
Trv ab5Trv ba and see that the result is the same when one takes the product in the op
order.

We will show that the group representation is satisfied up to a central term. It is
convenient to use detv instead ofeTrv and the power 1/\ is not written since it is easy to put back
We compare the two ways of applying the representation,r(g2

21)r(g1
21)C(Z) and

r„(g1g2)21
…C(Z). The first expression gives

detv„d1
21c1~a2Z1b2!~c2Z1d2!2111…detv~d2

21c2Z11!C„~g1g2!+Z…, ~A10!

and the second

detv„~d1d21c1b2!21~c1a21d1c2!Z11…C„~g1g2!21+Z…. ~A11!

It is enough to compare the ‘‘determinant’’ pieces because the other parts are the same.
check the following:

detv„d1
21c1~a2Z1b2!~c2Z1d2!2111…detv~d2

21c2Z11!

5detv„d2
21d1

21c1~a2Z1b2!~d2
21c2Z11!2111…detv~d2

21c2Z11!

5detv„~d1d2!21c1~a2Z1b2!~d2
21c2Z11!21~d2

21c2Z11!1d2
21c2Z11…

5detv„~d1d2!21c1~a2Z1b2!1d2
21c2Z11…

5detv„~d1d2!21~c1a21d1c2!Z1~d1d2!21c1b211….

We used the multiplicative property of the detv , which comes from the properties of the Dixmie
trace. The equalities are true by adding terms which give zero under the Dixmier trace; this
advantage of using the symbol detv . Let us compare this with

detv„~d1d21c1b2!21~c1a21d1c2!Z11…

5detv@„~d1d2!21c1b211…21~d1d2!21~c1a21d1c2!Z11#

5detv„~d1d2!21c1b211…21 detv„~d1d2!21~c1a21d1c2!Z1~d1d2!21c1b211…,

hence they differ by a constant multiple which never vanishes,

cv~g1 ,g2!5detv„~d1d2!21c1b211…. ~A12!

This trace is well defined as one can check, and, since it never vanishes, the two sides ar
We need to further check that it obeys the cocyle condition,

cv~g1g2 ,g3!cv~g1 ,g2!5cv~g1 ,g2g3!cv~g2 ,g3!

5det1/\@~d1d2d3!21c1a2b31~d2d3!21c2b31~d1d2!21c1b211#.

~A13!

The sum of all the terms except 1 inside the determinant sign are in the idealL(1,̀ ), hence the
Dixmier trace is well defined. The cocyclecv , in the finite-dimensional case, can be obtain
from f(g)5det(d), asc(g1 ,g2)5f(g1)f(g2)f(g1g2)21. Clearly it is not well defined in infi-
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nite dimensions; in fact, the extension is nontrivial. Thus, we obtain a representation of a c
extension Uˆ 11(H2 ,H1) in the quantum Hilbert space of holomorphic sections.
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Thew` algebra is a higher-spin extension of the Virasoro algebra. In this paper, we
construct the gauge theory ofw symmetry in terms of its representations. ©1999
American Institute of Physics.@S0022-2488~99!03508-2#

I. INTRODUCTION

The Virasoro algebra and its extensions play a fundamental role in the study of
dimensional conformal field theories. Thew` algebra1 is a higher-spin extension of the Virasor
algebra. It can be regarded as the algebra of smooth area-preserving diffeomorphisms
cylinder. It is known that two-dimension gravity can be thought of as the result of gaugin
Virasoro algebra.W gravity is the gauge theory of localW algebra symmetry. The study ofW
gravity has been guided by the analogy with two-dimension gravity. Thew3 gravity was first
constructed in theW gravity.2 It was begun from a free action realizing a chiralw3 symmetry, and
Noether-coupled it to spin-2 and spin-3 background gauge fields. Schoutenset al.3 extended this
work to a nonchiral gauged theory ofw3 . In terms of these methods, chiral and nonchiralw`

gravity was constructed by Bergshoeffet al.4 We know that it is difficult to construct a gaug
theory of the Virasoro symmetry through the conventional method. The reason is that the Vi
group is not only noncompact, but also does not admit any bi-invariant Cartan–Killing metric
the Virasoro group, the representation that we know well is the highest-weight representatio
this representation is of no use to construct the gauge theory of the Virasoro group beca
gauge field must form an adjoint representation. One must consider the other representa
order to construct the wanted gauge theory, Cho generalized the Kaplansky–Feigin–Fuks~KFF!
representation of the Virasoro algebra5,6 and constructed the invariant tensors. With all of the
elements, he gave a gauge theory of the Virasoro group.7,8

As a higher-spin extension of the Virasoro algebra, the generators of thew` algebra can be
expressed linearly in terms of the generators of the ‘‘Virasoro-like’’ algebras. From the repr
tations of the ‘‘Virasoro-like’’ algebras, we can obtain the representations of thew` algebra that
we need for the gauge theory. In this paper, we will construct the gauge theory ofw symmetry
from its representations.

II. w ` ALGEBRA AND ITS REPRESENTATIONS

The w` algebra is an infinite-dimensional algebra. Its commutation relation is given by4

@vm1 ,m2
,vn1 ,n2

#[@vm̄ ,v n̄#5 f m̄n̄
k̄ v k̄5@~n211!m12~m211!n1#vm̄1n̄ , ~1!

where

m̄5~m1 ,m2!. ~2!

The generators are given on a two-dimensional space~x,y! as follows:

a!Electronic mail: Zhaowz100@263.net
43250022-2488/99/40(9)/4325/6/$15.00 © 1999 American Institute of Physics
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vm̄5e~ im1x!@m1ym211]y1 i ~m211!ym2]x#, ~3!

wherem2 is the index of the conformal spins satisfyingm212>2 andm1PZ. The generators
vm,0 are just the Virasoro generatorsLm . If we takez5eix, then the generators become

vm̄5~m211!Lm1 ,m2

1,0 2m1Lm1 ,m2

0,1 , ~4!

where

Lm1 ,m2

1,0 52zm111ym2
d

dz
, ~5!

and

Lm1 ,m2

0,1 52zm1ym211
d

dy
. ~6!

The generatorsLm1 ,m2

1,0 andLm1 ,m2

0,1 satisfy the ‘‘Virasoro-like’’ algebra, respectively, i.e.,

@Lm1 ,m2

1,0 ,Ln1 ,n2

1,0 #5~m12n1!Lm11n1 ,m21n2

1,0 , ~7!

@Lm1 ,m2

0,1 ,Ln1 ,n2

0,1 #5~m22n2!Lm11n1 ,m21n2

0,1 . ~8!

From the above commutation relations, we obtain the following adjoint representations o
‘‘Virasoro-like’’ algebras:

~Lm1 ,m2

1,0 !n1 ,n2

k1 ,k25~m12n1!dm̄1n̄
k̄ , ~9!

~Lm1 ,m2

0,1 !n1 ,n2

k1 ,k25~m22n2!dm̄1n̄
k̄ , ~10!

where

dm̄1n̄
k̄ 5dm11n1

k1 dm21n2

k2 . ~11!

As the case of the Virasoro algebra,7 we introduce the following KFF representations of t
‘‘Virasoro-like’’ algebras:

~Lm1 ,m2

1,0 !n1 ,n2

k1 ,k25@~a11!m11b2k1#dm̄1n̄
k̄ , ~12!

~Lm1 ,m2

0,1 !n1 ,n2

k1 ,k25@~a11!m22k2#dm̄1n̄
k̄ , ~13!

wherea andb are arbitrary complex numbers. One can easily show that the KFF represent
~12!, ~13! satisfy the following relations:

~@Lm1 ,m2 ,
1,0 ,Ln1 ,n2

1,0 # ! l 1 ,l 2

k1 ,k25~Lm1 ,m2

1,0 !h1 ,h2

k1 ,k2~Ln1 ,n2

1,0 ! l 1 ,l 2

h1 ,h22~Ln1 ,n2

1,0 !h1 ,h2

k1 ,k2~Lm1 ,m2

1,0 ! l 1 ,l 2

h1 ,h2

5~m12n1!~Lm11n1 ,m21n2

1,0 ! l 1 ,l 2

k1 ,k2, ~14!
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~@Lm1 ,m2 ,
0,1 ,Ln1 ,n2

0,1 # ! l 1 ,l 2

k1 ,k25~Lm1 ,m2

0,1 !h1 ,h2

k1 ,k2~Ln1 ,n2

0,1 ! l 1 ,l 2

h1 ,h22~Ln1 ,n2

0,1 !h1 ,h2

k1 ,k2~Lm1 ,m2

0,1 ! l 1 ,l 2

h1 ,h2

5~m22n2!~Lm11n1 ,m21n2

0,1 ! l 1 ,l 2

k1 ,k2. ~15!

In fact, the adjoint representations~9!, ~10! correspond to the~a51, b50! representation of the
KFF representations~12!, ~13!, respectively. From the adjoint representations of the ‘‘Viraso
like’’ algebras, we have

~vm̄! n̄
k̄5~m211!~Lm1 ,m2

1,0 !n1 ,n2

k1 ,k22m1~Lm1 ,m2

0,1 !n1 ,n2

k1 ,k25@~n211!m12~m211!n1#dm̄1n̄
k̄ . ~16!

It is obvious that the above representation is the adjoint representation of thew` algebra. It acts on

an infinite-dimensional vectorf k̄ as

~vm̄f! k̄52 f m̄n̄
k̄ f n̄52@~k212!m12~m211!k1#f k̄2m̄. ~17!

Using the KFF representations~12!, ~13!, we have the KFF representation of thew symmetry,

~vm̄! n̄
k̄5$~m211!@~a11!m11b2k1#2m1@~a11!m22k2#%dm̄1n̄

k̄ . ~18!

One can show that the above representation satisfies the relation

~@vm̄ ,v n̄# !
l̄

k̄
5~vm̄!

h̄

k̄
~v n̄!

l̄

h̄
2~v n̄!

h̄

k̄
~vm̄!

l̄

h̄
5@~n211!m12~m211!n1#~vm̄1n̄!

l̄

k̄
. ~19!

If we take m25n25k250, then the representation~18! gives the KFF representation of th
Virasoro algebra.7 This is the reason that we requireb50 in Eq.~13!. The representation~18! acts
on an infinite-dimensional vector spaceV(a,b) as

~vm̄f! k̄52~vm̄! n̄
k̄f n̄52$~m211!@~a11!m11b2k1#2m1@~a11!m22k2#%f k̄2m̄, ~20!

wheref k̄ is an element ofV(a,b) . We introduce the dual representation of the KFF representa
of the w symmetry that acts on the vector spaceVa,b* dual toVa,b as follows:

~vm̄v! k̄5~vm̄!
k̄

n̄
v n̄5@~m211!~am11b2k1!2m1~am22k2!#v k̄1m̄ , ~21!

where wk̄ is an element ofVa,b* . In terms of the dual representation, we have the follow

contraction betweenf k̄ andwk̄ :

f•v5f k̄v k̄ , ~22!

which is invariant under thew transformation. From Eqs.~20! and~21!, it is noted that there is an

isomorphismVa,b* >V212a,2b if v k̄5f2 k̄. We can generalize the KFF representation of thew
symmetry to a (p̄,q̄) tensorT( p̄,q̄) and define the tensor representation by

vm̄t
k̄¯ l̄

ī¯ j̄
52~vm̄! n̄

ī t
k̄¯ l̄

n̄¯ j̄
2¯2~vm̄! n̄

j̄ t
k̄¯ l̄

ī¯n̄
1~vm̄!

k̄

n̄
t
n̄¯ l̄

ī¯ j̄
1¯1~vm̄!

l̄

n̄
t
k̄¯n̄

ī¯ j̄
, ~23!

wheret
k̄¯ l̄

ī¯ j̄
is an infinite-dimensional (p̄,q̄) tensor, and define a tensor module of mixed typeT̂p,q

by allowing each of thep1q indices to transform according to a different~a,b! representation.
For example, we can define a~0,2! tensor of mixed typet̂ n̄k̄ , which transforms as
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~vm̄t̂ ! n̄k̄5@~m211!~am11b2n1!2m1~am22n2!# t̂ n̄1m̄,k̄1@~m211!~a8m11b82k1!

2m1~a8m22k2!# t̂ n̄,k̄1m̄ . ~24!

In terms of these generalizations, we have the invariant tensorsd̂
i j̄ ¯ l̄

k̄
, f̂

i j̄

k̄
andgi j̄ , where

d̂
i j̄ ¯ l̄

k̄
5d

ī 1 j̄ 1¯ l̄

k̄
. ~25!

The indices ī , j̄ ,...,l̄ ,k̄ belong to (a1 ,b1), (a2 ,b2),..., (an ,bn) and (a11a21¯1an ,b1

1b21¯1bn) representations, respectively,

f̂
i j̄

k̄
5~v ī ! j̄

k̄
5$~ i 211!@~a11!i 11b2k1#2 i 1@~a11!i 21b2k2#%d ī 1 j̄

k̄
. ~26!

The indices ī , j̄ ,k̄ belong to ~a51, b50!, ~a,b! and ~a,b! representations, respectively. Th
metricgi j̄ 5d

ī 1 j̄

0
is an invariant tensor of the~a52 1

2, b50! representation. The invariant tenso

d̂
i j̄

k̄
, f̂

i j̄

k̄
can be used to define the vector products. The invariant metricgi j̄ allow us to define the

index raising of the tensors and the scalar product. For example, with the invariant metric, o
obtain the index raising of the tensor,

f k̄5gk̄l̄ f
l̄ 5d

k̄1 l̄

0
f l̄ 5f2 k̄, ~27!

and the scalar product

f k̄f
k̄5gk̄l̄ f

l̄ f k̄5(
k̄

f2 k̄f k̄[f2 k̄f k̄. ~28!

With the invariant tensord̂
i j̄ ¯ l̄

k̄
, one can define thenth power (fn) k̄ by

~fn! k̄5d̂
k̄1k̄2¯ k̄n

k̄
f k̄1f k̄2

¯f k̄n5 (
k̄11¯1 k̄n5 k̄

f k̄1f k̄2
¯f k̄n. ~29!

These invariant tensors are very useful in our gauge theory. The concepts of hermiticity a
unitarity of the representation take the important roles in the gauge theory. We call a tenso

t
k̄¯ l̄

ī¯ j̄
Hermitian8 if

~ t
k̄¯ l̄

ī¯ j̄
!* 5t

2 k̄¯2 l̄

2 ī¯2 j̄
. ~30!

As the case of the Virasoro symmetry,8 we can introduce the following complex conjugate KF
representations of the ‘‘Virasoro-like’’ algebras:

~ L̄m1 ,m2

1,0 !n1 ,n2

k1 ,k25@~a* 11!m12b* 1k1#d n̄2m̄
k̄ , ~31!

and

~ L̄m1 ,m2

0,1 !n1 ,n2

k1 ,k25@~a* 11!m21k2#d n̄2m̄
k̄ . ~32!

With the above complex conjugate representations, we have the conjugate KFF represent
w symmetry,
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~ v̄m̄! n̄
k̄5~m211!~ L̄m1 ,m2

1,0 !n1 ,n2

k1 ,k22m1~ L̄m1 ,m2

0,1 !n1 ,n2

k1 ,k2

5$~m211!@~a* 11!m12b* 1k1#2m1@~a* 11!m21k2#%d n̄2m̄
k̄ , ~33!

which acts on an infinite-dimensional complex conjugate vector spaceV̄a,b as

vm̄~f k̄!* 52~ v̄m̄! n̄
k̄~f n̄!*

52$~m211!@~a* 11!m12b* 1k1#2m1@~a* 11!m21k2#%~f k̄1m̄!* , ~34!

where (f k̄)* is an element ofV̄a,b .
Let us consider the following Hermitian product~w,f!, defined by

~w,f!5~w k̄!* f k̄; ~35!

then we have

vm̄~w,f!52~ v̄m̄! n̄
k̄~w n̄!* f k̄2~w k̄!* ~vm̄! n̄

k̄f n̄

52@~a1a* 11!m11~m211!~b2b* !#~w k̄!* f k̄2m̄. ~36!

So the Hermitian product becomes invariant underw symmetry if and only if

a1a* 1150, ~37!

and

b2b* 50. ~38!

We call an~a,b! representation unitary if the above condition is satisfied. Clearly, the~a52 1
2,

b50! representation is unitary. This representation is important in the following gauge the

III. THE GAUGE THEORY OF W SYMMETRY

Let Am
k̄ be the Hermitian gauge potential that forms an adjoint representation, the matte

f k̄ is a Hermitian scalar multiplet that forms a~a52 1
2, b50! representation, and the infinites

mal gauge parameter ofw symmetry forms an adjoint representation. Under the infinitesi
gauge transformation, we require

dAm
k̄ 52

1

g
@]mu k̄1 ig~Am3u! k̄#52

1

g
$]mu k̄1 ig@m1~k212!2k1~m211!#Am

m̄u k̄2m̄%, ~39!

df k̄5 i ~u3f! k̄5 i f̂ m̄n̄
k̄ um̄f n̄5 i @~m211!~ 1

2m12k1!2m1~ 1
2m22k2!#um̄f k̄2m̄. ~40!

The field strengthFmn
k̄ and the covariant derivativeDm are, respectively, defined by

Fmn
k̄ 5]mAn

k̄2]nAm
k̄ 1 ig~Am3An! k̄5]mAn

k̄2]nAm
k̄ 1 ig@m1~k212!2k1~m211!#Am

m̄An
k̄2m̄ ,

~41!

Dmf k̄5]mf k̄1 ig~Am3f! k̄5]mf k̄1 ig@~m211!~ 1
2m12k1!2m1~ 1

2m22k2!#Am
m̄f k̄2m̄,

~42!

whereg is the coupling constant. For the Hermitian fieldsDmf k̄ andFmn
k̄ , we have
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~Dmf k̄!* 5Dmf2 k̄, ~43!

and

~Fmn
k̄ !* 5Fmn

2 k̄ , ~44!

so here the coupling constantg is required to be real. Under the gauge transformations~39!, ~40!,
we have

dFmn
k̄ 5 i @m1~k212!2k1~m211!#um̄Fmn

k̄2m̄ , ~45!

and

d~Dmf k̄!5 i @~m211!~ 1
2m12k1!2m1~ 1

2m22k2!#um̄~Dmf k̄2m̄!. ~46!

Clearly Fmn
k̄ and Dmf k̄ transform covariantly as an adjoint representation and a~a521/2, b

50! representation, respectively. With the above definitions, we can construct the follo
Lagrangian:

L52
1

4
k6d

i j̄

k̄
~f6! k̄Fmn

ī Fmn
j̄ 1

1

2
~Dmf k̄!~Dmf k̄!1

1

2
m2~f k̄!f

k̄2
l

4
~f k̄f

k̄!2

52
1

4
k6~f6!2 ī 2 j̄ Fmn

ī Fmn
j̄ 1

1

2
~Dmf k̄!* ~Dmf k̄!1

1

2
m2~f k̄!* f k̄2

l

4
~f k̄* f k̄!2, ~47!

where the scale parameterk is to keepkf k̄ dimensionless. One can easily show that this Lagra
ian is invariant under the gauge transformations~39!, ~40!. The form of this Lagrangian is the
same as the case of the gauge theory of the Virasoro symmetry.7 If we take the conformal spin
indicesi 25 j 25k250, then the Lagrangian~47! comes back to the case of the Virasoro symme

IV. SUMMARY

It is not as the general method4 of the gauge theory ofw symmetry. In this paper, the gaug
theory of w symmetry is constructed in terms of its representations. It is known that the g
theory of the Virasoro symmetry from its representation7 can be described as an effective fie
theory of the string theory. As a higher-spin extension of the Virasoro algebra, thew` algebra
possesses more symmetry. This gauge theory will be useful in further explorations for the
theory.
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Method of handling the divergences in the radiation
theory of sources that move faster than their waves

H. Ardavan
Institute of Astronomy, University of Cambridge, Madingley Road,
Cambridge CB3 0HA, England

~Received 16 April 1999; accepted for publication 19 June 1999!

The nonintegrable singularities that arise when the retarded potentials associated
with supersonically or superluminally moving sources are differentiated are closely
related to those encountered in the context of the Cauchy problem for hyperbolic
equations over odd-dimensional space-times. The purpose of this paper is to point
out that the field components are given in these cases by Hadamard’s finite parts of
the resulting divergent integrals, as in the case of the Cauchy problem, and to show
that the procedure familiar from the subluminal regime—which is used by
Hannay—is not applicable when there are source elements that approach the ob-
server with the wave speed and zero acceleration at the retarded time. ©1999
American Institute of Physics.@S0022-2488~99!01809-5#

I. INTRODUCTION

The emission of waves by a moving point source whose speed exceeds the wave s
generally described by a Lienard–Wiechert potential that has extended singularities. These
larities occur on the envelope of the emitted wave fronts and its cusps, where the waves in
constructively and so form caustics. A well-understood example is the emission of acoustic
by a point source that moves along a straight line with a constant supersonic speed. In this
simple caustic forms along a cone issuing from the source, the so-called Mach cone, a
Lienard–Wiechert potential describing the sound amplitude diverges algebraically as this c
approached from inside.

Neither supersonically nor superluminally moving sources can ever be pointlike.1 However,
the retarded potential due to any physically realizable source of this kind consists of the su
sition of the potentials of the moving volume elements that constitute it, so that the Lien
Wiechert potentials in question act as Green’s functions for the calculation of the potenti
viable extended sources.

Thus, the integral representing the superposition of the contributions of the various vo
elements of a supersonically or superluminally moving extended source to its potential
generally entail an integrand with algebraic singularities, singularities that have extended lo
are as a rule integrable. If~in order to calculate the field! this integral representation of th
potential is differentiated with respect to the space-time coordinates of the observer, the
there results a new integral with an integrand that has a higher order singularity and so is no
integrable~see, e.g., Ref. 2!. A question that thus arises, and has been a source of some conf
in the literature,3 is how to handle such nonintegrable singularities.

II. RADIATION INTEGRALS INVOLVING SINGULAR KERNELS AND THEIR
HADAMARD’S FINITE PARTS

Green’s functions with algebraic singularities also arise when the wave equation is s
over a space-time that has an even number of spatial dimensions. For example, the solutio
two-dimensional wave equation

]2G2D /]x21]2G2D /]y22]2G2D /]~ct!2524pd~x2j!d~y2h!d~ t2t!, ~1!
43310022-2488/99/40(9)/4331/6/$15.00 © 1999 American Institute of Physics
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in the absence of boundaries, has the form

G2D52c@c2~ t2t!22R2D
2 #21/2u~ t2t2R2D /c!, ~2!

whereR2D[@(x2j)21(y2h)2#1/2, d is the Dirac delta function andu(x) is unity for x.0 and
zero forx,0 ~see Ref. 4, p. 842!.

The square-root singularity of this Green’s function over the space-time conet2t5R2D /c is
integrable. However, to solve the initial-boundary-value problem for the two-dimensional
equation with Cauchy data that are prescribed on a space-like surface~such ast5const) in the
~x,y,t!-space, one needs to evaluate an integral over this surface whose integrand consist
product of the normal derivative ofG2D ~e.g., ]G2D /]t) with the initial value of the wave
amplitude ~see Ref. 4, p. 893!. The singularity of the kernel of the required integral at t
intersection of the conet2t2R2D /c50 with the space-like surface on which the Cauchy dat
prescribed is consequently like that of (t2t0)23/2 at t2t050 and so is not integrable.

The first systematic discussion of such nonintegrable singularities was given by Hadam
his general treatment of the Cauchy problem for hyperbolic partial differential equations tha
an odd number of independent variables. From his work, and from a modern version of it fea
in the theory of generalized functions, it is well known that the way to handle the noninteg
singularities of the derivatives of the Green’s functions that appear in the solutions to the C
problem is to take the so-called Hadamard finite part of the divergent integrals in question5,6

There is a close analogy between the Lienard–Wiechert potentials for sources that move
than their waves and the Green’s functions for hyperbolic differential equations that gove
propagation of waves in two spatial dimensions. For example, the potential for a point sou
unit strength that moves along a straight line (x5const,y5const) with a supersonic speedu
(.c) is given, at an observation pointP with the space-time coordinates (xP ,yP ,zP ;tP), by

GM52@~ z̃2 z̃P!22~M221!R2D
2 #21/2u@ z̃2 z̃P2~M221!1/2R2D#, ~3!

where z̃ is defined asz2ut and M stands for the Mach numberu/c ~see, e.g., Ref. 7!. The
Lienard–Wiechert potentialGM has precisely the same mathematical structure as the Gre
function G2D of the two-dimensional wave equation~1!.

This analogy stems from the fact that the densityr of a rectilinearly moving supersonic sourc
with a fixed distribution pattern depends onz andt in only the combinationz2ut5 z̃, i.e., is of the
form r(x,y,z,t)5r(x,y,z̃). In the absence of space-time boundaries, this symmetry of the so
(]r/]t52u]r/]z) imposes a corresponding symmetry (]c/]t52u]c/]z) on the potential so
that the wave equation governing the potentialc(x,y,z̃) of such a source,

]2c/]x21]2c/]y22~M221!]2c/] z̃2524pr~x,y,z̃!, ~4!

has only three rather than four independent variables. Thus the functionsG2D andGM are analo-
gous because the differential operators in Eqs.~1! and ~4! can be rendered identical by a me
rescaling of the coordinates.

Unlike some other symmetries~e.g.,]c/]t50) that alter the type of the differential equatio
governing the potential from hyperbolic to elliptic or parabolic at the same time as reducin
number of its independent variables, the symmetry imposed by the rigidity of a moving s
distribution does not affect the type of the equation when the speed of the source exceeds th
speed: forM.1, the coefficient of]2c/] z̃2 in ~4! is negative and so the variablez̃ is time-like.
Thus, the well-known singularity associated with the ray conoid of the two-dimensional
equation8 is mathematically identical to the caustic singularity that occurs on the envelope o
wave fronts emanating from a moving point source in three dimensions.

Inasmuch as the origins of the two types of singularity are mathematically the same, it is
that the techniques for handling the analogous divergences that they cause in the cont
radiation theory and of Cauchy problem should also be the same. The technique used
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context of the Cauchy problem has been known for some time,5 but the applicability of this same
technique to the corresponding problems in radiation theory does not seem to have been
until recently.2

From the standpoint of the theory of generalized functions, there is a well-defined proc
for obtaining the physically relevant values of the divergent integrals that appear when the in
representations of the retarded potential are differentiated, a procedure involving integrat
parts that extracts the so-called Hadamard finite part of the resulting divergent integrals~see, e.g.,
Ref. 6!. Hadamard’s finite part of the convolution of the density of a supersonically or sup
minally moving extended source with the nonintegrable derivative of an associated Lie
Wiechert potential yields the value that we would have obtained if we had first evaluate
original integral representing the retarded potential of the source as an explicit function
spaec-time coordinates of the observer and then differentiated it.

What we have illustrated here with the aid of a simple source motion holds true also whe
motion of the source is neither uniform nor rectilinear. Consider, for instance, an extended
with a rigidly rotating distribution pattern whose outer parts move with linear speeds exce
the wave speed. The density of such a source depends on the azimuthal anglew and the timet in
only the combinationw2vt[ŵ, i.e., has the formr(r ,w,z,t)5r(r ,ŵ,z) where (r ,w,z) are the
cylindrical polar coordinates based on the axis of rotation. The potentialc that arises from the
source in question is likewise subject to the symmetry]c/]t52v]c/]w52v]c/]ŵ and so is
governed by the following reduced version of the wave equation in cylindrical coordinates:

1

r

]

]r S r
]c

]r D1
]2c

]z2 1S 1

r 22
v2

c2 D ]2c

]ŵ2 524pr~r ,ŵ,z!. ~5!

This is an equation of the mixed type. In the domainr .c/v, where the coefficient of]2c/]ŵ2 is
negative and the variableŵ acts as a time-like coordinate, it is a hyperbolic differential equa
in two spatial dimensions.

Just as the spherical wave fronts emanating from a rectilinearly moving supersonic
source form a Mach cone, so the envelope of the wave fronts from a corresponding circ
moving point source~Ref. 2, Figs. 1 and 4! constitutes a caustic that coincides with the ray con
of ~5! in its domain of hyperbolicity~Ref. 9, Sec. 6!. The Lienard–Wiechert potential describin
the amplitudes of these waves is identical to the Green’s functionG0 of ~5! in unbounded space
~Ref. 10, Appendix!. The divergences that arise in the context of the initial-boundary-value p
lem for the above two-dimensional equation, and from the differentiation of its solution

c~xP ,tP!5E r dr dŵ dzr~r ,ŵ,z!G0~r ,r P ,ŵ2ŵP ,z2zP! ~6!

in the radiation theory of rapidly rotating extended sources, once again have the same o
therefore, and should be handled by the same technique.2

III. DERIVATIVES OF THE RETARDED POTENTIAL IN THE CASE OF A RAPIDLY
ROTATING EXTENDED SOURCE

Improper handling of the divergences discussed above has led to erroneous conclusion
analysis of certain radiation problems. Hannay3 bases his analysis of the emission from rapid
rotating extended sources on the following form of the retarded potential

c~xP ,tP!5E r~x,tP2ux2xPu/c!/ux2xPud3x ~7!

and contends that since the only singularity of the integrand in this expression is that at the
x5xP , which is inoffensive, one can differentiate~7! under the integral sign to obtain
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]c

]xP
5E ]

]xP
Fr~x,tP2ux2xPu/c!

ux2xPu Gd3x5E ¹r~x,tP2ux2xPu/2!

ux2xPu
d3x ~8!

@see Ref. 3, Eqs.~1.2!, ~1.5!, and~1.6!#. Having thus ‘‘avoided’’ the singularities that arise whe
the alternative form~6! of the retarded potential is differentiated, Hannay then uses~8! to derive
an upper bound on the intensity of the resulting radiation.

The result claimed by Hannay3 is erroneous because the steps, familiar from the sublum
regime, that are taken in Eq.~8! are not mathematically permissible when the moving source
volume elements that approach the observer with the wave speed and zero acceleration
retarded time. To demonstrate this, here we shall render these steps explicit by taking them
case of a specific source distribution, a source distribution that is bounded and smooth but
motion at speeds exceeding the wave speed.

Let us consider a spherical source with the radiusl whose center moves on a circle of radi
r 0 with the constant angular frequencyv and whose density smoothly reduces from a maxim
r0 at its center to zero at its boundary, e.g., has the form

r~r ,ŵ,z!5H r0 cos2@pX/~2l!# if X<l,

0 otherwise,
~9!

where

X[~z21r 21r 0
222rr 0 cosŵ !1/2

is the distance of a point (r ,ŵ,z)5(r ,w2vt,z) that is stationary in the rotating frame from th
center (r 5r 0 , ŵ50, z50) of the sphere. The circle in broken lines in Fig. 1 shows the inter
tion, with the planez50, of the boundary of the above source in the (r ,ŵ,z)-space forr 0

5 3
2c/v andl5 1

2c/v. ~The axes in this figure are marked in units ofc/v and the larger dotted
circles designate the sonic or the light cylinderr 5c/v and the orbitr 5 3

2c/v of the center of the
source, respectively.!

Once the quantitiesux2xPu andd3x in ~7! are expressed in terms of cylindrical coordinat
and the above expression for the source density is inserted in this form of the retarded po
there results an integral over the (r ,w,z)-space for which the domain of integration is automa
cally bounded.11 Not only do we need to replaceŵ in the above expression forr by its retarded
value

ŵ5~w2vt !u t5tP2ux2xPu/c5w2vtP1@~z2zP!21r 21r P
2 2rr P cos~w2wP!#1/2v/c ~10!

when substituting~9! in ~7!, but in addition we need to delineate the domain of integration in~7!,
by mapping the source boundaryX5l from the (r ,ŵ,z)-space onto the (r ,w,z)-space. The image
of the source boundary under the mappingŵ˜w expressed in~10! is a surface whose shape
different for different observers, or at different observation times, and bears no direct relatio
with the sphereX5l that appears in~9!.

To specify the boundary of the domain of integration in~7!, we need to solve the transcen
dental equation~10! for w at every point (r ,ŵ,z) of the sphereX5l. In the case of the sourc

depicted in Fig. 1, and of an observer that is located at (r P ,wP ,zP)5( 5
2c/v,0,0) at the observa

tion time tP5(2p2arccos2
51A21/2)v21, the intersection of this domain of integration with th

planez50 has the shape shown by the solid curve in Fig. 1.
The boundary of the irregular volume occupied by the source in the (r ,w,z)-space intersects

a circle r 5const, z5const, ~with 1,rv/c,2 and 2 1
2,zv/c, 1

2) at either two, four, or six
values ofw. If we let (w l

(n) ,wu
(n)), with n51,2,..., denote the various intervals inw that are

occupied by the retarded distribution of the source at any given (r ,z;r P ,wP ,zP ,tP), then the
volume integral in~7! may be written as a triple integral over the variablesw, z, and r, respec-
tively, in which the functionsw l

(n)(r ,z;r P ,wP ,zP ,tP) andwu
(n)(r ,z;r P ,wP ,zP ,tP) constitute the
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various limits of integration with respect tow. Differentiation of the integral in question entails th
differentiation of these limits of integration, limits that are given by the solutionsw of ~10! for a
point (r ,ŵ,z) on the boundary of the source distribution.

Differentiating ~10! with respect toxP while holding (r ,ŵ,z) and the observation timeŵP

constant, we find that the gradient of any of thew l
(n) or wu

(n) is given by an expression

¹Pw5r P
21êwP

2~v/c!$@r P2r cos~w2wP!#êr P
1~zP2z!êzP

%

3$@~z2zP!21r 21r P
2 2rr P cos~w2wP!#1/22rr Pv sin~wP2w!/c%21, ~11!

whose denominator both vanishes and has a vanishing derivative at the boundary poin
approach the observer with the wave speed and zero acceleration~see Ref. 2, Appendix B!.

In Eq. ~8!, Hannay3 applies Leibniz’s formula for the differentiation of a definite integr
assuming that there are no contributions from the limits of integration. Leibniz’s formula, o
other hand, is not applicable if there are any points at which the limits of integration ar
differentiable.12 In the case considered here, where the derivatives of the limits of integratio
singular, the gradient of the integral in question does not consist solely of the integral o
gradient of its kernel, as claimed by Hannay.3 There is an additional contribution to the gradie
of the potential: that which arises from the singularities of the gradients of the limits of integr
in ~7! and which comprises the boundary contribution to the Hadamard finite part of the gra
of the integral in~6!.

The singularities of the gradients of the limits of integration in~7! are the images, under th
mappingŵ˜w, of the singularities of the integrand of the gradient of~6!: They both arise from
those source elements that approach the observer with the wave speed and zero accelerati

FIG. 1. The retarded shape of the source boundary in the (r ,w,z)-space~the solid curve! compared to its original shape in
the (r ,ŵ,z)-space~the smallest circle in broken lines!.
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retarded time.2 By overlooking the contribution from the limits of integration in~8!, Hannay3 has
discarded the boundary term in Hadamard’s finite part of the divergent integral that results
the differentiation of the alternative form~6! of the retarded potential.

Note that it makes no difference if we extend the domain of integration in~7! over all (r ,w,z)
by introducing a Heaviside step function that incorporates the vanishing ofr outsideX5l into the
expression forr. Differentiation of such a step function results in a delta function, the gradien
whose argument vanishes—and so itself diverges—algebraicallyat those points of the boundar
that approach the observer with the wave speed and zero acceleration. The product of th
function and the vanishing value ofr on the boundary is neither zero nor infinite; it is a
indeterminatequantity that would have to be evaluated by means of a physically meanin
procedure. Far from ‘‘avoiding’’ the divergence that needs to be handled by Hadamard’s
nique, therefore, the adoption of this form of the retarded potential would merely replac
divergence in question by a closely related indeterminacy.

The contribution from the limits of integration to the right-hand side of~8! is zero, as assume
by Hannay,3 only in the familiar subsonic or subluminal regimes where the derivatives of t
limits are singularity free. In the case of a supersonically or superluminally moving accele
source, this contribution is nonvanishing and has a value that may be calculated by me
Hadamard’s method.2 The upper bound derived by Hannay3 applies only to the contribution to th
derivative of the potential that arises from the derivative of its integrand, i.e., to the contrib
that is retained by Hannay,3 not to the contribution from the limits of integration that is overlook
by him.
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We discuss the existence and uniqueness of nonequilibrium dynamics of infinitely
many particles interacting via superstable pair interactions in one and two dimen-
sions. The interaction is allowed to be of infinite range and singular at the origin.
Under suitable regularity conditions on the interaction potential, we show that if the
potential decreases polynomially as the distance between interacting two particles
increases, then the tempered solution to the system of Hamiltonian equations exists.
Moreover, if the potential satisfies further that either it has a subexponential de-
creasing rate or it is everywhere two-times continuously differentiable, then we
show that the tempered solution is unique. The results extend those of Dobrushin
and Fritz obtained for finite range interactions. ©1999 American Institute of
Physics.@S0022-2488~99!01609-6#

I. INTRODUCTION

Our aim in this paper is to show the existence and uniqueness of nonequilibrium dynam
infinitely many particles interacting via~infinite range! superstable interactions in dimensions o
and two. In this paper we extend the results obtained by Dobrushin and Fritz in Refs. 1–3
the interaction range is assumed to be finite. By suitably modifying and extending the me
given in Refs. 1–3, we remove the finite range assumption. The time evolution will be constr
in an explicitly defined setV̄ of allowed configurations characterized by a logarithmic order
energy fluctuations. The extension of the results for finite range interactions to infinite
interactions must be meaningful in the sense of practical and aesthetic points of view.

This study may be considered as being in the extension of the line of investigation o
dynamics of infinitely many particles that has been studied by various authors.1–10 The main point
in this study would be to show the existence of solutions to the infinite system of Hamilto
equations@see~1.1!# and then to investigate the detailed properties of the solution such a
uniqueness of the solution and the essential self-adjointness of the generator of the ev
semigroup of the dynamics. While various techniques for showing the existence of the sol
have been developed in the papers including the above mentioned ones~see, e.g., Refs. 3 and 8 fo
further references!, the method to show the energy bound of the solutions has not been
developed for general dimensions. Only up to one and two dimensions and for finite
interactions, such an aim has been fulfilled in Refs. 1–3 and 5 for explicitly characterized
conditions. The method of the energy bound has been also used to show the essenti
adjointness of the Liouville operator.3,11

a!Electronic mail: changsoo@math.yonsei.ac.kr
b!Electronic mail: ympark@bubble.yonsei.ac.kr
c!Electronic mail: yoohj@gauss.kyungpook.ac.kr
43370022-2488/99/40(9)/4337/22/$15.00 © 1999 American Institute of Physics

                                                                                                                



lation
energy
s with
finite
ve the
10 and

ions.
stem
ns

n of a

ented
f

o. We

be

with

is

with

there

more,

4338 J. Math. Phys., Vol. 40, No. 9, September 1999 Bahn, Park, and Yoo

                    
In Ref. 8, Siegmund–Schultze has shown that in any dimension, for a given trans
invariant probability measure on the phase space such that the particle density and specific
are finite, there is a class of configurations which carries a full measure such that the solution
initial conditions from that class exist provided that the potential is not singular and has a
interaction range. However, the method of Siegmund–Schultze do not yet permit us to pro
uniqueness of the solution and to control the properties of the solution. See also Refs. 9–
the references in Ref. 8 for earlier works.

We would like to mention the works related to the infinite system of Hamiltonian equat
In Ref. 12, Lang initiated to consider the system of first order differential equations for the sy
with additional white-noise terms.12,13 Recently the system of stochastic differential equatio
related to the particle systems has been investigated using the Dirichlet form approach.14–19

Let us briefly describe the contents of this paper. We are going to consider the motio
countable collection of identical particles of unit mass in thed-dimensional Euclidean spaceRd

with d51,2. Let I be the index set for the particles. Configurations of the system are repres
as infinite sequencesv5(qk , pk)kPI , whereqkPRd andpkPRd are the position and velocity o
the particle labeled bykPI , respectively. Sometimes we will use more informative notationsqk

5qk(v), pk5pk(v). Only locally finite configurations are allowed, i.e., the sequence (qk)kPI of
positions can not have limit points at all, but some additional restrictions are necessary to
assume that our particles interact by a symmetric pair potentialU:Rd

˜(2`,`# and U(x)5U
(2x). The potentialU is allowed to be of an infinite range. Let gradU denote the gradient ofU.
The equations of motion read as

dpk

dt
52(

j Þk
gradU~qk2qj !,

dqk

dt
5pk , kPI . ~1.1!

We will impose to the potential that it is superstable in the sense of Ruelle.20,21 We allow thatU
is possibly singular at the origin and is of an infinite range. See Sec. II for the details.

The spaceV̄ of allowed configurations on which the evolution of the dynamics shall
constructed is defined in the following way. Let

g~u!ª~11 log~11u!!1/d, u>0, ~1.2!

and letH(v,m,s) denote the total energy plus a multiple of particle numbers in the sphere
centermPRd and radiuss.0, i.e.,

H~v,m,s!ª
1

2 (
uqk2mu<s

F upku21A1 (
j Þk;uqj 2mu<s

U~qk2qj !G , ~1.3!

whereA>0 is a constant appearing in the superstable condition@see~2.1!# and makesH(v,m,s)
non-negative numbers. Let us define

H̄~v!ªsup
m

sup
s>g~ umu!

s2dH~v,m,s!. ~1.4!

H̄(v) is called the logarithmic fluctuation of energy ofv.3 The allowed configuration space
defined by

V̄ª$v:v is locally finite andH̄~v!,`%. ~1.5!

It turns out thatV̄ carries a large class of probability measures including Gibbs random fields
interactionU.1,11,16

We will show that in dimensions one and two, under proper conditions on the potential,
exists a tempered solution~see Sec. II for the definition! v t to ~1.1! with any initial configuration
vPV̄. This solution can be obtained as the limit of solutions to finite subsystems. Further
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the tempered solution is unique when the potentialU is either everywhere two-times continuous
differentiable or subexponentially decreasing~see Theorem 2.2! when it is singular at the origin
The main idea used in this paper is to decompose the potentialU into two parts:

U~x!5U (1)~x!1U (2)~x!,

whereU (1) is of finite range andU (2) is a smooth potential which decreases polynomially. S
~2.2! and~2.6!. For U (1), we use the method developed in Ref. 3 with suitable modifications
for U (2), we utilize the decay properties ofU (2) stated in~2.6!.

Employing the method developed in Sec. VI and using an appropriate modification o
method in Sec. 5 of Ref. 3, it may be possible to show the~anti! self-adjointness of the corre
sponding Liouville operator.3,11 However we do not pursue the proof here and leave it to furt
study.

We organize this paper as follows. In Sec. II, we give necessary notations, impose con
to the potential, and give main results of this paper. In Sec. III, we discuss the cutoff of
energy. In Sec. IV, we present thea priori bound which is a core in proving the results of th
paper. We prove the existence and the uniqueness of the tempered solution in Sec. V and S
respectively.

II. NOTATIONS AND MAIN RESULTS

In this section we give conditions to the interaction and state our main results. As men
in the Introduction, we will consider a symmetric pair potentialU: Rd

˜(2`,`#, d51,2, allow-
ing the possibility of being of an infinite range and of singularity at the origin. We need, how
some regularity conditions on the potential in order to show the existence and uniqueness
solutions to~1.1!. First, we need superstability of the interaction to control the number of parti
just as in equilibrium theory.20,21 There existA>0 andB.0 such that for any finite collection
q1 ,q2 , . . . ,qn of points ofRd,

(
k51

n

(
j Þk

U~qk2qj !>2An1B (
i PZd

ni
2 , ~2.1!

whereZd is the d-dimensional integer lattice and for each sitei PZd, ni denotes the number o
particles within the unit box with centeri. This condition can be verified under natural assum
tions, e.g., thatU is not integrable near zero and integrable outside the origin.21 We assume tha
U(x) is continuously differentiable outside the origin and suppose thatU is decomposed into two
parts of singular and analytic potentials;

U~x!5U (1)~x!1U (2)~x!. ~2.2!

Furthermore, we assume thatU (1)>0 for all x and there exists a positive numberr such that

U (1)~x!50, if uxu>r . ~2.3!

It is important that singularity ofU can not be too strong. Sometimes the velocity depends on
strength of the interaction and this velocity can become arbitrarily large in the extreme case
as in Ref. 3, we assume that there exist positive constantsa andb such that

uxu ugradU (1)~x!u<a1b U(1)~x!. ~2.4!

From a mathematical point of view,~2.4! means that the singularity can not be stronger than
of uxu2b. Also we need local Lipschitz condition. LetL.1 and suppose that

ugradU (1)~x!2gradU (1)~y!u<L@L1U (1)~x!1U (1)~y!#c ux2yu ~2.5!
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holds for allx,yÞ0 with some constantc.1. ~2.5! means that the singularity can not be too we
logarithmic singularities are excluded. Finally we assume that the analytic potentialU (2)(x) is
everywhere two times continuously differentiable and decreases polynomially: There exist
creasing functionc:R1

˜R1 and constantsg.2d13 and 0,M such that

c~u!<M ~11u!2g, u>0,

and

uU (2)~x!u1ugradU (2)~x!u1 (
l ,k51

d U ]2

]x( l ) ]x(k)
U (2)~x!U<c~ uxu!. ~2.6!

Notice thatU (2)(x)>2M , and henceU(x)>2M . We refer to Ref. 3 for the detailed accountin
for the conditions on the potential.

We recall the notion of the logarithmic energy fluctuationH̄(v) of a given configurationv
and the possible configuration space given in~1.4!–~1.5!. The configuration spaceV̄ is equipped
with the product topology and with an associated Borel structure.3 If v t

(n) is a sequence o
trajectories inV̄, then convergence ofv t

(n) means the uniform convergence on compact interv
of time of each of the componentsqk(v t

(n)) andpk(v t
(n)). This convergence need not be unifor

in kPI . A continuous trajectoryv t :R˜V̄ is called atemperedsolution to ~1.1! with initial
configurationvPV̄ if v05v, H̄(v t) is bounded in bounded intervals of time, and the com
nentsqk(t)5qk(v t), pk(t)5pk(v t) are continuously differentiable and satisfy~1.1! for all kPI
and tPR. See Ref. 3 for the details.

As usual in the theory of infinite systems, solutions to~1.1! are constructed as limits o
solutions to finite subsystems of~1.1!. The passage to the infinite system is based on ana priori
bound expressing a local version of the law of energy conservation. Just as in Refs. 1–3,
flow will be controlled by means of a partial differential inequality formulated in terms of a sp
cutoff of total energy. Let us mention that thea priori bound can be obtained from this inequali
only in dimensions one and two.

Our first main result concerns the existence of tempered solutions to~1.1!.
Theorem 2.1:Suppose that the hypotheses on the potential given in (2.1)–(2.6) are satisfied.

Then, for anyvPV̄ there exists at least a tempered solution to (1.1) with initial configurationv.
The proof of the above theorem will be given in Sec. V. Next, we discuss the uniquene

the solution. When the potential is singular at the origin, the method developed in this
demands that the decreasing rate of the potential must be stronger than that given in~2.6!, at least
it must be of sub-exponential, in order that the tempered solution to~1.1! is unique. Recall the
constantc.1 appearing in~2.5! for the Lipschitz condition of the potential.

Theorem 2.2:Suppose that the conditions (2.1)–(2.5) for the potential hold. Suppose furthe
that there exists a constante0.0 such that the functionc in the right hand side of (2.6) satisfie
c(u)<exp@2(logu)c1e0# for large values of u.0. Then the tempered solution to (1.1) exis
uniquely.

When the potential is not singular at the origin, the polynomial decreasing rate is enou
insure the uniqueness.

Theorem 2.3:Suppose that the potential U(x) satisfies (2.1) and everywhere two-times co
tinuously differentiable with a decreasing rate given in~2.6! @U (2)(x) being replaced by U(x)].
Then the tempered solution to~1.1! exists uniquely.

The proofs of Theorem 2.2 and Theorem 2.3 will be given in Sec. VI.

III. CUTOFF OF TOTAL ENERGY

In this section, we introduce a smooth version of the energy functionsH(v,m,s) defined in
~1.3!. In Ref. 3, exponentially decreasing functions have been used as a smooth version
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indicator functions. In order to deal with polynomially decreasing interaction potentials, we
use polynomially decreasing functions which satisfy all of the desired properties~Lemma 3.1!.

Let 0,l,1. We will choosel sufficiently small. Choosew:R1
˜(0,1#, continuously dif-

ferentiable such that forp.d11,

~i! w(u)5(11l u)2p, u>2;
~ii ! w is concave foru<2;
~iii ! w(u)5w(2)2 1

2w8(2)5(1/112l)p(11 (lp/2(112l)), for u<1.

Notice thatw(u)<(11lu)2p and 0<2w8(u)<pl(11lu)2(p11).
Define

f ~x,s!ªE
Rd

wS ux2yu
s D S 1

11luyu D
p11

dy, ~3.1!

wheres.0. The definition~3.1! and the following lemma work well forp.d but we need the
conditionp.d11 for a later use~Lemma 3.3!. In the proof of thea priori bound,f (x2m,s) will
be used as a smooth version of the indicator function of thed-dimensional ball with centerm
PRd and radiuss. From now on we assume thats>2.

Lemma 3.1: There exist positive constants c1 ,c̄1 , and c2 depending only onl and p such that
the following properties hold:

~a! f (x2m,s)<c1(11lux2mu/s)2p and f (x,s)> c̄1(11uxu)2p for all s.
~b! f (x2m,s)>c2.0, if ux2mu<s.
~c! f (x,s)<(11lux2yu)p11 f (y,s).
~d! Denote byf 8 the derivative off w.r.t. s. Then f 8(x,s)<(11lux2yu)p11f 8(y,s).
~e! ugrad f(x,s) u<f8(x,s).
~f! g(uxu) ugradf (x2m,s)u<4g(umu1s) f 8(x2m,s).
Proof : ~a! We may assumem50. Notice that

S 11
luxu
s D p

f ~x,s!<E S s1luxu
s1lux2yu D

p S 1

11luyu D
p11

dy.

Using the inequalityuxu<ux2yu1uyu, one can check that the right hand side of the inequalit
finite uniformly in x ands. This implies the first bound.

To obtain second bound, notice thatf (x,s)> f (x,2). Sincew is concave foru<2, there exist
positive numbersc.0 andc̄1 such that the bound

~11uxu!pf ~x,2!>c ~11uxu!pE S 1

11l ~ ux2yu/2! D
pS 1

11luyu D
p11

dy

> c̄1.0

holds.
~b! Supposeuxu<s. Then there exists a constantc.0 such that

f ~x,s!>c E
ux2yu<s

S 1

11luyu D
p11

dy

>cE
Bs(0)ùBs(x)

S 1

11luyu D
p11

dy,

>cE
D
S 1

11luyu D
p11

dy5:c2.0,
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whereD5B2(0)ùB2(z1) andz152x/uxu.
~c! The bound follows from the following relations:

f ~x,s!5E
Rd

wS uzu
s D S 1

11lux2zu D
p11

dz

and

11luy2zu
11lux2zu

<11lux2yu.

~d! Since

f 8~x,s!52E w8S ux2yu
s D ux2yu

s2 S 1

11luyu D
p11

dy,

the result follows by the method same as that used in~c!.
~e! This follows from a direct computation.
~f! We first show that

uxu ugradf ~x,s!u<4s f 8~x,s!. ~3.2!

In view of the fact ~e!, we may assume thatuxu>4s. Let D15$yPRd:uyu<ux2yu% and D2

5Rd\D1 . Thenuyu> uxu/2 if yPD2 and2w8(u)< pl/(11lu)p11 .
We assert that foryPD1 ,

2w8S uyu
s D S 1

11lux2yu D
p11

<2w8S ux2yu
s D S 1

11luyu D
p11

. ~3.3!

Notice thatuy2xu>2s for uyu<ux2yu. One needs to show that foryPD1 ,

S 1

11 luyu/s D S 1

11lux2yu D<S 1

11 lux2yu/s D S 1

11luyu D ,

which is equivalent to

s1lux2yu
s1luyu

<
11lux2yu

11luyu
.

Since (s1lux2yu)/(s1luyu) is monotonic decreasing w.r.t.s if uyu<ux2yu, this proves~3.3!.
Now ~3.2! follows from the method used in Ref. 3, p. 545 and~f! follows from ~3.2! by the method
the same as that given in Ref. 3. h

From now on we will fixp such thatg.2p11.2(d11)11 in the definition ofw in ~3.1!.
The smooth version of total energy corresponding toH(v,m,s) given in ~1.3! is defined as

W~v,m,s!5(
kPI

f ~qk2m,s!Wk~v!, ~3.4!

whereqk5qk(v), pk5pk(v), and

Wk~v!52A1upku21(
j Þk

U~qk2qj !, ~3.5!

whereA is the same as in~2.1!. Define the logarithmic fluctuation ofW by
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W̄~v!5sup
m

sup
s>2g~ umu!

s2dW~v,m,s!. ~3.6!

Recall that for anyi PZd andvPV̄, ni(v) is the number of particles ofv in the unit box
with a center ati. The superstability ofU implies the following:

Lemma 3.2: There exists0,l,1 such that

W~v,m,s!>
B

4 (
i PZd

f ~ i 2m,s! ni~v!2

and

]

]s
W~v,m,s!>

B

4 (
i PZd

f 8~ i 2m,s! ni~v!2.

Proof: Let R.0 be a sufficiently large natural number which will be fixed later and write
potentialU(x) as

U~x!ªU (R,1)~x!1U (R,2)~x!, ~3.7!

whereU (R,1)(x)ªU(x)1[0,R] (uxu) andU (R,2)(x)ªU(x)2U (R,1)(x). We write

W~v,m,s!ªW(R,1)~v,m,s!1W(R,2)~v,m,s!, ~3.8!

W(R,1)~v,m,s!ª(
kPI

f ~qk2m,s!F2A1upku21(
j Þk

U (R,1)~qk2qj !G ,
W(R,2)~v,m,s!ª(

kPI
f ~qk2m,s! (

j Þk
U (R,2)~qk2qj !.

It is easy to check that there is a positive constantc3 such that

uW(R,2)~v,m,s!u<c3S (
kPZd

nk~v! f ~k2m,s!D S (
j PZd;uk2 j u>R22

nj~v!~11uk2 j u!2gD .

We use the fact thatnk(v)nj (v)<(1/2)„nk(v)21nj (v)2
…, Lemma 3.1~c!, g.2p11 andp.d

11 to obtain that

uW(R,2)~v,m,s!u<c3F (
j PZd:u j u>R22

~11u j u!(2g1p11) GF (
kPZd

f ~k2m,s!nk~v!2G
<

B

4 (
kPZd

f ~k2m,s!nk~v!2, ~3.9!

where we have chosenR large enough.
On the other hand, by a similar method used above, it is not hard to see that ifR is sufficiently

large, thenU (R,1)(x) is also superstable and satisfies that for any finite collectionq1,...,qn of
points inRd,

(
k51

n

(
j Þk

U (R,1)~qk2qj !>2A (
kPZd

nk1
3

4
B (

kPZd
nk

2 , ~3.10!

whereA>0 andB.0 are the same constants that appeared in~2.1!.
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In order to controlW(R,1), we modify the method used in the proof of Lemma 3.1 of Ref.
Introduce

Luª$xPRd:u( i )<x( i ),u( i )1mR, 1< i<d%,

wherex( i ) andu( i ) are the coordinates ofx,uPRd, andm is a large natural number. LetP denote
the set of pairs@k, j # such thatuqk2qj u<R and let Pu be the set of@k, j #PP such thatk, j
PI u , whereI u is the set of particles inLu . PutZu5ZdùLu . If ru denotes the minimum off k

5 f (qk2m,s) for kPI u , andlmRAd,e, i.e., the diameter ofLu is less thane/l, then using
Lemma 3.1~c! andU (R,1)(x)>2M , we obtain for each@k, j #PPu ,

~ f k1 f j !U
(R,1)~qk2qj !52ruU (R,1)~qk2qj !1~ f k1 f j22ru!U (R,1)~qk2qj !

>2ruU (R,1)~qk2qj !22Mru„~11e!(p11)21…,

and so it follows from the above bound,~3.10! and Lemma 3.1~c! that

(
[k, j ] PPu

~ f k1 f j !U
(R,1)~qk2qj !>2A (

kPZu

runk1
3

4
B (

kPZu

runk
2

2S 2M „~11e!(p11)21… (
[k, j ] PPu

ruD
>2A (

kPZu

runk1S 3

4
B~11e!2(p11) (

kPZu

f ~k2m,s!nk
2D

2S M „~11e!(p11)21… (
[k, j ] PPu

~ f k1 f j ! D .

Now let zPL0ùR Zd be given. Then$Lu :uPz1RmZd% is a partition ofRd. Let Qz be the
union of all Pu such thatuPz1RmZd. By the above estimate andU (R,1)(x)>2M , we see that

W(R,1)~v,m.s!>S 3

4
B~11e!2(p11) (

kPZd
f ~k2m,s!nk

2D 2M (
[k, j ] PP\Qz

~ f k1 f j !

2S M „~11e!(p11)21… (
[k, j ] PQz

~ f k1 f j ! D
>S 3

4
B~11e!2(p11) (

kPZd
f ~k2m,s!nk

2D
2M (

[k, j ] PP\Qz

~ f k1 f j !2S M „~11e!(p11)21… (
[k, j ] PP

~ f k1 f j ! D . ~3.11!

We notice that

(
[k, j ] PP

~ f k1 f j !<c4 (
kPZd

(
j PZd;uk2 j u<R12

nk nj f ~k2m,s!.

Since f (k2m,s)< f ( j 2m,s) (11l(R12))(p11) if uk2 j u<R12, by Lemma 3.1~c!, and the
number ofj such thatuk2 j u<R12 has an order of (R12)d, we use the Schwarz inequality t
obtain
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(
[k, j ] PP

~ f k1 f j !<c5 ~31R!p111d (
kPZd

f ~k2m,s! nk~v!2. ~3.12!

Hence, inserting~3.12! into ~3.11!, we have

W(R,1)~v,m.s!>S 3

4
B~11e!2(p11)2M ~~11e!(p11)21! c5~31R!p111dD (

kPZd
f ~k2m,s!nk

2

2M (
[k, j ] PP\Qz

~ f k1 f j !. ~3.13!

We are going to sum both sides of the inequality~3.13! overzPL0ùRZd. The term in the left
hand side and the first term in the right hand side of~3.13! are independent ofz. Thus we consider
the last term in the right hand side of~3.13!. Given @k, j #PP, the number ofzPL0ùRZd such
that @k, j #PQz is larger than (m22)d, thus the number ofz with @k, j #¹Qz is less thanmd

2(m22)d<2 dm(d21). Consequently, summing both sides of~3.13! overzPL0ùR Zd we have

md W(R,1)~v,m.s!>FmdS 3

4
B~11e!2(p11)2M „~11e!(p11)21… c5~31R!p111dD

3 (
kPZd

f ~k2m,s!nk
2G2FM2 dm(d21) (

[k, j ] PP
~ f k1 f j !G . ~3.14!

Therefore, inserting~3.12! into ~3.14! and dividing both sides of~3.14! by md, we get

W(R,1)~v,m,s!>C~R,e,m! (
kPZd

f ~k2m,s!nk~v!2, ~3.15!

where

C~R,e,m!5S 3

4
B~11e!2(p11)2M „~11e!(p11)21… c5~31R!p111dD

2c5

M2d

m
~31R!(p111d).

Now we choose and fix a sufficiently largeR so that~3.9! and ~3.10! hold. Then fixe.0 to
be sufficiently small and fixm sufficiently large so that

C~R,e,m!> 1
2 B. ~3.16!

Finally we take and fix 0,l,1 so small thatlmRAd,e. By ~3.8!–~3.9!, ~3.15!–~3.16!, the first
statement in the Lemma follows directly. Using Lemma 3.1~d! instead of Lemma 3.1~c!, we
obtain the second inequality in the same way. h

In the rest of this paperl.0 will be fixed such that Lemma 3.2 holds. Finally, let us rema
that H andW are equivalent in the following sense.

Lemma 3.3: There exist positive constants M1 and M2 such that

M1H̄~v!<W̄~v!<M2H̄~v!,

for all vPV̄.
Proof: To prove the first part it is enough to show that
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H~v,m,s!<c W~v,m,s!, ~3.17!

for some constantc.0. By ~2.6!, U(qk2qj )>2M (11uqk2qj u)2g for all k, j . It follows from
Lemma 3.1~b! that

W~v,m,s!>c2H~v,m,s!2M(
k

(
j Þk

f ~qk2m,s!~11uqk2qj u!2g.

By a simple computation and Lemma 3.2, we see that

(
k

(
j Þk

f ~qk2m,s!~11uqk2qj u!2g<c6 (
kPZd

f ~k2m,s!nk~v!2

<c68 W~v,m,s!.

Thus ~3.17! follows from the above bounds.
Let us consider the second inequality. By the superstability of potential, one has that

(
u j 2mu<s

nj~v!2<
2

B
H~v,m,s11!. ~3.18!

We use the decompositionU(x)5U (1)(x)1U (2)(x) in ~2.2!, so thatU (1)(x)>0 and U (1)(x)
50 if uxu>r , anduU (2)(x)u<M (11uxu)2g. We write

W~v,m,s!5(
k

f ~qk2m,s!S 2A1upku21(
j Þk

U (1)~qk2qj ! D
1(

k
f ~qk2m,s!(

j Þk
U (2)~qk2qj !

[W11W2 .

Using Lemma 3.1~a! and ~c!, and~3.18!, we have that

uW2u5U(
k

f ~qk2m,s!(
j Þk

U (2)~qk2qj !U
<c7 (

k, j PZd;kÞ j

f ~k2m,s! nk~v! nj~v! ~11uk2 j u)2g<c78 (
kPZd

f ~k2m,s! nk~v!2

< c̃(
n51

`

n2p (
kPZd;uk2mu<ns

nk~v!2< c̃1(
n51

`

n2pH~v,m,ns11!. ~3.19!

On the other hand, sinceU (1)(qk2qj )>0 and equals 0 foruqk2qj u>r , and sincef (qk

2m,s)< f (qj2m,s)(11luqk2qj u)(p11), we use Lemma 3.1~a! to see that

W1<c8(
n51

`

n2pS (
uqk2mu<ns

S A1upku21 (
uqj 2mu<ns

U (1)~qk2qj ! D D .

By adding and subtractingU (2)(qk2qj ) to the last summand, we get that

W1<c8(
n51

`

n2pS H~v,m,ns!1 (
uqk2mu<ns,uqj 2mu<ns

uU (2)~qk2qj !u D . ~3.20!
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Observe that

(
uqk2mu<ns,uqj 2mu<ns

uU (2)~qk2qj !u<c9 (
k, j PZd;uk2mu<ns11,u j 2mu<ns11

nk~v! nj~v!~11uk2 j u!2g

<c98 (
uk2mu<ns11

nk~v!2<c99 H~v,m,ns12!. ~3.21!

It follows from ~3.19!–~3.21! that

W~v,m,s!<c10(
n51

`

n2p H~v,m,ns12!<c108 sdS (
n51

`

n2(p2d)D H̄~v!. ~3.22!

Dividing both sides of~3.22! by sd and using the fact thatp2d.1, we get the desired result.h

IV. A PRIORI BOUND

Recall that a continuous trajectoryv t :R˜V̄ is called a tempered solution to~1.1! with
initial configurationv if v05v and the componentsqk(t)5qk(wt), pk(t)5pk(wt) are continu-
ously differentiable and satisfy~1.1! for all kPI and tPR. We assume the dimensiond<2. The
following is a local version of the law of energy conservation.

Proposition 4.1: There exists a constant K.0 such that along any tempered solutionv t to
(1.1) we have

]

]t
W~v t ,m,s!<K g~ umu1s!@W̄~v t!#

1/2
]

]s
W~v t ,m,s!,

for all t PR, mPRd, and s>2.
Proof: In order to prove the proposition, we modify and extend the method used in the

of Proposition 4.1 of Ref. 3. Recall the decompositionU(x)5U (1)(x)1U (2)(x) in ~2.2! and the
inequality ~2.4!. A direct computation gives

]W

]t
5(

kPI
^gradf k ,pk& Wk1

1

2 (
k

(
j Þk;uqk2qj u<r

~ f j2 f k!^gradU (1)~qk2qj !,pk1pj&

1
1

2 (
k

(
j Þk;uqk2qj u>r

~ f j2 f k!^gradU (2)~qk2qj !,pk1pj&[D11D21D3 , ~4.1!

where f k5 f (qk2m,s).
For D1 , it is not hard to see thatuWku<Wk1M ( j Þk(11uqk2qj u)2g. Thus

uD1u<(
kPI

ugradf ku upku FWk1M (
j Þk

~11uqk2qj u!2gG .
Sinceupku<K1 g(uqku) @W̄(v t)#1/2, we use Lemma 3.1~f! to get

uD1u<4K1 g~ umu1s!@W̄~v t!#
1/2(

k
f k8 FWk~v t!1M (

j Þk
~11uqk2qj u!2gG . ~4.2!

By Lemma 3.1~d!, f k8<(11luqk2qj u)p11 f j8 . Thus using Schwarz inequality and the fact th
g.2p, we get

(
kPI

f k8(
j Þk

~11uqk2qj u!2g<K2 (
kPZd

f 8~k2m,s! nk~v!2. ~4.3!
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From ~4.2!–~4.3! and Lemma 3.2, one obtains

uD1u<K3 g~ umu1s! @W̄~v t!#
1/2

]

]s
W~v t ,m,s!. ~4.4!

For D3 , sinceugradU (2)(qk2qj )u<M (11uqk2qj u)2g, we have

uD3u<K4 (
k

(
j Þk

ugradf ~zk j2m,s!u uqk2qj u ~11uqk2qj u!2g
„g~ uqku!1g~ uqj u!…@W̄~v t!#

1/2,

wherezk j is at some point betweenqk andqj . Note that, by Lemma 3.1~f!,

ugradf ~zk j2m,s!u<
1

g~ uzk ju!
4 g~ umu1s! f 8~zk j2m,s!.

We note thatg(x1y)<g(x)g(y) for any x,y>0, and sog(uqku)1g(ugj u)<2g(uzk ju)g(uqk

2qj u). Using Schwarz inequality, Lemma 3.1~d!, and Lemma 3.2, we obtain

uD3u<K5 g~ umu1s!@W̄~v t!#
1/2 (

kPZd
(

j PZd
@nk~v! nj~v! f 8~ l k j2m,s!uk2 j u~11uk2 j u!2g

3„11 log~11uk2 j u!…#

<K58 g~ umu1s!@W̄~v t!#
1/2

3 (
kPZd

f k8 nk
2~v! F (

j PZd
uk2 j u (11uk2 j u)2g

„11 log(11uk2 j u… (11luk2 j u)p11G
<K59 g~ umu1s! @W̄~v t!#

1/2
]

]s
W~v t ,m,s!, ~4.5!

wherel k j is a point betweenk and j. Here we have usedg.2p11 to get the last inequality.
Finally for D2 , we use~2.4! to obtain the following bound:

uD2u<K6(
k

(
j Þk;uqk2qj u<r

ugradf ~zk j2m,s!u „a1b U(1)~qk2qj !… g~ uqku! @W̄~v t!#
1/2

<K68 g~ umu1s!@W̄~v t!#
1/2 (

k
(

j Þk;uqk2qj u<r
f 8~zk j2m,s! „a1b U(1)~qk2qj u!…

g~ uqku!
g~ uzk ju!

.

Notice that if uqk2qj u,r , g(uqku)<K7 g(uzk ju). By Lemma 3.1~d!,

(
k

(
j Þk;uqk2qj u<r

f 8~zk j2m,s!<K8 (
kPZd

(
u j 2ku<r

nk nj f k8<K88 (
kPZd

f k8 nk
2 . ~4.6!

Moreover, a direct computation yields
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(
k

(
j Þk;uqk2qj u<r

f 8~zk j2m,s!U (1)~qk2qj !

<K9(
k

f k8 (
j Þk;uqk2qj u<r

U (1)~qk2qj !

<K9(
k

f k8 F2A1upku21(
j Þk

U~qk2qj !G1K10(
k

f k8 (
j Þk;uqk2qj u<r

~11uqk2qj u!2g

<K9(
k

f k8 Wk~v t!1K11 (
kPZd

f 8~k2m,s! nk
2~v!. ~4.7!

Using ~4.6!–~4.7! and Lemma 3.2, we see that

uD2u<K12 g~ umu1s! @W̄~v t!#
1/2

]

]s
W~v t ,m,s!. ~4.8!

Thus the proof of the proposition follows from~4.4!, ~4.5!, and~4.8!. h

By the method in Proposition 4.2 of Ref. 3 and Lemma 3.3 one can prove the follo
proposition.

Proposition 4.2: For each h.0 and T.0 there exists a finite h5̄h̄(h,T) such that H̄(v0)
<h implies H̄(v t)<h̄ for all utu<T provided thatv t is a tempered solution to (1.1).

As a consequence we have the following localization of particles.
Proposition 4.3: Ifv t is a tempered solution to (1.1) and H(̄v0),h, then there is a constan

c(h,T) such that

uqk~v t1
!2qk~v t2

!u<c~h,T! g„uqk~v t1
!u…,

for all kPI ,ut1u<T,ut2u<T.
Proof: Let us simply writeqk(v t)ªqk(t). By Proposition 4.2, we have

Udqk

dt U<g~ uqku! c1~h,T!. ~4.9!

Define

qmaxªmax
utu<T

uqk~ t !u and qminªmin
utu<T

uqk~ t !u.

It follows from ~4.9! that

uqk~ t2!2qk~ t1!u<2 T c1~h,T! g~qmax!. ~4.10!

Similarly we have also

qmin>qmax22 T c1~h,T! g~qmax!. ~4.11!

~4.11! implies the existence ofc2(h,T) such that

g~qmax!

g~qmin!
<c2~h,T!. ~4.12!

Inserting ~4.12! into ~4.10! and using the fact thatg(u) is an increasing function, we get th
desired result. h
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V. EXISTENCE

We are going to show the existence of tempered solutions to~1.1!. For that purpose we hav
to investigate a kind of uniform boundedness. Let (r n)n51

` be any increasing sequence of positi
numbers such thatr n˜` as n˜`. Let v0PV̄ be any initial configuration. For eachn>1, let
v0

(n) be the configuration obtained by discarding the particles outside ther n-ball with center the
origin. Let v (n)(t)5„qk

(n)(t),pk
(n)(t)… be the~finite system! solution of~1.1! with initial condition

v (n)(0)5v0
(n) . We start with the following lemma saying that the energy densities of cu

sub-systems are uniformly bounded.
Lemma 5.1: Letv0PV̄ and v0

(n) , n>1, be defined as above. There exists a constant c0.0
independent ofv0 such that the bounds

H̄~v0
(n)!<c0 H̄~v0!

hold uniformly in nPN.
Proof: For any mPRd and s.0, let us compareH(v0

(n) ,m,s) to H(v0 ,m,s). For our
purpose it is sufficient to consider the cases where thes-ball Bs(m) touches the boundary o
r n-ball Br n

(0). In that case we see that

H~v0
(n) ,m,s!<H~v0 ,m,s!2(

*
U~qk2ql !, ~5.1!

whereqk5qk(v0), pk5pk(v0), and

(
*

U~qk2ql !5
1

2 S (
kPL1

(
l PL2

U~qk2ql !1 (
k,l PL2

U~qk2ql ! D , ~5.2!

whereL1ªBr n
(0)ùBs(m), L2ªBs(m)\L1 . By the superstability of the potential, we see th

(
k,l PL2

U~qk2ql !>2A (
l PL2ùZd

nl~v0!>2A (
l PBs(m)ùZd

nl~v0!2>2
2A

B
H~v0 ,m,s11!.

~5.3!

Here we have used~3.18! to get the last inequality. On the other hand, by using the decompos
of U5U (1)1U (2) in ~2.2!, let us put

(
kPL1

(
l PL2

U~qk2ql !5 (
kPL1

(
l PL2

U (1)~qk2ql !1 (
kPL1

(
l PL2

U (2)~qk2ql !. ~5.4!

SinceU (1)>0 andU (1)(x)>2M (11uxu)g, it is not hard to see that

(
kPL1

(
l PL2

U~qk2ql !>2c11 (
kPBs(m)ùZd

nk~v0!2>2c118 H~v0 ,m,s11!. ~5.5!

Inserting~5.3! and ~5.5! into ~5.1!, we proved the lemma. h

Whenqk(0) is outside of ther n-ball, defineqk
(n)(t)[qk(0) andpk

(n)(t)[0 for all t>0.
Lemma 5.2: For each kPI , and T.0, the sequence of continuous functions„qk

(n)(•)…n51
` and

„pk
(n)(•)…n51

` on @0,T# are equi-continuous.
Proof: For any2T<t1<t2<T, it follows from Lemma 5.1, Proposition 4.2, and Propositi

4.3 that
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uqk
(n)~ t2!2qk

(n)~ t1!u<E
t1

t2
upk

(n)~s!u ds<c12g„uqk~v0!u… ut22t1u. ~5.6!

On the other hand,

upk
(n)~ t2!2pk

(n)~ t1!u<(
j Þk

E
t1

t2
ugradU„qj

(n)~s!2qk
(n)~s!…u ds.

We again decomposeU5U (1)1U (2) as in ~2.2!. By ~2.5!, we may assume that there existc.1
andL.1 such that

ugradU~x!u<L„L1U (1)~x!…c. ~5.7!

Thus we have

(
lÞk

ugradU~qj
(n)2qk

(n)!u<(
j Þk

L@L1U (1)~qj
(n)2qk

(n)!#c

<LS (
j Þk:uqj

(n)
2qk

(n)u<r

@L1U (1)~qj
(n)2qk

(n)!# D c

<LS (
j ,l PI k,n

@L1U (1)~qj
(n)2ql

(n)!# D c

, ~5.8!

whereI k,n5$ j PI :uqj
(n)2qk

(n)u<r %. By direct computations, we have that

(
j ,l PI k,n

L<L r d (
j PZdùBr (qk

(n))

~11nj
2!<c13Lr dH~v (n),qk

(n) ,r !, ~5.9!

and

(
j ,l PI k,n

U (1)~qj
(n)2ql

(n)!

< (
j :uqj

(n)
2qk

(n)u<r
S upj

(n)u21A1 (
l :uql

(n)
2qk

(n)u<r

U~qj
(n)2ql

(n)!D 1c14 (
j ,l PI k,n

~11uqj
(n)2ql

(n)u!2g

<c148 H~v (n),qk
(n) ,r !. ~5.10!

Inserting~5.9! and ~5.10! into ~5.8! and using Lemma 5.1, Proposition 4.2, and Proposit
4.3, we have that

upk
(n)~ t2!2pk

(n)~ t1!u<c15g~ uqk~v0!u!cd ut22t1u. ~5.11!

Thus the lemma follows from~5.6! and ~5.11!. h

We are now ready to prove the existence of tempered solutions to~1.1!. The method of the
proof is given in Theorem 5.1 of Ref. 3, but we provide it for completeness.

Proof of Theorem 2.1:For eachn51,2, . . . , letv (n)(t) be the tempered solution correspon
ing to the cutoff finite subsystem introduced above. By Lemma 5.2, for any finiteT.0 andk
PI , the sequences (qk

(n)(t))n51
` and„pk

(n)(t)…n51
` are equi-continuous. Thus by the Arzela–Asc

theorem, after a diagonal procedure, we see that there exists a subsequenceni , i 51,2, . . . ,such
that for all kPI , the sequences„qk

(ni )(t)…i 51
` and „pk

(ni )(t)…i 51
` uniformly converge on@0,T# and

define continuous functionsqk(t) andpk(t). SinceT.0 is arbitrary we can extend these functio
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to all tPR. Since H̄ is lower semicontinuous, thea priori bounds remain in force forv t

ª(qk ,pk)kPI . Exploiting the continuity of the r.h.s. of the integral version of~1.1!, we conclude
that v t really satisfies~1.1!. h

VI. UNIQUENESS

In order to prove uniqueness of tempered solution, we use an iteration method which tur
to be much more complicated compared to that used in Sec. 5 of Ref. 3. Consider a se
d(t,m), m50,1,. . . , of non-negative and continuous functions on@0,T# such that the bounds

d~ t,m!<d~0,m!1L1amE
0

t

d~s,m11! ds1L2bm ~6.1!

hold for all tP@0,T# and m with some constantsL1 and L2 ~independent ofm! and positive,
increasing sequences (am)m>0 and (bm)m>0 . If

d~ t,m!<QT exp~mQT!, ~6.2!

for t<T and for allm>0, and, furthermore, if the infinite series

(
m50

`
1

m!
@~am!m bm#a,` ~6.3!

converges for anya>1, then~6.1! can be iterated infinitely many times to obtain

d~ t,0!< (
m50

`

d~0,m!
~L1t !m

m!
~am!m1 (

m50

`
~L1t !m

m!
~am!m ~L2bm!. ~6.4!

Recall the decompositionU(x)5U (1)(x)1U (2)(x) in ~2.2!. U (1)(x) satisfies~2.3!–~2.5! and
U (2)(x) satisfies~2.6!.

Proof of Theorem 2.2:Let f 0 :R˜@0,1# be a continuously differentiable nonincreasing fun
tion such thatf 0(u)51 if u<1, f 0(u)50 if u>2, and2 f 08(u)< f 0(u21) for all uPR. Recall
that the singular part of the interaction has finite ranger ,`. For eachR>r 11 let f R(u)
ª f 0(u/R),uPR. Then f R(u) also satisfies

f R~u!51 if u<R, f R~u!50 if u>2R, and 2 f R8 ~u!< f R~u2R!. ~6.5!

Suppose now thatv t5„qk(t),pk(t)…kPI andv̄ t5„q̄k(t),p̄k(t)…kPI are two tempered solution
of ~1.1! with the same initial conditionv05„qk(0),pk(0)…PV̄. For eachR>r 11, let us define

dR~v t ,v̄ t ,m!ª(
kPI

f R~ uqku22c̃R„11mg~m!…! f R~ uq̄ku22c̃R„11mg~m!…!

3@ uqk2q̄ku11upk2 p̄ku1#, ~6.6!

wherec̃>1 is a sufficiently large fixed number that will be characterized later. We have used
the normuxu1ªux(1)u1•••1ux(d)u for eachx5(x(1),...,x(d))PRd. We would like to show that for
eachR>r 11 the sequence of functionsdR(t,m)ªdR(v t ,v̄ t ,m) satisfies~6.1!–~6.3! with suit-
ably chosen sequences (am)m>0 , (bm)m>0 and constantsL1(R), L2(R). Given R>r 11 andT
.0, the r.h.s. of~6.6! is an absolutely continuous function oftP@0,T#, thus we can differentiate
it almost everywhere. By a notational convenience, let us drop the subscriptR in f R(•); f (•)
[ f R(•) @cf. f (x,s) in ~3.1!# and denote f (t,k,m)ª f (uqku22c̃R„11mg(m)…), f̄ (t,k,m)
ª f (uq̄ku22c̃R„11mg(m)…). By differentiating the right hand side of~6.6!, we have
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d

dt
„dR~ t,m!…5A(1)~ t,m!1A(2)~ t,m!1A(3)~ t,m!1A(4)~ t,m!, ~6.7!

where

A(1)~ t,m!5(
kPI

S d

dt
f ~ t,k,m! D f̄ ~ t,k,m!~ uqk2q̄ku11upk2 p̄ku1!,

A(2)~ t,m!5(
kPI

f ~ t,k,m!S d

dt
f̄ ~ t,k,m! D ~ uqk2q̄ku11upk2 p̄ku1!,

~6.8!

A(3)~ t,m!5(
kPI

f ~ t,k,m! f̄ ~ t,k,m!
d

dt
uqk2q̄ku1 ,

A(4)~ t,m!5(
kPI

f ~ t,k,m! f̄ ~ t,k,m!
d

dt
upk2 p̄ku1 .

Below, we will estimate each term in~6.8!.
Since the bound

upku<H„v,qk ,g~ uqku!…1/2<c16g~ uqku!d/2 ~6.9!

holds for anykPI , we use~6.5! to see that

U d

dt
f ~ t,k,m!U<c17 f ~ t,k,m11! „g~R! g~m!…d/2, ~6.10!

and

U d

dt
f̄ ~ t,k,m!U<c17 f̄ ~ t,k,m11! „g~R! g~m!…d/2. ~6.11!

Obviously,

U d

dtUqk2q̄ku1 u<upk2 p̄ku1 . ~6.12!

Thus, it follows from~6.9!–~6.12! that

uA(1)~ t,m!1A(2)~ t,m!1A(3)~ t,m!u<c18„g~R!g~m!…d/2dR~ t,m11!. ~6.13!

Finally, let us consider the last termA(4)(t,m) in ~6.8!. Observe that

U d

dtUpk2 p̄ku1 u<(
lÞk

u gradU (1)~ql2qk!2gradU (1)~ q̄l2q̄k!u

1(
lÞk

u gradU (2)~ql2qk!2gradU (2)~ q̄l2q̄k!u. ~6.14!

Thus

uA(4)~ t,m!u<Q1~ t,m!1Q2~ t,m!, ~6.15!

where
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Q1~ t,m!5(
kPI

S f ~ t,k,m! f̄ ~ t,k,m!(
lÞk

„u gradU (1)~ql2qk!2gradU (1)~ q̄l2q̄k!u…D , ~6.16!

Q2~ t,m!5(
kPI

S f ~ t,k,m! f̄ ~ t,k,m!(
lÞk

„u gradU (2)~ql2qk!2gradU (2)~ q̄l2q̄k!u…D .

In order to control the first termQ1(t,m), we use~2.5! to see that

(
lÞk

u gradU (1)~ql2qk!2gradU (1)~ q̄l2q̄k!u

<L (
lÞk

@ L1U (1)~ql2qk!1U (1)~ q̄l2q̄k! #c @ uql2q̄l u11uqk2q̄ku1 #. ~6.17!

Following the method similar to that used to obtain~5.11!, one can check that

(
lÞk

@ L1U (1)~ql2qk!1U (1)~ q̄l2q̄k! #c uqk2q̄ku1

<c19 @ H~v t ,qk ,r !1H~v̄ t ,q̄k ,r ! #c uqk2q̄ku1

<c198 @ g~ uqku!cd1g~ uq̄ku!cd # uqk2q̄ku1

<c199 g~R!cd g~m!cd uqk2q̄ku1 . ~6.18!

On the other hand, sinceU (1) has interaction ranger ,R, we see that

(
kPI

f ~ uqku22c̃R„11mg~m!…! f ~ uq̄ku22c̃R„11mg~m!…!

3(
lÞk

@L1U (1)~ql2qk!1U (1)~ q̄l2q̄k!#
c uql2q̄l u1

<(
l PI

f ~ uql u22c̃R„11~m11!g~m11!…! f ~ uq̄l u22c̃R„11~m11!g~m11!…!

3uql2q̄l u1 (
kÞ l

@L1U (1)~ql2qk!1U (1)~ q̄l2q̄k!#
c

<c20 g~R!cd g~m!cd dR~ t,m11!. ~6.19!

Hence by~6.16!–~6.19!, we obtain that

Q1~ t,m!<c21g~R!cdg~m!cddR~ t,m11!. ~6.20!

Let us estimate the second termQ2(t,m) in ~6.16!. We use~2.6! to obtain
                                                                                                                



se

4355J. Math. Phys., Vol. 40, No. 9, September 1999 Nonequilibrium dynamics of infinite particle . . .

                    
(
lÞk

u gradU (2)~ql2qk!2gradU (2)~ q̄l2q̄k! u

<(
lÞk

„c~ uql2qku!1c~ uq̄l2q̄ku!… @ uql2q̄l u11uqk2q̄ku1#

5S (
lÞk

c~ uql2qku!1c~ uq̄l2q̄ku! D uqk2q̄ku11(
lÞk

„c~ uql2qku!1c~ uq̄l2q̄ku!…uql2q̄l u1

[S1~ t,k!1S2~ t,k!. ~6.21!

Thus, by the definition ofQ2(t,m) in ~6.16!, we have

Q2~ t,m!<(
kPI

f ~ t,k,m! f̄ ~ t,k,m!S1~ t,k!1(
kPI

f ~ t,k,m! f̄ ~ t,k,m! S2~ t,k!

[Q2
(1)~ t,m!1Q2

(2)~ t,m!. ~6.22!

In order to controlQ2
(1)(t,m), we notice that by Lemma 3.1~a! and ~2.6!, the bound

c~ uql2qku!<c22 f „ql2qk ,g~ uqku!… ~6.23!

holds. We then use the above bound, the Schwarz inequality, and Lemma 3.2 to see that

(
lÞk

c~ uql2qku!<c23W„v t ,qk ,g~ uqku!…d/2. ~6.24!

Repeating the same calculation after a changev t by v̄ t , we conclude that

S1~ t,k!<c24„g~R! g~m!…d/2 uqk2q̄ku1 ,

and so

Q2
(1)~ t,m!<c24„g~R!g~m!…d/2dR~ t,m11!. ~6.25!

Next, we considerQ2
(2)(t,m). We write

S2~ t,k!5(
lÞk

c~ uql2qku! uql2q̄l u11(
lÞk

c~ uq̄l2q̄ku! uql2q̄l u1[S2,1~ t,k!1S2.2~ t,k!,

~6.26!

and

Q2
(2)~ t,m!5(

kPI
f ~ t,k,m! f̄ ~ t,k,m! S2,1~ t,k!1(

kPI
f ~ t,k,m! f̄ ~ t,k,m! S2,2~ t,k!

[Q2
(2,1)~ t,m!1Q2

(2,2)~ t,m!. ~6.27!

By symmetry, it is enough to control onlyQ2
(2,1)(t,m). For that purpose, let us further decompo

S2,1 as follows:

S2,1~ t,k!5 (
lÞk:uql2qku<R

c~ uql2qku! uql2q̄l u11 (
l : uql2qku.R

c~ uql2qku! uql2q̄l u1 .

Substituting the above decomposition into the definition ofQ2
(2,1)(t,m) in ~6.27!, one has that
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Q2
(2,1)~ t,m!5(

kPI
f ~ t,k,m! f̄ ~ t,k,m! (

lÞk:uql2qku<R
c~ uql2qku! uql2q̄l u1

1(
kPI

f ~ t,k,m! f̄ ~ t,k,m! (
l :uql2qku.R

c~ uql2qku! uql2q̄l u1[D1~ t,m!1D2~ t,m!.

~6.28!

By Proposition 4.3, it is not hard~and very important! to see that iff (uqku22c̃R„11mg(m)…)
Þ0, f (uq̄ku22c̃R„11mg(m)…)Þ0, and uql2qku<R, then f (uql u22c̃R„11(m11)g(m11)…)
51 and f (uq̄l u22c̃R„11(m11)g(m11)…)51 whenc̃>1 is a large enough constant. Thus,
interchanging the order of summation and using the argument used in deriving~6.24!, we have the
bound forD1(t,m) in ~6.28!:

D1~ t,m!<c25„g~R! g~m!…d/2 dR~ t,m11!. ~6.29!

Finally, let us considerD2(t,m). If f (uqku22c̃R„11mg(m)…)Þ0, it follows from Proposition 4.3
that

uql2q̄l u1<c26g~ uql u!<c268 g~ uqku! g~ uql2qku!<c269 g~R! g~m! g~ uql2qku!.

Thus, using~6.23! and Lemma 3.2, we obtain that

(
l :uql2qku.R

c~ uql2qku! uql2q̄l u1

<c27g~R!g~m! (
l PZd:u l 2qku>R

nl~v t! c~ u l 2qku! g~ u l 2qku!

<c27g~R!g~m!S (
l :u l 2qku>R

c~ u l 2qku!g~ u l 2qku!2D 1/2S (
l PZd

nl~v t!
2f „l 2qk ,g~ uqku!…D 1/2

<c27
8 g~R!g~m!@c~R!Rd1e1#1/2@g~R!g~m!#d/2,

where 0,e1,1 is a small constant. Substituting the above bound into the expression ofD2(t,m)
in ~6.28!, we conclude that

D2~ t,m!<c288 g~R!2g~m!2@c~R!Rd1e1#1/2 (
l PZd:u l u<2c̃R„11mg(m)…13R

nl~v t!

<c28g~R!2g~m!2@c~R!Rd1e1#1/2@Rmg~m!#d. ~6.30!

Here we have used superstability to get the last inequality@see~3.18!#. Thus it follows from~6.22!,
~6.25!, and~6.28!–~6.30! that

Q2~ t,m!<c29„g~R!g~m!…d/2 dR~ t,m11! 1c28g~R!2g~m!2 @c~R!Rd1e1#1/2@Rmg~m!#d.
~6.31!

Therefore from~6.13!, ~6.15!, ~6.20!, and~6.31! we conclude that
                                                                                                                



hen
y
g

ion of
ove.
r-
or

4357J. Math. Phys., Vol. 40, No. 9, September 1999 Nonequilibrium dynamics of infinite particle . . .

                    
U d

dt
dR~ t,m!U<C̄1@g~R!cdg~m!cd1„g~R!g~m!…d/2# dR~ t,m11!

1C̄2 g~R!2g~m!2 @c~R!Rd1e1#1/2@Rmg~m!#d

<C1„g~R!cd g~m!cd
… dR~ t,m11!1C2 m2d @c~R!#1/2Rd1 ~2/3! d, ~6.32!

whereC̄1 ,C1 , C̄2 , andC2 are positive constants.
To use the iteration method, we see that for all 0<t<T, the sequencedR(t,m)

ªdR(v t ,v̄ t ,m) satisfies the relation~6.1! with L15C1 g(R)cd, L25T C2 @c(R)#1/2Rd1(2/3)d,
am5g(m)cd, andbm5m2d. It is easy to check that the conditions in~6.2!–~6.3! are fulfilled. Thus
by ~6.4! we have

dR~v t ,v̄ t ,m!< (
m50

`

dR~v0 ,v̄0 ,m!
1

m!
~C1 g~R!cdt !m g~m!cdm

1C3 @c~R!#1/2Rd1 ~2/3! d (
m50

`
1

m!
„C1 g~R!cdt…m g~m!cdmm2d, ~6.33!

where C3 is a positive constant. Notice thatdR(v0 ,v̄0 ,m)50 for all m50,1, . . . . By using
Hölder’s inequality with conjugate pairp5(11e) andp85 (1/e) p with small e.0, we obtain

dR~v t ,v̄ t ,m!<C3 @c~R!#1/2Rd1 ~2/3! d
„exp@~C1t !11eg~R!cd(11e)#…1/~11e!

3S (
m50

`
1

m!
@g~m!cdmm2d#p8D 1/p8

. ~6.34!

Notice that the last term converges to a constant. We check here that whenR is large,g(R) is
similar to (logR)1/d @see~1.2!#. On the other hand, when the potential is singular at the origin, t
c.1 @see ~2.5!#. Thus the exponential term in the r.h.s. of~6.34! increases faster than an
polynomial order, but slower than any exponential order asR˜`. But, since we are assumin
that uU (2)(x)u<c(uxu)<exp@2(loguxu)c1e0# for some e0.0 and since the functionR

˜dR(v t ,v̄ t ,m) is increasing asR increases, by takinge such thatc(11e),c1e0 and lettingR
go to infinity, we conclude from~6.34! that

dR0
~v t ,v̄ t ,0!50, for all R0>r 11. ~6.35!

SinceR0>r 11 can be taken arbitrarily large,~6.35! concludes the uniqueness. h

When the potential is not singular at the origin, the proof of uniqueness under the condit
the polynomial decreasing rate follows as a simple corollary to the method given in the ab

Proof of Theorem 2.3:Since the potentialU(x) is everywhere two-times continuously diffe
entiable, i.e.,U (1)(x)[0, the terms concerning toU (1) disappear in the proof of Theorem 2.2. F
example, we may discard the terms of~6.20!. Thus, observing the derivation of~6.32!, we have the
bound

U d

dt
dR~ t,m!U<C1 „g~R!g~m!…d/2dR~ t,m11!1C2@c~R!#1/2Rd1 ~2/3! dm2d. ~6.36!

That is, we may replace the constantcd by d/2 in ~6.34!. Notice again thatg(R) is similar to
(logR)1/d for large values ofR. Since exp@(C1T)11e(logR)(11e/2)# increases slower than (11R)a

for anya.0 asR˜`, we see that the uniqueness holds withc(R)5(11R)2g, the appropriate
rate used to derive thea priori bound. h
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Backscattering and inverse problem in random media
Boris M. Shevtsova)
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With use of the invariant imbedding method and Markov process approximation,
the statistical characteristics of the backscattering field from the impulse point
source in a nonstationary multidimensional random medium are considered. The
equations for the characteristic function and the density of the probability in the
functional space of the backscattering are obtained. The equations for the statistical
moments of the field are yielded and then solutions are presented in the matrix
form. The additional averaging of the fast field variations is used for the simplifi-
cation of the statistical equations. The procedures for the investigation of the direct
and inverse statistical problem are proposed. The role of the phenomenological
transfer theory is discussed from the statistical point of view. ©1999 American
Institute of Physics.@S0022-2488~99!00809-9#

I. INTRODUCTION

The invariant imbedding method1–3 gives a good approach for the investigation of the wa
problem in the determinant media and it allows applying the Markov process approximation3–5 for
the research of the statistical wave characteristics as well.

The recently developed method4 of the wave problem inversion in a random medium is ba
on the assumption that the backscattering~reflected! field is approximately a Gaussian proces
The direct solutions5–7 of the wave statistical problem in the various cases show that this ass
tion takes place only in the single backscattering area, therefore it is interesting to exten
method on the multiple backscattering without the hypothesis of the Gaussian field and f
general case of a medium. This widening is needed for the remote sounding of the physical
with the large scattering depth as the dense plasma, the atmosphere clouds, and the light sc
layers of the ocean.

As the example, for the typical seawater,8 the depth of the single backscattering is 35–50
At the same time, the active upper ocean layer, where the main dynamic processes take p
100–150 m. This layer is accessible for the modern light detection and ranging~lidar! systems but
not for the known data lidar processing methods. The development of these methods is an
problem now.

The hypothesis of the Gaussian field for the multiple backscattering leads to the nonc
transport equations describing the transient signals with the mistake for the long time area.9,10 The
better alternative instead this hypothesis for the statistical inverse problem will be disc
below.

In the current paper, the scattering in the nonstationary multidimensional random medi
the scalar wave from the point impulsive source will be considered. We shall address the r1

obtained for a determine inverse problem by using the invariant embedding method, which
us to develop the analogous inverse procedure for the statistical case.

Following the work,1 the next mathematical model accepted in statistical theory will
employed. The scalar wave propagates in the layer of the inhomogeneous nonstationary m
which occupies the part of the spaceL0<x<L. The wave is created by the point impulsive sour
on the boundary of the layerx5L and is described by the equation

a!Electronic mail: wave@online.vladivostok.ru
43590022-2488/99/40(9)/4359/15/$15.00 © 1999 American Institute of Physics
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F]2
„11e~x,r,t !…

]t2 2c2DGG~x,r,t;L,r0 ,t0!5d~x2L !d~r2r0!d~ t2t0!, ~1!

wheree(x,r,t) is the continuous and smooth characteristic of the scattering medium in the
L0<x<L, r and r0 are the vectors in the plane of constantx, c is the signal velocity in the
homogeneous medium outside of the layer, wheree50, D is Laplacian; the product of the Dira
d functions is in the right part of this equation.

Equation~1! has many applications in the different areas of physics, for example, in op
acoustics, radio science, etc. It will be assumed that21,e(x,r,t),m and all first partial deriva-
tives ofe(x,r,t) exist and are bounded. When the statistical model of a medium will be discu
the smallness of the fluctuations of the nonhomogeneity characteristic (ue(x,r,t)u
!1) will be supposed.

The solution of the mixed~initial and boundary values! problem for Eq.~1! named the
Green’s function will be used. The initial value isG50 for t,t0 . The boundary conditions ar
the availability of the going away waves outside of the layer only, and the continuities ofG and
]G/]x on two planesx5L0 and x5L, wheree(x,r,t) breaks. The solution of Eq.~1! is the
generalized function11 and, for the homogeneous medium@e(x,r,t)50# has the form

g~x2L,r2r0 ,t2t0!5
u~ t2t0!

4pc2~ t2t0!
d„c~ t2t0!2A~x2L !21~r2r0!2

…

[
u~ t2t0!

2pc
d„c2~ t2t0!22~x2L !22~r2r0!2

…, ~2!

whereu(t2t0) is the Heaviside function.
In a nonhomogeneous medium, the solutionG(x,r,t;L,r0 ,t0) of the above problem is de

scribed by the system of the evolution equations1 obtained in the frames of the imbedding meth
with the assumption thatL is a variable parameter,

F ]

]L
1M̂ ~r0 ,t0!GG~x,r,t;L,r0 ,t0!

52E dr1 dt1 G~x,r,t;L,r1 ,t1!
]2

]t1
2 e~L,r1 ,t1!GL~r1 ,t1 ;r0 ,t0!, ~3!

with the initial conditionG(x,r,t;L,r0 ,t0)uL5x5Gx(r,t;r0 ,t0) and

F ]

]L
1M̂ ~r,t !1M̂ ~r0 ,t0!GGL~r,t;r0 ,t0!

5
1

c2 d~r2r0!d~ t2t0!2E
1
dr dt1 GL~r,t;r1 ,t1!

]2

]t1
2 e~L,r1 ,t1!GL~r1 ,t1 ;r0 ,t0!, ~4!

with the initial dataGL(r,t;r0 ,t0)uL5L0
5g0(r2r0 ,t2t0), whereg0(r2r0 ,t2t0)5g(x2L,r

2r0 ,t2t0)ux5L , the integral operatorsM̂ (r,t) and M̂ (r0 ,t0) are the inversions1 of the
Neumann2 operator in a free space and have the kernels1

M ~r2r1 ,t2t1!52
2

~ t2t1!

]

]t
g0~r2r1 ,t2t1! ~5a!

and

M 21~r2r1 ,t2t1!52c2g0~r2r1 ,t2t1!. ~5b!
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GL(r,t;r0 ,t0) is an impotent value in the inverse problem.1 It may be presented in the
composition GL(r,t;r0 ,t0)5g0(r2r0 ,t2t0)1RL(r,t;r0 ,t0), where the second term in th
right part is the backscattering~reflected! field. The equation forRL(r,t;r0 ,t0) may be obtained
from ~4! with respect to the relation1

M̂ ~r,t !g0~r2r0 ,t2t0!5~1/2c2!d~r2r0!d~ t2t0!. ~6!

Introducing the notationst5$q,q0%, andq5$r,t%, andq05$r0 ,t0% we can write the equa
tion for RL(r,t;r0 ,t0) in the form

]

]L
RL~t!1@M̂ ~q!1M̂ ~q0!#RL~t!52E dq1@g0~q,q1!1RL~q,q1!#

]2

]t1
2 e~L,q1!@g0~q1 ,q0!

1RL~q1 ,q0!#, ~7!

with the initial conditionRL(t)uL5L0
50.

Amongst the four terms that took place under the integral in the right part of Eq.~7!, the
summandg0g0 describes the single scattering process, two cross-itemsg0RL andRLg0 are asso-
ciated with the multiple forward scattering when the backscattering is single andRLRL corre-
sponds to the multiple backscattering. All the enumerated above items are the components
inverse Neumann operator2 in the nonhomogeneous medium. The nonlinear onRL item in Eq.~7!
creates the principal difficulties in the statistical analysis and leads to the non-Gaussian re
field and to the nonclosed transport equation. At the same time, the linear onRL cross-items do not
create the problems with the closing of the statistical expressions. They correspond to the a
the medium nonhomogeneities on the transport of the radiation and may be considered
group with the linear items in the left part of Eq.~7!. Having in mind the relation~5b!, Eq.~7! may
be rewritten as

]

]L
RL~t!1H M̂ 21~q!F 1

c2

]2

]t2 S 11
1

2
e~L,q! D2DrG

1M̂ 21~q0!F S 11
1

2
e~L,q0! D 1

c2

]2

]t0
22Dr0G J RL~t!

52E dq1Fg0~q,q1!
]2

]t1
2 e~L,q1!g0~q1 ,q0!1RL~q,q1!

]2

]t1
2 e~L,q1!RL~q1 ,q0!G . ~8!

In a single backscattering area, the last item in Eq.~8! may be ignored and the generalize
parabolic equation is obtained. In a small angle approximation, which gives the usual par
equation, which may be employed for the investigation of the radio or optic wave propagat
the turbulent atmosphere3,12–14with the limitation on a distance.

The roles in the statistical analysis of the enumerated above items under the integral in~7!
depend from the size of the layerL2L0 . Two scales characterize the medium: the length of
single scatteringl s and the length of the single backscatteringl SB. For the anisotropic scatterin
medium,l s! l SB and three scattering areas take place. Each of the enumerated above item~7!
is associated with one of these areas. The deference between forward and backward scat
absent in the isotropic scattering medium (l s5 l SB), and the linear and quadratic onRL items
under the integral in Eq.~7! contribute equally.

The structure of the solution singularities has to be considered for the discussion of the
and inverse procedure. Performing the solution in the form

GL~r,t;r0 ,t0!5u~ t2t0!G̃L~r,t;r0 ,t0!, ~9!
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whereu(t2t0) is the Heaviside function, substituting~9! in ~4! and comparing the coefficient
before two kinds of singularitiesu(t2t0) andd(t2t0) to zero, we obtain two equations:1

]

]L
G̃L~r;t;r0 ,t0!1

1

c

]

]t
G̃L~r,t;r0 ,t0!2

1

c

]

]t0
G̃L~r,t;r0 ,t0!2

2c

p E
t0

t

dt1E dr1 d8„c2~ t2t1!2

2~r2r1!2
…G̃L~r1 ,t1 ;r0 ,t0!2

2c

p E
t0

t

dt1E drG̃L~r,t;r1 ,t1!d8„c2~ t12t0!22~r12r0!2
…

5hL~r0 ,t0!e~L,r0 ,t0!
]

]t0
G̃L~r,t;r0 ,t0!2hL~r,t !

]

]t
e~L,r,t !G̃L~r,t;r0 ,t0!

1E
t0

t

dt1E
1
dr1

]G̃L~r,t;r1 ,t1!

]t1
•

]e~L,r1 ,t1!G̃L~r1 ,t1 ;r0 ,t0!

]t1
, ~10!

whered8(¯) is the derivative of thed functions,

c2e~L,r0 ,t0!hL
2~r0 ,t0!12c•hL~r0 ,t0!2150, ~11!

wherehL(r0 ,t0) is the amplitude of the wave in the initial moment. This value is introduced w
the use of the relationshipG̃L(r,t;r0 ,t0)u t˜t0

5hL(r0 ,t0)d(r2r0) and is determined by the
characteristic of the medium in the point of the source in the initial moment through the so
of Eq. ~11!,

hL~r0 ,t0!5
A11e~L,r0 ,t0!21

ce~L,r0 ,t0!
5

nL~r0 ,t0!21

ce~L,r0 ,t0!
, ~12!

wherenL(r,t)5A11e(L,r,t); it is a refractive index in electrodynamics.
In the homogeneous medium,g0(r2r0 ,t2t0)5u(t2t0)g̃0(r2r0 ,t2t0) and g̃0(r2r0 ,t

2t0)u t˜t0
5(1/2c)d(r2r0) take off the sign ambiguity of~12!.

The analogous equations for the backscattering can be obtained, ifG̃L5g̃01R̃L is substituted
in ~10! andhL5(1/2c)1r L in ~11!, wherer L(r0 ,t0) is the amplitude of the backscattering wa
in the initial moment.

Equation~10! may be integrated along the characteristics,2 which are defined for the partia
differential equation, which is obtained from~10! in the first approximation ont2t0˜0,

]

]L
G̃L~r,t;r0 ,t0!1

nL~r,t !

c

]

]t
G̃L~r,t;r0 ,t0!2

nL~r0 ,t0!

c

]

]t0
G̃L~r,t;r0 ,t0!

1hL~r,t !F ]

]t
e~L,r,t !GG̃L~r,t;r0 ,t0!'0,

whereG̃L(r,t;r0 ,t0) has the asymptotic behavior2 for this time.
The integration process for Eq.~10! starts fromL5L0 and the point initial condition, which

is given by the expression~12!. The support ofG̃L(r,t;r0 ,t0) expands, whenL2L0 increases.
The characteristics multiply every step onL. In each point of the multiplying, the initial condition
~12! is used and the definition ofG̃L(r,t;r0 ,t0) for t5t0 is completed throughe(L,r0 ,t0). This
is a direct procedure. The inversion is obtained, if Eq.~10! is reintegrated~integrated in the inverse
order! along the characteristics ande(L,r0 ,t0) is defined throughG̃L(r,t;r0 ,t0) for t5t0 . The
inversion procedure is known as the ‘‘layer stripping’’ process.2
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II. STATISTICAL MODEL

We suppose additionally the smallness (ue(L,r,t)u!1) of the medium characteristic fluctua
tions, that will allow us to use the Markov apparatus5–7 and to realize the diffusion
approximation.5–7 We assume thate(L,r,t) is the Gaussian field with the statistical properties

^e~L,r,t !&50 and ^e~L,r,t !e~L8,r8,t8!&5B~L,r,t;L8,r8,t8!. ~13!

For a characteristic functional of the backscatteringCL@y(t)#5^exp@i*dt RL(t)y(t)#&, the
equation is obtained by using~7!

]

]L
CL@y~t!#5 K F i E dt8F ]

]L
RL~t8!Gy~t8!GexpF i E dt RL~t!y~t!G L

52E dt8 y~t8!@M̂ ~q8!1M̂ ~q08!#
d

dy~t8!
CL@y~t!#

2 i E dt8 y~t8!E dq1Fg0~q8,q1!1
d

i dy~q8,q1!G
•

]2

]t1
2 Fg0~q1 ,q08!1

d

idy~q1 ,q08!G K e~L,q1!expF i E dt RL~t!y~t!G L , ~14!

where the notation̂¯& is the averaging on the realization set of the random valuee(L,q).
Note that the integral*dt RL(t)y(t) is implied in the interval@2`,`# of the variablet. We

shall consider the divergentRL(t) and convergentRL* (t) waves. The latter is found by Eq.~7!

with the changesM̂ (q)˜2M̂ (q) andg0(t)˜g0* (t), whereg0* (t) is the convergent wave in th
free space. The convergent waves have the inversion course in time and may be placed f
on the negative semiaxis oft. The necessity of this expansion will be seen below.

In agreement with Furutsu–Novikov formula,3,5

K e~L,q1!expF i E dtRL~t!y~t!G L 5E
L0

L

dxE dq2 B~L,q1 ;x,q2!K d exp@ i *dt RL~t!y~t!#

de~x,q2! L
5E

L0

L

dxE dq2 B~L,q1 ;x,q2!

3K i E dt9
dRL~t9!

de~x,q2!
y~t9!expF i E dt RL~t!y~t!G L . ~15!

Varying ~7!, we obtain the equation for the variational derivative,

]

]L

]RL~t9!

de~x,q2!
52@M̂ ~q9!1M̂ ~q09!#

dRL~t9!

de~x,q2!
2E dq3

dRL~q9,q3!

de~x,q2!

]2

]t3
2 e~L,q3!GL~q3 ,q09!

2E dq3 GL~q9,q3!
]2

]t3
2 e~L,q3!

dRL~q3 ,q09!

de~x,q2!
, ~16!

with the initial condition

dRL~t9!

de~x,q2!
U

L5x10

52F ]2

]t2
2 Gx~q9,q2!GGx~q2 ,q09!.

The comparison of Eq.~16! with ~3! shows that the solution of~16! may be expressed thoug
the solution of~3! as
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dRL~t9!

de~x,q2!
52F ]2

]t2
2 G~L,q9,x,q2!GG~x,q2 ;L,q09!

52V̂x
L~q9,q̃!F ]2

]t2
2 Gx~ q̃,q2!GGx~q2 ,q̃0!V̂x

L~ q̃0 ,q09!, ~17!

whereV̂x
L are the matriciants of the operators with the kernels, which may be defined from~16!,

a new valueG(L,q9;x,q2) in the first line of~17! is the field on the right boundary of the laye
when the source takes place into the medium. The equation for this value may be produced~3!

by the invariant embedding method.5 This equation differs from~3! by the operatorM̂ (r,t)
instead ofM̂ (r0 ,t0). In the second of~17!, the solution of~16! is presented in the symboli
operator form. The result~17! is well known for the one-dimensional problem.5

We see from~17! that the statistical problem is not local in general, and the closed equ
for the backscattering field cannot be derived. The expression~17! demands that we consider tw
additional values~the field in the medium from the source on the right boundary and the fiel
the boundary from the source in the medium!. Only for the caseB(L,q1 ;x,q2)5B(q1 ;q2)d(L
2x), whenx5L in ~17!, the relation~17! yields the close equation for the backscattering. Ho
ever, thed-correlation model is not satisfactory for some real situations. The generalization o
model on the case of the nonzero correlation radius will be considered below.

If ue(L,r,t)u!1, the internal field and the variational derivative vary not essentially on
size of the scatters, and we can take the solutions of Eqs.~16! and~7! in a zero approximation with
respect toe(L,q). Then we have for the variational derivative,

dRL~t9!

de~x,q2!
'2exp$2@M̂ ~q9!1M̂ ~q09!#~L2x!%

•H ]2

]t2
2 @g0~q9,q2!1exp$@M̂ ~q9!1M̂ ~q2!#~L2x!%RL~q9,q2!#J

•@g0~q2 ,q09!1exp$@M̂ ~q2!1M̂ ~q09!#~L2x!%RL~q2 ,q09!#. ~18!

This approach is associated with the perturbation theory15 employed on the distanceL2x
defined by the radius correlation of the medium, which is small in comparison with the size
layer L2L0 . This approach is known as Chernov’s local method16 and allows us to obtain the
close equation for the characteristic functional of the backscattering field,

]

]L
CL@y~t!#52E dt8 y~t8!@M̂ ~q8!1M̂ ~q08!#

d

dy~t8!
CL@y~t!#

2E dt8 y~t8!E dq1H ]2

]t1
2 Fg0~q8,q1!1

d

i dy~q8,q1!G J
•Fg0~q1 ,q08!1

d

i dy~q1 ,q08!G
•E

L0

L

dxE dq2 B~L,q1 ;x,q2!E dt9 y~t9!H ]2

]t2
2 Fe2M̂ ~q9!~L2x!g0~q9,q2!

1eM̂ ~ ,q2!~L2x!
d

idy~q9,q2!G J •Fe2M̂ ~q09!~L2x!g0~q2 ,q09!

1eM̂ ~q2 ,!~L2x!
d

i dy~q2 ,q09!GCL@y~t!#, ~19!
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with the initial conditionCL@y(t)#uL5L0
51. The operatorsM̂ ( ,q2) and M̂ (q2 , ) in ~19! are

deferent by the action on the right and left arguments of the functions.
For the density of the probability in the backscattering functional spacePL@v(t)#, which is

introduced here through the Fourier transformation,

CL@y~t!#5E
¯

E )
t

dv~t!PL@v~t!#expF i E t v~t!y~t!G , ~20!

the Fokker–Planck equation3,5 may be obtained from~19!,

]

]L
PL@v~t!#5E dt8

d

dv~t8!
@M̂ ~q8!1M̂ ~q08!#v~t8!PL@v~t!#

1E dt8
d

dv~t8!
E dq1H ]2

]t1
2 @g0~q8,q1!1v~q8,q1!#J

•@g0~q1 ,q08!1v~q1 ,q08!#•E
L0

L

dxE dq2 B~L,q1 ;x,q2!

3E dt9
d

dv~t9! H ]2

]t2
2 @e2M̂ ~q9!~L2x!g0~q9,q2!1eM̂ ~ ,q2!~L2x!v~q9,q2!#J

•@e2M̂ ~q09!~L2x!g0~q2 ,q09!1eM̂ ~q2 ,!~L2x!v~q2 ,q09!#PL@v~t!#, ~21!

with the obvious initial conditionPL@v(t)#uL5L0
5Ptd„v(t)….

With respect to the type of the latter equation, the considered above approach is kno
statistical theory as the diffusion approximation.5–7 The application condition of this method ma
be mounted, if we return to second and third lines of the expression~17!, and notice that the
nonaccounted for above two terms in~17! are the additional variation of the wave ‘‘phase’’ on th
scatter. This variation is small in comparison with the unit that is really, ifue(L,r,t)u!1.

Otherwise, Eq.~21! may be obtained from~7! through the Liouville equation3,5 for the value
wL@v(t)#5Ptd„RL(t)2v(t)…. The functionalPL@v(t)#5^wL@v(t)#& will satisfy this equa-
tion after the averaging with respect toe(L,r,t), if the approximation~18! will be used.

The statistical equation forR̃L(r,t;r0 ,t0) may be yielded by the change*dt8˜* t0
t dt8

1*
2t
t0 dt8 in ~19! and~21! as Eqs.~4! and~10! are different only by the limits of the integral, whe

ue(L,q)u!1.

III. THE STATISTICAL CHARACTERISTICS OF THE MEDIUM

Equation~21! for the valuePL@v(t)# consists of 16 terms that are proportionally the cor
lation function of the medium. They may be collected in four groups with the deferent ope
coefficients that are the Laplace transformation of the correlation function with the parame
the transformation in the form of the operator,

K̂ i5E
L0

L

dx B~L,q1 ;x,q2!
]2

]t2
2 eN̂t~L2x!, i 51,2,3,4;

N̂152M̂ ~q9!2M̂ ~q09!, N̂252M̂ ~q9!1M̂ ~q2 ,!, ~22!

N̂35M̂ ~ ,q2!2M̂ ~q09!, N̂45M̂ ~ ,q2!1M̂ ~q2 ,!.

If the Fourier transformation with respect to the difference argumentq12q2 is performed in
~22!, these four operator coefficients are the Born’s expression15 for the scattering characteristic o
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the medium~in first order of the perturbation theory!. They are named in the suitable calibratio
as an indicatrix of the scattering or a phase function. The valueK̂1 describes the scattering of th
wave from the right hemisphere to back,K̂4—from the left hemisphere to back,K̂2 and K̂3

correspond to the wave scattering with the change of the hemisphere~from right to left and from
left to right!. The scattering takes place in the thin layerL2x, which is equal approximately to th
correlation radius of the medium nonhomogeneities and is little more thanL2L0 ; therefore we
can putL052` in ~21! and~22!. If the graphs forg0(q,q0) andv(q,q0) are introduced, all 16
terms under the integral in~21! may be presented in the form of the Feynman four-tail diagram15

For the isotropic medium,K̂15K̂4 andK̂25K̂3 . For the medium with the isotropic scatterin
all coefficients are equal. The medium with the point andd correlation in time scatters ha
B(L,q1 ;x,q2)5s2(L,q1)d(L2x)d(q12q2). For these scatters and the statistical layered m
dium, s2(L,q1)5s2(L), in the statistical homogeneous one,s2(L,q1)5const and so on, the
classification of the media may be continued through the properties of the correlation func

It is important for the statistical inverse problem. IfK̂1 is defined by some way, the res
coefficientsK̂ i may be known through the inverse and direct Laplace transformation too. Fo
determination of the correlation function through the statistical properties of the backscatt
Eq. ~21! will be considered for the short time. The scales of the problem have to be disc
before.

The correlation functionB(L,q1 ;x,q2) has two sets of the scalesl x ,l y ,l z ,t and l̃ x , l̃ y , l̃ z ,t̃.
The first is that the set of the correlation radiuses measured the deference of the argumL
2x andq12q2 . The second is the sizes of the variablesL andq1 ~the spatial-time alterations o
l x ,l y ,l z ,t!. The first set with the intensity of the medium fluctuations defines the third scale s
the problem, the lengths of the scatteringl S and l SB, which is discussed above. We assume t
the second scale is less than the third~the inverse case corresponds to the condition for
statistical quasihomogenous medium! and bigger than the first.

The term ‘‘short time’’ is associated with the valuet2t0 and the appropriate depth of th
wave penetration into the medium, which are intermediate between the first and second sc
the problem. For this time, the same simplifications may be carried out in~21!.

The short time corresponds to the single scattering; then the changeg01v˜g0 can be made
in ~21!. The short time is less than the second scale of the problem, therefore the diff
equation~21! has the constant coefficients in the chosen time interval. For the short time
equation has the intermediate stationary (]PL /L'0) solution in the form of the Gaussian distr
bution defined by the next expression

E dt8
d

dv~t8!
@M̂ ~q8!1M̂ ~q08!#v~t8!PL@v~t!#1E dt8

d

dv~t8!
E dq1F ]2

]t1
2 g0~q8,q1!G

•@g0~q1 ,q08!#•E
2`

L

dxE dq2 B~L,q1 ;x,q2!E dt9
d

dv~t9! F ]2

]t2
2 e2M̂ ~q9!~L2x!g0~q9,q2!G

•@e2M̂ ~q09!~L2x!g0~q2 ,q09!#PL@v~t!#'0, ~23!

where the change*dt8˜* t0
t dt81*

2t
t0 dt8 is implied and the valuet2t0 corresponds to the shor

time interval.
The physical meaning of~23! may be explained. For the short time after the fast field va

tions, the solution of~21! takes the intermediate stationary form defined by~23!.
This equation gives the locale relation between the correlation function and the stat

characteristics of the backscattering. The found relation~23! is very important for the inverse
procedure in the statistical problem and plays the role of Eq.~11!, which gives the point relation
between the field and the medium characteristic in the determinant problem.
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IV. THE ADDITIONAL AVERAGING OF THE FAST FIELD VARIATIONS

The solution of the evolution equation~21! contains the detailed statistical information th
may be surplus for some cases, for example, if the average field in the point is not interes

The more simple evolution equation for the statistical problem may be obtained from~21!, if
the additional averaging of the fast field variation on the first problem scale is carried out
This operation is the passage to the slowly varying amplitude of the backscattering. It m
realized formally so.

For the simplification of the obtained above expressions, the normalized backsca
RL(t)52c2M (q)RL(t) has to be introduced. This value satisfies Eq.~7! with the changes
g0(q,q0)˜d(q2q0) and e(L,q1)˜ ẽ(L,q1)5@]2e(L,q1)/]t1

2#M̂ 21(q1)/2c2, where ẽ(L,q1) is
the effective characteristic of the medium. Presenting the normalized backscattering in the
RL(t)5exp$2@M̂(q)1M̂(q0)#(L2L0)%R̄L(t) and repeating the derivation of the Fokker–Plan
equation, we come to the new expression instead~21!,

]

]L
PL@v̄~t!#5E dt8

d

dv̄~t8!
E dq1@eM̂ ~q8!~L2L0!d~q82q1!1e2M̂ ~ ,q1!~L2L0!v̄~q8,q1!#

•@eM̂ ~q08!~L2L0!d~q12q08!1e2M̂ ~q1 ,!~L2L0!v̄~q1 ,q08!#

•E
L0

L

dxE dq2 B̃~L,q1 ;x,q2!E dt9
d

dv̄~t9!
•@e2M̂ ~q9!~L2x!eM̂ ~q9!~L2L0!d~q92q2!

1eM̂ ~ ,q2!~L2x!e2M̂ ~ ,q2!~L2L0!v̄~q9,q2!#•@e2M̂ ~q09!~L2x!eM̂ ~q09!~L2L0!d~q22q09!

1eM̂ ~q2 ,!~L2x!e2M̂ ~q2 ,!~L2L0!v̄~q2 ,q09!#PL@v̄~t!#, ~24!

where v̄(t) is the parameter of the distribution of the slowly vary normalized backscatte
amplitudeR̄L(t) and B̃(L,q1 ;x,q2)5^ẽ(L,q1) ẽ(x,q2)&.

Having in mind thatPL@v̄(t)# varies slowly on the first scale of the problem, and averag
additionally the expression~24! by the operation (1/DL)*L

L1DL dL8, whereDL is bigger than the
first problem scale, we obtain the equation

]

]L
PL@v̄~t!#5E dt8E dt9E

L0

L

dxE dq1E dq2 B̂~L,q1 ;x,q2!

3
d

dv̄~t8! S v̄~q8,q1!d~q12q08!

d* ~q092q̆2!d* ~q&22q09!
1

v̄~q8,q1!v̄~q1 ,q08!

d* ~q092q̆2!v̄* ~ q̆2 ,q09!

1
d~q82q1!d~q12q08!

d~q092q&2!v̄~q&2 ,q09!
1

d~q82q1!v̄~q1 ,q08!

d~q092q&2!d~ q̆22q09!
1

d~q82q1!v̄~q1 ,q08!

d* ~q92q&2!d* ~ q̆22q9!

1
v̄~q8,q1!v̄~q1 ,q08!

v̄* ~q9,q̆2!d* ~ q̆22q9!
1

d~q82q1!d~q12q08!

v̄~q9,q&2!d~q&22q9!

1
v̄~q8,q1!d~q12q08!

d~q92q&2!d~ q̆22q9! D PL@v̄~t!#

1E dt8E dt9E
L0

L

dxE dq1E dq2 B̃~L,q1 ;x,q2!

3
d

dv̄~t8! S d~q82q1!d~q12q08!

d* ~q92q&2!d* ~q&22q09!
1

d~q82q1!v̄~q1 ,q08!

d* ~q92q&2!v̄* ~ q̆2 ,q09!
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1
v̄~q8,q1!d~q12q08!

v̄* ~q9,q̆2!d* ~q&22q09!
1

v̄~q8,q1!v̄~q1 ,q08!

v̄* ~q9,q̆2!v̄* ~q&2 ,q09!
1

d~q82q1!d~q12q08!

v̄~q9,q&2!v̄~q&2 ,q09!

1
v̄~q8,q1!v̄~q1 ,q08!

d~q92q̆2!d~ q̆22q09!
1

d~q82q1!v̄~q1 ,q08!

v̄~q9,q&2!d~ q̆22q09!

1
v̄~q8,q1!d~q12q08!

d~q92q̆2!v̄~q&2 ,q09!
D d

dv̄~t9!
PL@v̄~t!#, ~25!

where f 1f 2 / f 3f 45 f 1f 2f 3f 4 is the compact form of the product notation, which shows the c
nection of~25! with ~24! and the analogy of the equation coefficients with the Feynman diagr

f (q,q&2)5eM̂ (,q2)(L2x) f (q,q2) and f (q,q̆2)5e2M̂ (,q2)(L2x) f (q,q2) are the actions of the displace
ment operator,f and f * are the divergent and convergent waves.

The simplification of ~25! depends from the model of the medium characteris
B̃(L,q1 ;x,q2). This function has the cofactord(r12r2) for the layered medium and has th
cofactord(t12t2) for the timed-correlation medium; then the some integrals in the coefficient
Eq. ~25! may be calculated. The passage to the plane waves allows us to get rid of the depe
on r1 andr2 .

For the three-dimensional medium, we have to average additionally Eq.~25! on r and t. The
biquadratic coefficients in Eq.~25! are kept in the result~the others fall out!

]

]L
PL@v̄~t!#51E dt8E dt9E

L0

L

dxE dq1E dq2 B̃~L,q1 ;x,q2!

3
d

dv̄~t8! S d~q82q1!d~q12q08!

d* ~q92q&2!d* ~q&22q09!
1

d~q82q1!v̄~q1 ,q08!

d* ~q92q&2!v̄* ~ q̆2 ,q09!

1
v̄~q8,q1!d~q12q08!

v̄* ~q9,q̆2!d* ~q&22q09!
1

v̄~q8,q1!v̄~q1 ,q08!

v̄* ~q9,q̆2!v̄* ~ q̆2 ,q09!
D d

dv̄~t9!
PL@v̄~t!#.

~26!

Note, for the three-dimensional medium,q1'q2 andt8't9. It means that the expression i
the right part of~26! is approximately diagonal and the consideration of the many-dimensi
problem may be reduced to the analysis of the one-dimensional case. This fact was noticed
in the solution of the backscattering moment equations14,15 ~the solution of the many-dimensiona
problem was obtained as an analytical continuation of the one-dimensional result! and may be the
base for the digital simulation of Eq.~26!.

We have to remark that the passage to the layered medium in~26! is not possible, as this
action is not permutable with the averaging onr.

V. STATISTICAL INVERSE PROBLEM

The local relation~23! allows integrating or reintegrating Eq.~21! along the characteristics o
the transport operator, and how it is made for Eq.~10! with the use of~11!. Equation~10! and the
local relation~23! in a statistical problem play accordingly the roles of Eq.~11! and the point
relation ~11! in the determinant one. The direct and inverse procedures are realized the sa
both cases. The difference is in the type of the evolution equations~10! and ~21!.

Equation~25! or ~26! for the slowly varying statistical characteristic of the backscattering m
be used instead of~21!, if the weak effects of the fast field variations are fallen out. As
evolution equations for the direct and inverse problem investigation, the equations for the
tical moments of the backscattering field may be chosen, which will be considered below.
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VI. THE MOMENT EQUATIONS

The characteristic functional of the backscattering may be decomposed in the Taylor s

CL@y~t!#5 (
n50

`
i n

n! Ē E dt1¯dtn Mn~L;t1 ,...,tn!y~t1!¯y~tn!, ~27!

with the coefficients represented through the density of the probability in the backscat
functional space as

Mn~L;t1 ,...,tn!5K )
i 51

n

RL~t i !L 5 Ē E )
t

dv~t!)
i 51

n

v~t i !PL@v~t!#, ~28!

and named as the statistical moments of the backscattering. The equations are obtained fro~21!,

]

]L
Mn~L;t1 ,...,tn!52(

i 51

n

@M̂ ~qi !1M̂ ~q0
i !#Mn~L;t1 ,...,tn!

1 Ē E )
t

dv~t!(
j 51

n E dq1H ]2

]t1
2 @g0~qj ,q1!1v~qj ,q1!#J •@g0~q1 ,q0

j !

1v~q1 ,q0
j !#•E

L0

L

dxE dq2 B~L,q1 ;x,q2!(
k51
kÞ j

n H ]2

]t2
2 @e2M̂ ~qk!~L2x!g0~qk,q2!

1eM̂ ~ ,q2!~L2x!v~qk,q2!#J •@e2M̂ ~q0
k
!~L2x!g0~q2 ,q0

k!

1eM̂ ~q2 ,!~L2x!v~q2 ,q0
k!#

P i 51
n v~t i !

v~t j !v~tk!
PL@v~t!#. ~29!

The expression under the integral in~29! gives 32 terms, which may be collected into fiv
groups:

]

]L
Mn~L;t1 ,...,tn!52Q̂n~t1 ,...,tn!Mn~L;t1 ,...,tn!

1D̂n22~L;t1 ,...,tn22!Mn22~L;t1 ,...,tn22!

1D̂n21~L;t1 ,...,tn21!Mn21~L;t1 ,...,tn21!

1D̂n~L;t1 ,...,tn!Mn~L;t1 ,...,tn!

1D̂n11~L;t1 ,...,tn11!Mn11~L;t1 ,...,tn11!

1D̂n12~L;t1 ,...,tn12!Mn12~L;t1 ,...,tn12!, ~30!

whereQ̂n5( i 51
n @M̂ (qi)1M̂ (q0

i )#, D̂n(L;t1 ,...,tn) is the operator coefficients, the explicit ex
pressions of which may be yielded from~29!. The initial conditions for~30! areM051 andMn

50, if n.0.
Eq. ~30! can be rewritten in the matrix form

]

]L
ML5ÂLML1BL , ÂL5Q̂1D̂L ,
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ML5S M1

M2

¯

Mn

¯

D , BL5S B121

B222

0
0
¯

D , Q̂5S Q̂1 ... 0 ...

0 Q̂2 ... 0 ...

...

... 0 ... Q̂n ... 0 ...

...

D ,

D̂L5S D̂1 D̂111 D̂112 ...0...

D̂221 D̂2 D̂211 D̂212 ...0...

D̂322 D̂321 D̂3 D̂311 D̂312 ...0...

...

...0... D̂n22 D̂n21 D̂n D̂n11 D̂n12 ...0...

...

D , ~31!

where BL is the vector function,B1215D̂121M0 , B2225D̂222M0 are the known values ex
pressed through the correlation function of the medium,M051. The numeration for the elemen
of the five diagonalD matrix ~31! is chosen as in Eqs.~30!.

VII. EQUATIONS FOR THE SLOWLY EVOLVED MOMENTS

After the additional averaging of the fast field variations onL in ~31!, the equations for the
even slowly evolved momentsM̄2n (n50,1,...) are obtained. This result may be yielded from~25!
as~31! was produced from~21!. If the input is~31! we fall out the fast-evolved moments there.
means to put formallyQ̂50 and to delete then21 andn11 diagonals of theD matrix andB121

in ~31!. For the many-dimensional medium, after the additional averaging of the fast field v
tions onr andt, the even coefficients of theD matrix are simplified essentially otherwise, compa
~25! and ~26!. Equations for the slowly moments may be written as

]

]L
M̄2n~L;t2 ,...,t2n!5D̂2n22~L;t1 ,...,t2n22!M̄2n22~L;t1 ,...,t2n22!

1D̂2n~L;t1 ,...,t2n!M̄2n~L;t1 ,...,t2n!

1D̂2n12~L;t1 ,...,t2n12!M̄2n12~L;t1 ,...,t2n12!. ~32!

VIII. TRANSPORT EQUATION

The expression~32! for second moment of the backscattering is implied as the trans
equation,

]

]L
M̄2~L;t1 ,t2!5B222~L;t1 ,t2!1D̂2~L;t1 ,t2!M̄2~L;t1 ,t2!

1D̂212~L;t1 ,...,t4!M̄4~L;t1 ,...,t4!. ~33!

The ‘‘Gaussian hypothesis’’ is the assumption that the relation betweenM̄4 andM̄2 is as for
the Gaussian field. It is formally the noncorrect supposition about the absence of the corr
between the couples of the counterwaves,M̄45^RR* RR* &'^RR* &^RR* &5M̄2M̄2 . If the ap-
proximate relationM̄4'M̄2M̄2 is put in ~33!, a closed equation forM̄2 is obtained,
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]

]L
M̄2~L;t1 ,t2!5B222~L;t1 ,t2!1D̂2~L;t1 ,t2!M̄2~L;t1 ,t2!

1D̂212~L;t1 ,...,t4!M̄2~L;t1 ,t2!M̄2~L;t3 ,t4!, ~34!

where the operatorD̂212 sorts out the couples oft and sums; see~29!.
Equation~34! is the statistical analog of the phenomenological transport equation17 written for

the backscattering wave. As an example, this equation was used for the layered med9 Its
solution showed that the error of such an approach grows in comparison with the strong sta
theory asAt in the multiple backscattering regimes, where the correlation between the coup
the counterwaves plays the essential role, and it cannot be thrown. However, Eq.~34! may be used
efficiently for the single backscattering.

Note that Eq.~34! is quadratic onM̄2 and is formally the determinant equation~4!, or ~7! and
~10!. It mean that we can solve the statistical inverse problem as the determinant one by the
Eq. ~34! and the locale relation from~23! for the single backscattering regime.

For the further discussion of the moments, let us consider the solution for the equation

IX. SOLUTION OF THE MOMENT EQUATIONS

The solution of~31! or ~32! may be presented through a matriciant,

V̂L0

L 5E1E
L0

L

dL8 ÂL81E
L0

L

dL8 ÂL8E
L0

L8
dL9 ÂL91¯ ,

where E is the unit matrix, andÂL is defined in ~31!. With the use of a Cauchy matrix

K̂ (L,L8)5V̂L0

L @V̂L0

L8#21 and with respect to the zero initial condition forRL , the solution of the

moment equations~31! may be written as

ML5E
L0

L

dL8 K̂ ~L,L8!BL8 . ~35!

The solution of the slow moment equations~32! has the form of~35! with the simplification ofÂL

andBL , as discussed above.
Every line of~35! with the componentMn(L,t1 ,...,tn) in the left part may be considered a

the equation for the statistical characteristic of the mediumB(L,q1 ;x,q2), which is included inÂL

andBL . These equations are integrodifferential and nonline with respect to the unknown fun
B(L,q1 ;x,q2). Any from them may be used for the solving of the inverse problem, for
determination ofB(L,q1 ;x,q2), in principal. It means that the any moment contains the
information about the random medium. And more, any moment may be expressed throug
other by the use of~35!, if the inverse operator to the corresponding line of the expression~35!
will be yielded. The all moments are tied stringently between themselves, and this connec
defined by the properties of the medium. As an example, the connection between the slo
ments for the statistic homogeneous media can be defined easy from~32! putting]M̄2n /L50 ~the
stationary solution exists for these media! and obtaining the recurrent relation there. For the f
system of the moments, it cannot be yielded since five, not three, moments are tied in~30!.

We can yield the exact closed statistical transport equation expressingM̄4 throughM̄2 by use
of ~35! and substituting it into~33!. However, the relation betweenM̄4 and M̄2 is dependent on
B(L,q1 ;x,q2) in the all layers@L0 ,L#, and the transport equation will be not local and will not
comfortable for the inverse procedure in the form of the ‘‘layer stripping’’ process2 as in ~10!,
~21!, ~25!, ~26!, ~30!, and~32!. The first approximation of the exact statistical transport equatio
~34!, which is comfortable for the ‘‘layer stripping’’ process,2 but it is not correct for the multiple
backscattering.
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If the application for the lidar remote sounding is had in mind, the second line of~35! can be
named as the lidar equation.18

As a result, if we know one of the moments, using~35! we can solve the inverse problem
principal and reconstruct the full statistic information of the backscattering~the characteristic
functional!. What the moment~first, second, or any more! we have to select for the solving of th
inverse problem? It will be decided. In general, all the moments are not different in this mea
The second slow moment^RR* & can be chosen from the convenience, because it is the en
characteristic of the field and it can be measured directly, it is described in more simple equ
than the full moment system.

In the nondissipative medium, which is the subject of this paper, one of the moments ha
known for the solving of the inverse problem. In the opposite case, it is not enough. Two mo
and two equations~35! are necessary for the determination of the statistical and dissipative
dium characteristics simultaneously. It was shown in the experimental work19 with use of the
statistical solution.10

X. THE FIRST MOMENT OF THE FIELD

It is of interest to consider̂R& as one of the fast-varied statistical moments and to unders
their role. Using~12! we can compare the first moment with the second in the initial timt
5t0 . For ueu!1, r L(r0 ,t0)'@2e(L,r0 ,t0)1e2(L,r0 ,t0)/2#/8c from ~12!. Whence ^r L&
'^e2&/16c @the nonline form of~12! leads to the detection effect# and ^r L

2&'^e2&/(8c)2. The
energy of the average field is less than the average energy of the field,^r L&2!^r L

2&. In this sense,
the fast statistical moments are associated with the weak random effects and the additiona
aging of the fast variation of the field is justified.

XI. CONCLUSION

The statistical characteristics of the backscattering and the relation with the parameters
random medium were considered above. Six ways of the inverse problem solving were
~three with use of the full statistical characteristics system and three with the slow varied on!. In
every three, the inverse procedures are the ‘‘layer stripping’’ process2 for the Fokker–Planck
equation~21! or ~25! and the same process for the moment equations~30! or ~32! as the two
equivalent approach and the inversion of the moment equations solution~35! as the alternative
method.

The initial experimental data for the ‘‘layer stripping’’ process are the density of the p
ability in the backscattering functional space or the respective system of the statistical mo
Let us consider the case with the slow varied statistical characteristicsPL@v̄(t)# and M̄2n

5^P i 51,j 51
n R̄L(qi ,q0,i),R̄L* (qj ,q0,j )&. It requires the measurement of the stochastic va

R̄L(qi ,q0,i)R̄L* (qj ,q0,j ). The Fourier transformation of which with respect toqi2qj and q0,i

2q0,j is the stochastic spectral transfer function from the point (q0,i1q0,j )/2 to the point (qi

1qj )/2, which may be measured20 by the multiple canal analyzer. The realizations
R̄L(qi ,q0,i)R̄L* (qj ,q0,j ) are reproduced from the measured spectral data though the inverse
rier transformation. The averaging on the set of theR̄L(qi ,q0,i)R̄L* (qj ,q0,j ) realizations gives
M̄2n andPL@v̄(t)#. In the result, the ‘‘layer stripping’’ process may be used.

As the alternative method,M̄2 is employed for the inversion of the moment equation solut
~35!.
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Solution of a discrete inverse scattering problem
and of the Cauchy problem of a class of discrete
evolution equations
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The Cauchy problem of a class of nonlinear evolution equations is solved by
finding explicit solutions of a discrete inverse scattering problem that are not re-
stricted to the pure soliton case and implementing appropriate time evolution of the
scattering data. This yields operator-valued functions, which are shown to solve a
hierarchy of operator evolution equations by applying methods similar to those in
Marchenko’s work. In addition the relation to canonical Lax constructions is inves-
tigated. Using methods introduced by Aden and Carl and Schiebold, one obtains
scalar solutions to corresponding scalar equations, sometimes representable by de-
terminants on operator ideals. ©1999 American Institute of Physics.
@S0022-2488~99!03008-X#

I. INTRODUCTION

The inverse scattering problem of the Schro¨dinger operator, investigated by Marchenko1 and
many others, lead to the so-called inverse scattering method for the Korteweg–de Vries eq

ut5uxxx16uux , ~1!

which provides a method for solving the Cauchy problem of~1!. This was discovered by Gardne
et al.2 in 1967. A discrete analog was developed by Flaschka3 in 1974 and was used to solve th
discrete nonlinear evolution equation

] ttyn5e2~yn2yn21!2e2~yn112yn! ~nPZ!,

called the toda lattice equation.
As Flaschka did, we focus on reconstructing real sequencesa5(an)nPZ andb5(bn)nPZ from

spectral information, the scattering data, of an operatorLPL(l 2(Z)) defined by

~Lx!n5an21xn211bnxn1anxn11 ~xPl 2~Z!,nPZ!

in the process of discrete inverse scattering. Herel 2(Z) denotes the Hilbert space of squa
summable complex sequences over the integersZ and L(l 2(Z)) the space of all linear and
continuous operators onl 2(Z). Under the assumptions

an.0 ~nPZ!, (
n52`

`

unu~ u12an
2u1ubnu!,`, ~2!

we show howa and b can be represented as sequences of traces of one-dimensional ope
constructed from the scattering data, and therefore obtain an explicit solution of the des
discrete inverse scattering problem. This is done in the first part of the paper.

a!Electronic mail: blohm@minet.uni-jena.de
43740022-2488/99/40(9)/4374/19/$15.00 © 1999 American Institute of Physics
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The traditional way of construction of solutions of some evolution equation by solvin
inverse scattering problem is to assume that the function under consideration already solv
equation and to determine the resulting time evolution of the scattering data. Equations tha
the effective application of this procedure are usually given by Lax pairs4 or zero-curvature
conditions~see, e.g., Faddeev5 or Ablowitz6!. Although that analysis is not carried out in th
article, the method of Lax pairs was used to come up with the time evolution of the scatterin
we implement in Sec. III. Employing ideas similar to those in Marchenko’s book,7 we find
operator-valued functions that solve evolution equations easily accessible by an algo
Equivalent scalar equations are achieved by application of the trace operator defined
finite-dimensional operators. Next we show that there is indeed a straight relation to a fam
Lax pairs, as indicated above. Note that this suggests uniqueness assertions regarding the
of the initial value problem solved, a question that is not subject to a rigorous investigation
A short presentation of possible representations by determinants on operator ideals follow

Finally, we demonstrate the solution of the Cauchy problem of the Toda lattice equatio
the Langmuir lattice equation.

The method of representation of solutions of soliton equations by traces and determina
operator ideals was introduced by Aden and Carl8 and Schiebold.9,10

II. DISCRETE INVERSE SCATTERING

Our aim here is to derive a discrete version of the so-called Gelfand–Levitan–March
equation found in the literature.

A. Derivation of the fundamental equation

There are many papers on discrete scattering. For a technically more detailed but som
different discussion we refer to Geronimo and Case.11

Under the hypothesis~2!, L has essential spectrum

se~L !5@22,2#

and discrete spectrum inR\@22,2#. This can be proved by observing thatL is the sum of a right
and left shift operator and an additional compact self-adjoint operator and by consultin
example, Berthier.12 We consider the linear differences equation

lwn5an21wn211bnwn1anwn11 ~nPZ!, ~3!

wherelPC is fixed. Asymptotically~3! becomes

lwn5wn211wn11 ~nPZ!. ~4!

If lÞ0, a fundamental system of solutions of~4! is given by (zn)nPZ and (z2n)nPZ where
l5z1z21. Solutions of~3! that behave asymptotically similarly, the so-called Jost solutions,
of special interest to us. These can be obtained by solving the following linear summation
tion:

1

bn
Fn5zn2 (

k5n

`

~12ak
2!S zn2k212z2~n2k21!

z2z21 D 1

bk
Fk1 (

k5n

`

bkS zn2k2z2~n2k!

z2z21 D 1

bk
Fk

using the method of successive approximation. Here we setbnªP j 5n
` aj and assumedzPŪ,

Uª$xPCuuzu,1%. This gives solutions

Fn
1~z!5 (

m5n

`

k~n,m!zm ~nPZ!
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of ~3! for lªz1z21 such that the series converges absolutely and limn˜` z2nFn
1(z)51 uni-

formly on Ū. Similarly, or simply by a transformation of coordinates, we get another family
solutions

Cn
2~z!5 (

m52n

`

l ~n,m!zm ~nPZ!

such that the series converges absolutely and limn˜2` znCn
2(z)51 uniformly onŪ.

Substituting the Jost solutions into~3!, using our hypotheses~2!, and comparing coefficients
we get:

an5
k~n11,n11!

k~n,m!
, k~n,n!5)

j 5n

`
1

aj
Þ0,

~5!

bn5
k~n,n11!

k~n,n!
2

k~n21,n!

k~n21,n21!
~nPZ!.

In the particular case whereuzu51, zÞ61 we define another set of solutions of~3! by

Fn
2~z!5Fn

1~z21! ~nPZ!, Cn
1~z!5Cn

2~z21! ~nPZ!.

From the linear independence ofF1(z) and F2(z) we infer the existence of coefficientsa(z)
andb(z) such that

Cn
2~z!5b~z!Fn

1~z!1a~z!Fn
2~z! ~nPZ!. ~6!

We call r (z)ªb(z)/a(z) the reflection coefficient. By substitution of~6! into ~3! and some
computation, it is not hard to see that

a~z!5a~ z̄!, b~z!5b~ z̄!, r ~z!5r ~ z̄!, ~7!

and

ua~z!u22ub~z!u251,

in particular

ur ~z!u25121/ua~z!u2,1 ~8!

for all uzu51, zÞ61. Furthermore,a has the analytical continuation

a~z!ª
zan~Cn

2~z!Fn11
1 ~z!2Cn11

2 ~z!Fn
1~z!!

z221

onto the open unit diskU. The zeros ofa in U are simple and correspond vial5z1z21 to the
discrete eigenvalues ofL. More precisely, ifa(z)50, thenF1(z) andC2(z) are linearly depen-
dent eigenvectors ofL, and

a8~z!52r~z!/ziF1~z!i2
2, ~9!

whereC2(z)5r(z)F1(z).
A nontrivial fact is thata has at most finitely many zeros inU. This can be seen by splitting

L into two operators, one acting onl 2($...,22,21%) and one acting onl 2($0,1,2,...%). For either
one we apply the results of Geronimo and Case and in turn, using the very same technique
that L can have only finitely many eigenvalues of magnitude greater than 2.
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Let z1 ,...,zN denote the zeros ofa in U, g iªiF1(zi)i2
22 ( i 51,...,N). Integrating the expres

sionCn
2(z)zm21a(z)21 along the boundary of a ball of radius 0,e,1 and applying the residue

theorem to one side, using~9!, while considering the limit ase tends to one and using~6! on the
other side, yields the following discrete version of the famous Gelfand–Levitan–Marchenko
tion:

dnm

k~n,n!
5k~n,m!1(

j 5n

`

k~n, j ! f ~m1 j ! ~m>nPZ!, ~10!

where

f ~m!5(
i 51

N

zi
mg i1

1

2p i E]U
r ~z!zm21 dz ~mPZ!

and d is the Kronecker–Delta function. The numbersz1 ,...,zN together with the normalization
constantsg1 ,...,gN and the reflection coefficientr are called the scattering data. By settin
k(n,m)ªk(n,m)/k(n,n) for m.n, Eq. ~10! can be reformulated as

05k~n,m!1 f ~m1n!1 (
j 5n11

`

k~n, j ! f ~m1 j ! ~m.nPZ!. ~11!

We will focus on solving Eq.~11!, that is, as we will see, uniquely solvable. Once we foundk, one
can use

k~n,n!22511 f ~2n!1 (
j 5n11

`

k~n, j ! f ~n1 j !

to computek(n,n). By the definition ofk, all other valuesk(n,m) for m.n are accessible, and
via ~5! the values ofa andb are thereby determined byk. Finally, we state a consequence of~11!
proved by Geronimo and Case:11

(
m50

`

u f ~m!u,`

and in particular

(
m50

` U E
]U

r ~z!zm21dzU,`. ~12!

B. Solution of the inverse scattering problem

The following theorem shows how to solve Eq.~11! abstractly, using the trace operator
defined on the operator ideal of finite-dimensional operators.13 We write~•u•! for the inner product
on a Hilbert space andh^ g for the one-dimensional operator on a vector spaceV, defined for a
linear functionalh on V and an elementg of V by

h^ gxªh~x!g ~xPV!.

An important property of the trace operator, that is used here and in later sections, is tha
multiplicative on operators of the formT(h^ g), that is,

tr~T~h^ g!S~h^ g!!5tr~T~h^ g!!tr~S~h^ g!!
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for any two linear operatorsS and T on V. If H is a Hilbert space, its dual will be canonicall
identified with the space itself. Byen we denote the vector ofl 2(Z) that hasnth coordinate one
and zero otherwise.

Theorem II.B.1: Let H be a Hilbert space,VPL(H), h,gPH, and letBPL(H) be such that

~Bxuy!52 (
k50

`

~Vkxuh!~Vkguy! for all x,yPH.

Then:
(i) VBV2B5h^ g.
(ii) Assuming thatV and (11V2nB) are invertible for everynPZ and setting

K~n,m!ªVm2n~11V2n11BV!21V2n~h^ g!, F~m!ª2Vm~h^ g! ~n,mPZ!,

it is

05tr~K~n,m!!1tr~F~m1n!!1 (
j 5n11

`

tr~F~m1 j !!tr~K~n, j !! ~n,mPZ,m>n!.

(iii) Under the hypotheses of(ii) , k(n,m)ªtr(K(n,m)) (n,mPZ,m.n) defines a solution of
Eq. ~11! with kernel f (m)ªtr(F(m)) (mPZ).

Proof: For arbitraryx,yPH it is

~VBVx2Bxuy!5~VBVxuy!2~Bxuy!52 (
k50

`

~Vk11xuh!~Vk11guy!2~Bxuy!

5~xuh!~guy!5~h^ gxuy!,

which implies~i!. We setLnªV2nB andW(n)ª(11VLnV)21V2n(h^ g) and compute

(
j 5n

`

tr~F~m1 j !!tr~K~n, j !!52(
j 5n

`

~Vm1 jguh!~Vj 2n~11VLnV!21V2nguh!

52(
j 50

`

~Vj~11VLnV!21V2nguh!~Vm1n1 jguh!

5~Vm1nB~11VLnV!21V2nguh!5tr~Vm1nBW~n!!

and

F~m1n!1K~n,m!2F~m1n!K~n,n!1Vm1nBW~n!

52Vm1n~h^ g!1Vm2nW~n!1Vm1n~h^ g!W~n!1Vm1nBW~n!

52Vm1n~h^ g!1Vm2n~11V2n~h^ g!1V2nB!W~n!

52Vm1n~h^ g!1Vm2n~11V2n11BV!W~n!50.

Now, application of the trace operator to the last equation gives~ii !, and statement~iii ! is an
immediate consequence of it. h

The theorem just proved suggests the following model for the solution of Eq.~11!: We choose
H1ªl 2

N , H2ªL2(T), HªH1%
2H2 , whereTª]U is the complex unit sphere equipped with th

normalized Haar-measurem. In addition let

~1! V1PL(H1) such that (V1x) iªzixi(xPl 2
N);

~2! V2PL(H2) multiplication with the identical mapping onT;
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~3! h1 ,g1PH1 such that2h1g15g5(g1 ,...,gN);
~4! h2 ,g2PH2ùL`(T) such that2h2g25r .

After settingVªV1% V2 , gªg1% g2 , hªh1% h2 , we observe:

tr~Vm~h^ g!!5~Vmguh!5~V1
mg1uh1!1~V2

mg2uh2!

52(
i 51

N

zi
mg i2E

T
r ~z!zm dm~z!

52S (
i 51

N

zi
mg i1

1

2p i E]U
r ~z!zm21 dzD 52 f ~m!.

Consequently, we are going to show:

~1! The operator equationVBV2B5h^ g can be solved as desired for Theorem II.B.1.
~2! The operator 11V2nB is invertible for everynPZ.

We proceed with the solution of the first problem:
Lemma II.B.2:Suppose thatg,hPL2(T)ùL`(T) and thatVPL(L2(T)) is the multiplication

with the identical mapping onT. Then there is exactly one operatorBPL(L2(T)) such that

~Bxuy!52 (
k50

`

~Vkxuh!~Vkguy! for every x,yPL2~T!.

It follows that iBi<iguL`(T)iihuL`(T)i , and thatB factors throughl 2(N0), B5SR whereS
PL(l 2(N0),L2(T)) is such that

~Sxuy!52 (
n50

`

~xuen!~Vnguy! for every xPl 2~N0!,yPL2~T!

and iSi<iguL`(T)i , as well asRPL(L2(T),l 2(N0)) is such that

~Rxuy!5 (
k50

`

~Vkxuh!~yuek! for every xPL2~T!,yPl 2~N0!

and iRi<ihuL`(T)i .
Proof: Since

(
k50

`

u~Vkxuh!~Vkguy!u5 (
k50

` U E
T
~xh̄!zk dm~z!UU E

T
~gȳ!zk dm~z!U

<ixh̄uL2~T!iigȳuL2~T!i<ixiihuL`~T!iiguL`~T!iiyi

for arbitraryx,yPL2(T),

@xuy#ª2 (
k50

`

~Vkxuh!~Vkguy!

defines a continuous sesquilinear form onL2(T). We conclude that for eachyPL2(T) there exists
exactly oneAyPL2(T) satisfying

@•uy#5~•uAy!. ~13!
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ObviouslyiAyi<iguL`(T)iihuL`(T)iiyi . HenceB5A* is the right choice. It is clear thatB is
uniquely determined throughA by ~13!. Similarly S andR are given by their required propertie
Finally, since

~SRxuy!52 (
n50

`

~Rxuen!~Vnguy!52 (
n50

`

~Vnxuh!~Vnguy!

for all x,yPL2(T), B5SR. h

It is easier to solve the corresponding operator equation overH15l 2
N for V1 . Because of

iV1i,1, we can simply choose

B1ª2 (
n50

`

V1
n~h1^ g1!V1

n .

In this case we have an analogous factorization throughl 2(N0) by

S1ª2 (
n50

`

en^ ~V1
ng1!, R1ª(

k50

`

~~V1* !kh1! ^ ek .

The operators received from the application of Lemma II.B.2 toV2 ,g2 ,h2 will be denoted by
B2 ,S2 ,R2 from now on. We define

K1ªR1S1 , K2ªR2S2

and writeI i :Hi�H andPi :H˜Hi for the canonical inclusion and projection operators, resp
tively. Let

RªR1P11R2P2PL~H,l 2~N0!!, SªI 1S11I 2S2PL~ l 2~N0!,H !,

KªK11K2PL~ l 2~N0!!, BªSRPL~H !.

It is easily checked thatK5RS. For arbitraryx5x1% x2PH andy5y1% y2PH we compute

~Bxuy!5~ I 1S1R1x11I 1S1R2x21I 2S2R1x11I 2S2R2x2uy!

5~S1R1x1uy1!1~S1R2x2uy1!1~S2R1x1uy2!1~S2R2x2uy2!

52 (
n50

`

~~V1
nx1uh1!~V1

ng1uy1!1~V2
nx2uh2!~V1

ng1uy1!

1~V1
nx1uh1!~V2

ng2uy2!1~V2
nx2uh2!~V2

ng2uy2!!

52 (
n50

`

~Vnxuh!~Vnguy!.

ThusB is the solution of the operator equation sought for.
Next we take care of the existence of the inverse operators. A by-product is the u

solvability of Eq.~11!: SetK (n)
ªRV2nS. An easy computation shows that

~K ~n11!x!k5(
j 50

`

f ~2n1k1 j 12!xj ,

where f (m)52tr(Vm(h^ g)). Hence solving Eq.~11! is equivalent to solving

~11K ~n11!!k~n,n111• !52 f ~2n111• !
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for everynPZ. As we will see soon, 11K (n) is invertible and therefore~11! possesses at mos
one solutionk. The following lemma collects important properties of the operatorsK (n). Similar
statements can be found in other settings in scattering theory.

Lemma II.B.3:Assuming the situation of our model, it isiK (n)i<( j 50
` u f (2n1 j )u, K (n) is

compact, and21¹s(K (n)) for everynPZ.
Proof: Let NPN0 andxPl 2(N0), ixi<1. It is

S (
k5N

` U(
j 50

`

f ~2n1k1 j !xjU2D 1/2

5S (
k5N

` U(
j 5k

`

f ~2n1 j !xj 2kU2D 1/2

< (
j 5N

` S (
k5N

j

u f ~2n1 j !xj 2ku2D 1/2

< (
j 5N

`

u f ~2n1 j !u.

ChoosingN50 gives the norm estimate. In addition we showed that for anye.0 there exists an
N>0 such that

S (
j 5N

`

uyj u2D 1/2

,e

uniformly for all y5K (n)x, xPl 2(N0), ixi<1. We infer thatK (n) is compact. Define

K1
~n!
ªR1V1

2nS1 , K2
~n!
ªR2V2

2nS2 .

ThenK (n)5K1
(n)1K2

(n) , and for arbitraryi , j PN0 we have

~K1
~n!ej uei !5~R1V1

2nS1ej uei !5~V1
2n1 iS1ej uh1!52~V1

2n1 i 1 jg1uh1!.

If xPl 2(N0), this implies

~K1
~n!xux!52 (

k50

`

(
j 50

`

xj~V1
n1 jg1u~V1* !n1kh1!x̄k52(

i 51

N

g1,i h̄1,iU(
k50

`

xkzi
k1nU2

>0,

and thereforeK1
(n) is a positive operator. Let us turn to the second operator: Since

~K2
~n!ej uei !5¯52~V2

2n1 j 1 ig2uh2!5E
T
r ~z!z2n1 i 1 j dm~z!,

we see for arbitraryxPl 2(N0) that

~K2
~n!xux!5 (

k50

`

(
j 50

` E
T
r ~z!z2n1 i 1 j xj x̄k dm~z!5E

T
r ~z!q~z!p~z!dm~z!

whereq(z)5( j 50
` xjz

n1 j , p(z)5(k50
` xkz

2(n1k) @in L2(T)#. Thus:

u~K2
~n!xux!u<irpuL2~T!iiquL2~T!i<ipuL2~T!iiquL2~T!i5ixi2,

becauseur u<1 almost everywhere. AssumingirpuL2(T)i5ipuL2(T)i leads to

E
T
~12ur ~z!u2!up~z!u2 dm~z!50,
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which, taking Eq.~8! into account, implies thatp vanishesm almost everywhere and thus thatx
50. Hence we have shown:

xÞ0⇒u~K2
~n!xux!u,ixi2.

Now it is easy to see that 11K (n) is one-to-one. Indeed, ifxÞ0, we know that

~~11K ~n!!xux!5ixi21~K1
~n!xux!1~K2

~n!xux!.0,

and in particular it follows that (11K (n))xÞ0. Now, as shown in Riesz theory of function
analysis, the fact thatK (n) is compact implies that 11K (n) is invertible. h

Lemma II.B.4:In the situation of our model, the operators 11VnB are invertible for every
nPZ and

lim
n˜`

~~11VnB!212~12VnB!!50.

Proof: This is implied by the next lemma. h

Lemma II.B.5:SupposeRPL(E,F) andSPL(F,E) whereE andF are Banach spaces. The
(i) 11RS is invertible if and only if 11SR is invertible, and in that case: (11RS)2151

2R(11SR)21S.
(ii) r(SR)\$0%5r(RS)\$0%, s(SR)\$0%5s(RS)\$0%.
Proof: Assertion(i) is easily proved using the stated formula, and(ii) is a simple consequenc

of it. h

Now we have essentially solved our discrete inverse scattering problem and close this s
with a main result:

Theorem II.B.6: In the situation of our model the following assertions are true:
(i) Equation~11! possesses exactly one solutionk(n,n1•) in l 2(N0) for eachnPZ.
(ii) The operators 11V2nB and 11V2n11BV are invertible for everynPZ.
(iii) k(n,m)ªtr(Vm2n(11V2n11BV)21V2n(h^ g))(m.n) gives the solution of Eq.~11!

with kernel

f ~m!52tr~Vm~h^ g!!5(
i 51

N

zi
mg i1

1

2p i E]U
r ~z!zm21 dz ~mPZ!.

(iv) Let Qnª(11V2nB)21V2n(h^ g), qnªtr(Qn), and letk denote the function of the co
efficients of the Jost solutionF1. Then:

0,k~n,n!5)
j 5n

`
1

aj
5A11qn ~nPZ!

andk(n,m)5A11qnk(n,m)(m.n).
(v) For everynPZ:

an5S 11qn11

11qn
D 1/2

5
k~n11,n11!

k~n,n!

and

bn5
k~n,n11!

k~n,n!
2

k~n21,n!

k~n21,n21!
5k~n,n11!2k~n21,n!

5tr~V~11Qn!21Qn2V~11Qn21!21Qn21!.
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Proof: Almost everything has been proved before. Only assertion(iv) still calls for some
consideration: Using the techniques of the proof of Theorem II.B.1, we see that

1

k~n,n!2 511 f ~2n!1 (
j 5n11

`

k~n, j ! f ~n1 j !

512k~n,n!

512tr~~11V2n11BV!21V2n~h^ g!!

512tr~~11Qn!21Qn!

512
qn

11qn
5

1

11qn
.

We know thatk(n,n).0, and by the last computation, it is 11qn.0. Hence:

k~n,n!5A11qn. h

III. SOLUTION OF EVOLUTION EQUATIONS

In this section we implement a certain time development of the scattering data and show
evolution equation can be solved by the resulting functionsa andb. From now on we will always
use the constructions and notations of our model. For real numberss1 ,...,sM set

Aª(
k51

M

sk~Vk2V2k!, g~ t !ªetAg ~ tPR!. ~14!

We assume thatg was given by initial valuesa and b that satisfy~2!. All operators and
functions, defined usingg before, will from now on be defined for alltPR by substitution ofg(t)
for g. Consequently they will depend on an additional parametert. The next Lemma shows tha
everything works out well. Note that, in the words of scattering theory,~14! just means that the
discrete eigenvalues ofL stay constant in time, while the reflection coefficient and the normal
tion constantsg i have exponential time evolution.

Lemma III.1:For arbitrarytPR the following statements are true:
(i) B(t)5etAB(0);
(ii) ;nPZ: 21¹s(V2nB(t))øs(V2n11B(t)V)øs(K (n)(t))øs(Qn(t));
(iii) ;nPZ: k(n,n1•,t)Pl 2(N0);
(iv) ;mPZ: f (m,t)ªtr(F(m,t))PR;
(iv) ;nPZ: 11qn(t).0.
Proof: Let x,yPH. Since

~etABxuy!52 (
n50

`

~Vnxuh!~VnguetA* y!52 (
n50

`

~Vnxuh!~VnetAguy!,

the uniqueness assertion of Lemma II.B.2 implies thatB(t)5etAB. In order to prove(ii) , we
return our attention to the proof of Lemma II.B.3: It is necessary that the negative Fourier
ficients of h2g2(t) are absolutely summable. This will be shown in the following Lemma III
Furthermore,

g2~ t !~z!5expS t2(
k51

M

sk~zk2 z̄k!D g2~z!5expS t4i (
k51

M

skFzkD g2~z! ~zPT!,

and souh2g2(t)u is constant int. From
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g1~ t !n5expS t2(
k51

M

sk~zn
k2zk

2k!D g1,n ~n51,...,N!,

we conclude thath1g1(t) has constant sign. These properties allow us to infer the assertio
Lemma II.B.3 for all tPR. Assertion (iii) follows easily from iV1i,1 and noting thath2

PL`(T). Since

tr~Vm~h^ g~ t !!!52(
i 51

N

expS t (
k51

M

sk~zi2zi
21!D zi

mg i

2E
T

expS t (
k51

M

sk~z2z21!D r ~z!zmdm~z!,

Eq. ~7! and the properties of the Haar measurem give (iv). In order to prove(v), we observe that
21¹s(Qn(t)) implies 11qn(t)Þ0 for all real t. By (iii) , (iv) and by the construction of the
operatorsK (n), not only k gives solutions to the Eq.~11! but also its conjugate. Hence, by th
uniqueness of solutions implied by(ii) , k(n,m,t) must be real for allt andm.n. As in the proof
of Theorem II.B.6, it is

1

11qn~ t !
512k~n,n,t !511 f ~2n,t !1 (

j 5n11

`

k~n, j ,t ! f ~n1 j ,t !.

Thereforeqn(t) is real. Now, since 11qn(0).0, 11qn(t)Þ0 for all tPR, assertion(v) follows
from the continuity ofqn . h

We needed:
Lemma III.2:SupposegPL2(T) is such thatCª(n52`

0 u(gu f n)u,`, where (f n)nPZ denotes
the canonical orthonormal basis inL2(T), and letcPR, mPZ be arbitrarily chosen. Furthermor
defineh(z)ªeczm

g(z) (zPT). Then:(n52`
0 u(hu f n)u,`.

Proof: Since

~hu f n!5E
T
g~z!eczm

z2ndm~z!5 (
k50

`
ck

k! ET
g~z!zmk2n dm~z!,

(
n52`

0

u~hu f n!u<(
k50

`
ck

k! (
n52`

0

u~gu f n2mk!u.

For the casem>0 we have(n52`
0 u(hu f n)u<Cec. Otherwise we use Ho¨lder’s inequality and

Bessel’s inequality to show

(
n52`

0

u~hu f n!u<(
k50

`
ck

k! S (
n51

2mk

u~gu f n!u1CD
<(

k50

`
ck

k!
~2mk!S (

n51

2mk

u~gu f n!u2D 1/2

1Cec<2mcecigi1Cec. h

Now we are in the position to define

an~ t !ªS 11qn11~ t !

11qn~ t ! D 1/2
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and

bn~ t !ªtr~V~11Qn~ t !!21Qn~ t !2V~11Qn21~ t !!21Qn21~ t !!

for nPZ, tPR. These functions are differentiable int, bn andan
2 are even analytical int. From

now on we will frequently omit the parametert in computations and definitions.

A. Derivation of evolution equations

Without necessary relation to the model introduced in Sec. II B, we show a derivation
class of operator evolution equations that will—of course—later be shown to combine wit
previous work.

Consider a family of operatorsFn(t) where nPZ and t is real or complex and possibl
confined to an open set. We require thatFn(t) is invertible for all admissiblet and thatFn is
differentiable int such that

] tFn5 (
k51

M

skFn1k ~nPZ!, ~15!

wheres1 ,...,sM are some fixed scalars. Furthermore we demand that the expression

~Fm1k1Fm2k!Fm
21 ~16!

is independent ofmPZ for fixed k. Define

GnªFn
21Fn11 , BnªGn112Gn , CnªGn

21Gn11

for nPZ. Under the two hypotheses above, we derive evolution equations forBn andCn . First
note that trivially

Bn5Gn112Gn5Gn~Gn
21Gn1121!5Gn~Cn21!, ~17!

and as a consequence of property~16!:

Bn5Gn
21~Gn21

21 2Gn
21!Gn5Gn

21~Cn2121!. ~18!

After setting

Xj ,n
~k!5H 1 if j 5k

Gn112Gn2k11 if j 5k21
Gn11¯Gn1k2 j 21~Gn1k2 j2Gn2 j ! if 0< j ,k21
0 otherwise;

for n, j PZ, 1<k<M and noting thatFn1k5FnGn¯Gn1k21 for k>1, we arrive at

] tGn52Fn
21] tFnGn1Fn

21] tFn115 (
k51

M

sk~Gn¯Gn1k21~Gn1k2Gn!!5 (
k51

M

skGnX0,n
~k!5GnW0,n ,

whereWj ,nª(k51
M skXj ,n

(k) . Therefore:

] tCn52Gn
21] tGnCn1Gn

21] tGn115CnW0,n112W0,nCn . ~19!

Similarly, since] t(Gn
21)52Gn

21] tGnGn
2152W0,nGn

21, it is

Gn
21~] t~Gn21

21 !2] t~Gn
21!!Gn5Gn

21W0,n21Gn21
21 Gn1Gn

21W0,n52W1,nCn211CnW1,n11 .
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Hence, by Eq.~18!:

] tBn5CnW1,n112W1,nCn212W0,nBn1BnW0,n5CnW1,n112W1,nCn211@Bn ,W0,n#. ~20!

The point is that we can state an easy algorithm that lets us formulate theXj ,n
(k) in terms of the

Cn21 andBn . Equation~18! together with Eq.~17! gives:

GmBm5~Gm2Gn!Bn1GnBn5H ~Bm211¯1Bn!Bn1Cn2121 if m.n
Cn2121 if m5n
2~Bn211¯1Bm!Bn1Cn2121 if m,n;

and

Gm~Cn21!5~Gm2Gn!~Cn21!1Gn~Cn21!

5H ~Bm211¯1Bn!~Cn21!1Bn if m.n
Bn if m5n
2~Bn211¯1Bm!~Cn21!1Bn if m,n.

All that remains to realize is, that after we start withXk21,n
(k) 5Bn1¯1Bn2k11 , we can iterate

overXj ,n
(k)5Gn11Xj 11,n11

(k) (0< j ,k), applying the equations above, to derive formulas of allXj ,n
(k)

in terms of theBn , Cn21. We will do the computations fork53: Starting with X2,n
(3)5Bn

1Bn211Bn22 , we get

X1,n
~3!5Gn11X2,n11

~3! 5Gn11~Bn1Bn211Bn22!

5Bn
21Bn21

2 1BnBn211~Cn21!1~Cn2121!1~Cn2221!.

Similarly,

X0,n
~3!5Gn11X1,n11

~3! 5Bn
31~Cn21!~Bn1112Bn!1Bn11

1Bn1Bn211Bn~Cn21!1~Bn1Bn21!~Cn2121!.

Let us return to the situation of our model: Consider

Fn~ t !ªV2netZ̃1VnetZB,

wherenPZ, tPR andZª(k51
M skV

k, Z̃ª(k51
M skV

2k, and defineGn , Cn , Bn , Xj ,n
(k) andWj ,n

just as before. It is readily seen thatGnV5(11Qn). Clearly, property~15! is satisfied, whereas

property~16! is a consequence of the relationFm1kFm
215V2m(V2k2Vk)etZ̃Fm

211Vk, which in
turn gives Fm1kFm

2152Fm2kFm
211Vk1V2k for all m,kPZ. The eventual goal is to derive

evolution equations for the scalarsan andbn . The relation to our construction is as follows:

cnªan
25

11qn11

11qn
511tr~~11Qn!21~Qn112Qn!!

511tr~V21Gn
21~Gn112Gn!V!

511tr~Gn
21Gn1121!511tr~Cn21!. ~21!

From ~17! we infer

~11Qn21!212~11Qn!215V21~Gn21
21 2Gn

21!5V21Gn~Gn112Gn!Gn
21

and hence
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bn5tr~V~~11Qn21!212~11Qn!21!!5tr~Gn112Gn!5tr~Bn!. ~22!

Note that the operatorsXj ,n
(k) for 0< j <k21 are one dimensional, of the formT(((V* )21h)

^ g) for some operatorT. The same holds for the operatorsCn21, Bn . This allows us to obtain
scalar evolution equations forcn , bn from Eqs. ~19! and ~20! by Eqs. ~21! and ~22!, and by
application of the trace operator.

For example, assumingA5( j 51
3 s j (V

j2V2 j ) we arrive after some computation at the fo
lowing scalar evolution equations:

] tcn5cn~s3~bn11
3 2bn

323~bn112bn!1cn11~2bn111bn12!

1cn~bn112bn!1cn21~22bn2bn21!!

1s2~bn11
2 2bn

21cn112cn21!1s1~bn112bn!! ~23!

and

] tbn5cn~s3~bn11
2 1bn

21bn11bn1cn111cn1cn2123!1s2~bn111bn!1s1!

2cn21~s3~bn
21bn21

2 1bnbn211cn1cn211cn2223!1s2~bn1bn21!1s1!. ~24!

B. Relation to the Lax approach

In this section we show that there is a straight relation between the method presented
previous parts of the paper and the method of Lax pairs.

Define

] tL~ t !enª] tan21~ t !en211] tbn~ t !en1] tan~ t !en11 ~nPZ!.

This is a densely defined operator inl 2(Z), which is indeed the strong derivative ofL on E
ªspan$enunPZ%. An additional operatorU(t) in l 2(Z) shall be defined by

U~ t !enª1/2(
j 51

M

~dj ,n~ t !en2 j2dj ,n1 j~ t !en1 j ! ~nPZ!

for some numbersdj ,n that are to be determined later. We will see that the equation

@L,U#1] tL50 ~25!

is equivalent to a system of evolution equations fora andb. The pair~L,U! is then called a Lax
pair for these equations. This method of construction of evolution equations has been stud
many authors. A version for the Toda lattice equation can be found for example in Ref. 3. D
dj ,nª0 if j .M or j <0, respectively. An easy computation shows that~25! is equivalent to the
following system of equations:

an21dj ,n211bndj 11,n1andj 12,n112an2 j 21dj ,n2bn2 j 21dj 11,n2an2 j 22dj 12,n50, ~26!

for j >1,

an11d2,n122an21d2,n111~bn112bn!d1,n1152] tan ~27!

and

~and1,n112an21d1,n!5] tbn . ~28!

This indeed determines a couple of evolution equations foran andbn . A reformulation of~26! is
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an2 j 21dj ,n2an21dj ,n215~bn2bn2 j 21!dj 11,n1andj 12,n112an2 j 22dj 12,n ~ j 51,...,M !.

The ansatzdj ,n5r j ,n(an21¯an2 j ) leads to:

r j ,n2r j ,n215~bn2bn2 j 21!r j 11,n1an
2r j 12,n112an2 j 22

2 r j 12,n ~ j 51,...,M !, ~29!

r j ,n50 ~ j .M !. ~30!

Obviously, the sequence (r j ,n)nPZ is uniquely determined up to a constant for everyj 51,...,M .
Equations~27! and ~28! now become

] tan51/2an~an11
2 r 2,n122an21

2 r 2,n111~bn112bn!r 1,n11! ~31!

and

] tbn5~an
2r 1,n112an21

2 r 1,n!. ~32!

The upshot is that we can explicitly find a fundamental system of solutions of Eqs.~29! and~30!.
Theorem III.B.1: For each 1<k<M , the familyXj ,n

(k) of operators satisfies

Xj ,n
~k!2Xj ,n21

~k! 5BnXj 11,n
~k! 2Xj 11,n

~k! Bn2 j 211CnXj 12,n11
~k! 2Xj 12,n

~k! Cn2 j 22 ,

wherenPZ, j >0.
Proof: This is the result of a tedious but nevertheless easy computation after rewritin

equation in terms of the operatorsFm and using the fact that (Fm1k1Fm2k)Fm
21 is independent of

m. h

Let xj ,n
(k)
ªtr(Xj ,n

(k)) if j Þk andxk,n
(k)

ª1. Thenr j ,nª(k51
M skxj ,n

(k) gives the general solution o
Eqs.~29! and~30!. In addition, Eqs.~31! and~32! are also satisfied as a consequence of Eqs.~19!
and ~20! and of Theorem III.B.1.

We have seen now that the evolution equations derived in Sec. III A correspond to Lax
constructed in this section. The Lax approach provides a second method of derivation of ev
equations by solving Eqs.~29! and ~30! directly and substituting the results into Eqs.~31! and
~32!. Faced with a specific Lax pair, one can obtain the coefficientss1 ,...,sM by taking limits as
n grows to infinity. This is implied by the following lemma:

Lemma III.B.2:If 0< j ,k, then limn˜` tr(Xj ,n
(k))50.

Proof: It is

BVmf 5~S1~R1V1
mf 11R2V2

mf 2!! % ~S2~R2V2
mf 21R1V1

mf 1!!

for arbitrary f 5 f 1% f 2PH. Clearly limm˜` V1
m50. But also (R2V2

mf 2uej )5(V2
m1 j f 2uh2) and

therefore

iR2V2
mf 2i5S (

k50

` U E
T
h̄2f 2zm1kdm~z!U2D 1/2

˜0 ~m˜`!.

Thus limm˜` BVmf 50. Furthermore, we have that (Vmguh)˜0 asn˜`, sinceg2h̄2PL2(T). It
requires a little computation to check that

tr~Xj ,n
~k!!5tr~~11V2n11BV!21Vj~Vk2V2k!~11V2~n2 j !!21V2~n2 j !~h^ g!!.

Now, using the asymptotics assertion of Lemma II.B.4,
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lim
n˜`

~~11V2n11BV!21Vj~Vk2V2k!~11V2~n2 j !B!21V2~n2 j !

2~12V2n11BV!Vj~Vk2V2k!~12V2~n2 j !B!V2~n2 j !!50,

and we infer

lim
n˜`

tr~Xj ,n
~k!!5 lim

n˜`

tr~~12V2n11BV!Vj~Vk2V2k!~12V2~n2 j !B!V2~n2 j !~h^ g!!50.

h

Concluding this section, we show how to derive Eqs.~23! and ~24! by a Lax ansatz forM
53: Obviously,r 3,n5s3 . From

r 2,n2r 2,n215~bn2bn23!r 3,n5~bn2bn23!s3

it follows that r 2,n5s3(bn1bn211bn22)1s2 . It remains to solve

r 1,n2r 1,n215~bn2bn22!r 2,n1an
2r 3,n112an23

2 r 3,n .

Rewriting it as

r 1,n2r 1,n215s3~bn
22bn22

2 1bnbn212bn21bn221an
22an23

2 !1s2~bn2bn22!

leads to

r 1,n5s3~bn
21bn21

2 1bnbn211an
21an21

2 1an22
2 !1s2~bn1bn21!1 r̃

for some constantr̃ . Since then limn˜` r 1,n53s31 r̃ , it must ber̃ 5s123s3 , and hence:

r 1,n5s3~bn
21bn21

2 1bnbn211an
21an21

2 1an22
2 23!1s2~bn1bn21!1s1 .

Now substitution into Eqs.~31! and ~32! gives the evolution Eqs.~23! and ~24!.
At this point we note again the fact that the Lax equations are satisfied gives a plausib

on the necessary time evolution of the scattering data of the operatorL, as investigated in many
books and articles on inverse scattering methods. This in turn suggests uniqueness asser
solutions. However, a rigorous proof or investigation is omitted here.

C. Representation of solutions by determinants

In some cases, it is possible to represent the scalar functionsa and b by determinants on
operator ideals. Although, under the restrictions of the model we chose in this paper, w
restrict ourselves to ordinary determinants, we still give an outlook onto some generalization
the theory of traces and determinants on operator ideals we refer to Pietsch.13

Theorem III.C.1: SupposeBPA whereA is an quasi-Banach operator ideal admitting
continuous tracet and a continuous determinantd, and defineLnªV2nB for nPZ. Then

cn5
d~11Ln12!d~11Ln!

d~11Ln11!2 .

and

bnª
d~11Ln111VLn112Ln11V21!

d~11Ln11!
2

d~11Ln1VLn2LnV21!

d~11Ln!
.

Proof: By the one dimensionality ofQn :
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11qn511tr~Qn!511t~Qn!5d~11Qn!

5d~11~11Ln!21~VLnV2Ln!!

5d~~11Ln!21~11VLnV!!

5
d~11VLnV!

d~11Ln!
5

d~11Ln11!

d~11Ln!
,

which implies the first formula. It isbn5tr(Gn112Gn)5tr(Qn11V212QnV21). Similarly to
above, we compute

11tr~QnV21!5d~11QnV21!5d~~11Ln!21~11Ln1VLn2LnV21!!

5
d~11Ln1VLn2LnV21!

d~11Ln!

and the assertion follows. h

In the reflectionless case, that is if the reflection coefficient vanishes everywhere, the th
above is applicable inserting the usual determinant on the finite-dimensional operators, view
example, as a restriction of the continuous trace on the quasi-Banach operator ideal
p-nuclear operators for 0,p<2/3. However, it should be pointed out that the methods of S
III A work under the stated requirements, and that one can construct solutions of the d
evolution equations that are not bound to the restrictions of our model.

D. Examples of solved equations

Finally, we use the presented methods to solve the Cauchy problem of two well-k
evolution equations.

The Toda lattice equationas stated in Sec. I is given by

] ttyn5e2~yn2yn21!2e2~yn112yn! ~nPZ!. ~33!

Choosings3ªs2ª0 ands1ª1 in Eqs.~23! and ~24! they become

] tcn5cn~bn112bn! ~34!

and

] tbn5cn2cn21 . ~35!

Now, formally substitutingbn52] tyn , cn5exp(2(yn112yn)) leads to Eq.~33!. Rigorously: We
intend to solve Eq.~33! for given initial valuesy and] ty. For that purpose we assume that

bn~0!ª2] tyn , an
2~0!5cn~0!ªe2~yn112yn!

satisfy~2!. Suppose now thatzn such that] tzn52bn andzn(0)5yn . Then Eq.~34! implies that:

cn5gne2~zn112zn!

for some constantsgn . By the choice ofcn(0), it must begn51. From Eq.~35! we finally
conclude:

] ttzn5e2~zn2zn21!2e2~zn112zn!,

i.e., thatz is a solution of the initial value problem.
The Langmuir lattice equationcan, without loss of generality, be written as:
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] tgn5~11gn!~gn112gn21! ~nPZ!. ~36!

Formally: Chooses350, s251, ands150 to obtain the evolution equations

] tcn5cn~cn112cn211bn11
2 2bn

2! ~37!

and

] tbn5cn~bn111bn!2cn21~bn1bn21!. ~38!

Substitutingbn50 and cn511gn gives Eq.~36!. Suppose now we are given initial values
1gn . We setan

2(0)5cn(0)ª11gn , bn(0)ª0 and require that~2! is fulfilled. In order to have
solved the initial value problem, we need to show thatbn(t)50 also fortÞ0:

Step 1.Suppose thatt0PR is such thatbn(t0)50 for all nPZ. Repeated differentiation an
application of Eq.~38! implies that:

S d

dtD
k

bn~ t0!50 for all kPN0 ,nPZ.

Sincebn is analytical int, there must be an open neighborhood oft0 wherebn vanishes for each
fixed n.

Step 2.Define

NªH tPRUS d

dtD
k

bn~ t !50 for all kPN0 ,nPZJ .

ThenN is a closed set, and since 0PN, it is not empty. Supposet0PN. As we have seen above
there is an open neighborhoodU of t0 such thatb0(t)5b1(t)50 for all tPU. But then all
derivatives ofb0 and b1 must vanish onU too. Sincecn(t)Þ0 for all nPZ and tÞ0, Eq. ~38!
shows thatb2 as well asb21 and all their derivatives must equal zero onU. Continuing this way
we getU,N. HenceN is open. By the connectedness ofR, this meansN5R.

Hence the initial value problem of the Langmuir lattice equation is solved.
Note that here, unlike the Toda case, where arbitrary scattering data—unless inversion

operators fails or 11qn(0)<0 for somen—leads to solutions of Eq.~33! via

ynª2 log~11qn!,

the requirement thatbn(0)50 for the Langmuir model poses a nontrivial restriction on the cho
of the scattering data. One can indeed verify by computation, that in general the formula

gnªcn215
qn112qn

11qn
5tr~~11Qn!21~Qn112Qn!!,

even if all the inverse operators exist, does not yield solutions of Eq.~36!.

IV. CONCLUSION

It has been shown that the methods presented here give solutions of a discrete invers
tering problem and of the initial value problem of a class of evolution equations that, via the
approach, correspond in a rather direct manner to their linear problem. Similar work can be
for different inverse scattering problem and classes of nonlinear evolution equation and is
way. It is possible, explicitly using the form of the solutions constructed here, to find solutio
the same evolution equations that are not subject to the restrictions of the chosen mod
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example, inserting well-chosen diagonal operators and someC0-semigroup theory in our construc
tion, one can easily derive soliton solutions possessing an infinite number of solitons with
esting properties.
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Generalized Gel’fand–Levitan integral equation for two
block Ablowitz–Kaup–Newell–Segur systems

Gulmaro Corona Coronaa)

Area de Ana´lisis Matema´tico y sus Aplicaciones, UAM-A Edif. H-122, Depto. C.B.,
Av. Sn. Pablo 180, Col. Reynosa Tamaulipas, Atzcapotzalco, D.F., CP. 02200, Mexico
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We derive a generalized Gel’fand–Levitan integral equation for two block
Ablowitz–Kaup–Newell–Segur systems. This is possible if we suppose that the
matrix coupling coefficients are invertible and come from simple zeroes of the
determinant of the diagonal blocks of the scattering matrix. ©1999 American
Institute of Physics.@S0022-2488~99!02908-4#

I. INTRODUCTION

The coupled nonlinear Schro¨dinger ~NLS! equations, a nonlinear evolution equation syste
have been solved by means of a generalized Riemann–Hilbert problem1 before it, in its classical
form, were one of the more important ways of recovering the soliton solutions. ‘‘Pseudop
tials’’ ~integrable coefficients of first-order differential form relation!2–4 and prolongation structure
of Lie groups5,6 were essential ingredients in the beginnings of the inverse scattering metho
introducing the classical general principle of associating nonlinear evolution equations to
operators,7 the inverse scattering method was simplified, improved, and formulated v
Gel’fand–Levitan~GL! integral equation8 ~an approach different from the Riemann–Hilbert pro
lem!. Finding suitable linear operators become the focus of the inverse scattering method,
naturally is carried not only to classical but also to matrix GL integral equations;9,10 in addition,
the discovery of connections among matrix linear operators with nonlinear evolution equ
contributed to exploring inverse scattering problems for nonlinear evolution equation system
instance, systems associated with the matrix operator

Dx~J,z!5
d

dx
2zJ2q, ~1!

with J ann3n constant diagonal matrix, have been called in the literaturen3n Ablowitz–Kaup–
Newell–Segur~AKNS! systems, which AKNS11 used to systematically solve the NLS equati
via a generalized GL approach with the 232 diagonal matrixJ5 i diag(1,21).

The first-order linear operator in~1! with the 333 constant matrix

J5 iS 2 0 0

0 21 0

0 0 21
D

is connected with the coupled NLS equations. It has been naturally approached by Riem
Hilbert problems.12,13

High dimensional nonlinear evolution equation systems are closely connected with m
mensional inverse scattering problems,14 which eventually led to the]̄ method.15–18In general, the
GL approach has not been successfully established for dimensions higher than two,15 generalized

a!Electronic mail: ccg@hp9000a1.uam.mx
43930022-2488/99/40(9)/4393/7/$15.00 © 1999 American Institute of Physics
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Riemann–Hilbert problems have been the natural way to formulate the]̄ approach. However, the
relatively complicated structure of generalized GL equations makes them of some interest

II. THE TWO BLOCK AKNS SYSTEMS

In this paper, generalizing the idea of deriving a GL equation for the NLS equation,9,10 we
shall derive a generalized GL equation for two block AKNS systems,19 i.e., for the first ordern
3n linear operator in~1! with the constant diagonaln3n matrix

J5 i S p2Ip1
0p13p2

0p23p1
2p1Ip2

D
beingp6 positive integers whose sum isn; Ip6

are thep63p6 identity matrices, respectively; an
0p63p7

are thep63p7 null matrices, respectively. The two blockn3n AKNS potentialq is a
n3n matrix-valued function defined on the real line

q5S 0p1
r 1

r 2 0p2

D , ~2!

whose entries are in the Schwartz class where 0p6
are thep63p6 null matrices andr 6 are

(p63p7) matrix-valued functions, respectively. In the sequel, we refer to them as the two
AKNS systems.

The method used here for deriving generalized GL equations cannot be generalizedn
3n AKNS systems,n>2, where the constant diagonal matrixJ has all of its entries distinct, bu
we use it here to derive a GL equation for the present case provided the coupling matrix
cients of the potential are invertible and come from simple zeroes of the determinant o
J-diagonal blocks of the scattering matrix.19 We shall obtain a generalized GL equation by co
pling two integral matrix equations into one equation system.

III. COUPLED MATRIX INTEGRAL EQUATIONS

We need to get suitable representations for the wave functions of the two block A
system. For this purpose, let us adopt the same notation as that used in Ref. 19 and reca
results established there: construct the wave functionsc6 with asymptotic behaviorc6

;e6 ip6xze6 asx˜` for the two block AKNS systems.
With this at hand, we may get the representations for these wave functions,

c6~x,z!5e6e6 ip6xz1E
x

`

G6~x,z!e6 ip6zz dz, ~3!

wheree6 aren3p6 constant matrices such that the identity matrixI n5ie1e2i .19

The kernelsG6 both have support in the regionz.x. For example, the matrix-valued func
tion c2eip2xz2e2 tends to zero, asz tends to infinity, in the upper half plane, so by the Pale
Wiener theorem,

c2eip2xz2e25
1

2p E
2`

0

K2~x,z!eizz dz,

that is,
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c25e2e2 ip2xz1E
2`

0

K2~x,z!eizz2 ip2zx dz

5e2e2 ip2xz1E
2`

0

K2~x,z!eiz~z2p2x!dz

5e2e2 ip2xz1p2E
x

`

K2~x,p2~x2z!!e2 izp2z dz.

So the result forc2 follows by taking

G2~x,z!5
p2

2p
K2~x,p2~x2z!!.

The matrix functionsG6 aren3p6-matrix valued functions, respectively.
Write the relations19 between the wave functionsc6 and thosef6 with asymptotic behavior

f6;e7 ip7xze7 asx˜2` in the following form:

f1d215c1bd211c2 ,
~4!

f2a215c11c2ca21,

wherea,b,c,dare theJ-blocks of the scattering matrix12

s5S a b

c dD .

Combining the first relation with the representations forc6 , write the first equation as

f1d212e2e2 ip2xz5E
x

`

G2~x,z!e2 ip2zz dz1S e1eip1xz1E
x

`

G1~x,z!eip1zz dz D bd21.

~5!

Multiplying by (2p)21eip2zz and integrating with respect toz over the real line, an integral matri
integral equation may be derived. To do this, we define the matrix valued function and the ra
number, respectively, by

f 1
1~z!5

1

2p E
2`

`

bd21eip1zz dz, p5
p1

p2
.

With this at hand, we get the following relations for each term in~4!:

1

2p E
2`

`

eip2zzE
x

`

G2~x,h!e2 ip2zh dh dz5G2~x,z!,

1

2p E
2`

`

bd21eip2zzeip1xz dz5 f 1
1~x1p21z!,

1

2p E
2`

`

eip2zzE
x

`

G1~x,h!eip1zhbd21 dh dz5E
x

`

G1~x,z!
1

2p E
2`

`

eip1zheip2zzbd21dz dh

5E
x

`

G1~x,h! f 1
1~h1p21z!dh.
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The left-hand side can be evaluated by closing the contour in the upper half plane forz.x
and using the residue theorem:

1

2p E
2`

`

eip2zz~f1d212e2e2 ip2xz!dz

5
1

2p E
2`

`

ei ~z2x!p2z~f1d21eip2xz2e2!dz5 i (
j 51

N

f1 jd821~zj !e
ip2zjz

52(
j 51

N

f1 j~ id8!21~zj !e
ip2zjz52(

j 51

N

c1 j cj
1~ id8!21~zj !e

ip2zjz

52(
j 51

N S e1eip1xzj1E
x

`

G1~x,h!eip1zjh dh D cj
1~ id8!21eip2zjz

52e1(
j 51

N

cj
1~ id8!21ei ~p1x1p2z!zj2E

x

`

G1~x,h!S (
j 51

N

cj
1~ id8!21ei ~p1h1p2z!zj D dh

52 f 2
1~x1p21z!2E

x

`

G1~x,h! f 2
1~h1p21z!dh,

where thep13p2 matrix function

f 2
1~z!5(

j 51

N

cj
1~ id8!21eip1zjz.

Putting this together, we get

f 1~x1p21z!1G2~x,z!1E
x

`

G1~x,h! f 1~h1p21z!dh50 ~6!

with f 15 f 1
11 f 2

1 . Here,zj
1 are the~simple! zeroes ofd in the upper half plane andcj

1 are the
coupling coefficients19

f1~x,zj
1!5c1~x,zj

1!cj
1 .

Now combining the second relation with the representations forc6 , we can write the second
equation as

f2a215c11c2ca21.

Consequently,

f2a212e1eip1xz5E
x

`

G1~x,z!eip1zz dz1S e2e2 ip2xz1E
x

`

G2~x,z!e2 ip2zz dz D ca21.

Another integral equation system involving the matrix-valued functionsG6 is obtained by
multiplying by (2p)21e2 ip1zz and integrating with respect toz over the real line. Write

f 1
2~z!5

1

2p E
2`

`

ca21e2 ip2zz dz.

Using this definition, we arrive at
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1

2p E
2`

`

e2 ip1zzE
x

`

G1~x,h!eip1zh dh dz5G1~x,z!,

1

2p E
2`

`

ca21e2 ip1zze2 ip2xz dz5 f 1
2~x1pz!,

and

1

2p E
2`

`

e2 ip1zzE
x

`

G1~x,h!e2 ip2zhbd21 dh dz

5E
x

`

G1~x,z!
1

2p E
2`

`

e2 ip1zhe2 ip2zh bd21 dz dh

5E
x

`

G1~x,h! f 1
2~h1pz!dh.

The left-hand side can be evaluated by closing the contour in the lower half plane forz.x and
using the residue theorem:

1

2p E
2`

`

e2 ip1zz~f2a212e1eip1xz!dz

5
1

2p E
2`

`

e2 i ~z2x!p1z~f2a21e2 ip1xz2e2!dz5 i (
j 51

N

f2 ja821~zj !e
2 ip1zjz

52(
j 51

N

f2 j~ ia8!21~zj !e
2 ip1zjz

52(
j 51

N

c2 j cj
2~ ia8!21~zj !e

2 ip1zjz

52(
j 51

N S e2e2 ip2xzj1E
x

`

G2~x,h!e2 ip2zjh dh D cj
2~ ia8!21e2 ip1zjz

52e1(
j 51

N

cj
2~ ia8!21e2 i ~p2x1p1z!zj2E

x

`

G2~x,h!S (
j 51

N

cj
2~ ia8!21e2 i ~p2h1p1z!zj D dh

52e2 f 2
2~x1pz!2E

x

`

G2~x,h! f 2
2~h1pz!dh,

where thep23p1 matrix function f 2
2(z)5( j 51

N cj
1( ia8)21e2 ip2zjz. Proceeding as before, w

get

f 2~x1pz!1G2~x,z!1E
x

`

G1~x,h! f 2~h1pz!dh50

with f 25 f 1
21 f 2

2 . Here,zj
2 are the~simple! zeroes ofd in the upper half plane andcj

2 are the
coupling coefficients:19

f2~x,zj
2!5c2~x,zj

2!cj
2 .
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IV. GENERALIZED GEL’FAND–LEVITAN INTEGRAL EQUATION

Coupling the integral equations, we get the generalized GL equation

f ~x1p6z!1G~x,z!t1E
x

`

G~x,h! f ~h1p6z!dh50, ~7!

where

f ~x1p6z!5S f 1~x1p21z! 0p13p1

0p23p2
f 2~x1pz!

D ,

~8!

t5S 0p13p2
Ip13p1

Ip23p2
0p23p1

D .

On the other hand, taking into account Eq.~3! and the definition in~8! for the matrix-valued
function G, get

C~x,z!5ic2~x,z!c1~x,z!i5exzJ1E
x

`

G~x,z!ezzJ dz.

EvaluatingDx(J,z)C in two ways, one obtains after reducing terms

@G~x,x!1q#exzJ1E
x

`

@zJG~x,z!1qG~x.z!2Gx~x,z!#ezzJdz50.

Now integrating by parts*x
` zJG(x,z)ezzJ dz and replacing it in the above equation, write

@G~x,x!1q2JG~x.x!J21#1E
x

`

@qG~x.z!2Gx~x,z!2JGz~x,z!J21#ez~z2z!J dz50.

If the potential has compact support, then the integrand is inL1(x,`). So by the Riemann–
Lebesgue Lemma the integral term goes to zero asz goes tò . Since the first term is independen
of z, we have that both terms must vanish. Hence

q~x!5J21@J,G~x,x,!#, q~x!G~x,z!5Gx~x,z!J1JGz~x,z!. ~9!

Since the potentials of compact support are dense andG, Gx , Gz depends continuously19 on q, the
equations in~9! are valid for other potentials.

To state our next result, we denote byP19 the set of the matrix-valued functionsq defined on
the real line given by~2!.

Theorem: If the potential q is inP then the entries of the matrix f of (5) are in the Schwa
class. In addition if the coupling coefficients19 associated with q are invertible and come fro
simple zeroes of the determinant J-diagonal entries12 of the scattering matrix, the matrix-value
function G satisfies the GL integral equation system (7) and q is related to G by the formu
(9).

Remark:Since the entries of the matrixf in ~7! are rational functions of the entries of th
scattering matrix then their denominators are lower bounded.18 So the entries off are in the
Schwartz class because of belonging scattering matrix ones to the same class

Comment:Calling a type of integral equation as that given in~7! the ‘‘Gel’fand–Levitan–
Marchenko equation’’ is common in the nonlinear evolution literature, however, Gel’fa
Levitan and Marchenko integral equations are different and describe distinct problems. For
see, e.g., Ref. 20.
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V. CONCLUSIONS

It is possible to approach the two block AKNS systems by a generalized GL equation in
system under the hypothesis that the coupling matrix coefficients are invertible and come
simple zeroes of the determinant of deta and detd. In fact, we can relate the potentialq with the
solution G of the GL equation system in~7! by the formulas in~9!. The casep151 and p2

52 is involved with the coupled nonlinear Schro¨dinger equations for which Riemann–Hilbe
approaches have been formulated. In general, generalized GL equations are not successf
mulated for nonlinear evolution equation systems of dimension greater that two,21 but for present
n3n AKNS systems, this is possible with a relative simpleness and by a short calculation.
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Irreversible weak limits of classical dynamical systems
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A general discussion is given of weak limits of classical dynamical systems de-
pending on a parameter. The resulting maps are shown to be invertible if and only
if they define a group of measure preserving point transformations. The irreversible
case automatically leads to positive bistochastic maps and is characterized in terms
of convergence properties of the corresponding automorphisms of the observable
algebra. Necessary and sufficient conditions are given for the limit to define a
time-independent Markov process. Two models are discussed, for a particle in a
periodic potential, and for a particle interacting with fixed configurations of exter-
nal obstacles. ©1999 American Institute of Physics.@S0022-2488~99!03208-9#

I. INTRODUCTION

Irreversible time evolution plays a major and generic role in the phenomenology of m
scopic systems. While its general description seems to be well established and understood
of stochastic maps and processes,1–3 the derivation of irreversible behavior in dynamical syste
usually makes reference to specific physical situations, and is under mathematical control
special cases;4,5 it is therefore not clear whether the mechanisms observed in such models
provide a general mathematical explanation of the origin of irreversibility on the same level
general characterization.6–9

Many different structures are in fact present in models, i.e., a large~infinite! number of
degrees of freedom, dynamical instabilities, restrictions on the states appearing ‘‘at
zero,’’ 10–14 distinctions between ‘‘macroscopic’’ and ‘‘microscopic’’ observables, or betw
‘‘subsystem of interest’’ and ‘‘environment,’’15 moreover statistical arguments always play
critical role, starting with Boltzman’s analysis.16,12,13

Since in all cases irreversible behavior is obtained as a limit description in the variati
some parameter, it is worthwhile to ask whether this ingredient is also sufficient, i.e., wh
stochastic maps and processesare the generic result of taking such limits. The other ingredients
can then be interpreted as characterizing specific classes of physical situations, where
parameters and limits may play a significant physical role.

In models, the above-mentioned parameters appear in the description of the structure
system~the number of particles in the Boltzmann–Grad case!, of the states~the correlation func-
tions at time zero!, and of the dynamics~the rescaling of the particle radius!; since dynamical
instabilities seem to be an essential ingredient of irreversibility, it is reasonable to concentra
attention on parameters which appear in the time evolution, leaving for the moment the syste
its states invariant. Such a possibility is not even far from the situation in the Boltzmann–
limit since, in the spatially homogeneous case, that limit can be formulated in terms of an in
system of hard spheres, in a fixed time zero configuration, in terms of a suitable rescaling
radius (r˜lr ) and of the time scale (t˜l22t in three space dimensions!.

One is therefore led to investigate limits of sequences of reversible dynamical systems.
basis of the general interpretation of dynamical systems in terms of observables and sta
44000022-2488/99/40(9)/4400/19/$15.00 © 1999 American Institute of Physics
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most general relevant limit is the limit for the result of measurements of fixed observables,
any state in some relevant class.

In the Hamiltonian case, observables may be identified with regular functions on the
space, states with probability measures, and one has to take limits of mean values of obse
over states evolved in time under groups of transformations defined by Hamiltonians depend
a parameter. More generally, i.e., for quantum systems and infinite systems, observables
identified ~see, e.g., Ref. 17! with the Hermitean elements of aC* algebra, states with positive
linear functionals, time evolution with a group of automorphisms of the observable algebra
the relevant limit is the weak limit of the time evolution automorphisms, taken with respect
subspace of the state space, interpreted as the set of states of interest.

In this form, the problem is similar to the one that appears in the framework of the alge
formulation of quantum field theory and statistical mechanics,17–18 in relation with the construc-
tion of the time evolution of infinite quantum systems in the presence of long-range interac
In fact, a general analysis of limits of automorphisms arising in that context has been develo
Refs. 19–22. The relatively strong assumptions which had to be required in that analysis in
that the limit still give rise to a group of automorphisms, i.e., to a reversible dynamical sy
leave open the possibility that the result of such limits may be interpreted, in some genera
terms of irreversible time evolution.

The purpose of the present paper is to show that this is the case, and that in fact on
possibilities arise for weak limits of classical dynamical systems: either they still define grou
measure preserving transformations, or they give rise to positive ‘‘bistochastic’’ maps, a
stochastic processes if the limits exist for the results of observations at different times.

We restrict our attention in this paper to classical dynamical systems, under assum
which typically hold for Hamiltonian models with a finite number of degrees of freedom.
discussion covers the~realistic! case of noncompact phase space, with infinite invariant meas
In the case of afinite invariant measure, part of the results of Proposition 1 has been derived
rather different context, by Brown,23 together with a density result which implies that, und
suitable restrictions on the structure of the measure,all bistochastic maps arise as a weak limit
measure preserving invertible transformations. We also discuss the implications of the
structure in the time parameter, which is preserved if and only if the limit maps are invertible
necessity of dynamical instability for an irreversible limit, and show that stochastic processe
in general from taking weak limits at different times, providing a characterization of the Ma
case.

In Sec. II we make our framework more precise and give the main results; Sec. III contai
proofs; in Sec. IV two models are discussed, the first exhibiting the role of weak limits in si
Hamiltonian systems, the second bearing some similarity to the Lorentz gas. In both case
chastic maps are obtained in explicit form, as weak limits of strictly deterministic and reve
dynamical systems, reproducing the general structures discussed in Sec. II; for the second
the result defines a time-independent Markov process.

II. ASSUMPTIONS AND RESULTS

We consider classical dynamical systems, defined as in Ref. 24 by groups of conti
transformationsG t , tPR of a locally compact Hausdorff topological spaceX. We will discuss
continuous transformationsGn

t depending on a parameternPN, and their limits asn˜`.
The observables of the system are identified with theC* algebra of the continuous function

on X vanishing at infinity,C0(X), i.e., the completion, in the sup norm, ofC0
0(X), the space of

continuous functions of compact support. The transformationsGn
t define as usual groups of auto

morphisman
t of C0(X), an

t f (x)5 f (Gn
t (x)).

Conversely, by Gelfand’s isomorphism,25 any group of automorphisms of a commutativeC*
algebra defines a group of continuous transformation of its spectrum, a locally compact Hau
space~the set of multiplicative linear functionals being clearly left invariant by the transpose o
automorphism!.
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The states of the system are the positive normalized linear functionalv on C0(X), i.e., by the
Riesz–Markov theorem, the regular Borel probability measures onX.

The only restrictions onan
t that we will assume are the existence of a common invar

measure, and a condition which keeps the time evolution ‘‘far from infinity’’ uniformly inn; more
specifically, we will assume:

~M! a s finite regular Borel measurem is defined onX, and left invariant by allGn
t , nPN;

~F! for all real t and compact setK,X there is a compact setM (K,t),X such that

Gn
t ~K !,M ~K,t !, ;nPN.

Given the invariant measurem, a distinguished class of states is given by the set of probab
measuresn which are continuous with respect tom: n(x)5h(x)m(x), h(x)PL1(X,dm). The set
F of such states, which will be called ‘‘regular,’’ is the positive part of a closed subspace o
dual ofC0(X), and defines a ‘‘full folium’’ of states in the sense of Ref. 26. Regular states wi
identified in the following with functions inL1(X,dm).

The invariance ofdm implies thatF is left invariant by the transposean
t* of an

t , defined by
an

t* v( f )5v(an
t f ). It also implies that time evolution can be formulated ‘‘a la Koopman’’27 in

L2(X,dm): ;gPL1ùL2, Un
t g is defined byan

t* g, and extends by continuity to a unitary group
L2(X,dm).

The above general structure covers in particular the case of Hamiltonian systems, for wX
is the phase space,G t the Hamiltonian time evolution,dm the ~infinite! Liouville measure, and the
regular states are the probability measures on the phase space with well-defined (L1) density.

We do not assume thatdm is a finite measure; in fact, even in the Hamiltonian case
sequence of groups of transformations does not in general leave invariant a common co
subspace, and there is no common invariant finite measure. For the same reason,X is assumed to
be only locally compact.

Continuity ofGn
t is assumed only for simplicity@it allows for a discussion in terms ofC0(X)#.

Propositions 1–5 still hold, with minor changes in the proofs, for groupsGn
t of measurable

transformations; in this case,an
t ( f )[ f (Gn

t (x)) obviously define automorphisms ofL`(X,dm).
The advantage of the above formulation is to make explicit the role of the observables a

the states of the system, so that the discussion of the limitn˜` can be done with a clear physica
interpretation.

The existence of alimit descriptionof the dynamical systems (X,Gn
t ) asn˜`, given a time

zero statev, amounts in fact to convergence of all the mean valuesv(an
t f ), f PC0(X). As we

will see ~Proposition 1!, this is also equivalent to convergence ofv(an
t x), for all characteristic

functionsx of m measurable subsets ofX, i.e., convergence of the frequence of answers for
yes–no experiments based onm measurable subsets ofX, given the statev.

Since we will admit as time zero states all regular states, we will investigate the limit ofan
t in

the weak topologytF defined byF on C0(X). tF can also be described as the ultrawe
topology28 associated with the representation ofC0(X) as multiplication operators inL2(X,dm),
and thetF closure ofC0(X) can be identified withL`(X,dm).

In the following, we will also use the strong and ultrastrong topologies defined onC0(X) and
L`(X,dm) by the same representation; for bounded sequencesf n , the strong and ultrastrong
topology coincide, andf n converge tof iff

E u f n~x!2 f ~x!u2 h~x!dm~x! ˜ 0, ;h~x!PL1~X,dm!.

We will assume that thetF weak limit of an
t exists for all t, and investigate under which

condition it can be interpreted as an irreversible time evolution. More detailed results, whi
not assume convergence for all times, are given in Ref. 29. The following result holds for atF
convergent sequence of automorphisms ofC0(X):
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Proposition 1: If a sequence of automorphismsan
t of C0(X), satisfying M, converges in the

weak topologytF , for all t PR, then
(i) the limit definestF continuous linear positive mapsa t of C0(X) into L`(X,dm), with

norm at most one;
(ii) the transposea t* of a t leavesF invariant;
(iii) a t extends by continuity to a linear positive mapping of all L`(X,dm) into itself.
(iv) a t* 5a2t on L1ùL`;
(v) ;pP@1,̀ ), ;hPLpùL1, ia t* hip< ihip .

If the sequencean
t also satisfies property F, then

(vi) a t* preserve the L1 norm on(L1ùL`)1, and a t leaves the identity invariant;
(vii) the tF continuous extension ofan

t to L`(X,dm) also convergestF for n˜` to a t on
L`.

Positive maps are well-known candidates for the description of irreversible evolution. M
over, property (v i ) characterizesbistochasticmaps, and it is generally assumed as fundament2,3

for an axiomatic description of irreversible processes.
Proposition 1 is however compatible with limits still defining groups of automorphism

L`(X,dm). In order to characterize the irreversible case, one must ask whether the mappinga t are
invertible, and whether the group lawa tas5a t1s is satisfied.A priori, as candidates for the
description of irreversible time evolution arising in the above limit we have therefore:

~i! failure of the group law fora t,
~ii ! failure of invertibility of a t.

It is also clear that
~iii ! failure of the morphism property ofa t

gives a relevant notion of irreversible behavior. In fact, the transposea t* of a linear positive map
a t of any AbelianC* algebra, with invariant identity, sends pure states into pure states if and
if a t is a morphism, as is easily seen by using the Gelfand construction. Property~iii ! therefore
has, in general, the interpretation of a loss of information on the system, corresponding
transformation of pure into mixed states. More concretely, a linear bounded transformat
L`(X,dm) is a morphism iff it maps characteristic functions of measurable sets into thems
i.e., iff all yes–no questions are transformed into yes–no questions, equivalently, no inform
is lost in the time evolution.

Moreover, in the same generality, both(ii) and (iii) imply (i). Only (iii) ⇒ (i) is in fact
nontrivial, and follows from the fact that if thea t satisfies the group law, thena2t invertsa t and
is a positive map, so thata2t* sends mixed states into mixed states, and therefore invertib
implies thata t* sends pure states into pure states.

The following Proposition shows that in the present framework the notions~i!–~iii ! coincide,
so thatthere is a unique notion of irreversibility for weak limits of classical dynamical system; it
also provides necessary and sufficient conditions for the appearance of irreversibility.

Proposition 2: The following properties are equivalent for the weak limita t of a sequence o
automorphismsan

t of C0(X), satisfying M:
(i) ;tPR, a t is an automorphism of L`(X,dm);
(ii) a t, tPR, is a one parameter group of automorphisms of L`(X,dm);
(iii) ;tPR, an

t converges in the ultrastrong topology associated to the representatio
C0(X) as multiplication operators in L2(X,dm), and a t(1)51.

(iv) For some pP(1,̀ ) a t:C0
0(X)°L`(X,dm) preserves the Lp norm, for all t,

ia t f ip5i f ip ; f PC0
0 ~X!, tPR.

(v) For some pP(1,̀ ) a t* preserves the Lp norm, for all t:

ia t* hip5ihip ;hPL1ùLp, tPR.

(vi) For all pP@1,̀ #, for all t, a t* preserves the Lp norm.
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Similar results hold for the convergence of the unitary groupUn
t which implement the time

evolution inL2(X,dm):
Proposition 3: Assuming M, weaktF convergence ofan

t is equivalent to convergence of Un
t in

the weak operator topology in L2(X,dm). Assuming convergence and denoting by Ut the weak
limit of Un

t , conditions (i)–(vi) of Proposition 2 are equivalent to each of the following:
(i) ;tPR the operators Un

t converge strongly in L2(X,dm);
(ii) ;tPR the operators Ut are unitary.
(iii) The operators Ut form a one-parameter unitary group.
The following result shows that dynamical instabilities growing withn ~at fixed time! are

necessary for irreversible behavior to take place in the limitn˜`:
Proposition 4: Assume that X is a metric space, with distance d(x,y), and that the mapsGn

t ,
satisfying M and F, are stable, at fixed time, uniformly in n, except possibly on ‘‘locally s
subsets’’; i.e., assume:; compact K,X, e.0, tPR, 'M (K,e,t)PR such that

d~Gn
t ~x!,Gn

t ~y!! , Md~x,y! ;nPN, ;x,yPK\S,

S5S(K,e,t) an open subset of K ofm measure smaller thane.
Then, if the sequencean

t converges in the weaktF topology, it also converges strongly anda t is
a group of automorphisms of L`(X,dm).

In general, the mapa t has an immediate probabilistic interpretation: Given any stath
PL1(X,dm) and denoting byxB the characteristic function of a Borel setB,X, the mean value

E h~x!a txB~x! dm~x!

gives by definition the probability that a point distributed withh(x)dm(x) at time 0 ends inB at
time t. a txB(x) is therefore interpreted as a probabilityPt(x,B) that a point starting atx at time
0 falls in B at time t.

Sincea txB is the characteristic function of a measurable set for allB if and only if a t is an
automorphism ofL`(X,dm) ~see Proposition 2!, Pt(x,B) takes values in$0, 1% (dm almost every!
if and only if there is no irreversibility.

The situation is therefore very close to that of a stochastic process, and an examina
limits at different times is of interest. Consider in fact finite sequences of measurements at
ent times,t1¯tk , of observablesf 1¯ f k , and assume that, given a regular statevPF, the mean
values

v~an
t1f 1¯an

tkf k!

converge forn˜`.
The following Proposition shows that, if such a limit exists, it defines a stochastic proces

a measuredrv(x(t)) on trajectories inX, and gives necessary and sufficient condition for
process to be Markov.

Proposition 5: Letan
t satisfy M and F and converge weakly for ñ̀ ; assume that for a fixed

vPF, and for all finite sequences f1¯ f kPC0(X) and 0<t1,t2,...,tkPR

v~an
t1f 1¯an

tkf k!

converge for ñ `.
Then, there exists a unique regular Borel probability measure drv on P tPR1Ẋt , Ẋ the one point
compactification of X, such that

lim
n

v~an
t1f 1¯an

tkf k!5E drv~x~ t !! f 1~x~ t1!! ¯ f k~x~ tk!!.
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For v(x) of compact support K, the measure drv is supported on a product of compact sets Kt ,
t.0.
The process defined by drv is Markov, with time-independent transition function Pt(x,B)
5a txB(x), if

lim
n

v~an
t1f 1¯an

tkf k!5 lim
nk

¯ lim
n2

lim
n1

v~an1

t1 ~ f 1an2

t22t1~¯ ~ f k21ank

tk2tk21f k! ¯ !!!.

This condition is also necessary for the time-independent Markov property ifv(x) is almost
everywhere different from zero.

III. PROOFS

Identifying statesv in F with representative functionh in L1(X,dm), we will write an
t* h for

the representative ofan
t* v. The norm of the dualC0(X)* of C0(X) coincides onF with the

L1(X,dm) norm. Sincedm is sigma finite, the continuous functions with compact support
dense inL1(X,dm); L1ùC0 is therefore dense inL15F.

By weak and strongtF topology we will denote, respectively, the weak topology defined
C0(X) by the linear functionals inF and the ultrastrong topology defined as above by the re
sentation ofC0(X) in L2(X,dm), identical to the strong topology for bounded sets. BytF topol-
ogy andtF continuity we will refer to the weak one. The following facts are preliminary:

Lemma 6: (i);tPR, an
t* mapsF into F and

an
t* h~x!5h~Gn

2tx!, ~3.1!

(ii) an
t is continuous in the weak (and in the strong)tF topology, and extends therefore b

continuity to an automorphism of the Von Neumann algebra L`(X,dm);
(iii) ; f PL1ùL` an

t* f 5an
2t f ;

(iv) ;pP@1,̀ #, ; f PL1ùLpian
t* f ip5i f ip .

Proof. Equation ~3.1! follows immediately from the invariance ofdm: ;hPL1(X,dm),
h(Gn

t x)PL1(X,dm) and

E h~Gn
2tx! f ~x! dm5E h~x! f ~Gn

t x! dm5E h~x!an
t f dm ; f PC0~X!. ~3.2!

Invariance ofdm implies conservation of allLp norms. Invariance ofF implies~see, e.g., Ref. 22!
weaktF continuity of an

t , which extends by continuity to the weak closureL` of C0(X).
Proof of Proposition 1: (i)For all f in C0(X), the weaktF limit of an

t f defines a continuous
linear functional onL1(X,dm), with norm bounded by supu f u, i.e., an element ofL`(X,dm); the
limit a t of an

t therefore defines a linear map ofC0(X) into L`(X,dm), of norm at most one; its
transposea t* a priori mapsF into C0(X)* , and is continuous in the norm ofC0(X)* , denoted
by i•i* :;hPL1,

ia t* hi* 5 sup
f PC0~X! i f i`51

u lim
n
E han

t f dmu<ihi1 .

WeaktF continuity ofa t is equivalent22 to stability ofF undera t* , i.e., point(ii); for positivity
see(iii) below.

(ii) Consider first states represented by functionshPL1ùC0; by Lemma 1,an
t* h5an

2th,
which tF converges forn˜` to a2th. This means that; f PC0

0(X),

E a t* h f dm5 lim
n
E an

t* h f dm5 lim
n
E an

2th f dm5E a2th f dm, ~3.3!

so that

a t* h5a2th ;hPL1ùC0. ~3.4!
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Moreover,

ia2thi15ia t* hi15ia t* hi* . ~3.5!

Equation~3.5!, continuity inC0(X)* norm ofa t* and density ofL1ùC0 in F imply the stability
of F undera t* .

~iii ! a t extends bytF continuity to the Von Neumann algebraL`. Positivity of a t is equiva-
lent to

E h~x!a t f ~x!dm > 0, ; f >0, f PL`, h>0, hPL1. ~3.6!

For f PC0(X), Eq. ~3.6! follows from the positivity of the same expression withan
t replacinga t,

for f PL`, by definition of continuous extension ofa t.
~iv! Equation~3.5! extends to allhPL1ùL` since,;hPL1ùL`, f PL1ùC0,

E a t* h f dm5E ha t f dm5E ha2t* f dm5E a2th f dm ~3.7!

andL1ùC0 is dense inC0(X);
~v! follows from Hölder inequality:

E an
t* h f dm < ihipi f iq ;hPL1ùLp, f PC0ùLq, nPN,

which implies

E a t* h f dm < ihipi f iq

so that, by density ofC0ùLq in Lq,

ia t* hip<ihip . ~3.8!

~vi! In order to prove

ia t* hi15ihi1 ;hPL11, ~3.9!

consider firsthPC0
0(X). Denote byxK the characteristic function of a compact setK,X; using

Lemma 1, conditionF implies

E xK an
2th dm5E xK h dm ;n ~3.10!

if K is sufficiently large, depending onlyh and t. Given the supportL of h, it is in fact enough to
takeK.L such thatGn

t (L),K;n. Using Eqs.~3.4! and ~3.10! it follows

E a t* h dm5 lim
K
E xK a2th dm5 lim

K
lim
n
E xK an

2th dm5 lim
K
E xK h dm5E h dm.

Equation~3.9! then follows from density inL1 of C0
0(X) andL1 continuity ofa t* . Equation~3.9!

also impliesa t151.
(vii) Using Lemma 1 and Eq.~3.4!, ;hPL1ùL`, f PL1ùC0,
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E an
t h f dm5E h an

t* f dm5E h an
2t f dm˜E h a2t f dm5E h a t* f dm5E a th f dm

~3.11!

andtF convergence ofan
t h to a th follows from density ofL1ùC0 in L1 and uniform bounded-

ness ofan
t h in L`.

To obtaintF convergence ofan
t h to a th for all hPL` consider a sequence$Ki% of compact

sets withxKi
convergingtF to 1 ~it exists becausem is s finite!; then,;hPL`1, ; l PL11,

E an
t ~h2hxKi

! l dm < ihi`E ~12an
t xKi

! l dm ~3.12!

but tF convergence ofan
t on L1ùL`, tF continuity of a t anda t151 imply

lim
i

lim
n

rhs of ~3.12!50;

on the other hand, bytF continuity of a t,

lim
i

lim
n

E an
t ~hxKi

! l dm5E a th l dm

and therefore,

lim
n
E an

t h l dm5E a th l dm,

which extends by linearity tohPL` and l PL1.
Proof of Proposition 2:(vi)⇒(v) and (ii )⇒( i) are obvious; (iv)⇔(v) and (i )⇒(vi) imme-

diately follow from Proposition 1,~for the latter implication, see the proof of Lemma 6!; it is
therefore enough to prove (v)⇒( i ) and (vi)⇒( iii )⇒( ii ).

(v)⇒( i ): For any Borel setB of finite measuredm, a t* xB is real, non-negative, and

ia t* xBi` <ixBi` <1,

so that

~a t* xB!p < a t* xB ; ~3.13!

~v! implies that for somepP(1,̀ ),

E ~a t* xB!pdm5E xB
p dm5E xB dm>E a t* xB dm, ~3.14!

the last equality following from Proposition 1,(v). Equations~3.13! and ~3.14! imply

a t* xB5~a t* xB!p

dm almost every, so thata t* xB is a measurable function taking values in$0, 1%, i.e., it is the
characteristic function of a measurable setB8,X, and by Eqs.~3.13! and ~3.14!, m(B8)
5m(B).

From linearity and the fact thatL` norms do not increase@Proposition 1,(i)#, it follows that
disjoint setsB, C have disjoint imagesB8, C8; a t, coinciding witha2t* on L1ùL`, @Proposition
1, ~iv!# is therefore a morphism of the algebra of simple functions based on sets of finite me
and, by a density argument, ofL`(X,dm). It also follows thata t* preserves theL1 norm onL11,
which implies invertibility of a t, actually a2ta t5a ta2t51; in fact, for all positive simple
functionsf, g,
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E f a2ta tg dm5E a t f a tg dm5E a t~ f g! dm5E f g dm.

The same holds fora ta2t, and invertibility ofa t follows by a density argument.
(vi)⇒( iii ): Convergence in the strong and ultrastrong topologies is equivalent for a bou

sequence,28 and amounts to

E uan
t f 2a t f u2hdm˜0 ;hPL1~X,dm!. ~3.15!

By a density argument, it is enough to obtain Eq.~3.15! for all f in C0
0(X),L1ùL`; in this case,

an
t f 5an

2t* f converges toa t f 5a2t* f strongly in L2(X,dm), as a consequence of weakL2

convergence and of conservation of theL2 norms in the limit.a t151 immediately follows from
conservation of theL1 norm.

( iii )⇒( ii ): Strong convergence implies in general thata t is a morphism. The group propert
follows since for allf, g in C0

0(X),

E f a t1sg dm5 lim
n
E f an

t an
sg dm5 lim

n
E an

2t f an
sg dm; ~3.16!

strong convergence inL2 of an
2t f andan

sg imply in fact

lim
n
E an

2t f an
sg dm5E a2t f asg dm5E f a tasg dm. ~3.17!

Proof of Proposition 3:The algebraC0
0(X) of continuous functions of compact support

dense inC0(X) and in L1(X,dm) in the respective norms. Moreover, the sequencean
t h is uni-

formly bounded inL1 and inC0. tF convergence ofan
t for all f PC0 is therefore equivalent to

convergence onC0
0(X).

In the same way, sinceC0
0(X) is dense inL2 andUn

t preserves theL2 norm,tF convergence
is equivalent to

;h1 , h2PL2 ' lim
n
E h1* Un

t h2 dm,

i.e., to convergence ofUn
t in the weak topologywop for operators inL2.

DenotingUt[wop2 limn Un
t , ;h1 , h2PC0

0(X),

E h1* Uth2 dm5 lim
n˜`

E h1* an
t h2 dm5E h1* a th2 dm, ~3.18!

which impliesUth5a th for hPC0
0(X) and, byL2 continuity of bothUt anda t ~Proposition 1,v),

for hPL1ùL`. The rest of the proof of Proposition 3 is then reduced to the following simple
;nPN let Un

t be a one-parameter group of unitary operators on a Hilbert spaceH, converging
weakly for n˜`, ;tPR, wop2 limn Un

t [Ut. Then the following are equivalent:
~a! ;tPR, Un

t converges strongly toUt,
~b! ;tPR ;hPHiUthi5ihi ,
~c! ;tPRUt is unitary,
~d! Ut is a group of unitary operators.

In fact, (a)⇔(b) is well known, and (d)⇒(c)⇒(b) are trivial.
To prove (a)⇒(d), we have, from Schwarz inequality,
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u~h,~Un
t Un

s2UtUs!h!u5u~h,~Un
t Un

s2Un
t Us1Un

t Us2UtUs!h!u

<u~h,Un
t ~Un

s2Us!h!u1u~h,~Un
t 2Ut!Ush!u

<ihii~Un
s2Us!hi1u~h,~Un

t 2Ut!Ush!u,

which implies the group property. In particularUt is invertible, and unitarity follows since
(a)⇒(b).

Proof of Proposition 4:For fixed compactK,X, e.0, tPR, f PC0
0(X) with support inK, by

propertyF all the functionsan
t f (x)5 f (Gn

t (x)) have support contained in a compact setK8. By
assumption, there exists an open setS, of measure smaller thane, such that

d~Gn
t ~x!,Gn

t ~y!! , M ~K8,«,t !d~x,y!

for x,yPK8\S. Sincef is of compact support and therefore uniformly continuous, it follows t
the functionsan

t f (x) are equicontinuous onK8\S.
Since K8\S is closed and therefore compact, by the Ascoli–Arzela` theorem there exists a

subsequenceank

t f which converges there uniformly; its limit coincides, onK8\S with a t f , as a

consequence of weak convergence ofan
t f (x) to a t f . On compact sets, uniform convergen

implies convergence inL2; moreover, the functionsan
t f (x) are bounded by supu f u, and therefore

their L2 norm coincides with the norm of their restriction toK8\S up to an error of ordere, and the
same is true fora t f (x); this implies

uia t f iL2
2

2i f iL2
2 u < 2 supu f u2« ;«.0.

It follows thata t preserves theL2 norm onC0
0(X), for all t, and therefore, by Proposition 2, (iv),

it is a group of automorphisms ofL`(X,dm).
Proof of Proposition 5:We will use the shorthand$t j%1,k for 0<t1,t2,¯,tk , and

$t j%1,]m@ ,k for the same sequence withouttm ; X$t j %1,k will denote the product ofk copies ofX, Xt j

the copy at timet j ; the statev will be represented by the measurev(x)dm, v(x)PL1(X,dm).
For fixed$t j%1,k , consider the algebraCsp of functionsf PC0(X$t j %1,k) which are finite sums of

products, i.e.,f (x1,k)5( i ci f 1
i (x1)¯ f k

i (xk) with f j
i (xj )PC0(Xt j

). For fixedn the linear map of
Csp into itself

f ~x1,k !˜(
i

ci)
j 51

k

an
t j f j

i ~xj !

is i i` preserving and extends to an automorphism of the completionCsp of Csp in the sup norm;
in particular, it is positive.
It follows that rv

$t j %1,k, defined by

rv
$t j %1,k~ f ![ lim

n
E

X
(

i
ci)

j 51

k

an
t j f j

i ~x!v~x! dm~x! ~3.19!

is a bounded positive linear functional overCsp, with irvi<ivi . Since by the Stone–Weierstras
theoremCsp5C0(X$t i %1,k), rv has a unique extension toC0, with the same bound.

The functional so obtained defines, by the Riesz–Markov theorem, a finite regular
measure, which we indicate withrv

$t j %1,k, overX$t j %1,k. If X is not compact it is technically conve

nient to considerrv
$t j %1,k over Ẋ$t j %1,k, the product of the 1-point compactified spacesẊt j

. However,
if v has compact supportK, the construction also lives in) t>0 Kt with Kt the compact sets given
by conditionF, an

t xK<xKi
;n. The measuresrv

$t j %1,k, for all k-tuples 0<t1,t2,¯,tk , define a

~unique! measure over) t>0 Ẋt iff they are compatible, i.e.,
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rv
$t j %1,k ~ f 1~x1!¯ f m21~xm21! f m11~xm11!¯ f k~xk!!

5rv
$t j %1,]m@ ,k ~ f 1~x1!¯ f m21~xm21! f m11~xm11!¯ f k~xk!!.

Compatibility obviously holds forX compact, since then 1PC0(X), andan
t 151. For noncompact

X, compatibility follows fromtF continuity ofa t together witha t151; take in fact an increasing
sequence of positive functionsgnPC0

0(Xtm
) converging to 1dm almost everywhere. Clearly, fo

any positivef jPC0(Xt j
), j 51,...,k, j Þm,

lim
n

lim
n

vS (12an
tmgn))

j
an

t j f j D < lim
n

lim
n

v~12an
tmgn! )

j
i f j i` . ~3.20!

By the monotone convergence theorem,gnP j f j converge ini iL1(X$t j %1,k,r
v

$t j %1,k) to P j f j , and there-

fore the left-hand side of Eq.~3.20! converges to

rv
$t j %1,]m@ ,kS)

j
f j D 2rv

$t j %1,kS)
j

f j D ;

sincegn converge ini iL1(X,a tm* v) to 1, the right-hand side converges to 0.
This implies the compatibility condition, since linear combinations of products of positive f
tions are dense inC0(X$t j %1,]m@ ,k).
From compatibility it also followsrv

$t j %1,k(1)5v(1)51.
For the Markov property, let us indicate by

p~ t1 ,x1 ;...;tk21 ,xk21utk , f k!PL`~Ẋ$t j %1,k21,rv
$t j %1,k21!

the conditional expectations of the process, characterized by

;k>2, ; j 51,...,k, ; f jPL`~Ẋt j
,rv

t j !

E f 1~x1!¯ f k~xk!drv
$t j %1,k5E f 1~x1! ¯ f k21~xk21! p~ t1 ,x1 ;...;tk21 ,xk21utk , f k! drv

$t j %1,k21.

The process is Markov iff

p~ t1 ,x1 ;...;tk21 ,xk21utk , f k!5p~ tk21 ,xk21utk , f k!

and it is also time independent iff

p~ t1 ,x1ut2 , f 2!5p~0,x1u~ t22t1! f 2!.

Hence, for a time-independent Markov process, by iteration we obtain

E f 1~x1! ¯ f k~xk! drv
$t j %1,k

5E p~0,x0ut1 , f 1p~0,•ut22t1 , f 2 ¯ f k21p~0,•utk2tk21 , f k!¯ !!v~x0!dm.

~3.21!

Notice now that, since thean
t are automorphisms,
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lim
nk

¯ lim
n2

lim
n1

v ~an1

t1 f 1 ¯ ank

tk f k!5 lim
nk

¯ lim
n2

lim
n1

v ~an1

t1 ~ f 1an2

t22t1~¯~ f k21ank

tk2tk21f k!¯ !!!

~3.22!

which, by definition and continuity ofa t, converges to

v~a t1~ f 1a t22t1 ~¯ ~ f k21a tk2tk21f k! ¯ !!!. ~3.23!

So, if the limit ~3.19! coincides with~3.22!, then the stochastic processr is Markov and time
independent, withp(0,xut, f )5a t f (x).

The converse follows ifv(x) only vanishes on a set of zero measure; in fact, forv(x)Þ0,
p(0,xut, f )5a t f (x), and therefore, if the process is time-independent Markov, i.e., if~3.21! holds,
then it is also given by the limit~3.22! and ~3.23!.

IV. MODELS

We consider two models for the general structures and results of Sec. II. For both mode
will prove weak convergence to positive maps, and for the second model the limit will be s
to define a time-independent Markov process.

The first model is a Hamiltonian system with one degree of freedom, namely a particle
periodic potential, which is scaled so that its period converges to zero. The phase space isR2, with
canonical variablesp, q; the dynamics is defined by the Hamiltonian

Hn[p2/ 2m1V~nq!, ~4.1!

with V(q)5V(q11)PC2(R2), anddV/dq50 only for a finite number of points.
We will consider the maps defined onR2 by the solutionspt

(n)(p,q), qt
(n)(p,q) of the Hamil-

tonian equations of motion, with Hamiltonians~4.1! and initial conditionsp, q, and denote byan
t

the corresponding map onC0(R2), the space of continuous functions vanishing at infinity,

an
t f ~p,q![ f ~pt

~n!~p,q!,qt
~n!~p,q!!. ~4.2!

For n51, we denote

pt~p,q![pt
~1!~p,q!, qt~p,q![qt

~1!~p,q!.

From the properties ofV(q) it follows thatpt(p,q) andqt(p,q) mod Z are periodic inq, with
period 1, and int, with period T(p,q) differentiable and periodic inq, for fixed p, except for
q mod Z in a finite set$qi ,`(p)%.

We will assume nondegeneracy, i.e., for allp, ]/]qT(p,q)Þ0, except for a finite number o
pointsqi ,0(p) ~in @0, 1!!. It follows that,;pPR, ;d.0,

T~p,q! < 1/d, u]/]qT~p,q!u > d ;qP@0,1#\I d~p!, ~4.3!

with I d(p) the union of a finite number of intervals, with total length converging to zero fod
˜0, andùdI d(p)5$qi ,0(p),qi ,`(p)%.

Proposition 7: Under the above assumptions, the automorphismsan
t , Eq. (4.2), converge for

all t PR, in the weak topology defined by Lebesgue absolutely continuous finite measuresR2,
to positive bistochastic mapsa t, given by

a t f ~p,q!5E
0

1

dx 1/T~p,x!E
0

T~p,x!

dt f ~pt~p,x!,Qt~p,x!1q! ~4.4!

with

Qt~p,x! 5 lim
n˜`

1/n qnt~p,x! [ b~p,x!t. ~4.5!
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The limit (4.5) exists pointwise for all p, x, and it is uniform, at fixed p, for xP@0,1#\I d(p), ;d
.0.

Proof: It is easy to see that

pt
~n!~p,q!5pnt~p,nq!, qt

~n!~p,q!51/n qnt~p,nq!. ~4.6!

It is enough to prove weak convergence of

an
t f ~p,q!5 f ~pnt~p,nq!,1/n qnt~p,nq!! ~4.7!

for f in D, the space ofC` functions of compact support.
We introduce the convolutions

f k,n
t ~p,q![E ds hk~q2s! an

t f ~p,s!, ~4.8!

with

0<hkPD, Supp~hk!,@21/k,1/k#, E hk~s!ds51.

We will show that

lim
k

lim
n

f k,n
t ~p,q! ~4.9!

exists pointwise almost everywhere, and it is given by the right-hand side of Eq.~4.4!.
Existence of the limitn˜` in Eq. ~4.9! implies convergence, forn˜`, of

E dp dsS E d qg~p,q! hk~q2s! Dan
t f ~p,s! ~4.10!

;gPD, i.e., weak convergence ofan
t f with respect to a dense subspace ofL1(R2) and therefore,

by uniform boundedness ofan
t f , weak convergence. The weak limit is identified by the va

taken on it by the measures with density inD, and therefore by the limit,k˜`, of Eq. ~4.10!,
which is given by the pointwise limit~4.9!, f k,n

t being uniformly bounded.
In order to control the limit~4.9!, for fixed pPR andhPD, we use the periodicity propertie

of pt , qt ,

pt~p,q1n!5pt~p,q!, qt~p,q1n!5qt~p,q!1n ;nPZ ~4.11!

to estimate, denotingx(s)[ns2@ns#, @ # the integer part,

E ds hk~q2s! f ~pnt~p,ns!,1/n qnt~p,ns!!

5E ds hk~q2s! f ~pnt~p,x~s!!,1/n ~qnt~p,x~s!!1@ns# !!

.E
0

1

dx f~pnt~p,x!,1/n qnt~p,x!1q!, ~4.12!

with an error bounded byek1C(k)en , e i denoting, here and in the following, a suitable infin
tesimal sequence.

Periodicity in t of qt(p,q) mod Z, more precisely, forx¹$qi ,`(p)%,

qt1T~p,x!~p,x!5qt~p,x!1s~p,x! ~4.13!
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with

s~p,x!561 if H~p,x! . maxV~q!

and otherwise vanishing, implies pointwise convergence of 1/n qnt(p,x), uniform in @0,1#\I d(p),
;d.0, to

Qt~p,x![s~p,x! t/T~p,x!. ~4.14!

SinceT(p,x)˜` for x˜qi ,`(p), Qt(p,x) is continuous inx, at fixedp.
It follows that the right-hand side of Eq.~4.12! can be estimated as

E
0

1

dx f~pnt~p,x!, Qt~p,x!1q! ~4.15!

apart from an erroren .
By extendingQt(p,x) to a ~continuous! periodic function ofxPR, of period 1, the right-hand

side of Eq.~4.15! can be written, withhj as before,

E
0

1

dxE dy hj~x2y! f ~pnt~p,y!,Qt~p,y!1q!.E
0

1

dxE dy hj~x2y! f ~pnt~p,y!,Qt~p,x!1q!

~4.16!

with an errore j .
By periodicity in time,pnt(p,y)5ptn(p,y)(p,y), with

tn~p,y![nt mod T~p,y!. ~4.17!

By continuity inx, uniform for t bounded, ofpt(p,x), ptn(p,y)(p,y) can be replaced, with an erro
C(d)e j , by ptn(p,y)(p,x), for yP@0,1#\I d(p), ;d.0. SinceI d(p) is the union of a finite numbe
of intervals, restrictingx to @0,1#\I d/2(p) implies that, for largej, the domain of integration iny is
contained in@0,1#\I d(p); replacing in the right-hand side of~4.16! pnt(p,y) with ptn(p,y)(p,x)
therefore gives an errore(d)1C(d)e j . Moreover,tn(p,y) is differentiable iny, apart from a
finite number of points, with derivative

2@nt/T~p,y!# ]/]yT~p,y!

large in modulus, uniformly inyP@0,1#\I d(p), ;d.0. It follows that integration iny ~in @x
2 j 21,x1 j 21) in the right-hand side of Eq.~4.16! can be replaced by a mean int, with an error
e j1C( j ,d)en1e(d); the result is then the right-hand side of Eq.~4.4!.

From the fact that the sum of the errors made in the above estimates can be writtenek

1C(d)e j1(C(k)1C( j ,d)en1e(d)), it follows that the limit ~4.9! exists and is given by the
right-hand side of Eq.~4.4!. j

The second model is defined by a particle moving horizontally inR2 with speed 1, and
interacting with fixed vertical ‘‘rods,’’ of equal height; the interaction is assumed only to cha
of the ‘‘spin’’ of the particle, taking values61.

The spaceX of the configurations of the system is thusR23$21,1%, on which we take the
measurem5d2x^ ds, with s($1%)5s($21%)51. As space of states we will takeL1(R2

3$21,1%,m), i.e., the set of states defined by measures space which are absolutely cont
with respect to the Lebesgue measure. The dynamics will depend on a parametern through a
suitable scaling of the positions and of the height of the rodsin one given and fixed configuratio
in a set to be specified in the following.

In general, a configurationj of rods is determined by their heighth and by the set of their
centers,j[ø i PN$(xi ,yi)%; we will consider only configurations with a finite number of rods
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any compact subset ofR2, and denote byJ the set of all such configurations. For fixedjPJ, and
h.0, we will study the limitn˜` of the dynamicsan

t defined by the interaction with rods o
heightn22h in the scaled configurationn21j[ø i PN$(n21xi ,n21yi)%. The limit will be taken in
the weak topology defined by the state spaceF[L1(R23$21,1%,m). We will prove the follow-
ing:

Proposition 8: Let nk˜`, with (1/nk,`. For any denumerable set of positive times, f
almost all choices of the configurationj with respect to the independent Poisson distribution (
measurer defined below), the dynamical systems defined as above by the configurationj converge
weakly, for k̃ `, with respect to the setF of states, to positive maps, and define, as in Pro
sition 5, a time-independent Markov process.

It is of course essential thatno integrationis performed overr; performing such an integration
would in fact amount toassuminga stochastic process, indexed by the sample space o
distribution of the obstacles. On the contrary, Proposition 7implies that the samestochastic
process correctly describes theresult of all measurements, in the limit ñ̀ , for r almost allfixed
configurations of obstacles. The model is therefore relevant in order to clarify the basis for th
of stochastic maps and processes for the description of perfectly reversible dynamical system
it is worthwhile to control it with all mathematical details.

For completeness, we recall the construction of the probability measurer corresponding to the
independent Poisson distribution of points in a plane, with unit mean density: following Re
Sec. 7.1.2, one considers the family of measures onL j ,

drL
j [

e2uLu

j !
dx1¯dxj ~4.18!

with j PN andL bounded Borel,R2; they define a positive linear functional

r~ f ![(
j 50

`
e2uLu

j ! E
L j

dx1¯dxj f ~j!, ~4.19!

where f :J˜C depends only on the points,x1 ...xj , of j insideL, over a suitable algebraB of
functions onJ. The spectrumE of the i i` closure ofB turns out be the* 2w closure ofJ ~the
* weak topology being the weakest one which makes the weak topology being the weake
which makes the functions inB continuous!. By the Riesz–Markov theorem, the positive fun
tional r defines a Borel regular measure onE, denoted again byr, and it is not difficult to see tha
r is in fact concentrated onJ, i.e., r(J)5r(E)51.29 For functions depending only on a finit
number of points, integration with the measurer is simply given by Eq.~4.19!.

Proof of Proposition 8:The time evolution is given by

Gn
t ~x,y,s![~x1t,y,s•~21! un21jùBx,t,n22hu!5~x1t,y,s•~21! u~jùBnx,nt,n21hu, ~4.20!

uIu being the number of points in the finite set I,x[(x,y), and

Bx,t,h[$~a,b!PR2ubP@y2h/2,y1h/2!,

aP@x,x1t ! for t.0, aP@x1t,x! for t,0%.

For the observables we have therefore:

; f PC0~X!, an
t f ~x,y,s!5 f ~x1t,y,s•~21! ujùBnx,nt,n21hu!. ~4.21!

Clearly,m is left invariant by theGn
t , for all n andt. The lack of continuity of the mapsGn

t ~a
consequence of the discreteness of the ‘‘spin’’ variable! is not a problem since, as already r
marked, measurability ofGn

t is enough for all the results of Sec. II. Here,an
t mapsC0 into

L1ùL`, and defines automorphisms of the closure of this space, with the Sup norm.
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We denote byg61,x,t,h(j) the characteristic functions of the sets

H xPR2:ujùBx,t,hu is
even
oddJ .

From Eq.~4.21!, using the density of the finite linear combinations of the characteristic funct
of bounded Borel subsets ofR2 in L1(R2,d2x), it follows that the existence of the weak limit fo
an

t ,

; f PC0~X!, ; l PL1~X,dm! lim
n
E l an

t f dm[E l a t f dm

is equivalent to the existence of the limit

lim
n
E xB~x! gs,nx,nt,n21h~j! d2x. ~4.22!

;B bounded Borel subset ofR2, ands561.
Moreover, callingGs,x,t,h(j) the weak limit ofgs,nx,nt,n21h(j), a t will be given by

a t f ~x,s!5 (
t561

Gt,x,t,h~j! f ~x1t,t•s!,

with x1t[(x1t,y).
In the same way it turns out that the existence of the limit for the measurement ofk observ-

ables atk successive times 0<t1,t2,¯,tk is equivalent to weak convergence of the produ
) i 51

k gs i ,nx,nti ,n21h(j). Denotingt0[0 andt i[) j < i s j , it follows

)
i 51

k

gs i ,n~x1t i 21!,n~ t i2t i 21!,n21h~j!5)
i 51

k

gt i ,nx,nti ,n21h~j!,

and we may write the request of convergence in a form that will be more suitable to demon
the Markov time-independent property for the limit stochastic process:

;B bounded Borel set,R2, ;k51,2,..., ;s i561, i 51,...,k

' lim
n
E xB~x! )

i 51

k

gs i ,n~x1t i 21!,n~ t i2t i 21!,n21h~j! d2x. ~4.23!

Now, from the definition of r it follows that the characteristic functions of the sets$x
PR2:ujùBx,t,hu5n%, denoted byg̃n,x,t,h(j), are inL1(J,r), and their integral is given by

E
J

g̃n,x,t,h~j! dr~j!5(
j 50

`
e2uLu

j ! E
L j

dx1¯dxj g̃n,x,t,h~j!5e2utuh uthun

n!
.

Expressing the functionsgs,x,t,h in terms of theg̃n,x,t,h , we obtain

E
J

g61,x,t,h~j! dr~j!5
16e22utuh

2

and, forBxi ,t i ,hi
ùBxj ,t j ,hj

5B, iÞ j ,

E
J

)
i 51

k

gs i ,xi ,t i ,hi
~j! dr~j!5)

i 51

k E
J

gs i ,xi ,t i ,hi
~j! dr~j!5)

i 51

k
11s i•e22ut i uhi

2
.
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The aim is now to show that the conditions in Eqs.~4.22! and~4.23! are fulfilled forr—almost all
jPJ. We will show that those limits exist in theL1(J,r) norm, and hence pointwise,r-almost
everywhere onJ, for any subsequencenk with (k 1/nk,`. Consider first the single time case
;B bounded Borel,R2:

E
J

dr~j! U E
B
d2x gs,nx,nt,n21h~j!2uBu

11s•e22utuh

2 U2

5E
J

dr~j!E
B
d2x gs,nx,nt,n21h~j!E

B
d2x8 gs,nx8,nt,n21h~j!2E

J
dr~j! S uBu

11s•e22utuh

2 D 2

,

where we applied Fubini’s theorem tog, which is measurable over (R23J,d2x^ dr), since it is
pointwise approximated by a sequence of finite linear combinations of productsf i(x)x i(j), with
f i(x) andx i(j) measurable.

Since the points ofj arer uncorrelated, in the above integration no contribution comes f
the set

Q[$~x,x8!PB3B:nuy2y8u>n21h%.

As n˜`, Q becomes all ofB3B; more precisely, taken a rectangle inR2 of baseD1 and height
D2 which containsB, it is

u~B3B!\Qu<E
B
d2x D 1E

y2n22h

y1n22h
dy8<n222hD1

2D2

and therefore, sinceigi`51, we conclude

E
J

dr~j! U E
B
d2x gs,nx,nt,n21h~j!2uBu

11s•e22utuh

2 U2

<n222hD1
2D2 . ~4.24!

The same reasoning and the same inequality apply for functions of the form

)
i 51

k

gs i ,n~x1t i 21!,n~ t i2t i 21!,n21h~j! with t050,t1,¯,tk ,

which describe all measurements atk successive times. Moreover, since theg’s in the above
product depend onj only through points in disjoint sets, and since the points ofj arer uncorre-
lated, it follows that

E
B
d2x )

i 51

k

gs i ,n~x1t i 21!,n~ t i2t i 21!,n21h~j!

converges, for the moment ini i2 over ~J,r!, to the product of the limits, i.e., to

uBu )
i 51

k
11s i•e22~ t i2t i 21!h

2
.

Sincer(J)51, convergence also takes place in theL1 norm. Now, if a sequence$ f j% converges
in i i1 to f and( j 51

` i f j2 f j 21i1<`, then f j converge pointwise almost everywhere tof,27 and in
our case it is sufficient to take a subsequence with(1/nj,` to assurer—almost everywhere
pointwise convergence.

Therefore, for any denumerable familyR of bounded Borel setsB,R2, ;k51,2,..., ;r i

561, i 51,...,k, ;t050,t1,¯,tk in a denumerable set, forr-almost alljPJ,
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lim
j
E

B
d2x )

i 51

k

gs i ,nj ~x1t i 21!,nj ~ t i2t i 21!,nj
21h~j!5uBu )

i 51

k 11s i•e22~ t i2t i 21!h

2
.

By taking R such that the linear combinations of characteristic functionsxB are dense in
L1(R2,d2x), and using thei i` boundedness of the integrand, uniform inj, convergence follows
for any bounded Borel subset ofR2; as discussed above, this implies weak convergence ofan

t ,
and convergence of the means at different times to a stochastic process, for times in a denu
set, forr—almost all~fixed! configurations of obstacles.
The weak limit is given by

a t f ~x,s!5 (
t561

f ~x1t,t•s!
11te22utuh

2
. ~4.25!

Convergence of) i 51
k g to ) i 51

k G implies that limits of measurements at successive times de
a time-independent Markov process, with transition function

Pt~~x,s!,~B,t!!5a txB,t~x,s!5 (
r561

xB,t~x1t,r•s!
11re22utuh

2
.

In fact,

an
t f ~x,s!5 (

t561
f ~x1t,t•s! gt,nx,nt,n21h~j!,

so that

an
t1~ f 1an

t22t1~ f 2an
t32t2

¯~ f k21an
tk2tk21f k! ¯ !!~x,s!

5)
i 51

k

(
t i561

f iS x1t i ,s•)
j 51

i

t j D gt i ,n~x1t i 21!,nj ~ t i2t i 21!,n21h~j!

which tF converges asn˜` to

)
i 51

k

(
t i561

f i S x1t i ,s•)
j 51

i

t j D 11t ie
22~ t i2t i 21!h

2

5a t1~ f 1a t22t1~ f 2a t32t2
¯~ f k21a tk2tk21f k!¯ !!~x,s!, ~4.26!

which is the condition for the stochastic process to be Markov and time independent. The p
is defined by the left-hand side of Eq.~4.26! for all positive times, and the restriction to
denumerable set of times is only involved in the construction of a fixed set of configuratio
rods ~of r-measure one! for which weak convergence holds.
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A coupled AKNS–Kaup–Newell soliton hierarchy
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A coupled AKNS–Kaup–Newell hierarchy of systems of soliton equations is pro-
posed in terms of hereditary symmetry operators resulted from Hamiltonian pairs.
Zero curvature representations and tri-Hamiltonian structures are established for all
coupled AKNS–Kaup–Newell systems in the hierarchy. Therefore all systems
have infinitely many commuting symmetries and conservation laws. Two reduc-
tions of the systems lead to the AKNS hierarchy and the Kaup–Newell hierarchy,
and thus those two soliton hierarchies also possess tri-Hamiltonian structures.
© 1999 American Institute of Physics.@S0022-2488~99!01209-8#

I. INTRODUCTION

Systems of soliton equations usually come in hierarchies. This kind of hierarchy poss
many nice properties, for instance, Lax representations or zero curvature representations, in
many commuting symmetries and conservation laws, hereditary recursion structure
Hamiltonian formulations, and even multiple Hamiltonian formulations, etc., and they are
called soliton hierarchies. Well-known examples of such soliton hierarchies~for example, see
Refs. 1, 2! contain the KdV hierarchy, the MKdV hierarchy, the AKNS hierarchy, the Kau
Newell hierarchy, the Benjamin–Ono hierarchy,3 the Tu hierarchy,4 the Dirac hierarchy,5 the
coupled KdV hierarchies,6,7 the coupled Harry–Dym hierarchies,8 the coupled Burgers
hierarchies,9 and so on. It is very interesting to search for new soliton hierarchies, even hierar
of systems that possess only infinitely many commuting symmetries.

An idea that allows us to achieve this is to construct soliton hierarchies of coupled syste
equations. It could be divided into two aspects in view of types of soliton equations. The one
construct soliton hierarchies by coupling systems of the same type. Such examples are the
KdV hierarchies,6,7 the coupled Harry–Dym hierarchies,8 the coupled Burgers hierarchies,9 and
the perturbation systems of the KdV hierarchy,10 etc. The other is to construct soliton hierarchi
by coupling systems of different types. There are few examples in this aspect. A coupled AK
Kaup–Newell hierarchy of a complex form, recently introduced by Zhang,11 is such an example

In this paper, motivated by Zhang’s coupled AKNS–Kaup–Newell hierarchy of a com
form, we would like to propose a hierarchy of coupled AKNS–Kaup–Newell evolution equa
of real form. The hierarchy will be established in the second section, in terms of here
symmetry operators. The required hereditary symmetry operators can be generated by obs
set of Hamiltonian operators. Zero curvature representations will be computed in the third s
for all systems in the hierarchy. Interestingly the discussion of the fourth section shows that
systems have not only bi-Hamiltonian structures but also tri-Hamiltonian structures, alth
Zhang did not present Hamiltonian structures and consequent conservation laws due to a fa
determining Hamiltonian operators.11 Therefore the resulting hierarchy has infinitely many co
muting symmetries and conservation laws. Some concluding remarks are given in the last s

a!Electronic mail: mawx@math.cityu.edu.hk
b!Electronic mail: rgzhou@public.xz.js.cn
44190022-2488/99/40(9)/4419/10/$15.00 © 1999 American Institute of Physics
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II. HEREDITARY SYMMETRY OPERATORS

We want to establish a coupled AKNS–Kaup–Newell hierarchy in terms of hereditary
metry operators resulted from Hamiltonian pairs. To this end, let us introduce a set of 232 matrix
integrodifferential operators:

M5M ~u!5S a1q ]21q a21a3]2a1q ]21r

2a21a3]2a1r ]21q a1r ]21r D , u5S q
r D , ~1!

where]5]/]x, q5q(x,t), r 5r (x,t), anda1 ,a2 ,a3 are three arbitrary constants, and consid
their Hamiltonian property. They are simple generalizations of the Hamiltonian operators
AKNS case.12 The following proposition shows that they are still Hamiltonian, indeed.

Proposition 1: The232 matrix integrodifferential operators defined by~1! are all Hamil-
tonian for any constantsa1 ,a2 ,a3 .

Proof: Assume that

X5~X1 ,X2!T, Y5~Y1 ,Y2!T, Z5~Z1 ,Z2!T, W5~W1 ,W2!T,

are two-dimensional vectors of functions. SinceM is skew symmetric, we only need to prove th
the Jacobi identity,

^Z,M 8@MX#Y&1cycle~X,Y,Z![0~mod]!, ~2!

holds for anyX,Y,Z, where^•,•& denotes the standard inner product ofR2. By ~1!, we immediately
have

MX5S a2X21a3X2x1a1qP~X!

2a2X11a3X1x2a1rP~X! DªS W1~X!

W2~X! D ,

where P(X)5]21(qX12rX2). Following the definition of the Gateaux derivative, two objec
M 8@W# andM 8@W#Y are computed as follows:

M 8@W#5S a1q ]21W11a1W1 ]21q 2a1q ]21W22a1W1 ]21r

2a1r ]21W12a1W2 ]21q a1r ]21W21a1W2 ]21r D ,

M 8@W#Y5S a1q]21~W1Y12W2Y2!1a1W1]21~qY12rY2!

2a1r ]21~W1Y12W2Y2!2a1W2]21~qY12rY2! D .

Now we can have

^Z,M 8@MX#Y&5a1~qZ12rZ2!]21
„W1~X!Y12W2~X!Y2…

1a1„W1~X!Z12W2~X!Z2…]
21~qY12rY2!. ~3!

Upon observing that

W1~X!Y12W2~X!Y25„a2X21a3X2x1a1qP~X!…Y12„2a2X11a3X1x2a1rP~X!…Y2

5a1P~X!~qY11rY2!1a2~X2Y11X1Y2!1a3~X2xY12X1xY2!,

we can make a decomposition,

^Z,M 8@MX#Y&5R~X,Y,Z!1S~X,Y,Z!1T~X,Y,Z!, ~4!

whereR,S,Tare defined by
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R~X,Y,Z!5a1
2~qZ12rZ2!]21@P~X!~qY11rY2!#1a1

2P~X!~qZ11rZ2!]21~qY12rY2!,
~5!

S~X,Y,Z!5a1a2~qZ12rZ2!]21~X2Y11X1Y2!1a1a2~X2Z11X1Z2!]21~qY12rY2!, ~6!

T~X,Y,Z!5a1a3~qZ12rZ2!]21~X2xY12X1xY2!1a1a3~X2xZ12X1xZ2!]21~qY12rY2!.
~7!

For these three functionsR,S,T, we can compute that

R~X,Y,Z!1cycle~X,Y,Z!5a1
2]$P~Z!]21@P~X!~qY11rY2!#%1cycle~X,Y,Z!, ~8!

S~X,Y,Z!1cycle~X,Y,Z!5a1a2]@P~Z!]21~X2Y11X1Y2!#1cycle~X,Y,Z!, ~9!

T~X,Y,Z!1cycle~X,Y,Z!

5a1a3~qZ12rZ2!~X2Y12X1Y2!1a1a3~qZ12rZ2!]21~X1Y2x2X2Y1x!

1a1a3~Z1X2x2Z2X1x!]
21~qY12rY2!1cycle~X,Y,Z!

5a1a3~qZ12rZ2!~X1Y2x2X2Y1x!1a1a3~Z1X2x2Z2X1x!]
21~qY12rY2!

1cycle~X,Y,Z!

5a1a3]@P~Z!]21~X1Y2x2X2Y1x!#1cycle~X,Y,Z!. ~10!

They are all total derivatives and thus combining the decomposition~4! and the equalities~8!, ~9!,
~10! leads to the Jacobi identity~2!. This completes the proof. j

Now we would like to discuss some special cases of Hamiltonian pairs starting from the
Hamiltonian operators defined by~1!, which allows us to generate hereditary symmetry opera
and further soliton hierarchies. This idea has been successfully used to construct bi-Hami
coupled KdV systems.13,14An important phenomenon we want to point out is that different soli
hierarchies can be derived from Hamiltonian operators of the same type. The following disc
shows an example of such phenomenon. It is also important to realize that not all Hamil
pairs may generate hereditary symmetry operators. Thus, care must be taken to restrict ou
tion to the cases where there exists at least one invertible Hamiltonian operator for each
tonian pair. The required invertibility guarantees that Hamiltonian pairs can yield hereditary
metry operators.15

Case 1:We make a choice of an invertible Hamiltonian operator,

J5S 0 1

21 0D , ~11!

which has an inverse operator,

J215S 0 21

1 0 D .

It follows from Proposition 1 that this operatorJ constitutes a Hamiltonian pair withM defined by
~1!. Therefore we can have a hereditary symmetry operator,

F5MJ215S a21a3]2a1q ]21r 2a1q ]21q

a1r ]21r a22a3]1a1r ]21qD , ~12!

wherea1 , a2 , anda3 are arbitrary. The reduction ofa1521, a250 anda35 1
2 leads to the

recursion operator for the normal AKNS hierarchy.1,2,16
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Case 2:We make a choice of a Hamiltonian pair,

J5S b1q ]21q 12b1q]21r

212b1r ]21q b1r ]21r D , M5S 0 a3]

a3] 0 D . ~13!

The above proposition ensures that they constitute a Hamiltonian pair, indeed. Since the o
J has an invertible operator,

J215S b1r ]21r 211b1r ]21q

11b1q ]21r b1q ]21q D ,

we can obtain the corresponding hereditary symmetry operator,

F5MJ215S a3]1a3b1]q ]21r a3b1]q ]21q

a3b1]r ]21r 2a3]1a3b1r ]21r D , ~14!

where a3 and b1 are arbitrary. The reduction ofa35 1
2 and b1521 leads to the recursion

operator for the normal Kaup–Newell hierarchy~for example, see Ref. 17!.
More generally, we have the following case, which combines the above two cases.
Case 3:We make a choice of an invertible Hamiltonian operator,

J5S b1q ]21q b22b1q ]21r

2b22b1r ]21q b1r ]21r D , ~15!

whose inverse operator can be given by

J215
1

b2
2 S b1r ]21r 2b21b1r ]21q

b21b1q ]21r b1q ]21q D .

It follows from Proposition 1 that the operatorJ constitutes a Hamiltonian pair with the Hami
tonian operatorM defined by~1!. In this case, we can generate the following correspond
hereditary symmetry operator:

F5MJ215
1

b2
2 S a2b21a3b2]1~a2b12a1b2!q ]21r 1a3b1 ]q ]21r ,

~a1b22a2b1!r ]21r 1a3b1 ]r ]21r ,

~a2b12a1b2!q ]21q1a3b1 ]q ]21q
a2b22a3b2]1~a1b22a2b1!r ]21q1a3b1 ]r ]21qD ,

~16!

where five constants are arbitrary butb2Þ0.
Let us pick out a special subcase ofa250 andb251 from the third case. Ifa350, we just

obtain a simple hereditary symmetry operator,

F5S 2aq ]21r 2aq ]21q

ar ]21r ar ]21q D , ~17!

wherea5a1 is arbitrary. This is equivalent to the first case witha25a350.
If a3Þ0, upon resettinga35g, a15a, a3b15b, we obtain a hereditary symmetry operato

F5S g]2aq ]21r 1b ]q ]21r 2aq ]21q1b ]q ]21q

ar ]21r 1b ]r ]21r 2g]1ar ]21q1b ]r ]21qD , ~18!

wherea,b,g are arbitrary butgÞ0. Note that if we let the constantg go to zero, the hereditary
condition for F with a general constantg becomes the one forF with g50. Therefore the
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constantg can be chosen as zero, which does not affect the hereditary property ofF. However, if
g50, we do not know whether the operatorF defined by~18! is decomposable, i.e, whether the
exists any Hamiltonian pairJ andM so thatF5MJ21.

We will focus on discussing a soliton hierarchy generated by the hereditary symmetry o
tor in ~18! because of its generality. ForgÞ0, we can rescale three constants to put a general
into a special case of the operatorF defined by~18!, and thus we pick out the following specia
case:

F5MJ215S 1
2]2aq ]21r 2 1

2b ]q ]21r

ar ]21r 2 1
2b ]r ]21r

2aq ]21q2 1
2b ]q ]21q

2 1
2]1ar ]21q2 1

2b ]r ]21q
D , ~19!

to discuss without loss of generality. To this special case, the corresponding hierarchy of evo
equations,

S qt

r t
D5S 1

2]2aq ]21r 2 1
2b ]q ]21r 2aq ]21q2 1

2b ]q ]21q

ar ]21r 2 1
2b ]r ]21r 2 1

2]1ar ]21q2 1
2b ]r ]21q

D n

S qx

r x
D , n>0, ~20!

contains two important reductions. IfaÞ0 but b50, the hierarchy reduces to the AKNS hiera
chy. If a50 but bÞ0 but b50, the hierarchy reduces to the Kaup–Newell hierarchy. Thus,
hierarchy~20! generated by the hereditary symmetry operator~19! is called a coupled AKNS–
Kaup–Newell hierarchy. All systems in the hierarchy~20! are real. Therefore the hierarchy~20! is
a soliton hierarchy that we want to construct.

III. ZERO CURVATURE REPRESENTATIONS

In the previous section, we generated a coupled AKNS–Kaup–Newell hierarchy of real
by observing Hamiltonian operators. More importantly, the resulting hierarchy shares some
mon integrable properties. In this section, we want to show zero curvature representations
systems in the hierarchy, and in the next section, we will establish tri-Hamiltonian structure

To show zero curvature representations, let us impose a spectral problem,

fx5Uf, U5U~u,l!5S l q

~a1bl!r 2l
D , f5S f1

f2
D , ~21!

wherel is a spectral parameter, anda andb are arbitrary constants. It is customary to solve t
stationery zero curvature equationVx5@U,V# first. Suppose that

V5V~u,l!5S a b

~a1bl!c 2aD 5(
i>0

S ai bi

~a1bl!ci 2ai
D l2 i , ~22!

and then the stationary zero curvature equation becomes

ax5~a1bl!~qc2rb !, bx52lb22qa, cx52ra22lc. ~23!

Notice that a recursion relation to determineb and c may be found if we fix a5(a
1bl)]21(qc2rb). Actually, we have

bx52lb22~a1bl!q]21~qc2rb !, cx52~a1bl!r ]21~qc2rb !22lc, ~24!

which equivalently leads to

S 22bq ]21q 212bq ]21r

2212br ]21q 22br ]21r D S ci 11

bi 11
D5S 2aq ]21q ]22aq ]21r

]22ar ]21q 2ar ]21r D S ci

bi
D , ~25!
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wherei>0. If we set

J5S 22bq ]21q 212bq ]21r

2212br ]21q 22br ]21r D , M5S 2aq ]21q ]22aq ]21r

]22ar ]21q 2ar ]21r D , ~26!

the operatorsJ andM constitute a Hamiltonian pair, based on the result in the previous sectio
is apparent that the corresponding hereditary symmetry operatorF5MJ21 is exactly the same a
the one defined by~19!, having noted that

J215
1

2 S 2b ]r ]21r 212b ]r ]21q

12b ]q ]21r 2b ]q ]21q D .

The conjugate operator ofF reads as

C5F†5J21M5S 2 1
2]1ar ]21q2 1

2br ]21q ] 2ar ]21r 2 1
2br ]21r ]

aq ]21q2 1
2bq ]21q ] 1

2]2aq ]21r 2 1
2bq ]21r ]

D . ~27!

Therefore upon noting~23! and choosinga051, we obtain a solution to the stationary ze
curvature equationVx5@U,V#:

a051, b05c050; b15q, c15r ;

S ci 11

bi 11
D5CS ci

bi
D , i>1,

ai5a]21~qci2rbi !1b]21~qci 112rbi 11!, i>1; ~28!

from which we can get

S c2

b2
D5CS r

qD5
1

2 S 2r x2bqr2

qx2bq2r D ,

and

a15b]21~qc22rb2!52 1
2bqr.

It should be noted that we always need to select zero constants for integration in de
ai ,bi ,ci , i>1. That is, we require thatai u@u#505bi u@u#505ci u@u#5050, i>1, where @u#
5(u,ux ,...).

Now we can express the coupled AKNS–Kaup–Newell hierarchy~20! in another way. Let us
define

ut5KnªJS cn11

bn11
D5FnS 2q

22r D , n>0, ~29!

whereF is defined by~19!. The first three systems of the hierarchy~29! are

ut5S qt

r t
D5K05JS c1

b1
D5S 2q

22r D ,

ut5S qt

r t
D5K15JS c2

b2
D5S qx

r x
D ,
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ut5S qt

r t
D5K25JS c3

b3
D5

1

2 S qxx22aq2r 2b~q2r !x

2r xx12aqr22b~qr2!x
D . ~30!

SinceK15ux , all systems in the hierarchy~29!, except the first systemut5K0 , are exactly the
coupled AKNS–Kaup–Newell systems in the hierarchy~20!. Therefore~29! is another expression
for the coupled AKNS–Kaup–Newell hierarchy~20!.

Let us turn to the construction of zero curvature representations for all coupled AKNS–K
Newell systems in the soliton hierarchy~29!. We need a condition ofa21b2Þ0. With this
condition, we have the injective property of the Gateaux derivative ofU with respect tou, which
is required in deriving systems of evolution equations from zero curvature equations.
condition ofa21b2Þ0 is not satisfied, then the systems defined by~29! are linear and separated
and thus they are all trivial.

We choose Lax operatorsV(n) for n>0 as

V~n!5V~n!~u,l!5V̄~n!1Dn , Dn5S d1n 0

0 d2n
D , ~31!

V̄~n!5(
j 50

n S aj bj

~a1bl!cj 2aj
D ln2 j5S ~lna!1 ~lnb!1

~a1bl!~lnc!1 2~lna!1
D , ~32!

where the subscript denotes choosing the polynomial part inl, andd1n andd2n are two functions
to be determined. At this moment, we can compute that

V̄x
~n!2@U,V̄~n!#5S anx2a~qcn2rbn! bnx12qan

~a1bl!~cnx22ran! 2anx1a~qcn2rbn!
D ,

Dnx2@U,Dn#5S d1n,x q~d1n2d2n!

2~a1bl!r ~d1n2d2n! d2n,x
D .

Therefore, if we take a choice,

d1n52d2n52an1a]21~qcn2rbn!, n>1, ~33!

then noting the injective property ofU8 undera21b2Þ0, the zero curvature equation,

Ut2Vx
~n!1@U,V~n!#50, ~34!

equivalently yields the coupled AKNS–Kaup–Newell system,

ut5Kn5M S cn

bn
D5JS cn11

bn11
D ,

for eachn>1. Moreover, it is easy to see thatut5K0 has a Lax pairU andV̄(0). Therefore each
coupled AKNS–Kaup–Newell systemut5Kn has a zero curvature representation with the L
pair U and V(n) if we adopt d105d2050. We remark that for the systemsut5Kn with a5b
50, n>0, the above zero curvature representations still hold, but they are not sufficient, be
we lose the injective property ofU8 in the case ofa5b50.

IV. TRI-HAMILTONIAN STRUCTURES

To establish some kind of tri-Hamiltonian structures for the coupled AKNS–Kaup–Ne
hierarchy, let us impose a third Hamiltonian operator,
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N5MC5 S 2aq ]21q ]1a ]q ]21q2 1
2b ]q ]21q ],

2 1
2]

21a ]r ]21q1ar 21q]2 1
2b ]r ]21q ],

1
2]

22aq ]21r ]2a ]q ]21r 2 1
2b ]q ]21r ]

2a ]r ]21r 1ar ]21r ]2 1
2b ]r ]21r ]

D .

~35!

It constitutes a Hamiltonian triple withJ andM defined by~26!, for any constantsa, b, g. That is,
any linear combination ofJ, M, and N is still a Hamiltonian operator, which is automatical
satisfied sinceJ andM are a Hamiltonian pair.

Let us consider the first nonlinear system in the coupled AKNS–Kaup–Newell hierarchy~20!:

ut5K25M S c2

b2
D5

1

2 S qxx22aq2r 2b~q2r !x

2r xx12aqr22b~qr2!x
D . ~36!

It is apparent that this system could be written in three ways as

ut5K25JS c3

b3
D5M S c2

b2
D5NS c1

b1
D .

Moreover, a direct calculation can show three gradient vectors,

S c1

b1
D5S r

qD5
dH0

du
, H05qr; ~37!

S c2

b2
D5CS c1

b1
D5

1

2 S 2r x2bqr2

qx2bq2r D5
dH1

du
,

H152 1
4bq2r 22 1

4qrx1 1
4qxr ; ~38!

S c3

b3
D5CS c2

b2
D5

1

4 S r xx22aqr213bqrr x1 3
2b

2q2r 3

qxx22aq2r 23bqqxr 1 3
2b

2q3r 2D 5
dH2

du
,

H25 1
8qrxx1

1
8qxxr 2 1

4aq2r 21 3
16bq2rr x2 3

16bqqxr
21 1

8b
2q3r 3. ~39!

Therefore a tri-Hamiltonian structure for the coupled AKNS–Kaup–Newell system~36! can be
given by

ut5K25J
dH2

du
5M

dH1

du
5N

dH0

du
, ~40!

where three Hamiltonian functionsH0 , H1 , andH2 are defined by~37!, ~38!, and~39!, respec-
tively. Based on the recursion scheme in Refs. 18, 19, this leads to a tri-Hamiltonian structu
each nonlinear system in the coupled AKNS–Kaup–Newell hierarchy,

ut5Kn5J
dHn

du
5M

dHn21

du
5N

dHn22

du
, n>2. ~41!

The existence of all Hamiltonian functionsHn to satisfydHn /du5Cn(dH0 /du), n>0, is guar-
anteed by the hereditary property of the hereditary symmetry operatorF. They are all common
conserved densities for the whole AKNS–Kaup–Newell hierarchy and commute with each
under three Poisson brackets associated withJ, M, andN. This is because, for example, we ca
compute that
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$Hm ,Hn%JªE K dHm

du
,J

dHn

du L dx5E K dHm

du
,JC

dHn21

du L dx5E K dHm

du
,FJ

dHn21

du L dx

5E K C
dHm

du
,J

dHn21

du L dx5$Hm11 ,Hn21%J5¯5$Hn ,Hm%J ,

m,n, m,n>0.

It gives rise to the commutativity of the conserved densitiesHn , n>0, by combining the skew-
symmetric property of the Poisson brackets. Furthermore, we have

@Km ,Kn#5J
d

du
$Hm ,Hn%50, m,n>0, ~42!

which implies that each coupled AKNS–Kaup–Newell system has infinitely many comm
symmetries. This may also be seen from a zero Lie derivativeLux

F50. The property ofLux
F

50 also guarantees that the hereditary symmetry operator defined by~19! is a common recursion
operator for all systems in the coupled AKNS–Kaup–Newell hierarchy~29!.

V. CONCLUDING REMARKS

We have introduced a set of Hamiltonian operators and presented some corresponding
tary symmetry operators. Therefore a coupled AKNS–Kaup–Newell hierarchy of system
soliton equations of a real form is proposed. Zero curvature representations and tri-Hamil
structures are established for all systems in the hierarchy.

Interestingly, this coupled AKNS–Kaup–Newell hierarchy contains two different reduct
of the AKNS hierarchy and the Kaup–Newell hierarchy. A natural problem we want to ask is
conditions could be found for the existence of similar coupled soliton hierarchies associate
two or more given soliton hierarchies and how one constructs such coupled soliton hierarc
they exist.

Because our coupled AKNS–Kaup–Newell hierarchy includes the AKNS hierarchy an
Kaup–Newell hierarchy as two simple reductions, tri-Hamiltonian structures can be const
for the AKNS hierarchy and the Kaup–Newell hierarchy, based on the obtained tri-Hamilto
structures of the coupled AKNS–Kaup–Newell hierarchy. The corresponding tri-Hamilto
structure for the Kaup–Newell system of nonlinear derivative Schro¨dinger equations has bee
raised recently in Ref. 20 and a nonlinearization problem has been manipulated for the ass
spectral problem.21 We believe that some other nice properties may also be achieved for th
coupled AKNS–Kaup–Newell hierarchy.

It is worthy pointing out that by using a similar deduction to the one in Section III, a gen
hereditary symmetry operator defined by~18! can be constructed from the following spectr
problem:

fx5Uf, U5U~u,l!5S 1

2g
l q

1

2g S a2
b

g
l D r 2

1

2g
l
D , ~43!

with the same constantsa, b, g as ones in~18!. It is apparent that the condition ofgÞ0 is
required, buta andb may be equal to zero. Only a condition ofa21b2Þ0 is needed fora and
b, in order to guarantee the injective property of the Gateaux derivativeU8. It also deserves to
mention that the Hamiltonian operators defined by~1! can lead to other hierarchies of systems
evolution equations. For example, a hierarchy of bi-Hamiltonian systemsut5Fnux , n>0, can be
generated from a hereditary symmetry operatorF defined by~17!. What is more, we can mak
another choice of an invertible Hamiltonian operator,
                                                                                                                



-

–
oliton

uncil
Basic
y of

.

4428 J. Math. Phys., Vol. 40, No. 9, September 1999 W. Ma and R. Zhou

                    
J5S 0 ]

] 0D , ~44!

which has an inverse operator

J215S 0 ]21

]21 0 D .

It constitutes a Hamiltonian pair together withM defined by~1!. Thus we can have the corre
sponding hereditary symmetry operator,

F5MJ215S a2]211a32a1q]21r ]21 a1q]21q]21

a1r ]21r ]21 2a2]211a32a1r ]21q]21D . ~45!

This generates a new hierarchyut5Fnux , n>0, which is an inverse hierarchy of the Kaup
Newell hierarchy. In conclusion, Hamiltonian operators of the same type may lead to s
hierarchies of different types.
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Instability and chaos in spatially homogeneous
field theories
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Spatially homogeneous field theories are studied in the framework of dynamical
system theory. In particular, we consider a model of inflationary cosmology and a
Yang–Mills–Higgs system. We discuss also the role of quantum chaos and its
application to field theories. ©1999 American Institute of Physics.
@S0022-2488~99!00209-1#

I. INTRODUCTION

Quantum field theory offers a wide variety of applications, in particular for condensed m1

and elementary particle physics.2 Field theoretic ideas also reach for the cosmos through
development of the inflationary scenario—a speculative, but completely physical analysis
early universe, which appears to be consistent with available observations.3

In the last years there has been much interest in the chaotic behavior of field theories4–8 In
this paper we discuss and extend our recent results on instability and chaos9–11 in classical and
quantum field theory.12–17 In Sec. II we show how spatially homogeneous field theories can
studied by using the dynamical system theory, and we introduce some basic definitions
regular and chaotic dynamics of classical and quantum systems. In Sec. III we analyze th
stability of an inflationary scalar field minimally coupled to gravity and its point attractors in
phase space. The value of the scalar field in the vacuum is a bifurcation parameter, and we
the existence of a stable limit cycle. Finally, in Sec. IV we study the spatially homogeneous~2!
Yang–Mills–Higgs system. We show that for this system a classical order–chaos transition
both in classical and quantum mechanics.

II. FIELD THEORIES AS DYNAMICAL SYSTEMS

In this section we introduce some basic ideas of the dynamical system theory. We clar
concept of ergodic system giving a hierarchy of chaos.

Let us consider a classical relativistic scalar field theory with action

S@f#5E d4x L~f,]mf!, ~1!

whereL is the Lagrangian density of the system,]m5(]/]t, “) is the covariant derivative, and
f5f(x) is a real scalar field withxm5(t,x) the space–time position.2 It is well known that by
imposing the Hamilton’s Least Action Principle,

dS@f#50, ~2!

we obtain the Euler–Lagrange equation of motion of the system

a!Electronic mail: salasnich@mi.infm.it
44290022-2488/99/40(9)/4429/15/$15.00 © 1999 American Institute of Physics
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]L

]f
2]m

]L

]~]mf!
50. ~3!

The homogeneous space approximation means that we can neglect the spatial dependen
field, thus we can perform the following substitution:

f~ t,x!˜f~ t !, ~4!

and the resulting equation of motion is given by

]L

]f
2

d

dt

]L

]ḟ
50. ~5!

By introducing the momentum

x5
]L

]ḟ
, ~6!

and the Hamiltonian

H~x,f!5ḟx2L~f,ḟ !, ~7!

the second-order equation of motion can be written as a system of two first-order Ham
equations,

ż5f~z!, ~8!

wherez5(f,x) is a point in a two-dimensional phase space andf5( f 1 , f 2) is given by

f 1~f,x!5
]H

]f
, f 2~f,x!52

]H

]x
. ~9!

This is a general result: any homogenous field theory can be written as a systemN
first-order differential equations, i.e., a dynamical system. In the next sections we shall co
nonconservative and non-Abelian field theories.

A. Dynamical system theory

A dynamical system is defined byN first-order differential equations,

ż~ t !5f„z~ t !,t…, ~10!

where the variablesz5(z1 ,...,zN) are in the phase spaceV ~the Euclidean spaceRN, unless
otherwise specified!. These equations describe the time evolution of the variables and the s
they represent.9–11

A solution of the dynamical system is a vector functionz(z0 ,t), which satisfies~10! and the
initial condition

z~z0,0!5z0 . ~11!

Usually one writes simplyz(t) without the initial condition dependence.
The time evolution ofzPV is obtained with the one-parameter group of diffeomorphi

gt:V˜V, such that
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d

dt
~gtz!u t505f~z,0!. ~12!

The groupgt is called phase flux and the solution is called orbit. The system is called Hamilto
if the dimension ofV is even and there exists a functionH(z,t), given by

f„z~ t !,t…5J “H~z,t !, ~13!

where

J5S 0 I

2I 0D ~14!

is the symplectic matrix andH(z,t) is the Hamiltonian function.
On the phase spaceV one usually defines a probability measurem:V˜V, such thatm(V)

51. If we choose a subspaceA of V, the system is measure preserving if

m~gtA!5m~A!. ~15!

We observe that for measure preserving dynamical systems one gets div(f)50. It is well known
that Hamiltonian systems preserve their measure: the Liouville measure. Dynamical system
do not preserve their measure are called dissipative, and usually have a measure contra
time evolution.

The dynamics of a system is called regular if the orbits are stable to infinitesimal variatio
initial conditions. It is called chaotic if the orbits are unstable to infinitesimal variations of in
conditions. Useful quantities to calculate this behavior are the Lyapunov exponents, whic
the stability of a single orbit.

A vector of the tangent spaceTVz to the phase spaceV in the positionz is given by

v~z!5 lim
s˜0

r ~s!2r ~0!

s
, ~16!

wherer (0)5z andr (s)PV. The tangent space vectors are the velocity vectors of the curve
M; there are obviouslyN independent vectors.

Now we can define the Lyapunov exponent,

l~z!5 lim
t˜`

1

t
lnuv~ t !u, ~17!

wherev(t) is a tangent vector toz(t) with the condition thatuv(0)u51.
It can be demonstrated that the limit given by the previous equation exists for a compact

space, and that it is metric independent. Fixing an orbit in theN-dimensional phase space, the
areN distinct exponentsl1 ,...,lN , called first-order Lyapunov exponents. If the orbit has posit
Lyapunov exponents, it is chaotic.

To characterize globally the chaoticity of a system, we can introduce the Kolmogorov–
entropy, which is given by

hKS~m!5E
A
dm~z! (

l i.0
l i~z!, ~18!

with an A subspace ofV andl i Lyapunov exponents. The Kolmogorov–Sinai entropy is a v
useful tool for showing chaotic behavior in the regionA.

A system is called ergodic if the time average is equal to the phase space average,
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lim
t˜`

1

t E0

t

dt f„gtz~ t !…5E
V

dm~z! f ~z!. ~19!

Incidentally, as is well known, Boltzmann started from the ‘‘ergodic hypothesis’’ to obtain st
tical mechanics of equilibrium. But ergodicity is not sufficient to reach an equilibrium state:
must consider mixing systems.

In a mixing system, every finite element of the phase space occupies fort˜` the entire phase
spaceV; more precisely:;A, B,V with m(A) andm(B)Þ0,

lim
t˜`

m~BùgtA!

m~B!
5m~A!. ~20!

To have quantitative information of orbit separations, we must introduce K systems~Kolmog-
orov!, which are mixing systems with a positive metric entropy, i.e.,hKS.0. Such systems are
typical chaotic systems. Among the K systems, the most unpredictable ones are the B s
~Bernoulli!, which have the Kolmogorov–Sinai entropy equal to the entropy of every parti
i.e., hKS5h„Ai(0),m…,;Ai(0).

B. Hamiltonian dynamics

Let us consider a Hamiltonian system withn degrees of freedom described by the Hamilton
function H(z), wherez5(q1 ,...,qn , p1 ,...,pn) so that the phase space isN52n dimensional.
The Hamiltonian system is called integrable if there areN functionsFi5Fi(z) defined onV in
involution:

@Fi ,F j #PB5 (
k51

n
]Fi

]qk

]F j

]pk
2

]F j

]qk

]Fi

]pk
50, ; i , j , ~21!

and linearly independent.@ ,#PB are the Poisson brackets.
For conservative systems we haveF15H(z), and also

dFi

dt
5@H,Fi #PB50. ~22!

Because there aren constants of motion, every orbit can explore only then-dimensional manifold
V f5$z:Fi(z)5 f i , i 51,...,n%. If V f is compact and connected, it is equivalent to
n-dimensional torusTn5$(Q1 ,...,Qn)mod 2p%. There aren irreducible and independent circuit
g i on V f and there exists a canonical transformation (p,q)˜(P,Q), generated by the function
S(q,P), such that

Pi5 R
g i

dq–p, Qi5
]S

]Pi
. ~23!

The Pi are called action variables and theQi are called angle variables. The momentsp and
coordinatesq are periodic functions ofQ with period 2p. The Hamiltonian depends only on actio
variables, i.e.,H5H(P).

Adding a small perturbationV(P,Q) to an integrable HamiltonianH0(P), the total Hamil-
tonian can be written as

H~P,Q!5H0~P!1gV~P,Q!, ~24!

and, generically, the integrability is destroyed. As a consequence, parts of phase space
filled with chaotic orbits, while in other parts the toroidal surfaces of the integrable system
deformed but not destroyed; thus we have a quasi-integrable system. By growingg, chaotic
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motion develops near the regions of phase space, where all the frequencies on the tov i

5]H(P)/]P are commensurate. Conversely, tori of the integrable system, on which thev i are
incommensurate, are deformed, but not destroyed immediately@Kolmogorov–Arnold–Moser
~KAM ! theorem#.9,18 As g increases, the phase space generically develops a highly com
structure, with islands of regular motion~filled with quasiperiodic orbits! interspersed in regions o
chaotic motion, but containing in turn more regions of chaos. Asg grows further, the fraction of
phase space filled with chaotic orbits grows until it reaches unity as the last KAM surfa
destroyed. Then the motion is completely chaotic everywhere, except possibly for isolated
odic orbits.9,18

It is very useful to plot a 2n21 surface of sectionP,V, called a Poincare´ section. For an
integrable system with two degrees of freedom, theq150 Poincare´ section of a rational~resonant!
torus is a finite number of points along a closed curve, while the section of an irrational~nonreso-
nant! torus is a continuous closed curve. Adding a perturbation, in the section we present
curves~KAM tori !, whose points are stable~elliptic!, and also curves formed by substructure
residua of resonant tori, whose points are unstable~hyperbolic!. As the perturbation paramete
increases, the closed curves are distorted and reduced in number.

C. Quantum chaos

We use the term quantum chaotic system in the precise and restricted sense of a q
system whose classical analog is chaotic. In particular, we concentrate on energy levels o
tum systems~see, for example, Refs. 18 and 19!.

Let us consider a classical regular Hamiltonian system. The short-range properties
corresponding quantal spectrum tend to resemble those of a spectrum of randomly dist
numbers. This is because regular classical motion is associated with integrability or separab
the classical equations of motion. In quantum mechanics the separability corresponds to a
of independent conserved quantities~such as angular momentum!, and each energy level can b
characterized by the associated quantum numbers. Superimposing the terms arising fr
various quantum numbers, a spectrum is generated like that of random numbers, at least ov
intervals. In particular, the distributionP(s) of nearest-neighbor spacingssi5(e i 112e i)/d,
whered is the mean level spacing, is expected to follow the Poisson limit, i.e.,P(s)5exp(2s).

Instead, when the classical dynamics of a physical system is chaotic, the system can
integrable, and there must be fewer constants of motion than degrees of freedom. Qu
mechanically, this means that once all good quantum numbers due to obvious symmetries, e
accounted for, the energy levels cannot simply be labeled by quantum numbers associat
certain constants of motion. The short-range properties of the energy spectrum then t
resemble those of eigenvalue spectra of matrices with randomly chosen elements, and on
result very close toP(s)5(p/2)s exp@2(p/4)s2#, which is the so-called Wigner distribution.

The distributionP(s) is the best spectral statistics to analyze a shorter series of energy
and the intermediate regions between order and chaos. This distribution can be compared
Brody distribution,

P~s,v!5a~v11!sv exp~2asv11!, ~25!

with

a5S GFv12

v11G D v11

. ~26!

The Brody distribution interpolates between the Poisson distribution (v50) of integrable systems
and the Wigner distribution (v51) of chaotic ones, and thus the parameterv can be used as a
simple quantitative measure of the degree of chaoticity.
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III. A MODEL FOR INFLATIONARY COSMOLOGY

In this section we study the stability of a scaler inflation field12,13 and analyze its bifurcation
properties in the framework of the dynamical system theory.

It is generally believed that the universe, at a very early stage after the big bang, exhib
short period of exponential expansion, the so-called inflationary phase. In fact, the assump
an inflationary universe solves three major cosmological problems: the flatness problem
homogeneity problem, and the formation of a structure problem.3

The Friedmann–Robertson–Walker metric of a homogeneous and isotropic expandin
verse is given by

ds25dt22a2~ t !F dr2

12kr2 1r 2~du21sin2 u dw2!G , ~27!

where k51, 21, or 0 for a closed, open, or flat universe, anda(t) is the scale factor of the
universe.

The evolution of the scale factora(t) is given by the Einstein equations

ä52
4p

3
G~r13p!a, S ȧ

aD 2

1
k

a2 5
8p

3
Gr, ~28!

where r is the energy density of matter in the universe, andp its pressure. The gravitationa
constantG5M p

22 ~with \5c51), whereM p51.231019 GeV is the Plank mass, andHu5ȧ/a is
the Hubble ‘‘constant,’’ which, in general, is a function of time.

The inflationary models postulate the existence of a scalar fieldf, the so-called inflation field,
with Lagrangian

L5 1
2]mf ]mf2V~f!, ~29!

where the potentialV(f) depends on the type of inflation model considered. The scalar fiel
minimally coupled to gravity, satisfies the equation

hf5f̈13S ȧ

aD ḟ2
1

a2 ¹2f52
]V

]f
, ~30!

whereh is the covariant d’Alembertian operator. The Hubble ‘‘constant’’Hu is related to the
energy density of the field by

Hu
21

k

a2 5S ȧ

aD 2

1
k

a2 5
8pG

3
F ḟ2

2
1

~“f!2

2
1V~f!G . ~31!

In a flat universek50 and, if the inflation field is sufficiently uniform@i.e., ḟ2, (“f)2

!V(f)], we obtain a homogeneous field theory in one dimension,

f̈13Hu~f!ḟ1
]V

]f
50, ~32!

where the Hubble ‘‘constant’’Hu is an explicit function off:

Hu
25

8pG

3
V~f!. ~33!

A. Local instability for the inflationary self-energy

The second-order equation of motion of our cosmological model can be written as a sys
two first-order differential equations,
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ż5f~z!, ~34!

wherez5(f,x) is a point in the two-dimensional phase space andf5( f 1 , f 2) is given by

f 1~f,x!5x, f 2~f,x!523Hu~f!x2
]V~f!

]f
. ~35!

The system is nonconservative, because the function

div~ f!5
]g1

]f
1

]g2

]x
523Hu~f!, ~36!

is not identically zero. The fixed points of the system are those for whichf 1(f,x)50 and
f 2(f,x)50, i.e.,

x50,
]V~f!

]f
50. ~37!

The deviationdz(t)5 ẑ(t)2z(t) from the two initially neighboring trajectoriesx andx̂ in the
phase space satisfies the linearized equations of motion,

d

dt
dz~ t !5G~ t !dz, ~38!

whereG(t) is the stability matrix

G~ t !5 S 0 1

2
]2V

]f2 23x
]H

]f
23Hu~f!D . ~39!

At least if an eigenvalue ofG(t) is real, the separation of the trajectories grows exponentially
the motion is unstable. Imaginary eigenvalues correspond to stable motion. In the limit of tim
goes to infinity, from the eigenvalues of the stability matrix, we can obtain the Lyapunov e
nents. For a two-dimensional dynamical system, the Lyapunov exponents cannot be positiv9 and
so the system is not chaotic, i.e., there is not global instability. However, we can be assure
the universe is crowded with many interacting fields of which the inflation is but one.
nonlinear nature of these interactions can result in a complex chaotic evolution of the univer
the local instability of the inflation field is a precursor phenomenon of chaotic motion.

The eigenvalues of the stability matrix are given by

s1,252
3

2
Hu~f!6

1

2
A9Hu

2~f!24
]2V

]f2212x
]Hu

]f
. ~40!

The pair of eigenvalues become real and there is exponential separation of neighboring tr
ries, i.e., unstable motion, if

]2V

]f2 13x
]Hu

]f
,0. ~41!

Particularly whenx50, e.g., the fixed points, we obtain local instability when

]2V

]f2,0, ~42!
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i.e., for negative curvature of the potential energy. The fixed points are stable if they are a p
the local minimum ofV(f) and unstable if they are points of the local maximum.

The potentialV(f) depends on the type of inflation model considered, and it is usually s
kind of double-well potential. We choose a symmetric double-well potential,

V~f!5
l

4
~f22v2!2, ~43!

where6v are the values of the inflaton field in the vacuum, i.e., the points of minimal energ
the system.

We observe that the inflation field value in the vacuumv is a bifurcation parameter. Bifurca
tion is used to indicate a qualitative change in the features of the system under the variation
or more parameters on which the system depends. First of all we consider the casev50, i.e.,
V(f)5(l/4)f4. In this situation there is only one fixed point (f* 50,x* 50) which is a stable
one being

]2V

]f2 53lf2>0. ~44!

The fixed point (f* 50,x* 50) is a point attractor.
Instead, forvÞ0, there are three fixed points:

~f* 50,x* 50!, ~f* 5v,x* 50!, ~f* 52v,x* 50!, ~45!

and the condition for the instability becomes

2
v

)
,f,

v

)
. ~46!

Obviously (f* 50,x* 50) is an unstable fixed point, and, in particular, a saddle point bec
the stability matrix has real and opposite eigenvalues. On the other hand (f* 56v, x* 50) are
stable fixed points.

There are four possible functions for the Hubble ‘‘constant:’’

Hu~f!56guf22v2u, ~47!

but also

Hu~f!56g~f22v2!, ~48!

whereg5A2pGl/3 is the dissipation parameter. The choice of the Hubble function is crucia
the dynamical evolution of the system.

In certain nonconservative systems, we could find closed trajectories or limit cycles to
which the neighboring trajectories spiral on both sides. It is sometimes possible to know th
limit cycle exists and the Bendixson criterion,20 which establishes a condition for the nonexisten
of closed trajectories, is useful in some cases. Bendixson criterion is as follows: if div(f) is not
zero and does not change its sign within a domainD of the phase space, no closed trajectories
exist in that domain. In our case we have div(f)523Hu(f), and so the presence of periodic orb
is related to the sign ofHu(f).

If Hu(f)5guf22v2u we do not find periodic orbits and the inflation field goes to one of
two stable fixed points, which are points attractors~see Fig. 1!. The vacuum is degenerate, but
we choose an initial condition around the saddle point, there is a dynamical symmetry bre
toward the positivev or negative2v value of the inflation field in the vacuum. This symmet
breaking is unstable because neighbor initial conditions can go in different point attractors
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Instead, if we chooseHu(f)5g(f22v2), the numerical calculations of Fig. 2 show that
limit cycle exists, the two stable fixed points are not point attractors, and the inflaton field
lates forever. Obviously the largerv is the larger the limit cycle.

B. A limit cycle in the cosmological model

The equation of motion of the inflation field withHu(f)5g(f22v2) reads as

f̈13g~f22v2!ḟ1lf~f22v2!50. ~49!

This equation can be written as

d

dt F ḟ13gE
0

f

~u22v2!duG1lf~f22v2!50, ~50!

and if we put

F~f!53E
0

f

~u22v2!du5f~f223v2!, G~f!5f~f22v2!, ~51!

and alsov5ḟ1gF(f), we obtain the system

ḟ5v2gF~f!, v̇52lG~f!. ~52!

FIG. 1. The Hubble function versus time~top! and the phase space trajectory of the inflation field~bottom!; for Hu(f)

5guf22v2u with g5
1
2, l53, andv51. Initial conditions:f50 andḟ5

1
2.
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For systems of this kind, the Lienard theorem21 states that there is a unique and stable limit cy
if the following conditions are satisfied:F(f) is an odd function andF(f)50 only atf50 and
f56a; F(f),0 for 0,f,a, F(f).0 and is increasing forf.a;G(f) is an odd function
andfG(f).0 for all f.a. It is easy to check that the functionsF(f) andG(f) satisfy all the
conditions of the Lienard theorem witha5v. The cubic forceG(f) tends to reduce any dis
placement for largeufu, whereas the dampingF(f) is negative at smallufu and positive at large
ufu. Since small oscillations are pumped up and large oscillations are damped down, it
surprising that the system tends to settle into a self-sustained oscillation of some interm
amplitude.

Let us consider a typical trajectory of the system. After the scalingc5lv, we obtain

ḟ5lFc2
g

l
F~f!G , ċ52G~f!. ~53!

The cubic nullclinec5(g/l)F(f) is the key to understanding the motion. Suppose thatl@1 and
the initial condition is far from the cubic nullcline, then we haveuḟu;O(l)@1; hence, the
velocity is enormous in the horizontal direction and tiny in the vertical direction, so traject
move practically horizontally. If the initial condition is above the nullcline, thenḟ.0; thus the
trajectory moves sideways toward the nullcline. However, once the trajectory gets so clos
c.(l/g)F(f) then the trajectory crosses the nullcline vertically and moves slowly along
backside of the branch until it reaches the knee and can jump sideways again. The periodT of the

FIG. 2. The Hubble function versus time~top! and the phase space trajectory of the inflation field~bottom!; for Hu(f)

5g(f22v2) with g5
1
2, l53, andv51. Initial conditions:f52

1
2 and ḟ50.
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limit cycle is essentially the time required to travel along the two slow branches, since the
spent in the jumps is negligible for largel. By symmetry, the time spent on each branch is
same, so we have

T.2E
tA

tB
dt, ~54!

whereA andB are the initial and final points on the positive slow branch. To derive an expres
for dt, we note that on the slow branches with a good approximationc.(g/l)F(f), and thus

dc

dt
.

g

l
F8~f!

df

dt
53

g

l
~f22v2!

df

dt
. ~55!

Sincedc/dt52f(f22v2), we obtaindt.23(g/l)(df/f), on the slow branches. The slo
positive branch begins atfA52gv/l and ends atfB5gv/l. Becauseg5A2pGl/3 we getT
.2 ln 2A6pG/l.

IV. THE HOMOGENEOUS SU„2… YMH SYSTEM

Now we study the suppression of classical chaos in the spatially homogeneous SU~2! Yang–
Mills–Higgs ~YMH ! system induced by the Higgs field.4,14,15 We analyze also the energy fluc
tuation properties of the system, which give a clear quantum signature of the classical chaos
transition of the system.

The SU~2! YMH system describes the interaction between a scalar Higgs fieldf and three
non-Abelian Yang–Mills fieldsAm

a , a51,2,3. The Lagrangian density of the YMH system
given by

L5 1
2~Dmf!1~Dmf!2V~f!2 1

4Fmn
a Fmna, ~56!

where

~Dmf!5]mf2 igAm
b Tbf, ~57!

Fmn
a 5]mAn

a2]nAm
a 1geabcAm

b An
c , ~58!

with Tb5sb/2, b51,2,3, generators of the SU~2! algebra, and where the potential of the sca
field ~the Higgs field! is

V~f!5m2ufu21lufu4. ~59!

We work in the (211)-dimensional Minkowski space (m50,1,2) and choose spatially homog
neous Yang–Mills and the Higgs fields,

] iAm
a 5] if50, i 51,2, ~60!

i.e., we consider the system in the region in which space fluctuations of fields are neg
compared to their time fluctuations.

In the gaugeA0
a50 and using the real triplet representation for the Higgs field, we obta

L5ḟ21 1
2~Ȧ1

21Ȧ2
2!2g2@ 1

2A1
2A2

22 1
2~A1•A2!21~A1

21A2
2!f22~A1•f!22~A2•f!2#2V~f!,

~61!

wheref5(f1,f2,f3), A15(A1
1,A1

2,A1
3), andA25(A2

1,A2
2,A2

3).
Whenm2.0, the potentialV has a minimum atufu50, but form2,0 the minimum is at
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uf0u5A2m2

4l
5v,

which is the nonzero Higgs vacuum. This vacuum is degenerate and after spontaneous sy
breaking the physical vacuum can be chosen asf05(0,0,v). If A1

15q1 , A2
25q2 and the other

components of the Yang–Mills fields are zero, in the Higgs vacuum the Hamiltonian of the s
reads as

H5 1
2~p1

21p2
2!1g2v2~q1

21q2
2!1 1

2g
2q1

2q2
2, ~62!

where p15q̇1 and p25q̇2 . Here w252g2v2 is the mass term of the Yang–Mills fields. Th
YMH Hamiltonian is a toy model for classical nonlinear dynamics, with the attractive feature
the model emerges from particle physics.

A. From chaos to order in the YMH system

The chaotic behavior of the YMH system can be studied by using the Toda criterion o
Gaussian curvature of the potential energy.22,23For our YMH system the potential energy is give
by

V~q1 ,q2!5g2v2~q1
21q2

2!1 1
2g

2q1
2q2

2. ~63!

At low energy, the motion near the minimum of the potential, where the Gaussian curvat
positive, is periodic or quasiperiodic and is separated from the instability region by a line of
curvature; if the energy is increased, the system will be, for some initial conditions, in a regi
negative curvature, where the motion is chaotic. According to this scenario, the energyEc of the
chaos–order transition is equal to the minimum value of the line of zero Gaussian curv
KG(q1 ,q2) on the potential-energy surface. For our potential the Gaussian curvature vanis
the points that satisfy the equation,

~2g2v21g2q2
2!~2g2v21g2q1

2!24g4q1
2q2

250. ~64!

It is easy to show that the minimal energy on the zero-curvature line is given by

Ec5Vmin~KG50,q̄1!56g2v4, ~65!

and by inverting this equation we obtainvc5(E/6g2)1/4. Thus the curvature criterion suggest th
there is a order–chaos transition by increasing the energyE of the system and a chaos–ord
transition by increasing the valuev of the Higgs field in the vacuum. Thus, there is only o
transition regulated by the parameterE/(g2v4).

It is important to stress that the Toda criterion is not a fully reliable indicator of chaos.23 In
fact, the local instability of the Toda Criterion does not necessarily imply the global one, an
idea of an order–chaos transition with a critical energy is not strictly correct. The Toda curv
criterion should therefore be combined with the Poincare´ sections, which are shown in Fig. 3. Th
numerical results confirm the analytical predictions of the curvature criterion: withE510 andg
51 we get the critical value of the onset of chaosvc5(E/6g2)1/4.1.14.

B. Spectral statistics of the YMH system

In quantum mechanics the generalized coordinates of the YMH system satisfy the
commutation rules@ q̂k ,p̂l #5 idkl , with k,l 51,2. Introducing the creation and destruction ope
tors,

âk5Av

2
q̂k1 iA 1

2v
p̂k , âk

15Av

2
q̂k2 iA 1

2v
p̂k , ~66!
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the quantum YMH Hamiltonian can be written as

Ĥ5Ĥ01 1
2g

2V̂, ~67!

where

Ĥ05v~ â1
1â11â2

1â211!, ~68!

V̂5
1

4v2 ~ â11â1
1!2~ â21â2

1!2, ~69!

with v252g2v2 and @ âk ,âl
1#5dkl , k,l 51,2.

We compute the energy levels of the YMH system with a numerical diagonalization o
truncated matrix of the quantum YMH Hamiltonian in the basis of the harmonic oscillators~see
also Refs. 16 and 17!. If un1n2& is the basis of the occupation numbers of the two harmo
oscillators, the matrix elements are

^n18n28uĤ0un1n2&5v~n11n211!dn
18n1

dn
28n2

, ~70!

and

FIG. 3. The Poincare` sections of the YMH system. From the top:v51, v51.1, andv51.2. EnergyE510 and interaction
g51.
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^n18n28uV̂un1n2&5
1

4v2 @An1~n121!dn
18n1221A~n111!~n112!dn

18n1121~2n111!dn
18n1

#

3@An2~n221!dn
28n2221A~n211!~n212!dn

28n2121~2n211!dn
28n2

#. ~71!

The symmetry of the potential enables us to split the Hamiltonian matrix into four subma
reducing the computer storage required. These submatrices are related to the parity of t
occupation numbersn1 andn2 : even–even, odd–odd, even–odd, and odd–even. The nume
energy levels depend on the dimension of the truncated matrix: we compute the numerical
in double precision increasing the matrix dimension until the first 100 levels converge within
digits ~matrix dimension 115631156).

We have seen previously that the most used quantity to study the local fluctuations
energy levels is the distributionP(s) of nearest-neighbor spacingssi of the energy levels. It is
obtained by accumulating the number of spacings that lie within the bin (s,s1Ds) and then
normalizingP(s) to unit.

We use the first 100 energy levels of the four submatrices to calculate theP(s) distribution.
In order to remove the secular variation of the level density as a function of the energyE, for each
value of the coupling constant the corresponding spectrum is mapped into one that has a c
level density.

Figure 4 shows theP(s) distribution of Brody for three different values of the Higgs vacuu
v. The best fit Brody parameterv is obtained by using the nearest-neighbor spacings of the
100 unfolded energy levels of the YMH system. There is a Wigner–Poisson transition by in
ing the valuev of the Higgs field in the vacuum. Thus, by using theP(s) distribution, it is
possible to give a quantitative measure of the degree of quantal chaoticity of the system
numerical calculations show clearly the quantum chaos–order transition and its correspond
the classical one.

V. CONCLUSIONS

We have seen that spatially homogeneous field theories can be studied as dynamical s
After a brief review of the dynamical system theory, we have discussed two schematic mod
field theory.

First, we have considered the stability of a nonconservative scalar inflation field. The va
the inflation field in the vacuum is a bifurcation parameter that changes dramatically the
space structure. The main point is that for some functional solutions of the Hubble ‘‘constan
system goes to a limit cycle, i.e., to a periodic orbit. The inflation field is not chaotic, but its
instability can give rise to a complex chaotic evolution of the universe due to its nonl

FIG. 4. TheP(s) distribution of Brody of the YMH system. The first 100 energy levels andg51. The best fit Brody
parameter is given byv50.92 forv51.0, v50.34 forv51.1, andv50.01 forv51.2.
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interactions with other fields. In the future it will be very interesting to study these effects, w
can perhaps lead to some observable implications like a fractal pattern in the spectrum of d
fluctuations.

We have then analyzed the non-Abelian SU~2! Yang–Mills–Higgs system. We have given a
analytical estimation~confirmed by numerical results of Poincare´ sections! of the classical chaos–
order transition as a function of the Higgs vacuum, the Yang–Mills coupling constant, an
energy of the system. A quantum signature of a chaos–order transition has been obtained b
the distributionP(s) of nearest-neighbor spacings. The Wigner–Poisson transition of theP(s)
distribution follows very well the classical results of the Poincare´ sections.

To conclude, we observe that there are yet many open problems about chaos in field
We make a list of some of them:~i! spatial chaos and space–time chaos;~ii ! classical and quantum
chaos in more realistic systems, for example, in QCD~some results can be found in Refs. 7 and!;
~iii ! the connection between chaos and critical phenomena~finite temperature field theory!.
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Dimension of the global attractor for damped semilinear
wave equations with critical exponent

Zhou Shengfana)

Department of Mathematics, Sichuan University, Chengdu 610064,
People’s Republic of China

~Received 28 January 1999; accepted for publication 21 April 1999!

We obtain an estimate of the upper bound of the Hausdorff dimension of the global
attractor for damped semilinear wave equations with a critical exponent. The ob-
tained Hausdorff dimension decreases as the damping grows for large damping.
© 1999 American Institute of Physics.@S0022-2488~99!01509-1#

I. INTRODUCTION

Our aim in this paper is to estimate the upper bound of the Hausdorff dimension o
attractor for damped semilinear wave equations with a homogeneous Dirichlet boundary con
when the nonlinearity satisfies the critical growth condition. LetV be an open bounded set ofR3

with a smooth boundary]V, we consider the initial-boundary value problem of the equation

utt1aut2Du1 f ~u!5g, xPV, t.0, ~1.1!

u~x,t !uxP]V50, t.0, ~1.2!

u~x,0!5u0~x!,
]u

]t
~x,0!5u1~x!, xPV, ~1.3!

where u5u(x,t) is a real-valued function onV3@0,1`), gPL2(V), a.0, f (u)5 f 1(u)
1 f 2(u)PC1(R;R).

Let Gi(s)5*0
s f i(r )dr, i 51,2. We make the following assumptions on functionsGi(s), f i(s),

i 51, 2.
~i!

f 1~s!s>0, lim
usu˜1`

inf
G2~s!

s2 >0, ;sPR. ~1.4!

~ii ! There exist constantsc1i.0, c2i.0, i 51, 2 such that

lim
usu˜1`

inf
s fi~s!2c1iG~s!

s2 >0, i 51, 2 ;sPR, ~1.5!

u f 18~s!u<c21~11usu2!, u f 28~s!u<c22~11usup!, with 0<p,2, ;sPR. ~1.6!

~iii ! For everyM.0, there existsc35c3(M ) such that

i f 8~u1!2 f 8~u2!iL„H
0
1~V!,L2~V!…<c3iu12u2id1, ;u1 ,u2PH0

1~V!, iu1i<M , iu2i<M ,

~1.7!

a!Electronic mail: nic2601@scu.edu.cn
44440022-2488/99/40(9)/4444/8/$15.00 © 1999 American Institute of Physics
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whered1.0, i•i and i•iL„H
0
1(V),L2(V)… denote the norms ofH0

1(V) and L„H0
1(V),L2(V)… @the

space of linear continuous operators fromH0
1(V) into L2(V)#, respectively.

The existence of the global attractor for~1.1!–~1.3! with the critical exponent has been studie
by many authors,1–7 of those, Yu7 obtained an estimate of the upper bound of the Hausd
dimension of attractors, but this upper bound of the Hausdorff dimension is directly propor
to the coefficienta of damping fora>A2l1 and tends to infinity asa˜1`, which does not
conform to the physics. In the noncritical case, the author8 showed the boundedness of the dime
sion of an attractor for large damping. In this article, we obtain an upper bound of the Hau
dimension of attractor of~1.1! for large damping when the functionsf (u) satisfies the conditions
~1.4!–~1.7!, which generates the result in Ref. 8. The main result is the following theorem.

Theorem 1.1: If the function f(u) satisfies the conditions (1.4)–(1.7), then for anya>a0

.0, the Hausdorff dimension dH of the global attractor for system (1.1)–(1.3) satisfies

dH<minH mUmPN,
1

m (
j 51

m

l j
24n0<

2l1a2

kAa214l1~a1Aa214l1!
J

<minH mUmPN,
1

m (
j 51

m

l j
24n0<

2l1a0
2

kAa0
214l1~a01Aa0

214l1!
J , ~1.8!

where$l j% j PN :0,l1<l2<¯<lm<¯ , are the eigenvalues of operator2D with the Dirichlet

boundary condition onV and k5k(a0) is a positive constant, 0,n0,min$(22p)/4, 1
4%, p

P@0, 2) is as in~1.6!.
Obviously, the upper bound ofdH in ~1.8! is a decreasing function ofa because

h~a!5
2l1a2

kAa214l1~a1Aa214l1!

increases asa grows and

lim
m˜1`

1

m (
j 51

m

l j
24n050, lim

a˜1`

2l1a2

kAa14l1~a1Aa214l1!
5

l1

k2 .

II. EXISTENCE OF THE GLOBAL ATTRACTOR

It is known that the operatorA52D:D(A)5H0
1(V)ùH2(V)˜L2(V) is a self-adjoint posi-

tive linear, and its eigenvalues$l i% i PN satisfy

0,l1<l2<¯<lm<¯ , and lm˜1`, as m˜1`.

Let

E5H0
1~V!3L2~V!,

~u,v !5E
V

uv dx, uuu5~u,u!1/2, ;u,vPL2~V!,

„~u,v !…5E
V
“u–“v dx, iui5„~u,u!…1/2, ;u,vPH0

1~V!,

~y1 ,y2!E5„~u1 ,u2!…1~v1 ,v2!, ;yi5~ui ,v i !
TPE, i 51,2,

uyuE5~y,y!E
1/2, ;y5~u,v !TPE
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denote the usual inner products and norms inL2(V), H0
1(V), andE, respectively.

From the assumptions~1.4!–~1.7!, it is easy to obtain the existence and uniqueness of
solution of ~1.1!–~1.3!, which defines a continuous semigroup of mapping,

S~ t !:E˜E, $u0 ,u1%°$u,ut%, for t>0 ~2.1!

~see, e.g., Ref. 4 or Ref. 6 for detail!.
It is convenient to reduce~1.1! to an evolution equation of the first order in time. Letw

5(u,v)T, v5u̇1eu, wheree is chosen as

e5
l1a

a214l1
, ~2.2!

then ~1.1!–~1.3! can be written as

ẇ1Lw5F~w!, w~0!5~u0 ,u11eu0!, ~2.3!

where

F~w!5S 0
2 f ~u!1gD , L5S eI 2I

A2e~a2e!I ~a2e!I
D . ~2.4!

It is easy to see that the semigroup,

Se~ t !:~u0 ,u11eu0!T
˜„u~ t !,ut~ t !1eu~ t !…T, E˜E, ~2.5!

defined by~2.3!, has the following relation withS(t):

Se~ t !5ReS~ t !R2e , ~2.6!

whereRe :$u,v%˜$u,v1eu% is an isomorphism ofE. So, we need consider the equivalent syst
~2.3! only.

Lemma 2.1:For anyw5(u,v)TPE,

~Lw,w!E>suwuE
21~a/2!uvu2, ~2.7!

where

s5
l1a

Aa214l1~a1Aa214l1!
. ~2.8!

Proof: See Lemma 1 in Ref. 8.
Lemma 2.2:Suppose 0,a0<a,1` and f (u) satisfies conditions~1.4!–~1.5!. There exists

a positive constantr 05r 0(a0).0 such that the bounded ballB0 of E, B05BE(0,r 0), centered at
0 of radiusr 0 , is an absorbing set of the semigroupSe(t), t>0 in E, that is, for any bounded se
B of E, there existsT0(B)>0 such that the solutionw(t)5„u(t),v(t)…T of ~2.3! starting atB
satisfies

uw~ t !uE5„iu~ t !i21uv~ t !u2…1/2<r 0 , ;t>T0~B!, ~2.9!

in which v5ut1eu.
Proof: Let G(s)5*0

s f (r )dr5G1(s)1G2(s). By ~1.4! and ~1.5!, we have

G1~s!>0, lim
usu˜1`

inf
G~s!

s2 >0, ;sPR. ~2.10!
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and there exists a constantc4.0 such that

lim
usu˜1`

inf
s f~s!2c4G~s!

s2 >0, ;sPR. ~2.11!

Let Ḡ(u)5*VG(u)dx. Following the procedure leading to~23! in Ref. 8, we have

uwuE
2<2@ uw~0!uE

212Ḡ~u0!12k1#e2bt1
4

u S a214l1

l1a2 ugu212~c1k11k2! D , ~2.12!

wherek1 , k2>0, b.0, u5min$1,2c4% are constants. Thus

lim
t˜1`

supuwuE
2<

4

u S a0
214l1

l1a0
2 ugu212~c1k11k2! D 5

1

2
r 0~a0!. ~2.13!

The proof is completed.
Lemma 2.3:For any initial valueu0PH0

1(V), u1PL2(V) with

iu0i21uu11eu0u2<r 0
2, ~2.14!

there exists a constantr 15r 1(r 0) such that the solution of~2.3! w(t)5„u(t),v(t)…T in which v
5ut1eu satisfies

uw~ t !uE<r 1 , ;t>0. ~2.15!

Proof: By ~2.11!,

Ḡ~u0!<
1

c4
F u f ~u0!u•uu0u1

1

8
iu0i21k3G , ;uPH0

1~V!. ~2.16!

By ~1.6!,

u f 8~s!u<c5~11usu2!, ;sPR, c5>0. ~2.17!

By ~2.17! and the Sobolev embedding theorem,H0
1(V),L6(V),

u f ~u0!u2<c6
2E

V
~11uu0~x!u3!2 dx<c7~r 0!. ~2.18!

By the inequality~2.12!, we obtain~2.15!. The proof is completed.
Let u(t) be a solution of system~1.1!–~1.3! with the initial valueu0 , u1 satisfying~2.14!. We

decomposeu(t) into u(t)5z(t)1w(t), wherez(t) andw(t) satisfy, respectively,

ztt1azt2Dz1 f 1~z!50,

z~x,t !uxP]V50, z~0!5u0 , zt~0!5u1 , ~2.19!

wtt1awt2Dw1 f 1~u!2 f 1~z!5g2 f 2„u~ t !…,

w~x,t !uxP]V50, w~0!5wt~0!50. ~2.20!

Lemma 2.4:There exist two positive constantsM1(r 0) ands1(r 0) such that

iz~ t !i21uzt~ t !u2<M1~r 0!exp„2s1~r 0!t…, ;t>0. ~2.21!
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Proof: Let z85zt1ez, f5(z,z8)T, wheree is as in~2.2!; then ~2.19! can be written as

f t1Lf1F1~f!50, f~0!5~u0 ,u11e1u0!T, ~2.22!

whereF1(f)5„0,f 1(z)…T, L is as in~2.4!. Write Ḡ1(z)5*VG1(z)dx. Taking the inner product
(•,•)E of ~2.22! with f5(z,z8)T, we find

d

dt
@ ufuE

212Ḡ1~z!#12~Lf,f!E12e„f 1~z!,z…50. ~2.23!

Similar to Lemma 2.3, there exists a constantc85c8(r 0)>0 such that

uf~ t !uE
25iz~ t !i21uzt~ t !1ez~ t !u2<c8

2, ;t>0. ~2.24!

From ~1.4! and ~1.6!, we deduce thatf 1(0)50 and u f 1(s)u<c9(usu31usu)(c9.0). Hence, for
everyzPH0

1(V), by the Sobolev embeddingH0
1(V),L4(V) and ~2.24!, we have

0<Ḡ1~z!<c10~ iziL4
4

1iziL2
2

!<c11izi2~ izi211!<c12~r 0!izi2, ~2.25!

i.e.,

sizi2>
s

c12~r 0!
Ḡ1~z!. ~2.26!

By ~1.4!,

e~ f 1~z!,z!>0. ~2.27!

Plugging~2.7!, ~2.26!, and~2.27! into ~2.23!, we obtain

d

dt
@ ufuE

212Ḡ1~z!#1sufuE
21

s

c12~r 0!
Ḡ1~z!<0. ~2.28!

By the Gronwall inequality,~2.24! and ~2.28!, we have

ufuE
2<~ uf~0!uE

212Ḡ1„z~0!…exp„2s1~r 0!t…<M0~r 0!exp„2s0~r 0!t…, ;t>0, ~2.29!

wheres0(r 0)5min$s,s/2c12(r 0)%, M0(r 0)5r 0
2
„112c12(r 0)…. It follows that ~2.21! holds. The

proof is completed.

Lemma 2.5:There exist constantsM2(r 0).0 and 0,n0,min$(22p)/4, 1
4% such thatw(t)

satisfies

uAn011/2w~ t !u21uAn0wt~ t !u2<M2~r 0!, ;t>0, ~2.30!

wherep is as in~1.6!.
Proof: We make use of the spaceD(An/2),n>0, which is a Hilbert space with the scala

product and the norm

„~w1 ,w2!…n5~An/2w1 ,An/2w2!, iwin5„~w,w!…n ; ~2.31!

then

H0
n~V!,D~An/2!,Hn~V!. ~2.32!

Set 0<n< 1
4, we multiply the equation~2.20! by A2nw and integrate by parts to deduce
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uAnwt~ t !u21uAn11/2w~ t !u21aE
0

t

„Anwt~s!,Anwt~s!…ds

<E
V

@ u„f 1~u~ t !…2 f 1„z~ t !…!u1u~g2 f 2„u~ t !…!u#•uA2nw~ t !udx

1E
0

tE
V

@ u~ f 18„u~s!…2 f 18„z~s!…!zt~s!u1u f 18„u~s!…wt~s!u

1u f 28„u~s!…ut~s!u#•uA2nw~s!udx ds. ~2.33!

From Lemma 2.3 and Lemma 2.4, we observe thatiw(t)i anduwt(t)u are uniformly bounded, i.e.
iw(t)i<c13(r 0), uwt(t)u<c14(r 0), ;t>0. By the embedding relation

Hn1~V!,Hn2~V!, if n1>n2 and Hn~V!,Lq~V!, where
1

q
5

1

2
2

n

3
, ~2.34!

E
V

u~ f 1„u~ t !…2 f 1„z~ t !…!A2nw~ t !udx<u f 1„u~ t !…2 f 1„z~ t !…uuA2nw~ t !u<c15~r 0!, ;t>0.

~2.35!

E
V

u~g2 f 2„u~ t !…!•A2nw~ t !udx<ug2 f 2„u~ t !…uuA2nw~ t !u<c16~r 0!, ;t>0. ~2.36!

By the Holder inequality,~2.34!, and~1.6!, we have

i f 28„u~s!…ut~s!iLr<c17~r 0!, ~2.37!

i~ f 18„u~s!…2 f 18„z~s!…!zt~s!iLd<c18~r 0!uAn11/2w~s!u, ~2.38!

i f 18„u~s!…wt~s!iLd<c19~r 0!uAnwt~s!u, ~2.39!

iA2nw~s!iLr5iAn21/2An11/2w~s!iLr<c20uAn11/2w~s!u, ~2.40!

where t56/(31p), pP@0,2) is as in ~1.6!, 1/d5 5
622n/3, and 1/r 5121/d. Setting 0,n

,min$(22p)/4,1
4%, plugging above estimates into~2.33!, we have

uAnwt~ t !u21uAn11/2w~ t !u2<c21~r 0!1c22~r 0!E
0

t

@ uAnwt~s!u21uAn11/2w~s!u2#ds. ~2.41!

By applying the Gronwall inequality and zero initial value conditions~2.20!, we obtain~2.30!. The
proof is completed.

Lemma 2.6:If f (u) satisfies~1.4!–~1.7!, then the semigroupSe(t),t>0 possesses a globa
attractorb in E andb is included in the bounded ballB0 of E.

Proof: It is a direct consequence of Lemmas 2.2, 2.4, 2.5, and Theorem I.1.1 in Ref. 9

III. PROOF OF THEOREM 1.1

To estimate the Hausdorff dimension of the global attractorb for ~2.3! in E, we consider the
first variation equation of~2.3! with the initial value condition,

C852LC1F8~w!C, C~0!5~j,h!TPE, ~3.1!

whereC5(U,V)TPE, andw5(u,v)T is a solution of~2.3! and
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F8~w!5S 0 0

2 f 8~u! 0D .

Lemma 3.1:The system~3.1! is a well-posed problem inE; the mappingSe(t) defined by
~2.3! is Fréchet differentiable onE for any t.0; its differential atw5(u0 ,u11eu0)T is the linear
operator onE, (j,h)T°„U(t),V(t)…T, where (U,V)T is the solution of~3.1!.

Proof: It is a direct consequence of~1.7!, ~2.6!, and Lemma VI. 6.1 in Ref. 9.
Lemma 3.2:Consider the system~2.3!. Let F denote a set ofm vectors$F1 ,F2 ,...,Fm% that

are orthonormal inE. If

qm5 lim
t˜1`

sup
F,E

sup
wPß

1

t E0

t

(
j 51

m

~~2L1F8„w~t!…!F j~t!, F j~t!!E dt<0, ~3.2!

then the Hausdorff dimension of the global attractorb is less than or equal tom.
Proof: This is a direct consequence of Theorem V. 3.3., Eqs.~V. 3.47!–~V. 3.49! of Ref. 9.
Lemma 3.3:For any orthonormal family of elements ofE, $(j j ,h j )

T% j 51
m , we have

(
j 51

m

uA~1/2!nj j u2<(
j 51

m

l j
n21, ;nP@0,1!. ~3.3!

Proof: See Lemma VI, 6.3 in Ref. 9.
Lemma 3.4:If the functionsf (u) satisfy assumptions~1.4!–~1.7!, then for anya>a0.0, the

Hausdorff dimensiondH(ß) of the global attractor ß for system~2.3! in E satisfies

dH~ß!<minH mUmPN,
1

m (
j 51

m

l j
24n0<

2as

k J , ~3.4!

wherek5k(a0) is a positive constant that is independent ofa, s is as in~2.8!, 0,n0,min$(2

2p)/4,1
4%, andp is as in~1.6!.

Proof: Let mPN be fixed. Considerm solutionsC1 ,C2 ,...,Cm of ~5.1!. At a given timet,
let Qm(t) denote the orthogonal projection inE onto the space span$C1(t),C2(t),...,Cm(t)%.
Let F j (t)5(j j ,h j )

TPE, j 51,2,...,m, be an orthonormal basis ofQm(t)E.
Supposew(t)5„u(t),v(t)…TPß; thenuw(t)uE<r 0 ~r 0 is defined by Lemma 2.2!. By Lemma

2.1 anduF j uE51,

2~LF j ,F j !E<2s2
a

2
ih j i2, ~3.5!

~F8„w~t!…F j~t!,F j~t!…E5~2 f 8„u~t!…j j~t!,h j~t!!<u f 8„u~t!…j j~t!u•uh j u. ~3.6!

By ~2.17!, ~2.21!, the Young inequality, and Ho¨lder inequality,

u f 8„u~ t !…)j j~ t !u2<c5
2E

V
@11„z~ t !1w~ t !…2#2j j

2~ t !dx

<c23E @11z4~ t !1w4~ t !#j j
2~ t !dx

<c24@ iz~ t !iL6
4
•ij j~ t !iL6

2
1uj j~ t !u21iw~ t !iL6/~124n0!

4
•ij j~ t !iL6/~118n0!#

<c25~r 0!„e24s1~r 0!tij j~ t !i21uj j~ t !u21iAn011/2w~ t !i4
•iA~124n0!/2j j~ t !i2

…

<c26~r 0!„e24s1~r 0!tij j~ t !i21iA~124n0!/2j j~ t !i2), ;t>0, ~3.7!
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where 0,n0,min$(22p)/4,1/4% is defined by Lemma 2.4. By~3.6! and ~3.7!, there exists a
constantk5k(a0)5c26

2 (r 0).0, which is independent ofa, such that

~F8„w~t!…F j~t!,F j~t!!E<
k

2a
„e24s1~r 0!tij j~t!i21iA~124n0!/2j j~t!i2

…1
a

2
uh j~ t !u2.

~3.8!

Thus, byij j (t)i2<uF j uE
251 and~3.2!, ~3.5! and ~3.8!,

qm5 lim
t˜1`

sup
F,E

sup
wPß

1

t E0

t

(
j 51

m

(~2L1F8„w~t!…!F j~t!,F j~t!E dt

< lim
t˜1`

S 2ms1
km

8s1~r 0!at
~12e24s1~r 0!t!1

k

2a (
j 51

m

l j
24n0D

<2
mk

2a S 2as

k
2

1

m (
j 51

m

l j
24n0D .

If

1

m (
j 51

m

l j
24n0<

2as

k
,

thenqm<0; hence,~3.4! holds. The proof is completed.
Combining with Lemma 3.4 and~2.8!, we complete the proof of Theorem 1.1.
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Families of quasi-bi-Hamiltonian systems and separability
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It is shown how to construct an infinite number of families of quasi-bi-Hamiltonian
~QBH! systems by means of the constrained flows of soliton equations. Three
explicit QBH structures are presented for the first three families of the constrained
flows. The Nijenhuis coordinates defined by the Nijenhuis tensor for the corre-
sponding families of QBH systems are proved to be exactly the same as the sepa-
rated variables introduced by mean of the Lax matrices for the constrained flows.
© 1999 American Institute of Physics.@S0022-2488~99!02909-6#

I. INTRODUCTION

As is known, some integrable systems possess bi-Hamiltonian structure. We recall
known results. LetM be a differential manifold,TM andT* M its tangent and cotangent bundl
andu0 andu1 : T* M˜TM two compatible Poisson tensors onM .1 A vector fieldX is said to be
bi-Hamiltonian ~BH! with respect tou0 and u1 , if two smooth functions,H,FPC`(M ), exist
such that

X5u0 dH5u1 dF, ~1.1!

wheredF denotes the differential ofF ~gradient¹F for finite system and variationdF for field
system!. If u0 is invertible, the tensorF5u1u0

21 is a Nijenhuis tensor or hereditary operator. T
operatorF maps a given BH vector field into another BH vector field. Hence having a Nijen
tensor, one can construct a hierarchy of Hamiltonian symmetries, and a related hierar
integrals of motion for the underlying system. The BH structure~1.1! ensures that the resultin
integrals of motion are pairwise in involution with respect to both Poisson brackets. Thus th
structure of a given system is important for its integrability.

Unfortunately, for a majority of the BH finite-dimensional systems, none of theu0 andu1 is
invertible. In fact, all the known BH finite-dimensional systems arising from the constrained fl
or stationary flows of soliton equations usually exist in an extended phase space and bothu0 and
u1 are degenerated~see, for example, Refs. 2–8!. In their natural phase space these systems m
satisfy a weaker condition than the BH one. The notion of a quasi-bi-Hamiltonian~QBH! system
was introduced.9,10 According to,10 for dimM52n, a vector field,X, is said to be a QBH vecto
field with respect to Poisson tensors,u0 andu1 , if there exist three smooth functionsH, F, r, such
that

X5u0¹H5
1

r
u1¹F, ~1.2!

a!Electronic mail: yzeng@tsinghua.edu.cn
b!Electronic mail: mawx@cityu.edu.hk
44520022-2488/99/40(9)/4452/22/$15.00 © 1999 American Institute of Physics
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where two Poisson tensorsu0 andu1 are compatible and nondegenerated~invertible!. The func-
tion r is called an integrating factor. On a 2n-dimensional symplectic manifoldM, let (q
5(q1 ,...,qn), p5(p1 ,...,pn)) be a set of canonical coordinates andu0 the canonical Poisson
matrix u05(2I

0
0
I ) ~I denoting then3n identity matrix!. As u0 andu1 are compatible and invert

ible, the Nijenhuis tensorF5u1u0
21 is maximal, i.e., it hasn distinct eigenvaluesm

5(m1 ,...,mn). As is known,11 in a neighborhood of a regular point, where the eigenvaluesm are
distinct, one can construct a canonical transformation (q,p)˜(m,n)((m,n) referred to as the
Nijenhuis coordinates! such thatu1 andF take the Darboux form

u15S 0 L1

2L1 0 D , F5S L1 0

0 L1
D , L15diag~m1 ,...,mn!. ~1.3!

A QBH vector field is said to be Pfaffian10 if, in the Nijenhuis coordinates, an integrating factorr
in Eq. ~1.2! is the product of the eigenvalues ofF, i.e.,

r5)
i 51

n

m i . ~1.4!

In the Pfaffian case, the general solutions,H and F, of Eq. ~1.2! are obtained and the
Hamilton–Jacobi equation forH is shown to be separable by verifying the Levi–Civi
conditions.12 Some relationship between BH and QBH structure is discussed in Ref. 13. Se
QBH systems are presented.9,10,12–14It is in general quite difficult to directly construct a BH o
QBH structure for a given integrable Hamiltonian vector field. In recent years much work has
devoted to the constrained flows of soliton equations~see, for example, Refs. 2–8, 15–24!. One of
the aims of this paper is to show how to construct an infinite number of families of QBH sys
from the constrained flows of soliton equations. We have presented some families of the
strained flows in order to study the dynamicalr-matrices in Ref. 24. We now describe the expli
QBH structures for these families of the constrained flows.

The Lax representation for the constrained flows of soliton equations can always be de
from the adjoint representation of the Lax pair for soliton equations.16,17There is an effective way
for the separation of variables for some finite-dimensional integrable Hamiltonian systems
some kind of Lax matrices.25,26 The separated variables for some constrained flows can be i
duced and the Jacobi inversion problems for the constrained flows can be established by m
the Lax representation.27,28 We are interested in the relationship between the two methods fo
separability mentioned above. Another main aim of this paper is to prove that the Nije
coordinates for the underlying families of QBH systems are usually the same as the sep
variables introduced by the Lax matrices.

The paper is organized as follows.
In Sec. II we present a new QBH system. We directly construct the second compatible P

tensor by using a map relating this system to its modified version, and prove that the Nije
coordinates for this system is equivalent to the separated variables defined by Lax matr
make some comparison of the two methods for separability. In Secs. III and IV, by usin
constrained flows associated with the polynomial second-order spectral problems and the
order symmetry constraints, we propose a way to construct an infinite number of families of
systems. The explicit QBH structures of the first two families of constrained flows are given
equivalence of the Nijenhuis coordinates and the separated variables is proved. In Sec. V w
out that the two compatible Poisson tensorsu0 , u1 and the integrating factorr given by the QBH
structure~2.28! and~2.29a! are just that for the third family of QBH systems. Also some conc
sions and a conjucture are given.
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II. NEW QBH SYSTEM

In this section we present a new QBH system. By using a map relating this system
modified version, the second compatible Poisson tensor is obtained from the image of the P
tensor for the modified version under the map. We use this system to illustrate how to pro
equivalence of the Nijenhuis coordinates and the separated variables introduced by the Lax

A. New finite-dimensional integrable Hamiltonian system

For Jaulent–Miodek~JM! spectral problem29

cx5U~u,l!c, U~u,l!5S 0 1

l22u1l2u0 0D , c5S c1

c2
D , u5S u1

u0
D , ~2.1!

its adjoint representation is defined by30

Vx5@U,V#[UV2VU, ~2.2!

whereV is taken as

V5(
i 50

`

Vil
2 i , Vi5S ai bi

ci 2ai
D . ~2.3!

Then Eq.~2.2! and ~2.3! yield

a05a15a25b05b150, b251, b35 1
2u1 ,

a352 1
4u1,x , c051, c152 1

2u1 ,...,

and in general

S bk12

bk11
D5LS bk11

bk
D , k51,2,..., ~2.4a!

ak52 1
2bk,x , ck5ak,x2u0bk2u1bk111bk12 , k51,2,..., ~2.4b!

where

L5S u12 1
2D

21u1,x
1
4D

21u02 1
2D

21u0,x

1 0
D , D5

]

]x
, DD215D21D51.

The Jaulent–Miodek hierarchy associated with~2.1! can be written as an infinite-dimension
Hamiltonian system

utn
5S u1

u0
D

tn

5JS bn12

bn11
D5J

dHn

du
, n51,2,..., ~2.5!

where the HamiltonianHn and the Hamiltonian operatorJ are given by

J5S 0 2D

2D 2u1x22u1D D , Hn5
1

n
~2bn132u1bn12!.

Under zero boundary condition we have

dl

du
5S lc1

2

c1
2 D , L

dl

du
5l

dl

du
. ~2.6!
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The constrained flow of~2.5! consists of the equations obtained from the spectral prob
~2.1! for N distinctl j and the restriction of the variational derivatives for conserved quantitieHl

~for any fixedl! andl j :15–17

C1,x5C2 , C2,x5L2C12u1LC12u0C1 , ~2.7a!

dHl

du
2

1

2 (
j 51

N
dl j

du
5S bl 12

bl 11
D2

1

2 S ^LC1 ,C1&
^C1 ,C1&

D50, ~2.7b!

which has been recognized as a symmetry constraint.18–20 Hereafter we denote the inner produ
in RN by ^.,.& andC i5(c i1 ,...,c iN)T, i 51,2, L5diag(l1,...,lN).

For l 54, we have

H45 7
128u1

51 5
16u1

3u02 5
32u1x

2 u11 3
8u0

2u12 1
8u1xu0x . ~2.8!

By introducing the Jacobi–Ostrogradsky coordinates

q15u1 , q25u0 ,

p15
dH4

du1x
52

5

16
u1u1x2

1

8
u0x , p25

dH4

du0x
52

1

8
u1x , ~2.9!

the Eqs.~2.7! for l 54 are transformed into a finite-dimensional Hamiltonian system~FDHS!

C1x5
]F1

]C2
5C2 , q1x5

]F1

]p1
528p2 , q2x5

]F1

]p2
528p1120q1p2 , ~2.10a!

C2x52
]F1

]C1
5L2C12q1LC12q2C1 , ~2.10b!

p1x52
]F1

]q1
5

35

128
q1

41
15

16
q1

2q2210p2
21

3

8
q2

22
1

2
^LC1 ,C1&, ~2.10c!

p2x52
]F1

]q2
5

5

16
q1

31
3

4
q1q22

1

2
^C1 ,C1&, ~2.10d!

or equivalently

Px5u0¹F1 ,

where

P5~C1
T ,q1 ,q2 ,C2

T ,p1 ,p2!T, u05S 0 I ~N12!3~N12!

2I ~N12!3~N12! 0 D ,

F15 1
2^C2 ,C2&2 1

2^L
2C1 ,C1&1 1

2q1^LC1 ,C1&1 1
2q2^C1 ,C1&

28p1p2110q1p2
22 5

16q1
3q22 3

8q1q2
22 7

128q1
5. ~2.11!

The Lax representation for FDHS~2.10! can be deduced from the adjoint representation~2.2! by
using the method in Refs. 16 and 17 which is sketched as follows. Due to~2.4a!, ~2.6!, and~2.7b!,
we may define

b̃m5 1
2^L

m25C1 ,C1&, m55,6,...,
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which together with~2.4b! and ~2.10! yields

ãm52 1
2^L

m25C1 ,C2&, c̃m52 1
2^L

m25C2 ,C2&, m55,6,... .

Set

ãm5am , b̃m5bm , c̃m5cm , m50,1,2,3,4.

Then the construction ofãm ,b̃m ,c̃m ensures that under~2.10!,

Ṽ5(
i 50

`

Ṽil
2 i , Ṽi5S ãi b̃i

c̃i 2ãi
D ,

also satisfies~2.2!. Notice that

(
m55

`

ãml2m1452
1

2 (
m50

`

(
j 51

N S l j

l D m

c1 jc2 j52
1

2 (
j 51

N
c1 jc2 j

l2l j
,

set

Q[S A~l! B~l!

C~l! 2A~l!
D 5l4Ṽ, ~2.12a!

we have

A~l!52p2l12p122q1p22
1

2 (
j 51

N
c1 jc2 j

l2l j
, ~2.12b!

B~l!5l21
1

2
q1l1

3

8
q1

21
1

2
q21

1

2 (
j 51

N c1 j
2

l2l j
, ~2.12c!

C~l!5l42
1

2
q1l32S 1

2
q21

1

8
q1

2Dl21S 1

4
q1

31
1

2
q1q22

1

2
^C1 ,C1& Dl

1
1

4
q2

22
5

64
q1

424p2
22

1

2
^LC1 ,C1&1

1

2
q1^C1 ,C1&2

1

2 (
j 51

N c2 j
2

l2l j
. ~2.12d!

SinceṼ under~2.10! satisfies~2.2!, thenQ under~2.10! satisfies~2.2!, too, namely

Qx5@U,Q#, ~2.13!

which presents the Lax representation for~2.10!. This can also be verified by a direct calculatio
Equation ~2.13! implies that 1

2 Tr Q2(l)5A2(l)1B(l)C(l) is the generating function of the
integrals of motion for~2.10!. We have

A2~l!1B~l!C~l!5l62F1l1F21(
i 51

N
F ~ i !

l2l i
, ~2.14!

F252 1
2^LC2 ,C2&1 1

2^L
3C1 ,C1&2 1

4q1^L
2C1 ,C1&1~ 1

8q1
31 1

4q1q22 1
4^C1 ,C1&!

3^C1 ,C1&2 1
4q1^C2 ,C2&1~ 3

8q1
21 1

2q2!~24p2
22 5

64q1
41 1

4q2
22 1

2^LC1 ,C1&

1 1
2q1^C1 ,C1&!2~ 1

4q21 1
16q1

2!^LC1 ,C1&22p2^C1 ,C2&14~p12q1p2!2, ~2.15!
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F ~ i !5~22p2l i12q1p222p1!c1ic2i2
1
2~l i

21 1
2q1l i1

3
8q1

21 1
2q2!c2i

2 1 1
2@l i

42 1
2q1l i

3

2~ 1
8q1

21 1
2q2!l i

21~ 1
4q1

31 1
2q1q22 1

2^C1 ,C1&!l i1
1
4q2

224p2
22 5

64q1
42 1

2^LC1 ,C1&

1 1
2q1^C1 ,C1&#c1i

2 1 1
4(
kÞ i

~c1ic2k2c1kc2i !
2

lk2l i
, i 51,...,N, ~2.16!

whereF ( i ), i 51,...,N, F1 ,F2 are N12 independent integrals of motion for~2.10!. Notice that
$A2(l)1B(l)C(l), A2(m)1B(m)C(m)%50, it can be shown that the equation~2.10! is a
finite-dimensional integrable Hamiltonian system~FDIHS!.

In order to find the QBH structure for~2.10!, we need to use the modified system of~2.10!.
Let us consider the modified Jaulent–Miodek~MJM! spectral problem31

fx5U~v,l!f, U~v,l!5S v0 l

l2v1 2v0
D , f5S f1

f2
D , v5S v0

v1
D . ~2.17!

Equations~2.2! and ~2.3! yield

a050, b051, b15 1
2v1 , a15v0 , c051, c152 1

2v1 ,...,

S 2ak11

2bk11
D5LS 2ak

2bk
D , k51,2,...,

L5S 0 22v01D

1
4D1 1

2D
21v0D 1

2v11 1
2D

21v1D
D . ~2.18!

The MJM hierarchy associated with~2.17! can also be written as a infinite-dimensional Ham
tonian system

v tn
5S v0

v1
D

tn

5JS 2an

2bn
D5J

dHn

dv
, n51,2,..., ~2.19!

where the HamiltonianHn and the Hamiltonian operatorJ are given by

J5S 1
2D 0

0 22D
D , Hn5

21

n
@an,x2v1bn12bn11#.

Also we have

dl

dv
5S 2f1f2

f1
2 D . ~2.20!

In the similar way as for~2.7!, the constrained flow of~2.19! is defined by

F1,x5v0F11LF2 , F2,x5~L2v1!F12v0F2 , ~2.21a!

dH1

dv
1

1

2 S 2^F1 ,F2&
^F1 ,F1&

D50, ~2.21b!

whereF i5(f i1 ,...,f iN)T, i 51,2.
For l 53,

H352~ 1
4v0x

2 2 1
16v1x

2 1 1
4v0

41 5
64v1

42 3
8v0xv1

22 3
8v0

2v1
2!.
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By introducing the Jacobi–Ostrogradsky coordinates

q̃15v1 , q̃25v0 , ~2.22a!

p̃152
dH3

dv1x
52

1

8
v1x , p̃252

dH3

dv0x
5

1

2
v0x2

3

8
v1

2, ~2.22b!

the equations~2.21! for l 53 are transformed into a FDHS

F1,x5
]F̃1

]F2
5q̃2F11LF2 , q̃1x5

]F̃1

] p̃1
528p̃1 , q̃2x5

]F̃1

] p̃2
52p̃21

3

4
q̃1

2, ~2.23a!

F2,x52
]F̃1

]F1
5LF12q̃1F12q̃2F2 , ~2.23b!

p̃1x52
]F̃1

]q̃1
52

3

2
q̃1p̃22

3

4
q̃1q̃2

22
1

4
q̃1

32
1

2
^F1 ,F1&, ~2.23c!

p̃2x52
]F̃1

]q̃2
5q̃2

32
3

4
q̃1

2q̃22^F1 ,F2&, ~2.23d!

or

P̃x5u0¹F̃1 ,

where

P̃5~F1
T ,q̃1 ,q̃2 ,F2

T ,p̃1 ,p̃2!T,

F̃1524p̃1
21 p̃2

21 3
4q̃1

2p̃21 3
8q̃1

2q̃2
21 1

16q̃1
42 1

4q̃2
41q̃2^F1 ,F2&

1 1
2^LF2 ,F2&2 1

2^LF1 ,F1&1 1
2q̃1^F1 ,F1&.

B. The QBH structure for the FDIHS „2.10…

We now establish a map relating FDIHS~2.10! to ~2.23!, then use the map to construct th
second compatible Poisson tensor for the FDIHS~2.10!.

It is known31 that a gauge transformation between the JM and MJM spectral problem
follows

c15f1 , c25lf21v0f1 , u15v1 , u052v0x2v0
2, ~2.24!

which, together with~2.9! and ~2.22!, gives rise to the map relating~2.10! to ~2.23!, i.e., P

5M ( P̃):

C15F1 , C25LF21q̃2F1 , q15q̃1 ,

q2522p̃22 3
4q̃1

22q̃2
2, p15q̃1p̃11 1

4q̃2
31 1

2q̃2p̃22 1
4^F1 ,F2&, p25 p̃1 . ~2.25!

The mapM given by ~2.25! transforms all equations in~2.10! except for~2.10c! into the corre-
sponding equations in~2.23! except for~2.23c!. In fact, the equation~2.10c! with an additive
constant termc52 1

2F̃1 is transformed into~2.23c! under the map~2.25!. However, the second
Poisson tensor constructed later by using the map~2.25! is valid for an arbitraryc, therefore we
can takec50. The JacobiM 8 of the mapM take the form
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M 8~ P̃!5S I 0 0 0 0 0

0 1 0 0 0 0

0 2 3
2q̃1 22q̃2 0 0 22

q̃2I 0 F1 L 0 0

2 1
4F2

T p̃1
3
4q̃2

21 1
2p̃2 2 1

4F1
T q̃1

1
2q̃2

0 0 0 0 1 0

D . ~2.26!

According to the standard procedure,32 the image of the Poisson tensoru0 for the FDIHS~2.23!
under the mapM gives rise to the second compatible Poisson tensor for the FDIHS~2.10!. That is

u15M 8u0M 8TuP5M ~ P̃!5S 0~N12!3~N12! A1

2A1
T B1

D , ~2.27a!

A15S L 2 1
4C1 0N31

013N q1 1

2C1
T

2 1
2q22 15

8 q1
2 2 3

2q1

D , B15S 0N3N
1
4C2 0N31

2 1
4C2

T 0 p2

013N 2p2 0
D . ~2.27b!

Furthermore, by a straightforward calculation, we can show the following proposition.
Proposition 1: The system (2.10) possesses theQBH representation

Px5u0¹F15
1

r
u1¹E1 , ~2.28!

where

r5B~l!ul505 3
8q1

21 1
2q22 1

2^L
21C1 ,C1&, ~2.29a!

E15@A2~l!1B~l!C~l!#ul505F22(
i 51

N

l i
21F ~ i !5~ 3

16q1
21 1

4q2!~^L21C2 ,C2&2^LC1 ,C1&!

3~ 3
16q1

31 1
4q1q2!^C1 ,C1&12~p12q1p2!^L21C1 ,C2&1~2p2

21 5
128q1

42 1
8q2

21 1
4^LC1 ,C1&

2 1
4q1^C1 ,C1&!^L21C1 ,C1&1~ 3

8q1
21 1

2q2!~ 1
4q2

224p2
22 5

64q1
4!14~p12q1p2!2

1 1
4@^L

21C1 ,C2&
22^L21C1 ,C1&^L

21C2 ,C2&#. ~2.29b!

C. The Nijenhuis coordinates

We now prove that the Nijenhuis coordinates for QBH system~2.28! are the same as the
separated variables defined by means of the Lax matrix~2.12b!. As u0 andu1 are compatible and
invertible, the matrixu1u0

21 is maximal, it hasN12 distinct eigenvaluesm5(m1 ,...,mN12). The
explicit form of the canonical transformation fromP to the Nijenhuis coordinates~m,n! is given in
what follows. The eigenvaluesm1 ,...,mN12 are defined by the roots of the equation

f ~l!5ulI 2A1u50, ~2.30!

which, sinceA1 depends only on (C1 ,q1 ,q2), gives rise to

m j5 f j~C1 ,q1 ,q2!, j 51,...,N12, ~2.31!

c1 j5gj~m!, j 51,...,N, q15gN11~m!, q25gN12~m!. ~2.32!
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Then we introduce the generating function by

S5(
j 51

N

c2 jgj~m!1p1gN11~m!1p2gN12~m!, ~2.33a!

such that

c1 j5
]S

]c2 j
, j 51,...,N, q15

]S

]p1
, q25

]S

]p2
, ~2.33b!

n j5
]S

]m j
5(

j 51

N

c2 j

]gj

]m j
1p1

]gN11

]m j
1p2

]gN12

]m j
, j 51,...,N12. ~2.33c!

The equations~2.33b! reconstruct~2.31! or ~2.32!, the equations~2.33c! give the expression for
n j . The system~2.10! written in terms of~m,n! can be shown to be separable.

On the other hand, the separated variables (m̄,n̄) for ~2.10! can be constructed by means of th
Lax matrix in the following way.27,28The coordinatesm̄1 ,...,m̄N12 are introduced by the zeros o
B(l):

B~l!5l21
1

2
q1l1

3

8
q1

21
1

2
q21

1

2 (
j 51

N c1 j
2

l2l j
5

R~l!

K~l!
, ~2.34!

with

R~l!5 )
k51

N12

~l2m̄k!5 (
k50

N12

bkl
N122k, K~l!5)

k51

N

~l2lk!5 (
k50

N

akl
N2k, ~2.35!

a051, a152(
j 51

N

l j , ¯ , aN5~21!N)
j 51

N

l j ,

b051, b152 (
j 51

N12

m̄ j , ¯ , bN125~21!N )
j 51

N12

m̄ j ,

and the canonically conjugate coordinatesn̄1 ,...,n̄N12 are defined by

n̄k52A~m̄k!522p2m̄k22p112q1p21
1

2 (
j 51

N
c1 jc2 j

m̄k2l j
, k51,...,N12. ~2.36!

The FDIHS~2.10! in terms of the coordinates (m̄,n̄) will be shown to be separable later. We ha
the following proposition.

Proposition 2: The Nijenhuis coordinates~m,n! defined by (2.30) and (2.33) are exactly th
same as the separated variables(m̄,n̄) defined by (2.34) and (2.36). TheQBH vector field (2.28)
is Pfaffian in the Nijenhuis coordinates.

Proof: We first show that

f ~l!5B~l!K~l!5R~l!. ~2.37!

We denotef (l) by f N(l;l1 ,...,lN) in order to prove~2.37! by induction. Obviously,~2.37!
holds forN51. Then we have by induction
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f N~l;l1 ,...,lN!5U l2l1 0 ... 0 1
4c11 0

0 l2l2 ... 0 1
4c12 0

] ] � ] ] ]

0 0 ... l2lN
1
4c1N 0

0 0 ... 0 l2q1 21

22c11 22c12 ... 22c1N
1
2q21 15

8 q1
2 l1 3

2q1

U
5~l2l1! f N21~l;l2 ,...,lN!1

1

2
c11

2 )
k52

N

~l2lk!

5S l21
1

2
q1l1

3

8
q1

21
1

2
q21

1

2 (
j 52

N c1 j
2

l2l j
DK~l!1

1

2

c11
2

l2l1
K~l!

5B~l!K~l!. ~2.38!

Equation~2.38! implies thatl1 , similarly lk , k52,...,N, is not the zero off (l). Thus~2.37!
indicates thatf (l) andB(l) have the same zeros, i.e.,mk5m̄k .

It follows from ~2.34! that

c1 j
2 52

R~l j !

K8~l j !
, q152~b12a1!, ~2.39a!

1

2
q21

3

8
q1

25
1

2
^L21C1 ,C1&1

bN12

aN
, ~2.39b!

where the prime denotes differentiation with respect tol. The equations~2.39a! and~2.39b! yield

q252(
j 51

N
R~l j !

l jK8~l j !
23~b12a1!212

bN12

aN
. ~2.39c!

According to~2.33a!, one gets

S5(
j 51

N

c2 jA2R~l j !

K8~l j !
12p1~b12a1!1p2F (

j 51

N
2R~l j !

l jK8~l j !
23~b12a1!212

bN12

aN
G .

Notice that

]

]mk
(
j 51

N

c2 jA2R~l j !

K8~l j !
5(

j 51

N
c2 jR~l j !

A2R~l j !K8~l j !~mk2l j !
5

1

2 (
j 51

N
c1 jc2 j

mk2l j
,

]

]mk
(
j 51

N
2R~l j !

l jK8~l j !
5(

j 51

N
2R~l j !

l jK8~l j !~mk2l j !
5

1

mk
(
j 51

N F 2R~l j !

l jK8~l j !
1

2R~l j !

~mk2l j !K8~l j !
G

5
1

mk
S ^L21C1 ,C1&1(

j 51

N c1 j
2

mk2l j
D ,

]bN12

]mk
5

bN12

mk
,

]~b12a1!2

]mk
52q1 ,

]~b12a1!

]mk
521,
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and usingB(mk)50, one finds from~2.33c! that nk ,mk satisfy ~2.36!. Finally, it follows from
~2.39b! that

r5B~l!ul505
1

2
q21

3

8
q1

22
1

2
^L21C1 ,C1&5

bN12

aN
5

~21!N

aN
)
j 51

N12

m j . ~2.40!

This completes the proof.

D. Comparison of the two methods for separability

For the FDIHS with QBH structure, the separated variables, i.e., the Nijenhuis coordin
can be introduced by the Nijenhuis tensor. Then the separability of the Hamilton–Jacobi eq
for the system can be shown by verifying the Levi-Civita conditions. For the FDIHS with s
kind of Lax representation, the separated variables can be found and the separability
Hamilton Jacobi equation for the system can be shown by means of the Lax representation
there is not an effective way to define separated variables for the FDIHSs with some kind o
matrices, such as the 333 Lax matrices22 or the Lax matrices admitting dynamicalr-matrix.
However, if the separated variables can be introduced by the Lax matrix, one can further es
the Jacobi inversion problem for the system by means of the Lax representation. By usi
standard Jacobi inversion technique, the solution to the system can be found.

We now use the Lax representation~2.12! to construct the Jacobi inversion problem f
~2.10!. Set

A2~l!1B~l!C~l!5
W~l!

K~l!
, W~l!5 (

i 50

N16

Pil
i , ~2.41!

thenPi are also the integrals of motion for~2.10!. By substituting~2.13! and using~2.14!, ~2.41!
leads to

PN1651, PN162 i5a i , i 51,2,3,4,

F152PN111a5 , F25PN2a1PN111a1a52a6 ,... . ~2.42!

The equations~2.34!, ~2.36!, and~2.41! give rise to

nk5AW~mk!

K~mk!
, k51,...,N12, ~2.43!

which indicates that the Hamilton–Jacobi equation is separable. Replacingnk by ]Sk /]mk and
interpreting thePi as integration constants, one gets the generating functionS of the canonical
transformation from~2.43!

S~m1 ,...,mN12 ;P0 ,...,PN11!5 (
k51

N12 EmkAW~l!

K~l!
dl. ~2.44!

The linearizing coordinates are then

Qi5
]S

]Pi
5

1

2 (
k51

N12 Emk l i

AW~l!K~l!
dl, i 50,1,...,N11. ~2.45!

The linear flow induced by~2.10! is then given by@using ~2.42!#

Qi5g i1x
]F1

]Pi
5g i2xd i ,N11 , i 50,1,...,N11, ~2.46!
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whereg i are arbitrary constants. Combining the equation~2.45! with the equation~2.46! leads to
the Jacobi inversion problem for the FDIHS~2.10!

1

2 (
k51

N12 Emk l i

AW~l!K~l!
dl5g i2xd i ,N11 , i 50,1,...,N11. ~2.47!

Sincec1 j ,q1 ,q2 defined by~2.39! are the symmetric functions ofmk , k51,...,N12, by using the
standard Jacobi inversion technique,33 they can be solved in terms of Riemann theta functio
from ~2.47!. After havingc1 j ,q1 ,q2 , thec2 j ,p1 ,p2 can be found by using~2.10a!. In this way
the solution to~2.10! is obtained.

III. THE FIRST FAMILY OF QBH SYSTEMS

In the following sections, by using the method described in the preceding section, we
present QBH representation for some families of FDIHSs given in Ref. 24, and prove the e
lence of two sets of separated variables.

A. The first family of FDIHSs

We first recall the constrained flows of the hierarchy of nonlinear evolution equations~NLEE!
associated with the following polynomial second order spectral problem31

cx5U~u,l!c, U~u,l!5S 0 1

2(
i 50

m

uil
i 0D , c5S c1

c2
D , ~3.1!

whereum521, u5(um21 ,...,u0)T. The adjoint representation~2.2! of ~3.1! yields

a05¯5am5b05¯5bm2150, bm51, bm115 1
2um21 ,

am1152 1
4um21,x , c051, c152 1

2um21 ,...,

and in general

S bk1m

]

bk11

D 5LS bk1m21

]

bk

D , ~3.2a!

ak52 1
2bk,x , ck52 1

2bk,xx2(
i 50

m

uibk1 i , k51,2,..., ~3.2b!

where

L5S Lm21 Lm22 ... L1 L0

1 0 ... 0 0

0 1 ... 0 0

] ] � ] ]

0 0 ... 1 0

D ,

L05 1
4D

21u02 1
2D

21u0,x , Li5ui2
1
2D

21ui ,x , i 51,...,m21.

The hierarchy of NLEEs associated with~3.1! can be written as an infinite-dimensional Ham
tonian system
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utn
5S um21

]

u0

D
tn

5JS bn1m

]

bn11

D 5J
dHn

du
, n51,2,..., ~3.3!

where the HamiltonianHn and the Hamiltonian operatorJ are defined by

J5S 0 0 ... 0 2D

0 0 ... 2D Jm21

0 0 ... Jm21 Jm22

] ] � ] ]

2D Jm21 ... J1 J0

D ,

Ji52ui ,x22uiD, i 50,1,...,m21, Hn5
2

m22n22 (
i 51

m

iuibn1 i 11 .

Under zero boundary condition we have

dl

du
5~lm21c1

2,lm22c1
2,...,c1

2!T, L
dl

du
5l

dl

du
. ~3.4!

Similarly, the constrained flows of the NLEEs~3.3! are defined by24

C1,x5C2 , C2,x5LmC12 (
i 50

m21

uiL
iC1 , ~3.5a!

dHl

du
2

1

2 (
j 51

N
dl j

du
5S bm1 l

]

bl 11

D 2
1

2 S ^Lm21C1 ,C1&
]

^C1 ,C1&
D 50. ~3.5b!

For l 5m, ~3.5b! leads to

um2k5(
j 51

k

~21! j 21
j 11

2 j (
l 11...1 l j 5k2 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&, k51,...,m, ~3.6!

where l 1>0,...,l j>0. By substituting~3.6! into ~3.5a!, the first constrained flow of~3.3! can be
written as a canonical FDHS

C1,x5
]F0

]C2
, C2,x52

]F0

]C1
, ~3.7!

or

Px5u0¹F0 ,

where

P5~C1
T ,C2

T!T, u05S 0 I N3N

2I N3N 0 D ,

F05
1

2
^C2 ,C2&1(

j 50

m S 21

2 D j 11

(
l 11¯1 l j 115m2 j

^L l 1C1 ,C1&¯^L l j 11C1 ,C1&.
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The entries of the Lax matrix for~3.7! are given by24

A~l!52
1

2 (
j 51

N
c1 jc2 j

l2l j
, B~l!511

1

2 (
j 51

N c1 j
2

l2l j
, ~3.8a!

C~l!5lm1 (
k51

m

lm2k(
j 51

k S 2
1

2D j

(
l 11¯1 l j 5k2 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&2
1

2 (
j 51

N c2 j
2

l2l j
.

~3.8b!

We have

A~l!21B~l!C~l!5lm1(
i 51

N
F ~ i !

l2l i
,

F ~ i !5
1

2 Fl i
m1 (

k51

m

l i
m2k(

j 51

k S 2
1

2D j

(
l 11¯1 l j 5k2 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&Gc1i
2

2
1

2
c2i

2 1
1

4 (
kÞ i

~c1ic2k2c1kc2i !
2

lk2l i
, i 51,...,N, ~3.9!

whereF ( i ), i 51,...,N, are independent integrals of motion for~3.7! andF05( i 50
N F ( i ). It can be

shown that the system~3.7! is integrable in the Liouville’s sense. The systems withm51,2,... give
rise to a family of FDIHSs which include the well-known Garnier system as the first mem
(m51). This family of FDIHSs was first given in Ref. 34.

In order to find the QBH structure for~3.7!, we need to consider the following modifie
polynomial second-order spectral problem31

fx5U~v,l!f, U~v,l!5S v0 l

2(
i 51

m

v il
i 21 2v0

D , f5S f1

f2
D , ~3.10!

wherevm521, v5(v0 ,...,vm21)T. The equations~2.2! and ~2.3! yield

a05¯5am225b05¯5bm2350, bm2251, bm215 1
2vm21 ,

am215v0 , c051, c152 1
2vm21 ,...,

and in general

S 2ak11

2bk11

]

2bk1m21

D 5LS 2ak

2bk

]

2bk1m22

D , ~3.11a!

ck115ak,x2(
i 51

m

v ibk1 i 21 , k51,2,..., ~3.11b!

where
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L5S 0 22v01D 0 ... 0 0

0 0 1 ... 0 0

] ] ] � ] ]

0 0 0 ... 0 1

L0 L1 L2 ... Lm22 Lm21

D ,

L05 1
4D1 1

2D
21v0D, Li5

1
2v i1

1
2D

21v iD, i 51,...,m21.

The hierarchy of NLEEs associated with~3.10! is

v tn
5S v0

]

vm21

D
tn

5JS 2an

2bn

]

2bn1m22

D 5J
dHn

du
, n51,2,..., ~3.12!

where the HamiltonianHn and the Hamiltonian operatorJ are given by

J5S 1

2
D 0 0 ... 0 0

0 J2 J3 ... Jm21 22D

] ] ] � ] ]

0 Jm21 22D ... 0 0

0 22D 0 ... 0 0

D ,

Ji5v i ,x12v iD, i 50,1,...,m21, Hn5
2

m22n22 Fan,x2(
i 51

m

iv ibn1 i 21G .

Also we have

dl

du
5~2f1f2 ,f1

2,lf1
2,...,lm22f1

2!T. ~3.13!

The constrained flows of~3.12! are defined by

F1,x5v0F11LF2 , F2,x5S Lm212 (
i 51

m21

v iL
i 21DF12v0F2 , ~3.14a!

dHl

dv
1

1

2 (
j 51

N
dl j

dv
5S 2al

2bl

]

2bl 1m22

D 1
1

2 S 2^F1 ,F2&
^F1 ,F1&

]

^Lm22F1 ,F1&
D 50. ~3.14b!

For l 5m21, ~3.14b! leads to

v052 1
2^F1 ,F2&, ~3.15a!

vm2k5(
j 51

k

~21! j 21
j 11

2 j (
l 11...1 l j 5k2 j

^L l 1F1 ,F1&...^L
l jF1 ,F1&, k51,...,m21.

~3.15b!
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By substituting~3.15! into ~3.14a!, the first constrained flow of NLEE~3.12! can be written as a
canonical FDHS

F1,x5
]F̃0

]F2
, F2,x52

]F̃0

]F1
, ~3.16a!

or

P̃x5u0¹F̃0 ,

where

P̃5~F1
T ,F2

T!T, u05S 0 I N3N

2I N3N 0 D ,

F̃05 1
2^LF2 ,F2&2 1

4^F1 ,F2&
21(

j 51

m

~2 1
2!

j (
l 11...1 l j 5m2 j

^L l 1F1 ,F1&¯^L l jF1 ,F1&.

~3.16b!

B. The QBH structure for the family of FDIHD „3.7…

It is known31 that the gauge transformation between the spectral problems~3.1! and~3.10! is
given by

c15f1 , c25lf21v0f1 ,

ui5v i , i 51,...,m21, u052v0x2v0
2, ~3.17!

which, together with~3.6! and ~3.15!, gives rise to the map relating~3.7! to ~3.16!, i.e., P

5M ( P̃):

C15F1 , C25LF22 1
2^F1 ,F2&F1 . ~3.18!

In fact the mapM transforms the first equation and the second equation with an additive
2cC1(c5F̃0), in ~3.7! into the corresponding equations in~3.16!. Since theu1 constructed in the
following is valid for an arbitraryc, so we can takec50. The JacobiM 8 of the mapM takes the
form

M 8~ P̃!5S I N3N 0N3N

2 1
2^F1 ,F2&I N3N2 1

2F1F2
T L2 1

2F1F1
TD . ~3.19!

Then the second compatible Poisson tensor for the vector field~3.7! is

u15M 8u0M 8TuP5M ~ P̃!5S 0N3N A1

2A1
T B1

D ,

A15L2 1
2C1C1

T , B15 1
2C2C1

T2 1
2C1C2

T . ~3.20!

By a straightforward calculation, we have the following proposition.
Proposition 3: The system (3.7) possesses theQBH representation

Px5u0¹F05
1

r
u1¹E1 , ~3.21a!
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where

r5B~l!ul50512 1
2^L

21C1 ,C1&, ~3.21b!

E15@A2~l!1B~l!C~l!#ul50

52(
i 51

N

l i
21F ~ i !

5 1
2^L

21C2 ,C2&1 1
4@^L

21C1 ,C2&
22^L21C1 ,C1&^L

21C2 ,C2&#

1(
j 50

m

~2 1
2!

j 11 (
l 11...1 l j 115m2 j

^L l 1C1 ,C1&...^L
l j 1121C1 ,C1&. ~3.21c!

C. The Nijenhuis coordinates

In the same way as for~2.30!–~2.33!, the eigenvalues of the Nijenhuis tensorm1 ,...,mN are
defined by the roots of the equation

f ~l!5ulI 2A1u50, ~3.22a!

which gives

c1 j5gj~m!, j 51,...,N.

Then one defines

n j5
]S

]m j
5(

j 51

N

c2 j

]gj

]m j
, j 51,...,N. ~3.22b!

On the other hand, the generalized elliptic coordinates (m̄,n̄) are defined by means of the La
matrix in the following way.24 The coordinatesm̄1 ,...,m̄N are introduced by the zeros ofB(l):

B~l!511
1

2 (
j 51

N c1 j
2

l2l j
5

R~l!

K~l!
, ~3.23a!

whereK(l) is defined by~2.35! and

R~l!5)
k51

N

~l2m̄k!5 (
k50

N

bkl
N2k,

b051, b152(
j 51

N

m̄ j ,..., bN5~21!N)
j 51

N

m̄ j , ~3.23b!

and the canonically conjugate coordinatesn̄1 ,...,n̄N are defined by

n̄k52A~m̄k!5
1

2 (
j 51

N
c1 jc2 j

m̄k2l j
, k51,...,N. ~3.23c!

We have the following proposition.
Proposition 4: The Nijenhuis coordinates~m,n! defined by (3.22) are exactly the same as

generalized elliptic coordinates(m̄,n̄) defined by (3.23). TheQBH vector field (3.21) is Pfaffian in
the Nijenhuis coordinates.

Proof: Similarly, we have by induction
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f N~l;l1 ,...,lN!5ulI 2A1u

5Ul2l11 1
2c11

2 1
2c11c12 ... 1

2c11c1N

1
2c12c11 l2l21 1

2c12
2 ... 1

2c12c1N

] ] � ]

1
2c1Nc11

1
2c1Nc12 ... l2lN1 1

2c1N
2

U
5~l2l1! f N21~l;l2 ,...,lN!1 1

2c11
2 )

k52

N

~l2lk!

5B~l!K~l!, ~3.24!

which shows thatmk5m̄k . It follows from ~3.23a! that

c1 j
2 52

R~l j !

K8~l j !
, j 51,...,N. ~3.25!

Thus we have

nk5(
j 51

N

c2 j

]

]mk
A2R~l j !

K8~l j !
5(

j 51

N
c2 jR~l j !

A2R~l j !K8~l j !~mk2l j !
5

1

2 (
j 51

N
c1 jc2 j

mk2l j
, ~3.26!

which implies thatnk5 n̄k , sincemk5m̄k . Finally, it is found from~3.23a! that

r5B~l!ul50512
1

2
^L21C1 ,C1&5

bN

aN
.

This completes the proof.

IV. THE SECOND FAMILY OF QBH SYSTEMS

For l 5m11, it is found from~3.5b!24 that

um2k5~2 1
2!

kum21
k 1 (

i 50

k22

um21
i (

j 51

@~k2 i !/2#

Ei , j (
l 11...1 l j 5k2 i 22 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&,

k52,...,m, ~4.1a!

L0um215^Lm21C1 ,C1&2 (
i 51

m21

Li^L
i 21C1 ,C1&, ~4.1b!

where

Ei , j52~ i 1 j 11!b i , j , b i , j5S 2
1

2D i 1 j ~ i 1 j !!

i ! j !
.

Denote

q5um21 , p52 1
8um21,x .

By substituting~4.1a!, ~3.5a! and ~4.1b! become a canonical FDHS

Px5u0¹F1 , ~4.2a!
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where

P5~C1
T ,q,C2

T ,p!T, u05S 0 I ~N11!3~N11!

2I ~N11!3~N11! 0 D ,

F15 1
2^C2 ,C2&1~2 1

2q!m1224p2

1(
i 50

m

qi (
j 51

@~m122 i !/2#

b i , j (
l 11¯1 l j 5m122 i 22 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&. ~4.2b!

The entries of the Lax matrixQ for ~4.2! are of the form24

A~l!52p2
1

2 (
j 51

N
c1 jc2 j

l2l j
, B~l!5l1

1

2
q1

1

2 (
j 51

N c1 j
2

l2l j
, ~4.3a!

C~l!5 (
k50

m11

lm112kc̃k2
1

2 (
j 51

N c2 j
2

l2l j
, ~4.3b!

where

c̃k5S 2
1

2
qD k

1 (
i 50

k22

qi (
j 51

@~k2 i !/2#

b i , j (
l 11...1 l j 5k2 i 22 j

^L l 1C1 ,C1&...^L
l jC1 ,C1&,

k51,...,m11, ~4.3c!

c̃m121k52 1
2^L

kC2 ,C2&, k50,1,... . ~4.3d!

Similarly, the equality

A2~l!1B~l!C~l!5lm122F11(
i 51

N
F ~ i !

l2l i
,

~4.4!

F ~ i !522pc1ic2i2
1

2 S l i1
1

2
qDc2i

2 1
1

2 (
k50

m11

c̃kl i
m112kc1i

2 1
1

4 (
kÞ i

~c1ic2k2c1kc2i !
2

lk2l i
,

i 51,...,N,

determinesN11 independent integrals of motionF0 , F ( i ), i 51,...,N, for the FDHS~4.2!. The
systems~4.2! for m51,2,..., give the second family of FDIHSs. By takingm51 ~4.2! gives rises
to the multidimensional Henon–Heiles system. The system~4.2! was also studied by a recurrenc
relation in Ref. 35, however no explicit expressions like~4.2b! and~4.3! were given in that paper

In the exactly the same way as we did in the preceding section, we can obtain another
from ~3.14! for l 5m, find the map relating this FDHS to the FDHS~4.2! and finally, by using this
map, obtain the second compatible Poisson tensor for the vector field for~4.2!

u15S 0~N11!3~N11! A1

2A1
T B1

D ,

A15S L 2 1
4C1

2C1
T

2 1
2q

D , B15S 0N3N
1
4C2

2 1
4C2

T 0
D . ~4.5!
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By a straightforward calculation, we can show the following proposition.
Proposition 5: The system (4.2) possesses theQBH representation

Px5u0¹F15
1

r
u1¹E1 , ~4.6!

where

r5B~l!ul505 1
2q2 1

2^L
21C1 ,C1&, ~4.7a!

E15@A2~l!1B~l!C~l!#ul50

52F12(
i 51

N

l i
21F ~ i !52p^L21C1 ,C2&1

1

4
q^L21C2 ,C2&14p22S 2

1

2
qD m12

2(
i 50

m

qi (
j 51

@~m122 i !/2#

b i , j (
l 11...1 l j 5m122 i 22 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&

1
1

4
@^L21C1 ,C2&

22^L21C1 ,C1&^l
21C2 ,C2&#

2
1

2 (
i 50

m11

qi (
j 50

@~m112 i !/2#

b i , j (
l 11...1 l j 115m112 i 22 j

^L l 1C1 ,C1&¯^L l jC1 ,C1&

3^L l j 1121C1 ,C1&. ~4.7b!

In the same way,m1 ,...,mN11 in the Nijenhuis coordinates are defined by the roots of
equation

f ~l!5ulI 2A1u50, ~4.8a!

which gives

c1 j5gj~m!, j 51,...N, q5gN11~m!.

Then one defines

n j5
]S

]m j
5(

j 51

N

c2 j

]gj

]m j
1p

]gN11

]m j
, j 51,...,N11. ~4.8b!

On the other hand, the generalized parabolic coordinates (m̄,n̄) are defined by means of th
Lax matrix in the following way.24 The coordinatesm̄1 ,...,m̄N11 are introduced by the zeros o
B(l):

B~l!5l1
1

2
q1

1

2 (
j 51

N c1 j
2

l2l j
5

R~l!

K~l!
, ~4.9a!

whereK(l) is defined by~2.35! andR(l) by

R~l!5 )
k51

N11

~l2m̄k!5 (
k50

N11

bkl
N112k,

b051, b152(
j 51

N

m̄ j ,..., bN115~21!N11 )
j 51

N11

m̄ j ,
                                                                                                                



the

e third

actor

y
o that
n

n
(

4472 J. Math. Phys., Vol. 40, No. 9, September 1999 Y. B. Zeng and W.-X. Ma

                    
and the canonically conjugate coordinatesn̄1 ,...,n̄N11 are defined by

n̄k52A~m̄k!522p1
1

2 (
j 51

N
c1 jc2 j

m̄k2l j
, k51,...,N11. ~4.9b!

We have the following proposition.
Proposition 4: The Nijenhuis coordinates~m,n! defined by (4.8) are exactly the same as

generalized parabolic coordinates(m̄,n̄) defined by (4.9). TheQBH vector field (4.6) is Pfaffian
in the Nijenhuis coordinates.

Proof: In a similar way, we can show by induction that

f ~l!5B~l!K~l!. ~4.10!

It follows from ~4.9a! that

c1 j
2 52

R~l j !

K8~l j !
, j 51,...,N,

q5^L21C1 ,C1&12
bN11

aN
5(

j 51

N
2R~l j !

l jK8~l j !
12

bN11

aN
. ~4.11!

Then it is similar to find that

nk52A~mk!,

r5B~l!ul505
1

2
q2

1

2
^L21C1 ,C1&5

bN11

aN
.

This completes the proof.

V. CONCLUDING REMARKS

In the exact same way as we did in the preceding two sections, we can construct th
family of QBH systems from the constrained flows~3.5! for l 5m12, m51,2,... . The QBH
system~2.28! is just the second member (m52) in the third family of QBH systems, andu1 and
r given by~2.27! and~2.29a! are the second compatible Poisson tensor and the integrating f
for the third family of QBH systems.

In general, the constrained flow~3.5! for l 5m1k can be transformed into a FDIHS b
introducing the Jacobi–Ostrogradsky coordinates. Under the map relating this FDIHS t
obtained from the modified constrained flow~3.14! for l 5m1k21, the image of the Poisso
tensoru0 for the latter gives rise to the second compatible Poisson tensoru1 for the former. In this
way, for eachk we can obtain a family of QBH systems withm51,2,... . The results obtained i
the preceding sections suggest the following conjecture: each family of QBH systemsl 5m
1k, m51,2,...) shares the sameu1 andr for the QBH structure

u0¹F15
1

r
u1¹E1 ,

and, in general, by means of the Lax matrixQ5(C(l)
A(l)

2A(l)
B(l) ) and the expression

A2~l!1B~l!C~l!5 (
i 50

m12k

F̄ il
i1(

i 51

N
F ~ i !

l2l i
,

we have
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r5B~l!ul50 , E15@A2~l!1B~l!C~l!#ul505F̄02(
i 51

N

F ~ i !l i
21.

For k51,2,..., we find an infinite number of families of QBH systems. Furthermore we can s
in a similar way that the Nijenhuis coordinates introduced by the Nijenhuis tensor are exac
same as the separated variables defined by means of the Lax matrix for the QBH system
family, and each QBH vector field is Pfaffian in the Nijenhuis coordinates.

ACKNOWLEDGMENTS

This work was supported by the Chinese Basic Research Project ‘‘Nonlinear Science
City University of Hong Kong and the Research Grants Council of Hong Kong. One of the au
~Y. B. Zeng! wishes to express his gratitude to Department of Mathematics of the City Unive
of Hong Kong for warm hospitality.

1F. Magri, J. Math. Phys.19, 1156~1978!.
2M. Antonowicz, A. P. Fordy, and S. Rauch-Wojciechowski, Phys. Lett. A124, 143 ~1987!.
3M. Antonowicz and S. Rauch-Wojciechowski, J. Phys. A24, 5043~1991!.
4M. Antonowicz and S. Rauch-Wojciechowski, Phys. Lett. A163, 167 ~1992!.
5M. Antonowicz and S. Rauch-Wojciechowski, J. Math. Phys.33, 2115~1992!.
6Yunbo Zeng, J. Phys. A24, L11 ~1993!.
7Yunbo Zeng, J. Math. Phys.34, 4742~1993!.
8M. Blaszak, J. Phys. A26, 5985~1993!.
9R. Caboz, V. Ravoson, and L. Gavrilov, J. Phys. A24, L523 ~1991!.

10R. Brouzet, R. Caboz, J. Rabenivo, and V. Ravoson, J. Phys. A29, 2069~1996!.
11F. Magri and T. Marsico,Electromagnetism and Geometrical Structures, edited by G. Ferrarese~Bologna, Pitagora,

1996!, p. 207.
12C. Morosi and G. Tondo, J. Phys. A30, 2799~1997!.
13M. Blaszak, J. Math. Phys.39, 3213~1998!.
14J. Rabenivo, J. Phys. A34, 7113~1998!.
15Yunbo Zeng, Phys. Lett. A160, 541 ~1991!.
16Yunbo Zeng and Yishen Li, J. Phys. A26, L273 ~1993!.
17Yunbo Zeng, Physica D73, 171 ~1994!.
18Yunbo Zeng, J. Phys. A24, L1065 ~1991!.
19W. X. Ma and W. Strampp, Phys. Lett. A185, 277 ~1994!.
20W. X. Ma, J. Phys. Soc. Jpn.64, 1085~1995!.
21W. X. Ma, B. Fuchssteiner, and W. Oevel, Physica A233, 331 ~1996!.
22W. X. Ma, Q. Ding, W. G. Zhang, and B. Q. Lu, Nuovo Cimento B111, 1135~1996!.
23O. Ragnisco and S. Rauch-Wojciechowski, Inverse Probl.8, 245 ~1992!.
24Yunbo Zeng and Runlian Lin, J. Math. Phys.39, 5964~1998!.
25E. K. Sklyanin, Prog. Theor. Phys. Suppl.118, 35 ~1995!.
26J. Harnad and P. Winternitz, Commun. Math. Phys.172, 263 ~1995!.
27Yunbo Zeng, J. Phys. A30, 3719~1997!.
28Yunbo Zeng, J. Phys. Soc. Jpn.66, 2277~1997!.
29M. Jaulent and K. Miodek, Lett. Math. Phys.1, 243 ~1976!.
30A. C. Newell,Solitons in Mathematics and Physics~SIAM, Philadelphia, 1985!.
31M. Antonowicz and A. P. Fordy, Commun. Math. Phys.124, 465 ~1989!.
32B. A. Kupershmidt and J. Wilson, Invent. Math.62, 403 ~1981!.
33A. D. Dubrovin, Russian Math. Survey36, 11 ~1981!.
34Yunbo Zeng and Yishen Li, J. Math. Phys.31, 2835~1990!.
35J. C. Eilbeck, V. Z. Enol’skii, V. B. Kuznetsov, and A. V. Tsignov, J. Phys. A27, 567 ~1994!.
                                                                                                                



in a
f light,

ergy–
lified,
t inter-

er field

with a
t, so a
o
waves.
ate the

flat
ads

ature
aves

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 9 SEPTEMBER 1999

                    
The generation of gravitational waves by the resonant
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We show that the resonant interaction of sound waves is a source of gravitational
waves in general relativity. We derive an asymptotic equation that describes this
process, and compute the interaction coefficient for the quadratically nonlinear
coupling between sound waves and gravitational waves. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01709-0#

I. INTRODUCTION

We consider the propagation of two sound waves through a fluid that is contained
relativistic space–time. If the interference pattern of the sound waves moves at the speed o
then they resonate with a gravitational wave, and the resulting variations of the fluid en
momentum tensor act as the source of a free gravitational wave. We will derive simp
asymptotic equations that describe the generation of a gravitational wave by this resonan
action.

Equations that describe the interaction between gravitational waves and waves in anoth
have been derived for scalar fields,1 electromagnetic fields,2 and Yang–Mills fields.3 In these
cases, the nongravitational waves propagate at the speed of light, so they resonate directly
gravitational wave. The propagation speed of sound waves is less than the speed of ligh
single sound wave cannot generate a gravitational wave.4 Thus, the resonant interaction of tw
sound waves is the simplest mechanism for the generation of gravitational waves by sound
In the Introduction, we summarize the equations that describe this process, and estim
strength of the resulting gravitational wave.

We consider weak gravitational waves whose metric is a small perturbation of the
Minkowski metric. Linearization of the Einstein field equations about the Minkowski metric le
to equations of the form

G@h#5
8pG

c4
T, ~1.1!

whereh is the perturbation of the metric from the Minkowski metric,T is the energy–momentum
tensor of the fluid,G is a linear partial differential operator acting onh, c is the speed of light, and
G is the gravitational constant. This linearization is valid provided that the background curv
of space–time caused by the unperturbed fluid is negligible over the region in which the w
interact.

a!Electronic mail: jkhunter@ucdavis.edu
44740022-2488/99/40(9)/4474/21/$15.00 © 1999 American Institute of Physics
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First, we suppose that the sound waves are small-amplitude, harmonic acoustic wave p
We denote the wave number four-vectors of the two acoustic waves byk(J)5(ka

(J)), whereJ
51,2 and Greek indices run over 0, 1, 2, 3. We define associated phasesuJ by

uJ5ka
(J)xa. ~1.2!

We will not use the summation convention over the wave indexJ, and will indicate any sums with
respect toJ explicitly. According to linearized acoustics, the density perturbationr8 in the acous-
tic wave field is given by

r85~r
0
1p

0
/c2!(

J51

2

$AJ~x!eiuJ1AJ* ~x!e2 iuJ%1••• . ~1.3!

In ~1.3!, the dimensionless functionAJ is a complex wave amplitude, and the quantities
0

r and
0

p
are the unperturbed fluid density and pressure, repectively.

The energy–momentum tensor associated with the acoustic wave field~1.3! has the form

T5T
0

1 (
J51

2

$AJe
iuJPJ1AJ* e2 iuJPJ* %

1 (
J,K51

2

$AJAKei (uJ1uK)QJK1AJ* AK* e2 i (uJ1uK)QJK*

1AJAK* ei (uJ2uK)RJK1AJ* AKe2 i (uJ2uK)RJK* %1••• ,

wherePJ , QJK , andRJK are constant, complex-valued tensors. This energy–momentum ten
a source term for the gravitational field in Eq.~1.1!, which, in essence, is a forced wave equati
for the metric perturbationh. When an acoustic source term is resonant, it generates a gravita
wave, provided that an appropriate interaction coefficient is nonzero. With a suitable choice
signs of the wave number vectors, the condition for three-wave resonance to occur is that

k(1)1k(2)1k(3)50, ~1.4!

wherek(1), k(2) satisfy the dispersion relation of acoustic waves, andk(3) is a null vector. The
quantum mechanical interpretation of this triresonance condition is the conservation of ener
momentum in the resonant scattering of two phonons into a graviton.

It is convenient to use Lorentzian coordinates in which the fluid is at rest,

x5~ t,xW !, xW5~x1,x2,x3!.

In these coordinates, the Minkowski metric componentshab are given by

~hab!5S 21 0 0 0

0 1/c2 0 0

0 0 1/c2 0

0 0 0 1/c2

D .

We write a wave number four-vectork as

k5~2v,kW !, kW5~k1 ,k2 ,k3!,

wherev is the angular frequency andkW is the spatial wave number vector. The dispersion relat
of acoustic waves is
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v25cs
2kW2, ~1.5!

wherecs is the sound speed of the unperturbed fluid, and the dispersion relation of gravita
waves is

v25c2kW2. ~1.6!

The triresonance condition~1.4! may be written as

v (1)1v (2)1v (3)50, kW (1)1kW (2)1kW (3)50. ~1.7!

This condition implies that the spatial wave number vectors of the three waves are coplan
can therefore choose coordinates so that the propagation directions of the acoustic waves l
(x1,x2) plane and the propagation direction of the gravitational wave lies in thex1 direction. As
we will show, the gravitational wave generated by the resonant interaction is then plane po
in the (x2,x3) directions. We may write the spatial wave number vectors explicitly as

kW (1)5
v (1)

cs
~cosw1 ,sinw1 ,0!,

kW (2)5
v (2)

cs
~cosw2 ,sinw2 ,0!, ~1.8!

kW (3)5
v (3)

c
~1,0,0!,

where w1 , w2 are the angles of the acoustic wave number vectors to the gravitational
number vector, andw1Þw2. It follows from ~1.7! and ~1.8! that three-wave resonance occu
when the angles satisfy

c sin~w12w2!5cs~sinw12sinw2!.

In a transverse, traceless gauge, the metric perturbationhab of the gravitational wave is given
by

~hab!5$A3~x!eiu31A3* ~x!e2 iu3%S 0 0 0 0

0 0 0 0

0 0 1/c2 0

0 0 0 21/c2

D .

As we will show, the gravitational wave amplitudeA3 satisfies the equation

iv (3)~] tA31c ]x1A3!1GA1* A2* 50, ~1.9!

where the interaction coefficientG is given by

G5
8pGcs

2

c2
~r

0
1p

0
/c2!sinw1 sinw2 . ~1.10!

The sound wave amplitudesAJ in Eq. ~1.3! satisfy

] tAJ1CJ
j ]xjAJ50, J51,2, ~1.11!
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where lower case latin indices run over 1, 2, 3, andCJ
j is the spatial group velocity of theJth

wave,

CJ
j 5

cs
2kj

(J)

v (J)
, J51,2. ~1.12!

Equation~1.9! describes the forcing of the gravitational wave by the resonant interactio
the acoustic waves. If the acoustic waves collide head on in the rest frame of the fluid, thw1

50, w25p, andG50, so no gravitational wave is generated by the three-wave resonance
interaction coefficientG is nonzero for the resonant interaction of oblique acoustic waves.
angular dependence of the interaction coefficient is explained by the fact that the componen
velocity perturbation of theJth longitudinal sound wave in thex2 direction transverse to the
gravitational wave is proportional to sinwJ . The resonant component of the transverse momen
tensor, which forces the gravitational wave, is therefore proportional to sinw1 sinw2.

The form of the resonant interaction equations~1.9!, ~1.11! differs from the usual form of the
three-wave resonant interaction equations for Hamiltonian systems,5 because there is no forcing o
an acoustic wave by the resonant interaction between the other acoustic wave and the grav
wave. From the Lagrangian point of view, the asymmetry between the gravitational and ac
equations is a consequence of the unusual structure of the variational principle for the E
field equations, which provides variational equations for the metric but no variational equatio
the fluid. Instead, the fluid equations follow from the metric equations on account of the Bi
identities. One consequence of this asymmetry is that the resonant interaction equations
conserve energy exactly. The lack of exact energy conservation for the resonant interaction
tions is not physically inconsistent, however. The amplitude of the gravitational wave is m
smaller than the amplitudes of the acoustic waves, as can be seen from Eq.~1.18! below, so the
depletion of energy of the acoustic waves due to the generation of the gravitational wa
negligible for the time scales over which the resonant interaction equations apply.

In the above discussion, we have described our results for the case of harmonic a
waves. In the following sections, we derive the resonant-interaction equations for the more g
case of weakly nonlinear sound waves, where the nonlinear self-interaction of the waves le
the distortion of the wave profiles. Harmonic waves are obtained as a limiting case of w
nonlinear waves in which their wave amplitudes tends to zero.

The density perturbation for a sum of two weakly nonlinear sound waves is given by

r85(r
0
1p

0
/c2) (

J51

2

aJ~x,uJ!1••• , ~1.13!

whereaJ is a 2p-periodic function ofuJ whose dependence on the phase variableuJ describes the
local profile of the sound wave. Expansion of the fluid equations implies thataJ satisfies an
inviscid Burgers equation,

] taJ1CJ
j ]xjaJ1]uJ

~ 1
2 v (J)LJaJ

2!50, ~1.14!

where, for a barotropic fluid,

LJ512
cs

2

c2
. ~1.15!

The metric perturbation of the gravitational wave is given by
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~hab!5a3~x,u3!S 0 0 0 0

0 0 0 0

0 0 1/c2 0

0 0 0 21/c2

D , ~1.16!

where the gravitational wave amplitudea3 satisfies

v (3)]u3
~] ta31c]x1a3!1G^a1a2&50. ~1.17!

Here,G is defined in~1.10!, and the bracket̂•& denotes a phase average with respect tou1 or u2

in which u3 is held fixed andu11u21u350, in view of ~1.2! and ~1.4!. That is,

^a1a2&~x,u3!5
1

2pE0

2p

a1~x,j!a2~x,2j2u3! dj.

For very small-amplitude sound waves, we can neglect the nonlinear term in~1.14!, and consider
harmonic waves with

aJ~x,uJ!5AJ~x!eiuJ1AJ* ~x!e2 iuJ, J51,2,3.

In that case,~1.14! reduces to~1.11!, and~1.17! reduces to~1.9!.
The coupling between sound waves and gravitational waves is weak, but the volume

source region in which the resonant interaction takes place can be large, so that it is poss
the sound waves to generate a significant flux of low-frequency gravitational waves. This m
nism contrasts with the rapid collapse of a massive object, which provides a strong, loc
source of gravitational waves.6

To estimate the strength of a gravitational wave generated by such a resonant interact
suppose that the dimensionless amplitudesaJ of the sound waves are of the ordere, and that their
interaction time is of the orderT. Integration of~1.17! implies that the dimensionless gravitation
wave amplitudea3 is of the ordere2TG/v (3). Using the expression in~1.10! for G, writing
v (3)52p f , where f is the frequency of the gravitational wave, and neglecting the order
geometrical factor sinw1 sinw2, we find that the gravitational wave amplitude is of the ordera,
where

a5
4e2cs

2GT

c2f
~r

0
1p

0
/c2!. ~1.18!

An upper limit on the interaction timeT is the shock formation time of the sound waves, which
of the order

T5
1

e f
.

In that case, we have

a5
4ecs

2G

c2f 2
~r

0
1p

0
/c2!. ~1.19!

In the present, matter-dominated era of the universe, this amplitude is too small fo
resonant interaction of sound waves to be a significant source of gravitational waves. Ho
much stronger gravitational waves may have been generated in the radiation-dominated e
equation of state for a radiation-dominated universe is
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p5 1
3 rc2.

Thus, from~1.19!, the strengtha of the gravitational wave is of the order

a5
16eGr

0

9 f 2
.

For example, in a flat Robertson–Walker universe, the density is given as a function of the
the universet by7

r
0
5

3

32pGt2
,

so that

a5
e

6pt2f 2
.

The gravitational wave amplitude is therefore significant at sufficiently low frequencies.

II. THE FIELD EQUATIONS

We use units in which

8pG51, c51. ~2.1!

The Einstein field equations are

Gab5Tab , ~2.2!

whereGab is the Einstein tensor andTab is the energy–momentum tensor. The Einstein ten
Gab is given in terms of the Ricci curvature tensorRab , the scalar curvatureR5Ra

a , the metric
tensorgab , and the associated connection coefficientsGbg

a by

Gab5Rab2 1
2 Rgab ,

Rab5]lGab
l 2]lGbl

l 1Gab
l Glm

m 2Gal
m Gbm

l ,

Gbg
a 5 1

2 gal~]bglg1]gglb2]lgbg!.

The Einstein equations~2.2! may be written in the equivalent form

Rab5Tab2 1
2Tgab , ~2.3!

whereT is the trace of the energy–momentum tensor.
We study weak gravitational waves for which the metric tensorgab is a small perturbation of

the Minkowski metrichab . We therefore write

gab5hab1hab , ~2.4!

where the metric perturbationhab is small. Use of~2.4! in ~2.3! and linearization of the result with
respect tohab implies that

L@h#ab5Tab2 1
2Thab , ~2.5!
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where the linearized gravitational wave operatorL is given by

L@h#ab5 1
2~2]l ]lhab2]a ]bhl

l1]b ]lha
l1]a ]lhb

l !, ~2.6!

and

T5habTab . ~2.7!

Throughout the paper, we use the Minkowski metric to raise and lower indices.
Computation of the divergence of~2.5! implies that the energy–momentum tensor satisfies

conservation laws,

]aTab50. ~2.8!

After evaluation at the Minkowski metric, the energy–momentum tensor of the fluid is give

Tab5~r1p!uaub1phab, ~2.9!

wherer is the mass–energy density,p is the pressure, andua is the four-velocity of the fluid. The
four-velocity satisfies

uaua521. ~2.10!

In a barotropic fluid, the pressure and density are related by

p5cs
2r, ~2.11!

where the constantcs is the sound speed. Fluids with more general equations of state cou
treated in a similar way.

In Secs. III–IV, we derive an asymptotic solution of the fluid equations~2.8!–~2.11!, which
describes the sum of two weakly nonlinear sound waves. In Secs. V–VI, we solve the gr
tional equations~2.5! for the metric perturbation.

In dimensioned variables, the length scaleL of the variation of the background space–tim
metric caused by the presence of the fluid is given by

L5F8pG

c2
~r

0
1p

0
/c2!G21/2

.

The Einstein equations can be linearized about the Minkowski metric, provided that the l
scaled of the interaction region is small compared withL. To carry out the linearization in a
systematic way, we use dimensionless variables in whichL51, and denote the correspondin
space–time variables byya. The solution for the metric in a region of orderd about the origin is
given by an expansion of the form

gab~y;d!5hab1d2hab~x!1O~d3!, xa5
ya

d
. ~2.12!

The corresponding expansion of the fluid’s energy–momentum tensorTab(g) is

Tab~g!5Tab1O~d2!, ~2.13!

where the energy–momentum tensorTab on the right-hand side of~2.13! is evaluated at the
Minkowski metric. Using~2.12! and ~2.13! in ~2.3!, and settingd50, we obtain the linearized
equations~2.6!–~2.7!.
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III. EXPANSION OF THE FLUID EQUATIONS

The fluid variables are the pressurep, the densityr, and the four-velocityua. We denote the
constant fluid variables in the unperturbed state by

p5p
0
, r5r

0
, ua5u

0
a.

We use a reference frame in which the unperturbed fluid is at rest, so that

~u
0

a!5~1,0,0,0!, ~u
0

a!5~21,0,0,0!. ~3.1!

We look for small-amplitude, high-frequency asymptotic solutions of~2.8!–~2.11! of the form

p5p
0

1ep
1
~x,u1 ,u2!1e2p

2
~x,u1 ,u2!1O~e3!,

r5r
0
1er

1
~x,u1 ,u2!1e2r

2
~x,u1 ,u2!1O~e3!, ~3.2!

ua5u
0

a1eu
1

a~x,u1 ,u2!1e2u
2

a~x,u1 ,u2!1O~e3!,

where the phase variableuJ is given by

uJ5
ka

(J)xa

e
, J51,2. ~3.3!

Here,k(J) is the scaled wave number vector of theJth wave.
In ~3.2!–~3.3!, the small dimensionless parametere measures both the amplitude and t

wavelength of the sound waves. This scaling is the appropriate one for the description of
amplitude sound waves that propagate over a distance comparable with their shock-for
distance.8,9 Once shocks form, the sound waves decay, or other physical effects become imp
so the shock-formation distance effectively limits the length scale of the interaction region.

Because of the algebraic relations~2.10!–~2.11!, there are four independent fluid variable
which we take to be the pressurep and the spatial velocity componentsuj . Use of~3.1! and~3.2!
in ~2.10!, and expansion of the result with respect toe, implies that the timelike component of th
four-velocity is given in terms of the spatial components by~3.2!, with

u
1

050, u
2

05 1
2 u

1
ju
1

j . ~3.4!

From ~2.11!, the density perturbations are given in terms of the pressure perturbations by

r
1

5
p
1

cs
2 , r

2

5
p
2

cs
2 . ~3.5!

Use of ~3.2! in the expression~2.9! for the energy–momentum tensor implies that

Tab5T
0

ab1eT
1

ab~x,u1 ,u2!1e2T
2

ab~x,u1 ,u2!1O~e3!, ~3.6!
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where

T
0

ab5S r
0

0

0 p
0
d jk

D ,

T
1

ab5S r
1

~r
0
1p

0
!u

1
k

~r
0
1p

0
!u

1
j p

1
d jk

D , ~3.7!

T
2

ab5S r
2
12~r

0
1p

0
!u

2
0 ~r

1
1p

1
!u

1
k1~r

0
1p

0
!u

2
k

~r
1
1p

1
!u

1
j1~r

0
1p

0
!u

2
j p

2
d jk1~r

0
1p

0
!u

1
ju
1

k
D .

Use of ~3.3! and ~3.6! in the conservation law~2.8! implies that

S 1

e (
J51

2

ka
(J)]uJ

1]aD „T0 ab1eT
1

ab1e2T
2

ab1O~e3!…50. ~3.8!

Expanding and equating the coefficients ofe21 ande0 to zero in~3.8!, we obtain that

(
J51

2

ka
(J) ]uJ

T
1

ab50, ~3.9!

(
J51

2

ka
(J) ]uJ

T
2

ab1]aT
1

ab50. ~3.10!

In order to write these equations in a more convenient form, we define a four-comp
vector fieldU5(Ua) of independent fluid variables by

U5S p

uj
D . ~3.11!

From ~3.1!, ~3.2!, and~3.11!,

U5U
0

1eU
1

~x,u1 ,u2!1e2U
2

~x,u1 ,u2!1O~e3!, ~3.12!

U
0

5S p
0

0
D , U

1
5S p

1

u
1

j

D , U
2

5S p
2

u
2

j

D . ~3.13!

We define tensor-valued functionsB5(Bab), C5(Cab) of U5(r,uj )
T by

B~U!5S p/cs
2

~r
0
1p

0
!uk

~r
0
1p

0
!uj pd jk D , ~3.14!

C~U,U!5S ~r
0
1p

0
!ujuj

~r1p!uk

~r1p!uj
~r

0
1p

0
!ujuk

D . ~3.15!
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Since we are using a Lorentzian coordinate frame, we haveuj5uj . From ~3.14!–~3.15!, B(U) is
a linear function ofU, and

C~U,V!5 1
4@C~U1V,U1V!2C~U2V,U2V!#

is a bilinear function of (U,V).
It follows from ~3.4!, ~3.5!, ~3.7!, ~3.14!, and~3.15! that

T
1

ab5Bab~U
1

!, ~3.16!

T
2

ab5Bab~U
2

!1Cab~U
1

,U
1

!. ~3.17!

Therefore, Eqs.~3.9!–~3.10! can be written in the form

(
J51

2

ka
(J)]uJ

Bab~U
1

!50, ~3.18!

(
J51

2

ka
(J)]uJ

Bab~U
2

!1]aBab~U
1

!1 (
J51

2

ka
(J)]uJ

Cab~U
1

,U
1

!50. ~3.19!

IV. SOLUTION OF THE FLUID EQUATIONS

We nondimensionalize the fluid variables so that

r
0
1p

0
51. ~4.1!

It follows from ~3.11!, ~3.14!, ~3.15!, and~4.1! that

ka
(J)Bab~U!5AJ

baUa , ~4.2!

where the four-by-four matricesAJ5(AJ
ba) are given by

AJ5S k0
(J)/cs

2 k(J)k

k(J) j k0
(J)d jkD , J51,2. ~4.3!

Use of ~4.2! in ~3.18! implies that

A1 ]u1
U
1

1A2 ]u2
U
1

50. ~4.4!

Equation~4.4! is a symmetric hyperbolic system for
1

U in two independent variables (u1 ,u2). The
‘‘slow’’ variables x occur in ~4.4! as parameters.

The determinant ofAJ is given by

detAJ5
~k0

(J)!2

cs
2 $~k0

(J)!22cs
2k(J) j kj

(J)%.

In order for uJ to be the phase of a sound wave, we require thatk(J) satisfies the acoustic
dispersion relation,

~k0
(J)!25cs

2k(J) j kj
(J) , ~4.5!

in which caseAJ is singular. We denote a normalized null vector byRJ , where
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AJRJ50, J51,2. ~4.6!

From ~4.3!, ~4.5!, and~4.6!, we find that

RJ5S k0
(J)

2kj
(J)D , J51,2. ~4.7!

From ~4.6!, a solution of~4.4! is given by

U
1

5b1~x,u1!R11b2~x,u2!R2 , ~4.8!

wherebJ(x,uJ) is an arbitrary scalar-valued function, which we assume is a 2p-periodic, zero-
mean function ofuJ . The solution~4.8! describes a sum of two oscillatory sound waves. We w
derive an equation for the amplitude functionbJ from the solvability conditions for the second
order perturbation equation,~3.19!.

Using ~4.2!, we can write~3.19! as

A1 ]u1
U
2

1A2 ]u2
U
2

5F~U
1

!, ~4.9!

whereF5(Fb) with

Fb~U
1

!52H ]aBab~U
1

!1 (
J51

2

ka
(J)]uJ

Cab~U
1

,U
1

!J . ~4.10!

Equation ~4.9! is a linear, nonhomogeneous hyperbolic equation forU2 that we solve by the
method of characteristics.

The line

du1

ds
5m1 ,

du2

ds
5m2 ,

is a characteristic of~4.9! if there is an eigenvectorR, such that

~m2A12m1A2!R50.

Using ~4.3!, we find that

det~m2A12m1A2!5
2~q21!k0

(1)k0
(2)

cs
2

m1m2~m2k0
(1)2m1k0

(2)!2,

where

q5
kj

(1)k(2) j cs
2

k0
(1)k0

(2)
. ~4.11!

Thus, Eq.~4.9! has two simple characteristics, given bym150 andm250, with associated eigen
vectors R5R1 and R5R2, respectively. These characteristics correspond to acoustic w
Equation~4.9! also has a double characteristic, given by

m2k0
(1)2m1k0

(2)50,
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which corresponds to vorticity waves. The associated eigenspace is two dimensional, but on
eigenvector is required to solve~4.9! because the acoustic wave interaction forces velocity p
turbations that are coplanar with the acoustic wave number vectors. The relevant eigenveR
5R0 is given by

R05S 0

k0
(1)kj

(2)1k0
(2)kj

(1)D . ~4.12!

We look for a solution of Eq.~4.9! of the form

U
2

5w0~x,u1 ,u2!R01w1~x,u1 ,u2!R11w2~x,u1 ,u2!R2 . ~4.13!

We use~4.13! in ~4.9! and, after some algebra,10 find that it is a solution, provided that th
scalar-valued coefficientsw0 , w1 , w2 satisfy the equations

(
J51

2

k0
(J) ]uJ

w05 (
J51

2

k0
(J)$VJ ]uJ

~bJ!
21W ]uJ

~b1b2!1Ha ]abJ%, ~4.14!

]u2
w15M1~]u1

b1!b21N1b1~]u1
b1!

1P1b1~]u2
b2!1Q2b2~]u2

b2!1Y1
a ]ab11Z1

a ]ab2 , ~4.15!

]u1
w25M2b1~]u2

b2!1N2b2~]u2
b2!

1P2~]u1
b1!b21Q1b1~]u1

b1!1Y2
a ]ab21Z2

a ]ab1 . ~4.16!

The coefficients in~4.14!–~4.16! are given by

VJ5
~k0

(J)!2

2k0
(1)k0

(2)
, W5

2cs
2112q

2cs
2

, Ha5
ha

k0
(1)k0

(2)~11q!
,

MJ5
k0

(J)q~12cs
2!

cs
2~12q!

, NJ5
~k0

(J)!3~12cs
2!

cs
2k0

(1)k0
(2)~12q!

, PJ5
k0

(1)k0
(2)~11q222qcs

2!

2k0
(J)cs

2~12q!
, ~4.17!

QJ5
~k0

(J)!3~12qcs
2!

cs
2k0

(1)k0
(2)~12q!

, YJ
a52

k0
(J)CJ

a

k0
(1)k0

(2)~12q!
, ZJ

a52
ha

2k0
(J)~12q!

.

Here,q is defined in~4.11!, and the four-vectorsh5(ha) andCJ5(CJ
a) are given by

h5S 11q

2cs
2kj

(1)/k0
(1)2cs

2kj
(2)/k0

(2)D , ~4.18!

CJ5S 1

2cs
2kj

(J)/k0
(J)D . ~4.19!

Integration of~4.14!–~4.16! implies that

w05 (
J51

2

$Ha ]aBJ1VJbJ
2%1Wb1b21 f 0 , ~4.20!
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w15~N1b1 ]u1
b11Y1

a ]ab1!u21M1~]u1
b1!B2

1P1b1b21 1
2Q2~b2!21Z1

a ]aB21 f 1 , ~4.21!

w25~N2b2 ]u2
b21Y2

a ]ab1!u11M2~]u2
b2!B1

1P2b1b21 1
2Q1~b1!21Z2

a ]aB11 f 2 . ~4.22!

Here, f 0(x,k0
(2)u12k0

(1)u2), f 1(x,u1), and f 2(x,u2) are arbitrary functions of integration, and

BJ~x,uJ!5E
0

uJ
bJ~x,j! dj2

1

2pE0

2pE
0

h
bJ~x,j!dj dh ~4.23!

denotes the zero-mean integral ofbJ with respect touJ .
Terms inwJ that grow linearly inuJ are secular terms that invalidate the asymptotic solut

We therefore require that the coefficients ofu2 andu1 in ~4.21! and~4.22! are zero. It follows that

YJ
a ]abJ1NJbJ ]uJ

bJ50, J51,2. ~4.24!

After using ~4.11! and ~4.17! in ~4.24!, we obtain an an inviscid Burgers equation forbJ ,

CJ
a ]abJ2]uJS ~k0

(J)!2

2cs
2

LJbJ
2D 50, ~4.25!

whereLJ is given in ~1.15!. The solutions forw1 , w2 in ~4.21!–~4.22! then reduce to

w15M1~]u1
b1!B21P1b1b21 1

2 Q2~b2!21Z1
a ]aB21 f 1 , ~4.26!

w25M2~]u2
b2!B11P2b1b21 1

2 Q1~b1!21Z2
a ]aB11 f 2 . ~4.27!

In summary, an asymptotic solution ase˜0 of ~2.8!–~2.11! for the fluid variablesU in ~3.11!
is given by

U5U
0

1e$b1~x,u1!R11b2~x,u2!R2%1e2$w0~x,u1 ,u2!R0

1w1~x,u1 ,u2!R11w2~x,u1 ,u2!R2%1O~e3!, ~4.28!

where the eigenvectorsR0 , R1 , R2 are defined in~4.12! and~4.7!, bJ satisfies~4.25!, w0 , w1 , w2

are given in~4.20! and ~4.26!–~4.27!, the phase variableuJ is defined in~3.3!, and the wave
number vectork(J) satisfies the acoustic dispersion relation~4.5!. From ~3.5!, ~3.11!, ~4.7!, and
~4.8!, we may write

r
1
5 (

J51

2

aJ , aJ5
k0

(J)

cs
2

bJ . ~4.29!

Reintroducing dimensioned variables, and removing the expansion parametere by settinge51,
we find from ~4.25! and ~4.29! that the leading-order density perturbationr8 is given by~1.13!,
whereaJ satisfies~1.14!.

The use of~4.8! and~4.13! in ~3.16!–~3.17! implies that the terms in the expansion~3.6! of the
energy–momentum tensor are given by
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T
1

ab~x,u1 ,u2!5 (
J51

2

bJ~x,uJ!B
ab~RJ!, ~4.30!

T
2

ab~x,u1 ,u2!5 (
J51

3

wJ~x,u1 ,u2!Bab~RJ!1 (
J,K51

2

bJ~x,uJ!bK~x,uK!Cab~RJ ,RK!, ~4.31!

whereB andC are defined in~3.14! and ~3.15!.

V. EXPANSION OF THE GRAVITATIONAL EQUATIONS

We suppose that the acoustic wave number vectors satisfy the triresonance condition~1.4!.
We define a gravitational phase variable by

u35
ka

(3)xa

e
, ~5.1!

where the gravitational wave number vectork(3) satisfies the dispersion relation

ka
(3)k(3)a50. ~5.2!

The triresonance condition~1.4! implies that the phases are related by

u11u21u350. ~5.3!

If h(x;e)5h(x,u1 ,u2 ,u3), where the phase variablesuJ are given by~3.3! and~5.1!, then it
follows from the chain rule that

]ah5
1
e (

J51

3

ka
(J) ]uJ

h1]ah. ~5.4!

The partial derivative]a on the right-hand side of~5.4! is taken with respect toxa holding uJ

fixed. Using ~5.4! to expand partial derivatives in the linearized gravitational wave operatoL
given in ~2.6!, we find that

L@h#ab5
1

e2
A@h#ab1

1

e
B@h#ab1C@h#ab , ~5.5!

where the linear operatorsA, B, andC are given by

A@h#ab5
1

2 (
J,K51

3

]uJ
]uK

$2kl
(J)k(K)lhab2ka

(J)kb
(K)hl

l1kl
(J)kb

(K)ha
l1ka

(J)kl
(K)hb

l%, ~5.6!

B@h#ab5
1

2 (
J51

3

]uJ
$22k(J)l]lhab2~ka

(J)]b1kb
(J)]a!hl

l

1~kl
(J)]b1kb

(J)]l!ha
l1~ka

(J)]l1kl
(J)]a!hb

l%, ~5.7!

C@h#ab5 1
2 ~2]l ]lhab2]a ]bhl

l1]a ]lha
l1]b ]lhb

l !. ~5.8!

We look for an asymptotic expansion of the metric perturbationh ase˜0 of the form

hab5h
0

ab~x!1e2h
2

ab~x!1e3h
3

ab~x,u1 ,u2 ,u3!1e4h
4

ab~x,u1 ,u2 ,u3!1O~e5!. ~5.9!
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We use~3.6!, ~5.5!, and ~5.9! in ~2.5!, expand, and equate coefficients ofe0, e1, ande2 in the
result. This yields the perturbation equations

C@h
0
#ab5T

0

ab2 1
2T

0
hab , ~5.10!

A@h
3
#ab5T

1

ab2 1
2T

1
hab , ~5.11!

A@h
4
#ab1B@h

3
#ab1C@h

2
#ab5T

2

ab2 1
2T

2
hab . ~5.12!

Equation~5.10! is a linearized Einstein field equation for the leading-order metric perturbatio
0

h
in which the source term is the constant energy–momentum tensor of the unperturbed flui
solution describes the small background space–time curvature caused by the presence of t
Since our aim is to determine the propagating part of the metric, we will not consider this equ
further. The source term in Eq.~5.11! is a linear sum of nonresonant acoustic terms, and it can
solved without the appearance of secular terms. The solution includes a gravitational wav
satisfies the homogeneous equation. The source term in Eq.~5.12! contains resonant terms that a
quadratically nonlinear in the sound wave amplitudes. The imposition of solvability condi
leads to an equation for the amplitude of the gravitational wave included in the solution of~5.11!.
This equation describes the generation of a gravitational wave by the sound wave interactio
is our main result. We carry out the detailed computations in the next section.

VI. SOLUTION OF THE GRAVITATIONAL EQUATIONS

A solution of the ordere perturbation equation~5.11! has the form

h
3

ab5 f ab~x,u1 ,u2!1hab8 ~x,u3!1h̄ab~x!, ~6.1!

where f ab is a particular solution of~5.11! that corresponds to an oscillatory metric perturbat
forced by the acoustic waves,hab8 is a solution of the homogeneous equation that correspond
the metric perturbation of a gravitational wave, andh̄ab is an arbitrary function ofx. We assume
thathab8 is 2p periodic inu3 and, without loss of generality, we chooseh̄ab so thatf ab andhab8
have zero mean with respect to the phase variables.

From ~4.30! and ~5.6!, a particular solution of~5.11! is given by

f ab~x,u1 ,u2!5 (
J51

2

cJ~x,uJ!Fab
(J) , ~6.2!

where]uJ

2 cJ5bJ and

1
2~2kl

(J)k(J)lFab
(J)2ka

(J)kb
(J)Fl

(J)l1kl
(J)kb

(J)Fa
(J)l1ka

(J)kl
(J)Fb

(J)l!

5Bab~RJ!2 1
2Bl

l~RJ!hab .

This algebraic equation forFab
(J) is nonsingular whenever the wave number vectork(J) is not a null

vector. The precise form of the solution is unimportant for our purposes, so we omit a de
expression.

The termhab8 (x,u3) in ~6.1! satisfies the homogeneous equation

A@h8#ab50. ~6.3!

Using ~5.6!, we can write~6.3! as
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1
2 ]u3

2 ~ka
(3)Fb1kb

(3)Fa!50, ~6.4!

where

Fa5k(3)lhal8 2 1
2ka

(3)h8l
l . ~6.5!

Sincehab8 is a zero-mean, 2p-periodic function ofu3, it follows from ~6.4!, after two integrations
with respect tou3, that

Fa50. ~6.6!

We use Lorentzian coordinates in which the gravitational wave propagates in the (2x1)
direction. The covariant wave number four-vector of the wave is then

~ka
(3)!5k3~1,1,0,0!, ~6.7!

wherek3 is a constant scalar. It follows from~6.5!, ~6.6!, and ~6.7! that the metrichab8 has the
form

~hab8 !5S h008 ~h008 1h118 !/2 h028 h038

~h008 1h118 !/2 h118 h028 h038

h028 h028 h228 h238

h038 h038 h238 2h228

D .

We can eliminateh008 , h118 , h028 , andh038 by means of an appropriate gauge transformation.11 The
metric perturbation associated with the gravitational wave is then given by

~hab8 !5S 0 0 0 0

0 0 0 0

0 0 h228 h238

0 0 h238 2h228

D . ~6.8!

Equations for the second-order mean-field perturbation
2

hab and the third-order gravitationa

wave perturbationhab8 follow from the requirement that Eq.~5.12! has a solution for
4

hab that is
a periodic function of the phase variables. There are two solvability conditions for~5.12!. The first
condition is obtained by averaging the equation with respect to all the phase variables, an
to an equation for the perturbation in the background gravitational field caused by the
energy–momentum density of the sound waves. The second condition is obtained by ave
~5.12! with respect tou1 subject to the constraint~5.3! with u3 held fixed, and leads to an equatio
for the amplitude of the gravitational wave. Similar arguments have been used in the stu
resonant wave interactions for hyperbolic conservation laws.12,13 To derive these solvability con
ditions, we first introduce some notation.

Suppose thatf (x,u1 ,u2 ,u3) is a 2p-periodic function of each of the phase variablesuJ (J
51,2,3). We define

f̄ ~x!5
1

~2p!3E0

2pE
0

2pE
0

2p

f ~x,j1 ,j2 ,j3! dj1dj2dj3 , ~6.9!

^ f &~x,u3!5
1

2pE0

2p

f ~x,j,2j2u3 ,u3! dj. ~6.10!
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Thus, f̄ is the mean off with respect to the phase variables (u1 ,u2 ,u3), while ^ f & is the mean of
f with respect tou1, or u2, in which u3 is held fixed and the three phase variables satisfy
constraint~5.3!.

It follows from these definitions that

]uJ
f̄ 50, J51,2,3. ~6.11!

If F(x) is independent of the phases, thenF̄5F, and if f J(x,uJ) is a periodic function of a single
phase variableuJ , then

^ f J&5 f J̄, J51,2, ^ f 3&5 f 3 . ~6.12!

Since f (x,u1 ,u2 ,u3) is periodic, we have

^]u1
f 2]u2

f &5
1

2pE0

2p

$]u1
f ~x,j,2j2u3 ,u3!2]u2

f ~x,j,2j2u3 ,u3!%dj

5
1

2pE0

2p

]j f ~x,j,2j2u3 ,u3! dj

50.

Hence,

^]u1
f &5^]u2

f &. ~6.13!

We write ~5.12! as

A@h
4
#ab1B@h

3
#ab1C@h

2
#ab5Sab , ~6.14!

where

Sab5T
2

ab2 1
2T

2
hab . ~6.15!

From ~5.6! and~5.7!, we see that each term inA@h#ab andB@h#ab is a derivative with respect to
a phase variable, so~6.11! implies that

A@h#ab50, B@h#ab50.

Therefore, averaging~6.14! with respect to all the phase variables, we obtain the first solvab
condition,

C@h
2
#ab5S̄ab . ~6.16!

To derive an expression forS̄ab , we use~4.31! in ~6.15!, which gives

S̄ab5 (
J51

3

w̄JH Bab~RJ!2
1

2
Bl

l~RJ!habJ
1 (

J51

2

bJ
2H Cab~RJ ,RJ!2

1

2
Cl

l~RJ ,RJ!habJ . ~6.17!

Averaging~4.20! and ~4.26!–~4.27!, and supposing for simplicity that the arbitrary functions
integrationf J have zero mean, we find that
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w05 (
J51

2

VJbJ
2, wJ5

1

2
QJbJ

2, J51,2.

Use of these expressions in~6.17! gives

S̄ab5 (
J51

2

bJ
2Mab

(J) ,

Mab
(J)5Cab~RJ ,RJ!2 1

2 Cl
l~RJ ,RJ!hab

1VJ$Bab~R0!2 1
2 Bl

l~R0!hab%1 1
2 QJ$Bab~RJ!2 1

2 Bl
l~RJ!hab%.

Equation~6.16! is a linearized Einstein equation for the second-order metric perturbatio
~5.9! in which the source term is given by the mean energy–momentum tensor of the
waves. This mean energy–momentum tensor leads to a small change in the background cu
of space time, in addition to the background curvature caused by the energy–momentum te
the unperturbed fluid.

To derive the second solvability condition, we average Eq.~6.14! with respect tou1, subject
to the constraint~5.3! with u3 held fixed. After subtracting the mean equation~6.16! from the
result, we obtain that

^A@h
4
#&ab1^B@h

3
#&ab5^S8&ab , ~6.18!

where

Sab8 5Sab2S̄ab . ~6.19!

We will compute explicit expressions for each of the means in~6.18!. The final result is given in
~6.34! below.

First, we computêS8&ab . From ~4.31!, ~6.15!, ~6.17!, and~6.19! we have

^S8&ab5 (
J51

3

^wJ8&H Bab~RJ!2
1

2
Bl

l~RJ!habJ
12^b1b2&$Cab~R1 ,R2!2 1

2 Cl
l~R1 ,R2!hab%, ~6.20!

where

wJ85wJ2w̄J . ~6.21!

Averaging~4.20! and ~4.26!–~4.27!, we find that

^w08&5W^b1b2&, ^wJ8&5~MJ1PJ!^b1b2&, J51,2, ~6.22!

whereW, MJ , andPJ are defined in~4.17!. In deriving ~6.22!, we have used the fact that

^b1b2&5^~]u1
b1!B2&5^B1~]u2

b2!&,

which follows from ~6.13!, since Eq.~4.23! implies that]uJ
BJ5bJ . Substitution of~6.22! into

~6.20! gives

^S8&ab5^b1b2&Jab , ~6.23!

where
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Jab5W$Bab~R0!2 1
2 Bl

l~R0!hab%

1 (
J51

2

~MJ1PJ!H Bab~RJ!2
1

2
Bl

l~RJ!habJ
12$Cab~R1 ,R2!2 1

2 Cl
l~R1 ,R2!hab%. ~6.24!

Using ~3.14!, ~3.15!, ~4.7!, ~4.12!, and~4.17! in ~6.24!, and simplifying the result with the aid o
~1.4! and ~6.7!, we get10

~Jab!5S J00 ~J001J11!/2 J02 J03

~J001J11!/2 J11 J02 J03

J02 J02 J22 J23

J03 J03 J23 2J22

D ,

J005S 113cs
21q17qcs

2

2cs
4 D k0

(1)k0
(2) , J115S 323cs

213q1qcs
2

2cs
4 D k0

(1)k0
(2) ,

~6.25!

J015S 11q12qcs
2

cs
4 D k0

(1)k0
(2) , J0252

1

cs
2 k2

(1)~k0
(1)2k0

(2)!,

J0352
1

cs
2 k3

(1)~k0
(1)2k0

(2)!, J225k2
(1)k2

(2)2k3
(1)k3

(2) , J235k2
(1)k3

(2)1k3
(1)k2

(2) .

Next, we consider the terms on the left-hand side of~6.18!. From ~5.6!,

^A@h
4

#&ab5
1

2 (
J,K51

3

^]uJ
]uK

~kl
(J)kb

(K)h
4

a
l1ka

(J)kl
(K)h

4

b
l2ka

(J)kb
(K)h

4

l
l!&. ~6.26!

If f is any periodic function of the phases, then use of~6.13! and the triresonance condition~1.4!
implies that

K (
J,K51

3

ka
(J)kb

(K)]uJ
]uK

f L 5~ka
(1)1ka

(2)!K (
K51

3

kb
(K)]u1

]uK
f L 1ka

(3)K (
K51

3

kb
(K)]u3

]uK
f L

5ka
(3)K (

K51

3

kb
(K)]uK

~2]u1
f 1]u3

f !L
5ka

(3)~kb
(1)1kb

(2)!^]u1
~2]u1

f 1]u3
f !&1ka

(3)kb
(3)^]u3

~2]u1
f 1]u3

f !&

5ka
(3)kb

(3)^]u1

2 f 22]u1
]u3

f 1]u3

2 f &.

Using this result to compute the averages in~6.26!, we find that

^A@h
4
#&ab5Âab , ~6.27!

where

Âab5kl
(3)kb

(3)ĥa
l1ka

(3)kl
(3)ĥb

l2ka
(3)kb

(3)ĥl
l , ~6.28!
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ĥab5 1
2 ^]u1

2 h
4

ab22]u1
]u3

h
4

ab1]u3

2 h
4

ab&. ~6.29!

We can rewrite~6.28! as

Âab5ka
(3)Cb1kb

(3)Ca , Ca5kl
(3)ĥa

l2 1
2ka

(3)ĥl
l . ~6.30!

The use of~6.7! in ~6.30! gives

~Âab!5S Â00 ~Â001Â11!/2 Â02 Â03

~Â001Â11!/2 Â11 Â02 Â03

Â02 Â02 0 0

Â03 Â03 0 0

D , ~6.31!

Â0052k3C0 , Â1152k3C1 , Â025k3C2 , Â035k3C3 .

Finally, from ~5.7!, ~6.1!, ~6.2!, ~6.11!, and~6.12! we have

^B@h
3
#&ab5B@h8#ab . ~6.32!

The use of~5.7!, ~6.7!, and~6.8! implies that

B@h8#ab5B̂ab ,

B̂ab5S 0 0 0 0

0 0 0 0

0 0 B̂22 B̂23

0 0 B̂23 2B̂22

D , ~6.33!

B̂225k3]u3
~]02]1!h228 , B̂235k3]u3

~]02]1!h238 .

Using ~6.23!, ~6.25!, ~6.27!, ~6.31!, ~6.32!, and~6.33!, we may rewrite Eq.~6.18! as

S Â00 ~Â001Â11!/2 Â02 Â03

~Â001Â11!/2 Â11 Â02 Â03

Â02 Â02 0 0

Â03 Â03 0 0

D 1S 0 0 0 0

0 0 0 0

0 0 B̂22 B̂23

0 0 B̂23 2B̂22

D
5^b1b2&S J00 ~J001J11!/2 J02 J03

~J001J11!/2 J11 J02 J03

J02 J02 J22 J23

J03 J03 J23 2J22

D . ~6.34!

Equating the (2,3)-components in~6.34!, we obtain the second solvability condition for~6.14!,

S B̂22 B̂23

B̂23 2B̂22
D 5^b1b2&S J22 J23

J23 2J22
D . ~6.35!
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The remaining components of~6.34! can be satisfied by a suitable choice of the higher-or

metric perturbation
4

h. The use of~6.25! and ~6.33! in ~6.35! implies that the metric component
of the gravitational wave satisfy

k3]u3
~]02]1!S h228 h238

h238 2h228
D 5^b1b2&S k2

(1)k2
(2)2k3

(1)k3
(2) k2

(1)k3
(2)1k3

(1)k2
(2)

k2
(1)k3

(2)1k3
(1)k2

(2) 2~k2
(1)k2

(2)2k3
(1)k3

(2)!
D . ~6.36!

It follows from ~6.8! and ~6.36! that the gravitational wave generated by the resonant interac
is plane polarized with a metric perturbation given by

~hab8 !5b3~x,u3!S 0 0 0 0

0 0 0 0

0 0 k2
(1)k2

(2)2k3
(1)k3

(2) k2
(1)k3

(2)1k3
(1)k2

(2)

0 0 k2
(1)k3

(2)1k3
(1)k2

(2) 2~k2
(1)k2

(2)2k3
(1)k3

(2)!

D , ~6.37!

where the gravitational wave amplitudeb3 satisfies the equation

k3]u3
~]0b32]1b3!5^b1b2&. ~6.38!

When the spatial acoustic wave number vectors lie in the (x1,x2) plane, so thatk3
(1)5k3

(2)

50, the expression in~6.37! for the gravitational wave metric reduces to

~hab8 !5a3~x,u3!S 0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 21

D , a35k2
(1)k2

(2)b3 . ~6.39!

From ~6.39!, the metric perturbationhab5e3hab8 associated with the gravitational wave is give
by ~1.16!, after we remove the expansion parametere by settinge51, and restore dimensione
variables. Moreover, using~6.39! in ~6.38!, and changingx1

˜2x1 to obtain equations for a
gravitational wave that propagates in thex1 direction, we get Eq.~1.17! stated in the Introduction
with v (3)52k3.
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Gravitational waves in vacuum spacetimes with
cosmological constant. I. Classification and geometrical
properties of nontwisting type N solutions

Jiřı́ Bičáka) and Jiřı́ Podolskýb)

Department of Theoretical Physics, Faculty of Mathematics and Physics,
Charles University, V Holesˇovičkách 2, 180 00 Prague 8, Czech Republic

~Received 31 July 1998; accepted for publication 25 May 1999!

All nontwisting Petrov-typeN solutions of vacuum Einstein field equations with
cosmological constantL are summarized. They are shown to belong either to the
nonexpanding Kundt class or to the expanding Robinson–Trautman class. Invariant
subclasses of each class are defined and the corresponding metrics are given ex-
plicitly in suitable canonical coordinates. Relations between the subclasses and
their geometrical properties are analyzed. In the subsequent paper these solutions
are interpreted as exact gravitational waves propagating in de Sitter or anti-de Sitter
spacetimes. ©1999 American Institute of Physics.@S0022-2488~99!00509-5#

I. INTRODUCTION AND SUMMARY

Our purpose in this and the subsequent paper is to analyze all nontwisting typeN solutions of
Einstein’s vacuum equations withL. There are several basic works on these solutions availab
literature, in particular Refs. 1–3~for pre-1980 works, see Ref. 4!. None of them, however
discusses the physical interpretation of the solutions. Such an interpretation, based on the s
the deviation of geodesics, will be presented in the following paper. In this part we summ
compare, classify, and generalize the mathematical results of Refs. 1–3.

We consider typeN solutions in which the Debever–Penrose null vector fieldk is quadruple.4

The vector field defines a congruence of null geodesicsxa(v) such thatdxa/dv5ka, kaka50,
ka;bkb50, v being an affine parameter. In general, a geodesic congruence is characterized

expansion,Q5 1
2k;a

a , shearusu5A1
2k(a;b)k

a;b2Q2 and twist v5A1
2k[a;b]k

a;b.4 The Bianchi
identities and the Kundt-Thompson theorem for typeN solutions~see Ref. 5, and Theorem 7.5 i
Ref. 4! imply s50 sinceCabgd

;d 5Rabgd
;d 50 for solutions ofRab5Lgab . In the following we

assumev50. Therefore, with~possibly! nonvanishingL we are left with two cases to conside
~i! the Kundt class of nonexpanding gravitational waves,Q50 ~cf. Ref. 6, Chap. 27 in Ref. 4!;
and~ii ! the Robinson–Trautman class of expanding gravitational waves of typeN , QÞ0 ~cf. Ref.
7, Chap. 24 in Ref. 4!. Hereafter we denote the Kundt class byKN(L) and the Robinson–
Trautman class byRTN(L).

In Sec. II we analyze the classKN(L) in detail. We do not present any new solution of th
type, but we extend the results of Ref. 3 by giving the explicit forms of the transformations
leave the metrics ofKN(L) invariant. These enable us to give theexplicit transformations to
different canonical subclasses ofKN(L), which have not been given in the literature so far. W
also introduce a convenient new notation for these subclasses and demonstrate how t
interconnected. In particular, we show that one of the subclasses is identical to the ‘‘Lobatch
waves’’ studied by Siklos.8 We also formulate the proposition~proven in the Appendix! that all
vacuum solutions withL that are conformal to the ‘‘Kundt waves withL50’’ belong to one
specific subclass ofKN(L); we thus generalize the result of an analogous theorem for thpp
waves.8

a!Electronic mail: bicak@mbox.troja.mff.cuni.cz
b!Electronic mail: podolsky@mbox.troja.mff.cuni.cz
44950022-2488/99/40(9)/4495/11/$15.00 © 1999 American Institute of Physics
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In Sec. III the Robinson–Trautman solutions7 of type N with L are discussed. The transfo
mation between two standard forms of the metric~those of Refs. 4 and 1! is presented, and the
transformations preserving the metric form given in Ref. 1 are generalized and used to d
strate how the nonradiative part of the structural function of these solutions can be transf
away.

II. THE KUNDT CLASS OF SOLUTIONS KN „L…

This class has been investigated in detail by Ozsva´th, Robinson, and Ro´zga.3 They have
shown that in this case the vectork can be normalized such that1

2Lkgab5 1
2(ka;b1kb;a)

5Lkakb , whereLk is the Lie derivative andL is a scalar. DenotingL85LkL, we find LkL8

50 so thatL8 is invariant under the renormalization ofk. A suitable coordinate system (v,j,j̄,u),
wherej,j̄ are space-like coordinates,v is a parameter along the null geodesics, andu is a retarded
time with u5const. being a wavefront,k[c(u)]v , can be introduced3 in which the KN(L)
metrics have the form

ds252
1

p2
dj dj̄22

q2

p2
du dv1F du2, ~1!

where

p511
L

6
jj̄, q5S 12

L

6
jj̄ Da1b̄j1bj̄,

F5k
q2

p2 v22
~q2!,u

p2 v2
q

p
H, k5

L

3
a212bb̄.

Herea(u) andb(u) arearbitrary real and complex functions ofu, respectively. These function
play the role of two arbitrary ‘‘parameters,’’ i.e., we can denote the Kundt class byKN(L)
[KN(L)@a,b#. The parameterk is related to the invariantL8 by

L85k
p2

q2 . ~2!

The function H5H(j,j̄,u) entering F is restricted by Einstein’s equations,H ,jj̄1(L/3p2)H
50. There exists a general solution to this equation,

H~j,j̄,u!5~ f ,j1 f̄ ,j̄ !2
L

3p
~ j̄ f 1j f̄ !, ~3!

wheref (j,u) is an arbitrary function ofj andu, analytic inj. The space–time is conformally fla
if and only if the structural functionH is of the form

H5Hc5
1

p F S 12
L

6
jj̄ DA1B̄j1Bj̄ G , ~4!

with A(u) andB(u) being arbitrary real and complex functions, respectively. SinceHc of this
form corresponds to~3! for f quadratic inj we easily infer the following.

Lemma 1:The KN(L) solutions~1!, ~3! with f 5 f c5c0(u)1c1(u)j1c2(u)j2, whereci(u)
are arbitrary complex functions ofu, are isometric to Minkowski~if L50), de Sitter (L.0) and
anti-de Sitter spacetime (L,0).

It can be proven by straightforward but tedious calculations that the following lemma~which
is not formulated in Ref. 3 but is a consequence of results therein! is true.
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Lemma 2:The metric of theKN(L)@a,b# class preserves its form~1! under the transforma
tions (v,j,j̄,u) ˜(w,h,h̄,t), given by

v5a~ t !F w1

S 12
L

6
hh̄ Dg1dh̄1 d̄h

S 12
L

6
hh̄ Da81b8h̄1b̄8h

G1D~ t !,

~5!

j5
B̄~ t !1A~ t !h

Ā~ t !2
L

6
B~ t !h

, u5u~ t !,

whereA(t),B(t) are arbitrary complex anda(t),u(t) are real functions oft, respectively.
In the new coordinates (w,h,h̄,t) the resulting metricKN(L)@a8,b8# has

a85
Aau̇

F F S AĀ2
L

6
BB̄Da1ĀBb1AB̄b̄ G ,

~6!

b85
Aau̇

F F2
L

3
ĀB̄a1Ā2b2

L

6
B̄2b̄ G ,

with F5AĀ1(L/6)BB̄ and the dot denotesd/dt. The remaining real functionsg(t),D(t) and a
complex functiond(t) in ~5! must satisfy the equations

a8d2b8g5
1

F
~ĀBG 2AG B̄![C,

b̄8d2b8d̄5
1

F S ȦĀ2AAG 1
L

6
ḂB̄2

L

6
BBG D[D, ~7!

k8

a
D5

1

2 S ȧ

a
2

ü

u̇
D 2S L

3
a8g1b̄8d1b8d̄ D .

The structural functionH8(h,h̄,t) then takes the form

p8H85S 12
L

6
hh̄ DE1F̄h1Fh̄1

u̇

F
Au̇

a S A2
L

6
B̄h̄ D S Ā2

L

6
Bh D pH, ~8!

where

E~ t ![2ġ1
2

a
~a8D!•2a8k8

D2

a2 22
D

a F1

2
a8S ȧ

a
1

ü

u̇
D 1Cb̄81C̄b8G

2a8S 2dd̄2
L

3
g2D12g~b8d̄1b̄8d!,
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F~ t ![2ḋ1
2

a
~b8D!•2b8k8

D2

a2 22
D

a F1

2
b8S ȧ

a
1

ü

u̇
D 2

L

3
Ca82Db8G

2
L

3
g~b8g22a8d!12b̄8d2.

The transformation~5! is also important in connection with Lemma 1. Comparing Eq.~4! with
Eq. ~8!, we see that we can ‘generate’H5Hc from H50 by a coordinate transformation. Ther
fore, the conformally flat part,Hc , of H generated byf c cannot represent a radiative field. On
if the function f is at least cubic inj, the resulting spacetime is of typeN and can be interpreted
as radiative~see the subsequent paper!.

Another important application of the coordinate freedom~5! was suggested in Ref. 3: it i
possible to use the transformation to get ‘canonical’ subclasses ofKN(L)@a,b# corresponding to
special values of parametersa andb. Without loss of generality we can assumea>0. In addition,
the transformation~5! of a special form,

j5h, v5a~ t !w, u5E a~ t !dt, ~9!

for a(t)Þ0 results in scalinga(u)5a8(t)/ua(t)u, b(u)5b8(t)/ua(t)u so thatwe can always
assume eithera51 or a50. Since the parameterL8 ~2! is invariant, the sign ofk is also an
invariant. We can thus base the invariant canonical classification of allKN(L) solutions on the
sign ofk and the sign ofL. There are nine possible cases (k andL can both be positive, zero o
negative!. However, subclassesk,0,L.0 andk50,L.0 andk,0,L50 are forbidden since
they violate the relationk5(L/3)a212bb̄. The remaining possibilities are six subclasses wh
we shall now discuss.

A. Subclass k50,L50

The equationk50 impliesb50 so thata51. A canonical representative of this subclass c
be denoted asPP[KN(L50)@a51,b50#. We are now using the notationPP since the cor-
responding metric,

PP: ds252 dj dj̄22 du dv2~g1ḡ!du2, ~10!

with arbitrary g(j,u)5 f ,j analytic in j, describes well-knownpp waves investigated by man
authors~for details and references see Sec. 21.5 in Ref. 4!.

B. Subclass k>0,L50

Since 0,k52bb̄, we havebÞ0. Then Eqs.~5! with A5Ab, B52(a/2b)1 i (J/b)…A,
a51/bb̄, g5(1/2)(a/Abb̄)•1(2J/a)(J/Abb̄)•, d5Ȧ/A, D5 1

2ȧ, u5t, whereJ is a real func-

tion satisfying (J/Abb̄)•5( i /4)(a/Abb̄)(b̄/b)(b/b̄)•, transform any solution of this subclass
KN[KN(L50)@a50, b51#. The metric,

KN: ds252 dj dj̄12~j1 j̄ !2F2dv1S v22
g1ḡ

j1 j̄
D duGdu, ~11!

with arbitraryg(j,u)5 1
2 f ,j , describes solutions discovered by Kundt.6 This is aspecial‘‘Kundt

solution’’ in the ‘‘Kundt class’’ of nonexpanding waves. For details see Ref. 4, Chap. 27
transformation betweenṽ used there andv above isv5 ṽ/(j1 j̄)2.
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C. Subclass k>0,L>0

If a51 we can use~5! with A5exp„2( i /2)x…, B5cA, a5(L/61bb̄)21, g52@Ẇ

1 1
2„V̇exp(2ix)1VG exp(ix)…#/„11(L/6)cc̄…, d5Ȧ/A1 (L/6)ċc̄/„11(L/6)cc̄), D5 1

4ȧ2(L/12)

3(cc̄)•„11(L/6)cc̄…21a, u5t, wherec[V1WĀ/A, V[(6/L)b̄, W[2(6/L)AL/61bb̄, x

is a real function satisfyingẋ5( i /2)„V̇exp(2ix)2VG exp(ix))/W to obtaina850, b851. If a50
the scaling~9! makesubu51 and then we putj5(6/L)b/h, v5w1 1

2(ḃb̄h1bbG h̄)/(h1h̄),
u5t. In both cases the representative of this subclass isKN(L)I[KN(L)@a50, b51#. The
metric reads as

KN~L!I :ds252
dj dj̄

S 11
L

6
jj̄ D 2 22S j1 j̄

11
L

6
jj̄D 2

du dv1F 2S j1 j̄

11
L

6
jj̄D 2

v22
j1 j̄

11
L

6
jj̄

HGdu2.

~12!

KN(L)I indicates that this solution is a generalization of theKN waves to the caseLÞ0, ‘‘I’’
means ‘‘of the first kind.’’ TheKN(L)I solutions were first discovered by Garcı´a Dı́az and
Pleban´ski,1,9 transformation between their coordinates and those used herej

5A6/LtanhAL/6j̃, v5r /sinhAL/6(j̃1 j̄̃), u52AL/6t. However, in Refs. 1 and 9 not a
KN(LÞ0) solutions were found since~invariantly different! Subclasses E and F mentione
below were omitted.

D. Subclass k>0,L<0

The same transformation as in the previous case leads to the metric~12! which has thus the
same form for L,0. The transformation to the coordinates used in Ref. 1 isj

5A26/LtanA2L/6j̃, v5r /sinA2L/6(j̃1 j̄̃), u52A2L/6t.

E. Subclass k<0,L<0

Now k,0 implies a51. Using ~5! with A5exp(if), B5cA, a5„11(6/L)bb̄…21, g50,

d5Ā2cG /„11(L/6)cc̄…, D5(3/2L)ȧ, u5t, where c[(1/b)„A11(6/L)bb̄21…, f is a real
function satisfyingḟ5 i (L/12)(ċc̄2ccG )/„11(L/6)cc̄…, we find b850 and the canonical repre
sentative, denoted byKN(L2)II [KN(L,0)@a51, b50#, is

KN~L2!II : ds252
dj dj̄

S 11
L

6
jj̄ D 2 22S 12

L

6
jj̄

11
L

6
jj̄
D 2

du dv

1FL

3 S 12
L

6
jj̄

11
L

6
jj̄
D 2

v22

12
L

6
jj̄

11
L

6
jj̄

HGdu2. ~13!

Here KN(L2)II means generalized Kundt waves ‘‘of the second kind’’ withL,0. This class
was first discovered by Ozsva´th et al.3 Observe that withk.0, L.0, KN(L1)II [KN(L1)I ,
since transformation~5! where A51/A2, B5A3/L, a51, g5d5D50, u5(L/6)t identifies
KN(L1)@a50,b51# with KN(L1)@a851,b850#.
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F. Subclass k50,L<0

The relationk50 impliesa51. Thus,ubu5A2L/6 and the representative can be denoted
KN(L2)III [KN(L,0)@a51,b5A2L/6eiv(u)#, v(u) being an arbitrary real function ofu.
The metric takes the form of~1! with q5(11A2L/6je2 iv(u))(11A2L/6j̄eiv(u)). This class
was also first discovered in Ref. 3. One can distinguishtwo subsubclassesof KN(L2)III accord-
ing to the value ofL: 1. LÞ0 ~k is not a Killing vector!. 2. L50 ~k is a Killing vector!. In case

2, b5const and the transformationj5Ab/b̄h leads to KN(L2)III K[KN(L,0)@a51,b
5A2L/6#, where the suffix‘‘K’’ stands for ‘‘Killing:’’

KN~L2!III K : ds252
dj dj̄

S 11
L

6
jj̄ D 2 22S S 11A2

L

6
j D S 11A2

L

6
j̄ D

11
L

6
jj̄

D 2

du dv

2

S 11A2
L

6
j D S 11A2

L

6
j̄ D

11
L

6
jj̄

H du2. ~14!

This subsubclass can be shown to be identical with the ‘‘Lobatchevski waves’’ studied by Si8

indeed, the transformationj52A26/L(x1 1
21 iy)/(x2 1

21 iy), v5(12/L)r , brings the metric
~14! into the form

ds252
3

L
•

1

x2 ~dx21dy212 du dr1H̃ du2!, ~15!

whereH̃[2(L/6)xH. This is the Siklos metric.8 Recently we analyzed in detail the behavior
test particles in these solutions and interpreted them as waves in the anti-de Sitter space10

Impulsive waves of this type were investigated in Ref. 11.

G. Relations of the subclasses

Using the above results we can summarize the invariant canonical classification of theKN(L)
class of solutions in the following diagram:

KN~L!5
L50H k50:PP,

k.0:KN,

LÞ0H k.0:KN~L!I ,

k,0:KN~L2!II ,

k50:KN~L2!III ˜KN~L2!III K .

There is an asymmetry with respect to the sign ofL: there arethree distinct classes of nonex
panding waves forL,0 whereas there is onlyone such class forL.0. The reason is in the
condition k5(L/3)a212bb̄ which for L.0 excludes the casesk,0 and k50. Intuitively,
fewer nonexpanding waves ‘‘fit’’ into the de Sitter universe which admits closed spacelike
tions than into the anti-de Sitter space.

There exist natural relations between theL50 andLÞ0 subclasses. The metrics~12!, ~13!
and ~14! do not diverge asL˜0, we can setL50 and thus find
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KN~L50!I 5KN, KN~L250!II 5PP, KN~L250!III 5PP. ~16!

Thus, it is natural to consider theKN(L)I class as a generalization of the Kundt solutionKN, and
the classesKN(L2)II andKN(L2)III as generalizations ofPP waves. There existsno gener-
alization ofPP waves to the case ofL.0.

From metrics ~10! and ~15!, with j5(1/A2)(x1 iy), and from ~11! and ~12! we find
dsKN(L2)III K

2
52(6/L)(j1 j̄)22dsPP

2 , and dsKN(L)I
2 5(11(L/6)jj̄)22dsKN

2 . Therefore, the

classKN(L2)III K is conformal to thePP-class, and the classKN(L)I is conformal to the
KN-class. In fact, the solutionsKN(L2)III K and KN(L)I are the only nontrivial spacetime
conformal to PP and KN, respectively. The theorem proven by Siklos8 states that the only
vacuum solutions~other thanPP solutions themselves! which are properly~with a nonconstant
factor! conformal to nonflatPP metrics areKN(L2)III K metrics. However, we see from~16! that
PP metrics are a special case of metricsKN(L2)III K for L50, and Siklos’ theorem may just b
formulated as follows.

Proposition 1:The only vacuum solutions conformal to nonflatPP metrics areKN(L2)III K

metrics.
In addition, the following analogous proposition can be proven for theKN solutions.
Proposition 2:The only vacuum solutions conformal toKN metrics areKN(L)I metrics.
The proof is contained in the Appendix.
The conformal, homothetic and isometric symmetries of theKN(L) solutions have been

systematically investigated by Salazar, Garcı´a and Pleban´ski2 and by Siklos.8 It is only in the
subclassesPP andKN(L2)III K that the vectork5]v is a Killing vector;ka;b50 only in thePP
subclass. Let us finally summarize the classification of allKN(L) solutions and compare ou
notation with notations used in the literature:

Notation in this paper Notations in literature

KN(L) R(L,a,b)3

PP pp, R4,3 for Refs.
KN K6,4

KN(L)I K (L)1,3

KN(L2)II R(L)3

KN(L2)III (IV)1
3

KN(L2)III K (IV)0
8,3

Impulsive waves in theKN(L) spacetimes were recently studied in Ref. 12.

III. THE ROBINSON–TRAUTMAN CLASS OF SOLUTIONS RTN„L,e…

The Robinson–Trautman solutions7 satisfying the vacuum equations withL can be written as
~see Ref. 4!

ds252
r 2

P2 dz dz̄22 du dr2FD ln P22r ~ ln P! ,u2
2m

r
2

L

3
r 2Gdu2, ~17!

wherez is a complex spatial coordinate,r is an affine parameter along the rays generated by
vector fieldk, u is a retarded time,m is a function ofu which in some cases can be interpreted
mass, andD[2P2]2/]z]z̄. The function P[P(z,z̄,u) satisfies the equationDD(lnP)
112m(lnP),u24m,u50. Here we restrict attention to the solutions of typeN and denote these a
RTN(L). In this casem50 andD lnP5K(u). By a transformationu5g(ũ), r 5 r̃ /ġ, where ġ

5dg/dũ, we can set the Gaussian curvatureK(u) of the 2-surfaces 2P22 dz dz̄ to be K52e,
wheree511,0,21 ~since P̃5ġP and K̃5ġ2K, the sign ofK is invariant!. Thus, the different
subclasses can be denoted asRTN(L,e). The corresponding metrics can be written as
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ds252
r 2

P2 dz dz̄22 du dr22Fe2r ~ lnP! ,u2
L

6
r 2Gdu2. ~18!

Sincee511,0,21 andL.0, L50, L,0, there are 9 invariant subclasses.
Another coordinate for theRTN(L,e) class, suitable for physical interpretation, has be

given by Garcı´a Dı́az and Pleban´ski.1 Their metric is expressed in terms of a functionf (j,u)
which is an arbitrary function ofu, analytic in spatial coordinatej,

ds252v2 dj dj̄12vĀ dj du12vA dj̄ du12c du dv12~AĀ1cB!du2, ~19!

where

A5ej2v f , B52e1
v
2

~ f ,j1 f̄ ,j̄ !1
L

6
v2c, c511ejj̄.

It can be shown that the transformation relating~18! with ~19! has the form

j5F~z,u!5E f „j~z,u!,u…du,

v5
r

11eFF̄
, ~20!

u˜2u, P5~11eFF̄ !~F ,zF̄ ,z̄ !
21/2.

If f does not depend onj, we putj5F(z,u)5z1* f (u)du.
The nonvanishing Weyl tensor components are proportional tof ,jjj so that the solutions are

conformally flat if f is quadratic inj. Thus, we can formulate
Lemma 3:TheRTN(L,e) solutions~19! with f 5 f c5c0(u)1c1(u)j1c2(u)j2, whereci(u)

are arbitrary complex functions ofu, are isometric to Minkowski~if L50), de Sitter (L.0) and
anti-de Sitter spacetime (L,0).

Transformations preserving the form of~19! were studied in Ref. 2. However, more gene
transformations@Eq. ~2.4! in Ref. 2 follows from Eqs.~21!, ~24! if we put D50 andaā1ebb̄
51] are given in the following.

Lemma 4:The coordinate transformations (v,j,j̄,u)˜(w,h,h̄,t), which maintain invariant
the form of theRTN(L,e) metric ~19!, are

j5
ah1b

gh1d
,

v5
~gh1d!~ ḡh̄1 d̄ !

A~ad2bg!~ād̄2b̄ḡ !
w, ~21!

u5E A~ad2bg!~ād̄2b̄ḡ !

dd̄1ebb̄
dt,

wherea(t),b(t),g(t),d(t) are arbitrary complex functions oft which satisfy the conditions

ḡd52eāb, gḡ1eaā5e~dd̄1ebb̄!. ~22!

In the coordinates (w,h,h̄,t), the new structural functionf 8(h,t) is related tof as follows:
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f 85
ād̄2b̄ḡ

dd̄1ebb̄

~gh1d!2

A~ad2bg!~ād̄2b̄ḡ !
f

2
1

ad2bg
@~ḃd2bḋ!1~ ȧd2aḋ1ḃg2bġ!h1~ ȧg2aġ!h2#. ~23!

From this relation and Lemma 3 we see that the conformally flat partf c is indeed unimportant
since it can be generated fromf 50 by the coordinate transformation~21!.

If eÞ0, Eq. ~22! implies thatuau5udu, ubu5ugu so thatA(ad2bg)(ād̄2b̄ḡ)5dd̄1ebb̄.
Equations~21!–~23! then simplify to

j5
ah1b

gh1d
, v5

~gh1d!~ ḡh̄1 d̄ !

aā1ebb̄
w, u5t, ~24!

where a(t) and b(t) are arbitrary complex functions oft and g(t)5b̄(t)eiG(t), d(t)
5ā(t)eiD(t), with G(t), D(t) being arbitrary real functions oft satisfyingD2G5(11e)(p/2).
The structural function is given byf 85$(gh1d)2f 2@(ḃd2bḋ)1(ȧd2aḋ1ḃg2bġ)h
1(ȧg2aġ)h2#%e2 iD/(aā1ebb̄).

For e50, Eqs.~22! imply g50 so that the transformations~21! yield

j5A~ t !h1B~ t !, v5
w

AA~ t !Ā~ t !
, u5E AA~ t !Ā~ t !dt, ~25!

whereA(t) andB(t) are arbitrary complex functions oft. The relation~23! between the structura

functions is nowf 85AĀ/A f2(Ḃ/A1Ȧ/Ah), so that, in contrast to the caseeÞ0, the term
quadratic inh vanishes. Hence, Eq.~25! does not enable us to transform away the comp
conformally flat partf c . @We tried but without success to generalize~25! so that quadratic terms
could be removed.#

Symmetries of theRTN(L,e) solutions have been investigated in Ref. 13~see also Ref. 4,
Table 33.2! and, more systematically, in Ref. 2. The solutions which are not conformally flat a
the existence of at most two Killing vectors.

Note added in proof.We noticed that transformation~20! has been given in D. B. Singleton
‘‘Homothetic motions and vacuum Robinson–Trautman solutions,’’ Gen. Relativ. Gravit.22,
1239 ~1990!.
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APPENDIX: PROOF OF PROPOSITION 2

For the conformally related metricsgab andĝab , ĝab5V22gab , the trace-free Ricci tensor
are related by4

Sab5Rab2 1
4 Rgab ,

~A1!

Ŝab5R̂ab2
1

4
R̂ĝab5Sab1

2

V S V ;ab2
1

4
gabhV D ,

wherehV5gmnV ;mn , the covariant derivative is taken with respect togab and the scalar cur-
vature is
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R̂5V2R16VhV212gabV ;aV ;b . ~A2!

SinceR̂ab5Lĝab , R̂54L, we haveŜab50. In coordinates (v,j,j̄,u),

g1251, g0352~j1 j̄ !2, g3352~j1 j̄ !2S v22
1

2

H

j1 j̄
D , ~A3!

R335(j1 j̄)H ,jj̄ and the other Ricci tensor components vanish. Therefore,R50 and~A1! can be
written as

V ,ab2Gab
g V ,g2 1

4 gabhV1 1
2 VRab50, ~A4!

which gives

S V ,v

j1 j̄
D

,j

505S V ,v

j1 j̄
D

,j̄

, ~A5!

V ,vv50, ~A6!

V ,jj505V ,j̄ j̄ , ~A7!

V ,vu12vV ,v2~j1 j̄ !~V ,j1V ,j̄ !1 1
4 ~j1 j̄ !2hV50, ~A8!

V ,jj̄5 1
4 hV, ~A9!

V ,ju2
V ,u

j1 j̄
2

1

2 S H

j1 j̄
D

,j

V ,v505V ,j̄u2
V ,u

j1 j̄
2

1

2 S H

j1 j̄
D

,j̄

V ,v , ~A10!

V ,uu22vV ,u2F2vS 2v22
H

j1 j̄
D 1 1

2S H

j1 j̄
D

,u
GV ,v

2 1
2 @~j1 j̄ !H# ,j̄V ,j2 1

2 @~j1 j̄ !H# ,jV ,j̄12v2~j1 j̄ !~V ,j1V ,j̄ !

2
1

2
~j1 j̄ !2S v22

1

2

H

j1 j̄
D hV1

1

2
~j1 j̄ !H ,jj̄V50. ~A11!

By using ~A9!, Eq. ~A2! takes the form

VV ,jj̄2V ,jV ,j̄1
V ,v

~j1 j̄ !2 FV ,u1S v22
1

2

H

j1 j̄
DV ,vG5

L

6
. ~A12!

Equations~A5! imply V ,v5A(u,v)(j1 j̄). Equation ~A6! gives A,v50 so thatV5A(u)(j
1 j̄)v1B(j,j̄,u). By virtue of Eq. ~A7! it must be of the formV5A(u)(j1 j̄)v1C(u)jj̄

1D1(u)j1D2(u) j̄1E(u). Equation~A8! combined with Eq.~A9! gives dA/du5D11D2 so
that V5A(u)(j1 j̄)v1C(u)jj̄1 1

2dA/du(j1 j̄)1D(u)(j2 j̄)1E(u) with A,C,E being real
functions ofu, andD(u) being pure imaginary. We distinguish the possibilities:

~1! A50.

In this case Eq.~A10! implies V5Cjj̄1D(j2 j̄)1E, with C,E real constants,D a pure imagi-
nary constant. Let~i! CÞ0. Without loss of generality we can setD50 by transformationj
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˜j85j2D/C. If EÞ0, we can setE51 by j85j/E which implies V5Cjj̄11. Equation
~A12! givesC5L/6 so thatV511(L/6)jj̄, and the metricĝab takes the canonical form~12! of
the KN(L)I metric. If E50 we can make transformationj851/(Cj), after whichĝab takes the
canonical form~11! of the KN metric. Now ~ii ! C50. If DÞ0 we can setE50 by j85j

1E/(2D). The relation~A12! gives V5AL/6(j2 j̄), with L necessarily being negative.
represents just another coordinate form of theKN(L)I metric since byj5(j81 iA26/L)/( i j8
1A26/L) we get theKN(L2)I metric in the canonical form~12!. If D50 thenV5E so that
ĝab is theKN metric by transformationj85uEuj,

~2! AÞ0.

Without loss of generality we can assumeA51 by using transformationw5A(u)v1 1
2dA/du, t

5*A21(u)du. Therefore,V5(j1 j̄)v1C(u)jj̄1D(u)(j2 j̄)1E(u). In this case Eq.~A10!

impliesH52@(dC/du)jj̄1a(u)(j1 j̄)1(dD/du)(j2 j̄)1(dE/du)#, with a being an arbitrary
real function ofu. Equation~A12! reduces toa(u)5C(u)E(u)1D(u)22L/6, whereas Eq.~A11!

is satisfied identically. The solution given byĝab is then conformally flat sincegab for H of this
form is conformally flat (Cabgd50). Therefore, the solution describes Minkowski, de Sitter
anti-de Sitter spacetime, according to the sign ofL. It is interesting to notice that althoughĝab of
this form describes a conformally flat vacuum solution, theKN solution to which it is conformal
~given bygab with H of the same form! is conformally flat butnot necessarily a vacuum solution
In general, it is a pure radiation solution, becoming a vacuum solution~Minkowski! only for C
5const. In particular, ifa50 and D,E5const, then the conformally flatKN pure radiation
solution given byH52(dC/du) jj̄ is Wils’ solution ~3.10!14 for N50 @whereQ1Q̄5dC/du,

v˜v/(j1 j̄)2]. The solution was used by Wils as an explicit counterexample of Theorem 3
in Ref. 4 according to which there are no other conformally flat pure radiation solutions be
the specialPP wave of McLenaghanet al.15

We have thus shown that all vacuum solutions conformal to theKN class are~1! KN(L)I
solutions,~2! KN solutions themselves@KN5KN(L50)I #, ~3! Minkowski, de Sitter and anti-de
Sitter spacetimes~these are special cases ofKN(L)I given byKN(L)I @H5Hc#). Therefore,all
vacuum solutions conformal to the KN class belong to the KN(L)I class, which proves Propo-
sition 2 in Sec. II.
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Gravitational waves in vacuum spacetimes with
cosmological constant. II. Deviation of geodesics and
interpretation of nontwisting type N solutions

Jiřı́ Bičáka) and Jiřı́ Podolskýb)

Department of Theoretical Physics, Faculty of Mathematics and Physics,
Charles University, V Holesˇovičkách 2, 180 00 Prague 8, Czech Republic

~Received 31 July 1998; accepted for publication 25 May 1999!

In a suitably chosen essentially unique frame tied to a given observer in a general
spacetime, the equation of geodesic deviation can be decomposed into a sum of
terms describing specific effects: isotropic~background! motions associated with
the cosmological constant, transverse motions corresponding to the effects of gravi-
tational waves, longitudinal motions and Coulomb-type effects. Conditions under
which the frame is parallelly transported along a geodesic are discussed. Suitable
coordinates are introduced and an explicit coordinate form of the frame is deter-
mined for spacetimes admitting a nontwisting null congruence. Specific properties
of all nontwisting typeN vacuum solutions with cosmological constantL ~nonex-
panding Kundt class and expanding Robinson–Trautman class! are then analyzed.
It is demonstrated that these spacetimes can be understood as exact transverse
gravitational waves of two polarization modes ‘‘1’’ and ‘‘ 3, ’’ shifted by p/4,
which propagate ‘‘on’’ Minkowski, de Sitter or anti-de Sitter backgrounds. It is
also shown that the solutions withL.0 may serve as exact demonstrations of the
cosmic ‘‘no-hair’’ conjecture in radiative spacetimes with no symmetry. ©1999
American Institute of Physics.@S0022-2488~99!00609-X#

I. INTRODUCTION AND SUMMARY

In the preceding paper1 we classified nontwisting typeN solutions of the vacuum Einstein’
equations with a nonvanishing cosmological constantL and analyzed their geometrical propertie
Here we wish to discuss their physical properties. We shall show that these solutions c
interpreted as gravitational waves propagating in spacetimes of constant curvatu
Minkowski, de Sitter or anti-de Sitter spaces. In our treatment we focus on the analysis
equation of geodesic deviation.

We first discuss the equation of geodesic deviation in general spacetimes~Sec. II!, briefly
reviewing and extending2–4 by using both a Newman–Penrose null tetrad and a physical fram
four independent vectors$e(a)% tied to the geodesic with respect to which the relative motion
studied. In typeN solutions only the Newman–Penrose scalarC4 is nonvanishing.

Starting from Sec. III we study nontwisting typeN solutions withL. As shown in Ref. 1, they
comprise the nonexpanding Kundt classKN(L) and the expanding Robinson–Trautman cla
RTN(L,e). By analyzing the geodesic deviation in these spacetimes we demonstrate that th
be interpreted as exact transverse gravitational waves with two polarization modes~shifted by
p/4) propagating ‘‘on’’ Minkowski, de Sitter or anti-de Sitter space~depending on the values o
L). In the Appendix we calculate the exact forms of wave amplitudes.

At the end of Sec. IV we discuss, forL.0, special timelike geodesics explicitly. We dem
onstrate that observers moving along these geodesics see waves decaying exponentially
the spacetimes to approach locally the de Sitter space—in agreement with the cosmic

a!Electronic mail: bicak@mbox.troja.mff.cuni.cz
b!Electronic mail: podolsky@mbox.troja.mff.cuni.cz
45060022-2488/99/40(9)/4506/12/$15.00 © 1999 American Institute of Physics
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conjecture~see, e.g., Ref. 5, and references therein!. As in our previous work,6,7 this is an explicit
demonstration of the conjecture under the presence of waves within exact theory.

II. THE RELATIVE MOTION OF FREE PARTICLES IN A GENERAL SPACETIME

It is natural to base the local characterization of radiative spacetimes on the equat
geodesic deviation,2–4

D2Zm

dt2
52Rabg

m uaZbug, ~1!

whereu5dx/dt, u•u521 is the four-velocity of a free test particle~observer!, t is the proper
time andZ(t) is the displacement vector. In order to obtain invariant results one sets up a
$e(a)% along the geodesic. The frame componentsZ(a)(t), Z5Z(a)e(a) , are invariant quantities
Choosinge(0)5u and perpendicular spacelike unit vectors$e(1) ,e(2) ,e(3)% in the local hypersur-
face orthogonal tou, we havee(a)•e(b)[gabe(a)

a e(b)
b 5h (a)(b)5diag(21,1,1,1). The dual basis i

e(0)52u ande( i )5e( i ) ,i 51,2,3. By projecting~1! onto the frame we get

Z̈( i )52R(0)( j )(0)
( i ) Z( j ), ~2!

whereZ( j )5e( j )
•Z5em

( j )Zm determine directly the distance between close test particles,

Z̈( i )[e( i )
•

D2Z

dt2 5em
( i ) D2Zm

dt2 , ~3!

are physical relative accelerations, andR( i )(0)( j )(0)5e( i )
a ube( j )

g udRabgd . Equation~1! also implies
d2Z(0)/dt252um D2Zm/dt25RmabgumuaZbug50 so thatZ(0)5a0t1b0 , a0 ,b0 are constants.
SettingZ(0)50, all test particles are ‘‘synchronized’’ byt ~they always stay in the same loc
hypersurface!. From the definition of the Weyl tensor we getR( i )(0)( j )(0)5C( i )(0)( j )(0)

1 1
2(d i j R(0)(0)2R( i )( j ))1 1

6 Rd i j . Using Einstein’s equations,

R( i )(0)( j )(0)5C( i )(0)( j )(0)2
L

3
d i j 2

k

2 FT( i )( j )2d i j S T(0)(0)1
2

3
TD G , ~4!

T5T(a)
(a) . Following Ref. 8 we introduce the null complex tetrad$eâ%5$e1̂ ,e2̂ ,e3̂ ,e4̂%

5$m,m̄,l,k%,

m5
1

A2
~e(1)1 ie(2)!, m̄5

1

A2
~e(1)2 ie(2)!,

~5!

l5
1

A2
~u2e(3)!, k5

1

A2
~u1e(3)!.

Null tetrad components of the Weyl tensor are~see, e.g., Refs. 8 and 9!

C05Cabgdkambkgmd, C15Cabgdkal bkgmd,

C25 1
2Cabgdkal b~kgl d2mgm̄d!, ~6!

C35Cabgdl akbl gm̄d, C45Cabgdl am̄bl gm̄d.

Regarding expressions~6! and inverting relations~5! we obtain
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C(1)(0)(1)(0)5
1
2ReC01 1

2ReC42ReC2 , C(2)(0)(2)(0)52 1
2ReC02 1

2ReC42ReC2 ,

C(1)(0)(2)(0)5
1
2ImC02 1

2ImC4 , C(3)(0)(3)(0)52ReC2 , ~7!

C(1)(0)(3)(0)52ReC11ReC3 , C(2)(0)(3)(0)52ImC12ImC3 .

Substituting Eqs.~4! and ~7! into Eq. ~2! we arrive at

Z̈(1)5
L

3
Z(1)2

k

2 S T(0)(0)1
2

3
TDZ(1)1

k

2
T(1)( j )Z

( j )1G1 ,

Z̈(2)5
L

3
Z(2)2

k

2 S T(0)(0)1
2

3
TDZ(2)1

k

2
T(2)( j )Z

( j )1G2 , ~8!

Z̈(3)5
L

3
Z(3)2

k

2 S T(0)(0)1
2

3
TDZ(3)1

k

2
T(3)( j )Z

( j )1G3 ,

where

G1[1CZ(1)2~L12M1!Z(3)2~A11B1!Z(1)1~A32B3!Z(2),

G2[1CZ(2)1~L21M2!Z(3)1~A11B1!Z(2)1~A32B3!Z(1),

G3[22CZ(3)2~L12M1!Z(1)1~L21M2!Z(2),

and

C5ReC2 ,__L15ReC3 , L25ImC3 , M15ReC1 , M25ImC1 ,
~9!

A15 1
2ReC4 , A35 1

2ImC4 , B15 1
2ReC0 , B35 1

2ImC0 .

Equations~8! are well suited for physical interpretation. The relative motions depend on 1
cosmological constantL responsible for overall background isotropic motions; 2. the ener
momentum tensorT(a)(b) terms describing interaction with matter-content; 3. the terms depen
on the local free gravitational field, and consisting of Coulomb, longitudinal and transv
~outgoing/ingoing! components with amplitudes given byCA’s. In the following we putT(a)(b)

50. Individual terms in Eq.~8! can be interpreted as follows.
L-term: AssumingT(a)(b)505CA , Eq. ~8! reduces to

Z̈( i )5
L

3
Z( i ). ~10!

Considering a sphere of test particles each having a position vectorZ, Eq. ~10! implies that the
acceleration of each particle is in the directionZ and has the same magnitude. Assume the fra

$e( i )% to be parallelly transported so thatZ̈( i )5D2(e( i )
•Z)/dt25d2Z( i )/dt2. Equations~10! have

solutions

Z( i )~t!5Ait1Bi , for L50,

Z( i )~t!5Aiexp~AL/3t!1Biexp~2AL/3t!, for L.0, ~11!

Z( i )~t!5Aicos~A2L/3t!1Bisin~A2L/3t!, for L,0,
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where Ai ,Bi are constants. As expected, conformally flat (CA50) vacuum backgrounds
~Minkowski, de Sitter or anti-de Sitter! are homogeneous and isotropic, so that the relative mo
of test particles is isotropic.

C4-term: AssumingL505T(a)(b) andC05C15C25C350, Eq. ~8! reduces to

Z̈(1)52A1Z(1)1A3Z(2), Z̈(2)5A1Z(2)1A3Z(1), Z̈(3)50, ~12!

which describe the influence of ‘‘1’’ and ‘‘ 3 ’’ polarization modes of a transverse gravitation
wave with amplitudesA1 andA3 . If particles, initially at rest, lie in the (e(1) ,e(2)) plane, there
is no motion in the longitudinal direction ofe(3) . The ring of particles is deformed into an ellips
the axes of different polarizations are shifted once with respect to the other byp/4 ~such behavior
is typical for linearized gravitational waves — cf., e.g., Ref. 10!. Making a rotation in the trans
verse plane by an angleq,

e(1)8 5cosqe(1)1sinqe(2) , e(2)8 52sinqe(1)1cosqe(2) ~13!

— which corresponds tom85e2 iqm — and using Eqs.~6! and ~9!, we find

A18 ~t!5cos 2qA12sin2qA3 , A38 ~t!5sin 2qA11cos 2qA3 . ~14!

Taking q5q1(t)52 1
2Arg C4 , thenA18 5 1

2 uC4u, A38 50—the wave is purely ‘‘1’’ polarized
for an observer usingm15e2 iq1m; if q5q3(t)5q11 p/4 , thenA18 50, A38 5 1

2uC4u—the
wave is purely ‘‘3 ’’ polarized for an observer usingm35e2 iq3m. The amplitudeA5 1

2uC4u is
invariant under the rotation. A general observer sees a superposition of the two polarization
shifted byp/4.

One can similarly show4,8 that C3 andC2 terms describe longitudinal modes and Coulom
type effects;C1 andC0 terms are equivalent toC3 andC4 terms~if k↔ l).

For given principal null vectork and observer’su we have chosen the frame vectore(3)

according to Eq.~5!, which impliesk(1)505k(2) , k(3)5” 0, and makes the physical interpretatio
based on Eq.~8! simpler. This leads to essentially uniquek andl. More precisely, we easily show
the following.

Proposition 1: Let u be the four-velocity (u•u521) andk be the null vector. Then there
exists a unit spacelike vectore(3) which is the projection of the null direction given byk into the
hypersurface orthogonal tou. Suche(3) is unique~up to reflectionse(3)˜2e(3)) and is given by
e(3)52u1A2k, wherek satisfiesk•u521/A2. Another null vectorl in the plane (u,e(3)) such
that l•k521 is then given byl[A2u2k. The only remaining freedoms are rotations in the pla
(e(1) ,e(2)) perpendicular toe(3) .

In what follows the orthonormal tetrad and the corresponding null frame~5! determined
according to Proposition 1 will always be assumed.

Notice that Eqs.~8! represent possible motions seen by an observer with a givenu. By making
the Lorentz boosts to other observers withu8, CA change~see, e.g., Ref. 8!. Thus, the ‘‘strength
of gravitational field’’ is strongly observer dependent@cf. Refs. 2, 11, 12 and point 5 in th
discussion following Eq.~34!#.

III. THE CHOICE OF COORDINATES AND PARALLELLY PROPAGATED FRAMES

We shall now express our frames in coordinates suitable for spacetimes admitting anontwist-
ing null congruence and give the conditions for the frames to be parallelly transported. The
k is orthogonal to null hypersurfaces, sayu5const., so thatkm5gmnu,n . It is convenient~cf. Refs.
9, 13! to choose as coordinatesu5x3, parameterv5x0 along the null geodesics generated bykm,
and two complex spacelike coordinatesj5x1 and j̄5x2 that label the geodesics on each surfa
u5const. The metric then takes the form
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gmn5S 0 0 0 g03

0 g11 g12 g13

0 g12 g22 g23

g03 g13 g23 g33

D , ~15!

whereg225ḡ11, g235ḡ13 sincex25 x̄1; all other components are real, and

g12.0, D5g12
2 2g11g22.0, ~16!

since the subspace (j,j̄) is spacelike. The vectork is simply

km5~k0,0,0,0!, ~17!

and the four-velocityu of a particle moving along a geodesicxm(t), is given by um

5( v̇,j̇,jG ,u̇), where the overdot isd/dt andu̇5” 0 ~otherwise the geodesic would not be timelike!.
Proposition 2: In coordinates (v,j,j̄,u) the interpretation null tetrad introduced in Propositi

1 has the form

mm5S 1

g03u̇
@~g12j̇1g22j

G 1g23u̇!g12~g11j̇1g12j
G 1g13u̇!g2exp~2 iArgg11!#,

g2exp~2 iArgg11!,2g1 ,0D ,

m̄m5S 1

g03u̇
@~g11j̇1g12j

G 1g13u̇!g12~g12j̇1g22j
G 1g23u̇!g2exp~ iArgg11!#,

2g1,g2exp~ iArgg11!,0D ,

~18!

l m5S A2v̇1
1

A2

1

g03u̇
,A2j̇,A2jG ,A2u̇D ,

km5S 2
1

A2

1

g03u̇
,0,0,0D ,

where g65A(g126AD)/(2D). The tetrad is unique up to trivial reflections and rotationsmm

˜mmeiq. The corresponding orthonormal frame obtained from Eqs.~18! using Eq.~5! is

e(0)
m 5um5~ v̇,j̇,jG ,u̇!,

e(1)
m 5

1

A2
S 2

g03u̇
Re$~g12j̇1g22j

G 1g23u̇!G2%,2Ḡ2 ,2G2 ,0D ,

~19!

e(2)
m 5

1

A2
S 2

g03u̇
Im$~g12j̇1g22j

G 1g23u̇!G1%,2 iḠ1 ,iG1 ,0D ,

e(3)
m 52S v̇1

1

g03u̇
,j̇,jG ,u̇D ,
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where G65g16g2exp(iArgg11). The expressions~18! and ~19! simplify considerably ifg11

50 since in this caseg250 andg151/Ag125G15G2 .
Proof: The last equation in~18! follows from Eq.~17! andk•u521/A2, the equation forl m

follows from l5A2u2k. Vectors m and m̄ can then be determined fromeâ•eb̂5gmneâ
m
eb̂

n

5gâb̂ . The conditionsm•k5g1̂4̂505g2̂4̂5m̄•k imply m3505m̄3, m• l5g1̂3̂50 implies m0

52( l 1m11 l 2m2)/ l 0 . In given coordinates we havem̄15m̄2 andm̄25m̄1. DenotingX5m1 and
Y5m2 we getmm5(2( l 1X1 l 2Y)/ l 0 ,X,Y,0) andm̄m5„2( l 1Ȳ1 l 2X̄)/ l 0 ,Ȳ,X̄,0…. FunctionsX, Y

can be determined as solutions of equationsm•m5g1̂1̂505g2̂2̂5m̄•m̄ andm•m̄5g1̂2̂51,

g11X
212g12XY1g22Y

250, ~20!

g11XȲ1g12~XX̄1YȲ!1g22X̄Y51. ~21!

~i! Assumeg115” 0. ThenX5” 0, and introducing a complex functionC such thatY5CX, Eq.
~20! implies C5(2g126AD)/g22, and Eq.~21! gives XX̄5uXu25(g126AD)/(2D). Since X

5uXueiw, w being a real function, we havem15A(g126AD)/(2D)exp„i (q2Argg11)…, m2

52A(g127AD)/(2D)exp(iq), whereq5w1Argg11. The change from the upper to lower sign
accompanied byq˜2q1p1Argg11 results just inm↔m̄, corresponding to a reflection
e(2)↔2e(2) . By performing rotationmm

˜m8m5e2 iqmm we can write the representatives ofm
andm̄ given byq50 so that we arrive at Eq.~18!.

~ii ! If g1150, we simply findm150 andm2521/Ag12. Hence, the null tetrad has the form
~18!, and this implies the orthonormal frame~19!.

In general, the frames$ea% and$eâ%, related by Eq.~5!, are not parallelly transported along th
geodesic with tangentu5e(0) . However, they are ifDk/dt505Dm/dt. Starting with an arbi-
trary m, the second condition can always be satisfied by choosingmi5eiq i m, where q i

5 i *0
tm̄•(Dm/dt) dt1q0 , q05const. We thus arrive at the following.

Proposition 3: Consider a geodesicxm(t)5(v,j,j̄,u) in spacetime with metric~15!. Then the
orthonormal frame$ea% given by Eq.~19! and the null tetrad$eâ% given by Eqs.~18! are parallelly
transported along the geodesic if

g12,0j̇1g22,0j
G 1~g23,02g03,2!u̇50, ~22!

and

q̇ i~t!5
i

2D
@~G1Ḡ12G2Ḡ2!E

1G1„2Dṁ11m1~g12ġ122g22ġ11!1m2~g12ġ222g22ġ12!…

1G2„2Dṁ21m1~g12ġ112g11ġ12!1m2~g12ġ122g11ġ12!…#, ~23!

where G15g12g2exp(i Arg g11)2g11g1 , G25g22g2exp(i Arg g11)2g11g1 , E5(g12,12g11,2) j̇
1(g22,12g12,2)jG 1(g23,12g13,2)u̇52Ē, m15g2exp(2i Arg g11), andm252g1 . If, in addition,
g1150, thenG150, G252Ag12, and Eqs.~22!, ~23! reduce to

g12,0j̇1~g23,02g03,2!u̇50, ~24!

and

q̇ i~t!52
i

2

1

g12
@g12,1j̇2g12,2j

G 1~g23,12g13,2!u̇#. ~25!
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Proof: Using kmkm50 andkmum521/A2, it can be shown thatk is parallelly transported if
G0a

1 ua50. Calculating the Christoffel symbols for the metric~15! we find ~22!. For proving Eq.
~23! we usem350 andm̄050; again the conditionG0a

1 ua50 and other Christoffel symbols fo
the metric~15!.

IV. DEVIATION OF GEODESICS IN THE VACUUM NONTWISTING TYPE N SPACETIMES
WITH COSMOLOGICAL CONSTANT

In this section we apply results given above to the nontwisting typeN vacuum spacetimes
with nonvanishingL. In the preceding paper1 we showed that all such solutions belong either
the Kundt class of nonexpanding gravitational waves which we denoted by symbolKN(L), or to
the Robinson–Trautman class of expanding gravitational wavesRTN(L,e).

The classKN(L) can be divided into six invariant canonical subclassesKN(L)@a,b#, and
the classRTN(L,e) into nine invariant canonical subclasses, as analyzed in detail in Re
All KN(L) metrics can be written in the form of Eq.~1, I!, all RTN(L,e) are described by

Eq. ~19, I!. Both classes of metrics are of the form~15! in coordinatesxm5(v,j,j̄,u). In the
KN(L) class we have

g125
1

p2 , g0352
q2

p2 , g335F, ~26!

where p511L/6jj̄, q5„12(L/6)jj̄)a1b̄j1bj̄, F5k(q2/p2)v22„(q2),u /p2
…v2(q/p)H,

k5(L/3)a212bb̄, H5( f ,j1 f̄ ,j̄)2(L/3p)( j̄ f 1j f̄ ); and in theRTN(L,e) class,

g125v2, g135vĀ, g235vA, g035c, g3352~AĀ1cB!, ~27!

where A5ej2v f , B52e1(v/2)( f ,j1 f̄ ,j̄)1(L/6)v2c, c511ejj̄, e521,0,11, respectively.
Hence, for theKN(L) solutions the orthonormal frame~19! is given by

e(0)
m 5~ v̇,j̇,jG ,u̇!,

e(1)
m 52

p

A2
S 2

q2

Rej̇

u̇
,1,1,0D ,

~28!

e(2)
m 52

p

A2
S 2

q2

Imj̇

u̇
,i ,2 i ,0D ,

e(3)
m 52S v̇2

p2

u̇q2
,j̇,jG ,u̇D ,

and for theRTN(L,e) solutions we have

e(0)
m 5~ v̇,j̇,jG ,u̇!,

e(1)
m 5

1

A2

1

v S 2v

cu̇
Re$v j̇1Au̇%,21,21,0D ,

~29!

e(2)
m 5

1

A2

1

v S 2v

cu̇
Im$v j̇1Au̇%,2 i ,i ,0D ,
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e(3)
m 52S v̇1

1

cu̇
,j̇,jG ,u̇D .

According to Proposition 3 these frames are parallelly transported along timelike geod

xm(t)5(v,j,j̄,u) in the KN(L)@a,b# spacetimes if

S q

pD
,j

505S q

pD
,j̄

, q̇ i~t!5 i S p,j

p
j̇2

p,j̄

p
jG D , ~30!

and in the case ofRTN(L,e) solutions if

j̇5 f u̇, jG 5 f̄ u̇, q̇ i~t!5
i

2
~ f ,j2 f̄ ,j̄ !u̇. ~31!

The equation of geodesic deviation is now given by Eq.~8! with T(a)(b)50. The amplitudes
~9! for both classes of spacetimes are calculated in the Appendix. We find that the invarian
of the equation of geodesic deviation with respect to the interpretation frame along any tim
geodesic in theKN(L) andRTN(L,e) spacetimes takes the form

Z̈(1)5
L

3
Z(1)2A1Z(1)1A3Z(2),

Z̈(2)5
L

3
Z(2)1A1Z(2)1A3Z(1), ~32!

Z̈(3)5
L

3
Z(3),

where the amplitudes of the transverse gravitational wave are given by

A1~t!5 1
2pqu̇2Re$ f ,jjj%, A3~t!5 1

2pqu̇2Im$ f ,jjj%, ~33!

for the KN(L) spacetimes, and by

A1~t!52
1

2

c

v
u̇2Re$ f ,jjj%, A3~t!52

1

2

c

v
u̇2Im$ f ,jjj%, ~34!

in the RTN(L,e) spacetimes@see Eqs.~A5! and ~A10! in Appendix#. Equations~32!–~34! give
relative accelerations of the free test particles in terms of their actual positions. They enabl
draw a number of simple conclusions.

~1! All particles move isotropically, one with respect to the other according to Eqs.~11! if no
gravitational wave is present, i.e., iff ,jjj50. In this case both theKN(L) and RTN(L,e)
spacetimes are vacuum conformally flat@cf. ~A3!, ~A8!#, and therefore Minkowski (L50), de
Sitter (L.0) and anti-de Sitter (L,0) ~see Lemma 1 and 3 in Ref. 1!. Such spaces are
maximally symmetric, homogeneous, isotropic, and they represent a natural backgrou
other ‘‘nontrivial’’ KN(L) andRTN(L,e) type N solutions.

~2! If amplitudesA1 andA3 do not vanish (f ,jjj5” 0), the particles are influenced by the wa
@see Eq.~12! and subsequent discussions# in a similar way as they are affected by a standa
gravitational wave on Minkowski background~cf. Ref. 10!. However, ifL5” 0, the influence
of the wave adds with the~anti-! de Sitter isotropic expansion~contraction!. This makes
plausible our interpretation of theKN(L) and RTN(L,e) metrics asexact gravitational
waves propagating on the constant curvature backgrounds.
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~3! The wave propagates in the spacelike direction ofe(3) and has atransverse character,since
only motions in the perpendicular directions ofe(1) and e(2) are affected. The propagatio
direction given bye(3) coincides with the projection of the Debever-Penrose vectork on the
hypersurface orthogonal to the observer’s velocityu ~cf. Proposition 1!.

~4! There aretwo polarization modesof the wave — ‘‘1’’ and ‘‘ 3, ’’ A1 andA3 being the
amplitudes. Under rotation~13! in the transverse plane they transform according to Eq.~14! so
that the helicity of the wave is 2, as with linearized waves on a Minkowski background
the special choice of the frame given byq(t)5q152 1

2pqu̇2 Arg$ f ,jjj% for theKN(L), and
by q15 1

4 (c/v)u̇2 Arg$ f ,jjj% for the RTN(L,e) spacetimes, the observer views pure ‘‘1’’
polarization, and forq35q11 p/4 — pure ‘‘3 ’’ polarization.

~5! The waves have amplitudeA5 1
2pqu̇2u f ,jjju for theKN(L) class andA5 1

2(c/v)u̇2u f ,jjju for
RTN(L,e); this is invariant under rotations~13!. However, the amplitude changes und
Lorentz transformations to another observeru8 with a spatial velocityvW 5(v1 ,v2 ,v3) with
respect to the original observer. For typeN solutions we getA85(12v3)2/(12v1

22v2
2

2v3
2) A. By increasing speed in the wave-propagation directione(3) (v15v250, v3.0), he

experiences a weakening of the wave amplitude by factor (12v3)/(11v3)
(A8˜0 asv3˜1), and by moving in the opposite direction, an increase of the ampli
(A8˜` as v3˜21). By increasing speed in the transverse directionse(1) , e(2) , (v1

21v2
2

50, v350), she experiences an increase by the factor 1/(12v1
22v2

2).

In general, all KN(L) spacetimes contain singularities except for the homogene
pp-waves8 given byp515q and f ,jjj56c3(u), wherec3(u) is a finite function ofu. All other
KN(L) spacetimes are singular atuju5` where the amplitudesA1 , A3 diverge. Additional
singularities in the amplitudes may occur if the coefficientscn(u), n>3, of the analytic expansion
of function f (j,u) are badly behaved at someu.

RTN(L,e) spacetimes also contain singularities. The character of the singularities depen
parametere and on the form of the functionf (j,u). As follows from Eq.~34!, there is always a
singularity atv50. Another singularity is given byc5` which occurs only fore5” 0 at uju
5`. There may be singularities for special forms off, namely, if f ,jjj5`. This occurs atuju
5` if f contains the termscnjn, n>4. Another type of singularity may appear if some of t
coefficientscn(u) diverge for some values ofu. Singularities might be considered as ‘‘sources’’
waves; however, it is far from certain whether nonsingular sources ‘‘covering’’ the region
which singularities occur can be constructed. The singularities of theRTN(L,e) spacetimes can
invariantly be characterized by the nonvanishing invariant constructed recently14 from the second
derivatives of the Riemann tensor.

Finally, we shall discuss a special class of geodesics explicitly. Since forf 5 f c5c0(u)
1c1(u)j1c2(u)j2 the metrics represent Minkowski, de Sitter or anti-de Sitter space there al
exists a transformation of coordinates which bringsgmn@ f 5 f c# to gmn@ f 50# ~see Lemmas 2 and
4 in Ref. 1!. It is thus sufficient to consider only the nontrivial partf w[ f 2 f c of function f (j,u).
Moreover, one can always rearrange its analytic expansion so thatf 5(n50

` cn(u)jn

5(n50
` c̃n(u)(j2j0)n5(n53

` c̃n(u)(j2j0)n1 f̃ c , j0 being an arbitrary complex constant. Ther
fore, it is natural to consider structural functions of the form

f w5c3~u!~j2j0!31c4~u!~j2j0!41¯. ~35!

Consider aspecial class of geodesicscharacterized byj5j05const. For theRTN(L,e) solutions
these are geometrically privileged since the interpretation frame~29! is parallelly propagated along
them @Eq. ~31! is satisfied#. One can also find special geodesics for some subclasses ofKN(L):
j5j0 for the PP subclass,j056A6/L for KN(L)I , andj050 for KN(L2)II . The geodesics
j5j0 have the same forms as geodesics in the ‘‘background’’ since Christoffel symbolsf
5 f w and j5j0 coincide with those forf 50. However, the test particles feel the tidal forc
proportional toA1 andA3 given by Eqs.~33!, ~34!. The amplitudes do not vanish sincef w,jjj

56c3(u) is nonvanishing.
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The timelike geodesicsj5j05const in theRTN(L.0,e)@ f w# spacetimes are given by

v5
a

11ej0j̄0

S C1cosh
t

a
1C2sinh

t

a D , u̇52S C1sinh
t

a
1C2cosh

t

a
1C3D 21

, ~36!

wherea5A3/L, C1 , C2 , C3 are real constants satisfyingC1
22C2

21C3
252e. The integration of

Eq. ~36! can be performed explicitly but we do not give it here since onlyu̇ enters the amplitudes
The wave amplitudes~34! areA15ReA andA35ImA where

A~t!52
3

a
~11ej0j̄0!2S C1cosh

t

a
1C2sinh

t

a D 21S C1sinh
t

a
1C2cosh

t

a
1C3D 22

c3„u~t!….

~37!

As proper timet along geodesics increases,t˜`, particles recede fromv50 and amplitudes
decay asA;exp(23AL/3t), i.e., waves are damped exponentially. The spacetime locally ap
proaches the de Sitter universe. This is an explicit demonstration of thecosmic no-hair conjecture
~see, e.g., Ref. 5! under the presence of waves within exact model spacetimes.~For a cosmic
no-hair conjecture in the Robinson–Trautman spacetimes of Petrov typeII , see Refs. 6, 7.!

Similarly, for theKN(L.0)I @ f w# subclass@representing the only spacetimes of theKN(L)
type admittingL.0] the geodesicsj5j056A6/L are given by

v5C1expS t

a D , u52
1

2C1
expS 2

t

a D1C2 , ~38!

and

v5C1sinhS t

a
12t0D , u5

1

2C1
tanhS t

2a
1t0D1C2 , ~39!

with C1 , C2 , t0 constants. For observers moving along these geodesics,

A~t!5612A6

L
u̇2~t!c3„u~t!…. ~40!

After substitution of the explicit dependence ofu(t), we see that ast˜1` the amplitudes
behave likeA;exp(22AL/3t). Again, gravitational waves are damped exponentially and
cosmic no-hair conjecture is confirmed.
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APPENDIX: GRAVITATIONAL WAVE AMPLITUDES

We calculate amplitudesA15 1
2ReC4 andA35 1

2ImC4 by using differential forms. Let

$eâ%5$m,m̄,l,k% be a null tetrad,m5e1̂5mm]m , m̄5e2̂5m̄m]m , l5e3̂5 l m]m , k5e4̂5km]m .
The dual basis$vâ% is given by one-formsv1̂5m̄m dxm, v2̂5mm dxm, v3̂52km dxm, v4̂

52 l m dxm; the metric isds25gâb̂vâvb̂52v1̂v2̂22v3̂v4̂ with g1̂2̂5e1̂•e2̂51 and g3̂4̂5e3̂

•e4̂521. The natural choice of the null basis for the metricKN(L) is

v1̂5
dj̄

p
, v2̂5

dj

p
, v3̂5

q2

p2 du, v4̂5dv2
1

2

p2

q2 Fdu; ~A1!
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in coordinatesxm5(v,j,j̄,u) we have

mm5~0,0,p,0!, m̄m5~0,p,0,0!,
~A2!

km5~1,0,0,0!, l m5S 1

2

p4

q4 F,0,0,
p2

q2D .

The nonvanishing components of the Weyl tensor in this null tetrad are

C3̂2̂3̂2̂[C45
1

2

p5

q3 f ,jjj5C3̂1̂3̂1̂. ~A3!

The interpretation null tetrad for theKN(L) spacetimes, given by Eq.~18!, reads as

mm5S 2
p

q2

j̇

u̇
,0,2p,0D , m̄m5S 2

p

q2

jG

u̇
,2p,0,0D ,

~A4!

km5S 1

A2u̇

p2

q2 ,0,0,0D , l m5S A2v̇2
1

A2u̇

p2

q2 ,A2j̇,A2jG ,A2u̇D .

The relation between tetrads~A2! and ~A4! is given by the Lorentz transformation,knatur

5Ak interp, lnatur5( l interp1Beiqm̄interp1B̄e2 iqminterp1BB̄k interp)/A, mnatur5e2 iqminterp1Bk interp,

whereA5A2u̇ q2/p2, B52A2 j̇/p, q5p. The coefficientsCA transform~see Ref. 8!

C4
interp5A2C4

natur5pqu̇2f ,jjj ,
~A5!

C3
interp5C2

interp5C1
interp5C0

interp50.

Similarly, the natural choice of null basis for theRTN(L,e) metric is

v1̂5v dj̄1 Ā du, v2̂5vdj1A du, v3̂5c du, v4̂52dv2B du, ~A6!

so that

mm5S 0,0,
1

v
,0D , m̄m5S 0,

1

v
,0,0D ,

~A7!

km5~21,0,0,0!, l m5S 2
B

c
,2

A

vc
,2

Ā

vc
,
1

c
D .

For this tetrad we obtain nonvanishing components,

C3̂2̂3̂2̂[C452
1

2vc
f ,jjj5C3̂1̂3̂1̂. ~A8!

The interpretation null tetrad~18! reads as

mm5S 1

cu̇
~v j̇1Au̇!,0,2

1

v
,0D , m̄m5S 1

cu̇
~vjG 1Āu̇!,2

1

v
,0,0D ,

~A9!

km5S 2
1

A2

1

cu̇
,0,0,0D , l m5S A2v̇1

1

A2

1

cu̇
,A2j̇,A2jG ,A2u̇D .
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The relation between the tetrads~A7! and~A9! is again given by the Lorentz transformation wi

A5A2 u̇c, B52A2 (v j̇1Au̇), q5p. We thus get

C4
interp5A2C4

natur52
c

v
u̇2f ,jjj ,

~A10!
C3

interp5C2
interp5C1

interp5C0
interp50.
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A construction of Killing spinors on Sn
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We derive simple general expressions for the explicit Killing spinors on the
n-sphere, for arbitraryn. Using these results we also construct the Killing spinors
on various AdS3Sphere supergravity backgrounds, including AdS53S5, AdS4

3S7, and AdS73S4. In addition, we extend previous results to obtain the Killing
spinors on the hyperbolic spacesHn. © 1999 American Institute of Physics.
@S0022-2488~99!00309-6#

I. INTRODUCTION

Finding the explicit form of Killing spinors on curved spaces can be an involved task. O
one merely uses integrability conditions to establish their existence and to determine their
plicities. In this way it is easy to show that spheres and anti-de Sitter spacetimes prese
supersymmetries, i.e., they admit the maximum number of Killing spinors. However, one do
obtain explicit solutions by this method. Although establishing their existence is often suffic
there are situations where it is necessary to know their explicit forms.

There exists a very simple explicit construction of the Killing spinors onn-dimensional
anti-de Sitter spacetime AdSn , for arbitraryn.1 This exploits the fact that AdSn can be written in
horospherical coordinates, in terms of which the metric takes the simple form

ds25dr21e2rhab dxa dxb, ~1!

where hab is the Minkowski metric in (n21) dimensions, and the Ricci tensor satisfiesRmn

52(n21)gmn . It was shown in Ref. 1 that the Killing spinors, satisfyingDme5 1
2Gme, are then

expressible as

e5e~1/2!re0
1 , or e5~e~21/2!r1e~1/2!rxaGa!e0

2 , ~2!

wheree6 are arbitrary constant spinors satisfyingG re0
656e0

6 . One can alternatively write the
two kinds of Killing spinors together in one equation, as

e5e~1/2!rGr
„11 1

2x
aGa~12G r !…e0 , ~3!

wheree0 is an arbitrary constant spinor. It is therefore manifest that the number of indepe
Killing spinors is equal to the number of components in the spinors.~The Killing spinors for
AdS4, written in the standard AdS coordinate system, were obtained in Ref. 2.! It is worth
remarking that the horospherical metric~1! can equally well have other spacetime signatu
(p,n2p), by taking other signatures (p,n2p21) for the metrichab . The isometry group is
SO(p11,n2p). The casep51 gives AdSn , with SO(2,n21), while p50 gives the positive-

a!Electronic mail: rahmfeld@leland.stanford.edu
45180022-2488/99/40(9)/4518/9/$15.00 © 1999 American Institute of Physics
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definite hyperbolic metric onHn, with SO(1,n). @Expressions for the Killing spinors onH2 and
H3, which are special cases of~3!, were given in Ref. 3.# Thus, Eq.~3! gives the Killing spinors
on all of the AdSn spacetimes, hyperbolic spacesHn, and the other maximally symmetric spac
times with a (p,n2p) signature.

There is an alternative Killing spinor equation that one can consider whenn is even, namely,
Dme5( i /2)gGme, whereg is the chirality operator, expressed as an appropriate product ove
Gm , with g251. We easily see that the solutions of this equation can be written as

e5e~ i /2!rgGrS 11
i

2
gxaGa~12 igG r ! D e0 . ~4!

Note that in all the cases above, we considered a ‘‘unit radius’’ AdSn , or Hn, etc., given by
~1!. It is trivial to extend the results to an arbitrary scale size, by replacing~1! by ds2

5l22(dr21e2rhab dxa dxb), which has the Ricci tensorRmn52(n21)l2gmn . The Killing
spinor equations then becomeDme5 1

2lGme, etc. It is easily seen that the solutions are given
precisely the same expressions~3!, etc., with no modifications whatsoever.~In Ref. 1 a different
coordinatization of the general-radius AdSn was used, in which the expressions for the Killin
spinorsdo depend upon the scale-setting parameter.!

In this paper, we find an explicit construction of the Killing spinors onSn. ~Explicit results for
n52 andn53 were obtained in Ref. 3.! One might think that since AdSn can be related toSn by
appropriate complexifications of coordinates, it should be possible to obtain expressions
Killing spinors onSn that are analogous to those given above. However, things are not qu
simple, because the ability to write the metric on AdSn in the simple form~1! depends rather
crucially on the fact that its isometry groupSO(2,n21) is noncompact.~One can easily see tha
~1! has (n21) commuting Killing vectors]m , which exceeds the rank@(n11)/2# of the isometry
group whenn.3. This is not possible for compact groups.! We shall thus present a differen
construction for the Killing spinors ofSn, which, although more complicated, is still explicit, an
of an essentially simple structure. Our main result is contained in Eq.~7! in Sec. II, which also
contains a detailed proof. In Sec. III we combine the results for AdS and spheres, to giv
explicit expressions for Killing spinors in various AdSm3Sn supergravity backgrounds, with
(m,n)5(4,7), ~7, 4!, ~5, 5!, ~3, 3!, ~3, 2!, ~2, 3!, ~2, 2!. In Appendix A, we collect some usefu
expressions for the representation and decomposition of Dirac matrices.

II. KILLING SPINORS ON Sn

A. Results

We begin by writing the metric on a unitSn in terms of that for a unitSn21 as

dsn
25dun

21sin2 un dsn21
2 , ~5!

with ds1
25du1

2. This has a Ricci tensor given byRi j 5(n21)gi j . We then consider the Killing
spinor equation on the unitn-sphere, for arbitraryn, namely,

D je5
i

2
G je. ~6!

We shall first present our results for the solutions to this equation, and then present the proo
We find that the Killing spinors can be written as

e5e~ i /2!unGnS )
j 51

n21

e~21/2!u jG j , j 11D e0 , ~7!

wheree0 is an arbitrary constant spinor, and the indices on the Dirac matrices are vielbein in
We use the convention that theG matrices are Hermitian, satisfying the Clifford algeb
                                                                                                                



in the

lts to

onding

4520 J. Math. Phys., Vol. 40, No. 9, September 1999 Lü, Pope, and Rahmfeld

                    
$G i ,G j%52d i j . Note that here, and in all other analogous formulas in the paper, the factors
product in~7! are ordered antilexigraphically i.e., starting with theun21 term at the left. Note also
that the exponential factors in~7! can be written as

e~ i /2!unGn51cos1
2 un1 iGnsin 1

2 un , e~21/2!u jG j , j 1151cos1
2 u j2G j , j 11sin 1

2 u j . ~8!

One can also consider the Killing spinor equation with the opposite sign for theG j term,
namely,

D je252
i

2
G je2 . ~9!

The previous solution~7! is easily modified to give solutions of this equation. One finds

e25e~2 i /2!unGnS )
j 51

n21

e~21/2!u jG j , j 11D e0 . ~10!

This is immediately verified by noting that~9! is obtained from~6! by changing the sign of the
gamma matrices.

The Killing spinors discussed above exist onSn for any n. When n is even, there is an
alternative equation that can also be considered, namely,

D je5 1
2 gG je, ~11!

whereg is the chirality operator formed from the product of theG matrices, satisfyingg251. In
this case, we find that the corresponding Killing spinors can be written as

e5e~1/2!ungGnS )
j 51

n21

e~21/2!u jG j , j 11D e0 . ~12!

We may again also consider the Killing spinors satisfying~11! with the sign of theG j term
reversed, namely,

D je52 1
2gG je. ~13!

The solutions are again obtained by sendingun˜2un , giving

e25e~21/2!ungGnS )
j 51

n21

e~21/2!u jG j , j 11D e0 . ~14!

As in the AdS andHm cases discussed in Sec. I, we may again trivially extend the resu
an n-sphere of arbitrary radius, with metricdsn

25l22(dun
21sin2 un dsn21

2 ) and Ricci tensorRi j

5(n21)l2gi j . The Killing spinor equations are modified toD je5( i /2)lG je, etc., but again the
expressions~7!, etc. for the Killing spinors receive no modification whatsoever.

B. Proofs

The proofs of these results proceed by substituting our expressions into the corresp
Killing spinor equations. We begin by showing that in the orthonormal basisen5dun , ea

5sinune(n21)
a , the spin connection for the metric~5! is given by

vab5v~n21!
ab , va,n5cosune~n21!

a , ~15!
                                                                                                                



th
it is

s that

4521J. Math. Phys., Vol. 40, No. 9, September 1999 A construction of Killing spinors on Sn

                    
wherea<n21, ande(n21)
a , andv (n21)

ab are the vielbein and spin connection forSn21. ~Note that
the indexn always denotes the specific valuen of the dimension of then-sphere.! Thus we can
write the vielbein and spin connection onSn as

ej5S )
k5 j 11

n

sinukD du j ,

v jk5cosukS )
l 5 j 11

k21

sinu l D du j , 1< j ,k<n. ~16!

The Killing spinor equation~6! can be written as

] je1
1

4
v j

klGkle5
i

2
ej

kGke, ~17!

wherev j
kl and ej

k are the coordinate-index components ofvkl and ek, i.e., vkl5v j
kl du j and ek

5ej
k du j . These can be read off from~16!. Note that the indices on theG matrices in~17! are

vielbein indices.
We now make the following two definitions:

U j
k[S )

l 5 j 11

k

e~21/2!u lG l ,l 11DG j , j 11S )
l 5 j 11

k

e~21/2!u lG l ,l 11D 21

, k> j , ~18!

Vj[e~ i /2!unGnU j
n21e~2 i /2!unGn, ~19!

where, as usual, the factors with the largerl values in the product sit to the left of those wi
smallerl values.~Note that if the upper limit on the product is less than the lower limit, then
defined to be 1.! It is now evident that verifying that the expression~7! gives a solution to the
Killing spinor equation~6! amounts to proving that

Vj52 iej
jG j1(

k. j

n

v j
jkG jk . ~20!

We prove this by first establishing two lemmata. The first, whose proof is elementary, state
if X andY are matrices such that@X,Y#52Z, and@X,Z#522Y, then

e~1/2!uXYe~21/2!uX5cosuY1sinuZ. ~21!

The second lemma states that

U j
k5secuk11v j

j ,k11G j ,k111(
l . j

k

v j
j l G j l , k> j . ~22!

We prove this by induction. From the definition~18!, we know thatU j
j5G j , j 11 , which clearly

satisfies~22! sincev j
j , j 115cosuj11. Assuming then that~22! holds for a specifick> j , we will

have that

U j
k11[e~21/2!uk11Gk11,k12U j

ke~11/2!uk11Gk11,k12,

5secuk11v j
j ,k11e~21/2!uk11Gk11,k12G j ,k11e~1/2!uk11Gk11,k121(

l . j

k

v j
j l G j l , ~23!
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where we have made use of the fact that theG j l in the last term all commute withGk11,k12 , since
l<k. The first term can be evaluated using Lemma 1, giving

U j
k115secuk11v j

j ,k11~cosuk11G j ,k111sinuk11G j ,k12!1(
l . j

k

v j
j l G j l ,

5tanuk11v j
j ,k11G j ,k121 (

l . j

k11

v j
j l G j l . ~24!

Now, it follows from ~16! that v j
j ,k125cosuk12 tanuk11vj

j,k11. Using this, we then obtain~22!
with k replaced byk11, completing the inductive proof.

Having established the lemmata, we can substitute the expressionU j
n21 from ~22! into the

definition of Vj given in ~18!, giving

Vj5secunv j
jne~ i /2!unGnG jne~2 i /2!unGn1 (

l . j

n21

v j
j l G j l ,

52 i tanunv j
jnG j1(

l . j

n

v j
j l G j l , ~25!

where we have used Lemma 1 to derive the second line. Sinceej
j5tanunvj

jn , as can be seen from
~16!, it follows that ~25! gives ~20!. This completes the proof that~7! satisfies the Killing spinor
equation~6!. An essentially identical proof shows that~12! satisfies the alternative Killing spino
equation~11! in even dimensions.

III. KILLING SPINORS ON ADS 3SPHERE

An application of the formulas obtained in this paper is to construct the explicit forms o
Killing spinors in the full D-dimensional spacetime of a supergravity theory that admits
AdSm3Sn solution, whereD5m1n. Consider, for example, the AdS43S7 solution of D511
supergravity. This is obtained by takingFmnrs56memnrs with m50, 8, 9, 10, implying that the
Ricci tensors on AdS4 and S7 satisfy Rmn5212m2gmn and Rmn56m2gmn , respectively.4 The
Killing spinors e must satisfy

05dcM5DMe2 1
288~ ĜMNPQRF

NPQR28FMNPQĜNPQ!e. ~26!

Using the appropriate decomposition of Dirac matrices given in Appendix A, this implies th
AdS4 andS7 we must have

AdS4:DmeAdS5 imgGmeAdS,

S7:D jh5
i

2
mG jh, ~27!

with j 51,...,7. From the results obtained in this paper, we find that the Killing spinors on A4

3S7 can be written as

AdS43S7:e5e~ i /2!r ĝĜrS 11
1

2
xa~ i ĝĜa1Ĝ r Ĝa! De~ i /2!u7ĝĜ7S )

j 51

6

e~21/2!u j Ĝ j , j 11D e0 , ~28!

where ĝ[(2 i /24)emnrsĜmnrs5g ^ 1 is a ‘‘pseudo chirality operator,’’ ande0 is an arbitrary
32-component constant spinor inD511. Note that the explicit numerically assigned indices re
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to the seven directions on the 7-sphere. Also, as implied by~27!, the AdS4 andS7 have different
radii, which are related by the 11-dimensional field equations. However, as noted before,
coordinatization the Killing spinors are independent of the scale sizes.

In D511 supergravity there is also a solution, AdS73S4. An analogous calculation gives th
result that the Killing spinors in this background can be written as

AdS73S4:e5e~1/2!r ĝĜr~11 1
2x

a~ ĝĜa1Ĝ r Ĝa!!e~1/2!u4ĝĜ4S )
j 51

3

e~21/2!u j Ĝ j , j 11D e0 , ~29!

where ĝ[Ĝ123451^ g, and all numerically assigned indices refer to the four directions onS4.
Again, e0 is an arbitrary 32-component constant spinor inD511.

As another explicit example let us look at Type IIB supergravity on AdS53S5. The gravitino
transformation rules are

05dcM5DMe1
i

1920
ĜNPQRSĜMFNPQRSe, ~30!

wheree is a ten-dimensional spinor of positive chirality, satisfying

Ĝ0¯Ĝ9e5e. ~31!

Choosing nowFmnrls54memnrls andFi jklm54me i jklm , Eq. ~30! reduces to

DMe2 1
2m~s13131!ĜMe50, ~32!

where we are using the~odd, odd! decomposition of Dirac matrices given in Appendix A. With th
ansatz

e5S 1
0D ^ eAdŜ h, ~33!

for a spinor of positive chirality, we obtain the equations for the AdS5 andS5 subspaces:

AdS5 :DmeAdS5
1
2mGmeAdS,

S5:D jh5
i

2
mG jh, ~34!

which are the standard Killing spinor equations. Putting the AdS andSn results together, we obtain
the explicit expression for the Killing spinors on AdS53S5,

AdS53S5:e5e~ i /2!r ĝĜr
„11 1

2x
a~ i ĝĜa1Ĝ r Ĝa!…e~2 i /2!u5ĝĜ5S )

j 51

4

e~21/2!u j Ĝ j , j 11D e0 , ~35!

where e0 is an arbitrary 32-component constant spinor of positive chirality, andĝ[Ĝ12345

52s2^ 1^ 1, where the numerical indices lie inS5.
Four further analogous examples that arise in lower-dimensional supergravities are

AdS33S3:e5e~2 i /2!r ĝ̃ Ĝr
„11 1

2x
a~2 i ĝ̃ Ĝa1Ĝ r Ĝa!…e~2 i /2!u3ĝĜ3S )

j 51

2

e~21/2!u j Ĝ j , j 11D e0 ,

AdS33S2:e5e~1/2!r ĝĜr
„11 1

2x
a~ ĝĜa1Ĝ r Ĝa!…e~1/2!u2ĝĜ2e~21/2!u1Ĝ12)e0 ,
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AdS23S3:e5e~ i /2!r ĝĜr
„11 1

2x~ i ĝĜx1Ĝ r Ĝx!…e
~ i /2!u3ĝĜ3S )

j 51

2

e~21/2!u j Ĝ j , j 11D e0 ,

AdS23S2:e5e~ i /2!r ĝĜr
„11 1

2x~ i ĝĜx1Ĝ r Ĝx!…e
~ i /2!u2ĝĜ2e~21/2!u1Ĝ12e0 ,

or

e5e~1/2!r ĝĜr
„11 1

2x~ ĝĜx1Ĝ r Ĝx!…e
~1/2!u2ĝĜ2e~21/2!u1Ĝ12e0 , ~36!

where the Dirac matrices are the ones appropriate to the total spacetime dimension in eac
In the case where one or another space in the factored product is even dimensional,ĝ is the
pseudochirality operator given by the appropriate product of the overcareted Dirac matrices
even-dimensional factor. For this reason, there are two possibilities in the AdS23S2 example,
reflecting the two possibilities for the Dirac matrix decomposition given in Appendix A. The
corresponds to takingĝ to be the pseudochirality operator in AdS2, and the second to taking i

instead to be inS2. In the case of AdS33S3,ĝ[Ĝ12352 is2^ 1^ 1, where the numerical indice

lie in S3, while ĝ̃[ 1
6emnrĜmnr5s1^ 1^ 1. In all the examples,e0 is an arbitrary constant spino

in the total space. It will be subject to a chirality condition in the AdS33S3 example, if theD
56 supergravity is chosen to be the minimal chiral theory, andĝ̃ can then be replaced byĝ in the
expression for the Killing spinors.

IV. DISCUSSION

In this paper, we have obtained explicit expressions for the Killing spinors onSn for all n. We
then used the results to obtain the full Killing spinors on various AdSm3Sn spacetimes that aris
as solutions in supergravity theories. These are of considerable interest owing to the conje
duality relation to conformal theories on the AdS boundaries. One further application of
results is to construct the Killing vectors, and conformal Killing vectors, from appropriate bili
productse8†G ie of Killing spinors. As discussed in Ref. 3, products where the Killing spinorse8
ande on Sn either both satisfy~6! or both satisfy~9! give Killing vectors, while products where
one satisfies~6! and the other satisfies~9! give conformal Killing vectors. In general, it is nece
sary to use both of the Killing-vector constructions in order to obtain all the Killing vectors onSn.
At large n there is a considerable redundancy in the construction, since the number of K
spinors grows exponentially withn, while the number of Killing vectors grows only quadratical
with n. In certain low dimensions, there is a more elegant exact spanning of the Killing ve
using this construction, such as forS7 where the antisymmetric productsēaG ie

b of the eight
Killing spinors ea give the 28 Killing vectors ofSO(8).4

We shall present just one simple example here, for the case ofS2. From the matrix expression

~B1! in the appendix, we find that from the Killing spinorse5V2(b
a) ande85V2(b8

a8), we obtain
the Killing vectors,

K5Ki] i5Ej
i e8†G je5~bb̄82aā8!

]

]u1
1 i ~ab̄8e2 iu12ā8beiu1!

]

]u2

1~ab̄8e2 iu11ā8beiu1!cotu2

]

]u1
, ~37!

whereEj
i are the components of the inverse vielbeinEj5Ej

i ] i . Choosing different values for the
constantsa, b, a8, b8 spans the complete set of three Killing vectors ofSO(3).
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APPENDIX A: DIRAC MATRICES AND THEIR DECOMPOSITION ON PRODUCT
SPACES

It is useful in general to represent the Dirac matrices in terms of the 232 Pauli matrices
$s1 ,s2 ,s3% as follows. In even dimensionsD52n, we have

G15s1^ 1^ 1^¯^ 1,

G25s2^ 1^ 1^¯^ 1,

G35s3^ s1^ 1^¯^ 1,

G45s3^ s2^ 1^¯^ 1,

G55s3^ s3^ s1^¯^ 1,

...,

G2n215s3^ s3^¯^ s3^ s1 ,
~A1!

G2n5s3^ s3^¯^ s3^ s2 .

In odd dimensionsD52n11, we use the above construction for the Dirac matrices of 2n dimen-
sions, and take

G2n115s3^ s3^ s3^¯^ s3 . ~A2!

When performing Kaluza–Klein reductions, it is necessary to decompose the Dirac ma
of D dimensions in terms of those of the lower-dimensional spacetimeMm , and the internal space
Kn , whose respective dimensionsm andn add up toD. There are four cases that arise, name
(m,n)5(even, odd),~odd, even!, ~even, even! and~odd, odd!. If we denote the Dirac matrices o

the spacetimeMm by Gm , and those of the internal spaceKn by G i , then the Dirac matricesĜA

of Mm3Kn can be written as

~even, odd!:Ĝm5Gm ^ 1, Ĝ i5g ^ G i ,

~odd, even!:Ĝm5Gm ^ g, Ĝ i51^ G i ,

~even, even!:Ĝm5Gm ^ 1, Ĝ i5g ^ G i , ~A3!

or

Ĝm5Gm ^ g, Ĝ i51^ G i ,

~odd, odd!:Ĝm5s1^ Gm ^ 1, Ĝ i5s2^ 1^ G i .
                                                                                                                



e
f
or

s
black

rite the

4526 J. Math. Phys., Vol. 40, No. 9, September 1999 Lü, Pope, and Rahmfeld

                    
Note that in the final case the extra Pauli matricess1 ands2 are needed in order to satisfy th
Clifford algebra, in view of the fact that the Dirac matrices ofD dimensions are twice the size o
the simple tensor products of those inMm andKn . Note also in this case that the chirality operat
in the total space iss3^ 131.

APPENDIX B: SOME LOW-DIMENSIONAL EXAMPLES

In this appendix, we give explicit matrix expressions for the Killing spinors on the sphereS2,
S3, S4, andS5. These examples arise in the near-horizon structures of Reißner–Nordstrøm
holes, dyonic strings, M5-branes, and D3-branes, respectively. In each case, we may w
expression~7! for the Killing spinors onSn ase5Vne0 . For S2, takingG i5s i , wheres i are the
usual Pauli matrices, we find

V25S e~2 i /2!u1 cos1
2u2

2e~2 i /2!u1 sin1
2u2

e~ i /2!u1 sin1
2u2

e~ i /2!u1 cos1
2u2

D . ~B1!

To avoid clumsy expressions later, we may definetk5e( i /2)uk, t̄ k5e(2 i /2)uk, ck5cos1
2uk , sk

5sin 1
2uk . The matrixV2 thus becomes

V25S t̄ 1c2

2 t̄ 1s2

t1s2

t1c2
D . ~B2!

For S3, S4, andS5 we obtain

V35S t̄ 1t3c2

2 i t̄ 1 t̄ 3s2

2 i t 1t3s2

t1 t̄ 3c2
D , ~B3!

V45 S t̄ 1 t̄ 3c2c4

2 t̄ 1 t̄ 3c2s4

i t̄ 1t3s2s4

2 i t̄ 1t3c4s2

t̄ 1 t̄ 3c2s4

t̄ 1 t̄ 3c2c4

2 i t̄ 1t3c4s2

2 i t̄ 1t3s2s4

2 i t 1 t̄ 3s2s4

2 i t 1 t̄ 3c4s2

t1t3c2c4

t1t3c2s4

2 i t 1 t̄ 3c4s2

i t 1 t̄ 3s2s4

2t1t3c2s4

t1t3c2c4

D , ~B4!

V55 S t̄ 1 t̄ 3 t̄ 5c2c4

2 i t̄ 1 t̄ 3 t̄ 5c2s4

2 t̄ 1t3t5s2s4

2 i t̄ 1t3t5c4s2

2 i t̄ 1 t̄ 3 t̄ 5c2s4

t̄ 1 t̄ 3 t̄ 5c2c4

2 i t̄ 1t3t5c4s2

2 t̄ 1t3t5s2s4

2t1 t̄ 3 t̄ 5s2s4

2 i t 1 t̄ 3 t̄ 5c4s2

t1t3t5c2c4

2 i t 1t3t5c2s4

2 i t 1 t̄ 3 t̄ 5c4s2

2t1 t̄ 3 t̄ 5s2s4

2 i t 1t3t5c2s4

t1t3t5c2c4

D . ~B5!

In these examples we have used the representations of Dirac matrices given in Eqs.~A1! and
~A2! of appendix A.
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Gauge fixation and global phase time for minisuperspaces
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Homogeneous and isotropic cosmological models whose Hamilton–Jacobi equa-
tion is separable are deparametrized by turning their action functional into that of
an ordinary gauge system. Canonical gauge conditions imposed on the gauge sys-
tem are used to define a global phase time in terms of the canonical coordinates and
momenta of the minisuperspaces. The procedure clearly shows how the geometry
of the constraint surface restricts the choice of time; the consequences that this has
on the path integral quantization are discussed. ©1999 American Institute of
Physics.@S0022-2488~99!00709-4#

I. INTRODUCTION

While in ordinary mechanics the time is an absolute parameter, and this allows for the
tence of a unitary quantum theory, in General Relativity the time is an arbitrary label of spa
hypersurfaces, and physical quantities are invariant under diffeomorfisms. The gravitationa
in General Relativity is a parametrized system, its evolution given in terms of a parametert which
does not have physical significance.

A possible way to obtain a unitary quantum theory of gravitation is to consider that the
is hidden among the coordinates and momenta of the system, which then must be deparam
by identifying the time as a first step before quantization. The identification of time is clo
related to gauge fixation.1 In the theory of gravitation the dynamical evolution is embodied in
motion of a spacelike hypersurface moving in space–time along the timelike direction; this m
includes arbitrary local deformations which yield a multiplicity of times. From a different poin
view, the same motion can be generated by general gauge transformations. Hence, the
fixation is not only a way to select one path from each class of equivalent paths in phase spa
also a reduction procedure identifying a time for the system.

In the present work we exploit this fact to identify a global phase time2 for minisuperspace
models whose Hamilton–Jacobi~H–J! equation is solvable. We define a canonical transforma
which turns the cosmological models into ordinary gauge systems by matching their Hamilt
constraintH'0 to one of the new momenta, namelyP0 , of the gauge system.3,4 Then we are able
to avoid derivative gauges involving Lagrange multipliers,5,6,7 and to use gauge conditions give
in terms of only the coordinates and momenta~canonical gauges! to identify a time in terms of the
original phase space variables of the cosmological models. The results of Ref. 8 are easily
duced. We show how the geometry of the constraint surface determines restrictions on th
tence of an intrinsic time;9 we also discuss the consequences that these restrictions have f
path integral quantization of minisuperspaces, making more precise the analysis of Ref. 3

II. PARAMETRIZED SYSTEMS AND ORDINARY GAUGE SYSTEMS

The action functional of a parametrized system described by the coordinates and mo
(qi ,pi) has the form

a!Electronic mail: simeone@tandar.cnea.gov.ar
45270022-2488/99/40(9)/4527/11/$15.00 © 1999 American Institute of Physics
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S@qi ,pi ,N#5E
t1

t2S pi

dqi

dt
2NHDdt, ~1!

whereN is a Lagrange multiplier enforcing the Hamiltonian constraint

H~qi ,pi !'0; ~2!

the constraint reflects the reparametrization invariance of the system, i.e., that its evolu
given in terms of the arbitrary parametert which does not have physical meaning.

The parametrized system described by~1! can be turned into an ordinary gauge system, t
is, a system with a true Hamiltonian and a constraint which is linear and homogeneous
momenta if the H–J equation is solvable.3 ConsiderW(qi ,am ,E) a complete solution of the
t-independent H–J equation,

HS qi ,
]W

]qi D5E, ~3!

which is obtained by matching the integration constants (am ,E) to (P̄m ,P̄0). The solutionW
generates a canonical transformation

pi5
]W

]qi
, Q̄i5

]W

] P̄i

, K̄5NP̄05NH, ~4!

which identifies the constraintH with the new momentumP̄0 . The variables (Q̄m,P̄m) are con-
served observables because@Q̄m,H#5@ P̄m ,H#50, so that they would not be appropriate to ch
acterize the dynamical evolution. A second transformation generated by the function

F5P0Q̄01 f ~Q̄m,Pm ,t! ~5!

gives

P̄05
]F

]Q̄0
5P0 , P̄m5

] f

]Q̄m
,

~6!

Q05
]F

]P0
5Q̄0, Qm5

] f

]Pm
,

and a new nonvanishing Hamiltonian

K5NP01
] f

]t
5NH1

] f

]t
, ~7!

so that (Qm,Pm) are nonconserved observables. The two successive transformations (qi ,pi)
˜(Q̄i ,P̄i)˜(Qi ,Pi) lead to the action

S5E
t1

t2S Pi

dQi

dt
2NP02

] f

]t Ddt ~8!

which in terms of the original variables reads3

S5E
t1

t2S pi

dqi

dt
2NHDdt1@Q̄i P̄i2W1QmPm2 f #t1

t2, ~9!
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so thatS and S differ only in surface terms and then yield the same dynamics. The action~8!
contains a linear and homogeneous constraintP0'0 and a nonzero Hamiltonian (] f /]t) and is
then that of an ordinary gauge system.

III. GAUGE FIXATION AND GLOBAL PHASE TIME

The constraintP0'0 in Eq. ~8! acts as a generator of gauge transformations yielding
infinite number of physically equivalent paths in the (Qi ,Pi) phase space. To select one path fro
each class of equivalent paths we must impose a gauge conditionx50, the choice being restricte
by

~1! The gauge condition must can be reached from any path by means of gauge transform
leaving the action unchanged.

~2! Only one point of each orbit~that is, each set of points on the constraint surface connecte
gauge transformations! must be on the manifold defined byx50.

To accomplish with~1! the symmetries of the action must be examined; under a ga
transformation generated by a constraintG,

deQ
i5e~t!@Qi ,G#, dePi5e~t!@Pi ,G#, deN5

]e~t!

]t
, ~10!

the variation of the actionS is

deS5Fe~t!S Pi

]G

]Pi
2GD G

t1

t2

~11!

and we havedeS50 for G5P0 . Therefore the actionS is gauge invariant over the whol
trajectorie and canonical gauge conditionsx(Qi ,Pi ,t)50 are admissible.3 We should emphasize
that if we worked with the original actionS, as the constraint inS is H'0 andH is not linear and
homogeneous in the momenta for a parametrized system, then we should fix the gauge by
of a noncanonical condition involving a derivative of the multiplierN;5,6 this is clearly not a good
choice if we want to define a global phase time in terms of the phase space variables.

Condition ~2! requires that a gauge transformation moves a point of an orbit off the su
x50, so that10

dex5e~t!@x,G#Þ0

unlesse50; this holds if

@x,G#Þ0. ~12!

As Q0 andP0 are conjugate variables,

@Q0,P0#51, ~13!

so that a gauge condition of the form

x[Q02T~t!50 ~14!

with T a monotonic function is a good choice. Strictly speaking, Eq.~12! only ensures that the
orbits are not tangent to the surfacex50; however, as~14! defines a planeQ05constant for each
t, if at anyt any orbit was intersected more than once~then yielding Gribov copies10! at another
t it should be@x,P0#50. Therefore our gauge fixation procedure avoids the Gribov problem

Given a parametrized system with coordinates and momenta (qi ,pi) a smooth function
t(qi ,pi) fulfilling
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@ t,H#.0 ~15!

is a global phase time2 for the system, and its values along any classical trajectory can param
its evolution. As the Poisson bracket is invariant under a canonical transformation, from~13! and
~15! it follows that a globally good gauge choice given in terms of the coordinateQ0 of the gauge
system can be used to define a global phase timet for the parametrized system in terms of th
coordinates and momenta (qi ,pi). In other words, a gauge choice for the gauge system defin
particular foliation of space–time for the parametrized system. We shall see that for c
minisuperspace models at-dependent gauge condition of the formx[Q02T(t)50 defines an
extrinsic time, that is, a time which is a function not only of the coordinatesqi but also of the
momentapi , while an intrinsic time, i.e., a function of the coordinatesqi only, can be defined by
means of a gauge condition likex[hQ0P2T(t) with h561 if the potential of the model unde
consideration has a definite sign; in this situation, the constraint surface splits into two d
surfaces, andh is determined by the sheet on which the system evolves.

IV. MINISUPERSPACES

The action of an homogeneous and isotropic Friedmann–Robertson–Walker~FRW! universe
is

S5E
t1

t2
~pfḟ1pVV̇2NH!dt ~16!

wheref is the matter field,V5A(4/3pG) ln a(t) with a(t) the scale factor in the FRW metric
and pf and pV are their conjugate momenta;N is a Lagrange multiplier enforcing the Hami
tonian constraint11

H5G~V!~pf
2 2pV

2 !1v~f,V!'0, ~17!

whereG(V).0 andv(f,V) is the potential. Our aim is not to study the separability of the H
equation in general, but to get a clear understanding of the details and also of the restrict
deparametrizing minisuperspaces by imposing canonical gauge conditions; then we shall lim
analysis to easily solvable models.

A. A toy model

Consider the Hamiltonian constraint

H52 1
4e

23VpV
2 1eV'0 ~18!

which corresponds to an open ‘‘universe’’ with null cosmological constant. For this mode
authors of Ref. 8 found a time of the form

t;2e24V/3pV ~19!

by matching the model to the parametrized system called ‘‘ideal clock,’’ whose Hamiltoni
H̃5pt2t2'0. They did it by performing a canonical transformation (t,pt)˜(V,pV) and multi-
plying H̃ by a positive definite function of the form;e2V/3 to obtainH. Then we shall apply our
procedure to the constraintH85eV/3H,

H852 1
4e

28V/3pV
2 1e4V/3'0. ~20!

The constraintH8 is equivalent toH because they differ only in a positive definite factor~see
below!. The t-independent H–J equation associated with the HamiltonianH8 is
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2S ]W

]V D 2

14e4V54e8V/3E, ~21!

and then matchingE5 P̄0 we have

W~V,P̄0!56E 2Ae4V2 P̄0e8V/3dV, ~22!

with 1 for pV.0 and2 for pV,0. According to Eq.~6!, on the constraint surface

Q05Q̄05F ]W

] P̄0
G

P̄050

57e2V/3. ~23!

The system described byQ0 and P0 has a constraint which is linear and homogeneous in
momenta. Its action functional is then invariant under general gauge transformations, so tha
is gauge freedom at the end points and canonical gauges are admissible. If we choosex[Q0

2T(t)50 with T a monotonic function oft then we have a global phase time that can be writ
in terms of the coordinateV only, the expression given by the sheet of the constraint surfac
which the system evolves,

t~V!52e2V/3 if pV.0,
~24!

t~V!51e2V/3 if pV,0.

As on the constraint surface we have

pV562e2V, ~25!

then we can write

t~V,pV!52 1
2e

24V/3pV , ~26!

which clearly agrees with~19!.

B. True degrees of freedom

Let us go back to the general constraint~17!. We shall restrict our analysis to the cases
which the potentialv(f,V) has a definite sign. As the casesv.0 andv,0 are formally analo-
gous, to simplify the notation we shall consider onlyv.0. Define the coordinates

x5x~f1V!, y5y~f2V!, ~27!

so that (]x/]f)5(]x/]V), (]y/]f)52(]y/]V). The momentapx ,py are given by

pf5
]x

]f
px1

]y

]f
py , pV5

]x

]V
px1

]y

]V
py , ~28!

and thenpf
2 2pV

2 54(]x/]f)(]y/]f)pxpy524(]x/]V)(]y/]V)pxpy . If it is possible to
choose the coordinatesx and y so that 4(]x/]f)(]y/]f)5(v/G), as (v/G).0 then we can
multiply the constraintH by (4G(]x/]f)(]y/]f))21 and obtain a constraintH8 which is equiva-
lent to H because it differs only in a positive definite factor,

H85pxpy11'0. ~29!
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We shall turn the system described by (x,y,px ,py) into an ordinary gauge system. Th
t-independent H–J equation for the constraint~29! is

]W

]x

]W

]y
115E8

and matching the integration constantsa, E8 to the new momentaP̄,P̄0 it has the solution

W~x,y,P̄0 ,P̄!5 P̄x1yS P̄021

P̄
D ; ~30!

then

px5
]W

]x
5 P̄, py5

]W

]y
5

P̄021

P̄
,

~31!

Q̄05
]W

] P̄0

5
y

P̄
, Q̄5

]W

] P̄
5x1yS 12 P̄0

P̄2
D .

To go from the set (Q̄i ,P̄i) to (Qi ,Pi) we define

F5Q̄0P01Q̄P1
T~t!

P
~32!

with T(t) a monotonic function~see the next section for a discussion about this choice!. Then we
have the canonical variables of the gauge system in terms of those of the minisuperspace

P05pxpy11, P5px ,

Q05
y

P
, Q5x1S y~12P0!2T~t!

P2 D . ~33!

There is no problem withP as a denominator becauseP5px cannot be zero on the constrai
surface.

As @Q0,P0#51 we have@y/px ,H8#51; H8 differs from H in a positive definite factor,
namelya, so that 15@y/px ,H8#5@y/px ,aH#5@y/px ,a#H1@y/px ,H#a'@y/px ,H#a; hence

@y/px ,H#.0 ~34!

and a canonical gauge condition of the formx[Q02T(t)50 with T a monotonic function oft,
when imposed on the gauge system described byQi and Pi defines a global phase timet
[y/px for the minisuperspace described byf, V, pf , pV . From ~28! we havepx5(pf

1pV)(2(]x/]f))21 and therefore

t~f,V,pf ,pV!52
y~f2V!

pf1pV

]x~f1V!

]f
. ~35!

The monotonic function oft given by~35! depends on the coordinates and also on the mom
of the cosmological model, and is then an extrinsic time.

We can also identify a time in terms of the coordinates only, but, as we shall see
definition depends on the sheet of the constraint surface on which the system evolves. The
choice
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x[hQ0P2T~t!50 ~36!

with h561 gives

@x,P0#5hP ~37!

and ashQ0P5hy andP5px we have

@hy,H8#5hpx . ~38!

As before, asH8 and H differ in a positive definite factor, if we can defineh so that@hy,H8#
.0 then@hy,H#.0 andhy is a global phase time. We can chose (]x/]f) as a positive definite
function ~and appropriately adjust the sign of (]y/]f)! to yield sign(px)5sign(pf1pV). From
the constraint equation we have

pV56Av~f,V!

G~V!
1pf

2 ~39!

and becausev/G is positive definite,pVÞ0 and the evolution of the system is restricted to one
the two disjoint surfaces~39!, each one topologically equivalent to half a plane. Moreover, fr
~39! we haveupVu.upfu, yielding sign(px).0 for pV.0 and sign(px),0 for pV,0. Hence
we can have a good definition of time on each sheet of the constraint surface by approp
choosingh, the choice dictated by the sign of the momentumpV ,

t~f,V!51y~f2V! if pV.0,
~40!

t~f,V!52y~f2V! if pV,0.

Therefore, even though we can not write a single expression which holds for both she
the constraint surface, ifv has a definite sign, once we have on which sheet the system evolve
can identify a time in terms of the coordinates~intrinsic time!. If, instead, we want an expressio
which holds automatically, that is, which does not depend on the sign ofpV , we must choose a
time like that given in~35!.
Examples:

~1! Consider a flat model with massless scalar fieldf and a cosmological ‘‘constant’’ which
decays withf asL5L0e26f,

H5 1
4e

23V~pf
2 2pV

2 !1L0e26fe3V'0. ~41!

This constraint is equivalent to

H85pf
2 2pV

2 14L0e26~f2V!'0,

making the choice of variablesx5f1V, y52(L0/6)e26(f2V) obvious; by turning the
system into an ordinary gauge system with coordinates and momenta (Q0,Q,P0 ,P) and
fixing the gauge with the canonical conditionx[Q02T(t)50 with T monotonic function we
obtain the time

t~f,V,pf ,pV!52
1

3

L0e
26~f2V!

pf1pV
, ~42!

which on the constraint surface is equivalent to

t~pf ,pV!5 1
2~pf2pV!.

The system also has an intrinsic time, which according to~40! can be written as
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t57
L0

6
e26~f2V!,

with 2 if the system is on the sheetpV.0 and1 if it is on the sheetpV,0.

~2! A closed (k51) model with cosmological constantL.0 and massless scalar fieldf, whose
Hamiltonian constraint is

H5 1
4e

23V~pf
2 2pV

2 !2eV1Le3V'0 ~43!

is not separable in terms of the variablesx(f1V), y(f2V); moreover, its potential has no
a definite sign. However, it is easy to show that the time obtained for the casek50 ~flat
model! is also a global phase time for the casek51. Then consider the constraint

H05 1
4e

23V~pf
2 2pV

2 !1Le3V'0 ~44!

which is equivalent to

H085pf
2 2pV

2 14Le6V'0.

By choosingy52(1/3)e3(V2f), x5(1/3)e3~V1f! the same procedure used in the preced
example gives the extrinsic time

t522/3
Le6V

pf1pV
'

1

6
~pf2pV!. ~45!

Note that if we want to verify that this function is a global phase time also for the cak
51 we should not write it as16(pf2pV) because the last equality holds only on the surfa
H0'0. If we calculate the Poisson bracket oft522/3@Le6V/(pf1pV)# with the constraint
H854e3VH we obtain@ t,H8#5@ t,H08#1@ t,24e4V#, which, as it is easy to check, is the su
of two positive terms. As the constraintsH andH8 are equivalent, then we have

@ t,H#.0,

and t is a global phase time also for the model given by~43!.

C. Geometry of the constraint surface

Our deparametrization procedure gives a simple way to examine how the geometrical
erties of the constraint surface impose restrictions on the definition of a global phase time
sider the Hamiltonian constraint of the most general case of a FRW empty cosmological m

H52 1
4e

23VpV
2 2keV1Le3V'0 ~46!

with k561 andL.0. For this model the authors of Ref. 8 found an extrinsic time

t;2e22VpV ~47!

after performing a canonical transformation on the ideal clock and multiplying the constrain
positive definite function of the form;eV. Then we shall apply our procedure to the constra
H85e2VH,

H852 1
4e

24VpV
2 2k1Le2V'0. ~48!

The constraintsH andH8 are equivalent because they differ only in a positive definite factor.
t-independent H–J equation for the HamiltonianH8 is
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2S ]W

]V D 2

24ke4V14Le6V54e4VE ~49!

and matchingE5 P̄0 we obtain the solution

W~V,P̄0!56E 2e2VALe2V2k2 P̄0dV, ~50!

with 1 for pV.0 and2 for pV,0. According to Eq.~6!, on the constraint surface we have

Q05Q̄05F ]W

] P̄0
G

P̄050

57L21ALe2V2k. ~51!

If we fix the gauge by means of the canonical conditionx[Q02T(t)50 with T a monotonic
function of t then we have that

t5u~2pV!L21ALe2V2k2u~pV!L21ALe2V2k ~52!

is a global phase time for the system. As on the constraint surface we have

pV562e2VALe2V2k ~53!

@so that in the casek51 the natural size of the configuration space is given byV>2 ln(AL) ~Ref.
2!# then we can write

t~V,pV!52 1
2L

21e22VpV , ~54!

which is in agreement with~47!. Now an important difference between the casesk521 andk
51 arises; fork521 the potential has a definite sign, and the constraint surface splits into
disjoint sheets given by~53!. In this case the evolution can be parametrized by a function of
coordinateV only, the choice given by the sheet on which the system remains, and we the
that it has an intrinsic time; if the system is on the sheetpV.0 the time is t

52L21ALe2V2k, and if it is on the sheetpV,0 we havet5L21ALe2V2k. For k51,
instead, the potential can be zero and the topology of the constraint surface is no more ana
to that of two disjoint planes. Although forV52 ln(AL) we havev(V)50 andpV50, it is easy
to verify that ṗVÞ0 at this point. Hence, in this case the coordinateV does not suffice to
parametrize the evolution, because the system can go from (V,pV) to (V,2pV); therefore we
must necessarily define a global phase time as a function of the coordinate and the mom
~extrinsic time!; t5t(V,pV). This, of course, generalizes to the case of models with true deg
of freedom.

A remark should be made, and it is that we have multipliedH by different positive functions
to make calculations simpler, or to obtain times that we could compare with previous re
different rescalings of the Hamiltonian constraint would lead to different times, but—at least
classical level—they would be equivalent.

D. Path integral quantization

Suppose that we want to quantize a cosmological model described by (qi ,pi) by means of a
path integral in terms of the variables (Qi ,Pi) given by~33!. As we showed in a previous paper4

this has practical advantages, for example, when trying to avoid the Gribov problem. If we pr
the quantum amplitudêQ2

i uQ1
i & to be equivalent tôq2

i uq1
i & we should verify that the paths in th

integral are weighted by the actionS in the same way that they are weighted byS, and that the
quantum statesuQi& are equivalent touqi&. As the path integral in the variables (Qi ,Pi) is gauge
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invariant, this requirement is fulfilled if it is possible to impose a—globally good—gauge co
tion x̄50 such thatt5t(qi) is defined, and such that the boundary terms in~9! vanish. This is the
reason why we chose the generating function forX̄i

˜Xi as in~32!; with this choice the boundary
terms in~9! vanish if we fix the gauge by means ofx[hPQ02T(t)50; when written in terms
of the original variables, this gauge condition involves only the coordinatesqi , and is associated
to the identification of an intrinsic time.

An intrinsic time, however, can be defined only if the constraint surface splits into two dis
sheets, that is, if the potential has a definite sign. In the most general case the definition of a
phase time must necessarily involve also the momenta, and then we cannot fix the gauge
path integral in such a way thatt5t(qi) @see the last example, wheret521/2L21e22VpV

'T(t), so thatt5t(V,pV)#. Hence, if we want to quantize the system by imposing canon
gauges in the path integral, in the most general case of a potential with a nondefinite sign w
admit the possibility of identifying the quantum states in the original phase space not byqi but by
a complete set of functions of the coordinates and momentaqi andpi .

V. CONCLUSIONS

Although gauge fixation and the identification of a global phase time are closely related,
action of parametrized systems—like the gravitational field—is not gauge invariant at the b
aries, we could not, in principle, use this fact to obtain a direct procedure to deparam
minisuperspaces; while ordinary gauge systems admit gauge conditions of the typex(qi ,pi ,t)
50, only derivative gauges would be admissible for parametrized systems. Then we would
able to identify a time for a cosmological model as a function of its canonical variable
imposing on the system a gauge condition which is compatible with the symmetries of the a

However, if the H–J equation is separable, a parametrized system described by (qi ,pi) can be
turned into an ordinary gauge system described by (Qi ,Pi) by matchingH with P0 , and canonical
gauges are therefore admissible. Then we are able to identify a global phase time for cosmo
models in terms of their coordinates and momenta by imposingt-dependent canonical gaug
conditions on the ordinary gauge system. We have illustrated our procedure with simple m
whose H–J equation is easily solvable. We have been able to show that sometimes a globa
time for a quite trivial model is also a good time for a more physical system~example 2!; however,
we believe that this is not the best way to proceed, because in a general case it would onl
if we impose restrictions on the parameters of the model~as it happens when we consider
massive scalar field, when a relation betweenL and m should exist!. Of course, a complete
solution of the H–J equation is, in general, difficult to obtain; an example of a more intere
model to be studied could be the Bianchi type-IX universe, which is the anisotropic generali
of the closed FRW model, and whose H–J equation is solvable.12

Our procedure clearly shows the restrictions arising from the geometry of the cons
surface; a global phase time in terms of the coordinatesqi can be defined only if the potential o
the model has a definite sign; in this case, the choice is determined by the sheet of the co
surface on which the system evolves. In the most general case, a global phase time mu
function of the coordinates and the momenta; at the quantum level, our method complet
analysis of Ref. 3, clearly showing the relation existing between the geometrical properties
constraint surface and the possibility of identifying the quantum states in the path integr
means of only the original coordinates.
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Exact solutions to sourceless charged massive scalar
field equation on Kerr–Newman background

S. Q. Wua) and X. Caib)

Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079,
People’s Republic of China

~Received 18 February 1999; accepted for publication 30 April 1999!

The covariant Klein–Gordon equation in the Kerr–Newman black hole geometry is
separated into a radial part and an angular part. It is discovered that in the nonex-
treme case, these two equations belong to a generalized spin-weighted spheroidal
wave equation. Then general exact solutions in integral forms and several special
solutions with physical interest are given. While in the extreme case, the radial
equation can be transformed into a generalized Whittaker–Hill equation. In both
cases, five-term recurrence relations between coefficients in power series expansion
of general solutions are presented. Finally, the connection between the radial equa-
tions in both cases is discussed. ©1999 American Institute of Physics.
@S0022-2488~99!01608-4#

I. INTRODUCTION

Since the Hawking effect1 on a black hole was found, the evaporation of a black hole has b
investigated in several coordinates by miscellaneous methods such as the path integral ap2

tortoise coordinate (r * ) transformation,3,4 and r * -coordinate analytical extension,4 etc. Among
these methods, the generalized tortoise transformation method has been used widely in
cussions, not only on the evaporation of a static black hole and a stationary black hole, but a
that of nonstationary ones.3 Much more progress has been made. But this method cannot giv
exact solution of the radial (r * ) equation, the radial wave function, which can be analyzed onl
an asymptotic expression.

Couch5 obtained a series of exact solutions by transforming the separated radial equatio
a modified Whittaker–Hill equation under some special conditions. But these solutions se
have nothing to do with the discussion on black hole evaporation.

Solutions to the generalized spheroidal wave equation have been studied to some exte6,7 by
using power series expansions around regular singular points, so that three-term recurren
tions between coefficients can be manipulated in terms of the continued fraction method. L6

has shown that Teukolsky master equations in Kerr geometry are, in fact, spin-weighted ge
ized spheroidal wave equations.

It appears to be more important to obtain an exact solution to the radial equation, for
crucial in discussing the Hawking effect of a black hole. However, it is very difficult to do s
is this motivation that stimulates our present research. Our main aim in this paper is to sho
the separated radial part of a massive covariant Klein–Gordon equation on the Kerr–Ne
black hole ~KNBH! background is a generalized spin-weighted spheroidal wave equatio
imaginary number order. In this paper, we shall discuss the solutions to a massive complex
field in the KNBH geometry with three parameters. In the nonextreme case, its general so
of the separated parts are spin-weighted generalized spheroidal wave functions,6–8 and some
special solutions to the radial equation with physical interest are given. General solutions
radial equation in the extreme case shall be briefly discussed. Finally, we show that the

a!Electronic mail: emu@iopp.ccnu.edu.cn
b!Electronic mail: xcai@wuhan.cngb.com
45380022-2488/99/40(9)/4538/11/$15.00 © 1999 American Institute of Physics
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equation in the extreme case is a confluent equation of that in the nonextreme case.
In Sec. II we deal with the variable separation of a sourceless complex scalar field on K

and solutions to the angular part. In Sec. III and IV, the radial equation is solved in both n
treme and extreme cases, respectively. In Sec. III A we reduce the radial equation to st
form, and in Secs. III B and III C we obtain general solutions and special ones including
(v5m50), respectively. Five-term recurrences between coefficients of solutions in power
forms are given in both cases. In addition, we give solutions in integral forms and some s
solutions of physical interest in the nonextreme case. Conditions for general solutions exist a
given in these two cases. Section V is devoted to discussing the connection between the
equation in the extreme case and that in the nonextreme case. Finally, we point out some p
applications and generalization of exact solutions in Sec. VI.

In the Appendix, three-term recurrence relations between coefficients in power series e
sions around regular singular points for a generalized spheroidal wave equation are prese

II. SEPARATION OF KLEIN–GORDON EQUATION AND SOLUTION TO THE ANGULAR
EQUATION

The Kerr–Newman line element and electromagnetic one-form are given in the B
Lindquist coordinates as follows:4,9

ds25gmn dxm dxn

52
D

S
~dt2a sin2 u dw!21

sin2 u

S
@a dt2~r 21a2!dw#21SS dr2

D
1du2D , ~1!

A5Am dxm5
2er

S
~dt2a sin2 u dw!, ~2!

with event horizon functionD5r 222Mr 1a21e2, andS5r 21a2 cos2 u, where massM, charge
e, specific angular momentuma5J/M being three parameters to describe KNBH.~Use Planck
units systemG5\5c51, and denote]m5]/]xm).

The determinant of the KNBH metric tensor isg5det(gmn)52S2 sin2 u, while the electro-
magnetic four-vector potentialAm apparently satisfies the following covariant Lorentz gauge c
dition:

“mAm5
1

A2g
]m~A2ggmnAn!50. ~3!

In curved spacetime, a sourceless scalar fieldF with massm and chargeq obeys the covarian
Klein–Gordon equation~KGE!:

~hc2m2!F50, ~4!

where the d’Alembert operatorhc on the KNBH background is given by

hc[
1

A2g
Dm~A2ggmnDn!

5
1

S H 21

D
@~r 21a2!] t1a]w1 iqer#21] r~D] r !

1S a sinu] t1
1

sinu
]wD 2

1
1

sinu
]u~sinu]u!J , ~5!

the covariant gauge differential operator here beingDm5]m2 iqAm .
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The scalar wave functionF for the KGE of Eq.~4! has a solution of variables separable for
F(t,r ,u,w)5R(r )S(u)ei (mw2vt):9

1

D
@v~r 21a2!2qer2ma#2F1] r~D ] rF!2m2SF

2S av sinu2
m

sinu D 2

F1
1

sinu
]u~sinu ]uF!50. ~6!

The separated results of the above equation are

] r@D ] rR~r !#1H @v~r 21a2!2qer2ma#2

D
2m2~r 21a2!2l12mavJ R~r !50 ~7!

and

1

sinu
]u@sinu ]uS~u!#1Fl2

m2

sin2 u
1~m22v2!a2 sin2 uGS~u!50, ~8!

wherel is a separation constant.
The general solutions to the angular part are ordinary spheroidal angular wave functio8,10

with spin weights50. Whena2(v22m2)50, these solutions degenerate to Legendre sphe
functions.

Let x5cosu, S(u)5S(x)5(12x2)m/2Q(x), Eq. ~8! should take the following forms:

~12x2!S9~x!22xS8~x!1Fl2
m2

12x2 1a2~v22m2!~x221!GS~x!50 ~9!

and

~12x2!Q9~x!22~11m!xQ8~x!1@l2m~m11!1a2~v22m2!~x221!#Q~x!50. ~10!

Here and after,S8(x)5]S(x)/]x, etc.
The eigenfunctions to Eqs.~9! and ~10! are generalized spheroidal wave functions6–8 S(x)

5Sl
m,0(c,x) with eigenvaluel5lml1c2, c25a2(m22v2). Whenm50, Eqs.~9! and ~10! are

special cases (s50) of the following spin-weighted spheroidal wave equations:6–8,10

~12x2!P9~x!22xP8~x!1Fa2v2x222avsx2
~m1sx!2

12x2 1s1l8GP~x!50 ~11!

and

~12x2!Q9~x!22@s1~11m!x#Q8~x!

1@l82~m2s!~m1s11!22avsx1a2v2x2#Q~x!50, ~12!

whereP(x)5(12x) um1su/2(11x) um2su/2Q(x) andx5cosu.
When av50, the solutions to the above equations are Jacobi ultrasphereD functions10

Dm,s
l (x) or spin-weighted spherical harmonic functions11 with eigenvaluel85 l ( l 11)2s(s

11), l 5max(umu,usu). In the general case, the solutions should be the generalized spin-wei
spheroidal wave functions6–8 P(x)5Pm,s

l (c,x), c252a2v2. By taking account of some reason
able boundary conditions, these solutions could be a set of orthogonal polynomials.
                                                                                                                



s

re

t
rms in

s

4541J. Math. Phys., Vol. 40, No. 9, September 1999 Exact solutions to sourceless charged . . .

                    
In the following, we shall assume that all parameters,M ,e,a,m,q,m, are nonzero, and discus
the radial equation of Eq.~7! according to two cases, namely, the nonextreme case (M2Þa2

1e2) and the extreme case (M25a21e2). The special case (v5m50) will be included in Sec.
III C.

III. SOLUTIONS TO THE RADIAL EQUATION IN THE NONEXTREME CASE
„M2Þa21e2

…

A. Simplification of the radial equation in the case „eÞ0…

In this case, we pute5AM22a22e2 (0,e,M ). After making substitutions ofr 5M1ez
andR(r )5R(z)5(z21)i uB1Au/2(z11)i uB2Au/2F(z), the exterior horizon and interior horizon a
located at pointsr 65M6e, (z561), respectively, the radial equation of Eq.~7! can be reduced
to the following standard forms:

~z221!R912zR81Fe2~v22m2!~z221!12e~Av2Mm2!z1
~Az1B!2

z221

1~2v22m2!~2M22e2!22qeMv2l GR50 ~1,z,`! ~13!

and

~z221!F912@ iA1~11 iB !z#F81@e2~v22m2!~z221!12e~Av2Mm2!z

1~2v22m2!~2M22e2!22qeMv2l1A22B21 iB#F50 ~1,z,`!, ~14!

whereA52Mv2qe, eB5v(2M22e2)2qeM2ma.
In order to study behaviors of solutions to Eqs.~13! and~14! in the interval (21,z,1), we

rotate first T from the real axis to the imaginary axisT5 i t after making substitution ofz
5coshT5cosh(it)5cost, then return to the realz axis z5cost. Therefore, Eqs.~13! and ~14!
have corresponding forms in the interval (uzu,1) as follows:

~12z2!R922zR81Fe2~v22m2!~z221!12e~Av2Mm2!z2
~Az1B!2

12z2

1~2v22m2!~2M22e2!22qeMv2l GR50 ~21,z,1! ~15!

and

~12z2!G922@A1~11B!z#G81@e2~v22m2!~z221!12e~Av2Mm2!z

1~2v22m2!~2M22e2!22qeMv2l1A22B22B#G50 ~ uzu,1!, ~16!

where we have made a function transformation,

R~z!5~12z! uB1Au/2~11z! uB2Au/2G~z!.

The essence of our manipulation is that we extend the domain ofz from the real axis to the
complexz planez5x1 iy at first and then make an analytical extension on the complexz plane
from the region outside the unit circle (uzu.1) to that inside it (uzu,1). The handled issue is tha
only derivative terms change to a negative sign, while the nonderivative terms, namely, te
square brackets, make no change in symbol. This method is equivalent to that Eqs.~13!–~16! are
solved initially and then the solutions are made an analytical extension on the complexz plane.

Both Eqs.~13! and ~14! are the generalized spin-weighted spheroidal wave equation6–8 with
an imaginary number order, while both Eqs.~15! and~16! with a real number order. The former
                                                                                                                



re more
nd out
ctually,

to be

r

rdinary
ons.

uations
ns,
ials.
wave
efs. 6

tudy is

ing

4542 J. Math. Phys., Vol. 40, No. 9, September 1999 S. Q. Wu and X. Cai

                    
are suitable, especially to study problems about the scattering state, whereas the latters a
convenient to investigate energy levels of bound states. Furthermore, we can apparently fi
the connection between poles of scattering amplitudes and energy levels of bound states. A
the domain in whichz takes values in Eqs.~13! and~14! is on thex axis, while those in Eqs.~15!
and ~16! on the y axis. So these equations can be thought of as equivalence. However,
convenient, we have made a restriction on intervals thatz takes values of 1,z,` in Eqs. ~13!
and ~14!, while of uzu,1 in Eqs.~15! and ~16!.

Whenm50 or M50, if taking R1(z1) as the first solution to Eq.~15! in the interval ofuzu
,1, thenR2(z2), the second one to the same equation in that ofuzu.1, might be

R2~z2!5~z221! uB1Au/2~z211! uB2Au/2E
21

11

ei evz2z1~12z1! uB1Au/2~11z1! uB2Au/2R~z1!dz1 .

~17!

Here, we have assumed thatv.0. The integral equation of Eq.~17! connects the irregula
solutionR2(z2) with the regular solutionR1(z1).

Comparing Eqs.~9!–~12! with Eqs. ~13!–~16!, especially Eqs.~11! and ~12! with Eqs. ~15!
and ~16!, we can draw a conclusion that the separated angular and radial equations are o
differential equations of the same type, generalized spin-weighted spheroidal wave equati6–8

Furthermore, we discover thate, A, B correspond to2a, 2s, 2m, respectively, whenm50.
There may exist three pairs of power series solutions to generalized spheroidal wave eq
around singular pointsz561,̀ , respectively. Added with some proper boundary conditio
these power series expansions of spheroidal wave functions can be cut off to be polynom

Therefore, in the following section, we shall only study the generalized spheroidal
equation. The reader who has more interest in this equation can find more information in R
and 7~and references cited therein!.

B. General solutions to the radial equation „eÞ0…

The standard generalized spin-weighted spheroidal wave equation that we reduce to s
as follows:

~12z2!W9~z!22@a1~b11!z#W8~z!1@g2~z221!12 dz1l̄2b#W~z!50, ~18!

where l̄ is a redefined eigenvalue that could makeW(z) finite at z561, and the region ofz8
taking values could be the whole complexz plane.

~i! For the radial equation of Eq.~16!, we have

a5A, b5B, g25e2~v22m2!, d5e~Av2Mm2!.

~ii ! For the angular equation of Eq.~12!, we have

a5s, b5m, g25a2v2, d52asv.

~iii ! For the angular equation of Eq.~10!, we have

a50, b5m, g25a2~v22m2!, d50.

The form of Eq.~18! is invariant both under the Laplace transformation and by chang
parametersa,b,g2,d,z into 2a,b,g2,2d,2z, respectively. Namely,W(z)5W(a,b,g,d;z) sat-
isfies the following integral equation:

E
0

1`

e2tzW~a,b,g,d;z!dz5WS d

g
,2b,g,2ag;

t

g D5WS 2d

g
,2b,g,ag;

2t

g D , ~19!
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W~a,b,g,d;z!5W~2a,b,g,2d;2z!5E
0

1`

e2gztWS 2d

g
,2b,g,ag;t Ddt. ~20!

The above formulas are integral solutions to Eq.~18!. If one knows a solution, then he ca
obtain another by integral transformations of Eqs.~19! and ~20!. It is obvious that solutions are
symmetry under the following condition:

a5d50 ~gÞ0!.

This just is the case~iii !. At this moment, the symmetric solutions are ordinary spheroidal ang
wave functions.10

Now, we consider a solution to the generalized spheroidal equation of Eq.~18!, which is in
power series form in the interval of21,z,1. According to the knowledge of an ordinar
differential equation, one can know that Eq.~18! has two regular singularities (z561) and one
confluently irregular singular point (z5`). As z50 is its ordinary point, we can make a Taylo
expansion ofW(z) in the vicinity of ordinary point (z50):

W~z!5Wn~z!5 (
n50

`

anzn ~ uzu,1!. ~21!

Substituting the power series of Eq.~21! into Eq. ~18!, we obtain five-term recurrence rela
tions between coefficients as follows:

~ l̄2g22b!a022aa112a250,

2da01@ l̄2g22b2~212b!#a124aa21a350,

g2a012da11@ l̄2g22b22~312b!#a226aa3112a450,

••••••

g2an2212dan211@ l̄2g22b2n~n1112b!#an22~n11!aan111~n12!~n11!an1250.

Redefine coefficients:

An5
g2

l̄2g22b2n~n1112b!
,

Bn5
2d

l̄2g22b2n~n1112b!
,

Cn5
22~n11!a

l̄2g22b2n~n1112b!
,

Dn5
~n12!~n11!

l̄2g22b2n~n1112b!
.

When taking limitsn˜`, we haveAn , Bn , Cn˜0, andDn˜21.
Then, five-term recurrence relations become

Anan221Bnan211an1Cnan111Dnan1250. ~22!
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After arranging coefficientsAn ,Bn ,Cn ,Dn and making up them into a quasidiagonal ba
matrix L anda0 ,a1 ,...,an ,..., into a column vectoraW 5(a0 ,a1 ,...,an ,...), theabove recurrence
relations become an infinite tridiagonal matrix equation:

LaW 5haW . ~23!

The condition for solutions of Eq.~23! exist is that determinant ofL is zero,

det~L!5U 1 C0 0 0 0 0 0 0̄

B1 1 C1 D1 0 0 0 0̄

A2 B2 1 C2 D2 0 0 0̄

0 A3 B3 1 C3 D3 0 0¯

¯ ¯

0 0 An Bn 1 Cn Dn 0¯

¯ ¯

U50. ~24!

In fact, this condition could be satisfied, and we have det(L)˜0 whenn˜`.
Matrix equation of Eq.~23!, together with the determinant equation of Eq.~24! determines

coefficientsa0 ,a1 ,...,an ,..., andeigenvaluel̄, hence, eigenvaluel̄ will be a complicated func-
tion of a,b,g,d, as well asn. The second power series solution around the same pointz50 can be
obtained by Frobenius’ method. To be finite atz561, power seriesW(z) could be truncated to be
polynomial, anda,b,g,d could be integers or half-integers. While in the general case, solution
spin-weighted generalized spheroidal equation of Eq.~18! are transcendental functions.6,7

Absolutely, solutionWn(z)5Wn(a,b,g,d;z) of Eq. ~18! can be orthonormalized to const
tute a set of complete functions:

E
21

1

~12z!b1a~11z!b2aWn~z!Wn8~z!dz5dn,n8 . ~25!

SolutionsWn(z) at infinity can have asymptotic formsWn(z)˜e7gz, (z˜6`, g.0). This is
consistent with that the Minkowski spacetime is an asymptotic spacetime of the Kerr–New
black hole. Thus, an ingoing wave and an outgoing wave at infinity can take the form of
waves.

C. Special solutions to the radial equation in the case „eÞ0…

In this section, we will base our discussion upon Eq.~15!, namely,

~12z2!R9~z!22zR8~z!1Fg2~z221!12dz2
~b1az!2

z221

1~2v22m2!~2M22e2!22qeMv2l GR~z!50 ~ uzu,1!, ~26!

where

g25e2~v22m2!, d5e~Av2Mm2!,

a5A52Mv2qe, b5B5
v~2M22e2!2qeM2ma

e
.
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Case 1: wheng5d50, there exist three situations:
~i! v56m5qe/MÞ0 (aÞ0); ~ii ! v5m5qe/M50 (a50) ~This case can be thought of as
special one in the above-head case!; ~iii ! v5m50, qeMÞ0 (aÞ0).

Solutions in situations~i! and ~iii ! are Jacobi ultrasphere functionsR(z)5Pn
(b1a,b2a)(z),10

whereas solutions in situation~ii ! degenerate to be Legendre functions,R(z)5Pn
b(z), or Qn

b(z).
Case 2: whenMm250, vÞ0, d/(ev)5a, this case has been considered in detail by Leav6

Case 3: whena5d50, gÞ0, Eqs.~26! is an ordinary spheroidal wave equation,10 and its
solutions are Prolate spheroidal angular wave functionsR(z)5Sn

b,0(g,z).
Obviously, all these solutions are special cases of general solutionsRn

(b1a,b2a)(g,d;z)5(1
2z)(b1a)/2(11z)(b2a)/2Wn(a,b,g,d;z).

Solutions in Case 1 will be particularly important in physics to black hole evaporation,
scattering cross section, stationary state energy levels, emission coefficients of black hole
tion, etc., could be analytically computed at an exact theoretical level by the use of J
polynomials. Furthermore, there maybe exist special symmetry in such a case.

IV. SOLUTIONS TO THE RADIAL EQUATION IN THE EXTREME CASE „M25a21e2
…

In the extreme KNBH case (e50), we make the substitutionr 5M (11x); then the event
horizon is located at a single point (r h5M ), namely,x50; hence the radial equation of Eq.~7!
can be transformed into the following confluent equation:

x2R9~x!12xR8~x!1F ~v22m2!M2x212~Av2Mm2!Mx

1S A1
B
x D 2

1~2v22m2!~2M22e2!22qeMv2l GR~x!50, ~27!

whereA52Mv2qe, MB5Be5v(2M22e2)2qeM2ma.
Defining

C25M2~v22m2!, D5M ~Av2Mm2!,

le5~2v22m2!~2M22e2!22qeMv2l2 1
41A2,

and making substitutions

x5einj, R~x!5R~j!5e2 inj/2H~j!;

then Eq.~27! is transformed into the generalized Whittaker–Hill equation~GWHE!:

2n22H9~j!1@C2e2inj12Deinj12ABe2 inj1B2e22inj1le#H~j!50. ~28!

Solutions of GWHE of Eq.~28! can be regarded formally as

H~j!5 (
n52`

1`

gneinnj, n50,61,62,... . ~29!

Substituting Eq.~29! into Eq. ~28!, we obtain five-term recurrence relations between coe
cients:

C2gn2212Dgn211~le1n2!gn12ABgn111B2gn1250,

EgW 5hegW 5 (
n52`

1`

(
m5n22

n12

Em,ngn , ~30!
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where we have recast recurrence relations in matrix form in Eq.~30!, and defined matrix elements

En,n225
C2

le1n2 , En,n215
2D

le1n2 ,

En,n51, En,n115
2AB

le1n2 , En,n125
B2

le1n2 .

The condition that solutions of simultaneous equations in Eq.~30! exist is that determinan
det(E) must be zero, that is,

det~E!50, ~31!

detuE2heI u50. ~32!

The secular equation of Eq.~32! is a characteristic equation that determines the existenc
periodic solutions of Eq.~29!. SolutionsR(j) could be functions with period 4p/j. There exist
four series of periodic functions according to the period being odd or even. Equation~27! has two
confluently irregular singular pointsx50,̀ . Behaviors of its solutions at event horizonr h50
(x50) depend upon that ofR(j) at j˜6 i` ~according ton being a negative number or
positive number!.

V. CONNECTION BETWEEN THE RADIAL EQUATION IN NONEXTREME CASE AND
THAT IN EXTREME CASE

In this section, we illustrate that the radial equation of Eq.~27! in the extreme case is
confluent form of Eq.~13! in the nonextreme case, and give an expression to the first therm
namic law in the extreme KNBH case.

After making substitutions ofe5M«, «z5x, ez5Mx, B5«B, (0,«,1) in Eq. ~13!, we
have

r 5M1ez5M ~11x!, D5e2~z221!5M2~x22«2!,

A52Mv2qe, eB5MB5v~2M22e2!2qeM2ma.

Then Eq.~13! is equivalent to the following one in the nonextreme case:

]

]x F ~x22«2!
]R~x!

]x G1FM2~v22m2!~x22«2!12M ~Av2Mm2!x

1
~Ax1B!2

x22«2 1~2v22m2!~2M22e2!22qeMv2l GR~x!50. ~33!

Equation~33! has two regular singular pointsx56« (z561) that are located at the exterio
horizon and the interior horizon~Cauchy surface! r 65M6e5M (16«), respectively, along with
another irregular singular pointx5`. After taking limits «˜0, x22«2

˜x2, Eq. ~33! in the
nonextreme case tends to Eq.~27! in the extreme case. The latter has two confluently irregu
singular pointsx50,̀ . The irregular singular pointx50 that is located at event horizonr h

5M in the extreme case is just one to which two irregular singular pointsx5« andx52« in the
nonextreme case concur when« or e˜0.

In the extreme KNBH case (M25a21e2), surface gravitykh50, event horizonr h5M ,
reduced event horizon areaAh5M21a252M22e2, the first thermodynamic law of the extrem
Kerr–Newman black hole is expressed as follows:

dM5Vh dJ1Fhde, ~34!
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whereFh5(erh)/Ah , andVh5a/Ah are the electric potential and angular velocity at the ev
horizon (r h5M ), respectively.

VI. CONCLUSION

In this paper, a sourceless charged massive scalar Klein–Gordon field equation ha
separated into the angular and radial parts. The separated equations are all generalize
weighted spheroidal wave equations. In the nonextreme case, we present general solu
power series expansion and that of integral forms, as well as several special solution
physical interest for the radial equation. These solutions can be orthonormalized to a
complete functions. In addition, they have asymptotic behaviors of plane waves at infinity. O
base of these orthogonal functions or polynomials, we can expand the wave function of a co
scalar field to a quantized Klein–Gordon field on the Kerr–Newman background. In the ex
case, the radial equation can be reduced to a modified Whittaker–Hill equation. In both cas
obtain five-term recurrence relations between coefficients in power series expansions.

At the base of this work, the quantum conservation laws about the Hawking process a
probable generalization to black hole thermodynamic laws can be discussed further. It is
pated that the separated parts of the Dirac equation in the Kerr–Newman geometry co
reduced to the forms of a generalized spheroidal wave equation.
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APPENDIX

In this appendix, we present three-term recurrence relations between coefficients in
series expansions around regular singular points (z561) for spin-weighted spheroidal wav
equation of Eq.~18!, namely,

~12z2!Wn9~z!22@a1~b11!z#Wn8~z!1@c2~z221!12 dz1ln2b#Wn50 ~21,z,1!.
~A1!

Equation~A1! has two regular singular pointsz51 andz521, with indicesr250,2a2b
andr150,a2b, respectively. Whenc,d˜0, Wn(z) must tend to Jacobi polynomials.

Introducing a symbole571, we denote these two regular singular pointsz56152e. Then,
we make power series expansions around regular singular pointsz52e, respectively, where we
have written them in a united manner:

Wn~z!5e2cz(
n50

`

f n~11ez!n. ~A2!

Substituting the above regular solutions of Eq.~A2! into Eq.~A1!, we obtain three-term recurrenc
relations between coefficients as follows:

~11b2ea! f 11@l012ac2b22e~bc1c1d!# f 050,

¯

~n11!~n111b2ea! f n111@ln12ac2b22e~bc1c1d!

2n~n1112b14ec!# f n14e~nc1bc1d! f n2150.

After defining coefficients,

An5ln12ac2b22e~bc1c1d!2n~n1112b14ec!,
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Bn5~n11!~n111b2ea!,

Cn54e@~n1b!c1d#,

recurrence relations for the first term and thenth term can be written as

B0f 11A0f 050,

Bnf n111Anf n1Cnf n2150. ~A3!

Three-term recurrence relations of Eq.~A3! can be handled by the continued fractio
method,6,7 or by the matrix method~see Liu’s paper in Ref. 7! as we can arrayAn , Bn , Cn to
make up a generalized Jacobi tridiagonal band matrix. Similar three-term recurrence relatio
also be obtained by expansions in the light of Jacobi polynomials, but the coefficientsAn , Bn , Cn

will be more complicated than those presented here.
The second regular solutions around the same points can be easily obtained by Fro

method, and we have not presented them here. Irregular solutions are connected with these
ones by integrals similar to those in Eqs.~19! and ~20!.

In order to makeWn(z) finite at z561, Wn(z) must be truncated to be polynomials, the
Wn(z) is orthonormalized with eigenvalueln and weight (12z)b1a(11z)b2a. Hence we have

E
21

11

~12z!b1a~11z!b2aWm~z!Wn~z!dz5dm,n . ~A4!

The Battle–Lemarie´ wavelet or Daubechies’ compact support wavelets12 can be used in nu-
merical computation for the matrix equation of Eq.~A3! and to prove the convergence of pol
nomialsWn(z), but we do not pursue this goal here.

1S. W. Hawking, Nature~London! 248, 30 ~1974!; Commun. Math. Phys.43, 199 ~1975!; Phys. Rev. D13, 191 ~1976!;
D. Lee, Nucl. Phys. B264, 437~1986!; S. Hawking and R. Penrose,The Nature of Space And Time~Princeton University
Press, Princeton, NJ, 1996!.

2B. Hartle and S. W. Hawking, Phys. Rev. D13, 2188~1976!.
3Z. H. Li and L. Liu, Acta Phys. Sin.46, 1273~1997!.
4T. Damour and R. Ruffini, Phys. Rev. D14, 332 ~1976!.
5W. E. Couch, J. Math. Phys.26, 2286~1985!; 22, 1457~1981!.
6E. W. Leaver, J. Math. Phys.27, 1238~1986!; E. D. Fackerell and R. G. Crossman,ibid. 18, 1849~1977!.
7J. W. Liu, J. Math. Phys.33, 4026~1992!; B. D. B. Figneiredo and M. Novello,ibid. 34, 3121~1993!.
8D. R. Brill, P. L. Chrzanowski, C. M. Pereira, E. D. Fackerell, and J. R. Ipser, Phys. Rev. D5, 1913~1972!; B. P. Jensen,
J. G. Mc Laughlin, and A. C. Ottewill,ibid. 51, 5676 ~1995!; M. Carmeli, Classical Fields: General Relativity and
Gauge Theory~Wiley, New York, 1982!.

9B. Carter, Phys. Rev.174, 1559~1968!; L. Liu, General Relativity~Adv. Edu. Pub., Beijing, 1987!.
10P. M. Morse and H. Feshbach,Methods of Theoretical Physics~McGraw-Hill, New York, 1953!; Handbook of Math-

ematical Functions, edited by M. Abramowitz and I. A. Stegun, 9th version~Dover, New York, 1972!.
11J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan, J. Math. Phys.8, 2155~1967!.
12G. Battle, Commun. Math. Phys.110, 601~1987!; 114, 93 ~1988!; I. Daubechies, A. Grossmann, and Y. Meyer, J. Ma

Phys.27, 1271~1986!.
                                                                                                                



ing
uiva-

above
f

f the

ne Lie

t and
,

in the

ur
ce
three-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 9 SEPTEMBER 1999

                    
Commuting difference operators arising from the elliptic
C2
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We study a pair of commuting difference operators arising from the elliptic
C2

(1)-face model. The operators, whose coefficients are expressed in terms of the
Jacobi’s elliptic theta function, act on the space of meromorphic functions on the
weight space of theC2-type simple Lie algebra. We show that the space of func-
tions spanned by the level one characters of the affine Lie algebrasp̂(4,C) is
invariant under the action of the difference operators. ©1999 American Institute
of Physics.@S0022-2488~99!03109-6#

I. INTRODUCTION

In Ref. 1, one of the authors constructed anL operator for Belavin’s elliptic quantumR
matrix2 acting on the space of meromorphic functions on the weight space of theAn-type simple
Lie algebra. The traces of theL operator, the transfer matrices, give rise to a family of commut
difference operators with an elliptic theta function coefficient. In Ref. 3, they are actually eq
lent to Rnijsenaars’ operators,4 which are elliptic extensions of Macdonald’sq-difference
operators.5 Our aim in the present paper is to take a step toward a generalization of the
construction to the root systems other than the typeA. In this paper, we construct a pair o
commuting difference operators acting on the space of functions on theC2-type weight space.

In the construction of Refs. 1 and 3, a relation between Belavin’s elliptic quantumR matrix
and the face-type solution of the Yang–Baxter equation~YBE!,6 especially theintertwining
vectors,7,8 played the central role. For the root systems other than typeA, it is known that no
vertex-typeR-matrices nor the intertwining vectors. Nevertheless, the face-type solutions o
YBE are known for all classical Lie algebras and their vector representations.6 We will utilize this
type of solution to introduce the difference operators. We take traces~see Sec. V! of the fused
Boltzmann weights to obtain a pair of difference operators~Theorem 1!.

We also show that the space that is spanned by the level one characters of the affi
algebrasp̂(4,C) is invariant under the action of the difference operators~Theorem 2!.

The plan of this paper is as follows. In Sec. II, we prepare the notation used in the tex
state the main results. In Sec. III, we review theCn

(1)-face model6 in the vector representation
which was given by a set of functions called Boltzmann weights. In Sec. IV, we introduce thepath
space, on which the set of Boltzmann weights act naturally as linear maps and thereby expla
notion of the so-calledfusion procedure~see, for example, Ref. 3 and references therein!. We also
give a set of formulas forfusedBoltzmann weights, which leads to the explicit formula of o
difference operators@Theorem 1,~ii !#. In Sec. V, we prove the commutativity of the differen
operators. In Sec. VI, we prove a property that the difference operators preserve a

a!Electronic mail: kojihas@math.tohoku.ac.jp
b!Electronic: mail: ike@xmath.ous.ac.jp
c!Electronic mail: tkikuchi@math.tohoku.ac.jp
45490022-2488/99/40(9)/4549/20/$15.00 © 1999 American Institute of Physics
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dimensional subspace spanned by the level one characters of the affine Lie algebrasp̂(4,C).9 In
the Appendix, we give a formula of a similarity transformation of the Boltzmann weights.

Our result can be seen as a typeC generalization of the Felder and Varchenko work,10 where
they showed that the Ruijsenaars system of difference operators can be recovered from
namicalR matrices, which is nothing but the face-type solution of the YBE.

On the other hand, aBCn generalization of the Macdonald polynomial theory is studied
Koornwinder.11 In Ref. 12, van Diejen constructed the corresponding family ofq-difference op-
erators and he studied its elliptic extension in Ref. 13. He succeeded in constructing two e
commuting operators: one is of the first order and the other is of thenth order, so that they give
rise to an elliptic extension of difference quantum Calogero–Moser system of typeBC2

12 in n
52. It is likely that our operators can be identified with his system with a special choic
parameters. We hope to report on this issue in the near future.

Extending this work by van Diejen, Hikami and Komori recently obtained a general fami
n-commuting difference operators with elliptic function coefficients.14,15 Besides the step param
eter of difference operators and the modulus of elliptic functions, the family contains ten arb
parameters. Their construction uses the Shibukawa–Ueno ellipticR operator,16 together with the
elliptic K operators,17,18 the elliptic solution to the reflection equation, and can be regarded a
elliptic generalization of the Dunkl-type operator approach to those systems, which have
extensively used by Cherednik19 ~see Ref. 20 for theBCn case!. It would be interesting if one can
find an explicit relationship between their approach and ours.

II. NOTATION AND RESULTS

Let h be a fixed Cartan subalgebra of the simple Lie algebragªsp~4,C! and denote byh* the
dual space ofh. We realize the root systemR for ~g,h! asRª$6(e16e2),62e1 ,62e2%,h* . A
normalized Killing form~,! is given by (e j ,ek)5 1

2d jk . We will often identify the spaceh and its
dualh* via the form~,!. The fundamental weights are given byÃ15e1 , Ã25e11e2 . Let Pd be
the set of weights for the fundamental representationL(Ãd). We have

P15$6e1 ,6e2%, P25$6~e16e2!,0%. ~2.1!

Note that, in these cases, the multiplicity of the weights are all one.
Fix an elliptic modulust in the upper half-planeTt.0 and a generic nonzero comple

number\. Let @u# denote the Jacobi theta function with elliptic nomepªe2p ir (Tt.0), defined
by

@u#ª ip1/8sinpu )
m51

`

~122pm cos 2pu1p2m!~12pm!.

This is an odd function and has the following quasiperiodicity:

@u1m#5~21!m@u#, @u1mt#5~21!me2p im2t22p imu@u# ~mPZ!. ~2.2!

Let d,d8 be 1 or 2. Then theC2
(1)-type Boltzmann weights of the type (d,d8) are given as

follows. For any square

S l m

k n
D ~l,m,n,kPh* !

of weights, the Boltzmann weight

Wdd8S l m

k n
UuD
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is given as a function of the spectral parameteruPC. See the next section for the explicit formu
for W11, which are expressed by the Jacobi theta function.

They satisfy the condition:

Wdd8S l m

k n
UuD 50, unless m2l,n2kP2\Pd , k2l,n2mP2\Pd8 ,

and solve the YBE,

(
h

Wdd8S r h

s k
Uu2v DWdd9S l m

r h
Uu2wDWd8d9S m n

h k
Uv2wD

5(
h

Wd8d9S l h

r s
Uv2wDWdd9S h n

s k
Uu2wDWdd8S l m

h n
Uu2v D . ~2.3!

The original Boltzmann weights in Ref. 6 are of the type~1,1! in the above terminology. We
generalized it by the fusion procedure~see Sec. IV! for the present purpose.

For lPh* andpPPd(d51,2), we put

lpª~l,p!.

Theorem 1: Let Md(u) (uPC,d51,2) be the following difference operators acting on th
space of functions onh* ,

„Md~u! f …~l!ª (
pPPd

Wd2S l l12\p

l l12\p
UuDTp̂f ~l!,

where Tp̂f (l)ª f (l12\p).

~i! We have Md(u)Md8(v)5Md8(v)Md(u) (u,vPC,d,d851,2).
~ii ! Let us define the following difference operators independent of the spectral parame:

M̃1ª (
pPP1

)
qPP1
qÞ6p

@lp1q2\#

@lp1q#
Tp̂ ,

M̃2ª (
p56e1
q56e2

S @lp1q2\#

@lp1q1\#
Tp̂Tq̂1

@2\#

@6\#

@2lp12\#

@2lp#

@2lq12\#

@2lq#

@lp1q25\#

@lp1q1\#

@lp1q12\#

@lp1q# D .

Then we have M1(u)5F(u)M̃1 , M2(u)5G(u)„M̃22H(u)…, where

F~u!ª
@u#@u12\#2@u14\#

@23\#2@\#2 ,

G~u!ª
@u2\#@u#2@u1\#@u12\#@u13\#2@u14\#

@23\#4@\#4 , ~2.4!

and

H~u!ª
@u16\#@u23\#@2\#

@u#@u13\#@6\#
.
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In Sec. VI, we introduce a space of Weyl group-invariant theta functions, which are pres
by the actions of the difference operators. ForbPh* , we introduce the following operatorsStb ,
Sb acting on the functions onh* :

~Stb f !~l!ªexp@2p i „~l,b!1t~b,b!/2…# f ~l1tb!,

~Sb f !~l!ª f ~l1b!.

They satisfy Heisenberg’s relations,

SbSg5SgSb , StbStg5StgStb , SgStb5e2p i ~g,b!StbSg ~2.5!

~g,b,Ph* !.

Let Q∨, P∨ be the coroot and coweight lattice, respectively. LetW,GL(h* ) denote the Weyl
group for ~g,h!. Let ThW be a space ofW-invariant theta functions, defined by

ThW
ªH f is a holomorphic function overh* USta f 5Sa f 5 f ~;aPQ∨!

f ~wl!5 f ~l! ~;wPW!
J .

It is well known that the space is spanned by the level one characters of the affine Lie a
sp̂(4,C), and the dimension of this space is three.

Theorem 2: We have

M̃d~ThW!,ThW ~d51,2!.

The corresponding facts in the case of theA type are proved in Refs. 21 and 3.

III. THE Cn
„1…-FACE MODEL

Fix an integern>2. We review the definition of theCn
(1)-face model given in Ref. 6. We

realize the root systemR of the typeCn as

Rª$6~e j6ek!,62e l u1< j ,k<n,1< l<n%,

where$e j% j 51
n is a basis of a complex vector space denoted byh* with a bilinear form~,!, defined

by

~e j ,ek!ª
1
2d jk .

The vector spaceh* can be identified with the dual space of a Cartan subalgebrah of the simple
Lie algebrasp(2n,C). The fundamental weightsÃ j (1< j <n) are given byÃ j5e11e21¯

1e j . Let P denote the set of weights that belongs to the vector representationL(Ã1) of
sp(2n,C). We have

P5$6e1 ,6e2 ,...,6en%.

Note that the multiplicity of the weights inP are all one.
We shall use the following notation frequently:

P̂ª2\P and p̂ª2\p ~pPP!.

The Boltzmann weights are given by a set of functions of spectral parameteruPC defined for
any square
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S l m

k n
D

of elements ofh* . Let us denote the functions by

WS l m

k n
UuD .

They satisfy the condition

WS l m

k n
UuD 50, unless m2l,n2m,k2l,n2kPP̂.

For p, q, r, sPP such thatp1q5r 1s, we will write

s

p
un
r

q5WS l l1 p̂

l1 ŝ l1 p̂1q̂
UuD .

They are explicitly given as follows:

p

p
un
p

p5
@c2u#@u1\#

@c#@\#
, ~3.1!

p

p
un
q

q5
@c2u#@lp2q2u#

@c#@lp2q#
~pÞ6q!, ~3.2!

p

q
un
q

p5
@c2u#@u#@lp2q1\#

@c#@\#@lp2q#
~pÞ6q!, ~3.3!

p

q
un

2p
2q52

@u#@lp1q1\1c2u#

@c#@lp1q1\#

@2lp12\#

@2lq#

P rÞ6p@lp1r1h#

P rÞ6q@lq1r #
~pÞq!, ~3.4!

p

p
un

2p
2p5

@c2u#@2lp1\2u#

@c#@2lp1\#
2

@u#@2lp1\1c2u#

@c#@2lp1\#

@2lp12\#

@2lp# )
qÞ6p

@lp1q1\#

@lp1q#
.

~3.5!

The crossing parameter cin the above formulas are fixed to be

cª2~n11!\. ~3.6!

Proposition 1: The Boltzmann weights (3.1),(3.2),(3.3),(3.4),(3.5) enjoy the following pro
ties.

Initial condition:

(
h

WS l m

k n
U0D 5dmk . ~3.7!
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Inversion relation:

(
h

WS l h

k n
U2uDWS l m

h n
U2uD 5dmk

@c1u#@c2u#@\1u#@\2u#

@c#2@\#2 . ~3.8!

Crossing symmetry:

WS l m

k n
UuD 5

g~l,k!

g~m,n!
WS k l

n m
Uc2uD , ~3.9!

where we put

g~l,m!ª@2mp# )
qPP

qÞ6p

@mp1q# ~m5l1 p̂,pPP!.

Reflection symmetry:

WS l m

k n
UuD 5

g~l,k!g~k,n!

g~l,m!g~m,n!
WS l k

m n
UuD . ~3.10!

Proof: The equation~3.7! is trivial. The two types of symmetries~3.9!, ~3.10! are easily
checked by the explicit form. In the case ofl5n the equation~3.8! is reduced to the following:

(
r PP

@lp1l r1\1c2u#@lq1l r1\1c1u#

@lp1l r1\#@lq1l r1\#
Glr

5dp,q

@c2u#@c1u#@2lp#@2lq12\#

@\#2@2lp1\#2 Glp
211

@c1u#@2lp1\1u#@lp1lq1\1c2u#

@u#@2lp1\#@lp1lq1\#

2
@c2u#@2lq1\2u#@lp1lq1\1c1u#

@u#@2lq1\#@lp1lq1\#
. ~3.11!

Here we denote byGlp the following function:

Glpª2
@2lp12\#

@2lp# )
r PP

rÞ6p

@lp1r1\#

@lp1r #
~pPP!. ~3.12!

One can find a proof of the equation~3.11! in Ref. 6 @see~3.5! and Lemma 3#. The casesn5l
12p̂(pPP) are trivial. The remaining cases are easily checked by using the followingthree-term
identity:

@u1x#@u2x#@v1y#@v2y#2@u1y#@u2y#@v1x#@v2x#5@x1y#@x2y#@u1v#@u2v#
~3.13!

(u,v,x,yPC). h

We adopted a slightly different formulas~3.3!,~3.4! from the original ones@see~A1!,~A2!# in
Ref. 6. In the Appendix, we will give a similarity transformation~A3!,~A4! which transforms our
Boltzmann weights into the original ones. Thus, one has a way to prove the YBE for our B
mann weights, since such a transformation does not destroy the varidity of the YBE. If we f
this track, however, we must specify the arguments of the square roots contained in the e
sions of the original formulas and the transformation. This way of proof may require a r
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complicated discussion. In this paper, we will give a proof of the YBE for our Boltzmann wei
directly without using the similarity transformation. In fact, our proof here goes quite parall
the proof given in Ref. 6.

Theorem 3: The Boltzmann weights

WS l m

k n
UuD

(3.1),(3.2),(3.3),(3.4),(3.5) solve theYBE (2.3) for d5d85d951.

Proof : Set

X~l,m,n,k,s,ruu,v !ª(
h

WS r h

s k
UuDWS l m

r h
Uu1v DWS m n

h k
Uv D , ~3.14!

Y~l,m,n,k,s,ruu,v !ª(
h

WS l h

r s
Uv DWS h n

s k
Uu1v DWS l m

h n
UuD , ~3.15!

and

Z~l,m,n,k,s,r,uu,v !ªX~l,m,n,k,s,ruu,v !2Y~l,m,n,k,s,ruu,v !. ~3.16!

RegardingZ(l,m,n,k,s,ruu,v) as a function ofu, we denote it byZ(u).
The equations~3.7! and ~3.8! imply Z(0)5Z(2v)50. Since we have

Z~l,m,n,k,s,ruu,v !52
g~l,r!

g~n,k!
Z~r,l,m,n,k,suc2u2v,u! ~3.17!

by ~3.9!, this showsZ(c2v)5Z(c)50 also. Thus, we have found the four zeros atu50,
2v,c,c2v of Z(u). By the exactly same argument in Ref. 6 using the quasiperiodicity prop
of Z(u), ~3.17!, and the following symmetry@this follows from ~3.10!#:

Z~l,m,n,k,s,ruu,v !5
g~l,r!g~r,s!g~s,k!

g~l,m!g~m,n!g~n,k!
Z~l,r,s,k,n,muv,u!,

we can reduce the proof of the YBE to the following two special cases:

Z~l,l1 p̂,l1 p̂1q̂,l1 p̂1q̂1 r̂ ,l1q̂1 r̂ ,l1 r̂ uu,v !50, ~3.18!

whererÞ6p,6q,pÞ6q and

Z~l,l1 p̂,l,l1 p̂,l,l1 p̂uu,v !50. ~3.19!

In the case of the equation~3.18!, each side of the YBE contains only one term, and they
manifestly the same. A proof of the last case~3.19! can be found in the original literature.6

However, since the proof is brief and seems to contain some typographical errors, we will de
details of it in the following for the readers’ convenience.

We will prove Z(l,l1 p̂,l,l1 p̂,l,l1 p̂uu,v)50. Regarding Y(l,l1 p̂,l,l1 p̂,l,l
1 p̂uu,v) as a function oflp , we denote it byf (lp). It reads as
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f ~lp!5Glp

@u#@v#@w#

@c#3 (
qPP

@lq1lp1\1ũ#@lq1lp1\1 ṽ#@lq1lp1\1w̃#

@lq1lp1\#3 Glq

1Glp
21 @ ũ#@ ṽ#@w̃#

@c#3

@2lp1\2u#@2lp1\2v#@2lp1\2w#

@2lp1\#3

1 (
cyclic

@u#@ ṽ#@w̃#

@c#3

@2lp1\1ũ#@2lp1\2v#@2lp1\2w#

@2lp1\#3

1Glp (
cyclic

@ ũ#@v#@w#

@c#3

@2lp1\2u#@2lp1\1 ṽ#@2lp1\1w̃#

@2lp1\#3 ,

where we putw5c2u2v, ũ5c2u, ṽ5c2v, w̃5c2w and the summation(cyclic is over the
cyclic permutations of the three variables (u,v,w). From the explicit form, one can see th
X(l,l1 p̂,l,l1 p̂,l,l1 p̂uu,v)5 f (2lp2\). We will prove f (lp)5 f (2lp2\).

Now consider a function,

F~z!ª
@z1lp1\1ũ#@z1lp1\1 ṽ#@z1lp1\1w̃#

@z1lp1\#3

@0#8

@\#

@2z12\#

@2z1\# )
qPP

@z1lq1\#

@z1lq#
.

One sees thatF(z) is a doubly periodic function of the periods 1 andt. Its poles are located a
z52lp2h, lq(qPP), 2\/21v„v50,1/2,t/2,~11t!/2…. The pole atz52lp2\ is of the second
order, and the others are simple.

Let f i(lp)( i 51,2,3,4) denote theith term of the above functionf (lp). Since we have

Res
z5lq

F~z!dz52
@lq1lp1\1ũ#@lq1lp1\1 ṽ#@lq1lp1\1w̃#

@lq1lp1\#3 Glq
,

the relation( ResF(z)dz50 implies f 1(lp)5a(lp)1b(lp), where we set

a~lp!ªGlp

@u#@v#@w#

@c#3 (
v

Res
z52\/21v

F~z!dz, ~3.20!

b~lp!ªGlp

@u#@v#@w#

@c#3 Res
z52lp2\

F~z!dz. ~3.21!

Here the summation(v is over the half-periodsv50,1/2,t/2,~11t!/2.
From ~2.2! and ~3.6!, we have, forv50,1/2,t/2,~11t!/2.

Res
z52\/21v

F~z!dz5
1

2

Flp1
\

2
1v1ũGFlp1

\

2
1v1 ṽ GFlp1

\

2
1v1w̃G

Flp1
\

2
1vG3 e2p i j~v!,

~3.22!

where we putj~0!5j~1
2!50, j(t/2)5j„(11t)/2…5c. Combining~3.20!, ~3.22!, and Lemma 3 in

Ref. 6, we can verify

a~lp!1 f 4~lp!2 f 2~2lp2\!52a~2lp2\!1 f 2~lp!2 f 4~2lp2\!50. ~3.23!

Setf(u)5(d/du)log@u#, then the residue Resz52lp2\ F(z)dz can be expressed as
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Res
z52lp2\

F~z!dz5Glp
21 @ ũ#@ ṽ#@w̃#

@0#8@\#2

@2lp12\#@2lp#

@2lp1\#2

3S (
cyclic

f~ ũ!23f~2lp!13f~2lp1\!1f~\!

1 (
qPP

qÞ6p

$f~2lp1lq!2f~2lp1lq2\!% D . ~3.24!

Sincef(u) is an odd function, we have, from~3.21! and ~3.24!,

b~lp!2b~2lp2\!523
@u#@v#@w#

@c#3

@ ũ#@ ṽ#@w̃#

@0#8@\#2

@2lp12\#@2lp#

@2lp1\#2

3$f~2lp!1f~2lp12\!22f~2lp1\!%. ~3.25!

On the other hand, using the identity@see~3.13!#

@2lp1\1ũ#@2lp1\2v#@2lp1\2w#2@2lp1\2ũ#@2lp1\1v#@2lp1\1w#

5@ ũ#@v#@w#
@4lp12\#

@2lp1\#
,

and its cyclic permutations of (u,v,w), we have

f 3~lp!2 f 3~2lp2\!53
@u#@v#@w#@ ũ#@ ṽ#@w̃#

@c#3

@4lp12\#

@2lp1\#4 . ~3.26!

Now from ~3.25! and ~3.26!, we have

b~lp!1 f 3~lp!5b~2lp2\!1 f 3~2lp2\!, ~3.27!

where we used the following identity~Lemma 4 in Ref. 6!:

f~u1\!1f~u2\!22f~u!5
@\#2@2u#@0#8

@u#2@u2\#@u1\#
.

Combining~3.23! and ~3.27!, we obtainedf (lp)5 f (2lp2h). h

IV. PATH SPACE AND FUSION PROCEDURE

In the previous section we introduced the Boltzmann weightsW(u) of the type~1,1! and
proved that they satisfy the YBE. In what follows, we treat only the case ofn52. To construct
commuting difference operators, we need the general types of the Boltzmann weightsWdd8(u),
which we call the fused Boltzmann weights.

First let us introduce the notion of the path space. Letd51,2. For anyuPC andl,mPh* such
that m2lP2\Pd , we introduce a formal symbol,

gl
m~u!ªH el

m~u! :d51,

f l
m~u! :d52.

See~2.1! for the notationP1 andP2 . We define the complex vector space,
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P̂~Ãd
u!l

m
ªH Cgl

m~u! :m2lP2\Pd ,

0 :otherwise,

for eachuPC, and thespace of pathsfrom l to m of the type (d1 ,...,dk ;u1 ,...,uk),

P̂~Ãd1

u1^¯^ Ãdk

uk!l
n
ª %

m1 ,...,mk21Ph*

P̂~Ãd1

u1!l
m1^ P̂~Ãd2

u2!m1

m2^¯^ P̂~Ãdk

uk!mk21

n . ~4.1!

The following set:

$gl
m1~m1! ^ gm1

m2~u2! ^¯^ gmk21

n ~uk!um i2m i 21P2\Pd~1< i<k!,m05l,mk5n%,

of pathsforms a basis of the space~4.1!. Set also

P̂~Ãd1

u1^¯^ Ãdk

uk!lª %
nPh*

P̂~Ãd1

u1^¯^ Ãdk

uk!l
n

and

P̂~Ãd1

u1^¯^ Ãdk

uk!ª %
lPh*

P̂~Ãd1

u1^¯Ãdk

uk!l .

In the following, we will construct the linear operators:

Wdd8~u2v !:P̂~Ãd
u

^ Ãd8
v !˜P̂~Ãd8

v ,^ Ãd
u!,

which satisfy the following YBE (d,d8,d951,2):

„id^ Wdd8~u2v !…„Wdd9~u2w! ^ id…„id^ Wd8d9~v2w!…

5„Wd8d9~v2w! ^ id…„id^ Wdd9~u2w!…„Wdd8~u2v ! ^ id…

:P̂~Ãd
u

^ Ãd8
v

^ Ãd9
w

!˜P̂~Ãd9
w

^ Ãd8
v

^ Ãd
u!. ~4.2!

First we define a linear operatorW(Ã1
u ,Ã1

v):P̂(Ã1
u

^ Ã1
v)˜P̂(Ã1

v
^ Ã1

u) by

W~Ã1
u ,Ã1

v!el
m~u! ^ em

n ~v !ª (
kPh*

WS l m

k n
Uu2v D el

k~v ! ^ ek
n~u!.

Put W11(u2v)ªW(Ã1
u ,Ã1

v), then the YBE~4.2! for d5d85d951 is nothing but~2.3!.
To constructWdd8(u2v) other thanW11(u2v), we will formulate the fusion procedure. Pu

W~Ã1
u1^ Ã1

u2^¯^ Ã1
uk,Ã1

v!ªW1,2~Ã1
u1,Ã1

v!W2,3~Ã1
u2,Ã1

v!¯Wk,k11~Ã1
uk,Ã1

v!

:P̂~Ã1
u1^ Ã1

u2^¯^ Ã1
uk^ Ã1

v!˜P̂~Ã1
v

^ Ã1
u1^ Ã1

u2
¯^ Ã1

uk!,
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where

We also put

W~Ã1
u1^ Ã1

u2^¯^ Ã1
uk,Ã1

v1^ Ã1
v2^¯^ Ãv l !

ª )
1< j < l

—

W~Ã1
u1^ Ã1

u2^¯^ Ã1
uk,Ã1

v j !@ j ,k1 j #

:P̂~Ã1
u1^¯^ Ã1

uk^ Ã1
v1^¯^ Ã1

v l !˜P̂~Ã1
v1^¯^ Ã1

v l ^ Ã1
u1^¯^ Ã1

uk!,

where

We will realize the spaceP̂(Ã2
u) as a subspace ofP̂(Ã1

u
^ Ã1

u2\). For this purpose, let us
introduce thefusion projectorpÃ

2
u by specializing the parameter inW(Ã1

u ,Ã1
v):

pÃ
2
uªW~Ã1

u2\ ,Ã1
u!:P̂~Ã1

u2\
^ Ã1

u!˜P̂~Ã1
u

^ Ã1
u2\!. ~4.3!

Lemma 1: The spacepÃ
2
u(P̂(Ã1

u2\
^ Ã1

u)l) has a basis$ f̄ l
l1 r̂(u)%r PP2

, given by

f̄ l
l1 p̂1q̂~u!ª@lp2q1\#el

l1 p̂~u! ^ el1 p̂
l1 p̂1q̂~u2\!1@lq2p1\#el

l1q̂~u! ^ el1q̂
l1 p̂1q̂~u2\!,

~4.4!

where p56e1 , q56e2 , and

f̄ l
l~u!ª (

pPP1

@2lp12\#el
l1 p̂~u! ^ el1 p̂

l ~u2\!. ~4.5!

Proof : For p,qPP1 , qÞ6p, we have

pÃ
2
u„el

l1 p̂~u2\! ^ el1 p̂
l12p̂~u!…5S p

p
2\n

p
pD el

l1 p̂~u! ^ el1 p̂
l12p̂~u2h!50,
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pÃ
2
u„el

l1 p̂~u2\! ^ el1 p̂
l1 p̂1q̂~u!…5S p

p
2\n

q
qD el

l1 p̂~u! ^ el1 p̂
l1 p̂1q̂~u2\!

1S q

p
2\n

p
qD el

l1q̂~u! ^ el1q̂
l1 p̂1q̂~u2\!

5
@22\#

@23\#@lp2q#
„@lp2q1\#el

l1 p̂~u! ^ el1 p̂
l1 p̂1q̂~u2\!

1@lq2p1\#el
l1q̂~u! ^ el1q̂

l1 p̂1q̂~u2\!…,

and

pÃ
2
u„el

l1 p̂~u2\! ^ el1 p̂
l ~u!…5 (

r PP1
S r

p
2\n
2r

2pD el
l1 r̂~u! ^ el1 r̂

l ~u2\!

5
@2\#@lp1q2\#@lp2q2\#

@23\#@lp1q#@lp2q#@2lp#

3S (
r PP1

@2l r12\#el
l1 r̂~u! ^ el1 r̂

l ~u2\! D .

Here we have used the three-term identity~3.13!. h

Thus, we know the subspacepÃ
2
u„P̂(Ã1

u2\
^ Ã1

u)l… is naturally isomorphic to the spac

P̂(Ã2
u)l . In the following, we will identify the image Im(pÃ

2
u),P̂(Ã1

u
^ Ã1

u2\) with the space

P̂(Ã2
u) via f̄ l

m(u)↔ f l
m(u).

Proposition 2: Define the operators W˜
dd8(u2v) by

W̃21~u2v !ªW~Ã1
u

^ Ã1
u2\ ,Ã1

v!, W̃12~u2v !ªW~Ã1
u ,Ã1

v
^ Ã1

v2\! ~4.6!

and

W̃22~u2v !ªW~Ã1
u

^ Ã1
u2\ ,Ã1

v
^ Ã1

v2h!.

We have

W̃dd8~u2v !„P̂~Ãd
u

^ Ãd8
v !l

m
…,P̂~Ãd8

v
^ Ãd

v!l
m .

Proof : From the definition ofpÃ
2
u ~4.3! and the YBE~2.3!,

W1,2~u2v !W2,3~u2v2\!~pÃ
2
u^ id!5~id^ pÃ

2
u!W1,2~u2v2\!W2,3~u2v !. ~4.7!

Applying this to the definition ofW̃21(u2v), we get

W̃21~u2v !„P̂~Ã2
u

^ Ã1
v!l

m
…,P̂~Ã1

v
^ Ã2

u!l
m .

By a same argument, we have

W2,3~u2v1\!W1,2~u2v !~ id^ pÃ
2
u!5~pÃ

2
u^ id!W2,3~u2v !W1,2~u2v1\!, ~4.8!

and
                                                                                                                



ll

4561J. Math. Phys., Vol. 40, No. 9, September 1999 Communting difference operators arising . . .

                    
W̃12~u2v !„P̂~Ã1
u

^ Ã2
v!l

m
…,P̂~Ã2

v
^ Ã1

u!l
m .

Together with the equations~4.7!, ~4.8! and the definition ofW̃22(u2v), we obtain

W̃22~u2v !„P̂~Ã2
u

^ Ã2
v!l

m
…,P̂~Ã2

v
^ Ã2

u!l
m .

h

We denote byWdd8(u2v) the restricted operatorsW̃dd8(u2v)uP̂(Ã
d
u

^ Ã
d8
v ) and introduce their

matrix coefficients by the following equation:

Wdd8~u2v !gl
m~u! ^ gm

n ~v !5 (
kPh*

Wdd8S l m

k n
Uu2v D gl

k~v ! ^ gk
n~u!.

By the construction, the operatorsWdd8(u2v) clearly satisfies the YBE~4.2! in operator form,
and their coefficients

Wdd8S l m

k n
Uu2v D

satisfies the YBE~2.3!. For p,r PPd ands,qPPd8 (d,d851,2) such thatp1q5r 1s, we write
for brevity ~as long as confusion does not arise!

s

p
un
r

q5Wdd8S l l1 p̂

l1 ŝ l1 p̂1q̂
UuD . ~4.9!

We calculate the coefficients of the operatorW21(u) as an example. In what follows, we wi
often omit the dependence ofgl

m(u)PP̂(Ãd
u) on u ~the spectral parameter! for brevity. Let p

PP1 . From the definitions off l
l ~4.5! andW̃21 ~4.6!, we have

W21~u! f l
l

^ el
l1 p̂5W̃21~u! f l

l
^ el

l1 p̂

5W̃21~u!S (
r PP1

@2l r12\#el
l1 r̂

^ el1 r̂
l

^ el
l1 p̂D

5 (
qPP1

el
l1q̂

^ S (
s,tPP1

s1t5p2q

Vq~l;s,t;u!el1q̂
l1q̂1 ŝ

^ el1q̂1 ŝ
l1 p̂ D ,

where we denote byVq(l;s,t;u) the following function:

(
r PP1

@2l r12\#W11S l l1 r̂

l1q̂ l1q̂1 ŝ
UuDW11S l1 r̂ l

l1q̂1 ŝ l1 p̂
Uu2\ D .

If qPP1 such thatqÞ6p, then the functionsVq(l;s,t;u) vanish except for (s,t)5(p,
2q) or (2q,p), and one can easily show that

Vq~l;p,2q;u!

@~l1q̂!p1q1\#
5

Vq~l;2q,p;u!

@~l1q̂!2q2p1\#
. ~4.10!

This equation implies that the vector

Vq~l;p,2q;u!el1q̂
l1q̂1 p̂

^ el1q̂1 p̂
l1 p̂

1Vq~l;2q,p;u!el1q̂
l

^ el
l1 p̂
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is proportional tof l1q̂
l1 p̂ and its coefficient@the both-hand sides of~4.10!# is calculated as

@u2\#@u1\#@u13\#@2\#

@23\#2@\#2

@lq2p2\2u#@2lq12\#

@lq2p2\#@lq1p1\#
,

by using the three-term identity~3.13!. This function is labeled by@see~4.9!#

q

0
un

p2q
p ~qÞ6p!.

Let us consider the term forq5p. For all sPP1 we have from the three-term identity,

Vp~l;s,2s;u!

@2~l1 p̂!s12\#
5

@u2\#@u1\#@u13\#

@23\#2@\#

@u1\#

@\# )
r PP1
rÞ6p

@lp1r12\#

@lp1r1\#
. ~4.11!

The right-hand side of this equation is independent ofsPP1 . Thus, we see that the vector,

(
sPP1

Vp~l;s,2s;u!el1 p̂
l1 p̂1 ŝ

^ el1 p̂1 ŝ
l1 p̂ ,

is proportional tof l1 p̂
l1 p̂ and its coefficient is equal to the right-hand side of~4.11!, which is labeled

by

p

0
un
0

p.

Here we write all fused Boltzmann weights@the coefficients of the operatorW21(u)]. They
are obtained by the three-term identity~3.13!. We assume thatp,qPP1 satisfy pÞ6q. The
common factor@u2\#@u1\#@u13\#@23\#22@\#21 is dropped:

q

p1q
un

p1q
q5

@u12\#

@\#
,

q

p2q
un

p2q
q5

@u#

@\#

@2lq12\#

@2lq#

@lp2q2\#

@lp2q1\#
,

q

0
un
0

q5
@u1\#

@\# )
r PP1
rÞ6q

@lq1r12\#

@lq1r1\#
, ~4.12!

q

q2p
un
0

p5
@lq2p2u#@lq1p12\#

@2lp#@lq2p1\#
, ~4.13!

q

0
un

p2q
p5

@2\#

@\#

@2lq2p2\2u#@2lq12\#

@2lq2p2\#@lq1p1\#
, ~4.14!
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q

p1q
un

p2q
2q5

@2\#

@\#

@2lq2u#@lp2q2\#

@2lq#@lp1q1\#
.

Next, we give the example ofW12. In this case, the common factor@u#@u12\#@u14\#
@23\#22@\#21 is dropped. To obtain them, we use only the three-term identity~3.13!:

p1q

p
un
p

p1q5
@u13\#

@\#
,

q2p

p
un
p

q2p5
@u1\#

@\#

@2lp22\#

@2lp#

@lq2p12\#

@lq2p#
,

0

p
un
p

05
@u12\#

@\# )
r PP1
rÞ6p

@lp1r2\#

@lp1r #
, ~4.15!

0

p
un
q

q2p5
@lp2q22\2u#@lp1q2\#

@2lp#@lq2p#
,

p2q

p
un
q

05
@2\#

@\#

@lp2q2\2u#@2lq22\#

@lq2p#@lp1q#
,

p1q

p
un

2p
q2p5

@2\#

@\#

@2lp2\2u#@lp1q12\#

@2lp#@lq2p#
.

Finally, we give the example ofW22. They are equivalent to the Boltzmam weights associa
to the vector representation of the typeB2 Lie algebra~see Ref. 6!. We write only two cases as a
example, which is used to define the difference operatorM2(u). We will drop the common factor
G(u) ~2.4! here:

0

p1q
un

p1q
05

@lp1q2\#

@lp1q1\#
, ~4.16!

0

0
un
0

05
@2\#

@6\# S (
r 56e1
s56e2

@2l r12\#@2ls12\#

@2l r #@2ls#

@l r 1s25\#@l r 1s12\#

@l r 1s#@l r 1s1\#
2

@u16\#@u23\#

@u#@u13\# D .

~4.17!

The formulas~4.15!, ~4.16!, and~4.17! together give the explicit form ofM̃d @Theorem 1~ii !#.
We explain how to calculate the fused Boltzmann weight

0

0
un
0

0.
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According to the definition of the operatorW22(u) and the vectorf l
l ~4.5!, the coefficient of

W22(u) f l
l

^ f l
l with respect tof l

l
^ f l

l is equal to

1

@2lp12\# (
r PP1

@2l r12\#W21S l l

l1 p̂ l1 r̂
UuDW21S l1 p̂ l1 r̂

l l
Uu1\ D . ~4.18!

In this summation, ifr is equal to2p, then

W21S l l

l1 p̂ l2 p̂
UuD 50,

so that~4.18! can be rewritten as

W21S l l

l1 p̂ l1 p̂
UuDW21S l1 p̂ l1 p̂

l l
Uu1\ D

1 (
qPP1
qÞ6p

@2lq12\#

@2lp12\#
W21S l l

l1 p̂ l1q̂
UuDW21S l1 p̂ l1q̂

l l
Uu1\ D .

By means of~4.12!, ~4.13!, and~4.14!, this function is equal to

@u2\#@u#@u1\#@u12\#@u13\#@u14\#@2\#

@23\#3@\#4

3S @u1\#@u12\#

@2\#@23\# )
qPP1
qÞ6p

@lp1q2\#@lp1q12\#

@lp1q#@lp1q1\#

1
@\#

@23\# (
qPP1
qÞ6p

@2lq22\#

@2lq#

@lp1q12\1u#@lp1q2\2u#@lp2q2\#

@lp1q#@lp1q2\#@lp2q1\# D .

To obtain the formula~4.17!, we use the following lemma.
Lemma 2: For any pPP1 , we have

@u1\#@u12\#

@2\#@23\# )
qPP1
qÞ6p

@lp1q2\#

@lp1q#

@lp1q12\#

@lp1q1\#

1
@\#

@23\# (
qPP1
qÞ6p

@2lq22\#

@2lq#

@lp1q12\1u#@lp1q2\2u#@lp2q2\#

@lp1q#@lp1q2\#@lp2q1\#

5
@u#@u13\#

@6\#@23\# (
r 56e1
s56e2

@2l r12\#@2ls12\#

@2l r #@2ls#

@l r 1s25\#@l r 1s12\#

@l r 1s#@l r 1s1\#
1

@u16\#@u23\#

@6\#@u13\#
.

~4.19!

Proof: Let f (lp) be ~the left-hand side!2~the right-hand side! of ~4.19!, regarded as a func
tion of lp . It is doubly periodic function of the periods 1,t. Let us show that it is entire. The
apparent poles off (lp) are located at

lp5lq , lp5lq6h~p,qPP1 ,p1qÞ0!, lp50~pPP1!.
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Note that the left-hand side of~4.19! is clearly invariant underlq°2lq , and the right-hand side
is W invariant. In view of the symmetry, it suffices to check the regularity atlp5lq , lp5lq

2\, andlp50. By the three-term identity~3.13!, it is easy to see that the residue off (lp) at
lp5lq2\ vanishes. Manifestly, the pointlp5lq andlp50 is regular.

Now we have proved thatf (lp) is independent oflp . We will show f (2lq22\)50. This
can be directly checked by using the identity~3.13! twice, and the proof completes. h

V. COMMUTATIVITY OF THE DIFFERENCE OPERATORS

This section is devoted to the proof of commutativity of the difference operators@Theorem
1~i!#. For tPPd1Pd8 we will introduce the matricesAt(luu,v), Bt(luv,u) whose index set is
I tª$(p,q)PPd3Pd8up1q5t%:

At~luu,v !~r ,s!
~p,q!

ªWd2S l l1 p̂

l l1 r̂
UuDWd82S l1 p̂ l1 t̂

l1 r̂ l1 t̂
Uv D ,

Bt~luv,u!~r ,s!
~p,q!

ªWd82S l l1q̂

l l1 ŝ
Uv DWd2S l1q̂ l1 t̂

l1 ŝ l1 t̂
UuD .

With these matrices, we can write down both the left- and right-hand sides as

Md~u!Md8~v !5 (
tPPd1Pd8

tr At~luu,v !Tt̂ , Md8~v !Md~u!5 (
tPPd1Pd8

tr Bt~luv,u!Tt̂ .

Let us also define the matrixWt(luu2v) with the same index set:

Wt~luu2v !~r ,s!
~p,q!

ªWdd8S l l1 p̂

l1 ŝ l1 t̂
Uu2v D .

The YBE ~2.3! implies

Wt~luu2v !At~luu,v !5Bt~luv,u!Wt~luu2v !.

By the inversion relation~3.8!, it can be seen thatWt(luu2v) is invertible for genericu,vPC. It
follows that trAt(luu,v)5tr Bt(luv,u) for all u,vPC. Hence, we haveMd(u)Md8(v)
5Md8(v)Md(u) for all u,vPC.

VI. SPACE OF WEYL GROUP-INVARIANT THETA FUNCTIONS

This section is devoted to the proof of Theorem 2. LetQ∨, P∨ be the coroot and coweigh
lattice, respectively. Under the identificationh5h* via the form~,!, these are given by

Q∨5Z2e1% Z2e2 , P∨5Q∨1Z~e11e2!.

Lemma 3: For allbPP∨ and d51,2, we have

@Stb ,Md~u!#5@Sb ,Md~u!#50. ~6.1!

Proof: Note that if p,qPP1 (qÞ6p) and bPP∨ then bp1qPZ. By the quasiperiodicity
~2.2!, we have

@~l1tb!p1q2\#

@~l1tb!p1q#
5e2p ibp1q\

@lp1q2\#

@lp1q#
,

@~l1b!p1q2\#

@~l1b!p1q#
5

@lp1q2\#

@lp1q#
.

Using these equations, we have, for allpPP1 ,
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Stb )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂f ~l!5e2p i „~l,b!1t~b,b!/2… )

qÞ6p

@~l1tb!p1q2\#

@~l1tb!p1q#
f ~l1tb1 p̂!

5e2p i ~~l,b!1t~b,b!/212bp\! )
qÞ6p

@lp1q2\#

@lp1q#
f ~l1tb1 p̂!

5 )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂Stb f ~l!,

and

Sb )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂f ~l!5 )

qÞ6p

@~l1b!p1q2\#

@~l1b!p1q#
f ~l1b1 p̂!

5 )
qÞ6p

@lp1q2\#

@lp1q#
f ~l1b1 p̂!

5 )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂Sb f ~l!.

Note that 2bp\5( p̂,b), etc. Hence, we have@Stb ,M1(u)#5@Sb ,M1(u)#50. In the same way,
we can see that the principal part ofM̃2 commutes withStb andSb , using the equations

@~l1tb!p1q2\#

@~l1tb!p1q1\#
5e2p i ~2bp1q\!

@lp1q2\#

@lp1q1\#
,

@~l1b!p1q2\#

@~l1b!p1q1\#
5

@lp1q2\#

@lp1q1\#
.

Using ~2.2! it is easy to see that the function,

Cp,q~l!ª
@2\#

@6\#

@2lp12\#

@2lp#

@2lq12\#

@2lq#

@lp1q25\#

@lp1q1\#

@lp1q12\#

@lp1q#
~p,qPP1 ,p1qÞ0!,

satisfies Cp,q(l1b)5Cp,q(l1tb)5Cp,q(l)(;bPP∨). This means thatStb , Sb (bPP∨)
commute with a multiplication byCp,q(l). h

Lemma 4: For allgPP∨, we have

StgThW,ThW, SgThW,ThW. ~6.2!

Proof : Let f PThW and gPP∨. Since the bilinear form~,! is W invariant, we have
(Stg f )(wl)5(Stw21(g) f )(l). Using ~2.5!, we can write this as (StgSt(w21(g)2g) f )(l), which is
equal toStg f (l) in view of w21(g)2gPQ∨. In the same way, we can show that (Sg f )(wl)
5(Sg f )(l).

Evidently,Stg f andSg f are holomorphic. For allaPQ∨, using~2.5! and~g,a!PZ, it can be
seen that the operatorsSa , Sta commute withSg , Stg . Hence,Stg f or Sg f are fixed bySta and
Sa . h

Here we prove Theorem 2.
Proof of Theorem 2:Let f be any function inThW. In view of ~6.1!, we haveSaM̃df

5StaM̃df 5M̃df for all aPQ∨,P∨. It is clear from the explicit form ofM̃d that M̃df (wl)
5M̃df (l) for all wPW.

Let us show that the functionM̃df is holomorphic onh* . For mPh* andzPC, we denote by
Dm

z the line inh* , defined by

Dm
z
ª$lPh* u~l,m!1z50%.
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The coefficients of the difference operatorsM̃d have their possible simple poles alongD1P∨

1tP∨, where we put

Dª ø
pPR1

Dp
0 ø ø

qPP22$0%

Dq
\ ,

andR1 is a fixed set of positive roots.
Next we will show that for any functionf in ThW, M̃df is regular alongD. Let us consider the

meromorphic functiongª(PpPR1
@lp#) M̃df , which is regular alongD0

ªøpPR1
Dp

0. SinceM̃df

is W invariant, it is clear thatg is W anti-invariant. This implies thatg has zero alongD0 and hence
M̃df is regular alongD0.

The holomorphy alongøqPP22$0%Dq
\ is somewhat nontrivial. Letp56e1 , q56e2 . Clearly,

M̃1f is regular alongDp1q
\ . Let us consider the functionM̃2f . It suffices to show that the

following function is regular alongDp1q
\ :

@lp1q2\#

@lp1q1\#
Tp̂Tq̂f ~l!1

@2\#

@6\#

@2lp12\#

@2lp#

@2lq12\#

@2lq#

@lp1q25\#

@lp1q1\#

@lp1q12\#

@lp1q#
f ~l!.

We note that, for anyW-invariant functionf, we have (Tp̂Tq̂f 2 f )uD
p1q
\ 50. In view of this, the

residue of the above function alongDp1q
\ is easily seen to vanish. Thus, we have proved that

any functionf in ThW, the functionsM̃df (d51,2) are regular alongD.
For b,gPP∨, we have, by the definitions ofStb , Sg , and~6.1!,

M̃df ~l1bt1g!5e22p i „~l,b!1t~b,b!/2…StbSgM̃df ~l!5e22p i „~l,b!1t~b,b!/2…M̃dStbSg f ~l!.
~6.3!

SinceStbSg f belongs toThW by ~6.2!, M̃dStbSg f is regular alongD. Then~6.3! implies thatM̃df
is regular alongD1bt1g. The proof is completed. h
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APPENDIX: SIMILARITY TRANSFORMATION

Our Boltzmann weights in Sec. III and the original form in Ref. 6 are slightly different.
original form of type~3.3! and ~3.4! are given as follows:

p

q
un
q

p5
@c2u#@u#

@c#@\# S @lp2q1\#@lp2q2\#

@lp2q#2 D 1/2

~pÞ6q!, ~A1!

p

q
un

2p
2q5

@u#@lp1q1\1c2u#

@c#@lp1q1\#
~GlpGlq!1/2 ~pÞq!. ~A2!

All the other Boltzmann weights@~3.1!,~3.2!,~3.5!# are the same as the ones we adopted in Sec
We denote these weights by
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WJMOS l m

k n
UuD .

Our Boltzmann weights are obtained from those by the following way. We introduce an ord
on the setP as

e1ae2a¯aena2ena¯a2e2a2e1 .

For l,mPh* , such thatm2l5q̂P2\P, we define the functions(l,m) by

s~l,m!ª)
pPP
paq

@lp2q#21/2@mp2q#21/2. ~A3!

The relation between the Boltzmann weightsW in Sec. III and the ones in Ref. 6 is as follows

WS l m

k n
UuD 5

s~l,m!s~m,n!

s~l,k!s~k,n!
WJMOS l m

k n
UuD . ~A4!
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Jordanian quantizations of Lie algebras are studied using the factorizable twists.
For a restricted Borel subalgebraB∨ of sl(N) the explicit expressions are obtained
for the twist elementF, universalR-matrix and the corresponding canonical ele-
mentT. It is shown that the twisted Hopf algebraUF(B∨) is self-dual. The cohomo-
logical properties of the involved Lie bialgebras are studied to justify the existence
of a contraction from the Dinfeld–Jimbo quantization to the Jordanian one. The
construction of the twist is generalized to a certain type of inhomogenious Lie
algebras. ©1999 American Institute of Physics.@S0022-2488~99!02707-3#

I. INTRODUCTION

The thorough formulation of the theory of quantum groups by Drinfeld1 includes two types of
Hopf algebras: triangular~with the universalR-matrix satisfying the relationR21R51) and
quasitriangular~with R21RÞ1). Deformations of universal enveloping of simple Lie algeb
initiated by the quantum inverse scattering method and discovered by Drinfeld and Jim1,2

belong to the latter class. In the framework of the deformation quantization theory3 these quantum
algebras correspond to Lie bialgebras with classicalr-matrix

r DJ5(
i 51

k

t i j Hi ^ H j1 (
aPF1

Ea ^ E2a ,

wherek is the rank,t i j is the inverse Cartan matrix, andF1 is the set of positive roots. Thisr DJ

is one of the multitude of solutions to the classical Yang–Baxter equation. The detailed cl
cation of solutions was performed for simple Lie algebras in Ref. 4, only for some of t
classicalr-matrices the corresponding quantumR-matrices are known explicitly.

Although the existence of quantization for any Lie bialgebra is now proved,5 the explicit
knowledge of theR-matrix as an algebraic elementR or a matrix in some irreducible represe
tations is required in the FRT approach6 and in a variety of applications of quantum groups. O
can mention the universalR-matrix of the quantum algebraUq„sl(2)… ~Ref. 1! which is a building
block for the universalR-matrices for other simple Lie and Kac–Moody algebras. As ab
triangular quantum groups and twistings,7,8 the well-known example is the Jordanian quantizat
of sl~2! or, more exactly, of its Borel subalgebraB1($h,xu@h,x#52x%) with r 5h^ x2x^ h
5h∧x ~Ref. 1! and the triangularR-matrixR5F21F21 defined by the twisting element9,10

F5exp$ 1
2h^ ln ~112jx!%. ~1!

This quantum algebraUj„sl(2)… also found numerous applications from the deformed Heisenb
XXX-spin chain to the quantum Minkowski space~see e.g., Ref. 11! and in a few other cases.12,13
45690022-2488/99/40(9)/4569/18/$15.00 © 1999 American Institute of Physics

                                                                                                                



gested

east
-
n of
n of

a
bset
si-

ation in

s

the
tal

g of

Jorda-
ec. V.
us Lie

and

4570 J. Math. Phys., Vol. 40, No. 9, September 1999 Kulish, Lyakhovsky, and Mudrov

                    
In the present paper we propose various extensions of this twist element. The sug
construction implies the existence~in the universal enveloping algebra to be deformed! of a
subalgebraL with special properties of multiplication. This is a solvable subalgebra with at l
four generators. All simple Lie algebras except sl~2! contain suchL and in any of them a defor
mation induced by twist ofL can be performed. In particular we study a Jordanian deformatio
U„sl(N)…, reaching a closed form of deformed compositions lacking in Ref. 9. Using the notio
factorizible twist,14 we prove that the elementFPU„sl(N)…^ 2,

F5expH 2j (
i 52

N21

E1i ^ EiNe2sJ exp$H ^ s%, ~2!

wherex5E1N , H5E112ENN , s5 1
2 ln (112jx), satisfies the twist equation. Hence, it defines

triangular deformation ofU„sl(N)…. In such Hopf algebras deformed by Jordanian twist the su
of Cartan generators$Eii 2Ej j % with i , j , i , j Þ1,N, remains untouched. Hence there is a pos
bility to perform additional multiparametric deformation using the Reshetikhin twist.15

The main ingredients of the quantum group theory1 are constructed: the universalR-matrix,
the dual Hopf algebra@quantized function algebra on SL(N)#, the universalT-matrix ~canonical
element! for the subalgebra which induces the twist ofU„sl(N)… and the self-duality ofL . Co-
homological interpretation of the interrelation between the Drinfeld–Jimbo~or standard! quantum
algebraUq„sl(N)… and the Jordanian~or nonstandard! oneUj„sl(N)… is discussed. The real form
and the corresponding quantum linear space are given. We present also further generaliz
which the subalgebraL is substituted by a certain type of inhomogeneous Lie algebras.

The connection of the Drinfeld–Jimbo deformation1,2 with the Jordanian deformation wa
already pointed out in Ref. 9. The similarity transformation of the classical matrixr DJ performed
by the operator exp (jadE1N) ~with the highest root generatorE1N) turns r DJ into the sumr DJ

1jr j .9 Hence,

r j52jS H1N∧E1N12 (
k52

N21

E1k∧EkND ~3!

is a classicalr-matrix too, which defines the corresponding deformation. A contraction of
quantum planexy5qyx of Uq„sl(2)… with the above-mentioned transformation in the fundamen
representationM511ur(E1N), u5j(12q)21, results in the Jordanian planex8y85y8x8
1jy82 of Uj„sl(2)….10 Later, this contraction in the fundamental representation of sl~3! and sl(N)
was used in many papers~cf. Refs. 16 and 17 and references therein!. Let us point out that in our
formulas we do not refer to any particular representation of deformed algebras.

The paper is organized as follows. After recalling briefly the basic material on twistin
Hopf algebras~Sec. II!, we construct an extended Jordanian twistF for a four-generator Lie
algebra and apply it to twist the universal enveloping algebraU„sl(N)… ~Sec. III!. The next section
contains a cohomological explanation of the connection between the Drinfeld–Jimbo and
nian quantization. The main objects of the theory of quantum groups are constructed in S
Further generalization of the extended Jordanian twist to a special class of inhomogenio
algebras and possible research topics are given in Sec. VI and in the Conclusion.

II. TWISTING OF HOPF ALGEBRAS

A Hopf algebraA(m,D,e,S) with multiplication m:A^A˜A, coproductD:A˜A^A,
counite:A˜C, and antipodeS:A˜A ~see definitions in Refs. 1, 6, and 18! can be transformed7

with an invertible elementFPA^A, F5( f i
(1)

^ f i
(2) into a twisted oneAt(m,D t ,e,St). This

Hopf algebraAt has the same multiplication and counit maps but the twisted coproduct
antipode:
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D t~a!5FD~a!F21, St~a!5vS~a!v21, v5( f i
~1!S~ f i

~2!!, aPA.

The twisting element has to satisfy the equations

~e ^ id!~F!5~ id^ e!~F!51, ~4!

F12~D ^ id!~F!5F23~ id^ D!~F!, ~5!

where the first one is just a normalizing condition and follows from the second relation mod
nonzero scalar factor.

A quasitriangular Hopf algebraA(m,D,e,S,R) has additionally an elementRPA^A ~a
universalR-matrix! satisfying1

~D ^ id!~R!5R13R23, ~ id^ D!~R!5R13R12. ~6!

The coproductD and its oppositeDop are related by the similarity transformation~twisting! with
R

Dop~a!5RD~a!R21, aPA,

and in this case the relation~5! is just the Yang–Baxter equation.
A twisted quasitriangular quantum algebraAt(m,D t ,e,St ,Rt) has the twisted universa

R-matrix

Rt5t~F!RF21, ~7!

wheret means the permutation of the tensor factors:t( f ^ g)5(g^ f ), t(F)5F21.
Although, in principle, the possibility to quantize an arbitrary Lie bialgebra has been pro5

an explicit formulation of Hopf operations remains a nontrivial task. In particular, the knowle
of the explicit form of the twisting cocycle is a rare case even for classical universal envel
algebras, despite the advanced Drinfeld theory.8 Most of the such explicitly known twisting
elements have the factorization property with respect to comultiplication@cf. ~6!#,

~D ^ id!~F!5F23F13 or ~D ^ id!~F!5F13F23,

and a similar property involving~id^D!. To satisfy the twist equation, these identities are to
combined with additional requirementF12F235F23F12 or the Yang–Baxter equation onF.14,15

An important subclass of factorizable twists consists of elements satisfying the follo
equations:

~D ^ id~F!5F13F23, ~8!

~ id^ D t!~F!5F12F13. ~9!

It is easy to see that the universalR-matrix R satisfies these equations forD t5Dop. Another
well-developed case is the Jordanian twist of sl~2! with F described by~1!.10 Due to the fact that
the Cartan elementh is primitive in sl(2):D(h)5h^ 111^ h, ands is primitive in the Jordanian
Uj„sl(2)…:D t(s)5s ^ 111^ s, one gets

~D ^ id!eh^ s5eh^ 1^ se1^ h^ s,

~ id^ D t!e
h^ s5eh^ s ^ 1eh^ 1^ s.

It will be shown in the next section that the elementF ~2! also satisfies the factorization equatio
~8! and ~9! and can be used to twist the universal enveloping algebra of sl(N).
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Let us mention that the composition of appropriate twists can be definedF5F2F1 . The
elementF1 has to satisfy the twist equation with the coproduct of the original Hopf algebra, w
F2 must be its solution forD t1

of the intermediate Hopf algebra twisted byF1 . In particular, ifF
is a solution to the twist equation~5!, thenF21 satisfies this equation withD˜D t .

III. FACTORIZABLE TWISTS

Now we shall propose a new factorizable twist similar to~1! and defined on the abstract set
generators.

Let L be a four-dimensional Lie algebra with generators$H,A,B,E% containing B1 and
representable in a form of semidirect sum of one-dimensional spaceVH with basic elementH and
a Heisenberg subalgebraH(A,B,E):L5VHxH:

@H, E#52E,

@H, A#5aA, @H, B#5bB, a1b52,
~10!

@E, A#5@E, B#50,

@A, B#5gE.

Extending the twist deformationUt(B1) performed by

F5exp„ 1
2H ^ ln ~11gE!…5eH ^ s

to the universal envelopingU~L !, one gets the twisted algebraUF(L ). It retains the initial multi-
plication defined by~10! while its coproductDF5FDF21 becomes noncocommutative:

DF~H !5H ^ e22s11^ H,

DF~A!5A^ eas11^ A,
~11!

DF~B!5B^ ebs11^ B,

DF~E!5E^ e2s11^ E,

We shall show that the algebraU~L ! allows a more complicated twist deformation containingF as
a factor.

Theorem 1: The element

F5FF15exp~H ^ s! exp~A^ Be22s! ~12!

is a twist forU~L !.
Proof: We shall show thatF5FF1 belongs to the subclass defined by the equations~8! and

~9!. The equation~8! is obviously true:H andA are the primitive elements andB commutes with
s in U~L !. To check the second equation~9! let us consider the coproductsDF(s) andDF(B). It
is known that in twisted~by F! universal enveloping of a Borel subalgebra the elements is
primitive.10 The elements commutes not only withB, but also withA, so s remains primitive
with respect toDF . Using the properties of ‘‘roots’’a2252b, the twisted coproduct ofB can be
written in the following form:

DF~B!5exp„ad~A^ Be2bs!…+exp„ad~H ^ s!…+~B^ 111^ B!

5exp„ad~A^ Be2bs!…+~B^ ebs11^ B!

5exp„ad~A^ Be2bs!…+~B^ ebs!11^ B.
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From ~10! one can see that (adA)2+B50. So the obtained expression can be simplified,

DF~B!5B^ ebs1~11@A,B# ! ^ B5B^ ebs1e2s
^ B.

Now using the coproduct

DF~Be22s!5Be22s
^ e2as11^ Be22s,

one can easily see that

exp„ad~H ^ 1^ s!…+~A^ Be22s
^ e2as!5A^ Be22s

^ 1.

The latter guarantees the validity of the equation~9! for the twisting elementF. d

The deformed algebraUF(L ) has initial commutation relations generated by~10! and twisted
coproducts:

DF~H !5H ^ e22s11^ H22A^ Be~a24!s,

DF~A!5A^ e2bs11^ A,
~13!

DF~B!5B^ ebs1e2s
^ B,

DF~E!5E^ e2s11^ E.

Let us rewrite the twisting elementF in the reverse order:

F5F 1̃F5exp~A^ Be2bs! exp~H ^ s! ~14!

Now we know that bothF andF are twists forU~L ! and both satisfy the equations~8! and ~9!.
HenceF 1̃ is also a twist element with respect to the algebraUF(L ). Using the coalgebra relation
~11!, it is easy to check thatF 1̃ satisfies the general twist equation~5!,

~F 1̃!12~DF ^ id!F 1̃5~F 1̃!23~ id^ DF!F 1̃.

Note that, contrary to the properties ofF andF, this twist (F 1̃) does not belong to the subclas
of factorizable twists defined by the equations~8! and ~9!.

Subalgebras of the typeL exist in a large class of Lie algebras. They can also be found in
simple Lie algebra of rank greater than 1. Such simple algebras contain at least one pair o
l1 andl2 such thatl35l11l2 is also a root. The corresponding generatorsX1 ,X2 ,X3 together
with the Cartan elementH3 dual to the rootl3 form the subalgebra equivalent toL . As we have
shown above such a subalgebra can be twisted with the elementF and the corresponding defor
mation can be extended to the whole algebraU and its twisted versionUF can be thus constructed

We shall demonstrate the deformations generated by these twists in the case of simpl
bras of seriesAN21 . For our purposes it will be convenient to use the canonical basis of gl(N) for
the compositions ofU„sl(N)…

@Eik , Elm#5dklEim2d imElk , i ,k,l ,m51,...N. ~15!

The Cartan elements ofU„sl(N)… will be fixed asHik5Eii 2Ekk .
Let HPL be identified with the Cartan element dual to the highest root of sl(N). This root

will be denoted bylH . Collecting all the pairs of roots with the propertylH5l11l2 one can get
the multiparametric twist of the typeF with
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H5H1N , E5E1N ,
~16!

A5(
k

~a1kE1k1akNEkN!,

B5(
k

~b1kE1k1bkNEkN!,

~17!
$k52,...,N21;amn,bnmPC%.

Here it is convenient to putg52j,

s~E!5 1
2 ln ~112jE!.

In these terms the consistency condition would take the form

@A, B#5e2s2152jE, ~18!

and the only nontrivial commutator ofs with the basic elements ofL is

@H, s#512e22s. ~19!

According to Theorem 1, the element

F5FF15exp~H ^ s! exp~A^ Be22s! ~20!

is twisting for U„sl(N)…. Using the particular properties ofL one can apply the Cambell–
Hausdorff formula to rewrite this twisting element in the following form:

F5exp~A^ Be2s! exp~H ^ s!5exp„H ^ s1A^ Bse22s~12e2s!21
…. ~21!

Note: Any number of factors of the typeF1 can appear in the expression~20!:

F5F)
j

F j5exp~H ^ s!)
j

exp~Aj ^ Bje
22s! ~22!

with Aj andBj as in ~17! and ~16! and subject to the additional conditions

@Aj 1 , Aj 2#5@Bj 1 , Bj 2#50,

while the correlation equation~18! takes the form

@Aj , Bk#5d jk~e2s21!. d ~23!

Using the twist ~20! with the sole factorF1 one gets the maximal number of fre
parameters—the relation~18! imposes the only condition on the coefficientsa’s andb’s,

(
k52

N21

~a1kbkN2akNb1k!52j. ~24!

On the contrary, supplyingF with the maximal number (N22) of factorsF j one gets the (N
22)2 conditions~23!. In particular, one can satisfy (N22)(N23) of these conditions using th
basic relations~15! and the specific choice ofAj andBj ~one rootl j for each factorF j ):

Aj5a1 jE1 j1ajNEjN Bj5~b1 jE1 j1bjNEjN!, ~with no summation onj !. ~25!
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Here the essential relations rest

a1 jbjN2ajNb1 j52j $ j 52,...N21%. ~26!

The equation~24! @as well as~26!# shows that it is natural to renormalize the elementA ~or the
elementsAj ) putting

A52jÃ

so that

@Ã, B#5E.

In these notations the twisting elements

F5exp~H ^ s! exp~2jÃ^ Be22s!, ~27!

F5exp~H ^ s!)
j

exp~2jAj̃ ^ Bje
22s! ~28!

have the trivial limit limj˜0F51. So does the universalR-matrix (R5F21F21) and one can
easily write down the corresponding classicalr-matrices

r 52~H∧E12Ã∧B! ~29!

or

r 52S H∧E12( Ãj∧Bj D . ~30!

Their form clearly indicates that twisting byF corresponds to the quantization of the self-dual L
bialgebra~L ,L*'L ! just as in the case of the Jordanian twist ofB~1!.10,12The same is true for the
twisted Hopf algebraUF(L ), it is self-dual. We shall discuss this property in the next section
prove it in Sec. V where the canonical element will be constructed.

For the special case ofU„sl(N)…, according to Theorem 1, the following form of twistin
elementF can be chosen:

F5exp~H1N^ s! )
j 52

N21

exp~2jE1 j ^ EjNe22s!.

This twist ofU„sl(N)… is generated by the twist ofU~L ! @hereL is the restricted Borel subalgebr
B∨ of sl(N) with the basic elements$H1N ,E1N ,E1 j ,EjN% j 52,...,N21# leading to the Hopf algebra
Uj(B

∨) with the initial commutation relations@as in ~15!#, the twisted coproducts

DFH1N5H1N^ e22s11^ H1N24j (
j 52

N21

E1 j ^ EjNe23s,

DFE1i5E1i ^ e2s11^ E1i ,
~31!

DFEiN5EiN ^ es1e2s
^ EiN ,

DFE1N5E1N^ e2s11^ E1N ;

antipodes
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SF~s!52s, SF~E1i !52E1ie
s,

SF~EiN!52EiNe23s, SF~E1N!52E1Ne22s, ~32!

SF~H1N!52H1Ne2s24j (
j 52

N21

E1 jEjN ;

and the universalR-matrix of the form

R5F21F215)
j

exp~2jEjNe2s
^ E1 j ! exp~s ^ H1N!

3exp~2H1N^ s!)
j

exp~22jE1 j ^ EjNe2s!. ~33!

The coproducts and antipodes for other elements ofUj„sl(N)… can be calculated using the standa
formulas. The obtained expressions are rather cumbersome. Thus, for example, in the
Uj„sl(3)…, the coproduct ofE32 looks like

DFE325E32^ e2s11^ E321jH13^ E12e
22s12jE12^ H23e

2s

2jH13E12^ ~e2s2e23s!24j2E12^ E23E12e
23s24j2E12

2
^ E23e

24s.

Twisting the coproducts is acting by the exponential of the adjoint operator defined on the
productU„sl(N)…^U„sl(N)…. One can check that this operator is nilpotent and all the twis
coproducts can be expressed through the finite number of its powers.

IV. CONNECTIONS BETWEEN STANDARD AND JORDANIAN DEFORMATIONS

It is well known that some sorts of Jordanian deformations can be treated as limiting
tures for certain sequences of standard quantizations.9,10,16,17As will be shown below, this is due
to the specific properties of Lie bialgebras involved in the quantizations. These properties ar
transparent when formulated for quantum groups rather than for quantum algebras. For th
son, in the current section we use the dual picture to treat Lie bialgebraic characteristics.

The generators of the standard~FRT deformed! quantum group Funh„SL(N)… (h5 ln q) will
be described by the entries of theN3N matrix T. Let T be subject to the similarity transformatio
with the matrix

M511
j

q21
r~E1N! ~34!

@for the generators the canonical coproduct (DT5T^ T) is conserved#. For qÞ1 the transformed
quantum group Funh;j„SL(N)… is equivalent to the original one. Compare the corresponding
bialgebras: (g,gh;0* )5(sl(N),„sl(N)…* ) and (g,gh;j* ). Here the Lie algebrag5sl(N) is not
changed, the transformationT˜MTM21 does not touch the canonical coproduct for the gene
tors of the Hopf algebra Funh„SL(N)…. Only the second Lie multiplication (mh;0* :Vg* ∧Vg*
˜Vg* ) changes:

mh;0* ˜mh;j* .

The structure of the similarity transformation shows that the new Lie product decomposes

mh;j* 5mh;0* 1jm8. ~35!
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The componentm8 is fixed by the commutation relations that can be extracted from the tr
formed RTT5TTR equations. For this purpose one has to change the coordinate functio
SL(N) arranged in matrixT for the exponential onesT5exp (eY) and also change the paramete
h°eh, j°ej. Tendinge to zero one gets both summands in~35!. The second one of them look
as follows:

m8~Y1k ,Yi j !52d ikYN j , for k, j ,N, i .1;

m8~Yi j ,YlN!522d j l YN j , for j ,N, i ,l .1; ~36!

m8~Yi j ,Y1N!52d j 1Yi12d iNYN j , for j ,N, i .1;

m8~Y1i ,Y1N!52Y1i , for N. i .1;

m8~Y1N ,YkN!5YkN , for 1,k,N;

m8~Y11,Y1N!5m8~Y1N ,YNN!52~Y112YNN!;
~37!

m8~Y1i ,Y1k!5d i1YNk , for k,i ,N,k.1;

m8~YiN ,YkN!52dkNYi1 , for k,i .1,i ,N;

m8~Y1i ,YkN!5d i1Yk12dkNYNi22d ik~Y112YNN!, for i ,N, k.1.

Here for simplicity of exposition we use the canonical gl(N) basis. One can check that th
deforming functionm8 not only defines the infinitesimal deformation ofmh;0* , but is itself a Lie
multiplication.

Consider the decomposition~35! as a deformation equation for the initial dual Lie algeb
gh;0* . Its main property is thatm8 does not depend onh or j. So the transformed law has the for

mh;j* 5mh;0* 1m0;j* . ~38!

This means thatmh;j* is a Lie multiplication deformed in the first order. Both summands are
maps and at the same time can be considered as deforming functions of each other. As a
both deforming functions are two-cocycles for the corresponding Lie algebras (g0;j* with the
multiplication m0;j* andgh;0* defined bymh;0* )

mh;0* PZ2~g0;j* ,g0;j* !,

m0;j* PZ2~gh;0* ,gh;0* !.

The equivalence of the algebraic structures in Funh;j„SL(N)… and Funh„SL(N)… ~for hÞ0) signi-
fies thatm0;j* is, in fact, a coboundary,

m0;j* PB2~gh;0* ,gh;0* !.

On the contrary, the compositionmh;0* corresponds to a nontrivial cohomology class

mh;0* PH2~g0;j* ,g0;j* !;

the deformation ofm0;j* by mh;0* is essential.19

Notice that the multiplication maps here have certain cohomological properties also
respect to cochain complexC of mapsCn:∧nVg˜Vg∧Vg , where theg-module is chosen to be
∧2Vg with the canonically extended adjoint action on it. The dualization of spacesVg⇔Vg*
converts the mapm* into the chainm* PC1(g,g∧g). As it was mentioned above, the initia
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coproduct for the generators of Funh„SL(N)… rests unchanged under the transformation. All
Lie algebrasgh;j* are dual to one and the sameg5sl(N). Thus bothmh;0* and m0;j* are one-
cocycles for the complexC.

This set of characteristics necessarily indicates that the classicalr-matrix of Uh;j„sl(N)…
'(Funh;j„SL(N)…)* must also exhibit this decomposition property:

r h;j5r h;01r 0;j

5
h

N S (
k51

N21

k~N2k!Hk,k11^ Hk,k111 (
k, l

N21

~N2 l !k~Hk,k11^ Hl ,l 111Hl ,l 11^ Hk,k11!D
12h(

k, l
~Elk ^ Ekl!2jH1N∧E1N22j (

k52

N21

E1k∧EkN . ~39!

In the limit h˜0 one gets the element

lim
h˜0

r h;j5r 0;j52jS H1N∧E1N12 (
k52

N21

E1k∧EkN .D ~40!

that coincides withr-matrix that can be obtained fromR presented above~33!. So the Jordanian
quantum group Fun0;j„SL(N)… corresponds to the samer-matrix as the twisted algebraUF„sl(N)…
@with F as in ~28! and Ãj , Bj as in ~25! and ~26!#.

The r-matrices~39! and ~40! are known for a long time. In Ref. 9r 0;j was obtained by
applying adE1N

to the canonical antisymmetricr ∧5( i , jEi j ∧Eji . It was stressed thatr 0;j lay in
the boundary of the dense set of orbits of standard quantizations induced byr ∧ . Ther-matrix ~40!
was also obtained in the discussion of conformal algebra deformations.20

Ther-matrix r 0;j is the element of the spaceB∨∧B∨. Its structure suggests the renumbering
the basic elements ofB∨; we shall describe the corresponding basis as the set

$Pa ,Xb%a,b51,...,N21 with H P15E1N , Pi5EiN ;

X15H1N , Xj52E1 j ;
i , j 52,...,N21.

In these notationsr 0;j takes the form

r 0;j52jXa∧Pa .

The basic exponential coordinate functions$Y1N ,YiN ,Y1i ,Y112YNN% are chosen so that they ar
canonically dual to those of$Pa ,Xb%. Let us apply the homomorphism

r 0;j :Y˜2jXa∧^Pa ,Y& ~41!

to the Lie algebra (B∨)* described by the last six compositionsm8 @see~37!#. As a result we shall
get the Lie algebraB∨. The significant fact is that~41! is an isomorphism, that is,B∨'(B∨)* . The
twist F induces the self-dual Lie bialgebra (B∨,B∨).

It is useful to compare this situation with that of a classical double of dual Lie alge
(g,g* ). There, the composition law of the double can also be presented as a sum of two
plications with independent linear parameters. But in that case both summands are cohom
cally nontrivial. What is more important, such parametrization~and subdivision! cannot be per-
formed in only one algebra of a Lie bialgebra (g,g* ) corresponding to a classical double. In fa
these are the Lie bialgebras that can be parametrized in that case so that their arbitrary
combination is again a Lie bialgebra.21 When a Lie bialgebra is nontrivially decomposed~that is,
the decomposition goes parallel in both dual algebras!, ther-matrix for a linear combination of Lie
bialgebras does not inherit the decomposition property.
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To clarify the contraction properties of Funh;j„SL(N)…, let us consider the one-paramet
subvariety$gh;12h* % of Lie algebrasgh;j* @puttingj512h in ~38!#. Each dual pair„sl(N),gh;12h* …

is a Lie bialgebra and thus is quantizable.5 The result is the setAs;h of deformation quantizations
parametrized byh and the deformation parameters. This set can be considered smooth in the se
compatible with the formal series topology22—close Lie bialgebras give rise to close deform
tions. The one-dimensional boundariesA0;h andAs;0 of As;h are formed respectively by th
quantizations of„sl(N),g1;0* … ~the standard Lie bialgebra! and „sl(N),g0;1* … ~the Jordanian one!.
Each internal point inAs;h can be connected with a boundary by a smooth parametric curvea(u).
One can choose it so that it starts inA0;h and ends inAs;0 . So a Jordanian Hopf algebra obtain
by twisting deformation can be also treated as a limit point of a smooth one-dimensional s
riety a(u). This does not necessarily mean that this limit is a faithful contraction—it may
impossible to attribute the curvea(u) to an orbit of some Hopf algebra inA. This is just what
happens when the transformationM is applied to Funh;0„SL(N)…. For every positiveh fixed, the
subset$Funh;j„SL(N)…% is in the GL(N2)-suborbit of the corresponding Funh;0„SL(N)…. To attain
the points Fun0;j„SL(N)… one must tendh to zero and this can be done only by crossing the se
orbits refering to inequivalent Hopf algebras. These specific interrelations of different typ
quantizations where noted in Ref. 9. It was demonstrated for the case of sl(N) that the standard
deformation Funh;0„SL(N)… can be accompanied by a smooth transformation of a Jordanian
formation so that the latter reaches the orbit of Funh;0„SL(N)…. Applying the operatorM to an
element of the set$Funh;0„SL(N)…% one gets an intersection point of an orbit and of a cu
parametrized byj.

One of the principle conclusions is that the possibility of obtaining the Jordanian deform
Fun0;j„SL(N)… as a limiting transformation of the standard quantum group2Funh;0„SL(N)… is
provided by the fact that the one-cocyclem0;j* PZ1

„sl(N), sl(N)∧sl(N)… @that characterizes the
Lie bialgebra forUF„sl(N)…# is at the same time the two-coboundarym0;j* PB2(gh;0* ,gh;0* ), the Lie
algebragh;0* being the standard dual of sl(N). The same scenario can be performed on the dua
to get the twistedq-algebraUF„sl(N)… as a limit of the variety of standardly quantized algeb
Uq„sl(N)….

V. CANONICAL ELEMENT AND JORDANIAN QUANTUM SPACE

The set$Pa ,Xb% forms the basis appropriate to deal with the Lie bialgebras~L ,L* !. To study
the properties ofR-matrixR and the canonical elementT it is reasonable to perform the corre
sponding rearrangement of basis for the whole Hopf algebraUj(B

∨). We shall consider the set

$zk%k51,...,2~N21!5$xa ,pb%a,b51,...,N21 ~42!

as the generators ofUj(B
∨) with

x15H1N , xi52E1i ,

p15
1

j
s5

1

2j
ln ~112jE1N!, p i5EiNe22s.

The basis will be formed by the set of ordered monomials:

$zkW%kW5$mW ,nW %5$m1 ,...,mN21 ,n1 ,...,nN21%5$x1
m1
¯xN21

mN21p1
n1
¯pN21

nN21%. ~43!

In these terms theR-matrix ~33! can be rewritten as

R5 )
a51,...,N21

,

exp~pa ^ jxa! )
a51,...,N21

.

exp~2jxa ^ pa!, ~44!
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where sybmols, and. mean that the factors in the products are ordered correspondingly
shall use the standard Hopf algebra homomorphismR:A*˜A2 where, in our case,A is the
twisted algebraUj(B

∨) and ‘‘2’’ indicates the opposite multiplication. It would be appropriate
considerR as belonging toA2 ^A with the decomposition

R5( RkW lWykW ^ zlW . ~45!

It is implied that the basic monomialsykWPA2 contain the same sequences of generatorszk as the
corresponding basic elementszkWPA @see~43!#, but the multiplication that glue them is opposite

that of A. Let $zkW% be the canonical dual basis ofA* , ^zkW,zlW&5d
lW
kW
. The morphismR can be

defined by its values on the basic elements:

R~zkW !5( RlWkWylW . ~46!

Let us extract the first terms of the decomposition~45! for the R-matrix ~44!:

R51^ 11Rklzk^ zl1¯ . ~47!

~Note that in such a presentation the second term is not proportional to the classicalr-matrix; the
generatorszl do not form a Lie algebra.! The terms written explicitly in~47! are the only ones
containing the first powers of generators. Thus the imagesR(zk) are the linear combinations o
the generatorszl . In our case the matrix$Rkl% is invertible,

R5jS 0 2I

I 0 D⇒ H R~xa!5jpa ,
R~pa!52jxa ,

R2152
1

j2 R⇒H R21~xa!52
1

j
pa,

R21~pa!5
1

j
xa.

Reversing the formula~46! we get the expression for the elements of the dual basis in term
generatorszk

uk51,...,2(N21) :

zkW5( RlWkWR21~ylW!5( RlWkW
„~R21!k11zk1

…

l 1
¯„~R21!k2~N21!2~N21!z

k2~N21!
…

l 2~N21!. ~48!

The basic decomposition for theR-matrix ~44! can be written explicitly:

R5(
~2j! unW uj umW u

cmW cnW
x1

n1
¯xN21

nN21~p1!m1
¯~pN21!mN21^ x1

m1
¯xN21

mN21~p1!n1
¯~pN21!nN21,

~49!
unW u5n11¯1nN21 .

Here we used the inclusionRPA2 ^A and the fact that all the generatorspa commute. The
structure ofR-morphism is clearly seen here. It states the one-to-one correspondence betwe
basic monomials ofA* andA2 . This evidently signifies that the Hopf algebrasA* andA2 are
equivalent. One must also take into account that in our caseA2 is the twisted universal envelop
ing algebraUj(B

∨) with the opposite product. The result is

A* 'A2'A.
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The Hopf algebraUj(B
∨) is self-dual.

The structure constantsRlWkW presented in the decomposition~49! can be substituted in the
expression~48! to fix explicitly the form of the dual basis. Hence the canonical elementT is
completely defined

T5 (
kW5~mW ,nW !

zkW
^ zkW

5(
1

cmW cnW
~p1!n1

¯~pN21!nN21~x1!m1
¯~xN21!mN21

^ x1
m1
¯xN21

mN21p1
n1
¯pN21

nN21.

We can recollect this expansion into the ordered product using the following property o
T-matrix, (id ^ S)(T)5T21:

T215 (
~mW ,nW !

1

cmW cnW
~p1n1

¯~pN21!nN21~x1!m1
¯~xN21!mN21

^ „S~pN21!…nN21
¯„S~p1!…n1

„S~x1!…m1
¯„S~xN21!…mN21.

The antipodes used here can be easily found using the expressions~32! given in Sec. III:

S~p1!52p1 , S~p i !52p ie
jp1,

S~x1!52x1e2jp124j( xip ie
2jp1, S~xi !52xie

jp1.

Note that the homomorphic image inA* of the Abelian subalgebra generated by elements$pa% is
itself a commutative subalgebra. This enables us to write the final formula for the cano
element

T5)
a

,

exp„2xa
^ S~xa!…)

a

.

exp„2pa
^ S~pa!…. ~50!

The corresponding constructions for Jordanian deformations of the Lie superalgebras
type sl(M uN) can be easily performed.

Let us present a real form forUF„sl(N)…. We focus first on the subalgebraB∨ in the general
setting of the previous section and with the basis$zk% @see ~42!#. The antialgebraic antilinea
transformation given on the generators by

u~xa!52xa , u~pa!5pa

respects the classical comultiplication and defines a real form onU~L !. At the same time, the
twisting elementF turns intoF21. Henceforth,u is a real form~cohomomorphic and antihomo
morphic! for the twisted algebraUF(L ) as well. Turning to the specific case of sl(N), the question
is whetheru can be extended from the subalgebraB∨ to the entire sl(N). This is possible, and the
corresponding transformation is

u~Ei j !52Ei j , i , j ,N or i , j 5N; u~EkN!5EkN , u~ENk!5ENk , k,N.

It is evident thatu is a Lie algebra antiautomorphism. The real form for theN52 case of the
JordanianUj„sl(2)… was given in Ref. 23.

Twisting of a symmetry Hopf algebraA of a manifoldM induces a deformation of its whol
geometry, so that the notion of symmetry is conserved in the framework of the noncommu
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geometry. Such deformation includes that of function algebras~vector bundles,* -structure, and so
on! expressing new objects in terms of the nontwisted ones by explicit formulas involving twi
two-cocycleF. Here we present, as an application of the developed Jordanian-type quantiza
sl(N), the corresponding noncommutative spaceMF. We deduce commutation relations for ge
erators ofMF, and the differential calculus. The basic formula connecting multiplication
A-modulesMF andM ~the twisted and the nontwisted ones! is8

f * g5F~1!
21~ f !•F~2!

21~g!, f ,gPM. ~51!

The star stands for the new product onMF defined through the old one ‘‘•’’ and the elementF.
If M is classical, the twisting cocycle is represented by a bidifferential operator according
corresponding representation ofF. ThusMF andM coincide as linear spaces, but they a
endowed with different algebraic structures. The transformation is performed in such a wa
the symmetry propertyh( f •g)5h(1)( f )•h(2)(g), hPA, f, gPM, is inherited by the twisted
algebraAF.

Let xa, a51,...N, be the generators ofMF. The representation of sl(N) is given by En
m

˜xm]n . To evaluate commutation relations among the generators, it is sufficient to retain on
following terms:

F51^ 11j~x1]12xN]N! ^ x1]N12j (
k52

N21

x1]k^ xk]N1¯ ,

with the rest of the series vanishing on the productsxm
•xn. Resolving formula~51! ~twisting is an

invertible operation! we come to

F~1!~xm!*F~2!~xn!5xm
•xn5xn

•xm5F~1!~xn!*F~2!~xm!.

This gives~commutators are understood in terms of the twisted product ‘‘* ’’ !9

@x1, xN#52jx1* x1, @xi , xk#50,

@xk, xN#522jx1* xk, @xk, x1#50.

We use the convention that the small Latin indices run from 2 toN21. Similarly, for the contra-
variant entitiespm we have

@p1 , pN#52jpN* pN , @pi , pk#50,

@p1 , pk#522jpk* pN , @pk , pN#50.

Let us note that after the quantization the basespm and xm are no longer dual. The invarian
canonical element turns out to bepm•xm5pm* xm1jp1* xN. Nontrivial cross relations betwee
coordinates and momenta are expressed by

@p1 ,xN#5jS xN* pN12 (
k52

N21

pk* xk1p1* x1D
@p1 , x1#52jx1* pN , @pk , xk#522jx1* pN , @pN , xN#52jx1* pN .

Partial derivatives]m satisfies the same identities aspm , whereas the cross relations are modifi
accordingly:
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@]1 , xN#5jS xN* ]N12 (
k52

N21

]k* xk1]1* x1D
@]1 , x1#512jx1* ]N , @]k , xk#5122jx1* ]N , @]N , xN#512jx1* ]N .

VI. GROUP COCYCLES AND TWISTING

To generalize the construction of Sec. III let us arrange the generators ofB∨ into the two sets
(H,Aj ) and (E,Bj ) spanning two mutually complementary Lie subalgebras. We denote theH
andH* , respectively, regarding as dual linear spaces. SubalgebraH acts onH* , thus endowingB∨

with the semidirect sumL5HxH* structure. In this section we explain the twist quantization
interest in terms of a one-cocycle on the Lie algebraH and its formal Lie groupG5expH.

Let Hm be basic elements of a Lie algebraH andXn be their duals. Commutation relations
H are specified by the structure constantsCmn

s :

@Hm , Hn#5Cmn
s Hs . ~52!

Suppose a left action ofH on H* .

@Hm , Xn#52Lms
n Xs, ~53!

which enables us to build the semidirect sumL5HxH* whereH* is assumed to be an abelia
subalgebra. The element

r 5Xn
^ Hn2Hn ^ XnPL∧L ~54!

is a solution to the classical Yang–Baxter equation if and only if

Cmn
s 5Lmn

s 2Lnm
s . ~55!

The structure constantsLmn
s define also a left action ofH on itself according to the rule

HmxHn5Lmn
s Hs .

The equality~55! implies that the following quasi-associativity property holds:

~HmxHn!xHs2~HnxHm!xHs5Hmx~HnxHs!2Hnx~HmxHs!, ~56!

which is the pre-Lie structure due to Gerstenhaber.24 Conversely, if a bilinear pairingx on H
satisfies this condition, the skew-symmetric operation

@Hm , Hn#5~HmxHn!2~HnxHm! ~57!

fulfills the Jacobi identity, andx becomes a left representation of the Lie algebraH @equipped
with the Lie bracket~57!# on itself.

Lie algebra actionx induces an action of the Lie groupG turning H into the leftG-module.
Consider now a one-cocyclew on the groupG with values inH.25 This means thatw obeys the
equation

w~xy!5w~y!1y21xw~x!, x,yPG. ~58!

The Lie algebra one-cocycle]w is in one-to-one correspondence withw, being its derivative taken
at the group identity.25 It satisfies the equation

]w~@Hm , Hn#!5Hmx]w~Hn!2Hnx]w~Hm!
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@cf. ~57!#. Suppose the linear mapdw to be nondegenerate. Then the identity map id:H˜H is a
one-cocycle with respect to the new action defined as (]w)21+x+]w. Thus nondegenerate one
cocycles of Lie algebras are in one-to-one correspondence with bilinear quasi-associative
sense of~56!, operations onH. Only nondegenerate cocycles are suitable for our purposes, s
will think of them as of identity maps, and all the freedom will be encoded in the choice of a
x. Note that a one-coboundary normalized to id implies the existence of the right unityHe , that
is,

HmxHe5Hm .

The group cocycle in terms of Lie algebra coordinatesjm in a neighborhood of the origin read

wm~j!5S e2L~j!21

2L~j! D
n

m

jn,

and the coboundary can be written as

wm~j!5~12e2L~j!!n
mje

n , Hnje
n5He .

Consider the semidirect sumL5HxH* with the Lie bracket given by~52! and~53! such that
the condition~55! holds. Since]w5 id is nondegenerate, the functionw is invertible in a neigh-
borhood of the origin inH. Its inversec as well asw itself are treated as columns whos
components are formal series in coordinate functions generatingU~H* !.

Theorem 2: The element

F5exp„Hn ^ cn~X!… ~59!

is a twist for the semidirect sumL5HxH*
Proof: The element exp„Hn ^ cn(X)… satisfies the identity~8!. If we prove the second identity

~9!, the theorem will be stated. DenoteX̃m5cm(X) and evaluateDF(X):

DF~Xm!5exp~H ^ X̃!~Xm
^ 111^ Xm! exp~2H ^ X̃!5Xn

^ ~e2L~X̃!!n
m11^ Xm. ~60!

The mapDF(h)5FD(h)F21 is an algebra homomorphismU(L )˜U(L ) ^ 2. Henceforth, the re-
lation ~60! entails the equation

w„DF~X̃!…5e2L~1^ X̃!w~X̃^ 1!1w~1^ X̃!. ~61!

Sincew is invertible as a map ofH on H, we findDF(X̃m)5Dm(X̃^ 1,1^ X̃) whereDm(j1 ,j2) is
the Campbell—Hausdorff series. This yields~9! and therefore the twist equation~5! for exp„Hn

^ cn(X)… is valid. d

Now we can evaluate the twisted coproducts in terms of new generatorsX̃m. Straightforward
calculations show that

DF~Hm!5Hn ^ g~X̃!m
n 11^ Hm , ~62!

whereg(j):H˜H is a map to be found. Imposing coassociativity conditions we find that
functiong realizes a left group action onH which is generated by a Lie algebra representation.
evaluate this action let us perform the following Lie algebra isomorphismHm˜Hm , Xm

˜jXm.
The specific form of the classicalr-matrix allows us to considerj as a deformation paramete
Taking into account (d/dj)X̃m(0)5Xm, X̃m(0)50, and calculating (d/dj)FD(Hn)F21uj50 we
come to
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d

dj
DF~Hn!uj505@Hs ^ Xs,Hn ^ 111^ Hn#5Csn

m Hm ^ Xs1Lns
m Hm ^ Xs5Lsn

m Hm ^ Xs.

Performing this for the coproduct~62! and comparing the results we obtaing(X̃)5eL(X̃). Thus the
coproduct on generatorsHm , X̃n reads

DF~X̃m!5Dm~X̃^ 1,1^ X̃!, DF~Hm!5Hn ^ ~eL~X̃!!m
n 11^ Hm . ~63!

Using these relations it is easy to find also the antipodes,

SF~X̃m!52X̃m, SF~Hm!52Hn~e2L~X̃!!m
n . ~64!

Writing X̃m in terms ofXn we can evaluate the twisted antipode on the classical generators as

VII. CONCLUSION

The triangular deformation of the universal enveloping algebra of sl(N), discussed already by
Gerstenhaberet al.,9 was realized in this paper as a twisted algebra with the explicit form~2! of
the twisting elementF ~extended Jordanian twist!. The Hopf subalgebra of the typeUF(B∨)
generated by the twist is self-dual. The twisted coproduct of the sl(N) generators can be express
as finite sums of classical generators and such a functions of the highest root vector that i
primitive with respect to the twisted coproduct. The commutation relations of the quantum
generators were defined using the twisting element action on the commutative coordinate
cohomological properties of the involved Lie bialgebra permit the explanation of the connect
the Drinfeld–Jimbo~standard! quantization with this twisting.

The explicit expression of the twisting elementF gives rise to a possibility to evaluate th
Clebsch–Gordan coefficients~CGC! of the twisted sl(N) in terms of the original CGC and th
entries of the matrixF5(r1^ r2)F,11 as well as to get the relations among the FTR-appro
generatorsL (6) of the twisted algebra and the generators of the original algebras. It can be
also to construct the quantum double.1,12

The construction of the extended Jordanian twist was generalized to a certain class o
mogenious Lie algebras, using properties of the Campbell–Hausdorff series. Further gene
tions, in particular to Lie superalgebras, twisting of the corresponding Yangians, and new
grable models, twisting elements for other boundary solutions to the classical Yang–B
equation26 are under study.
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On the root mean square quantitative chirality
and quantitative symmetry measures

Michel Petitjeana)

ITODYS (CNRS, ESA 7086), 1 rue Guy de la Brosse, 75005 Paris, France

~Received 22 February 1999; accepted for publication 22 March 1999!

The properties of the root mean square chiral index of ad-dimensional set ofn
points, previously investigated for planar sets, are examined for spatial sets. The
properties of the root mean squares direct symmetry index, defined as the normal-
ized minimized sum of then squared distances between the vertices of thed-set and
the permutedd-set, are compared to the properties of the chiral index. Some most
dissymetric figures are analytically computed. They differ from the most chiral
figures, but the most dissymetric 3-tuples and the most chiral 3-tuples have a
common remarkable geometric property: the squared lengths of the sides are each
equal to three times a squared distance vertex to the mean point. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!01009-9#

I. INTRODUCTION

Chirality and symmetry properties of a solid body can be viewed as a continuous va
quantity taking values over@0;1# rather than a logical property, i.e., the body is or is not symme
or chiral. The use of a chirality measure seems to be introduced by Rassat.1 Then, various quan-
titative chirality or symmetry measures have been used.2–12This concept has received applicatio
in physics, proposed mostly by the Avnir group.2–4

The root mean square chiral index CHI of ad-dimensional set ofn points was defined12 as the
sum of then squared distances between the vertices of the set and those of its inverted
normalized to 4T/d, T being the inertia of the set. This index is computed after minimization
the sum of the squared distances in respect to all rotations and translations and all permu
between equivalent vertices. It was shown to be a second kind of continuous chirality me
taking values over@0;1#, the zero value corresponding to an achiral compound perfectly su
posed to its inverted image. Similarly, the direct symmetry index DSI of ad-dimensional set ofn
points is defined here as follows. When all vertices are unequivalent, DSI is undefined. When
are at least two equivalent vertices, the sum of then squared distances between the vertices
those of the permuted set is minimized for all rotations and translations and permutations~exclud-
ing the identity permutation! between equivalent vertices. DSI is the ratio of this minimized s
to twice the inertiaT of the set.

The quantitative symmetry and chirality concepts used here are fully different from tho
Avnir et al. for the following reasons: no achiral reference is needed to compute CHI, no
metry assumptions are needed to compute CHI and DSI, no folding and unfolding proces5 are
needed here, the normalization are different, and the farthest point from the centroid is not n
here, and, of course, the extremal figures are different.

The properties of CHI were examined for monodimensional sets and planar sets.12 They are
now examined for spatial sets. Hyperspatial sets~i.e.,d is any positive integer! are examined when
all vertices are unequivalent. The major difference between planar, spatial, and hyperspat
lies in the expression of the optimal rotation. The properties of DSI are also examined. For c
a set ofn53 points will be called a triangle. The most dissymetric triangles, i.e., those maxi
ing DSI, are here analytically computed when there are two or three equivalent vertices.

a!Phone: 33~0!1 4427 4857; fax: 33~0!1 4427 6814; electronic mail: Petitjean@itodys.jussieu.fr
45870022-2488/99/40(9)/4587/9/$15.00 © 1999 American Institute of Physics
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II. NOTATIONS

The notations are those used in Ref. 12. X0 and X1 are then rows andd columns arrays of
coordinates. X0 is the fixed set and X1 is to move. The quote denotes the transposition op
All vectors are written as one-column matrices.^xuy& is the scalar product of the vectorsx andy,
and whend53, x∧y is their cross product. The trace and the determinant operators are de
respectively, Tr and Det. Y1 is the rotated and translated image of X1, andD25Tr„(X02Y1)
•(X02Y1…8) is the sum of the squared distances.D2 is minimized for rotation plus translation
when X0 and X1 are centered before computing the optimal rotation. Translations will b
longer considered, and the centering condition will not be assumed unless otherwise men
The following matrices are used: V005X08•X0, V115X18•X1, V105X18•X0, V015V108, and
T5(T01T1)/2, T05Tr~V00! and T15Tr~V11! being the respective inertia of X0 and X1, redu
ing to the usual inertia when the arrays are centered. The identity matrix isI , andR is a rotation
matrix, such that Y15X1•R8.

The correspondence between X0 and X1 is handled via ann-dimensional square permutatio
matrix P. Let be Z15P•Y1. When X1 is the inverted image of X0 and when the center
condition is satisfied, the chiral index of a spatial set is CHI5D2/(4T/d), with D25Tr„(X0
2P•X1•R8)•(X02P•X1•R8)8… being minimized over all rotationsR and allowed permutations
P. When X1 is a rotated and translated image of X0 and when the centering condition is sa
DSI5D2/2T, D being minimized over all rotations and allowed nonidentity permutations.

The computation of either CHI or DSI requires the optimal rotation superimposing two
Whend53, the analytical expression of the optimal rotation superposing X1 on X0, X0 and
being anyn rows and 3 columns arrays of coordinates, is given in the Appendix.

III. THE OPTIMAL ROTATION FOR 3D ENANTIOMERS

In this section, the centering condition is not assumed and three-dimensional enantiom
considered. For clarity, X0 is noted;X and its inverted image is X152P•X, and we define
V5X8•P•X52V01. From Appendix A, we have

D25D0222^quBq&, ~1!

the optimal quaternionq being the eigenvector associated to L1, the highest eigenvalue ofB:

B5S 0 c8

c A D , ~2!

A5Tr~V1V8!•I2~V1V8!, ~3!

c5S V~2,3!2V~3,2!
V~3,1!2V~1,3!
V~1,2!2V~2,1!

D . ~4!

WhenP is a symmetric permutation,c is null, and the eigenvalues ofB are the three eigenvalue
of A and zero.

IV. ENANTIOMERS WITH ALL VERTICES UNEQUIVALENT

All the conditions of the preceding section are assumed to stand, and the vertices
unequivalent, i.e., the only allowed permutation isP5I . V5X8•X is symmetric andc is therefore
null. The sum of squares prior rotation is D0254 Tr(V), which is the maximizedD2 value
because zero is the smallest eigenvalue ofB. We haveA52„Tr(V)•I2V…. Let v1, v2, v3 be the
eigenvalues ofV arranged in decreasing order. The largest eigenvalue ofB is L15d152~v11v2!
and the optimal rotation of2X is 180 degrees around the principal axis associated to the sm
eigenvalue ofV. Now we haveD254 Tr(V)24(v11v2), i.e.,
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D254v3. ~5!

We assume now thatX is centered, i.e.,V is n times its variance matrix. The chiral index o
the set ofn vertices is therefore:

CHI53v3/~v11v21v3!. ~6!

CHI is d times the percentage of inertia associated to the smallest eigenvalue ofV. Looking at
Eqs.~3! and~7! in Ref. 12 and Appendix 1 in Ref. 12, we can see that this is also true for pl
sets (d52) and unidimensional sets (d51).

The eigenvalues ofV being positive and in decreasing order, CHI is maximized
v15v25v35v, i.e., CHI51 andV5v•I . WhenX has only 4 vertices, it is therefore a regul
tetrahedron~see Appendix 2 in Ref. 12!.

V. HYPERSPATIAL SETS WITH ALL UNEQUIVALENT VERTICES

The optimal rotation superimposing twod-dimensional sets is unknown whend.3, except for
enantiomers with all unequivalent vertices, as shown hereafter. The sum of squares to b
mized isD25Tr„(X2X•Q8)•(X2X•Q8)8…52„Tr(X8•X)2Tr(Q•X8•X)…, X being the~n,d! ar-
ray of coordinates andQ being an orthogonal matrix with det(Q)521. Thus, Tr(Q•X8•X) has to
be maximized. Assuming thatX is in its principal components axis~i.e.,V5X8•X is diagonal!, we
have to find the maximum ofE5v~1!•Q~1,1!1v~2!•Q~2,2!1...1v(d)•Q(d,d),v~1!,...,v(d) being
the eigenvalues ofV in decreasing order.

E5@„v~1!2v~d!…•Q~1,1!1„v~2!2v~d!…•Q~2,2!1¯1„v~d21…2v~d!!

•Q~d21,d21!#1v~d!•Tr~Q!.

The eigenvalues ofQ can be either11, or 21, or pairs of conjugate complex roots of 1.
follows that Tr(Q) is maximized whend21 eigenvalues are11 and one is21. Obviously, the
sum of thed21 terms (v(i )2v(d)…•Q( i ,i ) is also maximized for Q(i ,i )51 wheni ,d. ThusE
is maximized andD2 is minimized whenX and its enantiomer have opposite coordinates on
principal axis with smallest inertia. Thus, Eqs.~5! and ~6! are generalized:

D254v~d!, ~7!

and assumingX centered:

CHI5d•v~d!/„v~1!1v~2!1¯1v~d!…. ~8!

As previously, CHI is maximized when all eigenvalues ofV are equal. Whenn5d11, CHI
is therefore maximized whenX is a regulard-simplex.~See Appendix 2 in Ref. 12.!

From Eq.~8!, it is possible to compare practical CHI values with the distribution of CHI wh
X is an isotropic multinormal sample.V is a Wishart matrix,13 from which the joint density of the
percentages of inertia can be derived,14 leading to the distribution15 of CHI/d. Unfortunately, the
final expression is not trivial whend.2.

VI. THE DIRECT SYMMETRY INDEX

In this section,d-dimensional sets are considered and the centering condition is not ass
The situation where all vertices are unequivalent precludes the existence of direct symmetry
set. This situation should not be confused with the purely geometric situation where all vertic
equivalent~i.e., undistinct!, for which symmetry properties are potentially observable. Thus,
consider now only sets with at least two equivalent vertices. As for the chiral index, the suD2
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of then squared distances between the vertices and those of the permuted set is minimized
rotations and all authorized permutations, excluding of course the identity permutationP5I .
When the set is centered DSI5D2/(2T).

P being fixed, the sum of the squared distances to minimize is, as previously,D25Tr„(X0
2P•X1•R8)•(X02P•X1•R8)8…. Setting X05X15X andV5X8•P•X, we get

D252„T2Tr~V•R8!…. ~9!

There are at least two equivalent pointsx andy. Thus the minimum ofD2 for all rotations and
permutations cannot exceed the minimum ofD2 for all rotations and for the permutation exchan
ing x andy, i.e.,P is such thatV5x•y81y•x81Z8•Z, with Z being the (n22,d) block extracted
from X by elimination ofx andy. For this permutation,

Tr~V•R8!5y8•R8•x1x8•R8•y1Tr~Z8•Z•R8!. ~10!

Assumingd.1, a rotation existsR which rotates from190 degrees the first axis toward th
second axis, i.e.,R(2,1)52R(1,2)51, R( i ,i )51 for i .2, all other elements ofR being null.
Thus, R1R850, y8•R8•x1x8•R8•y50 and 2Tr(Z8•Z•R8)5Tr(Z8•Z•R)5Tr(R8•Z8•Z)
5Tr(Z8•Z•R8)50, which means that Tr(V•R8) is null. Because a permutation and a rotati
exist such that Tr(V•R8)50, it follows from ~9! that the minimum ofD2 is upper bounded by 2T,
and then DSI pertains to@0;1# whend.1.

The following centered set containing three points is such that DSI51 for all d.1: x5e1
•(212))/2, y5e1•(211))/2, z5e1, e1 being the first base vector,x andy being equivalent
andz being not.

When d51, x and y are numbers,Z is a vector,T5x21y21Z8•Z, R51, and Tr(V•R8)
52x•y1Z8•Z. Thus, 4T2D252•„T1Tr(V•R8)…52(x1y)214•Z8•Z, which cannot be nega
tive. Thus, ford51, D2 varies from 0 to 4T and the direct symmetry index pertains to@0;2#, the
extremal value DSI52 being reached for a centered set containing two opposite values. B
course, direct rotational symmetry has little interest ford51.

Computing simultaneously CHI and DSI for spatial sets is easy, since they both lead
same quadratic form defined by Eqs.~1!–~4!, except that the quadratic form associated to DSI n
takes the opposite sign, because X1 was set toX rather than to2X. It means that the smalles
eigenvalue L4 should be used to compute DSI rather than L1 for CHI, the minimized su
squared distances being now

D25D0212L4. ~11!

As shown in the Appendix, L4 is always nonpositive. Another difference between CHI
DSI is that the normalizing coefficients are, respectively, 4T/d and 2T, but this is not a crucial
difference.

VII. THE DIRECT SYMMETRY INDEX OF PLANAR TRIANGLES

We assume thatd52. Letx be the column vector of the abscissas, andy the column vector of
their ordinates:x85(x1 ,x2 ,...,xn) andy85(y1 ,y2 ,...,yn). The points will bep1 ,p2 ,...,pn . The
image of~x,y! through the permutationP is ~Px,Py!. P being fixed, the distanceD minimized for
all rotations is known:12

D252~T2E!, ~12!

E being the non-negative number, such that

E25~x8P8x!21~x8P8y!21~y8P8x!21~y8P8y!212~x8P8x!~y8P8y!22~y8P8x!~x8P8y!.

Thus,
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E25~x8Px1y8Py!21~y8Px2x8Py!2. ~13!

The minimization for rotations plus translations is reached when the set is centered. The in
thusT5x8x1y8y. We assumeT non-null, i.e., there are at least two distinct points. Let1 be the
n-vector such that all itsn components are 1. Centering means18x518y50. We define alsoM
5(P1P8)/2 andN5(P2P8)/2, which implies thatx8Nx5y8Ny50.

We assume now thatn53, and that all vertices are equivalents.d12, d23 and d31 are the
respective lengths of the sides of the triangle.ip1i , ip2i andip3i are the lengths of the segmen
joining the barycenter to the vertices at the opposite of the sides with respective lengthsd23, d31

andd12. The inertia can be also written asT5ip1i21ip2i21ip3i2, or T5(d23
2 1d31

2 1d12
2 )/3.

The surfaceS of the triangle is such that 16S252(d12
2 d23

2 1d23
2 d31

2 1d31
2 d12

2 )2(d12
4 1d23

4

1d31
4 ).

A. Extremal values for a given permutation

Using M andN, Eq. ~13! becomes

E25~x8Mx1y8My!214~x8Ny!2. ~14!

The gradient of (12D2/2T)25(E2/T2) if set to zero forx, then fory,

T~x8Mx1y8My!Mx12T~x8Ny!Ny5E2x, ~15!

T~x8Mx1y8My!My22T~x8Ny!Nx5E2y. ~16!

Multiplying on the left ~15! by x8 then ~16! by y8, and substracting,

T~x8Mx!22T~y8My!25E2~x8x2y8y!. ~17!

Then from~15! or ~16!,

T~x8Mx1y8My!~x8My!5E2~x8y! . ~18!

From ~17! and ~18!, it comes

E2~x8My!~x8x2y8y!5E2~x8y!~x8Mx2y8My!. ~19!

Whenn53,5 permutations are possible: 3 are symmetric and 2 are circular.
WhenP is symmetric,M5P, N50, and Eqs.~15! and ~16! reduce to the same eigenvalu

equations:T2Px5E2x andT2Py5E2y. Forn53, the eigenvalues ofP are11, 11 and21. Only
the solution such thatE25T2 is possible, implyingD50, leading to a minimum for DSI, rather t
a maximum.

WhenP is one of the 2 circular permutations~the other being its transposed!, we have: 2M
51•182I , implying thatx8Mx52x8x/2 andy8My52y8y/2, and thenE254(x8Ny)21T2/4.
Moreover, 2x8Ny is equal to the determinant of the matrix@1uxuy# or to the opposite of this
determinant, depending on which circular permutation is used. That impliesE254S21T2/4. The
minimum is therefore reached by a null-area triangle: the points are aligned.

B. Maximizing DSI

Let us consider the symmetric permutation associatingp1 to itself. The following comes:N
50 and E252x2x31x1

212y2y31y1
25(T2d23

2 )2. Similarly, the E values associated with th
symmetric permutations associatingp2 with p2 andp3 with p3 are such thatE25(T2d31

2 )2 and
E25(T2d12

2 )2. Both circular permutations lead toE254S21T2/4, S2 andT being homogeneous
polynomials ofd12

2 , d23
2 and d31

2 . The 4 expressions ofE2 are homogeneous polynomials of
variables, returning non-negative values.
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For a given triangle, the optimal permutation is that which leads to the highestE value. Thus
a maximum of DSI, or a minimum of@Max(E2)/T2#, should be searched either among t
extrema ofE2/T2 associated with a permutation, or at the intersection of at least two of t
polynomials associated with the permutations,T being the same for all permutations.

It was shown above that only one extremum ofE2/T2 is useful, and it is such thatE5T/2 and
S50. This is possible only if the length of a side is equal to the sum of the two others. Assu
for example, thatd235d311d12, and reporting it inE5uT2d23

2 u5ud12
2 1d31

2 22d23
2 u/3. The fol-

lowing comes:E5(d23
2 12d12d31)/3, or E5(T/2)1d12d31. The circular permutation could b

optimal only if d12d3150, which should imply that DSI50 ~degenerate isocele triangle!. Similar
conclusions should be reached ifd31 or d12 have been used: the extrema ofE2/T2 associated to a
given permutation are not adequate.

Thus, it is needed to look at the intersection of the polynomials. Noting that theE/T values
depend only on the distances ratios, we can work with only two independent variables, a
search the minimum at the intersection of 3 among the 4 polynomials. There are at least 2
3 symmetric permutations which lead to the same value. Assuming, for example, thatE5uT
2d12

2 u5uT2d31
2 u, thus,ud23

2 1d31
2 22d12

2 u5ud12
2 1d23

2 22d31
2 u. Either we getd12

2 5d31
2 , which does

not work because the triangle should be isocele (DSI50), or we get 2d23
2 5d31

2 1d12
2 , and thus

E5ud12
2 2d31

2 u/2. In this situation, theE value associated to the third symmetric permutation
null, and theE value associated to circular permutations isE5d12d31. The equality between the
3 nonzeroE2 values give the desired relation: (d12

2 2d31
2 )254d12

2 d31
2 . Reusing 2d23

2 5d31
2 1d12

2 , the
ratios of the squared lengths of the sides are deduced: (d12

2 /d23
2 )511&/2, (d31

2 /d23
2 )512&/2,

andE2/T25(12DSI)251/2.

C. Remarkable geometric properties of the optimal triangles

Using the distances, we get the angles associated, respectively, to the pointsp1 , p2 and
p3 :p/4, p/8 and 5p/8.

A possible set of coordinates of the most dissymetric triangle is

X5S &/3 1/3

~232& !/6 21/6

~32& !/6 21/6
D . ~20!

It is easy to see thatd23
2 53ip1i2, d12

2 53ip2i2, andd31
2 53ip3i2. It should be pointed out tha

this relation is symmetric only forp2 andp3 . This remarkable proportionality exists also for th
degenerate triangle with only two equivalent vertices, which was cited in Sec. VI, and corres
ing to the maximal value DSI51, for any dimensiond.1. Ford52, the most chiral triangles als
offer this remarkable proportionality, discarding which vertices are equivalent,12 but none of them
has the shape of the most dissymmetric triangle. The shape of the most dissymmetric trian
been measured using random triangles, with vertices uniformly distributed over a square
results~Table I! are in accordance with the theory.

VIII. DISCUSSION AND CONCLUSION

The properties of the RMS~root mean square! chiral index have been examined for spat
sets. As for planar sets, it is easily analytically computed, but the expression of the optim
rotation is fully different from those of the 2D one. The optimal rotation is unknown for hy
spatial sets, except whenX is superposed with its unpermuted enantiomer. Whend.3, it is
proposed to extend the iterative procedure16 to compute the optimal rotation superposing tw
d-dimensional sets, and to use it for permuted enantiomers. Similarly, computing the RMS
symmetry index is easy for 2D and 3D sets, but suffers from the same limitation than the
index whend.3.

Looking at Eq.~8!, it is clear that the RMS chiral index is also extendible to continuo
distributions with all distinct points, provided that the variance exists. When there are subs
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undistinct points, handling continuous sets is more difficult, because the set of authorized p
tations must be redefined. This latter remark applies to the direct symmetry index. Thu
extension of CHI and DSI to continuous sets will be examined in a further work.

The most chiral triangles and the most dissymmetric triangles offer the same rema
geometric property. Its extension to higher-dimensional simplices is an open problem.

The chiral index and the direct symmetry index provides a coherent quantification of
tional symmetries carrying more information than a boolean value indicating the presen
absence of such symmetries. Although a perfect symmetry can be destroyed when a small
bation is applied, the ability to quantify proper and improper rotational symmetries provid
robust tool to overcome this problem. As a by-product of computing CHI or DSI, the axe
angle associated to the optimal quaternion locate nonambiguously the symmetry element
computing either CHI or DSI, if more than one permutation leads to small values of the ind
the set of optimal quaternions provides informations about the existence of more than one
metry element. Building an automated procedure returning all symmetry elements of a pertu
symmetric set is currently investigated.
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APPENDIX: THE OPTIMAL ROTATION FOR SPATIAL SETS

In this section, the centering condition is not assumed, andd53. X0 and X1 are anyn rows
and 3 columns arrays of coordinates. The identity permutationP5I is assumed, but the final resu
will be valid for any P with replacing X1 byP•X1. The well-known Procrustes algorithm16,17

used to find the optimal orthogonal transformation superposing twod-sets does not work for
enantiomers, because it leads always toD50 and the optimal orthogonal matrix has a negat
determinant (Det521). Some iterative procedures are available,18,19 but the final expression o
the optimal rotation was found by Diamond,20 leading to expressD2 with a quadratic form of the

TABLE I. Measure of the shape of the most dissymmetric triangle with three equivalent vertices. Ntr: number of r
triangles. Popt: optimal permutation. DSI: direct symmetry index. The 3 angles are expressed as multiples ofp/8.

Ntr Popt (1-DSI)2 Angles

1 321 0.724887 0.829182 1.305712 5.865106
11 312 0.632934 1.239900 2.710587 4.049513
13 231 0.546920 1.160093 1.859441 4.980466
37 213 0.539919 1.004153 1.865056 5.130791
85 321 0.537833 1.120757 1.822010 5.057233

179 321 0.519058 0.988815 2.067136 4.944049
363 321 0.513820 0.993675 2.054628 4.951697
751 231 0.503264 1.007408 2.009480 4.983112

13052 213 0.501541 0.999541 2.006778 4.993681
51783 231 0.500970 1.001485 2.007749 4.990766

161448 231 0.500631 1.001784 1.999454 4.998762
394890 231 0.500541 1.000720 2.005067 4.994213

1097067 231 0.500420 1.000829 2.002094 4.997077
1347455 312 0.500412 1.000807 2.002092 4.997100
1483751 132 0.500085 1.000198 1.999638 5.000164

62565625 132 0.500073 1.000213 1.999673 5.000114
90476880 132 0.500062 1.000012 2.000374 4.999613

143978185 321 0.500048 1.000032 2.000369 4.999599
178782085 312 0.500024 1.000037 2.000189 4.999775
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quaternion associated to the rotation. This quadratic form is maximized by an orthonormal b
four quaternions. For convenience, the expression of the optimal rotation is retrieved here f
ing a different presentation.

A 3D-rotation R is associated to a 3D rotation axisu and to a rotation angler. This is
expressed with a quaternionq5(p,u), with p5cos(r/2) and iui5^uuu&1/25sin(r/2). Thus
^quq&51, and the image of a pointx throughR is21 Rx5(122^uuu&)x12^uux&u12p(u∧x).
Because (2p,2u) is the same rotation than (p,u), p is always taken non-negative, i.e.,r takes
values from 0 to 180 degrees.

Let c be the sum of then vectors x1i∧x0i . Thus, we havec(1)5V10~2,3!2V10~3,2!,
c(2)5V10~3,1!2V10~1,3!, and c(3)5V10~1,2!2V10~2,1!. The matrix A is defined asA
5~V101V01!2Tr~V101V01!•I . Let D02 be the initial sum of squares, prior to rotating X
Now, we have the following equalities:^Rx1i ux0i&5 (122^uuu&)^x1i ux0i& 1 2^uux1i&^uux0i&
12p^u∧x1i ux0i&5 (122^uuu&)^x1i ux0i&1^uu(x1i•x0i81x0i•x1i8)u&12p^uux1i∧x0i&. V10 is
the sum of then matricesx1i•x0i8 , and Tr(V10) is the sum of then quantitieŝ x1i ux0i&. Thus we
get D25D0222^uuAu&24p^uuc&. Let us define the 434 matrix B:

B5S 0 c8

c A D ,

q5(p,u) being the unknown quaternion; it follows that:D25D0222^quBq&.
B is a constant symmetric matrix depending only on the input data, and the quadratic

^quBq& has to be maximized,q being a unit vector. This problem has a well-known solution:17 the
stationary points are an othonormal basis eigenvectors ofB, and the associated eigenvalues are
optimal values of the quadratic form. The sense of each eigenvector is known becausep must be
non-negative. It is unimportant to get1u or 2u when p50. Let L1, L2, L3, L4 be the eigen-
values arranged in decreasing order.

B is the sum of two 434 symmetric matrices. One contains onlyA and zeros on the first row
and column. Let B1 be this matrix. The other contains onlyc8 on the right of the first row andc
on the bottom of the first column, zero as a first diagonal element, and nine zeros in the rem
333 block. Let B2 be this one-rank matrix, of which the four eigenvalues are obviouslyici and
zero with three as multiplicity. Let d1, d2, d3 be the eigenvalues ofA arranged in decreasing orde
Thus, the following inequalities stand:22 the eigenvalues of A separate those o
B:L1>d1>L2>d2>L3>d3>L4, and uLi–di8u<ici for i 51,2,3,4, di8 being the i th greatest
value among~0,d1,d2,d3!.

Two situations may arise. If d1 and d3 have not the same sign, the first set of inequ
means that L1 and L4 have not the same sign. If d1 and d3 have the same sign, let us loo
determinant ofB expressed after diagonalization ofA. The components ofc become c~1!, c~2!,
c~3!, and det(B)52c~1!2

•d2•d32c~2!2
•d1•d32c~3!2

•d1•d2. This determinant cannot be positiv
thus again L1 and L4 cannot have the same sign.

Thus L1 is always non-negative and L4 is always non-positive. The rotation minimizingD2 is
those associated to the quaternion q1, such thatD25D0222L1, and the rotation associated to q
such thatD25D0222L4 is that which maximizesD2. D2 has one saddle point associated to
and one associated to q3.

Some minor properties of the four optimal quaternions are obtained from their othonorm
Considering the first row of the equation Bq5Lq, it comes that D022D252L52^vuc&, with v
5u/p. It shows than only a positiveL value leads toD2,D02. The three others equations may b
rewritten: (A2^vun&I )v1n50, but this is neither an eigenvector equation nor a linear sys
Two distinct directionsui anduj are generally not orthogonal: cos(ui,uj)52pi•pj/„(12pi2)•(1
2p j2)…1/252cotg(ri )•cotg(rj ), ri and rj being the 2D-angles associated, respectively, toqi
andqj.
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A class of well-behaved*-representations of aq-deformed Heisenberg algebra
previously introduced@Phys. Lett. B291, 273~1992!; Z. Phys. C64, 335~1994!# is
studied and classified. ©1999 American Institute of Physics.
@S0022-2488~99!02008-3#

I. INTRODUCTION

The idea to develop aq-deformed quantum mechanics by using quantum groups has
investigated in several papers.1–5 Such approaches are usually based on aq-deformed phase spac
algebra which is derived from the noncommutative differential calculus of theq-deformed con-
figuration space.6,7 Following the standard procedure in quantum mechanics one has to rep
theq-deformed position and momentum operators by essentially self-adjoint operators actin
Hilbert space. More precisely, one has to find appropriate* -representations of the phase spa
*-algebra by unbounded operators in a Hilbert space. In the case of general Euclide
Minykowski phase spaces the study and classification of these*-representations turns out to b
technically complicated because of the many relations and also because of the various diffi
concerning unbounded operators.

The aim of this paper is to give a rigorous treatment of well-behaved operator represen
for one of the simplest example—the one-dimensionalq-deformed Heisenberg algebra which w
invented in Refs. 4 and 2. Representations of this algebra have been investigated in Ref. 2
this * -algebra occurs as a subalgebra of other larger* -algebras, the study of general not nece
sarily irreducible* -representations seems to be important as well. We shall develop and an
an operator-theoretic model for such general representations of theq-deformed Heisenberg alge
bra. This model might be used as a tool kit for the study of representations of larger* -algebras.

This paper is organized as follows. Section II contains the definition and some simple
braic properties of theq-deformed Heisenberg algebraA(q). In Sec. III we develop a genera
operator-theoretic model for certain triples of operators which will lead in Sec. VI to repres
tions of the*-algebraA(q). In Sec. IV the irreducibility and the unitary equivalence of the
operator triples are investigated and a number of examples are treated. In Sec. V we
characterization of these operator triples by a number of natural conditions. In Sec. VI we
the self-adjoint* -representations of the*-algebraA(q) obtained by means of these operat
triples.

In a forthcoming paper we shall study the spectrum of the operatorX. For this analysis the
q-Fourier transform8,9 will play a crucial role.

II. THE q-HEISENBERG ALGEBRA

For a positive real numberqÞ1, let A(q) denote the complex unital algebra with fou
generatorsp,x,u,u21 subject to the defining relations

up5qpu, ux5q21xu, uu215u21u51, ~1!

a!Electronic mail: schmuedgen@mathematik.uni-leipzig.de
45960022-2488/99/40(9)/4596/10/$15.00 © 1999 American Institute of Physics
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px2qxp5 i~q3/22q21/2!u, xp2qpx52 i~q3/22q21/2!u21, ~2!

where i denotes the imaginary unit. An equivalent set of relations is obtained if~2! is replaced by

px5 iq1/2u212 iq21/2u, xp5 iq21/2u212 iq1/2u. ~28!

From ~1! and ~2!8 it follows that the set of elements$prun,xsun; r PN0 , sPN, nPZ% is a vector
space basis ofA(q).

The algebraA(q) becomes a*-algebra with involution defined on the generators by

p5p* , x5x* , u* 5u21. ~3!

Indeed, it suffices to check that the defining relations~1! and~2!8 of A(q) are invariant under the
involution ~3! which is easily done.

From ~1!, ~2!8, and~3! we conclude that there are*-isomorphismsr1 andr2 of the*-algebras
A(q) andA(q21) such that

r1~x!5p, r1~p!5x, r1~u!5u, and r2~x!5x, r2~p!5p, r2~u!52u* .

Because the*-algebrasA(q) andA(q21) are isomorphic, we shall assume in what follows th
0,q,1.

III. AN OPERATOR-THEORETIC MODEL

~1! Let m1 be a finite positive Borel measure on the interval@q,1). The measurem1 extends
uniquely to a Borel measurem on the half-axisR15(0,1`) by settingm(qnM)ªqnm1(M) for
any Borel subsetM of @q,1). Thenm has the property thatm(qN)5qm(N) for an arbitrary Borel
subsetN of R1 or equivalently thatdm(qt)/qt5dm(t)/t for tPR1 . We shall work with the
Hilbert spacesHªL2(R1 ,m) andHªL2

„@q,1),m1…. First we define three linear operatorsU, P,
andX on the Hilbert spaceH:

~i! (U f )(t)5q1/2f (qt) for f PH,
~ii ! (P f )(t)5t f (t) for f PD(P)ª$ f PH:t f (t)PH%,
~iii ! (X f )(t)5 it21

„f (q21t)2 f (qt)… for f PD(X)ª$ f PH:t21f (t)PH%.

These operators will play a crucial role throughout this paper. Roughly speaking and ign
technical subtleties~domains, boundary conditions, etc.!, we shall show that for all ‘‘well-
behaved’’* -representations of theq-deformed Heisenberg algebraA(q) the images of the gen
eratorsu, p, andx act by the same formulas as the operatorsU, P, andX, respectively.

Obviously, P is an unbounded self-adjoint operator onH. Using the relationdm(qt)/qt
5dm(t)/t one easily verifies thatU is a unitary operator and thatX is a symmetric operator onH.
Let D0 be the set of functionsf PH such that suppf P@a, b# for somea.0 andb.0. ~Note that
a andb may depend onf.! Clearly,D0 is dense linear subspace ofH which is invariant underU,
P, and X. It is straightforward to check that the operatorsP, X, and U applied to functionsf
PD0 satisfy the defining relations~1!, ~2!, and ~3! of the *-algebraA(q). In turns out that the
symmetric operatorX is not essentially self-adjoint. Our next aim is to characterize the doma
the adjoint operatorX* .

For f PH5L2
„@q,1),m1… let f e and f o be the functions onR1 defined by

f e~q2nt !5 f o~q2n11t !5 f ~ t ! for nPN0 , tP@q,1!, and f e~ t !5 f o~ t !50 otherwise. ~4!

Clearly, f e and f o are inH5L2(R1 ,m) and we haveU( f e)2q1/2f PD(X) and U( f o)2q1/2f e

PD(X). Let He and Ho denote the set of functionsf e and f o, respectively, wheref PH
5L2

„@q,1),m1….
Lemma 1: The domainD(X* ) is the direct sum of vector spacesD(X), He and Ho .
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Proof: It is straightforward to check thatD(X)1He1Ho#D(X* ). In order to prove the
converse, letgPD(X* ). Then, by definition there is anhPH such that̂ X f ,g&5^ f ,h& for all f
PD(X). Inserting the definition ofX and using once more the fact thatm(qN)5qm(N) for an
arbitrary Borel subsetN of R1 we easily conclude thath(t)5 i t 21

„g(q21t)2g(qt)…. For a
function f PH let f n denote the function inL2

„@q,1),m1
1
… given by f n(t)5 f (qnt). Then we get

ihiL2~R1 ,m!
2

5 (
n52`

`

ihni2qn> (
n50

` ign112gn21i2

q2n qn.

For nPN we setanªign112gn21iq2n/2. SincehPL2(R,m), the sequence (an) is in l 2 . From
the inequality

ig2r2g2si<a2r 11q~2r 11!/21¯1a2s11q~2s11!/2

we obtain

ig2r2g2si2<S (
i 52s11

`

ua i u2D q2s11~12q2!21, r>s. ~5!

Since (an)P l 2 , this implies that the sequence (g2n)nPN converges in the Hilbert spac
L2

„@q,1),m1…. Let us denote its limit byj. We extendj to a function je on R1 by setting
je(q2nt)ªj(t) andje(q2n11t)ª0 for nPN0 , tP@q,1), andje(t)50 for t>1. Replacing even
indices by odd indices, a similar reasoning yields functionszPL2

„@q,1),m1… andzo on R1 such
that zo(q2n11t)5z(t) andzo(q2nt)50 for nPN, tP@q,1), andzo(t)50 for t>1. By construc-
tion, jePHe andzoPHo . Our proof is complete once we have shown thatfªg2je2zo belongs
to the domainD(X) of the operatorX.

Letting r˜` in ~5!, we get

ij2g2si2<q2s11~12q2!21(
n50

`

ua2nu2. ~6!

From ~6! and the corresponding estimation ofiz2g2s11i2 we obtain

(
n50

`

i t21f n~ t !i2qn< (
n50

` i f ni2

q2n12 qn5(
r 50

` ij2g2r i2

q2r 12 1
iz2g2r 11i2

q2r 13 5~q2q3!21(
n50

`

uanu2,`.

Since f (t)5g(t) for t>1, this inequality implies that the functionst21f (t) and f (t) are in
L2(R1,m). Thus, f PD(X). j

As shown in the preceding proof, for any functiongPD(X* ) the ‘‘even components’’g2n

and the ‘‘odd components’’g2n11 both have ‘‘boundary limits’’j and z in L2
„@q,1),m1…. By

Lemma 1, any elementf PD(X* ) is of the form f 5 f X1 f e1 f o with uniquely determined func-
tions f XPD(X), f ePHe and f oPHo . By the definition ofHe andHo , there exist unique func-
tions f e , f oPH5L2

„@q,1),m1… such that (f e)
e5 f e and (f o)o5 f o, where the function (f e)

e and
( f o)o on R are given by~4!. This notation will be kept in the sequel.

Let ^•,•& and ~•,•! denote the scalar products of the Hilbert spacesL2(R1 ,m) and
L2(@q,1),t21m1), respectively.

Lemma 2: For arbitrary functions f,gPD(X* ) we have

^X* f ,g&2^ f ,X* g&5
1

2i
$~ f e1 f o ,ge1go!2~ f e2 f o ,ge2go!%. ~7!1

Proof: Let hPL2
„(@q,1),m1…. From the definitions of the operatorX and of the functionshe,ho

PL2(R,m) we easily derive that (X* he)(t)52 i t 21h(qt) for tP@1,q21), (X* he)(t)50 for t
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PR1\@1,q21), (X* ho)(t)52 i t 21h(t) for tP@q,1), and (X* ho)(t)50 for tPR1\@q,1). Insert-
ing these expressions and using the symmetry of the operatorX we compute

^X* f ,g&2^ f ,X* g&5^X* f o ,ge&2^ f e ,X* go&

52 iE
q

1

„f o~ t !ge~ t !1 f e~ t !go~ t !…t21 dm~ t !

52 i$~ f o ,ge!1~ f e ,go!%5
1

2i
$~ f e1 f o ,ge1go!2~ f e2 f o ,ge2go!%.

j

Let us illustrate the preceding by the simplest example.
Example 1:Let m1 be the Delta measureda , wherea is a fixed number from the interva

@q,1). Then the measurem is supported on the pointsaqn,nPZ, and we havem($aqn%)
5qnm($a%)5qn. Hence the scalar product of the Hilbert spaceH5L2(R1 ,m) is given by the
Jackson integral

^ f ,g&5 (
n52`

1`

f ~aqn!g~aqn!qn.

Let enPH be the functionen(t)5q2n/2d aqn
t , whered s

t is the usual Kronecker symbol. Then th
vectorsen ,nPZ, form an orthonormal basis ofH and the actions of the operatorsU, P, andX on
these vectors are given by

Uen5en21 , Pen5aqnen , Xen5
i

aqn ~q21/2en112q1/2en21!.

These equations are in accordance with formulas~5! in Ref. 2. If f is the function in
L2

„@q,1),m1…>C with f (a)51, then by definition f e(aq2n)5 f o(aq2n11)51, f e(aq2n11)
5 f o(aq2n)50 for nPN0 , and f e(t)5 f o(t)50 for t>1. Then we haveD(X* )5D(X)1C• f e

1C• f o by Lemma 1 and formula (7)1 reads as

^X* ~w1a1f e1b1f o!,c1a2f e1b2f o&2^w1a1f e1b1f o,X* ~c1a2f e1b2f o!&

52 ia21$b1ā21a1b̄2%

5
1

2ia
$~a11b1!~a21b2!2~a12b1!~a22b2!%

for a1 ,b1 ,a2 ,b2PC. j

~2! The above considerations carry over almost verbatim to the case where the po
half-axisR1 is replaced by the negative half-axisR25(2`,0). Any positive finite Borel measure
m1 on the interval@q,1) induces a positive Borel measurem on R2 by defining m(2qnM)
ªqnm1(M) for a Borel subsetM of @q,1). The operatorsU, P, and X on the Hilbert space
H2ªL2(R2 ,m) are defined by the same formulas as in the preceding subsection and Lem
and its proof remain valid in this case as well. However, there is an essential difference whic
be crucial in the sequel: Since in the proof of Lemma 2 the integration is over the int
(21,2q#, the expression on the right-hand side of (7)1 must be multiplied by21. That is,
instead of (7)1 we now have

^X* f ,g&2^ f ,X* g&5
1

2i
$~ f e1 f o ,ge1go!2~ f e2 f o ,ge2go!% ~7!2

for f ,gPD(X* ).
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~3! After the preceding preparations we are now able to develop the operator-theoretic
for the description of* -representations of theq-Heisenberg algebraA(q). For this let us fix two
families $m1

j ,1 ; j PI 1% and$m1
j ,2 ; j PI 2% of finite positive Borel measures on the interval@q,1).

As above, we define the Hilbert spacesHj ,6ªL2(R6 ,m j ,6), j PI 6 , and the operatorsU j ,6 ,
Pj ,6 , and Xj ,6 acting therein. We shall work with the representation Hilbert spaceH5H1

%H2 , where H1ª% j PI 1
Hj ,1 and H2ª% j PI 2

Hj ,2 . The elements ofH are pairs f

5(f1,f2), wheref15( f j ,1; j PI 1)PH1 andf25( f j ,2; j PI )PH2 . Let U, P, andX denote the
operators onH which are defined as the direct sums of the operatorsU j ,1 ,U j ,2 ; Pj ,1 ,Pj ,2 ; and
Xj ,1 ,Xj ,2 , respectively. Clearly,U is a unitary operator andP is a self-adjoint operator onH.
The operatorX is only symmetric, but not self-adjoint. Our next aim is to describe all self-adj
extensionsX̃ of X onH which have the property thatUX̃U215qX̃.

Let V and W be two unitary linear transformations of the Hilbert spaceH2

ª% j PI 2
L2

„@q,1),t21m1
j ,2

… on the Hilbert spaceH1ª% j PI 1
L2

„@q,1),t21m1
j ,1

…. We define a
linear operatorXV,W as being the restriction of the adjoint operatorX* to the domain

D~XV,W!ª$f5fX1fe1foPD~X* !:fXPD~X!,
~8!

fe
15V~ fe

21f0
2!1W~ fe

22f0
2!, f0

15V~ fe
11f0

2!2W~ fe
22f0

2!.

Proposition 1: XV,W is a self-adjoint operator onH such that X#XV,W and UXV,WU*
5qXV,W . In particular, we have UD(XV,W)5D(XV,W). Conversely, for any self-adjoint exten

sion X̃ of X satisfying UD(X̃)#D(X̃) there exist unitary transformations V,W of H1 onto H2

such that X̃5XV,W .
Proof: From (7)1 and (7)2 we obtain

22i~^X* f,g&2^f,X* g&!5~ fe
11fo

1 ,ge
11go

1!1~ fe
22fo

2 ,ge
22go

2!2~ fe
21fo

2 ,ge
21go

2!

2~ fe
12fo

1 ,ge
12go

1! ~9!

for arbitrary elementsf5fX1fe1fo andg5gX1ge1go of D(X* ). Herefe
1 denotes the sequenc

( f e
j ,1 ; j PI 1)PH1 with f e

j ,1PL2
„@q,1),m1

j
… such that the extension (f e

j ,1)e of f e
j ,1 to R1 by

means of formula~4! is just the (j ,1)-component of the vectorfePH. A similar meaning at-
tached to the other symbolsf e

2 , f o
1 , f o

2 ,ge
1 ,go

2 ,go
1 ,go

2 occuring in~9!. If f,gPD(XV,W), then we
have f e

11fo
25V(fe

21fo
2), ge

11go
25V(ge

21go
2), fe

12fo
15W(fe

22fo
2), and ge

12go
15W(ge

2

2go
2) by ~8!. SinceXV,W#X* , we therefore obtain that^XV,Wf,g&2^f,XV,Wg&50 by ~9!, that is,

the operatorXV,W is symmetric. Now letgPD„(XV,W)* …. SinceX#XV,W#(XV,W)* #X* , we
then havê X* f,g&5^f,X* g& and hence

~ fe
11fo

1 ,ge
11go

1!1~ fe
22fo

2 ,ge
22go

2!5~ fe
21fo

2 ,ge
21go

2!1~ fe
12fo

1 ,ge
12go

1! ~10!

for all fPD(XV,W) by ~9!. Inserting~8! into ~10!, we get

„f e
21fo

2 ,V* ~ge
11go

2!…1~ fe
22fo

2 ,ge
22go

2!5~ fe
21fo

2 ,ge
21go

2!1„fe
22fo

2 ,W* ~ge
12go

1!….
~11!

From the construction it is clear that for arbitraryh,kPH2 there existsfPD(XV,W) such thatfe
2

1fo
25h and fe

22fo
25k. Therefore, it follows from ~11! that V* (ge

11go
1)5ge

11go
2 and

W* (ge
12go

1)5ge
22go

2 , which in turn implies thatgPD(XV,W). Thus we have shown that th
operatorXV,W is self-adjoint. From the relationsU(fe)2q1/2foPD(X) and U(fo)2q1/2feP](X)
we see thatUD(XV,W)5D(XV,W). SinceUXU* 5qX and henceUX* U* 5qX* andXV,W is the
restriction ofX* to D(XV,W), the latter yieldsUXV,WU* 5qXV,W .
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Conversely, suppose thatX̃ is a self-adjoint extension ofX such thatUD(X̃)#D(X̃). SinceX̃

is symmetric, we have Eq.~10! for arbitrary elementsf,gPD(X̃). By assumption,UfPD(X̃) for
all fPD(X̃). Replacingf by Uf in ~10! we get

~ fe
11fo

1 ,ge
11go

1!1~ fo
22fe

2 ,ge
22go

2!5~ fe
21fo

2 ,ge
21go

2!1~ fo
12fe

1 ,ge
12go

1!. ~12!

Settingf5g and combining formulas~10! and ~12! we obtain

ife
11fo

1i5ife
21fo

2i and ife
12fo

1i5ife
22fo

2i ~13!

for all fPD(X̃).
For fPD(X* ) we abbreviateB6(f)5(fe

61f0
6 ,fe

62fo
6). The vector spaceB6(X̃)5$B6(f):f

PD(X̃)% is called the ‘‘boundary space’’ of the operatorX̃. We shall show thatB1(X̃)5H1

% H1 and B2(X̃)5H2 % H2 . First let us note that the spacesB6(X̃) are closed inH6 % H6 .
Otherwise, let X5 denote the restriction ofX* to the domainD(X5 )5$fPD(X* ):B6(f)

PB6(X̃)%, where the bar means the closure in the Hilbert spaceH6 % H6 . The symmetry of an
operatorY such thatX#Y#X* is equivalent to the validity of Eq.~10! for all f,gPD(Y). Hence
X5 is symmetric, becauseX̃ is so. Since a self-adjoint operator has no proper symmetric exten
we conclude thatX̃5X5 which means thatB1(X̃) andB2(X̃) are closed. Next let us suppose th
(j,z)'B1(X̃) in H1 % H1 . We then choose a vectorgPD(X̃) such thatj5ge

11go
1 , z5ge

1

2go
1 and ge

25g0
250. Then the right-hand side of~9! vanishes for allfPD(X̃), so that^X̃f,g&

5^X* f,g&5^f,X* g& for all fPD(X̃) by ~9!. Consequently,gPD(X̃* ). SinceX̃ is self-adjoint,g
must be inD(X̃). Because (j,z)'B1(X̃), this implies thatj5z50. This proves thatB1(X̃)
5H1 % H1 . Similarly B2(X̃)5H2 % H2 .

SinceB6(X̃)5H6 % H6 as just shown, it follows from~13! that there are unitary operatorsV

and W of H2 onto H1 such thatfe
11fo

15V(fe
21fo

2) and fe
12fo

15W(fe
22fo

2) for all fPD(X̃).
That is,D(X̃)#D(XV,W). SinceX̃ andXV,W are self-adjoint, we conclude thatX̃5XV,W . j

IV. IRREDUCIBILITY AND UNITARY EQUIVALENCE

~1! The next two propositions decide when a triple of operators$P,XV,W ,U% defined in the
preceding section is irreducible and when two such triples are unitarily equivalent. Here we
say that the triple$P,XV,W ,U% onH is irreducible if any bounded operatorA onH satisfying

PA$AP, XV,WA$AXV,W , and AU5UA ~14!

is a scalar multiple of the identity operator onH.
Recall that the operator triple$P,XV,W ,U% depends on the two families$m1

j ,6 ; j PI 6% of
measures on the interval@q,1) and on the two unitary operatorsV,W:H2˜H1 . In order to
formulate the corresponding conditions it is convenient to work with the Hilbert spacesK6

5 % j PI 6
L2

„@q,1),m1
j ,6

… rather than withH65 % j PI 6
L2

„@q,1),t21m1
j ,6

…. Further, letP6 denote
the self-adjoint operator onK6 which acts componentwise as the multiplication by the variablt.
Clearly,V andW are bounded linear operators ofK2 to K1 such that

V8ªP1
1/2VP2

21/2 and W8ªP1
1/2WP2

21/2 ~15!

are unitary.
Proposition 2: The triple$P,XV,W ,U% as defined above is irreducible if and only if an

bounded self-adjoint operators A1 on K1 and A2 on K2 satisfying

A1P15P1A1 , A2P25P2A2 , A1V85V8A2 , A1W85W8A2 ~16!
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or equivalently

A1P15P1A1 , A2P25P2A2 , A1V5VA2 , A1W5WA2 ~17!

are scalar multiples of the identity.
Proof: We only show that the above condition implies the irreducibility of the triple. T

proof of the converse implication is easier and will be omitted. Suppose thatA is a bounded
operator onH satisfying~14!. Since the set of suchA is invariant under the involution, we ca
assume thatA is self-adjoint. LetE(•) denote the spectral projections ofP. SincePA$AP, the
subspaceK15E„@q,1)…H of H reducesA and the restrictionA1 of A to K1 commutes with the
restriction P1 of P to K1 . Similarly, the restrictionsÃ2 of A and P̃2 of P to the reducing
subspaceE„(21,q#…H commute. Changing the variable fromt to 2t, the Hilbert space
E„(21,q#…H and the operatorP̃2 becomeK2 and P2 , respectively, and the operatorÃ2 goes
into an operator, sayA2 , on K2 . Thus,A2P25P2A2 . From the assumptionsAU5UA and
XV,WA#AXV,W it follows easily that (Af)e

65A6fe
6 and (Af)o

65A6fo
6 for fPD(XV,W). Since

AfPD(XV,W) has to satisfy the relation~8!, we obtainA1V5VA2 andA1W5WA2 . Therefore,
by the above condition,A65l6I for somel6PC. SinceA1V5VA2 andAU5UA, it follows
that l15l2 andA5l1•I onH. j

Using similar operator-theoretic arguments it is not difficult to prove the following.
Proposition 3: Two triples$P,XV,W ,U% and $P̃,XṼ,W̃ ,Ũ% are unitarily equivalent if and only

if there are unitary operators A1 of K1 to K̃1 and A2 of K2 to K̃2 such that

A1P15 P̃1A1 , A2P25 P̃2A2 , A1V5ṼA2 and A1W5W̃A2 , ~18!

where the tilde refers to the corresponding operators and spaces for the triple$P̃,XṼ,W̃ ,Ũ%.
~2! We shall illustrate the preceding by describing a few examples of irreducible repres

tions. We begin with the simplest possible case.
Example 2:Suppose that the Hilbert spacesK1 andK2 are one-dimensional. Then the fam

lies of measure$m i
j ,1 ;PI 1% and$m1

j ,2 ; j PI 2% consist only of single Dirac measuresda anddb ,
respectively, wherea,bP@q,1). Then the triples$P,XV,W ,U% are parametrized by complex num
bersV5V85eiw andW5W85eic,w,cPR. The self-adjoint extensionXV,W is then characterized
by the boundary condition~8!, that is,

fe
11fo

15eiw~ fe
21fo

2!, fe
12fo

15eic~ fe
22fo

2!.

Each such triple is irreducible because the condition in Proposition 2 is trivially fulfilled. T
triples with different numbersVW21 are not unitarily equivalent. The case whereeiw5eic51 and
a5b has been treated in detail in Ref. 3.

Example 3:Let P1 be a self-adjoint operator andZ a unitary operator on a Hilbert spaceK1

such that the commutant$P1 ,Z%8 is equal toC•I . Such operators exist on any separable Hilb
space.10 Upon scaling we can assume that the spectrum ofP1 is contained in@q,1). By the
spectral representation theorem~Ref. 11, chap. X, 5!, we can representP1 up to unitary equiva-
lence as the multiplication operator by the independent variablet on some direct sum Hilbert spac
K15 % j PI 1

L2
„@q,1);m1

j ,1
…. Let $m1

j ,2 ; j PI % be an arbitrary family of measures on@q,1) such

that dimK15dimK2 , whereK2ª% j PI 2
L2

„@q,1);m1
j ,2

…. Let W8 be a unitary operator fromK2

to K1 . We setV8ªZW8 and defineV andW by ~15!. Then the triple$P,XV,W ,U% is irreducible.
Indeed, ifA1 andA2 be bounded self-adjoint operators satisfying~17!, then we haveA1Z

5A1V8W8* 5V8A2W8* 5V8W8* A15ZA1 and A1P15P1A1 , so thatA15l•I for some
lPC and henceA25V8* A1V85l•I . By Proposition 2, the triple is irreducible. j

Example 4:For this example we assume that there exist numbersa,bP@q,1) such that
m1

j ,15da andm1
k,25db for all j PI 1 andkPI 2 . We shall show that in this case an irreducib

triple $P,XV,W ,U% can be only obtained if both index setsI 1 andI 2 are singletons or equivalentl
if dim K15dimK251. Indeed, otherwise we take a self-adjoint operatorA1 on K1 such that
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A1V8W8* 5V8W8* A1 andA1¹C•I and setA2ªV8* A1V8. Then the conditions~16! are ful-
filled, hence the triple is not irreducible. j

Example 5:If the spectra of the operatorsP1 on K1 andP2 on K2 are singletons, then we
have seen in Example 4 that irreducible triples exist only in the trivial case whereI 1 and I 2 are
singletons. We now show that this is no longer true if both spectra consist of two points. T
more precise, we shall consider the following situation: The index setsI 6 are disjoint unions of
two countable infinite setsI 6

1 and I 6
2 and there are numbersa1 ,a2 ,b1 ,b2P@q,1), a1Þa2 , such

that m1
j ,15da1

for j PI 1
1 , m1

j ,15da2
for j PI 1

2 , m1
j ,25db1

for j PI 2
1 , andm1

j ,25db2
for j PI 2

2 .

By identifying I 6
j with the natural numbers the Hilbert spacesK1 andK2 become the direct sum

l 2(N) % l 2(N) of two l 2-spaces. We choose a bounded operatorT on l 2(N) such that$T,T* %8
5C•I and I<3T* T<2•I . It is well known ~see Ref. 12, Anhang, §4! that the operator matrix

Z5S T AI 2TT*

2AI 2T* T T* D
defines a unitary operatorZ on K15K25 l 2(N) % l 2(N). Let W8 be an arbitrary unitary operato
on K15K2 and setV8ªZW8. Then the triple (P,XV,W ,U) is irreducible.

Indeed, letA1 andA2 be self-adjoint bounded operators onK15K2 satisfying~17!. Since
a1Þa2 , the relationA1P15P1A1 implies thatA1 is given by a diagonal operator matrix

A15S B 0

0 CD .

From ~17! we getA1Z5ZA1 . Comparing the matrix entries of the first line yieldsBT5TB and
BAI 2T* T5AI 2T* TC. SinceB5B* , we haveBT* 5T* B. Therefore,B commutes withT and
T* and so withAI 2T* T which in turn givesAI 2T* TB5AI 2T* TC. BecauseAI 2T* T is
invertible, we getB5C. SinceBP$T,T* %8, we obtainB5C5l•I for somelPC. Thus,A1

5l•I andA25V8* A1V85l•I , so that the triple is irreducible by Proposition 2. j

V. A CHARACTERIZATION OF THE OPERATOR TRIPLES

Let $P,XV,W ,U% be an operator triple as in Sec. II and letD1 be the set of all vectorsf5fX

1fe1foPD(XV,W) with fXPDo , whereDo is as defined in Sec. II. ThenD1 is a dense linear
subspace of the Hilbert spaceH such thatD1 is invariant under the operatorsP, XV,W , andU and
the restrictions ofP and XV,W to D1 are essentially self-adjoint. Further, the three operatorsP,
XV,W , andU applied to vectorsfPD1 satisfy the relations~1! and~2!. From the construction it is
clear that the rangeE„@q,1)…H(>K1) of the spectral projectionE„@q,1)… of the operatorP is
contained inD1 . Our next proposition says that the operator triples$P,XV,W ,U% can be charac-
terized by some of the properties just mentioned.

Proposition 4: Let$P8,X8,U8% be a triple of two self-adjoint operators P8 and X8 and a
unitary operator U8 on a Hilbert spaceH8. Let E(•) denote the spectral measure of P8. Suppose
that there exists a linear subspaceD1#D(P8X8)ùD(X8P8) of H such that

~i! E„@q,1)…H#D1 and E„(21,2q#…H#D1 .
~ii ! The operators P8,X8,U8 satisfy the relations (1) and (2) for vectors inD1 .
~iii ! The restrictions P8dD1 and X8dD1 of P8 and X8 to D1 are essentially self-adjoint

Then $P8,X8,U8% is unitarily equivalent to an operator triple$P,XV,W ,U% defined in
Sec. II.

Sketch of proof:The restrictionP18 of P8 to the invariant subspaceH1ªE„@q,1)…H̃ is obvi-
ously a bounded self-adjoint operator on the Hilbert spaceH1 with spectrum contained in the
interval @q,1#. By the spectral representation theorem11, there is a family$m1

j ,1 ; j PI 1% of finite
positive Borel measures on@q, 1# and a unitary isomorphism ofH1 on K1ª% jL

2
„@q, 1#,m1

j ,1
…
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such thatP18 is unitarily equivalent to the operatorP1 on K1 which acts componentwise as th

multiplication by the variablet. Since 1 is not an eigenvalue ofP18 by construction, we have
m1

j ,1($1%)50 for all j PI 1 . For simplicity let us identifyH1 with K1 andP18 with P1 .
Next we show that kerP85$0%. Let fPkerP8. SinceP8dD1 is essentially self-adjoint by~iii !,

there exists a sequence$fn% of vectorsfnPD1 such thatfn˜f and P8fn˜P8f50 in H. Since
X8P8fn5 i(q1/2U8* 1q1/2U8)fn by ~ii ! and the operatorsU8 and U8* are bounded, we obtain
(q21/2U8* 1q1/2U8)f50 in the limit. This in turn yields thatqifi5ifi and sof50.

By ~ii !, we haveU8P8f5qP8U8f for all fPD1 . Sincep8dD1 is essentially self-adjoint, this
remains valid forfPD(P8), so thatP8#qU8* P8U8. SinceP8 is self-adjoint, we conclude tha
P85qU8* P8U8. Hence we haveU8nE(N)5E(q2nN) for any Borel subsetN of R and arbitrary
nPZ. Let m j ,1 be the extension of the measurem1

j ,1 to R1 as in Sec. II~1!. From the preceding
considerations it follows thatE(R1)H5 % jL

2(R1 ,m j ,1)[H1 and thatU8 acts in each compo
nent by formula~i! in Sec. II~1!. Proceeding in a similar manner, we obtain a family$m1

j ,2 ; j
PI 2% of measures on@q,1# such thatm1

j ,2($1%)50 for j PI 2 ,E(R2)H5 % jL
2(R2 ,m j ,2)

[H2 in the notation of Sec. II andU8 acts componentwise as given by formula~i! in Sec. II~1!.
SinceE($0%)H5kerP85$0% as proved in the preceding paragraph, we conclude thatH5H1

%H2 .
From the construction it is clear thatP8 andU8 are the operatorsP andU, respectively, as in

Sec. II. Let us finally turn to the operatorX8. Recall that we haveX8P8f5 i(q21/2U8*
1q1/2U8)f for fPD1 . By arguing as in the paragraph before last, this relation remains valid fo
fPD(P8). If f denotes a component of the vectorf, then the preceding equation yields th
gªt f PH, t21g5 f PH and (X8g)(t)5 i„q21f (q21t)2q f(qt)…5 it21

„g(q21t)2g(qt)…5(Xg)
3(t). HenceX8f5Xf for all fPD(P8). Since X8dD1 is essentially self-adjoint, the relatio
U8X8f5q21X8U8f for fPD1 by ~ii ! extends to vectorsfPD(X8), so thatU8X8U8* 5q21X8.
Thus,X8 is a self-adjoint extension of the operatorX such thatUD(X8)5D(X8). By Proposition
1, X8 is of the formXV,W . j

VI. * -REPRESENTATIONS OF THE q-HEISENBERG ALGEBRA

~1! We have considered so far only operator triples and operator relations rather than
sentations of the algebraA(q). However, any operator triple$P,XV,W ,U% gives rise to a self-
adjoint representation of the*-algebra as follows. Indeed, letD1 be the domain defined at th
beginning of Sec. IV. For vectors inD1 the operatorsP,XV,W ,U satisfy the defining relations~1!
and ~2! of the algebraA(q). Hence there exists a unique*-representationp1 of the *-algebra
A(q) on the domainD1 such that

p1~p!5PdD1 ,p1~x!5XV,WdD1 ,p1~u!5U dD1 .

~For the notions on unbounded*-representations used in what follows we refer to Ref. 13. Re
that the symbolT dD1 means the restriction ofT to D1 .!

The *-representationp1 is not yet self-adjoint~see Ref. 13, Definition 8.1.10!, because,
roughly speaking,D1 is not the largest possible domain. However, since the operatorsp1(p) and
p1(x) are essentially self-adjoint, it follows at once from Proposition 8.1.12~v! in Ref. 13 that the
adjoint representationpª(p1)* is self-adjoint. It is not difficult to verify that the domainD of
the *-representationp is just the intersection of domains of all possible products of the opera
P,XV,W ,U ~see Ref. 13, Proposition 8.1.17!. From these facts it follows that the operator trip
$P,XV,W ,U% is irreducible if and only if the*-representationp is so and that two triples are
unitarily equivalent if and only if the corresponding*-representations are so. That is, Propositio
2 and 3 provide also the conditions for the irreducibility and the unitary equivalence of
* -representations of the*-algebraA(q).

~2! Finally, we briefly discuss how operator representations of theq-deformed Heisenberg
algebraA(q) can be constructed by means of the Schro¨dinger representationPª2 i(d/dt) and
Qªt of the ‘‘ordinary’’ momentum and position operators.
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Let us writeq5e2a with aPR. We define three operatorsU, P, andX on the Hilbert space
H5L2(R):

U5ei Q, P5eaP, X5 i~q21/2e2 i Q2q1/2ei Q!e2aP. ~19!

The vector spaceDªLin$egt2t2;gPC% is a dense linear subspace ofH. Since the operator
ebP,bPR, acts as (ebPf )(t)5 f (t2b i) on functions f PC ~see, for instance, Ref. 14 for
rigorous proof!, the operatorsU, P, andX satisfy the relations~1! and~2!8 and the restrictions of
these operators to the invariant dense domainD define a*-representation of the*-algebraA(q).
This operator representation~19! appears already somewhat hidden in Ref. 1. Indeed, if we cha
the variablet to et, then the operator triple$U % U,(2P) % P,(2X) % X% on the direct sum Hilbert
spaceH%H is easily seen to be unitarily equivalent to the triple in formula~2.2! in Ref. 1.

The operator representation~19! is irreducible onH. Obviously,U is unitary andP is self-
adjoint. However, an essential disadvantage of the representation~19! is that the operatorX is only
symmetric, but not essentially self-adjoint. The latter can be shown by the argument used
proof of Proposition A.2 in Ref. 14. The reason for this failure is the fact the holomorphic fun
h(z)5q21/2ei z2q1/2e2i z admits the zerozo5 i (a/2) in the strip$zPC: 0,Im z,a%.
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Extended gauge theories starting from the matter
field Lagrangian
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We obtain an extended gauge theory by imposing that the matter field Lagrangian
is invariant under a local gauge transformation that also contains a vector parameter
besides the usual scalar one. ©1999 American Institute of Physics.
@S0022-2488~99!03810-4#

I. INTRODUCTION

It is well-known that usual gauge theories, described by vector fields, may arise from m
field Lagrangians by imposing their invariance under local phase transformation. In this proc
the vector gauge field naturally appears as that one that compensates an extra term given
derivative of the phase function.

Nowadays, there has been a great deal of interest in tensor gauge fields,1 but these are neve
introduced as fields that compensate gauge transformations of matter fields. We mention th
are antisymmetric and their gauge transformations are taken as a direct extension of the
case. Up to some multiplicative factor, these gauge transformations are given by~we concentrate
on the Abelian case only!

dBmn5]mjn2]njm . ~1.1!

As we observe, if the vector gauge parameterjm is taken as the gradient of some scalar quant
we obtain thatdBmn50. This property gives us an interesting structure of constraints for ga
theories involving tensor fields. It means that their first-class constraints are not all indepe
~reducibility condition! and their quantization deserve some additional care comparing with
usual case of rank one gauge theories.1,2 We also mention that antisymmetric tensor fields app
as massless solutions of modern string theories among other fields such as photons, gravito3

When one takes into account the coupling between matter and tensor gauge fields, th
some discordances and inconsistencies in literature. For example, in the study of chiral an
tensor gauge fields can be coupled to a tensor currentc̄Smnc ~up to some coupling factor!.4 $We
use the following convention and notation throughout this paper:$gm,gn%52hmn, hmn5diag.
(1,2,2,2), g0gm†g05gm, e012351,g55 ig0g1g2g3 andSmn5( i /4)@gm,gn#.% In this situation, the
gauge transformation for the matter field is considered to be the usual one, i.e., by means of
phase exponential factor, what is compensated by the presence of a vector gauge field. Th
transformation for the tensor gauge field, however, is not the same one as~1.1!. In fact, it is taken
as zero~Abelian case!.

Another kind of coupling between matter and tensor gauge fields, compatible with the
transformation~1.1!, has already been considered.5 It has a topological nature, but the coupling
with a vector current, i.e., the interaction Lagrangian density is given by (i /2m)emnlr]nBlrc̄gmc,
wherem is a mass parameter.5 It is opportune to mention that topological interactions are also u

a!Electronic mail: amorim@if.ufrj.br
b!Electronic mail: barcelos@if.ufrj.br
46090022-2488/99/40(10)/4609/7/$15.00 © 1999 American Institute of Physics
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to couple vector and tensor gauge fields6 with the purpose to obtain an alternative mechanism
mass generation for gauge fields~vector or tensor!, also compatible with the Salam–Weinbe
theory when applied to the non-Abelian case.7

The purpose of the present paper is to show that tensor gauge fields can also be introd
fields that may compensate extended gauge transformations for the matter field. In this ca
shall see that the transformation~1.1! is just part of a more general gauge transformation satisfy
a non-Abelian algebra even though all fields are here taken as Abelian. Concerning the ki
gauge sector, the problem appears to be more subtle, because we do not know how to w
gauge curvature tensor when fields of different ranks are put together. We also addre
attention to this part and try to circumvent this problem by adopting an iterative process of lo
for an invariant Lagrangian step by step. Our conclusion is that the Lagrangian we are a
obtain in this way is a trivial one, expressed in terms of collective fields.8

Our paper is organized as follows: In Sec. II we discuss the extended gauge transformat
are going to use for the matter field. We shall see that it is necessary to add a Lorentz-type
transformation in order to close the gauge algebra~which is also non-Abelian!. Section III is
devoted to the obtainment of the matter field Lagrangian that is invariant under this ext
gauge transformation. In Sec. IV we discuss the problem of obtaining the Lagrangian fo
gauge sector. We left Sec. V for some concluding remarks and introduce an Appendix where
details of the calculations are presented.

II. EXTENSION OF THE GAUGE TRANSFORMATION

Let us try an extension of the usual gauge transformation for the matter field by introduc
vector parameter. A natural way of doing this is to take

dc5 i ~a~x!1jm~x!gm!c. ~2.1!

Contrarily to the gauge transformations involvingg5 , the mass termmc̄c is invariant under the
transformation~2.1!,

d~c̄c!5~ i jmgmc!†g0c1c̄~ i jmgmc!5 i jm~2c†gm†g0c1c̄gmc!5 i jm~2c̄gmc1c̄gmc!50.
~2.2!

However, the kinetic term is not. Before trying to see what we have to do in order to g
invariant kinetic term, there is a problem that ought to be solved first. The transformation~2.1!
does not close in an algebra. In fact,

@d1 ,d2#c54i j1
mj2

nSmnc. ~2.3!

We observe that to close the algebra, what is an essential condition to have the theory cons
quantized, the transformation of the matter field must also include a Lorentz-type term,

dc5 i ~a~x!1jm~x!gm2 1
2v~x!mnSmn!c, ~2.4!

where the parametervmn was generically taken as local. Now the transformation~2.4! closes in an
algebra, whose general form reads

@d1 ,d2#c5 i ~a31j3
mgm1v3

mnSmn!c, ~2.5!

where
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a350,

j3
m5j1nv2

nm2j2nv1
nm , ~2.6!

v3
mn52~j1

mj2
n2j2

mj1
n!2 1

2~v1
mlv2l

n2v2
mlv1l

n!.

We observe that the tensor parametervmn has actually to be local. So, to have a closed algebr
is also necessary to include a local Lorentz-type gauge transformation. The presence of th
means that gravitation might be naturally embodied in the theory.

III. INVARIANT MATTER FIELD LAGRANGIAN

It is just a question of algebraic work to show that the transformation of the kinetic m
field LagrangianL05 i c̄]”c under~2.4! is given by

dL05 idc̄]”c1 i c̄]”dc52c̄gmc]ma24i jmc̄Smn]nc1 ivmnc̄gn]mc2c̄gmgnc]mjn

1 1
2c̄glSmnc]lvmn . ~3.1!

We see that to implement the gauge invariance by means of gauge fields is not a simple t
the tensor sector. In order to have a general view of the problem and avoid the presence
equations, it is convenient to use a compact notation by redefining some terms. For exam
the general transformation~2.4!, we simply take

dc5 iGc, ~3.2!

where

G5a~x!1jm~x!gm2 1
2v~x!mnSmn . ~3.3!

Instead of expression~3.1!, we now just have

dL05c̄@G,gm#]mc2c̄]”Gc. ~3.4!

If one introduces a general compensating fieldA that interacts with the fermionic one as

L15c̄Ac, ~3.5!

we obtain

d~L01L1!5c̄@G,gm#]mc1c̄~dA2 i @G,A#2]”G!c. ~3.6!

We note that if one takesdA5 i @G,A#1]”G, the last term of~3.6! cancels, but the invariance i
only attained when@G,gm#50. This occurs of course for the particular case of the electromagn
field whereG is just the parametera(x). Further, with a convenient change of coordinates, t
equation is also solved for a constantvmn associated with global Poincare´ transformations.

To obtain the invariance for the general case, let us consider that instead ofL0 we have a more
general kind of Lagrangian like

L25 i c̄Km]mc, ~3.7!

where Km is some vectorial function of auxiliary fields in a suitable combination of gam
matrices~containing of course the particular case given byL0). For the resulting Lagrangian
L11L2 , we have

d~L11L2!5c̄~@G,Km#1 idKm!]mc1c̄~dA2 i @G,A#2Km]mG!c. ~3.8!
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The invariance is finally attained if

dKm5 i @G,Km#, ~3.9!

dA5 i @G,A#1Km]mG. ~3.10!

One important point to be emphasized is that, forG given by~3.3!, the transformations~3.9!
and ~3.10! close in an algebra, independently of the form ofKm andA ~see Appendix!.

To obtain a solution for Eqs.~3.9! and ~3.10!, we have to use some identities express
products of gamma matrices in terms of the sixteen independent termsI, gm, Smn, g5 , andg5gm.
Let us list them below,

gmgn5hmn22iSmn,

g5gmgn5hmng51emnlrSlr,
~3.11!

gmgngl5hmngl2hmlgn1hnlgm2 i emnlrg5gr ,

SmnSlr5
1

4
~hmlhnr2hmrhnl!1

i

4
emnlrg5

2
i

2
~hmlhnahrb1hnrhmahlb2hmrhnahlb2hnlhmahrb!Sab .

To solve Eq.~3.9!, we conclude thatKm should be expressed by

Km5Hmngn1I mnlSnl , ~3.12!

where the fieldsHmn andI mnl play the role of a kind of Stuckelberg fields. It is opportune to s
that if we had written a simpler expression forKm as, for example,Hgm1I nSnm, it would not
work because Eq.~3.9! would lead to an expression with different symmetries on left and r
sides.

UsingKm given by expression~3.12!, as well as the expression ofG given by~3.3!, into ~3.9!,
we obtain that the auxiliary fieldsHmn and I mnl must transform as

dHmn52I mnljl2vmn2Hm
lvln, ~3.13!

dI mnl52~hmljn2hmnjl!12~Hmljn2Hmnjl!1I mrnvr
l2I mrlvr

n. ~3.14!

Concerning the solution of~3.10!, we see that it is attained by using~3.3! and~3.12! and we
may conclude that the general expression forA should be

A5S2Amgm1 1
2BmnSmn1Pg51Vmg5gm. ~3.15!

It is interesting to notice the presence of chiral fields,P andVm in the gauge sector even thoug
there is no chiral gauge transformation in the matter Lagrangian.

The transformations for the fields contained inA are obtained after a long algebraic work. Th
result is

dS5]mjm1Hmn]mjn2 1
4I

mnl]mvnl , ~3.16!

dAm52]ma1 iBmnjn2 ivmnAn1Hmn]na ~3.17!

1
i

2
]nvnm1

i

2
Hln]lvnm2 i I lmn]ljn,
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dBmn522i ~]mjn2]njm!14i ~jmAn2jnAm! ~3.18!

1 i ~vl
mBln2vl

nBlm!22i ~Hlm]ljn2Hln]ljm!

12I lmn]la1 i ~ I lrm]lvr
n2I lrn]lvr

m!,

dP522jmVm2
i

8
emnlrI amn]avlr, ~3.19!

dVm522Pjm2 ivmnVn1 1
4emnlr]nvlr ~3.20!

1 1
4emnlrHan]avlr2 1

2emnlrI anl]ajr.

The transformations ofAm and Bmn contain the usual terms, that is to say,]ma and ]mjn

2]njm , respectively, but also contain some other terms in order to render the gauge inv
condition to the kinetic Lagrangian. It is interesting to notice, in these transformations, the
ence of the termsiBmnjn and 4i (jmAn2jnAm) ~terms involving the same initial gauge field
coupled with the vector parameterjm).

IV. ON THE INVARIANT LAGRANGIAN FOR THE KINETICAL GAUGE SECTOR

In the usual case of invariant gauge theories just involving vector fields, the correspo
Lagrangian for the kinetical sector can be directly obtained by introducing the curvature g
tensor, i.e.,

Fmn5 i @Dm ,Dn#5]mAn2]nAm , ~4.1!

whereDm5]m2 iAm is the covariant derivative. In the case of theories involving gauge field
rank higher than one, the concept of covariant derivative is here meaningless. However, the
tensor for these theories can be introduced as a direct extension of the vector case. For e
for a tensor gauge potentialBmn , we have

Hmnr5]mBnr1]rBmn1]nBrm . ~4.2!

We mention that the non-Abelian extension of this problem is much more subtle and the o
ment of the invariant Lagrangian is, in some sense, still controversial.9 A similar problem appears
to occur here, since the gauge transformations given by~3.16!–~3.20! have a non-Abelian nature
Let us try to circumvent this problem by following an iterative process. We then start from
simplest gauge invariant Lagrangian involving vector and tensor gauge fields, i.e.,

Lg52 1
4FmnFmn1 1

12HmnlHmnl. ~4.3!

This Lagrangian is invariant under the well-known gauge transformations,

dAm52]ma,

dBmn522i ~]mjn2]njm!, ~4.4!

that are just part of the full gauge transformations given by~3.17! and ~3.18!.
The iterative process consists in increasing step-by-step these gauge transformatio

looking for the corrections we have to do in the previous corresponding Lagrangian, in order
invariance under these partial transformations. So, instead of the simplest gauge transform
~4.4!, we look at~3.17! and ~3.18! and take
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dAm52]ma1 iBmnjn,
~4.5!

dBmn522i ~]mjn2]njm!14i ~jmAn2jnAm!.

Now, the Lagrangian~4.3! is not invariant under the transformations above. Actually,

dLg5 i ]mFmnBnljl24i ]mHmnljnAl. ~4.6!

We try to obtain a gauge invariant Lagrangian by adding toLg two new terms involving two
auxiliary fields,Xm andYmn ~antisymmetric inm andn!. After some attempts, we conclude th
these terms are

LX5Xn]mFmn1 1
2]mXm]nXn2 1

2]mXn]mXn ,
~4.7!

LY52 1
2Y

nl]mHmnl12]mYml]nYnl2 1
2]mYnl]mYnl .

The LagrangianLg1LX1LY is invariant under the transformations~4.5! since

dXm52 iBmljl , dYmn524i ~jmAn2jnAm!. ~4.8!

We then easily observe thatXm andYmn are an example of collective fields.8 This means that the
LagrangianLg1LX1LY can be trivially rewritten as

Lg1LX1LY52 1
4F̃mnF̃mn1 1

12H̃mnlH̃mnl, ~4.9!

where

F̃mn5]m~An2Xn!2]n~Am2Xm!,
~4.10!

H̃mnr5]m~Bnr2Ynr!1]r~Bmn2Ymn!1]n~BrmYrm!.

We observe that this kind of procedure lead always to the introduction of collective fields
though they can play important roles in the derivation of Ward identities8 or in the implementation
of quantization procedures such as the field antifield formalism,8,10 they do not modify the physi-
cal content displayed by the original theory without using collective fields.

V. CONCLUSION

In this paper, we have extended the gauge transformation of the matter field Lagrang
first introducing a vector gauge parameter, besides de scalar one. We have seen that th
transformation with these two parameters does not close in an algebra. This is only achiev
local Lorentz-type gauge transformation is also included. We have seen that a tensor gau
naturally arises in this procedure to compensate the extra terms that appear in the transfo
of the kinetic Lagrangian. In addition, it also arises scalar, pseudo scalar and axial fields, b
the usual vector one. We have also show that the Lagrangians for the gauge sector a
obtained by means of collective fields that, even though may be useful for writing aux
Lagrangians in the quantization procedure due to Batalin–Vilkovisky,10 they lead to a trivial result
in the case of kinetic Lagrangians. This problem continue under study. We are trying to fin
some alternative mechanism of getting invariant Lagrangians without using collective field
also avoiding to define a curvature tensor for the theory. Possible results shall be re
elsewhere.11
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APPENDIX: DEMONSTRATION THAT GAUGE TRANSFORMATION „3.9… AND „3.10…
CLOSE IN AN ALGEBRA

In this Appendix, we are going to show that the transformations~3.9! and ~3.10! close in an
algebra, consistently with~2.5!, independently of the form ofKm andA, sinceG is given by~3.3!.

We have already seen that the transformation~3.2! satisfies the following algebra

@d2 ,d1#c5 iG3c, ~A1!

where

G35 i @G1 ,G2#5a3~x!1j3
m~x!gm2 1

2v~x!3
mnSmn , ~A2!

with a3 , j3
m , andv3

mn being given by~2.6!.
For the transformation~3.9!, we have

@d2 ,d1#Km52@G2 ,@G1 ,Km##1@G1 ,@G2 ,Km##5@Km,@G2 ,G1##5 i @G3 ,Km#, ~A3!

where we have used the Jacobi identity and the expression~A2!. We actually see that the algebr
closes independently of the form we have forKm.

For the next relation, we have

d2d1A5 i @G2 ,d1 ,A#1d1Km]mG2

52@G2 ,@G1 ,A##1 i @G2 ,Km]mG1#1d1Km]mG2

52@G2 ,@G1 ,A##1d2Km]mG11 iK m@G2 ,]mG1#1d1Km]mG2 . ~A4!

Hence,

@d2 ,d1#A52@G2 ,@G1 ,A##2@G1 ,@A,G2##1 iK m@G2 ,]mG1#1 iK m@G1 ,]mG2#

5@A,@G2 ,G1##1 iK m]mG35 i @G3 ,A#1Km]mG3 , ~A5!

where we have used again the Jacobi identity and~A2!.
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A precise calculation of the ground-state energy of the complexPT-symmetric
Hamiltonian H5p21 1

4x
21 ilx3, is performed using high-order Rayleigh–

Schrödinger perturbation theory. The energy spectrum of this Hamiltonian has
recently been shown to be real using numerical methods. Here we present convinc-
ing numerical evidence that the Rayleigh–Schro¨dinger perturbation series is Borel
summable, and show that Pade´ summation provides excellent agreement with the
real energy spectrum. Pade´ analysis provides strong numerical evidence that the
once-subtracted ground-state energy considered as a function ofl2 is a Stieltjes
function. The analyticity properties of this Stieltjes function lead to a dispersion
relation that can be used to compute the imaginary part of the energy for the related
real but unstable HamiltonianH5p21 1

4 x22ex3. © 1999 American Institute of
Physics.@S0022-2488~99!01810-1#

It has been conjectured1 that the spectrum of the complex Hamiltonian,

H5p21 1
4 x21 ilx3, ~1!

is real and positive. Although there is no rigorous proof of this conjecture, it has been argue2 that
the reality and positivity of the spectrum is a consequence of thePT symmetry ofH. ~Recall that
the parity operation acts asP:p→2p andP:x→2x and that the antiunitary time reversal oper
tion acts asT:p→2p, T:x→2x, andT: i→2 i .) The notion thatPT symmetry can replace th
much more restrictive condition of hermiticity has been studied in the context of quasiex
solvable quantum theories,3 new kinds of symmetry breaking in quantum field theory,4,5 and
complex periodic potentials.6 There have been many other instances of non-HermitianPT-
invariant Hamiltonians in physics. Energies of solitons in Toda theories with imaginary cou
have been found to be real.7 Hamiltonians rendered non-Hermitian by an imaginary external fi
have been used to study population biology8 and to study delocalization transitions, such as vor
flux-line depinning in type-II superconductors.9

In this paper we study the large-order behavior of Rayleigh–Schro¨dinger perturbation theory
for the ground-state energy of the complexPT-symmetric Hamiltonian~1!. Note that this Hamil-
tonian describes a 011-dimensionalf3 field theory, and recall thatf3 theories were the firs
quantum field theories in which the divergences of perturbation theory were studied.10 For the
Hamiltonian ~1! the perturbation series for the ground-state energy is divergent, and we
strong numerical evidence that it is Borel summable. Furthermore, by studying the num
properties of the Pade´ approximants we infer that the~once-subtracted! ground-state energy con
sidered as a function ofl2 is a Stieltjes function. This is a very strong result because it imp
analyticity in the cut-l2 plane and other properties.@It is surprising that this Stieltjes conditio
holds for a complex Hamiltonian such as~1!; the proof that the once-subtracted ground-st

a!Electronic mail: dunne@hep.phys.uconn.edu
46160022-2488/99/40(10)/4616/6/$15.00 © 1999 American Institute of Physics
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energy of the conventionallx2N anharmonic oscillator is a Stieltjes function ofl makes use of
hermiticity.# We then use these analyticity properties to establish a dispersion relation that
the precise large-order behavior of the perturbation series.

Let us consider the conventional Rayleigh–Schro¨dinger perturbation series about the grou
state (E05 1

2) of the harmonic oscillatorH05p21 1
4x

2. The perturbed energy has an asympto
series representation in powers ofl2 because the perturbationx3 is an odd function ofx:

E~l!2
1

2
; (

n51

`

bnl2n. ~2!

@We have chosen the form ofH0 so that the perturbative expansion coefficientsbn in ~2! are
integers.#

Using recursion formulas, we can easily generate as many terms as desired in this exp
The coefficientsbn alternate in sign, and their magnitude grows rapidly withn. The first 20 values
are listed in Table I. We have computed enough of the coefficientsbn so that we can fit the leading
large-n behavior as

bn;~21!n11
60n11/2

~2p!3/2 GS n1
1

2D F12OS 1

nD G . ~3!

Therefore, although divergent, the series in~2! is potentially Borel summable.11,12 Observe that if
the factor ofi were absent from the Hamiltonian~1!, then the perturbation coefficientsbn would
not alternate in sign and the perturbation series would not be Borel summable.

We have performed a Pade´ analysis11,12 on the divergent series for the once-subtrac
ground-state energy@E(l)2 1

2#/l
2. Using the first 46 perturbation coefficientsbn , we find that for

all real positivel2 the diagonal Pade´ sequencePN
N(l2) is monotone decreasing with increasingN,

and the off-diagonal Pade´ sequencePM11
M (l2) is monotone increasing with increasingM:

P1
0,P2

1,P3
2,¯,PM11

M ,¯,PN
N,¯,P2

2,P1
1,P0

0. ~4!

TABLE I. The first 20 perturbation coefficientsbn in the expansion~2! of the ground-state energy for the comple
PT-symmetric Hamiltonian~1!.

n bn

1 11
2 2930
3 158 836
4 238 501 610
5 11 777 967 516
6 24 300 048 271 460
7 1 815 215 203 378 344
8 2868 277 986 898 581 530
9 464 025 598 165 231 889 260

10 2274 145 574 452 876 905 074 540
11 177 549 419 941 607 942 489 064 216
12 2125 174 233 315 525 265 299 874 890 500
13 95 490 636 687 662 293 430 130 201 941 400
14 278 410 748 996 991 270 671 939 611 723 389 320
15 68 982 408 758 305 101 330 092 396 215 438 198 608
16 264 750 700 102 454 900 598 854 145 411 501 140 103 290
17 64 606 224 564 767 863 138 999 679 663 986 778 514 033 420
18 268 291 871 149 169 980 983 310 351 232 642 663 615 057 109 020
19 76 244 729 314 392 095 958 565 433 992 857 306 551 429 203 990 968
20 289 660 576 791 390 730 762 095 201 994 590 409 692 301 843 683 859 820
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The results forl50.125 are shown in Table II. If the inequalities in~4! hold for all N andM and
for all real positivel2, then it is rigorously true that@E(l)2 1

2#/l
2 is a Stieltjes function ofl2.12

This means that@E(l)2 1
2#/l

2 is analytic in the cut-l2 plane, vanishes asul2u→`, and is a
Herglotz function ofl2. @A function f (z) is said to be Herglotz if Imf(z) is positive~negative!
when z is in the upper~lower! plane.# The fact that~4! holds for 0<M , N<23 provide strong
numerical evidence that@E(l)2 1

2#/l
2 is a Stieltjes function. We stress that this is a much str

ger result than merely saying that the divergent series~2! is Borel summable.
Furthermore, in addition to the inequality in~4!, the limits of the two Pade´ sequences appea

to be identical. Therefore, we can extract values for the Pade´ summed energy from the two Pad´
sequences. The best estimate for the ground-state energy is obtained by averaging the last
and off-diagonal Pade´ approximants.~To obtain an estimate of the ground-state energy from
average we multiply the average byl2 and add1

2.! The results are shown in Table III for variou
values of the couplingl. Previous numerical calculations of the ground-state energy were obta
by direct numerical integration of the Schro¨dinger equation~see Ref. 2!; this technique gave a
typical accuracy of about five decimal places. The agreement between the method of num
integration and the Pade´ summation is excellent. Moreover, forl, 1

10 the Pade´ technique provides
an accuracy of more than ten decimal places. The agreement is better for smaller valuesl, as
is expected, because of a faster convergence rate of the Pade´ sequence.

The above Pade´ analysis provides strong evidence that the once-subtracted ground-sta
ergy is analytic in the cut-l2 plane. Thus, we can derive a dispersion relation in the expan
parameterl2 to deduce the leading behavior of the imaginary part of the energy for negativl2.
Physically, this means that we can compute the imaginary part of the energy~and hence the deca
width! of the unstable ground state of thereal Hamiltonian,

H5p21 1
4 x22ex3. ~5!

TABLE II. The diagonal and off-diagonal Pade´ sequencesPN
N(l2) and

PN11
N (l2) evaluated atl50.125. Observe the rapid convergence and note

that the inequalities in~4! are satisfied.

N PN
N PN11

N

0 11.000 000 000 4.739 290 085
1 7.039 037 169 5.696 806 799
2 6.347 866 015 5.947 600 655
3 6.168 265 727 6.026 389 220
4 6.110 857 028 6.054 574 069
5 6.089 906 566 6.065 678 176
6 6.081 499 968 6.070 392 205
7 6.077 873 385 6.072 516 805
8 6.076 216 002 6.073 522 627
9 6.075 421 823 6.074 018 882

10 6.075 025 816 6.074 272 525
11 6.074 821 510 6.074 406 195
12 6.074 712 942 6.074 478 558
13 6.074 653 729 6.074 518 675
14 6.074 620 680 6.074 541 394
15 6.074 601 848 6.074 554 510
16 6.074 590 917 6.074 562 214
17 6.074 584 462 6.074 566 813
18 6.074 580 592 6.074 569 597
19 6.074 578 237 6.074 571 306
20 6.074 576 787 6.074 572 368
21 6.074 575 882 6.074 573 036
22 6.074 575 311 6.074 573 460
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Note that the ambiguity in the choice of the sign of the couplinge corresponds to choosing th
sign of i in ~1!. This has no effect on the decay width; the sign simply distinguishes the dire
~left or right! in which the potential in~5! is unstable.

In the t5l2 plane there is a cut along the negativet axis, and in the standard way the13–15bn

coefficients are related to the discontinuity across the cut by the exact formula

bn5
1

p E
0

` dt

t

D~2t !

tn , ~6!

where D(2t)(t.0) is the imaginary part ofE(l)2 1
2, evaluated withl2 negative. From the

growth estimate~3! we deduce that

D~2t !;2
e21/~60t !

2A2pt
@11O~ t !# ~ t→01!. ~7!

Thus, the leading contribution~for small e! to the imaginary part of the energy for the unstab
ground state of the Hamiltonian~5! is

Im@E~e!#;

expS 2
1

60e 2D
~2p!3/2e

~e→01!. ~8!

There are several ways to check this result. First, it agrees with a direct leading-order
calculation16 of the imaginary part of the energy of the unstable ground state of the real H
tonian~5!. Second, applying the ‘‘bounce’’ method17 to the real unstable Hamiltonian~5!, we find
that

Im@E~e!#bounce;cS0
1/2exp~2S0! ~e→01!, ~9!

where the actionS0 of the bounce solution is given by

S052E
0

1/4e

dxA1

4
x22ex35

1

60e2 , ~10!

andc is a constant~whose determination requires the computation of a fluctuation determin!.
Finally, the answer in~8! is in agreement with the variational perturbation theory analysi

Ref. 18. In fact, Ref. 18 contains a higher-order WKB expression for Im@E(e)#. Inserting this

TABLE III. The ground-state energy for the Hamiltonian~1! for various values of the couplingl; the ground-state energy
was computed by Pade´ summation and by direct numerical integration. The Pade´ sequences were computed for th

once-subtracted energy@E(l)2
1
2#/l2. The diagonal Pade´ energy refers to the energy extracted from the diagonal P´

sequencePN
N(l2), and the off-diagonal Pade´ energy refers to the energy extracted from the off-diagonal Pade´ sequence

PN11
N (l2). The best estimate for Pade´ energy is the average of the diagonal and off-diagonal values.

l Diagonal Pade´ energy Off-diagonal Pade´ energy Pade´ energy Numerical energy

0.015 625 0.502 63 0.502 63 0.502 63 0.502 63
0.031 25 0.509 98 0.509 98 0.509 98 0.509 98
0.0625 0.533 93 0.533 93 0.533 93 0.533 93
0.125 0.594 92 0.594 92 0.594 92 0.594 92
0.25 0.713 05 0.712 84 0.712 95 0.712 94
0.5 0.914 45 0.890 35 0.902 40 0.900 26
1.0 1.400 07 1.058 17 1.229 12 1.167 46
2.0 3.160 75 1.140 32 2.150 53 1.530 78
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higher-order WKB result into the dispersion relation~6!, we obtain a WKB-based prediction fo
the corrections to the leading-order growth of thebn coefficients given in~3!:

bn
WKB;~21!n11

60n11/2

~2p!3/2 GS n1
1

2D F12
169

120~n2 1
2!

2
44 507

28 800~n2 1
2!~p2 3

2!

2
9 563 539

1 920 000~n2 1
2!~n2 3

2!~n2 5
2!

2
189 244 716 209

8 294 400 000~n2 1
2!~n2 3

2!~n2 5
2!~n2 7

2!

2
42 943 442 679 817

331 776 000 000~n2 1
2!~n2 3

2!~n2 5
2!~n2 7

2!~n2 9
2!

2
342 541 916 236 654 541

398 131 200 000 000~n2 1
2!~n2 3

2!~n2 5
2!~n2 7

2!~n2 9
2!~n2 11

2 !

2
933 142 404 651 555 165 943

143 327 232 000 000 000~n2 1
2!~n2 3

2!~n2 5
2!~n2 7

2!~n2 9
2!~n2 11

2 !~n2 13
2 !

2¯G .

~11!

With these higher-order corrections, this growth estimate of thebn coefficients is spectacularly
accurate. For example,

b46
WKB

b46
51.000 000 008 07. ~12!

To conclude, we note that the strategy employed here to relate the large-order Ray
Schrödinger perturbation theory coefficients of a stable~and Borel-summable! problem to the
imaginary part of the energy of an unstable~and Borel-nonsummable! problem is familiar from the
quartic double-well potentialH5p21 1

4x
21gx4, which is stable wheng.0 and unstable when

g,0.19,13,15The novelty in this paper is that we begin with acomplexHamiltonianH5p21 1
4x

2

1 ilx3, which, despite being non-Hermitian, nevertheless appears to be stable in the sense
has a real and positive~and discrete! energy spectrum and a Borel-summable perturbation exp
sion for the ground-state energy. We can then relate the large-order perturbation coefficient
imaginary part of the energy of an unstable state of the real but unstable HamiltonianH5p2

1 1
4x

22ex3. It is interesting to note that the quartic case is relevant to the physics of instanton20,17

while the cubic case is relevant to ‘‘bounces’’ in scalar field theories17 and to string perturbation
theory.21
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A conserved current for the field perturbations
in the Einstein–Yang–Mills-dilaton–axion theory
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Using the self-adjoint character of the operators governing the field perturbations in
the Einstein–Yang–Mills-dilaton–axion theory, we demonstrate that a covariantly
~both gauge covariant and space–time covariant! conserved current associated with
the coupled field perturbations arises, by contrast to other approaches, in a natural
way. Our results cover, in particular, the bosonic low-energy limit of the string
theory. We discuss how the present results can serve as a starting point for future
investigations. ©1999 American Institute of Physics.@S0022-2488~99!01409-7#

I. INTRODUCTION

The concepts of energy and momentum have been under investigation for a long time
context of field theories involving gravity, in the general relativity itself, and in the modern un
theories. The main problem is to find a local expression that is physically meaningful and r
to some form of continuity equation, which yields a conserved quantity. In the scheme o
unified theories such as supergravity and~super!string theory, the problem may become mo
complicated since they predict that gravity is mediated by one or several long-range scala
in addition to the ordinary tensor field of the Einstein theory, being the main feature of these
fields that they appear nonminimally coupled to the gravity and matter fields. However, alth
such conservation laws have not been established in the exact theories, some conservatio
are known in the context of perturbation theory, for example, in the frameworks of the ord
Einstein–Maxwell theory,1 Yang–Mills theory, and general relativity.2,3 On the other hand, al-
though the approach of Refs. 1, 2 may provide a general method for constructing a con
current for the field perturbations—called the symplectic current—in various gravity theorie
main novelty that arises in the present approach is that the symplectic current does not nee
defineda priori ~and subsequently it will have the wanted properties!, but that it emerges naturally
as a consequence of the self-adjointness of the equations for the field perturbations. Th
adjointness is, as will be seen below, an intrinsic property of the operators governing the
perturbations in the Einstein–Yang–Mills-dilaton–axion~EYMDA ! theory.

We start with the~bosonic! four-dimensional effective action,

S5E A2gd4xH R22~]mf!]mf2
1

2
z~f!~]mh!]mh1j~f!Tr~FmnFmn!

1v~h!Tr~FmnF̃mn!1V~f,h!J , ~1!

whereR is the Ricci scalar,Fmn is the Yang–Mills field given by the matrix-valued two-form
Fmn52¹ [mAn]12A[mAn] . Here we consider non-Abelian gauge fields with an arbitrary ga
group@then, the electromagnetic case is, of course, just that one corresponding to the gaug
U(1)#. F̃mn5(1/2A2g) emnlrFlr is the dual matrix ofFmn . Tr denotes, as usual, the trac

a!Electronic mail: rcartas@sirio.ifuap.buap.mx
46220022-2488/99/40(10)/4622/8/$15.00 © 1999 American Institute of Physics
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Furthermore,f and h correspond to the dilaton and axion fields, respectively. The arbit
coupling functionsz(f), j(f), andv(h) depend only onf andh and contain no derivatives o
these fields. By suitable choice of these coupling functions, the low-energy effective act
string theory is covered. The peculiar nature of the dilaton and axion couplings to tensor fie
due to the presence of these functions. On the other hand,V(f,h) is known as the dilaton–axion
potential, and also depends onf and h alone.V may be a Liouville-type dilaton potential~a
cosmological constant term with dilaton coupling!; V also may contain the possible mass terms
dilaton and axion fields, i.e., it can take the formV5mDf21mAh2, wheremD and mA are the
masses of the dilaton and axion fields respectively, etc.

Variations ofSwith respect to the axion field, dilaton field, gauge fieldAm , and metric tensor
gmn give, respectively, the following equations of motion:

¹m~z ]mh!1
dv

dh
Tr~FmnF̃mn!1

]V

]h
50, ~2!

“m “

mf1
1

4 F dj

df
Tr~FmnFmn!2

1

2

dz

df
~]mh!]mh1

]V

]fG50, ~3!

¹” m~vF̃mn1jFmn!50, ¹” mF̃mn50, ~4!

where¹” m5¹m1@Am , #; and the Einstein field equations read as

Rmn2 1
2 gmnR5Tmn , ~5!

with the energy–momentum tensor of matter given by

Tmn52~]mf!]nf1 1
2 z~]mh!]nh2gmn@~]af!]af1 1

4 z~]ah!]ah#

22jTr~FmaFnbgab2 1
4 gmnFrlFrl!1 1

2 gmnV. ~6!

The remainder of the paper is organized as follows. Section II is devoted to the lineariz
of the equations of motion~2!–~6! around a general curved background. In Sec. III we estab
the general relationship between adjoint operators and conserved currents, which allows us
IV to find the corresponding symplectic current for the perturbed EYMDA theory. Finally, in
V we conclude and discuss future directions that this research will take.

II. LINEARIZATION OF EYMDA THEORY

In the following expressions and what follows the superscript B denotes the correspo
linear perturbations. In particular, the metric, gauge potential, dilaton, and axion perturbatio
represented byhmn , bm , fB, andhB, respectively.

Furthermore, we can find that

~gmn!B52hmn, gB5ggmnhmn, Fmn
B 5¹” mbn2¹” nbm ,

~ F̃mn!B5
2

A2g
emnab¹” abb2

1

2
F̃mngabhab,

jB5
dj

df
fB, F S dj

df D B

5
d2j

df2
fBG ,

zB5
dz

df
fB, vB5

dv

dh
hB,
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VB5
]V

]f
fB1

]V

]h
hB,

~7!

S ]V

]f D B

5
]2V

]f2
fB1

]2V

]h]f
hB,

S ]V

]h D B

5
]2V

]f]h
fB1

]2V

]h2
hB,

~Gmn
l !B5 1

2g
lr@“mhnr1“nhmr2“rhmn#,

in the above expressions and throughout, the covariant derivative“m is with respect to the
background metricgmn , and similarly“” m is with respect to both background metric and bac
ground gauge fieldAm . The indices are raised and lowered by means of the background m
for example,hmn5gmagnbhab , that will be used implicitly below.

In addition, using the expressions~7!, one easily finds that

@Tr~FmnFmn!#B5Tr@4Fmn¹” mbn12grnFnaFmrhma#,
~8!

@Tr~FmnF̃mn!#B5Tr@4F̃mn¹” mbn2 1
2 FrgF̃rggmnhmn#.

In this manner, using the expressions~7! and~8! we can find that the linearized versions of th
equations of motion~2!–~4! are given, respectively, by~after some arrangements!

2H z“m]m1~]mz!]m1
d2v

dh2
Tr~FmnF̃mn!1

]2V

]h2J hB2H F“mS dz

df
]mh D G1

dz

df
~]ah!]a

1
]2V

]h]fJ fB24
dv

dh
Tr~ F̃mn ¹” mbn!1$z@~“a ]mh!1~]ah!“m2 1

2 gma~]rh!¹r#

1~]mz!~]ah!%hma1
1

2

dv

dh
Tr~FrlF̃rggmahma!50, ~9!

H dz

df
~]mh!]m2

]2V

]f ]hJ hB24H 1

4 FTr~FmnFmn!
d2j

df2
2

1

2

d2z

df2
~]mh!~]mh!1

]2V

]f2G1“

m
“mJ fB

24
dj

df
Tr~Fmn

“” mbn!24H 2~“a
“

mf!1
1

8

dz

df
~]mh!~]ah!2~“af!“m

1
1

2
gma~“rf!“rJ hma22

dj

df
Tr~FlmFa

lhma!50, ~10!

4glmF̃ln]mS dv

dh
hBD14“” mS dj

df
FmnfBD14H gn

m
“”

r~j“” r!2“”

m~j“” n!

1
1

A2g
ganeralm~]rv!]lJ bm14H 1

2
gma@jFr

n“r2~]rv!F̃r
m#

2gm
n@jFra

“r2~]rv!F̃rm#J hma24“” a~jFm
nhma!50, ~11!
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where we have multiplied Eqs.~9!–~11! by the factors21, 24, 4, respectively, for future
convenience.4 In order to linearize the Einstein equations~5! and ~6!, it is suitable to write the
left-hand side of Eqs.~5! asRmn

B 2 1
2gmnRB2 1

2Rhmn , where

Rmn
B 2 1

2 gmnRB5@EV~hab!#mn52“m“ngabhab2“

a
“ahmn1“

r
“nhrm1“

r
“mhrn

1gmn~“r
“rgabhab2“

a
“

bhab!, ~12!

i.e., EV is the operator describing gravitational perturbations of vacuum space–times.4 The per-
turbed term2 1

2Rhmn will be absorbed in the operatorES in the next equation. In this manne
using Eqs.~7! and ~8!, the perturbed version of Einstein equations takes the form

2H z~] (mh!]a)2
1

2
zgma~]rh!]r1

1

2
gma

]V

]hJ hB2H 4~] (mf!]a)

22gma~]rf!]r1
1

2

dz

df F ~]mh!~]ah!2
1

2
gma~]rh!~]rh!G1

1

2
gma

]V

]f
2

dj

df
Tr~Tma

YM !J fB

22j Tr~$gmaFlg
“” l12@Fg

(m“” a)1gg
(mFa)

l
“” l#%bg!1@~EV1ES!hrg#am50, ~13!

where

Tmn
YM52@FmaFnbgab2 1

4 gmnFrlFrl#,

is the usual energy–momentum tensor of the background Yang–Mills field; in addition,ES rep-
resents the operator acting on the metric perturbations associated with the perturbed te
matter and only corresponds to a function, without containing differential operators.

The coupled equations for the field perturbations~9!–~11! and~13! can be identified with the
first, second, third, and fourth rows, respectively, of the following matrix:

F EA EAD EA(YM) EAG

EDA ED ED(YM) EDG

E(YM) A E(YM) D EYM E(YM) G

EGA EGD EG(YM) EG

GF hB

fB

~bm!

~hmn!

G50. ~14!

From Eqs.~9!–~11! and ~13! we can note that theE’s are linear partial differential operator
involving only the background fields, which satisfy Eqs.~2!–~6!; furthermore, the presence of th
coupling functions and of the dilaton–axion potential makes that all field perturbations be p
in each of the perturbation equations.

At first sight it might appear that, due to the very complicated appearance of Eqs.~9!–~11! and
~13!, they have not any special property; however, as will be seen in the next section, they h
intrinsic property, the self-adjointness, which will guarantee automatically the existence
conserved current for the field perturbations.

III. ADJOINT OPERATORS AND CONSERVED CURRENTS

According to the definition introduced in Ref. 5, ifP is a linear partial differential operator
which takes matrix-valued tensor fields into themselves, then, the adjoint operator ofP, is that
operatorP †, such that

Tr$ f rs•••@P~gmn•••!#rs•••2@P †~ f rs•••!#mn•••gmn•••%5“mJm, ~15!

where Tr denotes again the trace andJm is some vector field~this definition generalizes that give
by Wald in Ref. 4!. From this definition, ifQ andR are any two linear operators, one easily fin
that
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~QR!†5R †Q †, ~Q1R!†5Q †1R †. ~16!

In the case of a functionF, such as the operatorES of Eq. ~13!,

F†5F. ~17!

Furthermore, from the definition~15! we can easily see that iff and g are two independen
solutions admitted by any linear systemP( f )505P(g) and the operatorP is self-adjoint, it
means thatP †5P ~or antiself-adjoint,P †52P), thenJm appearing on the right-hand side is
covariantly conserved quantity depending on the fieldsf andg.6

In this manner, the above discussion yields a completely general result, the existenc
conserved current for a self-adjoint system of the differential equations. The important po
this fact is the adjoint character of the system under study, and as we will see, this is effec
the case for the system of equations~14!. For this purpose let us consider the elementEA(YM) ,
which is taking the matrix-valued fieldbn into a scalar field in Eq.~9!; using the properties of the
Tr and the background equation“” mF̃mn50 @see Eq.~2!#, it is easy to demonstrate that

Tr@c1~EA(YM) Bn!#5Tr@Bn~E(YM) Ac1!n#1“” m TrF4
dv

dh
F̃nmBnc1G ,

wherec1 is any scalar field,Bm is any matrix-valued field, andE(YM) A is that operator takinghB

~a scalar field! into a matrix-valued field in Eq.~11!. The above expression has the form~15! and
allows us to identify that

EA(YM)
† 5E(YM) A . ~18!

Similarly, using the definition~15!, the properties~16! and~17!, and assuming that the back
ground fields satisfy Eqs.~2!–~6!, we can demonstrate the following relations:

c2EAc15c1EAc21“” mz~c1 ]mc22c2 ]mc1!~E A
†5EA!,

c2EDAc15c1EADc21“” mF dz

df
c1c2 ]mhG~E DA

† 5EAD!,

Ama~EGAc1!ma5c1~EAGAma!1“” mzc1@ 1
2 Aa

a ]mh2Amn ]nh#~E AG
† 5EGA!,

c2EDc15c1EDc21“” m4~c1 ]mc22c2 ]mc1!~E D
† 5ED!,

Tr@c1~ED(YM) Bn!#5Tr@Bn~E(YM) Dc1!n#1“” mTrS 4
dj

df
FnmBnc1D ~ED(YM)

† 5E(YM) D!,

c1~EDGAma!5Ama~EGDc1!ma1“” m2c1@2Am
a]af2Aa

a]mf#~E DG
† 5EGD!,

Tr@An~EYMBm!n#5Tr~Bn~EYMAm!n!1“” m8TrH j@Ar“”
[mBr]1Br“”

[rAm] #

1
1

2A2g
eramlAaBl]rhJ ~E YM

† 5EYM !,

Tr@Ama~EG(YM) Bn!ma#5Tr@Bn~E(YM) GAma!n#1“” m2j Tr$4BnFa
[nAm]a2Aa

aBnFmn%~EG(YM)
†

5E(YM) G!, ~19!
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where c2 is another scalar field,Am and Bm are any two matrix fields, andAmn any 2-index
~symmetric! tensor field~such ashmn). On the other hand, sinceEG5EV1ES ,using the expression
for EV given in Eq.~12!, the property~17!, we can find that

Amn~EGBar!mn5Bar~EGAmn!ar1“” mSmablrg~Aab“lBrg2Bab“lArg! ~E G
† 5EG!, ~20!

whereBmn is another 2-index~symmetric! tensor field and1

Smablrg5gm(rgg)(agb)l2 1
2 gmlga(rgg)b2 1

2 gm(agb)lgrg2 1
2 gabgm(rgg)l1 1

2 gabgmlgrg.
~21!

We thereby have found from Eqs.~18!–~20! that the matrix operator in Eq.~14! governing the
linear field perturbations for the EYMDA theory, is self-adjoint, that is7

F EA EAD EA(YM) EAG

EDA ED ED(YM) EDG

E(YM) A E(YM) D EYM E(YM) G

EGA EGD EG(YM) EG

G †

5F EA EAD EA(YM) EAG

EDA ED ED(YM) EDG

E(YM) A E(YM) D EYM E(YM) G

EGA EGD EG(YM) EG

G . ~22!

It is important to remark that the only assumption that we have made in order to establi
intrinsic property~22! is that the background fields satisfy Eqs.~2!–~7!; moreover, we would like
point out that any operator appearing in physics is not necessarily self-adjoint.8

With the end of obtaining the explicit form of the symplectic current for the EYMDA fie
perturbations, letS1 andS2 be any two independent solutions admitted by the system~14!, given
by

~S1!5S h1
B

f1
B

~bm!

~hmn!

D , ~S2!5S h2
B

f2
B

~Bm!

~Hmn!

D , ~23!

and from definition~14!,

S2~ES1!2S1~E †S2!5“” mJm, ~24!

whereE is the matrix operator~22!, and using Eqs.~19! we easily find that

Jm5J
A

m1J
AD

m1J
A(YM)

m1J
AG

m1J
D

m1J
D(YM)

m1J
DG

m1J
YM

m1J
(YM) G

m1J
G

m, ~25!

where

J
A

m5z~h1
B ]mh2

B2h2
B ]mh1

B!, J
AD

m5
dz

df
~]mh!@h1

Bf2
B2f1

Bh2
B#,

J
A(YM)

m54
dv

dh
Tr†F̃mr@Brh1

B2brh2
B#‡,

J
AG

m5z@~]rh!@hmrh2
B2Hmrh1

B#1 1
2 ~]mh!†Hh1

B2hh2
B#‡,

J
D

m54@f1
B]mf2

B2f2
B ]mf1

B#,
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J
D(YM)

m54
dj

df
Tr@Fmr@Brf1

B2brf2
B##, ~26!

J
DG

m52†2~]rf!@hm
rf2

B2Hm
rf1

B#1~]mf!@Hf1
B2hf2

B#‡,

J
YM

m58 TrH j@Br “”

[mbr]2br “”

[mBr] #1
1

2A2g
eraml~]rh!BablJ ,

J
(YM) G

m52j Tr$2Fr
m@hrlBl2Hrlbl#12Frl@Hmrbl2hmrBl#1Fmr~hBr2Hbr!%,

J
G

m5Smablrg~Hab “lhrg2hab “lHrg!,

whereH5gmnHmn , h5gmnhmn and the subscripts only denote the types of field perturbat
involved; for example,JA(YM)

m involves axion and Yang–Mills perturbations. Note thatJm is, just
like the symplectic currents constructed by means of the approach of Refs. 1, 2, a function
unperturbed set of fields and is bilinear and antisymmetric in pairs of field perturbations. M
over, the dilaton–axion potential does not contribute to the symplectic current~those possible
mass terms, etc.!.

Our expression forJm is not gauge invariant with respect to either ordinary gauge trans
mationsBm→Bm1]mx1@Am ,x# andbm→bm1]mx1@Am ,x# or infinitesimal diffeomorphisms.
However, the integral ofJm over a compact Cauchy surface is gauge invariant.1,2 On the other
hand, since the dilaton and axion are fundamental physical fields~i.e., their zero modes are
physically meaningful!, there are no gauge invariances associated with these fields.

We can compare the expression forJ
YM

m in Eq. ~26! with that for the symplectic curren
introduced in 3, and note that they have the same form in terms of the gauge field perturb
Moreover, if we setf5h5v5V50 andj52k ~gravitational constant! without imposing any
restriction on the remaining gauge field in the background according to Eqs.~2!, ~3!, it is not
difficult to show that the sum@in the case when the gauge group corresponds toU(1)] J

YM

m

1J
(YM) G

m1J
G

m reduces exactly to the expression~3.12! in Ref. 1 for the symplectic current in th
Einstein–Maxwell theory.

IV. CONCLUDING REMARKS

In conclusion, we have applied to a system of perturbation equations derived from a s
inspired action, a general result that connects the self-adjointness of any linear system of
ential equations with the existence of a conserved current. The applicability of the prese
proach depends on the fact that the self-adjoint character of the system under study is esta
However, if a given system is not self-adjoint, one can still be able to find a conserved cu
which will be associated, formally, to a solution of the original system and to a solution o
adjoint system, in accordance with the definition~15!; but, at present, we do not know in gener
what one must understand physically by ‘‘a solution of the adjoint system.’’ In this sense
present approach can be, in principle, a general method to generate a conserved current
gravity theory, such as the approaches of Refs. 1, 2.

In addition to that, our approach is a more direct procedure of obtaining the symplectic c
than that employed in Refs. 1, 2, it has another advantage: the self-adjointness allows the
tion of solutions for perturbation equations by means of potentials, provided the correspo
decoupled equations are obtained~originally, with this idea the concept of adjoint operators w
introduced by Wald4 and Torres del Castillo5!; that will permit, in its turn, a detailed study of th
corresponding symplectic current, since we do not have yet a general physical interpretat
such a current~however, a connection with the conservation of energy has been shown
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particular case in Ref. 1; see also Ref. 3!. Reference 8 shows how our approach applies when
string fields are involved, and references cited therein correspond to some particular cases
perturbation study may be very interesting.

On the other hand, the action considered in the present work contains only the~truncated!
bosonic sector of a generic low-energy string effective theory; the question of whether the
ence of the additional terms in the generic action yields a self-adjoint perturbation equ
remains to be worked out. Moreover, the inclusion of fermionic fields~superstrings theory! is
possible, since the fundamental definition of Ref. 5, which has been our starting point, exten
spinor fields. All these questions will be the subject of a future investigation.
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On the number of particles that a curved quantum
waveguide can bind
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We discuss the discrete spectrum ofN particles in a curved planar waveguide. If
they are neutral fermions, the maximum number of particles that the waveguide can
bind is given by a one-particle Birman–Schwinger bound in combination with the
Pauli principle. On the other hand, if they are charged, e.g., electrons in a bent
quantum wire, the Coulomb repulsion plays a crucial role. We prove a sufficient
condition under which the discrete spectrum of such a system is empty. ©1999
American Institute of Physics.@S0022-2488~99!01309-2#

I. INTRODUCTION

A rapid progress of mesoscopic physics brought, in particular, interesting new prob
concerning relations between geometry and spectral properties of quantum Hamiltonians
involve models of quantum wires, dots, and similar systems. While in reality these are
complicated systems composed of different semiconductor materials, experience tells us th
basic features can be explained using simple models in which electrons~regarded as free particle
with an effective mass! are supposed to be confined to an appropriate spatial region, either
potential or by a hard wall. A brief description of this approximation with a guide to fur
reading is given in Ref. 1. In addition, such models apply not only to electrons in semicond
microstructures; a different example is represented by atoms trapped in hollow optical fibe2

It is natural that most theoretical results up to date refer to the case of a single particle
confinement. On the other hand, from the practical point of view it is rather an exception t
rule that an experimentalist is able to isolate a single electron or atom, and therefore man
problems in this setting are of interest. For instance, two-dimensional quantum dots that
regarded as artificial atoms have been studied recently, usually in the presence of a magne
either for a pair of electrons or in the semiclassical situation when a Thomas–Fermi-type ap
is applicable—cf. Refs. 3–6 and references therein.

In these studies, however, geometry of the dot played a little role, because the confin
was realized by a harmonic potential or a circular hard wall. This is not the case for open sy
modeling quantum wires where a deformation of a straight channel is needed to produce no
spectral properties. In particular, a quantum waveguide exhibit bound states if it is be1,7,8

protruded,9–11 or allowing a leak to another duct,12–14and the discrete spectrum depends subs
tially on the shape of the channel. With few exceptions such as Ref. 15, however, the k
results refer to the one-particle case.

It is our aim in the present paper to initiate a rigorous investigation of many-particle effec
quantum waveguides. We are going to discuss here a system ofN particles in a bent plana
Dirichlet tube, i.e., a hard-wall channel, and ask whetherN-particle bound states exist for a give

a!Electronic mail: exner@ujf.cas.cz
b!Present address: Galgenbergerstr. 19, 92637 Weiden, Germany. Electronic mail: wugalter@new-wen.baynet.de
46300022-2488/99/40(10)/4630/9/$15.00 © 1999 American Institute of Physics
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geometry. After collecting the necessary preliminaries in the next section, we shall derive fi
Sec. III a simple bound for the neutral case that follows from the Birman–Schwinger estim
the one-particle Hamiltonian in combination with the Pauli principle.

The main result of the paper is formulated and proved in Sec. IV. It concerns the phys
interesting case of charged particles; the example we have in mind is, of course, electrons in
semiconductor quantum wire. The electrostatic repulsion makes spectral analysis of the
sponding Hamiltonian considerably more complicated. Using a variational technique borr
from atomic physics, we derive here a sufficient condition under which the discrete spectr
empty. The condition is satisfied forN large enough and represents an implicit equation for
maximum number of charged particles that a waveguide of a given curvature and width can
Some other aspects of the result and open questions are discussed briefly in the concluding

II. PRELIMINARIES

The waveguide in question will be modeled by a curved planar stripS in R2, of a constant
width d52a. It can be obtained by transporting the perpendicular interval@2a,a# along the
curveG, which is the axis ofS. Up to Euclidean transformations, the strip is uniquely charac
ized by its halfwidtha and the~signed! curvatures°g(s) of G, wheres denotes the arclength
We adopt the regularity assumptions of Refs. 1,7:~i! V is not self-intersecting,~ii ! aigi`,1, ~iii !
g is piecewiseC2 with g8, g9 bounded, and restrict our attention to the case when the tub
curved in a bounded region only: and~iv! there isb.0 such thatg(s)50 for usu.b; without loss
of generality we may assume that 2b.a.

As usual, we put\52m51; then the one-particle Hamiltonian of such a waveguide is
Dirichlet Laplacian2DD

S defined in the conventional way—cf. Ref. 16, Sec. XIII.15. Using
natural locally orthogonal curvilinear coordinatess,u in S one can map2DD

S unitarily onto the
operator,

H152]s~11ug!22]s2]u
21V~s,u! ~2.1!

on L2
„R3(2a,a)… with the effective curvature–induced potential,

V~s,u!ª2
g~s!2

4„11ug~s!…2
1

ug9~s!

2„11ug~s!…3
2

5

4

ug9~s!2

„11ug~s!…4
, ~2.2!

which is e.s.a. on the coreD(H)5$c:cPC`, c(s,6a)50, HcPL2%—cf. Refs. 1,7 for more
details.

If the waveguide containsN particles, the state Hilbert space isL2
„(S)…N; the Pauli principle

will be taken into account later. We assume that each particle has the chargee; using the same
‘‘straightening’’ transformation we are then able to rewrite the Hamiltonian as

HN[HN~g,a,e!5(
j 51

N

$2]sj
„11ujg~sj !…

22]sj
2]uj

2 1V~sj ,uj !%1e2 (
1< j , l<N

ur j2r l u21,

~2.3!

with the domain„H 2(R) ^ H 0
2(2a,a)…N, wherer j5r j (sj ,uj ) are the Cartesian coordinates of th

Nth particle.
As we have said our main aim in this paper is to estimate the maximum number of pa

that a curved waveguide with giveng,a can bind, i.e., to find conditions under which the discre
spectrum ofHN is empty. To this end, one has to determine first the bottom of the esse
spectrum. In complete analogy with the usual HVZ theorem,16 we find

sess~HN!5FmN211S p

2aD 2

,` D , ~2.4!
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wheremN21ª inf s(HN21). Obviously,

inf sess~HN!<mN2k1kS p

2aD 2

holds fork51, . . . ,N21, so

inf sess~HN!<NS p

2aD 2

. ~2.5!

In a straight tube the two expressions equal each other, while forgÞ0 we have a sharp inequalit
becausem1,(p/2a)2 holds in this case.

III. NEUTRAL FERMIONS

If the particles in question are neutral fermions, one can get a simple upper bound o
number of bound states using the one-particle Hamiltonian~2.1!; it is sufficient to estimate the
dimension ofsdisc(H1) and to employ the Pauli principle. To this aim, one has to estimateH1

from above by an operator with the transverse and longitudinal variables decoupled; its proje
to transverse modes are then one-dimensional Schro¨dinger operators to which the modifie
Birman–Schwinger bound may be applied.17–19 In Ref. 1 we used this argument in the situatio
wherea is small so that only the lowest transverse mode and the leading term in~2.2! may be
taken into account.

A modification to the more general case is straightforward. We introduce the function

W̃~s!ª
g~s!2

4d2
2

1
aug9~s!u

2d2
3

1
5a2g8~s!2

4d2
4

, ~3.1!

where

d6ª16aigi` , ~3.2!

which majorizes the effective potential,V(s,u)<W̃(s). Furthermore, we set

W̃j~s!ªmaxH 0,S p

2aD 2

~12 j 2!J , ~3.3!

for j 52,3,. . . ; in view of the assumptions~ii !, ~iii ! only a finite number of them is different from
zero.

ReplacingV by W̃, and (11ug)22 by d1
22 , we get an estimating operator with separati

variables, or, in other words, a family of shifted one-dimensional Schro¨dinger operators; we are
looking for the number of their eigenvalues below infsess(H1)5(p/2a)2. The mentioned modi-
fication of the Birman–Schwinger bound is based on splitting the rank–one operator corres
ing to the singularity of the resolvent kernel (1/2k)e2kus2s8u at k50 and applying a Hilbert–
Schmidt estimate to the rest. In analogy with Refs. 17–19 we employ this trick for the low
mode component of the estimating operator, while for the higher modes we use the full res
at the valuesk jª(p/2a)Aj 221. In this way we arrive at the following conclusion.

Proposition III.1: The numberN of neutral particles of half-integer spinS that a curved
quantum waveguide can bind satisfies the inequality

N<~2S11!H 11d1
2

*R2W̃~s!us2tuW̃~ t !ds dt

*RW̃~s!ds
1(

j 52

` ad1
2

pAj 221
E

R
W̃j~s!dsJ . ~3.4!
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Remarks III.2:~a! As we have said, the number of nonzero terms in the last sum is finite. M

exactly, the indexj runs up to the entire part ofA11(2a/p)2iW̃i`; hence ifa is small enough
this term is missing at all.

~b! The assumption~iv! is not needed here. It is sufficient, e.g., that the functionsg,g8, and
ug9u1/2 decay asusu212« as usu→`.

IV. MAIN RESULT: N CHARGED PARTICLES

We have said in the Introduction that the present study is motivated mainly by the ne
describe electrons in curved quantum wires. Unfortunately, the above simple estimate h
straightforward consequences for the situation when the particles are charged. While the e
static repulsion adds a positive term to the Hamiltonian~2.3!, it may move at the same time th
bottom of the essential spectrum since the energies of the bound ‘‘clusters’’ are, of c
sensitive to the interaction change.

We need therefore another approach that would allow us to take the repulsion term in~2.3!
into account. An inspiration can be found in an analysis of atomicN-body Hamiltonians. To
formulate the result we need some notation. Given a positiveb we denote by$lm%m51

` the ordered
sequence of eigenvalues of a Dirichlet Laplacian at the rectangle,

Rbª@2 3
2 bd1 , 3

2bd1#3@2a,a#, ~4.1!

and set

Tb~N!ª5 2 (
m51

n

lm . . . N52n,

2 (
m51

n

lm1ln11 . . . N52n11.

~4.2!

We have in mind here electrons and assume that the spin is1
2, otherwiseTb(N) has to be replaced

by the sum of the firstN eigenvalues of 2S11 identical copies of the Laplacian. Now we are ab
state our main result.

Theorem IV.1: Assume~i!–~iv!. sdisc„HN(g,a,e)…50” for N>2 if the condition

Tb~N!1
e2

2bA7
N~N21!>iW̃i`N1S p

2aD 2

N1
e2

18bA2
~4.3!

is valid for someb>max$2b,596e22%.
Proof: We use a variational argument that relies on a suitable decomposition of the co

ration space. Consider a pair of smooth functionsv,g from R1 to @0,1# such that

v~ t !5H 0 . . . t<1,

1 . . . t> 3
2,

~4.4!

and

v~ t !21g~ t !251. ~4.5!

Elements of the configuration space are (s,u) with s5$s1 , . . . ,sN% and u5$u1 , . . . ,uN%. We
denoteisi`ªmax$s1, . . . ,sN% and employ the functions

s°v~ isi`b21!, g~ isi`b21!,
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whereb.2b.a is a parameter to be specified later. By an abuse of notation, we use the sy
v,g again both for these functions and the corresponding operators of multiplication. It is str
forward to evaluate (@HN ,v#c,vc) and the analogous expression withv replaced byg for a
vectorcPD(HN); in both cases it is only the longitudinal kinetic part in~2.3! that contributes.
This yields the identity

~HNc,c!5~HNvc,vc!1~HNgc,gc!1(
j 51

N

$i~11ujg j !
21v jci21i~11ujg j !

21gjci2%,

where we have used the shorthandv jª]v/]sj , gjª]g/]sj , andg jªg(sj ). Notice further that
the factors (11ujg j )

21 may be neglected, becausev jgj are nonzero only ifsj>b.2b, in which
caseg j50. Furthermore, with the exception of the hyperplanes where two or more coordi
coincide~which is a zero measure set! the normisi` coincides with just one of the coordinate
s1 , . . . ,sn , and therefore

(
j 51

N

$iv jci21igjci2%<ici2 max
1< j <N

$iv j i`
2 1igj i`

2 %<b22C0ici2, ~4.6!

whereC0ªiv8i`
2 1ig8i`

2 . We arrive at the estimate

~HNc,c!>L1@vc#1L1@gc# ~4.7!

with

L1@f#ª~HNf,f!2
C0

b2
ifiNb

2 , ~4.8!

where the last index symbolizes the norm of the vectorf restricted to the subsetNbª$s:b
<isi`< 3b/2% of the configuration space.

Next, one has to estimate separately the contributions from the inner and outer parts.
begin with the exterior. We introduce the following functions:

f 1~s!5v~2s1isi`
21!,

f j~s!5v~2sj isi`
21!)

n51

j 21

g~2snisi`
21!, j 52, . . . ,N21,

f N~s!5 )
n51

N21

g~2snisi`
21!.

It is clear from the construction that

(
j 51

N

f j~s!251. ~4.9!

Moreover, the functions

sj°v~2sj isi`!,g~2sj isi`!

have a nonzero derivative only ifusj u>
1
2 isi`

21 . Hence, on the support ofs°v(isi`b21) the

derivative is nonzero ifusj u>
1
2 b.b. In other words, the functions° f j (s)2v(isi`b21) has a
                                                                                                                



dwells

4635J. Math. Phys., Vol. 40, No. 10, October 1999 Number of particles in a curved waveguide

                    
zero derivative in all the parts of the configuration space, where at least one of the electrons
in the curved part of the waveguide. Commuting the~longitudinal kinetic part of! HN with f j , we
get in the same way as above the identity

L1@vc#5(
j 51

N

$L1@ f jvc#2i~¹sf j !vci2%, ~4.10!

where ¹sª(]s1
, . . . ,]s1

). Next, we need a pointwise upper bound on( j 51
N (¹sf j )

2: denoting
s jª2sj isi` , we can write

(
j 51

N

u~¹sf j !~s!u25
4

isi`
2 $v8~s1!21g8~s1!2v~s2!21g~s1!2v8~s2!21•••

1g8~s1!2g~s2!2
• • • g~sN!21•••1g~s1!2 . . . g~sN21!2g8~sN!2%,

which gives after a partial resummation,

5
4

isi`
2 $v8~s1!21g8~s1!21g~s1!2g8~s2!21•••1g~s1!2

• • • g~sN21!2g8~sN!2%

<
4

isi`
2 H v8~s1!21(

j 51

N

g8~s j !
2J <

4NC0

isi`
2

;

recall thatC0ªiv8i`
2 1ig8i`

2 . Consequently,

L1@vc#>(
j 51

N

L1@ f jvc#24NC0ivcisi`
21i2

5(
j 51

N

$L1@ f jvc#24NC0i f jvcisi`
21i2%5(

j 51

N

L2@ f jvc#, ~4.11!

where

L2@f#ªL1@f#24NC0ifisi`
21i2. ~4.12!

Hence, we have to find a lower bound toL2(c j ) with c jª f jvc). Sincesj>
1
2 isi`> 1

2 b.b holds
on the support ofc j , we haveV(sj ,uj )50 there. This allows us to write

~HNc j ,c j !5~HN21c j ,c j !1i]sj
c j i21i]uj

c j i21e2 (
j Þ l 51

N

~ ur j2r l u21c j ,c j !,

whereHN21 refers to the system with thej th electron excluded, and therefore

~HNc j ,c j !>S mN211S p

2aD 2D ic j i21e2 (
j Þ l 51

N

~ ur j2r l u21c j ,c j !.

Sinceur j2r l u<A(sj2sl)
214a2<2Aisi`

2 1a2, we have

~HNc j ,c j !>S mN211S p

2aD 2D ic j i21
e2~N21!

2
„~ isi21a2!21/2c j ,c j….

The sought lower bound then follows from~4.12! and ~4.8!:
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L2@c j #>S mN211S p

2aD 2D ic j i224NC0ic j isi`
21i2

2C0b22ic j iNb

2 1
e2~N21!

2
„~ isi21a2!21/2c j ,c j…;

recall thatNbª$s: b<isi`< 3b/2%. The second and the third term at the rhs can be combi
using

4NC0ic j isi`
21i21C0b22ic j iNb

2 <~4N11!C0ic j isi`
21i2.

Furthermore,isi`>b.2b.a yields (isi21a2)1/2<A2isi` and

L2@c j #>S mN211S p

2aD 2D ic j i21S e2~N21!

2A2
2

C0~4N11!

b D ic j isi`
21i2. ~4.13!

We are interested in the situation when the second term at the rhs is positive. This is achi

e2~N21!

2A2
.

C0~4N11!

b
,

which is ensured if we chooseb in such a way that

b.
18A2C0

e2
; ~4.14!

recall thatN>2. Owing to the identity~4.11! we then have

L1@vc#>S mN211S p

2aD 2D ivci2, ~4.15!

which means in view of~2.4! that the external part ofc does not contribute to the discre
spectrum.

Let us turn now to the inner part. The corresponding quadratic form in the decompo
~4.7! can be estimated with the help of~2.3! and ~4.8! by

L1@gc#>d1
22i¹sg ci21i¹ug ci21(

j 51

N

„V~sj ,uj !gc,gc…

1e2 (
1<,k<N

~ ir j2r ki21gc,gc!2
C0

b2
igci2; ~4.16!

recall thatd1ª11aigi` . Using the functionW̃ defined by~3.1! we find uV(sj ,uj )u<W̃(sj ), so

max$V~s,u!:~s,u!PR3@2a,a#%<iW̃i` .

Consequently, the curvature–induced potential term can be estimated by

(
j 51

N

„V~sj ,uj !gc,gc…<iW̃i`Nigci2.

Furthermore, on the support ofg, we have
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ur j2r ku<2Aisi`
2 1a2<A3b214a2,

becauseisi`< 3
2 b holds there. At the same time,b.2b.a, so we arrive at the estimate

ur j2r ku<A7b,

which yields

(
1<,k<N

~ ir j2r ki21gc,gc!>
N~N21!

2bA7
igci2.

Now we can combine the above estimates with the inequalityC0 /b,e2/18A2, which follows
from ~4.14! to get the bound

L1@gc#>d1
22i¹sg ci21i¹ug ci21F2NiW̃i`1

e2N~N21!

2bA7
2

e2

18bA2
G igci2. ~4.17!

Now we can put the above results together. In view of the inequality~4.15! and of~2.5!, the last
bound tells us thatHN has no discrete spectrum forN>2, provided

d1
22i¹sg ci21i¹ug ci21Fe2N~N21!

2bA7
2

e2

18bA2
2NiW̃i`2NS p

2aD 2G igci2>0, ~4.18!

for someb, which satisfies the condition

b>maxH 2b,
18A2C0

e2 J . ~4.19!

The first two terms in~4.18! are nothing else than the quadratic form of the 2N-dimensional
Laplacian onRb

N—cf. ~4.1!. By the Pauli principle each eigenvalue may appear only twice, t
one has to take the orthogonal sum of two copies of the Laplacian onRb and to sum the firstN
eigenvalues of such an operator. This is exactly the quantity that we have calledTb(N).

To finish the proof, it remains to estimateC0 , which appears in the conditions~4.14! and
~4.19!. We will not attempt an optimal bound and, put simply,

v~j!ªsin„4pj2~122j2!…,

for t215:jP(0,1
2); then

v8~j!21g8~j!25~8p!2j2~124j2!2

has the maximum value 2A2(8p)2/3'595.5. j

V. CONCLUSIONS

Since the present study is rather a foray into an unchartered territory, the result is natura
from optimal. Let us add a few remarks. First of all, it is clear that the overall size of the cu
region affects substantially the number of particles that the waveguide can bind. We know thany
curved tube has a one-particle bound state,1,8 hence a tube withN slight bends that very far from
each other~so far that the repulsion is much smaller that the gap between the bound state e
and the continuum! can certainly bindN particles forN arbitrarily large.

The method we use is borrowed from atomic physics, where it yields bounds on ionizat
an atom. Of course, there are differences. The binding is due to the curved hard wall
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waveguide rather than by the electrostatic attraction to the nucleus, and the spectrum
one-particle operator~2.1! is finite. Consequently, there is a maximum number of particles th
given curved tube can bind as long as the particles are fermions. Bosons can occupy nat
single state, and the idea of aBose condensateof neutral spin–zero atoms in a curved hollo
optical fiber is rather appealing.

On the other hand, a nonzero particle charge changes the picture, and even the num
bosons bind by a curved tube is limited: notice that the condition~4.3! is satisfied for large enough
N without respect to the Pauli-principle termTb(N). Of course, the fermionic nature reduces t
maximum numberN further, sinceTb(N) growth for largeN is betweeno(N3) in the limit a
→0 ando(N2) for 2b;a. At the same time, the maximum number also depends on the valu
the charge. Since 1/A7 2 1/18A2.0 and the remaining terms in~4.3! are independent ofe, we see
thatsdisc(HN)50” for anyN>2, providede is large enough. Thus, our result confirms the natu
expectation that for a given curved tube and sufficiently charged particles just one-particle
states can survive.

We have not addressed in this paper the question about the minimum number of particl
a curved quantum waveguide can bind. The gap between the trivial result that follows fro
one-particle theory1,7,8 and the condition~4.3! leaves a lot of space for improvements. Moreov
it is a natural question whether strongly curved tubes that can bind many particles allow for
semiclassical description analogous to the case of the quantum dots.6 This is a task for a future
work.
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We propose a new general BRST approach to string and string-like theories that
have a wider range of applicability than, e.g., the conventional conformal field
theory method. The method involves a simple general regularization of all basic
commutators, which makes all divergent sums expressible in terms of zeta func-
tions from which finite values then may be extracted in a rigorous manner. The
method is particularly useful in order to investigate possible state space represen-
tations to a given model. The method is applied to three string models: The ordi-
nary bosonic string, the tensionless string, and the conformal tensionless string. We
also investigate different state spaces for these models. The tensionless string mod-
els are treated in detail. Although we mostly rederive known results, they appear in
a new fashion that deepens our understanding of these models. Furthermore, we
believe that our treatment is more rigorous than most of the previous ones. In the
case of the conformal tensionless string we find a new solution ford54. © 1999
American Institute of Physics.@S0022-2488~99!02010-1#

I. INTRODUCTION AND PRESENTATION OF THE METHOD

The usual operator formulation of BRST quantization of string theories are based o
following ingredients: First, specify a BRST-invariant vacuum state and then normal orde
BRST operator in order to finally check in which dimension the BRST operator is nilpotent.1 Even
the conformal field theory method is based on these ingredients.2 These methods have been ve
successful when applied to conventional string theories. However, there are models to whic
methods are not applicable. We have, e.g., the tensionless string models that do not
conventional vacuum state.3,4 In this paper we present a new rigorous and very general appr
to the operator version of BRST quantization, which not only makes it possible to consis
treat the conventional models, but also the tensionless string models. The method is parti
useful in order to investigate possible state space representations to a given model. The
seems, furthermore, to cast new light on the BRST method as a whole.

What we advocate here is the following general procedure in the BRST quantization.
~1! Construct a Hermitian and formally nilpotent BRST operatorQ.
~2! Find a state space such that the properties above are true as operator equations in th

and for which the equationQuf&50 has nontrivial solutions.
~3! Use a general precise regularization of the basic commutators in the above analys
The idea to start with a nilpotent BRST operator and then look for possible solutions

a!Electronic mail: Stephen.Hwang@hks.se
b!Electronic mail: tferm@fy.chalmers.se
c!Electronic mail: P.Saltsidis@damtp.cam.ac.uk
46390022-2488/99/40(10)/4639/19/$15.00 © 1999 American Institute of Physics
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course, very natural. However, usually one prescribes the setting first, which is what math
cians would tell us to do. Usually the state space governs how we construct the BRST charg
here this is not required. We only require a formally nilpotent BRST charge to start with. The
look for possible state spaces. This freedom seems quite large. However, it is what a ph
likes to play with since physical models should also allow for our physical intuition to act.
structure of possible solutions of such a general prescription for finite degrees of freedom
given in Ref. 5 and further developed in Ref. 6. One may note that a Hermitian, nilpotent B
charge may be constructed for a very large class of models in terms of a power expansion in\ and
in the ghost fields.7 A solution is naturally obtained in a Weyl ordered form. However, th
properties are only formal, since we must also find a state space in which the BRST charge
sense. In order to do this in the case of infinite degrees of freedom we must make us
regularization procedure. For instance, in the string models we encounter divergent sums
sums must be regularized in some way. Here we consider a simple general regularization
basic commutators, a regularization that will make all infinite sums expressible as zeta fun
This regularization, which is presented in Sec. II, is therefore such that when the regula
removed it will give finite results through analytic continuation in all cases considered. This m
it possible to rigorously compute all operator equations. Furthermore, and which is import
allows us to investigate possible state spaces both rigorously and efficiently. We emphasi
the zeta function regularization here is used in a much more general and precise form tha
one usually finds since here it appears from one single regularization of the basic commu
~For applications of zeta regularization and for literature on the subject, see, e.g., Ref. 8.!

Instead of giving a detailed description of how the method is supposed to be applied, w
three string models in detail: the closed ordinary bosonic string, the closed tensionless strin
the closed conformal tensionless string. The closed ordinary bosonic string is mainly treat
pedagogical reasons. However, it should be interesting to see how we investigate alternativ
space representations. Our main interest is in the tensionless strings. Here we give a rat
haustive analysis from which we are able to give precise results for all proposed versions.

Critical dimensions in string theories appear in connection with a particular state space.
method they appear through an inconsistency: The formally nilpotent BRST charge isnot nilpo-
tent or is not appropriate on the considered state space. In our investigation of three string
we first look for a BRST-invariant vacuum state. Then we check whether or not the form
nilpotent BRST charge is nilpotent on this vacuum state. The conventional closed bosonic
turns out to be the most intricate example here. The conventional vacuum state is investig
Sec. III. The appropriate BRST charge turns out to be the formally nilpotent charge shifted
regulator-dependent term@Eq. ~3.22!#. This charge is, however, only nilpotent atd526. Thus, the
standard results are obtained but in a different way than usually. This treatment demonstrat
our method works and maybe it also deepens our understanding of this well-known mode
second model we treat is the tensionless string.9–11 In Sec. IV we recover the known result of n
critical dimension in Ref. 10 for one vacuum state, and in Sec. V we find the critical dimensio
as was found in Ref. 11 for another vacuum state. Our final example is the conformal tensi
string. In Sec. VI we first investigate the state space considered in Ref. 4. Here we find th
BRST charge is nilpotent in any dimension. However, the vacuum state is only BRST invari
two dimensions and we have not found any BRST-invariant states in other dimensions. In S
we also consider another state space, which to our knowledge has not been considered pre
In this state space the BRST charge is again nilpotent in arbitrary dimensions, but the v
state is only BRST invariant ind54. For other values ofd we have not found any BRST-invarian
states in this state space. In Sec. VII we also investigate the alternative vacuum state consid
Ref. 3, in which case we find that the BRST charge is not nilpotent in any dimensions and, h
that there is no consistent BRST treatment at all, which is in agreement with the result of R
In Secs. VIII and IX we investigate alternative vacua also for the ordinary bosonic string.
that unlike some previous calculations our regularization makes all results finite, which mak
believe that the treatment given here is, in general, more rigorous than previous ones.

Normally a consistent BRST quantization requires BRST-invariant states with positive n
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In fact, such a condition should really be inserted into condition 2 above. However, this w
then exclude all models we treat, except possibly the ordinary bosonic string. The reason is
our calculations are performed in the minimal sector, which is the sector with no dyna
Lagrange multipliers and antighosts. An artifact of this sector is that one cannot, in general
on a truly inner product space. Consistent BRST-invariant statesuf& requires here the existence o
a dual BRST-invariant stateuf̄&, satisfying the condition5

^f̄uf& is finite andÞ0. ~1.1!

This condition restricts the possible solutions. To work on truly inner product spaces one
consider a BRST quantization in the complete sector with dynamical Lagrange multiplier
antighosts.12 However, inconsistent solutions in the minimal sector will remain inconsistent in
complete sector. Furthermore, solutions containing BRST-invariant negative norm states
minimal sector will retain these in the complete sector. In Sec. IX we present a state
representation for the conventional bosonic string model, which yields a finite set of B
invariant states, which, however, are shown to contain negative norm states. The same is
the special solutions of the tensionless string in Sec. V. Both these options have therefor
excluded. The consistency of the tensionless string model in Sec. IV seems unclear, since
vacuum solution that is not associated with any oscillators. The BRST-invariant states a
inner product states at all in the minimal sector. Although we expect that there exists a po
normed solution in the complete sector, this remains to be investigated.

It is, of course, also possible to investigate the fermionic extensions of the models cons
here.11,13 We expect such calculations to be quite straightforward using the method we pr
here. One may also consider other theories like, e.g., brane theories14 and conventional field
theories. We believe that also here our method should be important for rigorous results.

II. OUR REGULARIZATION

In string theory the string coordinatesXm(t,s) and the corresponding conjugate momen
Pm(t,s) satisfy the basic nonzero equal-time commutator~we suppresst in the following!:

@Xm~s!,Pn~s8!#5 idn
md~s2s8!. ~2.1!

Since we shall only consider closed strings, we letXm(s) andPm(s) be periodic functions with
periodp. Thus, we may set~(n[(n52`

` in the following!

Xm~s!5
1

Ap
(

n
xn

me22ins, Pm~s!5
1

Ap
(

n
pn

me22ins, ~2.2!

and replace~2.1! by

@xn
m ,pmn#5 idn

mdn1m
0 . ~2.3!

The delta function in~2.1! is then the periodic delta function,

d~s2s8!5
1

p (
n

e2in~s2s8!. ~2.4!

It is the appearance of a delta function in the commutator~2.1! that causes infinities in the
quantum string theory. In order to handle these infinities in a well-defined manner we ha
regularize the delta function, i.e., we have to make it an ordinary well-defined function. We
therefore to consider a modified or regularized commutator. We choose it to be of the form

@xn
m ,pmn#~s!5 idn

mdn1m
0 f ~ unu,s!, ~2.5!
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where f (unu,s) is a real function that satisfies the condition

f ~ unu,0!51. ~2.6!

It can only depend on the absolute value ofn in order for xn and pn to retain their hermiticity
properties from~2.2!, even in the regularized case, i.e., (xn)†5x2n and (pn)†5p2n . The choice
of regulator functionf (unu,s) is dictated by two considerations. First, in the computations that
follow, e.g., a calculation of the BRST nilpotency, the regulator should lead to a finite result a
regulator is removed (s→0). Second, we would like our regulator to be as general as possib
precise choice off (unu,s) that satisfies these criteria is

f ~a!~ unu,s!5H ~ unu1a!2s, unu>2A11,

1, unu<2A,
~2.7!

wherea is a real constant, which may be chosen to have any value, and whereA is the closest
integer toa satisfyingA>a. This choice will make all infinite sums expressible in terms of z
functions ~see below!. This in turn will allow us to rigorously treat all infinite sums. Oth
regularizations are, of course, possible to use and should yield equivalent results. Howev
think that the choice~2.7! is the most general one.

In the following BRST treatment of the various string models, we have also the ferm
ghost variablecI(s) andbI(s). Their basic commutators must be regularized in exactly the s
way as in~2.5!. For ghostscn

I ,bn
I ~whereI labels different types of ghosts! we have

@bm
I ,cn

J#~s!5dm1n
0 d IJ f ~a!~ unu,s!. ~2.8!

The same is true for all other canonical variables one introduces.~We use graded commutator
throughout.!

When calculating commutators we often get infinite sums of the form(nf (a)(unu,s) that
converge fors.1. However, by analytic continuations they may yield a finite value fors,1 and,
in particular, fors50. The choice~2.7! makes these sums expressible in terms of zeta functi
We have

(
n

f ~a!~ unu,s!5H 122A12z~su11a2A!, a<0,

2a2s22 (
n50

A22

~n111a2A!2s12z~su11a2A!, a.0,
~2.9!

wherez(sua) is the Hurwitz zeta function defined for 0,a<1, s.1 by15

z~sua![ (
n50

`
1

~n1a!s . ~2.10!

By analytic continuation one finds the following value ats50 (0,a<1):15

z~0ua!5 1
22a, ~2.11!

which implies that@notice that the finite sums fora<0 anda.0 are equal fors50 in ~2.9!#

(
n

f ~a!~ unu,0!522a. ~2.12!

We have similarly, e.g.~we sets50 for the finite sums!,
                                                                                                                



t

neral

tring

traint

4643J. Math. Phys., Vol. 40, No. 10, October 1999 A general BRST approach to string theories . . .

                    
(
n51

`

n f ~a!~ unu,s!5z~s21u11a2A!2az~su11a2A!1
1

2
A~A21!,

~2.13!

(
n51

`

n2f ~a!~ unu,s!5z~s22u11a2A!22az~s21u11a2A!

1a2z~su11a2A!2
1

6
A~A21!~2A21!,

which implies that

lim
s→0

(
n51

`

n f ~a!~ unu,s!5
1

2
a22

1

12
, lim

s→0
(
n51

`

n2f ~a!~ unu,s!52
1

3
a3, ~2.14!

sincez(21ua)5(6a26a221)/12 andz(22ua)5a(3a22a221)/6.
The regularization~2.5! and ~2.7! correspond by~2.1! to the following regularized delta

function:

ds~s2s8!5
1

p H(
n

f ~a!~ unu,s!e2in~s2s8!J , ~2.15!

which is a well-defined function fors.1 and by Eq.~2.12! gives a regularization such tha
lims→0 ds(0)522a/p. Note here that depending on the value ofa we can get any value in this
limit. This is one argument supporting our belief that our regularization gives the most ge
result possible. Notice also that lims→0 ds

(k)(0) is finite for any order of derivativek.

III. THE BOSONIC STRING

As an illustration of our method we first treat the ordinary bosonic string. The bosonic s
is classically characterized by the constraints

1

4T
~P1TX8!2~s!50,

1

4T
~P2TX8!2~s!50, ~3.1!

where T is the string tension. The Fourier modes of the corresponding Hermitian cons
operators are

Ln[
1

2 (
k

an2k•ak , Kn[
1

2 (
k

ãn2k•ãk , ~3.2!

where

an
m[S 1

2AT
pn

m2 iATnxn
mD , ãn

m[S 1

2AT
p2n

m 2 iATnx2n
m D , ~3.3!

in terms of thexn andpn modes in~2.2!. The regularized commutator~2.5! with the regularized
function ~2.7! implies that
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@an
m ,am

n #~s!5nhmn f ~a!~ unu,s!dn1m
0 , @an

m ,ãm
n #~s!50,

~3.4!
@ãn

m ,ãm
n #~s!5nhmn f ~a!~ unu,s!dn1m

0 ,

wherehmn is a Minkowski metric, diag(hmn)5(21,11,11,11). We consider now a correspond
ing BRST theory in which the manifestly Hermitian BRST charge is given by

Q5(
k

~L2kck
L1K2kck

K!1
1

4 (
k,l

~k2 l !

3~bk1 l
L c2 l

L c2k
L 1bk1 l

K c2 l
K c2k

K 2c2k
L c2 l

L bk1 l
L 2c2k

K c2 l
K bk1 l

K !, ~3.5!

whereck
L ,bk

L andck
K ,bk

K are fermionic ghost modes satisfying~2.8!. In thes→0 limit this BRST
charge is formally nilpotent. A consequence of this nilpotency is that the extended const
@Q,bk

I #, satisfy a closed algebra without any central extensions. The extended constraintsLn

andKn are

L̃n[@Q,bn
L#5Ln2

1

2 (
k

~k1n!~ck
Lbn2k

L 2bn2k
L ck

L!, ~3.6!

K̃n[@Q,bn
K#5Kn2

1

2 (
k

~k1n!~ck
Kbn2k

K 2bn2k
K ck

K!. ~3.7!

For nonzeros we have, e.g., the following crucial commutator:

@ L̃m ,L̃2m#~s!5
1

2
m(

k
„a2k•ak1k~c2k

L bk
L2bk

Lc2k
L !…„f ~a!~ um1ku,s!1 f ~a!~ um2ku,s!…

1
1

2 (
k

„ka2k•ak1~2m22k2!~bk
Lc2k

L 2c2k
L bk

L!…„f ~a!~ um1ku,s!

2 f ~a!~ um2ku,s!…, ~3.8!

which in the limit s→0 becomes

@ L̃m ,L̃2m#~0!52mL̃0 , ~3.9!

which is consistent with the fact that the BRST charge~3.5! is nilpotent in thes→0 limit. Now the
crucial point is that thes→0 limit has no meaning before we specify on which state space
operators act. Below we show that the conventional choice of state space imply the expecte
that we have a nilpotent BRST charge only in spacetime dimensionsd526 in thes→0 limit.

The standard choice of a vacuum state,u0&, satisfies

amu0&5ãmu0&50, ;m.0. ~3.10!

In order for this vacuum to be BRST invariant,Qu0&50, we must require the consistency cond
tions

@Q,am
m#u0&50⇒m f~a!~ umu,s! (

k5m

`

ck
Lam2k

m u0&50⇒cm
L u0&50, ;m.0,

~3.11!

@Q,ãm
m#u0&50⇒m f~a!~ umu,s! (

k5m

`

ck
Kãm1k

m u0&50⇒cm
K u0&50, ;m.0.
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These conditions in turn allow for the additional conditions

bm
L u0&5bm

K u0&50, ;m>0, ~3.12!

for which the consistency conditions are

@Q,bm
L #u0&[L̃mu0&50, ;m>0,

~3.13!

@Q,bm
K #u0&[K̃mu0&50, ;m>0.

They are satisfied form.0, but form50 the situation is unclear. For nonzeros we have

L̃0~s!u0&5
1

2 S a0
21~d22!(

k51

`

k f ~a!~ uku,s!D u0&, ~3.14!

which in thes→0 limit leads to the following finite expression:

L̃0u0&5
1

2 S a0
21~d22!S 1

2
a22

1

12D D u0&, ~3.15!

where we have made use of the relation~2.14!. The conditions~3.13! with the property~3.15! and
a similar one forK̃n require the vacuum state to be an eigenstate to the momentum operatop0

m ,
with an eigenvalue that depends on the parametera in the regularization function~2.7!. @Notice
that ~3.3! implies thata0

25ã0
25p0

2/4T.# This is an unsatisfactory result. It means that the conv
tional vacuum state is not BRST invariant under the formally nilpotent BRST charge abov
fact, Q is not even nilpotent on the conventional vacuum state.

That the BRST operator~3.5! is not nilpotent on the above vacuum state may be seen
calculating the commutator@ L̃m ,L̃2m# on the vacuum state for nonzeros. We find, from Eq.~3.8!,
that

@ L̃m ,L̃2m#~s!u0&5S m f~a!~ umu,s!a0
21

1

2
d(

k51

m

k~m2k! f ~a!~ uku,s! f ~a!~ uk2mu,s!

2 (
k51

m

~2m2k!~k1m! f ~a!~ uku,s! f ~a!~ uk2mu,s!D u0&. ~3.16!

In the s→0 limit the right-hand side becomes

S ma0
21

1

12
~d226!m32

1

12
~d22!mD u0&, ~3.17!

which only is zero ifd526 and if the eigenvalue ofa0
2 is 2, which is a regulator-independen

condition. The reason for the different results from~3.9! and ~3.15! is due to the fact that on the
right-hand side of~3.8! the factor f (a)(um1ku,s)2 f (a)(um2ku,s), which is zero in thes→0
limit, is multiplied by an operator that is infinite on the above vacuum state. This means thL̃0

andK̃0 are not zero on the vacuum stateu0& when~3.17! is zero. The solution of this dilemma i
found when we rewrite the right-hand side of the commutator~3.8! by means of the regularize
commutators~3.4! as follows:
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@ L̃m ,L̃2m#~s!5m(
k51

`

~a2k•ak1kb2k
L ck

L1kc2k
L bk

L!„f ~a!~ um1ku,s!1 f ~a!~ um2ku,s!…

1 (
k51

`

„ka2k•ak1~k222m2!~b2k
L ck

L1c2k
L bk

L!…„f ~a!~ um1ku,s!2 f ~a!~ um2ku,s!…

1m f~a!~ umu,s!a0
21

1

2
d(

k51

m

k~m2k! f ~a!~ uku,s! f ~a!~ uk2mu,s!

2 (
k51

m

~2m2k!~k1m! f ~a!~ uku,s! f ~a!~ uk2mu,s!. ~3.18!

This expression implies that

@ L̃m ,L̃2m#52mS 1

2
a0

21 (
k51

`

~a2k•ak1kb2k
L ck

L1kc2k
L bk

L!D
1 1

12~d226!m32 1
12~d22!m, ~3.19!

in the s→0 limit, in agreement with~3.16! and ~3.17!. This may be rewritten as follows:

@ L̃m ,L̃2m#52mL̃01 1
12~d226!m32 1

2m~d22!a2, ~3.20!

where

L̃05
1

2
a0

21 (
k51

`

~a2k•ak1kb2k
L ck

L1kc2k
L bk

L!1
1

2
~d22!S 1

2
a22

1

12D ~3.21!

is the originalL̃0 rewritten for finites and taking the limits→0. Equation~3.20! demonstrates the
inconsistency with a nilpotent BRST charge obtained above and the reason why the conve
vacuum state is not BRST invariant. The remedy is obvious and expected: first, we notice t
may get a closed algebra atd526 if we redefine the extended constraintL̃0 . This in turn may be
accomplished by a redefinition of the original BRST charge: Simply replaceQ in ~3.5! by

Q85Q2
d22

4
a2~c0

L1c0
K!, ~3.22!

which is not formally nilpotent fordÞ2. The corresponding extended constraints are

L̃m8 5@Q8,bm
L #5H L̃02

1

4
~d22!a2, m50,

L̃m , mÞ0.

~3.23!

Note thatL̃08 in distinction toL̃0 in ~3.21! is independent of the regulator parametera. We have

L̃085
1

2
a0

21 (
k51

`

~a2k•ak1kb2k
L ck

L1kc2k
L bk

L!2
~d22!

24
. ~3.24!

The spectrum is therefore regulator independent, as it should be. Ford526 we find now from
~3.20!,

@ L̃m8 ,L̃2m8 #52mL̃08 , ~3.25!
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which is consistent with a nilpotentQ8 for d526, and that the conventional BRST vacuum
BRST invariant underQ8.

In Secs. VIII and IX we investigate other vacuum states for the bosonic string theory.

IV. THE BOSONIC TENSIONLESS STRING

The bosonic tensionless string~see Ref. 9! is characterized by the constraints

Pm~s!Pm~s!50, Pm~s!Xm8 ~s!50. ~4.1!

These constraints follow from the bosonic string by dropping the termT2
„X8(s)…2, which is

assumed to be negligible in theT→0 limit. The Fourier modes of the corresponding Hermiti
constraint operators are

fn
21[

1

2 (
k

pk•pn2k , fn
L[2 i

1

2 (
k

k~xk•pn2k1pn2k•xk!. ~4.2!

Here a formally nilpotent BRST charge operator is given by

Q5(
k

~f2k
21ck

211f2k
L ck

L!2
1

2 (
k,l

~k2 l !

3S c2k
21c2 l

L bk1 l
21 1bk1 l

21 c2k
21c2 l

L 1
1

2
c2k

L c2 l
L bk1 l

L 1
1

2
bk1 l

L c2k
L c2 l

L D . ~4.3!

We can check the nilpotency ofQ by calculating the algebra of the extended constraints, given

f̃n
21[@Q,bn

21#5fn
212(

k
~n1k!ck

Lbn2k
21 ,

f̃n
L[@Q,bn

L#5fn
L2

1

2 (
k

~k1n!~ck
21bn2k

21 2bn2k
21 ck

211ck
Lbn2k

L 2bn2k
L ck

L!. ~4.4!

A straightforward calculation of the commutators yields

@f̃m
21,f̃n

L#5~m2n!f̃m1n
21 , @f̃m

L ,f̃n
L#5~m2n!f̃m1n

L . ~4.5!

Hence, we conclude that the BRST charge~4.3! is nilpotent.
We now look for a possible BRST-invariant vacuum state. Following Refs. 4 and 10

consider a vacuum state defined by

pn
mu0&5bn

21u0&5bn
Lu0&50, ;n. ~4.6!

@The crucial part is the first conditions. They may be viewed as theT→0 limit of ~3.10! using
~3.3!.# In order for this vacuum state to be BRST invariant it has to satisfy the consist
conditions

@Q,pn
m#u0&5@Q,bn

21#u0&5@Q,bn
L#u0&50, ;n, ~4.7!

where

@Q,pn
m#52n(

k
pn2k

m ck
L . ~4.8!
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The first two conditions and the last one fornÞ0 are easily seen to be satisfied due to~4.6!. The
only nontrivial condition is the last one forn50. However, we have

f̃0
Lu0&[@Q,b0

L#u0&5S f0
L2

1

2 (
k

k@ck
21b2k

212b2k
21ck

211ck
Lb2k

L 2b2k
L ck

L# D u0&

52
1

2 (
k

kp~ i @p2k
m ,xkm#2@b2k

21,ck
21#2@b2k

L ,ck
L# !u0&

52
1

2
~d22!(

k
k f ~a!~ uku,s!u0&50. ~4.9!

@It is zero for any choice of regulator functionf (uku,s)!. # It is then easily seen that

Qu0&50, ~4.10!

which means thatu0& defined by~4.6! is a BRST-invariant vacuum state for any dimensiond. We
must finally check that the BRST charge is nilpotent on the vacuum state. This may be a
plished by checking the algebra of the extended constraints. The most nontrivial o

@f̃m
L ,f̃2m

L #, for which we find

@f̃m
L ,f̃2m

L #~s!5
i

2 (
k

~k1m!k f ~a!~ uk1mu,s!~x2k•pk2xk•p2k1pk•x2k2p2k•xk!

1
1

2 (
k

~k12m!~k2m! f ~a!~ uk1mu,s!~b2k
21ck

212bk
21c2k

21

1c2k
21bk

212ck
21b2k

211b2k
L ck

L2bk
Lc2k

L 1c2k
L bk

L2ck
Lb2k

L !. ~4.11!

A straightforward calculation yields that@f̃m
L ,f̃2m

L #(0)u0& is zero, which is consistent with Eq
~4.9!. To conclude, within our regularization scheme we have shown that there exists a B
invariant vacuum state in any dimension. Furthermore, the BRST charge is nilpotent in the
space containing this vacuum state. This result is in agreement with the results of Ref. 10
that there exists a dual vacuum stateu0̄& satisfying ^0̄u0& finite and different from zero.u0̄&
satisfiesxn

mu0̄&5cn
21u0̄&5cn

Lu0̄&50 for all n together with their consistency conditions.

V. ALTERNATIVE QUANTIZATION OF THE BOSONIC TENSIONLESS STRING

Instead of a vacuum state satisfying~4.6! we follow Ref. 11 and consider

pm
m u0&5xm

m u0&50, m.0. ~5.1!

The consistency conditions are

@Q,pm
m#u0&5@Q,xm

m#u0&50, m.0, ~5.2!

and they require

cm
21u0&5cm

L u0&50, m.0, ~5.3!

for which

@Q,cm
21#u0&5@Q,cm

L #u0&50, m.0, ~5.4!

are automatically satisfied. This vacuum is then ghost fixed by
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bm
21u0&5bm

L u0&50, m>0. ~5.5!

The corresponding consistency conditions,

f̃m
21u0&5f̃m

L u0&50, m>0, ~5.6!

are automatically satisfied form.0. Form50 we have

f̃0
21u0&50⇔p0

2u0&50. ~5.7!

For such a condition to be meaningful the vacuum state should be an eigenstate top0
m , i.e.,

p0
mup&5pmup&. Equation~5.7! requires then the vacuum to be massless (p250). For m50 we

also have

f̃0
Lup&5~d22!~ 1

2a
22 1

12!up&, ~5.8!

which satisfies~5.6! only for d52. ForsÞ0 we have

f̃0
L~s!5 i (

k51

`

k~x2k•pk2p2k•xk!1 (
k51

`

k~b2k
21

•ck
211c2k

21
•bk

211b2k
L

•ck
L1c2k

L
•bk

L!

1~d22!(
k51

`

k f ~a!~ uku,s!. ~5.9!

From the commutator~4.11! we find

lim
s→0

@f̃m
L ,f̃2m

L #~s!up&5 1
6„~d226!m32~d22!m…up&. ~5.10!

In fact, in thes→0 limit we have

@f̃m
L ,f̃2m

L #52mf̃0
L2 1

2a
2~d22!m1 1

6~d226!m3, ~5.11!

wheref̃0
L on the right-hand side is thes→0 limit of ~5.9!. If we redefineQ by

Q8[Q2 1
4a

2~d22!c0
L , ~5.12!

then the extended constraint operatorf̃0
L is replaced by

f̃80
L5f̃0

L2 1
4a

2~d22!. ~5.13!

This operator together withf̃m
L , mÞ0 satisfy then an anomaly free algebra ford526, from which

we conclude thatQ8 is nilpotent ford526. However, from~5.8! we have

f̃08
Lup&52 1

12~d22!up&. ~5.14!

It follows that we have no BRST-invariant vacuum of the above form ford526. However, there
are BRST-invariant states ind526. In Ref. 16 it was shown that there are massless states
spin 0, 1 and 2. In Sec. IX we show that these states do not have positive norms.~From the results
of Ref. 11 it seems that a BRST-invariant vacuum state only exists in the Ramond sector
spinning tensionless string, in which case the critical dimension is 10.!
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VI. THE BOSONIC CONFORMAL STRING

The conformal string is a tensionless string that is made manifestly conformally invaria3,4

By adding two extra dimensions, one timelike and one spacelike, one forms new coordinat
transform asSO(d,2) vectors. By means ofSO(d,2)-invariant constraints, one obtains then
SO(d,2) conformally invariant formulation by construction. LetXM5(Xm,X1,X2) be the new
coordinate vector, where the metric of the new coordinates ish115h2250, h125h2151.
Classically the constraints are

F21~s![PM~s!PM~s!50, F0~s![PM~s!XM~s!50,
~6.1!

F1~s![XM~s!XM~s!50, FL~s![PM~s!XM8 ~s!50,

and they reduce to the constraints~4.1! of the tensionless string by means of the gauge fix
conditions,

P1~s!50, X1~s!2150. ~6.2!

~A corresponding construction for particles were given in Ref. 17.! The Hermitian BRST charge
operator is given by

Q5(
k

~f2k
1 ck

11f2k
0 ck

01f2k
21ck

211f2k
L ck

L!2
1

2 (
k,l

S 2ic2k
1 c2 l

21bk1 l
0 1 ic2k

1 c2 l
0 bk1 l

1

2 ic2k
21c2 l

0 bk1 l
21 1~k1 l !c2k

1 c2 l
L bk1 l

1 1~k2 l !c2k
21c2 l

L bk1 l
21 1kc2k

0 c2 l
L bk1 l

0

1
1

2
~k2 l !c2k

L c2 l
L bk1 l

L 1h.c.D , ~6.3!

where h.c. are Hermitian conjugate terms and

fn
21[

1

2 (
k

pk•pn2k , fn
0[

1

4 (
k

~xk•pn2k1pn2k•xk!,

~6.4!

fn
1[

1

2 (
k

xk•xn2k , fn
L[2 i

1

2 (
k

k~xk•pn2k1pn2k•xk!,

which are the Fourier modes of the Hermitian operator constraints corresponding to~6.1!. The
BRST charge~6.3! is formally nilpotent and a consistent BRST quantization is possible if th
exists a BRST-invariant vacuum state on which we have a nilpotent BRST operator. In or
investigate the existence of such a vacuum state, we need the extended constraint o
defined by

f̃n
21[@Q,bn

21#5fn
211(

k
„2ick

1bn2k
0 1 ick

0bn2k
21 2~n1k!ck

Lbn2k
21

…,

f̃n
0[@Q,bn

0#5fn
01

1

2 (
k

~ ick
1bn2k

1 2 ibn2k
1 ck

122nck
Lbn2k

0 2 ick
21bn2k

21 1 ibn2k
21 ck

21!,

~6.5!

f̃n
1[@Q,bn

1#5fn
12(

k
„2ick

21bn2k
0 1 ick

0bn2k
1 1~n2k!ck

Lbn2k
1

…,
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f̃n
L[@Q,bn

L#5fn
L2

1

2 (
k

„~k1n!~ck
21bn2k

21 2bn2k
21 ck

211ck
Lbn2k

L 2bn2k
L ck

L!

1~k2n!~ck
1bn2k

1 2bn2k
1 ck

1!1k~ck
0bn2k

0 2bn2k
0 ck

0!] ….

These operators are shown to satisfy the following commutator algebra:

@f̃m
1 ,f̃n

21#52i f̃m1n
0 , @f̃m

L ,f̃n
L#5~m2n!f̃m1n

L , @f̃m
0 ,f̃n

L#5mf̃m1n
0 ,

@f̃m
1 ,f̃n

0#5 i f̃m1n
1 , @f̃m

21,f̃n
0#52 i f̃m1n

21 , ~6.6!

@f̃m
1 ,f̃n

L#5~m1n!f̃m1n
1 , @f̃m

21,f̃n
L#5~m2n!f̃m1n

21 .

These commutators are nonanomalous, as required by the formal nilpotence ofQ.
Following Ref. 4, we consider now a vacuum state that satisfies the conditions

pn
Mu0&5bn

21u0&5cn
1u0&50, ;n. ~6.7!

These conditions are consistent with a BRST-invariant vacuum state, since

@Q,pn
M#u0&5f̃n

21u0&5@Q,cn
1#u0&50, ;n, ~6.8!

are satisfied due to~6.7!. Now these conditions do not specify a unique vacuum. We need fu
conditions for that. We may ghost fix the vacuum by the conditions

bn
0u0&5bn

Lu0&50, ;n. ~6.9!

Their consistency conditions are

f̃n
0u0&5f̃n

Lu0&50, ;n, ~6.10!

and are satisfied fornÞ0 due to~6.7!. By means of the regularization~2.7! we find, furthermore,
that

f̃0
Lu0&50, ~6.11!

for any s due to the symmetry properties we had in~4.9!. Using ~2.12! we have by a direct
calculation,

f̃0
0u0&5

i

2
~d22!au0&, ~6.12!

in the limit s→0. Thus,f̃0
0 has an imaginary continuous spectrum. The above vacuum sta

therefore only BRST invariant ford52. ~There might exist BRST-invariant states built from th
above vacuum state. However, we have not found any.!

If we define a new charge like in the bosonic string by

Q85Q2
i

2
~d22!ac0

0, ~6.13!

then the above vacuum state is BRST invariant under the new chargeQ8 for any dimensiond.
However,Q8 is then neither Hermitian nor nilpotent fordÞ2.
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In fact, Q is nilpotent onu0& for any dimensiond. This may be checked as in the previo
models, by computing the algebra of the extended constraints acting on the vacuum sta
most nontrivial of these equations read as

@f̃m
21,f̃2m

1 #~s!u0&5
22d

2 (
k

f ~a!~ uku,s! f ~a!~ uk1mu,s!u0&. ~6.14!

Here

(
k

f ~a!~ uku,s! f ~a!~ uk1mu,s!5zS s,a1
1

2
umu,2

m2

4 D1zS s,a2
1

2
umu,2

m2

4 D1g~m,s!,

~6.15!

where we have introduced the zeta function,8

z~s,a,b![(
k

1

@~k1a!21b#s , ~6.16!

and g(m,s) involves only finite sums andg(m,0)521. Now since~we are indebted to Pe
Salomonson for this simple argument!

dz

dbU
s50

5s(
k

1

@~k1a!21b#s11U
s50

50, ~6.17!

we have

z~0,a,b!5z~0,a,0!5z~0ua!5 1
22a, ~6.18!

which implies that

(
k

f ~a!~ uku,s! f ~a!~ uk1mu,s!U
s50

522a. ~6.19!

Hence

@f̃m
21,f̃2m

1 #u0&5~d22!au0&, ~6.20!

which is consistent with~6.6! and~6.12!. Commutators of other constraint operators may simila
be shown to consistently act on the vacuum state, in accordance with Eq.~6.6!. Thus, the nilpo-
tency of the BRST operator holds as a true operator equation in the chosen state spaced
Þ2 the considered vacuum state is not BRST invariant. Furthermore, we have not been
find any BRST-invariant state in the state space. If there does not exist BRST-invariant stat
theory is nontrivial only ind52.

Now instead of the conditions~6.9! we may also ghost fix the vacuum state by the conditio

cn
0u0&5bn

Lu0&50, ;n. ~6.21!

In this case all consistency conditions are satisfied, which means that this vacuum is
invariant under the original formally nilpotent BRST charge~6.3! for any dimensiond. Hence, we
have found two vacua: one that is BRST invariant only ford52 and another that is BRST
invariant for all dimensions. However, since we work in the minimal sector, we must make
that there exists a dual vacuum stateu0̄&. It is straightforward to show thatu0̄& exists for any
dimensions in the first case above but only ford52 in the second case. Thus, both solutions yi
                                                                                                                



evious

lusion
of
leads to

rly
eory for
-

e

ion

ent of
ing

4653J. Math. Phys., Vol. 40, No. 10, October 1999 A general BRST approach to string theories . . .

                    
equivalent results, and we have found a BRST-invariant vacuum only ford52, in agreement with
the result of Ref. 4. That we have two solutions requires a selection condition.~What we have here
is a noncanonical situation in the language of Ref. 5.!

VII. ALTERNATIVE QUANTIZATIONS OF THE BOSONIC CONFORMAL STRING

Here we will consider two alternative sets of state spaces to the one treated in the pr
section.

A. A consistent solution at d 54

First we consider a state space with a vacuum state defined through the conditions

pn
mu0&5pn

1u0&5xn
1u0&5bn

21u0&5cn
1u0&5bn

0u0&5bn
Lu0&50, ;n. ~7.1!

It is easily checked that this vacuum state satisfies

f̃n
21u0&5f̃n

Lu0&50, ;m. ~7.2!

Furthermore,

f̃0
0u0&5

i

2
~d24!au0&, ~7.3!

in the limit s→0. By the same reasoning as in the previous section, this leads to the conc
that the above vacuum state is only BRST invariant ford54. We must also check the closure
the extended constraints when acting on the vacuum state. In precisely the same way that
Eq. ~6.20!, one finds in this case,

@f̃m
21,f̃2m

1 #u0&5~d24!au0&, ~7.4!

which is consistent with~6.6! and~7.3!. Other commutators of constraint operators may simila
be shown to consistently act on the vacuum state. Concluding, we have a nonanomalous th
any d, and the vacuum state is BRST invariant ford54. We have not been able to find BRST
invariant states for otherd. The vacuum dual tou0& is defined by

xn
mu0̄&5xn

2u0̄&5pn
2u0̄&5cn

21u0̄&5bn
1u0̄&5cn

0u0̄&5cn
Lu0̄&50, ;n. ~7.5!

It is easily shown that this vacuum is BRST invariant for anyd.
The state space that we have defined here treats thex6 coordinates differently than thexm

coordinates. Thus, we have lost manifestd12-dimensionalSO(d,2) covariance. However, as th
xm coordinates are regarded as the physical ones@in the sense of the gauge fixing conditions~6.2!#,
we still have manifest Lorentz covariance in this physical subspace.~If we do not insist on
manifest Lorentz covariance, we may treatx0 and one of the space coordinates in a similar fash
asx6 and get a BRST-invariant vacuum ind56.!

B. An inconsistent solution

We now consider another choice of state space. In analogy with the alternative treatm
the tensionless string in Sec. V, we may for the conformal string try a vacuum state satisfy

pm
Mu0&5xm

Mu0&50, m.0. ~7.6!

This alternative quantization was investigated in Ref. 3. The consistency conditions to~7.6!
requires

cm
21u0&5cm

0 u0&5cm
1 u0&5cm

L u0&50, m.0. ~7.7!
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The conditions~7.6! and ~7.7! allow for a ghost fixing of the form

c0
1u0&50, bm

1 u0&50, m.0, ~7.8!

bm
21u0&5bm

0 u0&5bm
L u0&50, m>0. ~7.9!

The consistency conditions for~7.8! are automatically satisfied as well as those of~7.9! for m
.0. However,

f̃0
21u0&50 ~7.10!

and

f̃0
0u0&50 ~7.11!

yields further conditions on the vacuum state. They may be satisfied.@Equation~7.11! fixes the
conformal dimension of the vacuum state.# The problem is the last one, which yields

f̃0
Lu0&5~d22!S 1

2
a22

1

12D u0&. ~7.12!

Checking the commutation relations, we find

lim
s→0

@f̃m
L ,f̃2m

L #~s!52mf̃0
L1 1

6~d226!m32m~d22!a2, ~7.13!

where f̃0
L on the right-hand side is the normal ordered operator in~7.12!. Notice that~7.13!

coincides almost exactly with~5.11!, although we here haved12 coordinates and four ghos
fields. It looks now as if the situation is the same as for the tensionless string in Sec. V,
looks as if we may follow the arguments after~5.11!, leading to a consistent BRST quantization
d526. However, for the conformal string there is an additional nontrivial commutator, for w
we find

lim
s→0

@f̃m
1 ,f̃2m

21 #~s!u0&5S 2i f̃0
02

1

2
~d26!mD u0&, ~7.14!

wheref̃0
0 on the right-hand side is the normal ordered operator that follows from~6.5! through our

regularization, i.e.,

f̃0
05

1

4
~x0p01p0x0!1

1

2 (
k51

`

~p2k•xk1x2k•pk!1 i ~c0
1b0

12c0
21b0

21!

1 i (
k51

`

~b2k
21

•ck
212c2k

21
•bk

212b2k
1

•ck
11c2k

1
•bk

1!. ~7.15!

The relation~7.14! says thatQ can only be nilpotent ind56, which contradicts the above resu
that requiredd526. It follows that there is no consistent BRST quantization of the confor
string on the vacuum considered here. This result agrees with Ref. 3.

VIII. ALTERNATIVE STATE SPACE FOR THE BOSONIC STRING

In view of the treatments in Secs. IV and V, one may wonder if one may not have a c
sponding vacuum state also in the ordinary bosonic string case. Below we demonstrate tha
not the case. The classical constraints~3.1! may also be written as
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Pm~s!Pm~s!1T2Xm8~s!Xm8 ~s!50, Pm~s!Xm8 ~s!50. ~8.1!

The Fourier modes of the corresponding Hermitian constraint operators are

Fn
21[

1

2 (
k

pk•pn2k22T2(
k

k~n2k!xk•xn2k ,

~8.2!

fn
L[2 i

1

2 (
k

k~xk•pn2k1pn2k•xk!.

The Hermitian and formally nilpotent BRST charge~3.5! may be rewritten as

Q5(
k

~F2k
21ck

211f2k
L ck

L!2
1

2 (
k,l

~k2 l !S c2k
21c2 l

L bk1 l
21 1

1

2
c2k

L c2 l
L bk1 l

L

14T2c2k
21c2 l

21bk1 l
L 1bk1 l

21 c2k
21c2 l

L 1
1

2
bk1 l

L c2k
L c2 l

L D . ~8.3!

@Notice that the ghost variablesck
L ,bk

L here are not the same as in~3.5!.# Here the extended
constraints are given by

f̃n
L[@Q,bn

L#5fn
L2

1

2 (
k

~n1k!~ck
21bn2k

21 2bn2k
21 ck

211ck
Lbn2k

L 2bn2k
L ck

L!,

~8.4!

F̃n
21[@Q,bn

21#5Fn
212(

k
~n1k!~ck

Lbn2k
21 14T2ck

21bn2k
L !.

A direct calculation of the commutator@f̃m
L ,f̃2m

L # gives

@f̃m
L ,f̃2m

L #~s!5m(
k

~2 ikxk•p2k2kck
Lb2k

L 2kck
21b2k

21!~ f ~a!~ um1ku,s!1 f ~a!~ um2ku,s!!

1(
k

„2 ik2xk•p2k1~2m22k2!~ck
Lb2k

L 1ck
21b2k

21!…

3„f ~a!~ um1ku,s!2 f ~a!~ um2ku,s!….

The s→0 limit yields

@f̃m
L ,f̃2m

L #52mf̃0
L , ~8.5!

which is consistent with the fact that the BRST charge~8.3! is nilpotent. One may note here tha
the second line in the last relation goes to zero ass goes to zero, if the operator

Ck,m[2 ik2xk•p2k1~2m22k2!~ck
Lb2k

L 1ck
21b2k

21!, ~8.6!

is well defined. This is true for a state space where the vacuum has the form of the tens
string vacuum defined by the condition

pn
mu0&50, ;n. ~8.7!

However, this vacuum state is not appropriate for the tensile bosonic string. Consistency
tions of the form
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@Q,pn
m#u0&50, ;n ~8.8!

would require the ghost part of such a state to satisfy the relations

cn
21u0&50, ;n, ~8.9!

for which the consistency conditions,

@Q,cn
21#u0&50, ;n, ~8.10!

are satisfied. In fact, it is possible to ghost fix this vacuum state in a BRST-invariant way usin
original BRST charge, which then also is nilpotent for any dimensiond. However, there exists no
dual vacuum state,u0̄&, to this solution. Note thatu0̄& must satisfy

xn
mu0̄&5bn

21u0̄&50, ~8.11!

for which the consistency condition,

@Q,bn
21#u0̄&50, ~8.12!

cannot be satisfied.

IX. ALTERNATIVES WITH NEGATIVE NORM STATES

In the alternative treatments in Secs. V and VII, we considered a vacuum state of the

pm
m u0&5xm

m u0&50, m.0. ~9.1!

It leads to a ‘‘consistent’’ BRST quantization for the bosonic tensionless string ind526. In fact,
even the ordinary bosonic string has a vacuum state satisfying~9.1!. To see this one may notic
that ~9.1! is equivalent to~we let u0& be an eigenstate ofp0

m , i.e., we setu0&5up&!,

am
m up&50, ã2m

m up&50, m.0, ~9.2!

due to the relations~3.3!. Now ~9.2! is different from the standard vacuum~3.10!. The consistency
conditions of the latter condition requires

c2m
K up&50, m.0, ~9.3!

which means that the vacuum may be ghost fixed by

b2m
K up&50, m>0, ~9.4!

together with

cm
L up&50, m.0; bm

L up&50, m>0. ~9.5!

Calculating commutators for finites and then taking the limits→0, we find

@K̃m ,K̃2m#52mK̃02 1
12~d226!m31 1

2m~d22!a2, ~9.6!

where

K̃05
1

2
a0

21 (
k51

`

~ãk•ã2k2kbk
Kc2k

K 2kck
Kb2k

K !2
1

2
~d22!S 1

2
a22

1

12D . ~9.7!
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We may then define a new BRST charge by

Q85Q2
d22

4
a2~c0

L2c0
K!, ~9.8!

which then is nilpotent ford526. In d526 the new extended constraints are

L̃085
1

2
a0

21 (
k51

`

~a2k•ak1kb2k
L ck

L1kc2k
L bk

L!21,

~9.9!

K̃085
1

2
a0

21 (
k51

`

~ãk•ã2k2kbk
Kc2k

K 2kck
Kb2k

K !11.

However,L̃08up&50 requiresp258T while K̃08up&50 requiresp2528T. It follows that neither
of these vacua are BRST invariant, or, in other words, we have no BRST-invariant va
satisfying~9.1!. Still there are BRST-invariant states and they are massless with spin 0, 1, a
and spinless withp2568T. Note, however, that sinceãm

m , m.0 act as creation operators, th
space componentsãm

i yield negative normed states. Thus, the BRST-invariant state spaces
negatively normed states. The same feature was also found for the alternative treatment
tensionless string in Sec. V.~This alternative treatment has only massless states.16! It is clear that
the existence of indefinite metric states in the BRST-invariant sector makes both these m
inconsistent.
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Time dependence of operators in anharmonic quantum
oscillators: Explicit perturbative analysis
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An explicit, order-by-order perturbative solution, valid over extended time scales,
for the time dependence of operators of anharmonic oscillators, is developed within
the framework of the method of normal forms. The freedom of choice of the
zeroth-order term and, concurrently in the higher-order corrections, is exploited to
develop a minimal normal form~MNF!. The expansion for the eigenvalues of the
perturbed Hamiltonian in a standard form is independent of the choice. However,
the simple form obtained for the time dependence of the perturbative solution is
more suitable than any other choice for application to high-lying excited states, as
it offers a renormalized form for the propagator. ©1999 American Institute of
Physics.@S0022-2488~99!02310-5#

The issue of finding perturbative approximations, that are valid for long times, for the
dependence of quantum systems had been raised years ago in Ref. 1. Recently, it ha
addressed again in the context of anharmonic oscillators. References 2 and 3 presented a
analysis of the quantum Duffing oscillator within the framework of the method of multiple t
scales,4,5 and in Ref. 6 this oscillator was analyzed within the framework of the method of no
forms.7–9

In the case of classical oscillator systems with nonlinear couplings, the freedom, inher
the expansion, of the choice of the zeroth-order term and the concurrent modifications
higher-order corrections, has been exploited for the derivation ofminimal normal forms
~MNF!.6,10 The errors incurred in approximations to the full solutions in the MNF choice g
appreciably more slowly, making the approximations valid for longer time spans, than in
monly employed expansion choices. This is demonstrated by several examples in Refs. 10

One may naturally ask whether a MNF expansion can be employed advantageously also
quantum mechanical case. Using the normal form expansion method, we obtain for the
dependence of the operators of the anharmonic oscillator an explicit, order-by-order, pertu
solution, valid over extended time scales. We show that the expansion for the eigenvalues
perturbed Hamiltonian in a standard form is independent of the choice of the zeroth-order
However, the simplicity and usefulness of the functional form of the time dependence foun
the approximate solution is affected by the choice. The functional form obtained in the
choice is simpler and is more suitable than all other choices for application to high-lying ex
states. It provides an order-by-order procedure for renormalizing the propagator.

Consider the quantum mechanical Hamiltonian of an anharmonic oscillator~in units of \v!:

H5a†a1
1

2
1

1

2p/2p
e~a†1a!p,

x5
~a1a†!

&
, ẋ5

~a2a†!

& i
, @a,a†#51.
46580022-2488/99/40(10)/4658/6/$15.00 © 1999 American Institute of Physics
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The perturbation is turned on att50, so that the initial condition for the operator is

a~ t50!5a0 ,

wherea0 is the unperturbed annihilation operator.
The normal form expansion entails the order-by-order parallel computation of two in

series: The near-identity transformation~NIT!, that relates the full solution fora, to the zeroth-
order term,b,

a5b1eT1~b†,b!1e2T2~b†,b!1¯ , ~1!

and the equation for the time dependence of the zeroth-order term~the normal form!,

db

dt
5U01eU11e2U21¯ . ~2!

To be specific, we study in detail the casep54, corresponding to the quantum Duffing oscillato
~The method clearly applies to any integerp>0.! The time dependence ofa is determined by

da

dt
5 ia1

1

4
i e~a†1a!35 ia1

1

4
i eS a†3

13a†2
a1a313a†

13a†a213a D . ~3!

Inserting Eqs.~1! and ~2! in Eq. ~3!, one obtains in each order,n, a relation betweenTn andUn

that does not enable their unique determination. This nonuniqueness is partially reduced by
ing Tn not to depend explicitly on time~a permissible choice, as the system under study
autonomous!. The remaining ambiguity is further reduced by requiring that the approximate
lution constitutes a valid approximation over extended time scales. This requires that secula
~errors that evolve linearly in time and limit the validity of the approximation to short times o!
are eliminated in the approximate solution in each order. In the method of normal forms
exploits the freedom in the expansion to meet this requirement by assigning allresonantterms@of
the form (b†

•b)k
•b, similar in form to the underlined terms in Eq.~3!#, that arise in thenth-order

dynamical equation, toUn . The functional form ofUn is, thus,

Un~b†,b!5gn~b†
•b!b. ~4!

This accounts for the full effect of the perturbation on the zeroth-order term,b @Eq. ~2!# in O(en).
All nonresonant terns are used for constructingTn .

This division of terms betweenTn andUn enables the unique determination ofUn , but, still,
not of Tn . The latter is determined up to afree resonant term@similar in form to Eq.~4!#, which
affectsUk andTk in all ordersk>n11. For instance, inO(e), U1 is determined uniquely, while
T1 is not:

U15 3
4i ~b†

•b11!b, ~5a!

T152 1
16b

†3
2 3

8b
†2

b1 1
8b

32 3
8b

†1F1~b†
•b!•b; ~5b!

F1•b, the free resonant term inT1 , does not enter theO(e) relation betweenT1 and U1 .
However, it affects all higher-order equations. In the following, we show its effect onU2 .

As all known terms inO(e) are either cubic or linear inb andb†, one may choose for the fre
term in Eq.~5b!:

F1~b†
•b!•b5gb†

•b21nb. ~6!

With this choice, the expansion in powers ofe yields forU2 the following expression~an asterisk
denotes complex conjugation!:
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U25 3
4i $@~g1g* !2 17

16#~b†b!21@~n1n* !2~g1g* !2 17
8 #~b†b!2 3

2%b. ~7!

The commutator ofb andb† is

@b,b†#512e$@a,T1
†#1@T1 ,a†#%1O~e2!512e$2~g1g* !b†b1~n1n* !%1O~e2!. ~8!

In general, the NIT is not unitary, and the commutator is not equal 1, asb andb† do not represent
a wave function that is normalized to unity. Unitarity amounts to a specific choice of the free
in Tn , in every order. For instance, inO(e), it requires thatg andn are purely imaginary.

One can show by induction that, for alln, Un have an overall multiplicativei, with all
remaining coefficients real. Thus, the structure of the normal form is

db

dt
5 i H 11 (

n>1
enf n~b†

•b!J b, ~9!

where f n are real functions of (b†
•b). Equation~9! implies that, within the framework of pertur

bation theory, (b†
•b) is constant, and the solution forb is given explicitly by

b5expF i H 11 (
n>1

enf n~b0
†
•b0!J tGb0 . ~10!

For a general NIT, this solution is cumbersome. In particular, the powers of (b0
†
•b0) in f n(b0

†

•b0) increase with the order,n, in the sum in Eq.~10!. This implies that the convergence~or
asymptotic! characteristics of the phase factor in Eq.~10! become worse as one goes to high-lyi
excited states, for which the eigenvalues of (b†

•b) ~approximately, the occupation numbers of t
unperturbed states! are large. For example, thee term in the phase factor is uniquely determin
and contains the monomials (b†

•b)k, with k50,1. In general, thee2 term will contain monomials
(b†

•b)k, with k50,1,2, but is not unique. It depends on the choice of the free resonant term iT1 .
In a similar manner, forn>2, the functional form of theen term in Eq.~10! depends on the choic
of the free functions inTk in the near identity transformation, Eq.~1!, in all ordersk,n.

The nonuniqueness of the expansion can be exploited to greatly simplify the solutio
invoking the MNF choice. The latter corresponds to a specific choice of the free functions
NIT, in all orders. We show the procedure in detail for theO(e2) contribution and sketch the mai
points for the analysis of theO(e3) contribution. Choosing the free parameters inF1 to have the
values

g1g* 5 17
16, n1n* 5 27

16,

one eliminates the quintic monomial in the expression forU2 @Eq. ~7!# and obtains

U252 3
2U1 . ~11!

Thus,U2 , now also contains only cubic and linear terms inb andb†.
To show how the MNF idea is extended toU3 , we note that, inO(e2), T2 may include the

following nonresonant terms:

b†5
,b†4

b,b†3
b2,b†b4,b5,b†3

,b†2
b,b3,b†.

The coefficients of these terms are determined uniquely by theO(e2) dynamical equation~which
relatesT2 andU2!. In addition,T2 may contain the following free resonant terms:

b†2
b3,b†b2,b,
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which do not affect theO(e2) dynamical equation@just as the resonant terms inT1 did not affect
the O(e) dynamical equation#. However, these free terms do affect the form ofU3 . The coeffi-
cients of these three resonant terms are arbitrary. In general,U3 may include the following
resonant terms:

~b†b!3
•b, ~b†b!2

•b, ~b†b!•b, b.

One can choose the free parameters inT2 , to makeU3 also proportional toU1 , as in Eq.~11!, so
that it will also contain only cubic and linear terms inb andb†. The procedure can be repeated
higher orders, and the normal form becomes

db

dt
5 ib1S e2

3

2
e21¯ DU15 ib1 3

4i ~e2 3
2e

21¯ !~b†b11!•b. ~12!

Equation~12! is solved by

b5exp$ i t %exp$ 3
4i ~e2 3

2e
21¯ !~b0

†b011!t%•b0 . ~13!

Once the solution forb is known,a may be computed to the desired accuracy, using the NIT,
~1!. We note that the power of (b0

†
•b0) is the same forall orders in the exponent in Eq.~13!,

providing an approximation scheme that is more useful, even for high-lying excited states, th
general solution, Eq.~10!, where the powers of (b0

†
•b0) in f n increase with the ordern. Thus, the

MNF choice provides an order-by-order procedure for the derivation of a renormalized pro
tor.

As an example for the for the resulting time dependence, we show the action ofb on the
vacuum of the unperturbeda states. We denote thenth excited state of the oscillator byun,t&a , so
that un,t50&a is the unperturbed state att50. Inverting Eq.~1! throughO(e) and using Eqs.~5b!,
~6!, and~13!, one finds

b~ t !u0&a5e exp~ i t !HA6

16
exp~3e i t !u3,t50&a1

3

8
exp~3/2e i t !u1,t50&aJ 1O~e2!, t<O~1/e!

~14!

To compute the energy levels, we note that, throughO(e), the diagonalized Hamiltonian become

H5b†b1 1
21e@„3

81~g1g* !…~b†b!21„

1
21~n1n* !2~g1g* !…~b†b!1 1

4#1O~e2!. ~15!

To compute the eigenvalues ofH, we need to find eigenstates of the operatorB5(b†
•b), which,

as pointed out earlier, is time independent. We denote an eigenstate ofB with eigenvalueb, by ub&
and expand it in eigenfunctions of the unperturbed oscillator, using the notation of Eq.~13!:

ub&5un,t50&a1e(
kÞn

akuk,t50&a . ~16!

Inverting the NIT@Eq. ~1!#, and employing Eqs.~5b! and ~6!, one finds throughO(e),

b5n$12e@~g1g* !~n21!1~n1n* !#%1O~e2!. ~17!

Only a states with populationn64 andn62 are admixed intoub& throughO(e), with coefficients

an145
1

16

A~n11!~n12!~n13!~n14!

n
,
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an125
1

8

~2n13!A~n11!~n12!

n
,

an225
1

8

~2n21!An~n21!

n
~n>2!,

an245
1

16

An~n21!~n22!~n23!

n
~n>4!.

We note that each eigenvalue ofB5(b†
•b) is close to an eigenvaluen of the unperturbed numbe

operator, (a†
•a). Also, the deviation ofb from n depends on (g1g* ) and on (n1n* ).

Inserting Eq.~17! for b in Eq. ~15!, we find the energy of aub& eigenstate to be

Eb5n1 1
21e~ 3

8n
21 1

2n1 1
4!1O~e2!. ~18!

This result isindependentof g andn, namely, of the free resonant term inT1 . Clearly, the energy
of an eigenstate of the perturbed Hamiltonian, when expressed in terms of the quantum num
the reference adjacent unperturbed state, is independent of the choice of the free functions
order. Thus, for computing the eigenvalues through a given order ine, there is no advantage in
specific choice~e.g., a unitary NIT! of the free resonant terms.

The choice of the free parameters depends on what one wishes to achieve. For a unita
b and b† represent wave functions that are normalized to unity, obeying@b,b†#51, so thatB
5(b†

•b) is a true number operator. InO(e), unitarity of the NIT implies:g1g* 5n1n* 50.
One then has

b5n.

Thus, the number eigenvalue for ab state is equal to the number eigenvalue of the adjac
unperturbeda state.H then becomes

H5b†b1 1
21e@ 3

8~b†b!21 1
2~b†b!1 1

4#1O~e2!.

In this case, computation of the time dependence ofa is cumbersome, because the functional fo
of higher-order terms will not be the same as that of the first-order one. For a nonunitary NIT
has@b,b†#511O(e) @see Eq.~8!#. In the particular case of the MNF choice, one obtains

H5b†b1 1
21e@ 23

16~b†b!21 9
8~b†b!1 1

4#1O~e2!.

Here the time dependence ofa is simpler, and is easily found to any desired order@Eq. ~13!# and
the result applies more readily also to high-lying excited states.

We mention in passing that when the perturbation has two terms,

H5a†a1
1

2
1

1

2p/2p
e~a†a!p1

1

2q/2q
e2~a†1a!q,

with p<q, then a reduction of the normal form to a MNF, similar in structure to Eq.~12!, can be
affected, starting fromO(e2). If p.q, so that~in the corresponding classical system! a compe-
tition of scales occurs, the normal form can be reduced to a MNF, starting only fromO(e3).

In summary, the freedom in the choice of the zeroth-order approximation, inherent in
perturbation expansion scheme, may be exploited to construct a unitary NIT that yields a
form for the diagonalized Hamiltonian, or a MNF, to obtain a simple form, that may be usefu
for high-lying excited states, for the time dependence of the operators. The latter alter
provides an order-by-order algorithm for obtaining a renormalized propagator. The MNF c
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may be also relevant in the study of coherent states, where nonunitary transformations hav
considered,12 and in non-Hermitian Hamiltonian problems that have recently received rene
attention,13–17and where unitarity of the NIT is not required. Finally, while the method of norm
forms has been used in the present analysis, a parallel procedure can be easily formulated
method of multiple time scales. Denoting the time scales bytn5ent, the MNF constraints on the
free resonant terms inT1 , T2 ,..., correspond to specific requirements on thet2 ,t3 ,..., depen-
dence of the solution in the latter method.
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de Sitter space gives a local, osculating~and therefore prototypical! representation
of a curved space–time. The de Sitter geodesics allow a description as uniform
straight-line motion with respect to a family of preferred frames that are inertial
frames interconnected by a projective~fractional-linear! transformation. Use of
these frames overcomes the ambiguities of general covariance in stating commuta-
tion rules and Hamiltonian structure. But the Hamiltonian for a particle running on
a geodesic then necessitates nonassociative elements. The latter are worked out as
elements of a Cayley–Dickson algebra of 16 dimensions~doubled octonions, or
decahexions!, wherein a standard Hilbert space type of format for quantum me-
chanics is ruled out. A formal Schro¨dinger wave equation is devised, and exhibits
antilinear as well as linear terms in the decahexion components of the wave func-
tion. All the same, the Heisenberg laws of motion for a dynamical variable are
neatly and unambiguously formulated, giving a full account of the quantum time
evolution of the dynamical variable~although the Heisenberg program of diagonal-
izing the Hamiltonian cannot be executed!. © 1999 American Institute of Physics.
@S0022-2488~99!04510-7#

I. INTRODUCTION

The structure of spinors in a curved space was broached by Schro¨dinger1 and by Bargmann2

in the early days of quantum theory, and their formulation has since continued to hold sway3 The
idea was simply to uplift the flat-space Dirac equation,

~gm]m1m!c50,

to a curved-space version,

„gm~x!“m1m…c50,

with covariant derivatives“m replacing]m , under general covariance guidelines, while requiri
among other things

@gm~x!,gn~x!#52gmn~x!,

that generalize the flat-space anticommutators.
The principal point is that, by explicit design, curvature is assumed to leave the fundam

gross format inherited from flat space untouched. The design is in itself clearly a purely f
recipe, failing to connect with underlying commutation rules or Hamiltonian structure, whic
where the force of Planck’s constant is ordinarily brought into full physical play. The failure
course, is due at bottom to the amorphousness and vagueness of general covariance upo
the recipe insists.

In contrast, in the present note we aim to show that, from ana priori and unambiguous
reckoning of the HamiltonianH of a particle running along a geodesic path in curved space,
from the simplest physically baseda priori commutation rules relating to that path, the spin
structure in the curved space is qualitatively, inevitably altered from the familiar flat-space
46640022-2488/99/40(10)/4664/13/$15.00 © 1999 American Institute of Physics
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format. This owes to the necessity for extracting a square root ofH2, as in ordinary Dirac theory
which, however, for geodesic motion in a curved space~typified here as a space of consta
curvature! simply cannot be done at allunless elements of a nonassociative algebra are admit
It is these elements, constituting some sort of novel internal degrees of freedom, that nece
enter the description of curved-space spinors, and distinguish them at a basic structural level
something quite different from embellished flat-space spinors.

The present preliminary discussion is limited to geodesic motion in the simplest pos
curved space. de Sitter space of symmetryO~3,2! of constant positive curvature, whose quantu
theory has been appreciably discussed.4 This restriction is less severe than appears at first gla
since it has been shown5 that de Sitter spaces are the local osculating spaces to more gen
curved Riemann spaces, seizing the local characterization of curvature, via higher order of c
that is beyond reach from the low-order contact of mere tangent~Minkowski! spaces. In this sense
de Sitter space, so far from being highly specialized, comes close to being prototypica
bubble of de Sitter space far overmatches the flake of Minkowski space in depicting the
geometric situation.

II. de SITTER SPACE HAMILTONIAN

A remarkable, if not widely familiar, feature of de Sitter space6 is that its symmetry group o
five-dimensional rotationsO~3,2!, can also and equivalently be read in terms of specialized
jective ~fractional-linear! transformations,

xi85
Aiaxa1Bi

Raxa11
, ~1!

of space (x1 ,x2 ,x3) and time~x0 or t! coordinates~sum on repeated Greek indices understoo!.
These projective transformations send unaccelerated free-particle motions into other free-p
motions, as with the familiar linear transformations of Galilean and special relativity. For exa
if

x85x081v8t8,

then

x85
A11x1A10t1B1

R1x1R0t11
, t85

A01x1A00t1B0

R1x1R0t11
,

produces, owing to the common denominator,

x5x01vt.

The projective transformations arebona fide inertial-frame transformations, in fact, the mo
general ones.

The tracing of the connection between projective and de Sitter groups is worked out in
in Sec. III. Suffice it to say, the connection is encapsulated by the invariance under linear
geneous transformations of the quadratic form,

X1
21X2

21X3
21X4

21 f 2~X42X5!25 invariant, ~2!

where xi has been writtenXi /U in homogeneous coordinates, and whereX4[ icX0 and X5

[ ibU ~b is a universal fundamental length andf a dimensionless constant!. The homogeneous
transformations inX1 ,X2 ,X3 ,X4 ,X5 are essentially five-dimensional rotations that convert bac
fractional-linear transformations in physical coordinatesx1 ,x2 ,x3 ,x0 . Based on Eq.~2!, the in-
finitesimal invariant line elementds2 in dt anddr[(dx,dy,dz) is readily produced, and readil
identifiable as one characterizing a space–time of constant curvaturea[ f b.
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Thus, notwithstanding the constant curvature of space–time,the geodesics of de Sitter spac
one and all may be brought forth as the global free-particle motions,

d2r

dt2
50,

with the de Sitter group giving in projective language the description of motion from the v
points of equivalent inertial frames. This projective rephrasing of curvature works because the
Sitter free particle does not travel off to a remote place and stay there, as in flat space: i
througha projective-geometric ‘‘point at infinity,’’ corresponding to the vanishing of the deno
nator 11RaXa in Eq. ~1!, and reappears on the local scene~in fact, there is no distinction betwee
the ‘‘local’’ and the ‘‘infinitely remote’’ scenes!.

The inertial frames that here are interconnected in a projective account of the de Sitter
are clearly as distinguished for de Sitter space, as are the familiar linearly connected i
frames of the Poincare´ group for Minkowski space. All physical experience of the latter now le
to the basic physical hypothesis of the present work:the inertial frame coordinates of a fre
particle, whether in de Sitter or Minkowski space, are the distinguished ones for prescr
commutation rules of the usual type(x,px)5 i\, etc., and building quantum theory along Ham
tonian lines.

This abandonment of general covariance in favor of physically identifiable preferred in
frames overcomes a longstanding difficulty of general covariancevı̀s-a-vı̀s quantum theory.
Namely, if every kind of transformation is admitted between coordinate systems, all taken to
the same footing, the formulation of commutation rules—showing at the deepest level jus
and where Planck’s constant enters physics—becomes completely ambiguous. This omni
ambiguity of general covariance is set aside oncedistinguishedcoordinates are recognized; and
approach is afforded to a basic background problem of general relativity, viz., the quantum
of geodesics in a prescribed Riemannian geometric setting.

Of course,after preferred frames and clear commutation rules have been identified, any s
coordinate transformation may be invoked according to convenience. An appreciably conv
transformation is, in fact,

tan
ct

a
5

ct/a

12ct/b
, r5

r

F S ct

a
D 2

1S 12
ct

b
D 2G1/2,

from r ,t to r,t, which carries the geodesics fromd2r /dt250 to the harmonic oscillator form

d2r

dt2 1
c2

a2 r50,

otherwise familiar in de Sitter space. Sincet depends ont alone, equal-t commutation rules go
over simply to equal-t ones. This gives a ladder spectrum of Klein–Gordon energy eigenvaluE
with the correct7 zero-point frequencyc/a.

One last transformation,

r5
R

S 11
R2

a2 D 1/2 ~t unchanged!,

brings a finally useful representation of the square of the Hamiltonian of a particle of mam,
running along a geodesic of de Sitter space, that springs out of the above inertially framed v
that space:
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H2

c2 5FP21
L2

a2 1
\2

a2G1k2F\2

a2 S 11
R2

a2 D G5FH1
2

c2 G1k2FH2
2

c2 G , ~3!

where

P[
1

2 S I 1
RR

a2 D •Pc1h.c., L5R3P,

k25
m2c2a2

\2 2
1

4
,

andPc is the canonical mate2 i\“ to R stemming from the primitive commutation rules on th
primitive geodesicsd2r /dt250. This places the floorm2> 1

4\
2/c2a2 on masses so as to guarant

positive definiteH2.

III. EVOLUTION OF NONASSOCIATIVE ELEMENTS

The problem now is the same as that brought forth by Dirac over half a century ago i
space: what isH when one knows the structure ofH2 from the fundamental commutation rules
The issue is unavoidable once the path of commutation rules and Hamiltonian structure is ta
fundamental in quantum theory2H, and not any function of it, is the master dynamical variab
and its character needs to be established if quantum physics is to be understood.

The central point is thatno Dirac square root of H2 above exists~except fork50!. To see
this, notice first thatH1 andH2 separately are certainly Dirac calculable, for example,

H15a–P1ŝ–L21,

H25b1a–R, ~4!

where, from here on, all of\,c,a51 andb, a are standard Dirac matrices, withŝx5 iayaz, etc.
These are not unique, merely illustrative of a large family.

Now H clearly must be linear ink, and therefore must be of the form

H5AH11kBH2 ,

whereA andB are suitable quantities placed into a Kronecker product~understood! with H1 and
H2 . Squaring produces (kÞ0)

H25A2H1
21k~ABH1H21BAH2H1!1k2B2H2

2,

so that, of course,A andB must be square roots of unity, while the cross terms must vanish
It is easy to see that forH1 andH2 as in the example of Eq.~4!, the cross-terms cannot canc

one another. Nor indeed can they cancel for anyH1 andH2 whatever. For their cancellation, it i
required thatH1H256H2H1 or saykH2H1 and then it is enough thatAB52kBA ~i.e., A andB
anticommuting or commuting!. Multiplying on the left byH1 and on the right byH2 then gives

H1
2H2

25k~H1H2!25k3~H2H1!25k3H2~H1H2!H15k3H2~kH2H1!H15H2
2H1

2.

The separate squaresH1
2 andH2

2 are unambiguous as given in Eq.~3!, and a direct computation
shows thatH1

2 and H2
2 do not commute as required. In short, as the example, Eq.~4!, clearly

foretells,H1H2 andH2H1 are always so different as to disallow their cancellation: the cross-te
mustseparatelyvanish.

It is required in all, then, that

A2515B2, ~5!
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AB505BA, ~6!

in order thatH be extractable fromH2. Clearly, if A andB are elements of an associative algeb
conditions ~5! and ~6! are impossible. For associativity tells by~6! that A(AB)50 means
(A2)B50 or thatB50, and this contradictsB251. Similarly, (AB)B50 brings the contradiction
that A50 while A251 is demanded. This argument rules out not only associative alge
X(YZ)5(XY)Z but also those nonassociative algebras~such as the octonions! that are alternative,
viz., X(XY)5(X2)Y, (XY)Y5X(Y2).

This concludes the central point of the present paper:The curvature of space–time necessarily
induces a strictly nonassociative structure into the Hamiltonian for a particle going alon
geodesic.~k50 excepted!.

IV. REALIZATION OF NONASSOCIATIVE ELEMENTS A,B

None of the familiar algebras—real numbers, complex numbers, quaterni8

octonions9—will do for A,B, as the first three are associative and the last alternative. But all
the first have a common root in the Cayley–Dickson doubling process,10 wherein

• complex numbers are doublets of reals,

• quaternions are doublets of complexes,

• octonions are doublets of quaternions.

And now one further doubling, where the novel

• decahexionsare doublets of octonions,

will be shown to answer to the requirements forA andB. The decahexions, which evidently hav
seen negligible development heretofore, probably for want of any applications, are the low
the Cayley–Dickson~infinite! hierarchy admitting explicit formation ofA andB.

The members of a Cayley–Dickson algebra are of the form of ‘‘hypercomplex’’ numbe

X[x0e01x1e11x1e21¯1xnen ,

with e0 being an idemfactor~usually replaced by 1!, andei
2521 (i 51,2,3,...,n), and a suitable

multiplication table for the basic elementse1 ,e2 ,... featuring anticommutativityeiej52ejei ~but
eie05e0ei5ei!. The Cayley–Dickson hypercomplex numbers enjoy physically congenial pro
ties, such as

a conjugate X̄5x02x1e12x2e22¯2xnen,

a trace 1
2~X1X̄!5x0,

a norm XX̄5X̄X5x0
21x1

21x2
21¯1xn

2, and

a product conjugation XY5ȲX̄.

Usually the coefficientsxi are taken to be real, but occasionally may be taken to be imagina
complex.

The doubling rule is as follows: IfX1 , X2 , Y1 , Y2 are members of one algebra, the doub
algebra consists of pairs such as (X1uX2), (Y1uY2), etc., with the product of doublets following
the rule

~X1uX2!~Y1uY2![~X1Y12Y2X̄2uX̄1Y21Y1X2![~Z1uZ2!. ~7!
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For example, forX,Y themselves simple two-element doublets,

X15~x0 ,x1!5x01e1x1 ,

X25~x3 ,x2!5x31e1x2 ,

Y15~y0 ,y1!5y01e1y1 ,

Y25~y3 ,y2!5y31e1y2 ,

one finds

Z15x0y02x1y12x2y22x3y31e1~x1y01x0y11x2y32x3y2!,

Z25x0y31x3y01x1y22x2y11e1~x0y21x2y01x3y12x1y3!. ~8!

In short, one gets a representation of quaternions whose standard format~with e3e15e2 cycli-
cally!,

Qx5x01x1e11x2e21x3e3 , or x01@x#,

Qy5y01y1e11y2e21y3e3 , or y01@y#,

with x, y three-dimensional vectors (x1 ,x2 ,x3), (y1 ,y2 ,y3), may equally be written as

Qx5~x01x1e1!1e3~x31x2e1!,

Qy5~y01y1e1!1e3~y31y2e1!,

so as to show exact correspondence with the above Cayley–Dickson doublet of doublet
convenient condensed multiplication rule,

Qz5QxQy5x0y02x–y1@x0y1xy01x3y#, ~9!

and the Cayley–Dickson rule~8! simply rephrase each other. The quaternion unitse1 , e2 , e3 can
be represented through Pauli spin matricess1 , s2 , s3 according toek52 isk .

Next come doublets of quaternions, that is, octonions. In the Cayley–Dickson scheme

Ox5~x0 ,x1 ,x2 ,x3ux7 ,x4 ,x5 ,x6!,

or, introducing the elemente7 ~parallelinge3 for quaternions!,

Ox5x01e1x11e2x21e3x31e7~x71x4e11x5e21x6e3!.

This is, under the~partial! multiplication rulese7e15e4 , e7e25e5 , e7e35e6 , the conventional
representation,

Ox5x01e1x11e2x21e3x31x4e41x5e51x6e61x7e7

~paralleling the conventionalQx!, with a product ruleOxOy that is easily worked out from the
Cayley–Dickson fundament, Eq.~7!.

Finally, the decahexions as Cayley–Dickson doublets of octonions are

D5~O1uO2!.
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It is more convenient, however, to use the simple and associative quaternions as a s
representing each octonion inD as a pair of quaternions, so thatD is equivalently a quartet o
quaternions~or quatroquaternion!:

DU5~U1uU2uU3uU4!.

To obtain on this basis the multiplication rule for decahexions, we need only apply the Ca
Dickson doubling rule twice in succession—once usingD as an octonion pair, and then, in th
resulting products of octonions, using each octonion as a quaternion pair. This gives the q
pling rule, quite generally, as

DUDV5~U1uU2uU3uU4!~V1uV2uV3uV4!5~W1uW2uW3uW4!,

W15U1V12V2Ū22V3Ū32U4V̄4 ,

W25Ū1V21V1U21V̄3U42Ū3V4 , ~10!

W35Ū1V31V4Ū21V1U32U4V̄2 ,

W45U1V42V3U21V̄1U41U3V2 .

There are many ways now to attend to the algebraic requirements of Eqs.~5! and~6!. One of
the simplest is as follows. WithA,B written as (A1uA2uA3uA4) and (B1uB2uB3uB4), take all theAi

quaternions to be traceless and to have vector parts that are collinear, say, along the un
dimensional sectorm̂,

Ai501@a im̂#, i 51,2,3,4.

Similarly, choose

Bi501@b i n̂#,

and, further, choosem̂ andn̂ to be orthogonal,m̂–n̂50. Then in the quaternion products occurrin
in AB according to Eq.~10!, each product is of the form 01@(ab)m̂3n̂#, i.e., each resultan
quaternionWi , like Ai andBi , is traceless and has vector parts all collinear tom̂3n̂. One reads
off at once,

AB5S W1

W2

W3

W4

D 501S a1 2a2 2a3 a4

2a2 2a1 a4 a3

2a3 a4 2a1 a2

a4 a3 a2 a1

D S b1

b2

b3

b4

D @m̂3n̂#.

Now, choosea1 ,a2 ,a3 ,a45(j,h,2h,j), so thatAB50 means

S j 2h h j

2h 2j j 2h

h j 2j h

j 2h h j

D S b1

b2

b3

b4

D 5~M !b50.

The matrixM is of rank two and possesses two null vectors, col(x,0,0,2x) and col(0,y,y,0).
Consequently,b5col(b1 ,b2 ,b3 ,b4) can be written as col(x,y,y,2x). And nowBA50 means
similarly
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S x 2y 2y 2x

2y 2x 2x y

2y 2x 2x y

2x y y x

D S a1

a2

a3

a4

D 50,

and this is satisfied by (a1 ,a2 ,a3 ,a4)5(j,h,2h,j).
The squares ofA andB are now simply the scalars

A2522~j21h2!e0 ,

B2522~x21y2!e0 ,

so it suffices to take all ofj, h, x, y to be purely imaginary to achieveA2515B2:

j5 ig, h5 id, x5 iu, y5 iv,

g21d25 1
2, u21v25 1

2.

That is, we obtain two one-parameter families of decahexions,

g5
1

&
cosu, d5

1

&
sinu and u5

1

&
cosw, v5

1

&
sinw.

In summary, the decahexions, with orthogonalm̂ and n̂,

A5~A1uA2uA3uA4!5~ ig@m̂#u id@m̂#u2 id@m̂#u ig@m̂# !,

B5~B1uB2uB3uB4!5~ iu@ n̂#u iv@ n̂#u iv@ n̂#u2 iu@ n̂# !, ~11!

and normalization as above, meet the fundamental algebraic requirements of Eqs.~5! and~6!. The
occurrence of imaginary elements in the quaternionic components can be interpreted as
from the quaternion basise1 , e2 , e3 to the basisie1 , ie2 , ie3 , that is, to Pauli spin matricess1 ,
s2 , s3 , as noted previously.

V. ISSUES OF QUANTIZATION

Since Albert’s theorem,11 it has been known that a probability interpretation, conforming
standard inherited precepts for quantum theory, has to rest on the algebra of real numb
complex numbers, or quaternions, or octonions. The first three can form bases for a Hilbert
formulation of quantum mechanics in which state vectors obey a superposition principle
respectively, real, complex, or quaternionic coefficients, as in ordinary standard~complex! quan-
tum theory. But the octonions, together with all other nonassociative systems, are ruled out
for example, scalar products like

E ūNf dR,

are ambiguous, owing to the distinction between (ūN)f andū(Nf) with nonassociativeu, N, f,
an omnipresent ambiguity for all triadic products.

The decahexions are ruled out, not only because of their nonassociativity, cutting even
deeply than for octonions, but also because they do not form a division algebra~one for which
XYÞ0 whenXÞ0 andYÞ0—the aboveA,Bby construction admitAB50 for nonzeroA andB!.
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In short,there appears to be an inevitable clash between the rudiments of space–time curva-
ture ~as locally embraced by de Sitter space! and the rudiments of quantum theory, as ordinar
understood. This clash has not to do with general relativity in itself, but simply with curvature
such as reflected in the Hamiltonian structure for the geodesics.

Clash notwithstanding, it remains of interest to see what shape a Schro¨dinger wave equation
takes,

i\
]c

]t
5Hc, ~12!

wherec lies in the same algebra asH5AH11kBH2 , while i\]/]t signifies still thatH generates
time translations. The simplest construction is over the miniature algebraA,B,O ~null!, and I
~idemfactor!, irrespective of any explicit representation ofA,B. First, iteration, in general, brings

2\2
]2

]t2 c5H~Hc!,

but, of course,

H~Hc!Þ~H2!c5~H1
21k2H2

2!c.

Next, place

c5Ic01Ac11Bc2 ,

in Eq. ~12! and equate separateI,A,B components:

i\ċ05H1c11kH2c2 ,

i\ċ15H1c0 ,

i\ċ25kH2c0 .

Using a spin-tower col(c0 ,c1 ,c2), this is

i\S ċ0

ċ1

ċ2

D 5S 0 H1 kH2

H1 0 0

kH2 0 0
D S c0

c1

c2

D .

Iteration gives

2\2S c̈0

c̈1

c̈2

D 5S H1
21k2H2

2 0 0

0 H1
2 kH1H2

0 kH2H1 H2

D S c0

c1

c2

D ,

so that, as expected, the scalar elementc0 satisfies the Klein–Gordon equation. There is a diff
ential conservation law here@using row (c0

† ,c1
† ,c2

†), andH1 from Eq. ~4!#,

]r

]t
1“R–j50,

r[c0
†c01c1

†c11c2
†c2 ,

j[c0
†@a–~ I 1RR!1ŝ3R#c11c1

†@a–~ I 1RR!1ŝ3R#c0 .
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While the spin towers thus appear to admit a touch of associativity, this falsifies the fundam
difficulties of the underlying and irremediable nonassociativity, for whichu(Nw) is distinct from
(uN)w ~operatorN being the tripletN01AN11BN2 with operatorNi , and vectorsu andw being
triplets u01Au11Bu2 andw01Aw,1Bw2!. In fact, direct calculation gives

u~Nw!2~uN!w5A~u1N2w22u2N2w1!1B~u2N1w12u1N1w2!,

which, of course, is out of sight from any 333 matrix operator inN0 ,N1 ,N2 and spin towers in
u0 ,u1 ,u2 andu0 ,u1 ,u2 .

Going now to the decahexion representation forA andB, a decahexion format forc must also
be introduced, or in quatroquaternion terms,

c5~c1uc2uc3uc4!.

Here eachck is a quaternion, with coefficients that are Dirac spinors that are to be acted
finally by H1 andH2 :

ck5ck0e01ck1e11ck2e21ck3e3 ,

cku5S cku1

cku2

cku3

cku4

D .

In all, the componentsckuv are 43434564 in number~quartets of quartets of quartets!. The
wave equation reads

i\~ċ1uċ2uċ3uċ4!5H1~A1uA2uA3uA4!~c1uc2uc3uc4!1kH2~B1uB2uB3uB4!~c1uc2uc3uc4!,

where, using the fundamental multiplication rule, Eq.~10!,

~A1uA2uA3uA4!~c1uc2uc3uc4!5~A1c12c2Ā22c3Ā32A4c̄4uĀ1c21c1A21c̄3A42Ā3c4uĀ1c3

1c4Ā21c1A32A4c̄2uA1c42c3A21c̄1A41A3c2!

~similarly for Bc by replacingAk by Bk!.
The scheme may be viewed as an ensemble of interlocking quaternionic wave equations

contain not only the quaternionsc1 ,c2 ,c3 ,c4 but also terms in their~quaternionic! conjugates
c̄1 ,c̄2 ,c̄3 ,c̄4 . These terms, mandated by the decahexion algebra, are of the nature of an
elements akin to complex conjugates in ordinary quantum mechanics.

We may finally turn away from Schro¨dinger models of quantum theory toward Heisenbe
models. The power and primitiveness of the latter far surpass the former, since the central
sition is at its core simply the fundamental Heisenberg equations of motion, without a glanc
superposition principle, or Hilbert space, or even a probability interpretation. The dynamica
for any quantityF is the celebrated

dF

dt
5

1

i\
~F,H !5

1

i\
~FH2HF !.

This is compatible withd(FG)/dt5(dF/dt)G1F(dG/dt) only if the underlying algebra is
flexible Lie admissable,9 which the present decahexion algebra is not. This does not preven
sequence of derivativesdF/dt,d2F/dt2,..., from being computed and yielding a Maclaurin seri
expansion forF, as below.H cannot be diagonalized sinceH1 ,H2 do not commute.

For simplicity, we may limit the discussion to the miniature algebraA,B,O,I instead of the full
decahexion algebra. The general~time-independent! dynamical variable is
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F5F01AF11BF2 ,

whereFi are functions of coordinatesR and momentaP as well as Dirac matrices. ThenF is a
conserved quantity when~F,H! vanishes,

~F,H !5~F1 ,H1!1~F2 ,H2!1A~F0 ,H1!1kB~F0 ,H2!50,

that is, when

~F1 ,H1!1~F2 ,H2!50,

~F0 ,H1!50,

~F0 ,H2!50.

It is quite possible now to have conserved quantities that involve arbitrary functions. An exa
is F5BF2(R) with arbitrary F2(R), since H2 , being independent ofP, commutes with any
F2(R). Thus, alsoAH11BF2(R) is conserved.

The conventional Heisenberg rendition forF(t),

F~t!5e~ i /\!HtFe~2 i /\!Ht,

will not work for nonassociativeH5AH11kBH2 , becauseH is not power associative, e.g.,

H~H2!5~AH11kBH2!~H1
21k2H2

2!5AH1
31k2AH1H2

21kBH2H1
21k3BH2

3,

while (H2)H is different,

~H2!H5AH1
31k2AH2

2H11kBH1
2H21k3BH2

3.

Consequently the power series for exp„( i /\)Ht… is ill defined.
Instead, computing successive derivatives of, say,F0(R,P), yields

dF0

dt
5

1

i\
~F0 ,AH11kBH2!5

1

i\
„A~F0 ,H1!1kB~F0 ,H2!…5

1

i\
~AD1F01BD2F0!, ~13!

where the separate commutators are written as

D1F0[F0H12H1F0 , D2F0[k~F0H22H2F0!.

Then

d2F0

dt2 5
1

~ i\!2 @D1
2F01D2

2F0#,

d3F0

dt3 5
1

~ i\!3 @AD1~D1
21D2

2!F01BD2~D1
21D2

2!F0#,

d4F0

dt4 5
1

~ i\!4 @D1
2~D1

21D2
2!F01D2

2~D1
21D2

2!F0#,

5
1

~ i\!4 @~D1
21D2

2!2F0#, etc.

More simply, writing the final result forF0(t) as
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F0~t!5 f 01A f11B f2 ,

gives, on the one hand,

dF0~t!

dt
5

d f0

dt
1A

d f1

dt
1B

d f2

dt
,

and on the other hand,

dF0

dt
5

1

i\
~ f 01A f11B f2 ,AH11kBH2!5

1

i t
~D1f 11D2f 21AD1f 01BD2f 0!.

Thereupon follows the triplet:

d f0

dt
5

1

i\
~D1f 11D2f 2!

d f1

dt
5

1

i\
D1f 0

d f2

dt
5

1

i\
D2f 0 .

By differentiating the first and using the other two,

d2f 0

dt2 5
1

~ i\!2 ~D1
21D2

2! f 052S D1
21D2

2

\2 D f 0 ,

so thatf 0 can be written symbolically as

f 0~t!5cosSAD1
21D2

2t

\
D f 05cos~Vt! f 0 ,

and then

f 1~t!5
1

i\ S D1

1

V
sinVt D f 0 ,

f 2~t!5
1

i\ S D2

1

V
sinVt D f 0 .

The meaning is that in the power series expansions of cosine and sine the individual terms r
the Maclaurin series,

F0~t!5F01
dF0

dt
t1

d2F0

dt2

t2

2!
1...,

built directly from the derivatives ofF0 as, given above.
In a similar fashion, the time evolution ofAF1 and ofBF2 may be obtained. The Heisenbe

equations of motion, in short, are equal to describing in full the quantal time-evolution of dyn
cal variables using multiple commutators, just as Hamilton’s equations of motion describe c
cal time evolution using multiple Poisson brackets.
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Finally, it should be remarked that the nonassociative elementsA andB do not appear to be
observationally directly accessible, though their guiding hand may be revealed covertly, f
stance, in the even-ordered derivativesd2F0 /dt2, d4F0 /dt4, etc., above, which are independe
of A andB: or in squares like

S dF0

dt D 2

52
1

\2 @~D1F0!21~D2F0!2#

@similarly to how the velocityca in Dirac theory is not open to direct observation while (ca)2

5c25(velocity)2 is#.

VI. CONCLUSION

We may summarize as follows. The geodesics in a curved space—locally an osculat
Sitter space, which then is prototypical—admit description as uniform straight-line motion
respect to preferred frames of reference that are inertial frames interconnected by pro
~fractional-linear! transformation. The preferred frames overcome the ambiguity of commut
rules and Hamiltonian structure inherent under general covariance. But the construction
Hamiltonian then requires nonassociative elements, which can be realized as those of a C
Dickson algebra having 16 basis elements~doubled octonions, or decahexions!. The nonassocia-
tivity produces a serious conflict with a Hilbert space and probabilistic rendition of quan
mechanics like the standard type. The formal statement of a Schro¨dinger wave equation necess
tates antilinear as well as linear terms. Nevertheless, the Heisenberg laws of motion c
unambiguously formulated, leading to a full rendition of the quantal time evolution of any
namical variable~while the Heisenberg program of diagonalizing the Hamiltonian canno
carried out!. The nonassociative elements appear not to be directly observable, but they
themselves indirectly in terms in the time evolution of a dynamical variable.
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Absence of confinement in the absence of vortices
Tamás G. Kovácsa)

Department of Physics, University of Colorado, Boulder Colorado 80309-0390

E. T. Tomboulisb)

Department of Physics, UCLA, Los Angeles, California 90095-1547

~Received 9 February 1999; accepted for publication 14 June 1999!

We consider the Wilson loop expectation inSU(2) lattice gauge theory in the
presence of constraints. The constraints eliminate gauge field configurations, which,
in physical terms, allow the presence of thick center vortices linking with the loop.
We prove that, for dimensiond>3, the so-constrained Wilson loop follows perim-
eter law, i.e., nonconfining behavior, at weak coupling~low temperature!. © 1999
American Institute of Physics.@S0022-2488~99!02709-7#

I. INTRODUCTION

The precise physical mechanism~s! by whichSU(N) gauge theories in their critical dimensio
apparently avoid a phase transition and thus remain in a confining phase for arbitrarily
coupling is currently receiving renewed attention~see, e.g., Ref. 1!. The proposal that extende
thick vortices are the configurations responsible for this behavior has been strongly suppor
recent numerical simulations in the case of theSU(2)2–4 andSU(3)5 gauge groups. The string
tension of the full Wilson loop at weak coupling is found in these simulations to be fully re
duced solely by the contribution of thick vortices. In this paper we give a proof of the conv
statement, also suggested by the simulations. We consider the Wilson loop in the prese
constraints eliminating field configurations, which, in physical terms, allow thick vortices lin
with the loop. We then show that the so-constrained Wilson loop exhibits nonconfining~perimeter
law! behavior at weak coupling.

Rigorous consideration of the vortex mechanism of confinement was initiated in Ref. 6. T
in addition to developing a precise formulation on the lattice, a sufficiency criterion for con
ment was derived in terms of the behavior of vortices enclosed in ‘‘vortex containers’’ lin
with the Wilson loop. Furthermore, it was proven that in the presence of constraints eliminati
Z(2) monopoles in the theory, the t‘Hooft disorder operator exhibits nonconfining~i.e., area law!
behavior at weak coupling. This operator provides an external color magnetic source, which
absence of such monopoles, can no longer be screened. As already pointed out in Ref. 6, h
elimination of theZ(2) monopoles does not eliminate the presence of closed thick mag
vortices, which may still link with and give confining behavior to the Wilson loop operator
result pertinent to this question was subsequently obtained in Ref. 7. There it was proven t
the presence of constraints eliminating vortices winding around the~periodic! lattice, the electric-
flux-free energy order parameter exhibits nonconfining behavior at largeb. This observable has
been proven rigorously8 only to form an upper bound on the Wilson loop. Thus, it only provid
a sufficient criterion for confinement: confining behavior of the electric-flux-free energy im
confining behavior for the Wilson loop, but not the converse. At any rate, the electric flux
order parameter that refers to the entire lattice. It is clearly important to obtain a state
concerning the effect of the constraints eliminating vortices on the Wilson loop itself, sin
directly represents the actual potential between two external sources~quarks!, as the lattice is
taken to the thermodynamic limit. This is the question addressed in this paper.

a!Electronic mail: kovacs@eotvos.Colorado.EDU
b!Electronic mail: tombouli@physics.ucla.edu
46770022-2488/99/40(10)/4677/11/$15.00 © 1999 American Institute of Physics
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The distinction between ‘‘thick,’’ ‘‘thin,’’ and ‘‘hybrid’’ vortices is crucial to the physica
picture of the action of vortices at small gauge coupling~largeb!.2 We cannot adequately review
the underlying physical picture here; we refer to Ref. 2 for a recent physical discussion, as w
earlier references to these ideas. This paper is devoted to the proof of nonconfining behav
the Wilson loop in the absence of linked vortices. An appropriate framework for these con
ations is obtained by expressing theSU(N) lattice gauge theory in terms of new separateZ(N)
andSU(N)/Z(N) variables.6,9 We employ this formulation in Sec. II, where we also conside
variety of alternative lattice actions for which we subsequently obtain our result. We also
duce the appropriate constraints for eliminating linking thick and hybrid vortices. The proo
the so-constrained Wilson loop follows perimeter law is given in Sec. III. We explicitly cons
only the case ofSU(2), which exhibits all the relevant physical features of the generalN case.

Notation: We work on a simple hypercubic latticeL,Zd of sizeLm52Nm, integerNm , and
lattice coordinates integernm, m51,...,d. Elementary cellscr , (r 50,1,...,d), in L will be denoted
more explicitly ass ~sites!, b ~bonds!, p ~plaquettes!, c ~3-cubes!, etc. Eachr-cell is assigned an
orientation;2cr then denotes the oppositely oriented cell. The number of cells in a collectionSof
r-cells will be denoted byuSu.

We employ the standard formalism of lattice gauge theory. With each bond we assoc
copy Gb of the gauge groupG. The gauge fieldUb is an element ofGb , with the assignment
U2b5Ub

21. The configuration space is thenVL5 ^ bPLGb , and a field configurationUL

5$Ub%bPL is an element ofVL . In the following we do not distinguish explicitly between th
abstract group elementUb and its matrix representation, which, unless otherwise indicated,
always be the fundamental representation.

We will introduce various lattice variables, taking values in the center of the groupG. If K is
an Abelian group, multiplicatively written, aK-valuedr-form a is the mapa: cr→a@cr #PK, with
a@2cr #5a@cr #21. The exterior difference operator is then defined by

~da!@cr 11#5 )
crP]cr 11

a@cr #. ~1.1!

Given any setQ of ck cells, we generally employ the shorthand notation

a@Q#5aF )
kPQ

ckG5 )
kPQ

a@ck#[aQ . ~1.2!

Thus, e.g., for a 1-formg we write gb , (dg)p , and so on. In this paperG5SU(2), K5Z(2).

II. ACTIONS AND CONSTRAINTS

The Euclidean functional measure of the standard latticeSU(2) theory is given by

dmL~U !5ZL
21 )

bPL
dUb expS (

p
Ap~Up! D , ~2.1!

wheredUb denotes normalized Haar measure onSU(2), andAp the plaquette action, which is
function ofUp5PbP]pUb , the product of bond variablesUb around the plaquettep. The partition
function ZL is defined by* dmL(U)51, and for any observableF(U), i.e. ~complex-valued!
function onVL ,

^F~U !&5E dmL~U !F~U !. ~2.2!

The usual minimal plaquette action is the Wilson action,

Ap~Up!5b tr Up , ~2.3!
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which is a special case of the action,

Ap~Up!5b tr Up1l sign trUp . ~2.4!

~2.4! extrapolates between the Wilson action~l50! and the ‘‘positive plaquette model’’ action
~l→`!. Another action we consider in this paper is

Ap~Up!5b tr Up1 ln„u~ utr Upu2k!…, ~2.5!

whereu(x)51 if x.0, 0 if x,0, and 0,k,2; in particular,k a constant, or any function ofb
such thatkb→` asb→`, e.g.,k(b)5b21/2. All these actions have, of course, the same na
continuum limit. More generally, they are expected to be physically equivalent for sufficie
large b, where each plaquette becomes highly peaked around the perturbative vacuumUp

→tr 1. Use of such alternative actions provides a check of the requirement that long dis
physics should not depend on short distance details, such as the precise form of the la
action. We will first prove our result working with the action~2.5! since, as it turns out, it allows
a rather simpler proof of the result. We will then obtain the result for the more standard, but i
physically equivalent, action~2.4!.

To formulate our argument we rewrite theSU(2) theory~2.1! in the SO(3)3Z(2) form.6,9

Consider the configuration spaceVL split into equivalence classes, each class the coset b
variable configurationÛL5$Ûb%bPL , ÛbPSU(2)/Z(2);SO(3). Thus, two configurationsUL,
UL8 PVL are representatives of the same coset configurationÛL iff one hasUb85Ubgb , for some
gPZ(2), ;bPL. Let hp(U)[sign trUp . Then

~dh!c~Û !5 )
pP]c

hp ~2.6!

depends, as indicated, only on the coset configuration, since it is invariant underUb→Ubgb , g
PZ(2). Let s be aZ(2)-valued 2-form onL. Adopt periodic boundary conditions~b.c.!, and let
$Sa%, a51,...,(2

d), be a set of 2-dimensional nonbounding closed surfaces forming a 2-cycle
on L5Td(N1 ,...,Nd). Then theSU(2) theory ~2.1!–~2.2! can be expressed in theSO(3)
3Z(2) form given by:

dmL~U,s!5ZL
21 )

bPL
dUb )

pPL
dsp )

cPL
d„~dh!c~ds!c…)

a
d~h@Sa#s@Sa#!

3expS (
pPL

Ap~ utr Upu,sp! D . ~2.7!

In ~2.7!, * dsp(¯)[ 1
2(sp561(¯) denotes Haar measure overZ(2), and

d~a![E dt xt~a!5
1

2
@11a# ~2.8!

defines the delta function on the groupZ(2). Herext(a)5a if t521, and 1 otherwise, are th
characters ofZ(2). Thepartition functionZL is defined by* dmL(Û,s)51. The plaquette action
is given by

Ap~ utr Upu,sp!5butr Upusp1lsp ~2.9!

and

Ap~ utr Upu,sp!5butr Upusp1 ln„u~ utr Upu2k!…, ~2.10!
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corresponding to~2.4! and~2.5!, respectively.~2.7! is easily seen to be independent of the cho
of basis$Sa%. Note that~2.7! is indeed a measure on the coset configuration space since
invariant underUb→Ubgb , for any Z(2)-valued 1-formg. If F̂(Û,s) expresses a gauge
invariant observableF(U) in the new variables, the expectation~2.2! then satisfies

^F~U !&5E dmL~U,s!F̂~Û,s!. ~2.11!

Free b.c. onU]L results in~2.7! without the product ofd functions over 2-cycles, and free b.
on Û]L , s]L . By selective omission of factors in this product, one may consider any mixtur
free and periodic b.c.~2.7! may be straightforwardly generalized to accommodate other us
types of b.c.,10 and indeed applied toL of any torsionless homology.

We are interested in the expectation of a Wilson loop subject to constraints whose ph
effect is the elimination of its interaction with those vortices that arenot energetically directly
suppressed by the plaquette action at largeb. These are extended vortices in theÛL configura-
tions, ‘‘thick’’ vortices.11 Thin vortices, vortices in thesL configurations, are directly suppresse
by action cost proportional to their length. There are also hybrid vortices formed by the joini
‘‘punctured’’ thick and thin vortices along their common coboundary, which represents a
netic current ‘‘loop,’’ i.e., a coclosed set of 3-cubesL with (dh)c5(ds)c521, ;cPL. Such
hybrids with a minimal short thin section but extended thick section can also affect long dis
behavior at largeb. We refer to Refs. 2, and 6, 7, 12, for a discussion of the physical interpret
of the constraints we now introduce.

We consider the constrained Wilson loop expectation:

W@C#5^tr U@C#u@ tr U@C#hS#&, ~2.12!

where now^2& denotes expectations in the restriction of the measure~2.1! to

dmL~U !5ZL
21 dnL~U !expS (

pPL
Ap~Up! D , ~2.13!

with

dnL~U !5 )
bPL

dUb )
cPL

d„~dh!c…)
a

d~h@Sa#!, ~2.14!

and periodic b.c. (ZL defined by^1&51!. The constraint6

)
c

d~~dh!c! ~2.15!

in the measure~2.13! eliminates all monopoles, and hence all hybrid vortices in the theory.
constraint7

)
a

d~h@Sa#! ~2.16!

in ~2.13! eliminates all thick vortices completely winding around the lattice, i.e., vortices rend
topologically stable by the nontrivial lattice topology~torus Td) due to the periodic b.c. The
factor2,7

u@ tr U@C#hS#, ~2.17!
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where hS[PpPShp , constraining the Wilson loop observable trU@C# in ~2.12!, forbids the
linking of a thick vortex~any odd number of thick vortices! with the loop~while still allowing thin
vortices!. HereS is any surface bounded by the loop. The expectation~2.12! is easily seen to be
independent of the choice ofS.

It should be noted that this last constraint may be included in the measure~2.13!–~2.14!, as
the constraints~2.15!, ~2.16! are, instead of as part of the observable, i.e., consider the expec
of tr U@C# with the factor~2.17! included in~2.14!. Since, however, we are interested in a low
bound on the expectation, and, trivially,~2.17! is bounded from above by unity, its presence in t
denominator in the normalized measure~2.13! may be removed, and one may as well consider
expectation~2.12! as defined above.

We pass then toSO(3)3Z(2) variables in which~2.12! assumes the form

W@C#5ZL
21E dnL~U ! )

pPL
dsp )

cPL
d„~dh!c~ds!c…)

a
d~h@Sa#s@Sa#!

•expS (
p

Ap~ utr Upu,sp! D tr U@C#hSsS u@ tr U@C#hS# ~2.18!

5ZL
21E dnL~U ! )

bPL
dgb expS (

p
Ap~ utr Upu,~dg!p! D

3u†tr U@C#hS‡ tr U@C#hSg@C#, ~2.19!

whereg is aZ(2)-valued 1-form. The second equality is obtained by solving the constraints osL

that result from the restriction to~2.14!:

~ds!c51, ;c, d~s@Sa#!51, ;a ⇒ sp5 )
bP]p

gb5~dg!p ,

~2.20!

sS[ )
pPS

sp5 )
bPC

gb5g@C#.

Now,

u†tr U@C#hS‡ tr U@C#hS5u†tr U@C#hS‡ utr U@C#u, ~2.21!

so we can write~2.12! in the form

W@C#5^u†tr U@C#hS‡ utr U@C#ug@C#&SO~3! ^ Z~2! , ~2.22!

where

^2&SO~3! ^ Z~2!5E dmL~U,g!~2 !, ~2.23!

with

dmL~U,g![ZL
21 dn̂L~U ! )

bPL
dgb expS (

pPL
Kp~U !~dg!pD ~2.24!

and periodic b.c.dn̂L(U) andKp(U)5Kp(Û) are defined as

dn̂L~U ![dnL~U !,
~2.25!

Kp~U ![butr Upu1l
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for the action~2.9!, and

dn̂L~U ![dnL~U ! )
pPL

u~ utr Upu2k!,

~2.26!
Kp~U ![butr Upu

for the action ~2.10!. It is easily verified that~2.24! is a reflection positive measure i
(d21)-dimensional planes with sites.

Our task in the following is to bound the constrained Wilson loop expectation~2.22! from
below.

III. ABSENCE OF CONFINEMENT

We formulate our main result as the following.
Theorem III.1: For sufficiently largeb, and dimension d>3 the constrained Wilson loop

expectation given by (2.12), or, equivalently, (2.22), exhibits perimeter law, i.e., there exis
stantsa, a1(d), a2(d) such that

W@C#>a exp~2a2e2a1buCu!. ~3.1!

From now on all expectation signs are meant in the measure~2.24!, and, for brevity, we drop the
label SO(3)^ Z(2).

Choose the loopC so that it is bisected into two equal pieces by a (d21)-dim plane with
sites. Then reflection positivity~RP! of the measure~2.24! implies

^tr U@C#hSg@C#&>0. ~3.2!

~Without loss of generality, the surfaceSmay always be assumed to be also reflection symme
in the hyperplane bisectingC.! Inserting

15u†tr U@C#hS‡1u†2tr U@C#hS‡

in ~3.2!, we then have

0<^u†tr U@C#hS‡ tr U@C#hSg@C#&1^u†2tr U@C#hS‡ tr U@C#hSg@C#&

5^u†tr U@C#hS‡u tr U@C#ug@C#&2^u†2tr U@C#hS‡u tr U@C#ug@C#&. ~3.3!

On the other hand,

^utr U@C#ug@C#&5^u†tr U@C#hS‡u tr U@C#ug@C#&1^u†2tr U@C#hS‡u tr U@C#ug@C#&.
~3.4!

Adding ~3.3! and ~3.4!, we have

^u†tr U@C#hS‡u tr U@C#ug@C#&> 1
2^utr U@C#ug@C#&. ~3.5!

Hence from~2.22! we obtain

W@C#> 1
2^utr U@C#ug@C#&. ~3.6!

Now
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1

2
^utr U@C#ug@C#&5ZL

21E dn̂L~U !
utr U@C#u

2
•E )

bPL
dgb g@C#expS (

pPL
Kp~U !~dg!pD

5E dm̂L~U !
utr U@C#u

2
^g@C#&Z~2!~$Kp~U !%!, ~3.7!

where

dm̂L~U ![ZL
21 dn̂~U !ZZ~2!,L~$Kp~U !%!, ~3.8!

and

^2&Z~2!~$Kp%!5ZZ~2!,L
21 ~$Kp%!E )

bPL
dgb~2 !expS (

pPL
KpgpD ~3.9!

denotes expectations in theZ(2) lattice gauge theory with plaquette couplingsKp , and partition
function ZZ(2),L defined by ^1&Z(2)($Kp%)51. In ~3.7! we have theU-dependent couplings
Kp(U)>0 given by~2.25!, ~2.26!. By the Griffiths inequalities13 applied to~3.9!:

^g@C#&Z~2!~$Kp~U !%!>0, ~3.10!

whereas

1
2utr U@C#u> 1

4utr U@C#u25 1
4uxF~U@C# !u25 1

4@xA~U@C# !11#, ~3.11!

where xF and xA denote theSU(2) characters in the fundamental and adjoint representa
respectively. Combining~3.10!, ~3.11! with ~3.7! then gives

1

2
^utr U@C#ug@C#&>

1

4 E dm̂L~U !^g@C#&Z~2!~$Kp~U !%!1
1

4 E dmL~U,g!xA~U@C# !g@C#.

~3.12!

Now by RP the second term on the rhs in~3.12! is non-negative. So, from~3.6!, we obtain

W@C#>
1

4 E dm̂L~U !^g@C#&Z~2!~$Kp~U !%!. ~3.13!

Action (2.10):Completing the proof of the result in the case of the action~2.10! is now
straightforward. Applying again Griffiths inequalities, one has

^g@C#&Z~2!~$Kp%!>^g@C#&Z~2!~$Kp8%!, Kp>Kp8 , ;p. ~3.14!

With the measure given by~2.26!, ~3.8!, use of~3.14! in ~3.13! gives

W@C#> 1
4^g@C#&Z~2!~kb!. ~3.15!

The rhs is the loop expectation in theZ(2) gauge theory withKp5kb, ;p.
It is a well-known result that, for sufficiently largeb andd>3:

^g@C#&Z~2!~b!>const exp~2r~b!uCu!, ~3.16!

i.e., the expectation exhibits perimeter law. A proof14 is by standard polymer expansion either
low-temperature expansion in ‘‘contours’’15 or, after a duality transformation, as high-temperatu
expansion. Hence,~3.15! gives perimeter-law lower bound onW@C# for all b such thatkb large
enough. This concludes the proof of the theorem in the case of the action~2.10!.
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Action (2.9): A coclosed set of plaquettes that cannot be decomposed into two disjoin
closed sets will be called a contour.~Two plaquettes are defined to be disjoint if they share
link.! Given a configuration$gb%bPL , the set of plaquettes on which (dg)p521 is a coclosed se
((d22)-dim closed set on the dual latticeL* !. Such a coclosed setG can be uniquely decom
posed into disjoint contoursz1 ,...,z uGu . Each such contour then is the site of a thin vortex. W
expand the expectation̂g@C#&Z(2)($Kp(U)%) in ~3.13! in a contour expansion. The partitio
function in the denominator is expanded in the form

ZZ~2!,L~$Kp~U !%!5S 22uLu )
pPL

eKp~U !D (
G,L

zG~U !. ~3.17!

The sum is over all setsG of disjoint ~compatible! contours$z1 ,...,z uGu% and

zG~U ![ )
zPG

zz~U !, ~3.18!

with

zz~U ![)
pPz

exp„22Kp~U !… ~3.19!

the activity of contourz, and Kp(U) given by ~2.25!. Noting that ^g@C#&Z(2)($Kp(U)%)
5^g@S#&Z(2)($Kp(U)%), where]S5C, it is easily seen that the expansion of the numerator

ZZ~2!,L
C ~U ![ZZ~2!,L~U !^g@C#&Z~2!~$Kp~U !%!

is given by the expansion~3.17! after replacement of the contour activitieszz(U), Eq. ~3.19!, by

zz
C~U !5~21! l ~C,z!zz~U !, l ~C,z!5uSùzu ~mod 2!. ~3.20!

~Here l (C,z) is the ~mod 2! linking number of the contourz with the loopC.!
Letting

ZZ~2!,L5 (
G,L

zG~U !, ZZ~2!,L
C 5 (

G,L
zG

C~U !, ~3.21!

and applying Jensen’s inequality in~3.13! gives

W@C#>
1

4 E dm̂L~U !exp„ ln ZZ~2!,L
C ~U !2 ln ZZ~2!,L~U !…

>
1

4
expS E dm̂L~U !„ln ZZ~2!,L

C ~U !2 ln ZZ~2!,L~U !…D[
1

4
expF~b,l!. ~3.22!

Noting thatZZ(2),L(U)51 atzz(U)50, we may define lnZZ(2),L(U) as that continuous branch o
the logarithm that vanishes at vanishing contour activity, and similarly for lnZZ(2),L

C (U). A closed
form representation ofF~b,l! is given by the Mo¨bius inversion representation of lnZZ(2),L(U)
and of lnZZ(2),L

C (U) as a finite series~for finite L! of logarithms of partition functions of linked
clusters of single multiplicity.16 Expanding these logarithms leads to the standard expansio
linked clusters of repeated multiplicities:

F~b,l!5E dm̂L~U !S (
Q,L

a~Q!„zQ
C~U !2zQ~U !…D . ~3.23!
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The sum is over all linked clustersQ5$z1 ,...,znQ
% of contours with the property that at least on

contour in eachQ winds aroundC. Multiple copies of a contour are allowed to appear as disti
members in a cluster, and

a~Q!5 (
G~Q!

~21! uG~Q!u. ~3.24!

Here the sum is over all connected graphsG(Q) on the vertex set$z,...,znQ
% with a line con-

necting two vertices if they represent incompatible~not disjoint! contours.uG(Q)u denotes the
number of lines inG(Q).

The expansion in~3.23! converges for sufficiently small activitieszz(U). Let uzz(U)u
<exp(2buzu). The number of contours of sizeq with one plaquette fixed is bounded by@10(d
22)#10(d22)q. Applying well-known results on the convergence of the polymer-type clu
expansion,17 it follows that the expansion on the rhs of~3.23! is absolutely convergent, uniformly
in uLu and overVL , provided

b>10~d22!ln 10~d22!1 ln 5; ~3.25!

hence, by~2.25!, l sufficiently large. Uniform convergence allows integration term by term, so
have

F~b,l!5 (
Q,L

a~Q!~^zQ
C~U !&2^zQ~U !&!. ~3.26!

We now observe that, forb sufficiently large, the series~3.26! converges for alll>0. To
show this, we bound̂zQ(U)& uniformly in uLu by chessboard estimates.18 One finds~Appendix!

^zQ~U !&< )
zPQ

ẑ~b,l! uzu, ~3.27!

where

ẑ~b,l!5c1e2c2b22l ~3.28!

with positive constantsc1(d), c2(d) depending only on the dimensiond. It follows that ~3.26!
converges absolutely and uniformly inuLu, provideduẑ(b,l)u<e2b with b satisfying~3.25!; hence
for b large enough, and alll>0. Uniqueness of analytic continuation then implies that the r
resentation ofF by the cluster expansion in~3.26!, originally obtained in the domain of large Rel,
is valid in this extended convergence domain Rel>0.

The leading contribution to~3.26! comes from the shortest possible contours, each consis
of 2(d21) plaquettes forming the coboundary of a bond on the loopC, and there areuCu of them.
A bound on the remainder by the same as leadingO(uCu)-type behavior is a standard corollary o
the polymer expansion convergence proof~e.g., Ref. 17!. This concludes the proof of Theorem
III.1 for the action~2.9!.
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APPENDIX: CHESSBOARD ESTIMATE

Let Pe denote the set of ‘‘even’’ two-dimensional@kl# planes:xm52nm, integernm, mÞk, l.
If uPeu and uLu denote the number of plaquettes inPe and L, respectively, we haveuPeu
5uLu/s, wheres52d23d(d21). Consider now a clusterQ, and letze[zùPe . Using RP to
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reflect repeatedly in (d21)-dimensional planes with sitesxm5(2nm11), mÞk, l; xm5nm, m5k,
l, and the fact that exp(22butr Upu)<1, one straightforwarly obtains the chessboard estimate

^zQ~U !&5e22luQu K )
zPQ

)
pPz

e22butr Upu L
<e22luQu K )

zPQ
)

pPze

e22butr Upu L
<e22luQu K )

pPPe

e22butr Upu L uQeu/uPeu

, ~A1!

whereuQu5(zPQuzu, anduQeu5(zPQuzeu. To estimate the last expectation on the rhs in~A1!, it
now suffices to bound the numerator from above by its maximum:

K )
pPPe

e22butr Upu L <ZL
21eluLue2b~ uLu2uPeu!. ~A2!

The partition function in the denominator is bounded from below by restrictinggb to 1, and each
Ub integration to a small neighborhood of the identity such thatutr Upu>2e2d for all p. Let td be
the volume of this neighborhood. The constraints indn̂L(U) are then automatically satisfied, an
we have

ZL>S S td

2 D 2/~d21!

e2be2d1lD uLu

. ~A3!

Now, given a clusterQ, we are free to pick the definition19 of the ‘‘even’’ planesPe so that
uzeu>uzu/s, i.e., uQeu>uQu/s5uQu/2(d23)d(d21). Combining this with~A2!, ~A3!, we find

K )
pPPe

e22butr Upu L uQeu/uPeu

<â~b! uQu, ~A4!

where we defined

â[min
d

S S 2

td
D 2/~d21!

expS 2
2b

s
@12s~12e2d!# D D . ~A5!

Thus â(b)→0 exponentially asb→`. ~A1! with ~A4! and

ẑ~b,l!5e22lâ~b! ~A6!

then produces the bound~3.27!.
A more refined chessboard estimate, utilizing reflections onto everyd-cell ~dual site! of the

lattice is possible~cf. Ref. 7!, and results into elimination of the factor 1/s multiplying b in the
exponent in~A5!, a substantial numerical improvement. The simpler estimate given here,
ever, suffices for our purposes.
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Covariant phase observables in quantum mechanics
Pekka Lahtia) and Juha-Pekka Pellonpääb)
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In this paper we characterize all the phase shift covariant normalized positive
operator measures, i.e., phase observables, and we investigate some of their ex-
amples. We also characterize those phase observables which arise from the phase
space observables as their polar coordinate angle margins. ©1999 American
Institute of Physics.@S0022-2488~99!04810-0#

I. INTRODUCTION

The definition of the phase of an electromagnetic field has long been a problem in qu
physics. Many different approaches have been used to characterize the phase as a quan
servable. The traditional way of representing observables as self-adjoint operators in qu
mechanics has led to the search for self-adjoint phase operators. Apart from some partial s
all the attempts in this line of research have more or less failed; for an overview, see, e.g.
1–3. The reason for the failure of these approaches must be seen in the fact that the conce
observable as a self-adjoint operator is unnecessarily restrictive; there is no spectral m
which is covariant under the shifts generated by the number observable of a single-mode fie
concept of an observable as a normalized positive operator measure~semispectral measure! has
emerged from detailed investigations of the conceptual and mathematical foundations of qu
mechanics, and it has found ample applications in many important areas of quantum phys
documented, for instance, in monographs.4–7 In this approach a phase observable can be cha
terized in terms of its natural covariance condition together with the choice of the range
phase variable, see, e.g., Ref. 5 or 7.

In this paper we adopt a formulation of a phase observable as a covariant normalized p
operator measure~Definition 2.1!, and we prove a structure theorem, the phase theorem 2.2
such observables. This result could be obtained as a special case of Theorem 4 of Ref. 8
characterizes generalized imprimitivity systems for commutative groups. Here we give a
constructive proof of the theorem without using any group theoretical arguments. The
theorem allows us to exhibit classes of examples of phase observables~Sec. III!, and it leads to a
characterization of those phase space observables whose polar coordinate angle margins a
observables~Sec. IV!. Finally, we exhibit the conditions for the first moment operator of a ph
observable to form a Heisenberg pair together with the number operator~Section V!.

II. COVARIANT PHASE OBSERVABLES

In this section we characterize phase observables as a particular class of phase shift co
operator measures defined on the Borel subsets of the real interval@0,2p!. To introduce these
notions and to characterize them we need a few notations.

Let H denote a complex separable infinite-dimensional Hilbert space, with the inner pr
^•u•&. For any two unit vectorsc, wPH, we let uc&^wu denote the rank-one linear operatorH
{h°^wuh&cPH. Let Kª$wn%n50

` be an orthonormal basis ofH, and letN5(n50
` nuwn&^wnu

denote the self-adjoint operator with the domainD(N)5$cPHu(n50
` n2u^wnuc&u2,`%. We call

N the number operatorassociated withK. Let B@0,2p! denote the Borel subsets of the interv

a!Electronic mail: pekka.lahti@utu.fi
b!Electronic mail: juhpello@utu.fi
46880022-2488/99/40(10)/4688/11/$15.00 © 1999 American Institute of Physics
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@0,2p!, and letL~H! denote the set of bounded operators onH. We say that a positive normalize
operator measureE:B@0,2p)→L(H) is a phase observable if it is covariant under the sh
generated byN. In other words, we adopt the following definition.

Definition 2.1:A map E:B@0,2p)→L(H) is a phase observableif

~i! E(X)>O for all XPB@0,2p) ~positivity!,
~ii ! E@0,2p)5I ~normalization!,
~iii ! if $Xn%n51

` ,B@0,2p) is a disjoint sequence, i.e.,XnùXm5B, for nÞm, then
E(øn51

` Xn)5(n51
` E(Xn), where the series converges in the weak operator topology~s-

additivity!,
~iv! eiuNE(X)e2 iuN5E(X1u) for all XPB@0,2p) and for all uP@0,2p), whereX1uª$x

P@0,2p)u(x2u)(mod 2p)PX% ~covariance!.

We recall that for positive operator measures thes-additivity with respect to the weak operato
topology is sufficient for thes-additivity in the strong operator topology~Ref. 9, Proposition 1, p.
6!. We have chosen the interval@0,2p! as the range of a phase variableuP@0,2p), but any other
interval @a,a12p), aPR, would do equally well.

For any bounded operatorAPL(H), let An,mª^wnuAwm& denote its matrix elements with
respect toK. To shorten the notations we shall from now on write^nuAum& andun&^mu instead of
^wnuAwm& and uwn&^wmu, respectively. We letC, R, Z, andZ1 denote the set of complex num
bers, real numbers, integers, and positive integers, respectively, and we putN5Z1ø$0%. Let I k

ª(n50
k un&^nuPL(H), kPN, so that$I k%k50

` is an increasing sequence of projection operato
with the unit operatorI as the least upper bound. Therefore,s-limk→` I k5I , ands-limk→` AIk

5s-limk→`(I kA)5A, APL(H), as well as

A5s-limk→`~s-lim l→`I lAIk!5s-lim l→`~s-limk→` I lAIk!,

so that we may write

A5 (
n,m50

`

An,mun&^mu,

with the understanding that in the double summation the summation order is irrelevant a
series converge in the weak operator topology. We may now formulate the basic theorem
paper.

Phase Theorem 2.2:Let E:B@0,2p)→L(H) be a phase observable. Then for anyX
PB@0,2p),

~a! E(X)5(n,m50
` cn,m(2p)21*Xei (n2m)uduun&^mu, where the series converge in the weak o

erator topology, and where
~b! $cn,mun,mPN%,C, with cn,n51, for all nPN, and
~c! (n,m50

k cn,mun&^mu>O, for all kPN.

Conversely, any family of complex numbers$cn,mPCun,mPN% which has the properties~b! and
~c!, defines a unique phase observable of the form~a!.

Proof: Let $cn,mun,mPN% be a family of complex numbers such thatcn,n51, for all nPN,
and(n,m50

k cn,mun&^mu>O, for all kPN. Then, for eachuP@0,2p),

eiNu (
n,m50

k

cn,mun&^mue2 iNu5 (
n,m50

k

cn,mei ~n2m!uun&^mu>O,

which implies that
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O<
1

2p E
X

(
n,m50

k

cn,mei ~n2m!uun&^mudu<
1

2p E
0

2p

(
n,m50

k

cn,mei ~n2m!uun&^mudu

5 (
n,m50

k

cn,mS 1

2p E
0

2p

ei ~n2m!udu D un&^mu5 (
n50

k

un&^nu<I , ~1!

for all kPN, and for allXPB@0,2p). Let linK be the linear hull ofK, and define, for eachX
PB@0,2p), the sesquilinear functionBX : lin K3 lin K→C as follows:

BX~w,c!ª(
n50

k

(
m50

l

cn,mS 1

2p E
X
ei ~n2m!udu D ^wun&^muc&,

where w5(n50
k ^nuw&un&, c5(m50

l ^muc&um&P lin K, k,l PN. From ~1! one getsuBX(w,c)u
<iwiici , and BX(w,w)>0, for all w,cP lin K. Since lin K5H, the form BX has a unique
sesquilinear extensionB̃X to H3H which has the following properties:uB̃X(w,c)u<iwiici , and
B̃X(w,w)>0, for all w,cPH. Hence, there is a unique operatorE(X)PL(H) such asB̃X(w,c)
5^E(X)wuc&, for all w,cPH, andO<E(X)<I . The matrix elements ofE(X) with respect toK
are

^nuE~X!um&5BX~ un&,um&)5cn,m

1

2p E
X
ei ~n2m!udu, n,mPN. ~2!

Therefore,

E~X!5 (
n,m50

`

cn,m

1

2p E
X
ei ~n2m!uduun&^mu,

for all XPB@0,2p). Clearly,E@0,2p)5I .
Let $Xn%n51

` be a family of disjoint sets ofB@0,2p!, and define the operatorsEk

ªE(øn51
k Xn), for all kPZ1. From ~2! one getsEk5(n51

k E(Xn), kPZ1. Since Ek112Ek

5E(Xk11)>O, it follows that O<Ek<Ek11<I , kPZ1. Hence, the least upper boundS
PL(H) of the sequence$Ek%k51

` exists, ands-limk→` Ek5w-limk→` Ek5S. Due tos-additivity
of the Lebesgue integral, the matrix elements ofS with respect toK are

^nuSum&5 lim
k→`

^nuEkum&

5 lim
k→`

cn,m

1

2p E
øn51

k Xn

ei ~n2m!udu

5cn,m

1

2p E
øn51

` Xn

ei ~n2m!udu

5^nuE~øn51
` Xn!um&.

This concludes the proof that the mapB@0,2p){X°E(X)PL(H) is a positive normalized op
erator measure. The covariance condition~iv! is an immediate consequence of the structure oE.
HenceE is a phase observable.

Assume now thatE:B@0,2p)→L(H) is a phase observable. To show that it has the struc
of ~a!, we determine the matrix elements ofE(X), XPB@0,2p), with respect toK. The covariance
condition ~iv! implies that

En,m~X1u!5ei ~n2m!uEn,m~X!, ~3!
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for all XPB@0,2p), uP@0,2p), and for alln,mPN. Therefore, for alln,mPN, andkPZ1, we
have

En,m@0,2p!5En,mS ø
l 50

k21

@ l2pk21,~ l 11!2pk21! D
5 (

l 50

k21

En,m~@0,2pk21!1 l2pk21!

5F (
l 50

k21

ei2p~n2m!k21l GEn,m@0,2pk21!

5 H kEn,m@0,2pk21! when ~n2m!k21PZ,
0 when ~n2m!k21¹Z. ~4!

Suppose thatn,mPN and kPZ1 are such that (n2m)k21¹Z. Then *0
2pk21

ei (n2m)udu
Þ0, and we can define

cn,m~k!ª
En,m@0,2pk21!

~2p!21*0
2pk21

ei ~n2m!udu
,

so that

En,m@0,2pk21!5cn,m~k!
1

2p E
0

2pk21

ei ~n2m!udu5cn,m~k!
ei ~n2m!2pk21

21

i ~n2m!2p
.

On the other hand, for allr PZ1, (n2m)(rk)21¹Z, and

En,m@0,2pk21!5En,mS ø
l 50

r 21

@ l2p~rk !21,~ l 11!2p~rk !21! D
5F (

l 50

r 21

ei2p~n2m!~rk !21l GEn,m@0,2p~rk !21!5cn,m~rk !
ei ~n2m!2pk21

21

i ~n2m!2p
.

This shows thatcn,m(k)5cn,m(rk), r PZ1. Since (n2m)(un2mu11)21¹Z, one hascn,m(k)
5cn,m((un2mu11)k)5cn,m(un2mu11). Thus, for allkPZ1, for which (n2m)k21¹Z, the
numbercn,m(k) is the same, and we may definecn,mªcn,m(un2mu11) for all n,mPN and n
Þm.

If ( n2m)k21PZ, n,mPN, kPZ1, Eq. ~4! gives

En,m@0,2pk21!5
dn,m

k
5

1

2p E
0

2pk21

ei ~n2m!udu. ~5!

Thus, if we definecn,nª1, nPN, we get

En,m@0,2pk21!5cn,m

1

2p E
0

2pk21

ei ~n2m!udu, ~6!

for all kPZ1, andn,mPN.
Let n,mPN. From ~3! one gets
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En,mS ø
p51

`

$p21% D 5En,m~$0%! (
p51

`

ei ~n2m!p21
,

which implies that En,m($0%)50. Thus the measureEn,m is nonatomic, i.e.,En,m($x%)
5eix(n2m)En,m($0%)50, xP@0,2p), which implies that the functionx°En,m@0,x) is continuous.
Since, from~6! it follows that for all kPZ1, pP$1,2,...,k%,

En,m@0,2ppk21!5En,mS ø
l 50

p21

@ l2pk21,~ l 11!2pk21! D 5cn,m

1

2p E
0

2ppk21

ei ~n2m!udu, ~7!

and since the functionx°En,m@0,x) is continuous, and the set$2ppk21P@0,2p)ukPZ1, p
P$1,2,...,k%% is dense in@0,2p! it follows that for all xP(0,2p#

En,m@0,x!5cn,m

1

2p E
0

x

ei ~n2m!udu.

Hence, by Hahn extension theorem

En,m~X!5cn,m

1

2p E
X
ei ~n2m!udu ~8!

for all XPB@0,2p) andn,mPN.
Finally, we prove that

(
n,m50

k

cn,mun&^mu>O, ~9!

for all kPN. SinceE(X)5E(X)* , XPB@0,2p), we get

cn,m5cm,n, ~10!

for all n,mPN. It follows from ~10! that (n,m50
k cn,m^cun&^muc&PR, for all kPN, cPH.

Hence, if ~9! does not hold, one may choose awPH and anl PZ1 such that(n,m50
l cn,m^wun&

3^muw&,0, and define a function

f :@0,2p!→R,u° f ~u!ª (
n,m50

l

cn,mei ~n2m!u^wun&^muw&.

Due to the continuity off one can choose aneP(0,2p) such that*0
e f (u)du,0. Thus

^I lwuE@0,e!I lw&5
1

2p E
0

e

f ~u!du,0,

which contradicts with the positivity ofE. h

To close this section we note the following two points. Ifcn,mÞ0, choose c5un&
2ucn,mucn,m

21 um&, and substitute it to~c! to deduce thatcn,n2ucn,mu2ucn,mu1cm,m>0. This implies
that

ucn,mu<1,

for all n,mPN. If E is a phase observable it can be seen directly from the phase theorem
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cn,m52p lim
e→0

En,m@0,e!

e
,

for all n,mPN.

III. SOME EXAMPLES OF PHASE OBSERVABLES

The phase theorem fixes the structure of a phase observableE in terms of a set of complex
numberscn,m , n,mPN:

E~X!5 (
n,m50

`

cn,mS 1

2p E
X
ei ~n2m!udu D un&^mu, XPB@0,2p!. ~11!

Exhibiting various sets$cn,mPCun,mPN%, which fulfill conditions ~b! and ~c! of the phase
theorem, one gets various examples of phase observables. In this section we shall give
examples. Before doing that we shall notice the following obvious facts concerning any
observableE. First, the phase probabilities in any number stateun&, nPN, are uniform, that is,

^nuE~X!un&5
1

2p E
X
du, XPB@0,2p!,

showing that phase is totally random in the number states. Second, since

^nuE~X!2un&5(
s50

`

ucn,su2U 1

2p E
X
ei ~n2s!uduU2

and ucn,su<1, choosing, for instance,X5@0,p) and n50, one getŝ 0uE@0,p)2u0&< 3
8, which,

when compared witĥ0uE@0,p)u0&5 1
2, confirms the well-known fact that there is no spect

measure having the structure~11!. Finally, since the probabilitieŝnuE(X)un&, XPB@0,2p), do
not depend onun&, there is no informationally complete phase observable.7 We now turn to the
examples.

Example 3.1: Consider a set $cn,mun,mPN%,C such that cn,n51, nPN, and
(n.m50

` ucn,mu<1. Then the formula~11! determines a phase observable. To check this we n
only to confirm that the operators(n,m50

k cn,mun&^mu, kPN, are positive. Letc5(n50
` dnun&

PH, dn5udnueiunPC, and writecn,m5ucn,mueiun,m, n,mPN, so that, for allkPN,

(
n,m50

k

cn,m^cun&^muc&5ici212 (
n.m50

k

ucn,midnidmucos~un,m2un1um!.

To prove that the right-hand side of the above equation is non-negative we observe that f
0<a, b<1 such thata21b2<1, one hasab<221. Therefore,

udnuudmu<221ici2

for all n,mPN. Since cos(x)>21, xPR, we then have

ici212 (
n.m50

k

ucn,midnidmucos~un,m2un1um!>ici2S 12 (
n.m50

k

ucn,mu D>0,

which concludes the proof of the positivity of the operator(n,m50
k cn,mun&^mu.

Example 3.2:Example 3.1 shows that ifsÞtPN, zPC, uzu<1, then for allXPB@0,2p),
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E~X!5
1

2p E
X
du I 1z

1

2p E
X
ei ~s2t !uduus&^tu1 z̄

1

2p E
X
ei ~ t2s!uduut&^su

is a phase observable. This example exhibits the fact that the only commutative phase obs
is the trivial oneX°((1/2p)*Xdu)I , and the degree of noncommutativity ofE is the stronger, the
more there are nonzero nondiagonal structure constantscn,m , nÞm, in ~11!.

Example 3.3: If we choose cn,mªanam5uanuuamuei (vn2vm) for all n,mPN, where an

5uanueivnPC is arbitrary for allnPN, then uanu25cn,n51, nPN. Hencecn,m5ei (vn2vm), n,m
PN, wherevnPR, nPN. Since

(
n,m50

k

cn,m^cun&^muc&5 (
n50

k

dne2 ivn (
m50

k

dme2 ivm5U(
n50

k

dne2 ivnU2

>0,

for all c5(n50
` dnun&PH, and kPN, the set$ei (vn2vm)uvn ,vmPR,n,mPN% defines a phase

observable

E~X!5 (
n,m50

`
1

2p E
X
ei @~n2m!u1vn2vm#duun&^mu, XPB@0,2p!.

Example 3.4:Put vn50, nPN, in the above example. Then

E~X!5 (
n,m50

`
1

2p E
X
ei ~n2m!uduun&^mu, XPB@0,2p!.

This phase observable is the unique positive operator measure in the polar decomposa
5(*0

2p eiu dE(u))AN of the lowering operatora5(n50
` An11un&^n11u associated with the

number operatorN, see, e.g., Ref. 7.

IV. THE PHASE OBSERVABLES ARISING FROM THE PHASE SPACE OBSERVABLES

The polar coordinate angle margins of the phase space observables constitute a ph
relevant class of potential phase observables. In this section we characterize those phas
observables which give rise to phase observables. We introduce first the relevant phase
observables. Leta5(n50

` An11un&^n11u anda* 5(n50
` An11un11&^nu be the lowering and

raising operators associated with the number operatorN5a* a, with the appropriate domains. Le
l:B(C)→@0,̀ # be the two-dimensional Lebesgue measure. LetD(z)5eza* 2 z̄a, zPC, be the
unitary shift operator, and letT be any state, that is, a positive trace-one operator onH. The set
function

B~C!{Z°AT~Z!ª
1

p E
Z
D~z!TD~z!* dl~z!PL~H!,

is then a positive normalized operator measure, the phase space observable defined by
T.4,10 We recall that the set of states is a closeds-convex subset of the Banach space of the se
trace class operators onH ~in trace norm!. In particular, if$Ti% i 51

` is a sequence of states and
$l i% i 51

` is a sequence of non-negative numbers such that( i 51
` l i51, then the series( i 51

` l iTi

converges in trace norm to a stateT, and we writeT5( i 51
` l iTi , and we say thatT is a mixture

of the statesTi with the weightsl i . Assume now thatT5( i 51
` l iTi . By the dominated conver

gence theorem the phase space observablesAT and ATi are then related as follows:AT(Z)
5( i 51

` l iA
Ti(Z) for eachZPB(C) ~with the convergence in the weak operator topology!. In that

case, we writeAT5( i 51
` l iA

Ti.
Writing C{z5uzuei argz[reiu, (r ,u)P@0,̀ )3@0,2p), we may define the polar coordina

marginal measures ofAT:
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B@0,̀ !{R°AT~R3@0,2p!!5:FT~R!PL~H!,

B@0,2p!{X°AT~@0,̀ !3X!5:ET~X!PL~H!.

If T is a number stateus&, sPN, that is T5us&^su, or a mixture of number states, that is,T
5(s50

` lsus&^su, for some 0<ls<1, (s50
` ls51, then the operator measuresFT and ET are

known to represent an unsharp number observable and the conjugate unsharp phase ob
respectively.5,7 The next theorem identifies the phase space observablesAT whose angle margins
ET are phase observables, that is, for which

eiuNET~X!e2 iuN5ET~X1u!,

for all XPB@0,2p),uP@0,2p).
Theorem 4.1:The angle marginET of the phase space observableAT is a phase observable

and only if T is of the form (s50
` lsus&^su, for some non-negative numberslsPR, for which

(s50
` ls51.

Proof: If T is of the formT5(s50
` lsus&^su for somels>0, (s50

` ls51, then the facts tha
ET5(s50

` lsE
us&^su andeiuND(z)5D(zeiu)eiuN, zPC, imply that

eiuNET~X!e2 iuN5ET~X1u!, XPB@0,2p!, uP@0,2p!.

Assume now, thatET is a phase observable. The structure constantscn,mPC, n,mPN, of ET

can then be deduced from the following equations:

^nuET~X!um&5cn,m

1

2p E
X
ei ~n2m!udu5

1

2p E
X
E

0

`

^nuD~reiu!TD~reiu!* um&dr 2 du ~12!

for all XPB@0,2p). Let fn
s(z)ª^suD(z)* un& for all s,nPN andzPC. These functionsfn

s are
easily seen to be of the form

fn
s~reiu!5ei ~s2n!ufn

s~r !5ei ~s2n!u~21!max$0,s2n%A~min$n,s%!!

~max$n,s%!!
e2r 2/2r us2nuLmin$n,s%

us2nu ~r 2!,

~13!

for all r P@0,̀ ), uP@0,2p), whereLm
k , m,kPN, is the associated Laguerre polynomial. Fro

~12! we get for alln,mPN and du-almost everyuP@0,2p),

cn,mei ~n2m!u5E
0

`

(
s,t50

`

Ts,tfn
s~reiu!fm

t ~reiu!dr 25E
0

`

(
s,t50

`

Ts,tfn
s~r !fm

t ~r !ei ~n2s1t2m!udr 2.

Multiplying the above equation by (2p)21e2 i l u, l PN, and integrating it over the interval@0,2p!
yields

cn,mdn2m,l5
1

2p E
0

2pE
0

`

(
s,t50

`

Ts,tfn
s~r !fm

t ~r !ei ~n2s1t2m2 l !udr2 ḋu

5(
s50

`

Ts,sE
0

`

fn
s~r !fm

s ~r !dr2 dn2m,l1 (
sÞt50

`

Ts,tE
0

`

fn
s~r !fm

t ~r !dr2 dn2m1t2s,l

5(
s50

`

Ts,sE
0

`

fn
s~r !fm

s ~r !dr2 dn2m,l1 (
k51

`

(
s50

`

Ts,s1kE
0

`

fn
s~r !fm

s1k~r !dr2 dn2m1k,l

1 (
k51

`

(
t50

`

Tt1k,tE
0

`

fn
t1k~r !fm

t ~r !dr2 dn2m2k,l .
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If we choosel 5n2m, then

cn,m5(
s50

`

Ts,sE
0

`

fn
s~r !fm

s ~r !dr2, ~14!

and, by choosingl 5n2m1k ~notice thatk is fixed now!

(
s50

`

Ts,s1kE
0

`

fn
s~r !fm

s1k~r !dr250, ~15!

for all n,mPN and kPZ1. This equation allows us to show thatTs,s1k50 for all sPN and k
PZ1. Indeed, using the equations@Ref. 11, Eqs. 8.973~1!, and 7.414~11! or Ref. 12, Eq.~4b!, p.
119#

L0
s~r 2!51, r>0, sPN,

~16!

E
0

`

e2r 2
r 2~g21!Ln

m~r 2!dr25
G~g!G~12g1m1n!

n!G~12g1m!
, g.0, m,nPN,

it follows from ~13! that

E
0

`

f0
s~r !f2l 1k

s1k ~r !dr25H 0 when s> l ,

~21!sl ! ~ l 1k21!!

~ l 2s21!!As! ~s1k!! ~2l 1k!!
when 0< l

for all l ,kPZ1, since for eachmPN, uG(2m1e)u→`, e→0, and the right-hand side of~16! is
zero when 12g1m52m. If one choosesn50, andm52l 1k, l PZ1, in ~15!, one gets

(
s50

l 21

Ts,s1kE
0

`

f0
s~r !f2l 1k

s1k ~r !dr250. ~17!

We next fixkPZ1. When one substitutesl 51 in ~17!, it follows thatT0,k50. If Ts,s1k50 for all
s<h21, hPZ1, we substitutel 5h11 to ~17! to get Th,h1k50. We conclude that ifET is a
phase observable, thenT is diagonal in the number basis, and thus of the formT
5(s50

` lsus&^su, ls>0, sPN and(s50
` ls51. This concludes the proof of the theorem. h

Remark 4.2:The proof of the above theorem shows that ifET(X)5AT(@0,̀ )3X), X
PB@0,2p), is a phase observable, then the structure constantscn,m , n,mPN, of ET are

cn,m5( s50
` Ts,sE

0

`

fn
s~r !fm

s ~r !dr2. ~18!

One may thus easily confirm thatcn,n51, nPN. Indeed, since the associated Laguerre poly
mials satisfy the relation@Ref. 11, Eq. 7.414~3!#

E
0

`

e2r 2
r 2aLn

a~r 2!Lm
a ~r 2!dr25

~a1n!!

n!
dn,m , a,n,mPN, ~19!

we have

E
0

`

fn
s~r !fn

s~r !dr251, n,sPN.

Therefore, it follows from~18! that
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cn,n5(
s50

`

Ts,sE
0

`

fn
s~r !fn

s~r !dr25(
s50

`

Ts,s5tr~T!51, nPN.

SinceT>O, we also observe thatcn,mPR, n,mPN. For all cPH, kPN, one gets

(
n,m50

k

cn,m^cun&^muc&5(
s50

`

Ts,sE
0

`U (
m50

k

fm
s ~r !^muc&U2

dr2>0,

which confirms that the operators(n,m50
k cn,mun&^mu, kPN, are positive. It is also easy to verif

the conditionucn,mu<1, n,mPN, directly by using the Cauchy–Schwarz inequality:

ucn,mu<(
s50

`

Ts,sU E
0

`

fn
s~r !fm

s ~r !dr2U
<(

s50

`

Ts,sAE
0

`

fn
s~r !fn

s~r !dr2AE
0

`

fm
s ~r !fm

s ~r !dr2

5tr~T!51,

for all n,mPN.
We note finally that there are phase observables which are not angle margins of some phas
observables. For instance, if we assume that there is a stateT such that the phase observableE of
Example 3.4 is of the formE5ET, then~18! and ~16! give

15c0,25T0,0

1

&
.

But this means thatT0,05&.1, which is impossible.

V. THE FIRST MOMENT OPERATOR OF A PHASE OBSERVABLE AND THE NUMBER
OPERATOR AS A HEISENBERG PAIR

The phase observablesE:B@0,2p)→L(H) are compactly supported real operator measu
Therefore, their moment operators of all orderkPN, E(k)

ª*0
2p uk dE(u), are bounded self-

adjoint operators. In particular,

E~1!5 (
nÞm50

`
icn,m

m2n
un&^mu1pI ,

and one may calculate the formal commutator of the number operatorN andE(1):

@N,E~1!#5 i I 2 i (
n,m50

`

cn,mun&^mu

This shows that the operatorsE(1) and N form a Heisenberg pair13 exactly when the series
(n,m50

` cn,mun&^mu vanishes in a dense subspace ofH which is contained in the domain of th
commutator@N,E(1)#.

The first moment operator of the phase observable of Example 3.4 and the number opeN
form a Heisenberg pair.14 In Example 3.3 we havecn,m5ei (vn2vm), vnPR, n,mPN. The related
phase observables are obtained from Example 3.4 by the simple unitary transform
un&°eivnun&. Thus the first moment operators of the observables of Example 3.4 form
Heisenberg pairs withN. The domains of commutators are then
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DEªH cPD~N!U (
m50

`

e2 ivm^muc&50J ,

in which @N,E(1)#5 i I . Apart from that it is to be stressed that the moment operatorE(1) is of a
very limited use. First, since the phase observableE is not a projection valued measure, its fir
moment operatorE(1) does not suffice to determineE. Second, it carries an essential nonuniqu
ness, sinceeiuNE(1)e2 iuN5E(1)2uI 12pE@0,u), uP@0,2p). Third, thoughDE is a dense subse
of H, it does not contain physically relevant vector states, as entailed by the well-known
theorem for the existence of a canonical phase operator.3

The phase observable of Example 3.2 gives an example of a pair (E(1),N) which is not a
Heisenberg pair. Indeed, in that case we have

@N,E~1!#52 i ~zus&^tu1 z̄ut&^su!Þ i I

in H\$0%.
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In string theory, an important role is played by certain Lie groups which are locally
isomorphic to SO(4m), m<8. It has long been known that these groups are actu-
ally isomorphic not to SO(4m) but rather to the groups for which the half-spin
representations are faithful, which we propose to call Semispin(4m). ~They are
known in the physics literature by the ambiguous name of ‘‘Spin(4m)/Z2 .’’ ! Re-
cent work on string duality has shown that the distinction between SO(4m) and
Semispin(4m) can have a definite physical significance. This work is a survey of
the relevant properties of Semispin(4m) and its subgroups. ©1999 American
Institute of Physics.@S0022-2488~99!03510-0#

I. INTRODUCTION

From a physical point of view, gauge theories have a serious drawback: the constr
works equally well for all compact Lie groups. Even when the Lie algebra of the gauge gro
known, the global structure of the group itself is not fixed by any fundamental principle.
example, it can be argued that the gauge group of the standard model1 is ‘‘really’’
@SU~3!3SU~2!3U~1!#/Z6 rather than SU~3!3SU~2!3U~1!; but since all known particles fall into
multiplets which can be regarded as representations ofbothof these groups, there is~at present! no
way of deciding the issue other than by an appeal to parsimony.

It is one of the many virtues of string theory that it puts an end to all uncertainty on
score.2 The theory not only specifies the dimension of the gauge group~at 496 in the Type I and
heterotic theories! but also its global structure within each version. In the heterotic ‘‘E83E8’’
theory, this is quite straightforward. First, there is in any caseonly oneconnected group with the
Lie algebra ofE83E8 , namelyE83E8 itself. Second, there isonly onenontrivial disconnected
Lie group with E83E8 as an identity component, namely the semidirect productE8

3E8)vZ2 , where Z2 acts by exchanging theE8 factors. As the corresponding string theo
~initially ! treats the two factors symmetrically, we conclude that the global version of the g
group is (E83E8)vZ2 . ~The significance of disconnected gauge groups is discussed in Refs3–6.
By ‘‘nontrivial’’ we mean to exclude, for example, direct products of finite groups withE8

3E8 , which are of little or no physical interest.!
The ‘‘SO~32!’’ cases~Type I and heterotic! are much less straightforward, because there

many nontrivial groups with the same Lie algebra as SO(n); in fact, there are eight nontrivia
groups with the ‘‘SO~32!’’ algebra. It has been known from the beginning7 that string theory
selects from these eight a group known in the physics literature as Spin(32)/Z2 , a most unfortu-
nate convention, which only exacerbates the tendency to confuse this group with SO~32!. This
group is closely associated with~and is essentially defined by! the half-spin representations o
Spin~32!, and so we propose the name Semispin~32! for it. As we shall see, there is no non-trivia
disconnected Lie group with Semispin~32! as identity component, so the gauge group is connec
in this case.

To summarize, the heterotic string theories fix the global structures of their gauge group
theory uses the disconnected but simply connected group (E83E8)vZ2 , while the other uses the
connected but not simply connected group Semispin~32!.

a!Electronic mail: matmcinn@nus.edu.sg
46990022-2488/99/40(10)/4699/14/$15.00 © 1999 American Institute of Physics
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The semispin groups are perhaps the least familiar of the compact simple Lie group
there is a venerable tradition of treating Semispin(4m) as if it were the same as SO(4m). We wish
to argue that this tradition has outlived its usefulness, that string theory forces us to be fully
of the differences between Semispin(4m) and the other groups with the same algebra. There
two physically significant kinds of distinction, one representation theoretic, the other topolo

First, note that while such ambiguities have often arisen in the past, one of the grou
question has always been acoverof the other. For example, ‘‘SO~10!’’ grand unification8 uses a
certain 16-dimensional multiplet which doesnot correspond to any representation of SO~10!. It is,
of course, a representation of Spin~10!. One can solve this ‘‘problem’’ by simply reading Spin~10!
for SO~10!; no harm is done, but only because every representation of SO~10! is automatically a
representation of Spin~10!, the latter being acover of the former. In the opposite direction, on
normally writes SU~3!3SU~2!3U~1! for (SU~3!3SU~2!3U~1!/Z6 , the ‘‘true’’ group,1 with no ill
effects because every representation of the latter is a representation of the former. The no
string theory is thatneitherSO~32! nor Semispin~32! is a cover of the other. Consequently,both
have representations which cannot be regarded as representations of the other. The situat
is quite different to the superficially analogous ambiguities arising in earlier gauge theories

Second, there exist Semispin~32! gauge configurations~over topologically nontrivial space–
times! which are of considerable physical importance, but whichcannotbe interpreted as SO~32!
gauge configurations.9,10 The reader might argue that one can likewise construct SO~10! configu-
rations which do not lift to Spin~10!. The point, however, is just that ordinary gauge theory d
not provide any fundamental justification for thinking that SO~10! is important. String theory, by
contrast, does favor Semispin~32! over SO~32!. The analysis of Semispin~32! bundles which
cannot be regarded as Spin~32! or SO~32! bundles is therefore physically significant.

Finally, the study of duality11 brings both points together in a potentially very confusing w
The T-duality between the two heterotic theories relies on relating ‘‘E83E8’’ and ‘‘SO~32!’’
through their supposed common subgroup, ‘‘SO~16!3SO~16!. ’’ A global investigation shows that
no such common subgroup exists; worse still, neither of the actual respective subgroups covers
other; worse yet again, each has representations which arenot representations of the other, bu
which are crucial in establishing duality. Solving this problem leads to further topological
structions, and, in the background, one has ‘‘Wilson loops’’ behaving in a way that depends
delicately on the global structure of various subgroups of Semispin~32! and Semispin~16!. In
short, the local simplicity of the duality argument conceals considerable complexity at the g
level.

The purpose of this work is not to solve all of these problems, but rather to give a u
survey of those aspects of the Semispin groups~and their subgroups! which are most directly
relevant to string theory. The main emphasis is on the structure of the groups themselves
than their representations, since the latter are well understood and since it is the former w
needed for dealing with topological obstructions and for analyzing the effect of Wilson loop

We begin with a brief survey of the family of nontrivial Lie groups with the algebra of SO(n).

II. GROUPS WITH THE ALGEBRA OF SO „n …

In order to understand the ways in which Semispin(4m) differs from the other groups with the
same Lie algebra, it is useful to begin with a complete classification. We refer the reader t
12 for the basic techniques, or to Ref. 13 for a much simpler account.

We shall not assume that the gauge group is connected; we have already seen that thi
not be justifiable in one heterotic theory. On the other hand, it is true that most disconnect
groups are of little physical interest. Every compact Lie group can be expressed as a finite
of connected components,

G5G0øg1•G0øg2•G0ø¯ ,
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whereG0 contains the identity and theg i are not elements ofG0 . The nonidentity components o
a gauge group are particularly important if space–time is not simply connected, since in tha
parallel transport of particles around noncontractible paths~‘‘Wilson loops’’ ! can affect conserved
charges.3–5 However, a given component,g i•G0 , can only give rise to such effects ifg i cannotbe
chosen so as to commute with every element ofG0 . The physically interesting disconnecte
groups are those such that none of theg i can be chosen to commute with every element ofG0 .
Such a group is called anatural extensionof its identity component. For example, (E8

3E8)vZ2 is a natural extension ofE83E8 , and it is in fact the only other natural extension.~It
is convenient to adopt the convention that a connected group is a natural extension of!
Henceforth, we confine attention to disconnected groups which are natural extensions o
identity components.

Next, some definitions. Let Pin(n),n>2, be defined as usual14 in terms of a Clifford algebra
with a basis$ei%. We can write Pin(n) as a natural extension of Spin(n), whenn is even,

Pin~2m!5Spin~2m!øe1•Spin~2m!.

Notice that this is not necessarily a semidirect product, since (e1)2521PSpin(2m). However,
Spin(2m)vZ2 can be defined~with the generator ofZ2 acting in the same way as conjugation b
e1); it is actually isomorphic to Pin(2m) if m is even, but not ifm is odd. It, too, is a natura
extension of Spin(2m). ~There is no natural extension of Spin(n), other than itself, whenn is
odd.!

Let K̂m,n be defined by

K̂m,n5 )
i 5m

n

ei

and setK̂m5K̂1,m . Then the center of Spin(n) is $61% if n is odd, while the center of Spin(2m)
is $61,6K̂2m%. Since (K̂2m)25(21)m, the center isZ4 if m is odd, butZ23Z2 if m is even.15

Here we think of$1,K̂2m% as the firstZ2 , $1,2K̂2m% as the second, and$61% as the diagonal. Of
course, we have

Spin~n!/$61%5SO~n! for all n>2.

Whenn is odd, SO(n) has no natural extension other than itself, but whenn is even it has two
others. The first is O(2m), which may be expressed as

O~2m!5SO~2m!øA2m•SO~2m!,

whereA2m is a (2m)3(2m) orthogonal matrix satisfyingA2m
2 5I 2m ,detA2m521. Thinking of

O(2m) as the real subgroup of U(2m), we can also define

Oi~2m!5SO~2m!ø iA2m•SO~2m!;

this group is also a natural extension of SO(2m), and it is not isomorphic to O(2m).
Whenn is even, SO(n) has a nontrivial quotient,

PSO~2m!5SO~2m!/$6I 2m%,

the projective special orthogonal group. We can define PO(2m) as the same quotient of O(2m),
and it is a natural extension of PSO(2m). Notice that PSO(2m) can be obtained directly from
Spin(2m) by factoring out the entire center.

When n is a multiple of 4, we can also consider the quotients Spin(4m)/$1,K̂4m% and
Spin(4m)/$1,2K̂4m%. Let Ad(e1) denote conjugation bye1 in Pin(4m); then Ad(e1) is an auto-
morphism of Spin(4m), and
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Ad~e1!K̂4m52K̂4m .

It follows that Spin(4m)/$1,K̂4m% and Spin(4m)/$1,2K̂4m% are mutually isomorphic. Thus we
obtain only one group in this way, not two. We define

Semispin~4m!5Spin~4m!/$1,K̂4m%.

This group is isomorphic to SO(4m) only if Spin(4m) admits an automorphism which mapsK̂4m

to 21; but no such automorphism exists, except whenm52. Leaving that case to one side, Ad(e1)
is, up to inner automorphisms, the only outer automorphism of Spin(4m). Since Ad(e1) does not
map $1,K̂4m% into itself, we see that, unlike Spin(4m), SO(4m), and PSO(4m), Semispin(4m)
has no outer automorphism ifmÞ2. If, therefore,G is a compact disconnected group wi
Semispin(4m) as its identity component,

G5Semispin~4m!øg1•Semispin~4m!ø¯ ,

then Ad(g i) must, for alli, be inner; Ad(g i)5Ad(si) for somesi in Semispin(4m). Thusg isi
21

commutes with every element of Semispin(4m), and so we see that, whenmÞ2, Semispin(4m)
has no natural extension other than itself.

Whenm52, we have Spin~8!, which has the triality map,14 an automorphism of order three
This combines with Ad(e1) to give D6 , the dihedral group of order six. Triality mapsK̂8 to 21,
so in fact

Semispin~8!5SO~8!.

This is the only dimension in which the Semispin construction gives nothing new. Triality
not descend to SO~8! ~because it does not preserve$61%! but it does descend to PSO~8!.

We are now in a position to state the following theorem, the proof of which is an applic
of techniques given in Refs. 12 and 13.

Theorem 1: Let G be a compact Lie group which is a natural extension of its iden
component. If the Lie algebra ofG is isomorphic to that of SO(n), n>2, thenG is globally
isomorphic to a group in the following list:

~1! n52: SO~2!, O~2!, Pin~2!.
~2! n5odd: SO(n), Spin(n).
~3! n54m12, m>1: Spin(n), Pin(n), Spin(n)vZ2 , SO(n), O(n), Oi(n), PSO(n), PO(n).
~4! n54m, mÞ2: Spin(n), Pin(n), SO(n), O(n), Oi(n), PSO(n), PO(n), Semispin(n).
~5! n58: Spin~8!, Pin~8!, Spin~8!vZ3 , Spin~8!vD6 , SO~8!, O~8!, Oi~8!, PSO~8!, PO~8!,
PSO~8!vZ3 , PSO~8!vD6 .

Note that Spin~4!5SU~2!3SU~2!, PSO~4!5SO~3!3SO~3!, and Semispin~4!5SU~2!3SO~3!.
These, then, are the nontrivial distinct groups corresponding to the SO(n) algebra. Whenn is

32, there are no fewer than eight candidates. String theory selects a particular group from
these eight in the following extraordinary way. In the heterotic theories, gauge fields ar
connection with the lattice of momenta on a 16-dimensional torus. The lattice must be eve
self-dual. The crucial point is that these requirements impose conditions not merely on th
system of the gauge group,but also on its integral lattice.16 However, there is a deep connectio
between the integral lattice and the global structure of a compact, connected Lie group
string theory provides a route from strictly physical conditions directly to the global structu
the ~identity component of the! gauge group. As is well known, Semispin~32! satisfies these
conditions, while SO~32!, Spin~32!, and PSO~32! do not. The argument is now completed by
glance at Theorem 1; we see that Spin~32! and PSO~32! each have a nontrivial disconnecte
version, and SO~32! has two, but Semispin~32! has none. The precise global structure of the ga
group is thereby fixed; it is Semispin~32!.
                                                                                                                



4
of
bra,

n
i-

an

he

ue

is

rans-

ivial

mi-

all

4703J. Math. Phys., Vol. 40, No. 10, October 1999 The semispin groups in string theory

                    
We close this section with some remarks on the representation theory of Spin(m),
Semispin(4m), SO(4m), and PSO(4m). Recall that the basic faithful representation
Spin(4m), obtained14 by suitably restricting an irreducible representation of the Clifford alge
has a canonical decomposition

D4m5D4m
1

% D4m
2 ,

whereD4m
1 is a representation with kernel$1,K̂4m% andD4m

2 has kernel$1,2K̂4m%. Thus, neither
D4m

1 nor D4m
2 is faithful; one must take their sum. HenceD4m

1 and D4m
2 are called thehalf-spin

representations. Evidently they are faithful not on Spin(4m) but on the group we~accordingly!
call Semispin(4m). The half-spin representations are of dimension 22m21. Thus the so-called
‘‘128-dimensional representation of SO~16!’’ which plays a prominent role in string theory is i
fact the defining representation of Semispin~16!. Again, the defining representation of Sem
spin~32! is 32 768-dimensional, a decidedly inconvenient value. Fortunately, we have

PSO~32!5Semispin~32!/Z2 ,

and so every representation of PSO~32! is automatically a representation of Semispin~32!; thus,
the latter has a more manageable~but unfaithful! 496-dimensional representation, which is also
unfaithful representation of SO~32! and Spin~32!, namely, the adjoint. Similarly PSO~16! yields a
120-dimensional representation of Semispin~16!, and so the latter has afaithful 248-dimensional
representation defined by the direct sum,120% 128. As the representation is faithful, and as t
~likewise faithful! adjoint of E8 decomposes as2485120% 128, this immediately shows thatE8

contains Semispin~16! and not, as is so often said, SO~16!. Thus (E83E8)vZ2 has a maximal
subgroup of the form (Semispin~16!3Semispin~16!)vZ2 , and so we see thatthe Semispin groups
appear in both heterotic string theories. In fact, Witten17 has recently argued that the same is tr
of the Type I theory. The gauge group of Type I at the perturbative level is PO~32! ~see Theorem
1!. As this group is disconnected, while Semispin~32! has no nontrivial disconnected version, th
appears to obstruct the supposedS-duality between the Type I and the ‘‘SO~32!’’ heterotic string
theories.11 However, Witten shows that a subtle nonperturbative effect breaks PO~32! to
PSO~32!5Semispin~32!/Z2 ; furthermore, there appear to be Type I nonperturbative states t
forming ‘‘spinorially’’ under the gauge group.~Note that, like a spinor, a ‘‘semispinor’’ is odd
under a 2p rotation; the nontrivial element in the center of Semispin~32! is the projection of21
in Spin~32!.! In short, the gauge group of Type I string theory is undoubtedly Semispin~32!
precisely, not SO~32!. The Semispin groups appear in all three string theories with nontr
gauge groups.

All this appears to bode well for duality: in particular, since (E83E8)vZ2 contains
(Semispin~16!3Semispin~16!)vZ2 , one would expect this same group to appear on the Se
spin~32! side. In fact, this isnot the case, as we now show.

III. SUBGROUPS OF SEMISPIN„4m … CORRESPONDING TO SO„k …3SO„4m 2k …

Evidently SO~32! contains SO~16!3SO~16! block-diagonally; more generally, SO(4m) con-
tains SO(k)3SO(4m2k), k>2. The product is indeed direct, since SO(k) and SO(4m2k)
intersect trivially, in $I 4m%. However, Spin(4m) does notcontain Spin(k)3Spin(4m2k), be-
cause both factors contain$61%. In fact, the subgroup is Spin(k)•Spin(4m2k), a local direct
product, where

Spin~k!•Spin~4m2k!5~Spin~k!3Spin~4m2k!!/Z2 ,

with Z2 generated by~21,21!.
There is another important difference between SO(4m) and Spin(4m) in this area. It is clear

that, when k52 j is even, Spin(k)•Spin(4m2k) can be characterized as the group of
Spin(4m) elements which commute with~that is, as thecentralizerof! K̂2 j . Now K̂2 j projects to
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the SO(4m) matrix diag(2I2j ,I4m22j)5K2j , but the SO(4m) centralizer ofK2 j is not SO(2j )
3SO(4m22 j ); rather, it is the disconnected subgroupS(O(2j )3O(4m22 j )), the set of all
pairs ~A, B! in O(2j )3O(4m22 j ) such that detA5detB. That is, a Wilson loop that break
Spin(4m) to a connectedsubgroup will break SO(4m) to a disconnectedsubgroup.~Recall2 that
a Wilson loop in a gauge theory is a closed curve in space–time which has a nontrivial holo
element even in the vacuum. The gauge group is broken to the centraliser of the~usually finite!
subgroup generated by the holonomy element.!

Now we turn to the case of the Semispin(4m). Suppose first thatk is odd. Then
Spin(k)•Spin(4m2k) does not containK̂4m , and so it is unaffected by the projection fro
Spin(4m) to Semispin(4m). Thus, whenk is odd, the subgroup of Semispin(4m) corresponding
to SO(k)3SO(4m2k) is globally isomorphic to Spin(k)•Spin(4m2k). Next, suppose thatk
52 j is even but not a multiple of 4. Then 4m22 j is likewise even but not a multiple of 4, an
so Spin(2j ) and Spin(4m22 j ) haveZ4 centers generated, respectively, byK̂2 j andK̂2 j 11,4m . We
have

K̂2 j K̂4m52K̂2 j 11,4m

and

K̂2 j 11,4mK̂4m52K̂2 j ,

and so the effect of factoring byK̂4m is to identify theentirecenter of Spin(4m22 j ) with that of
Spin(2j ). We have, whenj is odd,

Spin~2 j !:Spin~4m22 j !5~Spin~2 j !3Spin~4m22 j !!/Z4

as the subgroup of Semispin(4m) corresponding to SO(2j )3SO(4m22 j ).
Finally, if k54 j is a multiple of 4, then so is 4m24 j and both Spin(4j ) and Spin(4m

24 j ) have centers isomorphic toZ23Z2 . These centres are$61,6K̂4 j% and $61,K̂4 j 11,4m%,
respectively, and since we have

6K̂4 j K̂4m56K̂4 j 11,4m

and

6K̂4 j 11,4mK̂4m56K̂4 j ,

we see that, once again, the effect of the projection Spin(4m)→Semispin(4m) is to identify the
entire center of Spin(4m24 j ) with that of Spin(4j ). We use the notation

Spin~4 j !:Spin~4m24 j !5~Spin~4 j !3Spin~4m24 j !!/~Z23Z2!.

Next, recall that, from a physical point of view, we are interested in obtaining all these gr
as centralizers of some element in Semispin(4m). We saw earlier that the centralizer ofK̂2 j in
Spin(4m) is connected, but that ofK2 j in SO(4m) is not. LetK2 j* be the projection ofK̂2 j to
Semispin(4m). The centralizer ofK2 j* will include Spin(2j ):Spin(4m22 j ), but it will also
include any Semispin(4m) elementL* such thatL̂, a lift of L* to Spin(4m), satisfiesL̂K̂2 j

5K̂4mK̂2 j L̂. Projecting this to SO(4m), we find that the corresponding matrices satisfy

LK2 jL
2152K2 j ,

whence TraceK2 j54(m2 j )50. Thus if j Þm, L* does not exist, and so the centraliser ofK2 j* in
Semispin(4m) is precisely Spin(2j ):Spin(4m22 j ). If j 5m, then we have
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J2mK2mJ2m
2152K2m ,

where

J2m5S 0 2I 2m

I 2m 0 D .

This solution is essentially unique. The corresponding element of Spin(4m) is ~see Ref. 16, p.
174, and modify suitably!

Ĵ2m522m~12e1e112m!~12e2e212m!¯~12e2me4m!.

Now,

K̂2mĴ2m522m~e11e112m!~e21e212m!¯~e2m1e4m!

522m~e112m1e1!~e212m1e2!¯~e4m1e2m!5 Ĵ2mK̂112m,4m

5~21!mK̂4mĴ2mK̂2m ,

since (K̂2m)25(21)m and K̂2mK̂112m,4m5K̂4m . Thus if m is even, the projections to
Semispin(4m) satisfy K2m* J2m* 5J2m* K2m* as required. If m is odd, we project instead to
Spin(4m)/$1,2K̂4m% and recall that this is isomorphic to Semispin(4m). A further exercise in
Clifford algebra shows that

~ Ĵ2m!25~21!mK̂4m ,

and so the appropriate projections are of order two. The effect on Spin(2m):Spin(2m) of conju-
gation by J2m* is to exchange the two factors. We conclude that thecentralizer of K2 j* in
Semispin(4m) is

Spin~2 j !:Spin~4m22 j ! if j Þm,

~Spin~2m!:Spin~2m!!vZ2 if j 5m.

Finally, let us consider the specific case of Semispin~32!. Its ‘‘SO~16!3SO~16!’’ subgroup is
actually (Spin~16!:Spin(16))vZ2 where the full center of each Spin~16! is identified with that of
the other, and whereZ2 exchanges the two factors. Compare this with the ‘‘SO~16!3SO~16!’’
subgroup of (E83E8)vZ2 , which is (Semispin~16!3Semispin~16!)vZ2 . Both groups have the
‘‘exchange’’ Z2 , which is welcome from the point of view of T-duality. But Spin~16!:Spin~16! is
not isomorphic toSemispin~16!3Semispin~16!. Both areZ23Z2 quotients of Spin~16!3Spin~16!,
but Z23Z2 acts differently in each case. This implies that neither is a cover of the other, a
they each have representations which cannot be regarded as representations of the ot
example, by factoring out$61% in Spin~16!:Spin~16!, we obtain SO~16!•SO~16!, where the dot
means that the two factors have a nontrivial intersection,$6I 16%. The tensor product of the vecto
with itself, ~16, 16!, is faithful for this group, and so it is a representation of Spin~16!:Spin~16!.
This representation contains faithful copies of SO~16!, something which is impossible for an
representation of Semispin~16!3Semispin~16!. On the other hand, let (128,1) % (1,128) be the
defining representation of Semispin~16!3Semispin~16!; this representation distinguishes the ce
ters of the two Semispin~16! factors, which cannot happen in any representation
Spin~16!:Spin~16!. ~If we take the quotient of Spin~16!:Spin~16! by $1,K̂16%, then we obtain
Semispin~16!•Semispin~16!, in which the two factors intersect in$61%, where we use21 to
denote the projection of21 in Spin~16!; but (128,1) % (1,128) does not descend to a represen
tion of this group.! The two groups do have some representations in common, such as~128,128!
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and (120,1) % (1,120), the latter being the defining representation for PSO~16!3PSO~16!, which
is aZ23Z2 quotient of both Semispin~16!3Semispin~16! and Spin~16!:Spin~16!. However, while
(120,1) % (1,120) is important for duality, so also are~16,16! and (128,1) % (1,128).

We see, then, that the appearance of Semispin groups in both heterotic theories was so
deceptive; for Semispin(4m) is strangely unlike Spin(4m) and SO(4m). While these last contain
subgroups of the same kind as themselves, Spin(2j )•Spin(4m22 j ) and SO(2j )3SO(4m22 j )
respectively, Semispin(4m) does not containSemispin(2j )•Semispin(4m22 j ). Instead, it con-
tains Spin(2j ):Spin(4m22 j ). Thus we arrive at the disconcerting fact that whileE83E8 con-
tains Semispin groups, Semispin~32! itself does not. The ‘‘common SO~16!3SO~16! subgroup’’
which appears in the duality literature not only fails to be isomorphic to SO~16!3SO~16!; it
simply does not exist.

One way to approach this problem is to find a group which covers b
Semispin~16!3Semispin~16! and Spin~16!:Spin~16!, since all of the representations ofboth
groups will then be representations of that group. One obvious choice is Spin~16!3Spin~16!, but
there is a better alternative, constructed as follows. Write Spin~16!3Spin~16! as Spin(16)L

3Spin(16)R and let$61L,6K̂16
L %, $61R,6K̂16

R % be the respective centers. We define

Spin~16!*Spin~16!5~Spin~16!3Spin~16!!/$~1L,1R!,~K̂16
L ,K̂16

R !%.

That is, we identify K̂16
R with K̂16

L . Further factoring by this element produce
Semispin~16!3Semispin~16!, while factoring by (21L,21R) produces Spin~16!:Spin~16!. That
is, Spin~16!*Spin~16! is a double cover of both Semispin~16!3Semispin~16! and
Spin~16!:Spin~16!. Hence~16,16!, (128,1) % (1,128), and (120,1) % (1,120) are all ~unfaithful!
representations of Spin~16!*Spin~16!, and (16,16) % (128,1) % (1,128) is a faithful representation
of Spin~16!*Spin~16!, though it is not a representation of Semispin~16!3Semispin~16! or
Spin~16!:Spin~16!, much less SO~16!3SO~16!. ~It is faithful becauseK̂16, the one nontrivial
element of Spin~16!*Spin~16! mapped to the identity by (128,1) % (1,128), acts as21 in ~16,16!.!

In fact, Spin~16!*Spin~16! is the gauge group of the unique tachyon-free ten-dimensio
nonsupersymmetric heterotic string theory,18,19 which plays a central role in recent investigatio
of strong-coupling duality.20 The massless spectrum of this theory consists of a gravity multip
space–time vectors assigned to (120,1) % (1,120), and space–time spinors assigned to
‘‘SO~16!3SO~16!’’ representation (16,16) % (128,1) % (1,128), which, as we have seen, is
faithful representation of Spin~16!*Spin~16!.

We claim, then, that the string theorist’s ‘‘SO~16!3SO~16!’’ is actually Spin~16!*Spin~16!.
The strange feature of this conclusion is that Spin~16!*Spin~16! is not a subgroup of either E8
3E8 or Semispin~32!. ~Nor can it be embedded in Spin~32!, SO~32!, or PSO~32!.! Thus it does
not make senseto speak of breakingE83E8 or Semispin~32! to Spin~16!*Spin~16! by a Wilson
loop or in any other way. We believe that the way to solve this problem is through a stu
‘‘generalized Stiefel–Whitney classes.’’9,10 For example, to establish the duality of a certa
Semispin~32! configuration with an (E83E8)vZ2 configuration, one breaks Semispin~32! to
(Spin~16!:Spin(16))vZ2 , lifts this to a (Spin~16!*Spin~16!)vZ2 structure~checking that the
appropriate generalized Stiefel–Whitney class vanishes!, projects this to a
(Semispin~16!3Semispin~16!)vZ2 structure, and then extends to (E83E8)vZ2 The details of
this process will be described elsewhere.

Let us summarize as follows: SO(4m),m.2, has important subgroups of the form SO(k)
3SO(4m2k), though in fact this is just the identity component ofS(O(k)3O(4m2k)). The
other three connected groups locally isomorphic to SO(4m), namely, Spin(4m), Semispin(4m),
and PSO(4m), have analogous subgroups given by the following Theorem.

Theorem 2: The Lie algebra inclusionSO(k) % SO(4m2k)→SO(4m) has the following
counterparts at the Lie group level:

S~O~k!3O~4m2k!!→SO~4m!,
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Spin~k!•Spin~4m2k!→Spin~4m!,

PS~O~k!3O~4m2k!!→PSO~4m!,

Spin~k!•Spin~4m2k!→Semispin~4m!~k odd!,

Spin~2 j !:Spin~4m22 j !→Semispin~4m!~k52 j , j Þm!,

~Spin~2m!:Spin~2m!!vZ2→Semispin~4m!.

Here a single dot denotes a factoring by a diagonalZ2 , as also does the prefixP, while the double
dot denotes a factoring by a diagonalZ4 or by Z23Z2 as the case may be.

For the particularly important case of ‘‘SO~16!3SO~16!, ’’ we have the following diagram.

Here, an upward arrow indicates a subgroup, a downward arrow corresponds to aZ2 factoring.
The rows in the diagram therefore reflect the size of the fundamental group; the top row grou
simply connected, the next row hasZ2 as a fundamental group, and so down
PSO~16!3PSO~16!, with fundamental group isomorphic toZ23Z23Z23Z2 . From the diagram
we see at once that Spin~16!:Spin~16! is a subgroup of Semispin~32!, but there is no chain of
arrows leading from Spin~16!:Spin~16! to E83E8 . Finally, note that, with the sole exception o
Semispin~32!, every groupG in the diagram has a natural extension of the formGvZ2 .

IV. SUBGROUPS OF SEMISPIN „4m … CORRESPONDING TO U„2m …

Another subgroup of SO(4m) which plays an important role in the string literature~see, for
example, Refs. 9, 20, 21! is the unitary group U(2m). If A1 iB is any element of U(2m), where
A and B are real, then (B

A
A
2B) is an element of SO(4m). The unitary subgroup can also b

characterized as the centraliser of the matrixJ2m defined in the preceding section.~Notice thatJ2m

is SO(4m)-conjugate to diag ((1
0

0
21),(1

0
0
21)¯), and the reader can takeJ2m to be defined in

this way if that is convenient.!
Now U(2m) is not isomorphic to U~1!3SU(2m), because U~1! and SU(2m) intersect non-

trivially. Let z be a primitive (2m)th root of unity, and letZ2m act on U~1!3SU(2m) by

~u,s!→~uz21,zs!.

Then (U~1!3SU(2m))/Z2m is isomorphic to U(2m). Elements of U(2m) may therefore be rep
resented as equivalence classes,@u,s#2m .

Now we ask, what is the subgroup of Spin(4m) which projects onto U(2m)? It is useful to
notice that the answer cannot be isomorphic to U(2m), for U(2m) would be of maximal rank in
Spin(4m), and so the center of Spin(4m) would be contained in the center of U(2m); that is, we
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would haveZ23Z2 contained in U~1!, which is impossible.~This argument would not work for
the U(2m11) subgroup of SO(4m12), and indeed the cover of U(2m11) in Spin(4m12) is
again isomorphic to U(2m11).) In fact, it is not difficult to see that Spin(4m) contains
(U~1!3SU(2m))/Zm , which consists of pairs@u,s#m . In this group,@z21,zI2m#m is not the
identity, though@z21,zI2m#2m51; therefore@z21,zI2m#m corresponds to21 in Spin(4m). There
is another important element of order two in this group,@1,2I 2m#m , but of course there are other
such as@z21,2zI2m#m . In order to determine the structure of the subgroup of Semispin(4m)
corresponding to U(2m), we must determine which of these corresponds toK̂4m .

Theorem 3: Let SemiU(2m) denote the projection of (U~1!3SU(2m))/Zm to
Semispin(4m). Then the global structure of SemiU(2m) is given as follows:

SemiU~2m!5@U~1!3~SU~2m!/Z2!#/Zm/2 , m even

5@U~1!3SU~2m!#/Zm , m odd.

Proof: Under the embedding of U(2m) in SO(4m), the matrixJ2m arises from the U(2m)
matrix i I 2m , which is @ i ,I 2m#2m . Thus we see that the Spin(4m) elementĴ2m defined in the
preceding section must be either@ i ,I 2m#m or @ iz21,zI2m#m . In either case we have (Ĵ2m)2

5@21,I 2m#m . Now recall that (Ĵ2m)25(21)mK̂4m and that we have agreed to defin
Semispin(4m) by Spin(4m)/$1,(21)mK̂4m% for convenience, so thatJ2m* is always of order two.
~See the remarks at the end of this section.! Thus whenm is odd, we must factor by

2K̂4m5@21,I 2m#mÞ@1,2I 2m#m .

Clearly, the factoring will affect U~1! but not SU(2m). However, U(1)/Z25U(1), since the map
u→u2 is a group epimorphism for this infinite Abelian group. Thus we obt

@U~1!3SU(2m)#/Zm when m is odd. Whenm is even,K̂4m is @21,I 2m#m , which is equal to
@1,2I 2m#m . The factoring will affect both U~1! and SU(2m) in this case, and, after it, theZ2 in
Zm will act trivially; so we obtain (U(1)/Z2)3(SU(2m)/Z2), with an effective action byZm/2 .
Hence the group is@(U(1)3(SU(2m)/Z2)#/Zm/2 , and this completes the proof.

Notice that, according to this theorem,

SemiU~2!5@U~1!3SU~2!#/Z15SO~2!3SU~2!,

which is indeed a subgroup of Semispin~4!5SO~3!3SU~2!. Again,

SemiU~4!5@U~1!3~SU~4!/Z2!#/Z15SO~2!3SO~6!,

which is contained in SO~8!5Semispin~8!.
Clearly SemiU(2m) is the identity component of the centralizer, in Semispin(4m), of J2m* ,

the projection ofĴ2m . Recall that, unlikeJ2m in SO(4m) andĴ2m in Spin(4m) ~which are both of
order 4!, Ĵ2m* is of order 2; this is important for applications.9,21 For example, consider a Sem
spin~32! heterotic theory compactified on aK3 surface which is a Kummer surface at an orbifo
limit, with a pointlike instanton at the singular point.21 Excising this point, we obtain a neighbo
hood which retracts to the projective sphere,S3/Z2 . If J16* were of order four, then it could not b
realized as a holonomy element overS3/Z2 , and so the gauge group would not break. ButJ16* is
of order two, and so itcan be realized as a holonomy overS3/Z2 . ~In the literature it is always
assumedthat a finite groupF can always be realised as a holonomy group over manifolds of
form M /F. This is true—with very mild conditions—but not at all obvious.6! Then ~unless one
arranges to avoid it21! Semispin~32! will break to the centralizer ofJ16* in Semispin~32!. This
includes SemiU~16!, but it also includesK16* , as we saw in the preceding section. The mat
K165diag(2I16,I 16) acts by complex conjugation on U~16!, that is,

K16S A 2B

B A D K16
215S A B

2B AD .
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Similarly, conjugation byK16* maps elements of SemiU~16! to their complex conjugates.~A
typical element of SemiU(16)5@U(1)3(SU(16)/Z2)#/Z4 has the form@u2,@s#2#4 , with complex
conjugate @(ū2,@ s̄#2#4 ; bear in mind that Z4 acts on U(1)3(SU(16)/Z2) by (u2,@s#2)
→( iu2,@zs#2), with z851). As (K16* )251, we see that J16* breaks Semispin~32! to
SemiU(16)vZ2 andnot9,21 to U~16! or U(16)/Z2 , which are quite different to SemiU~16!. Notice
the differences with SO~32!; J16 is of order four, and its centralizer in SO~32! is the connected
group U~16!, while J16* is of order two, with Semispin~32! centraliser isomorphic to thediscon-
nectedgroup SemiU(16)vZ2 . On the other hand,J16 cannot break SO~32! over S3/Z2 , but J16*
can break Semispin~32!. ~Note also that there do exist bundles overS3/Z2 having the full discon-
nected group SemiU(16)vZ2 as holonomy group.6!

In the same way,J8* is of order two, and it breaks Semispin~16! to SemiU~8!vZ2 , with Z2

generated byK8* , and with SemiU(8)5@U~1!3~SU~8!/Z2)]/Z2 . However, Semispin~16! is
mainly of interest because it is a maximal subgroup ofE8 . If J8* is embedded inE8 through
Semispin~16!, then of course its centraliser must contain SemiU(8)vZ2 ; however, this cannot be
the full centraliser, since the centralizer of any element of a simply connected compact Lie
~such asE8 , but not Semispin~16!! must be connected. Hence the centralizer ofJ8* must be a
connected subgroup ofE8 containing SemiU(8)vZ2 . Of course, Semispin~16! is such a sub-
group, but there is another. The exceptional Lie groupE7 has a maximal rank subgroup22 isomor-
phic to SU(8)/Z2 , and in fact one can prove thatE7 contains a disconnected subgroup with tw
connected components, one being SU(8)/Z2 . Combining this with a Pin~2! subgroup of SU~2!,
we obtain, after suitable identifications, SemiU(8)vZ2 as a subgroup of SU~2!•E7 , which is a
maximal subgroup ofE8 . In fact, the centralizer ofJ8* in E8 is SU(2)•E7 , while that of2J8*
turns out to be just Semispin~16!; this is important in applications.9

One of the most interesting and important applications where the distinction between SOm)
and Semispin(4m) is crucial concernsK3 compactifications of the (E83E8)vZ2 heterotic
theory. When the instanton numbers are assigned symmetrically to the two factors, one find9 that
the corresponding~T-dual! ‘‘SO~32!’’ configuration corresponds to a Semispin~32! bundle which
does notlift to a Spin~32! bundle. This is the Semispin analogue of the failure of the orthonor
frame bundles over certain Riemannian manifolds14 to lift to spin bundles. If a Semispin~32!
bundle does lift to a Spin~32! bundle, then it will automatically define~by projection! an SO~32!
bundle; and so a Semispin~32! bundle which fails to lift to a Spin~32! bundle is said to lack a
‘‘vector structure.’’

Examples of such Semispin(4m) bundles can be given by once again exploiting the fact t
J2m* is of order two, whereasĴ2m , its counterpart in Spin(4m), satisfies (Ĵ2m)25(21)mK̂4m and
so is of order four~like J2m). This makes it possible to construct a nontrivial U~1! bundle over a
two-cycle in the base, such that connections on this bundle satisfy the usual~‘‘Dirac’’ ! integrality
conditions, but their pullbacks to a covering bundle would not. When this U~1! bundle is extended
to a Semispin~32! bundle, therefore, the latter cannot be lifted to a double cover. It is in prec
this way that the dual partner of the above9 (E83E8)vZ2 compactification is constructed. On
could not wish for a more striking confirmation of the importance of the distinction betw
SO(4m) and Semispin(4m).

In this spirit, we ask whether U~1! is indeed the precise global form of the gauge group
question. This U~1! may be identified as the explicit U~1! in @U~1!3~SU~16!/Z2)]/Z4 , but we
know that this group is most naturally regarded as the identity component of SemiU(16)vZ2 .
Therefore one should really regard the canonical U~1! in Semispin~32! as the identity componen
of U(1)vZ2 or O~2! in the notation of Theorem 1. The corresponding subgroup of SO~32!
consists of all 32332 matrices of the form

S I 16cosu 2I 16sinu

I 16sinu I 16cosu D , S 2I 16cosu I 16sinu

I 16sinu I 16cosu D .

More generally, Semispin(4m) has a canonical subgroup of the form
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U~1!øK2m* •U~1!,

where U~1! corresponds to the Lie algebra element

S 0 2I 2m

I 2m 0 D ,

or to its conjugate

diag S S 0 21

1 0 D , S 0 21

1 0 D ,...D
if one prefers. Recalling that (K2m* )25(21)m, we see that the global structure is O~2! if m is even,
but Pin~2! if m is odd~see Theorem 1!. One can actually prove that Semispin(4m) has no Pin~2!
subgroup containing U~1! whenm is even, and no O~2! subgroup containing U~1! whenm is odd.

In constructing Semispin(4m) bundles without ‘‘vector structure,’’ then, one should rea
begin with nontrivial O~2! or Pin~2! bundles.~Of course, if the base manifold is simply connecte
such a bundle will always reduce to a U~1! bundle, but realistic string compactifications are n
likely to be simply connected.! Now we know that a U~1! instanton breaks Semispin(4m) to
SemiU(2m); what is the corresponding subgroup for O~2! or Pin~2!? SinceK2m* acts by complex
conjugation on all of SemiU(2m), the answer is the real subgroup of SemiU(2m). The real
subgroup of SU(2m) is SO(2m), while that of SU(2m)/Z2 is PSO(2m), and U~1! contributes
J2m* ; finally, 21, the central element of Semispin(4m), must of course also be included. Thus
O~2! or Pin~2! instanton will break Semispin(4m) to

Z23Z23PSO~2m!, m even,

Z23Z23SO~2m!, m odd,

with one Z2 generated by21 and the other byJ2m* . In particular, then, an O~2! instanton in a
Semispin~32! theory will reveal itself by the presence of PSO~16!, where SemiU~16! might be
expected.~Note that this same PSO~16! arises in the Spin~16!:Spin~16! subgroup of Semispin~32!,
as the diagonal subgroup.!

Before concluding this section, we draw the reader’s attention to the following point. Wh
is true that Spin(4m)/$1,2K̂4m% is isomorphic to Spin(4m)/$1,K̂4m%, the isomorphism is through
an outer automorphism of Spin(4m) which can change the way in which a given subalgebra
embedded in the algebra of Spin(4m), and this in turn can affect the global structure of t
subgroup to which that subalgebra exponentiates. A simple example is provide
Spin~4!5SU~2!3SU~2!. Obviously SU~2!3SO~3! is isomorphic to SO~3!3SU~2!, but it is true
that a given, fixed SU~2! algebra exponentiates either to SU~2! or to SO~3!, depending on whethe
one factors by$1,K̂4% or $1,2K̂4%. We have chosen to define Semispin(4m) by factoring $1,
2K̂4m% whenm is odd, but one could decide to factor by$1,K̂4m%, though in that caseJ2m* will not
commute withK2m* and it will not be of order two. If one does this, then@U~1!3SU(2m)#/Zm no
longer projects to@(U(1)/Z2)3SU(2m)#/Zm . Instead we have

K̂4m52~ Ĵ2m!25@2z21,zI2m#m ,

where z is a primitive (2m)th root of unity. This gives usK̂4m5@zm21,zI2m#m5@1,zmI 2m#m ,
because, sincem is odd, m21 is even. Thus in factK̂4m5@1,2I 2m#m , and so the quotient o
(U~1!3SU(2m))/Zm by $1,K̂4m% is isomorphic to@U(1)3(SU(2m)/Z2)#/Zm , which is not iso-
morphic to@U(1)/Z23SU(2m)#/Zm . Thus there is no unique subgroup of Semispin(4m) corre-
sponding to U(2m) unless one specifies precisely which projection from Spin(4m) to
Semispin(4m) one proposes to use.
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Our point of view is that for physical applications it is important thatJ2m* should be of order
two rather than, likeJ2m and Ĵ2m , of order four. This is stressed repeatedly, for example, in R
9. This fixes the projections; we must factor out$1,K̂4m% whenm is even, and$1,2K̂4m% whenm
is odd.

V. SUBGROUPS OF SEMISPIN„4m … CORRESPONDING TO Sp„1…•Sp„m …

Another subgroup of SO(4m) which is important in various applications~see, for example,
Ref. 21! is the symplectic group Sp(m), which embeds through Sp~1!•Sp(m). The latter has the
global structure@Sp~1!3Sp(m)#/Z2 . The corresponding subgroup of Semispin(4m) is given as
follows.

Theorem 4: The Lie algebra inclusionSp(1)% Sp(m)→SO(4m) has the following counter-
parts at the Lie group level:

Sp~1!•Sp~m!→SO~4m!,

Sp~1!3Sp~m!→Spin~4m! m odd,

Sp~1!•Sp~m!→Spin~4m! m even,

SO~3!3PSp~m!→PSO~4m!,

SO~3!3Sp~m!→Semispin~4m! m odd,

SO~3!3PSp~m!→Semispin~4m! m even.

Here a dot denotes a factoring by a diagonalZ2 , and PSp(m)5Sp(m)/Z2 .
Proof: Consider first the case of Spin(4m). We know that Spin(4m) contains a subgroup o

the form @U~1!3SU(2m)#/Zm , consisting of pairs@u,s#m . Evidently we have

@21,I 2m#m5@1,2I 2m#m ,

whenm is even, but not whenm is odd. That is, theZ2 in U~1! is identified with theZ2 in SU(2m)
whenm is even, but not whenm is odd. However, this U~1! is contained in Sp~1!, and SU(2m)
contains Sp(m); furthermore the centralZ2 in Sp~1! is theZ2 in U~1!, and the centralZ2 in Sp(m)
is identical to theZ2 in SU(2m). Thus we see that the centralZ2 in Sp~1! is identified, in
Spin(4m), with the centralZ2 in Sp(m), if and only if m is even. Hence the group i
Sp~1!3Sp(m) if m is odd, but Sp~1!•Sp(m) if m is even.

We saw, in the proof of Theorem 3, that (21)mK̂4m5@21,I 2m#m , the generator of theZ2 in
Sp~1!. Hence Sp~1!3Sp(m) projects to (Sp(1)/Z2)3Sp(m) whenm is odd, while Sp~1!•Sp(m)
projects to (Sp(1)/Z2)3(Sp(m)/Z2) when m is even. Recalling that Sp(1)/Z25SO(3) and
Sp(m)/Z25PSp(m), we have the stated results. Similarly, in SO(4m), the centralZ2 coincides
with the Z2 in Sp~1! and Sp(m), so taking the quotient throughout Sp~1!•Sp(m)→SO(4m), we
obtain SO~3!3PSp(m)→PSO(4m). This completes the proof.

Notice that the theorem asserts that SO~3!3Sp~1! is contained in Semispin~4!, which is cor-
rect since the latter is SO~3!3SU~2! and SU~2!5Sp~1!. It also asserts that Semispin~8!5SO~8!
contains SO~3!3PSp~2!, which is correct since Sp~2!5Spin~5! and so PSp~2!5SO~5!. The theo-
rem gives us SO~3!3PSp~8! as the subgroup of Semispin~32! corresponding to Sp~1!•Sp~8! in
SO~32!; this agrees with Ref. 21, where the importance of the SO~3! factor, appearing unexpec
edly as a subgroup of Semispin~32!, is explained.~Note that the full cover of Sp~1!•Sp(m) in
Spin(4m), m even, is actuallyZ23Sp~1!•Sp(m), where Z25$61%; this projects to Z2

3SO~3!3PSp(m), so one might give this as the correct subgroup of Semispin(4m).)
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VI. CONCLUSION

The Semispin groups are of fundamental importance in string theory. The gauge gro
Type I and one of the heterotic theories are both Semispin~32! precisely, whileE8 contains
Semispin~16!; the latter in turn contains~see Theorem 2! Spin~6!:Spin(10)5@SU(4)
3Spin(10)#/Z4 , and so it provides a possible route to Spin~10! grand unification.

These facts alone warrant a detailed study of the Semispin groups and their rema
subgroups. Theorem 1 places Semispin(4m) in the context of the entire family of nontrivia
groups locally isomorphic to SO(n), while Theorems 2, 3, and 4 list the most important su
groups. We hope that these theorems will be a useful reference for string theorists.

The most surprising finding of this investigation is no doubt the fact that Semispin grou
not contain smaller Semispin groups. This implies that the ‘‘common SO~16!3SO~16! subgroup
of E83E8 and Semispin~32!’’ simply does not exist, which is obviously a problem for dualit
This problem can be overcome by going to a common double cover, but only if certain topolo
obstructions vanish. In some circumstances, therefore, duality can be obstructed topologica
shall study this phenomenon elsewhere.
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We propose the~BRST-invariant! quantum open superstring field theory in the
‘‘ B0-gauge,’’ based on Neveu–Schwarz~NS! strings in 1 picture and Ramond~R!
strings in 1

2 picture. We give the propagators of these open NS and R superstrings.
In order to obtain the BRST-invariant interaction terms among these superstrings,
we modifythe interaction terms amongthreesuperstrings~i.e., among NS–NS–NS
and R–R–NS! by subtracting the infinite number of counter terms, each of which
involves interaction terms among ‘‘more than foursuperstrings.’’ The modified
action can be obtained successively, so that resulting amplitudes ing-loops should
become BRST invariant. Thus obtained amplitudes are referred to as the ‘‘ampu-
tated scatts,’’ with the help of which thephysical scattering amplitudes can be
expressed. These physical scattering amplitudes amongNB bosonic~NF fermionic!
particles arecalculatedby using theanalytic inlint gluing operator~which has
already been proposed and used in the quantum bosonic string field theory ‘‘in the
B050 gauge’’!. © 1999 American Institute of Physics.
@S0022-2488~99!02410-X#

I. INTRODUCTION AND PRELIMINARIES

There exist just five superstring theories:1 type I and the two heterotic theories~all of which
haveN51 supersymmetry in ten-dimensional space–time!, type IIA ~having two supercharge
with the opposite chirality!, and type IIB~having two supercharges with the same chirality!. Type
I theory is based on unoriented open and closed superstrings, while the other four theor
based on oriented closed superstrings.~These different superstring theories might be related w
each other nonperturbatively.2! These superstring theories are very attractive ones, which
expected to unify interactions in nature, including the Yang–Mills theory as well as the gra
tional theory. In order to make sure if these superstring theories are the realistic ones, w
clarify nonperturbative properties of these theories, which can be compared with experim
results. For this purpose, quantum superstring field theory~QSFT! might be expected to be help
ful.

Since heteroticsuperstring theories involve orientedclosedbosonic string, Witten’s quantum
open bosonicstring field theory3 ~open QBFT! in the ‘‘B050 gauge’’~which does not include any
closedstring! is not realistic one, but it will be still useful. Unoriented open strings could
obtained by truncating the formulas in oriented open strings to those invariant under the ‘‘
ing.’’ Manifest factorization~in closed string channels! which is absent in Witten’s open QBFT
can be restored by including bosonic closed strings. In closed QBFT, there appear variou
plications, since we must include infinite numbers of the interaction terms among closed b
strings. These complications inclosed QBFT have been analyzed4 in detail. Based on these
analyses, we think that various techniques5 ~which are useful in Witten’sopenQBFT! would be
useful also inclosedQBFT. In other words, Witten’s open QBFT is useful as a mathemat
model, in clarifying mathematical structures of physically realistic theories. On the other han
five superstring theories involve closedsuperstrings, while type Isuperstring theory involves the
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additional ~unoriented! openbosonicstring. Witten6 has proposed the quantum~oriented! open
superstring field theory~to be referred to as open QSFT! based on the Ramond7–Neveu–Schwarz8

~RNS! superstrings, being suggested by Friedan–Martinec–Schenker’s~FMS! work.9 Compared
with Witten’s open QBFT, Witten’s open QSFT involves many additional complications: We
fermionic particles as well as bosonic particles. Furthermore, there occur problems related w
~so-called! pictures. Unfortunately, Witten’s open QSFT~based on open NS states in 0 picture a
open R states in12 picture! is plagued with~Wendt’s10! singularities, sincelocal picture-changing
operators can happen to collide with each other. Thus, Witten’s open QSFT is not satisfa
even at the perturbative level. In order to avoid this difficulty, anotheropenQSFT~different from
the Witten’s one! has been proposed by Preitschopf–Thorn–Yost~PTY!,11 based on open NS
superstring in 1 picture and open R superstring in1

2 picture. However, PTY have extensive
considered open NS superstrings under the two special gauge-fixing conditionsB11B2150 or
B02 1

2A21(B12B21)50, where propagators in the open NS superstring involve respectivel
factor (L11L21)21 or „L02 1

2A21(L12L21)…21, both of which are so much different from th
ordinary 1/L0 ~in QBFT5!. We doubt if their formalism~with these propagators! would be useful
in calculating physical scattering amplitudes.

In this paper, we exclusively analyze the~oriented! open QSFT in the ‘‘B0-gauge,’’ the
possibility of which has only briefly been remarked on in Ref. 11. As preliminaries, we here
introduce ‘‘fieldinos,’’ etc.~which are to be used in QSFT!. In defining them, we use variou
external operators which are given in appendices. In the case when ther th open superstring is in
thep(r ) sector@p(r ) being either NS or R#, we have in the open QSFT the followingr th fieldino
uCp(r )& r in the p(r ) sector:

uCNS& r[Pr
NS~GSO!S (

B
uB& r•fBD for p~r !5NS, ~1.1!

and

uCR& r[Pr
R~GSO!S (

F
uF& r•cFD for p~r !5R. ~1.2!

OperatorsfB’s ~cF’s! in Eq. ~1.1! @~1.2!# will be referred to as thebosefields @fermi fields# in the
ten-dimensional space–time. Ther th external GSO-projection operatorPr

NS ~GSO! @Pr
R(GSO)#

used in Eqs.~1.1! @~1.2!# will be defined soon by Eq.~1.11!, and it GSOprojects outNS states
uB& r ’s ~R statesuF& r ’s!, some of which might bephysical statesub& r ’s ~u f & r ’s!. As we shall see
later, all of these physical statesub& r ’s ~u f & r ’s! can bemadeGrassmanodd~even!, by usingproper
cocycle factors. Operatorsfb’s ~c f ’s! @which will be referred to asphysicalbose fields~fermi
fields!# become subsequently Grassmaneven ~odd!. On the other hand,unphysical fB’s
~cF’s! might be Grassmanevenin some case and Grassmanodd in another case. In this pape
uCNS& r in ~1.1! and uCR& r in ~1.2! will be projected into the following fieldino in the

‘‘ B0-gauge,’’11 i.e., into ther th NS fieldinouC(1)& r ‘‘in picture 1’’ and R fieldino uC( 1
2)& r ‘‘in

picture 1
2,’’ respectively:

uC~1!& r[Pr
NSuCNS& r for p~r !5NS,

~1.3!

uC~ 1
2!& r[Pr

RuCR& r for p~r !5R,

wherePr
p(r ) is the projection operator defined by

Pr
NS[Pr~1!•Pr~B0!•Pr~1! for p~r !5NS,

~1.4!

Pr
R[Pr~

1
2!•Pr~B0!•Pr~

1
2! for p~r !5R.
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In Eq. ~1.4!, we have usedPr(B0) defined by

Pr~B0![12Qr
p~r !

•

B0,r

L0,r
5

B0,r

L0,r
•Qr

p~r ! , ~1.5!

which is the projection operator since it satisfies

„Pr~B0!…25Pr~B0!. ~1.6!

@In Eq. ~1.5!, we have used operatorsB0,r in ~A25!, L0,r in ~B9b!, and the BRST charginoQr
p(r )

in ~B27!, together with the ‘‘contacting formula’’~B38b!#. On the other hand,Pr(1) andPr(
1
2) in

Eq. ~1.4! are respectively defined11 by

Pr~1![S (
6

1

2
•X6,r

1/2
•X7,r

1/2 DY@ r̄ #•Y@r #•Pr
NS~GSO!, ~1.7a!

and

Pr~
1
2![Xr

0
•Y@ r̄ #•Pr

R~GSO!. ~1.7b!

In Eqs. ~1.7a! and ~1.7b!, we have used thenonlocal picture-changing operatorsX6,r
1/2 in ~C25!

~which has been introduced by Preitschopf–Thorn–Jost11!, as well asXr
0 in ~C14!.12 On the other

hand, ther th external operatorY@ r̄ # and Y@r # are respectively thelower and upper inverse
picture-changing operator defined@seeYr(wr) in ~C8!# by

Y@ r̄ #[Yr~2A21! and Y@r #[Yr~1A21!. ~1.8!

The r th external operatorPr(1) in ~1.7a! and Pr(
1
2) in ~1.7b! are respectively the projectio

operators~into 1 picture and1
2 picture!, since we find

„Pr~p!…25Pr~p! for p51 and 1
2, ~1.9!

by using Eqs.~C22!–~C24! and ~C32!–~C36!. With the help of the ‘‘commutability’’~C38! and
~C39!, it can be proved11 that

~Pr
p~r !!25Pr

p~r ! . ~1.10!

Hereafter,Pr
p(r ) will be referred to as the ‘‘projection operator into theB0-gauge.’’ We impose

that both fieldino’suCNS& r in ~1.1! anduCR& r in ~1.2! are Grassmanodd, and we should use in Eq
~1.1! @~1.2!# the following ~r th external! GSO-projection operator13 Pr

p(r ) ~GSO! @for p(r )5R,
NS#:

Pr
p~r !~GSO![S 1

2
1

1

2
«p~r !

•expS A21•pS pr~f!1(
j 50

4

pr~f j !D D D
3S )

w5w j ,f
S 1

2
1

1

2
«p~r !

•exp„A21•2ppr~w!…D D , ~1.11!

where the constant«p(r ) is defined by

«p~r ![ H 21 for p~r !5R,
11 for p~r !5NS. ~1.12!
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In Eq. ~1.11!, pr(f) @pr(f
j )# is the zero-mode’s operator in the fracting operatorf ~the j th

spining operatorf j for j 50 – 4! defined by Eq.~A3!. @In this paper, eigenvalues ofpr(f) and
pr(f

j ) will be called respectively the fracting number and thej th spining number, and all of them
should be integers~half-integers! in the NS~R! sector.# The last factor on the right-hand side o
Eq. ~1.11! shows that any eigenvaluepr(w) ~for w5f j ,f! should be some~half-!integer in the
NS ~R! sector, while the first factor on the right-hand side of Eq.~1.11! shows that the eigenvalu
of pr(f)1( j 50

4 pr(f
j ) should be some even~odd! integer in the~r th external! GSO-allowed NS

~R! sector.
At this stage, we summarize briefly our previously obtained14 results onphysical@r th exter-

nal# NS ~R! states, especially from the point of the projection operatorsPr(B0) in ~1.5! and
Pr

NS(1) in ~1.7a!# ~Pr
R(1/2) in ~1.7b!!; ~the r th external! Grassmanoddphysical NS statesub(0)& r

~in 0 picture! and ub(1)& r ~in 1 picture! have been constructed14 respectively by Eqs.~D1! and
~D5!. In the on-shell limit~D4!, these~r th external! physicalNS states can be proved to have t
following properties:

Qr
NSub~p!& r5B0,r ub~p!& r5L0,r ub~p!& r50 ~ for p50,1! ~1.13!

and

Pr
NS~1!ub~1!& r5ub~1!& r . ~1.14!

Equations~1.13! and~1.14! show that physical statesub(1)& r in ~D5! are thesimultaneouseigen-
states of bothPr(B0) and Pr

NS(1). As for the ~r th external! Grassmanevenphysical R states

u f (6 1
2)& r in 61

2 picture, they can be constructed14 by Eqs.~D12! and ~D13!. @Incidentally, exp(12
•fj) for j 50 – 4 will always be assumed to be Grassman even, by choosing proper co
factors.15 In this paper, quantities named by ‘‘-on’’~‘‘-ino’’ ! will be Grassmaneven~odd!. Then,
the last part on the right-hand side of the FMS spinor9 in ~A24! has been called the ‘‘octon’

~‘‘octino’’ !14 in the case when( j 51
4 «h(r )

j 5even ~odd!, while exp(12•f
0) has been called the

‘‘spinon.’’ 14 On the other hand, wecanconsidertwo cases when the operator exp(21
2•f) is either

Grassman evenor odd, by choosing the different cocycle factors. In theeven~odd! case, it will be
referred to as the ‘‘fracton’’~‘‘fractino’’ !. Therefore, the Grassmaneven physicalstate~D13! can
be obtained in the ‘‘fracton’’~‘‘fractino’’ ! case, by using the ‘‘octon’’~‘‘octino’’ ! in Eq. ~D13!.
This fact is important in constructing type IIA and type IIB closed superstring theories. Altho
we exclusively consider the ‘‘fracton’’ case in this paper, the ‘‘fractino’’ case can be simil
analyzed. Incidentally, GSO-projection operator~1.11! in the R sector is the one to be used in t
‘‘fracton’’ case. In the on-shell limit~D14!, the @r th external# physicalR states~D12! and~D13!
are shown to have the following properties:

Qr
Ru f ~6 1

2!& r5B0,r u f ~6 1
2!& r5L0,r u f ~6 1

2!& r50, ~1.15!

as well as

Pr
R~ 1

2!u f ~1 1
2!& r5u f ~1 1

2!& r . ~1.16!

The ‘‘r th external BRST chargino in thep-representation’’ is denoted byQr
p ~for p5NS,R!,

which will be defined by Eq.~B27! and has been used in Eqs.~1.13! and~1.15!. Incidentally,Qr

in ~B28! will be referred to as the ‘‘r th external BRST-chargino in the bo-~sonized! representa-
tion.’’ These BRST charginos inthreerepresentations can be proved to be just equal to each o

Qr
NS5Qr

R5Qr @see Eq.~B29!#. ~1.17!

With the help ofuC(1)& r in ~1.3! and uC( 1
2)& r in ~1.4!, we investigate the open QSFT in th

‘‘ B0-gauge,’’ which is described by the following gauge-fixed actionSGF(C):
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SGF~C!5SKIN~C!1SINT~C!, ~1.18!

where the kinetic termSKIN(C) is given by

SKIN~C![ 1
2•^nS~r ,s!uY@ r̄ #•Y@r #•Qr

NS
„:uC~1!& r•uC~1!&s :…

1 1
2•^nS~r ,s!uY@ r̄ #•Qr

R
„:uC~ 1

2!& r•uC~ 1
2!&s :…, ~1.19!

while the interaction termSINT(C) is given by

SINT~C![ 1
3G•^nS~r ,s,t !uY@ r̄ #•Y@r #„:uC~1!& r uC~1!&suC~1!& t :…

1G•^nS~r ,s,t !uY@ r̄ #„:uC~1!& r uC~ 1
2!&suC~ 1

2!& t :…, ~1.20!

G being some~dimensionless! coupling constant. The~cycle-symmetric! elementary N-vertex
functino ^nS(1,2,...,N)u used in Eq.~1.19! @~1.20!# is defined later by Eq.~2.14! as the function of
the r th external operatorsw r ’s ~for r 51 –N! ~where w r ’s representX6 j , f j , s, f, x for j
50 – 4!. The expectation value overall external operators is taken in Eqs.~1.19! and ~1.20!, so
that the gauge-fixed actionSGF(C) in ~1.18! is the function of thequantizedbose fieldsfB’s and
thequantizedfermi fieldscF’s. We notice that the kinetic termSKIN(C) in ~1.19! is the linear sum
over all normal-ordered products:fBfB8 : ’s and :cFcF8 : ’s, while the interaction termSINT(C)
in ~1.20! is the linear sum overall normal-ordered products :fBfB8fB9 : ’s and :fBcFcF8 : ’s,
coefficients of these products being justc numbers.@Normal ordering : : will be defined later by
the operator product expansions~1.25!–~1.27! among fieldinos.#

We consider the scattering amplitude amongNB physicalbosonic particles andNF physical
fermionic particles, each of which are excited modes of open NS~R! superstring. Each of thes
physicalbosonic@fermionic# particles are specified by the quantum numberbr for r 512NB @f r

for r 5(NB11)2(NB1NF)#. Then we construct~for r 51 –N! the operatorsBbr
$f% andF f r

$c%
by the following formulas:

Bbr
$f%5^nS~r 8,r !uQr 8

NS
•Y@ r̄ 8#•Y@r 8#uC~1!& r 8•ubr~1!& r for r 512NB ~1.21a!

and

F f r
$c%5^nS~r 8,r !uQr 8

R
•Y@ r̄ 8#uC~1/2!& r 8•u f r~1/2!& r for r 5~NB11!2~NB1NF!.

~1.21b!

Expectation values over external operators are taken in Eq.~1.21a! @~1.21b!#, so thatBb$f%
(F f$c%) is the linear sum ofquantizedbose fieldsfB’s ~fermi fieldscF’s!, and it will be called
the physicaloperator of theb ~ f ! particle.@Quantization offB’s andcF’s will be imposed later
by the ‘‘operator product expansion among fieldinos,’’ contractions among NS and R fiel
being given by the formulas~1.26! and ~1.27!, respectively. Furthermore, we shall modi
SINT(C) in ~1.20! into SINT

M (C) in ~3.55!.# We propose that the scattering amplitude among th
physicalNS and R particles~the number of which being respectively equal toNB andNF! is given
by the following formula:

~NB ,NF![^f5c50u~TW X0•exp„SINT
M ~C!…!connected

3S )
r 51

NB

Bbr
$f% D •S )

r 5NB11

NB1NF

F f r
$C% D uf5c50&, ~1.22!

where the expectation value overall quantizedbose fieldsfB’s and fermi fieldscF’s should be
taken.@The suffix ‘‘connected’’ in Eq. ~1.22! shows theconnectedpart ofTW X0•exp„SINT

M (C)…. See
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Eq. ~3.56!. We remark that the formula~1.22! in the open QSFT corresponds to the LSZ reduct
formula in the quantum field theory~QFT!.16# In Eq. ~1.22!, the bra statêf5c50u and the ket
stateuf5c50& satisfy respectively that

^f5c50ufB~2 !505^f5c50ufF~2 ! for any negative frequency parts

fB~2 ! and cF~2 ! ~1.23a!

and

fB~1 !uf5c50&505fF~1 !uf5c50& for any positive frequency parts

fB~1 ! and cF~1 !, ~1.23b!

together with the following normalization condition:

^f5c50uf5c50&51. ~1.24!

Furthermore, the time-ordered products amongquantizedbose fieldsfB’s ~quantizedfermi fields
cF’s! in Eq. ~1.22! are given in terms of the ‘‘time-ordered product among fieldinos’’ as follow

~1.25a!

to be referred to as the ‘‘operator product expansion’’~OPE! among fieldinos. In OPE~1.25a!, we
have used the picture numberp(r ) @for r 5g, d# defined by

p~r !5H 1 for p~r !5NS,
1
2 for p~r !5R.

~1.25b!

The first term on the right-hand side of the OPE~1.25! represents the normal-ordered produ
among fieldinos, which is to be obtained by moving any negative frequency partsfB(2) and
cF(2) to the left of any positive frequency partfB(1) andcF(1). On the other hand, by taking
account of Eq.~3.35! in Ref. 11, thecontractionamong the open NS fieldinos is given by

~1.26!

while the contraction among the open R fieldinos is given by

~1.27!

which just corresponds to Eq.~3.17! in Ref. 11. In Eqs.~1.26! and ~1.27! we have usedPr
p(r ) in

~1.4!.
Comment:Our propagator~1.26! of the open NS superstring involves the symmetrizat

amongX1,g
1/2

•X2,g
1/2 and X2,g

1/2
•X1,g

1/2 , so that it can berewritten @with the help of the ‘‘commut-
ability’’ ~C39!# into the expression~3.1!. The explicit formula of thesmallgluing vertex functino
unS(g,d)& @which is antisymmetric underg↔d and to be used in the contractions~1.26! and
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~1.27!# will be given later by the formulas~2.16!–~2.19!. It is to be noticed that the contractio
among fieldinos~1.26! @~1.27!# represents the contraction amongquantizedbose~fermi! fields, i.e.,

fB•fB8 @cF•cF8#.
In this paper, we will show in detail how we can calculate the physical scattering ampl

~1.22!, which will be found to satisfy the definite conservation laws of the following quan
numbersG, F, andH ~in eachg-loop!. The operatorGr given by

Gr[:exp„gG•s r~yr !…•exp„f G•f r~yr !…•exp„hG•x r~yr !… ~1.28!

is assigned with the ghosting numberG, the fracting numberF, and the hilberting numberH,
which are defined respectively by

~G,F,H ![~gG , f G ,hG!. ~1.29!

These quantum numbersK(Gr) @K(Gr8)# for Gr @Gr8# are assumed to be additive, so that we ha
for K5G,F,H that

K~Gr•Gr8![K~Gr !1K~Gr8!. ~1.30!

Later in this paper, we shall find it convenient to define the picturing numberP by

P[G1F, ~1.31!

since any componentQr
(g) @see Eq.~C2!# of the BRST chargino has the equal picturing numb

P51. Incidentally, we will find later@in Eq. ~2.12!# thatGr in ~1.28! is the primary operator of the
conformal weight given by

1
2•gG~gG23!2 1

2• f G~ f G12!1 1
2•hG~hG21!. ~1.32!

In Sec. II, we define the ‘‘inlayed coordinate systems~phere!’’ ~ICS s! by using Gidding–
Martinec’s fundamental equation~GM-FE!. We introduce inlaying operatorsWw@¯# ’s ~for w

5XW , f j , s, f, x!. For eachw-mode, we construct the inlaying vertex functions^IV
w(1,...,N)u in

the ‘‘ICS s,’’ which inlay the r th externalprimary operators~at ther th disk coordinatewr! into
the inlint operators@at ther th inlayed coordinatezrs(wr)#. Then we propose formulas, which giv
the small gluing functino unS(g,d)& @large gluing function uVL(g,d)&#. Then we can prove the
‘‘gluing theorem,’’ which exhibits thegd-gluing effect caused by thesmall vertex functino
unS(g,d)&. In Sec. III, we first point out that our originalSINT(C) in ~1.20! doesnot lead to the
BRST-invariant theory. Therefore, we are forced to introduce the counter termDSINT(C), in such
way that ourmodifiedactionSINT

M (C) given by

SINT~C!→SINT
M ~C![SINT~C!2DSINT~C! ~1.33!

leads to the~BRST-invariant! ‘‘ amputated N-scatts’’ @denoted byM^SC@ ...#u#, which satisfy the
‘‘general conservation of thetotal BRST chargino’’~GCTC!. The ‘‘amputatedN-scatts’’ as well
as DSINT(C) can be calculated successively.~It should be noticed that there does not exist a
colliding Wendt’s singularity in our amplitudes, since they involve onlynonlocalpicture-changing
operators.! In Sec. IV, we calculate the physical scattering amplitudes ing-loops, applying the
method developed in our previous paper. With the help of Samuel’s fundamental equation~S-FE!,
we introduce the ‘‘inlayed coordinate system~genus! g’’ ~ICS g!. Then we propose the explici
formula for theanalytic inlint gluing operator̂ Vg(gB ,gF)& ~in QSFT!, with the help of which we
can derive various trace-formulas ing-loops. In Sec. V, we summarize and conclude our resu
In Appendix A, we define various~external and inlint! operatorsw’s ~i.e., w5X6 j , f j , s, f, x!
used in this paper. We also define the normal orderings and contractions in the NS-, R-,S-, and
bo-representations. In Appendix B, we define the stress operators~T’s! ~BRST charginosQ’s! in
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the NS-, R-, and bo-representations. These operators inthreerepresentations are shown to be ju
equal to each other in the case whenD510, whereD is the space–time dimension.@See Eq.~1.17!
for Q’s.# We also derive inlaying identities for these operatorsT’s ~Q’s!. Then, we prove that any
inlaying N-vertex function in the ‘‘ICSs’’ ~denoted bys^IV(1,...,N)u! conserves the total BRST
chargino, and this result will be referred to as the ‘‘special conservation of the total charg
~SCTC!. In Appendix C, we give various operators oflocal ~inverse! picture-changing operator
X’s ~Y’s!. We also derivenonlocalpicture-changing operators@which are to be used in Eqs.~1.7a!
and~1.7b!#. In Appendix D, we summarize various results ofphysical vertex operatorsin the NS
and R sectors, which are used in describing external physical NS and R particles, respectiv
Appendix E, we construct thesmall gluing vertex functino~large gluing vertex function! and we
derive gluing identities and gluing relations satisfied by this gluing vertex functino~function!. It is
to be noticed that the gluing theorem can be obtained by using thesmall gluing vertex functino.
Finally we remark howelementary N-vertex functinoŝ nS(1,...,N)u @to be used inSKIN(C) in
~1.19!, SINT(C) in ~1.20!, etc.# can be constructed by using the ‘‘inlayed coordinate sys
m~idpoint!’’ ~ICS m!, which is defined by using the Gross–Jevicki’s fundamental equation~GJ-
FE!. Then, applying the gluing theorem to these elementary vertex functinos, we derive v
useful formulas among them.

II. INLAYING VERTEX FUNCTIONS, INLAYING IDENTITIES, AND GLUING THEOREM

In our previous paper5 on quantum open bosonic string field theory~open QBFT! in the
‘‘ B050 gauge,’’ we have introduced various techniques which can be generalized into
which make us possible to calculate the physical scattering amplitudes~1.22! in open QSFT. In
this section, we shall briefly explain howelementary N-vertex functino^nS(1,2,...,N)u @which is
cycle-symmetricunder 1→2→¯→N→1 and to be used in definingSKIN(C) in ~1.19!, SINT(C)
in ~1.20!, Bb$f% in ~1.21a!, and F f$c% in ~1.21b!# can be explicitly given in terms of ther th
external operatorsw’s ~for r 51 –N!.

In open QSFT, thetreephysical scattering amplitudes can be calculated by using the Riem
surfaceR with one boundary~which is located on the real axis in the complexz plane!. All
puncturesZrs’s ~for r 51 –N! are located on the real axis, and all interaction pointsY 1i

s ’s @for
i51 – (N22)# among open strings exist in the upper-half complexz plane@to be denoted byH1#.
RelabelingN punctures~except for the relabeling which is reduced to some cyclic-permutat!
produces various different amplitudes. We construct the Schottky doubleD of R, by taking two
copies ofR and gluing together identical parts of the boundary. Thus we can enlarge the Rie
surfaceR even into the lower-half complexz plane~to be denoted byH2!.

In the following, we briefly explain how the Schottky doubleD can be described by using th
following ‘‘Gidding–Martinec’s fundamental equation’’~GM-FE!, which holds within thewhole
complexz planeC(5H11H2):

dzs

drs
5ns~zs!5Rs•

P r 51
N ~zs2Zrs!

„Pi51
N22~zs2Y 1i

s !•~zs2Y 2i
s !…1/2

. ~2.1!

We notice that GM-FE ~2.1! gives the strip coordinaters5t1A21s in terms of the inlayed
coordinatezs @say, byrs5rs(zs)#. With the help ofrs(zs) ~for anyzsPC!, the Schottky doubleD
can be drawn with the strip coordinaters . Inversely solvingrs5rs(zs), we findzs5zs(rs) which
means the strip coordinaters is inlayed into the inlayed coordinatezs(PC). In order for GM-FE
~2.1! to be able to describe the Schottky doubleD, the parameters in GM-FE ~2.1! should be
chosen so as to satisfy following conditions~1! and~2!: ~1! The change of the variables should
be 62p whenz goes alongany small circle around ther th punctureZrs ~for r 51 –N!. ~2! The
imaginary part ofrs(Y 6i

s ) at any interacting pointY 6i
s should be equal to6p/2 for any i51

2(N22). With the help of ‘‘equal-t curves’’ passing through any interacting pointY 6i
s , we can

divide C into N punctured ring domainsplus (N23) unpunctured ring domains~which do not
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include anyZrs!. When condition~1! is satisfied, ther th punctured ring domain~which includes
the r th punctureZrs! is located within the unit diskuwr u,1, where ther th disk coordinate5 wr is
defined by the following Eq.~2.2!:

wr[A21•exp~7„rs~zs!2rs~Y 1i
s !…! for Rers~Zrs!56`. ~2.2!

On the boundaryuwr u51 of ther th punctured ring domain, two interacting points~say,Y 6i
s ! are

located at ther th disk coordinatewr56A21. On the other hand, theI th unpunctured ring
domain@for I 512(N23)# describes the open string, which is freely propagating between
upper interacting points~say, fromY 1i

s and toY 1k
s !. Then,TI@[urs(Y 1i

s )2rs(Y 1k
s )u# will be

referred to as the theI th propagating strip-time~of the I th unpunctured ring domain!. We have
seen5 that TI ’s @for I 512(N23)# can be used as the modular parameters, which specify
Riemann surfaceR ~having one boundary! with N punctures. The inlayed coordinate syste
s~phere! @‘‘ICS s’’ # is defined to be the system with the inlayed coordinatezs(rs), which is
obtained by using GM-FE ~2.1!. In particular, the ‘‘ICSm~idpoint!’’ 5 is the special case of th
‘‘ICS s~phere!’’ where there doesnot exist anyunpunctured ring domain.

Comment:Gross–Jevicki17 have investigated the ‘‘inlayed coordinate systemm~idpoint!’’
~ICS m! which is defined by Eq.~E36!. On the other hand, Gidding–Martinec and Samuel–Blu
have used18 Eq. ~2.1! in calculating the tree amplitudes. Therefore, Eq.~2.1! @~E36!# will be
referred to as ‘‘Gidding–Martinec’s fundamental equation’’~GM-FE! @‘‘Gross-Jevicki’s funda-
mental equation’’~GJ-FE!#.

In open QSFT, we use various modes’ operatorsX6 j , f j , s, f, and x, ~introduced by
Friedan–Martinec–Schenker9!, i.e., the string coordinateX6 j , the j th spinning operatorf j ~for
j 50 – 4!, the ghosting operators, the fracting operatorf, and the hilberting operatorx, all of
which are defined by Eqs.~A3!–~A5b!. The argument of ther th externalstring’s operators is
taken to be ther th disk coordinatewr , so that ther th externaloperators live only within theunit
disk uwr u,1. On the other hand, the argument of theinlint string’s operators within ther th
punctured ring domain is ther th inlayed coordinatezrs(wr), which is determined as the functio
of wr by solvingwr→rs→zs . @See Eq.~1.10! in Ref. 5.# For eachr th punctured ring domain, we
introduce thefollowing rth inlaying operatorWr

w@zrs(wr)# ~for eachw-mode!, which is defined by
the following formula as the functional of the inlint operatorw„zrs(wr)… as well asw r(wr ;1)
@which is the positive-frequency part of ther th external operatorw r(wr)#, wr being integrated
along asmall closed path enclosing 0 in the anti-clockwise direction#: As for XW -modes, we have5

Wr
XW @zrs~wr !#[expS (

j 50

4 R
0

dwr

2pA21
R

0

dwr8

2pA21
]wr

Xr
1 j~wr ;1 !]w

r8
Xr

2 j~wr8 ;1 !

• log
zrs~wr !2zrs~wr8!

wr2wr8
D

3:expS (
6

(
j 50

4 R
0

dwr

2pA21
X6 j

„zrs~wr !…•]wr
Xr

7 j~wr ;1 !D :, ~2.3!

while we have forw(5f j ,s,f,x)-mode that

Wr
w@zr s~wr !#

[expS «w
f

2 R
0

dwr

2pA21
R

0

dwr8

2pA21
]wr

w r~wr ;1 !]w
r8
w r~wr8 ;1 !log

zrs~wr !2zrs~wr8!

wr2wr8
D

3:expS «w
f
• R

0

dwr

2pA21
S w„zrs~wr !…1«w

f
•

Q~w!

2
log„zrs

~1!~wr !…D •]wr
w r~wr ;1 !D :. ~2.4!
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$The inlaying operatorWs@¯# given by Eq.~2.4! has been denoted byWw@¯# in Ref. 5.% In the
formulas ~2.3! and ~2.4!, we have used«w

f in ~A5b! and the following background charge
Q(w)’s:

Q~X6 j !5Q~f j !50, Q~s!523, Q~f!512, Q~x!521. ~2.5!

With the help of the formulas~2.3!–~2.5!, we define that

Wr@zrs~wr !#[ )
w5XW ,f j ,s,f,x

Wr
w@zrs~wr !# for r 512N. ~2.6!

For eachw(5XW ,f j ,s,f,x)-mode, the ‘‘standard ket state’’upr(w)50& r and the ‘‘standard
bra state’’r^qr(w)50u are defined respectively as states satisfying conditions~A6! and~A7!. On
the other hand, the ‘‘dual standard bra state’’s^ps(w)50u is defined by Eq.~A9!. These states are
normalized so as to satisfy normalization conditions~A8! and ~A10!. Then, with the help of the
techniques used in Ref. 5, we introduce in this paper the following inlayingN-vertex function

s^IV
w(1,2,...,N)u in the ‘‘ICS s’’ @for w(5XW ,f j ,s,f,x)-mode#:

s^IV
w~1,2,...,N!u[RW •S )

r 51

N

r^qr(w)50uWr
w[zrs~wr !] D for w5XW ,f j ,s,f,x, ~2.7!

RW being theradial ordering defined by Eq.~A12!. With the help of the formulas~2.6! and~2.7!,
we shall introduce the following~Grassman even! inlaying N-vertex function in the ‘‘ICSs:’’

s^IV(1,2,...,N)u[ )
w5XW ,f j ,s,f,x

s^IV
w(1,2,...,N)u

[^qext50uRW •S )
r 51

N

Wr@zrs~wr !# D , ~2.8!

where^qext50u is the ‘‘standard bra state’’ given by

^qext50u[ )
w5XW ,f j ,s,f,x

S )
r 51

N

r^qr(w)50u D . ~2.9!

In much the same way as in our previous paper,5 we can prove the followinginlaying identityin
the ‘‘ICS s:’’ For any externalprimary operatorGr(w8) @of the conformal weightd(G)#, we have
that

s^IV
w~1,2,...,N!uGr~w8!5s^IV

w~1,2,...,N!u„zrs
~1!~w8!…d~G!

•G„zrs~w8!…, ~2.10!

which shows that ther th external primary operatorGr(w8) at the arbitrarily givenw8 ~for uw8u
,1! is inlayed into the inlint primary operatorG„zrs(w8)… at ther th inlayed coordinatezrs(w8),
which has already beenradial orderedwith respect to any inlint operator in the inlaying verte
function s^IV

w(...)u.
Comment:Although the inlint operatorG„zrs(w8)… is located on the right of (RW •PWr

w@¯#)
@in Eq. ~2.10!#, G„zrs(w8)… is actually located at theradial-orderedplaceamid (RW •PWr

w@¯#).
This is because theexternalGr(w8) is exchanged with~i.e., inlayed into! the inlint G„zrs(w8)…, G
being createdout ~at the radial-ordered place! from (RW •PWr

w@¯#). @See the proof of Eqs
~2.23!–~2.25! in Ref. 5 for more details.#

Hereafter, the inlaying identity~2.10! will simply be expressed by
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Gr~w8!⇒
I
„zrs

~1!~w8!…d~G!
•G„zrs~w8!… ~ to be referred to as the ‘‘inlaying identity’’!.

~2.11!

As we have proved ‘‘Eq.~2.25! in Ref. 5,’’ we can similarly prove that

:exp„p•w r~w8!…:⇒
I
„zrs

~1!~w8!…«w
f
•~1/2!p„p1Q~w!…:exp~p•w„zrs~w8!…!: for w5f j ,s,f,x,

~2.12!

where we have used the constant«w
f @Q(w)# defined by Eq.~A5b! @~2.5!#. Incidentally, «w

f

•

1
2p(p1Q(w)… is the conformal weight of the primary operator: exp(p•w(* )):. @See the conforma

weight ~1.32!.#
The N-vertex functino s^V(1,2,...,N)u in the ‘‘ICS s’’ is constructed from the inlaying vertex

function ~2.8! by

s^V~1,2,...,N!u[~^Q50uj0!•s^IV~1,2,...,N!u~ uQ50&!, ~2.13!

j0 being thezero-modeof the inlint hilbertino ~A27!. Then theelementary N-vertex functino
^nS(1,2,...,N)u @used in Eqs.~1.19!–~1.21b!# is constructed by using the inlayed coordinat
zrm(wr)’s in the ‘‘ICS m’’ @see Eq.~E34!# and it is given by

^nS~1,2,...,N!u[m^V~1,2,...,N!u, ~2.14!

which is cycle-symmetricunder the cyclic permutation 1→2→¯→N→1. @See cycle-symmetric
coordinateszr(wr)’s in ~E35!.# In Eq. ~2.13!, ^Q50u is the ‘‘inlint dual standard bra state’
defined by

^Q50u5~ uQ50&!†. @See Eq.~D2! for r 50.# ~2.15!

At this stage, we define thesmall gluing vertex functinounS(g,d)&, which is to be used in
defining the propagator~1.26! of the open NS superstring@the propagator~1.27! of the openR
superstring#. Thesmallgluing vertex functinounS(g,d)& ~which is antisymmetric underg↔d! is
constructed by

unS~g,d!&5h0,guVL~g,d!&, ~2.16!

where thelarge gluing vertex functionuVL(g,d)& is given by

uVL~g,d!&[ )
w5XW ,f j ,s,f,x

uVw~g,d!&. ~2.17!

Furthermore, eachuVw(g,d)& ~for w5XW , f j , s, f, x! in Eq. ~2.17! is constructed by the following
formulas: ForXW -modes, we have that

uVXW ~g,d!&[expS 2 (
n51

`

(
6

(
j 50

4
~2 !n

n
J2n,g~X6 j !•J2n,d~X7 j !D

3S (
$p6 j %

expS (
6

(
j 50

4

A21•p6 j
•qg~X7 j !D

3expS 2(
6

(
j 50

4

A21•p6 j
•qd~X7 j !D D upg~XW !50&g•upd~XW !50&d , ~2.18!

while we have forw@5f j ,s,f(,x)# that
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uVw~g,d!&[expS 2 (
n51

`

«w
f
•

~2 !n

n
•J2n,g~w!•J2n,d~w!D

3S (
pPZ~11/2!

exp„p•qg~w!…•exp~2„p1Q~w!…qd~w!! D upg~w!50&g•upd~w!50&d

for w5f j ,s,f~ ,x!, ~2.19!

where background chargesQ(w)’s are those given by Eq.~2.5!. Incidentally, uVw(g,d)& ~for w

5XW , f j , f! is Grassmaneven, while uVw(g,d)& ~for w5s,x! is Grassmanodd. @See Appendix E
for more details.#

Using the techniques in Ref. 5, we can prove the following gluing theorem~which will be
useful in calculating tree amplitudes5!.
Gluing theorem: For any primary operatorGg(wg) of conformal weightd(G), we have that

„(^Q50uj0!• l^IV~1,...,N,g!u~ uQ50&!…•Gg~wg!

3„~^Q̃50u j̃0!• r^ Ĩ V~d,N11,...,N1M !u~ uQ̃50&!!•S 1

L0,g
•unS(g,d)& D

5E
0

`

dTg~^Q50uj0!~g^IV~1,...,N,N11,...,N1M !u„zgg
~1!~wg!…d~G!

•G„zgg~wg!…!~ uQ50&!,

~2.20!

where thesmall vertex functinounS(g,d)& is the one given by the formulas~2.16!–~2.19!.
Proof: The gluing theorem~2.20! can be proved similarly to ‘‘Eq.~5.10! in Ref. 5,’’ provided

that we make the following observations. First, the inlaying (N11)-vertex function

l^IV(1,...,N,g)u in the ‘‘ICS l (e f t)’’ inlays the gth external operatorGg(wg) into the inlint
operator „zg l

(1)(wg)…d(G)
•G„zg l(wg)…, which is subsequently conformally mapped in

„zgg
(1)(wg)…d(G)

•G„zgg(wg)… by the conformal mapping operatorU2gd @given by Eq.~5.17! in Ref.
5#. We should notice thatzgg(wg) is the inlayed coordinate within the unpunctured ring domain
the ‘‘ICS g( lued), ’’ while zg l(wg) is the gth inlayed coordinate within thegth punctured ring
domain in the ‘‘ICS l (eft). ’’ The argumentwg in zgg(wg) has been used to show that th
strip-coordinate ‘‘r’’ for zgg(wg) is just equal to the strip-coordinate ‘‘r’’ for zg l(wg). @See ‘‘Eqs.
~5.25! and ~5.26! in Ref. 5.’’# ~Q.E.D.!

Comment:On the left-hand side of Eq.~2.20!, we have used two inlaying vertex function

l^IV(1,...,N,g)u in the ‘‘ICS s5 l (eft)’’ is given in terms of inlint operators w’s, while

r^ Ĩ V(d,N11,...,N1M )u in the ‘‘ICS s5r ( ight)’’ is given in terms of inlint operatorsw̃ ’s. Inlint
operatorsw’s andw̃ ’s are independent of each other. On the other hand,g^IV(1,...,N1M )u on the
right-hand side of Eq.~2.20! is the inlaying vertex function in the ‘‘ICSs5g( lued). ’’ The ‘‘ICS
s5g’’ is the ICS obtained bygd-gluing the ‘‘ICSs5 l ’’ to the ‘‘ICS s5r ’’ as follows. All three
‘‘ICS s5 l , r, g’’ can be described by three GM-FE’s ~2.1! ~with differentmodular parameters!,
provided that the numbers of punctured ring domains of three GM-FE’s are respectively just equa
to N11, M11, andN1M , respectively. Furthermore, the propagating strip-times of theN
1M24) unpunctured ring domains in the ‘‘ICSs5g’’ are just equal tothose of the (N22)
unpunctured ring domains in the ‘‘ICSs5 l ’’ and the (M22) unpunctured ring domains in th
‘‘ICS s5r . ’’ Finally, ‘‘ Tg’’ ~in the ‘‘ICS g’’ ! on the right-hand side of Eq.~2.20! is the new
propagating strip-time of the ‘‘gd th unpunctured ring domain in the ICSs5g, ’’ which has been
createdby gluing the ‘‘g th punctured ring domain in the ICSs5 l ’’ to the ‘‘ d th punctured ring
domain in the ICSs5r . ’’ This propagating strip-timeTg on the right-hand side of Eq.~2.16! has
been obtained through
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1

L0,g
5E

0

`

dTg xL0 ,g and Tg[ logS 1

xD . ~2.21!

Incidentally, zgg(wg) in Eq. ~2.20! is the inlayed coordinate within thegd th unpunctured ring
domain.~See our previous paper5 for more details.!

III. ‘‘AMPUTATED SCATTS’’ AND THE ‘‘GENERAL CONSERVATION OF THE TOTAL
BRST CHARGINO’’

By using the ‘‘commutability’’ ~C39! and formulas~C32!–~C36!, the formula~1.26! is re-
duced to

~3.1!

which is referred to as the propagator of the open NS superstring. On the other hand, by us
‘‘commutability’’ ~C38! and formulas~C22!–~C24!, the formula~1.27! is also reduced to

~3.2!

which is referred to as the propagator of the open R superstring.
In general, the operatorTW X0•exp(SINT

(M)(C)) @with SINT
(M)(C) in ~1.33!# can be calculated with

the help of Wick’s theorem,16 by using the propagator~3.1! @~3.2!# of the open NS~R! superstring.
The result obtained by applying Wick’s theorem can be expressed by

TW X0•exp„sINT
~M!~C!…[11 (

N50

`

(
$p~r !%

~M!^S@p~1!,p~2!,...,p~N!#u•
1

N!
:S )

r 51

N

uC„p~r !…& r D : ~3.3a!

[:expS (
N50

`

(
$p~r !%

~M!^SC@p~1!,p~2!,...,p~N!#u•
1

N!
:S )

r 51

N

uC„p~r !…& r D : D :.

~3.3b!

Hereafter, the quantities with~out! the superscript ‘‘M’’ will be referred to as the(un)modified
ones. In the expansions~3.3a! and ~3.3b!, any (M)^S(C)@p(1),p(2),...,p(N)#u ~which doesnot
involve any operatorfB andcF! is obtained bycontractionsand it is assumed to be complete
antisymmetric under any permutation of arguments, and we have used the following sho
notation for the summation:

(
$p~r !%

[)
r 51

N

(
p~r !51/2,1

. ~3.4!

Furthermore, (M)^SC@p(1),p(2),...,p(N)#u is the connected part in
(M)^S@p(1),p(2),...,p(N)#u. In Eqs.~3.3a! and~3.3b! and hereafter, the ordering in the produ
among external operators will be defined by

)
r 51

N

Fr[F1•F2¯FN , ~3.5!
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for any Grassman even or odd operatorsFr ’s. In Eqs.~3.3a! and~3.3b!, anyquantizedbose field
fB andquantizedfermi field cF is included in thenormal-orderedproduct of fieldinos, where the
normal ordering: : should be taken with respect to any quantized bose fieldfB and fermi fieldcF .

We first notice that

(
N50

`

(
$p~r !%

1

N!
•^S@p~1!,p~2!,...,p~N!#uS 11«S (

r 51

N

Qr D D :S )
r 51

N

uC„p~r !…& r D :

5 (
N50

`

(
$p~r !%

1

N!
•^S@p~1!,p~2!,...,p~N!#u:S )

r 51

N

~11«•Qr !uC„p~r !…& r D :1O~«2!,

~3.6!

« being an arbitrary Grassmannodd constant.@Actually, «2[0 in Eq. ~3.6! and hereafter.# Here-
after, we investigate the interaction termSINT(C̊) which is obtained fromSINT(C) by the follow-
ing replacements:

uC„p~r !…& r→~11«•Qr !uC„p~r !…& r~[uC̊„p~r !…& r) for r 512N. ~3.7!

Since the elementary three-vertex function~2.14! satisfies that

^nS~r ,s,t !u~Qr1Qs1Qt!50 @see Eq.~B34!#, ~3.8!

we find that

SINT~C̊!5SINT~C!. ~3.9!

Thus, we are lead to investigate

TW X0•exp„SINT~C̊!…~[TW X0•exp„SINT~C!…!

5 (
N50

`

(
$p~r !%

1

N!
•^S̊@p~1!,p~2!,...,p~N!#u:S )

r 51

N

uC̊„p~r !…& r D : ~3.10a!

5 (
N50

`

(
$p~r !%

1

N!
•^S@p~1!,p~2!,...,p~N!#u:S )

r 51

N

uC„p~r !…& r D :,

~3.10b!

which is found to give that

^S̊@p~1!,p~2!,...,p~N!#u2^S@p~1!,p~2!,...,p~N!#u5^S@p~1!,p~2!,...,p~N!#uS 2«•(
r 51

N

Qr D .

~3.10c!

Furthermore, the difference (^S̊@¯#u2^S@¯#u) on the left-hand side of Eq.~3.10c! can be found

by calculatingSINT(C̊)•SINT(C̊) up to the ‘‘first order of«.’’ First, we find in the NS sector tha

~3.11!
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while in the R sector we find that

~3.12!

With the help of the formulas~3.11! and ~3.12!, we can calculate the following contractions:

~3.13!

and

~3.14!

Thus it is concluded that

(
$p%

1

4!
~^S̊g50

C @p~B!,p~C!,p~D !,p~E!#u2^Sg50
C @p~B!,p~C!,p~D !,p~E!#u!

3:uC„p~B!…&BuC„p~C!…&CuC„p~D !…&DuC„p~E!…&E:

52«•G2^nS~B,C,D,E!u~Y@ Ī #•Y@ I #:„uC~1!&BuC~1!&CuC~1!&DuC~1!&E…:

1Y@ Ī #:~ uC~ 1
2!&BuC~ 1

2!&C)X1BC
1/2

„uC~ 1
2!&DuC~ 1

2!&E…:)

2«•G2^nS~B,C,D,E!u~ :„uC~1!&BuC~ 1
2!&C…Y@ Ī #„uC~1!&DuC~ 1

2)&E…:

1:„uC~1!&BuC~ 1
2!&C…Y@ Ī #„uC~ 1

2!&DuC~1!&E…:

1:„uC~ 1
2!&BuC~1!&C…Y@ Ī #„uC~1!&DuC~ 1

2!&E…:

1:„uC~ 1
2!&BuC~1!&C…Y@ Ī #„uC~ 1

2!&DuC~1!&E…:

1:„uC~1!&BuC~1!&C…Y@ Ī #Y@ I #X1,DE
1/2

„uC~ 1
2!&DuC~ 1

2!&E…:

1:„uC~ 1
2!&BuC~ 1

2!&C…Y@ Ī #Y@ I #X1,DE
1/2 ~ uC~1!&DuC~1!&E!:), ~3.15!

where we have used thecycle-symmetricelementary vertex functinônS(A,B,C,D)u, which is
obtained by applying the gluing theorem~E33b!. Unfortunately, Eq.~3.15! does not vanish iden
tically, and it is just equal to
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2«•G2^nS~B,C,D,E!uY@ Ī #~X1BC
1/2 2X@ Ī # !:„uC~ 1

2!&BuC~ 1
2!&CuC~ 1

2!&DuC~ 1
2!&E…:

2«•G2^nS~B,C,D,E!uY@ Ī #Y@ I #~X1,BC
1/2 2X@ I # !:„uC~1!&BuC~1!&CuC~ 1

2!&DuC~ 1
2!&E

1uC~ 1
2!&BuC~ 1

2!&CuC~1!&DuC~1!&E…:. ~3.16!

With the help of

X1BC
1/2 2X@ Ih#[$QB1QC ,Dh1BC%, @see Eqs.~C3! and ~C25!#, ~3.17!

the term~3.16! can be rewritten into

2«•G2^nS~B,C,D,E!uY@ Ī #•D̄1BC
1/2

•~QQ B1QQ C1QQ D1QQ E!:„uC~ 1
2!&BuC~ 1

2!&CuC~ 1
2!&DuC~ 1

2!&E…:

2«•G2^nS~B,C,D,E!uY@ Ī #Y@ I #•D1BC
1/2

•~QQ B1QQ C1QQ D1QQ E!

3:„uC~1!&BuC~1!&CuC~ 1
2!&DuC~ 1

2!&E1uC~ 1
2!&BuC~ 1

2!&CuC~1!&DuC~1!&E…: ~3.18a!

[(
$p%

1

4!
•^DSg50

C @p~B!,p~C!,p~D !,p~E!#u~2«!~QQ B1QQ C1QQ D1QQ E!

3:uC„p~B!…&BuC„p~C!…&CuC„p~D !…&DuC„p~E!…&E :. ~3.18b!

With the help of the counter term̂DSg50
C @p(B),p(C),p(D),p(E)#u determined by Eq.~3.18b!,

the ~BRST-invariant! ‘‘amputated 4-scatt’’M^Sg50
C @p(B),p(C),p(D),p(E)#u in 0-loop can be

constructed by

M^Sg50
C @p~B!,p~C!,p~D !,p~E!#u[^Sg50

C @p~B!,p~C!,p~C!,p~D !,p~E!#u

2^DSg50
C @p~B!,p~C!,p~D !,p~E!#u. ~3.19!

The amputated 4-scatt in~3.19! has been constructed so as to satisfy the following ‘‘gene
conservation of the total BRST chargino,’’

M^Sg50
C @p~B!,p~C!,p~D !,p~E!#u~QQ B1QQ C1QQ D1QQ E!50

~ to be referred to as the ‘‘GCTC’’!. ~3.20!

It should be noticed that thecounter term̂ DSg50
C @p(1),...,p(4)#u in Eq. ~3.19! does not contain

any propagator. Thus the interaction is partly modified fromSINT(C) in ~1.20! into SINT
M (4,0),

which is given by

SINT
M ~4,0![SINT~C!2(

$p%

1

4!
•^DSg50

C @p~B!,p~C!,p~D !,p~E!#u

3:uC„p~B!…&BuC„p~C!…&CuC„p~D !…&DuC„p~E!…&E :. ~3.21!

Similarly, we can calculateM^S̃g50
C @p(1),...,p(5)#u in the following formula,SINT

M (4,0) being
given by Eq.~3.21!.
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TW X0•exp„SINT
M ~4,0!…[11 (

N53

4

(
$p~r !%

M^Sg50
C @p~1!,p~2!,...,p~N!#u•

1

N!
:S )

r 51

N

uC„p~r !…& r D :

1 (
$p~r !%

M^S̃g50
C @p~1!,p~2!,....,p~5!#u•

1

5!
:S )

r 51

5

uC„p~r !…& r D :

1other terms. ~3.22!

@We notice that thus obtainedM^S̃g50
C @p(1),...,p(5)#u is partly modified from

^Sg50
C @p(1),...,p(5)#u by the effect due to the counter term in ‘‘SINT

M (4.0).’’# Even if we take
account of the ‘‘GCTC’’ in~3.20!, we shall still find that

M^S̃g50
C @p~1!,...,p~5!#uS (

r 51

5

Qr DÞ0. ~3.23!

However, the term~3.23! can be expressed by

^DSg50
C @p~1!,...,p~5!#uS (

r 51

5

Qr D , ~3.24!

where the number of propagators in~the counter term! ^DSg50
C @p(1),...,p(5)#u is lessthan that in

M^S̃g50
C @p(1),...,p(5)#u. $This situation will be imagined by comparing the counter te

^DSg50
C @p(1),...,p(4)#u with ^Sg50

C @p(1),...,p(4)#u.% Then new modified action is~up to this
approximation! constructed by

SINT
M ~4,0!→SINT

M ~5,0!5SINT~C!2(
$p%

(
n54

5
1

n!
•^DSg50

C @p~1!,p~2!,...,p~n!#u

3:uC„p~1!…&1uC„p~2!…&2¯uC„p~n!…&n :. ~3.25!

The ~BRST-invariant! ‘‘amputated 5-scatt’’M^Sg50
C @p(1),...,p(5)#u in 0-loop is also constructed

by

M^Sg50
C @p~1!,...,p~5!#[M^S̃g50

C @p~1!,...,p~5!#u2^DSg50
C @p~1!,...,p~5!#u, ~3.26!

so as to satisfy the following ‘‘GCTC.’’

M^Sg50
C @p~1!,...,p~5!#uS (

r 51

5

Qr D 50. ~3.27!

In the following, we shall show how to derive thecompletely modified action SINT
M (C), which

together with the formula~3.3b! gives the following ~BRST-invariant! ‘‘ amputated N-scatt’’
M^Sg

C@p(1),...,p(N)#u in g-loops;

M^SC@p~1!,...,p~N!#u5(
g50

`

M^Sg
C@p~1!,...,p~N!#u, ~3.28!

which satisfies the following ‘‘GCTC:’’

M^Sg
C@p~1!,...,p~N!#uS (

r 51

N

Qr D 50. ~3.29!
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Suggested by Eqs.~3.11!, ~3.12!, and~3.16!–~3.21!, we find that BRST-invariant amputate
N-scattM^SC@p(1),...,p(N)#u in ~3.28! can be obtained as follows: Instead ofSINT(C) in ~1.20!,
we consider that

SINT
T ~C1DC̃![ 1

3G•^nS~r ,s,t !uY@ r̄ #•Y@r #:„uC~1!& r1uDC̃~1!& r…„uC~1!&s

1uDC̃~1!&s…„uC~1!& t1uDC̃~1!& t…:1G•^nS~r ,s,t !uY@ r̄ #:„uC~1!& r

1uDC̃~1!& r…„uC~ 1
2!&s1uDC̃~ 1

2!&s…„uC~ 1
2!& t1uDC̃~ 1

2!& t…:. ~3.30!

The r th operatorsuDC̃(1)& r and uDC̃( 1
2)& r used in Eq.~3.30! will be referred to as thecounter

fieldinos, and they are defined respectively to have following properties. Correspondingly to
~1.25!–~1.27!, we have

~3.31!

where contractions are given by

~3.32!

and

~3.33!

The operatorsQg
NS in Eq. ~3.32! andQg

R in Eq. ~3.33! are those satisfying respectively that

$Qr ,Qg
p~g!%[Xg

p~g! for p~g!5NS,R, ~3.34!

whereXg
p(g) is defined by

XI
p~ I ![H (

6

1

2
•X6,I

1/2
•X7,I

1/2 for p~ I !5NS,

XI
0 for p~ I !5R.

~3.35!

On the other hand, the contractions among anyuDC̃(•)& and anyuC(•)& are just equal to zero, so
that we have that

~3.36!

The last contraction term on the right-hand side of Eq.~3.36! is found to be given by
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~3.37!

Similarly to Eqs.~3.13! and ~3.14!, we easily find from Eqs.~3.34! and ~3.37! the following
important identities:

~3.38!

Correspondingly to Eqs.~1.23! and~1.24!, we introduce thecounterbra statê f̃5c̃50u and the

counterket stateuf̃5c̃50&, on which operates anycounterfieldino uDC̃(1)& r and uDC̃( 1
2)&s .

Furthermore, the normal product among anycounterfieldino satisfies

^f̃5c̃50u:„uDC̃~1!& r•uDC̃~ 1
2!&s¯…:uf̃5c̃50&50 ~3.39!

and

^f̃5c̃50uf̃5c̃50&51. ~3.40!

In order to analyze

TW X0•exp„SINT
T ~C1DC̃!…, ~3.41!

we consider the following transformation:

~ uC„p~r !…& r1uDC̃„p~r !…& r)→~11«•Qr !~ uC„p~r !…& r1uDC̃„p~r !…& r)

[~ uC̊„p~r !…& r1uDC̊̃„p~r !…& r). ~3.42!

Similarly to Eq.~3.9!, we find that

SINT
T ~C1DC̃!5SINT

T ~C̊1DC̃
˚

!. ~3.43!

On account of Eq.~3.38!, we obtain that

~3.44!
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Therefore, we find in

~3.45!

that M^Sg50
C @ ...#u is just equal to the one obtained by

~3.46!

which can be calculated by using contractions given by Eq.~3.37!. Thus, we find from Eqs.~3.43!,
~3.45!, and~3.46! that

TW X0•exp„SINT
T ~C̊1DC̃

˚
!…~[TW X0•exp„SINT

T ~C1DC̃!…!

5 (
N50

`

(
$p~r !%

M^S@p~1!,p~2!,...,p~N!#u
1

N!
:S )

r 51

N

~ uC̊„p~r !…& r1uDC̊̃„p~r !…& r D : ~3.47!

5 (
N50

`

(
$p~r !%

M^S@p~1!,p~2!,...,p~N!#u
1

N!
:S )

r 51

N

~ uC„p~r !…& r1uDC̃„p~r !…s& r D :. ~3.48!

Equating Eq.~3.47! to Eq. ~3.48!, we finally have proved the following ‘‘general conservation
total chargino’’ ~GCTC!:

M^S@p~1!,p~2!,...,p~N!#uS (
r 51

N

Qr D 50, ~3.49!

~ to be referred to as ‘‘GCTC’’!

Furthermore, we find from Eq.~3.48! that

^f̃5c̃50uTW X0•exp„SINT
T ~C1DC̃!…uf̃5c̃50&

5 (
N50

`

(
$p~r !%

M^S@p~1!,p~2!,...,p~N!#u•
1

N!

3^f̃5c̃50u:S )
r 51

N

~ uC„p~r !…& r1uDC̃~p~r !!& r D :uf̃5c̃50&

5 (
N50

`

(
$p~r !%

M^S@p~1!,p~2!,...,p~N!#u•
1

N!
:S )

r 51

N

(uC„p~r !…& r D :

[:expS (
N50

`

(
$p~r !%

M^SC@p~1!,p~2!,...,p~N!#u•
1

N!
:S )

r 51

N

uC„p~r !…& r D : D :, ~3.50!
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in the second step of which we have used Eqs.~3.39! and ~3.40!. Therefore, we can use th
identification

TW X0•exp„SINT
M ~C!…[^f̃5c̃50uTW X0•exp„SINT

T ~C1DC̃!…uf̃5c̃50&, ~3.51!

which givesM^S@p(1),...,p(N)#u satisfying the ‘‘GCTC’’ ~3.49!. In the following, we explain
how SINT

M (C) on the left-hand side of Eq.~3.51! can be determined by terms on the right-hand s
of Eq. ~3.51!. For this purpose, we first rewritecounterfieldinos within the time-ordered produc
into the normal-ordered form, with the help of Wick’s theorem16 by using the operator produc
expansion Eqs.~3.32!–~3.34! ~amongcounterfieldinos!. At this stage, fieldinos are still kept tim
ordered. For an example, we use

~3.52!

Carrying out these procedures, we are lead to

TW X0•exp„SINT
T ~C1DC̃!…[TW X0:exp„SINT

M ~C!1S INT~C;DC̃!…:. ~3.53!

The normal ordering : : on theright-hand side of Eq.~3.53! has been taken with respectonly to

counter fieldinos, andS INT$C;DC̃% is composed of various terms involving~more than one!

counter fieldinosDC̃ ’s in the normal-ordered form. Therefore, Eq.~3.39! gives

^f̃5c̃50u:„S INT~C;DC̃!¯S INT~C;DC̃!…:uf̃5c̃50&50. ~3.54!

On the other hand, the modified actionSINT
M (C) determinedby Eq.~3.53! would be obtained in the

following form:

SINT
M ~C!5SINT~C!2 (

n51

`

DSINT~C;n!, ~3.55!

whereDSINT(C;n) is the term resulting from contractions~of n times! amongcounterfieldinos,
and it shouldnot involve anycounterfieldino. Furthermore,DSINT(C;n) involves only fieldinos
which are given in thetime-orderedform. Thus we haveprovedthe following theorem.

Theorem: With the help ofSINT
M (C) in ~3.55! determined by Eq.~3.54!,

TW X0•exp„SINT
M ~C!…[:expS (

N50

`

(
$p~r !%

M^SC@p~1!,...,p~N!#u•
1

N!
:S )

r 51

N

uC„p~r !…& r D : D ,

~3.56!

where the~BRST-invariant! ‘‘amputatedN-scatt’’ M^SC@p(1),...,p(N)#u contains any contribu-
tion in g-loops@which satisfies the ‘‘general conservation of the total chargino’’~3.29!#. Our final
result ~or rule! in calculating the ‘‘amputatedN-scatt’’ M^SC@p(1),...,p(N)#u is quite simple.
Amputated scatts can be calculated by using theunmodified interaction termSINT(C) in ~1.20!,
provided thatall propagators areeffectivelymodified as follows:
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X g
p~g!

•

B0,g

L0,g
•Pp~g!~GSO!unS~g,d!&→S X g

p~g!
•

B0,g

L0,g
2Qg

p~g!D •Pp~g!~GSO!unS~g,d!&.

~3.57!

Finally, we prove that the physical scattering amplitude (NB ,NF) in ~1.22! is given by

~NB ,NF!5(
g50

`

~NB ,NF!g, ~3.58!

(NB ,NF)g being given by

~NB ,NF!g[
M^Sg

C@p~1!,p~2!,...,p~NB1NF!#u^f5c50u•
1

NB!

3:S )
r 951

NB

uC~1!& r 9D • 1

NF! S )
r 95NB11

NB1NF

uC~ 1
2!& r 9D :S )

r 51

NB

Bbr
$f% D

3S )
r 5NB11

NB1NF

F f r
$c% D uf5c50& with N5NB1NF

@see Eqs.~1.22! and ~3.56!# ~3.59!

56M^Sg
C@p~1!,p~2!,...,p~r !,...,p~NB1NF!#u

3S )
r 51

NB

ubr~1!& r D •S )
r 5NB11

NB1NF

u f r~
1
2!& r D . ~3.60!

The signature6 in Eq. ~3.60! is necessary, since we reorder Grassman odd operators fo
purpose of using the following formulas@in the process of deriving Eq.~3.60!#:

~3.61!

and

~3.62!

which can be obtained similarly to Eq.~3.61! by using Eqs.~1.21b!, ~3.2!, ~D16!, and~D19!.
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IV. PHYSICAL SCATTERING AMPLITUDES IN g-LOOPS

We have seen in Sec. III that the formula~3.60! gives the physical scattering amplitud
(NB ,NF)g @in g-loops# amongNB physicalbosonic andNF physicalfermionic particles, by using
the ~BRST-invariant! ‘‘amputatedN-scatt’’ ^Sg

C@p(1),...,p(N)#u, which can be given by the for
mulas ~3.50! and ~3.28!. @We have found that amputated scatts can be calculated by using
modified interaction termSINT(C) in ~1.20!, provided that any propagator iseffectivelymodified
accordingly to Eq.~3.57!.# As we have seen in our previous paper5 on QBFT, physical scattering
amplitudes~3.60! can be calculated by using the ‘‘inlayed coordinate systemgenusg’’ ~ICS g!,
which describes the RiemannsurfaceR with B-boundariesandH-handles, with g115B1H. In
this paper, we only consider Riemann surfaceR with B5g11 andH50, i.e., we donot calculate
the contribution obtained by gluing twoopenstring punctures on different boundaries, since e
gluing of this kind adds one handle to the Riemann surfaceR. We notice thatH handles in
Riemann surfaceR represent contributions fromH closed channels. Therefore, in order to resto
the manifest factorization in theH channels~of closed string!, we must include the closed strin
from the beginning, based on the open-closed string field theory. Then we could obta
factorizable amplitudes in genusg5H1B21, whereH(B) is the number of handles~boundaries!.
We point out thatclosedQBFT has been already proposed.4

At this stage, we summarize properties of the Riemann surfaceR which is to be used in
calculating (NB ,NF)g in ~3.60! in g-loops. The Riemann surfaceR is punctured at (N12g) points
on the real axis. The Schottky doubleD of the Riemann surfaceR has theI th unpunctured ring
domain, which has theI th propagating strip-timeTI @for 1<I<(N12g23)#. This Schottky
doubleD has been described by GM-FE in ~2.1! @with (N12g) punctures#. Next, in constructing
the Riemann surfaceR8 with (g11)-boundaries, 2g-punctured ring domains in the Rieman
surfaceR should be glued intog-unpunctured ring domains. As we see from the~Wick’s! expan-
sion ~3.3!, this can be realized by the followingg-contractions among fieldinos:

~4.1!

where we have used the formulas~E31! and~E32!. Thus we need the followingN-vertex functino

s^V(1,2,...,N)u(gB ,gF) ‘‘in g(5gB1gF)-loops’’ in the large Hilbert space:

s^V~1,2,...,N!u~gB ,gF! with g5gB1gF

[~^Q50uj0!•s^IV~1,2,...,N12g!u•~ uQ50&!

3 )
h51

g

„exp~2Tgh•L0,gh•Pgh
p~gh!

~GSO!uVL~gh,dh!&… ~4.2!

[Tr
w

Vs
N
„~gB ,gF!…, ~4.3!

Vs
N
„(gB ,gF)… being defined by

Vs
N
„~gB ,gF!…[$sN

2g%•)
h51

g

„Pgh
p~gh!

~GSO!uVL~gh,dh!&…. ~4.4!
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The operatorVs
N
„(gB ,gF)… in ~4.4! is the function ofN externaloperators as well as theinlint

operators in the ‘‘ICSs’’ ~representing the Riemann surfaceR with N12g punctures!. In Eqs.
~4.1! and~4.2!, the number ofh satisfyingp(gh)5NS ~R! is denoted bygB (gF), and the operator
$sN

2g% in Eq. ~4.4! is defined by

$sN
2g%[RW •~ uQ50&•^Q50uj0!•S )

h51

g

)
w

„dh^qdh~w!50uWdh
w

@zdhs~wdh!#…D
3S )

r 51

N

)
w

„r^qr~w!50uWr
w[zrs~wr !] …D

3S )
h51

g

)
w

„gh^qgh~w!50uWgh
w [zghs~xgh•wgh!] …D . ~4.5!

Ww@¯# ’s being inlaying operators given by Eqs.~2.4!–~2.6!. Incidentally, thegh-th propagating
strip-timeTgh in the formula~4.2! has been introduced through

1

L0,gh
5E

0

`

dTgh exp~2Tgh•L0,gh! for h512g ~4.6a!

with

xgh[exp~2Tgh! @ in Eq. ~4.5!#. ~4.6b!

Trw in Eq. ~4.3! @Pw in Eq. ~4.5!# is the trace~product! over all inlint w-modes ~for w

5XW ,f j ,s,f,x!.
We notice that contractions~4.1! induce thehth ghdh-gluing ~for h512g! which glues the

ghth ring domain~punctured atZg hs! to thedhth ring domain~punctured atZd hs! in the Schottky
doubleD, resulting to create the newhth unpunctured ring domain which has thehth propagating
strip-timeTg hs[ log(1/xgh) ~for h512g!. Thus, the new Riemann surfaceR8 ~which has been
obtained from the original Riemann surfaceR by thegd-gluings! hasN punctures on the real axis
having (g11)-boundarieson the real axis. Furthermore, the Schottky doubleD8 @of this Riemann
surfaceR8# has theI th unpunctured ring domain which has the propagating strip-timeTI @for I
512(N12g23)#, as well as thehth unpunctured ring domain having thehth propagating
strip-time log(1/xgh) ~for h512g!. Therefore, when the number of the punctures~boundaries! is
N (g11), the total number of modular parameters is just equal to (N13g23). In our previous
paper,5 we have proved that thus obtained Riemann surfaceR8 can be conformally mapped@see
Eqs.~6.16!–~6.18! in Ref. 5# to the other Riemann surface described by the ‘‘ICSg,’’ which will
be explained in the following.

In order to describe the ‘‘ICSg,’’ we have used~in open QBFT5! the following ‘‘Samuel’s
fundamental equation’’~S-FE! in ~4.7!.19 We briefly review our previous results, hereafter.~See
Ref. 5 for more details.!

dzg

drg
5ng~zg! with g5gB1gF . ~4.7!

@The coordinatezg(rg) satisfying S-FE ~4.7! has been referred to as the inlayed coordinatezg(rg)
in the ‘‘inlayed coordinate system in~genus! g’’ ~ICS g!.# We impose Witten’s midpoint interac
tions in Eq.~4.7!. Samuel19 has imposed that

drg5
dzg

ng~zg!
5

dSh~zg!

ng„Sh~zg!…
for each h512g, ~4.8!
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whereSh(zg) is the SL(2R) mapping defined by

Sh~zg![
ah•zg1bh

gh•zg1dh
. ~4.9!

Furthermore, Samuel has found19 that the functionng(zg) given by

„ng~z!…22[Rg
22

•QS DW z02(
i51

g E
z0

yi
g

dz8
vW ~z8!

2pA21
1E

z0

z

dz8
vW ~z8!

2pA21
Ut D

3
~Pi5g11

2N14g24E~z,yi
gut!!

~P r 51
N

„E~z,Zrgut!…2!
•„s~z!…3 with N5NB1NF ~4.10!

can satisfy theg-conditions~4.8!, providedthat the followingg-constraintsare imposed on modu
lar parameters inng(zg) in ~4.10!:

4•Dh
z0225 (

i51

2N14g24 E
z0

yi
g

dz8
vh~z8!

2pA21
2(

r 51

N

2E
z0

Zrg
dz8

vh~z8!

2pA21
~h512g!. ~4.11!

@Unfortunately, there exist misprints in ‘‘Eqs.~6.8! and Eq.~6.11! in Ref. 5,’’ which are corrected
in Eqs.~4.10! and~4.11!.# In the following, we explain various functions used in Eqs.~4.10! and
~4.11!. Functionst, v, Dh

z0, E, s, and Q are the same as those given in VPFHLS’s pape20

corresponding equations of which being given as follows: The period matrix~3.11!, the holomor-
phic differentialvW (z)dz[(v1 ,v2 ,...,vg) @with the one-formvh[vh(z)•dz in ~3.12! for h51
2g# being bases for the holomorphic differentials of the Riemann surface, theg-dimensional

vectorof Riemann constantsDW z0[(D1
z0,D2

z0,...,Dg
z0) in ~3.13!, the prime form~3.14!, the sigma

function ‘‘s’’ ~3.15!, and the Riemann theta function~3.18!. @Hereafter, theg-dimensional vector

spaceis denoted byVg , so thatvW (z), DW z0PVg in Eq. ~4.10! and hereafter.# We notice that the

one-formvh[dz•vh(z) in ~3.12! in VPFHLS20 is written @in Samuel’s paper# by theone-form
2pA21•vh in ~3.6!.19 The pointz0PFDg is arbitrary.@The boundary of thefundamental region
FDg in the ‘‘ICS g’’ has been given by Eq.~6.12! in Ref. 5.# Incidentally, theg-constraints in
~4.11! @which should be imposed in order forng(zg) in ~4.10! to satisfyg-conditions in~4.8!# have
been derived19 by using the following formulas in VPFHLS’s notations.20 @See Table I and Eq
~3.18! of Ref. 19.#

E„Sh~z!,z8… for each Sh ~h512g!

52expS 2thhA21•p2E
z8

z

dz9vh~z9! D •S dSh~z!

dz D 1/2

•E~z,z8!, ~4.12!

QS aW

bW D S jW1E
z0

Sh~z!

dz8
vW ~z8!

2pA21
Ut D for each Sh @h512g#

5expS 2thhA21•p2E
z0

z

dz8vh~z8!22pA21~jh1bh! DQS aW

bW D
3S jW1E

z0

z

dz8
vW ~z8!

2pA21
Ut D , ~4.13!
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s~Sh~z!!5~2 !g
•expS thh~g21!A21•p22pA21Dh

z01~g21!E
z0

z

dz8vh~z8! D
3S dSh~z!

dz D 2g/2

•s~z! for each Sh @h512g#, ~4.14!

and

s~ z̃!

s~z!
5

QS ( i 51
g *z0

zi dz8
vW ~z8!

2pA21
2*z0

z̃ dz8
vW ~z8!

2pA21
2DW z0ut D

QS ( i 51
g *z0

zi dz8
vW ~z8!

2pA21
2*z0

z dz8
vW ~z8!

2pA21
2DW z0ut D •

~P i 51
g E~zi ,z!!

~P i 51
g E~zi ,z̃!!

. ~4.15!

Furthermore, we have used@in Eqs.~4.13! and~4.15!# the following Riemann theta functionQ in
genusg:

QS aW

bW D ~jW ut!, ~4.16!

where and hereafteraW ,bW ,jW (PVg) are shorthand notations for theg-set of variables given by

aW [~a1 ,a2 ,...ag! and bW [~b1 ,b2 ,...,bg! ~4.17!

and

jW[~j1 ,j2 ,...,jg!. ~4.18!

The Riemann theta function~4.16! is defined by

QS aW

bW D ~jW ut![ (
$nh%PZ

expS 2pA21S (
i ,h51

g
1

2
~ni1ai !t ih~nh1ah!1 (

h51

g

~nh1ah!~jh1bh!D D ,

~4.19!

t ih being the period matrix elements. Furthermore, we shall use the following shorthand no

Q~jW ut![QS 0W

0W
D ~jW ut!. ~4.20!

There exist various parameters inng(z) in ~4.10!: ConstantRg is some real normalization constan
The r th punctureZrg ~for r 51 –N! is located somewhere on the real axis~in the fundamental
region FDg in the ‘‘ICS g’’ !, while the interacting pointsY 6i

g @for i51 – (N22)#, andY 6gh
g ,

Y 6dh
g ~for h512g! are complex conjugates of each other among6 and all of them exist within

FDg . Interacting pointsY i
g’s used inng(z) in ~4.10! are differently numbered (2N14g24)

coordinates of interacting points inFDg . In addition to these parameters, there exist 3g real
parameters characterizing hyperbolic SL(2R) matricesSh ~for h512g!, which are used in de-
fining the functionsQ, E, t, DW z0, and vW (z)dz in the formulang(z) in ~4.10!. Thus, we have
3N17g23@511N1(2N14g24)13g# real parametersin total. On the other hand, any on
among (N13g23) unpunctured ring domains andN punctured ring domains in the ‘‘ICSg’’
should have the same width 2p. Furthermore, propagating strip-times@i.e., TI ’s for I 512(N
12g23) andTgh’s for h512g in Eq. ~4.6a!# can be arbitrary non-negative real numbers, a
they can be used asmodular parameters. Together with theg-constraints in~4.11!, we have 3N
17g26@5(N13g23)1N1(N13g23)1g# constraintsin total. Thus,all parameters inng(z)
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in ~4.10! are determined in terms of (N13g23) modular parameters~i.e., propagating strip-times
TI ’s and Tgh’s!, except forthree free~real! parameters, existence of which reflects the fact t
there remains stilloneSL(2R) ambiguity in defining the ‘‘ICSg.’’ 5

With the help of the ‘‘ICSg,’’ Vg
N
„(gB ,gF)… ~in the ‘‘ICS g’’ ! is defined by

Vg
N~gB ,gF![$gN

2g%•S )
h51

g

Pgh
p~gh!(GSO)uVL~gh,dh!& D

@cf. Eqs. ~6.4! and ~6.19! in Ref. 5#, ~4.21!

where$gN
2g% ~in the ‘‘ICS g’’ ! is given by

$gN
2g%[RW •~UsuQ50&•^Q50uj0•Us

21!•S )
r 51

N

)
w

~ r^qr
w50uWr

w[zrg] !D ,

3S )
h51

g

)
w

~gh^qgh
w

50uWgh
w

@zghg# !•~dh^qdh
w

50uWdh
w

@zdhg# !D
@see Eq.~6.19! in Ref. 5#, ~4.22!

where theinlint conformal mapping operatorUs is the one given by Eqs.~6.16! and~6.17! in Ref.
5. @In Eq. ~4.22!, the existence of the inlint zero-modej0 is essential.#

The ~r th external! physical vertex operatorsGr(0)’s @with the conformal weightd(G)# are
expressedto be inlayed into inlint operatorsG ~r; ‘‘ICS g’’ ! in the ‘‘ICS g’’ as follows:

Gr~0!⇒
I S dzrg~w!

dw D d~G!

•G~zrg~w!!U
w50

[G~r ; ‘ ‘ ICS g’ ’ !. ~4.23!

As for variousnonlocal operators, we also use the following~similar! shorthand notations fo
representing inlaying identities:

S 1
2•X6gh

1/2
•X7gh

1/2 ⇒
I

S 1
2•X6

1/2~gh; ‘ ‘ ICS g’ ’ !•X7
1/2~gh; ‘ ‘ ICS g’ ’ ! for p~gh!5NS, ~4.24!

Xgh
0 ⇒

I
X0~gh; ‘ ‘ ICS g’ ’ ! for p~gh!5R, ~4.25!

B0,I[ R
0

wIdwI

2pA21
BI~wI !⇒

I
B0~ I ; ‘ ‘ ICS g’ ’ !

[ R
0

wIdwI

2pA21
„zIg

~1!~wI !…
2
•B„zIg~wI !…

5 R
CIg

dzg

2pA21
ng~zg!•B~zg! for I 512~N12g23!, ~4.26!
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B0,gh[ R
0

wghdwgh

2pA21
Bgh~wgh!⇒

I
B0~gh; ‘ ‘ ICS g’ ’ !

[ R
0

wghdwgh

2pA21
~zghg

~1!
~wgh!!2

•B„zghg~wgh!…

5 R
Cghg

dzg

2pA21
ng~zg!•B~zg! for h512g ~4.27!

and

h0,gh[ R
0

dwgh

2pA21
hgh~wgh!⇒

I
h0~gh; ‘ ‘ ICS g’ ’ ![ R

Cghg

dzg

2pA21
h~zg! for h512g.

~4.28!

Thus,Xgh
p(gh) defined by Eq.~3.35! is inlayed as follows:

Xgh
p~gh!⇒

I
Xp~gh!~gh; ‘ ‘ ICS g’ ’ !

[H S 1
2 •X6

1/2~gh; ‘ ‘ ICS g’ ’ !•X7
1/2~gh; ‘ ‘ ICS g’ ’ ! for p~gh!5NS,

X0~gh; ‘ ‘ ICS g’ ’ ! for p~gh!5R.
~4.29!

In the case when three superstrings~say, ther th, sth, andtth superstring! interact with each
other at the~upper and lower! ith interacting points@for i512(N12g22)#, the inverse picture-
changing~external! operatorY6i is defined by

Y6i[Yr~6A21![Ys~6A21![Yt~6A21! for i512~N12g22!. ~4.30!

At the ith interacting point, there exists eitherY2i•Y1i ~in the case of interacting three string
NS–NS–NS! or Y2i ~in the case of interacting three stringsR–R–NS!. This result will be
expressed by

Y‘ ‘ i ’ ’ [ HY2i•Y1i for NS–NS–NS interacting point,
Y2i for R–R–S interacting point. ~4.31!

The inverse picture-changing operatorY‘ ‘ i ’ ’ would be inlayed as

Y‘ ‘ i ’ ’ ⇒
I

Y‘ ‘ i ’ ’ ~ ‘ ‘ ICS g’ ’ ! for i512~N12g22!

[H Y~Yig* !•Y~Yig! for NS–NS–NS interacting point

Y~Yig* ! for R–R–NS interacting point,
~4.32!

Yig (Yig* ) being the inlayed coordinate@in the ‘‘ICS g’’ # of the ith upper~lower! interacting point.
In much the same way as we have shown Eq.~6.21! in Ref. 5, we can show that
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~Q50uj0!•s^IV~1,2,...,N12g!u•S )
i51

N12g22

Y‘ ‘ i ’ ’ D •S )
I 51

N12g23

XI
p~ I !

•B0,I D
3S )

h51

g

Xgh
p~gh!

•B0,gh•h0,ghD •S )
r 51

N

Gr~0!D •S )
r 51

N

uQr50& r D
3 )

h51

g

~exp~2Tgh•L0,gh!•Pgh
p(gh)(GSO)uVL(gh,dh)&!•~ uQ

50&)

5Tr
w
S ^Vg„~gB ,gF!…&•S )

r 51

N

G~r ; ‘ ‘ ICS g’ ’ !D •S )
i51

N12g22

Y‘ ‘ i ’ ’ ~ ‘ ‘ ICS g’ ’ !D
3S )

I 51

N12g23

Xp~ I !~ I ; ‘ ‘ ICS g’ ’ !•B0~ I , ‘ ‘ ICS g’ ’ !D
3S )

h51

g

Xp~gh!~gh; ‘ ‘ ICS g’ ’ !•B0~gh; ‘ ‘ ICS g’ ’ !•h0~gh; ‘ ‘ ICS g’ ’ !D D , ~4.33!

where we have used the ‘‘analytic inlint gluing operator’’ ^Vg((gB ,gF))& defined by

^Vg~~gB ,gF!!&[Vg
N
„~gB ,gF!…S )

r 51

N

uQr50& r D
5~UsuQ50&•^Q50uj0•Us

21!•RW •S )
h51

g

)
w

„dh^qdh~w!50uWdh
w

@zdhg(wdh!] …D
3S )

h51

g

)
w

„gh^qgh~w!50uWgh
w

@zghg(wgh!#…D
3S )

h51

g

Pgh
p~gh!

~GSO!uVL~gh,gh!& D with g5gB1gF ~4.34!

@cf. Eq. ~6.22! in Ref. 5#. Similarly to Eq.~6.23! in Ref. 5, we can show that^Vg„(gB ,gF)…& in
~4.34! in the ‘‘ICS g’’ satisfies the followingboundary conditionsfor any inlint primary operator
G(z8) @of conformal weightd(G)#:

RW •^Vg~gB ,gF!&•G~z8!5S dSh~z8!

dz8 D d~G!

•RW •^Vg~gB ,gF!&•G„Sh~z8!…

for h512g and z8P]FDg . ~4.35!

Comment:Equation~4.34! shows that̂ Vg(gB ,gF)& is the function of onlyinlint operators
@on the boundary]FDg in the ‘‘ICS g’’ #.5 It is important that the term on the left-hand side
~4.33! can be calculated by the term on the right-hand side of Eq.~4.33!, the latter of which does
not involve anyexternaloperatorbut involves only inlint operators having the argument in th
‘‘ICS g.’’ We have proved5 that the ‘‘analytic inlint gluing operator’’ ^Vg„(gB ,gF)…& can be
expressed as the functional on inlint operators only on the boundary]FDg , so that the boundary
conditions~4.35! are expected to determine^Vg„(gB ,gF)…& up to the constant factor.

Using the method used in proposing Eqs.~6.27!–~6.32! in Ref. 5, weproposethat
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^Vg~gB ,gF!&5S )
w5XW ,s,x

^Vg
w~gB ,gF!& D S )

w5f j ,f
^Vg

w$@%~gB ,gF!& D
3 )

h51

g S 1

2
1

1

2
«p~h! expS A21pS ph~f!1(

j 50

4

ph~f j !D D D , ~4.36!

where the constant«p(h) is the one given by Eq.~2.15!. In Eq. ~4.36!, we have used the following
formulas for the ‘‘analytic inlint gluing operator’’ ^Vg

w
„(gB ,gF)…& in each w-mode. As for

XW -modes, we propose that

^Vg
XW ~gB ,gF!&5Z1

25~ up~XW !50&•^p~XW !50u!•S S )
h51

g E d10kh

~2p!10D
3:exp„C~2!~XW !…•expS (

i ,h51

g
1

2
kW i•Cih

~0!
•kWh1 (

h51

g

kWh•CW h
~1!~XW !D : D , ~4.37a!

with the inner productskWh•CW h andkW i•kWh defined respectively by

kWh•CW h[2(
6

(
j 50

4

kh
6 j
•Ch

7 j52(
6

kh
60

•Ch
701(

j 51

8

kh
j
•Ch

j ,

~4.37b!

kW i•kWh[2(
6

(
j 50

4

ki
6 j
•kh

7 j52(
6

ki
60

•kh
701(

j 51

8

ki
j
•kh

j .

@Hereafter, the ten-dimensional~space–time! vector space is denoted byV10, so thatXW , kW i , kWh ,
CW hPV10 in Eqs.~4.37a! and ~4.37b! and hereafter.# As for thefW -modes we propose that

^Vg
fW $@%~gB ,gF!&[)

j 50

4

^Vg
f j $@%~gB ,gF!&5Z1

25/2S )
j 50

4

up~f j !50&•^p~f j !50u D
3S S )

h51

g

)
j 50

4

(
nh~f j !PZ

D :expS (
j 50

4

C~2!~f j !D •expS (
j 50

4

(
h51

g

A21p•nh~f j !D
3expS (

j 50

4

(
i ,h51

g
1

2 S ni~f j !1
1

2
dp~ i !

R DCih
~0!S nh~f j !1

1

2
dp~h!

R D D
3expS (

j 50

4

(
h51

g S nh~f j !1
1

2
dp~h!

R DCh
~1!~f j !D : D , ~4.38!

where the constantdp(h)
R is the one defined by

dp~h!
R [ H1 for p~h!5R,

0 for p~h!5NS. ~4.39!

Furthermore, we propose the following formulas forw@5s,f,x#-modes;
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^Vg
s~gB ,gF!&5Z1

21/2~ up~s!50&•^p~s!50uexp„13g•q~s!…!

3S S )
h51

g

(
nh~s!PZ

D :exp~C~2!~s!!•expS (
h51

g

A21p•nh~s!D
3expS (

i ,h51

g
1

2
ni~s!•Cih

~0!
•nh~s!1 (

h51

g

nh~s!•Ch
~1!~s!D : D , ~4.40!

^Vg
f$@%~gB ,gF!&5Z1

21/2~ up~f!50&•^p~f!50uexp„22g•q~f!…!

3S S )
h51

g

(
nh~f!PZ

D :exp~C~2!~f!!•expS (
h51

g

A21p•nh~f!D
3expS (

i ,h51

g
1

2 S ni~f!2
1

2
dp~ i !

R D ~2Cih
~0!!S nh~f!2

1

2
dp~h!

R D D
3expS (

h51

g S nh~f!2
1

2
dp~h!

R DCh
~1!~f!D : D

with dp~h!
R being given by Eq.~4.39!, ~4.41!

and

^Vg
x~gB ,gF!&5Z1

21/2~ up~x!50&•^p~x!50uexp„~g11!•q~x!…!

3S S )
h51

g

(
nh~x!PZ

D :exp~C~2!~x!!•expS (
h51

g

A21p•nh~x!D
3expS (

i ,h51

g
1

2
ni~x!•Cih

~0!
•nh~x!D expS (

h51

g

nh~x!•Ch
~1!~x!D : D , ~4.42!

where we have used the bra state^p(x)50u satisfying Eqs.~A34!–~A35b!. @Incidentally,
exp„(g11)•q(x)… in Eq. ~4.42! has been obtained by exp„q•q(x)…•exp„q(x)…, the latter of which
comes fromj0 in Eq. ~4.22!.# In Eqs.~4.38! and~4.40!–~4.42!, sums ofnh(w) @for h512g and
w5f j , s, f, x# should be taken over allintegers. Provided that we choose cocycle factors15

properly, we can consider in Eq.~4.38! @~4.41!# the case when exp(11
2f

j) for j 50 – 4 @exp
(2 1

2f)# is Grassman even~even!. Therefore, we have assured in Eqs.~4.38! and~4.40!–~4.42! that
the fermionic loops have the sign opposite to the bosonic ones by inserting a sign f
exp„(h51

g A21p•nh(w)… ~for w5f j , s, f, x!. @Incidentally, the proper cocycle factor give
Grassman even~odd! exp(21

2f), which has been called the fracton~fractino!.3 Type II A super-
string theory uses the fracton~fractino! in the left ~right! moving modes of closed superstrings#

In the formulas~4.37!–~4.42!, Cih
(0) is given by the periodic matrixt ih as

Cih
~0![2pA21•t ih ~ i ,h512g!, ~4.43!

while Ch
(1) (C(2)) for eachw-mode is expressed as the function of linear~quadratic! inlint opera-

tors on the boundary]FDg @which is defined by Eqs.~6.12!–~6.14! in Ref. 5# as follows. As for
Ch

(1)(w)’s, we have that

CW h
~1!~XW !

2pA21
[ R

]FDg

dz

2pA21
A21]zXW ~z!E

z0

z

dz8
vh~z8!

2pA21
~PV10! ~4.44!

and
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Ch
~1!~w!

2pA21
[ R

]FDg

dz

2pA21
]zw~z!E

z0

z

dz8
vh~z8!

2pA21
2«w

fQ~w!S Dh
z01

1

2D
for w5f j ,s,f,x, with «w

f in ~A5b! and Q~w! in ~2.5!,
~4.45!

while we obtain forC(2)(w)’s that

C~2!~XW ![
1

2 R
]FDg

dz

2pA21
R

]FDg

dz8

2pA21
A21]zXW ~z!•A21]z8X

W ~z8!• logS E~z,z8!

z2z8 D ,

~4.46!

and

C~2!~w![«w
f 1

2 R
]FDg

dz

2pA21
]zw~z! R

]FDg

dz81

2pA21
]z8w~z8!logS E~z,z8!

z2z8 D
1Q~w! R

]FDg

dz

2pA21
]zw~z!log„s~z!…

for w5f j ,s,f,x, with «w
f in ~A5b! and Q~w! in ~2.5!.

~4.47!

It should be noticed that the integrations in Eqs.~4.44!–~4.47! have been carried out along th
boundaries]FDg . @In Eq. ~4.47!, the sigma functions(z) in log„s(z)… is the one used inng(z) in
~4.10!, and it shouldnot be confused with the ghosting operators in ~A3!.# The determinantal
functionZ1 in the formulas~4.37!–~4.42! doesnot depend on inlint operatorsbut depends only on
modular parametersSh’s ~for h512g! used in Eq.~4.8!,19 and it has been calculated b
Verlinde–Verlinde@and their result21 will be given later by Eq.~4.66!#.

For the generalzr(PC) within the fundamental regionFDg in the ‘‘ICS g’’ ~i.e., for zPFDg!,
the analytic inlint gluing operator̂Vg(gB ,gF)& in ~4.36!–~4.42! gives following trace-formulas in
g-loops. Forf j ’s modes, we have that

Trf jRW •S )
r 51

N

:exp„sr
j
•f j~zr !…:^Vg

f j $@%~gB ,gF!& D for j 50 – 4

5Z1
21/2dS (

r 51

N

sr
j D expS 2 (

h51

g
p

2
A21•dp~h!

R D
3Q1

$@%S (
r 51

N

sr
j E

z0

zr
dz8

vW ~z8!

2pA21
1

1

2
•1WU1t D •S )

r ,t51
r ~, !t

N

E~zr ,zt!R

sr
j
•st

j D , ~4.48!

where vW , 1W PVg . Furthermore, we also have the following trace-formulas
w@5s,f,x#-modes:
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Trs RW •S )
r 51

N

:exp„gr•s~zr !…:^Vg
s~gB ,gF!& D

5Z1
21/2dS (

r 51

N

gr13g23D •QS (
r 51

N

gr•E
z0

zr
dz8

vW ~z8!

2pA21
13DW z0U1t D

3S )
r ,t51
r ~, !t

N

E~zr ,zt!R
gr•gtD S )

r 51

N

s~zr !
23gr D , ~4.49!

Trf RW •S )
r 51

N

:exp„f r•f~zr !…:^Vg
f$@%~gB ,gF!& D

5Z1
21/2dS (

r 51

N

f r22g12D •expS (
h51

g
p

2
A21•dp~h!

R D
3Q2

$@%S 2(
r 51

N

f rE
z0

zr
dz8

vW ~z8!

2pA21
12DW z01

3

2
•1WU2t D

3S )
r ,t51
r ~, !t

N

E~zr ,zt!R
2 f r• f tD S )

r 51

N

s~zr !
22 f r D , ~4.50!

and

Trx RW •S )
r 51

N

:exp„hr•x~zr !…:^Vg
x~gB ,gF!& D

5Z1
21/2dS (

r 51

N

hr1gD •QS (
r 51

N

hrE
z0

zr
dz8

vW ~z8!

2pA21
1DW z0U1t D

3S )
r ,t51
r ~, !t

N

E~zr ,zt!R
hr•htD S )

r 51

N

s~zr !
2hr D . ~4.51!

@Incidentally, we havevW , DW , 1W PVg in Eqs. ~4.49!–~4.51! and hereafter.# In the trace formulas
~4.48!–~4.51! @in g-loops#, we have used ‘‘radial-ordered arguments’’@denoted by(...)R# defined
by Eq. ~A12!. In Eqs.~4.48! and ~4.50!, Q6

$@%(jW u6t) is defined by

Q6
$@%~jW u6t![QS 6

1

2
dW $@%

0W
D ~jW u6t!, ~4.52a!

where and hereafter we use the following shorthand notations:

6
1

2
dW @5S 6

1

2
dp~1!

R ,6
1

2
dp~2!

R ,...,6
1

2
dp~g!

R D ~PVg!

~4.52b!
0W 5~0,0,...,0! ~PVg!, 1W 5~1,1,...,1! ~PVg!.

In order to take account of the last GSO-projection factor in Eq.~4.36!, we notice that
exp(A21•pr) operates as
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exp~A21p•pr!•QS aW

0W D ~jW u6t! ~ for r512g!

[ (
$nh%PZ

exp„A21p~nr1ar!…

3expS 2pA21S (
i ,h51

g
1

2
~ni1ai !~6t ih!~nh1ah!1 (

h51

g

~nh1ah!jhD D ,

5QS aW

0W D ~ ĵW~r!ut!, ~4.53!

where the following shorthand notation has been used:

ĵW~r![~j1 ,...,jr21 ,jr1 1
2,jr11 ,...,jg! ~PVg!. ~4.54!

Then, we find from Eq.~4.53! that

expS A21pS pr~f!1(
j 50

4

pr~f j !D DQ2
$@%~jW u2t!S )

j 50

4

Q1
$@%~jW j u1t!D

5Q2
$@%~ ĵW~r!u2t!•S )

j 50

4

Q1
$@%~ ĵW j~r!u1t!D for r512g. ~4.55!

For anyzrPFDg , we can similarly derive the following trace-formula@for XW -modes#:

TrXW RW •S :expS (
r 51

N

A21•pW r•XW ~zr !D :^Vg
XW ~gB ,gF!& D

5Z1
25~2p!10

•d10S (
r 51

N

pW r D S S )
h51

g E d10kh

~2p!10D
3expS (

i ,h51

g

pA21•kW i
•t ih•kWhD •^mod;kW u:expS (

r 51

N

A21•pW r•XW ~zr !D :umod;kW & D .

~4.56!

In Eq. ~4.56!, both i and h ~for i ,h512g! denote the labels of the ‘‘glued lines’’ in Eq.~4.1!.
Furthermore, we have used in Eq.~4.56! the following function^mod;kW u...umod;kW & defined by

^mod;kW u:expS (
r 51

N

A21•pW r•XW ~zr !D :umod;kW &

[expS (
r 51

N

(
h51

g

pW r•kWhE
z0

zr
dz8 vh~z8!1 (

r ,t51
r ~, !t

N

pW r•pW t logS E~zr ,zt!

zr2zt
D D , ~4.57!

which leads to the following expectation value of theoverally radial-ordered product:
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^mod;kW uRW •S )
r 51

N

:exp~A21•pW r•XW ~zr !!: D umod;kW &

[expS (
r 51

N

(
h51

g

pW r•kWhE
z0

zr
dz8 vh~z8!D 3S )

r ,t51
r ~, !t

N

E~zr ,zt!R
pW r•pW tD . ~4.58!

@We notice thatXW ,pW r ,pW t ,kWhPV10 in Eqs. ~4.56!–~4.58! and hereafter.# Similarly, the trace-
formula for fW -modes are given as follows:

TrfW RW •S :expS (
r 51

N

(
j 50

4

sr
j
•f j~zr !D :^Vg

fW $@%~gB ,gF!& D
5Z1

25/2
•dK

5 S (
r 51

N

sW r D S )
h51

g

(
nW h

D S expS (
i ,h51

g

pA21•nW i
p~ i !

•t ih•nW h
p~h!D

3expS (
j 50

4

(
h51

g

A21p•nh~f j !D •^mod;nW u:expS (
r 51

N

(
j 50

4

sr
j
•f j~zr !D :umod;nW & D ,

~4.59!

where we have introduced the followingfunction ^mod;nW u...umod;nW & defined by

^mod;nW u:expS (
r 51

N

(
j 50

4

sr
j
•f j~zr !D :umod;nW &

[expS (
r 51

N

(
h51

g

nW h
p~h!

•sW rE
z0

zr
dz8 vh~z8!1 (

r ,t51
r ~, !t

N

sW r•sW t• logS E~zr ,zt!

zr2zt
D D , ~4.60!

inner productsnW h
p(h)

•sW r andsW r•sW t being defined respectively by

nW h
p~h!

•sW r[(
j 50

4

~nW h
p~h!! j

•sr
j 5(

j 50

4 S nh~f j !1
1

2
dp~h!

R D •sr
j for nh~f j !PZ,

and

sW r•sW t[(
j 50

4

sr
j
•st

j . ~4.61!

@The sum overnW h in Eq. ~4.59! means the summation over all integersnh(f j )’s.# Therefore, we
find from Eq.~4.60! that the expectation value of theoverally radial-ordered productis given by
the following formula:

^mod;nW uRW •S (
r 51

N

:expS (
j 50

4

sr
j
•f j~zr !D : D umod;nW &

[expS (
r 51

N

(
h51

g

nW h
p~h!

•sW rE
z0

zr
dz8 vh~z8!D •S )

r ,t51
r ~, !t

N

E~zr ,zt!R
sWr•sW tD . ~4.62!

@The five-dimensional vector space will be denoted byV5 , so that we havefW ,nW h ,sW r ,sW tPV5 in
Eqs.~4.59!–~4.62! and hereafter.#
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The total factorZ1
295Z1

25
•Z1

25/2
•(Z1

21/2)3 @contributed from Eqs.~4.56!, ~4.59!, and~4.49!–
~4.51!# is quite important, since it gives the complicate integration measure factor in the follo
expression:

~NB ,NF!g[
M^Sg

C@p~1!,...,p~N!#u•S )
r 51

N

Gr~0!D •S )
r 51

N

uQr50& r D
5(

SSD
CSSDS E

0

`

)
I 51

N12g23

dTI D S E
0

`

)
h51

g

dTghD F~$TI%,$Tgh%!, ~4.63!

where the summation is over all superstring~Feynman! diagrams~SSDs!, CSSD’s being constants
determined from the Wick’s expansion~3.50!. On the other hand, the integrandF($TI%,$Tgh%) is
the one given by the term on the right-hand side of Eq.~4.33!, G(r ; ‘ ‘ ICS g’ ’) ’s being given as
follows. In calculating (NB ,NF)g in ~4.63! with the help of the trace-formulas~4.48!–~4.62!, we
use thephysicalNS state in 1 picture which is given by Eq.~D5! with ~D1!, as well as thephysical
R state in 1

2 picture which is given by Eq.~D12!. Therefore,Gr(0)’s andG(r ; ‘ ‘ ICS g’ ’) ’s are
those given as follows. In Eq.~4.33!, we use that

Gr~0![H X6r
1/2 :exp„1s r~0!…<exp„2f r~0!…:Vr

0b~0! for p~r !5NS,

:exp„1s r~0!…<exp„2 1
2f r~0!…:Vr

1 f~0!•S$h%,r~0! for p~r !5R
~4.64!

and

G~r ; ‘ ‘ ICS g’ ’ !

[H X6
1/2~r ; ‘ ‘ ICS g’ ’ !:exp„1s~Zrg!…<exp„2f~Zrg!…:V

0b~Zrg! for p~r !5NS

:exp„1s~Zrg!…<exp„2 1
2f~Zrg!…:V

1 f~Zrg!•S$h%~Zrg! for p~r !5R.

~4.65!

@All operators in Eq.~4.65! are inlint operators,Zrg’s being punctures in SamuelFE ~4.7!.#
Verlinde and Verlinde21 has calculated the determinatal functionZ1 ~up to a pure numerica
constantC! and their result is given by

Z1
3/25C•

QS ( t51
g *z0

zt dz8
vW ~z8!

2pA21
2E

z0

Z

dz8
vW ~z8!

2pA21
2DW z0Ut D

„detg3gvs~zt!…~P t51
g E~zt ,Z!!•s~Z! S )

1<t,s<g
E~zt ,zs! D S )

t51

g

s~zt!D .

~4.66!

Samuel has explicitly shown19 that the determinantal function~4.66! actually dependsonly on
(3g23) modular parameters@in SL(2R) group elements (S1 ,S2 ,...,Sg)#, which are those used in
S-FE ~4.7!.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have formulated~BRST-invariant! open quantum superstring field theory
the ‘‘B0-gauge.’’ Since we use onlynonlocal~i.e., we donot uselocal! picture-changing operator
in our theory, there does not exist any singularity caused by colliding10 of local picture-changing
operators. Our QSFT has been analyzed by applying the method5 which has been successfull
used in calculating physical scattering amplitudes in open quantum bosonic string field t
~open QBFT! in the ‘‘B050 gauge.’’ Hereafter, we summarize our main results obtained in
paper. In Sec. I, open QSFT in the ‘‘B0-gauge’’ is described by using the open NS~R! fieldino
~1.3! in picture 1~ 1

2!. In the beginning, open QSFT is proposed to be given by the gauge-
action SGF(C)’’ in ~1.18! with the kinetic termSKIN(C) in ~1.19! and the interaction term
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SINT(C) in ~1.20!, which has been given by using NS~R! fieldinos uC~1!&’s in picture 1@uC~ 1
2!&’s

in picture1
2 # defined by Eq.~1.3!. Bose fieldsfB’s @in the fieldinosuCNS& ’s in ~1.1!# and fermi

fields cF’s @in the fieldinosuCR& ’s in ~1.2!# are quantizedby imposing the operator produc
expansion~1.25! among fieldinos, where the contraction among open NS~R! fieldinos is given by
the propagator~1.26! @~1.27!# of open NS~R! superstring. The propagator~1.26! involves the
symmetrization amongX1,g

1/2
•X2,g

1/2 andX2,g
1/2

•X1,g
1/2 , so that it can berewritten @with the help of

the ‘‘commutability’’ ~C39!# into the expression~3.1!. Physical scattering amplitudes amongNB

bosonic~NF fermionic! particles are proposed to be given by the formula~1.22!, which corre-
sponds to the LSZ reduction formula in QFT.16 @Throughout our analyses on open QSFT in the
B0-gauge,’’ we have used the ghosting numberG, the fracting numberF, the hilberting numberH,
and the picturing numberP defined by Eqs.~1.28!2~1.31!.# In Sec. II, GM-FE ~2.1! is used for the
purpose of defining the ‘‘inlayed coordinate systems~phere! ~ICS s! ~with the help of which we
can calculate physical scattering amplitudes in 0-loop!. We have defined ther th disk coordinate
wr in ~2.2! and used ther th inlayed coordinate5 zrs(wr) ~to be used in ther th punctured ring
domain in the ‘‘ICSs’’ !. We construct ther th inlaying operatorWr@zrs(wr)# in ~2.6! ~for r
51 –N! by the formulas~2.3!–~2.5!, which is the functional of ther th external operators
w r(wr ;1)’s, as well as theinlint operatorsw„zrs(wr)… ~within the r th punctured ring domain!.
Then, the inlayingN-vertex functionss^IV(1,2,...,N)u ~in the ‘‘ICS s’’ ! is constructed by the
formulas ~2.7!–~2.9!. Furthermore, we find the inlaying identities~2.10! @which are simply ex-
pressed by Eq.~2.11!#. Finally, the N-vertex functinos^V(1,2,...,N)u ~in the ‘‘ICS s’’ ! is con-
structed by the formula~2.13!, where we have used theinlint zero-modej0 . In the special case
when the ‘‘ICSs’’ is just equal to the ‘‘inlayed coordinate systemm~idpoint!’’ ~ICS m! ~where
there does not exist anyunpunctured ring domain!, the elementary N-vertex functino
^nS(1,2,...,N)u is given by thecycle-symmetricm^V(1,2,...,N)u in ~2.14!. @Elementaryvertex func-
tinos are to be used in the action~1.18!–~1.20!, and it can be explicitly constructed by using th
inlayed coordinates given by Eq.~E34!.# The formula~2.16! shows that thesmall gluing vertex
function unS(g,d)& in ~2.16! ~which isantisymmetricunderg↔d! can be obtained from thelarge
gluing vertex functionuVL(g,d)& in ~2.17!–~2.19!. ~The word ‘‘small’’ means ‘‘being without
j0-mode.’’! Then, we can prove the gluing theorem~2.20! @which is useful in calculating tree
amplitudes#, with the help of the similar techniques5 to those used in open QBFT. In Sec III, w
use that the contraction~1.26! @~1.27!# among open NS~R! fieldinos is just equal to Eq.~3.1!
@~3.2!#, which is referred to as the propagator of the open NS~R! superstring. With the help o
Wick’s theorem,16 we have given the operator product expansion~3.3! among fieldinos, where
~un!modified(M)^S¯#u ’s are terms obtained by various contractions which can be represent
superstring~Feynman! diagrams, so that they donot involve any quantized bose fieldfB as well
as any fermi fieldcF in ten-dimensional space–time. Theconnectedpart of (M)^Sg@¯#u is
denoted by(M)^Sg

C@¯#u. @See Eqs.~3.3a! and~3.3b!.# Unfortunately, the nonvanishing term~3.18!
shows that the interaction termSINT(C) in ~1.20! does not give the BRST-invariant amplitud
since the term~3.18! is nonvanishing. In order to obtain the BRST-invariant part out fr
^Sg50

C @p(1),...,p(4)#u, we must subtract the proper counter term^DSg50
C @p(1),...,p(4)#u which

can be determined by Eq.~3.18b!. Thus obtained resultM^Sg50
C @p(1),...,p(4)#u in ~3.19! is

shown to be BRST invariant.@See Eq.~3.20!.# The subtracting process in Eq.~3.19! can be
induced by theeffectdue to the counter term in the modified actionSINT

M ](4,0) in ~3.21!. We have
proved that these procedures in obtaining the BRST-invariant amplitude (M)

3^Sg50
C @p(1),...,p(4)#u can be carried out to any order of perturbation. Our analyses and re

on these procedures have been finally summarized in theTheorem@i.e., Eq.~3.56!#. In particular,
the counter termDSINT(C;n) in SINT

M (C) in ~3.55! is determined by solving Eq.~3.53!. We have
found that the ‘‘amputated N-scattsin g-loops’’ M^Sg

C@p(1),...,p(N)#u in Eq. ~3.50! can be
calculated by using unmodified interaction termSINT(C) in ~1.20!, provided that any propagato
is effectivelymodified accordingly to Eq.~3.57!. In Sec. IV, thephysical scattering amplitude
(NB ,NF)g in ~3.60! amongNB bosonic~NF fermionic! particles have been calculated by using t
method developed in our previous paper on QBFT. First we use the S-FE ~4.7! to describe the
‘‘inlayed coordinate system ingenusg’’ ~ICS g!. The functionng(zg) in ~4.10! can be chosen to
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satisfy theg-conditions~4.8! by imposingg-constraints~4.11! among modular parameters in th
functionng(zg) in FE ~4.7!. Then S-FE ~4.7! in the ‘‘ICS g’’ can describe the Riemann surfaceR8
having B5g11 boundaries. Then, we have introduced the ‘‘analytic inlint gluing operator’’
^Vg(gB ,gF)& in ~4.34!, with the help of which the term on the left-hand side of Eq.~4.33! can be
calculated by thetrace on the right-hand side of Eq.~4.33!. Thus (NB ,NF)g in ~3.62! can be
calculated, since the term on the right-hand side of Eq.~4.33! @substituted with inlint operators
~4.65!# can be calculated by using formulas~4.36!–~4.47! for ^Vg(gB ,gF)& in ~4.34!. @The trace in
these calculations can be found by using trace-formulas~4.48!–~4.62! in g-loops#. In Appendix A,
we define9 various~externalas well asinlint! operators used in the present paper, i.e., the st
coordinateX6 j , the j th spinning operatorf j , the ghosting operators, the fracting operatorf, the
hilberting operatorx @given by Eq.~A3!#, the anti-ghostinoB in ~A16!, the ghostinoC in ~A17!,
the hilbertinoj in ~A18!, the anti-hilbertinoh in ~A19!, the anti-ghostonb in ~A20!, the ghoston
g in ~A21!, the string coordinoC6 j in ~A22!, and theFMS spinor S$h% in ~A24!. The normal
ordering :@the contraction # in the bo-representation is defined by Eq.~A14! @~A15!#, while
the normal ordering : :p @the contraction # in thep(5NS,R)-representation is
defined by Eq.~A47! @~A43!–~A46!#. The standard ket statesup(w)50& ’s, the standard bra state
^q(w)50u ’s, and the dual standard bra states^p(w)50u ’s are those states satisfying conditio
~A6!, ~A7!, and~A9!, respectively. In Appendix B, we define the stress operatorTr

p in ~B4! @Tr in
~B8!# and the BRST currentinoJr

p in ~B17! @Jr in ~B21!# in thep @bo#-representation. In the cas
when the dimensionD of space–time is just equal to 10, these three operatorsTr

NS, Tr
R, andTr are

shown to be equal to each other.@See Eq.~B9!.# On the other hand,threeBRST currentinosJr
NS,

Jr
R, andJr satisfy Eqs.~B25! and ~B26!, so that they arenot equal to each other even forD

510. However, in the caseD510, the ‘‘BRST chargino in thep-representation’’@denoted by
Qr

NS andQr
R# and the ‘‘BRST chargino in the bo-representation’’@denoted byQ# are just equal to

each other, on account of the integration in the definitions~B27! and~B28!. @See Eq.~B29!.# We
also prove in the caseD510 the inlaying identity~B11! @~B33!# for stress operatorsT’s ~BRST
charginosQ’s!. Thus, we can prove the ‘‘special conservation of the total BRST chargino’’~B34!,
the ‘‘nilpotency’’ ~B38!, and the ‘‘contacting formula’’~B38b!. In Appendix C, we define the
local ~inverse! picture-changing operatorX(Y) by Eqs.~C3!–~C7! @Eq. ~C8!#. Furthermore,~non-
local! picture-changing operatorsXp ~C14! ~for any pPZ, Z1 1

2! and X6
p in ~C25! ~for any p

PZ1 1
2! are explicitly given respectively by formulas~C15! and ~C27!. In particular,nonlocal

operatorsX0@X6
1/2# have been used for defining the projection operatorPr(

1
2)@Pr(1)# in ~1.7!. We

have also given various formulas~C22!–~C24! @~C32!–~C40!# satisfied byX0@X6
1/2#. In Appendix

D, externalphysicalNS ~R! particles are given14 by Eqs.~D1! and~D5! @~D12! and~D13!#, which
involve physical vertex operatorsVnb(Vn f) for n50,1 in the NS~R! sector. These results ar
based on the operator product expansions~OPEs!14 ~D24!–~D26! @~D28!–~D31!# among physical
vertex operators in the NS~R! sector and the stress~stressino! operator.@Since we essentially us
these OPEs, we have to use theexternal stress operatorTr

NS(Tr
R) in ~B4! and external BRST

charginosQr
NS(Qr

R) in ~B27! in the NS~R!-representation. On the other hand, the stress oper
Tr in ~B8! and the BRST charginoQr in ~B28! in the bo-representation are also useful in op
QSFT, since they are inlayed intoinlint operatorsT andQ in the ‘‘ICS s’’ as well as the ‘‘ICSg.’’
In Appendix E, we construct thesmall gluing vertex functionuVS

x(g,d)& in ~E12! in jh-mode
@large gluing vertex functinounL

x(...)& in ~E18! in jh-mode#. Thus we find that thesmall gluing
vertex functinounS(g,d)& in ~E30! is related with thelarge gluing vertex functionuVL(g,d)& in
~E32! by the formula~E31!. This unS(g,d)& in ~E30! satisfies the gluingidentity ~E29! and the
gluing relation ~E41! in the small Hilbert space, whileuVL(g,d)& in ~E32! satisfies the gluing
relation~E44! in the large Hilbert space. It should be noticed that we have used thesmall gluing
vertex functionunS(g,d)& in the gluing theorem~2.20!. Finally, elementary vertex functinos hav
been constructed by using the inlayed coordinates given by Eq.~E34! in the ‘‘ICS m,’’ which
satisfy the GJ-FE ~E36!. Then, applying the gluing theorem to these elementary vertex funct
we have derived various useful formulas~E37!–~E40!.
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In our previous paper,5 we have derived the generating functional~7.28! which generatesall
physical scattering amplitudes in QBFT. We should maketwo following corrections in ‘‘Eqs.
~7.22! and ~7.29! of Ref. 5,’’ respectively; Using notations in Ref. 5, we have that

k^mod;tru:expS (
r 51

N

(
m51

24

i • R dwr

2p i
Pr

m†~wr !•Xm
„zr~wr !…D :umod;tr&k

[expS (
m51

24

(
r 51

N

(
i 51

g

ki
m
• R dwr

2p•A21
Pr

m†~wr !E
z0

zr ~wr !

v i

1 (
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(
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N
1

2 R dwr

2p i R dwr8
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Pr

m†~wr !•Pr
m†~wr8!• log

E„zr~wr !,zr~wr8!…

zr~wr !2zr~wr8!
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r ~, !s

N R dwr

2p i R dws

2p i
Pr
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m†~ws!• log
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zr~wr !2zs~ws! D ~5.1!

and

k^moduRW •S )
r 51

N

:C~Zr ;Pr
†!: D umod&k

5)
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N

exp„2pr
1
•Xeff

2 ~Zr ;k2!2pr
2
•XEff

1 ~Zr :k1!…

3expS (
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(
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N

(
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m
• R dwr

2p i
Pr

m†~wr !E
z0

z̃r ~wr ;k1!
v i

1 (
m51
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(
r ,s51
r ~, !s

N R dwr

2p i R dws

2p i
Pr

m†~wr !•Ps
m†~ws!• logE„z̃r~wr ;k1!,z̃s~ws ;k1!…R

1 (
m51

24

(
r 51

N
1

2 R dwr

2p i R dwr8

2p i
Pr

m†~wr !•Pr
m†~wr8!• log

E„z̃r~wr ;k1!,z̃r~wr8 ;k1!…

wr2wr8 D .

~5.2!

Although we have not given in this paper the results in QSFT~to be obtained by applying the
method in Sec. VII of Ref. 5!, these results might be straightforwardly~but tediously! obtained, if
we use the generating functional of physical vertex operators in each NS and R sector.14 In the
following, we shall briefly comment how thephysicalscattering amplitudes (NB ,NF)g in ~4.63!
can be calculated. First we consider the case when the integrandF($TI%,$Tgh%) in Eq. ~4.63! ~in
g-loops! is given by thesuperstring~Feynman! diagram composed ofI B(I F) propagators and
VB(VF) interaction vertices among NS–NS–NS~R–R–NS!. These numbers are related to ea
others as follows:

2I B1NB53VB1VF ~5.3!

and

2I F1NF52VF . ~5.4!

In any connectedsuperstring~Feynman! diagrams ing-loops, we have the following relation
amongI’s andV’s:
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VB1VF215I B1I F2g. ~5.5!

In order for (NB ,NF)g to give nonvanishing physical amplitudes, thetotal quantum numberK
@being defined by Eq.~1.30!# of F($TI%,$Tgh%) should satisfy the followingthree conditions
~‘‘conservation laws ing-loops’’!:

~G,F,H !5~323g,2212g,2g!. ~5.6!

For simplicity of notations,F($TI%,$Tgh%) in ~4.63! will be shortly denoted by

F~$TI%,$Tgh%!>Tr~^Vg„~gB ,gF!…&•„X•exp~s2f!•V0b
…

NB

3~exp~s21/2•f!•V1 f
•Sh!NF~Ȳ•Y!VB

•~Ȳ!VF~B0•X•X! I B
•~B0•X! I F

•~h0!g
…,

~5.7!

where „X•exp(s2f)•V0b
…

NB symbolicallyrepresentsNB physical NS states in 1 picture, whil
„exp(s21

2•f)•V1f
•Sh…

NF symbolically representsNF physical R states.@See Eq.~4.65!.# In the
following, we can count the total quantum numbersK’s of F($TI%,$Tgh%) in ~5.7!. We first notice
that there always appears one factore1x from eachȲ(Y) @see Eqs.~4.30! and ~C8!#, so that (Ȳ
•Y)VB

•(Ȳ)VF gives the factor exp„(2VB1VF)x… in total, while (h0)g gives the factore2gx. Then,
since the conditionH52g must be satisfied for the term~5.7! to be nonvanishing, there shoul
appear the factor (e2x)2VB1VF from (X•X) I B

•(X) I F. On the other hand, eachX involves the
component having the factorF(Bg)}e2x, as seen from Eqs.~C15! and~C27!. By noticing that this
component ofX has the same quantum numbers as those ofX(21) in ~C7!, this component ofX
will hereafter besymbolicallyexpressed byX(21). Thus, the nonvanishing contribution in the ter
~5.7! comes from

F~$TI%,$Tgh%!

}XNB12I B1I F22VB2VF
•exp„~2NB2 1

2•NF!f…•exp„~NB1NF2I B2I F!s…

•exp~2g•x!~Ȳ•Y•X~21!
•X~21!!VB

•~Ȳ•X~21!!VF. ~5.8!

It is remarkable that the last two terms on the right-hand side of Eq.~5.8! donothave any quantum
number~G,F,H!. Therefore, the last four terms on the right-hand side of Eq.~5.8! satisfy thetwo
conditionsG5323g andH52g by themselves, because of the relation

NB1NF2I B2I F5323g, ~5.9!

which can be derived by substituting the relations~5.3! and~5.4! into ~5.5!. Thus, the first term on
the right-hand side of Eq.~5.8! should haveonly the nonvanishing fracting numberF ~G andH
being equal to zeros!. This is possible only in the case when we use theX’s component involving

the factorF(XW •CW ), as seen from Eqs.~C15! and ~C27!. @Since this component of thepicture-
changing operator Xhas the same quantum number as those ofX(0) in ~C6!, this component will
hereafter besymbolicallyexpressed byX(0).# Our conclusion at this stage is that we should u
only the componentX(0) in the first term of Eq.~5.8!, so that the firsttwo terms on the right-hand
side of Eq.~5.8! lead @with the help of Eqs.~5.3!–~5.5!# to

~X~0!!NB12I B1I F22VB2VF
•exp„~2NB2 1

2•NF!f…

}exp„~2I B1I F22VB2VF21/2•NF!f…

5exp~ 2
3~ I B1I F2NB2NF!f…

5exp„~2212g!f…. ~5.10!
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Equation~5.10! shows that the conditionF52212g can be satisfied. Thusall three conditions
~5.6! can be satisfied by some terms inF($TI%,$Tgh%) something like

F~$TI%,$Tgh%!>Tr~^Vg„~gB ,gF!…&•„exp~s2f!•V0b
…

NB

3„exp~s2 1
2•f!•V1 f

•Sh…
NF
•~X~0!!NB12I B1I F22VB2VF~Ȳ•Y•X~21!

•X~21!!VB

3~Ȳ•X~21!!VF~B0! I B1I F
•~h0!g!, ~5.11!

where the factor exp(s2f)•V0b@exp(s21
2•f)•V1f

•Sh# is the one in the physical NS state~D1! in 0
picture @R state ~D12! in 1

2 picture#, while we havesymbolically used the abovementione
X(21)@X(0)#. Since anyQNS andQR @in themodifiedpropagator~3.37!# give effectivelyoneX(11)

~instead ofX(0) or X(21)!, they do not contribute to the amplitude~5.11!.

APPENDIX A: DEFINITIONS OF VARIOUS EXTERNAL AND INLINT OPERATORS

In this Appendix, we shall give the definition of various operatorsw
(5X6 j , f j , s, f, x, for j 50 – 4) introduced by Friedan–Martinec–Schenker9 and used in this
paper. In calculating physical scattering amplitudes (NB ,NF) in ~1.22! amongNB bosonic andNF

fermionic physical particles~with N[NB1NF!, we use ther th externaloperatorw r(wr) ~for r
512N! which lives within theunit disk uwr u,1, and theinlint operatorw0(z) which lives within
the wholecomplexz plane. In order to express both inlint and external operators altogethe
shall introduce notationsw r(yr)’s ~for r 50 –N! as follow. The argumentyr ~for r 51 –N! is equal
to the r th disk coordinatewr in ~2.2!, while y0 is equal to the inlayed coordinatez(PC). Fur-
thermore, theinlint operatorw0(z) is simply denoted byw(z), while w r(wr)’s ~for r 51 –N! are
externaloperators.

First, any ten-dimensional vectorAm ~for m50 – 9! is transformed into the componentA6 j

~for j 50 – 4! as follows:

A60[
1

&
~A06A9!,

~A1!

A6 j[
1

&
~2A21•Aj6Aj 14! for j 51 – 4,

so that the Lorentz scalar product amongAm andBn is expressed by

AW •BW [2(
6

(
j 50

4

A6 j
•B7 j S [2(

6
A60

•B701(
j 51

8

Aj
•Bj D . ~A2!

In open QSFT, we have the string coordinateX6 j ~for j 50 – 4!, the j th spining operatorf j ~for
j 50 – 4!, the ghosting operators, the fracting operatorf, and the Hilberting operatorx. These
operators~represented byw’s! are coupled with background chargesQ(w)’s in ~2.5!. For anyr
50 –N, the operatorw r(yr) is defined by

«w
f
•w r~yr ![S pr~w!• log~yr !2 (

n51

`
1

n
•Jn,r~w!•yr

2nD 1S «w
f
•qr~w!1 (

n51

`
1

n
•J2n,r~w!•yr

nD
[w r~yr ;1 !1w r~yr ;2 ! for w5X6 j ,f j ,s,f,x, and j 50 – 4. ~A3a!

Incidentally, the string coordinateX6 j in ~A3! is the same as the one in Ref. 13, since we have
following relations among them:
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pr~X6 j !52A21•pr
6 j , qr~X6 j !5qr

6 j ,
~A3b!

Jn,r~X6 j !52A21•An•an,r
6 j , J2n,r~X6 j !52A21•An•a2n,r

6 j .

Operators in Eq.~A3! satisfy the following commutation relations~for r, t50 –N and n,m
51,2,3,...#:

@Jn,r~X6 j !,J2m,t~X7k!#5n•dnm•d rt•d jk for j ,k50 – 4,
~A4!

@pr~X6 j !,qt~X7k!#5d rt•d jk for j ,k50 – 4,

and

@Jn,r~w!,J2m,t~w8!#5n•dnm•d rt•dww8•«w
f for w,w85f j ,s,f,x, and j 50 – 4,

~A5a!
@pr~w!,qt~w8!#5d rt•dww8 for w,w85f j ,s,f,x, and j 50 – 4,

all other commutators being equal to zero. In Eq.~A5a!, we have used the constant«w
f defined by

«w
f[ H 21 for w5f,

11 for w~Þf!. ~A5b!

The ~Grassman even! standard ket states5 upr(XW )50& r and upr(w)50& r ~for r 50 –N! are states
satisfying respectively that

Xr
6 j~yr ;1 !upr~XW !50& r50 for j 50 – 4,

~A6!
w r~yr ;1 !upr~w!50& r50 for w5f j ,s,f,x, and j 50 – 4,

while the ~Grassman even! standard bra states5
r^qr(XW )50u and r^qr(w)50u ~for r 50 –N! are

states satisfying respectively that

r^qr~XW !50uXr
6 j~yr ;2 !50 for j 50 – 4,

~A7!

r^qr~w!50uw r~yr ;2 !50 for w5f j ,s,f,x, and j 50 – 4.

Normalizations of these states are respectively fixed by

r^qr~XW !50upt~XW !50& t5d rt ,
~A8!

r^qr~w!50upt~w8!50& t5d rt•dww8 for w5f j ,s,f,x, and j 50 – 4.

Furthermore, the ‘‘dual standard bra states’’r^pr(XW )50u and r^pr(w)50u ~for r 50 –N! are
defined respectively by

r^pr~XW !50u[„upr~XW !50!r…
†,

~A9!

r^pr~w!50u[„upr~w!50& r…
† for w5f j ,s,f,x, and j 50 – 4.

We also impose the following normalization conditions:
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r^pr~XW !50uexpS (
6

(
j 50

4

2A21p6 j
•Xr

7 j~yr !D upt~XW !50& t5d rtS )
m50

9

2pd~pm!D ,

~A10!

r^pr~w!50uexp„2Q~w!w r~yr !…upt~w8!50& t5d rtdww8 for w,w85f j ,s,f,x, and j 50 – 4,

where the background chargesQ(w)’s are given by Eq.~2.5!. @Real numberspm’s are related with
p6 j ’s by Eq. ~A1!.# We finally remark that the Hermitian conjugation, ‘‘†’’ is given by

„w r~1/yr* !…†5w r~yr !1«w
f
•Q~w!• log ~yr ! for w5s,f,x, ~A11a!

so that we find from Eq.~A3! that

2„pr~w!…†5pr~w!1Q~w!. ~A11b!

We find thatr^pr(w)50u is Grassman even~odd! for w5XW ,f j , f ~for w5s, x!. The ‘‘nor-
mal ordering in the bo-~sonized! representation’’ is denoted by : :, which is defined to be plac
any negative frequency partw r(yr ;2) always to the left of any positive frequency partw t8(yt8 ;
1) @for any w,w85X6 j ,f j ,s,f,x#. Furthermore, the radial ordering operatorRW is defined to be
rearranging any product@of external or inlint operators# according to the absolute values
operators’ arguments:

RW •~w r~yr !•w t8~yt8!![H w r~yr !•w t8~yt8! for uyr u.uyt8u,
w t8~yt8!•w r~yr ! for uyt8u.uyr u,

for w,w85X6 j ,f j ,s,f,x, and j 50 – 4. ~A12!

If we define theradial-orderedargument (yr2yt8)R by

~yr2yt8!R[H ~yr2yt8! for uyr u.uyt8u,
~yt82yr ! for uyt8u.uyr u.

~A13!

Commutation relations~A3!–~A5! are found to lead to the following operator product expansi
~OPEs!:

~A14!

The first ~second! term on the right-hand side of Eq.~A14! will be called the ‘‘contraction~the
normal-ordered product! in the bo-representation.’’ All of nonvanishing contractions in Eqs.~A14!
are those given by

~A15!

~Throughout this paper, we will explicitly write out the radial ordering operatorRW in various
formulas.!
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@Hereafter, the conformal weight of the primary operatorG will be denoted byd(G).# The
anti-ghostinoBr and the ghostinoCr are defined respectively@in terms of the ghosting operators r

in ~A3!# by

Br~yr ![:exp„2s r~yr !…: @d~B!512# ~A16!

and

Cr~yr ![:exp~1s r~yr !!: @d~C!521#, ~A17!

cocycle factors15 being abbreviated here and hereafter.
On the other hand, Friedan–Martinec–Schenker~FMS! have introduced9 the hilbertinoj r ,

the anti-hilbertinoh r , the anti-ghostonb r , the ghostong r , and the string coordinoC r
6 j ~for j

50 – 4!, which can respectively be constructed@in terms of the hilberting operatorx r , the fracting
operatorf r , and thej th spining operatorf r

j given by Eq.~A3!# as follows:

j r~yr ![:exp„1x r~yr !…: @d~j!50#, ~A18!

h r~yr ![:exp„2x r~yr !…: @d~h!511#, ~A19!

b r~yr ![]yr
j r~yr !:exp„2f r~yr !…: @d~b!51 3

2#, ~A20!

g r~yr ![:exp„1f r~yr !…:h r~yr ! @d~g!52 1
2#, ~A21!

and

C r
6 j~yr ![:exp„6f r

j ~yr !…: for j 50 – 4 @d~C!51 1
2#. ~A22!

The r th punctured ring domain in thep(r )5R sector is characterized by the presence of
following external~inlint! operator atwr50 @at ther th punctureZr s#:

:exp„1s r~y0r !…::exp„2 1
2f r~y0r !…:S$h~r !%,r~y0r !. ~A23!

@See Eq.~D12!.# In particular, the FMS spinor9 S$h(r )%,r(y0r) represents the fermionic spinor aty0r

and it is defined by

S$h~r !%,r~y0r ![:exp„1 1
2•f r

0~y0r !…:)
j 51

4

:exp„«h~r !
j

•f r
j ~y0r !…:, ~A24a!

with

«h~r !
j [6 1

2 for h~r !56. ~A24b!

@In Eqs. ~A18!–~A24! and hereafter, cocycle factors15 will be abbreviated.# We notice that
:exp„6w r(yr)…: involves the factor (yr)

7pr (w) ~for w5s,x!, where eigenvaluespr(w) are integer
valued inboth the Neveu–Schwarz~NS! and Ramond~R! sectors. Since any ofBr(yr) in ~A16!,
Cr(yr) in ~A17!, j r(yr) in ~A18!, andh r(yr) in ~A19! is single valued, each can respectively
Laurent expanded atyr50 as

Br~yr !5S (
n521

`

Bn,r•yr
2n22D 1S (

n52

`

B2n,r•yr
n22D[Br~yr ;1 !1Br~yr ;2 ! with Bn,r

1 5B2n,r ,

~A25!
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Cr~yr !5S (
n52

`

Cn,r•yr
2n11D 1S (

n521

`

C2n,r•yr
n11D[Cr~yr ;1 !1Cr~yr ;2 ! with Cn,r

† 5C2n,r ,

~A26!

j r~yr !5S (
n51

`

jn,r•yr
2nD 1S (

n50

`

j2n,r•yr
nD[j r~yr ;1 !1j r~yr ;2 ! with jn,r

† 5j2n,r ,

~A27!

and

h r~yr !5S (
n50

`

hn,r•yr
2n21D 1S (

n51

`

h2n,r•yr
n21D[h r~yr ;1 !1h r~yr ;2 ! with hn,r

† 5h2n,r .

~A28!

Finally, the ‘‘normal ordering in theS-representation’’~denoted by : :S! is defined by

~A29!

where the ‘‘contractions in theS-representation’’

are given by

~A30a!

and

~A30b!

all other contractions in theS-representation amongG andG8 ~for G,G85B,C,j,h,XW ! being equal
to zero. Incidentally, : :S defined by Eq.~A29! is equivalent to placing any negative frequency p
to the left of any positive frequency part~of operatorsB, C, j, h, XW !.

Noticing that

:exp„6w r~yr !…:upr~w!50& r5:exp„6w r~yr ;2 !…:upr~w!50& r for w5f,x ~A31!

is analytic atyr50, we find from Eqs.~A25!–~A28! that

Br~yr ;1 !upr~s!50& r5Cr~yr ;1 !upr~s!50& r

5j r~yr ;1 !upr~x!50& r

5h r~yr ;1 !upr~x!5& r

50. ~A32!

Similarly, we find from Eq.~A7! that
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r^qr~s!50uBr~yr ;2 !5 r^qr~s!50uCr~yr ;2 !

5 r^qr~x!50uj r~yr ;2 !

5 r^qr~x!50uh r~yr ;2 !50. ~A33!

Since we have that

r^pr~x!50u S j0,r

1 D upt~x!50& t5S d rt

0 D , ~A34!

we find thatr^pr(x)50u is Grassmanodd. Furthermore, Eqs.~A8! and ~A34! lead to

r^qr~x!50u5 r^pr~x!50uj0,r

5 r^pr~x!50uj r~1`! @ from Eqs. ~A9!, ~A27!, and ~A33!#, ~A35a!

5 r^pr~x!50u:exp„1x r~1`!…:, @ from Eq. ~A18!#,

5 r^pr~x!50uexp„1qr~x!…

@ from Eqs. ~A3!, ~A7!, ~A9!, and ~A11!#. ~A35b!

On the other hand, the anti-ghostonb in ~A20! and the ghostong in ~A21! and the string
coordinoC6 j in ~A22! in the R sector should be treated differently from those in the NS se
Especially in the casep(r )5R, the operator~A23! exists aty0r . Incidentally, the presence of th
operator~A23! ~of conformal weight 0! reflects the presence of ther th external physical R-state in
~D12! @in 1

2 picture# at the puncturey0r within the r th punctured ring domain. The presence of t
operator~A23! induces inb in ~A20!, g in ~A21!, andC6 j in ~A22! the branch pointat y0r ,
which should be taken into account in Laurent expanding these operators. The branch poin
string coordinoC6 j has been completely analyzed in our previous papers,14 so that we have only
to apply previous techniques to the analyses ofb andg. @On the other hand, we point out that the
is no essential need to discriminateB in ~A25!, C in ~A26!, j in ~A27!, andh in ~A28! in the NS
sector from those in the R sector.# In the following, formulas with~without! the branch point are
those in the R~NS! sector: In the special case wheny0r50, the anti-ghostonb in ~A20! @of
conformal weightd(b)5 3

2#, the ghostong in ~A21! @of d(g)52 1
2#, and the string coordinoC6 j

in ~A22! @of d(C6 j )5 1
2# can be respectively Laurent expanded atyr50 in the following forms.

For p(r )5R ~NS!, we find that

b r~yr !5
1

~Ayr !
3 S (

n50

`

bn~21/2!,r•yr
2n~11/2!D

1
1

~Ayr !
3 S (

n51

`

b2n~21/2!,r•yr
n~11/2!D

5b r~yr ;1 !1b r~yr ;2 ! with bn~21/2!,r
† 5b2n~11/2!,r , ~A36!

g r~yr !5AyrS (
n51

`

gn~11/2!,r•yr
2n~21/2!D 1AyrS (

n50

`

g2n~11/2!,r•yr
n~21/2!D

5g r~yr ;1 !1g r~yr ;2 ! with gn~11/2!,r
† 52g2n~21/2!,r , ~A37!

and
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C r
6 j~yr !5

1

Ayr
S (

nPZ
cn~11/2!,r

6 j
•yr

2n~21/2!D . ~A38!

@The suffix2n(11/2) means the suffix2n (2n11/2) should be used in the R~NS! sector.# The
expansion in the general casey0rÞ0 will be obtained in much the same way as we have obtai
the expansions~2.24! and ~2.28! in the first paper of Ref. 14.

At this stage, we introduce the following super-coordinateXr
6 j (yr ,u r), the super-ghostino

Cr(yr ,u r), and the super-antighostonb r(yr ,u r):

Xr
6 j~yr ,u r ![Xr

6 j~yr !1u r•C r
6 j~yr !, ~A39!

Cr~yr ,u r ![Cr~yr !1u r•g r~yr !, ~A40!

and

b r~yr ,u r ![b r~yr !1u r•Br~yr !. ~A41!

We shall later use the following partial differentiation@of operators~A39!–~A41!#:

Dur
[

]

]u r
1u r•

]

]yr
. ~A42!

The ‘‘contractions in thep-representation’’

@for p5R,NS# are those respectively defined by

~A43!

~A44!

and

~A45!

~A46!

In the formulas~A43! and~A45!, we have used the radial-ordered argument(...)R defined by Eq.
~A13!. Then, we candefinethe ‘‘normal-ordered product in thep-representation’’~denoted by
: :p! as follows:

~A47!
                                                                                                                



(

of

-

4760 J. Math. Phys., Vol. 40, No. 10, October 1999 Seichi Naito

                    
We should notice that the formula~A46! has been chosen so as to involve the factoryt8
2y0t)/(yr2y0r), reflecting the effect due to the existence of :exp„s r(y0r)…: @ :exp„s t(y0t)…#,
which is needed to make the conformal weight of ther (t)th external primary operators~A23!
equal to zero.@See Eqs.~D12!, ~D14!, and~D28!.#

APPENDIX B: IDENTITIES Tr
R5Tr

NS5Tr AND Qr
R5Qr

NS5Qr

In this appendix, : :p(: :) always means the ‘‘normal ordering in thep- ~bo-!representation’’
defined by Eq.~A47! @~A14!#, where we should use contractions~A43!–~A46! @~A15!#. Then,
Fr

p(yr ,u r) is the ‘‘super-stressino operator in thep-representation’’ defined by

Fr
p~yr ,u r !S [

1

2
•Fr

p~yr !1u r•Tr
p~yr ! D for r 502N ~B1!

[(
6

(
j 50

4
1

2
:]yr

Xr
6 j~yr ,u r !•Dur

Xr
7 j~yr ,u r !:p

1:~2Cr~yr ,u r !•]yr
b r~yr ,u r !1 1

2 •Dur
Cr~yr ,u r !•Dur

b r~yr ,u r !

2 3
2 •]yr

Cr~yr ,u r !•b r~yr ,u r !!:p ~B2!

[:Fr
~XW •CW !~yr ,u r !:p1:Fr

~gh!~yr ,u r !:p for p5R,NS, ~B3!

whereDur
is defined by Eq.~A42!. By substituting Eqs.~A39!–~A42! into Eq. ~B2!, Tr

p(yr) in
~B1! ~to be referred to as the ‘‘stress operator in thep-representation’’! is found to be given by

Tr
p~yr ![:Tr

~XW !~yr !:p1:„Tr
~CW !~yr !1Tr

~BC!~yr !1Tr
~bg!~yr !…:p for p5R,NS and r 50 –N,

~B4a!

where @and in Eq.~B3!# the operatorT(G) @F(G)# represents the component given in terms
G-modes. For examples, we have that

:Tr
~BC!~yr !:p[:Cr~yr !•]yr

Br~yr !:p12:]yr
Cr~yr !•Br~yr !:p ~B4b!

and

:Tr
~bg!~yr !:p[2 1

2:g r~yr !•]yr
b r~yr !:p2 3

2:]yr
g r~yr !•b r~yr !:p . ~B4c!

$See also Eqs.~C16!–~C18! for F(G)’s @with (G)5(XW •CW ),(bC),(Bg)# and Eq.~D22! for T(G)

@with (G)5(XW ),(CW )#, which are to be given later.% On the other hand,Tr
(w)(yr) ~to be referred to

as the ‘‘w-mode’s stress operator in the bo-representation’’! is defined by9

Tr
~w!~yr ![«w

f
•

1

2
:„]yr

w r~yr !…
2:2

Q~w!

2
•]yr

2 w r~yr ! for w5f j ,s,f,x, ~B5!

where we have used the background chargesQ(w)’s in ~2.5! and the constant«w
f in ~A5b!. Using

techniques in Ref. 5, we find after straightforward calculations~in the general space–time dimen
sion D! that Tr

p(yr) in ~B4! is given in terms ofTr
(w)(yr)’s in ~B5! as follows:

Tr
p~yr !5Tr~yr !1S 2

D

16
1

5

8D dp
R

~yr2y0r !
2 for p5R,NS, ~B6!

where the constantdp
R is defined by
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dp
R[ H1 for p5R,

0 for p5NS, ~B7!

while Tr(yr) ~to be referred to as the ‘‘stress operator in the bo-representation’’! is defined by

Tr~yr ![:Tr
~XW !~yr !:p1 (

w5f j ,s,f,x

Tr
~w!~yr !, ~B8!

whereTr
(w)(yr)’s are defined by Eq.~B5!, while Tr

(XW )(yr) is given by the first term on the right

hand side of Eq.~D22!. Since we have :Tr
(XW )(yr):p[:Tr

(XW )(yr):S , we find that

Tr
R~yr !5Tr

NS~yr !5Tr~yr ! for D510 and r 50 – N ~B9a!

[ (
n52`

`

Ln,r•yr
2n22 @d~T!52#. ~B9b!

Furthermore, straightforward calculations lead to the following inlaying identity among the s
operators in the NS-representation:

Tr
NS~wr !⇒

I
„zr s

~1!~wr !…
2
•TNS

„zr s~wr !…1S D

8
2

5

4D S zr s
~3!~wr !

zr s
~1!~wr !

2
3

2 S zr s
~2!~wr !

zr s
~1!~wr !

D 2D . ~B10!

With the help of Eq.~B9!, the inlaying identity~B10! is reduced~in the caseD510! to

Tr
p~r !~wr !⇒

I
„zr s

~1!~wr !…
2
•T„zr s~wr !… for r 51 –N and in the caseD510. ~B11!

On the right-hand side of Eq.~B11!, we have used the ‘‘inlint stress operator in the bo
representation.’’ Finally, the stressino operators inthree representations are just equal to ea
other:

Fr
R~yr !5Fr

NS~yr !5Fr~yr ! for r 50 –N. ~B12!

We can easily see that the stressino operatorFr
p(r )(wr) is inlayed into theinlint stressino operato

F„zr s(wr)… as follows:

Fr
p~r !~wr !⇒

I
„zr s

~1!~wr !…
3/2
•F„zr s~wr !… for r 51 –N. ~B13!

It is tedious but straightforward to derive the following OPE among superstressino ope
Fr

NS(yr ,u r)’s in ~B1! in the NS-representation:

RW •Fr
NS~yr ,u r !•Ft

NS~yt8 ,u t8! for r ,t50 –N

5
~D/42 10

4 !d rt

~yr2yt82u ru t8!3 1

3
2~u r2u t8!d rt

~yr2yt82u ru t8!2 •Ft
NS~yt8 ,u t8!

1
~u r2u t8!d rt

yr2yt82u ru t8
•]y

t8
Ft

NS~yt8 ,u t8!1

1
2d rt

yr2yt82u ru t8
•Du

t8
Ft

NS~yt8 ,u t8!

1~ terms regular atyr5yt8!. ~B14!

Based on Friedan–Martinec–Schenker’s work,9 we introduce the following ‘‘BRST super
current operator in thep-representation’’@to be denoted byJr

p(yr ,u r)# defined by
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Jr
p~yr ,u r ![2:Cr~yr ,u r !„Fr

~XW •CW !~yr ,u r !1 1
2•Fr

~gh!~yr ,u r !…:p

1 3
4:Dur

~Cr~yr ,u r !•Dur
Cr~yr ,u r !•b r~yr ,u r !!:p ~B15!

@[ j r
p~yr !1u r•Jr

p~yr !#, ~B16!

where we have used Eqs.~A42!, ~B2!, and~B3!. Therefore,Jr
p(yr) in ~B16! ~to be referred to as

the BRST currentino in thep-representation! is given by

Jr
p~yr ![ (

m50

2

Jr
p~m;yr ! for r 50 –N, ~B17!

where each componentJr
p(m;yr) is given by the following term~involving themth power ofg!:

22•Jr
p~0;yr ![22•Cr~yr !:Tr

~XW ,CW !~yr !:p2:Cr~yr !•Tr
~BC!~yr !:p , ~B18!

22•Jr
p~1;yr !52Cr~yr !:Tr

~bg!~yr !:p1g r~yr !•Fr
~XW ,CW !~yr !1 1

2:g r~yr !•Fr
~bC!~yr !:p , ~B19!

and

22•Jr
p~2;yr !5 1

2:g r
2~yr !:p•Br~yr !. ~B20!

On the other hand,Jr(yr) ~to be referred to as the ‘‘BRST currentino in the b
representation’’! is defined by

Jr~yr ![ (
g521

1

Jr
~g!~yr ! for r 50 –N, ~B21!

where each componentJr
(g)(yr) @involving the factor :exp(gs):# is given by

Jr
~1!~yr ![:exp„1s r~yr !…:S Tr

~XW !~yr !1(
j 50

4

Tr
~f j !~yr !1Tr

~f!~yr !1Tr
~x!~yr !D :

1:exp„s r~yr !…~2 1
2 „]yr

s r~yr !…
21 1

2 ]yr

2 s r~yr !!:, ~B22!

Jr
~0!~yr ![2

1

2 S (
6

(
j 50

4

]yr
Xr

6 j~yr !:exp„7f r
j ~yr !…: D :exp„1f r~yr !…::exp„2x r~yr !…:

52 1
2Fr

~XW •CW !~yr !•g r~yr !, ~B23!

and

Jr
~21!~yr ![

1
4:exp„2s r~yr !…::exp„12f r~yr !…::exp„22x r~yr !…:. ~B24!

After carrying out extremely tedious but straightforward calculations~by using techniques in Ref
5!, we find that theselocal BRST currentinos inthreerepresentations arenot equal to each other
Actually, they are related to each other by
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Jr
R~yr !2Jr

NS~yr !5
2D16

16
•

Cr~yr !

~yr2y0r !
2 1

1

4
•

]yr
Cr~yr !

yr2y0r
for r 50 –N

5
1

4
•]yrS Cr~yr !

yr2y0r
D in the special caseD510, ~B25!

and

Jr
NS~yr !5Jr~yr !1 3

2•]yr
„Cr~yr !]yr

f r~yr !… for r 50 –N. ~B26!

@Incidentally,y0r in Eq. ~B25! is the one in the formulas~A45! and ~A46! and it is the~disk or
inlayed! coordinate of the operator~A23! in the R sector.#

At this stage,Qr
p ~to be referred to as the ‘‘BRST chargino in thep-representation’’! is

defined by

Qr
p[ R

y0r

dyr

2pA21
Jr

p~yr ! for r 50 –N @see the formulas~B17!–~B20!#, ~B27!

while Qr ~to be referred to as the ‘‘BRST chargino in the bo-representation’’! is defined by

Qr[ R
y0r

dyr

2pA21
Jr~yr ! for r 50 –N @see the formulas~B21!–~B24!!. ~B28!

Fortunately, since BRST charginos@~B27! and ~B28!# are obtained by integrating the BRS
currentinos, we find from Eqs.~B25! ~in the case D510! and ~B26! that

Qr
NS5Qr

R5Qr for r 50 –N. ~B29!

Thus BRST charginos inthree representations are shown to be justequal to each other.
Comment:Equivalence of three BRST charginos isnot at all the trivial result, as seen from

the nonequalities of three BRST currentino’s@i.e., Eqs.~B25! and ~B26!#. Fortunately, we can
explicitly prove the equality~B29! in the special caseD510. Incidentally, we give the following
formula which will be useful in the actual calculations:

Qr
~1![ R

y0r

dyr

2pA21
Jr

~1!~yr ! ~ in the bo-representation!

5 R
y0r

dyr

2pA21
Cr~yr !:S Tr

~XW !~yr !1Tr
~CW !~yr !1

5
8•dp

R

~yr2y0r !
2D :p ~ in the p-representation!

1 R
y0r

dyr

2pA21
Cr~yr !„Tr

~jh!~yr !1Tr
~f!~yr !…

1 R
y0r

dyr

2pA21
:Cr~yr !•]yr

Cr~yr !•Br~yr !:S ~ in the S-representation!, ~B30!

where we have used the constantdp
R in ~B7! and the operatorTr

(jh)(yr) defined by

Tr
~jh!~yr ![:]yr

j r~yr !•h r~yr !:S5Tr
~x!~yr ! for r 50 –N. ~B31!

@See Eq.~B5!#.
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In the following, we shall prove the inlaying identity relevant to the BRST chargino
proving the inlaying identity of the BRST currentino, it is useful to useJr

NS(yr), i.e., the ‘‘BRST
currentino in the NS-representation.’’ After extremely tedious calculations using techniqu
Ref. 5, we can prove the following inlaying identity:

Jr
NS~wr !⇒

I
zr s

~1!~wr !:JNS
„zr s~wr !…

1S D

8
2

5

4D • zr s
~3!~wr !

zr s
~1!~wr !

1S 2
3D

16
1

15

8 D •S zr s
~2!~wr !

r r s
~1!~wr !

D 2

•

C„zr s~wr !…

zr s
~1!~wr !

,

~B32a!

which is reduced~whenD510! to

Jr
NS~wr !⇒

I
zr s

~1!~wr !:JNS
„zr s~wr !… for r 51 –N and D510. ~B32b!

Therefore, the inlaying identity~B32b! @together with the equality~B29!# leads to

Qr
p~r ![ R

0

dwr

2pA21
Jr

p~r !~wr ! for r 51 –N

⇒
I

Q@r #[ R
0

dwr

2pA21
zr s

~1!~wr !•J„zr s~wr !…

5 R
Zr s

dzr

2pA21
J~zr !

for r 51 –N and in the caseD510, ~B33!

wherezr s(0)5Zr s is the r th puncture in GM-FE in ~2.1!. Inlaying identity~B33! shows that the
r th externalBRST charginoQr

p(r ) @in the p(r )-representation# is inlayed into theinlint BRST
charginoQ@r # in the r th punctured ring domain.

Comment:AlthoughQ@r # was originally given by the integration over ther th disk coordinate
wr , it could subsequently be rewritten~in the case D510! into the integration over the complex
variable z~in the complex plane! along the path enclosing each punctureZr s in the r th punctured
ring domain. This result will play very important roles in proving the following theorem~B34!.

Theorem †‘‘Special conservation of the total BRST chargino’’ „SCTC…‡:

s^IV~1,2,...,N!uS (
r 51

N

Qr
p~r !D 50 @ to be referred to as the ‘‘SCTC’’#. ~B34!

Proof: With the help of the inlaying identity~B33!, the left-hand side of Eq.~B34! is just
inlayed into

s^IV~1,2,...,N!uS (
r 51

N

Q@r # D , ~B35a!

where we have that

(
r 51

N

Q@r #5(
r 51

N R
Zr s

dzr

2pA21
J~zr !. ~B35b!
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Since the inlint BRST currentinoJ(z) in Eq. ~B35b! is analytic throughout various ring domain
in the ‘‘ICS s,’’ we can deformthe integration contours~in the complexz plane! of variousinlint
Q@r # ’s in Eq. ~B35b!. Thus the sum on the right-hand side of Eq.~B35b! is furthermore reduced
to the integration enclosing each interacting pointY 6i

s . Finally, the latter integration is found to
be vanishing, since the integrandJ(z) is analytic ~as the function ofz! evenat any interacting
point Y 6i

s @in GM-FE in ~2.1!#. Thus we obtain that

(
r 51

N

Q@r #50, ~B36!

which together with Eq.~B34b! leads to Eq.~B34!. ~Q.E.D.!
Comment:It should be noticed that ther th inlayed coordinatezr s(wr) ~as the function ofwr!

is singularat wr56A21, i.e., at any interacting point, so thatD510 is essential in proving Eq
~B34!.

At this stage, we can explain thereasonwhy it is useful to introducethreeQr
NS, Qr

R, andQr ,
which are fortunately just equal to each other in the special caseD510. @See Eq.~B29!.# In
proving ~in Appendix D! that ther th externalphysical NS- or R-states~for r 51 –N! are invariant
under theexternal BRST charginoQr

p(r ) , we can use the OPEs14 ~D24! and ~D28! among

:Tr
(XW ,CW )(yr8):p(r ) in ~D22! ~which are given in the ‘‘p(r )-representation’’! and ‘‘external physical

vertex operators in thep(r ) sector’’ $i.e., Vr
nb(y0r) @for p(r )5NS# andVr

n f(y0r)•S$h%,r(y0r) @for
p(r )5R#%. On the other hand, the ‘‘inlint BRST charginoQ@r # in the bo-representation’’ is use
in Eq. ~B35b! in proving that the ‘‘SCTC’’ in ~B34! holds for the inlaying vertex function

s^IV(1,...,N)u in the ‘‘ICS s.’’ @See Eqs.~B35! and ~B36!.#
Friedan–Martinec–Schenker9 have proved that the BRST chargino is nilpotent whenD

510. Therefore, their result together with Eq.~1.58! leads to

~Qr
p~r !!25~Q@r # !250 for D510 and r 51 –N

~ to be referred to as the ‘‘nilpotency’’!, ~B37!

and we have the following anticommutation relation:

$Qr ,Br~yr !%5Tr~yr ! for r 50 –N. ~B38a!

The anticommutation relation~B38! leads to

HQr ,
B0,r

L0,r
J 51 for r 50 –N ~ to be referred to as the ‘‘contacting formula’’!.

~B38b!

APPENDIX C: FORMULAS OF „INVERSE… PICTURE-CHANGING OPERATORS

We give explicit formulas of thelocal ~inverse-! picture-changing operatorXr(yr) @Yr(yr)#
used in this paper. The ‘‘BRST charginoQr in the bo-representation’’ is defined by Eq.~B28!, i.e.,

Qr[ (
g521

1

Qr
~g! , ~C1!

where the componentQr
(g) is given by

Qr
~g![ R

yr

dyr8

2pA21
Jr

~g!~yr8!, ~C2!
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Jr
(g)(yr8) ~for eachg561,0! being given by the formulas~B22!–~B24!. With the help of the

BRST charginoQr in ~C1!, the local picture-changing operatorXr(yr) is defined by9

Xr~yr ![$22Qr ,j r~yr !%[$22Qr ,Q„b r~yr !…%5 (
g521

1

$22Qr
~g! ,j r~yr !%[ (

g521

1

Xr
~g!~yr !,

~C3!

so thatXr(yr) in ~C3! is BRST invariant, i.e.,

@Qr , Xr~yr !#50. ~C4!

The componentXr
(g)(yr) in Eq. ~C3! ~for eachg561,0! is given by

Xr
~1!~yr !522:exp„1s r~yr !…:]yr

j r~yr !, ~C5!

Xr
~0!~yr !52:exp„1f r~yr !…:S (

6
(
j 50

4

]yr
Xr

6 j~yr !•:exp„7f r
j ~yr !…: D , ~C6!

and

Xr
~21!~yr !52 1

2:exp„12f r~yr !…::exp„2s r~yr !…:]yr
h r~yr !

2 1
2•]yr

~ :exp~12f r~yr !!::exp„2s r~yr !…:h r~yr !!. ~C7!

On the other hand, thelocal inverse picture-changing operatorYr(yr) ~of conformal weight 0! is
given by6

Yr~yr ![22:exp„22f r~yr !…::exp„1s r~yr !…:]yr
j r~yr !@52:exp„1s r~yr !…:d

~1!
„g r~yr !…#,

~C8a!

with

d„g r~yr !…[:exp„2f r~yr !…:, ~C8b!

andYr(yr) in ~C8! has explicitly been shown to be BRST invariant, i.e.,

@Qr , Yr~yr !#50. ~C9!

Furthermore, we can easily find that

RW •„Yr~yr8!•Xr~yr !…511O~yr82yr !, ~C10a!

since we have that

Yr~yr !•Xr
~g!~yr !5dg,21 for g561,0. ~C10b!

We find from the definitions~1.28!–~1.31! that Xr
(g)’s ~for g561,0! andYr have the following

quantum numbers:

P~Xr
~g!!5G~Xr

~g!!1F~Xr
~g!!5g1~12g!51,

~C11!
P~Yr ![G~Yr !1F~Yr !5122521,

and
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G~Xr
~g!!2H~Xr

~g!!5g2g50,
~C12!

G~Yr !2H~Yr !512150.

@Incidentally, Eq.~C11! shows that any componentX(g) has thesamepicturing numberP51. This
is the reason why we have definedP by Eq.~1.31!. It is to be noticed that many other authors ha
called our ‘‘F’’ the ‘‘picture number.’’#

Hereafter, we give the nonlocal picture-changing operatorsXr
p @for any pPZ (Z1 1

2) in the
p(r )5R ~NS! sector# and X6,r

p @for any pPZ1 1
2 in the casep(r )5NS# of the r th external

operator. We expand any primary operatorGr(yr) @of conformal weightd(G)# by

Gr~Yr !5 (
nPZ~Z11/2!

Gn,r•yr
2n2d~G! , ~C13a!

where mode operatorsGn,r are given by

Gn,r5 R
0

dyr

2pA21
yr

d~G!1n21
•Gr~yr !. ~C13b!

Then, the nonlocal picture-changing operator’sXr
p @pPZ (Z1 1

2) in thep(r )5R ~NS! sector# are
defined respectively by

Xr
p[$22•Qr

p~r ! ,Q~bp,r !% for pPZ ~Z1 1
2!. ~C14!

Then, we find that

Xr
p5~Fp,r

~XW •CW !1Fp,r
~bC!1Fp,r

~Bg!!•d~bp,r !2 1
2•B2p,r•d~1!~bp,r !

for pPZ ~Z1 1
2! in the p~r !5R ~NS! sector, ~C15!

where we have used that

Fp,r
~XW •CW !5 R

0

dwr

2pA21
wr

p11/2S (
6

(
j 50

4

]wr
Xr

6 j~wr !•C r
7 j~wr !D , ~C16!

Fp,r
~bC!5 R

0

dwr

2pA21
wr

p11/2~22•Cr~wr !]wr
b r~wr !23•]wr

Cr~wr !•b r~wr !!, ~C17!

Fp,r
~Bg!5 R

0

dwr

2pA21
wr

p11/2
•g r~wr !•Br~wr !, ~C18!

and

B2p,r5 R
0

dwr

2pA21
wr

112p
•Br~wr !. ~C19!

Operatorsd (n)(bp,r) ~for n50,1! in Eq. ~C15! can be calculated by
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d~n!~b2 f 23/2,r !5 (
m50

`

(
k50

m
~n1m!!

~m2k!!k! ~n1k!!

3~b2 f 23/2,r !
k R

0

dwr

2pA21
wr

211~n1k11! f
•d~n1k!

„b r~wr !…, ~C20!

with

b2 f 23/2,r5 R
0

dwr8

2pA21
wr8

212 f
•b r~wr8! ~C21a!

and

d~b r~yr !![:exp„1f r~yr !…:. ~C21b!

Furthermore, it can be shown@for pPZ (Z1 1
2)# that

Yr~6A21!•Xr
p
•Yr~6A21!5Yr~6A21!, ~C22!

Xr
p
•Yr~6A21!•Xr

p5Xr
p ~C23!

and

Yr~1A21!•Yr~2A21!5Yr~2A21!•Yr~1A21!. ~C24!

Exclusivelyin the p(r )5NS sector, we construct the nonlocal picture-changing opera
X6,r

p ~for any pPZ1 1
2! as follows:

X6,r
p [$22•Qr ,Q~b6,r

p !% ~ for pPZ1 1
2!, ~C25!

with

b6,r
p [ 1

2 „~6A21!p
•b2p,r1~6A21!2p

•bp,r…. ~C26!

Then, we find that

X6,r
p 5„~F~XW •CW !!6,r

p 1~F~bC!!6,r
p 1~F~Bg!!6,r

p
…•d~b6,r

p !2 1
2 •B6,r

]2p
•d~1!~b6,r

p !, ~C27!

with

~F~M !!6,r
p [ 1

2 ~~6A21!p
•F2p,r

~M ! 1~6A21!2p
•F1p,r

~M ! ! for ~M !5~XW •CW !,~bC!,~Bg!.
~C28a!

@Various operators in Eq.~C28! have been defined by Eqs.~C16!–~C18!.# In particular, we find
that

~F~Bg!!6,r
p 5g6,r

p
•B6,r

]2p1g7,r
p

•B% ,r
2p 1~ terms which do not involveg6,r

p !, ~C28b!

where we have used that

g6,r
p [~6A21!p

•g2p,r1~6A21!2p
•gp,r , ~C29!

B6,r
]2p[ 1

2 ~B0,r6B\,r
2p !5 1

2B0,r1
1
4„~6A21!2pB22p,r1~6A21!22pB12p,r…, ~C30!
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and

B% ,r
2p [ 1

4~B12p,r1B22p,r !. ~C31!

With the help ofX6,r
p in ~C27!, we can prove~for any pPZ1 1

2! that

X6,r
p

•Yr~6A21!•X6,r
p 5X6,r

p , ~C32!

Yr~6A21!•X6,r
p

•Yr~6A21!5Yr~6A21!, ~C33!

X6,r
p

•Yr~7A21!5Yr~7A21!•X6,r
p , ~C34!

Yr~1A21!•Yr~2A21!5Yr~2A21!•Yr~1A21!

5Yr~1A21!•Yr~2A21!~X1,r
p

•X2,r
p !Yr~1A21!•Yr~2A21!,

~C35!

and

Yr~6A21!@X1,r
p , X2,r

p #Yr~6A21!50. ~C36!

We remark thatXr
p in ~C14! @for pPZ (Z1 1

2)# and X6,r
p in ~C25! ~for pPZ1 1

2! satisfy
respectively that

@Qr , Xr
p#50 for any pPZ,Z1 1

2, ~C37a!

and

@Qr
NS, X6,r

p #50 for any pPZ1 1
2. ~C37b!

Furthermore, we have found the following ‘‘commutability:’’

@B0,r , Xr
p#5@L0,r , Xr

p#50 for any pPZ,Z1 1
2,

~ to be referred to as the ‘‘commutability’’! ~C38!

and

FB0,r ,(
6

1

2
•X6,r

p
•X7,r

p G5FL0,r , (
6

1

2
•X6,r

p
•X7,r

p G50 for any pPZ1 1
2

~ to be referred to as the ‘‘commutability’’!, ~C39!

together with

@L0,r ,d~b1,r
p !•d~b2,r

p !#50 for any pPZ1 1
2. ~C40!

APPENDIX D: PHYSICAL NEVEU–SCHWARZ AND RAMOND STATES

When ther th ~external! open NS superstring is in some physical state~specified by the
quantum number, say,b!, this ~Grassmanodd! physicalNS state in 0 picture can be described by14

ub~0!& r[:exp„1s r~0!…<exp„2f r~0!…:Vr
0b~0!uQr50& r for p~r !5NS, ~D1!
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where any ~Grassmanodd! physical vertex operatorVr
0b(0) @having the conformal weigh

(2( j 50
4 pb

1 j
•pb

2 j1Nb)# has been explicitly constructed~in our papers in Ref. 14! as the functions
of XW andCW . In Eq. ~D1!, the standard ket stateuQr50& r is given by

uQr50& r[ )
w5XW ,fW ,s,f,x

upr~w!50& r , ~D2a!

with

upr~fW !50&[)
j 50

4

upr~f j !50& r . ~D2b!

With the help of the ‘‘operator product expansions’’~OPEs! @i.e., ~D24!–~D26! to be given later,#
we can prove that~Grassmanodd! physical stateub(0)& r in ~D1! has the following properties:

Qr
NSub~0!& r5B0,r ub~0!& r50 @see Qr

NS in ~B27!# ~D3!

in the on-shelllimit, i.e.,

2(
j 50

4

pb
1 j
•pb

2 j1Nb→
1

2
. ~D4!

We notice that thephysical~Grassmanodd! NS states in 1 picture@which are denoted byub(1)& r#
can be constructed by usingub(0)& r ’s in ~D1! as14

ub~1!& r5X6,r
1/2 ub~0!& r5Xr

21/2ub~0!& r for p~r !5NS

5:exp„1s r~0!…:Vr
1b~0!uQr50& r2

1

2
:exp„1f r~0!…:h r~0!:Vr

0b~0!uQr50& r , ~D5!

which has11 the following properties:

Pr~1!ub~1!& r5ub~1!& r @see Pr~1! in ~1.7!# ~D6!

and

Qr
NSub~1!& r5B0,r ub~1!& r50 @see Qr

NS in ~B27!#. ~D7!

Incidentally, the conformal weights ‘‘d’’ of each factor in Eq.~D5! are given respectively by

d~es!1d~V1b!52112S 2(
j 50

4

pb1
j

•pb
2 j1NbD 50 ~D8!

and

d~g!1d~V0b!52
1

2
1S 2(

j 50

4

pb
1 j
•pb

2 j1NbD 50, ~D9!

where we have used theon-shell limit~D4!. Finally, we remark that thephysical~Grassmanodd!
NS statesub(0)& r in ~D1! and ub(1)& r in ~D5! are related to each other by thelocal ~inverse!
picture-changing operator by

lim
w→0

RW •Xr~w!•ub~0!& r5ub~1!& r ~D10!
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and

lim
w→0

RW •Yr~w!•ub~1!& r5ub~0!& r . ~D11!

On the other hand, when ther th open R superstring is in somephysicalstate~specified by the
quantum number, say,f!, this ~Grassmaneven! physicalR state in61

2 picture can be describe
by14

u f ~1 1
2!& r[:exp„1s r~0!…<exp„2 1

2f r~0!…:Vr
1 f~0!•S$h%,r~0!uQr50& r , ~D12!

u f ~2 1
2!& r[:exp„1s r~0!…<exp„2 3

2f r~0!…:Vr
0 f~0!•S$h%,r~0!uQr50& r , for p~r !5R,

~D13!

where Grassmanodd ~even! Vr
1 f(0)•S$h%,r(0)’s @Vr

0 f(0)•S$h%,r(0)’s# have been explicitly con-
structed~in our papers in Ref. 14! as the functions ofXW andCW . @We have also proved the OPE
given later by Eqs.~D28!–~D31!.# Both of Eqs.~D12! and ~D13! have zero conformal weight in
the following on-shelllimit;

2(
j 50

4

pf
1 j
•pf

2 j1Nf→0. ~D14!

Furthermore, we find that thephysical~Grassmaneven! u f (11/2)& r in ~D12! is related with the
physicalu f (21/2)& r in ~D13! by

u f ~11/2!& r[Xr
0u f ~21/2!& r . ~D15!

Therefore, we find that

Pr~
1
2!u f ~1 1

2!& r5Xr
0
•Yr~2A21!u f ~1 1

2!r @ from Eq. ~1.7!#

5Xr
0
•Yr~2A21!•Xr

0u f ~2 1
2!& r @ from Eq. ~D15!#

5Xr
0u f ~2 1

2!& r @ from Eq. ~C23!#

5u f ~1 1
2!& r @ from Eq. ~D15!#. ~D16!

Incidentally, with respect to thelocal operatorsXr(0) andYr(0), we findthat

u f ~1 1
2!& r5 lim

w→0
RW •Xr~w!u f ~2 1

2!& r ~D17!

and

lim
w→0

RW •Yr~w!u f ~11/2!& r5:exp„12•s r~0!…<exp„2 5
2•f r~0!…

3:]j r~0!•Vr
1 f~0!•S$h%,r~0!uQr50& r . ~D18!

PhysicalR states~D12! and ~D13! can be shown to have the following properties:

Qr
Ru f ~6 1

2!& r5B0,r u f ~6 1
2!& r50 @see Qr

R in ~B27!#. ~D19!

In Eqs. ~D12! and ~D13!, we have used theexternal FMS spinor S$h%,r(0) in ~A24! ~for r
51 –N!. On the other hand, ther th physicalvertex operatorsVr

0 f (Vr
1 f) andVr

0b (Vr
1b) @given as

functions of (Xr
6 j ,C r

6 j )’s# can be obtained from previously obtained14 physicalvertex operators
V0 f (V1 f) andV0b (V1b) @given as functions of (X6 j ,C6 j )’s# by
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X6 j~z!→Xr
6 j~yr ! ~D20!

and

C6 j~z![:exp„6f j~z!…:→C r
6 j~yr ![:exp„6f r

j ~yr !…:. ~D21!

~See our papers in Ref. 14 for more details.!
In the following, we give various OPEs which have been derived in our previous pap14

The ‘‘stress operator :Tr
(XW ,CW )(yr8):p in the p-representation’’ and the ‘‘stressino operatorFr

(XW •CW )

3(yr8)’’ are defined respectively by

:Tr
~XW ,CW !~yr8!:p[:Tr

~XW !~yr8!:p1:Tr
~CW !~yr8!:p @see Eq.~B4!#

5(
j 50

4

:]y
r8
Xr

1 j~yr8!•]y
r8
Xr

2 j~yr8!:p

1(
6

(
j 50

4
1

2
:]y

r8
C r

6 j~yr8!•C r
7 j~yr8!:p for p5NS,R ~D22!

and

Fr
~XW •CW !~yr8![(

6
(
j 50

4

]y
r8
Xr

6 j~yr8!•C r
7 j~yr8! ~D23a!

[5 (
n52`

`

Fn,r
~XW •CW !

•yr8
2n23/2 for p~r !5R

(
n52`

`

Fn11/2,r
~XW •CW !

•yr8
2n22 for p~r !5NS.

~D23b!

In Ref. 12, we have derived OPEs of the physical vertex operatorVr
n f ~which is normal ordered in

the R-representation! as well as of thephysicalvertex operatorVs
nb ~which is normal ordered in

the NS-representation!. In the casep(r )5NS, we find the following OPEs with respect to th
stress operator~which is normal ordered in the NS-representation!:

RW •~ :Tr
~XW ,CW !~yr8!:NS•Vr

nb~y0r !! for n50,1

5
1

~yr82y0r !
2 S 1

2
•dn,02(

j 50

4

pb
1 j
•pb

2 j1NbDVr
nb~y0r !

1
1

yr82y0r
•]y0r

Vr
nb~y0r !1O~1!, ~D24a!

where we have derived14 that

:Tr
~XW ,CW !~yr8!:NS5:Tr

~XW !~yr8!:S1(
j 50

4

Tr
~f j !~yr8!. ~D24b!

On the other hand, OPEs with respect to the stressino operator are given by

RW •~Fr
~XW ,CW !~yr8!•Vr

0b~y0r !!5
1

yr82y0r
•Vr

1b~y0r !1O~1! ~D25!
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and

RW •~Fr
~XW ,CW !~yr8!•Vr

1b~y0r !!

5
2

~yr82y0r !
2 S (

j 50

4

pb
1 j
•pb

2 j1NbDVr
0b~y0r !1

1

yr82y0r
•]y0r

Vr
0b~y0r !1O~1!.

~D26!

In OPEs~D24! and ~D26!, the number operatorNb ~in the NS sector! is defined by

Nb5(
6

(
j 51

4

(
n51

` S n•eb~n,6 j !1S n2
1

2D •ẽbS n2
1

2
,6 j D D . ~D27!

On the other hand, we find in the casep(r )5R the following OPEs with respect to the stre
operator~which is normal ordered in theR-representation!:

RW •~ :Tr
~XW ,CW !~yr8!:R•„Vr

n f~y0r !•S$h%,r~y0r !…! for n50,1

5
1

~yr82y0r !
2 S 2(

j 50

4

pf
1 j
•pf

2 j1Nf D „Vr
n f~y0r !•S$h%,r~y0r !…

1
1

yr82y0r
•]y0r

„Vr
n f~y0r !•S$h%,r~y0r !…1O~1!, ~D28a!

where we have derived14 that

:Tr
~XW ,CW !~yr8!:R5:Tr

~XW !~yr8!:S1(
j 50

4

Tr
~f j !~yr8!2

5
8

~yr82y0r !
2 , ~D28b!

while the number operatorNf ~in the R sector! is defined by

Nf[ (
n51

`

(
6

(
j 51

4

n„ef~n,6 j !1ẽf~n,6 j !…. ~D29!

Furthermore, we have found following OPEs with respect to the stressino operator:

RW •~Fr
~XW •CW !~yr8!•„Vr

0 f~y0r !•S$h%,r~y0r !…!

5
1

~Ayr82y0r !
3
„Vr

1 f~y0r !•S$h%,r~y0r !…

1
1

Ayr82y0r

•„V̂r
3 f~y0r !•S$h%,r~y0r !…1O~Ayr82y0r ! ~D30!

and
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RW •~Fr
~XW •CW !~yr8!„Vr

1 f~y0r !•S$h%,r~y0r !…!

5
21

~Ayr82y0r !
3 S 2(

j 50

4

pf
1 j
•pf

2 j1Nf D „Vr
0 f~y0r !•S$h%,r~y0r !…

2
1

Ayr82y0r

•]y0r
„Vr

0 f~y0r !•S$h%,r~y0r !…1
1

Ayr82y0r

„V̂r
4 f~y0r !•S$h%,r~y0r !…

1O~Ayr82y0r !. ~D31!

At this stage, we remark that Eq.~B6! has been derived from Eqs.~D24b! and~D28b! ~in the
caseD510!, together with

:Tr
~BC!~yr8!:p5Tr

~s!~yr8!1
dp

R

~yr82y0r !
2 ~D32!

and

:Tr
~bg!~yr8!:p5Tr

~f!~yr8!1Tr
~x!~yr8!2

3
8dp

R

~yr82y0r !
2 , ~D33!

where we have used Eq.~B7!. The presence of the last term of Eq.~D32! is induced by the
following contraction in the R sector:

~D34!

APPENDIX E: SMALL GLUING VERTEX FUNCTINO, LARGE GLUING VERTEX
FUNCTION, GLUING IDENTITIES, AND GLUING RELATIONS

In this appendix, we derive thesmallgluing vertex functinounS(g,d)& ~which is useful in tree
calculations!, the large gluing vertex functionuVL(g,d)& ~which is useful in loop calculations!,
gluing identitiesand gluing relations~which are valid within thesmall or large Hilbert space!.
First, thelarge ~small! Hilbert space9 is the space with@without# j0-mode, so that the differenc
among thesmallgluing vertex functinounS(g,d)& and thelarge gluing vertex functionuVL(g,d)&
exists only in the hilberting modes@x, j, h#.

In order to discussj0-mode, we use the following inlaying operatorWr
x@zr s(wr)# ‘‘in jh-

mode,’’ rather thanWr
x@zr s(wr)# ~2.5! ‘‘in x-mode;’’

Wr
x@zr s~wr !#[expS 2 R

0

dwr

2pA21
R

0

dwr8

2pA21
j r~wr ;1 !h r~wr8 ;1 !

3S zr s
~1!~wr !

zr s~wr !2zr s~wr8!
2

1

wr2wr8
D D :expS R

0

dwr

2pA21
~zr s

~1!~wr !•h„zr s~wr !…

•j r~wr8 ;1 !1j„zr s~wr !…•h r~wr8 ;1 !!D :S . ~E1!

ReplacingWr
x@¯# in ~2.7! with Wr

x@¯# in ~E1! ~‘‘in jh-mode’’!, we can constructanother
inlaying N-vertex functions^IV

x(1,2,...,N)u ‘‘in jh-mode,’’ which can be shown to satisfy th
following inlaying identities for the hilbertinoj and anti-hilbertinoh:
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s^IV
x~1,2,...,N!uGr~w8!5s^IV

x~1,2,...,N!u„zrs
~1!~w8!…d~G!G„zrs~w8!…

for G5j,h with d~j!50, d~h!51. ~E2!

Furthermore, we can derive from Eq.~E1! the following results:

Wg
x@wg#up~x!50&5expS (

n51

`

h2n•jn,g1 (
n50

`

j2n•hn,gD up~x!50& ~E3!

and

„^ p̃~x!50u j̃0…W̃d
xF21

wd
G5„^ p̃~x!50u j̃0…expS 2 (

n50

`

~2 !n
•h̃n•jnd1 (

n51

`

~2 !n
• j̃n•hndD .

~E4!

It should be noticed that there exist zero-modesj0•h0,g andh̃0•j0,d within the exponential factor
on the right-hand side of Eqs.~E3! and ~E4!, respectively. Then,̂VS

x(g,d)u is defined by

^VS
x~g,d!u5^VS

x~d,g!u[„g^pg~x!50uj0,g…„d^pd~x!50uj0,d…

3„^p~x!50uj0…Wd
xF21

wd
G•Wg

x@wg#„up~x!50&…. ~E5!

Substituting Eqs.~E3! and ~E4! into Eq. ~E5!, we find that

^VS
x~g,d!u5„g^pg~x!50uj0,g…„d^pd~x!50uj0,d…expS (

n51

`

~2 !n
•jnd•hng2 (

n51

`

~2 !n
•hnd•jngD ,

~E6!

which doesnot have any zero-mode contribution within the exponential factor.@Hereafter,
^VS

x(g,d)u will be referred to as thesmall two-point vertex function ‘‘injh-mode.’’# On the other
hand, with the help of

„g^pg~x!50uj0,g…„d^pd~x!50uj0,d…5„g^pg~x!50u…„d^pd~x!50uj0,d…exp„2h0,d•j0,g…•j0,g

5„g^pg~x!50uj0,g…„d^pd~x!50u…exp„1j0,d•h0,g…•j0,d , ~E7!

^VS
x(g,d)u in ~E6! ‘‘in jh-mode’’ can be rewritten into

^VS
x~g,d!u5^nL

x~g,d!uj0,g5^nL
x~g,d!uj0,d , ~E8!

^nL
x(g,d)u being given by

^nL
x~g,d!u5^nL

x~d,g!u[„g^pg~x!50u…„d^pd~x!50uj0,d…

3expS (
n51

`

~2 !n
•jnd•hng2 (

n50

`

~2 !n
•hnd•jngD , ~E9!

which has the zero-mode contribution within the exponential factor.@Hereafter,̂ nL
x(g,d)u will be

referred to as thelarge two-point vertex functino ‘‘injh-mode.’’# Furthermore, with the help o

„g^pg~x!50u…„d^pd~x!50u…j0,d~12h0,d•j0,g!h0,d

5„g^pg~x!50u…„d^pd~x!50u…

52„g^pg~x!50u…„d^pd~x!50u…j0,d~12h0,d•j0,g!h0,g , ~E10!
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we find that

^nL
x~g,d!uh0,d52^nL

x~g,d!uh0,g . ~E11!

At this stage,uVS
x(g,d)& is introduced by

uVS
x~g,d!&[expS (

n51

`

~2 !n
•h2n,g•j2n,d2 (

n51

`

~2 !n
•j2n,g•h2n,dD upg~x!50&g•upd~x!50&d ,

~E12!

which does not have any zero-mode component. Hereafter,uVS
x(g,d)& will be referred to as the

small gluing vertex function ‘‘injh-mode.’’ It is to be noticed thatuVS
x(g,d)& in ~E12! is related

with ^VS
x(g,d8)u in ~E6! ‘‘in jh-mode’’ by

^VS
x~g,d8!uVS

x~d8,d!&

5„g^pg~x!50uj0,g…•expS (
n51

`

j2n,d•hn,g1 (
n51

`

h2n,d•jn,gD •„upd~x!50&d…, ~E13!

which does not have any zero-mode component within the exponential factor. Incidentall
operator~E13! maps thegth externalj2n,g (h2n,g) into the dth externalj2n,d (h2n,d) for
nonzero modes~i.e., for nÞ0!. Since we have that

05h0,gupg~x!50&gupd~x!50&d5h0,dupg~x!50&gupd~x!50&d , ~E14!

we can find thatuVS
x(g,d)& in ~E12! ‘‘in jh-mode’’ satisfies the followinggluing relationsin the

small Hilbert space:

]wjg~w!uVS
x~g,d!&5]wjd~21/w!uVS

x~g,d!& ~E15!

and

w2
•hg~w!uVS

x~g,d!&5hd~21/w!uVS
x~g,d!&. ~E16!

Furthermore,uVS
x(g,d)& in ~E12! ‘‘in jh-mode’’ can be expressed by

uVS
x~g,d!&5h0,gunL

x~g,d!&52h0,dunL
x~g,d!&, ~E17!

unL
x(g,d)& being defined by

unL
x~g,d!&52unL

x~d,g!&

[expS (
n50

`

~2 !n
•h2n,g•j2n,d2 (

n51

`

~2 !n
•j2n,g•h2n,dD

3„j0,gupg~x!50&g…„upd~x!50&d…, ~E18!

which has zero modes within the exponential factor, so that we find the followinggluing relations
even for the zero-modej0,g :

j0,gunL
x~g,d!&5j0,dunL

x~g,d!&. ~E19a!

Therefore, we find from Eqs.~E15!–~E17! and ~E19! that unL
x(g,d)& in ~E18! ‘‘in jh-mode’’

satisfies the following gluing relations within thelarge Hilbert space:
                                                                                                                



4777J. Math. Phys., Vol. 40, No. 10, October 1999 Quantum superstring field theory in the ‘‘B0-gauge’’

                    
jg~w!unL
x~g,d!&5jd~21/w!unL

x~g,d!&,
~E19b!

w2
•hg~w!unL

x~g,d!&5hd~21/w!unL
x~g,d!&.

@Hereafter,unL
x(g,d)& in ~E18! will be referred to as thelarge gluing vertex functino ‘‘injh-

mode.’’# On the other hand, the gluing vertex functinouVx(g,d)& in ~2.19! ~‘‘in x-mode’’! has the
same gluing relations as those~E19b! satisfied byunL

x(g,d)& in ~E18! ‘‘in jh-mode.’’ Therefore,
unL

x(g,d)& in ~E18! ‘‘in jh-mode’’ is just equal touVx(g,d)& in ~2.20! ‘‘in x-mode,’’ i.e.,

unL
x~g,d!&5uVx~g,d!&. ~E20!

As for uVw(g,d)& ’s in ~2.19! and~2.20! @for w5XW ,f j ,s,f(,x)#, they are found to satisfy the
following gluing identities: By using the inlint standard ket statesup(w)50& @satisfying Eq.~A6!#

and the inlint dual standard bra states^p(w)50u in ~A9! @for w5XW ,f j ,s,f(,x), and j 50 – 4#,
we find for XW -modes that

g^qg~XW !50u•d^qd~XW !50u„Wg
XW @wg#up~XW !50&…S ^ p̃~XW !50uW̃d

XW F21

wd
G D uVXW ~g,d!& ~E21a!

5S :expS (
6

(
j 50

4

(
n51

`
1

n
•J2n~X6 j !• J̃n~X7 j !D D

3S (
$p6 j %

expS (
6

(
j 50

4

p6 j
•q~X7 j !D up~XW !50&

3^ p̃~XW !50uexpS 2(
6

(
j 50

4

p6 j
•q̃~X7 j !D D : ~E21b!

[EXW ~J~XW !,J̃~XW !!, ~E21c!

while we find forw-modes@w5f j ,s,f(,x)# that

g^qg~w!50u•d^qd~w!50u„Wg
w@wg#up~w!50&…S ^ p̃~w!50uW̃d

wF21

wd
G D uVw~g,d!& ~E22a!

5:expS (
n51

`

«w
f
•

1

n
•J2n(w)• J̃n(w) D

3S (
pPZ~11/2!

exp„p•q(w)…up(w)50&^ p̃~w!50uexp~2„p1Q~w!…q̃~w!! D :

~E22b!

[Ew„J~w!,J̃~w!) for w5f j ,s,f~ ,x!. ~E22c!

In Eqs.~E21! and~E22!, we have used inlaying operatorsWw@ ...# ’s ~2.4! and~2.5! ‘‘in w-modes.’’
Incidentally, for any stateH„J̃(XW )…u p̃(XW )50& andG„J̃(w)…u p̃(w̃)50&, we find that

EXW „J~XW !,J̃~XW !…•H„J̃~XW !…u p̃~XW !50&5H„J~XW !…up~XW !50& ~E23!

and

Ew„J~w!,J̃~w!…•G„J̃~w!…u p̃~w!50&5G„J~w!…up~w!50& for w5f j ,s,f~ ,x!. ~E24!
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@Incidentally, Eq.~E24! for w5x is the gluing identity within thelarge Hilbert space.# On the
other hand, with the help of the inlaying operatorWx@ ...# in ~E1! ‘‘in jh-mode’’ and thesmall
gluing vertex functionuVS

x(g,d)& in ~E17! ‘‘in jh-mode,’’ we find from Eqs.~E3! and ~E4! the
following gluing identity within thesmall Hilbert space:

g^qg~x!50u•d^qd~x!50u„Wg
x@wg#up~x!50&…S (^ p̃~x!50u j̃0!•W̃d

xF21

wd
G D uVS

x~g,d!&

~E25a!

5:expS (
n51

`

h2n• j̃n1 (
n51

`

j2n•h̃nD „up~x!50&•^ p̃~x!50u j̃0…:S ~E25b!

5Ex~Jx ,J̃x!. ~E25c!

It should be noticed that zero-mode termsj0•h0,g andh̃0•j0,d in Eqs.~E3! and~E4! areabsentin
the exponential factor of Eq.~E25b!, since we have that

d^qd~x!50uj0,d505h0,gupg~x!50&g50. ~E26!

Thus,Jx @J̃x# in Eq. ~E25c! represents inlint operatorswithoutj0-mode~thosewithout j̃0-mode!.
Furthermore, we obtain for any stateK(J̃x)u p̃(x)50& ~without zero modes! that

Ex~Jx ,JW x!„K~J̃x!u p̃~x!50&…5„K~Jx!up~x!50&…. ~E27!

The normal ordering operations : : in Eqs.~E21b!, ~E22b!, and~E25b! mean that any operator with
the superscript ‘‘;’’ should be moved and placed to the right of^p(w)50u ~for w5XW ,w j ,s,f! or

^ p̃(x)50u j̃0 .
Identities ~E21!5~E21c!, ~E22!5~E22c!, and ~E25!5~E25c! will be hereafter referred to a

the ‘‘gluing identities,’’ on the left-hand sides of which thegth punctured ring domain and thedth
punctured ring domain exist, since we have both the inlaying operatorsWg@wg# and
W̃d@21/wd#. On the other hand, we have not any punctured ring domains on the right-hand
of the ‘‘gluing identities.’’ This fact suggests thatuVw(g,d)& in ~2.18! and~2.19! ~for wÞx! and
uVS

x(g,d)& in ~E12! ‘‘in jh-mode’’ have the the followinggluing effect: They glue the gth punc-
tured ring domain and thedth punctured ring domain into oneunpunctured ring domain~described
by commoninlint operators, within thesmall Hilbert space!. Combining all these ‘‘gluing identi-
ties’’ in various modes, we finally obtain one~GSO projected! ‘‘gluing identity’’ ~in the small
Hilbert space! which is symbolically expressed by

S )
w5XW ,f j ,s,f

g^qg~w!50uWg
w@wg# D („g^pg~x!50uj0,g…Wg

x@wg#!

3S )
w5XW ,f j ,s,f,x

up~w!50& D •S )
w̃5XW̃ ,f̃ j ,s̃,f̃,x̃

^p~ w̃ !50D j̃0

3S )
w̃5XW̃ ,f̃ j ,s̃,f̃

d^qd~ w̃ !50uWd
w̃F21

wd
G D S „d^pd~ x̃ !50u j̃0,d…•W d

x̃F21

wd
G D

3Pg
p~g!~GSO!uVS

x~g,d!&S )
w5XW ,fJ,s,f

uVw~g,d!& D
5Pp~g!~GSO!•E~J,J̃!, ~E28a!
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with

E~J,J̃![EXW „J~XW !,J̃~XW !…•Ex~Jx ,J̃x!S )
w5f j ,s,f

Ew„J~w!,J̃~w!…D . ~E28b!

In Eq. ~E28!, Pg
p(g) ~GSO! @for p(g)5NS,R# is the gth external GSO-projection operator an

Pp(g) ~GSO! is the inlint GSO-projection operator, both of which are defined by Eq.~1.11!. The
gluing identity ~E28! is valid for any ket~bra! state in thesmall Hilbert space. Hereafter, th
gluing identity ~E25! will be simply expressed by

~g^qg50uWg@wg#uQ50&!•S (^Q̃50u j̃0!3d^qd50uW̃dF21

wd
G D „Pg

p~GSO!unS~g,d!&)

5Pp~GSO!•E~J,J̃! ~ to be referred to as the gluing identity!. ~E29!

In Equation~E29!, we have used thesmall gluing vertex functino unS(g,d)&, which has been
constructed by

unS~g,d!&[uVS
x~g,d!&S )

w5XW ,f j ,s,f

uVw~g,d!& D . ~E30a!

Incidentally, we have also that

^nS~g,d!u[^VS
x(g,d)uS )

w5XW ,f j ,s,f
^Vw(g,d)u D @see Eq.~2.14!#. ~E30b!

It is remarkable that thesmall gluing vertex functino unS(g,d)& constructed by Eq.~E30! can be
alternatively given by

unS~g,d!&5h0,guVL~g,d!& @see Eq.~E17!#, ~E31!

where thelarge gluing vertex functionuVL(g,d)& can be constructed in terms ofw-modes~i.e.,
without usingjh-modes! by

uVL~g,d!&[ )
w5XW ,f j ,s,f,x

uVw~g,d!&, ~E32!

uVXW (g,d)& (uVw(g,d)&) being given by Eq.~2.18! @~2.19!#. @As we shall see in Sec. IV,uVL(g,d)&
is useful especially in loop calculations, since it gives gluing identities within thelarge Hilbert
space.#

With the help of the gluing identity~E29! in thesmallHilbert space, we can prove the gluin
theorem in the tree calculations@i.e., Eq.~2.20!#, using the techniques used in Ref. 5. In particul
the elementary vertex functinônS(...)u ’s satisfy the following gluing theorem:

^nS~1,2,...,n,g!u•^nS~d,n11,n12,...,n1m!unS~g,d!&5^nS~1,2,...,n,n11,n12,...,n1m!u
~E33a!

@5^nS~2,...,n1m,1!u, being cycle symmetric#, ~E33b!

so that̂ nS(1,2,...,N)u in ~2.14! is found to be constructed by using the inlayed coordinatezrm(wr)
~for r 51 –N! in the ‘‘inlayed coordinate systemm~idpoint!’’ ~ICS m!, which is given by

zrm~wr !5expS pA21

N D • zr~wr !21

zr~wr !2exp~2pA21/N!
for r 512N, ~E34!
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with

zr~wr ![S exp
2pA21

N
~r 21! D S 11A21•wr

12A21•wr
D 2/N

. ~E35!

Incidentally, there existonly N punctured ring domains andnot anyunpunctured ring domain in
‘‘ICS m,’’ and the inlayed coordinate ‘‘zm’’ satisfies the following Gross–Jevicki fundament
equation~GJ-FE!:17

dzm

drm
5~2 !N

•

P r ~Þ2!~zm2zrm~0!!

„~zm2Y 1
m!•~zm2Y 2

m!…~N22!/2 , ~E36a!

with

Y 6
m[exp~6pA21/N!. ~E36b!

It is to be noticed that GJ-FE ~E36! leads to ther th inlayed coordinatezrm(wr)’s in ~E34!.
@Unfortunately there exist misprints in Eq.~1.15! of Ref. 5, which are corrected in Eq.~E36!.# We
notice that the elementary vertex functino on the right-hand side of Eq.~E33! is symmetricunder
thecyclic permutation.@See the cycle-symmetric coordinatezr(wr)’s in ~E35!.# Therefore, we also
have that

^nS~n11,n12,...,n1m,d!u•^nS~g,1,2,...,n!unS~d,g!&5^nS~n11,n12,...,n1m,1,2,...,n!u.
~E37!

Since any elementary vertex functino^nS(...)u is Grassman odd, comparing Eq.~E37! with Eq.
~E33! leads to the fact that thesmall gluing vertex functinounS(g,d)& is odd underg↔d, i.e.,

unS~g,d!&52unS~d,g!&. ~E38!

Since we have from Eqs.~E38! that

^nS~1,2,...,n!u5^nS~1,g!u•^nS~d,2,3,...,n!unS~g,d!&

52^nS~d,2,3,...,n!u„^nS~1,g!unS~g,d!&…, ~E39!

we also find that

^nS~a,g!unS~g,d!&52Ea,d , ~E40!

whereEa,d is the operator changing theath external operatorGa into thedth external operatorGd

~i.e., Ea,duG&a5uG&d!.
For any primary operatorG ~without j0-mode! of conformal weightd(G), we have the fol-

lowing gluing relationin thesmallHilbert space satisfied by the totalsmallgluing vertex functino
unS(g,d)& in ~E31!:

S ~w2d~G!!Gg~w!2GdS 21

w D D unS~g,d!&50. ~E41!

Therefore, using

Gr~w!5
1

wd~G! S (
n52`

`

gn,r•w2nD ~ for r 5g,d!, ~E42!

we find from Eq.~E41! the following gluing relationsfor various modes~in the small Hilbert
space!:
                                                                                                                



.

)

ory for
ry

s. B
ster
ys.

hys. B

eveu–

eld

hys. B

d

on and

in

-

4781J. Math. Phys., Vol. 40, No. 10, October 1999 Quantum superstring field theory in the ‘‘B0-gauge’’

                    
gn,gunS~g,d!&5~2 !d~G!1n
•g2n,dunS~g,d!&. ~E43!

It is quite important in loop calculations that the totallarge gluing vertex functionuVL(g,d)& in
~E32! ‘‘in w-modes’’ satisfies the following gluing relations:

S ~w2d~G!!Gg~w!2GdS 21

w D D uVL~g,d!&50, ~E44!

which holds for any primary operator~with or without thej0-mode!.
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Asymptotic expressions for Clebsch–Gordan coefficients are derived from an exact
integral representation. Both the classically allowed and forbidden regions are ana-
lyzed. Higher-order approximations are calculated. These give, for example, six
digit accuracy when the quantum numbers are in the hundreds. ©1999 American
Institute of Physics.@S0022-2488~99!01210-4#

I. INTRODUCTION

This paper contains a detailed study of the asymptotics of Clebsch–Gordan coefficien
includes the derivation of new results. We use the term ‘‘Clebsch–Gordan coefficient’’ i
colloquial sense, i.e., the vector addition coefficients of SU~2!. Thus our results also give th
asymptotics of the 3j -symbols. We consider the case in which all of the quantum numbers
large together. What this means is multiplying all of the quantum numbers by a numbe
studying the asymptotic behavior of the Clebsch–Gordan coefficient as this multiplier gets
Such a multiplier is often called 1/\, so that the limit of large quantum numbers is the limit
small \.

The history of this subject dates back to the early days of quantum mechanics and the
of the classical limit of quantum mechanical quantities. Numerous papers have been written
area. We summarize the literature briefly here. In 1959, Wigner1 discussed the physical interpre
tation and classical limits of Clebsch–Gordan coefficients. He described a certain average
ior, and did not analyze the oscillatory nature of the Clebsch–Gordan coefficients. The
references in this work to Edmonds2 and Brussaard and Tolhoek.3 In 1968, Ponzano and Regge4

presented asymptotic expressions that included the oscillations. Their work included an in
tation of certain angles that occur in their results and in ours. Additionally, they discusse
allowed and forbidden regions. However, their derivation is, in their words, ‘‘rather heuristic
was borne out in their comparisons with the exact values. William Miller5 derived similar expres-
sions using semiclassical methods in 1974, but did not treat the forbidden region. Another
that relates to the present paper is that of Srinivasa Rao and V. Rajeswari.6 It contains exact
expressions for Clebsch–Gordan coefficients and their relationship to certain hypergeome
ries. There is more information in the work of Biedenharn and Louck.7

In this paper, we start by deriving an exact integral representation for the Clebsch–G
coefficients. Then the methods of stationary phase are used to approximate this integra
allowed and forbidden regions are treated separately, and the resulting expressions are re
the literature. These methods are then used to derive higher-order results, that is, the next
an expansion in\. These formulas are accurate to five or six digits when the quantum numbe
in the hundreds.

Possible applications of this work include high-angular momentum calculations and th
ical investigations which contain sums over large numbers of Clebsch–Gordan coefficients8,9

II. EXACT EXPRESSIONS FOR THE CLEBSCH–GORDAN COEFFICIENT

Our starting point is an exact expression for the Clebsch–Gordan~vector-addition! coefficient,
due to Wigner@see, for example, Eq.~3.6.11! of Ref. 2#,
47820022-2488/99/40(10)/4782/25/$15.00 © 1999 American Institute of Physics
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^ j 1m1 j 2m2u jm&

5@~2 j 11!~ j 11 j 22 j !! ~ j 12 j 21 j !! ~2 j 11 j 21 j !!/ ~ j 11 j 21 j 11!! #1/2

3@~ j 11m1!! ~ j 12m1!! ~ j 21m2!! ~ j 22m2!! ~ j 1m!! ~ j 2m!! #1/2

3(
z

~21!z

z! ~ j 11 j 22 j 2z!! ~ j 12m12z!! ~ j 21m22z!! ~ j 2 j 21m11z!! ~ j 2 j 12m21z!!
.

~2.1!

A factor of dm,m11m2
has been omitted; throughout this paper we will assume thatm is equal to

m11m2 . Also, unless otherwise specified, sums over an index are sums over all integers.
turn out, though, that the summand is nonzero for only finitely many values of the index.

We begin by deriving the following exact expression for the Clebsch–Gordan coefficie

^ j 1m1 j 2m2u jm&5~21! j 1mNj 1m1 j 2m2 jm

1

~ j 12m1!! ~ j 22m2!! S d

duD j 12m1S d

dtD
j 22m2

3@~ t21! j 1 j 22 j 1~ t2u! j 11 j 22 j~u21! j 1 j 12 j 2#uu50,t50 , ~2.2!

whereNj 1m1 j 2m2 jm is defined to be

Nj 1m1 j 2m2 jm5F ~2 j 11!~ j 11m1!! ~ j 12m1!! ~ j 21m2!! ~ j 22m2!! ~ j 1m!! ~ j 2m!!

~ j 11 j 21 j 11!! ~ j 11 j 22 j !! ~ j 12 j 21 j !! ~2 j 11 j 21 j !! G1/2

. ~2.3!

Because the quantity being differentiated in Eq.~2.2! is a polynomial in the variablesu andt, the
operation of differentiating this quantity and then evaluating the result atu50 andt50 simply
selects a particular coefficient in the polynomial. Thus, Eq.~2.2! expresses the Clebsch–Gord
coefficient as a certain coefficient in a polynomial that can be written in closed form.
equation can be derived from results in the literature,10 but we give here an independent derivati
of Eq. ~2.2! from Eq. ~2.1! to verify that all of the conventions involved are consistent.

In order to prove Eq.~2.2!, we start by finding the coefficient ofuj 12m1t j 22m2 in the polyno-
mial (t21) j 1 j 22 j 1(t2u) j 11 j 22 j (u21) j 1 j 12 j 2. This is equal to the coefficient ofuj 12m1 in the
polynomial that is given by (u21) j 1 j 11 j 2 times theu-dependent coefficient oft j 22m2 in the
polynomial (t21) j 1 j 22 j 1(t2u) j 11 j 22 j . Using the binomial theorem, we get

~ t21! j 1 j 22 j 15(
k

S j 1 j 22 j 1

k D tk~21! j 1 j 22 j 12k, ~2.4!

and

~ t2u! j 11 j 22 j5(
l

S j 11 j 22 j
l D t l~2u! j 11 j 22 j 2 l . ~2.5!

The coefficient oft j 22m2 in the product of these is

(
k

S j 1 j 22 j 1

k D ~21! j 1 j 22 j 12kS j 11 j 22 j
j 22m22kD ~2u! j 11 j 22 j 2~ j 22m22k!

5~21! j 21m2uj 12 j 1m2(
k

S j 1 j 22 j 1

k D S j 11 j 22 j
j 21m22kDuk. ~2.6!

As explained above, we need to multiply this polynomial by
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~u21! j 1 j 12 j 25(
l

S j 1 j 12 j 2

l Dul~21! j 1 j 12 j 22 l , ~2.7!

and find the coefficient ofuj 12m1. The result is

~21! j 21m2(
k

S j 1 j 22 j 1

k D S j 11 j 22 j
j 22m22kD S j 1 j 12 j 2

j 2m2k D ~21! j 12 j 21m1k

5~21! j 1m(
z

~21!zS j 1 j 22 j 1

j 21m22zD S j 11 j 22 j
z D S j 1 j 12 j 2

j 12m12zD , ~2.8!

where we have redefined the index of summation according tok5 j 2 j 12m21z in the final line
of this equation and made use of the identity (b

a)5(a2b
a ). Since j 1m is always an integer,

(21)2( j 1m) is equal to one, and we have shown that the right-hand side of Eq.~2.2! is equal to

Nj 1m1 j 2m2 jm(
z

~21!zS j 1 j 22 j 1

j 21m22zD S j 11 j 22 j
z D S j 1 j 12 j 2

j 12m12zD
5(

z

~21!zNj 1m1 j 2m2 jm~ j 1 j 22 j 1!! ~ j 11 j 22 j !! ~ j 1 j 12 j 2!!

~ j 2 j 12m21z!! ~ j 21m22z!! ~ j 11 j 22 j 2z!!z! ~ j 12m12z!! ~ j 2 j 21m11z!!
.

~2.9!

This is the same as the right-hand side of Eq.~2.1! and completes the proof of Eq.~2.2!. An
alternative proof begins by introducing a factor ofxz into the sum in Eq.~2.1! and deriving a
third-order differential equation for the resulting function ofx. This differential equation can be
solved using hypergeometric functions, and the result eventually leads to the expression sh
Eq. ~2.2!.

Equation~2.2! can be used to obtain an exact expression for the Clebsch–Gordan coef
as an integral. One uses the orthogonality of the functions exp(inu) on the interval@2p, p# to
select the desired coefficients in the polynomials. Thus, we substitute exp(iu) for t and exp(if) for
u in the polynomial (t21) j 1 j 22 j 1(t2u) j 11 j 22 j (u21) j 1 j 12 j 2 in Eq. ~2.2!, multiply by
exp@2i(j12m1)f2i(j22m2)u#, and integrate the two variable from2p to p. The resulting ex-
pression for the Clebsch–Gordan coefficient is

^ j 1m1 j 2m2u jm&5~21! j 1mNj 1m1 j 2m2 jm

1

~2p!2

3E
2p

p E
2p

p

e2 i ~ j 12m1!f2 i ~ j 22m2!u~eiu21! j 1 j 22 j 1~eiu2eif! j 11 j 22 j

3~eif21! j 1 j 12 j 2 du df. ~2.10!

This may be rewritten using the definition of the sin function, whereupon it becomes natu
redefine the angles by a factor of 2. The resulting form is

^ j 1m1 j 2m2u jm&5~21! j 1m~2i ! j 1 j 11 j 2p22Nj 1m1 j 2m2 jm

3E
2p/2

p/2 E
2p/2

p/2

e2im1f12im2u sinj 1 j 22 j 1u sinj 11 j 22 j~u2f!

3sinj 1 j 12 j 2 f du df. ~2.11!

It is this integral expression for the Clebsch–Gordan coefficient that we use in the follo
sections to derive formulas for the asymptotic behavior of these coefficients.
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It is also possible to express the Clebsch–Gordan coefficient as a coefficient of a term
polynomial in one variable, and thus as a one-dimensional integral. Equation~2.2! shows how the
Clebsch–Gordan coefficient is related to the coefficient ofuj 12m1t j 22m2 in the polynomial (t
21) j 1 j 22 j 1(t2u) j 11 j 22 j (u21) j 1 j 12 j 2. This is the same as the coefficient ofuj 12m1(uM) j 22m2 in
the polynomial (uM21) j 1 j 22 j 1(uM2u) j 11 j 22 j (u21) j 1 j 12 j 2 ~that is,t has been replaced byuM)
for sufficiently large integersM. This can be seen as follows. We start by imagining the poly
mial (t21) j 1 j 22 j 1(t2u) j 11 j 22 j (u21) j 1 j 12 j 2 expanded out into a sum of monomials. Ift is
replaced byuM, each of the monomials is now just a coefficient times a power ofu. We do not
want any of these terms to have the same power ofu, otherwise they would combine and th
coefficients would change. Thus, we look at the original polynomial (t21) j 1 j 22 j 1(t
2u) j 11 j 22 j (u21) j 1 j 12 j 2 and ask what the highest power ofu is. This is (j 11 j 22 j )1( j 1 j 1

2 j 2)52 j 1 . We therefore selectM to be 2j 111. The result is that the coefficient ofuj 12m1t j 22m2

in the polynomial (t21) j 1 j 22 j 1(t2u) j 11 j 22 j (u21) j 1 j 12 j 2 is the same as the coefficient o
uj 12m11(2 j 111)( j 22m2) in the polynomial (u2 j 11121) j 1 j 22 j 1(u2 j 1112u) j 11 j 22 j (u21) j 1 j 12 j 2.
We may drop an overall factor ofuj 11 j 22 j , so this coefficient is the same as the coefficient
uj 2m12 j 1( j 22m2) in the polynomial (u2 j 11121) j 1 j 22 j 1(u2 j 121) j 11 j 22 j (u21) j 1 j 12 j 2. The result-
ing expression for the Clebsch–Gordan coefficient as a coefficient in a polynomial in one va
is

^ j 1m1 j 2m2u jm&5~21! j 1mNj 1m1 j 2m2 jm

1

@ j 2m12 j 1~ j 22m2!#! S d

duD j 2m12 j 1~ j 22m2!

3@~u2 j 11121! j 1 j 22 j 1~u2 j 121! j 11 j 22 j~u21! j 1 j 12 j 2#uu50 . ~2.12!

As above, the selection of the coefficient in the polynomial can also be carried out wi
integral,

^ j 1m1 j 2m2u jm&5~21! j 1mNj 1m1 j 2m2 jm

1

2p E
2p

p

e2 i @ j 2m12 j 1~ j 22m2!#f

3~ei ~2 j 111!f21! j 1 j 22 j 1~ei2 j 1f21! j 11 j 22 j~eif21! j 1 j 12 j 2 df. ~2.13!

This may be rewritten as

^ j 1m1 j 2m2u jm&5~21! j 1mNj 1m1 j 2m2 jm

~2i ! j 1 j 11 j 2

2p

3E
2p

p

ei ~2 j 1m21m!f sinj 1 j 22 j 1 @~ j 111/2!f#

3sinj 11 j 22 j ~ j 1f!sinj 1 j 12 j 2 ~f/2! df, ~2.14!

and this may be simplified to the form

^ j 1m1 j 2m2u jm&5~21! j 1mNj 1m1 j 2m2 jmp212 j 1 j 11 j 2E
0

p

cosF ~2 j 1m21m!f1
p

2
~ j 1 j 11 j 2!G

3sinj 1 j 22 j 1 @~ j 111/2!f# sinj 11 j 22 j ~ j 1f!sinj 1 j 12 j 2~f/2! df. ~2.15!

Although this is a one-dimensional integral~as opposed to the two-dimensional integral p
sented above!, it seems to be not as useful for the study of asymptotics because of the prese
the magnetic quantum numbers in the argument of the cosine function.
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III. STATIONARY-PHASE APPROXIMATION OF THE INTEGRAL EXPRESSION FOR THE
CLEBSCH–GORDAN COEFFICIENT

In order to carry out a stationary-phase approximation of the integral expression fo
Clebsch–Gordan coefficient presented in the previous section, we begin by writing the expr
in Eq. ~2.11! in the form

^ j 1m1 j 2m2u jm&5~21! j 1m~2i ! j 1 j 11 j 2p22Nj 1m1 j 2m2 jmE
2p/2

p/2 E
2p/2

p/2

eg~u,f! du df , ~3.1!

where the functiong(u,f) is defined to be

g~u,f!52im1f12im2u1~ j 1 j 22 j 1!ln~sinu!

1~ j 11 j 22 j !ln@sin~u2f!#1~ j 1 j 12 j 2!ln~sinf!. ~3.2!

Note thatg(u,f) has singularities where it goes to2`, but the integral is still well defined
because the integrand is exp(g).

To find the stationary-phase points~as explained in Appendix A!, we must first compute the
first derivatives of the functiong,

]g

]u
52im21~ j 1 j 22 j 1!cotu1~ j 11 j 22 j !cot~u2f!, ~3.3!

]g

]f
52im12~ j 11 j 22 j !cot~u2f!1~ j 1 j 12 j 2!cotf. ~3.4!

Setting these first derivatives equal to zero results in a system of two equations in two var
The identity

cot~u2f!5
11cotu cotf

cotf2cotu
~3.5!

may be used to transform this system to an equivalent system,

2im1~ j 1 j 22 j 1!cotu1~ j 1 j 12 j 2!cotf50, ~3.6!

2im21~ j 1 j 22 j 1!cotu1~ j 11 j 22 j !
11cotu cotf

cotf2cotu
50. ~3.7!

In order to be clear on phase conventions, choices of signs, and branch cuts, we write
steps involved in solving this system of two equations for cotu and cotf. We start by multiplying
the second equation by (j 1 j 12 j 2)(cotf2cotu) and substituting in first one:

@2im21~ j 1 j 22 j 1!cotu#$2@2im1~ j 1 j 22 j 1!cotu#2~ j 1 j 12 j 2!cotu%

1~ j 11 j 22 j !$~ j 1 j 12 j 2!2cotu@2im1~ j 1 j 22 j 1!cotu#%50. ~3.8!

This is a quadratic equation in cotu:

cot2u @~ j 1 j 22 j 1!~22 j !2~ j 11 j 22 j !~ j 1 j 22 j 1!#1cotu @~ j 1 j 22 j 1!~22im!

12im2~22 j !1~ j 11 j 22 j !~22im!#12im2~22im!1~ j 11 j 22 j !~ j 1 j 12 j 2!50.

~3.9!

Simplifying this results in
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2cot2u ~ j 1 j 22 j 1!~ j 11 j 21 j !24i cotu ~ j 2m1m2 j !

14m2m1~ j 11 j 22 j !~ j 1 j 12 j 2!50. ~3.10!

The two solutions for the quantities cotu and cotf are ~the upper choice of sign is on
solution and the lower choice of sign is the other!

cotu5
22i ~ j 2m1m2 j !7b

~ j 11 j 21 j !~ j 1 j 22 j 1!
,

~3.11!

cotf5
22i ~ j 1m1m1 j !6b

~ j 11 j 21 j !~ j 1 j 12 j 2!
,

whereb is defined to be

b5A4m1m2 j 224mm1 j 2
224mm2 j 1

21~ j 11 j 22 j !~ j 1 j 22 j 1!~ j 1 j 12 j 2!~ j 11 j 21 j !.
~3.12!

In this equation, we use the usual choice of branch cut for the square-root function: if the arg
is negative, then the result is a positive number times the imaginary unit. As discussed i
III A, the quantity b is real for classically allowed sets of quantum numbers, and it is p
imaginary for classically forbidden sets of quantum numbers. It should be noted that this
same definition for the symbolb as in Ref. 5.

The stationary-phase approximation of the integral*2p/2
p/2 *2p/2

p/2 eg(u,f) du df that appears in the
expression for the Clebsch–Gordan coefficient in Eq.~3.1! is given by a sum of terms of the form

2p

Adet]2g/]~u,f!2
eg~u,f!, ~3.13!

summed over stationary-phase points. The branch cut for the square root function is just be
negative imaginary axis, as is usual. The symbol]2g/](u,f)2 denotes the 232 Hessian matrix of
second-order derivatives of the functiong(u,f), whose entries are given by

]2g

]u2 52~ j 1 j 22 j 1!csc2u2~ j 11 j 22 j !csc2~u2f!,

]2g

]u]f
5~ j 11 j 22 j !csc2~u2f!, ~3.14!

]2g

]f2 52~ j 11 j 22 j !csc2~u2f!2~ j 1 j 12 j 2!csc2f.

Using the identity csc2u511cot2u these quantities can be expressed in terms of the cotangen
Eq. ~3.11! without addressing the issue of branch cuts of the arc-cotangent function. The va
csc2(u2f) can be determined from the quantities in Eq.~3.11! using the identity sin(u2f)
5sinu cosf2sinf cosu5sinu sinf (cotf2cotu). The determinant becomes
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det
]2g

]~u,f!2 5~ j 1 j 22 j 1!csc2u~ j 1 j 12 j 2!csc2f

1~ j 11 j 22 j !csc2~u2f!@~ j 1 j 22 j 1!csc2u1~ j 1 j 12 j 2!csc2f#,

5~11cot2u!~11cot2f!H ~ j 1 j 22 j 1!~ j 1 j 12 j 2!

1
~ j 11 j 22 j !

~cotf2cotu!2 @~ j 1 j 22 j 1!~11cot2u!1~ j 1 j 12 j 2!~11cot2f!#J .

~3.15!

In this form the determinant is expressed entirely in terms of the cotangents ofu and f. The
quantityeg(u,f) can also be expressed in this way. Choices of branch cuts are not necessary
expressing sinu and sinf in terms of the cotangents because only even powers of the
functions appear. Using the identity

eiu5cosu1 i sinu5sinu ~cotu1 i !, ~3.16!

we obtain for the factoreg(u,f) in Eq. ~3.13!,

e2im1f12im2u sinj 1 j 22 j 1 u sinj 11 j 22 j ~u2f!sinj 1 j 12 j 2 f

5~ i 1cotf!2m1~ i 1cotu!2m2 sinj 1 j 22 j 112m2 u sinj 11 j 22 j ~u2f!sinj 1 j 12 j 212m1 f

5~ i 1cotf!2m1~ i 1cotu!2m2 sin2 j 212m2 u ~cotf2cotu! j 11 j 22 j sin2 j 112m1 f

5~ i 1cotf!2m1~ i 1cotu!2m2~11cot2u!2 j 22m2~cotf2cotu! j 11 j 22 j~11cot2f!2 j 12m1

5
~ i 1cotf!m12 j 1

~2 i 1cotf! j 11m1

~ i 1cotu!m22 j 2

~2 i 1cotu! j 21m2
~cotf2cotu! j 11 j 22 j . ~3.17!

Using this equation and Eq.~3.15!, all of the quantities in the expression in Eq.~3.13! can be
expressed in term of the cotangents ofu andf, given in Eq.~3.11!. It should be noted that all o
the exponents in Eq.~3.17! are integers, so choices of branch cuts are not necessary.

A. Allowed region

It is useful to introduce the concepts of a triangle-allowed region and a classically all
region of the space of values for the quantum numbers. We define the triangle-allowed reg
be the set of quantum numbers for whichj 1 , j 2 , and j satisfy the triangle inequalities and fo
which the inequalitiesumu< j and$umi u< j i , i 51,2% hold. The Clebsch–Gordan coefficient is ze
outside of this region, so it is only within this region that asymptotic expressions are desired
triangle-allowed region is divided into a classically allowed region and a classically forbi
region. As is usual, we call these the allowed and forbidden regions for brevity. The all
region is defined to be the set of quantum numbers for which it is possible to definej -vectors in
a three-dimensional space in such a way that their lengths are equal to thej-values and their
z-components are equal to them-values~and, of course, such thatj5 j11 j2). An example of such
a construction for a set of allowed quantum numbers is shown in Fig. 1. It follows from
definition that the allowed region is contained in the triangle-allowed region. Examples of c
cally forbidden points are easily found in extreme cases, such asm15 j 1 . In this case, there is only
one classically allowed value form2 ~assuming a set of triangle-allowedj-values have been
given!, because thej1-vector must point in thez direction, and thus thej-triangle lies in a vertical
plane.

The allowed region is the same as the region in which the threel-values defined in Eq.~3.25!
satisfy the triangle inequalities. This is because thel-values are the lengths of the projections
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the j -vectors into thexy plane. If thel-values satisfy the triangle inequalities, then it is possible
draw a triangle in thexy plane with sides equal to thel-values. From this, one can construct t
j -vectors by simply including them-values asz-components. Conversely, if thej -vectors can be
constructed, then their projections into thexy plane form a triangle~with the tail of j2 at the tip of
j1), and thel-values satisfy the triangle inequalities.

It is explained later in this paper that thel-values satisfy the triangle inequalities if and on
if the quantity (2l11l21l3)(l12l21l3)(l11l22l3) is non-negative~that is, it is not pos-
sible for two of the factors to be negative!. This observation together with the fact that the quan
b defined in Eq.~3.12! may be written as

b5A~l11l21l3!~2l11l21l3!~l12l21l3!~l11l22l3! ~3.18!

leads us to the result that the sign ofb2 distinguishes the allowed and forbidden regions: it
positive in the allowed region, and it is negative in the forbidden region. In the allowed regiob
is four times the area of the triangle whose sides are thel-values. This triangle is the projectio
of the j-triangle into thexy plane~see Fig. 1!. From Eq.~3.12! it is apparent that for fixed value
of the j quantum numbers,b2 is a quadratic polynomial in them quantum numbers. Thus, in th
(m1 ,m2) plane the boundary between the allowed and forbidden regions is an ellipse. T
shown in Fig. 2 for one choice of values forj 1 , j 2 , and j. The boundary of the triangle-allowe
region is the irregular hexagon. The forbidden region is composed of six subregions. The
that separate them are indicated in Fig. 2. These are the points where the ellipse that sepa
allowed and forbidden regions is tangent to the hexagon that defines the triangle-allowed
The coordinates of these points can be calculated from the expression forb and the equations fo
the straight-line sections of the boundary of the triangle-allowed region. The resulting coord
of these points are indicated in the figure.

The calculations involved in the stationary-phase approximation of the integral expressi
the Clebsch–Gordan coefficient are different in the allowed and forbidden regions. We will
the allowed region first. The sum over stationary-phase points for the case where the
quantum numbers is in the allowed region is a sum over both of the solutions for the cotan
of u andf given in Eq.~3.11!. This is analogous to the behavior demonstrated in Appendix A,
it is also the same as in the calculation of the stationary-phase approximation of the Airy int
which is the canonical example of a stationary-phase calculation. In the case of the Airy int
there are allowed and forbidden regions in position space, and in the allowed region the con
integration is deformed to run over both of the stationary-phase points. We definecu andcf to be
the first solution for the cotangents in Eq.~3.11!:

FIG. 1. An example of a choice of threej -vectors, demonstrating that a set of quantum numbers is classically allow
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cu5
22i ~ j 2m1m2 j !2b

~ j 1 j 22 j 1!~ j 11 j 21 j !
,

~3.19!

cf5
22i ~ j 1m1m1 j !1b

~ j 11 j 21 j !~ j 1 j 12 j 2!
.

Because of the form of the two solutions given in Eq.~3.11!, the second solution is obtained from
this one by multiplying by21 and complex conjugating. Note this is only valid in the allow
region, where the quantityb is real. The first term in the sum over stationary-phase points is g
by plugging the expression for det@]2g/](u,f)2#, given in Eq. ~3.15!, and the expression fo
eg(u,f), given in Eq.~3.17!, into the quantity in Eq.~3.13!, usingcu andcf for the cotangents. The
second term in the sum over stationary-phase points is the same, except2cu* and2cf* are used
for the cotangents. The result for the determinant in the second term is obtained by s
complex conjugating the first value, since all of the cotangents in this expression are squar
for the eg(u,f) factor in the second term, we start by considering the expression for this fac
the first term:

~ i 1cf!m12 j 1

~2 i 1cf! j 11m1

~ i 1cu!m22 j 2

~2 i 1cu! j 21m2
~cf2cu! j 11 j 22 j . ~3.20!

The complex conjugate of this is

FIG. 2. The triangle-allowed region and the classically allowed region, shown in them1-m2 plane, for the case ofj-values
in the ratio j : j 1 : j 254:2:3. The six forbidden subregions are labeled with Roman numerals.
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~2 i 1cf* !m12 j 1

~ i 1cf* ! j 11m1

~2 i 1cu* !m22 j 2

~ i 1cu* ! j 21m2
~cf* 2cu* ! j 11 j 22 j

5~21! j 11 j 21 j
~ i 2cf* !m12 j 1

~2 i 2cf* ! j 11m1

~ i 2cu* !m22 j 2

~2 i 2cu* ! j 21m2
~2cf* 1cu* ! j 11 j 22 j . ~3.21!

This shows that theeg(u,f) factor in the second term@which appears after the (21) j 11 j 21 j in the
last line of Eq.~3.21!# is (21) j 11 j 21 j times the complex conjugate of theeg(u,f) factor in the first
term. Thus the second term is (21) j 11 j 21 j times the complex conjugate of the first term. It
therefore convenient to obtain the sum over stationary-phase points by takingi j 11 j 21 j times the
first term, adding the complex conjugate of this product, and then dividing byi j 11 j 21 j . Using the
fact that the real part of a quantityx is given byR@x#5(x1x* )/2, our stationary-phase approx
mation for the integral expression for the Clebsch–Gordan coefficient in Eq.~3.1! can be written
as

^ j 1m1 j 2m2u jm&'~21! j 1m~2i ! j 1 j 11 j 2p22Nj 1m1 j 2m2 jm

2

i j 11 j 21 j RF 2p i j 11 j 21 j

Adet@]2g/]~u,f!2#
eg~u,f!G

5~21! j 1m2 j 1 j 11 j 212p21Nj 1m1 j 2m2 jmRF i j 11 j 21 j

Adet@]2g/]~u,f!2#
eg~u,f!G , ~3.22!

where the quantities det@]2g/](u,f)2# andeg(u,f) are obtained from Eqs.~3.15! and ~3.17! using
the cu andcf given in Eq.~3.19!.

Although the expression in Eq.~3.22! gives a value that is a real number, it involves inte
mediate quantities that are complex. It is possible to transform this expression so that on
quantities are involved. This transformation is very lengthy, and it is not practical to describe
detail here. Instead, we present an expression that is exactly equal to the expression in Eq~3.22!
in the allowed region. This equality can be verified most convincingly by substituting nume
values into the expressions and evaluating the results to high numerical precision~much higher
than the level at which discrepancies would occur if order\ terms were dropped!. A brief de-
scription of the transformation is the following. Every complex quantityx1 iy that occurs in Eq.
~3.22! is written as the product of a modulus and a phase,Ax21y2 exp@i tan21 (y/x)#, where care
must be taken that correct branches are used for eachx1 iy , that is, one must examine th
quantitiesx andy to determine the range of phase factors (x1 iy)/Ax21y2 that can occur in the
allowed region, and make branch choices accordingly. At some stages in the calculation
polynomials are involved, and computer-aided symbol manipulation becomes useful in wo
with these. Our result may be put in the form

^ j 1m1 j 2m2u jm&'2I j 1m1 j 2m2 jmA j

pb
cosFx1

p

4
2p~ j 11!G , ~3.23!

wherex is defined to be
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x5S j 11
1

2D cos21 F ~2m!~ j 1
21 j 2

22 j 2!2m2~ j 1
21 j 22 j 2

2!

al1
G

1S j 21
1

2D cos21 Fm1~ j 21 j 2
22 j 1

2!2~2m!~ j 2
21 j 1

22 j 2!

al2
G

1S j 1
1

2D cos21 Fm2~ j 1
21 j 22 j 2

2!2m1~ j 21 j 2
22 j 1

2!

al3
G

2m1 cos21 Fl1
21l3

22l2
2

2l1l3
G1m2 cos21 Fl3

21l2
22l1

2

2l2l3
G , ~3.24!

and

a5A~ j 1 j 11 j 2!~2 j 1 j 11 j 2!~ j 2 j 11 j 2!~ j 1 j 12 j 2!,

l i5Aj i
22mi

2 i 51,2, ~3.25!

l35Aj 22m2.

~The quantitya is four times the area of thej-triangle shown in Fig. 1.! Note that the cos21

functions in Eq.~3.24! are the usual principal branch, whose range is the interval from zerop.
The quantityI j 1m1 j 2m2 jm is defined to be

I j 1m1 j 2m2 jm5A~ j 11/2!~ j 1 j 11 j 2!

j ~ j 1 j 11 j 211!

3
f ~ j 11m1! f ~ j 12m1! f ~ j 21m2! f ~ j 22m2! f ~ j 1m! f ~ j 2m!

f ~ j 11 j 21 j ! f ~ j 11 j 22 j ! f ~ j 12 j 21 j ! f ~2 j 11 j 21 j !
, ~3.26!

where the functionf is defined to be

f ~n!5A n!

A2pnnne2n
, ~3.27!

that is, f (n) is the square root of the ratio ofn! to the Stirling approximation ofn! Note that for
large n, f (n) approaches one. Thus, for large quantum numbers,I j 1m1 j 2m2 jm approaches one. I
differs from unity by a correction that is order\, as can be deduced from the discussion of
Stirling approximation in Appendix A. As mentioned above, we present our approximation i
form given in Eq.~3.23! so that the exact equality of this expression and the complex expre
given in Eq.~3.22! can be verified numerically. The factorI j 1m1 j 2m2 jm may be dropped withou
reducing the quality of the approximation, that is, the ratio of our approximation to the exact
differs from unity by a quantity that is order\. Thus, we may write our approximation in the for

^ j 1m1 j 2m2u jm&'2A j

pb
cosFx2pS j 1

3

4D G . ~3.28!

Ponzano and Regge4 give a geometrical interpretation of the five angles that occur in the exp
sion for x in Eq. ~3.24!. An equation similar to Eq.~3.28! also appears in Ref. 5, but the (j
11/2) factors inx are included at the end of the calculation to improve the accuracy, and
p( j 11) in Eq. ~3.23! is missing so that the formula gives the wrong sign for evenj-values and
does not give the right magnitude for half-integerj values.
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B. Forbidden region

In the forbidden region, only one of the stationary-phase points is used in the approxim
This is analogous to the situation in the Airy function problem mentioned above, where the
dominant and subdominant branches, and in the forbidden region only the subdominant
exists. Similarly, the model problem in Appendix A shows how for the case ofm.n, two
stationary-phase points are used, while for the casem,n only one stationary-phase point
involved. The choice of which of the two roots in Eq.~3.11! is to be used for our approximatio
of the Clebsch–Gordan coefficient is indicated in Table I. Given them-values of a point in the
forbidden region in Fig. 2, it is inconvenient to determine which subregion it is in by using ne
if–then statements, because the relative ordering of, say, them2-coordinates of the points on th
boundaries between the forbidden subregions changes as thej-values are changed. A much simpl
way to determine which branch to use is to find the sign of a certain polynomial which we des
here. As can be seen from Table I, the choice of branch alternates as one goes around the
in Fig. 2. Thus we use the sign of the product of three expressions that flip signs in the righ
Given the coordinates of one of the boundary points in the (m1 ,m2)-plane, a vector perpendicula
to it can be constructed by exchanging the coordinates and changing the sign of one of the
dot-product of this vector and (m1 ,m2) is a function on the (m1 ,m2)-plane that changes sign a
the boundary between the two subregions in question. Thus we are led to consider the sign
function

@~m1 ,m2!•~22 j 2
2, j 22 j 1

22 j 2
2!#@~m1 ,m2!•~2 j 21 j 1

22 j 2
2, j 21 j 1

22 j 2
2!#

3@~m1 ,m2!•~2 j 21 j 1
21 j 2

2,2j 1
2!#.

If this quantity is positive~negative!, then the upper~lower! choice of root in Eq.~3.11! is used.
Once the cotangents of the angles at the stationary-phase point are determined, the approx
of the Clebsch–Gordan coefficient can be evaluated from the expression

^ j 1m1 j 2m2u jm&'~21! j 1m~2i ! j 1 j 11 j 2p22Nj 1m1 j 2m2 jm

2peg~u,f!

Adet@]2g/]~u,f!2#
. ~3.29!

All of the quantities needed to evaluate this expression were expressed in terms of the cota
of the angles in Eqs.~3.15! and~3.17!. It may be noted that in the forbidden region the cotange
become pure imaginary, as can be seen from Eq.~3.11!. This behavior is similar to that in the
model problem in Appendix A, where the angle suddenly jumps in terms of its real part~but the
analogy is not perfect because in the model problem the cotangent is pure imaginary in bo
regionm.n and the regionm,n).

Evaluating Eq.~3.29! results in a real value, although complex numbers are involve
intermediate steps. As in the case of our analysis in the allowed region, the expression m
transformed to a form that involves only operations with real numbers. This can be done in

TABLE I. For each forbidden subregion, the choice of root in Eq.~3.11!,
the sign function as in Eq.~3.30!, and the largestl @which determines the
form of x, as in Eq.~3.31!# are given.

Forbidden
subregion

Choice
of root

Sign
function Largestl

I lower 1 l3

II upper (21) j 12m1 l2

III lower ( 21) j 12 j 1m2 l1

IV upper (21) j 11 j 22 j l3

V lower (21) j 22 j 2m1 l2

VI upper (21) j 21m2 l1
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that parallels the previous calculation, with hyperbolic functions playing the role of trigonom
functions. The transformation involves choices of branch cuts and depends on which of t
subregions of the forbidden region one is working in. Thus there are six different all-real ex
sions for the forbidden region. In the interest of brevity, we will present only one of these he
subregion VI, the expression in Eq.~3.29! is exactly equal to

~21! j 21m22I j 1m1 j 2m2 jmA j

pubu
exp~2x~vi!!, ~3.30!

wherex~vi! is defined to be

x~vi!5S j 11
1

2D cosh21 F2m~ j 1
21 j 2

22 j 2!2m2~ j 1
21 j 22 j 2

2!

al1
G

2S j 21
1

2D cosh21 F2m1~ j 21 j 2
22 j 1

2!2m~ j 2
21 j 1

22 j 2!

al2
G

2S j 1
1

2D cosh21 F2m2~ j 1
21 j 22 j 2

2!1m1~ j 21 j 2
22 j 1

2!

al3
G

2m cosh21 Fl1
21l3

22l2
2

2l1l3
G2m2 cosh21 Fl1

21l2
22l3

2

2l2l1
G . ~3.31!

This all-real expression was derived by a very lengthy calculation, as in the case of the ana
the allowed region. Again, an exact equality such as the one above can be checked ea
substituting in test numbers and evaluating to sufficient precision. As before, to actually u
approximation, one would drop the factor ofI j 1m1 j 2m2 jm since it can be approximated by unity, t
the order that we are working in this section. All-real expressions for the other subregions
forbidden region can most easily be obtained by using the symmetries of the Clebsch–G
coefficients to related the expressions for the different subregions. If one prefers not to wor
six different expressions for the forbidden region, one can use the polynomial discussed ab
select the required stationary-phase point and then plug this into the approximation given
~3.29!. This requires operations with complex numbers, but is easier to implement in a com
program. Alternatively, to obtain an approximate value for the Clebsch–Gordan coefficient
given point in the forbidden region, one could work with only one all-real expression f
particular forbidden subregion and use the symmetries of the Clebsch–Gordan coefficients
the given point to a point that is within the subregion for which the expression is valid.

It is interesting to compare the all-real expressions obtained in the allowed region, Eq.~3.23!,
and in the forbidden region, Eq.~3.30!. They are similar in form, but the behavior is oscillatory
the allowed region and exponentially decaying in the forbidden region. This is the beh
expected in quantum mechanical problems that have an allowed region and a forbidden re

In the forbidden region, writing the approximation in an all-real form is illuminating beca
it makes it apparent that sign functions exist. We call the factor (21) j 21m2 in Eq. ~3.30! a sign
function. The remaining factors in that equation are all positive, so the sign function gives th
of the result. However, since the result is an approximation of a Clebsch–Gordan coefficie
sign function also gives the sign of the Clebsch–Gordan coefficient, at least in the asym
regime. Thus, the sign functions are actually properties of the Clebsch–Gordan coefficients
selves, for a given choice of phase conventions. We are using the conventions defined
~2.1!. The existence of sign functions was not clear from Eq.~2.1!, which was our starting point
The sign functions for each of the six forbidden subregions are given in Table I.

The anglex, given in Eq.~3.24!, that appears in our approximation in the allowed region
be rewritten in several different ways. The reason is that the angles that multiply them’s in the
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equation forx are two of the interior angles in the triangle formed by the threel-values. If we call
these anglesa1 , a2 , anda3 ~wherea i is the angle opposite the side of lengthl i), then we have

m11m25m,
~3.32!

a11a21a35p.

Thus, the vectors (m1 ,m2 ,2m) and (a1 ,a2 ,a32p) are both perpendicular to~1, 1, 1!, and their
cross product is parallel to~1, 1, 1!. Each of the three components of their cross product are
equal, and each one could be used as part ofx in the allowed region,

m1a22m2a15m2~a32p!1ma252ma12m1~a32p!. ~3.33!

In the forbidden region there is no such flexibility in how to write the corresponding te
because there do not exist three angles corresponding toa1 , a2 , anda3 . This is because it is no
possible to form a triangle using the threel-values. Three different quantities like

l3
21l1

22l2
2

2l3l1
~3.34!

can be written down by cyclically permuting the indices, but only two of these can be us
arguments of the cosh21 function in an all-real expression. This can be seen in the following w
Thel’s are non-negative and if three non-negative numbers fail to satisfy the triangle inequa
exactly one triangle inequality is violated.@Proof: Letlmax be the largest value,lmid be the middle
value, andlmin be the smallest. Then2lmin1lmid 1lmax>0 and lmin2lmid 1lmax>0, so we
must havelmin1lmid2lmax,0.] Now we consider rewriting the expression

l3
21l1

22l2
2

2l3l1
511

~l32l1!22l2
2

2l3l1
512

~l11l22l3!~l21l22l1!

2l3l1
. ~3.35!

This shows that of the three permutations of the expression in Eq.~3.34!, exactly two will be
greater than unity. It is these two that must be used as arguments of the cosh21 function in an
all-real expression. Thus there is no flexibility in ways to write them-terms inx as in the allowed
region. Throughout each one of the six subregions of the forbidden region, a single tr
inequality for thel’s is violated. It is not possible that one triangle inequality is violated in o
part of a subregion and another triangle inequality is violated in another part of the same sub
because at the boundary between these two partsb would be zero, as can be seen from Eq.~3.18!.
However,b2 is a quadratic polynomial inm1 andm2 @see Eq.~3.12!#, the zero-contour of which
is the ellipse in Fig. 2, so it is not possible for it to be zero along a curve in the forbidden re
Thel that is largest in each subregion is indicated in Table I. The forms of all-real expressio
each of the forbidden subregions will reflect the fact that in each one of the subregions one
l’s is larger than the sum of the other two.

It remains to discuss the case of points that are on the boundary between the allow
forbidden regions. The quantityb in Eq. ~3.12! is zero on this boundary, and sinceb is invariant
under the full 72-element symmetry group of the 3-j symbol,10 the Clebsch–Gordan coefficien
cannot be approximated on the boundary with the formulas presented in this paper. The re
thatb occurs in the denominator in Eqs.~3.28! and~3.30!. Sinceb2 is a homogeneous polynomia
in the quantum numbers, it will be zero for sets of quantum numbers equal to any multiple o
of quantum numbers for whichb is zero. The behavior of the Clebsch–Gordan coefficients in
direction transverse to the boundary should be similar to that of the Airy function~see Ref. 4!.

The invariance ofb under the 72-element symmetry group of the 3-j symbols may be shown
as follows. We begin by constructing the 333 Regge array of linear combinations of quantu
numbers, given in Ref. 10. For any integern, we define the polynomialpn to be the sum of thenth
powers of the nine elements of this matrix. These polynomials are invariant under the sym
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group, because if two sets of quantum numbers are related by a Regge symmetry, we can c
the 333 Regge array for each set and computepn . The results are the same because of
commutativity of addition. It is possible to writeb2 in terms of thepn :

b25~p1
426p2p1

2227p2
21108p4!/324. ~3.36!

The coefficients in this equation may be simplified slightly by using the relationp153( j 11 j 2

1 j ). This equation proves the invariance ofb under the symmetry group.
An example of quantum numbers for whichb is zero is

~ j 1 ,m1 , j 2 ,m2 , j ,m!5~3,22,6,4,7,2!. ~3.37!

This point is not on the edge of the triangle-allowed region. Points for whichb is zero and which
are on the edge of the triangle-allowed region are easier to find. For example, one can
( j 1 ,m1)5( j 2 ,m2)5 1

2( j ,m). For such a point,j 11 j 22 j is zero.
The reason we are unable to approximate the Clebsch–Gordan coefficient for cases in

b is zero is that the determinant of the 232 matrix of second derivatives ofg(u,f) is zero at the
stationary-phase points. This can be shown by plugging the solutions for the cotangents ou and
f at a stationary-phase point into Eq.~3.15! for the determinant; the result has an overall factor
b after being simplified@see Eq.~B7!#. This determinant appears in the denominator of Eq.~3.13!,
so our method cannot be applied. Note that whenb is zero, the two solutions for the cotangents
the stationary-phase point are the same@see Eq.~3.11!#. Also, it should be noted that if any of th
m-values has its absolute value close to the correspondingj, then the correspondingl will be small
@see Eq.~3.25!#, and the area of thel-triangle will be small. Thus,b will be small, and the set of
quantum numbers is close to the boundary. In contrast to this, there is no difficulty wit
approximation if them values are close to zero. These considerations are mirrored in the ap
mation ~using Stirling’s formula! of Nj 1m1 j 2m2 jm , defined in Eq.~2.3!; no factorials ofm-values
appear, only factorials ofj 2m, j 1m, etc.

IV. HIGHER-ORDER APPROXIMATION

The methods used in the previous sections can be extended to higher order. In this sect
derive the next correction to the previous results. The approximation that is obtained in thi
gives results that are accurate to six digits, for example, when the quantum numbers are
hundreds.

Let (u0 ,f0) be a stationary-phase point, i.e., a point at which]g/]u5]g/]f50. We write
the Taylor expansion of the functiong(u,f) about the point (u0 ,f0) as a sum of homogeneou
polynomials,

g~u01x,f01y!5g01g21g31g41¯ , ~4.1!

where

g05g~u0 ,f0!,

g25guu x2/21guf xy1gff y2/2,
~4.2!

g35guuu x3/61guuf x2y/21guff xy2/21gfff y3/6,

g45guuuu x4/241guuuf x3y/61guuff x2y2/41gufff xy3/61gffff y4/24,

where, for example,guuf is defined to be]3g/]u2]f at the stationary-phase point.
To obtain the next higher stationary-phase approximation for the Clebsch–Gordan coeffi

we terminate the series in Eq.~4.1! at the fourth-order term. The reason for this is explain
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below. Thus, the approximation of the functiong has derivatives at the stationary-phase po
(u0 ,f0) that agree with those ofg through fourth order. Our approximation of the integra
exp(g) is

exp@g~u01x,f01y!#'exp~g0!exp~g2!exp~g3!exp~g4!

5exp~g0!exp~g2!~11g31g3
2/2¯ !~11g41g4

2/21¯ !. ~4.3!

When this is multiplied out, each of the terms may be integrated over thexy plane in closed form.
We are interested in the asymptotic behavior of the resulting terms. The question is how the
behave when all of the quantum numbers (j 1 ,m1 , j 2 ,m2 , j ,m) are multiplied by the same facto
~such a factor is called 1/\, as explained in the Introduction!. The stationary-phase point (u0 ,f0)
is independent of the factor, i.e., (u0 ,f0) is order\0, as can be seen from Eq.~3.11!. The second
derivatives ofg at (u0 ,f0) are order 1/\, as can be seen from Eq.~3.14!, so to see how the integra
of exp(g2) depends on\, we define new variables of integration to be the old variables tim
\21/2. From this it follows that the integral of exp (g2) is order\. By the same reasoning, th
integral of a homogeneous quartic polynomial times exp (g2) is order\3, and the integral of a
homogeneous sixth-order polynomial times exp (g2) is order\4. The polynomialsg4 andg3

2 have
coefficients that are order 1/\ and 1/\2, respectively, so the integrals of these times exp (g2) are
both order\2. This is one order of\ smaller than the integral of exp (g2). The integral of a
homogeneous polynomial of odd degree times exp (g2) vanishes due to antisymmetry. Thus, t
next-higher-order approximation of the integral of exp (g) is obtained by integrating

exp ~g0! exp ~g2!~11g41g3
2/2!. ~4.4!

Terms coming fromg5 , etc., contribute at higher orders.
To find the ratio of the integral ofg4 exp (g2) to the integral of exp (g2) the following integrals

are necessary:

i 15E
2`

` E
2`

`

exp ~g2! dx dy,

i 25E
2`

` E
2`

`

x4 exp ~g2! dx dy,

~4.5!

i 35E
2`

` E
2`

`

x3y exp ~g2! dx dy,

i 45E
2`

` E
2`

`

x2y2 exp ~g2! dx dy.

We will need the ratiosi 2 / i 1 , i 3 / i 1 , and i 4 / i 1 . The integrals are tabulated and these rat
can be worked out without the use of any information about relationships between the v
derivatives of the functiong at the stationary-phase point. The results are

i 2 / i 15
3gff

2

~guu gff2guf
2 !2 ,

i 3 / i 15
23guf gff

~guu gff2guf
2 !2 , ~4.6!

i 4 / i 15
2guf

2 1guu gff

~guu gff2guf
2 !2 .
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It may be noted thatguu gff2guf
2 is the determinant of the 232 matrix of second partia

derivatives of the functiong.
The ratio, which we denote byd4 , of the integral ofg4 exp (g2) to the integral of exp (g2)

works out to be

d45
guuuu gff

2 24guuuf guf gff12guuff~2guf
2 1guu gff!24gufff guu guf1gffff guu

2

8~guu gff2guf
2 !2 .

~4.7!

Next, we move on to theg3
2 term in Eq.~4.4!. To find the ratio of the integral of12g3

2 exp (g2)
to the integral of exp (g2) the following integrals are necessary:

i 55E
2`

` E
2`

`

x6 exp ~g2! dx dy,

i 65E
2`

` E
2`

`

x5y exp ~g2! dx dy,

~4.8!

i 75E
2`

` E
2`

`

x4y2 exp ~g2! dx dy,

i 85E
2`

` E
2`

`

x3y3 exp ~g2! dx dy.

We will need the ratiosi 5 / i 1 , i 6 / i 1 , i 7 / i 1 , andi 8 / i 1 . As in the case of theg4 calculation, the
integrals are tabulated and these ratios can be worked out without the use of any information
relationships between the various derivatives of the functiong at the stationary-phase point. Th
results are

i 5 / i 15
215gff

3

~guu gff2guf
2 !3 ,

i 6 / i 15
15guf gff

2

~guu gff2guf
2 !3 ,

~4.9!

i 7 / i 15
23gff~4guf

2 1guu gff!

~guu gff2guf
2 !3 ,

i 8 / i 15
3guf~2guf

2 13guu gff!

~guu gff2guf
2 !3 .

The ratio, which we denote byd6 , of the integral of1
2g3

2 exp (g2) to the integral of exp (g2)
works out to be

d65@2guf~3guu gff12guf
2 !~guuu gfff19guuf guff!

23~guu gff14guf
2 !~2guuu guff gff12gfff gfuu guu13guuf

2 gff13gffu
2 guu!

130guf~guuu guuf gff
2 1gfff gffu guu

2 !25~guuu
2 gff

3 1gfff
2 guu

3 !#/@24~guu gff2guf
2 !3#.

~4.10!
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The only remaining matter is to find the necessary values of the higher derivatives o
functiong at the stationary-phase point. The definition ofg, given in Eq.~3.3!, can be used to find
its second derivatives, given in Eq.~3.14!, its third derivatives,

]3g

]u3 52~ j 1 j 22 j 1!csc2u cotu12~ j 11 j 22 j ! csc2 ~u2f!cot ~u2f!,

]3g

]u2]f
522~ j 11 j 22 j ! csc2 ~u2f! cot ~u2f!,

~4.11!
]3g

]u]f2 52~ j 11 j 22 j ! csc2 ~u2f! cot ~u2f!,

]3g

]f3 52~ j 11 j 22 j !csc2 ~u2f! cot ~f2u!12~ j 1 j 12 j 2! csc2f cotf,

and its fourth derivatives,

]4g

]u4 522~ j 1 j 22 j 1! csc2u ~3 cot2 u11!22~ j 11 j 22 j !csc2 ~u2f!@3 cot2 ~u2f!11#,

]4g

]u3]f
52~ j 11 j 22 j ! csc2 ~u2f!@3 cot2 ~u2f!11#,

~4.12!
]4g

]u2]f2 522~ j 11 j 22 j ! csc2 ~u2f!@3 cot2 ~u2f!11#,

]4g

]u]f3 52~ j 11 j 22 j ! csc2 ~u2f!@3 cot2 ~u2f!11#,

]4g

]f4 522~ j 11 j 22 j ! csc2 ~u2f!@3 cot2 ~u2f!11#22~ j 1 j 12 j 2! csc2f ~3 cot2 f11!.

Given the values of the cotangents ofu andf at a stationary-phase point, these derivatives can
evaluated without having to find the angles, i.e., without having to make any choices of b
cuts. One way to do this is to use Eq.~3.5! to evaluate cot (u2f) and the identity csc2 u51
1cot2 u to evaluate the squared cosecants.

The relationship between the Clebsch–Gordan coefficient and the integral of exp (g) is given
in Eq. ~3.1!. Combining this with our higher-order approximation for the integral results in
following higher-order approximation for the Clebsch–Gordan coefficient. Each stationary-
point contributes

~21! j 1m~2i ! j 1 j 11 j 2p22Nj 1m1 j 2m2 jm

2peg~u0 ,f0!

Aguu gff2guf
2 ~11d41d6!. ~4.13!

As explained in the previous sections, for points in the allowed region the sum over statio
phase points is a sum over both of the solutions for the cotangents ofu andf given in Eq.~3.11!,
and for points in the forbidden region only one of these solutions contributes. Given value
cotu and cotf, Eqs.~3.14!, ~4.11!, and~4.12! are used to evaluate the higher derivatives of
functiong at the stationary-phase point. Then Eqs.~4.7! and~4.10! are used to obtaind4 andd6 .
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As shown in Eq.~3.17!, the quantityeg(u0 ,f0) can also be evaluated using the values of
cotangents ofu andf. The quantityNj 1m1 j 2m2 jm can be approximated to sufficient accuracy us
the next correction to Stirling’s approximation for the factorials.

Finally, we present some numerical examples. We begin with the allowed region.
For (j 1 ,m1 , j 2 ,m2 , j ,m)5(200, 100, 300, 150, 400, 250), the values are

exact50.070 349 9,
~4.14!

approx50.070 349 6.

For (j 1 ,m1 , j 2 ,m2 , j ,m)5(200, 100, 3001 1
2, 1501 1

2, 4001 1
2, 2501 1

2), the values are

exact50.073 063 6,
~4.15!

approx50.073 063 3.

In the forbidden region, the Clebsch–Gordan coefficients are much smaller. The follo
examples are from subregion I.

For (j 1 ,m1 , j 2 ,m2 , j ,m)5(200, 150, 300,2250, 400,2100), the values are

exact53.089 61310219,
~4.16!

approx53.089 58310219.

For (j 1 ,m1 , j 2 ,m2 , j ,m)5(200, 150, 3001 1
2,22501 1

2, 4001 1
2,21001 1

2), the values are

exact55.327 18310219,
~4.17!

approx55.327 12310219.

Further examples of results from the higher-order approximation are discussed in Appen

V. CONCLUSION

The methods presented in this paper provide simple formulas for calculating first-orde
proximations to Clebsch–Gordan coefficients in the allowed region and in all of the forbi
subregions. Additionally, a higher-order approximation is derived, although the expressio
more complicated. We do not know if the quantityd41d6 in Eq. ~4.13! can be simplified when
expressed in terms of the quantum numbers~see Appendix B for a special case!. It appears to be
complicated, as is often the case for higher-order approximations. The geometrical structure
as clear.

Our higher-order approximation provides the only known way to compute certain digi
some Clebsch–Gordan coefficients. By this we mean that given any computer, we can alwa
quantum numbers large enough so that the exact calculation is not feasible. The beginning
may be calculated using first-order approximations; the higher-order approximation makes
sible to compute further digits.

The methods of this paper could also be used to derive asymptotic expressions f
6 j -symbols, etc. The starting point would again be an exact expression for the quantity of in
One would then have to construct a polynomial with the property that the coefficient of one
terms is this exact expression. Then an integral expression would be obtained, and fina
integral would be approximated using the stationary-phase method.

As mentioned in the Introduction, this work could have applications in high-angular mo
tum calculations and theoretical investigations which contain sums over large numbe
Clebsch–Gordan coefficients.8,9
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Our analysis in the forbidden region led us to the realization that simple sign functions
there that give the sign of the exact Clebsch–Gordan coefficients. These are summarized i
I.

A subject for future work is the approximation of Clebsch–Gordan coefficients
6 j -symbols near the boundary between the allowed and forbidden regions. Ponzano and4

have conjectured and supplied numerical evidence for a typical Airy function caustic beh
Also, of course, it should be possible to extend the present calculations to even higher ord

APPENDIX A: A ONE-DIMENSIONAL EXAMPLE

In this appendix we consider a one-dimensional example of an integral that gives a F
coefficient of a function which is an integer power of a fixed function. We are interested in
asymptotics of the result for large values of the two integers involved.

We define the functionF(m,n) for positive integersm andn by

F~m,n!5E
2p/2

p/2

cosnx eimx dx. ~A1!

It is possible to evaluate this integral exactly in closed form:

F~m,n!55
22npS n

~n2m!/2D , n2m even

~21!~n112m!/2 2n12n!
@~m1n11!/2#! ~m2n21!!

~m1n11!! @~m2n21!/2#!
, n2m odd,n,m

2n12n!
@~n112m!/2#! @~n111m!/2#!

~n112m!! ~n111m!!
, n2m odd,n.m .

~A2!

In deriving these results, one uses the definition of the beta function,B(z11,w11)5*0
1tz(1

2t)w dt, and the relation between the beta function and the gamma function,B(z,w)
5G(z)G(w)/G(z1w). One also uses the results that for integersk>0,

GS k1
1

2D5
Ap~2k!!

22kk!
,

~A3!

GS 2k1
1

2D5~21!k
22kApk!

~2k!!
.

1. Asymptotics of the exact expressions

In order to compare the stationary-phase approximations derived in the following subs
with the exact value ofF(m,n), we will use Stirling’s approximation for the factorials in the exa
expressions in Eq.~A2!. The accuracy to which we will work is that the ratio of the exact value
the approximation should go to unity asn andm go to infinity, holding the ratio ofn to m fixed.
The difference between the logarithm of the exact expression and the logarithm of the ap
mation thus goes to zero as the two integers get large~the errors are of order 1/n).

Stirling’s approximation, through order unity~for the logarithms!, is

x!'A2pxxxe2x. ~A4!

The next correction to this is a multiplicative factor ofe1/(12x). Thus, the ratio ofx! to the
approximation given in Eq.~A4! approaches unity asx goes to infinity.

Our approximation of the exact expression forF(m,n) works out to be
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F~m,n!'5
A2p

n S 12m/n

11m/nDm/2 F12S m

n D 2G2~n11!/2

, n.m;

0, n2m even,n,m;

~21!~n112m!/2 2A2p

n S m/n21

m/n11Dm/2 F S m

n D 2

21G2~n11!/2

, n2m odd,n,m.

~A5!

In deriving this result, we have used the fact that the inequalityn.m implies n2m@1. This is
true because we are holding the ratio of the two integers fixed while letting them become la
other words, errors of order 1/n are the same order as errors of order 1/(n2m). Thus the Stirling
approximation is used for quantities such as (n2m)!. Similar remarks apply to the inequalityn
,m.

In Eq. ~A5!, only positive quantities are raised to powers that could be noninteger. Thus
are no phase ambiguities. If one is sloppy about phases, the last expression appears to be
as the first, differing only be a factor of 2. The origin of this factor of two has a simple inter
tation in the stationary-phase approximation, described in the next subsection.

It is remarkable that the first expression~for the casen.m, n2m even! and the third
expression~for the casen.m, n2m odd! in Eq. ~A2! have the same asymptotics to the order
which we are working. A calculation is involved in showing this. The result that comes f
applying the Stirling approximation to the third expression is

A2p

n S 12m/~n11!

11m/~n11! D
m/2 F12S m

n11D 2G2~n11!/2

.

To the accuracy to which we are working, this turns out to be the same as the first expres
Eq. ~A5!, although some work is required to show this.

2. Stationary-phase approximation

To do a stationary-phase approximation for the functionF(m,n), we write the function as

F~m,n!5E
2p/2

p/2

eng~x! dx, ~A6!

where the functiong is defined by

g~z!5 ln cosz1 i
m

n
z. ~A7!

With the usual choice of branch cut for the logarithm function, the functiong(z) is analytic
everywhere in the complex plane except for vertical lines that intersect the real axis a
multiples ofp, and at the intervals on the real axis where cosz is nonpositive. The identity

cos~x1 iy !5cosx coshy2 i sinx sinhy ~A8!

is useful in showing this. Knowledge of the region of analyticity ofg allows us to deform the
contour of integration in Eq.~A6! without changing the value of the integral. We would like
deform the contour so that the phase of the integrandeng(z) is constant. To do this, we need t
know the imaginary part ofg(z). With the help of Eq.~A8! we find that this is

J@g~x1 iy !#52tan21 ~ tanx tanhy!1
m

n
x. ~A9!
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If a contour is selected in such a way that this function is a constant, theng(x1 iy) will equal an
imaginary constant plus a real-valued function along the contour. The integrandeng(z) will then
equal a constant phase factor raised to thenth power times a fixed real-valued function raised
the nth power. This fixed real-valued function may be approximated by a Gaussian, an
integral may then be evaluated. Stationary-phase pointszs satisfy the condition

g8~zs!50. ~A10!

This is equivalent to the condition

tanzs5 i
m

n
. ~A11!

We note that the value ofg9 at a stationary-phase point is

g9~zs!52sec2 zs5S m

n D 2

21. ~A12!

It is necessary to distinguish two cases, the casem,n and the casem.n ~recall thatm and
n are both positive by assumption!. We first consider the casem,n. In this case, it follows from
a study of Eq.~A9! that a constant phase contour exists that connects the endpoints of the in
and passes through the stationary-phase point

zs5 i tanh21
m

n
~A13!

in a direction that is parallel to the real axis. The integrand is approximated by

eng~zs!1ng9~zs!~z2zs!2/2,

and the result for the integral is

A 2p

2ng9~zs!
eng~zs!5A2p

n S 12m/n

11m/nDm/2 F12S m

n D 2G2~n11!/2

, ~A14!

which agrees with the result in Eq.~A5!.
We now move on to the casem.n. In this case, no single contour exists with the propert

that it connect the endpoints of the integral and that the quantity in Eq.~A9! be constant. Instead
we choose a contour consisting of three straight-line pieces. The first part,C1 , is defined to start
at 2p/2 and go vertically upwards to2p/21 iY, Y being a large positive real number. Th
second part,C2 , is defined to go from2p/21 iY to p/21 iY, and the third part,C3 , goes straight
down to thep/2 endpoint of the integral. The partsC1 and C3 contain stationary-phase point
which we callzs2 andzs1 , and which are given by

zs656
p

2
1 i tanh21

n

m
. ~A15!

For the integral alongC1 the integrand is approximated by

eng~zs2!1ng9~zs2!~z2zs2!2/2.

We parametrize the curveC1 by z5zs21 i t , wheret is a real parameter. Thendz is i dt and the
resulting approximation for the integral alongC1 is
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iA 2p

1ng9~zs2!
eng~zs2!. ~A16!

Similarly, the approximation for the integral alongC3 is

2 iA 2p

1ng9~zs1!
eng~zs1!. ~A17!

Because of the conditionm.n the integral along the curveC2 goes to zero asY goes to infinity.
The approximation forF(m,n) is thus the sum of the expressions given in Eqs.~A16! and~A17!.
If m2n is odd the sum is zero, in agreement with the exact value. Ifm2n is even, the sum agree
with the approximation of the exact result, given in Eq.~A5!.

Thus we see that depending on the ratiom/n, different numbers of stationary-phase poin
must be considered due to fundamental changes in the form of the stationary-phase cont
m/n goes from one side of the critical value of 1 to the other side. On either side of the cr
value of 1, a stationary-phase approximation is possible. The behavior near the critical va
discussed briefly in the main part of this paper.

APPENDIX B: THE CASE OF VANISHING MAGNETIC QUANTUM NUMBERS

Clebsch–Gordan coefficients for the case of vanishing magnetic quantum numberm1

5m25m50) are of interest in atomic and nuclear physics. Many of the expressions deriv
this paper simplify in this case. Also, comparisons with the asymptotics of the exact closed
expression, given in Eq.~B11!, are possible.

The vanishing of the magnetic quantum numbers implies thatb, defined in Eq.~3.12!, is real.
The caseb50 is simple because one of thej quantum numbers is then equal to the sum of
other two, and the integral in Eq.~2.11! may be evaluated exactly with a small amount of effo
Thus, we will consider the caseb.0. Two other facts that will be used throughout this appen
are that the set of quantum numbers is in the allowed region~since b is real! and that thej
quantum numbers are integers~since j i2mi is always an integer!.

First, we work out the simplifications that occur in the all-real expression in Eq.~3.28!.
Equation~3.24! becomes

x5
p

2 S j 1 j 11 j 21
3

2D , ~B1!

and Eq.~3.28! becomes

^ j 10 j 20u j 0&'2A j

pb
cosFp2 ~ j 11 j 22 j !G . ~B2!

This agrees with the first-order approximation of the exact expression, which can be obtaine
the higher-order approximation@Eq. ~B12!# of the exact result, given in Eq.~B11!. If j 11 j 22 j is
odd, then both of the expressions are zero.~In this case,j 11 j 21 j is also odd since 2j is even.!
If j 11 j 22 j is even, then both have a sign of (21)( j 11 j 22 j )/2.

Next, we move on to the higher-order approximation. From Eq.~3.11! it is apparent that the
two solutions for the contangents ofu andf are related by simply reversing the signs. It follow
from Eqs.~3.14!, ~4.11!, and~4.12! that the values of the second- and fourth-order derivative
g(u,f) are unchanged, while the third-order derivatives have their signs flipped. Equations~4.7!
and~4.10! imply that the quantitiesd4 andd6 are unchanged. Finally, Eq.~3.17! implies that the
quantityeg(u0 ,f0) gets multiplied by (21) j 11 j 22 j for the second root. Becausej is an integer, this
phase factor is the same as (21) j 11 j 21 j . Since we are in the allowed region, we must sum o
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both stationary-phase points. We see that for odd values ofj 11 j 21 j the result is zero, while for
even values ofj 11 j 21 j the result is twice the contribution obtained from one of the stationa
phase points.

The values of the second derivatives ofg(u,f) at the stationary-phase points are obtain
from Eqs.~3.11! and ~3.14!, and the results simplify quite a bit:

guu52
4 j 2~ j 11 j !

j 11 j 21 j
, ~B3!

guf5
4 j 1 j 2

j 11 j 21 j
, ~B4!

gff52
4 j 1~ j 21 j !

j 11 j 21 j
. ~B5!

From these equations results the following expression for the determinant of the 232 Hessian
matrix of second derivatives ofg(u,f):

det
]2g

]~u,f!2 5
16j 1 j 2 j

j 11 j 21 j
. ~B6!

We note that this result is nonzero, and it does not vanish in any special cases that have n
j quantum numbers, which seems to contradict the statement made at the end of Sec. III ab
vanishing of the determinant whenb vanishes. The resolution of this apparent contradiction ha
do with the fact that in the stationary-phase analysis of this paper we do not simultane
consider the casesm15m25m50 andb50. These two conditions together would implya is
zero. The quantitya is defined in Eq.~3.25!. It vanishes whenj 5 j 11 j 2 , j 15 j 21 j or j 25 j
1 j 1 . In general, as long asa is nonzero, the expression for the determinant can be put~after some
work! in the form

det
]2g

]~u,f!2 5
bP11b2P2

a2~ j 1 j 11 j 2!2 , ~B7!

where P1 and P2 are ~large! polynomials in the quantum numbers. This equation justifies
statement that the determinant is zero in cases whereb is zero. On the other hand, in cases whe
m15m25m50, P1 vanishes anda andb are equal, and the result simplifies to that shown in E
~B6!. The case ofm15m25m50 andb50 requires a separate treatment. It is necessary to
back to the original integral representation for the Clebsch–Gordan coefficient. The integra
be approximated by the methods of stationary phase, but it is simpler just to evaluate it
~2.15! exactly, which is possible at that point.

Higher-order derivatives ofg(u,f) at the stationary-phase points simplify as well. Equatio
~4.7! and ~4.10! for d4 and d6 yield results that are much simpler than for the general cas
nonzero magnetic quantum numbers:

d41d65~ j 1
5 j 222 j 1

3 j 2
31 j 1 j 2

51 j 1
5 j 2 j 1

3 j 2
2 j 2 j 1

2 j 2
3 j 1 j 2

5 j 2 j 1
3 j 2 j 2210j 1

3 j 2
2 j 22 j 1 j 2

3 j 222 j 1
3 j 3

2 j 1
2 j 2 j 32 j 1 j 2

2 j 322 j 2
3 j 31 j 1 j 51 j 2 j 5!/~12j j 1 j 2b2!. ~B8!

This expression may be rewritten in a more compact form, as explained after Eq.~B12!. As
discussed above, for odd values ofj 1 j 11 j 2 the higher-order approximation of the Clebsch
Gordan coefficient vanishes identically. For even values ofj 1 j 11 j 2 , the result reduces to
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^ j 10 j 20u j 0&'2~21!~ j 11 j 22 j !/2A2 j 11

2pb
A j 1 j 11 j 2

j 1 j 11 j 211
~11d41d6!

3F11
1

24S 2

j
1

2

j 1
1

2

j 2
2

1

j 1 j 11 j 2
2

1

2 j 1 j 11 j 2
2

1

j 2 j 11 j 2
2

1

j 1 j 12 j 2
D G ,
~B9!

where we have approximated the factorials inNj 1m1 j 2m2 jm using the form of Stirling’s approxi-
mation that is appropriate for this order,

x!'A2pxxxe2xS 11
1

12xD . ~B10!

The exact value of the Clebsch–Gordan coefficient is~Ref. 7, p. 87, and Ref. 11!

^ j 10 j 20u j 0&

5H 0 j 1 j 11 j 2 odd,

~21!~ j 11 j 22 j !/2A2 j 11
A~2 j 11 j 21 j !! ~ j 12 j 21 j !! ~ j 11 j 22 j !!/ ~ j 11 j 21 j 11!!

@„~2 j 11 j 21 j !/2…! „~ j 12 j 21 j !/2…! „~ j 11 j 22 j !/2…! #/„~ j 11 j 21 j !/2…!
, j 1 j 11 j 2 even

,

~B11!

and this may be approximated using Eq.~B10!. The result is

^ j 10 j 20u j 0&'H 0, j 1 j 11 j 2 odd

2~21!~ j 11 j 22 j !/2A2 j 11

2pb
A j 1 j 11 j 2

j 1 j 11 j 211 S 12
j j 1 j 2

b2 D , j 1 j 11 j 2 even
.

~B12!

To the order that we are working, the higher-order stationary-phase result, given in Eq.~B9!,
and the corresponding approximation of the exact result, given in Eq.~B12!, agree. Equation~B9!
contains two factors that have the form of unity plus a small correction. If these are multiplie
and only the first-order terms are kept, the result is the factor of (12 j j 1 j 2 /b2) in Eq. ~B12!. This
shows that Eqs.~B9! and~B12! are equivalent, and it also provides an alternative way of writ
the expression in Eq.~B8!.
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Exact solution of the Herrera equation of motion
in classical electrodynamics

G. Ares de Parga and R. Mares
Departamento de Fı´sica, Escuela Superior de Fı´sica y Matema´ticas,
I.P.N., Edif.9 U.P. ‘‘Adolfo Lo´pez Mateos,’’ C.P. 07738, Me´xico, D.F.

~Received 29 March 1999; accepted 22 June 1999!

The Landau–Lifshitz equation is derived as a first-order iteration of the Lorentz–
Dirac equation for the charged particle. In those cases with null electromagnetic
field’s gradient, the Landau-Lifshitz gives the so named Herrera equation. A gen-
eral method for the solution of the latter equation is presented and applied to the
motion of a particle in a uniform electromagnetic field. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01610-2#

I. INTRODUCTION

Classical electrodynamics has two main parts; the theory of Maxwell’s equations an
dynamics of the charged particles. The first one is universally accepted, but the same is not
the dynamics of the particle when one considers the effect of radiation. A charged acce
particle in an applied field radiates energy. In return, the radiation affects the motion o
particle. Accordingly, the mathematical theory of classical electrodynamics should compris
basic sets of equations; one, which describes the resulting fields, is represented by the Ma
equation; and the other, which includes the effect of both the applied field and the rad
reaction, specifies the motion of the particle. General equations of the motion are obtaine
very fundamental principles; relativistic covariance and conservation of the four-momentum
we can add another two, simplicity and mass renormalization. In addition, the equation shou
reduce to the Lorentz force equation when radiation can be neglected. A partial differ
equation which satisfies all four conditions was derived some time ago by Dirac.1 But as it is well
known,2 the so named Lorentz–Dirac equation is one of the most controversial equations
history of physics. Indeed, the appearance of the third time derivative brings the equation o
of the dynamical equation which uniquely specifies the trayectory of a particle once the
conditions of position and velocity are given. A natural solution of the Lorentz–Dirac equ
leads to runaway acceleration which can be eliminated by imposing asymptotic condition
then the solutions give preacceleration violating the physical causality.2

In the following, we consider the approach of Landau and Lifshitz.3 They start from the
Lorentz–Dirac equation and by a first order iteration of the same, they arrive to an equ
considered as exact. Indeed Spohn4 has recently demostrated that the Landau–Lifshitz equatio
the effective second order equation that restricts the solution of the Lorentz–Dirac equation
critical surface on which all solutions are guaranteed not to run to infinity. The Landau proc
reduces to the Herrera equation5,6 when the gradient of the field is null. Though quadratic in t
fields, the differential equation involves only first derivatives in the velocity, and so, does not
the undesirable properties of the Lorentz–Dirac equation. In the paper, we have utilize
Ansatz of Shen7 for solving the Lorentz–Dirac equation in his approximation. So doing
separates the contribution of the reaction force.

The paper is organized as follows: In Sec. II, we present the basic steps to the La
Lifshitz equation and as a special case of the last equation, the Herrera equation. In Sec
presented our Ansa¨tz to the solving of the Herrera equation. In Sec. IV we apply the method
two cases. In Sec. V, we summarize the main ideas and results.
48070022-2488/99/40(10)/4807/6/$15.00 © 1999 American Institute of Physics
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II. EQUATION OF MOTION

The Lorentz–Dirac equation for a charged particle of rest massm and chargee in a field given
by the antisymmetric Faraday’s tensorFmn , is

v̇m~t!5
e

mc
F n

m vn~t!1t0v̈m~t!2
t0

c2
vm~t!v̇nv̇n. ~1!

In the equation, we have introduced the time-parametert05 2
3(e

2/mc3), and the units are
Gaussian. The dot-point denotes differentiation with respect to the particle proper timet. The
four-velocity has the components

vm~t!5g~c,vk~t!5 ẋk~t!!, ~2!

where the Latin subscriptk takes on values 1–3, the Greek subscripts assume values 0–3.
In the iteration of Eq.~1! one assumes that the coefficients of the second and third term

the right-hand side of Eq.~1! are small and that the applied field does not depend explicitly on
time t, i.e., Fmn5Fm(x(t)). So, for the first order int0 , we have,

v̇m~t!5aFn
mvn1bKns

m vnvs1«Fn
mFs

n v̇s2
«vm~t!

c2
Fn

lFs
n vlvs, ~3!

in which a5 (e/mc) , b5 (t0e/mc) , Kns
m 5(]Fn

m/]xs), and«5 (t0e2/m2c2) .
Equation~3! is the Landau–Lifshitz equation and in the case when the gradientKns

m 50, one
obtains the Herrera equation,

v̇m~t!5aFn
mvn~t!1«Fn

mFs
n vs~t!2

«vm~t!

c2
Fn

lFs
n vlvs. ~4!

Herrera notes that Eq.~4! is of the Newtonian class in which the right-hand side is the to
applied four-force made up of the Lorentz force linear in the applied field and two other t
quadratic in the field. Furthermore, the equation has none of the problems of the Lorentz–
equation, there are no runaway solutions and no preaccelerations. It has to be pointed o
Herrera claimed unsubstaintiated that his equation is exact because it does not possess
culties of the Lorentz–Dirac one. Nevertheless as we mentioned above, the equation w
substantially supported is the Landau–Lifshitz equation as Spohn4 showed.

It is interesting to compare the Herrera equation with equation of motion ofM0-Papas,

v̇m~t!5
e

mc
Fn

m~vn~t!1t0v̇m~t!!1
t0

m
Fs

lvl
sv̇lvm.

The Herrera equation, derived as a first-order iteration of the Lorentz–Dirac equation h
added force term which is quadratic in the applied field and the term is equivalent to a Poy
type momentum being transfered to the particle. The Mo–Papas equation assumes new i
ideas: radiation reaction should be expressible by the external fields and the charge’s kine
a charge experiences, in addition to the Lorentz force, another external force proportiona
acceleration and finally, inertia plus radiation is balanced by these two external forces. Nev
less since this last equation possesses a third derivative with respect to the time, it will p
similar difficulties as the Lorentz–Dirac equation and consequently our method will not app
this case.

Even if our main point it is to solve the Landau–Lifshitz equation, we will consider as a
step, just the case whenKnt50. That is the Herrera equation case.

Using the fundamental identity,
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Fmn5~dmodn j2dm jdno!Ej2dm jdnk« jklBl . ~5!

Herrera has succeeded in to expressing Eq.~3! in the form, explicitly in the fields,

v̇~t!5
e

m S gE1
v3B

c D2«vFg2~E21B2!2S v•E

c D 2

2S v•B

c D 2

22gv•S E3B

c D G
1«~E~v•E!1B~v•B!1cgE3B!, ~6a!

and

ġ~ t !5
e

mc2
v•E2«gF ~g221!~E21B2!2S v•E

c D 2

2S v•B

c D 2G1«~2g221!v•~E3B!. ~6b!

Equations~6a! and ~6b! are the point of depart for the two applications of Herrera4 to the
motion of the charged particle in a uniform magnetic field and uniform electric field.

III. EXACT SOLUTION OF THE HERRERA EQUATION OF MOTION

It can be easily verified that if the four-vectorf m(t) is a solution of equation

ḟ
m
~t!5Tl

m f l~t!, ~7!

where

Tl
m5aFl

m1«Fn
mFl

n , ~8!

then

vm~t!5h~t! f m~t!, ~9!

is a solution of the Herrera equation in the form of Eq.~4!, with

h~t!5F11
2«

c2 E0

t

Fn«Fl
n f « f ldtG21/2

. ~10!

h(t) represents the damping effect due to the radiation reaction. Therefore, once the s
to Eq. ~7! is found at least a formal expression can be immediately written down for the sol
of the Herrera equation.

We can solve Eq.~7! formally, by means of an exponential expression, if the applied fieldFmv
is constant in space and time,

f m~t!5exp@~aFn
m1«Fn

lFl
m!t# f n~0!. ~11!

Also, the method can be applied to obtain solutions to the equations of motion in cas
physical interest if the fieldsFmv are just dependent on the time since we can always solve Eq~7!.

Introducing Eqs.~11! and~10! into Eq.~9!, we find a formal solution for the Herrera equatio

vm~t!5
exp@~aFn

m1«Fl
mFn

l!t# f n~0!

F11
2«

c2 E0

t

Fn«Fl
n f « f ldtG 1/2 ~12!

for the case of uniform electromagnetic fields.
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For further developement of Eq.~12! we can apply to it the methods of Kumar8 on the
expansion of a function of noncommunting operators and on expanding the exponential. N
theless, we prefer to solve Eq.~7! more directly and simultaneously to give a physical insight in
the force-term«Fv

mFs
mns. To this end, we made the Ansatz,

f m~t!5ea(t) f L
m~t!, ~13!

where f L
m(t) is any solution of the Lorentz equation,7,8 without radiation. One can readly sho

that a(t) is of the form,

a~t!5
«

c2E0

t

Fl
mFn

l f L
n~t8! f mL~t8!dt8 ~14!

with the normalization condition,f L
m(t8) f mL(t8)5c2.

Introducing Eqs.~14!, ~13!, and~10! in Eq. ~9!, the solution of the Herrera equation reads

vm~t!5

expF «

c2E0

t

Fl
mFn

l f L
n~t8! f mL~t8!dt8G

F11
2«

c2 E0

t

Fn«Fl
n f « f ldt8G21/2 f L

m~t!. ~15!

Let us consider the case of a uniform electromagnetic field. Using the fact thatFmn is anti-
symmetric and the tensorḟ L

m ḟ nL is symmetric and the product of a symmetric tensor with
antisymmetric tensor gives identically zero, we find

d

dt
~Fl

mFn
l f L

n f mL!52Fml f L
lFmn ḟ nL52Fmn ḟ mL ḟ nL50, ~16!

i.e., Fl
mFn

l f L
n f mL is a constant of time.

Therefore, in a constant field

a~t!5
«

c2
Fl

mFn
l f L

v f mLt. ~17!

To computenm(t), one needs to findf L
m(t) first.

For a charged particle in a constant electric and magnetic field this has become a st
textbook exercise. Pin˜a and recently Mun˜oz and Hyman9–11 present a fully covariant solution to
the problem of a charged particle in a spatially uniform electromagnetic fieldFab . The integration
method naturally leads to a solution in manifestly covariant form. Shen,7 applies a more elegan
method for obtaining formal solutions to the Lorentz equation using the projection operators
given by Rosen12 for finite transformation in SU~3! space. Nevertheless as we will see in the n
section, our method has the advantage of simplicity.

IV. APPLICATIONS

A. Motion in a uniform magnetic field

The relativistic motion of a particle in a field specified byBk5(0,0,B0) it is a good testing
ground for applying an equation of motion. Writingv05(eB0 /mc) and B0

25lv0 , where l
5 (m2c2/e2) v0 we find that Eqs.~10!, ~14! are then expressed as

a~t!52«lv0t, ~18!

and
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h~t!5~g2~0!2~g2~0!21!e22lw0t!21/2, ~19!

where we have chosenv3(0)50.
For a particle in a uniform magnetic field, Eq.~15! now yields the solution in a closed form

vm~t!5
e2lw0t

~g2~0!2~g2~0!21!e22lw0t!1/2
f L

m~t!, ~20!

with f L
m(t) any solution of the Lorentz equation. Equation~20! coincides with the results obtaine

by a parametrization of the Larmor formula and averaging it.13

B. Motion in a uniform electric field

Another example is the motion in a uniform electric field given byEk5(E0,0,0); the general
solution is also in this case, obtainable in closed form.

In writing the relations, we have introduced, following Herrera, the abbreviationI(t)5 (v2
2

1v3
2)/c2 corresponding to the square of the transverse four-velocity. The exact solution wi

proper timet as the independent variable is

vm~t!5
e2«E0

2t f L
m~t!

@g2~o!I~0!2~11g2~o!I~0!!e2«E0
2t#1/2

, ~21!

where the Lorentz solutions are given by the expressions

f L
0~t!5 f L8~0!sinh~kt!1gL~0!cosh~kt!

~22!
f L
8 ~t!5gL~0!sinh~kt!1 f L8~0!cosh~kt!,

wherek5 et0 /mc and f L
m5g(c,v).

This is the same result that Herrera6 obtained.

V. CONCLUSION

The Landau–Lifshitz equation, derived as a first-order iteration of the Lorentz–Dirac e
tion, is considered as the exact equation of motion for classical electrodynamics of a ch
particle. The equation is of the Newtonian class since the total applied force is made up
Lorentz force and two other terms quadratic in external fields. Therefore, there are no ru
solutions and no preacceleration. We have solved exactly the equation in two cases of p
importance: uniform magnetic and electric fields, and the results are quite similar to those ob
by Herrera in both situations. The method can be extended to the domain of oscillatory fie
those circumstances the Herrera equation is not valid and the Landau–Lifshitz equation ha
used. Similar methods can be used to solve it in a future paper. But the fundamental ques
whether the Landau–Lifshitz equation of motion or for that matter, the Lorentz–Dirac equ
and other proposed equations are in agreement with the experiment, is an open question.
in accordance with Spohn4 and the limits of classical electrodynamics,13 that is where quantum
effects are not important, the equation of Landau–Lifshitz is a good candidate to be
experimentally.13
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Diffusive energy scattering from weakly random surfaces
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We derive transport theoretic boundary conditions for acoustic wave reflection at a
weakly rough boundary in an inhomogeneous half space. We use the Wigner dis-
tribution to go from waves to energy transport in the high frequency limit. We
generalize known results on the reflection of acoustic plane waves in a homoge-
neous medium. We analyze higher order corrections, which include a enhanced
backscattering effect in the back direction. ©1999 American Institute of Physics.
@S0022-2488~99!02009-5#

I. INTRODUCTION

Wave propagation in weakly fluctuating random media over distances large compared
wavelength can be described by incoherent energy transport. This is the radiative tra
regime.1,2 Near boundaries and interfaces, waves undergo coherent or partially coherent refl
Angularly resolved energy reflection and transmission in homogeneous media in average, h
studied extensively in the past.3–6 Recently, the problem has been revisited in the transport th
retic context using a plane wave decomposition; see Ref. 7. There, the boundary conditions
transport equations in a domain with rough boundaries of small amplitude and homoge
background are derived. In this paper, we derive boundary conditions in the case of inho
neous domains. We systematically use the Wigner transform to study the reflection of ang
resolved acoustic energy density from a Dirichlet surface. The scale of the volume inhomo
ities is large compared to the wave length. The boundary conditions are a direct generaliza
those obtained in the case of a homogeneous medium, with a reflection operator dependin
the position at the boundary. Our main ingredient is a perturbation analysis around the flat b
ary case studied in Ref. 8.

A. Transport equations for the energy density

As we recall in Sec. II, the phase space acoustic energy densitym~x,k! satisfies the transpor
equation

¹kv1•¹xm2¹xv1•¹km50. ~1!

Herev1(x,k) is the eigenfrequency of the acoustic waves given by

v15cuku, c5
1

Akr
, ~2!

where r~x! is the density andk~x! is the compressibility of the background medium. The
equations hold in the high frequency regime for monochromatic waves, when the wavelen

a!bal@math.stanford.edu
b!papanico@math.stanford.edu
c!ryzhik@math.uchicago.edu
48130022-2488/99/40(10)/4813/15/$15.00 © 1999 American Institute of Physics
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much smaller than the variations of the density and compressibility. They were derived in do
without boundaries or interfaces by several authors in the context of geometrical optics~see for
instance Ref. 9!.

B. Scattering from a rough boundary in a homogeneous medium

In the preceding section, the free transport equation~1! is posed in the whole space, with n
boundary. In realistic applications, it is important to consider problems in bounded domains
correct boundary conditions.

We assume that the domain is given byHe5$xPRn:xn.ehh(x8/e)%. The functionh(x8) is
a mean zero stationary random process with covariance functionR(y8) defined by

^h~x81y8!h~x8!&5R~y8!. ~3!

The power spectrumR̂(k8) is the Fourier transform ofR(y8):

R~y8!5E dp

~2p!d21 eip8•y8R̂~p8!. ~4!

The boundary of our domain is varying on the scale of the wavelengthe, which gives rise to
scattering of incoherent, or diffuse, energy from the boundary. The small parameterh!1 is
measuring the height of the surface relative to the wavelength.

One finds by a direct computation using a plane wave decomposition that the average
of reflected waves going in the directionk1(k8) is given, for Dirichlet boundary conditions, by

mout~x8,k8!5mout
spec1mout

diff5S 12h2E dp8

~2p!n21 R̂~k82p8!pn
1kn

1Dm in~x8,k8!

1h2E dp8

~2p!n21 R̂~k82p8!~pn
1!2m in~x8,p8!. ~5!

Here we have defined for every horizontal wave vectork8:

k6~k8!5~k8,kn
6!, uk8u21~kn

6!25K25
v1

2

c2 . ~6!

Notice thatk1 corresponds to outgoing waves, andk2 corresponds to incoming waves.
A detailed computation both for the Dirichlet and Neumann problems can be found

instance, in Refs. 3–6. The first term in~5! represents the specular reflection including a correc
due to surface roughness. The second term is produced by the diffuse scattering from the
boundary.

The plane wave decomposition used in this calculation is not available in non homoge
media. Thus one cannot directly generalize the above calculations to variable media. W
recently derived in Ref. 8 transport boundary conditions for the energy in inhomogeneous
with boundaries which vary on a large scale compared to the wavelength. We treat he
Dirichlet problem in an inhomogeneous domain with rough boundary forh!1 as a perturbation
of the smooth boundary considered in Ref. 8. We show that the results of Ref. 8 allow
compute the higher corrections inh of the reflected energy, which coincide with~5! in the case of
a homogeneous medium.

It is known that the Born expansion we use in this paper diverges for the Neumann
impedance problems at grazing angles and we do not consider them here. However, our
can be adapted to incorporate the smoothing method~Refs. 7, 10, and 11!. Then, we can reproduc
the results obtained in Refs. 12 and 13 for uniform media including the coherent backsca
effect, now in the setup of a variable media.
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The paper is organized as follows. In Sec. II, we review the results of Ref. 8 and some
facts from the Wigner distribution theory. We state our results for rough boundaries in Se
The perturbation expansion is treated in Sec. IV up to second order inh. Finally, we investigate
higher order corrections in Sec. V.

II. ENERGY PROPAGATION IN A HALF SPACE

A. The Wigner distribution

One way to describe scattering of phase space resolved energy is to consider the
distribution matrix of the familywe of the solutions of~12!. A detailed exposition to the theory o
Wigner distributions can be found in Refs. 14 and 8. Given a family of vector-valued func
ue(x) bounded inL2(Rn), its Wigner transform matrix is defined by

We~x,k!5E dy

~2p!n eik•yueS x2
ey

2 Due* S x1
ey

2 D . ~7!

The familyWe , possibly after extracting a subsequence, has a weak limit ase→0 in the sense of
Schwartz distributions. The limit matrixW~x,k!, called the Wigner distribution, has a number
important properties, which we summarize in the following proposition.

Proposition 1: The matrixW~x,k! is self-adjoint and non-negative. Given a bounded conti
ous functionu~x!, the Wigner distribution of the family ge(x)5u(x) f e(x) is

W@ge#~x,k!5u~x!W@ f e#~x,k!u* ~x!. ~8!

Given a differential operator L(x,D) with smooth coefficients, the Wigner matrix of the fam
pe(x)5L(x,eD) f e(x) is

W@pe#~x,k!5L~x,ik!W@ f e#~x,k!@L~x,ik!#* . ~9!

If the family fe is e-oscillatory,14 then

TrE W~x,dk!5 lim
e→0

uue~x!u2. ~10!

The property~8! allows one to consider the Wigner distributions of families bounded
L loc

2 (Rn). This is important in dealing with time-harmonic solutions of the acoustic equations.
property~9! allows one to deal with high frequency waves in variable media. The last prop
shows that the Wigner matrix captures the energy of high frequency waves, which oscillat
frequency of ordere21 at most.

One can also consider the Wigner matrix of two different familiesue ,ve , defined as the limit
of

W@ue ,ve#~x,k!5E dy

~2p!n eik•yueS x2
ey

2 D ve* S x1
ey

2 D .

It has similar properties.14

B. Acoustic wave transport

The time harmonic acoustic equations for the acoustic velocityv5(v1 ,...,vn), n52,3, and
pressurep, in the high frequency regime, are

e¹pe5 ivr~x!ve ,
~11!

e¹•ve5 ivk~x!pe .
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Herer andk are the density and compressibility of the medium, and the parametere!1 is the
ratio of the wave length to the typical scale of the variations ofr~x! andk~x!. Equations~11! can
be rewritten as a reduced symmetric hyperbolic system

(
j 51

n

eD j
]we

]xj
2 ivA~x!we50 ~12!

for the vectorwe5(ve ,pe)PCn11. Here the diagonal matrixA(x)5diag(r,r,r,k), for n53, and
the symmetric matricesD j are defined appropriately from~11!.

Let we be ane-oscillatory family of solutions of~12! bounded inL loc
2 (Rn). Then the limit

Wigner matrixW~x,k! is described as follows. The dispersion matrix of the system~12! is ~in
three dimensions!

L5A21(
j 51

n

kjD
j5S 0 0 0 k1 /r

0 0 0 k2 /r

0 0 0 k3 /r

k1 /k k2 /k k3 /k 0

D . ~13!

The eigenvectorb of the matrixL that corresponds to forward propagating waves is

b5S k̂

A2r~x!
,

1

A2k~x!
D , ~14!

wherek̂5k/uku. The corresponding eigenfrequency is given by

v15c~x!uku, c~x!5
1

Ak~x!r~x!
. ~15!

The solutions of~12! have frequencyv, thus we introduce the resonant wave numberK(x)
5vAk(x)r(x). Then, the positive definite matrixW~x,k! has the form

W~x,k!5m~x,k!b~x,k!b* ~x,k!.

Here the scalar measurem~x,k! is supported on the set

S5$~x,k!: uku5K~x!%. ~16!

This statement is a generalization of the eikonal equation of geometrical optics. The meam
satisfies the transport equation~1!.14,2

The scalar measurem~x,k! can be considered as the phase space resolved energy den
acoustic waves in the high frequency limit. Namely, the high frequency limit of the physical s
energy density is given by2

lim
e→0

Ee~x!5E m~x,dk!.

Here the acoustic energy density is

Ee~x!5
ruveu2

2
1

kupeu2

2
.

The limit energy fluxF5 1
2(pev̄e1 p̄eve) is expressed viam by
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lim
e→0

Fe~x!5c~x!E k̂m~x,dk!.

C. Acoustic energy transport in a half space

We review here briefly the results of Ref. 8. Letwe be ane-oscillatory family of solutions of
the acoustic equations~12! in the half spacexn.0 ~without imposing any boundary condition
yet!. We assume that the familywe(x) and the family

r e~x8!5we~x8,0! ~17!

of its boundary traces are bounded inL loc
2 (Rn) andL loc

2 (Rn21), respectively. Here and below w
use the notationx8,k8 for the position on the boundary and the tangential component of the w
vector, respectively. In addition we assume that the measure of the resonant setBcr5$(x8,k8)
PRn213Rn21:c(x8)uk8u5v% of grazing rays with respect to the Wigner measuren(x8,k8) of the
family r e is zero. The grazing rays in the phase space energy context were studied recently i
15 and 16 and we avoid these technical complications. Physically, our assumption mea
grazing rays are not charged. Then we have the following proposition.

Proposition 2: Under the above-mentioned assumptions the following holds.

~i! The Wigner matrixn(x8,k) of the familyr e(x8) has the form
n5nab~k2!b* ~k2!1nbb~k1!b* ~k1!1nabb~k2!b* ~k1!1 n̄abb~k1!b* ~k2! ~18!

with na,b,ab being distributions so that the matrix(
n̄ab

na
nb

nab) is positive definite.

~ii ! The Wigner matrixW~x,k! of the familywe(x) has the form
W~x,k!5m~x,k!b~x,k!b* ~x,k!. ~19!

The scalar measurem is supported on the set (16) and satisfies weakly the trans
equation

¹kv1•¹xm2¹xv1•¹km5ck̂n~m ind~kn2kn
2!1moutd~kn2kn

1!!. ~20!

Here the measuresm in and mout are given by
min~x8,k8!5na~x8,k8!, mout~x8,k8!5nb~x8,k8! ~21!

with na ,nb defined by (18),v1(x,k)5c(x)uku is given by (2), and the wave vectork6 is
defined by (6) with K5K(x8)5vAk(x8)r(x8).

Note also that if the measurem is continuous up to the boundaryxn50, then the weak form
~20! is equivalent to the boundary value problem:

¹kv1•¹xm2¹xv1•¹km50, ~22!

m~x8,0,k!5m ind~kn2kn
2!1moutd~kn2kn

1!. ~23!

Thus we can interpretna as the phase space resolved energy of the incoming waves a
boundary, andnb as the energy of the outgoing waves.

D. Boundary conditions for the transport equation

The boundary conditions for the transport equation~22! can be obtained from those for th
acoustic equations~12!, by using the relations~21! and ~23!. Consider the Dirichlet boundary
condition in the upper half space

we,n11~x8,0!50. ~24!

Then the (n11)-row and column of the matrixn vanish. Using~18!, the explicit form~14! of the
eigenvectorsb~x,k!, and~6!, we get
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na5nb52nab . ~25!

Then ~23! implies that

m~x8,0,k8,kn!5m~x8,0,k8,2kn!, ~26!

which is the boundary condition for~22!.
The Neumann boundary condition

we,n~x8,0!50 ~27!

implies that thenth row and column of the matrixn vanish. Then we obtain, similarly to~25!, that

na5nb5nab , ~28!

so that~26! still holds. A convenient way to rewrite~26! is

mout~x8,k8!5m in~x8,k8!,

so that all the energy is reflected specularly as expected.

III. ENERGY REFLECTION AT A ROUGH SURFACE

We consider scattering of acoustic waves described by~12! from a rough surface. The surfac
]He is described by the equationxn5ehh(x8/e). The small parameterh is the ratio of the height
of the surface to the wavelength. The height of the surface is varying on the scale of the
lengthe. Recall that the random processh(y8) has mean zero, and is stationary, with covarian
function R(y8) and with power spectrumR̂(k8), given by ~3! and ~4!, respectively. We assum
thath(y8)PC1(Rn21) a.s. so that solutions of the Dirichlet problem exist for every positivee. The
Dirichlet boundary condition for~12!, corresponding to a vanishing pressure, is given by

we,n11~x8,ehh~x8/e!!50. ~29!

We seek the solutionwe of ~12! as a power series in the parameterh:

we~x!5we
0~x!1hwe

1~x!1h2we
2~x!1¯ ~30!

with all the terms bounded inL loc
2 (Rn) and their boundary valuesr e

j (x8)5we
j (x8,0) bounded in

L loc
2 (Rn21). Our main assumption is that such an expansion exists, i.e., that the rest in~30! is

bounded uniformly inh ande by o(h2). We also assume that the medium is homogeneous a
a certain heightxn5L with L arbitrarily large. This assumption is purely technical and allows
to formulate an outgoing condition at infinity. Namely, forxn.L, the plane wave decompositio
is valid, and we assume then that the amplitudes of the incoming wavesae(k8) are deterministic
and given. The correctorswe

j are all outgoing in that region, so thatae
j (k8)50 for j >1. The

characteristics of the transport equation~22! are given by

dx

ds
5¹kv1~x,k!,

dk

ds
52¹xv1~x,k!.

We assume that the characteristics that leave the surfacexn50 reach the levelxn5L and vice
versa. Moreover, we assume that these characteristics do not come back. Then we h
following theorem.
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Theorem 1: Under the above assumptions, the Wigner matrixW~x,k! of the familywe of
solutions of the Dirichlet problem (29) is supported on the setS5$(x,k): c(x)uku5v%, and has
the form (19). The scalar measurem has the formm(x,k)5m8(x,k)1o(h2). The measure
m8(x,k) is a solution of the transport equation (20). The average measure^mout8 (x8,k8)& is given
in terms ofm in8 (x8,k8) by

^mout8 ~x8,k8!&5F124h2E dp8

~2p!n21 R̂~k82p8!pn
1~x8,p!kn

1~x8,k8!Gm in8 ~x8,k8!

14h2E dp8

~2p!n21 R̂~k82p8!~pn
1~p8!!2m in8 ~x8,p8! ~31!

with k1 andp1 given by (6) with K5K(x8). Here K(x8), determined by c(x8)K(x8)5v, is the
radius of the sphereS of wave vectors, on which the measurem is supported.

The first term in~31! corresponds to the specular reflection and provides the correction t
reflection coefficient. The second term is the result of the diffuse scattering at the surfa
appears because the boundary is varying on the scale of the wavelength. Note that the tot
flux across the boundaryxn50 vanishes:

^Fn~x8,0!&5c~x8!E dk k̂n^m~x8,0,k!&

5c~x8!E dk8@ k̂n
11 k̂n

2#m in~x8,k8!14h2c~x8!E dk8 dp8R̂~k82p8!

3$~pn
1!2k̂n

1m in~x8,k8!2pn
1kn

1k̂n
1m in~x8,p8!%50.

The expression~31! reduces in a homogeneous medium to~5! as one would expect.
The statement regarding the support and form of the matrixW~x,k! is proved exactly as in

Ref. 8, so we will not repeat it here. We derive~31! in the following sections. Note that we ca
treat more general interface problems in a similar way, at least for incident energy fluxes
from grazing angle. The result is then a direct generalization of the formulas given in Ref.
homogeneous media.

IV. THE PERTURBATION ANALYSIS

Now, we show how the diffusive scattering is obtained when the wave equation sa
Dirichlet boundary conditions. We derive~31! in three steps. First we analyze the asympto
expansion~30! in Sec. IV A. Then the diffuse part of the scattered energy is computed in
IV B. At last, we derive the correction to the reflection coefficient in Sec. IV C.

A. The asymptotic expansion

We note that since the series~30! is asymptotic inL loc
2 (Rn), the Wigner matrixW is approxi-

mated by the Wigner matrix of the sum of the firstN terms up to ordero(hN). Thus we can
compute the Wigner measure of the first three terms in the expansion~30! in order to approximate
W up too(h2). The termswe

j , j 50,1,2 solve the acoustic equations~12! in the upper half space
with the following boundary conditions:

we,n11
0 ~x8,0!50, ~32!

we,n11
1 ~x8,0!52hS x8

e D e
]we,n11

0

]xn
~x8,0!, ~33!
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we,n11
2 ~x8,0!52

1

2
h2S x8

e D e2
]2we,n11

0

]xn
2 ~x8,0!2hS x8

e D e
]we,n11

1

]xn
~x8,0!. ~34!

These boundary conditions are constructed so as to satisfy the Dirichlet boundary condition~29!
on the rough surface]He up to orderh2. The boundary conditions at infinity, where the mediu
is homogeneous above the levelxn5L, are as described above:we

0 has prescribed incoming flux
andwe

1,2 are outgoing forxn.L.
The boundary conditions~33! and ~34! can be rewritten using the acoustic equations forwe

0

andwe
1 and the Dirichlet boundary condition~32! as

r e,n11
1 ~x8!52 ivr~x8!hS x8

e D r e,n
0 ~x8! ~35!

and

r e,n11
2 ~x8!52

i ev

2

]r

]xn
~x8,0!h2S x8

e D r e,n
0 ~x8!2 ivr~x8!hS x8

e D r e,n
1 ~x8!. ~36!

Here r e
j (x8) is the value ofwe

j at the boundary. The Wigner matrix of the sum of the first th
terms in~30! has the form

W5W01h~W011W10!1h2~W11W021W20!1o~h2!, ~37!

whereW05W@we
0#, W15W@we

1#, W015W@we
0,we

1#, etc. The leading order term in the expa
sion ~37! has the form

W05m0~x,k!b~x,k!b* ~x,k! ~38!

sincewe
0 solves the acoustic equations. The Dirichlet boundary conditions~32! for we

0 imply that
the Wigner measuren0 of r e

0 has the form~18! with the coefficientsna,b,ab related by~25!:

n0~x8,k8!5na
0~x8,k8!@b~k1!b* ~k1!1b~k2!b* ~k2!2b~k1!b* ~k2!2b~k2!b* ~k1!#.

~39!

Then the outgoing Wigner measuremout
0 is

mout
0 5m in , ~40!

where the measurem in is known. Notice that̂ we
1(x)&50, and sincewe

0 is deterministic, we get

^W01&5^W10&50. ~41!

Thus we have to compute onlŷW1& and ^W021W20&. The first term gives rise to the diffus
scattering and is treated in the following section. The second term produces the correction
energy reflection coefficient and is considered in Sec. IV C.

B. The diffuse reflected wave

The matrixW1, being the Wigner matrix of a family of solutionswe
1 of the acoustic equations

has the form

W15m1~x,k!b~x,k!b* ~x,k!.
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The solutionwe
1 is outgoing at infinity. Since we assumed that characteristics do not come ba

the boundary, it is equivalent to being outgoing at the boundary. Then we havena
15m in

1 50. Since

the matrix (
n̄

ab
1

na
1

n
b
1

nab
1

) is non-negative and definite, we also havenab
1 50. Then the boundary Wigne

measuren1 of r e
1 has the form

n15nb
1b~k1!b* ~k1! ~42!

and the boundary value of the measurem1 is

m1~x8,0,k!5nb
1~x8,k8!d~kn2kn

1!,

hencemout
1 5nb

1(x8,k8). The measurenb
1 is determined as follows. We have from~42!,

nn11,n11
1 5

1

2k~x8!
nb

1, ~43!

where the left side is the (n11,n11) entry of the matrixn1(x8,x8). This entry is the Wigner
measure ofr e,n11

1 (x8), which is explicitly given by the boundary condition~35!. Therefore,

nn11,n11
1 5v2r2~x8!nFhS x8

e D r e,n
0 G

and so the averagênn11,n11
1 & is given by

^nn11,n11
1 &5v2r2~x8!E dp8

~2p!n21 R̂~k82p8!nn,n
0 ~x8,p8!. ~44!

We use expression~39! for n0 to get

^nn11,n11
1 &~x8,k8!5v2r2~x8!E dp8

~2p!n21 R̂~k82p8!
4na

0~p8!pn
12

2r~x8!up1u2 .

Insert this into~43! and use the relationsup1u25v2/c2(x8)5v2k(x8)r(x8) andm in5na
0 yields

^mout
1 &5^nb

1&~x8,k8!54E dp8

~2p!n21 R̂~k82p8!pn
12m in~x8,p8!. ~45!

This is the second term in~31!.

C. Correction to the reflection coefficient

The correction to the coherent, or specular reflection coefficient arises from the term^W02

1W20& in ~37!. Our analysis of this term proceeds in several steps. In Sec. IV C 1 we reduc
computation to evaluating the average^n@r0,u1#& of the cross Wigner distribution ofr e

0 and the
conjugated wave functionue

1 defined by~51!. This Wigner distribution is described by Lemma
We use this lemma in Sec. IV C 2 to derive~31!. Finally we prove Lemma 1 in Sec. IV C 3.

1. The reduction to the conjugated wave functions

The functionswe
0,we

2 and we
01we

2 are solutions of the acoustic equations, so the Wig
matricesW@w0#,W@w2# andW@w01w2# are all of the form~19!, and then
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W021W205W@w01w2#2W@w0#2W@w2#

5~m@w01w2#2m@w0#2m@w2# !b~k!b* ~k!

5m02b~k!b* ~k!, ~46!

so thatW021W20 has the same form asW0 andW1 . The value ofm02 on the boundary is

m02~x8,0,k!5~m@w01w2#2m@w0#2m@w2# !~x8,0,k!

5~nb@r01r2#2nb@r0#2nb@r2# !~x8,k8!d~kn2kn
1!

5~nb@r0,r2#1nb@r2,r0# !d~kn2kn
1!5nb

02d~kn2kn
1!. ~47!

The terms involving the incoming wave vectork2 cancel out sincew2 is outgoing at the boundary
and thus m in@w2#50, and m in@w01w2#5m in@w0#. Thus we have to findnb

025nb@r0,r2#
1nb@r2,r0# to finish the computation. We note that the matrix Wigner measuren@r0,r2#
1n@r2,r0# has the form

n@r0,r2#1n@r2,r0#5~nb@r0,r2#1nb@r2,r0# !b~k1!b* ~k1!

1nab
02 b~k2!b* ~k1!1 n̄ab

02 b~k1!b* ~k2! ~48!

sincer e
2 is outgoing. Evaluating the entry (n11,n11) of both sides of~48!, we get thatnb

02 is real.
Moreover, evaluating the entry (n, n11) of the two sides of~48! we obtain

mout
02 5nb

025
2Akr

k̂n
1

Ren@r n
0,r n11

2 #. ~49!

Thus we have reduced our problem to computingn@r n
0,r n11

2 #. Recall thatr e,n11
2 (x8) is given by

~36! and observe that the first term in~36! vanishes in the limite→0 in L loc
2 . Then we have

n@r n
0,r n11

2 #5nF r n
0~x8!,2hS x8

e D ivr~x8!r en
1 ~x8!G

5 ivr~x8!E dp8

~2p!n21 ĥ~p8!nnn@r0,u1#~x8,k8,p8!. ~50!

Here we have introduced the conjugated wave functionsue
1:

ue
1~x8,p8!5r e~x8!e2 ip•x8/e, ~51!

where the vectorp8 plays the role of a parameter. The Wigner matrixn@r0,u1# is described by the
following Lemma.

Lemma 1: The Wigner distribution matrixn@r0,u1# has the form

n@r0,u1#5 ñab~k1!b* ~~k1p!1!2 ñab~k2!b* ~~k1p!1!, ~52!

whereña is some distribution.
We prove Lemma 1 in Sec. IV C 3.

2. The average reflection coefficient

We use Lemma 1 to evaluatennn@r0,u1# in ~50! and get

K nF r n
0,hS x8

e D r en
1 G L 5E dp8

~2p!n21 ^ĥ~p8!ña~x8,k8,p8!&
kn

1~k1p!1

uk1uu~k1p!1ur~x!
. ~53!
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The averagêĥ(p) ña& is evaluated as follows. We have from the boundary conditions~35!,

ue,n11
1 ~x8!5e2 ip8•x8/er e,n11

1 ~x8!52e2 ip8•x8/eivr~x8!hS x8

e D r e,n
0 ~x8!

and hence

^h~p8!nn,n11@r0,u1#&5 ivr~x!R̂~p8!nnn
0 ~x8,k8!. ~54!

But we also have from the representation~52!,

^ĥ~p8!nn,n11@r0,u1#&5^ĥ~p8!ña&
kn

1

uk1uArk
,

so that~54! implies

^ĥ~p8!ña&
kn

1

uk1uAr
5AkR̂~p8!ivr~x8!nnn

0 .

We insert this into~53! and get

K nF r en
0 ,hS x8

e D r en
1 G L 5E dp8

~2p!n21 R̂~p8!Akr ivnnn
0 ~x8,k8!

~k1p!n
1

u~k1p!1u

5E dp8

~2p!n21 R̂~k82p8!Akr iv p̂n
1nnn

0 ~x8,k8!. ~55!

Then we insert~55! into ~50! and obtain

^n@r n
0,r n11

2 #&52v2r~x8!Ak~x8!r~x8!E dp8

~2p!n21 R̂~k82p8!
pn

1

up1u
nnn

0 ~x8,k8!.

Recall that we have from~39!

nnn
0 ~x8,k8!5

4na
0~ k̂n

1!2

2r
.

Then we get from~49! and ~55!

^mout
02 &5^nb

02&52
2Akr

k̂n
1

v2r

c
E dp8

~2p!n21
R̂~k82p8! p̂n

1
4na

0~ k̂n
1!2

2r

524na
0~x8,k8!E dp8

~2p!n21
R̂~k82p8!pn

1kn
1 ~56!

becauseuk1u5up1u5v/c.
Putting together~40!, ~45!, and~56!, we get~31!.

3. Proof of Lemma 1

The proof of Lemma 1 is similar to that of the first part of Theorem 2, which is given in R
8. The functionsue

1(x8) satisfy the system
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(
j 51

n21

eD j
]ue

1

]xj
1 i (

j 51

n21

pjD
jue

12 ivA~x8!ue
152eDn

]we
1

]xn
~x8,0!, ~57!

while r e
0(x8)5we

0(x8,0) satisfy the system

(
j 51

n21

eD j
]r e

0

]xj
2 ivA~x8!r e

052eDn
]we

0

]xn
~x8,0!. ~58!

Let us define the reduced dispersion matrix

L8~x,k!5 (
j 51

n21

kjD
j2vA~x!.

Let P be any matrix such thatPDn50, then~57! implies that

PL8~k1p!n@u1,r0#50

and ~58! implies that

PL8~k!n@r0,u1#50.

Then the Wigner matrixn@r0,u1# has the specific form

n@r0,u1#5 ñab~k1!b* ~~k1p!1!1 ñbb~k21!b* ~~k1p!2!1 ñabb~k1!b* ~~k1p!2!

1 ñbab~k2!b* ~~k1p!1!. ~59!

Recall thatue
1 is outgoing, so~59! reduces to

n@r0,u1#5 ñab~k1!b* ~~k1p!1!1 ñbab~k2!b* ~~k1p!1!. ~60!

The Dirichlet boundary conditions forwe
0(x) imply that the fourth row of the matrixn@r0,u1#

vanishes. Thenñab52 ña , and~60! becomes

n@r0,u1#5 ñab~k1!b* ~~k1p!1!2 ñab~k2!b* ~~k1p!1!, ~61!

which is ~52!.

V. HIGHER ORDER ANISOTROPIC EFFECTS

The scattering cross-sections in the correctors of orderh2 in ~31! depend upon the outgoin
direction only through the power spectrumR̂(k82p8). We show in this section that some aniso
ropy of the scattered field is captured in the higher order terms. We obtain, in particular, a p
the backscattering direction. This peak is similar to the coherent backscattering effect
Neumann and impedance problems in homogeneous media studied in Refs. 17, 12, 13,
although much broader for Dirichlet boundary conditions. The nature of this peak is als
constructive interference between direct and reverse paths of scattered waves. The sing
havior of the reflection operator at grazing angles in the Neumann and impedance problems
this effect much more pronounced. The study of the coherent backscattering effect for thes
in an inhomogeneous medium requires appropriate modifications and the smoothing meth19

A. The backscattering for the Dirichlet problem

The angularly resolved energy density of the second order corrector in the Dirichlet pro
is described by the following proposition.
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Proposition 3: Assume that h(y) is a mean zero Gaussian process with covariance ma
R(y). Then the Wigner matrixW2 of the second order termwe

2 in the asymptotic expansion (30
of the solution of the Dirichlet problem has the formW25m2(x,k)b(x,k)b* (x,k). The scalar
measurem2(x,k) is supported on the sphereS(x)5$k:uku5v/c(x)% and satisfies the transpor
equation (20) withm2

in50 and

^m2
out~x8,k8!&54E dp8 dq8

~2p!2d22 R̂~k82p8!R̂~p82q8!qn
2pn@pn1~q81k82p8!n#m in8 ~q8!

14E dp8 dq8

~2p!2d22 R̂~k82p8!R̂~k82q8!pnqnkn
2m in8 ~k8!. ~62!

Here kn(x,k8)5Av2/c2(x) is the normal component of the outgoing wave vector inS, which has
horizontal componentk8 and is pointing upwards, andm in8 is as in Theorem 1.

The first term in~62! corresponds to the diffusive scattering. The second term provid
correction to the reflection coefficient. The differential scattering cross-section in~62! is no longer
isotropic, and is centered in the backscattered direction. This can be seen as follows.
assume that the incident energy density has the formm in8 (q8)5C(x8)d(q82q08), so that waves are
coming from a single directionq0 . Then the diffusive scattering is maximal in the direction w
tangential componentk852q08 because both terms in the diffusive scattering cross section ar
same. The second term in this cross section is smaller in other directions, because whenk1q0

Þ0, then the integration inp8 in that term is carried over the region where bothp8 andk81q08
2p8 lie in the disk of radiusK5v/c. This region is shrinking ask moves away from2q0 , and
so the contribution of this term diminishes. In particular, ifq08 is close to the boundary of the disk
and the incident wave is close to the grazing angle, then the contribution of this term i
forward directionk85q08 vanishes. This can be interpreted as an enhanced backscattering
nomenon, since the contribution of this term in~62! corresponds to the interference of the dire
and reverse paths, as will be seen in the derivation of~62!.

B. Derivation of the scattering cross-section

The statements regarding the form of the Wigner matrixW2 and the support of the measu
m2 in Proposition 3 follow immediately from Proposition 2, and from the fact thatwe

2 is outgoing
at infinity, together with our assumption that characteristics do not come back to the bou
Thus, the only part we have to verify is the expression~62! for the measurem2 at the boundary.
Let r e

2(x8)5we
2(x8,0) be the boundary value ofw2 . Then we have, using~36!

m2
out~x8,k8!52k~x8!n@r e,n11

2 #52k~x8!v2r2~x8!n@h~x8/e!r e,n
1 #. ~63!

This can be rewritten with the help of the conjugated wave functions~51!:

n@h~x8/e!r e,n
1 #5E dp8 dq8

~2p!2d22 ĥ~p8!ĥ~q8!n@ue,n
1 ~x8,2p8!,ue,n

1 ~x8,q8!#.

It is easy to check that, similarly to Lemma 1 we have for anyp18 ,p28 :

n@ue
1~p18!,ue

1~p28!#~x8,k8!5u~x8,k8,p18 ,p28!b~k81p18!b* ~k81p28! ~64!

with u being some unknown distribution. Thus we have

^n@h~x8/e!r e,n
1 #&5E dp8 dq8

~2p!2d22 ^ĥ~p8!ĥ~q8!u~x8,k8,2p8,q8!&bn~k82p8!bn~k81q8! ~65!

and we need to evaluate the average inside the integral. Expression~64! implies that
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^ĥ~p8!ĥ~q8!u~x8,k8,2p8,q8!&52k^ĥ~p8!ĥ~q8!n@ue,n11
1 ~2p8!,ue,n11

1 ~q8!#~x8,k8!&.
~66!

The average on the right side can be computed using the expression~35! for r e,n11
1 in terms of

r e,n
0 , and the assumption thath(y) is a Gaussian random process so that

^ĥ~p!ĥ~q!ĥ~p2!ĥ~q2!&5^ĥ~p!ĥ~q!&^ĥ~p2!ĥ~q2!&1^ĥ~p!ĥ~q2!&^ĥ~q!ĥ~p2!&

1^ĥ~p!ĥ~p2!&^ĥ~q!ĥ~q2!&. ~67!

Then we get

^ĥ~p8!ĥ~q8!n@ue,n11
1 ~2p8!,ue,n11

1 ~q8!#~x8,k8!&5I1II1III, ~68!

where

I5v2r2~x8!R̂~p8!d~p81q8!E dp18R̂~p18!nnn
0 ~k82p82p18!,

II5v2r2~x8!R̂~p8!R̂~q8!nnn
0 ~k81q82p8!,

and

III 5v2r2~x8!R̂~p8!R̂~q8!nnn
0 ~k8!.

The three terms in~68! have a natural interpretation in terms of wave scattering from a collec
of discrete random scatterers.18 The first term in~68! comes from the first term in~67! and
corresponds to the interaction of a path with itself. It produces a scattering cross-section
essentially isotropic. The second term in~68! comes from the second term in~67! and corresponds
to the interaction of a path and its reverse one in the discrete picture. It has a peak
backscattering direction as explained in the previous section. The last term arises from
scattering twice on the same scatterer. It contributes to the specular reflection coefficient.

Finally we note thatnnn
0 (k8)5(kn

2/2ruku2)4m in8 (x8,k8), and putting this together with~63!,
~65!, ~66!, we obtain~62!. This completes the proof of Proposition 3.

VI. CONCLUSIONS

We have derived the boundary conditions for the transport equation for the phase
resolved energy density in an inhomogeneous medium. Our derivation is based on the assu
that the asymptotic expansion~30! holds. These boundary conditions can be used for the radia
transport equation for acoustic waves1,2 when randomness of the medium is independent of
randomness of the surface. Moreover, one can use similar boundary conditions for more g
radiative transport equations2 for electromagnetic, elastic and other waves in domains with ro
boundaries. Our result may also be generalized to reflection and transmission at interfaces b
two inhomogeneous media. The results are then a generalization of the diffuse energy re
and transmission at a rough interface considered in Ref. 7.

The analysis of the Neumann problem in an inhomogeneous medium with a rough bou
requires the smoothing method or any equivalent regularization technique. We plan to addre
in a separate note.19 This allows one to incorporate the coherent backscattering effect into
boundary conditions for the radiative transport equation.
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We derive transport equations from a general class of equations of formiut

5H(X,D)u1V(X,D)u whereH(X,D) andV(X,D) are pseudodifferential opera-
tors ~Weyl operator! with symbolsH(x,k) andV(x,k), whereH(x,k) being poly-
nomial in k and smooth inx,V(x,k) is a mean zero random function and is sta-
tionary in space variable. We also consider system of equations in the above form.
Such equations cover many of the equations that arise in wave propagations, such
as those considered in a paper by Ryzhik, Papanicolaou, and Keller@Wave Motion
24, 327–370~1996!#. Our results generalize those by Ryzhik, Papanicolau, and
Keller. © 1999 American Institute of Physics.@S0022-2488~99!03209-0#

I. INTRODUCTION

There have been growing interests in the studies of transport equations for wave propag
Radiative transport theory was introduced phenomenologically in order to describe the pro
tion of light energy through the atmosphere.2 It is well known1 that radiative transport equation
will provide a good description of wave energy transport when~i! typical wavelengths are shor
compared to macroscopic features of the medium~high frequency approximation!, ~ii ! correlation
lengths of the inhomogeneities are comparable to wavelengths, and~iii ! the fluctuations of the
inhomogeneities are weak.

In a simple form, transport theory is as follows: a wave with wave vectork8 at a pointx in a
randomly inhomogeneous medium may be scattered into any directionk̂ with wave vectork,
where k̂5k/uku. Therefore, one must consider the angularly resolved, wave vector depen
scalar energy densitya(t,x,k) defined for allk at each pointx and timet. Energy conservation is
expressed by the transport equation

]a~ t,x,k!

]t
1¹kv~x,k!•¹xa~ t,x,k!2¹xv~x,k!•¹ka~ t,x,k!

5E s~x,k,k8!a~ t,x,k8!dk82S~x,k!a~ t,x,k!. ~1!

Herev~x,k! is the frequency atx of the wave with wave vectork, s(x,k,k8) is the differential
scattering cross-section, the rate at which energy with wave vectork8 is converted to wave energ
with wave vectork at positionx, and

E s~x,k8,k!dk85S~x,k!

is the total scattering cross-section. The theory was applied to underwater sound propagati3 and
seismology.4 It was realized in the 1960s that such theory arises rather naturally in wave p
gation through random media. The equation~1! has been derived from equations governing
48280022-2488/99/40(10)/4828/31/$15.00 © 1999 American Institute of Physics
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particular wave motion under consideration by various authors~see Ref. 1!. These derivations also
determine the functionsv~x,k! ands(x,k,k8) and show howa is related to the wave field.

In Ref. 1, transport equations for various types of waves and waves in random media
derived and studied more systematically. It is shown that the theory can be derived fro
governing equations for light and for other waves of any type, in a randomly inhomogen
medium. Their derivation motivated us to study this problem in a more general framework

In this paper, we consider a general class of equations of form

i eut5H~X,eD !u1AeVS 1

e
X,eD Du ~2!

in the high frequency regime. HereH(X,D) is a Weyl quantization of symbolH(x,k) which is
polynomial in k and smooth inx. In the case of system, we assumeH(x,k) be an3n matrix
valued function ofC`(Rx

n3Rk
n). We show that transport equation can be derived from~2! in the

high frequency limit. Equation~2! is general enough to cover various physical examples give
Ref. 1 by choosing different symbols. Our results generalized those in Ref. 1. By going i
more abstract notion of pseudo-differential operator or Weyl quantization, we can use many
nice properties and thus simplify the calculations.

As in Ref. 1, an essential step in our approach to deriving radiative transport equations
wave equations is the use of the Wigner distribution. Wigner distribution was introduced fir
Wigner5 in the context of semiclassical quantum mechanics. The paper of Lions and Paul6 con-
tains many basic facts about the Wigner distribution as well as some interesting application
Wigner distribution are closely related to the representation theory of Heisenberg grou
pseudodifferential operator theory.7 The advantage with Wigner distribution is that it can
regarded as wave number resolved wave intensity. In particular, in the case of high freq
limit, it is a good candidate to analyze the evolution of wave energy.

The paper is organized as follows. In Sec. II, we review some of the basic properties of
quantization and Wigner distribution. In Sec. III, we consider a scaled generalized Schro¨dinger
evolution equation with Hamiltonian related to a symbolH(x,k). In the high frequency limit, the
limiting Wigner distributionW satisfies a Liouville-type transport equation

]W~ t !

]t
1$W~ t !,H%50. ~3!

We then consider the equation with small random perturbation. Using the method of multiple
expansion, we obtain the transport equations for the leading order termW(0) of We

]W~0!

]t
1$W~0!,H%52pE F1RS k2q,k1

q

2
,k1

q

2D ~W~0!~ t,x,q!

2W~0!~ t,x,k!!•d~H~x,q!2H~x,k!!dq. ~4!

Equation~4! is exactly in the form of Eq.~1!, whereW(0) is the energy density and the symb
HamiltonianH(x,k) is the frequencyv~x,k! and the integral kernel of the right-hand side of~4! is
the differential scattering cross sections and total scattering cross sectionS. In Sec. IV, we treat
the system of scaled generalized Schro¨dinger evolution equations. The Wigner distributions a
matrix valued. In the high frequency limit, we show that the projectionsa(s) of limit Wigner
distribution on certain eigenspaces satisfy the following Liouville equations:

]a~s!

]t
1$a~s!,ls%50, ~5!

where ls denote dispersion laws of the given Hamiltonian symbolH(x,k)5(Hi , j (x,k)). We
further show this process also incorporates the system of evolution equations with small ra
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perturbations. We derive in Proposition 9 the system of radiative transport equations which
to the appearance of the scattering terms on the right-hand side of Eq.~71! similar to ~1!. We also
treat the polarization case which is more physically relevant and can find applications in ac
wave, electromagnetic waves and elastic waves.

We note that rigorous results have also appeared recently for some simpler cases. In
derivations of transport equations in some cases are proved rigorously for equations w
random perturbations. Efforts are also made to include some special random perturbations9

II. WEYL QUANTIZATION AND WIGNER DISTRIBUTION

A. Weyl quantization

The idea of Weyl quantization is to assign to a function~symbol! on the phase space a
operator according to the Weyl quantization rule. The procedure was proposed by Weyl no
after the invention of quantum mechanics. Weyl’s prescription for assigning an operatora(X,D)
to a functiona(x,k) amounts to postulating that the exponential function expi(q•x1p•k)((q,p)
PRn) should correspond to the operatorr(q,p)5expi(q•X1p•D). Once this is granted, one ca
expand an ‘‘arbitrary’’a(x,k) in terms of exponentials via the Fourier transform,

a~X,D !5
1

~2p!n E â~q,p!expi ~q•X1p•D !dq dp, ~6!

whereâ(q,p) denotes the Fourier transform ofa(q,p).
For (q,p)PRn3Rn, let q•X5SqjXj , p•D5SpjD j whereXj ’s are multiplication operators

D j ’s are first-order differential operators, i.e., for; f PL2(Rn,dx) we have

Xj f ~x!5xj f ~x!, D j f ~x!5
1

i

] f ~x!

]xj
. ~7!

We define a unitary operatorr(q,p)5expi(q•X1p•D) on L2(Rn,dx) as follows: For f
PL2(Rn,dx),

r~q,p! f ~x!5ei ~1/2!q•peiq.xf ~x1p!. ~8!

The functiona in ~6! is usually called the symbol of the operatora(X,D). The integral is an
ordinary Bochner integral ifâPL1(Rn3Rn). If aPS ~the Schwartz class!, the Weyl operator is
an integral operator

a~X,D ! f ~x!5
1

~2p!n E aS x1y

2
,zDei ~x2y!zf ~z!dy dz ~9!

anda(X,D) mapsS into S. a(X,D) can be defined even for any tempered distribution functioa
as a continuous linear operator fromS(Rn) to S8(Rn). In particular, ifa(x,k) is a polynomial in
(x,k), thena(X,D) is a differential operator.

Example 1. Leta(x,k)5 1
2uku21V(x), then

a~X,D !52 1
2D1V~x!.

Example 2. Let

a~x,k!5(
j 51

n

Aj~x!kj2
1

2
i (

j 51

n
]Aj~x!

]xj
,

then
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a~X,D !5(
j 51

n

Aj~x!D j .

B. Wigner transformation

Wigner transform plays an important role in the derivation of transport equations from
equations. We first introduce the so-called Fourier–Wigner transform. Foru,vPL2(Rn), the
Fourier–Wigner transform is defined as

V~u,v !~q,p!5~r~q,p!u,v !, ~10!

where the bracket denotes the inner product ofL2(Rn) andr(q,p) is given by~8!. V(u,v) is a
bounded continuous function onRn3Rn. It mapsS(Rn)3S(Rn) into S(R2n) and may be ex-
tended to an operator fromS8(Rn)3S8(Rn) to S8(Rn3Rn).

Now the Wigner transformation foru,vPL2(Rn) is defined by

W~u,v !~x,k!5
1

~2p!n E e2 i ~x•q1k•p!V~u,v !~q,p!dq dp ~11!

5E e2 ik•puS x1
p

2D v̄S x2
p

2Ddp. ~12!

W(u,v) is a bounded continuous function on the phase space. It mapsS(Rn)3S(Rn)→S(Rn

3Rn), and may extend to an operator fromS8(Rn)3S8(Rn) to S8(Rn3Rn). When u5v, we
shall callW(u,u) the Wigner distribution or Wigner transform ofu. It is easy to see that

E W~u,u!~x,k!dk5uu~x!u2,

so that we may think ofW(x,k) as wave number resolved energy density, ifu is a wave function.
We list below some of the properties of the Fourier–Wigner and Wigner transform wit
proving it ~see, e.g., Ref. 7!. Let u, v andu1 ,v1 ,u2 ,v2PL2(Rn), we have

~1!

iV~u,v !i`5iui2ivi2 ;

~2!

~V~u1 ,v1!,V~u2 ,v2!!5~u1 ,u2!~v1 ,v2!;

~3!

V~r~a,b!u,v !~q,p!5ei /2~pa2bq!V~u,v !~q1a,p1b!,

V~u,r~c,d!v !~q,p!5ei /2~pc2qd!V~u,v !~q2c,p2d!;

~4!

iW~u,v !i`5iui2ivi2 ;

~5!

~W~u1 ,v1!,W~u2 ,v2!!5~u1 ,u2!~v1 ,v2!;
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~6!

W~v,u!5W~u,v !,

W~ û,v̂ !~x,k!5W~u,v !~2k,x!;

~7!

W~r~a,b!u,v !~x,k!5ei ~x•a1b•k!W~u,v !S x1
b

2
,k2

a

2D ,

W~u,r~c,d!v !~x,k!5e2 i ~x•c1k•d!W~u,v !S x1
d

2
,k2

c

2D ;

~8!

E W~u,v !~x,k!dk5uu~x!u2,

E W~u,v !~x,k!dx5uû~k!u2,

E xjW~u,u!~x,k!dx dk5E xj uu~x!u2dx5~Xju,u!,

E kjW~u,u!~x,k!dx dk5E kj uû~x!u2dk5~D ju,u!.

III. THE SCALAR EVOLUTION EQUATIONS

A. Generalized Schro¨ dinger equation

We consider the symbolH(x,k)PC`(Rx
n3Rk

n) being real valued polynomial ink-variable
and Schwartz class inx-variable, then its Weyl operator is a differential operator with smo
coefficient. Letu(t,x) be the solution of the initial value problem of the generalized Schro¨dinger
equation

i
]u

]t
5H~X,D !u,

~13!
u~0,x!5w~x!PL2~Rn!

and its Wigner distribution be

W~ t,x,k!5W~u~ t !,u~ t !!~x,k!. ~14!

Then we have,
Proposition 1: The Wigner distributionW(t,x,k) satisfies

i
]W~ t,x,k!

]t
5

1

~2p!n E Ĥ~q,p!ei ~x•q1k•p!FWS t,x1
p

2
,k2

q

2D2WS t,x2
p

2
,k1

q

2D Gdq dp

W~0,x,k!5W~w,w!~x,k!. ~15!

Proof: DifferentiateW(t,x,k) with respect tot, we have
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]W~ t,x,k!

]t
5WS ]u~ t !

]t
,u~ t ! D ~x,k!1WS u~ t !,

]u~ t !

]t D ~x,k!

5
1

i
W~Hu~ t !,u~ t !!~x,k!2

1

i
W~u~ t !,Hu~ t !!~x,k!.

Using ~6!, ~8!, ~11!, and Property~7! in Sec. II B, we have

W~H~X,D !u,u!~x,k!5
1

~2p!n E Ĥ~q,p!W~r~q,p!u,u!~x,k!dq dp

5
1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!W~u,u!S x1
p

2
,k2

q

2Ddq dp,

W~u,H~X,D !u!~x,k!5
1

~2p!n E Ĥ̄~q,p!W~u,r~q,p!u!~x,k!dq dp

5
1

~2p!n E e2 i ~x•q1k•p!Ĥ~2q,2p!W~u,u!S x1
p

2
,k2

q

2Ddq dp

5
1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!W~u,u!S x2
p

2
,k1

q

2Ddq dp.

Therefore,

i
]W~ t,x,k!

]t
5

1

~2p!n E Ĥ~q,p!ei ~x•q1k•p!FWS t,x1
p

2
,k2

q

2D2WS t,x2
p

2
,k1

q

2D Gdq dp,

and we have the Lemma.
We now consider the problem in the high frequency regime. High frequency asymp

requires the symbolH(x,k) vary slowly in space variablex, i.e., on the long scale. We introduc
a dimensionless small parametere.0 and redefine time and space variablest→t/e, x→x/e. The
scaled wave functionue(t,x)5u(t/e,x/e) satisfies the scaled generalized Schro¨dinger equation

i«
]u«

]t
5H~X,«D !u«

~16!

u«~0,x!5w~x!.

Note that there is no small parametere before the multiplications operatorX in the scaled Weyl
operatorH, which means the symbol is slowly varying in the original space variable. Also
initial data does not depend one which means the initial data in~13! is slowly varying in the
original space variables. We define the rescaled Wigner distribution by

W«~ t,x,k!5
1

«n W~u«~ t !,u«~ t !!S x,
k

« D . ~17!

With this scaling, Proposition 1 becomes
Proposition 2:The Wigner distributionW« satisfies
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i«
]w«~ t,x,k!

]t
5

1

~2p!n E Ĥ~q,p!ei ~x•q1k•p!FW«S t,x1
«

2
p,k2

«

2
qD

2W«S t,x2
«

2
p,k1

«

2
qD Gdq dp

~18!

W«~0,x,k!5
1

«n W~w,w!S x,
k

« D .

To calculate the high frequency limit ofWe ase→0, consider the formal expansion

W«~ t,x,k!5W~ t,x,k!1«W1~ t,x,k!1¯ . ~19!

The equation for the leading order term can be calculated formally and we have
Proposition 3: W(t,x,k) satisfies the following transport equation:

]W~ t !

]t
1$W~ t !,H%50, ~20!

where the bracket is the Lie bracket on the space of the functions on phase space

$a,b%5(
j

S ]a

]xj

]b

]kj
2

]a

]kj

]b

]xj
D . ~21!

Note thatH(x,k) plays the role of frequency functionv(x,k) in ~1! and there is no scattering i
the equation.

Proof: From ~18!, we take limit«→0, we have that

i
]W

]t
5

1

~2p!n E ei ~x•q1k•q!Ĥ~q,p!S p•
]W

]x
2q•

]W

]k Ddq dp

5
1

~2p!n

]W

]x

1

i

]

]k S E ei ~x•q1k•p!Ĥ~q,p!dq dpD
2

1

~2p!n

]W

]k

1

i

]

]x S E ei ~x•q1k•q!Ĥ~q,p!dq dpD
5

1

i S ]W

]x

]H

]k
2

]W

]k

]H

]x D5
1

i
$W,H%.

B. Generalized Schro¨ dinger equation with small random perturbation

We now consider the case with random potential. LetV(x,k) be a mean zero random func
tion, stationary in space variable, its correlations are homogeneous in space, so that

^V~x,k!V~x8,k8!&5R~x2x8,k,k8! ~22!

and

^V̂~q,p!V̂~q8,p8!&5R̂~q,p,p8!d~q1q8!, ~23!

where

R̂~q,p,p8!5
1

~2p!3n/2 E ei ~xq1kp1k8p8!R~x,k,k8!dk dk8.
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We also assume that

Im F1R~q,k,k8!50, ~24!

which is equivalent to

Im F1R~q,k,k8!5Im F1R~2q,k,k8!, ~25!

whereF1R stands for the Fourier transform of the correlation function in first variable.
Consider the solutionue(t,x) of equation

i eut
e5S H~X,eD !1AeVS 1

e
X,eD D Due

and its scaled Wigner distributionWe defined by~17!. As pointed out in Ref. 1, in order to find th
correct result ase→0, we need to use multiple scale expansion. Letj5x/« be the fast space
variable and rewriteW«(t,x,k)5W«(t,x,x/«,k) as W«(t,x,j,k). It is easy to show that
W«(t,x,j,k) satisfies the following proposition:

Proposition 4:

i
]W«~ t,x,j,k!

]t
5

1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!
1

« FW«S t,x1
«

2
p,j1

p

2
,k2

«

2
qD

2W«S t,x2
«

2
p,j2

p

2
,k1

«

2
qD Gdq dp

1
1

~2p!n E ei ~j•q1k•p!V̂~q,p!
1

A«
FW«S t,x1

«

2
p,j1

p

2
,k2

q

2D
2W«S t,x,2

«

2
p,j2

p

2
,k1

q

2D Gdq dp. ~26!

To study the limit ase→0, we introduce an expansion of form

We~ t,x,j,k!5W~0!~ t,x,k!1A«W~1!~ t,x,j,k!1«W~2!~ t,x,j,k!1¯ , ~27!

where we assume that the leading termW(0) does not depend upon the fast variable and also
deterministic. Substitute~27! into ~26! and collect the terms at different powers ofe, we have that
at ordere21/2,

1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!FW~1!S t,x,j1
p

2
,kD2W~1!S t,x,j2

p

2
,kD Gdq dp

1
1

~2p!n E ei ~j•p1k•p!V̂~q,p!FW~0!S t,x,k2
q

2D2W~0!S t,x,k1
q

2D Gdq dp50, ~28!

at ordere0:
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i
]W~0!~ t,x,k!

]t
5

1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!FW~2!S t,x,j1
p

2
,kD2W~2!S t,x,j2

p

2
,kD Gdq dp

1
1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!S p
]

]x
2q

]

]kDW~0!~ t,x,k!dq dp

1
1

~2p!n E ei ~jq1kp!V̂~q,p!FW~1!S t,x,j1
p

2
,k2

q

2D
2W~1!S t,x,j2

p

2
,k1

q

2D Gdq dp. ~29!

Since we have, from ergodicity,

K ]W~2!

]j L 50,

after averaging~29!, we get

i
]W~0!~ t,x,k!

]t
1$W~0!,H%~ t,x,k!5

1

~2p!n E ei ~jq1kp!K V̂~q,p!FW~1!S t,x,j1
p

2
,k2

q

2D
2W~1!S t,x,j2

p

2
,k1

q

2D Gdq dpL . ~30!

In order to get a closed equation forW(0), we need to computeW(1) from ~28!. Let F be the
Fourier transform inj of W(1), i.e.,

W~1!~ t,x,j,k!5
1

~2p!n/2 E ei j•q8F~ t,x,q8,k!dq8.

Plug in ~28!, we have

1

~2p!3n/2 E E ei j•q8F~ t,x,q8,k!@ei ~x•q1~k1q8/2!p!Ĥ~q,p!2ei ~x•q1~k2q8/2!p!Ĥ~q,p!#

3dq dp dq81
1

~2p!n E ei ~j•q1k•p!V̂~q,p!FW~0!S t,x,k2
q

2D2W~0!S t,x,k1
q

2D Gdq dp50,

which implies
                                                                                                                



de

4837J. Math. Phys., Vol. 40, No. 10, October 1999 Transport equations for a general class . . .

                    
1

~2p!n/2 E ei j•q8F~ t,x,q8,k!@H~x,k1q8/2!2H~x,k2q8/2!#dq8

1
1

~2p!n E ei j•qE eik•pV̂~q,p!dpFW~0!S t,x,k2
q

2D2W~0!S t,x,k1
q

2D Gdq50.

Taking inverse Fourier transform inj, we get

F~ t,x,q8,k!5
1

~2p!n/2

*eik•pV̂~q8,p!dp@W~0!~ t,x,k2q8/2!2W~0!~ t,x,k1q8/2!#

H~x,k1q8/2!2H~x,k2q8/2!1 iu
. ~31!

The termiu is a regularization term. Using~23!, we compute the integrand of the right-hand si
of ~30!,

K V̂~q,p!FW~1!S t,x,j1
p

2
,k2

q

2D2W~1!S t,x,j2
p

2
,k1

q

2D G L
5

1

~2p!n/2 K V̂~q,p!F E ei ~j1p/2!q8FS t,x,q8,k2
1

2Ddq8

2E ei ~j2p/2!q8FS t,x,q8,k1
q

2Ddq8G L
5

1

~2p!n K V̂~q,p!E ei ~j1p/2!q81 i ~k2q/2!p8V̂~q8,p8!

3

W~0!S t,x,k2
q

2
1

q8

2 D2W~0!S t,x,k2
q

2
2

q8

2 D
HS x,k2

q

2
1

q8

2 D2HS x,k2
q

2
2

q8

2 D1 iu

dq8 dp8L
2

1

~2p!n K V̂~q,p!E ei ~j2p/2!q81 i ~k1q/2!p8V̂~q8,p8!

3

W~0!S t,x,k1
q

2
1

q8

2 D2W~0!S t,x,k1
q

2
2

q8

2 D
HS x,k1

q

2
1

q8

2 D2HS x,k1
q

2
2

q8

2 D1 iu

dq8 dp8L
5

1

~2p!n E ei ~j1p/2!q81 i ~k2q/2!p8R̂~q,p,p8!d~q1q8!

3

W~0!S t,x,k2
q

2
1

q8

2 D2W~0!S t,x,k2
q

2
2

q8

q D
HS x,k2

q

2
1

q8

2 D2HS x,k2
q

2
2

q8

2 D1 iu

dq8 dp8

2
1

~2p!n E ei ~j2p/2!q81 i ~k1q/2!p8R̂~q,p,p8!d~q1q8!
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3

W~0!S t,x,k1
q

2
1

q8

2 D2W~0!S t,x,k1
q

2
2

q8

2 D
HS x,k1

q

2
1

q8

2 D2HS x,k1
q

2
2

q8

2 D1 iu

dq8 dp8

5e2 i ~j1p/2!qS E ei ~k2q/2!p8R̂~q,p,p8!dp8 D W~0!~ t,x,k2q!2W~0!~ t,x,k!

H~x,k2q!2H~x,k!1 iu
2e2 i ~j2p/2!q)

3S E ei ~k1q/2!p8R̂~q,p,p8!dp8 D W~0!~ t,x,k!2W~0!~ t,x,k1q!

H~x,k!2H~x,k1q!1 iu
.

Therefore,

K 1

~2p!n E ei ~jq1kp!V̂~q,p!FW~1!S t,x,j1
p

2
,k2

q

2D2W~1!S t,x,j2
p

2
,k1

q

2D Gdq dpL
5E F1RS q,k2

q

2
,k2

q

2D W~0!~ t,x,k2q!2W~0!~ t,x,k!

H~x,k2q!2H~x,k!1 iu
dq

2E F1RS q,k1
q

2
,k1

q

2D W~0!~ t,x,k!2W~0!~ t,x,k1q!

H~x,k!2H~x,k1q!1 iu
dq

5E F1RS k2q,k1
q

2
,k1

q

2D W~0!~ t,x,q!2W~0!~ t,x,k!

H~x,q!2H~x,k!1 iu
dq

2E F1RS k2q,k1
q

2
,k1

q

2D W~0!~ t,x,k!2W~0!~ t,x,q!

H~x,k!2H~x,q!1 iu
dq

5E F1RS k2q,k1
q

2
,k1

q

2D 2iu~W~0!~ t,x,q!2W~0!~ t,x,k!!

~H~x,q!2H~x,k!!21u2 dq.

Since

u

x21u2 →pd~x!, as u→0

we have, from~30!, the following Proposition.
Proposition 5: W(0) satisfies the following equation:

]W~0!

]t
1$W~0!,H%52pE F1RS k2q,k1

q

2
,k1

q

2D ~W~0!~ t,x,q!

2W~0!~ t,x,k!!•d~H~x,q!2H~x,k!!dq. ~32!

IV. THE SYSTEM OF EVOLUTION EQUATIONS

A. The generalized vector Schro ¨ dinger equations

In this section, we derive transport equations for a system of generalized Schro¨dinger equa-
tions.
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Let H(x,k)5(Hi j (x,k)) be an3n matrix valued function. Assume thatHi j PC`(Rx
n3Rk

n).
We always assume that for everyx,k,H(x,k) is diagonalizable. LetUe(t)5(u1

e(t),...,un
e(t)) t be

the solution of the following system of equations:

i e
]Ue

]t
5H~X,eD !Ue

Ue~0,x!5w~x!, ~33!

whereH(X,D)5(Hi j (X,D)) denotes the Weyl quantization of the energy symbolH(x,k).
Define the scaled Wigner distribution matrix as

We~ t,x,k!5~Wi j
e ~ t,x,k!!, ~34!

where

Wi j
« ~ t,x,k!5

1

«n W~ui
«~ t !,uj

e~ t !!S x,
k

« D . ~35!

The matrixWe is Hermitian as is easily seen by definition~11!.
Proposition 6:We satisfies the following equation:

i e
]W«~ t,x,k!

]t
5

1

~2p!n E ei ~x•q1k•p!Ĥ~q,p!WeS t,x1
«

2
p,k2

«

2
qDdq dp

2
1

~2p!n E ei ~x•q1k•p!WeS t,x2
«

2
p,k1

«

2
qDH*̂ ~q,p!dq dp

~36!

W«~0,x,k!5
1

«n W~w i ,w j !S x,
k

« D ,

whereH*̂ is the Fourier transform of Hermitian adjoint matrix ofH* .
The proof of the proposition is similar to that of the scalar case.
Again, we consider the expansion

W«~ t,x,k!5W~0!~ t,x,k!1«W1~ t,x,k!1«2
¯ . ~37!

Substitute~37! into ~36! and collect the terms at different powers ofe, we have, for the coefficien
of «21 term

H~x,k!•W~0!~ t,x,k!2W~0!~ t,x,k!•H* ~x,k!50; ~38!

and for the coefficient of«0 term

i
]W~0!~ t,x,k!

]t
5

1

~2p!n E ei ~x•q1k•p!@Ĥ~q,p!•W~1!~ t,x,k!2W~1!~ t,x,k!•Ĥt~q,p!#dq dp

1
1

2~2p!n E ei ~x•q1k•p!Ĥ~q,p!•S p
]

]x
2q

]

]kDW~0!~ t,x,k!dq dp

2
1

2~2p!n E ei ~x•q1k•p!S 2p
]

]x
1q

]

]kDW~0!~ t,x,k!•Ĥ* ~q,p!dq dp. ~39!

Let A5(ai j (x,k)), B5(bi j (x,k)) be matrix valued functions andf (x,k) be scalar function on
Rx

n3Rk
n . We define a matrix bracket$A ^̧ B% as
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$A ^̧ B%~x,k!5~ci j ~x,k!! ~40!

with

ci j ~x,k!5(
l 51

n

$ail ,bl j %~x,k!, ~41!

where$•,•% is defined by~21!. We also define a bracket of a matrix with a scalar function,$A, f %
as

$A, f %5~$ai j , f %!.

We introduce several operators on Matn(C)→Matn(C) as follows:

L~x,k!Z5H~x,k!Z2ZH* ~x,k!

L̃~x,k!Z5H~x,k!Z
~42!

L* ~x,k!Z5H* ~x,k!Z2ZH~x,k!

L̃* ~x,k!Z5H* ~x,k!Z.

For fixedx,k, the kernel of the operatorL is invariant underL̃. The operatorL̃ is diagonalizable
as an operator acting on the vector space Matn(C) if H is a diagonalizable. That means that a
invariant subspace ofL̃ is spanned by its eigenvectors~which are matrices!, therefore kerL is
spanned by some of the eigenvectors ofL̃, namely, by those which belong to kerL. And each
eigenvalue ofL̃ is also an eigenvalue ofH.

We will consider two separated cases, i.e., the case without polarization and the cas
polarization.

1. Distinct eigenvalue case (without polarizations)

Suppose that the matrixH(x,k) has distinct real eigenvaluesl j (x,k), j 51,...,n, which areC1

function of x,k. The last assumption is not important but it is convenient. Letb( j ) be the corre-
sponding real eigenvectors which are column vectors

H~x,k!b~ j !~x,k!5l j~x,k!b~ j !~x,y!, j 51,2,...,n.

Denote

B~ j !~x,k!5b~ j !~x,k!b~ j !* ~x,k!, ~43!

which are Hermitian matrices. Then, we have

L̃~x,k!B~ j !~x,k!5l j~x,k!B~ j !~x,k!

and

L~x,k!B~ j !~x,k!50.

MoreoverB( j )(x,k), j 51,...,n, span the space kerL~x,k!. Suppose thatc( j )(x,k), j 51,...,n are
eigenvectors of matrixH* (x,k) corresponding to eigenvaluesl j (x,k), j 51,...n. c( j ) and b( j )

satisfy the orthogonal relation

c~ i !* ~x,k!b~ j !~x,k!5 f i~x,k!d i j .
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Denote

C~ j !~x,k!5c~ j !~x,k!c~ j !* ~x,k!,

we have

L̃* ~x,k!C~ j !~x,k!5l j~x,k!C~ j !~x,k!,

L* ~x,k!C~ j !~x,k!50,

andC( j )(x,k), j 51,...,n, span the space kerL* (x,k).
We introduce an inner product on the space Matn(C) as

^X,Y&5tr X* Y.

ThenL* is the adjoint operator ofL.
Using notations introduced above,~38! and ~39! can be rewritten as

LW~0!~ t !50, ~44!

i
]W~0!~ t !

]t
2

i

2
$H ^̧ W~0!~ t !%1

i

2
$W~0!~ t ! ^̧ H* %5LW~1!~ t !, ~45!

or

W~0!~ t !PkerL, ~46!

]W~0!~ t !

]t
2

1

2
$H ^̧ W~0!~ t !%1

1

2
$W~0!~ t ! ^̧ H* %PIm L. ~47!

Since space kerL is spanned byB( j )5b( j )b( j )* , j 51,...,n. We can write

W~0!~ t,x,k!5(
j 51

n

a~ j !~ t,x,k!B~ j !~x,k!, ~48!

where the coefficientsa( j )(t,x,k) are real valued functions. Then we have the following propo
tion from ~44! and ~45!.

Proposition 7:There exists a normalized basesB( j ) of kerL such that the coefficientsa( j )

3(t,x,k) satisfy the following Liouville equations

]a~s!~ t !

]t
1$a~s!~ t !,ls%50, s51,...,n. ~49!

Proof: Substitute~48! into the left-hand side of~45!, we have

]W~0!~ t !

]t
2

1

2
$H ^̧ W~0!~ t !%1

1

2
$W~0!~ t ! ^̧ H* %

5
]a~s!

]t
B~s!2

1

2
$H ^̧ a~s!B~s!%1

1

2
$a~s!B~s!

^̧ H* %

5
]a~s!

]t
B~s!2

1

2
a~s!~$H ^̧ B~s!%2$B~s!

^̧ H* %!2
1

2
$H,a~s!%B~s!1

1

2
B~s!$a~s!,H* %.

Since
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$H,a~s!%B~s!5$HB~s!,a~s!%2H$B~s!,a~s!%

5$lsB
~s!,a~s!%2H$B~s!,a~s!%

5$ls ,a~s!%B~s!1ls$B
~s!,a~s!%2H$B~s!,a~s!%

and

B~s!$a~s!,H* %5$a~s!,B~s!H* %2$a~s!,B~s!%H* 52$ls ,a~s!%B~s!1$a~s!,B~s!%~ls2H* !.

Therefore

]W~0!~ t !

]t
2

1

2
$H ^̧ W~0!~ t !%1

1

2
$W~0!~ t ! ^̧ H* %

5S ]a~s!

]t
2$ls ,a~s!% DB~s!2

1

2
a~s!$H ^̧ B~s!%1

1

2
a~s!$B~s!

^̧ H* %

2
1

2
~ls2H!$B~s!,a~s!%1

1

2
$a~s!,B~s!%~ls2H* !PIm L, ~50!

where the right-hand side is the summation overs. Using the fact thatC(p) are orthogonal to ImL
and

^C~p!,B~q!&5 f p f̄ pdpq ,

where f p5(c(p),b(p))5c(p)* b(p). Taking inner product of~50! with C(p), we have

S ]a~s!

]t
2$ls ,a~s!% D dpsu f pu22

1

2
a~s!^C~p!,$H ^̧ B~s!%2$B~s!

^̧ H* %&

2
1

2
~ls2lp!^C~p!,$B~s!,a~s!%&1

1

2
~ls2lp!^C~p!,$a~s!,B~s!%&50. ~51!

WhenpÞs, we have

^C~p!,$B~s!,a~s!%&5K C~p!,
]B~s!

]x L ]a~s!

]k
2K C~p!,

]B~s!

]k L ]a~s!

]x
,

K C~p!,
]B~s!

]x L 5~b~s!,c~p!!S c~p!,
]b~s!

]x D 1S ]b~s!

]x
,cpD ~c~p!,b~s!!50,

whereas are real functions. Similarly,

K C~p!,
]B~s!

]k L 50.

It follows that, whenpÞs

~lp2ls!^C
~p!,$B~s!,a~s!%&50.

Similar calculation shows that, whenpÞs

~ls2lp!^C~p!,$a~s!,B~s!%&50.

Next, we show that forpÞs
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^C~p!,$H ^̧ B~s!%2$B~s!
^̧ H* %&50. ~52!

SinceB(s)C(p)50, we have

05tr$H ^̧ B~s!C~p!%

5tr$H ^̧ B~s!%C~p!2tr$C~p!
^̧ H%B~s!

5tr$C~p!H ^̧ B~s!%1tr$B~s!
^̧ C~p!%H2~ tr$C~p!

^̧ HB~s!%1tr H$B~s!
^̧ C~p!% !

5tr$lpC~p!
^̧ B~s!%2tr$C~p!

^̧ lsB
~s!%

5~lp2ls!tr$C
~p!

^̧ B~s!%,

therefore, whenpÞs,

tr$Cp
^ B~s!%50.

It follows that

^C~p!,$H ^̧ B~s!%&5tr C~p!$H ^̧ B~s!%5tr$C~p!H ^̧ B~s!%1tr$B~s!
^̧ C~p!%H5tr$lpC~p!

^̧ B~s!%

1tr$B~s!
^̧ C~p!%H5tr$B~s!

^̧ C~p!%H5 (
m,n,l

$bm
~s!b̄n

~s! ,cn
~p!c̄l

~p!%H lm

5 (
m,n,l

$bm
~s!cn

~p!%b̄n
~s!c̄l

~p!H lm1 (
m,n,l

$b̄n
~s! ,c̄l

~p!%bm
~s!cn

~p!H lm

1 (
m,n,l

$b̄n
~s! ,c̄n

~p!%c̄l
~p!H lmbm

~s!5lp (
m,n,l

$bm
~s! ,cn

~p!%b̄n
~s!c̄m

~p!

1ls(
l ,n

$b̄n
~s! ,c̄l

~p!%bl
~s!cn

~p! .

Similarly

^C~p!,$B~s!
^̧ H* %&5tr H* $C~p!

^̧ B~s!%5lp(
nl

$c̄l
~p! ,b̄n

~s!%bl
~s!cn

~p!1ls(
mn

$cn
~p! ,bm

~s!%b̄n
~s!c̄m

~p! .

Therefore

^C~p!,$H ^̧ B~s!%2$B~s!
^̧ H* %&5~lp1ls!S (

mn
$bm

~s! ,cn
~p!%b̄n

~s!c̄m
~p!1(

mn
$b̄n

~s!c̄n
~p!%bm

~s!cn
~p!D

5~lp1ls!tr$B
~s!

^̧ C~p!%50.

It follows that ~51! becomes

S ]a~s!

]t
2$ls ,a~s!% D u f su22

1

2
a~s!^C~s!,$H ^̧ B~s!%2$B~s!

^̧ H* %&50.

To show that~49! holds, we prove thatb(s) can be normalized so that

^C~s!,$H ^̧ B~s!%2$B~s!
^̧ H* %&50. ~53!

To achieve that, letB̃(s)5g(x,k)B(s) whereB(s) is fixed. We will show that there exists a functio
g such that~53! holds for B̃(s):
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^C~s!,$H ^̧ B̃~s!%2$B̃~s!
^̧ H* %&5g^C~s!,$H ^̧ B~s!%2$B~s!

^̧ H* %&12^C~s!,B~s!&$ls ,g%.

Then Eq.~53! becomes

2^C~s!,B~s!&$ls ,g%1g^C~s!,$H ^̧ B~s!%2$B~s!
^̧ H* %&50. ~54!

This is a first order PDE forg and has always a solution which is nonzero everywhere providels

is not a constant. Therefore~51! reduces to~49!.

2. Multiple eigenvalue case (with polarization)

We turn our attention to the case with polarization. We assume that HamiltonianH(x,k) is
diagonalizable but the eigenvalues are not distinct. We assume throughout that the eigenva
H(x,k) have constant multiplicity independent ofx and k. This hypothesis is satisfied in th
hyperbolic system of acoustic, electromagnetic and elastic waves. Letls(x,k) be a real eigenvalue
of H(x,k) of multiplicity r. Denote

Vls
~x,k!5$vPCn: H~x,k!v5ls~x,k!v%

and chooseb(s1),...,b(sr) to be an orthogonal basis ofVls
. Let

Vls
~x,k!5$ZPMatn~C!:L̃~x,k!Z5ls~x,k!Z, L~x,k!Z50%,

then dimVls
(x,k)5r 2 and it has a basisBi j

(s)5b(si)b(s j)* , i , j 51,...,r . Again, from ~44!, we
assume that

W~0!~ t,x,k!5(
s,i , j

ai , j
~s!~ t,x,k!Bi , j

~s!~x,k!, ~55!

whereai , j
(s)(t,x,k) are scalar functions. Define ther 3r coherence matricesA(s)(t,x,k) by

A i , j
~s!~ t,x,k!5ai , j

~s!~ t,x,k!, i , j 51,...,r .

The multiplicity r of the eigenvaluels depends ons but we do not indicate this explicitly.
Proposition 8:The coherence matricesA(s)(t,x,k) satisfy the following Liouville type trans-

port equation:

]A~s!~ t !

]t
1$A~s!~ t !,ls%1A~s!~ t !M ~s!2M ~s!* A~s!~ t !50,

whereM (s)5(Mlm
(s)(x,k)) and

Mlm
~s!~x,k!5

1

2
(
a

Ca
~sm!

f m
~s!

S (
r

$br
~sl!,H̄ar%2$lp ,ba

~sl!% D .

Proof: The eigenspace ofH* (x,k) corresponding to eigenvaluels(x,k) is alsor dimensional.
Let c(s1),...,c(sr) be the basis of this space which is dual to the basisb(s1),...,b(sr) of Vls

(x,k).

DenoteCi j
(s)5c(si)

•c(s j)* and let (c(sl),b(sm))5d lmf m
(s) then

^Clm
~p! ,Bi j

~s!&5dspd l i dm jf l
~s! f m

~s!.

Substitute~55! into ~45!, we have
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]W~0!~ t !

]t
2

1

2
$H ^̧ W~0!~ t !%1

1

2
$W~0!~ t ! ^̧ H* %

5(
s,i , j

S ]ai j
~s!

]t
2$ls ,ai j

~s!% DBi j
~s!2

1

2
ai j

~s!~$H ^̧ Bi j
~s!%2$Bi j

~s!
^̧ H* %!

2
1

2
~ls2H!$Bi j

~s! ,ai j
~s!%1

1

2
$ai j

~s! ,Bi j
~s!%~ls2H* !PIm L. ~56!

Taking inner product of~56! with Clm
(p) , we have

S ]alm
~p!

]t
2$lp ,alm

~p!% D f l
~p! f m

~p!2
1

2 (
s,i , j

ai j
~s!^Clm

~p! ,$H ^̧ Bi j
~s!%2$Bi j

~s!
^̧ H* %&

2
1

2
~ls2lp!(

s,i , j
^Clm

~p! ,$Bi j
~s! ,ai j

~s!%&1
1

2
~ls2lp!(

s,i , j
^Clm

~p! ,$ai j
~s! ,Bi j

~s!%&50. ~57!

Similar calculations as in the case of distinct eigenvalue show that the third and the fourth te
the left-hand side of~57! disappear. In the second term, only terms withs5p remains. Therefore
we have

S ]alm
~p!

]t
2$lp ,alm

~p!% D f l
~p! f m

~p!2
1

2 (
p,i , j

ai j
~p!^Clm

~p! ,$H ^̧ Bi j
~s!%2$Bi j

~p!
^̧ H* %&50, ~58!

where

^Clm
~p! ,$H ^̧ Bi j

~s!%2$Bi j
~p!

^̧ H* %&5 (
abg

ca
~pm!cb

~pl !~$Hbg ,bg
~pi !ba

~p j !%2$bb
~pi !bg

~p j !,H̄ag%!5D11D2 ,

with

D15(
b,g

cb
~pl !$Hbg ,bg

~pi !%dm jf m
~p!2(

a,g
ca

~pm!$bg
~pi !,H̄ag%d l i f l

~p! , ~59!

D25 (
a,b,g

ca
~pm!cb

~pl !bg
~pi !$Hbg ,ba

~p j !%

2 (
a,b,g

ca
~pm!cb

~pl !bg
~p j !$bb

~pi ! ,H̄ag%

5 (
a,b,g

ca
~pm!cb

~pl !$Hbgbg
~pi ! ,ba

~p j !%

2 (
a,b,g

ca
~pm!cb

~pl !$bb
~pi ! ,H̄agbg

~p j !%2 (
a,b,g

ca
~pm!cb

~pl !Hbg$bg
~pi ! ,ba

~p j !%

1 (
a,b,g

ca
~pm!cb

~pl !H̄ag$bb
~pi ! ,bg

~p j !%

5(
a,b

ca
~pm!cb

~pl !$lpbb
~pi ! ,ba

~p j !%2(
a,b

ca
~pm!cb

~pl !$bb
~pi ! ,lpba

~p j !%

2(
a,g

lpca
~pm!cg

~pl !$bg
~pi ! ,ba

~p j !%1(
b,g

lpcg
~pm!cb

~pl !$bb
~pi ! ,bg

~p j !%
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5(
a,b

ca
~pm!cb

~pl !bb
~pi !$lp ,bb

~p j !%2(
a,b

ca
~pm!cb

~pl !ba
~p j !$bb

~pi ! ,lp%

5(
a

cp
~pm!$lp ,ba

~p j !%d i l f l
~p!2(

b
cb

~pl !$bb
~pi ! ,lp%dm jf m

~p!.

Therefore

2
1

2 (
i , j

ai , j
~p!^Clm

~p! ,$H ^̧ Bi j
~p!%2$Bi j

~p!
^̧ H* %&

5
1

2 (
j

al j
~p!S (

a,g
ca

~pm!$bg
~p j !,H̄ag%2(

a
ca

~pm!$lp ,ba
~p j !% D f l

~p!

2
1

2 (
i

S (
b,g

cb
~pl !$Hbg ,bg

~pi !%2(
b

cb
~pl !$bb

~pi ! ,lp% Daim
~p! f m

~p!

5~~A~p!M ! lm2~M* •A~p!! lm! f l
~p! f m

~p!,

where

M ~p!5~Mlm
~p!!,

Mlm
~p!5

1

2
(
a

ca
~pm!

f m
~p!

S (
g

$bg
~pl !,H̄ag%2$lp ,ba

~pl !% D .

Thus we have

]A~p!

]t
2$lp ,A~p!%1A~p!M ~p!2M ~p!* A~p!50 ~60!

and the proof is complete.

B. The vector Schro ¨ dinger equations with small random perturbations

Let V(x,k) be a real matrix valued random function in phase space with mean zero. Su
that it is stationary inx. We denote the correlation functions by

Rabld~y2x,k,k8!5^Vab~x,k!Vld~y,k8!&, ~61!

which are assumed to be homogeneous in space. It is easy to see that

Rabld~x,k,k8!5Rldab~2x,k,k8!.

DenoteF1Rabld(q,k,k8) as the Fourier transform ofRabld(x,k,k8) in x, we have

^F1Vab~q,k!F1Vld~q8,k8!&5F1Rabld~q,k,k8!d~q1q8!. ~62!

We also assume that for anya, b, l, d, and allk,k8

Im F1Rabld~q,k,k8!50,

which is equivalent to say that the correlation functions is even inx. Then we have the following
symmetry
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Rabld~x,k,k8!5Rldab~x,k,k8!

and

F1Rabld~q,k,k8!5F1Rldab~q,k,k8!. ~63!

Consider the scaled Wigner distribution matrix

W«~ t,x,k!5
1

«n W~U«~ t !,U«~ t !!S x,
k

« D , ~64!

whereUe(t) be the solution of the following system of equations

i
]Ue~ t,x!

]t
5S H~x,eD !1AeVS 1

e
x,eD D DUe~ t,x!

Ue~0,x!5w~x!. ~65!

Let j5x/e be the fast space variable and rewriteWe(t,x,k)5We(t,x,x/e,k) by We(t,x,j,k), we
obtain the equation

i
]W«~ t,x,j,k!

]t
5

1

~2p!n E ei ~x•q1k•p!
1

e F Ĥ~q,p!WeS t,x1
«

2
p,j1

p

2
,k2

«

2
qD

2WeS t,x2
«

2
p,j2

p

2
,k1

«

2
qDH*̂ ~q,p!Gdq dp

1
1

~2p!n E ei ~j•q1k•p!
1

Ae
F V̂~q,p!WeS t,x1

«

2
p,j1

p

2
,k2

q

2D
2WeS t,x2

«

2
p,j2

p

2
,k1

q

2D V̂t~q,p!Gdq dp, ~66!

whereH*̂ is the Fourier transform ofH* 5H̄t. Consider the formal expansion

W«~ t,x,j,k!5W~0!~ t,x,k!1AeW~1!~ t,x,j,k!1eW~2!~ t,x,j,k!1¯ .

We assume that the leading term does not depend on the fast variable and it is determinis
have, as before, at ordere21,

W~0!~ t,x,k!PkerL,

whereL is defined by~42!. At order e21/2,

1

~2p!n E ei ~x•q1k•p!F Ĥ~q,p!W~1!S t,x,j1
p

2
,kD2W~1!S t,x,j2

p

2
,kDH*̂ ~q,p!Gdq dp

1
1

~2p!n E ei ~j•q1k•p!F V̂~q,p!W~0!S t,x,k2
q

2D2W~0!S t,x,k1
q

2D V̂t~q,p!Gdq dp50. ~67!
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At order e0, we have

]W~0!~ t !

]t
2

i

2
$H ^̧ W~0!~ t !%1

i

2
$W~0!~ t ! ^̧ H* %

5
1

~2p!n E ei ~xq1kp!F Ĥ~q,p!W~2!S t,x,j1
p

2
,kD2W~2!S t,x,j2

p

2
,kD Ĥ* ~q,p!Gdq dp

1
1

~2p!n E ei ~jq1kp!F V̂~q,p!W~1!S t,x,j1
p

2
,k2

q

2D
2W~1!S t,x,j2

p

2
,k1

q

2D V̂t~q,p!Gdq dp. ~68!

Similarly, from ergodicity, we have

K ]W~2!~ t,x,j,k!

]j L 50.

Averaging~68!, we get

i S ]W~0!~ t !

]t
2

1

2
$H ^̧ W~0!~ t !%1

1

2
$W~0!~ t ! ^̧ H* % D

2
1

~2p!n E ei ~jq1kp!K V̂~q,p!W~1!S t,x,j1
p

2
,k2

q

2D L dq dp

1
1

~2p!n E ei ~jq1kp!K W~1!S t,x,j2
p

2
,k1

q

2DVt~q,p!L dq dp

5L~x,k!^W~2!~ t,x,j,k!&PIm L~x,k!. ~69!

Again, we want to expressW(1)(t) in terms ofW(0)(t), then insert it into the above equation an
take the inner product with the generators of kerL* . DenoteF(t,x,q,k) as the Fourier transform
of W(1)(t,x,j,k) in fast space variablej, i.e.,

W~1!~ t,x,j,k!5
1

~2p!n/2 E ei jq8F~ t,x,q8,k!dq8,

we have from~67!

1

~2p!n/2 E ei ~x•q1k•p!1 i ~j1p/2!q8Ĥ~q,p!F~ t,x,q8,k!dq8 dq dp

2
1

~2p!n/2 E ei ~x•q1k•p!1 i ~j2p/2!q8F~ t,x,q8,k!Ĥ* ~q,p!dq8 dq dp

1E ei ~j•q1k•p!F V̂~q,p!W~0!S t,x,k2
q

2D2W~0!S t,x,k1
q

2D V̂t~q,p!Gdq dp50,
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E ei j•q8HS x,k1
q8

2 DF~ t,x,q8,k!dq82E ei j•q8F~ t,x,q8,k!H* S x,k2
q8

2 Ddq8

1
1

~2p!n/2 E ei ~j•q1k•p!V̂~q,p!W~0!S t,x,k2
q

2Ddq dp

2
1

~2p!n/2 E ei ~j•q1k•p!W~0!S t,x,k1
q

2D V̂t~q,p!dq dp50.

Take Fourier inverse transform inj, we have

HS x,k1
q

2DF~ t,x,q,k!2F~ t,x,q,k!H* S x,k2
q

2D
1F1V~q,k!W~0!S t,x,k2

q

2D2W~0!S t,x,k1
q

2DF1Vt~q,k!50.

1. Distinct eigenvalue case

Since$B( j )(x,k), j 51,...,n% @defined as in~43!# spans the space kerL(x,k), we write

W~0!~ t,x,k!5as~ t,x,k!B~s!~x,k!.

In this case, we define

E~s,t !~x,q,k!5b~s!S x,k1
q

2Db~ t !* S x,k2
q

2D ,

and

D~s,t !~x,q,k!5c~s!S x,k1
q

2D c~ t !* S x,k2
q

2D .

The matricesE(s,t) andD(s,t) satisfy the bi-orthogonal relations

^D~r ,s!,E~m,n!&5dm,rdn,sf mS x,k1
q

2D f̄ nS x,k2
q

2D ,

and for every fixedx,q,k, the set$E(s,t)(x,q,k),1<s,t<n% spans the matrix space Matn(C). Thus
let

F~ t,x,q,k!5(
i , j

F ~ i , j !~ t,x,q,k!E~ i , j !~x,q,k!.

We have

F ~ i , j !~ t,x,q,k!S HS x,k1
q

2DE~ i , j !~x,q,k!2E~ i , j !~x,q,k!H* S x,k2
q

2D D
5W~0!S t,x,k1

q

2DF1Vt~q,k!2F1V~q,k!W~0!S t,x,k2
q

2D ,
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F ~ i , j !~ t,x,q,k!S l i S x,k1
q

2D2l j S x,k2
q

2D DE~ i , j !~x,q,k!

5W~0!S t,x,k1
q

2DF1Vt~q,k!2F1V~q,k!W~0!S t,x,k2
q

2D .

Multiplying by D(s,r )(x,q,k), we obtain

F ~s,r !~ t,x,q,k!S lsS x,k1
q

2D2l r S x,k2
q

2D D f sS x,k1
q

2D f̄ r S x,k2
q

2D
5 K D~s,r !~x,q,k!,W~0!S t,x,k1

q

2DF1Vt~q,k!2F1V~q,k!W~0!S t,x,k2
q

2D L
and

F~ t,x,q,k!)5

K D~s,r !~x,q,k!,W~0!S t,x,k1
q

2
DF1Vt~q,k!2F1V~q,k!W~0!S t,x,k2

q

2
D L

S lsS x,k1
q

2
D 2l rS x,k2

q

2
D 1 iu D f sS x,k1

q

2
D f̄ rS x,k2

q

2
D

3E~s,r !~x,q,k!,

where the termiu is a regularization term, eventually we will letu→0. Insert into the expansion

W~0!~ t,x,k!5as~ t,x,k!B~s!~x,k!,

we get

F ~s,r !~ t,x,q,k!5
1

l rS x,k2
q

2
D 2lsS x,k1

q

2
D 1 iu

•5 arS t,x,k2
q

2
DF1Vab~q,k!bb

~r !S x,k2
q

2
D ca

~s!S x,k1
q

2
D

f sS x,k1
q

2
D

2

asS t,x,k1
q

2
DF1Vba

t ~q,k!ca
~r !S x,k2

q

2
D bb

~s!S x,k1
q

2
D

f̄ rS x,k2
q

2
D 6 .

Let

I 15
1

~2p!n E ei ~jq1kp!K V̂~q,p!W~1!S t,x,j1
p

2
,k2

q

2D L dq dp,

I 25
1

~2p!n E ei ~jq1kp!K W~1!S t,x,j2
p

2
,k1

q

2D V̂t~q,p!L dq dp.
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From Eq.~69!, we have

K C~r !~x,k!,i S ]W~0!~ t,x,k!

]t
2

1

2
$H* ^̧ W~0!~ t !%~x,k!1

1

2
$W~0!~ t ! ^̧ H* % D L

5^C~r !~x,k!,I 1&2^C~r !~x,k!,I 2&. ~70!

From the last subsection, we know that for appropriate normalized eigenvectorsb(m)(x,k), the
left-hand side of~70! is

i S ]as~ t,x,k!

]t
2$ls ,as%~x,k! D d rsu f r~x,k!u2.

Thus, we only need to calculate^C(r ),I 1& and ^C(r ),I 2&

I 15
1

~2p!3n/2 E ei ~jq1kp!1 i ~j1p/2!q8K V̂~q,p!FS t,x,q8,k2
q

2D L dq8 dq dp

5
1

~2p!n E ei j~q1q8!(
l ,m

K F ~ l ,m!S t,x,q8,k2
q

2DF1VS q,k1
q8

2 D L E~ l ,m!S x,q8,k2
q

2Ddq8 dq.

^C~r !,I 1&

5
1

~2p!n E ei j~q1q8!(
l ,m

Cab
~r ! ~x,k!

• K F ~ l ,m!S t,x,q8,k2
q

2DF1VbdS q,k1
q8

2 D L Eda
~ l ,m!S x,q8,k2

q

2Ddq8 dq

5
1

~2p!n (
l ,m

E ei j~q1q8!

Cab
~r ! ~x,k!Eda

~ l ,m!S x,q8,k2
q

2D d~q1q8!

lmS x,k2
q

2
2

q8

2 D2l l S x,k2
q

2
1

q8

2 D1 iu

•H amS t,x,k2
q

2
2

q8

2 DF1Ra8b8bdS q,k2
q

2
,k1

q8

2 Dbb8
~m!S x,k2

q

2
2

q8

2 D ca8
~ l !S x,k2

q

2
1

q8

2 D
f l S x,k2

q

2
1

q8

2 D

2

al S t,x,k2
q

2
1

q8

2 DF1Rb8a8bdS q,k2
q

2
,k1

q

2D ca8
~m!S x,k2

q

2
2

q8

2 Dbb8
~ l !S t,k2

q

2
1

q8

2 D
f̄ mS x,k2

q

2
2

q8

2 D
3dq dq8

5(
lm

E ca
~r !~x,k!cb

~r !~x,k!bd
~ l !~x,k2q!ba

~m!~x,k!

lm~x,k!2l l~x,k2q!1 iu
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•
H am~ t,x,k!F1Ra8b8bdS q,k2

q

2
,k2

q

2Dbb
~m!~x,k!ca8

~ l !
~x,k2q!

f l~x,k2q!

2

al~ t,x,k2q!F1Ra8b8bdS q,k2
q

2
,k2

q

2D ca8
~m!

~x,k!bb8
~ l !

~ t,k2q!

f̄ m~x,k!
J dq

5(
l
E f̄ r~x,k!cb

~r !~x,k!bd
~ l !~x,q!

l r~x,k!2l l~x,q!1 iu

•
H ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2 Dbb8
~r !

~x,k!ca8
~ l !

~x,q!

f l~x,q!

2

al~ t,x,q!F1Ra8b8bdS q2k,
q1k

2
,
q1k

2 D ca8
~r !

~x,k!bb8
~ l !

~x,q!

f̄ r~x,k!
J dq

5(
l
E ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2 D
l r~x,k!2l l~x,q!1 iu

f̄ r~x,k!

f l~x,q!
ca8

~ l !
~x,q!bb8

~r !
~x,k!cb

~r !~x,k!bd
~ l !

3~x,q!dq2(
l
E al~ t,x,q!F1Ra8b8bdS q2k,

q1k

2
,
q1k

2 D
l r~x,k!2l l~x,q!1 iu

3ca8
~r !

~x,k!bb8
~ l !

~x,q!cb
~r !~x,k!bd

~ l !~x,q!dq.

Similarly

I 25
1

~2p!3n/2 E ei ~jq1kp!1 i ~j2p/2!q8K FS t,x,q8,k1
q

2D V̂t~q,p!L dq8 dq dp

5
1

~2p!n E ei j~q1q8!(
l ,m

K F ~ l ,m!S t,x,q8,k1
q

2DE~ l ,m!S x,q8,k1
q

2DF1VtS q,k2
q8

2 D L dq8 dq,

^C~r !,I 2&

5
1

~2p!n E ei j~q1q8!(
l ,m

Cab
~r ! ~x,k!Ebd

~ l ,m!S x,q8,k1
q

2D
• K F ~ l ,m!S t,x,q8,k1

q

2DF1Vda
t S q,k2

q8

2 D L dq8 dq

5
1

~2p!n (
l ,m

E ei j~q1q8!

Cab
~r ! ~x,k!Ebd

~ l ,m!S x,q8,k1
q

2D d~q1q8!

lmS x,k1
q

2
2

q8

2 D2l l S x,k1
q

2
1

q8

2 D1 iu
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•H amS t,x,k1
q

2
2

q8

2 DF1Ra8b8adS q,k1
q

2
,k2

q8

2 Dbb8
~m!S x,k1

q

2
2

q8

2 D ca8
~ l !S x,k1

q

2
1

q8

2 D
f l S x,k1

q

2
1

q8

2 D

2

al S t,x,k1
q

2
1

q8

2 DF1Ra8b8adS q,k1
q

2
,k2

q8

2 D ca
~m!S x,k1

q

2
2

q8

2 Dbb8
~ l !S x,k1

q

2
1

q8

2 D
f̄ mS x,k1

q

2
2

q8

2 D J
3dq8 dq

5(
l ,m

E ca
~r !~x,k!cb

~r !~x,k!bb
~ l !~x,k!bd

~m!~ t,k1q!

lm~x,k1q!2l l~x,k!1 iu

•
H am~ t,x,k1q!F1Ra8b8adS q,k1

q

2
,k1

q

2Dbb8
~m!

~x,k1q!ca8
~ l !

~x,k!

f l~x,k!

2

al~ t,x,k!F1Ra8b8adS q,k1
q

2
,k1

q

2D ca8
~m!

~x,k1q!bb8
~ l !

~x,k!

f̄ m~x,k1q!
J dq

5(
m

E f r~x,k!ca
~r !~x,k!b~m!

d~x,q!

lm~x,q!2l r~x,k!1 iu

•
H am~ t,x,q!F1Ra8b8adS q2k,

k1q

2
,
k1q

2 Dbb8
~m!

~x,q!ca8
~r !

~x,k!

f r~x,k!

2

ar~ t,x,k!F1Ra8b8adS q2k,
k1q

2
,
k1q

2 D ca8
~r !

~x,q!bb8
~r !

~x,k!

f̄ m~x,q!
J dq

5(
l
E f r~x,k!cb

~r !~x,k!bd
~ l !~x,q!

l r~x,k!2l l~x,q!2 iu

•
H ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2 D ca8
~ l !

~x,q!bb8
~r !

~x,k!

f̄ l~x,q!

2

al~ t,x,q!F1Ra8b8bdS q2k,
k1q

2
,
k1q

2 D ca8
~r !

~x,k!bb8
~ l !

~x,q!

f r~x,k!
J dq
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5(
l
E ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2 D
l r~x,k!2l l~x,q!2 iu

f r~x,k!

f̄ l~x,q!
ca8

~ l !
~x,q!bb8

~r !
~x,k!cb

~r !~x,k!bd
~ l !

3~x,q!dq2(
l
E al~ t,x,q!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2 D
l r~x,k!2l l~x,q!2 iu

3ca8
~r !

~x,k!bb8
~ l !

~x,q!cb
~r !~x,k!bd

~ l !~x,q!dq,

where we have used the symmetric property~63! for F1R in the last equality. Therefore,

^C~r !,I 1&2^C~r !,I 2&5(
l
E ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2
D ReF f r~x,k!

f̄ l~x,q!
ca8

~ l !
~x,q!bb8

~r !

3~x,k!cb
~r !~x,k!bd

~ l !~x,k!G 2iu

~l r~x,k!2l l~x,q!!21u2
dq

2 i(
l
E ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2
D ImF f r~x,k!

f̄ l~x,q!
ca8

~ l !

3~x,q!bb8
~r !

~x,k!cb
~r !~x,k!bd

~ l !~x,k!G 2~l r~x,k!2l l~x,q!!

~l r~x,k!2l l~x,q!!21u2
dq

2(
l
E al~ t,x,q!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2
D ca8

~r !
~x,k!bb8

~ l !
~x,q!cb

~r !

3~x,k!bd
~ l !~x,k!

2iu

~l r~x,k!2l l~x,q!!21u2
dq,

asu→0, u/y21p2→pd(y), we have

^C~r !,I 1&2^C~r !,I 2&→2p i(
l
E ar~ t,x,k!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2
D

•ReF f r~x,k!

f̄ l~x,q!
ca8

~ l !
~x,q!bb8

~r !
~x,k!cb

~r !~x,k!bd
~ l !~x,k!Gd~l r~x,k!

2l l~x,q!!dq22i(
l
E ar~ t,x,k!

F1Ra8b8bdS q2k,
k1q

2
,
k1q

2
D

l r~x,k!2l l~x,q!

•ImF f r~x,k!

f̄ l~x,q!
ca8

~ l !
~x,q!bb8

~r !
~x,k!cb

~r !~x,k!bd
~ l !~x,k!Gdq

22p i(
l
E al~ t,x,q!F1Ra8b8bdS q2k,

k1q

2
,
k1q

2
D •ca8

~r !
~x,k!bb8

~ l !
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3~x,q!cb
~r !~x,k!bd

~ l !~x,q!d~l r~x,k!2l l~x,k!!dq,

where the integration over terms involving 1/(l r(x,k)2l l(x,q)) is in certain principal value
sense when singularity occurs. Let

s rl ~x,k,q!52pF1Ra8b8bdS q2k,
k1q

2
,
k1q

2 D ca8
~r !

~x,k!bb8
~ l !

~x,q!cb
~r !~x,k!bd

~ l !~x,q!

u f r~x,k!u2

•d~l l~x,q!2l r~x,k!!

S r52pE (
l

ReF ca8
~ l !

~x,q!bb8
~r !

~x,k!cb
~r !~x,k!bd

~ l !~x,q!

f̄ l~x,q! f̄ r~x,k!
G

•F1Ra8b8bdS q2k,
k1q

2
,
k1q

2
D d~l l~x,q!2l r~x,k!!dq

22E (
l

ImF ca8
~ l !

~x,q!bb8
~r !

~x,k!cb
~r !~x,k!bd

~ l !~x,q!

f̄ l~x,q! f̄ r~x,k!
G F1Ra8b8bdS q2k,

k1q

2
,
k1q

2
D

l l~x,q!2l r~x,k!
dq,

then we have the following proposition:
Proposition 9:The transport equations for the coefficientsar are

]ar~ t,x,k!

]t
1$ar~ t !,l r%~x,k!5E s r j ~x,k,q!aj~ t,x,q!dq2S rar~ t,x,k!. ~71!

2. Multiple eigenvalue case

Now we turn to the multiple eigenvalue case. In this case, we define the matrices

El ,m
~s,r !~x,q,k!5b~sl!S x,k1

q

2Db~rm!* S x,k2
q

2D
Dl ,m

~s,r !~x,q,k!5c~sl!S x,k1
q

2D c~rm!* S x,k2
q

2D .

The matricesEl ,m
(s,r ) andDl ,m

(s,r ) satisfy the following double bi-orthogonal relations

^Dl ,m
~s,r ! ,Ep,t

~s,r !&5dspd rtd l i dm jf l
~s!S x,k1

q

2D f̄ m
~r !S x,k2

q

2D ,

where

~c~sl!~x,k!,b~sl!~x,k!!5 f l
~s!~x,k!.

For every fixedx,q,k, the set of allEl ,m
(s,r )(x,q,k) spans the space Matn(C). This allows us to

expressF asF5(Fl ,m
(s,r )El ,m

(s,r ) whereF is the Fourier transform ofW(1) in fast variablej. Similar
to the calculations in the case of distinct eigenvalue, we have from~67! and the expansion

W~0!5( ai j
s Bi j

s . ~72!
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The coefficients ofF in the basis of$El ,m
(s,r )% are

Fl ,m
~s,r !~ t,q,k!5

1

lsS k1
q

2
D 2l rS k2

q

2
D 1 iu

35 (
j

a l j
~s!S t,k1

q

2
D

f̄ m
~r !S k2

q

2
D F1Vab~q,k!ca

~rm!S k2
q

2
D bb

~s j!S k1
q

2
D

2(
j

a jm
~r !S t,k2

q

2
D

f l
~s!S k1

q

2
D F1Vab~q,k!cr

~sl!S k1
q

2
D bb

~r j !S k2
q

2
D 6 . ~73!

From ~69!, we have

K Clm
~p! ,i S ]W~0!~ t !

]t
2

1

2
$H ^̧ W~0!~ t !%1

1

2
$W~0!~ t ! ^̧ H* % D L 5^Clm

~p! ,I 1&2^Clm
~p! ,I 2&. ~74!

From the last section, we know that the left-hand side of the above equation is

i S ]A~p!

]t
2$lp ,A~p!%1A~p!M ~p!2M ~p!* A~p!D f l

~p! f̄ m
~p! . ~75!

Thus, we only need to calculate^Clm
(p) ,I 1& and^Clm

(p) ,I 2&. After some tedious calculations, we hav

^Clm
~p! ,I 1&5E (

s, j

F1Ra8b8abS q,
k1q

2
,
k1q

2 D
ls~q!2lp~k!1 iu S (

h
ajh

~s!~q!ca8
~pm!

~k!bb8
~sh!

~q!ca
~pl !~k!bb

~s j!~q!

2(
n

an,m
~p! ~k!

f̄ m
~p!~k!

f j
~s!~q!

ca8
~s j!

~q!bb8
~pn!

~k!ca
~pl !~k!bb

~s j!~q!D dq ~76!

and

^Clm
~p! ,I 2&5E (

s, j

F1Ra8b8abS q,
k1q

2
,
k1q

2
D

ls~q!2lp~k!2 iu S (
h

ajh
~s!~q!ca8

~pm!
~k!bb8

~sh!
~q!ca

~pl !~k!bb
~s j!~q!

2(
n

al ,n
~p!~k!

f l
~p!~k!

f̄ j
~s!~q!

ca8
~s j!

~q!bb8
~pn!

~k!ca
~pm!~k!bb

~s j!~q!D dq. ~77!

On the right-hand side of the above equations, the sum overs runs all eigenvaluesls , j runs from
1 to multiplicity of ls ,n runs from 1 to multiplicity oflp . From ~74!, ~75!, ~76!, and ~77!, we
have

Proposition 10:The coherence matricesA(p)(t,x,k) satisfy the following Liouville type trans-
port equation:
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]A~p!~ t !

]t
1$A~p!~ t !,lp%1A~p!~ t !M ~p!2M ~p!* A~p!~ t !

52pE (
s

s~p,s!~A~s!~ t !!dq1 i ~S~p!A~p!2A~p!S~p!!2L~p! diagA~p!, ~78!

where

s~p,s!~A~s!~ t !!5F1Ra8b8abS q,
k1q

2
,
k1q

2 Dsaa8
~p!

~k!^sbb8
~s!

~q!,A~s!~ t,q!&,

in which the matrices are

sbb8
~s!

~q!5~sbb8, jh
~s!

~q!! with sbb8, jh
~s!

~q!5bb
~s j!~q!bb8

~sh!
~q!,

saa8
~p!

~k!5~saa8,lm
~p!

~k!! with saa8,lm
~p!

~k!5
ca8

~pm!
~k!ca

~pl !~k!

f l
~p!~k! f̄ m

~p!~k!
,

and where

S~p!~k!5~S lm
~p!~k!! with S lm

~p!~k!

5E (
s, j

F1Ra8b8abS q,
k1q

2
,
k1q

2 D
ls~q!2lp~k!

ca8
~s j!

~q!bb8
~pm!

~k!ca
~pl !~k!bb

~s j!~q!

f l
~p!~k! f j

~s!~q!
dq,

L~p!~k!5diag~t1
~p! ,...,t r

~p!! with t l
~p!~k!52pE Ss, jF1Ra8b8abS q,

k1q

2
,
k1q

2 D
•ReS ca8

~s j!
~q!bb8

~pm!
~k!ca

~pl !~k!bb
~s j!~q!

f l
~p!~k! f j

~s!~q!
D d~ls~q!2lp~k!!dq,

diagA~p!5diag~a11
~p! ,...,arr

~p!!.

In particular,

s~p,s!5F1Ra8b8abS q,
k1q

2
,
k1q

2 Dsaa8
~p!

~k! ^ sbb8
~s!

~q!,

wherer is the multiplicity of lp .
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Let V,R3 be a bounded simply connected obstacle with boundary]V locally
Lipschitz, we consider the scattering of a time harmonic electromagnetic wave that
hits V when]V is assumed to be perfectly conducting. The scattered electromag-
netic field is the solution of an exterior boundary value problem for the vector
Helmholtz equation. Under suitable hypotheses we prove the existence and unique-
ness of the solution of this boundary value problem and we give a new numerical
method to compute this solution. The numerical method proposed is based on a
perturbative series and is highly parallelizable. Some numerical results obtained
with the numerical method proposed on test problems are presented and discussed
from the numerical and the physical point of view. ©1999 American Institute of
Physics.@S0022-2488~99!03409-X#

I. INTRODUCTION

Let R be the set of real numbers,R3 be the three dimensional real Euclidean space anxI
5(x1,x2,x3)

TPR3 be a generic vector, where the superscriptT denotes the transposition operatio
For xI ,yI ,zIPR3 we denote with (xI ,yI ) the Euclidean scalar product ofxI and yI , with ixI i the
Euclidean vector norm ofxI , with @xI ,yI # the Euclidean vector product ofxI andyI , and with (xI ,yI ,zI )
the usual triple product, that is (xI ,yI ,zI )5(@xI ,yI #,zI ). Let C be the set of complex numbers forz
PC we denote withz̄ the complex conjugate ofz, with uzu the modulus ofz and with Rez, Im z the
real and imaginary part ofz, respectively. LetC3 be the three-dimensional complex vector spa
andwI 5(w1 ,w2 ,w3)TPC3 be a generic vector. In the following the symbols~.,.!, @.,.# will be used
also with complex vectors as arguments, in this case we denote, respectively, the real Eu

product and the real Euclidean vector product of complex vectors. LetA,R3 be an open set,Ā be
the closure ofA, we denote withAc the setAc5R3\Ā. Let V,R3 be an open bounded simpl
connected set, we say thatV is of classC0,1 if the boundary ofV, ]V, is a locally Lipschitz
boundary, that is each pointxI on the boundary ofV has a neighborhoodUxI such that]VøUxI is
the graph of a Lipschitz continuous function. LetnI (xI ) be the outward unit normal vector to]V.

a!Electronic mail: recchioni@posta.econ.unian.it; Tel:13917112207056; Fax:13917112207058.
b!Electronic mail: f.zirilli@caspur.it; Tel:13916149913282; Fax:13916144701007.
48590022-2488/99/40(10)/4859/29/$15.00 © 1999 American Institute of Physics
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We note that whenV is of classC0,1 the outward unit normal vector exists almost everywhere
]V ~see Ref. 1 Lemma 2.4.2 page 88!. Let gI (xI )5(g1(xI ),g2(xI ),g3(xI ))T be a complex-valued
vector field defined on]V tangential to]V, that is such that (gI (xI ),nI (xI ))50 almost everywhere
for xI P]V. Let VPC0,1 and gI (xI ) be a tangential vector field defined on]V, we consider the
following boundary value problem for the vector Helmholtz equation:

~D1k2!EI ~xI !50I , xI PVc ~1.1!

div EI ~xI !50, xI PVc ~1.2!

@nI ,EI #~xI !5gI ~xI !, xI P]V ~1.3!

and

@curlEI ~xI !,xÎ #2 ikEI ~xI !5oS 1

ixI i D , ixI i→` ~1.4!

where 0I 5(0,0,0)T, xÎ 5x/ixI i for xI Þ0I , ando(•) is the Landau symbol. The complex constank
is the wave number, later we assume either Imk.0 or Imk50 and Rek.0. MoreoverEI (xI )
5(E1(xI ),E2(xI ),E3(xI ))T, div EI (xI)5(j51

3 (]Ej /]xj)(xI), D(•)5( j 51
3 ]2(•)/]xj

2, DEI (xI )
5(DE1(xI ),DE2(xI ),DE3(xI ))T, and curlEI (xI )5((]E3 /]x2)(xI )2(]E2 /]x3)(xI ),(]E1 /]x3)(xI )
2(]E3 /]x1)(xI ),(]E2 /]x1)(xI )2(]E1 /]x2)(xI ))T.

We consider a time harmonic electromagnetic field that hits the surface]V of the obstacleV.
Let EI i(xI ), xI PVc, be the part dependent from the spatial coordinatesxI of the incident electric
field. In the following we callEI i(xI ) incident electric field. We assume that the medium t
surrounds the obstacleV is a homogeneous isotropic medium that does not contain free ele
charges, and that the incident electric fieldEI i satisfies~1.1! and~1.2! in R3. Let EI s(xI ), xI PVc, be
the electric field scattered by the perfectly conducting surface]V when hit byEI i(xI ). To be precise
EI s(xI ) is only the part depending from the spatial coordinates of the scattered electric field.
the scattered fieldEI s is solution of the boundary value problem~1.1!, ~1.2!, ~1.3!, and~1.4! where
the functiongI (xI ) appearing in~1.3! is given by~see Ref. 2 page 121!:

gI ~xI !52@nI ,EI i #~xI !, xI P]V. ~1.5!

In this paper we study the problem of the existence and uniqueness of the solution of pr
~1.1!, ~1.2!, ~1.3!, and~1.4! and we propose a new numerical method to compute it. First of al
prove that under some hypotheses the following formula for the vector fieldEI solution of ~1.1!,
~1.2!, ~1.3!, and~1.4! holds:

EI ~xI !5
eikixI i

4pixI i (
n50

`
EI ~n!~xÎ !

ixI in , ixI i>R ~1.6!

whereEI (n)(xÎ ), n50,1,2,... are appropriate coefficients of the series expansion~1.6! andR is the
radius of a sphere that containsV̄. The leading termEI (0)(xÎ ) of the series~1.6! is called far field
pattern associated toEI (xI ). Then through the solution of some auxiliary problems we reformu
the boundary value problem~1.1!, ~1.2!, ~1.3!, and~1.4! as a system of integral equations. That
we reduce problem~1.1!, ~1.2!, ~1.3!, and~1.4! to the following system of integral equations:

~ I 1t! fI5FI , ~1.7!

where the vector functionsfI ,FI belong to a Hilbert space,I is identity operator andt is a compact
operator acting on the Hilbert space. GivenFI we prove existence and uniqueness for the solut
of ~1.7! using the Riesz theory for compact operators. This implies the claimed existence res
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the solution of~1.1!, ~1.2!, ~1.3!, and ~1.4!. The uniqueness result follows from~1.6! and the
assumption on the wave numberk. We note that our existence and uniqueness theorem hold
VPC0,1, that is when]V is only locally Lipschitz, while the usual existence and uniquen
theorems assume more regularity for]V. For example, when]V is assumed to be of classC2 the
existence and the uniqueness of the solution of the boundary value problems for the Hel
equation or for the vector Helmholtz equation can be proved reducing the boundary value
lems to boundary integral equations and applying the Riesz–Fredholm theory for co
operators.2 In fact the operators involved in these boundary integral equations are compact o
tors acting on the normed space of complex valued continuous functions defined on]V. When]V
is only Lipschitz continuous reducing the boundary value problems to boundary integral equ
leads to integral equations with singular kernels that are not easy to solve. The study o
potentials and of boundary value problems in the Lipschitz case goes back to Refs. 3 and 4
then it has become an active research field, we mention only Ref. 5 for the study of the La
equation, Ref. 6 for the study of the time harmonic Maxwell equations, and Ref. 7 for a surv
the subject.

We deal with the same difficult, i.e.,]V only locally Lipschitz, when we prove the existenc
of the solution of the boundary value problem~1.1!, ~1.2!, ~1.3!, and~1.4! for the vector Helmholtz
equation. We overcome the difficulty avoiding layer potentials and singular integral operato
fact the integral equations~1.7! involves compact integral operators and can be treated u
Riesz–Fredholm theory. However, the functionsf andF appearing in~1.7! are not defined on]V
as it will be the case if we had used a boundary integral method but are defined on an a
surroundingV, that is we consider a kind of volume potentials. In the Lipschitz case the us
layer potentials and boundary integral methods to establish the existence of the solution
elliptic boundary value problems is based on several deep results in analysis. In the case
boundary value problem~1.1!, ~1.2!, ~1.3!, and~1.4! our approach establishes the existence of
solution using only elementary results in functional analysis.

Without loss of generality we can assume thatV contains the origin. Leta.0 be a constant,
Ba5$xI PR3/ixI i,a% be the sphere of radiusa and center the origin and let]Ba be its boundary.
In the following B1 and]B1 will be denoted also withB and]B. The setV contains the sphere
B̄a for somea.0. Let (r ,u,f) be the canonical spherical coordinates ofxI PR3, for xI Þ0I , we
have

xÎ ~u,f!5
xI

ixI i 5~sinu cosf,sinu sinf,cosu!T, ~1.8!

where 0<u<p, 0<f,2p.
In order to introduce a new numerical method to compute the vector fieldEI (xI ) solution of the

boundary value problem~1.1!, ~1.2!, ~1.3!, and~1.4!, we assume that

V5$xI 5rxÎ PR3/0<r ,j~xÎ !,xÎ P]B%, ~1.9!

wherej is a single valued sufficiently regular function defined on]B. So that

]V5$xI 5rxÎ PR3/r 5j~xÎ !,xÎ P]B% ~1.10!

is a starlike surface with respect to the origin, that is the boundary of the obstacle]V can be
represented by a single valued function in spherical coordinates. We note that the cho
spherical coordinates is not essential and that our numerical method can be developed fo
coordinate systems. The numerical method introduced here is based on a formalism that g
izes the formalism introduced by Milder in Refs. 8 and 9 to study the scattering of acoustic w
from a rough unbounded surface that divides the three-dimensional space in two ‘‘disturbed
spaces and further developed by Milder10 and by Piccolo, Recchioni, and Zirilli11 to electromag-
netic scattering from unbounded perfectly conducting surfaces of the previous type and by S12

to the scattering of electromagnetic waves from dielectric surfaces. Later Misici, Pacelli
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Zirilli 13 have generalized Milder’s formalism to the scattering of acoustic waves from a bou
obstacle. The numerical method introduced here simplifies the original Milder’s formalism
avoids the need to obtain@nI ,curlEI #(xI ), xI P]V from the knowledge of@nI ,EI #(xI ), xI P]V. This
simplification gives a substantial reduction in the computational cost of the method prop
Similar simplified Milder’s methods can be developed for the acoustic and electromagnetic
lems considered in the previously mentioned papers. The numerical method proposed he
structs the vector fieldEI solution of ~1.1!, ~1.2!, ~1.3!, and ~1.4! on Vc from the knowledge of
@nI ,EI # on ]V. Let

F~xI ,yI !5
eikixI 2yI i

4pixI 2yI i ~1.11!

be the fundamental solution of the Helmholtz equation inR3 with the Sommerfeld radiation
condition at infinity. We assume forEI (xI ) solution of ~1.1!, ~1.2!, ~1.3!, and ~1.4! the following
representation formula:

EI ~xI !5curlxIE
R3

F~xI ,yI !vI ~yÎ !d~ iyI i2a!dyI , ~1.12!

where curlxI is the curl operator with respect to thexI variable,vI (yÎ ) is a suitable vector density
function andd(iyI i2a) is a ‘‘Dirac’s delta’’ concentrated on]Ba , finally remember thata.0 is

chosen such thatB̄a,V. We obtain forvI and consequently forEI (xI ) and its associated far field
patternEI (0)(xÎ ), a formal series expansion in ‘‘powers’’ ofdj5j21 where 1 represents th
boundary of the unit sphere whose surface is assumed as reference surface, that is as ‘‘bas
of the ‘‘power series expansion.’’ We note that the surface of the unit sphere is chos
reference surface only for convenience. A similar formal ‘‘power’’ series expansion forEI (xÎ ) or
EI (0)(xÎ ) can be obtained when more general surfaces are used as reference surfaces. The
the series expansion in ‘‘powers’’ ofdj are integrals independent one from the other that can
computed in parallel. So that the efficiency of the numerical method proposed here is due
highly parallelizable structure. Finally we present some numerical experience on test pro
where the incident field is a plane linearly polarized time harmonic wave. When the domaV
PC0,1 is bounded with smooth boundary we compare the far field patternsEI (0)(xÎ ) obtained with
the method proposed here with those obtained with theT-matrix method~see Ref. 14!.

This comparison shows that the two methods give similar results. Moreover we compu
far field patternEI (0)(xÎ ) of the scattered field solution of the boundary value problem~1.1!, ~1.2!,
~1.3!, and ~1.4! when V is a domain with locally Lipschitz boundary or with smooth bounda
with multiscale corrugations. The obstacles with locally Lipschitz boundary that we conside
polyhedra. The relation between the geometry~i.e., facets, edges, vertices! of the surface of a
polyhedron and the corresponding far field pattern is investigated~see Figs. 6 and 7!. The ob-
stacles with multiscale corrugations are represented by ‘‘corrugated’’ spheres~see Figs. 2 and 3!.
When the obstacle is a corrugated sphere we show that for some special values of the
numberk there is a ‘‘resonance phenomenon’’ due to the corrugation~see Figs. 4 and 5!.

In Sec. II we prove formula~1.6! and we prove the existence and uniqueness theorem fo
solution of the boundary value problem~1.1!, ~1.2!, ~1.3!, and ~1.4!. In Sec. III we describe the
numerical method proposed to compute the solutionEI (xI ) of ~1.1!, ~1.2!, ~1.3!, and~1.4! and we
give the ‘‘power’’ series expansion in powers ofdj5j21 of EI (xI ) and of the associated far fiel
patternEI (0)(xÎ ). Finally in Sec. IV the method developed in Sec. III is applied to some
electromagnetic scattering problems, some numerical results are shown and their physical m
illustrated.
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II. AN EXISTENCE AND UNIQUENESS THEOREM FOR THE SOLUTION OF A
BOUNDARY VALUE PROBLEM FOR THE VECTOR HELMHOLTZ EQUATION

Let A#R3 be an open set, letCk(A), k50,1,2,..., be the space of real- or complex-valu
k-times continuously differentiable functions inA and letC0

k(A) be the space of functions belong
ing to Ck(A) with compact support inA. We denote withC`(A) the space of real- or complex
valued infinitely continuously differentiable functions defined inA, and withC0

`(A) the space of
functions inC`(A) with compact support inA.

Let Lp(A), 1<p<`, be the usual Lebesgue space of indexp of complex valued functions
We denote withi•ip the Lp(A) norm and with i•i` the L`(A) norm. Let a i , i 51,2,3 be
non-negative integers andaI 5(a1 ,a2 ,a3)T be a multi-index, we denote withuaI u5S i 51

3 a i the
length of aI . Let m be a non-negative integer andWm,p(A) be the space of the functionsu
PLp(A) such thatDaI uPLp(A) for any multi-index aI such that 0<uaI u<m, where DaI u
5(]a1/]x1

a1)(]a2/]x2
a2)(]a3/]x3

a3)u denotes the weak derivative ofu of order given by the multi-
index aI . We denote withi•im,p the norm ofWm,p(A) that is

iuim,p5H (
0<uaI u<m

iDaI uip
pJ 1/p

, 1<p,`, uPWm,p~A!, ~2.1!

iuim,`5 max
0<uaI u<m

iDaI ui` , uPWm,`~A!. ~2.2!

Let W m,p(A) be the space of functions defined onA such thatuPWm,p(AùU) for any open set
U such thatŪ is compact andAùU is not empty.

Let

~Lp~A!!35$EI 5~E1 ,E2 ,E3!T/EiPLp~A!,i 51,2,3%, ~2.3!

~Wm,p~A!!35$EI 5~E1 ,E2 ,E3!T/EiPWm,p~A!,i 51,2,3%. ~2.4!

In a similar way we define (W m,p(A))3 and the other product spaces that appear in the follow
The scalar products on (L2(A))3 and (Wm,2(A))3 are given by

~EI ,FI !~L2!35(
i 51

3 E
A
EiF̄ i dxI 5E

A
~EI ,FĪ !dxI ,;EI ,FI P~L2~A!!3, ~2.5!

~EI ,FI !~Wm,2!35(
i 51

3

(
0<uau<m

E
A
DaI Ei DaI Fi dxI

5 (
0<uaI u<m

E
A
~DaI EI ,DaI FI !dxI ,;EI ,FI P~Wm,2~A!!3. ~2.6!

Let U,R3 be a bounded open set with locally Lipschitz boundary]U and letuPW1,2(U), from
Theorem 4.2, page 84 of Ref. 1 we have that the trace ofu on ]U, uu]U , belongs toL2(]U). In
the following in order to simplify the notation instead ofuu]U we continue to useu to denote the
trace ofu on ]U.

Lemma 2.1:Let U be as above and letu,vPW1,2(U), we have

E
U

v
]u

]xi
dxI 5E

]U
vuni ds2E

U
u

]v
]xi

dxI , i 51,2,3, ~2.7!

whereds denotes the surface measure on]U and nI (xI )5(n1(xI ),n2(xI ),n3(xI ))T is the outward
unit normal vector to]U in xI P]U.

Proof: See Ref. 1, page 121, Theorem 1.1. j
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Lemma 2.2:Let U be as above and letuPW2,2(U),vPW1,2(U), then

(
i 51

3 E
U

v
]2u

]xi
2 dxI 5(

i 51

3 E
]U

v
]u

]xi
ni ds2(

i 51

3 E
U

]u

]xi

]v
]xi

dxI . ~2.8!

Proof: The proof follows from Lemma 2.1 applied to the functions]u/]xiPW1,2(U), i
51,2,3, andvPW1,2(U). j

Moreover when vector functions are considered we have
Theorem 2.3: Let U be as above and letEI P(W1,2(U))3, FI P(W2,2(U))3 be two vector

functions; we have

E
U
$~EI ,DFI !1~curlEI ,curlFI !1div EI div FI %dxI

5E
]U

$~nI ,EI ,curlFI !1~nI ,EI !div FI %ds. ~2.9!

Proof: Formula~2.9! is the so-called vector Green’s formula and follows immediately fr
the scalar Green’s formulas~2.7! and ~2.8!. j

Lemma 2.4: Let kP$zPC / Im z.0%ø$zPC / Rez.0,Imz50%, VPC0,1, and let u
PW2,2(Vc) be a solution of the scalar Helmholtz equation

Du1k2u50, xI PVc ~2.10!

satisfying the Sommerfeld radiation condition at infinity:

S xI

ixI i ,¹uD2 iku5oS 1

ixI i D , ixI i→`, ~2.11!

where¹5(]/]x1 ,]/]x2 ,]/]x3)T is the gradient operator, and letR.0 be such thatBR.V̄. Then
u has an expansion on the form

u~xI !5
eikixI i

4pixI i (
n50

`
u~n!~xÎ !

ixI in , ixI i>R, ~2.12!

whereu(n)(xÎ ), n50,1,2,... are suitable functions.
Proof: We note that ifuPW2,2(Vc) for the coupleu(xI ), v(xI )51 Green’s formula~2.8! holds

in VcùU, for any open setU with locally Lipschitz boundary and such thatŪ is compact and
U.V̄ so that we can proceed as in Ref. 2, Theorem 3.6, page 72. j

Theorem 2.5: Let k be as in Lemma 2.4, letEI P(W2,2(Vc))3 be a solution of the vecto
Helmholtz equation satisfying the radiation condition~1.4! and letR.0 be such thatBR.V̄.
ThenEI has an expansion on the form

EI ~xI !5
eikixI i

4pixI i (
n50

`
EI ~n!~xÎ !

ixI in , ixI i>R, ~2.13!

whereEI (n)(xÎ ), n50,1,2,... are suitable functions.
Proof: We observe that the Cartesian components ofEI 5(E1 ,E2 ,E3)T satisfy the scalar

Helmholtz equation and the Sommerfeld radiation condition at infinity, therefore we can
Lemma 2.4 withu5Ei , i 51,2,3 and we obtain~2.13!. j

Lemma 2.6:Let k be real and positive and letuPW2,2(Vc) be a solution of the scala
Helmholtz equation satisfying the Sommerfeld radiation condition at infinity such that
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lim
R→1`

E
]BR

uuu2ds50, ~2.14!

whereds denotes the surface measure on]BR thenu50 in Vc.
Proof: The proof follows using~2.12! and arguing as in Ref. 2, Lemma 3.11, page 77.j
Theorem 2.7: (Uniqueness):Let k be as in Lemma 2.4,VPC0,1, gI P(L2(]V))3 and let

EI ,FI P(W2,2(Vc))3 be two solutions of the boundary value problem~1.1!, ~1.2!, ~1.3!, and~1.4!.
ThenEI 5FI in (W2,2(Vc))3.

Proof: We consider the vector functionWI 5EI 2FI . The functionWI satisfies the homogeneou
problem:

~D1k2!WI ~xI !50I , xI PVc ~2.15!

div WI ~xI !50, xI PVc ~2.16!

@nI ,WI #~xI !50I , xI P]V ~2.17!

@curlWI ~xI !,xÎ #2 ikWI ~xI !5oS 1

ixI i D , ixI i→`. ~2.18!

From ~2.18! follows that

lim
R→`

E
]BR

(
j 51

3 UFcurlWI ,
xI

ixI i G
j

2 ikWjU2

ds50, ~2.19!

where@curlWI ,xI /ixI i # j , denotes thejI component of@curlWI ,xI /ixI i # j 51,2,3. From standard ar
guments using Lemma 2.6 we obtainWI 50I in Vc, thereforeEI 5FI in (W2,2(Vc))3. j

Let U be an open bounded set with locally Lipschitz boundary]U, K(U) be the vector
subspace of (L2(U))3 defined by

K~U !5$EI P~W2,2~U !!3: div EI 50 on ]U and @EI ,nI #50I on ]U%. ~2.20!

We note that forEI P(W2,2(U))3 the trace operatorsEI →(div EI )u]U and EI →@EI ,nI #u]U are linear
bounded operators from (W2,2(U))3 to L2(]U) and from (W2,2(U))2 to (L2(]U))3, respectively
~see Ref. 1, Theorem 4.2, page 84!.

Definition 2.8:Let

T: K~U !,~L2~U !!3→~L2~U !!3 ~2.21!

be the linear differential operator defined by

TEI 52DEI 5~2DE1 ,2DE2 ,2DE3!T, EI PK~U !. ~2.22!

Theorem 2.9: The linear operatorT: K(U),(L2(U))3→(L2(U))3 defined by ~2.22! is
closed, symmetric and non-negative.

Proof: The thesis follows using Theorem 2.3, formula~2.8! and from standard arguments.j

Theorem 2.10:The linear operatorT given in Definition 2.8 is self-adjoint.
Proof: The proof follows with an easy computation applying the vector Green’s form

~2.9!. j

We have
Theorem 2.11:Let C,R3 be an open cube, letK(C) be defined as in~2.20!, the spectrum of

the operator
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T: K~C!,~L2~C!!3→~L2~C!!3 ~2.23!

defined in Definition 2.8 is discrete.
Proof: Without loss of generality we can restrict our attention to the unit cubeC15$xI

PR3 : 0,xi,1, i 51,2,3%.
The eigenvalue problem forT becomes

~D1l2!EI ~xI !50I , xI PC1 ~2.24!

div EI ~xI !50, xI P]C1 ~2.25!

@nI ,EI #~xI !50I , xI P]C1 . ~2.26!

We seek the values of the parameterl2 such that problem~2.24!, ~2.25!, and ~2.26! have a
nonzero solutionEI (xI )PK(C1),(L2(C1))3.

The eigenvalue problem~2.24!, ~2.25!, and~2.26! is easily solved by separation of variable
The eigenvalues ofT are

lm,n,p
2 5~m21n21p2!p2, m,n,p51,2,..., ~2.27!

and it is easy to see that the corresponding eigenfunctions are a complete system in (L2(C1))3 and
the eigenvalues are isolated points of the spectrum and have finite multiplicity. Hence the
trum of the operatorT is discrete. Letm (k) be thekth eigenvalue when the eigenvalues in~2.27!
are reordered in increasing order, we have limk→` m (k)5`. j

Theorem 2.12:Let VPC0,1, C,R3 be an open cube such thatV̄,C and letV5VcùC. Let
K(V) be defined as in~2.20! then the operatorT:

T: K~V!,~L2~V!!3→~L2~V!!3 ~2.28!

defined in~2.22! has discrete spectrum.
Proof: Given EI P(L2(V))3 we define the vector functionEĨ

EĨ ~xI !5H EI ~xI !, xI PV

0I , xI PV̄.
~2.29!

Let QC be the quadratic form associated to the operatorT on K(C) andD(QC) be its domain, in
a similar way letQV be the quadratic form associated to the operatorT on K(V) andD(QV) be its
domain. WhenEI PD(QV) we have thatEĨ given by ~2.29! belongs toD(QC) moreover we have
QV(EI ,EI )5QC(EĨ ,EĨ ). Hence from Theorem 2.11 and from Theorem XIII.2, page 78,15 the opera-
tor T: K(V),(L2(V))3→(L2(V))3 has discrete spectrum. j

Let us consider now the boundary value problem~1.1!, ~1.2!, ~1.3!, and ~1.4! for the vector
Helmholtz equation. We begin with some preliminary results.

Theorem 2.13:Let k be as in Lemma 2.4,VPC0,1 and letEI P(W2,2(Vc))3 be a solution of
the vector Helmholtz equation~1.1! that verifies the radiation condition~1.4! and the boundary
condition

div EI ~xI !50, xI P]V, ~2.30!

then we have

div EI ~xI !50, xI PVc. ~2.31!
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Proof: SinceEI is solution of the vector Helmholtz equation andEI satisfies condition~1.4!, we
have thatu5div EI verifies the scalar Helmholtz equation~2.10! and the Sommerfeld radiatio
condition at infinity~2.11!. Moreover, we have assumed thatu5div EI 50 on ]V.

Let R.0 be such thatV̄,BR , from ~2.8! applied to the domainVcùBR and the radiation
condition ~2.11! sinceu50 on ]V we have

lim
R→`

H E
]BR

FU]u

]nI U
2

1uku2uuu2Gds12 ImkE
VcùBR

F uku2uuu21(
i 51

3 U ]u

]xi
U2GdxI J 50,

hence if Imk.0 we have

lim
R→`

E
VcùBR

uuu2 dxI 50,

that isu50 in Vc, if Im k50 and Rek.0 we have

lim
R→`

E
]BR

uuu2 ds50

so that from Lemma 2.6, we can concludeu50 in Vc. j

Now we reformulate problem~1.1!, ~1.2!, ~1.3!, and~1.4! in precise mathematical form, tha
is we state the hypotheses on the vector fieldgI (xI ) appearing in the boundary condition~1.3! and
declare the functional class where we seek the solution of the problem considered.

Problem 2.1:Let k be as in Lemma 2.4,VPC0,1, we seek a vector fieldEI P(W 2,2(Vc))3

such that

~D1k2!EI ~xI !50I , xI PVc ~2.32!

div EI ~xI !50, xI P]V ~2.33!

@nI ,EI #~xI !5DI ~xI !, xI P]V ~2.34!

and

@curlEI ~xI !,xÎ #2 ikEI ~xI !5oS 1

ixI i D , ixI i→` ~2.35!

where EI P(L2(]V))3 is a given vector field and there existsGI 5(G1 ,G2 ,G3)TP(W2,2(R3))3

such that

~ i! div GI ~xI !50, xI P]V

~ ii ! DI ~xI !5@nI ,GI #~xI !, xI P]V.

We note that the datum of the scattering problem mentioned in Sec. I,DI (xI )52@nI ,EI i #(xI ),
satisfies the hypotheses given above whenEI iP(W2,2(R3))3. More general classes of dataDI (xI )
can be considered. We note that from Theorem 2.13 follows that a solution of Problem 2.1
~1.1!, ~1.2!, ~1.3!, and~1.4! with gI (xI )5DI (xI ), xI P]V. We restate Problem 2.1 in several equiv
lent forms.

Let C,R3 an open cube such thatV̄,C then there exists a functionfPC0
`(R3) with support

in C and such thatf(xI )51 if xI PV̄.
We can consider the vector function
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EÎ ~xI !5EI ~xI !2f~xI !GI ~xI !, xI PVc. ~2.36!

It is easy to see thatEI satisfies Problem 2.1 if and only ifEÎ is solution of the following problem.
Problem 2.2:Let k be as in Lemma 2.4VPC0,1, V as in Theorem 2.12, we seek a vect

function EÎ P(W2,2(Vc))3 such that

~D1k2!EÎ ~xI !5AI ~xI !, xI PVc ~2.37!

div EÎ ~xI !50, x̂P]V ~2.38!

@n,IEÎ #~xI !50I , xI P]V ~2.39!

and

@curlEÎ ~xI !,xÎ #2 ikEÎ ~xI !5oS 1

ixI i D , ixI i→` ~2.40!

where

AI 52~D1k2!~fGI !. ~2.41!

The functionAI is a vector function belonging to (L2(Vc))3 with support inV5VcùC. Note that
div(fGI )5(i51

3 (]f/]xi)Gi1f div GI 50 on ]V, in fact divGI 50 on ]V and]f/]xi50, i 51,2,3 on
]V in virtue of the properties off and]V.
Let F(xI ,yI ) be given by~1.11! we have the following result.

Theorem 2.14:Let V be as above,aI (xI )P(L2(V))3 be a vector function and let

vI ~xI !5E
V
F~xI ,yI !aI ~yI !dyI , xI PR3 ~2.42!

thenvI P(W2,2(R3))3 so that in particularvI P(W2,2(Vc))3 and for any open setU such thatŪ is
compact andVcùU is not empty we have

ivI i ~W2,2~VcùU !!3<aUiaI i ~L2~V!!3, ~2.43!

whereaU is a positive constant that depends onU.
Proof: From Schwarz inequality fori 51,2,3 we have that

uv i~xI !u5U E
V
F~xI ,yI !ai~yI !dyIU<S E

V
uF~xI ,yI !u2dyI D 1/2S E

V
uai~yI !u2dyI D 1/2

,`, ~2.44!

therefore, since

~D1k2!vI 5aÎ , xI PR3, ~2.45!

whereaÎ 52aI in V and aÎ 50I in R3\V, we have thatvI P(W2,2(VcùU))3 and ivI i (W2,2(VcùU))3

<aUiaI i (L2(V))3 for any open setU such thatŪ is compact andVcùU is not empty. j

We introduce the following auxiliary problems.
Problem 2.3:Let V as above,aI P(L2(V))3 and letm2 be a constant that is not an eigenval

of T on K(V), we seek a vector functionWI P(W2,2(V))3 such that

~D1m2!WI ~xI !50I , xI PV ~2.46!

div WI ~xI !50, xI P]C ~2.47!
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div WI ~xI !52divS E
V
F~xI ,yI !aI ~yI !dyI D , xI P]V ~2.48!

@nI ,WI #~xI !50I , xI P]C ~2.49!

@nI ,WI #~xI !52FnI ~xI !,E
V
F~xI ,yI !aI ~yI !dyI G , xI P]V. ~2.50!

Problem 2.4:Let V,m2 be chosen as in Problem 2.3, andaI P(L2(V))3, we seek a vector
function WĨ P(W2,2(V))3 such that

~D1m2!WĨ ~xI !5BI ~xI !, xI PV ~2.51!

div WĨ ~xI !50, xI P]V ~2.52!

@nI ,WĨ #~xI !50I , xI P]V ~2.53!

whereBI (xI )5(D1m2)(f(xI )*VF(xI ,yI )aI (yI )dyI ).

We remember thatfPC0
`(R3) with support in C and f(xI )51 if xI PV̄ so that BI

P(L2(V))3.
Theorem 2.15:Let aI P(L2(V))3 be a vector function and letm2 be not an eigenvalue of th

operatorT on K(V) then there exists an unique vector functionWI P(W2,2(V))3 solution of Prob-
lem 2.3.

Proof: We note that Theorem 2.12 implies that there existsm2 that satisfies the previou
conditions. Later we choosem2 such that Imm2Þ0. From Theorem 2.14 the vector functio
vI (xI )5*VF(xI ,yI )aI (yI )dyI belongs to (W2,2(Vc))3 hence there exists the trace ofvI on ]V andvI u]V

belongs to (L2(]V))3.
Let us consider the vector functionWĨ defined by

WĨ ~xI !5WI ~xI !1f~xI !E
V
F~xI ,yI !aI ~yI !dyI , xI PV. ~2.54!

It is easy to see that

WI ~xI !5WĨ ~xI !2f~xI !E
V
F~xI ,yI !aI ~yI !dyI , xI PV ~2.55!

is solution of Problem 2.3 if and only ifWĨ is solution of Problem 2.4.
Sincem2 is not eigenvalue of the operatorT defined onK(V) there exists an unique vecto

function WĨ P(W2,2(V))3 solution of the Problem 2.4. ThereforeWI (xI )5WĨ (xI )
2f(xI )*VF(xI ,yI )aI (yI )dyI is solution of Problem 2.3. j

We observe thatWI (xI ) depends with continuity from the functionvI (xI )5*VF(xI ,yI )aI (yI )dyI ,
that is the operator which to anyaI P(L2(V))3 associatesWI P(W2,2(V))3 given by ~2.55! is a
continuous operator from (L2(V))3 to (W2,2(V))3. We seek a solution of Problem 2.2 in the for

EÎ ~xI !52E
V
F~xI ,yI !aI ~yI !dyI 1f~xI !WI ~xI !, xI PVc, ~2.56!

whereWI is the function given in~2.55! extended with 0I in Vc\C. That is we want to determine
aI P(L2(V))3 in such a way thatEÎ (xI ) is a solution of Problem 2.2.
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It is easy verify thatEÎ given by ~2.56! satisfies the conditions~2.38! and ~2.39!, moreover
since F satisfies the Sommerfeld radiation condition~2.11! and aI P(L2(V))3, EÎ satisfies the
radiation condition~2.40!. ThereforeEÎ is solution of Problem 2.2 ifEÎ verifies in Vc equation
~2.37!.

Substituting the expression ofEÎ ~2.56! in ~2.37! we have that Eq.~2.37! is always verified for
xI PR3\C, while for xI PV we obtain the following equation thataI must satisfy

aI 1~D1k2!~fWI !5AI , xI PV. ~2.57!

We note that, sinceWI is solution of Eq.~2.46! we have

~D1k2!~fWI !5WI Df12~¹f,¹!WI 1~k22m2!fWI , xI PV, ~2.58!

hence Eq.~2.57! becomes

~ I 1t!aI 5AI , xI PV ~2.59!

whereI is the identity operator and

taI 5WI Df12~¹f,¹!WI 1~k22m2!fWI , xI PV. ~2.60!

Theorem 2.16:The operatort: (L2(V))3→(L2(V))3 defined in~2.60! is a compact operator
Proof: From Theorem 2.14 the operator which associates to any vector functioaI

P(L2(V))3 the vector functionWI P(W2,2(V))3 given by ~2.55! is continuous, hencet is a con-
tinuous operator from (L2(V))3 to (W1,2(V))3 since it is composition of continuous operator
Rellich’s theorem@see Ref. 16, Theorem 6.2, page 144# implies that the immersion

i : ~W1,2~V!!3→~L2~V!!3

is compact, therefore

t: ~L2~V!!3→~L2~V!!3

is a compact operator. j

Theorem 2.17: The operatorI 1t: (L2(V))3→(L2(V))3 where t is defined by~2.60! is
injective.

Proof: Let aI P(L2(V))3 be such that

aI 1WI Df12~¹f,¹!WI 1~k22m2!fWI 50I , xI PV, ~2.61!

then

EÎ ~xI !52E
V
F~xI ,yI !aI ~yI !dyI 1f~xI !WI ~xI !, xI PVc, ~2.62!

is solution of

~D1k2!EÎ ~xI !50I , xI PVc ~2.63!

and satisfies~2.38!, ~2.39!, and~2.40!, hence from Theorem 2.7EÎ 50I in Vc. So that we have

E
V
F~xI ,yI !aI ~yI !dyI 5f~xI !WI ~xI !, xI PVc, ~2.64!

therefore
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vI ~xI !5E
V
F~xI ,yI !aI ~yI !dyI 50I , xI PR3\C. ~2.65!

Let us define the vector functionaI (xI ) as follows:

aI ~xI !5H vI ~xI !, xI PV, or xI PR3\C

WI ~xI !, xI PV
~2.66!

wherevI (xI ) is given by~2.42! andWI (xI ), xI PV is given by~2.55!. We observe that

~D1k2!aI ~xI !5~D1k2!vI ~xI !50I , xI PV ~2.67!

~D1m2!aI ~xI !5~D1m2!WI ~xI !50I , xI PV ~2.68!

~D1k2!aI ~xI !5~D1k2!vI ~xI !50I , xI PR3\C. ~2.69!

Let BR.C̄, we have

05E
BR

~~D1n2!aI ~xI !,aI ~xI !!dxI 5E
BR

~DaI ~xI !,aI ~xI !!dxI 1E
BR

n2(
j 51

3

ua j~xI !u2 dxI ,

wheren25k2 if xI PR3\V, n25m2 if xI PV, hence

2E
BR

S (
j 51

3

u~curlaI ~xI !! j u21udiv aI ~xI !u2D dxI 1E
BR

n2(
j 51

3

ua j~xI !u2 dxI 50.

Therefore if we have chosenm2 such that Imm2Þ0 we have

E
V
n2(

j 51

3

ua j~xI !u2 dxI 50 ~2.70!

that is

aI ~xI !50I , xI PV. ~2.71!

In particular from~2.71! follows thatWI 50I in V and from~2.61! aI 50I in V, thereforeI 1t is an
injective operator. j

We know that sincet is compact if the operatorI 1t is injective there exists the invers
operator (I 1t)21 and it is continuous. So that Eq.~2.57! has an unique solution belonging t
(L2(V))3. For anyAI P(L2(V))3 exists and is unique a functionaI P(L2(V))3 such that (I 1t)aI
5AI and therefore Problem 2.2 has a solutionEÎ so that using~2.36! and ~2.56! it follows that
Problem 2.1 has a solutionEI given by

EI ~xI !52E
V
F~xI ,yI !aI ~yI !dyI 1f~xI !WI ~xI !1f~xI !GI ~xI !, xI PVc. ~2.72!

This concludes the existence proof. j

III. THE COMPUTATIONAL METHOD

We remind that the content of this section is mainly formal. That is no convergence pro
given for the numerical method proposed. We develop our method assuming that the boun
the obstacle]V is a starlike surface with respect to the origin, i.e.@see~1.10!#,
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]V5$xI 5rxÎ PR3/r 5j~xÎ !,xÎ P]B%, ~3.1!

wherexÎ 5xÎ (u,f) is given by~1.8! andj(xÎ ) is a single valued function. Moreover, we assume t
the wave numberk is a positive real number. A method analogous to the one described her
be obtained substituting the previous choice of the spherical coordinate system with some
coordinate system. Let 0,a,1, Ba ,nI (xI ), xI P]V be as specified previously, in particular l
B̄a,V. The computational method proposed is based on the assumption that the solutionEI of the
boundary value problem~1.1!, ~1.2!, ~1.3!, and ~1.4! can be extended toxI PR3\B̄a and that this
extensionFI can be represented as follows:

FI ~xI !5a2E
]B

curlxI$F~xI ,ayÎ !vI ~yÎ !%ds~yÎ !, xI PR3\B̄a , ~3.2!

whereds is the surface measure on]B and vI (yÎ ) is a suitable~complex valued! vector density
function defined on]B, tangential to]B, that is such that

~vI ~xÎ !,xÎ !50, xÎ P]B. ~3.3!

We note that whenvI (xI ) is a complex vector function with~3.3! we mean real euclidean produ
of complex vectors. It is easy to see that a vector fieldFI (xI ) given by ~3.2! satisfies

~D1k2!FI ~xI !50I , xI PR3\B̄a , ~3.4!

div FI ~xI !50, xI PR3\B̄a , ~3.5!

and the radiation condition at infinity~1.4! for any choice of the densityvI that makes possible
differentiation under the integral sign in~3.2!. SinceB̄a,V from ~3.4! and~3.5! follows that~1.1!
and~1.2! hold. We impose the ‘‘boundary’’ condition~1.3! to the vector fieldFI (xI ) given by~3.2!
that is we impose thatFI (xI ) extendsEI (xI ), so that we have an equation for the densityvI , that is

FnI ~xI !,a2E
]B

curlxI$F~xI ,ayÎ !vI ~yÎ !%ds~yÎ !G5gI ~xI !, xI P]V. ~3.6!

We note that when]V is only Lipschitz continuous~3.6! holds only almost everywhere inxI
P]V. The numerical solution of~3.6! as an integral equation in the unknownvI (yÎ ) can be carried
out using a boundary integral method. The use of a boundary integral method involves the s
of a computationally very expensive linear system. Instead of using a boundary integral m
we solve equation~3.6! with a formal power series using]B5$xI PR3uixI i51% as base point, tha
is we look for a solution of~3.6! given by a formal series expansion of the form

vI ~yÎ !5(
s50

1`
~j~yÎ !21!s

s!
vI s~yÎ !, yÎ P]B, ~3.7!

where we assume 0!51 and the ‘‘coefficients’’vI s(yÎ ), yÎ P]B, s50,1,2,..., are vector fields
tangential to]B to be determined. This perturbative procedure is preferable to the solution o
linear system coming from the use of a boundary integral method since the coefficientsvI s , s
50,1,..., are defined by recursive formulas involving double integrals. These integrals are
pendent one from the other so that they can be computed in parallel. We note thatvI (yÎ ) given by
~3.7! is only an auxiliary unknown and thatFI (xI ) can be determined knowing only the action
some appropriate operators onvI s(yÎ ) without knowingvI s(yÎ ), s50,1,2,... . We note that the com
putational method proposed here relies on the assumptiona,1 that isBa,B since]B is chosen
as base point of the ‘‘power series’’ expansion~3.7!. The computational method proposed here c
be developed with only minor changes using for example the surface]BR , R.0 with RÞ1 as
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base point of the expansion~in this casea,R! or more in general any starlike surface with resp
to the origin that defines a bounded region that containsBa . The choice]BR , R.a.0, is more
convenient than the choice of a generic starlike surface since for]BR some explicit class of
functions such as the vector spherical harmonics and some useful formulas about them ar
able. In the numerical experience described in Sec. IV we always use]BR as base point, the radiu
R is chosen in such a way that maxxÎP]Buj(xÎ)2Ru is approximately minimized to improve th
‘‘convergence’’ of the series~3.7!.

Let fI (xÎ ) be a vector field defined on]B and tangential to]B; we define the operatorsps , p̂s ,
s50,1,2,... as follows:

~psfI !~xI !5a2E
]B

]s

]ixI is curlxI$F~xI ,ayÎ ! fI ~yÎ !%ds~yÎ !, ixI i.a, s50,1,... , ~3.8!

~ p̂sfI !~xÎ !5~psfI !~xÎ !, xÎ P]B, s50,1,... . ~3.9!

For later use we define the operatorl̂ 0 which acts on a vector fieldfI defined on]B and tangential
to ]B through the following equation:

@xÎ ,~ p̂0~ l̂ 0fI !!~xÎ !#5 fI ~xÎ !, xÎ P]B, ~3.10!

wherep̂0 is the operator given in~3.9! whens50. We note that Eq.~3.10! is a special case of Eq
~3.6!, that is the case when]V5]B. In Lemma 3.4 under some extra hypotheses a formula
solve Eq. ~3.10! is given. Substituting~3.7! in ~3.2! using the power series expansion
curlxI$F(xI ,ayÎ )vI (yÎ )% as a function ofixI i with base pointixI i51 and using~3.8! and ~3.9! we

obtain the formal expansion ofFI (xI ), xI PR3\B̄a :

FI ~xI !5(
s50

1`

(
l 50

s
~ ixI i21!s2 l

~s2 l !! S p̂s2 l S vI l

~j21! l

l ! D D ~xÎ !, xI 5ixI ixÎ , xI PR3\B̄a . ~3.11!

From ~3.11! and Theorem 2.5 we obtain the formal series expansion of the far fieldFI (0)(xÎ )
associated toFI (xI ), in ‘‘powers’’ of ( j21), that is

FI ~0!~xÎ !5
a2ik

4p (
l 50

1` E
]B

exp~2ika~xÎ ,yÎ !!FxÎ ,vI l~yÎ !
~j~yÎ !21! l

l ! Gds~yÎ !, xÎ P]B. ~3.12!

The problem of determining a formal power series to computeFI (xI ) solution of~1.1!, ~1.2!, ~1.3!,
and ~1.4! or the corresponding far fieldFI (0)(xÎ ) is reduced to the problem of determining th
coefficientsvI s(yÎ ), s50,1,2,..., of~3.7! using Eq.~3.6!. Let

xÎ u5
]xÎ

]u
~u,f!5~cosu cosf,cosu sinf,2sinu!T, 0<u<p, 0<f,2p, ~3.13!

xÎ f5
]xÎ

]f
~u,f!5~2sinu sinf,sinu cosf,0!T, 0<u<p, 0<f,2p, ~3.14!

and whenj(xÎ ) is sufficiently regular we define

nĨ ~xI !5xÎ ~u,f!2
xÎ u~u,f!

j~xÎ ~u,f!!

]j

]u
~xÎ ~u,f!!2

1

sin2 u

xÎ f~u,f!

j~xÎ ~u,f!!

]j

]f
~xÎ ~u,f!!,

~3.15!
xI 5j~xÎ ~u,f!!xÎ ~u,f!P]V, 0<u<p, 0<f,2p

so that we have
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nI ~xI !5
nĨ ~xI !

inĨ ~xI !i , xI P]V, ~3.16!

wherenI (xI ) is the outward unit normal vector to]V in xI P]V. When we consider obstaclesV
with ]V only locally Lipschitz we assume that formulas~3.15! and~3.16! are valid almost every-
wherexI for xI P]V. For example, this assumption is satisfied whenV is a polyhedron, that is one
of the choices considered in Sec. IV. For simplicity in the following abusing the notation we
j as an independent variable, so thatO((j21)l), whenj→1 becomes a meaningful notation.
is easy to see that

nĨ ~xI !5(
l 50

1`

nI l~xÎ !, xI 5ixI ixÎ P]V,

where

nI 0~xÎ !5xÎ ~u,f!, xÎ ]B, ~3.17!

nI 1~xÎ !52S ]j

]u
~xÎ ~u,f!!xÎ u~u,f!1

1

sin2 u

]j

]f
~xÎ ~u,f!!xÎ f~u,f! D , xÎ P]B ~3.18!

nI l~xÎ !5~21! l 21~j~xÎ ~u,f!!21! l 21nI 1~xÎ !, l 52,3,..., xÎ P]B, ~3.19!

and nI l(xÎ )5O((j(xÎ )21)l), l 50,1,2,..., whenj→1, xÎ P]B. We remark that the expansion i
‘‘powers’’ of ( j21) that we present is only formal and we consider the terms]j/]u,]j/]f to be
O((j21)) whenj→1 in fact formally ]j/]u5]/]u(j21) and]j/]f5(]/]f)(j21). Since
the vector fieldgI in ~1.3! is tangential to]V we can writegI as follows:

gI ~xI !52@nI ,bI #~xI !, xI P]V, ~3.20!

for a suitable choice of the vector fieldbI (xI ). For example,bI (xI )5@nI ,gI #(xI ), xI P]V is a possible
choice. Using~3.16! and ~3.20!, Eq. ~3.6! can be rewritten as follows:

FnĨ ~xI !,a2E
]B

curlxI$F~xI ,ayÎ !vI ~yÎ !%ds~yÎ !G52@nĨ ,bI #~xI !, xI P]V. ~3.21!

Lemma 3.1:Let nl , l 50,1,2,..., be given by~3.17!, ~3.18!, and~3.19!, let bI be as in~3.20! and
let bĨ (xÎ )5bI (j(xÎ )xÎ ), xÎ P]B, let FI , given by~3.2!, be an extension of the solution of~1.1!, ~1.2!,
~1.3!, and ~1.4! and let FI (j(xÎ )xÎ )5( l 50

1` FI l(xÎ ), with FI l(xÎ )5O((j(xÎ )21)l), when j→1, l
50,1,2,..., then the following recursive formulas forFI l , l 50,1,2,... hold:

@nI 0 ,FI 0#~xÎ !52@nI 0 ,bĨ #~xÎ !, xÎ P]B, ~3.22!

@nI 0 ,FI n#~xÎ !52~j21!n21~21!n21@nI 1 ,bĨ #~xÎ !2 (
s50

n21

~j21!n2s21~21!n2s21@nI 1 ,FI s#~xÎ !,

n51,2,...,xÎ P]B. ~3.23!

We observe that formulas~3.22! and ~3.23! are compatible if in fact we have

S nI 0~xÎ !,(
s50

n21

~j21!n2s21~21!n2s21@nI 1 ,FI s#~xÎ !1~j21!n21~21!n21@nI 1bĨ #~xÎ !D 50,

n51,2,..., xÎ P]B. ~3.24!
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Proof: Imposing~3.21! order by order in ‘‘powers’’ of (j21) we have equations~3.22! and
~3.23!. We prove~3.24! by induction onn. From ~3.22! we have

~nI 1~xÎ !,@nI 0 ,FI 01bĨ #~xÎ !!50, xÎ P]B

so that whenn51 ~3.24! holds in fact:

~nI 0~xÎ !,@nI 1 ,FI 01bĨ #~xÎ !!5~nI 1~xÎ !,@nI 0 ,FI 01bĨ #~xÎ !!.

Now we assume by induction that formula~3.24! holds whenn5k and we prove that~3.24! holds
whenn5k11. We have

S nI 0~xÎ !,(
s50

k

~j21!k2s~21!k2s@nI 1 ,FI s#~xÎ !1~j21!k~21!k@nI 1 ,bĨ #~xÎ !D 2~j21!

3S nI 0~xÎ !,(
s50

k21

~j21!k2s21~21!k2s21@nI 1 ,FI s#~xÎ !1~j21!k21~21!k21@nI 1 ,bĨ #~xÎ !D
1~nI 0~xÎ !,@nI 1 ,FI k#~xÎ !!5~nI 1~xÎ !,@nI 0 ,FI k#~xÎ !!, xÎ P]B, ~3.25!

so that the thesis follows using formula~3.23! for FI k . j

Now we can write the formulas which give the coefficientsvI s , s50,1,2,... of~3.7! using the
operatorl̂ 0 defined in~3.10!. In Lemma 3.4 we give an explicit formula forl̂ 0 .

Theorem 3.2:Let bĨ be as in Lemma 3.1 andvI be a vector field defined on]B satisfying~3.3!
such that the vector fieldFI , given by ~3.2!, coincides with the solution of the boundary valu
problem~1.1!, ~1.2!, ~1.3!, and~1.4! in R3\V. Then formulas~3.7! and ~3.11! hold with

~j21!s

s!
vI s~xÎ !5~ l̂ 0hI s!~xÎ !, s50,1,..., xÎ P]B, ~3.26!

where

hI 0~xÎ !52@nI 0 ,bĨ #~xÎ !, xÎ P]B, ~3.27!

hI s~xÎ !52FnI 0 , (
m50

s21
~j21!s2m

~s2m!! S p̂s2mS vI m

~j21!m

m! D D G ~xÎ !2 (
n50

s21

~j~xÎ !21!s212n~21!s212n

3FnI 1 ,(
l 50

n
~j21!n2 l

~n2 l !! S p̂n2 l S vI l

~j21! l

l ! D D G ~xÎ !2~21!s21~j~xÎ !21!s21@nI 1 ,bĨ #~xÎ !,

xÎ P]B, s51,2,..., ~3.28!

wherep̂s , s50,1,..., andl̂ 0 are the operators defined in~3.9! and ~3.10!.
Proof (formal): It is easy to see that the vector fieldshI s , s50,1,2,... are tangential to]B. The

proof follows from the integral representation formula~3.2!, Lemma 3.1, and Eq.~3.21! using the
Cauchy rule in the product of the series expansion in powers of (j21) of nĨ and ofFI given by
~3.11!. j

Now we give some Lemmas that will be used in Sec. IV.
Let $BI s,m,l(xÎ ),CI s,m,l(xÎ ),PI s,m,l(xÎ )%s50,1,l 5s,s11,...,m5s,...,l be the complete orthonormal se

of (L2(]B))3 made of vector spherical harmonics functions~see Ref. 17, Chap. 13, page 1898!.
Since]V is a starlike surface with respect to the origin and we use an expansion with]B as base
point, we can expand data and unknown of Eq.~3.21! with respect to this set of vector function
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This choice makes easy the computation of the coefficientsvI s , s50,1,2,..., of~3.7!. In fact in
Lemmas 3.3 and 3.4 we show that the operatorsl̂ 0 , p̂s , s50,1,..., are represented by simp
matrices in this basis.

Lemma 3.3:Let fI be a vector field defined on]B and tangential to]B, i.e.,

~ fI ~xÎ !,xÎ !50, xÎ P]B. ~3.29!

Moreover letfI be given by the following by the following expansion:

fI ~xÎ !5 (
s50

1

(
l 5s

1`

(
m5s

l

$ f Cs,m,l
CI s,m,l~xÎ !1 f Bs,m,l

BI s,m,l~xÎ !%, xÎ P]B, ~3.30!

where$ f Cs,m,l
, f Bs,m,l

%, s50,1, l 5s,s11,...,m5s,s11,...,l are the generalized Fourier coeffi
cients of fI and letp̂s , s50,1,2,..., be the operators given by~3.9!, then we have

~ p̂sfI !~xÎ !5ik2a2 (
s50

1

(
l 5s

1`

(
m5s

l H PI s,m,l~xÎ ! f Cs,m,l
j l~ka!Al ~ l 11!S ks(

q50

s S s
qD ~21!qq!

hl
~s2q!~k!

kq11 D
1BI s,m,l~xÎ ! j l~ka! f Cs,m,lS ~ l 11!ks(

q50

s S s
qD ~21!qq!

hl
~s2q!~k!

kq11 2kshl 11
~s! ~k!D

1ksCI s,m,l~xÎ !hl
~s!~k!S ~ l 11! j l~ka!

ka
2 j l 11~ka! D f Bs,m,lJ , xÎ P]B, ~3.31!

wherehl(z), j l(z), l 50,1,2,... are the spherical Hankel and the spherical Bessel functions
spectively.

Proof: The proof follows by an easy computation using the so called Green’s dyadic for
space~see Ref. 17, Chap. 13, page 1875!. j

Lemma 3.4:Let fI be a vector field defined on]B such that~3.29! and~3.30! hold, let l̂ 0 be the
operator given by~3.10! and let the wave numberk be such that

j l~ka!Þ0, l 50,1,2,..., ~3.32!

~~ l 11! j l~ka!2ka jl 11~ka!!Þ0, l 50,1,2,..., ~3.33!

then we have

~ l̂ 0fI !~xÎ !5 (
s50

1

(
l 5s

1`

(
m5s

l H BI s,m,l~xÎ ! f Bs,m,l

ikahl~k!~~ l 11! j l~ka!2ka jl 11~ka!!

2
CI s,m,l~xÎ ! f Cs,m,l

ika2 j l~ka!~~ l 11!hl~k!2khl 11~k!!
J , xÎ P]B. ~3.34!

Proof: It is easy to see thathl(k)Þ0 and (l 11)hl(k)2khl 11(k))Þ0, l 50,1,..., fork real and
positive by virtue of the properties of the spherical Hankel functions~see Ref. 18, page 439!. The
proof follows using~3.31! with s50, Eq. ~3.10! and the fact that

~nI 0~xÎ !,PI s,m,l~xÎ !!50, xÎ P]B, s50,1, l 5s,s11,..., m5s,s11,...,l .
j

Remark:We observe that the conditions~3.32! and ~3.33! are necessary due to the choic
made in the factorization of the operators involved in Eq.~3.10!. A different factorization will
make these conditions not necessary. This will appear more clearly in Lemma 3.5. Moreov
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always possible to choose the radius a such that~3.32! and ~3.33! hold, since the zeros of~3.32!
and~3.33! are a measure zero set in the interval$aPRu0,a,1%. Finally in practice when using
the computational method it is not necessary to choose the radiusa to satisfy~3.32! and~3.33! in
fact ~3.32! and ~3.33! are always satisfied numerically.

Lemma 3.5:Let p̂s, s50,1,2,...,l̂ 0 be the operators given by~3.9! and~3.10!, respectively, and
let fI be a vector field defined on]B such that~3.29! and ~3.30! hold, then we have

~ p̂s~ l̂ 0fI !!~xÎ !5 (
s50

1

(
l 5s

1`

(
m5s

l H 2PI s,m,l~xÎ !
f Cs,m,l

kAl ~ l 11!

~~ l 11!hl~k!2khl 11~k!!

3S ks(
q50

s S s
qD ~21!qq!

hl
~s2q!~k!

kq11 D 2BI s,m,l~xÎ !
f Cs,m,l

k

~~ l 11!hl~k!2khl 11~k!!

3S ~ l 11!ks(
q50

s S s
qD ~21!qq!

hl
~s2q!~k!

kq11 2kshl 11
~s! ~k!D

1ksCI s,m,l~xÎ !hl
~s!~k!

f Bs,m,l

hl~k! J , xÎ P]B, s50,1,2,..., ~3.35!

wherehl(z), j l(z), l 50,1,2,... are the spherical Hankel and the spherical Bessel functions
spectively.

Proof: It follows using ~3.31! and ~3.34! by an easy computation. j

We note that substituting formula~3.35! into ~3.28! we can computehI s , given by~3.28!, by
a recursive formula involving only the vector fieldshI n , n50,1,...,s21 and notvI n(j21)n/n!,
n50,1,...,s21, by doing so we avoid the conditions~3.32!, and~3.33! sincel̂ 0 is never considered
standing alone but always appears in products such asp̂sl̂ 0 , s50,1,2,... .

FIG. 1. uEI k,Lm
(aI )u as function ofLm andk relative to the sphere of radiusR51.

TABLE I. Computational cost.

T-matrix Method of Sec. III up to orders

Number of integrals (Lm11)4 3
2s(s11)(Lm11)2
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The possibility of computinghI s using a recursive formula involving onlyhI n , n50,1,...,(s
21) @i.e., Eq.~3.28!# is the basis of the computational cost estimates given in Sec. IV~see Table
I!.

Lemma 3.6:Let hI s(xÎ ), xÎ P]B, s50,1,2,... be the vector field given by~3.28! and lethI s be
given by the following expansion:

hI s~xÎ !5 (
s50

1

(
l 5s

1`

(
m5s

l

$hs,Bs,m,l
BI s,m,l~xÎ !1hs,Cs,m,l

CI s,m,l~xÎ !%, s50,1,..., xÎ P]B,

~3.36!

wherehs,Bs,m,l
, hs,Cs,m,l

, s50,1,...,s50,1, l 5s, s11,..., m5s, s11,...,l , are the generalized
Fourier coefficients ofhI s( x̂), then the far fieldFI (0)( x̂) given by ~3.11! has the following expan-
sion:

FI ~0!~xÎ !5(
s50

1`

(
s50

1

(
l 5s

1`

(
m5s

l H BI s,m,l~xÎ !hs,Cs,m,l

i l 12~~ l 11!hl~k!2khl 11~k!!
1

CI s,m,l~xÎ !hs,Bs,m,l

i l 11khl~k!
J , xÎ P]B.

~3.37!

Proof (formal):The proof follows using the integral representation formula~3.2!, the Green’s
dyadic ~Ref. 17, Chap. 13, page 1874! and the following asymptotic expansion of the spheri
Hankel functions:

hl~kixI i !5i2~ l 11!
exp~ikixI i !

kixI i 1OS 1

~kixI i !2D , ixI i→1`, l 50,1,... . ~3.38!

j

IV. SOME COMPUTATIONAL RESULTS

We apply the computational method proposed in Sec. III to the electromagnetic scat
problem of Sec. I. That is we consider the scattering problem associated to a linearly pol
electromagnetic plane wave that hits the obstacleV. We restrict our attention to the study of th
far field pattern associated to the scattered field that is to the computation of~3.37!. Let EI i be the
space dependent part of the electric field associated to the incoming plane wave, we have

EI i~xI !5PI exp~ik~xI ,aI !!, ~4.1!

wherePI , aI PR3, iaI i51 are given andk is the wave number. We assumek to be a positive real
number. The vectoraI is the propagation direction of the plane wave andPI is the polarization
vector of the plane wave. We assume

div EI i~xI !5ik~PI ,aI !exp~ik~xI ,aI !!50, ~4.2!

TABLE II. Accuracy of the far field computed with the perturbation series.

eL2

uE(0)u

k Sphere Ellipsoid Platelet

2 9.22e-05 2.68e-05 2.11e-05
4 4.00e-04 7.12e-04 6.80e-04
6 1.13e-03 4.13e-03 1.11e-02
8 2.72e-03 2.47e-02 2.44e-02

10 6.53e-03 9.91e-02 9.67e-02
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that isPI andaI are orthogonal. Leta, b, g be such that 0<a<p,0<b,2p, 2p/2<g<p/2 we
can parametrize the vectorsaI , PI as follows:

aI 5~sina cosb,sina sinb,cosa!T, ~4.3!

FIG. 2. ~a! Contour plot of the corrugated sphere form55, n510; ~b!, ~c!, ~d! contour plots ofM~u,f! relative to the
geometry for different values ofk.
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PI 5~2sing sinb1cosg cosa cosb,sing cosb1cosg cosa sinb,2cosg sina!T. ~4.4!

We note that when the incoming wave is given by~4.1!, the zero-order term of the expansion
powers ofj21 of the far fieldEI (0)(xÎ ) associated to the scattering problem~1.1!, ~1.2!, ~1.3!, and
~1.4! with gI given by~1.3! has an explicit formula given by a series of vector spherical harmo

FIG. 3. ~a! Contour plot of the corrugated sphere form53, n56; ~b!, ~c!, ~d! contour plots ofM~u,f! relative to the
geometry for different values ofk.
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~see Ref. 17, Chap. 13, page 1866! and coincides with the formula of the far field pattern gen
ated by the sphere of radius one and center the origin when hit by the incoming wave~4.1!.

Using the assumptions and the results of Sec. III we can say thatEI (0)(xÎ ) coincides with
FI (0)(xÎ ) given by ~3.37!.

First of all we consider the problem of where to truncate the series expansion~3.37! for
FI (0)(xÎ ) to have satisfactory approximation of the far fieldEI (0)(xÎ ). To do this we consider the
series expansion associated with the far field pattern generated by the sphere of radius o~i.e.,
V5B! when hit by the incoming wave~4.1! truncated atLm.0 that is

EI k,Lm

~0! ~xÎ !5 (
s50

1

(
l 5s

Lm

(
m5s

l H CI s,m,l~xÎ !~21! li l 11h0,Bs,m,l

khl~k!
1

BI s,m,l~xÎ !~21! l 11i l 12h0,Cs,m,l

~ l 11!hl~k!2khl 11~k!
J ,

xÎ P]B, ~4.5!

FIG. 4. Z~f! versusf relative to a corrugated spherem54, n58 for different values ofk.
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we note thathl(k) and (l 11)hl(k)2khl 11(k), l 50,1,..., are not zero~see Lemma 3.4!. The
Fourier coefficients$h0,Cs,m,l

,h0,Bs,m,l
%, s50,1, l 5s, s11,...,Lm , m5s, s11,...,l , of the vector

field hI 0 defined in~3.27! are given by

h0,Bs,m,l
52emi l j l~k!

~2l 11!~ l 2m!!

~ l 1m!!
~AI ,CI s,m,l~aI !!, ~4.6!

h0,Cs,m,l
52emi l 11

~ l 11! j l~k!2k j l 11~k!

k

~2l 11!~ l 2m!!

~ l 1m!!
~AI ,BI s,m,l~aI !!, ~4.7!

where

em5H 1 m50

2 mÞ0
.

FIG. 5. Z~f! versusf relative to a corrugated spherem54, n58 for different values ofk.
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We look for the smallest value ofLm such that ‘‘numerical convergence’’ is reached. We decl
that ‘‘numerical convergence’’ has been reached when the following test is satisfied:

uuEI k,Lm11
~0! ~xÎ !u2uEI k,Lm

~0! ~xÎ !uu<1026uEI k,Lm

~0! ~xÎ !u, xÎ P]B. ~4.8!

FIG. 6. ~a! Contour plot of the cube;~b!, ~c!, ~d! contour plots ofM~u,f! relative to the geometry for different values o
k.
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We remind that ifEI 5(E1 ,E2 ,E3)T thenuEI u5@( j 51
3 (Ej ,Ēj )#1/2, see Sec. II. From Fig. 1 we ca

conclude that whenk increases the smallest value ofLm such that~4.8! is satisfied increases. Th
results shown in Fig. 1 are limited to the case of the sphere~i.e., V5B! whenxÎ 5aI but these are
relevant results since we expect that for a more generalV and for a generalxÎ the value ofLm that

FIG. 7. ~a! Contour plot of the octahedron;~b!, ~c!, ~d! contour plots ofM~u,f! relative to the geometry for different value
of k.
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ensures numerical convergence will be greater or equal than the correspondingLm relative to the
case of the sphere whenxÎ 5â. Next we consider the computational cost of the method propo
in Sec. III in terms of the number of double integrals that givenLm must be computed in order t
evaluate the expansion in ‘‘powers’’ of (j21) of the far field~3.37! up to orders that is

EI k,Lm ,s
~0! ~xÎ !5 (

n50

s

(
s50

1

(
l 5s

Lm

(
m5s

l H CI s,m,l~xÎ !
hn,Bs,m,l

i l 11khl~k!
1BI s,m,l~xÎ !

1

i l 12

hn,Cs,m,l

~ l 11!hl~k!2khl 11~k!
J ,

xÎ P]B, ~4.9!

where$hn,Cs,m,l
,hn,Bs,m,l

%, n50,1,...,s s50,1, l 5s, s11,...,Lm , m5s, s11,...,l , are the coef-

ficients of the expansion of the vector fieldhI n , n50,1,...,s given by~3.28!. This is compared with
the number of double integrals necessary to evaluate theT-matrix14 when theT-matrix is evaluated
using an expansion in vector spherical harmonics truncated atLm . The T-matrix method is an
alternative way to compute the far fieldEI (0)(xÎ ).

Table I shows the result of this comparison. We note that the computational cost o
method proposed in Sec. III is given by a polynomial ins times a polynomial inLm . That is
relatively large values ofs and Lm can be used. Moreover at a given order in ‘‘perturbat
theory’’ ~i.e., the contribution of the terms of orderi, i 51,2,...,s! the computation is fully paral-
lelizable with respect to the number of vector spherical harmonics involved~i.e., the value ofLm

chosen!. Table II shows a comparison between the far fields obtained with the perturbation
~4.9! and the far fields obtained with theT-matrix method for three axial symmetric obstacles

We consider the following obstacles:

~1! Sphere:j(xÎ (u,f))51.05, 0<u<p, 0<f,2p.
~2! Ellipsoid: j(xÎ (u,f))5@(sinu/1.05)21(cosu/0.95)2#21/2, 0<u<p, 0<f,2p.
~3! Platelet:j(xÎ (u,f))51.010.05 cos 2u, 0<u<p, 0<f,2p.

For the incoming wave~4.1! we chooseaI 5(0,0,1)T, PI 5(1,0,0)T. In Table II we denote with

eL2

uEI (0)u the following quantity:

eL2

uEI ~0!u5F(j50
20 uuEI T

~0!~xÎ j !u2uEI k,7,3
~0! ~xÎ j !uu2

( j 50
20 uEI T

~0!~xÎ j !u2
G1/2

, ~4.10!

wherexÎ j5(sinuj,0,cosuj)
T, with u j5 j p/20, j 50,1,...,20,EI T

(0) is the far field obtained with the
T-matrix method when theT-matrix is approximated with an expansion in vector spherical h
monics truncated atLm57. FinallyEI k,7,3

(0) given by~4.9! is the far field obtained with the expansio
in ~3.37! up to orders53 in powers of (j21) with Lm57.

We note thateL2

uEI (0)u is always small and depends onk(j21), in particular whenk<10 and

maxu,fuj(xÎ(u,f))21u<0.05 we haveeL2

uEI (0)u less than 3%. The previous choice of obstacles a

incoming waves is a generic choice that gives a good sample of the behavior of the met
comparison with other computational methods such as theT-matrix method. We consider now
obstacles with more complicated geometries. That is we consider obstacles with multisca
rugations and obstacles with Lipschitz continuous boundaries such as polyhedra. We cons
following obstacles.

~4! Corrugated sphere:j(xÎ (u,f))5r 01d sin2 mu cosnf where r 0.0, dPR, udu,r 0 , m,n are
integers@see Figs. 2~a! and 3~a!#.

~5! Cube@see Fig. 6~a!#.
~6! Cutted octahedron@see Fig. 7~a!#.

The analytical expression ofj(xÎ (u,f)) for the cube and the cutted octahedron are involv
and will be omitted. We only remark that the origin is the center of mass of these obstacle
that the largest sphere contained in the cube has radius 1 and the largest sphere containe
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cutted octahedron has radius 0.965. Figures 2 and 3 are relative to the corrugated sph
different corrugations that is different choices ofn,m in the previously given formula for
j(xÎ (u,f)).

Figures 2, 3, 6, 7 show the contour plots of the geometry of the obstacles@i.e., Figs. 2~a!, 3~a!,
6~a!, 7~a!# and the contour plots of log10uEI k,Lm ,s

(0) u for different values of the wave numberk and of

the parametersLm ,s @i.e., Figs. 2~b!, 2~c!, 2~d!, 3~b!, 3~c!, 3~d!, 6~b!, 6~c!, 6~d!, 7~b!, 7~c!, 7~d!#.
In all these figures the parameters is fixed to be 10 and the parameterLm is chosen depending o
k in such a way that the numerical convergence~4.8! is reached. Moreover, Figs. 2~a!, 3~a!, 6~a!,
and 7~a! show j(xÎ (u,f)) and Figs. 2~b!, 2~c!, 2~d!, 3~b!, 3~c!, 3~d!, 6~b!, 6~c!, 6~d!, 7~b!, 7~c!,
7~d! show the quantity log10uEI k,Lm ,s

(0) u. In Figs. 2, 3, 6, 7 we denote withM the function

M (u,f)5 log10uEI k,Lm ,s
(0) (xÎ (u,f))u, and in Figs. 4 and 5 we denote withZ the functionZ(f)

5 log10uEI k,Lm ,s
(0) (xÎ (p/2,f))u. Figures 2 and 3 show that the corrugations of the sphere bec

visible for values of the wave numberk large enough. While for small wave number the corr
gated sphere appears as a sphere without corrugation. Moreover we can see that since th
the corrugated sphere is of order one at values ofk of approximately 20 we are already in th
geometrical optics limit@see Figs. 2~d! and 3~d!#. Figures 4 and 5 are relative to a corrugat
sphere withr 051, d50.15, n58, m54 and show the occurrence of a resonance phenome
This resonance phenomenon is due to the presence of the corrugation. That is

~i! For k56 @Fig. 4~a!# log10uEI k,Lm ,s
(0) (xÎ (p/2,f))u, 0<f,2p shows eight peaks.

~ii ! Figures 4~b! and 4~c! show with stepsizedk50.2 the quantity log10uEI k,Lm ,s
(0) (xÎ (p/2,f))u,

0<f,2p as a function ofk for 6<k<12. We note that the peaks atk56 becomes valleys
at k58 and come back to peaks atk512.

~iii ! Figure 5 shows with stepsizedk51 the quantity log10uEI k,Lm ,s
(0) (xÎ (p/2,f))u, 0<f,2p as a

function of k for 15<k<23. The same phenomenon discussed in~ii ! appears here. More
over atk520 the far fielduEI k,Lm ,s

(0) (xÎ (p/2,f))u, 0<f,2p looks like the far field of the

sphere.

The number of peaks and valleys~i.e., 8 peaks and valleys! shown in Figs. 4 and 5 is relate
to the corrugation of the obstacle~i.e., n58!. The qualitative change in
log10uEI k,Lm ,s

(0) (xÎ (p/2,f))u, 0<f,2p as a function ofk, that is, the sequence: peak, far field of t

sphere, valley, peak, that is shown for increasing values ofk in Figs. 4~b!, 4~c! and 5 is what we
call resonance phenomenon. We note that the peaks and the valleys of the far field of the
~see Fig. 5! depend on the polarization vector of the incoming wave.

Figures 6 and 7 are relative to the cube and to the cutted octahedron, respectively. In
figures we can see that for increasing values ofk appear first the facets then the edges and fin
the vertices of the polyhedron considered. In particular, Fig. 6~d! shows that fork large enough the
energy irradiated from the cube when hit by an incoming plane wave comes essentially fro
vertices. We note that the cut octahedron is more ‘‘similar’’ to the sphere than the cube. In fa
k54 the far field of the cutted octahedron is similar to the farfield of the sphere. On the con
for the same value ofk the far field of the cube shows some elements of the geometry of the c
For k56 the edges and the facets of the cube are already visible and fork524 only the vertices
remain visible. The far field of the cutted octahedron shows the same behavior of the far fi
the cube but for larger value ofk, that isk513 andk524. In particular fork524 the edges and
the eight facets of the cutted octahedron are visible.
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On the electromagnetic scattering problem for an infinite
dielectric cylinder of an arbitrary cross section
located in the wedge

Yu. K. Podlipenko
Faculty of Cybernetics, Kiev University, 64, Vladimirskaya str., Kiev, Ukraine

Yu. V. Shestopalova)

Faculty of Computational Mathematics and Cybernetics, Moscow State University,
Moscow 119899, Russia

~Received 3 December 1998; accepted for publication 24 May 1999!

Diffraction of time-harmonicE-polarized electromagnetic waves by an infinite di-
electric cylinder of arbitrary cross section located inside a wedge parallel to its axis
is considered. By the methods of potential theory, the transmission problem is
reduced to a system of two one-dimensional Fredholm integral equations with the
kernels having logarithmic singularities; integration is performed over the boundary
of the cylinder cross section. Existence and uniqueness of solutions are proved both
for the system of integral equations and the transmission problem. The kernels of
integral equations are represented as rapidly convergent series. ©1999 American
Institute of Physics.@S0022-2488~99!00109-7#

I. INTRODUCTION

Free-space transmission problems were investigated in classical formulation by Kupr1

Werner,2 Kleinman and Kittappa,3 Kress and Roach,4 and other authors. The main attention w
paid to the acoustic case, when consideration of boundary value problems for both two
three-dimensional Helmholtz equations may be physically justified. The amount and quality
results obtained for electromagnetic problems are much less significant—maybe because
complicated formulations of the problems~see Macdonald5 and Colton and Kress6!. On the other
hand, until recently, the uniqueness and solvability of transmission problems for~cylindrical!
dielectric obstacles in a wedge have not been proved. This was caused, in particular, by t
of results concerning the properties of corresponding potentials for the two-dimensional H
holtz equation. Podlipenko7,8 developed essential elements of the potential theory for a wedg
this paper, we apply these results to derive weakly singular boundary integral equations and
the uniqueness and solvability for the problem of scattering of electromagnetic waves
infinite dielectric cylinder of arbitrary cross section located in a wedge. In general, this study
be considered as an extension of the approach developed by Kress and Roach4 as applied to the
wedge problem.

II. FORMULATION OF THE PROBLEM

Introduce inR3 the cylindrical coordinate systemr ,f,z and denote byW5$(r ,f,z)PR3ur
.0,0,f,F,2`,z,1`% a wedge with perfectly conducting walls, the vertex angleF(0
,F<2p), and the edge coinciding with thez axis. Denote byC an infinite dielectric cylinder
with the axis parallel to the edge of the wedge. DomainsW\C̄ andC are supposed to be filled with
homogeneous isotropic media having the permittivitiese1 ande2, permeabilitiesm1 andm2, and
conductivitiess1 ands2, respectively.

a!Electronic mail:shestop@cs.musu.su
48880022-2488/99/40(10)/4888/15/$15.00 © 1999 American Institute of Physics
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Let V andD be the domains obtained as a result of intersection of wedgeW and cylinderC
by the planez50, respectively. We will assume thatD̄,V and domainD is bounded, simply
connected, and has aC2-boundary]D. Denote by]V the boundary of angular domainV.

Let a source of a time-harmonic cylindrical wave be an infinitely long thread locate
domainW\C̄ parallel to the edge of the wedge; the electric current of a constant amplitude
phase flows along the thread.

We will consider diffraction by cylinderC of theE-field excited by this source. We will mark
the components of the initial, scattered, and reflected electromagnetic fields by the upper ini,
s, andr, respectively. The problem is to determine the field components that do not dependz;
these components can be represented in terms of two potential functionsu1(P)5Ez

(s)(P), P

PV\D̄, andu2(P)5Ez
(r )(P), PPD, P5(r ,f), solving the following transmission problem:

Du1~r ,f!1k1
2u1~r ,f!50, ,~r ,f!PV\D̄, ~1!

Du2~r ,f!1k2
2u2~r ,f!50, ~r ,f!PD; ~2!

u12u25 f , l1

]u1

]n
2l2

]u2

]n
5g, on ]D; ~3!

u150, on ]V; ~4!

]u1~r ,f!

]r
2 ik1u1~r ,f!5oS 1

Ar
D , r→`, ~5!

uniformly with respect tof; and

E
Vùd

~ uu1u21ugradu1u2!dS,`. ~6!

Here,l j51/m j , kj5vAe j8m j , e j85e j1 is j /v, Ikj>0, j 51,2, v is the field frequency~the time
dependencee2 ivt is assumed!, D is the Laplace operator in polar coordinates,d is a neighborhood
of the origin of the polar coordinate system,n is the unit normal to]D drawn in the direction from
D to V\D̄,

f 52Ez
( i )u]D , g52l1

]Ez
( i )

]n
U

]D

,

and

Ez
( i )~r ,f!5

2vm1Ip

F (
m51

`

sin~nmf* !sin~nmf!Jnm
~k1min~r * ,r !!Hnm

(1)~k1max~r * ,r !!,

where (r * ,f* )PV\D̄ is the point of intersection of the line source with the planez50, Jn(x)
andHn

(1)(x) are the Bessel and Hankel functions of the ordern, nm5mp/F, m51,2, . . . , andI
is the complex amplitude of the current flowing along the thread.

We make the following comments concerning the problem statement: the functions

Ez
( i )~r ,f!, Hr

( i )~r ,f!52
i

rvm1

]Ez
( i )~r ,f!

]f
, Hf

( i )~r ,f!5
i

vm1

]Ez
( i )~r ,f!

]r
,

are the nonzero components of the fieldE( i ), H( i ) excited by the source5 in the wedgeW; radiation
condition~5! excludes5 waves coming from infinity; the Meixner condition~6! ensures the absenc
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of energy flux radiated by the edge of the wedge; and boundary condition~4! corresponds to the
case of perfectly conducting wedge faces. Transmission condition~3! guarantees continuity o
normal components of the total electromagnetic fieldE(1)5(0,0,Ez

1), H(1)5(Hr
1 ,Hf

1 ,0) and
E(2)5(0,0,Ez

2), H(2)5(Hr
2 ,Hf

2 ,0) in the domainsW\C̄ andC, respectively, when the lateral are
~interface! of the cylinder]C is crossed; these components are determined by the formulas

Ez
(1)~r ,f!5Ez

( i )~r ,f!1u1~r ,f!, Hr
(1)~r ,f!5Hr

( i )~r ,f!2
i

rvm1

]u1~r ,f!

]f
,

Hf
(1)~r ,f!5Hf

( i )~r ,f!1
i

vm1

]u1~r ,f!

]r
, ~r ,f!PV\D̄,

Ez
(2)~r ,f!5u2~r ,f!, Hr

(2)~r ,f!52
i

rvm2

]u2~r ,f!

]f
,

Hf
(2)~r ,f!5

i

vm2

]u2~r ,f!

]r
, ~r ,f!PD.

Below, we will consider a more general transmission problem: find functionsu1

PC2(V\D̄)ùC1(V\D)ùC(V̄\D̄) and u2PC2(D)ùC1(D̄) that solve ~1!–~6!, where f
PC1,a(]D), gPC0,a(]D) (0,a<1) are given functions on]D, and k1 , k2 , l1, and l2 are
nonzero complex numbers with 0<argkj,p/2, j 51,2.

Our aim is to establish the uniqueness and existence of solution to~1!–~6! by reducing this
problem to an operator equation suitable for further computations.

III. UNIQUENESS

First, we prove the uniqueness theorem for the considered transmission problem.
Theorem 1: Let k1 ,k2PC\$0%, 0<argk1,p/2, 0<argk2,p/2, and l1 ,l2PC\$0% be

such thatrªl2k̄2
2(l1k̄1

2)21PR, r.0. Then, the solution to transmission problem~1!–~6!, if it
exists, is unique.

Proof: It is sufficient to prove that homogeneous transmission problem~1!–~6! with f 5g
50 has only the trivial solution.

Assume thatu1 andu2 satisfy ~1!, ~2!, ~4!–~6! and the transmission conditions

u12u250, l1

]u1

]n
2l2

]u2

]n
50, on ]D. ~7!

Choose a numberR0 so thatD̄,VRª$(r ,f)PVur ,R% whenR>R0 and apply the first Green’s
formula to functionsu1 ,ū1 andu2 ,ū2 in domainsVR\D̄ andD, respectively, taking into accoun
Eqs.~1! and ~2!. As a result, we obtain

2 k̄1
2l1E

VR\D̄
uu1u2 dS52l1E

]D
u1

]ū1

]n
dl1l1E

CR

u1

]ū1

]n
dl2l1E

VR\D̄
ugradu1u2 dS

2 k̄2
2l2E

D
uu2u2 dS5l2E

]D
u2

]ū2

]n
dl2l2E

D
ugradu2u2 dS,

whereCRª$(r ,f)PR2u0<f<F,r 5R%. Note that here we can use the Green’s formula in
domain VR\D̄ becauseu1 ,gradu1 ,Du1PL2(VR\D̄) by virtue of the edge condition~6! and
Theorem 3.27, Colton and Kress.6 Using the latter relationships and transmission conditions~7!,
we obtain
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l1E
CR

u1

]ū1

]n
dl5l1E

VR\D̄
ugradu1u2dS1l2E

D
ugradu2u2 dS

2 k̄1
2l1E

VR\D̄
uu1u2 dS2 k̄2

2l2E
D

uu2u2 dS. ~8!

Dividing both sides of~8! by k̄1
2l1 and taking the imaginary part, we have

IS 1

k̄1
2ECR

u1

]ū1

]n
dl D 5IS 1

k̄1
2E

VR\D̄
ugradu1u2 dSD 1rIE

D
S 1

k̄2
2

ugradu2u2D dS. ~9!

Using relationship~9!, we first prove the assertion of the theorem under the conditionIk1.0. In
this case, we will show that the left-hand side of~9! tends to zero for a certain subsequenceCRm

asRm→`. Taking the imaginary part of the equality

k1E
CR

u1

]ū1

]n
dl5k1E

]D
u1

]ū1

]n
dl2 k̄1uk1u2E

VR\D̄
uu1u2 dS1k1E

VR\D̄
ugradu1u2 dS,

obtained as a result of applying the first Green’s formula to functionsu1 ,ū1 in the domainVR\D̄
and substituting the resulting expression into the formula

05 lim
R→`

E
CR

U]u1

]n
2 ik1u1U2

dl5 lim
R→`

E
CR

H U]u1

]n U2

1uk1u2uu1u212IS k1u1

]ū1

]n
D J dl, ~10!

that follows from radiation condition~5!, we find that

lim
R→`

H E
CR

S U]u1

]n U2

1uk1u2uu1u2Ddl12Ik1E
VR\D̄

~ uk1u2uu1u21ugradu1u2!dSJ
522IS k1E

]D
u1

]ū1

]n
dl D . ~11!

All terms on the left-hand side of~11! are non-negative becauseIk1.0. Therefore, each of them
is bounded, since their sum tends to a finite limit. In particular,

lim
R→`

E
VR\D̄

~ uk1u2uu1u21ugradu1u2!dS,`,

which means thatu1PW2
(1)(V\D̄). For sufficiently largeR8.R0, we have

U E
R8

` E
CR

u1

]ū1

]n
dl dRU2

<E
V\V̄R8

uu1u2 dSE
V\V̄R8

U]u1

]n U2

dS

<E
V\D̄

uu1u2 dSE
V\D̄

ugradu1u2 dS,`.

Therefore, there exists a sequenceCRm
such that

E
CRm

u1

]ū1

]n
dl,
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and the sequence

IS 1

k̄1
2ECRm

u1

]ū1

]n
dl D

tends to zero asRm→`. Passing to the limit in~9! over the sequenceCRm
, we obtain

Rk1Ik1

uk1u4
E

V\D̄
ugradu1u2 dS1r

Rk2Ik2

uk2u4 E
D

ugradu2u2 dS50. ~12!

Then, from~12!, it follows that *V\D̄ugradu1u2 dS50, andugradu1u50 in V\D̄. Therefore,u1

5const inV\D̄. The radiation condition yieldsu150 in V\D̄, and from the transmission cond
tions we obtainu25]u2 /]n 50 on ]D. Consequently, from the integral representation fo
solution of the Helmholtz equation, it follows thatu250 in D.

Now we consider the caseIk150. Sincer.0, condition~9! yields

IE
CR

u1

]ū1

]n
dl>0.

As a consequence of the radiation condition, we have

]ū1~R,f!

]n
1 ik1ū1~R,f!5oS 1

AR
D , R→`. ~13!

Multiplying ~13! by u1 and integrating overCR , we obtain

E
CR

u1

]ū1~R,f!

]n
dl1 ik1E

CR

uu1~R,f!u2dl5E
CR

u1~R,f!oS 1

AR
D dl, R→`. ~14!

Any solutionu1(r ,f) of the Helmholtz equation~1! that satisfies boundary condition~4!, radia-
tion condition~5!, and edge condition~6!, also satisfies8 the condition

u1~r ,f!5OS 1

Ar
D , r→`,

uniformly with respect tofP@0,F#. Using this fact and taking the imaginary part of Eq.~14!, we
find that

k1E
CR

uu1u2 dl1IE
CR

u1

]ū1

]n
dl5o~1!,

as R→`. Taking into account that both summands on the left-hand side are non-negativ
conclude that

E
CR

uu1u2 dl5E
0

F

Ruu1~R,f!u2 df5o~1!, ~15!

as R→`. At the next stage of the proof, we setum(r ,f)ªHnm

(1)(k1r )sin(nmf), where nm

5mp/F. Applying the second Green’s formula to functionsu1(r ,f) andum(r ,f) in the domains
VR\V̄R0

and taking into account that functionum(r ,f) satisfies Eq.~1! in this domain and
boundary condition~4!, we obtain
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05E
CR0

H u1~r ,f!
]um~r ,f!

]n
2um~r ,f!

]u1~r ,f!

]n J dl

1E
0

FH u1~R,f!
dHnm

(1)~k1R!

dR
2Hnm

(1)~k1R!
]u~R,f!

]R
J sin~nmf!Rdf5:I R0

1I R . ~16!

One can easily show that

I R5E
0

F

u1~R,f!H dHnm

(1)~k1R!

dR
2 ik1Hnm

(1)~k1R!J sin~nmf!Rdf

2E
0

F

Hnm

(1)~k1R!H ]u1~R,f!

]R
2 ik1u1~R,f!J sin~nmf!Rdf

5:J11J2 . ~17!

Let us estimate integralJ1. Using the relationship

dHnm

(1)~k1r !

dr
2 ik1Hnm

(1)~k1r !5O~r 23/2!, r→`, ~18!

and applying the Schwarz inequality in combination with~15!, we obtain

uJ1u5U E
0

F

u1~R,f!H dHnm

(1)~k1R!

dR
2 ik1Hnm

(1)~k1R!J sin~nmf!R dfU
<UdHnm

(1)~k1R!

dR
2 ik1Hnm

(1)~k1R!URS E
0

F

uu1~R,f!u2df D 1/2

F1/2

5O~R23/2!Ro~R21/2!5oS 1

RD , R→`. ~19!

By virtue of radiation condition~5! and the estimateHnm

(1)(k1R)5O(R21/2), R→`, we have

uJ2u<RuHnm

(1)~k1R!u E
0

FU]u1~R,f!

]R
2 ik1u1~R,f!Udf5RO~R21/2!o~R21/2!5o~1!, R→`.

~20!

Estimates~19! and~20! imply that the second term on the right-hand side of~16! tends to zero as
R→`. Since the first integralI R0

in ~16! does not depend onR, this yields I R0
50. Hence,I R

50 for anyR; that is,

dHnm

(1)~k1R!

dR
RE

0

F

u1~R,f!sin~nmf!df2RHnm

(1)~k1R!E
0

F]u1~R,f!

]R
sin~nmf!df50.

Introducing the notation

am~k1R!ªE
0

F

u1~R,f!sin~nmf!df, ~21!

we rewrite the last equality as
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am~k1R!
dHnm

(1)~k1R!

dR
2Hnm

(1)~k1R!
dam~k1R!

dR
50;

consequently,am(k1R)5amHnm

(1)(k1R), where am is a constant. Relation~21! means that

am(k1R), m51,2, . . . , are theFourier coefficients of the functionu1(R,f) over the complete
system of functions$sin(nmf)%m51

` on the interval@0,F#. Therefore, Parseval’s equality yields

E
0

F

Ruu1~R,f!u2 df5
F

2 (
m51

`

Ruam~k1R!u25
F

2 (
m51

`

Ruamu2uHnm

(1)~k1R!u2. ~22!

The latter equalities in combination with~15! imply that Ruamu2uuHnm

(1)(k1R)u2→0 as R→`.

However, according to the asymptotic formula

Hnm

(1)~k1R!;S 2

pk1RD 1/2

ei (k1R2pnm/22p/4), R→`,

and, for large values ofR, the product remains greater than a certain positive number; he
am50, i.e., am(k1R)[0. Consequently, by virtue of~22!, we haveu1[0 on the arcCR of a
sufficiently large radius, and, therefore,u1(P)50 at all pointsP(r P ,fP)PV, for which r P

>R0. We may conclude thatu1[0 everywhere in the domainV\D, because a solution of th
Helmholtz equation is an analytical function. The theorem is proved.

IV. POTENTIALS

Let us define the potentials

u1~M !5l1
21E

]D
S ]Gk1

~M ,P!

]nP
f~P!1c1Gk1

~M ,P!c~P! D dlP , MPV\]D, ~23!

u2~M !5l2
21E

]D
S ]Gk2

~M ,P!

]nP
f~P!1c2Gk2

~M ,P!c~P! D dlP , MPV\]D, ~24!

with the densitiesfPC1,a(]D) andcPC0,a(]D), wherec1 ,c2PC\$0% are fixed constants an
the functionGkj

(M ,P), j 51,2 is defined by the formula

Gkj
~M ,P!5

ip

F (
m51

` H Jnm
~kj r P!Hnm

(1)~kj r M !

Jnm
~kj r M !Hnm

(1)~kj r P!J sin~nmfM !sin~nmfP!. ~25!

Here and in all subsequent similar formulas, the upper and lower terms correspond, respe
to the casesr P<r M and r P>r M .

FunctionsGkj
(M ,P) and]Gkj

(M ,P)/]nP can be represented in the form7,8

Gkj
~M ,P!5G0~kj ;M ,P!1

1

4p
lnC~M ,P!, ~26!

whereG0(kj ;M ,P) is a regular function inV, which can be represented as a series

G0~kj ;M ,P!5
ip

F (
m51

` H F Jnm
~kj r P!Hnm

(1)~kj r M !

Jnm
~kj r M !Hnm

(1)~kj r P!G1
i

pnm
S r P

r M
D nmRJ sin~nmfM !sin~nmfP!,

~27!
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whose general term decreases asO(1/nm
3 ) whenm→`. Here and below, we use the notationR

5sign(r M2r P).
FunctionC(M ,P) can be expressed explicitly,

C~M ,P!5

sin2
p

2F
~fP1fM !1sinh2S p

2F
ln

r M

r P
D

sin2
p

2F
~fP2fM !1sinh2S p

2F
ln

r M

r P
D , ~28!

and has a singularity of the type 1/r M ,P
2 , wherer M ,P denotes the distance between pointsM andP;

therefore, the following relationship holds:

1

4p
lnC~M ,P!5

1

2p
ln

1

r M ,P
1f~M ,P!,

where f(M ,P) is an analytical function with respect to all variables. Thus, we can write
following expressions:

]Gkj
~M ,P!

]nP
5

1

4p

]

]nP
lnC~M ,P!1 (

q51

3

Gq
(1)~kj ;M ,P!, j 51,2, ~29!

where

G1
(1)~kj ;M ,P!5

ip

F
cosa~P! (

m51

` H kjF Jnm
8 ~kj r P!Hnm

(1)~kj r M !

Jnm
~kj r M !Hnm

(1)8~kj r P!
G1R

i

pr P
S r P

r M
D nmR

1
i

pr P

kj
2~r M

2 2r P
2 !

4nm
S r P

r M
D nmRJ sin~nmfM !sin~nmfP!, ~30!

G2
(1)~kj ;M ,P!5

ip

F
sina~P! (

m51

` H nm

r P
F2Jnm

~kj r P!Hnm

(1)~kj r M !

2Jnm
~kj r M !Hnm

(1)~kj r P!G2
i

pr P
S r P

r M
D nmR

2R
i

pr P

kj
2~r M

2 2r P
2 !

4nm
S r P

r M
D nmRJ sin~nmfM !sin~nmfP!, ~31!

G3
(1)~kj ;M ,P!5cosa~P!

kj
2~r M

2 2r P
2 !

16pr P
lnC~M ,P!

2Rsina~P!
kj

2~r M
2 2r P

2 !

8pr P
„F1~M ,P!1F2~M ,P!…; ~32!

functionsF i(M ,P), i 51,2, are defined by the formulas

F1,2~M ,P!5arctan

sin
p

F
~fM6fP!

S r P

r M
D 2R ~p/F!

2cos
p

F
~fM6fP!

,

a(P) is the angle between the vector of pointP and the unit normalnP to the curve]D. The terms
in series~30! and ~31! decrease asO@(1/nm

2 ) (r P /r M)nmR#.
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From relationships~26! and ~29!, it follows that potentials~23! and ~24! are well defined on
the curve]D. The following estimates are valid:8

uGk1
~M ,P!u<ArM

p/F , U]Gk1
~M ,P!

]nP
U<BrM

p/F ,

whereA andB are constants that do not depend onMPdùV, PP]D, andd denotes a neigh-
borhood of the originO of the polar coordinate system. It is easy to see that functionsu1 andu2

defined by formulas~23! and ~24! belong to the classesC2(V\D̄)ùC1(V\D)ùC(V̄\D̄) and
C2(D)ùC1(D̄), respectively, if we set by continuityu1(O)50.

FunctionsGk1
(M ,P) and ]Gk1

(M ,P)/]nP satisfy radiation condition~6! uniformly8 in 0
,fM,F, PP]D. This implies that potentials~23! and ~24! satisfy radiation condition~5! and
edge condition~6!. In addition to this, potentials~23! and ~24! satisfy8 Eqs. ~1! and ~2!, respec-
tively, and vanish on]V.

We will need also a representation similar to~26! for the functions

]2Gkj
~M ,P!

]nM ]nP
, j 51,2,

wherenM is the outward~with respect toD) unit normal on]D at the pointMPV. To this end,
we use the following result.

Lemma 1: For the Bessel, Jn(z), and Hankel, Hn(z), functions at fixed zPC\0, 0<argz
,p/2, the following asymtotic estimates hold:

Jn~z!5
1

~2pn!1/2S ez

2n D nS 12
113z2

12n
1

9z4178z211

288n2
1OS 1

n3D D , n→1`, ~33!

Hn
(1)~z!5

1

i S 2

pn D 1/2S 2n

ezD
nS 11

113z2

12n
1

9z4178z211

288n2
1OS 1

n3D D , n→1`. ~34!

Differentiating formula~29! with respect to the normalnM and separating, with the help o
Lemma 2, in the resulting relationship the principal asymptotical term of the series on the
hand side, we obtain the representations 7 for]2Gkj

(M ,P)/]M]nP , j 51,2 similar to those for
functionsGkj

(M ,P) @see~26!# but much more bulky. From these expressions, it follows that
considered functions have a logarithmic singularity when their arguments coincide.

V. REDUCTION TO INTEGRAL EQUATIONS

Now we reduce the transmission problem~1!–~6! to a system of Fredholm integral equation
Then, we will use Theorem 1 to prove the unique solvability both of this system and i
problem~1!–~6!.

Looking for a solution of transmission problem~1!–~6! in the form of potentials~23! and~24!

in the domainsV\D̄ and D, respectively, taking into account the representations for funct
Gkj

(M ,P) and their normal derivatives obtained above, and using the properties of harm
potentials,9 we derive the relationships that are valid on]D:

u1~M !2u2~M !5
1

2
~l1

211l2
21!f~M !1E

]D
S l1

21
]Gk1

~M ,P!

]nP
2l2

21
]Gk2

~M ,P!

]nP
Df~P!dlP

1E
]D

~l1
21c1Gk1

~M ,P!2l2
21c2Gk2

~M ,P!!c~P!dlP , ~35!
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l1

]u1~M !

]nM
2l2

]u2~M !

]nM
52

1

2
~c11c2!c~M !1E

]D
S ]2Gk1

~M ,P!

]nM]nP
2

]2Gk2
~M ,P!

]nM]nP
Df~P!dlP

1E
]D

S c1

]Gk1
~M ,P!

]nM
2c2

]Gk2
~M ,P!

]nM
Dc~P!dlP , MP]D, ~36!

where the following representations are valid:

]2Gk1
~M ,P!

]nM ]nP
2

]2Gk2
~M ,P!

]nM ]nP
5 (

q51

8

Gq
(2)~k1 ,k2 ;M ,P!, ~37!

G1
(2)~k1 ,k2 ;M ,P!5 (

m51

` H ip

F F k1
2Jnm

8 ~k1r P!Hnm

~1!8~k1r M !2k2
2Jnm

8 ~k2r P!Hnm

~1!8~k2r M !

k1
2Jnm

8 ~k1r M !Hnm

~1!8~k1r P!2k2
2Jnm

8 ~k2r M !Hnm

~1!8~k2r P!
G

1RA~r M ,r P ;k1 ,k2!S r P

r M
D nmR

1B1
(2)~r M ,r P ;k1 ,k2!

1

nm
S r P

r M
D nmRJ

3sin~nmfM !sin~nmfP!cosa~M !cosa~P!, ~38!

G2
(2)~k1 ,k2 ;M ,P!52 (

m51

` H ipnm

r MF F k1Jnm
8 ~k1r P!Hnm

(1)~k1r M !2k2Jnm
8 ~k2r P!Hnm

(1)~k2r M !

k1Jnm
~k1r M !Hnm

(1)8~k1r P!2k2Jnm
~k2r M !Hnm

(1)8~k2r P!
G

2A~r M ,r P ;k1 ,k2!S r P

r M
D nmR

2RB2
(1)~r M ,r P ;k1 ,k2!

1

nm
S r P

r M
D nmRJ

3cos~nmfM !sin~nmfP!sina~M !cosa~P!, ~39!

G3
(2)~k1 ,k2 ;M ,P!52 (

m51

` H ipnm

r PF F k1Jnm
~k1r P!Hnm

(1)8~k1r M !2k2Jnm
~k2r P!Hnm

(1)8~k2r M !

k1Jnm
8 ~k1r M !Hnm

(1)~k1r P!2k2Jnm
8 ~k2r M !Hnm

(1)~k2r P! G
1A~r M ,r P ;k1 ,k2!S r P

r M
D nmR

1RB2
(2)~r M ,r P ;k1 ,k2!

1

nm
S r P

r M
D nmRJ

3sin~nmfM !cos~nmfP!cosa~M !sina~P!, ~40!

G4
(2)~k1 ,k2 ;M ,P!5 (

m51

` H ipnm
2

r Mr PF F Jnm
~k1r P!Hnm

(1)~k1r M !2Jnm
~k2r P!Hnm

(1)~k2r M !

Jnm
~k1r M !Hnm

(1)~k1r P!2Jnm
~k2r M !Hnm

(1)~k2r P!G
2RA~r M ,r P ;k1 ,k2!S r P

r M
D nmR

2B1
(1)~r M ,r P ;k1 ,k2!

1

nm
S r P

r M
D nmRJ

3cos~nmfM !cos~nmfP!sina~M !sina~P!, ~41!
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G5
(2)~k1 ,k2 ;M ,P!5@2sign~r M2r P!Ã~r M ,r P ;k1 ,k2!C1~M ,P!

2B̃1
(2)~r M ,r P ;k1 ,k2!C2~M ,P!#cosa~M !cosa~P!, ~42!

G6
(2)~k1 ,k2 ;M ,P!5@2Ã~r M ,r P ;k1 ,k2!C3~M ,P!

2RB̃2
(1)~r M ,r P ;k1 ,k2!C4~M ,P!#sina~M !cosa~P!, ~43!

G7
(2)~k1 ,k2 ;M ,P!5@Ã~r M ,r P ;k1 ,k2!C5~M ,P!

1RB̃2
(2)~r M ,r P ;k1 ,k2!C6~M ,P!#cosa~M !sina~P!, ~44!

G8
(2)~k1 ,k2 ;M ,P!5@RÃ~r M ,r P ;k1 ,k2!C7~M ,P!

1B̃1
(1)~r M ,r P ;k1 ,k2!C8~M ,P!#sina~M !sina~P!, ~45!

A~r M ,r P ;k1 ,k2!5~k1
22k2

2!
r M

2 2r P
2

4Fr Mr P
,

B1
(6)~r M ,r P ;k1 ,k2!5

k1
22k2

2

32Fr Mr P
@~k1

21k2
2!~r M

2 2r P
2 !268~r M

2 1r P
2 !#,

B2
(6)~r M ,r P ;k1 ,k2!5

k1
22k2

2

32Fr Mr P
@~k1

21k2
2!~r M

2 2r P
2 !68#~r M

2 2r P
2 !,

Ã~r M ,r P ;k1 ,k2!5 1
8 A~r M ,r P ;k1 ,k2!,

B̃1
(6)5

F

4p
B1

(6)~r M ,r P ;k1 ,k2!, B̃2
(6)5

F

2p
B2

(6)~r M ,r P ;k1 ,k2!,

C1,7~M ,P!57

cos
p

F
~fM1fP!2S r P

r M
D R~p/F!

sinh2S p

2F
ln

r P

r M
D1sin2

p

2F
~fM1fP!

1

cos
p

F
~fM2fP!2S r P

r M
D R~p/F!

sinh2S p

2F
ln

r P

r M
D1sin2

p

2F
~fM2fP!

,

C3,5~M ,P!5

sin
p

F
~fM1fP!

sinh2S p

2F
ln

r P

r M
D1sin2

p

2F
~fM1fP!

7

sin
p

F
~fM2fP!

sinh2S p

2F
ln

r P

r M
D1sin2

p

2F
~fM2fP!

,

C4,6~M ,P!5F1~M ,P!7F2~M ,P!, C2~M ,P!5 lnC~M ,P!,

C8~M ,P!52 lnH 16Fsinh2S p

2F
ln

r P

r M
D1sin2

p

2F
~fM2fP!G

3Fsinh2S p

2F
ln

r P

r M
D1sin2

p

2F
~fM1fP!G J 2R

2p

F
ln

r P

r M
,
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]Gkj
~M ,P!

]nM
5

1

4p

]

]nM
lnC~M ,P!1 (

q51

3

Gq
(3)~kj ;M ,P!, j 51,2; ~46!

in the latter expression,

G1
(3)~kj ;M ,P!5

ip

F
cosa~M ! (

m51

` H kjF Jnm
~kj r P!Hnm

(1)8~kj r M !

Jnm
8 ~kj r M !Hnm

(1)~kj r P! G2R
i

pr M
S r P

r M
D nmR

2
i

pr m

kj
2~r M

2 2r P
2 !

4nm
S r P

r M
D nmRJ sin~nmfM !sin~nmfP!, ~47!

G2
(3)~kj ;M ,P!5

ip

F
sina~M ! (

m51

` H nm

r M
F2Jnm

~kj r P!Hnm

(1)~kj r M !

2Jnm
~kj r M !Hnm

(1)~kj r P!G2
i

pr M
S r P

r M
D nmR

2R
i

pr M

kj
2~r M

2 2r P
2 !

4nm
S r P

r M
D nmRJ cos~nmfM !sin~nmfP!, ~48!

G3
(3)~kj ;M ,P!52cosa~M !

kj
2~r M

2 2r P
2 !

16pr M
lnC~M ,P!

2sign~r M2r P!sina~M !
kj

2~r M
2 2r P

2 !

8pr M
„F1~M ,P!2F2~M ,P!….

As follows from Lemma 1, general terms of series~38!–~41!, ~47!, and~48! decrease as

OF 1

nm
2 S r P

r M
D nmRG .

VI. SOLVABILITY OF INTEGRAL EQUATIONS AND BOUNDARY VALUE PROBLEM

Introducing the integral operators

~A11f!~M !ª2E
]D

S l1
21

]Gk1
~M ,P!

]nP
2l2

21
]Gk2

~M ,P!

]nP
Df~P!dlP , ~49!

~A12c!~M !ª2E
]D
„l1

21c1Gk1
~M ,P!2l2

21c2Gk2
~M ,P!…c~P!dlP , ~50!

~A21f!~M !ª2E
]D

S ]2Gk1
~M ,P!

]nM ]nP
2

]2Gk2
~M ,P!

]nM ]nP
Df~P!dlP , ~51!

~A22c!~M !ª2E
]D

S c1

]Gk1
~M ,P!

]nM
2c2

]Gk2
~M ,P!

]nM
Dc~P!dlP , ~52!

defined by the right-hand sides of relationships~35! and ~36!, we see that these operators ha
weakly singular kernels. In fact, for operatorsA11, A12, A22, this statement follows from repre
sentations~26!, ~29!, and ~46! ~the kernel of operatorA12 has a logarithmic singularity and th
kernels ofA11, A22 are continuous!, and for operatorA21, it follows from the fact that the sum o
two last summands on the right-hand sides of~42! and ~45! have singularities of the form
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(1/4p) (k1
22k2

2)ln(1/r M P)while the rest of summands in~37! are bounded asP→M . Therefore,
these operators are compact in the spaceC(]D) and they mapC(]D) into C0,a(]D) and
C0,a(]D), into C1,a(]D).

Hence, using operator notation~49!–~52!, relationships~35!–~36!, and the transmission con
ditions, we can prove the following assertion.

Theorem 2: The potentials u1 and u2 defined by formulas (23) and (24) solve transmiss
problem (1)–(6) provided that densitiesf and c solve the system of integral equations w
weakly singular kernels,

~l1
211l2

21!f1A11f1A12c52 f ,

~c11c2!c2A21f2A22c522g. ~53!

Introduce in the spaceC(]D)3C(]D) the operatorsE andA defined as

EªF ~l1
211l2

21!I 0

0 ~c11c2!I
G , AªF2A11 2A12

A21 A22
G ,

whereI is the identity operator onC(]D). If we setJª@f
c#, then the system of integral equation

~53! can be rewritten in the form

~E2A!J5F, ~54!

where

FªF f

2gG .
Theorem 3: Under the conditions of Theorem 1, system of integral equations (53) [or wh

the same, integral equation (54)] has a unique solutionfPC1,a(]D), cPC0,a(]D) if l11l2

Þ0 and the numbers c1 and c2 are chosen so that the following conditions are valid:

~ i ! c11c2Þ0,

~ i i ! hª
c2k̄1

2

c1k̄2
2

PR, where h.0.

Proof. A is a compact operator; therefore, using the assumptions introduced above, th
that E is a bounded and invertible operator inC(]D)3C(]D), and Corollaries 1.17 and 1.20
Colton and Kress,6 we can show that the inhomogeneous integral equation~54! has the unique
solutionJ5(f

c)PC(]D)3C(]D) if the homogeneous equation,

~E2A!J50, ~55!

has only the trivial solution. Moreover, in this case, due to properties of the operator of s
~53! and the smoothness conditionf PC1,a(]D), gPC0,a(]D), we obtain thatfPC1,a(]D), c
PC0,a(]D).

So, it remains to prove that homogeneous integral Eq.~55! has only the trivial solution. Let
J5@f

c# be a solution to Eq.~55!. Then, potentialsu1 and u2 defined by~23! and ~24! solve
homogeneous transmission problem~1!–~6!. Therefore, from the uniqueness Theorem 1, we h

u150, in V\D̄, u250, in D̄. ~56!
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Using formulas~23! and ~24!, representations for functionGkj
(M ,P) and its normal derivatives

obtained above, and the discontinuity properties of potentials, we obtain the equalities

ui
12ui

25l i
21f, on ]D,

]ui
1

]n
2

]ui
2

]n
52l i

21cic, on ]D, i 51,2, ~57!

where ui
1(M )ª limP→M ,PPV\D̄u(P), ui

2(M )ª limP→M ,PPDu(P),MP]D. Relationships~57!
and ~56! imply that

l2u2
11l1u1

250,
l2

c2

]u2
1

]n
1

l1

c1

]u1
1

]n
50. ~58!

Now, let us introduce the functions

v2~M !5l2u2~M !5E
]D

S ]Gk2
~M ,P!

]nP
f~P!1c2Gk2

~M ,P!c~P! D dlP , MPV\D̄, ~59!

v1~M !52l1u1~M !52E
]D

S ]Gk1
~M ,P!

]nP
f~P!1c1Gk1

~M ,P!c~P! D dlP , MPD. ~60!

Then, from the above considerations and formulas~58!–~60!, it follows that functionsv1

PC2(D)ùC1(D̄) andv2PC2(V\D̄)ùC1(V\D)ùC(V̄\D̄) satisfy the homogeneous transmi
sion problem

Dv11k1
2v150, in D, Dv21k2

2v250, in VD̄,

v22v150, on ]D,
1

c2

]v2

]n
2

1

c1

]v1

]n
50, on ]D, v150, on ]V,

]v2

]r
2 ik2v25oS 1

Ar
D , r→`,

E
Vùd

~ uv2u21ugradv2u2!dS,`.

Condition ~ii ! enables us to apply in this case the uniqueness theorem, so thatv150 in D̄ and

v250 in V\D̄; therefore,u150 in D̄ andu250 in V\D̄. Using relations~57! and ~56!, we see
that f5c50 on ]D. The theorem is proved.

Theorems 3 and 2 imply the following result.
Corollary 1:
Assume that conditions of Theorem 3 are valid andfPC1,a(]D), cPC0,a(]D) is a solution

of the system of integral equations~53!. Then, potentials~23! and ~24! with densitiesf and c
solve transmission problem~1!–~6!.

In conclusion, we make the following remarks.
1. The above analysis shows that representations~26!, ~29!, ~46!, and ~37! for functions

Gkj
(M ,P) and their normal derivatives are not only of theoretical but also of practical inte

since they enable one to compute the kernels of the system of integral equations in the cas
their arguments are close. In this connection, it should be noted that formula~25! and the repre-
sentations obtained as a result of its differentiation are not suitable for this purpose. In fact,
~25! are not absolutely convergent, its general term decreases asO(1/nM) for r P5r M , fP
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ÞfM , whereas the series obtained by termwise differentiation with respect tor andf are diver-
gent for r P5r M , fPÞfM . In addition to this, unlike formulas~26! and ~37!, the logarithmic
singularity is not extracted explicitly from series~25!.

2. Transmission problem~1!–~6! may be reduced to a uniquely solvable system of integ
equations using another approach, when a solution to~1!–~6! is sought in the form~23! and~24!,
whereGk2

(M ,P)5( i /4) H0
(1)(k2r M ,P). In order to verify the validity of Theorems 2 and 3 in th

case, one should assume, at the end of the proof of Theorem 3 when referring to Theorem
V5R2 ~the corresponding result can be obtained by literally repeating the arguments!.4

3. All the results obtained in this paper can be generalized without any serious changes
transmission problem in the case when the boundary]D consists of a finite number of close
nonintersecting Lyapynov contours.
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Jacobi’s principle for magnetic interactions
G. F. Torres del Castilloa)

Departamento de Fı´sica Matema´tica, Instituto de Ciencias de la Universidad
Autónoma de Puebla, 72570 Puebla, Pue., Mexico

~Received 24 September 1998; accepted for publication 3 June 1999!

It is shown that the trajectories of a charged particle in a static magnetic field and
a velocity-independent potential in a three-dimensional space are~the projection of!
the geodesics of a suitably defined metric in a four-dimensional space. It is shown
that each one-parameter group of isometries of the original configuration space that
leaves the magnetic field invariant gives rise to a one-parameter group of isometries
of the metric defined on the four-dimensional space and, hence, to a constant of the
motion. It is also shown, similarly, that the Schro¨dinger equation for a charged
particle in a static magnetic field is equivalent to the Schro¨dinger equation for a free
particle in the four-dimensional space mentioned above. ©1999 American Insti-
tute of Physics.@S0022-2488~99!02809-1#

I. INTRODUCTION

As is well known in classical mechanics, the orbits in the configuration space of a partic
a system of particles, whose Hamiltonian is of the form

H5 1
2g

i j pipj1V~qi !,

( i , j ,...51,...,n), are the geodesics of the metric

~E2V!gi j dqi dqj

~Jacobi’s principle!. This result does not apply to the case where there are magnetic forces pr
however, as shown in Refs. 1 and 2, in the latter case, the following result holds: the
corresponding to the Hamiltonian,

H5
1

2
g i j S pi2

e

c
Ai D S pj2

e

c
Aj D1V,

whereg i j , Ai , andV depend only on the coordinatesqi , are projections of the geodesics of a
(n11)-dimensional space with a metric tensor made out ofg i j , Ai , andV. @Actually, in Refs. 1
and 2, only the casen53 was considered, but it is easy to see that the expressions obtained
apply to all values ofn; furthermore, in Refs. 1 and 2 it was assumed that the (n11)th coordinate
is a time coordinate, but one can leave the nature of the additional variable unspecified.#

Thus, by increasing the dimension of the space, one can absorb the electromagnetic
and other conservative forces present, into the geometry. This geometrization of the elect
netic interaction also allows one to deal with the gauge transformations in the Hamiltonia
malism in an easy way~see below! ~cf. Ref. 3!. The manner in which the magnetic interaction
incorporated into the geometry of a space of higher dimension here and in Refs. 1 and 2 is
to that followed in the Kaluza–Klein theory, where the electromagnetic and gravitational fiel
the four-dimensional spacetime of general relativity are incorporated into the metric of a
dimensional space in such a way that the Einstein–Maxwell equations correspond to the va
of the Ricci tensor of the five-dimensional metric. In fact, some of the equations given in S

a!Electronic mail: gtorres@fcfm.buap.mx
49030022-2488/99/40(10)/4903/8/$15.00 © 1999 American Institute of Physics
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@e.g., Eqs.~3!–~5!, ~9!, and~10!# are analogous to the corresponding formulas in the Kaluza–K
theory; however, since we are not interested in the curvature of the auxiliary higher dime
space, we have some freedom in the definition of the metric of the auxiliary space, wh
employed to make the parameter of the geodesics of the auxiliary space to coincide with th
even when there is a velocity-independent potential present@Eq. ~6! below#.

Our aim in this paper is to show that a similar connection exists in the case of the Schro¨dinger
equation; specifically, we shall show that the solution of the~time-independent! Schrödinger
equation for a charged particle in a static magnetic field can be obtained from the solution
Schrödinger equation for a free particle in an (n11)-dimensional space. It should be noticed th
in the context of the Kaluza–Klein theory, one would consider an equation like the Klein–Go
equation, rather than the Schro¨dinger equation. In Sec. II we consider the motion of a char
particle in a magnetic field in the framework of classical mechanics, showing the relations
this problem with the motion of a free particle in a space with an extra dimension. The met
this higher dimension space is different from that introduced in Refs. 1 and 2 and, as point
above, it has the advantage that the time parameters conjugate to the original and the a
Hamiltonians coincide. We show that even though the vector potential may not be invariant
a group of isometries that leave the magnetic field invariant, one can find a local gro
isometries of the metric defined in the extended space, which, however, may not be isomor
the original group. Two examples are given, which turn out to be related to metrics in
dimensional spaces of interest in general relativity. A similar result can be obtained in the Ka
Klein theory; for any group of isometries of the spacetime metric that leave the electroma
field tensor invariant, it is possible to find a local group of isometries of the metric of
five-dimensional space. In Sec. III we consider the Schro¨dinger equation for a charged particle
a static magnetic field, showing that the solutions of this equation can be obtained from th
the Schro¨dinger equation for a free particle in the extended space employed in Sec. II
generators of the isometries of this latter space correspond to operators that commute w
Hamiltonian.

II. MAGNETIC FIELDS AND GEOMETRY

The Hamiltonian of a particle of massm and electric chargee in a static magnetic field and
velocity-independent potentialf is given by

H5
1

2m
g i j S pi2

e

c
Ai D S pj2

e

c
Aj D1f, ~1!

where (g i j ) is the inverse of the matrix (g i j ) formed by the components of the metric tensor w
respect to a coordinate systemxi ( i , j ,...51,2,3),Ai are the components of a~time-independent!
vector potential corresponding to the given magnetic field andf5f(xi). We now introduce the
auxiliary Hamiltonian,

h[
1

2m
gabpapb , ~2!

of a free particle of massm in a four-dimensional space~a,b,...50,1,2,3!, with

g005 1
g00

1
AiA

i

c2
, g0i52 Ai

c
, gi j 5g i j , ~3!

whereg00 is a function ofxi only, to be specified later, andAi5g i j Aj . It can be readily verified
that the inverse of (gab), denoted by (gab), is given by

g0i5g00

Ai

c
, gi j 5g i j 1g00

AiAj

c2
; ~4!
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therefore, the orbits corresponding to the Hamiltonian~2! are the geodesics of the metric,

ds25gab dxa dxb5g00S dx01
Ai

c
dxi D 2

1g i j dxi dxj . ~5!

From Eqs.~1!–~3! it is easy to see that

h5H1
~p02e!

2m

Ai

c S Ai

c
~p01e!22pi D1

p0
2

2mg00
2f. ~6!

Thus, choosingg00 in such a way that

e2

2mg00
5f1const, ~7!

it follows that on the submanifold

p05e, ~8!

]h/]xi5]H/]xi and]h/]pi5]H/]pi . Hence, the projection on the phase space of the orig
Hamiltonian~1! of the orbits determined byh @Eq. ~2!#, with p05e, coincides with the orbits of
H. Since the Hamiltonianh does not depend onx0, p0 is a constant of the motion.

Thus, we have shown that the solutions of the equations of motion determined by the H
tonian ~1! correspond to the geodesics of the metric~5!. For a given magnetic field, the vecto
potentialAi is defined up to the gauge transformations,

Ai85Ai1] ij, ~9!

wherej is an arbitrary function of thexi . From Eq.~5! we see that the gauge transformation~9!
is equivalent to the substitution of the coordinatex0 by

x805x02j/c. ~10!

Applying Hamilton’s equations to the Hamiltonian~2!, it follows that pa5mgabẋb. Making use
of Eqs.~4!, this leads to

p05mg00S ẋ01
Aiẋ

i

c D , pi5mg i j ẋ
j1mg00

Ai

c S ẋ01
Aj ẋ

j

c D ,

hence,pi5mg i j ẋ
j1Aip0 /c, which, on the submanifoldp05e @Eq. ~8!# reduces to the well-

known relation

pi5mg i j ẋ
j1

e

c
Ai , ~11!

which also follows from the Hamiltonian~1!.
In the rest of this paper we shall assume that only the magnetic field is present in~1!, taking

f50; therefore, in what follows,g00 will be taken as a constant@see Eq.~7!#.
The symmetry of the magnetic field need not be shared by the vector potential; however

magnetic field is invariant under a one-parameter group of motions on the original configu
space, one can find a one-parameter~local! group of isometries of~5!, which leads to a constant o
the motion for both Hamiltonians. More precisely, letKi] i be a Killing vector field~i.e., the
generator of a one-parameter group of isometries! of the metricg i j dxi dxj of the original con-
figuration space,
                                                                                                                



agnetic

e of

tly

n

r
e

4906 J. Math. Phys., Vol. 40, No. 10, October 1999 G. F. Torres del Castillo

                    
Ki ] ig jk12g i ( j]k)K
i50, ~12!

where the parentheses denote symmetrization on the indices enclosed, which leaves the m
field 2-form B5d(Ai dxi) invariant; this means that the Lie derivative ofd(Ai dxi) along Ki] i

vanishes. Then, since the Lie derivative commutes with the differential, the Lie derivativ
Ai dxi along Ki] i must be locally exact, i.e., there exists~locally! a functionK0 of the xi only,
such that £Ki] i

(Aj dxj )52c dK0, or

Ki ] iAj1Ai] jK
i52c ] jK

0. ~13!

Then, we can show that the vector fieldKa]a5K0]01Ki] i is a Killing vector field of the metric
gab dxa dxb. Indeed, the components of the Lie derivative ofgab dxa dxb alongKa]a ,

Kr ]rgab12gr(a ]b)K
r5Ki ] igab12g0(a ]b)K

012gi (a ]b)K
i ,

are

Ki ] ig0012g00]0K012gi0 ]0Ki ,

which vanishes since the componentsKa do not depend onx0 and in the present case~f50! g00

is constant,

Ki ] ig0 j1g00] jK
01gi0 ] jK

i5Ki] i S g00

Aj

c D1g00] jK
01g00

Ai

c
] jK

i50,

by virtue of Eqs.~4! and ~13!, and

Ki ] igjk12g0( j ]k)K
012gi ( j ]k)K

i

5Ki ] ig jk12g i ( j ]k)K
i12

g00

c2 A( j~Ki ] iAk)1c ]k)K
01Ai ]k)K

i !50,

where we have made use of Eqs.~4!, ~12!, and~13!. @The conclusion can also be obtained direc
from Eq. ~5!, by noting that Eq.~13! means that the Lie derivative ofdx01Ai dxi /c alongKa]a

vanishes.# It may be noticed that the same conclusion applies iff is invariant under the group
generated byKi] i , not necessarily a constant.

The invariance of the Hamiltonian~2! under the flow generated byKa]a implies the conser-
vation of Kapa , therefore, taking into account the constraint~8! and the fact that the Poisso
bracket betweenKapa andp0 vanishes, the function

Kipi1eK0 ~14!

is also a constant of the motion for the original Hamiltonian~1! ~see the examples below!. Note
that K0 is defined by Eq.~13! up to an additive constant.

If there existr Killing vector fields,K (a)
i ] i (a,b,...51,2,...,r ), of g i j dxi dxj that leave the

magnetic field invariant such that

@K ~a!
i ] i ,K ~b!

j ] j #5cab
d K ~d!

i ] i , ~15!

for some constantscab
d , then each Killing vector field can be locally ‘‘lifted’’ to a Killing vecto

field, K (a)
a ]a of the metric~5!, with K (a)

0 given by Eq.~13! up to an additive constant. Making us
of Eq. ~13! one finds that the commutation relations of the vector fieldsK (a)

a ]a are given by

@K ~a!
a ]a ,K ~b!

b ]b#5~K ~a!
i ] iK ~b!

0 2K ~b!
i ] iK ~a!

0 !]01cab
d K ~d!

i ] i5cab
d K ~d!

a ]a1 f ab]0 , ~16!

where
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f ab[2cab
d K ~d!

0 1K ~a!
i ] iK ~b!

0 2K ~b!
i ] iK ~a!

0 ~17!

are constants that can be different from zero@see, e.g., Eq.~28! below#. ~The fact that thef ab are
constant can be proven making use of Eq.~13! and of the property of the Lie derivative £@X,Y#

5@£X ,£Y#.) Since the vector fieldsK (a)
a ]a ~and, hence, the constants of the motionK (a)

a pa with
the Poisson bracket! satisfy the commutation relations~16!, if f abÞ0, they generate a centra
extension of the Lie algebra generated by the vector fieldsK (a)

i ] i . ~Note that]0 commutes with
the Killing vector fieldsK (a)

a ]a .)

Examples

The vector potential given by

Ai dxi52g cosu dw, ~18!

in terms of the spherical coordinates (r ,u,w), corresponds to the field of a magnetic monopole
chargeg. Substituting Eq.~18! and the metric of the Euclidean three-dimensional space into
~5! one obtains the metric

ds25g00~g/c!2~dx1cosu dw!21dr21r 2~du21sin2 u dw2!, ~19!

where we have introduced the dimensionless variablex[2(c/g)x0. The magnetic field of the
monopole is invariant under the rotations about the origin@though the potential~18! is not#;
therefore the vector fields,

K ~1![K ~1!
i ] i52sinw]u2cotu cosw]w ,

K ~2![K ~2!
i ] i5cosw]u2cotu sinw]w , ~20!

K ~3![K ~3!
i ] i5]w ,

which generate rotations about the coordinate axes in the three-dimensional Euclidean spa
rise to Killing vector fields of~19!. Substituting Eqs.~18! and ~20! into Eq. ~13!, one finds that
K (1)

0 52(g/c)cosecu cosw, K (2)
0 52(g/c)cosecu sinw, K (3)

0 50 ~setting to zero the integration
constants!; thus, the vector fields,

K̃ ~1![K ~1!
a ]a52sinw]u2cotu cosw]w1cosecu cosw]x ,

K̃ ~2![K ~2!
a ]a5cosw]u2cotu sinw]w1cosecu sinw]x , ~21!

K̃ ~3![K ~3!
a ]a5]w ,

are Killing vector fields of~19!. One can easily verify that the vector fieldsK (a) andK̃ (a) obey the
commutation relations@K (a) ,K (b)#52eabcK (c) and @K̃ (a) ,K̃ (b)#52eabcK̃ (c) , respectively~i.e.,
f ab50). The three constants of the motion associated with the isometries~21! are@see Eq.~14!#

L152sinwpu2cotu coswpw2~eg/c!cosecu cosw,

L25coswpu2cotu sinwpw2~eg/c!cosecu sinw, ~22!

L35pw ,

or, making use of Eq.~11!, one finds that (L1 ,L2 ,L3)5r3mṙ2(eg/c)r /r . Since the mapping
Ka]a°Kapa is a Lie algebra homomorphism, it follows that the functionsLa satisfy the Poisson
bracket relations$La ,Lb%52eabcLc . It may be pointed out, finally, that the metric~19!, with
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g00.0, is a Euclidean Taub–NUT metric~see, e.g., Ref. 4! and that the vector fields~21! form a
basis for the right-invariant vector fields on SO~3!, with w, u, andx being Euler angles.

As a second example, we shall consider the potential,

Ai dxi5 1
2B0~x dy2y dx!, ~23!

in Cartesian coordinates, whereB0 is a constant, which corresponds to a uniform magnetic fi
In this case the four-dimensional metric~5! is given by

ds25g00„dx01~B0/2c!~x dy2y dx!…21dx21dy21dz2. ~24!

The vector fields,

K ~1![]x , K ~2![]y , K ~3![]z , K ~4![x]y2y]x , ~25!

are Killing vector fields of the three-dimensional Euclidean space, that leave invariant the
netic field generated by the vector potential~23! and whose nonvanishing commutators are

@K ~1! ,K ~4!#5K ~2! , @K ~2! ,K ~4!#52K ~1! . ~26!

Making use of Eqs.~13!, ~23!, and~25! one obtains the following Killing vector fields of th
metric ~24!:

K̃ ~1![]x2
B0y

2c
]0 , K̃ ~2![]y1

B0x

2c
]0 , K̃ ~3![]z , K̃ ~4![x]y2y]x . ~27!

The only nonvanishing commutators of these vector fields are

@K̃ ~1! ,K̃ ~2!#5
B0

c
]0 , @K̃ ~1! ,K̃ ~4!#5K̃ ~2! , @K̃ ~2! ,K̃ ~4!#52K̃ ~1! . ~28!

Thus, in this casef 125B0 /c @Eq. ~16!# and the vector fieldsK̃ (a) are part of a basis of a Lie
algebra of dimension 5, which is not isomorphic to the Lie algebra generated by the vector
~25!. The constants of the motion corresponding to the Killing vector fields~27! on the submani-
fold p05e, are

px2
eB0

2c
y5mẋ2

eB0

c
y, py1

eB0

2c
x5mẏ1

eB0

c
x,

pz5mż,
~29!

xpy2ypx5m~xẏ2yẋ!1
eB0

2c
~x21y2!.

As pointed out in Ref. 1, the metric~24! with g00521 corresponds to the Som–Raychaudh
spacetime;5 thus, as a byproduct, we have shown that this spacetime possesses at least five
vector fields.

III. MAGNETIC INTERACTIONS IN THE SCHRÖDINGER EQUATION

Now we shall consider the time-independent Schro¨dinger equation for a particle of massm
and electric chargee in a static magnetic field with a~time-independent! vector potentialA,

1

2m S \

i
“2

e

c
AD 2

c5Ec, ~30!
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or, equivalently,

2\2¹2c2
\e

ic
“–~Ac!2

\e

ic
A–“c1S e

cD 2

A2c52mEc ~31!

~without imposing any gauge condition onA!. If, as in the preceding section,g i j are the compo-
nents of the metric tensor with respect to a coordinate systemxi , (i , j ,...51,2,3) and (g i j )
denotes the inverse of (g i j ), then Eq.~31! reads as

2\2
1

Ag
] i~Agg i j ] jc!2

\e

ic

1

Ag
] i~AgAic!2

\e

ic
Ai ] ic1S e

cD 2

AiA
ic52mEc, ~32!

whereg[det(gij).
From Eqs.~4! it follows that g[det(gab) is related tog by means of

g5g00g. ~33!

~Note thatg is used with two different meanings.! Therefore, making use of Eqs.~3! and~33!, with
g00 constant, one finds that Eq.~32! amounts to

2\2
1

Ag
]a~Aggab]bC!5~2mE1e2/g00!C, ~34!

provided that

C~x0,x1,x2,x3!5c~x1,x2,x3!exp~ iex0/\!. ~35!

Equation~34! is an explicit expression of

2
\2

2m
~4!¹2C5E8C, ~36!

where(4)¹2 is the Laplace operator for the metric~5! andE85E1e2/(2mg00). Equation~36! is
the Schro¨dinger equation for a free particle of massm ~or the Helmholtz equation! in the four-
dimensional space with metric~5!.

Note that, by contrast with the operator appearing on the left-hand side of Eq.~30!, the
left-hand side of Eq.~36! does not contain the charge of the particle. Since the metric~5! does not
depend on x0, the operator C[2 i\]0 commutes with the free particle Hamiltonian
(2\2/2m)(4)¹2; the functions of the form~35! are the eigenfunctions ofC,

CC5eC, ~37!

and the eigenvalue ofC is the electric charge of the particle@cf. Eq. ~8!#.
As pointed out in Sec. II, the effect of a gauge transformation~9! is equivalent to the coor-

dinate change~10!; therefore, from Eq.~35! we see that a gauge transformation produces
change,

c8~xi !5c~xi !expS ie

\c
j D , ~38!

as is well known. Furthermore, a Killing vector fieldKi] i of the metricg i j dxi dxj that leaves the
magnetic field invariant, locally yields a Killing vector fieldKa]a of the metric~5!, which means
that the operator,

K[2 i\Ka]a , ~39!
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commutes with the operator (2\2/2m)(4)¹2. In the case where we have a set of Killing vect
fields K (a)5K (a)

i ] i of g i j dxi dxj that leave the magnetic field invariant satisfying Eq.~15!, from
Eqs. ~16! and ~39! it follows that the corresponding operatorsK(a) obey the commutation rela
tions,

@K~a! ,K~b!#52 i\~cab
d K~d!1 f abC!. ~40!

For example, making use of Eqs.~3!, ~18!, ~33!, and ~34!, one finds that the Schro¨dinger
equation for a free particle in the four-dimensional geometry~19! is given by

1

r 2 ] r~r 2 ] rC!1
1

r 2 F 1

sinu
]u~sinu ]uC!1

1

sin2 u
~]x

2C22 cosu]x ]wC1]w
2C!G

1S ~c/g!2

g00
2

1

r 2D ]x
2C52

2mE8

\2 C. ~41!

This equation admits separable solutions of the form

C~x,r ,u,w!5R~r !eisx
sYjm~u,w!, ~42!

where thesYjm are spin-weighted spherical harmonics6 @which can be related to the WignerD
functions7,8 and to the Jacobi polynomials~see, e.g., Refs. 9 and 10!# and R(r ) is a spherical
Bessel function~cf. Refs. 11 and 12!.

A comparison of Eqs.~35! and ~42!, taking into account thatx52(c/g)x0, shows that
c(r ,u,w)5R(r )sYjm(u,w) is a separable solution of the Schro¨dinger equation~30! in the field of
a magnetic monopole, withs52(eg)/(\c). The operatorsK(a)52 i\K (a)

a ]a (a51,2,3) @Eq.
~39!#, where theK (a)

a ]a are the Killing vector fields of~19! given by Eqs.~21!, restricted to the
subspace~37!, reduce to the ‘‘generalized angular momentum’’ operators given, e.g., in Ref
and 12.
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Uniqueness theorems for classical four-vector fields
in Euclidean and Minkowski spaces

Dale A. Woodsidea)

Department of Physics, Macquarie University–Sydney,
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Euclidean and Minkowski four-space uniqueness theorems are derived which yield
a new perspective of classical four-vector fields. The Euclidean four-space unique-
ness theorem is based on a Euclidean four-vector identity which is analogous to an
identity used in Helmholtz’s theorem on the uniqueness of three-vector fields. A
Minkowski space identity and uniqueness theorem can be formulated from first
principles and the space components of this identity turn out to reduce to the
three-vector Helmholtz’s identity in a static Newtonian limit. A further result is a
uniqueness theorem for scalar fields based on an identity which is proved to be a
static Newtonian limit of the zeroth or scalar component of the Minkowski space
extension of the Helmholtz identity. Last, the three-vector Helmholtz identity and
uniqueness theorem and their four-space extensions to Minkowski space are gen-
eralized to mass damped fields. ©1999 American Institute of Physics.
@S0022-2488~99!00810-5#

I. INTRODUCTION

In Sec. II a review of Helmholtz’s theorem on the uniqueness of three-vector fields is
presented. Helmholtz’s theorem is concerned with irrotational fields, which have zero curl e
where in space, and solenoidal fields, which have zero divergence everywhere in space. N
divergence and curl of a vector field over all of a Euclidean three-space uniquely determin
vector field. Based on these properties a theorem, that will be called the Helmholtz theorem
that the most general continuous three-vector field defined everywhere in a Euclidean three
that along with its first derivatives vanishes sufficiently rapidly at infinity, may be uniqu
represented as a sum of an irrotational and a solenoidal part, up to a possible additive
constant. The theorem can be extended to finite volumes as well. In proving Helmholtz’s the
a vector identity is used that is commonly referred to as the Helmholtz identity, which in tu
derived from a delta function property of the Laplacian operator.

A comparison of the three-space Laplacian operator with the Minkowski space d’Alembe
operator then suggests that a three-divergence and a three-curl naturally generalize into
divergence and a four-curl when a fourth dimension is added. A review of the Somme
four-space integral solution of the four-vector potential d’Alembertian wave equation, trans
into modern notation, is then presented.

In Secs. III and IV a number of theorems are put forward. Of these theorems, Theorem
IV, V, and VII–XII appear to be new results for three-vector and four-vector fields in a flat sp
The new four-vector results of this paper follow from a different starting point than another s
of attempts to extend Helmholtz’s theorems to Minkowski four-space1 in that the present pape
adopts a definition of the four-curl as given by the Maxwell field tensorFmn, Eq. ~14b!, following
the definition in Møller,2 while these other attempts choose the dual of the Maxwell field tenso
their four-curl. This later definition appears to be oriented toward the analysis of the uniquen
electromagnetic fields in the presence of hypothetical magnetic monopoles. The advantage
approach of the present paper, on the other hand, is that it leads to a more natural genera

a!Electronic mail: dalew@physics.mq.edu.au
49110022-2488/99/40(10)/4911/33/$15.00 © 1999 American Institute of Physics
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of Helmholtz’s three-space theorems to four-space. In particular, it yields a four-space Helm
identity whose space components reduce to the three-space Helmholtz identity in a static
tonian limit.

In Sec. III a comparison of Sommerfeld’s four-space integral solution with a Green’s fun
approach yields a four-space Euclidean Laplacian delta function identity. On observing th
original three-space Helmholtz identity is commonly derived from an analogous three-spac
placian operator delta function identity, a parallel approach is taken and the four-vector Euc
Laplacian delta function identity is used to derive a Euclidean four-space generalization
Helmholtz identity. As with Sommerfeld’s Euclidean four-space integral, the Euclidean four-s
delta function identity can be analytically continued to Minkowski space by choosing an a
priate integration contour which takes timelike causality into account. Rather than working
this analytic continuation technique to derive a Minkowski space result, it turns out to be
convenient to derive the Minkowski four-space extension of the Helmholtz identity from
principles using a Minkowski space retarded Green’s function. These Euclidean and Mink
four-space extensions of the three-space Helmholtz identity are explicitly stated in Theorem
II, respectively, and form the basis for several uniqueness theorems for four-vector fields.

Next, it is shown that this Minkowski four-space identity reduces to the three-space Helm
identity in a static Newtonian limit. The zeroth or scalar component of this Minkowski four-s
extension of the Helmholtz identity is then shown to reduce to a three-vector integral identi
scalar fields in a static Newtonian limit. This three-vector integral identity for scalar fields
plicitly stated in Theorem III, is also proved by direct application of the three-space Lapla
operator delta function identity.

Uniqueness theorems in Euclidean and Minkowski four-spaces, Theorems IV and V, ar
proved using their respective four-vector Helmholtz identities. It is found that the specificati
the four-curl andfour-divergenceof the four-vector field throughout the four-volumeV4 , as well
as thefour-tangentialand four-normal projectionsof the four-vector field everywhere on th
bounding three-surfaceS, are sufficient to obtain a unique four-vector field. A further result ba
on Theorems IV and V, and stated later in Theorem X in Sec. IV, is that a four-vector fie
uniquely specified by the sum of afour-irrotational and afour-solenoidalpart. This latter theorem
corresponds to a four-space generalization of Helmholtz’s uniqueness theorem.

Also in Sec. III, a uniqueness theorem for scalar fields, Theorem VI, is proved using the
field integral identity of Theorem III. In this three-vector field case it is found that the gradie
the scalar field throughout the volumeV, as well as the magnitude of the scalar field on t
bounding surfaceS, are sufficient to obtain a unique scalar field in a Euclidean three-space.

Finally, in Sec. IV there is a discussion on whether or not the Helmholtz identity an
relativistic extensions to Euclidean and Minkowski spaces can be generalized to fields with
First, by adding an exponential damping factor for the mass to the Euclidean three-space L
ian delta function identity, an exponentially damped three-vector Helmholtz identity is stat
Theorem VII. A uniqueness theorem, Theorem VIII, is then proved using this three-vector
tity. Next, in the Euclidean four-vector case it is shown that adding an exponential damping
for the mass leads to a Euclidean four-space Laplacian delta function identity with an add
cross term which makes the development of an analogous four-vector identity problematic.
other hand, in the Minkowski four-space case, the existence of a massive scalar Green’s fu
over timelike separations allows one to obtain an exponentially damped Minkowski space
vector identity which is explicitly stated in Theorem IX. But the four-space extension of H
holtz’s uniqueness theorem does not appear to carry over to the exponentially damped
However, an exponentially damped version of uniqueness Theorem V is stated in Theore
which relies on a theorem on the vanishing of a four-vector field, i.e., Theorem XI.

Although it is tempting to interpret the exponentially damped results as generalizations
earlier results to massive four-vector fields, no limitation was imposed on their derivations
than that the four-vector fields are assumed to be sufficiently smooth. The exponentially d
results do, however, appear to be oriented toward application to massive vector fields or
nately to fields undergoing spatial diffusion in three or four dimensions, respectively.
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II. HISTORICAL AND MATHEMATICAL BACKGROUND

A. Historical survey of uniqueness theorems in three dimensions

A natural starting point in the development of a uniqueness theorem for classical four-v
fields is an examination of the various statements of uniqueness theorems for ordinary three
fields in a flat Euclidean three-space. Historically, the first statement of a uniqueness theor
three-vector fields is found in Stokes’ article on diffraction in 1849.3 The next statement is foun
in Helmholtz’s article on the hydrodynamics of vortex motion in 1858.4 Modern texts often attach
Helmholtz’s name to a uniqueness theorem for three-vector fields, but Sommerfeld5 makes a point
of acknowledging Stokes’ contribution as well. Also, modern statements of uniqueness the
for three-vector fields adopt vector notation, which is absent from their 1850’s counterparts,
addition differ in their emphasis and presentation.6–9 A short review of these modern uniquene
statements is therefore warranted.

First, it is important to note that the defining properties of irrotational and solenoidal field
the essential underpinnings of the uniqueness theorems for three-vector fields. Namely, an
tional field has zero curl everywhere in space, i.e.,

05¹3A, ~1a!

while a solenoidal field has zero divergence everywhere in space, i.e.,

05¹•A. ~1b!

Next, a preliminary uniqueness theorem can be stated as follows:
Theorem U: The divergence and curl of a three-vector field over a volume V in a Euclid

three-space, along with its normal components on a closed surface S bounding the volu,
uniquely determines the three-vector field over the volume V and on the surface S.

In other words, one must specify

¹3F5 j ~x,y,z!, ~2a!

¹•F5r~x,y,z!, ~2b!

over the volumeV, and the normal componentFn(x,y,z) on the surfaceS, where for example in
an electromagnetic context,j is a ‘‘circulation current density’’ andr is a ‘‘source charge den
sity.’’ A proof of this theorem is given in Arfken.8

A uniqueness theorem that can be attributed to Helmholtz can now be stated as follow
Theorem H1 „Helmholtz’s theorem on the uniqueness of three-vector fields over all of a

Euclidean three-space…: A general continuous three-vector field defined everywhere in a Eu
ean three-space, that along with its first derivatives vanishes sufficiently rapidly at infinity, m
uniquely represented as a sum of an irrotational and a solenoidal part, up to a possible ad
constant vector.
A proof of this theorem is given in Sommerfeld.5

A modern alternate form of this theorem can be stated by restricting the domain of defi
of the three-vector field to a finite volume as follows:

Theorem H2 „Alternate form of Theorem H1 for a finite volume in a Euclidean three-
space…: A general continuous three-vector field that is defined everywhere in a finite volume
a Euclidean three-space and whose tangential and normal components on the bounding
surface S are given may be uniquely represented as a sum of an irrotational and a solenoida.

In order to prove either Theorem H1 or Theorem H2, it turns out that it is sufficient to p
only that the three-vectorF can be written as

F~x,y,z!52¹F~x,y,z!1¹3A~x,y,z!, ~3!

since by the three-vector identity
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¹3¹F[0, ~4!

one has by~1a! that 2¹F is irrotational, and since by the three-vector identity

¹•¹3A[0, ~5!

one has by~1b! that¹3A is solenoidal. In fact, Eq.~3! is used by King as a brief statement of h
version of Helmholtz’s theorem.9 In another notable case, Eq.~3! is referred to in the very
extensive treatment by Plonsey and Collin as ‘‘the mathematical statement of the second
Helmholtz’s theorem.’’7

The proof of~3! is based on the assumption that there exists a solution for the three-v
potentialA of the vector Poisson equation in Cartesian coordinates, which in the electroma
case reads

¹2A~x,y,z!52m0J~x,y,z!, ~6!

wherem051/e0c2 is the free space permeability. Now, in Cartesian coordinates, the three
ponents ofA are each separately a solution of a scalar Poisson equation. The scalar P
equation can then be solved in terms of a two-point scalar Green’s functionG(r ,r 8) which
connects its unit delta function source located at the source pointr 85(x8,y8,z8) to a measuremen
at the field pointr5(x,y,z), i.e.,

¹2G~r ,r 8!52d3~r2r 8!52d~x2x8!~y2y8!~z2z8!. ~7!

The well-known identity over the Euclidean three-spaceR3, namely

¹2
1

4pr
[2d3~r2r 8! ;r ,r 8PR3, ~8!

where r[ur2r 8u, yields by comparison with~7! for the case of an infinite spatial domain, th
Green’s function of the Laplacian operator asG(r ,r 8)51/4pr . The inhomogeneous solution o
~6! for the vector potential then follows from the integral

A~r !5E
V8

m0J~r 8!G~r ,r 8!d3r 85E
V8

m0J~r 8!

4pur2r 8u
d3r 8. ~9!

Although ~9! is an inhomogeneous solution to the vector Poisson equation~6! in an infinite spatial
domain, it is the delta function property of the vector identity~8! which is of importance in the
proof of Theorems H1 or H2, namely

F~x,y,z!5E
V8

F~x8,y8,z8!d3~r2r 8!d3r 85E
V8

F~x8,y8,z8!¹2S 21

4pr Dd3r 8. ~10!

Then, since the Laplacian operator acts only on the field coordinates, it can be brought out
the integration. At this point, one makes a decomposition of the Laplacian operator using id
~20!, the significance of which is discussed in Sec. II B. The identity¹(1/r )52¹8(1/r ) and a fair
amount of vector analysis then yields the identity6,7

F~x,y,z!52¹F E
V8

¹8•F~x8,y8,z8!

4pr
dV82 R

S8

F~x8,y8,z8!•n8

4pr
dS8G

1¹3F E
V8

¹83F~x8,y8,z8!

4pr
dV81 R

V8

F~x8,y8,z8!3n8

4pr
dS8G , ~11a!
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wheren8 is the unit surface normal pointing out of the volumeV8 bounded by the closed surfac
S8. The proof of the volume integral terms of~11a! can be traced back to Stokes.3 Proof of the
surface integral terms of~11a! can be found inField Theory of Guided Wavesby Collin.6 Equation
~11a! is of the desired form~3! and can therefore be considered as completing the proo
Theorem H2, provided of course that the integrals are well defined. In order for the integrals
well defined, one must make the additional assumption that the fieldF must vanish sufficiently
rapidly at infinity, i.e., at least as fast as 1/r 2 in order to avoid logarithmic divergences. To prov
H1, one takes the surfaceSas going to infinity to include all of Euclidean three-space. The surf
integral terms vanish asr→` under the same assumption that the fieldF falls off at least as fast
as 1/r 2. Equation~11a!, but without the surface integral terms, is sometimes referred to as
‘‘Helmholtz identity’’ ~cf. Ref. 10!. However, the more general result, the full equation~11a!, will
be referred to as the Helmholtz identity in this article.

It should be noted in passing that application of identity~11a! to a fieldF falling off only as
fast as 1/r ~e.g., a potential!, would presumably require a cut-off procedure in the integr
However, the vector derivatives which stand in front of the integrals act only on the field
coordinates so that, for a twice continuously differentiable vector fieldF, one can move these
derivatives inside of the integrals over the source point coordinates to give

F~x,y,z!52F E
V8

¹S ¹8•F~x8,y8,z8!

4pr ~r ,r 8! DdV82 R
S8

¹S F~x8,y8,z8!•n8

4pr ~r ,r 8! DdS8G
1F E

V8
¹3S ¹83F~x8,y8,z8!

4pr ~r ,r 8! DdV81 R
S8

¹3S F~x8,y8,z8!3n8

4pr ~r ,r 8! DdS8G , ~11b!

as an alternate form of the Helmholtz identity. Now, since the integrands of identity~11b! involve
an extra vector derivative over the field point coordinatesr , the convergence properties of th
integrands are improved and the integrals are now well defined for vector potentialsF falling off
only as fast as 1/r .

Note, Eqs.~11a! and~11b! should be thought of as identities for representing a general~static!
three-vector field rather than as a general solution to a partial differential equation. Indeed
~11a! and ~11b! follow from the vector identity~8! over an infinite spatial domain and its subs
quent use in the delta function property~10!. Consequently, Eqs.~11a! and ~11b! are vector
identities that apply to all of the Euclidean three-space, and so must hold for a finite subvolu
it as well. The Green’s function for an inhomogeneous vector Poisson equation in an in
spatial domain is only mentioned in passing, and certainly no use is made of the solutions
associated source free homogeneous vector Laplace equation. This does not necessarily re
utility or applicability of ~11a!, for example. In fact, if one makes the replacements~2!, for suitable
volume source densities, and then makes the replacements

s[2F•n, ~12a!

K[F3n, ~12b!

with for examples taken as a surface ‘‘charge’’ density andK taken as a surface ‘‘current’
density, one can deduce from a general point of view basically all of the~static! macroscopic
integral equations for an electromagnetic field in material media expressed in terms of its so
This program, i.e., using~11a!, is carried to its logical completion for the electromagnetic case
the thorough treatment of Plonsey and Collin.7

From the point of view of the present article, it turns out that identity~11a!, as well as
Theorems H1 or H2, are actually static,~i.e., nontime varying!, cases of a more general identi
and theorem in a pseudo-Euclidean 311 space,~hereafter taken to be Minkowski space!. Indeed,
in the nontime varying case, identity~11a! follows as the space components of a four-vec
identity in a static Newtonian limit, and in addition, a three-space identity arises from the fou
scalar component of the four-vector identity. In the general time varying case in Minkowski s
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the new identity and uniqueness theorem imply that the three-space notions of uniquely spe
a general vector field by its divergence and curl in a Euclidean volumeV, along with its normal
and tangential components on the closed bounding surfaceS, must be generalized to specifying i
four-divergenceand its four-curl in a four-volumeV4 of Minkowski space, along with itsfour-
normal and four-tangentialcomponents on the closed bounding three-surfaceS.

B. Lagrangian formulation of four-vector fields in the flat space–time of special
relativity

Before proceeding, a few preliminary definitions and assumptions are made. First, the n
components of the flat space Minkowski metric tensorhmn are taken as:2h005h115h225h33

51. So, the ordinary four-vector derivatives are taken as:]m5((1/c)]/]t,¹) and ]m

5(2(1/c)]/]t,¹). Similarly, the position four-vector xn5(ct,x,y,z), and so xn

5(2ct,x,y,z). @The adoption of this~2111! signature metric in this article will aid in the
comparison of the results of this article with historical results expressed using complex Mink
space notation, here taken asxn5( ict,x,y,z).]

Next, it is assumed that the most general form of Lagrangian density for a four-vector
which is no more than quadratic in its variables and their derivatives, is given by the so-
Stueckelberg Lagrangian density,11,12 ~in SI units wheree0 is the free space permittivity andc is
the speed of light!,

L52
e0c2

4
FmnFmn1 j mAm2

le0c2

2
~]mAm!22

e0c2m2

2
~AmAm!, ~13!

wherej m5(rc,j ) is the usual four-vector current, where the positive real constantl is a Lagrange
multiplier for the Lorentz constraint term, and wherem52p/lC52pmc/h is the Compton wave
number for photons of massm. A choice ofl50 andm50 yields what many physicists believ
to be the electromagnetic theory, with its massless photons, i.e., when an appropriate cons
externally imposed. However, the choice ofl50 has the distinct disadvantage of implying
vanishing momentum canonically conjugate to the zeroth component of the four-vector po
An5(f/c,A). The incorporation of the Lorentz constraint term, with its]f/]t functionality,
eliminates this deficiency, and yields an added bonus in terms of the ease of renormalization
theory. A particularly simple choice ofl51, ~andm50), then yields a Lagrangian density whic
is equivalent~i.e., differs by no more than a four-divergence!, to the so-called Fermi Lagrangia
density.13 The Fermi Lagrangian density is the most straightforward take off point for field q
tization in terms of harmonic oscillators which correspond to massless photons~cf. Ref. 13!. The
Stueckelberg Lagrangian density~13! also has the advantage of explicitly including the fou
divergence and four-curl ofAm, which are in turn sufficient for the unique specification of
four-vector field as is shown in Secs. II F and III B. Therefore, the point of view is taken tha
choicel51 in ~13! is the most natural choice for the development of a uniqueness theore
four-vector fields.

The Maxwell field tensorFmn in terms ofAn is taken as following from a Bianchi identity
namely

]lFmn1]mFnl1]nFlm50 ~14a!

⇒Fmn5]mAn2]nAm . ~14b!

The covariant form of the Euler–Lagrange equations of motion

]mS ]L
]~]mAn! D2

]L
]An

50, ~15!

then yields for the Stueckelberg Lagrangian density~13!, the covariant equation of motion
                                                                                                                



a

-

to

deed,
e
erty,

sis,
c. II A.
on as

ow, the
is to

f his
d

y

4917J. Math. Phys., Vol. 40, No. 10, October 1999 Uniqueness theorems for classical four-vector . . .

                    
~]m]m2m2!An2~12l!]n~]sAs!52 j n/e0c2. ~16!

In the so-called Feynman gauge, one takesl51 so that~16! reduces to the following:

hAn2m2An52 j n/e0c2, ~17!

whereh[]m]m is the d’Alembertian operator.
One can now rewrite the d’Alembertian operator acting onAn by adding and subtracting

term, i.e.,

hAn5]m]mAn2]m]nAm1]m]nAm. ~18!

The first two terms combine naturally using the field tensorFmn, while the ordinary four-vector
derivatives in the last term commute in flat space–time to yield the identity

hAn[]m]mAn5]mFmn1]n~]mAm!. ~19!

Equation~19! is a special relativistic generalization to 311 space–time of the well-known three
space identity

¹2A[2¹3~¹3A!1¹~¹•A!. ~20!

Specifically, the curl ofA is generalized into the four-curl ofAn ~i.e., Fmn), the divergence ofA
is generalized into the four-divergence ofAm ~i.e., ]mAm), and the Laplacian is generalized in
the d’Alembertian.

This special relativistically invariant decomposition, using the identity~19!, is the defining
property which leads to a uniqueness theorem for four-vector fields in a flat space–time. In
in the same way that the delta function property~10!, with its Laplacian operator, leads to th
Helmholtz identity~11a!, so too does a more general Minkowski space delta function prop
with a d’Alembertian operator, lead to a new special relativistically invariant identity.

C. Integration of the four-vector potential wave equation

Assuming that the four-vector potential wave equation~17!, as following from the Stueckel-
berg Lagrangian~13! with l51, is the most natural starting point for a four-dimensional analy
one now proceeds in a manner analogous to the three-dimensional case outlined in Se
Initially, however,m is taken as zero yielding the massless four-vector potential wave equati

hAm~xn![S ¹22
1

c2

]2

]t2D Am~xn!52
j m~xn!

e0c2
. ~21!

In Sec. IV B the mass term is restored and an attempt at a more general result is made. N
first step in the analysis leading to a uniqueness theorem for classical four-vector fields
integrate the four-vector potential wave equation~21!.

The integration of the massless four-vector potential wave equation~21! was first done in a
special relativistically invariant way by Arnold Sommerfeld in an important article in 1910.14 The
method was later translated into English and appeared in Volume III: Electrodynamics o
well-known Lectures on Theoretical Physics.15 Additional revealing descriptions of the metho
were given by Møller2 and Stratton16 in their classic texts.

To formulate the integral, Sommerfeld replaces Newton’s 1/r potential in three dimensions b
an analogous four-dimensional scalar potential, i.e.,

U5
1

R2
, ~22!
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whereR is the distance in a Euclidean four-space between the source pointx8n and field pointxn ,

R[uxn2x8nu5A~xn2xn8!~xn2x8n!, ~23!

and where the Euclidean metric tensor is justhmn5I , the identity matrix. As pointed out by
Møller,2 Sommerfeld derives the integral in Euclidean space, and then in order to get phys
reasonable results, he analytically continues the four-current density by deforming the tim
gration from the real axis onto the imaginary axis in such a way as to take timelike causalit
account as is appropriate for thecomplexMinkowski space used in his treatment. On the oth
hand, modern notation using covariant and contravariant indices is used in this partial rev
Sommerfeld’s method. Therefore, after the analytic continuation from Euclidean four-spa
complex Minkowski space is done, the results are adjusted to take into account the replacem
the Euclidean metric tensor by the Minkowski metric tensor. The contour integration its
described in Refs. 15 and 2.

Just as the three-space Laplacian of Newton’s 1/r potential is zero everywhere except at t
source pointr 8, @see~8!#, the Euclideanversion of the d’Alembertian,~i.e., the four-space La-
placianDn

n), of the scalar potentialU is likewise zero everywhere except at the four-space sou
point x8n. To demonstrate this one first calculates

]

]xn S 1

R2D 52
2

R3

]R

]xn 52
2~xn2xn8!

R4
, ~24!

where use is made of the four-vector derivative ofR as follows:

]R

]xn 5
1

2R

]~~xn2xn8!~xn2x8n!!

]xn 5
~xn2xn8!

R
. ~25!

It is obvious from the calculation~24! that one also has the useful identity:

]

]x8n S 1

R2D 52
]

]xn S 1

R2D . ~26!

The Euclidean four-space Laplacian ofU now follows from a four-vector derivative contraction o
~24! as

Dn
nS 1

R2D[
]

]xn

]

]xn S 1

R2D 52
]

]xn
S 2~xn2xn8!

R4 D 5
22•4

R4 1
2•4~xn2xn8!

R5

]R

]xn

. ~27!

Substitution of a contravariant version of~25! into ~27! yields finally

Dn
nS 1

R2D 50 ;xnÞx8n, ~28!

that is except at the singular point atR50.
Next, using a Green’s theorem integral approach, Sommerfeld obtains the Euclidean

space integral:~cf. Refs. 15, 2, and 16 for details!

f~xn!52E
V48

]8m]m8 f~x8n!

4p2R2~xn,x8n!
d4x8, ~29!
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where the surface area 2p2R2 of a three-sphere of radiusR is incorporated in the denominator o
~29!. As pointed out by Møller2 Eq. ~29! holds for any regular~i.e., analytic!, function f, so if
f5A0c is taken as satisfying the zeroth component of~21!, i.e., of ]8m]m8 f(x8)52r(x8)/e0 ,
one obtains

f~xn!5E
V48

r~x8n!

4p2e0R2~xn,x8n!
d4x8. ~30a!

Equation~30a! allows one to calculatef at every point inV48 when the source charge densityr is
known over all ofV48 . However, in real life physical problemsr is given only for purely imagi-
nary x80 values corresponding to Im(x0).Im(x80) i.e., the zeroth component of~21! is a
Minkowski space relation and the integral~30a! can no longer be limited to Euclidean space. Th
timelike causality assumption requires that a signal from the source point reaches the field
only after traveling the distanceR at a the finite speedc. Therefore, to take into account th
timelike causal data required for the charge densityr, one can then analytically continue inx80

5ct8 in the integrand of~30a!. The analytically continued version of~30a! is therefore

f~xn!5E
V8

F R
t8

r~x8n!

4p2e0R2~xn,x8n!
cdt8Gd3x8, ~30b!

where a suitable integration contour in the complext8 plane has to be chosen to satisfy timeli
causality of the data. That is, such a contour integration is taken as being compatible with tim
causality. Performance of the integral~30b! under the specified timelike causal data yields,
terms of a ‘‘retarded’’ charge density, a Minkowski space result. In order to obtain resu
modern metric notation, the complex Minkowski space result is then mapped to a Minko
metric space by replacement of the Euclidean metric tensor by the Minkowski metric tensor~thus
absorbing any factors of the imaginary uniti!, which here amounts to retention of raised a
lowered index notation. An analytic continuation in the complext8 plane of a time integral of the
type in ~30b! is detailed in Refs. 15 and 2.

Again, as pointed out by Møller,2 since Eq.~29! holds for any regular function off it will
hold for the A1, A2, and A3 spatial Cartesian components ofAm in the massless four-vecto
potential wave equation~21!. The combined result for the four-vector potentialAm at the space–
time field point xn, is therefore given by a four-dimensional integration over the space–
source coordinatesx8n of the timelike causal four-vector current densityj m, i.e.,

Am~xn!5E
V48

j m~x8n!

4p2e0c2R2~xn,x8n!
d4x85E

V48

m0 j m~x8n!

4p2uxn2x8nu2
d4x8, ~31!

where the integral~31! is to be interpreted as a Minkowski space integral in the same sense
~30b!. Equation~31! is the integral result first obtained by Sommerfeld,14 retraced here in modern
notation, as desired.

III. DERIVATION OF UNIQUENESS THEOREMS

A. Green’s function approach and a delta function identity

Rather than pursuing further the inhomogeneous four-vector wave equation~21!, it turns out
to be more convenient for the purpose of this article to focus instead on the inhomogeneousscalar
wave equation for the scalar potentialf,

hf~xn!5S ¹22
1

c2

]2

]t2D f~xn!52
r~xn!

e0
. ~32!
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The wave equation~32! can then be solved in terms of a two-point scalar Green’s func
G(xn,x8n) which connects its unit delta function source located at the space–time source pox8n

to a measurement at the space–time field pointxn in Minkowski space, i.e.,

hG~xn,x8n!5S ¹22
1

c2

]2

]t2D G~xn,x8n!52d~4!~xn2x8n!, ~33!

whered (4)(xn2x8n)5d(x02x80)d3(r2r 8). If the Green’s functionG(xn,x8n) is knownover all
space–time, the inhomogeneous solution of~32! then follows from the Minkowski space integra

f~xn!5E
V48

r~x8n!

e0
G~xn,x8n!d4x8. ~34!

Interestingly, Eq.~34! is of the same general form as the Euclidean space integral~30a!. There-
fore, if one starts with~30b!, i.e., the analytic continuation of~30a! to Minkowski space, it should
be possible to extract a Green’s functionG(xn,x8n) through simple comparison of~34! and~30b!,
which would integrate to the same result under mutually compatible causality condition
additional evidence notice that forxnÞx8n, Eq. ~33! reduces to the following Minkowski spac
result:

hG~xn,x8n!50 ;xnÞx8n. ~35!

The Euclidean four-space result~28! has the same general form as Eq.~35!. And, the result~28!
holds in Minkowski space as well,~since, e.g.,]nxn54 in either space!. This implies ~by the
uniqueness of the solutions of the Cauchy problem for constant coefficient wave equation! that
the Green’s functionG(xn,x8n) can be taken as the scalar fieldU51/R2 times a numerical
constant. It is reasonable to assume therefore that the numerical constant can be obtained
comparison of~30b! and ~34! and is just 1/4p2. The desired Green’s functionG(xn,x8n) is
therefore given by the ansatz

G~xn,x8n!5
1

4p2R2
, ~36!

whereR25uxn2x8nu2. It should be emphasized that~36! is an appropriate Green’s function fo
Minkowski space only in the context of an analytically continued time integral as in~30b!, and
therefore appropriate causality conditions must subsequently be applied to obtain physica
sonable results. Equation~36! would of course be suitable in a Euclidean four-space without
assumptions involving analytic continuation.

The result~36! differs from the familiar retarded Green’s function as derived for exampl
Cushing17 or Jackson,18 which for the metric signature~2111! and sign of the source term i
~32! would be

Gret~r ,r 8;t,t8!5
1

4p

d~ ur2r 8u2c~ t2t8!!

ur2r 8u
;t.t8. ~37!

This is because the retarded Green’s function~37! is derived via a spectral decomposition of th
delta function, while also taking into account homogeneous boundary conditions on a c
spatial surface, as well as timelike causality with the initial conditions

G~r ,r 8;t,t8!50, ]G~r ,r 8;t,t8!/]t50 ;t.t8, ~38!

and with the Green’s function symmetry relation
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G~r ,r 8;t,t8!5G~r 8,r ;2t8,2t !. ~39!

On the other hand, in obtaining the result~36!, no such spectral decomposition is made and
calculation of the time integral, with an appropriate contour taking causality into accou
performed only later in this article. In contradistinction to the Green’s function~37!, ~36! might
therefore be referred to as an ‘‘acausal’’ Minkowski space Green’s function, or more simply
Euclidean four-space Green’s function.

Substitution of~36! into a Euclidean space version of~33! then yields a delta function identity
over all of the Euclidean four-spaceR4 as follows:

Da
aS 1

4p2R2D 52d~4!~xn2x8n!, ;xn,x8nPR4. ~40!

Although ~40! follows from ostensibly Euclidean space calculations it can be applied to a sp
time integral when an analytic continuation of the time integral is performed under appro
causality conditions in order to obtain a Minkowski space result.

Equation~34! with the Green’s function~36! is, under suitable analytic continuation of th
time integral, the same result as~30b!. @Indeed, the numerical constant 1/4p2 in ~36! was obtained
by a short cut comparison between the two.# And since theA1, A2, A3 spatial Cartesian compo
nents of~21! separately satisfy a scalar wave equation like~32!, one can then write the inhomo
geneous solution of~21! for the four-vector potentialAm as

Am~xn!5E
V48

j m~x8n!

e0c2
G~xn,x8n!d4x85E

V8
F R

t8

j m~x8n!

4p2e0c2R2~xn,x8n!
c dt8Gd3x8, ~41!

which is the same result as~31!. Compare~36!, ~40!, and~41! with the three-dimensional case~8!
and~9!. It is shown in Sommerfeld15,14 in terms of retarded potentials that an expression like~9!,
as well as a scalar potential integral, follows from~31! via a contour integration over the tim
coordinate.

Although the result~31! is a historically important result, it is the delta function property
identity ~40! which is of importance in the proof of a vector identity in Minkowski space ana
gous to the Helmholtz identity, namely

Am~xn!5E
V48

Am~x8n!d~4!~xn2x8n!d4x85E
V8

F R
t8

Am~x8n!Da
aS 21

4p2R2D c dt8Gd3x8. ~42!

Equation~42! and a Euclidean four-space version of~42! are used by the author in the next secti
to derive four-vector identities analogous to the three-vector Helmholtz identity~11a!.

B. Euclidean and Minkowski four-space analogs of the Helmholtz identity

Equation~42! is now used by the author to derive four-vector identities analogous to, but
general than, the three-vector Helmholtz identity~11a!. To a certain extent, the derivation paralle
the three-vector derivation of~11a! as detailed in Refs. 6 and 7.

Initially, a theorem containing a four-vector identity is stated and proved for Euclidean s
Next, a corollary to the Euclidean theorem is stated for four-vectors in Minkowski space bas
the contour integral used in~42!. Subsequently, a second theorem containing a four-vector ide
is stated which is based on a direct relativistically invariant integration over Minkowski s
involving a Minkowski space Green’s function of the form~37!.

It is assumed in what follows, unless otherwise stated, that the term ‘‘sufficiently smo
refers to functions which are scalar fields or components of vector fields that areC2(V̄4), i.e.,
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twice continuously differentiable functions on the closure ofV4 which in turn is comprised of the
union ofV4 and its bounding three-surfaceS ~i.e., V̄45V4øS). The boundary three-surfaceS is
itself assumed to be sufficiently smooth.

Theorem I: The following identity holds for sufficiently smooth four-vector fields Am(xs) in
the Euclidean four-spaceR4:

Am~xs!52]mF E
V48

]n8A
n~x8s!

4p2R2~xs,x8s!
d4x82 R

S8

An~x8s!nn8

4p2R2~xs,x8s!
dS8G

2]aF E
V48

]8aAm~x8s!2]8mAa~x8s!

4p2R2~xs,x8s!
d4x81 R

S8

Aa~x8s!n8m2Am~x8s!n8a

4p2R2~xs,x8s!
dS8G ,

~43!

where R2(xs,x8s)5uxs2x8su2, and where n8m is the four-vector outward unit normal of th
three-surfaceS8 which encloses the four-volume V48 .

Proof: The proof is based on a Euclidean space version of the four-vector delta fun
property~42!, namely

Am~xn!5E
V48

Am~x8n!d~4!~xn2x8n!d4x85E
V48

Am~x8n!Da
aS 21

4p2R2D d4x8. ~44!

The important thing to realize about~44! is that the Euclidean four-space Laplacian operator a
only on the four-space field coordinatesxn and so for sufficiently smooth four-vector field
Am(x8n) it can be brought outside of the integration over the four-space source coordinatesx8n as
follows:

Am~xn!5E
V48

Am~x8n!Da
aS 21

4p2R2D d4x852Da
aE

V48

Am~x8n!

4p2R2
d4x8. ~45!

At this point, one makes a decomposition of the Euclidean Laplacian operatorDa
a , analogous to

that discussed in~18!, by adding and subtracting a term in~45! yielding

Am~x!52]a]aE
V48

Am~x8!

4p2R2
d4x81]a]mE

V48

Aa~x8!

4p2R2
d4x82]n]mE

V48

An~x8!

4p2R2
d4x8, ~46!

where the four-vector superscripts in the functional dependencies are again suppressed.
Euclidean space,~and also in flat Minkowski space!, one can commute the derivatives in the thi
term of ~46!. And since the four-vector derivatives act only on the field coordinates they ca
passed inside the integrations over the source coordinates. Also identity~26! and its contravariant
derivative counterpart

]mS 1

R2D 52]8mS 1

R2D , ~47!

allow one to change the unprimed field point derivatives of 1/R2 in ~46! into primed source point
derivatives. The net result is that one can rewrite~46! as
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Am~x!5]aF E
V48

Am~x8!

4p2
]8aS 1

R2D d4x82E
V48

Aa~x8!

4p2
]8mS 1

R2Dd4x8G
1]mF E

V48

An~x8!

4p2
]n8S 1

R2D d4x8G . ~48!

Setting the bracketed part of the first term of~48! equal toAam, i.e.,

Aam[F E
V48

Am~x8!

4p2
]8aS 1

R2D d4x82E
V48

Aa~x8!

4p2
]8mS 1

R2D d4x8G , ~49!

and the bracketed part of the second term of~48! equal toA, i.e.,

A[F E
V48

An~x8!

4p2
]n8S 1

R2D d4x8G , ~50!

allows one to write~48! as

Am5]aAam1]mA, ~51!

which is reminiscent of the decomposition~19!.
Working on ~50! first using the four-vector derivative product rule while using a Euclide

four-space version of Gauss’ divergence theorem on the appropriate term of the resulting eq
then yields

A5 R
S8

An~x8!nn8

4p2R2
dS82E

V48

]n8A
n~x8!

4p2R2
d4x8, ~52!

where nn8 is the four-vector outward unit normal of the three-surfaceS8 which encloses the
four-volumeV48 . Equation~52! is in its final form.

Working on~49! next using the four-vector derivative product rule on both terms yields a
some rearrangement

Aam5E
V48

]8aS Am~x8!

4p2R2 D d4x82E
V48

]8mS Aa~x8!

4p2R2 D d4x82E
V48

]8aAm~x8!2]8mAa~x8!

4p2R2
d4x8.

~53!

The third term of~53! is in its final form. It remains then to show that the four-vector derivat
]a @see~51!# of the first two terms of~53! combine to yield the Euclidean four-space identity

]aE
V48
S ]8aS Am~x8!

4p2R2 D 2]8mS Aa~x8!

4p2R2 D D d4x852]a R
S8

Aa~x8!n8m2Am~x8!n8a

4p2R2
dS8.

~54!

To prove~54!, one can define a four-vectoram with constant magnitude and constant but arbitra
direction in Euclidean four-space which is chosen once and then held fixed. Next consid
two-point function

Km~xs,x8s![amS ]aS Aa~x8s!

4p2R2~xs,x8s!
D D . ~55!

Using a Euclidean four-space version of Gauss’ divergence theorem on~55!, namely
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E
V48

~]8mKm!d4x85 R
S8

Kmn8mdS8, ~56!

where in~56! and in what followsn8m is the four-vector outward unit normal of the three-surfa
S8 which encloses the four-volumeV48 , one obtains

amE
V48
S ]8mS ]aS Aa~x8s!

4p2R2~xs,x8s!
D D D d4x85am R

S8
S ]aS Aa~x8s!

4p2R2~xs,x8s!
D D n8mdS8, ~57!

where the four-vectoram factors out of the integral since it is a constant. Now, sinceuamuÞ0 and
am has an arbitrary fixed direction, then its four-contractions in~57! cannot everywhere vanish an
so ~57! reduces to the identity

]aE
V48
S ]8mS Aa~x8s!

4p2R2~xs,x8s!
D D d4x85]a R

S8
S Aa~x8s!

4p2R2~xs,x8s!
D n8mdS8, ~58!

where the field point derivatives]a have been moved out of the source point integrations
where the field and source point derivatives on the left-hand side~lhs! of ~58! have been com-
muted. Equation~58! shows that the second term on the lhs of~54! is equal to the first term on the
right-hand side~rhs! of ~54!. The remaining two terms in~54! follow in a similar fashion. One can
again define a four-vectoram with constant magnitude and constant but arbitrary direction in
Euclidean four-space which is chosen once and then held fixed. Next consider the two
function

I a~xs,x8s![amS ]aS Am~x8s!

4p2R2~xs,x8s!
D D . ~59!

Using ~59! in the Euclidean four-space Gauss’ divergence theorem~56! one obtains

amE
V48
S ]8aS ]aS Am~x8s!

4p2R2~xs,x8s!
D D D d4x85am R

S8
S ]aS Am~x8s!

4p2R2~xs,x8s!
D D n8a dS8, ~60!

where the four-vectoram factors out of the integral since it is a constant. Now, sinceuamuÞ0 and
am has an arbitrary fixed direction, then its four-contractions in~60! cannot everywhere vanish an
so ~60! reduces to the identity

]aE
V48
S ]8aS Am~x8s!

4p2R2~xs,x8s!
D D d4x85]a R

S8
S Am~x8s!

4p2R2~xs,x8s!
D n8a dS8, ~61!

where the field point derivatives]a have been moved out of the source point integrations
where the field and source point derivatives on the lhs of~60! have been commuted. Equation~61!
shows that the first term on the lhs of~54! is equal to the second term on the rhs of~54!, which
when combined with~58! completes the proof of the Euclidean four-space identity~54!.

Combining the results~51!, ~52!, ~53!, and ~54! completes the proof of the Euclidean fou
space identity~43! and Theorem I. '

Note the similarity in structure of identity~43! and the Helmholtz identity~11a!. In particular,
the factors of 1/4pr in ~11a! appropriate for spherically symmetric functions inR3 are replaced in
~43! by factors of 1/4p2R2 which are appropriate for hyperspherically symmetric functions inR4.
It appears then that identity~43! is a Euclidean four-space generalization of the~Euclidean three-
space! Helmholtz identity ~11a!. Therefore, just as~11a! can be used to prove the Helmhol
uniqueness theorems H2 and H1 of~static! three-vector fields, identity~43! is used later in this
article to prove a uniqueness theorem for four-vector fields in the Euclidean four-spaceR4.
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A corollary is now stated which extends the Euclidean four-space Theorem I to Minko
space.

Corollary I to Theorem I: When, in the complex t8 plane, a time integration contour is take
which is compatible with timelike causality, and for sufficiently smooth four-vector fields Am(xs),
the following identity holds in the Minkowski spaceR311:

Am~xs!52]mF E
V8

F R
t8

]n8A
n~x8s!

4p2R2
c dt8Gd3x82E

V8
F R

t8
]n8S An~x8s!

4p2R2 D c dt8Gd3x8G
2]aF E

V8
F R

t8

]8aAm~x8s!2]8mAa~x8s!

4p2R2~xs,x8s!
c dt8Gd3x8

2E
V8

F R
t8

]8aS Am~x8s!

4p2R2 D c dt8Gd3x81E
V8

F R
t8

]8mS Aa~x8s!

4p2R2 D c dt8Gd3x8G , ~62!

where R2(xs,x8s)5uxs2x8su2 in R4, and where V8 is a spatial volume inR3.
Proof: The proof is based on the four-vector delta function property~42! and in all important

respects parallels the proof of the Euclidean four-space identity~43! of Theorem I. The details of
the basic approach are not repeated here. However, in order to express the time integra
terms of a contour integral over the complext8 plane, it is convenient to forgo the transformatio
from four-volume to three-surface integrals as in~52! and ~54!. The result is identity~62!. An
integration contour compatible with timelike causality is specified in order to interpret the ide
as a Minkowski space integral. These contours are discussed in general in Refs. 15 and
contour integration is performed using the residue theorem and assumes that the integran
from the poles in the 1/R2 factor, is analytic and without singularities over the domain enclosed
or on the chosen contour. The actual details of the choice of contour, as well as performi
integration itself are not necessary for the proof of Corollary I to Theorem I. It is only nece
for the sake of a physical interpretation that a contour compatible with timelike causal
chosen. '

The similarity in structure of identity~62! and the Helmholtz identity~11a! is now only
apparent through the four-volume integrals in~62! containing the four-divergence and four-curl
An. The normal and tangential three-surface integrals in~43! no longer appear in~62!. That ~62!
can be interpreted as a Minkowski space integral instead of an integral inR4 is a result of the
analytic continuation of the time integral. Identity~62! could be interpreted as a Minkowski spa
generalization of the~Euclidean three-space! Helmholtz identity~11a!.

However, identity~62! is not of the same general form as identity~11a! because it lacks
surface integral terms. Consequently, identity~62! is not a convenient starting point for proving
four-vector uniqueness theorem analogous to the three-space Helmholtz uniqueness theo
Therefore, a second theorem is now developed inR311, through a direct integration in Minkowsk
space, which states an identity that is formally analogous to identity~43! in R4.

It is central to the development of this second theorem that identities for the four-v
derivatives of the Green’s functions satisfying~33! in R311 analogous to~26! and ~47! in R4 be
obtained. A reciprocal four-space integral representation of the Green’s functions satisfyin~33!
appears to be the easiest way to obtain the desired derivative properties. Therefore, a
decomposition of the delta functiond (4)(xn2x8n) appearing in~33! is made via the Fourier
integral

d~4!~xn2x8n!5
1

A~2p!4 E Fe2 ikmx8m

A~2p!4 Geikmxm
d4k5

1

~2p!4 E eikm~xm2x8m!d4k. ~63!

In the usual way, Green’s functions satisfying~33! then follow from
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G~xn,x8n!52h21S 1

~2p!4 E eikm~xm2x8m!d4kD5
1

~2p!4 E eikm~xm2x8m!

k2 d4k. ~64!

The desired covariant and contravariant derivative properties inR311 follow immediately from the
result ~64!, for any appropriate contour, as

]mG~xn,x8n!52]m8 G~xn,x8n!, ~65a!

]mG~xn,x8n!52]8mG~xn,x8n!, ~65b!

which are of the same general form as the properties~26! and ~47! in R4, as might be expected
An example of a Green’s function which satisfies~64! is the retarded Green’s function~37!.

However, as a manifestly covariant identity is desired for this theorem, the retarded G
function, and optionally an advanced Green’s function, must be able to be restated in rela
cally covariant form. This is readily done using the delta function identity18

d~~xn2x8n!2!5d~ ur2r 8u22c2~ t2t8!2!

5d~~ ur2r 8u2c~ t2t8!!~ ur2r 8u1c~ t2t8!!!

5Fd~~ ur2r 8u2c~ t2t8!!1d~ ur2r 8u1c~ t2t8!!!

2ur2r 8u
G . ~66!

Using ~66!, the retarded Green’s function~37!, along with an advanced Green’s functionGadv,
can be stated in relativistically covariant form as follows:18

Gret~x,x8!5
1

2p
u~x02x80!d~~x2x8!2!, ~67a!

Gadv~x,x8!5
1

2p
u~x802x0!d~~x2x8!2!, ~67b!

where the theta function is defined as follows:

u~x02x80!5 H1
0

for x0.x80

for x80.x0. ~68!

A theorem can now be stated for four-vector fields in Minkowski space.
Theorem II: Given a covariant scalar two-point Green’s function G(xn,x8n) which is a

solution of (33) and which satisfies the derivative properties (65a), (65b), the following ide
holds for sufficiently smooth four-vector fields Am(xs) in the Minkowski spaceR311:

Am~x!52F E
V48

]m~~]n8A
n~x8!!G~x,x8!!d4x82 R

S8
]m~~An~x8!nn8!G~x,x8!!dS8G

2F E
V48

]a~~]8aAm~x8!2]8mAa~x8!!G~x,x8!!d4x81 R
S8

]a~~Aa~x8!n8m

2Am~x8!n8a!G~x,x8!!dS8G , ~69!

where n8m is the four-vector outward unit normal of the three-surfaceS8 which encloses the
four-volume V48 , and where the three-surfaceS8 is defined covariantly with respect to a gener
Lorentz transformation.
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Proof: In contradistinction to identity~43! of Theorem I, the unprimed four-vector derivative
are now included in the integrands of identity~69! of Theorem II. Consequently, the convergen
properties of these integrands are improved in comparison to those in~43! and so the integrals in
~69! are well defined for four-vector fieldsAm falling off only as fast as 1/r . For sufficiently
smooth four-vector fields the unprimed derivatives can still be factored out of the integrals
the primed coordinates if required.

The proof is based on a Minkowski space version of the four-vector delta function pro
~42!, but now written in terms of a covariant scalar two-point Green’s functionG(xn,x8n) which
is assumed to be a solution of~33!, as follows:

Am~xn!5E
V48

Am~x8n!d~4!~xn2x8n!d4x85E
V48

Am~x8n!h~2G~xn,x8n!!d4x8. ~70!

At this point, one makes a decomposition of the d’Alembertian operator as in~18!, by adding and
subtracting a term in~70!, yielding

Am~x!52E
V48

]a]a~Am~x8!G~x,x8!!d4x81E
V48

]a]m~Aa~x8!G~x,x8!!d4x8

2E
V48

]n]m~An~x8!G~x,x8!!d4x8, ~71!

where the four-vector superscripts in the functional dependencies are again suppressed. Th
the proof proceeds in a manner parallel to the proof of the Euclidean four-space identity~43! of
Theorem I and most of the details will be condensed. In flat Minkowski space one can com
the derivatives in the third term of~71!. Then certain unprimed derivatives can be commuted w
primed coordinate dependent fields. Then using identities~65a! and ~65b! one can change the
unprimed field point derivatives ofG(x,x8) in ~71! into primed source point derivatives. The n
effect of these changes allows one to rewrite~71! as

Am~x!5]aF E
V48

Am~x8!]8aG~x,x8!d4x82E
V48

Aa~x8!]8mG~x,x8!d4x8G
1]mF E

V48
An~x8!]n8G~x,x8!d4x8G , ~72!

where for sufficiently smooth four-vector fields, certain unprimed derivatives have been fac
out of the primed coordinate integrals of~72! for later reference. Setting the first bracketed term
~72! equal toAam, i.e.,

Aam[F E
V48

Am~x8!]8aG~x,x8!d4x82E
V48

Aa~x8!]8mG~x,x8!d4x8G , ~73!

and the bracketed part of the second term of~72! equal toA, i.e.,

A[F E
V48

An~x8!]n8G~x,x8!d4x8G , ~74!

allows one to write~72! as

Am5]aAam1]mA, ~75!
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which is reminiscent of the decomposition~19!. This decomposition of a four-vector field into th
sum of a four-irrotational and a four-solenoidal part will be used in Sec. IV B in connection
Theorem X.

Next, working on the second bracketed term of~72! first ~but without the unprimed deriva
tives factored out!, using the four-vector derivative product rule, while at the same time usi
Minkowski four-space version of Gauss’ divergence theorem as appropriate for a secon
tensor integrand,~cf. p. 130 of Ref. 2!, namely

E
V48

]n8Z
mn d4x85 R

S8
Zmn dsn85 R

S8
Zmnnn8 dS8, ~76!

on the appropriate term of the resulting equation~i.e., after commuting]m and]n8), then yields

E
V48

]m~An~x8!]n8G~x,x8!!d4x85 R
S8

]m~An~x8!nn8G~x,x8!!d4x8

2E
V48

]m~~]n8A
n~x8!!G~x,x8!!d4x8, ~77!

where nn8 is the four-vector outward unit normal of the three-surfaceS8 which encloses the
four-volumeV48 . Equation~77! is in its final form.

Working on the first bracketed term of~72! next ~but again without the unprimed derivative
factored out!, using the four-vector derivative product rule on both terms yields after some
rangement

E
V48

]a~Am~x8!]8aG~x,x8!!d4x82E
V48

]a~Aa~x8!]8mG~x,x8!!d4x8

5E
V48

]a]8a~Am~x8!G~x,x8!!d4x82E
V48

]a]8m~Aa~x8!G~x,x8!!d4x8

2E
V48

]a~~]8aAm~x8!2]8mAa~x8!!G~x,x8!!d4x8. ~78!

The third term on the rhs of~78! is in its final form. It can be shown in an entirely analogo
manner as for the Euclidean four-space identity~54!, ~using a four-vectoram with constant mag-
nitude and constant but arbitrary direction in Minkowski space!, that the first two terms on the rh
of ~78! combine to yield the Minkowski space identity

E
V48

]a]8a~Am~x8!G~x,x8!!d4x82E
V48

]a]8m~Aa~x8!G~x,x8!!d4x8

52 R
S8

]a~~Aa~x8!n8m2Am~x8!n8a!G~x,x8!!dS8. ~79!

Combining the results~77!, ~78!, and ~79! completes the proof of the Minkowski spac
identity ~69! and Theorem II. '

In passing, consider a representative case where the Green’s function is chosen to
covariant retarded Green’s function~67a!. A convenient covariant three-surfaceS8, ~bounding a
Minkowski four-volumeV48), could then be taken as the union of a finite section of the forw
light coneSC8 , ~a lightlike hypersurface!, and its end cap comprised for example by an inters
ing three-spherical conic sectionScap8 ~a spacelike hypersurface!. The outward surface normaln8m

to the forward light cone is a spacelike unit four-vector, while the outward surface normal t
three-spherical end cap of a finite section of the forward light cone is a timelike unit four-ve
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But since the forward light cone is the only surface where the retarded Green’s functi
different than zero, only the surface integrals over the finite section of the forward light conSC8
can be nonzero!

Finally, note the similarity in structure of the Minkowski space identity~69! and the Euclidean
four-space identity~43!. Aside from the incorporation of the unprimed derivatives in the integ
of ~69! ~which was done to improve the convergence of the integrals!, the only difference is that
the Euclidean four-space Green’s function 1/4p2R2 is replaced by an appropriate Minkows
space Green’s functionG(x,x8).

It will be shown in Sec. III D that identity~69! is a Minkowski space generalization of th
~Euclidean three-space! Helmholtz identity~11a!. Therefore, just as~11a! can be used to prove th
Helmholtz uniqueness theorems H2 and H1 of~static! three-vector fields, identity~69! will be
used in Secs. III E and IV B to prove uniqueness theorems for four-vector fields inR311.

C. Scalar field identity in Euclidean three-space

The Euclidean three-space identity~8! is next substituted into a delta function property
follows:

f~r !5E
V8

f~r 8!d3~r2r 8!d3r 85E
V8

f~r 8!¹2S 21

4pr Dd3r 8. ~80!

Identity ~80! is now used to state a theorem.
Theorem III: The following identity holds for twice continuously differentiable (static) sca

fieldsf in the Euclidean three-spaceR3:

f~r !5¹•F E
V8

2¹8f~r 8!

4pr
dV81 R

S8

f~r 8!n8

4pr
dS8G , ~81!

where the three-dimensional distance r[ur2r 8u, and wheren8 is the three-vector outward uni
normal of the two-surface S8 which encloses the three-volume V8.

Proof: Starting with~80!, for a twice continuously differentiable fieldf, one can factor part of
the Laplacian operator acting on the unprimed field point coordinates out of the integration
the primed source point coordinates to yield

f~r !5¹•F E
V8

2f~r 8!

4p
¹S 1

r Dd3x8G . ~82!

Using the vector identity

¹S 1

ur2r 8u D52¹8S 1

ur2r 8u D , ~83!

one can rewrite~82! as

f~r !5¹•F E
V8

f~r 8!

4p
¹8S 1

r Dd3x8G . ~84!

The vector identity

¹~fc!5f¹c1c¹f, ~85!

with c[1/ur2r 8u becomes
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¹S f

ur2r 8u D 5f¹S 1

ur2r 8u D 1
¹f

ur2r 8u
, ~86!

allowing one to rewrite~84! as

f~r !5¹•F E
V8

1

4p S ¹8S f~r 8!

r D2
¹8f~r 8!

r Dd3x8G . ~87!

Now, using the vector identity7

E
V
¹F dV5 R

S
Fn dS, ~88!

which follows from Gauss’ divergence theorem in aflat space–time, on the first term of~87!
yields immediately identity~81!, proving Theorem III. Identity~81! is of a form which is remi-
niscent of the Helmholtz identity~11a!, but is applicable to static scalar fields. '

D. Derivation of the Helmholtz identity and a scalar field identity from a Minkowski
space Helmholtz identity

The author will now show that identity~69! of Theorem II is a Minkowski space generaliz
tion of the ~Euclidean three-space! Helmholtz identity~11a! in a static Newtonian limit. In addi-
tion, the fourth or scalar field component of~69! will be shown to yield identity~81! in a similar
static Newtonian limit.

To prove that the Helmholtz identity~11a! follows from identity ~69! in a static Newtonian
limit, it is convenient to start with an identity which follows from~69!, i.e.,

Am~x!52]mF E
V48

]n8A
n~x8!

4pr
d~r 2c~ t2t8!!d4x82E

V48
]n8S An~x8!

4pr
d~r 2c~ t2t8!! Dd4x8G

2]aF E
V48

]8aAm~x8!

4pr
d~r 2c~ t2t8!!d4x82E

V48

]8mAa~x8!

4pr
d~r 2c~ t2t8!!d4x8

2E
V48

]8aS Am~x8!

4pr
d~r 2c~ t2t8!! Dd4x81E

V48
]8mS Aa~x8!

4pr
d~r 2c~ t2t8!! Dd4x8G , ~89!

wherer[ur2r 8u. Identity ~89! follows from ~69! as a result of using the retarded Green’s funct
~37!, Gauss’ divergence theorem on the surface integral in the first bracketed term of~69!, and
identity ~79! on the surface integral in the second bracketed term of~69!, while at the same time
factoring the unprimed derivatives out of all the integrals.

One next takes the following as an intermediate approximation of the space compone
identity ~89!:

Aj~x!52] jF E
V48

]k8A
k~x8!

4pr
d~r 2c~ t2t8!!d4x82E

V48
]k8S Ak~x8!

4pr
d~r 2c~ t2t8!! Dd4x8G

2] iF E
V48

]8 iAj~x8!

4pr
d~r 2c~ t2t8!!d4x82E

V48

]8 jAi~x8!

4pr
d~r 2c~ t2t8!!d4x8

2E
V48

]8 i S Aj~x8!

4pr
d~r 2c~ t2t8!! Dd4x81E

V48
]8 j S Ai~x8!

4pr
d~r 2c~ t2t8!! Dd4x8G . ~90!
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Note, all terms involving partial time derivatives, e.g.,]05(1/c)]/]t, are omitted in~90! since a
detailed dimensional analysis in the speed of propagationc shows that these terms vanish in
Newtonian limit wherec→`. The author will delay the application of the Newtonian limit for th
terms retained in~90!, however, until later in this derivation. As usual, Roman indicesi,j,k, etc.,
are used here and in what follows to denote three-vectors. One next performs thet8 time integra-
tions in ~90! yielding

A~r ,t !52¹F E
V8

¹8•A~r 8,t2r /c!

4pr
dV82E

V8
¹8•S A~r 8,t2r /c!

4pr DdV8G
1¹3F E

V8

¹83A~r 8,t2r /c!

4pr
dV82E

V8
¹83S A~r 8,t2r /c!

4pr DdV8G . ~91!

It should be noted in passing that~91! is only an intermediate result where time derivative ter
have already been neglected. Taking a Newtonian limit wherec→` reduces~91! further to

A~r ,t !52¹F E
V8

¹8•A~r 8,t !

4pr
dV82E

V8
¹8•S A~r 8,t !

4pr DdV8G
1¹3F E

V8

¹83A~r 8,t !

4pr
dV82E

V8
¹83S A~r 8,t !

4pr DdV8G . ~92!

Now, applying Gauss’ divergence theorem to the second term of the first bracketed term o~92!,
while using the three-vector identity6,7

2E
V8

¹83
A~r 8!

4pr
dV85 R

S8

A~r 8!3n8

4pr
dS8 ~93!

on the second term of the second bracketed term of~92!, and takingt50 for convenience, yields
identity ~11! as desired~since thet dependence is the same on both sides of the resulting equ
and can be ignored in what amounts to a static field assumption!. The Helmholtz identity~11a!
therefore follows from the space components of~69! in a static Newtonian limit.

Next, to prove that identity~81! of Theorem III follows directly from the Minkowski spac
Helmholtz identity~69! in a static Newtonian limit, it is convenient to again start with identity~89!
which follows from ~69!. One next takes the following as an intermediate approximation of
zeroth component of identity~89!:

A0~x!52] iF E
V48

]8 iA0~x8!

4pr
d~r 2c~ t2t8!!d4x82E

V48
]8 i S A0~x8!

4pr
d~r 2c~ t2t8!! Dd4x8G .

~94!

Note, all terms involving partial time derivatives, e.g.,]05(1/c)]/]t, are omitted in~94! since a
detailed dimensional analysis in the speed of propagationc shows that these terms vanish in
Newtonian limit wherec→`. The author will delay the application of the Newtonian limit for th
terms retained in~94!, however, until later in this derivation. One next performs thet8 time
integrations in~94!, while using three-vector notation and settingf5cA0, yielding

f~r ,t !5¹•F E
V8

2¹8f~r 8,t2r /c!

4pr
dV81E

V8
¹8•S f~r 8,t2r /c!

4pr DdV8G . ~95!

It should be noted in passing that~95! is only an intermediate result where time derivative ter
have already been neglected. Taking a Newtonian limit wherec→` reduces~95! further to
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f~r ,t !5¹•F E
V8

2¹8f~r 8,t !

4pr
dV81E

V8
¹8•S f~r 8,t !

4pr DdV8G . ~96!

Now, applying the three-vector Gauss’ divergence theorem to the second term on the rhs~96!
and takingt50 for convenience, yields identity~81! as desired,~since thet dependence is the
same on both sides of the resulting equation and can be ignored in what amounts to a sta
assumption!. The scalar field identity~81! of Theorem III therefore follows from the zeroth or tim
component of~69! in a static Newtonian limit.

So, in a static Newtonian limit the space components of the Minkowski space identity~69!
reduce to the Helmholtz identity~11a! and the zeroth component of~69! reduces to the scalar fiel
identity ~81!. It seems reasonable to conclude therefore that identity~69! is a Minkowski space
generalization of the~three-space! Helmholtz identity~11a!.

E. Uniqueness theorems for four-vector fields in Euclidean and Minkowski four-
spaces

In this section, two uniqueness theorems will be proved. First, a uniqueness theore
four-vector fields in Euclidean space will be proved using identity~43! of Theorem I, i.e., using
the Euclidean four-space generalization of the Helmholtz identity. Then, a uniqueness theor
four-vector fields in Minkowski space will be proved using identity~69! of Theorem II, i.e., using
the Minkowski four-space generalization of the Helmholtz identity.

A uniqueness theorem for four-vector fields in Euclidean four-space is now stated.
Theorem IV: A sufficiently smooth four-vector field An in the Euclidean four-spaceR4 is

uniquely specified by giving its four-divergence and its four-curl within a four-space region V4 , as
well as its normal and tangential components on the bounding three-surfaceS. That is, one must
specify the following:

]nAn~xs![s, ~97a!

An~xs!nn[Anorm~xs!, ~97b!

]aAm~xs!2]mAa~xs![cam, ~97c!

Aa~xs!nm2Am~xs!na[Atang
am ~xs!, ~97d!

where nn is the four-vector outward unit normal of the three-surfaceS which encloses the four
volume V4 .

Proof: In order to demonstrate the uniqueness of the four-vector fieldAn, one first postulates
the existence of a second four-vectorBn, which also satisfies Eq.~97!. That is, one only replace
An on the lhs of Eq.~97! by Bn while the rhs of Eq.~97! remains unchanged. The four-vector fie
An is unique if one can show that

Wn[An2Bn50. ~98!

Now, taking the four-divergence ofWn and using~97a! yields

]nWn5]nAn2]nBn5s2s50, ~99!

everywhere in the four-volumeV4 . Also, calculating the magnitude of the normal component
Wn along the surface normalnn and using~97b! yields

Wnorm[Wnnn5Annn2Bnnn5Anorm2Anorm50, ~100!

everywhere on the bounding three-surfaceS. Next, taking the four-curl ofWn and using~97c!
yields
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]aWm2]mWa5~]aAm2]mAa!2~]aBm2]mBa!5cam2cam50, ~101!

everywhere in the four-volumeV4 . Also, calculating the rank two tangential components w
respect tonn of Wn and using~97d! yields

Wanm2Wmna5~Aanm2Amna!2~Banm2Bmna!5Atang
am 2Atang

am 50, ~102!

everywhere on the bounding three-surfaceS. Finally, substituting the results~99!–~102! for the
four-vector fieldWn into identity ~43! of Theorem I, one obtains the resultWn50 which implies
@via ~98!# that An5Bn everywhere in the four-space regionV48 and on its bounding three-surfac
S8. This proves that the four-vector fieldAn is uniquely determined by Eq.~97! thus proving
Theorem IV on the uniqueness of four-vector fields in Euclidean four-space. '

A uniqueness theorem for four-vector fields in Minkowski space is now stated.
Theorem V: A sufficiently smooth four-vector field Am(xs) in the Minkowski spaceR311

which satisfies identity~69! ~i.e., Theorem II! is uniquely specified by giving its four divergen
and its four-curl within a space–time region V4 , as well as its normal and tangential componen
on the bounding three-surfaceS. That is, one must specify the following:

]nAn~xs![s, ~103a!

]aAm~xs!2]mAa~xs![cam, ~103b!

throughout the space–time region V4 , as well as

An~xs!nn[Anorm~xs!, ~103c!

Aa~xs!nm2Am~xs!na[Atang
am ~xs!, ~103d!

everywhere on the bounding three-surfaceS, where nn is the four-vector outward unit normal o
the three-surfaceS which encloses the space–time four-volume V4 .

Proof: The proof is based on the Minkowski space Theorem II. The proof proceeds
parallel manner to the proof of the Euclidean four-space Theorem IV. One postulates the ex
of a second four-vectorBn which also satisfies Eq.~103!. The four-vector fieldAn is unique if one
can show, as in Theorem IV, that

Wn[An2Bn50. ~104!

Equation~103! then leads, as before with~97!, to results analogous to~99!–~102!, which when
substituted into identity~69! shows thatWn50 which implies@via the definition ofWn in ~104!#
thatAn5Bn everywhere in the Minkowski space regionV48 and on its bounding three-surfaceS8.
This proves that the four-vector fieldAn is uniquely determined by Eq.~103! specified over
Minkowski space, thus proving Theorem V on the uniqueness of four-vector fields in Minko
space. '

It has already been demonstrated that identity~69! of Theorem II reduces to the Helmholt
identity ~11a! when an appropriate~static! Newtonian limit is taken. And it is known that th
Helmholtz identity ~11a! can be used to prove the Helmholtz uniqueness theorem for a fi
volume ofR3, i.e., Theorem H2. Theorems IV and V are later used in Sec. IV B to prove Theo
X, which extends Theorem H2 to four-vector fields in Euclidean and Minkowski spaces.@If one
makes the usual assumption that the four-vector fieldsAm vanish sufficiently rapidly at infinity,
then the surface integral terms in~43! or ~69! vanish and so a four-space generalization of
Helmholtz uniqueness Theorem H1 over the entire four-volume of Euclidean or Minkowski s
follows from Theorem X as well.# Also, Theorem’s IV and V can be interpreted as extensions
Theorem U in Sec. II A to four-vector fields in Euclidean and Minkowski spaces, respectively
Helmholtz identity~11a! and the three-vector uniqueness theorems U, H1, and H2 of Sec. II A
therefore be generalized readily to four-vector fields in Euclidean and Minkowski spaces.
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F. Uniqueness theorem for scalar fields in Euclidean three-space

In this section, a uniqueness theorem for scalar fields in Euclidean three-space will be p
using identity~81! of Theorem III. The theorem will now be stated.

Theorem VI: A twice continuously differentiable (static) scalar fieldf~r ! in the Euclidean
three-spaceR3 is uniquely specified by giving its gradient everywhere within a spatial volum,
as well as its value on the bounding surface S. That is, one must specify the following:

2¹f~r ![E~r ! ~105a!

throughout the volume V, as well as

f~r !uS[fS~r ! ~105b!

on the bounding surface S.
Proof: In order to demonstrate the uniqueness of the scalar fieldf~r !, one first postulates the

existence of a second scalar fieldj~r !, which also satisfies Eq.~105!. That is, one replacesf~r ! on
the lhs of Eq.~105! by j~r !, while the rhs of Eq.~105! remains unchanged. The scalar fieldf~r !
is unique if one can show that

F~r ![f~r !2j~r !50. ~106!

Now, taking minus one times the gradient ofF~r ! and using~105a! yields

2¹F~r !52¹f~r !1¹j~r !5E~r !2E~r !50 ~107!

for all r in the spatial volumeV. Next, evaluatingF on the boundary surfaceS and using~105b!
yields

F~r !uS5f~r !uS2j~r !uS5fS~r !2fS~r !50, ~108!

for all r on the surfaceS. Finally, using the results~107! and ~108! for the scalar fieldF~r ! in
identity ~81! of Theorem III, one obtains the resultF(r )50 which implies@via the definition of
F~r ! in ~106!# that f(r )5j(r ) everywhere in the three-space regionV8 and on its bounding
surfaceS8. This proves that the scalar fieldf~r ! is uniquely determined by Eq.~105! thus proving
Theorem VI on the uniqueness of scalar fields in Euclidean three-space. '

Parenthetically, one should take note of the definition of the vector fieldE in ~105a!, which for
example in electromagnetism could be interpreted as the static electric field. From this po
view, the uniqueness of a static electric scalar potentialf~r ! requires the specification of the stat
electric field in a volumeV, as well as the value of the scalar potential evaluated on the boun
surfaceS.

It should also be noted that Theorem VI bears little resemblance to a typical statemen
uniqueness theorem for a scalar field in Euclidean three-space~cf. pp. 38–45 in Jackson—Ref
18!. This is because Theorem VI is based on identity~81! of Theorem III, which is based on
identity ~80! alone. Equation~80! in turn follows from a solution of theinhomogeneousscalar
wave equation, i.e., from aninhomogeneousGreen’s function approach. Thehomogeneoussolu-
tions which would have lead to Dirichlet or Neumann boundary conditions have not bee
cluded. The importance of Theorem VI appears to be that it emphasizes the role of the e
field, i.e., the negative gradient off, in obtaining a unique scalar potential.

Essentially the same remarks as above would apply to Theorems IV and V, but in a
vector potential context. The importance of the four-vector result appears to be that it emph
the role of the four-divergence and the four-curl ofAm in obtaining a unique four-vector potentia
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IV. EXTENSION TO FIELDS WITH MASS

A. Helmholtz identity and uniqueness theorem for fields with mass

In order to extend the Helmholtz identity~11a! to vector fields with mass it is convenient t
start by adding am2 mass term to thescalar Poisson equation for the static scalar potentialf, as
follows:

~¹22m2!f~x,y,z!52
r~x,y,z!

e0
. ~109!

The massive scalar Poisson equation~109! can be solved in terms of a two-point scalar Gree
function G(r ,r 8) which connects its unit delta function source located at the source poinr 8
5(x8,y8,z8) to a measurement at the field pointr5(x,y,z), i.e.,

~¹22m2!G~r ,r 8!52d3~r2r 8!. ~110!

The well-known identity~cf. Ref. 19! over the Euclidean three-spaceR3, namely

~¹22m2!
e2mr

4pr
[2d3~r2r 8! ;r ,r 8PR3, ~111!

wherer[ur2r 8u, yields by comparison with~110! for the case of an infinite spatial domain, th
Green’s function of the (¹22m2) operator as

G~r ,r 8!5
e2mr

4pr
5

e2mur2r8u

4pur2r 8u
. ~112!

One recognizes in~111! and ~112! an exponential damping factor depending in this example
the Compton wave numberm52p/lC5mc/\ of interaction bosons of massm. The inhomoge-
neous solution of~109! for the scalar potential then follows from the integral

f~r !5E
V8

r~r 8!

e0
G~r ,r 8!d3r 85E

V8

r~r 8!e2mur2r8u

4pe0ur2r 8u
d3r 8. ~113!

Although ~113! is an inhomogeneous solution to the massive scalar Poisson equation~109! in
an infinite spatial domain, it is the delta function property of identity~111! which is of importance
in the proof of the new identity, namely

F~r !5E
V8

F~r 8!d3~r2r 8!d3r 85E
V8

F~r 8!~¹22m2!S 2e2mur2r8u

4pr
D d3r 8. ~114!

In addition, the identity¹(1/r )52¹8(1/r ) used in the derivation of~11a! must be replaced by the
identity

¹G~r ,r 8!52¹8G~r ,r 8!, ~115!

which follows from the Green’s function~112!. A new identity now follows from~114! and~115!
which allows one to state the following theorem.

Theorem VII: The following identity holds for a continuous (static) three-vector fieldF~r ! in
a Euclidean three-spaceR3:
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F~r !52¹F E
V8

¹8•F~r 8!

4pr
e2mr dV82 R

S8

F~r 8!•n8

4pr
e2mr dS8G

1¹3F E
V8

¹83F~r 8!

4pr
e2mrdV81 R

S8

F~r 8!3n8

4pr
e2mr dS8G1m2E

V8

F~r 8!

4pr
e2mr dV8,

~116!

where r[ur2r 8u and wheren8 is the unit surface normal pointing out of the volume V8 bounded
by the closed surface S8.

Proof: Starting with~114!, since the Laplacian operator acts only on the field coordinate
can be brought outside of the integration. At this point, one makes a decomposition of th
placian operator using identity~20! as before in the derivation of~11a!.6,7 Then, since identity
~115! retains the same functional form as the identity¹(1/r )52¹8(1/r ) with respect to the
overall derivation, the derivation retains the same form as the derivation of~11!, with the minor
exception that an extram2 term is carried along unchanged. Equation~116! therefore follows
readily as a new identity for static three-vector fields thus proving Theorem VII. '

In contrast to the Helmholtz identity~11a!, the integrands of identity~116! contain an addi-
tional exponential mass damping factor which improves their convergence. The integra
therefore well defined even for fieldsF falling off only as fast as 1/r ~e.g., potentials!.

Note, Eq.~116! should be thought of as an identity for representing a general~static! three-
vector field rather than as a general solution to a partial differential equation. Indeed,~116! follows
from the identity~111! over an infinite spatial domain and its subsequent use in the delta fun
property~114!. Consequently,~116! is a vector identity that applies to all of the Euclidean thre
space, and so must hold for a finite volume of it as well. The Green’s function for aninhomoge-
neousmassive scalar Poisson equation in an infinite spatial domain is only mentioned in pa
and certainly no use is made of the solutions of the associated source freehomogeneousscalar
equation.

It is interesting at this point to inquire whether or not identity~116! of Theorem VII can be
used to obtain an alternate version of Theorem H2 of Sec. II A. However, the first thing to
about identity~116! is thatF is no longer simply of the form~3! i.e., involving only the gradient
of a scalar field~an irrotational part!, and the curl of a vector field~a solenoidal part!, but is now
of the form

F~r !52¹F~r !1¹3A~r !1m2E
V8

F~r 8!

4pr
e2mr dV8, ~117!

where the first and second bracketed terms on the rhs of~116! are set equal toF~r ! and A~r !,
respectively, and where the last term on the rhs of~117! is an extra nonzero term which is neith
irrotational nor solenoidal. Consequently, an alternate version of Theorem H2 does not app
follow from identity ~116!.

On the other hand, one can use identity~116! to prove the following uniqueness theorem f
three-vector fields.

Theorem VIII: A twice continuously differentiable (static) three-vector fieldF~r ! in the
Euclidean three-spaceR3, which satisfies identity~116!, is uniquely specified by giving its diver
gence and curl within the volume V, its normal and tangential components on the bound
surface S, and the value of the real constantm. That is, one must specify the constantm and the
following:

¹•F5r, ~118a!

¹3F5 j , ~118b!

throughout the volume V, along with the normal and tangential components
                                                                                                                



r

entity

to

4937J. Math. Phys., Vol. 40, No. 10, October 1999 Uniqueness theorems for classical four-vector . . .

                    
F•n52s, ~118c!

F3n5K , ~118d!

respectively, on the surface S bounding the volume V, wheren is the outward unit normal vecto
of the surface S which encloses the volume V.

Proof: In order to demonstrate the uniqueness of massive vector fields which satisfy id
~116! and Eqs.~118a!–~118d!, one first postulates the existence of a second vectorG which also
satisfies identity~116! and Eqs.~118a!–~118d!. That is, one replacesF on the lhs of Eqs.~118a!–
~118d! by G while the rhs of these equations remain unchanged. The vector fieldF is unique if one
can show that

W[F2G50. ~119!

Now, taking the divergence ofW and using~118a! yields

¹•W5¹•F2¹•G5r2r50, ~120!

everywhere in the volumeV. Also, calculating the magnitude of the normal component ofW
along the surface normaln and using~118c! yields

Wnorm[W•n5F•n2G•n52s2~2s!50, ~121!

everywhere on the bounding surfaceS. Next, taking the curl ofW and using~118b! yields

¹3W5¹3F2¹3G5 j2 j50, ~122!

everywhere in the volumeV. Also, calculating the tangential components with respect ton of W
and using~118d! yields

Wtang[W3n5F3n2G3n5K2K50, ~123!

everywhere on the bounding surfaceS. Finally, substituting the results~120!–~123! for the vector
field W into identity ~116! yields

W~r !5m2E
V8

W~r 8!

4pr
e2mr dV8. ~124!

Then, if one applies the operator (¹22m2), which acts only on the unprimed coordinates,
~124!, while using~111! and ~114!, one obtains

~¹22m2!W~r !5m2E
V8

W~r 8!~¹22m2!
e2mr

4pr
dV852m2E

V8
W~r 8!d~r2r 8!dV852m2W~r !.

~125!

The m2 terms in~125! cancel and soW satisfies the vector Laplace equation

¹2W~r !50. ~126!

Equation ~126! also follows from a direct expansion of the Laplacian operator using~20! as
follows:

¹2W5¹~¹•W!2¹3~¹3W!50, ~127!

where the first term in~127! vanishes by~120! and the second term in~127! vanishes by~122!. A
further restriction onW is that its normal component vanishes on the surfaceS by ~121!, which
combined with the fact thatW is irrotational by ~122! and is therefore expressible asW
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52¹f, implies via Green’s theorem thatW50 throughout the volumeV as well.8 So, only the
trivial solution W50 of ~124! satisfies the boundary conditions and therefore@via ~119!#, the
vector fieldF5G everywhere in the volumeV and on its bounding surfaceS. This proves that a
static vector fieldF in a Euclidean three-space satisfying identity~116! is uniquely determined by
specifying the real scalar constantm and relations~118a!–~118d!, thus proving Theorem VIII.'

It is tempting to interpret Theorem VIII as a uniqueness theorem for static massive v
fields, i.e., those which satisfy the inhomogeneous massivevectorPoisson equation

~¹22m2!F~r !52 j ~r !. ~128!

However, the Green’s function which was used to derive identity~116! followed from an inho-
mogeneous massive scalar Poisson equation which is a much simpler problem. That is, eq
of the form ~128! would in general use, for example, a solution technique which involve
two-point dyadic Green’s function, i.e., a Green’s function which is not a three-vector.20 Never-
theless, a close inspection of the proofs of identity~116! and Theorem VIII reveals that no
limitations are imposed on the vector fieldF other than that its components must be twice co
tinuously differentiable. The vector fieldF could therefore be either a massless or a massive ve
field. Naturally, identity~116! appears to be oriented toward application to massive vector fi
due to its incorporation of a mass damping factor. Alternately, identity~116! could be used in
situations involving spatial diffusion, where the parameterm would be interpreted as a diffusio
parameter.

B. Extending the four-space Helmholtz identities and uniqueness theorems to
four-vector fields with mass

In attempting to extend the four-space Helmholtz identities to four-vector fields with m
one can start by adding am2 mass term to~32!, the inhomogeneous scalar wave equation for
scalar potentialf, as follows:

hf~xn!2m2f~xn!52r~xn!/e0 , ~129!

whereh[]m]m is the d’Alembertian operator, and where the~2 1 1 1! metric signature is
again convenient. One can then attempt a solution of the massive inhomogeneous scala
equation~129! in terms of a two-point massive scalar Green’s functionG(xn,x8n) as in~33!, but
now with am2 mass term as follows:

~h2m2!G~xn,x8n!5S ¹22
1

c2

]2

]t22m2DG~xn,x8n!52d~4!~xn2x8n!, ~130!

where d (4)(xn2x8n)5d(x02x80)d3(r2r 8). For the previous scalar field case with the ma
factor m50, comparison of the Euclidean space analytically continued integral~30b! with the
Minkowski space integral~34! yielded the Euclidean four space Green’s function~36!. One could
therefore try to follow a course paralleling the three-space analysis in Sec. IV A by simply a
a mass damping factor to the Euclidean four-space Green’s function~36! thereby obtaining a trial
Green’s function

Gtrial~xn,x8n![
e2mR

4p2R2
5

e2muxn2x8nu

4p2uxn2x8nu2
, ~131!

whereR is the distance in aEuclideanfour-space between the source pointx8n and field pointxn

as defined previously in~23!. However, it turns out thatGtrial satisfies a different identity, namel

S h2m22
m

RDGtrial~xn,x8n!52d~4!~xn2x8n!, ~132!
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where the third term on the lhs of~132! is an additional cross term. To demonstrate this one u
the result]nxn54 to calculate

hS e2mR

R2 D 524p2d~4!~xn2x8n!e2mR1~22413!
m

R3 e2mR1
m2

R2 e2mR, ~133!

which proves~132! since the exponential in the first term on the rhs of~133! drops out in a delta
function distribution integral context. Contrast~133! with the Euclidean three-space identity~110!
rewritten in index notation, and using the result] j xj53, as

]

]xj

]

]xj S e2mr

r
D 524pd3~xj2x8 j !e2mr1~12312!

m

r 2 e2mr1
m2

r
e2mr , ~134!

where the additional cross term, the middle term on the rhs of~134!, clearly drops out.
However, a solution for the massive scalar two-point Green’s function has been obtain

DeWitt21 using a Fourier ‘‘momentum’’ space method for the case of timelike separationsxn

2x8n)2,0 as follows:

GM~xn,x8n!52
m2

8p

H1
~2!~ imR!

imR
, ~135!

whereH1
(2) is the Hankel function of the second kind of order 1 with an integral representat21

H1
~2!~z!5

1

ip E
C

1

u2
expF1

2
zS 12

1

uD Gdu, ~136!

over the contourC defined in Ref. 21. Sincez5 imR5 imuxn2x8nu in ~136!, the four-vector
derivative of the massive scalar Green’s function~135! has the property

]

]x8n GM~xn,x8n!52
]

]xn GM~xn,x8n!, ~137!

which is of the same functional form as properties~65a! and ~65b!. Consequently,~137! can be
used in the same way as in the derivation of identity~69!. An alternate form of Theorem II can
therefore be stated as follows:

Theorem IX: Given that a massive scalar two-point Green’s function GM(xn,x8n) exists for
timelike separations(xn2x8n)2,0, whose dependencies on the coordinates xn and x8n occur only
through the variable R5uxn2x8nu, the following identity holds for sufficiently smooth four-vect
fields Am(xs) in the Minkowski spaceR311 for timelike separations(xn2x8n)2,0:

Am~x!52F E
V48

]m~~]n8A
n~x8!!GM~x,x8!!d4x82 R

S8
]m~~An~x8!nn8!GM~x,x8!!dS8G

2F E
V48

]a~~]8aAm~x8!2]8mAa~x8!!GM~x,x8!!d4x81 R
S8

]a~~Aa~x8!n8m

2Am~x8!n8a!GM~x,x8!!dS8G1m2E
V48

Am~x8!GM~x,x8!d4x8, ~138!

where n8m is the four-vector outward unit normal of the three-surfaceS8 which encloses the
four-volume V48 , and where the three-surfaceS8 is defined covariantly with respect to a gener
Lorentz transformation.
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Proof: The proof is based on the four-vector delta function property~42! which in the present
case uses~130! for representing the four-space delta function as follows:

Am~x!5E
V48

Am~x8!d~4!~x2x8!d4x852E
V48

Am~x8!~h2m2!GM~x,x8!d4x8. ~139!

Then since the property~137! is of the same functional form as in~65!, the proof of~138! parallels
the proof of ~69! in all important respects, except that an extram2 mass term is carried alon
unchanged from~139!, and so the details will not be repeated. '

It is interesting at this point to inquire whether or not one can use identity~138! of Theorem
IX to state a four-space analog of the three-vector Theorem H2 of Sec. II A. For a suffic
smooth four-vector field one can factor the unprimed field point derivatives out of the inte
over the primed source point coordinates in~138!. However, the first thing to note about such
factored version of identity~138! is thatAm is no longer simply of the form~75!, i.e., involving
only the four-gradient of a scalar field~a four-irrotational part!, and the four-curl of a four-vecto
field ~a four-solenoidal part!, but is now of the form

Am~x!5]mA~x!1]aAam~x!1m2E
V48

Am~x8!GM~x,x8!d4x8, ~140!

where the first and second bracketed terms on the rhs of~138! are set equal to2A(x) and
2Aam(x), respectively, and where the last term on the rhs of~140! is an extra nonzero term whic
is neither four-irrotational nor four-solenoidal. Therefore a four-space analog of the three-v
Theorem H2 of Sec. II A does not appear to follow from~138!. However, it is possible to state
theorem for four-vector fields based on identity~43! of Theorem I or on identity~69! of Theorem
II as follows:

Theorem X: A sufficiently smooth four-vector field Am(xs) that is defined everywhere in
finite volume V4 in a Euclidean four-spaceR4 or in a Minkowski spaceR311 and whose tangen
tial and normal components on the bounding three-surfaceS are given may be uniquely repre
sented as a sum of a four-irrotational and a four-solenoidal part.

Proof: It has already been shown that~44! leads to~51! in the Euclidean case, while in
similar fashion~70! leads to~75! in the Minkowski case. Now, the second term of~51! or ~75!, is
four-irrotational

]m~]nA!2]n~]mA!50, ~141!

i.e., its four-curl is zero. Also, the first term of~51! or ~75! is four-solenoidal

]m~]aAam!50, ~142!

i.e., its four-divergence is zero, since it is a contraction of a symmetric factor]m]a and an
antisymmetric factor~53! or ~73!. The decomposition defined by Eq.~51! or ~75! is therefore a
sum of a four-irrotational and a four-solenoidal part and by identity~43! and ~69! and by the
arguments of the Euclidean uniqueness Theorem IV and the Minkowski space uniqueness
rem V the fieldAm is unique under this decomposition, thereby proving Theorem X. '

A theorem will now be stated that will be used later in this section.
Theorem XI: A sufficiently smooth four-vector field Am(xs) vanishes in a compact nonemp

region V̄45V4øS of the Minkowski spaceR311 when the four-divergence and four-curl o
Am(xs) vanish over the space–time region V4 and the four-normal and four-tangential compo
nents of Am(xs) vanish over the bounding three-surfaceS. That is, one must specify the following

]nAn~xs!50, ~143a!

]aAm~xs!2]mAa~xs!50, ~143b!
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throughout the space–time region V4 , as well as

Anorm~xs![An~xs!nn50, ~143c!

Atang
am ~xs![Aa~xs!nm2Am~xs!na50, ~143d!

everywhere on the bounding three-surfaceS, where nn is the four-vector outward unit normal o
the three-surfaceS which encloses the space–time four-volume V4 .

Proof: Since it is assumed thatAm andnn are four-vectors, thenAnorm(xs) andAtang
am (xs) are

covariant with respect to general Lorentz transformations and identity~69! of Theorem II, which
is defined under similar constraints, can be used. Substitution of~143a!–~143d! into identity ~69!

then yields the resultAm(xs)50 throughoutV̄4 , thus proving Theorem XI. '
The next step is to state a four-vector uniqueness theorem analogous to the three

Theorem VIII as follows:
Theorem XII: A sufficiently smooth four-vector field Am(xs) in the Minkowski spaceR311

which satisfies identity (138) (i.e., Theorem IX), is uniquely specified by giving its four-diverg
and four-curl within the space-time region V4 , its normal and tangential components on th
bounding three-surfaceS, and the value of the real constantm. That is, one must specify th
constantm and the following:

]nAn~xs![s, ~144a!

]aAm~xs!2]mAa~xs![cam, ~144b!

throughout the space–time region V4 , as well as

Anorm~xs![An~xs!nn , ~144c!

Atang
am ~xs![Aa~xs!nm2Am~xs!na, ~144d!

everywhere on the bounding three-surfaceS, where nn is the four-vector outward unit normal o
the three-surfaceS which encloses the space–time four-volume V4 .

Proof: The proof proceeds in a parallel manner to the proof of Theorem V. One postulate
existence of a second four-vectorBn which also satisfies Eqs.~144a!–~144d!. The four-vector field
An is unique if one can show, as in Theorem V, that

Wn[An2Bn50. ~145!

Equations~144a!–~144d! then lead, as before with~97a!–~97d!, to results analogous to~99!–
~102!, which when substituted into identity~138! yields the result

Wm~x!5m2E
V48

Wm~x8!GM~x,x8!d4x8. ~146!

Then, if one applies the operator (h2m2), which acts only on the unprimed coordinatesxn, to
~146! while using~139!, one obtains

~h2m2!Wm~x!5m2E
V48

Wm~x8!~h2m2!GM~x,x8!d4x8

52m2E
V48

Wm~x8!d~4!~x2x8!d4x852m2Wm~x!. ~147!

The m2 terms in~147! cancel and soWm(x) satisfies the homogeneous wave equation
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hWm~x!50. ~148!

Equation~148! also follows from a direct expansion of the d’Alembertian operator using~19! as
follows:

hWm5]n~]nWm2]mWn!1]m~]nWn!50, ~149!

where the first bracketed term of~149! vanishes because the four-curl vanishes by a result an
gous to ~101! and the second bracketed term of~146! vanishes because the four-divergen
vanishes by a result analogous to~99!. It should be clear from the result~149! that it is not
necessary to solve the Cauchy problem for the wave equation~148! to find Wm(x) since each
bracketed term in~149! separately vanishes. In fact, each of the conditions~143a!–~143d! are
satisfied forWm(x) throughoutV̄4 , and so by Theorem XIWm(x)50 throughoutV̄4 . Thus, only
the trivial solutionWm(x)50 of ~148! satisfies the boundary conditions and therefore,@via ~145!#,
the four-vector fieldAm(x)5Bm(x) everywhere in the four-volumeV4 and on its bounding three
surfaceS. This proves that a four-vector fieldAm(x) in a Minkowski 311 space–time satisfying
identity ~138! is uniquely specified by specifying the real scalar constantm and the relations
~144a!–~144d!, thus proving Theorem XII. '

It is tempting to interpret Theorem XII as a uniqueness theorem for massive four-vector
i.e., those which satisfy the inhomogeneous massive four-vectorwave equation

~h2m2!Fm~x!52 j m~x!. ~150!

However, the Green’s functionGM(x,x8), e.g.,~135!, which was used in identity~138! followed
from an inhomogeneous massivescalarwave equation which is a much simpler problem. That
equations of the form~150! would in general use a solution technique which involves a two-p
second rank tensor Green’s function.22,23Nevertheless, a close inspection of the proofs of iden
~138! and Theorem XII reveals that no limitations are imposed on the four-vector fieldAm(x)
other than that its components must be sufficiently smooth. The four-vector fieldAm(x) could
therefore be either a massless or a massive four-vector field. Naturally, identity~138! appears to be
oriented toward application to massive four-vector fieldsAm(x) due to its incorporation of a mas
damping factor.

V. CONCLUSION

In conclusion, the three-space Helmholtz identity and its associated uniqueness the
which focus on the curl and divergence of a vector field, provide insight into irrotational
solenoidal fields. The extension of the Helmholtz identity and associated uniqueness theor
Euclidean and Minkowski four-spaces presented in this article demonstrates that the cu
divergence of a three-vector field generalize into the four-curl and four-divergence of a four-v
field, and that irrotational and solenoidal three-vector fields naturally generalize into
irrotational and four-solenoidal four-vector fields, respectively.

Now, a four-solenoidal field is essentially a four-vector field in the Lorentz gauge~sometimes
referred to as arelativistic transverse gauge!, with zero four-divergence, as for example in th
case of the electromagnetic field. The author is currently investigating the associated conce
four-irrotational four-vector field. This leads to the development of what the author shall c
‘‘ relativistic longitudinal gauge’’ where the Maxwell field tensor itself is set to zero, while th
four-divergence of the four-vector field can in general be nonzero. Consider the case of a so
‘‘pure gauge’’ field which arises in connection with the Meissner effect deep in a supercond
where the magnetic field is required to vanish~cf. Ref. 24!. Interestingly, pure gauge fields whic
are defined by the relation

Am[]mL, ~151!
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satisfy a ‘‘relativistic longitudinal gauge condition’’ as defined by the vanishing of its Maxwe
field tensor:

Fmn5]mAn2]nAm5]m]nL2]n]mL50, ~152!

and further are four-irrotational since the four-curl ofAm, i.e., Fmn, is zero by~152!. If they also
have nonzero four-divergence throughout a regionV4 where~152! holds, i.e.,

]mAm~x!5]m]mL~x!Þ0 ;xPV4 , ~153!

they would provide an example of a four-vector field in the relativistic longitudinal gauge. Ind
if a pure gauge field, defined for example over an unbounded space–time region, satisfied]mAm

50, then by Theorem XI one would have the fieldAm vanishing everywhere! In a finite space
time region, on the other hand, one could still possibly have]mAm50, Fmn50, andAmÞ0 all
holding true if either~143c! and/or ~143d! were nonzero on the three-surfaceS bounding the
four-volumeV4 .
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For anyd-dimensional self-interacting fermionic model, all coefficients in the high-
temperature expansion of its grand canonical partition function can be put in terms
of multivariable Grassmann integrals. A new approach to calculate such coeffi-
cients, based on direct exploitation of the Grassmannian nature of fermionic opera-
tors, is presented. We apply the method to the soluble Hatsugai–Kohmoto model,
reobtaining well-known results. ©1999 American Institute of Physics.
@S0022-2488~99!00310-2#

I. INTRODUCTION

A quantum system at thermal equilibrium can be completely described provided tha
knows its grand canonical partition function, which can be expressed as a path integra
bosonic systems, an advantageous feature of the path integral approach is that of em
commuting functions instead of noncommuting operators. For fermionic systems, however
an advantage is not obvious to hold, as the integration variables are also noncommuting.

In 1980, Kubo1 used the path integral approach to calculate the grand canonical par
function of the Hubbard model, using the strong coupling limit and performing a perturb
expansion in the hopping constant~t!. Even though his result is valid for any temperature, o
does not have the exact coefficient ofb(b51/kT) of the high-temperature expansion of th
partition function. Since then, improvements on the calculation of the high-temperature expa
up to order (bt)9 for the Hubbard model in two and three dimensions have been reported i
literature.2

Recently, Grandatiet al.3 presented a method to calculate the grand canonical partition f
tion of self-interacting fermions by writing that function on a lattice and using the properties o
Grassmann algebra to calculate its expansion in powers of the coupling constant. They cal
the first two terms for the bi-dimensional chiral Gross–Neveu model, obtaining an anal
result; however, their approach is model dependent. More recently, Creutz4 used a numerica
algorithm to calculate the generating functional of a fermionic model, rewritten on a lattice
applied his algorithm to a unidimensional fermionic system involving a thousand Grassma
variables. He pointed out that this approach does not have the sign problems that generally
the application of the Monte Carlo method to fermionic models.

We do not write the grand canonical partition function of a self-interacting fermionic m
on a lattice; instead, we present a new method to obtain the coefficients of its high-tempe
expansion ind dimensions, whered>1. However, for the expansion inb, this method doesnot
49440022-2488/99/40(10)/4944/12/$15.00 © 1999 American Institute of Physics
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involve any other perturbative expansion~such as, say, in the coupling constant of the model!. In
Sec. II we present the method, an extension to the one used to calculate the grand ca
partition function of the anharmonic fermionic oscillator,5 a quantum model ind50 space dimen-
sion. In Ref. 6, the properties of the Grassmann algebra were used to calculate the mom
Grassmannian Gaussian integrals. This general result, together with the diagonalization of
cesAss(s5↑,↓)—matrices that appear when the trace of any fermionic operator is express
terms of a multivariable Grassmann integral@see Eq.~9!#—allows us to develop a general ap
proach to obtain analytical expressions for the coefficients of the high-temperature expans
the grand canonical partition function of any self-interacting fermionic model ind dimensions,
even in the thermodynamical limit. In Sec. III we apply the method to the Hatsugai–Koh
model, a simple toy model that was used by Hatsugai and Kohmoto to explain the metal-ins
transition. The solution of this model is very simple, and does not require all of the fea
developed in Sec. II. In Sec. IV we present our conclusions and future applications of the p
approach. In the Appendix, the diagonalization of the matricesAss, for arbitrary lattice dimension
and arbitrary number of points in the lattice, is described.

II. EXPANSION IN THE HIGH-TEMPERATURE LIMIT AND THE GRASSMANN
MULTIVARIABLE INTEGRALS

The grand canonical partition function of any quantum system in the high-temperature
can be expanded in terms ofb as

Z~b;m!5Tr ~e2bK !5 (
n50

`
~21!n

n!
Tr @Kn#bn, ~1!

whereK is given by

K5H2mN, ~2!

H is the Hamiltonian of the system,m is the chemical potential, andN is the total number of
particles operator.

The fermionic creation (ai
†) and destruction (aj ) operators can be mapped into generators

the Grassmann algebra$h̄ i ,h j% as follows:7–9

ai
†→h̄ i and aj→

]

]h̄ j
, ~3!

wherei , j 51,2,...,N. The generators of this Grassmann algebra of dimension 22N, written explic-
itly as $h̄1 ,...,h̄N ;h1 ,...,hN%, satisfy the following anticommutation relations:

$h i ,h j%50, $h̄ i ,h̄ j%50, and $h̄ i ,h j%50. ~4!

The trace of any normal-ordered fermionic operatorO is7

Tr @O#5E )
i 51

N
dh idh̄ iOns~ h̄,h!e( j 51

N 2h̄ jh j , ~5!

where we use the shorthand notation,h̄[$h̄1 ,...,h̄N% andh[$h1 ,...,hN%, andOns(h̄,h) is the
kernel of the fermionic operatorO in the normal order.~By ‘‘normal-ordered operator’’ we mean
an operator in which all destruction operators are to placed to the right of all creation oper!
Naively, it can be said that the Grassmannian functionOns(h̄,h) is obtained by replacingai

†

→h̄ i andai→h i in operatorO.5,7
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Let us consider from now on the case where the creation and destruction operato
characterized by the indices~lW ;s!, wherelW is a d-dimensional lattice vector (d51,2,3,...) ands
is the spin component. The components of vectorlW need not be orthogonal. This lattice vect
could equally represent either the space vectorx¢ or the momentum vectork¢ . If the fermionic
operatorO is a product ofn normal-ordered fermionic operatorsQ, we have5

Tr @Qn#5E )
lW

)
s561

)
a50

n21

dhs~ lW ;a!dh̄s~ lW ;a!e( l
W (n50

n21h̄s~ lW ;n!@hs~ lW ;n!2hs~ lW ;n11!#

3Qns
„h̄s~ lW ;0!,hs~ lW ;0!…Qns

„h̄s~ lW ;1!,hs~ lW ;1!…3¯

3Qns
„h̄s~ lW ;n21!, hs~ lW ;n21!…, ~6!

where we defines5↑[11 ands5↓[21. The Grassmann variables in Eq.~6! satisfy the bound-
ary conditions

hs~ lW ;n!52hs~ lW ;0! and hs~ lW ;n!50, for n.n, ~7!

with s561 andlW stands for any vector on the lattice. Equation~6! is still valid for a product of
n-ordered operators, not necessarily equal.

Relation ~6! is used to write the terms of the expansion of the grand canonical part
function in the high-temperature limit as multivariable Grassmann integrals. For ad-dimensional
fermionic model, the coefficients of the expansionZ~b,m! in Eq. ~1! become

Tr @Kn#5E )
lW

)
s561

)
a50

n21

dhs~ lW ;a!dh̄s~ lW ;a!e( l
W (s561(n50

n21h̄s~ lW ;n!@hs~ lW ;n!2hs~ lW ;n11!#

3Kns~ h̄s~ lW ;0!,hs~ lW ;0!!Kns
„h̄s~ lW ;1!,hs~ lW ;1!…3¯

3Kns
„h̄s~ lW ;n21!, hs~ lW ;n21!…. ~8!

The boundary conditions~7! still hold for the generatorshs(lW ;n).
It is much easier to handle generators with one index. Then we map the generatorshs(lW ,n)

andh̄s(lW ,n) into single-indexed anti-commuting variables. The sum in the exponential on th
of Eq. ~8! can be written as

(
lW

(
s561

(
n50

n21

h̄s~ lW ;n!@hs~ lW ;n!2hs~ lW ;n11!#[ (
I ,J51

2nNd

h̄ IAIJhJ . ~9!

Note that the argument of the exponential on the rhs of Eq.~8! is diagonal in the indiceslW ands.
Having the components of the column vectorhJ ~or the line vectorh̄) grouped according to the
values ofs, and then each subset ordered according ton, and finally each subsubset ordere
according tolW , the matrixA will have the block-structure

A5S A↑↑ O

O A↓↓D , ~10!

whose entries are matrices of dimensionnNd3nNd andd is the dimension of the vectorlW . The
indicesI ,J are such thatI ,J51,2,...,2nNd, whereNd is the number of points in the lattice. Th
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matricesA↑↑ andA↓↓ are identical. Taking into account the anti-periodic condition in tempera
~7! in Eq. ~9!, the matricesAss, wheres5↑,↓, are found to have the following block-structure

A↑↑5A↓↓5S 1Nd3Nd 21Nd3Nd ONd3Nd ¯ ONd3Nd

ONd3Nd 1Nd3Nd 21Nd3Nd ¯ ONd3Nd

A A

1Nd3Nd ONd3Nd ONd3Nd ¯ 1Nd3Nd

D . ~11!

The symbols1Nd3Nd andONd3Nd stand for the identity and null matrices of dimensionNd3Nd,
respectively. Any lattice vectorlW can be written as

lW 5l 1 u¢11l 2 u¢21¯1l d u¢d , ~12!

wherel i51,2,...,N( i 51,2,...,d), andN is the number of points in the lattice in the direction of t
d-dimensional basis vectoru¢ i . A particular basis, for whichAss has the block-form shown in
~11!, yields the following mapping:

hs~ lW ;n!→h
†@~12s!/2#n1n‡Nd1l 11~ l 221!N1¯1~ l d21!N~d21!. ~13!

The generatorsh̄s(lW ;n) have an analogous mapping. With the newly indexed generators
expression of Tr@Kn# @Eq. ~8!# becomes

Tr @Kn#5E )
I 51

2nNd

dh I dh̄ I e( I ,J51
2nNd

h̄ IAIJhJ3Kns~ h̄,h;n50!Kns~ h̄,h;n51!¯Kns~ h̄,h;n5n21!.

~14!

Note that expression~14!, up to the constant21/n!, is the coefficient at orderbn of the
expansion in the high-temperature limit of the grand canonical partition function for any
interacting fermionic model. The specific model to be studied is represented by the Grassm
functionKns, but the matrixA is the same for all fermionic models. Once the submatricesA↑↓ and
A↓↑ are null, the multivariable integral~14! is equal to the product of the contributions comin
from the sectors:ss5↑↑ andss5↓↓ separately. The Grassmann functionsKns are polynomials in
the generators of the algebra. Therefore, the rhs of Eq.~14! are moments of the multivariabl
Grassmann Gaussian integrals. In Ref. 6 it is shown that these integrals can be written as co
of the matrixA.

The integrals in Eq.~14!, for sectorss5↑↑, have the form

M ~L,K !5E )
i 51

nNd

dh idh̄ i h̄ l 1
hk1

¯h̄ l m
hkm

e( i , j 51
nNd

h̄ iAi j
↑↑hJ, ~15!

with L5$ l 1 ,...,l m% andK5$k1 ,...,km%. The productsh̄h are ordered in such a way thatl 1, l 2

,¯, l m andk1,k2,¯,km . From Ref. 6, the result of this type of integrals is equal to

M ~L,K !5~21!~ l 11 l 21¯1 l m!1~k11k21¯1km!A~L,K !, ~16!

whereA(L,K) is the determinant of the matrix obtained from matrixA↑↑ by deleting the lines
$ l 1 ,...,l m% and the columns$k1 ,...,km%. M (L,K) is a cofactor of matrixA↑↑. The Grassmann
integrals to be calculated in sector↓↓ are the same type as Eq.~15!. Evaluating determinants o
nondiagonal matrices of dimensionnNd3nNd is still a hard task, even if we have restricte
ourselves to multivariable integrals of a fixed sectorss. Calculating such determinants is
suitable task for computers, and it obviously depends on hardware and software resources
n, for instance, there is an upper practical limit forN, so that the calculation of determinants
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feasible. One possibility for evaluating Eq.~14! is that of assigning different values forN and,
from the results obtained, trying to extrapolate for an arbitrary value ofN. If we are lucky, some
recursion expression for Eq.~14! for all N could be recognized.

Our approach to calculate the integral~15! is, for fixed n and arbitraryN, to explore the
block-structure of matricesAss, s5↑ ands5↓, diagonalizing it through a similarity transforma
tion

P21AssP5D, ~17!

where the matrixD is

D5S l11Nd3Nd ONd3Nd ¯ ONd3Nd

ONd3Nd l21Nd3Nd ¯ ONd3Nd

A A

ONd3Nd ONd3Nd ¯ ln1Nd3Nd

D , ~18!

andl i , i 51,2,...,n, are the eigenvalues of matricesAss, s5↑,↓, and calculate the cofactors of th
matrix D. The jth column of matrixP is the eigenvector ofAss associated to the eigenvaluel j .
Each eigenvalue of matrixAss has degeneracyNd. The matrices are not Hermitian, thus som
eigenvalues are complex. In the following, we will be working on thess5↑↑ sector; however, the
results for thess5↓↓ sector are analogous sinceA↑↑5A↓↓.

We will apply the following transformation of variables,

h85P21h and h̄85h̄P, ~19!

where h8[$h18 ,...,hnNd8 % and h̄8[$h̄18 ,...,h̄nNd8 %. The Jacobian of the transformation~19! is
equal to one.

Due to the fact thatA↑↑ is a block matrix, the matrixP also has a block structure. This fa
implies that transformations~19! do not mix up lattice indices.

In a schematic way, the integralsM (L,K) @Eq. ~15!# become

M ~L,K !5E )
i 51

nNd

dh i dh̄ i ~ h̄P21! l 1
~Ph!k1

¯~ h̄P21! l m
~Ph!km

e( i , j 51
nNd

h̄ iDi j h j , ~20!

whereDi j are the entries of the diagonal matrixD. The expressionM (L,K) fits into the form of
Eq. ~15!, and hence corresponds to some cofactor of the diagonalized matrixD @Eq. ~16!#. It is
very simple to calculate these cofactors, and the matrixP is the same for any self-interactin
fermionic model.

In the Appendix we present the derivation of the eigenvalues and eigenvectors of matrixD for
arbitrary values ofn andN. From Eqs.~A25! and ~A26!, for arbitrary value ofn, we have that

pnn8
~n!

5
1

An
e~ ip/n!~2n811!~n11!, ~21!

and

qn8n
~n!

5
1

An
e2~ ip/n!~2n811!~n11!, ~22!

with n, n850,1,...,n21, and
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P5S p00
~n!1Nd3Nd ¯ p0,n21

~n! 1Nd3Nd

A A

pn21,0
~n! 1Nd3Nd ¯ pn21,n21

~n! 1Nd3Nd

D ~23!

and

P215S q00
~n!1Nd3Nd ¯ q0,n21

~n! 1Nd3Nd

A A

qn21,0
~n! 1Nd3Nd ¯ qn21,n21

~n! 1Nd3Nd

D . ~24!

The diagonal elements of matrixD are

ln
~n!512e~ ip/n!~2n11!, n50,1,...,n21, ~25!

where the eigenvalues areNd-fold degenerated,Nd being the number of lattice sites. Due to lattic
translation symmetry, we should note that the elementspnn8

(n) andqnn8
(n) do not carry any lattice site

index.
This is a general approach, and it can be applied to any self-interacting fermionic mode

important point here is that the relations~21!–~25! are valid for any self-interacting fermioni
model with space translation symmetry.

III. APPLICATION TO HATSUGAI–KOHMOTO MODEL

The calculation of an exactly soluble model is a nice way to test a new approach. Hatsug
Kohmoto10 proposed a toy model~HK model! that shares the atomic and band limits of t
Hubbard model.11 Using the Green’s function and path integral approaches, Nogueira and A12

established the equivalence of this model~with unrestricted hopping! and the Hubbard mode
~with infinite-range hopping!.

In this section we derive the grand canonical partition function of the HK model using
results presented in Sec. II. The Hamiltonian of the HK model in momentum space is12

H5(
kW

(
s5↑,↓

«~kW !ns~kW !1U(
kW

n↑~kW !n↓~kW ![(
kW

H~kW !, ~26!

wherens(kW )[as
†(kW )as(kW ) andas

†(kW )@as(kW )# is the creation~destruction! operator of an electron
with momentumkW and spins. The function«(kW )522t( i 51

3 coski , kW5(k1 ,k2 ,k3), corresponds
to the nearest hopping of the electrons in the dual-space lattice.U is the strength of the repulsio
between electrons with the same momentumkW but opposite spin conponents.

From Eqs.~1! and ~26!, the grand canonical partition function of the HK model is

Z~b;m!5Tr F)
kW

e2bK ~kW !G5)
kW

@TrkW e2bK ~kW !#. ~27!

We have

K ~kW !5 (
s5↑,↓

D~kW !ns~kW !1Un↑~kW !n↓~kW !, ~28!

where we defineD(kW )[«(kW )2m, andm is the chemical potential. In Eq.~27!, the symbol TrkW
stands for the trace for a fixed vectorkW , whereas Tr represents the trace for allkW ’s.

The high-temperature expansion for the grand canonical partition functionZ(b;m) is
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TrkW @e2bK ~kW !#5 (
n50

`
~21!n

n!
bn TrkW @Kn~kW !#. ~29!

Since all the operators on the rhs of Eq.~28! commute, we can apply the Newton’s multinomi
expression to write TrkW @Kn(kW )# as

TrkW @Kn~kW !#5 ( 8
n1 ,n2 ,n350

n
n!

n1!n2!n3!
Dn11n2~kW !Un3 TrkW@n↑

n11n3~kW !n↓
n21n3~kW !#. ~30!

The symbol(8 means that the summation indices satisfy the conditionn11n21n35n.
Let l 1 , l 2 , andl 3 be the integers that determine the lattice vectorkW . The mapping~13! takes

the indexkW into the indexL[ l 11( l 221)N1( l 321)N2, whereN is the number of points in the
momentum lattice in each direction. In the sum on the rhs of Eq.~30!, we calculate the trace fo
a fixedkW , which means that in Eq.~6! we take a single point in the momentum lattice (N51).
Then,

TrkW @n↑
n11n3~kW !n↓

n21n3~kW !#5In1 ,n3

↑↑ 3In2 ,n3

↓↓ , ~31!

where

In1 ,n3

↑↑ [E )
I 51

n

dh I~L !dh̄ I~L ! e( I ,J51
n h̄ I ~L !AIJ

↑↑hJ~L !

3h̄0~L !h0~L !¯h̄n121~L !hn121~L !h̄n11n2
~L !hn11n2

~L !¯h̄n21~L !hn21~L !,

~32!

and

In2 ,n3

↓↓ [E )
J5n11

2n

dhJ~L !dh̄J~L ! e( I ,J5n11
2n h̄ I ~L !AIJ

↓↓hJ~L !

3h̄n1n1
~L !hn1n1

~L !¯h̄n1n11n221~L !hn1n11n221~L !

3h̄n1n11n2
~L !hn1n11n2

~L !¯h̄2n21~L !h2n21~L !. ~33!

The matricesAss, s5↑,↓, are given by Eq.~11! with N51. According to Eqs.~15! and~16!, the
presence ofh̄ ’s ~andh’s! in the integrand on the rhs of Eqs.~32! and~33! allows one to evaluate
the integrals as the determinants of matrices obtained after deletion of lines~and columns! of the
matricesAss, s5↑,↓. For this particular model, it turns out easier to apply Eq.~16! directly, rather
than using the similarity transformation~17!, since the lattice is unidimensional. We should me
tion that for N51, we recover the case of the anharmonic fermionic oscillator, which has
considered in a previous work.5 Now we discuss the values ofIn1 ,n3

↑↑ @Eq. ~32!#, in view of the

possible values of the indices (n1 ,n2 ,n3).
~i! n15n, n250, andn350.
In this case the firstn lines and the firstn columns of matrixA↑↑ are deleted; hence,

In,0
↑↑ 51. ~34!

~ii ! n150, n25n, andn350.
In this case no lines or columns are deleted inA↑↑; so,

I0,0
↑↑5det~A↑↑!52. ~35!
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~iii ! n150, n250, andn35n.
This case is equal to case i and, therefore,

I0,n
↑↑ 51. ~36!

~iv! n1Þ0, n2Þ0, andn3Þ0.
In this case, the firstn1 lines and columns are deleted, as well as the lastn3 lines and columns

of matrix A↑↑. The triangular matrix thus obtained has its determinant equal to 1, for any val
n. Then,

In1 ,n3

↑↑ 51. ~37!

Equivalent results are valid forIn2 ,n3

↓↓ .

From the results~34!–~37! and the equivalent results forIn2 ,n3

↓↓ , we have

TrkW @n↑
n11n3~kW !n↓

n21n3~kW !#5~11dn11n3,0!~11dn21n3,0!, ~38!

which, substituted in Eq.~30!, gives

TrkW @Kn~kW !#5@2D~kW !1U#n12Dn~kW !. ~39!

Returning to Eqs.~27! and ~29!, we finally get

Z~b;m!5)
kW

@11e2b„2D~kW !1U…12e2bD~kW !#, ~40!

which gives the same free energy density found in Ref. 12.

IV. CONCLUSIONS

Calculations involving fermionic fields do demand some extra care, in comparison t
manipulation of bosonic fields. For this reason, fermionic models are usually bosonized
strategy designed to avoid the ‘‘annoying’’ fermionic features. However, moments of Grass
nian multivariable integrals can be easily calculated, as shown in Eqs.~15! and~16!. In this paper
we have presented a new approach, based on the explicit use of Grassmann algebra prop
the problem of calculating the coefficients of the high temperature expansion of the grand c
cal partition function for anyd-dimensional self-interacting fermionic model (d51,2,3,...). We
have explored the results~15! and ~16! and the possibility of performing the similarity transfo
mation~17! for a system with arbitrary dimensiond and arbitrary number of lattice pointsNd. It
is important to point out that the matricesAss(s5↑,↓) are model independent; they are sole
related to kinetical aspects of the approach. To simplify the notation, we considered th
number of points in each direction of the lattice is the same, but the results derived are stil
if this is not true. The fact that our results are analytical allows us to obtain the thermodyna
limit for any self-interacting fermionic model.

As a simple example of application of the method~that does not explore all of its feature
though!, we have considered the Hatsugai–Kohmoto model, which is diagonal in mome
space and had been solved by other approaches. We have derived its grand canonical
function, and obtained the same free energy density found in the literature.12

The most important features of this method appear when the Hamiltonian has noncomm
terms and, consequently, Newton’s multinomial expansion does not apply. Equations~15! and
~16! and the similarity transformation~17! then become the keystone of our analytical results. T
is the case of the Hubbard model;11 the grand canonical partition function for the unidimension
version of this model is known in integral form.13 A closed expression for this function wa
obtained by Takahashi,13 within certain limits only. By the application of the approach we ha
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presented here, we are currently calculating the coefficients of that partition function, up to
b5 and for any value of the parameters of the model, as well for any value of the che
potential. These calculations will soon be submitted for publication.
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APPENDIX: CALCULATION OF EIGENVALUES AND EIGENVECTORS OF MATRIX A ss

This appendix is devoted to calculating the eigenvalues and eigenvectors of the matrixAss,
defined in Eq.~11!, as well as determining the matricesP and P21 that diagonalize it@see Eq.
~17!#.

The characteristic equation forAss is

detS ~12l!1Nd3Nd 21Nd3Nd ONd3Nd ¯ ONd3Nd ONd3Nd

ONd3Nd ~12l!1Nd3Nd 21Nd3Nd ¯ ONd3Nd ONd3Nd

A A A A A

ONd3Nd ONd3Nd ONd3Nd ¯ ~12l!1Nd3Nd 21Nd3Nd

1Nd3Nd ONd3Nd ONd3Nd ¯ ONd3Nd ~12l!1Nd3Nd

D 50.

~A1!

Observe that this matrix~of total dimensionnNd3nNd) consists of an3n block matrix, each
block having dimensionNd3Nd. Moreover, these blocks are either null matricesONd3Nd or
proportional to the identity matrix1Nd3Nd.

We will demonstrate a useful property of the determinant of a block matrix in which all blo
are diagonal, such as the previous matrix. Take a block-matrixM composed of blocksB@ i , j #,
namely,

M5S B@1,1# B@1,2#
¯ B@1,n#

B@2,1# B@2,2#
¯ B@2,n#

A A � A

B@n,1# B@n,2#
¯ B@n,n#

D , ~A2!

where each blockB@ i , j # is diagonal:

~B@ i , j #!ab5dabba
@ i , j # , ~A3!

wherea,b51,2,...,Nd. ~No summation over repeated indices is implied.! We define a ‘‘determi-
nant like’’ matrix functionF upon the blocksB@ i , j # as

F[ (
u1 ,u2 ,...,un51

n

«u1 ,u2 ,...,un
B@1,u1#B@2,u2#

¯B@n,un#, ~A4!

where«u1 ,u2 ,...,un
is the Levi-Civita symbol inn-dimension. Obviously,F and the blocksB@ i , j #

have all the same dimensions,Nd3Nd. Using Eq.~A3!, we have

Fab5da,b (
u1 ,u2 ,...,un51

n

«u1 ,u2 ,...,un
~ba

@1,u1#ba
@2,u2#

¯ba
@n21,un21#ba

@n,un#
!. ~A5!

From Eq.~A5! and the definition of the determinant, we obtain
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detF5detG1 detG2¯detGn , ~A6!

where we have definedn matricesGp of dimensionNd3Nd as

~Gp!uv[bp
@u,v# , ~A7!

so that

detGp5 (
v1 ,v2 ,...,vN51

N

«v1 ,v2 ,...,vn
~bp

@1,v1#bp
@2,v2#

¯bp
@n21,vn21#bp

@n,vn#
!. ~A8!

Thus, the evaluation of detF is equivalent to the evaluation of the determinant of a block ma
G, defined as

G[S G1 ONd3Nd ¯ ONd3Nd

ONd3Nd G2 ¯ ONd3Nd

A A � A

ONd3Nd ONd3Nd ¯ Gn

D . ~A9!

However,G andM only differ by an even number of permutations of lines and columns! M
specifically,M can be recovered fromG if we reorder the lines of the latter according to th
pattern

~1,2,...,nNd!→~1,Nd11, 2Nd11,...,~n21!Nd11, 2,Nd12,2Nd12,...,~n21!Nd12,...,

Nd21,2Nd21,3Nd22,...,nNd21,Nd,2Nd,3Nd,...,nNd!, ~A10!

i.e., the 1st line is left untouched, the 2nd line is replaced by the (Nd11)th line, etc., and then
have thecolumnsof the resulting matrix reordered in the same fashion.~The same result is
obtained if we reorder columns before lines.! As the total number of permutations is even, we ha

detM5detG. ~A11!

Combining~A11!, ~A6!, and~A4!, we finally obtain

detM5detF5detS (
u1 ,u2 ,...,un51

n

«u1u2 ,...,un
B@1,u1#B@2,u2#

¯B@n,un#D . ~A12!

In conclusion, if the matrixM is composed of diagonal blocksB@ i , j #, the determinant ofM is
equal to the determinant of the matrixF, defined as a ‘‘determinantlike’’ function upon the bloc
B@ i , j #.

Turning our attention back to Eq.~A1!, we expand the determinant in terms of ‘‘cofactors
based on the last ‘‘line’’ of blocks:

det„~21!11n1Nd3Nd~21Nd3Nd!n211~21!n1n~12l!1Nd3Nd~12l!n211Nd3Nd
n21

…50,
~A13!

which yields the characteristic equation

„11~12l!n
…

Nd
50. ~A14!

There aren distinct eigenvalueslk , each one with multiplicityNd, given by

lk512ei ~p/n!~2k11!, ~A15!
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where k50,1,2,...,n21. Observe that iflk is an eigenvalue, so is its complex conjugate:lk*
5ln2k21 . Let us denote byVk an eigenvector ofAss associated tolk . It has the structure

Vk5S v1

v2

A
vn

D , ~A16!

where eachvi , i 51,2,...,n, is a 13Nd matrix. We obtain

vi52~12lk!
ij, where i 51,...,n21 ~A17!

and j5vn is an arbitrary column vector of dimensionNd. There areNd possible linearly inde-
pendent choices forj, corresponding toNd distinct eigenvectors associated to the same eigenv
lk . We choose them to be

jk
~1!5S 21

0
A
0
0

D , jk
~2!5S 0

21
A
0
0

D , ..., jk
~Nd21!5S 0

0
A

21
0

D , jk
~Nd!5S 0

0
A
0

21

D , ~A18!

so that eachjk
( l ) corresponds to an eigenvectorVk

( l ) , wherel 51,2,...,Nd, associated to the eigen
valuelk .

The matrixP that diagonalizesAss can be obtained by concatenating all eigenvectorsVk
( l ) for

all eigenvalueslk , k50,1,...,n21, up to a normalizing factorR:

P5S p00
~n!1Nd3Nd ¯ p0,n21

~n! 1Nd3Nd

A A

pn21,0
~n! 1Nd3Nd ¯ pn21,n21

~n! 1Nd3Nd

D , ~A19!

where

pnn8
~n!

5R e~ ip/n!~2n811!~n11!, ~A20!

with n,n850,1,...,n21. The matrix

P215S q00
~n!1Nd3Nd ¯ q0,n21

~n! 1Nd3Nd

A A

qn21,0
~n! 1Nd3Nd ¯ qn21,n21

~n! 1Nd3Nd

D , ~A21!

where

qn8n
~n!

5R8e2~ ip/n!~2n811!~n11! ~A22!

is the inverse ofP, upon a suitable choice ofR andR8; i.e.,

R5R851/An, ~A23!

so that they satisfy the relation

(
n̄ 50

n21

pn1n̄
~n! qn̄n2

~n! 5dn1n2
. ~A24!
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Hence,

pnn8
~n!

5
1

An
e~ ip/n!~2n811!~n11!, ~A25!

qn8n
~n!

5
1

An
e2~ ip/n!~2n811!~n11!. ~A26!
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Uniqueness of Gibbs states in one-dimensional
antiferromagnetic model with long-range interaction
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Uniqueness of Gibbs states in the one-dimensional antiferromagnetic model with
very long-range interaction is established. ©1999 American Institute of Physics.
@S0022-2488~99!03309-5#

I. INTRODUCTION

We study a model on the latticeZ1 with the Hamiltonian

H~w~x!!5 (
x,yPZ1;x.y

U~x2y!w~x!w~y!2m (
xPZ1

w~x!, ~1!

where the spin variablew(x) takes the values 0 and 1,m is a chemical potential. The antiferro
magnetic potentialU(x).0 satisfies the following conditions:

~1! U(x1y)1U(x2y).2U(x);x,yPZ1,x.y.
~2! The functionU(x) can be extended to a twice continuously differentiable function s

that U(x);A(x)2g, U8;2Agx2g21 andU9(x);Ag(g11)x2g22 at x→`; whereg.1, and
A is a strong positive constant.

The first convexity condition plays a significant role for the structure of the set of all gro
states of the model~1!. The second condition determines the character of the potential’s dec
at infinity and is important in further calculations.

The hypothesis on the uniqueness of the Gibbs states in the model~1! was stated by Sinai in
1983 ~see Ref. 1, Problem 1!.

It is well known that the conditionSxPZ1,x.0xU(x),` automatically implies the uniquenes
of the Gibbs states.2–4 We investigate the phase transition problem in the model~1! in the alter-
native case, whenU(x);Ax2g, whereg511a, 0,a,1.

The ferromagnetic version of this model@when the potentialU(x) is negative# was considered
by Dyson in his well-known papers.5,6 He proved the existence of two extreme limit Gibbs sta
P1 andP2 corresponding to the ground statesw(x)511 andw(x)521 at low temperatures.

A series of papers has been devoted to the investigation of the antiferromagnetic
~1!.1,7–13

The validity of Sinai’s hypothesis for rational values of the density~for almost each value o
the external field! at low temperatures was proved in Ref. 13.

The main purpose of this paper is to extend the result of Ref. 13 to all values of the ex
field and to all values of the temperature.

Theorem 1: The model (1) has a unique limit Gibbs state at all values of the tempera
b21.

Let us introduce necessary definitions. The set of all periodic configurations we deno
Fper. For everywPFper, we defineq5Sy5x11

x1p w(x), wherep is the period ofw. It is obvious that
q does not depend onx. Therefore, the density of each periodic configuration isk5q/p. It is more
convenient to work with the reciprocal of the density,h(w(x))5p/q, which represents the aver
age distance between neighboring points at whichw(x)51. For every configurationwPFper the
mean energyh(w) is defined as follows:
49560022-2488/99/40(10)/4956/19/$15.00 © 1999 American Institute of Physics
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h~w~x!!5
1

p (
y5x11

x1p

w~x!(
z.0

U~z!w~y1z!.

The last expression does not depend onx.
The following definition is useful for describing the zero temperature phase diagram o

model ~1!.
We fix a positive rational numberp/q.
A configurationw0(x)PFper with h(w0(x))5p/q is called a special ground state1 if

h~w~x!!5 inf
wPFper,h~w!5p/q

h~w!.

Hubbard’s criterion (Refs. 1 and 7):Let wPFper andr i(x;w) denotes the distance between
particle placed atxPZ1 and i th particle on the right. If for eachx and i

@ ih#<r i~x;w!<@ ih#11,

~the square brackets denote the integer part of the enclosed number! then w is a special ground
state.

The existence of configurations satisfying Hubbard’s criterion~the special ground states! is
shown in Ref. 1. The remarkable elegant formula for the special ground states was offe
Aubry. Here we give the construction of the special ground states for each fixed rational va
the densityk.1

Every rational numberp/q has a unique decomposition into a finite continued fraction:
p/q5@n0 ,n1 ,...,ns#, this means that

n01
1

n11
1

n21...1
1

ns

.

The ground state for a configuration withh5@n0 ,n1 ,...,ns# will be constructed by recursion
~1! h5n0>1, n0 is an integer. The periodic configuration with equally distantx at which

w(x)51 satisfies Hubbard’s criterion i.e., is a special ground state. In this caser i(x;w)5 in0 , i
.0.

~2! h5n011/n1 , wheren0 andn1 are integers,n0>1, n1.1. Then the (n0n111) periodic
configuration

also satisfies Hubbard’s criterion and is a special ground state.
~3! h5@n0 ,n1 ,...,ns#, where n0 ,n1 ,...,ns are integers,n0 ,n1 ,...,ns>1. For s50 and s

51 the required configurations are already constructed. Suppose we have already constr
ground state withs5m and k5@n0 ,n1 ,...,nm#. Then the following configuration withs5m
11 andk5@n0 ,n1 ,...,nm11# is constructed as

Here, w(n0 ,...,n j), j 5m21, m,m11, are the blocks from which the ground states forh
5@n0 ,...,nj # are obtained by periodic continuations.

The constructed configuration satisfies Hubbard’s criterion and therefore is a special g
state forh5@n0 ,n1 ,...,nm ,nm11#.1
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The following explicit expression for the mean energy of the special ground state fo
from Hubbard’s criterion:1

hk5k(
i 51

`

U~mi !p i1U~mi11!~12p i !, ~2!

wheremi5@ ih#, p i511mi2 ih.
This formula shows that the function of mean energy as a function of the densityk is

continuous on the set of all rationals and can be extended to a continuous function defin
whole segment@0, 1#.

Theorem 2: (Refs. 9 and 1.)~1! The function hk is convex.
~2! In each rational point the function hk has a left-hand derivativemk

2 and a right-hand
derivativemk

1 , with mk
1.mk

2 .
~3! The Lebesgue measure of the complement of the setøk(mk

2 ,mk
1) in the real lineR is

zero.
The following theorem gives the full description of the set of all special ground states o

model ~1! at rational densities.
Theorem 3: (Ref. 12.) Suppose that the value of the external fieldm of the model (1) belongs

to the interval(mk
2 ,mk

1) for some numberk5q/p. Then the special ground state of the model~1!
is unique up to translations.

Following Theorem 4 generalizes the main result of Ref. 13 for all values of the temper
and is a special case~rational densities! of Theorem 1.

Theorem 4: Suppose that the value of the external fieldm of the model~1! belongs to the
interval (mk

2 ,mk
1) for some numberk5q/p.

Then the model~1! has a unique limit Gibbs state at all values of the temperatureb21.
Suppose that the value of the external fieldm of the model ~1! belongs to the interva

(mk
2 ,mk

1) for some numberk5q/p.
Let us consider an arbitrary configurationw(x). We say thatw(@a,b#); a,bPZ1 is a preregu-

lar phase, if there exists a special ground statewk , such that the restriction of this configuration
@a,b# coincides withw(@a,b#). We say thatw(@c,d#); c,dPZ1 is a regular phase, if there exis
a preregular phasew(@a,b#); a,bPZ1, such thatc2a.d0p andb2d.d0p. Thus, right and left
d0p extensions of a regular phase are ground states.

Let us consider a setA5ø i@ai ,bi #, wherew(@ai ,bi #) is a regular phase and suppPB is the
complement ofA in Z1. The connected components of suppPB defined in such a way are calle
supports of precontours and are denoted by suppPK: suppPK5ø i PInd suppPKi .

For each fixed rational densityk the constantd0 satisfies some technical conditions.13 In this
work we do not need the explicit value ofd0 .

Definition 1 (Ref. 13):The pairPK5(suppPK,w8(suppPK)) is called a precontour. The se
of all precontours is called a preboundaryPB of the configurationw8(x). Two precontoursPK1

and PK2 are said to be connected if dist(suppPK1 ,suppPK2),Nb . The set of precontours
(PKi ; i PInd) is called connected if for any two precontoursPKc andPKd ;c,dPInd there exists
a collection (PKj 1

5PKc ,...,PKj i
,...,PKj n21

,PKj n
5PKd); j iPInd, i 51,...,n; such that any two

precontoursPKj i
andPKj i 11

, i 51,...,n21 are connected. Letø i 51
n PKi be some maximal con

nected component of the preboundaryPB. Suppose that suppPKi5@ai ,bi # and bi,ai 11 ; i
5,...,n21.

The pairK5(suppK,w8(suppPK)), where suppK5@a1 ,bn# is called a contour. The set o
all contours is called a boundaryB of the configurationw8(x).

In this work we do not need the exact value of the constantNb .12 From Ref. 12 it becomes
clear that limp→` Nb5`. Thus, for irrational values of the densityk Nb is not defined, but as will
be seen below, we do not need to defineNb for irrational densities.

Note that suppK5(ø i 51
n suppPKi)ø(@a1 ,bn#2(ø i 51

n suppPKi))5supp1 Køsupp2 K.
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The sets supp1 K and supp2K will be, respectively, called the essential and regular parts of
support suppK.

Let the boundary conditionsw̄(x)5@w(x),xP(2`,2V21#ø@V11,̀ )# be fixed. The set of
all configurationsw(x); xP@2V,V# we denote viaF(V).

It is obvious that for each contourK, such that suppKP@2V1(d011)p,V2(d011)p#,
there exists a configurationcK(@2V,V#) such that the boundary of the configuratio
cK(@2V,V#) includes the contourK only:

B~cK~@2V,V# !!5K.

Let suppK5@a,b#. It is obvious that the restrictions of the configurationcK(@2V,V#) to the
segments@2V,a21# and @b11,V# coincide with two ground stateswk

1(x) andwk
2(x).

A contourK is called an interface contour, ifwk
1(x)Þwk

2(x).
Note that,wk

1(x) can be obtained by some shifting of the configurationwk
2(x).

An interface contour will be denoted asIK.
Let K be a usual contour~not an interface contour! K,suppK,@2V,V# and cK~x!

5c([ 2V,V]) if xP@2V,V#, and w̄(x) if xP(2`,2V21#ø@V11,̀ ); IK ,suppIK ,
@2V,V# be an interface contour andc IK(x)5c(@2V,V#) if xP@2V,V#, and w̄(x) if xP
(2`,V21#ø@V11,̀ ); and w̄k

1(x)5wk
1(x), if xP@2V,V#, and w̄(x) if xP(2`,2V

21#ø@V11,̀ ).
Below the configurationw̄k

1(x) defined for usual contours will be denoted byw̄k(x).
The weights of the usual contourK and interface contourIK will be calculated by the follow-

ing formulas:

g~K !5H~cK~x!!2H~ w̄k~x!!, ~3!

g~ IK !5H~c IK~x!!2H~ w̄k
1~x!!. ~4!

The proof of Theorem 4 is based on the following idea. Let the boundary conditionsw̄(x)
5@w(x),xP(2`,2V21#ø@V11,̀ )# be fixed. The set of all configurationsw(x); xP
@2V,V# we denote viaF(V). Suppose a configurationwmin(x)PF(V) be a configuration with the
minimal energy:

H~wmin~x!!5minw~x!PF~V!H~w~x!! .

Then the configurationwmin(x) almost coincides with a special ground state of the model~1!
~Lemma 1 in Sec. II!. This fact allows us, based on special ground states, to define a commo~for
all boundary conditions! contour model and after that by using well-known trick14 ~this trick,
which was introduced in Ref. 14 for some special extensions of Pirogov–Sinai theory, is di
applicable to one-dimensional models with long-range interaction! to come to noninteracting
clusters from interacting contours. Consider an arbitrary segmentI, a sufficiently large volumeV,
two arbitrary boundary conditionsw1(x) and w2(x). It turns out that the dependence of th
expressionP1(w8(I ))/P2(w8(I )) on the boundary conditionsw1(x) and w2(x) can be estimated
through the sum of statistical weights of super clusters connecting the segmentI with the boundary
and this sum is negligible. Thus, two arbitrary extreme Gibbs states are relatively continuou
hence coincide. In Ref. 13 we developed this method@the estimation of dependence of the e
pressionP1(w8(I ))/P2(w8(I )) on the boundary conditions through the sum of statistical weig
of super clusters connecting the segmentI with the boundary# at low temperatures. It turns out tha
after some modification the method works at all temperatures.

The contents of this paper are as follows. In Sec. II we prove Theorem 4, in Sec. I
complete the proof of Theorem 1.

II. UNIQUENESS OF GIBBS STATES: THE DENSITY k IS p /q

Let us now introduce some necessary facts.
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Suppose that the value of the external fieldm of the model ~1! belongs to the interva
(mk

2 ,mk
1) for some numberk5q/p.

Let the boundary conditionsw1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )# be fixed and

H~w~x!uw1~x!!52m (
xPZ1,xP@2V,V#

w~x!1 (
x,yPZ1,x.y;x,yP@2V,V#

U~x2y!w~x!w~y!

1 (
x,yPZ1,x.y;xP@2V,V#;y¹@2V,V#

U~x2y!w~x!w1~y!

1 (
x,yPZ1,x.y;x¹@2V,V#,yP@2V,V#

U~x2y!w1~x!w~y!. ~5!

Lemma 1:Let wmin(x)PF(V) be a configuration with the minimal energy:

H~wmin~x!uw1~x!!5minw~x!PF~V!H~w~x!uw1~x!! .

Then the configurationwmin(x) has the following structure.
The restriction of the configurationwmin(x) on the set@2V1Nb ,V2Nb# contains at most

p21 contours, moreover, all of them are interface contours IKi , , i 51,...,m, where m,p21 and
usuppIK i u,3d0p1Nb .

Lemma 1 was proved in Ref. 13@see Lemma 12~Ref. 13! and Sec. 5 of Ref. 13#.
Let H(w(x)uw1(x),wmin(x)) denote the relative energy of a configurationw(x) @with respect to

wmin(x)]:

H~w~x!uw1~x!,wmin~x!!5H~w~x!uw1~x!!2H~wmin~x!uw1~x!!.

Consider the Gibbs distributionP1 on F(V) corresponding to the boundary condition
w1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )#:

P1~w8~x!!5
exp~2b~H~w8~x!uw1~x!,wmin~x!!!!

Sw~x!PF~V! exp~2b~H~w~x!uw1~x!,wmin~x!!!!
. ~6!

Let w(x)PF(V) be an arbitrary configuration, the boundary of thew(x) includes a finite
number of usual contoursKi ; i 51,...,n, and a finite number of interface contoursIK i ; i 5n
11,...,n1m. Let Ki5Ki ; i 51,...,n; Ki5IK i ; i 5n11,...,n1m. The set of all contours of the
boundary conditionsw1(x) will be denoted byK0 .

The statistical weights of contours and interface contours are

w~Ki !5exp~2bg~Ki !!. ~7!

The following equation is a direct consequence of the formulas~3!, ~4!, and~7!

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
i 51

n1m

w~Ki !exp~2bG~K0 ,K1 ,...,Kn1m!, ~8!

where the multiplierG(K0 ,K1 ,...,Kn1m) corresponds to the interaction between contours~usual
and interface!, and with the boundary conditionsw1(x)

G~K0 ,K1 ,...,Kn1m!5 (
i , j 50;i , j

n1m

G~Ki ,K j !5 (
i , j ; i , j

(
~x,y!PInt~Ki ,K j !

f ~x,y,w! ~9!

and the multiplierQ15Q1(V,w(x),w1(x)) is uniformly bounded from below and above:
,const1,Q1,const2. The factorQ1 appears due to the facts that the configurationwmin(x) not
necessarily coincides with a special ground state and is bounded due to Lemma 1.
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Now we write down the value of the interaction between the contoursKi andK j , the value of
the interaction between the interface contoursIK i andIK j and the value of the interaction betwee
contourKi and interface contourIK j .

Suppose suppKl5@al ,bl #; suppIK l5@al ,bl #.
Let

suppIK i
15@bi ,ai 11# and suppIK i

25@bi 21 ,ai #,

whereb05c, if there existsKPB(w8(x)), such that suppK5@2`,c# andb052` otherwise;
am115d, if there existsKPB(w8(x)), such that suppK5@d,`# andam115` otherwise.

~1! The contourKiPB(w8(x)) interacts with the contourK jPB(w8(x)) through all pairs
(x,y), such that (x,y)PInt(Ki ,K j ) and f 8(x,y,w)Þ0 where

Int~Ki ,K j !5@~x,y!:x,yPZ1;xPsuppKi ,yPsuppK j #.

The value of the interaction

f 8~x,y,w!5U~x2y!~w8~x!w8~y!2cKi
~x!cKi

~y!1w̄k
i ~x!w̄k

i ~y!

2cK j
~x!cK j

~y!1w̄k
j ~x!w̄k

j ~y!!.

~2! The interface contourIK iPB(w8(x)) interacts with the interface contourIK j

PB(w8(x)) ~let aj.bi) through all pairs (x,y), such that (x,y)PInt(IK i ,IK j ) and f 9(x,y)Þ0,
where

Int~ IK i ,IK j !5Int1~ IK i ,IK j !1Int2~ IK i ,IK j !1Int3~ IK i ,IK j !1Int4~ IK i ,IK j !,

Int1~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i and yPsuppIK j #,

Int2~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i and yPsuppIK j
1#,

Int3~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i
2 and yPsuppIK j #,

Int4~ IK i ,IK j !5@~x,y!:x,yPZ1;xPsuppIK i
2 and yPsuppIK j

1#.

The value of the interaction

f 9~x,y,w!5 f 19~x,y!5U~x2y!~w8~x!w8~y!2c IK i
~x!c IK i

~y!

1w̄k
i ~x!w̄k

i ~y!2c IK j
~x!c IK j

~y!1w̄k
j ~x!w̄k

j ~y!!

if ( x,y)PInt2(IK i ,IK j ),

f 9~x,y!5 f 29~x,y!5U~x2y!~w8~x!w8~y!2c IK i
~x!c IK i

~y!1w̄k
i ~x!w̄k

i ~y!!

if ( x,y)PInt2(IK i ,IK j ),

f 9~x,y!5 f 39~x,y!5U~x2y!~w8~x!w8~y!2c IK j
~x!c IK j

~y!!1w̄k
j ~x!w̄k

j ~y!)

if ( x,y)PInt3(IK i ,IK j ),

f 9~x,y!5 f 49~x,y!5U~x2y!~w8~x!w8~y!2w̄k
1,i~x!w̄k

1,i~y!2w̄k
2,j~x!w̄k

2,j~y!!

if ( x,y)PInt4(IK i ,IK j ).
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~3! The contourKiPB(w8(x)) interacts with the interface contourIK jPB(w8(x)) through all
pairs (x,y), such that (x,y)PInt(Ki ,IK j ) and f-(x,y)Þ0, where

Int~Ki ,IK j !5Int1~Ki ,IK j !1Int2~Ki ,IK j !,

Int1~Ki ,IK j !5@~x,y!:x,yPZ1;xPsuppKi and yPsuppIK j #,

Int2~Ki ,IK j !5@~x,y!:x,yPZ1;xPsuppKi and yPsuppIK j
1#

if aj.bi , and

Int2~Ki ,IK j !5@~x,y!:x,yPZ1;xPsuppKi and yPsuppIK j
2#

if ai.bj .
The value of the interaction

f-~x,y!5 f 1-~x,y!5U~x2y!~w8~x!w8~y!2cKi
~x!cKi

~y!

1w̄k
i ~x!w̄k

i ~y!2c IK j
~x!c IK j

~y!!1w̄k
j ~x!w̄k

j ~y!)

if ( x,y)PInt1(Ki ,IK j ),

f-~x,y!5 f 2-~x,y!5U~x2y!~w8~x!w8~y!2cKi
~x!cKi

~y!1w̄k
i ~x!w̄k

i ~y!!

if ( x,y)PInt2(Ki ,IK j ).
For simplicity Ki , i 51,...,n1m will be denoted byKi , i PInd, where the statistical weight

w(Ki) are defined by the formulas~7!, ~3!, and~4!. Thus, the formula~8! has the form

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
i PInd

w~Ki !exp~2bG~K0 ,K1 ,...,Kn1m!!. ~10!

The set of all pairs~x,y! in the double sum~9! will be denoted byY5Y(K0 ,K1 ,...,Kn1m).
Write ~10! as follows:

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
i PInd

w~Ki ! )
~x,y!PY

~11exp~2b f ~x,y,w!21!. ~11!

From ~11! we get

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 )
G8,G

)
i PInd

w~Ki ! )
~x,y!PY8; f ~x,y,w!Þ0

g~x,y!, ~12!

where the summation is taken over all subsetsY8 ~including the empty set! of the setY, and
g(x,y,w)5exp(2bf(x,y,w))21.

Consider an arbitrary term of the sum~12!, which corresponds to the subsetY8,Y. Let the
bond (x,y)PY8. Below, contours and interface contours will be called contours. Consider th
K of all contours such that for each contourK,K , the set suppKù(xøy) contains one point. We
call any two contours fromK connected. The set of contoursK is calledY8 connected if for any
two contoursKa and Kb there exists a collection (K15Ka ,K2 ,..., Kn5Kb) such that any two
contoursKi andKi 11 , i 51,...,n21, are connected by some bond (x,y)PY8.

The pairD5@(Ki ,i 51,...,s);Y8#, whereY8 is some set of bonds, is called a cluster provid
there exists a configurationw(x) such thatKiPB(w(x)); i 51,...,s; Y8,Y; and the set (Ki , i
51,...,s) is Y8 connected. The statistical weight of a clusterD is defined by the formula.
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w~D !5)
i 51

s

w~Ki ! )
~x,y!PY8

g~x,y,w!. ~13!

Two clustersD1 andD2 are called compatible provided any two contoursK1 andK2 belong-
ing to D1 and D2 , respectively, are compatible and not connected. A set of clusters is c
compatible provided any two clusters of it are compatible.

If D5@(Ki ,i 51,...,s);Y8#, then we say thatKiPD; i 51,...,s.
The following lemma is a direct consequence of the definitions.
Lemma 2: Let the boundary conditionsw1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )# be

fixed.
If @D1 ,...,Dm# is a compatible set of clusters andø i 51

m suppDi,@2V,V#, then there exists a
configurationw(x) which contains this set of clusters. For each configurationw(x) we have

exp~2bH~w~x!uw1~x!,wmin~x!!!5Q1 (
Y8,Y

) w~Di !,

where the clusters Di are completely determined by the set Y8. The partition function is

J~w1~x!!5Q( w~D1!¯w~Dm!,

where the summation is taken over all nonordered compatible collections of clusters an
factor Q5Q(V,w1(x)) is uniformly bounded:0,const,Q,const2.

Lemma 2 shows that we come to noninteracting clusters from interacting contours.
Let P1 andP2 be two Gibbs states of the model~1! corresponding to the boundary condition

w1(x) andw2(x), respectively.
The following lemma has a key role in the proof of Theorem 4.
Lemma 3: Suppose that the value of the external fieldm of the model (1) belongs to th

interval (mk
2 ,mk

1) for some numberk5q/p.
Then the measuresP1 and P2 are absolutely continuous with respect to each other.
Proof: Let I 5@a,b# be an arbitrary segment andw8(I ) be an arbitrary configuration.
In order to prove the lemma we show that there exist two positive constantss and S not

depending onI, w1(x), w2(x) andw8(I ), such that

s<P1~w8~ I !!/P2~w8~ I !!<S. ~14!

Let PV
1 and PV

2 be Gibbs measures corresponding to the boundary conditionsw1(x), and
w2(x), xPZ12I V , respectively, whereI V5@2V,V#.

Therefore,

lim
V→`

PV
1 5P1 and lim

V→`

PV
2 5P2,

where by convergence we mean weak convergence of probability measures.
In order to establish the inequality~14! it will be proved that for each fixed intervalI,

I ,@2M ,M # there exists a numberV0(M ), which depends onM only, such that

s<PV
1 ~w8~ I !!/PV

2 ~w8~ I !!<S ~15!

if V.V0 .
Consider
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PV
1 ~w8~ I !!5

(w~ I V!:w~ I !5w8~ I ! exp~2bH~w~ I V!uw1~x!,wmin~x!!!O~w~ I !,V,w1!

(w~ I V! exp~2bH~w~ I V!uw1~x!,wmin~x!!!O~w~ I !,V,w1!

5
J~ I V2I uw1~x!,w8~ I !,wmin~x!!O~w~ I !,V,w1!

(w9~ I !J~ I V2I uw1~x!,w9~ I !,wmin~x!!O~w~ I !,V,w1!

whereJ(I V2I uw1(x),w8(I ),wmin(x)) denotes the partition function corresponding to the bou
ary conditionsw1(x), xPZ12I V , w8(I ), xPI and

O~w~ I !,V,w1!5exp(2b (
x,yPZ1;xPZ12I V ,yPI

U~x2y!~w1~x!w~y!2w1~x!wmin~x!!).

We can expressPV
2 (w8(I )) in just the same way.

In order to prove the inequality~15! it is enough to establish inequality~16! and inequality
~17!:

1/2,O~w~ I !,V,w i~x!!,2, i 51,2 ~16!

@where the inequalities in~16! are held uniformly with respect tow(I ) and w i : for eachI there
existsV, not depending onw(I ) andw i ] and

1/S<
J~ I V2I uw1~x!,w9~ I !,wmin~x!!

J~ I V2I uw1~x!,w8~ I !,wmin~x!!Y J~ I V2I uw2~x!,w9~ I !,wmin~x!!

J~ I V2I uw2~x!,w8~ I !,wmin~x!!
<1/s ~17!

for arbitraryw9(I ).
Indeed, if the inequality~17! holds, then

J~ I V2I uw1~x!,w8~ I !,wmin~x!!

(w9~ I !J~ I V2I uw1~x!,w9~ I !,wmin~x!!Y J~ I V2I uw2~x!,w8~ I !,wmin~x!!

(w9~ I !J~ I V2I uw2~x!,w9~ I !,wmin~x!!

5AV
1 ~w8~ I !!/AV

2 ~w8~ I !!

51Y S (w9~ I !J~ I V2I uw1~x!,w9~ I !,wmin~x!!

J~ I V2I uw1~x!,w8~ I !,wmin~x!! Y (w9~ I !J~ I V2I uw2~x!,w9~ I !,wmin~x!!

J~ I V2I uw2~x!,w8~ I !,wmin~x!! D
51Y ~(w9~ I !J~ I V2I uw1~x!,w9~ I ,wmin~x!!!J~ I V2I uw2~x!,w8~ I !,wmin~x!!

~(w9~ I !J~ I V2I uw2~x!,w9~ I !,wmin~x!!!J~ I V2I uw1~x!,w8~ I !,wmin~x!!
.

Therefore,

1/~1/s!<AV
1 ~w8~ I !!/AV

2 ~w8~ I !!<1/~1/S!

since the quotient of( i 51
n ai /( i 51

n bi lies between min(ai /bi) and max(ai /bi).
Thus, if in addition, the inequality~16! holds, then

224s,PV
1 ~w8~ I !!:PV

2 ~w8~ I !!,24S.

Now we start to prove the inequalities~16! and ~17!.
It can be easily shown that~16! is a direct consequence of the conditionU(x);Ax2g, at x

→`; whereg.1, andA is a strong positive constant.
So, in order to complete the proof of Lemma 3 we must establish the following inequ

@which is just transformed inequality~17!#:
                                                                                                                



ent

two
rts of

n-

nd the

ill be

these

,

super
s

r

4965J. Math. Phys., Vol. 40, No. 10, October 1999 Uniqueness of Gibbs states in . . .

                    
1/S<
J~ I V2I uw1~x!,w9~ I !,wmin~x!!)J~ I V2I uw2~x!,w8~ I !,wmin~x!!

J~ I V2I uw2~x!,w9~ I !,wmin~x!!)J~ I V2I uw1~x!,w8~ I !,wmin~x!!
5

J1,9J2,8

J2,9J1,8
<1/s.

~18!

Consider

J1,9J2,85J~ I V2I uw1~x!,w9~ I !,wmin~x!!J~ I V2I uw2~x!,w8~ I !,wmin~x!!.

The following generalization of the definition of the compatibility allows us to repres
J1,9J2,8 as a single partition function.

A set of clusters is called super compatible provided any of its two parts coming from
partitions sums is compatible. In other words, in super compatibility an intersection of suppo
two clusters is allowed.

The following lemma is an analogue of Lemma 2.
Lemma 4: Let boundary conditionsw1(x)5@w1(x),xP(2`,2V21#ø@V11,̀ )# and

w2(x)5@w2(x),xP(2`,2V21#ø@V11,̀ )# be fixed.
If @D1 ,...,Dm# is a super compatible set of clusters andø i 51

m suppDi,@2V,V#, then there
exist two configurationsw3(x) and w4(x) which contain this set of clusters. For each two co
figurationsw3(x) and w4(x) we have

exp(2bH~w3~x!uw1~x!,wmin~x!!exp(2bH~w4~x!uw1~x!,wmin~x!!5Q1 (
G8,G,G9,G

) w~Di !,

where the clusters Di are completely determined by the sets G8 and G9. The super partition
function is

J1,9,2,85J1,9J2,85Q( w~D1!¯w~Dm!,

where the summation is taken over all nonordered super compatible collections of clusters a
factor Q5Q(V,w1(x),w2(x)) is uniformly bounded:0,const1,Q,const2.

Lemma 4 is a direct consequence of the definitions.
An arbitrary connected component of an arbitrary super compatible set of clusters w

called a super clusters. A super clusterSD5@(Ki ,i 51,...,r );G8# is said to be long if the inter-
section of the set (ø i 51

m suppKi))øG8 with both I and Z12I V5(2`,2V21#ø@V11,̀ ) is
nonempty. In other words, a long super cluster connects the boundary with the segmentI.

A set of super clusters is called compatible provided the set of all clusters belonging to
super clusters are super compatible.

It turns out that in our estimates long super clusters are negligible.
Lemma 5: For each fixed interval I, there exists a number V0(I ), which depends on I only

such that if V.V0(I )

1/2J1,8,2,9,J1,8,2,9,~n.l .!5( w~SD1!¯w~SDm!,3/2J1,8,2,9,

where the summation is taken over all nonlong, nonordered compatible collections of
clusters @SD1 ,...,SDm#, ø i 51

m supp(SDi),I N2I corresponding to the boundary condition
w1(x),w2(x), xPZ12I V ; w8(x) and w9(x), xPI .

Consider a collection of contoursK0 ,K1 ,...,Kn . The value of the interaction of the contou
K0 with the contoursK1 ,...,Kn we denote byG(K0uK1 ,...,Kn):

G~K0uK1 ,...,Kn!5 )
BPIG~0u1,...,n!

~11exp~2b f ~B!21!!, ~19!
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where IG(0u1,...,n) is the set of all interaction elements intersecting the support of the con
K0 .

Lemma 6:

G~K0uK1 ,...,Kn!5 )
BPIG~0u1,...,n!

u~11exp~2b f ~B!21!!

<const~dist~0u1,...,n!!2a~ usupp~K0!u!12a, ~20!

wheredist(0u1,...,n) is the distance between the support of K0 and the union of the supports o
contours K1 ,...,Kn .

In other words, the interaction ofK1 ,...,Kn on K0 tends to zero when the distance betwe
them increases, and value of the interaction increases with a rate less than the length of the
of K0 .

The technical Lemma 6 follows from the decreasing conditions of the potentialU(x). For the
rigorous proof see Ref. 13, Lemma 4.

The following lemma is an analogue of Lemma 5 for clusters~not super clusters!.
Lemma 7: For each fixed interval I, there exists a number V0(I ), which depends on I only

such that if V.V0(I )

1/2J1,8,J1,8,~n.l .!5( w~D1!...w~Dm!,3/2J1,8,

where the summation is taken over all nonlong, nonordered compatible collections of cl
@D1 ,...,Dm#, ø i 51

m suppDi,I N2I corresponding to the boundary conditionsw1(x), xPZ1

2I V ; w8(x), xPI .
Proof:

J1,85J1,8,~n.l .!1~J1,82J1,8,~n.l .!!5J1,8,~n.l .!1J1,8,~ l .!,

where the summation inJ1,8,(l .) is taken over all nonordered compatible collections of clust
@D1 ,...,Dm# containing at least one long cluster,ø i 51

m suppDi,I N2I corresponding to the
boundary conditionsw1(x), xPZ12I V ; w8(x), xPI .

By dividing both sides of the last equality byJ1,8, we get

15J1,8,~n.l .!/J1,81J1,8,~ l .!/J1,8. ~21!

Now we are going to show that the second term~which is not necessarily positive! is negli-
gible, that is the absolute value of it is less than 1/2~actually we can show that the absolute val
of the second term is less than any fixed positive number at sufficiently large values ofV).

The termJ1,8,(l .)/J1,8 can be interpreted as a ‘‘probability’’P ~Long! of the event that there
exists at least one long cluster.

We show that the absolute value of this ‘‘probability’’ is less than 1/2 by the follow
method. We estimate the density of long clusters: the probability that a given segment belo
the support of some long cluster. Since some statistical weights of clusters are positive an
negative, we estimate the absolute values of these ‘‘probabilities.’’ We show that for a
segment the ‘‘probability’’ that this segment belongs to the support of some long cluster
positive ‘‘probability’’ minus the ‘‘probability’’ that this segment belongs to the support of so
long cluster with negative ‘‘probability’’ is less than one. Since the density is less than one, b
law of large numbers a ‘‘typical’’ long cluster has not very long support, and therefore has
bonds. WhenV tends to infinity, the total length of bonds tends to infinity, and the impact of th
bonds tends to zero.

Now we replace a statistical weightw(Di) of each clusterDi belonging to the configuration
containing at least one long cluster with its absolute value~and ‘‘probability’’ of long cluster
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becomes positive! and the expressionJ1,8,(l .)/J1,8 transfers intoJ1,8,(l .abs)/J1,8,(abs). It can be

easily shown that, without loss of generality we can suppose thatJ1,8,(l .)>0. Obviously,

uJ1,8,~ l .!/J1,8u<J1,8,~ l .abs!/J1,8,~abs! .

Now the expressionJ1,8,(l .abs)/J1,8,(abs) can be interpreted as a ‘‘absolute probability’’Pabs

~Long! of the event that there is at least one long cluster.
Now our aim is to estimate the ‘‘absolute probability’’Pabsof the event that a given segme

belongs to the support of long cluster. In other words, we are going to estimate the sta
weights of long clusters after replacing of the values of all negative bonds in configura
containing at least one long cluster with their absolute values.

Let w(I V2I ) be an arbitrary subconfiguration which contains contoursK1 ,...,Kl , belonging
to long clusters,K5ø1

l supp1 Ki , K15Kù@2V,2(uI u/2)# andK25Kù@ uI u/2,V#.
Put C1(w(I V2I ))5uK1u andC2(w(I V2I ))5uK2u. We have

uP~Long!u5uJ1,8,~ l .!/J1,8u

<Pabs~Long!

5( wabs~D1!¯w~Dm!/J1,8,~abs!

5(
p,1

wabs~D1!...wabs~Dm!/J1,8,~abs!1(
p,2

wabs~D1!...wabs~Dm!/J1,8,~abs!

5Pabs~Long,.p!1Pabs~Long,<p!,

wherewabs(Di)5uw(Di)u for all clusters belonging to the configuration containing at least
long cluster andwabs(Di)5w(Di) for other clusters@note that the statistical weightwabs(Di) of
fixed cluster in one configuration can be positive, in other negative#, last two summations are
taken over all nonordered compatible collections of clusters@D1 ,...,Dm# containing at least one
long cluster, ø i 51

m suppDi,I V2I corresponding to the boundary conditions$w1(x),xPZ1

2I V ;w8(x),xPI %, the summation in(p,1 is taken over all configurationsw(I V):w(I )5w8(I );
2C1(w(I V2V))/(uI Vu2uI u).p; 2C2(w(I V2V))/(uI Vu2uI u).p, the summation in(p,2 is taken
over all configurations w(I V):w(I )5w8(I ); 2C1(w(I V2V))/(uI Vu2uI u)<p; 2C2(w(I V

2V))/(uI Vu2uI u)<p. It means that the density of contours belonging to long clusters in e
configuration from(p,1 ((p,2) in both segments@2V,2(uI u/2)# and@ uI u/2,V# is greater thanp ~is
not greater thanp!.

We fixed the value ofp as 12q/2l , where the values ofq and l will be defined in the proof
of Lemma 9.

It turns out that the long clusters are negligible.
Lemma 8: For each fixed interval I there exists a value of V0 , such that if V.V0

Pabs~Long!5Pabs~Long,.p!1Pabs~Long,<p!,1/2. ~22!

Lemma 8 is a consequence of the following two lemmas.
Lemma 9:For each fixed intervalI there exists a value ofV0 , such that ifV.V0

Pabs~Long,.p!,1/4.

Lemma 10:For each fixed intervalI there exists a value ofV0 , such that ifV.V0

Pabs~Long,<p!,1/4.
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Proof of Lemma 9: Consider the partition ofZ1 into segmentsTk5Tk( lp), whereTk( lp) is
the segment with the center atx5( lp/2)1klp and with the lengthlp (Tk consists ofl segmentsI k

with the lengthp, wherep is the period of the special ground state!. The value ofl will be defined
later. Let us consider an arbitrary configurationw(x). We say that a segmentI k is regular, if I k

does not belong to the support of some long cluster. We say that a segmentTk is super-regular, if
Tk contains at least one regular segment.

Let PV be a Gibbs measure corresponding to the boundary conditionsw1(x), xPZ1, w8(I ),
xPI .

Let the segmentI V2I consist ofn segmentsTk ; k51,...,n.
We define a sample spaceV consisting of 2n elementary eventsAj5@s(1),...,s(n)#, where

s(k), k51,...,n takes two values:s(k)50 corresponds to the case when the segmentTk is
super-regular ands(k)51 corresponds to the case when the segmentTk is not super-regular. On
the sample spaceV we define two different probability spaces (V,P1) and (V,P2) by the follow-
ing formulas:

P1~Aj !5P1@s~1!,...,s~n!#5PV@s~1!,...,s~n!#,

wherePV is the Gibbs distributionPV , corresponding to the boundary conditionsw1(x), xPZ1,
w8(I ), xPI and

P2~Aj !5P2@s~1!,...,s~n!#5qn2s~12q!s,

wheres denotes the total number of 1 entries of the vectorAj5@s(1),...,s(n)#.
We define a random vector (h(1),h(2),...,h(n)) on the probability space (V,P1) and,

respectively, a random vector (j(1),j(2),...,j(n)) on the probability space (V,P2) by the for-
mulas:

h~k!~Aj !5s~k! and j~k!~Aj !5s~k! .

The random variablesh(k) andj(k) are defined on the same sample space but on diffe
probability spaces.

Due to the definitions, the random variablesh(k) are dependent, and the random variab
j(k) are independent and identically distributed.

Consider the two sums(k51
n h(k) and(k51

n j(k).
Suppose that

P~h~m!51uany conditions outsideTm!<12q. ~23!

Note thatP(h(m)51uany conditions outsideTm)<12q5P(j(m)51) and therefore the fol-
lowing natural lemma holds.

Lemma 11:

PS (
kPK

h~k!> l D<PS (
kPK

j~k!> l D
for all natural values of l.
The proof of the probabilistically clear Lemma is omitted. For the detailed proof see

Proposition in Ref. 15.
The random variablesj(k) are independent and identically distributed. The mathema

expectation ofj(k) equals 12q.
Now we show that

Pabs~h~m!51uany conditions outsideTm!<12q. ~24!
                                                                                                                



t each
nsity

lar
ular
lies the
f

es

than

ro.

mma
of

ma

4969J. Math. Phys., Vol. 40, No. 10, October 1999 Uniqueness of Gibbs states in . . .

                    
Let PV be a Gibbs measure corresponding to arbitrary boundary conditions andTk be an
arbitrary segment. Consider the set of all configurations on the intervalTk and the restriction of the
measurePV on this set. We show that at some value ofl the ‘‘absolute probability’’Pabsthat inTk

there is at least one regular segmentI k is greater thanq.0 for some constantq not depending on
k. The eventh(k)51 means that all segments belonging toTk are nonregular.

Suppose that a fixed configurationw8(Tm) does not coincide with the ground state at allI i

PTm .
The Peierls argument method directly imply that for some positive constantt0

Pabs~w8~Tm!uconditions outsideTm are wgr~x!!<exp~2bt0l !.

Note that when we increase the value ofl the influence of the conditions outsideTm on the
configuration inTm increases with the rate less thanl and therefore at some value ofl and for some
positive constantt we have

Pabs~w8~Tk!uany conditions outsideTm!<exp~2bt l !<12q0 .

Thus, the probabilityPabs(h(m)51uany conditions outsideTm) as a union of at most 2lp

events with probabilities less than 12q0 , is bounded by some number 12q. The inequality~24!
is proved.

Now Lemma 9 is a direct consequence of the strong law of large numbers forj(k) and the
Lemma 11. Indeed, consider independent Bernoulli trials when the probability of success a
trial is 12q. According to the law of large numbers, the probability of the event that the de
of successes exceeds 12q8; 0,q8,q, is less than 1/4, whenV tends to infinity. It means that the
‘‘absolute probability’’ of the event that the density of non-super-regular segmentsTk is greater
than 12q8 is less than 1/4. Due to Lemma 11, this probability is greater than thePabsprobability
of the event that the density of non-super-regular segmentsTm is greater than 12q8. In other
words, thePabsprobability of the event that the density of super-regular segmentsTm is less than
12q8 is less than 1/4. Thus, thePabs probability of the event that the density of super-regu
segmentsTm is greater than 12q8 is greater than 1/4. Taking into account that each super-reg
segmentTm contains at least one regular segment, one can see that the last statement imp
Lemma 9 if the parameterp is chosen from the open interval (12q8/ l ,1). We choose the value o
p as 12q/2l .

Lemma 9 is proved.
Proof of Lemma 10:Let us consider the set of all long clustersDi with the density of supports

less thanp. Let supp(D)5ø i 5 j
r supp(K j ). These supportsKi are connected between themselv

and with the boundary. Since the density of supports is not greater thanp,1, the sum of the
lengths of bonds in both halves@2V,2uI u/2 and @ uI u/2,V# is not less than (V2uI u/2)(12p).
WhenV goes to infinity the sum of lengths of bonds of any long cluster with the density less
p tends to infinity. As it becomes apparent from the proof of Lemma 8Pabs(Long,.p) does not
exceed one. And it does not exceed one, if we omit the factorg(x,y) corresponding to the long
bond and sinceg(x,y,w)5exp(2bf(x,y,w))21 @see~12!# the impact of these bonds tends to ze
By choosing the appropriate value ofV we complete the proof of Lemma 10.

Lemma 10 is proved.
We omit the huge proof of Lemma 5 since it is absolutely analogous to the proof of Le

6. The only difference is the fact that inJ1,8,2,9 overlapped clusters are allowed, so the density
nonregular segments of typical configurations in Lemmas 8,9 instead ofp will be a number less
than 12(12p)(12p).

Partition functions including only non-long-super clusters satisfy the following key lem
which has a geometrically-combinatorial explanation.

Lemma 12:

J1,8,2,9,~n.l .!5QJ1,9,2,8,~n.l .!
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where the factor Q5Q(w1(x),w2(x),w8(x),w9(x)) is uniformly bounded: 0,const1,Q
,const2.

The factor appears due to the fact that configurations with minimal energy correspond
the different boundary conditions do not coincide everywhere~they coincide to within shifts,
everywhere but finite area!.

Proof of Lemma 12:Due to the constantQ without loss of generality we assume that t
configurations with minimal energywmin for both boundary conditions coincide.

According to the definitions and Lemma 4

J1,9,28,~n.l .!5Q8(
*

w~SD1!¯w~SDm!,

where the summation is taken over all nonlong, nonordered compatible collections of supe
ters.

According to the definition of the super cluster

Q8(
*

w~SD1!¯w~SDm!5Q8 (
1,8,*

w~D1!¯w~Dk! (
2,9,*

w~D1!¯w~Dl !

in (1,8,* and (2,9,* the summation is taken over all nonordered collections of clus

w(D1
1,8)¯w(Dk

1,8) andw(D1
2,9)¯w(Dl

2,9) such that their product belongs to(* .
Similarly,

J1,9,2,8,~n.l .!5Q9(
**

w~SD1!¯w~SDm!

5Q9 (
1,9,**

w~D1!¯w~Dk! (
2,8,**

w~D1!¯w~Dl !.

In order to prove Lemma 12 we put one-to-one correspondence bet
(* w(SD1)...w(SDm) and(** w(SD1)...w(SDm).

FIG. 1.
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Let us consider an arbitrary termU5w(SD1)...w(SDa) of (* . By definitions

U5w~D1
1,8!¯w~Dm

1,8!w~D1
2,9!¯w~Dk

2,9!,

where the factorw(D1
1,8)¯w(Dm

1,8) belongs to the(1,8,* and the factorw(D1
2,9)¯w(Dk

2,9) be-
longs to the(2,9,* .

A cluster D5@(Ki ,i 51,...,r );G9# is said to be basic, if the se
((ø i 51

m suppDi)øG9)ù((Z12I N)øI )) is not empty. In Fig. 1 all clusters are basic.

Consider the set of all clustersW(U) of the termU: W(U)5ø i 51
m Di

1,9 ø i 51
k Di

2,8 and four
subsets ofW(U):

W85FD85@(Ki ,i 51,...,r );G8#PJ2,8:S S ø
i 51

k

suppDi D øG8D ùI is not emptyG ,

W95FD95@~Ki ,i 51,...,r !;G8#PJ1,9:S S ø
i 51

m

suppDi D øG8D ùI is not emptyG ,

W15FD15@~Ki ,i 51,...,r !;G8#PJ1,9:S S ø
i 51

m

suppDi D øG8D ù~Z12I N! is not emptyG ,

W25FD25@~Ki ,i 51,...,r !;G8#PJ2,8:S S ø
i 51

k

suppDi D øG8D ù~Z12I N! is not emptyG .

Note that the subsetsW8,W9,W1,W2 contain only basic clusters and the union of them cont
all basic clusters of the termU.

Let us consider an arbitrary termU5w(SD1)¯w(SDb) of S** . By the definitions

U85w~D1
1,9!¯w~Dl

1,9!w~D1
2,8!¯w~Dn

2,8!,

where the factorw(D1
1,9)¯w(Dm

1,9) belongs to theS1,9,** and the factorw(D1
2,8)¯w(Dk

2,8)
belongs to theS2,8,** .

Consider the set of all clustersW(U8) of the termU8:W(U8)5ø i 51
m Di

1,9ø i 51
k Di

2,8 . In just
the same way we can define four subsets ofW(U8).

Consider a termU5w(D1)¯w(Dk)PS* , containing only basic clusters. By definitio
ø i 51

k Di can be represented asø i 51
k Di5(ø i 51

m Di)ø(ø i 5m11
k D j ), where the clustersø i 51

m Di

5W1øW8; andø i 5m11
k D j5W2øW9.

From the definition of nonlong clusters andW8,W9,W1,W2 it easily follows that there exists
the same termU85w(D1)...w(Dk)PS** , such thatø i 51

k Di5(ø i 51
m Di)ø(ø i 5m11

k D j ), where
the clustersø i 51

m Di5W1øW8; andø i 5m11
k D j5W2øW9.

Figure 1 shows four collections of clusters COL15@D1
1,9 ,D2

1,9 ,D3
1,9 ,D4

1,9#, COL2

5@D5
2,8 ,D6

2,8 ,D7
2,8 ,D8

2,8#, COL35@D1
1,8 ,D6

1,8 ,D7
1,8 ,D4

1,8#, COL45@D5
2,9 ,D2

2,9 ,D3
2,9 ,D8

2,9#.
Two coincident termsU5U85P i 51

8 w(Di) belonging to the sumsS* and S** are con-
structed by the Cartesian product of the collections COL1, COL2, and COL3, COL4, respectively.

We see that between termsUPS* andU8PS** containing only basic clusters we easily ca
put a one-to-one correspondence.

Consider a termU5w(D1)¯w(Dk)w(Dk11)¯w(Dn)PS* , containing basic clusters
D1¯Dk and not basic clustersDk11¯Dn .

It can be easily shown that there exists a termU85w(D1)¯w(Dk)w(Dk11)¯w(Dn)
PS** coinciding with the term UPS* . Indeed, suppose that there is no termU8
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5w(D1)¯w(Dk)w(Dk11)¯w(Dn)PS** coinciding with the termUPS* . Then, according to the
definition of the long clusters, we directly get that, the termU contains long super cluster, whic
contradicts the definition ofS* .

Lemma 12 is proved.
Remark:The essential point of the proof of the important Lemma 12~therefore, of this paper!

is the amusing fact thatS* w(SD1)¯w(SDm) andS** w(SD1)¯w(SDm) coincide.
Now the demanded inequality~18! is a direct consequence of Lemmas 5 and 12. The ineq

ity ~18!, therefore Lemma 3 is proved.
Let P1 and P2 be two different extreme Gibbs states of the model~1! corresponding to the

boundary conditionsw1(x) andw2(x), respectively.
Theorem 5: ~Ref. 16.! P1 and P2 are singular or coincide.
Proof of Theorem 4:Let P1 and P2 be two different extreme Gibbs states of the model~1!

corresponding to the boundary conditionsw1(x) andw2(x) respectively. According to Lemma 3
P1 andP2 are not singular. Therefore, according to Theorem 5P1 andP2 coincide, which con-
tradicts the assumption. Theorem 4 is proved.

III. UNIQUENESS OF GIBBS STATES

In this section we prove the main Theorem 1.
The statement of Theorem 1 for rational densities coincides with Theorem 4. Thus, in or

complete the proof of Theorem 1, we have to prove the following theorem, which covers the
when the density of the special ground state is irrational.

Theorem 6: Suppose that the value of the external fieldm of the model (1) belongs to the s
Cir 5R12øk(mk

2 ,mk
1). Then the model (1) has a unique Gibbs state at all values of the

peratureb21.
It can be easily shown that the special ground states of the model~1! are not stable when the

density is irrational. In other words, the Peierls constantt for the special ground state tends to ze
whenp→`. The essence of this fact is the following.

For the fixed irrational numberh5@n0 ,n1 ,...,ns ,...# consider the corresponding speci
ground statewk(x) and its arbitrary perturbationwk8(x). The configurationwk8(x) is not a special
ground state, therefore for some pair of points, sayx and yPZ1; wk8(x)5wk8(y)51, we have a
violation of Hubbard’s criterion. Letx and y be closest points with this property. When th
distance betweenx andy tends to infinity, the Peierls constant tends to zero.

In the irrational case the special ground states are not stable, but this fact is not crucial
method. Since the essence of our method is the estimation of long super clusters connec
boundary with the segmentI, small clusters not satisfying Peierls condition cannot ‘‘help’’
connect the boundary withI, and it turns out that big clusters satisfy the Peierls stability condi
and the method works. One can say that the special ground states in the irrational case are
in general.’’

Below we give the mathematical details of the last observation.
Considerh(s)5@n0 ,n1 ,...,ns#.
Lemma 13: Suppose that the value of the external fieldm of the model (1) belongs to th

interval (mk(s)
2 ,mk(s)

1 ) for some numberk(s)5h(s)21. Let w8(x) be an arbitrary finite pertur-
bation of the special ground statewk(s)(x) such that the boundary B of the configurationw8(x)
includes a unique contour K. Then there exists a positive constant ts depending only on the
Hamiltonian (1), such that

H~w8~x!!2H~wk~s!~x!!>tsusuppBu

whereusuppBu is the total area of the support of the boundary.
Lemma 13 was proved in Ref. 13@see Lemma 1 and Sec. 5~Ref. 13!#.
Thus, for each nonnegative integers the numberts is defined. Suppose that a positive numb

t less thant1 is fixed. Lets be the maximal number meeting the conditionts.t.
Now we are ready to define the notion of a contour in the irrational case.
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Let us consider an arbitrary configurationw(x). Let C5ø i PInd@xi ,yi #, wherexi ,yiPZ1 and
xiÞyi has the following properties:

~1! For each segment@ai ,bi # from the setZ12C there exists a special ground statewk , such
that the restriction of this configuration on@ai ,bi # coincides withw(@ai ,bi #).

~2! For anyC8,C; C8ÞC the property 1 is not held.
It can be easily shown that the setC5C(w(x)) is not uniquely defined. Suppose that, som

rule uniquely determines the setC for each configurationw(x). Let Z12C5ø i@ai ,bi #. We say
thatw(@ai ,bi #); is a preregular phase. Consider any segment@xi ,yi # belonging toC. The segment
@xi ,yi # is said to bet-negligible, if for each segment@v i ,wi # covering@xi ,yi #,wi2v i5p @p is the
numerator ofh(s)] there exists a special ground statewk(s) , such that the restriction of this
configuration on @v i ,wi # coincides with w(@v i ,wi #). Let C5ø i PInd@xi ,yi #5(ø i PInd(t)

3@xi ,yi #)ø(ø i PInd-Ind(t)@xi ,yi #), where Ind(t) means that the union is taken over allt-negligible
segments. The support of the preboundary suppPB of the configurationw(x) will be defined as
suppPB5(ø i PInd(t)@xi ,yi #)ø(ø i PInd-Ind(t)@xi2d0p,yi1d0p#)5suppPB~main!øsuppPB(t).
Each segment belonging to the union suppPB will be called a support of a precontour and
denoted by suppPK. The support@xi ,yi # of a precontour is said to bet-negligible, if @xi ,yi #
belongs to suppPB(t).

We define contours as in the Definition 1. The constantsp,d0 and Nb for irrational density
h21 will be constants defined for rational densityh(s)21.

The pairPK5(suppPK,w8(suppPK)) is called a precontour. The set of all precontours
called a preboundaryPB of the configurationw8(x). Two precontoursPK1 andPK2 are said to
be connected if dist~suppPK1 ,suppPK2),Nb and at least one of them is nott-negligible. The set
of precontours (PKi ; i PInd) is called connected if for any two precontoursPKc and PKd ;c,d
PInd there exists a collection (PKj 1

5PKc ,...,PKj i
,...,PKj n21

,PKj n
5PKd); j iPInd, i

51,...,n; such that any two precontoursPKj i
and PKj i 11

, i 51,..., n21 are connected. Le

ø i 51
n PKi be some maximal connected component of the preboundaryPB. Suppose that

suppPKi5@ai ,bi # andbi,ai 11 ; i 5,...,n21.
The pairK5(suppK,w8(suppPK)), where suppK5@a1 ,bn# is called a contour. The set o

all contours is called a boundaryB of the configurationw8(x).
A contour is said to bet-negligible, if its support ist-negligible.
By the definitions, the distance between the supports of twot-negligible contours exceedsp,

wherep is the numerator ofh(s) and the length of the support of anyt-negligible contour is one.
The following lemma is reformulation of Lemma 13 for irrational densities.
Lemma 14: Suppose that the value of the external fieldm of the model (1) belongs to the s

Cir 5R12øk(mk
2 ,mk

1). Let w8(x) be an arbitrary finite perturbation of the special ground sta
wk(x) such that the boundary B of the configurationw8(x) includes a unique contour (no
t-negligible contour) K. Then there exists a positive constant ts depending only on the Hamiltonia
(1), such that

H~w8~x!!2H~wk~x!!>tsusuppBu

whereusuppBu is the total area of the support of the boundary.
Suppose that the value of the external fieldm of the model~1! belongs to the setCir 5R1

2øk(mk
2 ,mk

1). Let t,0,t,t1 is fixed andts is chosen as above.
Lemma 15:Let wmin(x)PF(V) be a configuration with the minimal energy:

H~wmin~x!uw1~x!!5minw~x!PF~V!H~w~x!uw1~x!!.

Then the configurationwmin(x) has the following structure:
The restriction of the configurationwmin(x) on the set@2V1Nb ,V2Nb# contains t-negligible

contours and p21 non t-negligible contours, moreover the sum of weights of all t-neglig
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contours is bounded by constant, not depending on the boundary conditions, all of p21 non
t-negligible contours are interface contours IKi , i 51,...,m, where m,p21 and usuppIK i u
,3d0p1Nb .

The proof of Lemma 15 is very similar to the proof of Lemma 113 and will be omitted.
From Lemma 15 follows that the density of possiblet-negligible contours ofwmin(x) tends to

zero, whenV goes to infinity.
Now the proof of Theorem 6 principally coincides with the proof of Theorem 3 and wil

omitted. Theorem 6, and hence main Theorem 1 is proved.

IV. FINAL REMARKS

The unique limit Gibbs state of the model~1! is translationally invariant. This result wa
proved independently in Ref. 1 by using of the method of the equivalence of boun
conditions,17 and in Ref. 11 by using of energy–entropy inequalities.

At low temperatures, the sum of the statistical weights of all clusters having fixed suppo
an exponential estimation~see Lemma 16, Ref. 13! and each limit Gibbs state of the model~1! is
a ‘‘small perturbation of special ground states’’~see Lemma 17, Ref. 13!.

The essential points in the proof of the uniqueness of Gibbs states are the geome
combinatorial Lemma 12 and the estimation of long super clusters, connecting the boundar
the segmentI. This estimation mainly works due to the fact that ground states of the mode~1!
degenerate. In Ref. 13 we proved Theorem 4 at low temperatures. The temperature restrict
related with the fact that at low temperatures the weight of the support of a cluster h
exponential estimation@Lemmas 16 and 17~Ref. 13!# and hence long clusters are negligible~Ref.
13!. But at any temperature an exponential estimation is absent. In the general case, wh
estimate the statistical weight of long super clusters, a key role plays the Lemma 6 o
estimation of the value of the interaction between contours.

In Ref. 15 at low temperatures the result of Ref. 13 is extended to more abstract model
method of the proof of Theorem 1 shows that the result of Ref. 15 can be extended to all
of the temperatures.
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The Lanczos algorithm for extensive many-body systems
in the thermodynamic limit

N. S. Wittea)

Research Centre for High Energy Physics, School of Physics, University of Melbourne,
Parkville, Victoria 3052, Australia

D. Bessis
Service de Physique The´orique, Centre d’Etudes Nucle´aires de Saclay,
F-91191 Gif-Sur-Yvette Cedex, France

~Received 24 March 1999; accepted for publication 5 May 1999!

We establish rigorously the scaling properties of the Lanczos process applied to an
arbitrary extensive many-body system which is carried to convergencen→` and
the thermodynamic limitN→` taken. In this limit the solution for the limiting
Lanczos coefficients are found exactly and generally through two equivalent sets of
equations, given initial knowledge of the exact cumulant generating function. The
measure and the orthogonal polynomial system associated with the Lanczos process
in this regime are also given explicitly. Some important representations of these
Lanczos functions are given, including Taylor series expansions, and theorems
controling their general properties are proven. ©1999 American Institute of
Physics.@S0022-2488~99!01510-8#

I. INTRODUCTION

The Lanczos algorithm is one of the few reliable and general methods for computin
ground state and excited state properties of strongly interacting quantum many-body syst
has been traditionally employed as a numerical technique on small finite systems, with att
round-off error problems, although the main obstacle to its further development has been th
growth of the number of basis states with system size. The reader is referred to a review
applications of this method1 in strongly correlated electron problems. In this work we examine
Lanczos process in the context of the extensive quantum many-body systems, where it
ployed entirely in an exact manner and where the thermodynamic limit is taken. So, in com
contrast to the traditional use of the Lanczos algorithm, we completely circumvent the issu
loss of orthogonality due to round-off errors and the inability to approach the thermodynamic
because of the requirement to construct a full basis on the cluster. The systems we have
are those with an infinite number of degrees of freedom, yet are extensive, in that all total av
of any physical quantity scale linearly with the numbers of degrees of freedom however q
fied. These would include all condensed matter systems with sufficiently local interaction~the
precise conditions need to be clarified, but it is clear which specific systems obey extensivit! and
quantum field theories, with the proviso that the spectrum is bounded below~in some cases ther
is also an upper bound, too!.

After noting some of the advantageous features of the algorithm in general we discu
scaling behavior of the Lanczos process as it approaches convergence and as the thermo
limit is taken. Central to this approach is the manifestation of extensivity through a descr
based on the cumulant generating function~CGF! which we take to be given. We then derive a s
of general integral equations which define the scaled Lanczos functions in the thermody
limit, which can be explicitly and exactly solved for certain integrable models, or employed
truncated manner for nonintegrable models. An alternative formulation is also given whic

a!Electronic mail: nsw@physics.unimelb.edu.au
49750022-2488/99/40(10)/4975/20/$15.00 © 1999 American Institute of Physics
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presses the equivalence of the Lanczos process with the continuum Toda lattice model tre
a boundary value problem. Finally, we state some general results concerning the behavior
Lanczos functions.

II. THE LANCZOS PROCESS, ORTHOGONAL POLYNOMIALS, AND MOMENTS

The Lanczos algorithm or process2–4 begins with a trial stateuc0& appropriate to the mode
and the symmetries of the phase being investigated. From this the Lanczos recurrence gen
sequence of orthonormal states$ucn&%n51

` and Lanczos coefficients$an(N)%n50
` and$bn(N)%n51

` ,
thus

Ĥucn&5bnucn21&1anucn&1bn11ucn11&, ~1!

with the Lanczos coefficients being defined

an5^cnuĤucn&,
~2!

bn5^cn21uĤucn&.

We distinguish a total or extensive operator or variable such asH from its density or intensive
counterpart byĤ. In this basis the transformed Hamiltonian takes the following tridiagonal f

Tn5S a0 b1

b1 a1 b2

�

bn21 an21 bn

bn an

D . ~3!

As such the Lanczos process is one of the Krylov subspace methods5 in that at a finite stepn, the
eigenvectors belong to the Krylov subspace Span$uc0&,Ĥuc0&,Ĥ

2uc0&,...,Ĥ
nuc0&%.

In the many-body context one would iterate the Lanczos process until termination wher
the Hilbert space is exhausted~at this point one of thebnT

50, wherenT is the dimension of the
Hilbert space in the sector defined by the ground state!, or until the process has converge
according to some arbitrary criterian→nC . Then one would perform the thermodynamic lim
N→` where it should be understood that the above conclusion of the Lanczos process
dependent on the system size, that is to say,nT(N),nC(N). These cutoffs are monotonicall
increasing functions of the system size so they will all tend to` in the thermodynamic limit as
well. Taking the limits in the reverse order clearly leads to nonsensical results, as takingN→`
with n fixed producesan→c1 andbn→0. The great virtue of the Lanczos process is that it can
shown to converge essentially exponentially fast with respect to iteration number, usin
Kaniel–Paige–Saad exact bounds6–8 for the rate of convergence. This means that converge
occurs within a very small subspace of the total Hilbert space, so thatnC!nT .

The Lanczos process is entirely equivalent to the three-term recurrence for an ortho
polynomial system~OPS!,9–11 however, we consider a slight generalization of the preced
process to one with a single parameter evolution~a ‘‘time’’ t!. In this construction we are con
tinuing a development begun by Lindsay12 and Chen and Ismail,13 which will lead to some
powerful tools in treating the Lanczos process. The measure, or that component which is
lutely continuous, is defined by the weight function

w~e,t !5e2u~e!1tNe, ~4!
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on the real lineePR. Our system under study is described by the initial value of the syste
t50 and often we will suppress this argument for the sake of simplicity. This measure defi
system of monic orthogonal polynomials$Pn(e,t)%n50

` with an orthogonality relation

E
2`

1`

de w~e,t !Pm~e,t !Pn~e,t !5hn~ t !dmn , ~5!

and normalizationhn(t). This is equivalent to the following three-term recurrence relation

Pn11~e,t !5„e2an~ t !…Pn~e,t !2bn
2~ t !Pn21~e,t !, ~6!

with the recursion coefficientsan(t) real for n>0 and bn
2(t) real and positive forn.0. By

convention we takeb0
251. It can be readily shown that the Lanczos coefficients are given in te

of the normalization, thus

an~ t !5
1

Nhn~ t !

d

dt
hn~ t !,

~7!

bn
2~ t !5

hn~ t !

hn21~ t !
.

The direct connection between the Lanczos process and the OPS is given by the dete
relation of the characteristic polynomial

Pn11~e!5~2 !n11uTn2eI n11u, ~8!

so that the zeros of the orthogonal polynomial are eigenvalues of Hamiltonian.
Some comments are in order regarding the differences, or more accurately the specia

acter, of these orthogonal polynomials with respect to the generic OPS or with some of the s
versions of the OPS.14 These OPSs have been termed many-body OPSs, but could be e
described as extensive OPSs. They all have an additional, essential parameter to the gene
the system sizeN, which appears in both the gross scaling factors~the ‘‘external’’ scaling such as
in the energy densitiese defined byE5Ne!, but also internally in the three-term recurren
coefficients, in the polynomials themselves and in other derived quantities. The internal d
dence in the Lanczos coefficients on the system size is not at all apparent, and the most tran
way that extensive scaling properties can be exhibited is through the cumulant generating Fu
~CGF!, which hitherto has played no role in orthogonal polynomial theory. In fact, the CG
central to this class of OPS, rather than the moments, and is in a practical sense the startin
in any application of the formalism to physical models. For all models it is clear that the gr
state energyE0 is proportional toN and unbounded in the thermodynamic limit, and similarly t
total Lanczos coefficients~as opposed to the densities! are unbounded asn→` for fixed N. When
everything is recast in terms of densities, the spectrum is bounded below bye0 and in many
models will also be bounded above, and similarly the density Lanczos coefficients are bou
Another difference that many-body OPSs exhibit in comparison to general OPS is, as we
noted above, the three-term recurrence will terminate exactly atn5nT , although this will never
present any problems as this is exponentially large.

The Lanczos process is intimately connected with the Hamburger moment problem15,16via the
Resolvent operator

R~e!5K 1

e2Ĥ
L , e¹Supp@dr#. ~9!

Its formal Laurent series establishes a direct link with Hamiltonian moments
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R~e!5(
i 50

`
m i

e i 11 , ~10!

where these moments are defined as expectation values with respect to the trial state ref
above

mn[^Ĥn&, m051. ~11!

The resolvent has a real Jacobi-fraction continued fraction representation17,18

R~e!52Kn50
` 2S bn

2

e2an
D , ~12!

with elements coming from the Lanczos coefficients.
An equivalent description to that of the Hamiltonian moments is to formulate everythin

terms of cumulants or connected moments19,20$nn%n51
` , and to ignore all corrections which vanis

in the thermodynamic limitN→`. Cumulants scale directly with the size of the system so that
the extensive many-body problem we have

nn5cnN1o~1! ~13!

in the ground state sector, or

nn5cnN1mn1o~1! ~14!

in any other sector.21 This also means that no finite-size scaling can be performed given that
the limiting quantities are retained here and boundary condition effects do not appear. The
dation ingredient is the moment generating function which is related to the cumulant gene
function in the following way.

Definition 1: The moment generating function (MGF) M(t) and the cumulant generating
functions (CGF) F(t) are defined by

M ~ t ![^etH&5 (
n50

`

mn

tn

n!
5expS (

n51

`

nn

tn

n! D[exp„NF~ t !…. ~15!

Some examples of cumulant generating functions include the isotropicXY model using the
z-polarized Ne´el state as the trial state,22

F~ t !5
1

p E
0

p/2

dq log cosh~ t cosq!, ~16!

and the Ising model in a transverse field using the disordered state as the trial state, and c
constantx ~Ref. 23!,

F~ t !5
1

2p E
0

p

dq lnFcosh~2teq!2
~cosq1x!

eq
sinh~2teq!G , ~17!

where the quasiparticle energiesek are defined byeq
2511x212x cosq.

Definition 2: The determinants of the moment matricesDn(t) for n>0 are defined by the
Hankel form:

Dn~ t !5uM ~ i 1 j 22!~ t !u i , j 51
n11 . ~18!
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The direct relationship from moments to the Lanczos coefficients which is established in thi
is via the construction of a sequence of Hankel determinants of the moment matrices an
Selberg-type integral representation9

Dn~ t !5
1

~n11!! E2`

1`

)
k51

n11

dek w~ek ,t ! )
1< i , j <n11

ue i2e j u2. ~19!

These determinants are related to the normalizations via

Dn~ t !5)
j <n

hj~ t !. ~20!

Definition 3: Our final definition, that of the Lanczos L-function, is

N2Ln~ t !5
Dn~ t !Dn22~ t !

Dn21
2 ~ t !

, ~21!

for n>1 and L0(t)5M (t).
The converse result is then

Dn~ t !5Nn~n11!)
k50

n

Lk
n112k~ t !, ~22!

for n>1. From these the Lanczos coefficients are given simply by

an~ t !5
1

N (
j 50

n L j8~ t !

L j~ t !
,

~23!
bn

2~ t !5Ln~ t !.

Theorem 1: The equation of motion for the Lanczos L-function is

Ln~ t !5
1

N (
j 51

n
j

N
Dt

2 log Ln2 j~ t !, ~24!

with the initial condition on the recurrence given bylog L0(t)5NF(t) for all t.
The advantage of introducing evolution into the Lanczos process is that Sylvester’s th

applied to the Hankel determinants,24

Dn11~ t !Dn21~ t !5Dn~ t !Dn9~ t !2„Dn8~ t !…2, ~25!

so that the theorem follows directly from this. h

The first few members of the LanczosL-sequence are

L1~ t !5
1

N
F9~ t !,

~26!

L2~ t !5
2

N
F9~ t !1

1

N2

F ~2!F ~4!2~F ~3!!2

~F ~2!!2 .

The consequence of Sylvester’s theorem for the evolution of theDn is the following theorem.
Theorem 2: TheDn(t) obey the following differential-difference equation,
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exp $ log Dn111 log Dn2122 log Dn%5Dt
2 log Dn , ~27!

with the boundary valuelog D05NF(t) and conventionallyD2151.
This follows directly from Sylvester’s identity. h

This evolution equation is just the finite Toda lattice equation of motion,25 and this point has
been previously noted in Ref. 13.

III. SCALING IN THE THERMODYNAMIC LIMIT

As was discussed earlier, there are two limiting processes that one must consider wh
thermodynamic limit is taken in the Lanczos algorithm, bothn, N→`, and the issue then is wha
mutual relationship exists between them in the limit. One can view this limiting process in thn
vs 1/N plane and then consider along what types of paths must one approach the origin. W
find that the general relationship isn, N→` with s[n/N fixed, although for systems at criticalit
it seems inevitable thats will become unbounded in the analysis. A consequence of these ide
the confluence property of the Lanczos coefficients asn, N→` at fixeds5n/N.

an~N!5a~s!1O~1/N!,
~28!

bn
2~N!5b2~s!1O~1/N!.

There are a number of ways to see this approach to the thermodynamic limit.
Using the explicit forms connecting cumulants and moments, and a direct evaluation

Hankel determinants, one can prove26 for generaln and N that the Lanczos coefficients have
leading order scaling ins5n/N for the first two orders of an expansion in largeN. Actually, this
expansion is valid for alln not just for large values and thus includes all the subdomin
contributions. Thus

an5c1N1nFc3

c2
G1

1

2
n~n21!F3c3

324c2c3c41c2
2c5

2c2
4 G 1

N
1¯ ~29!

for n>0, and

bn
25nc2N1

1

2
n~n21!Fc2c42c3

2

c2
2 G1

1

6
n~n21!~n22!

3F212c3
4121c2c3

2c424c2
2c4

226c2
2c3c51c2

3c6

2c2
5 G 1

N
1¯ ~30!

for n>1. However, this approach cannot be generalized to higher orders and therefore for t
exact Lanczos coefficients. The first two terms in the above expansions were also prov
Lindsay using the Sylvester Identity in the statistical context12 but no further, while this form for
the higher terms~but finite numbers! was conjectured in Ref. 27. We shall find that use of
Sylvester identity allows one to very easily recover this result, to in fact go to much higher o
in constructing explicit forms, and to prove this type of scaling in a completely general way

Lemma 1: The Lanczos L-function Ln(t,N) is a rational function of1/N for fixed n, and all t.
The difference-differential equation~24! is of finite order inj /N and t, so the result follows.

h

Also for fixed n we have

lim
N→`

Ln~ t,N!50, ~31!

and specifically the leading order term isO(N21) which arises from thej 5n term in the sum.
Therefore we can expand this function in a descending series inN21, thus
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Ln~ t,N!5 (
p>1

l np~ t !

Np , ~32!

and defining the connected series related by

(
p>1

mnp~ t !

Np [ log S 11 (
p>1

l np11 / l n1

Np D . ~33!

This last relation can be rendered into an explicit form

mnp52 (
( i qi r i5p

S (
i

qi21D !)
i

1

qi !
S 2 l nri11

l n1
D qi

. ~34!

It is actually necessary to perform an expansion of this type because it combines the ite
number (n) dependence of the numerator and denominator which are both essential in the f
ing results.

Then one can establish a hierarchy of equations for these coefficients:

l n1~ t !5nF9~ t !,

l n2~ t !5 (
j 51

n21

jD t
2 log l n2 j 1~ t !, ~35!

l np~ t !5 (
j 51

n21

jmn2 jp229 ~ t ! for p>3,

for n>1 while for n50 we havel np(t)50 asL0(t,N)5exp„NF(t)…. The first members of this
hierarchy can be easily solved for yielding

l n1~ t !5nF9~ t !,

l n2~ t !5
1

2
n~n21!

F ~2!F ~4!2~F ~3!!2

~F ~2!!2 , ~36!

l n3~ t !5
1

12
n~n21!~n22! S F ~2!F ~4!2~F ~3!!2

~F ~2!!3 D ~2!

,

and from these it is easy to establish the leading-order terms already found in Eqs.~29! and~30!.
Lemma 2: The hierarchy coefficients lnp(t), mnp(t) are polynomials in n.
These coefficients are constructed from a finite difference equation inn. h

Theorem 3: The hierarchy coefficients lnp(t), mnp(t) are polynomials of degree p in n.
This is proved by induction onp using the hierarchy equations. If we takel jq(t) to be of

degreeq<p22 in n, then similarly formjq(t) and mjq9 (t). Now for any polynomialP(n) of
degreep22 in its argument, then

(
j 51

n21

jP~n2 j !. ~37!

is a pth degree polynomial. Thus the recurrence, Eq.~35!, establishes thatl n11p is also apth
degree polynomial. h
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From this result it is clear that the limiting forms of the Lanczos coefficientsan(N), bn
2(N)

exist whenn, N→` with n/N fixed. If the ratio is not kept constant in this limiting operation, s
with n5o(N), then the Lanczos coefficients will vanish in the limit, while if the reverse is tr
N5o(n), then there will be divergent terms in the limit.

Given that the scaling Lanczos coefficients have been established, then all the exact th
for the ground state properties28,29that were predicated on this result now are established. The
example of these theorems was the one for the ground state energy density,

e05 inf
sPR1

@a~s!22b~s!#, ~38!

which also has an analog for the top of the spectrum, if this exists,

e`5 sup
sPR1

@a~s!12b~s!#. ~39!

For many models these Lanczos functions will be bounded on the positive real axis, and
limits as s→` on the real line. So, there is a superficial similarity to classes of orthog
polynomials whose three-term recurrence coefficients have limiting values, such as theSclass, the
M class, or theM (a,b) classes.14

IV. THE EXTENSIVE MEASURE

It is necessary to determine the OPS measure and its weight functionw(e), and this is not
generally known at the outset, but rather the cumulant generating function is. In fact, it see
be the case that the measures are not exactly expressible in simple terms, but the CGF or
teristic functions are. There is, of course, a direct route from a model system and a trial state
Lanczos coefficients, but from many points of view, including practical considerations, the
beginning with a cumulant description is more useful.

Theorem 4: Given that the cumulant generating function F(2t) is analytic forR(t).0 and
in the neighborhood of the origin t50, the OPS weight function w(e) has the following
asymptotic development in the thermodynamic limit N→`,

w~e!5A N

2pF ~2!~j !
eN@2ej1F~j!#1O~N21/2!, ~40!

where the functionj~e! is defined implicitly by

e5F8~j!. ~41!

Starting with the definition of the cumulant generating functionF(t),

^etH&[exp $NF~ t !%5exp H N(
n51

`
cn

n!
tnJ ~42!

We assume here that this infinite series is not just formal but actually exists, that is, it has a
radius of convergence in addition to its analytic character forR(t),0. However, the momen
generating function is simply the analytic continuation of the characteristic function and
continuation is possible given its analyticity, so that a Fourier inversion of this will yield
weight function,

w~e!5
N

2p E
ig2`

ig1`

dt eN@2 i t e1F~ i t !#5
N

2p i Eg2 i`

g1 i`

dt eN@ te1F~2t !# R~g!.0. ~43!
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One does not require the exact inversion, but only the leading order inN in a steepest descen
approximation. In an asymptotic analysis the relevant function is

g~ t !5te1F~2t !, ~44!

which is analytic for allR(t).0. We will assume the existence of a stationary point which occ
at t0 ,

e5F8~2t0!, ~45!

and is assumed to be unique. This point is evidently real because the energy density is real
CGF is a real function of a real argument~here we definej52t0 for convenience!. One requires
the inversion of this relation forj~e! and this is guaranteed by the implicit function theore
becauseF (2)(j).0. This latter condition also implies that the saddle point is of order un
Indeed, one clearly has the case ofF (2)(t).0 for real values oft in the neighborhood of the saddl
point andF (2)(t),0 for imaginary values oft in the same neighborhood. Thus the path of steep
descent through the saddle point is parallel to the imaginary axis. One can then apply the s
saddle point analysis~see Ref. 30, Sect. II.4! to arrive at the stated result. h

The corresponding example of the saddle point equation for the isotropicXY model is

e5
1

p E
0

p/2

dq cosqtanh~j cosq!, ~46!

and that for the Ising model in a transverse field is

e5
1

p E
0

p

dq eq

@~x1cosq!/eq#1tanh~2jeq!

11@~x1cosq!/eq# tanh~2jeq!
. ~47!

The first of the more obvious properties concerns the convexity of the measure arising
thermodynamic limit,

Theorem 5: The leading order of the negative logarithm of the weight function u(e) is convex
for all real energiese.

This follows from the relationship ofu(e) to the stationary point

d

de
u~e!5Nj~e!, ~48!

and the definition

e5F8~j!. ~49!

Now it can be easily seen thatF9(t).0 for t real and the Hermitian Hamiltonian using th
definition of F(t) in terms of the expectation valueNF(t)5 ln ^exp (tH)&. h

Some detailed, yet general information, concerning the extensive measure in the nei
hood of the ground state is available. This arises from consideration of the overlap of the tria
with the true ground state,31 and its relation to the Horn–Weinstein functionE(t)[F8(2t) via

u^CGSuc0&u25exp H 2NE
0

`

dt @E~ t !2E~`!#J . ~50!

In general, the limitE(t) ast→` will exist, and is the ground state energy, and so the asymp
properties ofE(t) for R(t).0 as this tends to infinity is a means of classifying systems. T
equivalent to the asymptotic properties ofe(j)2e(2`) asj→2` @we denote the ground stat
energy bye0 , which is also the same ase~2`!#. In general the overlap is nonzero, so thatE(t)
2E(`)PL1@0,̀ ), but it is possible at isolated points that this is not true~critical points in the
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model, for example! and the overlap may vanish. For example, the overlap squared in the ca
the isotropicXY model is 22N/2 and that for the Ising model in a transverse field is

exp H N

2p E
0

p

dq lnS eq1x1cosq

2eq
D J . ~51!

Where the overlap is nonzero, then several possibilities for the asymptotic behavior exist,
do actually arise in the exact solutions of the example models.

~i! gapless case, isotropicXY and critical Ising model in a transverse field~Refs. 32 and 23!:
At a critical point, the first excited state gap vanishes and

e2e0;Auju2g, ~52!

asj→2` and, if the overlap is finite, thenR(g).1. Therefore, the weight function at the botto
of the spectrum takes the following form:

w~e!;~e2e0!2~11g!/2g exp H N
b

121/g
~e2e0!121/gJ . ~53!

This measure is integrable on (e0 ,e`) because of the above conditionR(g).1 and has a branch
point at the ground state energye0 .

~ii ! gapped case 1, Ising model in a transverse field, in the ordered phase with the disord
trial state~Ref. 23!:

If the gap is finite, then one possibility is that

e2e0;Ae2Duju, ~54!

asj→2` and where the excited state gapD.0. One can show that the weight function near t
bottom edge of the spectrum is analytic, having the form

w~e!;
1

G~N@e2e0#/D11!
. ~55!

~iii ! gapped case 2, Ising model in a transverse field, in the disordered phase with the disord
trial state~Ref. 23!:

Yet another type of gap behavior exists,

e2e0;Auju2ge2Duju. ~56!

The leading-order behavior of the weight function in this case is

w~e!;~e2e0!21/22N~e2e0!@2 log ~e2e0!#2Ng~e2e0!, ~57!

which again has a branch point at the bottom edge of the spectrum.
So generally we find the support of the measure is bounded, which excludes a num

weight function types such as the Freud or Erdo¨s weights, but that the weight functions belong
the Szego¨ class on@e0 , e`#,

E
e0

e`
de

log w~e!

A@e`2e#@e2e0#
.2`. ~58!

V. EXACTLY SOLVABLE LANCZOS PROCESS

In this section we derive how the exact Lanczos functionsa(s) andb2(s) can be constructed
directly from the knowledge of the connected moments or cumulants, or more specifically
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the cumulant generating function. This is the initial data that one uses in any analysis of qu
many-body systems with this approach, and for soluble models the full generating function m
available. However, if this is not the case, then one would use a set of low-order cumulants
a given order.

As a first step we recast the Hankel determinants into Selberg integral form, from the cla
result9

Dn~ t !5
1

~n11!! E2`

1`

)
k51

n11

dr~ek!e
Nt(k51

n11ek )
1< i , j <n11

ue i2e j u2. ~59!

For the steps leading to the two conditions which will define the Lanczos functions we fo
Chen and Ismail.13 A similar approach, but just confined to the evaluation of the Hankel dete
nants, was taken in Refs. 33 and 34. The Hankel determinant can be recast into the for
partition function, which is

Dn~ t !5
1

~n11!! E2`

1`

)
i

n11

de i exp H 2 (
i

n11

u~e i !1Nt(
i

n11

e i12(
i , j

n11

lnue i2e j uJ . ~60!

One should observe that both( i
n11u(e i) andNt( i

n11e i are of order (n11)N, while the remain-
ing term in the argument( i , j

n11 ln uei2eju is of order (n11)2, so that the only relative scaling tha
remains nontrivial is one in whichn/N is fixed. The alternatives would lead to completely trivi
consequences. The leading-order term for this Hankel determinant asn, N→` is given by a
steepest descent approximation~see Ref. 30, Sec. IX.5!

Dn~ t !5
~2p!n11

~n11!! U ]2f

]e i
0]e j

0U21/2

e2 f ~e0!@11O~1/n,1/N!#, ~61!

where the functionf (e) is defined as

f ~e!5 (
i

n11

u~e i !2Nt(
i

n11

e i22(
i , j

n11

ln ue i2e j u, ~62!

and the saddle points$e i
0% i 51

n11 are given by

u8~e i
0!5Nt12(

iÞ j

n11
1

e i
02e j

0 . ~63!

One can easily show that the Hessian in Eq.~61! is positive definite given thatu(e) is convex.
One can carry the continuum limit further by describing the saddle points as a charged fluid
dynamics are governed by an energy functionalF@s#,

exp „2 f ~e0!… ——→
n,N→`

exp ~2F@s0# !, ~64!

with a charge densitys~e! defined on an interval of integration which is to be determinedI
5(e2 ,e1). The energy functional takes the following form

F@s#5E
I

de s~e!@u~e!2Nte#2E
I
deE

I
de8 s~e! lnue2e8us~e8!, ~65!

where the single particle confining potential is controlled by the OPS measure and the two
interaction is a logarithmic type. The result of minimizing this functional yields the follow
singular integral equation for the charge density,
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u8~e!2Nt52PVE
I
de8

s0~e8!

e2e8
. ~66!

The solution of this integral equation for the minimal charge densitys0(e) can be found exactly
and is

s0~e!5
A~e12e!~e2e2!

2p2 PVE
I
de8

u8~e8!2Nt

~e82e!A~e12e8!~e82e2!
. ~67!

There are two conditions arising from this solution:

~i! the first is a supplementary condition which is necessary for the charge density solution
well defined throughout the intervalI,

05E
I
de

u8~e!2Nt

A~e12e!~e2e2!
; ~68!

~ii ! and the normalization condition which simply counts the number of Lanczos steps,

n5
1

2p E
I
de e

u8~e!2Nt

A~e12e!~e2e2!
. ~69!

Using this solution for the charge density one can substitute this into the original defining
tions for the Hankel determinants~the leading-order approximations! and establish that the Lanc
zos functions are simply defined by the intervalI in this way,e65a62b.

Theorem 6: The Lanczos functions are given implicitly by the two integral equations

05E
a22b

a12b

de
j~e!

A4b22~e2a!2
, ~70!

s5
1

2p E
a22b

a12b

de
ej~e!

A4b22~e2a!2
, ~71!

where the model-dependent equation for the stationary pointj~e! is given by Eq. (49).
This theorem follows from the previous conditions, namely Eqs.~68! and~69!, and the result

for the logarithmic derivative of the weight function,

u8~e!5Nj~e!1O~ log N!. ~72!

h

Usually this later equation for the saddle point is also an implicit equation and invariab
nonlinear one. In our derivation the scalings5n/N remains finite whilen,N→` emerges natu-
rally and, in fact, it is difficult to see how one could avoid this confluence.

We now give an alternative result for the Lanczos functions which is based on the
evolution of the LanczosL-function.

Theorem 7: The Lanczos L-function, in the thermodynamic limit, is the solution of the
lowing integro-differential equation

L~s,t !5E
0

s

dr rD t
2 log L~s2r ,t !1sF~2!~ t !, ~73!

and the two Lanczos functions are derivable from this via
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a~s!5E
0

s

dr Dt log L~r ,0!1F8~0!,

~74!
b2~s!5L~s,0!.

The integro-differential equation is simply derived from the discrete recurrence, namely Eq.~24!,
after making the observation that thej 5n term involvingL0(t) has to be separated from the su
because it encompasses the initial conditions and is itself not generated by the recurrenceh

Finally, we give a result equivalent to the theorem above, but which involves only sc
forms of the Hankel determinantsDn(N,t)and is the differential analog of the above theorem

Definition 4: We make the following definition ford(n,N,t) in terms of the Hankel determi
nant,

Dn~N,t !5Nn~n11!@d~n,N,t !#N2
, ~75!

for n>1 and D0(t)5@d(0,t)#N.
Lemma 3: The functiond(n,N,t) is well defined in the scaling limit n,N→`.
This follows naturally from the relation of theDn(t)and the LanczosL-function as given in

Eq. ~22!, and the well-defined scaling of this latter function as demonstrated in Theore
above. h

Then we have the following result.
Theorem 8: The Lanczosd(s,t)-function satisfies the following partial differential equatio

in the thermodynamic limit,

exp $Ds
2 log d~s,t !%5Dt

2 log d~s,t !, ~76!

with the boundary condition

lim
s→01

log d~s,t !

s
5F~ t ! ;tPR1. ~77!

The Lanczos functions are given by

a~s!5DtDs log d~s,t !u t50 ,
~78!

b2~s!5exp $Ds
2 log d~s,0!%.

Using the scaling relation above, Eq.~75!, and the equation of motion forDn(t), Eq. ~27!, the
result follows. h

These last two theorems relate to the dynamics of a nonlinear continuum Toda lattice
space domainsPR1 and one time domaint, with boundary conditions defined at the origins
50 for all timest by the cumulant generating functionF(t). The object is then to find the Lanczo
functionsa(s),b2(s) from a solution of this system, wherein these functions are directly rel
to the solution at a given timet50 over all spatial pointss.0.

VI. THE TAYLOR SERIES EXPANSION

The investigation of the Taylor series expansion of the Lanczos coefficients abouts50 is an
essential element in the application of this Lanczos method, as was indicated earlier, whe
has only a finite set of low-order cumulants available, say for nonintegrable models. Therefo
this case, one can only construct a truncated Taylor series expansion and so issues con
convergence, the radius of convergence of the series, and whether one can extrapolate i
ately arise. In addition, one would like a direct algorithm relating the cumulants to the Lan
functions from a purely practical point of view.
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We define the Taylor series expansion of the two Lanczos functions by two new sequen
coefficients,

a~s!5c11 (
n50

`

ansn11,

~79!

b2~s!5 (
n50

`

bnsn11,

In order to find these coefficients one could use either of the two general solutions for the La
process, Eqs.~70! and ~71! or Eq. ~73!, and the two methods are presented below.

The first step involves the inversion of the following Taylor series expansion,

e5c11 (
n51

cn11

n!
jn, ~80!

for j~e!, namely the coefficientsek appearing in

j5 (
k51

ek~e2c1!k. ~81!

The coefficientscn appearing in Eq.~80! are the cumulant coefficients. The existence of t
inverse function is guaranteed because the second cumulantc2.0 in all systems and we assum
that the saddle point function, Eq.~49!, is analytic in the neighborhood ofj50. The next step
involves the solution of the two recurrences

05 (
k51

ek (
m50

bk/2c S k
2mD ~1/2!m

m!
~a2c1!k22m~4b2!m,

~82!

2s5 (
k51

ek (
m50

b~k21!/2c S k
2m11D ~1/2!m11

~m11!!
~a2c1!k22m21~4b2!m11,

which are used to solve for the coefficientsan , bn appearing in Eq.~79!.
In the second method we define a continuum version of the coefficients that are defined

~33! in the following way,

log
L~s,t !

sl1~ t !
5 log S 11 (

p>1

l p11

l 1
spD[ (

p>1
mp~ t !sp, ~83!

and the inverse of Eq.~34! in an explicit form,

l p11

l 1
5 (

( i qi r i5p
)

i

1

qi !
mr i

qi. ~84!
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From these relations one can find a hierarchy of equations for these coefficients:

l 1~ t !5F9~ t !,

l 2~ t !5
F ~2!F ~4!2~F ~3!!2

2~F ~2!!2 , ~85!

l p12~ t !5
mp9~ t !

~p12!~p11!
5 l 1~ t ! (

( i qi r i5p11
)

i

mr i

qi

qi !
for p>1.

Thus one can verify from the solution for the initial value problem above that the ge
Taylor series coefficients are given by

@~n11!! #2c2
3n11an5 (

l£2n11
A~n;l! )

i 50

2n11

c21 i
ai ,

~86!

~n11!!n!c2
3n21bn5 (

l£2n
B~n;l!)

i 50

2n

c21 i
ai ,

where the coefficients labeled by the partitionl5(1a1,2a2,...,i ai), denoted byA(n;l), B(n;l),
are listed in the table in the Appendix. There are constraints operating in the above equ
namely( i 51

2n11iai5( i 50
2n11ai52n11 for the first relation and( i 51

2n iai5( i 50
2n ai52n for the sec-

ond.
Clearly the Taylor series expansion of the Lanczos functions has low-order coefficients

are constructed from the low-order cumulants, and is a form of a linked cluster expansion.
ever, it is not just a simple linked cluster expansion as in the Taylor series expansion
cumulant generating function, but involves a subtle interplay and cancellation of all cumu
below a given order.

VII. GENERAL PROPERTIES

There are some very general properties that the Lanczos process in the thermodynam
and the associated Lanczos functions satisfy and we examine these now. Some are quite
and not particularly surprising; however, we state these for completeness sake, while the
some other properties which are not so immediate, but very important nevertheless.

The next, and natural, property concerns the monotonicity of the two envelope fun
e6(s)5a(s)62b(s).

Theorem 9: The envelope functionse1(s),e2(s) are monotonically increasing and decrea
ing functions of real, positive s, respectively.

This follows from a recasting of the normalization condition in the following way,

2ps5E
j2

j1

dj A@e~j1!2e~j!#@e~j!2e~j2!#, ~87!

where thej6 are defined bye(j6)5e6 . Now it is straightforward to write the explicit forms fo
the derivatives of the envelope functions with respect tos as

de1

ds
54pY E

j2

j1

dj Ae~j!2e~j2!

e~j1!2e~j!
,

~88!
de2

ds
524pY E

j2

j1

dj Ae~j1!2e~j!

e~j!2e~j2!
,
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so that the stated properties are evident. h

It is clear that the envelope functionse6(s) are bounded in the following ways,e2(s)>e0

ande1(s)<e` .
The three-term recurrence which serves as one of the definitions of the orthogonal poly

als themselves is now going to take a definite limiting form whenn,N→` such thats is finite.
This is going to lead to a scaling form for one set of the polynomials themselves, which wou
more correctly termed orthogonal functionsp(s,e). Heuristically one can see how this arises
the following argument. If one ensures that Lanczos densities are employed and the foll
scaling of the polynomials thusPn(E)5Nnpn(e), then the three-term recurrence becomes

pn11~e!/pn~e!1bn
2 1

pn~e!/pn21~e!
5e2an . ~89!

Now these ratios are approximated by

pn11~e!

pn~e!
;exp S 1

N

]

]s
ln p~s,e! D , ~90!

for argumentsePC\Supp@dr#, so that in the asymptotic regime the recurrence becomes

exp S 1

N

]

]s
ln p~s,e! D1b2~s! exp S 2

1

N

]

]s
ln p~s,e! D;e2a~s!, ~91!

whose solutions are

p6~s,e!;p~0! exp H NEs

dt ln
1

2
@e2a~ t !6A„e2a~ t !…224b2~ t !#J . ~92!

These are the corresponding results for the ratioPn(x)/Pn11(x) or nth rootAn Pn(x) asymptotics
of generic orthogonal polynomials asn→` ~Refs. 9, 11, and 35–37!, or the scaled orthogona
polynomials,14 but are rather different due to the particular nature of many-body orthog
polynomials.

Theorem 10: Given the scaling behavior of the Lanczos coefficients, and that they
bounded for n,N→`, then the nth roots of the denominator orthogonal polynomials pn(e) have
the limiting form uniformly fore in compact subsets ofC\Supp@dr#:

p~s,e![ lim
n,N→`

upn~N,e!u1/N5exp H E
0

s

dt ln
1

2
@e2a~ t !1A„e2a~ t !…224b2~ t !#J .

~93!

The proof of this parallels the one constructed by van Assche in Ref. 14 through the use of´n
determinants,

Dn[pn
22pn11pn21 . ~94!

One can show that these obey the following recurrence relation

Dn5bn
2Dn211~an2an21!pnpn211~bn

22bn21
2 !pnpn22 . ~95!

Using the partial fraction decomposition of the ratio of two successive orthogonal polynomia
can also find a bound on this ratio

Upn21~e!

pn~e!
U< C

d
;n ~96!
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for all ePK where the compact setK,C\supp@dr# andd is the distance between this set and t
interval @e0 , e`#, andC is a positive constant. Using Eq.~95! we have

UDn

pn
2U<sup

n
~bn

2!
C2

d2 UDn21

pn21
2 U1uan2an21u

C

d
1ubn

22bn21
2 u

C2

d2 . ~97!

Given the scaling form of the Lanczos coefficients the ratiouDn /pn
2u→0 asn, N→` uniformly in

e wheneverd is large enough. This means thatupn21 /pnu and upn /pn11u tend to the same accu
mulation point which we denote byp(s,e). This point is given by the solution of the quadrat
equationp1b2(s)/p5e2a(s), and the positive branch of the solution must be taken asp→`
whene→`. The functionsp(s,e) are analytic functions ofePK which are uniformly bounded
so the restriction ond can be lifted to being only nonzero. The behavior of thenth ratio then gives
the nth root behavior directly as

upnu1/N5exp H 1

N (
k51

n

log U pk~e!

pk21~e!
UJ , ~98!

The asymptotic behavior that we have found applies to the denominator OP only as can b
from the observation thatp15e2c1 andp25(e2c1)22c3 /c2N(e2c1)2c2 /N, while

@e2a~s!1A„e2a~s!…224b2~s!# ——→
s→0

1

e2c1
„~e2c1!22c3 /c2N~e2c1!2c2 /N….

~99!

This establishes the result. h

VIII. SUMMARY

In this work we have demonstrated the general scaling behavior of the Lanczos proc
applied to many-body systems when the process is taken to convergence and the thermod
limit taken. We also find explicit constructions of the limiting Lanczos coefficients in two equ
lent formulations, from an initial exact solution of the moment problem, that is to say, the c
lant generating function for the system. There are explicit examples where the CGF can be
and the whole Lanczos process explicitly realized. Furthermore, we have given the corresp
results for the associated orthogonal polynomial system and the measure in this regime
generally. However, we must emphasize that these results apply only to the bulk properties,
to say, the ground state properties that scale extensively and the spectral properties in the
~the ‘‘bulk’’ ! of the spectrum. So this does not include the delicate scaling behavior at the
of the spectrum, nor in the neighborhood of singularities—this theory would have to be ext
to treat the excited state gaps near the bottom of the spectrum. A number of general theore
given which constrain the behavior of the Lanczos functions, and the process in general. W
indicate how a number of such constraints operating can lead to some concrete realizat
scenarios that the Lanczos process can present, namely its behavior at a critical point in the
under study. This is a significant step on the way to the goal of a rigorous classificati
many-body systems in terms of their character via the Lanczos process. Other important qu
that arise in the treatment of nonintegrable models, for which the general results presente
have suggested some answers, are the questions of the choice of trial state, the rate of conv
of the truncated Lanczos process, and how one might accelerate its convergence give
independent qualitative knowledge.
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TABLE I. The coefficients in the Taylor series expansion for the Lanc
functionsa(s) andb2(s), as defined in Eq.~86!, and the labels denoting the
partitionsl of the positive integers.

1 a0 l 5 A(0;l)5

1 1
B(1;l)5

2 b1 2 1
12 21

A(1;l)5

3 a1 13 3
2.1 24
3 1

B(2;l)5

4 b2 14 212
2.12 21

22 24
3.1 26
4 1

A(2;l)5

5 a2 15 81
2.13 2174
3.12 48

22.1 70
4.1 29
3.2 217
5 1

B(3;l)5

6 b3 16 2567
2.14 1449
3.13 2414

22.12 2872
4.12 84
3.2.1 304
5.1 212

23 70
4.2 226

32 217
6 1

A(3;l)5

7 a3 17 5805
2.15 217 190
3.14 4815

22.13 13 940
4.13 2990
5.12 150
3.2.12 25470

23.1 22680
32.1 425
4.2.1 680
6.1 216
3.22 640
5.2 244
4.3 266
7 1
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APPENDIX: COEFFICIENTS OF THE TAYLOR SERIES

We list here in the Table I the coefficients of the Taylor series expansion for the Lan
coefficients, labeled by the partitions of integers, according to the definition of Eq.~86!.
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The family FL
k of all potentialsV(x) for which the HamiltonianH52d2/dx2

1V(x) in one space dimension possesses a high-order Lie symmetry is determined.
A subfamily FSGA

(2) of FL
k , which contains a class of potentials allowing a realiza-

tion of so(2,1) as spectrum generating algebra ofH through differential operators
of finite order, is identified. Furthermore and surprisingly, the familiesFSGA

(2) andFL
k

are shown to be related to the stationary KdV hierarchy. Hence, the ‘‘harmless’’
HamiltonianH connects different mathematical objects: high-order Lie symmetry,
the realization ofso(2,1)-spectrum generating algebra and families of nonlinear
differential equations. We describe in a physical context the interplay between
these objects. ©1999 American Institute of Physics.@S0022-2488~99!02710-3#

I. MOTIVATION AND BACKGROUND

In the two internal reports for the International Center of Theoretical Physics~ICTP!,1,2

written in the clearly 1970s, a complete classification of symmetric Hamiltonians in one s
dimension onL2(Rx

1,dx)

H5g
d2

dx2
1V~x!, g,0, ~1!

having the Lie algebraso(2,1) as a ‘‘spectrum generating algebra’’~SGA!, has been obtained
This result has been published only recently in connection with a Barut-Memorial Lecture3 In
Refs. 1, 2, the following definition of SGA is used: a differential operatorA of the ordern8 has a
spectrum generating~Lie! algebraL with generatorsgi ( i 51,...,m, m5dimL) if there exists a
realizationR of L through differential operators of an ordern>n8, such that

A5(
i 51

m

a iR~gi !, a iPR. ~2!

The Hamiltonian~1! is a differential operator on a suitable complex function spaceG over x
with n852. A realizationR of so(2,1) with standard basisM spanned byg1 ,g2 ,g3 through
nth-order differential operators onG reads as

R~gi !5(
j 50

n

ai j ~x!
dj

dxj
, i 51,2,3, ~3!

a!Electronic mail: asi@pt.tu-clausthal.de
b!Electronic mail: renat@imath.kiev.ua
49950022-2488/99/40(10)/4995/9/$15.00 © 1999 American Institute of Physics
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whereai j (x) are complex functions, such that the commutation relations,

@R~g1!,R~g2!#52R~g3!, @R~g2!,R~g3!#5R~g1!, @R~g3!,R~g1!#52R~g2!, ~4!

are fulfilled. SoR„so(2,1)… is a SGA of~1! on G if there exist constantsa iPR ( i 51,2,3), such
that the equality,

H[g
d2

dx2
1V~x!5(

j 51

3

a jR~gj !, ~5!

holds.
The relations~3!–~5! impose restrictions both on the coefficientsai j (x) and on the potentia

V(x). Solving these restrictions we find two different familiesFSGA5$FSGA
(1) ,FSGA

(2) % of those
potentials, which allowso(2,1) as SGA for~1!, and we can use properties ofR„so(2,1)… to
calculate the spectrum ofH, if H and R„so(2,1)… act onL2(Rx

1,dx). If, furthermore,R(gi) are
essentially self-adjoint in a common dense domain and if the representation is integrable, th
can use the known theory for unitary representations ofso(2,1). This is the background of th
term ‘‘spectrum generating algebra’’ as suggested in Refs. 4, 5. There were many results
field for different Hamiltonians, Lie algebras, and physical systems~see, e.g., the recent review6!,
but no general study in the sense of Refs. 1 and 2.

The motivation of the present paper is to show~in Sec. III! that the familyFSGA
(2) can be read

from the stationary KdV hierarchy. This surprising connection between the KdV hierarchy
so(2,1) has its origin in a certain higher-order Lie symmetry of the Hamiltonian~5!, which has
so(2,1) as SGA. In Sec. II we sketch the results of Refs. 1 and 2 on which our discussion is

II. ON SOME KNOWN RESULTS

To classify thoseV(x) that are solutions of~3!–~5!, we reduce the calculation to speci
choices of parametersa1 ,a2 ,a3 through basis transformations, which leaveM invariant. As a
result, we only have to treat the following two cases (lPR, lÞ0):

Case 1.a1
21a2

2Þa3
2, with H5lR~gi !, i 51,2, ~6!

Case 2.a1
21a2

25a3
2, with H5l„R~g1!1R~g3!…. ~7!

Case 2 is denoted as the ‘‘light cone case.’’ Both cases~3!–~5! lead for a fixedn to set of coupled
differential equations of the ordern for ai j (x) ( i 51,2,3,j 50,...,n) and V(x). We assume tha
R(gi) are symmetric operators and thatV(x) is a real function. A clumsy but straightforwar
calculation shows that in Case 1 a solution exists only forn52 with a familyFSGA

(1) of correspond-
ing potentials,

FSGA
~1! ~l1 ,l2 ,c!5$V~x!uV~x!5l1~x2c!21l2~x2c!22,l1 ,l2 ,cPR,l1Þ0%. ~8!

In Case 2 a solution exists for alln>2. The corresponding familyFSGA
(2) consists of potentials

that are solutions of nonlinear differential equations,

FSGA
~2! 5H V~x!U2S x

2
V81VD1 (

j 50

N21

cjF j1FN50J , ~9!

whereN5@(n21)/2#, F j are some polynomials ofV(x) and its derivatives up to the order 2j
11 ( j 50,1,...,N), which will be given later in another context@see~12! and~13!#; c0 ,c1 ,...,cN21

are arbitrary real constants.
The family FSGA

(2) has a peculiar structure. The facts that the equations are equal forn52N
11 and n52N12,N51,2,..., and that the equation forn5n1.n2 contains all terms of the
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equation forn5n2 are two of these peculiarities. This structure was not elucidated in Refs.
also relations to other mathematical notions and objects were not found. This was the reas
the authors of Refs. 1, 2 decided to present the results as internal reports. In the present p
fill this gap.

In order to simplify the following calculations we scale the variablex and thus getg521. So
the Schro¨dinger operator~1! takes the form

H52
d2

dx2
1V~x!. ~10!

III. SGA, LIE SYMMETRIES, AND KdV HIERARCHY

A. Aim and strategy

We present a view on the familyFSGA
(2) through a high-order Lie symmetryQ of typeCk , i.e.,

with @Q,H#5kH ~see Sec. III B! of the Schro¨dinger equation,

S 2
d2

dx2
1V~x!D f ~x!50, f PG, ~11!

and we show that because of this view theF j , ( j 50,1,...,N) in ~9! appear, surprisingly, in the
stationary KdV hierarchy,

(
j 50

N21

cjF j1FN50.

We remind the reader that the stationary KdV hierarchy is obtained successively by the re
action of the integrodifferential operator~the second recursive operator for the KdV equation7–9!,

R52
1

4

d2

dx2
2V~x!2

1

2
V8~x!S d

dxD
21

, ~12!

generatingF j , ( j 50,1,...) through

F j 115RF j , j 50,1,..., with F052 1
2V8~x!. ~13!

Our strategy is the following. We construct as a first step the familyFL
0 of all potentialsV(x)

for which H f 50 allows annth-order Lie symmetryQPL of type C0 ~Theorem 1!. In a second
step, we generalize this result for a Lie symmetry of typeCk , k is arbitrary,~Theorem 2! and get
the family FL

k . In the special casek521 we find the familiesFSGA
(2) .

B. Lie symmetries

An nth-order differential operator on a suitable function spaceG over Rx
1,

Q̃~n!5(
j 50

n

qj~x!~n!
dj

dxj
,

d0

dx0
5
def

1, ~14!

is called annth-order symmetry of the Schro¨dinger equation~11! if it transforms the set of its
solutionsGH into itself, i.e.,Q̃(n)GH5GH (G.GH). It is reasonable to impose further properti
on Q̃(n). A useful choice is a Lie symmetryQ(n) of H. Take anmth-order differential operatorP
and assume

@Q~n!,H#5PH, on G. ~15!
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ObviouslyQ(n) on GH is a symmetryQ̃(n) of ~11!.
In the following we useP5k1, k is a real constant, i.e.,

@Q~n!,H#5kH, on G, ~16!

and denote this as a Lie symmetry of typeCk .
Together withQ(n), also

Q~n8!5Q~n!1(
j 50

m

g jH
j ,

n8,2m1n with arbitrary constantsg j is a Lie symmetry ofH. Hence,Q(n8) gives no new
information and is excluded from further considerations. To formalize this we introduce
equivalence relation

Q~n8!;Q~n!, if Q~n8!2Q~n!5(
j 50

m

g jH
j ,

and consider representatives of these equivalence classes in the linear space of differentia
tors Q(n) satisfying~16!. We denote this quotient space asL.

TheQ(n) of typeCk depends onV(x) and onk. As mentioned, we denote the family of suc
potentials~for finite k! asFL

k . There is a connection betweenFSGA
(2) andFL

k ~see Sec. III E!:

FSGA
~2! ,FL

k ,

because in the singular case~16!, the realizationR(g2) of g2Pso(2,1) is a Lie symmetry~16! of
H for k521

@R~g2!,H#52H. ~17!

It is just this higher-order Lie symmetry ofH that is ‘‘responsible’’ forFSGA
(2) . We add thatR(gj ),

j 51,3 can be constructed ifR(g2) is known.

C. The reduction lemma

Because a first-order Lie symmetryQ(1) of H is easier to analyze than annth-order one, it
would be convenient to reduce the order ofQ(n) under the condition that no information is los
This is possible if we use, in addition toH, the operatorH1e1. The following result holds.

Lemma 1: The Schro¨dinger equation H f50,H52d2/dx21V(x) in G.GHøGH1« allows an
nth-order Lie symmetry Q(n) of type C0 if and only if

S 2
d2

dx2 1V~x!1« D f 50, «Þ0, real, ~18!

admits a first-order Lie symmetry Qˆ (1) of the form

Q̂~1!5a~x,«!
d

dx
1b~x,«![S (

j 50

N

aj~x!« j D d

dx
1(

j 50

N

bj~x!« j , ~19!

where N5@(n21)/2#, aN51, and the relations

a9~x,«!12b8~x,«!50, b9~x,«!1a~x,«!V8~x!12a8~x,«!~V~x!1«!50, ~20!

hold. Primes denote differentiations with respect to x.
Proof: ~1! ConsiderQ(n). On G the commutator@Q(n),H#50 yields
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(
j 50

n

qj
~n!F dj

dxj ,V~x!G1(
j 50

n S qj
~n!912qj

~n!8
d

dx
D dj

dxj 50.

Equating the coefficients ofdn11/dxn11, we getqn
(n)5const. Without loss of generality we ma

chooseqn
(n)51,

Q~n!5
dn

dxn 1 (
j 50

n21

qj
~n!

dj

dxj . ~21!

We use this andQ(n),L to construct for evenn an equivalentQ(n21),

Q~n21!5 (
j 50

n21

qj
~n21!S d

dxD
j

.

Hence, it is necessary to consider only oddn, i.e.,n52N11,NPN. As Q(n) commutes withH it
commutes withH1«1.

Our aim is to reduce the powern of Q(n) ~which is a Lie symmetry withP[0) in an iterative
procedure for the price thatPÞ0. Assume thatQ(n) is a Lie symmetry ofH1«. Introduce a
differential operatorR ~see Ref. 10! such thatQn215Q(n)1R(H1«) is again a Lie symmetry bu
of the ordern22. We find forR,

R52qnS d

dxD
n22

,

and coefficients ofQn21 are first-order polynomials in«. Repeating this procedureN21 times
yields a first-order Lie symmetryQ̂(1) whose coefficients are polynomials in« of the orderN, i.e.,
we get forQ̂(1) an expression of the form~19!. One shows by induction thataN51. The relation
~20! for aj ,bj are implied by the fact thatQ̂(1) is a Lie symmetry forH1«,

@Q̂~1!,H1«#5R~H1«!, ~22!

with R as a multiplication operator.
~2! Start with Q̂(1)5( j 50

N Aj«
j , Aj5aj (x)(d/dx)1bj (x). We want to cancel the« j and to

introduce high-order differential operators through a stepwise procedure. Construct fromQ̂(1),

Q1
~2N11!5Q̂~1!2AN~H1«!N5 (

j 50

N21

Aj ,1«
j .

Because of~22! this is a Lie symmetry of order 2N11,

@Q1
~2N11! ,H1«#5R1~H1«!;

R1 is an«-dependent differential operator. A corresponding property holds for

Q2
~2N11!5Q1

~2N11!2AN21,1~H1«!N21,

with someR2 . Continuing this process we get afterN22 steps an«-independentQN
(2N11) with

@QN
~2N11! ,H1«#5@QN

~2N11! ,H#5RN~H1«!.

The left-hand side is independent of«, which implies thatRN50. x
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D. The family FL
0 of potentials that allow Lie symmetries Q of type C0

The reduction lemma restricts the potentialsV(x) that allow annth-order Lie symmetry of
type C0 . We show that this set is the solution set of a family of nonlinear differential equat
Integrodifferential operators are applied in order to characterize the structure of this family

Our main result is the following.
Theorem 1: The Schro¨dinger equation H f50,H52d2/dx21V(x) admits an nth-order Lie

symmetry of type C0 if and only if the potential V(x) satisfies a nonlinear differential equatio
contained in the family

FL
05H V~x!UG~V![ (

j 50

N21

cjF j1FN50J , ~23!

where N5@(n21)/2#; F j5RjF0 , F052 1
2V8, i.e., the Fj represent the stationary KdV hierar

chy (13), and cj are real constants.
Proof: The proof is simplified substantially if we use Lemma 1 and well-known technique

soliton theory.
In the reduction lemma we insert the polynomial« dependence foraj , bj and find, after

integration forbj (Bj are integration constants!,

bj~x!52 1
2aj8~x!1Bj , j 50,1,...,N, ~24!

andN12 recurrence relations foraj depending onV(x) and on its derivatives,

aN~x!51, aj 218 ~x!52 1
4aj-~x!2V~x!aj8~x!2 1

2V8~x!aj~x!, a21~x!5
def

0, ~25!

where j 50,1,...,N.
The firstN11 relations of~25! are solved by subsequent integrations yielding expression

the functionsa0(x),...,aN21(x) throughV(x) and its derivatives. Substituting these results in
the last equation forj 50, i.e.,a2150, we arrive at a nonlinear differential equation forV(x) of
order 2N11. Its solutions generate all solutions of~24! and ~25!.

To reveal the structure of~25!, especially ofa2150, we introduce new functionsU0(x),
U1(x),..., by thefollowing recurrence relation (Dx denotesd/dx):

Uj~x!5PUj 21 , U21[1, P52 1
4Dx

22V~x!1 1
2Dx

21V8~x!, ~26!

wherej 50,1,..., andU21(x)5
def

1. Note thatP is the first recursive~integrodifferential! operator for
the KdV equation~see, e.g., Refs. 7–9!. The action ofP on some~initial conserved density! U0

52 1
2V(x) yields the whole hierarchy of the conserved densitiesU1 ,U2 ,... . Thesecond recursive

operatorR in ~12! is related toP through

R5Dx+P+Dx
21.

With this Uj (x) the aj (x) in ~25! can be written as

aj 21~x!5UN2 j1 (
k51

N2 j 11

cN2kUN2 j 2k , j 51,...,N, ~27!

wherec0 ,...,cN21 are integration constants~independent of theBj ).
The equationa2150 can be rewritten in a more transparent form as

Dx+S (
j 50

N21

cjP j1PNDU050, ~28!
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which shows a direct relation to the stationary higher KdV equation. Using the operator ide

Dx+P j[~Dx+P+Dx
21! j +Dx5R+Dx ,

~28! takes the following form:

S (
j 50

N21

cjRj1RND +DxU050, U052
1

2
V8~x!.

Because ofDxU052 1
2V85F0 andF j5RjF0 we get finally~23!. x

E. The family FL
k of potentials that allow Lie symmetries of type Ck

The results in Sec. III D fornth-order Lie symmetries of typeC0 can be utilized to construc
alsonth-order Lie symmetries of typeCk for kÞ0. We have the following.

Theorem 2: The Schro¨dinger equation H f50,H52d2/dx21V(x) admits an nth-order Lie
symmetry QPL of type Ck , i.e., @Q,H#5kH, if and only if the potential V(x) satisfies a non-
linear differential equation contained in the family

FL
k5H V~x!UkS x

2
V81VD1 (

j 50

N21

cjF j1FN50J , ~29!

whereN5@(n21)/2#, F j5RjF0 , F052 1
2V8; cj are real constants.

Proof: With the same arguments as in the proof of the reduction lemma we get forQ @see
~14!# qn51. It is only necessary to consider oddn. We insert thisQ andH in ~16!:

(
j 50

n21 S j
nDV~n2 j !

dj

dxj 1 (
i 51

n21

(
j 50

i 21

qi S j
i DV~ i 2 j !

dj

dxj 1 (
j 50

n21 S 2qj8
d

dx
1qj9D dj

dxj 5kS 2
d2

dx2 1V~x! D .

~30!

Comparing coefficients in front of the linearly independent operatorsdj /dxj , ( j 51,...,n)
yields n recurrence integrodifferential relations for the coefficientsqi(x)5qi(x,V(x),k), (i
50,1,...,n21) in ~14!,

qn21~x!5 ĉn21 ,

qj 21~x!52
1

2 S qj8~x!1S j
nDV~n2 j 21!~x!1 (

i 5 j 11

n21 S j
i D Ex

qi~y!V~ i 2 j !~y!dy1kd j 2xD 1 ĉ j 21 ,

~31!

whereĉ j are integration constants and

ĉ j50, for j even.

Note that onlyq1 depends onk through an additive part12kx, i.e.,

q1„x,V~x!,k…5q̂1„x,V~x!…1 1
2kx.

Collecting the terms with (d/dx)0 in ~30!, we get a differential equationG(V,k) for V(x) of
the type

G~V,k![q091V~n!1q̂1V81k
x

2
V81 (

j 52

n21

qjV
~ j !1kV50. ~32!

From Theorem 1 we know the differential equation forV(x) if k50. Hence
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G~V,0!5G~V!. ~33!

Because thek dependence in~32! is explicitly known, we have

G~V,k![G~V!1kS x

2
V81VD50; ~34!

so we arrive at~29!. x

This concludes the discussion of high-order Lie symmetry of the HamiltonianH52d2/dx2

1V(x).

IV. RELATION TO SPECTRUM GENERATING ALGEBRAS

The Lie symmetry@Q,H#5kH ~Theorem 2! is related to the spectrum generating algeb
so(2,1) of H through~17!, wherek521. The realizationR(g2) of g2Pso(2,1) is given byQ of
the form ~14!, ~31! through solutions of~29! with k521 and

FSGA
~2! 5FL

k , k521 ~35!

holds. AsR(g2) is explicitly known, we can insertR(g2) and the differential operatorsR(g1),
R(g3) into the commutation relations of the algebraso(2,1) and thus find the latter~for further
details, see Refs. 1 and 2!.

With the results obtained in Sec. III we can elucidate the peculiar features of the non
differential equation~9! mentioned in Sec. II. The fact that the potentialsV(x) are identical for
n52N11 andn52N12 is explained as follows. In a symmetry operatorQ of order 2N12, the
term with (d/dx)2N12 can be canceled because ofQPL, thus getting a symmetry operator o
order 2N11 that is again a Lie symmetry of the Schro¨dinger equation. The stronger statement th
the equations forV(x) in FSGA

(2) are identical forn54k, 4k11, 4k12, 4k13,k51,2,..., is valid
because a SGA symmetry is stronger than a Lie symmetry. The way of constructing the equ
for V(x) used while proving Lemma 1, makes it also evident, why this equation with some
n5n1 contains all the terms of an equation forV(x) undern5n2,n1 . Indeed, the equation fo
n5n1 is obtained from one forn121 by the action of the recursive operatorR, which transforms
a termF j into F j 11 .

V. INTEGRABILITY

Hamiltonians~10! admittingso(2,1)-spectrum generating algebra have a further useful p
erty: they areintegrable in the sense that the corresponding Schro¨dinger equation~11! can be
integrated by quadratures. This is so because~11! admits a first-order Lie symmetry of the form
Q̂5j(x)(d/dx)1h(x), with

2h912Vj81V8j50, 2h81j950, ~36!

and because one can apply for an integration of~11! the classical method~see, e.g., Refs. 10 an
11! based on its Lie symmetry. The first integral for system~36! is

2h8~j!1Vj22 1
45a[const.

Depending on the sign ofa, the general solution of the equation~11! reads as

f ~x!5Aj~x!H C1r~x!1C2, a50,

C1 cosa r~x!1C2 sina r~x!, a5a2.0,

C1 cosha r~x!1C2 sinha r~x!, a52a2,0,

where
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r~x!5E dx

j~x!
.

Now, inserting the explicit expressions forj(x), h(x) from ~19! into the above formulas yields
the general solution of~11!, provided the functionV(x) fulfills an equation of the form~9!.

VI. CONCLUDING REMARKS

Given a physical observable quantized through a linear differential operatorA in L2(Rd,dxd),
e.g., a HamiltonianH ~1! in one space dimension, a spectrum generating algebra forA is specified
through a Lie algebraL with dimL5m with generatorsgi and a realization through differentia
operators of the ordern such thatA5(k51

m akR(gk), e.g., L5so(2), m53. A high-order Lie
symmetry for the linear operatorA is defined through finite-order differential operatorsQ,P with
@Q,A#5PA, e.g.,A5H andP5k. Both SGA and high-order Lie symmetry are different me
ods to model a physical symmetry with different mathematical structures.

We have shown that for the Hamiltonian~1! anso(2,1) SGA and annth-order Lie symmetry
with P521 are directly related via~17!. However, a Lie symmetry is more general than
so(2,1) SGA symmetry. The interesting result is the connection between annth-orderCk Lie-
symmetry of the Hamiltonian~1! and the stationary KdV hierarchy. It is understandable that
the singular case ofso(2,1), which reflects the light cone structure inso(2,1), a family of
nonlinear differential equations forV(x) appears. But it is, as we already mentioned, surpris
that this family is related to the stationary KdV hierarchy, a mathematical object not conn
directly to a symmetry concept of observables. We suspect that this connection to the
hierarchy is somehow encoded in the geometry ofso(2,1) and its realizations. An investigation o
Hamiltonians of the type~1! in higher space dimensions, their Lie symmetry in the above se
andL-SGA with noncompactL, m.3, seems to be appropriate.
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Algebraic exact solvability of trigonometric-type
Hamiltonians associated to root systems
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In this article, we study and settle several structural questions concerning the exact
solvability of the Olshanetsky–Perelomov quantum Hamiltonians corresponding to
an arbitrary root system. We show that these operators can be written as linear
combinations of certain basic operators admitting infinite flags of invariant sub-
spaces, namely the Laplacian and the logarithmic gradient of invariant factors of
the Weyl denominator. The coefficients of the constituent linear combination be-
come the coupling constants of the final model. We also demonstrate theL2 com-
pleteness of the eigenfunctions obtained by this procedure, and describe a straight-
forward recursive procedure based on the Freudenthal multiplicity formula for
constructing the eigenfunctions explicitly. ©1999 American Institute of Physics.
@S0022-2488~99!01110-X#

I. INTRODUCTION

The potentials first discovered by Calogero and Sutherland1,2 and subsequently generalized
arbitrary root systems by Olshanetsky and Perelomov3 play a central role in the theory of classic
and quantum completely integrable systems. One of the main themes of the original wo
Olshanetsky and Perelomov was to establish quantum complete integrability, that is, the ex
of complete sets of commuting operators. The actual eigenfunctions of the corresponding
tonians were discussed in numerous subsequent publications.4–7

Our purpose in this paper is study and settle a certain number of basic structural que
concerning the exact solvability of the Olshanetsky-Perelomov Hamiltonians. In order to o
the main results of our paper, we first need to give a precise definition of what we mean by
solvability. We will adopt a promising approach, which has recently arisen in the framewo
the theory of quasiexactly solvable potentials,8–11 by defining a quantum HamiltonianH to be
algebraically exactly solvableif one can explicitly construct an ordered basis for the underly
Hilbert space such that the corresponding flag of subspaces isH invariant. In terms of this
approach, the first step in the treatment of an exactly solvable operator must be the constru
an infinite flag of finite-dimensional vector spaces ordered by inclusion, the determination
collection of basic operators that preserve this flag, and the demonstration that the oper
question is generated by the basic ones. The second step is to prove theL2 completeness in the
underlying Hilbert space of this family of subspaces.

In order to fit the Olshanetsky–Perelomov Hamiltonians of trigonometric type into this fra
work, we first recall that these Hamiltonians are indexed by irreducible root systems, wit
Calogero–Sutherland potentials corresponding to typeAn root systems. We thus consider th
vector space of trigonometric functions that are invariant under the Weyl groupW of the given
root systemR. The partial order relation on dominant weights gives rise to a natural fla
finite-dimensional subspaces of this infinite-dimensional vector space. It is quite evident th

a!Electronic mail: nkamran@math.mcgill.ca
b!Current address: McGill University, Montreal. Electronic mail: milson@math.mcgill.ca
50040022-2488/99/40(10)/5004/10/$15.00 © 1999 American Institute of Physics
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flag in question is preserved by the ordinary, multidimensional Laplacian. Less evident is th
that one can obtain other flag-preserving operators by factoring the Weyl denominator,

A5 )
aPR1

ea/22e2a/2,

into factors corresponding to the various orbits of the Weyl group onR. It turns out~see Propo-
sition 12! that the gradient of the logarithm of each of the resulting factors also preserves th
in question. More generally, one obtains other flag-preserving second-order operators by
linear combinations of the Laplacian and of these gradients. The Olshanetsky–Perelomov
tonians are then obtained by a ground-state conjugation. This approach also sheds light
presence of multiple coupling constants in some of the models; the number of coupling con
is precisely the number of invariant factors ofA, i.e., the number of Weyl group orbits inR, or,
equivalently, the number of distinct root lengths. We then show that if all the coupling cons
are positive, then the action of the Hamiltonian on each subspace of the flag is diagonalizabl
is the first main result of our paper; it is given in Theorem 1. The second main result concer
L2 completeness of the resulting eigenfunctions in the underlying Hilbert space ofL2 functions on
the alcove of the root systemR.

It is also interesting to note that if all the coupling constants are equal to 1, then one rec
a second-order differential operator whose eigenfunctions are precisely the characters of t
responding simple Lie algebras. For certain other values of the coupling constants, one re
the spherical functions associated to any symmetric spaceG/K, whereG is a semisimple real Lie
group andK is a suitable compact subgroup. If the restricted root system of the symmetric
is of type An21 and m is the multiplicity of each restricted root, then the eigenfunctions co
sponding to the valuekc5m/2 of the deformation parameter are the zonal spherical function
G/K, as pointed out by Macdonald.12,13 Thus the coupling constants can be regarded as pa
eters in a deformation of the classical characters.

In the classical case, if one reexpresses the gradient of logA in terms of a formal power series
one obtains Freudenthal’s recursion formula for the character coefficients. This trick also
for the deformed characters, and leads to a recursion formula that allows one to straightfor
compute the eigenfunctions of the Olshanetsky–Perelomov Hamiltonians. This result is pre
in Sec. IV.

We should point out that the Weyl-invariant deformed characters that appear in the e
sions of the eigenfunctions of the Olshanetsky–Perelomov trigonometric Hamiltonians are r
by a change of variables to the multivariate Jacobi polynomials that have been investiga
Heckman and Opdam.14 In particular, the analog of the Freudenthal multiplicity formula that is
the basis of the recursion formula we give in Proposition 19 for the eigenfunctions of the H
tonians also appears in the context of their study. We should also mention the interesting
contributions of Brink, Turbiner, and Wyllard15 in the general effort aimed at understanding t
exact solvability for multidimensional systems in an algebraic context.

II. TRIGONOMETRIC-TYPE POTENTIALS ASSOCIATED TO ROOT SYSTEMS

We first recall the abstract definition of the trigonometric Olshanetsky–Perelomov Ham
nians in terms of root systems. LetV be a finite-dimensional real vector space endowed wit
positive-definite inner product (u,v)PR, u, vPV. We use this inner product to identifyV with
V* . The induced positive-definite inner product onV* will also be denoted by~•,•!. Let
D:C`(V;R)→C`(V;R) and“:C`(V;R)→G(TV) denote the corresponding Laplace–Beltra
and gradient operators.

For a nonzeroaPV* , we set ă52a/(a,a) and let sa denote the reflection across th
hyperplane orthogonal toa:

sa~b!5b2~ ă,b!a, bPV* .
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By a root system, we mean a finite, spanning subsetR of V* such that 0PR, sa(R),R for
all aPR and (ă,b)PZ for all a,bPR. A root systemR is said to be irreducible if it cannot b
partitioned into a union of root systems spanning orthogonal subspaces ofV.

To any root systemR corresponds a root latticeQ5$(Rmaa:maPZ% and a weight lattice
P5$lPV* :(ă,l)PZ,;aPR%. The Weyl group ofR, generated bysa ,aPR, will be denoted
by W. The subgroup ofW fixing a particularlPV* will be denoted byWl .

The hyperplanes$lPV* :(a,l)50%,aPR define a set of open Weyl chambers inV* . We

choose a Weyl chamberC and letR15RùC̄ denote the corresponding subset of positive roo
Let B,R1 denote the set of simple roots, i.e., the positive roots that cannot be written as th

of two positive roots. LetP15RùC̄ denote the set of dominant weights.
We will say that a real numberc.0 is a root length if there exists aaPR such thatc

5iai . Let c be a root length, and set

Rc5$aPR:iai5c%,

Rc
15RcùR1,

Uc5
c2

4 (
aPRc

1
cos2

a

2
.

Note16 that if c is a root length, then,Rc is nothing but theW orbit of a.
The Olshanetsky–Perelomov Hamiltonians with trigonometric potentials associated to

systemR are defined in terms of the above data by

H52D1(
c

acUc ,

where the sum is taken over all root lengths,c, and where theac’s are real coupling constants.

III. THE ALGEBRAIC EXACT SOLVABILITY OF H
The affine hyperplanes$lPV* :(a,l)P2pZ% determine inV* a set of isometric open

bounded subsets called alcoves. LetA denote the unique alcove~usually referred to as the funda
mental alcove! that is contained inC and that has the origin as a boundary point. Letm denote the
Lebesgue measure onA. From now on we use the inner product to identifyA with the correspond-
ing subset ofV and restrict the domain of functions introduced subsequently toA. Our goal is to
construct a basis for the underlying Hilbert spaceL2(A,m) in which the algebraic exact solvabilit
of H is manifest. The elements of this basis will be products ofW-invariant trigonometric func-
tions of certain linear forms onV with a common gauge factor vanishing along the walls$u
PV:a(u)P2pZ%, aPR of the potential termsUc .

We now proceed to define this basis. Recall that a choice of positive roots naturally in
a partial order relation,<, on the weight lattice. ForlPP1 set

Pl5ø
wPW

$w~m!:mPP1 and m<l%,

Pl25ø
wPW

$w~m!:mPP1 and mÞ
,l%.

For S,V* let trig(S) denote the complex vector space spanned by functions of the
eil,lPS. If S is a W-invariant subset ofV* , then there is a well-defined action ofW on trig(S),
namely

w•eil5eiw~l!, wPW, lPS.
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In this case, let trig(S)W denote the subspace ofW-invariant functions.
Recall that a root systemR is said to be reduced if for everyaPR, the only roots homothetic

to a are2a anda itself. A roota will be called nondivisible ifa/2 is not a root. Similarly,a will
be called nonmultiplicable if 2a is not a root. Of course, ifR is reduced, then all roots are bot
nondivisible and nonmultiplicable. An irreducible nonreduced system must be isomorphic
root system of type BCn for somen. To describe the latter, takeV5Rn and lete1 ,...,en denote the
dual basis of the standard basis ofRn. The root system in question consists of three types of ro
short roots6e i , medium roots6e i6e j , iÞ j , and long roots62e i .

For reasons that will become clear later, it is convenient to reexpress the coupling constaac

appearing inH as follows. We letac5kc(kc21) if c is the length of a nonmultiplicable root, an
ac5kc(kc1k2c21) if R is nonreduced andc is the length of the short roots. Let

Ac5 )
aPRc

1
sin

a

2
, F5)

c
uAcukc, rc5

1

2 (
aPRc

1
a, r5(

c
kcrc .

The following theorems, which are the main results of our paper, shows that the Olshane
Perelomov trigonometric HamiltoniansH are exactly solvable in the algebraic sense, and that
corresponding eigenfunctions are physically meaningful.

Theorem 1: Let l be a dominant weight. If kc>0 for each root length c, then there exists
uniqueflPtrig(Pl)W such that Ffl is an eigenfunction ofH with eigenvalueil1ri2. Further-
more, if Ff,fPtrig(P)W is an eigenfunction ofH, thenf5fl for somelPP1.

Theorem 2: The subspace Ftrig(P)W is dense in L2(A,m). Moreover, if kc>0 for all root
lengths c, then the operatorH is essentially self-adjoint on the domain Ftrig(P)W,L2(A,m).

We begin with the proof of Theorem 2, assuming Theorem 1 to be true. We first hav
following.

Lemma 3: Let D be an open, bounded subset of Euclidean space, and f:D→R a bounded
continuous function that does not vanish on D (but may vanish on the boundary). With
assumptions, f L2(D,m) is a dense subset of L2(D,m).

Proof: Let D0 , an open subset ofD, be given, and chooseD1 such thatD̄1,D0 and such that
m(D0)2m(D1) is smaller than a givene.0. Note thath5 f 21xD1

is a well-defined element o
L2(D) and that f h5xD1

. Consequently,xD0
lies in the closure off L2(D). The conclusion

follows from the fact that the characteristic functions form a dense subset ofL2(D). h

Proof of Theorem 2:Let T denote the torusV* /(2pQ). We use the inner product onV to
identify T with the identical quotient ofV. Recall that trig(P) is dense inL2(T) by the Fourier
representation theorem. NowW acts onT and A serves as a fundamental region for this acti
~Ref. 17, Chap. VI, No. 2.1!. Consequently, trig(P)W is dense inL2(T)W and the latter is naturally
isomorphic toL2(A,m). We therefore conclude thatF trig(P)W is dense inL2(A,m) by applying
the preceding Lemma withf 5F.

We now prove the essential self-adjointness ofH on the domainF trig(P)W. Let A0,A be an
open subset with a piecewise smooth boundary. Letf1 ,f2Ptrig(P)W be given. Settingc i

5Ff i , i 51,2, we have

E
A0

H~c1!c22c1H~c2!5E
A0

div~c2 “c12c1 “c2!5E
]A0

F2~f2 “f12f1 “f2!.

Hence, as the boundary ofA0 approaches the boundary ofA, the above integrals tend to zero, s
that the operatorH is a symmetric. By Theorem 1 and the density ofF trig(P)W in L2(A,m), the
span of eigenfunctions ofH is dense inL2(A), and thereforeH must be essentially self-adjoint.h

We now proceed with the proof of Theorem 1. The strategy behind the proof of this the
is to conjugate the Olshanetsky–Perelomov HamiltoniansH by a suitable multiplication operato
chosen in such a way that the resulting operator has a simple action on the space trig(P)W. This
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will give rise to an essential intertwining relation that will, in turn, imply the algebraic ex
solvability. In order to determine this multiplicative factor, we need a series of facts about
lengths.

Let Mc :W→$61% be the class function defined by

Mc~sa!5 H 21,
1

if aPBùRc ,
if aPB\Rc .

The following result is a straightforward consequence of the definition ofAc .
Proposition 4: For wPW one has w(Ac)5Mc(w)Ac . In other words, Ac is a relative in-

variant of W with multiplier Mc . Moreover, we have the following.
Proposition 5: Let c be a root length. IfaPB, then(ă,rc) takes one of four possible value

1 if iai5c, 2 if iai5c/2, 1/2 if iai52c, 0 in all other cases.
Proof: Let aPB be given. The action ofsa mapsa to 2a and permutes the elements ofR1

not homothetic toa ~Ref. 17, Chap. VI, No. 1.6!. Let bPRc
1 be given and setb85sa(b). Note

that if b5b8, then (ă,b)50; and that ifb8Þb, then (ă,b1b8)50. If iaiP$c,2c,c/2%, thena
is not homothetic to any element ofRc , and hence one can break uprc into subterms of length
one and two such that each subterm is annihilated byă. This proves the fourth assertion of th
proposition. If iai5c, thenrc is the sum ofa/2 and a remainder perpendicular toă. Conse-
quently, (ă,rc)51, thereby proving the first assertion. Ifiai5c/2, then 2a is also a root, and,
consequently,rc is the sum ofa and a remainder perpendicular toă. This implies the second
assertion. The case three assertion is proven similarly. h

Corollary 6: If c is the length of a nonmultiplicable root, thenrc is a weight. If R is nonre-
duced, and c is the length of the short roots, thenrc is merely a half-weight.

Corollary 7: Let c be a root length. Then for allaPRc , one has(ă,rc)PZ.
Proof: If c is the length of a nonmultiplicable root, then the claim follows from the preced

corollary. Suppose then that 2c is also a root length. ForaPRc note that 2(2a)˘ 5ă and that
2rc5r2c . Hence

~ ă,rc!5„~2a!˘,r2c….

Since 2a is nonmultiplicable, the right-hand side is an integer by the preceding corollary.h
Corollary 8: Let c be a root length and wPW. Then, w(rc)PQ2rc .
Proof: Note that

w~rc!5
1

2 (
aPRc

1
sa~w!a,

wheresa(w) is either 1 or21. Hence,rc1w(rc) is the sum of allaPRc
1 such thatsa(w)

51. h

We are now ready for the next step leading to the required intertwining relation, which
show that trig(Pl)W is an invariant subspace of“ loguAcu. First, we have the following.

Proposition 9: Let c be a root length. IffPtrig(P2rc) is a relative invariant of W with
multiplier Mc , thenf5Acf0 for somef0Ptrig(P)W.

Proof: By assumption,f15eiref is an element of trig(P). Let aPRc
1 be given. The first

claim is thatf1 is divisible by eia21 in trig(P). By assumption,f is a linear combination of
expressions of the form eil2eil8, wherel1rcPP, andl85sa(l). Sincel is the difference of
a weight andrc , Corollary 7 shows that (ă,l)PZ. By switchingl andl8, if necessary, one may
assume without loss of generality that2(ă,l)PN. The claim follows by noting that

eil2eil85eil~12e2 i ~ ă,l!a!,

and by factoring the right-hand side in the usual fashion.
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Note that trig(P) with the natural function multiplication is a unique factorization doma
~Ref. 17, Chap. VI, No. 3.1!. Hence, the preceding claim implies that there exists af0

Ptrig(P), such that

f15f0 )
aPRc

1
~eia21!.

The proof is concluded by noting that up to a constant factor,Ac is equal to

e2 irc )
aPRc

1
~eia21!.

TheW invariance off0 follows from the fact thatAc andf are relative invariants with the sam
multiplier. h

We have:
Corollary 10: Let c be a root length. One has

~2i !]RcAc5
1

]Wrc

(
wPW

Mc~w!eiw~rc!. ~1!

Proposition 11: The differential operator“ log uAcu has a well-defined action ontrig(P)W.
Proof: Let fPtrig(P)W. The claim is that (“ log uAcu)(f)Ptrig(P)W. By Corollaries 8 and 10,

AcPtrig(Q2rc), and hence“Ac(f)Ptrig(P2rc). Since“ is a W-invariant operator,“Ac(f)
is a relative invariant ofW with multiplier Mc . Hence, by Proposition 9, there exists af0

Ptrig(P)W such that“Ac(f)5Acf0 . h

We now have the following.
Proposition 12: IflPP1, then trig(Pl)W is an invariant subspace of“ log uAcu.
Proof: Let fPtrig(Pl)W be given. Set f05(“ loguAcu)(f). By Proposition 11, f0

Ptrig(P)W. Let m be a maximal element of supp(f0). Consequently,m1rc is a maximal element
of suppl(Acf0). Now

Ac5b1eirc1 lower-order terms,

f5b2eil1 lower-order terms,

whereb1 , b2 are nonzero constants, and hence,

~“Ac!~f!52b1b2~rc ,l!ei ~rc1l!1 lower-order terms.

Since (rc ,l).0, one must haverc1l5rc1m. Thereforem5l, andf0Ptrig(Pl)W.
The basic identity that will give rise to the intertwining relation that we are looking fo

given in the following proposition.
Proposition 13: Let f1 ,...,f n be smooth real-valued functions onV; let k1 ,...,kn be real

constants; and let

X5(
i 51

n

2ki“ logu f i u, F5)
i 51

n

u f i uki.

We have the identity

F~2D2X!5~2D1U !F,

where
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U5(
i

ki~ki21!
i“ f i i2

f i
2 1(

iÞ j
kikj

~“ f i ,“ f j !

f i f j
1(

i
ki

D f i

f i
.

The application of this proposition to the Olshanetsky–Perelomov HamiltoniansH requires a
number of intermediate formulas.

Proposition 14: Let c be a root length. One has

DAc52irci2Ac , ~2!

i“Aci25~Uc2irci2!Ac
2. ~3!

Proof: Note that forlPV* one hasDeil52ili2eil. Formula~2! follows immediately from
~1!. Note that

“Ac5
Ac

2 (
aPRc

1
cot

a

2
“a. ~4!

Consequently,

i“Aci25S c2

4 (
a

cot2
a

2
1

1

4 (
aÞb

~a,b!cot
a

2
cot

b

2 DAc
2. ~5!

Taking the divergence of~4!, one obtains

DAc

Ac
52

~]Rc!c
2

4
1

1

4 (
aÞb

~a,b!cot
a

2
cot

b

2
.

Solving for the second term of the right-hand side of the latter equation, substituting into~5! and
applying ~2!, we obtain~3!. h

Proposition 15:If c1 , c2 are distinct root lengths such that the corresponding roots are
homothetic, then

~“Ac1
,“Ac2

!52~rc1
,rc2

!Ac1
Ac2

. ~6!

If R is nonreduced and c is the length of the short roots, then

~“Ac ,“A2c!5@Uc2~rc ,r2c!#AcA2c . ~7!

Proof: Let c1 , c2 be given. A straightforward generalization of the argument in Propositio
yields

Ac1
Ac2

5
1

]Wrc1
1rc2

(
wPW

Mc1
~w!Mc2

~w!eiw~rc1
1rc2

!.

Hence,

D~Ac1
Ac2

!52irc1
1rc2

i2Ac1
Ac2

,

and the desired conclusion follows immediately from the usual product rule for the Laplaci
Next, assume that the second of the proposition’s hypotheses holds. SeSc

5PaPRc
cos(a/2), and note thatA2c52AcSc . SinceR is of type BCn , a direct calculation will

show thatDSc52irci2Sc . Consequently,

2~“Ac ,“Sc!5 1
2 DA2c2Ac DSc2Sc DAc52irci2A2c .
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~“Ac ,“A2c!52irci2A2c12Sci“Aci2.

The formula to be proved now follows from~3!. h

We can now state and prove the intertwining relation, which is fundamental to the pro
our main result.

Proposition 16: Let

H̃52D2(
c

2kc“ loguAcu.

We have

FH̃5HF2iri2.

Proof: Apply Propositions 13, 14, and 15. h

Finally, we are ready to give the proof of Theorem 1, that is of the algebraic exact solva
of the Olshanetsky–Perelomov HamiltonianH. We begin with the following simple result from
linear algebra.

Proposition 17: LetV a finite-dimensional vector space overC, and V1,V a codimension 1
subspace. Let T be an endomorphism ofV such thatV1 is an invariant subspace, and letkPC
denote the unique eigenvalue of the corresponding endomorphism ofV/V1 . If k is not an eigen-
value of Tuv1

, thenk is a multiplicity 1 eigenvalue of T.
It should be noted that the assumptionkc>0 in Theorem 1 is crucial. The necessity of th

assumption is explained by the following proposition. Indeed, one should remark that there
certain negative values ofkc for which the action ofH fails to be diagonalizable.

Proposition 18: Letm,l be dominant weights. If kc>0 for each root length c, thenil
1ri.im1ri .

Proof: Note that

il1ri22im1ri25ili22imi212~l2m,r!.

Using the fact thatl2mPP1, one can easily show thatili.imi . Furthermore, sincel2m is a
linear combination of basic roots with positive coefficients, Proposition 5 implies that (l2m,r)
.0. h

Finally, we have the following.
Proof of Theorem 1:Let l be a dominant weight. By Proposition 12, trig(Pl)W is an invariant

subspace ofH̃. Using an argument similar to the one given in the proof of Proposition 12, it is
hard to verify that iffPtrig(Pl)W, then

„H̃2ili222~r,l!…~f!P trig~Pl2!W. ~8!

Note that trig(Pl2)W is a codimension 1 subspace of trig(Pl)W. Furthermore, by Proposition 18

ili212~l,r!.imi212~m,r!,

for all dominant weightsm,l. Hence, by Proposition 17, there exists a uniqueflPtrig(Pl)W

such thatH̃fl5„ili212(r,l)…f. The first of the desired conclusions now follows by Propo
tion 16.

To prove the converse letFf with fPtrig(P)W be an eigenfunction ofH with eigenvaluek.
Let lPP1 be a maximal element of supp~f!. Since trig(Pl2)W is a codimension 1 subspace
trig(Pl)W, ~8! implies thatk5ili212(l,r). Consequently,l is the unique maximal element o
supp~f!. By Proposition 17,k has multiplicity 1, and this gives the desired conclusion. h
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IV. A RECURSION FORMULA FOR THE EIGENFUNCTIONS OF H̃

In the present section we show how to explicitly compute the eigenfunctions of
Olshanetsky–Perelomov Hamiltonian by using akc-parametrized analog of the Freudenthal m
tiplicity formula. The generalized formula actually yields the eigenfunctionsfl of the related

operatorH̃. One should mention that the eigenfunctionsfl first appeared in the investigations o
Heckman and Opdam,14 who regard these functions as multivariable generalizations of the Ja
polynomials. The eigenfunctions ofH are, of course, obtained by multiplication with the gau
factor F.

By way of motivation it will be useful to recall the context of the original Freudent
formula. Suppose thatR is reduced and letxl , lPP1 denote a character of the correspondi
compact, simply connected Lie group. The Weyl character formula states that

xl5
(wPW sgn~w!eiw~l1 r̃ !

(wPW sgn~w!eiw~l! , ~9!

wherer̃ is the half-sum of the positive roots. Now ifkc51 for all c, then the potential term ofH
is zero, and the gauge factorF is nothing but theW-antisymmetric denominator of~9!. Further-
more, the numerator in~9! is the uniqueW-antisymmetric eigenfunction ofD with highest-order
term ei (l1 r̃). Hence, by the intertwining relation described in Proposition 16, the Weyl char

formula is equivalent to the statement thatxl is an eigenfunction ofH̃ with eigenvalue (l,l
12r̃). This observation leads directly to the classical Freudenthal formula for the multipliciti
xl , and to the following generalization involving the parameterskc . ~See Ref. 18 for more detail
regarding the Weyl and Freudenthal formulas.!

Proposition 19: Letfl5eil1(m,lnmeim be the eigenfunction ofH̃ described in the state
ment and proof of Theorem 1. Setting nl51 and nn50 for n<” l, the remaining coefficients nm ,
m,l, are given by the following recursion formula:

~ il1ri22im1ri2!nm52 (
aPR1

(
j >1

kuau~a,m1 j a!nm1 j a . ~10!

Proof: Rewriting

Ac5eirc )
aPRc

1
~12e2 ia!,

one obtains

H̃52D2 i “r22i (
aPR1

kuau
e2 ia

12e2 ia “a.

Let trig((P)) denote the vector space of formal power series(mPPcmeim. Since elements of
trig(P) are finitely supported sums, one has a well-defined multiplication operation trig„(P)…

3trig(P)→trig„(P)…. Thus, setting the domain ofH̃ to be trig(P), one can extend the operator
coefficient ring and write

H̃52D2 i “r22i (
aPR1

(
j >1

kuaue
2 j i a

“a.

However, because of Proposition 11 one can take the codomain ofH̃ to be trig(P) rather than all
of trig„(P)…. Acting with the right-hand side of the latter equation onfl , collecting like terms,
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and using the fact thatfl is an eigenfunction with eigenvalue (l,l12r) immediately yields
~10!. h

It is important to remark that by Proposition 18 the coefficient ofnm appearing in~10! is never
zero. Consequently,~10! can indeed be used as a recursive formula for the coefficientsnm . One
should also remark that theW symmetry offl means that it suffices to use formula~10! to
calculatenm with mPP1.
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A loop group approach to the C. Neumann problem
and Moser–Veselov factorization

Saša Krešić-Jurić
Symbol Technologies, Inc., Holtsville, New York 11742-1300

~Received 9 December 1998; accepted for publication 28 April 1999!

A geometrical description of continuous and discrete versions of the Neumann
oscillator in terms of a loop group framework is investigated. It is shown that the
continuous Neumann oscillator can be integrated by the Riemann–Hilbert factor-
ization on the ‘‘twisted’’ loop group ofO(3), LO(3). Thesolution of the problem
is given in terms of a special class of flows on the quotient spaceLO(3)/LO(3)1

whereLO(3)1 is a subgroup of positive loops inLO(3). It is also shown that the
Moser–Veselov algorithm for integrating a discrete version of the Neumann oscil-
lator ~HeisenbergXYZchain! is induced by a discrete flow in this space. The flow
can be explicitly integrated by solving the matrix Riccati equation. In both cases,
discrete and continuous, conservation laws are derived from time invariance of a
relation that holds for coefficients of the Fourier expansion of the flows. ©1999
American Institute of Physics.@S0022-2488~99!03110-2#

I. INTRODUCTION

Recently there has been a growth of interest in discretization algorithms of dynamical sy
which preserve certain properties of the system. For example, one may be interested in d
zations which preserve the energy or momentum, or perhaps the symplectic structure
system. A class of such algorithms called variational integrators can be obtained by me
discretizing the Hamilton’s principle which leads to discrete Euler–Lagrange equations.1

In this article we consider discretizations of integrable systems which have a zero-cur
representation on the Lie algebra of a loop groupG. Roughly speaking, ifG has a unique factor-
ization into subgroupsG5G2G1 , then one can usually associate to the system a flowg(t)G1 on
the homogeneous spaceG/G1 . If the flow can be mapped into the phase space floww t , then the
system can be integrated by calculatingg(t) which is equivalent to solving a Riemann–Hilbe
factorization problem onG. Now, suppose thatfn is a given discretization of the continuous flo
w t . Then one can ask if it is possible to find a discrete flow inG/G1 which can be mapped into
fn . In other words, one would like to know if the discretized system can be integrated by ste
along a discrete flow inG/G1 . This is in general a very difficult question and has to be dealt w
separately for each system under consideration.

In this paper we show that it is possible to carry out the above construction for the Neu
oscillator

d2S

dt2
52JS1lS, SPRn, uSu51, ~1!

whereJ5diag(J1,...,Jn), l5^JS,S&2uStu2, and its discrete version

J~Sk211Sk11!5lkSk , SkPRn, uSku51. ~2!

Here u•u denotes the Euclidean norm inRn and the subscriptt denotes the derivative with respe
to t. In classical mechanics Eq.~1! describes the motion of a particle with the HamiltonianH
5 1

2uPu21 1
2^JS,S& constrained to the cotangent bundle of the (n21)-sphere. In solid state physic
50140022-2488/99/40(10)/5014/12/$15.00 © 1999 American Institute of Physics
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~1! is equivalent to the stationary Landau–Lifshitz equation2 ~t being a spatial coordinate!, and the
difference equation~2! represents the Heisenberg chain with classical spins.3

For n53, Eq. ~1! was originally studied by C. Neumann4 in 1859 who integrated it by
separation of variables in the Hamilton–Jacobi equation. The interest in the problem was r
when Moser5 established the connection between~1! and certain rank-2 perturbations of a sym
metric matrix. He showed that the integrals of the Neumann oscillator can be obtained in te
the eigenvalues of the perturbed matrix. Moser’s results were generalized by Adams, Harna
Previato6 to general rank-r perturbations. In a recent paper3 the discrete system~2! was investi-
gated by Moser and Veselov through factorization of matrix polynomialsM (z)5J2z21(x^ Jy
2Jy^ x)z2x^ x, x,yPRn. They showed that Eq.~2! can be integrated by isospectral deform
tions of M based on a factorization ofM into two first-order polynomials. We also mention th
work of Deift, Li, and Tomei7 in which the Moser–Veselov ideas were interpreted in terms o
loop group framework. In their paper a continuous flow is constructed which at integer
interpolates the Moser–Veselov algorithm.

The outline of the present paper is as follows: Sec. II begins with a brief review of
zero-curvature formulation of partial differential equations~PDE’s! which is needed in our ap
proach to the Neumann oscillator. We then introduce the twisted loop group ofO(3), LO(3), and
show that an action ofR2 on a subset ofLO(3) induces Eq.~1! for n53. Solutions of this
equation are given in terms of a special class of flows on the quotient spaceLO(3)/LO(3)1 ,
whereLO(3)1 is the subgroup of positive loops inLO(3). We remark that in this picture the
Neumann oscillator appears as a special case of an infinite dimensional systems which is ge
by a generic flow inLO(3)/LO(3)1 . The conservation laws for Eq.~1! can be deduced from
algebraic relations which hold for coefficients of the Fourier expansion of the flows.

In Sec. III we present a loop group approach to the discrete system~2!. We show that after a
simple transformation the Moser–Veselov polynomialsM become elements of the Lie algebra
LO(3). This enables us to find a discrete flowg2

(k)°g2
(k11) in LO~3! which induces the afore

mentioned isospectral deformations ofM. The flow can be explicitly integrated by solving th
matrix Riccati equation for the first coefficient of the Fourier expansion ofg2

(k11) . The integrals
of the discrete system which were discovered by Granovskii and Zhedanov8 can be found by the
same method as in Sec. II. The results of Secs. II and III generalize in a straightforward m
to arbitrary dimensions by considering the action ofR2 on LO(n).

We mentioned in the Introduction that the Moser–Veselov algorithm was interpreted in
of a loop group framework by Deift, Li, and Tomei. We should emphasize, however, tha
approach has the advantage of describing both systems~1! and~2! from a single point of view. In
each case the dynamics is given by a special class of flows~Neumann flows! on the quotient space
LO(3)/LO(3)1 , and the same method can be used to obtain the integrals of motion.

II. LOOP GROUPS AND THE NEUMANN OSCILLATOR

A. Zero-curvature representation

In this section we review the zero curvature representation on loop algebras as a meth
constructing integrable systems~see Refs. 2, 9!.

Let G be a Banach Lie group which contains closed Lie subgroupsG2 and G1 such that
G2ùG15$I %. The setG2G15$ghugPG2 ,hPG1% is open inG if and only if the Lie algebra
of G splits into a direct sum of vector spacesg5g2 % g1 . Hereg6 is the Lie algebra ofG6 .
Suppose thatG2G1 is open inG and consider a differentiable action ofRn on G defined by

tg5expS (
i 51

n

t iXi D g. ~3!

Here t5(t1 ,...,tn)PRn and X1 ,...,Xn are pairwise commuting elements ofg1 . Note that~3!
descends to an action ofRn on G/G1 by
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t~gG1!5~ tg!G1 . ~4!

Now let gPG2G1 . Then there exists a neighborhoodU,Rn of zero such thattgPG2G1 for all
tPU. Hencetg can be written in a unique way as

tg5g2~ t!g1~ t!, ~5!

whereg2PG2 andg1PG1 . We shall refer to~5! as the ‘‘Riemann–Hilbert’’ factorization of
tg. In view of ~4! we see that the action ofRn induces the flowg2(t)G1 on the homogeneou
spaceG/G1 .

Next we show thatg2(t) is a ‘‘solution’’ to a hierarchy of PDE’s associated with th
Riemann–Hilbert factorization problem. By differentiating the Riemann–Hilbert splitting~5! and
using ~3! we obtain

g2
21Xig25g2

21 ]g2

]t i
1

]g1

]t i
g1

21.

Since the first term on the right-hand side is ing2 and the second is ing1 , we have

P1~g2
21Xig2!5

]g1

]t i
g1

21, ~6!

whereP1 is the projection ofg onto g1 . Denote

Mi~ t!5P1~g2
21~ t!Xig2~ t!! ~7!

for i 51,2,...,n. Since the flows induced by any two vectorsXk , Xl commute, the system o
equations

]g1

]tk
~ t!5Mk~ t!g1~ t!,

]g1

]t l
~ t!5Ml~ t!g1~ t! ~8!

satisfies the compatibility condition (g1)kl5(g1) lk which yields the zero-curvature equation

]Mk

]t l
2

]Ml

]tk
1@Mk ,Ml #50. ~9!

Usually,G is the loop group of a linear group and the zero-curvature condition turns out
equivalent with a nonlinear PDE satisfied by a matrix elementu(t) of Mk andMl . Sinceu can be
explicitly calculated in terms ofg2(t) via ~7!, we have the mappingsg°g2(t)°u(t). Hereu(t)
is regarded as a function oftk andt l while the other variables are kept fixed. The Riemann–Hilb
factorization establishes local existence ofu(t), thus producing a solution of~9!. Moreover, it
linearizes the equation foru since multiplyingg by exp(DtiXi) corresponds tou(t) flowing in the
‘‘ t i-direction’’ by the amountDt i . By choosing different values ofk and l the flow g2(t) yields
solutions to an entire hierarchy of equations represented by~9!. Since the mapg°g2(t) is
invariant under the right multiplication ofg by an element ofG1 , we may assume thatg
PG2 . Then by uniqueness of the splittingg5g2(0), sog contains the initial values ofu.

For applications of the above method it is most convenient to work with subgroups o
group of continuous loops inGL(n,C). More precisely,G is constructed as follows. LetA denote
the Banach algebra,

A5H f :S1→CU f ~z!5 (
nPZ

anzn, (
nPZ

uanu,`,anPCJ , ~10!
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with respect to the normi f i15(nPZuanu and pointwise addition and multiplication. Alternativel
A consists of continuous functions onS1 which have an absolutely convergent Fourier series.
M (n,A) be the Banach algebra ofn3n matrices g5(gi j ) relative to the norm igi
5( i , j 51

n igi j i1 . Various integrable systems can be constructed by introducing an involutio
M (n,A) such thatig* i5igi , and considering subgroups

G5$gPGL~n,A!ugg* 5I % ~11!

of the Banach Lie group

GL~n,A!5$g~z!PM ~n,A!udet~g~z!!Þ0 for all zPS1%.

A standard result from the theory of Banach manifolds10 asserts thatG is a regular Lie subgroup
of GL(n,A) with the Lie algebra

g5$XPM ~n,A!uX1X* 50%. ~12!

Various examples of loop groups and integrable systems obtained by this method can be fo
Refs. 11, 12, and 13.

B. Integration of the Neumann problem by the Riemann–Hilbert factorization

As we mentioned in the Introduction, the Neumann problem

d2S

dt2
52JS1lS, SPR3, uSu51, ~13!

where J5diag(J1,J2,J3) and l5^JS,S&2uStu2, is a completely integrable Hamiltonian syste
which is obtained by constraining the HamiltonianH5 1

2uPu21 1
2^JS,S& to the cotangent bundle o

the 2-sphere. We assume that the spring constantsJi are nondegenerate, i.e., they satisfyJ1,J2

,J3 .
In order to motivate the connection between the Neumann oscillator and loop groups w

the following result attributed to Uhlenbeck.14

Lemma 1: Define matrices Q5(SiSj ), L5(PiSj2Si Pj ), and set U(z)5Jz21Lz2Q, V(z)
5Jz1L with a parameter zPC. Then the Neumann system

dSi

dt
5Pi ,

dPi

dt
52JiSi1@^JS,S&2uPu2#Si , uSu51, ~14!

is equivalent to the Lax equation

dU

dt
5@V,U# subject to constraints uSu51, ^P,S&50. ~15!

The proof is a direct computation. According to the discussion in the previous section we w
like U(z) andV(z) to be elements of the Lie algebra of a loop group, and the Lax Eq.~15! to be
a special case of the zero-curvature condition on this algebra. It turns out that this is in pri
true. Since the details are somewhat nontrivial and do not seem to appear in the literatu
present them here. This is instrumental in understanding the second part of the paper whic
with the discretized Neumann oscillator.

Let AR be the function algebra introduced in~10! with real-valued Fourier coefficients. Defin
the groupG5LO(3) as in~11! with A5AR and the involution onM (3,AR) given by

g* ~z!5gT~2z!.
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We callG the ‘‘twisted’’ loop group ofO(3). Note that ifX(z)5(nPZCnzn is an element of the
Lie algebra ofG, then Cn

T5Cn for odd n, and Cn
T52Cn for even n. In order to define the

Riemann–Hilbert factorization consider the closed subgroups ofG,

G15H gPLO~3!Ug~z!5 (
n>0

AnznJ ,

G25H gPLO~3!Ug~z!5I 1 (
n,0

AnznJ .

Clearly,G2ùG15$I %. If g6 denotes the Lie algebra ofG6 , theng5g2 % g1 so the setG2G1

is open inG. Now let X1(z)5Jz, X2(z)5Jz3 and consider an action ofR2 on G defined by

~ t,x!g5exp~ tX1~z!1xX2~z!!g. ~16!

The action~16! gives rise to a unique factorization of (t,x)g,

exp~ tX1~z!1xX2~z!!g5g2~ t,x!g1~ t,x! for gPG2G1 . ~17!

The matricesMi5P1(g2
21Xig2), i 51,2, satisfy the zero-curvature equation

]M2

]t
2

]M1

]x
1@M2 ,M1#50, ~18!

whereP1 :g→g1 is the canonical projection with kernelg2 . The system of differential equation
represented by Eq.~18! is in general very complicated and it is not known whether it describe
physical system. However, we will show that for special initial values of the flow (t,x)g this
equation is equivalent with Neumann problem~13!.

Since we may assumegPG2 , throughout this section the triple (g,g2 ,g1) will be always
given by ~17! with g5g2(0,0). ThusM1(0,0)5P1(g21Jzg) andM2(0,0)5P1(g21Jz3g).

Let I 1(n51
` Anz2n be the Fourier expansion ofg. The group lawgg* 5I implies g21

5(n51
` (21)nAn

Tz2n, where the matricesAn satisfyA1
T5A1 and

An1~21!nAn
T52 (

k51

n21

~21!kAn2kAk
T n>2. ~19!

From ~19! we find by a straightforward computation that

M1~0,0!5Jz1L0 , M2~0,0!5Jz31L0z22K0z1N0 , ~20!

whereL05@J,A1# and

K05A1@J,A1#2@J,A2#, ~21!

N05@J,A3#2A1@J,A2#1A2
T@J,A1#. ~22!

We can prove now the following preliminary result.
Lemma 2: There exist elements g5I 1(n51

` Anz2nPG2 such that

M2~0,0!5P1~g21Jz3g!5Jz31L0z22K0z,

where K01 1
3I is the tensor product S0^ S0 for some unit vector S0 in R3.

Proof: First we show that one can findA1 and A2 so thatK01 1
3I 5S0^ S0 for some uS0u

51. Note that forn52 Eq.~19! impliesA25 1
2A1

21 1
2T, whereT5 1

2(A22A2
T). By substituting this

into ~21! we obtain
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K05 1
2@A1 ,@J,A1##2 1

2@J,T#. ~23!

Denote

A15S a11 a3 2a2

a3 a22 a1

2a2 a1 a33

D and T5S 0 t3 t2

2t3 0 t1

2t2 2t1 0
D . ~24!

Then the diagonal ofK0 is given by

~K0!115~J32J1!a2
21~J22J1!a3

2,

~K0!225~J32J2!a1
21~J12J2!a3

2,

~K0!335~J12J3!a2
21~J22J3!a1

2, ~25!

and for the off-diagonal elements we have

~K0! i j 5
1
2~21! i 1 j 11@~Ji2Jj !~aii 2aj j !ak1~Ji1Jj22Jk!aiaj2~Ji2Jj !tk#. ~26!

Here ~i,j,k! is a cyclic permutation of~1,2,3!. Now pick S05(S1 ,S2 ,S3)TPS2 such thatS1
22 1

3

>0 andS3
22 1

3<0. Recalling thatJ1,J2,J3 it is clear from~25! and ~26! that one can findA1

andT such thatK05S0^ S02 1
3I .

By similar reasoning one can show that there existsA3 satisfying~19! which makes the free
term in M2(0,0) vanish,

@J,A3#5A1@J,A2#2A2
T@J,A1#. ~27!

SubstitutingA25 1
2A1

21 1
2T into ~19! with n53 yields A35 1

2U1 1
4(TA11A1T), whereU5 1

2(A3

1A3
T). Then~27! is equivalent to

@J,U#5 1
2@T,@J,A1##1 1

2@A1 ,@J,T##1A1@J,A1#A1 . ~28!

Clearly, this equation determines the off-diagonal elements ofU, while the diagonal can be chose
arbitrary. j

For givenJ5diag(J1,J2,J3) let GJ
i denote the set of allgPG2 from Lemma 2~i stands for the

special initial conditions imposed onM2). Since the Neumann problem is given by an ordina
differential equation we will be interested in loopsg2(t)PG2 which depend only ont. The
following lemma is easily proved and provides a simple characterization of such loops.

Lemma 3: Let gPG2 . Thenexp(tX11xX2)g5g2(t)g1(t,x) if and only if g21X2gPg1 .
Let GJ

t be the set of allgPG2 such thatg21X2gPg1 . This notation is to remind us that i
gPGJ

t , then g2 flows only in the ‘‘t-direction.’’ Now define the set of ‘‘Neumann loops’’ by
GJ

N5GJ
i ùGJ

t ,G2 . One can show that the action ofR2 on G/G1 can be restricted toGJ
N/G1 in

the sense that ifgG1PGJ
N/G1 , then g2(t)G1PGJ

N/G1 for all t sufficiently close to zero.
Roughly speaking, as a consequence of this result the matricesM1(t) andM2(t) evolve along the
orbits of the Neumann oscillator. This is the content of the following theorem.

Theorem 4: Let gPGJ
N , and let Mi(t)5P1(g2

21(t)Xig2(t)), i 51,2.Then the matrices M1
and M2 satisfy the Lax equation dM2 /dt5@M1 ,M2# which is equivalent with the Neuman
problem (14).

Proof: Let Mi
0 denote the initial value ofMi(t), i.e., Mi

05P1(g21Xig). Then M1
05Jz

1L0 with L0
T52L0 , and by Lemma 2,

M2
05Jz31L0z22K0z, where K05S0^ S02 1

3I , uS0u51. ~29!
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We show thatM2(t) retains the form~29! for all t for which the Riemann–Hilbert splitting is
defined. Recall from~8! that M2(t)5(]g1 /]x)g1

21. On the other hand, by differentiating~17!
and rearranging we haveg1(g21X2g)g1

215(]g1 /]x)g1
21 because]g2 /]x50. HenceM2(t)

5g1M2
0g1

21, so in view of ~29! the matrixM2(t) has vanishing zero-order term. Therefore w
can write

M1~ t !5Jz1L~ t !, M2~ t !5Jz31L~ t !z22K~ t !z,

whereL and K satisfy the initial conditionsL(0)5L0 and K(0)5K0 . Recall thatM1 and M2

satisfy the zero-curvature Eq.~18! which reduces to

dM2

dt
5@M1 ,M2#. ~30!

We claim thatK(t)5S(t) ^ S(t)2 1
3I for some unit vectorS(t). It follows from 30 that

dL/dt5@K,J# anddK/dt5@L,K#. DefineQ(t)5K(t)1 1
3I . Then the time evolution ofQ is also

given by dQ/dt5@L,Q# with the initial conditionQ(0)5S0^ S0 . Hence the spectrum ofQ is
independent oft and is given by the roots of

det~Q~0!2lI !5uS0u2l22l35l22l3. ~31!

SinceQ is real and symmetric this implies thatQ(t)5v(t)diag(1,0,0)v21(t) for some orthogo-
nal matrix v(t). Thus we concludeQ(t)5S(t) ^ S(t), whereS(t)PR3. By invariance of the
spectrum we have det(Q(t)2lI)5det(Q(0)2lI) which impliesuS(t)u51 for all t.

To finish the proof letL8 be the image ofLPso(3) under the Lie algebra isomorphism
so(3)'R3, and defineP5L83SPR3. SinceL can be chosen so thatL8 is perpendicular toSwe
haveL85P3S, thusL5P^ S2S^ P. Now set

V~ t !5Jz1L~ t ! and U~ t !5Jz21L~ t !z2Q~ t !.

SincedM2 /dt5@M1 ,M2# if and only if dU/dt5@V,U# the theorem follows from Lemma 1.j

Theorem 4 shows that the Neumann problem is explicitly integrable in the sense thatg
PGJ

N the differential Eq.~13! can be solved by the factorization of exp(tX11xX2)g. It is well
known that this problem is also integrable in the sense of Liouville. Moser showed tha
integrals of motion can be obtained from eigenvalues of certain rank-2 perturbations of a
metric matrix.5 Here we give a new proof based on the fact that the integrals are simply
diagonal elements of the matrixS(t) ^ S(t)2K(t) which, because of the special initial values
the flow g2(t)G1 , are preserved along this flow.

Corollary 5: If the initial values of the Neumann problem (13) are determined by gPGJ
N ,

then the system has the following integrals of motion:

Fi5Si
21 (

k51
kÞ i

3
~PiSk2Si Pk!

2

Ji2Jk
, i 51,2,3. ~32!

Proof: We have shown in Theorem 4 thatK(t)5S(t) ^ S(t)2 1
3I , when gPGJ

N . Hence
S^ S2K is constant along the flow. We claim that the diagonal elementsFi5(S^ S2K) i i have
the form~32!. To see this recall thatL(t)5@J,A1(t)#, where we label the elements ofA1(t) as in
~24!. On the other hand,L5P^ S2S^ P, hence@J,A1#5P^ S2S^ P. By solving for the off-
diagonal elements ofA1 we obtain

ak5~21! i 1 j 11
PiSj2Si Pj

Ji2Jj
,
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where ~i,j,k! is a cyclic permutation of~1,2,3!. Substituting this into Eqs.~25! we find that
(S^ S) i i 2Kii is given by~32!. j

We conclude our discussion with the remark that Eqs.~25! imply S1
2(t)> 1

3 and S3
2(t)< 1

3

becauseJ1,J2,J3 . These conditions restrict the motion of the Neumann oscillator to two
joint regions of the sphere. This corresponds to one of the four types of motion described
original paper of Neumann~see p. 52 in Ref. 4!.

III. A LOOP GROUP DESCRIPTION OF THE DISCRETIZED NEUMANN OSCILLATOR

This section is devoted to the study of a discrete version of the Neumann problem

J~Sn211Sn11!5lnSn , uSnu51. ~33!

Sn is the position of a point on the 2-sphere at integer timen, and the multiplierln is determined
from the conditionuSn11u51. In contrast to the continuous caseln is not unique,

ln50 or ln52^Sn21 ,J21Sn&/uJ21Snu2.

We shall assume that for all integer times we havelnÞ0 since only in this case Eq.~33!
corresponds to the correct limit describing continuous motion.3

We have shown in Sec. II that the Neumann oscillator can be integrated by construc
continuous flow inG/G1 where we recallG5LO(3) is the twisted loop group ofO(3). It is
natural to ask whether this property is conserved under the above discretization. More pre
we would like to know if there is a discrete flowg2

(n)G1°g2
(n11)G1 in G/G1 which integrates

Eq. ~33!. In this paper by integrability of~33! we mean thatSn11 can be calculated fromSn , i.e.,
that the order of the difference equation can be reduced by one. For another interpreta
integrability based on a discrete version of Liouville’s theorem, see Ref. 15. Before we answ
above question we will need the following background information.

A. Moser–Veselov factorization of matrix polynomials

Moser and Veselov3 investigated integrability of Eq.~33! with the help of an isospectra
technique based on factorization of matrix polynomialsU(z)5C01C1z1C2z2, zPC. The idea is
similar to theQR-algorithm of Francis designed to calculate the eigenvalues of a complex m
The matrixU(z) is factored into a product of two first order polynomials

U~z!5~A01A1z!~B01B1z!, ~34!

and the isospectral mappingC is defined by exchanging the factors,

C:U~z!°Û~z!5~B01B1z!~A01A1z!.

They have shown that this technique integrates several well known classical problems, e
rigid body and the billiard inside an ellipsoid. In the case of the Neumann oscillator it indu
map (Sn21 ,Sn)°(Sn ,Sn11) such that the triple (Sn21 ,Sn ,Sn11) satisfies the difference Eq.~33!.

Our exposition of the Moser–Veselov algorithm for the Neumann oscillator is similar to
one for the rigid body problem in Ref. 3. This makes it more suitable for interpretation in term
a discrete flow inG/G1 .

Let P denote the class of polynomialsUn(z)5J2z21Lnz2SnSn
T , whereLn

T52Ln and Sn

5(Sn
1,Sn

2,Sn
3)T is a unit vector inR3. Define C:P→P as follows. Suppose thatUn(z) can be

factored as

Un~z!5~zJ1vn
T!~zJ2vn!. ~35!

This is possible if and only ifvn satisfies the equations
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vn
TJ2Jvn5Ln and vn

Tvn5SnSn
T . ~36!

Now defineUn115C(Un) by exchanging the factors in~35!, i.e.,

Un11~z!5~zJ2vn!~zJ1vn
T!. ~37!

Assuming for the moment that suchvn exists we show thatC is well-defined, i.e., Im(C),P.
Since

Un11~z!5J2z21~Jvn
T2vnJ!z2vnvn

T ,

we have Ln115Jvn
T2vnJ, thus Ln11 is antisymmetric. It remains to show thatvnvn

T

5Sn11Sn11
T for some unit vectorSn11 in R3. This follows from the isospectrality ofC. Namely,

Un11~z!5~zJ1vn
T!21Un~z!~zJ1vn

T!

so whenz50 we havevnvn
T5(vn

T)21(SnSn
T)vn

T . DenoteTn5vnvn
T . ThenTn is a real symmet-

ric matrix with the characteristic polynomial det(Tn2lI)5uSnu2l22l35l22l3. By the argument
following Eq. ~31! in Sec. II, there is a unit vectorSn11 in R3 such thatTn5Sn11Sn11

T . Therefore
Im(C),P.

Moser and Veselov now show the following. LetSn andSn11 be unit vectors inR3, and let
Un(z) be defined by~35! with vn5Sn11Sn

T . Note that the setS of zeros of the polynomial
p(z)5det(Un(z)) splits into S5S2øS1 , whereS1 , S2 satisfy the conditionsS̄65S6 and
S152S2 . If such a splitting is fixed and all zeros ofp(z) are distinct, then one can fin
vn115Sn12Sn11

T with uSn12u51 such that the image ofUn underC is given by

Un11~z!5~zJ1vn11
T !~zJ2vn11!. ~38!

A comparison of~37! and ~38! shows that

Jvn
T2vnJ5vn11

T J2Jvn11 .

From here it follows at once that the vectorsSn , Sn11 , andSn12 satisfy the difference Eq.~33!.
Now this procedure can be iterated starting withUn11 , hence the isospectral mappingC induces
a discrete mapvn°vn11 which integrates the Neumann oscillator. This map is multivalu
because it depends on a particular splitting ofS5S2øS1 .

In the next section we shall prove the existence of a discrete flow inG/G1 which via
conjugation induces the mapC. The multivaluedness ofC will correspond to the fact that the flow
in G/G1 is also multivalued because it is determined by symmetric solutions of a matrix Ri
equation. It is well known that these solutions depend on a particular factorization of the ch
teristic polynomial of the coefficient matrix of the equation.16

B. A loop group approach to the Moser–Veselov Algorithm

Here we give a group theoretic interpretation of the results described in the previous se
The motivation for this comes from the observation that the isospectral mappingC:Un°Un11

can be viewed as a discrete version of the Lax pair equation. Recall from Lemma 1 th
Neumann oscillator has the Lax representation

d

dt
~Jz21L~ t !z2Q~ t !!5@Jz1L~ t !,Jz21L~ t !z2Q~ t !#, ~39!

whereQ5(SiSj ) andL5(PiSj2Si Pj ), which is an isospectral deformation of the matrixU(z)
5Jz21Lz2Q. If we think of
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Un~z!5J2z21Lnz2SnSn
T ~40!

as being U(z) at time n ~modulo the difference in the powers ofJ!, then the mapping
C:Un°Un11 can be viewed as a discrete analog of Eq.~39!.

It was shown in Sec. II that this equation is induced by a special class of flowsg2(t)G1 in
G/G1 whose initial values belong to the set of Neumann loopsGJ

N . In analogy with this it is
reasonable to expect that the mappingC is induced by a class of discrete flows

f:g2
~n!°g2

~n11! ~41!

with initial valuesg2
(0)PGJ2

N . HereGJ2
N is the set of Neumann loops withJ replaced byJ2. In

other words, we would like to say that there is a mappingg2
(n)°Un such thatf gives rise to the

isospectral transformationUn°Un11 .
In what follows we show that such a correspondence exists and we develop an e

algorithm for computingf. Let g2
(n)PGJ2

N , and define

M2
~n!~z!5~g2

~n!~z!!21J2z3g2
~n!~z!. ~42!

Clearly, M2
(n) is an element ofg1 , and by Lemma 2 we have

M2
~n!~z!5J2z31Lnz22~SnSn

T2 1
3 I !z, ~43!

whereLn
T52Ln and uSnu51. If I 1( i 51

` Aiz
2 i is the Fourier expansion ofg2

(n) , then following
Eqs.~20! and ~21! the coefficients ofM2

(n) are given by

Ln5@J2,A1#, SnSn
T2 1

3I 5A1@J2,A1#2@J2,A2#. ~44!

Note that Eqs.~42! and ~43! imply that

Un~z!5~g2
~n!~z!!21~J2z22 1

3 I !g2
~n!~z!. ~45!

This suggests that the flowf:GJ2
N →GJ2

N should be constructed so that it inducesC via the above
conjugation. By writing J2z22 1

3I 5J2z2(I 2 1
3J

22z22) and using the Taylor’s expansion fo
(12x)1/2 we obtain

J2z22
1

3
I 5FJzS I 2 (

k51

`
~2k23!!!

3k~2k!!!
J22kz22kD G2

. ~46!

The series can always be made convergent inM (3,AR) because we can multiplyJ by a suffi-
ciently large constant without effecting Eq.~33!. Let Ck denote the coefficients in the above serie
For g2

(n)PGJ2
N consider the following factorization:

JzS I 2 (
k51

`

CkJ
22kz22kD g2

~n!~z!5h~z!~Jz2Vn! ~47!

for someh(z)5I 1(k51
` Bkz

2k andVn subject to conditions

B1
T5B1 and Vn

TVn5SnSn
T .

Some algebraic manipulation shows that givenB1 the Fourier coefficients ofh can be found
recursively from

B2J5JA21B1Vn2C1J21,
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BkJ5JAk1Bk21Vn2 (
2i 1 j 5k

CiJ
22i 11Aj2

1

2
~11~21!k!Ck/2J

2k11, k.2.

Furthermore, it follows from~47! thatVn5B1J2JA1 . Hence the factorization~47! can be carried
out provided we can findB1 . In order to do this note thatVn

TVn5SnSn
T if and only if B1 is a

symmetric solution of the matrix Riccati equation

B1
21PTB11B1P1Q50, ~48!

whereP52JA1J21 andQ5J21(A1J2A12SnSn
T)J21. Equation~48! is indeed a Riccati equation

for B1 becauseQ is symmetric and~P,I! is controllable. It is well known that this equation ha
symmetric solutions provided the coefficient matrix

M5S P I

2Q 2PTD
has no purely imaginary eigenvalues. In this case it can be shown16 that det(tI2M)5
(21)3 p(t)p(2t), where the real polynomialp(t) is monic and relatively prime top(2t). Then the
Riccati equation has a unique symmetric solutionB1 such that det(tI2(P1B1))5p(t), and a unique
symmetric solutionB18 such that det(tI2(P1B18))5(21)3p(2t).

Suppose thatB1 has been found by solving Eq.~48! and calculateVn5B1J2JA1 . Then we
have Vn

TVn5SnSn
T and, sinceA1 and B1 are symmetric, it follows thatVn

TJ2JVn5@J2,A1#
5Ln . Thus the matrix polynomial~40! can be factored as

Un~z!5~zJ1Vn
T!~zJ2Vn!, ~49!

which is precisely the Moser–Veselov factorization. Moreover, a straightforward comput
using ~46!, ~47!, and~49! shows thath is an element ofG,

~h~z!!* h~z!5~Jz1Vn
T!21~g2

~n!~z!!21~J2z22 1
3I !g2

~n!~z!~Jz2Vn!21

5~Jz1Vn
T!21Un~z!~Jz2Vn!215I .

Let g2
(n11)5h and define

Un11~z!5~g2
~n11!~z!!21~J2z22 1

3!g2
~n11!~z!.

As desired, one can show thatUn11 belongs toP and is given by switching the terms in Eq.~49!.
Indeed, the group law inG and ~47! imply that

Un11~z!5~Jz1Vn
T!21~g2

~n!~z!!21~J2z22 1
3!

2g2
~n!~z!~Jz2Vn!21

5~Jz1Vn
T!21Un

2~z!~Jz2Vn!215~Jz2Vn!~Jz1Vn
T!.

Recall from the previous section thatVnVn
T5Sn11Sn11

T for some unit vectorSn11 . ThusUn11

PP, so in factg2
(n11) belongs toGJ2

N . Now definef:GJ2
N →GJ2

N by f(g2
(n))5g2

(n11) . Note thatf
depends on the factorization of det(tI2M) which determines a particular solution of the Ricc
equation forB1 . For a fixed branch off we can summarize the above results in the followi
theorem.

Theorem 6: The flowf:g2
(n)°g2

(n11) induces the Moser–Veselov mapC:Un°Un11 and
gives the commutative diagram
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P →
C P

C↑ ↑C

GJ2
N

→
f

GJ2
N

where C(g)5g21(J2z22 1
3)g.

In complete analogy with the continuous model, the discretized Neumann oscillator is
grable in the sense that there are constants of the motion independent ofn. As in the continuous
case this is a consequence of the fact that the diagonal elements ofSnSn

T2Kn are preserved unde
the flow. A proof identical to that of Corollary 5 with the exception thatJ is replaced byJ2 shows
that the diagonal elements ofSnSn

T2Kn are given by

F̃ i5~Sn
i !21 (

k51
kÞ i

3
~JiSn11

i Sn
k2JkSn11

k Sn
i !2

Ji
22Jk

2 , i 51,2,3.

It turns out that these are the integrals found by Granovskii and Zhedanov,8 and later generalized
by Veselov17 to then-dimensional case. The algebraic structure ofF̃ i clearly resembles that ofFi ,
the integrals of the continuous Neumann problem. HenceF̃ i is a natural discrete analog ofFi .
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The existence of superintegrable systems withn52 degrees of freedom possessing
three independent globally defined constants of motion which are quadratic in the
velocities is studied on the two-dimensional sphereS2 and on the hyperbolic plane
H2. The approach used is based on enforcing the conditions for the existence of
two independent integrals~further than the energy!. This is done in a way which
allows us to discuss at once the cases of the sphereS2 and the hyperbolical plane
H2, by considering the curvaturek as a parameter. Different superintegrable po-
tentials are obtained as the solutions of certain systems of twok-dependent second
order partial differential equations. The Euclidean results are directly recovered for
k50, and the superintegrable potentials on either the standard unit sphere~radius
R51) or the unit Lobachewski plane~‘‘radius’’ R51) appear as the particular
values of thek-dependent superintegrable potentials for the valuesk51 and k
521. Some new superintegrable potentials are found, both onS2 and H2. The
correspondence between superintegrable systems in spaces of zero and nonzero
curvature is discussed. ©1999 American Institute of Physics.
@S0022-2488~99!02110-6#

I. INTRODUCTION

A superintegrable system is a system that is integrable~in the sense of Liouville–Arnold! and
that, in addition to this, possesses more constants of motion than degrees of freedom.
numberN of independent constants takes the valueN52n21 (n the number of degrees o
freedom! then the system is called maximally superintegrable~see Refs. 1–23!. There are three
well known examples of this very particular class of systems, namely, the Kepler problem
isotropic harmonic oscillator, and the nonisotropic oscillator with commensurable freque
The n53 Kepler possesses not only the energy and the angular momentum as const
motion, but also the Runge–Lenz vector; five of these integrals are functionally independen
property is also true forn arbitrary. Concerning the harmonic oscillator, it is a system trivia
integrable since it can be considered as a kind of ‘‘direct sum’’ of systems with one degr
freedom. If the oscillator is isotropic then it has the angular momentum~and/or the Fradkin
tensor24! as an additional integral of motion. If the oscillator is nonisotropic the angular mom
tum is not preserved as the potential is not central; nevertheless when the quotients of t
quencies are rational the system has other additional integrals. In these three cases it is wel
that all the orbits became closed for the case of bounded motions. This high degree of reg
~existence of periodic motions! is a consequence of the superintegrable character.

Most of known integrable systems are Hamilton–Jacobi separable, that is, systems w
associate Hamilton–Jacobi equation that can be solved by separation of variables after an
priate coordinate system has been found. An important point is that separable system
constants of motion which are linear or quadratic in the velocities. Friset al.2 studied in 1965 the
50260022-2488/99/40(10)/5026/32/$15.00 © 1999 American Institute of Physics
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two-dimensional Hamiltonians with standard Euclidean kinetic term for which the Hamilt
Jacobi equations separates in more than one coordinate system inE2 and obtained four differen
families, each with a potential which is a ‘‘linear superposition’’ of three simpler potentials~they
were mainly interested in the quantum viewpoint but the results obtained are also valid
classical level!. This Hamilton–Jacobi approach was also used in Ref. 3 and, later on, by
authors as Evans,9 Groscheet al.14–16 and Kalninset al.17,18 Other approaches recently studie
have been the dimensional reduction of simpler systems,12,13 or the direct obtaining of the condi
tions for the existence of two quadratic independent integrals20 ~further than the energy!.

The dynamics for the cases where the configuration spaceQ is either the sphereS2 or the
hyperbolic~Lobachewski! planeH2 is not so well known as it is in the Euclidean caseE2, and
most of the studies done on the sphere have focused the attention on spherical
potentials.25–27 There are some noncentral but rather simple problems as, e.g., the noniso
oscillator, that still remain as very partially understood in manifolds of nonzero curvature. In
article we will study superintegrable Lagrangian systems with quadratic constants of motio
the case in which the configuration spaceQ is either the two-dimensional sphereS2 or the
hyperbolic planeH2. We will use as an approach the same strategy that proved to be succes
Ref. 20 for two different planar manifolds,Q5R2 with a Euclidean metric, this isE2, and Q
5R2 with a Minkowskian metric.

The article is organized as follows: In Sec. II we present some geometric properti
Riemannian 2D manifolds of constant curvature, taking as leading idea the introduction
formalism with the curvaturek as a parameter. This is made so that the Euclidean results
directly recovered fork50 ~in a natural way without the problems of a limit process! and the
standard sphere of radiusR51 or the Lobachewski plane of ‘‘radius’’R51 will correspond to the
particular valuesk51 or k521. Indeed, ifk is looked as a parameter, the approach can be d
simultaneously for the three cases; most computations might even be done simultaneously
small price of usingk dependent trigonometric functions. In Sec. III, we recall the propertie
the caseQ5E2 from the present viewpoint.

In Sec. IV we look for superintegrable systems on bothQ5S2 andH2 ~with curvaturek! and
we find several families which have the superintegrable Euclidean potentials~analyzed in Sec. III!
as flat limits. In the first subsection the study is done in polar coordinates, and in the s
subsection in parallel coordinates. Some of the superintegrable potentials we obtain are
known,14–16 but other are, as far as we know, new. We find several noncentral superinteg
spherical potentials, and in particular the spherical and hyperbolical superintegrable versi
the anisotropic 2:1 oscillator and several new superintegrable potentials in the hyperbolic
Finally, Sec. V provides a discussion and an outlook to the results obtained; it can be
independently and gives information enough for a reader who is not interested in the details
derivation.

II. GEOMETRY AND DYNAMICS ON THE SPHERE S2 AND THE HYPERBOLIC
PLANE H2

On any general two-dimensional Riemannian space~not necessarily of constant curvatur!
there are two distinguished types of local coordinate systems, ‘‘geodesic parallel’’ and ‘‘geo
polar’’ coordinates. They reduce to the familiar cartesian and polar coordinates on the Euc
plane~see, e.g., Klinberger28!.

Both these systems are based on an origin pointO and an oriented geodesicl 1 throughO ~Fig.
1!. For any pointP in some suitable neighborhood ofO, there is a unique geodesicl joining O
and P. The ~geodesic! polar coordinates (r ,f) of P, relative to the originO and the positive
geodesic ray ofl 1 , are the~positive! distancer betweenO andP measured alongl , and the angle
f betweenl and the positive rayl 1 , measured aroundO. These coordinates are defined in
neighborhood ofO not extending beyond the cut locus ofO; polar coordinates are singular atO,
andf is discontinuous on the positive ray ofl 1 .

Now, for any pointP ~in some suitable strip neighborhood ofl 1) consider the geodesicl 28
throughP and orthogonal tol 1 and letP1 be the intersection point ofl 28 and l 1 nearest toP. The
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~geodesic! parallel coordinates (u,y) of P, relative to the originO and base geodesicl 1 , are
defined as the distanceu betweenO andP1 , measured alongl 1 , and the distancey, betweenP1

and P, measured alongl 28 . Again these coordinates will be regular and without singularities
some strip centered inl 1 . If instead ofl 1 another line is taken as base, we obtain another sys
of geodesic parallel coordinates. Figure 2 also displays the particular case with basel 2 , orthogonal
to l 1 throughO; these second set of parallel coordinates will be denoted (v,x) and will also play
some role in our discussion.

These systems are suitable for most general purposes, because the coordinates (r ,f), (u,y),
and (v,x) have adirect geometric significance, as distances and angles measured in the in
metric of the surface. Closed expressions are usually only possible for spaces ofconstant curva-
ture. In the constantpositivecurvature case, i.e., the sphere, the geodesics are great circle
relations among distances and angles are the subject of spherical geometry. Polar coordin
the sphere are singular at the origin~pole! O and also at its antipodal point~the cut locus ofO).
Parallel coordinates are singular in the two poles of the base geodesic. While in the Euc
plane a line orthogonal to bothl 1 and l 2 do not exist~nor does it exist in the hyperbolic plane!,
there is such a linel 3 for the sphere~the polar of the pointO), so we have here a third set o
parallel coordinates. These three sets are based on three geodesics mutually orthogonal
and the third system with basel 3 is essentially equivalent to the polar coordinates whose cent
the pole ofl 3 .

The notation has been chosen to emphasize the similarities with the Euclidean case
point P, r is the distance measured in eitherS2 or H2 ~with curvaturek! from P to the origin point
O, andf determines the orientation of the lineOP throughO. On the other side,x, y are the
geodesic distances fromP to the two ‘‘coordinate axes’’l 1 ,l 2 ; there are other two quantities,u,
v which are distances, measured alongl 1 ,l 2 , betweenO and the orthogonal projections ofP on
l 1 ,l 2 . In the Euclidean case, we have the identitiesx5u, y5v, but once we deal with nonzer

FIG. 1. Polar (r ,f) and parallel (u,y) coordinates based on the oriented geodesicl 1 and reference pointO. All these
coordinates are lengths or angles measured in the intrinsic metric of the space of constant curvature. The figure fo
pattern of a stereographic projection of the sphere from the South pole, withO at the North pole, but the geometrica
meaning of these coordinates holds for any value of the curvature.

FIG. 2. The three coordinate systems (r ,f), (u,y), and (v,x) of a point P. Relationships among these coordinates a
discussed in the text for any curvature valuek.
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curvature these equalities are no longer true; recall thaty is the distance fromP to the ‘‘x’’
coordinate axe, butu is notthe distance fromP to the ‘‘y’’ coordinate axe. Both polar (r ,f) and
the two systems of parallel coordinates (u,y) and (v,x) are alwaysorthogonal; however the
coordinate system (x,y) made up of the distances to the two coordinate axes is only orthogon
the Euclidean plane, butnot in S2 nor in H2.

For a sphere of radiusR ~curvaturek51/R2), the ‘‘geographic’’ coordinates~u,f! ~whereu
is the latitude andf the longitude! are closely related to both polar and parallel type coordin
systems; (R(p/22u),f) arepolar coordinates with its origin in the North pole, while (Rf,Ru)
are parallel coordinates with the equator as the baseline. This equivalence does not exist
Euclidean and hyperbolic case, where polar and parallel coordinates are different, so th
reasons to keep their consideration separate, even for the sphere, in the context we are w
The structure of the superintegrable systems on planes of constant curvature and in their l
Euclidean case will be more clearly seen this way.

The metric of the sphere of curvaturek51/R2 is given in parallel and polar coordinates b

ds25cos2~y/R!du21dy2, ds25dr21R2 sin2~r /R!df2

reducing todu21dy2 and dr21r 2df2 when k→0 ~or, equivalentlyR→`). It is possible to
write these expressions in a form which holds simultaneously for the sphere, the Euclidean
and the hyperbolic plane, by introducing the ‘‘tagged’’ trigonometric functions Ck(x), Sk(x), and
Tk(x) defined by

Ck~x!5H cosAkx if k.0,

1 if k50,

coshA2kx i f k,0,

Sk~x!55
1

Ak
sinAkx if k.0,

x if k50,

1

A2k
sinhA2kx if k,0,

and

Tk~x!5
Sk~x!

Ck~x!
.

When the constantk is nonzero, it can be reduced to either 1 or21 by length rescaling~this is
tantamount to choose units of length so thatR51). Whenk51 the three ‘‘tagged’’ functions are
the ordinary trigonometrical functions sine, cosine and tangent, i.e., S1(x)5sinx, C1(x)5cosx,
T1(x)5tanx. For k50 one gets the ‘‘parabolic’’ sine S0(x)5x, cosine C0(x)51, and tangent
T0(x)5x. For k521, these functions are the hyperbolic cosine, sine, and tangent. Therefo
the flat casek50 all Ck(x) are replaced by 1, while all Sk(x), Tk(x) are replaced by its variable
x; this suggests that in the curved case, Ck(x) should be looked at as a kind of ‘‘curved
deformation of the function 1, while both Sk(x) and Tk(x) are two kinds of deformations of th
linear functionx.

The consistent use of the ‘‘tagged’’ functions allow to describe simultaneously the geom
of spaces with a positive-definite metric of constant curvaturek. For instance, the metric of eithe
the sphere, the Euclidean plane or the hyperbolic plane~according ask.0,50,,0) is written in
parallel and polar coordinates as

ds25Ck
2~y!du21dy2, ds25dr21Sk

2~r !df2,

and the nonzero Christoffel symbols are, in either coordinate systems,
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Guu
y 5kSk~y!Ck~y!, Guy

u 52kTk~y!,

Gff
r 52Sk~r !Ck~r !, G rf

f 51/Tk~r !.

The relations between the different coordinates (u,y), (v,x), (r ,f), of a pointP are obtained
from trigonometry. In fact, the pointsO, P, andP1 or P2 determine~see Fig. 2! two rectangular
trianglesP1PO ~resp.P2PO). We state these relations in a way that holds regardless of the v
of k; in the casesk.0 or k,0 they reduce to standard formulas of spherical or hyperb
trigonometry, while fork50 they are well-known Euclidean relations.

In any rectangular triangle, asP1PO in the figure, the three sidesr ,u,y and the anglef at O
are related by the following equations:

Sk~y!5Sk~r !sinf, Ck~r !5Ck~u!Ck~y!,

Tk~u!5Tk~r !cosf, Tk~y!5Sk~u!tanf.

When these equations are applied to the two rectangular trianglesP1PO ~sidesr ,u,y, anglef at
O) andP2PO ~sidesr ,v,x, anglep/22f at O), we get many relations with a rather symmetric
appearance in the pairsx,y, andu,v. In particular,

Sk
2~r !5Sk

2~x!1Sk
2~y!, Ck

2~r !5Ck~x!Ck~y!Ck~u!Ck~v !, Tk
2~r !5Tk

2~u!1Tk
2~v !,

Sk~x!5Ck~y!Sk~u!5Ck~r !Tk~u!, Ck~x!5
Ck~r !

Ck~v !
, Tk~x!5Ck~v !Tk~u!,

Sk~y!5Ck~x!Sk~v !5Ck~r !Tk~v !, Ck~y!5
Ck~r !

Ck~u!
, Tk~y!5Ck~u!Tk~v !,

sinf5
Tk~v !

Tk~r !
5

Sk~y!

Sk~r !
, cosf5

Tk~u!

Tk~r !
5

Sk~x!

Sk~r !
, tanf5

Tk~v !

Tk~u!
5

Tk~y!

Sk~u!
5

Sk~v !

Tk~x!
,

as well as

Tk~x!Tk~y!5Sk~u!Sk~v !, Sk~x!Sk~y!5Ck
2~r !Tk~u!Tk~v !.

The change frompolar to parallel coordinates in any constant curvature plane can be r
from these equations, and allow several equivalent expressions. Perhaps the way close
Euclidean one is

Tk~u!5Tk~r !cosf, Sk
2~r !5Ck

2~y!Sk
2~u!1Sk

2~y!,

Sk~y!5Sk~r !sinf, tanf5
Tk~y!

Sk~u!
.

Another form for the formulas in the first line is

Sk~u!5
Sk~r !cosf

Ck~y!
5

Sk~r !cosf

A12kSk
2~r !sin2 f

,

Tk
2~r !5Tk

2~u!1Tk
2~v !5Tk

2~y!1
Tk

2~u!

Ck
2~y!

.
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Indeed Tk
2(r ) allows several alternative expressions in terms ofy,u,x,v which can be considered

as constant curvature versions of Pythagorean theorem,

Tk
2~r !5Tk

2~u!1
Tk

2~y!

Ck
2~u!

5
Tk

2~u!

Ck
2~y!

1Tk
2~y!5Tk

2~v !1
Tk

2~x!

Ck
2~v !

5
Tk

2~v !

Ck
2~x!

1Tk
2~x!.

The Euclidean case corresponds tok50; there some of the equations implyu5x and v
5y, and the nontrivial remaining equations reduce to the Euclidean ones.

III. SUPERINTEGRABLE SYSTEMS ON THE EUCLIDEAN PLANE WITH QUADRATIC
CONSTANTS OF MOTION

In this section we give a short re´suméof the approach developed in Ref. 20, where supe
tegrable systems with standard kinetic term on the Euclidean plane and integrals of motion~further
than the energy! quadratic in the velocities are determined. This can be considered as thek50
particular case, for the later study inS2 or H2 wherekÞ0; we shall emphasize those aspe
which will turn out relevant for the case of nonzero curvature.

The systems we are studying are described by a Lagrangian of mechanical class living
Euclidean plane. Let us first use Cartesian coordinates (x,y). The parallel coordinate system (u,y)
reduces to the Cartesian one (x,y) in the Euclidean plane becauseu5x, so there is no reason her
to depart from the conventional notation. The Lagrangian is

L5 1
2 ~vx

21vy
2!2V~x,y!.

Assume there exists a constant of motionI 5I 221I 20, where I 22 is the quadratic term in the
velocitiesvx ,vy , andI 20 is a velocity-independent term. WriteI 225avx

212bvxvy1cvy
2 , with a,

b, c, depending onx,y. Then the functionsa, b, c, and the termI 20 cannot be arbitrary, but mus
satisfy the equations

ax50, ay12bx50, cx12by50, cy50,

I 20x52aVx12bVy , I 20y52bVx12cVy .

The compatibility condition for the last two equations leads to

b~Vyy2Vxx!1~a2c!Vxy1~ay2bx!Vx1~by2cx!Vy50,

so a potentialV(x,y) havingany constant of motion quadratic in the velocities must satisfy t
very particular differential equation. The equation isV-independent, so the solution forV is
determined up to an additive constantk0 ; this is expected for a potential.

The first set of four equations, which are independent of the potentialV(x,y), determine the
possible forms fora, b, c. By integration we obtain

a~x,y!5a01a1y1a2y2,

b~x,y!5~ 1
2!~b02a1x2c1y22a2xy!,

c~x,y!5c01c1x1a2x2,

where$a0 ,b0 ,c0 ;a1 ,c1 ;a2% are real parameters; the subindex making reference to the ordex
or y of each term. Every choice of these parameters determine a partial differential equatio
hence, a family of potentialsV5V@ f (x,y),g(x,y)# depending on two functions, and such that
these potentials have a constant of motionI 2 quadratic in the velocities. For the values$a0

5e0 ,0, c05e0 ;0,0;0% the equation reduces to an identity, so it is satisfied for an arbitrary po
tial V, and the integralI 2 reduces to the energyI 5(1/2)(vx

21vy
2)1V(x,y). Any other ‘‘non-
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trivial’’ choice of $a0 ,b0 ,c0 ;a1 ,c1 ;a2% will correspond to constants of motion further than t
energy. The fundamental equation forV can be written in the alternative way,

b~Vyy2Vxx!1~a2c!Vxy23bxVx13byVy50.

For a fixed set of parameters$a0 ,b0 ,c0 ;a1 ,c1 ;a2% this is a linear equation forV; conversely,
for fixed V, it is a linear equation for these six parameters, whose solutions will determine a l
subspace in the ‘‘parameter space’’R6 with coordinates$a0 ,b0 ,c0 ;a1 ,c1 ;a2%. The dimensionm
of this submanifold will depend on the potential, and it is at least equal to 1~generated by the
vector$101;00;0%! for any potential. A dimensionm52 will mean the existence, further than th
energy, of one~and only one! additional integral of motion quadratic in the velocities. For t
characterization of such potentials see Perelomov;29 they belong to one of the four types,

V5
1

r 1r 2
~A~r 11r 2!1B~r 12r 2!!,

V5A~r !1
1

r 2 B~f!,

V5
1

r
~A~r 1x!1B~r 2x!!,

V5A~x!1B~y!,

wherer 1 , r 2 , are the two distances to two fixed points in the plane, andr ,f; x,y, are a suitable
choice of polar and Cartesian coordinates. The first case is the generic one, the others
limiting cases where the two points either coincide, one go to infinity or two go to infinity. W
of the four cases applies is determined by the values of the parameters$a0 ,b0 ,c0 ;a1 ,c1 ;a2%;
except for the trivial case$101;00;0%, any other parameter vector can be considered as determ
the position oftwo points in the~completed! Euclidean plane and in either case the poten
depends ontwo arbitrary functions of asinglevariable.

The next case will bem53; here the potentialV(x,y) should be solution of a system oftwo
partial differential equations, determined bytwo different sets of parameters~further than
$101;00;0%!, which will be denoted by lower case letters (a0 ,b0 ,c0 ;a1 ,c1 ;a2) and the corre-
sponding upper case ones (A0 ,B0 ,C0 ;A1 ,C1 ;A2). We shall consider heresevencases~labeled
Va, Ṽa, Vb, Vc, Ṽc, Vd, andVe). Within each case, the potential which solves the system ap
as a ‘‘linear combination’’ of three particular solutions and a constant term

Vr5k01k1V1
r 1k2V2

r 1k3V3
r , Vr5Va,Ṽa,Vb,Vc,Ṽc,Vd,Ve.

Table I contains the seven sets of ‘‘basic’’ potentialsV1
r , V2

r , V3
r , and for each set, the thre

vectors generating the associated three-dimensional parameter subspace in the
(a0 ,b0 ,c0 ;a1 ,c1 ;a2).

Several comments are in order.

~1! The pairs of families denotedwith andwithout a tilde are clearly equivalent, the transform
tion relating them being simply the interchange (x,y)↔(y,x) which geometrically is the
reflection in the linex5y. The three familiesVb, Vd, Ve, are invariant under this transfor
mation.

~2! Each family Vr includes one of the three ‘‘fundamental’’ superintegrable potentials w
quadratic constants of motion~nonisotropic 2:1 oscillator, isotropic oscillator, and Kepl
problem!. The general potential in each family may be considered as a kind of ‘‘super
grable deformation’’ of these ‘‘basic’’ potentials~the valuesk2 , k3 representing the ‘‘inten-
sity’’ of the deformation!. This has been known for some time, and the existence of ‘‘su
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integrable deformations’’ which do not destroy a fragile property like the superintegrabili
the Kepler and oscillator potentials, is remarkable in itself. From a purely mathematical
of view, everyVi

r is an element of a basis in a vector space; hence the choice of ce
particular potentials as fundamental ones is due to properties related with dynamics.

~3! For any fixed nonconstant potentialV, the maximal dimension for the associated parame
subspace appears to bem54 ~the trivial constant potentialV051 hasm56). Only four
potentials reach the maximal dimension. Next we give these potentials together wit
general form of the associated vectors

V5x21y2 ~a0,b0,c0;0,0;a2!,

V5y ~a0 ,b0 ,c0 ;a1,0;0!,

V51/y2 ~a0,0,c0 ;0,c1 ;a2!,

V51/Ax21y2 ~e0,0,e0 ;a1 ,c1 ;a2!.
~4! The Kepler potential admits two possibilities of deformation preserving superintegra

since it belongs to two different families,Vc andVd. The same is also true for the isotrop
oscillator that belongs to bothVb andVe ~however in the case ofVe the ‘‘deformed’’ oscil-
lator is again another oscillator, unlike inVb). The anisotropic 2:1 oscillator admits only on
family of superintegrable deformations. The reason for this lies in the different value fo
dimension of the associated subspaces, which ism54 for Kepler and oscillator, butm53 for
the 2:1 anisotropic oscillator.

~5! The potential 1/y2 ~or 1/x2) appear also in three different families. This potential is import
because it is superintegrable by itself and also because it turns out to be ‘‘linearly compa
with all the three well known superintegrable potentials.

~6! The family Ve was not considered in Refs. 2, 14, or 20~neither in Ref. 9 that studies then
53 systems!. It can be considered as rather trivial since the general potential inVe is just an
isotropic oscillator with center at an arbitrary point~with another choice of origin this ha

TABLE I. The Euclidean maximally superintegrable potentials.

S1,0,0;0,0;0
0,0,1;0,0;0
0,0,0;0,1;0

D ~a0 ,c0 ,c1![
~a0 ,c1! or ~c0 ,c1!

Va 4x21y2, x,
1

y2

S1,0,0;0,0;0
0,0,1;0,0;0
0,0,0;1,0;0

D ~a0 ,c0 ,a1![
~a0 ,a1! or ~c0 ,a1!

Ṽa x214y2, y,
1

x2

S1,0,0;0,0;0
0,0,1;0,0;0
0,0,0;0,0;1

D ~a0 ,c0 ,a2![
~a0 ,a2! or ~c0 ,a2!

Vb x21y2,
1

x2 ,
1

y2

S1,0,1;0,0;0
0,0,0;0,1;0
0,0,0;0,0;1

D ~c1 ,a2! Vc 1

Ax21y2
,

x

y2Ax21y2
,

1

y2

S 1,0,1;0,0;0
0,0,0;1,0;0
0,0,0;0,0;1

D (a1 ,a2) Ṽc 1

Ax21y2
,

y

x2Ax21y2
,

1

x2

S 1,0,1;0,0;0
0,0,0;1,0;0
0,0,0;0,1;0

D (a1 ,c1) Vd 1

Ax21y2
,

@A~x21y2!1x#1/2

Ax21y2
,

@A~x21y2!2x#1/2

Ax21y2

S 1,0,0;0,0;0
0,1,0;0,0;0
0,0,1;0,0;0

D ~a0 ,b0 ,c0![
~a0 ,b0! or ~b0 ,c0!

Ve x21y2, x, y
                                                                                                                



its

e
step

The

r

o-

iables

5034 J. Math. Phys., Vol. 40, No. 10, October 1999 M. F. Rañada and M. Santander

                    
been already considered inVb). Nevertheless we have decided to include it because
extension to the nonzero curvature case will prove to be interesting~‘‘curvature versions’’ of
simple potentials inE2 can become rather complicate functions inS2 or H2).

Under a general change of coordinates, the potentialV will behave as a scalar field, and th
functionsa, b, c, are the three components of a covariant symmetric tensor. As a previous
for the study inS2 or H2 we will obtain the explicit expressions in planar polar coordinates.
Lagrangian is given by

L5 1
2 ~v r

21r 2vf
2 !2V~r ,f!

and the constant of motionI can be written as,I 5I 221I 20(r ,f), I 225av r
212bv rvf1cvf

2 ,
where nowa, b, c, are functions ofr , f ~notice that these new three functionsa, b, c, are not
simply equal to the former ones expressed in terms of (r ,f), because of the tensorial characte!.
These four functionsa, b, c, andI 20, must satisfy the following equations:

ar50, 2br2~4/r !b1af50,

cr2~4/r !c12ra12bf50, cf12rb50,

I 20r52aVr12~b/r 2!Vf , I 20f52bVr12~c/r 2!Vf .

The first set of equations can be solved fora, b, c, and leads to

a~r ,f!5~ 1
2!@~a01c0!1~a02c0!cos 2f1b0 sin 2f#,

b~r ,f!5~ 1
2!r @~c02a0!sin 2f1b0 cos 2f#1~ 1

2!r
2~2a1 cosf1c1 sinf!,

c~r ,f!5~ 1
2!r

2@~a01c0!1~c02a0!cos 2f2b0 sin 2f#1r 3~c1 cosf1a1 sinf!1a2r 4.

In Cartesian coordinates,a(x,y), b(x,y), andc(x,y) were nonhomogeneous quadratic polyn
mials in x, y ~with some special relations for the coefficients!; in polar coordinatesa(r ,f),
b(r ,f), c(r ,f), have Fourier series for thef dependence up to the terms in cos(2f), sin(2f)
~also with special relations for the coefficients and the radial dependence!.

Making use of these expressions we get the most general form of the functionI 22 as

I 225a0I 22~a0!1b0I 22~b0!1c0I 22~c0!1a1I 22~a1!1c1I 22~c1!1a2I 22~a2!,

where

I 22~a0!5~v r cosf2rvf sinf!2,

I 22~b0!5~v r cosf2rvf sinf!~v r sinf1rvf cosf!,

I 22~c0!5~v r sinf1rvf cosf!2,

I 22~a1!5~v r cosf2rvf sinf!~r 2vf!,

I 22~c1!5~v r sinf1rvf cosf!~r 2vf!,

I 22~b2!5~r 2vf!2

~notice that in the above expressions the coefficients in brackets are just labels and not var!.
The functionI 20 exists if and only ifV satisfies the following equation:
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b~Vff2r 2Vrr !1~c2r 2a!Vrf1S r 2

2 D F S 4

r Db23afGVr1F S 2

r D ~c2r 2a!23bfGVf50.

Consequently, superintegrability arises for potentials satisfyingtwo ~nontrivial! equations of such
a particular form. The following proposition states this property.

Proposition 1: Let the function V be the solution of the following system of two pa
differential equations:

b~Vff2r 2Vrr !1~c2r 2a!Vrf1S r 2

2 D F S 4

r Db23afGVr1F S 2

r D ~c2r 2a!23bfGVf50,

B~Vff2r 2Vrr !1~C2r 2A!Vrf1S r 2

2 D F S 4

r DB23AfGVr1F S 2

r D ~C2r 2A!23BfGVf50,

where(a(r ,f),b(r ,f),c(r ,f)), and (A(r ,f),B(r ,f),C(r ,f)), are two sets of three function
determined by two sets of nontrivial real constants(ai ,bi ,ci), and (Ai ,Bi ,Ci), respectively.
Suppose that these two sets of constants are such that the two above second-order equat
independent. Then, if T denotes the Euclidean kinetic function T5(1/2)(v r

21r 2vf
2 ), the Lagrang-

ian L5T2V(r ,f) is superintegrable with quadratic constants of motion.
For further convenience, we sum up in the Table II the polar expressions for the s

‘‘basic’’ potentialsV1 , V2 , V3 , in each of the families, as well as the associated sets of pa
eters.

We close this section with some observations. Any superintegrable potential should be
ciated totwo different sets of constants (ai ,bi ,ci) and (Ai ,Bi ,Ci), in addition to the trivial one
$a05e0,0, c05e0 ;0,0;0%, which corresponds to the energy for all potentials. These two se
values are (c1 ,a2) ~i.e., $0,0,0;0,c1 ;0% and $0,0,0;0,0;a2%) for Vc, (a1 ,a2) for Ṽc and (a1 ,c1)
for Vd. The situation for other families is a bit more subtle.Vb appears for two different choice
for the two sets of constants, say (a0 ,a2) or (c0 ,a2), andVe appears for (a0 ,b0) or (b0 ,c0). In
both cases this twofold description is possible because the integral of motion associateda0 ,
together with the energy—which is always present—implies the presence of another cons
motion associated toc0 , and conversely. Indeed, one can check that the systems of two fu

TABLE II. Polar expressions of the basic Euclidean superintegrable potentials.

~a0,c0,c1![
~a0,c1! or ~c0 ,c1!

Va r 2(113 cos2 f) r cosf
1

r2 sin2 f

~a0,c0,a1![
~a0,a1! or ~c0 ,a1!

Ṽa r 2(113 sin2 f) r sinf
1

r2 cos2 f

~a0,c0,a2![
~a0,a2! or ~c0 ,a2!

Vb r 2 1

r2 cos2 f

1

r2 sin2 f

(c1 ,a2) Vc 1

r

cosf

r2 sin2 f

1

r2 sin2 f

(a1 ,a2) Ṽc 1

r

sinf

r2 cos2 f

1

r2 cos2 f

(a1 ,c1) Vd 1

r

A11cosf

r1/2

A12cosf

r1/2

~a0 ,b0 ,c0![
~a0 ,b0! or ~b0 ,c0!

Ve r 2 r cosf r sinf
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mental equations for (a0 ,a2) and for (c0 ,a2) are equivalent. As far asVa is concerned, the two
possibilities (a0 ,c1) and (c0 ,c1) coincide again for the same reason, and the same happen
Ṽa. This will be relevant when discussing the situation for the case of nonzero curvature.

Overall, the simplest expression for these potentials is not in terms of any system of c
nates, but ofdistancesto a given pointO and/or to a pair of mutually orthogonal lines throughO.
In terms of these geometrical quantitiesr ; x5v, y5u, we have

Va5k01k1~4x21y2!1k2x1k3

1

y2 ,

Vb5k01k1r 21k2

1

x2 1k3

1

y2 ,

Vc5k01k1

1

r
1k2

1

r

x

y2 1k3

1

y2 ,

Vd5k01k1

1

r
1k2

1

r
~r 1x!1/21k3

1

r
~r 2x!1/2,

Ve5k01k1r 21k2x1k3y.

As we will see, superintegrable systems with two quadratic constants of motion in 2D spa
constant curvature will have a comparable description.

IV. SUPERINTEGRABLE SYSTEMS ON THE TWO-DIMENSIONAL SPHERE S2 AND
HYPERBOLIC PLANE H2 WITH QUADRATIC CONSTANTS OF MOTION

As observed in the Introduction, existing studies of potentials on the sphere have been
concerned with central potentials. There are some rather simple noncentral problems as, e
nonisotropic oscillator or the He´non–Heiles system, that have been highly studied in the plane
still remain very little analyzed in the sphere or the hyperbolic plane.

We now perform for the case of constant curvaturek a study similar to the one outlined fo
the Euclidean plane. We first use polar coordinates, and afterwards we shall give the expr
in parallel coordinates.

A. Polar coordinates

Let us consider the following Lagrangian:

L5 1
2 ~v r

21Sk
2~r !vf

2 !2U~r ,f!

corresponding to a system with configuration spaceQ (S2 if k.0 or H2 if k,0). In both cases
k is the curvature ofQ. We will follow the same two step approach developed in Sec. III. The
step is concerned with the existence ofonequadratic integral of motion~integrability!. The second
step corresponds with the existence of two quadratic integrals of motion~superintegrability!. The
following proposition summarizes the first step:

Proposition 2: Let L be the following two-degrees of freedom Lagrangian:

L5~ 1
2!~v r

21Sk
2~r !vf

2 !2U~r ,f!

corresponding to a system with a configuration space of constant curvaturek, and suppose that L
has a constant of the motion I5I (r ,f,v r ,vf) that is quadratic in the velocities

I 5I 221I 20~r ,f!, I 225av r
212bv rvf1cvf

2 ,
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where a, b, and c, are functions of r andf. Then,
(i) The three functions a, b, and c must take the form

a5a0 cos2 f1c0 sin2 f1b0 sinf cosf,

b5~ 1
2!Sk~r !Ck~r !@~c02a0!sin 2f1b0 cos 2f#1~ 1

2!Sk
2~r !~2a1 cosf1c1 sinf!,

c5~Sk~r !Ck~r !!2~a0 sin2 f1c0 cos2 f2b0 sinf cosf!

1Sk
3~r !Ck~r !~c1 cosf1a1 sinf!1a2Sk

4~r !,

where a0 ,b0 ,c0 ; a1 ,c1 ; a2 are real parameters.
(ii) The potential U(r ,f) must be solution of the following differential equation:

b~Sk
2~r !Urr 2Uff!1~c2aSk

2~r !!Urf1Sk
2~r !F2S Ck~r !

Sk~r ! Db2S 3

2DafGUr

1F2S Ck~r !

Sk~r ! D ~c2aSk
2~r !!23bfGUf50.

Proof: Assume there exists a constant of motionI 5I 221I 20, where I 22 takes the formI 22

5avx
212bvxvy1cvy

2 , with the functionsa, b, c depending onr ,f. These functions must satisf
the following four equations:

ar50,

2br24S Ck~r !

Sk~r ! Db1af50,

cr24S Ck~r !

Sk~r ! D c1~2Sk~r !Ck~r !!a12bf50,

cf1~2Sk~r !Ck~r !!b50.

Solving this system we obtain the expressions in statement~i! in the Proposition.
The functionI 20 is related to the potentialU by the following system:

I 20r52aUr1
2bUf

Sk
2~r !

, I 20f52bUr1
2cUf

Sk
2~r !

.

Taking derivatives, and using~i!, we obtain the equation in point~ii ! for the potentialU.
Concerning~i!, the most remarkable property of the expressions obtained for the three

tionsa, b, c, is that they depend on thesamenumber of parameters$a0 ,b0 ,c0 ; a1 ,c1 ; a2%, as in
the flat k50 case~then Sk(r )→r and Ck(r )→1 so all these equations coincide with the on
obtained in Sec. III forQ5E2). In this k-dependent form, the case where the configuration sp
is Euclidean appears not as a limit but simply as the particular casek50; genericallyr appears
through Sk(r ), and there are also some factors which in the curved case appear through a
cosine ofr , Ck(r ) which in the Euclidean case degenerates to C0(r )[1 and which therefore
becomes invisible; of course these terms turn visible once we deal with the case of no
curvaturek.

As a, b, c are linear in the parametersai ,bi ,ci , the most general form forI 22 is

I 225a0I 22~a0 ,k!1b0I 22~b0 ,k!1c0I 22~c0 ,k!1a1I 22~a1 ,k!1c1I 22~c1 ,k!1a2I 22~a2 ,k!,

where
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I 22~a0 ,k!5~cosfv r2Sk~r !Ck~r !sinfvf!2,

I 22~b0 ,k!5~cosfv r2Sk~r !Ck~r !sinfvf!~sinfv r1Sk~r !Ck~r !cosfvf!,

I 22~c0 ,k!5~sinfv r1Sk~r !Ck~r !cosfvf!2,

I 22~a1 ,k!5Sk
2~r !~cosfv r2Sk~r !Ck~r !sinfvf!vf ,

I 22~c1 ,k!5Sk
2~r !~sinfv r1Sk~r !Ck~r !cosfvf!vf .

I 22~a2 ,k!5Sk
4~r !vf

2 .

A direct calculation shows that

I 22~a0 ,k!1I 22~c0 ,k!1k@ I 22~a2 ,k!#5v r
21Sk

2~r !vf
2

so in any configuration space of nonzero constant curvaturek the kinetic term can always b
written as a sum ofthreesummands, one of which carries the curvaturek and vanishes into the
limit k→0. In the particular cases where the total energyE5T1U becomes totally separable,
will appear as a sum, not of two~as in E2), but of three components. This is an interesti
characteristic of this trivial first integral of the motion making the analysis of the different fam
of superintegrable potentials in the sphere and the hyperbolic plane richer than in the Euc
case.

The above Proposition 2 relates integrability with the property of satisfying asingledifferen-
tial equation for the potential. InQ5S2 or Q5H2, as inQ5E2, two independent integrals o
motion ~further than the energy! are required for the superintegrability of the system. The follo
ing proposition 3 states the relation of superintegrability in configuration spaces of constan
vature with the fact that the potential should satisfy a system of two such equations.

Proposition 3: Let the potential U be a solution of the following system of two pa
differential equations,

b~Sk
2~r !Urr 2Uff!1~c2aSk

2~r !!Urf1Sk
2~r !F2S Ck~r !

Sk~r ! Db2S 3

2DafGUr

1F2S Ck~r !

Sk~r ! D ~c2aSk
2~r !!23bfGUf50,

B~Sk
2~r !Urr 2Uff!1~C2ASk

2~r !!Urf1Sk
2~r !F2S Ck~r !

Sk~r ! DB2S 3

2DAfGUr

1F2S Ck~r !

Sk~r ! D ~C2ASk
2~r !!23BfGUf50,

where(a(r ,f),b(r ,f),c(r ,f)), and (A(r ,f),B(r ,f),C(r ,f)), are two sets of three function
determined as in Prop. 2(i) by two sets of nontrivial real constants(ai ,bi ,ci), and (Ai ,Bi ,Ci),
respectively. Suppose that these two sets of constants are not only different but such that
above second-order equations are independent. Then, if T5(1/2)(v r

21Sk
2(r )vf

2 ) denotes the ki-
netic function in a configuration space of constant curvaturek, the Lagrangian L5T2U(r ,f)
describes a superintegrable system on either the sphere(k.0), the Euclidean plane(k50) or
the hyperbolic plane(k,0), with quadratic constants of motion.

We will study now the spherical or hyperbolic versions of the superintegrable poten
already presented for the Euclidean plane. For consistency with the flat case we will denot
asUa, Ũa, Uaa, Ũaa, Ub, Uc, Ud, Ue, andŨe. They correspond to the choices of paramet
given in Table III.
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The family Ub is again characterized by three independent parameter vectors$100;00;0%,
$001;00;0% and $000;00;1%; the vector corresponding to the energy is already contained in
subspace generated by these three vectors. In other cases, the parameter vector corresp
the energy will be assumed without explicit mention. The familyVa, which in the flat case
correspondedsimultaneouslyto two pairs pairs (a0 ,c1) and (c0 ,c1) will now split into two
different families Ua and Uaa, associated, respectively, with (a0 ,c1) and (c0 ,c1). A similar
splitting occurs for the flat familiesṼa and Ve. As we shall see shortly, and likewise as inQ
5E2, it is again remarkable that the general solution forU appears also as a linear combinati
of simpler particular nontrivial solutions~three for almost all families!, in addition to the constan
potentialU051, which is of course superintegrable and has associated the full the six-dimen
parameter space.

1. Superintegrable systems on the unit sphere

We first present a detailed study of the resolution of the equations for the particular ck
51. The complete rewriting of the solutions for any arbitrary~positive or negative! value ofk is
done afterwards.

a. Family Ua. Notice that the case (a0 ,c0 ,c1) is not possible forkÞ0. In fact we have
obtained that it splits in two different subcases (a0 ,c1) and (c0 ,c1).

We first consider the two linear second-order equations associated to (a0 ,C1), that is, to the
vectors$a000;00;0% and$000;0C1 ;0%. Whenk51 they are

S cosr

sinr D ~sinf cosf!~sin2 rU rr 2Uff!1~cos2 f2cos2 r sin2 f!Urf

1~2 cos2 r 23!~sinf cosf!Ur1S cosr

sinr D @~322 cos2 r !sin2 f2cos2 f#Uf50,

sinf~sin2 rU rr 2Uff!12~sinr cosr cosf!Urf12~sinr cosr sinf!Ur

2cosf~324 cos2 r !Uf50.

The first equation, that corresponds toa0Þ0, can be reduced to canonical form by means of
following change of variables

~r ,f!→~wa ,za!, wa5sinr sinf, za5tanr cosf.

The general solution takes the form

U~r ,f;a0!5F~wa!1
G~za!

12wa
2 5F~sinr sinf!1

G~ tanr cosf!

12~sinr sinf!2 .

Substituting in the equation forC1Þ0 we have found the following potentials:

Ua5Ua~r ,f;a0 ,C1!5k01k1U1
a1k2U2

a1k3U3
a ,

TABLE III. Parameters and non-Euclidean families of potentials.

(a0 ,c1);(c0 ,a1) Ua;Ũa

(c0 ,c1);(a0 ,a1) Uaa;Ũaa

(a0 ,c0 ,a2)[(a0 ,a2) or (c0 ,a2) or (a0 ,c0) Ub

(c1 ,a2);(a1 ,a2) Uc;Ũc

(a1 ,c1) Ud

(a0 ,b0);(b0 ,c0) Ue;Ũe
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U1
a5

1

12wa
2 F4S za

12za
2D 2

1wa
2G5

1

12~sinr sinf!2 F4S tanr cosf

12~ tanr cosf!2D 2

1~sinr sinf!2G ,
U2

a5
1

12wa
2 F ~11za

2!za

~12za
2!2 G5

tanr cosf

~cos2 r !@12~ tanr cosf!2#2 ,

U3
a5

1

wa
2 5

1

~sinr sinf!2 ,

wherek0 and ki , i 51,2,3, are arbitrary constants~we display explicitly the constant termk0 ,
linked to the constant potentialU051 which will appear in all families!. The two constants of
motion, I 2

a and I 3
a , take the form

I 2
a5~cosfv r2sinr cosr sinfvf!21

8k1~ tanr cosf!2

@12~ tanr cosf!2#2

1
2k2@11~ tanr cosf!2#~ tanr cosf!

@12~ tanr cosf!2#2 ,

I 3
a5~sinr !2~sinfv r1sinr cosr cosfvf!vf2

2k1~ tan3 r cosf sin2 f!

@12~ tanr cosf!2#2

2
k2@11~ tanr cosf!2#~ tanr sinf!2

2@12~ tanr cosf!2#2 1
2k3 cosr cosf

sinr sin2 f
.

b. Family Ũa. We can also consider the family of potentials associated with (c0 ,A1). The
equations are

S cosr

sinr D ~sinf cosf!~sin2 rU rr 2Uff!1~cos2 r cos2 f2sin2 f!Urf

1~2 cos2 r 23!~sinf cosf!Ur1S cosr

sinr D @sin2 f2~322 cos2 r !cos2 f#Uf50,

cosf~sin2 rU rr 2Uff!22~sinr cosr sinf!Urf12~sinr cosr cosf!Ur

2sinf~324 cos2 r !Uf50.

The first equation, that corresponds toc0Þ0, can be reduced to canonical form making use of
following change:

~r ,f!→~wc ,zc!, wc5sinr cosf, zc5tanr sinf.

The general solution takes the form

Ũ~r ,f;c0!5F̃~wc!1
G̃~zc!

12wc
2 5F̃~sinr cosf!1

G̃~ tanr sinf!

12~sinr cosf!2 .

Substituting this general expression into the equation forA1Þ0 we have found the following
potentials:

Ũa5Ũa~r ,f;c0 ,A1!5k01k1Ũ1
a1k2Ũ2

a1k3Ũ3
a ,
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Ũ1
a5

1

12wc
2 Fwc

214S zc

12zc
2D 2G5

1

12~sinr cosf!2 F ~sin cosf!214S tanr sinf

12~ tanr sinf!2D 2G ,
Ũ2

a5
1

12wc
2 F ~11zc

2!zc

~12zc
2!2 G5

tanr sinf

~cos2 r !@12~ tanr sinf!2#2 ,

Ũ3
a5

1

wc
2 5

1

~sinr cosf!2 .

c. Family Uaa. When kÞ0 we can also consider the system of second-order equa
associated with (c0 ,C1), that is, to the vectors$00c0 ;00;0% and$000;0C1 ;0%. They are

S cosr

sinr D ~sinf cosf!~sin2 rU rr 2Uff!1~cos2 r cos2 f2sin2 f!Urf

1~2 cos2 r 23!~sinf cosf!Ur1S cosr

sinr D @sin2 f2~322 cos2 r !cos2 f#Uf50,

sinf~sin2 rU rr 2Uff!12~sinr cosr cosf!Urf12~sinr cosr sinf!Ur

2cosf~324 cos2 r !Uf50.

We have found the following solutions:

Uaa5Uaa~r ,f;c0 ,C1!5k01k1U1
aa1k2U2

aa1k3U3
aa ,

U1
aa5

wc

A12wc
2

5
sinr cosf

A1 2~sinr cosf!2
,

U2
aa5

A11zc
2

~12wc
2!zc

2 5
cosr

~sinr sinf!2A12~sinr cosf!2
,

U3
aa5

11zc
2

~12wc
2!zc

2 5
1

~sinr sinf!2 ,

and the following two constants of motion:

I 2
aa5~sinfv r1sinr cosr cosfvf!21

2k2 cosrA12~sinr cosf!2

~sinr sinf!2 1
2k3 cos2r

~sinr sinf!2 ,

I 3
aa5~sinr !2~sinfv r1sinr cosr cosfvf!vf1

k1 cosr

A12~sinr cosf!2

1
k2 cosf@2 cos2r 1~sinr sinf!2#

~sinr sinf!2A12~sinr cosf!2
1

2k3 cosr cosf

sinr sin2f
.

d. Family Ũaa. Similarly, the general solution of the system (a0Þ0, A1Þ0), that we will
denote byŨaa5Ũaa(r ,f;a0 ,A1), is given by
                                                                                                                



e
ns

5042 J. Math. Phys., Vol. 40, No. 10, October 1999 M. F. Rañada and M. Santander

                    
Ũaa5Ũaa~r ,f;a0 ,A1!5k01k1Ũ1
aa1k2Ũ2

aa1k3Ũ3
aa ,

Ũ1
aa5

wa

A12wa
2

5
sinr sinf

A1 2~sinr sinf!2
,

Ũ2
aa5

A11za
2

~12wa
2!za

2 5
cosr

~sinr cosf!2A12~sinr sinf!2
,

Ũ3
aa5

11za
2

~12wa
2!za

2 5
1

~sinr cosf!2 .

e. Family Ub. The two linear second-order equations are those associated with (a0 ,C0), that
is, to the vectors$a000;00;0% and $00C0 ;00;0%. Before proceeding, we note that any of th
alternative choices (a0 ,A2) or (c0 ,A2) would lead exactly to the same family. The two equatio
for a0 andC0 are

S cosr

sinr D ~sinf cosf!~sin2 rU rr 2Uff!1~cos2 f2cos2 r sin2 f!Urf1~2 cos2 r 23!

3~sinf cosf!Ur1S cosr

sinr D @~322 cos2 r !sin2 f2cos2 f#Uf50,

S cosr

sinr D ~sinf cosf!~sin2 rU rr 2Uff!1~cos2 r cos2 f2sin2 f!Urf1~2 cos2 r 23!

3~sinf cosf!Ur1S cosr

sinr D @sin2 f2~322 cos2 r !cos2 f#Uf50.

The general solution of the first equation, that corresponds toa0Þ0, takes the form

U~r ,f;a0!5F~wa!1
G~za!

12wa
2 5F~sinr sinf!1

G~ tanr cosf!

12~sinr sinf!2 .

Notice that, in the parallel coordinates (u,y), the canonical variables can be written aswa

5siny, za5tanu, soU(r ,f;a0) can also be written as

U~r ,f;a0!5 f ~siny!1
g~ tanu!

cos2 y
.

Concerning the second equation, corresponding toC0Þ0, the canonical coordinates arewc

5sinr cosf, zc5tanr sinf, which can be alternatively rewritten aswc5sinx, zc5tanv. The
corresponding general solution takes the form

Ũ~r ,f;c0!5F̃~wc!1
G̃~zc!

12wc
2 5F̃~sinr cosf!1

G̃~ tanrsinf!

12~sinr cosf!2 5 f̃ ~sinx!1
g̃~ tanv !

cos2 x
.

The corresponding general solution for the potentialU, that we will denote by Ub

5Ub(r ,f;a0 ,C0), must be expressible simultaneously asU(r ,f;a0) and asU(r ,f;C0); this is
enforced by requiring that the explicit form for the general solution of the equation fora0Þ0
solves the equation forC0Þ0. This leads to the following solutions forU:
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Ub5Ub~r ,f;a0 ,C0!5k01k1U1
b1k2U2

b1k3U3
b ,

U1
b5

wa
21za

2

12wa
2 5

wc
21zc

2

12wc
2 5S sinr

cosr D
2

,

U2
b5

11za
2

~12wa
2!za

2 5
1

wc
2 5

1

~sinr cosf!2 ,

U3
b5

1

wa
2 5

11zc
2

~12wc
2!zc

2 5
1

~sinr sinf!2 ,

wherek0 andki , i 51,2,3, are arbitrary constants. As indicated, these potentials are automa
solution of the equation fora2Þ0.

The two constants of motion,I 2
b and I 3

b , take the form

I 2
b5~cosfv r2sinr cosr sinfvf!212k1S sinr

cosr D
2

cos2 f12k2S cosr

sinr cosf D 2

,

I 3
b5~sinfv r1sinr cosr cosfvf!212k1S sinr

cosr D
2

sin2 f12k3S cosr

sinr sinf D 2

.

Notice that, in this particular case, we can consider as the first integral of motion the follo
function:

I 1
b5~sinr !4vf

2 12S k2

cos2 f D12S k3

sin2 f D .

f. Family Uc. The second-order equations correspond to$000;00;a2% and $000;0C1 ;0%.
They are

sinrU rf12 cosrU f50,

sinf~sin2 rU rr 2Uff!12~sinr cosr cosf!Urf12~sinr cosr sinf!Ur

2cosf~324 cos2 r !Uf50.

The first equation, that corresponds toa2Þ0, has as general solution the following family o
functions:

U~r ,f;a2!5F~r !1
G~f!

~sinr !2 .

SubstitutingU(r ,f;a2) in the second equation, that corresponds toC1Þ0, we obtain the follow-
ing potentials:

Uc5Uc~r ,f;a2 ,C1!5k01k1U1
c1k2U2

c1k3U3
c ,

U1
c5

cosr

sinr
, U2

c5
cosf

~sinr sinf!2 , U3
c5

1

~sinr sinf!2 .

The two constants of motionI 2
c , andI 3

c , take the form
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I 2
c5~sinr !4vf

2 12k2S cosf

sin2 f D12k3S cosf

sinf D 2

,

I 3
c5~sinr !2~sinfv r1sinr cosr cosfvf!vf1k1 cosf

1k2S cosr ~11cos2 f!

sinr sin2 f D12k3S cosr cosf

sinr sin2 f D .

g. Family Ũc. The second-order equations correspond to$000;00;a2% and $000;0A1 ;0%.
They are

sinrU rf12 cosrU f50,

cosf~sin2 rU rr 2Uff!22~sinr cosr sinf!Urf

12~sinr cosr cosf!Ur1sinf~324 cos2 r !Uf50.

In a rather similar way to the previous case, we have obtained the following potentials:

Ũc5Ũc~r ,f;a2 ,A1!5k01k1Ũ1
c1k2Ũ2

c1k3Ũ3
c ,

Ũ1
c5

cosr

sinr
, Ũ2

c5
1

~sinr cosf!2 , Ũ3
c5

sinf

~sinr cosf!2 .

h. Family Ud. The two linear second-order equations corresponding to$000;a10;0% and to
$000;0C1 ;0% are the following:

sinf~sin2 rU rr 2Uff!12~sinr cosr cosf!Urf

12~sinr cosr sinf!Ur2cosf~324 cos2 r !Uf50,

cosf~sin2 rU rr 2Uff!22~sinr cosr sinf!Urf

12~sinr cosr cosf!Ur1sinf~324 cos2 r !Uf50,

that can be equivalently rewritten as

2 sinr cosrU rf1~4 cos2 r 23!Uf50,

2 sinr cosrU r1~sin2 rU rr 2Uff!50.

The general solution for the first equation isF(r )1G(f)/Asinr cos3 r. Substituting this expres
sion in the second one we arrive atF(r )5k01k1(cosr/sinr), andG50. Thus the most genera
form of a potential in the familyUd is given by

Ud5Ud~r ,f;a1 ,C1!5k01k1U1
d ,

U1
d5

1

tanr
,

wherek0 andk1 are again arbitrary constants.
The two constants of motion,I 2

d and I 3
d , take the form

I 2
d5~sinr !2~sinfv r2sinr cosr cosfvf!vf2k1 sinf,

I 3
d5~sinr !2~cosfv r1sinr cosr sinfvf!vf1k1 cosf.
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i. Family Ue. The two linear second-order equations are those associated with (a0Þ0, B0

Þ0), that is, to the vectors$a000;00;0% and$0B00;00;0%. The two equations fora0 andB0 are

S cosr

sinr D ~sinf cosf!~sin2 rU rr 2Uff!1~cos2 f2cos2 r sin2 f!Urf

1~2 cos2 r 23!~sinf cosf!Ur1S cosr

sinr D @~322 cos2 r !sin2 f2cos2 f#Uf50,

and

S cosr

sinr D ~cos2 f2sin2 f!~sin2 rU rr 2Uff!22~11cos2 r !~cosf sinf!Urf

1~cos2 r 2sin2 r 22!~cos2 f2sin2 f!Ur14S cosr

sinr
1cosr sinr D ~cosf sinf!Uf50.

The general solution of this system, that we will denote byUe5Ue(r ,f;a0 ,B0), turns out to be

Ue5Ue~r ,f;a0 ,B0!5k01k1U1
e1k2U2

e1k3U3
e ,

U1
e5

wa
21za

2

12wa
2 5~ tanr !2,

U2
e5

zaA11za
2

12wa
2 5

tanr cosf

~cosr !A12~sinr sinf!2
,

U3
e5

wa

A12wa
2

5
sinr sinf

A12~sinr sinf!2
,

and the associated two constants of motion,I 2
e and I 3

e , are given by

I 2
e5~cosfv r2sinr cosr sinfvf!212k1~ tanr cosf!212k2S sinr cosf

cos2 r DA12~sinr sinf!2,

I 3
e5~cosfv r2sinr cosr sinfvf!~sinfv r1sinr cosr cosfvf!12k1 tan2 r sinf cosf

1k2 sinr sinfS 112 tan2 r cos2f

A12~sinr sinf!2D 1
k3 sinr cosf

A1 2~sinr sinf!2
.

j. Family Ũe. Similarly, the general solution of the system (b0Þ0, C0Þ0), that we will
denote byŨe5Ũe(r ,f;b0 ,C0), is given by

Ũe5Ue~r ,f;b0 ,C0!5k01k1Ũ1
e1k2Ũ2

e1k3Ũ3
e ,

Ũ1
e5

wc
21zc

2

12wc
2 5~ tanr !2,

Ũ2
e5

wc

A12wc
2

5
sinr cosf

A12~sinr cosf!2
,
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Ũ3
e5

zcA11zc
2

12wc
2 5

tanr sinf

~cosr !A12~sinr cosf!2
.

2. Superintegrable systems on a 2D space of constant curvature

Next we present the results obtained for the potentialsUr and the integrals of motionI 2 , I 3 ,
for more general values~positive, zero or negative! of the curvaturek. Thus, the following
expressions simultaneously includes spherical, Euclidean, and hyperbolic potentials. We ha
included the tilded familiesŨa, Ũaa, Ũc, andŨe, which for all values ofk can be obtained from
Ua, Uaa, Uc, andUe by reflection in the geodesicx5y, which in polar coordinates amounts t
the interchange cosf↔sinf.

a. Family Ua. The generalk-dependent form of the potentialUa is given by

Ua5Ua~r ,f,k;a0 ,C1!5k01k1U1
a1k2U2

a1k3U3
a ,

U1
a5

1

12k~Sk~r !sinf!2 F4S Tk~r !cosf

12k~Tk~r !cosf!2D 2

1~Sk~r !sinf!2G ,
U2

a5
Tk~r !cosf

Ck
2~r !@12k~Tk~r !cosf!2#2 ,

U3
a5

1

Sk
2~r !sin2 f

,

and the twok-dependent constants of motion,I 2
a and I 3

a , take the form

I 2
a5I 22~a0 ,k!1

8k1~Tk~r !cosf!2

@12k~Tk~r !cosf!2#2 1
2k2@11k~Tk~r !cosf!2#~Tk~r !cosf!

@12k~Tk~r !cosf!2#2 ,

I 3
a5I 22~c1 ,k!2

2k1Tk
3~r !cosf sin2 f

@12k~Tk~r !cosf!2#22
k2@11k~Tk~r !cosf!2#~Tk~r !sinf!2

2@12k~Tk~r !cosf!2#2

1
2k3Ck~r !cosf

Sk~r !sin2 f
.

Notice that for the particular casek50 we obtain

Ua5k01k1r 2~4 cos2 f1sin2 f!1k2r cosf1
k3

~r sinf!2 ,

I 2
a5~v r cosf2rvf sinf!218k1~r cosf!212k2r cosf,

I 3
a5~v r sinf1rvf cosf!~r 2vf!22k1r 3 cosf sin2 f2S 1

2D k2~r sinf!21
2k3 cosf

r sin2 f

that coincide with the corresponding expressions obtained in Sec. III for the Euclidean pla
b. Family Uaa. The generalk-dependent form of the potentialUaa is given by

Uaa5Uaa~r ,f,k;c0 ,C1!5k01k1U1
aa1k2U2

aa1k3U3
aa ,

U1
aa5

Sk~r !cosf

A1 2k@Sk~r !cosf#2
,
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U2
aa5

1

@Sk~r !sinf#2

Ck~r !

A12k@Sk~r !cosf#2
,

U3
aa5

1

@Sk~r !sinf#2 ,

and the twok-dependent constants of motion,I 2
aa and I 3

aa , take the form

I 2
aa5I 22~c0 ,k!1

2k2Ck~r !

@Sk~r !sinf#2 A12k@Sk~r !cosf#21
2k3Ck

2~r !

@Sk~r !sinf#2 ,

I 3
aa5I 22~c1 ,k!1

k1Ck~r !

kA12k@Sk~r !cosf#2
1

k2 cosf@2Ck
2~r !1k@Sk~r !cosf#2#

Sk~r !sin2 fA12k@Sk~r !cosf#2

1
2k3Ck~r !cosf

Sk~r !sin2 f
.

c. Family Ub. The generalk-dependent form of the potentialUb is given by

Ub5Ub~r ,f,k;a0 ,C0!5k01k1U1
b1k2U2

b1k3U3
b ,

U1
b5Tk

2~r !, U2
b5

1

~Sk~r !cosf!2 , U3
b5

1

~Sk~r !sinf!2 ,

and the twok-dependent constants of motion,I 2
b and I 3

b , take the form

I 2
b5I 22~a0 ,k!12k1Tk

2~r !cos2 f12k2S Ck~r !

Sk~r !cosf D 2

,

I 3
b5I 22~c0 ,k!12k1Tk

2~r !sin2 f12k3S Ck~r !

Sk~r !sinf D 2

.

d. Family Uc. The generalk-dependent form of the potentialUc is given by

Uc5Uc~r ,f,k;a2 ,C1!5k01k1U1
c1k2U2

c1k3U3
c ,

U1
c5

Ck~r !

Sk~r !
, U2

c5
cosf

~Sk~r !sinf!2 , U3
c5

1

~Sk~r !sinf!2 ,

and the twok-dependent constants of motion,I 2
c and I 3

c , take the form

I 2
c5I 22~a2 ,k!12k2S cosf

sin2 f D12k3S cosf

sinf D 2

I 3
c5I 22~c1 ,k!1k1 cosf1k2S Ck~r !~11cos2 f!

Sk~r !sin2 f D12k3S Ck~r !cosf

Sk~r !sin2 f D .

e. Family Ud. The generalk-dependent form of the potentialUd is given by
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Ud5Ud~r ,f,k;a1 ,C1!5k01k1U1
d ,

U1
d5

1

Tk~r !
,

and the twok-dependent constants of motion,I 2
d and I 3

d , take the form

I 2
d5I 22~a1 ,k!2k1 sinf,

I 3
d5I 22~c1 ,k!1k1 cosf.

f. Family Ue. The generalk-dependent form of the potentialUe is given by

Ue5Ue~r ,f,k;a0 ,B0!5k01k1U1
e1k2U2

e1k3U3
e ,

U1
e5Tk

2~r !, U2
e5

Tk~r !cosf

Ck~r !A12k@Sk~r !sinf#2
, U3

e5
Sk~r !sinf

A12k@Sk~r !sinf#2
,

and the twok-dependent constants of motion,I 2
e and I 3

e , take the form

I 2
e5I 22~a0 ,k!12k1~Tk~r !cosf!212k2S Sk~r !cosf

Ck
2~r ! DA12k~Sk~r !sinf!2,

I 3
e5I 22~b0 ,k!12k1Tk

2~r !sinf cosf1k2Sk~r !sinfS 112kTk
2~r !cos2 f

A12k~Sk~r !sinf!2D
1

k3Sk~r !cosf

A1 2k~Sk~r !sinf!2
.

We close this subsection with Table IV that summarizes the expressions obtained f
k-dependent ‘‘basic’’ potentials,Ur , r 5a,aa,b,c,d,e.

TABLE IV. Superintegrable potentials with curvaturek: Polar coordinates.

Ua 4S Tk~r !cosf

12k~Tk~r !cosf!2D2

1~Sk~r !sinf!2

12k~Sk~r !sinf!2

@Tk~r !/Ck
2~r !#cosf

@12k~Tk~r !cosf!2#2

1

Sk
2~r !sin2 f

Uaa Sk~r !cosf

A12k@Sk~r !cosf#2

Ck~r !/@Sk~r !sinf#2

A12k@Sk~r !cosf#2

1

Sk
2~r !sin2 f

Ub Tk
2(r )

1

Sk
2~r !cos2 f

1

Sk
2~r !sin2 f

Uc 1

Tk~r !

cosf

Sk
2~r !sin2 f

1

Sk
2~r !sin2 f

Ud 1

Tk~r !

Ue Tk
2(r )

@Tk~r !/Ck~r !#cosf

A12k@Sk~r !sinf#2

Sk~r !sinf

A12k@Sk~r !sinf#2
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B. Parallel coordinates

When looking for superintegrable potentials in the Euclidean plane, Cartesian coord
allow a simpler approach than polar ones. On the sphere or hyperbolic plane the situa
reversed. However, we can make an independent check to the results obtained so far by dis
the problem on the sphere in terms of the parallel coordinates (u,y) introduced in Sec. II. The
Lagrangian is

L5~ 1
2!~Ck

2~y!vu
21vy

2!2U~u,y!.

Denoting nowI 225avu
212bvuvy1cvy

2 , assume as in previous sections thatI 5I 221I 20(u,y) is a
constant of motion. Thena, b, c, andI 20, must satisfy

au2k~2bSk~y!Ck~y!!50,

ay12bu1k~4aTk~y!22cSk~y!Ck~y!!50,

cu12by1k~4bTk~y!!50,

cy50,

and

I 20u5
2aUu

Ck
2~y!

12bUy , I 20y5
2bUu

Ck
2~y!

12cUy .

The compatibility condition of the two last equations leads to the following differential equa
for the potential:

~a2Ck
2~y!c!Uuy1b~Ck

2~y!Uyy2Uuu!1~ay2bu12kaTk~y!!Uu1Ck
2~y!~by2cu!Uy50.

Again the terms involving the first derivatives of the potentialU can be written in different
alternative ways. Whenk50, all these equations reduce to the expressions obtained in Sec. I
Q5E2 with Cartesian coordinates (x,y). When comparing with the approach of Sec. IV usi
polar coordinates on the sphere or the hyperbolic plane, we must remark theexplicit appearance of
the curvaturek; in polar coordinatesk only appeared in the ‘‘tagged’’ trigonometric functions.

The first set of four equations can be solved fora5a(u,y), b5b(u,y), andc5c(u,y). We
have obtained

a5a0Ck
2~y!1ka1Ck

2~y!Sk~y!1k2c0~Sk~u!Ck~y!Sk~y!!2,

b5~ 1
2!@b0Ck~y!1kb1Ck~u!Sk~u!Sk~y!#,

c5c0Ck
2~u!1c1Ck~u!Sk~u!1a2Sk

2~u!,

wherea0 , a1 , b0 , andb1 , are given by

a05a0Ck
2~y!1a1Ck~u!Ck~y!Sk~y!1a2Ck

2~u!Sk
2~y!,

a15b0Sk~u!Ck~y!2c1Ck~u!Sk~u!Sk~y!,

b05b0Ck~u!Ck~y!2a1Sk~u!Ck~y!2c1Ck
2~u!Sk~y!22a2Ck~u!Sk~u!Sk~y!,

b152c0Ck~u!1c1Sk~u!.
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Alternatively, these can also be found by transforming the polar expressions by means
tensor transformation laws. Whenk50 these reduce to the Euclidean expressions fora,b,c in
Cartesian coordinates.

The explicit form of the integrable and superintegrable potentials are obtained by solvin
different particular cases of the equation forU(u,y). We simply remark the relation of the auxilia
variableswa ,za and wc ,zc with the parallel coordinates (u,y) and (v,x) in the general case o
curvaturek,

wa5Sk~y!, za5Tk~u!, wc5Sk~x!, zc5Tk~v !.

We omit the details and give directly the results obtained in Table V. These potentials co
with the expressions obtained in Sec. IV A in polar coordinates. This can be checked direc
making use of the geometrical relations given in Sec. II. For most potentials, the expressi
parallel coordinates are much less transparent than in polar ones, though the 2:1 anis
oscillatorU1

a and the potentialU3
e are simpler here. We recall that the potentials in the fami

Ũa, Ũaa, Ũc, andŨe are obtained fromUa, Uaa, Uc, andUe simply by reflection in the geodesi
x5y. This reflection maps the parallel coordinate system (u,y) into the parallel system (v,x);
therefore the expression for these ‘‘tilded’’ potentials is obtained from their ‘‘untilded’’ family
Table V by the replacementsu↔v, y↔x.

V. DISCUSSION OF RESULTS AND COMMENTS

When using the three distancesr , x, y, from P to O, l 2 , andl 1 , and the two distancesu, v,
betweenO and the orthogonal projection ofP on l 1 , and l 2 , the families of potentials can b
rewritten in the ‘‘simplest’’ way as follows:

Ua5k01k1S Tk
2~y!1

Tk
2~2u!

Ck
2~y!

D 1k2Tk~u!Ck
2~2u!Ck

2~y!1k3

1

Sk
2~y!

,

Uaa5k01k1Tk~x!1k2

Ck~v !

Sk
2~y!

1k3

1

Sk
2~y!

,

Ub5k01k1Tk
2~r !1k2

1

Sk
2~x!

1k3

1

Sk
2~y!

,

TABLE V. Superintegrable potentials with curvaturek: Parallel coordi-
nates.

Ua Tk
2~y!1

Tk
2~2u!

Ck
2~y!

Tk(u)Ck
2(2u)Ck

2(y)
1

Sk
2~y!

Uaa Ck~y!Sk~u!

A12k@Ck~y!Sk~u!#2

Ck~u!Ck~y!

Sk
2~y!A12k@Ck~y!Sk~u!#2

1

Sk
2~y!

Ub Tk
2~y!1

Tk
2~u!

Ck
2~y!

1

Ck
2~y!Sk

2~u!

1

Sk
2~y!

Uc STk
2~y!1

Tk
2~u!

Ck
2~y! D

21/2 Ck~y!Sk~u!

Sk
2~y!ACk

2~y!Sk
2~u!1Sk

2~y!

1

Sk
2~y!

Ud STk
2~y!1

Tk
2~u!

Ck
2~y!

D 21/2

Ue Tk
2~y!1

Tk
2~u!

Ck
2~y!

Sk~u!

Ck
2~u!Ck

2~y!
Tk(y)
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Uc5k01k1

1

Tk~r !
1k2

Sk~x!

Sk~r !Sk
2~y!

1k3

1

Sk
2~y!

,

Ud5k01k1

1

Tk~r !
,

Ue5k01k1Tk
2~r !1k2

Sk~u!

Ck
2~r !

1k3Tk~y!.

These potentials extend, and include as a particular case, the Euclidean expressions obt
Sec. III for k50.

The use of the curvaturek as a parameter has lead to an unified approach that highlights
facts which would be more difficult to appreciate with a separate analysis of the three sph
Euclidean and hyperbolic cases. Contractions are built-in in the procedure, so there is n
additional need to consider separately the study of contraction of spherical or hyperbolic
integrable potentials to the Euclidean ones. We now make several comments which are gro
two sets. First, in Sec. A, we give some comments on the potentials we have obtained, an
in the following subsections, a group of observations of somewhat broader scope.

A. Comments on the potentials obtained

~a! The results we have obtained give several families of potentials which remain supe
grable when the configuration space curvaturek varies and which are not trivial in the fla
limit ~here simply described as the particular casek50). We are not implying that thes
families must be considered as acomplete and not redundantset of families of superinte-
grable potentials with quadratic constants of motion on 2D spaces of constant curvatu~see
below!.

~b! There are twocentral potentials for any value of the curvature, either on the sphere an
the hyperbolic plane. The potential

UK52kU1
c52kU1

d52
k

Tk~r !
, k.0

is the ‘‘Kepler potential,’’ which on the sphere was first studied by Schro¨dinger in Ref. 25.
Likewise, the potential

UHO5~ 1
2!k

2U1
b5~ 1

2!k
2U1

e5~ 1
2!k

2Tk
2~r !

plays the role of the ‘‘harmonic oscillator’’ on either the sphere or the hyperbolic plane.
spherical version was studied by Higgs in Ref. 26 and is known as the Higgs oscillat

~c! All other potentials found appear to be ‘‘noncentral’’ in the sense they depend not on
the distance to the origin point, but also on the angular coordinate. However, a fun
involving f may turn out depending only on the distance to some given point~not the
origin!. This is what happens in the casek.0 ~sphere! with the two potentials,U3

a

51/(Sk(r )sinf)251/Sk
2(y) and U3

e5Tk(y). These two particular potentials, that depe
only onx or ony, can be considered as ‘‘central’’ if this is understood as ‘‘depending on
distance to some fixed point in the sphere,’’ not necessarily the coordinate origin. Notic
this property is a consequence of the geometric properties ofS2. Thus it is not true for the
Euclidean or the hyperbolic cases.

~d! The spherical and hyperbolic familiesUb and Uc, whose potentials are three parametric
superintegrable deformations of the harmonic oscillator and of the ‘‘Kepler problem’’
pear, e.g., in Grosche–Pogosyan Refs. 14–16. In the spherical case these are th
previously known families.

~e! An interesting—and as far as we know, new—outcome is the existence of superinte
spherical and hyperbolic versions of the Euclidean anisotropic 2:1 oscillator 4x21y2 ~or
x214y2). They are the two potentialsU1

a , ~or Ũ1
a),
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U1
a5

1

12k~Sk~r !sinf!2 F4S Tk~r !cosf

12k~Tk~r !cosf!2D
2

1~Sk~r !sinf!2G5Tk
2~y!1

Tk
2~2u!

Ck
2~y!

,

Ũ1
a5

1

12k~Sk~r !cosf!2 F~Sk~r !cosf!214S Tk~r !sinf

12k~Tk~r !sinf!2D
2G5Tk

2~x!1
Tk

2~2v !

Ck
2~x!

.

These two functions both have the correct Euclidean limit, i.e., limk→0 U1
a5r 2(4 cos2 f

1sin2 f)54x21y2 and limk→0 Ũ1
a5r 2(cos2 f14 sin2 f)5x214y2. However, their structure

in polar coordinates is complicated, and do not reduce to a radial harmonic oscillator w
purely angular modulation as it is in the flat case. If the Higgs isotropic oscillatorU1

b

5Tk
2(r ) is rewritten as U1

b5@Tk
2(r )/Z1#Z2 with Z1512k(Sk(r )sinf)2, Z25cos2 f

1Ck
2(r )sin2 f, then the changes required to obtain the superintegrable 2:1 anisotropic

lator are, not only the numerical coefficient 4~as is the case inE2), but also thek-dependent
function 12k(Tk(r )cosf)2 in the denominator of one of the two summands ofZ2 . It is
important to notice that the same process is easier in parallel coordinates; starting fro
Higgs oscillatorU1

b5Tk
2(r )5Tk

2(u)/Ck
2(y)1Tk

2(y), the replacement ofu by 2u as the ar-
gument of the function Tk(u) gives directly the 2:1 anisotropic oscillator.

~f! The family Ua in the curved case is new. The two familiesUb,Uc were already known in
eitherS2, E2, H2, and to the familyUd is rather trivial in the curved case, as it contains on
the Kepler potential. Further to these families, we also obtain two additional familie
superintegrable potentials,Uaa andUe, which both in the sphere or in the hyperbolic pla
are also new. The familyUe includes the Higgs harmonic oscillator and two new supe
tegrable spherical and hyperbolic potentials whose flat limits are the two linear pote
r cosf5x and r sinf5y. The planar familyVa admits two different curved deformations
Ua(a0 ,C1) andUaa(c0 ,C1). Notice that the Euclidean limits ofUa andUaa are given by

lim
k→0

Ua5k1V1
a1k2V2

a1k3V3
a ,

lim
k→0

Uaa5k1V2
a1k2V3

a1k3V3
a ,

so the potentialUa must be considered as the appropriate ‘‘curved version’’ ofVa. Con-
cerningUaa it must be considered, not as a ‘‘curved version’’ ofVa taken as a whole, bu
only of the subspace generated by the the two potentialsV2

a5x and V3
a51/y2 ~the 2:1

oscillatorV1
a is not present!.

~g! In Sec. III we have seen that the ‘‘Stark’’ potentialV(x,y)5x is superintegrable inE2 and
is linearly compatible with both the nonisotropic oscillatorV1

a54x21y2 and the isotropic
one V1

e5x21y2. It is interesting that this potential admitsthree different superintegrable
spherical or hyperbolic versions given by

U2
a5

@Tk~r !/Ck
2~r !#cosf

@12k~Tk~r !cosf!2#25Tk~u!Ck~2u!Ck
2~y! lim

k→0
U2

a5r cosf5x,

U2
e5

@Tk~r !/Ck~r !#cosf

A12k@Sk~r !sinf#2
5

Sk~u!

Ck
2~u!Ck

2~y!
lim
k→0

U2
e5r cosf5x,

Ũ3
e5

Sk~r !cosf

A12k@Sk~r !cosf#2
5Tk~x! lim

k→0
Ũ2

e5r cosf5x.

Each of these three constant curvature versions of the linear potential is linearly comp

with one of the two oscillators;U2
a with the 2:1 nonisotropic oscillator, andU2

e andŨ3
e with

the isotropic oscillator.
~h! For any fixed nonconstant potentialV in a configuration space of a constant curvaturek, the

maximal dimension for the associated parameter subspace appears to bem54, indepen-
dently of k. The following four potentials reach the maximal dimension:
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U1
b5U1

e5Tk
2~r !5Tk

2~y!1
Tk

2~2u!

Ck
2~y!

~a0 ,b0 ,c0 ;0,0;a2!,

U3
e5Ũ1

aa5
Sk~r !sinf

A12k@Sk~r !sinf#2
5Tk~y! ~a0 ,b0 ,e0 ;a1,0;ke0!,

U3
a5U3

b5U3
c5

1

Sk
2~r !sin2 f

5
1

Sk
2~y!

~a0,0,c0 ;0,c1 ;a2!,

U1
c5U1

d5
1

Tk~r !
5S Tk

2~y!1
Tk

2~u!

Ck
2~y!

D 21/2

~e0,0,e0 ;a1 ,c1 ;a2!.

This means thatall flat superintegrable potentials with the maximal dimension of the a
ciated parameter subspace allow a ‘‘curvature’’ version. This remark also accounts f
special role played by these four curvature versions of the flat harmonic oscillator, K
potential, linear potential, and centrifugal barrier. The curvature version of the pote
1/y2, i.e., U3

a5U3
b5U3

c51/(Sk(r )sinf)251/Sk
2(y), is a very remarkable system endowe

with a level of superintegrability compatible with the constant curvature versions of e
the oscillator, Kepler problem, and also the anisotropic 2:1 oscillator.

After these particular comments, we now discuss some more general questions.

B. Equivalence

A completeclassificationof superintegrable potentials with constants of motion which
quadratic in the velocities, in either the sphere or the hyperbolic plane would require to intr
some equivalence criteria. We do not intend to do this here, but some remarks may be re
From the present point of view a most natural idea is to look a superintegrable family in the
of constant curvaturek, associated with a pair of sets of parameter values (ai ,bi ,ci) and
(Ai ,Bi ,Ci) as equivalentto another one, with parameters (ai8 ,bi8 ,ci8) and (Ai8 ,Bi8 ,Ci8) if the
equation for (ai ,bi ,ci) ~resp. (Ai ,Bi ,Ci)) is transformed into the equation for (ai8 ,bi8 ,ci8) ~resp.
(Ai8 ,Bi8 ,Ci8)) under the regular action of the isometry group of the configuration space.
consequence, the general potential in the first family is transformed into the general poten
the second family. These transformations preserve the kinetic term, and clearly two famil
potentials which can be transformed among themselves by a rigid motion of the configu
space should be considered as essentially equivalent. This has been implicitly done when d
with a tilde some families which are equivalent in this sense to those without a tilde; the
formation of the configuration space realizing the equivalence is the reflection in the linex5y.

Forgetting about the tilded families which are equivalent to the untilded ones, we are lef
the familiesUa, Uaa, Ub, Uc, Ud, Ue, which are all different, and the question of their possib
equivalence should be addressed. The classification will produce different results in the thre
k.0, k50, k,0, and the number of equivalence classes of families should be expected
largest in the hyperbolic planek,0. Grosche and Pogosyan give our hyperbolic familiesUb, Uc,
and three hyperbolic families we have not discussed here, even though it is easy to check th
potentials satisfy the basic equation for suitable choices of pairs of parameter vectors~these are
calledV3 , V4 , V5 , in Refs. 15, 16!. The hyperbolic familiesUa, Uaa, Ue, do not appear in Refs
15 and 16. All these hyperbolic families seem to be inequivalent, and there might be still
inequivalent superintegrable families of potentials on the hyperbolic plane.

However, in the sphericalk.0 case, the three familiesUaa, Uc, andUe are equivalent. The
transformation of the configuration space which permutes cyclically the three families, i.e.Uaa

→Ue→Ũc→Uaa (Ũaa→Ũe→Uc→Ũaa), is the spherical rotation which permutes cyclically t
three mutually orthogonal coordinate axes in the ambient space~around the center of the positiv
octant, with an angle of 2p/3). Therefore, as far as equivalence classes, only the four familiesUa,
Ub, Uc, Ud, must be considered. We strongly believe that these four families are inequivale
we restrict ourselves to the particular case where each of the two extra constants of mo
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associated to a parameter vector which has asingle nonzero component in the natural bas
(a0 ,b0 ,c0 , . . . ), like the ones in Table III, then we can state that the four families of poten
we have givenexhaustthis type of superintegrable potentials in the sphere. As the reader
check, the choices (b0 ,a2), (b0 ,a1), and (c0 ,a1) which have been not discussed in the paper,
equivalent on the sphere to some of those discussed~respectively, toUa, Ud, andUd).

C. Superintegrable potentials with constant flat limit

In addition to the constant potentialU0[1, which trivially belongs to all the families o
superintegrable potentials, the familiesUb, Ue, andŨe, contain one nonconstant superintegra
deformation of the trivial planar potentialV051, and the familiesUa, and Ũa, contain two
different~hence a one parameter infinite family! of such nonconstant superintegrable deformatio
of V051. They have the following expressions:

U0
b5U0

e5Ũ0
e5

1

Ck
2~r !

,

U0(6)
a 5

1

@Ck~r !6AkSk~r !cosf#2
5

1

@Ck~r !6AkSk~x!#2
,

Ũ0(6)
a 5

1

@Ck~r !6AkSk~r !sinf#2
5

1

@Ck~r !6AkSk~y!#2
.

These functions represent superintegrable potentials with quadratic integrals~one of them of the
Noether class!. In the limit k→0, all of them go into the trivial constant potential,

lim
k→0

U0(6)
a 5 lim

k→0
Ũ0(6)

a 5 lim
k→0

U0
b5U0[1,

so each of these potentials can be considered as a nontrivial superintegrable ‘‘curvature ve
of the constant planar potential~notice that in the hyperbolic caseU0(6)

a andŨ0(6)
a are complex!.

This property~existence of nontrivial superintegrable dynamics inQ5S2 or Q5H2 reducing to
the free motion whenk→0) points out the great level of complexity of the dynamics in config
ration spaces of constant curvature.

Each of the potentialsU0(6)
a , Ũ0(6)

a , and U0
b can be expressed in terms of the const

potentialU0 and the three ‘‘basic’’ solutionsU1 , U2 , U3 , within each family. Alternatively, by
inverting the former expressions, some of the ‘‘basic solutions’’U1 , U2 , U3 , within each family
can be expressed as a ‘‘linear superposition’’ of these potentials. In particular, the isotrop
2:1 anisotropic oscillators can be rewritten in the following form:

U1
b5Tk

2~r !5S 1

k D ~U0
b2U0!,

U1
a5Tk

2~y!1
Tk

2~2u!

Ck
2~y!

5S 1

k D ~U0
a2U0!,

where we have used the notation

U0
a5~ 1

2!@U0(1)
a 1U0(2)

a #
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~a similar relation is obtained forŨ1
a and Ũ0(6)

a ). Thus, the isotropic and the anisotropic 2
oscillator potentials in a curved configuration space are proportional to the difference betwe
superintegrable potentials in the same family and with a common Euclidean limit.

The right-hand side of the above two expressions is well defined even fork→0. This can be
checked directly in these particular examples, but it is indeed ageneralproperty. If two superin-
tegrable potentialsU1 , U2 in a configuration space of constant curvaturek are in the same family
of superintegrable potentials~characterized by a given pair of sets of parameter vectors!, and have
the same Euclidean limit, limk→0 U15 limk→0 U2 , then we can write an expansion for the diffe
enceU12U2 in powers ofk, which starts in the linear term

U12U25kS FdU1

dk G
k50

2FdU2

dk G
k50

D 1O~k2!.

Hence the functionV12 given by

V125 lim
k→0

F S 1

k D ~U12U2!G5FdU1

dk G
k50

2FdU2

dk G
k50

is well defined and superintegrable inE2, with the same pair of parameter vectors asU1 , U2 . For
the two families,Ub andUa, the Euclidean potentialV12 represent the isotropic oscillator in th
first case (U15U0

b , U25U0) and the anisotropic 2:1 in the second case (U15U0
a , U25U0). So,

in a sense, these two well-known superintegrable Euclidean oscillators can be considered a
of ‘‘residue’’ in E2 of the existence of different superintegrable potentials in configuration sp
of constant curvature within the same family and with the same Euclidean limit.

D. ‘‘Correspondence’’ between potentials on constant nonzero and zero curvature
spaces

Our procedure gives directly a correspondence betweensuperintegrablepotentials in the
nonzero curvature spaces and in the flat Euclidean space. All superintegrable flat potential
familiesVa, Vb, Vc, Ve, admit a superintegrable ‘‘curvature’’ version on either the sphere and
hyperbolic plane. This property fails for the flat familyVd, where we have not found any curva
ture version of the superintegrable potentialsV2

d ,V3
d . If such curvature version exists, it shou

necessarily be associated withmixedparameter vectors, which should exhibit an explicit dep
dence of the curvaturek similar to the one found in the energy.

A somewhat surprising result is that a flat superintegrable potential may have severaldifferent
‘‘curvature versions’’ which still aresuperintegrable. For the constant potentialV051 this has
been already discussed in the previous paragraph. But once at least two~and then a one-paramete
infinity of! different superintegrable versions of the constant potential exists in a given supe
grable family, each of their members admits also a one-parameter infinity of different ‘‘curv
versions’’ of the same flat potential, all of which belong to the same family. If we drop
requirement of being in the same family, there are even more examples ofdifferent curvature
versions of the same flat potential. For instance,U2

a , U2
e , andŨ3

e , are all superintegrable curve
versions of the linear flat potentialV5x.

Given a potentialV5V(r ,f) in E2 we can construct many different potentials in the space
constant curvaturek (Q5S2 or Q5H2), U5U(r ,f;k) with V as a Euclidean limit, i.e.,
limk→0 U5V. Additional requirements may successively narrow the choice; for instance, ifV is
integrable~superintegrable! in E2, we may requireU to be integrable~superintegrable! in S2 or
H2 and so on. As an example, let us consider the general anisotropic planar oscillator,V5Ax2

1By2. Consider the two following spherical or hyperbolic potentials:

ATk
2~r !cos2 f1BSk

2~r !sin2 f

12k~Sk~r !sinf!2 5A
Tk

2~u!

Ck
2~y!

1BTk
2~y!,
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ASk
2~r !cos2 f1BTk

2~r !sin2 f

12k~Sk~r !cosf!2 5ATk
2~x!1B

Tk
2~v !

Ck
2~x!

.

Both are integrable, with constant of motion associated witha0 andc0 , respectively, and they ar
apparently reasonable spherical/hyperbolic versions of the general anisotropic planar oscilV
in the sense that both satisfy the correct Euclidean limit, i.e.,Ax21By2, and they reduce to the
spherical/hyperbolic harmonic oscillator Tk

2(r ) whenB5A. Nevertheless if we look forsuperin-
tegrablespherical/hyperbolic versions of the general anisotropic planar oscillator, we must
these candidates inS2 andH2 since they are integrable but not superintegrable, and the orbits
be open curves. The appropriate superintegrable spherical/hyperbolic versions of the osc
(A54, B51) and (A51, B54) are the potentialsU1

a andŨ1
a . As far as we know, whether or no

there exists superintegrablekÞ0 versions of the special known cases of superintegrable an
tropic planar potentials~with nonquadratic constants of motion! is an open problem.

E. Coordinate systems and superintegrability

The approach we have presented here can be compared with the search for superin
potentials by requiring separation in at least two of those coordinate systems which allow
plete separation of variables for the Laplace–Beltrami equation. This requirement for the po
turns out to be equivalent to satisfying the differential equation for the potentialU for some choice
of the parameter vector. Therefore, the nontrivial parameter vectors are in correspondence w
possible coordinate systems of the required type. In the simplest cases, this is clear fro
expressions we have given; a potential which satisfies thea2 ~resp.a0 , c0) equation separates i
the polar (r ,f) coordinates~resp. in the parallel system (u,y), (x,v)). If one starts from the flat
case, several coordinate systems which aredifferentwheneverkÞ0 ~actually, all those associate
to the parameter vectors$a0,0,c0 ;00;0%) coalesce into a single very ‘‘degenerate’’ Cartesi
system. Therefore the analysis of superintegrability in terms of separability in several coor
systems should be better done in the generickÞ0 case, where the coordinate systems wh
coalesce in thek50 case are still different.
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Degenerate Frobenius manifolds and the bi-Hamiltonian
structure of rational Lax equations
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The bi-Hamiltonian structure of certain multicomponent integrable systems, gener-
alizations of the dispersionless Toda hierarchy, is studied for systems derived from
a rational Lax function. One consequence of having a rational rather than a poly-
nomial Lax function is that the corresponding bi-Hamiltonian structures are degen-
erate, i.e., the metric that defines the Hamiltonian structure has a vanishing deter-
minant. Frobenius manifolds provide a natural setting in which to study the bi-
Hamiltonian structure of certain classes of hydrodynamic systems. Some ideas on
how this structure may be extended to include degenerate bi-Hamiltonian struc-
tures, such as those given in the first part of the paper, is given. ©1999 American
Institute of Physics.@S0022-2488~99!02210-0#

I. INTRODUCTION

Poisson brackets of a hydrodynamic type were introduced by Dubrovin and Novikov in
1, where they gave a complete description of Poisson brackets of the form

$ui~x!,uj~y!%5gi j @u~x!#d8~x2y!1Gk
i j @u~x!#uk~x!d~x2y!, ~1!

under the nondegenerate condition det(gij)Þ0. This defines a skew-symmetric Poisson bracket
functionals,

$I ,J%5E dx
dI

dui~x!
Ai ĵ

dJ

duj~x!
,

where

Ai ĵ 5gi j @u~x!#
d

dx
1Gk

i j @u~x!#ux
k~x!.

The conditions ongi j andGk
i j necessary in order for~1! to define a Hamiltonian structure, unde

the nondegenerate condition det(gij)Þ0, have a natural geometric interpretation.1

Theorem 1: Under the nondegenerate conditiondet(gij)Þ0, the bracket~1! defines a Hamil-
tonian structure if and only if (a)g5(gi j )21 defines a (pseudo-) Riemannian metric; (b)Gk

i j

52gisGsk
j , whereGsk

j are the Christoffel symbols of the Riemannian connection defined byg; (c)
the Riemann curvature tensor ofg vanishes.

This result, and its interpretation in terms of differential geometry, rests on the nondegen
condition on the metric. However, this is not a necessary condition for~1! to define a Hamiltonian
structure and the full result, with noa priori restriction ongi j was derived by Grinberg2 and
Dorfmann.3

Theorem 2: The bracket~1! defines a Hamiltonian structure if and only if the pair(g,G)
satisfy the conditions

a!Electronic mail: i.a.b.strachan@hull.ac.uk
50580022-2488/99/40(10)/5058/22/$15.00 © 1999 American Institute of Physics
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gi j 5gji ; ~2!

]gi j

]uk 5Gk
i j 1Gk

j i ; ~3!

gi j G i
rs5gri G i

js ; ~4!

G t
i j G r

tk2G t
ikG r

t j5gti S ]G r
jk

]ut 2
]G t

jk

]ur D , ~5!

and

(
cyclic sum on i , j ,k

F S ]G t
i j

]uq 2
Gq

i j

]utDG r
tk1S ]G t

i j

]ur 2
G r

i j

]utDGq
tkG50. ~6!

If detgijÞ0 then the last equation is a consequence of the earlier equations.
@N.B.: there is a minor error in Ref. 2 in the order of the indices in Eq.~4!#. In this more general
situation it is not possible to give a clear geometric interpretation of these equations. They
an integrable distribution, but their differential geometric content is less clear. One can de
covariant derivative-like object,

“

ij j5] ij j2Gk
i j jk,

where] i5gi j ] j , with the property~when suitably extended to tensors! that“ igjk50, though the
‘‘connection’’ cannot be defined in terms of the ‘‘metric.’’ With such a covariant derivative
can introduce a ‘‘curvature’’ by the equation

~“ r
“

s2“

s
“

r !j t52Rk
rstjk,

and the third equation above is now just the vanishing of this curvature. Such a description
very natural; one cannot lower indices and the interpretation of the last equation remains u
However, the terms ‘‘metric’’ and ‘‘connection’’ will be used to denote these objects, and a
satisfying these equations will be called a (g,G) pair.

Our purpose in this paper is to study the bi-Hamiltonian structure of dispersionless integ
systems defined by the Lax equation~the variablestn will be used to denote the times,t being
reserved for flat coordinates in which the componentsh i j are constants!,

]L
]tn

5$~Ln/~N2M !!1 ,L%PB ~7!

where$ f ,g%PB5p(]pf ]xg2]xf ]pg), L is given by a rational function,

L5
polynomial of degreeN

polynomial of degreeM

with the single constraintN.M , and ( )1 denotes the projection onto non-negative powers
p under a formal expansion in powers ofp. In an earlier paper4 this system was studied but
complete description of the Hamiltonian structure was not given. The simplest example of s
system is the continuum Toda equations

St5Px ,

Pt5PSx , ~8!
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which is generated for the above Lax equation~7! with a Lax function

L5p21S~x,t !1
P~x,t !

p
.

This paper aims to extend these earlier results from polynomial Lax functions to rationa
functions and to relate these results to the theory of Frobenius manifolds.5 It will turn out that in
the rational case the Hamiltonian structure is degenerate, so the more general descrip
Grinberg and Dorfmann will have to be utilized to give a complete description of the
Hamiltonian structure of the hierarchy. This in turn implies that a new concept of a degen
Frobenius manifold is required.

In the next section a summary of the pertinent result of Ref. 4 will be given, and this will
serve to fix the notation used. Full details will not be given and the reader should consu
earlier paper for the proofs. In Sec. III the polynomial case will be studied in more detail~and this
will relate the results of Ref. 4 to more recent work of Dubrovin and Zhang6! before the full
rational case is studied in Sec. IV. The properties of a degenerate Frobenius manifold are
duced by way of an extended example in Sec. V.

Throughout this paper various different coordinate systems will be used, and the res
transformations from one system to another will be important. The notationgi j (s) will be used to
denote the components of the metric in thesi-coordinate system, so the transformation fromsi to
t i coordinates will be written

gi j ~ t !5
]t i

]sp

]t j

]sq gpq~s!,

rather than using different fonts and alphabets for the different coordinate systems.

II. CONSERVATION LAWS AND EVOLUTION EQUATIONS

In order to study rational functions it is convenient, and indeed necessary in order to o
some results, to factorize the numerator and denominator of the rational function, so

L5
P i 51

N ~p1ui !

P i 5N11
N1M ~p1ui !

,

5 )
i 51

N1M

~p1ui !« i.

Here it will be assumed that« i561 and that the numerator and denominator have no com
root. With these conditions andN.M the Lax function is of the general form

L5polynomial of degree~N2M !1 (
i 5N11

N1M

simple poles.

Such a factorization of the Lax function was introduced by Kupershmidt7 ~though this could also
be viewed as a Viete´ transformation! and the variablesui will be called modified variables. One
advantage of such a factorization is that it puts all the fields on an egalitarian footing, i.e
permutation groupSN acts on the zeros ofL and the permutation groupSM acts on the roots ofL,
and this drastically reduces the complexity of the calculations.

The flows are given by the Lax equation~7! which may be calculated explicitly

utn

i 5Ai
~n!ux

i 1(
j Þ i

uiBi j
~n!ux

j , ~9!
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where

Ai
~n!5S « in

N2M
21D (

$r j :( j 51
N1Mr j 5n%

F )
k51
kÞ i

N1M S «kn

N2M
r k

D ~uk!r kG S « in

N2M
22

r i21
D ~ui !r i

and

Bi j
~n!5

« jn

N2M (
$r j :( j 51

N1Mr j 5n21%
F )

k51
kÞ i , j

N1M S «kn

N2M
r k

D ~uk!r kG S « in

N2M
21

r i

D ~ui !r iS « jn

N2M
21

r j

D ~uj !r j .

Care has to be taken in evaluating the binomial coefficients for negative and fractional num
These must be interpreted in terms ofG-function, so

S a
bD5

G~a11!

G~a2b11!G~b11!
.

It also follows from the proof of these results~though not explicitly mentioned in Ref. 4! that

C5Lup50 ,

5 )
i 51

M1N

~ui !« i

is independent of all the times, i.e.,

]C
]tn

50 n51,...,̀ .

The functionsC will turn out to be a Casimir for the bi-Hamiltonian structure of this hierarch
Conservation laws are similarly defined, the conserved charges being given by

Q~n!5
1

2p i R Ln/~N2M !
dp

p
. ~10!

These may be derived explicitly

Q~n!5 (
$r i :( i 51

N1Mr i5n%
H )

i 51

N1M S « in

N2M
r i

D ~ui !r iJ .

Under a suitable change of variable, these polynomials take the form of generalized hyp
metric functions, a result which remains to be exploited. The corresponding functionals

H ~n!5E Q~n!dx ~11!

will turn out to be the Hamiltonians of the system~9!.
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III. POLYNOMIAL LAX EQUATIONS

In this section the bi-Hamiltonian structure of the hierarchy defined by a Lax function,

L5p2M)
i 51

N

~p1ui !, 0,M,N,

will be derived, this generalizing the results of Ref. 4, where the special caseM51 was studied.
Having derived one Hamiltonian structure, the intersection form in the language of a Frob
manifold, one may use a result of Dubrovin to find a second compatible Hamiltonian struc

Proposition 3: The Hamiltonian structure of the hierarchy defined by Eq. (7) is given by
nondegenerate metric,

gi j ~u!5 H @12~N2M !#uiui , if i 5 j ,
uiuj , if i Þ j . ~12!

Comment:This is clearly a flat, nondegenerate metric, and so defines a Hamiltonian stru
What is less clear is whether this structure, coupled to the Hamiltonians given by~11!, gives rise
to the flows defined by~7!. This may be shown to be the case by direct calculation. An alterna
proof, viewing the polynomial as a reduction of the rational case, will follow from the Theore
in Sec. IV.

A bi-Hamiltonian structure is more than just two Hamiltonian structures; the two struc
$,%1 and$,%2 have to be compatible, i.e.,$,%5$,%11l$,%2 must be a Hamiltonian structure for a
values of l. For nondegenerate Poisson brackets of a hydrodynamic type, this compat
condition implies that, for arbitraryl, ~a! the metric gi j 5g1

i j 1lg2
i j is flat ~such a metric is

sometimes referred to as a flat pencil!; ~b! the metric connection for this metric has the for
Gk

i j 5G1k
i j 1lG2k

i j .
A result of Dubrovin5 ~actually a special case of a more general result of Magri8! will enable

the bi-Hamiltonian structure to be found.
Lemma 4: If for a flat metric in some coordinate system x1,...,xn, both the components gi j (x)

of the metric andGk
i j (x) of the corresponding metric connection depend linearly on the coordin

x•, then the metrics,

g1
i j 5gi j ,

g2
i j 5] •g

i j ,

form a flat pencil, under the assumption thatdet@g2
ij#Þ0. The corresponding metric connection ha

the form

G1k
i j 5Gk

i j ,

G2k
i j 5] •Gk

i j .

The proof of this result is straightforward, and an alternative proof to that given in Ref. 5
follow from a result given in the next section where this lemma is extended to degenerate H
tonian structures.

In order to find such a coordinate system, it is necessary to perform a number of coor
transformations on the metric~12!. This will be achieved in two stages. First, define variables6

z151x1,

zi51xi2xi 21, i 51,...,N21,

zN52xN21
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~so ( i 51
N zi50!, and then

ui5e~1/N!xN2zi
, i 51,...,N.

Such a coordinate transformation has a nature interpretation in terms of the Weyl groupW(AN21),
which act by permutation of the coordinateszi on the hyperplane( i 51

N zi50. In thisx-coordinate
system the components of the metric become, up to an overall factor of (M2N),

gi j ~x!5S 2 21 0 ¯ 0 0

21 2 21 ¯ 0 0

0 21 2 ¯ 0 0

] ] ] ] ]

0 0 0 ¯ 2 0

0 0 0 ¯ 0 2
M

N~N2M !

D 5S Cartan matrix
of AN21

0

0 2dM
21
D .

The final entry is defined naturally using the Weyl group structure onAN21 ,

dM5
M ~N2M !

N
,

5~vM ,vM !,

where~,! is the Euclidean inner product andv i are the fundamental weights.6

What these coordinate transformation show is that the Hamiltonian structure coincides
those found by Dubrovin and Zhang, so their results may be used to complete the second
this argument. In particular, they show that in terms of the symmetric functions,

s15(
i

ui ,

s25(
i , j

uiuj ,

] ]

sN5)
i

ui ,

the metric~12! will be linear in the variablesM, and hence Lemma 4 may be used to find t
bi-Hamiltonian structure. The Jacobian of this transformation from modified to the original
ables is just the Vandemonde determinant,

]~s1,...,sN!

]~u1,...,uN!
5U 1 1 ¯ 1

(
iÞ1

ui (
iÞ2

ui
¯ (

iÞN
ui

] ] � ]

)
iÞ1

ui )
iÞ2

ui
¯ )

iÞN
ui

U5)
i , j

~ui2uj !.
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This defines the discriminant hypersurface, a caustic, on whichL has multiple roots. By assump
tion « i561, so all the roots are simple and hence the fields are well defined away from
surface. Hence Ref. 6.

Lemma 5 The metric~12!, when written in terms of the symmetric variables si , is linear in the
variable sM.

Before performing these calculations one should note that in terms of these symmetric
ables, the Lax function takes the more familiar form,

L5p2M@pN1pN21s11¯1sN#,

these symmetric variables coinciding with the original, unmodified variables. It also follows
the Lax equation~7! that the variablesM is special for another reason, namely, it is the sin
variable for which the conserved chargesQ(n) obey the relation

Q~n21!5const
]Q~n!

]sM
.

Proposition 6: The first Hamiltonian structure, in terms of the modified variables, is give

h i j ~u!5L]/]s•gi j ~u!,

5
]

]s• gi j 2
]a •

i

]uk gk j2
]a •

j

]uk gik,

where the functionsa •
i (u) are defined by

]

]s• 5a •
i ~u!

]

]ui ,

and L]/]s• is the Lie derivative along the vector field]/]s•.
Proof: The transformation between the modified variables and the symmetric variable

duces the transformation

S ]

]u1

]

]

]uN

D 5S 1 (
j Þ1

uj
¯ )

j Þ1
uj

] ] � ]

1 (
j ÞN

uj
¯ )

j ÞN
uj
D S ]

]s1

]

]

]sN

D ,

and hence by inverting the Vandemonde determinant,

]

]s• 5a •
i ~u!

]

]ui ,

this defining the functionsa •
i (u). By Lemmas 4 and 5, it follows, by starting with the metric~12!

in the ui variables, transforming to thesi variables, differentiating with respect tos•, and then
transforming back to theui variables, that

h i j ~u!5
]ui

]sm

]uj

]sn

]

]s• F]sm

]ur

]sn

]us grs~u!G
is the required flat metric, which defines the second Hamiltonian structure. Expanding yiel
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h i j ~u!5
]

]s• gi j 1
]ui

]sm S ]

]s•

]sm

]ur Dgr j 1
]uj

]sn S ]

]s•

]sn

]usDgis.

But

F ]

]s• ,
]

]ukG5Fa •
i

]

]ui ,
]

]ukG ,

52
]a •

j

]uk

]

]uj .

This, together with the definition of the Lie derivative and

]sb

]s• 5d •
b ,

yields the result.
h

This proposition is just an application of Magri’s more general result.8

Example 1: For arbitrary N and M51 the distinguished coordinate is sN (so •5N in the
above formulas) and the functionsaN

i are

aN
i 5

ui

P rÞ i~uN2ur !
,

and hence one may calculateh rs explicitly:

h i j ~u!5~N21!
uiuj

ui2ui @aN
i 2aN

j #, rÞs,

h i i ~u!52~N21!
~ui !2

PkÞ i~ui2uk! F12ui(
nÞ i

1

ui2unG .
This, together with~12!, constitutes the bi-Hamiltonian structure for the hierarchy~7!, also known
as the continuum Toda hierarchy.

If N52, then

h i j ~u!5
uv

~u2v !2 S 22u u1v

u1v 22v D .

This example also shows an interesting result of the transformation from the original t
modified variables; in the original variables the form ofgi j is more complicated than the form o
h i j while in the modified variables the complexities are interchanged.

These results depend crucially on the properties ofdM . To see this consider the flat metric

hi j ~u,v,w!5S au2 uv uw

uv av2 vw

uw vw aw2
D ,

this being~12! with N53 and 12(N2M ) replaced with an arbitrary constanta. We assume tha
this metric is invertible~so aÞ1,22!. In terms of symmetric variablesS5u1v1w, P5uv
1vw1wu, andQ5uvw this takes the form
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hi j ~S,P,Q!5S as212~12a!P ~11a!SP13~12a!Q ~21a!SQ

~11a!SP13~12a!Q 2~11a!P212~12a!SQ 2~21a!PQ

~21a!SQ 2~21a!PQ 3~21a!Q2
D .

For general values ofa, the entries are not linear in any of the variables. The metric cannot de
on Q linearly, as this would implya522. For the entries to depend linearly onQ would imply
a521, and this corresponds to~12! with M51. For the entries to depend linearly onS would
imply a50, and this corresponds to~12! with M52. Thus, any requirement that the metr
depends linearly on one of the symmetric variables forces the metric to take one of the
known forms. Of course, this does not rule out the possibility that in some other coord
systems the components of the metric do become linear in some variable.

IV. RATIONAL LAX EQUATIONS

In this section the evolution equations~9! will be written in Hamiltonian form. The resulting
Hamiltonian structure turns out to be degenerate, so the results of Dubrovin used in the last
to derive the bi-Hamiltonian structure cannot be used without modification. These modifica
turn out to be minor and a version of Lemma 4 will hold for degenerate Hamiltonian syste

Theorem 7: ~a! In terms of the variables u˜ i5 logui the evolution equations (9) may be writte
in Hamiltonian form,

ũtn

i 5(
j

mi j DS dH ~n!

dũ j D ,

where mi j is the constant matrix,

mi j 5S a1 1 1 ¯ 1

1 a2 1 ¯ 1

1 1 a3 ¯ 1

] ] ] � ]

1 1 1 ¯ aN2M

D , ~13!

a i512« i(N2M ), and

H ~n!5E dx (
$r i :( i 51

N1Mr i5n%
H )

i 51

N1M S « in

N2M
r i

D er i ũ
iJ .

(B) In terms of the original variables the(g,G) pair,

gi j ~u!5mi j uiuj ,

Gk
i j ~u!5dk

j mi j ui ,

define a degenerate Hamiltonian structure, satisfying the conditions of Theorem 2.
Proof: ~a! In terms of theui variables, the system,

ũtn

i 5(
j

mi j DS dH ~n!

dũ j D , ~14!

becomes
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utn

i 5(
i

a iu
iDS ui

dH ~n!

dui D 1(
j Þ i

uiDS uj
dH ~n!

duj D .

Expanding this yields

utn

i 5F 1

n (
$r i :( i 51

N1Mr i5n%

@a i r i
21r i~n2r i !# )

k51

N1M S «kn

N2M
r k

D ~uk!r kGux
i

1(
j Þ i

F 1

n (
$r i :( i 51

N1Mr i5n%

@a i r i r j1r j~n2r i !#~uj !21 )
k51

N1M S «kn

N2M
r k

D ~uk!r kGux
j .

Using a i512« i(N2M ) and various binomial identities reduces this to

utn

i 5Ai
~n!ux

i 1(
j Þ i

uiBi j
~n!ux

j ,

where

Ai
~n!5S « in

N2M
21D (

$r j :( j 51
N1Mr j 5n%

F )
k51
kÞ i

N1M S «kn

N2M
r k

D ~uk!r kG S « in

N2M
22

r i21
D ~ui !r i,

and

Bi j
~n!5

e jn

N2M (
$r j :( j 51

N1Mr j 5n21%
F )

k51
kÞ i , j

N1M S ekn

N2M
r k

D ~uk!r kG
3S e jn

N2M
21

r i

D ~ui !r iS e jn

N2M
21

r j

D ~uj !r j ,

that is, to the equations obtained from the Lax equation~7!. Hence the result.
~b! Rewriting ~14! in terms of a (g,G) pair yields

gi j ~u!5mi j uiuj ,

Gk
i j ~u!5dk

j mi j ui .

The above argument does not show that the pair (g,G) defines a Hamiltonian structure, as th
corresponding bracket~1! must define a Hamiltonian structure for all functionals, not just
specific functionals used above. In order to show that this pair does define such a structu
must verify that the equations~2!–~6! hold. This is entirely straightforward, so the details will b
omitted. The degeneracy of the metric follows from the result, easily proved using elementa
and column operations, that
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detS 12a 1 ¯ 1 1 ¯ 1

1 12a ¯ 1 1 ¯ 1

] ] ] ] ]

1 1 ¯ 12a 1 ¯ 1

1 1 ¯ 1 11a ¯ 1

] ] ] ] ]

1 1 ¯ 1 1 ¯ 11a

D 5~21!NaN1M21@a2~N2M !#,

where the diagonal blocks areN3N and M3M matrices. For the matrixmi j a5N2M @since
a i512« i(N2M )#, and hence det(gij)50. It also follows from these operations that rank(gi j )
5(N1M )21. h

This also shows that this system is only mildly degenerate; the coordinate transformatio
reducesgi j to a metric with constant entries simultaneously reduce theGk

i j to zero. For a degen
erate metric this need not be the case, and some nonzeroGk

i j can remain.2

Lemma 8: Let the pair(g,G) define a degenerate Hamiltonian structure. If the component
the pair (g,G) in some coordinate system x1,...,xn depend linearly on the coordinate x•, then the
pair,

~g1l ] •g,G1l ] •G!, ~15!

defines a degenerate Hamiltonian structure for all values ofl. Hence, one obtains a degenera
bi-Hamiltonian structure.

Proof: All that is required is to show that the pair~15! satisfies the conditions of Theorem
given the original (g,G) pair. This is straightforward, the first two conditions being trivial. Co
sider, for example, condition~4! in Theorem 2:

@~Gk
i j 1l •G t

i j !~gtk1l ] •g
tk!2~k↔ i !#5S 11l] •1

l2

2
] •

2D @~Gk
i j 2~k↔ i !#,

this following from that fact that ifg andG depend linearly onx•, then

] •
2~Gg!52 ] •G ] •g.

Hence, if (g,G) satisfies condition~4!, so does~15!. The remaining conditions are all quadratic
g andG, and so the proof is identical. h

One may perform a similar sequence of coordinate transformation to those in Sec. II
plicitly, let

z151x1,

zi51xi2xi 21, i 51,...,N,

zN52xN21,

zN1151xN11,

zi51xi2xi 21, i 5N11,...,N1M ,

zN1M52xN1M21,

and

ui5e~1/N!xN2zi
, i 51,...,N1M .
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After a permutation is the labels the metric becomes~up to an overall factor!

gi j ~x!5S 1S Cartan matrix
of AN21

D 0 0

0 2S Cartan matrix
of AN1M21

D 0

0 0 2dMS 1 1

1 1D
D .

This is a considerable scope for the investigation of bi-Hamiltonian structures based on such
decompositions.

Having derived one Hamiltonian structure it is necessary, before the above lemma c
applied, to find a suitable coordinate system in which the metric given in Theorem 7 bec
linear in one of the coordinates. This will be done only for theM51 case, i.e., a rational Lax
function with a single pole. Extending these results to an arbitrary number of poles presents
problems, which will be discussed later.

The new variablesi are defined by the following expansion of the rational functionL:

L5polynomial of degree~N21!1
function

p1pole
,

5 (
n50

N21

pnsN212n1
sN

p1sN11 .

To express thesi as functions of the variablesui , it is convenient to introduce the basic symmet
functions of the variablesu1,...,uN:

s051, s15(
i

ui , s25(
i , j

uiuj ,...,sN5)
i

ui ,

so

)
i 51

N

~p1ui !5(
i 50

N

pisN2 i .

By expanding the various expressions forL, one obtains

s051,

sr5 (
n50

r

~21!ns r 2n~uN11!n, r 51,...,N, ~16!

sN115uN11.

It is in these variables that the pair (g,G) will become linear in one of the variables.
Example 2:For N53, M51,

L5
~p1u!~p1v !

p1w
,

5p1~u1v2w!1
~u2w!~v2w!

p1w
,
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and hence

s15u1v2w,

s25uv2w~u1v !1w2,

s35w,

in accordance with (16).
The following result will be required in the next theorem.

Lemma 9: With the variables sm defined above,

]sm

]ui 1
]sm

]uN11 5~uN112ui !$polynomial of degreea22%, m,i 51,...,N;

Proof: One may writesn assn5ui s̃n211s̃n so

]sn

]ui 5s̃n21.

Hence

]sm

]uN11U
uN115ui

5( ~21!n~ui s̃n211s̃n!~a2n!~ui !a2n21,

5( ~21!n11s̃n21~ui !a2n.

So

S ]sm

]ui 1
]sm

]uN11D U
uN115ui

50.

The result now follows from the homogeneities of the functions involved. h

Theorem 10: The terms of the coordinatessi defined above~16! the (g,G) pair depend
linearly on the variablesN21.

Proof: In terms of theui variables the (g,G) pair is given by

gi j ~u!5mi j uiuj ,

Gk
i j ~u!5dk

j mi j ui ,

where

mi j 5S 22N 1 ¯ 1 1

1 22N ¯ 1 1

] ] � ] ]

1 1 ¯ 22N 1

1 1 ¯ 1 N

D .

The components of the metric in terms of thesi coordinates are given by
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gi j ~s!5
]si

]up

]sj

]uq gpq~u!

and it follows from the symmetry of this equation that the entries will be polynomial in the
variables. It also follows from this that the degrees of the entries are

deggi j ~s!5H i 1 j
11 j
11 i
2

if 1< i , j <N,
if i 5N11 and j ÞN11,
if j 5N11 and iÞN11,
if i 5 j 5N11.

The degrees of the terms in the lower right corner ofgi j (u) are given schematically below:

~17!

Thus there are only four terms wheregi j (s) could possibly contain a term quadratic insN21 ~or
six terms if N52 or five terms ifN53, but these special cases may be disposed of by d
computation!. The result will follow if it can be shown that these terms contain a factorsN, that
is if

gN21,N21~s!5sN$polynomial of degreeN22%,

gN,k~s!5sN$polynomial of degreek%, k5N,N21,N22,

since the polynomials cannot be quadratic insN21 without violating the overall degree of the term
From these formulas,

gN,a5 (
i , j 51

N
]sN

]ui

]sa

]uj gi j 1(
i 51

N
]sN

]uN11

]sa

]ui gN21,i(
i 51

N
]sN

]ui

]sa

]uN11 gN21,i1
]sN

]uN21

]sa

]uN21 gN21,N21.

Since

sN5)
i 51

N

~ui2uN11!,

it follows from Euler’s theorem that

(
i 51

N11

ui
]sN

]ui 5NsN,

and these may be used to simplify the above. After somewhat tedious calculations one ob

]sN

]uN21 5asNsa1~12N!sNH ~uN11!2F ]sa

]ui 1
]sa

]uN11

ui2uN11
G2uN11F ]sa

]uN112
]sa

]ui G J .

The result now follows from the above lemma.
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The corresponding result forgN21,N21 is similar and rest on proving, in a similar manner
above, that

These results show that in thesi-coordinates the metric is linear in the coordinatesN21. The
second half of the proof, showing thatGk

i j (s) is also linear insN21 is similar, and follows from the
transformation properties ofGk

i j . h

In what follows this second degenerately flat metric]gi j /]s• will be denoted byh i j .
Example 3: N52, M51. With these values,

mi j 5S 0 1 1

1 0 1

1 1 2
D ,

and a short computation yields

gi j ~s!5S 2s2 s2~s123s3! s3~s12s3!

s2~s123s3! 2s2~s22s1s312~s3!2! s3~2s22s1s3!

s3~s12s3! s3~2s22s1s3! 2~s3!2
D .

This is linear ins1 and hence

h i j ~s!5
]gi j ~s!

]s1 ,

5S 0 s2 s3

s2 22s2s3 2~s3!2

s3 2~s3!2 0
D .

One may easily introduce degenerate flat coordinates in which the entries ofh i j are constant.
These flat coordinates are

t15s1,

t25
s2

s3 ,

t35 log~s3!

and in these coordinates

gi j ~ t !5S 2t2et3 22t2et3 1t12et3

22t2et3 12t2et3 2t11et3

1t12et3 2t11et3 2
D .

This is linear int1 and hence
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h i j ~ t !5S 0 0 11

0 0 21

11 21 0
D .

Example 4: N53, M51. With these values,

mi j 5S 21 1 1 1

1 21 1 1

1 1 21 1

1 1 1 13

D ,

and a short computation yields the degenerate metricgi j (s). These components are linear ins2

and so define a new metric

h i j ~s!5
]gi j ~s!

]s2 ,

5S 4 0 0 0

0 0 2s3 2s4

0 2s3 24s3s4 22~s4!2

0 2s4 22~s4!2 0

D .

The degenerate flat coordinates are defined by

t15s1,

t25s2,

t35
s3

s4 ,

t45 log~s4!,

and in these flat coordinates the original metric metric takes the form

gi j ~ t !5S 2~ t1!214t2
16t3et4 26t3et4 t122et4

16t3et4 14t1t3et428t3e2t4 24t1t3et418t3e2t4 12t222t1et412e2t4

26t3et4 24t1t3et418t3e2t4 14t1t3et428t3e2t4 22t212t1et422e2t4

t122et4 12t222t1et412e2t4 22t212t1et422e2t4 3

D .

The entries are linear in t2 and, hence, one obtains the second metric,

h i j ~ t !5S 4 0 0 0

0 0 0 2

0 0 0 22

0 2 22 0

D . ~18!
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V. DEGENERATE FROBENIUS MANIFOLDS

The natural geometric setting in which to understand the bi-Hamiltonian structure of h
dynamic systems is the Frobenius manifold.5 One way to define such manifolds is to construc
function F(t1,...,tn) such that the associated functions,

ci jk5
]3F

]t i ]t j ]tk ,

satisfy the following conditions.

~i! The matrixh i j 5c1i j is constant and nondegenerate. This together with the inverse m
h i j are used to raise and lower indices. On such a manifold one may interpreth i j as a flat
metric.

~ii ! The functionscjk
i 5h ir cr jk defined an associative commutative algebra with a unity

ment. This defines a Frobenius algebra on each tangent spaceTtM. This multiplication
will be denoted byu•v.

~iii ! The functionsF satisfies a quasihomogeneity condition, which may be expressed as

LEF5dFF1$quadratic terms%, ~19!

whereE is a vector field known as the Euler vector field.
These conditions constitute the Witten–Dijkgraaf–Verlinde–Verlinde~or WDVV! equations.

On such a manifold one may introduce a second flat metric defined by

gi j 5E~dti•dtj !. ~20!

This metric, together with the original metrich i j , define a flat pencil~i.e., h i j 1lgi j is flat for all
values ofl!. Thus, one automatically obtains a bi-Hamiltonian structure from a Frobenius m
fold. The corresponding Hamiltonians are defined recursively by the formula

]2h~n!

]t i ]t j 5ci j
k ]h~n21!

]tk . ~21!

The integrability conditions for this systems are automatically satisfied when theci j
k are defined as

above.
One basic assumption in this definition is that the metrich i j is nondegenerate, and it follow

from this that the bi-Hamiltonian structures are also nondegenerate. Thus the degener
Hamiltonian structures obtained in the preceding section cannot be obtained from this con
tion. However, one may formulate the new notion of a degenerate Frobenius manifold in
the corresponding bi-Hamiltonian structures are degenerate.

Rather than develop the theory of degenerate Frobenius manifolds in full generality, a
tended example will be given here based on the study of the hydrodynamic system,

ut5u~vx2wx!,

vt5v~ux2wx!,

wt5w~ux1vx22wx!,

obtained from the rational Lax function

L5
~p1u!~p1v !

p1w
.
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The bi-Hamiltonian structure of this system has already been derived in Example 3 in Sec.
recapitulate, in the flat coordinates given by

t15u1v2w,

t25
~u2w!~v2w!

w
,

t35 logw,

the degenerate metrics that give rise to the degenerate bi-Hamiltonian structures are

h i j ~ t !5S 0 0 11

0 0 21

11 21 0
D , ~22!

gi j ~ t !5S 2t2et3

22t2et3

1t12et3

22t2et3

12t2et3

2t11et3

1t12et3

2t11et3

2
D . ~23!

The first few Hamiltonian densities~suitably normalized! are given by the formula~10!, and in the
flat coordinates these become

h~1!5t1,

h~2!5 1
2@~ t1!212t2et3#,

h~3!5 1
6@~ t1!316t1t2et323t2e2t3#,

h~4!5 1
24@~ t1!4112~ t1!2t2et316~ t2!2e2t3212t1t2e2t314t2e3t3#.

From these and the recursion equation~21!, one may reconstruct the structure functionscjk
i and

verify that they form a commutative and associative algebra with a unity element. Explicitl
structure constants are given byc1 j

i 5d j
i and

S c22
1 c22

2 c22
3

c23
1 c23

2 c23
3

c33
1 c33

2 c33
3
D 5S 0 1 21/t2

1et3 2et3 0

1t2et3 2t2et3 2et3
D .

From these structure functions one may raise an index usingh i j and determine the Euler vecto
field from Eq.~20!. For this example this vector field is

E5t1
]

]t1 1t2
]

]t2 1
]

]t3 .

In addition, the structure functions satisfy the relations

]cjk
r

]t i 2
]cik

r

]tk 50,

and this, together with the symmetryci j
k 5cji

k , enables one to write them as
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cjk
i 5

]2f i

]t j ]tk ,

for some set of functionsf i . For the above structure constants these turn out to be~up to linear
terms!

f 15 1
2~ t1!21t2et3,

f 25 1
2~ t2!21t1t22t2et3,

f 35t1t32t2 log t22et3.

At this stage one normally lowers thei index and uses another symmetry to writeci jk as the third
derivative of some functionF. This, however, assumes that the metrich i j is invertible, which, for
the metric given by~22!, is not the case. However, one may write thef i as

f i~ t !5h i j
]F

]t j 1hi~ t11t2!.

Since the matrixh i j is of rank 2, it follows it has a nontrivial kernel, so there exists a nonz
vectorz i such thath i j z j50, and the functionshi are functions of the combinationz i t

i , which in
this example is justt11t2. These functionshi satisfy the single constrainth11h251/2(t1

1t2)2. To obtain the above structure functions one possible suchF is

F5 1
2~ t1!2t31t2et31 1

2~ t2!2 log t2,

and

h150,

h25 1
2~ t11t2!2,

h350,

and this satisfies the homogeneity condition~19! with dF52. There is much freedom in thes
functions. One may transform, for arbitrary constantk,F,

F→F1kt3~ t11t2!2,

and the homogeneity property is unchanged. This induced a change in the functionshi but leaves
unchanged the structure functions defining the Frobenius algebra.

From this extended example one may distill the basic properties of a degenerate Fro
manifold. One starts with a basic functionF(t i) satisfying some homogeneity condition an
degenerate metrich i j , the entries of which are constant in thet i coordinates. The metric is no
related to the third derivatives ofF, as for nondegenerate Frobenius manifolds. The struc
functions, which form a Frobenius algebra with a degenerate inner product, are defined by

cjk
i 5h ir ] r] j ]kF1] j]kh

i , ~24!

where the functionshi are functions that depend on the kernel of the degenerate matrixh i j . Thus,
for degenerate Frobenius manifolds one has a set of extra functions related to the fact t
matrix h i j is not of maximal rank. The associativity conditions result in a complicated set o
determined partial differential equations forF, the degenerate analog of the WDVV equation
One avenue for future research is to develop the concept of a degenerate Frobenius manifo
axiomatically.
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Example 5: For N53, M51 the metrics gi j (t) and h i j (t) have been calculated in Examp
4. One may repeat the calculations above and obtain the following: Euler vector field:

E5
t1

2

]

]t1 1t2
]

]t2 1t3
]

]t3 1
1

2

]

]t4 ;

prepotential F:

F5 1
8~ t1!2t21 1

4~ t2!32 1
192~ t1!41 1

2t
1t3et42 1

4t
3e2t42 1

4~ t3!2 log t3;

and associated nonzero potentials hi :

h35 1
2~ t21t3!2.

From these, and the constant matrixh i j given by (18), one may construct a degenerate Froben
algebra with structure functions given by Eq. (24) and second degenerate flat metric given b

In Sec. IV the bi-Hamiltonian structures were shown to exist for arbitraryN, but M51. It is
clear that the ideas will generalize to arbitraryM, and hence to degenerate Frobenius manifolds
arbitraryN andM. The following example is forN53, M52.

Example 6: For N53, M52 the flat coordinates are defined by the expansion

L5p1t11
t2et4

p1et4
1

t3et5

p1et5
.

In these coordinates,

h i j ~ t !5S 0 0 0 1 1

0 0 0 21 0

0 0 0 0 21

1 21 0 0 0

1 0 21 0 0

D ,

and the Frobenius data is the following: Euler vector field:

E5t1
]

]t1 1t2
]

]t2 1t3
]

]t3 1
]

]t4 1
]

]t5 ;

prepotential F:

F51t2et41t3et51 1
2t

2t3 log~et42et5!21 1
2„~ t2!2 log t21~ t3!2 log t3

…

52 1
2t

2t4~2t11t212t3!2 1
2t

3t5~2t112t21t3!;

and associated nonzero potentials hi :

h15 1
2~ t11t21t3!2.

From this data the Frobenius algebra structure functions given by Eq. (24) and the se
degenerate flat metric given by (20).

The form of these results suggest the following.
Conjecture 1: The metric given in Theorem 7 is linear in the coordinate sN2M, where the

coordinates si are defined in terms of the expansion of the rational Lax function,
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L5pN2M1s1pN2M211¯1sN2M1
sN2M11

p1sN11 1¯1
sN

p1sN1M .

Moreover, there exist flat coordinates ti such that the variables si are polynomial functions of the

variables t1,...,tN,etN11
,...etM

, and in which the entriesh i j (t) are all constants.
One would hope to be able to modify the results of Ref. 6 to prove this conjecture

vanishing of the determinants of the metrics means that the results cannot be used direct
should be able to modify the Gauss–Manin equations for the flat coordinates to include
degenerate examples.

VI. COMMENTS

One notable difference between the bi-Hamiltonian structure of the hierarchies cons
here, these being multicomponent generalizations of Toda and Benney hierarchies,4 and the bi-
Hamiltonian structures of dispersionless KP-type hierarchies, is the degeneracy of the stru
The dispersionless KP-type hydrodynamic systems involve rationale such as~see, for example,
those in Ref. 9!

L5
1

2
p21S~x,t !1

P~x,t !

p2Q~x,t !
,

and the Lax equation similar to Eq.~7!, but with a Poisson bracket,

$ f ,g%PB5~]pf ]xg2]xf ]pg!.

The bi-Hamiltonian structure of these equations is not degenerate.5,9 These rational Lax functions
may be considered as a reduction of an infinite component Lax functionL5( i 52`

N sipi and it may
be of interest to see how constraining the resulting Hamiltonian structures results in the dege
structures studied here.

The existence of a nontrivial Casimir for these systems is of interest. One possible red
of these systems is to restrict the dynamics to the surface given by

C5const,

for example, the~N52, M51! system,

ut5u~vx2wx!,

vt5v~ux2wx!,

wt5w~ux1vx22wx!,

when restricted to the surfacew5uv results in the system

ut5u@~12u!vx2vux#,

vt5v@~12v !ux2uvx#.

How the Hamiltonian structure behaves under such a constraint is unknown. For nondege
Hamiltonian structures one may use the result of Ferapontov,10 though this work would need to b
generalized to include a degenerate Hamiltonian structure such as those considered her
generally, one may restrict the above system to the surfacew5uv f (x) for some arbitrary function
f (x) ~i.e., C5 f 21.!. This results in the system

ut5u@~12u!vx2vux#2u2v f 8~x!,
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vt5v@~12v !ux2uvx#2v2u f8~x!,

an example of inhomogeneous hydrodynamic system with specificx dependence. It may also b
possible to obtain the Hamiltonian structure of these systems.11

The idea of a degenerate Frobenius manifold requires further elucidation. One compli
factor is that for a degenerate structure the transformation that reduces the components
metric to constants will not, in general, reduce all of the componentsGk

i j to zero.2 The systems in
this paper are special in this respect since in flat coordinates the components ofGk

i j are automati-
cally zero, which is not the generic situation; the systems here are doubly degenerate.
recently been shown by Kodama12 that the degenerate Frobenius manifold constructed here
be embedded in a nondegenerate, higher-dimensional, Frobenius manifold under a som
singular limit. Clearly these ideas require further work.

Finally, this paper has only dealt with dispersionless systems. For polynomial Lax equ
one has discrete counterparts, the simplest example being the Toda Lattice,

Sn,t5Pn2Pn11 ,

Pn,t5Pn~Sn212Sn!,

which reduces to~8! in the continuum limit; the lattice variable becoming the continuous varia
x. The bi-Hamiltonian structure of such systems have been studied in Ref. 7. Indeed, the str
obtained here could also be derived by taking certain limits of those structures, if they w
known explicitly for arbitraryM andN. How to extend these results to rational discrete system
unclear. One approach would be to use the ideas in Ref. 13, which deals with the interpreta
the inverse operator (e]1u)21, or the ideas of Ref. 14, where one would consider term-by-t
deformation of the underlying dispersionless system.
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Z. Yoshidaa)

Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-8656, Japan

S. M. Mahajan
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

~Received 13 April 1999; accepted for publication 1 July 1999!

The two-fluid model of a plasma describes the strong coupling between the mag-
netic and the fluid aspects of the plasma. The Beltrami condition that demands
alignment of vortices and flows becomes a system of simultaneous equations in the
magnetic field and the flow velocity. Combining these equations yields the double
curl Beltrami equation. General solvability of the equation has been proved using
the spectral theory of the curl operator. The set of solutions contains field configu-
rations that can be qualitatively different from the conventional constant-a-
Beltrami fields~which are naturally included in the set!. The larger new set may
help us understand a variety of structures generated in plasmas. ©1999 American
Institute of Physics.@S0022-2488~99!02810-8#

I. INTRODUCTION

The Beltrami condition, an expression of the alignment of a vorticity with its flow, descr
the simplest and perhaps the most fundamental equilibrium state in a vortex dynamics s
~Sec. II!. The resulting Beltrami fields constitute a null set for the generator of the evolu
equation describing the vortex dynamics. It is also believed that the Beltrami fields are acce
and robust in the sense that they emerge as the nonlinear dynamics of vortices tends
organize the system through a weakly dissipative process~Appendix A!.

The simplest example of a Beltrami condition is provided by a three-dimensional solen
field ~flow! u, obeying

H“3u5lu ~ in V!,
n–u50 ~on ]V!, ~1!

wherel is a real~or complex! constant number,V (,R3) is a bounded domain with a smoot
boundary]V andn is the unit normal vector onto]V. This system of linear equations is regard
as an eigenvalue problem with respect to the curl operator. The spectral theory of the curl o
reveals an interesting relation of this problem with the cohomology theory.1 We have the follow-
ing theorem.

~i! If V is simply connected, then~1! has a nonzero solution for speciall included in a set of
discrete real numbers; these numbers represent the point spectrum of the self-adjoint par
curl operator.

~ii ! If V is multiply connected, then~1! has a nonzero solution for everylPC.2

Our aim in this paper is to generalize this theory for ‘‘coupled’’~or higher-order! Beltrami
conditions3 that describe structures far richer than the ones contained in the single curl Be
equation~1!. In an ideal plasma, the coupling between the magnetic field and the plasma
yields the ‘‘double curl Beltrami equation,’’

a!Electronic mail: yoshida@plasma.q.t.u-tokyo.ac.jp
50800022-2488/99/40(10)/5080/12/$15.00 © 1999 American Institute of Physics
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“3~“3u!1a“3u1bu50 ~ in V!,
~2!

n•u50, n–~“3u!50 ~on ]V!,

whereu is either the magnetic field or the flow velocity of the plasma~Sec. III!. Applying the
spectral theory of the curl operator, we will show that~2! has a nonzero solution for arbitrar
complex numbersa and b, if the domainV is multiply connected~Sec. IV!. The method of
present theory applies for general multicurl Beltrami equations obtained from simultaneou
trami conditions in coupled systems.

II. VORTEX DYNAMICS AND BELTRAMI CONDITION

We start with reviewing the prototype equation for vortex dynamics. Letv be a three-
dimensional vector field representing a certain vorticity~contravariant vector field! in R3. We
consider an incompressible flowU that transportsv. When the circulation associated with th
vorticity is conserved everywhere, thisv obeys the equation

]

]t
v2“3~U3v!50. ~3!

In R2, the vorticity becomes a pseudoscalar fieldv, and the vortex dynamics equation can be c
in the form of a Liouville equation,

]

]t
v1$f,v%50, ~4!

wheref is the Hamiltonian of an incompressible flow and$ , % is the Poisson bracket, i.e.,

U5S ]f/]y
2]f/]xD , $f,v%5

]f

]y

]v

]x
2

]f

]x

]v

]y
. ~5!

The Beltrami condition with respect to~3! is

U5mv, ~6!

wherem is a certain scalar function. This condition assures the vanishing of the generator
vortex dynamics equation~3!. For ~4!, the Beltrami condition is simply

f5 f ~v!, ~7!

which implies the commutation of the vorticity and the Hamiltonian of the flow.
The simplest example of the vortex dynamics equation is that of the Euler equation of in

pressible ideal flows. LetU be an incompressible flow that obeys

]

]t
U1~U–“ !U52“p, ~8!

wherep is the pressure. Taking the curl of~8!, we obtain the evolution equation for the vorticit
v5“3U, which reads, inR3, as~3!, and inR2, as~4!. In the Beltrami flow,v parallelsU, i.e.,

“3U5mU. ~9!

We note that~9! is not Galilean invariant. We thus consider a bounded domain and impo
boundary condition@see~1!# to remove the freedom of the Galilei transform. Taking the div
gence of~9!, we find that the scalar functionm must satisfy
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U–“m50, ~10!

demanding thatm must remain constant along each streamline of the flowU. An analysis of the
nonlinear system of elliptic–hyperbolic partial differential equations~9!–~10! involves extremely
difficult mathematical issues. The characteristic curve of~10! is the streamline of the unknow
flow U, which can be chaotic~nonintegrable! in general three-dimensional problems. If we a
sume, however, thatm is a constant number, the analysis reduces into a simple but nont
problem, i.e., the eigenvalue problem of the curl operator. In this paper, our analysis is res
to this mathematically well-defined subclass of Beltrami fields.

We end this section by reviewing another example of vortex dynamics; the magnetohyd
namic ~MHD! description of a plasma. The two principal equations of the ideal~dissipationless!
conducting-fluid model are

E1U3B50, ~11!

]

]t
U1~U–“ !U5

1

r
~J3B2“p!, ~12!

whereU, J, E, andB are, respectively, the flow velocity, the current density, the electric field,
the magnetic field measured in certain fixed coordinates, andr is the fluid mass density that i
assumed to be constant. We may write

E52
]

]t
A2“f, ~13!

J5
1

m0
“3B, ~14!

in terms of a vector potentialA ~such that“3A5B) and a scalar potentialf. Using Faraday’s
law,

]B/]t52“3E,

and taking the curl of~11! and ~12!, we obtain

]

]t
B2“3~U3B!50, ~15!

]

]t
v2“3S J3B

r
1U3vD50, ~16!

wherev5“3U. The Beltrami conditions for this system of vortex dynamics equations are

J5m1B5m2U5m3v. ~17!

Using ~14! in the first equality of~17!, we get

“3B5mB, ~18!

which implies thatB parallels its own vorticity@cf. ~9!#. This configuration, for which the mag
netic stressJ3B vanishes, is aptly called ‘‘force-free.’’

In order to characterize the stellar magnetic fields, solutions to~18! were intensively studied in
the 1950s.4–6 For mÞ0, the magnetic fieldB has a finite curl, and, hence, the field lines a
twisted. The current~proportional to“3B), flowing parallel to the twisted field lines, create
what may be termed as ‘‘paramagnetic’’ structures. Such twisted magnetic field lines a
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commonly in many different plasma systems such as the magnetic ropes created in so
geomagnetic systems,7 and galactic jets.8 Some laboratory experiments have also shown that
‘‘relaxed state’’ generated through turbulence is well described as solutions of the forc
equation.9,10

In the next section, we will show that a more adequate formulation of the plasma dyn
allows a much wider class of special equilibrium solutions. The set of new solutions contain
configurations that can be qualitatively different from the force-free magnetic fields.

III. DOUBLE CURL BELTRAMI FIELD

The two-fluid model for the macroscopic dynamics of a plasma differentiates betwee
electron and ion velocities. Denoting the electron~ion! flow velocity byVe(V i), the macroscopic
evolution equations become

]

]t
Ve1~Ve–“ !Ve5

2e

m
~E1Ve3B!2

1

mn
“pe , ~19!

]

]t
V i1~V i–“ !V i5

e

M
~E1V i3B!2

1

Mn
“pi , ~20!

whereE is the electric field,pe andpi are, respectively, the electron and the ion pressures,e is the
elementary charge,n is the number density of both electrons and ions~we consider a quasineutra
plasma with singly charged ions!, andm andM are, respectively, the electron and the ion mass
In the electron equation, the inertial terms@the left-hand side of~19!# can be safely neglected
because of their small mass (m!M ).11 Therefore,~19! reduces to

E1Ve3B1
1

en
“pe50. ~21!

When electron mass is neglected,V i5V, the fluid velocity. We introduce the following set o
dimensionless variables:

x5l i x̂, B5B0B̂,

t5~l i /VA! t̂ , p5~B0
2/m0! p̂, V5VAV̂, ~22!

A5~l iB0!Â, f5~VAl iB0!f̂,

where the ion skin depth,

l i5
c

vpi
5

VA

vci
5A M

m0ne2,

is a characteristic length scale of the system, and the Alfve´n speed is given byVA

5B0 /Am0Mn ~we assumen5const, for simplicity!, with B0 as an appropriate measure of th
magnetic field.

Writing Ê52]Â/] t̂2“̂f̂, the dimensionless version of~21! and ~20! now reads as

]

] t̂
Â5~V̂2“̂3B̂!3B̂2“̂~f̂1 p̂e!, ~23!
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]

] t̂
~V̂1Â!5V̂3~B̂1“̂3V̂!2“̂~V̂2/21 p̂i1f̂ !. ~24!

In what follows, we shall drop the overcaret for a simpler notation. Taking the curl of~23! and
~24!, we can cast them in a revealing symmetric form,

]

]t
vj2“3~Uj3vj !50 ~ j 51,2!, ~25!

in terms of a pair of generalized vorticities,

v15B, v25B1“3V,

and the effective flows,

U15V2“3B, U25V.

The simplest equilibrium solution to~25! is given by the ‘‘Beltrami conditions,’’

Uj5m jvj ~ j 51,2!, ~26!

which implies the alignment of the vorticities and the corresponding flows. Writinga51/m1 and
b51/m2 , and assuming thata andb are constants, the Beltrami conditions~26! read as a system
of simultaneous linear equations inB andV,

B5a~V2“3B!, ~27!

B1“3V5bV. ~28!

These equations have a simple and significant connotation; the electron flow (V2“3B) parallels
the magnetic fieldB, while the ion flow V follows the ‘‘generalized magnetic field’’ (B
1“3V). This generalized magnetic field contains the Coriolis’ force induced by the ion in
effect on a circulating flow.

Combining~27! and ~28! yields a second-order partial differential equation,

“3~“3B!1a“3B1bB50, ~29!

where

a5
1

a
2b, b512

b

a
.

The double curl Beltrami equation~29! encompasses a wide class of steady-state equatio
mathematical physics. The conventional force-free-field equation~18!, which describes paramag
netic fields, is included in this system as a special case:a50 andb,0. On the other hand, whe
a50 andb.0, ~29! resembles London’s equation of superconductivity with its well-known fu
diamagnetic solutions. We note that, in this version of the London equation, the charact
shielding length for the magnetic field is the ion skin depthc/vpi , instead of the usual electro
skin depthc/vpe , because it is the ion dynamics that brings about the coupling of the mag
field with the collective motion of the medium.

In the next section, we will study the mathematical structure of the double curl Belt
equation with arbitrary complexa andb.12
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IV. BELTRAMI FIELDS AND HARMONIC FIELDS

The single Beltrami condition~1! is known to have a nonzero solution for arbitrary compl
numberl, if the domainV is multiply connected.1 The harmonic field that represents the coh
mology class of the differential forms inV plays an essential role to generate the Beltrami fie
A similar relation holds in the double curl Beltrami equations~2!. Here, we study the relation
between the topology of the domainV and the degree of freedom in the solution of the double c
Beltrami fields.

It is convenient to denote the curl derivative“3 by ‘‘curl’’ to use it as an operator. Let us
rewrite the differential equation of~2! in the form

~curl2l1!~curl2l2!u50, ~30!

where

l65 1
2@2a6~a224b!1/2#. ~31!

Because the two operators (curl2l6) commute, the general solution to~30! is given by a linear
combination of two Beltrami fields. LetG6 be the Beltrami field, such that

H ~curl2l6!G650 ~ in V!,

n–G650 ~on ]V!.

Then, for arbitrary constantsc6 , the sum

u5c1G11c2G2 ~32!

solves~30!. Sincen–(“3G6)5l6n–G650 on ]V, u satisfies the boundary conditions given
~2!. Therefore, the existence of a nontrivial solution to the double curl Beltrami equations~2! will
be predicated on the existence of the appropriate pair of single Beltrami fields~cf. Appendix B!.
Let us briefly review the mathematical theory of single Beltrami fields.1

Suppose thatV(,R3) is a bounded domain with a smooth boundary]V5ø i 51
n G i . We

consider cuts of the domainV. Let S1 ,...,Sn (n>0) be the cuts such thatS iùS j5B ( iÞ j ), and
such thatV\(ø j 51

n S j ) becomes a simply connected domain. The numbern of such cuts is the first
Betti number ofV. Whenn.0, we define the flux through each cut by

F j~u!5E
S j

n–u ds ~ j 51,...,n!,

wheren is the unit normal vector onS j with an appropriate orientation. By Gauss’ formula,F j (u)
is independent of the place of the cutS j , if “–u50 in V andn–u50 on ]V.

Let L2(V) the Lebesgue space of square-integrable~complex! vector fields inV, which is
endowed with the standard inner product,

~a,b!5E
V

a–b̄ dx.

We define the following subspaces ofL2(V):

LS
2 ~V!5$w;“–w50 in V, n–w50 on ]V, F j~w!50 ~ j 51,...,n!%,

LH
2 ~V!5$h;“–h50, “3h50 in V, n–h50 on ]V%,

LG
2 ~V!5$“f; Df50 in V%,
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LF
2~V!5$“f; f5ci~PC! on G i ~ i 51,...,n!%,

in terms of which we have an orthogonal decomposition,13

L2~V!5LS
2 ~V! % LH

2 ~V! % LG
2 ~V! % LF

2~V!.

The space of the solenoidal vector fields with vanishing normal components on]V is

Ls
2~V!5LS

2 ~V! % LH
2 ~V!.

The subspaceLH
2 (V) corresponds to the cohomology class, whose member is a harmonic v

field and dimLH
2 (V)5n ~the first Betti number ofV!. WhenV is simply connected, thenn50

andLH
2 (V)50”. We have the following expression:

LS
2 ~V!5$“3w;wPH1~V!, “–w50 in V, n3w50 on ]V%,

where H1(V) is the Sobolev space of first order. This says that a member ofLS
2 (V) can be

expressed as the curl of a vector potential with the boundary conditionn3w50.
The spectral theory of the curl operator provides the basic understanding of the mathem

structure of the Beltrami equations. We repeat Theorem 1 of Yoshida–Giga.1

Theorem 1: Suppose thatV is a smoothly bounded domain inR3. We define a curl operator
S in the Hilbert space LS

2 (V) by

Su5“3u,

D~S!5$uPLS
2 ~V!; “3uPLS

2 ~V!%.

TheS is a self-adjoint operator. The spectrum ofS consists of only point spectrumsp(S), which
is a discrete set of real numbers.

This theorem says that the Beltrami equation~1! together with the zero-flux condition@see the
definition of the spaceLS

2 (V)# has a nonzero solution only for special discrete real numbel
Psp(S). If V is simply connected (n50), the topological fluxF j ( ) does not exist, so tha
LS

2 (V)5Ls
2(V). If V is multiply connected (n>1), however, we can remove the zero-flu

condition assumed in Theorem 1, and consider a wider set of functions to find solutions o~1!.
This is done by considering the curl operator defined in the spaceLs

2(V). Let us trace the method
of Yoshida–Giga.1

Lemma 1: For everyfPLs
2(V), the equation,

“3u5f ~ in V!, ~33!

has a unique solution in LS
2 (V).

Proof: Let f be the 0-extension off over R3, i.e.,

f̃~x!5H f~x!, xPV,

0, x¹V.

SincefPLs
2(V), we have“–f̃50 in R3. We denote by (2D)21 the vector Newtonian potential

We define

w05“3@~2D!21 f̃#, in V.

We denote byPS the orthogonal projection inL2(V) onto LS
2 (V), and defineu05PSw0 . Since

LS
2 (V) is orthogonal to Ker~curl!, we observe

“3u05“3w05“3$“3@~2D!21 f̃#%.
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Since“–@(2D)21 f̃#50, we obtain

“3$“3@~2D!21 f̃#%52D@~2D!21 f̃#5 f̃.

We thus find thatu0 @PLS
2 (V)# is the solution of~33!. SinceLS

2 (V) is orthogonal to Ker~curl!,
this u0 is the unique solution. h

This lemma shows that every solenoidal vector field@member ofLs
2(V)# has a unique vecto

potential in the spaceLS
2 (V). We apply this result to determine the vector potential of

harmonic field@member ofLH
2 (V)#. Let n(>1) be the dimension ofLH

2 (V) ~first Betti number of
V!, andhj ( j 51,...,n) be the orthogonal basis ofLH

2 (V), such that

F i~hj !5E
S i

n–hj ds5d i , j . ~34!

By solving ~33! for f5hj , we obtain the corresponding vector potential, which we denote bygj ,
i.e.,

“3gj5hj ~ in V!, gjPLS
2 ~V! ~ j 51,...,n!.

Let us consider an arbitrary harmonic field and its vector potential, and write them as

h5(
j 51

n

j jhj , g5(
j 51

n

j jgj . ~35!

For every l¹sp(S), the resolvent operator (S2l)21 defines a unique continuous map o
LS

2 (V). We consider

v5lg1l2~S2l!21g.

This v is the unique solution@in LS
2 (V)# of

~curl2l!v5lh ~ in V!. ~36!

Now we find thatu5v1h solves

H ~curl2l!u50 ~ in V!,

n–u50 ~on ]V!.

Sinceh@PLH
2 (V)# andv@PLS

2 (V)# are orthogonal,uÓ0.
We have shown that the single curl Beltrami equation~1! has a nonzero solution for ever

complex numberl, if the domainV is multiply connected. Forl¹sp(S), the solution is uniquely
determined by the harmonic fieldh. Although ~1! appears as a homogeneous equation, the
monic field~member of the kernel of curl! plays a role of a hidden inhomogeneous term; see~36!.
On the other hand, forlPsp(S), the solution is given by the eigenfunction of the self-adjoint c
operatorS. Therefore, the solution is a zero-flux field, andh must be set to zero. The solution
not unique in the sense that any constant multiple of the eigenfunction is a solution.

Because of~32!, it is now straightforward to generalize the theory for the double curl~and
multicurl! Beltrami equations.

Theorem 2: For a multiply connected smoothly bounded domainV, and for all complex
numbersl1 and l2 , the equation,

~curl2l1!~curl2l2!u50, ~37!

has a nonzero solution.
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Let us examine the relations among the solutions, the harmonic fields and the flux
l1 ,l2¹sp(S), then the solution is given by

u5c1u11c2u2 ,

uj5h1l jg1l j
2~S2l j !

21g ~ j 51,2!,

where hPLH
2 (V), “3g5h, and gPLS

2 (V). Let us decomposeh in terms of the normalized
bases as~35!. The coefficientsc1 ,c2 ,j1 ,...,jn are related to the fluxes ofu and“3u by

~c11c2!j j5F j~u!,

~c1l11c2l2!j j5F j~“3u!,
~ j 51,...,n!,

whereF j ( ) is the flux through the cutS j . Whenn51 ~as in the case of a simple toroid!, we can
give the fluxes of bothu and “3u independently to determinej1 and c1 with setting c251
2c1 ~cf. Appendix B!. For n.1, the fluxes of“3u are not totally independent.

If l1Psp(S) andl2¹sp(S), we takeu1 to be the eigenfunction corresponding tol1 . Then,
u1 is a zero-flux function, and, hence,c1 is an arbitrary constant. The other componentu1 carries
fluxes. Takingc251, we can determine

j j5F j~u! ~ j 51,...,n!.

If l1 ,l2Psp(S), then bothu1 and u2 are the corresponding eigenfunctions. A solution ex
only for j j50 ( j 51,...,n).

V. SUMMARY

The study of the solvability of the double curl equation is warranted both by physical as
as mathematical considerations. A more adequate modeling of plasma dynamics, conta
coupling of the magnetic and fluid aspects of a plasma, necessarily leads to a departure fr
conventional single Beltrami equilibria~1!, which are restricted to only force-free equilibria. Th
departure, then, leads to an immensely larger class of physically interesting equilibria, whic
be constructed by a superposition of several different Beltrami fields. In the example dealt w
this paper~where the coupling is introduced by the Hall term!, a superposition of two Beltram
fields suffices. Notice that in the nonlinear vortex dynamics models such as~3! with coupledv
and U, a linear combination of Beltrami fields is no longer a Beltrami field. Hence, a fi
pressure and coupled flows can exist in conjunction with the magnetic field, and the structur
are far richer than those of single Beltrami fields come within the scope of the theory.3

The mathematical content of the paper may be summarized as follows: We have eluc
the general relation between the~double curl! Beltrami fields and the harmonic fields, whic
being members of Ker~curl!, play the role of a hidden inhomogeneous term in the Beltra
equations. The existence of harmonic fields invokes the multiply connectedness of the doma
everylPC\sp(S) ~point spectrum of the self-adjoint curl operator!, a harmonic field generates
nonzero unique Beltrami field corresponding tol. WhenlPsp(S), the corresponding eigenfunc
tion gives the Beltrami field. The linear combination of two Beltrami fields yields the double
Beltrami field.
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APPENDIX A: VARIATIONAL PRINCIPLE AND RELAXATION THEORY

The Beltrami condition can be derived by a variational principle invoking the ‘‘helicit
Woltjer14 derived the force-free equation~18! by minimizing the magnetic energy with the con
straint that the magnetic helicity is conserved. Here, the magnetic helicity is, for a magnetic
B and its vector potentialA,

H5
1

2 EV
A–B dx.

Minimization of the magnetic field energy,

E5
1

2 EV
uBu2 dx5

1

2 EV
u“3Au2 dx,

with keepingH constant is represented by the variational principle

d~E2lH !50, ~A1!

wherel is the Lagrange multiplier. Assuming a boundary condition,

n3A50 ~on ]V! ~A2!

@note thatn–B50 ~on ]V! follows from ~A2!#, the formal Euler–Lagrange equation with respe
to ~A1! yields ~18!; see Ref. 15 for a more rigorous treatment of the variational principle.

Using Maxwell’s equations, we obtain

]

]t
~A–B!522E–B2“–~fB1E3A!.

In an ideal plasma,E–B50 @see~11!#. WhenV is surrounded by a perfectly conducting wall, w
find thatH is a constant of motion. Taylor16 introduced the far-reaching concept of relaxation;
conjectured that a small amount of resistivity would tend to relax all constraints restricting an
plasma leaving only the ‘‘rugged’’ constraint on the global helicityH. When the magnetic energ
achieves its minimum under the constraint onH, the ‘‘relaxed state’’ is characterized by th
variational principle~A1!, and, hence, the magnetic field satisfies the force-free equation~18!.
Many authors have examined the selective dissipation of the magnetic field energyE with respect
to the helicityH ~see Hasegawa17 and papers cited there!. Montgomeryet al.18 studied the statis-
tical mechanical properties of the relaxed state using the Beltrami functions to expand field~see
also Ref. 19!.

The conservation of helicity applies for general vortex dynamics. Letv be a vorticity that
satisfies~3! and boundary condition,

n3~U3v!50 ~on ]V!.

The general ‘‘helicity’’ is defined as

H5
1

2 EV
~curl21 v!–v dx,

where curl21 is the inverse operator of the curl that is represented by the Biot–Savart integra~see
Lemma 1 for a more suitable treatment!. By this definition, we easily verify the conservation ofH.
For our two-fluid MHD model, we have two helicities:
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H15
1

2 EV
A–B dx, H25

1

2 EV
~A1V!–~B1“3V!dx.

The total energy,

E5
1

2 EV
~ uBu21uVu2!dx,

is also conserved. The variationd(E2m1H12m2H2)50 will directly lead us to~27! and~28! ~cf.
Ref. 20!.

APPENDIX B: EXAMPLES OF SOLUTIONS

Some explicit forms of the Beltrami fields may help understanding of the structures o
solutions.

When we consider a cubic volume that has sides of lengtha and assume the periodic bounda
condition, we have the so-calledABC flow. Let A, B, andC be real~complex! constants andl
52pn/a (nPN). In the Cartesian coordinates, we define

u5S A sinlz1C cosly
B sinlx1A coslz
C sinly1B coslx

D . ~B1!

We easily verify that~B1! gives an eigenfunction of the curl belonging to an eigenvaluel. The
linear combination of twoABC flows give the double curl Beltrami flow.

Solutions with the zero-normal boundary conditions are known for a cylindrical domai
the (r ,u,z) cylindrical coordinates, the Chandrasekhar–Kendall function6 is defined as

u5l~“c3“z!1“3~“c3“z!, ~B2!

with

l56~m21k2!1/2 ~B3!

c5Jm~mr !ei ~mw2kz!, k52pn/L, m,nPN, ~B4!

whereJm is the ordinary Bessel function andL is the length of the periodic cylinder. We find th
u is an eigenfunction of the curl corresponding to the eigenvaluel(PR). The eigenvalue is
determined by the boundary condition that the normal component ofu vanishes on the surface o
the cylindrical domain. This condition becomes trivial whenk5m50. For these axisymmetric
modes, we impose the ‘‘zero-flux condition,’’

F~u!5E
S
n–u ds50, ~B5!

whereS is a cut of the cylinder~cf. Theorem 1!.
When we do not impose the zero-flux condition, however, the eigenvaluem can be an arbi-

trary real ~and even complex! number for thek5m50 mode.2 Therefore, we have nonzer
Beltrami fields for arbitraryl. For such a solution that has a finite fluxF~u!, the flux can be
regarded as the variable of state. The double curl Beltrami field is a combination of two Be
fields, and, hence, the degree of freedom is two and two fluxesF~u! and F(“3u) can be
assigned.
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In a two-dimensional system, we can apply the Clebsch representation of solenoidal
fields @cf. ~4! and~5!#. For example, let us assume that the fields are homogeneous in the dir
of z in the Cartesian coordinatesx-y-z. We write B in a contravariant–covariant combinatio
form,

B5“c3e1fe, ~B6!

wheree5“z. Thec andf are scalar functions ofx andy. We have

“3B5“f3e1~2Dc!e,

“3~“3B!5“~2Dc!3e1~2Df!e.

Using these expressions in the double curl Beltrami equation~29!, we obtain a system of couple
Helmholtz equations,

2Dc1af1bc5C, 2Df2aDc1bf50, ~B7!

whereC is a constant. Biasing the potentialc with 2C/b, we can eliminate this constant. Th
system~B7! can be casted into a symmetric form,

DS c
f D5S b a

2ab b2a2D S c
f D . ~B8!

Similar algebra applies for the case of axisymmetric~toroidal! systems, where we must tak
e5“u in ~B6! and assume thatc andf are functions ofr andz in the r -u-z cylindrical coordi-
nates. Then, the LaplacianD is replaced by the Grad–Shafranov operator,

L5r
]

]r S 1

r

]

]r D1
]2

]z2 .

The coupled Grad–Shafranov equation of the type~B7! was derived previously for the analysis o
toroidal equilibrium in a plasma–beam system, where the inertia force of the beam particles
about coupling of the magnetic field and the beam flow.21

1Z. Yoshida and Y. Giga, Math. Z.204, 235 ~1990!.
2Without the zero-flux condition, the curl operator is not self-adjoint,1 and, hence, the potency of the set of the eigenval
~point spectrum! can be uncountable without violating the separability of the Hilbert spaceL2(V).

3S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett.81, 4863~1998!.
4R. Lüst and A. Schlu¨ter, Z. Astrophys.34, 263 ~1954!.
5S. Chandrasekhar, Proc. Natl. Acad. Sci. USA42, 1 ~1956!.
6S. Chandrasekhar and P. C. Kandall, Astrophys. J.126, 457 ~1957!.
7L. Acton et al., Science258, 618 ~1992!.
8A. Königl and A. R. Choudhuri, Astrophys. J.289, 173 ~1985!.
9J. B. Taylor, Rev. Mod. Phys.58, 741 ~1986!.

10Z. Yoshidaet al., J. Plasma Phys.59, 103 ~1998!.
11When the electron mass is neglected, the two-fluid model may be called Hall MHD.
12We remark that the solutionu is a real function, ifa andb are real. Indeed, ifu is a solution for reala andb, thenū

is also a solution~take the complex conjugate of the equations!. Since the solution is unique~see Sec. IV!, u5ū, and
henceu is a real function.

13R. Temam,Navier–Stokes Equations~North-Holland, Amsterdam, 1984!.
14L. Woltjer, Proc. Natl. Acad. Sci. USA44, 489 ~1958!.
15P. Laurence and M. Avellaneda, J. Math. Phys.32, 1240~1991!.
16J. B. Taylor, Phys. Rev. Lett.33, 1139~1974!.
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A qualitative analysis is presented for a class of homogeneous cosmologies derived
from the string effective action when a cosmological constant is present in the
matter sector of the theory. Such a term has significant effects on the qualitative
dynamics. For example, models exist which undergo a series of oscillations be-
tween expanding and contracting phases due to the existence of a heteroclinic cycle
in the phase space. Particular analytical solutions corresponding to the equilibrium
points are also found. ©1999 American Institute of Physics.
@S0022-2488~99!00910-X#

I. INTRODUCTION

Very early universe cosmology provides one of the few environments where the predictio
fundamental theories of physics, and in particular string theories, can be investigated.
theory is the most promising candidate for a unified theory of the fundamental interactio
introduces significant modifications to the standard, hot big bang model based on conve
Einstein gravity and a study of string-inspired cosmologies is therefore important.

String theories predict the existence of a graviton,gmn , a scalar ‘‘dilaton’’ field,F, and an
antisymmetric two-form potential,Bmn , with a field strengthHmnl[] [mBnl] .1,2 In four dimen-
sions, the three-form field strength is dual to a one-form,¹ms, such thatHmnl[eFemnlk¹ks,
where emnlk is the covariantly constant four-form.3 The one-form may be interpreted as th
gradient of a scalar ‘‘axion’’ field. The string field equations can then be derived from
effective action,3

S5E d4xA2ge2FFR1~¹F!22
1

2
e2F~¹s!2G1SM , ~1!

whereSM represents the action for perfect fluid matter sources,R is the Ricci curvature of the
space–time andg[detgmn . The dilaton-graviton sector of action~1! may be interpreted as
Brans–Dicke theory, where the coupling parameter between the two fields takes the specifi
v521.4 The value of the dilaton field determines the effective value of Newton’s ‘‘consta
Geff}eF.

The general solutions to the field equations of action~1! are known analytically whenSM

50 for both the spatially flat and isotropic Friedmann–Robertson–Walker~FRW! universes and

a!Electronic mail: jaf@mscs.dal.ca
b!Electronic mail: aac@mscs.dal.ca
c!Electronic mail: jlidsey@astr.cpes.susx.ac.uk
50920022-2488/99/40(10)/5092/14/$15.00 © 1999 American Institute of Physics
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the anisotropic Bianchi type I models.5,6 The purpose of the present paper is to qualitativ
investigate the consequences of introducing a cosmological constant,LM , into the matter sector
of Eq. ~1!,

S5E d4xA2gH e2FFR1~¹F!22
1

2
e2F~¹s!2G2LMJ . ~2!

This term may be interpreted as a perfect fluid matter stress with an equation of statep52r. It
could be generated by a slowly moving scalar field, with a kinetic energy contribution domi
by a self-interaction potential,p'2V'2r. Analytical FRW solutions have not been found f
this model when the axion field is trivial andLM.0.7,8 Moreover, the combined effects of th
cosmological constant and axion field have not been considered previously.

We determine the general structure of the phase space of solutions for spatially flat FR
axisymmetric Bianchi type I cosmologies derived from action~2! for arbitraryLM . This comple-
ments the work of Refs. 9–13, where the qualitative effects of introducing a cosmologica
stant,LM}e2F, into the gravitational sector of Eq.~1! were determined.

The paper is organized as follows. In Sec. II, the cosmological field equations and sol
for a zero cosmological constant are presented. The qualitative behavior of the model
positive and negativeLM is determined in Secs. III and IV, respectively. The phase portraits
interpreted in Sec. V and we conclude with a discussion in Sec. VI.

II. COSMOLOGICAL FIELD EQUATIONS

The metric for the Bianchi type I model may be written in the form

ds252dt21habdxadxb, a,b51,2,3, ~3!

wherehab(t) is a function of cosmic timet only and represents the metric on the surfaces
homogeneity. The axisymmetric model may be parametrized byhab5e2a(t)(e2b(t))ab , wheree3a

denotes the effective spatial volume of the universe. The traceless, diagonal matribab

[diag@b,b,22b# determines the shear of the models and we refer tob as the shear parameter.14

The spatially flat, isotropic FRW model is recovered in the limit whereb50 and, in this case,ea

represents the scale factor of the universe.
Substituting the metric~3! into the action~2! and integrating over the spatial variables impli

that

S5E dt e3aH e2FF6ȧḞ26ȧ216ḃ22Ḟ21
1

2
e2Fṡ2G2LMJ , ~4!

where the comoving volume has been normalized to unity without loss of generality and
denotes differentiation with respect tot. The field equations derived from Eq.~4! are given by

ä5ȧẇ1ẇ223ȧ226ḃ22 3
2LMew13a, ~5!

ẅ53ȧ216ḃ21 1
2LMew13a, ~6!

s̈52~ ẇ16ȧ !ṡ, ~7!

b̈5ḃẇ, ~8!

where

w[F23a ~9!

defines the ‘‘shifted’’ dilaton field and the generalized Friedmann constraint takes the form
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3ȧ22ẇ216ḃ21 1
2ṡ

2e2w16a1LMew13a50. ~10!

Equations~5!–~10! may be simplified by introducing the new time coordinate

d

du
[e2~w13a!/2

d

dt
~11!

and employing the generalized Friedmann constraint Eq.~10! to eliminate the axion field. The
remaining field equations are then given by

a95w822 9
2a821 1

2a8w826b822 3
2LM , ~12!

w953a8216b822 1
2w822 3

2a8w81 1
2LM , ~13!

b95 1
2b8~w823a8!, ~14!

where a prime denotes differentiation with respect tou.
The general solution to Eqs.~5!–~10! is known when the cosmological constant vanishes.5 It

is given by

ea5ea
*U s

s*
U1/2FU s

s*
U r

1U s

s*
U2r G1/2

,

eF5
eF

*

2 FU s

s*
U r

1U s

s*
U2r G ,

s5s* 6e2F
* F us/s* u2r2us/s* ur

us/s* u2r1us/s* ur G ,
eb5eb

*U s

s*
Uq

, ~15!

wheres[* tdt8e2a(t8) is conformal time,$a* ,s* ,F* ,s* ,b* % are arbitrary constants, and$r ,q%
satisfy the constraint equationr 5(3212q2)1/2.

The solutions to Eqs.~5!–~10! for a trivial axion field and zero cosmological constant hav
power-law form,

ea5ea
* utu6h

* ,

eF5eF
* utu63h

*
21,

eb5eb
* utu6A~123h

*
2

!/6, ~16!

whereh* is a constant such thatuh* u<1/). Solution~15! asymptotes to these power-law mode
at early and late times and the axion field is therefore dynamically negligible in these limits. W
an axion field it present, as in Eq.~15!, the universe undergoes a smooth transition between
two power-law solutions~16! and exhibits a bounce whens's* . In the isotropic limit, h

*
2

51/3, and the time-reversal of theea}utu21/) solution is inflationary. It corresponds to the preb
bang cosmology, where the inflationary expansion is driven by the kinetic energy of the d
field.15

In the next section we determine the phase portraits for the generalized model with a
trivial axion field andLM.0. The effect of the cosmological constant on the solutions~15! can
then be established.
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III. POSITIVE COSMOLOGICAL CONSTANT

WhenLM.0, we can rewrite Eqs.~12!–~14! using new variables defined by

h[a8, c[w8, N[b8. ~17!

Equation~10! then implies that

c2>3h216N21LM>0, ~18!

and consequently we may normalize withc. We therefore define

x[
)h

c
, ~19!

y[
6N2

c2 , ~20!

z[
LM

c2 , ~21!

d

dQ
[

1

c

d

du
, ~22!

and assume thatc.0. ~The casec,0 is related to a time-reversal of the system and the qu
tative behavior is similar.! The three-dimensional system~12!–~14! is therefore given by

dx

dQ
5~x1) !@12x22y2z#1

1

2
z@x2)#, ~23!

dy

dQ
52yH @12x22y2z#1

1

2
zJ , ~24!

dz

dQ
52zH @12x22y2z#2

1

2
~12z2)x!J . ~25!

It follows from definitions~19!–~21! that the phase space is bounded with 0<$x2,y,z%<1
subject to the constraint 12x22y2z>0. The invariant set 12x22y2z50 corresponds to a zer
axion field. The dynamics of the system~23!–~25! is determined primarily by the dynamics in th
invariant setsy50 andz50. These correspond to a zero shear parameter and a zero cosmo
constant, respectively. The dynamics is also determined by the fact that the right-hand side
~24! is positive-definite so thaty is a monotonically increasing function. This guarantees that th
are no closed or recurrent orbits in the three-dimensional phase space.

A. Isotropic model for LM>0

The isotropic FRW cosmology corresponds to the invariant sety50, where the shear param
eter is trivial. The system~23!–~25! reduces to the following plane system in this case:

dx

dQ
5~x1) !@12x22z#1

1

2
z@x2)#, ~26!

dz

dQ
52zH @12x22z#2

1

2
~12z2)x!J . ~27!
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The equilibrium points and their associated eigenvalues are given by

S1 : x521, z50; l152~)21!, l252~11) !, ~28!

S2 : x51, z50; l1522~)11!, l25~)21!, ~29!

F: x52
1

3)
, z5

16

27
; l1,25

1

3
6

i

9
A231. ~30!

The pointsS1 andS2 are saddles andF is a repelling focus. The phase portrait is given in Fig.
In the invariant set 12x22z50, corresponding to the case of a zero axion field, Eqs.~26! and

~27! reduce to the single ordinary differential equation,

dx

dQ
5

1

2
~12x2!~x2) !, ~31!

which can be integrated to yield an exact solution in terms ofU-time.

B. Anisotropic model for LM>0

In the full system~23!–~25!, corresponding to the anisotropic model with a nontrivial sh
parameter, there exists the isolated equilibrium point~and their associated eigenvalues!

F: x52
1

3)
, y50, z5

16

27

~l1 ,l2 ,l3!5S 1

3
1

i

9
A231,

1

3
2

i

9
A231,

4

3D , ~32!

FIG. 1. Phase portrait of the system~26!–~27!, corresponding to the isotropic FRW model withLM.0. Equilibrium points
are denoted by dots and the labels in all figures correspond to those equilibrium points~and hence the exact solutions the
represent! discussed in the text. We shall adopt the convention throughout that large black dots represent sourc~i.e.,
repellors!, large gray-filled dots represent sinks~i.e., attractors!, and small black dots represent saddles. Arrows on
trajectories have been suppressed since the direction of increasing time is clear using this notation. Note that in th
space orbits are future asymptotic to a heteroclinic cycle.
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W: y512x2, z50 ~x arbitrary!

~l1 ,l2 ,l3!5S 22)Fx1
1

)
G ,)Fx2

1

)
G ,0D . ~33!

Hence, F is a global source. The setW lies in the invariant setz50 on the boundary
y512x2. Points onW with xP(21/),1/)) are local sinks, while the remaining points a
saddles in the full three-dimensional phase space$in the invariant setz50 equilibrium points with
xP@21,21/)) are repelling and those withxP(21/),1# are attracting%. The phase portrait for
this system is given in Fig. 2 and Table I lists each equilibrium set and its stability.

We note that there exists an exact, anisotropic solution of Eqs.~23!–~25!, where

x52
1

3)
5constant ~34!

FIG. 2. Phase portrait of the system~23!–~25! corresponding to the axisymmetric Bianchi type I cosmology w
LM.0. Note thatW denotes a line of nonisolated equilibrium points. The dashed line represents the exactx5constant
solution ~34!–~36!. See caption to Fig. 1 for notation. Gray lines represent typical trajectories found within the
dimensional invariant sets, and solid black lines are typical trajectories within the full three-dimensional phase sp

TABLE I. Equilibrium sets for anisotropic model withLM.0, and their
stability ~the equations where each sets is defined is also listed!.

Equilibrium point Stability

F: Eq. ~32! Repellor~source!
W: Eq. ~33! Attractor ~sink! for (21/)),x,(1/))

Saddle otherwise
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and

y52
13

8 S z2
16

27D . ~35!

This implies that

dz

dQ
5

9

4
zS z2

16

27D ~36!

and Eq.~36! can be integrated explicitly in terms ofU-time.
In the following section we determine the effects of a negative cosmological constant.

allows a direct comparison to be made with theLM.0 models considered above.

IV. NEGATIVE COSMOLOGICAL CONSTANT

In the case whereLM,0, the generalized Friedmann constraint Eq.~10! implies that

c22LM>3h216N2>0. ~37!

We may therefore normalize by employing the quantityAc22LM. Defining the new variables

u[
)h

Ac22LM

, ~38!

v[
c

Ac22LM

, ~39!

w[
6N2

c22LM
, ~40!

where 0<$u2,v2,w%<1, and the new time variable

d

dJ
5

1

Ac22LM

d

dQ
~41!

implies that Eqs.~12!–~14! become

du

dJ
5
)

2
~12u2!~12v2!1~12u22w!~)1uv !, ~42!

dv
dJ

52
1

2
~12v2!~122u222w1)uv !, ~43!

dw

dJ
5w@2v~12u22w!2)u~12v2!#. ~44!

The phase space is bounded by the setsv561 andw512u2, where the latter corresponds to
zero axion field. The dynamics is determined by the fact that the right-hand side of Eq.~42! is
positive definite so thatu is a monotonically increasing function.
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A. Isotropic model for LM<0

In the invariant setw50, corresponding to the isotropic FRW model (b50), the system
~42!–~44! reduces to the following two-dimensional system:

du

dJ
5

1

2
~12u2!~2uv1)@32v2# !, ~45!

dv
dJ

5
1

2
~12v2!~2u2212)uv !. ~46!

The linesu251 andv251 are invariant sets, containing four equilibrium pointsSu,v . These
points are all saddles and are located at the intersections of the lines. Their eigenvalues ar
by

S1,1: l15)21, l2522~)11!, ~47!

S21,1: l152~)21!, l252~)11!, ~48!

S1,21 : l1522~)21!, l25~)11!, ~49!

S21,21 : l152~)21!, l252~)11!. ~50!

The remaining two equilibrium points and their eigenvalues are

R: ~u2 ,v2!5S 21,2
1

)
D ; l15

1

)
, l25

10

)
, ~51!

A: ~u1 ,v1!5S 1,
1

)
D ; l152

1

)
, l252

10

)
. ~52!

Consequently,R is a source andA is a sink. Figure 3 depicts the phase plane of the sys
~45!–~46!.

FIG. 3. Phase portrait of the system~45!–~46! corresponding to the isotropic FRW model withLM,0. See caption to Fig.
1.
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B. Anisotropic model for LM<0

In the full system~42!–~44! with a nontrivial shear parameter, the equilibrium points and th
respective eigenvalues are

W6: v561, u21w51; ~l1 ,l2 ,l3!5S 0,)Fu7
1

)
G ,22)Fu6

1

)
G D , ~53!

R: v52
1

)
, u521, w50; ~l1 ,l2 ,l3!5

1

)
~1,2,10!, ~54!

A: v5
1

)
, u51, w50; ~l1 ,l2 ,l3!52

1

)
~1,2,10!. ~55!

The saddle pointsS61,21 in Sec. IV A are the endpoints to the lineW2. This line represents
early-time attracting solutions for21/),u,1/) and saddles otherwise. The saddle poi
S61,1 are the endpoints to the lineW1. This corresponds to late-time attracting solutions
21/),u,1/) and saddles otherwise. Hence, there are two early-time attractors given b
point R and the lineW2 for 21/),u,1/). There are also two late-time attractors correspo
ing to the pointA and the lineW1 for 21/),u,1/). Figure 4 depicts the three-dimension
phase space and Table II lists each equilibrium set and its stability.

This concludes the derivation of the phase portraits for the spatially flat and homoge
cosmologies derived from Eq.~2!. We proceed in the following section to discuss their propert

FIG. 4. Phase portrait of the system~42!–~44! corresponding to the axisymmetric Bianchi type I model withLM,0. Note
that W6 denote lines of nonisolated equilibrium points. See captions to Figs. 1 and 2.
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V. INTERPRETATION OF THE PHASE PORTRAITS

The dynamics of the isotropic cosmology described by the system~26!–~27! is of interest
from a mathematical point of view due to the existence of the quasiperiodic behavior. The
are future asymptotic to aheteroclinic cycle, consisting of the two saddle equilibrium pointsS1

andS2 and the single~boundary! orbits in the invariant setsz50 and 12x22z50 joining S1 and
S2 ~see Fig. 1!. The former set corresponds to the zeroLM solution @given by Eqs.~15! with q
50# and the latter to the solution with constant axion field@see Eq.~31!#; to our knowledge this
exact solution was not previously known. In a given ‘‘cycle,’’ an orbit spends a long time clo
S1 and then moves quickly toS2 shadowing the orbit in the invariant setz50. It is then again
quasistationary and remains close to the equilibrium pointS2 before quickly moving back toS1

shadowing the orbit in the invariant set 12x22z50. We stress that the motion isnot periodic,
and on each successive cycle a given orbit spends more and more time in the neighborhoo
equilibrium pointsS1 andS2 .

In Fig. 1, the exact solution corresponding to the equilibrium pointF is a power-law solution,

a5a* ~2t !1/3,

F5 lnS 16

3LM
D22 ln~2t !,

s5s* 6
A15LM

16
~2t !2,

ḃ50, ~56!

wheret is defined over the range2`,t,0 by a suitable choice of an integration constant. T
new solution represents a cosmology that collapses monotonically to zero volume att50. The
curvature and coupling are both singular at this point. The universe is initially in a weak cou
regime, sinceGeff →0 ast→2`, and the effective energy density of the axion field also vanis
in this limit.

All orbits in Fig. 1 begin atF. The cyclical nature of these orbits can be physically underst
by reinterpreting the axion field in terms of a membrane. The homogeneity of the axion
s5s(t), implies that the two-form potential,Bmn , must be independent of cosmic time, and th
in turn implies that its field strength must be proportional to the volume form of the three-s
If the topology of the spatial sections is given by a three-torus,S13S13S1, the behavior of the
axion field is dynamically equivalent to that of a membrane that has been wrapped aroun
torus.16 The collapse is resisted by this membrane and the universe undergoes a bounce.
volume increases, however, the influence of the membrane is diminished, because the
density of the axion is rapidly red-shifted away. Consequently, the cosmological constant be
important.

TABLE II. Equilibrium sets for anisotropic model withLM,0, and their
stability ~the equations where each set is defined is also listed!.

Equilibrium point Stability

W2: Eq. ~53! Repellor~source! for (21/)),u,(1/))
Saddle otherwise

W1: Eq. ~53! Attractor ~sink! for (21/)),u,(1/))
Saddle otherwise

R: Eq. ~54! Repellor~source!
A: Eq. ~55! Attractor ~sink!
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The subsequent effect of the cosmological constant can be determined by viewing Eq.~2! in
terms of a Brans–Dicke action, where the dilaton-graviton coupling parameter is give
v521.4 The Brans–Dicke FRW models containing only a cosmological constant in the m
sector have been discussed previously by Barrow and Maeda, but their solutions only ap
v.25/6.7,8 The behavior of the general solution forv,25/6 is different and can be establishe
by performing a conformal transformation to a frame where the dilaton field is minimally cou
to gravity. In such a frame the term containingLM may be viewed as an exponential, se
interaction potential for the dilaton, where the exponent is uniquely determined by the va
v.17 Whenv.25/6, the late-time attractor is a scaling solution, where the kinetic and pote
energies of the dilaton field redshift in direct proportion.18 For v,25/6, however, the potential is
so steep that the dilaton effectively becomes massless.19 Thus, the late-time attractor whe
v521 corresponds to the solution~16! whereh

*
2 51/3.

Further insight may be gained by defining new variables in the reduced action~4!,

x[4a2F,

g[F26a,

t̃ 5E dtew. ~57!

In the case whereḃ5ṡ50, Eq. ~4! reduces to

S5E d t̃F2
3

2 S dx

d t̃
D 2

1
1

2 S dg

d t̃
D 2

2LMe2gG . ~58!

The momentum conjugate to the variablex is constant, i.e.,dx/d t̃5C, and the field equation for
g is a Liouville equation,

d2g

d t̃2
5LMe2g. ~59!

The general solution to Eq.~59! satisfying the Hamiltonian constraint can be found. Wh
C.0, it can be shown thatg}A3C2 t̃ in the late-time limit. Since the Hubble parameter is giv
by

ȧ52
1

2
ewS C1

dg

d t̃
D , ~60!

the late-time attractor corresponds to thecollapsingsolution in Eq.~16!.
In effect, therefore, the cosmological constant resists the expansion and ultimately cau

universe to recollapse and asymptotically approach the saddle pointS1 . On the other hand, the
collapse causes the axion field to become relevant once more and a further bounce ensu
process is then repeated with the universe undergoing a series of bounces. The orbits
progressively closer towards the two saddles,S1,2, and spend increasingly more time near to the
points. This behavior is related to the fact that the kinetic energy of the shifted dilaton
increases monotonically with time, since Eq.~6! implies thatẅ.0.

When shear is included (yÞ0), F still represents theonly source in the system. The orbit
follow cyclical trajectories in the neighborhood of the invariant sety50 and they spiral outwards
monotonically, since Eq.~24! implies thatdy/dU.0. After a finite~but arbitrarily large! number
of cycles the kinetic energy associated with the shear parameter,b, begins to dominate the axio
and cosmological constant. The orbits then asymptote to the power-law solutions~16!. All orbits
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in the full three-dimensional phase space actually spiral outwards around the orbit represen
the dashed line in Fig. 2 which corresponds to the exact solutions~34!–~36! with x5constant. In
terms of cosmic time,t, this exact solution satisfies

LM2
16

27
c21

48

13
N250 ~61!

and

ȧ52
1

9
ẇ, ~62!

whence from Eqs.~5!–~10! we obtain

ẅ5ẇ21kw
2e2w, ~63!

wherekw is an integration constant. Defining

%[
e2w

kw
~64!

simplifies Eq.~63! to

%%̈521 ~65!

and Eq.~65! can be integrated exactly to obtainẇ.20 A second integration then yieldsw in terms
of the inverse error function, so that in principle we can obtain the scale factor as a funct
time, t, from Eq. ~62!.

This cyclical behavior does not arise ifLM,0 ~see Fig. 3!. The equilibrium pointsA andR
represent the power-law solutions,

a5
a*

A62t
,

F5F* 2 ln@6A22LMt#2,

b5b* ,

s5s* , ~66!

where the1 sign corresponds to the pointR and the2 sign to the pointA. Initially the universe
is collapsing and the axion field induces a bounce, but this field can not dominate the dyn
again once the volume of the universe has increased sufficiently.

Figure 4 depicts the axisymmetric Bianchi type I model whenLM,0. In this phase space, fo
21/),u,1/) the line W2 represents the positive branch of the solution~16! for h* P
(21/3,1/3). Likewise, for21/),u,1/) the lineW1 represents the ‘‘2’’ solution in Eq. ~16!
for h* P(21/3,1/3). The four saddle pointsSu,v correspond to the power-law solutions~16! with
h* 561/). From Fig. 4 we see that generically trajectories asymptote away from either th
W2 or the pointR and move towards the expanding power-law solutionsW1 or A. Hence, the
cosmological constant is important in determining both the early- and late-time dynamics. Su
is monotonically increasing@see~42!# we note that the occurrence of a bounce in these cos
logical models is a typical feature.
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VI. DISCUSSION

In this paper we have presented a qualitative analysis of spatially flat FRW and Bianch
I cosmologies containing nontrivial dilaton and axion fields with a cosmological constant i
matter sector of the theory. The action we considered reduces to the string effective action
the cosmological constant vanishes. A complete stability analysis was performed in all ca
finding variables that led to a compactification of the phase space. We found that a cosmo
constant has a significant effect on the dynamics of the string cosmologies~15!.

One of the more interesting mathematical features of the models we have considered
existence of quasi-periodic behavior. This occurs in the isotropic cosmologies, where the orb
future asymptotic to a heteroclinic cycle~see Fig. 1!. The solutions interpolate between the sadd
S1 andS2 corresponding to the power-law models~16! with uh* u51/). It would be interesting to
consider the implications of this behavior for the prebig bang inflationary scenario.15 We note that
the phase portrait depicted in Fig. 1 is similar to that of Fig. 1~e! in Ref. 21 that describes th
locally rotationally symmetric submanifold of the stationary Bianchi type I perfect fluid mode
general relativity, although in this latter case the independent variable is spacelike.

The general Bianchi cosmology, where the shear matrix is given by

bab5diag@b11)b2 ,b12)b2 ,22b1# ~67!

can be analyzed directly by defining the variableN in Eqs.~17! and~20! via N25(
i 56

Ni
2. Orbits

in the full phase space of Fig. 2 with nontrivial shear term~represented by the variabley! are
repelled from the sourceF. The variabley increases monotonically and the orbits spiral around
exact solution given by Eqs.~61!–~63!, as represented by the dashed line in Fig. 2.@See also Fig.
1~f! and the Appendix in Ref. 21.# This implies that solutions are asymptotic in the past to
solution given by Eq.~56!. At early times the orbits ‘‘shadow’’ the orbits in the invariant sety
50 and undertake cycles between the saddles~in three-dimensional phase space! on the equilib-
rium set W close to S1 and S2 . These saddles onW may be interpreted as Kasner-typ
solutions.21,22Note thaty50 atS1 andS2 , however, and there is no shear term in these cases.
orbits thus experience a finite number of cycles in which the solutions interpolate between
ent Kasner-type states. The orbits eventually asymptote towards a source on the lineW.

This is perhaps reminiscent of the mixmaster behavior that occurs in the Bianchi type VI
IX cosmologies.22,23 These are the most general models in the Bianchi class A of spatially ho
geneous universes.24 In these models, Taub orbits joining equilibrium points of the Kasner seK
lead to the existence of infinite heteroclinic sequences which approximate the past asym
behavior of generic orbits.~These heteroclinic sequences are defined by a map ofK onto itself.!
Mixmaster oscillations also occur in less general~i.e., lower-dimensional! Bianchi models with a
magnetic field25 or Yang–Mills fields.26 It is interesting to note in the string context that mixma
ter behavior also occurs in scalar-tensor theories of gravity in general and in the Brans–
theory in particular.27

This analogy is only suggestive. We note that if a nonzero central charge deficit is incl
the quasiperiodic behavior in the full~higher-dimensional! phase space does indeed persis28

Unlike the mixmaster oscillations, however, the orbits in Fig. 2 eventually spiral away froy
50, although there are orbits that experience a finite but arbitrarily large number of oscilla
However, it would be interesting to further explore any correspondence with possible mixm
behavior, particularly by including additional anisotropic or matter degrees of freedom.

Some of the dynamics discussed in this paper is also relevant to higher-dimensional c
logical models. Kaluza–Klein compactification of ten-dimensional supergravity theories2 onto an
isotropic six-torus of radiuseb introduces an additional modulus field into the effective fo
dimensional action~1!. Integration over the spatial variables for a spatially flat FRW model t
leads to an action that is formally identical to that of Eq.~4! when we specifyLM50. In this
sense, therefore, the action~4! can be recast into a higher-dimensional context, where the s
term b plays the role of the modulus field andLM is interpreted as a cosmological constant th
is introduced after compactification.
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More generally, type II supergravity theories contain Ramond–Ramond form-fields th
not couple directly to the dilaton field in the string frame.2 Under dimensional reduction, thes
fields give rise to terms in the effective action of the formQ2 exp(cb), where Q and c are
constants;29 i.e., Ramond–Ramond charges give rise to exponential potentials for the mo
field rather than a simple constant term such as that considered in this work. However, fro
analysis in Sec. III A, there will be string solutions containing Ramond–Ramond fields tha
ymptote towards solutions withb5constant~y50 in Fig. 2!, in which caseQ2 exp(cb) is effec-
tively constant. It might then be expected that the heteroclinic cycle that occurs in the invaria
y50 ~see Fig. 1! will play an important roˆle in describing the dynamics of these string cosmo
gies.
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Quantum scalar field in D-dimensional static black hole
space–times
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An Euclidean approach for investigating quantum aspects of a scalar field living on
a class ofD-dimensional static black hole space–times, including the extremal
ones, is reviewed. The approach makes use of a near-horizon approximation of the
metric andz-function formalism for evaluating the partition function and the ex-
pectation value of the field̂f2(x)&. After a review of the nonextreme black hole
case, the extreme one is considered in some detail. In this case, there is no conical
singularity, but the finite imaginary time compactification introduces a cusp singu-
larity. It is found that thez-function regularized partition function can be defined,
and the vacuum expectation value of the field, is finite on the horizon, as soon as
the cusp singularity is absent, namely, the manifold is smooth and the correspond-
ing temperature isT50. It is suggested that the requirement of having a smooth
near-horizon geometry always selects the correct black hole equilibrium tempera-
ture. © 1999 American Institute of Physics.@S0022-2488~99!03910-9#

I. INTRODUCTION

The issue of determining the equilibrium~Unruh–Hawking! temperature of a black hole, i
important. In fact, one can extract thermodynamical information from its knowledge, for exam
the Bekenstein–Hawking entropy~i.e., the tree-level contribution to the entropy! can be defined as
the response of the free energy of the black hole to the change of this equilibrium tempe
Furthermore, it defines the admissible temperatures of thermal states of free scalar fields in
and globally hyperbolic space–time region with horizons.

As is well known, there exist several methods for evaluating the possible equilibrium
perature of a stationary black hole. Within the simplest of these methods, one has to make
rotation of the time coordinate~passing in this way to the Euclidean timet5 i t ), and eliminate all
the metric~conical! singularities connected to the horizon by an opportune choice of the
periodicitybM .1 Then, one has to impose the KMS condition for thermal states,2–5 i.e., to impose
the periodicity condition on the imaginary time dependence of the thermal Wightman func
and interpret the common periodbT as the inverse of the temperatureT of the state. Although this
procedure determines the correct Unruh–Hawking temperature in the case of a nonextrem
hole, it does not apply to the extreme case~for example, to the case of an extreme Reissn
Nordström black hole!, since one is unable to determine the time periodicity of the manifoldbM .

Later, a more sophisticated Lorentzian method was introduced in Ref. 6 and succes
developed in Refs. 7–9. Without entering in the details of this approach, we only recall th
method is connected to the well known Hadamard expansion of the two-point Green functi
a curved background and in the limit of coincidence of the arguments. Basically in Ref. 6
proved that assuming fairly standard axioms of quantum~quasifree! field theory ~such as local

a!Electronic mail: binosi@alpha.science.unitn.it
b!Electronic mail: zerbini@science.unitn.it
51060022-2488/99/40(10)/5106/11/$15.00 © 1999 American Institute of Physics
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definiteness and local stability in a stationary space–time region!, in the scaling limit, the therma
Wightman functions in the interior of this region will transform into nonthermal and mass
Wightman functions in Minkowski space–time. This point coincidence behavior of the Wigh
functions, must hold for any physically sensible state~thermal or not!, and, in the case that th
space–time region one is dealing with is just a part of the whole manifold separated by
horizons, it must hold on the horizons. This constraint actually selects the correct temper
T5bT

215bM
21, in the case of Rindler and Schwarzschild space–times. Then these results

been generalized in Ref. 7 to a large class of space–times admitting an appropriate re
isometry.

Both Haag’s method6 and Kay–Wald approach,7 which, as they stand, work only for space
times with an intersection between past and future horizons, were extended in Refs. 8
working in more physical situations than the ethernal black holes one, including the extreme

However, all of these ‘‘Lorentzian’’ methods involve a certain amount of calculations~for
example the procedure developed in Ref. 9 requires the evaluation of all the possible geo
which start from the horizon!; for this fact, even if it is not difficult to foresee a possible gen
alization to, say,D-dimensional extreme black holes, the concrete computation does not app
easy task. In this paper, making use of Euclidean approach, we would like to obtain some
mation about the equilibrium temperature of a class of static,D-dimensional black holes, evalu
ating quantities such as the field fluctuations and the one-loop partition function. The inve
the temperature is formally introduced as the period of the compactified imaginary time<t
<b.

In order to deal with explicit calculations, we will make use of a near-horizon approxima
of the metric. This approximation may also be justified observing that only near the ho
interesting physical effects are supposed to be relevant.

First, the case of nonextreme black holes is reconsidered. Here, as is well known, a c
singularity is present. We will show that its presence leads to divergences of the vacuum
tation value of the field on the horizon. However in this case it is known that as soon a
smoothness of the manifold is required, the Hawking temperature, as well as the absence
divergences, is recovered.

The analysis is extended to the extreme black holes case. In this case, our mathematica
are, no conical singularity is present, but the compactification of the imaginary time an
related periodic identification, induces an isometry containing parabolic elements~translation in
t!, so that a cusp singularity appears. Its presence leads to the following features:

~1! The vacuum expectation value of the scalar field has divergences on the horizon;
~2! The globalz-function, besides the horizon divergences, does not exist, and requires a f

regularization.

These undesired features disappear as soon as the imaginary time period is taken to be`, namely
the associated temperature is to beT50, in agreement with the four-dimensional results obtain
in Refs. 10, 9.

The main objection to the approach proposed here could be the use of a near-horizon a
mation of the metric. However, we stress that in Ref. 6 only the limit form of the metric nea
horizon was used in order to obtain the Unruh–Hawking temperature; moreover also the res
Refs. 10, 9 were derived in a near horizon approximation contest.

The paper is organized as follows: In Sec. II we review the evaluation of the vacuum e
tation value of the field within thez-function regularization procedure, while in Sec. III we w
derive a near-horizon approximation of the generic line element describing a nonextreme
extreme black hole. Then in Secs. IV and V we will discuss in detail these two cases, t
advantage of the approximation done. The paper ends with some concluding remarks in S
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II. EVALUATING THE VACUUM EXPECTATION VALUE OF THE FIELD WITHIN THE
z-FUNCTION PROCEDURE

In this section, we evaluate the vacuum expectation value of the field^f2(x)&, in the frame-
work of thez-function regularization procedure. Within this approach~see Ref. 11 for an exhaus
tive discussion! one has12,13

^f2~x!&52
2

Ag~x!

dSeff

dJ~x!
U

J~x![0

5
1

Ag~x!

d

dsFdz~suAl2!

dJ~x! GU
s5J~x!50

, ~2.1!

whereJ(x) is a classical source, andl is the usual arbitrary parameter~with the dimension of
mass21! necessary from dimensional considerations.

By a direct calculation, it follows that thez-regularized field fluctuations turns out to be

^f2~x!& ren5 l 2
d

ds
@sz~s11;xuAl2!#U

s50

, ~2.2!

with the z-function evaluated when the sourceJ(x) vanishes.
By making use of the Laurent expansion ofz(s11;xuAl2), and extracting from thez-function

the l 2 dependence, we can rewrite~2.2! as

^f2~x!& ren5 lim
s→0

Fz~s11;xuA!2
1

s
Res z~s11;xuA!2Resz~s11;xuA!ln l 2G . ~2.3!

Notice that when the manifold is smooth, the meromorphic structure of thez-function is known
~Seeley’s Theorem!. In particular for a differential elliptic operator of the second order~Laplacian!
one has

G~z!z~z;xuLN!5(
r 50

`
Ar~xuLN!

z1r 2
N

2

1analytic part, Ar~xuLN!5
ar~xuLN!

~4p!N/2 . ~2.4!

The spectral coefficientsar(xuLN) are computable functions known as the Seeley–de Witt c
ficients.

As a consequence, if the dimension of the smooth manifold is odd, thez-function is regular at
z51 (s50) and the dependence on the scale parameterl disappears and one gets

^f2~x!& ren5z~1;xuA!. ~2.5!

On the other hand, if the dimension is even, there is a simple pole atz51, and thel ambiguity will
be present.

III. NEAR-HORIZON APPROXIMATION OF THE METRIC

The metric for a general static spherically symmetricD-dimensional space–time, analytical
continued into the Euclidean space, reads

ds25 f ~r !dt21
1

h~r !
dr21r 2dSN

2 , x5~t,r ,x!, ~3.1!

wheret5 i t is the Euclidean time,f andh are arbitrary functions ofr ~which are constant in the
r→` limit, if the space–time has to be asymptotically flat!, anddSN

2 represent the line element o
a smoothN-dimensional~transverse! manifold without boundary~x are the transverse coord
nates!.
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For this metric representing a black hole, one demands the presence, atr 5r 1 , of a zero in
both f andh, so that, according to the nature of this zero, one finds the following two intere
cases.

A. Nonextremal case

In the case of a nonextremal black hole, one has a simple zero atr 5r 1 , so that the functions
f andh can be expanded as14

f ~r !. f 8~r 1!~r 2r 1!, h~r !.h8~r 1!~r 2r 1!. ~3.2!

Thus, after changing to the coordinates~r, u, x! by means of

r25
4

h8~r 1!
~r 2r 1!, u5 1

2Af 8~r 1!h8~r 1!t, ~3.3!

the geometry near the event horizon is described by the approximated line element

ds2.dr21r2du21r 1
2 dSN

2 . ~3.4!

We may generalize the argument to black hole solutions in semiclassical gravity. In this
near the horizon, one has

f ~r !.Cf~r 2r 1!c1, h~r !.Ch~r 2r 1!c2, ~3.5!

with the constantsCf.0,Ch.0,c1.0, 0,c2,2. Herec1 may be less than one, and the fir
derivative may not exist at the horizon. However, ifc1522c2 , it is easy to show that by mean
of the following coordinates transformation

~r 2r 1!c1/25
c1

2
AChr, u5

c1

2
AChCft, ~3.6!

the line black hole element reduces again to the line element~3.4!. For example, the previous cas
corresponds toc15c251, and very recently, in Ref. 15 the casec151/2 andc253/2 have been
considered; in any case notice that sincec2,2, the proper radial distance to the horizon is fini

Now, finite temperature effects are assumed to arise when the Euclidean timet ~correspond-
ingly u! is compactified requiring 0<t<b (0<u<g), with b the inverse of the temperature. S
for arbitraryb ~g!, the manifoldMD shows, near the horizon, the topology ofCg3SN, Cg being
the simple two-dimensional flat cone with deficit angle 2p2g.

In such a space–time, one usually determines the temperature of the black hole, by re
the absence of the conical singularity;1 the manifold, in fact, is not smooth, showing a conic
singularity atr50 unlessg52p. In this way the temperature is found to be

T5
Af 8~r 1!h8~r 1!

4p
, T5

c1

4p
AChCf , ~3.7!

respectively, which are the Unruh–Hawking temperatures of the black holes.
We will show that g52p is the only possible requirements for having a well-behav

^f2(x)& on the horizon.

B. Extreme case

In the case of an extreme black hole, one has a double zero atr 5r 1 , so that the behavior o
f andh near the horizon, is14

f ~r !. 1
2 f 9~r 1!~r 2r 1!2, h~r !. 1

2h9~r 1!~r 2r 1!2. ~3.8!
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Thus, if we define the new coordinates~r, u, x! by means of

r5A 2

f 9~r 1!
~r 2r 1!21, u5Ah9~r 1!

2
t5

t

b
, ~3.9!

we get the approximated line element

ds2.
b2

r2
~dr21du2!1r 1

2 dSN
2 . ~3.10!

So, once the compactification in the Euclidean time is carried over, the manifold show
topology H2/G3SN, H2 being the two-dimensional hyperbolic space, andG being the~discon-
tinuous and fixed-point-free! group of isometry induced by the identificationu;u1ng.

Notice that in this case it is not possible to determine the temperature by using the met
the conical singularity, since no conical singularity is present. However, it does not seem c
to deduce from this fact that such a manifold admits any temperature.16 In fact, the evaluation of
the stress-energy tensor of a free quantized field,10 which is found to be finite only forT50, and
the scaling argument of Ref. 9 suggest thatT50 is the only physical admissible temperature in t
case of a four-dimensional extreme Reissner–Nordstro¨m black hole~which can be recovered b
settingdSN

2 5dV2 in ~3.10!!. Further evidence in favor of this fact comes from the absence o
Hawking radiation in the extreme Reissner–Nordstro¨m black hole.17

Again we will see that whenb5`, corresponding toT50, one gets a well behaved^f2(x)&
on the horizon, and the related extreme black hole Euclidean manifold becomes smooth.

Without loss of generality, we setb2 as well asr 1 equal to 1.

IV. FIRST CASE: MD5Cg3SN

As we mentioned in the Introduction, we now evaluate the expectation value of the squa
the scalar field, using thez-function regularization technique. We start by reviewing the evalua
of the heat kernel and the localz-function onMD5Cg3SN ~for a complete discussion, see Re
18!.

We consider a massless and minimally coupled scalar field onCg , so that the associate
operator is the pure LaplacianLg52¹g5]r

21(1/r)]r1(1/r2)]u
2; the spectral properties of thi

operator are well known, and, in fact, a complete set of normalized eigenfunctions is easily
to be

cnl5
1

Ag
e~2pni/g!Jnn

~lr!, nn5
2punu

g
, nPZ, ~4.1!

together with its complex conjugate.
Herel2 (l>0) is the eigenvalue corresponding toc andc* , while Jn is the regular Besse

function. So, using the standard separation of variables, it is easy to get the spectrum and
functions of the operatorLD52¹g1LN on MD5Cg3SN, LN being a Laplace-type operator o
SN including, eventually, a mass and a scalar curvature coupling term. Moreover, sinc
supposeSN an arbitrary smooth manifold without boundary, all known results concerning the
kernel and thez-function for LN on SN ~which we assume to be known! are applicable.

In particular the heat kernel has the usual asymptotic expansion~see also Sec. II!,

K~ t;xuLN!.(
r 50

`

Ar~xuLN!t r 2~N/2!, ~4.2!

and the meromorphic structure of the localz-function reads
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G~s!z~s;xuLN!5(
r 50

`
Ar~xuLN!

s1r 2
N

2

1J~s;xuLN!, ~4.3!

whereJ(s;xuLN) is the~generally unknown! analytic part. Here we have supposed the absenc
zero modes, but one can easily take them into account with a simple modification of the form

We can now derive the meromorphic structure ofzg(s;xuLD) on MD5Cg3SN. To this aim,
one can use the factorization property of the heat kernel

Kg~ t;xuLD!5K~ t;u,ruLg!K~ t;xuLD!, ~4.4!

in which the heat kernels of the Laplace-type operators onMD, Cg , andSN, respectively, appear
By taking the Mellin transform of~4.4!, one usually gets the Dikii–Gelfand representation of
z-function, from which the meromorphic structure can be deduced.

Anyway in dealing with the conical manifold one has a convergence obstruction, in
meaning that there are no values ofs for which the Mellin transform of~4.4! is a finite quantity.
The solution to this problem has been suggested by Cheeger,19 and simply consist in a separatio
between higher and lower eigenvalues. In practice we split the sum which appears in th
kernel ~and in the relatedz-function! in two sums, the first over the lower eigenvalues, and
second over the higher ones; then, after the analytic continuation is performed, one may de
full z-function by summing up the two contributions obtained in this way~of course such a
definition has all the requested properties and coincides with the usual one if the manif
smooth!.

So we set

z,~s;xuLD!5E
0

`

dtts21K,~ t;u,ruLg!K~ t;xuLN!, ~4.5!

z.~s;xuLD!5E
0

`

dtts21K.~ t;u,ruLg!K~ t;xuLN!, ~4.6!

whereK,(t;u,ruLD) and K.(t;u,ruLD) are, respectively, the ‘‘lower’’ and the ‘‘higher’’ hea
kernels, which are related to the correspondingz-function by the relations

K,~ t;u,ruLg!5
1

2p i E1/2,Re~s!,1
dst2sG~s!z,~s;u,ruLg!, ~4.7!

K.~ t;u,ruLg!5
1

2p i E1/2,Re~s!,11n1

dst2sG~s!z.~s;u,ruLg!, ~4.8!

z,~s;u,ruLg!5
1

G~s!
E

0

`

dtts21K,~ t;u,ruLg!, 1
2,Re~s!,1, ~4.9!

z.~s;u,ruLg!5
1

G~s!
E

0

`

dtts21K.~ t;u,ruLg!, 1
2,Re~s!,11n1 , ~4.10!

and, by definition,

Kg~ t;u,ruLg!5K,~ t;u,ruLg!1K.~ t;u,ruLg!, ~4.11!

zg~s;u,ruLg!5z,~s;u,ruLg!1z.~s;u,ruLg!. ~4.12!
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Now, making use of the Mellin–Parseval identity and paying attention to the range of
vergence, one gets, for Re(s).11(N/2), the following representation:18

zg~s;xuLD!.
z~s21;xuLN!

2g~s21!
1

1

gG~s! (
r 50

P

Ar~xuLN!I gS s1r 2
N

2 D r2s12r 2D1O~r2s12P2D!,

~4.13!

whereP is an arbitrary large integer, while

I g~s!5
G~s2 1

2!

Ap
@Gg~s!1G2p~s!#. ~4.14!

For Re(s).1,

Gg~s!5 (
n51

`
G~nn2s11!

G~nn1s!
, G2p52

G~12s!

2G~s!
. ~4.15!

It is possible to show thatGg(s) admits an analytical continuation, and the properties ofI g andGg

on the whole complex plane are studied in detail in the Appendix of Ref. 18; an important pro
is that the analytical continuedI g as well asGg , has only a simple pole ats51, with residue

ResI g~s!us515
1

2 S g

2p
21D . ~4.16!

Having found the meromorphic structure of thez-function on our manifold, we can determin
the vacuum expectation value of the fluctuation of a scalar field. With regard to this, it is co
nient to distinguish between odd- and even-dimensional space-times.

We first consider the case in whichN ~or, equivalently,D! is odd, so thatI g is finite at s
51. To begin with, notice that the first term in~4.13! depends only on the transverse coordina
and is finite on the horizon. As a result, making use of the meromorphic structure ofz(s;xuLN),
we get

^f2~x!&.
1

2g F (
r 50

`
Ar~xuLN!

r 2
N

2

1J~0;xuLn!G1
1

g (
r 50

P

Ar~xuLN!I gS 11r 2
N

2 D r2r 2N1O~r2P2N!.

~4.17!

It is now easy to see that the above expression contains@N/2# ~where@ # means ‘‘integer part’’!
terms which are divergent asr2r 2N (r ,@N/2#) in the limit r→0, and so on the horizon~see
~3.3!!. Thus, if we want a good behavior on it, we must demand that all theI g’s vanish for r
,@N/2#, i.e.,g52p. In particular notice that within this value ofg all of the I g’s actually vanish.

We now come to the case in whichN(D) is even. In this case, thez-function~4.13! has a pole
at s51, coming from the first and theI g term in ~4.13!. From ~2.3! one gets

^f2~x!& ren.
1

2g F (
r 50

`

8
Ar~xuLN!

r 2
N

2

1J~0;xuLn!G2
1

4p
AN/2~xuLN!ln m2

1
1

g (
r 50

P

8 Ar~xuLN!I gS 11r 2
N

2 D r2r 2N1O~r2P2N!, ~4.18!

where the8 in the sums means omission of ther 5N/2 term.
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Again, as long asr ,N/2, we get divergent terms on the horizon, unless we require theI g’s
to vanish, i.e.,g52p as in the odd-dimensional case.

As a result, for a manifoldMD whose near-horizon geometry is described byCg3SN, the
requirement of having a well behaved^f2(x)& on the horizon, selectsg52p, and so the Unruh–
Hawking temperature, according to the conical singularity method. We are also reminded th
choiceg52p makes the manifold smooth, getting rid of the conical singularity otherwise pre
in r50.

The computation of the partition function for arbitraryg has been done in Ref. 18, and it h
been used in order to discuss thermodynamical properties. Only the horizon divergenc
present, and these are still present in the on-shell (g52p) entropy.

V. SECOND CASE: MD5H2/G3SN

After having checked that our procedure works at least in the case of nonextreme black
we can tackle the case of the extreme ones, i.e., manifold whose topology near the hor
described byH2/G3SN.

Again, one can start by making use of the factorization property of the heat kernel, w
that

Kg~ t;xuLD!5K~ t;u,ruLg!K~ t;xuLN!, ~5.1!

where the heat kernels of the Laplace-type operators onMD, H2/G, andSN, respectively appear
As in the previous case, we suppose thatLg is the operator associated with a massless
minimally coupled scalar field onH2, while LN is a Laplace-type operator onSN including
eventually, mass and scalar curvature coupling term~so that the expansions~4.2! and~4.3! are still
valid!. In this way,Lg52Dg52r2(]u

21]r
2), and a complete set of normalized eigenfunctions

easily found to be

clk5A y

2p
eikuKil~ ukuy!, ~5.2!

together with its complex conjugate. Herel2 (l>0) is the eigenvalue corresponding toc andc* ,
while Kn is the MacDonald function. Thus the spectral representation of the~off-diagonal! heat
kernel associated withLg on H2 reads~see, for example, Ref. 20!

KH2~ t;u,r;u8,r8uLg!5
1

2p E
0

`

dll tanh~pl!e2~l21~1/4!!tPil2~1/2!~coshs!, ~5.3!

whereP is the associated Legendre function, whiles is theH2 geodesic distance between~u, r!
and (u8,r8).

As previously remarked, for studying thermal effects, one has to deal with the quotient
H2/G, with G the ~discontinuous and fixed-point-free! group of isometry induced by the tim
compactification 0<u<g. In our case we have translations, corresponding to parabolic elem
By applying the method of images, the diagonal heat kernel turns out to be

K~ t;u,ruLg!5
1

2p E
0

`

dll tanh~pl!e2~l21~1/4!!t

1
1

p (
n51

` E
0

`

dll tanh~pl!e2~l21~1/4!!tPil2~1/2!~coshsn!, ~5.4!

where now
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coshsn511
n2g2

2r2 . ~5.5!

Let us show that the partition function does not exist, and requires, besides the horizon dive
regularization, a further regularization. The partition function is proportional to the first deriv
at zero of thez-function, which may be defined by the Mellin transform of the heat kernel tr
The latter may be obtained integrating over the manifold coordinates. As a result,

z~suLg!5
g

4pe

1

s21
zS 12sULN1

1

4D1
g

2pe E0

`

dl
l

11e2pl zS sULN1l21
1

4D
1

1

Ap
zR~11d!zS s2

1

2ULN1
1

4D1O~d!, ~5.6!

wherezR is the Riemannz-function, and we have introduced the horizon cutoffe in the identity
contribution, and the cusp regularization parameterd.0 in the topological contribution. With
regard to this, it should be noticed the divergence ford50, which is usually present when one
dealing with parabolic elements.21

As far as the vacuum expectation value of the field is concerned, we only need the expr
of the localz-function near the horizon. Thus with regard to the sum overn, we may apply the
simplest version of the Euler–MacLaurin resummation formula, namely,

(
n51

`

f ~n!5E
1

`

dx f~x!2
1

2
f ~1!1E

1

`

dxS x2@x#2
1

2D f 8~x!. ~5.7!

As a result, for larger,

(
n51

`

Pil2~1/2!~coshsn!5
r

&g

1

l tanh~pl!
1C~l!1OS g

r D , ~5.8!

whereC(l) does not depend onr. Thus, the diagonal part of the heat-kernel may be rewritten

K~ t;u,ruLg!5
1

2p E
0

`

dll tanh~pl!e2~l21~1/4!!t1
r

2gA2pt
e2~ t/4!1O~1!1OS g

r D . ~5.9!

As a result, the related localz-function reads

zg~s;xuLD!5z~s;xuLD!1
r

2gA2p

G~s2 1
2!

G~s!
zS s2

1

2
;xULN1

1

4D1O~1!1OS g

r D . ~5.10!

The first term on the right-hand side of the above relation, is the localz-function associated with
the smooth manifoldMD5H23SN and it depends only on the transverse coordinatesx. The
other terms are the asymptotic contribution for larger. As a result, we have obtained the mer
morphic structure ofz(s;xuLD) via the meromorphic structure ofzg(s;xuLD) and z(s2 1

2;xuLN

1 1
4). It should be noticed that the second term, which is the relic of the sum over images, co

the shifts21/2. This means that, with regard to the evaluation of the vacuum expectation va
the field, one has a simple pole ats51 for anyD, not only forD even. This violation of Seeley’s
Theorem is related to the presence of parabolic elements, which make the manifold singu

On the other side, no matter the dimension of the space-time, the vacuum expectation v
the field contains terms proportional tor/g which are divergent on the horizon (r→`, see~3.9!!,
unless we demandg5`, and soT50, according to the result obtained in Refs. 9, 10 in
                                                                                                                



e
.

n value

xi-

ctified
sed that
ginary
me

on, no
a new
not
etry is

cuum
ctation
m the

ng, and
the
uence,
ems to
ch our
at

lly AdS

ck
lidean

nsfor-

e
21, and
is

5115J. Math. Phys., Vol. 40, No. 10, October 1999 Quantum scalar field in D-dimensional . . .

                    
four-dimensional case. We finally notice that ifg5`, the partition function contains only th
usual volume divergence associated with the noncompact nature of the Euclidean section

VI. CONCLUSIONS

In this paper, making use of an Euclidean approach, we have evaluated the expectatio
and the global zeta function, whose derivative with respect tos evaluated ats50 gives the
partition function, of a scalar field in aD-dimensional static black hole. A near-horizon appro
mation has lead to quite explicit expressions for the localz-function related to such a field
propagating in the Euclidean section of the black hole space–time. The period of the compa
imaginary time has been interpreted as the inverse of the temperature. The fact is then stres
this quantity is finite on the horizon as soon as one selects a distinguished period of the ima
time ~temperature!, which coincides with the Hawking–Unruh temperature in the nonextre
case, and with the zero temperature in the extreme one. With regard to the partition functi
problem exists in the conical singularity case, while in the presence of the cusp singularity,
divergence shows up in the globalz-function, and, strictly speaking, the partition function does
exist. This drawback disappears if the cusp singularity is absent, the near-horizon geom
smooth and namely the temperature is again zero.

With regard to the local quantities, we also notice that the regular behavior of the va
expectation value of the fields on the horizon, leads also to the regular behavior of the expe
value of the stress tensor. This can be verified by means of a direct calculation, starting fro
local off-diagonalz-function which can be obtained with our approach.

As far as the extreme black holes are concerned, all the properties we have been derivi
the lack of the Hawking radiation,17 strongly suggest that the only admissible temperature is
zero one, in agreement with the four-dimensional case studied in Ref. 10. As a conseq
within the Euclidean approach, requiring the smoothness of the near-horizon geometry se
select, in general, the correct Hawking temperature. The only class of space–times for whi
analysis seems to have no direct application is the one in which the double zero occursr 1

50. As an example, we may recall the so called massless ground state of the asymptotica
toroidal black holes.22–25 In fact these black holes have

f ~r !5
1

h~r !
5S l 2

r 2
2

CDM

r D21 D , ~6.1!

whereCD is a constant,M is the mass of the black hole, and the parameterl is related to the
cosmological constant, namely,L52 l 22. For D53, one recovers the celebrated BTZ bla
hole.26 The ground state of this class of black holes is the zero mass solution, and the Euc
metric becomes

ds25
r 2

l 2 dt21
l 2

r 2 dr21r 2dTN
2 , ~6.2!

wheredTN
2 represents the metric of anN-dimensional torus. In the above metric,r 50 is a naked

coordinate singularity. If one compactifies the Euclidean time and makes the coordinate tra
mation r 5 l 2/r, one gets

ds25
l 2

r2 @dr21dt21 l 2dTN
2 #. ~6.3!

This metric describes locally theD-dimensional hyperbolic spaceHD.
For the zero temperature case and inD53 andD54, the vacuum expectation value of th

field, as well as the expectation value of the stress tensor has been computed in Refs. 27,
28, respectively, and divergences have been found asr goes to infinity. In this case, our analys
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does not select any distinguished temperature. However, it should be noticed that in this ca
not reasonable to neglect the back-reaction effects. In fact, in Refs. 27, 21, 28 it has been
that there is a quantum implementation of the Cosmic Censorship Principle due to the
reaction on the metric.
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This is the first part of a series of two papers. In this article we study the linear-
ization stability of the Einstein equation in the presence of matter. We have slightly
changed the classic definition of this concept for the vacuum spacetime and a more
general one adapted to our case is given. We consider a Robertson–Walker model
(V,g,T) whereV stands for the spacetime,g for a Robertson–Walker metric, and
T for a stress-energy tensor of a perfect fluid. We writeV5S3I where S is a
spacelike hypersurface ofV and I anR-interval. We show that in the caseS has a
constant curvatureK equal to 0, the Einstein equationG(g)5xT is linearization
stable atg. In a subsequent paper we shall prove that in the caseK51 the opposite
occurs. The caseK521 remains as an open question. ©1999 American Institute
of Physics.@S0022-2488~99!02109-X#

I. INTRODUCTION

This is the first part of a series of two papers. The aim of this series is to study the line
tion stability of the Einstein equation when a Robertson–Walker model is considered. O
subject we have to cite D’Eath1 who showed the existence of certain families of solutions to
Einstein equation in a small neighborhood of a Robertson–Walker metric and also discus
linearization stability. Nevertheless, our initial point of view is different from that of D’Eath,
hence we can say that we are dealing with a very different problem. The question we cons
the following: interpret the universe as a Robertson–Walker model of metricg and stress-energy
tensorT, related by the Einstein equationG(g)5xT, whereG(g)5Ric(g)2 1

2Rg is the Einstein
tensor of g, and x is a universal constant. LetdT be a small perturbation of the tensorT,
originated, for example, by a distant supernova explosion~thoughT is the stress-energy tensor o
a perfect fluid,T1dT is not necessarily so!. This perturbation ofT gives raise to another pertur
bationdg of g. In order to study the propagation in the universe of the effects of that explo
we wonder if it is admissible to deal with the linearized Einstein equation (DgG)(dg)5xdT,
instead of dealing with the true equationG(g1dg)5x(T1dT). In other words, we want to know
whether the Einstein equation is linearization stable at the initial Robertson–Walker metricg.

The linearization stability of theempty spaceEinstein equation has originated many resea
articles~in Section 3 of Refs. 2 and 3 one can find a brief description of the history of the sub
as well as the basic bibliography!. Here we mention the works of Moncrief,4,5 who established a
necessary and sufficient condition for the linearization stability in terms of the geometry o
spacetime. However, not much literature has been published about the linearization stability
Einstein equationwith matter. We have to cite the article of Bao, Marsden, and Walton6 who
pointed out that linearization stability methods do not work in the presence of matter. The
difficulty we have encountered is the stability definition itself. The definition used by the au
that deal with vacuum spacetime is not entirely valid to study the linearization stability in
presence of matter. Although in Sec. IV of this paper we discuss in detail this subject, we
summarize the principal ideas we develop in that section.
51170022-2488/99/40(10)/5117/14/$15.00 © 1999 American Institute of Physics
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Basically, the main problem of the linearization stability of theempty spaceEinstein equation
is the following: Let V5M3I be a product manifold, whereM is a 3-manifold andI an
R-interval. One starts from an initial Lorentz metricg on V that satisfiesG(g)50. Then one is
interested in the metricsg85g1h close tog that satisfyG(g8)50. Now, in order to solve
G(g8)50, it is common to linearize this equation, (DgG)(h)50, where (DgG)(h) means the
linear term inh of G(g1h), in such a way thatG(g1h)5G(g)1(DgG)(h)1¯ . This simpli-
fication, however, only makes sense if each solutionh of the linearized equation (DgG)(h)50 is
tangent to a curvel→g8(l) of exact solutions of the true equationG(g8)50. That is, for any
solution h of (DgG)(h)50 there exists a curveg8(l) such thatG(g8(l))50, with g8(l)5g
1hl1¯ . When this is the case, one says that the Einstein equation is linearization stable
initial metric g ~see, for example, Ref. 7!.

Let us see what happens in the presence of matter. For that purpose, we remember bri
initial Einstein’s point of view about the linearization of his equation in a small neighborhoo
the Minkowski metric@see Refs. 8 and 9#. The Minkowski metrich of R4 satisfies the empty spac
Einstein equationG(h)50. Now, letT8 be a stress-energy tensor close to zero and look for
metricsg8 close toh satisfying the Einstein equation with matterG(g8)5xT8. Einstein solved
the linearized equation (DhG)(h)5xT8 of the previous equation and he wrote the solutionh
~with vanishing asymptotic conditions! in terms ofT8. But this analysis would be valid if for eac
solution h of (DhG)(h)5xT8, h1h were close to a solutiong8 of the true equationG(g8)
5xT8. Choquet-Bruhat and Deser,10 and later Choquet-Bruhat, Fischer, and Marsden11 showed
that the Einstein equation is linearization stable at the Minkowski metrich ~stable in the sense o
the previous paragraph!. Because of this, one can substitute the equationG(g8)50 by its linear
one (DhG)(h)50. But this has nothing to do with Einstein’s procedure because he does not
the equation (DhG)(h)50, but he deals with (DhG)(h)5xT8 for a smallT8. However, we must
say that this difficulty is somewhat formal because the results of Ref. 11 really do answ
question of whether the initial Einstein’s point of view is valid or not, as Theorem 1 of Sec
assures.

At the end of Sec. IV we give a definition of linearization stability adapted to the matter c
Shortly speaking it says that the Einstein equationG(g)5xT is linearization stable at the initia
metric g in the direction ofF, F being a vector subspace of the space of stress-energy tenso
for any HPF closeto zero and for any small solutionh of the linear equation (DgG)(h)5xH,
g1h is close to a solutiong8 of the true equationG(g8)5x(T1H) ~later we will explain in
detail what we mean by the wordclose!. Note that if F5$0% and T50 one obtains the old
definition. If the Einstein equation is linearization stable at a given metricg in the direction of any
subspaceF of stress-energy tensors, we simply say that it is linearization stable.

Now we summarize the rest of the sections. Section I is devoted to the expression
Einstein equation using Gauss coordinates and in Sec. II we deal with the Cauchy problem
Einstein equation with matter. Finally, in Secs. V and VI we express the main result of this p
Let V5M3I be a Robertson-Walker model~I an R-interval andM a connected 3-Riemannia
manifold of constant curvatureK!. We assumeM to be simply connected. We show that ifK
50 then the Einstein equation is linearization stable at the Robertson–Walker metricg. In a
subsequent paper we will show that ifK.0 there exists no vector subspaceF of the space of
stress-energy tensors for which the Einstein equation is linearization stable atg in the direction of
F. In the proof of our result for curvatureK50 we use a theorem of Cantor~Refs. 12 and 13!
concerning the usual Laplace operator inR3. If there existed an analogous result for the De Rh
Laplace operator~acting on 1-forms! associated to the metric of the 3-hyperbolic space of cur
ture 21 we would be able to adapt our proof of stability in the caseK50 to curvatureK,0, but
at present we do not know such a result.

II. THE EXPRESSION OF EINSTEIN TENSOR IN GAUSS COORDINATES

Let (V,g̃) be a time-orientable Lorentz manifold~we assume the signature ofg̃ to be1 1 1
2!. Let M be a spacelike hypersurface ofV. To eachxPM let Nx be the normal unit future-
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pointing timelike vector ofM @this means thatg̃x(Nx ,Nx)521]. Let w t(x) be the geodesic atx
with Nx as a tangent vector. We will assume that there exists ae.0 so that the mapping

C: M3~2e,e!→V

~x,t !→w t~x!

gives a diffeomorphism betweenM3(2e,e) and a certain neighborhoodVM of M in V. This
diffeomorphism is called the Gauss representation ofVM associated to the hypersurfaceM. We
denote byt the coordinate of the interval~2e, e!. The notation]/]t will stand for the field inVM

that corresponds to the field]/]t of M3(2e,e) in the diffeomorphismC. The field]/]t when
t50 is orthogonal toM by construction. The well-known Gauss lemma assures that]/]t is
orthogonal toMt5w t(M ) for all t.

We denote bygt the restriction ofg̃ to the hypersurfaceMt , by ¹ t the connection onMt

associated togt , by Rict the Ricci tensor ofgt and byRt the scalar curvature ofgt . Sometimes we
will drop the subindext of gt , ¹ t , Rict andRt assuming anyMt , without specifyingt. We will
write ¹̃, Ric̃ and R̃ for the connection onVM , the Ricci tensor and the scalar curvature ofg̃,
respectively. LetSt be the second fundamental form ofMt; recall that this is defined by
St(X,Y)52g̃(¹̃XY,]/]t) for X andY vector fields onMt . We writekt52St .

Every local coordinate system (x1,x2,x3) of M induces by means of the Gauss representa
C a coordinate system (x1,x2,x3,t) in a certain open set ofVM ; such systems will be called Gaus
normal coordinates. Sometimes we writex45t. Throughout this paper we assume that la
indices i , j ,k,... run from 1 to 3, and greek indicesa,b,g,... run from 1 to 4. With all these
conventions in mind, the componentsR̃ab of Ric̃ are expressed in Gauss normal coordinates in
following way:

R̃i j 5
1

2

]ki j

]t
2

1

2
~k3k! i j 1Ri j 1

1

4
~ trg k!ki j , ~1!

R̃4i5
1
2¹

r~kir 2~ trg k!gir !, ~2!

R̃4452
1

2
gi j S ]ki j

]t
2

1

2
~k3k! i j D ~3!

~see, for instance Ref. 14!. The expressionk3k means (k3k) i j 5grskir kjs , or in other words,
(k3k)(X,Y)5k(X,P(Y)), whereP is the associated endomorphism tok relative to the metricg.
The expression trg k means the trace ofk relative to the metricg, that isgi j ki j . Formulas~1!, ~2!,
and ~3! are a consequence of the Gauss and Codazzi equations of the hypersurfacesMt .

Let G̃(g̃) be the Einstein tensor ofg̃ defined byG̃(g̃)5Ric̃2(1/2)R̃g̃. Later we will be
interested in similar expressions to~1!, ~2!, and~3! for the componentsG̃4i and G̃44 of Einstein
tensor. Bearing in mind thatg̃4i50 is fulfilled in Gauss coordinates, we get

G̃4i5R̃4i2
1
2R̃g̃4i5R̃4i . ~4!

On the other hand,R̃5g̃abR̃ab52R̃441gi j R̃i j , and so by~1! and ~3! one obtains

G̃4452 1
8k•k1 1

8~ trg k!21 1
2R, ~5!

where k•k indicates the dot product ofk by k given by the metricg, that is, gir gjskrski j

5ki j ki j .
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III. THE CAUCHY PROBLEM FOR THE EINSTEIN EQUATION WITH MATTER

We want to study the Cauchy problem for the Einstein equationG̃(g̃)5xT̃, whereT̃ is the
stress-energy tensor of matter andx a universal constant.

Let V be a 4-manifold. LetM be a spacelike hypersurface ofV. We assume the diffeomor
phism

C: M3~2e,e!→VM ,

is given, whereVM is a certain neighborhood ofM in V. BesidesM and the diffeomorphismC, we
will assume also that the following is given:

~a! a 2-covariant symmetric tensor fieldT on VM , satisfyingi (]/]t)T50, wherei (vW ) indicates
the inner contraction ofvW ~later, we will choose the components ofT in Gauss coordinates
as the componentsT̃i j of the stress-energy tensor!.

~b! A function F on M ~later it will be chosen asT̃4
4).

~c! A vector fieldX on M ~chosen asXi5T̃4
i ).

~d! A Riemannian metricg on M, and a 2-covariant symmetric tensor fieldk on M.

With this data we want to find a Lorentz metricg̃ and a 2-covariant symmetric tensor fieldT̃ on
VM ~or possibly in a certain neighborhood ofM on VM), in such a way that the following
conditions are fulfilled:

~1! G̃(g̃)5xT̃.
~2! g̃(]/]t,]/]t)521.
~3! For all t, the hypersurfaceMt5C(M3$t%) is orthogonal to]/]t in the metricg̃.
~4! The restriction ofg̃ to M is g.
~5! Twice the second quadratic form ofM with respect to the metricg̃ is k.
~6! In Gauss normal coordinates the relationsT̃i j 5Ti j hold onVM .
~7! In Gauss normal coordinates the relationsT̃4

45F and T̃4
i 5Xi hold on M, whereT̃4

a means
g̃abT̃4b .

In order to deal with this problem we begin by noting that conditions~2! and ~3! are written
g̃44521 andg̃4i50 in Gauss normal coordinates. It is easy to see that both conditions forc
field ]/]t to be geodesic and hence we can use the formulas of the last section. Condition~7! gives
T̃4452F and T̃4i5Xi becauseg̃44521 andg̃4i50.

The metricg̃ we look for will be determined by the knowledge of thegt5g̃uMt
for all t in an

interval of the origin ofR @becauseg̃44521, g̃4i50, andg̃i j (x,t)5(gt) i j (x)]. In a similar way
the knowledge of the tensorT̃ we look for will be determined by the knowledge, for allt, of the
functionFt defined onMt by Ft5T̃4

4uMt
, and by the family of vector fieldsXt on eachMt defined

by (Xt)
i(x)5T̃4

i (x,t) ~since the componentsT̃i j 5Ti j are given!.
The Einstein equationG̃(g̃)5xT̃ can be written in the equivalent form:

R̃ab5x~ T̃ab2 1
2~ trg̃ T̃!g̃ab!. ~6!

We will write Einstein equation in the formG̃(g̃)5xT̃ for some components, whereas w
will use the form~6! for others. Concretely, we will use

G̃4a5xT̃4a ,
~7!

R̃i j 5x~ T̃i j 2
1
2~ trg̃ T̃!g̃i j !.
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By means of~4!, ~5!, and~2!, the four equations in~7! for theG̃4a can be written in the following
way:

1
8~k•k2~ trg k!224R!5xF,

~8!
1
2¹

r~kir 2~ trg k!gir !5xXi .

This means that the Cauchy data~g,k,F,X! on M are not independent but must satisfy the co
straints~8!. Since T̃ equals a constant times the Einstein tensor, it must have zero diverg
Taking into account that in Gauss normal coordinates one has

G̃ i j
k 5G i j

k , G̃4 j
4 50, G̃44

a 50,

this fact is written

05]4T̃4b1] i T̃
ib1G̃ i j

i T̃ j b1G̃ i4
i T̃4b12G̃4i

b T̃4i1G̃ i j
b T̃i j , ~9!

where]a indicates]/]xa. Now, T̃445T̃4452F andT̃i452T̃4
i 52Xi . Moreover,G̃ i j

4 5Si j where
Si j 5ki j /2 is the second fundamental form of the hypersurfacesMt . One hasG̃4 j

r 5Sj
r , too. Writ-

ing now condition~9! for b54 one obtains

] tF52divg x2 1
2~ trg k!F1 1

2k•T, ~10!

For b5r , condition~9! is written in a similar way

] tX
r5¹ iT

ir 2 1
2~ trg k!Xr2ki

rXi . ~11!

The second equation of~7! is written, by~1!,

] tki j 5xTi j 2
1
2x~F1trg T!gi j 1~k3k! i j 22Ri j 2

1
2~ trg k!ki j . ~12!

It is well known that in Gauss coordinates one has

] tgi j 5ki j . ~13!

Equations~10!, ~11!, ~12!, and~13! give the evolution ofFt , Xt , kt , andgt with respect tot,
respectively. The system of equations~10!, ~11!, ~12!, and ~13! is similar to the one studied in
Refs. 15 and 16. It is well-known the existence, for smallt, of a unique solution (Ft ,Xt ,kt ,gt)
with initial conditions~F,X,k,g! on M ~corresponding tot50) that satisfy constraints~8!. Also, it
is well-known that the solution (Ft ,Xt ,kt ,gt) satisfies then~8! for all t, and hence the solution
(Ft ,Xt ,kt ,gt) defines a metricg̃ and a tensorT̃ satisfying the Einstein equation.

Remark 1:The Cauchy problem splits into a problem of initial conditions~the search for
Cauchy data satisfyingG̃4a5xT̃4a on M!, and a problem of evolution~the integration of the
equationsG̃i j 5xT̃i j in VM for the previous initial conditions!. This is the reason why the com
ponentsT̃i j have to be given onVM , not only onM.

Remark 2:If we require the stress-energy tensorT̃ to be that of a perfect fluid with nul
pressure, that is,T̃5ru^ u, with u a timelike unit vector (g̃(u,u)521), thenT̃i j remains deter-
mined by the initial conditions~g,k!. Indeed, writeu5r (]/]t)1v with v tangent toMt . One has
ui5g̃iaua5gi j u

j5gi j v
j5v i , u45g̃44u

452r . Then Xi5T̃4i5ru4ui52rrv i , F52T̃445
2rr 2. On the other hand,g̃(u,u)521, henceg(v,v)5211r 2. Then the 5 scalar equations

Xi52rrv i , F52rr 2, g~v,v !5211r 2
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determine the 5 variablesr, r, andv i in terms ofF, Xi , andg. By ~8! F andX are related to (g,k),
and henceTi j depends only on~g,k!. The same occurs in a perfect fluid with pressure when a s
equation relates both the pressure and density~see Ref. 15!.

IV. REVISION OF THE CONCEPT OF LINEARIZATION STABILITY OF AN EQUATION

Before the definition of this concept we remember the initial Einstein’s point of view w
respect to the linearization of his equation in a small neighborhood of the Minkowski metric~see
Refs. 8 and 9!. Let

G̃~ g̃8!5xT̃8 ~14!

be the Einstein equation. The metricg̃85h5Diag@1,1,1,21# in R4 satisfies this equation withou
matter (T̃850). Let T̃8 be a small stress-energy tensor~components close to zero! and look for the
metricsg̃8 close toh that fulfills ~14!. Since Einstein tensor has zero divergence, divg̃8 T̃850 has
to be satisfied for anyg̃8 solution of~14!. This is a condition that linksT̃8 and the solutionsg̃8 of
~14! corresponding to thisT̃8. Let g̃85h1h̃ be a metric close toh. We design byc the 2-tensor
defined in terms ofh̃ by

cab5h̃ab2 1
2~ trh h̃!hab .

Einstein realized that ifh̃ satisfies divh c50, the linear equation inh̃ obtained fromG̃(h1h̃)
5xT̃8 can be written with respect toc in the following form:

2
1

2 S ]2

]x1
2 1

]2

]x2
2 1

]2

]x3
22

]2

]x4
2Dcab5xT̃ab8 . ~15!

Einstein also realized that for anyh̃ there exists an appropriategaugein which the condition
divh c50 is fulfilled, and therefore this supplementary condition is physically irrelevant. T
Einstein gave the solutionsc of ~15! vanishing at infinity in terms ofT̃8 using the retarded-
potential method. Briefly, given a tensorT̃8 close to zero for which~14! has a solution, he solve
the linear equation (dG̃)h(h̃)5xT̃8 instead ofG̃(h1h̃)5xT̃8 for the sameT̃8.

In general, we are dealing with the following problem: we begin with spacetime (V,g̃) where
the metricg̃ satisfies the Einstein equationG̃(g̃)5xT̃ for a given stress-energy tensorT̃. Then we
consider stress-energy tensorsT̃85T̃1dT̃ close to T̃ ~small variations ofT̃) and we look for
metricsg̃85g̃1h̃ close tog̃ satisfying~14!. But instead of working withG̃(g̃1h̃)5x(T̃1dT̃),
we deal with (dG̃) g̃(h̃)5xdT̃. Is it admissible ?

So let us express this idea in a more exact form using the results of the preceding s
Consider a spacelike hypersurfaceM of (V,g̃). The tensorsT̃85T̃1dT̃ close toT̃ for which ~14!
has a solution in a certain neighborhood ofM in V can be given in the following form:~a! Give
a diffeomorphismC of M3(2e,e) on an open neighborhoodVM of M in V. ~b! Give a vector
field X8 and a functionF8 on M close to the field (T̃)4

i uM and to the function (T̃)4
4uM on M,

respectively.~c! Give a 2-symmetric tensorT8 in VM satisfyingi (]/]t)T850, in such a way that
Ti j8 be close to (T̃) i j . With this data, any (g8,k8) solution of the equations obtained from~8!
replacingg, k, ¹, R, F, andX by g8, k8, ¹8, R8, F8, andX8, defines a metricg̃8 in a neighbor-
hood ofM in V and a tensorT̃8 such thatG̃(g̃8)5xT̃8. Thus the only equations we have to stu
for the linearization stability of a givenF8 andX8 are the ones in~8!.

The notationsS2(M ), F(M ), and X(M ) will stand for the 2-covariant symmetric tenso
spaces, function spaces and vector field spaces onM, respectively. Later we will specify the
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topology of these spaces as well as the derivability and asymptotic conditions on the coeffi
For the moment we assume that all these spaces are Banach spaces. LetH(g8,k8) be the first
member of the first equation of~8!, that is

H~g8,k8!5~1/8!~k8•g8k82~ trg8 k8!224R8!.

Let g(g8,k8) be the 1-form onM given by the first member of the second equation of~8!, that is,

g~g8,k8! i5~1/2!¹8r~kir8 2~ trg8 k8!gir8 !.

1-forms onM are related to vector fields by the metricg8. Consider the mapping

F: S2~M !3S2~M !→F~M !3X~M !

~g8,k8!→~H~g8,k8!,g~g8,k8!!.

@The mappingF is only defined on the open setS2(M )3S2(M ) of the pairs (g8,k8) such thatg8
is positive defined.# The initial metricg̃ of V corresponds to an initial pair~g,k!. Given an element
T 85(F8,X8) of F(M )3X(M ) close to ((T̃)4

4uM ,(T̃)4
i uM), we want to solve the linear equatio

(dF)(g,k)(h,K)5x(T 82T) instead of the true equationF(g8,k8)5xT 8 in a neighborhood of
~g,k!. Obviously, in order to be meaningful, the solutions of the linear equations would have
close to those of the true equation. We now write this in terms of a mapping between two B
spaces.

Hence, letE1 andE2 be two Banach spaces. Letp0PE1 . Let U be a neighborhood ofp0 in
E1 andf: U→E2 a continuously differentiable mapping. For allqPE2 close to the origin, we wan
to compare the setHq of pPU that are solution off (p)2 f (p0)5q with the setLq of pPU that
are solution of the linear equation (d f )p0

(p2p0)5q and make this comparison only for thosep

close enough top0 . With respect to this problem, we enunciate the following theorem, a co
quence of the inverse function theorem:

Theorem 1: Let E1 and E2 be two Banach spaces. Let p0PE1 . Let U be a neighborhood o
p0 in E1 and let f: U→E2 be a continuously differentiable mapping. For any qPE2 let Hq be the
set of pPU such that f(p)2 f (p0)5q and Lq the set of pPE1 such that(d f )p0

(p2p0)5q. Let

L be the kernel of(d f )p0
. We assume that L has a splitting kernel, that is, it has a topolog

complement S in E1 in such a way that E15L % S @this enables us to write every element of E1 as
a pair (x,y) with xPL and yPS]. If the tangent linear mapping(d f )p0

: E1→E2 is surjective,

then there exists an open neighborhood U8 of p0 in U, an open neighborhood V of the origin i
E2 , an open neighborhood W of the origin in L, a linear mappinga: E2→S and a differentiable
mappingb: V3W→S such that for any qPV,HqùU8 is a differentiable submanifold of U8
parametrized by

wq : W→HqùU8

x→p01~x,b~q,x!!

and Lq is a linear submanifold of E1 parametrized by

cq : L→Lq

x→p01~x,a~q!!,

and if for any qPV we denote by Eq(x) the error done when consideringcq(x)PLq instead of
wq(x)PHqùU8 @that is, Eq(x)5wq(x)2wq(x)5(0,b(q,x)2a(q))], one can assure that
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lim
~x,q!→~0,0!

Eq~x!

Aixi21iqi2
50. ~16!

In other words, the error Eq(x) is a high-order infinitesimal with respect to the distance
(x,q)PL3E2 to the origin.

This theorem~whose proof is given later! leads us to introduce the following two definition
Definition 1: Let f: U→E2 be a continuously differentiable mapping between an open set

a Banach space E1 and another Banach space E2 . Let p0PU. Let F be a closed vector subspac
E2 . For any qPF we denote by Hq5$pPU such that f(p)2 f (p0)5q% and by Lq5$pPE1 such
that (d f )p0

(p2p0)5q%. We say f is linearization stable at the initial point p0 in the direction of

F if (d f )p0
has a splitting kernel L and there exists an open neighborhood U8 of p0 in U, an open

neighborhood V of the origin in F, an open neighborhood W of the origin in L, a linear map
a: F→S and a differentiable mappingb:V3W→S such that for any qPV,HqùU8 is a differ-
entiable submanifold of U8 parametrized by

wq : W→HqùU8

x→p01~x,b~q,x!!,

Lq is a linear submanifold of E1 parametrized by

cq : L→Lq

x→p01~x,a~q!!,

and for any qPV the error Eq(x) done in consideringcq(x)PLq instead ofwq(x)PHqùU8 is
a high-order infinitesimal with respect to the distance of(x,q)PL3F to the origin [that is, (16)
is fulfilled].

Definition 2: Let f: U→E2 be a continuously differentiable mapping between an open set
a Banach space E1 and another Banach space E2 . Let p0PU. We say f is linearization stable a
the initial point p0 if f is linearization stable at p0 in the direction of E2 (that is, when the previous
definition is fulfilled for F5E2).

Remarks on these definitions:~1! The fact that a mappingf between an open setU of a Banach
spaceE1 and another Banach spaceE2 is linearization stable atp0PU in the direction of a
subspaceF of E2 means that, instead of solving the equationf (p01h)5 f (p0)1q, for small q
PF andhPE1 , one can deal with the linearized equation (d f )p0

(h)5q without making a serious
error because by~16! the solutions of each one are close enough.

~2! With the previous definitions in mind, Theorem 1 can be rewritten in the following fo
if ( d f )p0

is surjective and has a splitting kernel, thenf is linearization stable atp0 .
~3! In the case of Einstein equation, the mapping whose linearization stability we wa

study is

F: S2~M !3S2~M !→F~M !3X~M !

~g8,k8!→~H~g8,k8!,g~g8,k8!!,

which is the same mapping one encounters when dealing withempty spaceEinstein equation.
Nevertheless, in the empty space case this mapping is studied in a neighborhood of a pa~g,k!
such thatF(g,k)50, whereas in the presence of matterF must be studied in a neighborhood
a pair ~g,k! such thatF(g,k)5xT.

~4! If the subspaceF of E2 is F5$0%, definition 1 agrees with that of Ref. 7. These auth
required every solution of the linear equation (d f )p0

(p2p0)50 to be tangent to a curvep(t) of
exact solutions off (p)2 f (p0)50. Let us see that the definition of these authors can be ded
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from condition ~16!. For that purpose letv5p2p0 be a solution of the linear equatio
(d f )p0

(v)50 (v will be in L!. Let p8(t) be the the straight line inL0 defined byp8(t)5p0

1tv. UsingE15L % S the straight linep8(t) is written asp8(t)5p01(tv,0). Consider the curve
p(t)5p01(tv,b(0,tv)) of H0 . We wonder ifv is the tangent vector to this curve at the point
parametert50. So one has to show that (db(0,tv)/dt) t5050. First, notice that~16! implies that
E0(0)50, and sinceE0(0)5(0,b(0,0)2a(0)) and a(0)50, one hasb(0,0)50. By Taylor
expansion,

b~0,tv !5S db~0,tv !

dt D
t50

t1t2h~ t !.

Hence,

lim
t→0

E0~ tv !

i tvi 5 lim
t→0

b~0,tv !

i tvi 56
1

ivi S db~0,tv !

dt D
t50

.

Therefore, if (db(0,tv)/dt) t50 were Þ 0 the previous limit would beÞ 0. On the other hand
condition ~16! requires this limit to be zero. This completes the proof.

Finally, notice that iff is linearization stable atp0 according to Definition 2, then, even thoug
H0 is tangent toL0 , Hq is not tangent toLq for qÞ0. However, condition~16! assures us that th
error done in consideringLq instead ofHq is small.

Proof of the theorem:If ( d f )p0
: E15L % S→E2 is surjective, its restriction toSgives raise to

an isomorphism fromS to E2 . We denote bya: E2→S the inverse isomorphism. For anyp
PE1 , p2p0 factorizes asx1y with xPL and yPS. For all qPE2 the submanifoldLq5$p
PE1 such that (d f )p0

(p2p0)5q% is parametrized bycq : x→p5p01x1a(q), since

~d f !p0
~p2p0!5~d f !p0

~x1a~q!!5~~d f !p0
a!~q!5q.

f being differentiable atp0 , we havef (p01x1y)5 f (p0)1(d f )p0
(y)1e(x,y), with

lim
~x,y!→~0,0!

e~x,y!

Aixi21iyi2
50.

Consider the mapping

g: E1→L3E2

p01x1y→~x, f ~p01x1y!2 f ~p0!!.

Since (dg)p0
is an isomorphism, the inverse function theorem states the existence of a neig

hoodU8 of p0 in E1 and of a neighborhoodW3V of ~0, 0! in L3E2 in such a way thatg gives
an isomorphism betweenU8 andW3V. Let

g21: W3V→U8,E1

~x,q!→g21~x,q!

be the inverse isomorphism. Obviously, for anyqPV,wq : x→g21(x,q) is a parametrization of
HqùU8. Now, we claim thatg21(x,q) is written asp01x1y with yPS. Indeed, we have

g21~x,q!5p01x81y

with x8PL andyPS. We have to show thatx85x. To do this we write
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~x,q!5gg21~x,q!5g~p01x81y!5~x8, f ~p01x81y!2 f ~p0!!.

This impliesx5x8. In g21(x,q)5p01x1y the elementyPS depends differentiably onx andq.
We writeg21(x,q)5p01x1b(q,x). This is the functionb whose existence the theorem claim
Only ~16! remains to be shown. Notice that

gwq~x!5gg21~x,q!5~x,q!

and that

gcq~x!5g~p01x1a~q!!5~x, f ~p01x1a~q!!2 f ~p0!!.

Hence

gcq~x!2gwq~x!5~0,f ~p01x1a~q!!2 f ~p0!2q!.

Now,

f ~p01x1a~q!!2 f ~p0!2q5~d f !p0
~a~q!!1e~x,a~q!!2q.

But (d f )p0
(a(q))5q and thusf (p01x1a(q))2 f (p0)2q5e(x,a(q)). Therefore, we have

igwq~x!2gcq~x!iL3E2
5ie~x,a~q!!iE2

.

Since the inverse function theorem states that the mapping

~dg!21: W3V→L~L3E2 ,E1!

is continuous, given aK.0 there exists a neighborhoodA of ~0, 0! in W3V such that for any
zPA one hasi(dg)21(z)i,K. If z1 andz2 belong toA, by the mean value theoremig21(z1)
2g21(z2)i,Kiz12z2i . Apply this whenz15gwq(x) andz25gcq(x). Suppose thatx andq are
close enough to the origins ofL andE2 in order thatz1 andz2 belong toA. Then

iwq~x!2cq~x!i,Kigwq~x!2gcq~x!i5Kie~x,a~q!!i .

Now, let C51/iai . Sinceia(q)i<iaiiqi , we have

iwq~x!2cq~x!i

Aixi21iqi2
,

Kie~x,a~q!!i

Aixi21C2ia~q!i2
.

If C2>1 one hasAixi21ia(q)i2<Aixi21C2ia(q)i2, and if C2,1 then CAixi21ia(q)i2

<Aixi21C2ia(q)i2. In both cases we get, finally

iwq~x!2cq~x!i

Aixi21iqi2
,K8

ie~x,a~q!!i

Aixi21ia~q!i2
→0.

This ends the proof.

V. LINEARIZATION STABILITY IN ROBERTSON–WALKER MODELS: EXPOSITION OF
RESULTS

~S,g! will stand for a 3-Riemannian manifold with constant curvatureK. Let V5S3I , where
I is anR-interval. A Lorentzian metric of the formg̃52dt21z(t)2g is given onV, wheret is the
coordinate ofI. In V we consider a perfect fluid withu5]/]t as a velocity field, so that the
stress-energy tensor of the fluid has the formT̃5(r1p)u* ^ u* 1pg̃, whereu* is the 1-form
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associated tou by g̃. Obviously, the metricg̃ and the tensorT̃ are related by the Einstein equatio
G̃(g̃)5xT̃, which gives a well-known relations betweenr, p, z and the curvatureK of g. From
these relations one obtains, in particular, thatr and p depend only ont. The Lorentz manifold
(V,g̃) with the stress-energy tensorT̃ is called a Robertson–Walker model. We suppose that
Riemannian manifold~S,g! is connected and simply connected, and henceSwill be a sphere in the
caseK.0, the Euclidean spaceR3 in the caseK50 or the hyperbolic space of curvatureK in the
caseK,0.

We wonder if the equationG̃(g̃8)5xT̃8 can be linearizated at the initial metricg̃ correspond-
ing to a Robertson–Walker model (V,g̃,T̃). That is, given a perturbationdT̃ of a stress-energy
tensorT̃, is it legitimate to deal with the linear equation (dG̃) g̃( d̃g)5xdT̃ instead of working
with the true equationG̃(g̃1h̃)5x(T̃1dT̃)? In the next section we show that if the curvatureK
of ~S,g! vanishes then the Einstein equation is linearization stable at the initial metricg̃ of
Robertson–Walker. In a subsequent paper we will show that ifK.0 there exists no vecto
subspaceF of the space of stress-energy tensors for which the Einstein equation is lineariz
stable atg in the direction ofF.

VI. RESULTS FOR K 50

Let Cc
` be the space of functionsC` with compact support onR3. For any positive integerp

consider the normu up on Cc
` defined by

u f up5S U E
R3

f ~x!p dxU D 1/p

.

Let R15$xPR with x>0% andZ15ZùR1. For all sPZ1, p positive integer anddPR1 con-
sider onCc

` the normu up,s,d defined by

u f up,s,d5 (
uau<s

u~Da f !~x!~A11uxu2! uau1dup .

Let Fs,d
p be the completion ofCc

` with respect tou up,s,d ~weighted Sobolev spaces!. See Refs. 12
and 13 for the properties of these spaces. We mention here that fors.(3/p)1k one hasFs,d

p ,Ck,
whereCk is the space of functions of classCk on R3. Also, whens.3/p the pointwise multipli-
cation of functions (f ,g)→ f •g induces a continuous mapping

Fs,d
p 3Fs,d

p →Fs,d
p .

From now on we will always suppose thats.3/p so that the previous property will b
satisfied and one hasFs,d

p ,C0.
We denote bySs,d

p and byXs,d
p the spaces of 2-covariant symmetric tensors overR3 and vector

fields overR3, respectively, whose components are functions ofFs,d
p .

We will suppose given inR3 a Riemannian metricg, a 2-covariant symmetric tensork, a
vector fieldX and a functionF such that the data~g,k,F,X! satisfy~8!. Fs,d

p (F) will stand for the
set of continuous functionsF8 over R3 such thatF82FPFs,d

p . Hence we haveFs,d
p (F)5F

1Fs,d
p . The spaceFs,d

p (F) may be topologized by declaring the mappingf→F1 f from Fs,d
p to

Fs,d
p (F) to be an homeomorphism.

Similarly, we defineRs,d
p (g), Ss,d

p (k), andXs,d
p (X) by the following manner:Rs,d

p (g) is the
set of continuous Riemannian metricsg8 of R3 such thatg82gPSs,d

p ; Ss,d
p (k) is the set of

continuous 2-covariant symmetric tensorsk8 overR3 such thatk82kPSs,d
p ; Xs,d

p (X) is the set of
continuous vector fieldsX8 over R3 such thatX82XPXs,d

p .
Consider the mapping
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F: Rs,d
p ~g!3Ss21,d11

p ~k!→F s22,d12
p ~F !3X s22,d12

p ~X!

~g8,k8!→~H~g8,k8!,g~g8,k8!!

where, as usual,

H~g8,k8!5~1/8!~k8•g8k82~ trg8 k8!224R~g8!!

g~g8,k8! i5~1/2!¹8r~kir8 2~ trg8 k8!gir8 !.

With these conventions in mind we can state the following theorem.
Theorem 2: If p.3, s.(3/p)12 and 0<d,(3(p21)/p)22 and if the initial data

~g,k,F,X! satisfytrg k5constant,X50 and g is the Euclidean metric then the differential ofF at
the point~g,k!

D ~g,k!F: Ss,d
p 3Ss21,d11

p →Fs22,d12
p 3Xs22,d12

p

is surjective and has a splitting kernel.
Remark:This theorem is a generalization of that of Choquet-Bruhat, Fischer, and Mars11

in the presence of matter and its proof reduces to show that the statements and calculus of
still remain valid in this new situation. Since Ref. 11 always uses~explicit and implicit! the
conditionH(g,k)50, which now is not satisfied, we think is worth briefly summarizing again
calculus of Ref. 11 in our situation.

Proof of the theorem:We begin by evaluating the differentialsD (g,k)H andD (g,k)g. To do
this we replaceg8 by g1h andk8 by k1K in the expressions ofH(g8,k8) and ofg(g8,k8) and
only keep the linear terms inh andK bearing in mind that the difference between the Christo
symbolsG i j8

r of g8 and the symbolsG i j
r of g is written

G i j
r 2G i j

r 5 1
2g8rs~¹ ihjs1¹ jhsi2¹shi j !,

and hence the linear term inh of this expression is (1/2)grs(¹ ihjs1¹ jhsi2¹shi j ). Also, the
linear term inh of the differenceR(g8)2R(g) between the scalar curvatures ofg8 andg is written
as

R~g8!2R~g!>2hi j Ri j 1¹ i¹shis2¹s¹s tr h

~the sign> means equality up to terms of order.1 in h andK!. Then a straight-forward com
putation gives

~D ~g,k!H!~h,K !5 1
8@22h•~k3k!12k•K22~ tr k!~ tr K !12h•k tr k

14h•Ric~g!24¹ i¹ jhi j 14¹ i¹ i tr h#,

~D ~g,k!g!~h,K ! i5
1
2@¹sKis2] i~ tr K !2hrs¹ rkis1hrs¹ ikrs

1 1
2~¹ ihrs!k

rs2~¹shsm!ki
m1 1

2¹
l~ tr h!kil #.

For each functiont on R3 and each vector fieldY on R3 we considerh52gt and K5LYg
2(div Y)g2tk1t(tr k)g where divY means¹ iYi . For the moment, we only deal with these pa
~h,K! that depends on (t,Y). Replacing theseh andK in D (g,k)H andD (g,k)g we get

~D ~g,k!H!~Y,t!5 1
8~26tk•k12k•LYg12t~ tr k!218tR~g!216Dt!,

whereDt means2gi j ¹ i¹ jt. Analogously

~D ~g,k!g!~Y,t! i5
1
2~2~dLYg! i23t¹skis2t¹ i tr k!,
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whered means the Hodge operator that assigns to each 2-covariant symmetric tensorv the 1-form
(dv) i52¹ jv j i . Since the initial data satisfy~8!, we can replace (trk)2 by k•k24R28xF and
¹skis by 2xXi1¹ i tr k. Using now the hypothesis trk5constant andX50, we finally have

~D ~g,k!H!~Y,t!5 1
8~24tk•k12k•LYg216xtF216Dt!

~D ~g,k!g!~Y,t! i52 1
2~dLYg! i .

As a consequence of a theorem of Cantor13,12 for thosep, s, d satisfying the hypothesis of th
theorem, the operatorsY→dLYg of Xs,d

p →Xs22,d12
p and t→Dt of Fs,d

p →Fs22,d12
p are isomor-

phisms.
Now we are ready to show thatD (g,k)F is surjective. Given a (f ,Z)PFs22,d12

p 3Xs22,d12
p

there exists a uniqueY such that (D (g,k)g)(Y,t)52(1/2)dLYg5Z. Now, we look for a function
t such that

1
8~24tk•k12k•LYg216xtF216Dt!5 f .

or what is the same

24tk•k216xtF216Dt58 f 22k•LYg.

SinceD is an isomorphism, so is216D24k•k216xF. Therefore there exists a uniquet such
that (D (g,k)H)(t,Y)5 f . From this functiont and this fieldY we form h and K given by h
52gt andK5LYg2(div Y)g2tk1t(tr k)g. Clearly, (D (g,k)F)(h,K)5( f ,Z). ThereforeD (g,k)F
is surjective. To see thatD (g,k)F has a splitting kernel for any pair~h,K! we consider the unique
pair (h8,K8) of the form h852gt and K85LYg2(div Y)g2tk1t(tr k)g such that (D (g,k)F)
3(h,K)5(D (g,k)F)(h8,K8) @unique becauseD (g,k)F is an isomorphism restricted to the pai
(h8,K8)]. Then

~h,K !5~h2h8,K2K8!1~h8,K8!

gives us the desired splitting. This completes the proof.
Let us apply theorem 2 to a (V5S3I ,g̃,T̃) Robertson–Walker model with curvatureK50.

We assume thatS is connected and simply connected. If the curvatureK of ~S,g! is zero thenS is
R3 andg the Euclidian metric. From the form of the metricg̃52dt21z(t)2g it follows that the
vector field]/]t is geodesic and therefore the Gauss representation of the hypersurfaceM05S
3$0% is the identityS3I→S3I . The restriction ofg̃ to the hypersurfacesMt5S3$t% is gt

5z(t)2g. Therefore, from~13!, we havekt5] tgt52zżg52(ż/z)gt . That is, whent50 we get
g05z(0)2g andk052(ż(0)/z(0))g0 . Note that trk056(ż(0)/z(0)) is constant. Since the stress
energy tensorT̃ of the Robertson–Walker model satisfiesT̃445r and T̃4i50, we haveFt

5T̃4
4uMt

52r t andXt
i(x)5T̃4

i (x)50. Thus, the hypotheses of Theorem 2 are all fulfilled. Th
Theorem 1 assures that the Einstein equations are linearization stable at the initial Robe
Walker metricg̃.
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9A. Einstein,Über Gravitationswellen~Preussiche Akademie der Wissenschaften, Sitzungsberiche, 1918!, pp. 154–167.
10Y. Choquet-Bruhat and S. Deser, ‘‘On the stability of flat space,’’ Ann. Phys.~N.Y.! 81, 165–168~1973!.
11Y. Choquet-Bruhat, A. Fischer, and J. E. Marsden, ‘‘E´ quations des constraintes sur une varie´té non compacte,’’ C. R.
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In a previous paper~referred to here as paper I! we showed that the Einstein
equation is linearization stable when a Robertson–Walker model of curvatureK
50 is considered. For that purpose, a slightly different definition of linearization
stability was introduced. In this paper we show that in case the curvatureK is equal
to 1 the Einstein equationG(g)5xT is not linearization stable at the Robertson–
Walker metric. © 1999 American Institute of Physics.@S0022-2488~99!02209-4#

I. INTRODUCTION

This is the second part of a series of two papers. For motivations, notations, and referen
Paper I.1 Recall that in Paper I we dealt with a Robertson–Walker modelV5S3I where (S,g)
was a Riemannian 3-manifold of constant curvatureK andV was endowed with a Lorentz metri
of the formg̃52dt21z(t)g. In V we considered also a perfect fluid with stress-energy tensoT̃.
We wondered whether the Einstein equationG̃(g̃8)5xT̃8 could be linearized at the initial metri
g̃ corresponding to the Robertson–Walker model (V,g̃,T̃). The main result of this article~con-
tained in Sec. III! is the linearization instability of the Einstein equation at the initial metricg̃
when the curvatureK of (S,g) is positive. In Sec. I we write the notation used throughout t
paper and we express the mappingF(g,k)5(H(g,k),g(g,k)) of paper I in terms of a more
suitable pair of variables (g,p) for subsequent calculus. In Sec. II we compute the expression
D (g,p)F, (D (g,p)F)* andD (g,p)

2 g needed in the proof of the main theorem.

II. THE F MAPPING

Let M be a compact 3-manifold. Unlike paper 1, we use common Sobolev spaces wp
52 without weights. For allsPR1, F s(M ) will stand for the space of functions onM of Sobolev
classs, S2

s(M ) the space of 2-covariant symmetric tensor fields overM of Sobolev classs, Rs(M )
the open set inS2

s(M ) of the Riemannian metrics, andX s(M ) the space of vector fields onM of
Sobolev classs. Suppose that a Riemannian metricg, a 2-symmetric covariant tensork, a function
F and a vector fieldX are given onM in such a way that the data (g,k,F,X) satisfy

H 1
8~k•k2~ trg k!224R!5xF
1
2¹

r~kir 2~ trg k!gir !5xXi

. ~1!

Consider the mapping

F:Rs~M !3S2
s~M !→F s22~M !3X s21~M !

~g8,k8!→~H~g8,k8!,g~g8,k8!!

whereH andg denote the left hand side of~1!
51310022-2488/99/40(10)/5131/7/$15.00 © 1999 American Institute of Physics
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In order to simplify the calculus we definep85k82(trg8 k8)g8 and we will work with the new
variables (g8,p8) instead of the old ones (g8,k8). A straightforward computation shows thatH
andg are then given by

H~g8,p8!5 1
8 ~p8•g8p824R~g8!2 1

2 ~ trg8 p8!2!

g~g8,p8! i5
1
2 ¹8 j pi j8 .

The initial metricg induces an inner product at each pointxPM in the following way:

~h,P!x•~h8,P8!x5gir ~x!gjs~x!~hir hjs8 ~x!1Pir Pjs8 ~x!!.

We then extend it toS2
s(M )3S2

s(M ) by

^~h,P!,~h8,P8!&5E
xPM

~h,P!x•~h8,P8!xdx,

wheredx is the volume element ofM by g. Also we define inF s22(M )3X s21(M ) an inner
product by

^~ f ,Y!,~ f 8,Y8!&54E
M

f ~x! f 8~x!dx14E
M

g~Y,Y8!xdx.

~The factor 4 will simplify subsequent formulas.!
The linear tangent mapping ofF at (g,p) induces a mapping

D ~g,p!F: S2
`~M !3S2

`~M !→F `~M !3X `~M !,

with an adjoint operator with respect to both inner products

~D ~g,p!F!* : F `~M !3X `~M !→S2
`~M !3S2

`~M !

defined by

^~D ~g,p!F!~h,P!,~ f ,Y!&5^~h,P!,~D ~g,k!F!* ~ f ,Y!&. ~2!

This operator induces an operator for any Sobolev classs

~D ~g,p!F!* : F s22~M !3X s21~M !→S2
s24~M !3S2

s24~M !.

III. EXPRESSIONS FOR D
„g ,p …F, „D

„g ,p …F…* AND D
„g ,p …
2 g

Later on we will need the expressions ofD (g,p)F, (D (g,p)F)* and D (g,p)
2 g ~g being the

second component ofF5(H,g)). The expressions of these operators can be found in se
papers~Refs. 2–5 for instance! when the initial conditions (g,p) satisfyH(g,p)50,g(g,p)50.
However, nowH(g,p)5xF andg(g,p)5xX.

In Sec. VI of paper I we have already calculated the expressions ofD (g,k)H andD (g,k)g using
the (g,k) variables. In the same way, working with the (g,p) variables, we must calculateH(g
1h,p1P) andg(g1h,p1P) and keep the linear terms inh andP. Then
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~D ~g,p!H!~h,P!5 1
8@2p•P22h•~p3p!14h•Ric~g!24¹ i¹ jhi j

14¹ i¹ i tr h2~ tr p!~ tr P!1~ tr p!h•p#

~3!
~D ~g,p!g!~h,P! i5

1
2@¹sPis2hrs¹ rpis1hrs¹ ikrs2 1

2~¹ ihrm!prm2~¹shsm!pi
m1 1

2¹m~ tr h!pi
m#.

Keeping the quadratic terms inh andP of g(g1h,p1P) we obtain

~D ~g,p!
2 g!~h,P! i5

1
2@¹ r~~h3h!rspis!1hrs~¹ ihrm!ps

m2 1
2h

rs~¹mhrs!pi
m2 1

2h
lm~¹m tr h!pil

2 1
2~¹ ihrm!Pmr1 1

2~¹m tr h!Pi
m2¹ r~hrsPis!#. ~4!

Let us now evaluate (D (g,p)F)* , defined by the identity~2!. If we denote byA andB the two
components of (D (g,p)F)* , the identity~2! is written

4E
M

(D ~g,p!H)~h,P!x f ~x!dx14E
M

g~~D ~g,p!g!~h,P!x ,Yx!dx

5E
M

hA~ f ,Y!x dx1E
M

P•B~ f ,Y!x dx. ~5!

In order to calculate the two integrals of the first member of~5!, once~3! is used, one must handl
with care the terms containing derivatives inh or in P. For example, consider the expression
(D (g,p)H)(h,P) f and its term2(1/2)¹ i¹ jhi j f containing two derivatives onh. This term can be
written

2 1
2~¹ i¹ jhi j ! f 5 1

2~¹ jhi j !¹
i f 1divergence52 1

2hi j ¹
j¹ i f 1divergence.

Doing the same in all the terms containing derivatives inh or in P and bearing in mind that the
integral of a divergence is zero~becauseM is compact!, we obtain the following expressions fo
A andB:

A~ f ,Y!52 f p3p12 f Ric~g!22 Hess~ f !22~D f !g1 1
2 f ~ tr p!p

1LYp1~div Y!p2 1
2~p•LYg!g22g~g~g,p!,Y!

~6!
B~ f ,Y!52LYg1 f p2 1

2 f ~ tr p!g,

where (Hessf ) i j means the hessian¹ i¹ j f andD f the Laplacian2¹ i¹ i f . In the computations of
~6! the following expression for the Lie derivativeLYa of a 2-covariant tensora has been used

~LYa! i j 5Yk¹ka i j 1~¹ iY
k!ak j1~¹ jY

k!a ik .

Since the initial data (g,p) satisfyg(g,p)5xX, the last term ofA in ~6! can be written in the
form 22xg(X,Y).

IV. THE MAIN RESULT

Consider a Robertson-Walker modelV5S33I , whereS3 is the 3-sphere endowed with
Riemannian metricg of constant curvatureK51 onS3 andI anR-interval. Letg̃ be a Lorentzian
metric onV of the formg̃52dt21z(t)2g andT̃5(r1p)dt^ dt1pg̃ the stress-energy tensor o
a perfect fluid. Following the analysis of paper I, the hypersurfaceM of V is M5S33$0% and the
Gauss representation ofM is the identityS33I→S33I because]/]t is a geodesic vector field o
g̃. Since the hypersurfaceM has constant curvature 1 its curvature tensor satisfies

Rki j
r 5d i

rgk j2d j
rgki .
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By contracting,Rk j5Rkr j
r 52gk j and contracting again,R5gi j Ri j 56. The restriction ofg̃ to the

hypersurfaceMt5S33$t% is gt5z(t)2g. We havekt5] tgt52(ż/z)gt . Then,

Ric~gt!5
2gt

z~ t !2 ; R~gt!5
6

z~ t !2 ; kt5
]gt

]t
5

2ż~ t !gt

z~ t !
;

~7!

kt3gt
kt54S ż~ t !

z~ t ! D
2

gt ; kt•gt
kt512S ż~ t !

z~ t ! D
2

; trgt
kt5

6ż~ t !

z~ t !
.

In our caseFt5T̃4
4uMt

52r t and for anyxPMt we haveXi
i(x)5T̃4

i (x,t)50. The linearization
stability of the Einstein equation at the initial Robertson–Walker metricg̃ leads us to the study o
the stability of the mapping

F: Rs~S3!3S2
s~S3!→F s22~S3!3X s21~S3!

~g8,p8!→~H~g8,p8!,g~g8,p8!!

at (g0 ,p0). Now, p05k02(trg0
k0)g0524(ż(0)/z(0))g0 and F(g0 ,p0)5(2xr0,0) sinceF

52r andX50.
We state the following theorem.
Theorem 1: There is no neighborhood U of(g0 ,p0) in Rs(S3)3S2

s(S3) such that the set o
the pairs (g8,p8)PU satisfyingF(g8,p8)5x(2r0,0) is a differentiable submanifold of U.

As a consequence of this theorem, we have:
Corollary. There exists no subspaceF of F s-2(S3)3X s-1(S3) such thatF is linearization

stable at the initial point(g0 ,p0) in the direction ofF.
Proof of the corollary.The definition of linearization stability relative to any subspaceF

given in paper I requiresF21(F(g0 ,p0)) to be a differential manifold in a neighborhood o
(g0 ,p0), which is inconsistent with the theorem.

Proof of theorem 1.Suppose there exists a neighborhoodU of (g0 ,p0) in S2
s(S3)3S2

s(S3)
such that the set of (g8,p8)PU satisfyingF(g8,p8)52x(r0,0) has the structure of a differentia
manifold of U. Let l→(g8(l),p8(l)) be a curve of this manifold passing through (g0 ,p0) for
l50. Let (h,P)PS2

s(S3)3S2
s(S3) be the tangent vector to this curve at (g0 ,p0). Denote by

(h8,P8) the second derivatived2(g8(l),p8(l))/dl2 at l50. Since F(g8(l),p8(l))5
2x(r0,0) for any l, evaluating its first derivative atl50 one obtains (D (g0 ,p0)F)(h,P)50.
Differentiating again atl50 one gets

~D ~g0 ,p0!
2 F!~h,P!1~D ~g0 ,p0!F!~h8,P8!50. ~8!

Now, let (f ,Y) be any element ofF `(S3)3X `(S3). Computing the inner product of (f ,Y) with
both members of~8!, one gets

^~D ~g0 ,p0!
2 F!~h,P!,~ f ,Y!&1^~D ~g0 ,p0!F!~h8,P8!,~ f ,Y!&50.

Taking into account that

^~D ~g0 ,p0!F!~h8,P8!,~ f ,Y!&5^~h8,P8!,~D ~g0 ,p0!F!* ~ f ,Y!&

it follows that for any (h,P)PS2
s(S3)3S2

s(S3) in ker(D (g0 ,p0)F) and for any (f ,Y)PF `(S3)
3X `(S3) in Ker(D (g0 ,p0)F)*

^~D ~g0 ,p0!
2 F!~h,P!,~ f ,Y!&50. ~9!

is fulfilled.
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To prove Theorem 1~making use of an idea of Ref. 6! we look for a pair (h,P) of the kernel
of D (g0 ,p0)F and a pair (f ,Y) of the kernel of (D (g0 ,p0)F)* for which ~9! is not satisfied. From
previous calculus we know that (D (g0 ,p0)F)* ( f ,Y)5(A,B), whereA andB are given by~6!. In
our case, using~7! and the fact thatX50 we have

A~ f ,Y!58S ż~0!214

z~0!2 D f g024
ż~0!

z~0!
LYg022 Hess f 22~D f !g0

B~ f ,Y!52
ż~0!

z~0!
f g02LYg0 .

The metricg05z(0)2g is the restriction of the euclidean metric ofR4 to the sphere of radiusz~0!
and center at the origin. Let us denote byS3(z(0)) this sphere. We choosef 50 andY a Killing
field on S3(z(0)) relative to the metricg0 ~this means LYg050) as an element o
Ker(D (g0 ,p0)F)* . For any (h,P)PKer(D (g0 ,p0)F) and a pair of the form (0,Y)
PKer(D (g0 ,p0)F)* we have

^~D ~g0 ,p0!
2 F!~h,P!,~0,Y!&54E

M
g~~D ~g0 ,p0!

2 g!~h,P!,Y!dv,

where dv stands for the volume element ofM5S3(z(0)) by g0 . To evaluate (D (g0 ,p0)
2 F)

3(h,P) given by ~4! when a Robertson–Walker model is considered, we make use of the
mulaspi j 524C(g0) i j , whereC5 ż(0)/z(0). Then

~D ~g0 ,p0!
2 g!~h,P! i5

1
2@24C¹ r~h3h!ri 22Chrm¹ ihrm12Chim¹m tr h2 1

2~¹ ih
rm!Pmr

1 1
2~¹m tr h!Pim2¹ r~hrsPis!#. ~10!

Hence,g((D (g0 ,p0)
2 g)(h,P),Y) can be written in the following form:

g~~D ~g0 ,p0!
2 g!~h,P!,Y!5 1

2$4C~¹ rYi !~h3h!ri 22Chrm~¹Yh!rm22C~¹mYi !him tr h

22CYi~¹mhim!tr h2 1
2~¹Yh!rmPmr2

1
2Y

i~¹mPim!tr h

2 1
2~¹mYi !Pim tr h2Yi¹ r~hrsPis!%1div. ~11!

Now we require (h,P) to belong to the kernel ofD (g0 ,p0)F; therefore both components of~3!

must be zero. From the vanishing of the second expression of~3! @and sincepi j 524C(g0) i j ],
one obtains¹mPim524C¹mhim . Substituting this into~11!,

g~~D ~g0 ,p0!
2 g!~h,P!,Y!5 1

2$22Ch•¹Yh2 1
2~¹Yh!•P2Yi¹ r~hrsPis!%1div.

When integrating the previous identity onM5S3(z(0)), the term *M(h•¹Yh)dv will be zero.
Indeed

h•¹Yh5hrmYi¹ ih
rm52hrm~¹ iY

i !hrm2~¹ ihrm!Yihrm1div.

SinceY is a Killing field, it has zero divergence and therefore the first term of the second me
vanishes. Integrating onM one gets*M(h•¹Yh)dv52*M(h•¹Yh)dv and so this integral is zero
Finally:

4E
M

g~~D ~g0 ,p0!
2 g!~h,P!,Y!dv52E

M
~¹Yh•P!dv22E

M
Yi¹ r~hrsPis!dv. ~12!
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So our problem consists in findingh andP in KerD (g0 ,p0)F and a Killing fieldY on the sphere
S3(z(0)) for which ~12! is not zero.

ConsiderS3(z(0)),R4. Let (x,y,z,t) be the canonical coordinates ofR4. Let e1 , e2 , e3 be
three vector fields ofR4 with the following components in the canonical basis ofR4: e15(y,
2x,t,2z), e25(z,2t,2x,y), e35(t,z,2y,2x). The Lie brackets of these fields are@e1 ,e2#
52e3 , @e2 ,e3#52e1 , @e3 ,e1#52e2 . Consider the radial vector fieldN5(x,y,z,t). The fields
ei( i 51,2,3) are orthogonal toN by the Euclidean metric ofR4. Hence, their restriction to the
sphereS3(z(0)) aretangent fields that at each point are mutually orthogonal and have normz~0!.
The formula

2g0~¹UV,W!5U~g0~V,W!!1V~g0~W,U !!2W~g0~U,V!!

2g0~U,@V,W# !2g0~V,@U,W# !2g0~W,@V,U# !

that links the covariant derivative with the metric, gives¹ei
ej52¹ej

ei5ek provided thati , j ,k be

a cyclic permutation of 1,2,3. Also¹ei
ei50. If G i j

k stands for the Christoffel symbols in the bas

$e1 ,e2 ,e3% defined by¹ei
ej5G i j

k ek , one hasG i j
k 5e( i , j ,k), wheree( i , j ,k) indicates the sign of

the permutation (i , j ,k) when the three indices are different, and zero otherwise. A Killing ve
field Y of S3(z(0)) satisfiesg0(¹ei

Y,ej )52g0(¹ej
Y,ei). In particular, the fieldse1 , e2 , e3 are

Killing fields.
Now, chooseY5e1 , h5e1^ e21e2^ e1 , P5e1^ e31e3^ e1 . We want to see that (Y,h,P)

satisfy the desired conditions. We begin by showing that theseh andP make the right hand side
of ~3! to vanish. In a Robertson-Walker model, the expressions~3! take the form:

~D ~g0 ,p0!H!~h,P!5
1

8 F4C tr P1S 16C21
8

z~0!2D tr h24¹ i¹ jhi j 24¹ tr hG
~13!

~D ~g0 ,p0!g!~h,P! i5
1
2¹

s~4Ch1P! is .

Here, both the trace ofh andP vanish since, for instance, trh5(g0) i j hi j 5(1/z(0)2)(( ihii )50.
On the other hand, if bothh and P have zero divergence then the expressions~13! would be
consequently satisfied. Hence, letA5Ai j ei ^ ej be a symmetric tensor with constant compone
Ai j . Then¹ iA

i j 5ei(A
i j )1G ir

i Ar j 1G ir
j Air . The first term is zero becauseAi j are constant. The

second term is zero becauseG i j
k 5e( i , j ,k), and the third is also zero becauseG i j

k is skew sym-
metric in the indicesi , j but Ai j is symmetric in the same indices.

Finally, let us to see that~12! is not zero. We have¹Yh5¹e1
(e1^ e21e2^ e1)5e1^ e3

1e3^ e15P. Hence, (¹Yh)•P5P•P52/z(0)2. On the other hand, sinceY5e1 andh has zero
divergence, we get

Yi¹ r~hrsPis!5hrs¹ r P1s5h12¹1P121h21¹2P115~1/z~0!!2~¹1P121¹2P11!.

A short computation shows that¹1P12521 and¹2P1152. Therefore,

Yi¹ r~hrsPis!51/z~0!2.

Substituting these results in~12! we get

4E
M

g~~D ~g0 ,p0!
2 g!~h,P!,Y!dv52E

M
~¹Yh•P!dv22E

M
Yi¹ r~hrsPis!dv

5~1/z~0!!2~24 vol~S3~z~0!!!!Þ0.

This completes the proof of the theorem.
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On the differentiability of Cauchy horizons
Robert J. Budzyński
Department of Physics, Warsaw University, Hoz˙a 69, 00-681 Warsaw, Poland

Witold Kondracki and Andrzej Królak
Institute of Mathematics, Polish Academy of Sciences,
Śniadeckich 8, 00-950 Warsaw, Poland

~Received 9 March 1999; accepted for publication 14 June 1999!

Chruściel and Galloway constructed a Cauchy horizon that is nondifferentiable on
a dense set. We prove that in a certain class of Cauchy horizons densely nondif-
ferentiable Cauchy horizons form a dense set. We show that our class of densely
nondifferentiable Cauchy horizons implies the existence of densely nondifferen-
tiable Cauchy horizons arising from partial Cauchy surfaces and also the existence
of densely nondifferentiable black hole event horizons. ©1999 American Insti-
tute of Physics.@S0022-2488~99!01909-X#

I. INTRODUCTION

Recently Chrus´ciel and Galloway1 have constructed an example of a Cauchy horizon wh
fails to be differentiable on a dense subset. In this paper we show that densely nondiffere
Cauchy horizons appear to be generic in a certain class of Cauchy horizons. Chrus´ciel and Gal-
loway have also shown that their example implies the existence of a densely nondifferen
black hole event horizon. They point out that these examples raise definite questions conc
some major arguments that have been given in the past where smoothness assumptio
implicitly made. In the light of these new examples, it is clear that there is a real need for a d
understanding of the differentiability properties of horizons.

In a spacetime with a partial Cauchy surfaceS the Cauchy horizonH(S) is the boundary of
the set of points where, in theory, one may calculate everything in terms of the initial dataS.
Cauchy horizons areachronal ~i.e., no two points on the horizon may be joined by a timeli
curve! and this implies that Cauchy horizons~locally! satisfy a Lipschitz condition. This, in turn
implies that Cauchy horizons are differentiable almost everywhere. Because they are differe
except for a set of~three-dimensional! measure zero, it seems that they have often been assu
to be smooth except for a set which may be more or less neglected. However, one must rem
in the above that~1! differentiable only refers to being differentiable at a single point and~2! sets
of measure zero may be quite widely distributed.

For a closed achronal setS each pointp of a Cauchy horizonH1(S) lies on at least one nul
generator.2 However, null generators may or may not remain on the horizon when they
extended in the future direction. If a null generator leaves the horizon, then there is a las
where it remains on the horizon. This last point is said to be anendpointof the horizon. Endpoints
where two or more null generators leave the horizon are points where the horizon must fai
differentiable.3,1 In addition, Chrus´ciel and Galloway1 have shown that Cauchy horizons are d
ferentiable at points which are not endpoints. Beem and Kro´lak have shown4 that Cauchy horizons
are differentiable at endpoints where only one generator leaves the horizon. These results
complete classification of~pointwise! differentiability for Cauchy horizons in terms of null gen
erators and their endpoints. Beem and Kro´lak have also shown4 that if we consider an open subs
W of the Cauchy horizonH1(S) and assume that the horizon has no endpoints onW, then the
horizon must be differentiable at each point ofW and, in fact, that the horizon must be at least
classC1 on W. Conversely, the differentiability on an open setW implies there are no endpoint
on W.
51380022-2488/99/40(10)/5138/5/$15.00 © 1999 American Institute of Physics
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For general spacetimes, horizons may fail to be stable under small metric perturba
however, some sufficiency conditions for various stability questions have been obtained.5,6

II. PRELIMINARIES

Definition 1: A space-time (M,g) is a smooth n-dimensional, Hausdorff manifold M wi
semi-Riemannian metric g of signature (2,1,...,1), a countable basis, and a time orientation.

A set S is said to beachronal if there are no two points ofS with timelike separation.
We give definitions and state our results in terms of the future horizonH1(S), but similar

results hold for any past Cauchy horizonH2(S).
Definition 2: The future Cauchy development D1(S) consists of all points pPM such that

each past endless and past directed causal curve from p intersects the set S. The future
horizon is H1(S)5(D1(S))2I 2(D1(S)).

Let p be a point of the Cauchy horizon; then there is at least one null generator ofH1(S)
containingp. Each null generator is at least part of a null geodesic ofM. When a null generator o
H1(S) is extended into the past it either has no past endpoint or has a past endpoint on e~S!
~see Ref. 2, p. 203!. However, if a null generator is extended into the future it may have a
point on the horizon which is then said to be anendpointof the horizon. We define themultiplicity
~see Ref. 4! of a pointp in H1(S) to be the number of null generators containingp. Points of the
horizon which are not endpoints must have multiplicity one. The multiplicity of an endpoint
be any positive integer or infinite. We call the set of endpoints of multiplicity two or higher
crease set, compare Ref. 1. By a basic Proposition due to Penrose~Ref. 2, Proposition 6.3.1!
H1(S) is ann21 dimensional Lipschitz topological submanifold ofM and is achronal. Since a
Cauchy horizon is Lipschitz it follows from a theorem of Rademacher that it is differenti
almost everywhere~i.e., differentiable except for a set ofn21 dimensional measure zero!. This
does not exclude the possibility that the set of nondifferentiable points is a dense subset
horizon. An example of such a behavior was given by Chrus´ciel and Galloway.1

Following Ref. 4 let us introduce the notion of differentiability of a Cauchy horizon. Cons
any fixed pointp of the Cauchy horizonH1(S) and letx0,x1,x2,x3 be local coordinates define
on an open set aboutp5(p0,p1,p2,p3). Let H1(S) be given nearp by an equation of the form

x05 f H~x1,x2,x3!.

The horizonH1(S) is differentiableat the pointp iff the function f H is differentiable at the point
(p1,p2,p3). In particular, ifp5(0,0,0,0) corresponds to the origin in the given local coordina
and if

Dx5~x1,x2,x3!

represents a small displacement fromp in the x050 plane, thenH1(S) is differentiable atp iff
one has

f H~Dx!5 f H~0!1( ai xi1RH~Dx!501( ai xi1RH~Dx!,

where the ratioRH(Dx)/uDxu converges to zero asuDxu goes to zero. Here we use

uDxu5A~x1!21~x2!21~x3!2.

If H1(S) is differentiable at the pointp, then there is a well-defined three-dimensional line
subspaceN0 in the tangent spaceTp(M ) such thatN0 is tangent to the three-dimensional surfa
H1(S) at p. In the above notation a basis forN0 is given by$ai]/]x01]/]xi u i 51,2,3%.

Theorem 1: (Chruściel and Galloway1). There exists a connected set K,R25$t
50%,R2,1, where R2,1 is a 211 dimensional Minkowski space-time, with the following prop
ties:
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~1! The boundary]K5K̄2 int K of K is a connected, compact, Lipschitz topological submanif
of R2. K is the complement of a compact set in R2.

~2! There exists no open setV,R2,1 such thatVùH1(K)ù$0,t,1% is a differentiable sub-
manifold of R2,1.

Proposition 1 (Beem and Kro´lak4): Let W be an open subset of the Cauchy horizon H1(S).
Then the following are equivalent:

~1! H1(S) is differentiable on W.
~2! H1(S) is of class Cr on W for some r>1.
~3! H1(S) has no endpoints on W.
~4! All points of W have multiplicity one.

Note that the four parts of Proposition 1 are logically equivalent for an open setW, but that,
in general, they are not necessarily equivalent for sets which fail to be open. Using the equiv
of parts~1! and ~3! of Proposition 1, it now follows that near each endpoint of multiplicity o
there must be points where the horizon fails to be differentiable. Hence, each neighborhoo
endpoint of multiplicity one must contain endpoints of higher multiplicity. This yields the follo
ing corollary.

Corollary 1 (Ref. 4): If p is an endpoint of multiplicity one on a Cauchy horizon H1(S), then
each neighborhood W(p) of p on H1(S) contains points where the horizon fails to be differe
tiable. Hence, the set of endpoints of multiplicity one is in the closure of the crease set.

III. A GENERIC DENSELY NONDIFFERENTIABLE CAUCHY HORIZON

We shall construct a densely nondifferentiable Cauchy horizon in the three-dimens
Minkowski space-timeR,2,1 but our construction can be generalized in a natural way to hig
dimensions. LetS be the surfacet50, and letK be a compact, convex subset ofS. Let ]K denote
the boundary ofK. Let r(x,R) andD(x,R) be, respectively, a circle and a disc with center ax
and radiusR.

Definition 3: A circle r(x,R) is internally tangent to the boundary]K of K if the disc
enclosed byr is contained in K and for alle.0 the disc of radius R1e and center x is not
contained in K.

Let r(x,R) be internally tangent to]K; then the point (x,R)PR2,1 belongs to the future
Cauchy horizonH1(K) and conversely, if a point (x,R)PR2,1 belongs toH1(K) then the circle
r(x,R) is internally tangent to]K. If r(x,R) is internally tangent in at least two points of]K then
it follows from Proposition 1 thatH1(K) is not differentiable at the point~x,R! and the point~x,R!
has multiplicity at least two.

We shall first construct a continuous curve that is not differentiable on any open subset.
take a line segmentl 0 and let us consider an isosceles triangle with basel 0 and leta0 be the angle
at the base and letl 1 denote the broken line consisting of two equal arms of the triangle. In
next step we construct two isosceles triangles with bases that are segments of the brokenl 1

and we choose the anglesa1 at the base equalq3a0 where q,1/2. We iterate the above
construction. At theNth step of the construction the number of nondifferentiable points of
curve increases by 2N21. After theNth step of the iterative procedure the vertex angle of
isosceles triangle obtained in thei th step is given by

/N~xi !5p22a1Fqi 212
qi2qN

12q G . ~1!

In the limit N→` the i th vertex angle is given byp22a1qi@(q2122)/(12q)# and is strictly
less thanp asq,1/2.

Let us call the nowhere differentiable continuous curve constructed above arough curve. Let
us call a region ofS that is bounded by a rough curve and two straight lines perpendicular t
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rough curve at its two endpoints~this notion is unambiguous, as the slope of the rough curve a
endpoint is given by a well-defined limit! a fan. The above construction can be generalized
higher dimensions, for example in the four-dimensional Minkowski space-time we constr
rough surfacein the following way. We consider a triangle and the first step is to constru
pyramid with the triangle as a base and all angles between the base and the sides of the p
equal to the same anglea1 ; we then iterate the construction decreasing at each step the ana
between the base and the sides of the pyramid by a factorq,1/2 as in the three-dimensional cas
As a result we obtain a nowhere differentiable surface and we define a three-dimensional
the region ofS bounded by the rough surface and planes perpendicular to the rough su
passing through the sides of the initial triangle.

Theorem 2: Let b be a rough curve and F the corresponding fan. Then the set of points
that are centers of circles tangent to b in at least two points of b is dense in the interior of th
F.

Proof: Each point ofF is the center of a circle tangent tob at at least one point. If the claim
of the theorem were false, then there would exist a discD(x,R) with nonempty interior with the
property that every pointaP int D is the center of a circle tangent to the rough curve at exactly
point.

~1! A vertex point cannot be a point of tangency of any circle with center in intF.
~2! By construction the set of vertices ofb is dense inb. Thus the complement of the set o

vertices inb is totally disconnected~i.e., only one-element subsets are connected!.

Let us consider a mapP from the disc tob that assigns to every pointy of D a point onb that
is tangent to the circle centered aty. By assumption this point is unique and thus the map
well-defined.

Let us show that the mapP is continuous. It is enough to prove that ifan→a then P(an)
→P(a). As b is compact,P(an) has a subsequence that converges to a pointc on b. Since the
distanced(an ,P(an)) is continuous onD we haved(c,a)5d(a,P(a)). Hencec is a tangency
point of a circle centered ata and consequentlyc5P(a).

By the Darboux theorem the imageP(D(x,R)) is connected and by 1. and 2. above, it is
one-point set. It then follows thatR50 which is a contradiction.QED

The above theorem generalizes to the three-dimensional case. In the case of a
dimensional fanF there exists a dense subset ofF such that every ball with the center in th
subset has at least two tangency points to the rough surface. All steps of the proof of Theo
carry over to this case in the natural way.

Let H be the set of Cauchy horizons arising from compact convex setsK,S. The topology
on H is induced by the Hausdorff distance on the set of compact and convex regionsK.

Theorem 3: Let H be the set of future Cauchy horizons H1(K) where K are compact and
convex regions ofS. The subset of densely nondifferentiable horizons is dense inH.

Proof: Any compact and convex regionK can be approximated in the sense of Hausdo
distance by a~sequence of! convex polygons contained inK. Each of the vertex angles of such
polygon is strictly less thanp. Over each side of the polygon we construct a rough curve in s
a way that the fans corresponding to the rough curves cover the polygon. This is always po
since we may choose the starting anglea1 in the rough curve’s construction to obey the conditi

f1
2a1

12q
,p, ~2!

wheref is the largest vertex angle of the original polygon. Whena1 decreases to 0 the rough
edged polygon converges to the original polygon in the sense of Hausdorff topology.QED

It is clear that the above theorem generalizes to higher dimensions.
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IV. SOME EXAMPLES OF DENSELY NONDIFFERENTIABLE HORIZONS

In this section we show that the construction of the preceding section implies the existe
densely nondifferentiable Cauchy horizons of partial Cauchy surfaces and also the existe
black hole event horizons.

Definition 4: A partial Cauchy surface S is a connected, acausal, edgeless n21 dimensional
submanifold of (M,g).

Example 1: A rough wormhole.
Let R3,1 be the four-dimensional Minkowski space-time and letK be a compact subset of th

surface$t50% such that its Cauchy horizon is nowhere differentiable in the sense of the con
tion given in Sec. III. We consider a space-time obtained by removing the complement o
interior of the setK in the surfacet50 from the Minkowski space-time. Let us consider the par
Cauchy surfaceS5$t521%. The future Cauchy horizon ofS is the future Cauchy horizon of se
K2edge(K), since edge(K) has been removed from the space-time. Thus the future Ca
horizon is nowhere differentiable and it is generated by past-endless null geodesics. The inte
the setK can be thought of as a ‘‘wormhole’’ that separates two ‘‘worlds,’’ one in the pas
surface$t50% and one in its future.

Example 2: A transient black hole.
Let R3,1 be the four-dimensional Minkowski space-time and letK be a compact subset of th

surface$t50% such that itspast Cauchy horizon is nowhere differentiable in the sense of
construction given in Sec. III. We consider a space-time obtained by removing from Minko
space-time the closure of the setK in the surfacet50. Let us consider the event horizonE
ª J̇2(J1). The event horizonE coincides withH2(K)2edge(K) and thus it is not empty and
nowhere differentiable. The event horizon disappears in the future of surface$t50% and thus we
can think of the black hole~i.e., the setBªR3,12J2(J1)) in the space-time as ‘‘transient.’’
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Well-posed forms of the 3 11 conformally-decomposed
Einstein equations
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~Received 23 April 1999; accepted for publication 25 May 1999!

We show that well-posed, conformally-decomposed formulations of the 311 Ein-
stein equations can be obtained by densitizing the lapse and by combining the
constraints with the evolution equations. We compute the characteristics structure
and verify the constraint propagation of these new well-posed formulations. In
these formulations, the trace of the extrinsic curvature and the determinant of the
3-metric are singled out from the rest of the dynamical variables, but are evolved as
part of the well-posed evolution system. The only free functions are the lapse
density and the shift vector. We find that there is a 3-parameter freedom in formu-
lating these equations in a well-posed manner, and that part of the parameter space
found consists of formulations with causal characteristics, namely, characteristics
that lie only within the lightcone. In particular there is a 1-parameter family of
systems whose characteristics are either normal to the slicing or lie along the
lightcone of the evolving metric. ©1999 American Institute of Physics.
@S0022-2488~99!01910-6#

I. INTRODUCTION

Analytical work in recent years has produced a number of systems of evolution equ
which are equivalent to the Einstein equations at the constraint manifold, and which have
posed initial value formulation.1–7

What motivates interest in this type of result is a general understanding~see, for instance, Ref
8! that explicit well-posedness would be relevant in implementing consistent and stable num
algorithms to integrate blackhole space–times.

The well-posed schemes for which a numerical code has been implemented appear
exibit significant improvements over other methods, there being several factors relevant
merical implementation which play a significant role. What is puzzling, however, is that, o
other hand, there have been numerical simulations with apparently better behavior, but wh
based on systems which do not seem to have the well-posed character. One preponderan
of these numerically more robust schemes is that they are built on a decomposition of the in
metric into a metric of unit determinant and the determinant itself, and of the extrinsic curv
into trace and trace-free part. With slight variations, this way of evolving the 311 Einstein
equations has been considered by Refs. 9 and 10. Quite recently, this form has been sh
possess striking computational advantages over the standard form.11 We refer to this genera
scheme as a conformally-decomposed formulation of the 311 Einstein equations.

It is difficult to explain the success of these systems as opposed to the well-posed evo
schemes, or even to the standard~ADM ! evolution schemes. The relative sizes of the fields
well-posed systems are roughly the same for different spectral frequencies in a Fourier rep

a!Electronic mail: simo@mayu.physics.duq.edu
b!Electronic mail: reula@fis.uncor.edu
51430022-2488/99/40(10)/5143/14/$15.00 © 1999 American Institute of Physics
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tation, which helps explain the stability of the system via numerical analysis. However, i
conformally-decomposed systems this does not happen in general~for standard norms!, as it does
not happen for the standard ADM system, thus making it more difficult to justify their rela
better behavior.

We can speculate on two features that can possibly bear relevance to well-behaved nu
evolution. One feature is that good behavior in evolution is related to constraint violations.
system preserves more accurately the constraints, then the evolution remains closer to t
straint submanifold, which contains the physical solutions. Outside this submanifold the sol
are unphysical; thus, there is no compelling reason to rule out fast growths for seemingly
initial data for unphysical solutions. Thus, we suggest that controlling the constraint viola
may lead to well-behaved numerical evolution. In this respect, it has been shown,12 that ~at least
in the linearized case! there are well-posed modifications of the Einstein equations outside
constraint submanifold which make that submanifold an attractor, thus improving the chan
building numerical codes with better behaved constraint propagation. Another possible ca
concern for generating numerical instabilities is the nature of the boundary conditions whic
usually imposed. There are only two existing treatments of the initial-boundary value probl
general relativity~see Ref. 13 for a complete theory of boundary values for the conformal Ein
equations in frame variables, and Ref. 14 for a linearized study of the ADM equations in
posed first-order form!, and no numerical simulations applying these treatments have yet app
in the literature. The initial-boundary value problem for systems used in numerical simulatio
the Einstein equations were instabilities have been found has generally not been studied, t
set of boundary conditions for which the constraint equations are satisfied is not known for
cases. In dealing with this problem, establishing well-posedness for the Cauchy problem
necessary first step.

The other feature which could give rise to numerical instabilities is the relative sizes o
‘‘longitudinal’’ and the ‘‘radiative’’ modes in general relativity. In all nontrivial asymptotical
flat solutions~either vacuum or with matter satisfying the appropriate energy conditions! the
positivity of the mass implies the existence of longitudinal modes, and there are many astro
cally relevant cases where there is an approximate local notion of longitudinal vs trans
modes, and where the former are several orders of magnitude bigger than the latter. If they
properly separated in the numerical algorithms, the errors caused by finite differencing migh
the order of the ‘‘radiative’’ modes, and bad behavior can be expected. The separation
conformal freedom in the more successful codes can perhaps be thought of as a way of
with this issue, or at least isolating it.

In this work, we focus on this latter aspect. A technique for taking advantage of the confo
factor to partially decouple the ‘‘longitudinal’’ and ‘‘transversal’’ modes was used to ob
results on the Newtonian limit of general relativity.2 In that case the conformal field was fixed v
an elliptic equation, decoupling in this way the more prominent Newtonian potential to first
from the radiative degrees of freedom. Further studies on this problem would be critical to o
realistic simulations of most astrophysically relevant problems.

Here we construct 3-parameter families of first-order well-posed systems which share so
the properties of the more successful systems, such as the conformal decomposition of the
mental fields, in the hope that their study would help understand what is causing them to b
better than others. In Sec. II we apply techniques similar to those we used in Refs. 5 and 7 in
to obtain versions of the 311 equations that are conformally-decomposed but which are
posed. Additionally, we calculate the structure of characteristics and show that for a open
in parameter space the resulting equations are metric-causal, namely they have all prop
cones inside or coincident with the light cone. There is even a one parameter subfamily for
propagation is either along the light cone or normal to the slices.

Furthermore we show that the constraints are propagated by these well-posed evolution
tions. As opposed to Ref. 15, where also analytical studies of systems with this decomp
have been done, in this work the trace of the extrinsic curvature and the determinant
                                                                                                                



f the

ef. 11,
r

the

lent

d

5145J. Math. Phys., Vol. 40, No. 10, October 1999 Well-posed forms of the 311 conformally . . .

                    
intrinsic metric are considered dynamical variables and are evolved jointly with the rest o
system.

II. SYSTEM II

The conformally-decomposed system that we take as starting point has appeared in R
and is a variation of the system used by Shibata and Nakamura.10 It is a system of 15 equations fo

15 variables (f,K,g̃ i j ,Ãi j ,G̃ i), and is referred to as System II in Ref. 11, to distinguish it from
standard 311 Einstein equations.16 These variables are related to the intrinsic metricg i j and
extrinsic curvatureKi j as follows:

e4f5det~g i j !
1/3, ~1a!

g̃ i j 5e24fg i j , ~1b!

K5g i j Ki j , ~1c!

Ãi j 5e24f~Ki j 2
1
3g i j K !, ~1d!

G̃ i52g̃ i j , j , ~1e!

whereg̃ i j is the inverse ofg̃ i j . The Einstein equations in terms of these variables are equiva
to the following:

d

dt
f52

1

6
aK, ~2a!

d

dt
g̃ i j 522aÃi j , ~2b!

d

dt
K52g i j DiD ja1aS Ãi j Ã

i j 1
1

3
K2D1

1

2
a~r1S!, ~2c!

d

dt
Ãi j 5e24f~2~DiD ja!TF1a~Ri j

TF2Si j
TF!!1a~KÃi j 22Ãil Ã j

l !, ~2d!

]

]t
G̃ i522Ãi j a j12aS G̃ jk

i Ãk j2
2

3
g̃ i j K , j2g̃ i j Sj16Ãi j f , j D

2
]

]xj S b l g̃ i j
,l22g̃m~ jb i),m1

2

3
g̃ i j b l , l D . ~2e!

Herea is the lapse function,b i is the shift vector, andG̃ jk
i are the connection coefficients ofg̃ i j .

The superscript TF denotes trace-free part, e.g.,Ri j
TF5Ri j 2g i j R/3. Indices are raised and lowere

with g̃ i j and its inverse. We use the shorthand notation

d

dt
[

]

]t
2Lb , ~2f!

whereLb is the Lie derivative alongb i . We have, as well,

Ri j
TF5Ri j 2

1
3g

i j gklRkl , ~2g!
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Ri j 5R̃i j 1Ri j
f , ~2h!

Ri j
f522D̄ i D̄ jf22ḡ i j ḡ

klD̄kD̄ lf14D̄ ifD̄ jf24ḡ i j ḡ
klD̄kfD̄ lf, ~2i!

R̃i j 52 1
2g̃

klg̃ i j ,kl1g̃k~ i G̃
k
, j )1G̃kG̃~ i j !k1g̃ lm~2G̃ l ~ i G̃ j )km1G̃k

il G̃km j!, ~2j!

G̃ i j
k 5 1

2g̃
kl~ g̃ i l , j1g̃ j l ,i2g̃ i j ,l !. ~2k!

This system is first-order in time and second-order in space, thus it is of second order overa
show how System II can be handled in order to be turned into a well-posed form. First, we r
the system to a straightforward first order form, and subsequently we densitize the laps
combine the constraints into the evolution equations.

A. System II reduced to first-order form

We define a set of 12 additional variables

Vi jk[g̃ i j ,k2 3
5g̃k~ i g̃ j )n,sg̃

ns1 1
5g̃ i j g̃kn,sg̃

ns, ~3a!

which is trace free in all its indices, namely,Vi jk g̃ i j 50 andVi jk g̃ jk5Vi jk g̃ ik50, and another se
of 3 additional variables,

Qi[f ,i . ~3b!

Evolution equations for these new variables are obtained by taking a time derivative of~3! and
commuting time and spatial derivatives in the resulting right-hand sides. The complete sys
equations is now

d

dt
f52

1

6
aK, ~4a!

d

dt
g̃ i j 522aÃi j , ~4b!

d

dt
K52g̃ i j DiD ja1aS Ãi j Ã

i j 1
1

3
K2D1

1

2
a~r1S!, ~4c!

d

dt
Ãi j 5e24f~2~DiD ja!TF1a~Ri j

TF2Si j
TF!!1a~KÃi j 22Ãil Ã

l
j !, ~4d!

G̃ i2b l G̃ i
,l522Ãi j a , j12a~G̃ i

jkÃk j2 2
3g̃

i j K , j2g̃ i j Sj16Ãi j Qj !2b l
, j g̃

i j
,l1G̃mb i

,m

1g̃mi
, jb

j
,m12g̃m~ ib j )

,m j1
2
3G̃

ib l
,l1

2
3g̃

i j G̃ l
,l j , ~4e!

V̇i jk2b lVi jk ,l522aÃi j ,k1 6
5ag̃k~ i Ã j )m,ng̃mn2 2

5ag̃ i j Ãkm,ng̃mn1b l
,kVi j l 1b l

,iVl jk

1b l
, jVilk22a ,kÃi j ~4f!

1 6
5g̃k~ i Ã j )

n a ,n1 6
5aÃk~ i G̃ j )2

2
5aÃi j G̃k ~4g!

1g̃ l ~ ib
l
, j )k2 3

5 b l
,l ~ j g̃ i )k1 1

5 g̃ i j b
l
,lk ~4h!

2b l
,nsg̃

ns~ 3
5 g̃k~ i g̃ j ) l2

1
5 g̃ i j g̃kl! ~4i!
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1~2aÃns1g̃nsbs
,m!~ 3

5 g̃k~ i g̃ j )n,s2
1
5 g̃ i j g̃ks,n!, ~4j!

Q̇i2b lQi ,l52 1
6 aK ,i1b l

,iQl2
1
6 a ,iK, ~4k!

where, as before,Ri j
TF5Ri j 2

1
3g

i j gklRkl , with Ri j 5R̃i j 1Ri j
f , and

Ri j
f522D̃ iQj22g̃ i j g̃

klD̃kQl14QiQj24g̃ i j g̃
klQkQl , ~5a!

R̃i j 52 1
2 Vi jk ,

k1 7
10 g̃k~ i G̃

k
, j )1

1
10 g̃ i j G̃

k,k2 3
10 ~ G̃kVk~ i j !1G̃~ iVj )k

k1 9
10 G̃ i G̃ j !

2 1
5 ~Vi jk G̃k1g̃ i j G̃

kVkm
m2 1

10 g̃ i j G̃
kG̃k)1G̃kG̃~ i j !k12G̃kl

~ i G̃ j )kl1G̃k
il G̃k j

l , ~5b!

G̃k
i j 5Vk

~ i j !2
1
2 Vi j

k2 1
5 d~ i

k G̃ j )1
2
5 g̃ i j G̃

k, ~5c!

and indices are raised and lowered withg̃ i j andg̃ i j , respectively. The derivatives of the formg̃ i j ,k

that appear in the right-hand sides of~4! must be interpreted simply as shorthands for combi

tions of the fieldsG̃ i andVi jk , via

g̃ i j ,k5Vi jk1 3
5 g̃k~ i G̃ j )2

1
5 g̃ i j G̃k . ~6!

For this first-order system to be equivalent to the Einstein equations~in the sense that its set o
solutions in the same as that of the Einstein equations!, the following sets of constraints must b
imposed on the initial data~and are subsequently preserved by the evolution, as will be show
the next section!:

H5g i j Ri j 2Ãi j Ã
i j 1 2

3K
222r, ~7a!

Pi5g̃ j l Dl Ãi j 2
2
3DiK14QlÃ

l
i2Si , ~7b!

Gi5G̃ i1g̃ i j
, j , ~7c!

Qi5Qi2f ,i , ~7d!

Vi jk5Vi jk2g̃ i j ,k1 3
5g̃k~ i g̃ j )n,sg̃

ns2 1
5g̃ i j g̃kn,sg̃

ns, ~7e!

where

g i j Ri j 5e24f~G̃ l , l28D̃ lQl2QlQl2
1
2Vi jl V

i j l 2 15
10G̃

kVkm
m2 1

5V
m

mkG̃
k ~7f!

2
21

100
G̃kG̃k1G̃kG̃m

mk12G̃klmG̃mkl1G̃mklG̃mkl). ~7g!

Constraints~7a! and~7b! are the Hamiltonian and momentum constants of the 311 decomposition
of the Einstein equations, written in our choice of variables. Constraints~7c!, ~7d!, and~7e! arise
in turning the original second-order system into first order.

In ~4! and~7!, the derivativeDl is the covariant derivative with respect tog i j , and is related
to D̃ l by undifferentiated terms,

Gk
i j 5G̃k

i j 12~Qid j
k1Qjd i

k2Ql g̃
klg̃ i j !. ~8!
                                                                                                                



imilar
n,

e
of

he set

r we

to

didate

5148 J. Math. Phys., Vol. 40, No. 10, October 1999 S. Frittelli and O. Reula

                    
B. Taking advantage of the available freedom

In this section we take advantage of two facts that have been used successfully in s
problems.5,7,17 First, we densitize the lapsea ~and in doing so we introduce a free functio
referred to as ‘‘slicing density’’ in Ref. 18!,

a5e4afs. ~9!

Like the shift vectorb i , the lapse densitys will be considered arbitrary but fixed, a sourc
function independent of the dynamical fields. Herea is a numerical parameter, not a function
the point.

Second, the evolution equations can be combined with the constraints without altering t
of solutions. We add the scalar constraint with a factorba to the evolution equation forK and we

add the vector constraint to the evolution equations forG̃ i and Qi , with factors ofca and da,
respectively. Hereb,c,dare numerical parameters, not functions of the point. In this manne
obtain a system of the form

u̇5A i~u!¹ iu1B~u!. ~10!

A system of this form is known to be well posed if the matrix-valued vectorA i(u) admits a
symmetrizer, namely, a positive definite, symmetric, bilinear formH, in the space of the fieldsu,
whose product withA i(u) yields a symmetric-bilinear-form-valued vector. Thus, in order
determine well-posedness, it suffices to consider the principal part of the system.

In this case, the principal terms are

ḟ5b lf ,l , ~11a!

g8 i j 5b l g̃ i j ,l , ~11b!

K̇5b lK ,l2a~4a18b!e24fg̃klQk,l1abe24fG̃ l
,l , ~11c!

Ȧ̃i j 5b l Ãi j ,l1e24fa~2 1
2g̃

klVi jk ,l1
7

10~ g̃k~ i G̃
k
, j )2

1
3g̃ i j G̃

k
,k!!22~2a11!e24fa~Q~ i , j !

2 1
3g̃ i j g̃

klQk,l !, ~11d!

Ġ̃ i5b l G̃ i
,l1acÃil

,l2
2
3~c12!ag̃ i l K ,l , ~11e!

V̇i jk5b lVi jk ,l22aÃi j ,k1 6
5ag̃k~ i Ã j )m,ng̃mn2 2

5ag̃ i j Ãkm,ng̃mn, ~11f!

Q̇i5b lQi ,l2
a

6
~114d!K ,i1dag̃ j l Ãi j ,l . ~11g!

Our aim is to show that there exist choices of the numerical factorsa,b,c,dsuch that the system
~11! is symmetrizable, therefore, well posed. We established this result by defining a can
symmetrizerH given as

ũHu5f21d ikd j l g̃ i j g̃kl1n1
2e24fK21Ãi j Ãi j 1n2

2e24fG̃ i G̃ i1
e24f

4
Vi jkVi jk1n3

2e24fQiQi ,

~12!

where n1 , n2 , n3 are any fixed real numbers different from zero and bounded, so thatC21I
<H<CI , whereC is a positive constant andI is the identity operator on the space ofu.

We can easily arrange the values ofa,b,c,dso that symmetry ofHAi(u) is attained. To this
effect, they must satisfy
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7
105n2

2c, ~13a!

22~2a11!5n3
2d, ~13b!

2~4a18b!n1
252 1

6~114d!n3
2, ~13c!

n1
2b52 2

3n2
2~c12!. ~13d!

There is clearly plenty of freedom in the choice ofa,b,c,d, since any choice that results i
nonvanishingn1 ,n2 ,n3 is allowed. The freedom is thus parametrized by the values ofn1

2, n2
2, n3

2,
since these can take independent positive values. Thus our four parametersa,b,c,dare not all
independent, but there is a relationship between them that reduces the freedom to 3 inde
parameters. We can solve~13! for a,b,c,din terms ofn1 , n2 , n3 , which yields

a5
9/518n2

21n3
2/8

~3n1
212!

, ~14a!

b52
2

3n1
2 S 7

10
12n2

2D , ~14b!

c5
7

10n2
2 , ~14c!

d52
2

n3
2 S 2

9/518n2
21n3

2/8

~3n1
212!

11D . ~14d!

It is clear from~14! thata andc will take only strictly positive values, andb andd will take only
strictly negative values, for all real values ofn1 , n2 , n3 different from zero.

C. Structure of characteristics

The system~11! is of the form

Aa
]u

]xa 50. ~15!

The characteristic covectors are covectorsja5(j i ,2v) such thatj ij jg
i j 51 and such that

det~Aaja!50. ~16!

The values ofv that satisfy ~16! for every directionj i are the characteristic speeds in th
direction. In order to find these values we set up an eigenvalue problem for the principal s
Aaja and find the null eigenvectors. The eigenvalue problem is

najaf50, ~17a!

najag̃ i j 50, ~17b!

najaK52~4a18b!e24fjkQk1be24fj l G̃
l , ~17c!

najaÃi j 5e24f~2 1
2j

kVi jk1 7
10~ g̃k~ ij j )G̃

k2 1
3g̃ i j jkG̃

k!!22~2a11!e24f~j~ jQi )2
1
3g̃ i j j

kQk!,
~17d!
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najaG̃ i5cj l Ã
i l 2 2

3~c12!j iK, ~17e!

najaVi jk522jkÃi j 1
6
5g̃k~ i Ã j )mjm2 2

5g̃ i j j
mÃkm , ~17f!

najaQi52 1
6~114d!j iK1dj j Ãi j , ~17g!

wherena5(1,2b i)a21 is the normal to the slice. Clearly,naja50 allows for 18 eigenvectors
This is because~17e!, ~17f!, and ~17g! in this case constitute an overdetermined system of
homogeneous equations for 6 unknowns (Ãi j ,K), with zero as the only solution, whereas~17c!
and~17d! constitute a system of 6 equations for 18 variables, which leaves out 12 of the 18

(Vi jk ,G̃ i ,Q) free. Lastly,~17a! and ~17b! leave the 6 variables (g̃ i j ,f) free. If we represent the
eigenvectors in the form,

~ g̃ i j ,f,Qi ,G̃~L !,G̃ i
~T! ,Vi j

~L ! ,Vi jk
~T! ,K,Ã~LL !,Ãi

~LT! ,Ãi j
~TT!!, ~18!

where G̃ (L)
ªG̃ ij i , G̃ i

(T)
ªG̃ i2e24fj i G̃

kjk , Vi j
(L)

ªVi jkjk, Vi jk
(T)

ªVi jk2e24fjkVi j l j
l , Ã(LL)

ªÃi j j ij j , Ãi
(LT)

ªÃi j j
j2e24fj i Ã

kljkj l , Ãi j
(TT)

ªÃi j 22e24fj ( i Ã j ) lj
l1e28fj ij j Ã

kljkj l , then
we have 5 eigenvectors corresponding to the five components of the conformal metric,

~ g̃ i j ,0,0,0,0,0,0,0,0,0!; ~19a!

we have the determinant as an eigenfield,

~0,f,0,0,0,0,0,0,0,0!; ~19b!

we have 7 eigenvectors corresponding to the seven transverse components ofVi jk ,

~0,0,0,0,0,0,Vi jk
~T!,0,0,0!; ~19c!

we have 3 eigenvectors corresponding essentially to the three components ofQi ,

S 0,0,Qi ,
4a18b

b
j iQi ,0,22~2a11!j~ iQj )2

1

3
g̃ i j S 7~4a18b!

10b
22~2a11! DQlj

l ,0,0,0,0D ;

~19d!

and we have 2 eigenvectors corresponding essentially to the two components of the transve

of G̃ i ,

~0,0,0,0,G̃ i
~T! , 7

10 j~ i G̃ j )
~T!,0,0,0,0!. ~19e!

If najaÞ0, theng̃ i j 5f50, and we can solve~17e!, ~17f!, and~17g! for (Vi jk ,G̃ i ,Q) in terms of

ja and (Ãi j ,K). We can substitute (Vi jk ,G̃ i ,Q) into ~17c! and ~17d!, obtaining thus a system o
6 equations for the 6 variables~Ãi j ,K) as follows:

05Ke4f~~naja!22 1
6~4a18b!~114d!1 2

3b~c12!!1j•Ã•j~~4a18b!d2bc!, ~20a!

05Ãi j e
4f~12~naja!2!2

K

3 S 7

5
~c12!2~2a11!~114d! D S j ij j2

1

3
e4fg̃ i j D

1S 7c

10
2

3

5
22d~2a11! D S j l Ãl ~ ij j )2

1

3
g̃ i j j•Ã•j D , ~20b!

where we have used the notation
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j•Ã•jªj i Ã
i j j j . ~21!

If 1 2(naja)250, thenK5j•Ã•j50 by ~20a!, which impliesj l Ãl i 50 by ~20b!. However, two
of the five components ofÃi j are thus free, which means that there are 4 eigenvectors, essen
labeled by the transverse components ofÃi j . We have 2 eigenvectors fornaja51,

~0,0,0,0,0,22Ãi j
~TT!,0,0,0,0,Ãi j

~TT!!; ~22a!

and 2 eigenvectors fornaja521,

~0,0,0,0,0,2Ãi j
~TT!,0,0,0,0,Ãi j

~TT!!. ~22b!

If 1 2(naja)2Þ0, then contracting~20b! with j i yields

05e4fj l Ãl j S 11
1

2 S 7c

10
2

3

5
22d~2a11! D2~naja!2D2

2

9
e4fKj j S 7

5
~c12!2~2a11!~114d! D

1
1

6
j•Ã•jj j S 7

10
c2

3

5
22d~2a11! D . ~23!

Thus, if 11 1
2(7c/1023/522d(2a11))2(naja)250, thenK5j•Ã•j50 by ~20a!, which im-

plies that~23! is identically satisfied, thus three out of the five equations~20b! are identities, the
remaining two determining two components ofÃi j . Thus two of the five components ofÃi j are
free, which means that there are 4 eigenvectors, essentially labeled by the two longitu
transverse components of Ãi j . We have 2 eigenvectors for naja

5A(3/527c/1022d(2a11))/2, namely,

S 0,0,
d

C1
Ãi

~LT!,0,
c

C1
Ãi

~LT! ,2
4

5C1
j~ i Ã j )

~LT! ,
6

5C1
(g̃k~ i Ã j )

~LT!2jkj~ i Ã j )
~LT!

2
1

3
g̃ i j Ãk

~LT!),0,0,Ãi
~LT!,0D , ~24a!

and 2 eigenvectors fornaja52A(3/527c/1022d(2a11))/2, namely,

S 0,0,2
d

C1
Ãi

~LT!,0,2
c

C1
Ãi

~LT! ,
4

5C1
j~ i Ã j )

~LT! ,2
6

5C1
(g̃k~ i Ã j )

~LT!2jkj~ i Ã j )
~LT!

2
1

3
g̃ i j Ãk

~LT!),0,0,Ãi
~LT!,0D , ~24b!

where we have used the shorthand notation

C1ªA~3/527c/1022d~2a11!!/2. ~25!

But if 11 1
2(7c/1023/522d(2a11))2(naja)2Þ0, thenj l Ãl j is determined by the values o

K andj•Ã•j by ~23!, and if plugged back into~20b! it follows that all the components ofÃi j are
determined byK and j•Ã•j. Therefore it is necessary thatK and j•Ã•j be nonvanishing.
Contracting~23! with j j we obtain

052 2
9e

4fK~ 7
5~c12!2~2a11!~114d!!1j•Ã•j~11 2

3~
7

10c2 3
522~2a11!d!2~naja!2!.

~26!
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Equations~20a! and ~26! form a system of two homogeneous equations forK andj•Ã•j. Thus,
for K andj•Ã•j to be nonvanishing, it is necessary that the determinant of the system be
The determinant is

1
45~23~naja!212a!~15~naja!229110bc280bd120d27c!. ~27!

It can be seen that, becausea andc are strictly positive andb andd are strictly negative, the fou
roots of the determinant are real. For the rootsnaja of the determinant, we have

K5
9

2

12~naja!21
2

3 S 7c

10
2

3

5
22d~2a11! D

7

5
~c12!2~2a11!~114d!

e24fj•Ã•j, ~28a!

Qi5S d2
3~114d!

4

12~naja!21
2

3 S 7c

10
2

3

5
22d~2a11! D

7

5
~c12!2~2a11!~114d)

D e24f

naja
j ij•Ã•j, ~28b!

G̃~L !5S c23~c12!

12~naja!21
2

3 S 7c

10
2

3

5
22d~2a11! D

7

5
~c12!2~2a11!~114d)

D j•Ã•j

naja
, ~28c!

G̃ i
~T!50, ~28d!

Vi j
~L !52

9

5naja
S e24fj ij j2

1

3
g̃ i j D j•Ã•j, ~28e!

Vi jk
~T!52

6

5naja
~j ij j2g̃k~ ij j )!e

24fj•Ã•j, ~28f!

Ãi
~LT!50, ~28g!

Ãi j
~TT!5

e24f

2
~e24fj ij j2g̃ i j !j•Ã•j. ~28h!

These are clearly four distinct eigenvectors, since there are four distinct values ofnaja given by
the roots of the determinant~27!. These can be thought as being labeled, essentially, byK or j

•Ã•j indistinctly, or we can associate one characteristic speed toK and the other one toj•Ã
•j, as we prefer to do below.

Summarizing, we have characteristic speeds obtained from the following distinct valu
naja :

~a! naja50, timelike, with eigenfields~essentially! g̃ i j , f, Qi , G̃ (T), Vi jk
(T) .

~b! naja51, null, with eigenfields~essentially! Ãi j
(TT) .

~c! naja5(11 1
2(7c/1023/522d(2a11)))1/2[C1 , with eigenfields~essentially! Ãi

(TL) .
~d! naja5(2a/3)1/2[C2 , with eigenfield~essentially! K.
~e! naja5(3/522bc/3116bd/324d/317c/15)1/2[C3 , with eigenfield~essentially! Ã(LL).
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In the expressions for the characteristic speeds~c!, ~d!, and ~e!, the parametersa,b,c,dare
given in terms ofn1 , n2 , n3 via ~14!. These speeds may be superluminal or causal, dependin
the values ofn1 , n2 , n3 . We can choosen1 , n2 , n3 so thatC1 , C2 andC3 are all equal to 1. This
is achieved by setting

n1
25

4

15

280n2
21491400n2

4

60n2
2249

, ~29a!

n3
25

6400n2
2

60n2
2249

, ~29b!

for any value ofn2
2 greater than 49/60. This means that there is a one-parameter fam

well-posed conformally-decomposed systems with ‘‘physical’’ characteristics. From the anal
point of view, there does not appear to exist an argument for singling out a preferred valuen2 .
It is likely that a preferred value ofn2 will be dictated by optimal numerical behavior. Th
expressions fora,b,c,din terms ofn2 , with n1 andn3 as above~29!, are as follows:

a5
3

2
, ~30a!

b52
60n2

2249

4~7120n2
2!

, ~30b!

c5
7

10n2
2 , ~30c!

d52
60n2

2249

800n2
2 . ~30d!

D. Propagation of the constraints

The propagation of the constraints can be calculated by taking a time derivative of eac
of the constraint expressions, and subsequently using the evolution equations~11! to eliminate the
time derivative of the fields in the right-hand side in favor of spatial derivatives, which recom
to yield back the constraints. We obtain

Ḣ5b lH,l1~c28d!ae24fg̃klPk,l1¯ , ~31a!

Ṗi5b lPi ,l1
a

6
~124b!H,i2

a

2
e24f S g̃ j l S g̃krVi jk ,rl 2

7

10
g̃ imGm

, j l D1
1

10
Gm

,miD
22a~2a11!e24fg̃ j l Q@ i ,l # j1¯ , ~31b!

Ġi5b lGi
,l1¯ , ~31c!

Q̇i5b lQi ,l1¯ , ~31d!

V̇i jk5b lVi jk ,l1¯ , ~31e!

where¯ denotes undifferentiated terms proportional to the constraints themselves. To analy
constraint propagation we proceed to turn~31! into first order by defining several sets of variabl
which represent all the spatial derivatives ofVi jk , Gi , andQi ,
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Wi j 5Vi jk ,
k2 1

5G~ i , j !1
1

15g̃ i j Gk
,k , ~32a!

Xi jkl 5Vi jk ,l2
1
3g̃klVi jm,

m, ~32b!

Ui j 5Q@ i , j # , ~32c!

Zi j 5Q~ i , j ! , ~32d!

Ti j 5G@ i , j # , ~32e!

Ji j 5G~ i , j !1
30
7 AQ~ i , j ! , ~32f!

whereA is a constant which will be fixed shortly. Calculating the time derivative of these
obtain the resulting first-order system of evolution of the constraints,

Ḣ5b lH, l1a~c28d!e24fPl ,
l1¯ , ~33a!

Ṗi5b lPi ,l1
a

6
~124b!H, i2

a

2
e24fWi l ,

l22a~2a11!e24fUi l ,
l2Aae24fZi l ,

l1
7a

30
e24fJi l ,

l

1
11a

30
e24fTi l ,

l1¯ , ~33b!

Ẇi j 5b lWi j ,l2
ca

5
P~ i , j !1

ca

15
g̃ i j Pl ,

l1¯ , ~33c!

Ẋi jkl 5bmXi jkl ,m1¯ , ~33d!

U̇i j 5b lUi j ,l1adP@ i , j #1¯ , ~33e!

Żi j 5b lZi j ,l1adP~ i , j !1¯ , ~33f!

Ṫi j 5b lTi j ,l1acP@ i , j #1¯ , ~33g!

J̇i j 5b lJi j ,l1aS c1
30

7
AdDP~ i , j !1¯ , ~33h!

Ġi5b lGi
, j1¯ , ~33i!

Q̇i5b lQi ,l1¯ , ~33j!

V̇i jk5b lVi jk ,l1¯ . ~33k!

For this system there is a symmetrizer given by

ūHcu5e4f
~124b!

6~c28d!
H21PiPi1e24f

5

2c
Wi j Wi j 1Xi jkl X i jkl 2e24f

2~2a11!

d
Ui j U i j

2e24f
A

d
Zi j Zi j 1e24f

11

30c
Ti j T i j 1e24f

7/30

c1Ad30/7
Ji j Ji j 1GiGi1QiQi1Vi jkV i jk .

~34!
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Taking A5 7
60(2c/d), HC is positive definite because, under the conditions~14!, all the factors

accompanying the squares of the fields are strictly positive. This shows that no additional r
tions on the ranges of the parametersa,b,c,dare necessary in order to have well posed constr
evolution.

III. CONCLUSION

We have derived a 3-parameter family of well posed versions of the conformally-decom
311 equations, perhaps amenable to successful numerical integration. One might object th
is no need for it in view of the results in Ref. 11, but we can argue rather strongly that these r
may prove helpful in pinning-down the main cause of numerical instabilities. This well p
version requires the lapse to be proportional to the determinant of the intrinsic geometry
surfaces, and requires combinations of the constraints with the evolution equations. The
densitys and the shift vectorb i are arbitrary nondynamical variables, which means that they m
be specified as free source functions. This well posed version uses the same variables
original system~except for the addition of the first spatial derivatives of the densitized 3-me
referred to as ‘‘conformal metric’’ by the authors Ref. 11!. In addition, this well-posed version o
the original equations propagates the constraints in a stable manner, which is relevant to
strained evolution. We think that this is the least invasive way to turn the original conform
decomposed system into a well posed one. In practice, a choice of the numerical parametn1 ,
n2 , n3 must be made. The characteristic speeds depend on this choice.

Optimal choices of the parametersn1 , n2 , n3 for numerical evolution are those that ensu
that the characteristics are all either null or timelike. With such a choice, the formulation wou
suited to evolve blackhole space–times outside the event horizon. Among these choices
been suggested19 that the preferred one would be the one for which the characteristics ar
‘‘physical,’’ namely, either null or normal to the slices. We have shown that such a choi
possible for an arbitraryn2.A49/60.

The systems obtained in this work are not contained in our previous work.5,7 The choice of
variables in Refs. 5,7 is inadequate for decomposing the trace and trace free part of the e
curvature, as well as for extracting the determinant of the 3-metric. This is clear from the fac
in that work, the available parametersa andb are not allowed to take the value21/3 without the
argument breaking down.

The systems obtained here differ significantly from the system obtained in Ref. 15 by
sidering the trace of the extrinsic curvatureK and the determinant of the intrinsic metric~and its
derivatives! as dynamical variables on equal footing with the rest, rather than as free s
functions. Furthermore, we have obtained a 3-parameter family of systems, one system fo
appropriate choice ofn1 , n2 , n3 , whereas in Ref. 15 there is only one system which preserves

trace conditions. Additionally, we have separated the divergence of the intrinsic metricG̃ i from the
divergence-free part of the metric. This decomposition keeps up with the spirit of Ref. 11.

We have found that in obtaining these well-posed formulations the lapse must be propo
to some power of the determinant of the intrinsic metric, since the parametera cannot take the
value 0. This is similar to our findings in Refs. 2,5,7, as well as other notable cases.6,20,21,18In our
present case this is remarkable, since we have used quite general energy norms.
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The effective s-model of multidimensional gravity
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The properties of the effectives-model forD-dimensional Einstein gravity based
on multidimensional geometries is analyzed. Besides pure geometry additional
minimally coupled scalars and (p12)-forms are considered which yield an ex-
tended target space after reduction to the effectiveD0-dimensional geometry. The
target space is always a homogeneous space. Exact solutions exist provided an
orthobrane condition is satisfied which geometrically makes the target space a
locally symmetric one. New solutions with scalar fields are found which may
inflate not only in time-like but in also in additional spatial directions of the effec-
tive geometry. Static spherically symmetric solutions with a particular configura-
tion of intersecting electric and magnetic branes are investigated both, for the
orthobrane case and for degenerated charges. In both casesTH depends critically on
the intersection dimension of the branes. Finally, the role of the Einstein frame for
4-geometries is addressed, and the physical frame transformation for cosmological
geometries is given. ©1999 American Institute of Physics.
@S0022-2488~99!03408-8#

I. INTRODUCTION

Historically s-models have turned out to be a very powerful tool in many areas of physic
gravity the importance was soon realized1 in the context of solution generating techniques.2 More
recently,s-models have been also discussed in the context of string theory.3–5

The purpose of this paper is to clarify the geometric structure of the effectives-model for
multidimensional Einstein geometry and to demonstrate its applicability in such different d
tions as cosmology,~extended! string theory, and quantization of certain higher-dimensional g
metric actions.

In fact it turns out to be a very powerful tool which, on one side, allows to test the geom
content of string and M-theory down to their concrete physical imprints in the physical space
and, on the other side, prepares a well-defined class of classical higher-dimensional geome
the canonical quantization program in dimensionD0<4 whenever this is applicable to pur
Einstein gravity itself. In principle all cases with infinite number of degrees of freedom in dim
sionD054 which can be canonically quantized have some analogous cases where addition
dimensions add only a finite number of degrees of freedom without disturbing the integrabi
the problem. These cases include of course also recently investigated midisupe
4-geometries. In the case of spherical symmetries, and more particular in the static case, o
find particular solutions to a classical system of the multidimensional Einstein action with s
and antisymmetricp12-form fields which are multidimensional extensions of black hole so
tions. It turns out that the standard surface gravity and the Hawking temperatureTH as calculated
from a Komar-like integral depend sensitively on the intersection dimension of thep-branes
involved in the solution. This provides, at least in principle, an observational window to
direct geometrical properties of possible extra dimensions. Apart from that, the multidimen

a!Electronic mail: rainer@phys.psu.edu
51570022-2488/99/40(10)/5157/27/$15.00 © 1999 American Institute of Physics
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s-model contains all kinds of multidimensional spatially homogeneous cosmological mode
degenerate minisuperspace cases with a finite number of degrees of freedom only.

Below, the effectiveD0-dimensionals-model is derived from a multidimensional action
Einstein type in a higher dimensionD, first for pure geometry, then with additional scalar a
antisymmetricp12-form matter fields. The domains of thep11-form potentials of the antisym
metric p12-forms are the world-sheets ofp-branes. In extended string and M-theory6–8 strings
are generalized to membranes as higher-dimensional objects. Most of these unified mod
modeled initially on a higher-dimensional space-time manifold, say of dimensionD.4, which
then undergoes some scheme of spontaneous compactification.

The geometric structure of the target-space is clarified. In particular it is shown that i
always a homogeneous space. It is furthermore locally symmetric if and only if the charact
target-space vectors satisfy a particular orthogonality condition, called theorthobrane relation
whenever they are not identical. In any case, it turns out possible to express thegeneralexact
solutions in terms of elementary functions, provided the input parameters of the model s
them, whence the target space is locally symmetric.

Solutions of the corresponding field equations are discussed generally and with co
examples. Particular solutions for the subcases with Ricci flat internal spaces with scalar
only, and with intersectingp-branes are presented. In the subcase of spherically symmetric
tions the relation to particles and blackp-branes is given. Although a priori one might admit a
possible types of components ofF-fields compatible with spherical symmetry, namely, electr
magnetic and quasiscalar ones, we concentrate on true electric and magnetic type field
these are the ones which admit black hole solutions.

Besides the orthobrane solutions which by now became popular in string theory, the
further families of solutions, which have another additional symmetry, e.g., coincidingF-field
charges for the electromagnetic solutions. In target space this additional symmetry is expres
a linear relation between certain column vectors of the coupling matrix. In this case the or
orthobrane conditions reduce to some weaker set of orthogonality conditions.

In the case of static, spherical symmetric solutions it is demonstrated that the formal Ha
temperatureTH ~as it might appear to an observer at infinity! depends sensitively on the interse
tion dimension of thep-branes. Hence solutions to the multidimensionals-model allow to detect
possible imprints from extra-dimensional internal factor spaces within the physical dime
D054. The black hole solutions depend on 3 integration constants, related to the electr
magnetic, and the mass charge. It is also shown that the Hawking temperature of such
holes depends on the intersection dimensiondint of the correspondingp-branes. In an extrema
limit of the charges, the black hole temperature turns out to converge to zero fordint50, to a finite
limit for dint51, and to infinity fordint.1.

Finally it is shown how the geometries of well-known solutions in a Brans–Dicke frame
be transformed to the physically relevant Einstein frame.

II. PURE MULTIDIMENSIONAL GRAVITY

For the purpose of this paper let a (C`-! multidimensional~MD! manifoldN be topologically
just defined by aC`-fiber bundle

M�N→M̄0 ~2.1!

with a direct product

Mª3 i 51
n Mi ~2.2!

of internal C` factor spacesMi , i 51,...,n, as a standard fiber, and a distinguishedC` base
manifold M̄0 . ~Later, for considerations of dynamics and cosmology we will set in partic
M̄0ªR3M0 , and for the connection representation of Einstein gravityD0ª4 will be required.!
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The MD manifoldN is called internally homogeneousif there exists a direct product grou
Gª^ i 50

n Gi with a direct product realizationtª^ i 50
n t i on Diff( M )ª^ i 50

n Diff( Mi) such that
for i 50,...,n the realization

t i :Gi→Diff ~Mi ! ~2.3!

yields a transitive action oft i(Gi) on Mi .
Definition: A (C`) Riemannian manifold (M ,g) ~of arbitrary signature! is a C` manifold M

equipped with a symmetric bilinearC` sectiong:M→T2
0M called metric. Unless specified oth

erwise the metricg will always be assumed to be nondegenerate. h

Definition: Given a Riemannian manifold (M ,g), a diffeomorphismxPDiff( M ) is called an
isometryof (M ,g) whenever it leavesg invariant, i.e., whenever

gx(p)5gp ;pPM . ~2.4!

The very fact that a given diffeomorphismxPDiff( M ) may be an isometry on some metr
but not on another one is the reason why the action of Diff(M ) is not free on the space Met(M )
of C`-metrics onM, whence Geom(M )ªMet(M )/Diff( M ) is in general not a manifold.

Definition: A Riemannian manifold (M ,g) is called homogeneous, wheneverM is homoge-
neous with a corresponding groupG having a transitive realizationt(G),Diff( M ) which leaves
g invariant, i.e.,

gx(p)5gp ;pPM ;xPt~G!. ~2.5!
h

Now for i 50,...,n, let each factor spaceMi be equipped with a smooth homogeneous metricg( i ),
rendering it into a homogeneous Riemannian manifold. Furthermore, letM̄0 be equipped with an
arbitraryC`-metric ḡ(0), and letḡ andb i , i 51,...,n be smooth scalar fields onM̄0 .

Then, under any projection pr:N→M̄0 a pullback of e2ḡḡ(0) from xPM̄0 to z
Ppr21$x%,M , consistent with the fiber bundle~2.1! and the homogeneity of internal spaces,
given by

g(z)ªe2ḡ(x)ḡ(x)
(0)

% i 51
n e2b i (x)g( i ). ~2.6!

The functionḡ fixes agaugefor the ~Weyl! conformal frameon M̄0, corresponding just to a
particular choice of geometrical variables.

ḡ uniquely defines the form of the effectiveD0-dimensional theory. For exampleḡª0 de-
fines the Brans–Dicke frame.

Let us now consider a multidimensional manifoldN ~2.1! of dimensionD5D01( i 50
n di ,

equipped with a~pseudo! Riemannian metric~2.6! where

g( i )[gmini
~yi !dyi

mi ^ dyi
ni , ~2.7!

areR-homogeneous Riemannian metrics onMi ~i.e., the Ricci scalarR@g( i )#[Ri is a constant on
Mi), in coordinatesyi

ni , ni51,...,di , and

x°ḡ(0)~x!5ḡmn
(0)~x!dxm

^ dxn ~2.8!

yielding a general, not necessarilyR-homogeneous,~pseudo! Riemannian metric onM̄0 .
With ~2.6! is a multidimensional generalization of the warped product of Ref. 9, nameN

5M̄03aM , whereaªeb is now avector-valuedroot warping function, given by
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bªS b0

A

bn

D . ~2.9!

Below sometimes, in particular for physical application to the Diff(M̄0)-invariant case withD0

54, we will assume thei 50 geometry to be empty and omit corresponding empty contribut
to tensors, summations, etc. For later convenience we also define

«~ I !ª)
i PI

« i , s0ª(
i 50

n

dib i , s1ª(
i 51

n

dib i , s~ I !ª(
i PI

dib i , ~2.10!

where« iªsign(ug( i )u) and Mi,M for i 50,...,n are all homogeneous factor spaces. Here
below, we use the shorthanduguªudet(gMN)u, uḡ(0)uªudet(ḡmn

(0))u, and analogously for all othe
metrics includingg( i ), i 51,...,n.

Further, aḡ(0)-covariant derivative of a given functiona w.r.t. xm is denoted bya ;m , its
partial derivative also bya ,m , and (]a)(]b)ªḡ(0)mna ,mb ,n .

On M̄0 , the Laplace–Beltrami operator

D@ ḡ(0)#5
1

Auḡ(0)u

]

]xm SAuḡ(0)uḡ(0)mn
]

]xnD
transforms under the conformal mapḡ(0)°e2ḡḡ(0) according to

D@e2ḡḡ(0)#5e22ḡD@ ḡ(0)#2e22ḡḡ(0)mn~G@e2ḡḡ(0)#2G@ ḡ(0)# !mn
l

]

]xl

5e22ḡS D@ ḡ(0)#1~D022!g(0)mn
]ḡ

]xm

]

]xnD , ~2.11!

whereG denotes the Levi-Civita connection.
The Levi-Civita connectionG corresponding to~2.6! doesnot decompose multidimensionally

and neither does the Riemann tensor. The latter is a section inT3
1M which is not given as a

pullback toM̄0 of a section in the direct sum% i 51
n T3

1Mi of corresponding tensor bundles over t
factor manifolds.

However, with~2.6! the Ricci tensor decomposes again multidimensionally:

Ric@g#5Ric(0)@g(0),ḡ;f# % i 51
n Ric( i )@g(0),ḡ;g( i ),f#, ~2.12!

where

Ricmn
(0)
ªRmn@g(0)#1gmn

(0)H 2D@g(0)#ḡ1~22D0!~]ḡ !22]ḡ(
j 51

n

dj]f j J
1~22D0!~ ḡ ;mn2ḡ ,mḡ ,n!2(

i 51

n

di~f ;mn
i 2f ,m

i ḡ ,n2f ,n
i ḡ ,m1f ,m

i f ,n
i !,

Ricmini

( i )
ªRmini

@g( i )#2e2f i22ḡgmini

( i ) H D@g(0)#f i1~]f i !F ~D022!]ḡ1(
j 51

n

dj]f j G J , i 51,...,n,

~2.13!
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The corresponding Ricci curvature scalar reads

R@g#5e22ḡR@ ḡ(0)#1(
i 51

n

e22b i
R@g( i )#2e22ḡḡ(0)mnS ~D022!~D021!

]ḡ

]xm

]ḡ

]xn

1 (
i , j 51

n

~did i j 1didj !
]b i

]xm

]b j

]xn
12~D022!(

i 51

n

di

]ḡ

]xm

]b i

]xnD
22e22ḡD@ ḡ(0)#S ~D021!ḡ1(

i 51

n

dib
i D . ~2.14!

Let us now set

f [ f @ ḡ,b#ª~D022!ḡ1(
j 51

n

djb
j , ~2.15!

whereb is the vector field with the dilatonic scalar fieldsb i as components.~Note thatf can be
resolved forḡ[ḡ@ f ,b# if and only if D0Þ2. The singular caseD052 is discussed in Ref. 10.!
Then,~2.14! can also be written as

R@g#2e22ḡR@ ḡ(0)#2(
i 51

n

e22b i
Ri

52e22ḡH (
i 51

n

di~]b i !21~] f !21~D022!~]ḡ !212D@ ḡ(0)#~ f 1ḡ !J
52e22ḡH (

i 51

n

di~]b i !21~D022!~]ḡ !22~] f !]~ f 12ḡ !1RBJ , ~2.16!

RBª
1

Auḡ(0)u
e2 f]m@2efAuḡ(0)uḡ(0)mn]n~ f 1ḡ !#, ~2.17!

where the last term will yield just a boundary contribution~2.22! to the action~2.21! below.
Let us assume allMi , i 51,...,n, to be connected and oriented. The Riemann–Lebes

volume form onMi is denoted by

t iªvol~g( i )!5Aug( i )~yi !udyi
1`¯`dyi

di , ~2.18!

and the total internal space volume by

mª)
i 51

n

m i , m iªE
Mi

t i5E
Mi

vol~g( i )!. ~2.19!

If all of the spacesMi , i 51,...,n are compact, then the volumesm i andm are finite, and so are
also the numbersr i5*Mi

vol(g( i ))R@g( i )#. However, a non-compactMi might have infinite vol-
ume m i or infinite r i . Nevertheless, by theR-homogeneity ofg( i ) ~in particular satisfied for
Einstein spaces!, the ratiosr i /m i5R@g( i )#, i 51,...,n, are just finite constants. In any case, t
D-dimensional coupling constantk can be tuned such that, under the dimensional reduc
pr:M→M̄0 ,

k0ªk•m2
1
2 ~2.20!
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becomes theD0-dimensional physical coupling constant. IfD054, thenk0
258pGN , whereGN is

the Newton constant. The limitk→` for m→` is in particular harmless, ifD-dimensional gravity
is given purely by curvature geometry, without additional matter fields. If, however, this geom
is coupled with finite strength to additional~matter! fields, one should indeed better take care
have all internal spacesMi , i 51,...,n compact. Often this can be achieved by factorizing with
appropriate finite symmetry group.

With the total dimensionD, k2 a D-dimensional gravitational constant we consider a pur
gravitational action of the form

S5
1

2k2EN
dDzAugu$R@g#%1SGHY . ~2.21!

Here a~generalized! Gibbons–Hawking–York11,12 type boundary contributionSGHY to the action
is taken to cancel boundary terms. Equations~2.16! and~2.16! show thatSGHY should be taken in
the form

SGHYª
1

2k2EN
dDzAugu$e22ḡRB%5

1

k0
2EM̄0

dD0x
]

]xl S efAuḡ(0)uḡ(0)ln
]

]xn
~ f 1ḡ !D , ~2.22!

which is just a pure boundary term in form of an effectiveD0-dimensional flow through]M̄0 .
After dimensional reduction the action~2.21! reads

S5
1

2k0
2EM̄0

dD0xAuḡ(0)uef H R@ ḡ(0)#1~] f !~]@ f 12ḡ # !

2(
i 51

n

di~]b i !22~D022!~]ḡ !21e2ḡF(
i 51

n

e22b i
Ri G J , ~2.23!

whereef is a dilatonic scalar field coupling to theD0-dimensional geometry onM̄0 .
According to the considerations above, due to the conformal reparametrization invaria

the geometry onM̄0 , we should fix a conformal frame onM̄0 . But then in~2.23! ḡ, and with
~2.15! also f, is no longer independent from the vector fieldb, but rather

ḡ[ḡ@b#, f [ f @b#. ~2.24!

Then, modulo the conformal factoref , the dilatonic kinetic term of~2.23! takes the form

~] f !~]@ f 12ḡ # !2(
i 51

n

di~]b i !22~D022!~]ḡ !252Gi j ~]b i !~]b j !, ~2.25!

with Gi j [
(ḡ)Gi j , where

(ḡ)Gi jª
(BD)Gi j 2~D022!~D021!

]ḡ

]b i

]ḡ

]b j
22~D021!d( i

]ḡ

]b j )
, ~2.26!

(BD)Gi jªd i j di2didj . ~2.27!

For D0Þ2, we can write equivalentlyGi j [
( f )Gi j , where

( f )Gi jª
(E)Gi j 2

D021

D022

] f

]b i

] f

]b j
, ~2.28!
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(E)Gi jªd i j di1
didj

D022
. ~2.29!

For D051, Gi j 5
(E)Gi j 5

(BD)Gi j is independent ofḡ andf. Note that the metrics~2.27! and~2.29!
~with D0Þ2) may be diagonalized to (7(6)d1D0)d1id i j respectively, by homogeneous line

minisuperspace coordinate transformationsb°
T

z andb°
Q

w, explicitly given by components

z1
ª

(BD)q21(
j 51

n

djb
j , w1

ª

(E)q21(
j 51

n

djb
j ,

zi[w i
ª@di 21 /S i 21S i #

1/2(
j 5 i

n

dj~b j2b i 21!, ~2.30!

i 52,...,n, where withD8ªD2D0 andSkª( i 5k
n di ,

(BD)qªA D8

D821
, (E)qªAD8~D022!

D81D022
. ~2.31!

So, after fixing a conformal reparametrization gauge for the geometry onM0 , ~2.21! becomes a
s-model, where the vector fieldb ~or z resp.w) defines the coordinates of itsn-dimensional target
space. In the following, we will simplify notation by a summation convention for tensors
target space.

In general, forn.2 and nonconstant functionalg@b#, the minisuperspace metric given b
~2.25! and the conformally related target space metric may not even be conformally flat. How
for constantḡ, ~2.26! reduces to~2.27!, whence target space is conformally flat, namely it
related ton-dimensional Minkowski space by a conformal scale factor

w[w~b!ª)
l 51

n

edlb
l
5e

(BD)qz1
5e

(E)qw1
, ~2.32!

which is proportional to the total internal space volume.
In the caseD0Þ2, for nonconstant functionalf @b#, the target space may again in general n

be conformally flat forn.2. However, for constantf, ~2.28! reduces to~2.29!, whence, target
space is a flatn-dimensional space, namely an Euclidean one forD0.2, and a Minkowskian one
for D051.

After gaugingḡ, settingmªk0
22, ~2.23! yields as-model in the form

(ḡ)S5E
M̄0

dD0xAuḡ(0)u(ḡ)ND0 w~b!H m

2
(ḡ)N22@R@ ḡ(0)#2 (ḡ)Gi j ~]b i !~]b j !#2 (BD)V~b!J ,

~2.33!

where (BD)V~b!ªmF2
1

2 (
i 51

n

R@g( i )#e22b iG , ~2.34!

(ḡ)Nªeḡ. ~2.35!

Note that, the potential~2.34! and the conformal factorf(b)ª) i 51
n edib

i
are gauge invariant.

Analogously, thes-model action from~2.23! gaugingf can also be written as
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( f )S5E
M̄0

dD0xAuḡ(0)u( f )ND0 H m

2
( f )N22@R@ ḡ(0)#2 ( f )Gi j ~]b i !~]b j !#2 (E)V~b!J , ~2.36!

(E)V~b!ªmV2F2
1

2 (
i 51

n

R@g( i )#e22b iG , ~2.37!

( f )Nªe
f

D022, ~2.38!

where the functionV on M̄0 is defined as

Vªw
1

22D0. ~2.39!

Note that, withV also the potential~2.37! is gauge invariant, and the dilatonic target-spa
though not even conformally flat in general, is flat for constantf.

In fact, Eqs.~2.33!–~2.35! and ~2.36!–~2.38! show that there are at least two special fram

The first one corresponds to the gaugeḡ5
!

0. In this case(ḡ)N51, the minisuperspace metri
~2.26! reduces to the Minkowskian~2.27!, the dilatonic scalar field becomes proportional to t
internal space volume,ef [b]5w(b)5) i 51

n edib
i
, and~2.33! describes a generalizeds-model with

conformally Minkowskian target space. The Minkowskian signature implies a negative sign
dilatonic kinetic term. This frame is usually called the Brans–Dicke one, becausew5ef here plays
the role of a Brans–Dicke scalar field.

The second distinguished frame corresponds to the gaugef 5
!

0, where ḡ5@1/(2
2D0)#( i 51

n dib
i is well defined only forD0Þ2. In this case( f )N51, the minisuperspace metri

~2.28! reduces to the Euclidean~2.29!, and ~2.36! describes a self-gravitatings-model with Eu-
clidean target space. Hence all dilatonic kinetic terms have positive signs. This frame is u
called the Einstein one, because it describes an effectiveD0-dimensional Einstein theory with
additional minimally coupled scalar fields. For multidimensional geometries withD052 the Ein-
stein frame fails to exist, which reflects the well-known fact that two-dimensional Einstein e
tions are trivially satisfied without implying any dynamics.

For D051, the action of both~2.33! and~2.36! was shown in Ref. 13~and previously in Refs.
14 and 15! to take the form of a classical particle motion on minisuperspace, whence diff
frames correspond are just related by a time reparametrization. More generally, forD0Þ2 and

(M̄0 ,ḡ(0)) avacuum space-time, thes-model~2.36! with the gaugef 5
!

0 describes the dynamic
of a massive (D021)-brane within a potential~2.37! on its target minisuperspace.

In fact, the target space is in general a conformally homogeneous space, and in the E
frame a homogeneous one. Once its isometry groupG and isotropy groupH are known, it is clear
that the sigma model~2.36! can also be written in matrix form

( f )S5E
M̄0

dD0xAuḡ(0)uND0~M! H m

2
N22~M!@R@ ḡ(0)#1g(0)mnBTr r~]mM]nM 21!#

2 (E)U~M!J , ~2.40!

with MPr(G) wherer is an appropriate coset representation of the target spaceMªG/H,(E)U
is now the corresponding potential onM, N a gauge function onM, andB a normalization.

For D054, Eq. ~2.40! can also be written in the Einstein frame as

(E)S5E
M̄0

H m

2
@Tr V`* S1BTr rdM`* dM 21#2 (E)U~M!* 1J , ~2.41!
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whereV is the curvature 2-form,Sªe`e and ḡ(0) are given by theD0-dimensional soldering
1-form e, and the Hodge star is taken w.r.t. (M̄ ,g(0)). The form ~2.41! is a then a convenien
starting point for the canonical quantization procedure.

In the purely gravitational model consider so farM is a finite dimensional and homogeneo
with a transitive Abelian group. In the following section let us add minimally coupled scalar
p12-form matter fields and investigate the extension of the resulting target spaceM.

III. s-MODEL WITH MINIMALLY COUPLED SCALARS AND p 12-FORMS

We now couple the purely gravitational action~2.21! to additional matter fields of scalar an
generalized Maxwell type, i.e. we consider now the action

2k2@S@g,f,Fa#2SGHY#5E
N
dDzAugu H R@g#2CabgMN]MFa]NFb

2 (
aPD

ha

na!
exp@2la~F!#~Fa!2J ~3.1!

of a self-gravitatings model onM with topological termSGHY . Here thel-dimensional target
space, defined by a vector fieldf with scalar componentsfa, a51,...,l , is coupled to severa
antisymmetricna-form fieldsFa via 1-formsla , aPD. For consistency, we have to demand
course that all fields are internally homogeneous. We will see below how this gives rise
effectivel 1uDu-dimensional target-space extension. Note also that for convenience here we
with fields f andF which differ from the actual~physical! matter fields by a rescaling with th
square root of the coupling constant.

With I ,$1,...,n%, the generalized Maxwell fieldsFa are located on (na21)-dimensional
world sheets

MIª)
i PI

M i5Mi 1
3¯3Mi k

, ~3.2!

na215D~ I !ª(
i PI

di5di 1
1¯1di k

~3.3!

of different (na22)2branes, labeled for eacha by the setsI in a certain subsetVa of the power
set of$1,...,n%. Variation of ~3.1! yields the field equations

RMN2 1
2 gMNR5TMN , ~3.4!

CabD@g#fb2 (
aPD

hala
a

na!
e2la(f)~Fa!250, ~3.5!

¹M1
@g#~e2la(f)Fa,M1M2...Mna!50, ~3.6!

aPD, a51,...,l .
In ~3.4! the D-dimensional energy-momentum resulting from~3.1! is given by a sum

TMNª (
a51

l

TMN@fa,g#1ha (
aPD

e2la(f)TMN@Fa,g#, ~3.7!

of contributions from scalar and generalized Maxwell fields,
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TMN@fa,g#ªCab]Mfa]Nfa2 1
2gMN]Pfa]Pfa, ~3.8!

TMN@Fa,g#ª
1

na! F2
1

2
gMN~Fa!21naFMM2...Mna

a Fa
N

M2...MnaG . ~3.9!

We give now a sufficient criterion for the energy-momentum tensor~3.7! to decompose multidi-
mensionally.

Let W1ª$ i u i .0, di51% be the label set of 1-dimensional factor spaces of the multidim
sional decomposition, and setn1ªuW1u. Define

W~a; i , j !ª$~ I ,J!uI ,JPVa ,~ I ùJ!ø$ i %5I {” j ,~ I ùJ!ø$ j %5J{” i % ~3.10!

Then the following holds.
Theorem. If for n1.1 thep-branes satisfy the condition for allaPD, i , j PW1 with iÞ j , the

condition

W~a; i , j !5
!

B;aPD; i , j PW1 , ~3.11!

then the energy-momentum~3.7! decomposes multidimensionally without further constraints.
Proof: The only possible obstruction to the multidimensional decomposition of~3.7! comes

from the second term of~3.9!, Fa
MM2...Mna

Fa
N

M2...Mna when the indicesM andN take values in

different index sets labeling different 1-dimensional factor spaces. The theorem then follow
from the antisymmetry of theF-fields. h

Corollary: A sufficient condition for the multidimensional decomposition of~3.7! is

n1<
!

1. ~3.12!

If condition ~3.11! does not hold, multidimensional decomposability of~3.7! may impose
additional nontrivial constraints on thep12-form fields.

Let us now specify the components of theF-fields of generalized electric and magnetic typ
Antisymmetric fields of generalized electric type, are given by scalar potential fieldsFa,I ,

aPD, I PVa , which compose to a ((aPDuVau)-dimensional vector fieldF. Magnetic type fields
are just given as the duals of appropriate electric ones.

Fe,I5dFe,I`t~ I !, ~3.13!

Fm,I5e22la(f)* ~dFm,I`t~J!!. ~3.14!

In the Einstein frame, the action then reduces to

(E)S@g(0),b,f,F#5E
M0

dD0xAug(0)u H m

2 FR@g(0)#2Gi j ~]b i !~]b j !2Cab~]fa!~]fb!

2 (
aPD,I PVa

«a,Ie
2(la(f)2dib

i )~]Fa,I !2G2 (E)V~b!J , ~3.15!

which corresponds to an purely Einsteinians-model on M0 with extended
(n1 l 1(aPDuVau)-dimensional target space and dilatonic potential~2.37!. Here and below we
will consider by default the Einstein frame, and set correspondinglyGi jª

(E)Gi j . In ~3.15! and
below a summation convention is assumed also on the extended target space.

For convenience, let us introduce the topological numbers
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l j Iª2(
i PI

Did j
i , j 51,...,n, ~3.16!

and withNªn1 l define and define aN3uSu-matrix

L5~LAs!5S Lis

Las
DªS l iI

laa
D , ~3.17!

a N-dimensional vector field (sA)ª(b i ,fa), A51,...,n,n11,...,N, composed by dilatonic and
matter scalar fields, and a nondegenerate~block-diagonal! N3N-matrix

Ĝ5~ĜAB!5S Gi j 0

0 Cab
D . ~3.18!

With these definitions,~3.15! takes the form

S05E
M0

dD0xAug(0)u H m

2 FR@g(0)#2ĜAB]sA]sB2(
sPS

«se
2LAss

A
~]Fs!2G2 (E)V~s!J .

~3.19!

IV. SOLUTION WITH ABELIAN TARGET-SPACE

In the this section we consider thes-model~3.15! without theF fields from thep12-forms,
whence the target-space is then1 l -dimensional Abelian one, and present a particularly interes
vacuum solution.

We derive forD0Þ2 an new exact Ricci flat multidimensional solution for the effect

s-model ~3.15! in the harmonic gauge (22D0)ḡ5
!

dib
i with zero potential~2.37! and zeroF.

The field equation then read

Gi j ]mb i]nb j1Cab]mfa]nfb50, m,n50,...,D021, ~4.1!

(E)Gi j D@ ḡ(0)#b j50, i 51,...,n, ~4.2!

CabD@ ḡ(0)#fb50, a51,...,l . ~4.3!

In particular, we now solve these equations with flat (M̄0 ,ḡ(0)). In this case, there exis
g-harmonicM̄0-coordinatestm, m50,...,D021. Let g(0)5e22ḡhmndtmdtn. In such harmonic
coordinates, Eqs.~4.2! and ~4.3! are solved by

b i5bm
i tm1ci , i 51,...,n, ~4.4!

fa5bm
n1atm1cn1a, a51,...,l . ~4.5!

We set

wm
i
ª

]

]tm
w i , m50,...,D021. ~4.6!

With ~4.4!, the harmonic gauge condition reads

Amª
(E)qwm

1 5(
i

dibm
i 5

!

0, m50,...,D021. ~4.7!
                                                                                                                



s

on of
the

o
l

l

5168 J. Math. Phys., Vol. 40, No. 10, October 1999 M. Rainer

                    
With the harmonic gauge constraint~4.7!, Eq. ~4.1! then reads

(
i 52

n

wm
i wn

i 1 (
ab51

l

Cabbm
abn

b5(
i 51

n

dibm
i bn

i 1 (
ab51

l

Cabbm
abn

b5
!

0,

m,n50,...,D021. ~4.8!

For convenience, one can setcA
ª0, A51,...,n1 l . Theng50, whence the harmonic coordinate

are simultaneously proper coordinates, and the solution reads explicitly,

g5hmndtm
^ dtn1(

i 51

n

e2bl
i tl

g( i ), ~4.9!

with linear coefficientsbm
i , i 51,...,n, m50,...,D021, satisfyingD0 linear constraints~4.7! ~the

harmonic gauge! andD0
2 quadratic constraints~4.8! ~the harmonic Wheeler–de Witt constraints!.

This solution shows a generalized inflationary behavior, which extends the familiar noti
inflation w.r.t. time, as in cosmology, to inflation w.r.t. the internal degrees of freedom on
D0-dimensional world manifold of an extended object. The constraint~4.7! implies that the total
(D2D0)-dimensional volume remains constant~like in a steady state universe16! on the world
manifold M0 , although here~unlike the stationary case16! individual factor spaces may underg
inflationary expansion or contraction in particular directions onM0 . In the standard cosmologica
caseD051, this solution agrees with the one described in Ref. 17.

V. ORTHOBRANE SOLUTIONS WITH „E…V50

Now we present a class of solutions with(E)V50, where the field equations read

Rmn@g(0)#5ĜAB]msA]nsB1(
sPS

«se
2LAss

A
]mFs]nFs, m,n51,...,D0 , ~5.1!

ĜABD@g(0)#sB2(
sPS

«sLAse
2LCss

C
~]Fs!250, A51,...,N, ~5.2!

]m~Aug(0)ug(0)mne2LAss
A
]nFs!50, sPS. ~5.3!

For the Abelian part of the target space metric we set (ĜAB)ª(ĜAB)21.

^X,Y&ªXAĜABXB . ~5.4!

For sPS let us now consider vectors

Ls5~LAs!PRN. ~5.5!

Definition.A non-empty setS is called anorthobraneindex set, iff there exists a family of rea
nonzero coefficients$ns%sPS , such that

^Ls ,Lr&5~LTĜ21L !sr52«s~ns!
22dsr , s,r PS. ~5.6!

For sPS andA51,...,N, we set

as
A
ª2«s~ns!

2ĜABLBs . ~5.7!
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Here,~5.6! is just an orthogonality condition for the vectorsLs , sPS. Note that̂ Ls ,Ls& has just
the opposite sign of«s , sPS. With the definition above, we obtain an existence criterion
solutions.

Theorem: Let S be an orthobrane index set with coefficients~5.7!. If for any sPS there is a
function Hs.0 on M0 such that

D@g(0)#Hs50, ~5.8!

i.e., Hs is harmonic onM0 , then, the field configuration

Rmn@g(0)#50, m,n51,...,D0 , ~5.9!

sA5(
sPS

as
AlnHs , A51,...,N, ~5.10!

Fs5
ns

Hs
, sPS, ~5.11!

satisfies the field equations~5.1!–~5.3!. h

This theorem follows just from substitution of~5.6!–~5.11! into the equations of motion~5.1!–
~5.3!. From ~3.18!, ~3.17!, and~5.4! we get

^Ls ,Lr&5Gi j l iI l jJ1Cablaalbb , ~5.12!

with s5(a,I ) and r 5(b,J) in S (a,bPD, I PVa , JPVb). Here, the inverse of the dilatoni
midisuperspace metricGi j is given by

Gi j 5
d i j

Di
1

1

22D
, ~5.13!

whence, forI ,JPV, with topological numbersl iI from ~3.16!, we obtain

Gi j l iI l jJ5D~ I ùJ!1
D~ I !D~J!

22D
, ~5.14!

which is again a purely topological number.
We setna,Iªn (a,I ) . Then, due to~5.12! and ~5.14!, the orthobrane condition~5.6! reads

D~ I ùJ!1
D~ I !D~J!

22D
1Cablaalbb52«~ I !~na,I !

22dabd I ,J , ~5.15!

for a,bPD, I PVa , I PVb . With (a,I )5sPS, the coefficients~5.7! are

as
i 52«~ I !Gi j l j I na,I

2 5«~ I !S (
j PI

d j
i 1

D~ I !

22D D na,I
2 , i 51,...,n, ~5.16!

as
b52«~ I !Cbglgana,I

2 , b51,...,l . ~5.17!

With (sA)5(f i ,wb), according to~5.10!,

b i5(
sPS

as
i lnHs , i 51,...,n, ~5.18!
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fb5(
sPS

as
blnHs , b51,...,l , ~5.19!

and the harmonic gauge reads

g5(
sPS

as
0lnHs , ~5.20!

where

as
0
ª«~ I !

D~ I !

22D
na,I

2 . ~5.21!

With Ha,IªH (a,I ) , ~5.16!, ~5.17!, and~5.21!, the solution of~5.9!–~5.11! reads

g5S )
sPS

H
s

2as
0Dg(0)1(

i 51

n S )
sPS

H
s

2as
i Dg( i )

5S )
(a,I )PS

H
a,I
«(I )2D(I )na,I

2 D 1/(22D)H g(0)1(
i 51

n S )
(a,I )PS,I { i

H
a,I
«(I )2na,I

2 Dg( i )J ,

with Ric@g(0)#50, Ric@g( i )#50, i 51,...n, ~5.22!

fb5(
sPS

as
blnHs52 (

(a,I )PS
«~ I !Cbglgana,I

2 lnHa,I , b51,...,l , ~5.23!

Aa5 (
I PVa

na,I

Ha,I
t I , aPD, ~5.24!

where formst I are defined in~2.18!, parametersnsÞ0 andla satisfy the orthobrane conditio
~5.15!, Hs are positive harmonic functions onM0 , and Ric@g( i )# denotes the Ricci-tensor ofg( i ).
Finally recall that these solutions are subject to theorthobraneconstraints

D~ I ùJ!1
D~ I !D~J!

22D
1Cablaalbb52«~ I !~na,I !

22dabd I ,J , 0Þna,IPR, ~5.25!

for a,bPD, I PVa , I PVb . These condition lead to specific intersection rules for thep-branes
involved. Some concrete examples oforthobranesolutions have been elaborated in Ref. 18.

For positive definite (Cab) @or (Cab)] and D0>2, ~5.25! implies

«~ I !521, ~5.26!

for all I PVa , aPD. Then, the restrictionguMI
of the metric~5.22! to a membrane manifoldMI

has an odd number of negative eigenvalues, i.e., linearly independent timelike directions.
ever, if the metric (Cab) in the space of scalar fields is not positive definite, then~5.26! may be
violated for sufficiently negativeCablaalbb,0.

VI. TARGET SPACE STRUCTURE

Theorem. The target space (M,g) is a homogeneous space.
Proof. The Killing vectors of a transitive subgroup of Isom(M) can be determined explicitly

Vsª
]

]Fs
, sPS,
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UAª
]

]xA
2(

sPS
UA

s Fs
]

]Fs
, A51,...,N. ~6.1!

Moreover, the Lie-algebra of the transitive group of isometries generated by~6.1! reads

@U,U#5@V,V#50

@UA ,Vs#5LA
s Vs , A51,...,N, sPS. ~6.2!

Theorem: The target space (M,g) is locally symmetric if and only if̂ Ls,Lr&Ĝ(Ls2Lr)
50.

Proof: Let Riem denote the Riemann tensor of (M,g). The latter is locally symmetric, if and
only if

¹Riem50, ~6.3!

where¹ denotes the covariant derivative w.r.tg. However, the only nontrivial equations~6.3! are

¹pRsrqA5kpsrq̂ Ls,Lr&Ĝ~LA
r 2LA

s !50, A51,...,N, p,q,r ,sPS ~6.4!

with kpsrqª«s« re
2Us12Ur

(dpsd rq1dprdsq) nonzero for fixeds,r .

VII. SCALAR PLUS p-BRANES WITH SPHERICAL SYMMETRY

Let us now examine static, spherically symmetric, multidimensional space-times with

M5M 213M03M13•••3MN , dimMi5di ,i 50,...,N, ~7.1!

whereM 21,R corresponds to a radial coordinateu, M05S2 is a 2-sphere,M1,R is time, and
Mi ,i .1 are internal factor spaces. The metric is assumed correspondingly to be

ds25e2a(u)du21(
i 50

N

e2b i (u)dsi
2[2e2g(u)dt21e2a(u)du21e2b0(u)dV21(

i 52

N

e2b i (u)dsi
2 ,

~7.2!

whereds0
2[dV25du1sin2u df2 is the line element onS2, ds1

2[2dt2 with b15:g, anddsi
2 ,

i .1, areu-independent line elements of internal Ricci-flat spaces of arbitrary dimensionsdi and
signatures« i .

For simplicity here let us only consider a single scalar field denoted asw.
An electric-typep12-form FeI has a domain given by a product manifold

MI5Mi 1
3•••3Mi k

, ~7.3!

where

I 5$ i 1 ,...,i k%,I 05
def

$0,1,...,N%. ~7.4!

The corresponding dimensions are

d~ I !5
def

(
i PI

di , d~ I 0!5D21. ~7.5!

A magnetic-typeF-form of arbitrary rankk may be defined as a form on a domainM Ī with

Ī 5
def

I 02I , dual to an electric-type form,
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FmI , M1¯Mk
5e22lw~* F !eI , M1¯Mk

[e22lw
Ag

k!
«M1¯MkN1¯ND2k

FeI
N1¯ND2k , ~7.6!

where* is the Hodge operator and« is the totally antisymmetric Levi–Civita symbol.
For simplicity we now considering a just a singlen-form, i.e., a single electric type and

single dual magnetic component, whence

rankFmI5D2rankFeI5d~ Ī !, ~7.7!

whencek5n in ~7.6! and

d~ I !5n21 for FeI , d~ I !5d~ I 0!2n5D2n21 for FmI . ~7.8!

All fields must be compatible with spherical symmetry and staticity. Correspondingly
vectorw of scalars and thep12-forms valued fields depend~besides on their domain as forms! on
the radial variableu only.

Furthermore, the domain of the electric formFeI does not include the sphereM05S2, andFeI

is specified by au-dependent potential form,

FeI , uL2¯Ln
5] [uUL2¯Ln] , U5UL2 ,...,Ln

dxL2`¯`dxLn. ~7.9!

Since the time manifoldM1 is a factor space ofMI , the form~7.9! describes an electric (n
22)-brane in the remaining subspace ofMI . Similarly ~7.6! describes a magneti
(D2n22)-brane inMI .

Let us label all nontrivial components ofF by a collective indexs5(I s ,xs), where I
5I s,I 0 characterizes the subspace ofM as described above andxs561 according to the rule

e°xs511, m°xs521. ~7.10!

If 1 PI , the correspondingp-brane evolves witht and we have a true electric or magnetic fie
otherwise the potential~7.9! does not depend onM̄0 , i.e., it is just a scalar in four dimensions. I
this case we call the corresponding electric-typeF component~7.9! electric quasiscalarand its
dual, magnetic-type,F component~7.6! magnetic quasiscalar. So there are in general four types
F-field components~summarized in Table I!: electric~E!, magnetic~M!, electric quasiscalar~EQ!,
magnetic quasiscalar~MQ!. The choice of subsetsI s is only constrained by the multidimension
decomposition condition 3.11 for the energy-momentum tensor. Since antisymmetricp12-form
field components of type E and M~and type EQ and MQ, respectively! just complement each
other, they should be considered as independent of each other. In the following we consideFs

as independent fields~up to index permutations! each with a single nonzero component.
Let us assume Ricci-flat internal spaces. With spherical symmetry and staticity all fiel

come independent ofM0 andM0 , respectively. And the variation reduces further fromM̄0 to the
radial manifoldM 21 .

The reparametrization gauge on the lower dimensional manifold here is chosen as the~gen-
eralized! harmonic one.13 SinceM 21 is one-dimensionalu is a harmonic coordinate,hu50, such
that

a~u!5s0~u!. ~7.11!

TABLE I. Different types of antisymmetricp12-form fields.

E Electric (1PI ) FtuA3...An
Ak ~coordinate! index of MI

M Magnetic (1PI ) FufB3...Bn
Bl ~coordinate! index of M Ī

EQ Electric quasiscalar
(1¹I )

FuA2...An
Ak ~coordinate! index of MI

MQ Magnetic quasiscalar
(1¹I )

FtufB4...Bn
Bl ~coordinate! index of M Ī
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The nonzero Ricci tensor components are

e2aRt
t52g9,

e2aRu
u52a91a822g8222b822(

i 52

N

dib i8
2,

e2aRu
u5e2aRf

f5e2a22b2b9,

e2aRaj

bi 52daj

bi b i9 ~ i , j 51,...,N!, ~7.12!

where a prime denotesd/du and the indicesai ,bi belong to theith internal factor space. The
Einstein tensor componentG1

1 does not contain second-order derivatives:

e2aG1
152e2a22b1

1

2
a822

1

2 S g8212b821(
i 52

N

dib i8
2D . ~7.13!

The corresponding component of the Einstein equations is an integral of other components,
to the energy integral in cosmology.

The generalized Maxwell equations give

FeI
uM2...Mn5QeIe

22a22lw, QeI5const, ~7.14!

FmI , uM1...Md( Ī )
5QmIAugĪ u, QmI5const, ~7.15!

whereugĪ u is the determinant of theu-independent part of the metric ofM Ī andQs are charges.
These solutions provide then the energy momentum tensors, of the electric and ma
p12-forms written in matrix form,

e2a~TM
N @FeI # !52 1

2hF«~ I !QeI
2 e2yeIdiag~11,@1# I ,@21# Ī !,

e2a~TM
N @FmI # !5 1

2hF«~ Ī !QmI
2 e2ymIdiag~1,@1# I ,@21# Ī !, ~7.16!

where the first position belongs tou and f operating overMJ is denoted by@ f #J . The functions
ys(u) are

ys~u!5s~ I s!2xslw. ~7.17!

The scalar field EMT is

e2aTM
N @w#5 1

2~wa!82diag~11,@21# I 0
!. ~7.18!

The setsI sPI 0 may be classified by types E, M, EQ, MQ according to the description in
preceding section. DenotingI s for the respective types byI E,I M ,I EQ,I MQ , we see from~7.16!
that, positive electric and magnetic energy densities require

h f52«~ I E!5«~ Ī M!5«~ I EQ!52«~ Ī MQ!. ~7.19!

If t is the only time coordinate,~7.19! with hF51 holds for any choices ofI s . If there exist other
times, then the relations~7.19! constrain the subspaces where the differentF components may be
specified.

Since the total EMT on the r.h.s. of the Einstein equations has the property
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Tu
u1Tu

u50, ~7.20!

the corresponding combination on the lhs becomes an integrable Liouville form

Gu
u1Gu

u5e22a@2a91b091e2a22b0#50,

eb02a5s~k,u!, ~7.21!

wherek is an integration constant~IC! and the functions(k,.) is defined as follows:

s~k,u!5
defH k21sinh ku, k.0

u, k50

k21sin ku, k,0.
~7.22!

Another IC is suppressed by adjusting the origin of theu coordinate.
With ~7.21! the D-dimensional line element may be written in the form

ds25
e22s1

s2~k,u!
F du2

s2~k,u!
1dV2G1(

i 51

N

e2b idsi
2 ~7.23!

wheres1 has been defined in~2.10!.
Let us treat the whole set of unknownsb i(u),w(u) as a real-valued vector functionx(u) in an

(N11)-dimensional vector spaceV, with componentsxA5bA for A51,...,N andxN115w.
Then the field equations forb i andw coincide with the equations of motion corresponding

the Lagrangian of a Euclidean Toda-type system

L5ḠABx8Ax8B2VQ~y!, VQ~y!5(
s

usQs
2e2ys, ~7.24!

where, according to~7.19!, us51 if Fs is a true electric or magnetic field andus521 if Fs is
quasiscalar. The nondegenerate, symmetric matrix

~ḠAB!5S Gi j 0

0 1D , Gi j 5didj1did i j ~7.25!

defines a positive-definite metric inV. The energy constraint corresponding to~7.24! is

E5s18
21(

i 51

N

dib8 i
21w821VQ~y!5ḠABx8Ax8B1VQ~y!52k2signk, ~7.26!

with k from ~7.21!. The integral~7.26! follows here from the (uu)-component of~3.4!.
The functions ys(u) ~7.17! can be represented as scalar products inV ~recall that s

5(I s ,xs)):

ys~u!5Ys,AxA, ~Ys,A!5~did i I s
,2xsl!, ~7.27!

whered i Iª( j PId i j is an indicator fori belonging toI ~1 if i PI and 0 otherwise!.
The contravariant components ofYs are found using the matrixḠAB inverse toḠAB :

~ḠAB!5S Gi j 0

0 1D , Gi j 5
d i j

di
2

1

D22
~7.28!
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~Ys
A!5S d i I s

2
d~ I s!

D22
,2xsl D , ~7.29!

and the scalar products of differentYs , whose values are of primary importance for the integ
bility of our system, are

Ys,AYs8
A5d~ I sùI s8!2

d~ I s!d~ I s8!

D22
1xsxs8l

2. ~7.30!

VIII. PURELY EM BLACK HOLE SOLUTIONS

In Ref. 19 it was shown that quasiscalar components of theF-fields are incompatible with
orthobrane black holes. Therefore let us now consider only twoF-field components, Type E an
Type M according to the classification above. They will be electric asFe andFm and the corre-
sponding setsI s,I 0 as I e and I m. Then a minimal configuration~7.1! of the manifoldM com-
patible with an arbitrary choice ofI s has the following form:

N55, I 05$0,1,2,3,4,5%, I e5$1,2,3%, I m5$1,2,4%, ~8.1!

so that

~ I 0!5D21, d~ I e!5n21, d~ I m!5D2n21, d~ I eùI m!511d2 ;

d151, d21d35d31d55n22. ~8.2!

The relations~8.2! show that, givenD andd2 , all di are known.
This corresponds to an electric (n22)-brane located on the subspaceM23M3 and a magnetic

(D2n22)-brane on the subspaceM23M4 . Their intersection dimensiondint5d2 turns out to
determine qualitative properties of the solutions.

The indexs now takes the two values e and m and

Ye,A5~1,d2 ,d3 ,0,0,2l!,

Ym,A5~1,d2 ,0,d4 ,0,l!,

Ye
A5~1,1,1,0,0,2l!2

n21

D22
~1,1,1,1,1,0!,

Ym
A5~1,1,0,1,0,l!2

D2n21

D22
~1,1,1,1,1,0!, ~8.3!

where the last component of each vector refers toxN115x65w.
In the solutions presented below the set of ICs will be reduced by the condition tha

space-time be asymptotically flat at spatial infinity (u50) and by a choice of scales in the releva
directions. Namely, we put

b i~0!505w~0!, i 51,2,3,4,5. ~8.4!

The requirementw(0)50 is convenient and may be always satisfied by a redefinition of
charges. The conditionsb i(0)50 (i .1) mean that the real scales of the extra dimensions
hidden in the internal metricsdsi

2 independent of whether or not they are assumed to be com
In the following, both cases, orthobrane solutions and solutions with degenerate charg

considered first generally and then for the minimal configuration~8.1!–~8.4!.
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A. Orthobrane black hole solutions

Assuming that the vectorsYs are mutually orthogonal with respect to the metricḠAB , i.e.,

Ys,AYs8
A5dss8Ns

2 , ~8.5!

the number of functionsys does not exceed the number of equations, and the system bec
integrable. Due to~7.8!, the normsNs are actuallys-independent:

Ns
25d~ I s!F12

d~ I s!
D22G1l25

~n21!~D2n21!
D22 1l25

def1
n , ~8.6!

n.0.
Due to ~8.5!, the functionsys(u) obey the decoupled equations

ys95us

Qs
2

n
e2ys, ~8.7!

whence

e2ys(u)5H ~ uQsu/An!s~hs ,u1us!, u511,

@ uQsu/~Anhs!#cosh@hs~u1us!#, hs.0, u521.
~8.8!

wherehs and us are ICs and the functions was defined in~7.22!. For the functionsxA(u) we
obtain:

xA~u!5n(
s

Ys
Ays~u!1cAu1 c̄A, ~8.9!

where the vectors of ICscA and c̄A satisfy the orthogonality relationscAYs,A5 c̄AYs,A50, or

cidid i I s
2lcN11xs50, c̄idid i I s

2l c̄N11xs50. ~8.10!

Specifically, the logarithms of the scale factorsb i and the scalar fieldw are

b i~u!5n(
s

Fd i I s
2

d~ I s!

D22Gys~u!1ciu1 c̄i , ~8.11!

w~u!52ln(
s

ys~u!1cN11u1 c̄N11, ~8.12!

and the functions1 which appears in the metric~7.23! is

s152
n

D22 (
s

d~ I s! ys~u!1c0u1 c̄0 ~8.13!

with

c05(
i 51

N

dic
i , c̄05(

i 51

N

di c̄
i . ~8.14!

Finally, ~7.26! now reads
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E5n(
s

hs
2signhs1ḠABcAcB52k2signk. ~8.15!

The relations~7.11!, ~7.14!, ~7.15!, ~7.21!, ~7.23!, ~8.8!–~8.15!, along with the definitions
~7.22! and ~8.6! and the restriction~8.5!, entirely determine the general solution.

For the minimal configuration~8.1!–~8.4!, the orthogonality condition~8.5! reads

l25d2112
1

D22
~n21!~D2n21!. ~8.16!

In particular, in dilaton gravityn52,d250 and the integrability condition~8.16! just readsl2

51/(D22), which is a well-known relation of string gravity. The familiar Reissner-Nordstr¨m
solution,D54,n52, l50, d250 doesnot satisfy Eq.~8.16!. ~It will be recovered indeed as
degenerate case below.! Some examples of configurations satisfying the orthogonality condi
~8.16! in the purely topological casel50 are summarized in Table II@including the values of the
constantsB andC from ~8.28!#. In this case~8.16! is just a Diophantus equation forD, n andd2 .

The solution is entirely determined by inserting~8.3! into ~8.9! with c̄A50 due to~8.4!,

xA~u!5n(
s

Ys
Ays~u!1cAu; e2ys(u)5~ uQsu/An!s~hs ,u1us!. ~8.17!

Due to ~8.16! the parametern is

n51/A11d2. ~8.18!

The constants are connected by the relations

~ uQe,mu/n! s~he,m,ue,m!51;

c11d2c21d3c32lc650; c11d2c21d4c41lc650;

he
2signhe1hm

2 signhm

11d2
1Gi j c

icj1~c6!252k2signk, ~8.19!

where the matrixGi j is given in ~7.25! and all c̄A50 due to the boundary conditions~8.4!. The
fields w andF are given by Eqs.~7.14!, ~7.15!, ~8.12!.

This solution contains 8 nontrivial, independent ICs, namely,Qe,Qm,he,hm and 4 others
from the setcA constrained by~8.19!.

For black holes, we require that allub i u,`, i 52,...,N ~regularity of extra dimensions!, uwu
,` ~regularity of the scalar field! andub0u,` ~finiteness of the spherical radius! asu→`. With
ys(u);2hsu, this leads to the following constraints on the ICs:

cA52k(
s

~d1I s
1nYs

Ahs!, ~8.20!

TABLE II. Orthobrane solutions withl50.

n d(I e) d(I m) d2 B C

D54m12 2m11 2m 2m m21 1/m 1/m
(mPN)
D5 11 4 3 6 1 2/3 1/3

7 6 3 1 1/3 2/3
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whereA51 corresponds toi 51. Via orthonormality relations~8.10! for cA, we obtain

hs5kd1I s
, ~8.21!

cA52kd1
A1kn(

s
d1I s

Ys
A, ~8.22!

and ~8.15! then holds automatically.
Let us now consider the case where~8.21! and~8.22! with d1I s

51 hold. After a transforma-
tion u°R, to isotropic coordinates given by the relation

e22ku5122k/R, ~8.23!

we obtain

ds252
122k/R

Pe
BPm

C
dt21Pe

CPm
B S dR2

122k/R
1R2dV2D1(

i 52

5

e2b i (u)dsi
2 , ~8.24!

e2b25Pe
2BPm

2C, e2b35~Pm/Pe!
B,

e2b45~Pe/Pm!C, e2b55Pe
CPm

B, ~8.25!

e2lw5~Pe/Pm!2l2/(11d2), ~8.26!

F01M3...Mn
52Qe/~R2Pe!, F23M3...Mn

5Qmsinu, ~8.27!

with the notations

Pe,m511pe,m/R, pe,m5Ak21~11d2!Qe,m
2 2k;

B5
2~D2n21!

~D22!~11d2!
, C5

2~n21!

~D22!~11d2!
. ~8.28!

The BH gravitational mass as determined from a comparison of~8.24! with the Schwarzschild
metric for R→` is

GNM5k1 1
2 ~Bpe1Cpm!, ~8.29!

where GN is the Newtonian gravitational constant. This expression, due tok.0, provides a
restriction upon the charge combination for a given mass, namely,

BuQeu1CuQmu,2GNM /A11d2. ~8.30!

The inequality is replaced by equality in the extreme limitk50. For k50 our BH turns into a
naked singularity~at the centerR50) for anyd2.0, while for d250 the zero value ofR is not a
center (g22Þ0) but a horizon. In the latter case, ifuQeu and uQmu are different, the remaining
extra-dimensional scale factors are smooth functions for allR>0.

For a static, spherical BH one can define a Hawking temperatureTHªk/2p as given by the
surface gravityk. With a generalized Komar integral~see e.g., Ref. 20!

M ~r !ª2
1

8pESr
* dj ~8.31!

over the timelike Killing formj, the surface gravity can be evaluated as
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k5M ~r H!/~r H!25~Aug00u!8/Ag11ur 5r H
5eg2aug8u ur 5r H

, ~8.32!

where a prime,a, andg are understood in the sense of the general metric~7.2! and kB is the
Boltzmann constant. The expression~8.32! is invariant with respect to radial coordinate repara
etrization, as is necessary for any quantity having a direct physical meaning. It is also inv
under conformal mappings with a conformal factor which is smooth at the horizon.

Substitutingg00 andg11 from ~8.24!, one obtains

TH5
1

2pkB

1

4k F 4k2

~2k1pe!~2k1pm!G
1/(d211)

. ~8.33!

If d250 and both charges are nonzero, this temperature tends to zero in the extremek
→0; if d251 and both charges are nonzero, it tends to a finite limit, and in all other cases it
to infinity. Remarkably, it is determined by thep-brane intersection dimensiond2 rather than the
whole space-time dimensionD.

B. The solution for Qe
25Qm

2

In this degenerate case, solutions can be found which need not satisfy the orthobrane
tion ~8.5!. Let us suppose that two functions~7.17!, say,y1 andy2 , coincide up to an addition o
a constant~which may be then absorbed by re-defining a chargeQ1 or Q2) while corresponding
vectorsY1 andY2 are neither coinciding, nor orthogonal~otherwise we would have the previous
considered situation!. Substitutingy1[y2 into ~7.27!, one obtains

~Y1,A2Y2,A!xA50. ~8.34!

This is a constraint reducing the number of independent unknownsxA. Furthermore, substituting
~8.34! to the Lagrange equations forxA,

2~Y1,A2Y2,A!x9A5(
s

usQs
2e2ysYs

A~Y1,A2Y2,A!50. ~8.35!

In this sum all coefficients of different functions e2ys must be zero. This yields new orthogonali
conditions

Ys
A~Y1,A2Y2,A!50, sÞ1,2, ~8.36!

now for the differenceY12Y2 and otherYs , and with Eq.~8.6! the relation

~n212Y1
AY2,A!~u1Q1

22u2Q2
2!50. ~8.37!

The first multiplier in~8.37! is positive (ḠAB is positive-definite, hence a scalar product of tw
different vectors with equal norms is smaller than their norm squared!. Therefore

u15u2 , Q1
25Q2

2 . ~8.38!

Imposing the constraints~8.34!, ~8.36!, ~8.38!, reduces the numbers of unknowns and in
gration constants, and simultaneously also reduces the number of restrictions on the input
eters@by the orthogonality conditions~8.5!#. Due to ~8.38!, this is only possible when the two
components with coinciding charges are of equal nature: both must be either true electric/ma
ones (us51), or quasiscalar ones (us521). Correspondingly, we now sety(u)ªye5ym and
Q2

ªQe
25Qm

2 .
For the minimal configuration~8.1!–~8.3!, Eq. ~8.34! yields

d3b32d4b422lw50. ~8.39!
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Equations~8.36! are irrelevant here since we are dealing with two functionsys only. The equa-
tions of motion forxA now take the form

xA95Q2e2y~Ye
A1Ym

A !. ~8.40!

Their proper combination givesy95(11d2)Q2e2y, whence

e2y5A~11d2!Q2s~h,u1u1!, ~8.41!

where the functions is defined in~7.22! andh,u1 are ICs and, due to~8.4!,A(11d2)Q2s(h,u1)
51. Other unknowns are easily determined using~8.40! and ~8.4!:

xA5nYAy1cA; YA5Ye
A1Ym

A5~1,1,0,0,21,0!; ~8.42!

s152ny1c0u.

Here, as in~8.18!, n51/(11d2), but it is now just a notation. The constantsc0 ,h,cA(A
51,...,6) andk @see~7.21!# are related by

2c01(
i 51

5

dic
i50, c11d2c21d3c32lc650, c11d2c21d4c41lc650,

2k2signk5
2h2signh

11d2
~c0!21(

i 51

5

di~ci !21~c6!2. ~8.43!

Extra-dimensional scale factors remain finite asu→umax in the case of a BH. It is specified b
the following values of the ICs:

k5h.0, c35c45c650, c252c552
k

11d2
, c05c152

d2k

11d2
. ~8.44!

The event horizon occurs atu5`. After the same transformation~8.23! the metric takes the form

dsD
2 52

122k/R

~11p/R!2n
dt21~11p/R!2nS dR2

122k/R
1R2dV2D

1~11p/R!22nds2
21ds3

21ds4
21~11p/R!2nds5

2 ~8.45!

with the notation

p5Ak21~11d2!Q22k. ~8.46!

The fieldsw andF are determined by the relations

w[0, F01L3¯Ln
52

Q

R2~11p/R!
, F23L3¯Ln

5Qsinu. ~8.47!

GNM5k1p/~11d2!, ~8.48!

The Hawking temperature can be calculated as before,

T5
1

2pkB

1

4k S 2k

2k1pD 2/(d211)

. ~8.49!
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The well-known results for the Reissner–Nordstro¨m metric are recovered whend250. In this case
T→0 in the extreme limitk→0. Ford251, T tends to a finite limit ask→0 and ford2.1 it tends
to infinity. As is the case with two different charges,T does not depend on the space-tim
dimensionD, but depends on thep-brane intersection dimensiond2 .

IX. THE EINSTEIN FRAME FOR DYNAMICS AND COSMOLOGY

In this final section we discuss the issue of the physical frame for the particularly impo
caseD054. First of all, in this case a selfdual canonical formulation of dynamics is at hand
to the particular spinor decomposition so(1,3)5su(2)% su(2) of the tangent Lorentz symmetry. I
the Einstein frame, the effectives-model withD054 admits in principle a canonical quantizatio
of the geometry onM̄05R3M0 to the same extend and under the same assumptions as
Einstein gravity does.

Since for a multidimensional geometry as defined above the imprint of the internal f
spaces is only by their scale factors, configuration space and phase space of such geomet
only be extended by finite a finite number of dilatonic midisuperspace fields. However, only
Einstein frame the coupling of the dilatonic fields to theD̄0-geometry will be minimal such tha
the quantization of the latter can be executed practically independently.

Let us denote the external space-time metricḡ(0) in the Brans–Dicke frame withḡ5
!

0 as

ḡ(BD) and in the Einstein frame withf 5
!

0 asḡ(E). It can be easily seen that they are connec
with each other by a conformal transformation

ḡ(E)°ḡ(BD)5V2ḡ(E) ~9.1!

with V from ~2.39!.
In particular, also for spatially homogeneous cosmological models~and witht↔u for spheri-

cally symmetric static models! solutions have to be transformed to the Einstein frame befo
physical interpretation can be given.

Under any projection pr0 :M 0̄→R a consistent pullback of the metric2e2g(t)dt ^ dt from
tPR to xPpr0

21$t%,M̄0 is given by

ḡ(BD)~x!ª2e2g(t)dt ^ dt1e2b0(x)g(0). ~9.2!

In particular, for spatially~metrically-!homogeneous cosmological models all scale factorsai

ªeb i
, i 50,...,n, depend only ontPR.

With ~9.2! and ~9.1!, Eq. ~2.6! reads

g52e2g(t)dt ^ dt1a0
2g(0)1(

i 51

n

e2b i
g( i )

52dtBD^ dtBD1aBD
2 g(0)1(

i 51

n

e2b i
g( i )

52V2dtE^ dtE1V2aE
2g(0)1(

i 51

n

e2b i
g( i ), ~9.3!

wherea0ªaBD andaE are the external space scale factor functions depending respectively o
cosmic synchronous timetBD andtE in the Brans–Dicke and Einstein frame. With~2.39! the latter
is related to the former by
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aE5V21aBD5S )
i 51

n

edib
i D

1
D022

aBD , ~9.4!

and the cosmic time of the Einstein frame is given by

6dtE5V21egdt5S )
i 51

n

edib
i D

1
D022

dtBD . ~9.5!

Since aBD
2 (dhBD)25V2aE

2(dhE)2, the conformal times of the Einstein and the Brans–Dic
frame agree~up to time reversal!. This has sometimes guided authors to compare the frame
conformal time~see e.g., Ref. 21!. However~at least for cosmology! the physical relevant time is
the cosmic synchronous time, which is different for different frames, in particular for the Ein
and Brans–Dicke frame.

In Ref. 22 several reasons have been listed why minimal coupling between geometr
matter and hence the Einstein frame is the preferred choice. There also a general prescrip
the transformation of well known solutions from the Brans–Dicke frame to the Einstein fram
been given. It was demonstrated explicitly that qualitative cosmological features change s
cantly under this transformation. This was shown for a couple of examples, including the g
multidimensional Kasner solution and a special inflationary solution with constant interna
ume. In particular it was shown that inflationary solutions in the Brans–Dicke frame trans
into noninflationary ones in the Einstein frame. It is to be expected that this is a rather g
feature, whence the multitude of solutions which appear inflationary in the Brans–Dicke
will be indeed non-inflationary when considered in the Einstein frame.

X. DISCUSSION

The Einstein action with minimally coupled scalars andp-branes in higher dimensionD can
be reduced to an effective model in lower dimensionD0 . This results in a~generalized! s-model
with conformally flat target space. With a purely geometrical dilaton fieldf, it provides a natural
generalization for the well-known Brans–Dicke theory.

The orthobrane condition~5.6! allows us to find exact solutions. Furthermore, the orthobr
solution is a sufficient condition for the target space of thes-model to be a locally symmetric
space. The orthobrane case is the generic one@apart from cases with degenerate coupling ma
~3.17!# where the target space is locally symmetric.

Examples of a certain minimal static, spherically symmetricp-brane configuration are give
with just one electric and one magnetic antisymmetricF component~since in four dimensions we
only deal with a single electromagnetic field!, which in general intersect and interact with a sing
scalar field. Spherical symmetry here is considered in the physical relevantD054 case ofS2

spheres, although the extension to arbitrary spheres is straightforward.
Besides popular families of orthobrane solutions there are further families of solutions, w

have another additional symmetry, e.g., coincidingF-field charges for the electromagnetic sol
tions. In the target space this additional symmetry is expressed by a linear dependency~8.34!
between column vectorsY of the coupling matrixL defined in~3.17!.

For the mentioned static solutions, Hawking temperatureTH can be formally calculated by
surface gravity via a Komar-type integral. For both, the orthobrane case and the case o
chargesQe

25Qm
2 , the expressions ofTH depend characteristically on the intersection dimens

This results are also interesting in the context of recent increased interest in extremalp-brane
configurations with black holes.23

The interpretation of the extremal limitk→0 is delicate. The solutions above have be
described in isotropic coordinates which cover just the asymptotically flat exterior of the
hole. A better understanding of their global causality structure would require an investigat
the maximal extension of the space-time rather than only of its exterior part. The limitk→0 was
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here called extremal, since via~8.29! and~8.48! in this limit the effective asymptotical Schwarzs
child massM is just given by the charges,GNM5 1

2(Bpe1Cpm) andGNM5p/(11d2), respec-
tively. Further work is required to understand this type of extremality, and the related asymp
of TH , which remains finite for intersection dimensiond251 and becomes infinite ford2>2. As
it was pointed out recently in Ref. 24 particular care is needed in order to associate the c
physical charges and thermal properties of a black hole correctly with its horizon.

The multidimensionals-model opens the door for further investigations, in particular also
covariant and canonical quantization. The effectives-model reduction appears as a possible c
to canonical quantization within a large well defined class of higher dimensional geome
namely the multidimensional ones. Covariant quantization techniques can be applied in a
mensionD0 . In particular, they are well applicable to our new solutions with scalar fields o
when the target space is flat. The effective geometry of theD0-dimensional model can be refor
mulated in terms of connections and soldering forms. ForD054, not only a canonical 113 split
can be performed, but moreover the canonical quantization of theD0-geometry can be performe
with self-dual variables in the usual manner.

Finally, in analogy to investigations in Ref. 4, it should be possible to apply solution ge
ating techniques like the Ehlers–Harrison transformation also in the context of the multid
sionals-model.
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Let (P,V) be an irreducible imprimitivity system for a groupH based on a dual
groupÂ of an Abelian groupA and acting on a Hilbert spaceH. GivencPH, we
find necessary and sufficient conditions in order that the set of vectors
$* Â^â,a&Vh

21 dP(â)c : aPA, hPH% be a frame inH. Moreover, we apply these
results to some examples that are considered in the literature in the context of
square-integrability modulo a coset space. ©1999 American Institute of Physics.
@S0022-2488~99!00610-6#

I. INTRODUCTION

It is well known that a large class of continuous frames is defined in terms of sq
integrable representationsU of locally compact groupsG by means of the equation

G{g°UgcPH, ~1!

whereH is the Hilbert space carrying the representationU andc is any nonzero vector belongin
to the domain ofKU

21/2, whereKU is the formal degree ofU. The space labelling the frame is th
groupG endowed with a left invariant Haar measuremG

l . As a consequence of the properties
square-integrable representations,1 the above frames are tight and the frame bound can be c
puted using the orthogonality relation

E
G

^f,Ugc&^f8,Ugc8&dmG
l ~g!5^f,f8&^KU

21/2c8,KU
21/2c&. ~2!

The groups that are semidirect products with an Abelian normal factor, i.e.,G5A38H, are of
particular interest in the applications. For these groups, there is a one-to-one correspo
between the representationsU of G and the imprimitivity systems forH based on the dual grou
Â of A, explicitly given by

Ua5E
Â
^â,a&dP~ â!,

Vh5Uh ,

a!Electronic mail: aniello@ge.infn.it
b!Electronic mail: cassinelli@ge.infn.it
c!Electronic mail: devito@unimo.it
d!Electronic mail: levrero@ge.infn.it
51840022-2488/99/40(10)/5184/19/$15.00 © 1999 American Institute of Physics
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whereaPA andhPH. Moreover, a right invariant Haar measuremG
r for G is simply given by

mG
r 5mA

r
^ mH

r , wheremA
r and mH

r are right invariant Haar measures onA and H, respectively;
hence it is convenient to perform in Eq.~1! the change of variableg°g21 in order to use the
measuremG

r instead ofmG
l . Taking into account these facts Eq.~1! becomes

A3H{~a,h!°S E
Â
^â,a&Vh

21 dP~ â!c D PH, ~3!

and the corresponding frame is labeled by the points of the topological direct productA3H with
the product measuremA

r
^ mH

r .
The structure of the above relation suggests the possibility of defining frames by means

~3! also in the case thatH acts onÂ without preserving the composition law ofÂ.
The need to consider the above classes of frames is due to the fact that there are grouG of

interest in the applications, as the Euclidean group, the Galilei and Poincare´ groups, that are
semidirect products, but do not admit square integrable representations.

In this paper, we consider two locally compact second countable~lcsc! groupsA, H such that
A is Abelian andH acts onÂ, the dual group ofA, and an irreducible imprimitivity system (P,V)
for H based onÂ and acting on a Hilbert spaceH. We assume that the orbits ofH in Â are locally
closed, so that, due to the theorem of Mackey about imprimitivity systems, see, for example
2, there is a one-to-one correspondence between the equivalence classes of irreducible i
tivity systems (P,V) and the couples (X,@m#), whereX is an orbit inÂ and@m# is an equivalence
class of irreducible representations of the stability subgroup at a fixedx0PX. Hence, we can~and
we do! associate the maps defined by Eq.~3! with the couples (X ,@m#) instead of (P,V).

In Sec. III, we prove that the set of vectors given by Eq.~3! is a frame for somecPH if and
only if the Haar measure ofÂ restricted toX is not singular with respect to theH-quasi-invariant
measures onX andm is a square-integrable representation. Moreover we show that these fr
are tight, that their frame bound can be computed by ageneralized orthogonality relationand we
characterize the set of admissible vectors. We stress that, with our assumptions, we have
these last properties since orthogonality relations are not proved to exist for imprimitivity sys
but only for square-integrable representations. In the particular case thatH preserves the group law
of Â ~so that, by duality, it is defined the semidirect productA38H! we obtain the results o
Ref. 3.

In Sec. IV, we restrict ourselves to the case of imprimitivity systems such thatA andH are Lie
groups and the stability subgroupH0 is compact and we consider the sets of vectors of the fo

A3~H/H0!3J{~a,x,i !°S E
Â
^â,a&Vq~x! dP~ â!c i D PH,

whereJ is the set of the firstn numbers with the counting measuremc ~n is the dimension of the
Hilbert space wherem acts! andq is any measurable section from the quotient spaceH/H0 to H.
We prove that, with a suitable choice of the vectorsc i , the above set is a tight frame labeled b
the points of the space (A3H3J) endowed with the measuremA

r
^ mH

r
^ mc .

In the literature there are attempts to define frames by the equation

G/G0{x°Uq~x!cPH , ~4!

whereG0 is a closed subgroup ofG, q is a suitable section from the quotient spaceG/G0 to G and
the frame is labeled by the points ofG/G0 endowed with aG-quasi invariant measure~in this case
U is calledsquare-integrable modulo a coset space!, see Ref. 4 and references therein. Nevert
less, there are no general results on the square-integrable representations modulo a coset s
one has to prove for each representation both the fact that the set given by Eq.~4! is a frame and
that the frame is tight with an equation for computing the frame bound. In the examples we
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in the final section we show that the frames defined by Eq.~4! are particular cases of ou
procedure, so that our results provide a rigorous and general framework to this class of fram
alternative approach to this problem can be found in Ref. 5.

In the following section we introduce the mathematical notations and we give some pre
nary results, as standard reference we use Ref. 2.

II. MATHEMATICAL PRELIMINARIES

Let X be a locally compact second countable Hausdorff topological space. We deno
K(X) the vector space of continuous functions with compact support onX, by B(X) the Borel
s-algebra ofX and byM (X) the Banach space of complex measures onB(X).

By lcsc groupG we mean a locally compact second countable Hausdorff topological gr
We denote bymG a right invariant Haar measure and byDG its modular function.

Let A be an Abelian lcsc group. We denote byÂ the dual group ofA. Let F be the Fourier
transform onM (Â) defined as

~Fn!~a!5E
Â
^x,a&dn~x!, aPA, nPM ~Â!.

The same symbolF denotes the Fourier–Plancherel operator onL2(Â,m Â). We choose the Haa
measure onÂ in such a way thatF is unitary fromL2(Â,m Â) onto L2(A,mA).

Let G be a lcsc group andX be a lcsc continuousG-space. We denote the action ofgPG on
xPX by g@x#, theG-orbit of xPX by G@x# and the stability subgroup ofG at x by Gx .

We recall the following standard results about transitiveG-spaces.
Lemma 1:Let G be a lcsc topological group andX5G@x0# a transitiveG-space.

~1! There exists a regular section based onx0 , i.e., a measurable mapq from X to G such that
q~x0!5e,

q~x!@x0#5x ;xPX
and, for any compact setK in G, the set$q(g@x0#) : gPK% has compact closure inG.

~2! There exists a strongly quasi-invariant measuren on X, i.e., a Radon measuren such that

n~g@E#!5E
E
ln~g,y!dn~y!, gPG, EPB~X!,

whereln is the cocycle ofn, i.e., it is a continuous function fromG3X to ~0, `! satisfying
ln~g1g2,y!5ln~g1,g2@y#!ln~g2,y!, g1,g2PG, yPX,

ln~h,x0!5
DGx0

~h!

DG~h!
, hPGx0

.

~3! Two strongly quasi-invariant measures onX are mutually absolutely continuous and the co
responding density is a continuous positive function.

The following lemma is a particular case of the Mackey–Bruhat formula, which allows u
compute the integrals onG as integrals onG/H3H, whereH is a closed subgroup ofG, see Ref.
3 for an elementary proof based on the fact thatG is a second countable space.

Lemma 2:Let G be a lcsc group,X5G@x0# be a transitiveG-space andGx0
be the stability

subgroup atx0 . Given a strongly quasi-invariant measuren and a regular sectionq based onx0 ,
defineb:X3H→Gx0

as the map

b~x,h!5q~x!h, xPX, hPGx0
.

Then the mapb is an isomorphism of measurable spaces and the image measure of
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1

DG~q~x!!ln~q~x!,x0!
n~x! ^ mGx0

~h!,

under the mapb, is a Haar measure ofG.

By Hilbert spacewe mean a complex separable Hilbert space with scalar product^•,•&, linear
in the first argument. We use the wordrepresentationto mean a continuous unitary representati
of G acting in a Hilbert spaceH. If a representationU is square-integrable, we denote byKU the
correspondingformal degree.

Finally, we recall the notion ofsquare-integrability modulo, a coset space~see Ref. 4 and
references therein!.

Let G be a lcsc group,X a transitiveG-space andU an irreducible representation ofG acting
in a Hilbert spaceH. The representationU is said to besquare-integrable modulo Xif there exist
n nonzero vectors

c1 ,...,cnPH
and a sectionq from X to G such that

G:X3$1,...,n%{~x,i !°Uq~x!c iPH ~5!

is a frame over the space (X3$1,...,n%,m ^ mc), wherem is a strongly quasi-invariant measure o
X andmc the counting measure on$1,...,n%.

III. FRAMES ON A DIRECT PRODUCT

Let H be a lcsc group andA an Abelian lcsc group such thatH acts continuously on the dua
group Â of A. Let M be the direct topological productM5A3H, endowed with the measur
mM5mA^ mH .

Let x0PÂ andX5H@x0# be the corresponding orbit. We assume thatX is locally closed inÂ.
Fix a strongly quasi-invariant measuren on X with cocyclel and a regular sectionq from X to H
based onx0 .

Let m be an irreducible representation of the stability subgroupH0 at x0 . DefinemX as the
restriction of m Â to X ~since X is locally closed,mX is a Radon measure! and (P,V) be the
imprimitivity system based onÂ for the groupH acting inH5L2(X,n,K) as

~PEf!~x!5X~x!EùX~x!f~x!, ~6!

~Uaf!~x!5^x,a&f~x!, ~7!

~Vhf!~x!5~l~h21,x!!1/2m~q~x!21hq~h21@x# !!f~h21@x# !, ~8!

wherexPX, aPA, hPH, EPB(Â), andfPL2(X,n,K).
Let cPH and defineFc as the map

M{~a,h!°Vh21U2acPH,

and, for allfPH, the mapcf,c

M{~a,h!°^f,Vh21U2ac&HPC. ~9!

As in the case of square-integrable representations, we say thatc is an admissible vectorfor
(P,V) if the mapFc is a frame over (M ,mM), i.e., if the following conditions are satisfied:

~1! for all fPH,cf,cPL2(M ,mM);
~2! there exist two positive numbersa andb such that
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aifiH
2 <icf,ciL2~M ,mM !

2
<bifiH

2 , ;fPH,

We are now in position to state the main result of the paper. We give necessary and su
conditions on the imprimitivity system in order that the set of admissible vectors for (P,V) is not
void. Moreover, we show that the corresponding frameFc is tight, i.e.,a5b, and its frame bound
a can be computed by means of a sort oforthogonality relation, as Eq.~2!.

Theorem 1: There iscPH such thatFc is a frame inH over (M ,mM) if and only if n and
mX are not disjoint andm is a square-integrable representation ofH0 .

This theorem is a consequence of the following proposition. Let

n5ns1 f mX ~10!

be the decomposition ofn with respect tomX given by the Lebesgue–Radon–Nikodym theore
wheref is non-negative and measurable. Definedg:X→(0,̀ ) as

g~x!5
f ~x!

DH~q~x!!l~q~x!,x0!
,

the following result holds.
Proposition 1:Let c,fPH, c,fÞ0. The functioncf,c is in L2(M ,mM) if and only if the

following conditions hold:

~a! m is a square-integrable representation ofH0 ~we denote byKm its formal degree!;
~b! c(x)50 for ns-almost allxPX;
~c! c(x)PDomKm

21/2 for n-almost allxPX;
~d! the function

X{x°g~x!iKm
21/2c~x!iK

2

is in L1(X,n).
In this case, we have

icf,ci
L2(G,mG)
2

5ifiH
2 E

X
g~x!iKm

21/2c~x!iK
2 dn~x!. ~11!

Remark 1:We observe that

~1! the measuren defines uniquely the densityf, hence alsog, up to an-negligible set;
~2! the functiong is invariant, up to a positive constant factor and an-negligible set, if we change

n with another quasi-invariant measure;
~3! the condition thatn andmX are not disjoint implies thatmX(X).0.

Proof: Let f, c PH, c,fÞ0. Then, for all (a,h)PM ,

cf,c~a,h!5E
X
^x,a&^~Vhf!~x!,c~x!&K dn~x!5~Fnh!~2a!,

where nh is the canonical extension toÂ of the complex measure onX having
^(Vhf)(x),c(x)&K as density with respect ton. Applying Fubini theorem and taking into accou
that A is unimodular, the condition

cf,cPL2~M ,mM !

is equivalent to the following two conditions.
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~1! For mH -almost allhPH the function

A{a°~Fnh!~a!

is in L2(A,mA);

~2! the function

H{h°E
A
u~Fnh!~a!u2 dmA~a!

is in L1(H,mH).
Using a standard result on Fourier transform~see, for example, Theorem 31.33 of Ref. 6! and

the fact that the Fourier-Plancherel operator is unitary, the two conditions above turn out
equivalent to the following.

~1! For mH almost allhPH, there isl hPL2(Â,m Â) such that

l hm Â5nh .

~2! The function

H{h→E
Â
u l h~x!u2 dm Â~x!

is in L1(H,mH).
Sincenh(Â\X)50, l h50 for m Â-almost anyx¹X and

l h~x!mX5^~Vhf!~x!,c~x!&~ns1 f ~x!mX!.

This last equation shows that the above conditions are in fact equivalent to

~a! For mH-almost allhPH andns-almost allxPX,

^~Vhf!~x!,c~x!&K50,
~b! For mH-almost allhPH the function

X{x°^~Vhf!~x!,c~x!&Kf ~x!

is in L2(X,mX);
~c! the function

H{h°E
X
u^~Vhf!~x!,c~x!&Kf ~x!u2dmX~x!

is in L1(H,mH).

Denoted byP the orthogonal projection on the singular partns , we claim that the first of the
above conditions is equivalent to the fact thatPc50. Indeed, the first condition implies that fo
mH-almost allhPH, for all EPB(Â) and forn-almost allxPX

^~PEVhf!~x!,~Pc!~x!&K50,

hence, by integration overX and taking into account the fact that the maph°Vh is continuous
with respect to the strong operator topology, one has that, for allhPH and for allEPB(Â),

^PEVhf ,Pc&H50.

SincefÞ0 and (P,V) is irreducible, it follows thatPc50. The converse implication is eviden
Taking into account Eq.~10!, one obtains the following conditions:
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~1! Pc50,
~2! for mH-almost allhPH the function

X{x°^~Vhf!~x!,c~x!&KAf ~x!

is in L2(X,n);
~3! the function

H{h°E
X
u^~Vhf!~x!,c~x!&Ku2 f ~x!dn~x!

is in L1(H,mH).
Fixed hPH, performing the change of variablesx→h@x#, these conditions are equivalent

~1! Pc50,
~2! for mH-almost allhPH the function

X{x°u^f~x!,m~q~x!21h21q~h@x# !!c~h@x# !&Ku2f ~h@x# !

is in L1(X,n);
~3! the function

H{h°E
X
u^~f~x!,m~q~x!21h21q~h@x# !!c~h@x# !&Ku2f ~h@x# !dn~x!

is in L1(H,mH).
Again by Fubini theorem and, fixedxPX, performing the change of variablesh°hq(x)21,

the above conditions turn out to be equivalent to

~1! Pc50,
~2! for n-almost allxPX the function

H{h°u^f~x!,m~h21q~h@x0# !!c~h@x0# !&Ku2f ~h@x0# !

is in L1(H,mH);
~3! the function

X{x°E
H

u^f~x!,m~h21q~h@x0# !!c~h@x0# !&Ku2f ~h@x0# !dmH~h!

is in L1(X,n).
Finally, using Lemma 2 to compute the integral in the variableh and Fubini theorem, the las

conditions are equivalent to

~1! Pc50,
~2! for n-almost allx,yPX the function

H0{s°g~y!u^f~x!,m~s21!c~y!&Ku2

is in L1(H0 ,mH0
);

~3! for n-almost allxPX the function

X{y°g~y!E
H0

u^f~x!,m~s21!c~y!&Ku2 dmH0
~s!
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is in L1(X,n);
~4! the function

X{x°E
X
g~y!E

H0

u^f~x!,m~s21!c~y!&Ku2dmH0
~s!dn~y!

is in L1(X,n).
The equivalence of these last four conditions to the ones contained in the statement

proposition is now consequence of the properties of the formal degree operator, see Theore
Ref. 1. Equation~11! follows from Fubini theorem. h

Proof of theorem:‘‘only if’’: By definition of frame, there arec,fPH, c,fÞ0, such that
cf,cPL2(M ,mM). Applying Proposition 1, one has thatc(x)50 ns-almost allxPX and m is
square-integrable. The first condition and the fact thatcÞ0 imply that the measuresn andmX are
not disjoint.

‘‘If’’: Since the measuresn andmX are not disjoint, there is a setCPB(X) such that

n~C!.0,

ns~C!50,

f ~x!.0 ;xPC.

Sincen is a regular measure, we can always assume thatC is compact. Moreover, due to the fa
that m is square-integrable, there isvPK, vÞ0, such thatvPDomKm

21/2. Definec: X→K as

f~x!5H v

Af ~x!
xPC

0 x¹C

.

Obviously cPH, cÞ0. Taking into account that (DG(q(x))ln(q(x),x0))21 is bounded on the
compact sets and the definition ofg, one has that the four conditions of Proposition 1 are satis
for all fPH, fÞ0. Hence,cf,c is in L2(M ,mM) for all fPH. h

Corollary 1: With the notations of Theorem 1, there iscPH such thatFc is a frame inH
over (M ,mM) if and only if there arec,fPH,c, fÞ0, such thatcf,c is in L2(M ,mM).

The admissible vectorsc are the ones satisfying

cÞ0,

c~x!50, ns almost all xPX,

E
X
g~x!iKm

21/2c~x!iK
2 dn~x!,`,

and the corresponding frameFc is tight with frame bound

a5E
X
g~x!iKm

21/2c~x!iK
2 dn~x!,

whereKm is the formal degree ofm.

Proof: It follows easily from Proposition 1. h
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We are unable to prove that for the framesFc given by Theorem 1 the singular partns of the
strongly quasi-invariant measuren is zero nor can we find an example of such frames so
nsÞ0. Nevertheless, there are two partial results in this direction.

The first one applies to the case thatH andA are Lie groups.
Corollary 2: Let H and A be Lie groups such that the action ofH on Â is smooth and the

orbits are locally closed. There iscPH such thatFc is a frame inH over (M ,mM) if and only if
the orbitX is open inÂ andm is a square-integrable representation ofH0 .

In particular, the restrictionmX of the Haar measurem Â to X is a strongly quasi-invarian
measure, so that in Eq.~10! ns50 andf can be chosen continuous and strictly positive.

The proof of the corollary is based on the following standard results on the Lebesgue
sures. We recall that, ifM is a manifold of dimensionn, a Radon measurem on M is said to be a
Lebesgue measureif for each chart (U,f) the image underf of the induced measuremU is
equivalent to the restriction of the Lebesgue measure ofRn to f(U) with a C` density. Then

~1! there exist Lebesgue measures and any two of them are equivalent~see 16.22.2 of Ref. 7!.
~2! If N is a submanifold with dimension strictly lower thann and it is locally closed inM, then

N is negligible with respect to any Lebesgue measure~see 16.22 of Ref. 7!.
~3! If G is a Lie group, then the Haar measure ofG is a Lebesgue measure~see 19.6 of Ref. 7!.
~4! If G is a Lie group acting onM and the action is transitive and smooth, then a Radon mea

m is G-quasi-invariant if and only if it is equivalent to a Lebesgue measure~see, for example,
Ref. 8!.

Proof: As a consequence of Theorem 1, there iscPH such thatFc is a frame inH over
(M ,mM) if and only if m is a square-integrable representation ofH0 and there is a measurab
subsetC of X such thatn(C).0 andm Â(C).0. So, we can assume, without loss of general
that m Â(X).0. Under this assumption, we show that the restrictionmX of m Â to X is quasi-
invariant. Indeed, by means of a standard result of Lie groups, the orbitX is a ~locally closed!
submanifold and, sincem Â is a Lebesgue measure andm(X).0, then dimX5dim Â, i.e. X is
open inÂ, andmX is a Lebesgue measure~with respect to the manifoldX!. By the results referred
above, the claim is now evident.

The statement of the corollary is now clear. h

The same conclusion can be proved if we assume that the action ofH on Â preserves the
composition law ofÂ.

Corollary 3: Let H andA be lcsc groups withA abelian such that the action ofH on Â satisfies

h@x11x2#5h@x1#1h@x2#, hPH, x1 ,x2PÂ, ~12!

and the corresponding orbits are locally closed. There iscPH such thatFc is a frame inH over
(M ,mM) if and only if m Â(X).0 andm is a square-integrable representation ofH0 .

In particular, the restrictionmX of the Haar measurem Â to X is a strongly quasi-invarian
measure, so that in Eq.~10! ns50 andf can be chosen continuous and strictly positive.

The proof is based on the following Lemma, see, for example, Ref. 3, for the proof.
Lemma 3:For anyhPH andEPB(Â) we have

m Â~h@E# !5r~h21!m Â~E!,

wherer: H→(0,̀ ) is a continuous group homomorphism.

Proof of the corollary:Arguing as in the proof of the previous corollary, we can assu
without loss of generality, thatm Â(X).0. Hence, due to the above Lemma, the measuremX is a
strongly quasi-invariant measure onX. The thesis in now evident. h
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We observe that, if Eq.~12! holds, the frame~9! is associated in a natural way with
square-integrable representation. Indeed, since the action ofH on Â satisfies~12!, by duality,H
acts also onA in such a way that

h@a11a2#5h@a1#1h@a2#, hPH, a1 ,a2PA,

and the setM acquires a structure of a lcsc group with respect to the group law

~a1 ,h1!~a2 ,h2!5~a11h1@a2#,h1h2!.

To stress the structure of group, we denoteM by G in the following.
By definition, the groupG is the semidirect product ofA andH, and the measuremA^ mH is

a right invariant Haar measure. Moreover there is a one-to-one correspondence betwe
irreducible imprimitivity systems (P,V) and the irreducible representationsU of G, explicitly
given by

~P,V!°U ~a,h!ªUaVh ,

whereUa5* Â^x,a&dP(x), aPA. As a consequence, the fact that there iscPH such that the
mapFc given by Eq.~9! is a frame is precisely the fact thatU is a square-integrable representati
of G and, hence, Corollary 3 characterizes completely the square-integrable representat
groups that are semidirect products with an Abelian normal factor.9,3

IV. FRAMES ON A QUOTIENT SPACE

In this section, we assume thatA is an Abelian Lie group andH is a Lie group acting smoothly
on Â, the dual group ofA.

Fix x0PÂ and an irreducible representationm of the stability subgroupH0 at x0 . Let X
5H@x0# be the orbit ofx0 ~as usual we assume thatX is locally closed! andK the Hilbert space
wherem acts. We suppose that

~1! the stability subgroupH0 is compact;
~2! the orbitX of x0 has positive measure with respect to the Haar measurem Â of Â.

From these assumptions one has the following properties.

~1! The stability subgroupH0 is unimodular and we can normalize the Haar measuremH0
in such

a way thatmH0
(H0)51.

~2! The orbitX admits anH-invariant measuren, which is equivalent to the restrictionmX of m Â

to X. Let f be the continuous and positive function fromX to R such that
n5fmX ,

so that the cocyclel of mX is

l~h,x!5
f~x!

f~h@x#!
, xPX, hPH

~sincen is invariant the cocycle ofn is the identity!.
~3! The Hilbert spaceK, in which the representationm acts, is finite dimensional, so we ca

assume thatK5Cn. Moreover, the representationm is square-integrable and the correspon
ing operator of formal degree is proportional to the identity.

Let (P,V) be the imprimitivity system forH based onÂ and acting onH5L2(X,n,Cn) whose
equivalence class corresponds to (X,@m#). If q is a regular section fromX to H based onx0 , then
the system (P,V) is explicitly given by Eqs.~6!–~8!.

ChooseCPK(X),CÞ0, and definec from X to C as
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c~x!5E
H0

Af ~s@x# !

f ~x!
C~s@x# !dmH0

~s!, ~13!

the integral being finite sinceC has compact support,f is continuous andH0 is compact. Taking
into account thatH0 is unimodular, for alls8PH0 andxPX

c~s8@x# !5Al~s8,x!c~x!. ~14!

Indeed, we have

c~s8@x# !5E
H0

Af ~ss8@x# !

f ~s8@x# !
C~ss8@x# !dmH0

~s!

5~s°ss821!

5E
H0

A f ~s@x# !

f ~s8@x# !
C~s@x# !dmH0

~s!

5A f ~x!

f ~s8@x# !
E

H0

Af ~s@x# !

f ~x!
C~s@x# !dmH0

~s!

5Al~s8,x!c~x!.

Moreover, sinceH0 is compact andCPK(X), still cPK(X) and, recalling that the cocycle ofn
is equal to 1, one has that

aªE
X

f ~x!

DH~q~x!!
uc~x!u2 dn~x!,`. ~15!

Finally, let e1 ,...,en be the standard basis ofCn, J be the set of the firstn numbers andmc the
corresponding counting measure.

Corollary 4: With the above notations, the map

A3X3J{~a,x,i !°Vq~x!Ua~cei !PH

is a tight frame inH over (A3X3J,m Â^ n ^ mc), with frame bounda.

Proof: Let V0 andU0 be the representations ofH andA corresponding to the choice of th
trivial representationm0 of H0 (K05C). Sincec, defined as above, satisfies Eq.~15!, then

~a,h!°Vh21
0 U2a

0 c ~16!

is a tight frame inL2(X,n) over (A3H,m Â^ mH), with frame bounda. Now, letf be any vector
in H. Then, by the fact that~16! is a frame, it follows that:

aifiH
2 5E

A3H
^if~x!iCn,Vh21

0 U2a
0 c&L2~X,n!dmA~a! ^ dmH~h!

5E
H
E

A
U E

X
if~x!iCn~Vh21

0 U2a
0 c!~x!dn~x!U2

dmA~a!dmH~h!5~x°h21@x# !

5E
H
E

A
U E

X
if~h21@x# !iCn~U2a

0 c!~x!dn~x!U2

dmA~a!dmH~h!
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5~Fourier transform andn5 f mX!5E
H
E

X
if~h21@x# !iCn

2 uc~x!u2f ~x!dn~x!dmH~h!

5~h°h21!5E
H
E

X
if~h@x# !iCn

2 uc~x!u2f ~x!dn~x!dmH~h!.

Now, using the Mackey–Bruhat formula in order to compute the integral onH as an integral on
X3H0 , we have

aifiH
2 5E

X
E

H0

E
X

if~~q~y!s!@x# !iCn
2 uc~x!u2f ~x!dn~x!dmH0

~s!dn~y!

5~x°s21@x# and unitarity of m!5E
X
E

H0

E
X

i~Vq~y!21f!~x!iCn
2

3uc~s21@x# !u2f ~s21@x# !dn~x!dmH0
~s!dn~y!

5@Eq.~14!#5E
X
E

H0

E
X

i~Vq~y!21f!~x!iCn
2 uc~x!u2f ~x!dn~x!dmH0

~s!dn~y!.

At this point, recalling that we have setmH0
(H0)51, we can perform the integral overH0 ; thus,

we obtain that

aifiH
2 5E

X
E

X
i~Vq~y!21f!~x!iCn

2 uc~s21@x# !u2f ~x!dn~x!dn~y!.

Then, since$e1 ,...,en% is the canonical basis inCn, we find

aifiH
2 5E

X
E

X
(

i
u^~Vq~y!21f!~x!,c~x!ei&Cnu2f ~x!dn~x!dn~y!

5~Fourier transform andn5 f mX!

5E
X
E

A
(

i
u^~Vq~y!21f!,U2a~cei !&Hu2dmA~a!dn~y!5~a°2a!

5E
X
E

A
(

i
u^f,Vq~y!Ua~cei !&Hu2dmA~a!dn~y!.

The thesis is now evident. h

V. EXAMPLES

In this section we apply the previous results to some specific groups that are considered
literature.

A. The causal group

Let G be thecausal group, namely the semidirect product

G5R438~SO0~3,1!3R
*
1!,

where S00(3,1) is the connected component with the identity of the Lorentz group andR
*
1 is the

multiplicative group of strictly positive real numbers. This group has been considered i
context of wavelet electrodynamics.10
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In order to take into account the projective representations ofG, we will study the universal
covering group ofG, i.e.,

G* 5R438~SL~2,C!3R
*
1!.

The group G* is the semidirect product of the Abelian groupA5R4 and the groupH
5SL(2,C)3R

*
1 , so by dualityH acts on the dual groupP4 of R4, preserving the composition law

of P4. Hence, we can consider unitary representations ofG* instead of imprimitivity systems for
H based onP4.

In order to apply Corollary 3, we identify the dual groupP4 of R4 with R4 by means of the
pairing

^p,a&5p0a02p1a12p2a22p3a3 .

The Haar measure onP4 is the Lebesgue measuredp and the action ofH on P4 is

~h,d!@p#5
1

d
L~h!a, ~h,d!PSL~2,C!3R

*
1 , pPP4,

where L: SL(2,C)→SO0~3,1! is the covering homomorphism. The corresponding orbits
SL(2,C)3R

*
1 can be classified in the following way:

~1! two ‘‘massive’’ orbitsO1, O2 defined by
O65G* @p6#5$pPR4 : 6p0.0,ipi.0%,

wherep65(61,0,0,0) andipi5Ap0
22p1

22p2
22p3

2;

~2! the orbitO defined by
O5G* @~0,0,0,1!#5$pPR4:ipi,0%;

~3! the singleton orbit$~0, 0, 0, 0!%.

Since the orbits are locally closed, we can apply Corollary 3 to select the square-inte
representations. The orbits having positive Lebesgue measure areO6,O. The stability subgroup a
(0,0,0,1)PO is the Euclidean groupE(2), which does not admit square-integrable represen
tions, whereas the one associated withO6 is isomorphic to SU~2!. Since SU~2! is compact, every
irreducible representation is square-integrable and let

$D j : j 50,1
2,1,...% ~17!

be the canonical maximal set of inequivalent irreducible representations of SU~2! where eachD j

acts onC2 j 11. Then, a maximal set of inequivalent square-integrable representations ofG* is

$U6, j
ªIndR438SU~2!

G* ~p6D j ! : j 50,1
21,...%.

Observing that the restrictionn of the measureipi24 dp to the orbitO6 is invariant with respect
to the action of G* , for each j the representationU6, j acts on the Hilbert spaceHj

ªL2(O6,n,C2 j 11) as

~U ~a,h,d!
j c!~p!5ei ^p,a&D j~q~p!21~hd!q~~hd!21@p# !!c~~hd!21@p# !

wherecPHj , (a,h,d)PG* andq is a regular section fromO6 into SL(2,C)3R
*
1 . The corre-

sponding setAj of admissible vectors is given by Corollary 1. To this aim, notice thatn has
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density f (p)5ipi24 with respect todp ~according to Corollary 3, the singular partns of n with
respect todp is zero!, SL(2,C)3R

*
6 is unimodular and the formal degree of the representationD j

is proportional to the identity, then

Aj5H cPHj : E
O6

ic~p!iC2 j 11
2 ipi24 dm~p!,`J .

B. Lorentz invariant frames

It is well known that the Poincare´ group does not admit square integrable representation
that there are no frames given by Eq.~9!, which, obviously, are invariant with respect to the fu
Poincare´ group. Nevertheless we can define frames that are invariant with respect to the L
group by means of the imprimitivity systems for the Lorentz group based onR3. The action of the
Lorentz group onR3 is defined by identifying, as a manifold,R3 with with themassiveorbit in the
momentum space

Xm5$~p0 ,pW !PR4 : p0
22pW 25m2, p0.0%.

These kinds of frames were introduced by means of suitable representations of the Poincar´ group
that are square-integrable modulo a coset space, see Ref. 4 and references therein.

As usual we consider the universal covering groupH5SL(2,C) of the connected componen
SO0~3,1! of the Lorentz group. We denote bymSL(2,C) a Haar measure of SL(2,C), which is a
unimodular group, and byL the covering homomorphism from SL(2,C) onto SO0~3,1!.

Let A be the Abelian Lie groupR3. As usual, we identify the dual groupP3 of A with R3 by
means of the Euclidean scalar product. Define the diffeomorphismv̄m from R3 onto Xm as

v̄m~pW !5~Am21pW 2,pW !

with inverse

v̄m
21~p0 ,pW !5pW .

The spaceP3 becomes a transitiveH-space with respect to the smooth action

h@pW #5v̄m
21~L~h!v̄m~pW !!

with hPSL(2,C) andpW PP3.
We recall the following facts aboutP3 as anH-space.

~1! The H-invariant measure onP3 is

nm5
dpW

Am21pW 2
,

with density f (pW )51/Am21pW 2 with respect to the Lebesgue measuredpW of P3.
~2! The stability subgroup at the origin 0W is H05SU(2), which is compact.
~3! The set$D j% given by Eq.~17! is a set of inequivalent representations of SU~2!.

Fixed j 50,1
2,1,..., each couple (P3,@D j #) defines two classes of frames in the Hilbert spaceHj

5L2(P3,nm ,C2 j 11). Indeed, let

~UaW
j f!~pW !5eiaW •pWf~pW !,

~Vh
j f!~pW !5D j~q~pW !21hq~h21@pW # !!f~h21@pW # !,

wherepW PP3, fPHj , hPH, aW PA andq is any regular section fromP3 to H.
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We observe that the formal degree of the representationsD j is proportional to the identity and
that

g~pW !5 f ~pW !5
1

Am21pW 2

sinceH is unimodular andnm is invariant. By means of Corollary 2 and Corollary 1, ifcPAj ,
where

Aj5H cPH:cÞ0,
c~pW !

~m21pW 2!1/2PL2~P3,dpW ,C2 j 11!J ,

then the map

R33SL~2,C!{~a,h!°Vh
21Ua

21cPHj ~18!

is a tight frame over (R33SL(2,C),daW ^ mSL(2,C)) with frame bound

a5E
p3

ic~pW !iC2 j 11
2

~m21pW 2!
dpW .

Moreover, we notice that the measurenm is anH-invariant measure onP3 with density

f ~pW !5
1

Am21pW 2

with respect to the Lebesgue measuredpW and we defineJ as the set of the firstn numbers andmc

the corresponding counting measure.
Let (ei) i 51

2 j 11 be the standard basis ofC2 j 11 andCPK(P3). Definec by means of Eq.~13!,
then, as a consequence of Corollary 4, the map

R33P3J{~aW ,pW ,i !°Vq~pW !
j UaW

j ~cei !PHj ~19!

is a tight frame inL2(P3,nm ,C2 j 11) over (A3P33J,daW ^ nm^ mc) with frame bound

a5E
p3

ic~pW !iC2 j 11
2

~m21pW 2!
dpW .

These classes of frames were introduced in Ref. 4 by the use of an irreducible represe
W of the universal covering groupG of the connected component of the Poincare´ group such that
W be square integrable modulo a section. We now show the relationship between the two co
structions.

Consider first the frame~18! and defineT as the subgroup of the time translations, i.e.,

T5$~p0 ,0W ,I !PG : p0PR%.

Then, the manifoldA3H is diffeomorphic to the space of left cosetsG/T and it becomes a
transitiveG-space. One has that the mapc: A3H→G given by

~aW ,h!°~h@~0,aW !#,h!

is a smooth section and the measuredaW ^ mSL(2,C) is G-invariant.
Let G05R438SU~2! andxm be the character ofR4
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xm~a0 ,aW !5eia0m, ~a,aW !PR4,

then x ^ D j is an irreducible representation ofG0 and we can consider the representationWm, j

unitarily induced fromG0 to G by xm^ D j , which is explicitly given by

~W~a,h!
m, j f!~pW !5ei ~a0

Am21pW 22aW •pW !D j~qm~pW !21hqm~h21@pW # !!f~h21@pW # !,

whereaPR4, hPH, pPP3, andfPHj . Comparing the form ofWm, j with the one ofU j andVj ,
it follows that

Wc~2aW ,h!
m, j 5Vh

j UaW
j .

Hence, we can conclude that, given anycPAj , the representationWm, j is square integrable mod
(R33SL(2,C),c,c) and that the frame~18! coincides with the one defined in Ref. 4.

Now consider the frame~19!. The spaceA3P3 is a transitiveG-space with respect to th
action

~b,h!@~aW ,pW !#ª~prA~q~h@pW # !21@b#1~q~pW !21hq~h21@pW # !!@aW # !,q~pW !!,

wherebPR4, hPSL(2,C), aW PA, pW PP3 andprA is the canonical projection fromR4 to A, i.e.,

prA~b0 ,bW !5bW .

Observe that

~1! the stability subgroup at (0W ,0W ) is T38SU~2!, whereT is the subgroup of the time translation
and, since SU~2! does not act onT the semidirect product is in fact a direct product;

~2! a continuous section fromA3P3 to G is
q̃~aW,pW!5~q~pW!@~0,aW !#,q~pW !!;

~3! the G-invariant measure isdaW ^ nm .

Hence one has that

Wq̃~2aW ,pW !
m, j 5Vq~pW !

j UaW
j .

Since the map~19! is a frame, then the representationWm, j is a square-integrable modulo (A
3P3,q̃m ,ce1 ,...,ce2 j 11).

C. The Galilei group

We now consider a class of frames that are invariant under the homogeneous Galilei
Let VªR3 and dvW be the corresponding Lebesgue measure. Let SU~2! be the universal

covering of the rotation group inR3 andmSU~2! be the corresponding normalized Haar measu
The group SU~2! acts onV by means of the covering homomorphismd and we can consider th
semidirect product,

HªV38SU~2!.

The groupH is unimodular with Haar measuredvW ^ mSU~2! .
Moreover, letA5R3 andP3 be the corresponding dual group identified withR3 by means of

the Euclidean scalar product. The corresponding Lebesgue measures are denoted bydaW anddpW ,
respectively.

FixedmPR, mÞ0, the spaceP3 is a transitiveG space with respect to the nonlinear transiti
smooth action ofH
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~vW ,h!@pW #5d~h!pW 1mvW . ~20!

The measuredpW is H-invariant and the stability subgroupH0 at 0W is SU~2!.

As in the previous case, for eachj 50,1
2,1,..., the couple (P3,@D j #) defines two classes o

frames in the Hilbert spaceHj5L2(P3,dpW ,C2 j 11). Indeed, let

~UaW
j f!~pW !5eiaW •pWf~pW !,

~Vh
j f!~pW !5D j~q~pW !21hq~h21@pW # !!f~h21@pW # !

whereaW PA, hPH, pW PP3, fPHj and q: P3→H is a section for the action ofH on P3 @for
example,q(pW )5(pW /m)I )#.

Indeed, by Corollary 2, forany nonzerocPHj , the map

A3H{~aW ,h!°Vh21
j U2aW

j cPHj ~21!

is a tight frame inH over (A3H,daW ^ mSU~2!) with frame boundici2. It is easy to prove that two
frames of the type~21! corresponding to the same value ofj and to the same analyzing vectorc,
but differing for the value of the massmÞ0, are unitarily equivalent.

Moreover, let (ei) i 51
2 j 11 be the standard basis ofC2 j 11, J the set of the firstn numbers, andmc

the corresponding counting measure. GivenCPK(P3), definec by means of Eq.~13!, then, as a
consequence of Corollary 4, the map

~aW ,pW ,i !°Vq~pW !
j UaW

j ~cei ! ~22!

is a tight frame inL2(P3,dpW ,C2 j 11) over ~A3P33J, daW ^ dpW ^ mc!.
In this particular case, one can check by direct computation that in Eq.~22! any vectorc

PL2(P3,dpW ) can be used to define a frame.
As in the previous example, we can show that the above frames can be obtained u

~projective! representation of covering groupG of the full Galilei group which is square-integrab
modulo a section. LetWm, j be the~projective! representation ofG associated with the Galile
invariant quantum particle of massm and spinj ~for an explicit description of this representation
see, for example, Ref. 11!, then one can show, as in the case of the Poincare´ group, thatWm, j is
square integrable modulo the left coset spaceG/T ~whereT is the subgroup of the time transla
tions! since the map~21! is a frame and thatWm, j is square integrable modulo the left coset spa
G/(T38SU~2!! since the map~22! is a frame.

D. The Weyl–Heisenberg group

Let us consider the (2n11)-dimensional Weyl–Heisenberg groupHn , which is the group
associated with the canonical quantization of a classical mechanical system.

Fixed nPN, n.0, let T5R andAn5Vn5Rn be the usual vector groups, then the Lie gro
Hn is the manifoldT3An3Vn with the composition law

~t1 ,aW 1 ,uW 1!~t2 ,aW 2 ,uW 2!5~t11t22 1
2~aW 1•uW 22aW 2•uW 1!,aW 11aW 2 ,uW 11uW 2!.

The groupHn is the semidirect product of the Abelian groupT3An and the groupVn , whose
action is given by

uW @~t,aW !#5~t1aW •uW ,aW !, ~t,aW !PT3An , uW PVn ,

where the dot denotes the Euclidean product. Identifying the dual groupP3Pn of T3An with
T3An itself by means of the Euclidean product, the dual action ofVn on P3Pn is given by
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uW @~h,pW !#5~h,pW 2huW !, ~h,pW !PP3Pn, uW PVn . ~23!

Then, theVn-orbits in P3Pn are the following:

~1! for all pW PRn, the singleton orbits

O0,pW5$~0,pW !%;

~2! for all hPR, hÞ0, the orbits

Oh5$~h,pW !upW PRn%.

Since all the orbits are closed, according to Corollary 3, the groupHn does not have square
integrable representations. Nevertheless, fixedhÞ0, the orbitOh is canonically identified withPn,
which is the dual group ofRn, so that we can use our procedure to define frames associated
irreducible imprimitivity systems for the groupVn based on the transitiveVn-spacePn.

Since the stability subgroup at 0W PPn is the identity, we have only the couple (Pn ,I ) and it
defines a class of tight frames inH5L2(Pn,dpW ).

Indeed, let

~UaWf!~pW !5eiaW •pW ,

~VuWf!~pW !5f~pW 1huW !,

wherepW PPn , fPH, uW PVn , andaW PRn, and observe that the Lebesgue measuredpW is clearly
invariant with respect to the action~23!.

Hence, sinceVn is unimodular and its Haar measure isduW , it follows from Corollary 2 and
Corollary 1 that for any nonzero vectorcPH, the map

Fc
h : An3Vn{~aW ,uW !°V2uW

h U2aWcPH

is a tight frame inH over the space~An3Vn , daW ^ duW ! with frame boundici.
We remark that, given the unitary operatorUh , hPR2$0%, in H defined by

~Uhf!~pW !5uhu2n/2f~h21pW !, fPH,

then, for anycPH andh1 ,h2PR2$0%, we have

Fc
h15Uh1 /h2

+F
c8

h2 if c85Uh1 /h2
* c,

namely, the framesFc
h1 andF

c8

h2 are unitarily equivalent. Moreover we notice explicitly that, f
n53 and h5mPR1, the frameFc

h is exactly the frame~22! over the coset spaceG/(T
3SU(2)), whereG is the Galilei group, with the choicej 50.

Also in this case, the framesFc
h can be defined in terms of a representation of the groupHn

that is square-integrable modulo a coset space. Indeed, for sake of simplicity, fixh51 and letW
be the irreducible representation ofHn acting onH5L2(Pn,dpW ) as

~W~t,aW ,uW !f!~pW !5ei ~t1~1/2!aW •uW 2aW •pW !f~pW 2uW !, fPH.

The left coset spaceHn /T is clearly diffeomorphic toAn3Vn , so thatAn3Vn turns out to be a
H-space where the action is explicitly given by

~t,aW ,uW !@~aW 8,uW 8!#5~aW 1aW ,uW 1uW ! ~t,aW ,uW !PHn , ~aW 8,uW 8!PAn3nn .

One can easily check that the map
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q: An3Vn{~aW ,uW !°~uW @~0,aW !#,uW !5~aW •uW ,aW ,uW !PHn

is a smooth section anddaW ^ duW is an invariant measure onAn3Vn . Finally, for anycPH, we
have

Fc~aW ,uW !5Wq(aW ,uW )c.

Thus, since, for any nonzero vectorcPH,Fc is a frame over the measured space (An3Vn ,daW
^ duW ), it follows thatW is square-integrable mod(An3Vn ,q;c).

Moreover, one can show that, forn53, if the analyzing vectorc is chosen to be aGaussian
function, the family of vectors

$Wq~aW ,uW !cuaW PR3,uW PR3%

is nothing but the classical canonical family of coherent states associated to the quantum ha
oscillator.
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We present the general solution of the system of coupled nonlinear equations de-
scribing dynamics ofD-dimensional bosonic string in the geometric~or embed-
ding! approach. The solution is parametrized in terms of the left- and right-moving
Lorentz harmonic variables providing a special coset space realization of the prod-
uct of two (D22)-dimensional spheresSD225@SO(1,D21)/SO~1,1!3SO(D
22)+KD22#. © 1999 American Institute of Physics.@S0022-2488~99!02309-9#

I. INTRODUCTION

The bosonic string~andp-brane! theory allows a geometric description in terms of extrin
geometry of the worldsheet treated as a surface embedded into a flatD-dimensional Minkowski
space.1–4 ~See Ref. 3 for a supersymmetric generalization of the classical surface theory a
application to superstrings andN51 superbranes.!

In this approach the dynamics of a free relativistic string is described by the Maurer–C
equation supplemented with the additional conditions which insure the string worldsheet to
minimal surface embedded into a flat target space-time. All these additional constraints c
solved algebraically, after which one is left with some SO(1,D21) valued connection form whos
curvature vanishes due to the Maurer–Cartan equations.5 Thus, though the string in the geometr
approach is described by nonlinear equations,1,2,5 the latter are finally reduced to the zero curv
ture conditions for the SO(1,D21) valued connection form properly specified in terms of t
independent field variables.5

The system of independent equations describing a free string theory in theD-dimensional
Minkowski space was derived, for the first time, by Zheltukhin.1 In the form when all the gauge
symmetries inherent in the string theory are kept unfixed, this system is constituted by the W
sigma-model-type equation

]~22 !~~]~11 !G!GT! i j 5e2WG@ i ukM ~22 !
~11 !kM ~11 !

~22 !u j ] ~1!

for the SO(D22) valued matrix fieldGi j ,

GGT5I ,

and the Liouville-type equation

a!Lise Meitner Fellow of the ‘‘Fonds zur Fo¨rderung der wissenschaftlichen Forschung’’ at the Institut fu¨r Theoretische
Physik, Technische Universita¨t Wien, A-1040 Vienna Austria. Electronic mail: bandos@tph32.tuwien.ac.at

b!Electronic mail: eivanov@thsun1.jinr.ru
c!Electronic mail: alexandr@ff.dsu.dp.ua
d!Electronic mail: theorph@ff.dsu.dp.ua
52030022-2488/99/40(10)/5203/21/$15.00 © 1999 American Institute of Physics
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]~11 !]~22 !W5 1
4M ~11 !

~22 !iGi j M ~22 !
~11 ! je2W ~2!

for a ‘‘scalar density’’eW.5 Thus, the considered system involves these two independent field
well as two chiral SO(D22) vector fieldsM (11)

(22) i , M (11)
(11) i ,

]~22 !M ~11 !
~22 ! j50, ]~11 !M ~22 !

~11 ! j50, ~3!

which appear on the right-hand side.
Already at the early stage of working out the geometric approach it was observed that a

for the low dimensionsD this system is exactly solvable. It is reduced to the Liouville equation
D53 and a complex Liouville equation forD54. The general solution forD55 was found in
Ref. 2. However, for the generic case the general solution of the Eqs.~1!, ~2!, and~3! was so far
unknown.

Here we present the general solution of these equations for any value ofD. This proves them
to provide a new example of a nontrivial system of exactly solvable nonlinear equations and
an opportunity to study the classical and quantum string theory in terms of a new left
right-moving variables which parametrize the general solution.

The meaning and origin of our result require a few comments.
The standard equations of motion in the string theory become linear in the conformal g

The general solution of these linear equations is given by the sum of chiral and antichiral fun
~subjected to the Virasoro constraints!. The string-inspired nonlinear equations~i.e., the equations
describing bosonic string theory in the geometric approach! encode the information about just th
same dynamical system. Thus it is natural to expect~and, as we demonstrate here, this is inde
the case! that these equations are exactly solvable and that their general solution shou
expressible in terms of chiral data.

Thus, the first step was to seek for an adequate set of chiral variables appropriate fo
structing the general solution. It turned out that the necessary variables are provided
harmonic approach6 adapted to the case of Lorentz groups in Refs. 7 and 8.

Namely, in Ref. 9 it was found that the ‘‘constrained chiral twistorlike variables’’~which can
be identified with the spinor SO(1,D21) Lorentz harmonics10,11,8! can be used to obtain a cova
riant solution of the chiral Virasoro constraints

]~11 !XL
mI ]~11 !XL

mI 50, ]~22 !XR
mI ]~22 !XR

mI 50,

]~22 !XL
mI 50, ]~11 !XR

mI 50 ~mI 50,1,...,D21!

which are to be imposed on the solutionsXL
mI ,XR

mI of the string equations of motion in the confo
mal gauge. TheD53,4,6 strings were treated in this way. It was analyzed how the fields c
posed from such chiral twistors are related to the corresponding string-inspired nonlinear
tions.

Here, instead of solving the chiral Virasoro constraints ofD-dimensional string theory, we
construct two chiral moving framesgiven by the two sets of chiral SO(1,D21) Lorentz harmonic
variables,7 and identify the left- and right-moving vectors] (11)XL

mI and] (22)XR
mI with the lightlike

components of the relevant harmonic matrix. Each set of the moving frame variables param
a special coset space of the group SO(1,D21). Despite the fact that the group SO(1,D21) on its
own is noncompact, this coset space is compact and is isomorphic to theD-dimensional sphere11

SD225SO~1,D21!/@SO~1,1!3SO~D22!+KD22#.

It provides us with the appropriate chiral data for constructing the general solution of the s
inspired nonlinear equations~1!–~3!. We construct such a solution explicitly and argue that this
the generalone.
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Basic notation.Our conventions basically coincide with those of Ref. 5. The indi
m,n,...50, 15(11), (22)($vm%[$v665v06v1%) label the worldsheet vectors, whil
mI ,nI ,...50,1,..., (D21) are the flat target space vector indices.

For the tangent space indices we use the notationsa,b,...50,1 and aI ,bI ,...50,1,..., (D
21). Thus, underlined indices always correspond to theD-dimensional target manifold and it
tangent space, while the nonunderlined ones refer to the two-dimensional (d52) worldsheet and
its tangent.

The indices1, 2 denote the weights of the tangent space vectors and spinors with resp
both the worldsheet Lorentz group SO~1,1! and the SO~1,1! subgroup of the target space Loren
group SO(1,D21). These two subgroups are identified with each other in that version o
geometric approach to string theory which we follow in the present consideration~see Refs. 3 and

5, and references therein!. For example, we writeVa5(V0,V1)5( 1
2(V

111V22), 1
2(V

11

2V22)) for the d52 tangent space vectors@and reserve the notationsca5(c1,c2) for the d
52 spinors which appear in supersymmetric generalizations of our approach#. The indices1, 2
within the parentheses denote the weights with respect to thed52 conformal symmetry, e.g.

djm5(dj0,dj1)5( 1
2(dj (11)1dj (22)), 1

2(dj (11)2dj (22))). The weights with respect to th
chiral affine SO(1,1)L and SO(1,1)R transformations are indicated in the same way.

We use the subscriptsL andR to denote the chiral functions of the string worldsheet coor
natesjm5(j (11),j (22))

f L5 f L~j~11 !!, f R5 f R~j~22 !!,

]~22 ! f L50, ]~11 ! f R50.

They should not be confused with the calligraphic subscriptsL andR carried by some fields. The
chiral Lorentz harmonics~chiral moving frame variables! are denoted by the lettersl andr, while
the generic~nonchiral! Lorentz harmonics are denoted byu.

II. GEOMETRIC APPROACH TO STRING DYNAMICS AND STRING-INSPIRED
NONLINEAR EQUATIONS

A. Lorentz harmonics

We begin with the definition of the moving frame variables~Lorentz harmonics6,7! which are
the basic entities of the geometric approach toD-dimensional bosonic string theory8,3,5

umI
aI ~j![~ 1

2~umI
111umI

22!, umI
i , 1

2~umI
112umI

22!!

mI 50,1,...,D21, aI 50,1,...,D21. ~4!

These objects are subjected to the following orthonormality conditions:

uaI
mI umb5hab[diag~1,21,...,21!⇔H umI

11umI 1150, umI
22umI 2250,

umI
11umI 2252,

umI
11umI i50, umI

22umI i50,

umI
i umI j52d i j

~5!

which imply that theD3D matrix umI
aI ~4! belongs to the group SO(1,D21)

umI
aI ~j!PSO~1,D21!. ~6!

The completeness condition

umI
aI un a[ 1

2umI
11unI

221 1
2umI

22unI
112umI

i unI
i 5hm n[diag~1,21,...,21! ~7!
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follows from Eq.~5!. In Eqs.~4! and ~7! the lightlike notation is used

umI
11[umI

0 1umI
D215u0mI 2uD21mI 5u22mI ,

umI
22[umI

0 2umI
D215u0mI 1uD21mI 5u11mI . ~8!

The constraints~5! and ~7! as they stand are invariant under the local SO(1,D21) transfor-
mations acting on the tangent space indicesaI ,bI ,... . Below we will see that for constructing th
geometric approach description of the string theory this symmetry should be restrict
SO~1,1!^SO(D22) in accordance with the splitting~4!. Just this local symmetry is respected b
the basic geometric postulate of such a description, namely by the condition that the L
harmonic frame should be adapted to the string worldsheet@see Eq.~23! below#. This means that
two of (D22) vectorsumI

aI are chosen to be tangent to the worldsheet while the remaining oneumI
i

are orthogonal to it. The local~gauge! symmetry SO~1,1!^SO(D22) reflects, first, the freedom
of the d52 Lorentz rotation of the vectorsumI

0,(D21) tangent to the worldsheet and, second,
freedom of SO(D22) rotations of the vectorsumI

i orthogonal to the worldsheet@in the lightlike
notation~8! thed52 rotations are realized as the opposite weights scaling transformations
vectorsu11 andu22].

Thus the vectorsumI
aI appropriate for the description of the external geometry of the bos

string worldsheet parametrize thenoncompactcoset space

SO~1,D21!

SO~1,1!3SO~D22!
. ~9!

In other words, the harmonics~4! regarded as the worldsheet fields define a map of
worldsheetM(1,1)5$jm% onto the noncompact coset~9!

umI
aI : M~1,1!5$jm%→ SO~1,D21!

SO~1,1!3SO~D22!
. ~10!

Below we will see that the basic ingredients of the sought general solution of the s
inspired equations will be smaller sets of left- and right-moving Lorentz harmonics which pa
etrize some compact subspaces in two chiral copies of the coset space~9!.

1. Cartan 1-forms

Differentials of the harmonic variables can be calculated with taking into account the c
tions ~4!. Differentiating Eq.~4! produces the equation

dumI
aI ub m1ua m dumI

bI 50

which can be solved as follows

dumI
aI 5umI

bI VbI
aI ~d!⇔H dumI

115umI
11v1umI

i f 11 i~d!,

dumI
2252umI

22v1umI
i f 22 i~d!,

dumI
i 52umI

j Aji 1 1
2umI

11 f 22 i~d!1 1
2umI

22 f 11 i~d!.
~11!

Here
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VbI
aI [ubI

mI dumI
aI 5S v 0

1

&
f 22 i~d!

0 2v
1

&
f 11 i~d!

1

&
f 11 i~d!

1

&
f 22 i~d! Aji ~d!

D , Va b[ha cVcI
bI 52Vb a ~12!

are the SO(1,D21) Cartan forms@in the vector representation of the SO(1,D21) generators#.
Due to~4!, they are naturally divided into the three subsets:~i! the SO~1,1!3SO(D22) covariant
forms

f 11 i[umI
11 dumI i , ~13!

f 22 i[umI
22 dumI i , ~14!

which constitute a vielbein of the noncompact coset space SO(1,D21)/SO(1,1)̂ SO(D22), ~ii !
the SO~1,1! ~spin! connection

v[ 1
2umI

22 dumI 11, ~15!

and ~iii ! the SO(D22) connections~gauge fields!

Ai j [umI
i dumI j[2umI

j dumI i . ~16!

2. Parabolic subgroup

As was mentioned above, the choice of the tangent space local group as SO~1,1!^SO(D) @and
the coset space~9! for Lorentz harmonics# is motivated by the adaptation postulate which ‘‘so
ders’’ harmonics to the worldsheet and is thus relevant just to the geometric description of s
Formally, the same harmonic~moving frame! variables~4! can be used to give a geometr
description of the massless particle. But in this case the adaptation of the moving frame
consist in requiring that one of the lightlike vectors, e.g.,umI

11 , is tangent to the worldline, while
ui andu22 are orthogonal to it. Such an adaptation is covariant with respect to the following
gauge transformations11 ~see also Ref. 10, where the Hamiltonian form of the correspondinD
54 transformations was presented!

umI
1185umI

11V21,

umI
i85~umI

11V22 j1umI
j !Vji ,

umI
2285~umI

221umI
11V22 iV22 i12umI

i V22 j !V. ~17!

The transformations ~17! form the maximal proper subgroup~parabolic subgroup!
SO~1,1!3SO(D22)+KD22 of the Lorentz group SO(1,D21).11 An arbitrary element of this
subgroup is characterized by the SO~1,1! transformation V5ea, the matrix Vi j of
SO(D22)-orthogonal rotations and the parametersV22 i of the boostsKD22 . Thus, in the geo-
metric description of massless particle,as well as in any case when the adaptation of the mov
frame involves only one lightlike moving frame vector, the harmonicsumI

aI ~4! can be regarded a
parameters of the compact coset space

SD225
SO~1,D21!

SO~1,1!3SO~D22!+KD22
. ~18!
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It is isomorphic to a (D22)-dimensional sphereSD22.11

The Cartan forms~13!, ~14!, ~15!, and~16! are transformed under~17! as follows:

f 11 i85 f 11 jVji V21, ~19!

f 22 i85~ f 22 j12DV22 j22 f 11k~V22kV22 j2 1
2d

k jV22 lV22 l !!Vji ,

DV22 j[dV22 j1vV22 j2V22kAk j, ~20!

v85v2 f 11 iV22 i1V dV21, ~21!

Ai j 85~V21AV! i j 2~V21 dV! i j 22 f 11kVk@ i uV22 lVl u j ] . ~22!

Though theKD22 transformations~17! with the parametersV22 i are not the gauge symme
tries of the whole bosonic string theory, they play a crucial role for understanding the g
theoretical structure of the general solution of the nonlinear equations~1! and~2! ~see Sec. III! @It
was noticed in Ref. 5 that the boost symmetry allows one to introduce a nontrivial depende
a spectral parameter into the connection 1-forms entering the zero curvature representation
nonlinear equations~1! and~2!.# Moreover, to define the general solution, we introduce two ch
sets of moving frame variables,l mI

(aI ) andr mI
(aI ) ~see Sec. II B!. Their ‘‘adaptation’’ is realized just in

the ‘‘particlelike’’ fashion and thus respects covariance under the chiral counterparts of the
mal parabolic symmetry~17! @cf. ~82! and ~83!#.

B. The first-order form of string equations and the geometric approach to string
theory

The Lorentz harmonics give us a possibility to rewrite the string equations of motion in
first order form, namely, as the following set of equations8,3,5

dXmI 5 1
2e

11u22mI 1 1
2e

22u11mI , ~23!

d~e11u22mI 2e22u11mI !50. ~24!

Heree665djmem
66 is a worldsheet vielbein. While dealing with~23! and~24!, one should take

into account the restrictions~11! on the differentials of the harmonic variables.
Equation~23! is the adaptation relation already mentioned earlier. It plays the basic role i

geometric approach to strings. In particular, it implies that the intrinsic worldsheet metr
identified with the induced one

1
2~em

11en
221em

22en
11!5gmn5]mXmI ]nXmI . ~25!

The geometric meaning of Eq.~23! consists in that the string worldsheet is identified with
surface embedded into theD-dimensional Minkowski spacetime. On its own right, it has
dynamical content and gives rise to the purely geometric corollaries.

The integrability conditions (d dX[0) for Eq. ~23! are as follows:

T11[de112e11∧v50, T22[de221e22∧v50, ~26!

e11∧ f 22 i1e22∧ f 11 i50 ⇔ f 22
22 i2 f 11

11 i50. ~27!

Thus they require the torsion 2-formsT66 to vanish, thereby imposing proper constraints on
induced spin connectionv. Besides, they imply the SO~1,1! invariant components of the covarian
1-forms f 11 i and f 22 i to coincide with each other

f 22
22 i5 f 11

11 i[ 1
2h

i . ~28!
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The quantityhi can be easily recognized as the mean curvatures of the embedded surface.4 Indeed,
using Eq.~23! to express the lightlike harmonic vectors in terms of derivatives of the embed
functionsX, we arrive at the standard expression for the mean curvatures

hi5gmnKmn
i , Kmn

i 52]m]nXmI umI
i . ~29!

1. Minimal embedding

Using Eq.~11!, one finds that Eq.~24! implies the vanishing of the mean curvatures~28!

hi50. ~30!

Thus the surface defined by Eq.~24! is minimal.4

On the other hand, expressing all the auxiliary variablesu ande through the derivatives of the
embedding functionsX(j) and using the induced metric~25!

gmn[]mXmI ]nXmI , ~31!

and its inversegmn, one can rewrite Eq.~30! @or ~24!# in the form

]m~A2ggmn]nXmI !50, ~32!

which is the standard string equations of motion pertinent to the Nambu–Goto action~see Ref. 5
for details!. Thus the strings dynamics in the geometric approach is contained just in Eq.~24!.

Note that it is important for the geometric approach description that the minimal embedd
described by the covariant Cartan formsf 11 i , f 22 i containing in their decomposition only one o
the two basic formse22,e11

f 11 i5e22 f 22
11 i , f 22 i5e11 f 11

22 i ~33!

@cf. Eqs.~28! and~30!#. Actually, Eqs.~33! encode three previous equations:~27!, ~28!, and~30!
@which amounts to~24!#. Thus the string dynamics proves to be eventually encoded just in
~33!.

C. Maurer–Cartan equation and the string-inspired nonlinear equations

The integrability conditions for Eqs.~11! produce the Maurer–Cartan equations

dVa b2VaI
cI∧Vc b50. ~34!

With making use of Eq.~4!, Eqs.~34! naturally split into the following equations for the cos
vielbeins f 66 i ~13! and ~14! and the connection 1-formsv, Ai j ~15! and ~16!:

Df 11 i[d f11 i2 f 11 i∧v1 f 11 j∧Aji 50, ~35!

Df 22 i[d f22 i1 f 22 i∧v1 f 22 j∧Aji 50, ~36!

R5dv5 1
2 f 22 i∧ f 11 i , ~37!

Ri j [dAi j 1Aik∧Ak j52 f 22[ i∧ f 11 j ] . ~38!

Equations~35!–~38! amount to the Peterson-Codazzi, Gauss, and Ricci equations of the cla
surface theory.4

Thus, in the geometric approach framework, the dynamics of string is described b
vielbein e66 and the set of Cartan formsv, f 66 i ,Ai j which satisfy Eqs.~26! and ~33! and the
Maurer–Cartan Eqs.~35!–~38!.4,1,2,3,5
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The most essential general feature of this approach is that Eqs.~33!, ~26!, ~35!, and~36! can
be solved algebraically.5

Indeed, using the fact that any connection is integrable on any one-dimensional subspa
can specify the expressions for the SO~1,1! and SO(D22) connection 1 forms in the following
way:

v5e11¹11~W2L !2e22¹22~W1L !, ~39!

Ai j 5e11¹11GR
ikGR

jk1e22¹22GL
ikGL

jk , ~40!

whereGL andGR are some SO(D22) group matrices,

GLGL
T5I , GRGR

T 5I . ~41!

Equations~39! and~40! provide a possibility to rewrite Eqs.~26!, ~35!, and~36! as the conditions
of closeness of some 1-forms

d~e11 exp~W1L !!50, d~e22 exp~W2L !!50. ~42!

d~ f 11 iGR
j i exp~2W1L !!50, d~ f 22 iGL

j i exp~2W2L !!50 ~43!

@Eqs.~33! have been used when deriving~43!#.
The general solution to Eqs.~42! ~up to some possible topological subtleties which are un

sential for the present study! is provided by

e115dj~11 !M ~11 !
~11 !~j~11 !!exp~2W2L !,

~44!
e225dj~22 !M ~22 !

~22 !~j~22 !!exp~2W1L !.

Here,j (66) are some functions of the string worldsheet coordinates with the only defining
mand that their differentials are linearly-independent 1-forms. It is convenient, however, to c
j (66) as a set of local coordinates on the worldsheet

jm5j~66 !. ~45!

This choice fixes a gauge with respect to the worldsheet reparametrizations~general coordinate
transformations!, so that only two-dimensional conformal reparametrizations survive@see Eq.~61!
below#.

In the holonomic basisdj (66) the components of the vielbein forme66 are

e~11 !
11 5M ~11 !

~11 ! exp~2W2L !, e~22 !
11 50,

e~11 !
22 50, e~22 !

22 5M ~22 !
~22 ! exp~2W1L !,

e22
~11 !50, e22

~22 !52~M ~22 !
~22 !!21 exp~W2L !,

e11
~11 !52~M ~11 !

~11 !!21 exp~W1L !, e11
~22 !50, ~46!

the induced metric~25! is conformally flat

ds25djm djn gmn5dj~11 ! dj~22 ! M ~11 !
~11 !M ~22 !

~22 !e2W ~47!

and the covariant derivatives are proportional to the corresponding holonomic ones

e11¹115dj~11 ! ]~11 ! , e22¹225dj~22 ! ]~22 ! . ~48!
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Hence, the expressions~39! and ~40! for the gauge connections can be rewritten as follows:

v5dj~11 ! ]~11 !~W2L !2dj~22 ! ]~22 !~W1L !, ~49!

Ai j 5dj~11 ! ]~11 !GR
ikGR

jk1dj~22 ! ]~22 !GL
ikGL

jk . ~50!

Finally, using the holonomic basis, one can write down the general solution of the Pete
Codazzi equations~43! for the covariant forms~33! as

f 11 i5dj~22 ! eW2LGR
i j M ~22 !

~11 ! j~j~22 !!, ~51!

f 22 i5dj~11 ! eW1LGL
i j M ~11 !

~22 ! j~j~11 !!, ~52!

where vector fieldsM (22)
(11) j ,M (11)

(22) j are chiral, similarly to the parametersM (11)
(11) ,M (22)

(22) of the
solutions~44! of Eqs.~26!:

]~11 !M ~22 !
~11 ! j50, ]~22 !M ~11 !

~22 ! j50.

Thus, following Ref. 5, we have solved algebraically all the equations except for the G
and Ricci ones~37! and ~38!. Substituting~49!, ~50!, ~51!, and ~52! into Eqs.~37! and ~38!, we
obtain the set of nonlinear equations

]~11 !]~22 !W5 1
4M ~22 !

~11 !i~GL
TGR! i j M ~11 !

~22 ! je2W, ~53!

]~22 !~~]~11 !GL!GL
T! i j 2]~11 !~~]~22 !GR!GR

T ! i j 1@~]~11 !GL!GL
T ,~]~22 !GR!GR

T # i j

5e2W~GLM ~22 !
~11 !! [ i~GRM ~11 !

~22 !! j ] ~54!

describing the extrinsic geometry of the string worldsheet embedded into aD-dimensional
Minkowski space.

D. A zero curvature representation and the associated linear system

As we saw, most of the equations of the geometric approach~33!, ~26!, ~35!, and~36! can be
solved algebraically and the final set of the string-inspired nonlinear equations~53! and ~54!
emerges as the result of substitution of these algebraic solutions into the Gauss and Ricc
tions ~37! and~38!. Since the latter constitute a part of the Maurer–Cartan equation~34!, one can
conclude that a zero curvature representation for the nonlinear equations~53! and~54! is given by
the Maurer–Cartan equation~34! for the SO(1,D21) valued connection 1-forms specified b
Eqs.~12!, ~49!, ~50!, ~51!, and~52!.

The associated linear system is provided by Eq.~11! with the 1-forms~34! specified by Eqs.
~12!, ~49!, ~50!, ~51!, and~52!.

A nontrivial dependence on a spectral parameter can be introduced into the associated
system by means of the parabolic subgroup transformations~17!.5

Thus the nonlinear equations~53! and ~54! possess all the features inherent in the equati
which can be solved by the inverse scattering method.12 Below we will prove that they are
solvable even in a more strong sense, like the Liouville, Toda or WZNW sigma-model equa
Namely, we will deduce an explicit form of the general solution. It is interesting that the solu
can be obtained by exploiting the parabolic group transformations~17!. We will demonstrate this
in the last section of this paper.

E. Symmetries and bridges

The obtained nonlinear equations and their zero curvature representation~34!, ~12!, ~49!, ~50!,
~51!, and~52! possess a number of powerful symmetries.
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As was already mentioned, the local~gauge! symmetries of the string model form th
SO(1,1)3SO(D22) group

v85v1V dV215v1a, ~55!

Ai j 85~V21AV! i j 2~V21 dV! i j , ~56!

f 11 i85V21f 11 jVji , ~57!

f 22 i85V f22 jVji . ~58!

The matrix fieldsGL,R appearing in Eqs.~51!, ~52!, and ~50! are transformed homogeneous
under the SO(D22) gauge symmetry

GL,R
i j 8 5GL,R

k j Vki5~V21! ikGL,R
k j , ~59!

whereas the fieldL is pure gauge

L85L2a, V5e2a. ~60!

In other words, it is a compensator~or Nambu–Goldstone field! for the SO~1,1! gauge symmetry.
Examining the expressions~44!, ~51!, and~52!, one concludes that our system possesses

types of infinite-dimensional global symmetries whose parameters can be combined int
moving and right-moving~chiral! functions. One of them is thed52 conformal symmetry

dj~11 !85dj~11 ! sL~j~11 !!, dj~22 !85dj~22 ! sR~j~22 !!,
~61!

]~22 !sL50, ]~11 !sR50.

The second one is realized as chiral rescalings of the chiral fieldsM (11)
(11) and M (22)

(22) present in
Eqs.~51!, and~52!

M ~11 !
~11 !85M ~11 !

~11 !ehL, M ~22 !
~22 !85M ~22 !

~22 !ehR,

~62!
]~22 !hL50, ]~11 !hR50.

Clearly, these rescalings can be treated as a sort of affine~or Kac–Moody! SO(1,1)L and
SO(1,1)R symmetry transformations@i.e., as SO~1,1! transformations with the parameters depen
ing onj (11) andj (22), respectively#. The full set of nontrivial transformations of these symm
tries on the involved fields is given by

M ~11 !
~11 !85M ~11 !

~11 !sL
21ehL, M ~22 !

~22 !85M ~22 !
~22 !sR

21ehR,

~W1L !85~W1L !1hL2a, ~W2L !85~W2L !1hR1a, ~63!

~M ~11 !
~22 !i !85M ~11 !

~22 !isL
21e2hL, ~M ~22 !

~11 !i !85M ~22 !
~11 !isR

21e2hR.

We observe that the chiral fieldsM (11)
(11) ,M (22)

(22) can be regarded as the ‘‘bridges’’ relating th
affine SO(1,1)L ,SO(1,1)R groups to the corresponding chiral parts of the two-dimensional c
formal group, while

eW1L5~eW1L!11
~11 ! , eW2L5~eW2L!22

~22 !

as the bridges relating affine SO(1,1)L and SO(1,1)R to the gauge SO~1,1! symmetry. Since the
symmetries~61! and ~62! offer the possibility to choose the gauge@they also make it possible to
fix the value of the norm of the chiral vector fieldsM (77)

66 i ~see Ref. 5!# M (11)
(11)5M (22)

(22)51, we,
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for simplicity, will make no distinction between the SO(1,1)L,R indices and conformal ones i
what follows. We will also use the superscript~22! instead of the SO(1,1)L subscript~11! for
the chiral vector fieldM (11)

(22) i ~the chirality property of the latter field,] (22)M (11)
(22) i50, excludes

any confusion!.
In addition, our equations possess an invariance under right multiplication of the SO(D22)

valued fieldsGL andGR by chiral SO(D22) matricesHR andHL . So, the complete form of the
appropriate symmetry transformations is

GL85V21GLHL , GR8 5V21GRHR , ~64!

M ~11 !
~22 !i85HL

i j M ~22 !
~11 ! j , M ~11 !

~22 ! j85HR
i j M ~11 !

~22 ! j , ~65!

HLHL
T5HRHR

T5I , ]~22 !HL5]~11 !HR50. ~66!

Thus the orthogonal matrix fieldsGL and GR can be regarded as bridges between the ga
SO(D22) transformations and affine chiral SO(D22)L and SO(D22)R transformations, respec
tively.

F. A simplified form of the nonlinear equations

The system of nonlinear equations~53! and ~54! can be significantly simplified by using th
SO(D22) gauge symmetry with parametersVi j to fix the gauge

GL51, GR5G. ~67!

Then the sigma-model-type equation~54! acquires the simplest WZNW sigma-model-typ
form ~1!:

]~22 !~~]~11 !G!GT! i j 5e2WG@ i ukM ~22 !
~11 !kM ~11 !

~22 !u j ] , ~68!

whereas the Liouville-type equation~53! becomes form~2!:

]~11 !]~22 !W5 1
4M ~11 !

~22 !iGi j M ~22 !
~11 ! je2W. ~69!

The gauge~67! is invariant under the action of two chiral affine SO(D22) symmetries with
the parametersHL(j (11)) andHR(j (22)). They act on the matrix fieldG as follows:

G85HL
21GHR , ]~22 !HL5]~11 !HR50. ~70!

III. GENERAL SOLUTION OF THE STRING-INSPIRED NONLINEAR EQUATIONS

A. Standard string equations of motion, their solution and Virasoro constraints

We start by discussing the familiar string equations of motion and Virasoro conditions i
standard setting. The study of the relation between the solutions of these equation and the
harmonics~which, as was already mentioned, provide the associated linear system for the c
ered nonlinear equations! opens a possibility to construct the general solution of the nonlin
equations~69! and ~68!.

The equations of motion of theD-dimensional bosonic string following from the Nambu
Goto action~see Ref. 13 and references therein! has the form~32!

]m~A2ggmn]nXmI !50, ~71!

where@cf. Eq. ~31!#

gmn[]mXmI ]nXmI ~72!
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is the induced metric,gmn is its inverse andg5det(gmn).
In the conformal gauge~see, e.g., Ref. 13! the string equation~71! becomes linear

]̃ ~11 !]̃ ~22 !X
mI [

]

]j̃~11 !

]

]j̃~22 !
XmI 50 ~73!

and has the following general solution

XmI 5XL
mI 1XR

mI , ]̃ ~22 !XL
mI 50, ]̃ ~11 !XR

mI 50. ~74!

The chiral functionsXL
mI (j (1̃1)),XR

mI (j (2̃2)) are subjected to the Virasoro constraints

]̃ ~11 !XL
mI ]̃ ~11 !XLmI 50, ]̃ ~22 !XR

mI ]̃ ~22 !XRmI 50. ~75!

Let us compare the solution~74! with the expressions~23! and~44! obtained in the geometric
approach

dXmI 5 1
2dj~11 !e2W2LM ~11 !

~11 !u22mI 1 1
2dj~22 ! e2W1LM ~22 !

~22 !u11mI . ~76!

Since, due to Eq.~44!, the induced metric is conformally flat in the coordinate framej (66),
we can identify these worldsheet coordinates with the ‘‘conformal coordinates’’j̃ (66) used in the
standard string description~71!–~75!

j~66 !5 j̃ ~66 !.

Thus Eqs.~76! and ~74! result in

]~11 !XL
mI ~j~11 !!5 1

2e
2W2LM ~11 !

~11 !~j~11 !!u22mI ,

~77!
]~22 !XR

mI ~j~22 !!5 1
2e

2W1LM ~22 !
~22 !~j~22 !!u11mI .

It is easy to verify that the Virasoro constraints~75! are satisfied for the functions~77!.
It is worth noticing that the lhs of Eqs.~77! includes the chiral functions only@cf. ~74!#, while

the rhs involves the functionsW,L,u66 which from the very beginning were assumed to depe
on both coordinatesj (66).

We will demonstrate below that the origin of this fact lies in that any solution of the st
equation produces a solution of the string-inspired nonlinear equations, i.e., of the equation~53!
and ~68! which describe the extrinsic geometry of the string worldsheet.

B. Chiral harmonics

In Ref. 9 it was discussed how to find an appropriate set of chiral functions for obta
explicit expressions for the fieldsW andGi j 5(G21) j i which enter the nonlinear equations~53!
and~68!. Constrained twistors have been proposed as such variables for the case of bosoni
theories in dimensionsD53,4,6. Such twistors can be regarded as spinor Lorentz harmonic11,8

Their only property to be essential for our purposes is that they can be used to define the
priate vector moving frame. This allows one to avoid complicated calculations associated w
use of the spinor moving frame or spinor harmonic formalism.8 In this way, the solution of
nonlinear equations describing the extrinsic geometry of bosonic string which moves i
Minkowski space ofarbitrary dimensionD can be obtained in terms of the vector Lorentz h
monics only.

Let us introduce two extra sets of Lorentz harmonics~moving frame variables!
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r mI
~aI !~j~22 !!5~r mI

~66 ! ,r mI
i !PSO~1,D21!,

~78!
l mI
~aI !~j~11 !!5~ l mI

~66 ! ,l mI
i !PSO~1,D21!,

each depending only on thej (22) or j (11) coordinates of the string worldsheet.
Recall that the condition~78! means

r mI
~aI !r m b5h~aI !~bI ![diag~1,21,...,21!⇔H r mI

~11 !r mI ~11 !50, r mI
~22 !r mI ~22 !50,

r mI
~11 !r mI ~22 !52,

r mI
~11 !r mI i50, r mI

~22 !r mI i50,

r mI
i r mI j52d i j .

~79!

l mI
~aI !l m b5h~aI !~bI ![diag~1,21,...,21!⇔H l mI

~11 !l mI ~11 !50, l mI
~22 !l mI ~22 !50,

l mI
~11 !l mI ~22 !52,

l mI
~11 !l mI i50, l mI

~22 !l mI i50,

l mI
i l mI j52d i j .

~80!

Further, we identify the chiral vectors] (22)XR
mI and ] (11)XL

mI with the componentsr (11)

5r (11)(j (22)) and l (22)5 l (22)(j (11)) of these sets of chiral harmonics

]~11 !XL
mI 5 1

2M ~11 !
~11 !~j~11 !!l ~22 !mI ~j~11 !!, ]~22 !XR

mI 5 1
2M ~22 !

~22 !~j~22 !!r ~11 !mI ~j~22 !!.
~81!

In such a way we adapt the chiral frames to the left and right sectors of the string world
Since other components of the left- and right-moving frame variablesl mI

(aI ) ,r mI
(aI ) remain arbitrary,

we face just a ‘‘particlelike’’ situation in the present case. Hence, Eqs.~81! possess the invarianc
under the affine

~SO~1,1!^SO~D22!+KD22!L and ~SO~1,1!^SO~D22!+KD22!R

symmetries with chiral parameters

VL~j~11 !!5ehL, VR
~11 !i~j~11 !!, Vi j ~j~11 !!5V21 j i ~j~11 !!

and

VR~j~22 !!5ehR, VR
~22 !i~j~22 !!, Vi j ~j~22 !!5V21 j i ~j~22 !!,

respectively.@The affine symmetry SO(1,1)L ^ SO(1,1)R proves to be ‘‘soldered’’ to the world-
sheet conformal symmetry when the gaugeM (11)

(11)515M (22)
(22) is imposed.# The corresponding

transformations read

r mI
~11 !85r mI

~11 !VR ,

r mI
i85~r mI

j 1r mI
~11 !VR

~22 ! j !VR
ji ,

r mI
~22 !85~r mI

~22 !1r mI
~11 !VR

~22 !iVR
~22 !i12r mI

i VR
22 i !VR

21, ~82!

l mI
~22 !85 l mI

~22 !VL ,

l mI
i85~ l mI

j 1 l mI
~22 !VL

~11 ! j !VL
ji ,

l mI
~11 !85~ l mI

~11 !1 l mI
~22 !VL

~11 !iVL
~11 !i1 l mI

i VL
~11 !i !VL

21. ~83!
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Hence, each set of chiral harmonics parametrizes the sphere~18!. As they depend only on one
of the worldsheet coordinates,j (22) or j (11), they map one of the lightlike sectors,M(0,1)

5$j (22)% or M(1,0)5$j (11)%, of the worldsheetM(1,1)5$jm%5$j (11),j (22)% onto two copies
of this sphere

r mI
~aI ! : M~0,1!5$j~22 !% → SD225

SO~1,D21!

SO~1,1!3SO~D22!+KD22
, ~84!

l mI
~aI ! : M~1,0!5$j~11 !% → SD225

SO~1,D21!

SO~1,1!3SO~D22!+KD22
. ~85!

Below we denote the spaces of all possible images of these maps bySL
(D22) andSR

(D22) , respec-
tively.

The chiral counterparts of the Cartan forms~12! contain only one of the chiral holonomi
basic 1-formsdj (22) or dj (11)

f R
~11 !i5dj~22 ! f ~22 !R

~11 !i 5r ~11 !mI drmI
i , f ~22 !R

~11 !i 5r ~11 !mI ]~22 !r mI
i , ~86!

f R
~22 !i5dj~22 ! f ~22 !R

~22 !i 5r ~22 !mI drmI
i , f ~22 !R

~22 !i 5r ~22 !mI ]~22 !r mI
i , ~87!

vR5dj~22 ! v~22 !R5 1
2r

~22 !mI drmI
~11 ! , v~22 !R5 1

2r
~22 !mI ]~22 !r mI

~11 ! , ~88!

AR
i j 5dj~22 ! A~22 !R

i j 5 1
2r

imI drmI
j , A~22 !R

i j 5 1
2r

imI ]~22 !r mI
j , ~89!

f L
~11 !i5dj~11 ! f ~11 !L

~11 !i 5 l ~11 !mI dlmI
i , f ~11 !L

~11 !i 5 l ~11 !mI ]~11 !l mI
i , ~90!

f L
~22 !i5dj~11 ! f ~11 !L

~22 !i 5 l ~22 !mI dlmI
i , f ~11 !L

~22 !i 5 l ~22 !mI ]~11 !l mI
i , ~91!

vL5dj~11 ! v~11 !L5 1
2l

~22 !mI dlmI
~11 ! , v~11 !L5 1

2l
~22 !mI ]~11 !l mI

~11 ! , ~92!

AL
i j 5dj~11 ! A~11 !L

i j 5 1
2l

imI dlmI
j , A~11 !L

i j 5 1
2l

imI ]~11 !l mI
j . ~93!

The transformations of these 1-forms under the left and right affine SO~1,1!^SO(D22),
3KD22 symmetries~82! and~83! are determined by the chiral version of Eqs.~19!–~22! and its
evident ‘‘left’’ counterpart, respectively. It is worth noting that only the forms

f R
~11 !i5dj~22 ! f ~22 !R

~11 !i and f R
~22 !i5dj~11 ! f ~11 !L

~22 !i

transform covariantly under~82! and~83!. These forms are vielbeins of the ‘‘chiral spheres’’SR
D22

~84! andSR
D22 ~85!, respectively.

C. Relation of general and chiral harmonics: Solving the Liouville-type equation

Substituting Eq.~81! into Eq. ~77!, one obtains the expression for the chiral lightlike movi
frame vector fieldsl (22)mI (j (11)), r (11)mI (j (22)) in terms of generic lightlike harmonic
u22mI ,u11mI , the Liouville fieldW and compensatorL

l ~22 !mI ~j~11 !!5e2W2Lu22mI , r ~11 !mI ~j~22 !!5e2W1Lu11mI . ~94!

Contracting both sides of these two equations in indicesmI , we get the expression for the fieldW
in terms of chiral harmonics

e22W5 1
2l

~22 !mI r mI
~11 ! . ~95!
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For D53, Eq.~95! produces the general solution of the Liouville equation in a special param
zation ~see the Appendix!.

A similar solution of the Liouville equation in the conformal gauge was presented in Re
The Cartan–Penrose representation in terms of bosonic spinors was used there for chiral l
vectorsl (22)mI and r mI

(11) .
In the generic case of higherD it is necessary to have the suitable representation for

SO(D22) matricesGi j as well.

D. Relation of general and chiral harmonics: Solving the sigma-model-type equation

To obtain the expression for SO(D22) matrix fieldG, let us analyze the consequences of E
~94! for the moving frame vectorsui . First of all, one finds

l ~22 !mI umI
i 50, r ~11 !mI umI

i 50. ~96!

Equations~96! mean that the decompositions of theui harmonic over the chiral left- and right
moving ones involve no terms proportional tol (11) and r (22), respectively

umI
i 52~ l mI

j 2V~22 !
j l mI

~22 !!UL
j i , ~97!

umI
i 52~r mI

j 1V~11 !
i r mI

~11 !!UR
j i . ~98!

The newly introduced matricesUL
j i andUL

j i are expressed through the contractions of ch
harmonics with the generic ones:

UL
j i 5 l jmI umI

i , UR
j i 5r jmI umI

i . ~99!

So they can easily be checked to be orthogonal matrices

UL
jkUL

ik5d j i , UL
jkUL

ik5d j i . ~100!

The proof uses the unity decomposition~7! and the corollaries of Eqs.~94!

u22mI l mI
i 50, u11mI r mI

i 50. ~101!

To find the relations betweenUL,R andUR,L , one should consider the derivatives of theUL,R
fields

]~22 !UL
j i 5 l jmI ]~22 !umI

i and ]~11 !UR
j i 5r jmI ]~11 !umI

i

and use the decomposition~11! to express the derivatives of the generic harmonics in term
components of the Cartan forms~51!–~50!. In such a way one arrives at the relations

~]~22 !UL
k j!UL

ki5~]~22 !GR
jk!GR

ik , ~]~11 !UR
k j!UR

ki5~]~11 !GL
jk!GL

ik . ~102!

Equations~102! mean that the fieldGL(GR) differs from the~transposed! matrix fieldUR(UL) by
an affine SO(D22)L(SO(D22)R) transformation only@cf. ~70!#

GR
i j 5HL

jk~j~11 !!UL
ki5uimI l mI

k HL
k j~j~11 !!, ~103!

GL
i j 5HR

jk~j~22 !!UR
ki5uimI r mI

k HR
jk~j~22 !!,

HLHL
T5I , ]~22 !HL50, HRHR

T5I , ]~11 !HR50. ~104!

The expression forV(11)
i follows from the first equation in~96! upon substituting~98! and

using Eqs.~94!, ~103!, ~95!. In this way one gets
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V~11 !
i 5 1

2e
2Wl ~22 !mI r mI

i . ~105!

In the same manner one can obtain

V~22 !
i 5 1

2e
2Wr ~11 !mI l mI

i ~106!

from Eq. ~97! and the second of Eqs.~96!.
Now we can rewrite Eqs.~97! and~98! in terms of chiral harmonics and the functions pres

in the nonlinear equations~53! and ~54!

umI
i 5GR

ikHL
k j~2 l mI

j 1e2Wr ~11 !nI l nI
j l mI

~22 !!, ~107!

umI
i 5GL

ikHR
k j~2r mI

j 1e2Wl ~22 !nI r nI
j r mI

~11 !!. ~108!

From Eqs.~107! and ~108! we obtain the expression

~GL
TGR! i j 5HL

ikS 2 l kmI r mI
l 1

2~r ~11 !nI l nI
k!~ l ~22 !nI 8r nI 8

l
!

~ l ~22 !nI 9r nI 9
~11 !

!
D HR

jl , ~109!

which provides the general solution for the sigma-model-like equation~1! in the gauge~67!

GR
i j 5d i j , GL

i j [Gi j ,

Gi j 5HL
ikS 2 l kmI r mI

l 1
2~r ~11 !nI l nI

k!~ l ~22 !nI 8r nI 8
l

!

~ l ~22 !nI 9r nI 9
~11 !

!
D HR

jl . ~110!

To complete the description of the general solution of the string-inspired system of non
equations~2! and~1!, we have to present the expressions for the chiral vector fieldsM (66)

(77) i ~3! in
terms of the chiral harmonics. This can be easily done by applying the derivatives] (11) and
] (22) to both sides of Eqs.~107! and~108! and contracting the results with the vectorsl (11) and
r (22), respectively. Then, using Eqs.~51! and ~52!, one obtains

M ~22 !
~11 !i52HR

i j r ~11 !mI ]~22 !r mI
j , ~111!

M ~11 !
~22 !i52HL

i j l ~22 !mI ]~11 !l mI
j . ~112!

Thus the chiral vectorsM (22)
(11) i and M (11)

(22) i appearing in Eqs.~2! and ~1! coincide with the
covariant componentsf (66)

(77) i ~86! and~91! of the chiral Cartan forms which constitute a basis
the ‘‘chiral spheres’’SR

D22 andSL
D22, respectively.

1. General solution of the string-inspired nonlinear equations

Equations~95!, ~110!, ~111!, and~112! provide thegeneral solutionof the system of nonlinea
equations~2!, ~1!, and~3!.

To be convinced of this, one has to take into account the following.

~i! When obtaining the expressions~95!, ~110!, ~111!, and ~112! for all the functions which
enter Eqs.~2!, ~1!, and ~3!, we started from the general solution of the bosonic str
equations of motion in the standard Nambu–Goto approach and then used these so
in the equations of the geometric approach.

~ii ! As we demonstrated in Sec. I, the equations of the geometric approach describin
extrinsic geometry of theD-dimensional bosonic string worldsheet uniquely produce
system of nonlinear equations~2!, ~1!, and~3!.
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~iii ! The equations of geometric approach and, therefore, Eqs.~2!, ~1!, and ~3! specify the
bosonic string worldsheet uniquely~up to symmetry transformations, see, e.g., Ref. 4!, and
thus describe exactly the same dynamical system as the ordinary~linear! string equations of
motion.

~iv! The general solution~95!, ~110!, ~111!, and~112! is written in terms of two sets of chira
spinor harmonics~78!, which parameterize two copies of the compact coset~18!

SD225
SO~1,D21!

SO~1,1!3SO~D22!+KD22

isomorphic to the sphereSD22. Thus it contains (D22) right-moving and (D22) left-
moving degrees of freedom, that is the same as the number of independent deg
freedom of the general solution~74! of the standard string equations of motion~71!.

With this reasoning in mind, we conclude that the expressions~95!, ~110!, ~111!, and~112! for
the functionsW, GandM (11)

(22) i ,M (22)
(11) i obtained from the general solution of the standard str

equationshave to provide the general solutionof the geometric approach equations~2!, ~1!, and
~3! ~up to superfluous symmetry transformations!.

IV. ON THE GROUP THEORETICAL AND GEOMETRICAL STRUCTURE OF THE
SOLUTION

In the course of deriving the general solution~95!, ~110!, ~111!, and ~112! we have the
expressions for the moving frame vectors~4! in terms of chiral harmonics

umI
115eW2Lr mI

~11 ! ,

umI
i 52~GLHR! i j ~r mI

j 2V~11 !
j r mI

~11 !!,

umI
225e2~W2L !~r mI

~22 !1r mI
~11 !V~11 !

jV~11 !
j22r mI

i V~11 !
i !, ~113!

umI
115e2~W1L !~ l mI

~11 !1 l mI
~22 !V~22 !

jV~22 !
j22l mI

i V~22 !
i !,

umI
i 52~GRHL! i j ~ l mI

j 2V~22 !
j l mI

~22 !!,

umI
225eW1Ll mI

~22 ! ~114!

@more precisely, we have the first two equations in each set~113! and~114! while the third one can
be restored from the orthonormality conditions~5!, ~79!, and~80!#.

If the functionsW andGL,R satisfy the nonlinear equations~2! and ~1!, then Eqs.~113! and
~114! can be regarded as the solution of the corresponding associated linear system defi
Eqs.~11!, with the Cartan forms~12! being specified by Eqs.~51!, ~52!, ~49!, and~50!.

The solution of the zero curvature representation given by the Maurer-Cartan equation~34!
with the Cartan forms~12! can be obtained by differentiating~113! and ~114!. The solution is
given by the following expressions for the generic Cartan 1-forms~13!–~16! in terms of chiral
ones~86!–~89! and ~90!–~93!:

f 11 i5eW2L~GLHR! i j f R
~11 ! j , ~115!

f 22 i52e2~W2L !~GLHR! i j ~ f R
~22 ! j22DRV~11 !

j22 f R
~11 !k~V~11 !

kV~11 !
j2 1

2d
k jV~11 !

lI V~11 !
l !!,

DRV~11 !
j[dV~11 !

j1vRV~11 !
j2V~11 !

kAR
k j , ~116!

v5vR1 f ~11 !iV~11 !
i1d~W2L !, ~117!
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Ai j 5~GLHR! ik~GLHR! j l ~AR
kl1~GLHR!21d~GLHR!!kl12 f ~11 ![kV22 l ] ), ~118!

f 22 i5eW1L~GRHL! i j f L
~22 ! j , ~119!

f 11 i52e2~W2L !~GRHL! i j ~ f L
~11 ! j22DRV~22 !

j

22 f L
~22 !k~V~22 !

kV~22 !
j2 1

2d
k jV~22 !

lV~22 !
l !!,

DLV~22 !
j[dV~22 !

j1vRV~22 !
j2V~22 !

kAL
k j , ~120!

v5vR1 f ~22 !iV~22 !
i2d~W1L !, ~121!

Ai j 5~GLHR! ik~GLHR! j l ~AR
kl1~GLHR!21d~GLHR!!kl12 f 11[kV22 l ] ). ~122!

On the other hand, as follows from the consideration in the preceding section, the e
form of the general solution~95! and ~110!, as well as the expressions~105! and ~106! for the
‘‘boost’’ parameters, can be obtained algebraically from Eqs.~114! and~113! @with making use of
the orthonormality constraints~5!, ~79!, and ~80! for the generic and chiral moving frame ha
monics#.

An intriguing point is that Eqs.~114! and~113! generating the general solutionhave the form
of the parabolic symmetry transformations~83! and ~82! of the chiral harmonics, but with non
chiral parameters.

Thus the prescription of how to solve the nonlinear equations~1! and~2! can be formulated as
follows.

Let us introduce the two sets of chiral harmonics~78! and ~79!, which map the right~left!
light-cone sectors of the worldsheetM(0,1)[$(j (22))% (M(1,0)[$(j (11))%) onto the sphere
SD22,

r mI
~aI ! : M~0,1![$~j~22 !!%→SD225

SO~1,D21!

SO~1,1!3SO~D22!+KD22
,

r mI
~aI ! : M~1,0![$~j~11 !!%→SD225

SO~1,D21!

SO~1,1!3SO~D22!+KD22
.

Further, let us assume that the generic harmonics~4! and ~5!

umI
aI : M~1,1!→ SO~1,D21!

SO~1,1!3SO~D22!

are related to the chiral ones by the parabolic transformations~113! and ~114! ~with the chiral
parametersHL andHR omitted for simplicity!.

Then let us exploit the SO(D22) gauge freedom to fix the SO(D22) rotation matrix in
~113! to be the unity one. The SO(D22) rotation matrix in~114! taken in this gauge provides u
with the solution~110! of the WZNW sigma-model-type equation~1! @with the chiral vectors
M (22)

(11) i ,M (22)
(11) i determined by the homogeneously transforming components of chiral C

forms ~86! and ~91!

M ~22 !
~11 !i5 f ~22 !R

~11 !i , M ~22 !
~11 !i5 f ~11 !L

~22 !i

@cf. ~112! and ~111!#. The product of the SO~1,1! transformation factors from~113! and ~114!
produces the general solution of the Liouville-like equation~2!.

Since the parabolic transformations~113! and~114! have a ‘‘triangular’’ form, one can expec
that the described method of obtaining the general solution bears a tight relation to the k
group-theoretical methods of solving nonlinear equations, like those developed and used i
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14, 15, and 16. A detailed examination of such a relationship could provide a deeper insig
the nature of integrability and we consider it as an interesting problem for future study.

V. CONCLUSION

We have obtained the general solution of the string-inspired nonlinear equations~1!, ~2!, and
~3! describing the extrinsic geometry of the bosonic string worldsheet in the geome
approach.1,2,3,5

The solution is given in terms of the two sets of chiral~left-moving and right-moving! Lorentz
harmonic variables~78!, ~79!, and~80! and has the form~after fixing a gauge with respect to som
extra symmetries!

e22W5 1
2r mI

~11 !l ~22 !mI , ~123!

Gk j52 l mI
k r jmI 1

r mI
~11 !l kmI l nI

~22 !r jnI

r pI
~11 !l ~22 !pI

, ~124!

M ~22 !
~11 !i~j~22 !!5r ~11 !mI ]~22 !r mI

i , ~125!

M ~11 !
~22 !i~j~11 !!5 l ~22 !mI ]~11 !l mI

i . ~126!

The analysis of the solution of the associated linear system demonstrates that the g
solution we have found can be regarded as the parabolic subgroup SO~1,1!3SO(D22)+KD22

transformations11 of the chiral harmonics, the transformation parameters being nonchiral. As
transformations have the ‘‘triangular’’ form in the matrix representation, we can expect a
relation of our approach to the known group-theoretical methods of solving nonl
equations.14–16 It is an interesting task for further study to elaborate on the detailed form of
a relation.

A natural direction of extending our results is to look for the solution of a supersymm
generalization of the considered nonlinear equations. Such a system describes the extrinsi
etry of the worldsheet superspace ofD53,4,6,10 superstring models.~Let us note that the explici
form of such supersymmetric equations are known at present only for the casesD53, N51,2.17!
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APPENDIX: RELATION TO THE STANDARD FORM OF GENERAL SOLUTION OF THE
LIOUVILLE EQUATION

Here we demonstrate that for theD53 case Eq.~95! reproduces the general solution of th
nonlinear Liouville equation. Using the well-known parametrization of the SO~1,2! matrices

l ~aI !
mI 5S coshAL sinhAL 0

sinhAL coshAL 0

0 0 1
D ,
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r ~aI !
mI 5S coshAR 2sinhAR 0

2sinhAR coshAR 0

0 0 1
D ,

]~22 !AL5]~11 !AR50, ~A1!

one finds the following form of chiral harmonics~78!

l ~22 !mI 5~coshAL , sinhAL , 1!,

l'mI 5~sinhAL , coshAL , 0!, ~A2!

l ~11 !mI 5~coshAL , sinhAL , 21!,

r ~22 !mI 5~coshAR , 2sinhAR , 1!,

r'mI 5~2sinhAR , coshAR , 0!,

r ~11 !mI 5~coshAR , 2sinhAR , 21!. ~A3!

Substituting these expressions into the Eqs.~95!, ~111!, and~112! with D53, one gets

e2W5cosh
AL1AR

2
, ~A4!

M ~22 !
~11 !'~j~22 !!5r ~11 !mI ]~22 !r mI

'52]~22 !AR , ~A5!

M ~11 !
~22 !'~j~11 !!5 l ~22 !mI ]~11 !l mI

'5]~11 !AL . ~A6!

The relation to the standard parametrization of the general solution of the Liouville equ
~see, e.g., Ref. 18! is given by

f L,R5expAL,R .
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A new perturbative technique for solving integro-partial
differential equations
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Integro-partial differential equations occur in many contexts in mathematical phys-
ics. Typical examples include time-dependent diffusion equations containing a pa-
rameter~e.g., the temperature! that depends on integrals of the unknown distribu-
tion function. The standard approach to solving the resulting nonlinear partial
differential equation involves the use of predictor–corrector algorithms, which of-
ten require many iterations to achieve an acceptable level of convergence. In this
paper we present an alternative procedure that allows us to separate a family of
integro-partial differential equations into two related problems, namely~i! a pertur-
bation equation for the temperature, and~ii ! a linear partial differential equation for
the distribution function. We demonstrate that the variation of the temperature can
be determined by solving the perturbation equationbeforesolving for the distribu-
tion function. Convergent results for the temperature are obtained by recasting the
divergent perturbation expansion as a continued fraction. Once the temperature
variation is determined, the self-consistent solution for the distribution function is
obtained by solving the remaining, linear partial differential equation using stan-
dard techniques. The validity of the approach is confirmed by comparing the~input!
continued-fraction temperature profile with the~output! temperature computed by
integrating the resulting distribution function. ©1999 American Institute of Phys-
ics. @S0022-2488~99!03410-6#

I. INTRODUCTION

Many of the time-dependent transport equations encountered in mathematical phys
nonlinear in nature due to the dependence of one or more of the coefficients on integrals
unknown distribution function. In such cases, the transport equation becomes an integro-
differential equation such as the Vlasov or Boltzmann equations. Physical applications inc
large variety of diffusive and plasma phenomena1,2 as well as nonlinear wave propagation,3 the
dynamics of self-gravitating mass distributions,4 and the diffusion in energy space of photons d
to Compton scattering.5,6

Integro-partial differential equations are usually solved by integrating forward in time fro
given initial condition using a predictor–corrector algorithm7,8 or a global relaxation method.9,10

The convergence properties of such indirect methods are often difficult to predict in advanc
usually depend rather sensitively on both the governing equation and the nature of the
conditions. In this paper we develop an alternative procedure that allows us to analyze th
variation of the integral function~in this case the temperature! using adirect method based upon
the governing integro-partial differential equation. The temperature variation is determine
constructing a perturbation expansion via recursive application of the moment equation ob
by integrating the original nonlinear equation with respect to energy.

The coefficients of the perturbation expansion depend on the initial shape of the distrib

a!Electronic mail: pbecker@gmu.edu
52240022-2488/99/40(10)/5224/16/$15.00 © 1999 American Institute of Physics
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function, and therefore the resulting temperature variation represents the self-consistent sol
the problem. With the temperature variation determined in advance, the equation governi
distribution function loses its integrodifferential character, and reduces to a linear partial d
ential equation which can be solved using a variety of standard techniques. The accuracy
solution can be verifieda posterioriby integrating the resulting distribution function over ener
to obtain another~output! result for the variation of the temperature integral, which can be c
pared with the~input! temperature representation constructed using the information contain
the perturbation expansion.

In a certain sense, the method developed here allows us to ‘‘separate’’ the original in
partial differential equation into two problems, the first being the determination of the
consistent temperature variation and the second the solution of the remaining linear partial
ential equation for the distribution function. The perturbation series for the temperatu
divergent in general, but we demonstrate that it can be recast as a continued fraction tha
convergent results for a variety of initial distributions. In order to illustrate the technique, we f
here on a specific family of equations which is sufficiently general to admit a variety of intere
behaviors.

II. GOVERNING EQUATIONS

The primary motivation for this study is the analysis of the scattering of photons and elec
in the hot, tenuous plasma surrounding a compact astrophysical object such as a neutron
black hole. This process, referred to as time-dependent Comptonization, is thought to be r
sible for producing the variable x-ray emission observed from a variety of sources both withi
outside our galaxy. The energy of the photons is modified as a result of multiple interaction
electrons, and consequently the photon energy distribution evolves over time. In this situati
photon distribution functionf (x,y) is governed by an integro-partial differential transport eq
tion of the general form5

] f

]y
5

1

xi

]

]x H xiFxj
f

u~y!
1xk

] f

]x
G J , ~1!

wherex represents the dimensionless photon energy,y measures the dimensionless time, andi, j,
and k are constants. The functionu(y) represents the time-varying temperature, defined by
integral expression

u~y![
I a~y!

I a~0!
, ~2!

wherea is a constant and the power moments off are defined by

I n~y![E
0

`

xnf ~x,y!dx. ~3!

Note thatu~0!51 by virtue of ~2!, and u(y).0 for all y since f (x,y) is non-negative. In the
time-dependent Comptonization problem, we havei 5 j 5k52. However, we will develop the
formalism for arbitrary values ofi, j, andk in order to emphasize the generality of the mathem
cal method. For clarity in the discussion, we shall think of the test particles as ‘‘photons’’ an
scattering centers as ‘‘electrons,’’ although these identifications are arbitrary.

The total number density of the photonsNr(y) is related to the photon distribution functio
f (x,y) via

Nr~y![E
0

`

xi f ~x,y!dx, ~4!
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so thatNr(y)5I i(y). Interpretingx2 i(]/]x)xi as the divergence operator in energy space,
observe that the transport equation~1! is written in explicit flux-conservation form, and therefo
Nr remains constant since~1! contains no sources or sinks of photons. We seek to solve
transport equation for the distribution functionf (x,y) subject to the initial condition

f ~x,0![ f 0~x!, ~5!

where f 0(x) is a known function specified as part of the problem under consideration.
conserved number density is therefore given byNr5*0

`xi f 0(x)dx. Equation~1! drives f (x,y)
toward the steady state equilibrium solution given by the exponential spectrum

f eq~x![
Nr p

~ pueq!
~ i 11!/pGS i 11

p D expS 2xp

pueq
D , p[ j 2k11, ~6!

whereueq is the asymptotic equilibrium temperature and the normalization has been set so th
number density off eq is equal toNr . In deriving ~6! we have also assumed that (i 11)/p.0.
Whether or not the solutionf (x,y) actually reachesf eq(x) depends upon the rate at which th
temperature varies in a given situation.

The underlying process modeled by~1! is a stochastic energization of the test particles due
the random motions of the scattering centers. This interpretation is made clear by using~1! to
calculate the Fokker–Planck coefficients which express the rates of change of the mean ene^x&
and the variances2 for a monoenergetic distribution. The results obtained are

d^x&
dy

5~ i 1k!xk212
xj

u~y!
,

ds2

dy
52xk, ~7!

which describe, respectively, the ‘‘drifting’’ and ‘‘broadening’’ of the distribution due to ene
space diffusion.11 In terms of these coefficients,~1! can be recast as the Fokker–Planck equat

]F

]y
52

]

]x FF
d^x&
dy G1

]2

]x2 FF
1

2

ds2

dy G , ~8!

where the photon number spectrumF(x,y) is defined by

F~x,y![xi f ~x,y!, ~9!

so thatNr5*0
`F(x,y)dx. It can be readily verified that~8! is equivalent to~1!. Sincei, j, andk are

free parameters andu(y) is an arbitrary power integral ofF, we see that the Fokker–Planc
coefficients associated with~1! encompass a large variety of microphysical scattering scenar

III. PERTURBATION EXPANSION FOR THE TEMPERATURE

We can obtain a relationship between the power moments by operating on~1! with *0
`xn dx

and integrating by parts twice. This yields

dIn

dy
5~n2 i !F ~n1k21!I n1k22~y!2

I n1 j 21~y!

u~y! G , ~10!

where we have assumed that the power momentsI n exist for all of the required values ofn. The
validity of this assumption depends on the asymptotic behavior of the initial distributionf 0(x). By
recursively applying~10!, we can express all of the derivatives of any power moment with res
to y as closed functions of the moments.

One interesting consequence is that we can obtain the derivatives of the temperature i
function u(y) as functions of the momentsI n(y). Using ~2!, the zeroth derivative is given by
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u~y!5
I a~y!

I a~0!
. ~11!

By making a single application of~10!, we find that the first derivative can be expressed as

u~1!~y!5
a2 i

I a~0! F ~a1k21!I a1k22~y!2
I a1 j 21~y!

u~y! G . ~12!

Differentiation of ~12! with respect toy yields

u~2!~y!5
a2 i

I a~0! Fu~1!~y!

u2~y!
I a1 j 21~y!2

1

u~y!

dIa1 j 21

dy
1~a1k21!

dIa1k22

dy G . ~13!

Using ~10! to eliminate the moment derivatives in~13!, we obtain

u~2!~y!5
a2 i

I a~0! H ~a1k21!~a1k2 i 22!F ~a12k23!I a12k24~y!2
I a1k1 j 23~y!

u~y! G
1

u~1!~y!I a1 j 21~y!

u2~y!
1~a1 j 2 i 21!F I a12 j 22~y!

u2~y!
2~a1 j 1k22!

I a1 j 1k23~y!

u~y! G J .

~14!

Subsequent iterative applications of~10! can be used to derive expressions for the third and hig
derivatives ofu(y).

By evaluating the derivatives sequentially starting withu(y), we can calculate as many a
desired if the required power momentsI n(y) are known. Although we have noa priori means of
evaluating the power momentsI n(y) for general values ofy, we canevaluate them for the specia
casey50 since in this case they correspond to integrals of the known initial distributionf 0(x),
i.e.,

I n~0!5E
0

`

xnf ~x,0!dx5E
0

`

xnf 0~x!dx. ~15!

Wheny50, the general expressions for the derivatives given by~11!, ~12!, and~14! reduce to

u~0!51, ~16!

u~1!~0!5
a2 i

I a~0!
@~a1k21!I a1k22~0!2I a1 j 21~0!#, ~17!

u~2!~0!5
a2 i

I a~0!
$~a1k21!~a1k2 i 22!@~a12k23!I a12k24~0!2I a1k1 j 23~0!#

1u~1!~0!I a1 j 21~0!1~a1 j 2 i 21!@ I a12 j 22~0!2~a1 j 1k22!I a1 j 1k23~0!#%.

~18!

The method can be extended to evaluate the third and higher derivatives ofu(y) at y50 for a
given initial distributionf 0(x).

Let us suppose that for some arbitrary value ofM, all of the initial derivatives ofu(y) up to
u (M )(0) have been determined using the method outlined above. We may then define the
ated asymptotic perturbation~Taylor! series foru(y) by writing
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FN~y![ (
n50

N
u~n!~0!

n!
yn, ~19!

whereN<M indicates the truncation level of the series. Our expectation is thatFN(y) accurately
approximates the time variation of the exact solution foru(y) within some finite radius of con-
vergence ifN is sufficiently large. Based upon the existence of the Taylor series, we conclud
in principle the variation ofu(y) can be determinedbeforesolving for the unknown distribution
f (x,y). This accomplishes the formal ‘‘separation’’ of the original integro-partial differen
equation~1! into two problems. The first problem is the determination of the variation of
integral function, which has been achieved~at least formally! by constructing the Taylor serie
~19!. The second problem is the determination of the spectrumf (x,y), which now reduces to the
solution of alinear partial differential equation since the functionu(y) appearing in~1! can be
approximated using~19!. However, the convergence of the power series~19! introduces some
potential complications which we address below.

IV. CONTINUED FRACTION REPRESENTATION

We have established that it is possible to develop a general computational scheme ba
~10! that can be used to evaluate the initial derivatives of the self-consistent temperature in
function u(y) in terms of the initial momentsI n(0), which are easily computed using~15! once
the initial distributionf 0(x) is specified. From knowledge of the initialu derivatives we are able
to construct the formal Taylor seriesFN(y) given by~19!. However, a remaining difficulty center
on the convergence of this series. In many cases the radius of convergence turns out to
small to be of any practical use, and in certain instances it may even vanish. We therefore s
alternative means for utilizing the asymptotic information contained in the power series c
cients in order to extract aglobal representation of the function.

A global approximation can be constructed by recasting the data in the form of a cont
fraction, which is equivalent to the process of Pade´ approximation.12 In many instances this is a
remarkably successful approach to the global modeling of an unknown function. We defin
continued fraction representation using

CN~y![
c0

11
c1y

11
c2y

11¯

cN21y

11cNy
,

~20!

where the constantsc0 ,...,cN are the continued fraction coefficients, and the truncation leve
indicated by the value ofN. The continued fraction coefficients can be computed using
information contained in theu derivatives by employing the standard two-dimensional algorit
described by Baker and Graves-Morris.13

To illustrate the flow of the algorithm, we assume that via successive applications of~10! we
have evaluated all of the initial derivatives of the temperature integral functionu(y) up to
u (M )(0) for someM. The algorithm is initialized by setting the zeroth column of the matrixAn,m

using

A0,m5
u~m!~0!

m!
, 0<m<M , ~21!

and the first column of the matrix is calculated subsequently via

A1,m52
A0,m11

A0,0
, 0<m<M21. ~22!
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The remaining elements in the matrix are obtained recursively using

An,m5
An22,m11

An22,0
2

An21,m11

An21,0
, 0<m<M2n, ~23!

for 2<n<M . The continued fraction coefficients occupy the zeroth row of the matrix, so th

cn5An,0 , 0<n<M . ~24!

Note that the coefficientcn is a function of the initial derivativesu~0!, u (1)(0),...,u (n)(0), and
therefore the incorporation of higher-order derivatives into the scheme has no effect on the
of cn .

As discussed in Sec. II, the exact solution for the temperature variationu(y) must be positive
for all y.0 because the distribution functionf is non-negative. Henceu(y) contains no poles in
the domainy.0, and this must also be true of any acceptable continued fraction approxim
The singularity structure of the continued fractionCN(y) can be determined by creating a
equivalent rational function, and then solving for the zeros of the denominator. The prese
zeros in the domainy.0 causes the appearance of extraneous, unphysical poles inCN(y). These
unphysical poles migrate out of the computational domain as the truncation levelN increases and
CN(y) approaches the exact solutionu(y). However, some of the lower order fractions m
contain ‘‘defects’’~poles for positive values ofy!, and if so they must be rejected. We consider
convergence properties of the continued fraction sequenceC0(y), C1(y),...,CM(y) in Sec. VI,
where we treat specific computational examples.

V. APPLICATION TO TIME-DEPENDENT COMPTONIZATION

In the problem of time-dependent Comptonization that serves as the primary motivatio
this study, an intense distribution of radiation is scattered by hot electrons in a tenuous plasm
suppose that the photons are injected impulsively into the plasma with a specified energy
bution at timet50, and that the subsequent evolution of the distribution occurs as a res
photon–electron scattering. This process naturally leads to the production of time-variable~tran-
sient! x-ray emission. During the brightest observed x-ray transients, most of the energy is
tained in the radiation field rather than in the gas, which implies that the average photon e
must remain constant even as the shape of the x-ray spectrum changes. In this case the e
maintain a Maxwellian distribution and act mainly as catalysts in the evolution of the ph
distribution, taking energy away from very energetic photons and giving it to low-energy ph
until equilibrium is achieved. The electron temperatureTe depends on the shape of the radiati
spectrum via an integral expression, and thereforeTe varies as a function of time as we demo
strate below. The equation governing the evolution of the radiation spectrum is conseq
integro-partial differential in nature.

The time evolution of the photon spectrum under the influence of Compton scattering
ionized, homogeneous hydrogen plasma is governed by the Kompaneets equation,14

] f

]t
5

nesTckTe~0!

mec
2

1

x2

]

]x H x4F f 1
Te~ t !

Te~0!

] f

]xG J , ~25!

wheresT is the Thomson scattering cross section,k is Boltzmann’s constant,c is the speed of
light, andne andme denote the electron number density and mass, respectively. The dimen
less energy variablex is defined by

x[
e

kTe~0!
, ~26!
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wheree is the photon energy andTe(0) denotes the electron temperature at the beginning of
transient (t50). The initial spectrumf 0(x)[ f (x,0) is assumed to be known, andf is normalized
so that the total photon number density is given by

Nr~y!5E
0

`

x2f ~x,y!dx5I 2~y!, ~27!

where the power moments off are defined byI n(y)[*0
`xnf (x,y)dx in accordance with~3!. We

remind the reader thatNr5constant according to the discussion in Sec. II. The associated
photon energy density is given by

Ur~y!5E
0

`

e x2f ~x,y!dx5kTe~0!I 3~y!. ~28!

In this application, the explicit connection between the ‘‘time parameter’’y and the true time
t is established by making the definition

y~ t ![E
0

t

ne~ t !sTc
kTe~ t8!

mec
2 dt8, ~29!

where we have allowed for the possibility of a time dependence in the electron number dens
we have sety(0)50. Using the variablesx andy our transport equation~25! can be reexpresse
as

] f

]y
5

1

x2

]

]x H x4F f

u~y!
1

] f

]xG J , ~30!

where the temperature functionu(y) is defined by

u~y![
Te~y!

Te~0!
. ~31!

In order to apply the method developed earlier in the paper to the current problem, we
demonstrate that the definitions foru(y) in ~2! and ~31! are consistent, which can be establish
by showing that the right-hand side of~31! is proportional to one of the power moments off in the
Comptonization application. We begin by noting that~30! is formally equivalent to our prototype
transport equation~1! if i 5 j 5k52. It follows that the power momentsI n must satisfy~10!, which
in this case reduces to

dIn

dy
5~n22!F ~n11!I n~y!2

I n11~y!

u~y! G . ~32!

During a bright x-ray transient, most of the energy density is contained in the radiation field
therefore the material gas cannot exchange a significant amount of energy with the ph
Consequently the integrated radiation energy densityUr(y)5kTe(0)I 3(y) should not change as
result of Comptonization, and thereforeI 3(y) must remain equal to its initial valueI 3(0). Setting
n53 in ~32!, we find that the conditiondI3 /dy50 is satisfied if

u~y!5
I 4~y!

4I 3~0!
, ~33!

which implies thatTe equals the inverse-Compton temperature of the radiation spectrum.6 Since
u~0!51 by virtue of ~31!, we can rewrite~33! as
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u~y!5
I 4~y!

I 4~0!
. ~34!

Note that the initial spectrumf 0(x) must satisfy the conditionI 4(0)54I 3(0) in order to be
consistent with the requirement thatu~0!51. Equation~34! establishes the integro-partial diffe
ential nature of the governing equation~30! for this application. Hence the formal results obtain
earlier in the paper can be applied to the problem of time-dependent Comptonization by s
a54 in ~2!.

The algorithm derived in Sec. III can be used to directly calculate the initial derivative
u(y) at y50. However, in the Comptonization application under consideration here, it is m
convenient to derive a differential recurrence relation between the successive momentsI n and
I n11 by rearranging~32! to obtain

I n11~y!5
u~y!

22n
e~n11!~n22!y

d

dy
@e2~n11!~n22!yI n~y!#. ~35!

Working in terms of the differential operator

Dn[
1

22n
e~n11!~n22!y

d

dy
e2~n11!~n22!y, ~36!

we can apply~35! iteratively to find that

I n11~y!5u~y!DnI n5u~y!Dnu~y!Dn21¯u~y!D3I 3~y!. ~37!

SinceI 3(y)5I 3(0)5constant, we can carry out the differentiation to obtain the momentsI n(y) as
functions of the derivatives ofu(y). The first few results are

I 4~y!54u~y!I 3~0!, ~38!

I 5~y!52
u~y!

2
@4u~1!~y!240u~y!#I 3~0!, ~39!

I 6~y!52
u~y!

3
@2360u2~y!176u~y!u~1!~y!22u~1!2

~y!22u~y!u~2!~y!#I 3~0!. ~40!

Similar results can be obtained for the higher moments. Note thatI n(y) is a function of all of the
derivatives ofu(y) up tou (n24)(y). We have developed a computer algorithm based on~37! that
efficiently derives expressions for the momentsI n(y) in terms of the derivatives ofu(y). Since
the values of the initial momentsI n(0) are easily calculated using~15! for any initial spectrum
f 0(x), these expressions allow us to compute the corresponding initial derivativesu (n)(0) sequen-
tially, beginning with the zeroth derivative which is set by~38!. The development of the genera
expressions giving the initial moments as function of the derivativesu (n)(0) is the costliest part of
the solution procedure. However, once these expressions have been established, they can
to evaluate the initial derivatives for a variety of different initial spectra at very low cost.
initial derivatives are subsequently used to calculate the continued fraction coefficients usi
algorithm discussed in Sec. IV, and the sequence of continued fraction approximationsCN(y) is
evaluated using~20!. This procedure forms the basis for the computational results present
Sec. VI.

VI. COMPUTATIONAL EXAMPLES

In this section we apply our method to obtain quantitative results for the problem of t
dependent astrophysical Comptonization. Our computational procedure is as follows. Fi
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calculate the initialu derivatives and the associated continued fraction coefficients using
algorithms discussed in Secs. IV and V. In the second step we use this information to analy
convergence properties of the sequence of continued fractionsCN(y) and compare them with the
corresponding Taylor seriesFN(y). In the third step we use a high-order continued fraction
approximate the temperature integral functionu(y) in the transport equation~30! and then we
numerically solve the transport equation for the photon energy distributionf (x,y). Finally, in the
fourth step we compare the input temperature functionCN(y) with the result obtained foru(y) by
integrating the numerical solution forf (x,y). Agreement between these two representations of
temperature confirms the accuracy of the method.

At the beginning of the x-ray transient, the radiation spectrum is given by the initial en
distribution f 0(x) introduced in~5!. According to the analysis presented in the preceding secti
knowledge off 0(x) is sufficient to determine the time variation of the temperature integral fu
tion u(y). In typical astrophysical situations, the initial energy distributions of greatest interes
the optically thin electron–proton bremsstrahlung~free–free! spectrum

f 0~x!5x23e2x/4, ~41!

and the monoenergetic spectrum

f 0~x!5N0 x0
22d~x2x0!, ~42!

whereN0 is the number density of the photons. In the latter case, we must setx054 in order to
satisfy the conditionu(0)5I 4(0)/4I 3(0)51 as required by~31! and ~33!.

The transport equation~30! drives the distributionf (x,y) toward the steady state equilibrium
solution given by the Wien spectrum

f eq~x![
Nr

2ueq
3 e2x/ueq , ~43!

which has been obtained by settingi 5 j 5k52 in ~6!. Although f is always driven toward Wien
form at all values ofy, it may or may not reach equilibrium depending on the shape of the in
spectrum and the corresponding rate at which the temperature varies. This question can
solved by calculating the asymptotic temperatureueq using information contained in the initia
spectrumf 0(x). In equilibrium, the dimensionless mean photon energy is given by

x̄5
*0

`x3f eq~x!dx

*0
`x2f eq~x!dx

53ueq, ~44!

where we have substituted forf eq(x) using ~43! to obtain the final result. Conservation of th
photon number and energy densities implies that the value ofx̄ must be conserved, so that we ca
also write

x̄5
*0

`x3f 0~x!dx

*0
`x2f 0~x!dx

5
I 3~0!

I 2~0!
. ~45!

Equations~44! and ~45! can be combined to calculate the asymptotic temperatureueq for any
initial spectrumf 0(x). In the case of a monoenergetic initial spectrum withx054, we obtainx̄
54 and thereforeueq54/3. Conversely, in the case of a bremsstrahlung initial spectrum,
obtainx̄50 because the number density of photonsNr5I 2(0)5*0

`x2f 0(x)dx is formally infinite.
This implies that in the bremsstrahlung case,ueq50, and therefore no meaningful steady sta
exists according to~43!. It is important to emphasize that our calculation ofueq has utilized an
energy conservation principle that may not be available in all physical applications of the ge
transport equation~1!.
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The values of the initialu derivatives and the associated continued fraction coefficients
tained for the bremsstrahlung and monoenergetic initial spectra are presented in Table I. N
rapid divergence of the derivatives in each case, implying a limited radius of convergence f
Taylor seriesFN(y) given by ~19!. We compare the convergence properties of the Taylor se
and the continued fractions for the bremsstrahlung and monoenergetic initial spectra below

A. Monoenergetic initial spectrum

The first and second columns of Table I contain, respectively, the results obtained
monoenergetic case for the initial derivativesu~0!, u (1)(0),...,u (M )(0) and the continued fraction
coefficientsc0 , c1 ,...,cM for M524. This choice forM is arbitrary and of no particular signifi
cance. The corresponding sequence of truncated Taylor seriesFN(y) is plotted in Fig. 1. The
radius of convergence of the Taylor series is limited toy&0.15 even for largeN, which reflects the
rapid increase in the absolute value of the derivatives ofu(y) at y50. By contrast, the continued
fraction coefficients obtained in the monoenergetic case grow much more slowly in absolute
The continued fraction sequenceCN(y) contains defects~extraneous poles! for some odd values
of N, but CN(y) converges~albeit nonuniformly! for even values ofN, as can be seen in Fig. 2
where we plot the sequence of continued fractions forN518, 20, 22, 24. It is clear from Fig. 2
that the continued fractions converge even for values ofy far outside the radius of convergence
the Taylor series. In our search for an accurate approximation to the exact solution foru(y), we
select the continued fractionCN(y) that most closely approaches the correct asymptotic va
ueq54/3 for largey. According to Fig. 2, the best agreement is obtained by using the highest
fraction analyzed in this example, which isC24(y).

With u(y) approximated using the continued fractionC24(y), the transport equation~30!
reduces to a linear, second-order partial differential equation. We solve this equation usi

TABLE I. Numerical results.

n

Monoenergetic spectrum Bremsstrahlung spectrum

u (n)(0) cn u (n)(0) cn

0 1.003100 1.00 1.003100 1.00
1 2.003100 22.00 26.003100 6.00
2 21.203101 5.00 1.323102 5.00
3 8.003100 21.67 26.363103 11.13
4 1.873103 3.59 5.293105 8.99
5 22.993104 22.56 26.683107 15.43
6 26.853105 4.69 1.1831010 12.28
7 4.073107 23.56 22.7631012 19.62
8 3.653108 4.13 8.2431014 15.72
9 29.2531010 23.33 23.0431017 23.44

10 3.4231011 5.03 1.3631020 19.48
11 3.5631014 24.77 27.1931022 26.87
12 26.3631015 4.53 4.4731025 23.51
13 22.2031018 24.30 23.2231028 30.09
14 7.1431019 5.17 2.6631031 27.62
15 2.1031022 25.67 22.4931034 33.35
16 29.3131023 4.97 2.6431037 31.59
17 22.9631026 25.33 23.1331040 36.81
18 1.4831028 5.20 4.1331043 35.34
19 5.9031030 26.36 26.0431046 40.52
20 22.7031032 6.06 9.7331049 38.88
21 21.6031035 210.63 21.7231053 44.40
22 4.9831036 27.69 3.3231056 42.26
23 5.8731039 232.83 26.9931059 48.45
24 9.0331040 23.42 1.5931063 45.34
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IMSL routine DMOLCH over the range 0<y<2 and 0<x<50. The monoenergetic initial condi
tion ~42! imposed aty50 is approximated using a Gaussian distribution with meanx̄54, variance
s250.01, andphoton number densityN051. The result obtained for the photon energy spectr
G(x,y)[x3f (x,y) is plotted in Fig. 3. It is convenient to plotG rather thanf because energy
conservation implies thatI 35constant, and therefore*0

`G dx is independent ofy. In the monoen-
ergetic case the initial condition~42! yields I 354. As y increases from zero, the distributio
evolves away from the monoenergetic initial form and is well described by the equilibrium W
distribution ~43! for y*1.

B. Bremsstrahlung initial spectrum

The third and fourth columns of Table I contain, respectively, the results obtained in
bremsstrahlung case for the initial derivativesu~0!, u (1),...,u (M )(0) and the continued-fraction
coefficientsc0 , c1 ,...,cM for M524. The corresponding sequence of truncated Taylor se

FIG. 1. Sequence of truncated Taylor seriesFN(y) given by ~19! obtained in the case of Comptonization of a monoe
ergetic initial spectrum~42! plotted as a function ofy, with the truncation levelN indicated for each curve. Note tha
FN(y) diverges fory*0.15 even for largeN, due to the rapid growth of the magnitude of the initialu derivatives, as can
be seen in Table I. The asymptotic equilibrium temperatureueq54/3 is denoted by the dotted horizontal line.

FIG. 2. Sequence of continued fractionsCN(y) given by~20! obtained in the case of Comptonization of a monoenerg
initial spectrum~42! plotted as a function ofy, with the truncation levelN indicated for each curve. We have plotted th
results only for even values ofN because in this exampleCN(y) contains defects~extraneous poles! for some odd values
of N. Note thatCN(y) converges~though nonuniformly! for even values ofN throughout the entire computational domai
which extends well beyond the radius of convergence of the Taylor series depicted in Fig. 1. We require that acc
approximations approachueq asy→`.
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FN(y) is plotted in Fig. 4, and the sequence of continued fractionsCN(y) is plotted in Fig. 5.
Note that the radius of convergence of the Taylor series actuallydecreaseswith increasing trun-
cation levelN. Conversely, the sequence of continued fractions displays a pattern of un
convergence with increasingN. The uniform convergence is a consequence of the fact tha
computed continued fraction coefficients are all positive in this case, leading us to conjectu
the exact solutionu(y) is a Stieltjes function when the initial spectrum corresponds to optic
thin bremsstrahlung.12

The pattern of uniform convergence ofCN(y) in the bremsstrahlung case suggests that
can obtain a reasonable approximation for the exact solutionu(y) using the continued fraction
C24(y). We impose the bremsstrahlung initial condition~41! at y50 and solve the transpor
equation~30! usingDMOLCH over the range 0<y<2 and 0<x<50. The result obtained for the
function G(x,y)[x3f (x,y) is plotted in Fig. 6. The initial condition~41! combined with energy
conservation implies that the area under the curve*0

`G dx54 for all y. As y increases from zero

FIG. 3. Numerical result for the photon distributionG(x,y)[x3f (x,y) plotted as a function ofx for the indicated values
of y. In this case the initial spectrum imposed aty50 corresponds to a Gaussian distribution with meanx̄54, variance
s250.01, and total photon number densityN051, which approximates the monoenergetic initial spectrum~42!. The solid
lines denoteG and the dashed lines represent the asymptotic equilibrium Wien spectrum given by~43!. The photon
spectrum is essentially given by the Wien form fory*1, and the two distributions are indistinguishable fory52. The area
under the curves*0

`G dx54 due to energy conservation.

FIG. 4. Sequence of truncated Taylor seriesFN(y) obtained in the case of Comptonization of a bremsstrahlung in
spectrum~41! plotted as a function ofy, with the truncation levelN indicated for each curve. Note that the radius
convergence decreases with increasingN due to the rapid growth of the initialu derivatives~see Table I!. In this case the
asymptotic equilibrium temperatureueq50 due to the presence of an infinite number of zero-energy photons in the i
spectrum.
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the distribution evolves away from its initial bremsstrahlung form and attempts to approac
equilibrium Wien distribution~43!. However, in this case the photon number densityNr→`, and
therefore the asymptotic value for the temperatureueq50 as discussed earlier. The divergence
the number density is due to the presence of an infinite number of zero-energy photons
initial spectrum. Since these photons cannot all be upscattered to higher energies without vi
overall energy conservation, the ‘‘equilibrium’’ solution for the distribution function given by~43!
reduces to a pulse centered on zero energy, which is not a meaningful steady state solution
equilibrium cannot be achieved in the bremsstrahlung case, in contrast to the result obtaine
the initial spectrum contains a finite number density of photons, as in the monoenergetic ex
treated above. We analyze the self-consistency of the numerical solutions obtained in the m
ergetic and bremsstrahlung cases in Sec. VII.

FIG. 5. Sequence of continued fractionsCN(y) obtained in the case of a bremsstrahlung initial spectrum~41! plotted as
a function of y, with the truncation levelN indicated for each curve. Note the pattern of uniform convergence foN
51,2,3,4,5,6, which suggests that in this case the exact solutionu(y) is probably a Stieltjes function. ForN.6, the results
become strongly clustered around theN524 curve.

FIG. 6. Numerical results for the photon distributionG(x,y)[x3f (x,y) plotted as a function ofx for the indicated values
of y. In this case the initial condition is the optically thin bremsstrahlung spectrum~41!. The distribution function
approaches a pulse centered at zero energy asy increases due to the infinite number of zero-energy photons in the in
spectrum. The area under the curves*0

`G dx54 as a consequence of energy conservation.
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VII. EVALUATION OF THE METHOD

Our approach to the solution of the integro-partial differential transport equation~30! has been
to approximate the exact solution for the temperature functionu(y) by using the available deriva
tives to construct the highest-order continued fraction that is consistent with the known asym
behavior of the temperature. Withu(y) approximated in this way, we have solved for the phot
distribution f (x,y) using a standard computer algorithm commonly available in the IMSL libr
One may well ask whether there is any guarantee that the numerical solution so obtai
actually the correct physical solution. Interestingly, for the problem treated here thereis a method
that can be used toguaranteeboth the accuracy and the uniqueness of the solution. Thi
accomplished by integrating the numerically obtained distributionf (x,y) to calculate the corre-
sponding temperature distributiona posteriori using ~2! and ~3!. In the case of astrophysica
Comptonization that serves as our sample application in this paper, the corresponding exp
is u(y)5I 4(y)/I 4(0) as given by~34!. A comparison between the result foru(y) obtained in this
manner and the continued fraction approximationCN(y) used in the solution of the transpo
equation serves as the acid test of the entire mathematical and computational approach pr
here. In Figs. 7 and 8 we perform this comparison for the bremsstrahlung and monoen
initial spectra, respectively. The agreement is clearly excellent, verifying the validity of the ov
approach.

VIII. CONCLUSION

The technique developed here provides a powerful tool for determining the time depen
of the integral function in an integro-partial differential equationbeforesolving for the unknown
distribution. The numerical results we have obtained for the variation of the self-consisten
perature functionu(y) in the case of astrophysical Comptonization suggest that the metho
acceptable accuracy and reliable convergence properties. The first step in the procedur
determination of the initial derivatives ofu(y) at y50 using the algorithm described in Sec. II
which is based on the differential equation~10! governing the power momentsI n(y)
5*0

`xnf (x,y)dx. The initial derivativesu (n)(0) are then used to calculate the continued fract
coefficientscn appearing in the representation of the continued fractionCN(y). The convergence
of the continued fraction sequence is then analyzed and the highest-order fraction that
constructed using the available set of coefficients is used to approximate the exact solutionu(y).
Next, the transport equation~1! is solved numerically, using the continued fraction approximat

FIG. 7. Results obtained for the~input! continued fraction approximationC24(y) ~solid line! are compared with the
~output! temperature calculated using the integral definitionu(y)[I 4(y)/I 4(0) ~closed dots! for the Comptonization of a
monoenergetic initial spectrum. The dashed horizontal line indicates the asymptotic value of the temperature. Th
ment between the two results confirms the self-consistency of the solution obtained for the spectrumf (x,y), which
validates the mathematical approach.
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as input to calculate the integral term. Finally, the self-consistency of the solution is evalua
comparing the input continued fraction approximationCN(y) with the output temperature calcu
lated using the integral definitionu(y)[I a(y)/I a(0). Thelevel of agreement betweenCN(y) and
u(y) provides a measure of the overall accuracy of the solution procedure.

It is interesting to contrast the behavior of the continued fraction sequenceCN(y) with that of
the associated Taylor seriesFN(y). Since the self-consistent solution for the temperature inte
function u(y) is positive for all realy.0, the limited radius of convergence of the Taylor ser
must reflect the presence of poles inu(y) somewhere else in the complex plane. The existenc
these poles essentially dooms any attempt to construct a useful perturbation series for th
perature. Conversely, the success of the continued fraction representation stems from its a
produce a convergentglobal function that shares the same singularity structure as the e
solution u(y). In general,CN(y) converges toward the exact solution as the truncation leveN
increases, although the pattern of convergence can vary significantly from problem to pro
The cases for whichu(y) is a Stieltjes function are of particular importance because in th
situations the convergence of the continued fraction sequence is uniform.12

In our computational examples, which focus on astrophysical Comptonization, we are a
utilize energy conservation to derive the asymptotic value of the temperatureueq in the limit y
→`. This type of asymptotic information may not be available in every physical applicatio
the general transport equation~1!, but if ueq can be calculated, we also have the option
including this information directly into the continued fraction using a two-point algorithm suc
those given by Becker15 and by Baker and Graves-Morris.13 When this information is incorporate
into the continued fraction,CN(y) automatically approachesueq asy→`. Note that in order to
construct the two-point continued fraction we must first transform the time variable from
infinite domain 0<y,` to an equivalent finite domain.

The method presented here bears some relation to techniques for solving partial diffe
equations proposed by Jumarie16 and by Bender, Boettcher, and Milton.17 In Jumarie’s approach
a linear Fokker–Planck equation is used to generate moment equations similar to ours, wh
solved using a maximum entropy principle to obtain the distribution function. Conversely, Be
Boettcher, and Milton determine the distribution function governed by a nonlinear partial d
ential equation by employing a perturbation expansion followed by Pade´ summation, which re-
sembles our approach to modeling the integral functionu(y). Although the procedures develope
by these authors incorporate certain elements of the technique presented here, a crucial dis
is that their methods are not applicable to integro-partial differential equations.

In conclusion we point out that the procedure developed in this paper can be used as th
for a new solution technique, or it can be incorporated into existing predictor–corrector or g

FIG. 8. Results obtained for the~input! continued fraction approximationC24(y) ~solid line! are compared with the
~output! temperature calculated using the integral definitionu(y)[I 4(y)/I 4(0) ~closed dots! for the Comptonization of a
bremsstrahlung initial spectrum. The agreement between the two results confirms the self-consistency of the sol
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iteration algorithms as a means of generating a trial solution for the integral function, wh
subsequently improved upon using the standard methods. Our focus here has been upon th
of the method, and therefore we have not presented any comparisons between the efficie
the various algorithms available for solving integro-partial differential equations. Nonetheles
reasonable to expect that the method proposed here is likely to be quite efficient becau
temperature variation is determined in advance of solving for the distribution function. In
computational examples we have treated the problem of astrophysical Comptonization, w
governed by the transport equation~30!. However, we emphasize that the method is applicabl
any equation of the form represented by~1!, and that it can potentially be generalized to treat ot
transport equations, including those containing inhomogeneous, time-dependent source te
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Integral representations of harmonic lattice sums
Jingfang Huanga)

Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012

~Received 7 May 1999; accepted for publication 22 June 1999!

We present new integral formulas for Coulombic lattice sums that arise in solid
state physics, material science, and complex analysis. Unlike Ewald summation,
which can yield approximate integral representations, the formulas described here
are exact. Simple quadrature rules with modest numbers of nodes yield highly
accurate results. ©1999 American Institute of Physics.@S0022-2488~99!02910-2#

I. INTRODUCTION

Lattice sums arise in a variety of problems in mathematics, physics, biology, and chem
Examples include electromagnetic scattering by periodic arrays of obstacles, evaluation
lattice energy of crystals, analysis of the thermodynamic and structural properties of electr
and the computation of periodic solutions to partial differential equations. In this paper
consider the calculation of Coulombic lattice sums. In two dimensions, these take the form

Sn5 (
vPL2

1

vn , n>3, ~1!

whereL25$k11 ik2uk1 ,k2PZ,k11 ik2Þ0%. In three dimensions, the lattice sums are defined

Ln
m5 (

pPL3

Yn
m~up ,fp!/r p

n11, n>2, m50,...,n, ~2!

whereL35$(k1 ,k2 ,k3)ukiPZ,(k1 ,k2 ,k3)Þ(0,0,0)%, (r p ,up ,fp) are the spherical coordinates o
pPL3 , andYn

m(up ,fp)/r p
n11 is a spherical harmonic function of degree (2n21). The spherical

harmonics can be defined through the formula~Ref. 1!

Yn
m~u,f!

r n11 5An
m
•S ]

]x
1 i

]

]yD mS ]

]zD
n2mS 1

r D , ~3!

where

An
m5

~21!n

A~n2m!! •~n1m!!
. ~4!

All of the lattice sums defined above are absolutely convergent. In many situations of int
one also needs values forS2 , L2

0, L2
1, and L2

2. These quantities, however, are conditiona
convergent and their valuation depends on the details of the physical problem.

There are several systematic techniques available for calculating such sums. The best
method is due to Madelung and Ewald and is generally referred to as Ewald summation~Refs.
2–5!. The method works by separating the lattice sum into two parts. Restricting our attent
Sn , we write

a!Electronic mail: huangjf@courant.nyu.edu
52400022-2488/99/40(10)/5240/7/$15.00 © 1999 American Institute of Physics
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Sn5 (
vPL2

1

vn •F~v!1 (
vPL2

1

vn •„12F~v!…,

where F(v) is chosen so that the first sum converges rapidly in ‘‘physical space,’’ while
second sum decays rapidly in the Fourier domain, so that the Poisson summation formula~Ref. 6!
can be used effectively.F(v) is commonly chosen to be a simple Gaussian function. WhenF(v)
is the characteristic function of a subset ofL2 , the method is occasionally referred to as t
planewise summation method~see Refs. 7–9!.

A rather different approach is through the use of recurrence formulas. In the two-dimen
case, there is a remarkable nonlinear relation~Ref. 10! of the form

~4m221!~m23!S2m53 (
r 52

m22

~2r 21!~2m22r 21!S2rS2m22r , ~5!

for m>4. Given S4 and S6 , all higher-order sums can be evaluated in this manner.~The odd
lattice sums vanish.! Unfortunately,S4 andS6 are the most slowly converging, and are typica
computed via Ewald summation. Furthermore, the formula~5! has no known analog in the three
dimensional case. More recently, Berman and Greengard~Ref. 11! used renormalization argu
ments to obtain a linear, infinite recurrence relation of the form

Sn2 (
k5n

`

An2kSk5Rn , ~6!

where the termsAn andRn are simple finite sums. Their method extends to arbitrary dimens
and proceeds in the numerically attractive direction: i.e., it yields slowly converging sums in
of rapidly converging ones. Another approach, that of Helsing and Lambertet al. ~Refs. 12 and
13!, relies on multipole expansions to accelerate the direct evaluation of the lattice sum t
desired precision and requires an amount of work that grows logarithmically with the numb
lattice sites included.

In the present paper, we derive simple integral formulas~Theorems II.2 and IV.2! for the
lattice sumsSn and Ln

m . These formulas rely on ‘‘plane-wave’’ expansions of the fundame
singularity (1/z in two dimensions and 1/r in three dimensions!, which form the basis for modern
versions of the fast multipole method~Refs. 14–17!. We extend our analysis to the case of skew
lattices in two dimensions, where the corresponding sums play a fundamental role in the st
the Weierstrass̀ function. A numerical scheme based on these formulas is extremely simple
to implement, and achieves very high accuracy.

II. TWO-DIMENSIONAL THEORY

Our starting point for the two-dimensional case is the plane-wave representation for a p
degreen ~Ref. 15!.

Theorem II.1: Let z5x1 iy denote a point in the complex plane:

If x.0, then
1

zn 5
1

~n21!! E0

`

ln21e2lz dl;

if x,0, then
1

zn 5
1

~n21!! E0

`

~21!n
•ln21elz dl;

if y.0, then
1

zn 5
1

~n21!! E0

`

~2 i !n
•ln21eilz dl;
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i f y,0, then
1

zn 5
1

~n21!! E0

`

i n
•ln21e2 ilz dl.

We will refer to these as theeast, west, north,and southformulas, respectively.
Proof: For n51, each formula is obvious by inspection. Differentiation yields the gen

case. j

Theorem II.2: Let n>3. If n is not a multiple of 4, then Sn50. Otherwise,

Sn5
4

~n21!! E0

`

e2l
•ln23

•Fl2
11cosl

122e2l
•cosl1e22lGdl. ~7!

Proof: If n is not a multiple of 4, simple symmetry considerations show thatSn50. For n
54l , we divide the lattice points in the plane as follows. Theeast list is defined to be the se
$(k, j )uk, j PZ,k.0,2k< j <k% and thewest list is defined to be the set$(2k, j )uk, j PZ,k.0,
2k< j <k%. The north list is defined to be the set$( j ,k)u j ,kPZ,k.0,2k, j ,k% and thesouth
list is defined to be the set$( j ,2k)u j ,kPZ,k.0,2k, j ,k%. Note that lattice points along th
diagonal linesx56y are preferentially assigned to theeastand west lists. Making use of the
integral representations in Theorem II.1, we can write

Sn5
2

~n21!! E0

`

ln21(
k51

`

e2lk
•S (

j 52k

k

e2 il j1 (
j 52k11

k21

e2 il j D dl.

The various geometric series can be summed analytically, yielding the desired results.j

III. APPLICATION TO ELLIPTIC FUNCTIONS

The two-dimensional lattice sumSn is a special case of the Eisenstein seriesGn that arises in
complex analysis and number theory, especially in the study of the Weierstrass` function.

Definition III.1: Let t5(t1 ,t2) be a complex number witht2.0 and 2 1
2,t1< 1

2, and letV
denote the set$k11k2tuk1 ,k2PZ,k11 ik2Þ0%. The Weierstrass̀ function is defined by

`~z!5
1

z2 1 (
vPV

H 1

~z2v!22
1

v2J .

If we expand thè function as a Laurent series about the origin, we obtain

`~z!5
1

z2 1 (
n51

`

~2n11!G2n12z2n,

where

Gn~t!5 (
vPV

1

vn .

The series is valid for 0,uzu,min$uvu:vPV%.
Notice that theGn(t) is, in general, a skewed lattice sum. Our method, however, still app
Theorem III.1: Let n>3. If n is odd, then Gn50. Otherwise, Gn has the integral represen

tation

Gn~t!5
2

~n21!! E0

`

ln21@ f 1~l,t!1 i nf 2~l,t!#dl, ~8!

where
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f 1~l,t!5
el2elt1el1lt1el12lt

~el2elt!~el1lt21!
, ~9!

and

f 2~l,t!5
ei ~l1lt!~11eilt!

~eilt2eil!~ei ~l1lt!21!
. ~10!

Proof: Using the same decomposition as in the proof of Theorem II.2, we obtain

Gn~t!5
11~21!n

~n21!! E
0

`

ln21(
k51

`

(
j 52k

k

e2lke2l j t dl

1
i n1~2 i !n

~n21!! E
0

`

ln21(
j 51

`

(
k52 j 11

j 21

eilkeil j t dl.

If n is odd, it is clear thatGn50. Explicit evaluation of the sums~all of which are absolutely
convergent! completes the proof. j

From the Laurent expansion for̀(z) and the fact that

ez1e2z52(
n50

`
z2n

~2n!!
,

we have the following corollary.
Corollary III.1: The Weierstrass̀ (z) function has the integral representation

`~z!5
1

z2 1E
0

`

l@~elz1e2lz22! f 1~l,t!2~eilz1e2 ilz22! f 2~l,t!#dl. ~11!

IV. THREE-DIMENSIONAL THEORY

We turn our attention now to the lattice sumsLn
m , with n>3 and 0<m<n. By symmetry

considerations, it is easy to show thatLn
m50 unlessn is even andm is a multiple of 4. We,

therefore, restrict our attention to the nonzero cases.
In Refs. 16–17, the following plane-wave expansions are introduced and used to diago

certain translation operators. The cases withn50 can be found in Ref. 18 and the higher-ord
results follow from~3!.

Theorem IV.1: Let (x,y,z) be a point with spherical coordinates(r ,u,f) and let C
51/„2pA(n2m)!(n1m)! …. If z.0, we have theup formula

Yn
m~u,f!

r n11 5C• i mE
0

`E
0

2p

eimalne2lz1 il~x cosa1y sin a! da dl. ~12!

For z,0, we have thedown formula

Yn
m~u,f!

r n11 5C• i m~21!n2mE
0

`E
0

2p

eimalnelz1 il~x cosa1y sin a! da dl. ~13!

For y.0, we have thenorth formula

Yn
m~u,f!

r n11 5C• i n~21!n2mE
0

`E
0

2p

~cosa21!m~sina!n2mlne2ly1 il~x cosa1z sin a! da dl.

~14!
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For y,0, we have thesouthformula

Yn
m~u,f!

r n11 5C• i n~21!n2mE
0

`E
0

2p

~cosa11!m~sina!n2mlnely1 il~x cosa1z sin a! da dl.

~15!

For x.0, we have theeastformula

Yn
m~u,f!

r n11 5C• i n2m~21!nE
0

`E
0

2p

~cosa11!m~sina!n2mlne2lx1 il~y cosa1z sin a! da dl.

~16!

For x,0, we have thewest formula

Yn
m~u,f!

r n11 5C• i n2m~21!nE
0

`E
0

2p

~cosa21!m~sina!n2mlnelz1 il~y cosa1z sin a! da dl.

~17!

Theorem IV.2: Let n be an even integer and let m be a multiple of 4. Then

Ln
m5CE

0

`

ln23e2lE
0

2p H cos~ma!
f ud~l,a!

d~l,a!
1 i n~cosa11!m~sina!n2m

f nsew~l,a!

d~l,a! J da dl,

~18!

where

C51/„pA~n2m!! ~n1m!! …,

TABLE I. The nonzero lattice sumsSn for n<100.

n Quadrature nodes Sn

4 108 0.315 121 200 215 41D101
8 104 0.425 577 303 536 49D101

12 98 0.393 884 901 282 80D101
16 76 0.401 569 503 302 50D101
20 62 0.399 609 675 317 63D101
24 52 0.400 097 680 530 38D101
28 50 0.399 975 587 547 45D101
32 50 0.400 006 103 605 38D101
36 53 0.399 998 474 126 80D101
40 59 0.400 000 381 470 10D101
44 59 0.399 999 904 632 59D101
48 61 0.400 000 023 841 86D101
52 65 0.399 999 994 039 53D101
56 69 0.400 000 001 490 12D101
60 69 0.399 999 999 627 47D101
64 69 0.400 000 000 093 13D101
68 71 0.399 999 999 976 71D101
72 72 0.400 000 000 005 85D101
76 72 0.399 999 999 998 54D101
80 76 0.400 000 000 000 39D101
84 76 0.399 999 999 999 90D101
88 80 0.400 000 000 000 02D101
92 80 0.399 999 999 999 97D101
96 86 0.400 000 000 000 00D101

100 86 0.400 000 000 000 00D101
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f ud5l3$112 cos~l cosa!12 cos~l sina!14 cos~l cosa!cos~l sina!

1e2l
„122 cos~l cosa!22 cos~l sina!24 cos2~l cosa!24 cos2~l sina!…

1e22l
„2114 cos~l cosa!cos~l sina!…2e23l%,

f nsew52l3$11cos~l cosa!12e2l
„cos~l cosa!1cos2~l cosa!…2e22l

„11cos~l cosa!

12 cos~l sina!12 cos~l cosa!cos~l sina!…%,

and

d~l,a!5~122e2l cos„l~cosa2sina!…1e22l!~122e2l cos„l~cosa1sina!…1e22l!.

Proof: The derivation of this formula is analogous to the two-dimensional case. We om
details, but note that the termf ud collects the contributions from theup anddowndirections, while
the term f nsew collects the contributions from the other four directions. The functi
f ud(l,a)/d(l,a) and f nsew(l,a)/d(l,a) are well defined asl→0. The zeros in the denominato
are canceled by zeros in the numerator. j

TABLE II. The nonzero lattice sumsLn
m for n<20.

n m Nl , Na Ln
m

4 0 160, 60 0.310 822 668 269 93D101
4 4 166, 66 0.185 752 072 772 93D101
6 0 200, 100 0.573 329 289 434 56D100
6 4 160, 66 20.107 260 088 543 32D101
8 0 154, 66 0.325 929 309 334 95D101
8 4 154, 66 0.122 565 950 318 49D101
8 8 146, 66 0.186 744 362 272 51D101

10 0 146, 66 0.100 922 398 807 09D101
10 4 146, 66 20.101 695 761 831 70D101
10 8 128, 66 20.121 042 167 434 54D101
12 0 128, 70 0.289 125 410 827 68D101
12 4 132, 70 0.891 680 221 309 52D100
12 8 106, 66 0.106 997 412 357 96D101
12 12 100, 66 0.158 877 975 803 36D101
14 0 116, 78 0.115 363 679 871 65D101
14 4 120, 82 20.848 339 903 867 39D100
14 8 116, 78 20.910 342 301 833 73D100
14 12 110, 74 20.110 536 661 309 21D101
16 0 100, 82 0.279 235 629 890 90D101
16 4 94, 82 0.800 719 357 862 68D100
16 8 88, 78 0.841 131 590 059 37D100
16 12 84, 74 0.947 939 589 167 13D100
16 16 72, 70 0.150 058 477 228 41D101
18 0 90, 86 0.125 802 435 502 05D101
18 4 90, 86 20.749 850 929 484 74D100
18 8 86, 86 20.784 927 978 206 34D100
18 12 82, 82 20.845 512 429 512 04D100
18 16 76, 78 20.104 366 495 400 43D101
20 0 80, 90 0.270 422 478 070 66D101
20 4 80, 90 0.709 961 282 759 62D100
20 8 80, 90 0.734 552 158 130 00D100
20 12 72, 86 0.783 312 574 984 17D100
20 16 68, 82 0.891 188 099 869 61D100
20 20 60, 78 0.141 533 291 104 07D101
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V. NUMERICAL RESULTS

To illustrate the utility of our integral formulas, we evaluate the two- and three-dimens
lattice sums using generalized Laguerre quadrature withNl nodes for the integral on@0,̀ # with
the weight functionW(x)5e2x

•xn23, and the trapezoidal rule withNa nodes for the inner
integral on@0, 2p# in the three-dimensional case. The results are listed in Tables I and II.

We compare our calculations to the results obtained in Ref. 11. They agree to at le
significant digits.

VI. CONCLUSION

In this paper, we have developed new integral formulas for harmonic lattice sums in tw
three dimensions. Our method relies on the existence of plane-wave expansions for the fun
tal solution, and can be used for rectangular or skewed lattices. The approach can be exte
a variety of kernels, including screened Coulomb~Yukawa! potentials and Helmholtz potential
~Ref. 19!. Work along these lines is in progress and will be reported at a later date. Applica
of the integral representations to problems in analytic number theory remain to be investig
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The problem considered here is to find a function satisfying a linear elliptic differ-
ential or integral equation inside a finite simply regionV and another linear first-
order differential or integral equation on the]V boundary. The symmetries of the
above problem form a point group. We show that if the homogeneous problem has
only the trivial solution, then the symmetry of the solution insideV inherits the
symmetry of the boundary value, given on]V. The boundary value is decomposed
into irreducible components and the physical meaning of the irreducible compo-
nents is highlighted. We then apply the results to investigate a widely utilized
numerical solution technique that is based on a variational principle and utilizes
two approximations. The first one approximates, the solution insideV by a poly-
nomial, the second approximation assumes the solution on the boundary to be a
low-order polynomial. By means of group representation theory, we show that the
mentioned approximations may fail for certain combinations. The predicted prob-
lems have been observed in theVARIANT code, which is routinely used to solve the
multigroup neutron diffusion equation. Our method is also applicable to the Schro¨-
dinger, and to heat conductance and wave equations. ©1999 American Institute
of Physics.@S0022-2488~99!02610-9#

I. MOTIVATION

In the main fields of the authors, in neutron physics, we are looking for numerical techn
to solve the multigroup neutron diffusion equation in a large volumeV of mosaic-like structure.
One of the final goals is to work out real-time simulator models, where a computer pro
simulates a nuclear reactor. These days, the state of the art of reactor physics allows only fo
a crude but real time or a fine but slow modeling of a power reactor core. Thus, accele
methods are sought.

It is known that given a groupG, the domain of which includes the solution spaceL, we can
split L into uGu orthogonal subspace.1 Since most numerical models arrive at a set of line
equations,2 the obvious thing is to exploit the splitting offered byG. Furthermore, ifG leaves the
equation invariant, we can evaluate certain matrix elements easily.3 In some cases we may hope
split the problem into independent subproblems.

In the investigations below, we focus on second-order equations~Schrödinger, heat conduc-
tance, diffusion, wave equation, etc!, where the physical parameters~potential, heat conductance
diffusion constant, etc.! are regionwise constant and finite inV. In such cases2 the solution of a
boundary value problem is continuous at internal material interfaces, and the normal grad
the solution is also continuous. The solution of the problem is unique. What is usually not u
is the solution to the associated eigenvalue problem, where we require some linear expres
the solution to become zero at the boundary. For some equations, however, the solution is

a!Electronic mail: makai@sunserv.kfki.hu
b!Electronic mail: YOrechwa@aol.com
52470022-2488/99/40(10)/5247/17/$15.00 © 1999 American Institute of Physics
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up to a constant multiplication factor, and even positive inside the investigated volume.4

The symmetry group of the equation5,6 can play the role of groupG. In a finite volumeV, the
symmetries of the problem make a point group. The question is, how can we exploit th
solution space is split into orthogonal components? First, we find out, under what conditio
solution will possess the same symmetries as those of the boundary value. For a given c
operators, the solution insideV will be shown to inherit the symmetries of the boundary value
]V. Hence, for those operators the decomposition of the boundary value into irreducible co
nents entails a decomposition of the solution insideV. In other words,V can be characterized b
the solutions developing in response to some model boundary conditions. Those responses
calculated beforehand and an effective iteration can be worked out in order to solve the bo
value problem.

When solving practical problems, we often resort to numerical methods.7 A natural iteration is
organized as follows.V is subdivided into smaller volumes called nodes. We sweep through
nodes one by one. Since the boundary sources determine the solution, first we collect the s
on the boundary using the continuity condition at internal boundaries and the boundary con
at an external boundary. We can approximate the solution on the boundary by low-order p
mials. The solution inside the node may again be approximated by some polynomials and
the solution, we reevaluate the solution and its gradient at the boundaries and pass on to t
node. This procedure is often applied not to the solution, but to a linear combination o
solution and its normal gradient. This specific iterative method8 is based on variational principle
and runs into convergence problems. With the help of group theory, we can predict what ki
approximations will lead to a convergence problem.

The structure of the paper is as follows. In Sec. II, the investigated boundary value prob
defined. The symmetries of a boundary problem9 and their consequences are dealt with in Sec.
A generally utilized iteration scheme is described in Sec. IV. Applications to neutron diffusio
provided in Sec. V. In Sec. VI we offer a number of concluding remarks.

II. THE PROBLEM

Throughout the present work, we consider the following boundary value problem:

AC~r !5Q~r !, r PV;
~1!

BC~x!5q~x!, xP]V,

whereV is a finite simply connected volume; its boundary is]V. Q(r ) is the external source inV,
q(x) is a given function on the boundary]V. OperatorA is a linear, second-order differentia
operator in the space variablex, B is a linear, first-order differential operator. IfA andB involve
space-dependent functions, representing material properties, those functions are con
smooth functions ofx. We assume that eitherQÞ0 or qÞ0.

We assume, furthermore, that the homogeneous problem, withQ50 andq50, has no non-
trivial solution. Under the stipulated conditions, the Fredholm alternative theorem ensures th
boundary value problem has a unique solution.10 VolumeV is often subdivided into parts that w
call nodes, and inside a node the material properties are assumed as constant inx. In this case, the
solution and its suitable normal derivative is continuous at internal material interfaces.
problems are plentiful in mathematical physics.

Example 1:The first problem, which is mainly dealt with in this paper, is the multigro
neutron diffusion equation:2

A52¹2CI ~r !1SCI ~r !, ~2!

where

Sgg85~Sg2xgnS f g82Ssg82g!/Dg . ~3!
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Here subscriptg refers to the neutron’s energy~energy group index!, Dg is the diffusion constant
in energy groupg, Sg is the removal cross section in groupg, nS f g is the production cross section
Ssgg is the scattering cross section, andxg is the fission spectrum in energy groupg. The solution
CI is called neutron flux, it is a vector, its componentCg gives the neutron flux in energy grou
g. The normal component of the net current isJg(x)52Dg “nCg(x), wheren is the normal
direction. The solution of problem~1! is positive providedQ(r ) andq(x) are positive functions.
OperatorB may fix the flux, its normal gradient, or their linear combination.

Example 2:The Schro¨dinger equation.11 A particle of massm0 moves in a potential field
V(x). The particle wave function isC(x), satisfying the Schro¨dinger equation:

A52
\2

2m0
¹2C~r !1V~r !C~r !. ~4!

When a finite region is considered, the boundary condition may beC(x)50 on the boundary.
Analogous problems emerge in heat conductance, wave propagation, time-dependen

sion, and in linear Boltzmann particle transport.12

Often we solve problem~1! iteratively. The solution and its normal derivatives are continu
at internal interfaces. With the help of the Green’s function, the normal derivative on the bou
can be expressed by the solution on the boundary. The boundary currents can be expre
boundary fluxes; this permits one to eliminate the gradients and to iterate only for the solu
internal boundaries. The continuity condition leads to a fix point problem; we have to fin
fixed point of a set of equations.

III. SYMMETRIES OF BOUNDARY VALUE PROBLEMS

Consider a linear operatorA acting on the function spaceL2(V), whereV is a symmetric
convex region. For a boundary condition problem, we assume linear operatorB to form a function
given on the boundary. The range of operatorA includesV; the range of operatorB includes the
boundary]V. The operators commuting withA andB form the groups,GA andGB , respectively.
Let GV denote the symmetry group ofV. The boundary value problem~BVP! is then determined
by ~V, A, B!. We define the symmetry of the boundary value problem as follows.

Definition 1: A linear operatorP is said to be the symmetry of the boundary value prob
~V, A, B! if (a) P transforms V into itself; (b)P andA commute:PA5AP; (c) P andB commute:
PB5BP. The symmetry group of the problem~V, A, B! is the intersection

G5GVùGAùGB ,

whereGV , GA , andGB are the symmetry groups ofV, A andB, respectively.
The symmetries of problem~V, A, B! form a group. This group may consist of a sing

element, the identity transformation, or of an infinite number of symmetries. This partly dep
on operatorsA andB. In a number of cases, it suffices to ensure thatP commutes withA; then it
commutes withB as well. OftenB is the identity transformation~Cauchy-type problem! or the
normal gradient~Neumann-type problem!, or a linear combination of these two operators. Mo
boundary value problems of reactor physics belong to one of these.

The symmetries of the boundary condition problem~V, A, B! suggest the application of poin
group theoretic techniques. Depending on the problem, the symmetries may form, for exam
discrete group or a Lie group. The symmetries can also be arranged into conjugacy class13 to
which the results of group representation theory apply. Thus, by means of a projection op
~A6!, any function can be decomposed into functions transforming according to the irredu
representations~irreps!. First, we investigate some of the basic properties of the irreps.

According to projection operator~A6!, the irrep f i of a functionf is a linear expression off
taken at different points in the range off. Consequently, iff is n times differentiable, so is the irrep
f i . Let f i(u) be given in the intervaluP@0,p/2nF).
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Definition 2: The@0,p/2nF) interval is closed from the left and open from the right and
called the ground (where nF is the number of faces of V!.

The directionu5p/2nF is a symmetry axis, and the character table tells us thatf i is an
eigenvector of each symmetry operator, with the eigenvalue given in thei th row of the character
table and in the column corresponding to the symmetry, thus, by applying a reflection throu
face to f i , we can obtain the functionf i in the range@0,nF). Here@,! denotes an interval close
from the left and open from the right. Now, applying the rotational symmetry ofV, the f i(u)
function is obtained for the entire@0,2p# interval. Whenf i is a component of a two-dimensiona
representation, more care is needed because the components may transform into each oth
we arrive at the following statement.

Lemma 1: Let f be a given function on the boundary]V. If f (u) belongs to Cn, then its irreps
f i(u) determined by (A6) also belong to Cn. The irrep fi(u), 0<u<2p is uniquely given by its
value in the ground@0,p/2nF).

Thus, the ground is the quotient manifoldV/G. The first question is the following: If we hav
a decomposition of the boundary condition, do we also have a decomposition of the sol
What can we gain by such a decomposition of the solution?

Basic Lemma. Let the problem

Aw50, in V,
~5!

Bw5 f , on ]V,

be given, and the linear operatorsA andB be such that (a) when f50, the only solution isw50,
i.e., the homogeneous problem has only the identically zero function as the solution; (b) th
space of operatorB is empty, i.e., ifBw50 thenw50.

Then, if f transforms according to the ith irreducible representation on the boundary
solution transforms according to the ith irreducible representation inside V.

Proof: Let f 5 f i be a one-dimensional irreducible representation andw i the corresponding
solution. Then, for any symmetryP we havePf i5a i f i . Applying P to the second equation an
making use of the commutation ofP andB, we getPBw i5BPw i5a iBw i5a i f i . Applying P to
the first equation, we getPAw i5APw i50. Multiplying the first equation bya i , and becauseA is
linear, we also haveA(a i ,w i)50. Thus, we have the following equations for (Pw i2a iw i):

A~Pw i2a iw i !50, in V
~6!

B~Pw i2a iw i !50, on ]V,

but according to assumption~a!, the only solution is (Pw i2a iw i)50, which proves the statemen
for a one-dimensional representation. Note that the second equation above is not true
assumption~b! is met.

Let f 5 f i be a component of a two- or three-dimensional representation, i.e., it transform

Pf i5(
k

Pik f k .

The boundary condition~BC! for each componentk is given by Bwk5 f k . Multiplying that
equation byPik and summing overk, B being linear, we have

BS (
k

PikwkD 5(
k

Pik f k .

Multiplying the second equation of the problem byP, and using the linearity ofB, we have
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PBw i5BPw i5(
k

Pik f k .

Subtracting the last two equations, we get, by means of assumption~b!,

BS Pw i2(
k

PikwkD 50;

thusw i transforms as thei th column of a multidimensional representation on]V.
As to the transformation rules inV, if we multiply the first equation in~6! by Pik , sum over

k on one hand, and on the other we multiply the equation again byP and subtract the two. We
have

AS Pw i2(
k

PikwkD 50.

The last two equations form a BVP, the only solution of which is identically zero. This comp
the proof. It should be noted that the second step of the proof also includes the first step.

Corollary: By virtue of the linearity of the problem, when a volumetric source Q is includ
the solution to

AFQ5Q, in V,

BFQ5 f , on ]V,

is given byFQ5F1C, whereF is the solution of (5) andC is the solution of

AC5Q, in V,

BC50, on ]V.

Applying the argument used in the proof of the Basic Lemma, we arrive at the following re
Let qi be thei th irreducible component ofQ. Then, an irreducible decomposition of the soluti
is FQ5C i1F i , where

AC i5qi in V,
~58!

BC i50, on ]V,

and

AF i50, in V,
~59!

BF i5 f i , on ]V.

The Basic Lemma allows one to find suitable representations for the boundary values]V
and for the solution inV. The general prescription is to find suitable representations with whi
general function—given along the boundary—is decomposed into irreps, and then to sol
above equations for the components. To this end, projector~A6! is applied. Here we set out th
following notation. A pointx on the]V boundary of the simply connected volumeV is charac-
terized by an angleu measured from a suitable center insideV. We assume, furthermore, that]V
consists ofnF faces. WhenV is a regular triangle, square, hexagon, or pentagon, the faces a
equal length or area and there are 2nF symmetry transformations leavingV invariant. Now the
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symmetries of the problem transform one point of the boundary into another boundary point.
projector~A6! applied to a functionf (u) will give linear combinations off (u), i 51, 2nF , and,
the u i points belong to one orbit.

Lemma 2: The irreps of a boundary value f(u) take the form

f i~u!5mi~u modp/nF!ei S F u

p
nFG D , ~7!

where [ ] denotes the entire part, and the function ei ( ) takes only integer values, furthermore, th
mi function is not identically zero on the ground.

Proof: The irrep f i(u) is projected out according to Eq.~A6!, therefore it is a linear combi-
nation of POi

* f (u)5 f (Oi* u), OiPG. The transformed points under the elements of groupG

form an orbit. The orbits crossing different points of the ground are equivalent, hence the
ground can be treated as a single unit.f i(u) will transform as thei th column of an irreducible
representation only whenf i(u) takes the value in the ground multiplied by a constant for e
transform of the ground. In other words,f i(u) is given by a nonzero distribution in the groun
and the amplitudes in each transform along the pathV/G. This is precisely Eq.~7!, thus, the
lemma is proven. As a consequence of Lemma 2, we may characterize the irreps of a fu
given along the boundary by a vectorei , which is composed of the 2nF values taken by the
function ei(u), 0<u<2p.

The irreps of the boundary condition have an important physical meaning: The irreps
depend on the shape ofV. Since physical meaning is more transparent in a simple geomet
shape, let us consider the irreps of a square shapedV ~see Fig. 1!. They represent characterist
ambiances into which the volume under consideration is imbedded. The first one repres
homogeneous ambiance, the second and third one anx and ay directed gradient, respectively, an
the fourth one a second derivative. To illustrate the impact of the geometrical shape ofV on the
irreducible boundary condition components, we introduce the irreps for a regular hexagon-s
volume ~see Fig. 2!. Evidently, the six faces allow for a wider variety of ‘‘gradients.’’

We would just mention here that when we determine the energy of a charged body
presence of an external electric potential field, we use an analogous decomposition.14 The w(x)
potential obeys the Poisson equation. In homogeneous space, the symmetry group of the
operator is the rotation group; the irreducible basis functions are the spherical harmonics.
charge distributione(x) and the potentialw(x) are expanded in terms of the spherical harmon
Ylm , we get

w~x!5(
l ,m

almYlm ; e~x!5(
k,n

QknYkn ,

FIG. 1. Irreducible entering current patterns for a square node.
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U5E
V
w~x!e~x!dx5(

l ,m
almQlm , ~8!

because the spherical harmonics form an orthonormal set. The terms in the sum correspon
multipole ~monopole, dipole, quadrupole, etc.! expansion. In Eqs.~58! and ~59!, the analogous
symmetry components~irreducible representations! of the components are given. In those expre
sions, however, the external components~f i andqi! and the internal components~C i andF i! are
not separated explicitly.

IV. THE ITERATION

Now let us turn to the iterative solution of problem~1!: more precisely, instead of problem~1!,
we deal with the associated eigenvalue problem, which has a distinguished role in neutron p
Consider the following problem:

A~k!F~r !50, r PV,
~9!

BF~x!50, xP]V,

whereA(k)5A(1)11/k* A(2), andV is convex and composed of homogeneous regions:

V5 ø
j 51

N

Vj ,

where regionsj and j 8 are disjoint except for the joint boundary]Vj j 8 . N is the number of
homogeneous regions. Let]Vj denote the boundary of region~or node! j; then

VjùVj 85]Vj j 85~]Vj !ù~]Vj 8!.

A boundary]Vj is called an external boundary, if

]Vjù]V5]Vj .

If ]Vj is not external, then it is an internal boundary.A(k) andB are linear operators. BothA(k)
andB may involve functions as coefficients.

In volume j, the equation to be solved is written as

A j~k!F j~r !50.

FIG. 2. Irreducible entering current patterns for a regular hexagon.
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where subscriptj refers to regionj in which the coefficients associated with eachA j may be
different. We assume, furthermore, the existence of a value of parameterk which turns the larges
eigenvalue ofA(k) into zero. The associated eigenfunction is non-negative.

On external boundaries, operatorB involves only linear expressions:

BF5ajE
]Vj

F j~x!dFj1bjE
]Vj

]nF j~x!dFj50.

Hereaj andbj are constants. In problem~1!, we have two types of approximations: the first is
the neutron distribution function inside the node, the second of the neutron distribution functi
the surface of the node. Let the basis function set in noden be @f i(r ), i 51,...,Nv# and on the
surface]Vn ~hj (x), j 51,...,Ns!. Let us expand the solution inside a given node as

F~r !5(
i 51

Nv

z i f i~r !, ~10!

and on the surface of the node as

F~x!5(
i 51

Ns

x jhj~x!. ~11!

Here the node index is suppressed; theNv andNs are the same for every node. The space varia
inside the node isr; on the surface it isx. Thus, in general, we need a new coordinate~h!
expressing how far a point is from the boundary. We use the coordinate system of Fig. 3
boundary is given byh50 andh51 is the center of the node. Thus, in general,r 5(x,h) and on
the boundaryh50. Theh5const lines are parallel to the volume’s surface.

The two approximations@i.e., Eqs.~10! and~11!# are not independent, because whenh tends
to zero, the trial functionsf i(r ) must be expressible with the help of the trial functionshj (x):

f i~x,0!5(
j 51

Ns

bi j hj~x!; ~12!

thus

x j5(
i 51

Nv

bi j z i . ~13!

If condition ~12! does not hold, the approximation is not self-consistent.
Let us express the volumetric source with the help of the basis functions as

FIG. 3. Coordinate system in a node.
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S~r !5(
i 51

Nv

f i~r !si . ~14!

In this expansion and in the following we use the dot product, defined as

~ f ,g!Vn
5E

Vn

f ~r !g~r !dV. ~15!

With the matrices

A i j 5~ f i~r !,A f j~r !!Vn
, ~16!

and

Bi j 5~hi~x!,Bf j~x,0!!]Vn
5bi j , ~17!

problem~1! is cast into the following form~see Ref. 8 for details!:

Az5s2Mx, ~18!

wherez denotes the solution to the source problem,

Az5s, inside V;

Bz50, on 2 ]V, ~19!

and a particular solution to the nonhomogeneous problem isMx .

AM x50, BMx5x. ~20!

From the second line of Eq.~20!, we getM5B21. This assumes that matrixbi f in expression~12!
is invertible. In that caseMx is an interpolation: it interpolates the solution in the interior of t
node from the values given on the boundary. The iteration may sweep through the nodes, s
out from a sensible initial guess. The first step in a new sweep is to solve Eq.~20! in the actual
node, so we first collectx on the boundary of the actual node using the continuity conditions.
new solution is (z1Mx). From this, we determine the updated boundary values and pass on
next node.

The iterative solution based on Eqs.~18!–~20! will be explored by symmetry considerations.15

If there are transformations mapping the node into itself, these transformations form a
commuting with operatorsA andB. Such a group generates a splitting of the solution space
linearly independent subspaces. OperatorsA andB transform the elements of each subspace o
among themselves, thus, the mentioned subspaces remain linearly independent when a
either operator to an element of the solution space. The main idea is as follows. Since the c
and fluxes are continuous at material interfaces, so is their arbitrary linear combination
introduce the entering currentJ151/4(F12J) and the exiting currentJ251/4(F22J). We
collect the fluxes, currents, and entering and exiting currents into vectors ofnF elements:

JI 5~J1 ,...,JnF
!; FI 5~F1 ,...,FnF

!,

JI 15~J1
1 ,...,JnF

1 !; JI 25~J1
2 ,...,JnF

2 !.

If the iteration goes as
                                                                                                                



deter-
ion. If

ndent
urface
t

these
on

f

esent
n but
non is
ver the
oneous

th. The
.
any

ions.
en at
ndary

ting

5256 J. Math. Phys., Vol. 40, No. 10, October 1999 M. Makai and Y. Orechwa

                    
II15TII25~112R!~122R!21II2 ~21a!

or

JI 5RFI , ~21b!

and there is a symmetrical matrixM such thatMR5RM , then the eigenvectors ofM form a
suitable basis function set to expand the quantities involved in the iteration:

MeI i5l ieI i ,

FI 5(
i

f ieI i ; JI 5(
i

gieI i ,

and on the new basis,R andT will be diagonal:

gi5~MRM 21! i f i .

The iteration proceeds as follows. From the flux on the boundary, the solution inside is
mined. In the next step, the new current on the boundary is calculated from the inside solut
there is ani such thatf iÞ0 butgi50, then we getR50 andT51, indicating that in (JI 1,JI 2) no
convergence will occur.

Our purpose in the investigation is to find a relationship between two apparently indepe
approximations. What is the relationship between the approximation of the volumetric and s
source terms? The numerical method16 implemented inVARIANT allows for two independen
approximations for the two terms, but in certain cases the procedure did not converge. In
cases a nonvanishing, small error was observed17 in the solution, furthermore, the phenomen
disappeared when a sufficiently high-order approximation was applied inside the node.

V. APPLICATION TO POLYNOMIAL APPROXIMATION

A. Square node

In a symmetric volume, the elements of the groupG will play the role of matrixM . The
eigenvectorseI i are simultaneous eigenvectors of the elements inG. Eventually, the symmetries o
the node permit one to classify the solution into different components. According to Eqs.~58! and
~59! in Sec. II, the internal solution contains a given component only if that component is pr
either in the source or in the boundary condition. If a component is missing from the solutio
is present in the boundary condition, it may cause numerical problems. This phenome
caused by solutions of the problem, which have zero average both over the node and o
entire node boundary. Such solutions do not contribute to the balance but may lead to an err
solution.

Before assessing the boundary value problems, a few general statements are set for
symmetry analysis of the solution of BVPs is given in Sec. III. We repeat briefly two things

~i! An irreducible component is simultaneously an eigenfunction of every symmetry, and
function can be decomposed into irreducible components.

~ii ! Applying the symmetries to a function, we get the same function at symmetric posit
An irreducible component is a linear combination of the function under consideration tak

symmetric positions. Now we introduce the response matrix in order to eliminate the bou
currents and to set up an iteration for the boundary fluxes.

Definition 1: Let u5(u1 ,...,unF) andn5(v1 ,...,vnF) be the respective values of functionu
andv on thenF faces. Both functions are formed from the flux by linear operations commu
with the symmetries of the node. The matrixR relatesu andn as

u5Rv, ~22!
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and is called a response matrix.
Proposition 1: If V is a symmetric region, then any response matrix, as in Definition 1

diagonalized by expressing bothu andn by their irreducible components. If there are equivale
irreducible components, the response matrix will be block diagonal.

Below, it is shown that if a subspace is present in the approximation to the solution o
boundary, but not in the representation inside the node; the iteration scheme~18! will not converge
because there is a subspace whose contribution does not decay during the iteration; its am
does not decrease with the number of iterations.

Proposition 2: Let us decompose the solution spaceL into irreducible subspaces asL
5(L(I ), ...,L(K)). If there is a subspaceL(m), which is present in the boundary representation
missing from the internal representation, then the component corresponding toL(m) represents a
subspace of the entering current vector that will not decrease in the iteration~18!.

Proof: The response matrix can be calculated in the following manner. The flux on
boundary is expressed in terms of the approximate polynomials as Eq.~4!, and by the assumption
there is at least one nonzero coefficient in the expansion. According to the Basic Lemm
solution inside the node will belong to the same subspace as the boundary condition. But,
assumptions this subspace is empty inside the node, in the expansion~10! no f i(r ) function
belongs to this subspace. Consequently, the net current calculated from the flux insid
according to Proposition 1, be zero. Thus, the corresponding response matrixR is also zero. The
response matrixT @see Eq.~21a!# connecting entering currents to exiting currents andR are
related as

T5~112R!~122R!21, ~23!

so nowiTi51, which means that applyingn timesT on an initial vectorII1 we do not get smaller
amplitudes if the initial vector has a component in the subspacem as stated.

Now we turn to the application of these observations to square-shaped nodes. The abov
statements have important consequences in the problem considered. First, a solution ins
node with given symmetry properties exists only if either the source or the boundary valu
those symmetry properties. Second, the response matrix will be zero in a given irrep,
solution has no matching component. This is because in that case the considered compone
solution is not zero on the boundary, but the solution insideV is zero. Consequently, the gradie
calculated from it is also zero. Therefore, the corresponding element of the response matrix~21b!
is zero, the response matrix~21a! is unity. When we determine the solution in a given subspace
means of polynomials, it should be verified whether the polynomials have at least one com
in the subspace under consideration. Table I gives the symmetry components of the fourth
polynomial in a square. There are six different subspaces; four of them are one-dimensiona
and two, two-dimensional ones. According to Lemma 2, we can characterize their basis vec
vectors eI 1 ,...,eI 8 . Four of them, viz.eI 1 ,...,eI 4 , are one-dimensional ones, and two, tw

TABLE I. Irreps of spatial polynomials in a square.

Vector Polynomials

e1 1,(x21y2),(x41y4),x2y2

e2 (x3y2y3x)
e3 (x22y2),(x42y4)
e4 xy,(x3y1y3x)
e5 x,x3

e6 xy2

e7 x2y
e8 y,y3
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dimensional pairs (e5 ,e8) and (eI 6 ,eI 7).
The irreps of the boundary conditions are given in Table II.
The response matrix will have the structure

I i
25Ri I i

1 , i 51,...,4, ~24!

I i
25R5I i

1 , i 55,...,8. ~25!

HereI i
1 is thei th component of the entering current, proportional to vectoreI i . Ri denotes thei th

block of the RM. SinceeI 5 andeI 6 as well aseI 7 andeI 8 are equivalent, here the RMs are the sam
according to Theorem A.6.

While the boundary condition has at least one component in each subspace when
polynomials are used along the four faces, the linear approximation leaves four empty sub
in Table I. In other words, to calculate the response matrix, a higher-order approximat
needed inside the node. To demonstrate the effect of an empty irrep inside, while the bo
value has that irrep, let us consider the following example.

With, at most, linear polynomials, on the boundary each subspace will have at leas
component,~see Table II!. At the same time inside the square, the first polynomial, where e
subspace will have at least one component, is the fourth-order polynomial~see Table III!.

This observation is general. A low-order approximation on the boundary is able to furn
large number of overtones inside the node. This is because the elementary solutions to th
sion equation are exponential functions and to fulfill the simplest boundary condition the so
will contain a number of exponential functions. Exploiting the connection between the Fo
transformation and the irreducible components, we remark here only that a polar coor
system~r, a! can be introduced in which the irreducible component will contain cos(ka) and
sin(ka), wherek depends on the irrep and allk(mod)nF5const modes belong to the same irre
When the node is a circle, all modes form a separate irrep.

TABLE II. Irreps of spatial moments on the boundary of a square.

Vector Moment Values at faces

e1 0,2 ~1,1,1,1!
e2 1 ~1,1,1,1!
e3 0,2 ~1,21,1,1!
e4 1 ~1,21,1,21!
e5 0,2 ~0,1,0,21!
e6 1 ~1,0,21,0!
e7 1 ~0,1,0,21!
e8 0,2 ~1,0,21,0!

TABLE III. Irreducible vectors inside a square in increasing order of polynomials.

Vector\Order 0 1 2 3 4

e1 1 1 1,(x21y2) 1,(x21y2) 1,(x21y2),(x41y4),x2y2

e2 ¯ ¯ ¯ ¯ (x3y2y3x)
e3 ¯ ¯ (x22y2) (x22y2) (x22y2)
e4 ¯ ¯ xy xy xy,(x3y1y3x)
e5 ¯ x x x,x3 x,x3

e6 ¯ ¯ ¯ xy2 xy2

e7 ¯ ¯ ¯ x2y x2y
e8 ¯ y y y,y3 y,y3
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B. Hexagonal geometry

The hexagonal node is shown in Fig. 4. The regular representation is expressed by 12 e
vectors.C6 denotes a rotation by 60°,2C6 by 260°. C3 and2C3 denote 120° rotations and it
inverse, respectively. LetVi denote reflections through planes connecting corners,mi connecting
midplane points. The irreps are projected out with the help of the character table. Table IV
the irreducible vectors. Since there are two equivalent two dimensional subspaces in a
representation, the two-dimensional representationsE1 andE2 are associated with two subspac
distinguished by a superscript. The angular term gives the angular component of an ana
solution which transforms according to the given irrep.

Table IV has been derived with the help of the character table of groupC6v given in GAP.13

The sectors belonging to subspaceG5 transform as coordinates~x,y!, or in polar coordinates as
cos(a) and sin(a). The subspaceG6 transforms as (x22y2,xy), or, as cos(2a) and sin(2a). The
vectors given in Table IV are thex andy components of the transforms of a point~r, a!.

The irreps of the moments on the boundary are given in Table V. Here it is assumed th
are given a zeroth, first, or second-order power of the tangential coordinate on each fa
coefficients may be different on the six faces.

To assess the numerical method, we also need the irreps of the approximating polyn
inside the node. The irreducible components of the spatial moments are given in Table V
seen that none of the interpolants contribute to the subspaceG2 . This is because that subspa
contains functions varying as sin(6a) and that component appears first in sixth-order polynomi
Thus, any lower-order approximation will contain a nonvanishing subspace and cause a c
gence problem.

IV. CONCLUSIONS

We investigated an iteration, Eqs.~18!–~20!, which is widely used to solve the diffusion an
transport equation. In the course of the iteration, the solution is iteratively improved in the n

FIG. 4. Symmetries of a regular hexagon.

TABLE IV. Irreducible vectors of 12 elements in a regular hexagon.

Space Dimension Angular term Notation Elements

G1 1 cos(6ka) e1 ~1,1,1,1,1,1,1,1,1,1,1,1!
G2 1 sin(6ka) e2 ~1,21,1,21,1,21,1,21,1,21,1,21!
G3 1 sin(6k13)a e3 ~1,21,21,1,1,21,21,1,1,21,21,1!
G4 1 cos(6k13)a e4 ~1,1,21,21,1,1,21,21,1,1,21,21!

G5
(1) 2 cos(6k11)a e5 ~2,2,1,1,21,21,22,22,21,21,1,1!

cos(6k14)a e6 ~0,0,1,21,21,1,0,0,21,1,1,21!

G5
(2) 2 cos(6k12)a e7 ~22,2,21,1,1,21,2,22,1,21,21,1!

cos(6k15)a e8 ~0,0,1,1,1,1,0,0,21,21,21,21!

G6
(1) 2 sin(6k11)a e9 ~2,2,21,2121,21,2,2,21,21,21,21!

sin(6k14)a e10 ~0,0,1,21,21,1,0,0,1,21,21,1!
G6

(2) 2 sin(6k12)a e11 ~22,2,1,21,1,21,22,2,1,21,1,21!
sin(6k15)a e12 ~0,0,1,1,21,21,0,0,1,1,21,21!
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If the node has symmetries, which commute with the matrices of the iteration, we are a
decompose the solution vector into linearly independent components. Those components
mixed by the response matrices. This situation is fairly common; the response matrix com
with the symmetries of the node. The technique presented can be described as follow
iteration endeavors to solve a linear set of equations with matrixA. Let us assume that a sym
metric matrix,M is given andM commutes withA. We may use the eigenvectorseI i of M to span
the solution space. The iteration does not mix the the eigenvectorseI i , so the solution goes
separately for each eigenvector. If the boundary condition has a component proportional
eigenvectorseI i but the solution inside the node does not, the iteration does not converge.

The solution of the diffusion equation often follows this setup. We have a value on
boundary from which we derive a solution inside the node, and, from the solution, a new bou
value is obtained. The symmetries permit us to decompose the solution vector and have a
look at a step of the iteration. When the internal solution has no component in a subspace,
boundary condition has, the iteration will not converge because any tiny component of the
guess in that subspace will remain the same.

It should be emphasized, however, that the component under consideration may really b
In such cases, the error will decrease until that component becomes dominant. The conve
difficulties predicted in the present paper have been observed in an actual program.17 There, the
boundary term and the source term were approximated by polynomials. Low-order polynom
the boundary term cover every subspace, whereas inside the node higher-order polynomials
be used to avoid convergence problems.

TABLE V. Irreducible vectors on the boundary of a regular hexagon.

Vector Moments Values at faces

e1 0,2 ~1,1,1,1,1,1!
e2 1 ~1,1,1,1,1,1!
e3 1 ~1,21,1,21,1,21!
e4 0,2 ~1,21,1,21,1,21!
e5 0,2 ~2,1,21,22,21,1!
e6 0,2 ~0,1,1,0,21,21!
e7 1 ~2,1,21,22,21,1!
e8 1 ~0,1,1,0,21,21!
e9 0,2 ~2,21,21,2,21,21!
e10 0,2 ~0,1,21,0,1,21!
e11 1 ~2,21,21,2,21,21!
e12 1 ~0,1,1,0,21,21!

TABLE VI. Irreducible vectors of interpolating polynomials inside a regular hexagon.

Vector\Order 0 1 2 3 4

e1 1 ¯ (x21y2) ¯ (x21y2)2

e2 ¯ ¯ ¯ ¯ ¯

e3 ¯ ¯ ¯ y(y223x2) ¯

e4 ¯ ¯ ¯ x(x223y2) ¯

e5 ¯ x,y ¯ x(x21y2)
e6 ¯ x,y ¯ y(x21y2)
e7 ¯ x,y ¯

e8 ¯ x,y ¯

e9 ¯ ¯ (x22y2) (5x426x2y223y4),x3y
e10 ¯ ¯ xy y3x
e11 ¯ ¯ ¯ (2x416x2y22y4)
e12 ¯ ¯ (x22y2),xy
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APPENDIX A: GROUP THEORY PRIMER

In this appendix we summarize the results of group theory applied throughout the p
work. The results cited below are available in standard textbooks.

Definition A.1:Let us consider functionf (x). The transformation operatorPO associated with
matrix O is defined by the following identity inx:

Pof ~x![ f ~O21x!. ~A1!

With this definition, the set of symmetry operations~symmetries! is made isomorphic with the
set of matrices associated with the symmetries.

Definition A.2:PO is called a symmetry of regionV if O mapsV onto itself. The symmetries
of V form a group; the group operation isPO1* PO25apply firstPO2 then applyPO1 .

Definition A.3: An orbit is a set of pointsg* x, wherexPV is given, gPG. There is an
induced equivalence relation between the points ofV, with x being equivalent toy if they are in
the same orbit ofG.

Definition A.4:Let V/G denote the the set of orbits ofG. V/G is referred to as the quotien
~region!. The projectionp: V→V/G associates with eachx in V its equivalent classp(x),
xPV/G.

Definition A.5:A set of matrices under matrix multiplication$O1 ,O2 ,...,On%, which is ho-
momorphic with the group$O1 ,O2 ,...,On%, is said to be a representation of the group.

Definition A.6:A regular representation associates matrices of orderh with the groupG.
Definition A.7:A representation is said to be reducible if an equivalent representation18 exists

in which each matrixOi has the form

Oi5S A i Ci

0 Bi
D , ~A2!

If no such representation exists, the representation is said to be an irreducible representatio
group.

Definition A.8: A character table is associated with every group. The character table
square table. It containsnc rows and columns, wherenc is the number of conjugacy classes. T
first column gives the dimension of the row, sometimes also known as representation.

Theorem A.1: ~FALICOV! Theh-dimensional space in which the regular representation
by h-order matrices can be split the following manner. There arenc subspaces transformin
among themselves. If the dimension of thei th subspace isl i then there arel i equivalent subspaces
The matrices of a regular representation do not mix the equivalent subspaces.

Definition A.9:O is called a symmetry of operatorA if AO5OA.
Definition A.10:Let $Oi% be an irreducible representation and let$ f i

(1) , f i
(2) ,...,f i

( l i )% be l i

eigenfunctions of the symmetry operations for which

Of i
~k!5(

j 51

l i

Ojk f i
~ j ! , ~A3!

holds for O5Ol ,...,Oh . A function f i
(k) is said to belong to thekth row of the irreducible

representationOi if there exist partner functions$ f i
(1) , f i

(2) ,...,f i
(k21)f i

(k11) ,...,f i
( l i )% such that the

above equation is satisfied.

Theorem A.2: Let S commute with allOi . Let fi
( i ) and gi

( j 8) , belong to different irreducible
representations. Then

~ f i
~ j ! ,gi 8

~ j 8!
!5

1

l i
d i i 8d j j 8(

j
~ f i

~ j ! ,gi 8
~ j 8!

! ~A4!

and
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~ f i
~ j ! ,Sgi 8

~ j 8!
!5

1

l i
d i i 8d j j 8(

j
~ f i

~ j ! ,Sgi 8
~ j 8!

!. ~A5!

Proof: Ref. 19, pp. 115, 116.
The following theorem, taken from Ref. 1, pp. 52–55, is a summary of the relation

between the eigenspace of an operator~in our caseA! and a group commuting withA. The
relationship is twofold. The eigenfunctions ofA may serve as basis functions of the irreducib
representations. The symmetry operators on that basis are represented by matrices and th
vectors of those matrices are linear combinations of the eigenfunctions ofA, furthermore, they are
basis vectors of an irreducible representation. The reverse statement is the following: If irred
functions are used to represent operatorA by matrices, the resulting matrix will be diagonal; th
elements belonging to partner functions of a given irrep are the same.

Theorem A.3:

~1! The eigenfunctions of operatorA generate a representation of G.
~2! Linear transformations to new eigenfunctions generates a representation equivalent

original.
~3! If the eigenfunctions are orthonormal, then operator O is merely the matrix associated w.
~4! The representation so generated is unitary.
~5! If the degeneracy is normal, the representation is irreducible.
~6! An arbitrary functionF in the space ofA can be used to construct an invariant subspace

forming the operation OF for all O in G.
~7! Functions that transform in accordance with two different irreducible representations

are orthogonal.
~8! Any function in the space ofA can be decomposed into a linear combination of functio

transforming according to irreps of G.

The operator,

P~ i ![
l i

h (
O

x~ i !~O!PO , ~A6!

projects out the component transforming in accordance with thei th representation of groupG.
Theorem A.4: Let F i be irreducible, i 51,...,nc (the number of classes). Then the matrix,

^F iAF j&,

is diagonal. The elements belonging to the components of a multi- (i.e., two- or three-) d
sional representation are equal.

Proof: This statement is an immediate consequence of the Wigner–Eckart theorem; se
20, pp. 129–134.
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Quasi-Hopf superalgebras and elliptic quantum
supergroups
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We introduce the quasi-Hopf superalgebras which areZ2-graded versions of Drin-
feld’s quasi-Hopf algebras. We describe the realization of elliptic quantum super-
groups as quasi-triangular quasi-Hopf superalgebras obtained from twisting the
normal quantum supergroups by twistors which satisfy the graded shifted cocycle
condition, thus generalizing the quasi-Hopf twisting procedure to the supersymmet-
ric case. Two types of elliptic quantum supergroups are defined, that is, the face
type Bq,l(G) and the vertex typeAq,p@sl(nûn)] ~and Aq,p@gl(nûn)]), whereG is
any Kac–Moody superalgebra with symmetrizable generalized Cartan matrix. It
appears that the vertex type twistor can be constructed only forUq@sl(nûn) in a
nonstandard system of simple roots, all of which are fermionic. ©1999 American
Institute of Physics.@S0022-2488~99!00210-8#

I. INTRODUCTION

One of the aims of this paper is to introduceZ2-graded versions of Drinfeld’s quasi-Hop
algebras,1 which are referred to as quasi-Hopf superalgebras. We then introduce elliptic qua
supergroups, which are defined as quasi-triangular quasi-Hopf superalgebras arising from t
the normal quantum supergroups by twistors which satisfy the graded shifted cocycle con
thus generalizing Drinfeld’s quasi-Hopf twisting procedure2–6 to the supersymmetric case. W
adopt the approach in Ref. 4 and construct two types of twistors, i.e., the face-type t
associated to any Kac–Moody superalgebraG with a symmetrizable generalized Cartan matrix a
the vertex-type twistor associated to sl(nûn) in a nonstandard simple root system in which
simple roots are odd~or fermionic!. It should be pointed out that the face-type twistors for cert
classes ofnonaffinesimple superalgebras were also constructed in Ref. 5.

The elliptic quantum groups7,8 are believed to provide the underlying algebraic structures
integrable models based on elliptic solutions of the~dynamical! Yang–Baxter equation, such a
Baxter’s eight-vertex model,9 the ABF ~Andrews—Baxter–Forrester! model,10 and their group
theoretical generalizations.11,12 The elliptic quantum supergroups described in this paper are
pected to play a similar role in supersymmetric integrable models based on elliptic solutions13,14of
the graded~dynamical! Yang–Baxter equation.

II. QUASI-HOPF SUPERALGEBRAS

Definition 1: AZ2-graded quasi-bialgebra is aZ2-graded unital associative algebra A over
field K which is equipped with algebra homomorphismse: A→K (counit), D: A→A^A (coprod-
uct), and an invertible homogeneous elementFPA^A^A (coassociator) satisfying

~1^ D!D~a!5F21~D ^ 1!D~a!F, ;aPA, ~II.1!

~D ^ 1^ 1!F•~1^ 1^ D!F5~F ^ 1!•~1^ D ^ 1!F•~1^ F!, ~II.2!

a!Electronic mail: yzz@maths.uq.edu.au
52640022-2488/99/40(10)/5264/19/$15.00 © 1999 American Institute of Physics
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~e ^ 1!D515~1^ e!D, ~II.3!

~1^ e ^ 1!F51. ~II.4!

Equations~II.2!–~II.4! imply that F also obeys

~e ^ 1^ 1!F515~1^ 1^ e!F. ~II.5!

The multiplication rule for the tensor products isZ2 graded and is defined for homogeneo
elementsa,b,a8,b8PA by

~a^ b!~a8^ b8!5~21!@b#@a8#~aa8^ bb8!, ~II.6!

where@a#PZ2 denotes the grading of the elementa.
Definition 2: A quasi-Hopf superalgebra is aZ2-graded quasi-bialgebra (A,D,e,F) equipped

with a Z2-graded algebra anti-homomorphism S: A→A (anti-pode) and canonical elementsa,
bPA such that

m•~1^ a!~S^ 1!D~a!5e~a!a, ;aPA, ~II.7!

m•~1^ b!~1^ S!D~a!5e~a!b, ;aPA, ~II.8!

m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!F2151, ~II.9!

m•~m^ 1!•~S^ 1^ 1!~1^ a ^ b!~1^ 1^ S!F51. ~II.10!

Here m denotes the usual product map onA: m•(a^ b)5ab, ;a,bPA. Note that sinceA is
associative, we havem•(m^ 1)5m•(1^ m). For the homogeneous elementsa,bPA, the anti-
pode satisfies

S~ab!5~21!@a#@b#S~b!S~a!, ~II.11!

which extends to inhomogeneous elements through linearity.
Applying e to definitions~II.9! and~II.10! we obtain, in view of~II.4!, e~a!e~b!51. It follows

that the canonical elementsa and b are both even. By applyinge to ~II.7!, we havee„S(a)…
5e(a), ;aPA.

In the following we show that the category of quasi-Hopf superalgebras is invariant un
kind of gauge transformation. Let (A,D,e,F) be a qausi-Hopf superalgebra, witha, b, and S
satisfying ~II.7!–~II.10!, and letFPA^ A be an invertible homogeneous element satisfying
counit properties

~e ^ 1!F515~1^ e!F. ~II.12!

It follows that F is even. Throughout we set

DF~a!5FD~a!F21, ;aPA, ~II.13!

FF5~F ^ 1!~D ^ 1!F•F•~1^ D!F21~1^ F21!. ~II.14!

Theorem 1: (A,DF ,e,FF), defined by (II.13) and (II.14), together withaF ,bF , andSF given
by

SF5S, aF5m•~1^ a!~S^ 1!F21, bF5m•~1^ b!~1^ S!F, ~II.15!

is also a quasi-Hopf superalgebra. The element F is referred to as a twistor, throughout.
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The proof of this theorem is elementary. For demonstration we show in some detail the
of the antipode properties. Care has to be taken of the gradings in tensor product multiplic
and also in extending the antipode to the whole algebra. First of all let us state the follo
lemma.

Lemma 1: For any elementshPA^A andjPA^A^A,

m•~1^ aF!~S^ 1!h5m•~1^ a!~S^ 1!~F21h!, ~II.16!

m•~1^ bF!~1^ S!h5m•~1^ b!~1^ S!~hF !, ~II.17!

m•~m^ 1!•~1^ bF ^ aF!~1^ S^ 1!j

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!@~1^ F21!•j•~F ^ 1!#, ~II.18!

m•~m^ 1!•~S^ 1^ 1!~1^ aF ^ bF!~1^ 1^ S!j

5m•~m^ 1!•~S^ 1^ 1!~1^ a ^ b!~1^ 1^ S!•@~F21
^ 1!•j•~1^ F !#.

~II.19!

Proof: Write F5 f i ^ f i and F215 f̄ i ^ f̄ i . Here and throughout, summation convention
repeated indices is assumed. Then~II.15! can be written as

aF5S~ f̄ i !a f̄ i , bF5 f ibS~ f i !. ~II.20!

Further, writeh5hk^ hk andj5( ixi ^ yi ^ zi . Then

lhs of ~II.16!5m•„1^ S~ f̄ i !a f̄ i
…„S~hk! ^ hk

…

5m•„S~hk! ^ S~ f̄ i !a f̄ ihk
…

5S~hk!S~ f̄ i !a f̄ ihk

5S~ f̄ ihk!a f̄ ihk3~21!@hk#@ f̄ i #,

rhs of ~II.16!5m•~1^ a!~S^ 1!~ f̄ ihk^ f̄ ihk!3~21!@ f̄ i #@hk#

5S~ f̄ ihk!a f̄ ihk3~21!@ f̄ i #@hk#,

thus proving~II.16!. Equation~II.17! can be proved similarly. As for~II.18! we have

lhs of ~II.18!5(
i

xibFS~yi !aFzi

5(
i

xi f jbS~ f j !S~yi !S~ f̄ k!a f̄ kzi

5(
i

xi f jbS~ f̄ kyi f
j !a f̄ kzi3~21!@yi #@ f j #1@ f̄ k#)1@ f̄ k#@ f j #,

rhs of ~II.18!5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!

•(
i

@xi f j ^ f̄ kyi f
j
^ f̄ kzi #3~21!@yi #~@ f j #1@ f̄ k# !1@ f̄ k#@ f j #,
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5(
i

xi f jbS~ f̄ kyi f
j !a f̄ kzi3~21!@yi #~@ f j #1@ f̄ k# !1@ f̄ k#@ f j #,

where we have used the fact that the elementF is even. Equation~II.19! is proved similarly.
Now let us prove the property~II.7! for aF andDF . We write, following Sweedler,

D~a!5(
~a!

a~1! ^ a~2! . ~II.21!

Then, in view of Lemma 1,

m•~1^ aF!~S^ 1!DF~a!5m•~1^ a!~S^ 1!(F21DF~a!

5m•~1^ a!~S^ 1!~D~a!F21!

5m•~1^ a!(
~a!

„S~a~1! f̄ i ! ^ a~2! f̄
i
…3~21!@ f̄ i #@a~2!#

5S~ f̄ i !(
~a!

S~a~1!!aa~2! f̄
i3~21!@ f i #~@a~1!#1@a~2!# !

5S~ f̄ i !(
~a!

S~a~1!!aa~2! f̄
i3~21!@ f i #@a#

5~21!@ f̄ i #@a#S~ f̄ i !(
~a!

S~a~1!!aa~2! f̄
i 5
~II.17!

S~ f̄ i !e~a!a f̄ i3~21!@ f̄ i #@a#

5S~ f̄ i !e~a!a f̄ i 5
~II.20!

e~a!aF , ~II.22!

where we have used the fact that

e~a!50 if @a#51. ~II.23!

The property~II.8! for bF andDF is proved similarly. We then prove property~II.9!, which reads
in terms of the twisted objects

m•~m^ 1!•~1^ bF ^ aF!~1^ S^ 1!FF
2151. ~II.24!

Let us write

F215(
n

X̄n ^ Ȳn ^ Z̄n . ~II.25!

Then, in view of~II.18!,

lhs of ~II.24!

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!@~1^ F21!FF
21~F ^ 1!#

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!@~1^ D!F•F21
•~D ^ 1!F21#

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!

• (
n,~ f !,~ f̄!

@ f i X̄n f̄ j ~1! ^ f ~1!
i Ȳn f̄ j ~2! ^ f ~2!

i Z̄n f̄ j #

3~21!~@X̄n#1@ f̄ j ~1!# !~@ f ~1!
i

#1@ f ~2!
i

# !1@ Z̄n#~@ f̄ j ~1!!#1@ f̄ j ~2!#)1@Ȳn#~@ f j ~1!#1@ f ~2!
i

# !1@ f ~2!
i

#@ f̄ j ~2!#
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5(
n

f i X̄n(
~ f̄!

f j ~1!bS~ f̄ j ~2!!S~Ȳn!(
~ f !

S~ f ~1!
i !a f ~2!

i Z̄n f̄ j

•~21!~@X̄n#1@Ȳn#!~@ f ~1!
i

#1@ f ~2!
i

# !1~@Ȳn#1@ Z̄n#!~@ f̄ j ~1!#1@ f̄ j ~2!# !1~@ f ~1!
i

#1@ f ~2!
i

# !~@ f̄ j ~1!#1@ f̄ j ~2!# !

5(
n

f i X̄n(
~ f !

f j ~1!bS~ f̄ j~2!!S~Ȳn!(
~ f !

S~ f ~1!
i !a f ~2!

i Z̄n f̄ j

•~21!~@X̄n#1@Yn#!@ f i #1~@Yn#1@ Z̄n#!@ f̄ j #1@ f i #@ f j #

5(
n

f i X̄n•~21!~@Xn#1@Yn#!@ f i #1~@Yn#1@ Z̄n#!@ f j #1@ f i #@ f j #

•(
~ f !

f j ~1!bS~ f j ~2!!S~Ȳn!(
~ f !

S~ f ~1!
i !a f ~2!

i Z̄n f̄ j

5
~II.7!,~II.8!

(
n

f i X̄ne~ f̄ j !bS~Ȳn!e~ f i !aZn f j

•~21!~@Xn#1@Yn#!@ f i #1~@Yn#1@Zn#!@ f j #)1@ f i #@ f j #

5
~II.23!

(
n

f i X̄ne~ f̄ j !bS~Ȳn!e~ f i !aZ̄n f̄ j5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!

•@„~1^ e!F ^ 1…•F21
•„~e ^ 1!F21

^ 1…#

5
~II.12!

m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!F21 5
~II.9!

1.

The property~II.10! for the twisted objects, which reads

m•~m^ 1!•~S^ 1^ 1!~1^ aF ^ bF!~1^ 1^ S!FF51, ~II.26!

is proved in a similar way.

Definition 3: A quasi-Hopf superalgebra~A,D,e,F! is called quasi-triangular if there exists a
invertible homogeneous elementRPA^ A such that

DT~a!R5RD~a!, ;aPA, ~II.27!

~D ^ 1!R5F231
21R13F132R23F123

21, ~II.28!

~1^ D!R5F312R13F213
21R12F123. ~II.29!

Throughout,DT5T•D with T being the graded twist map which is defined, for homogene
elementsa,bPA, by

T~a^ b!5~21!@a#@b#b^ a; ~II.30!

andF132, etc. are derived fromF[F123 with the help ofT:

F1325~1^ T!F123,

F3125~T^ 1!F1325~T^ 1!~1^ T!F123,

F231
215~1^ T!F213

215~1^ T!~T^ 1!F123
21,
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and so on. We remark that our convention differs from the usual one which employs the in
permutation on the positions~cf. Ref. 4!.

It is easily shown that the properties~II.27!–~II.29! imply the graded Yang–Baxter-typ
equation,

R12F231
21R13F132R23F123

215F321
21R23F312R13F213

21R12, ~II.31!

which is referred to as the graded quasi-Yang–Baxter equation, and the counit propertiesR:

~e ^ 1!R515~1^ e!R. ~II.32!

Theorem 2: Denoting by the set(A,D,e,F,R) a quasi-triangular quasi-Hopf superalgebra, the
(A,DF ,e,FF ,RF) is also a quasi-triangular quasi-Hopf superalgebra, with the choice ofRF

given by

RF5FTRF21, ~II.33!

where FT5T•F[F21. Here DF and FF are given by (II.13) and (II.14), respectively.
The proof of this theorem is elementary computation. As an example, let us illustrate the

of the property~II.28! for DF , RF , andFF . Applying the homomorphismT^ 1 to (FF
21)123,

one obtains

~FF
21!2135F13~T^ 1!~1^ D!F•F213

21
•~DT

^ 1!F21
•~FT!12

21

5F13(
~ f !

~21!@ f ~1!
i

#@ f i #~ f ~1!
i

^ f i ^ f ~2!
i !F213

21~DT
^ 1!F21

•~FT!12
21, ~II.34!

which gives rise to, by applying the homomorphism 1^ T to both sides,

~FF
21!2315F12(

~ f !
~21!~@ f ~1!

i
#1@ f ~2!

i
# !@ f i #~ f ~1!

i
^ f ~2!

i
^ f i !F231

21~1^ T!~DT
^ 1!F21

•~FT!13
21

5F12~D ^ 1!FT
•F231

21~1^ T!~DT
^ 1!F21

•~FT!13
21. ~II.35!

Then,

~DF ^ 1!RF5~F ^ 1!~D ^ 1!RF•~F21
^ 1!

5F12~D ^ 1!~FTRF21!•F12
21

5F12~D ^ 1!FT~D ^ 1!R~D ^ 1!F21
•F12

21

5
~II.28!

F12~D ^ 1!FT
•F231

21 R13F132R23F123
21 ~D ^ 1!F21

•F12
21

5
~II.35!

~FF
21!231~FT!13~1^ T!~DT

^ 1!F•R13F132R23F123
21 ~D ^ 1!F21

•F12
21

5
~II.14!

~FF
21!231~FT!13~1^ T!~DT

^ 1!F•R13F132R23~1^ D!F21
•F23

21~FF
21!123
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5~FF
21!231~FT!13~1^ T!@~DT

^ 1!F•R12#•F132R23~1^ D!F21

•F23
21~FF

21!123

5
~II.27!

~FF
21!231~FT!13~1^ T!@R12~D ^ 1!F#•F132~1^ DT!F21

•R23F23
21~FF

21!123

5~FF
21!231~FT!13R13~1^ T!@~D ^ 1!F#•F132~1^ DT!F21

•R23F23
21~FF

21!123

5
~II.33!

~FF
21!231~RF!13F13

21~1^ T!@~D ^ 1!F#

•F132~1^ DT!F21~FT!23
21~RF!23~FF

21!123

5~FF
21!231~RF!13~1^ T!@F12

21~D ^ 1!FF123~1^ D!F21
•F23

21#

•~RF!23~FF
21!123

5
~II.14!

~FF
21!231~RF!13~1^ T!~FF!123•~RF!23~FF

21!123

5~FF
21!231~RF!13~FF!132~RF!23~FF

21!123. ~II.36!

Let us now consider the special case thatA arises from a normal quasi-triangular Ho
superalgebra via twisting withF. A quasi-triangular Hopf superalgebra is a quasi-triangular qu
Hopf superalgebra witha5b51 andF51^1^1. HenceA has the followingZ2 graded quasi-
Hopf algebra structure:

DF~a!5FD~a!F21, ;aPA,

FF5F12•~D ^ 1!F•~1^ D!F21
•F23

21,
~II.37!

aF5m•~S^ 1!F21, bF5m•~1^ S!F,

RF5FTRF21.

The twisting procedure is particularly interesting when the twistorFPA^ A depends on an ele
mentlPA, i.e., F5F(l), and is a shifted cocycle in the following sense. Herel is assumed to
depend on one~or possible several! parameters.

Definition 4: A twistor F~l! depending onlPA is a shifted cocycle if it satisfies the grade
shifted cocycle condition:

F12~l!•~D ^ 1!F~l!5F23~l1h~1!!•~1^ D!F~l!, ~II.38!

where h(1)5h^ 1^ 1 and hPA is fixed.
Let „A,Dl ,e,F(l),R(l)… be the quasi-triangular quasi-Hopf superalgebra obtained f

twisting the quasi-triangular Hopf superalgebra by the twistorF(l). Then we have the following
Proposition 1: We have

F~l![FF5F23~l1h~1!!F23~l!21, ~II.39!
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Dl~a!TR~l!5R~l!Dl~a!, ;aPA, ~II.40!

~Dl ^ 1!R~l!5F231~l!21R13~l!R23~l1h~1!!, ~II.41!

~1^ Dl!R~l!5R13~l1h~2!!R12~l!F123~l!. ~II.42!

As a corollary, R~l! satisfies the graded dynamical Yang–Baxter equation

R12~l1h~3!!R13~l!R23~l1h~1!!5R23~l!R13~l1h~2!!R12~l!. ~II.43!

III. QUANTUM SUPERGROUPS

Let G be a Kac–Moody superalgebra15,16 with a symmetrizable generalized Cartan matrixA
5(ai j ) i , j ,PI . As is well known, a given Kac–Moody superalgebra allows many inequiva
systems of simple roots. A system of simple roots is called distinguished if it has minima
roots. Let$a i ,i PI % denote a chosen set of simple roots. Let~ , ! be a fixed invariant bilinear form
on the root space ofG. Let H be the Cartan subalgebra and throughout we identify the dualH*
with H via ~ , !. The generalized Cartan matrixA5(ai j ) i , j PI is defined from the simple roots b

ai j 5H 2~a i ,a j !

~a i ,a i !
, if ~a i ,a i !Þ0,

~a i ,a j !, if ~a i ,a i !50.

~III.1!

As we mentioned in the previous section, quantum Kac–Moody superalgebras are
triangular quasi-Hopf superalgebras witha5b51 andF51^1^1. We shall not give the standar
relations obeyed by the simple generators~or Chevalley generators! $hi ,ei , f i ,i PI % of Uq(G), but
mention that for certain types of Dynkin diagrams extraq-Serre relations are needed in th
defining relations. We adopt the following graded Hopf algebra structure,

D~h!5h^ 111^ h,

D~ei !5ei ^ 11t i ^ ei , D~ f i !5 f i ^ t i
2111^ f i ,

~III.2!
e~ei !5e~ f i !5e~h!50,

S~ei !52t i
21ei , S~ f i !52 f i t i , S~h!52h,

wherei PI , t i5qhi andhPH.
The canonical elementR is called the universal R-matrix of Uq(G), which satisfies the basic

properties@e.g.,~II.27!–~II.29! with F51^1^1 and~II.32!#

DT~a!R5RD~a!, ;aPUq~G!,

~D ^ 1!R5R13R23,
~III.3!

~1^ D!R5R13R12,

~e ^ 1!R5~1^ e!R51,

and the graded Yang–Baxter equation@cf. ~II.31! with F51^1^1#

R12R13R235R23R13R12. ~III.4!
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The Hopf superalgebra Uq(G) contains two important Hopf subalgebras Uq
1 and Uq

2 which are
generated byei and f i , respectively. By Drinfeld’s quantum double construction, the unive
R-matrix R can be written in the form

R5S 1^ 11(
t

at
^ atD •q2T, ~III.5!

where$at%PUq
1 and $at%PUq

2 . The elementT is defined as follows. If the symmetrical Carta
matrix is nondegenerate, thenT is the usual canonical element ofH^H. Let $hl% be a basis ofH
and$hl% be its dual basis. ThenT can be written as

T5(
l

hl ^ hl . ~III.6!

In the case of a degenerate symmetrical Cartan matrix, we extend the Cartan subalgebrH by
adding some elements to it in such a way that the extended symmetrical Cartan ma
nondegenerate.17 ThenT stands for the canonical element of the extended Cartan subalgeb
still takes the form~III.6!, but now$hl% ($hl%) is understood to be the~dual! basis of the extended
Cartan subalgebra. After such enlargement, one hash5( l(h

l ,h)hl5( l(hl ,h)hl for any givenh
in the enlarged Cartan subalgebra.

For later use, we work out the explicit form of the universal R-matrix for the simp
quantum affine superalgebra Uq@sl(1û1)]. This algebra is generated by Chevalley generat
$ei , f i ,hi ,d,i 50,1% with ei , f i odd, andhi , d even. Here and throughoutd stands for the deri-
vation operator. Let us writehi5a i . Then we haveh05d2«11d1 and h15«12d1 , where
$«1 ,d1 ,d% satisfy («1 ,«1)5152(d1 ,d1), («1 ,d1)5(d,d)5(d,«1)5(d,d1)50. We extend the
Cartan subalgebra by adding to it the elementhex5«11d1 . A basis for the enlarged Carta
subalgebra is thus$hex,h0 ,h1 ,d%. It is easily shown that the dual basis is$hex,h0,h1,c%, where
hex5 1

2(«12d1)5 1
2h1 , h05d, and h15«11d2 1

2(«12d1)5d1 1
2hex. As is well known,

Uq@sl(1û1)] can also be realized in terms of the Drinfeld generators18 $Xn
6 ,Hn ,Hn

ex,nPZ,c,d%,
where Xn

6 are odd and all other generators are even. The relations satisfied by the Dr
generators read19

@c, a#5@H0 , a#5@d, d#5@Hn , Hm#5@Hn
ex, Hm

ex#50, ;aPUq@sl~1û1!],

qH0
ex

Xn
6q2H0

ex
5q62Xn

6 ,

@d, Xn
6#5nXn

6 , @d, Hn#5nHn , @d, Hn
ex#5nHn

ex,

@Hn , Hm
ex#5dn1m,0

@2n#q@nc#q

n
, ~III.7!

@Hn
ex, Xm

6#56
@2n#q

n
Xn1m

6 q7unuc/2,

@Hn , Xm
6#505@Xn

6 , Xm
6#,

@Xn
1 , Xm

2#5
1

q2q21 ~q~c/2!~n2m!cn1m
1 2q2~c/2!~n2m!cn1m

2

!,

where@x#q5(qx2q2x)/(q2q21), @a, b#[ab2(21)@a#@b#ba denotes the supercommutator, a
c6n

6 are related toH6n by relations
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(
n>0

c6n
6 z7n5q6H0 expS 6~q2q21! (

n.0
H6nz7nD . ~III.8!

The relationship between the Drinfeld generators and the Chevalley generators is

e15X0
1 , f 15X0

2 , h15H0 , hex5H0
ex,

~III.9!
e05X1

2q2H0, f 052qH0X21
1 , h05c2H0 .

With the help of the Drinfeld generators, we find the following universal R-matrix,

R5R8•q2T, ~III.10!

where

T5hex^ hex1h0^ h01h1^ h11d^ c

5 1
2~H0^ h0

ex1H0
ex

^ H0!1c^ d1d^ c,

R85R,R0R.,

R,5 )
n>0

→
exp@~q2q21!~q2nc/2Xn

1
^ qnc/2X2n

2 !#, ~III.11!

R05expF2~q2q21! (
n51

`
n

@2n#q
~Hn^ H2n

ex 1Hn
ex

^ H2n!G ,

R.5 )
n>0

←
exp@2~q2q21!~Xn11

2 qnc/22H0^ q2nc/21H0X2n21
1 !#.

Here and throughout,

)
k>0

→
Ak5A0A1A2¯, )

k>0

←
Ak5¯A2A1A0 . ~III.12!

It seems to us that even for this simplest quantum affine superalgebra Uq@sl(1û1)] the universal
R-matrix has not been written down in its explicit form before.

Let us compute the image ofR in the two-dimensional evaluation representation (p,V) of
Uq@sl(1û1)], whereV5C1u15Cv1^ Cv2 with v1 even andv2 odd. Letei j be the 232 matrix
whose (i , j )-element is unity and zero otherwise. In the homogeneous gradation, the simple
erators are represented by

e15A@u#qe12, f 15A@u#qe21, h15u~e111e22!, hex52e111c0~e111e22!,
~III.13!

e05zA@u#qe21, f 052z21A@u#qe12, h052u~e111e22!,

whereu and c0 are arbitrary constants. Then it can be shown that the Drinfeld generator
represented by

Hn5zn
@nu#q

n
~e111e22!, Hn

ex5zn
@2n#q

n
qnue111zncn~e111e22!,

~III.14!
Xn

15znqnuA@u#qe12, Xn
25znqnuA@u#qe21,
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where againcn are arbitrary constants. In the following we setcn to be zero. Then the imag
RVV(z;u,u8)5(pu ^ pu8)R depends on two extra nonadditive parametersu, u8, and is given by

RVV~z;u,u8!5
q2u2u82z

12zq2u2u8
e11^ e111e22^ e221

q2u82zq2u

12zq2u2u8
e11^ e221

q2u2zq2u8

12zq2u2u8
e22^ e11

1A@u#q@u8#qq2u
q2q21

12zq2u2u8
e12^ e212A@u#q@u8#qq2u8

z~q2q21!

12zq2u2u8
e21^ e12.

~III.15!

Equation~III.15! is nothing but the R-matrix obtained in Ref. 20 by solving the Jimbo equat

IV. ELLIPTIC QUANTUM SUPERGROUPS

Following Jimboet al.,4 we define elliptic quantum supergroups to be quasi-triangular qu
Hopf superalgebras obtained from twisting the normal quantum supergroups~which are quasi-
triangular quasi-Hopf superalgebras witha5b51 andF51^1^1! by twistors which satisfy the
graded shifted cocycle condition.

A. Elliptic quantum supergroups of face type

Let r be an element in the~extended! Cartan subalgebra such that (r,a i)5(a i ,a i)/2 for all
i PI , and

f5Ad ~q~1/2!( l
hlh

l2r
!, ~IV.1!

be an automorphism of Uq(G). Here$hl% and $hl% are as in~III.6! and are the dual basis of th
~extended! Cartan subalgebra. Namely,

f~ei !5eit i , f~ f i !5t i
21f i , f~qh!5qh. ~IV.2!

In the following we consider the special case in which the elementl introduced before belongs t
the ~extended! Cartan subalgebra. Let

fl5f2
•Ad ~q2l!5Ad ~q( l hlh

l22r12l! ~IV.3!

be an automorphism depending on the elementl and R be the universal R-matrix of Uq(G).
Following Jimboet al.,4 we define a twistorF(l) by the infinite product

F~l!5)
k>1

←
~fl

k
^ 1!~qTR!21. ~IV.4!

It is easily seen thatF(l) is a formal series in parameter~s! in l with leading term 1. Therefore the
infinite product makes sense. The twistorF(l) is referred to as a face-type twistor. It can
shown thatF(l) satisfies the graded shifted cocycle condition

F12~l!~D ^ 1!F~l!5F23~l1h~1!!~1^ D!F~l!, ~IV.5!

where, if l5( ll lh
l , thenl1h(1)5( l(l l1hl

(1))hl . The proof of~IV.5! is identical to the non-
super case given by Jimboet al.,4 apart from the use of the graded tensor products. Moreove
is easily seen thatF(l) obeys the counit property

~e ^ 1!F~l!5~1^ e!F~l!51. ~IV.6!

We have the following definition.
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Definition 5 (Face-type elliptic quantum supergroup): We define elliptic quantum superg
Bq,l(G) of face type to be the quasi-triangular quasi-Hopf superalge
„Uq(G),Dl ,e,F(l),R(l)… together with the graded algebra anti-homomorphism S defined
(III.2) and al5m•(S^ 1)F(l)21, bl5m•(1^ S)F(l). Here e is defined by (III.2), and

Dl~a!5F~l!D~a!F~l!21, ;aPUq~G!,

R~l!5F~l!TRF~l!21, ~IV.7!

F~l!5F23~l1h~1!!F23~l!21.

We now consider the particularly interesting case whereG is of affine type. Thenr contains
two parts,

r5 r̄1gd, ~IV.8!

whereg5(c,c12r̄)/2, r̄ is the graded half-sum of positive roots of the nonaffine partḠ, andc
is highest root ofḠ; d is the derivation operator which gives the homogeneous gradation

@d, ei #5d i0ei , @d, f i #52d i0f i , i PI . ~IV.9!

We also set

l5l̄1~r 1g!d1s8c, r ,s8PC, ~IV.10!

wherel stands for the projection ofl onto the~extended! Cartan subalgebra ofḠ. Denoting by
$h̄ j% and$h̄ j% the dual basis of the~extended! Cartan subalgebra ofḠ and settingp5q2r , we can
decomposefl into two parts,

fl5Ad ~pdq2cd!•f̄l , f̄l5Ad ~q( j h̄j h̄
j 12~ l̄2 r̄!!. ~IV.11!

Introduce a formal parameterz ~which will be identified with spectral parameter! into R andF(l)
by setting

R~z!5Ad ~zd
^ 1!R,

F~z,l!5Ad ~zd
^ 1!F~l!, ~IV.12!

R~z,l!5Ad ~zd
^ 1!R~l!5F~z21,l!TR~z!F~z,l!21.

Then it can be shown from the definition ofF(l) that F(z,l) satisfies the difference equation

F~pq2c~1!
z,l!5~f̄l ^ 1!21

„F~z,l!…•qTR~pq2c~1!
z!,

~IV.13!
F~0,l!5F Ḡ~ l̄!.

The initial condition follows from the fact thatR(z)qd^ c1c^ duz50 reduces to the universa
R-matrix of Uq(Ḡ).

Let us give some examples.

1. The case Bq ,l†sl „1z1…‡

In this case the universal R-matrix is given simply by

R5exp@~q2q21!e^ f #q2T5@11~q2q21!e^ f #q2T,
~IV.14!

T5 1
2~h^ hex1hex^ h!.
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Let us write

l5~s811! 1
2h1s1

2hex, s8,sPC. ~IV.15!

Sinceh commutes with everything,fl is independent ofs8. Settingw5q2(s1h), we have

fl5Ad~w1/2hex!. ~IV.16!

The formula for the twistor becomes

F~w!5)
k>1

„12~q2q21!wkq2he^ f qh
…

512~q2q21!(
k51

`

wkq2he^ f qh

512~q2q21!
w

12w
q2he^ f qh. ~IV.17!

2. The case Bq ,l†sl „1̂z1…

Taking a basis$c,d,h,hex% of the enlarged Cartan subalgebra of sl(1û1), we write

l5rd1s8c1~s911! 1
2h1s1

2hex, r ,s8,s9,sPC. ~IV.18!

Thenfl is independent ofs8 ands9. Set

p5q2r , w5q2~s1h!. ~IV.19!

SetF(z;p,w)[F(z,l). Then~IV.13! take the form

F~pq2c~1!
z;p,w!5~f̄w

21
^ 1!„F~z;p,w!…•qTR~pq2c~1!

z!, ~IV.20!

F~0;p,w!5Fsl~1u1!~w!, ~IV.21!

wheref̄w5Ad(w(1/2hex).
The image of~IV.20! in the two-dimensional representation (p,V) given by ~III.13! ~by

setting u51! yields a difference equation forFVV(z;p,w)5(p ^ p)F(z;p,w). Noting that p
•f̄w5Ad (Dw

21)•p, whereDw5e111we22, we find

FVV~pz;p,w!5Ad ~Dw^ 1!„FVV~z;p,w!…•KRVV~pz!, ~IV.22!

where K5(p ^ p)qT5q2e11^ e111qe11^ e221qe22^ e111e22^ e22 and RVV(pz) is given by
~III.15! ~with u5u851!. Equation~IV.22! is a system of difference equations ofq-KZ ~Kaizhnik–
Zamolodchikov! equation type,21 and can be solved with the help of theq-hypergeometric series
The solution with the initial condition~IV.21! is given by

FVV~z;p,w!51f0~z;p,w!e11^ e111e22^ e221 f 11~z;p,w!e11^ e221 f 22~z;p,w!e22^ e11

1 f 12~z;p,w!e12^ e211 f 21~z;p,w!e21^ e12, ~IV.23!

where

1f0~z;p,w!5
~pq22z;p!`

~pq2z;p!`
,
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f 11~z;p,w!52f1S wq22 q22

;p,pq2z

w
D ,

f 12~z;p,w!52
w~q2q21!

12w 2f1S wq22 pq22

;p,pq2z

pw
D , ~IV.24!

f 21~z;p,w!5
zpw21~q2q21!

12pw21 2f1S pw21q22 pq22

;p,pq2z

p2w21
D ,

f 22~z;p,w!52f1S pw21q22 q22

;p,pq2z

pw21
D .

Here

2f1S qa qb

;p,x

qc
D 5 (

n50

`
~qa;p!n~qb;p!n

~p;p!n~qc;p!n
xn,

~IV.25!

~a;p!n5 )
k50

n21

~12apk!, ~a;p!051.

B. Elliptic quantum supergroups of vertex type

As we mentioned before, a given Kac–Moody superalgebrasG allows many inequivalent
simple root systems. By means of the ‘‘extended’’ Weyl transformation method introduced in
22, one can transform from one simple root system to another inequivalent one.23 For G
5sl(nûn), there exists a simple root system in which all simple roots are odd~or fermionic!. This
system can be constructed from the distinguished simple root system by using the ‘‘exte
Weyl operation repeatedly. We find the following simple roots, all of which are odd~or fermi-
onic!,

a05d2«11dn ,

a2 j5d j2« j 11 , j 51,2,...,n21, ~IV.26!

a2i 215« i2d i , i 51,2,...,n

with d, $« i% i 51
n and$d i% i 51

n satisfying

~d,d!5~d,« i !5~d,d i !50, ~« i ,« j !5d i j ,
~IV.27!

~d i ,d j !52d i j , ~« i ,d j !50.

Such a simple root system is usually called nonstandard. It seems to us that sl(nûn) is the only
nontwisted affine superalgebra which has a nonstandard system of simple roots, all of wh
fermionic.
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As will be shown below, forG5sl(nûn) with the above fermionic simple roots, one ca
construct a different type of twistor. Following Jimboet al.,4 we say this twistor is ofvertex type.

Let us writehi5a i ( i 50,1,...,2n21) with a i given by ~IV.26!. We extend the Cartan sub
algebra of sl(nûn) by adding to it the elementhex5( i 51

n (« i1d i). A basis of the extended Carta
subalgebra is$hex,h0 ,h1 ,...,h2n21 ,d%. Denote by$hex,h0,h1,...,h2n21,c% the dual basis. We
have

hex5
1

2n (
i 51

n

~« i2d i !,

h2k5d1(
i 51

k

~« i2d i !2
k

n (
i 51

n

~« i2d i !, ~IV.28!

h2k115d1 (
i 51

k11

« i2(
i 51

k

d i2
2k11

2n (
i 51

k

~« i2d i !,

wherek50,1,...,n21. The canonical elementT in the extended Cartan subalgebra reads

T5hex^ hex1 (
i 50

2n21

~hi ^ hi !1d^ c. ~IV.29!

Let t be the diagram automorphism of Uq@sl(nûn)] such that

t~ei !5ei 11 mod 2n , t~ f i !5 f i 11 mod 2n , t~hi !5hi 11 mod 2n . ~IV.30!

Obviously, the automorphismt is nongraded since it preserves the grading of the generators
moreover,t2n51. Then we can show

t~hex!52hex1jc, t~c!5c, t~hex!52hex1
1

2n
c,

t~h2k!5h2k11 mod 2n1
j

2n (
i 51

n

~« i2d i !2
j1n22k21

2n
c, ~IV.31!

t~h2k11!5h2k12 mod 2n1
j

2n (
i 51

n

~« i2d i !2
n22k21

2n
c,

wherek50,1,...,n21 andj is an arbitrary constant. Introduce element

r̃5 (
i 50

2n21

hi1jnhex, ~IV.32!

which gives the principal gradation

@ r̃, ei #5ei , @ r̃, f i #52 f i , i 50,1,...,2n21. ~IV.33!

It is easily shown that

t~ r̃ !5 r̃, ~t ^ t!T5T. ~IV.34!

Notice also that

~t ^ t!•D5D•t, ~IV.35!
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~t ^ t!R5R.

Here the second relation is deduced from the uniqueness of the universal R-matrix of Uq@sl(nûn)].
It can be shown that

(
k51

2n

~tk
^ 1!T5 r̃ ^ c1c^ r̃2

2~n221!23j

6
c^ c. ~IV.36!

Therefore, if we set

T̃5
1

2n S r̃ ^ c1c^ r̃2
2~n221!23j

6
c^ cD , ~IV.37!

then we have

(
k51

2n

~tk
^ 1!~T2T̃!50. ~IV.38!

Introduce an automorphism

f̃ r5t•Ad ~q@~r 1c!/n#r̃ !, ~IV.39!

which depends on a parameterr PC. Then the 2n-fold product

)
2n>k>1

←
~f̃ r

k
^ 1!~qT̃R!21. ~IV.40!

is a formal power series inp1/2n where p5q2r . Moreover, it has leading term 1 thanks to th
relation ~IV.38!. Following Jimboet al.,4 we define the vertex-type twistor

E~r !5 lim
N→`

)
2nN>k>1

←
~f̃ r

k
^ 1!~qT̃R!21. ~IV.41!

Then one can show thatE(r ) satisfies the graded shifted cocycle condition

E12~r !~D ^ 1!E~r !5E23~r 1c~1!!~1^ D!E~r !. ~IV.42!

Moreover,E(r ) obeys the counit property

~e ^ 1!E~r !5~1^ e!E~r !51. ~IV.43!

We have the following.
Definition 6 (Vertex-type elliptic quantum supergroup): We define elliptic quantum su

group Aq,p@sl(nûn)] of vertex type to be the quasi-triangular quasi-Hopf superalge
„Uq@sl(nûn)],D r ,e,F(r ),R(r )… together with the graded algebra anti-homomorphism S defi
by (III.2) anda r5m•(S^ 1)E(r )21, b r5m•(1^ S)E(r ). Here e is defined by (III.2), and

D r~a!5E~r !D~a!E~r !21, ;aPUq@sl~nûn!,

R~r !5E~r !TRE~r !21, ~IV.44!

F~r !5E23~r 1c~1!!E23~r !21.
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Similar to the face-type case, introduce a formal parameterz ~or spectral parameter! into R
andE(r ) by the formulas

R̃~z!5Ad ~zr̃
^ 1!R,

E~z,r !5Ad ~zr̃
^ 1!E~r !, ~IV.45!

R̃~z,r !5Ad ~zr̃
^ 1!R~r !5E~z21,r !TR̃~z!E~z,r !21.

Then it can be shown from the definition ofE(r ) that E(z,r ) satisfies the difference equation

E~p1/2nq~1/n!c~1!
z,r !5~t ^ 1!21

„E~z,r !…•qT̃R̃~p1/2nq~1/n!c~1!
z !, ~IV.46!

E~0,r !51. ~IV.47!

The initial condition follows from~IV.38! and the fact that we are working in the princip
gradation. Equation~IV.46! implies that

E„~p1/2nq~1/n!c~1!
!2nz,r …5E„z,r )…• )

2n21>k>0

←
qT̃~t ^ 1!2n2kR̃„~p1/2nq~1/n!c~1!

!2n2kz….

~IV.48!

Some remarks are in order. In nonsuper case,4 p and t are commutable in the sense thatp
•t5Ad (h)•p with h obeying hv i5v i 11 modm , where $v i% are basis of the vector moduleV
5Cm5Cv1%¯% Ccm of Aq,p(ŝlm) and t is the cyclic diagram automorphism of sˆlm . In the
super~or Z2 graded! case, however,p andt are not ‘‘commutable’’ in the above sense. This
becauset is grading preserving while the 2n-dimensional defining representation spaceV5Cnun

5Cv1%¯% Cv2n is graded. So to compute the image, one has to work out the action oft at the
universal level and then apply the representationp. Therefore, the knowledge of the univers
R-matrix in its explicit form is required. This makes the image computation of the twistor m
involved in the supersymmetric case.

As an example, consider the simplest case of elliptic quantum affine superal
Aq,p@sl(1û1)]. Let us calculate the image in the two-dimensional representation (p,V), V
5C1u1. As remarked above, we have to work at the universal level first and then appl
representation. We have the following.

Lemma 2: In the principal gradation, the action oft on the Drinfeld generators is represente
on V by

t~Xn
1!5~21!nz2n11q2ne12, t~Xn

2!5~21!n11z2n21q2ne21,

t~Hn!5~21!n11z2n
@n#q

n
~e111e22!, ~IV.49!

t~Hn
ex!5~21!n11z2n

@2n#q

n S q2ne111
q2q21

2
@n#q~e111e22! D .

Applying p^p to the both side of~IV.48! and writing EVV(z;p)[(p ^ p)E(z,r ), where p
5q2r , we get

EVV~pz;p!5EVV~z;p!•~p ^ p!„~t ^ 1!R̃~p1/2z!…•R̃VV~pz!, ~IV.50!

whereR̃VV(z)5(p ^ p)R̃(z). In view of ~IV.49! and the explicit formula~III.11! of the universal
R-matrix, ~IV.50! is a system of eight difference equations.

We can also proceed directly. We have, with the help of Lemma 2,
                                                                                                                



5281J. Math. Phys., Vol. 40, No. 10, October 1999 Quasi-Hopf superalgebras and elliptic . . .

                    
~p ^ p!~t2k
^ 1!„Ad ~pkz!r̃

^ 1…R21q2T̃5K•Ē2k ,
~IV.51!

~p ^ p!~t2k21
^ 1!„Ad ~pk21/2z!r̃

^ 1…R21q2T̃5r2k21•K21
•Ē2k21 ,

whereK5(p ^ p)qT and

r2k215
~11q2p2k21z2!~11q22p2k21z2!

~11p2k21z2!2 ,

Ē2k5
1

12q2p2kz2 „~12q22p2kz2!e11^ e111~12q2p2kz2!e22^ e22

1~12p2kz2!e11^ e221~12p2kz2!e22^ e11

2~q2q21!pkze12^ e211~q2q21!pkze21^ e12…, ~IV.52!

Ē2k215
1

11q22p2k21z2 „~11q2p2k21z2!e11^ e111~11q22p2k21z2!e22^ e22

1~11p2k21z2!e11^ e221~11p2k21z2!e22^ e11

1~q2q21!pk21/2ze12^ e212~q2q21!pk21/2ze21^ e12…. ~IV.53!

Then

EVV~z;p!5)
k>1

←
r2k21KĒ2kK

21Ē2k215r~z;p!„EVV
1 ~z;p!1EVV

2 ~z;p!…, ~IV.54!

where

r~z;p!5
~2pq2z2;p2!`

~pqz;p!`~2pqz;p!`
, ~IV.55!

EVV
1 ~z;p!5)

k>1

←
1

~11p2k21z2!2 „~12q22p2kz2!~11q2p2k21z2!e11^ e11

1~12q2p2kz2!~11q22p2k21z2!e22^ e22

1~q2q21!pk21/2z~12q22p2kz2!e12^ e12

2~q2q21!pk21/2z~12q2p2kz2!e21^ e21…, ~IV.56!

EVV
2 ~z;p!5)

k>1

←
1

11p2k21z2 „~12p2kz2!e11^ e221~12p2kz2!e22^ e11

2~q2q21!pkze12^ e211~q2q21!pkze21^ e12…. ~IV.57!

The infinite product inEVV
2 (z;p) can be calculated directly and we find

EVV
2 ~z;p!5bE~z!~e11^ e221e22^ e11!1cE~z!~e12^ e212e21^ e12!, ~IV.58!

where

bE~z!6cE~z!5
~pq61z;p!`~2pq71z;p!`

~2pz2;p2!`
. ~IV.59!
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As for EVV
1 (z;p), it can be written as

EVV
1 ~z;p!5X11~z;p!e11^ e111X22~z;p!e22^ e22

1X12~z;p!e12^ e121X21~z;p!e21^ e21, ~IV.60!

whereXi j (z;p) are the solution to the following system of four difference equations:

X11~pz;p!5
1

12q22p2z2 „~11q22pz2!X11~z;p!2p1/2z~q2q21!X12~z;p!…,

X12~pz;p!5
1

12q2p2z2 „2p1/2z~q2q21!X11~z;p!1~11q2pz2!X12~z;p!…,

~IV.61!

X21~pz;p!5
1

12q22p2z2 „p
1/2z~q2q21!X22~z;p!1~11q22pz2!X21~z;p!…,

X22~pz;p!5
1

12q2p2z2 „~11q2pz2!X22~z;p!1p1/2z~q2q21!X21~z;p!….
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Comment on ‘‘Exact periodic solutions of the complex
Ginzburg–Landau equation’’ †J. Math. Phys. 40, 884 „1999…‡
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France
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Dienst Theoretische Natuurkunde, Vrije Universiteit Brussel, B-1050 Brussel, Belgium

~Received 17 March 1999; accepted for publication 17 May 1999!

@S0022-2488~99!03610-5#

In this recent paper, three solutions to the complex Ginzburg–Landau equation, num
~18!, ~21!, ~24!, were presented as new, while none of them are new, as now detailed. Sol
~18! and ~21! are only defined in the case Im(p/q)50, a case which should be listed as ‘‘dege
erate’’ on page 884 since this is a confluence of the singularities of the solutions.1,2

The elliptic solution~18! was given earlier by Cariello and Tabor1 @their formulas~3.7!,
~3.14a!, and ~3.14b!, which in the case Im(p/q)50 makesuuu2 linear in the Weierstrass elliptic
function#.

Solutions~21! and~24! are neither elliptic, since the discriminantD[g2
3227g3

2 vanishes, nor
rational, sinceuuu2 reduces to a second degree polynomial in tanh(kz) with constant coefficients

uuu25A2@~k tanh~kz!!21c1k tanh~kz!1c2#, A2kÞ0, z5x2ct. ~1!

Such a class has been extensively investigated by many authors and there is no hope for a
result. Indeed, solution~21! is the front of Nozaki and Bekki,3

uuu25A2~k~ tanh~kz!61!!2, ~2!

with however the constraint Im(p/q)50. As to solution~24!, it is either again the front of Nozak
and Bekki without any constraint@in the curious formula~34!, the parameterS is zero#, or the
propagating hole of Bekki and Nozaki,4

uuu25A2@~k tanh~kz!1X!21Y2#, ~3!

with however, the constraintk25X2 which gives to the velocityc a value only depending on
(p,q,g) while it is arbitrary in Ref. 4.

1F. Cariello and M. Tabor, Physica D53, 59 ~1991!.
2R. Conte and M. Musette, Physica D69, 1 ~1993!.
3K. Nozaki and N. Bekki, J. Phys. Soc. Jpn.53, 1581~1984!.
4N. Bekki and K. Nozaki, Phys. Lett. A110, 133 ~1985!.
52830022-2488/99/40(10)/5283/1/$15.00 © 1999 American Institute of Physics
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@S0022-2488~99!03710-X#

The condition Im(p/q)50 is insufficient for the existence of our solution~18! because we have
to assume additionallypiÞ0, qiÞ0. There is no periodic solution in Sec. 3 of Ref. 1 to t
complex Ginzburg–Landau equation. Case Im(p/q)50 is not studied there. Even the authors
Ref. 1 conclude in the paragraph below Eqs.~3.14!, p. 63, that they have not been able to fin
significant new solutions.

Section V of our paper is devoted to the comparison of solutions~21! and ~24! with those
obtained by Bekki and Nozaki. However, our solutions admit representations different
bounded tanh solutions. Indeed, using Eq.~4! of our paper we can get in the limitk→1 the
relationship`;coth2(kz) giving an unbounded limit of our solutions~21!, ~24!. Hence, our
solutions do not coincide with those obtained by Bekki and Nozaki.

We think that the ‘‘curious’’ formula~34! is useful because of the two possibilities for th
parameterS, one of them, see~27!, is not zero.

1F. Cariello and M. Tabor, Physica D53, 59 ~1991!.
52840022-2488/99/40(10)/5284/1/$15.00 © 1999 American Institute of Physics
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On the Schrö dinger equation with steplike potentials
Tuncay Aktosuna)

Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105

~Received 19 July 1999; accepted for publication 2 August 1999!

The one-dimensional Schro¨dinger equation is considered when the potential is
asymptotic to a positive constant on the right half line in a certain sense. The
zero-energy limits of the scattering coefficients are obtained under weaker assump-
tions than used elsewhere, and the continuity of the scattering coefficients from the
left are established. The scattering coefficients for the potential are expressed in
terms of the corresponding coefficients for the pieces of the potential on the posi-
tive and negative half lines. The number of bound states for the whole potential is
related to the number of bound states for the two pieces. Finally, an improved result
is given on the small-energy asymptotics of reflection coefficients for potentials
supported on a half line. ©1999 American Institute of Physics.
@S0022-2488~99!03611-7#

I. INTRODUCTION

Consider the one-dimensional Schro¨dinger equation

c9~k,x!1k2c~k,x!5V~x!c~k,x!, xPR, ~1.1!

where the potentialV is real valued and may be written asV5V11V2 such thatV1 has support in
R2, V2 has support inR1, and

V1PL1
1~R2!, V22c2PL1

1~R1!, ~1.2!

for some positivec. Here the prime denotes the derivative with respect to the spatial variabx,
R25(2`,0), R15(0,1`), andLa

1(I ) is the set of measurable functionsf on an intervalI such
that * I dx(11uxu)au f (x)u is finite. We will useC1 to denote the upper half complex plane a
C15C1øR.

The scattering problem for~1.1! consists of the analysis of the scattering coefficients co
sponding to the potentialV. Such an analysis was given by Buslaev and Fomin1 and by Cohen and
Kappeler;2 however, in Ref. 1 only the generic case was considered, and in Ref. 2 the excep
case was considered under the stronger assumption ofL2

1 instead ofL1
1 in ~1.2!. The definition of

an exceptional potential is given in Sec. II; informally speaking, an exceptional potential
‘‘half-bound state’’ at zero energy, or equivalently it is at the boundary of changing the numb
its bound states by one. The bound states of~1.1! are its square-integrable solutions.

Our primary aim is to consider the small-k asymptotics of the scattering coefficients in t
exceptional case and analyze their continuity atk50 by assuming only~1.2!. One consequence o
our analysis is that under~1.2!, the number of bound states is finite. We present a Levin
theorem relating the number of bound states to the zero-energy limit of the phase of the tra
sion coefficient, and relate the scattering coefficients corresponding toV, V1 , and V2 to each
other.

The inverse scattering problem for~1.1! is equivalent to the recovery of the potential in term
of an appropriate set of scattering data. Such problems were analyzed in Refs. 1–3. Our r

a!Electronic mail: aktosun@plains.nodak.edu
52890022-2488/99/40(11)/5289/17/$15.00 © 1999 American Institute of Physics
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Theorem 3.4 is expected to have an impact on the inverse scattering theory for~1.1! because it was
used as a hypothesis in Ref. 2 to obtain various results in the analysis of the inverse sca
problem for~1.1!.

Our results are also expected to have an impact on the phase recovery problem, a ve
the inverse scattering problem for~1.1! with important applications4–6 in the recovery of materia
properties of thin films. Mathematically speaking, one is interested in the recovery ofV2 by using
only V1 and the reflectivity measurements, i.e., the amplitudes of reflection coefficients wi
their phases. In reality, the phase of the complex-valued reflection coefficient cannot be me
even though the reflectivity is easily measured5–8 by using a device known as the reflectomet
Our analysis of the scattering coefficients forV in terms of those forV1 andV2 helps us to solve
the phase recovery problem by the so-called two-layer method9,10 using 33% less data than th
so-called three-layer method.9,11–13

Our paper is organized as follows. In Sec. II we introduce the Jost solutions and sca
coefficients for~1.1!, explain the distinction between the generic and exceptional cases, and o
the small-k asymptotics of the Jost solution from the left and of itsx derivative. In Sec. III, in the
exceptional case, we prove that the Wronskian defined in~2.10! vanishes linearly ask→0 in C1;
the proof is nontrivial, but the result is significant and it enables us to obtain the small-k asymp-
totics of the scattering coefficients and establish the continuity atk50 of the scattering coeffi-
cients from the left. In Sec. IV we present a Levinson theorem, relating the number of bound
to the zero-energy phase of the transmission coefficient. Section V explores the relation amo
scattering coefficients forV, V1 , andV2 . In Sec. VI the small-k limits of the scattering coeffi-
cients forV1 andV2 are given, and in Sec. VII such limits are related to the corresponding li
for V. In Sec. VII it is also shown that, except for one special case, one can derive the sk
limits of the scattering coefficients forV in terms of the corresponding limits forV1 andV2 ; in the
special case, namely when bothV1 andV2 are generic andV is exceptional, for such a derivatio
one needs to know that~3.52! holds for some nonzeroa even though the value ofa is not needed.
In Sec. VII we also relate the number of bound states forV to the corresponding numbers forV1

andV2 , and show that the former number is one less than or equal to the sum of the numb
bound states forV1 andV2 . Finally, in Sec. VIII, whenc50 in ~1.2!, we present an improved
result on the small-k asymptotics of the reflection coefficient from the right~left! for a potential
supported on the left~right! half line in the generic case; this is done by reconsidering the spe
case in Sec. VI and relating the value ofa in ~3.52! to the parameters corresponding toV1 andV2 .
The small-energy expansions of the reflection coefficients given in Sec. VIII are expect
simplify various proofs in the direct and inverse scattering theory for the Schro¨dinger equation
with potentials belonging toL1

1(R).

II. PRELIMINARIES

The scattering states of~1.1! correspond to solutions behaving likee6 ikx asx→2` and like
e6 igx asx→1`, where

g ªAk22c2, ~2.1!

and the branch of the square root function is used with Img>0. Thus, whenkP(2c,c), g defined
in ~2.1! is purely imaginary and is given byg5 iAc22k2. The mappingk°g is analytic fromC1

to itself and is continuous onC1. The inverse mappingg°k is analytic only ingPC1\ i (0,c#
and is continuous only ingPC1\ i @0,c).

The Jost solution from the left,f l(k,x), associated withV is the solution of~1.1! satisfying

e2 igxf l~k,x!511o~1!, e2 igxf l8~k,x!5 ig1o~1!, x→1`. ~2.2!

Similarly, f r(k,x), the Jost solution from the right, is defined as the solution of~1.1! satisfying

eikxf r~k,x!511o~1!, eikxf r8~k,x!52 ik1o~1!, x→2`. ~2.3!
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The transmission and reflection coefficients from the left,T andL, can be defined in terms of th
spatial asymptotics off l(k,x) as

e2 ikxf l~k,x!5
1

T~k!
1

L~k!

T~k!
e22ikx1o~1!, x→2`.

Similarly, the transmission and reflection coefficients from the right can be defined by usin
asymptotics off r(k,x) asx→1`; however, these coefficients can be expressed1,2 in terms ofT
andL, and they are not essential in our analysis. We will never need the transmission coef
from the right which is equal togT(k)/k, and the reflection coefficient from the right is used on
in Theorem 3.5 and is given in~3.53!. If c50 then the transmission coefficients from the left a
from the right are the same, but they are different ifcÞ0. Further properties of these coefficien
can be found in Refs. 1 and 2.

In terms of the Jost solutions, we define the Faddeev functionsml(k,x) andmr(k,x):

ml~k,x!ªe2 igxf l~k,x!, mr~k,x!ªeikxf r~k,x!. ~2.4!

From ~2.2!, ~2.3!, and~2.4! it follows that

ml~k,x!511
1

2ig E
x

`

dy@e2ig~y2x!21#@V~y!2c2#ml~k,y!, ~2.5!

ml8~k,x!52E
x

`

dy e2ig~y2x!@V~y!2c2#ml~k,y!, ~2.6!

mr~k,x!511
1

2ik E2`

x

dy@e2ik~x2y!21#V~y!mr~k,y!, ~2.7!

mr8~k,x!5E
2`

x

dy e2ik~x2y!V~y!mr~k,y!. ~2.8!

Proposition 2.1:Assume~1.2! is satisfied for somec.0. Then, for each fixedxPR, the
functions f l(k,x) and f l8(k,x) are analytic ingPC1. Consequently, ask→0 in C1, we have

f l~k,0!5 f l~0,0!1O~k2!, f l8~k,0!5 f l8~0,0!1O~k2!. ~2.9!

Proof: The analyticity ingPC1 can be proved by iterating the Volterra integrals~2.5! and
~2.6! and using~2.4!. By ~2.1!, k50 corresponds tog5 ic. Expandingf l(k,0) andf l8(k,0) in g at
g5 ic, we obtain~2.9!. j

Define

W~k!ª
2ik

T~k!
5@ f r~k,x!; f l~k,x!#, ~2.10!

where@ f ;g#ª f g82 f 8g denotes the Wronskian. Recall that the Wronskian of any two solution
~1.1! is independent ofx and depends only onk. Generically,W(0)Þ0, and f l(0,x) and f r(0,x)
are linearly independent. In the exceptional case,f l(0,x) and f r(0,x) are linearly dependent an
henceW(0)50. We will say thatV is a generic~exceptional! potential if the generic~exceptional!
case occurs. By~2.4!, ~2.5!, and~2.7!, both f l(0,x) and f r(0,x) are real valued. In the exceptiona
case, there exists a real nonzero constanta such that

a5
f l~0,x!

f r~0,x!
, xPR. ~2.11!
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III. ANALYSIS OF W„k … IN THE EXCEPTIONAL CASE

In this section we analyzeW(k) in the exceptional case and show thatW(k)/k has a nonzero
limit as k→0. The existence of such a limit was used as a hypothesis in many theorems in R
and it was proved there only under the stronger assumptionL2

1 instead ofL1
1 used in~1.2!. Our aim

is to evaluate this limit under~1.2! alone. For the proof we proceed as in the Appendix of Ref.
where the method was first used in Ref. 15 for the Schro¨dinger equation withc50.

As a first step, let us define the solutions of~1.1!, s(k,x), andv(k,x), satisfying the boundary
conditions

s~k,0!51, s8~k,0!50; v~k,0!50, v8~k,0!51. ~3.1!

In fact, these solutions satisfy

s~k,x!55 coskx1
1

k Ex

0

dy sink~y2x!V~y!s~k,y!, x<0,

cosgx1
1

g E
0

x

dy sing~x2y!@V~y!2c2#s~k,y!, x>0,

~3.2!

v~k,x!55
sinkx

k
1

1

k Ex

0

dy sink~y2x!V~y!v~k,y!, x<0,

singx

g
1

1

g E
0

x

dy sing~x2y!@V~y!2c2#v~k,y!, x>0.

~3.3!

Note also that

s8~k,x!55 2k sinkx2E
x

0

dy cosk~y2x!V~y!s~k,y!, x<0,

2g singx1E
0

x

dy cosg~x2y!@V~y!2c2#s~k,y!, x>0,

~3.4!

v8~k,x!55 coskx2E
x

0

dy cosk~y2x!V~y!v~k,y!, x<0,

cosgx1E
0

x

dy cosg~x2y!@V~y!2c2#v~k,y!, x>0.

~3.5!

Using ~3.1! we get

f l~k,0!5@ f l~k,x!;v~k,x!#, f l8~k,0!52@ f l~k,x!;s~k,x!#, ~3.6!

f r~k,0!5@ f r~k,x!;v~k,x!#, f r8~k,0!52@ f r~k,x!;s~k,x!#. ~3.7!

From ~3.2! and ~3.4!, asx→6` we obtain

s~k,x!5
eikxA1~k!

2ik
1

e2 ikxA2~k!

2ik
1o~1!, x→2`, ~3.8!

s8~k,x!5
eikxA1~k!

2
2

e2 ikxA2~k!

2
1o~1!, x→2`, ~3.9!
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s~k,x!5
eigxA3~k!

2ig
1

e2 igxA4~k!

2ig
1o~1!, x→1`, ~3.10!

s8~k,x!5
eigxA3~k!

2
2

e2 igxA4~k!

2
1o~1!, x→1`, ~3.11!

where we have defined

A1~k!ª ik2E
2`

0

dy e2 ikyV~y!s~k,y!, ~3.12!

A2~k!ª ik1E
2`

0

dy eikyV~y!s~k,y!,

A3~k!ª ig1E
0

`

dy e2 igy@V~y!2c2#s~k,y!,

A4~k!ª ig2E
0

`

dy eigy@V~y!2c2#s~k,y!. ~3.13!

Similarly, from ~3.3! and ~3.5!, asx→6` we obtain

v~k,x!5
eikxA5~k!

2ik
2

e2 ikxA6~k!

2ik
1o~1!, x→2`, ~3.14!

v8~k,x!5
eikxA5~k!

2
1

e2 ikxA6~k!

2
1o~1!, x→2`, ~3.15!

v~k,x!5
eigxA7~k!

2ig
2

e2 igxA8~k!

2ig
1o~1!, x→1`, ~3.16!

v8~k,x!5
eigxA7~k!

2
1

e2 igxA8~k!

2
1o~1!, x→1`, ~3.17!

where we have defined

A5~k!ª12E
2`

0

dy e2 ikyV~y!v~k,y!, ~3.18!

A6~k!ª12E
2`

0

dy eikyV~y!v~k,y!,

A7~k!ª11E
0

`

dy e2 igy@V~y!2c2#v~k,y!,

A8~k!ª11E
0

`

dy eigy@V~y!2c2#v~k,y!. ~3.19!

Evaluating the Wronskians in~3.6! asx→1` and by using~2.2!, ~3.10!, ~3.11!, ~3.16!, and
~3.17!, we get
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f l~k,0!5A8~k!, f l8~k,0!5A4~k!. ~3.20!

Similarly, evaluating the Wronskians in~3.7! asx→2` and by using~2.3!, ~3.8!, ~3.9!, ~3.14!,
and ~3.15!, we have

f r~k,0!5A5~k!, f r8~k,0!52A1~k!. ~3.21!

Now let f(k,x) be the solution of~1.1! satisfying

f~k,0!5 f l~0,0!, f8~k,0!5 f l8~0,0!. ~3.22!

For the arguments in the rest of this section, there is no loss of generality in assumin
f l(0,0)Þ0; if f l(0,0)50, the proofs can be modified as in Ref. 14 to get the results give
Theorems 3.4 and 3.5. Becausef(0,x) and f l(0,x) are solutions of the same differential equati
with the same initial conditions given in~3.22!, we have

f~0,x!5 f l~0,x!, xPR. ~3.23!

Using ~2.11! and ~3.23! we see that in the exceptional casef(0,x) remains bounded asx→
6`; this is becausef l(0,x) and f r(0,x) remain bounded asx→1` andx→2`, respectively.
From ~3.1! and ~3.22! it follows that

f~k,x!5 f l~0,0!s~k,x!1 f l8~0,0!v~k,x!. ~3.24!

Our aim is to expressW(k) defined in~2.10! in terms off(k,x). Evaluating the Wronskian
in ~2.10! at x50 and using~3.20! and ~3.21!, we obtain

f l~0,0!W~k!5 f r~k,0! f l~0,0!A4~k!1 f l~k,0! f l~0,0!A1~k!. ~3.25!

Using ~3.12!, ~3.18!, ~3.21!, and~3.24!, we have

f l~0,0!A1~k!5 ik f l~0,0!1 f l8~0,0!2 f l8~0,0! f r~k,0!2E
2`

0

dy e2 ikyV~y!f~k,y!. ~3.26!

Similarly, using~3.13!, ~3.19!, ~3.20!, and~3.24!, we get

f l~0,0!A4~k!5 ig f l~0,0!2 f l8~0,0!1 f l8~0,0! f l~k,0!2E
0

`

dy eigy@V~y!2c2#f~k,y!.

~3.27!

Thus, using~3.26! and ~3.27! in ~3.25!, we obtain

f l~0,0!W~k!52 f r~k,0!M1~k!1 f l~k,0!M2~k!. ~3.28!

where

M1~k!ª2 ig f l~0,0!1 f l8~0,0!1E
0

`

dy eigy@V~y!2c2#f~k,y!, ~3.29!

M2~k!ª ik f l~0,0!1 f l8~0,0!2E
2`

0

dy e2 ikyV~y!f~k,y!. ~3.30!

Proposition 3.1:Assume~1.2! is satisfied for somec.0. Then,M1(k) defined in~3.29! is an
analytic function ofgPC1, M1(0)50, and

M1~k!5O~k2!, k→0 in C1. ~3.31!
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Proof: Using ~3.20!, ~3.27!–~3.29!, we see thatM1(k) is a linear combination off l(k,0) and
f l8(k,0), and in fact

M1~k!52 f l~0,0! f l8~k,0!1 f l8~0,0! f l~k,0!. ~3.32!

Thus, by Proposition 2.1 and~3.32!, M1(k) is analytic ingPC1. Using its Taylor series expan
sion aroundg5 ic, which corresponds tok50, we obtain~3.31! and see thatM1(0)50. j

In the following proposition and elsewhere, we will useC to denote a generic positive con
stant whose value is not necessarily the same in different appearances.

Proposition 3.2:Assume that we are in the exceptional case and that~1.2! holds for somec
>0. Then,

uf~k,x!2f~0,x!u<CS ukxu
11ukxu D

2

, x<0, ~3.33!

with kP@2e,e# for any fixed positivee.
Proof: Using ~3.1!, ~3.22!, and~3.24! we obtain

f~k,x!5 f l~0,0!coskx1 f l8~0,0!
sinkx

k
1

1

k Ex

0

dy sink~y2x!V~y!f~k,y!, x<0, ~3.34!

f~0,x!5 f l~0,0!1x f l8~0,0!1E
x

0

dy~y2x!V~y!f~0,y!, x<0. ~3.35!

Let us write~3.35! as

f~0,x!5B11xB21B31B4 ,

where

B1ª f l~0,0!1E
2`

0

dy yV~y!f~0,y!,

B2ª f l8~0,0!2E
2`

0

dy V~y!f~0,y!,

B3ªxE
2`

x

dy V~y!f~0,y!,

B4ª2E
2`

x

dy yV~y!f~0,y!.

Becausef(0,y) is bounded onR2 andVPL1
1(R2), we getB45o(1) asx→2`. Again using

VPL1
1(R2) and the boundedness off(0,y) on R2, with the help of

uB3u<CE
2`

x

dyuxuuV~y!u<CE
2`

x

dyuyuuV~y!u,

we getB35o(1) asx→2`. Sincef(0,x) remains bounded asx→2`, the linear growth inx in
~3.35! asx→2` cannot happen and we must haveB250. Hence

f l8~0,0!2E
2`

0

dy V~y!f~0,y!50, ~3.36!
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and this leads to

f~0,x!5 f l~0,0!1E
2`

0

dy yV~y!f~0,y!1o~1!, x→2`. ~3.37!

From ~3.34!–~3.36!, we get

f~k,x!2f~0,x!5I 11I 21I 31I 41I 51
1

k Ex

0

dy sink~y2x!V~y!@f~k,y!2f~0,y!#,

~3.38!

where we have defined

I 1ªxFsinkx

kx
21G E

2`

x

dy V~y!f~0,y!, ~3.39!

I 2ª@coskx21# f l~0,0!, I 3ª
sinkx

k E
x

0

dy@12cosky#V~y!f~0,y!, ~3.40!

I 4ª2~12coskx!E
x

0

dy
sinky

k
V~y!f~0,y!, ~3.41!

I 5ªE
x

0

dy yFsinky

ky
21GV~y!f~0,y!. ~3.42!

For z>0, the functionz°z/(11z) is monotone increasing and we have

usinzu<
Cz

11z
, U12

sinz

z U< Cz2

~11z!2 , u12coszu<
Cz2

~11z!2 . ~3.43!

Hence, forx<0 andkP@2e,e#, from ~3.39!–~3.42! we get the estimates

uI j u<
Cukxu2

~11ukxu!2 , j 51,2,3,4,5. ~3.44!

Using ~3.43! and ~3.44! in ~3.38!, we obtain

uf~k,x!2f~0,x!u<
Cukxu2

~11ukxu!2 1
Cuxu

11ukxu Ex

0

dyuV~y!uuf~k,y!2f~0,y!u, ~3.45!

With the help of Gronwall’s lemma, from~3.45! we get~3.33!. j

Proposition 3.3:AssumeV is an exceptional potential and~1.2! holds for somec.0, and let
M2(k) be the quantity defined in~3.30!. Then, ask→0 on the real axis, we have

f l~k,0!M2~k!5 ika f l~0,0!1o~k!, ~3.46!

wherea is the real nonzero constant given in~2.11!.
Proof: Using ~3.30! and ~3.36! we get

f l~k,0!M2~k!5 f l~k,0!@ ik f l~0,0!1J11J2#, ~3.47!

where
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J1ª2E
2`

0

dy @e2 iky21#V~y!f~0,y!, ~3.48!

J2ª2E
2`

0

dy e2 ikyV~y!@f~k,y!2f~0,y!#. ~3.49!

Because of~3.23!, in the exceptional casef(0,y) is bounded fory<0. Using the inequality

ueiz2 iz21u<
Cz2

11z
, z>0,

from ~3.48!, sinceVPL1
1(R2), we get

J15 ikE
2`

0

dy yV~y!f~0,y!1o~k!. ~3.50!

Moreover, using~3.33! in ~3.49! we get

uJ2u<Cuku E
2`

0

dy
ukyu

11ukyu ~2y!uV~y!u,

which gives usJ25o(k). Hence, using~2.9! and ~3.50! in ~3.47!, we obtain

f l~k,0!M2~k!5 ik f l~0,0!21 ik f l~0,0!E
2`

0

dy yV~y!f~0,y!1o~k!. ~3.51!

Using ~3.37! we can explicitly evaluate the integral on the right-hand side of~3.51!. Since
f r(0,x)511o(1) asx→2`, with the help of~2.11!, ~3.23!, and~3.37!, we get

E
2`

0

dy yV~y!f~0,y!5a2 f l~0,0!,

and hence~3.51! reduces to~3.46!. j

Theorem 3.4: Assume thatV is an exceptional potential and that~1.2! holds for somec
.0. Then, the WronskianW(k) defined in~2.10! satisfiesW(0)50 and

W~k!5 iak1o~k!, k→0 in C1, ~3.52!

wherea is the real nonzero constant given by~2.11!.
Proof: Using ~3.28!, ~3.31!, and~3.46!, we see that~3.52! holds ask→0 through real values

However, using the Phragme´n–Lindelöf theorems as on p. 2927 of Ref. 14, it follows that t
limit is valid also whenk→0 in C1. j

The reflection coefficient from the right for~1.1!, R, is related toT andL as1,2

R~k!52
L~k!* T~k!

T~k!*
, kPR\$0%, ~3.53!

where the asterisk denotes complex conjugation. The continuity ofT, L, andR at k50 is already
known2 in the generic case under~1.2!. Next, we show that their continuity holds also in th
exceptional case.

Theorem 3.5: Assume thatV is an exceptional potential and that~1.2! holds for somec
.0. Then, the scattering coefficientsT, L, andR are all continuous atk50, and we have
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T~k!5
2

a
1o~1!, k→0 in C1, ~3.54!

L~k!511o~1!, R~k!5211o~1!, k→0 in R, ~3.55!

wherea is the real nonzero constant given in~2.11!.
Proof: From ~2.10! and Theorem 3.4, we get~3.54!, which also proves the continuity ofT at

k50. Using~3.53! and the identity1,2

L~k!5
T~k!

T~k!*
, kP@2c,c#\$0%, ~3.56!

and the fact thata is real and nonzero, we get~3.55! and the continuity ofL andR at k50. j

IV. THE LEVINSON THEOREM

In Theorem 3.5 we have proved the continuity ofT andL at k50 in the exceptional case. In
the generic case, the continuity of these functions is already known2 and also follows from~2.10!
and ~3.56!, which lead to

T~k!5
2ik

W~0!
1o~k!, k→0 in C1, ~4.1!

L~k!5211o~1!, k→0 in R. ~4.2!

One consequence of the continuity ofT at k50 is the following analog of the Levinson
theorem, which relates the number of bound states to the argument ofT at k50.

Theorem 4.1:Assume thatV satisfics~1.2! for somec>0. Then the number of bound state
of ~1.1! is finite and given by

N5
d

2
1

1

p
@argT~01!#, ~4.3!

where d50 in the exceptional case andd51 in the generic case, and argT(k) denotes the
continuous branch of the argument ofT normalized such that argT(1`)50.

Proof: The continuity ofT at k50 is the additional assumption used in Corollary 1.5 of R
2 in order to assure thatk50 cannot be an accumulation point for the poles ofT in C1 and that
the number of such poles is finite. It is already known1,2 that such poles are simple and confin
to the positive imaginary axis, 1/T is continuous inC1\$0%, andT(k)511O(1/k) as k→` in
C1. Thus, we have all the ingredients to proceed as in the proof of Theorem 9.1 of Ref. 1j

Proposition 4.2:Assume thatV satisfies~1.2! for somec.0. Then, the real nonzero consta
a defined in~2.11! in the exceptional case has the same sign as that ofeiNp. The sign ofW(0) in
the generic case is the same as the sign ofei (N11)p.

Proof: In the exceptional case, comparing~3.54! and ~4.3! gives us the sign ofa. In the
generic case, comparing~4.1! and ~4.3! we get the sign ofW(0). j

V. FACTORIZATION

Let Vj denoteV1 andV2 for j 51 and j 52, respectively. We will useTj , L j , andRj for the
transmission coefficient from the left, the reflection coefficient from the left, and the refle
coefficient from the right, respectively, for the potentialVj . Similarly, let f l ; j (k,x) and f r ; j (k,x)
denote the Jost solutions from the left and from the right, respectively, forVj . As in ~2.10! we will
useWj (k) to denote 2ik/Tj (k); in the exceptional case, as in~2.11! we will usea j to denote the
nonzero real constantf l ; j (0,x)/ f r ; j (0,x). We will also letNj denote the number of bound states
Vj .
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Proposition 5.1:Assume thatV satisfies~1.2! for somec>0. Then,

1

T~k!
5

12R1~k!L2~k!

T1~k!T2~k!
, kPR\$0%, ~5.1!

L~k!

T~k!
5

L2~k!2R1~k!*

T1~k!* T2~k!
, kPR\$0%. ~5.2!

The result stated in Proposition 5.1 holds when onlyL1 is used instead ofL1
1 in ~1.2!;

however, we will take the limit in~5.1! and~5.2! ask→0 and hence it is more convenient to ha
the result stated under~1.2!. Proposition 5.1 is a special case of the following factorization re
whose proof can be given as in Refs. 17 and 18. Let us partition the real axisR into p fragments
asR5ø j 51

p (xj 21 ,xj ), wherex0ª2`, xpª1`, andxj 21,xj for j 51,...,p. We can then write
the potentialV in terms of its fragmentsVj 21,j as

V~x!5(
j 51

p

Vj 21,j~x!, ~5.3!

where we have defined

Vj 21,j~x!ªH V~x!, xP~xj 21 ,xj !,

0, x¹~xj 21 ,xj !.
~5.4!

Note thatVj 21,jPL1(R) for j 51,..., p21, and the rightmost fragmentVp21,p satisfiesVp21,p

2c2PL1(R). Let Tj 21,j and L j 21,j denote the transmission and reflection coefficients from
left, respectively, forVj 21,j . Let us define the transition matrixL associated withV andL j 21,j

associated withVj 21,j as

L~k!ªF 1

T~k!

L~k!*

T~k!*

L~k!

T~k!

1

T~k!*

G , L j 21,j~k!ªF 1

Tj 21,j~k!

L j 21,j~k!*

Tj 21,j~k!*

L j 21,j~k!

Tj 21,j~k!

1

Tj 21,j~k!*

G .

From ~3.56! and the identity2

12uL~k!u25
g

k
uT~k!u2, kPR\~2c,c!,

it follows that the determinant ofL is given by

detL~k!5H g

k
, kPR\~2c,c!

0, 0,uku<c

.

The two columns in each ofL andLp,p11 are identical when 0,uku<c.
Theorem 5.2:AssumeV satisfies~1.2! for somec>0, whereL1 is used instead ofL1

1. Let L
be the transition matrix corresponding to the potentialV and letL j 21,j correspond to the fragmen
Vj 21,j defined in~5.4!. Then, we have

L~k!5L0,1~k!L1,2~k!¯Lp21,p~k!, kPR\$0%. ~5.5!

The result in Proposition 5.1 corresponds top52 in Theorem 5.2 by using the~1,1! and~2,1!
entries in the matrix equality in~5.5! and thatR1(k)52L1(k)* T1(k)/T1(k)* for kPR\$0%.
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VI. ASYMPTOTICS OF SCATTERING COEFFICIENTS FOR V1 AND V2

In considering the potentialV1 , the analog of Theorem 4.1 states that

argT1~01!5S N12
d1

2 Dp, ~6.1!

whered150 if V1 is exceptional andd151 if V1 is generic. Using the boundary conditions
x50 based on the continuity off r ;1(k,x) and f r ;18 (k,x), we have

11R1~k!

T1~k!
5 f r ;1~k,0!, ik

211R1~k!

T1~k!
5 f r ;18 ~k,0!, ~6.2!

where f r ;1(k,x) is the Jost solution from the right forV1 . Thus, from~6.2! it follows that

W1~k!ª
2ik

T1~k!
5 ik f r ;1~k,0!2 f r ;18 ~k,0!. ~6.3!

Using the general theory,19–21 or with the help of~2.4!, ~2.7!, and~2.8! we have

f r ;1~k,0!5 f r ;1~0,0!1o~1!, f r ;18 ~k,0!5 f r ;18 ~0,0!1o~1!, k→0 in C1, ~6.4!

and hence~6.3! and ~6.4! give usW1(0)52 f r ;18 (0,0). GenericallyW1(0)Þ0, and in the excep-
tional case we haveW1(0)50. Thus, generically we obtain

W1~k!52 f r ;18 ~0,0!1o~1!, k→0 in C1,

and hence from~6.2! and ~6.3! we get

T1~k!52
2ik

f r ;18 ~0,0!
1o~k!, k→0 in C1, ~6.5!

R1~k!5211T1~k! f r ;1~k,0!52122ikm11o~k!, k→0 in C1, ~6.6!

where we have defined

m1ª
f r ;1~0,0!

f r ;18 ~0,0!
. ~6.7!

Note thatm1 is well defined becausef r ;18 (0,0)52W1(0)Þ0 whenV1 is generic. In Sec. VIII we
will improve the result in~6.6! by evaluating the next term in the expansion. Comparing~6.1! and
~6.5! we see that the sign off r ;18 (0,0) is the same as the sign ofeiN1p. Moreover, with the help of
~2.3! we get

f r ;1~k,x!5 f r~k,x!, f r ;18 ~k,x!5 f r8~k,x!, x<0. ~6.8!

Now let us turn to the exceptional case. In this case, underV1PL1
1(R2), it is known that

W1(k) vanishes linearly ink ask→0 in C1. We have22

W1~k!5
ik~a1

211!

a1
1o~k!, k→0 in C1,

T1~k!5
2a1

a1
211

1o~1!, k→0 in C1, ~6.9!
                                                                                                                



e

f

5301J. Math. Phys., Vol. 40, No. 11, November 1999 On the Schrödinger equation with steplike . . .

                    
R1~k!52
a1

221

a1
211

1o~1!, k→0 in C1, ~6.10!

wherea1 is the real nonzero constant given by

a15
f l ;1~0,x!

f r ;1~0,x!
, xPR.

Comparing~6.1! and ~6.9! we see that the sign ofa1 is the same as the sign ofeiN1p. Note that
(a1

221)/(a1
211) is an increasing function ofa1

2 and its values are confined to the interval~21,1!.
Thus,R1(0)P(21,1) in the exceptional case.

Let us now summarize some similar results forV2 , where~1.2! holds for somec.0. From
Theorem 4.1 we have

argT2~01!5S N22
d2

2 Dp, ~6.11!

whered250 for the exceptional case andd251 in the generic case. Using the continuity of th
Jost solutionf l ;2(k,x) and its derivativef l ;28 (k,x) at x50, we get

11L2~k!

T2~k!
5 f l ;2~k,0!, ik

12L2~k!

T2~k!
5 f l ;28 ~k,0!. ~6.12!

As in Proposition 2.1 we have

f l ;2~k,0!5 f l ;2~0,0!1O~k2!, f l ;28 ~k,0!5 f l ;28 ~0,0!1O~k2!, k→0 in C1, ~6.13!

wheref l ;2(0,0) andf l ;28 (0,0) cannot simultaneously vanish because of~2.2!. Moreover, from~2.2!
we obtain

f l ;2~k,x!5 f l~k,x!, f l ;28 ~k,x!5 f l8~k,x!, x>0. ~6.14!

With the help of~6.12!, defining

W2~k!ª
2ik

T2~k!
5 ik f l ;2~k,0!1 f l ;28 ~k,0!, ~6.15!

from ~6.13! we have

W2~k!5 f l ;28 ~0,0!1 ik f l ;2~0,0!1O~k2!, k→0 in C1. ~6.16!

The generic case occurs ifW2(0)Þ0; therefore, generically we havef l ;28 (0,0)Þ0, and in the
exceptional case we havef l ;28 (0,0)50. Thus, generically, from~6.15! and ~6.16! we get

T2~k!5
2ik

f l ;28 ~0,0!
1

2m2k2

f l ;28 ~0,0!
1O~k3!, k→0 in C1, ~6.17!

wherem2 is the real constant defined as

m2ª
f l ;2~0,0!

f l ;28 ~0,0!
. ~6.18!

Comparing~6.11! and ~6.17!, we conclude that the sign off l ;28 (0,0) is the same as the sign o
ei (N211)p. With the help of~6.12!, ~6.13!, and~6.17! we also get
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L2~k!52112ikm212k2m2
21O~k3!, k→0 in C1. ~6.19!

In the exceptional case we haveW2(0)50, i.e., f l ;28 (0,0)50 and f l ;2(0,0)Þ0. In this case it
follows from ~6.16! that W2(k) vanishes linearly ink ask→0 in C1. From ~6.13! and~6.15! we
get

W2~k!5 ik f l ;2~0,0!1O~k2!, k→0 in C1,

T2~k!5
2

f l ;2~0,0!
1O~k!5

2

a2
1O~k!, k→0 in C1, ~6.20!

wherea2 is the real nonzero constant given by

a25
f l ;2~0,x!

f r ;2~0,x!
, xPR,

and we have used the fact thatf r ;2(0,x)51 for x<0. Comparing~6.11! and~6.20!, we see that the
sign of a2 is the same as the sign ofeiN2p. Using ~6.12! and ~6.20!, we obtain

L2~k!511O~k!, k→0 in C1. ~6.21!

VII. ASYMPTOTICS OF SCATTERING COEFFICIENTS FOR V

In this section, using the results in Sec. VI, with the help of~5.1! and~5.2!, we will derive the
small-k asymptotics ofT andL and compare our results with those obtained in~4.1!, ~4.2!, and
Theorem 3.5.

With the help of~5.1!, let

F~k!ª
T1~k!T2~k!

T~k!
512R1~k!L2~k!, ~7.1!

and letv(k) denote the phase ofF(k) as normalized in Theorem 4.1. From~7.1! we get

v~01!5argT1~01!1argT2~01!2argT~01!. ~7.2!

Using ~4.3!, ~6.1!, and~6.11! in ~7.2!, we obtain

v~01!5S N11N22N2
d11d22d

2 Dp. ~7.3!

If both V1 andV2 are exceptional, from~6.10!, ~6.21!, and~7.1! we get

F~k!5
2a1

2

a1
211

1o~1!, k→0 in C1, ~7.4!

and hencev(01)50. Using~6.9!, ~6.20!, ~7.1!, and~7.4! we have

T~k!5
2

a1a2
1o~1!, k→0 in C1. ~7.5!

Thus,V is exceptional,N5N11N2 , T(01) is real and nonzero, and the sign ofT(01) is the same
as that ofei (N11N2)p, where the latter fact is obtained by using~7.5! and the signs ofa1 anda2

determined in Sec. VI. Using~5.2!, ~6.9!, ~6.10!, ~6.20!, ~6.21!, and~7.5! we also get

L~k!511o~1!, k→0 in R.
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If V1 is exceptional andV2 is generic, then using~6.9!, ~6.10!, ~6.17!, ~6.19!, and~7.1!, we
obtain

F~k!5
2

a1
211

1o~1!, k→0 in C1,

T~k!5
2ia1k

f l ;28 ~0,0!
1o~k!, k→0 in C1.

In this case,V is generic andv(01)50, and hence from~7.3! we getN5N11N2 . With the help
of ~5.2! we also obtain

L~k!5211o~1!, k→0 in R.

If V1 is generic andV2 is exceptional, then using~6.5!, ~6.6!, ~6.20!, ~6.21!, and~7.1! we get

F~k!521O~k!, k→0 in C1,

T~k!52
2ik

a2f r ;18 ~0,0!
1o~k!, k→0 in C1,

and henceV is generic,v(01)50, and from~7.3! it follows that N5N11N2 . With the help of
~5.2! we also obtain

L~k!5211o~1!, k→0 in R.

If both V1 andV2 are generic, using~6.6!–~6.8!, ~6.14!, ~6.18!, ~6.19!, and~7.1! we get

F~k!52ik~m22m1!1o~k!52
2ikW~0!

f r ;18 ~0,0! f l ;28 ~0,0!
1o~k!, k→0 in C1, ~7.6!

whereW(k) is the Wronskian given in~2.10! and we have used

W~k!5@ f r~k,x!; f l~k,x!#5 f r ;1~k,0! f l ;28 ~k,0!2 f r ;18 ~k,0! f l ;2~k,0!. ~7.7!

Thus, we have two possibilities, namelyW(0)Þ0 andW(0)50. If W(0)Þ0, thenV is generic,
and in this case using~5.2!, ~6.5!, ~6.6!, ~6.17!, ~6.19!, ~7.1!, and~7.6! we get

T~k!5
2ik

W~0!
1o~k!, k→0 in C1, ~7.8!

L~k!5211o~1!, k→0 in R,

agreeing with~4.1! and ~4.2!. From ~4.3! and ~7.8! it is seen thatW(0) has the same sign as th
sign ofei (N11)p. From~7.6!, sinceW(0)Þ0, we getv(01)56p/2. In Sec. VI we have seen tha
the sign off r ;18 (0,0) is the same as that ofeiN1p and the sign off l ;28 (0,0) is the same as that o
ei (N211)p. Thus, in the subcasem2.m1 with v(01)5p/2, from ~7.3! we getN5N11N221.
Similarly, in the subcasem2,m1 with v(01)52p/2, we obtainN5N11N2 .

If both V1 and V2 are generic andW(0)50, thenV is exceptional. In this case, withou
consulting Theorem 3.4, by using~6.5!, ~6.6!, ~6.17!, and ~6.19! we can only conclude tha
F(k)5o(k) as k→0. If we knew the expansion in~6.6! up to o(k2), then we would have
determinedF(k) up too(k2) as well. If we use Theorem 3.4, with the help of~3.52!, ~3.56!, ~6.5!,
~6.17!, and~7.1! we get
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F~k!5
2ak2

f r ;18 ~0,0! f l ;28 ~0,0!
1o~k2!, T~k!5

2

a
1o~1!, k→0 in C1,

~7.9!
L~k!511o~1!, k→0 in R,

where, by ~4.3!, the sign of a is the same as that ofeiNp. Since uR1(k)L2(k)u,1 for
kPR\$0%, we must havev(01)50. In this case, with the help of~7.3!, we getN5N11N221.

The above analysis shows thatN5N11N2 or N5N11N221. As in Theorem 2.1 of Ref. 22
using induction we obtain the following general result.

Theorem 7.1:AssumeV satisfying~1.2! for somec>0 is partitioned intop fragments as in
~5.3!, and letNj -1,j denote the number of bound states corresponding toVj -1,j . Then

12p1(
j 51

p

Nj 21,j<N<(
j 51

p

Nj 21,j , p51,2,... .

VIII. SMALL-ENERGY ASYMPTOTICS OF R1„k …

In this section, we will improve the asymptotics in~6.6!. We will obtain the small-k asymp-
totics of the reflection coefficients for potentials supported on a half line up too(k2).

The results given here are expected to contribute to better understanding of the scatter
inverse scattering theory for the Schro¨dinger equation withc50.

Theorem 8.1:AssumeV1 is real valued, is supported inR2, andV1PL1
1(R2). Then, in the

generic case we have

R1~k!52122ikm112k2Fm1
21

1

f r ;18 ~0,0!2G1o~k2!, k→0 in C1, ~8.1!

wherem1 is the quantity defined in~6.7!.
Proof: Given the generic potentialV1 , let us chooseV2 satisfying~1.2! with c.0 such that

m25m1 , wherem2 is the quantity defined in~6.18!. As seen from~7.6!, this corresponds to having
V2 generic andV exceptional. In this case, using~7.7! at k50, with the help of~2.11!, ~6.8!, and
~6.14!, we obtaina5 f l ;28 (0,0)/f r ;18 (0,0). Thus,~7.9! gives us

F~k!5
2k2

f r ;18 ~0,0!2 1o~k2!, k→0 in C1. ~8.2!

On the other hand, usingm25m1 in ~6.19! we get

L2~k!52112ikm112k2m1
21O~k3!, k→0 in C1. ~8.3!

Because of~7.1! we have

R1~k!5
12F~k!

L2~k!
, ~8.4!

and using~8.2! and ~8.3! in ~8.4! we get~8.1!. j

Whenc50, the Taylor series expansion in~6.19! is no longer valid. However, we can use th
analog of Theorem 8.1 and use the transformationx→2x to obtain the following result.

Corollary 8.2: AssumeV2 is real valued, is supported inR1, andV2PL1
1(R1), i.e., assume

that c50 in ~1.2!. Then, in the generic case we have
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L2~k!52112ikm212k2Fm2
21

1

f l ;28 ~0,0!2G1o~k2!, k→0 in C1,

wherem2 is the quantity defined in~6.18!.
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By using the field–antifield formalism, we show that the method of Batalin, Frad-
kin, Fradkina, and Tyutin~BFFT! to convert Hamiltonian systems submitted to
second class constraints introduces compensating fields which do not belong to the
BRST cohomology at ghost number one. This assures that the gauge symmetries
which arise from the BFFT procedure are not obstructed at quantum level. An
example where massive electrodynamics is coupled to chiral fermions is consid-
ered. We solve the quantum master equation for the model and show that the
respective counterterm has a decisive role in extracting anomalous expectation
values associated with the divergence of the Noether chiral current. ©1999
American Institute of Physics.@S0022-2488~99!02511-6#

I. INTRODUCTION

The seminal works of Dirac1 on constraint Hamiltonian systems have been develope
several important research lines. One of these developments is due to Batalin, Fradkin, Fr
and Tyutin~BFFT!,2 where Hamiltonian systems submitted to second class constraints are
veniently considered. The method of BFFT consists in enlarging the original phase-space
theory by adding compensating fields which permit to convert the second class constrain
first class ones. In doing so, it is possible to avoid Dirac brackets which can present s
problems when one follows the canonical approach to quantization.3 As first class constraints ar
also necessarily associated with local gauge symmetries, a system converted by the BFFT
dure can be treated by using all the machinery associated with the Becchi–Rouet–Stora–
~BRST! formalism.4

The BRST approach for quantization of gauge theories appears with all its power i
field–antifield formalism.5,3,6This formalism gives an elegant and systematic way for construc
the functional generator of any general gauge theory, with possible reducible or open
algebras. At the same time, eventual obstructions to the gauge symmetries due to quantum
are naturally taken in account inside the field–antifield formalism.

In this work we consider, by using some tools of the field–antifield formalism, the quan
tion of first order gauge theories which have been obtained from second class constrained s
by the process of conversion developed by BFFT. We show that the compensating fields
duced by the conversion procedure do not belong to the BRST cohomology3 at ghost number one
So there is no possible term in the space of fields and antifields with ghost number one and
closed not being BRST exact. This means that the Wess–Zumino consistence condition6 is solved
in a trivial way; there is no gauge anomaly for such class of systems and the quantum
equation can always be solved with the inclusion of a proper counterterm in the quantum a
It is useful to observe that this counterterm, if it exists, can play a nontrivial role. We giv
example where massive electrodynamics couples to chiral fermions. There we show tha
53060022-2488/99/40(11)/5306/12/$15.00 © 1999 American Institute of Physics
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necessary to introduce a nontrivial counterterm in order to solve the quantum master eq
This counterterm permits us to extract an anomalous expectation value related to the diverg
the fermion Noether chiral current.

We would like to note that compensating fields have been largely employed directly i
Lagrangian descriptions.7,8 There the purpose is not converting second class constraints, b
enlarge the symmetry content of a theory in such a way that the original description is reco
within some gauge choice. Under this last point of view, BFFT and Lagrangian compens
fields play similar roles. In several examples of Lagrangian descriptions it is proved that com
sating fields also do not belong to the cohomology at ghost number one and can be used
to extract anomalous expectation values of physically relevant quantities.9

We organized this work as follows: In Sec. II we present a brief review of the BFFT con
sion of first order systems submitted to pure second class constraints. We display the loca
invariance of the first order action which is introduced by the BFFT compensating fields
functional quantization of such a system is described in Sec. III, by using the tools of the
antifield formalism. We derive the BRST differential and explicitly show that the BFFT varia
do not belong to the BRST cohomology at ghost number one. This assures that the qu
master equation can be solved for any system of this class. In Sec. IV the ideas presente
first sections are applied to a model which describes massive electrodynamics coupled to
fermions in four space–time dimensions. By using a regularization that keeps the vector sym
as a preferential one, the quantum master equation is solved with the introduction of an s
counterterm in the quantum action. A few different gauge fixing choices are explored and
riant actions are obtained. When the gauge freedom is fixed by identifying the compensating
with external functions, we show that the independence of the path integral with respect to
external functions permit us to derive expectation values which are related to the anom
divergence of the Noether chiral current. We reserve Sec. V to some general commen
concluding remarks.

II. FIRST ORDER SYSTEMS SUBMITTED TO SECOND CLASS CONSTRAINTS

In this section we will review a few topics on constrained Hamiltonian systems3 and on the
BFFT conversion procedure2 in order to fix notations and to introduce some results that will
useful for further developments. Let us start by considering a generic first order system liv
a ~phase! space with discrete bosonic coordinatesym, m51,2,...,2N. The extension to more
general situations can be trivially done. Its action is written as

S05E dt~Bmẏm2laxa2H !, ~2.1!

whereBm , H, andxa are in principle arbitrary functions of the coordinates but do not depen
the velocities. The Lagrange multipliersla are to be regarded as independent quantities. From
above expression one can read the symplectic form

f mn5
]Bn

]ym 2
]Bm

]yn ~2.2!

which has an inversef mn if the system is well defined. With its aid, we can define the brack
between any two functionsA(y) andB(y) as

$A, B%5
]A

]ym f mn
]B

]yn . ~2.3!

It follows that

$ym,yn%5 f mn. ~2.4!
                                                                                                                



ets only
Dirac’s

Hamil-

t-class
ich also
ols of

com-

ction

s that

traints

red

a

gular

n

5308 J. Math. Phys., Vol. 40, No. 11, November 1999 R. Amorim and R. Thibes

                    
The brackets appearing in the above expressions can be interpreted as Poisson brack
in a broad sense, since they take in account the primary second class constraints of the
scheme.10 In this sense they are primary Dirac brackets. Let nowH and xa , a51,2,...,2n,
represent respectively, a first class Hamiltonian and a set of second class constraints. The
tonian and the constraints then satisfy the structure

$xa ,xb%5Dab ,
~2.5!

$H,xa%5Va
bxb .

As thex’s are second class, the constraint matrixDab is regular.
It may be convenient to extend the phase-space by adding compensating variablesfa, a

51,2,...,2n, but at the same time converting the set of second class constraints into a firs
one. This assures that the number of degrees of freedom is not changed by the process, wh
introduces local symmetries that permit one to quantize the theory by using the powerful to
local gauge theories.

To perform this conversion through the BFFT procedure, it is assumed that the BFFT
pensating variablesfa satisfy fundamental brackets given by

$fa,fb%5vab, ~2.6!

wherev is some constant, antisymmetric, and invertible matrix. In order to avoid the introdu
of further second class constraints, it may be convenient to choosev in such a way that the
compensating variables form a set of canonical conjugated quantities. In any case, it follow
in the BFFT extended space, the brackets between any two quantitiesA(y,f) and B(y,f) are
written as

$A,B%5
]A

]ym f mn
]B

]yn 1
]A

]fa vab
]B

]fb ~2.7!

as both sectors are independent.
The general idea of the BFFT algorithm is to replace the old set of second class cons

and the old Hamiltonian by a new set of first class constraintsx̃a5x̃a(y,f) and Hamiltonian
H̃5H̃(y,f) in such a way that they become involutive,

$x̃a ,x̃b%50,
~2.8!

$H̃,x̃a%50.

By requiring thatÃ(y,0)5A(y) for any quantityA defined in the extended space, it is assu
that the original formulation of the theory is recovered when the unitary gaugefa50 is imple-
mented. In Refs. 2 it is proven that Eqs.~2.8!, submitted to the above condition, always have
power series solution in the compensating variables, with coefficients with onlyym dependence.
The second class constraints, for instance, can be extended to

x̃a~y,f!5xa~y!1Xab~y!fb1Xabg~y!fbfg1¯ . ~2.9!

Conditions~2.8! impose restrictions on the expansion coefficients. As an example, the re
matricesXab must satisfy the identity

XabvbgXdg52Dad . ~2.10!

Even if some quantityA(y) is not a second class constraint, it can also be extended toÃ(y,f)
in order to be involutive with the converted constraintsx̃a . Following the BFFT procedure we ca
show that in this situation
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Ã~y,f!5A~y!2favabXbg$xg ,A%1¯, ~2.11!

where the dots represent at least second order corrections inf to A(y). In ~2.11!, the matrixX
with contravariant indices is to be considered as the inverse of the corresponding covaria
Now it is possible to prove that the first order action

S05E dt@Bmẏm1Baḟa2lax̃a2H̃# ~2.12!

is invariant under the gauge transformations

dym5$ym,x̃a%ea,

dfa5$fa,x̃b%eb, ~2.13!

dla5 ėa.

By using the Jacobi Identity and Eqs.~2.8! we see that~2.13! close in an Abelian algebra. As in
~2.2!, in ~2.12! Ba is related to the inverse ofvab through

vab5
]Bb

]fa 2
]Ba

]fb . ~2.14!

One can always chooseBa5 1
2vabfb without loss of generality. By using some of the abo

equations, it is not difficult to show that

d@Bmẏm1Baḟa2lax̃a2H̃#5
d

dt H FBm f mn
]x̃a

]yn 1 Bbvbr
]x̃a

]fr 2x̃aGeaJ ~2.15!

and consequently~2.12! is indeed invariant under the local gauge transformations~2.13!, provided
boundary terms can be discarded.

III. QUANTIZATION

Let us perform the quantization of the system described above along the field–an
formalism.5,3,6 To do so it is first necessary to introduce antifieldsFA* 5(ym* ,fa* ,la* ,ca* ) corre-
sponding to the fieldsFA5(ym,fa,la,ca). In our case,ym, fa, andla are bosonic and have
ghost number zero. The ghostsca are fermionic and have ghost number one. The correspon
antifields have opposite grassmanian parity and ghost number given by minus the ghost num
the corresponding field minus one. One can verify that the field–antifield action

S5S01E dt@ym* $ym,x̃a%ca1fb* $fb,x̃a%ca1la* ċa# ~3.1!

satisfies then the classical master equation

1
2~S,S!50, ~3.2!

where the antibracket between any two quantitiesX@F,F* # andY@F,F* # is defined as

~X,Y!5
d rX

dFA

d lY

dFA*
2

d rX

dFA*

d lY

dFA .

When pertinent, we are assuming the de Witt’s notation of sum and integration over interm
variables.
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In the BV formalism, the BRST differential is introduced through

sX5~X,S! ~3.3!

for any local functionalX5X@F,F* #. As a consequence of the master equation~3.2! and Jacobi
identity, s is nilpotent. So, saying that the BV action satisfies the master equation is equival
say that it is BRST invariant.

To fix a gauge we need to introduce trivial pairsc̄a , p̄a as new fields. and the correspondin
antifieldsc̄* a, p̄* a, as well as a gauge-fixing fermionC. The antifields are eliminated by choo
ing FA* 5]C/]FA. It is always possible to choose

C5 c̄afa ~3.4!

associated with the unitary gauge, but different choices can be done. It is also necessary to
the field–antifield action to a nonminimal one,

S→Snm5S1E dtp̄ac̄* a ~3.5!

in order to implement the gauge fixing introduced byC. The gauge-fixed vacuum functional
then defined as

Z5E @dFA#@detv#2~1/2!@detf #2~1/2! expH i

\
SnmFFA,FA* 5

]C

]FAG J . ~3.6!

In the unitary gauge, we observe that besides the identificationc̄* a5fa, fa* 5 c̄a , all the
other antifields vanish. With this and the use of Eqs.~2.9!–~2.10!, we see that formally~3.6!
reduces to the Senjanovic11 path integral

Z5E @dym#udetf u2~1/2!d@xa#udetDu~1/2! expH i

\ E dt@Bmẏm2H#J . ~3.7!

Actually this reduction can only be done if quantum effects do not obstruct the gauge symm
Possible obstructions are related to the dependence of the path integral with respect to rede
of the gauge-fixing fermionC. In general, if the classical field–antifield actionS can be replaced
by some quantum actionW expressed as a local functional of fields and antifields and satisf
the so-called quantum master equation

1
2~W,W!2 i\DW50, ~3.8!

then the gauge symmetries are not obstructed at quantum level. In expression~3.8! we have
introduced the potentially singular operatorD[(d r /dFA)(d l /dFA* ) and it was assumed thatW
can be expanded in powers of\ as

W@FA,FA* #5S@FA,FA* #1 (
p51

`

\pM p@FA,FA* #. ~3.9!

The two first terms of the quantum master equation~3.8! are

~S,S!50, ~3.10!

~M1 ,S!5 iDS. ~3.11!

As expected, the tree approximation gives~3.2!. Equation~3.11! is only formal, since the
action of the operatorD must be regularized. If it vanishes when applied onS, the quantum action
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W can be identified withS. If DS gives a nontrivial result but there exists someM1 expressed in
terms of local fields such that~3.11! is satisfied, gauge symmetries are not obstructed at one
order. Otherwise, the theory presents an anomaly

A@f,f* #5DS1 i ~S,M1!5aaca1¯ . ~3.12!

The nilpotency of the BRST operator implies thatsA50, which is the Wess–Zumino con
sistence condition. So, looking for possible anomalies in any theory is the same as looki
local functionals with ghost number one that are BRST closed (sA50) but not BRST exact (A
ÞsB).

By using cohomological arguments, we can show that the quantum master equation, f
order systems with pure second class constraints converted with the use of the BFFT pro
can always be solved. To prove this, let us first derive the BRST transformations of the field
antifields for the converted system,

sym5$ym,x̃a%ca,

sfb5$fb,x̃a%ca,

sla5 ċa,

sca50,

sc̄a5p̄a ,
~3.13!

sp̄a50,

sym* 52
]S

]ym ,

sfa* 52
]S

]fa ,

sla* 5x̃a ,

sca* 52ym* $ym,x̃a%2fb* $fb,x̃a%2l̇* ,

sc̄a* 50,

sp̄* a5 c̄* a,

whereS is given by~3.1!. We see thatc̄a andp̄a form BRST doublets (sB5C, sC50) and do
not belong to the BRST cohomology.3 The same is true for their antifields. To show that the ot
fields and antifields do not contribute to the cohomology at ghost number one, it is enou
study the cohomology of the linearized piece ofs, which will be denoted bys(1).12 If we assume
that in the process of conversion of the constraints~see Eq.~2.9!!, the invertible matrixX(y) can
be written as a power series iny ~which will be the case for the example we are going to consid!,

X~y!ab5Xab
~0!1Xabm

~1! ym1Xabmn
~2! ymyn1¯ ~3.14!

we see that
                                                                                                                



t
being
y some
here;
.
e of a

der to

hough
no
s one,
known
, the
andi-
e loop

es

5312 J. Math. Phys., Vol. 40, No. 11, November 1999 R. Amorim and R. Thibes

                    
s~1!fa5vagXbg
~0!cb,

~3.15!
s~1!ca50.

The equations above imply thatfa andCa5vagXbg
(0)cb form doublets under the action ofs(1) and

as a consequence they also do not belong to the cohomology. Asca is trivially obtained fromCa,
and since it is the only fundamental field~or antifield! with positive ghost number, it is no
possible to construct a local functional with ghost number one that is BRST closed not
BRST exact. This means that any candidate to an anomaly can always be canceled b
countertermM. So the situations found in Ref. 8 and later explored in Ref. 9 appear also
enlarged symmetries due to compensating fields~here the BFFT variables! are not anomalous
This does not mean that they have a trivial role at the quantum level since the existenc
counterterm modify expectation values of relevant physical quantities.9 In the next section we are
going to show an example where all of these features are carefully taken in account in or
derive consistent quantum actions.

IV. MASSIVE VECTOR FIELDS COUPLED TO CHIRAL FERMIONS

We shall now apply the ideas discussed above to massive chiral electrodynamics. Alt
the fermions couple only one chirality to the connectionAm , the second class system presents
gauge anomaly since it exhibits no gauge symmetry. When it is converted to a first clas
however, the fermions pass to transform in a chiral way and such a gauge transformation is
to lead to possible anomalies.13 Accordingly to the ideas discussed in the last section, however
BFFT variables play the role of Wess–Zumino fields and permit us to write the anomaly c
dates as BRST exact functionals, solving in this way the quantum master equation at on
order.

We start by considering the first order action

S05E d4x$Ȧmpm1 i c̄g0ċ2H2laxa%, ~4.1!

where the second class constraints

x15p0,
~4.2!

x25] ip
i2m2A01J0,

and the first class Hamiltonian

H5E d3xH 1

2
p i

21
1

4
Fi j

2 1
1

2
m2~A0

21Ai
2!2 i c̄g iDi

1c1] iA
ix12A0x2J ~4.3!

have been introduced. In the above expressions we have defined the covariant derivativDm
1

acting on the fermionc and the chiral projectorsP6, respectively, as

Dm
15]m2 ieP1Am ,

~4.4!
P65 1

2~16g5!.

We have also adopted the metric conventionhmn5diag(21,11,11,11). Dirac matrices satisfy
the usual anticommutation relation$gm,gn%52hmn. As one can verify, action~4.1! is the first
order version of

Scov5E d4xF2
1

4
FmnFmn2

1

2
m2AmAm1 i c̄gmDm

1cG . ~4.5!
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From ~4.1! we extract the fundamental~equal time! brackets

$c~x!,c̄~y!%5 ig0d3~x2y! ~4.6!

for the fermionic sector and

$Am~x!,pn~y!%5dm
n d3~x2y! ~4.7!

for the bosonic one. By using the above expressions, one can show, for instance, that the fe
chiral current

Jm[c̄gmP1c ~4.8!

has brackets between its components given by

$Jm~x!,Jn~y!%5 ie2c̄MmnP1cd3~x2y!,
~4.9!

Mmn5gmg0gn2gng0gm.

It is now easy to verify that the constraints and the Hamiltonian satisfy the bracket stru

$x1~x!,x2~y!%52m2d3~x2y!,

$x1~x!,H%5x2~x!, ~4.10!

$x2~x!,H%5] i]
ix1~x!.

Let us now use the BFFT algorithm for implementing the Abelian conversion of the a
bracket structure. As we have two second class constraints, we introduce two BFFT variablfa,
a51,2 and for simplicity demand that they satisfy

$fa~x!,fb~y!%5eabd3~x2y! ~4.11!

which gives the matrixvab as in Eq.~2.6!. In ~4.11! e1252e2151, e115e2250. A possible
solution to Eqs.~2.8! via ~2.9!–~2.11! is achieved with2

x̃15x12m2f2,

x̃25x21f1, ~4.12!

H̃5H1E d3xF 1

2m2 ~f1!21
1

2
m2~] if

2!22
f1

m2 x̃22f2¹2x̃1G
5E d3xF1

2
p i

21
1

4
Fi j

2 1
1

2
m2~Ã0

21Ãi
2!2 i c̄g iDi

1c2Ã0x̃21~] i Ã
i !x̃1G ,

where we have defined the quantities

Ãi5Ai2] if
2,

~4.13!

Ã05A01
f1

m2 .

Correspondingly we have a first order action
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S05E d4x$Ȧmpm1ḟ1f21 i c̄g0ċ2H̃2lax̃a%, ~4.14!

which is invariant under the gauge transformations generated byx̃1 and x̃2 ~see Eq.~2.13!!

dc52 iee2P1c, dc̄5 iee2c̄P2,

dA05e1, dp052m2e2,

dAi52] ie
2, dp i50, ~4.15!

df152m2e1, df252e2,

dl15 ė1, dl25 ė2.

In the expressions aboveea are arbitrary space–time dependent parameters. We note tha
variablesÃm are invariant under~4.15!.

In order to quantize this system along the lines of the field–antifield formalism, assoc
with the parametersea we introduce the ghostsca. We introduce also the trivial pairsp̄a , c̄a ,
and write down a gauge-fixed vacuum functional as in~3.6! with

Snm5S01E d4x@A0* c12m2p0* c22Ai* ] ic
22m2f1* c1

2f2* c21l1* ċ11l2* ċ22 iec* P1cc21 iec̄P2c̄* c21p̄ac̄a* #, ~4.16!

where some proper gauge-fixing fermionC is assumed. Now observe that the terms inSnm which
involve the matter fields are

i c̄@g0~]02 ieP1~Ã02l2!!1g iDi
1#c. ~4.17!

The quantitiesĀ05Ã02l2 and Āi5Ai transform assĀm52]mc2. As the fermions also trans
form consistently, as can be seen from~4.15!, we obtain the action of the operatorD over SC

adopting canonical procedures. For instance, in a Pauli–Villars regularization scheme
fermionic mass term with usual form, which means that the vector symmetry is taken
preferential one, we see that

DSC52
1

96p E d4xc2emnrsF̄mnF̄rs , ~4.18!

where F̄mn5]mĀn2]nĀm and possible normal parity terms in the original space of fields h
been discarded. Equation~4.18! represents the essential candidate to the anomaly. It is easy to
however, that

M15
i

96p E d4xf2emnrsF̄mnF̄rs ~4.19!

solves the one loop master equation, which means that we have achieved a consistent rout
quantization of the theory. The gauge fixed vacuum functional reads

Z5E @dFA#expH i

\
WFFA,FA* 5

]C

]FAG J ~4.20!

with @dFA#5(Am ,pm,fa,c,c̄,la,ca,c̄a ,p̄a), and all possible information about the system c
be obtained from it. If we wish to write an effective quantum action in an explicitly covariant
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we may eliminate the momenta through functional integrations in~4.20!. Let us assume that th
gauge fixing fermionC does not depend onl1 or pm, consequentlyl l* 5pm* 50. Suppose also
that C possibly depends onl2 only through anĀ0 dependence. Integration inl1 andp0 results
in the substitutionp0→m2f2 in W. Under the redefinition

A0→A01l22
f1

m2 ~4.21!

we obtain the intermediate auxiliary quantum action

Waux5E d4xF ~A01l2!ḟ1Ȧip
i1 i c̄g0ċ2

1

4
Fi j

2 2
1

2
p i 22

1

2
m2~A01l2!2

2
1

2
m2~Ai2] if!21 i c̄g iDic1A0~] ip

i1J01m2~A01l2!!G1\M11Sg f , ~4.22!

where

Sg f5E d4xF2
dC

dAm
]mc22m2

dC

df1 c12
dC

df2 c22 ie
dC

dc
P1cc21 iec̄P2

dC

dc
c21p̄a

dC

c̄a
G

~4.23!

andM1 is given by~4.19! without the bars inFmn because of~4.21!. Further integration inl2 and
p i results in the effective quantum action

Weff5E d4xF2
1

4
Fmn

2 2
1

2
m2~Am2]mf2!21 i c̄gmDm

1cG1\M11Sg f . ~4.24!

As we have already mentioned, a convenient choice ofC fixes all the gauge symmetry of th
theory. We cite some possible choices forC. The unitary gauge is achieved withC
5* d4xc̄afa followed by functional integration onp̄a and fa. With this choice the quantum
action reduces to the simple form~4.5! and the path integral presents the usual Liouville’s meas
for the pertinent fields. The choice

C5E d4xF c̄2S ap̄2

2
1]mAmD1 c̄1f1G

leads to the usual covariant Gaussian gauge fixing depending on the arbitrary parametera. In this
situation

Sg f5E d4xF2]mc̄2]mc21p̄2S ap̄2

2
1]mAmD1p̄1f12m2c̄1c1G ~4.25!

and the integration overc1, c̄1 , p̄1 , f1 is trivial.
An interesting situation comes if we fix the compensating fieldf2 to some external value, say

f25b. By choosingC5 c̄1f11 c̄2(f22b), we obtain, after a few trivial integrations and th
absorption of some trivial normalization factors by the measure, that

Z@b#5E @dc#@dc̄#@dAm#expH i

\
Wext@c,c̄,A,b#J , ~4.26!

where
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Wext@c,c̄,A,b#5E d4xF2
1

4
FmnFmn2

1

2
m2~Am2]mb!21 i c̄gmDm

1c1
i\

96p
bemnrsFmnFrsG .

~4.27!

The condition that the path integral cannot depend onb, which comes from the Fradkin–
Vilkoviski theorem, gives, for instance, that

i\
dZ@b#

db U
b50

5 K m2]mAm1
i\

96p
emnrsFmnFrsL U

b50

50 ~4.28!

which is a surprising result. If we observe, however, that]mJm52m2]mAm as a consequence o
the equations of motion for the fieldAm in the unitary gauge, we can interpret Eq.~4.28! as the
anomalous divergence of the Noether current~4.8! associated with the rigid chiral symmetr
present in the original theory given by actions~4.1!–~4.5!. This is an unexpected result derive
from the quantum BFFT formalism. Similar results have recently been derived by using com
sating fields at Lagrangian level.9 In these last approaches, the compensating fields couple
rectly to the chiral current in an extended QCD which presents not only vector but also
gauge symmetry.

V. CONCLUSIONS

In this work we have considered the BFFT quantization of first order systems submitt
pure second class constraints. We have shown that the gauge symmetries introduced by th
procedure are not obstructed at the quantum level, since the compensating fields do not be
the BRST cohomology at ghost number one. A specific example has been given, where m
electrodynamics couples to chiral fermions. The quantum master equation has been solved
corresponding counterterm has played an essential role in extracting anomalous expectation
of physically relevant quantities. We would like to finish by commenting that a few genera
tions could have been considered. We could have started from an already gauge invaria
order system with both first and second class constraints. Then it would be necessary to ta
of both symmetry sectors, the original one and that introduced by the BFFT conversion proc
Another possibility could be considering examples with more involving algebraic structure,
occurs with some of the models cited in Ref. 2. We are now studying aspects of these subje
results will be reported elsewhere.14
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A path space formula for Gauss vectors in Chern–Simons
quantum electrodynamics

John L. Challifoura) and John P. Clancy
Department of Physics, Indiana University, Bloomington, Indiana 47405

~Received 1 June 1999; accepted for publication 2 July 1999!

Canonical quantization of a Chern–Simons gauge field minimally coupled to a
spinor field is studied as an indefinite metric quantum field theory in the usual
covariant gauges, by using a lattice cutoff. For this model, we show that positivity
for the indefinite metric, Gauss’ Law, gauge invariance and Osterwalder–Schrader
positivity for a self-adjoint Hamiltonian are equivalent. In addition, the path-space
formula for the Osterwalder–Schrader semigroup is constructed in terms of a Eu-
clidean scalar, massive, Gaussian random field. ©1999 American Institute of
Physics.@S0022-2488~99!01011-7#

I. INTRODUCTION

Models containing Chern–Simons gauge fields have been of continuing interest in both
logical and quantum field theory over the last 15 years. In particular, Chern–Simons gauge
coupled to a Higgs field have been proposed as a microscopic framework for the quantum
effect.1 Also, a lattice model of a Maxwell–Chern–Simons gauge field coupled to a Higgs
with a modification of the Chern–Simons lattice action to provide reflection positivity, has
shown by Fro¨hlich and Marchetti2 to lead to anyons3 as the vortices for the soliton superselecti
sectors. This work uses a general theory of braid statistics in three-dimensional local qu
theory described in Ref. 4.

Within the framework of canonical quantization, several studies of models containing Ch
Simons terms in their action have appeared~see Ref. 5, and references therein.! In all of these
papers, characterization of the physical states has been provided by means of Gauss’ Law
ever, there has been no attempt to connect this work with the framework of constructive qu
field theory. In this context, the primary notion must be that of Osterwalder–Schrader pos
for the Euclidean field theory.

In this work, we make explicit the indefinite metric formulation, which is implicit in the wo
of Haller and Lim-Lombridas,5 for a Maxwell–Chern–Simons gauge field minimally coupled to
fermion field, hence Chern–Simons quantum electrodynamics~QED!. Our cutoffs allow charac-
terization of the physical subspace and representation of domains for the unbounded op
needed to characterize gauge invariance, Gauss’ Law, and the physical Hamiltonian in term
Euclidean path-space formula on physical states. The Euclidean representation of the p
states provides a statement of Osterwalder–Schrader positivity for this model. Future tasks
be to implement the techniques of constructive quantum field theory so as to provide a cont
theory of a local, covariant gauge field minimally coupled to fermions in a reconstructed H
space, where an indefinite metric characterizes the physical states.

The Maxwell–Chern–Simons gauge field in our model is described by the following Lagr
ian:

LG52
1

2
]mAn]mAn1

l

2
~]A!21

m

2
emns]mAnAs , ~1!

a!Also at Department of Mathematics.
53180022-2488/99/40(11)/5318/23/$15.00 © 1999 American Institute of Physics
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where the first term is the kinetic energy term, the second term fixes the gauge~l50 corresponds
to the Feynman gauge andl5` corresponds to the Landau gauge!, and the third part is the
Chern–Simons term. Note that for these units, the parameterm must have dimensions of mas
The Euler–Lagrange equations then become

hAm2l]m~]A!1memab]aAb50 ~2!

for the field equations. Now, in terms of the electric and magnetic fields we have

div E2mB5~l21!] t~]A!, ~3!

curl B2] tE1me i j êiEj52~l21!grad~]A!, ~4!

with Faraday’s Law being equivalent to the Bianchi identity. Note that in 211 dimensions, the
electric field lies in the plane defined by the spatial coordinates, while the magnetic fiel
perpendicular to this plane. To be consistent with Ref. 5, the canonical momenta are trans
as

Pm→e2 iFPmeiF , ~5!

whereF5(xPVd2A0(x)] lAl(x). The effect of this transformation is a change in representatio
the canonical commutation relations with

P05~l21!~]A!, ~6!

P l5El2
m

2
e lnAn ~7!

so that divE2mB5(m/2)e ln] lAn2] lP l .
Deser, Jackiw, and Templeton6 have described the electric and magnetic fields in terms

massive scalar fieldf having spin 1 excitations. This scalar field will become very useful in
construction of the physical subspace, so we make contact with it now. The scalar fieldf is
defined as

] lEl52mA2Df ~8!

from which El andB are expressed as

El5F m] l

A2D
2e ln

]n]0

A2D
Gf2e ln

]n

m
G, ~9!

B5A2Df1
]0

m
G, ~10!

whereG[(12l)(]A) and the field equations givehG50. From these equations, we can fin
particular solutions for the gauge field

A0
p52

A2D

m
f1~122j!]0h21G, ~11!

Al
p5

]0] l

mA2D
f2

e ln]n

A2D
f1~122j!] lh

21G, ~12!
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with (122j)5(12l)21, so thatj50 is the Feynman gauge andj51/2 is the Landau gauge. A
hG50, we see that the gauge field is decomposed into a massive pieceVm and a massless piec
Sm . As these are only particular solutions, the contribution of another massless scalar field,R(x),
which commutes withf and satisfies the canonical commutation relations~CCR’s! with G can be
added toSm . Again, as onlyf contributes to the physical fields, it alone should determine
physical sector of the theory.

In Sec. II, canonical quantization for Chern–Simons QED with spatial lattice cutoff
described in a Hilbert space with a Krein indefinite metric. The relation between the represen
of the gauge field used here and that used by Haller and Lim-Lombridas5 is given, as well as a
proof that the free Hamiltonian is Krein essentially self-adjoint in all covariant gauges and e
tially self-adjoint in Landau gauge. However, for the free Hamiltonian to generate a contra
semigroup, a gauge dependent shift must be implemented. In addition, it is shown that the
acting Hamiltonian is a Phillips perturbation of the free Hamiltonian, so that the full Hamilto
generates aC0 semigroup. Equivalence between gauge invariance, Gauss’ Law, and pos
with respect to the Krein metric is demonstrated using a characterization of Gauss’ Law u
Ref. 5 by means of the]̄-Poincare´ lemma. In Sec. III, the customary Gauss measure represent
for this model is found by an extension of the Schwinger functions to coincident points which
leads to a path-space formula on the physical states for the physical self-adjoint Hamiltoni

II. CANONCIAL QUANTIZATION

A. Indefinite metric

Ultimately, we wish to construct a gauge fieldAm ~an operator valued distribution! on a
Hilbert spaceH, which contains a ground state,VR , that is invariant under Poincare´ and local
gauge symmetries, and withAm both local and covariant. Several examples show that a mo
cation of the usual Wightman axioms7 is required such as suggested by Wightman and Ga˚rding.8

In particular, Strocchi and Wightman,8 and Strocchi and others9 have shown that if the gaug
fields are coupled to a matter field which generates a local gauge symmetry, then an ind
metric must be used for the existence of a nontrivial gauge field.

The indefinite metric is defined by a sesquilinear form$•,•% related to the Hilbert space inne
product~•,•! by

$F,C%5~F,hC!, ~13!

whereh is required to be self-adjoint. The gauge fieldAm should be a symmetric operator wit
respect to the indefinite metric, i.e.,Am,Am

† , where † denotes the indefinite metric space adjo
and* denotes the Hilbert space adjoint. In fact, the minimal closureAm

††5Am** should be †-self-
adjoint. Vacuum expectation values now satisfy

$P~A!VR ,Q~A!VR%5~VR ,P~A!Q~A!VR! ~14!

for polynomials inAm on the relativistic vacuum vectorVR , with hVR5VR . Physical states are
defined in terms of the positive subspace

H15$FPHu$F,F%>0% ~15!

with null vectors

H05$FPH1u$F,F%50% ~16!

as vectors in

Hphysical5H1 /H0
¯ ~17!

with the closure taken in the topology induced by the indefinite metric.
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For a mathematically precise cutoff theory, we choose a spatially discrete periodic boxV of
side ‘‘length’’ L and lattice spacingd. Fourier transforms are defined by

f m~x!5
1

AV
(
kPG

f̂ m~k!eik–x, ~18!

whereG is the dual group toV. Our infrared cutoff is simply to restrict sums tokPG05G\$0%
with G chosen to be reflection symmetric about the origin in each variable. On this lattice
time-zero gauge field may now be written as

Am~x!5Vm~x!1Sm~x!, ~19!

where forxPV,

~VR ,Vm~x!Vn~y!VR!5
1

V E
2`

`

dk0 (
kPG0

u~k0!d~k22m2!e2 ik~x2y!Fkmkn

m2 2gmn2 i emnl

kl

mG ,
~20!

~VR ,Sm~x!Sn~y!VR!5
1

V E
2`

`

dk0 (
kPG0

u~k0!e2 ik~x2y!H d~k2!F2kmkn

m2 1 i emnl

kl

mG
1~122j!kmknd8~k2!J ~21!

in which the midpoint lattice approximation

kj5
2 sin~kj8d/2!

d
, k8PG0 ~22!

for lattice derivatives is used. A parameterization using forward and backward approxim
having a periodic Fourier transform is easily written down. Even though expression~22! is anti-
periodic, it is more convenient for our purposes. The range of interest forj is 0<j<1/2, interpo-
lating between the Feynman and Landau gauges.

Canonical quantization is implemented by means of the equal time commutation relati

@Am~x!,Pn~y!#5 igmndx,y . ~23!

A convenient representation forVm arises from the hermitian matrix appearing in~20!, which has
only one nonzero eigenvalue,

l252S v21m2

m2 D ~24!

with

v254(
j 51

2
sin2~kjd/2!

d2 ~25!

while the matrix for fieldSm in ~21! in Landau gauge has two nonzero eigenvalues, denoted

l652
v2

m2 6Av4

m4 1
2v2

m2 ~26!
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and we definel052l2 and l15l1 . The presence ofl2,0 indicates an indefinite metric i
required to recover the two point function forSm . The corresponding eigenvectors may readily
obtained as

M2~k!5
1

&vm
S v2

mk12 imk2

mk21 imk1

D ~27!

andM05V2 , M15V1 , where

V6~k!5
1

N6 S v2

m2 S v2

m2 11D7
v2

m2 Av2

m4 1
2v2

m2

vk1

m2 S v2

m2 11D7
vk1

m2 Av4

m4 1
2v2

m2 2 i
k2

m S v2

m2 7Av4

m4 1
2v2

m2 D
vk2

m2 S v2

m2 11D7
vk2

m2 Av4

m4 1
2v2

m2 1 i
k1

m S v2

m2 7Av4

m4 1
2v2

m2 D D , ~28!

N6
2 5S 2v4

m4 D F2S v2

m2 11D S v2

m2 117Av4

m4 1
2v2

m2 D 1S v2

m2 7Av4

m4 1
2v2

m2 D G . ~29!

A representation of~23! for the time-zero gauge field may then be given by

Am~x!5
1

AV
(

kPG0
(
a50

2

Ala~k!@Mma~k!ba~k!eik–x1Mma~k !̄ba
†~k!e2 ik–x, ~30!

wherein

@bm~k!,bn
†~p!#52gmndk,p ~31!

are the commutation relations with respect to the indefinite metric which make~30! formally
†-symmetric. In terms of Fock space operators with

@cm~k!,cn* ~p!#5dk,p ~32!

placebm5cm , bm
† 52gmncn* .

The indefinite metric operator is the Gupta–Bleuler choiceh52g, where g0051, gi j

52d i j , j 51,2, and as such is a Krein metric operator, sinceh251. As the eigenvectors in~27!
and~28! are orthogonal to the eigenvectors for the zero eigenvalue, there is no loss of gen
by working in the Landau gauge. As shown below, other gauge choices are related to eac
by a Krein unitary transformation.

The massive fieldVm is given bya52, whilea50,1 define the ghost field,Sm . Clearly, on the
Gårding domain obtained by applying polynomials inAm to the Fock vacuum,Am(x) is Krein
symmetric and has a Krein self-adjoint closureAm(x)††5Am(x)** . In the case ofVm(x), it is
readily seen thatVm(x) defines an essentially self-adjoint operator onH and both metrics agree o
the Fock space forVm . For the ghost pieceSm , the situation is a bit more complicated, howev
we prove the following proposition.

Proposition II.1: Sm5Sm
(1)1 iSm

(0) , where

Sm
~1!~x!52

1

AV
(

kPG0

Al1~k!@Mm1~k!c1~k!eik–x1Mm1~k !̄c1* ~k!e2 ik–x#, ~33!
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Sm
~0!~x!5

i

AV
(

kPG0

Al0~k!@Mm0~k!c0~k!eik–x2Mm0~k !̄c0* ~k!e2 ik–x ~34!

defines an essentially normal operator onH.
Proof: First, let N5(kPG0

cm* (k)cm(k), wherem50, 1, or 2, denote the number operator

H, thenSm
( j )(N11)21/2 are bounded operators. Consider the following set.

Definition II.2: Let D(N,a) denote the dense set

D~N,a!5$FuieaN2FFi[iFiN,2,a,`,a.0% ~35!

which is a common core of analytic vectors for eachSm
( j ) , since

iSm
~ j !p

Fi5i~Sm
~ j !!p~N11!2p/2~N11!p/2e2aN2

eaN2
Fi<C1

ppp/4i~Sm
~ j !!p~N11!2p/2iiFiN,2,a .

By a Glimm–Jaffe bound,10 after writing Sm
( j )p

as a sum of 2p Wick ordered monomials, we find

iSm
~ j !p

Fi<C2
ppp/4iFiN,2,a

which means that(p50
` (utup/p!) iSm

( j )p
Fi,` and eachSm

( j ) is essentially self-adjoint onDN .
Moreover,

(
p150

N1 Sm
~1!p1

p1! (
p250

N2 Sm
~0!p2

p2!
F5 (

p250

N2 Sm
~0!p2

p2! (
p150

N1 Sm
~1!p1

p1!
F ~36!

with a bound uniform inN1 andN2 ,

(
p150

N1

(
p250

N2 ~ ut1uc4!p1~ ut2uc5!p2

p1! p2!
~p11p2!~p11p2!/4iFiN< (

p50

N11N2 pp/4

p!
~ ut1uc41ut2uc5!piFiN,`,

so that the double series in~36! converges uniformly int1 and t2 in either order. Therefore,

eit 1Sm
~1!

eit 2Sm
~0!

F5eit 2Sm
~0!

eit 1Sm
~1!

F, ~37!

so eachSm then defines an essentially normal operator onH. h

Note, that sinceSm is a normal operator, it follows thatD(Sm)5D(Sm* )5D(hSm
† h) and since

D(Sm),D(Sm
† ), it follows thatD(Sm)5D(Sm

† ), that is,Sm is Krein self-adjoint.

B. Haller and Lim-Lombridas representation

Canonical quantization of Chern–Simons QED in covariant gauges has been given by
and Lim-Lombridas5 by using a representation for the ghost fieldSm which does not satisfy a
standard representation for the CCR’s. Since we wish to use their work for our analysis, we
how to obtain their representation from~30! and~31!. This also clarifies the relation between th
Krein space and Hilbert space in their work.

The scalar fieldR andG introduced in the introduction are described byb0 andb1 and should
satisfy

@G~x!,R~y!#5dx,y ~38!

at equal times. The combination that relates Haller and Lim-Lombridas’aQ andaR to theb0 and
b1 is
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aQ~k!5
@b1~k!2b0~k!#

&s~k!
, ~39!

aR~k!5
s~k!@b1~k!1b0~k!#

&
, ~40!

a~k!52b2~k! ~41!

in which the scaling factors needs to be

s5
8v5/2

m5/2 FA11l01A12l1

A11l02A12l1
G 1/2

5
8v2~v212m2!1/4

m5/2 ~42!

for the two representations to agree. The operatorsaQ and aR then satisfy the Haller and Lim
Lombridas algebra

@aQ~k!,aQ
† ~k!#505@aR~k!,aR

†~k!#, ~43!

@aQ~k!,aR
†~p!#5dk,p5@aR~k!,aQ

† ~p!#. ~44!

Inverting ~39!, ~40!, and ~41! for bm in terms ofa,aQ ,aR and substituting into~30! reproduces
~2.24! and~2.26! of Ref. 5 in Landau gauge. Throughout the remainder of this paper we shall
use these expressions for calculations~see Appendix A!. Their utility lies in providing a conve-
nient form for Gauss Law~Sec. III, pp. 12–16, of Ref. 5! and the fact that the Fock spacesHQ and
HR generated byaQ

† andaR
† , respectively, form null vectors in the Krein metric.

C. The Hamiltonian

With the representation of the gauge fields and their conjugate momenta, along wit
understanding of the Krein and Hilbert spaces, we can form the Hamiltonian operator. Th
Hamiltonian is decomposed as

H05H0
V1H0

G~j!, ~45!

whereH0
V is formed from theVm field, whileH0

G(j) is formed from theSm field. In terms of Krein
space operators, the Hamiltonian is given by

H0
V5 (

kPG
Av21m2b2

†~k!b2~k!, ~46!

H0
G~j!5 (

kPG0

v@b0
†~k!b0~k!1b1

†~k!b1~k!#1
~122j!

2 (
kPG0

m2

Av212m2
@b0

†~k!b0~k!

1b1
†~k!b1~k!2b1

†~k!b0~k!2b0
†~k!b1~k!#, ~47!

and we observe thatH0,H0
† . However, on physical grounds for uniqueness,H 0̄5H0

† is neces-
sary. To this end, the Hilbert space structure is used, and the Hamiltonian becomes

H0
V5 (

kPG
Av21m2c2* ~k!c2~k! ~48!
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H0
G~j!5 (

kPG0

v@c0* ~k!c0~k!1c1* ~k!c1~k!#1
~122j!

2 (
kPG0

m2

Av212m2
@c0* ~k!c0~k!

2c1* ~k!c1~k!1c1* ~k!c0~k!2c0* ~k!c1~k!# ~49!

and we observe that in Landau gauge this expression defines an essentially self-adjoint p
operator. However, in non-Landau gauges this expression is not positive definite.

To examine the free Hamiltonian further, recall the Fock representation relations

@cm~k!F#m1 ,...,mn

~n! ~k1 ,...,kn!5An11Fmm1 ,...,mn

~n11! ~k,k1 ,...,kn!, ~50!

@cm* ~k!F#m1 ,...,mn

~n! ~k1 ,...,kn!5
1

An
(
j 51

n

dm,m j
dk,k j

Fm,...,m̂ j ,...,mn

~n21! ~k1 ...,k̂ j ,...,kn!, ~51!

so that we may determine the numerical range. A calculation gives

(F,H0
G(j)F)5 (

kPG0
(

$k%PG0
(
$m%

(
n

vS F11
~122j!m2

2A2m21v2G (n11)uF0$m%
~n11!u21F12

~122j!m2

2A2m21v2G
3(n11)uF1$m%

~n11!u21
~122j!m2

2A2m21v2
[F1$m%

~n11!F0$m%
~n11!2F0$m%

~n11!F1$m%
~n11!] D , ~52!

which is complex in general whenjÞ1/2 and symmetric with respect to the real axis. On the o

particle subspace, leth0
G(j)5H0

G(j )̄ un51
. Then bothh0

G and h0
G* are quasiacretive since bot

Re(f,h0
Gf) and Re(f,h0

G*f) are bounded below by2@(122j)m/2&#ifi2. Then, by Lemma 2.2

of Ref. 11,h0
G is Krein self-adjoint. As shown below it follows easily thatH0

G(j )̄ is also Krein
self-adjoint.

The full Hamiltonian is expressed as a sum of unbounded operators,

H~j!5H0
V1H0

G~j!1H0
D1H int , ~53!

whereH0
D is the free Dirac Hamiltonian and the interaction term is

H int5 (
xPV

d2 j m~x!Am~x!5 (
xPV

d2 j m~x!~Vm~x!1Sm~x!!5H int
V 1H int

G ~j! ~54!

with the time-zero fermion currentj m(x)5e: c†(x)gmc(x):. The following proposition summa
rizes the Hilbert and Krein space properties of these operators:

Proposition II.3:Let b5@ u(122j)um#/2&. Then:

~a! The closure H0
G(j )̄ is Krein self-adjoint for any real value of the gauge parameterj and

self-adjoint forj51/2.

~b! The closure H0
G(j)1b Ī is maximal accretive and Krein self-adjoint.

~c! The boson interaction Hint
V is symmetric and Kato tiny relative to the positive self-adjo

operator H0
V̄, hence, H0

V1H int
V is essentially self-adjoint and bounded below.

~d! The ghost interaction, H int
G (j) is Kato tiny relative to H0

G(j)1bI , hence, H0
G(j)1H int

G

1bI has a maximal quasiaccretive and Krein self-adjoint closure.
~e! The Hamiltonian H(j) defines a unique Krein self-adjoint operator which is also maxim

quasiaccretive by taking closures from any suitable core, for example, the finite pa

vectors. The operatorsH0
V1H int

V and H0
G(j)1H int

G 1bI commute as unbounded operators.
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Proof: ~a! SupposeT is a closed operator onH, then T†5hT* h, so thatT is Krein self-
adjoint if and only if hT is self-adjoint. Notice that for the one-particle operatorh0

G5h0
G† is

equivalent tohh0
G5(hh0

G)* . For for the second quantized operator12

H0
Ḡ5dG~h0

G!5dG~h0
G†!5hdG~h0

G!* h5H0
G†

with hH0
Ḡ self-adjoint.

Consider the semigroup generated byh0(j) on the one partice space and let

M ~v,t !5S 12rt rt

2rt 11rt D , ~55!

wherer5@(122j)m2#/(2Av212m2), then

ie2th0~j!i25 (
kPG0

e22tvfa~k )̄~M* M !abfb~k!. ~56!

The Hermitian matrix (M* M )ab has eigenvalues (A11r2t26r2t2)2, and settingurut5sinhu
leads us to bound terms in the sum above as

e22tv0ebt expF2
b

uru S sinh u2
uru
b

u D G<ebt ~57!

sinceuru/b<1 uniformly in k. Consequently,h0(j)1bI defines aC0-contraction semigroup and
by the Hille–Yosida theorem the closed operatorh0(j)1bI is m-accretive. Part~b! now follows
from

e2t~H0
G

~j!1bI !5e2tdG~h0
G

~j!1bI !5G~e2t~h0
G

~j!1bI !! ~58!

as the operatorG preserves contractions.12

Proceeding as in Proposition~5.1! in Ref. 13, one easily obtains bounds

ia~k!e2tH0
V
Fi<

const

At
iF~k,• !i , ~59!

icm~k!e2t~H0
G

~j!1bI !Fi<
const

At
iF~k,• !i . ~60!

On the lattice,j m(x) are bounded operators soH int
V andH int

G (j) are, respectively, Phillips pertur
bations ofH0

V andH0
G(j)1bI and are also Kato tiny. This proves~c! and ~d! while ~e! follows

immediately. h

The Phillips nature of the perturbation for these semigroups is used in Sec. III by mea
their Duhmael expansions.

D. Gauge transformations

The expressions forAm andPm may be expressed entirely in terms of Landau gauge field

A0~x;j!5A0~x;1/2!2
~122j!

4
~2D!21F] lP l~x;1/2!2

m

2
e ln] lAn~x;1/2!G , ~61!

Al~x;j!5Al~x;1/2!2
~122j!

4
~2D!21] lP0~x;1/2!, ~62!
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P0~x;j!5P0~x;1/2!, ~63!

P l~x;j!5P l~x;1/2!1
~122j!

4
~2D!21

m

2
e ln]nP0~x;1/2!. ~64!

Formally, these relations may be implemented by an operator gauge transformation,

Am~x;j!5eTAm~x;1/2!e2T, ~65!

Pm~x;j!5eTPm~x;1/2!e2T ~66!

in which

T5
2 i

4 (
xPV

d2~2D!21~]A!@div E~x!2mB~x!#

5
2 i ~122j!

4 (
xPV

d2~2D!21P0~x;1/2!F] lP l~x;1/2!2
m

2
e ln] lAn~x;1/2!G

5~122j! (
kPG0

16v3

m3 @aQ
† ~k!aQ

† ~2k!2aQ~k!aQ~2k!# ~67!

or in terms of Hilbert space adjoints

T5~122j! (
kPV

m2

8vA2m21v2
@c0~k!c0~2k!1c0* ~k!c0* ~2k!

1c1~k!c1~2k!1c1* ~k!c1* ~2k!12c0~k!c1~2k!22c0* ~k!c1* ~2k!#5T11T2 , ~68!

whereT1,T1* andT2,2T2* . A calculation shows that@T1 ,T2#Þ0, so thatT̄ cannot be realized
as a normal operator as in Sec. II A. In fact, the closure ofeT is an unbounded Krein unitary
operator.

Proposition II.4: (a) The operators e6T are densely defined with a Krein unitary closure o
H.

(b) The operator gauge transformations in (65) and (66) hold for the closures of Am(x) and
Pm(x).

Proof: Vectors in D(N,a) form a core fore6T, since noting that asaQ , aQ
† commute

amongst themselves,Tp5:Tp: is a sum of 2p Wick monomials each of which is a sum of 4p

monomials inc andc* with kernelm2/(8vA2m21v2). Repeating the calculation from Sec. II
gives

iTpFi<C3~C4!pp!e2p2/aieaN2
Fi

which leads to

(
p50

` uzupiTpFi
p!

<C3(
p50

`

~C4uzu!pe2p2/aieaN2
Fi<CieaN2

Fi ,

whereC is an overall constant. Vectors inD(N,a) are then entire vectors forT.
Next, sincee6T,e6(T12T2), e6T are closeable. SupposeF is in the domain of the closure

with $F j%,D(N,a) such thatF j→
s

F, e6TF j→
s

e6T̄F. Clearly,

i$e6T̄F,e6T̄F%2$e6TF j ,e6TF j%i<ie6T̄F2e6TF j i~ ie6T̄Fi1ie6TF j i !
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as ihi51. Using the relation,T,2T†,

u$e6TF j ,e6TF j%2$F j ,F j%u5U lim
N→`

(
p1 ,p251

N11<p11p2

N
~21!p

p1! p2!
$F j ,Tp11p2F j%U

< lim
N→`

(
p5N11

2N
2p

p!
iF j iiTpF j i

<S lim
N→`

(
p5N11

2N

C4
pe2p2/aD ~C3iF j iieaN2

F j i !50.

Now letting j→` establishes~a!.

The argument forAm andPm is the same. The vectors inD(N,a) form a core forAm(x;j )̄ so
we may again suppose a sequenceF j , Am convergent toF, whereby a simple calculation show
eTAm(x)e2TF j5Am(x;j)F j sinceAm(x)e2TF jPD(eT). Taking limits gives

eTAm~x!e2T̄F5Am~x;j !̄F

andeTAm(x)e2T extends to the domain of the closure. SinceAm(x;j )̄ is a normal operator, so is

eTAm(x)e2T, establishing~b!. h

Note, that similar observations to these apply to the electric and magnetic field operato

eTEl~x!e2T̄5El~x!̄,

eTB~x!e2T̄5B~x!̄. ~69!

Consider the family of commuting unbounded operators5

V~k!5aQ~k!1
m3/2

16v3 j 0~k! ~70!

which haveD(N1/2) as a common core andD(N,a) as common analytic vectors. Their closur
define normal operators onH. Form the unbounded operator5

G5
1

AV
(

kPG0

8v3

m3/2 @aQ~k!eik–x1aQ
† ~k!e2 ik–x#1 j 0~x! ~71!

which is realized onD(N1/2) as

G~x!5G0~x!1G1~x!1 j 0~x! ~72!

and whereG0 and j 0 are symmetric andG1 is skew-symmetric. These operators all commute so
the same argument as in Sec. II A,Ḡ is realized as a commuting family of normal operators. O
may then define a Krein unitary operator as

U~l!5expF i (
yPV

d2l~y!G~y!G
5expF i (

yPV
d2l~y!G0~y!GexpF i (

yPV
d2l~y!G1~y!GexpF i (

yPV
d2l~y! j 0~y!G ~73!
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in which the first and third are unitary operators onH but the second is self-adjoint. By simila
calculations to those in Proposition II.4 forl a function inV, the transformations

U~l!A0~x!U~2l!5A0~x!, ~74!

U~l!P0~x!U~2l!5P0~x!, ~75!

U~l!Al~x!U~2l!5Al~x!2] ll~x!, ~76!

U~l!P l~x!U~2l!5P l~x!2
m

2
e ln]nl~x!, ~77!

U~l!c~x!U~2l!5e2 iel~x!c~x!, ~78!

are valid onD(Am )̄ and D(Pm )̄ and H, respectively. For any Gauss vectorFG , CG defined
below one finds

$FG ,G~x!CG%50 ~79!

as well as

$U~l!F,U~l!C%5$F,C% ~80!

on D(U(l) )̄.Gauss vectors. The electric and magnetic fields are also invariant with resp
thesec-number gauge transformations

U~l !̄El~x!U~2l!5El~x!̄,
~81!

U~l !̄B~x!U~2l!5B~x!̄.

E. Gauss vectors

For precise statements about the domains of the unbounded operators appearing in~70!, it is
convenient to further exploit our choice of cutoffs by introducing harmonic oscillator coordin
~see Appendix B for definitions.! The ghost subspace is now represented as a direct sum of s
H(n), which areL2 spaces. IfN5uG0u is the number of nonzero momentum modes, then a
elimination of redundantp’s andq’s, there areN-pairs of complex variables,z1 andz2 , such that
H(n) is thenN-fold tensor product ofL2(C2N,m0 ;HV^ HF), wherem0 is Lebesgue measure. Th

differential operators]1 , ]2 , ]1,̄ ]2 ānd their adjoints are defined in the distributional sense
their maximal domains. The advantage of this representation, is that it allows for a conv
characterization of the physical states, or Gauss vectors.

Definition II.5: The Gauss vectors are vectors in

ù
kPG0

Null~V~k!!5HG . ~82!

The subspaceHG is closed inH and can be related to the von Neumann algebra generated b
maximal commuting family of operators$V(k)ukPG0%. In terms of these harmonic oscillato
coordinates, the Gauss vectors satisfy the following the pair of equations:

@~ 1
2z11 ]̄1!2 i ~ 1

2z21 ]̄2!1&sg j 0~k!#FG~k!50, ~83!

@~ 1
21 ]̄1!1 i ~ 1

2z21 ]̄2!1&sg j 0~2k!#FG~k!50, ~84!
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wherekPG0
1 andg5(m3/2/16v3). As in Ref. 5, the following operator is defined:

D5 (
kPG0

g@aR~k! j 0~2k!2aR
†~k! j 0~k!#

5 (
kPG0

1

gs

&
@ j 0~2k!~z12̄ iz2!̄1 j 0~k!~z11̄ iz2!̄ #. ~85!

A simple calculation then shows that

e2Deuzu2/2@~ 1
2z11 ]̄1!2 i ~ 1

2z21 ]̄2!1&sl j 0~k!#eDe2uzu2/25 ]̄12 i ]̄2 , ~86!

e2Deuzu2/2@~ 1
2z11 ]̄1!1 i ~ 1

2z21 ]̄2!1&sl j 0~2k!#eDe2uzu2/25 ]̄11 i ]̄2 , ~87!

therefore, the Gauss condition becomes a]̄-equation. By applying techniques for th
L2(C,m0) – ]̄-theory14 one may prove the following theorem.

Theorem II.6: The Gauss vectors have the form

FG5eDe2uzu2/2F~z1 ,z2 ;FV ,FF!, ~88!

where F is analytic in z1 and z2 with coefficients inHV^ HF .
Corollary II.7: The operators e6D are densely defined with Krein unitary closure onH.

Moreover, for any two Gauss vectorsFG and CG ,

$FG ,CG%5~FV ,CV!, ~89!

whereFV ,CV are, respectively, the projections ofFG , CG onto the subspaceHV^ HF .
Proof: The proof follows that of Proposition II.4. From the definition of the harmonic os

lator coordinates, it follows thatD,2D†, so e6D are closable operators. SupposeF is in the

domain of closure andF jPC0
`(RnN,HV^ HF), such thatF j→

s

F, ande6DF j→
s

e6D̄F. Then, as
in Proposition II.4,

u$e6DF j ,e6DF j%2$F j ,F j%u< lim
N→`

(
p5N11

2N
2p

p!
iF j iiDpF j i ,

but sinceD is multiplication inz̄k , DpF jPC0
` , and, due to thep! in the denominator, the limit is

0.
The Gauss vector matrix elements are now of the form

$FG ,CG%5$e2uzu2/2FF ,e2uzu2/2FC%.

SinceF is analytic, it may be expressed as a power series inz1 andz2 . Using the definition of the
harmonic oscillator coordinates, we have that

z1~k!5
s

&
@aQ

† ~k!1aQ
† ~2k!2aQ~k!2aQ~2k!#, ~90!

z2~k!5
is

&
@2aQ

† ~k!1aQ
† ~2k!2aQ~k!1aQ~2k!#, ~91!
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but, $aQe2uzu2/2,aQe2uzu2/2%50 as well as the other combination ofaQ andaQ
† . Therefore, only the

zeroth order term in the expansion survives, having coefficients inHV^ HF . h

A straightforward calculation shows that applying a gauge transformation to a Gauss
does not leave the Gauss vector invariant. Rather, it produces another Gauss vector.

Proposition II.8: The Gauss subspace is an invariant subspace for the operator e6T, i.e.,
e6THG,HG .

The results of this section may be used to prove the following theorem.
Theorem II.9: The following characterizations of the Gauss vectors are equivalent:

~a! Positivity with respect to the indefinite metric;
~b! Gauge invariance;
~c! Gauss’ Law.

Proof: Proposition II.8 and the remarks following~73!, show that applying a gauge transfo
mation to a Gauss vector produces another Gauss vector, so that shows that~c! implies ~b!.
Corollary II.7 shows that the Gauss vectors are projections onHV^ HF , but, the metrichR is
positive on this subspace, so that,~c! implies ~a!. As gauge transformations act only on the gho
variables, it also follows from Corollary II.7 that~b! implies ~a!. Finally, states that are positiv
with respect toh are states formed fromf and the fermion variables, and since the ghost variab
have zero norm,~a! implies ~c!. h

III. EUCLIDEAN FIELD

A. Two point function

The probability measure for the free Euclidean field is a complex Gauss measure
uniquely characterized by its covariance, or two-point function. To calculate the covarianc
define the operators

Âm~ t,x!5e2tH0Am~0,x!etH0 t.0 ~92!

and their anti-time ordered product,

^T̄Âm~x!Ân~y!&5H ~VR ,Âm~x!Ân~y!VR! if x0,y0

~VR ,Âm~y!Ân~x!VR! if y0,x0
. ~93!

The decompositionAm5Vm1Sm leads to

^T̄Âm~x!Ân~y!&5^T̄V̂m~x!V̂n~y!&1^T̄Ŝm~x!Ŝn~y!&, ~94!

for which a short calculation shows that the anti-time ordered products forVm and Sm are not
continuous at equal time Schwinger points. However, the simple discontinuities forVm and Sm

exactly cancel, allowing the Schwinger functions forÂm to be extended by continuity to th
Euclidean region. We shall choose this extension, whereupon

^T̄~ iÂ0~x!!~ iÂ0~y!!&5^B0~x!B0~y!&, ~95!

^T̄~ iÂ0~x!!~Âl~y!!&5^B0~x!Bl~y!&, ~96!

^T̄~Âl~x!!~ iÂ0~y!!&5^Bl~x!B0~y!&, ~97!

^T̄Âl~x!Ân~y!&5^Bl~x!Bn~y!& ~98!

defining the Euclidean field,Bm , with covariance
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^Bm~x!Bn~y!&5
1

2pV (
kPG0

E
2`

`

eik~x2y!F 1

k21m2 S dmn2
kmkn

k2 2
memnlkl

k2 D1~122j!
kmkn

~k2!2G .
~99!

For f,g real test functions,Bm may be realized as a real-valued Gaussian random field
separable Hilbert space, but with a complex measure

^B~ f !B~g!&5E
V

dmCS~v! f ~v!g~v! ~100!

whereV may be chosen to beS R8 , for example. A detailed discussion of this measure is giv
elsewhere.15

Here we deal with the semigroup representation on Gauss vectors in terms of a path
integral. As we will show in the next section, this requires eliminating the ghost fieldSm , and
defining an extension for the anti-time ordered products ofVm to coincident Schwinger points. Th
extension we choose is one such that there exists a Euclidean fieldVm

E which can be expressed i
terms of fE, a scalar Euclidean field, analogous to the fieldf defined above. In this way
Osterwalder–Schrader positivity is a direct manifestation of the physical Hilbert space
product for Gauss vectors.

The Minkowski expression forVm in terms off is

V0~x!52
A2Ds

m
f~x!, ~101!

Vl~x!5
] lp~x!

mA2Ds

2
e ln]nf~x!

A2Ds

~102!

in which the presence of the canonical momentump(x)5ḟ(x) gives rise to a contact term in th
anti-time ordered products through the relations

^T̄~f̂~x!f̂~y!!&5^fE~x!fE~y!&, ~103!

^T̄~f̂~x!p̂~y!!&5^fE~x!~2 i ḟE~y!!&, ~104!

^T̄~p̂~x!f̂~y!!&5^~2 i ḟE~x!!fE~y!&, ~105!

^T̄~p̂~x!p̂~y!!&5^~2 i ḟE~x!!~2 i ḟE~y!!&1d~x02y0!dx,y . ~106!

In these relations,fE is the Euclidean scalar field with covariance

^fE~x!fE~y!&5
1

2pV (
kPG0

E
2`

`

dk
eik~x2y!

k21m2 ~107!

and is valid with these cutoffs in the sense of generalized random processes. Define the Eu
analog of~101! and ~102! by

V0
E~x!5 i

A2Ds

m
fE~x!, ~108!

Vl
E~x!5

2 i ] lp
E~x!

mA2Ds

2
e ln]nfE~x!

A2Ds

, ~109!
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whereupon

^T̄~ iV0~x!!~ iV0~y!!&5^V0
E~x!V0

E~y!&, ~110!

^T̄~ iV0~x!!Vl~y!&5^V0
E~x!Vl

E~y!&, ~111!

^T̄Vl~x!~ iV0~y!!&5^Vl
E~x!V0

E~y!&, ~112!

^T̄Vl~x!Vn~y!&5^Vl
E~x!Vn

E~y!&1
] l ,x]n,y

m2~2Ds!
dx,yd~x02y0!, ~113!

then up to contact terms,Vm is given by the Euclidean fieldVm
E , constructed fromfE. The

expectation values forVm
E are to be calculated using the Gauss measure forfE and the relations

~108! and ~109!.

B. Duhamel formula

As shown in Sec. II C, the Landau gauge Hamiltonian is the infinitesimal generator
contraction semigroup. In addition, Theorem II.9 shows this choice of gauge to be sufficie
calculate matrix elements between Gauss states.

Proposition III.1: On the Gauss vectors we have for t.0,

$FG ,e2tHCG%5$FV ,e2tH̃CV%5~FV ,e2tH̃CV!, ~114!

where

H̃5H0
V1H0

D1 (
xPV

d2 j m~x!Vm~x!1 (
kPG0

j 0* ~k! j 0~k!

2m2 1 (
kPG0

i j 0* ~k!e lnkl j n~k!

mv2 ~115!

and FV ,CV are the projections ofFG ,CG onto the physical subspaceHV^ HF .
Proof: First, we approximate the Gauss vectors with functionsf, cPC0

`(RnN;HV^ HF),
which are dense inL2 , but need not be Gauss vectors themselves. This approximation is nece
to handle the unbounded operatorse6D. Next, we approximate the exponential function as

e2tH5s2 lim
n→`

S 11
t

n
H D 2n

~116!

sinceH is quasim-accretive~c.f. Ref. 16, Chap. IX!. Finally, we calculate

$eDFG ,e2tHeDCG%5 lim
n→`

H f,e2DS 11
t

n
H D 2n

eDcJ ~117!

using Corollary II.7.
Upon using the harmonic oscillator representation, the ghost part of the Hamiltonian be

a second-order differential operator with polynomial coefficients. Therefore,e2DHeDfPC0
` , and

one has

e2DS 11
t

n
H D n

eDf5S 11
t

n
e2DHeDD n

f ~118!

for Ret.0. The calculation of the commutators is now elementary, leading to the expressi
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eDS 11
t

n
H De2Df5S 11F t

n
H,D G1

1

2 F F t

n
H,D G ,DG Df5S 11

t

n
@H̃1H0

G1VQ# Df

~119!

in which VQ contains terms linear inaQ and aQ
† , with coefficients that are bounded fermio

currents~Ref. 5, Eq.~3.17!!.

The arguments used for Proposition II.3 show thatH̃1H0
G1VQ īs a quasi-m-accretive opera-

tor, generating aC0 semigroup, denotede2tH8. As a result, we have

e2DS 11
t

n
H D n

eDc5S 11
t

n
H8D n

c

again for Ret.0. The Hille–Yosida theorem allows us to conclude that (11(t/n)H8)2n is a
bounded operator on Fock space and agrees withe2D(11(t/n)H)2neD on C0

` , and therefore
defines a unique, bounded extension for this expression. Furthermore, it follows thatH8 is quasi-
m-accretive, so that

s2 lim
n→`

e2DS 11
t

n
H8D 2n

eD5e2tH8. ~120!

Therefore, the limit in~117! exists and we find

$FG ,e2tHCG%5$f,e2tH8c% ~121!

for the matrix element.
The final step is to remove all the ghost terms fromH8 in the prior expression. This is

accomplished by using the fact thatVQ is a Phillips perturbation of the free Hamiltonian, so th
a norm convergent Duhamel series

e2tH85 (
n50

`

~21!nE
0

`

du1¯dun e2u1~H̃1H0
G

!VQe2u2~H̃1H0
G

!VQ¯VQe2~ t2un!~H̃1H0
G

!,

~122!

where the integration variables are anti-time ordered, may be used. Operators inVQ are of the
form

(
kPG0

@r~k!aQ~k!1t~k!aQ
† ~k!#, ~123!

wherer~k! andt~k! are bounded fermion operators. These terms do not commute withH̃, but H̃
andH0

G do commute. From

aQ~k!e2sH0
G
c5e2sv~k!e2sH0

G
aQ~k!c50,

where c5e2uzu2/2F, and the commutation ofaQ and aQ
† , successive use of this pull-throug

formula eliminates allaQ terms inVQ from ~117!. Only then50 term remains in~123! which
produces

$f,e2tH8c%5$f,e2tH̃e2tH0
G
c%.

The termH0
G(1/2) is given by
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H0
G~1/2!5 (

kPG0

v~k!@aQ
† ~k!aR~k!1aR

†~k!aQ~k!# ~124!

and one may easily show that in the sense of unbounded operators, each of the terms in th
equation commute with(kPG0

v(k)aR
†(k)aQ(k)c50. This operator may be expressed in terms

Fock space operators as

1

2 (
kPG0

v~k!@c1~k!2c0~k!#* @c1~k!2c0~k!#

which defines a positive operator and generates a self-adjoint semigroup. In this manner, t

ghost parts in~124! may be separated ine2tH0
G
, with the second term equal to one onc, and the

first term gives one onf as well, after taking Krein adjoints.
Now that all the ghost operators have been removed from the Gauss matrix elements in~117!,

Corollary II.7 further reduces the null vectors inf andc to their projections ontoHV^ HF . h

C. Path space formulas

Proposition III.1 showed that the Hamiltonian on the physical subspace is an esse
self-adjoint operator and that the interaction was a Phillips perturbation of the free Hamilto
As a result, the Hamiltonian is the infinitesimal generator of aC0 semigroup and has a uniforml
convergent Duhamel series expansion. The operatorH̃ has additional fermion terms, but these a
bounded operators, so they are also Phillips perturbations. For this operator, the Duhamel
sion is

~FV ,e2tH̃CV!5 (
n50

`

~21!nE
0

`

du1¯dun~FV ,e2u1H0Ṽe2~u22u1!H0Ṽ¯Ṽe2~ t2un!H0!

5 (
n50

`

~21!nE
0

`

du1¯dun~Fv ,V̂̃~u1!¯ V̂̃~un!CV!, ~125!

where the integration variable is anti-time ordered, 0<u1<¯un<t. Using a two dimensiona
version of Osterwalder–Schrader Euclidean fermions17 sketched in Appendix C, the interactio
terms

Ṽ5 (
xPV

d2F j m~x!Vm~x!1
j 0~x! j 0~x!

2m2 1
j 0~x!enl] l j n~x!

m~2Ds!
G ~126!

may be rewritten as

V̂̃5e2tH̃0ṼetH̃0 ~127!

5W(
xPV

d2F j m~x!Vm~x!1
j 0~x! j 0~x!

2m2 1
j 0~x!enl] l j n~x!

m~2Ds!
G . ~128!

Notice, that in the Wick expansion of the inner product in~125! when the anti-time ordered
products are converted to expectations with respect to the Gauss measure forfE the extra terms
on the RHS of~113! must be taken into account. It is easy to see that the net effect of this te
to add a further nonlocal interaction,

W(
xPV

S ] l j l
E~x!

m~2D!1/2D 2

. ~129!
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Consequently, removing the time ordering as all Euclidean expressions commute,

~FV ,e2tHCV!5S I 0FV ,W expF2E
0

t

du(
xPV

d2VE~u!GU~ t !CVD
5E dm0~fE!S I 0FV ,W expF2E

0

t

du(
xPV

d2VE~u!G I ~ t !CVD , ~130!

where fE is the scalar, Euclidean field defined above, andI is the corresponding Euclidea
embedding map. In this way, the path-space formula on physical states satisfies Osterw
Schrader positivity for a Feynman–Kac–Nelson integral with a nonlocal fermion interaction
sity.

APPENDIX A: HALLER AND LIM-LOMBRIDAS’ REPRESENTATION

A0~x!5
21

AV
(

kPG0

4v3

m7/2 @aQ~k!eik–x1aQ
† ~k!e2 ik–x#2

~122j!

AV
(

kPG0

2v

m3/2 @aQ~k!eik–x

1aQ
† ~k!e2 ik–x#1

1

AV
(

kPG0

m3/2

16v2 @aR~k!eik–x1aR
†~k!e2 ik–x#

2
1

AV
(

kPG0

v

mA2m
@a~k!eik–x1a†~k!e2 ik–x#, ~A1!

Al~x!5
1

AV
(

kPG0

8ive lnkn

m5/2 @aQ~k!eik–x2aQ
† ~k!e2 ik–x#1

~122j!

AV
(

kPG0

2kl

m3/2 @aQ~k!eik–x

1aQ
† ~k!e2 ik–x#2

1

AV
(

kPG0

4v2kl

m7/2 @aQ~k!eik–x1aQ
† ~k!e2 ik–x#

1
1

AV
(

kPG0

m3/2kl

16v3 @aR~k!eik–x1aR
†~k!e2 ik–x#2

1

AV
(

kPG0

Amkl

&mv
@a~k!eik–x

1a†~k!e2 ik–x#1
1

AV
(

kPG0

i e lnkn

vA2m
@a~k!eik–x2a†~k!e2 ik–x#, ~A2!

P0~x!52
1

AV
(

kPG0

8iv2

m3/2 @aQ~k!eik–x2aQ
† ~k!e2 ik–x#, ~A3!

P l~x!5
1

AV
(

kPG0

4ivkl

m3/2 @aQ~k!eik–x2aQ
† ~k!e2 ik–x#2

~122j!

AV
(

kPG0

e lnkn

m1/2 @aQ~k!eik–x

1aQ
† ~k!e2 ik–x#2

1

AV
(

kPG0

6v2e lnkn

m5/2 @aQ~k!eik–x1aQ
† ~k!e2 ik–x#

2
1

AV
(

kPG0

m5/2e lnkn

32v3 @aR~k!eik–x1aR
†~k!e2 ik–x#2

1

AV
(

kPG0

imkl

2vA2m
@a~k!eik–x

2a†~k!e2 ik–x#2
1

AV
(

kPG0

Ame lnkn

23/2v
@a~k!eik–x1a†~k!e2 ik–x#. ~A4!
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APPENDIX B: HARMONIC OSCILLATOR COORDINATES

We define ghost space harmonic oscillator coordinates in the following manner:

q01~k!5 1
2 @b0~k!1b0

†~k!1b0~2k!1b0
†~2k!#,

q02~k!5
i

2
@b0~k!2b0

†~k!2b0~2k!1b0
†~2k!#,

~B1!

p01~k!5
i

2
@b0~k!2b0

†~k!1b0~2k!2b0
†~2k!#,

p02~k!5 1
2 @2b0~k!2b0

†~k!1b0~2k!1b0
†~2k!#,

q11~k!5 1
2 @b1~k!1b1

†~k!1b1~2k!1b1
†~2k!#,

q12~k!5
i

2
@b1~k!2b1

†~k!2b1~2k!1b1
†~2k!#,

~B2!

p11~k!5
i

2
@b1~k!2b1

†~k!1b1~2k!2b1
†~2k!#,

p12~k!5 1
2 @2b1~k!2b1

†~k!1b1~2k!1b1
†~2k!#,

one-half of which are redundant underk↔2k. One can verify that

@qm j~k!,pn l~k8!#5 igmnd j l dk,k8 ~B3!

and that all other commutators vanish. From these definitions, suppressing thek-dependence, the
following representation for the ghost operators arises:

aQ~k!5
1

2&s
@~q112 ip11!2~ iq121p12!2~q012 ip01!1~ iq021p02!#, ~B4!

aQ
† ~k!5

1

2&s
@~q111 ip11!1~ iq122p12!2~q011 ip01!1~2 iq021p02!#, ~B5!

aR~k!5
s

2&
@~q112 ip11!2~ iq121p12!1~q012 ip01!2~ iq021p02!#, ~B6!

aR
†~k!5

s

2&
@~q111 ip11!1~ iq122p12!1~q011 ip01!2~2 iq021p02!#. ~B7!

Next, we obtain a Schro¨dinger representation by means of von Neumann’s theorem using
following:

q0 j5
]

]x0 j
, q1 j52 i

]

]x1 j
, p0 j5 ix0 j , p1 j5x1 j . ~B8!

The following linear combinations:

z15x011 ix11, z25x021 ix12, ~B9!
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are useful and using them we can express the ghost operators as the following:

aQ~k!5
1

&s
F2S 1

2
z11 ]̄1D1 i S 1

2
z21 ]̄2D G ,

aQ
† ~k!5

1

&s
F S 1

2
z12 ]̄1D1 i S 1

2
z22 ]̄2D G ,

~B10!

aR~k!5
s

&
F S 1

2
z11̄]1D2 i S 1

2
z21̄]2D G ,

aR
†~k!5

s

&
F2S 1

2
z12̄]1D2 i S 1

2
z22̄]2D G .

APPENDIX C: EUCLIDEAN FERMIONS

In this appendix, the description of the two component Euclidean fermions as develop
Osterwalder and Schrader17 is presented.

The time-zero fermion fields are defined as

c~0,x!5
1

AV
(
kPG

A mf

E~k!
@b~k!u~k!eik–x1d* ~k!v~k!eik–x#, ~C1!

c†~0,x!5c* ~0,x!g05
1

AV
(
kPG

A mf

E~k!
@d~k!v†~k!eik–x1b* ~k!u†~k!eik–x#, ~C2!

where E(k)5Ak21mf
2, and there are the standard anticommutation relations@b(k),b* (p)#1

5dk,p5@d(k),d* (p)#1 . The two-dimensional gamma matrices that we use are

g05S 21 0

0 1D , g15S 0 1

21 0D , g25S 0 2 i

2 i 0 D , ~C3!

where gmgn5gmn2 i emnaga is one of the important features of the two-dimensional gam
matrices, the other being that there is nog.5 From this representation, the free Hamiltonian
obtained

H0
D5 (

kPG
E~k!@b* ~k!b~k!1d* ~k!d~k!# ~C4!

in the usual manner.
The Dirac Hamiltonian can be used to define the following fields in the same manner

Sec. III C, namely,

ĉ~ t,x!5e2tH0
D
c~0,x!etH0

D
, ~C5!

ĉ†~ t,x!5e2tH0
D
c†~0,x!etH0

D
, ~C6!

which are then used to compute the two-point function

~VR ,ĉ~x!,ĉ†~y!VR!5
1

2pV (
kPG

E
2`

`

dk0eik~x2y!S mf1 igE
•k

mf
21k2 D , ~C7!
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where

g0
E5S 21 0

0 1D , g1
E5S 0 i

2 i 0D , g2
E5S 0 1

1 0D ~C8!

are the Euclidean gamma matrices. Diagonalizing the matrix in~C7!,

m1 igE
•k5SE~k!S mf1 i uku 0

0 mf2 i uku DSE
21~k! ~C9!

allows for the definition of the vectors

W6
1 5SA6~ i uku1mf !

0 D , W6
2 5S 0

A6~ i uku2mf !
D ~C10!

from which the Euclidean spinors may be defined,

uj~k!5SE~k!W1
j ~k!, v j~k!5SE~2k!W2

j ~k!,
~C11!

û j~k!5~W1
j !T~k!SE~k!21, v̂ j~k!5~W2

j !T~k!SE~2k!21.

Note that in these expressions,uku5Ak25Ak0
21k1

21k2
2, that is, the Euclidean length of the vecto

The Euclidean fermi fields may now be defined as

Ca
~1!~x!5

1

A2pV
(
kPG

(
j 51,2

E
2`

`

dk0FB~k, j !ua
j ~k!eikx1D* ~k, j !va

j ~k!e2 ikx

Ak21mf
2 G , ~C12!

Ca
~2!~x!5

1

A2pV
(
kPG

(
j 51,2

E
2`

`

dk0FD~k, j !v̂a
j ~k!eikx1B* ~k, j !ûa

j ~k!e2 ikx

Ak21mf
2 G , ~C13!

where@B(k, j ),B* (p,l )#15dk,pd(k02p0)d j l 5@D(k, j ),D* (p,l )#1 and all other terms anticom
mute. The Euclidean fields have the following vacuum expectation value:

~VE ,Ca
~ i !Cb

~ j !* VE!5d i j dab~2D1m2!21/2, ~C14!

and anticommutator,

$Ca
~ i ! ,Cb

~ j !* %52d i j dab~2D1m2!21/2. ~C15!

From these definitions, the current operator is then given by

j m
E~x!5:C~2!gm

EC~1!~x!:. ~C16!

For this paper, the reflection operatorQ is defined as

QCa
~1!Q215~C~2!g0

E!a* ~ux!, QCa
~2!Q215~C~1!g0

E!a* ~ux!, ~C17!

whereux5(2x0 ,x). Let vectors dense inHE be denoted by

:C~1!~x,a!C~2!~y,b!:5:Ca1

~1!~x1!¯Can

~1!~xn!Cb1

~2!~y1!¯Cbn

~2!~yn!: ~C18!

and vectors which are dense inHR by

:ĉ~x,a!ĉ~y,b!:5:ĉa1
~x1!¯ĉan

~xn!ĉb1
~y1!¯ĉbn

~yn!:. ~C19!
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The embedding map is then defined by
Definition C.1: When xj 0.0, yl 0

.0 and for j,l 51,2,...,n there is a subspaceE1
0 ,HE and a

map W:E1
0 →HR defined by

W:C~1!~x,a!C~2!~y,b!:VE5:ĉ~x,a!ĉ~y,b!:VR . ~C20!

The following lemmas directly transcribe from Ref. 17.
Lemma C.2: Let X,YPE1

0 , then (WX,WY)5(QX,Y).
Lemma C.3: For t>0 and XPE1

0 , let U(t) denote time translation inHE . Then,

WU~ t !X5e2tH0
D
WX. ~C21!
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The Schro¨dinger operators with matrix rational potential, which areD-integrable,
i.e., can be intertwined with the pure Laplacian, are investigated. Corresponding
potentials are uniquely determined by their singular data which are a configuration
of the hyperplanes inCn with prescribed matrices. We describe some algebraic
conditions ~matrix locus equations! on these data, which are sufficient for
D-integrability. As the examples some matrix generalizations of the Calogero–
Moser operators are considered. ©1999 American Institute of Physics.
@S0022-2488~99!00911-1#

I. INTRODUCTION

Let us consider a Schro¨dinger operator

L52D1U~z!,

wherezPRn or Cn and U(z) is a matrix-valued meromorphic function. We will call such a
operator asD-integrable if there exists a differential operatorD with meromorphic matrix coef-
ficients and constant scalar highest term, such that

L D5D L0 , ~1!

whereL052D is the pure Laplacian acting on the vector-valued functions~cf. Refs. 1–3, where
the scalar cased51 has been considered!.

In dimensionn51 all such operators with rational potentials can be described as the resu
matrix Darboux transformations~see Ref. 4!, which explains the terminology.

In dimensionn.1 the situation is much more complicated even in the scalar case. Fo
review of the known results in this direction we refer to the recent paper.5 In particular, as it has
been shown in Refs. 1,2 the singularities of the potentialU(z) of any D-integrable Schro¨dinger
operator have to be located on a union of the hyperplanes. The proof given in Refs. 1,2 wor
in the matrix case under an additional assumption of the regularity~see below theorem 3!, so in the
rational case the potentialU(z) should have a form

a!Electronic mail: chalykh@mech.math.msu.su
b!Electronic mail: V.M.Gontcharenko@lboro.ac.uk
c!Electronic mail: A.P.Veselov@lboro.ac.uk
53410022-2488/99/40(11)/5341/15/$15.00 © 1999 American Institute of Physics
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U~z!5(
i 51

N
~a i ,a i ! Ai

~~a i ,z!1ci !
2

.

Such a potential is determined by a configuration of the hyperplanesP i in Cn given by the
equations (a i ,z)1ci50 with prescribed constant matricesAi .

In the present paper we describe the conditions~so-calledmatrix locus equations! on these
data which guaranteeD-integrability. This generalizes to the matrix case the main result of
paper.3 Locus equations can be interpreted as the conditions of the local trivial monodromy f
corresponding Schro¨dinger equations~cf. Refs. 4–6!. This allows us to construct the examples
such configurations and related matrixD-integrable Schro¨dinger operators. Our proof of the ex
istence of the intertwining operatorD is effective; the corresponding formula is a matrix versi
of the Berest’s formula.7

Some important examples of such operators were known in the theory of the gener
matrix Calogero–Moser systems~see Refs. 8–12!, although the fact of theirD-integrability seems
to have not been emphasized. The corresponding operators have the form

L52D1 (
aPR1

ma~maI 2sa!~a,a!

~a,z!2
,

where R is a root system inRn related to some Coxeter groupG, ma is an integer-valued
G-invariant function onR, sa is the matrix of reflection with respect to the hyperplane (a,z)
50.

We show that the operatorL is D-integrable also for some non-Coxeter configurationsR
discovered in the scalar case in Refs. 13,14. Remarkably enough the matrix locus equations
case turned out to coincide with the condition of the existence of the rational Baker–Akh
function in the so-called ‘‘old axiomatics’’ proposed in Refs. 15 and 16~see Ref. 5 for the detailed
discussion of this notion!. This explains the appearance in the matrix case of the same con
rations as in the scalar situation. Another interesting relation between the scalar and matr
eralizations of the Calogero–Moser system has been proposed recently by Bracken and Ka12

~see also Ref. 11!.
We should mention that in the classical case matrix generalization of the Calogero–M

system were introduced first by Gibbons and Hermsen in Ref. 17~see Ref. 18 for further results in
this direction!. Our results show that the quantum situation is actually much richer than
classical one.

II. MONODROMY OF THE MATRIX SCHRÖDINGER EQUATIONS IN THE COMPLEX
DOMAIN

Let us start with the one-dimensional case following essentially Ref. 4. Let

L52D21U~z!, zPC, D5
d

dz
~2!

be a Schro¨dinger operator with meromorphicd3d-matrix potentialU(z). Let z50 be a regular
singular point, i.e., a pole of the second order ofU(z). Consider a formal solution of the Schro¨-
dinger equation

Lc5lc ~3!

in the form

c5z2m(
i>0

c2m1sz
s. ~4!
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Substituting~4! into the Schro¨dinger equation~3! with

U~z!5
C22

z2
1

C21

z
1(

r>0

`

Crz
r , ~5!

we obtain thatc2m is an eigenvector ofC22,

C22c2m5m~m11!c2m .

If for any l we can construct a basis of solutions of~3! with integerm ~i.e., c is single-valued!
then we say that the operatorL haslocal trivial monodromyaroundz50. This is equivalent to the
fact that all the solutions of the corresponding matrix Schro¨dinger equation~3! are single-valued
nearz50 for all l. In this case one can prove thatC22 is diagonalizable with eigenvaluesl i

5mi(mi11), i 51,2,..., wheremiPZ ~see Ref. 4!. ThusC22 has a form

C225(
i 51

k

mi~mi11!Pi , ~6!

wherePi are commuting projectors to the corresponding eigenspaces,

Pi Pj5d i j Pi , (
i 51

k

Pi5I ,

where I is identity operator. We assume that 0<m1,m2,•••,mk5M . The following result4

gives the conditions on the coefficientsCj of the expansion of the potential~5! which are equiva-
lent to the local trivial monodromy ofL.

Theorem 1: A matrix Schro¨dinger operator (2) with a meromorphic potential (5) has loc
trivial monodromy around z50 if and only if C22 has a form (6) and the coefficients Cl with l
521,0, . . . ,2M21 satisfy the relation

PiCl Pj50, ~7!

whenumi2mj u> l 11 or mi1mj5 l 11,l 13,...,l 12k11,... (i.e., when mi1mj2 l is a positive
odd number). In particular, the matrix residue C2150.

The coefficientsc2M ,c2M11 , . . . ,cM21 of the corresponding expansions of the vect
eigenfunctions

c5z2M~c2M1z c2M111•••1zkc2M1k1••• !

satisfy the conditions

Pic l50

if mi1 l ,0 or mi1 l 51,3,...,2k11,...,2mi21 for mi>1.
Notice that forl 50 conditions~7! are equivalent to the commutativity relation

@C22 ,C0#50. ~8!

Now let us consider the multidimensional case. We will assume that the potentialU(z) of the
Schrödinger operator

L52D1U~z!, ~9!

wherez5(z1 ,...,zn)PCn, D5 (]2/]z1
2)1•••1(]2/]zn

2), is a meromorphicd3d matrix-valued
function having a pole of the second order along the hyperplanePa :(a,z)50, which is assumed
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to be nonisotropic: (a,a)Þ0 ~cf. Refs. 1,2,5!. We will suppose for simplicity that (a,a)51. The
Laurent expansion of the potential in the normal directiona at the vicinity ofPa can be written
in the form

U~z!5 (
r>22

Cr~a,z!r , ~10!

whereCr5Cr(z
') are some analyticd3d matrix-valued functions on the hyperplanePa andz'

is orthogonal projection ofz onto Pa . Let us suppose that there exists a formal solution of
Schrödinger equation

Lc5lc ~11!

of the form

c~z!5~a,z!2m(
s>0

c2m1s~a,z!s ~12!

for somem, where the coefficientsc r5c r(l,z') are analytic vector-functions onPa . Substitut-
ing series~10! and ~12! into Eq. ~11! one can see that

C22c2m5m~m11!c2m ,

i.e., c2m is an eigenvector ofC22 with the eigenvaluem(m11).
Definition: We say that a Schro¨dinger operator~9! with the potential~10! has local trivial

monodromy around the hyperplanePa if

~1! at any point ofPa matrix C22 is diagonalizable with eigenvalues having the formm(m
11), mPZ,

~2! for any mPZ such thatm(m11) is an eigenvalue ofC22 and for any choice of the corre
sponding eigenvectorc2m(z') there exists a formal solution~12! of Eq. ~11! for any l
~notice that any such eigenvalue can be represented in the formm(m11) in two different
ways:m5m or m52m21).

In principle,C22 might depend on the point at the hyperplanePa , but this is not the case.
Lemma 1: If the operator (9) has a local trivial monodromy around the hyperplanePa , then

C22 is a constant matrix.
To prove the lemma we can assume without loss of generality thata5(1,0,...,0). Then the

Schrödinger operator can be written in the form

L52
]2

]z1
2

2D̃1U~z!, ~13!

whereD̃5(]2/]z2
2)1•••1(]n/]zn

2). Thus we can consider~13! as a one-dimensional Schro¨dinger
operator with the matrix operator-valued ‘‘potential’’

Ũ~z!52D̃1U~z!.

Applying formally theorem 1 and, in particular~8!, we have

@C02D̃,C22#[0

or
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@C0 ,C22#22•(
k52

n

~]kC22!]k2D̃~C22![0.

Therefore,]kC2250 for all k52,...,n, i.e.,C22 is a constant. Alternative, more rigorous way
prove the lemma is to repeat the arguments of the proof of theorem 1~see Refs. 4–6!.

Now simularly to the one-dimensional case4 ~see theorem 1 above! one can prove the follow-
ing:

Theorem 2: A matrix Schro¨dinger operator (9) with a meromorphic potential (10) has loc
trivial monodromy around the hyperplanePa if and only if

(1) C22 is a constant diagonalizable matrix,

C225(
i 51

k

mi~mi11!Pi ,

where0<m1,m2,•••,mk5M are some integers, Pi are commuting projectors:

Pi Pj5d i j Pi , (
i 51

k

Pi5I .

(2) The coefficients Cl with l521,0,...,2M21 satisfy the following relations:

PiCl Pj[0 ~14!

if umi2mj u> l 11 or mi1mj5 l 11,l 13,...,l 12k11,... . In particular, C21[0 and @C0 ,C22#
[0.

The coefficientsc2M ,c2M11 ,...,cM21 of the corresponding expansions of the vect
eigenfunctions

c5~a,z!2M~c2M1~a,z!c2M111•••1~a,z!kc2M1k1••• !

satisfy the conditions

Pic l[0 ~15!

if mi1 l ,0 or mi1 l 51,3,...,2k11,...,2mi21 for mi>1.

III. MATRIX LOCUS EQUATIONS AND D-INTEGRABILITY

Let us consider a matrix Schro¨dinger operator~9! with a rational potentialU(z) decaying at
infinity. We will assume that all the singularities are regular, i.e.,U(z) has the poles of the secon
order at most.

We would like to show that in this case the trivial monodromy property imp
D-integrability, i.e., the existence of the intertwining operator~1!. First of all, the potential mus
have the form

U~z!5(
i 51

N
~a i ,a i ! Ai

~~a i ,z!1ci !
2

~16!

due to the following result:
Theorem 3: The regular singularities of the matrix potential of any D-integrable Schro¨dinger

operator L are located on a union of nonisotropic hyperplanes. If such a potential is rational
decaying at infinity it should have a form (16).
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The proof essentially repeats the arguments of the scalar case investigated in Refs. 1
coefficient (a i ,a i) is written at the numerator of the expression~16! for the convenience, as thi
makes the matricesAi independent on the choice of the equation of the corresponding hyperp

Let us assume now that the operatorL with the potential~16! has local trivial monodromy
around all the hyperplanesP i : (a i ,z)1ci50. We will say in this case thatL hastrivial mono-
dromy. The local trivial monodromy conditions~14! around all the hyperplanes form a highly
overdetermined algebraic system on the configuration of the hyperplanes with prescribed m
Ai . We will call this systemmatrix locus equations.

Theorem 4: Let L be a matrix Schro¨dinger operator (9) with a rational potential (16) satis
fying the matrix locus equations. Then L is D-integrable.

Proof: From the theorem 2 it follows that

As5(
i 51

ks

mi
(s)~mi

(s)11!Pi
(s) , 0<m1

(s),m2
(s),•••,mks

(s)5Ms

with some projectorsPi
(s) : Pi

(s)Pj
(s)5d i j Pi

(s) , ( i 51
ks Pi

(s)5I .
Following the main idea of Ref. 3 let us introduce a linear spaceV consisting of thed3d

matrix-valued functionsC(z), zPCn which satisfy the conditions
~1! C(z))s51

N ((as ,z)1cs)
Ms is holomorphic inCn;

~2! the coefficients of the series expansion ofC(z) at the vicinity of hyperplanes (as ,z)
1cs50,s51,...,N satisfy conditions~15! with M5Ms .

The crucial observation is that the matrix locus Eqs.~14! imply that the spaceV is invariant
underL ~cf. Refs. 3,4!.

Let us consider the matrix functionC05)s51
N ((as ,z)1cs)

Mse(k,z)I , whereI is the identity
matrix. Evidently,C0PV and, therefore, all the functions

C i5~L1k2! iC0 , i 51,2,...

belong toV as well. These functions have the form

C i5
Pi~k,z!e(k,z)

)s51
N ~~as ,z!1cs!

Ms
,

wherePi(k,z) are some matrix polynomials ink, z. Since

Pi 115fS 2D22S k,
]

]zD1U~z! Df21Pi , f5)
s51

N

~~as ,z!1cs!
Ms,

the degrees ofPi in z are decreasing withi. So, there exists suchj that (L1k2)C j50. It is easy
to see that forM5(s51

N Ms ,

CM5F ~22!MM ! )
s51

N

~as ,k!MsI 1•••Ge(k,z)Þ0, ~17!

where the dots mean the terms decaying whilez→`. We claim thatCM115(L1k2)CM50.
Indeed, assume that this is not true. Then for somej .M we have

C j 115~L1k2!C j50

with C jÞ0. Since

Pj 115fS 2D22S k,
]

]zD1U~z! Df21Pj50
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andPj is polynomial ink its highest coefficientPj
(0) has to satisfy the condition

S k,
]

]zD Pj
(0)50.

One can show that this implies thatPj
(0) must be polynomial inz ~see Ref. 19, lemma 2.5!. On the

other hand one can see from~17! thatC j for j .M decays asz→`. This contradiction means tha
LCM52k2CM . PresentingCM in the form CM5De(k,z)I for a proper matrix differential op-
eratorD(z,(]/]z)) we have

LC5LDe(k,z)I 52k2De(k,z)I 52Dk2e(k,z)I 5DL0e(k,z)I

and, therefore,

LD5DL0 .

The theorem is proved.
Remark:Notice that our proof gives an explicit formula for the intertwining operator

D~e(k,z) I !5~L1k2!MS )
s51

N

~~as ,z!1cs!
Mse(k,z)I D .

Such a formula has been discovered in the scalar case by Berest.7

IV. GENERALIZED MATRIX CALOGERO–MOSER SYSTEM

Let us consider the following matrix Schro¨dinger operator:

L52D1 (
aPR1

ma~maI 2 ŝa!~a,a!

~a,z!2
. ~18!

HereR is any Coxeter root system inRn, R1 is its positive part consisting of the normals to th
reflection hyperplanes of the corresponding Coxeter groupG, m(a)5ma is aG-invariant function
on A, ŝa stands for the reflection with respect toa in an arbitrary matrix representationp of the
groupG: ŝa5p(sa)

For the trivial one-dimensional representation we have a scalar Schro¨dinger operator which is
the well-known generalized Calogero–Moser operator related to the Coxeter groupG ~see Ref.
20!. Thus~18! can be considered as a natural matrix generalization of these operators.

Cherednik8 seems to be the first to consider such generalizations in the case whenG is a Weyl
group of any semisimple Lie algebra. He showed that the corresponding quantum systemn
commuting quantum integrals and, therefore, it is integrable in a usual quantum mechanical

Let us show that if allma are integers then the operator~18! is D-integrable. This implies the
usual integrability and even more stronger property known as algebraic integrability~see theorem
7 below!.

Let

sa~z!5z22
~a,z!

~a,a!
a ~19!

be the orthogonal reflection with respect to the hyperplane (a,z)50. The matrix potential of the
operator~18! has the following equivariance property for anyaPR:

ŝaU~z!5U~sa~z!!ŝa . ~20!
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This can be easily checked usingG-invariance ofma and the property

ŝaŝb5 ŝsa(b)ŝa .

From ~20! it follows that the coefficientsCl of the Laurent expansion of the potentialU near
the hyperplane (a,z)50 satisfy the following relation:

ŝaC2k5C2kŝa , ŝaC2k211C2k21ŝa50 ~21!

for any k. Comparing the formula~18! with ~16! we see that the corresponding matricesAi have
two eigenvalues,ma(ma11) andma(ma21). Using this it is easy to check that the relations~21!
imply the local trivial monodromy conditions~14! and, therefore,D-integrability of the operator
~18! due to the theorem 4. Thus, we have proved

Theorem 5: The generalized matrix Calogero–Moser operator (18) with integer G-invarian
ma is D-integrable.

In the scalar case the Calogero–Moser operator admits integrable deformations related
non-Coxeter configurations of the hyperplanes.13,14,5It is interesting that these deformations adm
a matrix generalization as well.

Let A be a finite set of the hyperplanesPa in a complex Euclidean spaceCn given by the
equations (a,z)50, taken with some multiplicitiesmaPZ1 . Here aPA, A is a finite set of
noncollinear vectors. Consider the matrix Schro¨dinger operator

L52D1U~z!

with

U~z!5 (
aPA

ma~ma2sa!~a,a!

~a,z!2
, ~22!

wheresa is then3n matrix of the reflection~19!.
Theorem 6: Operator L has trivial monodromy if and only if the following conditions for t

configurationA hold for eachaPA

Aj5 (
bÞa

mb~mb11!~b,b!~a,b!2 j 21

~b,z!2 j 11 U
(a,z)50

[0, j 51,2,...,ma , ~23!

Bj5 (
bÞa

mb~a,b!2 j 21

~b,z!2 j 21 U
(a,z)50

[0, j 51,2,...,ma . ~24!

Proof: Let us consider first the casema51. Then we have two locus conditions~see~14!! for
L,

C0C225C22C0 or C0sa5saC0 ~25!

and

~C1a,a!50. ~26!

From ~22! we can calculate

Cj5 (
bÞa

mb~mb2sb!~b,b!~a,b! j

~b,z!21 j U
(a,z)50

,
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and condition~25! reduces to

(
bÞa

mb~b,b!~sbsa2sasb!

~b,z!2 U
(a,z)50

[0. ~27!

Let us choose somegÞa and consider the subsum in~27! corresponding to the two-dimension
plane^a,g&. Sincesb acts trivially on the orthogonal complement to the planep5^a,g& for any
bPp we may assume thata5(1,0), b5(cosfb ,sinfb). Then,

sa5S 21 0

0 1D , sb5S 2cos 2fb 2sin 2fb

2sin 2fb cos 2fb
D

and

sbsa5S cos 2fb sin 2fb

2sin 2fb cos 2fb
D , sasb5~sbsa!21.

Since (b,z)u(a,z)505b2z25z2 sinfb we have to check that

(
bP^a,g&,bÞa

sin 2fb

sin2 fb

50.

But it easily follows from the identity~24! B1[0.
The second locus condition~26! reduces to

(
bÞa

mb~mb1cos 2fb!cosfb

sin3 fb

50.

This is equivalent to the combinationA122B150 of the identities~23!–~24!.
Now let us consider the casema.1. Locus equations~14! take the form

Cjsa5~21! j saCj , j 50,1,...,2ma22, ~28!

~C2ma21a,a!50. ~29!

As above, everything reduces to the two-dimensional case and we will use the same notatio
relations~28! reduce to

(
bÞa

mb cosjfb sin 2fb

sin21 jfb

50, ~30!

for j 52l , l 50,1,...,ma21, and

(
bÞa

2 samb
2 cosj fb2~sasb1sbsa!mb cosj fb

sin21 jfb

50, ~31!

for j 52l 21, l 51,...,ma21. Relation~30! is equivalent to

(
bÞa

mb cos2l 11 fb

sin2l 11 fb

50,

which coincide withBl 11[0. Condition~31! is equivalent to
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5 (
bÞa

mb
2 cos2l 21 fb

sin2l 11 fb

50, l 51,...,ma21

(
bÞa

mb cos2l 21 fb cos 2fb

sin2l 11 fb

50, l 51,...,ma21.

The first part of the last equations due to the identityAl[0 reduces to

(
bÞa

mb cos2l 21 fb

sin2l 11 fb

50,

the left-hand side of which equalsBl1Bl 11. The second one is equivalent toBl 112Bl[0 and is
satisfied forl 51,...,ma21.

Finally, the condition (C2ma21a,a)50 is equivalent to

(
bÞa

mb
2 cos2ma21fb1mb cos 2fb cos2ma21fb

sin2ma11fb

50

or, usingAma
[0, to

(
bÞa

mb cos2ma21fb~cos 2fb21!

sin2ma11fb

50,

which coincides withBma
[0. Theorem 6 is proved.

Remark:It is interesting to note that conditions~23! and ~24! are equivalent to the existenc
of the so-called Baker–Akhiezer function in ‘‘old axiomatics’’~see Refs. 16 and 5!. Indeed, the
A-conditions~23! coincide with the locus equations for the scalar case and, therefore, guar
the existence of the Baker–Akhiezer function in ‘‘new axiomatics.’’5 The B-conditions~24! mean
that the functionf5)bÞa(b,z)mb has zero odd normal derivatives at the hyperplanePa ,

S ]

]a D 2 j 21

) ~b,z!mbU
(a,z)50

50,

which together with the new axiomatics provide the old one~see Sec. 1 in Ref. 5!.
In particular, conditions~23! and ~24! are satisfied for the following non-Coxeter configur

tions An(m) andCn11(m,l ) discovered in Refs. 13,14,5.
ConfigurationAn(m) consists of the following vectors inRn11: ei2ej with multiplicity m

(1< i , j <n) andei2Amen11 with multiplicity 1 ( i 51,...,n) ~for m51 we have the root system
An). Parameterm is also allowed to be negative. Then one should consider vectorsei2ej with the
multiplicity 212m. In the last case we have a complex configuration inCn11.

ConfigurationCn11(m,l ) consists of the following set of vectors inRn11:

Cn11~m,l !55
ei6ej with multiplicity k

2ei with multiplicity m

2Aken11 with multiplicity l

ei6Aken11 with multiplicity 1,

where l and m are integer parameters such thatk5(2m11)/(2l 11)PZ, 1< i , j <n. If l 5m
5k51 the systemCn11(m,l ) coincides with the classical root systemCn11. As before, the
parametersk,m,l may be negative, in that case the corresponding multiplicities should be21
2k, 212m or 212 l , respectively.
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Corollary: The matrix Schro¨dinger operators with potentials (22) corresponding to the co
figurations An(m) and Cn11(m,l ) are D-integrable.

Let us prove now that in the considered casesD-integrability implies usual quantum integra
bility and even more—so-called algebraic integrability.

We say that a matrix Schro¨dinger operatorL in Rn is integrable if there existsn pairwise
commuting matrix differential operatorsL15L, L2 ,...,Ln having the algebraically independe
constant scalar highest symbolsPj (k), j 51,...,n. If there exists one more commuting matr
differential operatorLn11 with the highest constant scalar symbolPn11(k) such thatPn11(k)
takes different values on the solutions of the systemPi(k)5ci ( i 51,...,n) for genericc1 ,...,cn

the operatorL is calledalgebraically integrable~see Refs. 21,15,9!.
Let us assume that the matrix potential U is symmetric,U5U* .
Theorem 7: Any D-integrable matrix Schro¨dinger operator L with a rational symmetric

potential (16) is algebraically integrable.
Proof: We follow here the idea of the paper.22 Let A* denote a formal conjugate to a matr

differential operatorA then taking a conjugation of the relationLD5DL0 we haveD* L*
5L0* D* 5L0D* . If U5U* thenL5L* and we obtainD* L5L0D* . Now define the operators
L15L, L11 i5D] iD* ( i 51,...,n). We claim that they are pairwise commuting. Indeed,LL11 i

5LD] iD* 5DL0] iD* 5D] iL0D* 5D] iD* L5L11 iL, so @L1 ,Lk#50 for all k52,...,n11.
Consider now the commutator@Ll ,Lk#, l .1. From the previous relations and Jacobi identity
follows that @@Lk ,Ll #,L#50. Berezin’s lemma~see lemma 2.5 in Ref. 19! says that the highes
symbol of@Lk ,Ll # has to be polynomial inz, but from the definition ofLk and the construction o
D it follows that it decays asz→`. This means that@Lk ,Ll #50 for anyk,l 51,...,n11. One can
check that the highest symbols ofLk satisfies the property demanded at the definition of algeb
integrability. The theorem is proved.

Remark:The statement of the theorem seems to be true without the assumption of the
metry of the potential.

V. TWO-DIMENSIONAL CASE

Let us consider the matrix locus configurations on the plane in the case when all the line
through the origin. In the scalar case essentially all such configurations have been descri
Berest and Lutsenko23 ~see Ref. 5 for details!.

In the matrix case in the polar coordinates (r ,f) the corresponding potentialU has a form

U~r ,f!5
1

r 2
V~f!, ~32!

where

V~f!5(
i 51

k
Ai

sin2~f2f i !
. ~33!

HereAi are some matrices,f i are the angles corresponding to the lines of configurations. Str
speaking this is true only on the real planeR2 but this can be easily generalized toC2 ~see Ref. 5!.

Proposition 1: Two-dimensional matrix Schro¨dinger operator

L52D1U ~34!

with the potential (32) has trivial monodromy if and only if the same is true for the o
dimensional Schro¨dinger operator

L52
d2

df2
1V~f! ~35!
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with trigonometric potential (33).
The proof is a simple check that the local trivial monodromy conditions for these two op

tors are equivalent.
Proposition 2: If the operator (35) is D-integrable then the same is true for the t

dimensional Schro¨dinger operator (34).
Indeed, in the one-dimensional caseD-integrability implies the trivial monodromy for the

operator~35! and, therefore, for the two-dimensional operator~34!. According to the theorem 4
this guarantees theD-integrability of ~34!.

In dimension 1D-integrability is equivalent to the fact that the operatorL ~35! is the result of
so-called matrix Darboux transformation applied toL052(d2/df2) ~see, e.g., Ref. 4!. All such
operators can be described using the notion of quasideterminants introduced by Gelfa
Retakh~see Ref. 24!.

Let k be the order of the intertwining operatorD. Consider any solutionF of the simple
matrix differential equation2(d2/df2) F5FC whereF is d3kd matrix, C is any diagonaliz-
ablekd3kd matrix with the eigenvalues of the forml5p2 with pPZ. Let F5(C1 , . . . ,Ck)
whereC i are the correspondingd3d matrices. Then the intertwining operatorD can be written as
quasideterminant

D~C!5uW~C1 ,...,Ck ,C!uk11,k11 ,

where

W~C1 ,...,Ck ,C!5S C1 . . . Ck C

A � A A

C1
(k21) . . . Ck

(k21) C (k21)

C1
(k) . . . Ck

(k) C (k)
D ,

~see Ref. 4 for the details!. The potentialV has a form

V52a18~f!, ~36!

wherea1(f) is the first matrix coefficient ofD,

D5Dk1a1~f!Dk211•••1ak~f!, D5
d

df
.

Under some assumptions onF one can give more explicit formula for the potential~see Ref. 4!.
Theorem 8: Two-dimensional matrix Schro¨dinger operator (34) with the potential of the form

(32) related to any result (36) of the one-dimensional matrix Darboux transformation desc
above has trivial monodromy and therefore D-integrable. Conversely, for any D-integrable
erator (34) the corresponding one-dimensional operator (35) is related to the operatoL0

52d2/df2 by a matrix Darboux transformation.
The proof of the inverse statement follows from
Lemma 2: Any one-dimensional Schro¨dinger operator (34) with trigonometric potential (33

which satisfies local trivial monodromy conditions at all the singularities is D-integrable.
Proof of the lemma essentially combines the arguments of the matrix rational case~see Ref. 4

or theorem 3 above! and the scalar trigonometric case investigated in Ref. 3.
It is worthy to derive the explicit formula for such operators in the simplest case of three

with prescribed 232 matrices with the eigenvalues 0 and 2. In this case it seems to be
suitable to use matrix locus equations rather than Darboux transformation. Thus, letV(f) be of
the form
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V~f!5
2Pa

sin2~f2a!
1

2Pb

sin2~f2b!
1

2Pg

sin2~f2g!
, ~37!

wheref,a,b,gPC; Pa ,Pb ,Pg are some projector matrices of rank 1. According to theorem
operator~35! has trivial monodromy if its Laurent expansion at polef5f0,

V~f!5
C22

~f2f0!2
1

C21

~f2f0!
1C01C1~f2f0!1•••

satisfies the conditions

C2150,

@C22 ,C0#50, ~38!

C22C1C2250. ~39!

ConditionsC2150 are, obviously, fulfilled. ExpandingV(f) nearf5a,

V~f!5
2Pa

~f2a!2
1S 2Pb

sin2~a2b!
1

2Pg

sin2~a2g!
1

2Pa

3 D
1S 24Pb cos~a2b!

sin3~a2b!
1

24Pg cos~a2g!

sin3~a2g!
D ~f2a!1 . . . ,

and then nearf5b andf5g we get the following system of the equations using~38!:

F Pa ,
Pb

sin2~a2b!
1

Pg

sin2~a2g!
G50, ~40!

F Pb ,
Pa

sin2~b2a!
1

Pg

sin2~b2g!
G50, ~41!

F Pg ,
Pa

sin2~g2a!
1

Pg

sin2~g2b!
G50. ~42!

It is easy to see that~42! follows from ~40! and ~41!. Conditions~39! give

PaS Pb cos~a2b!

sin3~a2b!
1

Pg cos~a2g!

sin3~a2g!
D Pa50, ~43!

PbS Pa cos~b2a!

sin3~b2a!
1

Pg cos~b2g!

sin3~b2g!
D Pb50, ~44!

PgS Pa cos~g2a!

sin3~g2a!
1

Pb cos~g2b!

sin3~g2b!
D Pg50. ~45!

Solving of system of Eqs.~40!–~45! and making a suitable transformation

V~f!→C V~f!C21 ~46!
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we arrive at the formula

Pa5
1

sin~a2b! sin~a2g!
•ja

t ha , ~47!

where

ja5~2cosa,sina!,ha5~s~a;b,g!, c~a;b,g!!,

s~a;b,g!5sin 2a cos~b1g2a!2cosa sinb sing,

c~a;b,g!5 cos2a sin~b1g2a!2sina cosb cosg.

ProjectorsPb andPg can be obtained by corresponding permutations ofa, b, andg.
Theorem 9: Any three lines on the plane with prescribed matrices Pa , Pb , and Pg (47)

wherea, b, g are the corresponding angles form a matrix locus configuration. Modulo (46)
describes all three lines232 matrix locus configurations with prescribed matrices having
eigenvalues0 and 2.

It is interesting to note that the potential~37!, ~47! is symmetric if and only ifa5q, b5q
1 (p/3) andg5q1 (2p/3) for someq which corresponds to the matrix Calogero–Moser s
tem ~18! related toA2 root system.

VI. CONCLUDING REMARKS

Similarly to the scalar case5 one can introduce the notion of the multidimensional mat
Baker–Akhiezer function. This would lead to the proof of the algebraic integrability for
corresponding Schro¨dinger operators. The bispectral properties of these functions and the rela
to the Huygens’ Principle we are planning to discuss in a separate paper.
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Evaluation of multiloop diagrams via lightcone integration
Y. J. Fenga) and C. S. Lamb)

Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
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We present a systematic method to determine the dominant regions of internal
momenta contributing to any two-body high-energy near-forward scattering dia-
gram. Such a knowledge is used to evaluate leading high-energy dependences of
loop diagrams. It also gives a good idea where dominant multiparticle cross sec-
tions occur. ©1999 American Institute of Physics.@S0022-2488~99!00811-7#

I. INTRODUCTION

It is difficult to compute high-energy (As) scattering amplitudes at small momentum transf
(A2t), even assuming the coupling constantg2 to be small. This is so because each loop o
Feynman diagram is capable of producing a lns factor, thus changing the effective expansi
parameter fromg2 to g2 ln s. Even though the former may be small, the latter can become q
sizable at high energies, necessitating diagrams of high orders to be included. Such is for e
the case when total cross section is computed in the framework of QCD.1

Usually such a daunting task of computed diagrams of many loops may be contemplate
in the leading-log approximation~LLA !, though there are exceptions, especially for sets of d
grams with regular structures.2 In LLA, only terms of the highest power of lns are kept at each
perturbative order, but even so the computation is far from being simple. For low-order diag
or diagrams with highly regular structures, the computation has been carried out and the res
well known.3–6 However, for complicated diagrams, a systematic procedure to find even
leading-log contribution seems to be lacking. We shall discuss a method in the present pap
available QCD result, via the exchange of the BFKL Pomeron,5 violates the Froissart bound an
needs to be improved.7–9 Other diagrams must be included to restore unitarity so it would
useful to have a way to find out how the other diagrams behave at high energies. This
achieved if the regions of internal momenta dominating the Feynman amplitude can be locat
then one simply integrates around them to obtain the LLA result.

For quark–quark scattering via the exchange of gluon ladders, the dominant region is k
to be the multi-Regge region,4,5 where gluons produced in the intermediate states are stro
ordered in rapidity, and the gluons being exchanged are dominantly spacelike. What we wou
to discuss in the present paper is a general way to find such dominant regions for any diagra
its associated high-energy dependence in LLA. We shall carry out the study for Feynma
grams and for non-Abelian cut diagrams,10–12 both because they are more general, and beca
there is already a considerable body of literature on the dispersion theoretic techniques.5,6

Such calculations of elastic amplitudes, besides giving the energy-dependence of total
sections via the optical theorem,1 also tell us the kinematical regions where the dominant inela
cross-sections come from, for via unitarity these are intimately related to the dominant in
momenta of the elastic amplitude. This knowledge would be of direct phenomenological in
as well.

The methods developed in this paper should also be useful in the study of two-dimen
effective QCD Lagrangians at high-energies.13,14 A prerequisite needed to arrive at a reliab
effective Lagrangian is to know which are the heavy modes that can be discarded, and wh

a!Electronic mail: feng@physics.mcgill.ca
b!Electronic mail: lam@physics.mcgill.ca
53560022-2488/99/40(11)/5356/15/$15.00 © 1999 American Institute of Physics

                                                                                                                



ative
ich to

a brief

as
icles,

.
f the

o

the
log

’
e LLA
l
es no
grams
uctive
ow the
is way
ions

the
dia-

ams.
utation
by a
cated

Sec.

re
tor

tion
ulus.

f-
ill be

les

5357J. Math. Phys., Vol. 40, No. 11, November 1999 Evaluation of multiloop diagrams . . .

                    
them must be integrated out to yield a new vertex in the effective Lagrangian. In perturb
language this is equivalent to finding the important regions of internal momenta around wh
integrate. All others may simply be discarded.

In the rest of this section we shall describe what our method is based on, and provide
summary of the results.

At high energies it is convenient to use lightcone coordinates,k65k06k3. The components
of a four-vectorkm can then be written as (k1 ,k2 ,k'), and the loop integration expressed
d4k5dk1dk2d2k'/2. In the center-of-mass system, the momenta of the two incoming part
with masses neglected, can be taken to bep25(As,0,0) andp15(0,As,0). The momentum
transferA2t as well as all other transverse momentak' are taken to be of order 1 ass→`, so it
is only the dominant regions ink1 andk2 for every loop momentumk that have to be determined

These regions are determined in the following way. First, observe that the inverse o
internal propagators are bilinear in the ‘‘1’’ and the ‘‘2’’ components of their line momenta, s
the propagators give rise to simple poles in the ‘‘1’’ ~or the ‘‘2’’ ! momenta which enable
integrations in those variables to be carried out exactly by residue calculus.4 Once this is done the
locations of the ‘‘1’’ momenta are determined by the locations of the contributing poles and
‘‘ 2’’ momenta. The ‘‘2’’ momenta are then fixed to be in the regions yielding the leading-
contributions to the amplitude.

We shall be able to do this both for Feynman diagrams and ‘‘non-Abelian cut diagrams.’10–12

Feynman diagrams are fundamental, but they often have the undesirable property that th
contributions of individual diagrams get cancelled in the sum.4 To the extent that the usua
technology only allows LLA to be computed, this cancellation is disastrous because it leav
viable means to compute the leading high-energy behavior of the sum. Non-abelian cut dia
are designed to combat this problem. The cancellation is actually a result of the destr
interference between the virtual gluons being exchanged. The non-Abelian cut diagrams all
destructive interferences to take place before high energy approximations are taken. In th
the LLA contribution to the non-abelian cut diagrams will reflect directly the leading contribut
to the sum. No further cancellation will occur.

In Sec. II we will review theflow diagrammethod of Cheng and Wu4 for carrying out the
‘‘ 1’’ component integrations by residue calculus. This method is very effective in locating
poles and the dominant integration regions for relatively simple diagrams. In complicated
grams one encounters the problem offlow reversalwhich will be discussed in Sec. III. This
problem prevents a simple reading of the contributing poles directly from the flow diagr
Nevertheless the locations of these poles can still be computed, but the complexity of comp
grows quite fast with the number of loops of the diagram. This difficulty is then overcome
‘‘path’’ method to be discussed in Sec. IV. With this method the contributing poles can be lo
and the ‘‘1’’ momenta determined. What remains is to find the dominant ‘‘2’’ momenta that give
rise to the LLA contribution. The recipe for doing so will be discussed in Sec. V. Finally, in
VI, a number of examples are given to illustrate the procedure.

II. FLOW DIAGRAMS

Consider a diagram withn internal lines andl loops, whose line and loop momenta a
denoted byqi(1< i<n) andkb(1<b< l ), respectively. In lightcone coordinates, the denomina
of the propagator for a line with momentumq is d(q)5(q22m21 i e)5(q1q22q'

2 2m21 i e)
[(q1q22a1 i e). Thesen propagators collectively define a set of poles for the integra
variableskb1 , thus enabling these integrations to be performed with the help of residue calc
To carry out this program we must identify, for eachkb1 , which are the poles in the upper-hal
plane and which are the poles in the lower-half-plane, for only the poles in one half-plane w
picked up by a contour integration. Their locations in turn depends on the sign ofqi 2 , the choice
of loop momenta, as well as the order thekb1 integrations are carried out. With so many variab
the problem is very complex indeed.Flow diagramwas invented4 to keep track of things and to
determine the location of poles. We shall review its essence4 in this section, and point out in the
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next section some of the complications hitherto overlooked. This complication makes it co
cated to apply it to multiloop diagrams. In Sec. IV we shall propose a ‘‘path method’’ to bypass
these complications, and enables the evaluation of the ‘‘1’’ integration to be carried out in a
simple manner.

A flow diagram is a Feynman diagram~or a non-Abelian cut diagram! with arrows attached to
each of its internal lines to indicate the direction ofqi 2 . Since the signs of theq2’s vary over the
integration region, generally more than one flow diagram is present for each Feynman or
belian cut diagram. Nevertheless, for a diagram withn internal lines, there are far fewer than 2n

flow diagrams that one might otherwise expect, for two reasons. First, momentum conser
forbids the arrows from a common vertex to point all inwards or all outwards. Second, for re
to be explained below, one can reject flow diagrams in which arrows around any closed lo
point in the same~clockwise or counterclockwise! direction. With these two requirements, it
easy to see that the one-loop box diagram has only one flow diagram, rather than 24516.

In a flow diagram the signs ofqi 2 along the arrows are all positive, by definition. This allow
the positions of the poles be located and the ‘‘1’’ integrations to be carried out, once the ind
pendent loops and their order of integrations are chosen. We shall now proceed to see how
accomplished for the first integration, sayk11 .

k11 flows through the lines of this first loop either in a clockwise or a counterclockw
direction. Its coefficient ind(qi) is 6qi 2 , depending on whether this direction is the same as
arrow or opposite. The pole of 1/d(qi) in k11 has an imaginary part7 i e/qi 2 , with all qi 2.0 by
definition. Hence the lines with arrows pointing one way~clockwise or counterclockwise! have
poles all in one half-plane, and those with arrows pointing the opposite way have poles in the
half-plane. Which is which does not matter because we can always define the loop momen
reversing its sign.

It is now easy to understand the assertion made earlier in the section, that flow dia
containing a closed loop with flow arrows all pointing in the same direction may be reje
Taking this loop as the first loop of integration, this would imply all poles to be in the s
half-plane. By closing the integration contour in the other half-plane, we get a zero integ
such a flow diagram can be ignored.

Sometimes pole locations forsubsequent integrationscan be located in the same way, i.e.,
the direction of arrows in the flow diagram. In fact the explicit examples shown in Ref. 4 all s
to be of this type.

However, it is not guaranteed that pole locations for subsequent integrations can be l
this way, as we shall now see. This is the complication mentioned in the section.

To make it easier to describe things later on, we shall call two momenta pointing in the
~opposite! direction around a loop to beparallel ~antiparallel! in that loop.

III. FLOW REVERSAL

Suppose there aren1 poles picked up by thek11 integration, each contributing to a term in th
integral. As a result of the integration,k11 acquires an imaginary part7 i e/qi 2 from thei th pole.
The sign is2/1 if k11 andqi 2 are parallel/antiparallel. This imaginary part in turn imparts
imaginary part on everyqj 1 of the first loop, which is why the location of poles for the second a
subsequent integrations may be altered. For simplicity, we shall assume from now on the is
finite and positive, and has a common value in all the propagators.

This imaginary part ofk11 affects the location of poles in subsequent integrations only
lines j lying in loop 1. In that case, the imaginary part ofd(qj ) is changed fromi e to i e
(7qj 2 /qi 211), with sign2/1 when linesj and i are parallel/antiparallel in loop 1. Unless th
sign is2 andqj.qi , the imaginary part ofd(qj ) remains positive and the location of polej in
subsequent integrations is once again determined solely by the direction of its arrow arou
integration loop, viz., it can be determined directly from the flow diagram. However, if linesj and
i are parallel in the first loop, and thatqj.qi , then the sign of the imaginary part ofd(qj )
becomes negative, and the pole location~upper or lower plane! will now be opposite to naive
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expectations from the flow diagram. This situation can still be accommodated into the
diagram if we simply reverse the arrow of this line by hand. This isflow reversal.

To summarize, here is how poles for the ‘‘1’’ integrations are computed for a given flow
diagram, assuming a set of independent loops and a given order ofkb1-integrations have been
chosen.

For the first loop, use thenaive ruleto read it off the flow diagram. This means that lines
this loop with arrows pointing in the same direction have their poles in the same half plane

Assuming nowkb1-integrations have been carried out forb51,2,...,c. We shall now proceed
to do the (c11)th integration for the term resulting from picking up poles located at linei b for the
bth loop,b51,2,...,c.

First note that whatever loop (c11) is, it should not contain any of the linesi 1 ,i 2 ,...,i c . This
is because the ‘‘1’’ momenta of these lines have been determined by previous integrations so
cannot be fixed again by the (c11)th integration.

The naive rule can be used for linesj in loop (c11) if, ~i! it is not in any one of the previous
loops, 1,2,...,c, ~ii ! it is in a previous loopb but j is antiparallel toi b in that loop, or~iii ! j is parallel
to i b around loopb but qj 2,qi b2 . In the remaining case, whenj andi b are parallel in loopb but
qj 2.qi b2 , we must reverse the arrow direction of linej before the naive rule is applied.

After all l ‘‘ 1’’-integrations are carried out, we obtain a number of terms, each of whic
specified by a set of polesi b for loop b. We shall call this collection of lines,I 5( i 1i 2¯ i l), a
contributing pole.

Let us illustrate this recipe of obtaining contributing poles with two explicit example
two-loop diagram, and a four-loop diagram. In the process we will see how important it is to
flow reversals into account just to maintain consistency.

A. A two-loop example

Figure 1 is one of two possible flow diagrams for a two-loop Feynman diagram; the othe
line 6 reversed.

Let a denote the loop with lines~1536! andb the loop with lines~2647!. The big loop with
lines ~153472! is the union of these two loops and will be denoted bya.b. Only two of the three
loop-momenta are independent.

There are three ways to start out the first loop integration, but the final results of their inte
must be the identical, and we must be able to pick the same contributing poles as well. W
illustrate here in detail how the latter can be achieved, iff proper flow reversals are take
account.

Suppose we first integrate over loopa. In this loop the arrow of line 1 and the arrows of line
5, 3, 6 are opposite, so their respective poles lie in opposite half planes ofka1 . We shall pick line
1 to be the relevant pole for further discussions. To simplify later descriptions we shall abbr
this process of picking pole 1 from loopa simply by a(1).

Now we are ready to tackle the second integration. Since line 1 is ona.b we must not choose
a.b to be the second loop, so we are forced to choose it to beb. Line 6, which is in both loopsb
anda, is antiparallel to line 1 in loopa, so the naive rule once again applies to loopb. Lines 6 and

FIG. 1. A two-loop~Feynman! flow diagram.
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2 are on one half-plane, and lines 4 and 7 on the other. We shall pick 2 and 6 to be the re
poles. Consequently, we obtain two contributing poles,I 15(1,2) from a(1)b(2), andI 25(1,6)
from a(1)b(6).

Next, let us start all over again but this time first carry out the integration around loopb to get
b(2) andb(6). Now since line 2 lies ina.b, for the termb(2) the second loop must be chosen
be a. In loop b line 6 is parallel to line 2, so there is a chance it might suffer a flow rever
However, sinceq225q621q12.q62 , flow reversal does not occur. Hence we haveb(2)a(1),
so this contributing pole isI 15(1,2). For the termb(6), since 6 is ina, the second loop must b
chosen to bea.b. Now lines 2, 4, 7 are all in the first loopb, but 4 and 7 will not suffer flow
reversal because they are antiparallel to 6. Line 2 is a different matter sinceq22.q62 , so it
would suffer a flow reversal. With this reversal, all lines ina.b point in the same direction, with
the sole exception of 1, so this yieldsb(6)a.b(1), and thecontributing pole isI 25(1,6). In this
way we obtain the same set of contributing pole as before, as we should.

Finally suppose we carry outa.bfirst, getting two termsa.b~1! anda.b~2!. In the first case line
1 is in a so the second loop must beb. Lines 4 and 7 inb are antiparallel to 1 so they do not suffe
from flow reversal. Line 2 is parallel to 1 andq22.q12 so it does suffer a flow reversal, thu
leaving behind only line 6 of loopb in one direction. Froma.b~1! we therefore obtaina.b~1!b~6!
and the contributing poleI 25(1,6). Now consider the terma.b~2!. The second loop must now b
a. Lines 5, 3 are antiparallel to 2 so they do not suffer flow reversal. Line 1 is parallel to 2
q12,q22 , so it does not suffer from flow reversal either. So no flow reversal occurs at a
lines in loopa, and this term yieldsa.b~2!a~1!, giving rise to the contributing poleI 15(1,2). The
result is once again the same as the other two calculations. If flow reversals were not pr
taken into account, the result would have been different and wrong.

The main lesson learned from this very simple example is that generally detailed loop-by
calculation must be performed, with proper flow reversals taken into account, in order to o
the correct locations of the contributing poles. Also, the amount of calculations needed to
mine the contributing poles may depend critically on the independent loops chosen and the
of integrations performed.

B. A four-loop example

The task of obtaining the contributing poles becomes more arduous for diagrams with a
number of loops. The calculation must be carried out loop by loop, with more and more term
flow reversals to keep track of. Besides, with multiloops there is a huge number of wa
choosing the independent loops and their order of integrations, each giving very different
mediate results though at the end they must all yield the same contributing poles. It is not k
a priori how to make the best choice to maximally simplify the intermediate calculations.

To illustrate these points we shall work out in this subsection a four-loop example and o
its contributing poles in two different ways.

Consider Fig. 2, with the following choice of independent loops:a5(4,8,12,13,7),b

FIG. 2. A four-loop~Feynman! flow diagram.
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5(5,9,3,11,12,8),c5(13,12,10,1,6), andd5(10,12,11,2). Note that lines 8 and 13 are suppo
not to intersect in the diagram. We shall carry out the integrations in the ordera,b,c,das much as
possible.

The first integration over loopa yields a(4) anda(7).
We do theb integration next. The only lines common to loopsa andb are 8 and 12, but since

they are antiparallel to 4 and 7, no flow reversal takes place in carrying out theb integration. After
the b-integration we get four terms, which for brevity shall be written together as additi
@a(4)1a(7)#@b(3)1b(11)#.

Line 12 of loopc is also in loopa and loopb, and line 13 of loopc is in loopa. Since line 12
is antiparallel to 4 and 7 in loopa, and antiparallel to 3 and 11 in loopb, it suffers no flow reversal
at loopc. Similarly line 13, being antiparallel to lines 4 and 7 in loopa, also has no flow reversa
Thus after thec integration, we get@a(4)1a(7)#@b(3)1b(1)#@c(1)1c(10)#.

The finald-integration is a bit complicated because loopd contains some of these poles fro
previously integrations so we are sometimes forced to take the loopd.c or the loopd.b instead of
d itself. The final result contains 10 terms,

@a~4!1a~7!#b~3!c~1!@d~10!1d~11!#1@a~4!1a~7!#b~3!c~10!d.c~2!

1@a~4!1a~7!#b~11!@c~1!d.b~2!1c~10!d.c~2!#. ~3.1!

To summarize, we have obtained ten contributing poles,~7,3,1,10!, ~7,3,1,11!, ~7,3,10,2!,
~7,11,2,1!, ~7,11,2,10!, as well as another five with line 7 replaced by line 4.

Let us now illustrate another way to get the same result, by choosing this time the
independent loops to bea5(4,8,12,13,7),b5(5,9,3,11,12,8),e5c.d5(1,6,13,11,2), andd
5(10,12,11,2), and try to carry out the integration in the ordera,b,c.d,das much as possible.

These loops are what we shall later call thenatural loopsfor the contributing pole~7,3,1,10!.
They are obtained first by removing the lines 7,3,1,10 from the original diagram, and then i
ing one of them back at a time to get the four loops.

The first two integrations are identical to those before, so we get@a(4)1a(7)#@b(3)
1b(11)#. Now e5c.d contains the line 11 but not 3, so the next integration involvingb(3) gives
e(1)1e(2) but the next integration involvingb(11) givesc(1)1c(10), asc5d.(c.d). The last
loop d contains lines 2 and 11, so for some terms the integration overd has to be changed into
integration overd.b or d.e5c. The final answer is

@a~4!1a~7!#b~3!e~1!@d~10!1d~11!#1b~3!e~2!c~10!

1b~11!c~1!d.b~2!1b~11u3!c~10!d.b~2!. ~3.2!

This results in the same ten contributing poles as before, as it should.
The calculation could be even more complicated if we encounter a linej which is parallel to

a pole linei of an earlier loop, but the relative magnitude ofqj 2 andqi 2 can be either way. In tha
situation we must divide this flow diagram into two, one in whichqj 2,qi 2 and line j is not
reversed, and the other withqj 2.qi 2 where linej must be reversed.

IV. PATH METHOD FOR FINDING CONTRIBUTING POLES

In this section we propose a simple~path-! method to obtain the contributing poles. With th
method there is no need to declare the independent loops and their order of integrations, s
is no need to keep track of the complicated flow reversals either. This makes the method
useful in the presence of a large number of loops.

We begin by choosing a pathP in the flow diagram. By a path we mean a continuous line~no
branches, no loops! running from beginning to end, with all the arrows on it pointing in the sa
direction. The thin solid lines in Figs. 3 and 4 are examples of such paths. By adding branc
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the path we can construct trees. A class of these trees,T@P#, turns out to be in one–one corre
spondence with the contributing poles. The path method of finding contributing poles is actu
method to construct the trees inT@P#.

From an l-loop diagram one can obtain trees by removingl lines. We shall refer to these
removed lines as themissing linesfor the tree. The set of all trees so obtained with pathP as their
common backbone will be denoted byS@P#. From S@P# we select a subsetT@P# satisfying the
following directional rule; when any one of thel missing lines is inserted into the tree, a loop
formed. If the inserted line around this loop is parallel to the lines along pathP, this tree is
rejected. If it is antiparallel, then this tree is retained to be a member ofT@P#.

We assert that the missing lines of any tree inT@P# is a contributing pole of the diagram, an
there is actually a one–one correspondence between contributing poles and individual t
T@P#. This is the essence of thepath method.

This method does not restrict what pathP one chooses, but the longer the path the fewer
number of contributing poles, and the easier the calculations. So in practice we often choo
longest path we can manage, though this is not a requirement of the method. In Sec. VI
example will be shown in which computations based on two different paths are shown for
parison. The reason why one can get the same result by choosing different pathsP, or equivalently
different sets of contributing poles, is because of the freedom to choose poles from eithe
plane each time we carry out any integration.

We have implicitly assumed in these discussions that a pathP is chosen after we are given
flow diagram. This is not strictly necessary. We may start from a Feynman diagram or a
Abelian cut diagram, without arrows attached, and start drawing a path on it. This can be ta
the starting point to determine possible flow diagrams consistent with this path; arrows on th
must all point in one direction, other arrows must be installed not to violate the direction ru
obtain contributing poles.

Before proceeding to prove the path method let us first see how it can be applied to obta
contributing poles of Figs. 1 and 2 very simply.

FIG. 3. The solid line is the pathP used to obtain contributing poles for Fig. 1.

FIG. 4. The solid line is the pathP used to obtain the contributing poles of Fig. 2.
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A. Examples

For Fig. 1 let us choose the pathP to be ~5347!, shown in Fig. 3 as thin solid lines. The
S@P#5$(P,6),(P,1),(P,2)%, and T@P#5$(P,6),(P,2)%. The tree (P,1) violates the directiona
rule for the following reason so it is not inT@P#. When line 6 is inserted into (P,1), it is parallel
to P in the loop~6153!, so it has to be rejected. With thisT@P#, the contributing poles are th
missing lines so they are~1,2! and ~1,6!, agreeing with the result obtained previously.

Let us next apply the method to obtain the contributing poles of Fig. 2, takingP
5(6,13,12,8,5,9) as the path~Fig. 4!. Then,

T@P#5$~P,7,2,11!,~P,7,2,10!,~P,7,1,11!,~P,7,3,10!,~P,7,1,3!%,

and five more with 7 replaced by 4. The contributing poles are therefore~7,3,1,10!, ~7,3,1,11!,
~7,3,10,2!, ~7,11,2,1!, and~7,11,2,10!, and another five with 7 replaced by 4, the same 10 term
before. The trees inS@P#/T@P# are $(P,7,1,2),(P,7,2,3),(P,7,10,11)%, and three more with 7
replaced by 4. (P,7,1,2) violates the directional rule when the line 11 is inserted; (P,7,2,4)
violates the directional rule when line 10 is inserted; and (P,7,10,11) violates the directional rul
when 2 is inserted.

B. Proof

A tree tPS@P# defines a set of independent loopsN @ t# of the original diagram by filling in
the missing lines one at a time. The special feature ofN @ t# is that the missing lines are never o
the boundary of two loops. We shall later on refer to these loops as thenatural loopsfor the
missing lines.

Now we proceed to the proof of the path method. We assume we always close the integ
contour in the half-plane in which poles reside on lines running in the opposite direction as
on P.

The proof makes use of the simple fact that the same set of contributing poles can be
puted using any independent loops and any order of integration.

Removing the pole lines of a contributing pole from the original diagram gives rise to a
in S@P#. We shall denote the set of all such tress asT8@P#. Our task is to show thatT@P#
5T8@P#.

Take anyt8PT8@P#. The removed pole lines clearly satisfy the directional rule when they
inserted back, because poles are always taken from those lines running in the opposite dire
P. Hencet8PT@P# andT8@P#,T@P#.

Conversely, take atPT@P#, and use the independent loopsN@ t# to compute the contributing
poles. The missing lines oft are obviously one of the pole lines, for according to the directio
rule they all run opposite to the path direction. HencetPT8@P# andT@P#,T8@P#.

Putting the two together, we getT@P#5T8@P#, as desired.

V. NON-ABELIAN CUT DIAGRAMS

General methods found in the literature to compute high energy limits of Feynman diagra3,4

are by and large valid only in the leading-log approximation~LLA !. They become virtually
powerless if these leading-log contributions cancel when the Feynman diagrams are sum
situation which unfortunately occurs quite frequently.4 A method was developed recently to b
pass this difficulty, by allowing the cancellations to occur before the high energy limit is ta
The cancellations are incorporated into the individualnon-Abelian cut diagrams,10,12 whose
space–time amplitudes~for onshell diagrams! turn out to differ from the corresponding Feynma
diagram only by having the denominators (qi

22m21 i e)21 of certain propagators replaced by th
corresponding Cutkosky propagators22p id(qi

22m2). The advantage of the non-Abelian c
diagrams is that the sum of Feynman diagrams is the same as the sum of non-Abeli
diagrams, but in the latter cancellations took place before the high-energy limit is taken, so
leading-log contributions~LLA ! survive the sum. For this to happen it is clearly necessary for
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LLA of a non-Abelian cut diagram to have a smaller lns power than the corresponding Feynm
diagram, if the sum of the LLA contributions of the latter is to vanish. This is actually m
possible by the presence of the Cutkosky propagators.

For high-energy two-body~e.g., quark–quark! scattering, the Cutkosky propagators occ
only on the top quark lines. In the high energy limit, it can be shown that the combinatioqi

2

2m2 is actually proportional to the ‘‘2’’ momentum on that line, so ad-function is that variable
is a d-function of the ‘‘2’’ momentum.10,11 This has the effect of stopping the ‘‘2’’ momentum
from flowing through this line, so as far as the flow diagram is concerned we may think of
lines as being absent. For the rest of the non-Abelian cut diagram the flows are constru
exactly the same way as in a Feynman diagram, and contributing poles can be located th
way just as well.

As an example, consider the non-Abelian-cut~flow! diagram of Fig. 5, where the Cutkosk
propagator is located at line 8, indicated there by a vertical bar~u!. Hence the ‘‘2’’ momentum is
absent from lines 8, and also from line 4 by continuity. We may therefore ignore these two
in the rest of the discussions.

To obtain the contributing poles from the path method, we can choose the path toP
5(1,5,10,6,3), thenT@P#5$(P,9),(P,7)%, giving rise to the contributing poles~2,7! and ~2,9!.

VI. DOMINANT INTEGRATION REGIONS IN LLA

Contributing poles, extracted from the path method or otherwise, can be used to determ
internal momenta most important to the loop amplitude. The ‘‘1’’ momenta from the lines of a
contributing poleI 5( i 1i 2¯ i l) are fixed by the pole condition to beqi k15(ai k

2 i e)/qi k2 , and
those of any other line are fixed by momentum conservation. An easy way to read them ou
use thenatural loopsdiscussed before. These are simply the independent loops containing on
only one pole line each.

In LLA a number of simplifications emerge immediately. For quark-quark scattering in
c.m. system, quark 1 carries a ‘‘2’’ momentumAs and quark 2 carries a ‘‘1’’ momentumAs. In
LLA, where utu and squared masses are ignored compared tos, both quarks go straight through b
carrying the full forward momenta with them. In other words,qj 2.As for every linej of quark 1
~the ‘‘bottom lines’’!, andqj 1.As for every linej of quark 2~the ‘‘top lines’’!. This means that
we can ignore the contributing poles with a pole line on top, forqj 1 of a top line isAs and not
determined by the pole condition above. In other words, if we insist on taking a pole there
this term will not contribute in the LLA.

The two-body amplitude for a flow diagram, after the ‘‘1’’ integration is performed, can be
written as

M5E S )
b51

l

d2kb'D F, F5E
R
S )

b51

l

dxbD G,

~6.1!

G[
N

D
[

N

) j 51
n dj

,

wherexb5kb2 /As andQj5qj 2 /As are the scaled ‘‘2’’ momenta. In practicexb are chosen from
the Qj ’s of types ~i! and ~ii ! below. The integration regionR of xb is determined by then
flow-diagram conditionsQj>0.

FIG. 5. A 3-loop~non-Abelian cut! flow diagram. The solid line represents the pathP.
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The denominatorD5P jdj is derived from the denominators of the propagators 1/d(qi),
scaled in some convenient way as follows.~i! If line j 5 i k is part of the contributing poleI, then
dj is defined to be the scaled residueQj ; ~ii ! if line j is a top line, thendj[d(qj )/s56Qj

2aj /s1 i e.6Qj1 i e, where the sign in front ofQj is 1/2 if the arrow on linej is parallel/
antiparallel to the ‘‘1’’ flow of quark 2; ~iii ! for any other linej, dj is equal tod(qj ) evaluated at
the contributing pole, so

dj5Qj( S 6
ai k

Qi k
D 2aj , ~6.2!

where the sum is taken over linesi k in the same natural loops as linej, with an appropriate sign
For convenience we will label lines of these three types by different indices; indexp ~for

‘‘ pole’’ ! for type ~i!, t ~for ‘‘ top’’ ! for type ~ii !, ands ~for ‘‘ side’’ ! for type ~iii !. We shall retain
the indexj to denote any of them in general.

The numerator factorN consists of all the rest, including the vertex factors and factors ofAs
discarded byD.

It should be noted that there are no explicit factors of ‘‘i’’ hidden in M, except those explicity
contained in the vertices and those appearing asi e in the propagators. Anl-loop Feynman diagram
has an explicit factor (2 i ) l , and this is cancelled by thel factors of 2p i from contour integration,
leaving behind no explicit factors ofi. This observation is important in determining how th
imaginary part of a scattering amplitude arises.

For nonabelian cut diagrams withc cuts, the Feynman propagator 1/d(q) at each cut line is
replaced by the Cutkosky propagators22p id(q22m2),10,11 so an explicit factor (2 i )c will
emerge.

From ~6.1! and the rules fordj , it would appear that the integralF diverges at the boundarie
Qp50 andQt50. Actually because ofobstructionsfrom the side liness, the singularity in theQp

variable is cancelled so there are no divergences atQp50. This is so because asQp→0, the ‘‘1’’
momentumqp1.ap /Qp becomes very large. At some point it will become much smaller than
theQs , whenceds.(Qs /Qp)as for any lines in the natural loop ofp. This washes out the facto
Qp in dp , leaving behind no divergence at this boundary.

A divergence does occur atQt50, but this divergence is an artifact of our high-ener
approximation of droppingj/s[7(at2 i e)/s comparedQt , wherej is of the order of the square
masses and the squared momentum transfer2t. If we restore it by installing a cutoffj/s at these
boundaries, the divergences will be absent and they will be turned into enhancement factos.
If the enhancement is logarithmic, the value ofj does not matter in the LLA, and that will be th
case in gauge theories. But if it is powerlike, then the coefficient of the power dependence
depend onj57(at2 i e), and its effective value could be determined only after the transve
momentum integrations.

The integralF, thus enhanced, receives contributions in the form

F.E
~j/s!

dQ18

Q1
8m1

F1 , ~6.3!

where Q18 is either one of theQt’s, or the radial variable of several of them that are linea
independent. As it will become clear shortly this will be the smallest of all the ‘‘2’’ variables in
the dominant integration regionR0 .

In the regionQ18!Qp , we may set the ratiosQ18/Qp50 in all remainingds . This removes
obstructions from some of the side lines, so that the integrand ofF1 may now encounter singu
larity again in some variableQ28 , say like 1/Q2

8m2, with m2>1. This new singular variableQ28
would be equal to someQt or Qp , or the radial variable of several of them. Now we have
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F1.E
B1Q18

dQ28

Q2
8m2

F2 , ~6.4!

for someB1@1. Similarly, in the regionQ18!Q28!Qp for the remaining pole linesp, Q28/Qp can
also be set equal to zero, thus removing further obstructions from even more side lines
enables another singular variableQ38 to emerge, and so on. Continue this way until no furth
singularities are encountered, we get

F.E
~j/s!

dQ18

Q1
8m1 EB1Q18

dQ28

Q2
8m2 E ¯E

Bv21Qv218

dQv8

Qv
8mv

Fv11 . ~6.5!

The integrandFv11 is assumed to be regular so itsQi8 dependencies can all be put equal to ze
All Bi@1.

The dominant region of integrationR0 is then given by

R05$j/s<Q18!Q28!¯!Qv8!1%, ~6.6!

from which we can work out where the ‘‘1’’ momenta are located as well. The transver
momentakb' are all of the same order as the momentum transferA2t.

In gauge theories only logarithmic enhancements occur. This means allmi51, and

F.
Fv11

v!
~ ln s!v. ~6.7!

For anl-loop Feynman diagram, the maximum enhancement is;(ln s)l. For anl-loop nonabelian
cut diagrams withc cuts, the maximum enhancement is;(ln s)l2c. We shall refer to diagrams
with these maximal enhancements assaturated, and these are the diagrams of most interestes t
in LLA. Diagrams with less enhancements will be calledunsaturated. A number of saturated and
unsaturated diagrams are considered in the next section as concrete examples to illust
procedures here. For saturated diagrams we will also work out the coefficient of the leadi
term.

VII. EXAMPLES

A. Scalar ladder diagram

Consider the ladder diagram Fig. 6 for scalar quarks and scalar gluons. There is on
nonzero flow diagram, as shown, and in it there is only one contributing pole, nameI
5(2,3,...,l 11), indicated by the dotted lines. The pathP from which this contributing pole is
obtained is drawn as a light solid line in the diagram.

FIG. 6. Ladder diagram for scalar quarks and gluons. The pathP is indicated by the light solid line and the poles indicate
by the dotted lines. There is only one flow diagram and one contributing pole in this case.
                                                                                                                



below

first

the

.

same

d. This
ow

re,

he

5367J. Math. Phys., Vol. 40, No. 11, November 1999 Evaluation of multiloop diagrams . . .

                    
In the language of the last section, the pole lines are 2<p< l 11, the top line ist51, and the
side lines arel 12<s<3l 11.

The independent ‘‘1’’ momenta at the pole lines are given by

qp1As5~ap2 i e!/Qp , ~7.1!

with Ql 11.1 in LLA because it is a bottom line. Thus all these ‘‘1’’ momenta exceptql 11 are
capable of being large if the correspondingQp is small enough. The ‘‘1’’ momenta carried by the
side lines can most easily be read off from the natural loops, which are rectangles bounded
by the linep and bounded above by the top line 1.

Following the discussions of last section, the top line 1 is the unique candidate for the
singular variableQ18 , and indeed it is withm151. In the regionQ18!Qj for j .1, obstructions
from lines l 12 and 2l 12 are removed, resulting indl 1252al 12 and d2l 1252a2l 12 . This
allows a new singular structure to emerge withQ285Q2 and m251. This in turn removes the
obstruction from linesl 13 and 2l 13 in the regionQ18!Q28!Qj for j .2, etc. Continuing this
way, we obtainQj85Qj andmj51 for 1< j < l . Thus the diagram is saturated, and we obtain
amplitude to be

F5
1

l !
~ ln s! l )

i 5 l 12

3l 11

~2ai !. ~7.2!

In obtaining this expression, we have set the numeratorN of the integrand to be 1.
The integration region is given byR05$j/s<Q1!Q2!¯!Ql!1%. According to~7.1!, the

‘‘ 1’’ momenta are strongly ordered in the opposite way because theap’s are all of the same order
The virtualities of the side liness are all spacelike and of order 1,qs

252as52qs'
2 . In other

words, the dominant momenta of the virtual gluons come from the multi-Regge region, the
as those used in the dispersion-relation approach.5

B. Crossed ladders

When the rungs of the ladders are crossed, the scalar diagram will no longer be saturate
could be inferred from the example above and thes-channel dispersion relation, but let us see h
to obtain this conclusion directly from the Feynman diagram, and how unsaturated it is.

Consider Fig. 7, which is obtained from Fig. 6 by crossing two rungs separated byr 52
horizontal rungs in between. The pathP and the contributing pole remain unchanged. As befo

FIG. 7. A crossed ladder diagram, with pathP given by the light solid line and the pole lines given by the dotted lines. T
rungs abovea and belowa15 are all uncrossed.
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we letQj85Qj for 1< j <a, and let theseQj8’s to be strongly ordered as before. Thenmj51 just
as in the previous example. The question is what happens when we come to the region wh
rungs are crossed.

Every ‘‘1’’ momentumqi 1As(1< i<3l 11) is a linear combination of someap /Qp(2<p
< l 11). We shall use the symbol@p1p2¯pk# to represent this ‘‘1’’ momentum if it receives
contributions fromp5p1 ,p2 ,...,pk in the crossed region. Similarly, its ‘‘2’’ momenta are linear
combinations ofQ1 and Qp(2<p< l ), and those from the crossed region that contribute to
‘‘ 2’’ momentum of a particular line will be enclosed between angular brackets^¯&.

The ‘‘2’’ and ‘‘ 1’’ momenta contributions for the side lines5 l 1a1k on the right (1<k
<5) are ^a,...,a1k21&@a1k,...,a15#. For the side liness52l 1a1k on the left, they are
^a&@a14,a12,a13,a11,a15# for k51, ^a,a14&@a12,a13,a11,a15# for k52, ^a,a14,a
12&@a13,a11,a15# for k53, ^a,a14,a12,a13&@a11,a15# for k54, and finally ^a,a
14,a12,a13,a11&@a15# for k55. There is no way to strongly order the variabl
Qa11 ,Qa12 ,Qa13 ,Qa14 in the crossed region to get rid of all the obstructions. Whatever
works on the right-hand side will fail on the left-hand side, and vice versa. The only way out
have these four to be of the same order, for then the ratio of any two of these four would
order 1, and all the obstructions from the side lines would disappear. Their common radial va
Qa118 5(S i 51

4 Qa1 i
2 )1/2 is singular, with ma1151, becauseQa1183 dQa118 /Qa1184 5dQa118 /Qa118 .

From there on, everything looks like the uncrossed ladder again, soQj85Qj 13 for a12< j <p
5 l 23. The final integralF is proportional to (lns)l23, hence unsaturated. More generally, t
same argument shows that if there arer uncrossed rungs between the two crossed rungs, theF
;(ln s)l2r21.

C. Two-loop QED diagram

Consider now the two-loop diagram Fig. 1 for electron–electron scattering by exchang
photons.

We shall compute this in two ways. First, using the pathP and the contributing poles of Fig
3, we will obtain saturated contributions from each of these two contributing poles, but thei
vanishes so this diagram turns out to be unsaturated. To see this unsaturation directly, we w
another pathP8 shown in Fig. 8. This path has only one contributing pole so there can b
chance of a cancellation, and it gives rise to an unsaturated LLA amplitude. In this latter app
we would also be able to compute the coefficient of the leading log term by LLA calculation
should want to.

The numeratorN of ~6.1! in this case comes from the vertices, and is proportional tos. For
simplicity we will assume it to be simplys.

The pathP from Fig. 3 gives two contributing poles,I 15(1,2) andI 25(1,6). First consider
I 15(1,2). Since both poles lie on the bottom line,Q1.Q2.1, there are no obstructions on th
side lines. SinceQ3.Q4 , the integral is

FIG. 8. The solid line is the pathP8 used to obtain the contributing poles from Fig. 1, indicated here by dotted lines.
is a different path than the one used in Fig. 3.
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F.2
s

a5a6a7
E

~j/s

dQ4

Q4
E

Q4

dQ3

Q3
.

s

~2 !3a5a6a7
E

j/s

dQ4

Q4
E

Q4

dQ3

Q3
.2

s

2a5a5a6a7
~ ln s!2.

~7.3!

Next considerI 25(1,6). The pole on 6 causes an obstruction from lines 2 and 7. By choo
Q185Q4!Q285Q6 , the obstruction from line 7 is removed but the obstruction from line 2 rem
becauseQ2.1. However, sinceQ3.Q65Q28 , the contribution fromI 2 is

F.
s

~2 !2a5a7
E

j/s

dQ18

dQ18
E

B1Q18

dQ28

Q28
2~a6 /Q28!

.1
s

2a5a6a7
~ ln s!2. ~7.4!

The sum of the contributions fromI 1 andI 2 vanishes in order (lns)2 so the diagram is unsaturate
To see this unsaturation directly, choose another pathP8 as shown in Fig. 8. The contributin

pole is nowI 85(1,7). The obstruction induced by line 7 on lines 2 and 6 block out the fa
d4d75Q4Q7 , so to get a singular integrand forF we must enlist the help ofQ3 . If Q18 is the radial
variable of Q7 and Q3 , then the integrand ofF is proportional to Q18dQ18/Q3Q4Q7d2

;dQ18/Q18 , so the leading contribution to this diagram is of the order lns.

D. Four-loop diagram

If the pathP for the four-loop diagram Fig. 2 is chosen as in Fig. 4, then as we have seen
are 10 contributing poles. For illustration we will look at the contribution from a single o
~7,3,10,2!. We shall see that there will be no lns enhancement if the diagram is scalar, but if it
a QCD diagram then there will be a linear lns enhancement from this contributing pole.

There are two top lines in this diagram, lines 4 and 5. SinceQ5.Q45Q7 , the only single-
variable candidate forQ18 is Q45Q7 . However, the pole in 7 produces an obstruction on all
other lines in its natural loop, lines 8, 12, and 13. With three obstructing lines and only
singular factors, the resultingQ18 dependence cannot be singular for a scalar diagram. One c
go on and try to find a singularQ18 among the radial variables of severalQj ’s, and one would not
succeed either. Consequently as a scalar diagram it has no lns enhancement.

As a QCD diagram we must incorporate the vertex factors into the numeratorN of the
integrand ofF. The vertex factor for a gluon connected to the top line is 2p2 , and to the bottom
line is 2p1 . There are however also three triple-gluon vertices, at the junctions of lines (6,
5A, (11,12,13)5B, and (8,10,12)5C. Each of them contains three terms, but one of the th
terms of each is dotted into 2p1 and therefore produces an appropriate combination
qi 1 jg7,13(q712q131) for A,g12,13(q1211q131) for B, andg8,12(q811q121) for C. Since every
line in the natural loop of 7 contains6q71 , and hence a factor 1/Q18 , these three vertex factor
can make theQ18 variable much more singular. However, we may use only two out of the th
for otherwise thegab factors will lead to a dot product of the~7,4! vertex and the~4,5,8! vertex,
thus producing an extra factor 2p2•2p250. With the help of two triple-gluon vertices, we ge
m151 and a lns enhancement from theQ18 variable.

The remaining singular factors for the integrand come from lines 5 and 10. SinceQ5.Q10, if
Q28 comes from a single variableQj we must havej 510. This pole at 10 may produce obstru
tions on lines of its natural loop~10,12,13,6,1!. Those on lines 12 and 13 have already be
removed byQ18 , so this leaves obstructions from lines 1 and 6. The one on 1 is particu
troublesome because it is a bottom line, soQ1.1 and the obstruction can never be removed.
that reasonQ10 is not a singular variable, and it can be checked that the radial variable ofQ10 and
one or two otherQj ’s cannot be a singular variable either. The enhancement of the QCD dia
is therefore just lns.
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E. Non-Abelian cut diagram

As a last example we consider the non-Abelian cut diagram, Fig. 5, treated as a scalar d
with numerator factorN51. The path isP5(1,5,10,6,3) and the contributing poles are~2, 7! and
~2, 9!. Since in the LLA we would never have to consider any contributing pole on the top line
can drop~2, 9! and consider only~2, 7!.

In either case there is actually a hidden contributing pole at line 1. This does not sho
explicitly in the path method because the cut line 8 reduces the flow diagram into a two
diagram, hence only two of the three poles show up explicitly. In any case, sinceQ45Q850, we
haveQ151, so the pole at 1 producesq115a1 . This together with theqp1 obtained from the
other two pole lines uniquely determine all the ‘‘1’’ momenta of all the lines. However, the
contribution fromq11 is finite, it will never lead to an obstruction, so in some sense we can
forget about it.

Of the two uncut top lines,Q10.Q95Q7 , so if Q18 is given by a singleQj , it would have to
be j 59. The second singular variable isQ285Q65Q10@Q18 , and the integral is

F5E
j/s

dQ18

Q18
2~2a7 /Q18!~2a6!

E
m1Q18

dQ28

Q28~2a5!~2a4!
E dQ8~22p i !d~Q8!

.2
p i

a4a5a6a7
~ ln s!2. ~7.5!
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Quasispin graded-fermion formalism
and gl „m zn …↓osp „m zn … branching rules

Mark D. Gould and Yao-Zhong Zhanga)

Department of Mathematics, University of Queensland, Brisbane, Queensland Qld 4072,
Australia

~Received 11 May 1999; accepted for publication 13 July 1999!

The graded-fermion algebra and quasispin formalism are introduced and applied to
obtain thegl(mun)↓osp(mun) branching rules for the ‘‘two-column’’ tensor irre-
ducible representations ofgl(mun), for the casem<n(n.2). In the casem,n,
all such irreducible representations ofgl(mun) are shown to be completely reduc-
ible as representations ofosp(mun). This is also shown to be true for the casem
5n, except for the ‘‘spin-singlet’’ representations, which contain an indecompos-
able representation ofosp(mun) with composition length 3. These branching rules
are given in fully explicit form. ©1999 American Institute of Physics.
@S0022-2488~99!04410-2#

I. INTRODUCTION

It is well known that branching rules are of great importance in the study of represen
theory. They also play an essential role in the determination of the parities for the compo
appearing in the twisted tensor product graphs and the construction of correspondingR matrices.1,2

There appear to be virtually no results in the literature on the branching rules for Lie s
algebras. The only exception is Ref. 3, in which the branching rules are determined for all t
and atypical irreducible representations ofosp(2u2n) with respect to its subalgebraosp(1u2n). It
is very interesting~and important! to investigate the branching rules for other Lie superalgeb

In this paper we investigate the antisymmetric tensor irreducible representations ofgl(mun).
This class of representations is of interest since they are also irreducible under the fixed
subalgebraosp(mun). Moreover, their quantized versions can be shown to be affinizabl
provide irreducible representations of the twisted quantum affine superalgebraUq@gl(mun)(2)#
from which trigonometricR matrices withUq@osp(mun)# invariance may be constructed.4

TheseR matrices determine new integrable models that have generated remarkable inte
physics recently,5–7 particularly in condensed matter physics, where they give rise to new
grable models of strongly correlated electrons.

To explicitly construct suchR matrices it is necessary to determine the reduction of the te
product of two antisymmetric tensor irreducible representations into ‘‘two column’’ irreduc
representations ofgl(mun) which are then decomposed into irreducible representations of its fi
point subalgebraosp(mun).

We determine thegl(mun)↓osp(mun) branching rules for these two column irreducible te
sor representations ofgl(mun), for the casem<n, n.2. A natural framework for solving this
problem is provided by the graded-fermion algebra and the quasispin formalism, which we
duce and develop in this paper. The Fock space for this graded-fermion algebra affords a
nient realization of the class of irreducible representations ofgl(mun) concerned. The reduction t
osp(mun), and thus thegl(mun)↓osp(mun) branching rules, can be achieved using the quasis
formalism.

a!Electronic mail: yzz@maths.uq.edu.au
53710022-2488/99/40(11)/5371/16/$15.00 © 1999 American Institute of Physics
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II. osp „m zn 52k … AS A SUBALGEBRA OF gl „m zn …

Throughout this paper, we assumen52k is even and seth5@m/2# so thatm52h for evenm
and m52h11 for odd m. For homogeneous operatorsA, B we use the notation@A,B#5AB
2(21)@A#@B#BA to denote the usual graded commutator. LetEb

a be the standard generators
gl(mun) obeying the graded commutation relations,

@Eb
a ,Ed

c#5db
cEd

a2~21!~@a#1@b# !~@c#1@d# !dd
aEb

c . ~II.1!

In order to introduce the subalgebraosp(mun), we first need a graded symmetric metric tens
gab5(21)@a#@b#gba , which is assumed to be even. We shall make the convenient choice

gab5jadab̄ , ~II.2!

where

ā5 H m112 i ,
n112m,

a5 i ,
a5m, ja5 H1, a51

~21!m, a5m. ~II.3!

In the above equations,i 51,2,...,m andm51,2,...,n. Note that

ja
251, jaj ā5~21!@a#, gab5jbdab̄ . ~II.4!

As generators of the subalgebraosp(mun52k), we take

sab5gacEb
c2~21!@a#@b#gacEa

c52~21!@a#@b#sba , ~II.5!

which satisfy the graded commutation relations,

@sab ,scd#5gcbsad2~21!~@a#1@b# !~@c#1@d# !gadscb2~21!@c#@d#~gbdsac

2~21!~@a#1@b# !~@c#1@d# !gacsdb!. ~II.6!

We have anosp(mun)-module decomposition,

gl~mun!5osp~mun!1T, @T,T#,osp~mun!, ~II.7!

whereT is spanned by operators

Tab5gacEb
c1~21!@a#@b#gbcEa

c5~21!@a#@b#Tba . ~II.8!

It is convenient to introduce the Cartan–Weyl generators,

sb
a5gacscb52~21!@a#~@a#1@b# !jajbs ā

b̄ . ~II.9!

As a Cartan subalgebra we take the diagonal operators,

sa
a5Ea

a2Eā
ā52s ā

ā . ~II.10!

Note that for oddm52h11 we haveh115h11, and thussh11
h115Eh11

h112Eh11
h1150.

The positive roots ofosp(mun) are given by the even positive roots@usual positive roots for
o(m) % sp(n)# together with the odd positive rootsdm1e i , 1< i<m, 1<m<k5n/2, where we
have adopted the useful conventione i52e i , i<h5@m/2# so thateh1150 for oddm52h11.
This is consistent with theZ gradation,

osp~mun!5L22% L21% L0% L1% L2 . ~II.11!
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HereL05o(m) % gl(k); the gl(k) generators are given by

sn
m5En

m2~21!m1nEm̄
n̄ , 1<m,n<k, ~II.12!

andL22% L0% L25o(m) % sp(n), whereL2 gives rise to an irreducible representation ofL0 with
highest weight (0˙ u2,0̇) spanned by the generators

sn̄
m5En̄

m2jmjn̄Em̄
n 5En̄

m1~21!m1nEm̄
n , 1<m,n<k. ~II.13!

Finally, L1 is spanned by odd root space generators,

s i
m5Ei

m1jmEm̄
ī 5Ei

m1~21!mEm̄
ī , 1<m<k, 1< i<m, ~II.14!

and gives rise to an irreducible representation ofL0 with highest weight (1,0˙ u1,0̇). L21 , L22 give
rise to irreducible representations ofL0 dual toL1 , L2 , respectively.

The simple roots ofosp(mun52k) are thus given by the usual~even! simple roots ofL0

together with the odd simple rootas5dk2e1 , which is the lowest weight ofL0-moduleL1 . Note
that the simple roots ofo(m) depend on whetherm is odd or even, and are given here f
convenience: Form52h, a i5e i2e i 11 , 1< i ,h, ah5eh211eh . For m52h11, a i5e i

2e i 11 , 1< i ,h, ah5eh . The simple roots ofgl(k) are given by

ah1m5dgm2dm11 , 1<m,k. ~II.15!

The graded half-sum of the positive roots ofosp(mun52k) is given by

r5
1

2 (
i 51

h

~m22i !e i1
1

2 (
m51

k

~n2m1222m!dm . ~II.16!

III. GRADED-FERMION REALIZATIONS

We introduce the graded anticommutator:

$A,B%[AB1~21!@A#@B#BA. ~III.1!

Note that $A,B%Þ$B,A%. To realize the antisymmetric tensor irreducible representation
gl(mun), we introduce graded fermionsca and their adjointsca

† obeying the graded anticommu
tation relations,

$ca ,cb%5$ca
† ,cb

†%50, $ca ,cb
†%5dab . ~III.2!

Thus, whena5 i is evenci are fermions while fora5m odd,cm are bosons that anticommute wit
the fermions.

To get a graded fermion realization ofgl(mun), we set

Eb
a5ca

†cb , ~III.3!

and note the graded commutation relations:

@Eb
a ,cd

†#5dbdca
† , @Eb

a ,cd#5~21!~@a#1@b# !@d#dd
acb . ~III.4!

Using these relations, it is easy to verify that the operatorsEb
a given above indeed satisfy th

gl(mun) graded commutation relations.
Thus, we obtain representations ofgl(mun) on the graded fermion Fock space, which inclu

the antisymmetric tensor representations. The Fock space can be shown to be completely re
into type I unitary irreducible representations ofgl(mun) according to
                                                                                                                



ation

tal

s,

ls

cible

5374 J. Math. Phys., Vol. 40, No. 11, November 1999 M. D. Gould and Y.-Z. Zhang

                    
F5 %
a50

m

V̂~ 1̇a ,0̇u0̇! %
b51

`

V̂~ 1̇ub,0̇!. ~III.5!

Thus, forN<m, the space ofN-particle states comprises the antisymmetric tensor represent
of gl(mun) with highest weightLN5(1̇N ,0̇u0̇). For N.m the space ofN-particle states com-
prises the irreducible representations ofgl(mun) with highest weightsLN5(1̇uN2m,0̇).

We introduce an extra ‘‘spin’’ indexa and consider the family of graded fermionscaa and
their adjointscaa

† obeying the graded anticommutation relations,

$caa ,cbb%5$caa
† ,cbb

† %50, $caa ,cbb
† %5dabdab . ~III.6!

Here all spin indices are understood to be even~so that the grading only depends on the orbi
labelsa, b, c, etc.!.

We take, for ourgl(mun) generators,

Eb
a5(

a
caa

† cba , ~III.7!

which can be shown, as before, to satisfy the graded commutation relations

@Eb
a ,cda

† #5dbdcaa
† , @Eb

a ,cda#5~21!~@a#1@b# !@d#dd
acba , ~III.8!

from which we deduce that theEb
a indeed obey thegl(mun) graded commutation relations. Thu

we may now construct more general irreducible representations ofgl(mun) in the graded-fermion
Fock space. In particular, for ‘‘two-column’’ irreducible representations, only two spin labea
56 are required.

IV. QUASISPIN „TWO SPIN LABELS …

We employ the above graded-fermion algebra with two spin labelsa56. We set

Q15gdd8cd,1
† cd8,2

†
5(

d
jdcd,1

† c
d̄,2

†
,

~IV.1!

Q25gdd8cd,2
† cd8,1

†
5(

d
jdcd,2cd̄,1 .

Let Q05 1
2(N̂2m1n), whereN̂5Sa51

m1nEa
a is the first-order invariant ofgl(mun) ~i.e., the number

operator!. By straightforward computation, the following can be shown.
Proposition 1: Q6 , Q0 generate an sl(2) Lie algebra, called the quasispin Lie algebra,

@Q1 ,Q2#52Q0 , @Q0 ,Q6#56Q6 . ~IV.2!

Moreover, Q6 , Q0 commute with the generators of osp(mun52k).

To see the significance of the graded fermion algebra for the construction of irredu
representations, we set

Ebb
aa5caa

† cbb , ~IV.3!

and note the graded commutation relations,

@Ebb
aa ,ccg

† #5dbcdbgcaa
† , @Ebb

aa ,ccg#52~21!@c#~@a#1@b# !dc
adg

acbb , ~IV.4!

from which we deduce
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@Ebb
aa ,Edd

cg#5db
cdb

gEdd
aa2~21!~@a#1@b# !~@c#1@d# !dd

add
aEbb

cg , ~IV.5!

which are the defining relations ofgl(2mu2n). That is,Ebb
aa are the generators ofgl(2mu2n).

As we have seen, the spin-averaged operators,

Eb
a5 (

a56
Eba

aa , ~IV.6!

form the generators ofgl(mun). Similarly, the orbital averaged operators,

Eb
a5(

a
Eab

aa , a,b56, ~IV.7!

form the generators of the spin Lie algebragl(2), which commute with thegl(mun) generators.
It is worth noting that the spinsl(2) algebra with generators,

S15E2
1 , S25E1

2 , S05 1
2~E1

12E2
2!, ~IV.8!

also commute with the quasispin Lie algebra. Throughout, we denote the spin Lie algebra~IV.8!
by slS(2) and the quasispin Lie algebra byslQ(2).

Then, the space ofN-particle states gives rise to an irreducible representation ofgl(2mu2n)
@andosp(2mu2n)# with highest weight,

H ~ 1̇N ,0̄u0̇!, N<2m

~ 1̇uN22m,0̇!, N.2m.
~IV.9!

This N-particle space decomposes into a multiplicity-free direct sum of irreduciblegl(mun)
% slS(2) modules,

V̂~a,b! ^ Vs , ~IV.10!

whereVs denotes the (2s11)-dimensional irreducible representation ofslS(2), b52s, N52a

1b and V̂(a,b) denotes the irreducible representation ofgl(mun) with highest weight,

La,b5H ~ 2̇a ,1̇b ,0̇u0̇!, a1b<m,

~ 2̇a ,1̇ua1b2m,0̇!, a<m,a1b.m,

~ 2̇ua1b2m,a2m,0̇!, a.m.

~IV.11!

In this way we may realize all required ‘‘two-column’’ irreducible representations ofgl(mun),
inside a given antisymmetric tensor irreducible representation ofgl(2mu2n) utilizing the graded-
fermion calculus.

V. CASIMIR INVARIANTS AND CONNECTION WITH QUASISPIN

From now on we shall use the notation

L̂[gl~mun!, L[osp~mun!, L̂0[gl~m! % gl~n!, Lō[o~m! % sp~n!. ~V.1!

Let CL̂ , CL denote the universal Casimir invariants ofL̂, L, respectively. Then for the
two-column irreducible representations ofL̂ we are considering, a straightforward but tedio
calculation shows that

CL̂2CL5~m2n122 1
2N̂!N̂2 1

2~n2m!~n2m22!12Q2, ~V.2!
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where

Q25Q–Q5Q0~Q011!1Q2Q15Q0~Q021!1Q1Q2 ~V.3!

is the square of the quasispin. Equation~V2! shows thatQ2 is expressible in terms ofCL̂ , CL , and
N̂. It follows thatQ2, Q2Q1 , Q1Q2 must leave invariant~in fact, reduce to a scalar multiple o
the identity on! a given irreducible representation ofL inside a given~two-column! representation
of L̂. Given the highest weight of such anL module we may determine its quasispinQ̄ @the lowest
weight of the relevantslQ(2) module# using ~V2! andQ25Q̄(Q̄21).

It is worth noting that we may write, for our quasispin generators,

Q5Q~0!1Q~1!, ~V.4!

where

Q2
~0!5(

i 51

m

ci ,2cī ,1 , Q2
~1!5 (

m51

n

~21!mcm,2cm̄,1 , ~V.5!

and, similarly, forQ1 , while

Q0
~0!5 1

2~N̂02m!, Q0
~1!5 1

2~N̂11n!, ~V.6!

with N̂05S i 51
m Ei

i and N̂15Sm51
n Em

m being the number operators for even fermions and o
bosons, respectively. Then it can be shown thatQ(0), Q(1) both determinesl(2) algebra that
commute, so that the quasispinQ may be interpreted as the total quasispin obtained by coup
the quasispins of the even and odd components, respectively.

Similar remarks apply to the total spin algebra. The total spin vector is a sum of even an
components,

S5S~0!1S~1!, ~V.7!

whose correspondingsl(2) algebras@cf. ~IV.8!# are generated by

E~0!
b
a5(

i 51

m

Eib
ia , E~1!

b
a5 (

m51

n

Emb
ma , ~V.8!

respectively. We note that the quasispin and spin algebrasslQ
(0)(2), slQ

(1)(2), slS
(0)(2), slS

(1)(2) all
commute with each other.

We remark that the quasispin algebrasslQ
(0)(2), slQ

(1)(2) play an important role in decompos
ing irreducible representations ofL̂0 into irreducible representations ofL 0̄ . They commute with
the even subalgebraL 0̄ of L, but not withL itself.

VI. QUASISPIN EIGENVALUES

Throughout,V̂(a,b) denotes the irreducible representation ofL̂ with highest weightLa,b

given by ~IV.11!. Let V̂0̄(a,b)5V̂0(0̇ua1b,a,0̇) be its minimalZ-graded component. Note tha
V̂0̄(a,b) is an irreduciblegl(n) module and thus an irreducibleL̂0 module. We have the follow-
ing.

Proposition 2: V̂0̄(a,b) cyclically generates Vˆ (a,b) as an L module: viz.,

V̂~a,b!5U~L !V̂0̄~a,b!. ~VI.1!

Proof: Set
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W5U~L !V̂0̄~a,b!,V̂~a,b!, ~VI.2!

i.e., W is an L submodule. We show that equality holds. Obviously,V̂0̄(a,b) is an L 0̄ module

~since L 0̄5L22% L0% L2,L̂0!. Now, since V̂0̄(a,b) is the minimal Z-graded component o
V̂(a,b), we have, by the PBW theorem,

V̂~a,b!5U~ L̂1!V̂0̄~a,b!. ~VI.3!

Using

sm
i 5Em

i 2~21!mE
ī

m̄
PL 1̄[L1% L21 , ~VI.4!

we have

Em
i V̂0̄~a,b!5sm

i V̂0̄~a,b!1~21!mE
ī

m̄
V̂0̄~a,b!5sm

i V̂0̄~a,b!,W, ~VI.5!

sinceE
ī

m̄
V̂0̄(a,b),L̂2V̂0̄(a,b)5(0). It follows that

L̂1V̂0̄~a,b!,W. ~VI.6!

Proceeding recursively, let us assume that

~ L̂1! i V̂0̄~a,b!,W, ; i<r . ~VI.7!

Then

Em
i L̂1

r V̂0̄~a,b!5sm
i L̂1

r V̂0̄~a,b!1~21!mE
ī

m̄
V̂0̄~a,b!

,LL̂1
r V̂0̄~a,b!1L̂2L̂1

r V̂0̄~a,b!

,LL̂1
r V̂0̄~a,b!1L̂1

r 21V̂0̄~a,b!,W, ~VI.8!

sinceL̂2V̂0̄(a,b)5(0) andL̂1
r V̂0̄(a,b),W, L̂1

r 21V̂0̄(a,b),W by the recursion hypothesis. Thu
L̂1

r 11V̂0̄(a,b),W so that, by induction,L̂1
r V̂0̄(a,b),W, ;r . It follows that

V̂~a,b!5U~ L̂1!V̂0~a,b!,W. ~VI.9!

Thus, we must haveW5V̂(a,b).
From the traditional quasispin formalism forgl(n).sp(n), we have a decomposition ofL 0̄

modules,

V̂0̄~a,b!5V0~a,b! % Q1
~1!V̂0̄~a21,b!, ~VI.10!

where V0(a,b) is an irreducibleL 0̄ module with highest weight (0˙ ua1b,a,0̇) and comprises
quasispin minimal states with respect to quasispin algebraQ(1) ~and thus alsoQ!, so

Q2
~1!V0~a,b!5Q2V0~a,b!50. ~VI.11!

Note that forn52, V̂0̄(a,b)5V0(a,b) is an irreducibleL 0̄ module, but not quasispin mini
mal. Thus, the casen52 requires a separate treatment. However, for this case,V̂0̄(a,b)
5V0(a,b) still has well-defined quasispinQ̄ ~the minimal weight of the quasispin algebra!: in
fact, Q̄5 1

2(b2m1n) for this case.
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Proceeding recursively, we arrive at the irreduciblesp(n) ~and henceL 0̄! module decompo-
sition,

V̂0̄~a,b!5 %
c50

a

Q~1!
1
a2cV0~c,b!, ~VI.12!

where

Q~1!
1
a2cV0~c,b!>V0~c,b!,V̂0̄~c,b! ~VI.13!

is the irreducibleL 0̄ module with highest weight (0˙ uc1b,c,0̇). From the above remarksV0(c,b)
in the decomposition~VI.13! is quasispin minimal with respect toQ(1) ~and Q! so
Q2

a2c11Q(1)
1
a2cV0(c,b)5(0). It follows that Q2

a11V̂0̄(a,b)5(0). Thus, if qN5 1
2(N2m1n) is

the eigenvalue ofQ0 on V̂(a,b), N52a1b, then we have the following.
Theorem 1: The quasispin eigenvalues (i.e., quasispin minimal weights) occurring in Vˆ (a,b)

lie in the range

Q̄5qN , qN21,..., qN2a, ~VI.14!

or qN>Q̄>qN2a (in integer steps).
In view of ~V.2! and ~V.3!, the operatorQ2Q1 must leave invariant anL submodule of

V̂(a,b). In view of the above theorem, the~generalized! eigenvalues ofQ2Q1 on V̂(a,b) must
be of the form

Q2Q1[Q̄~Q̄21!2qN~qN11!5~Q̄1qN!~Q̄2qN21!. ~VI.15!

This eigenvalue can only vanish ifQ̄1qN50, which would imply, from the above theorem,qN

2k52qN for some 0<k<a. Thus, k52qN5N2m1n or, equivalently,a>N2m1n⇔a
>2a1b2m1n⇔m2n>a1b.

Thus, if m<n, the ~generalized! eigenvalues ofQ2Q1 are all nonzero, except for the trivia
module (a5b50), which we ignore below. Thus, we have proved the following lemma.

Lemma 1: For m<n, Q2Q1 determines a nonsingular operator on Vˆ (a,b), except possibly
for the trivial module corresponding to m5n, a5b50.

Remarks:The above result is crucial in what follows and will not generally hold form.n.
Hence, throughout the remainder we assumem<n, n.2. Note thatQ2Q1 is nonsingular even on
the trivial module, except whenm5n.

VII. INDUCED FORMS AND AN ORTHOGONAL DECOMPOSITION

We recall that the graded fermion calculus admits a grade-* operation, defined by

~ca,a
† !* 5~21!@a#ca,a , ca,a* 5ca,a

† , ~VII.1!

which we extend in the usual way with (AB)* 5(21)@A#@B#B* A* . This induces a grade-* opera-
tion on L̂ andL. Explicitly,

~Eb
a!* 5~21!@a#~@a#1@b# !Ea

b , ~sb
a!* 5~21!@a#~@a#1@b# !sa

b . ~VII.2!

Moreover, the quasispin generators satisfyQ1* 5Q2 , Q2* 5Q1 , andQ0* 5Q0 .
With this convention, the graded fermion Fock space admits a nondegenerate graded

linear form^, &. In particular,V̂(a,b) is equipped with such a form and is nondegenerate. Note

^v,Eb
aw&5~21!@v#~@a#1@b# !^~Eb

a!* v,w&, ~VII.3!
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which is the invariance condition of the form. It is the unique~up to scalar multiples! invariant
graded form onV̂(a,b).

We now note thatQ1V̂(a21,b) is anL submodule ofV̂(a,b). In view of Lemma 1 and Eqs
~V.2! and ~V.3!, we have the following.

Lemma 2: The form̂, & restricted to Q1V̂(a21,b),V̂(a,b) is nondegenerate, except for th
case a51, b5m2n50.

Proof: Under the above conditions,Q2Q1 is nonsingular onV̂(a21,b), so Q2Q1V̂(a
21,b)5V̂(a21,b). Hence, for vPV̂(a21,b), we have 05^Q1V̂(a21,b),Q1v&⇒0
5^Q2Q1V̂(a21,b),v&5^V̂(a21,b),v&⇒v50 since^ , & on V̂(a21,b) is nondegenerate. Thi
shows that the form̂ , & restricted toQ1V̂(a21,b) is nondegenerate, as required.

In view of Proposition 2, we have the following.
Proposition 3: Q2V̂(a,b)5V̂(a21,b).
Proof: From Proposition 2, we have

Q2V̂~a,b!5Q2U~L !V̂0̄~a,b!5U~L !Q2V̂0̄~a,b!5U~L !Q2
~1!V̂0̄~a,b!5U~L !V̂0̄~a21,b!,

~VII.4!

where the last step follows from a classical Lie algebra result. Again, utilizing Proposition 2
haveU(L)V̂0̄(a21,b)5V̂(a21,b), from which the result follows.

We are now in a position to prove the following.
Proposition 4: We have an L-module orthogonal decomposition;

V̂~a,b!5K% Q1V̂~a21,b!, ~VII.5!

whereK5KerQ2ùV̂(a,b), except for the case a51, b5m2n50.
Proof: For vPV̂(a,b), ^v,Q1V̂(a21,b)&50⇔^Q2v,V̂(a21,b)&50⇔Q2v50 ~by Propo-

sition 3! ⇔vPK. Since^ , & restricted toQ1V̂(a21,b) is nondegenerate, the result follows.
Finally, in view of Theorem 1 we have Proposition 5.
Proposition 5: V̂(a50,b) is an irreducible L module.
Proof: In such a case,V̂0̄(0,b)5V0(0,b) is an irreducibleL 0̄ module cyclically generated by

anL maximal state. Thus,V̂(0,b)5U(L)V0(0,b) must be an indecomposableL module. Since the
form ^ , & on V̂(0,b) is nondegenerate, this forcesV̂(0,b) to be an irreducibleL module.

The result above shows that the minimalL̂ irreducible representations are indeed irreduci
underL.

VIII. PRELIMINARIES TO BRANCHING RULES

It is our aim below to prove, barring the exceptional case of Lemma 2, thatK is an irreducible
L module. Note that the maximal state of theL 0̄ moduleV0(a,b) occurring in the decomposition
~VI.10!, in fact, coincides with theL̂0 maximal vectorv1

L of V̂0̄(a,b): For n.2 it can be seen
directly that

Q2v1
L 5Q2

~1!v1
L 50, ~VIII.1 !

for this maximal vector. Moreover, forn.2 we have

Em̄
i v1

L 50, 1< i<m, 1<m<k; ~VIII.2 !

otherwise, this vector would have weight (0˙ ua1b,a,0̇)1e i2dm̄ (m̄.k5n/2), which is impos-
sible since allL̂ weight components are positive. Also, sincev1

L belongs to theL̂ minimal
Z-graded component, we must have
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Ei
mv1

L 50, ; i ,m. ~VIII.3 !

Thus, fors i
mPL1 , we have

s i
mv1

L 5„Ei
m1~21!mEm̄

ī
…v1

L 50, ; i ,1<m<k⇒L1v1
L 5~0!. ~VIII.4 !

It follows that theL 0̄ moduleV0(a,b) must cyclically generate an indecomposable mod
over L:

V~a,b!5U~L !V0~a,b!, ~VIII.5 !

with highest weight

la,b[~ 0̇ua1b,a,0̇!. ~VIII.6 !

Since

Q2V0~a,b!5Q2
~1!V0~a,b!5~0!, ~VIII.7 !

we have

Q2V~a,b!5Q2U~L !V0~a,b!5U~L !Q2V0~a,b!5~0!. ~VIII.8 !

It follows that V(a,b),K.
We now show thatV(a,b)5K is irreducible. First, in view of Proposition 3, we have th

following lemma.
Lemma 3:vPK⇔Q1Q2v50.
Proof: ObviouslyvPK⇒Q2v50⇒Q1Q2v50. Conversely,Q1Q2v50⇒

05^Q1Q2v,V̂~a,b!&5^Q2v,Q2V̂~a,b!&5^Q2v,V̂~a21,b!& ~VIII.9 !

⇒Q2v50⇒vPK.
It follows that K consists of eigenstates ofQ1Q2 with a zero eigenvalue. Also, sinceQ2K

5(0) andK,V̂(a,b), it follows that all states inK are eigenvectors ofQ0 with eigenvalueqN

5 1
2(N2m1n) and are, moreover, quasispin minimal states, and so have quasispinQ̄5qN . Thus,

Q2 reduces to a scalar multipleQ̄(Q̄21)5qN(qN21) on K. It then follows from~V.2! that the
universal Casimir elementCL of L must reduce to a scalar multiple of the identity onK. Since
V(a,b),K has highest weightla,b , this eigenvalue can be shown to be given by

xla,b
~CL!5~la,b ,la,b12r!52~a1b!~a1b1n2m!2a~a1n2m22!. ~VIII.10!

Hence we have proved the following.
Lemma 4: CL reduces to a scalar multiple of the identity onK with an eigenvalue given by

(VIII.10).
Now K is a completely reducibleL 0̄ module. Hence we have the following.
Lemma 5: Suppose for any irreducible L0̄ module V0(l) contained in an irreducible Lˆ

0

module V̂0(L),V̂(a,b) that xl(CL)5xla,b
(CL)⇔L5La,b and l5la,b . ThenK5V(a,b) is

irreducible.
Proof: Indeed, in such a case it follows from Lemma 4 that the highest weight vecto

V(a,b) must be the unique primitive vector inK. This is enough to prove thatK is irreducible.
Finally, we recall thatV̂(a,b) comprises states with total spins5b/2 and with particle

numberN52a1b. Then the possible irreducible representations ofL̂0 occurring inV̂(a,b) must
have highest weights of the form
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L5~ 2̇a8 ,1̇b8 ,0̇uc8,d8,0̇!. ~VIII.11!

Then we must have

2a81b81c81d85N52a1b. ~VIII.12!

Moreover, the total spins for the even and odd components of this irreducible representat
s05b8/2 ands15(c82d8)/2, respectively. So, using the triangular rule for angular momenta
have

s<s01s1 , s0<s1s1 , s1<s1s0 , ~VIII.13!

or

b<b81c82d8, b8<b1c82d8, c82d8<b1b8. ~VIII.14!

These inequalities turn out to be important below.

IX. L̂↓L BRANCHING RULES

We start this section with some facts concerningL̂0↓L 0̄ . The possibleL̂0 highest weightsL
occurring inV̂(a,b) are of the form of~VIII.11!. The possibleL 0̄ highest weightsl in V̂(a,b) are
obtained from suchL by a classical contraction procedure and have the form

l5~ 2̇c ,1̇d ,0̇ue, f ,0̇!, c1d<h, ~IX.1!

whered5b8∧(m22c2b8), e2 f 5c82d8 @here and belowx∧y[min(x,y)# and

c<a8, e1 f <c81d852a1b22a822b8. ~IX.2!

Note that forn.4, there are additional restrictions on the allowedL 0̄ dominant weights in order
that they give rise to highest weights ofL.8 In the interests of a unified treatment of all cas
including n54, we do not impose these supplementary conditions here.

Sincee2 f 5c82d8, the inequalities~VIII.14! lead to

b8<b1e2 f , b<b81e2 f , e2 f <b1b8. ~IX.3!

Hence, we have the following inequalities.
Lemma 6: e<a1b2c, f <a2c.
Proof: We have

e1 f <2a1b22a82b8, e2 f <b1b8.

Adding these two inequalities givese<a1b2a8. Thus,e<a2c sincec<a8. Similarly, adding

e1 f <2a1b22a82b8, f 2e<b82b

leads tof <a2a8<a2c.
We are now in a position to compute the eigenvaluexl(CL) compared with that of~VIII.10!.

By direct computation we have

xl~CL!5~l,l12r!5m~2c1d!2c~c11!2~c1d!~c1d11!

2~n2m!~e1 f !14c1d12 f 2e22 f 2, ~IX.4!

where we have used
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l5(
i 51

c

2e i1 (
i 5c11

d1c

e i1ed11 f d2 , ~IX.5!

together with the expression forr of L. By a straightforward but tedious calculation, usin
~VIII.10! and ~IX.4!, we obtain

xl~CL!2xla,b
~CL!52cn1d~m2d!12c~2a1b22c2d!1~a1b2c2e!

3~a1b2c1e1n2m!1~a2c2 f !~a2c1 f 1n2m22! ~IX.6!

5@2c~n11!12 f 22a#1d~m2d!12c~2a1b22c2d!

1~a1b2c2e!~a1b2c1e1n2m!1~a2c2 f !~a2c1 f 1n2m!.

~IX.7!

All terms on the rhs of~IX.6! are positive, in view of the inequalities given above, except poss
the last due to the term (a2c1 f 1n2m22). Similarly, in ~IX.7! all terms on the rhs are
positive, except possibly the first.

We proceed stepwise.
~i! c>1: Then the first term on the rhs of~IX.7! gives

2c~n11!12 f 22a>2~n111 f 2a!.

This leads to two subclasses.
~i.1! a<n11: The rhs terms are all non-negative, so~IX.7! can only vanish ifa5n11, f

505d, 2a1b52c1d. But then, sinced50 this would imply 2c52a1b⇒c.a5n11, which
is impossible sincec<h<m<n. Thus we conclude that the rhs must be strictly positive in t
case.

~i.2! a>n12: In this case all terms on the rhs of~IX.6! are non-negative, including the las
term, since, for the case at hand,

a2c1 f 1n2m22>n122c1 f 1n2m22>n2c1 f 1n2m>0,

sincen>m>h>c. Sincec>1, the rhs of~IX.6! must be strictly positive in this case.
We thus conclude, forc>1, thatxl(CL)2xla,b

(CL).0. It remains then to consider the ca
c50, in which case we have

xl~CL!2xla,b
~CL!5d~m2d!1~a1b2e!~a1b1e1n2m!1~a2 f !~a1 f 1n2m22!.

~IX.8!

Note that for the casec50, the inequalities of Lemma 6 reduce toe<a1b, f <a and for the case
at hand we have

e2 f 5c82d8, d5b8∧~m2b8!.

It is convenient to treat the casesm5n andm,n separately.
~ii ! c50, n.m: Here we assumea>1, since whena50, V̂(a50,b) is already known to be

an irreducibleL module, so the branching rule is trivial.
Under these assumptions all terms on the rhs of~IX.8! are non-negative, including the las

since

a1 f 1n2m22> f 1n2m21>0.

Note that this factor can only vanish whena51, f 50, n5m11. There are thus two possibilitie
to consider for vanishing of the rhs of~IX.8!:
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~ii.1! d50, e5a1b, f 5a: Sincec81d852a1b22a82b8>e1 f 52a1b andc82d85e

2 f 5b, this implies thata85b850, c85a1b, d85a, and l5la,b . So in this caseL5(0̇ua
1b,a,0̇)5La,b andl5la,b .

~ii.2! d50, e5a1b, f 50, a51, n5m11: Thenc81d8>e1 f 5a1b. Sincea51, we thus
have

21b5N52a81b81c81d8>2a81b81a1b52a81b8111b

⇒1>2a81b8⇒a850 andb8<1. In such a case we must haved5b8∧(m2b8) and sinced

50⇒b850, or m5b851⇒n52, which we ignore. ThenL5(0̇uc8,b8,0̇) with c82b85e2 f
5a1b511b, which corresponds to states with spin (11b)/2, which is impossible since al
states inV̂(a,b) have spinb/2. Thus, this latter case cannot occur.

Thus we have shown, for all cases, that whenn.m, K5V(a,b) must be an irreducible
module with highest weightla,b , using Lemma 4.

In view of Proposition 3 we thus have theL module decomposition,

V̂~a,b!5V~a,b! % Q1V̂~a21,b!. ~IX.9!

SinceQ2Q1 is nonsingular,Q1V̂(a21,b)>V̂(a21,b). By repeated application of~IX.9!, we
arrive at the irreducibleL module decomposition,

V̂~a,b!5 %
c50

a

Q1
a2cV~c,b!. ~IX.10!

Hence we have proved the following theorem.
Theorem 2: (n.m,n.2): We have the irreducible L-module decomposition,

V̂~a,b!5 %
c50

a

V~c,b!. ~IX.11!

We emphasize that throughoutV(a,b) denotes theL module with highest weightla,b

5(0̇ua1b,a,0̇). It remains now to consider the casem5n, which is somewhat more interesting
~iii ! c50, m5n.2: Again, we assumea>1 sinceV̂(a50,b) is an irreducibleL module, as

we have seen. We recall for the case at hande<a1b, f <a, a>1, m5n.2, e2 f 5c82d8, d
5b8∧(m2b8) and

xl~CL!2xla,b
~CL!5d~m2d!1~a1b2e!~a1b1e!1~a2 f !~a1 f 22!. ~IX.12!

There are now several cases to consider for the vanishing of~IX.12!.
~iii.1! a5 f : Then ~IX.12! vanishes whend50, e5a1b. Thus

c81d8>e1 f 52a1b52a81b81c81d8

⇒a85b850, c81d852a1b, and c82d85e2 f 5b. This corresponds toL5La,b and l
5la,b .

~iii.2! f 522a: Then~IX.12! vanishes whend50, e5a1b. Sincea>1 there are two cases
~iii.2.1! f 50, a52: This is only possible whenc81d8>e1 f 5a1b⇒

2a1b>2a81b81c81d8>2a81b81a1b

⇒a>2a81b8 or 2>2a81b8. This leads to two further cases.
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~iii.2.1a! f 50, a52, a850, b8<2: In view of the contraction procedure, this is only cons
tent with d50 if b850 ~so c85a1b, d85a! or if b52 andm5n52. The latter case is being
ignored and the former case cannot occur since thenc82d85e2 f 5a1b.b in contradiction to
the fact that all states inV̂(a,b) have spinb/2.

~iii.2.1b! f 50, a52, a851, b85d50: Thenc82d85e2 f 5a1b.b, which again is im-
possible since all states have spinb/2.

~iii.2.2! f 5a51: Then c82d85a1b2a5b, c81b8>e1 f 52a1b⇒a85b850, c85a
1b, d85a⇒L5La,b , l5la,b .

~iii.3! a1 f 22,0, a. f : This can only occur whena51, f 50, in which case the rhs o
~IX.12! becomes

d~m2d!1~a1b1e!~a1b2e!21.

There are two cases for the vanishing of this.
~iii.3.1! e5a1b, d51, m52, which can occur, but we are ignoring sincen5m.2.
~iii.3.2! d5 f 5e5b50: Thenc82d85e2 f 50 and

N5252a1b52a81b81c81d852~a81c8!1b8,

which can occur in the following cases:

a85b850, c85d851⇒l5~ 0̇u0̇!, L5~ 0̇u1,1,0̇!;

b85c85d850, a851⇒l5~ 0̇u0̇!, L5~2,0̇u0̇!.

This exhausts all possibilities. It follows from the above that forn5m.2 the rhs of~IX.12!
is always strictly positive and can only vanish in the last case, corresponding toa51 andb50.
This is the irreducible representationV̂(2,0̇u0̇) of gl(nun), which is known to give rise to an
indecomposableosp(nun) module with a composition series of length 3 whose factors are
morphic to theosp(nun) modulesV(1,0) andV(0,0) ~see Appendix!.

Thus we have proved the decomposition

V̂~a,b!5V~a,b! % Q1V̂~a21,b! ~IX.13!

with V(a,b) an irreducibleL-module of highest weightla,b , provided (a,b)Þ(1,0). Proceeding
recursively we have the following theorem.

Theorem 3 „n5m>2…: For b.0 we have the irreducibleL-module decomposition,

V̂~a,b!5 %

c50

a

V~c,b!. ~IX.14!

For b50 we have the L-module decomposition,

V̂~a,0!5 %

c51

a

V~c,0!, ~IX.15!

where V(c,0) is irreducible for c.1 but V(1,0) is indecomposable with a composition series
length 3 with composition factors isomorphic to irreducible L modules V(1,0) and V(0,0), the
latter occurring twice.

Theorems 2 and 3 are our main results in this section concerning theL̂↓L branching rules for
the two-column tensor representations ofL̂. We remark that for the special casen2m505b,
a51, V̂(a21,b)5V̂(0,0) coincides with the identity module, which is the exceptional case
Lemma 2. For this case the form̂, & on V̂(a,b)5V̂(1,0) is degenerate onQ1V̂(a21,b)
                                                                                                                



s

the
e of
lian

5385J. Math. Phys., Vol. 40, No. 11, November 1999 Quasispin graded-fermion formalism . . .

                    
5Q1V̂(0,0). Thus, Proposition 4 fails in this case~and only this case!. This, of course, agree
with the result thatV̂(a,b)5V̂(1,0)[V̂(2,0̇u0̇) is indecomposable form5n.

ACKNOWLEDGMENTS

This paper was completed when YZZ visited Northwest University, China. He thanks
Australian Research Council IREX program for an Asia-Pacific Link Award and Institut
Modern Physics of the Northwest University for hospitality. The financial support from Austra
Research Council large, small and QEII fellowship grants is also gratefully acknowledged.

APPENDIX: STRUCTURE OF V̂„z,0̇z0̇… AS A osp „n zn …-MODULE

Here for completeness we determine the structure of the irreducibleL̂5gl(nun52k) module
V̂(2,0̇u0̇) as a module overL5osp(nun), in fully explicit form.

First V̂(2,0̇u0̇) admits the followingZ-graded decomposition into irreducibleL̂0 modules with
highest weights shown:

V̂~2,0̇u0̇!5V̂0~2,0̇u0̂! % V̂1~1,0̇u1,0̇! % V̂2~ 0̇u1,1,0̇!.

In the notation of the paper, the last space corresponds to the irreducibleL̂0 moduleV̂0̄(a51,b
50). In terms of the graded fermion formalism, we have the following basis states:

V̂0~2,0̇u0̇!: ~ci ,1
† cj ,2

† 1cj ,1
† ci ,2

† !u0&, 1< i , j <n,

V̂1~1,0̇u1,0̇!: ~ci ,1
† cm,2

† 1cm,1
† ci ,2

† !u0&, 1< i ,m<n, ~A1!

V̂2~ 0̇u1,10̇!: ~cm,1
† cn,2

† 2cn,1
† cm,2

† !u0&, 1<m,n<n,

whereu0& is the vacuum state. The latter space decomposes intoL 0̄ modules according to

V̂2~ 0̇u1,1,0̇!5V0~ 0̇u1,10̇! % V0~ 0̇u0̇!,

whereV0(0̇u0̇) is spanned byQ1
(1)u0& ~the trivial L 0̄ module! andV0(0̇u1,1,0̇) is an irreducibleL 0̄

module with the highest weight indicated and the following basis vectors:

~cm,1
† cn,2

† 2cn,1
† cm,2

† !u0&, 1<nÞm̄<n, ~A2!

~Vm
† 2Vm11

† !u0&, 1<m,k, ~A3!

where

Vm
† [cm,1

† cm̄,2
†

2cm̄,1
† cm,2

† .

Note that this irreducibleL 0̄ module cyclically generates an indecomposableL module Ṽ(d1

1d2) with highest weightd11d2 and highest weight vector given by~A2! with m51, n52.
Now V̂1(1,0̇u1,0̇) is also irreducible as anL 0̄ module that is contained inṼ(d11d2). Then by

applying the odd lowering generatorssm
i 5Em

i 2(21)mE
ī

m̄
(1<m<k,1< i<n) of L to the states

~A1!, the following states inV̂0(2,0̇u0̇) are easily seen to be inṼ(d11d2):

~ci ,1
† cj ,2

† 1cj ,1
† ci ,2

† !u0&, 1< j Þ ī <n, ~A4!

~V i
†2V i 11

† !u0&, 1< i ,k, ~A5!
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where

V i
†[ci ,1

† c,2
†

1c
ī ,1

†
ci ,2

† .

Further, the following states are also seen to be inṼ(d11d2):

„V i
†1~21!mVm

†
…u0&, 1< i ,m,k, ~A6!

which follows by applyings i
m̄ to the states~A1! with 1<m<k. Summing~A6! on m5 i from 1

to k, we thus obtain

S (
i 51

k

V i
†1 (

m51

k

~21!mVm
† D u0&5Q1u0&PṼ~d11d2!. ~A7!

It is worth noting that the states~A6! are expressible in terms of the states~A3!, ~A5!, and~A7!.
The states~A1!–~A7! form a basis for the standard cyclicL moduleṼ(d11d2). We note that

dim Ṽ(d11d2)5dim V̂(2,0̇u0̇)21 and Ṽ(d11d2) is the unique maximalL submodule of
V̂(2,0̇u0̇). In view of ~A7!, this module is not irreducible since it contains the trivial on
dimensionalL moduleV(0̇u0̇) as a unique submodule.

The remaining state inV̂(2,0̇u0̇), not in Ṽ(d11d2), is Q1
(1)u0& ~or Q1

(0)u0&!, which thus
generates the basis vector for theL factor moduleV̂(2,0̇u0̇)/Ṽ(d11d2), which is obviously
isomorphic to the trivialL moduleV(0̇u0̇). We thus arrive at theL-module composition serie
V̂(2,0̇u0̇).Ṽ(d11d2).V(0̇u0̇).(0) with corresponding factors isomorphic to the irreducibleL

modules with highest weights (0˙ u0̇), d11d2 , and (0̇u0̇), respectively.
This result is of importance to the explicit construction of newR matrices.4 In particular, it

gives rise to anL-invariant nilpotent contribution to theR matrices, a new effect not seen in th
untwisted or nonsuper cases.
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3J. Van der Jeugt, J. Math. Phys.37, 4176~1996!.
4M. D. Gould and Y.-Z. Zhang, math-QA/9905021, Nucl. Phys. B, in press.
5M. D. Gould, J. R. Links, I. Tsohantjis, and Y.-Z. Zhang, J. Phys. A30, 4313~1997!.
6M. J. Martins and P. B. Ramos, Phys. Rev. B56, 6376~1997!.
7H. Saleur, ‘‘The long delayed solution of the Bukhvostov–Lipatov model,’’ e-print hepth/9811023.
8V. G. Kac, Lect. Notes Math.676, 597 ~1978!.
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We construct a class of Euclidean invariant distributionsFH indexed by a function
H holomorphic at zero. These generalized functions can be considered as general-
ized densities w.r.t. the white noise measure, and their moments fulfill all
Osterwalder–Schrader axioms, except for reflection positivity. The case where
F(s)52„H( is)1 1

2s
2
…, sPR, is a Lévy characteristic is considered in Rev. Math.

Phys.8, 763~1996!. Under this assumption the moments of the Euclidean invariant
distributionsFH can be represented as moments of a generalized white noise mea-
surePH . Here we enlarge this class by convolution with kernelsG coming from
Euclidean invariant operatorsG. The moments of the resulting Euclidean invariant
distributionsFH

G also fulfill all Osterwalder–Schrader axioms except for reflection
positivity. For no nontrivial case we succeeded in proving reflection positivity.
Nevertheless, an analytic extension to Wightman functions can be performed.
These functions fulfill all Wightman axioms except for the positivity condition.
Moreover, we can show that they fulfill the Hilbert space structure condition and
therefore the modified Wightman axioms of indefinite metric quantum field theory
@Dynamics of Complex and Irregular Systems~World Scientific, Singapore, 1993!#.
© 1999 American Institute of Physics.@S0022-2488~99!02608-0#

I. INTRODUCTION

This paper is motivated by the Euclidean strategy for constructing interacting field the
see, e.g., Refs. 1 and 2 and the references therein. Formally, the interacting field theor
interactionV lives on the same measure space as the Euclidean free fieldm0 but has measure

dmV5
exp~2*RdV„f~x!…dd~x!!dm0

* exp~2*RdV„f~x!…dd~x!!dm0
, ~1!

wheref(x) is a Gaussian random process at the pointxPRd, dPN. Sincef(x) in general is not
an integrable function but rather a generalized function the question of how to defineV„f(x)…
leads to the problem of defining powers off(x). Furthermore,~1! is only formal if mVÞm0 , since
the only probability measure absolutely continuous w.r.t.m0 and invariant under Euclidean tran
lations ism0 itself.

A first step in the direction of giving sense to~1! is to construct Wick powers:f(x)m: m
PN, of the Gaussian random processf at the pointxPRd. For d>2 the Wick powers:f(x)m:
still are not integrable functions. Additionally, a so-called space cutoff is necessary, i.e
integration in~1! is performed only over a bounded subset ofRd, and sometimes also an ultra
violet cutoff, i.e., the Wick powers:f(x)m: are smeared out with delta sequences. For cer

a!Electronic mail: grothaus@wiener.iam.uni.bonn.de
53870022-2488/99/40(11)/5387/19/$15.00 © 1999 American Institute of Physics
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classes of interactions by these renormalizations integrable densities w.r.t.m0 have been con-
structed, and then some kind of limit that removes the cutoffs has been taken; a limit that do
require the output to be absolutely continuous. Examples are the following: theP(f)2 model~the
2 stands ford52), where the interaction is given by a Wick ordered polynomialV5:P:, semi-
bounded from below, see, e.g., Ref. 1 and the references therein; the Høegh–Krohn mod3 in d
52 space–time dimensions, where the interaction is given by

V~s!5E :exp~as!:dn~a!,

wheren is a finite measure with compact support in the interval (A2p,A2p); and the Albeverio
Høegh–Krohn model4 in d space–time dimensions, where the interaction is given by the Fo
transform of a measuren with bounded support on the real line@anddn(s)5dn(2s))], i.e.,

V~s!5E exp~ ias!dn~a!.

The Schwinger functions associated to the interacting field theory with interactionV are the
moments of the measurenV . But moments one can also obtain from generalized functions
sidered as generalized densities w.r.t. a Gaussian measurem, they only have to have the propert
that monomials are test functions. This is the basic idea of our approach. Motivated b
Euclidean strategy we consider the following generalized white noise functional:

FH5expLS 2E
Rd

HL
„f~x!…ddxD . ~2!

We assume that the functionH is holomorphic at zero andH(0)50. The Wick analytic function
HL

„f(x)… of the Gaussian processf at the pointxPRd coincides with the usual Wick ordere
function :H„f(x)…:. It turns out thatHL

„f(x)… is a generalized function from the Kondratie
space (S)21; see Sec. II B, and therefore also its integral, if it exists, is in (S)21. Thus, in general,
we cannot take its exponential. But in the white noise distribution space (S)21 there exists the
so-called Wick calculus; see Sec. II B; hence we can take its Wick exponential. In the case
H is linear and if we integrate only overK,R2, K compact~space cutoff!, the functionFH is
square integrable and we have a direct correspondence between~1! and ~2!, i.e.,

FH5
exp~2*KH„f~x!…d2~x!!

* exp~2*KH„f~x!…d2~x!!dm
,

where m is the Gaussian white noise measure. In general, however, there is no need f
distributionFH to be positive and for a large class of functionsH there exists no measure that
representingFH . It turns out thatFH can be represented by a measure if and only if the func
F(s)52H( is)1 1

2s
2, sPR, is a Lévy characteristic; see Remark III.7~ii !. The associated mea

sures are called generalized white noise measures.
Generalized white noise measures have been considered in Ref. 5. There are autho

structed Euclidean random fields overRd by convoluting generalized white noise with integr
kernelsG coming from Euclidean invariant operators. The corresponding moments satis
Osterwalder–Schrader axioms6 except for reflection positivity.

For all convoluted generalized white noise measures such that the Le´vy characteristic of the
generalized white noise measure has a holomorphic extension at zero, we can give an
formula for the generalized density w.r.t. the white noise measure; see Theorem III.9 b
Furthermore, there exists a large class of generalized functionsFH as in ~2! that do not have an
associated measure; see Remark III.16. In Theorem III.9 and Theorem III.15 we prove th
Schwinger functions corresponding to the convoluted generalized functionsFH

G also fulfill all
Osterwalder–Schrader axioms except for reflection positivity.
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For no nontrivial case we succeeded in proving reflection positivity. In Ref. 5 the au
present a partial negative result on reflection positivity for the Schwinger functions correspo
to moments of convoluted generalized white noise. We quote more details about their res
Sec. IV A.

Without reflection positivity we cannot perform the analytic continuation to Wightman fu
tions via the reconstruction theorem.6 Nevertheless, an analytic continuation can be perform
Using results from the theory of Laplace transforms in Ref. 5, the authors analytically cont
the Schwinger functions, which are given as moments of convoluted generalized white no
Wightman functions. In general, these functions only fulfill a part of the Wightman axioms,
positivity ~positive definiteness of the set of Wightman functions7–9! is missing. We generalized
their idea to our case and in Theorem IV.1 we prove that the Schwinger functions correspo
to convoluted generalized functionsFH

G also have an analytic extension to Wightman functio
These Wightman functions fulfill all Wightman axioms, except for the positivity property. F
thermore, they fulfill the strong spectral condition with mass gapm0.0, and their two-point
functions admit a Ka¨llen–Lehmann representation. For the Fourier transform of the trunc
Wightman functions in Ref. 5, the authors found explicit formulas. Using these formulas an
Jost–Schroer theorem, in Theorem IV.2 we prove a negative result concerning the pos
property; see also Remark IV.3.

Since the appearance of gauge theories, it has become natural to consider~local! quantum
field theories~QFT! in which not all Wightman axioms are satisfied. Such a consideration ha
particular, been natural and also necessary for the study of ‘‘charged’’ fields interacting
gauge fields, because their description conflicts either with locality or with positivity. The phy
reason for this is that in such theories one must use observables of the charged type that
Gaussian law; see, e.g., Morchio and Strocchi,10 instead of using the usual local observabl
Actually, from the study of fields such as, e.g.,a-gauge-type Higgs models that do not satis
positivity; see, e.g., Ref. 11 and references therein, it turns out that it is preferable to ke
locality condition and to give up the positivity condition. This leads to the so-called mod
Wightman axioms of indefinite metric QFT.12 The difference between indefinite metric QFT a
standard QFT is that the axiom of positivity in the latter is replaced by the so-called Hilbert s
structure condition in the former that permits the construction of a Hilbert space and a qu
field associated to a given collection of functions fulfilling the modified Wightman axioms.

In Ref. 13 the authors proved that the Wightman functions that are analytic continuatio
the moments of convoluted generalized white noise fulfill the Hilbert space structure cond
and therefore the modified Wightman axioms. Again it was possible to generalize their pro
our case, and in Theorem IV.5 we prove that the Wightman functions that are analytic con
tions of the moments of convoluted generalized functionsFH

G also fulfill the modified Wightman
axioms.

The article is organized as follows. In Sec. II we introduce the concepts of Gaussian and
noise analysis14–19 as far as necessary for our considerations. In the framework of white n
analysis, various aspects of QFT have been discussed.20–23,16Section III of this paper is intended
to represent Euclidean QFT in the framework of white noise analysis. In Sec. III A we show
to check the Osterwalder–Schrader axioms~OS axioms! in terms of theT transform ~the T
transform is an infinite-dimensional generalization of the Fourier transform!. TheT transform of a
generalized function is the generating functional of the corresponding Schwinger functions.
erties of generating functionals have also been discussed in Refs. 24 and 25. Having this
hands in Sec. III B, we construct the Euclidean invariant distributionsFH

G . In Sec. IV we discuss
the reflection positivity, analytic continuation, and QFT with an indefinite metric.

II. GAUSSIAN ANALYSIS

A. Gaussian spaces

We start by considering the Gel’fand triple,

S~Rd!,H,S8~Rd!,
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whereS(Rd) is the space of rapidly decreasing, smooth test functions onRd. We assumeS(Rd) to
be equipped with its standard locally convex topology such that it is a nuclear space.H is a real
separable Hilbert space containingS(Rd) as a dense and topological subspace. For instance,H can
be chosen as the space of real-valued square integrable functions w.r.t. the Lebesgue me
Rd or as a Sobolev space onRd. As is well known26,27S5S(Rd) is the projective limit of a family
of Hilbert spaces (Hp)pPN0

, H05H, such that for allp1 ,p2PN there existspPN, such that
Hp,Hp1

and Hp,Hp2
and the embeddings are of the Hilbert–Schmidt class. That is,S is a

countably Hilbert space in the sense of Ref. 28. The dual space spaceS8 is the space of tempere
distributions. It is given as the inductive limit of the spaces (H2p)pPN0

that are dual to the space
(Hp)pPN w.r.t. H. We denote bŷ•,•& the dual pairings betweenHp andH2p and betweenSand
S8 given by the extension of the inner product~•,•! on H. Furthermore,u•up denote the norms on
Hp andH2p , respectively, and we preserve this notation for the norms on the complexifica
Hp,C andH2p,C and tensor powers of these spaces.

Additionally, we introduce the notion of symmetric tensor power of the nuclear spaceS. The

simplest way to do this is to start from usual symmetric tensor powersHp
^̂ n ,nPN, of Hilbert

spaces. Using the definition

S^̂ n
ªprlim

pPN
Hp

^̂ n ,

one can prove26,27 that S^̂ n is a nuclear space that is called thenth symmetric tensor power ofS.

The dual spaceS8 ^̂ n can be written as

S8 ^̂ n5 indlim
pPN

H2p
^̂ n .

The spaceS8(Rd) ^̂ n is canonically isomorphic toS8(Rnd), the space of symmetric tempere
distributions onRnd. All the results quoted above also hold for complex spaces.

In order to introduce a probability measure on the vector spaceS8, we consider thes-algebra
Cs(S8) generated by cylinder sets. The canonical Gaussian measurem on „S8,Cs(S8)… is given by
its characteristic function

E
S8

exp~ i ^v, f &!dm~v!5expS 2
1

2
u f u2D , f PS,

via Minlos’ theorem.14–16 If we choseH5L2(Rd), the space of real-valued square-integra
functions w.r.t. the Lebesgue measure onRd, this is the Gaussian white noise measure. ForH
5H21,2(Rd), the Sobolev space of order~21, 2!, this is the measure corresponding to the E
clidean free field with mass 1 ind dimensions.

The central space in our setup is the space of complex-valued functions that are
integrable w.r.t. this measureL2(m)5L2

„S8,Cs(S8),m…. An element of this space is the Wic
exponential,

:exp~^v, f &!:ª
exp~^v, f &!

Em~exp~^•, f &!!
, vPS8, f PS,

5 (
n50

`
1

n!
^:v ^ n:, f ^ n&. ~3!

Em denotes the expectation w.r.t.m and the mapS8{v°:v ^ n:PS8 ^̂ n, nPN, is called thenth

Wick power of vPS8 (^:v ^ 0:, f ^ 0&ª f ^ 0
ª1).15,16 For any w (n)PSC

^̂ n , nPN, w (0)PC, we
define the smooth Wick monomial of ordern corresponding to the kernelw (n) as follows:
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I ~w~n!!~v!ª^:v ^ n:,w~n!&, vPS8,nPN0 .

Smooth Wick monomials of different order are orthogonal w.r.t. the standard inner produ

L2(m). Furthermore, we can construct Wick monomialsI ( f (n)) with kernels f (n)PHC
^̂ n in the

sense of measurable functions by using an approximation. More precisely, for any seq

(w j
(n)) j PN,SC

^̂ n that converges tof (n) in HC
^̂ n we have the convergence ofI (w (n)) to I ( f (n)) in

any Lp(m),p>1.15 We useI ( f (n))5^:v ^ n:, f (n)& as a formal notation for the monomial intro

duced above. For Wick monomials associated to the kernelsf (n)PHC
^̂ n and h(m)PHC

^̂ m , n,m
PN0 , we have the following orthogonality property:

„I ~ f ~n!!,I ~h~m!!…L2~m!5E
S8

^:v ^ n:, f ~n!&^:v ^ m:,h~m!&dm~v!5dn,mn! ~ f ~n!,h~n!! ~4!

(dn,m is the Kronecker delta!.
Consider the spaceP(S8) of smooth Wick polynomial onS8:

P~S8!5H wUw~v!5 (
n50

N

^:v ^ n:,w~n!&,w~n!PSC
^̂ n , vPS8, NPN0J .

This space is dense inL2(m) and, as a consequence, for anyf PL2(m) we have the Itoˆ –Segal–
Wiener chaos decomposition,

f 5 (
n50

`

I ~ f ~n!!, f ~n!PHC
^̂ n .

B. Generalized functions

For our considerations the spaceL2(m) is too small. A convenient way to solve this proble
is to introduce a subspace of test functions inL2(m) and to use its larger dual space. In Gauss
analysis there exist various triples of test and generalized functions withL2(m) as a central space
here we choose the Kondratiev triple29

~S!1,L2~m!,~S!21.

In order to construct these spaces of test and generalized functions, we define for any givp,q
PZ the following Hilbertian norm for the smooth Wick polynomialsw(v)5(n50

N ^:v ^ n:,w (n)&,
vPS8:

iwip,q,1
2

ª(
n50

`

~n! !22nquw~n!up
2.

Then, for p,qPN0 , we define the Hilbert space (Hp)q
1 as the completion ofP(S8) w.r.t.

i•ip,q,1 . Or, equivalently,

~Hp!q
15H f PL2~m!U f ~v!5 (

n50

`

^:v ^ n:, f ~n!&, i f ip,q,1
2 ,`J .

Finally, the space of test functions (S)1 is defined as the projective limit of the spaces (Hp)q
1,

~S!15 ù
p,q>0

~Hp!q
1.
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Let (H2p)2q
21 be the dual w.r.t.L2(m) of (Hp)q

1 and let (S)21 be the dual w.r.t.L2(m) of (S)1.
We know from general duality theory that15

~S!215 ø
p,q>0

~H2p!2q
21.

The bilinear dual pairinĝ^•,•&& between (S)1 and (S)21 is connected to the sesquilinear inn
product onL2(m) by

^^ f ,w&&5~ f̄ ,w!L2~m! , f PL2~m!, wP~S!1. ~5!

Since the constant function 1 is in (S)1, we may extend the notion of expectation from integra
functions to distributionsFP(S)21:

Em~F!ª^^F,1&&.

The chaos decomposition introduces the following natural decomposition ofFP(S)21. Let

F (n)PSC8
^̂ n be given. Then there exists a distributionI (F (n)) acting on test functionswP(S)1 as

^^I ~F~n!!,w&&5n! ^F~n!,w~n!&.

We useI (F (n))5^:v ^ n:,F (n)&, as a formal notation for the distribution introduced above. A
FP(S)21 then has the unique decomposition

F5 (
n50

`

^:v ^ n:,F~n!&, ~6!

where the sum converges in (S)21, and we have29

^^F,w&&5 (
n50

`

n! ^F~n!,w~n!&, wP~S!1.

Now it is not hard to see that (H2p)2q
21 is a Hilbert space that can be described as follows:

~H2p!2q
215$FP~S!21uF~n!PSC8

^̂ n ,iFi2p,2q,21,`%.

A useful tool in order to characterize (S)21 is theS transform. TheS transform of elements
from (S)21 is defined as the dual paring with the Wick exponential; see~3!. Since the Wick
exponential is not an element of (S)1 theS transform of an elementF from (S)21 is defined only
locally, i.e.,

SF~g!ª^^F,:exp~^•,g&!:&&, gPU,SC ,

whereU is an open neighborhood of zero depending onFP(S)21.
In order to characterize (S)21 we need to define holomorphic functions.
Definition II.1: LetU,SC be an open neighborhood of zero in SC . The map

F:U→C

is holomorphic inU if it satisfies the following two properties.
(i) For each g0PU, gPSC , there exists a neighborhood Vg0 ,g around zero inC, such that the

map

z°F~g01zg!
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is holomorphic in Vg0 ,g .
(ii) For each gPU there exists an open setV,U containing g such that F(V) is bounded.
Furthermore, if we identify two functionsF1 andF2 coinciding on a neighborhood of zero

we can define Hol0(SC) as the space of germs of functions with the above properties.
The proof of the following characterization theorem is given in Ref. 29.
Theorem II.2: (i) If FP(S)21, then SFPHol0(SC).
(ii) For any FPHol0(SC) there exists a uniqueFP(S)21 such that SF5F.
As a consequence of this characterization we have the following corollary; for a proo

again refer to Ref. 29.
Corollary II.3: Let ~L, A, n! be a measure space andl°Fl a mapping fromL to (S)21.

Assume there exists an open neighborhoodU,SC of zero such that (i) SFl , lPL, is holomor-
phic onU; (ii) the mappingl°SFl(g) is measurable for every gPU; and (iii) there exists C
PL1(L,n) such thatuSFl(g)u<C(l) for all gPU and for n—almost alllPL.

Then there are p,qPN0 such thatF is Bochner integrable on(H2p)2q
21. In particular,

E
L

Fl dn~l!P~S!21.

Later on we also use theT transform of generalized functions, which is defined as

TF~g!ªexp~2 1
2ugu2!•SF~ ig !, FP~S!21, gPU. ~7!

An elementary calculation shows that theT transform is also given by

TF~g!5^^F,i exp~^•,g&!&&, gPU. ~8!

The characterization theorem and its corollary are also valid for theT transform.
For elements from (S)21 we can define the Wick product.
Definition II.4: LetF,CP(S)21. Then we define the Wick product by

FLCªS21~SF•SC!.

This is well defined because Hol0(SC) is an algebra and thus by the characterization theorem
(S)21 there exists a unique elementFLC such thatS(FLC)5SF•SC. Clearly, this multi-
plication is associative.

By induction, we can define Wick powers,

FLn5S21
„~SF!n

…

in (S)21, and by taking finite linear combinations of them also Wick polynomials of finite or
(n51

N anFLn can be defined in (S)21. Moreover, it is even possible to define Wick analy
functions in (S)21 under very general assumptions.

Theorem II.5: Let F be analytic in a neighborhood of the point z05Em(F) in C, F
P(S)21. Then FL(F) defined as FL(F)ªS21

„F(SF)… exists in(S)21.
For a proof we refer to Ref. 29.
Remark II.6: Let F be analytic at z05Em(F), FP(S)21, i.e., F has the power series repre

sentation F(z)5(nan(z2z0)n, z,anPC. Then the Wick series(nan(F2z0)Ln converges in S21

and

FL~F!5 (
n51

`

an~F2z0!Ln.
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III. EUCLIDEAN QFT IN THE FRAMEWORK OF WHITE NOISE ANALYSIS

A. OS axioms in terms of the T transform

In 1973, Nelson30 showed how to construct a relativistic QFT from a Euclidean Markov fie
Inspired by this, Osterwalder and Schrader6,31–34gave a set of axioms, where Schwinger functio
(Sn)nPN0

defined on the Euclidean space–time can be analytically continued to Wightman
butions, i.e., to vacuum expectation values of a relativistic QFT. The OS axioms for a s
scalar field are the following.

OS1 ~temperedness!: The sequence (Sn)nPN0
is a sequence of tempered distributions, wh

SnPSC8(R
dn) andS051. There existspPN and a sequence (sn)nPN of factorial growth such that

for all nPN the Schwinger functions fulfill the growth condition of the form

uSn~ f 1^¯^ f n!u<sn)
i 51

n

u f i up ,

where f 1 ,...,f nPSC(R
d). A sequence (sn)nPN of positive numbers is said to be of factori

growth if the existent constantsa,bPR1 such that

sn<a~n! !b, ;nPN.

OS2 ~Euclidean invariance!: EachSn is Euclidean invariant, i.e.,

Sn~E~a,L! f !5Sn~ f !, ; f PSC~R
dn!,

for all (a,L)PE1(Rd), the proper Euclidean group, where

E~a,L! f ~x1 ,...,xn!5 f „L21~x12a!,...,L21~xn2a!…,

for aPR, LPSO(d).
OS3 ~reflection positivity!: For each sequence (f n)nPN0

, wheref nPSC(R,
dn), f 0PC, and for

eachkPN0 ,

(
n,m50

k

Sn1m„~u f n!* ^ f m…>0,

where (u f n)(t1 ,xW1 ;...;tn ,xWn)5 f n(2t1 ,xW1 ;...;2tn ,xWn), t iPR, xW iPRd21 ~time reflection!,
f n* (x1 ,...,xn)ª f n(xn ,...,x1), and the overbar denotes complex conjugation. The spaceSC(R,

dn) is
the space of Schwartz test functions having support inR,

dn
ª$(t1 ,xW1 ;...;tn ,xWn)PRdnu0,t1,¯

,tn%.
OS4 ~symmetry!: For n>2 and allpPSn , the permutation group,

Sn~ f 1^¯^ f n!5Sn~ f p~1! ^¯^ f p~n!!,

where f 1 ,...,f nPSC(R
d).

OS5 ~cluster property!: For all aPR, aÞ0, andm,n>1,

lim
l→`

~Sm1n„f 1^ ...^ f m^ E~la,0!~ f m11^ ...^ f m1n!…2Sm~ f 1^ ...^ f m!Sn~ f m11^ ...^ f m1n!!50,

where f 1 ,...,f m1nPSC(R
d).

Remark III.1 The assumptions in axiom (OS1) can be slightly weakened.31 For technical
reasons, by using this formulation it is convenient for us, and since the sequences of gene
functions we consider fulfill (OS1), we do not lose anything by this slightly stronger formula

In the case of Euclidean Markov fields, and also in the more general case of Euc
reflection positivity fields,35 Schwinger functions fulfilling~OS1!–~OS5! are obtained as the mo
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ments of the Euclidean field. In this section we construct Schwinger functions (Sn
F)nPN0

that are

moments of generalized functionsFP(S)21 with Em(F)51. The moments (Sn
F)nPN0

, in general,
do not satisfy all axioms~OS1!–~OS5!. Nevertheless, we call them Schwinger functions beca
our aim is to work out a class of generalized functionsFP(S)21 such that their moments fulfil
all or a part of the OS axioms.

Definition III.2: Let f1 ,...,f nPS(Rd), nPN. The nth Schwinger function corresponding t
FP(S)21, Em(F)51, is given as

Sn
F~ f 1^¯^ f n!5^^F,^v, f 1&• ¯ •^v, f n&&&,

and S0
F5Em(F)51.

SinceP(S8),(S)1, the dual paring in the above definition is well defined.
The Schwinger functions corresponding toFP(S)21 can be calculated via theirT transform;

see~8!.
Proposition III.3~Wick theorem!: Let f 1 ,...,f nPS(Rd), nPN. Then the nth Schwinger func-

tions corresponding toFP(S)21 is given by

Sn
F~ f 1^¯^ f n!5~2 i !n

]n

]t1¯]tn
TF~ t1f 11¯1tnf n!U

t15¯tn50

.

Proof: By construction, every distributionFP(S)21 is of finite order, i.e., for eachF
P(S)21 there existp,qPN0 , such thatFP(H2p)2q

21. Furthermore, a straightforward calculatio
shows that for eachf PS(Rd) there existst0.0 such that exp(it^•,f&)P(Hp)q

1 for all 0<t,t0 , and

2 i
d

dt
exp~ i t ^•, f &!U

t50

5^•, f &,

w.r.t. the Hilbert space norm in (Hp)q
1. From this we can conclude that

S1
F~ f !52 i

d

dt
TF~ t f !U

t50

52 i
d

dt
^^F,exp~ i t ^•, f &!&&U

t50

.

Since (S)1 is an algebra under multiplication and this multiplication is continuous, we can d
the pointwise productF•wP(S)21 of a distributionFP(S)21 with a test functionwP(S)1 via
the dual paring. Utilizing this product, the proposition follows by an induction argument.j

Proposition III.4: For each generalized functionFP(S)21 with Em(F)51, the Schwinger
functions(Sn

F)nPN0 fulfill the axioms (OS1) and (OS4). Furthermore, (OS2) is fulfilled if TF is
Euclidean invariant.

Proof: The Schwinger functions (Sn
F)nPN0

are symmetric by definition. Temperedness a
factorial growth follows immediately from the fact thatFP(S)21. Thus, ~OS1! and ~OS4! are
fulfilled.

Assume thatTF is Euclidean invariant. Then we apply Proposition III.3 to calculate thenth
Schwinger function corresponding toF; of course, it is also Euclidean invariant. j

B. Euclidean-invariant distributions

In this section we construct a class of Euclidean-invariant generalized functions. W
generalized functions from (S)21 Euclidean invariant if theirT transform is Euclidean invariant
Our construction is motivated by the Euclidean strategy for constructing interacting field the
see, e.g., Refs. 1 and 2 and the references therein. In the framework of a white noise analy
can define the Gaussian random process indexed byH5L2(Rd) as

f~h!ª^•,h&, hPL2~Rd!.
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As discussed in Sec. II A,f(h) is an element ofL2(m) for all hPL2(Rd). We are interested in the
Gaussian random processf at time thattPR and at the pointxWPRd21, where we writexPRd as
x5(t,xW ). f(t,xW ) does not exist as a square-integrable function, but we can define

f~ t,xW !ª^•,d t,xW&, P~S!21,

see~6! whered t,xWPS8(Rd) is the Dirac delta function at point (t,xW )PRd.
Assume thatH(z)5(k50

` (1/k!)Hkz
k, zPU,C, is a holomorphic function inU, whereU is

an open neighborhood ofEm„f(t,xW )…50. Then by using Theorem II.5, we can define

HL
„f~ t,xW !…5 (

k50

`
1

k!
Hkf~ t,xW !LkP~S!215 (

k50

`
1

k!
Hk^:v

^ k:,d t,xW
^ k&;

also see Remark II.6.
Next, we want to define the integral

E
Rd

HL
„f~x!…ddx. ~9!

This can only be possible if we assume thatH050.
Theorem III.5: Let H be holomorphic at zero such that H(0)50, then (9) exists as a Bochne

integral in a suitable subspace of(S)21.
Proof: Our aim is to apply Corollary II.3. Letr .0 be in the radius of convergence of th

Taylor expansion ofH at the origin. We define

U5$gPSCu sup
xPRd

$~11uxu2!dug~x!u%,r %.

It is easy to check thatU is an open neighborhood of zero. ForgPU we have

S~HL
„f~x!…!~g!5 (

k51

`
1

k!
Hk^g

^ k,dx
^ k&5 (

k51

`
1

k!
Hkg~x!k<(

k51

`

ur 21g~x!ukuHku
r k

k!

<
1

~11uxu2!d ~11uxu2!dug~x!ur 21(
k51

`

uHku
r k

k!
<

1

~11uxu2!d (
k51

`

uHku
r k

k!
.

~10!

Obviously,S(HL
„f(•)…)(g) is measurable for allgPU. With the estimate~10! the holomorphy

of S(HL
„f(x)…) is clear. Since (11uxu2)2dPL1(Rd), all assumption required in Corollary II.3

are fulfilled and the theorem is proved. j

Corollary III.6: Let the function H be as in Theorem III.5. Then the generalized function,

FHªexpLS 2E
Rd

HL
„f~x!…ddxD ,

is an elements of(S)21. Its T transform is given by

TFH~g!5expS 2E
Rd

H„ig~x!…1
1

2
g~x!2 ddxD ,

for all g in a neighborhoodU,SC of zero. In particular, Em(FH)51.
Proof: This corollary is an immediate consequence of Theorem II.5. For the calculation o

T transform, we used~7!. Observe thatEm(FH)5TFH(0). j
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Remark III.7: (i) Since the Lebesgue measure onRd is Euclidean-invariant TFH is Euclidean
invariant.

(ii) Consider the case in which the function F(s)ª2„H( is)1 1
2s

2
…, sPR, is a Lévy charac-

teristic, i.e.,

F~s!5 ias2
s2s2

2
1E

R\$0%
S exp~ irs !212

irs

11r 2Ddn~r !, sPR,

where aPR, s>0, and the measuren satisfies the following condition:

E
R\$0%

min$1,r 2%dn~r !,`.

Then by the Le´vy–Khinchine theorem36 we know that there exists a probability measure PH on
S8(Rd) such that

TFH~ f !5E
S8~Rd!

exp~ i ^v, f &!dPH~v!, f PS~Rd!.

This implies that the Schwinger functions(Sn
FH)nPN0

are the moments of the measure PH . These

measures are called generalized white noise measures.
Next, we enlarge the class of Euclidean-invariant distributions. We do this by convol

with kernels associated to Euclidean-invariant operators. This idea is inspired by the metho
in Ref. 5. There the authors started with Euclidean-invariant measures from the Le´vy–Khinchine
class and then they constructed image measures by convoluting the corresponding gen
white noise with kernels associated to Euclidean-invariant operators. These image measu
called convoluted generalized white noise measures.

Let G:S(Rd)→S(Rd) be a linear continuous mapping. Then by the well-known kernels th
rem there exists a distributionKPS8(R2d), hereafter called the kernel ofG, such that

Gf ~x!5E
Rd

K~x,y! f ~y!dy, f PS~Rd!, xPRd,

in the distributional sense. It is clear that the adjoint operatorG* :S8(Rd)→S8(Rd) is a measurable
transformation from (S8(Rd),Cs„S8(Rd)…) into itself. Furthermore, we assume thatG is Euclidean
invariant, i.e.,GE(a,∧)5E(a,∧)G for all E(a,∧)PE1(Rd). This implies thatG is translation invari-
ant, thus, its kernelK has the formK(x,y)5G(x2y).7 The action ofG on test functions from
S(Rd) @and by duality onS8(Rd)] is, by convolution,

Gf ~x!5E
Rd

G~x2y! f ~y!dy, f PS~Rd!, xPRd.

We can also writeGf asG* f . From now on we assumeG to be essentially self-adjoint inL2(Rd),
with S(Rd) as a core. Then the convolution of the Gaussian random processf with G is defined
as

~G* f!~h!~v!ª^G* v, f &5^v,G* f &, vPS8~Rd!, f PS~Rd!.

This definition can also be generalized from test functionsf to tempered distributions. Then th
process is in (S)21.

Example III.8: LetD be the Laplace operator onRd. Let K(x,y)5Ga(x2y) be the Green’s
function of the pseudodifferential operatorGa5(2D1m0

2)2a for some arbitrary m0.0 and 0
,a. It is given by
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Ga~x!5
1

~2p!d E
Rd

exp~ ikx!

~ uku21m0
2!a dk, xPRd,

where the integral has to be understood in the sense of a Fourier transform of a tem
distribution. One easily proves thatGa :S(Rd)→S(Rd) is continuous, essentially self-adjoint i
L2(Rd) with S(Rd) as a core, and Euclidean invariant.

Let FP(S)21 be a generalized function. We define its convolution with a Euclidean inva
kernelG by

TFG~g!ªTF~G* g!, gPU,SC~R
d!,

where U is an open neighborhood of zero. Since the operatorG is linear and continuous, the
characterization, Theorem II.2, implies thatFG is a well-defined and unique element in (S)21.

Theorem III.9: Let H be as in Theorem III.5 and let the operatorG be continuous in S(Rd),
essentially self-adjoint in L2(Rd) with S(Rd) as a core, and Euclidean invariant. Then the ge
eralized functionFH

GP(S)21 is Euclidean invariant and can be written as

FH
G5expLS 2E

Rd
HL

„G* f~x!…ddx1
1

2
^:•^ 2:,~G^ 221!Tr& D ; ~11!

here TrPS8(Rd) ^̂ 2 denotes the trace kernel defined by^Tr, f ^ g&5( f ,g), f ,gPS(Rd). The

Schwinger functions(Sn
H,G)nPN0

(with the abbreviationSH,G5SFH
G
) fulfill the axioms(OS1),

(OS2), and (OS4).
Remark III.10: In the case where F is a Le´vy characteristic, see Remark III.7(ii), the measu

PH
G corresponding to the distributionFH

G is an image measures of the measure PH , more con-
cretely, PH

G(A)5PH(G21A), APCs„S8(Rd)…
Proof of Theorem III.9:Formula~11! is clear by taking itsT transform. Euclidean invarianc

follows from the Euclidean invariance ofG and FH . Obviously,Em(FH)51, thus the theorem
follows by an application of Proposition III.3. j

Example III.11: The choice H[0 andG1/25(2D1m0
2)21/2 gives the free Euclidean field wit

mass m0.0; see Example III.8. Theorem III.9 implies that the corresponding measure P0
G1/2 has

the generalized density

F0
G1/25expL

„

1
2^:•

^ 2:,~G1/2
^ 221!Tr&…,

w.r.t. the Gaussian white noise measure.
Remark III.12: Consider the Hilbert space Nm0

, which is defined as the closure of S(Rd) w.r.t.

the Hilbert space normu•um0
given by the scalar product

~ f ,g!m0
ªE

Rd
f ~x!~2D1m0

2!21g~x!dx, f ,gPS~Rd!, m0.0.

The random process indexed byH5Nm0
:

f~h!ª^•,h&m0
, hPNm0

,

is the free Euclidean field with mass m0 . Since Nm0
fulfills the assumptions on the Hilbert spac

H required in Sec. II A, it is also possible to take the measure corresponding to the free Euc
field as a reference measure for the Euclidean-invariant distributions constructed above (
the usual choice in constructive Euclidean QFT). Here we have chosen the white noise m
because it has the identity operator as a covariance operator. This is a reasonable choice f
approach, which involves a convolution with the operator kernel G.
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In Ref. 5 the authors studied Schwinger functions (Sn
H,G)nPN0

that are moments of the mea

suresPH
G corresponding to the generalized functionsFH

G , whereF(s)52„H( is)1 1
2s

2
…, sPR, is

a Lévy characteristic; see Remark III.7~ii ! and Remark III.10 For the truncated Schwinger fun
tions the authors worked out explicit formulas. Before we give them let us recall the definiti
truncated Schwinger functions.

A partition of the ordered set$1,...,n% is a family of ordered subsetsI 15$ i 1 ,...,i k(1)%,..., I l

5$ i 18 ,...,i k( l )8 %, so that i 1,¯, i k(1) ,...,i 18,¯, i k( l )8 and so thatø1< j < l I j5$1,...,n% and
I jùI q5B, j Þq. The set of all partitions of$1,...,n% we denote asP(n).

Definition III. 13: The truncated Schwinger functions(Sn,T)nPN0
corresponding to a given

sequence of Schwinger functions(Sn)nPN0
are defined recursively by the relation

Sn~ f 1^¯^ f n!5(
P~n!

Sk~1!,T~ f i 1
^¯^ f i k~1!

!• ¯ •Sk~ l !,T~ f i
18

^¯^ f i
k~ l !8 !,

where f 1 ,...,f nPS(Rd), n>1.
Proposition III.14: Let H(z)5(n50

` (1/n!)Hnzn, zPU,C, andG be as in Theorem III.9 and
f 1 ,...,f nPS(Rd), n>1. Then the truncated Schwinger functions(Sn,T

H,G)nPN are given by

Sn,T
H,G~ f 1^¯^ f n!52HnE

Rd
G* f 1~x!• ¯ •G* f n~x!ddx, nÞ2,

S2,T
H,G~ f 1^ f 2!5~2H211!E

Rd
G* f 1~x!•G* f 2~x!ddx. ~12!

Proof: In the case whereF(s)52„H( is)1 1
2s

2
…, sPR is a Lévy characteristic, this follows

from Proposition 3.9 in Ref. 5 and the uniqueness of the truncated Schwinger functions
coefficients in front of the integrals corresponding to thenth truncated Schwinger function in~12!
are just thenth derivatives of the Le´vy characteristic divided byi n. Hence, for a generalH as in
Theorem III.9 these coefficients are given by thenth derivative of2„H( iz)1 1

2z
2
…, zPU. j

In Corollary 4.7. of Ref. 5, the authors have proved the cluster property of the Schw
functions (Sn

H,G)nPN0
arising from measures. The proof given there easily generalizes to our

Theorem III.15: Let FH
GP(S)21 be as in Theorem III.9. Then the corresponding Schwin

functions(Sn
H,G)nPN0

fulfill the cluster property (OS5), i.e., for all aPR, aÞ0, and m,n>1,

lim
l→`

~Sm1n
H,G

„f 1^¯^ f m^ E~la,0!~ f m11^¯^ f m1n!…2Sm
H,G~ f 1^¯^ f m!

3Sn
H,G~ f m11^¯^ f m1n!!50,

where f1 ,...,f m1nPS(Rd).
Proof: See the proof of Corollary 4.7 in Ref. 5. There the authors proved the cluster pro

in the case whereF(s)52„H( is)1 1
2s

2
…, sPR is a Lévy characteristic. The idea is to express t

cluster property of the Schwinger functions as an equivalent property of the truncated Schw
functions. Since their proof works independently of the choice of the coefficients in front o
integrals corresponding to thenth truncated Schwinger function, see~12!, it easy generalizes to
our case. j

Remark III.16: The class of Schwinger functions(Sn
H,G)nPN0

corresponding to the distribu-

tionsFH
GP(S)21 as in Theorem III.9 differs from the class of Schwinger functions correspon

to the convoluted generalized white noise measures in Ref. 5. Let us compare the propertie
Lévy characteristics F that have been used in Ref. 5 with the properties of the functions
employ, where F(s)52„H( is)1 1

2s
2
…, sPO,R.
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We need that the function H is holomorphic at zero and H(0)50. This is our restriction in
choosing the coefficients in front of the integrals corresponding to the nth truncated Schwinger
function; see (12).

In Ref. 5 the authors needed the condition that the measuren in the representation of the Le´vy
characteristic, see Remark III.7(ii), has finite moments to all orders. This implies tha
PC`(R), but F does not have to have a holomorphic extension. Furthermore, also F(0)50 and
F cannot be a polynomial of order larger than 2. That is, if only finite many Hn ,nPN, are
different from zero then all Hn , n>3, have to be zero. Furthermore, the constant2Hn is the nth
moment of the measuren for n>3.

IV. ON REFLECTION POSITIVITY, ANALYTIC CONTINUATION, AND QFT WITH
INDEFINITE METRIC

A. Reflection positivity

In Sec. III B, we proved all OS axioms for Schwinger functions (Sn
H,G)nPN0

corresponding to

the distributionsFH
GP(S)21, H,G as in Theorem III.9, except for reflection positivity.

In Ref. 5 the authors present a partial negative result on reflection positivity of Schw
functions (Sn

H,G)nPN0
, which are moments of convoluted generalized white noisePH

G . Consider a
Lévy characteristic represented as in Remark III 7~ii !. The part arising from the measuren is
called the Poisson part and the other part is called the Gaussian part~the reason for these name
and decomposition lies in the properties of the corresponding measures!. For the Schwinger
functions (Sn

H,G)nPN0
that are moments of convoluted generalized white noisesPH

G with the
nonzero Poisson in part in Ref. 5, some examples have been constructed that do not h
reflection positivity property. Roughly speaking, the Schwinger functions (Sn

H,G)nPN0
do not have

the reflection positivity property, if the terms inSn
H,G emerging from the ‘‘interaction’’~Poisson

part! are large in comparison with the ‘‘free’’ terms~the Gaussian part!. More details on this
considerations can be found in Ref. 5, Remark 5.12.

We discuss the question of whether reflection positivity holds or does not hold in the
section in terms of the Wightman functions; see Theorem IV.2 and Remark IV.3.

B. Analytic continuation to Wightman functions

If a sequence of Schwinger functions fulfills all OS axioms one can perform the ana
continuation to Wightman functions via the reconstruction theorem.6 These Wightman functions
fulfill the Wightman axioms

W1 ~temperedness!: The sequence (Wn)nPN0
is a sequence of tempered distributions, wh

WnPSC8(R
dn) andW051. These functions fulfill the Hermiticity condition

Wn~ f !5Wn~ f !!.

W2 ~Poincare´ invariance!: EachWn is Poincare´ invariant, i.e.,

Wn~P~a,L! f !5Wn~ f !, ; f PSC~R
dn!,

for all (a,L)PP1
↑ (Rd), whereP1

↑ (Rd) is the proper, orthochronous Poincare´ group. The defini-
tion of P(a,L) f is analog to the definition of Euclidean transformations inSC(R

dn); see~OS2!.
W3 ~positivity!: For each sequence (f n)nPN0

, where f nPSC(R
dn), f 0PC, and eachkPN0 ,

(
n,m50

k

Wn1m~ f n
!

^ f m!>0.

W4 ~locality!: If for n>2 for some 1< j <n21:^xj 112xj ,xj 112xj&M,0, then

Wn~x1 ,...,xj ,xj 11 ,...,xn!5Wn~x1 ,...,xj 11 ,xj ,...,xn!,
                                                                                                                



e.,

nc-
e done.
ontin-
l-

ay as
par-

n

5401J. Math. Phys., Vol. 40, No. 11, November 1999 Construction of relativistic quantum fields . . .

                    
where^x,x&M5t22uxW u2, x5(t,xW )PRd, is the Minkowski inner product.

We remark that by~W2! everyWn is actually a distribution in the difference variables, i.
there is a tempered distributionwnPSC8(R

d(n21)), defined as

wn~x12x2 ,...,xn212xn!ªWn~x1 ,...,xn!.

The Fourier transform onSC(R
dn) andSC8(R

dn), respectively, we denote byF or ˆ and is taken
w.r.t. the Euclidean inner product. The forward mass cone of massm0 is defined as

Vm0

1
ª$pPRdup2.m0

2, p05^p,e0&M.0%, m0>0,

wheree05(1,0,0,0). ByVm0

!,1 we denote its closure andV0
1 is called a forward light cone. The

backward mass cone is defined byVm0

2
ªuVm0

1 whereu again denotes the time reflection.

W5 ~spectral condition!: For any n>2 the Fourier transformŵn has support in the
(n11)-fold product of the forward light cone (V0

!1)n21.
W6 ~cluster property!: For anyn,mPN and any space likeaPRd, i.e., ^a,a&M,0,

lim
l→`

~Wm1n„f 1^¯^ f m^ Tla~ f m11^¯^ f m1n!…

2Wm~ f 1^¯^ f m!Wn~ f m11^¯^ f m1n!!50,

for f 1 ,...,f m1nPSC(R
d), whereTla denotes the translation byla.

Without reflection positivity we cannot perform the analytic continuation to Wightman fu
tions via the standard reconstruction theorem. Nevertheless, an analytic continuation can b
Using the results from the theory of Laplace transforms in Ref. 5, the authors analytically c
ued the truncated Schwinger functions (Sn,T

H,Ga)nPN0
, which are moments of convoluted genera

ized white noise, to truncated Wightman functions (Wn,T
H,Ga)nPN0

for aP(0,1
2#; see Example III 8.

The truncated Wightman functions are related to the Wightman functions in the same w
truncated Schwinger functions are related to Schwinger functions; see Definition III.13. In
ticular, the authors found an explicit formula forŴn,T

H,Ga, the Fourier transform of thenth truncated
Wightman function. In order to give these formulas we introduce the notations

ma
1~p!5~2p!2d/2 sin~pa!1$p2.m

0
2,p0.0%~p!

1

~p22m0
2!a , pPRd, m0.0,

ma
2~p!5~2p!2d/2 sin~pa!1$p2.m

0
2,p0,0%~p!

1

~p22m0
2!a , aP~0,1

2#,

ma~p!5~2p!2d/2
„cos~pa!1$p2.m

0
2%~p!11$p2,m

0
2%~p!…

1

up22m0
2ua

,

where1A is the indicator function of the subsetA,Rd. In Proposition 7.12. and Corollary 7.13 i
Ref. 5, it is proved that in the case whenF(s)52„H( is)1 1

2s
2
…, sPR is a Lévy characteristic and

aP(0,1
2#, the Fourier transform of thenth truncated Wightman function forn>3 is given by

Ŵn,T
H,Ga52Hn~2p!d2~n21!S (

j 51

n

)
l 51

j 21

ma
1~pl !ma~pj ! )

l 5 j 11

n

ma
2~pl !D dS (

l 51

n

pl D . ~13!

In the casen52 one has to distinguish between the two casesaP(0,1
2) and a5 1

2. For a

P(0,1
2) the two-point function is given by
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Ŵ2,T
H,Ga5~2H211!~2p!d2„ma~p1!ma

2~p2!1ma
1~p1!ma~p2!…d~p11p2! ~14!

and

Ŵ2,T
H,G1/25~2H211!~2p!d111$p

1
0.0%~p1!d~p1

22m0
2!d~p11p2! ~15!

is the Fourier transform of the well-known two-point function of the relativistic free field.
The truncated Wightman functionWn,T

H,Ga is an analytic continuation of the truncate

Schwinger functionSn,T
H,Ga in the sense that

Sn,T
H,Ga

„T~z1
0,R~z1W !,...,T~zn

0!,R~znW !…5FŴn,T
H,Ga~z!, zPC,

dn , ~16!

where

C,
dn
ª$~z1

0,z1W ;...;zn
0,znW !PCdnuT~zj 11

0 2zj
0!.0, j 51,...,n21,T~zjW !50,R~zj

0!50, j 51,...,n%

@R(z) is the real part andT(z) is the imaginary part of a~vector-valued! complex variablez#. The
function Ŵn,T

H,Ga is determined uniquely by this requirement. Furthermore,Wn,T
H,Ga

„R(z)… is the

boundary value ofFŴn,T
H,Ga(z) for T(zj 112zj )→0 insideTn, i.e., the relation

lim
G{T~zj 112zj !→0

FŴn,T
H,Ga~z!5Wn,T

H,Ga
„R~z!…, ~17!

holds in the sense of tempered distributions in the argumentR(z)PRd. HereTn is the tubular
domain inCdn with baseV0

1 , i.e.,

Tn
ª$~z1 ,...,zn!PCdnuzj 112zjPRd1 iV0

1 , j 51,...,n21%,

andG,V0
1 is a subcone ofV0

1 such thatGø$0% is closed inRd.

Theorem IV.1: Let H be as in Theorem III.5 andGa as in Example III.8, aP(0,1
2#.

(i) The Schwinger functions(Sn
H,Ga)nPN0

can be analytically extended to Wightman functio

(Wn
H,Ga)nPN0

in the sense of (16) and (17).

(ii) The sequence(Wn
H,Ga)nPN0

satisfies the axioms (W1), (W2), and (W4)–(W6).

(iii) The Fourier transform of the truncated Wightman functions are given by the form
(13), (14), and (15), respectively.

(iv) For 0,a, 1
2, H150, H2,1, Ŵ2

H,Ga5Ŵ2,T
H,Ga admits a Ka¨llen–Lehmann representation

Therefore, the corresponding Gaussian Euclidean field with covariance functionS2
Ha is reflection

positive but not Markov. Fora5 1
2 the corresponding Gaussian Euclidean field is the Markov f

field of mass m0 .
(v) The sequence(Wn

H,Ga)nPN0
fulfills the strong spectral condition with mass gap m0 , i.e.,

ŵn,T
H,Ga is supported in the forward mass cones(Vm0

!1)n21 for any n>2.

Proof: ~i! Let us consider the Fourier transformed truncated Wightman functions in~13!, ~14!,
and~15!. If we now chose coefficientsHn corresponding to a general functionH as assumed in the
theorem, then the corresponding truncated Wightman functionsWn,T

H,Ga are analytic continuations

of the truncated Schwinger functionsSn,T
H,Ga in the sense of~16! and ~17!. Of course, the corre-

sponding Wightman functionsWn
H,Ga are analytic continuations of the truncated Schwinger fu

tions Sn
H,Ga in the same sense.

~ii !–~v! In the case where the Wightman functions correspond to Schwinger function
tained from convoluted generalized white noise this was proved in Ref. 5, Sec. 7.5. Since
case we only have a different coefficientHn , the same is true for a general functionH as assumed
in the theorem. j
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Now let us return to the question of whether positivity holds or not. In terms of the Schw
functions, this question has been discussed in Ref. 5, see Sec. IV A. The following theorem
immediate consequence of the Jost–Schroer theorem.37–40

Theorem IV.2: Let H be as in Theorem III.5, H150, H2,1. Then the following statement
are equivalent

(i) The sequence of Wightman functions(Wn
H,G1/2)nPN0

fulfills the positivity condition (W3).

(ii) For n>3 vanish the truncated Wightman functions, i.e.,

Wn,T
H,G1/250, n>3.

Proof: Since the two-point functionW2
H,G1/2 is the two-point function of the relativistic free

field with massm0 and the sequence of Wightman functions (Wn
H,G1/2)nPN0

fulfills ~W1!, ~W2!,
and ~W4!–~W6!, see Theorem IV.1, the statement of Theorem IV.2 is just the statement o
Jost–Schroer theorem. j

Remark IV.3: (i) Theorem IV.2 implies together with the explicit formulas for the Fou
transform of the truncated Wightman functions, see (13), that in the casea5 1

2 positivity holds if
and only if Hn50, n>3.

~ii ! For a5 1
2, Theorem IV.2 implies the negative result on reflection positivity of

Schwinger functions derived in Ref. 5, see Sec. II A.
~iii ! Under certain assumptions on the measure in the Ka¨llen–Lehmann representation, on

can also prove a Jost–Schroer theorem for generalized free fields. It is still an open qu
whether this generalization of the Jost–Schroer theorem can be applied to the sequence of

man functions (Wn
H,Ga)nPN0

, aP(0,1
2); see Theorem IV.1. One has to check whether one

prove a Jost–Schroer theorem for generalized free fields having a Ka¨llen–Lehmann representatio

as the two-point functionsŴ2,T
H,Ga, aP(0,1

2); see Theorem IV.1~iv!.

C. QFT with indefinite metric

In Sec. IV B we performed the analytic continuation from Schwinger functions to Wight
functions. The main interesting object, however, is the underlying quantum field theory. Gi
family (Wn)nPN obeying~W1!–~W6! by the Wightman reconstruction theorem,41 there exists an
essentially unique field theory obeying the Ga˚rding–Wightman axioms for a single Hermitia
scalar field. Since for no nontrivial cases we proved positivity of the sequence of tem
distributions (Wn

H,Ga)nPN0
as in Theorem IV.1, we cannot reconstruct the field theory by

Wightman reconstruction theorem. The positivity conditions is used in order to construct a p
cal Hilbert space as the closure of the Borchers algebra. This is not possible without the po
condition.

Morchio and Strocchi10,12 considered quantum field theories in which not all Wightman a
oms are satisfied. For Wightman functions not fulfilling the positivity condition Morchio
Strocchi introduced the so-called modified Wightman axioms of indefinite metric QFT. In the
of axioms, the positivity condition is substituted by the weaker Hilbert space structure con
~HSSC!:

W83 ~HSSC!: There exists a sequence (pn)nPN , where for allnPN,pn :S(Rnd)→@0,̀ ) is a
Hilbert seminorm, such that

uWm1n~ f !
^ g!u<pm~ f !pn~g!,

for all f PSC(R
dm) andgPSC(R

dn),n,mPN.
The HSSC permits the construction of a Hilbert spaceK and a scalar, local quantum fieldf

associated to a given collection of tempered distributions (Wn)nPN0
fulfilling the modified Wight-

man axioms~W1!, ~W2!, (W83), ~W4!, and~W5!. Moreover, in Ref. 10, the following theorem i
proved.
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Theorem IV.4: Let (Wn)neN0
be a sequence of Wightman functions that fulfill (W1), (W

(W83), (W4), and (W5). Then there exists:
(i) a Hilbert spaceK with scalar product(•,•)K , a distinguished vacuum vectorVPK, and

an indefinite inner product(•,•)T , which differs from(•,•)K only by a self-adjoint metric opera
tor T with T251, i.e., (•,•)T5(•,T•)K ;

(ii) a T-symmetric and local quantum fieldf, which is a distribution valued field operato
f(x) acting on a dense coreD,K with adjoint f:(x)5Tf(x)T and the commutator

@f~x!,f~y!#50,

for x and y space-like separated. Furthermore,f is connected with the Wightman functions of t
theory by

Wn~x1 ,...,xn!5„V,f~x1!¯f~xn!V…T ; and

(iii ) a T unitary representationU of the orthochonous Poincare´ group onK, i.e., a represen-
tation with TU!T5U21, such thatV is invariant underU and f(x) transforms covariantly,

U~a,L!f~x!U~a,L!215f„L21~x2a!…, ~a,L!PP1
↑ ~Rd!.

Furthermore, U fulfills the following spectral condition:

E
Rd
„C1 ,U~a,1!C2…T exp~2 iqa!da50, ;C1 ,C2PD,

if q¹V0
!1 .

A quadruple („K,(•,•)K ,V…,T,f,U) is called a QFT with indefinite metric.
Theorem IV.5: The Wightman functions(Wn

H,Ga)nPN0
as obtained in Theorem IV.1 fulfill the

modified Wightman axioms (W1), (W2),(W83), (W4), and (W5) (of Morchio and Strocchi).
Proof: In Ref. 13, Theorem 4.1, this is proved for the Wightman functions correspondin

the moments of convoluted generalized white noise. The proof is done under the use of e
formulas for the Fourier transform of the truncated Wightman functions and works for an arb
sequence of coefficients (Hn)nPN ; see~13!, ~14!, and~15!. Thus, also in our case. j

In general the seminorms in the HSSC are not invariant under transformations of the
chonous Poincare´ group. Hence, in general, the metric operatorT does not commute with
U(a,L),(a,L)PP1

↑ (Rd), and the representation of the orthochonous Poincare´ group onH is not
unitary. In our case, however, the seminorms in the HSSC at least can be chosen tran
invariant.

Theorem IV.6: For the sequence of Wightman functions(Wn
H,Ga)nPN0

as in Theorem IV.5, the

Hilbert seminorms in the HSSC can be chosen translations invariant. Thus, there exists a H
space structure such that@U(a,1),T#50, aPRd, and the representation of the translation grou
U(a,1) is unitary. If P denotes the generator ofU(a,1), then spec(P),V0

!1 .
Proof: In Ref. 42, Theorem 4.3, this is proved for the Wightman functions correspondin

the moments of convoluted generalized white noise. By the same arguments as in the p
Theorem IV.5, their proof generalizes to our case. j

Remark IV.7: (i) We remark that the cluster property of Wightman functions is not an ite
the modified Wightman axioms, since, in general, it does not imply the uniqueness of the v
and irreducibility of the field algebra as it does in the standard QFT.

(ii) The uniqueness of the vacuum cannot hold if T commutes withU(a,1),aPRd, and
TV¹CV, since in this case TV is translations invariant.

(iii) We observe that there exist sequences of Wightman functions associated to seque
Schwinger functions that are not moments of measures, fulfilling the modified Wightman axi
Morchio and Strocchi.
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Derivative expansion of the effective action for quantum
electrodynamics in 2 11 and 311 dimensions
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The derivative expansion of the one-loop effective action in QED3 and QED4

~quantum electrodynamics! is considered. The first term in such an expansion is the
effective action for a constant electromagnetic field. An explicit expression for the
next term containing two derivatives of the field strengthFmn , but exact in the
magnitude of the field strength, is obtained. The general results for both fermion
and scalar electrodynamics are presented. The cases of pure electric and pure mag-
netic external fields are considered in detail. The Feynman technique for the per-
turbative expansion of the one-loop effective action in the number of derivatives is
developed. ©1999 American Institute of Physics.@S0022-2488~99!00711-2#

I. INTRODUCTION

Quantum electrodynamics~QED! is known to be the best studied example of quantum fi
theory. Mainly, this is due to the weakness of the fine structure~coupling! constant,a'1/137,
which allows us to perform many perturbative calculations as power series ina with an incredibly
high accuracy. Despite the smallness ofa, even in the realm of quantum electrodynamics, th
are some questions that theory has not answered yet. In this paper, in particular, we add
problem of derivation of the low-energy effective action which at present is solved only par
for QED.

The low-energy effective action in quantum electrodynamics describes the dynamics
electromagnetic field, assuming that the production of the on shell fermions is absent or neg
Apparently, such a description is self-consistent only if the fermions are massive and the c
teristic photon energies are sufficiently small. The mentioned two conditions, as is clea
necessary to suppress the process of the particle–antiparticle pair creation~on-shell!.

Intuitively, the low-energy effective theory is obtained from quantum electrodymanic
‘‘integrating out’’ the fermion field. After doing so, one arrives at a nonlinear theory that invo
only the electromagnetic field degrees of freedom. In terms of theS-matrix language, one consid
ers just those processes in QED which contain only photons among the asymptotic sca
states. The fermions, on the other hand, appear only through the internal loops by produc
kinds of photon vertices.

The problem of deriving the effective action is an old one. Its roots go back to the well kn
papers of Heisenberg and Euler,1 and Weisskopf.2 There, for the first time, the effective action i
QED ~for the case of a constant electromagnetic field! was derived. From the viewpoint o
application, the derived effective action contains, for example, the information on the pho
photon scattering at the tree level. It was this scattering process, in fact, that motivated co
ation of the problem in Refs. 1,2, in the first place. Later, some further progress was achiev
Schwinger3 who, by using the proper time technique, rederived the result of Refs. 1,2 an

a!On leave of absence from Bogolyubov Institute for Theoretical Physics, 252143 Kiev, Ukraine.
54060022-2488/99/40(11)/5406/34/$15.00 © 1999 American Institute of Physics
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addition, gave a nice interpretation to the imaginary part of the effective action in the cas
constant electric field.

Obviously, the next most natural step in deriving the low-energy effective action in Q
would be to take into account the effect of small deviations from the constant configuration
field. In other words, the problem is to obtain the effective action as an expansion in pow
derivatives of the field strength. It turns out, however, that the latter is very difficult to accom
~see Refs. 4,5 for some early attempts in this direction! unless the weak field approximation
used. In this connection it is appropriate to mention that, in the weak field limit, the expans
known up to four derivatives with respect to the field strength.6 Our approach, on the other han
does not involve any assumptions about the weakness of the background field.

A real progress in solving the problem started with the result of Ref. 7, where an elabo
method, which, in principle, leads to a general result for the derivative expansion in QED
presented. Because of the complicated character of the method, however, the explicit exp
applicable to the most general case of the electromagnetic field background was not pre
there. Recently, the derivative expansion of the effective action was obtained in the ca
~211!-dimensional QED.8 This latter is a quite general result, containing all the terms quadrat
derivatives of the field strength with respect to the space–time coordinates. Finally, in our
ous paper,9 we obtained a similar result for the effective action but in~311!-dimensional QED. As
in the~211!-dimensional case, it was given in a covariant form valid for the most general con
component of the electromagnetic field background what, as we will see later, is a much
complicated problem than that in 211 dimensions.

For completeness, we mention that some related interesting results were obtained in R
for QED and in Refs. 11,12 for non-Abelian gauge theories.

In this paper we extend our method, which was originally presented for the case of~311!-
dimensional QED,9 to QED in 211 dimensions. In particular, we obtain the derivative expans
of the effective action which includes up to two space–time derivatives of the electromag
field and, further, we formulate the Feynman rules for the perturbative expansion of the on
effective action in the number of derivatives. We also derive the explicit expressions fo
derivative corrections to the imaginary part of the effective action in an external electric field
finally, as a by-product, we resolve the controversy posed in Ref. 13 where a result differen
that of Ref. 8 was presented.

The paper is organized as follows. In Sec. II we outline the general method developed
previous paper.9 Section III is devoted to solving some technical problems in dealing with fu
tions of the matrix argumentFmn . Then, in Secs. IV and VII, we present the main results of
paper, namely, the derivative expansions for spinor and scalar QED, respectively. In Secs
and Secs. VIII–IX we calculate the derivative expansions for two particular cases of the ex
electromagnetic field, the purely magnetic and purely electric backgrounds, in both 211 and 311
dimensions. Finally, in Sec. X, we develop the Feynman diagram technique for generatin
perturbative expansion in the number of derivatives. Four appendices contain different for
used throughout the main text.

II. DERIVATIVE EXPANSION OF THE ONE-LOOP EFFECTIVE ACTION IN QED

Let us start from the general formalism which was originally developed in Ref. 9 for~311!-
dimensional quantum electrodynamics. While doing so, we will notice that, to a great exten
method does not depend on the dimension of the space–time. We will pay special attentio
those places where it does depend.

In this paper we restrict ourselves to the one-loop effective action. This is the same ap
mation which was used by Schwinger3 in the case of a constant external electromagnetic fiel

As is known, the one-loop effective action in QED reduces to computing the fermion d
minant
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W~1!~A![E dnxL~1!52 i ln det~ i D̂2m!52
i

2
ln detS Dm

2 1
e

2
smnFmn1m2D

52
i

2 E dnx^xutr lnS Dm
2 1

e

2
smnFmn1m2D ux&. ~1!

Here D̂5gmDm and the covariant derivative isDm5]m1 ieAm . By definition, smn

5 i @gm ,gn#/2 and tr refers to the spinor indices of the Dirac matricesgm . Statesux& are the
eigenstates of a self-conjugate coordinate operatorxm . Throughout the paper we use th
Minkowski metric, i.e.,hmn5(1,21,21) or hmn5(1,21,21,21), depending on the actua
space-time dimension. And in both 211 and 311 dimensions, we work with the 434 represen-
tation of the Diracg-matrices.

For calculating the effective action in Eq.~1!, we employ a version of the so-called worldlin
~or string-inspired! formalism developed in Refs. 14–16. Such an approach to an ordinary
theory, based on the path integral over one-dimensional world lines, was extended to the e
tion of Feynman diagrams for Green functions in higher loop orders.17–19 It has demonstrated its
power reproducing known theoretical results in QED while allowing one to invoke new techn
to study the theory’s behavior in strong coupling regime.20 For some recent applications of th
worldline formalism as well as for an extensive list of references, see Refs. 21 and 22.
however, that our method differs from the one commonly used in the literature by a choice
worldline propagators, and is closer in spirit to the method used in Refs. 17 and 23.

With use of the formal identity ln(H1m2)52*0
` exp@2it(H1m2)#dt/t for introducing the

proper-time coordinatet, the effective Lagrangian can be represented through the diagonal m
elements of the operatorU(t)5exp(2itH),

L~1!~A!5
i

2 E0

` dt

t
e2 im2ttr ^xuexp~2 i tH !ux&, ~2!

where the second order differential operatorH is given by

H52PmPm1
e

2
smnFmn~x!, Pm52 iDm . ~3!

The matrix elementŝxuexp(2itH)ux& entering the right-hand side of Eq.~2! may be interpreted as
the matrix elements of the evolution operator of a spinning particle witht andH being the proper
time and the Hamiltonian of the particle. The corresponding canonical momenta arePm’s which
obey the commutation relations@xm ,Pn#5 idm

n and are defined bŷxuPmuy&52 i ]md(x2y) in
coordinate representation. Following the standard approach,24 we represent the transition ampl
tude^zuU(t)uy& between pointsx(0)5y andx(t)5z in terms of a path integral over the real an
Grassmann coordinates,xm(t) andcm(t), as

tr ^zuU~t!uy&5N21E D@x~ t !,c~ t !#expH i E
0

t

dt@Lbos~x~ t !!1L fer~c~ t !,x~ t !!#J , ~4!

whereN is a normalization factor, and

Lbos~x!52
1

4

dxn

dt

dxn

dt
2eAn~x!

dxn

dt
, ~5!

L fer~c,x!5
i

2
cn

dcn

dt
2 iecnclFnl~x!. ~6!
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The integration in Eq.~4! goes over trajectoriesxm(t) andcm(t) parameterized bytP@0,t#. The
definition of the integration measure assumes the following boundary conditions:

x~0!5y, x~t!5z, c~0!52c~t!. ~7!

We choose a special gauge condition for the vector potentialAm(x), namely, the Fock–Schwinge
gauge25

~xn2yn!An~x!50, ~8!

which leads to the series

An~x!5 1
2~xl2yl!Fln~y!1 1

3~xl2yl!~xs2ys!]sFln~y!

1 1
8~xl2yl!~xs2ys!~xm2ym!]s]mFln~y!1¯

5 (
n50

`
~xl2yl!~xn12yn1!¯~xnn2ynn!

n! ~n12!
]n1

]n2
¯]nn

Fln~y!. ~9!

This choice of the gauge for the vector potential turns out to be very convenient for develop
perturbative theory in the number of the derivatives of the electromagnetic field with respect
space–time coordinates.

Carrying out the change of the variablex(t) for x8(t)5x(t)2y in the path integral in Eq.~4!
~henceforth we omit the prime! and substituting Eq.~9! into Eq. ~4!, we obtain

tr ^zuU~t!uy&5N21E D@x~ t !,c~ t !#expF i E
0

t

dtS 2
1

4

dxn

dt

dxn

dt
2

e

2
xlFln~y!

dxn

dt
1Lbos

int ~x! D G
3expF i E

0

t

dtS i

2
cn

dcn

dt
2 iecnclFnl~y!1L fer

int~x,c! D G . ~10!

The new boundary conditions forx(t) arex(0)50 andx(t)5z2y. Notice, thatFmn in Eq. ~10!
does not depend onx(t). As follows from Eqs.~5!, ~6!, and~9!, the expressions for the interactin
terms,Lbos

int (x) andL fer
int(x,c), containing derivatives ofFmn with respect to coordinates, take th

form

Lbos
int ~x!5 (

n51

` eFn0n1 ,n2¯nn11

n! ~n12!

dxn0

dt
xn1~ t !¯xnn11~ t !

5
e

3
Fnl,s

dxn

dt
xlxs1

e

8
Fnl,sk

dxn

dt
xlxsxk1¯, ~11!

L fer
int~x,c!52 (

n51

`
i

n!
eFlm,n1¯nn

cl~ t !cm~ t !xn1~ t !¯xnn~ t !

52 ieFnl,scnclxs2
ie

2
Fnl,skcnclxsxk1¯ . ~12!

Here we use the conventional notation for the partial derivatives

Flm,n1n2¯nn
~x!5]n1

]n2
¯]nn

Flm~x!. ~13!

Now we see that the problem of obtaining the derivative expansion reduces to the evaluation
path integral in Eq.~10! in the framework of the perturbative theory with an infinite number
interacting terms given in Eqs.~11! and~12!. Fortunately, for computing the effective action th
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includes only a finite number of the derivatives, it is sufficient to consider only a finite numb
the interacting terms. Later, we shall restrict ourselves to obtaining only the two-derivative
in the action. So far, we continue developing the scheme for the most general case.

As usual, introducing real and Grassmann external sources, the matrix elements of th
lution operator can be represented as follows:

tr ^zuU~t!uy&5expH i E
0

t

dtFLbos
int S 1

i

d

dh~ t ! D1L fer
intS 1

i

d

dh~ t !
,2

d

dj~ t ! D G J
3Zt@h,j#~z;y!U

h50,j50

, ~14!

where the generating functional is just the Gaussian path integral,

Zt@h,j#~z;y!5N21E D@x~ t !,c~ t !#expF i

2 E0

t

dtS 2
1

2

dxn

dt

dxn

dt
2exlFln~y!

dxn

dt
12hnxnD G

3expF2
1

2 E0

t

dtS cn

dcn

dt
22ecnclFnl~y!12jncnD G . ~15!

The calculation of this generating functional reduces to obtaining the ‘‘classical’’ trajectorie
xn(t) and cn(t), satisfying the appropriate boundary conditions, and to computing the dete
nants of the one-dimensional differential operators,

O15
hmn

2

d2

dt2
2eFmn

d

dt
, and O25 ihmn

d

dt
22ieFmn , ~16!

defined on the interval@0,t# with the periodic and antiperiodic boundary conditions for th
eigenstates, respectively.

The ‘‘classical’’ trajectories are easily obtained by solving the equations of motion tha
bosonic and Grassmanian worldline actions in Eq.~15! require. So, we arrive at

xcl
m~ t !5S e2eFt21

e2eFt21D mn

~z2y!n

1E
0

t

dt8S e2eFt21

e2eFt21

~e2eF~t2t8!21!

eF
2u~ t2t8!

~e2eF~ t2t8!21!

eF
D mn

hn~ t8!, ~17!

and

ccl
m~ t !5E

0

t

dt8S e2eF~ t2t8!S u~ t2t8!2
1

11e22eFtD D mn

jn~ t8!. ~18!

Then, the result of the path integration in Eq.~15! for the case of the coincident argumen
z5y5x reads

Zt@h,j#~x;x!5C0A det~O2!

det8~O1!
expS i

2
Scl

bos@h#2
1

2
Scl

fer@j# D , ~19!

where the normalization constantC0 should be determined by comparing the result with
Schwinger’s one, or by satisfying the normalization condition

Zr 50@h,j#~z;y!5d~z2y!, ~20!
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which is equivalent to the operator equalityU(0)51. The prime in Eq.~19! denotes skipping a
zero mode in the definition of the determinant. With our normalization convention for the d
minants~see the next section!, it is easy to check that the overall factorC052 i /(2pt)2 in 311
dimensions andC05exp@2ip/4#/@2(pt)3/2# in 211 dimensions.

The expressions forScl
bos andScl

fer are quadratic forms in the external sources

Scl
bos@h#5E

0

t

dt1E
0

t

dt2hn~ t1!Dl
n~ t1 ,t2!hl~ t2!, ~21!

Scl
fer@j#5E

0

t

dt1E
0

t

dt2jn~ t1!Sl
n~ t1 ,t2!jl~ t2!, ~22!

where the Green functions are given in terms of functions of the matrix argumentFmn ,

D~ t1 ,t2!5
1

2eF Fe~ t12t2!~12e2eF~ t12t2!!1coth~eFt!~11e2eF~ t12t2!!

2
eeF~t22t2!1eeF~2t12t!

sinh~eFt! G , ~23!

S~ t1 ,t2!5 1
2@e~ t12t2!2tanh~eFt!#e2eF~ t12t2!. ~24!

Substitution of Eqs.~19!, ~23!, and~24! into Eq. ~14! leads to the expression fortr ^xuUux&.
After expanding the exponent in powers of the operator valued interacting terms,Lbos

int and L fer
int

~containing functional derivatives with respect to the sourceshm(t) and jm(t)), one has to cal-
culate the result of the derivative action on the generating functional. Starting from this poin
have to restrict ourselves to a specific finite number of the derivatives in the effective actio
we mentioned before, in this paper we are interested in the two-derivative terms~see Sec. X for
some discussions on computing the higher order approximations!. Therefore, we obtain

tr ^xuU~t!ux&5S 11 i E
0

t

dt@V2~ t !1W2~ t !#2
1

2 E0

tE
0

t

dt1dt2@V1~ t1!V1~ t2!1W1~ t1!W1~ t2!#

2E
0

tE
0

t

dt1dt2V1~ t1!W1~ t2! DZt@h,j#~x,x!U
h50,j50

, ~25!

where, as follows from Eqs.~11!, ~12!, and~14!, the vertex generating operators are

V1~ t !5
i

3
eFnl,m lim

t0→t

d

dt0

d3

dhn~ t0!dhl~ t !dhm~ t !
,

V2~ t !5
1

8
eFnl,mk lim

t0→t

d

dt0

d4

dhn~ t0!dhl~ t !dhm~ t !dhk~ t !
,

~26!

W1~ t !52eFnl,m

d2

djn~ t !djl~ t !

d

dhm~ t !
,

W2~ t !5
i

2
eFnl,mk

d2

djn~ t !djl~ t !

d2

dhm~ t !dhk~ t !
.

Substituting the generating functional~19! which depends on the Green functions~23! and ~24!,
we rewrite Eq.~25! in the form
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tr ^xuU~t!ux&5C0A det~O2!

det8~O1! H 12
i

8
eFnl,mkE

0

t

dt@Ḋnl~ t,t !Dmk~ t,t !1Ḋnm~ t,t !Dlk~ t,t !

1Ḋnk~ t,t !Dlm~ t,t !14Snl~ t,t !Dmk~ t,t !#

2
i

18
e2Fnl,mFsk,rE

0

tE
0

t

dt1dt2@9Dmr~1,2!~Sks~2,2!Sln~1,1!

22Skl~2,1!Ssn~2,1!!16Ssk~2,2!~Ḋnl~1,1!Dmr~1,2!1Ḋnm~1,1!Dlr~1,2!

1Ḋnr~1,2!Dlm~1,1!!1Ḋnl~1,1!Ḋsk~2,2!Dmr~1,2!12Ḋnl~1,1!

3~Ḋsr~2,2!Dmk~1,2!1Ḋsm~2,1!Dkr~2,2!!1Ḋnm~1,1!Ḋsr~2,2!Dlk~1,2!

12Ḋnk~1,2!~Ḋsr~2,2!Dlm~1,1!1Ḋsm~2,1!Dlr~1,2!!

1Ḋnk~1,2!Ḋsl~2,1!Dmr~1,2!1Ḋnr~1,2!Ḋsm~2,1!Dlk~1,2!

1D̈ns~1,2!~Dlm~1,1!Dkr~2,2!1Dlk~1,2!Dmr~1,2!1Dlr~1,2!Dmk~1,2!!#J .

~27!

Here the dotted functions are defined by the expressions

Ḋmn~1,2!5
def ]

]t1
Dmn~ t1 ,t2!, ~28!

D̈mn~1,2!5
def ]2

]t1]t2
Dmn~ t1 ,t2!, ~29!

Ḋmn~ t,t !5
def

lim
t0→t

]

]t0
Dmn~ t0 ,t !. ~30!

Having the representation~27! together with the Green functions~23! and~24!, one is left with a
need to perform the integrations over the proper time. This latter, however, may look like a
complicated problem due to the necessity to disentangle the Lorentz indices while doin
integration. In the next section, we show how this problem can be solved.

III. HOW TO DEAL WITH FUNCTIONS OF THE MATRIX ARGUMENT Fmn

In the previous section we developed the general method for calculation the derivative e
sion in QED. However, there was not given an explicit final expression, since we nee
technique dealing with functions of the matrix argumentFmn . Below we show, following the
method of Ref. 26, how to deal with those functions as well as how to calculate the determ
of the differential operators in Eq.~16!.

Let us begin by introducing notations that we are going to use below. When working wit
electromagnetic field strength tensor, it is usually very convenient to introduce the invariant
of the field strength. In~311!-dimensional theory, the standard choice of the two indepen
invariants reads

F52 1
4 FmnFmn , G5 1

8 emnlkFlkFmn . ~31!
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In our calculations, though, it will be more convenient to work with the following couple
invariants

K15AAF21G21F, K25AAF21G22F. ~32!

As for the ~211!-dimensional theory, there exists only one independent invariant built of
electromagnetic field strength, and it is given by the expression analogous toF in Eq. ~31!.

Now we proceed to the case of~311!-dimensional QED. It is this case that was considered
Ref. 26. The authors of that paper introduced the set of matricesA( j )

nl with j P$1,2,3,4%,

A~ j !mn5
2 f̄ j

2hmn1 f jFmn1Fmn
2 2 i f̄ jF

*
mn

2~ f j
22 f̄ j

2!
, ~33!

where

f 1,256 iK 2 , f 3,456K1 ; ~34!

f̄ 1,257K1 , f̄ 3,457 iK 2 . ~35!

The main property of the matrices~33! that we are interested in are their~left and right!
contractions with the field strength tensor,

FnlA~ i !lm5A~ i !
nkFkm5 f iA~ i !m

n . ~36!

Other useful properties of these matrices that will be used below are

(
j

A~ j !
mn5hmn, A~ j !m

m 51, A~k!
mnA~ j !nl5dk jA~ j !l

m . ~37!

As follows from the property in Eq.~36!, for any functionF(F) of the tensor argumentFmn , we
get

F~F !mn5(
j

A~ j !mnF~ f ~ j !!. ~38!

Matrices with similar properties can also be introduced for~211!-dimensional tensorFmn as
well. Indeed, the following set of matrices:

A~61!
mn 5

1

2 S ~F2!mn

2F 6
Fmn

A2FD , A~0!
mn5hmn2

~F2!mn

2F ~39!

in the ~211!-dimensional case have properties similar to those in Eqs.~36! and~37!. As is easy to
check directly, their eigenvalues are

f 6156A2F, f 050. ~40!

In particular, for the Green functions~23! and~24!, which are functions of the tensor argume
Fmn , we obtain the following representations:
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Dnl~ t1 ,t2!5(
j

A~ j !
nl 1

2e fj
Fe~ t12t2!~12e2e fj ~ t12t2!!1coth~e fjt!~11e2e fj ~ t12t2!!

2
ee fj ~t22t2!1ee fj ~2t12t!

sinh~e fjt! G , ~41!

Snl~ t1 ,t2!5(
j

A~ j !
nl 1

2
~e~ t12t2!2tanh~e fjt!!exp@2e fj~ t12t2!#. ~42!

As is seen, in the case of vanishing field, the propagatorsDnl(t1 ,t2) andSnl(t1 ,t2) coincide with
those used in Refs. 17 and 23.

Another problem is related to calculating the determinants of the operators~16!. The latter are
nothing else but products of all eigenvalues of the operators. Once again, making use
matrices in Eq.~33! or in Eq. ~39! for ~311!- or ~211!-dimensional cases, respectively, we lo
for the eigenvectors of the operatorsO1 andO2 in the form

x~ j !
n ~ t !5A~ j !l

n alf~ t !, ~43!

c~ j !
n ~ t !5A~ j !l

n jlh~ t !, ~44!

whereal andjl are constant nonzero vectors,f andh are scalar functions oft. As a result, the
problem of obtaining eigenvalues reduces to solving ordinary differential equations for the
functionsf andh with appropriate boundary conditions.

Now, it is easy to check that, up to an unimportant constant, the corresponding determ
read~note that we skip a zero mode of the operatorO1),

det8~311!~O1!5
sinh2~etK1!

~etK1!2

sin2~etK2!

~etK2!2 , ~45!

det~311!~O2!5cosh2~etK1!cos2~etK2!, ~46!

in the case of QED in 311 dimensions, and

det8~211!~O1!5
sinh2~etA2F!

~etA2F!2
, ~47!

det~211!~O2!5cosh2~etA2F!, ~48!

in the case of QED in 211 dimensions. To obtain these results we used the following formula
infinite products:27

)
n51

` S 11
x2

p2n2D5
sinhx

x
, )

n51

` S 11
4x2

p2~2n11!2D5coshx, ~49!

and similar ones with replacementx→ iy .

IV. GENERAL RESULTS IN THE SPINOR QED

By making use of the results from the previous section, we can proceed with the calcu
of ~27!.

After substituting the Green functions~41! and~42!, as well as the explicit expressions for th
determinants of the operatorsO1 andO2 , a straightforward, though tedious computation gives
result for the diagonal matrix element of theU(t),
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tr ^xuU~t!ux&5tr ^xuU~t!ux&0

3F12
i

8
eFnl,mk(

j ,l
~CV~ f j , f l !~A~ j !

nlA~ l !
mk12A~ j !

nmA~ l !
lk!12CW~ f j , f l !A~ j !

lnA~ l !
mk!

2
i

18
e2Fnl,mFsk,r(

j ,l ,k
~9C1

WW~ f j , f l , f k!A~ j !
ksA~ l !

lnA~k!
mr

19C2
WW~ f j , f l , f k!A~ j !

klA~ l !
snA~k!

mr16C1
VW~ f j , f l , f k!A~ j !

sk~A~ l !
nlA~k!

mr1A~ l !
nmA~k!

lr !

16C2
VW~ f j , f l , f k!A~ j !

skA~ l !
nrA~k!

lm2C1
VV~ f j , f l , f k!~A~ j !

nlA~ l !
ksA~k!

mr1A~ j !
nmA~ l !

krA~k!
ls

12A~ j !
nlA~ l !

krA~k!
ms!2C2

VV~ f j , f l , f k!~A~ j !
nsA~ l !

klA~k!
mr1A~ j !

nr A~ l !
kmA~k!

ls12A~ j !
nsA~ l !

kmA~k!
lr !

22C3
VV~ f j , f l , f k!~A~ j !

nlA~ l !
kmA~k!

sr1A~ j !
krA~ l !

nsA~k!
lm!2C4

VV~ f j , f l , f k!A~ j !
nkA~ l !

lmA~k!
sr

2C5
VV~ f j , f l , f k!A~ j !

nk~A~ l !
lsA~k!

mr1A~ l !
lrA~k!

ms!!G , ~50!

where the explicit expressions for the coefficientsCi
XY(a,b,g) ~with X,YP$V,W%) are given in

Appendix A and the diagonal matrix elementstr ^xuU(t)ux&0 correspond to the nonderivativ
case,

tr ^xuU~t!ux&0
~311!52

i

4p2t2 ~etK2!~etK1!cot~etK2!coth~etK1! ~51!

in 311 dimensions, and

tr ^xuU0~t!ux&0
~211!5

exp~2 ip/4!

2~pt!3/2 ~etA2F!coth~etA2F! ~52!

in 211 dimensions.
Equation~50! ~along with a similar one for scalar QED! is the main result of our paper. Not

that the renormalization of the effective action~2! formally reduces to~i! performing a subtraction
~precisely the same as in the original Schwinger’s paper3! of a term containing no derivatives o
field strength with respect to coordinates, and~ii ! changing all bare quantities for the renormaliz
ones,e→eR andAm→Am

R , defined as follows:

eR5Z3
1/2e, Am

R5Z3
21/2Am , Z3

21511Ce2, ~53!

where

C~311!5
1

12p2 E
1/L2

` ds

s
exp~2sm2!, ~54!

C~211!5
1

6p3/2E
0

` ds

As
exp~2sm2!5

1

6pm
, ~55!

andL is an ultraviolet cutoff in~311!-dimensional QED.
After subtraction and conversion to the renormalized quantities the effective action bec

finite in the limit L→`. Since the derivative part of the effective action depends one andAm only
through the producteAm5eRAm

R it does not change its form and no further renormalization
required to make the derivative part well defined~below we use only renormalized quantitie
although we always omit the script ‘‘R’’ in their notation!.
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By using the asymptotic behavior of the coefficient functions~given in Appendix A!, one
easily finds the following expansion oftr ^xuU(t)ux& in powers oft :

tr ^xuU~t!ux&5tr ^xuU~t!ux&0F11
ie2t3

20
FnlFnl,m

m1
ie2t3

180 S 7

2
Fnl,mFnl,m2Fnl,

lFnm,
mD1¯G .

~56!

As is clear, this is the weak field limit of our general result in spinor QED. In the effective ac
the given order int results in the two-derivative corrections of the order 1/m2,

L1/m2
~311!spin

5
a

720pm2 @18FnlFnl,m
m17Fnl,mFnl,m22Fnl,

lFnm,
m#, ~57!

in 311 dimensions, and of the order 1/m3,

L1/m3
~211!spin

5
a

720m3 @18FnlFnl,m
m17Fnl,mFnl,m22Fnl,

lFnm,
m#, ~58!

in 211 dimensions.
The expansion in Eq.~56! was obtained earlier in the heat kernel approach.4 While the latter

is a perfect tool for deriving the effective action in the weak field limit, it is not very useful w
the field becomes strong. Our approach here, on the other hand, is free from such a limitati
the general result in Eq.~50! contains all the two derivative terms like]F]F(F/m2)n, wheren is
an arbitrary positive integer and the Lorentz indices~not shown! are contracted in all possibl
ways. To substantiate this claim, we present the next to leading terms of the weak field exp
in Eq. ~B1! in Appendix B.

As we saw above, the formal expansion int corresponds to an expansion of the effecti
action in the inverse powers of the mass parameter. This means that, while making use of s
expansion, one cannot get any reliable results in the limit of the vanishing fermion mass. T
particular, is the main reason why the authors of Ref. 13, who used an expression like~56!, came
to a wrong conclusion about the absence of corrections to the one-loop effective action c
from inhomogeneities of a static magnetic field whenm→0. Such a conclusion ‘‘contradicts’’ the
result of Ref. 8. The latter, as we will see, completely agrees with our result for the deriv
expansion.

V. SPINOR QED IN 211 DIMENSIONS

Let us consider the case of the purely magnetic field background to which a special att
was paid in Ref. 8. To proceed with analyzing this case, note that the electromagnetic
strength tensor takes the following form:

Fmn~x!5B~x!Fmn, ~59!

whereB(x) is a pseudoscalar function coinciding with the magnetic field strength andFmn is a
constant matrix with the only nonzero componentsF1252F2151. As is seen it satisfies th
following normalization condition:FmnFmn52.

To reduce the general result presented in Eq.~50! for the particular choice of the field give
in Eq. ~59!, we have to use the properties ofA( j )

mn’s presented in Sec. III. Just to get a feeling
how they work, let us consider an example,
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Fnl,mk(
j ,l

CW~ f j , f l !A~ j !
lnA~ l !

mk5
]m]kB

B (
j ,l

CW~ f j , f l ! f ~ j !A~ l !
mk

52
]m]kB

B
A2F@CW~A2F,0!A~0!

mk

1CW~A2F,A2F!~A~21!
mk 1A~11!

mk !#

522iCW~A2F,A2F!~F2!mk]m]kB

522iCW~A2F,A2F!(
i 51

2

] i] iB. ~60!

In this derivation, we made use of the Bianchi identity. We recall that the latter should be sa
since the electromagnetic field was introduced in the theory through the vector potent
minimal coupling. The identity itself readsA(0)

mn]nB[0. The direct consequence of it is the ind
pendence of the magnetic field, for the particular choice~59!, on the time coordinate. By noticing
that the matrixA(0)

mn , as well as any other from the set, does not depend onB(x) we obtain the
secondary identity,A(0)

mn]m]nB[0, by differentiating the original one. It is this last form of th
Bianchi identity that was actually used in our derivation in Eq.~60!.

The other expressions, similar to that in Eq.~60!, along with the functions like
CW(A2F,A2F) are listed in Appendix C.

The final result for the derivative part of the diagonal matrix element~50!, for the particular
choice of the field configuration in Eq.~59!, reads

tr ^xuU~t!ux&der
~211!52

ie2~] iB!2

~4pueBu!3/2

1

Av
~3v2Y423vY324v2Y213vY1v2!

5
ie2~] iB!2

~4pueBu!3/2

Av

2

d3

dv3 ~v cothv!, ~61!

wherev5 i tueBu, Y5cothv, and (] iB)2[( i 51
2 ] iB] iB. Substituting the last expression into E

~2!, we come to the integral representation for the derivative part of the effective Lagrangia~we
perform the change of the integration variablet for v5 i tueBu),

Lder
~211!spin~B!52

e2~] iB!2

4~4pueBu!3/2E
0

` dv

Av
expS 2

m2

ueBu
v D d3

dv3 ~v cothv!. ~62!

The last expression coincides with the result presented in Ref. 8~note that in notation of Ref. 8
] iB] iB54]B]̄B). One can be convinced that the integrand in~62! is a negative function tha
means that inhomogeneities of the magnetic field background, in approximation under con
ation~one-loop and two derivatives!, lead to the reduction of vacuum energy density for any va
of the ratiom2/ueBu. The latter situation does not, however, prove that a spontaneous gene
of a nonhomogeneous magnetic field happens in QED since the sign of the two derivative t
the expansion of the effective action is not a sufficient argument for making a conclusion o
kind.28

We would like also to give another representation for the derivative part of the Lagrang
terms of special functions. To get it, we need to perform the integration in~62! by parts~see Eq.
~D5! in Appendix D!. Here is such a representation,
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Lder
~211!spin~B!52

e2~] iB!2

A2p~4ueBu!3/2F5zS 2
3

2
,11

m2

2ueBu D29
m2

2ueBu
zS 2

1

2
,11

m2

2ueBu D
13S m2

2ueBu D
2

zS 1

2
,11

m2

2ueBu D1S m2

2ueBu D
3

zS 3

2
,11

m2

2ueBu D G . ~63!

Often, in the limit of large or small values of the external field, it is more convenient to work
the asymptotic expansions of the effective action rather than the exact expression as in E~63!.
First, let us consider the casem2!ueBu. Then, using the last representation, we easily derive
following asymptotic expansion:

Lder
~211!spin~B!.2

e2~] iB!2

A2~4pueBu!3/2 (k50

`
522k

k!
GS k1

1

2D zS k2
3

2D S 2
m2

2ueBu D
k

. ~64!

In order to get the asymptotic expansion form2@ueBu, we make use of the integral representati
in Eq. ~62! and obtain

Lder
~211!spin~B!.2

e2~] iB!2

2p3/2m3 (
k50

`
B2k14

~2k11!!
GS 2k1

3

2D S 2ueBu
m2 D 2k

, ~65!

whereBk are the Bernoulli numbers.
Now, let us consider the case of the purely electric field background. Without losing

generality, we assume that the field is directed along the first axis of the two-dimensional
Again the field strength tensor is factored similar to~59!,

Fmn~x!5E~x!Fmn, ~66!

where E(x) is the magnitude of the electric field. Now the constant matrixFmn has nonzero
componentsF1052F0151, and satisfies the normalization condition,FmnFmn522. The general
expression~50! simplifies considerably for our choice of the background field. And the deriva
part of that expression now reads

tr ^xuU~t!ux&der
~211!~E!5

i exp~2 ip/4!

~4pueEu!3/2

e2~] iE!2

Av
~3v2Y423vY324v2Y213vY1v2!

52
i exp~2 ip/4!

~4pueEu!3/2

e2~] iE!2

2
Av

d3

dv3 ~v cothv!, ~67!

where nowv5tueEu, Y5cothv, and (] iE)2[(]0E]0E2]1E]1E). Here we used the Bianch
identity again to show that the electric field does not depend on the second spatial coor
Substituting this expression into Eq.~2!, we come to the integral representation for the derivat
part of the effective Lagrangian,

Lder
~211!spin~E!5

exp~2 ip/4!e2~] iE!2

4~4pueEu!3/2 E
0

` dv

Av
expS 2 i

m2

ueEu
v D d3

dv3 ~v cothv!. ~68!

As expected in the case of an electric field background, this derivative correction to the eff
action contains a nonzero imaginary contribution. A convenient representation of the latter
obtained in the following way. First, in Eq.~68!, we switch to a new variable,z5 iv, so that the
integration runs along the imaginary axis ofz from zero toi`. Then, we move the integratio
contour to the real axis ofz. As is easy to check, the integrand has poles atz5pn (n51,2,...). As
a result, the real and the imaginary contributions get naturally separated. Indeed, the real
Lder

~211!spin is given by the principal value of the integral along the Re(z) axis, while the imaginary
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part appears due to the integration along the infinite set of the vanishingly small semi-c
above the poles,z5pn1e exp@i(p2f)# ~where 0,f,p and e→0 at the end!. In this way, we
easily obtain the imaginary part of the right-hand side in Eq.~68!,

Im Lder
~211!spin~E!52

e2~] iE!2

28p3ueEu3/2 (
n51

`
1

n5/2expS 2
pm2n

ueEu D
3F15118

pm2n

ueEu
112S pm2n

ueEu D 2

18S pm2n

ueEu D 3G . ~69!

We note that the result of the summation in the last expression~as well as in similar formulas late
on! can be given in terms of the polylogarithmic function Lin(x).29 Equation~69! determines the
correction to the probability of the particle-antiparticle pair creation~by definition, the probability
density isW52 ImL! in an external electric field due to small inhomogeneities in space–time
emphasize that the correction due to a time derivative of the field has the ‘‘wrong’’ sign, i.
works against the particle creation. The gradient in the space direction parallel to the field str
on the other hand, amplifies the process.

As is known, in the case of constant electric field, the imaginary part of the effective Lag
ian is given by

Im L~211!spin~E!5
ueEu3/2

4p2 (
n51

`
1

n3/2expS 2
pm2

ueEu
nD5

ueEu3/2

4p2 Li 3/2FexpS 2
pm2

ueEu D G . ~70!

This as well as the first correction due to the derivatives remain finite even in the limit of
fermion mass. Despite of this fact, we still expect that the derivative expansion~with the electric
field background! may fail in the limit of vanishingly small mass due to higher orders in
number of derivatives. Below we shall see that the same is true in the spinor QED in11
dimensions as well.

VI. SPINOR QED IN 311 DIMENSIONS

As was mentioned at the beginning of the paper, the derivative expansion in QED4 was also
studied in Ref. 7. The result of that paper was presented in an explicit form for the special cl
the electromagnetic field configurations,

G50, Fmn~x!5F~x!Fmn, ~71!

whereF(x) is a slowly varying function that defines the magnitude of the field, andFmn is a
constant matrix. For convenience, let us normalize the matrixFmn by the conditionFmnFmn52.
Then the scalar functionF(x) is nothing else butA(22F). As was shown in our previous paper9

the general result for the diagonal matrix element~50! in the case of field~71! reduces to the sam
result as was presented in Ref. 7,

tr ^xuU~t!ux&der
~311!~F!5

1

~4p!2t

]mF]mF

F2 ~3v2Y423vY324v2Y213vY1v2!,

~72!

52
1

~4p!2t

]mF]mF

F2

v

2

d3

dv3 ~v cothv!,

wherev5teF, Y5cothv. As in the~211!-dimensional theory, here we used the Bianchi ide
tity, which this time reads

~hmn1~F2!mn!]nF[0. ~73!
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In the case of magnetic field along the third axis, for example, this condition means tha
specified field cannot depend on the time and the third spatial coordinates, while in the c
electric field along the first axis, it cannot depend on the second and third spatial coordina

Now, let us consider two particular cases of external field that we studied in 211 dimensions;
purely magnetic and purely electric field backgrounds. Both of them are just different possib
of that given in Eq.~71!.

Thus, in the case of magnetic field~along the third axis in space! we come to the following
integral representation for the derivative part of the effective Lagrangian:

Lder
~311!spin~B!52

e2~] iB!2

~8p!2ueBu E0

` dv

v
expS 2

m2

ueBu
v D d3

dv3 ~v cothv!. ~74!

Resembling the situation in 211 dimensions, inhomogeneities of the external magnetic field t
to reduce vacuum energy density for any value of the ratiom2/ueBu.

Performing integration in the right-hand side of Eq.~74! by parts~see Eq.~D6! in Appendix
D!, we find the following representation~for the representation of the part of the effective acti
without derivatives in terms of special functions, see Ref. 30!:

Lder
~311!spin~B!52

e2~] iB!2

~8p!2ueBu F11

6 S m2

ueBu D
3

1S m2

ueBu D
2

2
1

3

m2

ueBu
2S m2

ueBu D
3

cS 11
m2

2ueBu D
124z8S 22,11

m2

2ueBu D224
m2

ueBu
z8S 21,11

m2

2ueBu D
16S m2

ueBu D
2F ln GS 11

m2

2ueBu D2 lnA2pG G . ~75!

As m2!ueBu, this expression allows the following asymptotic expansion:

Lder
~311!spin~B!.2

e2~] iB!2

~8p!2ueBu F24z8~22!1
2m2

3ueBu
2

m4

2ueBu2
1

m6

3ueBu3

2
m8

2ueBu4 (
k50

`
k11

k14
z~k12!S 2

m2

2ueBu D
kG , ~76!

wherez8~22!'20.030. Asm2@ueBu, on the other hand, we obtain

Lder
~311!spin~B!.2

e2~] iB!2

~2p!2m2 (
k50

`
B2k14

2k11 S 2ueBu
m2 D 2k

. ~77!

In case of the electric field along the first axis, on the other hand, we obtain the follo
expression for the derivative part of the effective action:

Lder
~311!spin~E!52

ie2~] iE!2

~8p!2ueEu E0

` dv

v
expS 2 i

m2

ueEu
v D d3

dv3 ~v cothv!. ~78!

This expression has both real and imaginary part, as always happens in the case of an
electric field. Another representation for it is obtained by analytical continuation of~75! according
to the ruleueBu→2 i ueEu. The imaginary part though is easily extracted from~78! in a standard
way,
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Im Lder
~311!spin~E!5

e2~] iE!2

26p4ueEu (n51

`
1

n3 expS 2
pm2n

ueEu D F616
pm2n

ueEu
13S pm2n

ueEu D 2

1S pm2n

ueEu D 3G ,
~79!

which determines a correction to the Schwinger result3 for the imaginary part of the effective
action in a constant electric field,

Im L~311!spin~E!5
~eE!2

8p3 (
n51

`
1

n2 expS 2
pm2

ueEu
nD5

~eE!2

8p3 Li 2FexpS 2
pm2

ueEu D G . ~80!

The result in Eq.~79! is in agreement with that of Ref. 10.
As is easy to establish, both the Schwinger result for a constant field and the first corr

due to derivatives are finite in the limit of the vanishing fermion mass. As we argued in the
of the ~211!-dimensional spinor QED, this may not be the case in higher orders of the pert
tive expansion in the number of derivatives.

VII. GENERAL RESULT IN THE SCALAR QED

Now turning to the calculation of the derivative expansion for the scalar electrodynamics
does not need to repeat all the calculations similar to those done in Sec. IV. In order to se
we recall that the effective one-loop Lagrangian in this case reads

L ~1!scal~x!52 i E
0

` dt

t
^xuUbos~t!ux&e2 im2t. ~81!

The evolution connected with the transition amplitude,^zuUbos(t)uy&, is described now by the
Hamiltonian~compare with Eqs.~2! and ~3!!,

Hbos52PmPm, Pm52 i ]m1eAm~x!. ~82!

Thus, omitting all terms originating from the fermion part in the expression~4!, i.e., puttingL fer
int

50 in Eqs.~10!, ~14! andScl
fer50 in Eq. ~19!, we come to the following expression:

^xuUbos~t!ux&5^xuUbos~t!ux&0

3F12
i

8
eFnl,mk(

j ,l
CV~ f j , f l !~A~ j !

nlA~ l !
mk12A~ j !

nmA~ l !
lk!1

i

18
e2Fnl,mFsk,r

3(
j ,l ,k

~C1
VV~ f j , f l , f k!~A~ j !

nlA~ l !
ksA~k!

mr1A~ j !
nmA~ l !

krA~k!
ls12A~ j !

nlA~ l !
krA~k!

ms!

1C2
VV~ f j , f l , f k!~A~ j !

nsA~ l !
klA~k!

mr1A~ j !
nr A~ l !

kmA~k!
ls12A~ j !

nsA~ l !
kmA~k!

lr !

12C3
VV~ f j , f l , f k!~A~ j !

nlA~ l !
kmA~k!

sr1A~ j !
krA~ l !

nsA~k!
lm!1C4

VV~ f j , f l , f k!A~ j !
nkA~ l !

lmA~k!
sr

1C5
VV~ f j , f l , f k!A~ j !

nk~A~ l !
lsA~k!

mr1A~ l !
lrA~k!

ms#. ~83!

The coefficients used here are the same as in Eq.~50!. As for the nonderivative factors, they hav
the standard form,

^xuUbos~t!ux&0
~311!52

i

~4pt!2

~etK2!~etK1!

sin~etK2!sinh~etK1!
~84!

in 311 dimensions, and
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^xuUbos~t!ux&0
~211!52

exp~2 ip/4!

~4pt!3/2

~etA2F!

sinh~etA2F!
~85!

in 211 dimensions, as can be easily checked by using the expressions for the determinant
in Sec. III and by taking into account the fact that, because of spin degrees of freedom, we h
additional factor 4 for fermions.

In the case of scalar theory, the renormalization of the electromagnetic field and cha
given by the same formulas~53! but this time the corresponding constants read

C~311!5
1

48p2 E
1/L2

` ds

s
exp~2sm2!, ~86!

C~211!5
1

24p3/2E
0

` ds

As
exp~2sm2!5

1

24pm
. ~87!

To get a result of the type as in Ref. 4, one has to expand the coefficient functions in p
of proper time. Thus the expansion for^xuUbos(t)ux& ~weak field limit! reads

^xuUbos~t!ux&5^xuUbos~t!ux&0F12
ie2t3

30
FnlFnl,m

m2
ie2t3

180
~4Fnl,mFnl,m1Fnl,

lFnm,
m!1¯G .

~88!

This expansion up to the ordert5 is given in Eq.~B26! in Appendix B. As in the spinor QED, it
is useful only in the case of heavy scalar particles~weak fields!, when the mass scale is muc
larger than all other scales in the theory.

In the effective action of scalar QED, the expansion in Eq.~88! corresponds to the following
leading two derivative terms

L1/m2
~311!scal

5
a

720pm2 @6FnlFnl,m
m14Fnl,mFnl,m1Fnl,

lFnm,
m#, ~89!

in 311 dimensions, and

L1/m3
~211!scal

52
a

720m3 @6FnlFnl,m
m14Fnl,mFnl,m1Fnl,

lFnm,
m#, ~90!

in 211 dimensions.

VIII. SCALAR QED IN 2 11 DIMENSIONS

Let us start by considering the case of an external magnetic field as in Eq.~59!. This time the
derivative part of the general expression~83! reduces to

^xuUbos~t!ux&der
~211!52

ie2~] iB!2

4~4pueBu!3/2

Av

sinhv
~3vY323Y222vY11!

5
ie2~] iB!2

4~4pueBu!3/2

Av

2 S d3

dv3 1
d

dv D S v

sinhv D , ~91!

wherev5 i tueBu, Y5cothv. After substituting the last expression into Eq.~81!, we come to the
integral representation for the derivative part of the effective Lagrangian~after performing the
change of integration variablet→v5 i tueBu),
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Lder
~211!scal~B!5

e2~] iB!2

~16pueBu!3/2E
0

` dv

Av
expS 2

m2

ueBu
v D S d3

dv3 1
d

dv D S v

sinhv D , ~92!

which coincides with the result presented in Ref. 8. As in the case of spinor QED, there
another representation of~92! given in terms of special functions~see Eq.~D11! in Appendix D!,

Lder
~211!scal~B!5

e2~] iB!2

A2p~16ueBu!3/2F20zS 2
3

2
,
1

2
1

m2

2ueBu D218
m2

ueBu
zS 2

1

2
,
1

2
1

m2

2ueBu D
1S 113S m2

ueBu D
2D zS 1

2
,
1

2
1

m2

2ueBu D1
1

2 S m2

ueBu
1S m2

ueBu D
3D zS 3

2
,
1

2
1

m2

2ueBu D G .
~93!

Numerical study of the integral in~92! shows that inhomogeneities of magnetic field backgrou
in approximation under consideration~one-loop and two derivatives!, lead to decreasing the
vacuum energy density form2/ueBu*0.927 and to increasing that density form2/ueBu&0.927, in
accordance with Ref. 8.

Analytically, we can obtain only the limiting cases as we did in spinor electrodynamic
particular, form2!ueBu, the effective action takes the following asymptotic form:

Lder
~211!scal~B!.

e2~] iB!2

~16pueBu!3/2 (
k50

`
1

k! F ~2k22A2!~522k!zS k2
3

2D
1S 2k2

1

A2
D ~122k!zS k1

1

2D GGS k1
1

2D S 2
m2

2ueBu D
k

, ~94!

while for m2@ueBu, the expansion reads

Lder
~211!scal~B!.2

e2~] iB!2

32p3/2m3 (
k50

`
~22k1321!B2k141~22k1121!B2k12

~2k11!!
GS 2k1

3

2D S ueBu
m2 D 2k

.

~95!

Now, let us consider the case of electric field background. Without losing the generalit
assume that the field is directed along the first axis of space. We obtain

^xuUbos~t!ux&der
~211!~E!5

i exp~2 ip/4!

4~4pueEu!3/2

e2~] iE!2Av

sinhv
~3vY323Y222vY11!

52
i exp~2 ip/4!

~16pueEu!3/2 e2~] iE!2AvS d3

dv3 1
d

dv D S v

sinhv D , ~96!

where nowv5tueEu and Y5cothv. Substituting this expression into~81!, we come to the
integral representation for the derivative part of the effective Lagrangian,

Lder
~211!scal~E!52

exp~2 ip/4!e2~] iE!2

~16pueEu!3/2 E
0

` dv

Av
expS 2 i

m2

ueEu
v D S d3

dv3 1
d

dv D S v

sinhv D . ~97!

And we easily find the imaginary part of the expression,
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Im Lder
~211!scal~E!5

e2~] iE!2

29p3ueEu3/2 (
n51

`
~21!n11

n5/2 expS 2
pm2n

ueEu D
3F15118

pm2n

ueEu
14p2n2S 3

m4

ueEu221D18
m2p3n3

ueEu S m4

ueEu2
21D G , ~98!

which determines the correction to the corresponding result for case of constant electric fi

Im L~211!scal~E!5
ueEu3/2

8p2 (
n51

`
~21!n11

n3/2 expS 2
pm2

ueEu
nD52

ueEu3/2

8p2 Li 3/2F2expS 2
pm2

ueEu D G .
~99!

A simple numerical analysis of the derivative correction in Eq.~98! shows that the sum in the
right-hand side, being positive for large values of the mass~or small values of the electric field!,
changes its sign atm2'0.721ueEu. Therefore, unlike the case of spinor QED, the time derivat
of the field increases~while the gradient in space decreases! the probability of particle–antiparticle
pair creation only form2*0.721ueEu.

As in spinor QED, the two-derivative correction to the process of the pair production in s
QED is convergent even in the limit of the vanishing mass. This observation, of course,
enough to prove that the derivative expansion is well defined to all orders in the massless

IX. SCALAR QED IN 3 11 DIMENSIONS

The derivative expansion for the electromagnetic field of the form~71! was presented in ou
previous paper9 ~we just rewrite it in different form!,

^xuUbos~t!ux&der
~311!5

1

~8p!2t

]mF]mF

F2

v

sinhv
~3vY323Y222vY11!

52
1

~8p!2t

]mF]mF

F2

v

2 S d3

dv3 1
d

dv D S v

sinhv D , ~100!

with v5teF, Y5cothv.
Now, let us consider the two most interesting particular cases as before. As in the case

fermion theory presented in Sec. VI, in the case of scalar QED, the derivative part of the eff
Lagrangian is easily obtained by using~100! with F5 iB,

Lder
~311!scal~B!5

e2~] iB!2

2~8p!2ueBu E0

` dv

v
expS 2

m2

ueBu
v D S d3

dv3 1
d

dv D S v

sinhv D . ~101!

And again, as is easy to check, the situation with~101! resembles that in~211!-dimensional scalar
QED; inhomogeneities of the external magnetic field lead to decreasing the vacuum energ
sity for large values of the ratiom2/ueBu(m2/ueBu*0.41) and to increasing for small value
(m2/ueBu&0.41).

In addition to the representation~101!, we find the following one~see Eq.~D12! in Appendix
D!:
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Lder
~311!scal~B!5

e2~] iB!2

2~8p!2ueBu F11

6 S m2

ueBu D
3

2
m2

ueBu S 11S m2

ueBu D
2DcS 1

2
1

m2

2ueBu D
1

7

6

m2

ueBu
12S 113S m2

ueBu D
2D F ln GS 1

2
1

m2

2ueBu D2 lnA2pG
124z8S 22,

1

2
1

m2

2ueBu D224
m2

ueBu
z8S 21,

1

2
1

m2

2ueBu D G . ~102!

In the limit m2!ueBu, this expression allows the following asymptotic expansion:

Lder
~311!scal~B!.

e2~] iB!2

2~8p!2ueBu F218z8~22!2 ln 21
2m2

3ueBu
1

m6

3ueBu3

2
m4

2ueBu2 (
k50

`
k11

k12
~2k1221!z~k12!S 2

m2

2ueBu D
k

2
m8

2ueBu4 (
k50

`
k11

k14
~2k1221!z~k12!S 2

m2

2ueBu D
kG . ~103!

In the limit m2@ueBu, on the other hand, we obtain

Lder
~311!scal~B!.

e2~] iB!2

~8p!2m2 (
k50

`
~22k1321!B2k141~22k1121!B2k12

2k11 S ueBu
m2 D 2k

. ~104!

In the case of the electric field directed along the first axis, we obtain

Lder
~311!scal~E!5

ie2~] iE!2

2~8p!2ueEu E0

` dv

v
expS 2 i

m2

ueEu
v D S d3

dv3 1
d

dv D S v

sinhv D . ~105!

Thus, the imaginary part of derivative part of the Lagrangian reads

Im Lder
~311!scal~E!5

e2~] iE!2

27p4ueEu (n51

`
~21!n11

n3 expS 2
pm2n

ueEu D
3F616

pm2n

ueEu
1p2n2S 3

m4

ueEu221D1
m2p3n3

ueEu S m4

ueEu2
21D G , ~106!

which determines the correction to the probability of particle-antiparticle creation in a con
electric field expressed through

Im L~311!scal~E!5
~eE!2

16p3 (
n51

`
~21!n11

n2 expS 2
pm2

ueEu
nD52

~eE!2

16p3 Li 2F2expS 2
pm2

ueEu D G .
~107!

As in ~211!-dimensional case, we observe that the sum in the right-hand side of Eq.~106! is
positive only for the large enough values of the mass (m2*0.388ueEu).

The expression~106! concludes the list of our results describing the influence of slo
varying external electromagnetic fields on the spinor and scalar QED vacuum in the
derivative approximation.
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X. HOW TO GET HIGHER DERIVATIVE TERMS

Obviously, the method of the present paper can be applied for calculating the higher d
tive terms~with their total number equal to four or higher! of the low energy effective action in
QED. However, the computational work with increasing the total number of derivatives is ge
so hard that obtaining already all the four derivative terms seems to be impossible without
a computer. Just to get feeling how difficult this problem is, let us consider the classification
the relevant Feynman diagrams in four derivative approximation.

To facilitate the calculation of the perturbative expansion in number of derivatives in
problem at hand, it is appropriate to develop the Feynman diagram technique. Our starting
will be the system of Eqs.~14! and~19!. Then, as is seen, the derivative expansion results from
~connected as well as disconnected! vacuum diagrams produced by~14!. A somewhat disappoint-
ing feature of our Lagrangian is an infinite number of local interactions. Nevertheless, a
become clear in a moment, while working at any finite order of the perturbative theory
requires only a finite number of those interactions.

We observe that there are two different types of local interactions in~14!. The first~bosonic!
type contains only the bosonic fields,xm(t). The corresponding vertices are shown in Fig. 1. T
other interactions involve both the boson,xm(t), and the spinor fields,cm(t). These latter produce
the vertices given in Fig. 2. The integers in the vertices denote the number of derivatives~later
called the weights of vertices! of the electromagnetic field with respect to space–time. Some
in the diagrams are marked by circles and bullets. The circles correspond to legs related to t
Lorentz index~n! of the tensor weight,Fnl,m1 ,...,mn

, assigned to the vertex, while the bullets, o
the other hand, mark legs which contain the derivatives with respect to the proper time. The
act on the~bosonic! propagators attached to the marked legs.

FIG. 1. Diagrammatic notations for the boson interaction vertices. The curly brackets denote symmetrization of th
Fn$l,m1 ,...,mn%5Fnl,m1 ,...,mn

1Fnm1 ,l,...,mn
1¯1Fnmn ,m1 ,...,l .

FIG. 2. Diagrammatic notations for the fermion–boson interaction vertices.
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The Feynman rules for writing expressions corresponding to Feynman diagrams are m
less standard. One has to use the propagators given in~41! and ~42! for connecting the bosonic
~solid! and the fermion~dashed! legs, respectively. The combinatoric factors can be straight
wardly derived. Two simplest diagrams giving a nonzero contribution to two-derivative term
the effective action are represented in Fig. 3.

Let us mention the most general rules. To start with, we classify all diagrams leading to
with a given finite number~called the weight of the corresponding diagrams from now on! of
derivatives in the expansion. First of all, we see that diagrams with weightN may contain different
number of vertices. We denote by der(N) the set of all diagrams of a given weightN. By marking
the bosonic~Fig. 1! and the fermion~Fig. 2! vertices withn derivatives just by@n# and @n#,
respectively, we see that the set der(N) contains a finite number of elements: der(N)
5$@N#,@N#,@N21# % @1#,@N21# % @1#,@N21# % @1#,@N21# % @1#,...%. Each of the elements in
der(N) produces in its turn a~finite! number of Feynman diagrams differing from one another
all possible connections~by means of propagators! between all legs of the vertices. Thus, th
diagrams of weight two in Fig. 3, related toCW andCV in the general expression~50!, correspond
to elements@2# and @2# in the set der~2!, respectively.

Any element of der(N) specifies the number of different vertices as well as their sepa
weights. If the number of different vertices in a diagram is given by integers$V1 ,V2 ,...,Vk% then
the overall factor in front of the corresponding expression is 1/(V1!V2!...Vk!). Next, let the total
number of bosonic and the fermion vertices bekB andkF ~so thatkB1kF5k), respectively. Then
the total number of bosonic legs of all the vertices in such a diagram is 2kB1N), while the
number of the fermion legs is 2kF . Since, we are interested in vacuum diagrams~with all legs
being connected! only, the diagrams of an odd weightN are not relevant for our derivative
expansion. So, we putN52n. As is easy to count, the total number of all possible connections~by
means ofkB1n bosonic andkF the fermion propagators! between these vertices is (N12kB

21)!!(2kF21)!!, where we assume that~21!!![1. This is an upper bound for the number
different diagrams with the given vertex set corresponding to the given element@V1# %¯

% @VkF
# % @VkF11# %¯% @Vk#Pder(N). However, due to the symmetry of the vertices with r

spect to permutations of their nonmarked legs as well as with respect to permutations of id
vertices, some of the diagrams are in fact equivalent. For example, the naive number
relevant diagrams for the two-derivative terms in the expansion of the effective action is 2
the other hand, as is seen from our general result~50!, the actual number of nonequivalent term
is 11.

Now let us say several words about the sign factors of diagrams. First, all diagrams of w
N52n have an overall factor (2 i )n. To get the right sign resulting from the fermion loops, o
preliminary has to assign the direction of the fermion flow in the diagram by ad

FIG. 3. Two simplest examples of diagrams related to the two-derivative termsCW andCV in our general expression fo
spinor QED.
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arrows on the fermion~dashed! lines. Then the overall sign factor is obtained by multiplying si
factors for each the fermion loop of the diagram. Each of the loop factors is defined b
formula, (21)N011, whereN0 is the number of arrows running into circles of loop vertices. T
rule takes into account the fact that the fermion propagators are antisymmetric with respec
simultaneous permutation of their Lorentz indices and proper time coordinates as well as t
that tensor weight at the fermion vertices feels the order of first two indices.

Concluding this section, we would like to express a hope that the brief description o
Feynman technique given here would be enough for writing a code in some of the language
for analytical computations if such a need appears.

XI. CONCLUSIONS

In conclusion, here we further develop the method of our previous paper9 and generalize it to
quantum electrodynamics in 211 dimensions. The distinctive feature of our approach is the us
a special matrix basis~in Lorentz indices! in order to deal with functions of antisymmetric tenso
such as the~background! field strength tensor in QED. In Sec. III, we give the explicit repres
tation for these matrices as well as demonstrate how they facilitate the calculation. It is al
use of these matrices that allowed us to obtain the derivative expansion in the fully covariant

Then, in this paper, we derived explicit expression of the two-derivative term in the deriv
expansion of the effective action in QED in both fermion and scalar QED in 211 and 311
dimensions. In addition, we also calculated the leading order corrections to the probability
particle–antiparticle creation rate produced by space–time gradients of the electric field
ground. The latter gives a nontrivial generalization of the famous Schwinger result in a co
electric field.3

Among other results, here we derived the Feynman rules for generating the pertur
expansion of the effective action in the number of derivatives. This means that, in princip
arbitrary finite order of the derivative expansion is calculable in our approach. For obvious
sons, the complexity of calculation explodes at higher orders and, in the case of the four-der
approximation, the computational work already becomes so hard that it is almost impossible
a result in the closed form without using a computer. By making use of the Feynman rules, d
in this paper, one can write a computer code in order to calculate higher order approximat

At the end, let us also make a few remarks about possible tests and applications of der
expansion obtained in this paper.

As in the case of the Euler–Heisenberg action, the derivative corrections will affect, a
other things, the photon–photon scattering amplitude. For a vanishing background field, the
is discussed in detail in Ref. 6. Obviously, when the background field is nonzero the correspo
amplitude and the energy dependence of the cross section are going to change. As for the
form of the result, it will be given elsewhere.

Besides that, it is likely that the explicit dependence of the photon–photon cross s
would be of great interest in studies of some real systems which exist under extremely
magnetic fields. The vicinity of the neutron stars and the early Universe31 are the most natura
candidates of such systems.

The formal derivative expansion might also be useful in other problems, such as the
alization of the theory of magnetic catalysis of chiral symmetry breaking in QED4 ~Ref. 32! and
QED3 ~Ref. 33! to the case of inhomogeneous external fields.
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APPENDIX A: COEFFICIENT FUNCTIONS WHICH APPEAR IN THE DERIVATIVE
EXPANSION

Here we give the functions used in Eqs.~50! and ~83!. @Here we corrected the typos whic
appeared in Ref. 9, namely we~i! omitted an extra term in the expression forC4

VV that was
mistakenly present;~ii ! replaced the wrong factorH(tb) in the last term ofC4

VV by H(tg), and
~iii ! added the third term inC5

VV which was originally missing. In addition, we rewroteC5
VV in a

slightly different form.#

CW~ ā,b̄ !5t2 tanh~at!H~bt!, ~A1!

CV~ ā,b̄ !5at3H~at!H~bt!2
at

b22a2 @H~bt!2H~at!#, ~A2!

C1
WW~ ā,b̄,ḡ !5

t3

8
tanh~at!tanh~bt!H~gt!, ~A3!

C2
WW~ ā,b̄,ḡ !5

t2

4
@ tanh~at!1tanh~bt!#S H~at1bt!2H~gt!

a1b2g
2

H~gt!

a1b D , ~A4!

C1
VW~ ā,b̄,g!52

t3

4
tanh~at!S btH~bt!H~gt!2

H~bt!2H~gt!

t~b1g! D , ~A5!

C2
VW~ ā,b̄,ḡ !5

t2b tanh~at!

2~b22g2!
@H~bt!2H~gt!#, ~A6!

C1
VV~ ā,b̄,ḡ !5

t5ab

2
H~at!H~bt!H~gt!2

t3aH~at!

2~b2g!
~H~bt!2H~gt!!

2
t3bH~bt!

2~a1g!
~H~at!2H~gt!!2

t

2

H~at!

~a1g!~a1b!

2
t

2

H~bt!

~a1b!~b2g!
1

t

2

H~gt!

~a1g!~b2g!
, ~A7!

C2
VV~ ā,b̄,ḡ !52

t3abH~at!H~bt!

2~a2b!~a2b1g!
1

t3@2~a2b!1g#H~gt!@bH~bt!2aH~at!#

2~a2b!~a2b1g!

1
at

2
H~at!S 2~b1g!

~a22b2!~a22g2!
2

2a2b1g

~a2b!2~a1g!~a2b1g! D
1

bt

2
H~bt!S 2~g2a!

~a22b2!~b22g2!
1

2b2a2g

~a2b!2~b2g!~a2b1g! D
1

t

2
H~gt!S 2~ab1g2!

~a22g2!~b22g2!
2

g

~a1g!~b2g!~a2b1g! D
1

t

2~a2b!~a2b1g!
, ~A8!
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C3
VV~ ā,b̄,ḡ !52

t3abH~at!

b22g2 @H~bt!2H~gt!#1
atH~at!

~a2b!~a22g2!

2
t

b22g2 S b

a2b
H~bt!2

ab1g2

a22g2 H~gt! D , ~A9!

C4
VV~ ā,b̄,ḡ !52

2ta2H~at!

~a22b2!~a22g2!
1

2tb2H~bt!

~a22b2!~b22g2!
1

2tg2H~gt!

~a22g2!~g22b2!
, ~A10!

C5
VV~ ā,b̄,ḡ !5

t3a

2 S a

~a1b!~a1b1g!
1

1

a1g DH~at!H~bt!

1
t3a

2 S a

~a1g!~a1b1g!
1

1

a1b DH~at!H~gt!1t3H~bt!H~gt!

1
t3

2 S bg~b1g!

a1b1g
22a2D H~bt!H~gt!

~a1b!~a1g!
1

atH~at!S 21
a1b

a1g
1

a1g

a1b D
2~a1b!~a1g!~a1b1g!

1
t

2 S 2H~gt!

~a1g!~b2g!
2

2H~bt!

~a1b!~b2g!
1

gH~gt!

~a1g!2~a1b1g!

1
bH~bt!

~a1b!2~a1b1g!
2

1

~a1b!~a1b1g!
2

1

~a1g!~a1b1g! D . ~A11!

Here we used the following notation:

H~x!5
x cothx21

x2 , ~A12!

and the letters with bars differ from the letters without those only in a factor of the electric ch
a5eā. Note that in Ref. 9 we ignored this difference.

As t→0, these coefficient functions have the following asymptotic behavior:

CW~ ā,b̄ !.
at3

3
2

at5

45
~5a21b2!1O~t7!, ~A13!

CV~ ā,b̄ !.
2at3

15
2

at5

105
~a21b2!1O~t7!, ~A14!

C1
WW~ ā,b̄,ḡ !.

abt5

24
1O~t7!, ~A15!

C2
WW~ ā,b̄,ḡ !.2

t3

12
1

t5

180
~4a214b21g227ab2ag2bg!1O~t7!, ~A16!

C1
VW~ ā,b̄,ḡ !.

at5

180
~g26b!1O~t7!, ~A17!

C2
VW~ ā,b̄,ḡ !.

abt5

90
1O~t7!, ~A18!
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C1
VV~ ā,b̄,ḡ !.

t3

90
2

t5

1890
~2a212b212g2251ab29ag19bg!1O~t7!, ~A19!

C2
VV~ ā,b̄,ḡ !.2

4t3

45
1

t5

1890
~10a2110b2113g2115ab13ag23bg!1O~t7!, ~A20!

C3
VV~ ā,b̄,ḡ !.2

t3

45
1

t5

945
~2a212b212g219ab!1O~t7!, ~A21!

C4
VV~ ā,b̄,ḡ !.

2t3

45
2

4t5

945
~a21b21g2!1O~t7!, ~A22!

C5
VV~ ā,b̄,ḡ !.

8t3

45
2

t5

1890
~20a2123b2123g2212ab212ag16bg!1O~t7!. ~A23!

APPENDIX B: EXPANSION OF THE DERIVATIVE TERMS IN POWERS OF THE PROPER
TIME

In this Appendix we give the proper time expansion of the derivative terms, as in Eqs~56!
and ~88!, up to the ordert5.

In case of spinor QED, from Eq.~50! we derive the expansion

tr ^xuU~t!ux&.tr ^xuU~t!ux&0F11
ie2t3

20
FnlFnl,m

m

1
ie2t3

180 S 7

2
Fnl,mFnl,m2Fnl,

lFnm,
mD2

ie4t5

315
Fnl,mk~16FhmkFnl1Fnl~F2!mk!

1
ie4t5

1890
~2Fnl,mFnr,

r~F2!lm22Fnl,mFnl,r~F2!m
r237Fnl,mFns,m~F2!l

s

1Fnm,
mFsr,

r~F2!ns!2
ie4t5

2520
Fnl,mFsk,r~38hmrFlsFnk212hnkFlrFms

147hmrFnlFsk116hkrFlsFnm!G . ~B1!

Notice that despite the difference between the two sets of matricesA( j )
mn in 211 and 311 dimen-

sions, the expression in square brackets is independent of the dimension up to this orde
expansion. In calculation, we took into account the Bianchi identity to show that many seem
different terms appearing in the expansion reduce to the same structures. In particular, the
ing relations are the identities that we needed:

Fnl,mkhlkFnm5 1
2Fnl,mkhmkFnl, ~B2!

Fnl,mkFnm~F2!lk5 1
2Fnl,mkFnl~F2!mk, ~B3!

Fnl,mFsk,rhnrFlsFmk5 1
2Fnl,mFsk,rhmrFlsFnk, ~B4!

Fnl,mFsk,rhnkFlsFmr5Fnl,mFsk,rhnkFlrFms1 1
2Fnl,mFsk,rhmrFlsFnk, ~B5!

Fnl,mFsk,rhmsFkrFnl52 1
2Fnl,mFsk,rhmrFnlFsk, ~B6!

Fnl,mFsk,rhsrFmkFnl522Fnl,mFsk,rhkrFlsFnm, ~B7!
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Fnl,mFsk,rhlsFkrFnm52 1
4Fnl,mFsk,rhmrFnlFsk, ~B8!

Fnl,mFsk,rhnkhsr~F2!lm52Fnl,mFr
nr,~F2!lm, ~B9!

Fnl,mFsk,rhmshnk~F2!lr52 1
2Fnl,mFnl,r~F2!r

m , ~B10!

Fnl,mFsk,rhmrhnk~F2!ls52Fnl,mFns,m~F2!s
l , ~B11!

Fnl,mFsk,rhmkhnr~F2!ls52Fnl,mFns,m~F2!l
s1 1

2Fnl,mFnl,r~F2!m
r , ~B12!

Fnl,mFsk,rhnshlk~F2!mr5Fnl,mFnl,r~F2!m
r , ~B13!

Fnl,mFsk,rhnmhkr~F2!ls52Fnm,
mFsr,

r~F2!ns. ~B14!

After expandingtr ^xuU(t)ux&0 in Eq. ~B1! in powers of t up to the terms of ordert3 and
substituting the obtained expression in the definition of the effective action, we arrive a
following two-derivative correction of the order 1/m6:

L1/m6
~311!spin

52
11a2

630m6 FbgFbgFnlFnl,m
m1

4a2

315m6 ~F2!mkFnlFnl,mk

1
a2

270m6 FbgFbgS 7

2
Fnl,mFnl,m2Fnl

lFnm,
mD

2
2a2

945m6 ~2Fnl,mFnr,
r~F2!lm22Fnl,mFnl,r~F2!m

r237Fnl,mFns,m~F2!l
s

1Fnm,
mFsr,

r~F2!ns!1
a2

630m6 Fnl,mFsk,r~38hmrFlsFnk212hnkFlrFms

147hmrFnlFsk116hkrFlsFnm!, ~B15!

to the one-loop effective action in spinor QED in 311 dimensions, and the correction of the ord
1/m7,

L1/m7
~211!spin

52
11a2p

336m7 FbgFbgFnlFnl,m
m1

a2p

42m7 ~F2!mkFnlFnl,mk

1
a2p

144m7 FbgFbgS 7

2
Fnl,mFnl,m2Fl

nl,Fnm,
mD

2
a2p

252m7 ~2Fnl,mFnr,
r~F2!lm22Fnl,mFnl,r~F2!m

r237Fnl,mFns,m~F2!l
s

1Fnm,
mFsr,

r~F2!ns!1
a2p

336m7 Fnl,mFsk,r~38hmrFlsFnk212hnkFlrFms

147hmrFnlFsk116hkrFlsFnm!, ~B16!

to the effective action in 211 dimensions. It turns out that these latter can be further simplifi
Indeed, after integrating by parts, the results can be expressed through the following seven L
scalars,

L15FbgFbgFnlFnl,m
m , ~B17!
                                                                                                                



the

5433J. Math. Phys., Vol. 40, No. 11, November 1999 Derivative expansion of the effective action . . .

                    
L25FbgFbgFnl,mFnl,m , ~B18!

L35FbgFbgFnl,
lFnm

m , ~B19!

L45Fnl,mkFnl~F2!mk, ~B20!

L55FknFnl,mFlsFsk
m , ~B21!

L65Fnl,m
m~F3!nl ~B22!

L75Fnm,
mFlr,

r~F2!nl. ~B23!

Thus, the final results in 311 and in 211 dimensions read

L1/m6
~311!spin

52
16a2

315m6 L12
8a2

315m6 L21
2a2

315m6 L32
a2

945m6 L4

2
11a2

945m6 L52
26a2

945m6 L61
4a2

189m6 L7 , ~B24!

L1/m7
~211!spin

52
2a2p

21m6 L12
a2p

21m6 L21
a2p

84m6 L32
a2p

504m6 L42
11a2p

504m6 L52
13a2p

252m6 L61
5a2p

126m6 L7 ,

~B25!

respectively. This should be compared with the result of Ref. 6~see Eq.~14! there!. Notice that the
photon field in Ref. 6 desribes on-shell quanta, and, as a result, the terms containingL1 , L3 , L6 ,
andL7 do not appear~they are proportional tok250).

In a similar way, in the case of scalar QED we obtain the following expression for
expansion of Eq.~83!:

^xuUbos~t!ux&.^xuUbos~t!ux&0F12
ie2t3

30
FnlFnl,m

m2
ie2t3

180
~4Fnl,mFnl,m1Fnl,

lFnm,
m!

1
ie4t5

840
Fnl,mk~4FhmkFnl12Fnl~F2!mk!1

ie4t5

7560
~8Fnl,mFnr,

r~F2!lm

113Fnl,mFnl,r~F2!m
r120Fnl,mFns,m~F2!l

s14Fnm,
mFsr,

r~F2!ns!

1
ie4t5

5040
Fnl,mFsk,r~8hmrFlsFnk24hnkFlrFms217hmrFnlFsk

124hkrFlsFnm!G , ~B26!

leading to the 1/m6 correction to the effective Lagrangian density,

L1/m6
~311!scal

52
a2

126m6 FbgFbgFnlFnl,m
m1

a2

210m6 ~F2!mkFnlFnl,mk

2
a2

1080m6 FbgFbgS 4Fnl,mFnl,m1Fnl,
lFnm,

m

1
a2

3780m6 S 8Fnl,mFnr,
r~F2!lm113Fnl,mFnl,r~F2!m

r120Fnl,mFns,m~F2!l
s

14Fnm,
mFsr,

r~F2!ns1
a2

2520m6 Fnl,mFsk,r~8hmrFlsFnk24hnkFlrFms

217hmrFnlFsk124hkrFlsFnm!, ~B27!

in 311 dimensions, and the 1/m7 correction,
                                                                                                                



case of

e
gnetic

5434 J. Math. Phys., Vol. 40, No. 11, November 1999 V. P. Gusynin and I. A. Shovkovy

                    
L1/m7
~211!scal

5
5a2p

336m7 FbgFbgFnlFnl,m
m2

a2p

112m7 ~F2!mkFnlFnl,mk

1
a2p

576m7 FbgFbgS 4Fnl,mFnl,m1Fnl,
lFnm,

m2
a2p

2016m7 S 8Fnl,mFnr,
r~F2!lm

113Fnl,mFnl,r~F2!m
r120Fnl,mFns,m~F2!l

s14Fnm,
mFsr,

r~F2!ns

2
a2p

1344m7 Fnl,mFsk,r~8hmrFlsFnk24hnkFlrFms217hmrFnlFsk

124hkrFlsFnm!, ~B28!

in 211 dimensions.
Up to a divergence, the derived corrections to the effective action are equivalent to

L1/m6
~311!scal

52
13a2

2520m6 L12
a2

840m6 L22
a2

2520m6 L31
a2

1890m6 L4

1
a2

3780m6 L52
11a2

3780m6 L61
a2

1890m6 L7 , ~B29!

L1/m7
~211!scal

5
13a2

1344m6 L11
a2

448m6 L21
a2

1344m6 L32
a2

1008m6 L4

2
a2

2016m6 L51
11a2

2016m6 L62
a2

1008m6 L7 , ~B30!

in 311 and 211 dimensions, respectively. Here we used the same seven scalars as in the
spinor QED above.

APPENDIX C: COEFFICIENT FUNCTIONS WHICH APPEAR IN PURELY ELECTRIC AND
PURELY MAGNETIC CASES

In this Appendix we list the formulas, similar to that in Eq.~60!, which appear in the cours
of reduction the general expression for the derivative contribution to the case of a pure ma
~electric! field background. These are

Fnl,mk(
j ,l

CW~ f j , f l !A~ j !
lnA~ l !

mk522iCW~ ā,ā !(
i 51

2

] i] iB, ~C1!

Fnl,mk(
j ,l

CV~ f j , f l !~A~ j !
nlA~ l !

mk12A~ j !
nmA~ l !

lk!54iCV~ ā,ā !(
i 51

2

] i] iB, ~C2!

Fnl,mFsk,r(
j ,l ,k

C1
WW~ f j , f l , f k!A~ j !

ksA~ l !
lnA~k!

mr54C1
WW~ ā,ā,ā !(

i 51

2

~] iB!2, ~C3!
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Fnl,mFsk,r(
j ,l ,k

C2
WW~ f j , f l , f k!A~ j !

klA~ l !
snA~k!

mr522C2
WW~ ā,2ā,ā !(

i 51

2

~] iB!2, ~C4!

Fnl,mFsk,r(
j ,l ,k

C1
VW~ f j , f l , f k!A~ j !

sk~A~ l !
nlA~k!

mr1A~ l !
nmA~k!

lr !

52~C1
VW~ ā,ā,ā !12C1

VW~ ā,ā,2ā !!(
i 51

2

~] iB!2, ~C5!

Fnl,mFsk,r(
j ,l ,k

C2
VW~ f j , f l , f k!A~ j !

skA~ l !
nrA~k!

lm52C2
VW~ ā,ā,ā !(

i 51

2

~] iB!2, ~C6!

Fnl,mFsk,r(
j ,l ,k

C1
VV~ f j , f l , f k!~A~ j !

nlA~ l !
ksA~k!

mr1A~ j !
nmA~ l !

krA~k!
ls12A~ j !

nlA~ l !
krA~k!

ms!

5~4C1
VV~ ā,ā,ā !24C1

VV~2ā,ā,ā !2C1
VV~ ā,2ā,ā !!(

i 51

2

~] iB!2, ~C7!

Fnl,mFsk,r(
j ,l ,k

C2
VV~ f j , f l , f k!~A~ j !

nsA~ l !
klA~k!

mr1A~ j !
nr A~ l !

kmA~k!
ls12A~ j !

nsA~ l !
kmA~k!

lr !

52~4C2
VV~ ā,ā,ā !2C2

VV~2ā,ā,ā !!(
i 51

2

~] iB!2, ~C8!

Fnl,mFsk,r(
j ,l ,k

C3
VV~ f j , f l , f k!~A~ j !

nlA~ l !
kmA~k!

sr1A~ j !
krA~ l !

nsA~k!
lm!

52~4C3
VV~ ā,ā,ā !2C3

VV~ ā,2ā,ā !!(
i 51

2

~] iB!2, ~C9!

C4
VV~ f j , f l , f k!A~ j !

nkA~ l !
lmA~k!

sr5C4
VV~ ā,ā,ā !(

i 51

2

~] iB!2, ~C10!

Fnl,mFsk,r(
j ,l ,k

C5
VV~ f j , f l , f k!A~ j !

nk~A~ l !
lsA~k!

mr1A~ l !
lrA~k!

ms!

5~C5
VV~ ā,2ā,ā !12C5

VV~2ā,ā,ā !!(
i 51

2

~] iB!2, ~C11!

whereā5A2F.
The latter expressions contain the coefficient functions from Appendix A calculated

particular value of their arguments. The convenient representation for them reads

CV~ ā,ā !5
t2

2v
~3v2H213H21!, ~C12!

CW~ ā,ā !5t2 tanh~v!H, ~C13!

C1
WW~ ā,ā,ā !5

t3

8
tanh2~v!H, ~C14!
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C2
WW~ ā,2ā,ā !52

t3

4
~12tanh2~v!!H, ~C15!

C1
VW~ ā,ā,ā !52

t3

4
tanh~v!vH2, ~C16!

C1
VW~ ā,ā,2ā !52

t3

4v
tanh~v!~2v2H213H21!, ~C17!

C2
VW~ ā,ā,ā !52

t3

4v
tanh~v!~v2H213H21!, ~C18!

C1
VV~ ā,ā,ā !5

t3

4v2 ~4v4H317v2H222v2H13H21!, ~C19!

C1
VV~2ā,ā,ā !52

t3

2v2 ~4v4H3110v2H223v2H16H22!, ~C20!

C1
VV~ ā,2ā,ā !52

t3

4v2 ~2v4H32v2H223H11!, ~C21!

C2
VV~ ā,ā,ā !5

t3

2v2 ~2v4H315v2H222v2H13H21!, ~C22!

C2
VV~2ā,ā,ā !52

t3

4v2 ~2v4H3111v2H222v2H19H23!, ~C23!

C3
VV~ ā,ā,ā !5

t3

4v2 ~4v4H3113v2H224v2H19H23!, ~C24!

C3
VV~ ā,2ā,ā !52

t3

2v2 ~v4H314v2H22v2H13H21!, ~C25!

C4
VV~ ā,ā,ā !52

t3

4v2 ~2v4H315v2H222v2H13H21!, ~C26!

C5
VV~ ā,2ā,ā !52

t3

4v2 ~2v4H32v2H222v2H23H11!, ~C27!

C5
VV~2ā,ā,ā !52

t3

v2 ~2v4H315v2H222v2H13H21!, ~C28!

where, by definition,v5eāt andH5H(v).

APPENDIX D: SPECIAL FUNCTION REPRESENTATION FOR THE INTEGRALS WHICH
APPEAR IN THE PURELY ELECTRIC AND PURELY MAGNETIC CASES

In the main text, we saw that the calculation of the effective action for spinor QED in
external magnetic field reduces to evaluating the following integral~with m51/2 in 211 dimen-
sions, andm50 in 311 dimensions!:
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I ~spin!~s;m!5E
0

`

dvvm21e2sv
d3

dv3 ~v cothv!5E
0

`

dvvm21e2sv
d3

dv3 S v cothv212
v2

3 D
52E

0

`

dvS v cothv212
v2

3 D d3

dv3 ~vm21e2sv!

5E
0

`

dvvm21e2svS cothv2
1

v
2

v

3 D S ~32m!~22m!~12m!

v2

1
3s~22m!~12m!

v
13s2~12m!1s3v D , ~D1!

where we integrated by parts~to avoid divergences asv→0 we subtracted the first two terms o
the hyperbolic cotangent asymptotes!. For large enough values of the parameterm, one can apply
the following table integrals:27

E
0

`

dvvm21e2sv cothv5G~m!F212mjS m,11
s

2 D1s2mG , ~D2!

E
0

`

dvvm21e2sv5s2mG~m!. ~D3!

Thus, the integral in Eq.~D1! yields

I ~spin!~s;m!522mG~m11!Fs3zS m11,11
s

2 D16s2
12m

m
zS m,11

s

2 D
212s

22m

m
zS m21,11

s

2 D18
32m

m
zS m22,11

s

2 D G . ~D4!

As one can easily check, the original integral in Eq.~D1! is well defined form.21. Therefore, the
last expression should allow a well defined analytical continuation to the whole that ran
values ofm. Notice that this should be true even despite the fact that the intermediate integr
in Eqs. ~D2! and ~D3!, may not be well defined for all valuesm.21. In particular, by an
analytical continuation, we obtain the results for the values ofm which are of interest,

I ~spin!S s;
1

2D52A2pF5zS 2
3

2
,11

s

2 D29
s

2
zS 2

1

2
,11

s

2 D
13S s

2 D 2

zS 1

2
,11

s

2 D1S s

2 D 3

zS 3

2
,11

s

2 D G , ~D5!

I ~spin!~s;0!5
11

6
s31s22

1

3
s2s3cS 11

s

2 D16s2F ln GS 11
s

2 D2 lnA2pG
224sz8S 21,11

s

2 D124z8S 22,11
s

2 D , ~D6!

where the prime denotes the derivative of zeta function with respect to its first argume
derivation of the second expression we used the following identities:27

z~21,q!52
q2

2
1

q

2
2

1

12
, z~0,q!5

1

2
2q,
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z~22,q!52
q3

3
1

q2

2
2

q

6
, z8~0,q![

]z~z,q!

]z U
z50

5 ln G~q!2 lnA2p, ~D7!

lim
z→1

S z~z,q!2
1

z21D52c~q!.

In the case of scalar QED, we come to the integral~again, withm51/2 in 211 dimensions,
andm50 in 311 dimensions!,

I ~scal!~s;m!5E
0

`

dvvm21e2svS d3

dv3 1
d

dv D v

sinhv

5E
0

`

dvvm21e2svF d3

dv3 S v

sinhv
211

v2

6 D1
d

dv S v

sinhv
21D G

52E
0

`

dvF S v

sinhv
211

v2

6 D d3

dv3 1S v

sinhv
21D d

dvG~vm21e2sv!

5E
0

`

dvvm21e2svF S 1

sinhv
2

1

v
1

v

6 D S ~32m!~22m!~12m!

v2 1
3s~22m!~12m!

v

13s2~12m!1s3v D1S 1

sinhv
2

1

v D ~12m1sv!G , ~D8!

where we integrated by parts as in the spinor case. In addition to the table integral in~D3!, we
need also the following one:

E
0

` dvvm21e2sv

sinhv
5212mG~m!zS m,

11s

2 D . ~D9!

Thus, we obtain

I ~scal!~s;m!522mG~m11!Fs~11s2!zS m11,
11s

2 D12~113s2!
12m

m
zS m,

11s

2 D
212s

22m

m
zS m21,

11s

2 D18
32m

m
zS m22,

11s

2 D G . ~D10!

And, finally, by analytical continuation, we obtain the results for two values ofm that are of
interest,

I ~scal!S s;
1

2D5Ap

2 F20zS 2
3

2
,
11s

2 D218szS 2
1

2
,
11s

2 D
1~113s2!zS 1

2
,
11s

2 D1
s

2
~11s2!zS 3

2
,
11s

2 D G , ~D11!

I ~scal!~s;0!5
11

6
s31

7

6
s2s~11s2!cS 11s

2 D12~113s2!F ln GS 11s

2 D2 lnA2pG
224sz8S 21,

11s

2 D124z8S 22,
11s

2 D . ~D12!
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Monopoles and harmonic maps
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Recently Jarvis has proved a correspondence between SU(N) monopoles and ra-
tional maps of the Riemann sphere into flag manifolds. Furthermore, he has out-
lined a construction to obtain the monopole fields from the rational map. In
this paper we examine this construction in some detail and provide explicit
examples for spherically symmetric SU(N) monopoles with various symmetry
breakings. In particular we show how to obtain these monopoles from harmonic
maps into complex projective spaces. The approach extends in a natural way to
monopoles in hyperbolic space and we use it to construct new spherically symmet-
ric SU(N) hyperbolic monopoles. ©1999 American Institute of Physics.
@S0022-2488~99!03009-1#

I. INTRODUCTION

This paper is concerned with static SU(N) BPS monopoles, which are topological solitons
a Yang–Mills–Higgs gauge theory. The Bogomolny equation, which describes all static m
poles, is integrable and so a variety of techniques are available for studying monopoles, inc
twistor methods. Despite this fact there are still only a limited number of known explicit mono
solutions, though the integrability of the Bogomolny equation allows many features of monop
such as the dimensions of their moduli spaces, to be determined.

An example where the integrability of the Bogomolny equation can be used to prove r
on monopoles is the correspondence proved by Jarvis,1 between monopoles and rational ma
from the Riemann sphere into flag manifolds. The rational map arises as the scattering data
half-lines from the origin, of a linear operator constructed from the monopole fields. Further
in proving the correspondence Jarvis outlines an ‘‘inverse scattering’’ procedure whereb
monopole fields can be reconstructed from the rational map. It is this construction which
focus of this paper. The construction involves solving a nonlinear partial differential equ
which is equivalent to the Bogomolny equation, but for which the boundary conditions are
in terms of the rational map. This is the main point of the construction, since for the ori
Bogomolny equation it is not at all clear how to specify boundary conditions on the fields so
obtain a unique monopole solution. We perform the construction explicitly for several examp
SU(N) monopoles with spherical symmetry and a variety of symmetry breakings. The solu
are obtained from harmonic maps of the plane intoCPN21, with the degrees of the harmonic map
related to the topological charges of the monopoles.

Perhaps we should make it clear at this point that there are several approaches to s
spherically symmetric monopoles2–5 and the main aim of this paper is not the construction of n
monopole solutions, but rather to gain a better understanding of the correspondence b
monopoles and rational maps. In particular we study the construction of monopole solutions
the rational map data, and SU(N) monopoles with spherical symmetry are a good vehicle for t

The construction of monopoles from rational maps has a natural generalization to mon
in hyperbolic space. Using this approach we construct explicit solutions for spherically symm
SU(N) hyperbolic monopoles. As far as we are aware these multimonopole solutions are ne
we shall see, the construction of hyperbolic monopoles has a simplifying feature in compari
the Euclidean case, and therefore a useful way to obtain the Euclidean solutions is as th
curvature limit of the hyperbolic ones.
54400022-2488/99/40(11)/5440/16/$15.00 © 1999 American Institute of Physics
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II. SU„N… MONOPOLES

BPS monopoles are finite energy solutions to the Bogomolny equation

DiF52 1
2e i jkF jk, ~1!

whereDi5] i1@Ai ,# is the covariant derivative withAi , for i 51,2,3, an su(N)-valued gauge
potential with gauge fieldF jk5] jAk2]kAj1@Aj ,Ak#. The Higgs fieldF, is an su(N)-valued
scalar field for which nontrivial asymptotic boundary conditions are imposed so that topolo
solitons exist. More precisely, there is a choice of gauge such that in a given direction the
field for large radiusr is given by

F5 iF02
i

r
F11OS 1

r 2D , ~2!

whereF05diag(l1,l2,...,lN), with the trace-free condition requiring thatl11l21¯1lN50,
and we choose the ordering such thatl1>l2>¯>lN . F1 is another diagonal matrix,F1

5 1
2 diag(n1,n22n1,...,nN212nN22,2nN21), and it can be shown that the numbersn1 ,n2 ,...,nN21

are always integers.
F0 is the vacuum expectation value ofF and it breaks the symmetry group from SU(N) to a

residual symmetry groupJ, given by the isotropy group ofF0 . The Higgs field on the two-spher
at infinity defines a map fromS2 to the coset space of vacua SU(N)/J, so that whenp2(SU(N)/J)
is nontrivial then all solutions have a topological characterization.

If the l i are all distinct then the residual symmetry group is the maximal torus, thatJ
5U(1)N21, and this is known as maximal symmetry breaking. In this case

p2S SU~N!

U~1!N21D5p1~U~1!N21!5ZN21 ~3!

so the monopoles are associated withN21 integers, which are called the topological charges,
are precisely the integersn1 ,n2 ,...,nN21 appearing inF1 .

In contrast the case of minimal symmetry breaking is when all but one of thel i coincide, so
the residual symmetry group is U(N21). Since

p2S SU~N!

U~N21! D5Z ~4!

there is only one topological charge in this case and the remaining integers are called ma
weights. The simplest way to distinguish the topological charges from the magnetic weight
examine the expression for the energy of the monopole.

The condition~2! guarantees that the configuration has finite energy

E5
1

4p E 2trS 1

2
Fi j

2 1~DiF!2Dd3x. ~5!

The energy depends only on the topological charges and the asymptotic eigenvalues ofF, in fact

E5~l12l2!n11~l22l3!n21¯1~lN212lN!nN21 . ~6!

From this expression it can be seen that the differencel j2l j 11 determines the mass of th
monopole of typej, of which there arenj in the given solution. In the minimal symmetry breakin
case, wherel25l35¯5lN , then all but the first type of monopole becomes massless, so
n1 remains a topological charge but the remaining integers become magnetic weights and
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contribute to the value of the energy. Note that we cannot distinguish in a gauge invarian
betweenn22n1 ,...,nN212nN22 and 2nN21 , and so when we refer to values of magne
weights it is understood that this equivalence should be applied.

For intermediate cases of symmetry breaking the residual symmetry group isJ5U~1!r3K,
whereK is a rankN2r 21 semisimple Lie group, the exact form of which depends on how thl i

coincide with each other. Such monopoles haver topological charges.

III. RATIONAL MAPS

In this section we briefly review the recent correspondence proved by Jarvis,1 between SU(N)
monopoles and rational maps from the Riemann sphere into flag manifolds. Actually the
spondence proved in Ref. 1 is more general than this and is valid for all compact semis
gauge groupsG, but in this paper we shall only be concerned with the simplest case oG
5SU(N).

The first step is to introduce polar coordinates, so that a point ofR3 is given by a distancer
from the origin and a direction determined by a pointz on the Riemann sphere around the orig
In terms of the usual angular coordinatesu, w this is simplyz5eiw tan(u/2).

The Jarvis map is obtained by considering Hitchin’s equation

~Dr2 iF!s50 ~7!

for the complexN-vector s, along each radial half-line from the origin out to infinity, with th
direction of the half-line determined by the value ofz.

For the moment we shall assume that we are dealing with maximal symmetry breaking.
the boundary conditions~2! we see that since at spatial infinityF is in the gauge orbit ofF0 then
in theN-dimensional solution space there is a one-dimensional subspace generated by the s
which decays at the fastest rate asr→`. Now evaluate this solution atr 50. This procedure has
thus determined a line inCN for each value ofz. The next step is to consider how this line vari
with the directionz, and the analysis shows that it varies holomorphically. The crucial ingred
here is that the Bogomolny equation~1! implies that@Dr2 iF,Dz̄#50, so that the operator in Eq
~7! commutes with the covariant derivative in the angular directionDz̄ . It can be shown that the
degree of this holomorphic map intoCPN21 is precisely the topological chargen1 , and hence the
map is rational. Note that if we apply a gauge transformation then the map will be transform
multiplication by a constant element of SU(N), corresponding to the gauge transformation eva
ated at the origin, so that we consider only the equivalence classes of such maps.

Now we repeat the above process but this time we consider the two-dimensional so
space generated by the solution which decays fastest and the solution which decays th
fastest. In the same way as above this will now define a holomorphic plane inCN ~i.e., a space
spanned by two holomorphic lines!, which of course will contain the holomorphic line we ha
already described. The degree of this plane is equal to the topological chargen2 , and so again the
map is rational. Proceeding in this way we finally arrive at the rational mapR:CP1°F(CN),
where F(CN) denotes the space of total flags inCN. This is a series of vector subspac
0,V1,V2,¯,VN21,CN, whereVi has dimensioni, which is clearly the structure we hav
just described.

In the above discussion the degrees refer to the elements of the homotopy
p2(F(CN))5ZN21, and are given by the highest powers which occur in some holomorphic p
nomials, as described later. For a detailed discussion of rational maps into flag manifolds an
relationship to monopoles the interested reader may find it useful to consult Refs. 6 and 7

For symmetry breaking which is not maximal the picture is similar, except that now
rational map will not be into the space of total flags, since the exponential decay of some
solutions will be the same and hence some of the subspacesVi will be missing from the flag. This
of course corresponds to the fact that there will now be fewer topological charges, and
correspond to the degrees of the maps into the vector spaces which remain in the flag.
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Because the construction of the rational map from the monopole does not break the rot
symmetry ofR3 it is a very useful approach for studying monopoles with symmetries. For the
of SU~2! there is only one vector subspace; the space of lines inC2. Thus the rational map is
R:CP1°CP1, that is, a rational map between Riemann spheres, and its degree is the sole
logical charge. By explicit construction of some symmetric maps the existence of various~2!
monopoles with special symmetries has been proved.8

IV. CONSTRUCTING THE MONOPOLE

The proof of the correspondence between monopoles and rational maps1 involves constructing
the monopole from the rational map. The starting point is to write the Bogomolny equation~1! in
terms of the coordinatesr ,z,z̄ and observe that a~complex! gauge can always be chosen so th

F52 iAr52
i

2
H21] rH, Az5H21]zH, Az̄50, ~8!

whereHPSL(N,C) is a Hermitian matrix.
The Bogomolny equation is then equivalent to the single equation forH

] r~H21] rH !1
~11uzu2!2

r 2 ] z̄~H21]zH !50 ~9!

which we shall refer to as the Jarvis equation. Jarvis1 then proves that solutions of this equatio
are determined by the rational map, which specifies the asymptotic boundary conditions onH for
larger. The analysis presented in Ref. 1 is complicated and is not very suitable for attempt
implement the construction explicitly, so in this section we shall present a more explicit pre
tion for determining the boundary conditions onH in terms of the rational map.

For simplicity in this section we shall restrict to the case of SU~2! monopoles. With a choice
of normalization for the Higgs field we have the boundary conditions on the monopole as

F5F`F12
n

2r
1OS 1

r 2D G ~10!

whereF` is in the gauge orbit ofis35diag(i,2i), andn is the topological charge.
Any 232 Hermitian matrixH, which has unit determinant, can always be written in the fo

H5exp$g~P2 1
2!% ~11!

whereg is a real function andP is a 232 Hermitian projector, that is,P†5P5P2. A motivation
for introducing projectors is that it is a useful formulation for dealing with similar equations
arise in the context of Skyrmions.9 Examining the asymptotic boundary condition~10! for larger
we see that the magnitude of the Higgs field at infinity is a constant and moreover the direc
the Higgs field in the SU~2! algebra is independent of the radius to leading order in 1/r . Com-
paring this behavior with Eq.~8! for the Higgs field in terms ofH, we find that the leading orde
behavior for larger is that the profile functiong is independent of the angular coordinatesz,z̄ and
the projectorP is a function only of the angular coordinates. We are now going to examine
larger behavior of the solution, so we use the above leading order result and setg(r ) andP(z,z̄).

Computing the Higgs field we obtain

F52
i

2
H21] rH52

i

2
g8S P2

1

2D ~12!

with magnitude
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iFi252 1
2 tr~F2!5

g82

16
512

n

r
1OS 1

r 2D . ~13!

Integrating this equation forg we obtain~there is a choice of sign here that we shall discuss bel!

g524r 12n log r 1O~1!. ~14!

On substituting the form~11! into Eq.~9! and using the asymptotic expression~14! we obtain the
result that

e4r r 22~n11!~11uzu2!2@PPzz̄1Pz̄Pz#1OS 1

r 2D50, ~15!

where subscripts denote partial differentiation. The coefficient of the growing term in~15! must
therefore vanish and we find the equation satisfied byP is

~PPz! z̄50. ~16!

The equationPPz50 gives the instanton solutions of theCP1 s-model in the plane~see e.g., Ref.
10! and clearly these will satisfy Eq.~16!. Furthermore, as we prove in the Appendix, this gives
solutions of Eq.~16!.

All instanton solutions of theCP1 s-model are given by

P5
f f †

u f u2
, ~17!

wheref is a 2-component column vector whose entries are holomorphic functions ofz. Note that
the multiplication off by an overall factor does not change the projectorP, so thatf is an element
of CP1.

Substituting the asymptotic behavior~14! into equation~12! we obtain the expression for th
Higgs field on the two-sphere at infinity

F`5 i ~2P21!. ~18!

The topological charge,n, is the winding number of this map, which is equal to the degree of
holomorphic vectorf (z) which is used to construct the projector via~17!. Thus we conclude tha
the boundary condition onH is determined in this simple and explicit way in terms of the deg
n rational mapf (z):CP1°CP1.

Note that~17! and~18! give us an explicit expression for the Higgs field at infinity in terms
the rational map. Naively one may think that this does not contain very much information,
for example it is always possible to choose a~singular! gauge in which the Higgs field at infinity
is diagonal and constant. However, the important point is that our expression is given in an e
knowngauge, and therefore we have removed the gauge freedom and are left with the p
information in the Higgs field: the fact that it is rational.

To be precise, we have not yet proved an equivalence between the rational mapf and the one
introduced by Jarvis.1 To prove this equivalence we shall now show thatf is indeed the map
obtained as the scattering data.~We thank Nick Manton for suggesting this analysis.!

In a unitary gauge there is a basis of solutions to Hitchin’s equation~7! which have the
leading order larger behavior

s;e2l j rv j ,

wherel j is an eigenvalue of2 iF` andv j is the corresponding eigenvector. In the SU~2! case,
wherel152l251, the scattering map is determined by the decaying solution or more fu
mentally by the solution associated with thel151 eigenspace. Recall that the scattering map
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obtained by evaluating this solution at the originr 50. Now, the gauge~8! Hitchin’s equation is
trivialized to ] rs50, so the solutions arer independent and hence the scattering map is
eigenvector of2 iF` with eigenvalue one. Thus all that remains to be shown is thatf is the
eigenvector of2 iF` with eigenvalue one. Using the explicit expression~18! and the definition of
the projector~17! this is elementary as

2 iF` f 5~2P21! f 5S 2 f f †

u f u2
21D f 5 f .

At this point it is worth while making a comment about the choice of sign made in Eq.~14! when
taking the square root and integrating Eq.~13!. If the opposite choice of sign is made the
following through the analysis we find that the boundary condition is determined by an anti
morphic map. Thus this choice of sign is merely an orientation and determines whether we
monopoles to correspond to holomorphic or antiholomorphic rational maps.

The construction of a monopole from its rational map is now clear. Choose a rationa
f (z) and calculate the associated projector~17!. Then compute the solution of the Jarvis equat
~9! satisfying the boundary condition that for larger

H;exp~r ~224P!!. ~19!

Obviously this construction is not easy to implement explicitly in practice, since it
requires the solution of a nonlinear partial differential equation. In this sense it is not as pow
as say the ADHMN construction,11 which reduces the problem to solving a set of nonlinear ma
ordinary differential equations plus a further linear system of ordinary differential equations
advantage is that for the construction discussed here the data is free, in that any rational
allowed, whereas in the ADHMN construction the Nahm data must satisfy complicated cons
~including the aforementioned set of nonlinear ordinary differential equations!. Thus even using
the ADHMN construction very few explicit examples of monopole solutions are known. The
always an inherent difficulty associated with solving the monopole equations and the diffe
between these two alternative constructions is whether the main difficulty resides in perfo
the construction or specifying the data upon which the construction is performed.

There are simplifying special cases for which we are able to perform the construction e
itly, the easiest example being the rational mapf 5(1,z) t, which corresponds to the spherical
symmetric SU~2! 1-monopole. In this case the asymptotic behavior,g(r ) andP(z,z̄), is valid for
all r and substituting~11! into the Jarvis equation gives the following ordinary differential eq
tion for the profile function

g91
2

r 2 ~12eg!50. ~20!

The larger boundary conditiong;24r , together with the conditiong(0)50, which is required
for H to be well defined at the origin, determines the unique solution of~20! as

g52 log~2r /sinh 2r !. ~21!

This gives the well-known 1-monopole solution and comparing the asymptotic expansion o~21!
with Eq. ~14! we verify thatn51, so we see explicitly that the topological charge is determine
the degree of the rational map and there is no freedom in the profile function once the m
been specified.

In the following section we provide some explicit examples of solutions to the Jarvis equ
corresponding to spherically symmetric SU(N) monopoles with various symmetry breakings. W
present the rational maps and describe how the solutions of the Jarvis equation are obtain
these in terms of harmonic maps intoCPN21.
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V. HARMONIC MAPS AND SPHERICAL MONOPOLES

In the first part of this section we briefly review some facts that we shall need about harm
maps of theCPN21 s-model in the plane. These results can be found in, for example, Ref.

A. Harmonic maps

The harmonic map~or s-model! equations for theCPN21 model are given by

@Pzz̄,P#50, ~22!

whereP is anN3N Hermitian projector.
As stated earlier, one set of solutions to these equations are the instantons given by

P~ f !5
f f †

u f u2 ~23!

where f (z) is an N-component column vector which is a holomorphic function ofz and whose
degree is equal to the topological charge of thes-model. Another set of solutions are the an
instantons, which have the same form but this timef is an antiholomorphic function, and then th
s-model topological charge is minus the degree off.

For N52 these are all the finite action solutions, but forN.2 there are other noninstanto
solutions. These can be described by introducing the operatorD defined by its action on any vecto
f PCN as

D f 5]zf 2
f ~ f †]zf !

u f u2 ~24!

and then define further vectorsDkf by induction:Dkf 5D(Dk21f ).
To proceed further we note the following useful properties ofDkf when f is holomorphic:

~Dkf !†D l f 50, kÞ l ~25!

] z̄~Dkf !52Dk21f
uDkf u2

uDk21f u2
, ]zS Dk21f

uDk21f u2D5
Dkf

uDk21f u2 . ~26!

These properties either follow directly from the definition ofD or are easy to prove.10 It is also
convenient to define projectorsPk corresponding to the family of vectorsDkf as

Pk5P~Dkf !, k50,...,N21. ~27!

Applying D a total ofN21 times to a holomorphic vector gives an antiholomorphic vector, so
a further application ofD gives the zero vector and hence no corresponding projector.

The projectorsPk are solutions of the harmonic map equations~22! and all solutions can be
found in this way by starting with an appropriate holomorphic vectorf. In the CP1 case the
operatorD converts a holomorphic vector to an antiholomorphic vector, that is, instanton
anti-instantons and these are all the solutions in this case.

Note that the projectors obtained from this sequence always satisfy the relationSk50
N21Pk51.

For connecting harmonic maps with monopoles it is useful to recall the following interp
tion of the noninstanton solutions.10 From a holomorphic vectorf form the exterior product off
and its derivatives as

hk5 f ∧]zf ∧¯∧]z
k f , k50,...,N21. ~28!

Thushk is holomorphic, though it is an element of a larger dimensional space; it may be r
sented as a totally antisymmetric tensor withk11 indices. With this notation it may then b
shown that
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h̄k21
•hk.Dkf ~29!

where• denotes the summation over all the indices ofhk21 and all but the first index ofhk. Here
. denotes that two vectors are equal up to an overall factor, which is the important equiva
since we are dealing with elements of projective spaces. Equation~29! leads to the relation

deg~Dkf !5deg~hk!2deg~hk21! ~30!

where the left-hand side is defined as thes-model topological charge of the projectorPk

5P(Dkf ), and deg(hk) is the highest power ofz which occurs in the holomorphic tensorhk. Thus
the noninstanton solutions may be interpreted as special mixtures of instantons and anti-inst

B. Spherical monopoles

In Sec. IV we saw that the rational map for the spherically symmetric SU~2! 1-monopole is
given by f (z)5(1,z) t. This map is spherically symmetric in the sense that a rotation inR3, which
is realized as an SU~2! Möbius transformation

z° z̃5
az1b

2b̄z1ā
with uau21ubu251 ~31!

can be compensated by a constant SU~2! gauge transformation. Explicitly

f ~ z̃!.S ā 2b̄

b a
D f ~z!. ~32!

This is the only spherically symmetric map intoCP1 which has positive degree and hence there
no more spherically symmetric SU~2! monopoles. For SU(N) we first require spherically sym
metric maps intoCPN21 and these are given by

f 5~ f 0 ,...,f j ,...,f N21! t, where f j5zjAS N21
j D ~33!

and ( j
N21 ) denote the binomial coefficients. It can be shown that these maps are sphe

symmetric by an explicit presentation of the compensating transformation as in~32!. Of course
there are other spherically symmetric maps which are obtained by embedding the above ma
setting all other entries to be zero.

For a spherically symmetric SU(N) monopole we require a rational map into the space of to
flags F(CN), which has spherical symmetry. Thus we need an explicit representation o
holomorphic line, the holomorphic plane~which contains the line!, etc. As we shall see in mor
detail below, we take eachk-dimensional subspace to be the space spanned by the ve
f ,]zf ,...,]z

k21f , wheref is the spherical map~33!. Note that these are precisely the spaceshk21

defined in~28!. Thus the topological charges of the monopole,nk , are given by

nk5deg~hk21!, k51,...,N21. ~34!

Hence from~30! it is clear that the monopole topological charges are therefore not equal t
s-model topological charges of the harmonic maps from which we shall create them. The e
tion to this statement is the caseN52, where all the harmonic maps are instantons and then
only degree is deg(h0) which in this case is equal to thes-model topological charge.

The degree of the map~33! is N21 and hence it is easy to calculate the degree ofhk from
~28! which, after taking into account the antisymmetry, gives

nk5deg~hk21!5k~N2k!, k51,...,N21. ~35!
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Thus we have computed the monopole topological charges and now it remains to constr
corresponding solution of the Jarvis equation. The SU(N) generalization of the SU~2! form given
in ~11! is to take a sum of theN21 projectors

H5expFg0S P02
1

ND1g1S P12
1

ND1¯1gN22S PN222
1

ND G , ~36!

wheregk(r ) for k50,..., N22, are profile functions. Recall that the projectorPN21 is a linear
combination of the other projectors plus the identity matrix, which is why it is not included in
above formula. The profile functions satisfy the regularity conditiongk(0)50, and have a linear
growth in r for larger, the coefficients of which determine the symmetry breaking pattern. O
the symmetry breaking is specified the profile functions are, of course, uniquely determined
there is a one-to-one correspondence between monopoles and rational maps. We shall i
this explicitly in the following with some examples.

C. SU„3… examples

For N53, with symmetry breaking to U~1!3U~1!, the charges~35! are (n1 ,n2)5(2,2). From
~33! the holomorphic line is given byf 5(1,&z,z2) t and the plane is spanned byf and f z . The
SU~3! case has a simplifying feature, in that the holomorphic plane inC3 can be specified by
giving a line orthogonal to the plane; which will then be antiholomorphic. This line is given

f'5 f 3 f z5&~ z̄2,2& z̄,1! t ~37!

which is clearly antiholomorphic and by construction is orthogonal to the holomorphic plane
is, f'

1 f 5 f'
1 f z50. By inspection of~37! the plane has degree two and clearly has spher

symmetry~compare the structure off' andf !. Hence in this case it is simple to see that the cha
is ~2, 2!. However, as an illustration of the general formalism we shall also present this exa
in terms of the notation described above. Thus we find

h05S 1
&z
z2

D , h15S 0 & 2z

2& 0 &z2

22z 2&z2 0
D ~38!

giving (n1 ,n2)5(deg(h0), deg(h1))5(2,2).
Taking thehk from ~38! we construct the associated projectors, using~29!, and insert these

into the form forH given in ~36!. This gives a solution of the Jarvis equation provided the pro
functions satisfy the ordinary differential equations

2g091
2

r 2 ~eg02g121!1
2

r 2 ~eg121!50,

2g192
2

r 2 ~eg02g121!1
4

r 2 ~eg121!50. ~39!

The Higgs field is given in terms of the solution of the Jarvis equation by~8! and the eigenvalues
and topological charges can simply be read off by restricting to a given radial line, sayz50,
which gives

F5
i

6
diag~g1822g08 ,g0822g18 ,g081g18!.

Each profile function has an asymptotic expansion of the form
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gk52akr 1bk log r 1 loggk1OS 1

r D ~40!

with the ak determined by the vacuum expectation value of the Higgs field. Comparing wit~2!
for this case we have that

l15
2a02a1

6
, l25

2a12a0

6
, l352

a01a1

6
, n15

2b02b1

3
, n25

b01b1

3
. ~41!

It is simple to verify that the topological charge is~2, 2! without resorting to an explicit solution
of the profile function equations~39!. Maximal symmetry breaking implies thata0.a1.0, so
that the terms in~39! which contain exponentials of profile functions do not contribute to
leading order behavior which isO(1/r 2). The coefficients of this leading order term then simp
give thatb054, b152, which when substituted into~41! confirms that (n1 ,n2)5(2,2).

The explicit solutions for the profile functions can be obtained, for example, if we ch
F05diag(2,0,22), then the solution isg052g152g, whereg is the 1-monopole profile function
defined in~21!.

If we now consider the case of minimal symmetry breaking then the topological cha
which survive will be unchanged, but the magnetic weights will not be given by the topolo
charges which do not survive. As an example consider the symmetry breaking to U~1!3SU~2!
given byF05diag(1,2 1

2,2
1
2). From~41! this corresponds to settinga053, a150. The previous

analysis of the profile function equations must now be modified to take into account the fac
exponentials of profile functions may now contribute to leading order~this happens whenever an
of theak coincide or are zero, and corresponds to changing the symmetry breaking pattern!. In this
case it is easy to see that~39! requires thatb053, b150, g15 1

2 which gives the values
(n1 ,@n2#)5(2,@1#), where we have used the notation that square brackets denote ma
weights rather than topological charges.

The profile function equations that we obtain are related to those derived from the a
based approach of Baiset al.3,2 and the methods employed there can be adapted to solve fo
profile functions explicitly. This method requires a careful limiting procedure to be taken to
with nonmaximal symmetry breaking. In Sec. VI we shall see that the solutions for monopo
hyperbolic space are obtained without the need for this limiting procedure and the Euclidea
can then be obtained from the natural limit in which the curvature of hyperbolic space ten
zero.

For this example the solution is~see Sec. VI!

g05 log
81r 4

4@~23r 21!e2r1e2r #@~3r 21!er1e22r #
,

g15 log
9r 2@~23r 21!e2r1e2r #

2@~3r 21!er1e22r #2 ~42!

and it can be checked that the asymptotic properties are as stated above.
Spherically symmetric monopoles of lower charge, such as the~1, 1! monopole, can be

obtained in a similar way by embedding the spherically symmetric maps~33! of lower degree.

D. SU„4… examples

For maximally broken SU~4! the charge, from~35!, is ~3, 4, 3! and the associated profil
function equations are

2g091
3

r 2 ~eg02g121!1
3

r 2 ~eg221!50,
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2g192
3

r 2 ~eg02g121!1
4

r 2 ~eg12g221!1
3

r 2 ~eg221!50,

2g292
4

r 2 ~eg12g221!1
6

r 2 ~eg221!50. ~43!

As for the SU~3! case it is a simple task to confirm the topological charge by a leading o
analysis of this set of equations. For the choiceF05diag(3,1,21,23), corresponding to equa
monopole masses, the explicit solution isg0/35g1/25g25g, whereg is given by~21!.

There are several possible symmetry breakings and in each case it is a simple ma
determine both the topological charges and magnetic weights by an analysis of equations~43!.

For F05diag(1,12,
1
2,22) the symmetry breaking is U~1!3SU~2!3U~1! and the charge is~3,

@3#, 3!. The corresponding explicit solution is

g05 log
625r 6

@225e22r2~30r 224!e2r1e4r #@25e2r2~30r 124!er2e24r #
,

g15 log
25r 4@25e2r2~30r 124!er2e24r #

2@225e22r2~30r 224!e2r1e4r #@6e22r1~5r 26!e3r2~5r 16!e23r16e2r #
,

g25 log
50r 2@6e22r1~5r 26!e3r2~5r 16!e23r16e2r #

@225e22r2~30r 224!e2r1e4r #2 . ~44!

ChoosingF05diag(34,
3
4,2

1
4,2

5
4) gives the symmetry breaking SU~2!3U~1!3U~1! with charge

~@2#, 4, 3! and solution

g05 log
256r 6

9@~4r 13!e23r /21e5r /224er /2#@~4r 23!e3r /22e25r /214e2r /2#
,

g15 log
16r 4@~4r 23!e3r /22e25r /214e2r /2#

3@~4r 13!e23r /21e5r /224er /2#@~24r 21!er1~4r 21!e2r1e23r1e3r #
,

g25 log
16r 2@~24r 21!er1~4r 21!e2r1e23r1e3r #

3@~4r 13!e23r /21e5r /224er /2#2 . ~45!

By taking two pairs of eigenvalues to be equal, for exampleF05diag(12,
1
2,2

1
2,2

1
2), the sym-

metry is broken to SU~2!3U~1!3SU~2!. In this case the charge is~@2#, 4, @2#! and the profile
functions are given by

g05 log
r 6

9~r coshr 2sinhr !2 , g15 log
r 4

3~sinh2 r 2r 2!
, g25 log

r 2~sinh2 r 2r 2!

3~r coshr 2sinhr !2 .

~46!

Finally, minimal symmetry breaking to U~1!3SU~3! occurs when three eigenvalues coincid
sayF05diag(3,21,21,21) and this gives a charge~3, @2#, @1#! with solution

g05 log
1024r 6

9@er~8r 224r 11!2e23r #@e3r2e2r~8r 214r 11!#
,

g15 log
16r 4@e3r2e2r~8r 214r 11!#

3@er~8r 224r 11!2e23r #@e2r~2r 22r !1e22r~2r 21r !#
,
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g25 log
64r 2@e2r~2r 22r !1e22r~2r 21r !#

3@er~8r 224r 11!2e23r #2 . ~47!

VI. HYPERBOLIC MONOPOLES

Hyperbolic monopoles are solutions of the Bogomolny equation~1! in which Euclidean space
R3 is replaced by hyperbolic 3-space, which we denote byHk

3, where2k2 is the curvature of
hyperbolic space. They were first studied by Atiyah,12 who observed thatS1 invariant instantons
can be interpreted as hyperbolic monopoles. Often hyperbolic monopoles turn out to be ea
study than the Euclidean case and we shall see this explicitly in the following. It has long
expected that in the limit as the curvature of hyperbolic space tends to zero then Euc
monopoles are recovered, but only recently has this been rigorously established.13 In this section
we shall adapt the methods of Sec. V to the hyperbolic case to obtain spherically sym
SU(N) monopoles. The SU~2! 1-monopole solution has been obtained before,14 as a circle invari-
ant instanton, but we believe that all our multi-monopole solutions are new. By explicitly ta
the zero curvature limit we recover the Euclidean monopole solutions and explain why thi
simpler way to obtain these solutions than to consider the Euclidean case from the beginn

Perhaps the most familiar description ofHk
3 is as the interior of the unit ball. In terms o

angular coordinatesz,z̄ and radial coordinaterP@0,1) the metric is

ds25
4

k2~12r2!2 S dr21r2
4dzdz̄

~11uzu2!2D5dr21
sinh2~kr !

k2

4 dz dz̄

~11uzu2!2 , ~48!

where we have introducedr, the hyperbolic distance from the origin, through the relationr
5tanh(kr/2).

The radial scattering analysis proceeds as in the Euclidean case with the upshot that th
equation~9! in hyperbolic space becomes13,1

] r~H21] rH !1
k2~11uzu2!2

sinh2~kr !
] z̄~H21]zH !50. ~49!

Note that in the zero curvature limit,k→0, the Euclidean equation~9! is recovered.
Solutions of~49! can be obtained using the form~36!, with the same harmonic maps, b

leading to modified equations for the profile functions. The equations for the monopole fie
terms ofH are still given by~8!, but with r now being hyperbolic distance. Hence the asympto
boundary conditions remain the same as in the Euclidean case and together with the requ
that the profile functions vanish at the origin this determines a unique solution for any
choice of vacuum expectation valueF0 .

For the SU~2! 1-monopole there is just one profile function, which must satisfy the equa

g91
2k2

sinh2~kr !
~12eg!50. ~50!

If we again normalize the Higgs field to have unit magnitude then the boundary conditions o
profile function areg(0)50 andg(r );24r for large r. The solution is

g52 log
~21k!sinh~kr !

k sinh~~21k!r !
~51!

which gives the known SU~2! hyperbolic 1-monopole.14
                                                                                                                



lu-

ns to

task
liton

um of

sforma-

hereas
ry
ntials

d-
clidean

5452 J. Math. Phys., Vol. 40, No. 11, November 1999 T. Ioannidou and P. M. Sutcliffe

                    
A. SU„3… examples

The profile function equations for the SU~3! charge~2, 2! hyperbolic monopole are

2g09
sinh2~kr !

k2 12~eg02g121!12~eg121!50,

2g19
sinh2~kr !

k2 22~eg02g121!14~eg121!50. ~52!

For equal monopole masses, withF05diag(2,0,22), the solution isg052g152g, with g given
by ~51!. For generalF0 , including minimal symmetry breaking, we now describe how the so
tion to ~52! can be obtained using Hirota’s method.

Introducing the tau-functionst0 ,t1 via the transformation

g05 log
sinh4~kr !

t0t1k4 , g15 log
t0 sinh2~kr !

t1
2k2 ~53!

converts Eq.~52! into Hirota bilinear form

D 2t i•t i14t i 11t i 2150, i 50,1 ~54!

where we have definedt215t251, andD is the Hirota derivative defined by15

D ma•b5~] r2] r̃ !
ma~r !b~ r̃ !u r̃ 5r . ~55!

The Hirota derivative has many special properties which make the construction of solutio
bilinear equations such as~54! an elegant procedure. In particular from~55! it is clear that its
action on exponential functions takes the simple form

D mea1r
•ea2r5~a12a2!me~a11a2!r . ~56!

Using this property, together with the bilinear form of the equation, means that it is a simple
to find solutions which are finite sums of exponential functions; in the context of integrable so
equations, such as the KdV equation, solutions of bilinear equations which are a finite s
exponentials correspond to multi-solitons.15

Note that the bilinear equations~54! are independent of the curvature,2k2, so in particular
these equations are the ones which also arise for Euclidean monopoles. However, the tran
tion ~53! involvesk which means that the boundary conditions on the tau-functions arek depen-
dent, and this is of crucial importance. For hyperbolic monopoles, i.e.,kÞ0, the solutions satis-
fying the required boundary conditions are always given as a simple sum of exponentials, w
for Euclidean monopoles the boundary conditions~except for the case of maximal symmet
breaking! mean that the solutions are not so simple and involve a sum of products of expone
and polynomials. By taking the limitk→0 of a hyperbolic solution the more complicated Eucli
ean solutions are obtained and this is perhaps the most natural method to construct Eu
monopoles.

As an example, consider the minimal symmetry breaking of SU~3! obtained fromF0

5diag(1,2 1
2,2

1
2). As discussed in Sec. V this choice ofF0 corresponds to the larger boundary

conditionsgi;2a i r , with a053, a150. Comparing this with the transformation~53! gives the
large r boundary conditions

t0;A0e~212k!r , t1;A1e~112k!r ~57!
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for some constantsAi . The requirement thatgi(0)50 gives the conditions at the origin thatt0

5r 21¯ , t15r 21¯ asr→0. Using the leading order behavior~57! together with the properties
of the Hirota derivative it is a simple task to find the following explicit solution

t05
2ke~212k!r2~314k!e2r1~312k!e2~112k!r

~312k!~314k!k
,

t15
~312k!e~112k!r2~314k!er12ke2~212k!r

~312k!~314k!k
. ~58!

As claimed above, we see that there is only an exponential dependence onr; this corresponds to
the fact that hyperbolic monopoles approach the vacuum value exponentially, rather than a
ically like Euclidean monopoles.

Taking the limitk→0 this solution becomes

t05 2
9~e2r2~3r 11!e2r !, t15 2

9~~3r 21!er1e22r ! ~59!

so we see the emergence of the algebraic factors. Substituting~59! into ~53! we obtain the
Euclidean monopole solution given by~42!.

B. SU„4… examples

The SU~4! equations are

2g09
sinh2~kr !

k2 13~eg02g121!13~eg221!50,

2g19
sinh2~kr !

k2 23~eg02g121!14~eg12g221!13~eg221!50,

2g29
sinh2~kr !

k2 24~eg12g221!16~eg221!50. ~60!

The solutiong0/35g1/25g25g, with g given by~51!, corresponds to maximal symmetry brea
ing with F05diag(3,1,21,23).

To obtain the solution for arbitraryF0 we introduce the tau-functions as

g05 log
sinh6~kr !

t0t2k6 , g15 log
t0 sinh4~kr !

t1t2k4 , g25 log
t1 sinh2~kr !

t2
2k2 ~61!

which transforms the equation into the Hirota form

D2t i•t i12~11 i !~32 i !t i 11t i 2150, i 50,1,2 ~62!

wheret215t351.
As an example we give the solution for minimal symmetry breaking withF05diag(3,21,

21,21), which is

t053
k2e~313k!r2~3k215k12!e~211k!r1~3k218k14!e~212k!r2~k213k12!e~2123k!r

8~11k!~21k!~213k!k2 ,

t153
~21k!cosh~~214k!r !2~414k!cosh~~212k!r !1~213k!cosh~2r !

8~11k!~21k!~213k!k2 ,
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t253
~k213k12!e~113k!r2~3k218k14!e~11k!r1~3k215k12!e~12k!r2k2e2~313k!r

8~11k!~21k!~213k!k2 .

Taking the zero curvature limit results in

t05
3

32
~e3r2~8r 214r 11!e2r !,

t15
3r

16
~~2r 21!e2r1~2r 11!e22r !, ~63!

t25
3

32
~~8r 224r 11!er2e23r !,

which is the Euclidean monopole solution given in~47!.

VII. CONCLUSION

We have studied in some detail the construction of SU(N) monopoles from scattering dat
which consists of a rational map of the Riemann sphere into a flag manifold. Explicit solu
have been obtained in the case of spherical symmetry and we have shown how these s
involve harmonic maps of the plane intoCPN21. This approach was generalized to the case
hyperbolic monopoles and new spherically symmetric solutions found, whose zero curvatur
was investigated explicitly.

The Jarvis equation is integrable, but in this paper we have made no use of the Lax pa
precise description of the boundary conditions in terms of the rational map makes this a
convenient formulation of the Bogomolny equation and it may prove useful to undertake a
sical inverse scattering study. An alternative, which is currently under investigation, is th
merical solution of the Jarvis equation, which is more promising than a numerical solution o
Bogomolny equation since the boundary conditions can be specified in a simple manner to
the existence of a unique solution.
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APPENDIX

Let P(z,z̄) be a 232 Hermitian projector. In this appendix we prove that the only soluti
of the equation

~PPz! z̄50 ~A1!

are thes-model instantons given by

PPz50. ~A2!

Let F5PPz , then using the fact thatP is a projector, which is a solution of~A1!, it is clear that
F satisfies the following properties:

Fz̄50, ~A3!

PF5F, ~A4!
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FP50. ~A5!

Taking ~A4! with ~A5! gives thatF250, so that it has at most rank one and can be written a

F5uw†, ~A6!

whereu andw are two orthogonal column vectors, that isw†u50. Substituting this expression fo
F into ~A3! and multiplying both sides byw leads to the result thatw†uz̄50, that is,uz̄ is
orthogonal tow. But since we already know thatu is orthogonal tow and they are elements of
two-dimensional vector space then this implies thatu anduz̄ are parallel. Thusu must have the
form u(z,z̄)5g(z,z̄)ũ(z), whereũ is a holomorphic vector andg is some function.

P is a Hermitian projector so it may be written as

P5
vv†

v†v
~A7!

for some 2-component column vectorv. Substituting the expressions~A6! and~A7! into property
~A4! shows thatu andv are parallel, that is,v5lu for some functionl. Now using the earlier
factorization ofu we obtainv5lgũ, so that finally we arrive at the result that

P5
ũũ†

ũ†ũ
. ~A8!

As we have already shown thatũ is a holomorphic vector then this is an instanton solution of E
~A2! ~see, for example, Ref. 10! and the required result is proved.
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We formulate an adiabatic theorem adapted to models that present an instantaneous
eigenvalue experiencing an infinite number of crossings with the rest of the spec-
trum. We give an upper bound on the leading correction terms with respect to the
adiabatic limit. The result requires only differentiability of the considered projector,
and some geometric hypothesis on the local behavior of the eigenvalues at the
crossings. ©1999 American Institute of Physics.@S0022-2488~99!00511-3#

I. INTRODUCTION

The availability of intense pulsed laser sources has opened a large field of possibilit
control atomic and molecular dynamical processes. One of the main theoretical tools to a
these processes is adiabatic Floquet theory1 and references therein. The general setup can
described as follows. One considers a molecule described by a HamiltonianH0 acting on a Hilbert
spaceH, in interaction with one radiation mode of frequencyv. ~The description of the interaction
with several modes of different frequencies can be formulated along similar lines.! Since the
intensity of the field is quite large, the field is treated as a classical field. The Hamiltonian o
molecule perturbed by the electromagnetic field can be written, for example, as

H5H01EMF~vt1u0!, ~1!

whereM is the dipole moment operator of the molecule,EPR is a parameter representing th
amplitude of the radiation field,F is a real valued 2p-periodic function andu0 the initial phase.
We assume thatH0 has a discrete spectrum. In order to describe a laser pulse the amplitu
taken as a slowly varying time dependent functionE(et), where one takes, e.g.,e51/Tp with Tp

the duration of the pulse. A new technique that provides an efficient method for complete tr
of population is based on frequency chirping: within the pulse duration the frequency is
slowly modulatedv5v(et).

This model has thus two kinds of time dependencies in the Hamiltonian: one that is pe
and another one that is slowly varying. The periodic part can be treated by Floquet method
the slowly varying part by adiabatic theory. Adiabatic Floquet theory is based on the follo
statement: Assume that in the Hamiltonian~1! the parameterE and the frequencyv are made time
dependent,E(t), v(t), andM stays time independent. Consider the propagatorU(t,t0 ;u0), so-
lution of the Schro¨dinger equation
54560022-2488/99/40(11)/5456/17/$15.00 © 1999 American Institute of Physics
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i
]

]t
U~ t,t0 ;u0!5H~vt1u0!U~ t,t0 ;u0!, U~ t,t;u0!51 ~2!

acting on the Hilbert spaceH. We consider an enlarged Hilbert space by tensoringH with the
space of square integrable functions on the unit circle:L2(S1,H). The operatorU(t,t0 ;u) can be
lifted into the enlarged space, interpreting theu-dependence as a multiplication operator. We c
then define

UK~ t,t0!5e2tv~ t !]U~ t,t0 ;u!et0v~ t0!]

where]5]/]u. The statement is that Eq.~2! is equivalent to

i
]

]t
UK~ t,t0!5K~ t !UK~ t,t0! ~3!

with

K~ t !52 iÃ~ t !
]

]u
1H01E~ t !MF~u!

andÃ(t) denotes an effective instantaneous frequency defined byÃ(t)5v(t)1t dv(t)/dt. As-
suming that the time dependence ofE(t), v(t) is slow one can develop adiabatic techniques
the evolution of~3!. WhenK has pure point spectrum, the first ingredients are the instantan
eigenvalues and eigenvectors. They always can be written and labeled in the form

l j ,k5l j ,01kÃ, kPZ
~4!

c j ,k~u!5c j ,0~u!eiku.

The indexj has the same cardinality as the dimension of the Hilbert spaceH. Thus, even if we
take simple models with finite dimensionalH, the Floquet spectrum has infinitely many eigenv
ues. As functions ofE and Ã, these eigenvalues may exhibit crossings, which the adiab
approximation can accommodate in case there is a finite number of them, see Refs. 2 and
structure~4! of the eigenvalues is such that if we consider a slowly varyingeffectivefrequency
Ã(t) that goes through 0 at some timet0 , the nature of the spectrum becomes quite different. O
can encounter situations in which a branch of instantaneous eigenvalues undergoes an
number of crossings with other branches, or the spectrum may become suddenly cont
Hence it becomes necessary to investigate the validity of the adiabatic theorem in such situ
Let us stress that a strictly positive time dependent frequencyv(t) may give rise quite naturally to
an effective frequencyÃ(t) that goes to zero.4 Indeed, consider a linear variation ofv of the form

v~ t !5v02at,

with v0 , a.0 on the time interval@0,v0 /a), which is far from exotic. Then

Ã~ t !5v022at

goes through zero att05v0 /(2a)P@0,v0 /a). As it has been shown in Refs. 4 and 5, the pos
bility to vary the frequency is a powerful method to enhance the control of molecular proc
driven by laser.

We will confine ourselves to the case where a branch of eigenvalue undergoes an infi
crossings with other branches. As this situation is not generic, as actual crossings are m
exception than the rule, we give below a whole class of systems for which this situation is
Moreover, it is probably the only case in which we get enough regularity to prove an adia
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theorem. Note also that in caseÃ(t) passes through 0, the domain ofK(t) becomes time depen
dent, so that technical issues regarding regularity of the evolution operator have to be add
This is done in the Appendix A.

The goal of the present paper is to formulate an adiabatic theorem that can be applied
situations with an estimate on the corrections to the adiabatic limit. Adiabatic Theorems w
gap conditions are known to be true, see Ref. 6, however, in general, no estimates on th
terms are available.

While this work was motivated by the physical situation described above and discussed
in the examples, our analysis of the adiabatic approximation is model independent and
applied to more general situations.

II. ADIABATIC THEOREM

A. Context

The adiabatic approximation in quantum mechanics has a long history which we wil
attempt to retrace here. We refer the reader to the recent surveys7,8 and references therein. Let u
simply recall here that the works following that of Born and Fock2 by Kato,9 Nenciu,10 and Avron,
Seiler, and Yaffe11 have led to a formulation of the adiabatic theorem under the usual ga
sumption that is general and where the error term is well controlled and of ordere. In case the gap
assumption is modified, the situation is less explicit. In this section, we switch back to the no
H(et) for the slowly varying time-dependent Hamiltonian. AssumeH(s) is smooth insP@0,1#
and there exists a spectral projectorP(s) of H(s) which is stronglyC2 on @0,1#. Avron and Elgart
have shown in Ref. 6 that the adiabatic theorem holds under these conditions, providedP(s) is of
finite rank, independently of any spectral considerations. A similar result was prove
Bornemann18 for discrete hamiltonians in case the set of eigenvalue crossings is of measur
in time. The limitation of these approaches is that, in general, no estimate can be made on
at which the adiabatic regime is attained. In certain specific situations, an estimate on this
available. In the case where the spectral measuremw is a-Hölder continuous, withw
5P8(s)c(s), c such thatP5uc&^cu, the rate of convergence was shown in Ref. 6 to be of or
ea/(21a). A case where the spectrum ofH(s) is assumed to be dense pure point is dealt with
Ref. 12. Another situation, considered in Ref. 13, where the gap hypothesis is not nece
fulfilled occurs whenH(s)5H0(s)1eH1(s), where the domain ofH1(s) is smaller than that of
H0(s). In both cases, the error term remains of ordere. In the present article, we consider anoth
situation in which the usual gap assumption is modified and the error made in the adi
approximation can be estimated. We make the hypothesis that the projectorP(s) is associated
with an eigenvaluel(s), in the sense thatH(s)P(s)5l(s)P(s), for all sP@0,1#. We assume tha
l(s) is isolated in the spectrum except at a series of times$ok%kPN accumulating ataP(0,1)
where it experiences crossings with the rest of the spectrum. Requiring some conditions
local behavior of the gap betweenl(s) and the rest of the spectrum near the crossing pointsok ,
we estimate the error term in the theorem withouta priori knowledge on the nature of the rest
the spectrum. Note that fors5ok such thatl(ok) is not isolated in the spectrum,P(ok) does not
represent the entire spectral projector associated with the eigenvaluel(ok).

B. One crossing

Let us make more precise the regularity hypotheses under which we shall work. In or
deal with the application described above, we will assume the Hamiltonian is unbounded
causes technical difficulties motivating the part~ii ! of the hypothesis below which justifies ou
manipulations. We show in the appendix that this assumption is verified for our models. In
H(s) is bounded, this part of the assumption is automatically verified.

(H0) ~i! We assume that for allsP@0,1#\$a%, H(s) is a stronglyC1 self-adjoint operator
defined on a dense domainD independent ofs in a separable Hilbert spaceK, where 0,a,1.
                                                                                                                



e

a-

g

the size
the

f
rms.

5459J. Math. Phys., Vol. 40, No. 11, November 1999 Adiabatic evolution for systems with . . .

                    
WhereasH(a) is bounded self-adjoint onK. We also assume the existence of a projectorP(s) of
H(s) which is stronglyC2 on @0,1# and such thatH(s)P(s)5P(s)H(s)5l(s)P(s), for all s
P@0,1#.

~ii ! Further assume that the unitary evolution operatorsU(s)5U(s,0) and A(s)5A(s,0)
generated byH(s), respectivelyH(s)1e i @P8(s),P(s)# ~see~5!, ~6!! are well defined for alls
P@0,1# and possess the properties~i! to ~v! listed in Theorem A.1. Note thatP(s) needs not be
finite dimensional andl is continuous.

We start by considering one crossing ofl with the rest of the spectrum by revisiting th
strategy proposed in Ref. 2, making use of the general analysis presented in Ref. 11.

Let g(s) be the gap betweenl(s) and the rest of the spectrum ofH(s): g(s)
5dist(l(s),s(s)\$l(s)%)>0, sP@0,1#. We also introduce the bounded, stronglyC1 operator
L(s)5 i @P8(s),P(s)#. We assume thatg21$0%5$o% and consider the strong differential equ
tions onD

i eU8~s!5H~s!U~s!, U~0!51, ~5!

i eA8~s!5~H~s!1eL~s!!A~s!, A~0!51. ~6!

The unitaryA is the so calledadiabatic evolutionwhich possesses the well known intertwinin
relationA(s)P(0)5P(s)A(s).9,14 Finally, let W(s) be defined byW(s)5A21(s)U(s). We have
on D

iW8~s!52A21~s!L~s!A~s!W~s!, W~0!51, ~7!

in the strong sense. To compare the adiabatic and actual evolutions, we need to compute
of the difference of the unitaryW(s) at two times surrounding the crossing. This is the aim of
next result.

Lemma 2.1:Under the above assumptions, we have for any 0<u0<t,o,s<u1<1,

iW~u0!2W~u1!i<C~euu02tu/gt
21euu12su/gs

21e/gt1e/gs1us2tu! ~8!

wheregt5 infuP[u0 ,t]g(u), gs5 infuP@s,u1#g(u) and the constantC is uniform in u0 , u1 , s, and t

~see Fig. 1!.
Remark:On the basis of the classical paper by Born and Fock,2 and the detailed analysis o

crossings by Hagedorn,3 one would expect the corresponding estimate without the first two te

FIG. 1. The various quantities defined in Lemma 2.1.
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However, such an estimate requires more detailed knowledge of the structure of spectrum
that the gap is given by the distance between two eigenvalues, than what we assume in our
setting.

The proof of Lemma 2.1 is presented in Appendix B. The idea of the proof is to integrat
~7! over the interval@u0 ,u1# and then to get estimates of the sizes on each subintervals@u0 ,t#,
@ t,s#, and@s,u1# which involves only the gaps.

Lemma 2.1 can be used to treat two standard situations:

~1! If there is a gapG betweenl(s) and the rest of the spectrum, this lemma implies that
adiabatic approximation holds with an error term bounded byCe/G2.

~2! If one starts the evolution on a crossing point which splits likesa near 0, we can use thi
lemma to show that the adiabatic approximation is valid with an error bounded by

iU~1!2A~1!i<Ce1/~112a!

if e is small enough. This is precisely the situation encountered at the beginning o
interaction of a laser pulse with frequency that is in resonance with the difference betwee
energy levels of the molecule.15,16

To get this estimate, we can consider only half of the problem by letting aside all the
containing at and settingu151:

iW~1!2W~0!i<C~eu12su/gs
21e/gs1s!. ~9!

This is indeed fully justified by the proof of the lemma~see Appendix B!. Next, we have by
hypothesis thatg(s)>gs5Gsa if s is small. Introducing this behavior in Eq.~9!, we obtain
iW(1)2W(0)i<C(e/s2a1s). The result follows now by balancing the two contributions
choosings5s(e)5e1/(112a). Again, with more information on the spectrum, as in Refs. 2 and
one should be able to improve the above estimate to ordere1/(11a).

C. Infinite number of crossings

We now have all the information required to proceed to the case of an infinite numb
crossings. We make the following hypotheses describing what happens in the neighborh
each crossing~see Fig. 2!.

Spectral hypotheses:There exist two partitions$uk
6%kPN of @0,a) and (a,1# respectively:

05u0
2,¯,uk21

2 ,uk
2
¯→u`

25a5u`
1←¯uk

1,uk21
1 ,¯,u0

151

such that for eachkPN* ,

FIG. 2. Illustration of the spectral hypothesesH1 –H2 on the interval (0,a). The intervalsVl
2 are represented by~ !.
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(H1) one can find non empty open intervalsVk
6 , which satisfy Vk

2,@uk21
2 ,uk

2#,
Vk

1,@uk
1 ,uk21

1 # and

sup
sPVk

6

g~s!< inf
tPI k

6

g~ t !, ~10!

whereI k
25@uk21

2 ,uk
2#\Vk

2 and I k
15@uk

1 ,uk21
1 #\Vk

1 .
(H2) there are constantsG6(k).0 and ak-independent positive constanta such that for all

sPVk
6 :

G6~k!us2ok
6ua<g~s!, ~11!

for some pointsok
6PVk

6 .
Comments:~1! These Spectral Hypotheses mean that the crossings are well separated a

they behave as power of order at mosta. Hypothesis (H1) tells us that outside the crossin
regions (Vk

6) the gaps are relatively ‘‘large.’’ This means that the only accumulation poin
small gaps isa.

~2! The choice of a constant exponenta is not as restrictive as it might look at first. Indee
we are interested in an upper bound, so it is the greatesta that will determine the global behavior

~3! In the applications, we will consider examples whereg21$0%5$ok
6%: the set of crossing

points ofl(s) with the rest of the spectrum. This impliesa.0. But, the case of an infinite numbe
of avoided crossings can be treated by takinga50 in Hypothesis (H2).

To obtain an estimate for the difference between the real evolutionU(1) and the adiabatic one
A(1), theidea is to apply Lemma 2.1 on a finite number of crossings and to take a simple in
bound @as in ~B2!# over the rest of the interval surroundinga. The choice of the number o
crossings will be optimized with respect toe in order to get a simple form for the bound of th
remainder term. To state the corresponding result, we need to introduce some notation
D6(k)5max$uuk

62ok
6u,uuk21

6 2ok
6u% and t6(k)5max$D6(k)/G6

2 (k),D6
a (k)/G6(k)%. The functions

K°uuK
62au/(k51

K t6(k)1/(112a) are monotonically decreasing to zero, so, ife is small enough,
we defineK6(e)PN* as the greatest integer satisfying

uuK
62au

(k51
K t6~k!1/~112a! >e1/~112a!. ~12!

This integer always exists ife is sufficiently small and, by construction,K6(e)→` ase→0.
Theorem 2.1:For e small enough, under (H0) and the spectral hypotheses (H1), (H2) and

provided that

§~et6~k!!1/~112a!<uVk
6u/2 for all 1<k<K6~e!, ~13!

for some constant§.0, we have that

U~1!5A~1!1O~max$uuK2~e!
2 2au,uuK1~e!

1 2au%!.

Hence, as lime→0K6(e)5`, iU(1)2A(1)i goes to zero for e→0 as fast as
max$uuK2(e)

2 2au,uuK1(e)
1 2au%.

Remarks:~1! The theorem states that the error can be estimated provided we can compu
critical valueK6(e). Further considerations on the practical aspects of this computation are
in the next section.

~2! Condition~13! implies that the size of the intervalsVk
6 cannot be too small with respect t

et6(k).
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~3! While we shall apply the theorem in a situation where the spectrum is simple and
point, the theorem remains valid under the sole existence of an eigenvalue separated from
of the spectrum by gaps with the properties stated in (H1) – (H2), without any knowledge on the
rest of the spectrum or restriction on the dimension ofP(s).

~4! The introduction of an adjustable constant§ is necessary in the following application t
satisfy the hypothesis of the theorem.

III. APPLICATION

We can obtain more explicit estimates on the rest by considering some specific behavio
crossings.

Let us introduce the following notation:Fk; f (k) means that there exist two constan
0,c1,c2,` such thatc1f (k)<Fk<c2f (k) for kPN* large enough. We have the

Proposition 3.1:Assume the hypothesis of Theorem 2.1 and the following behavior for
relevant quantities:

uuk
62au5C1 /kb1C2 /kb111o~1/kb11!, b.0, C1Þ0

G6~k!;kg,

uVk
6u;1/kd, d.0.

We set m5min$b1112g,a~b11!1g%. Then iU(1)2A(1)i5O(ep) where the exponentp is
given by

p55
1

112a
if m.~112a!

1

112a
2n ;n.0 if m5~112a!

b

~b11!~112a!2m
if m,~112a!

provided thatd satisfy the following constraints:b11<d<b1max$1,m/~112a!%.
Remark:Let us mention that it can be shown that in casea5b5g51 andd52, we can take

p51/3, instead ofp51/32n, for all n.0. Now, if in Lemma 2.1, the right member were missin
the termseuu02tu/gt

21euu12su/gs
2, as one would expect with a little more information on t

spectrum, an analysis similar to the one provided above leads to an error term of ordere1/3. This
makes it reasonable to expect that in such a situation the error actually is of that order, as
the case in the corresponding analysis of one crossing performed in Ref. 2, see Ref. 3. Fin
is shown in the examples below that the valuesa5b5g51 andd52 are generic in some sens

IV. EXAMPLES

We now consider a family of models for which the situation just described takes place a
effective frequencyÃ takes the value zero. We start by considering the most general model
two level system driven by a periodic field. The model can be characterized by choosing free
eigenvaluesl1,m5l11mv and l2,k5l21kv and the corresponding eigenfunctions of t
form:

c1,m~u!5S eix~u! cosz~u!

eiy~u! sinz~u! Deimu and c2,k~u!5S 2e2 iy~u! sinz~u!

e2 ix~u! cosz~u! Deiku, ~14!

in which the functionsx, y, andz are periodic modulo an integer multiple ofu.
Defining the unitary matrix
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Y~u!5S eix~u! cosz~u! 2eiy~u! sinz~u!

eiy~u! sinz~u! e2 ix~u! cosz~u!
D

the corresponding Floquet Hamiltonian can be written as~dropping theu dependence in the
notation!

K52 iÃ]2 iÃY~]Y21!1YDY21,

whereD5diag(l1 ,l2). Using the notation 2̀5x1y, 2q5y2x and choosing, without loss o
generality,l152l25l, the Floquet Hamiltonian can be expressed as

K52 iÃ]1S Ã]q1(l2Ã]`)cos(2z) (2 iÃ]z1(l2Ã]`)sin(2z))e22iq

~ iÃ]z1(l2Ã]`)sin(2z))e2iq 2Ã]q2(l2Ã]`)cos(2z) D
~15!

where] f denotes the derivative with respect tou. Note that whenÃ50 the operatorK reduces to
the ~matrix! multiplication operator byY(u)DY21(u) on L2(S1,C2), whose spectrum consists o
two eigenvalues6l which are infinitely degenerate. This is to be compared with the gen
situation whereK for Ã50 becomes a multiplication operator by an arbitrary 2p periodic 232
matrix H(u). In that case, the spectrum ofK is continuous and given by two band functions whi
are the instantaneous~in u! eigenvalues ofH(u).

We will consider two different models with the same eigenvalues but with different ei
functions. We remark that since the validity of the adiabatic theorem depends only on the
erties of the eigenvalues~and regularity properties of the projectors!, it gives the same uppe
bound for the correction for all the models~15! with equal spectrum. However, it is clear that th
theorem is useful if the couplings between considered levels are nonzero. With this rega
discuss below two examples that have the same spectrum, with an infinite number of cro
For the first one, which is the widely used RWA~rotating wave approximation! model of quantum
optics, the couplings are all equal to zero, except one~see below!. The second model is a pertu
bation of the first one that yields nonzero couplings between the levels.

We choose, for example, the following eigenvalues:

l6,k~Ã!5kÃ6~h~Ã!1Ã!/2, where h~Ã!5A~Ã2v0!21V2 ~16!

FIG. 3. The first eigenvalues of the RWA and modified RWA models.
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and v0 , V are constants. The first model is defined by choosingx(u)50, y(u)5u, i.e., 2q~u!
52`~u!5u and cos(2z)52(Ã2v0)/h(Ã), sin(2z)5V/h(Ã), hencez is independent ofu. The
corresponding Floquet Hamiltonian is given by

KRWA~u!52 iÃ
]

]u
1

1

2 S v0 Ve2 iu

Veiu 2v0
D .

The second model is defined by the choicex(u)52%(u)/2, y(u)5u2%(u)/2, i.e., 2q~u!5u,
2`~u!5u2%~u! and the samez as for the RWA case. This leads to

KM~u!5KRWA~u!1
Ã

2h
]%S v02Ã Ve2 iu

Veiu Ã2v0
D .

We consider now a supplementary smooth slow time dependence in the parameÃ
5Ã(s) and in%5%(u,s). This implies that the eigenvalues, the eigenvectors and the corresp
ing eigenprojectors are smooth functions ofs, so that the regularity Hypothesis (H0)~i! is satis-
fied. We show in appendix that (H0)~ii ! is satisfied as well for any choice of smooth functionsx,
y, z, andl.

We assume, for simplicity, thatÃ(s)5s ~but any other smooth monotonic function ofs
would equally do!. This choice corresponds to the chirping that is most often realized in ex
ments. We select the eigenvaluel(s)5l1,0(s)5(h(s)1s)/2 and denote byc the associated
eigenvector~see Fig. 3!. The only crossings thatl experiences are with thel2,k11’s and they take
place at timess such that

h~s!5ks, kPZ* . ~17!

We remark however that these crossings can lead to corrections to adiabaticity, or not, dep
on whether the corresponding eigenvectors are coupled. The nonadiabatic coupling amo
branches is measured by the following scalar product:

^c~s!u]sc2,k11~s!&52
1

2p E
0

2p

ei ~k11!u22i `~u,s!~z8~s!2 i sin~2z~s!!q8~u,s!!du

52
z8~s!

2p E
0

2p

eiku1 i%~u,s! du,

where the8 denotes the derivative with respect tos.
Recall that the couplings between the eigenstatec(s) associated with the levell(s) and its

orthogonal complement in the Hilbert space is given by the operatorL(s)5 i @P8(s),P(s)#, see
~7!, since the adiabatic evolutionA(s) follows the instantaneous eigenspaces. A direct comp
tion of the matrix elementŝc2,k11(s)uL(s)c(s)& with P8(s)5uc8(s)&^c(s)u1uc(s)&^c8(s)u
shows that the above scalar product is proportional to the couplings responsible for the
adiabatic transitions.

For the RWA model, as%50 the nonadiabatic couplings are given by

^c~s!u]sc2,k11~s!&52z8~s!dk,0 .

Thus, the levell(s) is not coupled to the infinitely many other levels it crosses. Hence we are
in this case to an effective problem displaying no crossing, so that the error is of ordere in this
case.

For the other model, we will obtain nonzero couplings at all the crossings, if we ch
%(u,s) such that exp(i%(u,s)) has infinitely many nonzero Fourier components. For example,
can take%(u,s)5r(s)sin(u) ~in particularr can be chosen constant!. This coupling is then given
by
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^c~s!u]sc2,k11~s!&5~21!k11z8~s!Jk~r~s!!,

whereJk is a Bessel function.
We will now verify that the assumptions of Proposition 3.1 are satisfied. Let us focus o

interval (0,S#, for Ssmall enough. The interval@2S,0) can be treated similarly. Again to simplif
the notations we will not explicit the1 sub/superscripts.

Remark:The preceding two examples have been chosen for their simplicity and ex
complete analytical solvability. However, we emphasize that the following analysis is valid fo
the models~15! under the sole assumption that the eigenvalues can be written asl6,m(s)5ms
6:(s)/2, where: is aC2 function with bounded derivatives such that:~0!.0. In particular they
are satisfied for the eigenvalues given in~16!. The hypotheses imply that the functionf z(s)
5:(s)2zs is strictly decreasing for anyz greater than, say, somez0 . Under these conditions th
following assertion shows that the crossings thatl(s)5:(s)/2 experiences with the rest of th
spectrum take place at times such that:(s)5ks, kPN large enough. Again, the actual correctio
to adiabaticity will depend on the particular properties of the associated eigenvectors whi
measured by the scalar product^c(s)u]sc2,k11(s)&, which generically will not be zero for an
infinite number of crossings.

Assertion 1:For z>z0 , the functionf z(s)5:(s)2zs has a unique positive zerooz and if
z,j we haveoz.oj .

From the expansion

f z~s!5:~0!1~:8~0!2z!s1O~s2!,

we obtain the behavior ofoz :

oz5
:~0!

z2:8~0!
1O~1/z3!. ~18!

We define the sequenceuk.0 by the equation:

:~uk!2kuk5~k11!uk2:~uk!, i.e., :~uk!5~k11/2!uk . ~19!

Assertion 1 implies thatuk,ok,uk21 and, from Eq.~18! and the fact thatuk5ok11/2, we obtain

uk5
:~0!

k11/22:8~0!
1O~1/k3!. ~20!

Next, we have
Assertion 2:On the interval@uk ,uk21#, the spectral gap is given by

g~s!5dist~l~s!,s~s!\$l~s!%!5u:~s!2ksu<uk21/2.

More precisely, foruk<s<ok we have thatg(s)5:(s)2ks<uk/2 and forok<s<uk21 we have
that g(s)5ks2:(s)<uk21/2.

This assertion is easily proven by considering the different cases.
We now prove that the spectral hypothesis (H1) – (H2) are verified. Assertion 1 and Equatio

~20! show that the sequence$uk% is ~for k large enough! monotonically decreasing toa50. To
define the intervalsVk , we choose any pointr k in (ok ,uk21) such thatg(r k)5krk2:(r k)
<uk/2 and setVk5(uk ,r k). TheVk’s are disjoint andI k5$uk%ø@r k ,uk21#. By definition ofVk ,
we have thatg(s)<uk/25g(uk) and for r k<s<uk21 the gap is given byg(s)5ks2:(s)
>uk/2. Whence, hypothesis (H1) is satisfied. Finally to prove that (H2) holds, we need to
estimate the behavior ofg(s) on Vk : the mean value theorem implies that for eachsPVk\$ok%,
there is aqs , in the interval joinings andok , such that

g~s!5u:~s!2ksu5uk2:8~qs!uus2oku;kus2oku,
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which shows that (H2) is satisfied witha51 andG(k);k.
It remains to check the conditions given in the statement of Proposition 3.1. We have

uuk20u5uk5:~0!/k1:~0!~:8~0!21/2!/k21O~1/k3!, i.e., b51

G~k!;k i.e., g51, ~21!

uVku;1/k2 i.e., d52.

To get the estimate foruVku, we have used that (uk ,ok#,Vk,(uk ,uk21# and the expressions fo
ok , anduk in Eqs.~18! and ~20!. This implies that,m5a(b11)1g5112a andd5b11. So,
we can use the second case of Proposition 3.1 to prove that the adiabatic approximation h
the models:

iU~1!2A~1!i<cep, for any p, 1
3. ~22!

In keeping with the first remark of Sec. III, we recall that a more careful analysis yieldp
51/3.
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APPENDIX A: TECHNICALITIES

In this appendix, we show that an operator onL2(S1,H) of the form

K~s,u!52 iÃ~s!
]

]u
1H~s,u!, ~A1!

whereH(s,u) is a bounded operator inH such thats°H(s,u) and s°]/]uH(s,u) are norm
continuous ands°Ã(s) is continuous, admits a strongly continuous unitary propagatorU(s)
5U(s,0) with all expected regularity properties, even if there is a valuea for which Ã(a)50.
Notice that the assumptions onH will be satisfied if, for example, (s,u)°H(s,u) is stronglyC1.

The proof relies on a theorem of Kato,17 which we will restate in a more suitable form for ou
purpose.

Theorem A.1~Kato!. Let K andD be Hilbert spaces such thatD is densely and continuousl
embedded inK and letK(t), 0<t<T, be a family of self-adjoint operators inK. Suppose that

~1! D,domK(t) for all 0<t<T, whence theK(t) are bounded operators fromD to K, and the
applicationt°K(t) is norm continuous fromD to K;

~2! there exists a family of isomorphismsS(t) from D to K which is strongly continuously
differentiable and such that

S~ t !K~ t !S~ t !215K~ t !1B~ t !

whereB(t) is a strongly continuous bounded operator onK.
Under those conditions, there exists a unique family of unitary operatorsU(t,s) on K defined

for 0<s,t<T with the following properties:

~i! U(t,s) is strongly continuous onK in s,t with U(s,s)51;
~ii ! U(t,r )5U(t,s)U(s,r );
~iii ! U(t,s)D,D, iU(t,s)iD<Necut2su and is strongly continuous onD in s,t simultaneously;
~iv! (d/ds) U(t,s)c5 iU (t,s)K(s)c for any cPD, for 0<s,t<T;
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~v! for eachcPD and fixeds, (d/dt) U(t,s)c exists and is equal to2 iK (t)U(t,s)c and
strongly continuous inK in t.

To prove this theorem, we apply Theorem 6.1 in Ref. 17 to the operatorA(t)5 iK (t), which
is stable with constants of stabilityc50 andN51 ~see Definition 3.1 and Theorem 4.1 therein!.
The fact thatU(t,s) is unitary follows from the self-adjointness ofK(t), the construction of
U(t,s) by unitary approximants given in the proofs of Theorem 4.1 and 6.1 in Ref. 17 an
invertibility of U(t,s), which is a consequence of the fact thatAo(t)52 iK (T2t) satifies also the
hypothesis of Theorem 6.1 in Ref. 17. See also Remark 5.3 therein.

We now prove that the family of self-adjoint operators defined by Eq.~A1! satisfies the
hypothesis of Theorem A.1. To simplify the notation, we will not explicit theu-dependence and
write ] for ]/]u.

Proof: For D, we choose dom(2 iw* ]) for somew* .0, and we notice that for anyt such
thatÃ(t)Þ0, we have that domK(t)5D and if Ã(t)50, then domK(t)5K. For the norm onD,
we choose the graph norm associated to2 iw* ]:

iciD
2 5ici21i2 iw* ]ci2>ici2.

Whence,D is a dense continuously embedded subspace ofK. For anys,t and anycPD, we have

i~K~ t !2K~s!!ci2<2
uÃ~ t !2Ã~s!u2

w
*
2 i2 iw* ]ci212iH~ t !2H~s!)ci2

<2 maxH uÃ~ t !2Ã~s!u2

w
*
2 ; IH~ t !2H~s!I 2J iciD

2 .

which shows the norm continuity ofK(t).
We set S(t)5S52 iw* ]1 i . S is an isomorphism betweenD and K which is strongly

differentiable~by t independence!. It remains to show thatS satisfies Hypothesis~2! of Theorem
A.1. For this, we first notice that for anycPdomK(t), we have thatS21cPD,domK(t) and

K~ t !S21c5S21K~ t !c1H~ t !S21c2S21H~ t !c5S21K~ t !c1S21SH~ t !S21c2S21H~ t !c

5S21~K~ t !2 iw* ]H~ t !S21!c. ~A2!

Whence, for anycPdomK(t), we have that the left-hand side of Eq.~A2! belongs toD. So we
can write,

SK~ t !S21c5K~ t !c2 iw* ]H~ t !S21c, for all cedomK~ t !.

SettingB(t)52 iw* ]H(t)S21, we have a strongly continuous bounded operator~by the assump-
tions onH! which satisfiesSK(t)S21.K(t)1B(t). To show the reverse inclusion, we can co
sider anyb>2 suptiB(t)i which implies that ib belongs to the resolvent set of bothK(t)
1B(t) and SK(t)S21. It follows that (K(t)1B(t)1 ib)21,S(K(t)1 ib)21S21. But since the
left hand side has domainK, we must have equality betweenK(t)1B(t) andSK(t)S21 instead of
inclusion. h

In the examples of Sec. IV, bothH(s,u) defined through~15! by means of smooth function
x,y,z,l of (s,u), and H(s,u)1e i @P8(s,u),P(s,u)# where P(s,u)5uc(s,u)&^c(s,u)u with
c(s,u) given by one of the vectors~14! satisfy the hypotheses of the theorem. Hence assump
(H0) ~ii ! is satisfied for these models.
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APPENDIX B: PROOF OF LEMMA 2.1, THEOREM 2.1, AND PROPOSITION 3.1

Proof of Lemma 2.1:The idea of the proof is to integrate Eq.~7! over the interval@u0 ,u1# and
then to get ‘‘nice’’ estimates of the sizes on each subintervals@u0 ,t#, @ t,s#, and @s,u1#. By
integrating Eq.~7!, we get

i ~W~u1!2W~u0!!52E
u0

t

A21~u!L~u!A~u!W~u!du2E
t

s

A21~u!L~u!A~u!W~u!du

2E
s

u1
A21~u!L~u!A~u!W~u!du. ~B1!

For the middle term, we simply use the properties of the operator norm and the fact thatA(u) and
W(u) are unitary to obtain

iW~s!2W~ t !i<E
t

s

iL~u!idu< sup
uP@0,1#

iL~u!ius2tu, ~B2!

i.e., we do not care about the behavior ofg(u) inside the subinterval@ t,s#. To estimate the first
integral, letQ(u)512P(u). A simple computation, usingP(s)P8(s)P(s)[0, shows that

P~u!L~u!P~u!5Q~u!L~u!Q~u!50, ~B3!

and due to the intertwining property ofA(u), we can write

W~ t !2W~u0!5 i E
u0

t

~P~0!A21~u!L~u!A~u!Q~0!1Q~0!A21~u!L~u!A~u!P~0!!W~u!du.

~B4!

Now, we need to extract an explicite dependence from this equality in order to obtain t
estimates stated in the lemma. To do this, we follow Ref. 11 and introduce the bounded op
RL(u) defined by

RL~u!5
1

2ip R
G~u!

R~u,l!L~u!R~u,l!dl,

whereR(u,l)5(H(u)2l)21 is the resolvent ofH(u) at l and where the loopG(u) is a circle
centered atl(u) of radiusg(u)/2. It has the properties~see Refs. 11 and 13!

@RL~u!,H~u!#5@L~u!,P~u!#, ~B5!

P~u!RL~u!P~u!5Q~u!RL~u!Q~u!50. ~B6!

Standard arguments show thatRL(u) is stronglyC1 and that

RL8~u!5
1

2ip R
G~u!

~R~u,l!L8~u!R~u,l!2R~u,l!H8~u!R~u,l!L~u!R~u,l!

2R~u,l!L~u!R~u,l!H8~u!R~u,l!!dl, ~B7!

whereH8(u)R(u,l) is to be understood as the bounded operator

H8~u!R~u,l!5H8~u!R~u,i !~11~l2 i !R~u,l!!. ~B8!

Hence, we get the following estimates:
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iRL~u!i<
uG~u!u

2p
iL~u!i~g~u!/2!2252iL~u!i /g~u!, ~B9!

iRL8~u!i<c max$iH8~u!R~u,i !iiL~u!i ,iL8~u!i%/g2~u!. ~B10!

The main property ofRL(u) ~see Ref. 11! is that it satisfies for anycPD the following equalities,
as verified by means of~B5!:

P~0!A21~u!L~u!A~u!Q~0!c52 i e
d

du
~P~0!A21~u!RL~u!A~u!Q~0!c!

1 i eP~0!A21~u!RL8~u!A~u!Q~0!c ~B11!

and

Q~0!A21~u!L~u!A~u!P~0!c5 i e
d

du
~Q~0!A21~u!RL~u!A~u!P~0!c!

2 i eQ~0!A21~u!RL8~u!A~u!P~0!c. ~B12!

These equations imply that*u0

t A21(u)L(u)A(u)W(u)du is proportional toe. Indeed, Equalities

~B3! and the intertwining property ofA(u) show that the diagonal blocks are 0.
Introducing Equalities~B11! and ~B12! in Eq. ~B4!, we get

W~ t !2W~u0!52eE
u0

t d

du
~Q~0!A21~u!RL~u!A~u!P~0!

2P~0!A21~u!RL~u!A~u!Q~0!!W~u!du2eE
u0

t

~P~0!A21~u!RL8~u!A~u!Q~0!

2Q~0!A21~u!RL8~u!A~u!P~0!!W~u!du. ~B13!

Performing an integration by part in the first integral, using the differential equation~7! for W(u)
and taking into account thatA(u), W(u) are unitary andP(0), Q(0) are projectors, gives us th
following bound for the norm of the differenceW(t)2W(u0):

iW~ t !2W~u0!i<2e~ iRL~ t !i1iRL~u0!i1 sup
uP@u0 ,t#

iRL~u!iiL~u!i~ t2u0!

1 sup
uP@u0 ,t#

iRL8~u!i~ t2u0!!. ~B14!

Next, we use first Estimates~B9! and ~B10! and then the fact that 0<u0,t<1 to obtain the
desired bound:

iW~ t !2W~u0!i<
8e

gt
sup

uP@u0 ,t#

iL~u!i1
4e

gt
sup

uP@u0 ,t#

iL~u!i2~ t2u0!1c
2e

gt
2

3 sup
uP@u0 ,t#

$iH8~u!R~u,i !iiL~u!i ,iL8~u!i%~ t2u0!

<12
e

gt
sup

uP@0,1#

$iL~u!i ,iL~u!i2%12
eut2u0u

gt
2

3 sup
uP@0,1#

$iH8~u!R~u,i !iiL~u!i ,iL8~u!i%

<c2S e

gt
1

eut2u0u
gt

2 D . ~B15!
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Using the same kind of arguments, shows that on the subinterval@s,u1#, we have

iW~u1!2W~s!i<c2S eus2u1u
gs

2 1
e

gs
D . ~B16!

Combining estimates~B2!, ~B15!, and~B16! gives the announced bound foriW(u1)2W(u0)i .h
Proof of Theorem 2.1:In the sequel, we will denote by the same symbolc all inessential

constants. Let us consider the interval@0;a). In order to simplify the notations, we will not write
the subscripts/superscripts2. Picking somet,sPVk such thatt,ok,s and ut2oku5us2oku, we
get

iW~uk!2W~uk21!i<c~eut2uk21u/gt
21eus2uku/gs

21e/gt1e/gs1ut2su!

<cS e
D~k!

G~k!2 ut2oku22a1e
1

G~k!
ut2oku2a1ut2oku D

<cS e
D~k!

G~k!2 ut2oku22a1e
Da~k!

G~k!
ut2oku22a1ut2oku D ~B17!

<c~et~k!ut2oku22a1ut2oku! ~B18!

by the preceding section. Indeed, we have thatgt5 infuP@uk21 ,t#g(u)5g(r t) for some r t

P@uk21 ,t#. Now, by Hypothesis (H1), r tPVk . Whence, we have that

gt5g~r t!>G~k!ur t2okua>G~k!ut2okua

as r t<t<ok . Using the same kind of arguments, we can show thatgs5 infuP@s,uk#g(u)
>G(k)us2okua. Finally to obtain the bound~B17!, it remains to notice thatus2tu5ut2oku1us
2oku52ut2oku together withut2oku, ut2uk21u<D(k) and us2oku, us2uku<D(k).

We now get an estimate by choosingt5t(e,k) in order to balance the two contribution
appearing in the last term of Eq.~B17! above: for some constant§.0, we set

§112aet~k!

ut~e,k!2oku2a 5ut~e,k!2oku, ~B19!

i.e.,

ut~e,k!2oku5§~et~k!!1/~112a!. ~B20!

By definition, t(e,k)PVk , hence, ask will eventually be bounded from above byK(e), this
imposes Condition~13! in the statement of the theorem. Replacingt by t(e,k) in ~B17! and
summing overk, we get for anyK<K(e),

iW~0!2W~uK!i<c~§1§22a!(
k51

K

~et~k!!1/~112a!. ~B21!

On the other hand, using the differential Eq.~7!, we obtain

iW~uK!2W~a!i<E
uK

a

iL~u!idu<cuuK2au. ~B22!

Again, we balance the two right-hand sides in~B21! and ~B22! by setting the integerK5K(e),
which has been defined in Eq.~12!. Consequently,
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iW~0!2W~a!i<cS ~§1§22a!e1/~112a! (
k51

K~e!

t~k!1/~112a!1uuK~e!2au D
<c~§1§22a11!uuK~e!2au[C~§!uuK~e!2au, ~B23!

whereC(§) is independent ofe. Proceeding similarly on (a,1# completes the proof. h

Remark: In the step~B17! we deliberately lost a little in the estimate by usingut2oku2a

<Dk
aut2oku22a in order to simplify the subsequent arguments. It is nevertheless possible t

slightly sharper results by not adopting this simplification, however the analysis gets mo
volved and less transparent. We simply note here that in the examples discussed in this pap
more careful analysis yields, for the generic situation, an error term of orderep with an exponent
p51/3, instead of the valuep51/32n, for anyn.0 obtained there.

Proof of Proposition 3.1:The idea of the proof is to explicit conditions on the differe
exponents ensuring the validity of Theorem 2.1. We will only consider the interval@0,a), the
same kind of arguments will apply on (a,1#. Again, in order to simplify the notations we will le
aside the subscripts/superscripts2.

First, we have that 2D(k)5uk2uk215C1b/kb111o(1/kb11);1/kb11, which implies that

d>b11.0, ~B24!

since 2D(k)>uVku;1/kd. Notice that the length of theVk can be rescaled by a uniform consta
if d5b11.

Next, D(k)/G2(k);1/kb1112g and Da(k)/G(k);1/ka(b11)1g. So, if we denote by
m5min$b1112g,a~b11!1g% thent(k)5max$D(k)/G2(k), Da(k)/G(k)%;1/km by increasing the
overall constant in Theorem 2.1 if necessary. Whence,

(
k51

K

t~k!1/~112a!;(
k51

K

k2m/~112a!;H K0 if m.112a

logK if m5112a

K12m/~112a! if m,112a

~B25!

and considering the definition ofK(e) @see Eq.~12!#, we obtain

e1/~112a!;
uuK~e!2au

(k51
K~e!t~k!1/~112a! ;H K~e!2b if m.112a

K~e!2b/ logK~e! if m5112a

K~e!2b211m/~112a! if m,112a

. ~B26!

Condition ~13! stated in Theorem 2.1 reads

§~et~k!!1/~112a!<uVku/2 ~B27!

for all 1<k<K(e). Notice that this condition is automatically satisfied ifd,m/~112a!. In gen-
eral, it will be satisfied for a sufficiently small§, if

F~e![e1/~112a!K~e!d2m/~112a! ~B28!

remains bounded ase→0. Using~B26!, we have

F~e!;H K~e!d2b2m/~112a! if m.112a,

K~e!d212b/ logK~e! if m5112a,

K~e!d2b21 if m,112a.

~B29!

As K(e)→` for e→0, Eq. ~B29! implies that F(e) will remain bounded if d<b1
max$1;m/~112a!%.
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Hence, using~B23! and~B26!, we get that the adiabatic theorem~2.1! holds with a remainder
term on@0,a),

O~ uuK2~e!2au!5O~K~e!2b!5O~ep!

where the exponentp is given by

p55
1

112a
if m.~112a!

1

112a
2n ;n.0 if m5~112a!

b

~b11!~112a!2m
if m,~112a!

provided thatb11<d<b1max$1;m/~112a!%. To determinep in casem5112a andd5b11, we
have used the estimatee21/(112a);K(e)b logK(e),K(e)b1n8 for all n8.0. This ends the proof of
the proposition. h
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16S. Guérin and H. R. Jauslin, ‘‘Laser-Enhanced Tunnelling Through Resonant Intermediate Levels,’’ Phys. Rev.55,

1262–1275~1997!.
17T. Kato, ‘‘Linear Evolution Equation of ‘‘Hyperbolic’’ Type,’’ J. Fac. Sci., Univ. Tokyo, Sect. 117, 241–258~1970!.
18F. Bornemann, ‘‘Homogenization in time of singularly perturbed mechanical systems,’’ Lec. Notes Math.1687Springer

~1998!.
                                                                                                                



matter
d gaps
ry few
per is

s corre-

es and
used

ted by

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 11 NOVEMBER 1999

                    
New solvable and quasiexactly solvable periodic
potentials

Avinash Kharea)

Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India

Uday Sukhatmeb)

Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607-7059

~Received 22 July 1999; accepted for publication 11 August 1999!

Using the formalism of supersymmetric quantum mechanics, we obtain a large
number of new analytically solvable one-dimensional periodic potentials and study
their properties. More specifically, the supersymmetric partners of the Lame´ poten-
tials ma(a11)sn2(x,m) are computed for integer valuesa51,2,3,... . For all cases
~excepta51), we show that the partner potential is distinctly different from the
original Lamépotential, even though they both have the same energy band struc-
ture. We also derive and discuss the energy band edges of the associated Lame´
potentialspmsn2(x,m)1qmcn2(x,m)/dn2(x,m), which constitute a much richer
class of periodic problems. Computation of their supersymmetric partners yields
many additional new solvable and quasiexactly solvable periodic potentials.
© 1999 American Institute of Physics.@S0022-2488~99!03511-2#

I. INTRODUCTION

The energy spectrum of electrons on a lattice is of central importance in condensed
physics. In particular, knowledge of the existence and locations of band edges and ban
determines many physical properties. Unfortunately, even in one dimension, there are ve
analytically solvable periodic potential problems in quantum mechanics. The aim of this pa
to extend the small currently known set of analytically solvable periodic potentials.

For a potential with periodL, one is seeking solutions of the Schro¨dinger equation subject to
the Bloch condition

c~x!5eikLc~x1L !, ~1!

wherek denotes the crystal momentum. The spectrum shows energy bands whose edge
spond tokL50, p, that is the wave functions at the band edges satisfyc(x)56c(x1L). For
periodic potentials, the band edge energies and wave functions are often called eigenvalu
eigenfunctions, and we will also use this terminology. The classic textbook example which is
to demonstrate band structure is the Kronig–Penney model,

V~x!5 (
n52`

`

V0d~x2nL!.

It should be noted that the band edges for the Kronig–Penney model can only be compu
solving a transcendental equation. Another well-studied class of periodic potentials is

V~x!5pmsn2~x,m!, p[a~a11!. ~2!

a!Electronic mail: khare@iopb.res.in
b!Electronic mail: sukhatme@uic.edu
54730022-2488/99/40(11)/5473/22/$15.00 © 1999 American Institute of Physics
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Here sn(x,m) is a Jacobi elliptic function of real elliptic modulus parameterm(0<m<1) with
period 4K(m). For simplicity, from now on, we will not explicitly display the modulus parame
m as an argument of Jacobi elliptic functions.1 The elliptic function potentials of Eq.~2! have a
period L52K(m), and will be referred to as Lame´ potentials, since the corresponding Schr¨-
dinger equation is called Lame´’s equation.2,3 It is well known that for any integer valuea
51,2,3,..., the corresponding Lame´ potential ~2! has a bound bands followed by a continuum
band.2,3 All band edge energies and wave functions are analytically known.

At this point it is worth recalling that supersymmetric quantum mechanics~SUSYQM! has
proved useful in discovering many, new, analytically solvable potentials on both the full as w
the half line.4 It is then natural to enquire if one can also use similar techniques to discover
solvable periodic potentials. In this paper, we demonstrate that this is indeed possible.

Our work is inspired by several recent papers,5–8 which discuss various general aspects
SUSYQM for periodic potentials. In particular, Dunne and Feinberg5 defined and developed th
concept of ‘‘self-isospectral’’ periodic potentials in detail. A one-dimensional potentialV2(x) of
period L is said to be self-isospectral if its supersymmetric partner potentialV1(x) is just the
original potential up to a discrete transformation—a translation by any constant amount, a
tion, or both. A common example is translation by half a period, in which case the conditio
self-isospectrality is

V1~x!5V2~x2L/2!. ~3!

It is easily checked that if the superpotentialW satisfies

W~x!52W~x2L/2!, ~4!

then condition~3! immediately follows. In this sense, any self-isospectral potential is rather
interesting, since application of the SUSYQM formalism4 to it just yields a discrete transformatio
and basically nothing new. We have recently pointed out9 that the Lame´ potentials given in Eq.~2!
are not self-isospectral fora>2, and hence SUSYQM generates new exactly solvable peri
problems. This point is further developed in detail in this paper.

We expand our discussion to the band edges and wave functions of a much richer c
periodic potentials given by

V~x!5pmsn2~x!1qm
cn2~x!

dn2~x!
, p[a~a11!, q[b~b11!, ~5!

where, like sn(x), the Jacobi elliptic functions cn(x) and dn(x) also have a modulus parameterm
which, for notational convenience, is not explicitly displayed. The potentials of Eq.~5! are called
associated Lame´ potentials, since the corresponding Schro¨dinger equation is called the associat
Laméequation.3 More precisely, we often refer to the associated Lame´ potential of Eq.~5! as the
~p,q! potential and note that~p,0! potentials are just the ordinary Lame´ potentials. Although some
results for~p,q! potentials are available in scattered form in the mathematical literature, ma
our results are new. In particular, we obtain all band edge energies and wave functions
special casep5q5a(a11) for a51,2,3,... . We study many~p,q! potentials and check whethe
they are self-isospectral by constructing and examining the supersymmetric partner potent
most cases,V2(x) is not self-isospectral, and consequentlyV1(x) is a new, exactly, or quasiex
actly solvable periodic potential.

The associated Lame´ potentials given by Eq.~5! can also be rewritten in the alternative for

V~x!5pmsn2~x!1qmsn2~x1K~m!!, ~6!

since1

sn~x1K !5cn~x!/dn~x!, cn~x1K !52A12m sn~x!/dn~x!, dn~x1K !5A12m/dn~x!.
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It is clear from~6! that potentials~p,q! and~q,p! have the same energy spectra with wave functio
shifted byK(m). Therefore, it is sufficient to restrict our attention top>q.

Before actually solving the Schro¨dinger equation for the associated Lame´ potential~5!, let us
make a few general comments. Throughout this paper, we have chosen units with\51, and taken
the particle mass in the Schro¨dinger equation to be 1/2. Note that in the limit when the ellip
modulus parameterm50, the potential vanishes and one has a rigid rotator problem of pe
2K(0)5p, whose energy eigenvalues are atE50,1,4,9,..., with all the nonzero values bein
twofold degenerate. On the other hand, the limitm→1 is much trickier sinceK(m) tends to
infinity and the periodic nature of the potential is obscured. The Schro¨dinger equation for finding
the eigenstates for an arbitrary periodic potential is called Hill’s equation in the mathem
literature.3 A general property of Hill’s equation is the oscillation theorem which states that f
potential with periodL, the band edge wave functions arranged in order of increasing en
E0<E1<E2<E3<E4<E5<E6<¯ are of periodL,2L,2L,L,L,2L,2L,... . Thecorresponding
number of wave function nodes in the intervalL are 0,1,1,2,2,3,3,..., and the energy band gaps
given byD1[E22E1 , D2[E42E3 , D3[E62E5 ,... . Weshall see that the expectedm50 limit
and the oscillation theorem are very useful in identifying if all band edge eigenstates have
properly determined or if some have been missed.

The plan of the paper is as follows. In Sec. II, we briefly review the basic ideas of SUSY
A detailed discussion of Lame´ potentials and their supersymmetric partners is given in Sec.
Solutions of the Schro¨dinger equation for the associated Lame´ potentials are presented in Sec. IV
Many key new results are summarized in Table III. It is shown that the locus of quasiex
solvable problems10,11 in the ~p,q! plane are parabolas about the linep5q. Our solutions are valid
for any real choice of the parametersa, b @recall p5a(a11), q5b(b11)]. Integer and half-
integer values ofa, b, including the very interesting special casea5b5 integer, are treated in
detail in Sec. V. In most cases, the application of SUSYQM gives new solvable periodic p
tials, many of which are illustrated in the figures. Finally, Sec. VI contains some conclu
remarks.

II. SUPERSYMMETRIC QUANTUM MECHANICS FORMALISM

The supersymmetric partner potentialsV6(x) are defined in terms of the superpotentialW(x)
by

V6~x!5W2~x!6W8~x!. ~7!

The corresponding HamiltoniansH6 can be factorized as

H25A1A, H15AA1, ~8!

where

A5
d

dx
1W~x!, A152

d

dx
1W~x!, ~9!

so that the spectra ofH6 are non-negative. It is also clear that on the full line, bothH6 cannot
have zero energy modes since bothc0

(6) given by

c0
~6 !~x!5expS 6Ex

W~y!dyD , ~10!

cannot be simultaneously normalized.
On the other hand, when the superpotentialW(x) is periodic @W(x1L)5W(x)# then the

potentialsV2(x) andV1(x) are isospectral—their spectra match completely, including the
modes, and SUSY is unbroken provided
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E
0

L

W~y!dy50. ~11!

It is worth noting that in this case bothc0
(6) belong to the Hilbert space. Thus in this case ev

though SUSY is unbroken, the Witten index is zero.5 The condition~11! is trivially satisfied in
caseW(x) is an odd function ofx and throughout this paper we shall only consider superpoten
W which are odd function ofx. Further, using the known eigenfunctionscn

(2)(x) of V2(x) one
can immediately write down the corresponding un-normalized eigenfunctionscn

(1)(x) of V1(x).
In particular, from Eq.~10! it follows that the ground state ofV1(x) is given by

c0
~1 !~x!5

1

c0
~2 !~x!

, ~12!

while the excited statescn
(1)(x) are obtained fromcn

(2)(x) by using the relation

cn
~1 !~x!5F d

dx
1W~x!Gcn

~2 !~x! ~n>1!. ~13!

Thus by starting from an exactly solvable periodic potentialV2(x), one gets another isospectr
periodic potentialV1(x). As emphasized previously, ifV2(x) is not self-isospectral, thenV1(x)
is a new solvable periodic potential!

III. LAMÉ POTENTIALS „p,0… AND THEIR SUPERSYMMETRIC PARTNERS

The supersymmetric quantum mechanics formalism of Sec. II will now be applied to
Lamépotentialsma(a11)sn2(x,m). Analytic solutions are known for integer values ofa,2 and
the supersymmetric partner potentials can be readily computed. We first discuss the res
small integer values ofa, and then present some eigenstate results for arbitrary integer valu
a.

A. Lamé potentials with a51,2,3

1. a51

Thea51 LamépotentialV252m sn2(x)2m is known to be self-isospectral5 since its SUSY
partner satisfiesV1(x)5V2(x2K(m)). Both V1(x) andV2(x) have one energy band rangin
from energy 0 to energy 12m, with a continuum starting at energy 1.2 Note that atm50 one has
energy eigenvalues at 0, 1 as expected for a rigid rotator and asm→1, one getsV2(x)→1
22 sech2 x, the bandwidth 12m vanishes as expected, and one has an energy level atE50.

2. a52

For thea52 case, the Lame´ potential~2! has two bound bands and a continuum band. T
energies and wave functions of the five band edges are well known.2,3 The lowest energy band

TABLE I. The eigenvalues and eigenfunctions for the five band edges coresponding to thea52 LamépotentialV2 which
gives (p,q)5(6,0) and itsSUSY partnerV1. HereB[11m1d and d[A12m1m2. The potentialsV6 have period
L52K(m) and their analytic forms are given by Eqs.~14! and ~17!, respectively. The periods of various eigenfunctio
and the number of nodes in the intervalL are tabulated.

E c (2) (B23m sn2(x))c (1) Period Nodes

0 m111d23m sn2(x) 1 2K 0
2d212m cn(x)dn(x) sn(x)@6m2(m11)B1m sn2(x)(2B2323m)# 4K 1
2d2112m sn(x)dn(x) cn(x)@B1m sn2(x)(322B)# 4K 1
2d122m sn(x)cn(x) dn(x)@B1sn2(x)(3m22B)# 2K 2
4d m112d23m sn2(x) sn(x)cn(x)dn(x) 2K 2
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ranges from 212m22d to 11m, the second energy band ranges from 114m to 41m, and the
continuum starts at energy 212m12d, whered5A12m1m2. The wave functions of all the
band edges are given in Table I. Note that in the interval 2K(m) corresponding to the period of th
Lamépotential, the number of nodes increases with energy. In order to use the SUSYQM fo
ism, we must shift the Lame´ potential by a constant to ensure that the ground state, i.e., the l
edge of the lowest band, has energyE50. As a result, the potential

V2~x!52222m12d16m sn2~x! ~14!

has its ground state energy at zero with a corresponding un-normalized wave function2

c0
~2 !~x!511m1d23m sn2~x!. ~15!

The corresponding superpotential is

W52
d

dx
logc0

~2 !~x!5
6m sn~x!cn~x!dn~x!

c0
~2 !~x!

, ~16!

and hence the partner potentialV1(x) for the potentialV2(x) given in Eq.~14! is

V1~x!52V2~x!1
72m2 sn2~x!cn2~x!dn2~x!

@11m1d23m sn2~x!#2 . ~17!

Although the SUSYQM formalism guarantees that the potentialsV6 are isospectral, they are no
self-isospectral, since they do not satisfy Eq.~3!.9 Therefore,V1(x) as given by Eq.~17! is a new
periodic potential which is strictly isospectral to the potential~14! and hence it also has two boun
bands and a continuum band. In Fig. 1 we have plotted the potentialsV6(x) corresponding to
a52 for three different values of the parameterm. The values arem50.5, 0.8, 0.998. The
difference in shape betweenV2(x) andV1(x) is manifest from the figures, especially for largem.
Using Eqs.~12! and ~13! and the known eigenstates ofV2(x), we can immediately compute a
the band-edge Bloch wave functions forV1(x). In Table I we have given the energy eigenvalu
and wave functions for the isospectral partner potentialsV6(x). At m50 one has energy eigen
values 0, 1, 4 as expected for a rigid rotator. Asm→1, one getsV2(x)→426 sech2 x, the
bandwidths vanish as expected, and one has two energy levels atE50, 3, with a continuum above
E54.

3. a53

For thea53 Lamépotential, the ground state wave function is

c0
~2 !~x!5dn~x!@2m1d11125m sn2~x!#,

the corresponding superpotential is9

W5
m sn~x!cn~x!

dn~x!

@2m1d1111215m sn2~x!#

@2m1d11125m sn2~x!#
, ~18!

and the partner potentialsV6(x) are9

V2~x!52225m12d1112m sn2~x!, d1[A12m14m2, ~19!

and

V1~x!52V2~x!1
2m2 sn2~x!cn2~x!

dn2~x!

@2m1d1111215m sn2~x!#2

@2m1d11125m sn2~x!#2 . ~20!
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FIG. 1. The~6,0! LamépotentialV2(x) corresponding toa52 ~the thick line! as given by Eq.~14! and its supersymmetric
partner potentialV1(x) ~the thin line! as given by Eq.~17! for three choices ofm: ~a! 0.5, ~b! 0.8, ~c! 0.998.
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FIG. 2. The~12, 0! LamépotentialV2(x) corresponding toa53 ~the thick line! as given by Eq.~19! and its supersym-
metric partner potentialV1(x) ~the thin line! as given by Eq.~20! for three choices ofm: ~a! 0.5, ~b! 0.8, ~c! 0.998.
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Clearly, the potentialV2(x) is not self-isospectral. In fact,V2(x) and V1(x) are distinctly
different periodic potentials which have the same seven band edges corresponding to three
bands and a continuum band.2 In Fig. 2 we have plotted the potentialsV6(x) corresponding to
a53 for several different values of the parameterm. The values ofm are 0.5, 0.8, 0.998. It is clea
from Fig. 2 that the potentialsV1(x) and V2(x) have different shapes and are far from bei
self-isospectral. Using Eqs.~12! and ~13! and the known eigenstates ofV2(x), we can immedi-
ately compute all seven band edges corresponding to the known three bound bands and
tinuum band.2,3 For example, the ground statec0

(1) is given by

c0
~1 !~x!5

1

c0
~2 !~x!

5
1

dn~x!@112m1d125m sn2~x!#
. ~21!

The wave functions for the remaining six states are similarly written down by using Eq.~13!.
These are shown in Table II. The band edge energies for thea53 Lamépotential ~12,0! as a
function of the elliptic modulus parameterm are plotted in Fig. 3. Note that atm50 one has
energy eigenvalues at 0,1,4,9 as expected for a rigid rotator and asm→1, one getsV2(x)→9
212 sech2 x, the bandwidths vanish as expected, and one has three energy levels atE50, 5, 8 with
a continuum aboveE59.

B. Results for general integer values of a

The extension to higher values ofa is straightforward. It is possible to make several gene
comments about the form of the band edge wave functions for the partner potentialsV1(x). This
is most conveniently done by separately discussing the cases of even and odd values ofa.

1. a5even integer

For a even, saya52N, it is known2 that there areN11 solutions of the formFN(sn2 x), and
N solutions each of the three forms

snx cnx FN21~sn2 x!, snx dnx FN21~sn2 x!, cnx dnx FN21~sn2 x!.

TABLE II. The eigenvalues and eigenfunctions for the seven band edges corresponding to thea53 LamépotentialV2

which gives (p,q)5(12,0) and its SUSY partnerV1. Hered1[A12m14m2; d2[A42m1m2; d3[A427m14m2.
The potentialsV6 have periodL52K(m) and their analytic forms are given by Eqs.~19! and ~20!, respectively. The
periods of various eigenfunctions and the number of nodes in the intervalL are tabulated.

E c (2) c0
2c (1) Period Nodes

0 dn(x)@112m1d125m sn2(x)# 1 2K 0
323m12d122d2 cn(x)@21m1d225m sn2(x)# 10m~12m1d22d1!sn~x!cn2~x!

3dn2~x!2~12m!
sn~x!c0

2c2

cn~x!dn~x!

4K 1

312d122d3 sn(x)@212m1d325m sn2(x)# 10m(11d32d1)cn(x)sn2(x)dn2(x)

2~122msn2~x!!
cn~x!c0

2c2

sn~x!dn~x!

4K 1

22m12d1 sn(x)cn(x)dn(x) dn3(x)@112m1d11(m2222d1)

3sn2~x!]

2K 2

4d1 dn(x)@112m2d125m sn2(x)# sn(x)cn(x)dn3(x) 2K 2
323m12d112d2 cn(x)@21m2d225m sn2(x)# 10m(12m2d22d1)sn(x)cn2(x)

3dn2~x!2~12m!
sn~x!c0

2c2

cn~x!dn~x!

4K 3

312d112d3 sn(x)@212m2d325m sn2(x)# 10m(12d32d1)cn(x)sn2(x)

3dn2~x!2~122m sn2~x!!
cn~x!c0

2c2

sn~x!dn~x!

4K 3
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HereFr denotes a polynomial of degreer in its argument. The ground statec0
2(x) ~which is the

lower edge of the lowest band! is of the formFN(sn2 x). It is easily checked using Eq.~13! that
the corresponding partner potentialV1(x) hasN solutions each of the four forms

dnx GN~sn2 x!

c0
2~x!

,
snx GN~sn2 x!

c0
2~x!

,
cnx GN~sn2 x!

c0
2~x!

,
snx cnx dnx GN21~sn2 x!

c0
2~x!

,

while the ground state is given byc0
1(x)51/c0

2(x).

2. a5odd integer

For a odd, saya52N11, it is known2 that the Lame´ potentials haveN11 solutions each of
the three forms

snx FN~sn2 x!, cnx FN~sn2 x!, dnx FN~sn2 x!

andN solutions of the form

snx cnx dnx FN21~sn2 x!.

The ground statec0
2(x) is of the form dnx FN(sn2 x). We can then easily deduce that th

corresponding partner potentialsV1(x) will have N11 solutions each of the two forms

snx GN11~sn2 x!

c0
2~x!

,
cnx GN11~sn2 x!

c0
2~x!

,

andN solutions each of the two forms

dnx GN11~sn2 x!

c0
2~x!

,
snx cnx dnx GN~sn2 x!

c0
2~x!

,

while as usual, the ground state is given byc0
1(x)51/c0

2(x).

FIG. 3. Band edge energies for the~12,0! Lamé potential corresponding toa53 as a function of the elliptic modulus
parameterm. This figure is drawn using the eigenvalues given in Table II. The band edges are labeled by the num
wave function nodes in the interval 2K(m).
                                                                                                                



e

matic
me
lv-
tentials.

of

ter.
olute

points

5482 J. Math. Phys., Vol. 40, No. 11, November 1999 A. Khare and U. Sukhatme

                    
In summary, for integrala, Lamé potentials witha>2 are not self-isospectral. They hav
distinct supersymmetric partner potentials even though both potentials have the same (2a11)
band edge eigenvalues.

IV. ASSOCIATED LAMÉ POTENTIALS „p,q … AND THEIR SUPERSYMMETRIC
PARTNERS

In contrast to the Lame´ potentials discussed previously, there seems to be no syste
treatment of associated Lame´ potentials in the literature. Therefore, we will first devote some ti
to discussing the properties of associated Lame´ potentials, show that they are quasiexactly so
able, and then proceed to construct and study their isospectral supersymmetric partner po

A. Description of associated Lame ´ potentials

As mentioned before, we will refer to the associated Lame´ potentials given by Eq.~5! or
equivalently Eq.~6! as the~p,q! potential. The special casesq50, as well asp50, correspond to
ordinary Lame´ potentials.

In general, for any value ofp and q, the associated Lame´ potentials have a period 2K(m)
since

sn~x12K !52sn~x!, cn~x12K !52cn~x!, dn~x12K !5dn~x!.

However, for the special casep5q, Eq. ~6! shows that the period isK(m). From a physical
viewpoint, if one thinks of a Lame´ potential~p,0! as due to a one-dimensional regular array
atoms with spacing 2K(m), and ‘‘strength’’ p, then the associated Lame´ potential ~p,q! results
from two alternating types of atoms spaced byK(m) with ‘‘strengths’’ p andq, respectively. If the
two types of atoms are identical@which makesp5q], one expects a potential of periodK(m).

Extrema~defined for this discussion as either local or global maxima and minima! of associ-
ated Lame´ potentials are easily found by settingdV(x)/dx50. This gives

sn~x!cn~x!@p dn4~x!2q~12m!#50.

Extrema occur when~i! sn(x)50, that isx50,62K(m),64K(m),...; ~ii ! cn(x)50, that isx5
6K(m),63K(m),...; ~iii ! dn4(x)5(12m)q/p. At the points specified by~i! and~ii !, one always
has extrema andV(x) has valuespm and qm. In addition, since dn4(x) has a minimum value
(12m)2 and a maximum value unity,1 condition ~iii ! also yields extrema provided

~12m!2<~12m!q/p<1.

For given fixed values ofq andm, this condition has a solution providedp lies in the critical range

q~12m!<p<q/~12m!.

Alternatively, for given fixed values ofp andq with p>q, condition~iii ! has a solution provided
m is greater than the critical value 12q/p.

The associated Lame´ potentials forq52, m50.5, and several values ofp are plotted in Fig.
4~a!. In the critical range ofp values 1<p<4, one expects extrema coming from condition~iii !,
and these are clearly seen in Fig. 4~a!. In general the period is 2K(0.5)53.708, but forp5q
52, the periodK(0.5) is evident. Note that asp increases, any given extremum changes charac
For example, atx50, asp increases, one goes from a maximum to a local minimum to an abs
minimum. In Fig. 4~b! we have plotted associated Lame´ potentials forp54, q52, and several
values ofm. As expected from the previous discussion, one always sees extrema at the
specified by conditions~i! and~ii !, and additional extrema coming from condition~iii ! are evident
for m>1/2.
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B. Solutions of the associated Lame ´ equation: Parabolas of solvability

The associated Lame´ equation is just the Schro¨dinger equation for the potential in Eq.~5!,

2
d2c

dx2 1Fpmsn2~x!1qm
cn2~x!

dn2~x!
2EGc50. ~22!

On substituting

c~x!5@dn~x!#2by~x!, ~23!

it is easily shown thaty(x) satisfies the Hermite elliptic equation3

y9~x!12bm
sn~x!cn~x!

dn~x!
y8~x!1@l2~a112b!~a1b!m sn2~x!#y~x!50, ~24!

where

FIG. 4. ~a! Plots of the~p,q! associated Lame´ potentials forq52, m50.5, and several values ofp. The curves are labeled
by the value ofp. ~b! Plots of the~p,q! associated Lame´ potentials forp54, q52, and several values ofm. The curves are
labeled by the value ofm.
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p5a~a11!, q5b~b11!, E5l1mb2. ~25!

On further substituting sn(x)5sint, y(x)[z(t), one obtains Ince’s equation,

~12m sin2 t !z9~ t !1~2b21!m sint cost z8~ t !1@l2~a112b!~a1b!m sin2 t#z~ t !50,
~26!

which is a well-known quasiexactly solvable~QES! equation.3 In particular, on substituting

cost5u, z~ t ![w~u!5 (
n50

`
unRn

n!
, ~27!

it is easily shown thatRn satisfies a three-term recursion relation. In particular, ifa1b11
5n (n51,2,3,...), then one obtainsn QES solutions. Actuallyn QES solutions are also obtaine
in caseb2a52n(n51,2,3,...), but sinceq is unchanged underb→2b21, no really new solu-
tions are obtained in this case. The QES solutions forn51,2,3,4,5 are given in Table III. In
particular, for any given choice ofp5a(a11), Table III lists the eigenstates of the associa
Laméequation for various values ofq.

For q5a(a21), there is just one eigenstate with energyma2 and wave functionc
5dna(x). Since the wave function has period 2K(m) and is nodeless, this is clearly the groun
state wave function of the (a(a11),a(a21)) potential for any real choice of the parametera.
The equationsp5a(a11) and q5a(a21) are the parametric forms of the equation of t
parabola (p2q)252(p1q), which is plotted in Fig. 5 and labeledP1. For any point on the
parabola, one knows the ground state wave function and energyE05ma2. The parabolaP1
includes the points~2,0! and ~6,2!.

For q5(a21)(a22), we see from Table III that two eigenstates with energies 11m(a
21)2 and 11ma2 are known. Since they have period 4K(m) and just one node in the interva
L52K(m), they must correspond to the first and second band edge energiesE1 and E2 of the
(a(a11),(a21)(a22)) potential. Eliminatinga from the equationsp5a(a11) and q5(a
21)(a22) gives the ‘‘parabola of solvability’’ (p2q)258(p1q)212, which is plotted in Fig.
5 and labeledP2. This parabola includes the points~2,0! and ~6,0!, which correspond to Lame´

TABLE III. Eigenvalues and eigenfunctions for various associated Lame´ potentials (p,q) with p5a(a11) andq5(a
2n11)(a2n) for n51,2,3,... . Theperiods of various eigenfunctions and the number of nodes in the interval 2K(m)
are tabulated. Hered4[A12m1m2(a21)2; d5[A427m12ma1m2(a22)2; d6[A42m22ma1m2(a21)2; d7

[A929m1m2(a22)2.

q E dn2a(x)c Period Nodes

a(a21) ma2 1 2K 0
(a21)(a22) 11m(a21)2

cn~x!

dn~x!

4K 1

(a21)(a22) 11ma2
sn~x!

dn~x!

4K 1

(a22)(a23) 21m(a222a12)62d4 @m~2a21!sn2~x!211m2ma6d4#

dn2~x!

2K 2,0

(a22)(a23) 41m(a21)2
sn~x!cn~x!

dn2~x!

2K 2

(a23)(a24) 51m(a224a15)62d5 cn~x!@m~2a21!sn2~x!2212m2ma6d5#

dn3~x!

4K 3,1

(a23)(a24) 51m(a222a12)62d6 sn~x!@m~2a21!sn2~x!221m2ma6d6#

dn3~x!

4K 3,1

(a24)(a25) 101m(a224a15)62d7 sn~x!cn~x!@m~2a21!sn2~x!2312m2ma6d7#

dn4~x!

2K 4,2
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potentials. Similarly, the parabolas of solvabilityPn (n50,1,2,...) corresponding toq5(a2n
11)(a2n) in Table III are plotted.n eigenstates are known for any point on the parabola
solvability Pn.

C. Supersymmetric partner potentials

It is easily checked from Table III that the solution corresponding toq5a(a21) as well as
one of theq5(a22)(a23) solutions are nodeless and correspond to the ground state. Henc
these cases, one can obtain the superpotential and hence the partner potentialV1 and enquire if
V2 is self-isospectral. For example, consider the case ofp5a(a11),q5a(a21) in which case
W is given by

W[2
c08~x!

c0~x!
5am

sn~x!cn~x!

dn~x!
, ~28!

so that the corresponding partner potentials are

V25~a21!am
cn2~x!

dn2~x!
1ma~a11!sn2~x!2ma2,

~29!

V15a~a11!m
cn2~x!

dn2~x!
1m~a21!a sn2~x!2ma2.

It is easily seen that these partner potentials satisfy Eq.~3!, are consequently self-isospectral, a
SUSY gives nothing new in this case. It is amusing to note that the superpotentialW obtained here
was in fact discussed in Ref. 5@see their Eq.~32!#.

Let us now consider the SUSY partner potential computed from the ground state forp
5a(a11),q5(a22)(a23) case. It is given by~see Table III!

c0~x!5@m~a21!212d11m~2a21!sn2~x!#~dn~x!!a22, ~30!

whered15A12m1m2(a21)2. The corresponding superpotentialW turns out to be

FIG. 5. Parabolas of solvability. All associated Lame´ potentials~p,q! which are quasisolvable are illustrated. Each parab
corresponds to a choice ofq in Table III. ParabolaPn is for p5a(a11), q5(a2n11)(a2n) for n51,2,3,..., and one
knowsn eigenstates for any point on it from Table III.
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W5
m~a22!sn~x!cn~x!

dn~x!
2

2m~2a21!sn~x!cn~x!dn~x!

@m~12a!212d11m~2a21!sn2~x!#
. ~31!

Hence the corresponding partner potentials are

V2~x!5ma~a11!sn2~x!1m~a23!~a22!
cn2~x!

dn2~x!
222m~a222a12!12d1 , ~32!

V1~x!52V2~x!12W2~x!. ~33!

It is easily checked that these potentials are not self-isospectral since they do not satis
condition~3!. Thus one has discovered a whole class of new elliptic periodic potentialsV1(x) as
given by Eq.~33! for which three states are analytically known no matter whata is. In particular,
the energy eigenfunctions forV1 of these three states are easily obtained by using the corresp
ing energy eigenstates ofV2 as given in Table III and using Eqs.~12! and ~13!.

V. ASSOCIATED LAMÉ POTENTIALS WITH SPECIAL VALUES OF p AND q

We shall now discuss associated Lame´ potentials (a(a11),b(b11)), where a and b are
either both positive integers or half-integers. These values are of special interest since th
respond to intersections of two parabolas of solvability. Consequently, one has greater kno
about the eigenstates, especially if states of period 2K are known for one parabola and states
period 4K are known for the other. In most cases, we show that although several band
energies are exactly known from Table III, one usually does not know all the band edge en
that is one has a quasiexactly solvable problem. However, in the special case ofp5q (a5b
5 integer), we show that all the band edge eigenstates can be obtained and one has an
solvable periodic problem.

A. a,b 5 integer, aÞb

First, let us note that the Lame´ potentials (a(a11),0) are in this category whena5 integer
and b50. For example, whena53, one has the~12,0! potential. We see from Fig. 5 that tw
parabolas of solvability pass through the point~12,0!. From Table III it follows that three band
edges of period 2K(m) are obtained fromq5(a22)(a23) and four band edges of perio
4K(m) are obtained fromq5(a23)(a24). Altogether, arranging in order of increasing nod
one has seven band edges with periods 2K, 4K, 4K, 2K, 2K, 4K, 4K with 0, 1, 1, 2, 2, 3, 3
nodes, respectively. There are no missing states, and as discussed in Sec. III A, this give
bound bands and a continuum band.

TABLE IV. The five eigenvalues and eigenfunctions for the self-isospectral associated Lame´ potential corresponding to
a52, b51 which gives (p,q)5(6,2). Thepotential isV2(x)56m sn2(x)12m cn2(x)/dn2(x)24m, and has period
2K(m). The number of nodes in the interval 2K(m) is tabulated.

E c (2) Period Nodes

0 dn2(x) 2K 0
523m22A423m cn~x!

dn~x!
@3m sn2~x!222A423m#

4K 1

522m22A425m1m2
sn~x!

dn~x!
@3m sn2~x!222m2A425m1m2#

4K 1

522m12A425m1m2
sn~x!

dn~x!
@3m sn2~x!222m1A425m1m2#

4K 3

523m12A423m cn~x!

dn~x!
@3m sn2~x!221A423m#

4K 3
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As a second example withqÞ0, consider the~6,2! associated Lame´ potential, that isp
56, q52. In this case, takinga52, one can get five band edges from Table III—one solution
period 2K is obtained fromq5a(a21), while the remaining four solutions of period 4K are
obtained fromq5(a23)(a24). The eigenvalues and eigenfunctions are given in Table IV al
with the number of nodes in one period 2K. It is clear that there are two solutions of period 2K
with two nodes in the interval 2K which have to be present but have not been obtained. Th
also clear from them50 limit, since the energies from Table V are 0,1,1,9,9 and the states a
are missing. Thus, this is a QES problem. Figure 6 illustrates the~6,2! associated Lame´ potential
and its supersymmetric partner for three choices ofm. The self-isospectral nature of the~6,2!
potential is evident from Fig. 6—it also follows from Eq.~29! with a52. The band edge energie
for the ~6,2! associated Lame´ potential as a function of the elliptic modulus parameterm are
shown in Fig. 7. The two unobtained band edges of period 2K will have energiesE54 at m
50.

Let us now discuss the general associated Lame´ potential (a(a11),b(b11)), with a.b.
Using Table III, we obtain (a2b) states of period 2K(4K) for q5@a2(a2b)#@a2(a2b
21)# for (a2b) odd ~even!, and (a1b11) states of period 4K(2K) for q5@a2(a1b11)#
3@a2(a1b)# for (a2b) odd ~even!. It can be established that some states are missing
looking at the node structure as well as them50 limit. Hence, we again have a QES problem

B. a5b 5 integer

Let us now discuss the special case ofp5q5a(a11), a51,2,... . In this case the associate
Lamépotential~5! has periodK, rather than 2K. It then follows from the oscillation theorem tha
with increasing energy, the band edges must have periodsK,2K,2K,K,K,... and in them50 limit
the eigenvalues must go toE50,4,16,36,..., with all nonzero eigenvalues being doubly degene
It is easy to check from Table V that one case for which we already have exact results is
p5q52. In particular, consider the special casea51, for whichV2(x) of Eq. ~32! takes the form

V2~x!52m sn2~x!12m
cn2~x!

dn2~x!
222m12A12m. ~34!

Using Table V, we can calculate three energy eigenvalues and eigenfunctions ofV2 taking a
51 in q5(a22)(a23). These are given in Table V. Whereas the ground state is of periodK, the
next two states in Table V indeed have period 2K. Usinga51 in Eqs.~30!–~33!, we find that the
corresponding SUSY partner potential is

V1~x!522m22A12m2
8A12mm2 sn2~x!cn2~x!

@dn2~x!1A12m#2
. ~35!

Are the potentialsV6(x) self-isospectral? Using the relations

sn~x1K~m!/2!5~11A12m!1/2FA12m sn~x!1cn~x!dn~x!

dn2~x!1A12m
G , ~36!

TABLE V. The three eigenvalues and eigenfunctions for the associated
Lamé potential corresponding toa5b51 which gives (p,q)5(2,2). The
potential has periodK(m) and the number of nodes in the intervalK(m) is
tabulated.

E dn(x)c (2) Period Nodes

0 dn2(x)1A12m K 0
4A12m dn2(x)2A12m 2K 1
22m12A12m sn(x)cn(x) 2K 1
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FIG. 6. The~6, 2! associated Lame´ potentialV2(x) ~the thick line! and its supersymmetric partner potentialV1(x) ~the
thin line! for three choices ofm: ~a! 0.5, ~b! 0.9, ~c! 0.998.
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cn~x1K~m!/2!5~11A12m!1/2~12m!1/4F ~11A12m!1/2cn~x!2sn~x!dn~x!

dn2~x!1A12m
G , ~37!

dn~x1K~m!/2!5~12m!1/4F ~11A12m!dn~x!2m sn~x!cn~x!

dn2~x!1A12m
G , ~38!

a little algebra reveals that indeedV6 are self-isospectral and satisfy Eq.~3!.
Are the higher members of thep5q family ~i.e., p5q56,12,20,...) also self-isospectral?

our experience with the Lame´ case is any guide then we would doubt it. Indeed, we will now sh
that the~6,6! associated Lame´ potential is not self-isospectral. We get five band edges analytic
from Table III. In particular, takea52 and consider the case ofq5(a24)(a25), for which we
know two eigenstates as given in Table III. In fact, in this case three more eigenstates c
analytically obtained but the corresponding eigenvalues and eigenfunctions have not been g
Table III since the energy eigenvalues are solutions of a cubic equation whose exact solut
arbitrarya cannot be written in a compact form. However, fora52, we are able to solve the cubi
equation and obtain the three eigenvalues in a closed simple form. In particular consider an
of the form

y5A1B sn2 x1D sn4 x. ~39!

On substituting this ansatz in Eq.~24! it is easy to show that the energy eigenvaluel(5E
2m(a24)2) must obey the cubic equation

FIG. 7. Band edge energies for the associated Lame´ potential~6, 2! as a function of the elliptic modulus parameterm. This
figure corresponds to Table IV. The band edges are labeled by the number of wave function nodes in the intervalK(m).

TABLE VI. The five eigenvalues and eigenfunctions for the associated Lame´ potential corresponding toa5b52 which
gives (p,q)5(6,6). Hered8[A16216m1m2. The number of nodes in one periodK(m) of the potential is tabulated.

E dn2(x)c (2) Period Nodes

0 12(42m2d8)sn2(x)1(422m2d8)sn4(x) K 0
2412m12d8 122 sn2(x)1m sn4(x) 2K 1
22m26A12m12d8 sn(x)cn(x)@12(12A12m)sn2(x)# 2K 1
22m16A12m12d8 sn(x)cn(x)@12(11A12m)sn2(x)# K 2
4d8 12(42m1d8)sn2(x)1(422m1d8)sn4(x) K 2
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l31@28m220212am#l21@642304m1160ma132m2~a22!~a23!#l

264m~2a23!~222m1ma!50. ~40!

The solution of Eq.~40! is in general quite lengthy but in the special case ofa52 this cubic
equation is easily solved yielding three eigenvalues in a compact form. On combining them
the two levels given in Table III, we obtain the eigenvalues and eigenfunctions of all the five
edges for the casep5q56. These are given in Table VI. We have also verified that these
eigenstates in ascending order of energy indeed have periodsK, 2K, 2K, K, K, respectively,
and that the energy eigenvalues have expected limits atm50. In particular the associated Lam´
potentialV2(x) is

V2~x!56m sn2~x!16m
cn2~x!

dn2~x!
2822m12d8 , ~41!

whose ground state energy is zero while the corresponding eigenfunctionc0
2 is

c0
2~x!5

@12~42m2d8!sn2~x!1~422m2d8!sn4~x!#

dn2~x!
, d85A16216m1m2. ~42!

Hence the corresponding superpotential is

W~x!5
22m sn~x!cn~x!

dn~x!
1

2 sn~x!cn~x!

dn~x!c0
2~x!

@~42m2d8!22~422m2d8!sn2~x!#, ~43!

and the partner potentialV1(x) which is isospectral toV2(x) is

V1~x!52V2~x!12W2~x!. ~44!

It is not difficult to see that theW as given by Eq.~43! does not satisfy the self-isospectr
condition~4! and hence unlike thep5q52 case, thep5q56 potential isnot self-isospectral. In
Fig. 8, we have plotted the potentialsV6(x) corresponding top5q56 for several different values
of the parameterm. The figures confirm that the potentials are far from being self-isospectral.
we have obtained a new exactly solvable periodic potential~44! which has two bound bands an
a continuum band, with five band edges and the corresponding eigenfunctions being e
known using Table VI and Eqs.~12! and ~13!. In Fig. 9, we plot the band edge energies for t
~6,6! potential as a function of the elliptic modulus parameterm.

It is also clear from here that even the higher associated Lame´ potentials withp5q512,
20,..., which have 7, 9,...band edges are also exactly solvable in principle and none of them
self-isospectral, so that in each case one obtains a new exactly solvable periodic poten
particular, forp5q5n(n11) there will be (2n11) band edges in bothV6(x) whose energy
eigenvalues can be obtained from Table III whenq has the form@n22n#@n2(2n11)#. Out of
the (2n11) band edges inV2(x),(n11) solutions~including the ground state! have the form
Fn(sn2 x)/@dnn x# while n solutions have the formFn21(sn2 x)snx cnx/@dnn x#. On the other
hand, as far as the (2n11) solutions of the partner potentialV1 are concerned, there aren states
each of the two forms

snx cnxGn~sn2 x!

dn2n21 xc0
2~x!

,
Gn11~sn2 x!

dn2n21 xc0
2~x!

,

while the ground state~i.e., the lower edge of the lowest band! is given byc0
1(x)51/c0

2(x).
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FIG. 8. The~6, 6! associated Lame´ potentialV2(x) ~the thick line! as given by Eq.~41! and its supersymmetric partne
potentialV1(x) ~the thin line! as given by Eq.~44! for three choices ofm: ~a! 0.5, ~b! 0.9, ~c! 0.998.
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C. a,b 5half-integer

Let us now specialize to the case when botha, b are half-integral witha.b. As an illustra-
tion, let us first consider the case ofa53/2, b51/2 so thatp515/4, q53/4. In this case, the
oscillation theorem requires band edges with periods 2K,4K,4K,2K,2K,... . Using Table III and
Fig. 5, we see one gets three eigenstates whenq5(a22)(a23) with a53/2, all with period 2K.
The ground state is atE059m/4 while there are two degenerate levels atE35E4541m/4. To
understand this degeneracy better, let us go along the parabola of solvability P2 given byq5(a
22)(a23). The band gap is given byD2[u221m12A12m1m2(a21)2u and is plotted in
Fig. 10. It vanishes ata53/2 ~15/4, 3/4! potential, and has the correct valuesD2

52A12m1m2221m for a52 andD252A12m14m2221m for a53, which correspond to
the ~6,0! and ~12,0! Lamé potentials. The vanishing ofD2 at a53/2 occurs because the eige
functions corresponding toE3 andE4 cross over as one goes along the parabola P2.

FIG. 9. Band edge energies for the associated Lame´ potential~6, 6! as a function of the elliptic modulus parameterm. This
figure corresponds to Table VI. The band edges are labeled by the number of wave function nodes in the intervaK(m).

FIG. 10. Energy gapD2[uE42E3u as one moves along the parabola of solvabilityP2 corresponding toq5(a22)
3(a23) andp5a(a11).
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These arguments are easily generalized in casep5(n11/2)(n13/2), q5(k11/2)(k13/2)
with n.k. The energy eigenvalues of (n2k) states can be obtained by using Table III in casq
is of the formq5@n11/22(n2k)#@n11/22(n2k21)# and the corresponding eigenstates ha
period 2K(4K) depending on whether (n2k) is odd ~even!. On the other hand, the energy o
(n1k12) states is obtained whenq is of the form q5@n11/22(n1k12)#@n11/22(n1k
11)# and these states have the same period 2K(4K) as then2k states whenn2k is odd~even!.
It turns out that then2k solutions are in fact common in both and so we only obtain the ene
of the n1k12 band edges and all of them have the same period 2K(4K) depending on whethe
n2k is odd~even!, so that it is only a QES problem and not an exactly solvable problem since
is unable to obtain a single eigenstate with period 4K(2K) in casen2k is odd ~even!.

We would like to point out some of the pecularities of the spectrum in these cases
example, in case (p,q)5(35/4,3/4),(63/4,3/4),(99/4,3/4)... then one finds that several QES e
ergy levels of period 4K,2K,4K,..., respectively, are analytically known of which the two at t
highest energy are doubly degenerate. As an illustration, in Table VII we have given severa
energy eigenstates all of period 2K for the ~63/4, 3/4! potential. The interesting point about th
case is that the partner potentialsV6(x) are not self-isospectral and hence one has discover
new QES potential where several band edges of period 2K and the corresponding eigenfunction
are explicitly known. Of these, the band edges with four nodes are doubly degenerate, aga
to crossover of energy levels. Using the ground state wave function, the superpotential is
puted to be

W5
3m

2

sn~x!cn~x!

dn~x!
2

24m sn~x!cn~x!dn~x!

@12m sn2~x!2225m2A424m125m2#
. ~45!

Using Eqs.~12! and ~13! the eigenstates of the SUSY partner potentialV1 are then determined

VI. COMMENTS AND CONCLUSIONS

In this paper, we have discussed solutions of the type given in Table III, which correspo
the parabolas of solvability shown in Fig. 5. Lame´ potentials~p,0! with p5a(a11) and integera,
always have two parabolas of solvability passing through—one parabola gives all states of
2K and the other gives all states of period 4K. This provides a deeper understanding of why su
Lamépotentials are fully solvable.12 Similarly, we have obtained eigenstates for a large clas
associated Lame´ potentials~p,q!. Further, using the formalism of supersymmetric quantum m
chanics, we have been able to discover many new exactly solvable and quasiexactly s
periodic potentials involving Jacobi elliptic functions. This is a very substantial improvement
the currently known small number of exactly solvable periodic problems.

TABLE VII. Energy eigenvalues and eigenfunctions for the associated
Lamé potential corresponding toa57/2, b51/2 which gives (p,q)

5(63/4,3/4). Here d9[A424m125m2; V2(x)5
63
4 m sn2(x)

1
3
4m cn2(x)/dn2(x) 222 29m/41d9. The last column gives the number

of eigenfunction nodes in one period 2K(m) of the potential.

E dn1/2(x)c (2) Period Nodes

0 @12m sn2(x)2225m2d9#dn2(x) 2K 0
22m1d9 sn(x)cn(x)dn2(x) 2K 2
2d9 @12m sn2(x)2225m1d9#dn2(x) 2K 2
1427m1d9 sn(x)cn(x)@122 sn2(x)# 2K 4
1427m1d9 @128 sn2(x)cn2(x)# 2K 4
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Random Schro¨ dinger operators arising from lattice gauge
fields. I. Existence and examples
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Department of Mathematics, University of Texas, Austin, Texas 78712
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We consider new models of ergodic Schro¨dinger operators whose existence relies
on a cohomological theorem of Feldman and Moore in ergodic theory. These op-
erators generalize the Harper operator which describes the case of a constant mag-
netic field. An example is the case when the magnetic field is given by independent
random variables attached to the lattice plaquettes. A generalization of the
Feldman–Moore theorem by Lind to non-Abelian groups also allows us to consider
Schrödinger operators obtained from non-Abelian lattice gauge fields. The exis-
tence result extends to more general graphs like to operators on tilings and to higher
dimensions. We compute some moment expansions for the density of states. For
example, for independent, identically and uniformly distributed magnetic fields, a
model which has been studied at least since 1970, and whose existence can also be
seen without involving the above-mentioned existence theorem, we show that the
nth moment is the number of closed paths in the two-dimensional lattice starting at
the origin for which the winding number vanishes at each plaquette point. This goes
beyond the Brinkman–Rice self-retracing path approximation. Other examples are
a higher dimensional example, a one-dimensional Anderson model which can be
treated in this framework, as well as the Hofstadter model with constant magnetic
field, where one averages over all possible magnetic fields. We also reprove a result
of Jitomirskaya–Mandelshtam stating that the deterministic Aharonov–Bohm
model is a compact perturbation of the free Laplacian. ©1999 American Institute
of Physics.@S0022-2488~99!03911-0#

I. INTRODUCTION

In this article, we consider a class of ergodic discrete Schro¨dinger operators which we ca
discrete random electromagnetic Laplacians. An example in two dimensions is the bound
godic self-adjoint operatorL5A1A* on l 2(Z2,CN), where

~Au!n5A1~n!un1e1
1A2~n!un1e2

and where the unitary matricesAi(n)PU(N) have the property that the magnetic fields

B~n!5A2~n!* A1~n1e2!* A2~n1e1!A1~n!

on different plaquettes are identically distributed U(N)-valued random variables with lawm ~Fig.
1!.

The question arises: Given a magnetic fieldB determined by an arbitrary stochastic proce
can we findA such thatB5dA? If the B(n) are invariant under translation in one direction, t
answer is no in general: For a measurable circle-valued mapB, there is in general no measurab
circle-valued mapA such thatB5dA5A(T)A21. In a probabilistic or ergodic theoretical setu
nontrivial cohomological constraints appear. Feldman and Moore noticed, however, in Ref.
in dimensionsd52, these constraints are absent. This stays true even if the Abelian group U~1! is

a!Electronic mail: knill@math.utexas.edu
54950022-2488/99/40(11)/5495/16/$15.00 © 1999 American Institute of Physics
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replaced by a non-Abelian group like U(N).2 For Abelian groups, we generalized this theorem
Ref. 3 to higher dimensions. The existence theorem furthermore extends to discrete ergodic
cians on more general graphs like graphs defined by aperiodic tilings.

While in special cases the independent magnetic fields can be obtained directly by ch
the random variablesAi(n) to be independent, this is not true in general. Already in the cas
independent identically distributed magnetic fields, there are counterexamples: independen
tically distributed random variablesAi(n) lead in general to correlations between the magn
field variablesB(n): If, for example,Ai(n) take randomly the two values 1 andeip/4, then two
adjacent plaquettesPn ,Pm cannot have magnetic fieldsB(n)51 andB(m)521. In other words,
vector potentialsA, which give independent identically distributed magnetic fieldsB, are not
independent in general.

There are several motivations to study such operators.
~1! Discrete magnetic Laplacians in two dimensions are tight binding approximations fo

quantum mechanical model of an electron in the plane exposed to an ergodic magnetic fiel
generalizes the Harper operator for which the magnetic field is constant in the plane. Indep
identically distributed magnetic fields are models for which the spectral type4–6 is still unclear.
One of the questions is whether such models have eigenvalues.7 Another problem is to describe
the density of states for which approximations have been known since Ref. 8 and for
numerical investigations9–12 have been done.

~2! Each random operator is an element of aC* algebra (X,tr) which is determined entirely
by the field F. This generalizes the case whenB5F125e2p ia is constant and whereX is the
rotation algebra.13,14 The relatively abstract Feldman–Moore theorem in ergodic theory allow
to so define subalgebras in the crossed products ofL`(X) with a Z2 action which is generated b
two unitariesU,V which have a prescribed commutatorUVU21V21 in L`(X).

~3! In the partition function of one matrix models appears a van der Monde determinant~see,
e.g., Ref. 15!. Using the potential theoretical energyI (L)52** loguE2E8udk(E)dk(E8) of the
density of statesdk of an ergodic Schro¨dinger operatorL one can define an infinite-dimension
van der Monde determinante2I (L). This leads to the variational problemL°e2I (L) which is the
topic of Ref. 16.

We now give an overview over the results of this paper. We first define electromag
Laplacians and observe that the Feldman–Moore–Lind results imply that ergodic magnetic
cians exist. The formalism can be considered as an ergodic version of differential forms. To
F5dA is attached a currentj 5d* F which is divergence-freed* j 50. In two dimensions, not
every current is given by a field. The equivalence classes of currentsj, modulo currents of the
form d* F is the cohomology groupH 1(U), a group with the cardinality of the continuum3

However, in dimensionsd.2, it is again a consequence of the triviality of higher dimensio
cohomology groups that every one-formj is of the form j 5d* F.

In Sec. II, we compute moments of the density of states for independent identically distri
magnetic Laplacians in two dimensions. If the law of the magnetic fieldB is the Haar measure
mHaar on U(1), then the density of states is determined by a random walk inZ2 having the

FIG. 1. The magnetic fieldB5dA at a plaquetten is obtained by integrating upA along the boundaryB(n)
5A2(n)* A1(n1e2)* A2(n1e1)A1(n).
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following global geometrical constraints: thenth moment of the density of states, tr(Ln) is the
number of closed paths inZ2 which have lengthn and give zero winding number to ever
plaquette. The combinatorial problem to compute the moments of the density of states wa
sidered first in Ref. 8, where the approximation was used that the paths should have no loop
is now called the ‘‘Brinkman–Rice approximation.’’ The exact expression which we give in
paper for the number of paths is new and was not mentioned in Ref. 8 or in subsequent wo
the problem that we are aware of. We show also that random magnetic fields with lawmHaar can
be generated by takingmHaar-distributed vector potentials, so that in this special case, Feldm
Moore’s existence theorem is not needed. We notice then that all the spectral properties
operators in the Abelian as well as non-Abelian case depend only on the fieldF5dA and not on
the specific realization of the vector potentialA. The explicit calculation of the moments of th
density of states for independent identically distributed fields leads to an Aubry duality fo
deformed operatorsLl5A11A1* 1l(A21A2* ): the density of states ofLl is related to the density
of states ofL1/l in the same way as for the Harper case.17

Some other examples follow in Sec. III. We review a result of Jitomirskaya
Mandelshtam18 stating that a change of the field on a finite set of cells is a compact perturb
of the operator. A special case is the magnetic Aharonov–Bohm operator with magneticB
PU(1) different from 1 only in one cell. This result stays true for aperiodic lattices like
Penrose lattice. It seems to be unknown, whether the Aharonov–Bohm perturbation from th
operator is trace class. Also the existence result generalizes to other periodic graphs or ap
tilings. We notice for example that to any measurem on U~1!, there exists a measurable vect
potential on a Penrose lattice such that the magnetic fields in the plaquettes are indep
identically distributed U~1!-valued random variables with lawm. Because a Penrose graph is n
a Cayley graph of a group, the more abstract setup of countable ergodic equivalence re
developed in Ref. 1 is needed.

II. NOTATION AND EXISTENCE

We consider first the two-dimensional case. Let (X,F,m) be a probability space. Two com
muting measure-preserving invertible transformationsT1 ,T2 on X define a dynamical system wit
time Z2. Let U be a Polish~5complete separable metrisable! group. Examples are subgroups
Lie groups like the unitary groups U(N) or the special linear group SL(N,C). A two-form Bt12 is
defined by a measurable mapBPU5L(X,U)5$BuX→U,measurable%. Two measurable
U-valued mapsA1 ,A2PU define a one-form or vector potentialA5A1t11A2t2 . Define the
curvature ofA as the two-formdAt12 with

dA~x!5A2
21~x!A1

21~T2x!A2~T1x!A1~x!.

Not every two-formB can be written asB5dA with a one-formA. For example, ifT1 is the
identity map andT25T is ergodic, then not every measurable mapBPU5L(X,U) can be written
asB5A21A(T) with APU because the cohomology group

H 1~U !5U/$APUuB5A21A~T!%

of cocycles modulo coboundaries is nontrivial. We know that this group has the cardinality
continuum.3 The following result of Feldman and Moore1 was extended by Lind2 to non-Abelian
groups. A dynamical system given by a groupTg of automorphisms on (X,F,m) is called free, if
m($Tg(x)5x%).0 impliesg50.

Theorem II.1 „Feldman–Moore–Lind …: Assume that theZ2-dynamical system is free. Let U
be a not necessarily Abelian Polish group. For any magnetic field distribution Bt12 with BPU,
there is a vector potential A5A1t11A2t2 , which satisfies dA5B.

Example. A magnetic fieldB taking values in$1,21% is determined by the measurable setY
5B21(21)5$xuB(x)521%. Feldman–Moore’s result implies that there exist two measura
setsZ1 ,Z2 such that
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Y5Z11T1~Z1!1Z21T2~Z2!,

where1 is the symmetric difference, the addition in the groupF.
Assume now that U is a subgroup of the unitary group U(N) of n3n matrices. Given a

one-formA5A1t11A2t2 , we define a discrete self-adjoint random Schro¨dinger operatorL5A
1A* as follows: For almost allxPX, consider the operatorL(x) on l 2(Z2,CN) given by
(L(x)u)5(A(x)1A(x)* )u, where

~A~x!u!n5A1~x!un1e1
1A2~x!un1e2

and wheree15(1,0),e25(0,1) are the basis vectors inZ2. We callL5A1A* a discrete random
magnetic Laplacian. Such operators are discrete versions of the continuous operatorsL5(¹
2 iA)2 ~see, e.g., Ref. 5!. We also call them ‘‘random magnetic Laplacians’’ ifU5U(1) or
‘‘random Yang–Mills Laplacians’’ ifU5U(N). Associated withL is a one-parameter family o
operatorsL5A11A1* 1l(A21A2* ), lPR in which we will mainly concentrate on the casel51.
The field of a random LaplacianL5A1A* is defined for d>2 as Fi j 5dAi j

5Aj
21Ai(Tj )

21Aj (Ti)Ai . If U5U(1), one says that the magnetic field B
5A2

21A1(T2)21A2(T1)A1 has the magnetic flux arg(B). The phases ofL are the functions
arg(Ai).

The operatorL is not uniquely defined by the fieldB. With a zero-formCPU, the gauge
transformed operatorCLC21 is also a discrete random Laplacian with the same magnetic fieB
but the gauge potentialA has changed toCAC* t5( i CiAiCi(Ti)* t i . The choice of the gauge i
not the only source of nonuniqueness. The nontrivial nonuniqueness is measured by the
space of flat fields$(A1 ,A2)udA50%/$A5dC% which is for AbelianU as a group isomorphic to
the first cohomology groupH 1(U).

The above-mentioned definitions generalize to the higher dimensional case. Taked automor-
phismsT1 , . . . ,Td on a probability space (X,F,m). A one-form A5( i 51

d Ait i is given by d
functionsAiPU5L(X,U(N)) and defines a field

dA5F5(
i , j

Fi j t i j ,

where Fi j 5AiAj (Ti)Aj (Ti)
21Aj

21 . This gives random self-adjoint operatorL5A1A* where
eachL(x) acts on the Hilbert spacel 2(Zd,CN) by

~L~x!u!5(
i 51

d

Ai~x!u1Ai* u.

Theorem II.2 „Triviality of cohomology groups in higher dimensions…: If U is Abelian and
Zd acts freely, then dF50 implies that there exists A such that dA5F.

The proof of this theorem which was included in Ref. 19 is now the subject of a sep
article.3 We call a random operatorL5A1A* determined byF a random discrete electromagnet
Laplacian with fieldF. Examples are given in the following.

~1! A Harper operator is obtained when the fieldB takes a constant value in U(N). Diago-
nalization reduces all questions to the caseN51. For reviews see Refs. 20–22.

~2! An example of a quasiperiodic magnetic Laplacian is defined by the dynamical sy
(U(1),T1 : u°u1a,T2 : u°u1b,du) and the magnetic fieldB(n)(u)5exp(i(u1n1a
1n2b))PU(1). The spectrum of the Laplacian is determined by the two real numbersa,b.
Non-Abelian versions, whereTi are translations on the unitary group U(N) are defined similarly.
Note however that the vector potential (A1 ,A2) is only measurable and we cannot expect it to
almost periodic.
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~3! An example of a limit periodic magnetic field isB(n)5( j 50
` bj cos(2p(n12

2j1n23
2j))

with ( j ubj u,`. As in the previous example, the operatorL is not limit periodic and only the
physically relevant fieldB is.

~4! Given a probability measurem on U~1! and independent, identically distributed rando
variablesB(n), nPZ2 with law m. Even soB(n) are independent, the vector potentialA is in
general not given by independent identically distributed random variables.

~5! An example of an aperiodic, strictly ergodic field taking only finitely many values
B(n)5122•1[0,g)(u1n1a1n2b)P$21,1%, whereg,a,b are rationally independent.

~6! In all these examples, one obtains one-parameter families of deformed operatorsL5A1

1A1* 1l(A21A2* ) with lPR. In the stationary independent magnetic field case the almost
spectral properties ofL depend only onl and the fieldB5dA.

Higher dimensional cohomology groups23–25 are defined as follows~see Refs. 23–25!.
Let I 5$1, . . . ,d% and letIp be the set of setsJ5$ j 1, j 2, . . . , j p%,I . Let C p be the set of

mapsA:Ip→U which becomes a group by pointwise addition. Extend this map to the set o
p-tuplesJ5( j 1 , j 2 . . . ,j p) with j kPI by requiringAp(J)5sign(p)AJ for any permutationp of J.
We write A5(J AJtJ . Definedp :C p→C p11 by

dpA5(
i ,J

~AJ~Ti !2AJ!t iJ .

The kernel ofdp contains cocycles of degreep, whereas the image ofdp21 consists of cobound-
aries of degreep. Because forA5(J AJtJ ,

dp+dp21A5(
i , j ,J

@AJ~TiTj !2AJ~Ti !2AJ~Tj !1AJ#t i jJ

is both symmetric and antisymmetric ini , j , it must vanish anddp+dp2150 gives rise to geomet
ric cohomology groupsH geom

p (G,U)5ker(dp)/ im(dp21).
Cohomology of currents. Given a Zd action on the groupU5L(X,U). A one-form A

5( i Ait iPC 1 defines an electromagnetic fieldF5dAPC 2 and so a currentj 5d* F5* d* F
PC 1, where an asterisk~* ! is the Hodge operation* :C n→C d2n,AI°(21)n(d2n)AI* , whereI *
5$1, . . . ,n%\I %. A current is defined even if the groupU is non-Abelian.

Proposition II.3: Assume N>1,d52 or N51,d>2. Every current d* F5 j is divergence free:
d* j 50.

Proof: If d52, the Hodge involution for one-forms is given byA1t11A2t2

5(A1 ,A2)°(A2 ,A1
21). The divergence ofj is given by

d* j 5* d* ~ j 1 , j 2!5~* d!~ j 2 , j 1* !5 j 1 j 2~T2!* j 1* ~T1! j 2 .

If we plug in j 5( j 1 , j 2)5d* F5(F* F(T2),F(T1)* F), we get

d* j 5F* F~T2!F~T2!* F~T1T2!F~T2T1!* F~T1!F~T1!* F51.

In the Abelian case,d* j 50 follows in any dimension fromd* d* 50. h

One can ask whether every currentj which is divergence freed* j 50 does come from a field
F satisfyingd* F5 j ~Fig. 2!. The answer is ‘‘no’’ in two dimensions and ‘‘yes’’ in dimension
three or higher. There are uncountably many equivalence classes of currents in two dime
because of the following Proposition.

Proposition II.4: Assume d52, let U be a Polish group and let G be a freeZ2 action. The
moduli space of all divergence free currents j modulo currents j coming from fields j5d* F is
isomorphic to the first cohomology groupH 1(U). On the other hand, for d>3 and Abelian U,
every divergence free current j is of the form d* F.
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Proof: Assume firstd52. j is a cocycle if j 2 j 1* (T1)5 j 1* j 2(T2) and a coboundary if there
exists a solutionF of j 15F(T2)F* , j 25FF(T1)* . If j is a cocycle, then the Hodge dualj̃

5* j satisfies a zero curvature equation. Also,d* F5 j if and only if j̃ is a gradientd(* F)5 j̃ . The
moduli space of zero curvature fields modulo gradient fields isH 1(U).

Assume nowd>3 and thatU is Abelian. Given the one-formj, define the (d21)-form j̃

5* j . SinceH d21(U) is trivial for d>3, there exists a (d22)-form F̃ satisfyingdF̃5 j̃ . Let F

5* F̃. Thend* F5 j . h

Question. We do not know whether in dimensionsd>3, every currentj can be written asd* F
with a field F satisfying additionallydF50. If this were true andF were unique, an interesting
class of higher dimensional operatorsL5A1A* were defined by taking independent identica
distributed random variablesj and takingA satisfyingd* dA5 j .

III. GENERAL REMARKS ON THE SPECTRUM

If U is a subgroup of the unitary group U(N), the LaplacianL is an element of a von
Neumann algebraX which is the crossed product ofA5L`(X,M (N,C)) with the Zd-action
generated by automorphismsf ° f (Tn), where f (Tn)(x)5 f (Tnx). The algebraX is obtained by
completing the algebra of all polynomials in the variablest1 , . . . ,td with coefficients inA,

K5 (
nPF,Zd

Kntn, ~KL !n5 (
l 1m5n

KlLm~Tl !tn

with respect to the normuuuKuuu5u uuK(x)uu u` . Here,K(x) is the bounded linear operator o
l 2(Zd,CN) defined by (K(x)u)(n)5(m Km(x)u(n1m) and uu•uu is the operator norm on
B( l 2(Zd)) and u•u` the essential supremum norm. The involution inX is ((n Kntn)*
5(n Kn* (T2n)t2n and thetrace is tr(K)5*X Tr(L0(x))dm(x), where Tr denotes the usual trac
on the finite dimensional matrix algebraM (N,C). This construction of Murray and von Neuman
works in the same way, whenZd is replaced by a more general discrete group.

For any self-adjointLPX, and if f is a continuous, bounded function onR, the element
f (L)PX is defined through the functional calculus. The functionalf °tr( f (L)) on C(R) defines
a measure onR, called the density of states ofL. If the Z2 action is ergodic, then the spectrum
L(x) is constant almost everywhere and coincides with the support of the density of states

The magnetic field does not determineL because of gauge ambiguity. However, all t
information about the spectrum is determined fromB only:

Proposition III.1: Assume N>1,d52 or N51,d>2. Given two one-forms A,Ã which satisfy

dÃ5dA5B. Define L5A1A* ,L̃5Ã1Ã* . There exists for every x a unitary operatorU(x) on

l 2(Zd,CN) such thatU* (x)L(x)U(x)5L̃. Especially, the density of states, the (in the ergo
case almost everywhere constant) spectral types and the spectrum depend only on the fie.

Proof: We consider first a setup, where measurability is discarded. LetU5U(N)Z2
be the set

of possible fieldsn°B(n). For everyBPU, we can find a bounded self-adjoint operatorL5A
1A* on l 2(Z2,CN) which has the fieldB5dA. The special gaugeA2(n,m)5A1(0,m)51 for

FIG. 2. Illustration of the current of a not necessarily Abelian Aharonov–Bohm field, where the fieldF is constant
different from 1 on one plaquette only.
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n,mPZ, determinesA and makesL5LB unique. ForN51, a canonical gauge can also be defin
for d>2: let Ei,Zd be the vector space spanned by (e1 ,e2 , . . . ,ei). PutAi51 onE1 , then on all
lines orthogonal toE1 in E2 and inductively on all lines orthogonal toEj in Ej 11 . This determines
A as can be seen by induction: first constructA on E2 then on edges orthogonal toE2 in E3 , etc.,
always usingdA5B. The conditiondB50 assures that the definition is consistent. The m
B°LB is continuous ifU has the product topology andB( l 2(Zd)) has the strong operator topo
ogy. However a change of the magnetic field of one single plaquette changesLB globally.

Take the diagonal operatorUn,m5G(n)dn,m , whereḠ(n)Ai(n)G(n2ei)5Ãi . This function
n°G(n) exists since any vector potential can be gauged to the canonical gauge.

For ergodic operatorsL, the density of states ofL and L̃ exists. We do not need the measu
ability of the conjugating operator U(x) to get Ln(x)005L̃n(x)00. It follows that tr(Ln)
5*X Tr(Ln(x)00)dm(x)5*X Tr(L̃n(x)00)dm(x)5tr(L̃n).

Similarly, (f,Ln(x),f)5(U(x)f,L̃n(x),U(x)f) for every fP l 2(Zd,CN), so that also the
spectral types are the same. h

Remark:The mapx°U(x) is not measurable in general. Examples withT15Id show this. In
other words, while the operatorsL(x) andL̃(x) are conjugated inB( l 2(Zd,CN)), the conjugation
is in general not possible in the algebraX.

Corollary III.2: Given a sequence of operators L(n)5A(n)1(A(n))* and an operator L5A
1A* defined over the sameZd action. Assume that the fields B(n)5dA(n) converge to B5dA in
L`(X,U)d. If there exists an interval I,R such thats(L (n))ùI 5B,;nPN then alsos(L)ùI
5B.

Proof: In the canonical gauge, the operators converge pointwise in the strong operator
ogy and so in the resolvent sense. The claim follows from general principles~Ref. 26 Theorem
VIII.24!. h

IV. INDEPENDENT IDENTICALLY DISTRIBUTED MAGNETIC FIELDS

We concentrate in this paragraph on the case of magnetic Laplacians, where the m
fields $B(n)%nPZ2 are independent, identically distributed U~1!-valued random variablesB with
law m. This means that the probability thatB takes a value in some intervalI ,T is m(I ). Denote
by m̂n5*U(1) zn dm the nth moment ofm. The sequence$m̂%n is the Fourier transform of the
measurem. Denote byGn the set of oriented closed paths inZ2 of lengthn. Let n(g,P) be the
winding number of the pathg with respect to the plaquetteP. The moments of the density of state
can be computed with a random walk expansion as it is used in statistical physics~see, e.g., Ref.
27!.

Proposition IV.1: Letm be a Borel measure on the circleU(1). The nth moment of the density
of statestr(Ln) of an independent identically distributed magnetic Laplacian with lawm is

(
gPGn

)
P

S E
U(1)

zn(g,P) dm~z! D 5 (
gPGn

)
P

m̂n(g,P) .

Proof: GivenA satisfyingdA5B. Write *g A for the product of theAi along the pathg. The
pathg encloses a regionV(g) which is a collection$P% of plaquettes. We use the discrete Gre
formula *g A5)PBn(g,P) to compute

tr~Ln!5 (
gPGn

E
X
E

g
A~x! dm~x!

5 (
gPGn

E
X
)
P

BP~x!n(g,P) dm~x!

5 (
gPGn

)
P

E
X
BP~x!n(g,P) dm~x!
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5 (
gPGn

)
P

S E
U(1)

zn(g,P) dm~z! D .

In this calculation, we used that the expectation of a product of independent random varia
the product of the expectation and thatXn is independent ofYn if X is independent ofY. h

Remarks:~1! The random walk expansion breaks down if the group U~1! is replaced by a
non-Abelian group U. While it is then still true that tr(Ln)5(gPGn

*X *g A(x) dm(x), where
*g A(x) is an ordered product, the Green formula*g A5)PBn(g,P) no longer makes sense.

~2! The moments of the spectral measures of the unit vectorsdk , kPZ2 can also be computed
with a random walk expansion (dk ,Ln(x)dk)5(gPGn

)gA(Tkx)5(gPGn
)PBP(Tkx)n(g,P).

~3! It follows from Proposition IV.1 that the density of statesdk depends continuously on th
law m.

Also for the deformed operatorsLl5A11A1* 1l(A21A2* ), there is a similar formula for the
density of states. Lety(g)P2N be the number of steps a path makes in they direction.

Corollary IV.2 (Aubry duality): The moments of the density of states of Ll depend only onm
and l:

tr~Ll
n!5 (

gPGn

ly(g))
P

m̂n(g,P) .

Furthermore, the duality dk(m,l,E)5dk(m,1/l,E/l) holds.
Proof: The random walk expansion is proven in the same way as in Proposition IV.

follows thatLl
(1)5A11A1* 1l(A21A2* ) and thatLl

(2)5l(A11A1* )1A21A2* have the same den
sity of states. The duality follows fromLl

(1)/l5L1/l
(2) . h

It follows that the ‘‘Lyapunov exponent’’l(m,l,E)ª* loguE2E8udk(m,l,E8) satisfies
l(m,l,E)> log(l/2).

Remark:If m is the Haar measure and$A1(n),A2(n)%nPZ2 are independent Haar distribute
random variables, the duality is stronger: The obvious symmetryA1↔A2 implies that the opera-
tors Ll

(1)5A11A1* 1l(A21A2* ) andLl
(2)5l(A11A1* )1A21A2* are isospectral. Especially,Ll

andlL1/l are isospectral.
The formula for the moments of the density of states becomes especially simple ifm is the

Haar measure onT.
Corollary IV.3: Let m be the Haar measure onU(1). Then tr(Ln) is the number of closed

paths of length n starting at0PZ2 for which every plaquette has zero winding number.

FIG. 3. A noncontractible path in the two-dimensional lattice which gives zero winding number to all plaquettes.
paths are neglected in the Brinkman–Rice ‘‘self-retracting path approximation.’’
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Proof: In this case,m̂k5dk,0 ,;kPZ. This implies)P(*U(1) zn(g,P) dm(z))50 if there exists
a plaquetteP for which the pathg has positive winding numbern(g,P). If the winding number
is zero for allP, then)P(*U(1) 1 dm(z))51. h

Remarks:~1! The number of closed pathsg of lengthn in Z2 for which n(g,P)50 for all
plaquettesP is in general strictly larger than the number of closed contractible paths of lengn.
A path can visit different plaquettes at different times without being contractible. See Fig. 3

The additional paths not treated in the Brinkman–Rice approximation are so numerou
the radius of convergence for the Green function changes. Random walks with the st
topological constraint of being contractible were investigated in Ref. 28.

~2! For the deformed operatorL5A11A1* 1l(A21A2* ) with independent Haar distribute
functionsAi , we get

tr~Ln!5 (
gPGn

(0)
ly(g),

whereGn
(0) is the set of paths inGn which give zero winding number to every plaquette andy(g)

is the number of steps the pathg makes in they direction.
Corollary IV.4: Let m be the Haar measure on a finite cyclic subgroupZp of U(1). Then

tr(Ln) is the number of closed paths of length n beginning at0PZ2 for which the winding
numbers satisfy n(g,P)50(modp) for all plaquettes P.

Proof: )P(*U(1) zn(g,P) dm(z))50, if there exists a plaquetteP which has a winding numbe
n(g,P) which is not zero modulop. h

Remarks:~1! The independence of the magnetic fields is essential in Proposition IV.1 an
Corollaries. Independent vector potentials would not be enough in general.

~2! The random walk expansion in Proposition IV.1 shows that tr(Ln) is a polynomial in the
infinite set of variablesm̂k ,m̂k

21 with integer coefficients.
Let us illustrate the random walk expansion in the almost Mathieu–Harper case, wherem is a

point measure so that the magnetic field is constant:
Corollary IV.5: If m is the Dirac measure on e2p iaPU(1), then

tr~Ln!5 (
gPGn

)
P

e2p ian(g,P).

(Especially, ifm is the Dirac measure on1PU(1), thentr(Ln)5((2n)!) 2(n!) 22 is the number of
closed paths of length n beginning at0PZ2.! For the Harper magnetic Laplacian L5A11A1*
1l(A21A2* ),

tr~Ln!5 (
gPGn

ly(g))
P

e2p ian(g,P),

where y(g)P2N is the number of steps ofg in the ydirection.
For another illustration, letL be the Harper operator over the~nonergodic! integrable ‘‘twist

map’’ T:(x,y)°(x1y,y) on the two-dimensional torusT2 with invariant Lebesgue measure. W
consider the potentialV(x,y)52 cos(x). Call the random~now nonergodic! operator the ‘‘Hofs-
tadter operator.’’ The density of states has zero Lebesgue measure.29 The following illustration
should be compared with the case of a random magnetic field:

Corollary IV.6: If L is the Hofstadter operator, thentr(Ln) is the number of closed paths o
length n beginning at0PZ2 for which the sum of all winding numbers(P n(g,P) over all
plaquettes P vanishes.

Proof: *T exp((P2piyn(g,P))dy51 if and only if (Pn(g,P)50. h

Remarks:~1! Random walk expansions would work on any planar graph generalizingZ2 ~see
also Sec. VI!. A solvable case is the Bethe latticeB2h with degree 2h, where Kesten determine
the number of closed paths of lengthn.30 His calculation leads to tr(L2E)215(2h21)/(E(h
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21)1hAE224(2h21)). Theimaginary part of this divided byp is the density of states which
has support on@22A2h21,2A2h21#. ~For a modern calculation see Ref. 31!. Since there are no
closed loops on the Bethe lattice, there is no magnetic field and the density of states
magnetic Laplacian on the Bethe lattice is the same.

~2! Corollary IV.5 shows that tr(L4)5814(m̂01m̂0
21), so that discrete random magnet

Laplacians with different values of Re(m̂0) have different density of states. Especially, almo
Mathieu operators with different cos(a) cannot be isospectral~see also Ref. 32!.

~3! By changing the orientation of the plaquettes, it becomes obvious that the lawsm and
m̄(A)5m(Ā) give isospectral Laplacians.

In some cases, the theorem of Feldman–Moore is not needed for constructing the Lap
Proposition IV.7: Let U be a compact subgroup ofU(1). If the law m of the independen

identically distributed U-valued random variables$Ai(n)%nPZ,i 51,2 of the vector potential A1t1

1A2t2 is the Haar measure on U, then B(n)5dA(n) are independent identically distribute
U-valued random variables with lawm.

Proof: Given measurable subsetsYn,U, nPZ2 of positive measure, defineZn

5B(n)21(Yn),X5U (Z2). Let m5m (Z2) be the product measure onX. The claim is that

m~ ù
nPF

Zn!5m~Zk!•m~ ù
nPF\$k%

Zn! ~1!

for any finite setF,Z2 and that the law ofB(n) is the Haar measurem.
~i! m(Zn)5m(Yn), for all nPZ2.
Proof: A product of Haar distributedU-valued random variables is again Haar distribut

because it must beU invariant. It follows that the law ofB(n)5A2* (n)A1* (n11)A2(n
11)A1(n) is the Haar measurem and thereforem(Zn)5m(Yn).

~ii ! For any finite setF of sets$Yn%nPF,U with m(Yn).0, one hasm(ùnPFB(n)21(Yn))
.0.

Proof: We can realize one element inùnPFB(n)21(Yn) using the canonical gauge. The
exists then an open neighborhood of this point inU (Z2) which is in ùnPFB(n)21(Yn). An open
set has positive measure.

~iii ! For kPF, the measurem̃(Yk)5m(B(k)21(Yk)uùnPF\$k%Zn) is equal tom(Yk)5m(Zk)
5m(B(k)21(Yk)).

Proof: By the uniqueness of the Haar measure, we have only to show thatm̃ is translational
invariant. By multiplyingA1(k1 l •ei),l 51, . . . ,uFu with some constantC5e2paPU, we change
the field B(k)°B(k)C without affecting $B(n)%nPF\$k% . Thereforem̃(Yk)5m̃(Yk1a) and m̃
5m.

Proof of the claim. By~ii !, Eq. ~1! can be written as

m~Zku ù
nPF\$k%

Zn!5m~Zk!.

The left-hand side of this is by~iii ! equal tom̃(Yk)5m(Yk) and the right-hand side is by~i! also
equal tom(Yk). h

Remarks:~1! There are other ways to get independent magnetic fields, ifm is the Haar
measure: DefineA2(n)51 for all nPZ2 and a family$A1(n)%nPZ2 of independent Haar distrib
uted random variables. An argument similar to the proof of Proposition IV.7 shows that$dA(n)
5B(n)%nPZ2 are independent Haar distributed random variables.

~2! We do not know whether a generalization of Proposition IV.7 holds whenU is non-
Abelian.

~3! In dimensionsd.2, there is no hope to get a result analogous to Proposition IV.7, bec
there are then more plaquettes than bonds so that a single bond influences several plaque
prevents independent, identically distributed fields.
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~4! Another open question is whether one has some or even pure point spectrum
everywhere in the case of magnetic Laplacians with Haar distributed magnetic vector pote
One would at least expect to have pure point spectrum forLl with l large or small enough. Fo
numerical calculations see Ref. 7.

~5! Proposition IV.7 shows that for those specific operators, there is more symmetry as
Mathieu case. Aubry-duality goes deeper: the operatorsLl andL1/l have the same spectral typ
because a multiplication ofLl with 1/l givesL1/l .

V. OTHER EXAMPLES

A. Laplacians in higher dimensions

We turn now to independent identically distributed magnetic Laplacians in higher dimens
We restrict the discussion to the cased53. As indicated already, we cannot realize independ
identically distributed electromagnetic fieldsF by a vector potential, since such fields do n
satisfy the Maxwell equationdF50, which is required ifF5dA. Consider now time-dependen
magnetic fields in the plane together with an electric field changing in time. Given a v
potentialA5(A1 ,A2 ,A3)PC 1, we think ofA1 as the electrostatic potential and of (A2 ,A3) as the
magnetic vector potential. ThendA5F is a three-dimensional field.E15F12 andE25F13 are the
coordinates of an ‘‘electric’’ vector field in the plane andB5F23 is a ‘‘magnetic’’ field in the
plane. For fixedkPZ, denote byL (k) the magnetic Laplacian in the plane, given by the vec
potential (n,m)°(A2(k,n,m),A3(k,n,m)). The operatorL (k) is a two-dimensional magnetic La
placian at timek.

The existence theorem in Ref. 3 assures that a fieldF satisfyingdF50 defines an electro
magnetic LaplacianL determined by a one-formA satisfyingF5dA. By prescribing the electric
fields E1 ,E2 and the magnetic fieldB(k0) at some timek0 , the Maxwell equationdF50 deter-
mines the whole fieldF.

The next proposition which follows from the central limit theorem for circle-valued rand
variables, emphases why IID magnetic distributed operators with Haar distribution are natu

Proposition V.1: Let F be determined by the electric fields and the magnetic field at som
k0 . Assume that the electric fields$E1(n),E2(n)%nPZ3 are independent identically distribute
random variables with the same distributionm which is not a Haar distribution of a subgroup o
U~1!. Let B(k0 ,n), nPZ2 be any set of random variables. Then the distribution of the magn
field of the two-dimensional operators L(k) converges in law to the uniform Haar distribution o
U~1! for uku→`.

Proof: The Maxwell equation dF50 ~which follows fromF5dA), implies that

B(k11)~n!* 5B(k)~n!E1
(k)~n1e1!E1

(k)~n!* E2
(k)~n!E2

(k)~n1e1!* .

The proof of Proposition IV.7 shows that the random variables

$C~n!5E2
(k0)

~n1e2!* E2
(k0)

~n!E1
(k0)

~n!* E1
(k0)

~n1e1!%nPZ2

are all independent so that also$B(k06 l )(n)%nPZ2 is obtained from$B(k)(n)%nPZ2 by multiplying
it with independent identically distributed random variables. The claim follows now from
central limit theorem for independent identically distributed U~1!-valued random variables.33

~On compact topological groups, the Haar measure plays the role of the Gaussian measurR!
~Fig. 4!. h

Proposition V.1 has the following interpretation: a time-dependent random electric
@which might be arbitrarily small but which does not take values in a subgroup of U(1)] turns an
initially arbitrary magnetic field for timeuku→` into an independent identically distributed Ha
distributed magnetic field.
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B. One-dimensional operators

Take an electromagnetic LaplacianL5A1A* in d dimensions, where the electromagne
field dA5F has only electric componentsF1k(n)5Ek(n) which are constant in space (Zd5Z
% Zd215space%time ) and depend therefore only on the first~5time! coordinaten5n1 . The
restriction ofL to the invariant Hilbert space of functions which are constant in space giv
one-dimensional operator (Hu)n5un111un211V(n)un , where

V~n!5 (
k51

d

Ek~n!1Ek~n!* 5 (
k51

d

2 cos~arg~Ek~n!!!.

Every one-dimensional operator can be written like this. The number of dimensions whic
needed depends on the norm. SincedF50, Feldman–Moore’s existence theorem shows thatV
is an ergodic potential, then the equationF5dA can be solved with a measurable vector poten
A leading to an ergodic electromagnetic Laplacian. The one-dimensional pot
(k51

d 2 cos(arg(Ek(n))) is ergodic, ifT1 was ergodic.
Some Anderson models can be treated as random magnetic Laplacians and allow a co

torial calculation of the density of states: given independent identically distributed random
ables V(n) nPZd with law m, define the B( l 2(Zd))-valued random variable (Lu)n

5( um2nu51 um1V(n)un which is an Anderson model. By adding to each vertex ofZd an oriented
loop, one obtains a new latticeLd. Denote byGn the set of pathsg in Ld which have lengthn.
~Each loop has length 1 and we distinguish paths which pass in different directions throu
loop! ~Fig. 5!.

Corollary V.2: (a) Given the discrete d-dimensional Anderson Schro¨dinger operator with
independent identically distributed potential V(n)52 cos(a(n)), wherea(n) are uniformly dis-
tributed in @0,2p#. The n8th moment of the density of states is the number of closed path
length n inLd, for which every loop has vanishing winding number.

(b) If V(n)562, where V(n) are uniformly distributed in$0,2%, the n8th moment of the
density of states is the number of closed paths of length nin Ld for which every loop has an eve
winding number.

FIG. 4. The Maxwell equation dF50 determines the magnetic fieldB(k11)(n)* 5B(k)(n)E1
(k)(n

1e1)E1
(k)(n)* E2

(k)(n)E2
(k)(n1e1)* at time (k11) from the magnetic fieldB(k) and the electric field (E1

(k) ,E2
(k)) at timek.

FIG. 5. The graphL in the cased51. At each vertex is attached an oriented loop.
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Proof: Write L5A1A* as a (d11)-dimensional magnetic Laplacian, whereAi51,i
51, . . . ,d andAd11(n)5exp(ia(n)) are independent identically distributed U~1!-valued random
variables with uniform Haar distributionm. This is equivalent to taking real-valued random va
ablesa(n) with uniform distribution on@0,1# and to form the independent identically distribute
potential V(n)52 cos(2pa(n)) which has an absolutely continuous law 4(2p)21A12x2. As
before, we compute with the random walk expansion

tr~Ln!5 (
gPGn

)
P

m̂n(g,P) .

Since all nonzero moments ofn are zero, tr(Ln) is the number of closed paths in the latticeLd

which give in case~a! zero and in case~b! zero (mod 2) winding number to every loop. h

Remark: Relations between two- and one-dimensional operators are prototyped b
Harper–Mathieu caseA15t, A25e2p ia which give the one-dimensional operatort1t*
12 cos(2pa). For more examples with constant magnetic field, see Ref. 34. Other, not con
magnetic fields can be obtained as follows: letA1t15t be the unitary Koopman operator for
transformationT on a probability spaceV and let A2(x)5e2p f (x), where f is a su(N)-valued
random variable. ThenUV5VUe2p i ( f (Tx)2 f (x)) and we get a one-dimensional operatorL5t
1t* 12 cos(f(x)) on l 2(Z,CN).

C. Deterministic Aharonov–Bohm Laplacians

It is illustrative to see what deterministic perturbations of the magnetic field does on
operator. We denote byLF the d-dimensional Laplacian with fieldF in the special gauge.

Proposition V.3 (Jitomirskaya–Mandelshtam Ref. 18): Assume U is Abelian. A change o

PUZd
on a finite set of plaquettes leads to a compact perturbation LF of the free Laplacian L1 .

Proof: Assume firstd52. If B is multiplied by CPUZ2
such thatCnÞ1 only for finitely

manyn and)nCn51, we callB̃5BC a zero flux perturbation of 1. It is enough to show the cla
for a perturbation of the fieldB of one single plaquette. By construction, ifB̃ is a zero flux
perturbation ofB, thenLB̃ is a finite rank perturbation ofLB .

Let L5LB be the original operator and letL̃5LB̃ be the operator belonging toB̃ satisfying
B̃(n)5B(n) for all nPZ2 except onen0 , whereB̃(n0)5B(n0)C with C5eiaPU. Define for
eachkPN a zero flux perturbationBk of B by changingB̃ on k2 plaquettes in a box of sizek
3k to B̃kCk

21 with Ck5e2 ia/n2
. Then, LBk

→LB̃ in norm so thatLB̃ is a limit of finite rank
operatorsLBk

.
For generald, we can build any perturbation by composing finitely many perturbations ly

in two-dimensional planes and for which the previous argument applies. h

Remarks:~1! The Aharonov–Bohm operator@the situation when the fieldB(n) is different
from 1 exactly at one plaquette# shows that one has never a finite rank perturbationLB°LB̃ , if
BB̃21 has compact support and nonzero flux. It would be interesting to know if the Aharon
Bohm operator is a trace class perturbation of the free Laplacian.

~2! There is the following formula for the Fourier transform of the spectral measuredkl

5dkel
, whereel(n)5d ln is a unit vector inl 2(Z2):

dkl
ˆ

n5 (
gPGn

Bn(g),

wheren(g) is the winding number of the path with respect to a point in the plaquette, whereB is
different from 1.

~3! A similar argument shows that the Jitomirskaya–Mandelstam result is also true for
aperiodic tilings like the Penrose tiling.
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~4! Beside the Abelian or non-Abelian Aharonov–Bohm operators~for which a complete
spectral analysis is not yet done!, other deterministic operators would be interesting to study.
example is a discrete version of the Iwatsuka operatorL in d52 ~see Ref. 5!, where the magnetic
field B is translational invariant in one direction and asymptotically constant in the other direc
Then, L is a direct product of one-dimensional operators (Lu)n5un111un211cos(na(n))u(n),
wherea(n)→a6 for constantsa6. If a2 or a1 is rational, then alsoL has some absolutely
continuous spectrum. If botha6 are irrational, Last’s results29 allow us to prove thatL has no
absolutely continuous spectrum. This is different from the continuous case, where the corre
ing operator has purely absolutely continuous spectrum.

VI. MAGNETIC LAPLACIANS ON TILINGS AND OTHER LATTICES

A. Magnetic Laplacians on the triangular lattice

The triangular lattice is the Cayley graph of the groupG5Z2 with the three generator
e1 ,e2 ,e11e2 . A situation with two different fluxes has been considered in Ref. 35~see also Ref.
14!. A magnetic field is a cocycle which assigns to each triangleD(g1 ,g2 ,g3), giPZ2 a group
element inU. This cocycle is determined by the value ofBd(n) on D(n,n1e1 ,n1e2) andBu(n)
on D(n1e1 ,n1e11e2 ,n1e2) for eachnPZ2. The two measurable mapsBd ,BuPL`(X,U) and
an ergodicZ2 action so determine the magnetic field.

Proposition VI.1: Every stationaryU(N)-valued field B on a triangular lattice inZ2 is given
by a vector potential A so that B5dA. The spectral properties of L depend only on B. If
$B(n)%nPZ2 are independent identically distributed random variables with Haar distribution
U5U(1), then tr(Ln) is the number of closed paths in the triangular lattice which give z
winding number to all triangles.

Proof: In order to get the vector potentialA, we formB(x)5Bu(x)Bd(x), which is the field
on the quadratic plaquetteP(x). Feldman–Moore–Lind’s theorem gives the existence of the
two coordinates (A1 ,A2) of the vector potential. We define thenA3 throughA3A2(T1)A15Bd .

In the Abelian case, a second proof is obtained directly from the algebraic group cohom
for the groupG5Z2 acting onU5L(X,U): the magnetic fieldB with law m is an algebraic
2-cocycle. Since the second cohomology group is trivial, it is of the formdA, where A is a
one-form.

For AbelianU, the random walk expansion is done in the same way as for the square l
by puttingA2 identically zero.

In order to see that all the spectral properties depend only on the fieldB, we take the same
special gauge as in the square lattice case. h

Remarks:~1! Discrete magnetic Laplacians on more general graphs with uniform mag
field with values in U~1! have been considered by Sunada.36

~2! If the graph G is the Cayley graph of an infinite Abelian group with finitely man
generators andU,U(1), the magnetic Laplacians are elements in a hyperfinite von Neum
algebraX. The second group cohomology vanishes and every algebraic cocycleB is of the form
B5dA.

B. Magnetic Laplacians on aperiodic tilings

Aperiodic tilings inR2 define a plane graph and one can ask if it is possible to assign to
edges of the graph U~1! random variables in such a way that the magnetic fields in the piece
the tiling are independent identically distributed U~1!-valued random variables. For simplicity, w
consider only the case of the Penrose tiling with plaquettes built by Robinson triangles. Th
when the plaquettes are Penrose rhombs can be reduced to that by multiplying the field va
the triangles building the rhomb.

Proposition VI.2: Given a measurable U5U(1)-valued field distribution B on the Penros
lattice. There exists a vector potential A such that dA5B.

For a proof see Ref. 3. One can deduce from this:
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Corollary VI.3: Given an independent identically distributedU~1!-valued field B on the Rob
inson triangles of a Penrose tiling. There exists a measurable vector potential A on the ed
the Penrose graph such that dA5B.

Remarks:~1! For more general tilings, where all pieces of the tiling are composed of the s
numberk of triangles~which is the case in the Penrose tiling where each Penrose rhomb is a
of two Robinson triangles! we can also realize independent identically distributed magnetic
configurations, where the lawm5n%•••%n is the kth convolution of a measuren. This is for
example the case ifm is the Haar measure on a closed subgroup of U(1).

~2! The existence of the density of states of a magnetic LaplacianL on the tiling follows from
the factL in a finite type von Neumann algebra. Hof37 has given a direct proof of the existence a
proven that the density of states and spectrum is constant on the space of tilings.

~3! For independent identically distributed magnetic fields with Haar measure of U(1), we get
that tr(Ln) is the number of closed paths in the tiling graph such that the winding number is
for each tile. The computation of the density of states is already nontrivial for the free Lapl
with zero magnetic field. There are some numerical results about the random walk on P
lattice.38

ACKNOWLEDGMENTS

This paper with a cohomological part was written at Caltech and was posted inmp_arc in
1995.19 The present version is reorganized, updated and the proofs of the cohomological
are subject to a separate paper.3 I owe valuable remarks or literature information to Y. Avron,
Barrelli, J.Bellisard, J.-P. Conze, J. Feldman, G. Hjorth, A. Hof, S. Jitomirskaya, Y. Last, D. L
Y. Peres, and B. Simon. While preparing the final version, I acknowledge the support of the
National Science Foundation.

1J. Feldman and C. Moore, ‘‘Ergodic equivalence relations, cohomology and von Neumann algebras I,II,’’ Tran
Math. Soc.234, 289–359~1977!.

2D. A. Lind, ‘‘Products of coboundaries for commuting nonsingular automorphisms,’’ Z. Wahrscheinlichkeitst
Verwandte Geb.43, 135–139~1978!.

3O. Knill, ‘‘On the cohomology of discrete Abelian group actions,’’ part is contained in Mathematical Physics Pre
Archive, http://www.ma.utexas.edu/mp_arc/papers/952195, 1995.

4R. Carmona and J. Lacroix,Spectral Theory of Random Schro¨dinger Operators~Birkhäuser, Boston, 1990!.
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Nonstandard Feynman path integral for the harmonic
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Using Nonstandard Analysis, we will provide a rigorous computation for the har-
monic oscillator Feynman path integral. The computation will be done without
having prior knowledge of the classical path. We will see that properties of classi-
cal physics falls out naturally from a purely quantum mechanical point of view. We
will assume that the reader is familiar with Nonstandard Analysis. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!01711-9#

I. INTRODUCTION

In quantum mechanics, we are interested in finding the wave function that satisfies S
inger’s equation. Equivalently, we can find the propagator or integral kernelK(q,q0 ,t) which
satisfies

i\
]K~q,q0 ,t !

]t
5F2\2

2m
Dq1V~q!GK~q,q0 ,t !,

~1.1!
K~q,q0,0!5d~q2qo!, q,q0PRd.

Formally, the wave function is related to the propagator via

w~q,t !5E
2`

1`

K~q,q0 ,t !f~q0!dq05^K~q,q0 ,t !,f~q0!&, ~1.2!

with boundary conditionw(q,0)5f(q). In Feynman’s formulation of quantum mechanics,
proposed that the propagator is given by a functional integral, also referred to as Feynma
integral or just path integral in physics literature,

K~q,q0 ,t !5E
x~0!5q0

x~ t !5q
expH iS@x~s!#

\ J dx~s!5 lim
n→`

E
Rdn

wd,n expF i e

\
S$xn11 ...,x0%Gdx1¯dxn ,

~1.3!

where

x05q0 ,xn115q,e5
t

n
,

wd,n5S m

2ip\e D d~n11!/2

,

S$xn11¯x0%5 (
j 51

n11 Fm

2 S xj2xj 21

e D 2

2V~xj !G .
a!Electronic mail: look@sdf.lonestar.org
55110022-2488/99/40(11)/5511/11/$15.00 © 1999 American Institute of Physics
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The integrals in the second line of~1.3! are d-dimensional improper Riemann integrals. Th
integral in the first equality is the purely formal path integral that integrates over all p
x(s), 0<s<t, with x(0)5q0 , andx(t)5q. The quantityS@x(s)# is the action integral,

S@x~s!#5E
0

t

L~x,ẋ!ds, L~x,ẋ!5
m

2
ẋ2V~x!. ~1.4!

The motivation for the notation of the formal path integral is that asn goes to infinity, the sum in
the exponent becomes the action integral. In this manner, Feynman was able to deduce c
mechanics from quantum mechanics through the action integral and\→0. In this paper, we will
compute the harmonic oscillator path integral without prior knowledge of classical physi
turns out that properties of classical physics naturally falls out of the computation without t
\→0. The computation shows that the path integral separates into the product of two qua
one independent of\, the other dependent on\. The quantity that is independent of\ contains
properties of classical physics. Thus, in some sense we are deviating from the standard in
tation of the path integral being a bridge between quantum mechanics and classical mecha
the action integral and\. We are considering quantum mechanics as purely quantum mech
and extracting properties of classical mechanics without prior knowledge of classical phys

Mathematically, the formal integration over paths can not be a rigorously well-defined
sure theoretic integration because of the oscillatory nature of the integrand~see Refs. 1 and 2!. A
popular technique to make sense of the~1.3! is to replacet by 2it and use the Wiener integral~see
Refs. 3 and 4!.

In nonstandard analysis, we have that limn→` an5a iff * av'a for any infinite natural num-
ber vP* N2N with $* am%mP* N being the* extension of$an%nPN , and' means thatav1hv

5a wherehv an infinitesimal. We can use nonstandard analysis to define the path integra
standard part can replace the limit in~1.3!. Using nonstandard analysis to replace the limit in~1.3!
is not a new concept~see Refs. 5, 6 and references within!, doing so partially solves the problem
of the Feynman path integral on the propagator.

We can redefine~1.3! in the following manner: letvP* N,m,tPR1, e5t/v, * V(x):* Rd

→* R be an internal function, andx05q0 , xv115q be fixed points inRd. We call the expression

E
* Rdv

S m

2p i\e D ~d/2!~v11!

expF i e

\ (
j 51

v11 Fm

2 S xj2xj 21

e D 2

2* V~xj !G Gdx1¯dxv , ~1.5!

an internal functional integral. In~1.5!, all integrals are*-transformed improper Riemann inte
grals. In particular, if for allvP* N2N, the standard part of the internal functional integral exi
and it is independent of the choice ofv, we call the standard part a standard functional integra
Feynman path integral and denote it by

stE
* Rdv

S m

2p i\e D ~d/2!~v11!

expF i e

\ (
j 51

v11 Fm

2 S xj2xj 21

e D 2

2* V~xj !G Gdx1¯dxv . ~1.6!

Equation~1.6! is just a nonstandard analysis way of saying that the limit in~1.3! exists. There
still remain the problem of for which class of potentialsV the expression~1.5! exists and whether
~1.6! actually produces the propagator.

We will demonstrate the usage of~1.5! and ~1.6! on thed-dimensional harmonic oscillato
path integral. The harmonic oscillator plays a major role in quantum field theory and the r
advances due to Duru and Kleinert in the Coulomb potential path integral~see Ref. 7 and refer
ences within!. The harmonic oscillator carries the potentialV(x)5ml2/2x2, its internal func-
tional integral is:

E
* Rdv

S m

2p i\e D ~d/2!~v11!

expF i e

\ (
j 51

v11 Fm

2 S xj2xj 21

e D 2

2
m

2
l2xj

2G Gdx1 ...dxv . ~1.7!
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Notice that eachd-dimensional integral factors intod products of one-dimensional integrals, tho
we shall compute the one-dimensional harmonic oscillator internal functional integral.

II. THE HARMONIC OSCILLATOR

There are many ways to compute the harmonic oscillator path integral~see Refs. 7–9 and
references within!, we will use a method of computation similar to that of Ref. 8. We differ fro
the popular techniques in that we will do the computation without prior knowledge of the clas
path of the harmonic oscillator and we will rigorously do the computation with nonstan
analysis. As pointed out earlier, it turns out that properties of classical physics falls out nat
from a purely quantum mechanical derivation.

It is well known that for 0,t,p/l, the propagator for the one-dimensional harmonic os
lator is

K~q,q0 ,t !5S m

2p i\ D 1/2A l

sinlt
expH im

\

l

sinlt
@~q0

21q2!coslt22qq0#J . ~2.1!

Equation~2.1! carries a singularity att5p/l. A singularity like that of~2.1! can, in fact, be given
rigorous mathematical meaning ifK(q,q0 ,t) is interpreted as a distribution~see Ref. 10!. Due to
the form of ~2.1!, we would not expect the standard functional integral to exist att5p/l as a
function.

The popular method to compute the one-dimensional harmonic oscillator Feynman pat
gral is by writingS@x(s)#5S@xcl(s)1dx(s)#, wherexcl(s) is the classical path of the harmon
oscillator that satisfies the equation of motionsẍcl(s)52l2xcl(s), with the boundary condition
xcl(0)5q0 , xcl(t)5q. Namely, xcl(s)5@q sinls1q0 sinl(t2s)#/sinlt. The action integral be-
comes

E
0

t m

2
@~ ẋcl!22l2~xcl!2#ds1E

0

t m

2
@~d ẋ!22l2~dx!2#ds1E

0

t

m~ ẋcl d ẋ2l2xcl dx!ds. ~2.2!

Using dx(0)505dx(t) and the equation of motions ofxcl, the last integral is 0 after an integra
tion by parts. Integrating by parts on the first integral and using the equation of motions ofxcl, the
first integral becomes (m/2)xclẋclu0

t 5(ml/2 sinlt)@(q21q0
2)cost22qq0#. Without much concern on

the existence and meaning of the path integral, we can write

E
x~0!5q0

x~ t !5q
expH iS@x~s!#

\ J dx~s!

5expH iml

2\ sinlt
@~q21q0

2!cost22qq0#J E
dx~0!50

dx~ t !50
expH iS@dx~s!#

\ J ddx~s!. ~2.3!

The path integral on the right-hand side is the quantum fluctuation; the integral is over all
which starts from 0 ats50, and ends at 0 ats5t. We leave it to the reader to look up th
computation of the quantum fluctuation in the literature.

We will give a rigorous treatment of~2.3! by using the time-sliced internal path integral
~1.5! and~1.6!. In our work, we do not start with having knowledge of the classical path. We
start with an arbitrary bounded pathw(s) which satisfiesw(0)5q0 , w(t)5q, and separate the
propagator into a product of classical and quantum amplitudes. In this approach, we will se
the classical contribution actually comes from quantum mechanics without prior knowled
classical mechanics.

To shorten the notation, we write
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i e

\ (
j 51

n11 Fm

2 S xj2xj 21

e D 2

2
m

2
l2xj

2G
5S im

2\e D Fx0
222x0x11xn11

2 22xnxn111(
j 51

n

2xj
22(

j 51

n

2xjxj 212e2l2(
j 51

n11

xj
2G

5S im

2\e D xt

¦
S 1 21 0 ¯ 0

21 ]

0 0 0

] 21

0 ¯ 21 1

D

2e2l21
0 ¯ ¯ ¯ 0

0 1 0 ¯ ¯ 0

] � � � � ]

� � �

� � �

] � � ]

0 ¯ ¯ 0 1 0

0 ¯ ¯ 0 1

2
11

0 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 0

0 2 21 0 ¯ ¯ ¯ ¯ ¯ 0

] 21 2 21 0 ¯ ¯ ¯ ¯ 0

] 0 21 2 21 0 ¯ ¯ ¯ 0

] ] � � � � � � ]

] ] � � � � � � ]

0 � � � � �

0 ¯ ¯ ¯ ¯ 0 21 2 21 0

0 ¯ ¯ ¯ ¯ ¯ 0 21 2 0

0 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 0

2 § x5S im

2\e D ~xtTnx!,

~2.4!

whereTn is the (n12) by (n12) symmetric matrix,

Tn5S 1 21 0 ¯ 0

21 ]

0 Sn 0

] 21

0 ¯ 21 12e2l2

D , ~2.5!
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with Sn being then by n symmetric matrixSn5An2e2l2Bn , where

An51
2 21 0 ¯ ¯ ¯ ¯ 0

21 2 21 0 ¯ ¯ ¯ 0

0 21 2 21 ¯ ¯ ¯ 0

] � � � � � ]

] � � � � � ]

0 � � � � 0

0 ¯ ¯ ¯ 0 21 2 21

0 ¯ ¯ ¯ ¯ 0 21 2

2 ,

~2.6!

Bn51
1 0 ¯ ¯ 0

0 1 0 ¯ ¯ 0

] � � � ]

� � �

� � �

] � � ]

0 ¯ ¯ 0 1 0

0 ¯ ¯ 0 1

2 ,

andx is the column vector,

x5S x0

x1

]

xn

xn11

D . ~2.7!

For notation convenience, we will use a bar instead of* to indicate the* transforms of matrices
determinate of matrices, and vectors.

We are interested in knowing when the internal functional integral of the harmonic osci
exists. From~2.1!, it would be reasonable to postulate the existence of the functional integra
t,p/l. Indeed, this turns out to be the case. Fort,p/l, S̄v ~the * transform ofSn with n
5vP* N2N! turns out to be*-positive definite, which allows us to actually compute the in
grals.

Proposition 2.1: For0,t,A@n2p2/l2(n11)2#@12p2/12(n11)2#, Sn is positive definite.
Proof: An elementary computation shows that fork51,2,...,n,

An1
sin

kp

n11

sin
2kp

n11

]

]

]

]

sin
nkp

n11

2 5S 222 cos
kp

n11D 1
sin

kp

n11

sin
2kp

n11

]

]

]

]

sin
nkp

n11

2 . ~2.8!
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Hence, then distinct eigenvalues ofSn are 222 cos„kp/(n11)…2l2(t/n)2. To show thatSn is
positive definite, it is enough to find the values oft for which the eigenvalues are positive, o
cos„kp/(n11)…,12l2t2/2n2. Since cos„kp/(n11)…<cos„p/(n11)… for k51,2,...,n, it is
enough to findt for which cos„p/(n11)…,12l2t2/2n2. By Taylor expanding cos„p/(n11)… to
about 0 for the first three nonzero terms, we have

cosS p

n11D,12
l2t2

2n2 ⇔12
p2

2~n11!2 1
p4 cosh

4!~n11!4

,12
l2t2

2n2 ⇔t2,
p2n2

l2~n11!2 F12
p2 cosh

12~n11!2G , ~2.9!

where 0,h<p/(n11). When t,A@n2p2/l2(n11)2#@12p2/12(n11)2#, we have t2

,@p2n2/l2(n11)2#@12p2 cosh/12(n11)2#. h

Theorem 2.2:Let tPR and0,t,p/l. For anyvP* N2N, S̄v is positive definite in the*
transformed sense.

Proof: * transforming Proposition 2.1 and settingn5v, we have thatS̄v is positive definite
when

0,t,A v2p2

l2~v11!2 F12
p

12~v11!2G5
p

l
1h, ~2.10!

whereh is infinitesimal. Whent is standard and 0,t,p/l, ~2.10! holds. h

From here on, let us take 0,t,p/l. We will now proceed to separate the functional integ
into a classical part and a quantum fluctuation part. Supposew(s) is an arbitrary path with
uw(s)u,` for 0<s<t. Furthermore, letw(0)5q0 , andw(t)5q. We make the substitutionxj

5w„j t /(n11)…1yj5wj1yj @notice thaty0505yn11 sincew(0)5x05q0 andw(t)5xn115q#.
Using the fact thatTn is symmetric, we have

xtTnx5~y1w! tTn~y1w!

5wtTnw1ytTny1wtTny1ytTnw

5wtTnw1ytTny1~Tnw! ty1~wtTny! t

5wtTnw1ytTny1~Tnw! ty1wtTny

5wtTnw1ytTny12~Tnw! ty. ~2.11!

By usingy0505yn11 and writingTn as

Tn5S 0 0 0 ¯ 0

0 ]

0 Sn 0

] 0

0 ¯ 0 0

D 1S 1 21 0 ¯ 0

21 ]

0 0 0

] 21

0 ¯ 21 12e2l2

D , ~2.12!

we obtain

xtTnx5wtTnw1ytTny12~Tnw! ty5wtTnw1 ŷtSnŷ12r tŷ, ~2.13!

where
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y5S 0
y1

]

yn

0

D , ŷ5S y1

]

yn

D , w5S w0

w1

]

wn

wn11

D , ~2.14!

and

r5SnS w1

w2

]

wn21

wn

D 2S w0

0
]

0
wn11

D 5Snŵ2w9 .

We then have the following.
Lemma 2.3: Under the assumption on t, lete5t/n, then

E
Rn

S m

2p i\e D ~1/2!~n11!

expF i e

\ (
j 51

n11 Fm

2 S xj2xj 21

e D 2

2
m

2
l2xj

2G Gdx1¯dxn

5expF im

\e
~wtTnw2r tSn

21r!G S m

2p i\e D 1/2A 1

detSn
. ~2.15!

Proof: SinceSn is positive definite, it is invertible. SinceSn is symmetric, the following holds:

ŷtSnŷ12r tŷ5~ ŷ1Sn
21r! tSn~ ŷ1Sn

21r!2r tS21r. ~2.16!

Using our shortened notation in~2.13! and ~2.16!, the integrals in~2.15! is equivalent to

expF im

\e
~wtTnw2r tSn

21r!G E
Rn

S m

2p i\e D ~1/2!~n11!

expS im

2\e
ztSnzDdz1¯dzn . ~2.17!

In obtaining ~2.17!, we performed the change of variablesxj5wj1yj , and then fromyj

1(Sn
21r) j5zj . We get~2.15! after diagonalizingSn and doing the decoupled integrals. h

Corollary 2.4: Under the previous definition of w(s), The one-dimensional harmonic osci
lator internal functional integral is well defined, and it is equal to

expF im

\e
~w̄tT̄vw̄2 r̄ tS̄v

21r̄ !G S m

2p i\e D 1/2A 1

detSv
. ~2.18!

where the bars denote a* transform.
Proof: This is just the* transform, Lemma 2.3. h

Remark 2.1:There is no restriction on the choice of the pathw except that it starts atq0 and
ends atq. We will show that the exponential part of~2.18! turns out to be the classical amplitud
of the previous formal calculation of the propagator and the other factor is the quantum flu
tion. If we choosew̄ to be the* transform of the classical path, it can be shown that each entr
r̄ is infinitesimal, andw̄tT̄vw̄/e is infinitesimally close tol/sinlt@(q0

21q2)coslt22qq0#.
There are many techniques to compute the quantum fluctuation limn→`A1/e detSn in the

literature; we present a rigorous method to compute the limit with Nonstandard Analys
computing stA1/e detSv , for ve* N2N.

Proposition 2.5: Lete5t/n. Denote Aj ,n and Cj ,n with 0, j <n to be the j by j matrices given
by
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Aj ,n51
2 21 0 ¯ ¯ ¯ ¯ 0

21 2 21 0 ¯ ¯ ¯ 0

0 21 2 21 ¯ ¯ ¯ 0

] � � � � � ]

] � � � � � ]

0 � � � � 0

0 ¯ ¯ ¯ 0 21 2 21

0 ¯ ¯ ¯ ¯ 0 21 1

2 , ~2.19!

and

Cj ,n51
1 0 ¯ ¯ 0

0 1 0 ¯ ¯ 0

] � � � ]

� � �

� � �

] � � ]

0 ¯ ¯ 0 1 0

0 ¯ ¯ 0 0

2 .

Define Dj ,n5detiAj,n2e2l2Cni. After * transforming, we have that forvP* N2N, D̄k,v

'* cos(ktl/v)5*cos(kel).
Proof: For k51, A1,v5(1), C1,v5(0), andD1,v51. Fork52,

Ā2,v5S 2 21

21 1 D , C̄2,v5S 1 0

0 0D , ~2.20!

andD̄2,v512e2l2. Hence, the claim is true fork51,2. We expandD j ,n on the top row, and ge
the recursion relation

D j ,n5~22e2l2!D j 21,n2D j 22,n , 2, j <n. ~2.21!

Since we are interested invP* N2N, we will consider the cases for which 42(22l2e2)2.0.
To solve the difference equation, we substituteD j ,n5Aaj 21 into ~2.21! and get a22(2
2l2e2)a1150 with solutions

a65
~22l2e2!6 iA42~22l2e2!2

2
. ~2.22!

Both solutionsa6 have norm 1. Thus, we can denotea65ei 6u, whereu5arg(a1).0. Hence,

D j ,n5A1 exp$ i ~ j 21!u%1A2 exp$2 i ~ j 21!u%. ~2.23!

Solving for the initial conditions,

D1515A11A2, D2512e2l25A1a11A2a2 , ~2.24!

we get
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A65
1

2
6 i S le

2A42l2e2D . ~2.25!

We now proceed to get an estimate foru. By definition ofu, cosu512l2e2/2. After expand-
ing the left-hand side about 0, we get 12(u2/2)cosh512l2e2/2, 0,h<u. To estimateu by le,
we write u5le1f, and obtain

12
~le1f!2

2
cosh512

l2e2

2
, ⇒f52le6

le

Acosh
,⇒f52le1

le

Acosh
, ~2.26!

where the last implication is due tou.0. Thus,u5le2le(121/Acosh).
By * transforming the above and settingj 5k, n5v, 2,k<v, vP* N2N, we get

e5
t

v
'0, u,h'0, 12

1

A * cosh
'0, A1'A2'

1

2
. ~2.27!

Equations~2.27! and ~2.23! imply that

D̄k,v'* cos$~k21!u%5* cosH S kle2u2kleS 12
1

A * cosh
D D J '* cos~kle!. ~2.28!

In the last' in ~2.28!, we used the fact that the cosine function is uniformly continuous, wh
translates into* cosx'*cosy wheneverx'y in the language of Nonstandard Analysis. h

With the aid of Proposition 2.5, we can show the following.
Theorem 2.6: e detS̄v is infinitesimally close tosin(lt)/l.
Proof: As before, we will use bars to denote the* transform of the determinant of matrice

Let Sj ,n5detiAj,n2e2l2Bj,ni, whereAj ,n is a j by j matrix as defined in~2.19!, Bj ,n is the j by j
identity matrix,e5t/n, and 1< j <n. Notice thatSn,n5detiSni. ExpandingSj ,n andD j ,n on the
bottom row, we get the recursion relationSj ,n5D j ,n1(12e2l2)Sj 21,n , or, equivalently,Sj ,n

2Sj 21,n5D j ,n2e2l2Sj 21,n . Summing the last equality gives

Sn,n2S1,n5(
j 52

n

D j ,n2e2l2(
j 52

n

Sj 21,n,

⇒eSn,n5eS1,n1(
j 52

n

eD j ,n2e2l2(
j 52

n

eSj 21,n . ~2.29!

From the recursion relation, we also get that forj >3, uSj 21,nu<((k52
j 21 uDk,nu)1uS1,nu.

We now * transform the second equation in~2.29! and write from Proposition~2.5! D̄m,v

5* cos(mel)1hm, wherehm is infinitesimal. We get

e detS̄v5eS̄1,v1 (
m51

v

e * cosS mtl

v D2e * cos~el!1e (
m52

v

hm2e2l2 (
m52

v

eS̄m21,v . ~2.30!

The set$hmu1<m<v% is an internal set, so max1<m<vhmP$hmu1<m<v%, and it is an infinitesi-
mal. Thus,e(m52

v hm<(t/v)v max1<m<v hm'0. From the bound onuSj 21,nu, we get
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Ue2l2 (
m52

v

eS̄m21,vU<e3l2uS̄1,vu1e2l2H (
m53

v

eF S (
k52

m21

uD̄k,vu D 1uS̄1,vuG J
,e3l2uS̄1,vu1e2l2F S (

m52

v

2t D 1tuS̄1,vuG'0. ~2.31!

Finally, using the limit of Riemann sums in the language of nonstandard analysis, we
(m51

v e * cos(mtl/v)'*0
t cos(ls)ds5sin(lt)/l. Since the other two terms in~2.30! are also infini-

tesimals, the result follows. h

We are now ready to derive the classical amplitude from the exponential in~2.18! by using
results from Theorem 2.6.

Proposition 2.7: The exponential in (2.18) satisfies the following:

expF im

\e
~v̄ tT̄vv̄2 r̄ tS̄v

21r̄ !G'expH im

\

l

sinlt
@~q0

21q2!coslt22qq0#J , ~2.32!

where q05x0 , and q5xv11 .
Proof: From the definition ofr, w, Tn , andSn

21 in ~2.12!–~2.14!, we multiply outr tSn
21r and

express it in terms ofwtTnw,

r tSn
21r5~ŵtSn2w9 t!Sn

21~Snŵ2w9 !

5~ŵt2w9 tSn
21!~Snŵ2w9 !

5ŵtSnŵ2ŵtw9 2w9 tŵ1w9 tSn
21w9

5wtTnw2w0
22~12e2l2!wn11

2

1w0
2~S̄n

21!111w0wn11~S̄n
21!1n

1w0wn11~S̄n
21!n11wn11

2 ~S̄n
21!nn . ~2.33!

After * transforming~2.33!, we get

1

e
~w̄tT̄vw̄2 r̄ tS̄v

21r̄ !5
1

e
@w̄0

21~12e2l2!w̄v11
2 2w̄0

2~S̄v
21!11

2w̄v11
2 ~S̄v

21!vv2w̄0w̄v11~S̄v
21!1v2w̄0w̄v11~S̄v

21!v1#

5
1

e Fq0
2S 12

S̄v21,v

S̄v,v
D 1q2S 12

S̄v21,v

S̄v,v
D

22qq0

~21!v11~21!v21

S̄v,v

2e2l2q2G
5

1

e detS̄v

@q0
2~S̄v,v2S̄v21,v!1q2~S̄v,v2S̄v21,v!22qq0#2el2q2

'
l

sinlt
@~q0

21q2!coslt22qq0#. ~2.34!

In the third line above, we used*-Cramer’s rule and our previous definition ofS̄k,v . The factor
(21)v11 comes from a cofactor expansion in the numerator of Cramer’s rule for (Sv

21)1v and
(Sv

21)v1 ; the factor (21)v21 comes from the determinant of a triangular matrix with21’s along
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the diagonal after the latter expansion. In the fourth line, we used results from Theorem 2; n
S̄v,v5detS̄v , e detS̄v'sinlt/l, andS̄v,v2S̄v21,v'D̄v,v'coslt. h

Notice that in~2.34!, the end result depends only on the end points of the pathw. It does not
matter which path is chosen as long as it starts atq and ends atq0 . Hence, it is not necessary t
use the classical pathxcl to do the computation.

Theorem 2.8: For t,p/l, the one-dimensional harmonic oscillator standard function
integral is given by

S m

2p i\ D 1/2A l

sinlt
expH im

\

l

sinlt
@~q0

21q2!coslt22qq0#J . ~2.35!

Proof: This follows from Corollary 2.4, Theorem 2.6, and Proposition 2.7. h

Corollary 2.9: For the d-dimensional harmonic oscillator standard functional integral,
have

stH E
* Rdv

S m

2p i\e D ~d/2!~v11!

* expF i e

\ (
j 51

v11 Fm

2 S xj2xj 21

e D 2

2
m

2
l2xj

2G Gdx1¯dxvJ
5S m

2p i\ D d/2S l

sinlt D
d/2

expH im

\

l

sinlt
@~q 0

21q22!coslt22qq0#J . ~2.36!

Proof: Follows from factoring~2.36! into products of one-dimensional harmonic oscillat
standard functional integrals and Theorem 2.8. h
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Bose–Einstein condensation in an external potential
at zero temperature: Solitary-wave theory

Dionisios Margetisa)

Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138-2901

~Received 28 June 1999; accepted for publication 26 July 1999!

For a trapped, dilute atomic gas of short-range, repulsive interactions at extremely
low temperatures, when Bose–Einstein condensation is nearly complete, some spe-
cial forms of the time-dependent condensate wave function and the pair-excitation
function, the latter being responsible for phonon creation, are investigated. Specifi-
cally, ~i! a class of external potentialsVe(r ,t) that allow for localized, shape-
preserving solutions to the nonlinear Schro¨dinger equation for the condensate wave
function, each recognized as a solitary wave moving along an arbitrary trajectory, is
derived and analyzed in any number of space dimensions; and~ii ! for any such
external potential and condensate wave function, the nonlinear integro-differential
equation for the pair-excitation function is shown to admit solutions of the same
nature. Approximate analytical results are presented for a sufficiently slowly vary-
ing trapping potential. Numerical results are obtained for the condensate wave
function whenVe is a time-independent, spherically symmetric harmonic potential.
© 1999 American Institute of Physics.@S0022-2488~99!03211-9#

I. INTRODUCTION

The first successful experiments on Bose–Einstein condensation in dilute atomic gase
reported recently by the groups at JILA,1 Rice University,2 and MIT.3 In their respective experi-
ments, vapors of87Rb, 7Li, and 23Na atoms were confined by traps of inhomogeneous magn
fields acting on the spin of the unpaired electron of each atom. A combination of lase
evaporative cooling techniques were employed to cool each gas below the phase transition
Many similar experiments followed soon after these pioneering works. These experimental
vations have, in turn, stimulated theoretical interest, with emphasis on the study of the eff
condensation of parameters that can be controlled externally, aiming at new predictions or d
of future experiments. Major problems related to Bose–Einstein condensation in a trap in
equilibrium and nonequilibrium properties of the boson gas, such as collective excitation
vortices, and description of time evolution under the influence of time-dependent trapping p
tials.

An entirely quantum mechanical treatment of Bose–Einstein condensation in dilute sy
of hard spheres lacking translational symmetry at extremely low temperatures, when conde
into a single-particle state is nearly complete, was given in 1961 by Wu.4 In his approach, the two
crucial quantities for the minimal description of the Bose system are:~i! the condensate wav
functionF(r ,t), which, to the lowest approximation in the particle density, satisfies a Schro¨dinger
equation with a self-coupling term of third order, also derived by Gross5 and Pitaevskii6 by other
methods, and~ii ! the pair-excitation functionK0(r ,r 8;t), which describes the scattering of tw
atoms from the condensate to other states at positionsr and r 8, offers a systematic treatment o
physical effects such as sound vibrations, and provides corrections to higher orders in the p
density;K0(r ,r 8;t) was shown to satisfy a nonlinear integro-differential equation. To the low
approximation, this analysis has recently been extended both for zero and finite temperat
incorporate the effect of a sufficiently smooth external potential that increases rapidly at

a!Electronic mail: dmarget@fas.harvard.edu
55220022-2488/99/40(11)/5522/22/$15.00 © 1999 American Institute of Physics
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distances.7–9 Of particular significance is the underlying ansatz for the many-body Schro¨dinger
state vector at zero temperature:4,7,8

C~ t !5N~ t !eP~ t !~N! !21/2a0* ~ t !Nuvac&, ~1.1!

whereP(t) describes the creation of pairs from the condensate

P~ t !5~2N!21E dr dr 8c1* ~r ,t !c1* ~r 8,t !K0~r ,r 8;t !a0~ t !2, ~1.2!

N(t) is the normalization constant, which is immaterial for present purposes,N is the total number
of atoms,a0* (t) anda0(t) are the creation and annihilation operators for the condensate, re
tively, andc1* (r ,t) is the boson creation field operator corresponding to the space orthogo
the condensate wave function. Formula~1.1!, being combined with a consistent approximation f
the N-body Hamiltonian, is a nontrivial generalization of the many-body wave function of L
Huang, and Yang10 for the case with translational invariance and periodic boundary conditi
where the main effect of particle interactions is the creation and annihilation of pairs of opp
momenta. The inclusion of pair excitation according to Eq.~1.1! necessarily modifies the equatio
of motion for F(r ,t). Some physically interesting implications of this second-order approxi
tion without any external potential, such as the difference between a compressional wave
phonon, are discussed in Ref. 4.

Recent numerical or analytical studies of properties of nonuniform atomic gases unde
Bose–Einstein condensation at extremely low temperatures have focused on the nonlinear¨-
dinger equation for the condensate wave function either in its time-independent8,11–14or its time-
dependent form.15 A different approach by Benjamin, Quiroga, and Johnson16 deals with the
relative motion of the atoms in a hyperspherical coordinate system, with application to
dimensional harmonic traps. In other contexts, several types of nonlinear Schro¨dinger equations
are examined in the light of soliton theory,17 often with emphasis on the description and conditio
of existence of a pulselike solution—from now on referred to as a solitary wave—whose
feature is the preservation of its shape during propagation. A summary and discussion of s
these approaches can be found in the very recent comprehensive paper by Morganet al.,18 whose
terminology is mainly adopted here.

Soliton theory usually describes nonlinear waves that interact like classical elastic partic
the sense that the initial shape and velocity of the waves are regained asymptotically, yet p
with a phase shift. Studies of such a behavior are believed to have been motivated from
unusual findings in a computation by Fermi, Pasta, and Ulam in 1955.19,20 Significant advances
toward the understanding of solutions to the underlying Korteweg–deVries~or KdV! equation
were made ten years later by Zabusky and Kruskal,21 followed by systematic investigations o
Gardneret al.22 A good list of references and exposition of methods or concepts german
widely known types of evolution equations are given in Ref. 23. It has been realized that a c
role in soliton theory is played by the ‘‘Ba¨cklund transformations,’’ which have provided a test f
solitonic behavior and led to higher soliton solutions to some equations.~For a review of the
mathematically advanced theory, see Ref. 19 and the references therein.!

It is well-known that the Schro¨dinger equation with a self-coupling term of third order a
zero external potential admits soliton solutions in the sense of Ref. 24. In general, the inclus
a term accounting for an external potential modifies the nature of the associated solutions
pointed out in Ref. 18. Specifically, Morganet al.18 examine conditions on nonlinear terms a
accompanying external potentials that allow for localized solitary-wave solutions, and prov
physical interpretation of their results. They justifiably conclude that~i! such nonlinearities should
not explicitly depend on the space variablex in ~111! dimensions, and~ii ! the change in the
potential experienced by the wave must be linear inx. They subsequently attempt to extend th
results to higher dimensions, with restriction to motion along fixed axes in space. This in
imposes conditions on the external potential, which they briefly describe. Notably,
dimensional motion of shape-preserving pulses of the condensate wave function is also stu
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Refs. 25 and 26 for positive and negative scattering lengths, respectively, with restricti
time-independent parabolic potentials of weak confinement along one specified axis~cigar-shaped
traps!.

It should be emphasized, however, that, although it simplifies the treatment, the assump
rectilinear motion in a space of dimensions higher than one is not necessary for the existe
solitary-wave solutions: motion of the solitary wave along an arbitrary trajectory in any numb
space dimensions is possible, provided the external potential is consistently chosen. Furth
in Refs. 18, 25, and 26 the effects of scattering processes due to atomic interactions are i
Such a simplified approach, though adequate for some cases of experimental relevance
tainly physically incomplete and needs improvement. It has been argued by others, for ins
that predictions based on the usual nonlinear Schro¨dinger equation become, in general, questio
able for time-dependent systems, when the number of noncondensed particles may grow in27

In the present paper, scattering processes are minimally taken into account through thjoint
consideration of the condensate wave function and the pair-excitation function.4,7–9 The purpose
of this work is to study solitary-wave motion by addressing the aforementioned issues in
detail, complementing, therefore, the analysis in Ref. 18, as a step toward an understan
more complicated nonequilibrium properties of the trapped Bose gas. An outline of the pa
provided below.

In Sec. II, external potentialsVe(r ,t) in (d11) dimensions (d>1) are analyzed under th
assumption that they sustain a condensate wave function identified with a single pulse th
serves its shape while moving along an arbitrarily prescribed trajectory in thed-dimensional
Euclidean space. Focus is on the Schro¨dinger equation containing a cubic self-coupling term a
positive scattering lengtha. The analysis starts withd51, but with a perspective different from
Ref. 18, and proceeds to generalizing tod>2. Given a consistentVe , the initial condition for the
condensate wave function, when the nonlinearity plays an important role, is discussed. An
ment is sketched to verify that, as a consequence of the requisite decomposition for the po
the harmonic potentials constitute the sole class of admissible time-independent potentia
allow for solitary-wave solutions.28 Furthermore, the assumption of nonuniqueness of the der
decomposition for the potential furnishes a class of time-dependent harmonic potentials. I
III, it is demonstrated that the corresponding lowest-order nonlinear integro-differential equ
for the pair-excitation function admits solitary waves in (2d11) dimensions. Section IV proceed
to determine approximately the initial amplitudes for the condensate wave function and the
excitation function corresponding to the lowest state of the condensate in a case of experi
interest, namely, when the trapping potential is slowly varying in space. In Sec. V, both ana
and numerical results are obtained for the lowest-energy condensate wave function under
dimensional, spherically symmetric harmonic potential.

II. THE CONDENSATE WAVE FUNCTION

The time-dependent nonlinear Schro¨dinger equation for the condensate wave functionF(r ,t)
in an external potentialVe(r ,t) is (\52m51)7,8

i ~]/]t !F~r ,t !5@2¹21Ve~r ,t !18paNV21uF~r ,t !u224paNV21z~ t !#F~r ,t !, ~2.1!

where

V21E dr uF~r ,t !u251, ~2.2!

z~ t !5V21E dr uF~r ,t !u4, ~2.3!

a is the scattering length, assumed to be positive,N is the number of particles, andV is the volume
of the system.
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For mathematical convenience, Eq.~2.1! is cast in the form

i ~]/]t !F~r ,t !5@2¹21Ve~r ,t !1uF~r ,t !u2#F~r ,t !, ~2.4!

where

F~r ,t !5~8par0!1/2e2 i4par0s~ t !F~r ,t !, r05N/V, ~2.5!

provided that

s~ t !5E t

dtz~ t !1const, ~2.6!

where* t denotes an indefinite integral. The normalization condition~2.2! now reads

E dr uF~r ,t !u258paN. ~2.7!

A. The one-dimensional nonlinear Schro ¨ dinger equation

In the one-dimensional case, both the external potential and the condensate wave fu
depend on one space variable, sayx. Equation~2.4! then becomes

i
]F~x,t !

]t
5F2

]2

]x2 1Ve~x,t !1uF~x,t !u2GF~x,t !. ~2.8!

For Ve50, this reduces to the more or less standard form of the nonlinear Schro¨dinger equation.24

Solitary-wave solutions of this equation are assumed to be of the form~see the Appendix!:

F~x,t !5 f ~x2a~ t !!e2 iu~x,t !, ~2.9!

wheref (x) andu(x,t) are real functions, sufficiently smooth inx andt, anda(t) is a continuously
differentiable function of time. Under the assumption of a potentialVe(x,t) increasing sufficiently
rapidly for x→6`, it is necessary to require that

f ~x!→0 rapidly asuxu→`. ~2.10!

The example of the one-dimensional harmonic oscillator~briefly reviewed in the Appendix! sug-
gests thatf should decrease faster than exponentially inuxu for large values ofuxu. The same
conclusion can be reached by employing the Wentzel–Kramers–Brillouin method.

The substitution of Eq.~2.9! into Eq. ~2.8!, and separation of real and imaginary parts, yie
a system of coupled differential equations forf andu:

f ~x2a~ t !!
]2u

]x2 12 f 8~x2a~ t !!
]u

]x
52a8~ t ! f 8~x2a~ t !!, ~2.11!

2 f 9~x2a~ t !!1S ]u

]xD 2

f ~x2a~ t !!1@Ve~x,t !1 f ~x2a~ t !!2# f ~x2a~ t !!5
]u

]t
f ~x2a~ t !!,

~2.12!

where the prime denotes differentiation with respect to argument. Equation~2.11! can be rewritten
as

]

]x F f ~x2a~ t !!2
]u

]x G52a8~ t ! f 8~x2a~ t !! f ~x2a~ t !!. ~2.13!
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This is explicitly integrated to give

]u

]x
52

1

2
a8~ t !1

A1~ t !

f ~x2a~ t !!2 , ~2.14!

except at pointsx5x(t) where f (x2a(t)) vanishes. It immediately follows that

u~x,t !5Ex

dx
]u

]x
1A~ t !52

1

2
a8~ t !x1Ex

dx
A1~ t !

f ~x2a~ t !!2 1A~ t !, ~2.15!

wherex lies between consecutive zeros off (x2a(t)), calling for the possible use of differen
correspondingA1’s and A’s. Consider the simplest case wheref has no zeros. According to th
preceding formula, for nonzeroA1(t), the limiting behavior off at large distancesx and fixed time
t gives rise to increasingly rapid oscillations inx of the real and imaginary parts of the condens
wave function. This in turn implies an infinite expectation value of the kinetic energy
2]2/]x2 in the Hamiltonian of the system. To eliminate this unphysical possibility, it is neces
to setA1(t) equal to zero:

A1~ t ![0. ~2.16!

To put this argument on a firm foundation, it is expedient to invoke the following conditi

~i! Normalizability of F(x,t) from Eq. ~2.7!, viz.

E dxuF~x,t !u25E dx f~x2a~ t !!2,`. ~2.17!

~ii ! Finite kinetic energy of the condensate, viz.

E dx F* ~x,t !S 2
]2

]x2DF~x,t !5E dxU]F

]xU
2

,`. ~2.18!

The last condition entails

E dx f8~x2a~t!!2,`, ~2.19a!

E dxS ]u

]xD 2

f ~x2a~ t !!2,`. ~2.19b!

The use of Eqs.~2.14! and ~2.17! in Eq. ~2.19b! gives

E dx A1~ t !F2a8~ t !1
A1~ t !

f ~x2a~ t !!2G,`, ~2.20!

which is impossible unless identity~2.16! holds. A similar argument can be applied to the ca
wheref has any number of zeros.

For smooth realf, the resulting phaseu(x,t) is

u~x,t !52 1
2a8~ t !x1A~ t !, ~2.21!

in agreement with Eq.~9! of Ref. 18. The substitution of Eq.~2.21! into Eq. ~2.12! yields a
consistency equation forVe(x,t):

f 9~x2a~ t !!5@Ve~x,t !1 f ~x2a~ t !!21 1
2a9~ t !x1 1

4a8~ t !22A8~ t !# f ~x2a~ t !!. ~2.22!
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It is inferred thatVe(x,t) must be expressed as

Ve~x,t !5V1~x2a~ t !!1xV2~ t !1V3~ t !, ~2.23!

where

V1~x!5
f 9~x!

f ~x!
2 f ~x!2, ~2.24!

V2~ t !52 1
2a9~ t !, ~2.25!

V3~ t !52 1
4a8~ t !21A8~ t !. ~2.26!

Equation~2.23! gives the requisite form of potentials for givenf (x), a(t), andA(t). Note that
some of the inflection points off (x) need to coincide with its zeros. By close examination of E
~2.23!–~2.26!, the following should be pointed out.

~1! Given aV1(x), the differential equation~2.24! suggests, in some sense, an eigenva
problem. More particularly, whenuxu is sufficiently large, condition~2.10! becomes effective,
indicating thatf 2!u f 9/ f u. Under this approximation, Eq.~2.24! becomes

f 9~x!;V1~x! f ~x!, ~2.27a!

which is a linear equation. Hence, only discrete shiftsem of V1(x)5V1m(x) are permissible,
corresponding to ‘‘eigenfunctions’’f 5 f m ~m5non-negative integer!. These shifts in turn induce
discrete amounts of shift inA8(t) through Eqs.~2.23! and~2.26!. Accordingly,F(x,t) exhibits a
behavior of the forme2 i emt f m(x2a(t)) in the fixed trapping potential

Ve~x!5V1m~x!1 (
l<m21

e l1C0 ~2.27b!

experienced by the pulse, whereC0 is a constant.29

~2! For a(t) different from a constant, the only class of time-independent poten
Ve(x,t)5Ve(x) of the form~2.23! consists of the harmonic potentials. Indeed, differentiation ix
of both sides of Eq.~2.23! twice yields

Ve9~x!5V l9~x2a~ t !!5K5const.0. ~2.28!

Hence,

Ve~x!5 1
2Kx21K̄x1C. ~2.29!

~3! If Ve(x,t) admits a second decomposition

Ve~x,t !5U1~x2b~ t !!1xU2~ t !1U3~ t !, ~2.30!

where

U1~x!5
f̆ 9~x!

f̆ ~x!
2 f̆ ~x!2, ~2.31!

U2~ t !52 1
2b9~ t !, ~2.32!

U3~ t !52 1
4b8~ t !21B8~ t !, ~2.33!

andU1(x)ÞV1(x), U3(t)ÞV3(t), two cases fora(t) andb(t) need to be distinguished.
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~i! a(t)2b(t)Þconst. Differentiation of Eqs.~2.23! and~2.30! with respect tox twice yields

V 19~x2a~ t !!5U 19~x2b~ t !!5K. ~2.34!

Therefore,

Ve~x,t !5 1
2K@x2a~ t !#21K1@x2a~ t !#1K21xV2~ t !1V3~ t ! ~2.35a!

5 1
2K@x2b~ t !#21M1@x2b~ t !#1M21xU2~ t !1U3~ t !, ~2.35b!

i.e., Ve(x,t) is the time-dependentharmonic potential

Ve~x,t !5 1
2Kx21K̄~ t !x1C~ t ! ~K.0!. ~2.36!

A comparison of Eqs.~2.35a! and ~2.35b! furnishes the consistency equations

2Ka~ t !1K11V2~ t !52Kb~ t !1M11U2~ t !, ~2.37a!

1
2Ka~ t !22K1a~ t !1K21V3~ t !5 1

2Kb~ t !22M1b~ t !1M21U3~ t !. ~2.37b!

~ii ! a(t)2b(t)5C15const. From Eqs.~2.25! and ~2.32!,

V2~ t !5U2~ t !. ~2.38!

Equations~2.23! and ~2.30! combined give

V3~ t !2U3~ t !5U1~x2C1!2V1~x!5e5const. ~2.39!

In view of ~2.26! and ~2.33!,

A~ t !5B~ t !1et1const. ~2.40!

The meaning of thise becomes apparent from Eqs.~2.27!: it is the discrete amount of shift in
V1(x) corresponding to a shift from the ‘‘eigenfunction’’f (x) to another ‘‘eigenfunction’’f̆ (x)
under the same trapping potentialVe experienced by the solitary wave.

B. The nonlinear Schro ¨ dinger equation in d space dimensions, d>2

The foregoing analysis in one dimension can be extended to higher dimensions. For de
ness, considerd53. In accord with the conditions in the recent experiments,1–3 it is assumed that

Ve~r ,t !→1`, uniformly in r̂5r /ur u as r 5ur u→`. ~2.41!

Instead of assuming motion of the solitary wave along a fixed axis, as is the case in Ref.

F~r ,t !5 f ~r2a~ t !!e2 iu~r ,t !, ~2.42!

wherea(t) is a twice differentiable vector function of time,f (r ) and u(r ,t) are real and suffi-
ciently smooth, and from Eq.~2.7!,

E dr f ~r 2a~ t !!258paN. ~2.43!

In view of condition~2.41!, it is reasonable to assume that

f→0 rapidly, uniformly in r̂5r /ur u as r→`, ~2.44!
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ensuring that the condensate is localized and has a finite kinetic energy, as indicated
Appendix. The substitution of Eq.~2.42! in Eq. ~2.4! gives

2 i a8~ t !•¹ f ~r2a~ t !!1 f ~r2a~ t !!
]u~r ,t !

]t
52¹2f ~r2a~ t !!12i¹ f ~r2a~ t !!•¹u~r ,t !

1 i f ~r2a~ t !!¹2u~r ,t !1 f ~r2a~ t !!u¹u~r ,t !u2

1@Ve~r ,t !1 f ~r2a~ t !!2# f ~r2a~ t !!. ~2.45!

Upon separation of real and imaginary parts, the preceding equation decomposes into

2a8~ t !•¹ f ~r2a~ t !!52¹ f ~r2a~ t !!•¹u~r ,t !1 f ~r2a~ t !!¹2u~r ,t !, ~2.46!

f ~r2a~ t !!
]u~r ,t !

]t
52¹2f ~r2a~ t !!1u¹u~r ,t !u2f ~r2a~ t !!

1@Ve~r ,t !1 f ~r2a~ t !!2# f ~r2a~ t !!. ~2.47!

Equation~2.46! is recast in the form

¹•~ f 2¹u!52 f a8~ t !•¹ f , f 5 f ~r2a~ t !!, ~2.48!

which holds regardless of the specific form for the shapef 5 f (r ,t) of F(r ,t). A particular solution
to this equation is

up~r ,t !52 1
2a8~ t !•r1A~ t !. ~2.49!

With u5up1u1 , u1(r ,t) satisfies the homogeneous equation

¹•~ f 2¹u1!50. ~2.50!

Integration by parts over a finite regionR bounded by a surfaceS yields

05E dr u1¹•~ f 2¹u1!5 R
S
dS f 2u1n̂•¹u12E dr f 2u¹u1u2, ~2.51!

wheren̂ is the unit vector normal toS pointing outward. WhenR extends to infinity, the surface
integral becomes arbitrarily small because of the condition~2.44!, in analogy with the one-
dimensional case. Consequently,

f 2u¹u1u250 almost everywhere, ~2.52!

i.e., except for a set of points of measure zero. Whenf Þ0, this in turn entails

u1~r ,t !5C1~ t ! almost everywhere. ~2.53!

At the zeros off, u¹u1u seems to be indeterminate, calling for the use of differentC1’s in Eq.
~2.53!. However, for a sufficiently smoothu(r ,t), C1(t) can be taken to be zero everywhe
without loss of generality. Accordingly,u(r ,t) reads

u~r ,t !5up~r ,t !52 1
2a8~ t !•r1A~ t !, ~2.54!

which is a generalization of Eq.~2.21!.
The external potential consistent with Eqs.~2.47! and ~2.54! is

Ve~r ,t !5V1~r2a~ t !!1V2~ t !•r1V3~ t !, ~2.55!
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where

V1~r !5
¹2f ~r !

f ~r !
2 f ~r !2, ~2.56!

V2~ t !52 1
2a9~ t !, ~2.57!

V3~ t !52 1
4ua8~ t !u21A8~ t !. ~2.58!

Notably,¹2f (r ) needs to vanish at any surface wheref „r ) vanishes.
A few important remarks are in order.
~1! For an external potential increasing inur u, Eq. ~2.56! bears the features of an eigenval

problem. Specifically, forur u→`, a linear equation is recovered approximately:

¹2f ~r !;V1~r ! f ~r !. ~2.59!

Analogies with the one-dimensional case are easily drawn from this equation.
~2! Whena(t) is not a constant, the only time-independent potential of the form~2.55! that

satisfies condition~2.41! is the d-dimensional harmonic potential. The justification for this
somewhat more demanding than for the one-dimensional case. WithVe(r ,t)5Ve(r ), the applica-
tion of the Laplacian to both sides of Eq.~2.55! gives

¹2Ve~r !5¹2V1~r2a~ t !!5K5const.0. ~2.60!

In three dimensions, a solution to Eq.~2.60! for Ve(r ) is:

Vp~r !5
1

2 (
i , j 51,2,3

Ki j xixj1 (
j 51,2,3

K̄ jxj1C, ~2.61!

where (x1 ,x2 ,x3)5r5(x,y,z),

Tr@Ki j #5K, ~2.62!

and the matrix@Ki j # is symmetric and positive definite. Every admissible solution to Eq.~2.60!
can be written as

Ve~r !5Vp~r !1V1~r !, ~2.63!

whereV1(r ) is a smooth function satisfying Laplace’s equation:

¹2V1~r !50 everywhere. ~2.64!

If S is now a spherical surface with centerr and radiusR, then according to Gauss’ mean valu
theorem30

V1~r !5
1

4pR2 R
S
dS8 V1~r 8!. ~2.65!

SinceR can be taken to be arbitrarily large, it follows thatV1 cannot be forced to comply with
condition ~2.41!. Consequently,V1(r ) is equal to a constant. Without loss of generality,

V1~r ![0. ~2.66!

~3! Let Ve(r ,t) admit an alternative decomposition,

Ve~r ,t !5U1~r2b~ t !!1r•U2~ t !1U3~ t !, ~2.67!
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where

U1~r !5
¹2 f̆ ~r !

f̆ ~r !
2 f̆ ~r !2, ~2.68!

U2~ t !52 1
2b9~ t !, ~2.69!

U3~ t !52 1
4ub8~ t !u21B8~ t !, ~2.70!

andU1(r )ÞV1(r ), U3(t)ÞV3(t). In analogy with the one-dimensional case, there are two dist
possibilities.

~i! a(t)2b(t)Þconst. Then,

¹2V1~r2a~ t !!5¹2U1~r2b~ t !!5K, ~2.71!

which in turn implies that

Ve~r ,t !5
1

2 (
i , j 51,2,3

Ki j @xi2a i~ t !#@xj2a j~ t !#1@r2a~ t !#•K11K21r•V2~ t !1V3~ t !

5
1

2 (
i , j 51,2,3

Mi j @xi2b i~ t !#@xj2b j~ t !#1@r2b~ t !#•M11M21r•U2~ t !1U3~ t !,

~2.72!

where

Tr@Ki j #5Tr@Mi j #5K, ~2.73!

andK2 , M2 are immaterial constants. Therefore,Ve(r ,t) is the time-dependent harmonic pote
tial

Ve~r ,t !5
1

2 (
i , j 51,2,3

Ki j xixj1r•K̄ ~ t !1C~ t !. ~2.74!

~ii ! a(t)2b(t)5C15const. Without loss of generality,C150. It is easily found that

V2~ t !5U2~ t !, ~2.75!

V3~ t !2U3~ t !5U1~r !2V1~r !5e5const. ~2.76!

Equation~2.76! implies that

A~ t !5B~ t !1et1const. ~2.77!

Therefore,f̆ (r ) is just another ‘‘eigenfunction’’ of Eq.~2.56! under the same trapping potentialVe

seen by the pulse.

III. THE PAIR-EXCITATION FUNCTION

The pair-excitation functionK0(r ,r 8;t) satisfies the integro-differential equation8
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F i
]

]t
22E~ t !GK0~r ,r 8;t !52¹2K0~r ,r 8;t !2¹82K0~r ,r 8;t !18par0F~r ,t !2d~r2r 8!

1$22z̄~ t !216par0z~ t !22ze~ t !1Ve~r ,t !1Ve~r 8,t !

116par0@ uF~r ,t !u21uF~r 8,t !u2#%K0~r ,r 8;t !

18par0E dr 9 F* ~r 9,t !2K0~r ,r 9;t !K0~r 8,r 9;t !

28par0V21HF~r ,t !F~r 8,t !@ uF~r ,t !u21uF~r 8,t !u22z~ t !#

1F~r ,t !E dr 9 K0~r 8,r 9;t !uF~r 9,t !u2F* ~r 9,t !

1F~r 8,t !E dr 9 K0~r ,r 9;t !uF~r 9,t !u2F* ~r 9,t !J , ~3.1!

where

E~ t !5 iV21E dr
]F~r ,t !

]t
F* ~r ,t !, ~3.2!

z̄~ t !5V21E dr u¹F~r ,t !u2, ze~ t !5V21E dr Ve~r ,t !uF~r ,t !u2, ~3.3!

and¹[¹ r , ¹8[¹ r8 . Without loss of generality,K0(r ,r 8;t) has been chosen to satisfy

K0~r ,r 8;t !5K0~r 8,r ;t !, ~3.4!

E dr F* ~r ,t !K0~r ,r 8;t !50. ~3.5!

In order to investigate the possibility for solitary-wave solutions to Eq.~3.1!, the following
preliminary steps are taken:

~i! By virtue of Eq.~2.5!, F(r ,t) is replaced by (8par0)21/2ei4par0s(t)F(r ,t).
~ii ! To balance out the exponential factor introduced above,K0(r ,r 8;t) is written as

K0~r ,r 8;t !5ei8par0s~ t !K0~r ,r 8;t !. ~3.6!

The resulting equation for thisK0(r ,r 8;t) is

i
]K0~r ,r 8;t !

]t
52¹2K0~r ,r 8;t !2¹82K0~r ,r 8;t !1F~r ,t !2d~r2r 8!1$Ve~r ,t !1Ve~r 8,t !

12@ uF~r ,t !u21uF~r 8,t !u2#%K0~r ,r 8;t !1E dr 9 F* ~r 9,t !2K0~r ,r 9;t !K0~r 8,r 9;t !

2~8paN!21HF~r ,t !F~r 8,t !@ uF~r ,t !u21uF~r 8,t !u22 ẑ~ t !#

1F~r ,t !E dr 9 K0~r 8,r 9;t !uF~r 9,t !u2F* ~r 9,t !

1F~r 8,t !E dr 9 K0~r ,r 9;t !uF~r 9,t !u2F* ~r 9,t !J , ~3.7!
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where

ẑ~ t !58par0z~ t !, ~3.8!

andE(t) was replaced by

E~ t !5 z̄~ t !1ze~ t !14par0z~ t !, ~3.9!

by employing Eq.~2.1!.
Given Eqs.~2.42! and ~3.4!, solitary-wave solutions are sought in the form

K0~r ,r 8;t !5k0~r2g~ t !,r 82g~ t !!e2 ix~r ,r8;t !, ~3.10!

wherek0(r ,r 8), x(r ,r 8;t), andg(t) are sufficiently smooth real functions satisfying

k0~r ,r 8!5k0~r 8,r !, x~r ,r 8;t !5x~r 8,r ;t !, ~3.11!

E dr f ~r2a~ t !!k0~r2g~ t !,r 82g~ t !!ei @u~r ,t !2x~r ,r8;t !#50. ~3.12!

The substitution of Eq.~3.10! into Eq. ~3.7! by virtue of Eqs.~2.42! and ~2.55! yields

2 i g8~ t !•~¹k01¹8k0!1k0~r2g~ t !,r 82g~ t !!
]x~r ,r 8;t !

]t

52¹2k02¹82k012i ~¹k0•¹x1¹8k0•¹8x!1 ik0~r2g~ t !,r 82g~ t !!~¹2x1¹82x!

1k0~r2g~ t !,r 82g~ t !!~ u¹xu21u¹8xu2!1 f ~r2a~ t !!2d~r2r 8!eix~r ,r8;t !2 i2u~r ,t !

1$V1~r2a~ t !!1V1~r 82a~ t !!1~r1r 8!•V2~ t !12V3~ t !

12@ f ~r2a~ t !!21 f ~r 82a~ t !!2#%k0~r2g~ t !,r 82g~ t !!

1E dr 9 f ~r 92a~ t !!2k0~r2g~ t !,r 92g~ t !!k0~r 82g~ t !,r 92g~ t !!

3exp$2iu~r 9,t !2 i @x~r ,r 9;t !1x~r 8,r 9;t !2x~r ,r 8;t !#%

2~8paN!21H f ~r2a~ t !! f ~r 82a~ t !!@ f ~r2a~ t !!21 f ~r 82a~ t !!22 ẑ #

3exp$ ix~r ,r 8;t !2 i @u~r ,t !1u~r 8,t !#%

1 f ~r2a~ t !!E dr 9 k0~r 82g~ t !,r 92g~ t !! f ~r 92a~ t !!3

3exp$ i @u~r 9,t !2u~r ,t !#1 i @x~r ,r 8;t !2x~r 8,r 9;t !#%

1 f ~r 82a~ t !!E dr 9 k0~r2g~ t !!,r 92g~ t !) f ~r 92a~ t !!3

3exp$ i @u~r 9,t !2u~r 8,t !#1 i @x~r ,r 8;t !2x~r ,r 9;t !#%J , ~3.13!

where it is understood thatk05k0(r2g(t),r 82g(t)) and x5x(r ,r 8;t), and ẑ is now time
independent. Elimination of the above phase factors succeeds ifx is taken equal to
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x~r ,r 8;t !5u~r ,t !1u~r 8,t !52 1
2a8~ t !•~r1r 8!12A~ t !. ~3.14!

In view of Eq. ~3.14!, separation of the real and imaginary parts in Eq.~3.13! leads to

2g8~ t !•~¹k01¹8k0!52~¹k0•¹x1¹8k0•¹8x!1k0~r2g~ t !,r 82g~ t !!~¹2x1¹82x!,

~3.15!

2 1
2k0~r2g~ t !,r 82g~ t !!a9~ t !•~r1r 8!12k0~r2g~ t !,r 82g~ t !!A8~ t !

52¹2k02¹82k01 1
2k0~r2g~ t !,r 82g~ t !!ua8~ t !u21 f ~r2a~ t !!2d~r2r 8!

1$V1~r2a~ t !!1V1~r 82a~ t !!1~r1r 8!•V2~ t !12V3~ t !

12@ f ~r2a~ t !!21 f ~r 82a~ t !!2#%k0~r2g~ t !,r 82g~ t !!

1E dr 9 f ~r 92a~ t !!2k0~r2g~ t !!,r 92g~ t !)k0~r 82g~ t !,r 92g~ t !!

2~8paN!21H f ~r2a~ t !! f ~r 82a~ t !!@ f ~r2a~ t !!21 f ~r 82a~ t !!22 ẑ #

1 f ~r2a~ t !!E dr 9 k0~r 82g~ t !,r 92g~ t !! f ~r 92a~ t !!3

1 f ~r 82a~ t !!E dr 9 k0~r2g~ t !,r 92g~ t !! f ~r 92a~ t !!3J , ~3.16!

of which the first one is satisfied if

g~ t !5a~ t !1a0 , ~3.17!

wherea0 is a vector constant. Without loss of generality, thisa0 is set equal to zero.
In Eq. ~3.16!, V2(t) andV3(t) are replaced by2 1

2a9(t) and 2 1
4ua8(t)u21A8(t) from Eqs.

~2.57! and~2.58!, respectively. With a subsequent shift both ofr andr 8 by a(t), all time depen-
dencies are eliminated and an equation fork0(r ,r 8) is obtained:

2¹2k0~r ,r 8!2¹82k0~r ,r 8!1 f ~r !2d~r2r 8!1$V1~r !1V1~r 8!12@ f ~r !21 f ~r 8!2#%k0~r ,r 8!

1E dr 9 f ~r 9!2k0~r ,r 9!k0~r 8,r 9!2~8paN!21H f ~r ! f ~r 8!@ f ~r !21 f ~r 8!22 ẑ #

1 f ~r !E dr 9 k0~r 8,r 9! f ~r 9!31 f ~r 8!E dr 9 k0~r ,r 9! f ~r 9!3J 50, ~3.18!

where

E dr f ~r !k0~r ,r 8!50. ~3.19!

When the number of particles,N, is sufficiently large, Eq.~3.18! is approximated by

2¹2k0~r ,r 8!2¹82k0~r ,r 8!1 f ~r !2d~r2r 8!1$V1~r !1V1~r 8!12@ f ~r !21 f ~r 8!2#%k0~r ,r 8!

1E dr 9 f ~r 9!2k0~r ,r 9!k0~r 8,r 9!50. ~3.20!
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IV. SLOWLY VARYING TRAPPING POTENTIAL

In order to elucidate the dependence on the physical parameters of the problem, let

F̃~r ,t !5Ar0F~r ,t !, r05N/V. ~4.1!

F̃(r ,t) satisfies

i ~]/]t !F̃~r ,t !5@2¹21Ve~r ,t !18pauF̃~r ,t !u224paz̃~ t !#F̃~r ,t !, ~4.2!

and the normalization condition

N21E dr uF̃~r ,t !u251. ~4.3!

In the above,

z̃~ t !5N21E dr uF̃~r ,t !u4. ~4.4!

Equation~2.42! reads

F̃~r ,t !5 f̃ ~r2a~ t !!exp$ i 1
2a8~ t !•r2 iA~ t !%, ~4.5!

where

N21E dr f̃ ~r !251. ~4.6!

The external potential is

Ve~r ,t !5Ṽ1~r2a~ t !!1r•Ṽ2~ t !1Ṽ3~ t !, ~4.7!

where

Ṽ1~r !5
¹2 f̃ ~r !

f̃ ~r !
28pa f̃~r !214paz̃, z̃5N21E dr f̃ ~r !4, ~4.8a!

and Ṽ2(t), Ṽ3(t) are given by equations similar to Eqs.~2.57! and ~2.58!. Therefore, f̃ (r )
5 f̃ m(r )(m50,1,...,) correspond to states of the condensate with energiesEm under the externa
potential

Ve5Ṽ1m1Em ~ Ṽ15Ṽ1m!. ~4.8b!

Given aVe(r ), Eq. ~4.2! can be solved approximately for the lowest state of the conden
when Ve(r ) is sufficiently slowly varying. This is the case in the recent experiments on Bo
Einstein condensation, where the trap is of macroscopic dimensions. By applying the proced
Refs. 8 and 13, neglect of the Laplacian furnishes

@Ve~r !18pa f̃~r !224paz̃2E# f̃ ~r !50, ~4.9!

whereE5E0 , or,

f̃ ~r !;H ~8pa!21/2@E14paz̃2Ve~r !#1/2, r inside R0

0, r outside R0
, ~4.10!
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since f̃ (r ) can be chosen to be non-negative. The regionR0 is determined by

Ve~r !,E14paz̃, rPR0 . ~4.11!

At the boundary]R0 of R0 ,

E14paz̃5Ve~r !, rP]R0 . ~4.12!

Under this approximation, an expression forE is obtained via multiplication of Eq.~4.9! by f̃ (r )
and integration overr :

E;4paz̃1 z̃e , ~4.13!

where

z̃e5N21E dr Ve~r !u f̃ ~r !u2. ~4.14!

Formula~4.10! breaks down in the vicinity of]R0 . A remedy to this problem is provided in Ref
8 and 13.

It remains to discuss the pair-excitation functionK0(r ,r 8;t). With

K0~r ,r 8;t !5k̃0~r2a~ t !,r 82a~ t !!e2 ix~r ,r8;t !, ~4.15!

and use of Eq.~3.14!, k̃0(r ,r 8) should satisfy

2¹2k̃0~r ,r 8!2¹82k̃0~r ,r 8!18pa f̃~r !2d~r2r 8!1$22ž216paz̃22z̃e1Ve~r !1Ve~r 8!

116pa@ f̃ ~r !21 f̃ ~r 8!2#%k̃0~r ,r 8!18paE dr 9 f̃ ~r 9!2k̃0~r ,r 9!k̃0~r 8,r 9!50, ~4.16!

where

ž5N21E dr u¹ f̃ ~r !u2. ~4.17!

Note that shiftingVe by a constant does not affect the equation of motion.
Following Ref. 8, let

p0~R,r !5k̃0~r1 ,r2!, ~4.18!

where

R5 1
2~r11r2!, r5r12r2 . ~4.19!

Hence,

p0~R,2r !5p0~R,r !. ~4.20!

The integro-differential equation forp0(R,r ) reads

2 1
2¹R

2 p0~R,r !22¹ r
2p0~R,r !18pa f̃~R!2d~r !1$22ž216paz̃22z̃e1Ve~R1 1

2r !

1Ve~R2 1
2r !116pa@ f̃ ~R1 1

2r !21 f̃ ~R2 1
2r !2#%p0~R,r !

18paE dr 8 f̃ ~R1r 8!2p0~R1 1
4r1 1

2r 8,
1
2r2r 8!p0~R2 1

4r1 1
2r 8,2

1
2r2r 8!50. ~4.21!
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In the spirit of Eq.~4.9!, ¹R
2 is neglected, while

Ve~R1 1
2r !;Ve~R!;Ve~R2 1

2r !, ~4.22!

f̃ ~R1 1
2r !; f̃ ~R!; f̃ ~R2 1

2r !, ~4.23!

p0~R1 1
4r1 1

2r 8,
1
2r2r 8!;p0~R, 1

2r2r 8!, ~4.24a!

p0~R2 1
4r1 1

2r 8,2
1
2r2r 8!;p0~R,2 1

2r2r 8!. ~4.24b!

Equation~4.21! then reduces to

2¹ r
2p0~R,r !14pa f̃~R!2d~r !1$2 ž28paz̃2 z̃e1Ve~R!116pa f̃~R!2%p0~R,r !

14pa f̃~R!2E dr 8 p0~R,r 8!p0~R,r2r 8!50. ~4.25!

Because the nonlinear term is a convolution integral, the equation of motion can be s
exactlywith recourse to the Fourier transform inr of p0(R,r ):

p̄0~R,k!5E dreik•rp0~R,r !, ~4.26!

which transforms Eq.~4.25! into

4pa f̃~R!2p̄0~R,k!21@k21k0~R!2# p̄0~R,k!14pa f̃~R!250, ~4.27!

where

k0~R!252 ž28paz̃2 z̃e1Ve~R!116pa f̃~R!2. ~4.28!

Equation~4.27! is solved explicitly to give

p̄0~R,k!5@8pa f̃~R!2#21$2k22k0~R!21A@k21k0~R!2#22~8pa!2 f̃ ~R!4%. ~4.29!

In view of formula ~4.10!,

p̄0~R,k!;H 2k0~R!22$k21k0~R!22k@k212k0~R!2#1/2%, R inside R0

0, R outside R0
, ~4.30!

by neglectingž sinceu¹ f̃ (r )u.0 unlessr is sufficiently close to]R0 , so that

k0~R!258pa f̃~R!2. ~4.31!

Inversion ofp̄0(R,k) is carried out as follows. ForR outsideR0 ,

p0~R,r !50. ~4.32!

If R lies insideR0 ,
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p0~R,r !5
1

~2p!3 lim
d→01

E dk e2 ik•re2dkp̄0~R,k!

52
1
k0

2
1

~2p!3 lim
d→01

E
0

2p

dfE
0

p

du sinuE
0

`

dk k2e2 ikur ucosue2dk

3@k21k0
22k~k212k0

2!1/2#

5
2

k0
2ur u

1
~2p!2 lim

d→01
Im E

0

`

dk eikur ue2dkk2~k212k0
2!1/2 ~k5A2k0 sinht !

5
k0

2

2p2ur u
lim

d→01
Im E

0

`

dt eiA2k0ur usinh te2dA2k0 sinh t~sinh 2t !2

5p22~4pa!3/2f̃ ~R!3 Im$S0,4~ iw !2S0,0~ iw !%
w

, ~4.33!

wherek05k0(R) and

w5~16pa!1/2f̃ ~R!ur u, ~4.34!

andS0,4 andS0,0 are Lommel’s functions.31

V. f̃ „r… IN A THREE-DIMENSIONAL SPHERICALLY SYMMETRIC HARMONIC
POTENTIAL

In the actual experiments on Bose–Einstein condensation, the trapping potential is of
plicated form. This is usually modeled as an anisotropic harmonic potential. In this sectionf̃ (r )
for the lowest state of the condensate is examined in some detail in the simplifying cas
spherically symmetric harmonic potential. A similar task is undertaken in Ref. 12, where
nonlinear Schro¨dinger equation is given in terms of the chemical potential.

With an external potentialVe(r ,t)5 1
4v0

2r 2, Ṽ1(r ) is taken to be

Ṽ1~r !5 1
4v0

2r 22E, ~5.1!

as is suggested by the eigenvalue problem associated with Eq.~2.56!. Terms linear inx, y, andz
are omitted. It follows that

Ṽ2~ t !5 1
2v0

2a~ t !, Ṽ3~ t !5E2 1
4v0

2ua~ t !u2, ~5.2!

yielding

a~ t !5r0 cosv0t1
v0

v0
sinv0t, ~5.3!

A~ t !5Et1
1

8 S uv0u22v0
2ur0u2

v0
sin 2v0t12v0•r0 cos 2v0t D 1const, ~5.4!

wherer0 andv0 are determined by the initial conditions and the constant is real.
For the state of lowest energyE5E0 , f̃ (r )5 f̃ 0(r ) is spherically symmetric.32 Let

q~j!5~4p!1/2~N2v0/2!21/4r f̃ 0~r !, j5~v0/2!1/2r . ~5.5!

From Eq.~4.8a!, this q(j) satisfies
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2
d2q~j!

dj2 1j2q~j!1L2
q~j!3

j2 5l2q~j! ~j.0!, ~5.6!

supplemented with the boundary conditions

q~0!50, ~5.7!

lim
j→`

q~j!50, ~5.8!

and the normalization condition

E
0

`

dj q~j!251. ~5.9!

In the above,

L5~2a2N2v0!1/4, ~5.10!

l25
2E
v0

1
1

2
L2E

0

` dj

j2 q~j!4, l.0. ~5.11!

Note that, forj→`, the nonlinear term in Eq.~5.6! can be neglected, and the asymptotic behav
of q(j) is found via the direct application of the Wentzel–Kramers–Brillouin method:

q~j!;C~j22l2!21/4exp$2~l2/2!@~j/l!A~j/l!2212cosh21~j/l!#%, ~5.12!

whereC is independent ofj. Compare with Ref. 12. For a discussion on the determination of
C see Ref. 33.

Some insight into the solution to Eqs.~5.6!–~5.9! can be obtained by considering the follow
ing cases.

~i! L@1. To leading order inL, neglect of the second derivative ofq(j) results in

q~j!;q~0!~j !5H ~j/L!Al22j2, 0<j,l

0, j.l,
~5.13!

which trivially satisfies Eqs.~5.7! and ~5.8!. q(0)(j) satisfies Eq.~5.9! provided thatl is

l;l~0!5~ 15
2 L2!1/5. ~5.14!

A similar calculation for an anisotropic potential can be found in Ref. 14, where the chem
potential is employed. From Eq.~5.11!,

E~0!5 5
14 ~ 15

2 !2/5~2a2N2v0!1/5v05 5
21 ~ 15

2 !2/5L4/5e0
ho, ~5.15!

wheree0
ho5 3

2v0 is the ground-state energy of the three-dimensional harmonic oscillator. App
mation~5.13! starts to break down at a distance of the order ofL22/15 from inside the ‘‘boundary’’
j5l, and then needs to be modified according to the procedure in Refs. 8 and 13. This pro
provides a smooth connection to asymptotic formula~5.12! when 0,j2l!1 while j2l
@O(L22/15).33

~ii ! L!1. To zeroth order inL, the known solution for the ground-state wave function of
three-dimensional harmonic oscillator is obtained:

q~0!~j !52p21/4je2j2/2, ~5.16!

with energy E(0)5(v0/2)l (0)25e0
ho. The first-order energy correctionE(1) can be obtained
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through the standard perturbation methods, by treatingV(0)(j)5L2j22q(0)(j)2 as the perturbing
potential. Therefore,l (1)2 equals the matrix element

l~1!2
5E

0

`

dj q~0!~j !V~0!~j !q~0!~j !. ~5.17!

By virtue of Eq.~5.11!,

E~1!5
v0L2

4 E
0

` dj

j2 q~0!~j !45A2

p

v0L2

4
, L!1, ~5.18!

or

E;E~0!1E~1!5
3

2
v01A2

p

v0L2

4
. ~5.19!

FIG. 1. Solution to Eqs.~5.6!–~5.9! for L2512.1 (87Rb atoms,a.110a0 , N5103, and v05(2p3120)/A8 rad/s).
Numerically computed eigenvalue isl256.8.

FIG. 2. Solution to Eqs.~5.6!–~5.9! for L25121 (87Rb atoms,N5104, andv05(2p3120)/A8 rad/s). Eigenvalue is
l2515.6.
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Numerical results. In order to make some contact with recent experimental situations, plo
q(j) are presented in Figs. 1 and 2 for two different values ofL, in close relation to the JILA
experiments, where87Rb atoms were used (a5110a0 , a0 : the Bohr radius!.1 Specifically, in Fig.
1, L2512.1, corresponding, for instance, toN5103 andv05(2p3120)/A8 rad/s. The numeri-
cally computed eigenvalue there isl256.8, givingE51.8e0

ho. Compare withE(0)51.45e0
ho pro-

vided by Eq.~5.15!. In Fig. 2, L25121. The corresponding eigenvalue is found to bel2515.6,
giving E53.8e0

ho. Compare withE(0)53.63e0
ho from Eq. ~5.15!.

VI. CONCLUSIONS AND DISCUSSION

In the theoretical treatment of Bose–Einstein condensation in dilute atomic gases with
sive interactions, the trap is replaced by a sufficiently smooth external potentialVe(r ,t) that acts
simultaneously on each atom and increases sufficiently rapidly at large distances. As a
quence, the boson system is no longer translationally invariant. Work carried out 38 year4

turns out to be a suitable starting point. An important element introduced there was the syst
consideration of scattering processes, such as pair creation, with a study of some of their p
consequences. In the presence of a trapping potential, pair creation plays a significant role
described mathematically by the pair-excitation functionK0(r ,r 8;t). On the basis of the ansat
~1.1!, a nonlinear integro-differential equation is satisfied byK0(r ,r 8;t).

Solitary-wave solutions to the nonlinear evolution equations for the condensate wave fu
F(r ,t) and the pair-excitation function are uncovered in any number of space dimensio
Ve(r ,t) can properly be decomposed into~i! a trapping potentialVe translated by the position
vector r (t)5a(t) of the pulse ‘‘center of mass,’’ and~ii ! a potential linear in the space coord
nates, according to~2.55!–~2.58!. It is somewhat tempting to put these statements in the langu
of classical mechanics, recognizing, for instance, the second term mentioned above as the p
associated with a uniform force. The conclusions here are the natural generalization of
obtained for the one-dimensional case, without any restriction to motion along fixed ax
space.18 Given an external potential that meets the aforementioned conditions, the initial a
tudes are obtained by solving a nonlinear ‘‘eigenvalue problem’’ forF(r ,t50) underVe , and a
nonlinear integro-differential equation forK0(r ,r 8;t50). The motion of the solitary wave in
space, i.e., the vectora(t), is determined by the uniform force. In this sense, the solitary wav
expected to behave like a classical particle. Conversely, given an admissibleF(r ,t50), i.e.,
sufficiently smooth and rapidly decreasing to zero asr→`, it is possible to construct an extern
potential that permits solitary-wave behavior for bothF(r ,t.0) andK0(r ,r 8;t.0). Of course, in
real experimental situations, the form of the external potential may deviate from the one giv
Eq. ~2.55!. The question of the stability of the solitary-wave solutions under variations ofVe(r ,t)
is not addressed in this paper.

As is also pointed out in Ref. 8, the approximate Hamiltonian that furnishes the equati
motion for K0 does not include, for instance, the scattering of phonons and the decay of a
phonon into two or three phonons. In other words, under the present approximation, the ph
have infinite lifetimes and remain stable. This in turn implies that the ansatz~1.1! and the existing
equations of motion are of rather special forms, being valid only over some moderate time
The problem of shorter or longer time scales is not touched upon in this paper; this time limi
may depend on the higher-order terms in the Hamiltonian or the initial condition for the con
sate wave function. It is believed that the ansatz for the many-body wave function can be
alized. A challenging open problem is to obtain such generalizations, which must satisfy
consistency conditions.
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APPENDIX

Consider the one-dimensional linear Schro¨dinger equation in a harmonic-oscillator potent
~\52m51, v052):

i
]w~x,t !

]t
5S 2

]2

]x2 1x2Dw~x,t !. ~A1!

It is well known34 that an initial displacement of the ground-state wave functionw0(x)
5p21/4e2x2/2 at t50 by x5x0 produces the wave packet

w~x,t !5w0~x2x0e22i t !e2 in~ t !, t.0, ~A2!

where, for definiteness,n(t50)50. Substitution into Eq.~A1! furnishes

n~ t !5t1
ix0

2

4
e2 i4t2

ix0
2

4
. ~A3!

w(x,t) is subsequently recast in a form where magnitude and phase are separated:

w~x,t !5p21/4expH 2
1

2
~x2x0e22i t !22 i t 1

x0
2

4
e2 i4t2

x0
2

4 J
5p21/4expF2

1

2
~x2x0 cos 2t !2GexpF2 i S t1x0x sin 2t2

x0
2

4
sin 4t D G , ~A4!

which is a one-dimensional solitary wave. Note that with the units of Eq.~A1! the eigenvalue
corresponding tow0(x) is equal to 1.

The preceding analysis can be extended to thed-dimensional Schro¨dinger equation

i
]w~r ,t !

]t
5S 2¹21(

j 51

d

xj
2Dw~r ,t !, ~A5!

where r5(x1 ,...,xd), d>2. With an initial displacement of the ground-state wave funct
w0„r …5p2d/4e2r•r /2 by r5r0 , at later timesw(r ,t) becomes

w~r ,t !5w0~r2r0e22i t !e2 in~ t !, t.0. ~A6!

After some straightforward algebra,

n~ t !5d•t1
i ur0u2

4
e2 i4t2

i ur0u2

4
, ~A7!

w~r ,t !5p2d/4S )
j 51

d

expF2
1

2
~xj2xj 0 cos 2t !2G D expF2 i S d•t1r0•r sin 2t2

ur0u2

4
sin 4t D G

5w0~r2r0 cos 2t !expF2 i S d•t1r0•r sin 2t2
ur0u2

4
sin 4t D G . ~A8!

This is a solitary wave ind space dimensions.
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A generalization of Wigner’s unitary–antiunitary theorem
to Hilbert modules
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Let H be a HilbertC* -module over a matrix algebraA. It is proved that any
function T:H→H which preserves the absolute value of the~generalized! inner
product is of the formT f5w( f )U f ( f PH), wherew is a phase-function andU is
an A-linear isometry. The result gives a natural extension of Wigner’s classical
unitary–antiunitary theorem for Hilbert modules. ©1999 American Institute of
Physics.@S0022-2488~99!01611-4#

I. INTRODUCTION AND STATEMENT OF THE RESULT

Wigner’s unitary–antiunitary theorem reads as follows. LetH be a complex Hilbert space an
let T:H→H be a bijective function~linearity or continuity is not assumed! with the property that

u^Tx,Ty&u5u^x,y&u ~x,yPH !.

ThenT is of the form

Tx5w~x!Ux ~xPH !,

whereU:H→H is either a unitary or an antiunitary operator andw:H→C is a so-called phase
function which means that its values are of modulus 1. This celebrated result plays a very
tant role in quantum mechanics and in representation theory in physics.

In our recent paper1 we presented a new, algebraic approach to this theorem. Our idea t
out to be strong enough to give a natural generalization of Wigner’s theorem for H
C* -modules over matrix algebras. However, in the main result@Ref. 1, Theorem 1# we supposed
that our map is surjective and, in addition, a condition was imposed on the underlying m
which was proved to be equivalent to that its so-called modular dimension is high enough.
present paper, refining and modifying our argument quite significantly, we obtain our Wigner
result in full generality, that is, neither the surjectivity of the transformation in question no
high dimensionality of the Hilbert module is assumed.

First, we clarify the concepts and notation that we are going to use throughout. For a bit
detailed discussion we refer to the introduction of Ref. 1. LetA be aC* -algebra. LetH be a left
A-module with a map@ .,.#:H3H→A satisfying

~i! @ f 1g,h#5@ f ,h#1@g,h#;
~ii ! @a f ,g#5a@ f ,g#;
~iii ! @g, f #5@ f ,g#* ;
~iv! @ f , f #>0 and@ f , f #50 if and only if f 50

for every f ,g,hPH andaPA. If H is complete with respect to the normf °i@ f , f #i1/2, then we
say thatH is a HilbertA-module or a HilbertC* -module overA with generalized inner produc
@.,.#. Nowadays, Hilbert modules overC* -algebras play a very important role in many parts
functional analysis such as, for example, in theK-theory ofC* -algebras. There is another conce
of Hilbert modules due to Saworotnow.2 These are modules overH* -algebras. The only forma
difference in the definition is that in the case of Saworotnow’s modules, the generalized
55440022-2488/99/40(11)/5544/11/$15.00 © 1999 American Institute of Physics
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product takes its values in the trace-class of the underlyingH* -algebra and the norm with respe
to which we require completeness isf °(tr@ f , f #)1/2. Saworotnow’s modules appear natura
when dealing with multivariate stochastic processes and they have applications in Clifford an
and hence in some parts of mathematical physics.

If the underlyingC* -algebraA is the algebraMd(C) of all d3d complex matrices, then,A
being finite dimensional, the norms onA are all equivalent. Therefore, the HilbertC* -modules
over theC* -algebraMd(C) are the same as Saworotnow’s Hilbert modules over theH* -algebra
Md(C). We emphasize this fact since, in general, the behavior of Saworotnow’s Hilbert mo
is much nicer and we shall use several results concerning them. Finally, we note that it se
be more common to use right modules instead of left ones. Of course, this is not a real diffe
only a question of taste.

Now we are in a position to formulate the main result of the paper. Recall that in
C* -algebraA, the elementuau denotes the square root ofa* a (aPA).

Theorem: Let H be a Hilbert C* -module over the matrix algebra A5Md(C), d.1. Let
T:H→H be a function with the property that

u@T f ,T f8#u5u@ f , f 8#u ~ f , f 8PH!. ~1!

Then there exists an A-isometry U:H→H and a phase-functionw:H→C such that

T f5w~ f !U f ~ f PH!.

Here, A-isometry means that U:H→H is a linear map with U(a f )5aU f and @U f ,U f 8#
5@ f , f 8# (aPA, f, f 8PH).

The corresponding result for the cased51, that is, whenH is a Hilbert space, can be foun
in Refs. 3 and 4~for a recent paper also see Ref. 5!. As we shall see in the proof, the nonappe
ance ofA-anti-isometries in the above result is the consequence of the noncommutativity
underlying algebraA.

Hilbert spaces over algebras different fromR andC do appear in mathematical physics~see,
for example, Ref. 6 for a Wigner-type theorem concerning Hilbert spaces over the skew-fi
quaternions!. We believe that our present result may also have physical interpretation.

II. PROOF

We give some additional definitions and notation that we shall use in the proof of our
rem. As mentioned in the introduction, Saworotnow’s modules have many convenient prop
which are familiar in the theory of Hilbert spaces~we refer to Ref. 2!. First of all, if H is a Hilbert
module over anH* -algebra, thenH is a Hilbert space with the inner product^.,.&5tr@ .,.#. If
M,H is a closed submodule, then its orthogonal complement with respect to^.,.& and@.,.# are the
same. A linear operatorT on H which is bounded with respect to the Hilbert space norm defi
above is called anA-linear operator ifT(a f )5aT f holds true for everyf PH andaPA. Every
A-linear operatorT is adjointable, namely, the adjointT* of T in the Hilbert space sense i
A-linear and we have@T f ,g#5@ f ,T* g# ( f ,gPH). Consequently, the collection of allA-linear
operators forms aC* -subalgebra in the full operator algebra on the Hilbert spaceH. This will be
denoted byB~H! while the notation of the full operator algebra over a Hilbert spaceH is B(H).

In the case of a Hilbert moduleH over anH* -algebra, the natural equivalent of the Hilbe
basis is the so-called modular basis.7 An elementf PH is called a modular unit vector, if@ f , f # is
a nonzero minimal projection inA. A family $ f a%a,H is said to be modular orthonormal if

~a! @ f a , f b#50 if aÞb,
~b! f a is a modular unit vector for everya.

A maximal modular orthonormal family of vectors inH is called a modular basis. The commo
cardinality of modular bases inH is called the modular dimension ofH ~see Ref. 7, Theorem 2!.
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Now, we define operators which are the natural equivalent of the finite rank operators
case of Hilbert spaces. Iff ,gPH, then let f (g denote theA-linear operator defined by

~ f (g!h5@h,g# f ~hPH!.

It is easy to see that for everyA-linear operatorS we have

S~ f (g!5~S f !(g, ~ f (g!S5 f (~S* g!

and

~ f (g!~ f 8(g8!5~@ f 8,g# f !(g85 f (~@g, f 8#g8!.

Define

F~H!5H (
k51

n

f k(gk : f k ,gkPH~k51,...,n!,nPNJ
which is a *-ideal in theC* -algebra of allA-linear operators. Observe that ifH is a Hilbert
module overMd(C), then the range of every element ofF~H! has finite linear dimension, bu
there can be finite rank operators on the Hilbert spaceH which do not belong toF~H!. In general,
if the underlyingH* -algebra is infinite dimensional, then these two classes of operators
nothing to do with each other.

We begin with some auxiliary results that we shall need in the proof of our theorem.
Lemma 1: Let A5Md(C), dPN. If H is a Hilbert A-module, then every projection inB~H! is

of the form P5(a f a( f a , where$ f a%a,H is a modular orthonormal basis in the range of P (th
range of an A-linear projection is a closed submodule).

If $ f a%a,H is a modular orthonormal set, then for the orthogonal projection onto the clo
submodule generated by$ f a%a (which is an A-linear projection) we have P5(a f a( f a .

Proof: Let first PPB(H) be a projection and let$ f a%a denote a modular orthonormal basis
the closed submodule rngP. By Ref. 7 Theorem 1, we have

f 5(
a

@ f , f a# f a ~ f PrngP!.

SinceP f50 and@ f , f a#50 for f PrngP', we obtainP5(a f a( f a .
Now, let $ f a%a,H be a modular orthonormal set and denoteM the closed submodule

generated by this set. We show that$ f a%a is a modular basis inM. Since this collection is a
modular orthonormal family, if this was not maximal, then we could find a nonzero elemef
PM which is modular orthogonal to$ f a%a , that is,@ f , f a#50 for everya. But this is a contra-
diction, since every element ofM can be approximated by finite sums of the forma1f a1

1¯

1anf an
(aiPA) and hence we would obtain thatf is modular orthogonal to itself. By the first pa

of the proof we obtain that the orthogonal projection ontoM is equal to(a f a( f a , so this
operator is anA-linear projection. h

Lemma 2: Let A5Md(C), dPN and letH be a Hilbert A-module. Suppose thatM,H is a
closed submodule and$ f a%a is a modular orthonormal system generatingM. Then for every
g,hPM we have

~i! g5(a@g, f a# f a ,
~ii ! @g,h#5(a@g, f a#@ f a ,h#.

Moreover, the vector kPH belongs toM if and only if
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@k,k#5(
a

@k, f a#@ f a ,k#.

Proof: See Ref. 7, Theorem 2, and its proof. h

Proposition 3: Let A5Md(C), dPN. If H is a Hilbert A-module, thenB~H! is a type I von
Neumann factor. If the modular dimension ofH is greater than 2, thenB~H! is not isomorphic to
M2(C).

Proof: It is clear thatB~H! is a von Neumann algebra since it is the commutant of the
$La :Laf 5a f( f PH,aPA)% in the full operator algebra overH as a Hilbert space. To show tha
B~H! is a factor, it is sufficient to verify that the central projections inB~H! are all trivial. Let
PPB(H) be a nonzero central projection. Letf be a modular unit vector in rngP. For anya,b
PA we have

P•g(~a f !5g(~a f !•P5g(P~a f !5g(~a f !.

This implies that

P~b@ f , f #a* g!5P~~g(~a f !!b f !5~g(~a f !!b f5b@ f , f #a* g.

The element@ f , f # is a rank-one projection. Hence, every element ofA is the sum of
b@ f , f #a* -type elements and hence we obtain thatPg5g for everygPH. ThusP5I . So,B~H!
is a factor. We next prove thatB~H! is type I. Let f PH be a modular unit vector. Since@ f , f # f
5 f ~see Ref. 7, Lemma 1!, for anyAPB(H) we compute

f ( f •A• f ( f 5~@A f , f # f !( f 5~@A~@ f , f # f !,@ f , f # f # f ( f !5~@ f , f #@A f , f #@ f , f # f !( f 5l~ f ( f !,

wherel is scalar such that@ f , f #@A f , f #@ f , f # f 5l f ~the existence of such a scalar follows from t
fact that@ f , f # is a rank-one matrix!. This shows that the projectionf ( f is Abelian. So, every
nonzero central projection inB~H! contains a nonzero Abelian projection which means thatB~H!
is type I.

Suppose that the modular dimension ofH is greater than 2. To see thatB~H! is not isomor-
phic to M2(C) it is now enough to show that the linear dimension ofB~H! is greater then 4. Let
$ f 1 , f 2 , f 3% be a modular orthonormal set inH. Denote @ f i , f i #5ei . If d>2, then there are
elementsai ,biPA such that$eiai ,eibi% is independent for everyi 51,2,3. It is easy to check tha
$(ai f i)( f i ,(bi f i)( f i : i 51,2,3% is linearly independent. Therefore, the algebraic dimension
B~H! is at least 6. Ifd51, then the statement is trivial. h

Let H be a Hilbert space. Recall that ifx,yPH, thenx^ y stands for the operator defined b
(x^ y)(z)5^z,y&x(zPH). The ideal of all finite rank operators inB(H) is denoted byF(H).

Lemma 4: Let H be a Hilbert space. Iff:F(H)→B(H) is a * -homomorphism which pre
serves the rank-one projections, then there is an isometry UPB(H) such thatf is of the form

f~A!5UAU* ~APF~H !!.

Similarly, if c:F(H)→B(H) is a * -antihomomorphism preserving the rank-one projections, t
c is of the form

c~A!5VAtrV* ~APF~H !!,

where V is an isometry andtr denotes the transpose with respect to a fixed orthonormal bas
H.

Proof: Let y,zPH be such that̂f(y^ y)z,z&51. Define

Ux5f~x^ y!z ~xPH !.
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It is easy to see thatU is an isometry andUA5f(A)U(APF(H)). Let xPH be an arbitrary unit
vector. Thenf(x^ x) is a rank-one projection, so it is of the formf(x^ x)5x8^ x8 with some
unit vectorx8PH. Since

Ux^ x5f~x^ x!U5x8^ U* x8,

we obtain thatx8 is equal toUx multiplied by a scalar of modulus 1. Therefore,f(x^ x)5Ux
^ Ux5U•x^ x•U* . Since this holds true for every unit vectorxPH, by linearity we have the
first assertion of the lemma.

As for the second statement, we can apply a similar argument. Choosingy,zPH such that
^c(y^ y)z,z&51, define

Ṽx5c~y^ x!z ~xPH !.

One can verify thatṼ is an anti-isometry~that is, a conjugate-linear isometry!, and then prove tha
c(A)5ṼA* Ṽ* (APF(H)). Considering an antiunitary operatorJ for which JA* J* 5Atr and
definingV5ṼJ, we conclude the proof. h

Lemma 5: Let(an) be a sequence in the Hilbert space H and let bPH be such that(nan

^ an5b^ b in the trace norm. Then for every n there exists a scalarln such that an5lnb.
Proof: Clearly, we may assume thatibi51. Taking traces on both sides of the equal

(nan^ an5b^ b, we obtain(niani251. On the other hand, we also have

(
n

u^b,an&u25K S (
n

an^ anDb,bL 51.

By the Schwarz inequality,

15(
n

u^b,an&u2<(
n

iani251.

So, there are equalities in the Schwarz inequalitiesu^b,an&u<iani . This implies the assertion.h

Proof of Theorem:We define an orthoadditive projection-valued measurem on the lattice
P~H! of all A-linear projections as follows. If$ f a%a is a modular orthonormal set, then let

mS (
a

f a( f aD 5(
a

T fa(T fa .

Observe that by~1!, $T fa%a is also modular orthonormal and, hence, by Lemma 1(aT fa(T fa

belongs toP~H!. We show thatm is well-defined. Let$ f a%a and$gb%b generate the same close
submoduleM. We claim that the same holds true for$T fa%a and$Tgb%b . Indeed, ifgPM, then
due to the fact that$ f a%a is a modular basis inM we see thatg5(a@g, f a# f a . This implies that

@Tg,Tg#5@g,g#5(
a

@g, f a#@ f a ,g#5(
a

@Tg,T fa#@T fa ,Tg#,

which, by Lemma 2, gives us thatTg belongs to the closed submodule generated by$T fa%a . It is
now obvious thatm is an orthoadditiveP~H!-valued measure onP~H!.

Let us suppose that the modular dimension ofH is greater than 2. By Proposition 3 we ca
apply a deep result of Bunce and Wright@Ref. 8, Theorem A#. It states that every bounded finitel
orthoadditive, Banach space valued measure on the set of all projections in a von Ne
algebra without a summand isomorphic toM 2(C) can be uniquely extended to a bounded line
transformation defined on the whole algebra. Letf:B(H)→B(H) denote the transformation
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corresponding tom. Since it sends projections to projections, it is a standard argumen
verify that f is a Jordan*-endomorphism ofB~H!, that is, we havef(T)25f(T2), f(T)*
5f(T* )(TPB(H)) ~see, for example, the proof of Ref. 9, Theorem 2!.

We prove thatf( f ( f )5T f(T f for every f PH. Let @ f , f #5( il i
2ei , wherel i ’s are non-

negative real numbers andei ’s are pairwise orthogonal rank-one projections. Definef i

5(1/l i)ei f . We have@ f i , f i #5ei and @ f i , f j #50 if iÞ j , that is, $ f i% i is modular orthonormal.
Then f 5( il i f i5( iei f since

(
i

@ f , f i #@ f i , f #5(
i

l i
2ei5@ f , f #

implies thatf 5( i@ f , f i # f i5( iei f ~see Lemma 2!. So, we have

f~ f ( f !5(
i , j

f~ei f (ej f !.

But (ei f )((ej f )50 if iÞ j . Indeed, we compute@g,ej f #ei f 5@g, f #ejei f 50 for everygPH.
Hence,

f~ f ( f !5(
i

f~ei f (ei f !5(
i

l i
2f~ f i( f i !5(

i
l i

2m~ f i( f i !5(
i

l i
2T fi(T fi .

So, the question is that whether the equalityT f(T f5( il i
2T fi(T fi holds true. Clearly,$T fi% is

modular orthonormal. We compute

@T f ,T f#5@ f , f #5(
i

@ f , f i #@ f i , f #5(
i

@T f ,T fi #@T fi ,T f#

which, by Lemma 2, implies thatT f5( i@T f ,T fi #T fi . We know that u@T f ,T fi #u5u@ f , f i #u
5l iei . Similarly, u@T fi ,T f#u5u@ f i , f #u5l iei . Sinceei is a rank-one projection, we obtain th
@T f ,T fi # is also rank-one. Furthermore, asu@T f ,T fi #u5u@T fi ,T f#u is a scalar multiple ofei we
can infer that@T f ,T fi #5m il iei , wherem i is a scalar of modulus 1. Therefore, we have

T f(T f5(
i , j

m im̄ j~l ieiT f i(l jejT f j !.

But similarly as above, foriÞ j we have

~eiT f i(ejT f j !g5@g,ejT f j #eiT f i5@g,T f j #ejeiT f i50.

Therefore

T f(T f5(
i , j

m im̄ j~l ieiT f i(l jejT f j !

5(
i

m im̄ i~l ieiT f i(l ieiT f i !5(
i

l ieiT f i(l ieiT f i5(
i

l i
2~eiT f i(eiT f i !.

But (eiT f i(eiT f i)5T fi(T fi . Indeed, sinceT fi is a modular unit vector, we haveeiT f i

5@ f i , f i #T fi5@T fi ,T fi #T fi5T fi ~see Ref. 7, Lemma 1!. Consequently, we obtainT f(T f
5( il i

2T fi(T fi and this was to be proved. So, we getf( f ( f )5T f(T f for every f PH.
We assert thatf is either a*-homomorphism or a*-antihomomorphism. By Lemma 1 th

minimal projections inH are exactly the operators of the formf ( f , wheref PH is a modular unit
vector. Clearly,f sends minimal projections to minimal projections. By Ref. 1, Lemma 2,
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linear space generated by the minimal projections inB~H! is F~H!. SinceB~H! is a type I factor,
it is isomorphic to the full operator algebraB(H) on a Hilbert spaceH. Since *-isomorphisms
preserve the minimal projections,F~H! corresponds to the idealF(H) of all finite rank operators
in B(H). Under this identification, we obtain a Jordan*-homomorphismf̃ on F(H) correspond-
ing to f uF(H) which sends rank-one projections to rank-one projections. SinceF(H) is a local
matrix algebra, by Ref. 10, Theorem 8, we obtain thatf̃ is the sum of a*-homomorphism and
a *-antihomomorphism. Asf̃ preserves the rank-one projections, from the simplicity of the r
F(H) it follows that f̃ is either a*-homomorphism or a*-antihomomorphism. Obviously, th
same holds forf uF(H) .

Let us suppose that the modular dimension ofH is greater thand. By Ref. 1, Remark 2, there
are vectorsg,hPH such that @g,h#5I . The map f uF(H) is either a*-homomorphism or
a *-antihomomorphism. First consider this latter case. Referring to Lemma 4 we have an op
UPB(H) with U* U5I and a *-antiautomorphismc of F~H! such thatf(A)5Uc(A)U* (A
PF(H)).

We define

V f5c~g( f !U* Th ~ f PH!,

whereg,hPH are fixed and such that@g,h#5I . Clearly, V is a conjugate-linear operator. W
have

VA f5c~g(~A f !!U* Th5c~g( f A* !U* Th5c~A!* c~g( f !U* Th5c~A!* V f ,

that is,VA5c(A)* V(APF(H)). We compute

@V f ,V f#5@c~g( f !U* Th,c~g( f !U* Th#

5@c~g( f • f (g!U* Th,U* Th#

5@Uc~g( f • f (g!U* Th,Th#

5@f~g( f • f (g!Th,Th#

5@f~A@ f , f #g(A@ f , f #g!Th,Th#

5@~T~A@ f , f #g!(T~A@ f , f #g!!Th,Th#

5@Th,T~A@ f , f #g!#@T~A@ f , f #g!,Th#

5@h,A@ f , f #g#@A@ f , f #g,h#5@h,g#@ f , f #@g,h#5@ f , f #.

SinceV is conjugate-linear, by polarization we obtain

@V f ,V f8#5@ f 8, f # ~ f , f 8PH!.

We show that rngT,rngU which will imply UU* T5T (UU* is the projection onto the
range ofU!. Let f PH. In the previous part of the proof we have learned thatT f(T f is a linear
combination of operators of the formT fb(T fb , where f b’s are modular unit vectors. We have

T fb(T fb5f~ f b( f b!5Uc~ f b( f b!U*

and, c being a *-antiautomorphism,c( f b( f b) is a minimal projection. Therefore,c( f b( f b)
5 f b8( f b8 with some modular unit vectorf b8 and henceT fb(T fb5U f b8(U f b8 . Now let T f5g8
1g9, whereg8PrngU andg9PrngU'. We have

@g9,g9#25@g9,T f#@T f ,g9#5@~T f(T f !g9,g9#50.
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This gives us thatg950 which shows thatT fPrngU.
We next prove thatV is surjective. Letf PH be arbitrary. Sincec is a* -antiautomorphism of

F~H!, we can find an operatorRPF(H) such thatc(R)* 5 f (U* Th. We compute

VRg5c~R!* Vg

5c~R!* c~g(g!U* Th

5c~R!* U* f~g(g!Th

5c~R!* U* ~Tg(Tg!Th

5@Th,Tg#c~R!* U* Tg

5@Th,Tg#@U* Tg,U* Th# f

5@Th,Tg#@UU* Tg,Th# f

5@Th,Tg#@Tg,Th# f 5@h,g#@g,h# f 5 f .

Sincef was arbitrary, we have the surjectivity ofV.
We compute

@UV f8,T f#@T f ,UV f8#5@~T f(T f !UV f8,UV f8#

5@U* ~T f(T f !UV f8,V f8#

5@U* f~ f ( f !UV f8,V f8#

5@c~ f ( f !V f8,V f8#

5@~V• f ( f ! f 8,V f8#5@ f 8,~ f ( f ! f 8#5@ f 8, f #@ f , f 8#.

This gives us that

@V21U* T f8, f #@ f ,V21U* T f8#5@UVV21U* T f8,T f#@T f ,UVV21U* T f8#

5@UU* T f8,T f#@T f ,UU* T f8#

5@T f8,T f#@T f ,T f8#5@ f 8, f #@ f , f 8#.

Replacingf by x f(xPA), we obtain

@V21U* T f8, f #x* x@ f ,V21U* T f8#5@ f 8, f #x* x@ f , f 8#.

Since every element ofA is a linear combination of elements of the formx* x, it follows that

@V21U* T f8, f #y@ f ,V21U* T f8#5@ f 8, f #y@ f , f 8#

holds for everyyPA. This implies that for everyf PH, the matrices@ f ,V21U* T f8# and@ f , f 8#
are linearly dependent. It requires only elementary linear algebra to verify the following asse
If X,Y are vector spaces andA,B:X→Y are linear operators such that for everyxPX, the set
$Ax,Bx% is linearly dependent, then eitherA and B have rank at most one or$A,B% is linearly
dependent. Since the rank of the linear operatorf °@ f , f 8# is clearly greater than 1 iff 8Þ0, we
have a scalarl f 8 ~depending only onf 8) such that@ f ,V21U* T f8#5l f 8@ f , f 8#( f , f 8PH). This
gives us that there is a functionw:H→C such thatV21U* T f85w( f 8) f 8 which results inT f8
5w( f 8)UV f8. It follows from the properties ofT,U,V that w is of modulus 1. Finally, we have

u@ f , f 8#u5u@T f ,T f8#u5u@UV f ,UV f8#u5u@V f ,V f8#u5u@ f 8, f #u.
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Since this must hold true for everyf , f 8PH, it follows that for every rank-one matrixaPA we
have uau5ua* u. But this is an obvious contradiction. Since we have started with assuming
f uF(H) is a * -antihomomorphism, we thus obtain that it is in fact a* -homomorphism.

Pushing the problem fromB~H! to the full operator algebraB(H)(>B(H)), we see that there
is an A-isometry UPB(H) such thatf(A)5UAU* (APF(H)). This gives us thatT f(T f
5U f (U f for every f PH. Similarly as before, this implies that rngT,rngU which yields
UU* T f5T f( f PH). We next compute

@U f 8,T f#@T f ,U f 8#5@~T f(T f !U f 8,U f 8#

5@~U f (U f !U f 8,U f 8#5@U f 8,U f #@U f ,U f 8#5@ f 8, f #@ f , f 8#,

which gives us that

@U* T f8, f #@ f ,U* T f8#5@UU* T f8,T f#@T f ,UU* T f8#5@T f8,T f#@T f ,T f8#5@ f 8, f #@ f , f 8#.

Just as above, it follows thatU* T f8 is a scalar multiple off 8. Therefore, there exists a
A-isometryU and a phase-functionw:H→C such that

T f5w~ f !U f ~ f PH!.

This completes the proof in the case when the modular dimensionn of H is greater thand.
We now treat the low dimensional cases, that is, whenn<d. Let Hd denote thed-dimensional

complex Euclidean space. ThenHd can be considered as a HilbertA-module. Here, the module
operation is (a,j)°a(j) and the generalized inner product is defined by@j,z#5j ^ z. Clearly,
the modular dimension of this module is 1. It now follows from the structure of our Hilb
A-modules~see, for example, Ref. 11! that H is isomorphic to then-fold direct sum ofHd with
itself. So, we may assume thatH5( i 51

n
% Hd . The definition of the module operation and that

the inner product on this direct sum is defined as follows:

a@j i # i5@aj i # i , @@j i # i ,@z i # i #5(
i

j i ^ z i .

Let us describe the elements ofB~H!. Since every element ofB~H! is a linear operator on the
direct sum of vector spaces, it can represented by a matrix

F a11 ¯ a1n

] � ]

an1 ¯ ann

G ,

whereai j ’s are linear operators acting onHd . Now, A-linearity means that

F a11aj11¯1a1najn

]

an1aj11¯1annajn

G5F a11 ¯ a1n

] � ]

an1 ¯ ann

G F aj1

]

ajn

G5F a~a11j11¯1a1njn!

]

a~an1j11¯1annjn!
G

holds for everyaPA and j iPHd . It is easy to see that this is equivalent toai j a5aai j (aPA)
which means thatai j ’s are scalars. Consequently,B~H! is isomorphic toMn(C).

Suppose thatn.1. If z is any vector inHd , then letzk denote the element ofH whose
coordinates are all 0 except for thekth one which isz. Fix a unit vectorjPHd . We have

(
i

~Tjk! i ^ ~Tjk! i5@Tjk,Tjk#5@jk,jk#5j ^ j.
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From Lemma 5 we infer that for everyi 51,...,n, there is a scalara ik such that (Tjk) i5a ikj.
Clearly, the columns of the matrix (a ik) are unit vectors. Since@Tjk,Tj l #50 for kÞ l , it follows
that the columns of our matrix are pairwise orthogonal as well. So (a ik) is a unitary matrix and
hence it defines anA-unitary operatorU on H. ConsideringU* T instead ofT, we can assume tha
Tjk is equal tojk for everyk51,...,n. If f is any vector inH, then considering the equality

uj ^ ~T f !ku5u@Tjk,T f#u5u@jk, f #u5uj ^ f ku,

we obtain

~T f !k5mkf k ~k51,...,n! ~2!

with some scalarsmk of modulus 1. We claim that all themk’s are equal. Fix agPH whose
coordinates are pairwise orthogonal unit vectors inHd ~recall thatn<d). It is apparent that if we
multiply T from the left by anA-unitary operator whose matrix is diagonal, then the so obtai
transformation still has the property~2!. So we may assume thatTg5g. Let f PH be arbitrary.
We have

U(
i

m i f i ^ giU5u@T f ,Tg#u5u@ f ,g#u5U(
i

f i ^ giU.
This implies that

(
i , j

^m j f j ,m i f i&gi ^ gj5(
i , j

^ f j , f i&gi ^ gj

which gives that

^m j f j ,m i f i&5^ f j , f i&.

So, if ^ f i , f j&Þ0, then we havem i5m j . Suppose now that^ f i , f j&50 but f i , f jÞ0. Let zPHd be
any nonzero vector and considerz i1z j . By what we have just proved, it follows thatT(z i1z j ) is
a scalar multiple ofz i1z j . We compute

uz ^ ~m i f i1m j f j !u5u@z i1z j ,T f#u5u@T~z i1z j !,T f#u5u@z i1z j , f #u5uz ^ ~ f i1 f j !u

which clearly gives us thatm i5m j . Therefore, we obtain that for any vectorf PH, Tf is equal to
f multiplied by a complex number of modulus 1. The assertion of the theorem now follows fo
case 1,n<d.

Finally, suppose thatn51, which means thatH5Hd . Our problem is to describe those ma
T:Hd→Hd for which uTj ^ Tzu5uj ^ zu(j,zPHd). But this equality clearly implies thatTz is
equal toz multiplied by a scalar of modulus 1.

The proof of the theorem is now complete. h
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Two new potentials for the free particle model
J. Moralesa) and J. J. Peña
Universidad Auto´noma Metropolitana, Azcapotzalco, CBI-Area de Fı´sica,
Av. San Pablo 180, 02200 Me´xico, D.F., Mexico

~Received 18 January 1999; accepted for publication 11 August 1999!

In this work, is proposed a very simple method for obtaining the generalized po-
tential associated with a known standard potential. The procedure is straightforward
because it only uses two Ricatti-type relationships as enough condition to find a
generalized potential; one particular equation is needed to identify the specific
potential under study and one general Ricatti relationship is used to find the corre-
sponding generalized potential. Moreover, the method is completely general due to
the fact that an arbitrary potential has been considered in its development for which
the procedure can also be used to find new potentials which could be needed in the
modeling of important quantum interactions. The usefulness of the proposed ap-
proach, is shown with the treatment of the three- and one-dimensional potential for
the free particle model. This work example leads to two new potentials whose
Hamiltonians are isospectral when they are compared with the former Hamiltonian.
© 1999 American Institute of Physics.@S0022-2488~99!03311-3#

I. INTRODUCTION

At the origin of the quantum theory, the proposition of interaction models to explain diffe
experimental data has played a role of extraordinary importance in the theoretical treatm
atoms and molecules. In this regard, in search of solutions for the second order diffe
equation involved, the factorization of the Schro¨dinger relationship is a powerful operation
method which has its roots in the Dirac’s second quantization treatment of the one-dimen
harmonic oscillator potential.1 Today, for obtaining the algebraic representation of any ot
standard potential, the following procedures are available: Infeld and Hull’s~IH! factorization
method,2 quantizing classical dynamical variables,3 using the algebraic representation of the o
thogonal polynomials directly involved4 and by an alternative approach5 to the IH procedure.
However, the above procedures do not allow extending the scope of the so-called isos
potentials,6,7 generalized or modified, whose treatment has been considered only for some p
lar cases.8–10 In the present work we consider a general formalism for obtaining any modified
generalized potential associated with a known or unknown specific potential. The propos
proach is based on a procedure that instead of factoring the Schro¨dinger equation uses the equiv
lent of supersymmetry techniques applied to quantum mechanics.11 As it can be seen later, as
result of the factorization of the Hamiltonian, which incorporates an arbitrary potential, we
pose a general method to find isospectral potentials by means of the use of two Ricat
relationships: a specific one to identify the potential under study and a general one to obta
isospectral potentials. Finally, in spite that the proposed approach is totally general, due to t
that it considers know and unknown potentials, in Sec. III we show the usefulness of the pro
algorithm by obtaining the generalized potential associated with the free particle model.

II. GENERAL PROCEDURE FOR ANY V„r … POTENTIAL

As mentioned in the previous section, the principal idea behind this work is concerned
the factorization of a general HamiltonianH, with an arbitrary potentialV(r ), instead of the
factorization of the corresponding Schro¨dinger relationship. That is, when one consider the fi
order operational equations

a!Electronic mail: jmr@hp9000a1.uam.mx
55550022-2488/99/40(11)/5555/10/$15.00 © 1999 American Institute of Physics
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a65
\

A2m
S b~r !2

l

r
7

d

dr D , ~2.1!

whereb(r ) is any function, it becomes evident that

a7a65H62V6~r !1
\2

2m S b2~r !6b8~r !2
2lb~r !

r
2

~ l 7 l !

r 2 D , ~2.2!

where

H652
\2

2m S d2

dr2
2

l ~ l 11!

r 2 D 1V6~r !. ~2.3!

That is, there are two Hamiltonians~namedH6) related with two potentials~namedV6(r )),
which can be exactly factorized by means of

a7a65H61C6 ~2.4!

with the condition to fulfill the relationship

C652V6~r !1
\2

2m S b2~r !6b8~r !2
2lb~r !

r
2

~ l 7 l !

r 2 D , ~2.5!

whereC6 is a constant parameter. Without loss of generality, one can always chooseC65C in
order to obtain

V6~r !2V7~r !56
\2

m S b8~r !1
l

r 2D ~2.6!

which is equivalent to

V1~r !2V2~r !5
\2

m S b8~r !1
l

r 2D , ~2.7!

where, from Eq.~2.5!,

V1~r !5
\2

2m S b2~r !1b8~r !2
2lb~r !

r D2C. ~2.8!

Consequently, this last equation can be arranged in order to have the form of the R
relationship,

b8~r !52b2~r !1
2l

r
b~r !1

2m

\2
~V1~r !1C!. ~2.9!

In fact, the identification ofb(r )5y, Q(r )521, P(r )5 2l /r , and R(r )5 (2m/\2)(V1(r )
1C), allows us to obtain

y85Q~r !y21P~r !y1R~r !, ~2.10!

which has as general solution
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y5yp1
b

m
, ~2.11!

whereyp is a particular solution,

m5e2* r[2Q(r )yp1P(r )]drS g2bE r

e* r[2Q(r )yp1P(r )]drQ~r !dr D , ~2.12!

and whereg and b are constant. In other words, if we consider a specificbp(r ) as a particular
solution of the specific Ricatti relationship,

bp8~r !52bp
2~r !1

2l

r
bp~r !1

2m

\2
~Vp

1~r !1C!, ~2.13!

two events take place; first, the choice of anbp(r ) ansatz lets us identify theVp
1(r ) particular

potential under study and, second, it is always possible to constructbg(r ), the general solution of
Eq. ~2.9!, by means of

b~r !5bg~r !5bp~r !1
b

r~r !
, ~2.14!

where the subindexg is used to denote the general solution and

r~r !5
1

r 2l
e2* rbp(r )drS g1bE r

r 2le22* rbp(r )drdr D . ~2.15!

Thus, according to Eq.~2.7!, the identification of the correspondingVp
2(r ) particular potential

under study occurs by means of

Vp
2~r !5Vp

1~r !2
\2

m S bp8~r !1
l

r 2D ~2.16!

in such a way that using Eq.~2.8! and Eqs.~2.13!–~2.15! one finds that the generalized potent
Vg

1(x) is given by

Vg
1~r !5Vp

1~r !1
\2b

m S b

r2~r !
2

r8~r !

r2~r !
1

2bp~r !

r~r !
2

2l

rr~r !D . ~2.17!

At this point, it should be noticed that

r8~r !52bp~r !r~r !1b2
2lr~r !

r
, ~2.18!

thereby reducing Eq.~2.17! to

Vg
1~r !5Vp

1~r ! ~2.19!

as well as

Hg
15Hp

152
\2

2m S d2

dr2
2

l ~ l 11!

r 2 D 1Vp
1~r ! ~2.20!
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which means that there does not exist a specialVg
1(r ) potential. This important result indicate

that the generalized operators

ag
65A65

\

A2m
S bp~r !1

b

r~r !
2

l

r
7

d

dr D ~2.21!

factorize, both, the particular HamiltonianHp
1 or Hg

1 according to

A2A15Hp,g
1 1C. ~2.22!

Similarly, the generalized HamiltonianHg
2 is factorized by means of

A1A25Hg
21C, ~2.23!

whereHg
2 is associated with the generalized potentialVg

2(r ) which is given, after using Eq.~2.7!,
Eq. ~2.14!, and Eq.~2.16!, by

Vg
2~r !5Vp

2~r !2
\2

m

d

dr S b

r~r ! D . ~2.24!

Finally, the existence of this new potential, which is generalized, is particularly importan
to the fact that Eq.~2.22! and Eq.~2.23! lead to

Hg
2A15A1Hp,g

1 ~2.25!

or

Hg
2A1c5EnA1c, ~2.26!

whereEn and c are, respectively, the energy and eigenfunctions ofHp,g
1 . Therefore, from the

above equation it becomes evident that the HamiltonianHg
2 has eigenfunctionsf5A1c with the

same energy spectra ofHp,g
1 and consequently the correspondingVg

2(r ) generalized potential ha
the energy spectra of the particular potentialVp

1(r ). This result clearly justifies why the new
potentialVg

2(r ) is called isospectral, which is in good agreement with already published resu
certain particular Hamiltonians.6–8,12–14Evidently, the same occurs with the modified potent
Vp

2(r ) given in Eq.~2.16! because the HamiltoniansHp
1 or Hg

1 are related toHp
2 through the

operatorsa6 by means of

Hp,g
1 a25a2Hp

2 and Hp
2a15a1Hp,g

1 , ~2.27!

which lead to

Hp
2~a1c!5Ep

1~a1c!, ~2.28!

whereEp
15En , proving that the modified HamiltonianHp

2 is also isospectral.

III. TWO NEW POTENTIALS FOR THE FREE PARTICLE MODEL

The previously described procedure for obtaining generalized potentials, is straightfo
and reduces to the use of three relationships; the master Eq.~2.8! with a specific solutionbp(r ),
which can be takenad hocto match with theVp

1(r ) particular potential under study, Eq.~2.16!
used to find theVp

2(r ) modified partner potential and finally the use of Eq.~2.24! to get the
correspondingVg

2(r ) generalized potential. In this section, we will consider the case of the
known free particle model in order to generalize it as well as to find the corresponding asso
potential and its reduction to the particular one-dimensional situation.
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A. A new three-dimensional potential for the free particle model „0<r<`…

According to Eq.~2.8!, any particular potential is given by

Vp
1~r !5

\2

2m S bp
2~r !1bp8~r !2

2lbp~r !

r D2Cp . ~3.1!

Thus, with the purpose of identifying the three-dimensional potential for the free-particle int
tion model we use in the previous equation the ansatzbp(r )50 which gives rise to

Vp
1~r !5Cp50. ~3.2!

Consequently, according to Eq.~2.16!, the corresponding modified potential is then

Vp
2~r !52

\2l

mr2
. ~3.3!

That is, the HamiltoniansHp
6 associated with these potentials are

Hp
652

\2

2m S d2

dr2
2

l ~ l 11!

r 2 D 2
\2~ l 7 l !

2mr2
, ~3.4!

and they are factorized by means ofa7a65Hp
6 , wherea6 are the first order differential opera

tors

a65
\

A2m
S 2

l

r
7

d

dr D . ~3.5!

On the other hand, from Eq.~2.15! and by considering the fact thatbp(r )50 one gets

r~r !5
g

r 2l
1

br

2l 11
. ~3.6!

Finally, according to Eq.~2.24!, the generalized potential that corresponds to this case is g
by

Vg
2~r !52

\2l

mr2
2

\2b~2l ~g1R~r !!r 2l 212br4l !

m~g1R~r !!2
, ~3.7!

whereR(r )5(br2l 11/2l 11). Consequently, the HamiltonianHg
2 associated with this generalize

potential becomes

Hg
252

\2

2m S d2

dr2
2

l ~ l 11!

r 2 D 2
\2l

mr2
2

\2b~2l ~g1R~r !!r 2l 212br4l !

m~g1R~r !!2
~3.8!

in such a way that it is factorized by means ofA1A25Hg
2 , whereA6 are given by

A65
\

A2m
S br2l

g1R~r !
2

l

r
7

d

dr D . ~3.9!
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On the other hand, due to the fact that wave functions for this case of the free particle
are given, according to Buckingham,15 by cp( l ,r )5kr j l(kr), where j l(kr) are the spherica
Bessel functions, it becomes that normalized eigenfunctions of the corresponding generalizHg

2

Hamiltonian are given, from Eq.~2.26!, by

fg~ l ,z!5fg~z!5A1cp~ l ,z!5
\k

A2m
S bz2l 11 j l~z!

gk1R~z!
2~ l 11! j l~z!2z jl8~z! D , ~3.10!

wherez5kr, gk5k2l 11g, andcp( l ,z)5z jl(z). Thus, the normalized HamiltonianHg
2(z) of Eq.

~3.8! becomes

Hg
2~z!52

\2k2

2m S d2

dz2
2

l ~ l 21!

z2
1

4blz2l 21

gk1R~z!
2

2b2z4l

~gk1R~z!!2D ~3.11!

for which it follows that

Hg
2~z!fg~z!52

\3k3

~2m!3/2S bz2l 11 j l9~z!

gk1R~z!
1

2bz2l j l8~z!

gk1R~z!
2

l ~ l 11!bz2l 21 j l~z!

gk1R~z!

2~ l 13! j l9~z!2z jl-~z!1
l ~ l 11!~ l 21! j l~z!

z2
1

l ~ l 21! j l8~z!

z D . ~3.12!

Finally, with the aim of simplifying the third and second order derivatives of the sphe
Bessel functions that appeared in the above relationship, we use repeatedly the diffe
equation16

j l9~z!1
2 j l8~z!

z
1S 12

l ~ l 11!

z2 D j l~z!50 ~3.13!

in order to get

Hg
2~z!fg~z!52

\2k2

2m S \k

A2m
D H z jl8~z!2

bz2l 11 j l~z!

gk1R~z!
1~ l 11! j l~z!J . ~3.14!

That is, by identifying the terms inside the two parentheses with the wave functionfg(z) of
Eq. ~3.10! it becomes that

Hg
2~z!fg~z!5Egfg~z!, ~3.15!

whereEg5Ep5(\2k2/2m), which proves that the generalized HamiltonianHg
2(z) is isospectral

with respect to the particular HamiltoniansHp
6(z) as expected for the free particle interactio

model.
Due to fact that we are involved with a scattering potential, it is important to find the p

shift existing between the generalized potential and the specific one of the free particle mo
this case, according to Eq.~3.10! the asymptotic wave functions of the generalized potential
given by

fg~z!→sinS z2
p~ l 11!

2 D , ~3.16!

z→`
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which indicates that these wave functions are displaced in one unit in the angular momenl
with respect to the corresponding free particle wave functions given by17

fg~z!→sinS z2
p l

2 D , ~3.17!

z→`.

Finally, concerning the specific case of the free particle one-dimensional potential, it i
portant to notice thatl 50 in Eq.~3.3! leads to the modified potentialVp

250 in such a way that the
use of Eq.~3.7! gives origin to the corresponding generalized potential

Vg
2~x!5

\2

m S b

g1bxD
2

~3.18!

in good agreement with already published results.14 At this point, it is important to notice tha
there is the possibility of finding another, different from the above, one-dimensional potenti
the same free particle model if, instead of using the mentioned reductions in the general sol
one can consider an alternative ansatz in the corresponding Ricatti relationship forl 50 as shown
in the following section.

B. A new one-dimensional potential for the free particle model

As mentioned in the last paragraph, when considering the Ricatti relationship given i
~2.9! for the one-dimensional potential situation,r 5x,2`,x,` and l 50, one have

b8~x!52b2~x!1
2m

\2
~V1~x!1C! ~3.19!

which it has as its general solution, Eq.~2.11!. It should be pointed out, that in this new situatio
the m that appears in Eq.~2.12! is given by

m5e2*x2Q(x)ypdxS g2bEx

e*x2Q(x)ypdxQ~x!dxD , ~3.20!

whereg andb are constant. Similarly to the three-dimensional case, we can considerbp(x) as a
particular solution of the specific Ricatti relationship

Vp
1~x!5

\2

2m
~bp

2~x!1bp8~x!!2Cp ~3.21!

in such a way that the corresponding solution of Eq.~3.19! is

b~x!5bg~x!5bp~x!1
b

r~x!
, ~3.22!

where the subindexg is used to denote the general solution and

r~x!5e2*bp(x)dxS g1bE e22*bp(x)dxdxD . ~3.23!

Thus, according to Eq.~2.16! and Eq.~2.24!, the one-dimensional modified potential is give
by
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Vp
2~x!5Vp

1~x!2
\2

m
bp8~x! ~3.24!

and

Vg
2~x!5Vp

2~x!2
\2

m

d

dx S b

r~x! D ~3.25!

is the corresponding generalized potential.
In consequence, if in Eq.~3.21! we choose the ansatzbp(x)5B, whereB is any constant, it

obtained the specific potential

Vp
1~x!5

\2B2

2m
2Cp . ~3.26!

Clearly, without loss of generality we can put in the previous equationCp5(\2B2/2m) in
order to shown thatVp

1(x) and the corresponding modifiedVp
2(x) potentials are null which mean

that both are the well known one-dimensional potential for the free particle model. In that cas
first order operational equations

ap
65

\

A2m
S B7

d

dxD ~3.27!

factorize the corresponding HamiltoniansHp
6 by means of

ap
7ap

65Hp
61Cp , ~3.28!

whereHp
25Hp

152(\2/2m)(d2/dx2).
Finally, with the purpose of identifying the generalized potential that corresponds to this

situation ofbp(x)5B, it is necessary to consider Eq.~3.23! in order to find

r~x!5ge2Bx2
b

2B
. ~3.29!

In consequence, puttingb51 in the above relationship and using Eq.~3.25!, we found that the
new generalized or partner potential associated with the one-dimensional free particle sys
given by

Vg
2~x!5

~2B!3\2ge2Bx

m~2Bge2Bx21!2
~3.30!

in such a way that the respective generalized Hamiltonian

Hg
252

\2

2m

d2

dx2
1

~2B!3\2ge2Bx

m~2Bge2Bx21!2
, ~3.31!

as well asHp
6 , are factorized according to the rule

A1A25Hg
21C andA2A15Hp

61C, ~3.32!

whereC5Cp and
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A65
\

A2m
S B1

2B

2Bge2Bx21
7

d

dxD . ~3.33!

Concerning the generalized wave functions, if we consider the most simple formcp

5sin(kx) for the eigenfunctions of the particular one-dimensional free particle Hamiltonia
becomes that thefg eigenfunctions of the corresponding generalized Hamiltonian are gi
according to Eq.~2.26!, by

fg5A1cp5
\

A2m
S k sin~kx!1

2k sin~kx!

2kge2kx21
2k cos~kx!D , ~3.34!

where, without loss of generality, we have usedB5k in order to normalize the exponentia
function.

This means that, in a similar way to the three-dimensional case, we have

Hg
2fg5

\3k3

~2m!3/2S sin~kx!1
2 sin~kx!

2kge2kx21
2cos~kx!D . ~3.35!

Thus, by identifying in the previous equation those terms defining the wave functionfg , it
obtained the eigenvalue relationship

Hg
2fg5Egfg5

\2k2

2m
fg , ~3.36!

which means thatEg5Ep , as should be fulfilled in order to have a generalized HamiltonianHg
2

which should be isospectral when compared with the particular HamiltoniansHp
6 .

Before closing this work, with the Concluding Remarks, it is important to point out that in
above development it was considered a one-dimensional free particle Hamiltonian which do
have any negative energy eigenvalue. In fact, the positive energy spectrum results fro
selection ofcp5sin(kx) as eigenfunctions ofHp

6 . That means that the existence of negat
energy eigenvalues for the same Hamiltonian occurs only on the condition of having an a
priate wave function. That is, forV(x)50 exists a spectrum with negative energyEp2 when
cp25sinh(kx) is taken as an eigenfunction of the one-dimensional free particle Hamilto
although it is well known that this form of the wave function is unnormalizable. In spite of
above, in this new situation it becomes that the eigenfunctions for the generalized HamiltoniaHg

2

are given by

fg25A1cp25
\k

A2m
S sinh~kx!1

2 sinh~kx!

2kge2kx21
2cosh~kx!D , ~3.37!

where the down sign minus in the wave functions is used to denote negative energy eigen
for which

Hg
2fg252

\2k2

2m S \k

A2m
D S sinh~kx!1

2 sinh~kx!

2kge2kx21
2cosh~kx!D . ~3.38!

Clearly, this last relationship is rewritten as

Hg
2fg25Eg2fg252

\2k2

2m
fg2 , ~3.39!
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which means, as before in the case of unbounded states, that the generalized Hamiltonian
isospectral with negative energy spectrumEg252(\2k2/2m)5Ep2 in good agreement with
Sukumar.8

IV. CONCLUDING REMARKS

This work is concerned with the fact that quantum mechanical problems can be solved
the factorization of the Hamiltonian instead of, as usual, the factorization of the Schro¨dinger
equation for any arbitrary potential. For that, in this paper we have shown how two Ricatti
relationships can be used in order to identify standard potentials as well as to find the corre
ing modified and generalized potentials which, as far as we know, are so-called isospectral
tials. It is important to emphasize that the proposed procedure is general, due to the fact tha
development the potential involved is always considered anyone. For that reason, it be
evident that the displayed method can be used to obtain new potentials that can be incorpo
the treatment of different quantum mechanical applications. This new potentials come f
simple proposition of an ansatz which is necessary to start the procedure for obtaining the
sponding generalized potential. In order to show the usefulness of the proposed approach, w
obtained the generalized three-dimensional potential associated with the free particle mode
an ansatz null was used. In this respect, it is important to point out that the generalized po
that corresponds to the one-dimensional case it is not necessarily unique. For example, w
shown that a generalized potential for the one-dimensional free particle model is derived fro
use of the three-dimensional treatment for the particular casel 50. However, another differen
generalized potential for the same situation results as a consequence of the use of th
dimensional version of the proposed approach with a different ansatz. In any case, as expec
explicitly prove that in all cases the new Hamiltonians are isospectral due to the fact that the
to the same energy spectra which is obtained when using specific or standard Hamiltonian
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Derivation of the wave function collapse in the context
of Nelson’s stochastic mechanics
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The von Neumann collapse of the quantum mechanical wave function after a po-
sition measurement is derived by a purely probabilistic mechanism in the context of
Nelson’s stochastic mechanics. ©1999 American Institute of Physics.
@S0022-2488~99!01109-3#

I. INTRODUCTION

Nelson’s stochastic mechanics1–5 is a quantization procedure for classical dynamical syste
based on stochastic processes of the diffusion type. This theory leads to predictions that agr
those of standard quantum mechanics and are confirmed by experiment. The fundamental a
tion is that interaction with a background field causes the system to undergo a diffusion p
with diffusion coefficient\/m. A fascinating hypothesis concerning the origin of the underly
Brownian motion has been recently advanced by Calogero in Ref. 6. Namely, that this ‘‘tre
may be caused by the interaction of every particle with the gravitational force due to all
particles of the Universe. Following this idea, he obtains a formula for Planck’s action consth.
The latter yields the correct order of magnitude forh when current cosmological data are em
ployed.

It is hardly surprising that the most controversial issue in stochastic mechanics is the
surement problem. Indeed, in Ref. 7, Francesco Guerra writes: ‘‘Therefore, we see that th
problem in the interpretation of stochastic mechanics is related to the basic problem in the
pretation of quantum mechanics: To evaluate the effects of the measurement and expl
mechanism of the wave packet reduction.’’

Our purpose in this paper is to show that, in the frame of Nelson’s stochastic mechanicthe
wave function reduction after a position measurement may be obtained through a purely p
bilistic mechanism, namely a stochastic variational principle. The latter has the appealing i
pretation of changing the pair of forward and backward drifts of the reference process as li
possible given the result of the measurement. This variational principle is quite similar to th
that yields the new stochastic model after measurement for nonequilibrium thermodyna
systems, see Sec. V, the only difference being that, in view of the time reversibility of stoch
mechanics, a time-symmetric kinematics has to be employed. As we have shown elsewh8–10

this kinematics also permits us to develop in a natural way a Lagrangian and a Hamilt
formalism in stochastic mechanics. In particular, it permits us to define amomentum proces
having the same first and second moment of the corresponding quantum momentum opera
then possible to derive a stochastic counterpart of Hamilton’s canonical equations, and to o
simple probabilistic interpretation of the uncertainty principle9 along the lines of Refs. 1, 11–13

II. KINEMATICS OF FINITE-ENERGY DIFFUSIONS

In this section, we review some essential concepts and results of the kinematics of the
sion processes. We refer the reader to Refs. 2–5 and 14–18 for a thorough accou

a!Electronic mail: pavon@dei.unipd.it
55650022-2488/99/40(11)/5565/13/$15.00 © 1999 American Institute of Physics
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(V,E,P) be a probability space, and letI n denote then3n identity matrix. A stochastic proces
$j(t);t0<t<t1% mapping@ t0 ,t1# into Ln

2(V,E,P) is called afinite-energy diffusionwith constant
diffusion coefficientI ns2 if the increments admit the representation

j~ t !2j~s!5E
s

t

b~t!dt1s@w1~ t !2w1~s!#, t0<s,t<t1 , ~II.1!

where theforward drift b(t) is at each timet a measurable function of the past$j(t);0<t
<t%, and w1(•) is a standard,n-dimensionalWiener processwith the property thatw1(t)
2w1(s) is independent of$j(t);0<t<s%. Moreover,b must satisfy the finite-energy conditio

EH E
t0

t1
b~ t !•b~ t !dtJ ,`. ~II.2!

In Ref. 16, Fo¨llmer has shown that a finite-energy diffusion also admits a reverse-time differe
Namely, there exists a measurable functiong(t) of the future$j(t);t<t<t1% called backward
drift, and another Wiener processw2 such that

j~ t !2j~s!5E
s

t

g~t!dt1s@w2~ t !2w2~s!#, t0<s,t<t1 . ~II.3!

Moreover,g satisfies

EH E
t0

t1
g~ t !•g~ t !dtJ ,`, ~II.4!

and w2(t)2w2(s) is independent of$j(t);t<t<t1%. Let us agree thatdt always indicates a
strictly positive variable. For any functionf defined on@ t0 ,t1#, let

d1 f ~ t !ª f ~ t1dt!2 f ~ t !

be theforward incrementat time t, and

d2 f ~ t !5 f ~ t !2 f ~ t2dt!

be thebackward incrementat timet. For a finite-energy diffusion, Fo¨llmer has also shown in Ref
16 that the forward and backward drifts may be obtained as Nelson’s conditional deriva
namely

b~ t !5 lim
dt↘0

EH d1j~ t !

dt Uj~t!,t0<t<tJ , ~II.5!

and

g~ t !5 lim
dt↘0

EH d2j~ t !

dt Uj~t!,t<t<t1J , ~II.6!

the limits being taken inLn
2(V,B,P). It was finally shown in Ref. 16 that the one-time probabil

density r(•,t) of j(t) ~which exists for everyt.t0) is absolutely continuous onRn and the
following relation holds a.s.;t.0

E$b~ t !2g~ t !uj~ t !%5s2
“ logr~j~ t !,t !. ~II.7!
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Let j be a finite-energy diffusion satisfying~II.1! and ~II.3!. Let f :Rn3@ t0 ,t1#→R be twice
continuously differentiable with respect to the spatial variable and once with respect to time.
we have the following change of variables formulas:

f „j~ t !,t…2 f „j~s!,s…5E
s

tS ]

]t
1b~t!•“1

s2

2
D D f „j~t!,t…dt ~II.8!

1E
s

t

s “ f „j~t!,t…–d1w1~t!, ~II.9!

f „j~ t !,t…2 f „j~s!,s…5E
s

tS ]

]t
1g~t!–“2

s2

2
D D f „j~t!,t…dt ~II.10!

1E
s

t

s “ f „j~t!,t…–d2w2~t!. ~II.11!

The stochastic integrals appearing in~II.9! and~II.11! are a~forward! Ito integral and a backward
Ito integral, respectively; see Ref. 15 for details. Let us introduce thecurrent drift v(t)ª„b(t)
1g(t)…/2 and theosmotic drift u(t)ª„b(t)2g(t)…/2. Notice that, whens tends to zero,v tends
to j̇, andu tends to zero. The semisum and the semidifference of~II.9! and~II.11! give two more
useful formulas:

f „j~ t !,t…2 f „j~s!,s…5E
s

tS ]

]t
1v~t!–“D f „j~t!,t…dt

1
s

2 F E
s

t

“ f „j~t!,t…–d1w11E
s

t

“ f „j~t!,t…–d2w2G , ~II.12!

05E
s

tS u~t!–“1
s2

2
D D f „j~t!,t…dt1

s

2 F E
s

t

¹ f „j~t!,t…–d1w12E
s

t

“ f „j~t!,t…–d2w2G .
~II.13!

Specializing~II.12! and ~II.13! to f (x,t)5x, we get

j~ t !2j~s!5E
s

t

v~t!dt1
s

2
@w1~ t !2w1~s!1w2~ t !2w2~s!#, ~II.14!

05E
s

t

u~t!dt1
s

2
@w1~ t !2w1~s!2w2~ t !1w2~s!#. ~II.15!

The finite-energy diffusionj(•) is called Markovian if there exist two measurable function
b1(•,•), and b2(•,•), such thatb(t)5b1(j(t),t) a.s. andg(t)5b2(j(t),t) a.s., for all t in
@ t0 ,t1#. The duality relation~II.7! now reads as

b1„j~ t !,t…2b2„j~ t !,t…5s2
“ logr„j~ t !,t…. ~II.16!

This immediately gives theosmotic equation,

u~x,t !5
s2

2
“ logr~x,t !, ~II.17!

whereu(x,t)ª„b1(x,t)2b2(x,t)…/2. The probability densityr(•,•) of j(t) satisfies~at least
weakly! the Fokker–Planck equation,
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]r

]t
1“–~b1r!5

s2

2
Dr.

The latter can also be rewritten, in view of~II.16!, as theequation of continuityof hydrodynamics,

]r

]t
1“–~vr!50, ~II.18!

wherev(x,t)ª„b1(x,t)1b2(x,t)…/2.

III. A TIME-SYMMETRIC KINEMATICS FOR DIFFUSION PROCESSES

We recall here the basic facts from the time-symmetric kinematics developed in Refs.
Let us multiply ~II.15! by 2 i , and add it to~II.14!. We get

j~ t !2j~s!5E
s

t

@v~t!2 iu~t!#dt1
s

2
@~12 i !„w1~ t !2w1~s!…1~11 i !„w2~ t !2w2~s!…#.

~III.19!

We call vq(t)ªv(t)2 iu(t) the quantum drift, and

wq~ t !ª
12 i

2
w1~ t !1

11 i

2
w2~ t ! ~III.20!

the quantum noise. Hence, we can rewrite~III.19! as

j~ t !2j~s!5E
s

t

vq~t!dt1s@wq~ t !2wq~s!#. ~III.21!

At first sight, this decomposition of thereal-valuedincrements ofj into the sum of twocomplex
quantities might look somewhat odd. Nevertheless, this representation enjoys several im
properties:

~1! Whens2 tends to zero,v2 iu tends toj̇.
~2! The quantum driftvq(t) contains at each timet precisely the same information as the pa

„v(t),u(t)… @or, equivalently, the pair„b(t),g(t)…].
~3! The representation~III.21!, differently from ~II.1! and~II.3!, enjoys an important symme

try with respect to time. Indeed, under time reversal,~III.21! transforms into

j~ t !2j~s!5E
s

t

vq~t!dt1s@wq~ t !2wq~s!#, ~III.22!

where an overbar indicates conjugation; see Ref. 9, p. 145.
The representation~III.21! has proven to be crucial in order to develop a Lagrangian

Hamiltonian dynamics formalism in the context of Nelson’s stochastic mechanics; see Refs.
In particular, to develop the second form of Hamilton’s principle, the key tool has been a ch
of variables formula related to representation~III.21!. In order to recall such a formula, we nee
first to define stochastic integrals with respect to the quantum noisewq . Let us denote by
dbf (t)ª@(12 i )/2# d1 f (t)1 @(11 i )/2# d2 f (t) the bilateral incrementof f at time t. Then, from
~III.20! and ~II.15!, we get

d1wq~ t !5
11 i

s
u„x~ t !,t…dt1d1w11o~dt!,
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d2wq~ t !5
211 i

s
u„x~ t !,t…dt1d1w21o~dt!.

These, in turn, give immediately

dbwq~ t !ª
12 i

2
d1w1~ t !1

11 i

2
d2w2~ t !1o~dt!. ~III.23!

Let f (x,t) be a measurable,Cn-valued function, such that

PH v:E
0

T

f ~j~ t !,t !• f „j~ t !,t…dt,`J 51.

In view of ~III.23!, we define

E
s

t

f „j~t!,t…•dbwq~t!ª
12 i

2 E
s

t

f „j~t!,t…•d1w1~t!1
11 i

2 E
s

t

f „j~t!,t…•d2w2~t!.

Thus, integration with respect to the bilateral increments ofwq is defined through a linear com
bination with complex coefficients of a forward and a backward Ito integral. Letf (x,t) be a
complex-valued function with real and imaginary parts of classC2,1. Then, multiplying~II.13! by
2 i , and then adding it to~II.12!, we get the change of variables formula

f „j~ t !,t…2 f „j~s!,s…5E
s

tS ]

]t
1vq~t!–“2

is2

2
D D f „j~t!,t…dt1E

s

t

s “ f „j~t!,t…–dbwq~t!.

~III.24!

It is important to understand that this formula, and, in particular, the coefficient of the Lapl
term, follows from basic probabilistic arguments.

IV. THE QUANTUM HAMILTON PRINCIPLE

Stochastic mechanics may be based, since the fundamental paper by Guerra and Mora20 on
stochastic variational principles of a hydrodynamic type. Other versions of the variational
ciple have been proposed in Refs. 4, 14, and in Ref. 8. We outline here the quantum Ha
principle of Ref. 8, since it employs the time-symmetric kinematics of Sec. III that we shall
to derive the wave function collapse.

Let Xr1
denote the family of all finite-energy,Rn-valued diffusions on@ t0 ,t1# with diffusion

coefficient I n (\/m), and having marginal probability densityr1 at time t1 . Let V denote the
family of finite-energy,Cn-valued stochastic processes on@ t0 ,t1#. Let L(x,v)ª 1

2mv•v2V(x) be
defined onRn3Cn. Also, let S0 be a complex-valued function onRn. Consider the problem o
extremizing on (x,vq)P(Xr1

3V),

EH E
t0

t1
L„x~ t !,vq~ t !…dt1S0„x~ t0!…J , ~IV.25!

subject to the constraint that

x has quantum drift ~velocity) vq . ~IV.26!

Notice that the quadratic term in the Lagrangian may be rewritten in terms of the forward
backward drifts as follows:
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m

2
vq~ t !•vq~ t !5

m

2 F12 i

2
b~ t !1

11 i

2
g~ t !G•F12 i

2
b~ t !1

11 i

2
g~ t !G

5
2 im

4
@b~ t !•b~ t !12ib~ t !•g~ t !2g~ t !•g~ t !#

5
2 im

4
@„b~ t !1 ig~ t !…•„b~ t !1 ig~ t !…# ~IV.27!

In Ref. 8, Sec. VIII, the following result was established.
Theorem IV.1: Suppose that Sq(x,t) of class C2,1 solves on@ t0 ,t1# the initial value problem,

]Sq

]t
1

1

2m
“Sq•“Sq1V~x!2

i\

2m
DSq50, ~IV.28!

Sq~x,t0!5S0~x!, ~IV.29!

and satisfies the technical condition

EH E
t0

t1
“Sq„x~ t !,t…–“Sq„x~ t !,t…dtJ ,`, ;xPXr1

. ~IV.30!

Then, any xPXr1
having quantum drift(1/m) “S„x(t),t… solves the extremization problem.

A crucial role in the proof is played by the change of variables formula~III.24! that here reads
as

f „j~ t !,t…2 f „j~s!,s…5E
s

tS ]

]t
1vq~t!–“2

i\

2m
D D f „j~t!,t…dt1E

s

tA\

m
“ f „j~t!,t…–dbwq~t!.

~IV.31!

The existence of a solution for the apparently complicated nonlinear, complex Cauchy pr
~IV.28!–~IV.29! is dealt with as follows. Let$c(x,t);t0<t<t1% be the solution of theSchrö-
dinger equation,

]c

]t
5

i\

2m
Dc2

i

\
V~x!c, ~IV.32!

with initial conditionc0(x)ªexp(i/\) S0(x). If c(x,t) never vanishes onRn3@ t0 ,t1#, and satisfies
the condition

EH E
t0

t1
“ logc„x~ t !,t…–“ logc„x~ t !,t…dtJ ,`, ;xPXr1

; ~IV.33!

then Sq(x,t)ª(\/ i )logc(x,t) satisfies~IV.28!–~IV.29! and ~IV.30!. If, moreover, c0(x) has
L2 norm 1, and the terminal density satisfiesr1(x,t)5uc(x,t1)u2, then there does exist a Marko
diffusion having the required quantum drift, namely, theNelson processassociated to
$c(x,t);t0<t<t1%, and Born’s relationr(x,t)5uc(x,t)u2 holds; see Ref. 8 for the details. Th
construction of the Nelson process corresponding toc(x,t) in the case wherec(x,t) vanishes
requires considerable care. It is discussed in Ref. 21 and Ref. 5, Chap. IV, and references

V. MEASUREMENT IN NONEQUILIBRIUM THERMODYNAMICS

In this section, we discuss the measurement for nonequilibrium thermodynamical sys
This serves as an introduction to measurement in stochastic mechanics to be discusse
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following section. Consider an open thermodynamical system whose macroscopic evolu
modeled by ann-dimensional Markov diffusion process$x(t);t0<t% with a forward Ito differen-
tial,

d1x~ t !5b1„x~ t !…dt1s d1w1 .

Let r(x,t) denote the probability density ofx(t) satisfying the Fokker–Planck equation,

]r

]t
1“–~b1r!5

s2

2
Dr. ~V.34!

The equilibrium stateis given by the Maxwell–Boltzmann distribution law,

r̄~x!5C expF2
H~x!

kT G ,
whereH is the Hamiltonian function, and we have the relation

b1~x!52
s2

2kT
“H~x!,

where k is Boltzmann’s constant andT is the absolute temperature. Suppose that at timet1 a
measurement is made that yields the new probability densityr̃(x,t1). Let Xr̃(t1) denote the class

of finite-energy diffusions on@ t1 ,t2# with diffusion coefficients2 and having marginalr̃(x,t1) at
time t1 . Let us pose the following question: Among all processes inXr̃(t1) , which one should we
use to model the macroscopic evolution of the system fromt1 up to t2? Everybody agrees that w
should employ the stochastic process$x̃(t);t1<t<t2% that has the same forward drift fieldb1(x)
of the ‘‘reference’’ processx. This is supported by the observation that the new process must
the same equilibrium distribution of the previous one. Let us show that the new pr

$x̃(t);t1<t<t2% may be obtained as the solution of a variational problem. Assume tha
Kullback–Leibler pseudodistance betweenr̃(t1) andr(t1) is finite, namely,

H„r̃~ t1!,r~ t1!…ªEH log
r̃„x̃~ t1!,t1…

r„x̃~ t1!,t1…
J 5E

Rn
log

r̃~ x̃,t1!

r~ x̃,t1!
r̃~x,t1!dx,`.

Let Dr̃(t1) denote the class of probability measures onV5C(@ t1 ,t2#) that are equivalent to the
measureP induced by the reference process$x(t);t1<t<t2%. For QPDr̃(t1) , let

H~Q,P!5EQF log
dQ

dPG
denote therelative entropyof Q with respect toP. It then follows from Girsanov’s theorem
that16,17

H~Q,P!5H„r̃~ t1!,r~ t1!…1EQF E
t1

t2 1

2s2
@b1„x̃~ t !…2bQ~ t !#•@b1„x̃~ t !…2bQ~ t !#dtG .

SinceH„r̃(t1),r(t1)… is constant overDr̃(t1) , it trivially follows that the probability measureQ̃

corresponding to the processx̃ having forward driftb1 minimizes H(Q,P) over Dr̃(t1) . This
problem may be interpreted as a problem of large deviation of the empirical distribution acco
to Schrödinger’s original motivation.22,17 We consider now an apparently different variation
problem that has the same solution as the previous one. We do so because it is this secon
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which, in a suitably modified form, applies to the quantum case. LetXr̃2
denote the family of

finite-energy diffusions on@ t1 ,t2# with diffusion coefficients2 and having marginal densityr̃2 at
time t2 . Consider the problem of minimizing with respect to the pair (x̃,g) the functional

EH E
t1

t2 1

2s2
@b2„x̃~ t !…2g~ t !#•@b2„x̃~ t !…2g~ t !#dt2 log

r̃„x̃~ t1!,t1…

r„x̃~ t1!,t1…
J ,

subject to the constraint thatg be the backward drift ofx̃ on @ t1 ,t2#. This problem is a variant of
the one first considered and solved in Ref. 23, Theorem 2. The connection between th
variational problems, and their relation to the theory of Schro¨dinger processes and bridges, h
been thoroughly investigated in Ref. 24. In order to solve this problem, rather than reproduci
arguments in Refs. 23, 24, we take the opportunity to introduce the variational method ba
nonlinear Lagrange functionals.25 This method permits us to solve also the more complica
quantum case. Suppose that we wish to minimizeJ:Y→R̄, whereR̄ denotes the extended real
over the nonempty subsetS of Y.

Lemma V.1:~Lagrange Lemma!: Let L:Y→R̄ and let y0PS minimize J1L over Y. Assume
that L(•) is finite and constantover S. Then y0 minimizesJ over S.

Proof: For any yPS, we haveJ(y0)1L(y0)<J(y)1L(y)5J(y)1L(y0). HenceJ(y0)
<J(y). h

A functional L that is constant and finite onS is called aLagrange functional. Obviously, a
similar result holds if the problem is an extremization problem. Let us apply this simple idea
above problem. Letw(x,t) be a real-valued function of classC2,1 defined onRn3@ t1 ,t2#, and
satisfying the technical condition

EH E
t1

t2
“w„x~ t !,t…–“w„x~ t !,t…dtJ ,`, ;xPXr̃2

. ~V.35!

Corresponding to such aw, we introduce the functional,

Lw~ x̃,g!ªEH w„x̃~ t2!,t2…2w„x̃~ t1!,t1…

1E
t1

t2F2
]w

]t
„x̃~ t !,t…2g~ t !–“w„x̃~ t !,t…1

s2

2
Dw„x̃~ t !,t…GdtJ .

In view of ~II.11! and ~V.35!, we have thatLw( x̃,g)50 whenever the pair (x̃,g) satisfies the
constraint, since the stochastic integral has zero expectation. Thus, it is aLagrange functionalfor
the problem. Consider next theunconstrainedminimization of the functionalJ1Lw. For a fixed
x̃PXr̃2

, and a fixed timetP@ t1 ,t2#, we consider thepointwiseminimization of the integrand of
J1Lw with respect tog,

minimizegPRnH 1

2s2
~b2„x̃~ t !,t…2g!•~b2„x̃~ t !,t…2g!2g–“w„x̃~ t !,t…J .

We get

go~ x̃!~ t !5b2„x̃~ t !,t…1s2
“w„x̃~ t !,t…. ~V.36!

Substituting back expression~V.36! into J1Lw, we get the following functional ofx̃:
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~J1Lw!„x̃,go~ x̃!…ªEH w„x̃~ t2!,t2…2w„x̃~ t1!,t1…2 log
r̃„x̃~ t1!,t1…

r„x̃~ t1!,t1…

1E
t1

t2F2
s2

2
“w„x̃~ t !,t…–“w„x̃~ t !,t…2

]w

]t
„x̃~ t !,t…

2b2„x̃~ t !,t…–“w„x̃~ t !,t…1
s2

2
Dw„x̃~ t !,t…GdtJ . ~V.37!

Next, we seek to find a functionw such that the functional (J1Lw)„x̃,go( x̃)… becomes constan
over Xr̃2

. Supposew solves on@ t1 ,t2# the initial value problem,

]w

]t
1b2~x,t !–“w~x,t !2

s2

2
Dw~x,t !52

s2

2
“w~x,t !–“w~x,t !, ~V.38!

w~x,t1!52 log
r̃~x,t1!

r~x,t1!
. ~V.39!

Then (J1Lw)„x̃,go(x)…5E$w„x̃(t2),t2…% is constant overXr̃2
since such processes have the sa

marginal density at timet2 . Hence, anyxPXr̃2
solves the unconstrained minimization ofJ

1Lw. To solve the original constrained problem, we need to findx̃PXr̃2
that has backward drift

given by~V.36!. In order to do that, we first proceed to find the solution of~V.38!–~V.39!. Define
r̃(x,t)ªexp@2w(x,t)#r(x,t). Then, if w satisfies~V.38!, using the Fokker–Planck equation sat
fied by r, we get

]r̃

]t
5exp@2w#S 2

]w

]t
r1

]r

]t D
5S b2–“w2

s2

2
Dw1

s2

2
“w–“w D r̃2exp@2w#“–~b1r!1exp@2w#

s2

2
Dr

5
s2

2
Dr̃1b1–“wr̃2exp@2w#“r–b12exp@2w#r“–b152“–~ r̃b1!1

s2

2
Dr̃.

We conclude that ifr̃ is the solution of the Fokker–Planck equation~V.34! on @ t1 ,t2# with an
initial condition at timet1 given by r̃(x,t1), thenwª2 log(r̃/r) solves the initial value problem
~V.38!–~V.39!. Thus, we have the following result.

Theorem V.2: Let r̃ be the solution of the Fokker–Planck equation (V.34) on@ t1 ,t2# with

initial condition given byr̃(x,t1). Thenwª2 log(r̃/r) solves the initial value problem (V.38)–
(V.39). Suppose thatw satisfies (V.35), and thatr̃2(x)5 r̃(x,t2). Then the stochastic process˜

PXr̃2
having backward drift field b˜

2(x,t)5b2(x,t)2s2
“ log(r̃/r) (x,t)5b12s2

“ log r̃(x,t)
solves the constrained minimization problem.

In view of ~II.16!, we see that the solution process has forward driftb1(•), and therefore
coincides with the solution of the previous variational problem. Consider the same problem
interval @ t1 ,t3#, where t3.t2 . If we impose the densityr̃(x,t3) at the final time, the solution
process coincides with the previous solution process up to timet2 . This may be viewed as a form
of coherence with respect to the terminal time. It is also important to observe that the new p

$x̃(t);t1<t<t2% has the same forward drift of the reference process$x(t);t1<t<t2%, but adif-
ferent backward drift. Hence, while the forward transition probabilities have been preservedthe
reverse-time transition probabilities have changed. Thus, we see that it is impossible, even
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principle, to estimate the reverse-time transition probabilities by repeated measurement. In
14, 7, Nelson and Guerra regard as a serious drawback of stochastic mechanics the f
transition probabilities of the Nelson process are not open to experimental verification if we a
that transition probabilities are associated to a definite quantum state. We shall come back
crucial point in the next section.

VI. A STOCHASTIC DERIVATION OF WAVE FUNCTION COLLAPSE

In Sec. IV, we have seen that the Schro¨dinger equation is obtained through a simple exp
nential transformation from the Hamilton–Jacobi equation~IV.28! of an appropriate stochasti
variational principle. Suppose now that a position measurement of the quantum system is m
time t1 , and we ask the following: What should be the new stochastic process on@ t1 ,t2#? First of
all, we consider the situation without measurement up to timet2 . In this case, the variationa
principle of Sec. IV would have as a solution the Nelson process$x(t);t0<t<t2% extended up to
time t2 with quantum driftvq(t)5 (\/ im) “ logc„x(t),t…, where$c(x,t):t0<t<t2% is the solu-
tion of the Schro¨dinger equation~IV.32!. The Nelson process$x(t);t1<t<t2% will play the role of
a ‘‘reference process.’’ Suppose that the measurement at timet1 yields the new probability density
r̃(x,t1). For instance, if we assume that the measurement at timet1 only gives the information
that x lies in a certain subsetD of the configuration space of the system, the densityr̃(x,t1) just
after the measurement is given, according to Bayes’ theorem, by

r̃~x,t1!5
xD~x!r~x,t1!

*Dr~x8,t1!dx8
,

wherer(x,t1) is the probability density of the Nelson reference process right before the mea
ment is made. We need now to find an appropriate variational mechanism that, employi
Nelson reference process and the probability densityr̃(x,t1), produces the new process$x̃(t);t1

<t<t2%. It is apparent that the variational mechanism of the previous section is not suitable
Indeed, as observed before, that mechanism preserves completely theforward drift and transition
probabilities, but changes, possibly in a dramatic way, the backward drift and transition prob
ties. This is not acceptable in stochastic mechanics, were forward and backward drifts an
sition probabilitiesmust always be granted the same status. In other words, the time reversibility
of the theory must be reflected also by the theory of measurement. On the other hand, pre
both drifts, or equivalently both transition probabilities, amounts to preserving the pro
$x(t);t0<t<t2%, which is impossible since the probability density at timet1 has changed. Thus
we need to find a variational mechanism thatchanges both drifts as little as possible, given t
new density at time t1 . It should be apparent that, at this point, the time-symmetric kinematic
Sec. III is called for. Given that kinematics, and by analogy with the variational principle o
previous section, we are then led to the following formulation.

In the notation of Sec. IV, we consider the problem of extremizing on (x̃,ṽq)P(Xr̃2
3V) the

functional

J~ x̃,ṽq!ªEH E
t1

t2 mi

2\
~vq„x̃~ t !,t…2 ṽq~ t !!•~vq„x̃~ t !,t…2 ṽq~ t !! dt1

1

2
log

r̃~ x̃~ t1!,t1!

r~ x̃~ t1!,t1!
J ,

~VI.40!

subject to the constraint that

x̃ has quantum drift~velocity! ṽq . ~VI.41!

Herevq(x,t)5 (\/ im) “ logc(x,t) is the quantum drift field of the Nelson reference process,
Xr̃2

is the family of all finite-energy,Rn-valued diffusions on@ t1 ,t2# with diffusion coefficient
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I n (\/m), and having probability densityr̃2 at time t2 . The structure of the functional is quit
similar to the one of the previous section. Here,\/mi replacess2 in view of formula~IV.31!. The
1
2 in the boundary term is justified by the following relation; see~IV.27!,

mi

2\
„vq~x,t !2 ṽq~ t !…•„vq~x,t !2 ṽq~ t !…

5
m

4\
@„b1~x,t !2b̃1~ t !…1 i „b2~x,t !2b̃2~ t !…#•@„b1~x,t !2b̃1~ t !…1 i „b2~x,t !2b̃2~ t !…#,

which shows that a14 appears on the right-hand side. To solve this variational problem, we em
the same strategy as in the previous section. Letw(x,t) be a complex-valued function of classC2,1

defined onRn3@ t1 ,t2#, and satisfying the technical condition

EH E
t1

t2
“w„x~ t !,t…–“w~x~ t !,t…dtJ ,`, ;xPXr2

. ~VI.42!

Corresponding to such aw, we introduce the functional

Lw~ x̃,ṽq!ªEH w„x̃~ t2!,t2…2w„x̃~ t1!,t1…

1E
t1

t2F2
]w

]t
„x̃~ t !,t…2 ṽq~ t !–“w„x̃~ t !,t…1

i\

2m
Dw„x̃~ t !,t…GdtJ .

In view of ~III.24!, and of property~VI.42!, we see thatLw( x̃,ṽq)50 whenever the pair (x̃,ṽq)
satisfies the constraint. Thus, it is aLagrange functionalfor the problem. Consider next th
unconstrainedextremization of the functionalJ1Lw. For a fixedx̃PXr̃2

, and a fixed timet

P@ t1 ,t2#, we consider thepointwiseextremization of the integrand ofJ1Lw with respect toṽq ,

extremizeṽPCnH mi

2\
~vq„x̃~ t !,t…2 ṽ !•~vq„x̃~ t !,t…2 ṽ !2 ṽ–“w„x̃~ t !,t…J .

We get

ṽq
o~ x̃!~ t !5vq„x̃~ t !,t…1

\

mi
“w„x̃~ t !,t…. ~VI.43!

Substituting back expression~VI.43! into J1Lw, we get the following functional ofx̃:

~J1Lw!„x̃,ṽq
o~x!…ªEH w„x̃~ t2!,t2…2w„x̃~ t1!,t1…1E

t1

t2F i\

2m
“w„x̃~ t !,t…–“w„x̃~ t !,t…2

]w

]t
„x̃~ t !,t…

2vq„x̃~ t !,t…–“w„x̃~ t !,t…1
i\

2m
Dw„x̃~ t !,t…GdtJ . ~VI.44!

We seek next to choose the functionw so that the functional (J1Lw)„x̃,ṽq
o(x)… becomes constan

over Xr̃2
. Supposew solves on@ t1 ,t2# the initial value problem,

]w

]t
1vq~x,t !–“w~x,t !2

i\

2m
Dw~x,t !5

i\

2m
“w~x,t !–“w~x,t !, ~VI.45!
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w~x,t1!5
1

2
log

r̃~x,t1!

r~x,t1!
. ~VI.46!

Then (J1Lw)„x̃,ṽq
o(x)…5E$w„x̃(t2),t2…% is constant overXr̃2

since such processes have t
same marginal density at timet2 . Hence, anyxPXr̃2

solves the unconstrained extremizatio

of J1Lw. To solve the original constrained extremization problem, we need to find thex̃PXr̃2

that has quantum drift given by~VI.43!. In order to do that, we first proceed to find the so
tion of ~VI.45!–~VI.46!. Write c(x,t1)5r(x,t1)1/2 exp@(i/\) S(x,t1)#, and define c̃(x,t)
ªexp@w(x,t)#c(x,t). Then, if w satisfies~VI.45!, using the Schro¨dinger equation~IV.32! satisfied
by c, we get

]c̃

]t
5exp@w#S ]w

]t
c1

]c

]t D
5

i

\
V~x!c̃1

i\

2m
expw~Dc12“c–“w1“w–“wc1Dwc!5

i\

2m
Dc̃2

i

\
V~x!c̃.

Observing thatc̃(x,t1)5 r̃(x,t1)1/2 exp@(i/\) S(x,t1)#, we conclude that ifc̃ is the solution of the
Schrödinger equation ~IV.32! on @ t1 ,t2# with initial condition at time t1 given by
r̃(x,t1)1/2 exp@(i/\) S(x,t1)#; then wª log(c̃/c) solves the initial value problem~VI.45!–~VI.46!.
Thus, we get the following result.

Theorem VI.1: Suppose thatc̃ is the solution of the Schro¨dinger equation (IV.32) on@ t1 ,t2#

with initial condition at time t1 given byr̃(x,t1)1/2exp@(i/\) S(x,t1)#. Thenwª log(c̃/c) solves the

initial value problem (VI.45)–(VI.46). Suppose thatw satisfies (VI.42), and thatr̃2(x)
5uc̃(x,t2)u2. Then the stochastic process x˜PXr̃2

having quantum drift(\/mi) “ log c̃„x̃(t),t…
solves the constrained extremization problem.

Thus, by a purely probabilistic argument, we have shown that the new process aft
measurement at timet1 is associated to another solutionc̃ of the same Schro¨dinger equation
~IV.32!. The association is precisely as before, namely, the quantum drift is proportional t
gradient of the logarithm ofc̃. In other words, the new process is just the Nelson proc
associated to the solution$c̃(x,t);t1<t<t2%. It is important to observe that the new wave fun
tion has the same phase at timet1 as the old one before measurement. This agrees with stan
quantum mechanics when it is assumed that immediate repetition of the measurement yie
same result and does not change the wave function except for an arbitrary phase factor; s
Refs. 26, 27. Here, however, no further assumption is needed:The invariance of the phase follow
from the variational principle. This is a crucial point. Indeed, if we assume the invariance of
phase after a position measurement in stochastic mechanics, then the variational principle
IV suffices to produce the new Nelson process~associated to the solution$c̃(x,t)% of the Schro¨-
dinger equation!. Also notice that the solution process possesses the same coherence prope
respect to the time interval as the solution process of the previous section.

VII. DISCUSSION

In this paper we have shown that, in the frame of Nelson’s stochastic mechanics, the
function reduction does not need to bepostulated, but may bederivedfrom the standard rules o
probability ~Bayes’ theorem! and a stochastic variational principle of transparent significanc
seems to us that this result lends support to the point of view of Blanchard, Golin, and Se
Ref. 28, where it was shown that some apparent paradoxes of stochastic mechanics re
repeated measurements could be removed by introducing an appropriate new process af
measurement. The new process, indeed, is the Nelson process associated to the new soluc̃ of
the Schro¨dinger equation. A general comparison between standard quantum mechanics a
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chastic mechanics is beyond the aims of this paper, and anyway beyond the knowledge a
understanding of the present author. We refer the reader to Refs. 4, 14, as well as to a s
recent papers by Guerra,7,29 for a thorough and deep analysis on the possibility of regard
Nelson’s stochastic mechanics as a complete physical theory.

Nevertheless, it seems legitimate to us to stress that stochastic mechanics, includi
elements of a theory of measurement outlined in Ref. 28 and here, can simply be based
hypothesis of universal Brownian motion and on stochastic variational principles. Thus, stoc
mechanics appears as a generalization of classical mechanics whose foundations are co
independent from standard quantum mechanics. Moreover, this theory is now capable of pro
a transparent probabilistic derivation of the two most mysterious features of standard qu
mechanics, namely the uncertainty principle and the wave function collapse.
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The Lifshits–Krein spectral shift function is considered for the pair of operators
H05(2D) l , l .0 and H5H01V in L2(Rd), d>1; hereV is a multiplication
operator. The estimates for this spectral shift functionj(l;H,H0) are obtained in
terms of the spectral parameterl.0 and the integral norms ofV. These estimates
are in a good agreement with the ones predicted by the classical phase space
volume considerations. ©1999 American Institute of Physics.
@S0022-2488~99!02311-7#

I. INTRODUCTION

The main object of study of this paper is the Lifshits–Kreinspectral shift function~SSF!. For
an exposition of the SSF theory, see, e.g., Ref. 1 or 2. For a general pair of self-adjoint op
H1 , H2 in a Hilbert spaceH, satisfying some trace class condition~see Sec. II C!, the SSF
j(l;H2 ,H1) appears in connection with thetrace formula:

Tr„c~H2!2c~H1!…5E
2`

`

j~l;H2 ,H1!c8~l!dl, cPC0
`~R!. ~1.1!

Besides, the SSF is related to the scattering matrixS(l) for the pairH1 , H2 by the Birman–
Krein formula:

detS~l!5e22p i j~l;H2 ,H1!,

for almost everyl on the absolutely continuous spectrum ofH1 . This formula allows one to
interpret the SSF as the scattering phase. Moreover, sometimes it is treated as the definitio
SSF. See Ref. 1 for references and a discussion.

Let H05(2D) l , l .0 in L2(Rd), d>1, and letV5V(x), xPRd, be a~real-valued! pertur-
bation potential, which decays sufficiently fast asuxu→`. In this paper we obtain bounds o
j(l;H01V,H0) in terms ofl and integral norms ofV. The most interesting case isl 51 ~Schrö-
dinger operator!. Nevertheless, the technique of this paper allows us to obtain bounds on th
in a uniform way for alll P(0,̀ ) ~and all dimensionsd!, and thus we consider the problem in i
natural generality. The main result of this paper~Theorem 2.2! is formulated in Sec. II and its
corollaries—in Sec. III. Our estimates are very close to the ones predicted by the semicla
intuition—see the discussion in Sec. III. Our results extend the estimates of Ref. 3 and are
related to the results of Ref. 4—see the discussion at the end of Sec. III. Our technique is ba
the new representation for the SSF obtained in Ref. 5.

a!Electronic mail: a.b.pushnitski@lboro.ac.uk
55780022-2488/99/40(11)/5578/15/$15.00 © 1999 American Institute of Physics
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II. PRELIMINARIES: STATEMENT OF THE MAIN RESULT

A. Notation

For a closable linear operatorT in a Hilbert spaceH, by T̄ we denote the closure ofT. For a
self-adjoint operatorA, the symbolss(A), r(A) denote its spectrum and resolvent set;R(z,A)
5(A2zI)21 @for zPr(A)# andEA(d) is the spectral projection associated to a Borel setd,R.
By S̀ (H) we denote the space of all compact operators inH. For T5T* PS̀ (H) we introduce
the counting functions of the spectrum byn6(s,T)ªrankE6T„(s,1`)…, s.0. Note that~see,
e.g., Ref. 6!

n6~s11s2 ,T11T2!<n6~s1 ,T1!1n6~s2 ,T2!, s1 ,s2.0. ~2.1!

For p>1 the Neumann–Schatten classesSp are defined in a usual way:

TPSp if iTiSp

p
ª(

n
sn

p~T!,`,

where$sn(T)% is the sequence of singular numbers ofT.
An integral without the domain of integration explicitly specified implies integration overRd.

Formulas and statements with double indices~6 and7! should be read as pairs of statements,
one of which all the indices take upper values and in another—the lower ones. ByC(d),C( l ), etc.
~possibly with sub- and superscripts! we denote various constants that depend only ond, l, etc. and
whose particular values are of no importance. A constant that first appears in formula (i . j ) is
denoted byCi . j .

We remind the reader of the definition of the lattice spacel 1(Lr),Lr(R
d),r>1:

uP l 1~Lr ! if iui l 1~Lr !ª (
j PZd

S E
Qd1 j

uuur dxD 1/r

,`, Qd5~0,1!d,Rd.

EverywhereH5L2(Rd), d>1 andH05(2D) l , l .0; ¸5d/(2l ). We shall need a nota
tion for a logarithmic weight function. Namely, forxPRd andg.0 let

Fg~x!511~ log1uxu!g. ~2.2!

B. Assumptions on V

Below by V we denote both a functionV:Rd→R and the~self-adjoint! operator of multipli-
cation byV(x) in L2(Rd). In various places we shall use some of the following assumptions oV:

V is H0-form compact; ~2.3!

VPL1~Rd!; ~2.4!

VPL¸~Rd!; ~2.5!

E uV~x!uFg~x!dx,`, g.2. ~2.6!

Note that foŗ ,1 ~2.3! follows from ~2.4!, and for¸.1—from ~2.5!. Clearly, under the assump
tion ~2.3! the operatorsH01V, H01V1 , H02V2 are well defined via the corresponding qu
dratic forms.

The following assumption will appear only foŗ>2:

if ¸>2, then VP l 1~L2!. ~2.7!
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C. Existence of the SSF

Let H1 , H2 be a pair of self-adjoint operators in a Hilbert spaceH, such that

H22H1PS1~H!. ~2.8!

Then the SSFj(l;H2 ,H1) exists and is given by theKrein formula,7

j~l;H2 ,H1!5
1

p
lim

e→10
argDH2 /H1

~l1 i e!, a.e. lPR, ~2.9!

whereDH2 /H1
(z)5det(H22zI)(H12zI)21 and the branch of the argument is fixed by

argDH2 /H1
~z!→0 as Imz→1`.

The SSF obeys the monotonicity property:7

6„~H22H1!x,x…>0 ;xPH ⇒ 6j~l;H2 ,H1!>0. ~2.10!

For a tripleH0 , H1 , H2 of operators, such thatH12H0PS1 andH22H0PS1 , one has

j~l;H2 ,H0!5j~l;H2 ;H1!1j~l;H1 ,H0!. ~2.11!

In applications, instead of~2.8!, it is usually possible to check the inclusionf (H2)2 f (H1)
PS1 , where f is some monotone smooth enough function. In this case one can first takH̃1

5 f (H1), H̃25 f (H2) and definej(l;H̃2 ,H̃1) according to~2.9!, and then put

j~l;H2 ,H1!ªsignf 8•j„f ~l!; f ~H2!, f ~H1!…. ~2.12!

Thus defined,j(l;H2 ,H1) still obeys the trace formula~1.1!. See Refs. 1 and 2 for details.
Proposition 2.1: ~i! Let ¸,2 and let V obey (2.3), (2.4). Then, for anyl0

, inf„s(H0)øs(H01V)…, the relation

R~l0 ,H0!2R~l0 ,H01V!PS1 ~2.13!

holds. Thus, the spectral shift functionsj(l;H01V,H0), j(l;H01V1 ,H0), j(l;H02V2 ,H0)
are well defined by (2.12) with f(l)5(l2l0)21. The following inequalities hold:

j~l;H02V2 ,H0!<0<j~l;H01V1 ,H0!, ~2.14!

j~l;H02V2 ,H0!<j~l;H01V,H0!<j~l;H01V1 ,H0!. ~2.15!

~ii ! Let ¸>2 and let V obey (2.3), (2.7). Then, for anyl0, inf„s(H0)øs(H01V)… with a
large enough absolute value, and for any integer k.¸2 1

2, the relation

Rk~l0 ,H0!2Rk~l0 ,H01V!PS1 ~2.16!

holds. Thus, the spectral shift functionsj(l;H01V,H0), j(l;H01V1 ,H0), j(l;H02V2 ,H0)
are well defined by (2.12) with f(l)5(l2l0)2k. The inequalities (2.14), (2.15) hold.

Similar statements appeared in the literature in many different versions in connection wi
trace class scattering theory. Nevertheless, for the sake of completeness, we give the p
Proposition 2.1 at the end of this section.

The inequalities~2.15! reduce the problem of estimating the SSF to the case of perturba
of a definite sign. Thus, below we shall always assume thatV>0 and consider the pair o
functionsj(l;H06V,H0).

Finally, note that, sinces(H0)5@0,̀ ), one has
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j~2l;H02V,H0!52rankEH02V„~2`,2l…!, l.0. ~2.17!

D. Estimates for the SSF

The main result of this paper is the following.
Theorem 2.2: Let V.0. Under the assumptions (2.3), (2.6), (2.7), the following estima

hold for l.0 and g.2:

j~l;H01V,H0!<C~d,l ,g!l¸21iViL1

1/2iVFgiL1

1/21C~d,l !l¸21~ log1 l!iViL1
, ~2.18!

uj~l;H02V,H0!u<C~d,l ,g!l¸21iViL1

1/2iVFgiL1

1/21C~d,l !l¸21~ log1 l!iViL1

1uj~2l;H026V,H0!u. ~2.19!

The proof is given in Secs. IV–VIII. The factor 6 in~2.19! is chosen this way in order to simplify
the constants appearing in the proof. Actually, this factor can be replaced by any number g
than 1; at the same time, the constantsC(d,l ,g) and C(d,l ) may have to be increased. Usin
bounds for uj(2l;H026V,H0)u @which, by ~2.17!, reduce to the bounds on the number
eigenvalues ofH026V#, one can estimate the SSFj(l;H02V,H0) entirely in terms ofl and
integral norms ofV. This will be done in Sec. III. In Sec. III we also discuss Theorem 2.2
related results.

E. Proof of Proposition 2.1

~i! By ~2.4!, one hasAuVuR(l0 ,H0)PS2 . Therefore,~2.13! follows from the identity

R~l0 ,H01V!5R~l0 ,H0!2„signVAuVuR~l0 ,H0!…* „I 1AuVuR~l0 ,H0!AuVusignV…21

3„AuVuR0~l0 ,H0!….

Clearly,

H02V2<H0<H01V1 , H02V2<H01V<H01V1 ,

in the quadratic form sense. Therefore,

R~l0 ,H02V2!>R~l0 ,H0!>R~l0 ,H01V1!, ~2.20!

R~l0 ,H02V2!>R~l0 ,H01V!>R~l0 ,H01V1!. ~2.21!

From here, by~2.10! and ~2.11!, we get

j„~l2l0!21;R~l0 ,H02V2!,R~l0 ,H0!…>0>j„~l2l0!21;R~l0 ,H01V1!,R~l0 ,H0!…,

j„~l2l0!21;R~l0 ,H02V2!,R~l0 ,H0!…>j„~l2l0!21;R~l0 ,H01V!,R~l0 ,H0!…

>j„~l2l0!21;R~l0 ,H01V1!,R~l0 ,H0!….

From here, by the definition~2.12!, the relations~2.14!, ~2.15! follow.
~ii ! By ~2.7!, one has

VRk11/2~l0 ,H0!PS1 , k.¸2 1
2

~see, e.g., Ref. 8, Theorem 11.1!. Therefore, by Ref. 9, Theorem XI.12, the inclusion~2.16! holds.
Due to the results of Ref. 10~see also Ref. 2, Sec. 8.10!, the inequalities~2.20!, ~2.21! together
with ~2.16!, ~2.11! imply
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j„~l2l0!2k;Rk~l0 ,H02V2!,Rk~l0 ,H0!…>0>j„~l2l0!2k;Rk~l0 ,H01V1!,Rk~l0 ,H0!…,

j„~l2l0!2k;Rk~l0 ,H02V2!,Rk~l0 ,H0!…>j„~l2l0!2k;Rk~l0 ,H01V!,Rk~l0 ,H0!…

>j„~l2l0!2k;Rk~l0 ,H01V1!,Rk~l0 ,H0!….

From here, by the definition~2.12!, the relations~2.14!, ~2.15! follow. j

III. COROLLARIES AND DISCUSSION

A. Semiclassical considerations

Let us consider a ‘‘classical analog’’ of the SSF, expressed in terms of the phase
volumes, corresponding to the systems with the Hamiltoniansh0(p,x)5p2l and h6(p,x)5p2l

6V(x), whereV>0. Let vd be the volume of a unit ball inRd; define

jcl~l;H01V,H0!5~2p!2d vol$~p,x!PR2duh0~p,x!,l,h1~p,x!%

5~2p!2dvdE
Rd

~l¸2„l2V~x!…1
¸ !dx, l.0, ~3.1!

jcl~l;H02V,H0!52~2p!2d vol$~p,x!PR2duh2~p,x!,l,h0~p,x!%

52~2p!2dvdE
Rd

~„l1V~x!…¸2l¸!dx, l.0. ~3.2!

It is well known thatjcl(l;H06V,H0) behaves in many respects likej(l;H06V,H0); for ex-
ample, it has the same asymptotics in most asymptotical regimes—see the review in Ref.
references therein. The integrands in~3.1!, ~3.2! admit the following elementary bounds:

l¸2~l2V!1
¸ <max$¸,1%l¸21V, ¸.0; ~3.3!

~l1V!¸2l¸<¸l¸21V, ¸<1; ~3.4!

~l1V!¸2l¸<C1V¸1C2l¸21V, ¸.1. ~3.5!

It is easy to give concrete explicit values forC1 , C2 in ~3.5!; for example,C152¸, C252¸

21. Substituting~3.3!–~3.5! into ~3.1!, ~3.2!, we get the following bounds forjcl:

jcl~l;H01V,H0!<~2p!2dvd max$¸,1%l¸21iViL1
, ¸.0; ~3.6!

ujcl~l;H02V,H0!u<~2p!2dvd¸l¸21iViL1
, ¸<1; ~3.7!

ujcl~l;H02V,H0!u<C1~2p!2dvdiViL¸

¸ 1C2~2p!2dvdl¸21iViL1
, ¸.1. ~3.8!

Estimates~3.6!–~3.8! are in good agreement with the asymptotics ofjcl for high energy and a
large coupling constant:

jcl~l;H06V,H0!;6~2p!2dvd¸l¸21E V~x!dx, l→`, ~3.9!

jcl~l;H02gV,H0!;2~2p!2dvdg¸E V¸~x!dx, g→`. ~3.10!
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We consider~3.6!–~3.8! as the model estimates. Clearly,~2.18! is in agreement with~3.6! up
to the constants, the logarithmic weightFg and the term log1 l. In order to compare~2.19! with
~3.7!, ~3.8!, one has to estimate the termuj(2l;H026V,H0)u. This will be done below differ-
ently for ¸.1, ¸,1 and¸51.

B. The case Æ>1

In this case, we use the Cwikel–Lieb–Rozenblum bound:12–14

uj~2l;H02V,H0!u<C~d,l !iViL¸

¸ . ~3.11!

Substituting~3.11! into ~2.19!, we get the following.
Corollary 3.1: Let¸.1. Assume the hypothesis of Theorem 2.2 and the inclusion (2.5);

for any l.0 and g.2,

uj~l;H02V,H0!u<C~d,l ,g!l¸21iViL1

1/2iVFgiL1

1/21C~d,l !l¸21~ log1 l!iViL1
1C~d,l !iViL¸

¸ .

~3.12!

C. The case Æ<1

For ¸,1 let us use the Birman–Schwinger principle and estimateuj(2l;H02V,H0)u ~for
V>0) in the following way:

uj~2l;H02V,H0!u<Tr„AVR~2l,H0!AV…5C~d,l !l¸21iViL1
. ~3.13!

Substituting ~3.13! into ~2.19! and taking into account the obvious estimateiViL1

<iViL1

1/2iVFgiL1

1/2, we get the following corollary.

Corollary 3.2: Let V>0 and ¸,1; assume (2.6). Then, for anyl.0 and g.2,

uj~l;H02V,H0!u<C~d,l ,g!l¸21iViL1

1/2iVFgiL1

1/21C~d,l !l¸21~ log1 l!iViL1
. ~3.14!

D. The case Æ51

Now

jcl~2l;H02V,H0!52~2p!2dvdE V~x!dx, ;lPR.

Nevertheless, as it is well known, the ‘‘naive’’ estimate,

uj~2l;H02V,H0!u<CiViL1
, l.0, ~3.15!

is wrong; see, e.g., Ref. 15 for the discussion. Instead, there are numerous estima
j(2l;H02V,H0), which are worse than~3.15! by a logarithmic term of some kind; see Refs. 1
and 17. Such estimates are a bit cumbersome as compared to~3.11!, ~3.13!. Instead of discussing
them, we consider two rough but simple estimates. The first one is~see, e.g., Ref. 18, Propositio
5.5!

uj~2l;H02V,H0!u<iAVR~2l,H0!AViSq

q <C~d,q!l12qiViLq

q , q.1; ~3.16!

it is of an ‘‘almost correct’’ order inV andl. Substituting~3.16! into ~2.19!, we get the following
corollary.

Corollary 3.3: Let¸51; assume (2.3), (2.6) and let VPLq(Rd) for some q.1. Then, for any
l.0 and g.2,
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uj~l;H02V,H0!u<C~d,g!iViL1

1/2iVFgiL1

1/21C~d!~ log1 l!iViL1
1C~d,q!l12qiViLq

q .

~3.17!

Another simple estimate is valid~see, e.g., Ref. 18, Proposition 5.4! for l bounded away from
zero:

uj~2l;H02V,H0!u<C~d,r !iVi l 1~Lr ! , r .1, l>1. ~3.18!

Note thatVP l 1(Lr), r .1, implies ~2.3!. Thus, substituting~3.18! into ~2.19!, we obtain the
following.

Corollary 3.4: Let ¸51; assume (2.6) and let VP l 1(Lr) for some r.1. Then, for anyl
>1 and g.2,

uj~l;H02V,H0!u<C~d,g!iViL1

1/2iVFgiL1

1/21C~d!~ log1 l!iViL1
1C~d,r !iVi l 1~Lr ! .

~3.19!

Substituting the estimates of Refs. 16, 17 into~2.19!, one can obtain more precise statements

E. A comparison with the results of Ref. 3

In Ref. 3, the following result has been obtained. Letd>2, l 51 and letV5V(x)>0 satisfy
the estimate

V~x!<C3.20~11uxu!2r, r.d. ~3.20!

For all l>C.0 and all coupling constantsg.0 the following bounds have been established~See
Ref. 3, Theorem 4.2!:

j~l;H01gV,H0!<C3.21gl¸21~ u loglu11!, ~3.21!

uj~l;H02gV,H0!u<C3.22~gl¸21~ u loglu11!1g¸!. ~3.22!

The constantsC3.21,C3.22 may depend ond and C3.20. Clearly, ~3.21! follows from ~2.18! and
~3.22!—from ~3.12!, ~3.19!. The basic difference between our results and the ones of Ref. 3
the fact that the dependence onV is explicit in ~2.18!, ~3.12!, ~3.19! but not in ~3.21!, ~3.22!.
Besides, Theorem 2.2 and Corollaries 3.1–3.4 extend the results of Ref. 3 in some other re

~1! Theorem 2.2 and Corollary 3.2 deal with the case¸,1, which has not been considered in Re
3.

~2! The class of potentialsV in Theorem 2.2 and Corollaries 3.1–3.4 is broader than the one g
by ~3.20!.

~3! Theorem 2.2 and Corollaries 3.1–3.3 concern alll.0, whereas in Ref. 3l is assumed to be
bounded away from zero.

F. Integral estimates for the SSF

In Ref. 4, theintegral estimates for the SSFj(l,H06V,H0) have been obtained~for the same
operatorsH0 ,V>0 as in the present paper!. Before discussing them, let us write down the es
mates forjcl, which easily follow from the definition~3.1!, ~3.2!:

E
0

R

jcl~l;H01V,H0!dl<~2p!2dvdR¸iViL1
R.0, ¸.0, ~3.23!

E
0

R

ujcl~l;H02V,H0!udl<~2p!2dvdR¸iViL1
R.0, ¸<1, ~3.24!
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E
0

R

ujcl~l;H02V,H0!udl<C1~d,l !R¸iViL1
1C2~d,l !RiViL¸

¸ , R.0, ¸.1. ~3.25!

It appears that the estimates~3.23!, ~3.25! can be carried over to the ‘‘real’’ SSF~see estimates
~6.2! and ~6.10!, respectively, in Ref. 4!; it is interesting that even the constant in@Ref. 4, Eq.
~6.2!# coincides with the classical one, given by~3.23!. For ¸,1, the estimate

E
0

R

uj~l;H02V,H0!udl<C~d,l !R¸iViL1
R.0, ¸,1

@with the constantC(d,l ) different from the classical one, given by~3.24!# follows from @Ref. 4,
Eq. ~6.7!# and ~3.13!. For ¸51 the estimate@Ref. 4, Eq.~6.7!# together with~3.16! implies

E
0

R

uj~l;H02V,H0!udl<C~d!RiViL1
1C~d,q!R22qiViLq

q , R.0, ¸51,

for any q.1, and together with~3.18! it implies

E
0

R

uj~l;H02V,H0!udl<C~d!RiViL1
1C~d,r !RiVi l 1~Lr ! , R.1, ¸51,

for any r .1.

G. Remarks

~1! Note that in Ref. 3 some estimates for the SSF have been found that have better o
l andg, than~3.21!, ~3.22!, depending on the exponentr in ~3.20!. These estimates, however, a
of a conditional character, since they depend on some hypothesis on the boundary values
resolvent ofH0 , which has not been proved yet.

~2! The proof of Theorem 2.2 borrows some elements of Ref. 3. But the operator theoret
of our approach~Propositions 4.2, 4.3! is completely different.

~3! It is natural to compare the estimates for the SSF with its asymptotics. Note that fo
~3.9! for the ‘‘real’’ SSF and its various extensions is well known~see, e.g., Ref. 11 and referenc
therein!. The relation~3.10! for the ‘‘real’’ SSF is a well-known fact forl,0 ~see, e.g., Ref. 18!
and has been proved in Ref. 19 forl.0 andl 51. Comparing the estimates~2.18!, ~3.12!, ~3.14!,
~3.19! with the asymptotics~3.9!, ~3.10!, we see that the estimates are of a correct order in
coupling constantg ~asg→`) and of an almost correct~up to the logarithmic terms! order inl as
l→`.

~4! In the cased5 l 51, a pointwise estimate on the SSF, which is somewhat different f
~3.14!, has been obtained in Ref. 20. See the end of Sec. VIII for the discussion of this est

IV. REPRESENTATION FOR THE SSF

Assume~2.3!, ~2.4! and denoteWªAV. Assumption~2.3! means that

W~H01I !21/2PS̀ . ~4.1!

For Imz.0 consider the ‘‘sandwiched resolvent,’’

T~z!ª„W~H01I !21/2
…~H01I !R0~z!„W~H01I !21/2

…* 5WR0~z!W;

by ~4.1!, T(z)PS̀ . Denote

A~z!5ReT~z!, K~z!5Im T~z!.
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By ~2.4!, for any bounded intervald,R, one has

WEH0
~d!PS2 . ~4.2!

From here we get the following statement.
Proposition 4.1: Assume (2.3), (2.4). For a.e.lPR,

' lim
e→01

T~l1 i e!5:T~l1 i0!PS̀ and K~l1 i0!PS1 . ~4.3!

Proof: For anyd,R, denote

Td~z!ª„W~H01I !21/2EH0
~d!…~H01I !R0~z!„W~H01I !21/2EH0

~d!…* ,

Ad~z!5ReTd~z!, Kd~z!5Im Td~z!. ~4.4!

Now let d,R be some openboundedinterval. It is one of the fundamental results of the tra
class scattering theory~see Ref. 21 or 2! that ~4.2! implies

'Td~l1 i0!PS2 and Kd~l1 i0!PS1 , a.e. lPR. ~4.5!

On the other hand, the operatorTR\d(z) is analytically extendable throughd; obviously,

TR\d~l!PS̀ and KR\d~l!50, lPd. ~4.6!

Finally, writing T(z)5Td(z)1TR\d(z) and taking into account~4.5!, ~4.6!, we get~4.3! for a.e.
lPd. Sinced,R is arbitrary, this implies the required statement. j

It will follow from the reasoning of Sec. VII that under the additional assumption~2.6!, the
condition ~4.3! actually holds for alllÞ0 and T(l1 i0) depends continuously onl in the
operator norm andK(l1 i0)—in the trace norm.

Let l be such that~4.3! holds; denote

N6~l!ª
1

p E
2`

` dt

11t2 n6„1,A~l1 i0!1tK~l1 i0!…. ~4.7!

One easily checks that~4.3! implies convergence of the integral in~4.7!.
Proposition 4.2 (Refs. 5 and 4): Assume (2.3), (2.4), (2.7); then for a.e.lPR,

j~l;H06V,H0!56N7~l!. ~4.8!

Representation~4.7!, ~4.8! for the SSF has been established in Ref. 4~see also Ref. 22 for a
generalization! as an abstract operator theoretic fact; application to the polyharmonic operato
considered in Ref. 4, Theorems 6.2, 6.3. Formula~4.8! can be considered as theBirman–
Schwinger principle on the continuous spectrum; see Ref. 5 for the discussion.

A straightforward analysis of the r.h.s. of~4.7! gives the following.
Proposition 4.3 (Ref. 5): Let, for somel.0, the condition (4.3) hold. Then for anyu

P(0,1) the following estimate holds:

N6~l!<n6„12u,A~l1 i0!…1u21p21iK~l1 i0!iS1
. ~4.9!

In the proof of Theorem 2.2, we shall use~4.9! together with the following decomposition:

A~l1 i0!5Ad~l1 i0!1AR\d~l!, l.0, d5~0,2l!, ~4.10!

where the operators on the r.h.s. are defined by~4.4!. Substituting~4.10! into ~4.9!, fixing u
51/4, and using~2.1!, we get the following inequality:
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N6~l!<n6„
1
2,AR\d~l!…1n6„

1
4,Ad~l1 i0!…14p21iK~l1 i0!is1

. ~4.11!

The relation~4.11! plays the key role in the proof of Theorem 2.2. In what follows we estim

each of the three terms on the r.h.s. of~4.11!. Note thatAR\d(l)>0; thus,n2„
1
2,AR\d(l)…50.

Certainly, there is much freedom in choosing the constantsu in ~4.9! and s1,2 in ~2.1!, but this
choice affects only the constants in the resulting formulas~2.18!, ~3.12!, ~3.14!, ~3.17!, ~3.19!.

V. ESTIMATE FOR AR\d

Assume ~2.3!; as in the end of the previous section, let us fix somel.0, denoted
5(0,2l), and define the operatorAR\d according to~4.4!.

Proposition 5.1: Under the above assumptions, for any s.0,

n1~s,AR\d~l1 i0!!<uj~2l;H023s21V,H0!u. ~5.1!

Proof: A straightforward calculation shows that

R~l,H0!EH0
~R\d!<3R~2l,H0!,

in the quadratic form sense. It follows thatAR\d(l1 i0)<3T(2l). From here, using the Birman–
Schwinger principle, we get

n1„s,AR\d~l1 i0!…<n1„s,3T~2l!…

5rankEH023s21V„~2`,2l!…

5uj~2l;H023s21V,H0!u.
j

VI. ESTIMATE FOR K

Assume~2.3!, ~2.4!. For l.0 consider the operator

~WE„~0,l!…!~WE„~0,l!…!* . ~6.1!

By ~4.2!, the operator~6.1! belongs to the trace class. We will need a well-known representa
for the derivative of~6.1! with respect tol. In order to write down this representation, for eve
t.0 define the operatorJ(t):L2(Rd)→L2(Sd21), which acts according to the formula

J~ t !: f ~x!°~2p!2d/2E
Rd

eit ^x,n&W~x! f ~x!dx, nPSd21.

For d51 by Sd21 we mean the set$21, 1%. Clearly,J(t)PS2 and

iJ~ t !iS2

2 5dvd~2p!2diViL1
. ~6.2!

A straightforward calculation shows that the operator-valued function~6.1! is differentiable inl in
the trace class and

F~l!ª
d

dl
~WE„~0,l!…!~WE„~0,l!…!* 5~2l !21l¸21J* ~l1/~2l !!J~l1/~2l !!>0. ~6.3!

If for somel.0 the limit T(l1 i0) exists, then, clearly,

K~l1 i0!5pF~l!. ~6.4!
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Thus,

iK~l1 i0!is1
5p Tr F~l!5p~2l !21l¸21iJ~l1/~2l !!is2

2 5p¸vd~2p!2dl¸21iViL1
. ~6.5!

VII. ESTIMATE FOR Ad

A. Preliminary estimates

Define the functionw(t), t.0, by

w~ t !5H ueit21u2, t<p,

4, t>p.
~7.1!

Proposition 7.1: Assume (2.4). For any t1.0, t2.0 the following estimate holds:

iJ~ t1!2J~ t2!is2

2 <dvd~2p!2dE
Rd

V~x!w~ uxuut12t2u!dx. ~7.2!

Proof:

iJ~ t1!2J~ t2!is2

2 <~2p!2dE
Rd

V~x!E
Sd21

ueit 1^n,x&2eit 2^n,x&u2 dn dx

<~2p!2dE
Rd

V~x!E
Sd21

w~ uxuut12t2u!dn dx

5~2p!2d dvdE
Rd

V~x!w~ uxuut12t2u!dx.

j

We are reminded thatF(l) is defined by~6.3!.
Proposition 7.2: Assume (2.4). For anyl1.0, l2.0:

iF~l1!2F~l2!is1
<¸vd~2p!2dul1

¸212l2
¸21uiViL1

12¸vd~2p!2dl2
¸21iViL1

1/2

3S E V~x!w~ uxuul1
1/~2l !2l2

1/~2l !u!dxD 1/2

. ~7.3!

Proof: By ~6.3!,

iF~l1!2F~l2!is1
5~2l !21il1

¸21J* ~l1
1/~2l !!J~l1

1/~2l !!2l2
¸21J* ~l2

1/~2l !!J~l2
1/~2l !!is1

<~2l !21ul1
¸212l2

¸21uiJ* ~l1
1/~2l !!J~l1

1/~2l !!is1

1~2l !21l2
¸21i~J* ~l1

1/~2l !!2J* ~l2
1/~2l !!!J~l1

1/~2l !!is1

1~2l !21l2
¸21iJ* ~l2

1/~2l !!~J~l1
1/~2l !!2J~l2

1/~2l !!!is1
.

Substituting~6.2! and ~7.2! onto the r.h.s. of the last estimate, we arrive at~7.3!. j

Proposition 7.3: Assume (2.6); then there exist such constants0,C7.4
(1)(g) and 0,C7.4

(2)(g)
,1, that

E V~x!w~ uxus!dx<C7.4
~1!~g!u logsu2giVFgiL1

, ;sP„0,C7.4
~2!~g!…. ~7.4!

Proof: One has
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E V~x!w~ uxus!dx< sup
xPRd

w~ uxus!

Fg~x!
E V~x!Fg~x!dx.

It is a straightforward calculation to check that

sup
xPRd

w~ uxus!

Fg~x!
<C7.4

~1!~g!u logsu2g,

for some constantC7.4
(1)(g) and for all small enoughs.0. j

B. Existence of A d„l1 i 0…

Proposition 7.4: Assume (2.6), fixl.0 and letd5(0,2l). Then the limit Ad(l1 i0) exists in
the trace norm and

Ad~l1 i0!5E
0

2l F~ t !2F~l!

t2l
dt; ~7.5!

the last integral is absolutely convergent in the trace norm.
Proof: We start from the obvious formula, which is a consequence of the spectral theo

Ad~l1 i e!5E
0

2l t2l

~ t2l!21e2 F~ t !dt, e.0.

Clearly,

E
0

2l t2l

~ t2l!21e2 F~ t !dt5E
0

2l t2l

~ t2l!21e2 „F~ t !2F~l!…dt. ~7.6!

From Propositions 7.2, 7.3, it follows that

iF~l1s!2F~l!is1
<C~l,V!u logusi2g/2, ~7.7!

for all small enoughsPR. Thus, the integrands both in~7.6! and in ~7.5! are dominated~in the
trace norm! by an integrable functionC(l,V)ut2lu21u logut2li2g/2 in the neighborhood oft
5l. It follows that the r.h.s. of~7.6! converges to the r.h.s. of~7.5! ase→10. j

Remark 7.5:Note that it follows from the estimate~7.7! that under the assumptions~2.3!, ~2.6!
the condition~4.3! holds for all l.0 and the operatorAd(l1 i0) is continuous inl.0 in the
trace norm. Thus,T(l1 i0) is continuous inl.0 in the operator norm. Next, if instead of~2.6!
one assumes a stronger condition,

E V~x!~11uxu!gdx,`, gP~0,2!,

then the same reasoning leads to the estimate

iF~l1s!2F~l!is1
<C~l,V!usug/2,

for all small enoughsPR. This estimate implies a Ho¨lder continuity ofAd(l1 i0) in the trace
norm with the exponentg/2 and thus the Ho¨lder continuity ofT(l1 i0) in the operator norm.
However, in what follows we shall not need these facts.
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C. Estimates for A d„l1 i 0…

First we consider the casel51.
Proposition 7.6: Assume (2.6); letd5(0,2). One has

iAd~11 i0!is1
<C~d,l !iViL1

1C~d,l !iViL1

1/2E
0

1 ds

s S E V~x!w~ uxus!dxD 1/2

. ~7.8!

Proof: Let us use~7.5! and ~7.3!:

iAd~11 i0!is1
<E

0

2 iF~l!2F~1!is1

ul21u
dl

<¸vd~2p!2diViL1
E

0

2 ul¸2121u
ul21u

dl

12¸vd~2p!2diViL1

1/2E
0

2 dl

ul21u S E V~x!w~ uxuul1/~2l !21u!dxD 1/2

. ~7.9!

Changing the variable in the last integral, we obtain

E
0

2 1

ul21u S E V~x!w~ uxuul1/~2l !21u!dxD 1/2

dl

5E
21

21/~2l !21 2l ~s11!2l 21

u~s11!2l21u S E V~x!w~ uxus!dxD 1/2

ds

<C~ l !E
21

1 ds

usu S E V~x!w~ uxus!dxD 1/2

1E
1

21/~2l !21 2l ~s11!2l 21

u~s11!2l21u S E V~x!w~ uxus!dxD 1/2

ds

<C~ l !E
0

1 ds

s S E V~x!w~ uxus!dxD 1/2

1C~ l !iViL1

1/2. ~7.10!

Note that the integral over (1,21/(2l )21) enters the last calculation only if 21/(2l )21.1, i.e., if l
, 1

2. In order to estimate this integral, we use the boundw(t)<4. The estimates~7.9! and ~7.10!
together give~7.8!. j

Proposition 7.7: Assume (2.6), fixl.0 and letd5(0,2l). The following estimate holds:

iAd~l1 i0!is1
<C~d,l ,g!l¸21iViL1

1/2iVFgiL1

1/21C~d,l !l¸21~ log1 l!iViL1
. ~7.11!

Proof: We start from the standard dilatation argument. Namely, letUr , r .0 be the unitary
dilatation operator inL2(Rd): (Ur f )(x)5r d/2f (rx). Then

UrA~z!Ur* 5r 2lA~r !~r 2lz!,

whereA(r ) corresponds to the perturbation potentialV(r )(x)5V(xr). Thus, takingr 5l21/(2l ),
using ~7.8!, and changing variable in the resulting integrals, we obtain

iA~l1 i0!is1
5iUrA~l1 i0!Ur* is1

5l21iA~r !~11 i0!is1

<l¸21C~d,l !iViL1
1C~d,l !l¸21iViL1

1/2E
0

l1/~2l ! ds

s S E V~x!w~ uxus!dxD 1/2

.
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It remains to estimate the last integral. First letl>1. Using~7.4! and the boundw(t)<4, we get

E
0

l1/~2l ! ds

s S E V~x!w~ uxus!dxD 1/2

<~C7.4
~1!~g!!1/2iVFgiL1

1/2E
0

C7.4
~2! ds

s
u logsu2g/212iViL1

1/2E
C7.4

~2!

l1/~2l ! ds

s

<C~g!iVFgiL1

1/21iViL1

1/2l 21 log1 l22iViL1

1/2 logC7.4
~2!

<~C~g!22 logC7.4
~2!!iVFgiL1

1/21iViL1

1/2l 21 log1 l

<C~g!iVFgiL1

1/21iViL1

1/2l 21 log1 l.

Finally, if l,1, we merely replace the integration interval (0,l1/(2l )) by ~0, 1!, thus getting the
upper bound. j

VIII. PROOF OF THEOREM 2.2. CONCLUDING REMARKS

A. Proof of Theorem 2.2

Obviously,

n6„
1
4,Ad~l1 i0!…<4iAd~l1 i0!is1

.

It remains to substitute the last estimate together with~5.1!, ~6.5!, ~7.11! into ~4.11! and take into
account Proposition 4.2. j

B. Remarks

~1! Our Proposition 7.4 is fairly close to the ‘‘limiting absorption principle in the trace cla
of Ref. 3, though these two statements are proved by using a very different technique.

~2! One can exploit~4.11! by using some other~different from ours! estimates forK(l
1 i0), Ad(l1 i0), AR\d(l1 i0), thus obtaining new estimates for the SSF. Let us give an
ample.

In Ref. 23, the following estimate has been proved forl 51, d>2:

iAd~l1 i0!is2

2 <C~d!ld222~q/2!E E V~x!V~x8!

ux2x8uq dx dx8, qP@0, d21#. ~8.1!

For d51 this estimate is also true~which follows from the explicit formula for the integral kerne
of the resolvent ofH0). Observing that

n6~s,Ad~l1 i0!!< 1
2s

22iAd~l1 i0!is2

2 , ~8.2!

and substituting~8.1!, ~8.2! into ~4.11!, one obtains the following estimates forl 51, l.0, q
P[0, d21]:

j~l;H01V,H0!<C~d!ld222~q/2!E E V~x!V~x8!

ux2x8uq
dx dx81C~d!l~d/2!21iViL1

,

uj~l;H02V,H0!u<C~d!ld222~q/2!E E V~x!V~x8!

ux2x8uq dx dx81C~d!l~d/2!21iViL1

1uj~2l;H026V,H0!u.

One can combine the last estimate with~3.11!, ~3.13!, ~3.16!, ~3.18! or similar bounds in an
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obvious way. Note that the estimate~2.10! of Ref. 20 is contained in this series of estimates~for
d51).
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Symplectic Dirac–Ka ¨hler fields
M. Reutera)

Institut für Physik, Universita¨t Mainz, Staudingerweg 7, D-55099 Mainz, Germany
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For the description of space–time fermions, Dirac–Ka¨hler fields~inhomogeneous
differential forms! provide an interesting alternative to the Dirac spinor fields. In
this paper we develop a similar concept within the symplectic geometry of phase
spaces. Rather than on space–time, symplectic Dirac–Ka¨hler fields can be defined
on the classical phase space of any Hamiltonian system. They are equivalent to an
infinite family of metaplectic spinor fields, i.e., spinors of Sp(2N), in the same way
an ordinary Dirac–Ka¨hler field is equivalent to a~finite! multiplet of Dirac spinors.
The results are interpreted in the framework of the gauge theory formulation of
quantum mechanics which was proposed recently. An intriguing analogy is found
between the lattice fermion problem~species doubling! and the problem of quan-
tization in general. ©1999 American Institute of Physics.
@S0022-2488~99!01411-5#

I. INTRODUCTION

In a classic paper1 Kähler proposed a description of fermions in terms of inhomogene
differential forms. Rather than by spinor fields, the fermions are represented by a set of an
metric tensors in this approach. The role of the Dirac equation is taken over by the so-
Dirac–Kähler equation which involves only tensor manipulations. It imitates theg-matrix algebra
with the help of the Clifford product for forms.

At first sight it seems puzzling how a family of tensor fields carrying integer spin can des
a particle of half-integer spin. This paradox is resolved if one notes that~in 4 space–time dimen
sions! a single Dirac–Ka¨hler field actually corresponds to a multiplet of 4 ordinary Dirac spin
which mix under Lorentz transformations in a nontrivial way~‘‘flavor mixing’’ !.

The Dirac–Kähler fermions have attracted a lot of attention both from the physics2–9 and the
mathematics10,11 point of view. In particular they have made their appearance in lattice
theory.12 It is a well-known problem that a straightforward lattice discretization of the ordin
Dirac action does not describe one but rather 16 fermions in the continuum limit. The reas
this replication of fermionic states~usually referred to as the species ‘‘doubling’’ problem! is that
the lattice propagator in momentum space has poles at all 16 corners of the Brillouin zon
Kogut–Susskind13 or staggered lattice fermions were proposed as an attempt to solve this
lem. They are based on a more sophisticated lattice action which reduces the number of f
species from 16 to 4. Later on it turned out2,3 that the Kogut–Susskind fermions are nothing b
Dirac–Kähler fields discretized on a hypercubic lattice. As it deals with differential forms o
Dirac–Kähler theory on the lattice can take advantage of all the mathematical tools provid
the algebraic topology of cell complexes. In particular, by a standard procedure, the differ
forms of the continuum formulation can be replaced by appropriate cochains on the lattice.
cochains are functions defined on the lattice points, links, plaquettes, cubes, and hypercube
underlying lattice. In this manner it becomes obvious that the extra fermion species implied
Kogut–Susskind lattice action and the fact that a Dirac–Ka¨hler field contains 4 ordinary Dirac
fermions have a common origin.

We only mention that the species doublers on the lattice can be avoided completely by

a!Electronic mail: reuter@thep.physik.uni-mainz.de
55930022-2488/99/40(11)/5593/48/$15.00 © 1999 American Institute of Physics
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Wilson fermions or the nonlocal ‘‘SLAC derivative,’’12 for instance. Alternatively one can rega
the 4 Dirac fermions contained in one Kogut–Susskind field as 4 different physical ‘‘flavors.
we are interested in Dirac–Ka¨hler fermions here we shall adopt this latter point of view in t
following.

Dirac–Kähler ~DK! fields can be defined on any Riemannian manifold (Mn ,g), i.e., on any
smoothn-dimensional manifold equipped with a metricg. @The pseudo-Riemannian case~Lorent-
zian space–times! can be dealt with in a completely analogous fashion.# From the physics point of
view this manifold representsspace–time.

The main purpose of the present paper is to propose an analog of the DK fields which ‘
on symplectic rather than Riemannian manifolds. This means that we are going to study DK
not over space–time but rather over aphase space.

A symplectic manifold (M2N ,v) is a smooth 2N-dimensional manifold which is endowe
with a closed, nondegenerate 2-formv5 1

2vabdfa∧dfb. ~The fa, a51,...,2N, are local coordi-
nates onM2N .) This manifold should be thought of as the phase space of a Hamiltonian sy
with N degrees of freedom. The corresponding Poisson bracket is given by$fa,fb%5vab where
the matrix (vab) is the inverse of (vab). Using local Darboux coordinatesfa[(pi ,qi), i
51,...,N, this matrix is independent offa, vqp52vpq5I , and the only nonvanishing bracke
are $qi ,pj%5d i j . If fa and f̃a are local coordinates belonging to two overlapping charts of
atlas coveringM2N then, by the very definition of a symplectic manifold, the coordinate tra
formationf→f̃ is symplectic, i.e., the Jacobian matrix (]f̃a/]fb) is an element of Sp(2N) at
every point of the overlap region. Sp(2N), the group of linear canonical transformations, plays
same role for phase space which the Lorentz group plays for space–time. In particular, it
structure group of the frame bundle overM2N .

As for introducing DK fields on symplectic manifolds the first question which we must ans
is what kind of spinor field should be used in place of the ordinary Dirac spinors of relativ
field theory. The only natural choice here is to employ the so-called metaplectic spinors,14 i.e., the
spinors of the metaplectic group Mp(2N). Basically Mp(2N) is related to Sp(2N) in the same
way Spin(n) is related to SO(n). In particular, there exists a two-to-one homomorphism betw
the two groups, i.e., Mp(2N) covers Sp(2N) twice. The construction of metaplectic spin bundl
and spinor fields over a symplectic manifold proceeds almost literally along the same lines
the case of space–time spinors, the main difference being that it is Mp(2N) now which serves as
the structure group. For a detailed exposition we must refer to the literature.14,15

Metaplectic spinors have been used in many different contexts including geom
quantization,15 semiclassical approximations,16 Parisi–Sourlas supersymmetry,17 string theory,18,19

and anyon superconductivity.20 Most recently they played an important role in an approach
quantization21 which is based upon a Yang–Mills theory on phase space with metaplectic ‘‘
ter’’ fields. This new formulation of quantum mechanics is one of the main motivations fo
present work. We shall come back to it later on.

Let us briefly describe how one can construct representations of Mp(2N).22 One has to
associate an operatorM (S) to every matrix S[(Sa

b)PSp(2N) in such a way that
M (S1)M (S2)56M (S1S2). These operators can be built up from a kind of ‘‘g matrices’’ which
constitute a symplectic Clifford algebra:

gagb2gbga52ivab. ~1.1!

We requireM (S) to satisfy the usual compatibility condition between the vector and the sp
representation:

M ~S!21gaM ~S!5Sa
bgb. ~1.2!

Every infinitesimal Sp(2N) transformation is of the formSa
b5db

a1vackcb with symmetric co-
efficientskab . Inserting this together with the ansatzM (S)512( i /2)kabSmeta

ab into the compat-
ibility condition it is easy to show that the latter is solved by
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Smeta
ab 5 1

4~gagb1gbga! ~1.3!

and that these generators satisfy the Sp(2N) commutator relations.22 Thus every representation o
the symplectic Clifford algebra gives rise to a representation of Mp(2N).

The most obvious difference between the metaplectic and the space–time spinors is t
symplectic Clifford algebra involves a commutator rather than an anticommutator. As an i
diate consequence, this algebra has no finite dimensional matrix representations, and met
spinors are necessarily infinite component objects. What is meant by a ‘‘metaplectic repre
tion’’ is a representation in whichga is a Hermitian operator on an infinite dimensional Hilbe
spaceV. Hence the operatorsM obtained by exponentiating the generators~1.3! give rise to a
unitary representation.~See Refs. 22 and 23 for further details.!

The symplectic Clifford algebra~1.1! admits a rather intriguing reinterpretation which is al
at the heart of the new approach to quantization21 mentioned above. Assume we are given
quantum mechanical system with a Hilbert spaceV along withN position and momentum opera
tors x̂i and p̂ i acting on it. They satisfy the canonical commutator relations@ x̂i ,p̂ j #5 i\d i j . By
virtue of the identificationg i5kp̂ i , gN1 i5k x̂i for i 51,...,N and with the constantk[A2/\ it is
obvious that the ‘‘symplectic Clifford algebra’’~1.1! is actually nothing but the canonical com
mutation relations for thex̂–p̂ auxiliary quantum system. We call it an ‘‘auxiliary’’ system
because it should not be confused with the actual physical system under consideration, t
whose~curved! phase space isM2N . ~The classical phase space pertaining to the auxiliary sys
is simply R2N equipped with the standard symplectic structure.!

The metaplectic spin bundles are bundles overM2N with the typical fiberV and the structure
group Mp(2N).14 At each pointf of M2N a local copy ofV, denotedVf , is attached. Metaplectic
spinor fields are sections through these bundles. Locally they are simply functions which a
values inV:

c: M2N→V, f°uc&fPVf . ~1.4!

The notationuc&f means that the spinoruc&PV, ‘‘lives’’ in the local Hilbert space atf. Upon
introducing a basis$ua&% in V we write ca(f)[^ȧuc&f for its components. Herea is an infinite
dimensional generalization of a spinor index. If we take$ua&% to be thex̂ eigenbasis, for instance
thena[(a1,...,aN)PRN. ~See Refs. 22 and 23 for details.!

In the present paper we shall focus on the local aspects of the bundles involved. W
mention that on certain manifolds there are topological obstructions which prevent them
carrying globally well-defined metaplectic spinor fields.14 In Ref. 23 we characterized these o
structions using methods from quantum field theory.

Let us come back to the main question which we are trying to answer in this paper:Do there
exist ‘‘symplectic Dirac-Ka¨hler fields’’ which are related to the metaplectic spinors in the sa
way the ordinary Dirac-Ka¨hler fields are related to Dirac spinors?

Apart from being interesting in its own right, this question is of obvious physical releva
The fascinating property of metaplectic spinor fields is that,on a purely group theoretical basis,
they introduce aspects of quantum mechanics into the geometry of classical phase spaces.
representation theory one is led to the auxiliary quantum system in the local Hilbert spacesVf . In
Ref. 21 we explained in detail how these auxiliary systems relate to the actual physical qu
system with the classical phase spaceM2N . Using this as our starting point, we showed that it
possible to replace conventional canonical quantization by two new rules with a more trans
physical and geometrical meaning.

Classical mechanics and classical statistical mechanics are geometric theories which a
veniently described in the language of symplectic geometry. Only tensor fields are nee
formulate them. Quantum mechanics, on the other hand, has a natural interpretation in te
spinor fields on phase space. Thus, in a sense, the very process of quantization is tantamo
transition from tensors to spinors. But this is precisely what Dirac–Ka¨hler theory is about: its
basic fields are tensors which, however, are equivalent to a multiplet of spinors.
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Before embarking on the detailed constructions let us briefly outline the strategy for fin
the ‘‘symplectic DK fields’’ which we shall follow in this paper.

Our main tools are two types of auxiliary quantum systems with Hilbert spacesV and V F,
respectively. We mentioned already the~bosonic! x̂–p̂ system onV whose canonical operator
realize the metaplecticg-matricesga. We also need a similar fermionic system with a~finite-
dimensional! Hilbert spaceV F and a set of operatorsx̂m, m51,...,n, satisfying the canonica
anticommutator relationsx̂mx̂n1x̂nx̂m5\dmn. The SO(n)-Dirac matricesgm are treated as a
special realization of this algebra.

An important technical ingredient is the Weyl symbol calculus.24–28 Let L~V! andL(V F) be
the spaces of linear operators onV andV F, respectively. It is possible to uniquely characteri
every operatorb̂PL(V ) and f̂ PL(V F) in terms of classical phase functions~symbols! b(y) and
f (u). Here y and u are coordinates on the~flat! classical phase spaces which belong to
auxiliary systems. In the bosonic case,y[(ya)PR2N is a vector with commuting entries, whil
u[(um) is a set ofn anticommuting Grassmann numbers. The space of all bosonic~fermionic!
symbol functions, equipped with certain algebraic structures, is referred to as the bosonic~fermi-
onic! Weyl algebraW(W F).

Given a space–time manifoldMn , we consider fields on this manifold which assume valu
in V F, L(V F) andW F, respectively. In an obvious notation, we denote themca(x), F̂(x), and
F(x,u).

Similarly, given a phase-space manifoldM2N , we define fieldsca(f), B̂(f), andB(f,y)
which assume values inV, L~V! andW, respectively.

In the first part of this paper we shall reformulate standard Dirac–Ka¨hler theory in terms of
the fermionic Weyl symbol calculus. We shall see thatca(x) is an ordinary Dirac spinor and tha
F(x,u) can be identified with a DK field. The Grassmann variablesum will play the role of the
basis differentialsdxm.

This first part of the investigation is quite interesting in its own right. For instance, we
discover that the Clifford product which is at the heart of DK theory is basically the same thi
the star product of the fermionic Weyl symbol calculus. As a consequence,W F turns out to be an
Atiyah–Kähler algebra.10,11

In the second part of this paper we investigate in detail what happens to the standa
theory, reformulated in terms of fermionic Weyl symbols, when we replace fermionic symbo
bosonic ones everywhere. This means that we switch from thex̂m to thex̂–p̂ system. Thenca(f)
is a metaplectic spinor field, and by analogy with the fermionic setting we shall argue thatB(f,y)
is the ‘‘symplectic DK field’’ which we are looking for. Schematically our approach can
summarized as follows:

DK fields ⇔ fermionic symbols

↓
symplectic DK fields ⇔ bosonic symbols

~1.5!

The rest of this paper is organized as follows: In the second half of this introduction
discuss some aspects of standard DK theory which will be important later on. Then, in Sec.
reformulate this theory in terms of fermionic Weyl symbols. Particular attention is paid to
decomposition of DK fields as a set of Dirac spinors. The construction of the symplectic DK
is performed in Sec. III. We investigate in detail which properties of SO(n) DK fields can be
translated to the Sp(2N) case and which cannot. Section IV contains a summary and va
remarks on the quantization problem in the light of the present work. Some material neede
background for Sec. II is relegated to the Appendix.

As for its mathematical rigor, the style of this paper is informal. Occasionally the langua
fiber bundles is used as a convenient tool but we are mostly interested in the local properties
bundles involved and no pretense is made as for a rigorous and complete discussion of the
aspects.
                                                                                                                



lica-

us

r

fy the

gebra,
o the

he

y
e

s can

hen

5597J. Math. Phys., Vol. 40, No. 11, November 1999 Symplectic Dirac–Kähler fields

                    
DK fields on space–time
Let us start with an arbitrary~curved! n-dimensional Riemannian manifold (Mn ,g). Upon

introducing local coordinatesxm, the tangent spaceTxMn and the cotangent spaceTx* Mn at the
point x of Mn are spanned by the basis vectors]m[]/]xm and dxm, m51,...,n, respectively.
These spaces constitute the fibers of the~co-!tangent bundle overMn . ReplacingT* Mn by its
p-fold tensor power we obtain the bundle of~covariant! tensors of rankp. Restricting ourselves to
completely antisymmetric tensors we are led to the exterior algebra`(Tx* Mn)5 % p50

n

`p(Tx* Mn). Its elements are the inhomogeneous differential forms

F~x!5 (
p50

n

F~p!~x!, F~p!~x!P`p~Tx* Mn!,

~1.6!

F~p!~x!5
1

p!
Fm1¯mp

~p! ~x!dxm1∧¯∧dxmp

whereFm1¯mp

(p) are completely antisymmetric coefficients. The corresponding algebra multip

tion is the wedge product ‘‘∧.’’
Since we have a metricg5gmn(x)dxm

^ dxn at our disposal which gives rise to an analogo
bilinear formg85gmn(x)]m ^ ]n for the cotangent bundle we can promote the fibers`(Tx* Mn) of
the exterior algebra bundle to an Atiyah–Ka¨hler algebraAK (Tx* Mn ,g8).1,10,11

Quite generally, the Atiyah–Ka¨hler algebraAK (V,Q) corresponding to an arbitrary vecto
spaceV equipped with a quadratic formQ consists of the elements of the exterior algebra overV,
`(V)5 % p`p(V), for which the following three products are defined:

~1! the exterior product ‘‘∧,’’
~2! the inner product~•,•! induced byQ,
~3! the Clifford product ‘‘∨.’’

The three products are required to be distributive with respect to the addition and to satis
relation

a∨b5a∧b1~a,b! ~1.7!

for all a,bP`1(V). The Clifford product is associative by definition. Hence the basic rule~1.7!
is sufficient in order to work out the∨ product of two arbitrary elements iǹ (V). Below we shall
give a closed formula for this product.

The Atiyah–Kähler algebra combines the notions of an exterior algebra, a Grassmann al
and a Clifford algebra in an consistent manner. If we omit the Clifford product it reduces t
Grassmann algebrà (V,Q), while omitting both∨ and ~•,•! yields the exterior algebrà (V).
Without the structure of the∧ product it becomes a Clifford algebra because~1.7! entailsa∨b
1b∨a52(a,b).11

In the case at hand,V5`(Tx* Mn) andQ5g8. This means that for two basis one-forms t
inner product is given by (dxm,dxn)5g8(dxm,dxn)5gmn and similarly for higher forms; for
instance, (dxm∧dxn,dxr∧dxs)5gmrgns2gmsgnr.

A bundle overMn with typical fiberAK (Tx* Mn ,g8) is called an Atiyah–Ka¨hler bundle and
sections through such bundles are referred to as Dirac–Ka¨hler fields. Locally they are described b
a collection of antisymmetric tensor fields$Fm1¯mp

(p) , p50,...,n%. The three products defined in th

fiber give rise to analogous products on the space of sections, for instance (F1∨F2)(x)
[F1(x)∨F2(x). Of course, also all the other operations of the conventional exterior calculu
be applied to Dirac–Ka¨hler fields: the exterior derivatived, the coderivatived†, or the contraction
with a vector fieldv, i(v), to mention just a few.

In our case the relations defining the Clifford product assume the following form w
expressed in terms of the generating elements:
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1∨151, 1∨dxm5dxm∨15dxm,
~1.8!

dxm∨dxn5dxm∧dxn1gmn.

By virtue of the postulated associativity of the∨ product, these relations are sufficient in order
determine the Clifford product of two arbitrary differential forms. One finds1,3

F1∨F25 (
p50

n
~21!p~p21!/2

p!
~Apem1

¬¯emp
¬F1!∧~em1¬¯emp¬F2! ~1.9!

with em¬[ i(]m), em¬[gmni(]n) wherei(]m) denotes the contraction with the basis vector]m . It
is an antiderivation with the properties

i~]m!150, i~]m!dxn5dm
n ,

i~]m!~F1∧F2!5~ i~]m!F1!∧F21~AF1!∧ i~]m!F2 .

In writing down Eqs.~1.9! and~1.10! we used the ‘‘main automorphism’’A, a linear map whose
action on the DK-field~1.6! is defined as

AF5 (
p50

n

~21!pF~p!. ~1.10!

Later on we shall also need the ‘‘main antiautomorphism’’B which acts according to

BF5 (
p50

n

~21!p~p21!/2F~p!. ~1.11!

Obviously,A25B251, AB5BA, and also

A~F1∧F2!5~AF1!∧~AF2!,
~1.12!

B~F1∧F2!5~BF2!∧~BF1!,

for any pair of DK fields.
As an important special case of~1.9! we note for later use that

dxm∨F5dxm∧F1em¬F. ~1.13!

Let us look at the physical interpretation of the DK fields now. From now on we s
specialize the discussion to a flat space–timeMn5Rn with the metricgmn5dmn . The generali-
zation of a curved manifold and/or a manifold with Lorentzian signature would be straightforw
but we shall avoid these technical complications here since they are not important for the po
would like to make.

The interpretation of a DK field as a multiplet of Dirac spinors is based upon the follow
two logically independent observations.

~i! From ~1.8! we obtain for the antisymmetrized Clifford product of two basis differentia

dxm∨dxn1dxn∨dxm52dmn. ~1.14!

This relation should be compared to the one satisfied by the Euclidean Dirac matricesgm:

gmgn1gngm52dmn. ~1.15!
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We conclude that the Clifford left multiplication withdxm defines a representation of the algeb
of g matrices in the space of~complex! inhomogeneous differential forms:gm=dxm∨. This
representation is reducible though. Assumingn even from now on, a Dirac spinor has 2n/2 com-
plex components, and an irreducible representation of the algebra~1.15! is in terms of 2n/2

32n/2 matrices. On the other hand, the dimension of the exterior algebra is 2n, i.e., a DK fieldF
has 2n independent complex component fields. We shall see in a moment that the spaceK of all
DK fields F can be decomposed into 2n/2 subspacesK(a) which are invariant under Clifford left
multiplication,K5 % a51

k K(a), k[2n/2. On K(a), dxm∨ gives rise to an irreducible representatio
of the algebra~1.15!.

~ii ! From the exterior derivatived and its adjoint, the coderivatived†, we can form the
so-called Dirac–Ka¨hler operatord2d† which has the property that it squares to the Laplacia

~d2d†!252~dd†1d†d!5]m]m. ~1.16!

It shares this property with the Dirac operatorgm]m and hence some relationship among the t
might be expected. In fact, it turns out that the Dirac–Ka¨hler operator can be expressed in term
of a Clifford multiplication from the left:

~d2d†!F~x!5dxm∨]mF~x!. ~1.17!

Since we know already thatdxm∨ corresponds to ag matrix and leaves the spacesK(a) invariant,
we see that the Dirac–Ka¨hler equation

~d2d†1m!F50 ~1.18!

decomposes to a set of equations (d2d†1m)F (a)50, F (a)PK(a), each of which is equivalent to
an ordinary Dirac equation (gm]m1m)c50.

Following Becher and Joos3 we can construct the invariant subspacesK(a) as follows. We
introduce a new basis$Zab% in K whose elements are labeled by a pair of indicesa,b
51,...,2n/2 and which are required to satisfy

dxm∨Zab5 (
g51

2n/2

~gmT!agZgb ~1.19!

where the Euclidean Dirac matricesgm are in the irreducible 2n/2-dimensional representation.~We
use the notationm,n,...51,...,n for Lorentz indices anda,b,g,...51,...,2n/2 for spinor indices.!
They satisfy~1.15! and are assumed to be Hermitian,gm5gm

† . Frequently we shall regardZ
[(Zab) as a matrix or, more precisely, as an inhomogeneous differential form which ass
values in the space of spinor matrices. Then~1.19! reads

dxm∨Z5gmTZ. ~1.20!

This equation is satisfied by

Z5 (
p50

n
1

p!
gm1

T
¯gmp

T dxm1∧¯∧dxmp. ~1.21!

Every DK field F can be expanded in the basis$Zab%:

F~x!5(
a,b

ca
~b!~x!Zab . ~1.22!

Hence it follows immediately from~1.19! that the invariant subspacesK(a) are spanned by
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F~b![(
a

ca
~b!ZabPK~b!, b fixed. ~1.23!

In fact, one has

dxm∨F~b!5(
a

S (
d

gad
m cd

~b!DZab , ~1.24!

which shows that onK(b) Clifford left-multiplication with dxm is equivalent to acting with the
Dirac matrixgm on the spinorc (b)[$ca

(b) ;a51,...,2n/2%. For every fixed value ofb, c (b) is an
ordinary 2n/2-component Dirac field. By virtue of the orthogonal decompositionF5(b F (b), a
DK field describes a multiplet of 2n/2 Dirac fields.

It is convenient to combine the expansion coefficientsca
(b) into a spinor matrixĉ,

~ ĉ !ab[ca
~b! , ~1.25!

so that~1.22! reads

F~x!5Tr@ĉ~x!ZT#. ~1.26!

Writing ĉ@F# for the matrix related to a given DK fieldF, Eq. ~1.24! amounts to

ĉ@dxm∨F#5gmĉ@F#. ~1.27!

Occasionally one finds a slightly different approach in the literature.2 One assumes that th
inhomogeneous form~1.6! is given and one uses its coefficient functionsFm1¯mp

(p) in order to

construct a spinor matrixF̂ by simply replacingdxm→gm everywhere:

F̂[F̂@F#[ (
p50

n
1

p!
Fm1¯mp

~p! gm1
¯gmp. ~1.28!

Then one verifies that the mapF°F̂@F# satisfies

F̂@dxm∨F#5gmF̂@F#, ~1.29!

a property it has in common withĉ. Hence we might expect that these two matrix-valued fie
are related. Indeed, it turns out that they coincide up to a constant factor. To see this, one
the expansions~1.6! and ~1.21! into ~1.26! and obtains the following formula for the coefficien
of F, Fm1¯mp

(p) , as a function ofĉ:

Fm1¯mp

~p! ~x!5~21!p~p21!/2 Tr@ĉ~x!g [m1
¯gmp] #. ~1.30!

Because of the orthogonality and completeness relations enjoyed by the Dirac matrices, Eq~1.30!
has a unique solution forĉ as a function of the coefficientsFm1¯mp

(p) which defineF. One finds that

ĉ and F̂ are essentially the same thing:

ĉ~x!522n/2(
p50

n
1

p!
Fm1¯mp

~p! ~x!gm1
¯gmp ~1.31!

522n/2F̂~x!. ~1.32!
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This formula together with~1.25! gives us a practical tool to compute the projection ofF on the
invariant subspacesK(a).

In standard discussions of Dirac–Ka¨hler theory, because of the simple proportionality ofĉ

andF̂, there is no need for a conceptual distinction between the two matrices. In order to es
their equivalence only familiar identities involvingg matrices such as

Tr@g [m1
¯gmp]~g [n1

¯gnq] !
†#52n/2p!dpqd [n1

m1
¯dnq]

mp ~1.33!

are needed. In the symplectic case, the situation will be more complicated and we have to
guish more carefullyĉ which arises from the construction of left-invariant subspaces andF̂ which
obtains by replacingdxm→gm in F. A priori it is not clear that the two objects can easily
related to each other since the metaplecticg ‘‘matrices’’ are infinite dimensional. Hence th
question whether there are trace identities analogous to~1.33! is a nontrivial issue.

II. DIRAC–KÄ HLER FIELDS AND FERMIONIC WEYL SYMBOLS

In this section we describe the relation between the conventional Dirac–Ka¨hler fermions and
the Weyl symbol calculus. In Sec. II A we summarize various properties of the fermionic W
symbol calculus and discuss a number of special aspects and applications which will be re
In Sec. II B we show that the fermionic Weyl algebraW F is an Atiyah–Kähler algebra, and in
Sec. II C we introduceW F-valued fields over space–time. In Sec. II D we demonstrate that
can be identified with Dirac–Ka¨hler fields. They carry a reducible representation of the Cliffo
algebra. The decomposition ofW F into invariant subspaces which carry an irreducible repres
tation is performed in Sec. II E.

A. The fermionic Weyl algebra

We consider a set of operatorsx̂m, m51,...,n, which satisfy the canonical anticommutatio
relations

x̂mx̂n1x̂nx̂m5\dmn. ~2.1!

We could think of thex̂ ’s as world line fermions which represent the spin of a relativistic parti
for instance.17,26 The most general operator we can construct by forming linear combination
products ofx̂ ’s has the structure

f̂ 5 (
p50

n
1

p!
f m1¯mp

~p! x̂m1x̂m2
¯x̂mp ~2.2!

with arbitrary ~complex-valued! constantsf m1¯mp

(p) .

We would like to establish a linear one-to-one correspondence between the operators~2.2! and
functions f depending on Grassmann numbersu1,u2,...,un with umun1unum50. The function
f (u) which characterizes the operatorf̂ is called the symbol off̂ : f 5symb(f̂ ). There are many
‘‘symbol maps’’ which relate operators to classical functions. Here we are interested in the
symbol which is defined as follows. Given the operator~2.2! we define

f ~u!5@symb~ f̂ !#~u!5 (
p50

n
1

p!
f m1¯mp

~p! um1um2
¯ump ~2.3!

which for a given ordering is a well-defined map from operators to functions. In partic
symb(x̂m)5um and symb(I )51 whereI is the unit operator. The inverse mapping is not w
defined yet, because in~2.3! we can add tof m1¯mp

(p) arbitrary tensors which are symmetric in

least one index pair. This does not changef (u), but it does changef̂ . Specifying a unique
operatorf̂ for a givenf (u) amounts to picking a particular operator ordering prescription. In f
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f (u) can be regarded as a classical phase function of a mechanical system with Grassma
phase-space coordinatesum, and thex̂m’s are the corresponding quantum operators. We s
employ the Weyl correspondence rule which means thatf̂ follows from f (u) by substitutingum

→x̂m in ~2.3! and writing all operator products in Weyl ordered, i.e., completely antisymmetr
form. For instance, the productumun yields the operator@ x̂mx̂n#Weyl5

1
2(x̂

mx̂n2x̂nx̂m)
[x̂ [mx̂m] . For an arbitrary monomial,

symb21~um1
¯ump!5x̂ [m1

¯x̂mp] ~2.4!

where the square brackets indicate complete antisymmetrization.
From now on we shall require the constantsf m1¯mp

(p) appearing in the series expansion of t

symbol f (u) to be completely antisymmetric tensors. Then the operatorf̂ associated with the
series~2.3! is obtained by simply replacingum→x̂m in this series, and this leads us back to t
operator~2.2!.

If n is odd, the inverse symbol map is still not uniquely defined, because in this cas
operatorx̂1x̂2

¯x̂n commutes with all operators and is proportional to the identity therefore
multiplying any operator byx̂1x̂2

¯x̂n if necessary one can represent all operators by e
symbols. This prescription makes the correspondence between operators and symbols b
~See Refs. 26 and 27 for further details.!

If a string of operators is not contracted with an antisymmetric tensor we must reord
before we can use

symb~ x̂ [m1
¯x̂mp] !5um1

¯ump ~2.5!

in order to read off its symbol. For instance,

symb~ x̂mx̂n!5symbF x̂ [mx̂n]1
\

2
dmnG5umun1

\

2
dmn. ~2.6!

The symbolsf (u) are functions of the same type as those considered in Appendix A, to w
the reader might turn at this point. Among other things, various linear operations on such fun
are discussed there which are particularly useful in the context of the symbol calculus
includes the ‘‘main automorphism’’A, the ‘‘main antiautomorphism’’B, the Hodge operator* ,
and the modified Hodge operator!.

While we allow for complex coefficientsf m1¯mp

(p) , we assume that the operatorsx̂m are

Hermitian,x̂m5(x̂m)†, and thatum is real, ūm5um. Hence it follows that

symb~ f̂ †!5symb~ f̂ !, ~2.7!

where the overbar means complex conjugation.
There is a simple integral formula for the operatorf̂ associated with a given Weyl symbo

f (u):

f̂ 5E V̂~r! f̃ ~r!dnr. ~2.8!

Here f̃ (r) is the Fourier transform off (u) as defined in Eq.~A22! of the Appendix, and

V̂~r![exp~2 i x̂mrm! ~2.9!

is the fermionic analogue of the Weyl operators which implement translations on phase
Using the identities of Appendix A one can verify that Eqs.~2.4! and~2.8! are indeed equivalent

An important concept is the ‘‘star product’’3 or ‘‘twisted product’’ which mimics the multi-
plication of operators at the level of symbols.@Both in the fermionic and the bosonic case we ke
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using the traditional name ‘‘star product’’ even though we write ‘‘+’’ instead of the usual symbo
‘‘ * .’’ Following Refs. 29, 30, and 21 this notation indicates that we are dealing with afiberwise
twisted product which should not be confused with the* [* M product which would refer to the
baseof the Weyl algebra bundles we are going to construct in Sec. II B. It is the* M product rather
than the+ product which is needed for the deformation quantization24 of physical systems on the
phase-spaceM. In the present paper, the* M product plays no role, however.~Note also that ‘‘* ’’
stands for the Hodge operator in our case.!# It satisfies

symb~ f̂ ĝ!5symb~ f̂ !+symb~ ĝ! ~2.10!

for all operatorsf̂ andĝ. As a consequence, the+ product is associative, distributive with respe
to 1, but not commutative. It is a deformation of the pointwise product of functions to whic
reduces in the limit\→0. From

symb~ I !51, symb~ x̂m!5um ~2.11!

and Eq.~2.6! it follows that

1+151, 1+um5um+15um,
~2.12!

um+un5umun1
\

2
dmn.

By virtue of its postulated distributivity and associativity, the relations~2.12! characterize the+
product uniquely. They are sufficient to work out the productf +g of arbitrary functionsf andg.

Equation~2.7! implies that complex conjugation changes the order of the factors in a
product:

f 1+ f 25 f̄ 2+ f̄ 1 . ~2.13!

The space of functionsf (u) equipped with the+ product will be referred to as thefermionic
Weyl algebraW F.

In the literature26,27 one finds the following integral representation for the+ product of two
arbitrary functions:

~ f 1+ f 2!~u!5enS \

2i D
nE expF2

2

\
~u1u1uu21u2u1!G f 1~u1! f 2~u2!dnu1dnu2 , ~2.14!

where~indices are raised and lowered withgmn5dmn) u1u[u1
mum , etc., and withen defined as in

Eq. ~A23!. For our purposes, various alternative representations of the star product are n
They are derived in appendix B. The first one reads

~ f 1+ f 2!~u!5 (
p50

n S \

2D p ~21!p~p21!/2

p! FAp
]

]um1

]

]um2
¯

]

]ump
f 1~u!GF ]

]um1

]

]um2

¯

]

]ump

f 2~u!G
~2.15!

with the automorphismA:W F→W F defined in Appendix A. An equivalent form involving bot
left and right derivatives is

~ f 1+ f 2!~u!5 (
p50

n S \

2D p 1

p!
f 1~u!

]Q

]ump

]Q

]ump21
¯

]Q

]um1

]

]um1

]

]um2

¯

]

]ump

f 2~u!. ~2.16!

The most compact representation reads
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~ f 1+ f 2!~u!5 f 1~u!expF\

2

]Q

]um

]W

]um
G f 2~u!, ~2.17!

where]Q /]um is a right derivative acting onf 1 and]W /]um a left derivative acting onf 2 . The result
~2.17! looks surprisingly simple and is completely analogous to its bosonic counterpart. A
complicated sign factors which appeared during the calculation, either explicitly or hidden
A automorphism, conspired to disappear from the final result.

Depending on the problem at hand one or another of the above representations is th
convenient one. Equation~2.15! we shall relate to Ka¨hler’s formula for the Clifford product
shortly. From Eq.~2.16! one immediately reads off the important special cases

um+ f ~u!5um f ~u!1
\

2

]

]um
f ~u!, ~2.18!

f ~u!+um5 f ~u!um1
\

2
f ~u!

]Q

]um
. ~2.19!

In order to calculate the product of twod functions, which we shall need later on, Eq.~2.14! is
most suitable:

~d+d!~u!5~21!n~n21!/2S \

2D n

. ~2.20!

Up to now we regarded thex̂m’s as abstract operators. Let us look at concrete representa
on some finite dimensional vector spaceV F. If Gm is a set of Hermitian matrices which satisfy th
Clifford algebra relations

GmGn1GnGm52dmn, ~2.21!

then

x̂m5A\

2
Gm ~2.22!

satisfies the canonical anticommutation relations~2.1!. HereGm denotes the Dirac matrices in a
arbitrary, possibly reducible representation. The notationgm is reserved for the~essentially
unique! irreducible representation onV F5Ck, k[2n/2, if n is even. The operatorsf̂ :W F→W F of
Eq. ~2.2! arek3k matrices then. The space of these operators will be denoted byL(W F).

The identification~2.22! must be interpreted with some care. In setting up the symbol calc
one adopts the rule that the operatorsx̂m anticommute with numbers of odd Grassmann parity.
the other hand, the entries of the matricesGm are ordinary complex numbers, soGm commutes
with all elements of the Grassmann algebra.

Next we list a few properties of the operatorsV̂ which we shall need shortly. These operato
are reminiscent of the~bosonic! Weyl operators. However, as they stand, they are not unitary
rather Hermitian,V(r)5V(r)†. This is due to the fact thatx̂m anticommutes with the
Grassmann-oddrm’s. Actually it is the operatorsV̂( ir/\)5exp(x̂mrm /\) which play the role
of the Weyl operators on a fermionic phase space. They are unitary,V̂( ir/\)†5V̂( ir/\)21,
and they shiftx̂m by rm times the unit operator:

V̂~ ir/\!†x̂mV̂~ ir/\!5x̂m1rm. ~2.23!

This leads to a projective representation of the translation group since
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V̂~r1!V̂~r2!5expS \

2
r1

mr2mD V̂~r11r2!. ~2.24!

The derivative ofV̂(r) can be written in either of the two forms

]

]rm
V̂~r!5V̂~r!F i x̂m1

\

2
rmG ~2.25!

5F i x̂m2
\

2
rmGV̂~r!. ~2.26!

When we replace inV̂ the operatorsx̂m by the Dirac matrices via~2.22! we are led to

V̌~r!5exp~2 iA\/2Gmrm!. ~2.27!

The properties ofV̌ are slightly different from those ofV̂ becauseGm commutes withrm . The
V̌ ’s are unitary matrices,

V̌~r!†5V̌~2r!5V̌~r!21 ~2.28!

with the composition law

V̌~r1!V̌~r2!5expS 2
\

2
r1

mr2mD V̌~r11r2!. ~2.29!

The expressions for their derivative are

]

]rm
V̌~r!5V̌~2r!F2 iA\

2
Gm2

\

2
rmG ~2.30!

5F2 iA\

2
Gm1

\

2
rmGV̌~r!. ~2.31!

We shall need these relations when we decompose the reducible Dirac–Ka¨hler representation.
An interesting example where one can see the symbol calculus at work is the generaliza

the chirality matrixg5 in four dimensions. We assume thatn is even in the remainder of thi
section and employ the Dirac matricesgm in the 2n/2-dimensional representation. From~1.15! and
(gm)†5gm it follows that the matrix

gn11[2 i n~n21!/2g1g2
¯gn ~2.32!

satisfiesgmgn1152gn11gm,

gn11
2 51, gn11

† 5gn11 ~2.33!

in all even dimensions. The sign of~2.32! is chosen such that forn54

g55g1g2g3g4. ~2.34!

We identify

gm5kx̂m, ~2.35!

where
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k[A2

\
~2.36!

and interpretgn11 as the matrix representation of the abstract operator

Ĝn1152 i n~n21!/2knx̂1x̂2
¯x̂n. ~2.37!

Its symbol symb(Ĝn11)[Gn11 follows directly from ~2.5! if we note that x̂1
¯x̂n

5em1¯mn
x̂ [m1

¯x̂mn] /(n!):

Gn11~u!52 i n~n21!/2knu1u2
¯un

52~2 i !n~n21!/2knunun21
¯u1. ~2.38!

Hence, up to a constant,gn11 is represented by thed function:

Gn11~u!52~2 i !n~n21!/2knd~u!. ~2.39!

As a consequence of Eqs.~2.20! and ~A21!, this function satisfies

Gn11+Gn1151, Gn115Gn11 , ~2.40!

which reflects the properties~2.33! of gn11 . By virtue of ~A26! the Fourier transform ofGn11 is
the constant function

G̃n11~r!52~2 i !n~n21!/2kn. ~2.41!

In Appendix A we defined the modified Hodge operator! for a general Grassmann algeb
and we showed that it is related to the Fourier transformation via Eq.~A41!. Using the latter
equation together with the integral representation~2.14! for the star product it is not difficult to se
that the application of! to somef PW F is essentially equivalent to a star-multiplication wi
Gn11 from the right. For a homogeneous function of degreep,

! f ~p!~u!52~2 i !n~n21!/2k2p2n~ f ~p!+Gn11!~u!. ~2.42!

If we rescaleu we can write down a similar equation for inhomogeneous functions even:

! f ~u/k!52~2 i !n~n21!/2~ f +Gn11!~u/k!. ~2.43!

Finally we remark that the chirality operatorĜn11 can be expressed as an integral over
Weyl operators:

Ĝn1152~2 i !n~n21!/2knE dnrV̂~r!. ~2.44!

This is a remarkable relation because contrary to the original definition ofgn11 as the product of
all Dirac matrices it carries over to the symplectic case almost literally.

B.W F as an Atiyah–Ka¨hler algebra

Let us come back to the abstract Atiyah–Ka¨hler algebraAK (V,Q) discussed in Sec. I. It is
important to observe that the Weyl algebraW F which we reviewed in the previous sectio
contains all the ingredients which make up an Atiyah–Ka¨hler algebra.

~i! The vector spaceV is spanned by the basis elementsu1,...,un and the exterior algebra ove
this space,̀ (V)5 % p50

n `p(V), consists of monomialsum1
¯umpP`p(V). The exterior product

‘‘ ∧’’ on `(V) is the pointwise product of~inhomogeneous! functions f (u)P`(V).
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~ii ! By starting from the canonical anticommutation relations~2.1! we have tacitly decided for
an inner product~•u•! on `(V). The quadratic formQ is induced bygmn[dmn , regarded as an
inner product ofV. On `1(V) we have

~umuun!5k22dmn ~2.45!

and similarly forp.1 ~see below!.
~iii ! The star product onW F provides a concrete realization of the abstract Clifford produ

The Clifford product is associative and distributive over ‘‘1,’’ and so is the star product. More
over,∨, ∧, and~•,•! have to satisfy the consistency condition~1.7!. From Eq.~2.12! it follows that
this relation is indeed satisfied by the star multiplication together with the pointwise multiplic
and the inner product~•u•!:

um+un5umun1~umuun!. ~2.46!

In particular, upon symmetrization,um+un1un+um52(umuun).
Thus we may conclude that thefermionic Weyl algebraW F is a concrete realization of an

Atiyah–Kähler algebra.
Let us be more explicit about the inner product oǹ(V). Within the symbol calculus, the

standard inner product of DK theory11 admits a very natural representation in terms of the s
product:

~ f 1u f 2!5@ f̄ 1+ f 2#~u50!. ~2.47!

Here f 1 and f 2 are two arbitrary inhomogeneous functions. We allow their expansion coeffic
f m1¯mp

(p) to become complex. Note, however, that the complex conjugation in~2.47! is necessary

even if the coefficients are taken to be real, see Eq.~A10!. Using the integral representation

~ f 1u f 2!5~ ik2!2nenE f 1~u1! exp~k2u1
mu2m! f 2~u2!dnu1dnu2 ~2.48!

and expandingf 1 and f 2 according to

f ~u!5 (
p50

n
1

p!
kpf m1¯mp

~p! um1
¯ump ~2.49!

with appropriate powers ofk separated off from the expansion coefficients, it is easy to derive

~ f 1u f 2!5 (
p50

n
1

p!
f 1m1¯mp

~p! f 2
~p!m1¯mp. ~2.50!

The inner products among the basis elements of`p(V) ~homogeneous functions of degreep!
can be written down similarly. Forp51 one recovers~2.45!, and forp52 one has, for instance

~umunuurus!5k24~dmrdns2dmsdnr!. ~2.51!

We note that~•u•! has the important property of making the star multiplication withum a
self-adjoint operator. If we define

Cm:W F→W F, ~Cm f !~u!5kum+ f ~u! ~2.52!

then Eq.~2.18! tells us thatCm is given by the first-order differential operator

Cm5kum1
1

k

]

]um
. ~2.53!
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If one writes the inner product as in~2.47!, the self-adjointness ofCm is obvious:

~Cm f 1u f 2!5k@~um+ f 1!+ f 2#~0!5k@~ f 1+um!+ f 2#~0!5k@ f 1+~um+ f 2!#~0!5~ f 1uCm f 2!.
~2.54!

Here we exploited~2.13! and the associativity of the star product.

C. Symbol-valued fields on space–time

The most familiar application of the above symbol calculus is the deformation th
approach24,26 to the quantization of fermionic systems. In this context, the variablesum are coor-
dinates on thephase spaceof the physical system under consideration. If there are additio
bosonic degrees of freedom~such as the position of a spinning particle, say! this fermionic phase
space is embedded in a larger graded phase space, a supermanifold with both commut
anticommuting coordinates.17

In the present paper we are investigating a different setting. Rather than phase spa
physical arena here isspace–time, an ordinary Riemannian manifold (Mn ,g), not a supermani-
fold. The fermionic Weyl algebraW F enters the construction as the fiber of certain bundles o
space–time which we shall refer to as ‘‘Weyl algebra bundles.’’30

By definition, the base of a Weyl algebra bundle is (Mn ,g) and the typical fiber isW F, i.e.,
at each space–time pointx we attach a local copyWx

F of W F. The quadratic formQ on Wx
F is

provided by the metricg evaluated at the pointx. Local coordinates on the total space are pa
~x,f! wherex[(xm) are coordinates referring to some chart ofMn , and f is a function of the
Grassmann variablesu1,...,un. The transition functions are defined in close analogy with
exterior algebra bundle. A coordinate transformationx→ x̃(x) on Mn is accompanied byf→ f̃

with f̃ such thatf̃ ( ũ)5 f (u) whereũm[(] x̃m/]xn)un, i.e., um transforms in the same manner
dxm.

Sections through a Weyl algebra bundle are locally represented by functions

x°F~x,• !PWx
F , ~2.55!

where

F~x,• !:u°F~x,u! ~2.56!

is a function ofn commuting andn anticommuting variables. We define a fiberwise star prod
of two such sections by

~F1+F2!~x,u!5~F1~x,• !+F2~x,• !!~u! ~2.57!

for each pointx.
We can apply the inverse symbol map toF(x,•) and thus obtain a family of operators labele

by the space–time pointsx:

F̂~x![symb21 F~x,• !. ~2.58!

If we fix a concrete matrix representation of the fermionic operators on some representation
V F, thenF̂(x) acts on a local copyV x

F of V F, i.e., F̂(x)PL(V x
F). We are particularly interested

in the case whereV F carries the irreducible 2n/2-dimensional representation of the Clifford algeb
~for n even!. ThenV x

F is a fiber of the usual spin bundle overMn whose sections are the familia
Dirac spinor fields.

In the present paper we shall not be concerned with the global properties of Weyl al
bundles. Our main interest is in the metaplectic analog of the Dirac–Ka¨hler construction, and for
this purpose it is sufficient to compare to the topologically trivial bundles over the flat space
Mn5Rn. An analogous discussion could be given for arbitrary curved space–times as we
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we shall avoid the necessary technical complications here. Thus, in our case, sections
represented globally by functionsF(x,u). We remark that there exists a natural inner product
the space of these functions:

^F1uF2&5E dnx~F1~x,• !uF2~x,• !!. ~2.59!

D. Dirac–Kä hler fields and symbol calculus

Let us assume we are given an arbitrary DK fieldF on flat Euclidean space–timeRn. It
possesses an expansion

F~x!5 (
p50

n
1

p!
Fm1¯mp

~p! ~x!dxm1∧¯∧dxmp. ~2.60!

The ~complex! coefficient functions are taken to be completely antisymmetric in allp indices so
that there is a bijective correspondence between formsF and sets$Fm1 ...mp

(p) % of antisymmetric

tensors. Given these tensors, we form the following matrix-valued field:

F̂~x!5 (
p50

n
1

p!
Fm1¯mp

~p! ~x!gm1gm2
¯gmp. ~2.61!

From now on we assume thatn is even and that the Dirac matrices are in their irreduci
representation. HenceF̂(x) acts on a local copyV x

F of the representation spaceV F5Ck,
k52n/2. By virtue of ~2.35! we may regardF̂(x) as a matrix realization of the abstract operat

F̂~x!5 (
p50

n
kp

p!
Fm1¯mp

~p! ~x!x̂m1x̂m2
¯x̂mp. ~2.62!

For every pointx, the symbol of this operator isF(x,u)5@symbF̂(x)#(u), or

F~x,u!5 (
p50

n
kp

p!
Fm1¯mp

~p! ~x!um1um2
¯ump. ~2.63!

Thus we have set up a linear one-to-one correspondence between differential formsF(x) and
symbol functionsF(x,u). Schematically,

F~x!P`~Tx* Mn!�F̂~x!PL~V x
F!�F~x,• !PWx

F . ~2.64!

The first one of the two bijections in~2.64! is the usual ‘‘Dirac–Ka¨hler correspondence’
dxm�gm which we mentioned already in Sec. I, while the second one is the Weyl symbol
Taken in conjunction, these maps relate DK fields to symbols. In particular,

dxm�kum. ~2.65!

We shall use the notationF:F°F@F# for the linear map which yields the differential form
belonging to a given symbol. For instance,

F@kum#5dxm. ~2.66!

What makes the above construction particularly useful is that under the mapF many of the
familiar linear and bilinear operations involving differential forms naturally pass over to
symbol functions and vice versa. This is immediately obvious for the automorphismA, the
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antiautomorphismB, the Hodge operator* , and the modified Hodge operator!. Comparing their
definition for symbols in Appendix A to their standard definition in terms of differential forms
sees that

AF@F#5F@AF#, BF@F#5F@BF#,
~2.67!

* F@F#5F@* F#, !F@F#5F@!F#.

The exterior derivatived5dxm]m translates intokum]m ,

dF@F#5F@kum]mF# ~2.68!

while the contractioni(v) with a vector fieldv5vm]m becomes a derivative with respect tou:

i~v !F@F#5FFk21vm
]

]um F G . ~2.69!

In particular,

em¬F@F#5FFk21
]

]um F G . ~2.70!

The natural inner product on the space of DK fields is5

^F1 ,F2&5E F̃1∧* F2 . ~2.71!

@All terms which are not of degreen are supposed to be discarded from the integrand in~2.71!.#
Its counterpart at the symbol level is~2.59! with ~2.47!:

^F@F1#,F@F2#&5^F1uF2&. ~2.72!

The coderivatived† is the formal adjoint ofd with respect tô •,•&. On flat space one has

d†F52em¬]mF ~2.73!

whence

d†F@F#5FF2k21]m

]

]um
F G . ~2.74!

The wedge product of differential forms is mapped onto the pointwise product of sy
functions:

F@F1#∧F@F2#5F@F1F2#. ~2.75!

The most important aspect of the form/symbol correspondence is that the image of the
ford product is precisely the fiberwise star product~2.57!:

F@F1#∨F@F2#5F@F1+F2#. ~2.76!

This can be seen for instance by mapping Ka¨hler’s formula~1.9! for the Clifford product on our
representation~2.15! of the fermionic Weyl star product:
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F@F1#∨F@F2#5 (
p50

n
~21!p~p21!/2

p!
~Apem1

¬¯emp
¬F@F1# !∧~em1¬¯emp¬F@F2# !

5 (
p50

n
~21!p~p21!/2

p!
FFk2pAp

]

]um1
¯

]

]ump
F1G∧FFk2p

]

]um1

¯

]

]ump

F2G
5FF (

p50

n

k22p
~21!p~p21!/2

p! S Ap
]

um1
¯

]

]ump
F1D S ]

]um1

¯

]

]ump

F2D G
5F@F1+F2#. ~2.77!

Here we used~2.67!, ~2.70!, and~2.75!.
One also could prove Eq.~2.76! inductively. If we replacedxm by kum and ‘‘∨’’ by the star

product in the relations~1.8! which define the Clifford product we obtain exactly Eq.~2.12! for the
star product. Therefore Eq.~2.76! is correct for zero- and one-forms. Its generalization for ar
trary p forms makes essential use of the associativity of both the Clifford and the star prod

By virtue of our rules for the form/symbol correspondence also Eqs.~1.13! and~2.18! are now
seen to be completely equivalent.

In the DK equation we need the Clifford product ofdxm with an arbitrary form:

dxm∨F@F#5F@kum#∨F@F#5F@kum+F#5F@CmF#. ~2.78!

HereCm is the first-order differential operator~2.53!. In Sec. I we discussed already thatdxm∨,
regarded as an operator on the space of DK fields, gives rise to the Clifford algebra~1.14!. For
consistency the same should be true for the star multiplication withkum and forCm on the space
of symbols. In fact, it is easy to see that

~kum+ !~kun+ !1~kun+ !~kum+ !52dmn ~2.79!

and

CmCn1CnCm52dmn. ~2.80!

The DK operator acting on forms reads

~d2d†!F5dxm∧]mF1em¬]mF5dxm∨]mF, ~2.81!

where the second equality follows from~1.13!. Therefored2d† becomeskum+]m or Cm]m at the
symbol level:

~d2d†!F@F#5F@kum+]mF#5F@Cm]mF#. ~2.82!

This converts the DK equation to

F S 1

k

]

]um
1kumD ]m1mGF~x,u!50. ~2.83!

In closing we return to the chirality operatorgn11 . Under the mapF, the image of the delta
function is essentially the volume form Vol[dx1∧dx2∧¯∧dxn:

F@knd~• !#5~21!n~n21!/2 Vol. ~2.84!

For the chirality operator this means that

F@Gn11+F#52 i n~n21!/2 Vol∨F@F# ~2.85!
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which, at the operator level, corresponds to

Gn11+F̂5gn11F̂. ~2.86!

Thus we see that~up to unimportant constants! the fermionicd function, the volume form, and
the chirality matrixgn11 are simply different variants of the same object. Furthermore, by
~2.43!, star multiplication ofF by Gn11 from the rightamounts to applying the modified Hodg
operator!.

E. Invariant subspaces of W F

The differential operatorsCm or the star left-multiplication bykum define a representation o
the Clifford algebra~2.21! in the space of symbolsf (u). As f (u) has 2n independent~complex!
components, this representation is reducible. It can be decomposed into 2n/2 representations eac
of which is isomorphic to the 2n/2-dimensional irreducible representation provided by the matr
gm. ~We assumen even in this section.! As a consequence, a symbol-valued fieldF(x,u) de-
scribes 2n/2 ordinary Dirac spinor fields.

In the light of the form/symbol correspondence which we developed in Sec. II D it is clea
the representation carried byW F could be decomposed simply by invoking the standard disc
sion at the level of differential forms. However, as our main motivation for studying the sym
formulation of DK fields is to get some understanding of their symplectic analogs we
reformulate the method of Becher and Joos3 in symbol language and use this as a guide in
symplectic case. As a by-product we shall find a very elegant derivation of their matrix-v
form Z which puts it in a more general perspective.

We have to decompose the Weyl algebra in orthogonal subspaces,

W F5 %
a51

k

W ~a!
F , k52n/2 ~2.87!

such thatW(a)
F is invariant under star left-multiplication byum. Following a strategy similar to the

one described in Sec. I we look for ak3k-matrix valued functionZ(u) with the property

kum+Zab~u!5 (
g51

k

~gmT!agZgb~u!. ~2.88!

The functionZ is readily found in our formalism. Since the star product withum involves first
derivatives at most, Eq.~2.88! is reminiscent of the formulas for the derivative of the We
operatorsV̂ and V̌ which we displayed in Sec. II A. In fact, using those formulas together w
~2.18! it is easy to show that there exists a rescaling of the arguments ofV̂ andV̌ in such a way
that the star multiplication byum corresponds to an operator multiplication byx̂m or Gm:

um+V̂~6 ik2u!57V̂~6 ik2u!x̂m, ~2.89!

um+V̂~6k2u!56 i x̂mV̂~6k2u!, ~2.90!

kum+V̌~6 ik2u!56GmV̌~6 ik2u!. ~2.91!

For the problem at hand, Eq.~2.91! is precisely what we need. IfGm constitutes a Clifford algebra
so doesGm

T . Hence we may setZ(u)5V̌( ik2u) with Gm5gm
T . Thus

Z~u!5exp@kumgm
T # ~2.92!

or in expanded form
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Z~u!5 (
p50

n
kp

p!
gm1

T
¯gmp

T um1
¯ump. ~2.93!

Clearly ~2.93! is precisely the symbol corresponding to the form~1.21! which was found by
Becher and Joos3 using different techniques. In the context of the present investigation
important to keep in mind thatZ is nothing but a rescaled fermionic Weyl operator since the la
has a well-known bosonic analog.

Because of the completeness properties of theg matrices,$Zab ; a,b51,...,k% is a basis for
W F and we may expand any symbol as

F~x,u!5 (
b51

k

(
a51

k

ca
~b!~x!Zab~u!5 (

b51

k

F ~b!~x,u!. ~2.94!

~Here we use already the notation appropriate for the role ofW F as a fiber at the pointx.! The rest
of the argument parallels our discussion in Sec. I. We obtaink[2n/2 invariant subspacesW (a)

F

~left ideals! which are spanned by

F ~b!~x,• !5 (
a51

k

ca
~b!~x!Zab~• !PW x~b!

F . ~2.95!

For every fixed value ofb, the expansion coefficientsc (b)[$ca
(b) ;a51,...,k% can be interpreted

as an ordinary Dirac spinor. Equation~2.88! shows that acting withkum+ on F (b) is equivalent to
applyinggm on c (b):

kum+F ~b!5(
a

S (
d

gad
m cd

~b!DZab5(
a

@gmc~b!#aZab . ~2.96!

Let us arrange the expansion coefficientsca
(b) as ak3k-matrix: (ĉ)ab[ca

(b) . Then,

F~x,u!5Tr@ĉ~x!Z~u!T#. ~2.97!

Denoting theĉ matrix which belongs to a given sectionF by ĉ@F# we obtain from~2.96!

ĉ@kum+F#5gmĉ@F#, ~2.98!

which mirrors~1.27! at the symbol level.
Given a symbol-valued fieldF(x,u) we can immediately construct the associated spi

matrix-valued fieldF̂(x) of ~2.61! by replacingum→k21gm in its series expansion~2.63!. In the
process of decomposing the reducible representation carried byF we discovered a second spino
matrix, ĉ, which is related toF in a canonical way, too. By essentially the same argument a
Sec. I it follows that the two matrices are equal up to a constant:

ĉ@F#~x!522n/2F̂~x!. ~2.99!

If we insert the expansions~2.63! and ~2.93! for F(x,u) andZ(u), respectively, into Eq.~2.97!,
we obtain Eq.~1.30! for the set$Fm1

(p)
¯mp% expressed in terms ofĉ. Making an ansatz forĉ in

terms of antisymmetrized products ofg matrices and using the trace identity~1.33!, one finds that
the expansion coefficients ofĉ and F̂ differ by an overall constant only.

While this last step was straightforward for the SO(n) spinors, it will be much less trivial for
metaplectic spinors where the representation space is infinite-dimensional and trace identiti
as ~1.33! are not likely to exist. It will be interesting to see how~2.99! is modified then.
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III. SYMPLECTIC DIRAC–KÄ HLER FIELDS

In Sec. II we reformulated the theory of standard DK fermions over space–time in term
fields F which assume values in the fermionic Weyl algebraW F. Now we are going to ask wha
happens if we replaceW F by its ~actually much more familiar! bosonic counterpart, the boson
Weyl algebraW. Rather than space–time it is now a phase-space (M2N ,v) which plays the role
of the base manifold. As we shall argue, replacing the Riemannian structure by a symplect
the structure group SO(n) by Sp(2N), and, most importantly, fermionic Weyl symbols by boson
ones, we are led to the notion of a ‘‘symplectic DK field’’ in a very natural way.

In Sec. III A we begin by working out some special properties of bosonic Weyl sym
which will become important in our construction. In this context, we are basically discussin
conventional quantum mechanics of the auxiliary quantum system with canonical operatorsx̂i and
p̂ i which results from quantizing the flat ‘‘auxiliary phase-space’’R2N. @Later on the auxiliary
phase space will be identified with the tangent space to the true~physical! phase-spaceM2N .# The
operatorsx̂i and p̂ i take over the role previously played byx̂m.

Section III B is devoted to the metaplecticg matrices. In particular, we propose a symplec
analog of the chirality matrixg5 there. The actual construction of the symplectic DK fields
performed in Sec. III C, and in Sec. III D it is shown how they relate to the metaplectic sp
fields.

A. Bosonic Weyl symbols

We consider a Hamiltonian system withN degrees of freedom whose classical phase spac
the symplectic plane (R2N,v). The associated quantum mechanical Hilbert space isV andL~V!
denotes the space of linear operators onV. The Hilbert spaceV carries a representation of th
canonical commutation relations

@ŵa,ŵb#5 i\vab, a,b51,...,2N. ~3.1!

In a canonical operator basis we splitŵa[(p̂ i ,x̂i), i 51,...,N, so that the only nonvanishing
commutator is between the momentap̂ i and the positionsx̂i :@p̂ i ,x̂ j #52 i\d i j . The matrix (vab)
is the inverse of the constant matrix (vab) formed from the coefficients of the symplectic two
form v: vabv

bc5da
c . On (R2N,v) we use canonical coordinatesya[(yp

i ,yq
i ) such that

~vab!5S 0
2I

1I
0 D , ~vab!5S 0

1I
2I
0 D .

For the natural skew-symmetric inner product on the symplectic plane we write

v~y1 ,y2![y1
avaby2

b . ~3.2!

The Weyl ~or Heisenberg! operators16

T̂~y!5expS i

\
yavabŵ

bD ~3.3!

implement the translations on phase space in the Hilbert spaceV:

T̂~y!†ŵaT̂~y!5ŵa1ya. ~3.4!

This is a projective representation of the translation group since

T̂~y1!T̂~y2!5expF i

2\
v~y1 ,y2!G T̂~y11y2!. ~3.5!

The Weyl operators are orthogonal and complete in the sense that
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Tr@ T̂~y1!†T̂~y2!#5~2p\!Nd~2N!~y12y2! ~3.6!

E d2Ny^auT̂~y!†ua8&^buT̂~y!ub8&5~2p\!Nd~N!~a2b8!d~N!~b2a8!. ~3.7!

Here $ua&% is the basis which diagonalizes the position operators:

x̂i ua&5a i ua&, a[~a1,...,aN!. ~3.8!

Sometimes it will be more suggestive to use a tensor notation instead of the bra-ket fo
ism; for instance, one writesb̂a

b[^aub̂ub& for the matrix elements of some arbitraryb̂PL(V) or
da

b[d (N)(a2b) for the identity operator. The eigenvaluesaPRN should be thought of as a
continuous analog of a spinor index. In thex̂ eigenbasis, the Weyl operators are given by

T̂~y!a
b5expF i

\ S ypa2
1

2
ypyqD Gd~N!~a2b2yq! ~3.9!

with ypa[yp
i a i , etc., where the summation overi 51,...,N is understood.

From the completeness relation~3.7! it follows that every operatorb̂ can be represented as

b̂5~2p\!2NE d2Nyb̃~y!T̂~y! ~3.10!

with the complex-valued functionb̃ given by

b̃~y!5Tr@ T̂~y!†b̂#. ~3.11!

The functionb̃ ~referred to as thealternativeWeyl symbol16! is closely related to the Weyl symbo
of b̂. In fact, b(y)[@symb(b̂)#(y) is the Fourier transform ofb̃:

b~y!5~2p\!2NE d2Ny0b̃~y0!expF i

\
v~y0 ,y!G ~3.12!

The inverse transformation reads

b̃~y!5~2p\!2NE d2Ny0b~y0!expF i

\
v~y0 ,y!G , ~3.13!

i.e., the symplectic Fourier transformation is an exact involution,b5 (y)5b(y) ~and not only an
involution up to a reflection of the argument!.

Equations~3.10!–~3.12! define the~bosonic! Weyl symbol map ‘‘symb’’ fromL~V! to the
space of~generalized! functions over the symplectic plane, as well as its inverse. The clas
phase functionb(y) uniquely represents an operatorb̂ which is Weyl ordered. In particular, th
monomialya1ya2

¯yap stands for the completely symmetrized operator productŵ (a1ŵa2
¯ŵap).

Conversely,

@symb$ŵ (a1
¯ŵap)%#~y!5ya1ya2

¯yap. ~3.14!

The symmetrization in~3.14! is crucial, otherwise commutator terms would occur. For instan

@symb$ŵaŵb%#~y!5yayb1 i
\

2
vab. ~3.15!

An important special class of symbols are those which admit a power series expansio
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b~y!5 (
p50

`
kp

p!
ba1¯ap

~p! ya1ya2
¯yap. ~3.16!

By the symbol map, they are bijectively related to the operators

b̂5 (
p50

`
kp

p!
ba1¯ap

~p! ŵa1
¯ŵap ~3.17!

provided the tensorsba1¯ap

(p) are completely symmetric. Ifb is a power series, the ‘‘alternativ

Weyl symbol’’ b̃ is a sum of derivatives ofd functions:

b̃~y!5~2p\!NbS i\vac
]

]ycD d~2N!~y!. ~3.18!

As in every symbol calculus, the pertinent star product is required to satisfy symb(b̂1b̂2)
5b1+b2 whereb1 andb2 are the symbols ofb̂1 andb̂2 , respectively. At least for power series, th
bosonic Weyl star product is uniquely determined by its associativity, the distributivity over ‘‘1,’’
and the basic relations

1+151, 1+ya5ya+15ya,
~3.19!

ya+yb5yayb1 i
\

2
vab,

which follow from ~3.14!, ~3.15! and symb(I )51. Explicit formulas for the star product25,28 of
arbitrary symbols include

~b1+b2!~y!5b1~y!expF i
\

2

]Q

]ya vac
]W

]ycGb2~y! ~3.20!

and

~b1+b2!~y!5~p\!22NE d2Ny1d2Ny2 exp@22i $v~y,y1!1v~y1 ,y2!

1v~y2 ,y!%/\#b1~y1!b2~y2!. ~3.21!

The differential operators which effect the star left-multiplication withkya,

~Cab!~y!5kya+b~y!, ~3.22!

are easily read off from Eq.~3.20!:

Ca5kya1
i

k
vab

]

]yb . ~3.23!

On the space of symbols with an appropriate fall-off behavior we would like to introdu
sesquilinear inner product~•u•! with respect to whichCa is self-adjoint,

~Cab1ub2!5~b1uCab2!. ~3.24!

It is clear from our earlier discussion that the choice

~b1ub2!5@ b̄1+b2#~y50! ~3.25!
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meets this requirement. Sinceb1+b25b̄2+b̄1 also here, the proof is the same as in~2.54!. If b1 and
b2 are power series of the type~3.16!, Eq. ~3.25! boils down to

~b1ub2!5 (
p50

`
i p

p!
b̄1,a1¯ap

~p! va1c1
¯vapcpb2,c1¯cp

~p! . ~3.26!

It is instructive to look at various alternative ways of representing this inner product. T
exists the integral representation

~b1ub2!5~2p!22NE d2Ny1d2Ny2b̄1~y1 /k!e2 iv~y1 ,y2!b2~y2 /k!, ~3.27!

which can be reexpressed in terms of a symplectic Fourier transform:

~b1ub2!5~2p\!2NE d2Nyb̄1~ 1
2y!b̃2~y!. ~3.28!

Furthermore, if~3.18! can be applied,

~b1ub2!5b2S 2 ik22vac
]

]ycD b̄1~y!uy50 . ~3.29!

The above formulas should be compared to their counterparts in the fermionic symbol
lus. Bosonic symbols admitting a power series expansion are characterized by sets$ba1¯ap

(p) , p

50,1,2,...% consisting of infinitely manysymmetric tensors. Fermionic symbol functions a
equivalent to a finite set$f m1¯mp

(p) , p50,1,...,n% of antisymmetrictensors instead.

We saw that the~modified! Hodge operator is essentially the same operation as the G
mannian Fourier transformation. Omitting all sign factors~which anyhow have no bosonic analo!
we have, schematically,

* f ~u!}! f ~u!} f̃ ~u!} f S ]

]u D d~u!. ~3.30!

Thus one is tempted to define a bosonic version of the Hodge operator simply by s
(* b)(y)5b̃(y) so that** 51 on anyb. If b is a power series, Eq.~3.18! is indeed formally
analogous to~A24! for the fermionic Fourier transformation. However, the difference is that
derivative of the fermionic delta function,f (]/]u)d(u), again is a powers series in theu’s, while
this is of course not true for the derivatives of the bosonic delta function,d (2N)(y). In the former
case, the monomialsum1

¯ump are mapped onto monomials of the same type. Therefore one s
antisymmetric tensors$ f a1¯ap

(p) % is mapped onto another set of such tensors. In the latter case

space of symmetric tensorsba1¯ap

(p) is not mapped onto itself. The image ofya1ya2
¯yap is a

singular symbol}]y
a1
¯]y

apd (2N)(y), ]y
a[vab]/]yb.

Nevertheless it will be helpful to think of the symplectic Fourier transformation as the bos
~symmetric tensor! analog of the Hodge operator. For instance, by~2.48! with ~A22! and~A40! the
fermionic inner product has the same general structure as~3.28!:

~ f 1u f 2!}E f̄ 1~u! f̃ 2~u!dnu}E f̄ 1~u!~* f 2!~u!dnu. ~3.31!

In the language of differential forms this is nothing but the familiar inner product* (F̄1∧* F2) in
disguise. The product (b1ub2) introduced above is analogous to it, but refers to symmetric ra
than antisymmetric tensors.
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The space of symbolsb(y) equipped with the pointwise product of functions, the star prod
and the inner product constitutes the bosonic Weyl algebraW. It is the counterpart of the algebr
WF which, endowed with analogous structures, had turned out to be an Atiyah–Ka¨hler algebra.
Because (yauyb)5 i\vab/2 we see that the three product structures onW satisfy the consistency
condition

ya+yb5yayb1~yauyb!. ~3.32!

This relation is completely analogous to Eq.~2.46! which had been identified with the definin
property of an Atiyah–Ka¨hler algebra, Eq.~1.7!. This supports our point of view thatthe bosonic
Weyl algebra is the natural analog of an Atiyah–Kähler algebra if one works in a symplecti
rather than a Riemannian setting.

B. g matrices for Mp „2N… and the analog of g5

The generators of Mp(2N) in the spinor representation are obtained as symmetrized bilin
Smeta

ab 5(gagb1gbga)/4 built from 2N ‘‘ g matrices’’ satisfying

gagb2gbga52ivab. ~3.33!

Upon identifying

ga5kŵa ~3.34!

it is clear that the relations~3.33! coincide precisely with~3.1!. Hence, what in the language o
group theory is called a ‘‘symplectic Clifford algebra’’ is nothing but the canonical commuta
relations of a bosonic quantum system with the canonical operatorsŵa5(p̂ j ,x̂ j ). For N finite, all
irreducible representations of the canonical commutation relations are unitarily equivalent,
same is true for the symplectic Clifford algebra. All these representations are infinite dimens

We consider representations wherega is a Hermitian operator on the Hilbert spaceV. Fre-
quentlyV is taken to be the Fock space ofN independent harmonic oscillators.17,31 Then thega’s
are linear combinations of the corresponding creation and annihilation operators. Here w
employ another representation which is particularly natural in the gauge theory approach to
tum mechanics.21 We pick the x̂-eigenbasis~3.8! with respect to whicĥ aux̂ j ub&5a jd (N)(a
2b) and ^aup̂ j ub&52 i\] jd

(N)(a2b). Therefore, in a symbolic matrix notation wit
^augaub&[(ga)a

b ,

~g j !a
b52~2i /k!] jd~N!~a2b!,

~3.35!
~gN1 j !a

b5ka jd~N!~a2b!, j 51,...,N.

The Hilbert spaceV is the space of square integrable functionsc(a)[^auc&[ca with its usual
inner product. The generatorsSmeta

ab act onV as second-order differential operators~Schrödinger
Hamiltonians with a quadratic potential; see Refs. 22 and 23 for further details!.

Any attempt at putting metaplectic spinors on a similar footing as the SO(n) spinors faces the
problem thatV is infinite dimensional and that a metaplectic spinor formally is an objectca

[c(a) with infinitely many components. As an immediate consequence, trace identities su
~1.33! have no direct counterpart for the metaplecticg ‘‘matrices’’. In the x̂ basis, for instance, the
trace of an operatorb̂PL(V) reads Tr(b̂)5*dNa^aub̂ua&, and it is clear that monomials such a
ga1

¯gap do not possess a trace. Remarkably enough, it turns out that there exist identities
to ~1.33! even in the infinite dimensional case which, however, involve the Sp(2N) analog of
gn11 .

We are familiar with the fact that when we are dealing with spinors on an even-dimens
space–time there exists a chirality matrixgn11 , a generalization ofg5 in four dimension, which
anticommutes with anygm. Its eigenvalues are21 and11, and the corresponding eigenspaces
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the left- and right-handed Weyl spinors, respectively. It is quite interesting that we can intro
an analogous concept for metaplectic spinors and that the pertinent ‘‘chirality operator’’ has
natural interpretation even. Let us try to find an operatorgPPL(V ) which anticommutes with all
ga’s,

gPga1gagP50 ~3.36!

and satisfies

gP
† 5gP

215gP . ~3.37!

ThusgP has the same algebraic properties asg5 , its eigenvalues are61 and, provided it actually
exists, we can use it to form the ‘‘chiral’’ projections

c65P6c, P6[ 1
2~16gP! ~3.38!

of any cPV. SinceSmeta
ab commutes withgP , the Mp(2N) transformations leave the subspac

with gP511 and gP521 invariant, so that the representation of Mp(2N) implied by theg
matrices~3.35! decomposes accordingly.

Looking at the ‘‘metaplecticg5 matrix’’ from the point of view of the auxiliary quantum
mechanics with theŵ degrees of freedom it becomes clear that we may identifygP with the
standard parity operatorP in this context. By definition,P changes the sign of both the position
x̂i and the momentap̂ i :Px̂i P52 x̂i , Pp̂ i P52p̂ i . HencePgaP52ga for ga5k(p̂ i ,x̂i), which
is exactly ~3.36! with gP[P. The operatorP acts on the wave functionscPV as (Pc)(a)
[(gPc)(a)5c(2a). This means that in thex̂ representation

gPua&5u2a& ~3.39!

so that the matrix elements ofgP are given by

~gP!a
b[^augPub&5d~N!~a1b!. ~3.40!

Thus, ‘‘metaplectic chirality’’ is nothing but ‘‘fiberwise parity,’’ and the projectionsP6V are
simply the subspaces of even and odd wave functions, respectively.

The operatorgP can be written in a manifestly basis independent way:

gP5~4p\!2NE d2NyT̂~y!. ~3.41!

@Equation ~3.41! shows thatgP belongs to the family of parity-type operators discussed
Grossmann32 and Royer.33# The general properties of the Weyl operators imply that~3.41! has the
desired properties~3.36!, ~3.37! and using the matrix elements~3.9! one finds that~3.41! coincides
with ~3.40!. Equation ~3.41! is strikingly similar to Eq.~2.44! for Ĝn11 which confirms our
interpretation that thefiberwise parity transformation is the analog ofg5 .

The operatorgP has a well-defined finite trace:

Tr@gP#522N. ~3.42!

This follows from ~3.41! with ~3.6! or simply by noting that

Tr@gP#5E dNa~gP!a
a5E dNad~N!~2a!522N. ~3.43!

While the very existence of this trace is remarkable, we see the first major difference betwe
bosonic and the fermionic case here. Bothg5 and gP have eigenvalues61, but the pairing of
positive and negative eigenvalues which leads to Tr(g5)50 does not happen forgP .
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Finite products ofga matrices and in particular the unit operator do not possess a well-de
trace. On the other hand, traces with agP insertion,

Tr@ b̂gP#5E dNa^aub̂u2a& ~3.44!

are much better behaved because the reflectiona°2a removes possible ‘‘short distance sing
larities’’ ~reminiscent of ultraviolet divergences in field theory! which would plaguê aub̂ua&.

This situation is quite similar to what one encounters in quantum field theory in the co
tation of chiral anomalies or, from a mathematical point of view, of the analytical index of
Dirac operator.34,35 There one considers Tr(I ) and Tr(g5) where the trace is over the infinit
dimensional Hilbert space of Dirac spinor fields. While Tr(I ) does not exist, Tr(g5) can be
interpreted as the index of the Dirac operator.

An important trace of the type~3.44! is

Tr@g (a1
¯gap)gPg (b1

¯gbq)#5 i p22Np!dpqd (b1

a1 db2

a2
¯dbp)

ap ~3.45!

with the convenient abbreviationga[vabg
b, vabgb5ga. Equation~3.45! is similar to~1.33! for

the SO(n) g matrices, but contains an additional factor ofgP without which the trace would no
exist. Equation~3.45! follows from the properties for theT̂ operators. First one uses~3.41! with
~3.6! to show that

Tr@ T̂~y!gp#522N ~3.46!

is independent ofy. Next one writes

Tr@ T̂~y1!gPT̂~y2!#5Tr@ T̂~y1!T̂~2y2!gP#

5expF i

2\
v~y1 ,2y2!GTr@ T̂~y12y2!gP#522N expF2

i

2\
y1

avaby2
bG .

~3.47!

If one now expands the first and the last expression of~3.47! in powers ofy1 andy2 and equates
equal powers, the result is precisely Eq.~3.45!.

Some important special cases of~3.45! include

Tr@gagP#50,

Tr@g (a1
¯gap)gP#50, ~3.48!

Tr@gagbgP#522Nivab.

The reader is invited to check some of these relations by using the matrix elements ofga in the ua&
basis. It is instructive to see that these calculations involve only well-defined manipulatio
distributions and that no additional ad hoc regularization is needed. This is different from
derivation of the closely related dimension-counting formulas for the spinors of OSp(nu2N) which
appear in certain approaches to the covariant quantization of superstrings,18 for instance.

C. The Dirac–Kä hler construction on phase space

Let (M2N ,v) denote an arbitrary 2N-dimensional symplectic manifold which serves as t
phase space of some Hamiltonian system. Let us consider the Weyl algebra bundle30,31overM2N .
Its typical fiber is the bosonic Weyl algebraW, i.e., the space of symbolsb(•) equipped with the
pointwise product of functions, the star product, and the inner product~•u•!. At each pointf of
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M2N we attach a local copyWf of W. The matrix (vab) which enters the definition of the Wey
algebraWf are the coefficients of the symplectic two-formv evaluated at the pointf. By virtue
of Darboux’s theorem, there exist local coordinates (fa) such that those coefficients assume th
canonical form on the entire (fa) chart. Local coordinates on the total space are pairs (f,b) with
b a functionb:R2N→C, y°b(y). The transition functions of the bundle are defined in suc
way that the variables (y1,...,y2N) on which b depends are the components of a vectory

PTfM2N , i.e., ya5dfa(y). A symplectic change of coordinatesfa→f̃a(f) ~canonical trans-
formation! is to be combined with a transformation in the fiber,b→b̃, such thatb̃( ỹ)5b(y) with
ỹa5(]f̃a/]fb)yb.

Along with the Weyl algebra bundle we also consider the metaplectic spinor bundle
(M2N ,v) which we described in Sec. I. Its fiber atf, Vf , is a copy of the Hilbert spaceV on
which we already constructed a representation of the metaplectic Clifford algebra and, as
sequence, of the structure group Mp(2N).

Let us look at sections through the Weyl algebra bundle. Locally they are specified by
tions f°B(f,•)PWf whereB(f,•):R2N→C, y°B(f,y) is a Weyl symbol ‘‘living’’ in the
fiber atf. In this context, the flat ‘‘auxiliary phase-space’’R2N is identified with the tangent spac
TfM2N . Hence the functionB(•,•) is a map from~a part of! the total space of the tangent bund
into C.

Many of the concepts which we developed in Sec. III A for symbolsbPW naturally pass over
to the sectionsB. At every pointf of M2N we can apply the inverse symbol map toB(f,•)
PWf and obtain a unique operatorB̂(f)5symb21 B(f,•) which acts on the local copyVf of the
Hilbert spaceV. Thus a sectionB gives rise to a family of operatorsB̂(f)PL(Vf) labeled by the
points of phase space. Its matrix elements with respect to a given basis inV will be denoted
B̂(f)a

b[^auB̂(f)ub&. Globally speaking, B̂ is a section through the bundle of~1,1!
multispinors.22,21

The fiberwise star product of two sections is defined by

~B1+B2!~f,y!5B1~f,y!expF i\

2

]Q

]ya vab
]W

]ybGB2~f,y!. ~3.49!

This star product has to be carefully distinguished from the* M product whose associated Moy
bracket$ f ,g%M5( f * Mg2g* Mf )/ i\ replaces the classical Poisson bracket in the deforma
quantization approach,24,36 and which involves derivatives with respect tofa rather thanya. In
general, the* M product is much more complicated than the+ product. It can be constructe
iteratively by Fedosov’s method,29,37–40but we shall not need it in the present context.

The fiberwise inner product of two sections is given by (B1uB2)(f)5(B̄1+B2)(f,0). The
natural sesquilinear form on the space of sections is^B1uB2&5*dmL(B1uB2) wheredmL is the
Liouville measure.

After these preparations we are now able to construct an analog of the Dirac–Ka¨hler fields on
phase spaces.

Let ^ sym
p

(T* M2N) denote thep-fold symmetrized tensor power of the cotangent bundle
sectionS(p) through this bundle is a symmetric tensor field of rankp. We shall also consider the
direct sum

^ sym~T* M2N!5 %
p50

`
^ sym

p
~T* M2N!. ~3.50!

Its sectionsS5(p50
` S(p) are analogous to the inhomogeneous differential forms, but with s

metric rather than antisymmetric tensor fields. In local~Darboux! coordinatesfa, S can be
expanded as
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S~f!5 (
p50

`
1

p!
Ba1¯a1

~p! ~f!dfa1^ symdfa2^ sym¯^ symdfap ~3.51!

with ^ sym denoting the symmetric counterpart of the wedge product; for instance,dfa
^ symdfb

5dfa
^ dfb1dfb

^ dfa. The complex-valued coefficientsBa1¯ap

(p) are taken to be completel

symmetric in allp indices. We shall refer toS as an ‘‘inhomogeneous symmetric tensor’’~IST!.
Guided by the corresponding construction in the fermionic case we shall now associ

operatorB̂(f)PL(Vf) to S~f! by replacing in Eq.~3.51! the differentialsdfa with the Gamma
matricesga:

B̂~f!5 (
p50

`
1

p!
Ba1¯ap

~p! ~f!ga1ga2
¯gap5 (

p50

`
kp

p!
Ba1¯ap

~p! ~f!ŵa1ŵa2
¯ŵap. ~3.52!

~As discussed earlier, we interpret theg matrices ask times the canonical operatorsŵa of the
auxiliary quantum system in the fiber.! Conversely, every Weyl ordered operator onVf which
admits a power series expansion gives rise to a unique IST. The operator can be expande
symmetrized monomialsŵ (a1...ŵap with coefficients which are symmetric tensors and define
IST therefore.

Now we form the symbol ofB̂:B(f,y)5@symbB̂(f)#(y), i.e.,

B~f,y!5 (
p50

`
kp

p!
Ba1¯ap

~p! ~f!ya1ya2
¯yap. ~3.53!

Taking both steps together we arrive at a one-to-one correspondence between ISTs an
bols with a power series expansion iny:

S~f!P ^ sym~Tf* M2N!�B̂~f!PL̃~Vf!�B~f,• !PW̃f . ~3.54!

This chain of bijections is similar to~2.64!. However, the difference is that in the fermionic setti
every symbol or every Weyl ordered operator gives rise to an inhomogeneous tensor field.
not true in the bosonic case. We have to explicitly restrict the symbols and operators to
which allow for a power series expansion inya or ŵa, respectively.@This is indicated by the
notationL̃(Vf) andW̃f .# Nevertheless we shall continue to consider also symbolsB which are
not analytic iny because they will play a central role in the reduction of symplectic DK field

Now let us look at the rules of the symbol/tensor correspondence in the bosonic case. C
the differentialsdfa correspond tokya:dfa�kya. Hence, if we write the~linear, invertible! map
from the symbols to the ISTs asB°S@B#, we haveS@kya#5dfa or more generally

S@kpya1
¯ya1#5dfa1^ sym¯^ symdfap. ~3.55!

Up to this point the situation is the same as in Sec. II D with the commutingy’s replacing the
anticommutingu’s. This converts the wedge product to the symmetric tensor product. Differe
become manifest when we look at the list of natural operations for ISTs and their realization
symbol level.

The automorphismA and the antiautomorphismB, while important for dealing with the
ubiquitous sign factors in exterior algebra computations, are unnecessary for symmetric te
As we argued already, the Hodge operator has a natural bosonic translation, the symplectic
transformation. However it does not leave the spaceW̃ invariant and, as a consequence, does
induce a map of one IST onto another. Furthermore, the exterior derivative is a derivation
exterior algebra which does not require a connection for its definition. Also this concept h
analog on the bosonic side.
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However, every vector fieldv5va(f)]a onM2N gives rise to a contraction operatori(v). By
definition, it is a linear operator on the space of ISTs, depending linearly onv, and satisfying
i(]a)150, i(]a)dfb5da

b as well as

i~v !@S1^ symS2#5@ i~v !S1# ^ symS21S1^ sym@ i~v !S2#. ~3.56!

Its realization onW̃ reads

i~v !S@B#5SFk21va
]

]ya BG . ~3.57!

We also define the operators

ea¬[ i~]a!, ea¬[vabi~]b! ~3.58!

with the basis vectors]a[]/]fa referring to a system of Darboux local coordinates.
The most important properties of the fermionic Weyl algebraW F were the three differen

product structures with which it is endowed and which make it an Atiyah–Ka¨hler algebra. The
bosonic Weyl algebraW is equipped with three analogous products~pointwise multiplication, star
product, inner product! which satisfy the basic consistency condition~3.32!. At the end of Sec.
III A this led us to the conclusion thatW is the symplectic counterpart of an Atiyah–Ka¨hler
algebra. In the same sense the ISTsS are analogous to the Dirac–Ka¨hler fieldsF.

The product structures onWf give rise to related products on the space of symmetric ten
fields. One easily verifies that the pointwise product of bosonic symbols is tantamount
symmetric tensor product:

S@B1# ^ symS@B2#5S@B1B2#. ~3.59!

Furthermore, guided by our experience with the fermionic case, we nowdefinethe Clifford
product for symmetric tensor field as the image of the bosonic star product under the sy
tensor correspondence~3.54!:

S@B1#∨S@B2#5S@B1+B2#. ~3.60!

By construction, the ‘‘symplectic Clifford product,’’ also denoted ‘‘∨,’’ is associative and dis-
tributive ~but not commutative!. From Eqs.~3.49!, ~3.57!, and ~3.58! one obtains the following
explicit representation for the product of two ISTs:

S1∨S25 (
p50

`
i p

p!
@ea1

¬ea2
¬¯eap

¬S1# ^ sym@ea1¬ea2¬¯eap¬S2#. ~3.61!

This equation is strikingly similar to Ka¨hler’s formula~1.9! for the ordinary Clifford product. We
emphasize that while Eq.~3.61! might look complicated it is uniquely determined by the fund
mental relations

1∨151, 1∨dfa5dfa∨15dfa,
~3.62!

dfa∨dfb5dfa
^ symdfb1 ivab

if associativity and distributivity are imposed.
Turning to the last product structure onW, there is an obvious choice for a fiberwise inn

product ~•,•! of symmetric tensor fields: (S1 ,S2)5(B1uB2) where S1,2 is related toB1,2 via
~3.54!. Thus it is clear that the ISTs may be regarded as sections through a ‘‘symplectic At
Kähler bundle.’’

The left-multiplication by the basis elementdfa reads explicitly
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dfa∨S5dfa
^ symS1 iea¬S. ~3.63!

It defines a representation of the symplectic Clifford algebra in the space of inhomoge
symmetric tensor fields:

dfa∨dfb2dfb∨dfa52ivab. ~3.64!

Comparing~3.64! to ~3.33!, dfa∨ takes the place of the metaplectic Dirac matrixga. Since
dfa5S@kya#, dfa∨ applied to tensors is the same askya+ applied to symbols:

dfa∨S@B#5S@kya+B#5S@CaB#. ~3.65!

The differential operatorsCa were introduced in Eq.~3.23!. They are formally self-adjoint with
respect to the inner product~•u•!. They constitute a representation of the symplectic Cliffo
algebra in space of bosonic Weyl symbols:

CaCb2CbCa52ivab. ~3.66!

Since kya is the symbol of kŵa5ga, the operator associated toCaB is gaB̂ with B̂
5symb21(B). In summary, we have the chain of correspondences

dfa∨S�gaB̂�CaB. ~3.67!

Thus we managed to implement the essence of the Dirac–Ka¨hler idea in a symplectic rathe
than a Riemannian setting. We constructed a representation of the corresponding Clifford a
on the space of symmetric tensor fields over a phase-space manifold rather than on the
algebra over space–time.

Up to this point our considerations focused on the kinematic aspects of the theory. We
not yet found an analog of the DK equation. Sinced andd† do not exist for symmetric tensors, th
DK operatord2d† has no direct counterpart. Still it is possible to write down a ‘‘symplectic D
equation’’ with the necessary covariance properties:

@dfa∨¹a1m#S50. ~3.68!

~Here¹ is a symplectic connection.! Equation~3.68! could be rewritten as a set of ‘‘metaplect
Dirac equations’’ in the same way as the ordinary DK equation can be decomposed into a
ordinary Dirac equations. Metaplectic Dirac operators have been investigated in the mathem
literature recently41 but no physical application has emerged so far. In Sec. IV we shall see
from a kinematical and representation theory point of view the symplectic DK fields indee
play an important role in the gauge theory approach to quantization. The interpretation o
equations such as Eq.~3.68!, if any, will remain an open problem though.

We close this section with a few comments on the ‘‘metaplecticg5 matrix’’ in relation to the
DK fields. In the SO(n) case we saw thatgn11 , the volume form, and thed function are different
guises of the same object. Some properties ofgn11 are similar in the symplectic case, others a
quite different. The symbol ofgP , too, is proportional to ad function,

GP[symb~gP!, GP~y!5~p\!Nd~2N!~y!. ~3.69!

This symbol is completely unrelated to the volume form, however. In the SO(n) case we know
that the Clifford right multiplication byGn11 is equivalent to the modified Hodge operator (! f
} f +Gn11} f +d (n)). This property has a partial analog since by virtue of~3.21! the symplectic
Fourier transformation which corresponds to! is essentially the same operation as the star m
tiplication by GP from the right:

b̃~y!522N~b+GP!~y/2!. ~3.70!
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However, this statement on the space of symbol functions~including distributions! does not imply
a corresponding relation for symmetric tensors. The symbolGP has no IST associated to it.

The matrixgP makes its appearance also in the natural inner product onL(Vf). By virtue of
the identity

~B1uB2!52N Tr@B̂1
†B̂2gP# ~3.71!

the inner product onWf induces a corresponding product for the operators. The latter differs
the familiar Hilbert–Schmidt inner product by the additionalgP matrix which tends to improve
the regularity properties of the trace. Equation~3.71! is most easily proven as follows:

~B1uB2!5~B̄1+B2!~y50!

5~p\!2NE d2Ny~B̄1+B2!~y!GP~y!

5~p\!2NE d2Ny~B̄1+B2+GP!~y!

5~p\!2NE d2Ny@symb$B̂1
†B̂2gP%#~y!52N Tr@B̂1

†B̂2gP#. ~3.72!

Here~3.69! was used along with the standard results24 *d2Nyb1(y)b2(y)5*d2Ny(b1+b2)(y) and
Tr(b̂)5(2p\)2N*d2Nyb(y).

D. Decomposition of the symplectic DK representation

We have seen thatdfa∨ andkya+ induce a representation of the symplectic Clifford algeb
on the space of symmetric tensors and their symbols, respectively. We also saw that the
sponding representations in the SO(n) case are reducible, so it is natural to ask if the same is
in the symplectic setting. We shall demonstrate thatat the level of the symbolsthe representation
is indeed reducible. However, in contradistinction to the SO(n) case, the decomposition ofW
does not induce a concomitant decomposition of the~symmetric! tensor algebra.

We shall see that the representation of the symplectic Clifford algebra carried by the sy
valued fieldsB(f,y) can be decomposed into infinitely many irreducible representations ea
which is equivalent to the one defined by the metaplecticg matrices~3.35!. ~We recall that this is
the representation of the Heisenberg algebra used in conventional canonical quantization! As a
consequence, every fieldB(f,y) amounts to a collection of infinitely many metaplectic spin
fieldsca(f). Now we discuss the question of the~ir!reducibility for the symbolsB, the operators
B̂ and the tensorsS separately.

1. Symbols

We are going to show that the bosonic Weyl algebraW admits an orthogonal decompositio

W5 %
aPRN

W~a! ~3.73!

such that the subspacesW(a) are invariant under star-left multiplication byya, i.e.,ya+bPW(a) if
bPW(a) . To this end we use an infinite dimensional generalization of the Becher–Joos me3

We look for a 2N-parameter family of operatorsẐ(y), yPR2N, with the property

ya+Ẑ~y!5Ẑ~y!ŵa. ~3.74!
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One should think ofẐ(•) as an operator-valued symbol, i.e., the ‘‘ya+ ’’ in ~3.74! is given by
k21Ca as if Ẑ was an ordinary symbol. With our experience from the fermionic case we su
that Ẑ should be closely related to the Weyl operators. It turns out that this is indeed the cas
derivative of the Weyl operators reads

]

]ya T̂~y!5
i

\
vabF ŵb2

1

2
ybG T̂~y!5

i

\
vabT̂~y!F ŵb1

1

2
ybG . ~3.75!

Equation~3.75! entails that the argument ofT̂ can be rescaled in such a way that left multiplic
tion with ya is equivalent to the operator multiplication byŵa, either from the left or from the
right:

ya+T̂~62iy !57 i ŵaT̂~62iy !,
~3.76!

ya+T̂~62y!57T̂~62y!ŵa.

Hence

Ẑ~y!5T̂~22y!5exp~2 ikyavabg
b! ~3.77!

is a solution to our problem. In thex̂ eigenbasis the matrix elementsẐ(y)a
b5^auẐub& are given

by

Ẑ~y!a
b5expF2

i

\
yp~a1b!Gd~N!~a2b12yq!. ~3.78!

They can be used in order to verify that

^auyq+Ẑ~y!ub&5b^auẐ~y!ub&,
~3.79!

^auyp+Ẑ~y!ub&5 i\
]

]b
^auẐ~y!ub&,

which is ~3.74! in the ‘‘position representation.’’
We shall need the star product of two differentẐ matrix elements. After some algebra on

finds the remarkably simple result

Ẑ~y!a
b+Ẑ~y!ā

b̄522N~gP!a
b̄Ẑ~y!ā

b . ~3.80!

When combined with the identityẐ†5gPẐgP Eq. ~3.80! at y50 gives rise to the inner produc

~ Ẑa
buẐā

b̄!522N~gp!aādbb̄ . ~3.81!

The orthogonality and completeness relations~3.6! and~3.7! for T̂(y) imply similar relations
for Ẑ(y). As a consequence,$Ẑ(•)a

bua,bPRN% is a basis in the space of symbol functionsb

(•). Every bPW has an expansion of the formb(y)5*dNadNbc (b)
a Ẑ(y)b

a where the ‘‘coeffi-
cients’’ c (b)

a are actually functionsRN3RN→C.
We continue the discussion directly for the case whenW is the fiberWf and the symbols

b(•) are theW-valued fieldsB(•,f) evaluated at a given pointf. Equations~3.6! and~3.7! imply
that B can be expanded as

B~f,y!5E dNaE dNbc~b!
a ~f!Ẑ~y!b

a ~3.82!
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and that the expansion coefficients are given by

c~b!
a ~f!5~p\/2!2NE d2NyB~f,y!Ẑ†~y!a

b . ~3.83!

In a sense which we shall make precise later on,c (b)[$c (b)
a ;aPRN% are the components o

infinitely many metaplectic spinors labeled by the ‘‘index’’b. If we define

B~b!~f,y![E dNac~b!
a ~f!Ẑ~y!b

a ~3.84!

so thatB(f,y)5*dNbB(b)(f,y) then Eq.~3.74! implies that the invariant subspaceW(b) is
spanned by precisely the symbols of the type~3.84!:

ya+B~b!5E dNaE dNāc~b!
a Ẑb

ā~ ŵa!ā
a5E dNā~ ŵac~b!!

āẐb
ā . ~3.85!

Here (ŵac (b))
ā[*dNa(ŵa) ā

ac (b)
a . We see that if the symbolB(b) is related to the spinorc (b) by

~3.84! then ya+B(b) and ŵac (b) are related in the same way. Likewisekya+ corresponds to a
multiplication byga.

Given an arbitrary symbol inW we can project it on any of the subspacesW(b) . We introduce
projection operatorsP(b) by B(b)5P(b)B. If we combine Eqs.~3.83! and ~3.84! it follows that

B~b!~f,y!5E d2Ny8P~b!~y,y8!B~f,y8!, ~3.86!

where the integral kernel of the projector is given by

P~b!~y,y8!5~p\/2!2N^buẐ~y!Ẑ†~y8!ub&. ~3.87!

Upon using~3.77!, ~3.5!, and~3.9! we obtain explicitly

P~b!~y,y8!5~p\!2N expF2
2i

\
~b1yq!~yp2yp8!Gd~N!~yq2yq8!. ~3.88!

The projectors$P(b) ;bPRN% are orthogonal and complete in the sense that

E d2Ny8P~b!~y,y8!P~ b̄ !~y8,y9!5d~N!~b2b̄ !P~b!~y,y9!,

~3.89!

E dNbP~b!~y,y8!5d~2N!~y2y8!.

Furthermore, as a consequence of Eq.~3.80!, the inner product of two different projections rea

~B~2b1!uB~b2!!522Nd~N!~b12b2!E dNac̄~b1!
a c~b2!

a . ~3.90!

Note the sign flip on the left-hand side of Eq.~3.90!. ObviouslyB(2b) is the natural dual ofB(b)

~similar to a spinor adjoint!.
To summarize: Every symbol-valued fieldB(f,y) gives rise to infinitely many projection

B(b)(f,y) each of which is equivalent to a metaplectic spinor fieldc (b)(f) with components
c (b)

a (f) given by~3.83!. This is to mean that the fieldsc (b) carry an irreducible representation o
the Clifford algebra:kya+B(b) corresponds to the spinor multiplied by ag matrix, gac (b) .
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Up to this point the situation is similar to the SO(n) case, but differences will show u
shortly.

2. Operators

As in the fermionic case, it proves advantageous to combine the expansion coefficientsc (b)
a as

a matrix ĉ:

ĉa
b[c~b!

a [^auĉub&. ~3.91!

~We suppress the argumentf for the time being.! We shall need some properties of the line
invertible mapB°ĉ@B# which relates the symbols to the new operatorĉ.

By definition, B(y) is the ordinary Weyl symbol of the operatorB̂ introduced earlier. Re-
markably enough, this symbol plays a dual role: the same function but with its argument res

B( 1
2y), turns out to be thealternativeWeyl symbol of the new operatorĉ. This is most easily seen

if one usesẐ†(y)5T̂(2y) in

ĉ5~p\/2!2NE d2NyB~y!Ẑ†~y!, ~3.92!

B~y!5Tr@ Ẑ~y!ĉ#, ~3.93!

which follows from the equations in Sec. III D 1, and then compares~3.92!, ~3.93! to Eqs.~3.10!
and ~3.11!. Thus,

@symb$B̂%#~y!5B~y!⇔@alt-symb$ĉ%#~y!5B~ 1
2y!. ~3.94!

This dual role played byB is another hint at the very natural relationship between the Dir
Kähler idea and the Weyl symbol calculus.

Regardingĉ as a functional ofB it is not difficult to establish that

ĉ@1#52NgP , ~3.95!

ĉ@kya#52NgagP , ~3.96!

ĉ@kya+B#5gaĉ@B#, ~3.97!

ĉ@B1+B2#522Nĉ@B1#gPĉ@B2#, ~3.98!

ĉ@kpya1+ya2+¯yap#52Nga1ga2
¯gapgP , ~3.99!

ĉ@k2yayb#52NgagbgP22NivabgP . ~3.100!

Equation ~3.95! follows directly from the definition ofgP and Eq.~3.97! is our earlier result
~3.85!, Eq. ~3.96! being a special case. The most important relation is~3.98!. It can be proven by
using~3.80! and~3.93! in order to show thatB1+B2522N Tr$Ẑĉ@B1#gPĉ@B2#%. When compared
to Eq. ~3.93!, this equation implies~3.98!.

Above we had introduced the projectorsP(b) which project any symbol on the invarian
subspacesW(b) . The mapB°ĉ@B# given by ~3.92! induces a corresponding projection on t
space of operatorsĉ. In the language of our auxiliary quantum mechanical system this projec
has a very natural interpretation: it is simply the projection on the position eigenstateub&. From Eq.
~3.84! we can read off thatB(b) has the structure of an expectation value in the stateub&,
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B~b!~y!5^buẐ~y!ĉ@B#ub&5Tr@ Ẑ~y!ĉ@B# P̂~b!#. ~3.101!

Here P̂(b)[ub&^bu is the corresponding projector on the Hilbert space. It follows from~3.101!
that symbolsBPW(b) are associated to operators of the formĉP(b) :

ĉ@P~b!B#5ĉ@B# P̂~b! . ~3.102!

Finally we have to address the important question of how the operatorĉ is related to the
operatorB̂ which was the central building block in the Dirac–Ka¨hler construction. Imitating the
SO(n) case, we had obtainedB̂ in Eq. ~3.52! by replacingdfa→ga in the tensor fieldS. In Sec.
II we have seen that for ordinary DK fieldsĉ and F̂ coincide up to a constant factor. It is qui
remarkable that, with a minor modification, the same identification is possible in the symp
situation whereV is infinite dimensional. It turns out that

ĉ@B#52NB̂gP

or

B̂522Nĉ@B#gP . ~3.103!

This relationship can be proven in a variety of ways. For instance, we can take advant
the following very compact representation of operatorsb̂ in terms of their symbolsb:32

b̂522N~2p\!2NE d2Nyb~ 1
2y!T̂~y!gP . ~3.104!

The advantage of~3.104! as compared to the old representation~3.10! is that no Fourier transfor-
mation is involved any longer. Equation~3.104! is easily established by inserting the integr
representation forgP on its right-hand side and then combining the two Weyl operators with

help of~3.5!. From Eq.~3.104! we infer that ifB(y) is the ordinary symbol ofB̂ thenB( 1
2y) is the

alternative Weyl symbol of 2NB̂gP . Moreover, we saw already thatB( 1
2y) is the alternative Weyl

symbol of ĉ. As a consequence,ĉ must coincide with 2NB̂gP .
It is instructive to give a different proof whenB(y) is a power series. This is the case f

instance when the symbol originates from an IST via the DK construction. ForB̂ or B(y) given,
the task is to solveB(y)5Tr@ Ẑ(y)ĉ# for the unknown operatorĉ. Using the expansion~3.53! for
B and the~expanded! exponential~3.77! for Ẑ, Eq. ~3.104! turns into

Ba1¯ap

~p! 5 i 2p Tr@g (a1
¯gap)ĉ#. ~3.105!

In the corresponding calculation for the SO(n) case we made an ansatz forĉ as a power series in
gm and used thegm-trace identities in order to project on its coefficients. Because of the addit
matrix gP in the analogous identities~3.45! for the metaplecticg matrices the appropriate ansa
for the symplecticĉ is a power series inga ~with coefficientsca1¯ap

(p) ) times an explicit factor of

gP . With this ansatz in~3.105!, the trace identities implyca1¯ap

(p) 52NBa1¯ap

(p) which proves

~3.103!. In this manner we see that the factor ofgP connectingĉ to B̂ is simply a reflection of the
corresponding factor in the trace identities. We discussed already that in the infinite dimen
situation thegP under the traces is crucial in order to make them well defined.

ThegP matrix in ~3.103! has the consequence thatĉ does not admit a power series expansi
even ifB̂ does so. This has important implications for the Dirac–Ka¨hler program. As we are going
to discuss next it means that the decomposition ofW into subspacesW(a) which are invariant
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under star left multiplication doesnot translate into a corresponding decomposition of the sy
metric tensor algebra into subspaces invariant under~symplectic! Clifford left multiplication. In
this respect the SO(n) and the Sp(2N) cases are quite different.

Let us first look at how the space of operatorsB̂ decomposes underW5 % W(b) . Equations
~3.102! and ~3.103! imply that

P~b!B̂5B̂gPP̂~b!gP5B̂P̂~2b! . ~3.106!

Hence, at the level of theB̂ operators, the projectionP(b) amounts to a right multiplication by
P̂(2b) .

From Eq.~3.106! we can obtain a very useful by-product. If we take the symbol on both s
of this equation and abbreviateP(a)[symb@ P̂(a)# then the result is the following compact formu
for the projectionB(b) :

P~b!B[B~b!5B+P~2b! . ~3.107!

More explicitly, becauseP(a)(y)5d (N)(yq2a), this means that

B~b!~y!5B~y!+d~N!~yq1b!. ~3.108!

By virtue of ~3.21! the latter equation can be brought to the following form which is the m
convenient one for practical calculations:

B~b!~yp ,yq!5BS yp2
i\

2

]

] ȳq
,yqD d~N!~ ȳq1b!U

ȳq5yq

. ~3.109!

As usual,y[(yp ,yq) consists ofN-component momentum- and position-type variablesyp and
yq .

The structure ofB(b) is particularly transparent ifB(y)[B(yq) does not depend on th
momenta. Then its projection onW(b) reads

B~b!~y!5B~yq!d~N!~yq1b!, ~3.110!

i.e., it is sharply localized atyq52b. If B depends also onyp there are additional terms involvin
derivatives ofd (N)(yq1b). Nevertheless,as long as B depends on y polynomially, the projec
symbol B(b) has support only on the hyperplane yq52b. This localization of the symbols make
it very easy to visualize theb subspace ofW. In fact, this intuitive interpretation ofW(b) is the
reason why we are using thex̂ eigenbasis onV rather than the harmonic oscillator~Fock space!
basis which yields the traditional representation of thega matrices.

3. Inhomogeneous symmetric tensors

We know that every symbol-valued fieldB(f,y) gives rise to infinitely many projection
B(b)PW(b) each of which is equivalent to a spinorc (b) . On W(b) , kya+B(b) corresponds to
gac (b) and it represents the Clifford algebra irreducibly. On the other hand, in Sec. III C
defined the symplectic Clifford product as the image of the star product under the symbol/t
correspondence~3.54!. It is a natural question therefore whether the representation of the Cli
algebra provided by ‘‘dfa∨ ’’ on the space of symmetric tensors is reducible as well.

At this point we have to recall that the symbol/tensor-correspondence~3.54! is a bijection
between tensorsS(f) and symbolsB(f,y) which areanalytic in y. Only if B allows for a power
series expansion iny the substitutionkya→dfa yields a tensor field. As for the question of th
reducibility, the crucial observation is thateven if B(f,y) is analytic in y, the projections
B(b)(f,y) are not in general. This is obvious from Eq.~3.109! which shows thatB(b) is typically
a distribution with a sharp localization~in the auxiliary phase space! on the planeyq52b.
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Therefore we must conclude that the decomposition of the bosonic Weyl algebrW
5 % W(b) does not imply a corresponding decomposition of the space of ISTs. This was diff
in the fermionic case where the analyticity ofF(x,u) comes for free and where ‘‘symbol-value
fields’’ and ‘‘inhomogeneous differential forms’’ are two completely equivalent concepts.

From these observations we can learn what the correct notion of a ‘‘symplectic Dirac–K¨hler
field’’ actually is. Traditionally, in the SO(N) case, a DK field meant a set of~antisymmetric!
tensor fields. This is a historic accident, however, and one could have talked equally well
W F-valued fields over space–time. When we go from space–time to phase space and fromn)
to Sp(2N) we see that the notion which generalizes is not that of a collection~of now symmetric!
tensor fields but rather the idea of Weyl symbol-valued fields. On phase space the fieldsB(f,y),
with a not necessarily analytic dependence ony, play a role which is completely analogous to th
of F(x,u) on space–time. The former is equivalent to a set of Mp(2N) spinors in very much the
same way as the latter gives rise to a multiplet of Spin(n) spinors.

IV. SUMMARY AND DISCUSSION

In the first part of this paper we have shown that the theory of space–time DK ferm
allows for a remarkably simple and natural reinterpretation in the framework of the sy
calculus. More precisely, it is the fermionic Weyl symbol which is to be used here. This sy
was employed in the context of first quantized particle and string theory occasionally, but so
has not reached the popularity of the Wick symbol which is commonly chosen for ferm
systems.

We have set up a one-to-one correspondence between DK fieldsF(x) and symbol-valued
fields F(x,u) by associating a family of auxiliary quantum systems, with canonical operatorx̂m

and anticommuting phase-space coordinatesum, to each pointx of space–time. The fermionic
operatorsx̂m and Grassmann variablesum replace the Dirac matricesgm and the differentialsdxm,
respectively. The nontrivial aspect of this correspondence is that it maps all the natural ope
which we know for differential forms onto equally natural and well-known operations for s
bols. For instance, the star product which is at the heart of every symbol calculus turned ou
related to the Clifford product, a pivotal concept in standard DK theory, in precisely this ma
More generally, we were able to identify all the defining structures of an Atiyah–Ka¨hler algebra
on the space of fermionic Weyl symbols.

Our approach provides some new computational tools for calculations involving DK field
integral representation of the Clifford product, for example. More important, it sheds new lig
the geometrical meaning of various constructions in the standard approach. For instan
matrix-valued formZ has turned out to be nothing but a fermionic Weyl operator.

In the second part of this paper we developed a symplectic analog of DK theory. We rep
space–time by phase space, the ‘‘Lorentz group’’ SO(n) by Sp(2N), Dirac fields by metaplectic
spinors, and we then asked if there exists a corresponding notion of a DK field. The answer
out to be in the affirmative, but with some qualifications. The crucial step in our construction
switching from the fermionic auxiliary quantum system to a bosonic one whose basic operatŵa

satisfy canonical commutation relations and thus realize the symplectic Clifford algebra. Usi
Riemannian situation as a guideline we formulated the auxiliary quantum theory in terms of~now
bosonic! Weyl symbols. We argued that it is the symbol-valued fieldsB(f,y) which deserve the
name of a ‘‘symplectic Dirac–Ka¨hler field.’’ The fields with an analytic dependence ony are
equivalent to a set of symmetric tensor fields, the symplectic counterpart of an inhomoge
differential form. We described in detail which properties of the standard DK fields pass ov
the symplectic case and which do not. We discovered for example that all the defining stru
of an Atiyah–Kähler algebra have analogs in the symplectic setting. In particular, the bos
Weyl star product gives rise to a ‘‘Clifford product.’’

It is an interesting feature of this method that both the ordinary and the symplectic Cli
product arise as a quantum deformation~in the sense of Ref. 24! of the corresponding tenso
product~wedge product and̂ sym), the deformation parameter being\ or k22. ~In order to make
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this explicit at the tensor level one should refrain from the convenient rescaling of the t
components by factors ofk.!

The most important differences between the Riemannian and the symplectic case occu
it comes to decomposing the representation of the Clifford algebra carried by the symbol-v
fields. While the decomposition of the bosonic Weyl algebra into left invariant subspaces c
carried out along the same lines as for the fermionic algebra, it does not induce a corresp
decomposition of the space of inhomogeneous symmetric tensor fields. The reason is t
projection on the invariant subspaces does not respect the analyticity ofB(f,y) which is neces-
sary for a tensor interpretation. We take this as a hint that it is actually the concept of a
algebra-valued field which is at the heart of DK theory, both on space–time and on phase
rather than the idea of inhomogeneous~anti!symmetric tensors. The fieldsB(f,y) are equivalent
to a multiplet of metaplectic spinors in the same way an ordinary DK field is equivalent
multiplet of Dirac spinors.

Let us close with a few additional comments.
We begin with a remark on what it precisely means that a DK field is ‘‘equivalent’’ to a

of spinor fields. This remark applies to SO(n) and Sp(2N) DK fields alike. Strictly speaking, a
metaplectic spinor is defined by its transformation properties under local Sp(2N) transformations,
the phase-space analog of the local Lorentz transformations.~See Ref. 21 for a detailed discussio
of those transformation properties and of the vielbein formalism for phase spaces.! Let us fix some
point f of M2N and let us change the basis in its tangent spaceTfM2N by means of a symplectic
matrix S(f)[@S(f)a

b#. This induces a corresponding unitary transformationM (S)PMp(2N) in
the local Hilbert spaceVf . The components of a vector and a spinor transform asya

→(S21)a
byb andca→M (S)a

bcb, respectively. It is important to observe that the spinors c
tained in a DK fieldB(f,y) do not individually transform in this manner. In fact, as a dire
consequence of~1.2! the Ẑ operator transforms according to

M ~S!†Ẑ~y!M ~S!5Ẑ~S21y!. ~4.1!

Therefore Eq.~3.93! reads in the rotated basis

B~f,S21y!5Tr@ Ẑ~y!M ~S!ĉ~f!M ~S!†#. ~4.2!

This means thatĉ[(c (b)
a ) does not transform as a set of independent spinors labeled by the

b. The indexb, too, is acted upon by a spin matrix:

c~b!
a →M ~S!a

gc~d!
g M†~S!d

b . ~4.3!

For space–time DK fields this is a well-known phenomenon which is referred to as ‘‘fl
mixing.’’ 3 Among other things it implies that DK fermions have a nonstandard couplin
gravity.2,42,6 The curved-space Dirac equation for a massless DK field reads

gm~]mĉ2 ivm
IJ@s IJ ,ĉ# !50. ~4.4!

If ĉ was a set of independent spinors the spin connectionvm
IJs IJ multiplied ĉ from the left only.

The flavor mixing caused by the commutator is weak in the Newtonian limit of gravity and
probably cannot be excluded on experimental grounds.42

Finally let us comment on the relation of the symplectic DK fields to the gauge th
formulation of quantum mechanics21 which was proposed recently. Its basic ingredient is a fam
of local Hilbert spacesVf attached to the points of phase space.~For different formulations of
quantum~field! theory using local Hilbert spaces see Refs. 43, 31, and 44.! This theory resulted
from an attempt at understanding the principles of canonical quantization at a perhaps deep
least physically and geometrically more natural level.
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The theory is a Yang–Mills-type gauge theory on phase space. Its ‘‘matter fields’’ are m
plectic spinorsca(f). Canonical quantization is replaced by two new rules. The first one is
in order to go from classical mechanics to semiclassical quantum mechanics we must switc
the vector representation of Sp(2N) to its spinor representation. The second rule is a consiste
condition which tells us how to sew together local semiclassical expansions so as to recove
quantum mechanics. It is formulated as symmetry principle: the Yang–Mills theory mu
invariant under a new type of background-quantum split symmetry. As it turns out, this im
that the gauge field is a universal, nondynamical Abelian connectionG̃. ~The gauge group is the
group of all unitary transformations onV and the connection componentsG̃a are Hermitian
operators. Being Abelian means that the curvature ofG̃ is proportional to the unit operator onV.!

The upshot of this construction is the following two-step procedure for the quantizatio
physical systems on arbitrary curved phase spacesM2N

~1! Find an Abelian spin connectionG̃ on M2N . It is guaranteed to exist on any symplect
manifold and can be constructed iteratively by Fedosov’s method.29,30,38

~2! Construct~multi! spinor fields which are covariantly constant~possibly up to a phase! with
respect to the connectionG̃. They are local generalizations of states and observables.

In particular, states are represented by a covariantly constant spinor fieldca(f). If the value
of this field is known at a fixed reference pointf0 it is known everywhere in phase space~up to
a physically irrelevant phase!. The wave functionC of conventional quantum mechanics is ide
tified with ca(f0)[C(a). For further details we refer to Ref. 21.

This approach reveals that, in a sense, classical mechanics is related to quantum mech
the same way tensor fields~integer spin! relate to spinor fields~half-integer spin! or space–time
bosons relate to fermions. What is at the heart of the quantization process is changing the
sentation of Sp(2N), the ‘‘Lorentz group’’ of phase space.

According to the proposal of Ref. 21 this change of representation, while very natural fr
particle physics point of view, still has to be done ‘‘by hand’’ in the same sense as in the sta
approach the canonical commutation relations are imposed ‘‘by hand.’’ One might wonder if
is a more natural way of describing this change of representation, and it is here that Dirac–¨hler
theory comes into play. DK theory certainly cannotexplain why nature has decided to pick th
spinor representation of Sp(2N) but it can put this question into a novel and perhaps somew
unexpected perspective.

The symplectic DK fields give a precise meaning to the idea that classical mechanics
tains’’ the basic building blocks of quantum mechanics, namely the metaplectic spinor field
the one hand, the DK fieldsB(f,y) belong to the realm of classical mechanics in the sense
they arec-number functions on the classical tangent bundle. On the other hand,B(f,y) is equiva-
lent to a family of spinor fieldsc (b)5(c (b)

a ) whose members are labeled by the ‘‘flavor index’’b.
Quantum mechanics is a theory whose basic ingredient is asinglemetaplectic spinor field. This
leads us to concludethat the process of quantization can be understood as the elimination o
but one flavor of metaplectic spinors, i.e., as a projection on a fixedb-subspace. @Note, however,
that covariantly constant DK fields do not amount to covariantly constant projected spinor
The reason is the flavor mixing: the condition¹(G̃)B50 involves a commutator ofG̃ with B,
while ¹(G̃)c50 contains only a left-multiplication byG̃.#

In the same sense as above, this projection has to be done ‘‘by hand.’’1 ~We mention that also
the approach of Ref. 45 constructs quantum mechanics from functions on the classical t
bundle by imposing certain constraints. This approach does not involve metaplectic spinors
ever, and the DK construction seems not to answer the questions raised there.! However, with this
interpretation, there is an almost perfect analogy between the following two problems whic
usually thought of as belonging to rather different branches of physics: the construction of a
theory which describes a single species of fermions, and the quantization of physical syst
general. On the Riemannian~or space–time! side, the question is how to avoid the fermio
replication which results from the Kogut–Susskind action, and the corresponding symplec~or
phase-space! problem is how to obtain a quantum theory from classical structures. At a heu
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level, the solution to both problems is exactly the same: one must project out a single spino
a Dirac–Kähler field. Whether this is merely a formal similarity or whether space-time ferm
can teach us something about the general structure of quantum mechanics remains to be
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APPENDIX A: GRASSMANN ALGEBRAS

In this appendix we collect a number of definitions and identities related to Grass
algebras which are needed in the main body of the paper. In particular, the main automorphA,
the main antiautomorphismB, the Hodge operator* , and the modified Hodge operator! are
discussed and our conventions are specified.

We consider a Grassmann algebra with the real generatorsu1,...,un, i.e.,umun1unum50 for
all m,n51,...,n, and introduce functions

f ~u![ f ~u1,...,un!5 (
p50

n

f ~p!~u!, ~A1!

where f (p) is homogeneous of degreep:

f ~p!~u!5
1

p!
f m1¯mp

~p! um1
¯ump. ~A2!

The complex-valued constantsf m1¯mp
are completely antisymmetric in all indices. By definitio

the main automorphismA and the main antiautomorphismB act on these functions according

~Af !~u!5 (
p50

n

~21!pf ~p!~u!, ~A3!

~Bf !~u!5 (
p50

n

~21!p~p21!/2f ~p!~u!. ~A4!

Their main properties are

A25B251, AB5BA,

A~ f g!5~Af !~Ag!, ~A5!

B~ f g!5~Bg!~Bf !,

where (f g)(u)[ f (u)g(u) is the pointwise product. Some useful identities involvingA and B
include

um f ~u!5~Af !~u!um, ~A6!

um1
¯umpf ~u!5~Apf !~u!um1

¯ump, ~A7!

umpump21
¯um15~21!p~p21!/2um1um2

¯ump5Bum1um2
¯ump. ~A8!
                                                                                                                



nd the

5635J. Math. Phys., Vol. 40, No. 11, November 1999 Symplectic Dirac–Kähler fields

                    
Denoting complex conjugation by an overbar we assumeūm5um and set

f g5ḡ f̄ ~A9!

for any two functionsf andg. If one makes the additional assumption that the coefficientsf m1¯mp

(p)

are real, then Eq.~A8! shows that

f̄ ~u!5~Bf !~u!. ~A10!

Usually we shall allow the coefficients to be complex though. The automorphismA can be used
in order to convert right-derivatives]Q /]um to left-derivatives]W /]um[]/]um:

f ~u!
]Q

]um 5A ]

]um f ~u!. ~A11!

More generally, one has

f ~u!
]Q

]ump
¯

]Q

]um1
5Ap

]

]ump
¯

]

]um1
f ~u!, ~A12!

which is easily proven by induction. SinceA anticommutes with]/]um, it follows that (p,q
50,1,2,...)

Aq
]

]um1
¯

]

]ump
f ~u!5~21!pq

]

]um1
¯

]

]ump
Aqf ~u!. ~A13!

In particular,

Ap
]

]um1
¯

]

]ump
f ~u!5~21!p

]

]um1
¯

]

]ump
Apf ~u!. ~A14!

These identities will be needed in order to establish the equivalence of the Clifford product a
fermionic star product.

Our conventions for the integration are*dum50 and*um dum51 ~m not summed!. We define

dnu[du1du2
¯dun ~A15!

so that

E umnumn21
¯um1dnu5em1m2¯mn ~A16!

with e12̄ n511. Using~A11! one can show that

E f ~u!
]

]um g~u!dnu5E f ~u!
]Q

]um g~u!dnu ~A17!

for arbitrary inhomogeneous functionsf andg.
In our conventions, the delta function is defined to satisfy

E f ~u!d~u2j!dnu5 f ~j!. ~A18!

~Note the order of the factors.! It is given by
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d~u2j!5~un2jn!~un212jn21!¯~u12j1! ~A19!

or by the Fourier representation

d~u2j!5~21!n~n21!/2E e~um2jm!rmdnr. ~A20!

Here $j1,...,jn% and $r1 ,...,rn% are two additional sets of real Grassmann variables which a
commute among themselves and with theu’s. ~Indices are raised and lowered with the flat met
gmn5dmn .) Depending on the value ofn, d is either Grassmann real or purely imaginary:

d~u!5~21!n~n21!/2d~u!. ~A21!

The Fourier transformf̃ is defined according to

f̃ ~r!5en
21E eiumrm f ~u!dnu ~A22!

with ~all formulas given in this appendix are valid for bothn even andn odd!

en[ H1: for n even
2 i : for n odd. ~A23!

The advantage of our conventions is that they give rise to a simple formula forf̃ in terms of
multiple derivatives of thed function which is free from explicit sign factors and powers ofi. One
obtains

f̃ ~r!5 f S i
]

]r D d~r! ~A24!

because with~A20!

f̃ ~r!5en
21E f S i

]

]r Deiumrmdnu5 f S i
]

]r D en
21~21!n~n21!/2d~2 ir!5 f S i

]

]r D d~r!. ~A25!

In particular,

f ~u!51⇒ f̃ ~r!5d~r!. ~A26!

The inverse transformation reads

f ~u!5E e2 iumrm f̃ ~r!dnr. ~A27!

The Grassmann Fourier transformation has the involutive property

f5 ~u!5en
21f ~u!, ~A28!

i.e., for n even it is an exact involution. Derivative and multiplication operators are conjuga
the sense that

@um f ~u !̃#~r!5 i
]

]rm
f̃ ~r!, ~A29!
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F i
]

]um f̃ ~u!G ~r!5rm f̃ ~r!. ~A30!

Using either~A22! or ~A24! one can work out the Fourier transform of a product ofu’s. The result
is

@um1um2
¯̃ump#~r!5

Cnp

~n2p!!
em1¯mpn1¯nn2prn1

rn2
¯rnn2p

~A31!

with the constants

Cnp[ i p~21!p~p21!/2~21!n~n21!/2. ~A32!

Identifying dxm[um, the exterior algebrà (Tx* Rn) endowed with the inner product comin
from gmn5dmn provides a special example of a Grassmann algebra. In this context we are fa
with the notion of a Hodge star operator which mapsp forms onto (n2p) forms. In the case a
hand we introduce a corresponding linear map* : f (u)°(* f )(u) which generalizes this concep
On the basis elements, the Hodge operator acts according to

* ~um1
¯ump!5

1

~n2p!!
em1¯mp

n1¯nn2p
un1

¯unn2p ~A33!

and it is extended to arbitrary functionsf (u) by linearity. Writing (* f )(u)5(p50
n (1/p!)

3@* f #m1¯mp

(p) um1
¯ump one finds for the components

@* f #m1¯mn2p

~n2p! 5
1

p!
f n1¯np

~p! en1¯np
m1¯mn2p

. ~A34!

~Note that in parts of the literature a different definition of* is used which amounts to interchan
ing the transformation laws of the basis vectors and the components, respectively.! Acting twice
with * on a homogeneous function of degreep the result is

** f ~p!5~21!p~n2p! f ~p!. ~A35!

Because of thep-dependent sign factor on the right-hand side of~A35! the star operator does no
give rise to an involution on the space of all~i.e., inhomogeneous! functions. This motivates us to
introduce the operator

![* B, ~A36!

which we shall refer to as the ‘‘modified Hodge operator.’’ For homogeneous functions,

! f ~p!5~21!p~p21!/2* f ~p!, ~A37!

which implies

!! f ~p!5~21!n~n21!/2f ~p! ~A38!

with a sign factor independent ofp. Hence, for any inhomogeneous functionf,

!! f 5~21!n~n21!/2f . ~A39!

For n54, say,!!51 so that! is an exact involution.
The ~modified! Hodge operator is closely related to the Grassmann Fourier transforma

Comparing~A31! to ~A33! shows that for homogeneous functions
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* f ~p!5~2 i !p~21!p~p21!/2~21!n~n21!/2f ~p!̃, ~A40!

! f ~p!5~2 i !p~21!n~n21!/2f ~p!̃. ~A41!

Using ~A24! we may express the Fourier transform by the derivative of ad function:

* f ~p!~u!5~21!p~p21!/2~21!n~n21!/2f ~p!S ]

]u D d~u!, ~A42!

! f ~p!~u!5~21!n~n21!/2f ~p!S ]

]u D d~u!. ~A43!

Note that the sign factor on the right-hand side of~A43! is independent ofp. Hence it follows that
for arbitrary inhomogeneous functions

! f ~u!5~21!n~n21!/2f S ]

]u D d~u!. ~A44!

This is an interesting representation of the Hodge operator, because in contrast to~A33!, Eq.~A44!
continues to be meaningful if we regardum as acommutingvariable. This fact will become
important in the construction of the metaplectic DK fields.

APPENDIX B: REPRESENTATIONS OF THE FERMIONIC WEHL STAR PRODUCT

In this appendix we derive several important representations of the fermionic star pro
Eqs.~2.15!, ~2.16!, and~2.17!, from the integral representation~2.14!.

We start by shiftingu1 andu2 in Eq. ~2.14!:

~ f 1+ f 2!~u!5enS \

2i D
nE expS 2

\
u1u2D f 1~u11u! f 2~u21u!dnu1dnu2 . ~B1!

Next we Taylor-expandf 1 and f 2 with respect tou1 andu2 . Because the exponential produc
only terms with equal numbers ofu1’s andu2’s, only those terms in the product of the two Tayl
series survive the integration which contain equal numbers as well:

~ f 1+ f 2!~u!5enS \

2i D
n

(
p50

n S 1

p! D
2E expS 2

\
u1u2D @u1

m1
¯u1

mp]̃m1
¯ ]̃mp

f 1~u!#

3@u2
n1
¯u2

np]̃n1
¯ ]̃np

f 2~u!#dnu1dnu2 . ~B2!

Here ]̃m[]/]um. Because

~u1u2
¯up!~j1j2

¯jp!5~21!p~j1j2
¯jp!~u1u2

¯up! ~B3!

for two arbitrary sets of mutually anticommuting Grassmann-odd objects, we may use Eqs~A7!
and ~A14! to write

u1
m1
¯u1

mp]̃m1
¯ ]̃mp

f 1~u!5~21!p]̃m1
¯ ]̃mp

u1
m1
¯u1

mpf 1~u!

5~21!p]̃m1
¯ ]̃mp

~Apf 1!~u!u1
m1
¯u1

mp

5@Ap]̃m1
¯ ]̃mp

f 1~u!#u1
m1
¯u1

mp. ~B4!

Thus we arrive at
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~ f 1+ f 2!~u!5enS \

2i D
n

(
p50

n S 1

p! D
2

@Ap]̃m1
¯ ]̃mp

f 1~u!#I n1¯np

m1¯mp@ ]̃n1
¯ ]̃npf 2~u!# ~B5!

with

I n1¯np

m1¯mp5E expS 2

\
u1u2D u1

m1
¯u1

mpu2n1
¯u2np

dnu1dnu2 . ~B6!

Upon expanding the exponential, only the term of ordern2p can contribute to the integral:

I n1¯np

m1¯mp5
1

~n2p!! S 2

\ D n2p

Jn1¯np

m1¯mp, ~B7!

Jn1¯np

m1¯mp[E ~u1
au2a!n2pu1

m1
¯u1

mpu2n1
¯u2np

dnu1dnu2 . ~B8!

For symmetry reasons the tensorJ must have the structure

Jn1¯np

m1¯mp5l~n,p!dn1

[m1
¯dnp

mp]
5

l~n,p!

p! (
pPSp

sign~p!dn1

p~m1!dn2

p~m2!
¯dnp

p~mp! , ~B9!

whereSp is the symmetric group ofp objects. The constantsl(n,p) are most easily determined b
choosing the special index combinationJ12̄ p

12̄ p for which only the identical permutation contribute
in ~B9!. Furthermore, the summation overa in ~B8! is restricted toa.p then:

l~n,p!5p! E @u1
p11u2

p111¯1u1
nu2

n#n2p~u1
1u1

2
¯u1

p!~u2
1u2

2
¯u2

p!dnu1dnu2

5p! ~n2p!! E ~u1
1u1

2
¯u1

p!@u1
p11u2

p11u1
p12u2

p12
¯u1

nu2
n#~u2

1u2
2
¯u2

p!dnu1dnu2 .

~B10!

Commuting theu’s next to the correspondingdu ’s produces various sign factors so that finall

l~n,p!5~21!n~21!n~n21!/2~21!p~p21!/2p! ~n2p!! ~B11!

If we note thateni n(21)n(n21)/251 both forn even andn odd, we see that

enS \

2i D
n 1

p!
I n1¯np

m1¯mp5~21!p~p21!/2S \

2D p

dn1

[m1
¯dnp

mp] . ~B12!

Inserting~B12! into ~B5! we obtain precisely the final result given in Eq.~2.15! of the main text.
The representation~2.16! follows from ~2.15! by using ~A12! in order to convert the left

derivatives which act onf 1 to right derivatives. One also needs~A8! to switch from the index
sequence (m1 ,m2 ,...,mp) to (mp ,mp21 ,...,m1).

The last representation, Eq.~2.17!, follows from ~2.16! by commuting left and right deriva
tives with the same index next to each other. No sign factor is picked up during this reshu
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World-line Green functions with momentum and source
conservations
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Based on the generating functional method with an external source function, a
useful constraint on the source function is proposed for analyzing the one- and
two-loop world-line Green functions. The constraint plays the same role as the
momentum conservation law of a certain nontrivial form, and transforms ambigu-
ous Green functions into the uniquely defined Green functions. We also argue
reparametrizations of the Green functions defined on differently parameterized
world-line diagrams. ©1999 American Institute of Physics.
@S0022-2488~99!01511-X#

I. INTRODUCTION

String theory organizes the scattering amplitudes in a very compact form~in the infinite string
tension limit!, and this fact makes the investigation of field theory scattering amplitudes
nontrivial and potentially useful.1–5 In this spirit, multiloop scattering amplitudes have also be
studied both from the string theory viewpoint6–9 and the field theory based on the first quantizat
formalism ~world-line formalism!.10–14 The general structure of field theory amplitudes~with N
external momentap1 ,p2 ,...,pN) at the one-loop order is described as1,2

GN5E
0

` dT

T S 1

4pTD D/2S )
n51

N E
0

T

dtnD K~t1 ,t2 ,...,tn ;T!expF1

2 (
j ,k51

N

pj•pkGB~t j ,tk!G ,

~1.1!

where K is a certain function which depends on the detail of theory in question~it can be
determined systematically!. The exponent including the functionGB is sometimes called the
generating kinematical factor, and is a theory independent object.GB is the ~world-line! Green
function between two points on a loop of lengthT. One can similarly write down the generalize
formulas for certain multiloop cases9,13 with using multiloop Green functions.8,11 In this sense,
determinations of multiloop Green functions are important factors in the world-line formalis

On the whole, there are three kinds of computation methods to obtain the world-line G
functions:~i! invert kinematic terms~solve differential equations!; ~ii ! define as Gaussian dete
minants or compute two-point correlators in the path integral method;~iii ! similar as the second
method, but reducing the path integrals into ordinary integrals~thus no appearance of determ
nants!. Depending on the computation methods, different forms for Green functions have
obtained~we show several examples in the main text!, and a natural question raised from th
observation is whether or not they all describe the same amplitudes when applied to the am
formulas such as~1.1!. The answer should be yes if the formalism is self-consistent. We call
problem the ambiguity problem of Green functions, and there must be a reason why w
allowed to have a variety of Green functions for a unique amplitude. Once we find a prescr
for this problem, we shall be able to ignore the existence of various ambiguous Green fun
and rather understand them all as a family of Green functions.

a!Electronic mail: sato@thphys.uni-heidelberg.de
56410022-2488/99/40(11)/5641/16/$15.00 © 1999 American Institute of Physics
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In this paper, we focus on the ambiguity problem of the multiloop Green functions. This
important problem from the above viewpoint: All of ambiguous Green functions should b
duced to the uniquely defined ones under the constraint of a vanishing identity, without cha
the value of a kinematical factor. The problem is trivial in the one-loop case, and summariz
follows. In the original definition

1

2
]2GB~t!5d~t!2

1

T
~1.2!

with imposing rotational invariance and periodicity,GB is uniquely determined as the rotation
symmetric form

GB~t1 ,t2!5GB~t12t2!5ut12t2u2
~t12t2!2

T
. ~1.3!

However, we do not necessarily use this functional form as concerns the kinematical factor
which actually does not change if we add a polynomial int j to theGB(t j ,tk) in ~1.1! because of
the conservation law(kpk50. This ambiguity is very easy to verify in the one-loop case, wh
the defining equation ofGB is simple and its rotational invariance should be clear. On the o
hand, in multiloop cases, the situation is much too complicated to identify the ambiguity w
can be canceled by a certain condition such as conservation law, because the definitio
calculations of multiloop Green functions are in general complicated—in addition that the
tional invariance is unclear in certain cases.

As the simplest nontrivial example, we discuss the two-loop Green functions.11,12We refer to
the Green functions containing the ambiguity as thewide senseGreen functions. As suggeste
above, the value of a kinematical factor should be invariant for any set of wide sense
functions. Various wide sense Green functions can be obtained depending on how to defi
evaluate, and we shall verify that all of them can be identified with each other in the sen
keeping the kinematical factor invariant by way of examples. To this end, we obviously n
constraint such as the total momentum conservation law. However, in the generic multiloop
a useful form of the conservation law is in practice not a simple summation~along the single loop
as mentioned in the one-loop case!, because of the presence of additional internal lines.
generalize the conservation law into a more suitable form to our purpose. In addition t
momentum conservation law, we also present a continuous analog of the conservation law;
a constraint on the integrals of external source functions along the two-loop world-line va
diagram. This continuous version is very simple and useful to apply practical computations,
nontrivial since such a constraint does not exist in the source term of the usual formulation o
theory.

In Sec. II, for notational conveniences, we briefly review the two-loop kinematical factor
the Green functions inf3 theory. In Sec. III, we present a useful two-loop momentum conse
tion formula, and demonstrate how to apply the formula to the identification of different
sense Green functions. In Sec. IV, employing the generating functional method with ex
source functions,14 we consider another derivation of the Green functions. In this case, we s
that there also exists a similar constraint formula on the source functions, and verify that it
the same role as the momentum conservation method of Sec. III. In Sec. V, we further confi
validity and usefulness of the source constraint in more specific cases~one-loop QED!. Section VI
is a short note on the previous work,12 concerning new reparametrization transformations of
two-loop Green functions. Section VII contains conclusions.

II. NOTATIONS

For the purpose of setting our notations, we briefly review the world-line Green function
the master amplitude formulas corresponding to Eq.~1.1! in the two-loopf3 theory.9,11,13 The
~two-loop! master formula is a fundamental quantity which contains all necessary Feynma
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grams belonging to a certain class of diagrams. The classes are labeled by two or three i
(N8,N3) or (N1 ,N2 ,N3), and amplitudes are certain combinations of these classes.13 We call the
first labeling the loop type, and the latter the symmetric type. The general form of the m
formula is as follows:

GM
2-loop5

1

12
~2g!N12E dM~4p!2DDD/2 exp@EG#. ~2.1!

For the loop type parameterization (N5N81N3), the integration measuredM is

dM5
dT

T
dT3dtadtb )

n51

N8

dtn)
l 51

N3

dt l
~3! , ~2.2!

andD is the determinant factor

D5~TT31TGB~ta ,tb!!21. ~2.3!

The exponential partEG , the generating kinematical factor, takes the following bilinear form inN
external momenta (pj ,pk

(3) ; j 51,...,N8; k51,...,N3):

EG5
1

2 (
j ,k51

N8

pj pkG00
~1!~t j ,tk!1

1

2 (
j ,k51

N3

pj
~3!pk

~3!G33
~1!~t j

~3! ,tk
~3!!1(

j 51

N8

(
k51

N3

pj pk
~3!G03

~1!~t j ,tk
~3!!,

~2.4!

where the bilinear momenta should be understood as Lorentz contracted forms~hereafter as well!.
The explicit forms of these Green functions are12

G00
~1!~t,t8!5GB~t,t8!2

1

4

~GB~t,ta!2GB~t,tb!2GB~t8,ta!1GB~t8,tb!!2

T31GB~ta ,tb!
, ~2.5!

G33
~1!~z1 ,z2!5G33

~1!~z12z2!55uz12z2u2
~z12z2!2

T31GB~ta ,tb!
, ~2.6!

G03
~1!~t,z!

5H G00
~1!~t,ta!1

1

T31GB~ta ,tb!
~T3z2z21z@GB~t,tb!2GB~t,ta!#! for tb,ta

G00
~1!~t,tb!1

1

T31GB~ta ,tb!
~T3z2z21z@GB~t,ta!2GB~t,tb!#! for ta,tb .

~2.7!

Thet parameters$ta ,tb ,tnun51,...,N8% run from zero toT, which stands for the length of a loo
~fundamental loop!, andtn

(3) , n51,...,N3 run from zero toT3 , the length of the internal line~the
rest part of the vacuum diagram!. T andT3 are to be integrated from zero to infinity. In Ref. 9, w
pointed out that one may fix and eliminate one of the parameters$ta ,tb ,tnun51,...,N8% because
of the rotational symmetry of the fundamental loop. This means that we can set one of
parameters to be zero which corresponds to the origin of world-line coordinate along the f
mental loop. Obviously,G00

(1) is invariant under this rotation, and does not receive any ser
change, howeverG03

(1) does not even possess any translational symmetry such as seen inG33
(1) .

Hence the explicit form ofG03
(1) depends on which parameter will be set zero. For example, if

choosetb as such origin,G03
(1) should follow the form fortb,ta . Similarly, if ta , then take for

ta,tb . There is also a different Green function11 from Eq. ~2.5!. However, both coincide unde
the same momentum conservation constraint~for N350) as the one-loop type.
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Using the transformation obtained in Ref. 12, we can transform the above quantities
other version~symmetric parameterization!. It is done by dividing the fundamental loop into tw
piecesT5T11T2 with N85N11N2 and$tn%→$tn

(1) ,tn
(2)%. In this case, we have11

dM5dT1dT2dT3)
i 51

3

)
n51

Ni

dtn
~ i ! , ~2.8!

D5~T1T21T2T31T3T1!21, ~2.9!

and

EG5
1

2 (
a51

3

(
j ,k

Na

pj
~a!Gaa

sym~t j
~a! ,tk

~a!!1 (
a51

3

(
j

Na

(
k

Na11

pj
~a!pk

~a11!Gaa11
sym ~t j

~a! ,tk
~a11!!, ~2.10!

where we sett (4)5t (1) andN45N1 , etc. in accord with the cyclic expression. The Green fu
tions are11

Gaa
sym~t,t8!5Gaa

sym~t2t8!5ut2t8u2
Ta111Ta12

T1T21T2T31T3T1
~t2t8!2, ~2.11!

Gaa11
sym ~t,t8!5t1t82

t2Ta111t82Ta1~t1t8!2Ta12

T1T21T2T31T3T1
. ~2.12!

All the formulas in this section are reproduced from string theory,8,9 and in this sense, we refer t
these Green functions~2.5!–~2.7!, ~2.11!, and~2.12! as the standard forms.

III. MOMENTUM CONSERVATION CONSTRAINT

In this section, we encounter the~wide sense! Green functions of different forms, dependin
on calculation methods~in the symmetric parameterization!. However, the value ofEG should be
shown to be invariant under the constraint of total momentum conservation. In the one-loop
as mentioned in the introduction, the constraint is expressed by the identity

(
j 51

N

(
k51

N

pj•pktk
m50. ~3.1!

The single summation over all momentapj is nothing but the summation over the fundamen
loop. However, the same structure cannot be seen in~2.4! or ~2.10! for theN3Þ0 case. Hence, we
shall derive a suitable two-loop generalization of this identity, and explain how it works
illustrate the idea clearly, we need a couple of examples of different Green functions in th
place.

As explained in Ref. 13, Eq.~2.1! is obtained from the path integral

GM
2-loop5

~2g!N12

2•3! E dDx1dDx2)
a51

3 E
0

`

dTae2m2TaEya~0!5x2
ya~Ta!5x1

Dya~t!

3expF2E
0

Ta 1

4
ẏa

2dt~a!G )
n51

Na E
0

Ta
dtn

~a!eipn
~a!y~tn

~a!
! ~3.2!

by using the mode expansion

ya~t!5x11
t

Ta
~x22x1!1 (

m51

`

ym sinS mpt

Ta
D . ~3.3!
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A straightforward computation in this case shows that theEG part is composed of the following
Green functions instead ofGab

sym:

Gaa
M ~t,t8!5ut2t8u2~t1t8!12

tt8

Ta
S 12D

T1T2T3

Ta
D , ~3.4!

Gaa11
M ~t,t8!522DT1T2T3

tt8

TaTa11
. ~3.5!

Note that thex1 integration generates the total momentum conservation factor

~2p!DdS (
a

(
n

Na

pn
~a!D . ~3.6!

A second example is from Ref. 14. The world-line Green function should also be deriv
a two-point function in the sense of ordinary field theory,

Gmn~t1
~a! ,t2

~b!!5^xm~t1
~a!!xn~t2

~b!!&5
d

dJa
m~t1

~a!!

d

dJc
n~t2

~b!!
ln Z@J#U

J50

, ~3.7!

where the generating functional is given by

Z@J#[E dDy1dDy2S )
a51

3 Exa~Ta!5y2
xa~0!5y1

DxaD expF2
1

4 (
a
E

0

Ta
ẋa

2~t!dt1(
a
E

0

Ta
Ja

m~t!xa
m~t!dtG .

~3.8!

For later convenience, we here write the intermediate expression~putting w5(y11y2)/2, z5y2

2y1)

Z@J#5~Pa51
3 ~4pTa!2D/2!expF2

1

2 (
a51

3 E
0

TaE
0

Ta
Jm

a ~t!G̃mn
~a!~t,t8!Jn

a~t8!dtdt8G
3E dzdw)

a51

3

expFwE
0

Ta
Ja~t!dt2

1

4
zmAmn

a zn1znE
0

Ta
Jm

a Rmn
a G ~3.9!

as well as the final expression

Z@J#5 idDS (
a51

3 E
0

Ta
Ja

m~t!dt D ~4p!~D/2!S )
a51

3

~4pTa!~2D/2!D detL
2~1/2!S (

a
AaD

3expF2
1

2 (
a
E

0

TaE
0

Ta
Jm

a ~t!G̃mn
~a!~t,t8!Jn

a~t8!dtdt8G
3expF S (a

AaD
rs

21S (
a
E

0

Ta
Rrm

a Jm
a ~t!dt D S (

c
E

0

Tc
Rsn

c Jn
c~t!dt D G , ~3.10!

where we take

Amn
a 5dmnTa

21, Rmn
a 5S t~a!

Ta
2

1

2D dmn , ~3.11!

and
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G̃mn
~a!~t1 ,t2!5dmnS ut12t2u2~t11t2!12

t1t2

Ta
D . ~3.12!

A main difference from the first example is the existence of nonconstant source terms,
furthert integrations are formally impossible. This is the reason for having a different form o
Green function. Further decoupling the metric factor (gmn52dmn),

Gmn~t~a!,t~b!!52gmnGab
J ~t~a!,t~b!!, ~3.13!

we actually derive the second different form

Gab
J ~t1

~a! ,t2
~b!!5dabS ut1

~a!2t2
~b!u2~t1

~a!1t2
~b!!12

t1
~a!t2

~b!

Ta
D

2
1

2
~2t1

~a!2Ta!~2t2
~b!2Tb!

T1T2T3

TaTb
D. ~3.14!

Now, let us derive the two-loop version of the constraint~3.1!. It can be derived by combining
the trivial identities

S (
a51

3

(
j 51

Na

pj
~a!D (

k51

Nb

pk
~b!~tk

~b!!m50; b51,2,3 ~3.15!

with multiplying weight coefficientsCm
(b) . The result is arranged in the form suitable toEG ,

05 (
a51

3

(
j ,k

Na

pj
~a!pk

~a!Cm
~a!~t j

~a!!m1 (
a51

3

(
j

Na

(
k

Na11

pj
~a!pk

~a11!~Cm
~a!~t j

~a!!m1Cm
~a11!~tk

~a11!!m!,

~3.16!

wherem is an arbitrary integer and themth coefficientCm
(a) may depend only onTa . One can add

an arbitrary number of copies of this identity toEG with different choices ofCm
(a) . Consider the

EG whereGab
M is substituted forGsym in ~2.10!, and add the identity~3.16! to theEG . Then a new

set of Green functions can be read from the modifiedEG as

Gaa8 ~t1
~a! ,t2

~a!!5Gaa
M ~t1

~a! ,t2
~a!!12Cm

~a!~t1
~a!!m1¯ , ~3.17!

Gaa118 ~t1
~a! ,t2

~a11!!5Gaa11
M ~t1

~a! ,t2
~a12!!1Cm

~a!~t1
~a!!m1Cm

~a11!~t2
~a11!!m1¯ , ~3.18!

where¯ means the additions of further different copies mentioned above. These relations s
that a variety of Green function’s representations can be derived starting fromGab

M . In practice,
the three representations listed here (Gsym,GMGJ) are connected to the following choices of th
Cm

(a) coefficients. We obtainGab8 5Gab
J , if we choose

C0
~a!52

1

2
DT1T2T3 , C1

~a!5D
T1T2T3

Ta
, others50, ~3.19!

and we obtainGab8 5Gab
sym, if we choose

C1
~a!51, C2

~a!52
1

Ta
S 12D

T1T2T3

Ta
D , others50. ~3.20!

In this way, every possible form is related to the standard form by the transformation rules~3.17!
and ~3.18!, or in other words, by the two-loop momentum constraint formula~3.16!.
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IV. SOURCE CONSTRAINT

In this section, we discuss what identity in the generating functional method should pla
same role as the momentum conservation constraint~3.16!.

Let us first recall the computation process from~3.9! to ~3.10!. Thew integration in~3.9! gives
rise to the similard-function divergence as before~cf. Eq. ~3.6!! in the sense of the Minkowsk
formulation, and we then have

Z@J#5 idS (
a51

3 E
0

Ta
Jm

a ~t!dt D )
a51

3

~4pTa!2D/2

3expF2
1

2 (
a51

3 E
0

TaE
0

Ta
Jm

a ~t!G̃mn
~a!~t,t8!Jn

a~t!dtdt8G I @J# ~4.1!

with

I @J#5E dz)
a51

3

expF2
1

4
zmAmn

a zn1znE
0

Ta
Jm

a ~t!Rmn
a ~t!dtG . ~4.2!

Here, theRmn
a given in ~3.11! is a symmetric tensor, however it is not a general property. Rat

the following reflection antisymmetry is general and important,

Rmn
a ~t!52Rmn

a ~Ta2t!. ~4.3!

Suppose thatJm
a behaves as an even or odd function with respect to the center pointTa/2 for the

interval 0<t (a)<Ta ; i.e.,

Jm
a ~t~a!!56Jm

a ~Ta2t~a!!. ~4.4!

Using these properties, we have

znE
0

Ta
Jm

a ~t!Rmn
a ~t!dt57znE

0

Ta
Rnm

a ~t!Jm
a ~t!dt. ~4.5!

By this formula, we perform the Gaussian integral in~4.2!,

I @J#5~4p!~D/2! detL
2~1/2!S (

a
AaD

3expF7S (
a
E

0

Ta
Jm

a Rmr
a dt D S (

a
AaD

rs

21S (
a
E

0

Ta
Rsn

a Jn
adt D G . ~4.6!

Again using~4.5!, we can eliminate the complex signature symbol

I @J#5~4p!~D/2! detL
2~1/2!S (

a
AaD

3expF S (a
E

0

Ta
Rrm

a Jm
a dt D S (

a
AaD

rs

21S (
a
E

0

Ta
Rsn

a Jn
adt D G . ~4.7!

This result~4.7! holds for any linear combination of even and oddJm
a functions. It should be noted

that the odd source case implies
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E
0

Ta
Jm

a ~t~a!!dt~a!50 ~a51,2,3!. ~4.8!

It means a strong sense ‘‘momentum’’ conservation which is subjected to only one of
internal lines, and trivially satisfies

(
a51

3 E
0

Ta
Jm

a ~t~a!!dt~a!50. ~4.9!

Mimicking this property, we in general impose this identity as the total ‘‘momentum’’ conse
tion ~sum of three lines!, as advocated by thed-function in ~4.1!.

Now, let us compare the roles of discrete and continuous constraints~3.16! and ~4.9! in an
example. We notice the following term inGab

J ~q.v. ~3.14!!:

2
1

2
~2t1

~a!2Ta!~2t2
~b!2Tb!

T1T2T3

TaTb
D ~4.10!

and its corresponding term in the generating functional~4.7!,

ln I @J#5dmnT1T2T3D(
a

(
b
E

0

TaS t~a!

Ta
2

1

2D Jm
a dt~a!E

0

TbS t~b!

Tb
2

1

2D Jn
bdt~b!1¯ . ~4.11!

If we subtract theCm
(a) terms from~4.10! with the choice~3.19!, we obtainGM as understood from

~3.17! and~3.18!. On the other hand, using the source constraint~4.9!, we can remove from~4.11!
the linear terms int (a) andt (b) as well as the constant term,

ln I @J#'dmnT1T2T3D(
a

(
b
E

0

TaE
0

Tb t~a!t~b!

TaTb
Jm

a ~t~a!!Jn
b~t~a!!dt~a!dt~b!1¯ . ~4.12!

This manipulation leads to the Green functionGab
M as expected; i.e., the removal of thet (a) and

t (b) linear terms corresponds to the subtraction ofC1
(a) given in ~3.19!, and the constant term

removal toC0
(a) . In this way, the source constraint~4.9! plays the same role as the actual m

mentum conservation constraint~3.16! on the kinematical factorEG , thus on the wide sens
world-line Green functions. It is worth noting that the constraint~4.9! is simpler than~3.16!.

V. EXAMPLES IN QED

The idea of the source constraint gives a family of equivalent world-line Green functio
seen in the previous section. This property is useful for identifying different~wide sense! Green
functions obtained by various computations. In this section, we verify its usefulness in
specific cases. The examples discussed here is the one-loop photon scatterings in the sc
spinor QED cases. First, we discuss the scalar case, and then the spinor case.

The N-point function for a complex boson loop is known to be given2 by the closed path
integral of one-dimensional bosonic fieldxm(t),

GN~p1 ,...,pN![E
0

` dT

T R DxS E
0

T

)
j 51

N

dt jdu j ū j D expF E
0

TS 2
1

4
ẋ21J•xDdtG , ~5.1!

with the following specific source function;

Jm~t!5(
j 51

N

d~t2t j !S ū ju je j
m ]

]t j
1 ip j

mD , ~5.2!
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wheree j
m are photon polarization vectors, andu j andū j are the Grassmann variables. This sou

is neither an even function nor an odd one int, and we assume the one-loop version of t
constraint~4.9! to be

E
0

T

Jm~t!dt50. ~5.3!

This leads to the constraint similar to the momentum conservation law

(
j 51

N

Jj
m50; Jj

m5 ū ju je j
m ]

]t j
1 ip j

m . ~5.4!

The second term inJj exactly corresponds to the momentum conservation law, while the first
does not vanish in the sum at all. In this sense, the present constraint~5.4! assumes a nontrivia
conservation law. Let us see how our idea works in the following. We perform the path int
~5.1! as the mode integrations with expanding

xm~t!5x0
m1 (

n.0
xn

m sinS npt

T D ~2`<xn<`!. ~5.5!

Note thatx0 integration diverges as thed-function corresponding to the constraint~5.3!. ~This is
similar to thed-function in Eq.~4.1!!. Remember that this kind of divergence is usually remov
by hand~so-called zero mode divergence!. The resulting expression is then

GN~p1 ,...,pN!5E dT

T S 1

4pTD D/2S )
j 51

N

dt jdu jdū j D expF1

2
gmn (

j ,l 51

N

Jj
mJl

nG̃B~t j ,t l !G , ~5.6!

where we formally putgmn52dmn and

G̃B~t i ,t j !5 (
m51

`
4T

m2p2 sinS pmt i

T D sinS pmt j

T D ~5.7!

5ut i2t j u2~t i1t j !12
t it j

T
. ~5.8!

Here we have used the following formula at the second line of the above,

(
m51

`
cos~mx!

m2 5
1

4
~ uxu2p!22

p2

12
. ~5.9!

Under the constraint~5.4!, we realize thatG̃B in the exponent~the generating kinematica
factor! in Eq. ~5.6! behaves as the one-loop Green function~1.3! exactly, and we thus rederive th
same result2

GN~p1 ,...,pN!5E dT

T S 1

4pTD D/2S )
j 51

N

dt jdu jdū j D expF2
1

2 (
j ,l 51

N

Jj•JlGB~t j ,t l !G .

~5.10!

In this example, it is clear that the source constraint helps us obtain a correct kinematical
even if a different~wide sense! Green function appears in an intermediate step.

The similar argument applies to the fermion loop case as well. For simplicity, we discuss
the spin part~world-line fermioncm(t)), since the bosonic part is essentially the same as
above case. The world-line fermion part of theN-point amplitude is given by2
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G̃N[ R DcS )
j 51

N E
0

T

dt jdu jdū j D expF E
0

TS 2
1

2
cm]tcm1hmcmDdtG ~5.11!

with the source function

hm~t!5(
j 51

N

&~u je j
m1 i ū j pj

m!d~t2t j !. ~5.12!

Assuming the source constraint

E
0

T

hm~t!dt50 ~5.13!

or equivalently

(
j 51

N

K j50, K j
m5&~u je j

m1 i ū j pj
m!, ~5.14!

and performing the path integral with the mode expansion

cm~t!5 (
r PZ1

1
2

br
m cosS 2pr t

T D , ~5.15!

we obtain~the detail is in Appendix A!,

ḠN5)
j 51

N E dt jdu jdū j expF1

4 (
j ,l 51

N

K j•KlG̃F~t j ,t l !G ~5.16!

with

G̃F~t i ,t j !5sign~t j2t i !1
2

T
~t i2t j !. ~5.17!

Under the constraint~5.14!, G̃F in the exponent plays the same role as the standard fermion G
function

GF~t i ,t j !5sign~t j2t i !, ~5.18!

and we reproduce the correct answer2

G̃N5)
j 51

N E dt jdu jdū j expF1

4 (
j ,l 51

N

K j•KlGF~t j ,t l !G . ~5.19!

VI. REPARAMETRIZATION-TYPE TRANSFORMATION

This section is independent of the previous sections. In this section, we consider repara
zations and transformations between the standard two-loop Green functions. As mentioned
II, it is known thatGsym andG(1) are connected by a certain transformation.12 Here, we point out
another transformation between them, using periodicities of the Green functions, and also d
reparametrizations ofG(1) through exchanging two of internal lines.

The symmetric Green functionsGsym and alsoG33
(1) satisfy the following properties of peri

odicity:
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Gab
sym~Ta2t~a!,Tb2t~b!!5Gab

sym~t~a!,t~b!! ~a,b51,2,3!, ~6.1!

Gaa
sym~t2Pa!5Gaa

sym~t!, G33
~1!~t2P11!5G33

~1!~t !, ~6.2!

where

Pa5Ta1
Ta11Ta12

Ta111Ta12
, P115T31GB~ta ,tb!5

1

TD
. ~6.3!

PuttingP35P11 with identifying T15T(12u) andT25Tu, we easily find

u5
uta2tbu

T
, ~6.4!

and the necessary relations for the transformation betweenGsym andG(1),12

T15T2uta2tbu, T25uta2tbu. ~6.5!

For later convenience, we assign more concrete notations totn in G(1) on the loop-type param
eterization:

tn5H xn ~t* ,tn!

yn ~tn,t* !

zn on the internal lineT3,

~6.6!

wheret* is given below~see Eq.~6.8! and Fig. 1!.
With these relations, the transformation rule betweenGsym and G(1) is allowed to be ex-

pressed as

H tn
~1!5xn2t* ,

tn
~2!5t* 2yn ,

tn
~3!5zn ,

~6.7!

where

t* 5tau~ta2tb!1tbu~tb2ta!, ~6.8!

t* 2T2<yn<t* <xn<T11t* . ~6.9!

We can obtain another transformation by combining the property~6.1! with ~6.7!; i.e., replacing
t (a)→Ta2t (a) on the right-hand side in~6.7!,

FIG. 1. The directions oft parameters.
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H tn
~1!5T12xn1t* ,

tn
~2!5T21yn2t* ,

tn
~3!5T32zn .

~6.10!

From these~two-loop! transformations, we can generate an infinite number of transformation
the one-loopcase, sincet* is reduced to an arbitrary number when the both edges of thez line
approach each other along the fundamental loop~of course, with vanishingT3); for example,

for t* 50: H t~1!5x
t~2!52y

, or H t~1!5T12x
t~2!5T21y

, ~6.11!

for t* 5T2 : H t~1!5x2T2

t~2!5T22y
, or H t~1!5T2x

t~2!5y
. ~6.12!

Although these one-loop transformations are certainly trivial by themselves, an interesting d
tion is that one can generate a set of transformations ofh-loop Green functions from (h11)-loop
transformations by setting one ofh copies oft* to be an arbitrary value.

As a second application of~6.7!, let us consider some reparametrizations ofGab
(1) ; a,b

50,3. We show that the transformation of the Green functionsGab
(1)(t1 ,t2) living on thezx-loop

~loop made of internal lines where thez and x variables are defined! into G00
(1)(t18 ,t28) on the

xy-loop can be found through the cyclic permutation symmetry ofGsym ~exchangingz-line and
y-line!. Namely, transformingG(1)→Gsym→G(1) successively, we can read how to transform li

G00
~1!~x1 ,x2!→G00

~1!~x18 ,x28!, ~6.13!

G03
~1!~x,z!→G00

~1!~x8,y8!, ~6.14!

G33
~1!~z1 ,z2!→G00

~1!~y18 ,y28!. ~6.15!

Suppose that each ofGab
(1) on thexz-loop is related toGi j

sym(t ( i ),t ( j )) by the rule~6.7!, and that
each ofG00

(1) on the xy-loop is related toGi j
sym(t ( i ),t8( j )) by the same rule as~6.7!, t8(1)5x8

2t* , t8(2)5t* 2y8, t8(3)5z8. Putting t8(2)5t (3) and t8(3)5t (2) ~corresponding to the ex
change ofz- andy-lines!, and eliminatingt (a) andt8(a) from these transformation rules, we fin
the following transformation rule attributed from the exchange betweenz- andy-lines:

H x85x
y85t* 2z and T3↔T2

z85t* 2y .
~6.16!

Remember thatD21 is invariant in any exchange ofTa . The simplest check of this rule is th
following case:

G33
~1!~z1 ,z2!5uy182y28u2

~y182y28!2

~T31GB~ta ,tb!!T
~T11T2!uT2↔T3

5uy182y28u2
~y182y28!2

~T31GB~ta ,tb!!T
~T31T~12u!!5G00

~1!~y18 ,y28!. ~6.17!

Similarly, we derive another transformation rule from theyz-loop to thexy-loop ~exchange of
z-line andx-line!,
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H x85t* 1z
y85y and T3↔T1

z85x2t* .
~6.18!

One can organize these two sets of transformations in a unified way: Let us expre
untransforming~identical! variables in~6.16! and ~6.18! as

t5xu~t2t* !1yu~t* 2t!, ~6.19!

and assignt̃ to be the parameter transforming to thez8 variable,

t̃5yQ~t2t* !1xu~t* 2t!, ~6.20!

while considering the transformation

G00
~1!~t1 ,t2!→G00

~1!~t18 ,t28!, ~6.21!

G03
~1!~t,z!→G00

~1!~t8,t̃8!, ~6.22!

G33
~1!~z1 ,z2!→G00

~1!~ t̃18 ,t̃28!. ~6.23!

The above two sets of rules~6.16! and ~6.18! are now expressed in the compact form

H t85t
t̃85t* 2z sign~t2t* ! and T3↔T*
z85~t* 2 t̃ !sign~t2t* ! ,

~6.24!

where

T* 5T2u~t2t* !1T1u~t* 2t!. ~6.25!

In order to verify these relations, one should note thatTP11 (5D21) is invariant under this
transformation rule, and also thatT transforms as

T5T* 1T̃* →T31T̃* , ~6.26!

where

T̃* 5T2T* 5T1u~t2t* !1T2u~t* 2t!. ~6.27!

It is rather convenient to rewrite the Green function~2.7! as

G03
~1!~t,z!5z1ut2t* u2

1

TP11
@z2T12zut2t* uT* 1~t2t* !2~T31T* !#, ~6.28!

than considering the original form

G03
~1!~t,z!5GB

~1!~t,t* !1
1

P11
$T3z2z22sign~ta2tb!@GB~t,ta!2GB~t,tb!#%. ~6.29!

Applying the transformation~6.24! to Eqs.~6.21!, ~6.28!, and~6.23!, we obtain

G00
~1!~t1 ,t2!5GB~t1 ,t2!2

D

T
T* 2~t12t2!2, ~6.30!
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G00
~1!~t,t̃ !5GB~t,t̃ !2

D

T
@T~t* 2 t̃ !2T* ~t2 t̃ !#2, ~6.31!

G00
~1!~ t̃1 ,t̃2!5GB~ t̃1 ,t̃2!2

D

T
T̃* 2~ t̃12 t̃2!2. ~6.32!

These representations are independent of the choice of eithert* 5ta or tb , and reproduce Eq
~23! of Ref. 12 for the particular choicet* 5tb ~correcting an error in the literature!.

VII. CONCLUSIONS

In this paper, we have investigated two types of the constraints on the two-loop kinem
factor and the world-line Green functions. One is nothing but the momentum conservation l
external legs, and the other is the vanishing constraint on the source term integrals along the
of world-line. Although there is no direct connection between two of them, the latter ca
regarded as a continuous version of the former. Because of the ambiguity raised by the cons
an infinite number of wide sense Green functions are in fact possible to take part in the kin
cal factor exponent. However, we have verified that all these Green functions can be ide
with the standard~restricted! Green functions, all of which are reduced from a world-sheet Gr
function,8 and some of which are related to actual solutions of defining differential equations
possessing the rotational invariance along the fundamental loop.11 Conversely, this fact means tha
the conservation constraints loosen some imposed restrictions on the standard Green fu
and eventually make various evaluations and approaches possible. Since this ambiguity
flection of the conservation laws, it is easy to infer that the ignorance of it can lead to the bre
of unitarity and gauge invariance. Therefore we always have to take account of either o
versions of the constraints when dealing with the world-line formalism.

Once having the constraints, one can ignore the differences among different Green fun
when applying the Green functions to amplitude formulas. In this sense, these constraints
useful for analyzing higher loop’s world-line Green functions. Especially it is clear that the so
constraint is much easier to apply than the momentum conservation constraint in the mu
cases. In two-loop Yang–Mills theory, there arises a different Green function in the calculat
a constant background field,14 and the source constraint is actually useful to identify the Gr
function with the standard one in the vanishing limit of constant background field~as demon-
strated in Secs. III and IV!. Obviously, the similar thing is expected to occur in the multilo
cases. Since expressions of multiloop Green functions are complicated, these constraints
useful for simplifying and transforming the expressions into convenient forms together wit
transformation property~suggested below~6.12!. It might be interesting to speculate a usefulne
of our techniques in the thermal world-line cases.15

In the final part of the paper, we have considered the transformations among the
functions of standard forms, associated with the reparametrizations of the two-loop worl
diagram. On the one hand, the form of world-sheet Green function is independent of the ord
of two vertices, which join the internal line and the fundamental loop. On the other hand
crossing type Green functions~2.7! and~2.12!, which belong to the type of a correlation betwe
the fundamental loop and the internal line, are neither translational invariant nor ordering
pendent. It might be that this gap will be filled in some way around by taking account o
discussed transformations into the loop-type Green functionG00

(1) . The crossing-type Green func
tions are necessary in non-Abelian gauge theory, and a complexity in the combinatorics pr
will be caused by this type~similarly to thef3 theory case14!. We hope for a useful paramete
ization or a transformation to overcome these problems.

APPENDIX: FERMION MODE INTEGRATION

We show the derivation of~5.16! in this Appendix. The fermion field~5.15! is an expansion
which satisfiesc(0)52c(T)Þ0 and*0

Tcm(t)dt50. First, we rewrite
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H[E
0

TS 2
1

2
cm]tcm1hmcmDdt5I 2J, ~A1!

where

I[E
0

T

dt1dt2dtdt8S c~t1!2
1

2
h~t!GI~t2t1! D S d~t12t2!

21

2

]

]t2
D

3S c~t2!2
1

2
h~t8!GI~t82t2! D , ~A2!

J[2S 1

2D 3E
0

T

dt1dt2dtdt8h~t!h~t8!GI~t2t1!d~t12t2!
]

]t2
GI~t82t2!, ~A3!

with introducing the function

GI~t!5
2

p (
m>1

1

m
sinS 2pmt

T D , ~A4!

which satisfies

1

2
]tGI~t!5d~t!2

1

T
, ~A5!

and

GI~t12t2!5
]

]t1
GB~t1 ,t2!. ~A6!

Putting ~5.12! and ~A4! into ~A3!, and performing the integrals, we obtain

J52S 1

2D 3

(
j ,l

K jKl S 2
]

]t j
D (

m>1

2T

p2m2 cosS 2pm~t i2t j !

T D . ~A7!

Using the summation formula~5.9!, we have

J52S 1

2D 2

(
j ,l

K jKl S 2

T
~t j2t l !2sign~t j2t l ! D . ~A8!

Shifting c→c1 1
2hGI in the path integral~5.11!, the quantityI is reduced to the free integral

I→2
1

2 E0

T

c•ċ, ~A9!

and this yields nothing but the path integral normalization

R Dce2~1/2!*0
Tc•ċdt51. ~A10!

This can be checked by integrating the modes~5.15!. Therefore we derive~5.16! owing to ~A8!
and ~A10!,
                                                                                                                



,

H-

5656 J. Math. Phys., Vol. 40, No. 11, November 1999 Haru-Tada Sato

                    
G̃N5 R DcS )
j 51

N E dt jdu jdū j D eH5)
j 51

N E dt jdu jdū je
J. ~A11!
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The action operator for continuous-time histories
K. Savvidoua)

Theoretical Physics Group, Blackett Laboratory, Imperial College of Science,
Technology & Medicine, London SW7 2BZ, United Kingdom

~Received 12 March 1999; accepted for publication 29 March 1999!

We define the action operator for the consistent histories formalism, as the quantum
analog of the classical action functional, for the simple harmonic oscillator case.
We conclude that the action operator is the generator of time transformations, and
is associated with the two types of time evolution of the standard quantum theory:
the wave-packet reduction and the unitary time evolution. We construct the corre-
sponding classical histories and demonstrate the relevance with the quantum histo-
ries. Finally, we show the relation of the action operator to the decoherence func-
tional. © 1999 American Institute of Physics.@S0022-2488~99!02510-4#

I. INTRODUCTION

One of the basic elements in the consistent histories formalism is the idea of a ‘‘homoge
history.’’ This is a time-ordered sequence of propositions about the system and, in the o
approaches to the formalism, is represented by a class operatorC̃,

C̃ªU~ t0 ,t1!a t1
U~ t1 ,t2!a t2

¯U~ tn21 ,tn!a tn
U~ tn ,t0!, ~I.1!

wherea t i
is a single-time projection operator representing a property of the system at timet i , and

U(t,t8)5e2( i /h)H(t2t8) is the unitary time evolution operator.1–4

In the ‘‘History Projection Operator’’ ~HPO! approach developed by Isham an
collaborators,5–8 a homogeneous history ‘‘a t1

is true at timet1 anda t2
is true at timet2 ... anda tn

is true at timetn’’ is represented by aprojection operatora, defined as the tensor product
projection operatorsaªa t1

^ a t2
^¯^ a tn

on then-fold tensor product of copies of the standa
Hilbert spaceVnªHt1

^ Ht2
^¯^ Htn

. This approach reestablishes the logical nature of prop
tions about a physical system since these projection operators~and their disjunctions! represent a
type of temporalquantum logic.

Most discussions of the consistent-histories formalism have involved histories defined
finite set of time points. However, it is important to extend this to include a continuous-
variable~especially for potential applications to quantum field theory!, and in order to construc
continuous-time histories on the continuous tensor product of copies of the Hilbert spacVcts

ª^ Ht , Isham and Linden defined the History Group6 as an analog of the canonical group
normal quantum theory. This group plays a crucial role in the physical interpretation of the th
the spectral projectors of the generators of its Lie algebra represent history propositions ab
system.

For the example of a nonrelativistic point particle moving on a line, the history group
defined as a generalized Weyl group with Lie algebra,

@xt ,xt8#50, ~I.2!

@pt ,pt8#50, ~I.3!

a!Electronic mail: k.savvidou@ic.ac.uk
56570022-2488/99/40(11)/5657/18/$15.00 © 1999 American Institute of Physics
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@xt ,pt8#5 i\td~ t2t8!, ~I.4!

where2`,t,t8,1`, andt is a constant with dimensions of time. It is important to emphas
that the generators of the history algebraxt andpt , tPR, are Schro¨dinger-picture operators. Afte
being properly smeared, they correspond~actually, their spectral projectors!, to propositions about
the time-averaged values of the position and the momentum of the system, respectivel
evident resemblance of the history algebra to the algebra of a quantum field theory meant t
one-dimensional quantum mechanics history theory could be treated mathematically in
respects as a 111 dimension quantumfield theory.

In a previous paper,5 the requirement of the existence of the Hamiltonian operatorH that
represents propositions about the time-averaged values of the energy of the system—in pa
for the example of a simple harmonic oscillator in one dimension—together with the ex
relation between the Hamiltonian and the creation and annihilation operators, selected uniq
Fock space as the representation space of the history algebra~1.2–1.4! on the history spaceVn .
We shall return to this representation in more detail shortly.

The history algebra generatorsxt andpt can be seen heuristically as operators~actually they
are operator-valued distributions onVn!, that for each time labelt, are defined on the Hilbert spac
Ht . The question then arises if, and how, these Schro¨dinger-picture objects with different time
labels are related: in particular, is there a transformation law ‘‘from one Hilbert space to anot
One anticipates that the analog of this question in the context of a histories treatmen
relativistic quantum field theory would be crucial to showing the Poincare´ invariance of the
system.

In the Hamilton–Jacobi formulation of Classical Mechanics, it is theaction functionalthat
plays the role of the generator of a canonical transformation of the system from one tim
another.9 Indeed, the Hamilton–Jacobi functionalS, evaluated for the realized path of th
system—i.e., for a solution of the classical equations of motion, under some initial condition
the generating function of a canonical transformation, which transforms the system var
positionx and momentump from an initial timet50 to another timet. It is therefore natural to
investigate whether a quantum analog of the action functional exists for the HPO theory.

Indeed, in Ref. 5, where we explored the quantum field theory case for the continuou
histories, we were not able to show the manifest covariance of the theory under the ‘‘exte
Poincare´ group. However, we did not consider the action as an operator, our main goal i
present paper is to enhance the theory in this direction so as to have a clearer view
time-transformation issue. This will ultimately allow us to readdress the problem of the Poi´
covariance of the quantum field theory.10

In what follows, we first prove the existence of the action operatorSk , using the same type o
quantum field theory methods that were used to prove the existence of the Hamiltonian op
Hk .5 We will show that, constructed as a quantum analog of the classical action functionSk

does indeed act as a generator of time transformations in the HPO theory. Furthermore—an
speculatively—this is arguably related to the two laws of time-evolution in standard qua
theory: namely, wave-packet reduction and the unitary time evolution between measureme

A comparison with the classical theory case seems appropriate at this point, and thus, i
III and IV, we present a classical analog of the HPO, where the continuous-time classical his
can be seen to be an analog of the continuous-time quantum histories.

In Sec. V, we further exploit the classical analogy to discuss the ‘‘classical’’ behavior o
history quantum scheme. In particular, we expect the action operator to be involved in som
with the dynamics of the theory. To this end, we show how it appears in the expression f
decoherence functional expression, with operators acting on coherent states, as used ea
Isham and Linden.6

II. THE ACTION OPERATOR DEFINED

In the generalized consistent histories theory by Gell-Mann and Hartle1,2 and others, a homo
geneous historya is a time-ordered sequence of propositions about the system, and is repre
by a class operatorC̃,
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C̃ªU~ t0 ,t1!a t1
U~ t1 ,t2!a t2

¯U~ tn21 ,tn!a tn
U~ tn ,t0!, ~II.1!

wherea t , is a single-time projection operator representing a proposition about the system a
t i . If a particular historya belongs to a consistent set, then the probability for the history to
realized is

Prob~a!5trHC̃a
†r t0

C̃a , ~II.2!

wherer t0
is the density matrix of the initial state. Deciding whether or not a particular se

histories is consistent involves evaluating the decoherence functional,

d~a,b!ªtrH C̃a
†r t0

C̃b , ~II.3!

which is a complex-valued function of a pair of historiesa andb. In particular, ifa andb are
disjoint propositions belonging to a consistent set, then they satisfy the ‘‘decoherence’’ cond

d~a,b!50. ~II.4!

We note that, as a product of projectors, the class operatorC̃a is generally not itself a
projector, and hence the temporal logic structure of quantum mechanics is lost. This is rem
in the HPO theory, in which the history proposition ‘‘a t1

is true at timet1 anda t2
is true at time

t2 ... anda tn
is true at timetn’’ is represented by the tensor productaªa t1

^ a t2
^¯^ a tn

.8 This
is a genuine projection operator on then-fold tensor productVnªHt1

^ Ht2
^¯^ Htn

. Each
constituent propositiona t , labeled by the time parametert, is defined on a copy of the standa
quantum theory Hilbert space, with the samet-label Ht .

This is a straightforward idea for a discrete set of times (t1 ,t2 ,...,tn), but, for reasons given
in the Introduction, it is important to extend these ideas to continuous-time histories that are
defined on some sort of continuous tensor product of copies of the Hilbert spaceVctsª^ Ht .

A key technical tool is the history group, constructed as an analog of the canonical gro3 of
normal quantum theory. For a particle moving in one dimension, the standard canonical co
tation relation,

@x,p#5 i\, ~II.5!

is replaced by the ‘‘history algebra,’’

@xt ,xt8#50, ~II.6!

@pt ,pt8#50, ~II.7!

@xt ,pt8#5 i\td~ t2t8!, ~II.8!

where2`,t,t8,1`. The constantt has dimensions of time11 and, in what follows, for con-
venience we shall choose units in whicht51. These operators are written in the Schro¨dinger
picture: t labels the Hilbert space—it isnot the time parameter that appears in the Heisenb
picture for normal quantum theory.

To be mathematically precise, Eqs.~II.6!–~II.7! must be smeared,

@xf ,xg#50, ~II.9!

@pf ,pg#50, ~II.10!
                                                                                                                



antum
atical
an be

lues of

ne

on
rtly

tion’’

xists in

e
esen-

5660 J. Math. Phys., Vol. 40, No. 11, November 1999 K. Savvidou

                    
@xf ,pg#5 i\E
2`

1`

f ~ t !g~ t !dt, ~II.11!

where f and g belong to some appropriate subset of the spaceL2(R,dt) of square integrable
functions onR.

The evident resemblance of the above with the canonical commutation algebra of a qu
field theory in 111 dimensions leads to the treatment of the history algebra using mathem
ideas drawn from the former. In particular, a unique representation of the history algebra c
selected by the requirement that a representation of the~analog of the! Hamiltonian operator
exists:12 physically, this operator represents history propositions about the time-averaged va
the energy.

In previous work,5 we explored the familiar example of a simple harmonic oscillator in o
dimension. In this case, the history algebra is extended to include the commutators,

@Hk ,xf #52
i\

m
pk f , ~II.12!

@Hk ,pf #5 i\v2xk f , ~II.13!

@Hk ,Hk8#50, ~II.14!

whereHk is the time-averaged history energy operatorHkª*2`
` k(t)Ht dt. The smearing func-

tion k(t) belongs to some subset of the spaceL2(R,dt), in general, not the same as the subset
which the test functions of thext andpt are defined. The specific choice of test functions is pa
determined by the physical situations to which the formalism is to be applied.

The Fock representation of the history algebra is based on the definition of the ‘‘annihila
operator,

btªAmv

2\
xt1 iA 1

2mv\
pt , ~II.15!

with commutation relations

@bt ,bt8#50, ~II.16!

@bt ,bt8
†

#5d~ t2t8!, ~II.17!

and is uniquely selected by the requirement that the time-averaged Hamiltonian operator e
this representation; heuristically,Ht is connected with the operatorb† by the expressionHt

5\vbt
†bt .

In the Hamiltonian formalism for a classical system, the action functional is defined as

SclªE
2`

1`

~pq̇2H !dt, ~II.18!

whereq is the position,p is the momentum, andH the Hamiltonian of the system. Following th
same line of thought as for the definition of the Hamiltonian algebra, we want to find a repr
tation of the history algebra in which their exists a one-parameter family of operatorsSt—or better
their smeared formSl,k . Heuristically, we have

Stª~ptẋt2Ht!, ~II.19!

Sl,kªE
2`

1`

„l~ t !ptẋt2k~ t !Ht…dt, ~II.20!
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whereSl,k is the smeared action operator with smearing functionsl(t),k(t). In order to discuss
the existence of an operatorSl,k , we note that, if this operator exists, the Hamiltonian algeb
Eqs.~II.12!–~II.14!, would be augmented in the form

@Sl,k ,xf #5 i\S x~d/dt!~l f !1
pk f

m D , ~II.21!

@Sl,k ,pf #5 i\~pl f1mvxk f !, ~II.22!

@Sl,k ,Hk8#5 i\H ~d/dt!~lk8!2
i\

m E
2`

`

„k8~ t !l̇~ t !ṗt
2
…dt, ~II.23!

@Sl,k ,Sl,k8 #5 i\H ~d/dt!~l8k!2 i\H ~d/dt!~lk8!2 i\E
2`

` S @„k~ t !l̇8~ t !…2„k8~ t !l̇~ t !…#
ṗt

2

m Ddt.

~II.24!

Although we have defined the action operator in a general smeared form, in what follow
will mainly employ only the casel(t)51 andk(t)51 that accords with the expression for th
classical action functional. This choice of smearing functions poses no technical problems r
tions, provided we keep to the requirement that the smearing functions for the positio
momentum operators are square-integrable functions. In particular, the products of the sm
functions f and g in Eqs ~II.21!–~II.24! with the test functionsl(t)51 and k(t)51, are still
square integrable.

The existence of the action operator in HPO. We now examine whether the action opera
actually exists in the Fock representation of the history algebra employed in our earlier w5

Henceforward we choosel(t)51. Then the formal commutation relations are

SkªE
2`

1`

~ptẋt2k~ t !Ht!dt, ~II.25!

@Sk ,xf #5 i\S xḟ1
pk f

m D , ~II.26!

@Sk ,pf #5 i\~pf1mvxk f !, ~II.27!

@Sk ,Hk8#5 i\H k̇8 , ~II.28!

@Sk ,Sk8#5 i\H k̇2 i\H k̇8 . ~II.29!

A key observation is thatif the operatorse( i /\)Sk existed, they would produce the histor
algebra automorphism,

e~ i /\!sSkbte
2~ i /\!sSk5e2 iv* t

t1sk~ t1s8!ds81s~d/dt!bt , ~II.30!

or, in the more rigorous smeared form,

e~ i /\!sSkbfe
2~ i /\!sSk5bSsf , ~II.31!

where the unitary operatorSs is defined onL2(R) by

~Ssc!~ t !ªe2 iv* t
t1sk~ t1s8!ds8c~ t1s!. ~II.32!
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However, an important property of the Fock construction states that when there ex
unitary operatoreisA acting onL2(R), there exists a unitary operatorG(eisA) that acts on the
exponential Fock space@a general expression for a Fock space iseH5 % n50

` ( ^ nH) \, whereH is
called the base Hilbert space of the Fock spaceeH# F„L2(R)… in such a way that

G~eisA!bf
†G~eisA!215beisAf

† , ~II.33!

then the operatordG(A) on F„L2(R)… can also be defined as

G~eisA!5eis dG~A!, ~II.34!

in terms ofA, a self-adjoint operator that acts onL2(R). In particular, it follows that the repre
sentation of the history algebra on the Fock spaceF„L2(R)… carries a~weakly continuous! rep-
resentation of the one-parameter family of unitary operatorss°e( i /\)sSk5G(Ss). Therefore, the
generatorSk also exists onF„L2(R)… andS5dG(2\sk), wheresk is a self-adjoint operator tha
acts onL2(R) and is defined as

skc~ t !ªS 2vk~ t !2 i
d

dtDc~ t !. ~II.35!

In what follows, we will restrict our attention to the particular casek(t)51 for the simple
harmonic oscillator action operatorS,

SªE
2`

1`

^ptẋt2Ht&dt. ~II.36!

The Liouville operator definition.The first term of the action operator, Eq.~II.36!, is identical
to the kinematical part of the classical action functional, Eq.~II.18!. For reasons that will becom
apparent later, we writeSk as the difference between two operators: the Liouville operator and
Hamiltonian operator. The Liouville operator is formally written as

VªE
2`

`

~ptq̇t!dt, ~II.37!

where

Sk5V2Hk . ~II.38!

We prove the existence ofV on F„L2(R)… using the same technique as before. Namely, we
see at once that the history algebra automorphism,

e~ i /\!sVbfe
2~ i /\!sV5bBsf , ~II.39!

is unitarily implementable. Here, the unitary operatorBs , sPR, acting onL2(R) is defined by

~Bsf !~ t !ªes~d/dt! f ~ t !5eisDf ~ t !5 f ~ t1s!, ~II.40!

whereDª2 i (d/dt). The Liouville operatorV has some interesting commutation relations w
the generators of the history algebra:

@V,xf #52 i\xḟ , ~II.41!

@V,pf #52 i\pḟ , ~II.42!

@V,Hk#52 i\H k̇ , ~II.43!
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@V,Sk#5 i\H k̇ , ~II.44!

@V,H#50, ~II.45!

@V,S#50, ~II.46!

where we have definedHª*2`
` Ht dt.

We notice thatV transforms, for example,bt from one timet—that refers to the Hilbert spac
Ht—to another timet1s, that refers toHt1s . More precisely,V transforms the support of th
operator-valued distributionbt from t to t1s:

e~ i /\!sVbfe
2~ i /\!sV5bf s

, ~II.47!

where f s(t)ª f (s1t). We shall return to the significance of this later.
The Fourier-transformed ‘‘n-particle’’ history propositions.An interesting family of history

propositions emerges from the representation spaceF@L2(R,dt)#, acting on thed-function nor-
malized basis of statesu0&, ut1&ªbt1

† u0&, ut1 ,t2&ªbt1
† bt2

† u0&, etc.; or, in smeared form,uf&
ªbf

† u0&, etc. The projection operatorut&^tu corresponds to the history proposition ‘‘there is a u
energy\v concentrated at the time pointt.’’ The physical interpretation for this family of propo
sitions, was deduced from the action of the Hamiltonian operator on the family ofut& states:

Htu0&50, ~II.48!

Htut1&5\vd~ t2t1!ut1&, ~II.49!

Htut1 ,t2&5\v@d~ t2t1!1d~ t2t2!#ut1 ,t2&.

A ~II.50!

To study the behavior of theSoperator, a particularly useful basis forF@L2(R,dt)# is the Fourier
transforms of theut& states. Indeed, if we consider the Fourier transformations,

un&5E
2`

1`

eintbt
†u0&dt, ~II.51!

un1 ,n2&5E
2`

1`

ein1t1ein2t2bt1
† bt2

† u0&dt1 dt2 , ~II.52!

bn5E
2`

1`

eintbt dt, ~II.53!

bn
†5E

2`

1`

e2 intbt
† dt, ~II.54!

the Fourier transformedun& states are defined byun&ªbn
†u0&, un1 ,n2&ªbn1

† bn2

† u0&, etc. The eigen-

vectors of the operatorS are calculated to be

Su0&50, ~II.55!

Sun&5\~n2v!un&, ~II.56!

Sun1 ,n2&5\@~n12v!1~n22v!#un1 ,n2&, ~II.57!

and we note, in particular, thate( i /\)sSu0&5u0&.
The un& states are also eigenstates of the Hamiltonian operator:
                                                                                                                



uantum
e

in its

e time.
esting
m

hile
h the

5664 J. Math. Phys., Vol. 40, No. 11, November 1999 K. Savvidou

                    
Hu0&50, ~II.58!

Hun&5\vun&, ~II.59!

Hun1 ,n2&52\vun1 ,n2&.

A ~II.60!

Again, as for the case of theut& states, for the special case ofHª*2`
` Ht dt, and for the simple

harmonic oscillator example, we see how the integer-spaced spectrum of the standard q
field theory appears in the HPO theory. Theun&^nu history propositions give the spectrum of th
action operator and they have an interesting connection with theut&^tu propositions.

A. The velocity operator

In Ref. 5, we emphasized the existence of the operatorẋtª(d/dt)xt , that corresponds to
history propositions about the velocity of the system. The velocity operator is better defined
smeared form using the familiar quantum field theory procedure,

ẋf52xḟ . ~II.61!

In analogy with quantum field theory, this requires the functionf to be differentiable and to
‘‘vanish at infinity’’ so that the implicit integration by parts in Eq.~II.61! is valid. We note that,
in this HPO theory, the velocity operator commutes with the position

@xt ,ẋt8#50, ~II.62!

and therefore there exist history propositions about the position and the velocity at the sam
Furthermore, the existence of the Liouville operator in the HPO scheme, allows an inter

comparison between the velocityẋf and the momentumpf operators: namely, the momentu
operator is defined by the history commutation relation of the position with the Hamiltonian, w
we can define the velocity operator from the history commutation relation of the position wit
Liouville operator:

@xf ,H#5 i\
pf

m
, ~II.63!

@xf ,V#5 i\ ẋf . ~II.64!

These relations signify the different nature of the momentumpf from the velocityẋf concerning
the dynamical behavior of the momentum~related to the Hamiltonian operator!, as opposed to the
kinematical behavior of the velocity~related to the Liouville operator!.

B. The Heisenberg picture

In standard quantum theory, a Heisenberg-picture operatorA(s) is defined as

AH~s!ªe~ i /\!sHAe2~ i /\!sH. ~II.65!

In particular, for the case of a simple harmonic oscillator, the equation of motion is

d2

ds2 x~s!1v2x~s!50, ~II.66!

from which we obtain the solution

x~s!5cos~sv!x1
1

mv
sin~sv!p, ~II.67!
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p~s!52mv sin~sv!x1cos~sv!p, ~II.68!

where we have used the classical equation,

pªm
dx~s!

ds U
s50

. ~II.69!

The commutation relations between these operators is

@x~s1!,x~s2!#5
i\

mv
sin@v~s12s2!#. ~II.70!

In formulating a history analog of the Heisenberg picture,5 we adopted a ‘‘time-averaged’
Heisenberg picture defined by

xk,tªei /\Hkxte
2 i /\Hk5cos@vk~ t !#xt1

1

mv
sin@vk~ t !#pt , ~II.71!

for suitable test functionsk. The analog of the equations of motion is the functional differen
equation,

d2xk,t

dk~s1!dk~s2!
1d~ t2s1!d~ t2s2!v2xk,t50 ~II.72!

and

d~ t2s!pt5m
dxk,t

dk~s!
U

k50

~II.73!

is the history analog of the classical equation,pªm@dx(s)/ds#us50 .
We noted then that the Heisenberg-picture in a HPO theory involves two time label

‘‘external’’ label t—that specifies the time the proposition is asserted—and an ‘‘internal’’ labs
that, for a fixed timet, is the time parameter of the Heisenberg picture associated with the copHt

of the standard Hilbert space. Using our new results, the two labels appear naturally in
version of the Heisenberg picture: they are related to the groups that produce the two types
transformations. In addition, the analogy with the classical expressions is regained.

To see this explicitly, we define a Heisenberg picture analog ofxt as

xk,t,sªe~ i /\!sHkxte
2~ i /\!sHk5cos@vsk~ t !#xt1

1

mv
sin@vsk~ t !#pt ~II.74!

pk,t,sªe~ i /\!sHkpte
2~ i /\!sHk52mv sin@vsk~ t !#xt1cos@vsk~ t !#pt . ~II.75!

The commutation relations for these operators are

@xk,t~s!,xk8,t8~s8!#5
i\

mv
sin@vk~s82s!#d~ t2t8!, ~II.76!

@xk,t~s!,Sk8#5 i\Fcos@svk~ t !# ẋt1
1

mv
sin@svk~ t !# ṗt2

k8

m
pk,t,sG , ~II.77!

@pk,t~s!,Sk8#5 i\@cos@svk~ t !# ṗt2mv sin@svk~ t !# ẋt1k8~ t !xk,t,s# , ~II.78!

and from these commutators we obtain the HPO analog of the equations of motion,
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d2

ds2 xk,t,s1v2k~ t !2xk,t,s50. ~II.79!

We notice the strong resemblance with standard quantum theory; for the casek(t)51, the clas-
sical expressions are fully recovered.

In the HPO formalism, the Heisenberg picture objects appear time averaged with resp
the ‘‘external’’ time labelt. On the other hand, the ‘‘internal’’ time labels is the time-evolution
parameter of the standard Heisenberg picture, as viewed in the Hilbert spaceHt . In what follows,
we will show how the Heisenberg picture operators evolve in time under the action of the g
of time transformations.

III. TIME TRANSFORMATION IN THE HPO FORMALISM

In classical theory, the HamiltonianH is the generator of time transformations. In terms
Poisson brackets, the generalized equation of motion for an arbitrary functionu is given by

du

dt
5$u,H%1

]u

]t
. ~III.1!

In a HPO theory, the Hamiltonian operatorHt produces phase changes in time, preserving
time labelt of the Hilbert space on which, at least formally,Ht is defined. On the other, it is th
Liouville operatorV that assigns, analogous to the classical case, history commutation rela
and produces time transformations ‘‘from one Hilbert space to another.’’ The action ope
generates a combination of these two types of time transformation. If we use the notationxf(s) for
thehistoryHeisenberg-picture operators smeared with respect to the time labelt, we observe that
they behave as standard Heisenberg-picture operators, with time parameters. Furthermore, their
history commutation relations strongly resemble the classical expressions:

@xf~s!,V#5 i\ ẋf~s!, ~III.2!

@xf~s!,H#5
i\

m
pf~s!, ~III.3!

@xf~s!,S#5 i\S ẋf~s!2
1

m
pf~s! D . ~III.4!

We define a one-parameter group of transformationsTV(t), with elementse( i /\)tV, tPR,
whereV is the Liouville operator and we consider its action on thebt operator; for simplicity, we
write the unsmeared expressions

e~ i /\!tVbt,se
2~ i /\!tV5bt1t,s . ~III.5!

The Liouville operator is the generator of transformations of the time parametert labeling the
Hilbert spacesHt .

Then, we define a one-parameter group of transformationsTH , with elementse( i /\)tH, where
H is the time-averaged Hamiltonian operator,

e~ i /\!tHbt,se
2~ i /\!tH5bt,s1t . ~III.6!

The Hamiltonian operator is the generator of phase changes of the time parameters, produced only
on one Hilbert spaceHt , for a fixed value of thet parameter.

Finally, we define the one-parameter group of transformationsTS , with elementse( i /\)tS,
whereS is the action operator,

e~ i /\!tSbt,se
2~ i /\!tS5bt1t,s1t . ~III.7!
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The action operator generates both types of time transformations—a feature that appears
the HPO scheme.

In Fig. 1~a! and 1~b!, we denote a quantum continuous-time history as a curve and the t
product of Hilbert spaces as a sequence of planes, each one representing a copy of the
Hilbert space. Each plane is labeled by the time labelt that the corresponding Hilbert spaceHt

carries. We depict then a history, as a curve along ann-fold sequence of ‘‘Hilbert planes’’Ht i
. In

analogy to this, we symbolize a classical history, as a curve along ann-fold sequence of plane
corresponding to copies of the standard phase spaceG t i

, as we will explain later. The time
transformations generated by the Liouville operator shift the path in the direction of the ‘‘Hi
planes.’’ On the other hand, the Hamiltonian operator generates time transformations tha
the history curve in the direction of the path, as represented on one ‘‘Hilbert plane.’’

The duality in time evolution.In standard quantum theory, time evolution is described by
different laws: the wave-packet reduction that occurs at a measurement, and the unitar
evolution that takes place between measurements. Thus, according to von Neumann, one
augment the Schro¨dinger equation with the collapse of the wave function associated wi
measurement.13

It seems that the two types of time transformations observed in the HPO theory corresp
the two dynamical processes in standard quantum theory: the time transformations gener
the Liouville operatorV are ~argueably! related to the wave-packet reduction~the time ordering
implied by the wave-packet reduction to be precise!, while the time transformations produced b
the Hamiltonian operatorH are related to the unitary time evolution between measurements

The argument in support of this assertion is as follows. Keeping in mind the description
History space as a tensor product of single-time Hilbert spacesHt , the V operator acts on the

FIG. 1. Quantum and classical history curves. In~a! the transformation of the history curves generated byV is represented
by the dashed line, while the transformation generated byH are represented by the dotted line. The curves drawn on e
‘‘Hilbert plane’’ correspond to the Hamiltonian transformations, as affected on the corresponding Hilbert space. In~b! the
classical history remains invariant under the corresponding time transformations.
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Schrödinger-picture projection operators, translating them in time from one Hilbert space t
other. These time-ordered projectors appear in the expression for the decoherence functio
defines probabilities. In history theory, the expression for probabilities in a consistent set
same as that derived in standard quantum theory using the projection postulate on a time-
sequence of measurements.1,2 It is this that suggests a relation of the Liouville operator to ‘‘wav
packet reduction.’’ To strengthen this claim, in what follows we will show the analogy ofV with
the Scts operator~an approximation of the derivative operator!, that appears in the decoheren
function and is implicitly related to the wave-packet reduction by specifying the time orderin
the action of the single-time projectors. The action ofV as a generator of time translations depen
on the partial~in fact, total! ordering of the time parameter treated as the causal structure i
underlying spacetime. Hence, theV-time translations illustrate the purely kinematical function
the Liouville operator.

The Hamiltonian operator producing transformations, with an evident reference to the H
berg time evolution, appears as the ‘‘clock’’ of the theory. As such, it depends on the part
physical system that the Hamiltonian describes. Indeed, we would expect the definition
‘‘clock’’ for the evolution in time of a physical system to be connected with the dynamics of
system concerned. We note that the idea of reparametrizing time depends on the smearing
k(t) used in the definition of the Hamiltonian operator;k(t) is kept fixed for a particular physica
system.

The coexistence of the two types of time evolution, as reflected in the action operator
tified as the generator of such time transformations, is a striking result. In particular, its defi
is in accord with its classical analog, namely, the Hamilton action functional. In classical th
a distinction between a kinematical and a dynamical part of the action functional also arises,
sense that the first part corresponds to the symplectic structure and the second to the Ham

IV. THE CLASSICAL SIGNATURE OF THE HPO FORMALISM

Let us now consider more closely the relation of the classical and the quantum historie
have shown above how the action operator generates time translations from one Hilbert s
another through the Liouville operator; and on each labeled Hilbert spaceHt , through the Hamil-
tonian operator. We now wish to discuss in more detail the analog of these transformations
classical case.

We recall that a history is a time-ordered sequence of propositions about the system
continuous-time quantum history in the HPO system makes assertions about the values
position or the momentum of the system, or a linear combination of them, at each moment o
and is represented by a projection operator on the continuous tensor product of copies
standard Hilbert space.

One expects that a continuous-time classical history should reflect the underlying tem
logic of the situation. Thus, the assertions about the position and the momentum of the sys
each moment of time should be represented on an analogous history space: this can be ach
using the Cartesian product of a continuous family~labeled by the timet! of copies of the standard
classical state space.

In classical mechanics, a~fine-grained! classical history is represented by a path in the s
space. Indeed, a pathg is defined as a map on the standard phase space,

g:R→G,

t°~q„g~ t !…,p„g~ t !…!, ~IV.1!

whereq„g(t)… andp„g(t)… are the position and momentum coordinates of the pathg, at the time
t. For our purposes, we shall consider the patht°g(t) to defined fort in some finite time interval
@ t1 ,t2#. We shall denote the set of such paths byP.
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The key idea of this new approach to classical histories is contained in the symplectic
ture of the theory: the choice of the Poisson bracket must be such that it includes ent
different moments of time. Thus, we suppose that the space of functions onP is equipped with the
‘‘history Poisson bracket’’ defined by

$qt ,pt8%5d~ t2t8!, ~IV.2!

where we defined the functionsqt on P as

qt :P→R

g°qt~g!ªq„g~ t !…,

and similarly forpt .
We now define the history action functionalSh(g) on P as

Sh~g!ªE
t1

t2
@ptq̇t2Ht~pt ,qt!#~g!dt, ~IV.3!

whereqt(g) is the position coordinateq at the time pointtP@ t1 ,t2# of the pathg, andq̇t(g) is the
velocity coordinate at the time pointtP@ t1 ,t2# of the pathg.

We also define the history classical analogs for the Liouville and time-averaged Hamilt
operators as

Vh~g!ªE
t1

t2
@ptq̇t#~g!dt, ~IV.4!

Hh~g!ªE
t1

t2
@Ht~pt ,qt!#~g!dt, ~IV.5!

Sh~g!5Vh~g!2Hh~g!. ~IV.6!

In classical mechanics, the least action principle states that there exists a functionaS(g)
5* t1

t2@pq̇2H(p,q)#(g)dt such that the physically realized path is the curve in state space,g0 ,

with respect to which the conditiondS(g0)50 holds, when we consider variations around th
curve. From this, the Hamilton equations are deduced to be

q̇5$q,H%, ~IV.7!

ṗ5$p,H%, ~IV.8!

whereq andp—the coordinates of the realized pathg0—are the solutions of the classical equ
tions of motion. For any functionF(q,p) of the classical solutions, it is also true that

$F,H%5Ḟ. ~IV.9!

In the case of the classical continuous-time histories, one can formulate the above vari
principal in terms of the Hamilton equations with the statement: A classical historygcl is the
realized path of the system—i.e., a solution of the equations of motion of the system—if it sa
the equations

$qt ,Vh%~gcl!5$qt ,Hh%~gcl!, ~IV.10!

$pt ,Vh%~gcl!5$pt ,Hh%~gcl!, ~IV.11!
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wheregcl5„qt(gcl),pt(gcl)…, andqt(gcl) is the position coordinate of the realized pathgcl at the
time point t. The equations~IV.10!–~IV.11! are the history equivalent of the Hamilton equatio
of motion. Indeed, for the case of the simple harmonic oscillator in one dimension, Eqs.~IV.10!–
~IV.11! become

q̇t~gcl!5
pt

m
~gcl!, ~IV.12!

ṗt~gcl!52mv2qt~gcl!, ~IV.13!

where q̇t(gcl)5q̇„gcl(t)…u is the value of the velocity of the system at timet. One would have
expected the result in Eqs.~IV.10!–~IV.11! for the classical analog of the histories formalism,
it shows that the classical analog of the two types of time transformation in the quantum t
coincide.

From Eqs.~IV.10!–~IV.11!, we also conclude that the canonical transformation generate
the history action functionalSh(gcl) leaves invariant the paths that are classical solutions of
system:

$qt ,Sh%~gcl!50, ~IV.14!

$pt ,Sh%~gcl!50. ~IV.15!

It also holds that any functionF on P satisfies the equation

$F,Sh%~gcl!50. ~IV.16!

Some of these statements are implicit in a previous work by Anastopoulos;14 an interesting
application of a similar extended Poisson bracket using a different formulation has been do
Kouletsis.15

‘‘Classical’’ coherent states for the simple harmonic oscillator.The relation between the
classical and the quantum theories can be further exemplified by using coherent state
special class of states was used in Ref. 6 to represent certain continuous-time history prop
in the history space. Coherent states are particularly useful for this purpose since they
natural~overcomplete! base for the Fock space representation of the history algebra.

A class of coherent states in the relevant Fock space is generated by unitary transform
on the cyclic vacuum state:

u f ,h&ªU@ f ,h#u0&, ~IV.17!

whereU@ f ,h# is the Weyl operator defined as

U@ f ,h#ªe~ i /\!~xf2ph!, ~IV.18!

wheref andh are test functions inL2(R). The Weyl generator,

a~ f ,h!ªx~ f !2p~h!, ~IV.19!

can alternatively be written as

a~ f ,h!5
\

i
„b†~w!2b~w* !…, ~IV.20!

wherewª f 1 ih.
Suppose now that, for a pair of functions~f,h!, the operatora( f ,h) commutes with the action

operatorS,
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@S,a~ f ,h!#50. ~IV.21!

Then any pair~f,h! satisfying this equation is necessarily a solution of the system of differe
equations obtained from Eq.~IV.21!:

ḟ 1mv2h50, ~IV.22!

ḣ2
f

m
50. ~IV.23!

We see that if we identifyf with the classical momentumpcl andh with the classical positionxcl ,
then Eqs.~IV.22!–~IV.23! are precisely the classical equations of motion for the simple harm
oscillator:

ẍcl1v2xcl50. ~IV.24!

The classical solutions~f,h! distinguish a special class of Weyl operatorsacl( f ,h), and, hence,
a special class of coherent states:

uexpzcl&ªUacl~ f ,h!u0&, ~IV.25!

wherezclª f 1 ih.
These classical-like features stem from the following relation withS:

@S,Uacl
#50, ~IV.26!

@S,Puexpzcl&
#50, ~IV.27!

wherePuexpzcl&
is the projection operator onto the~non-normalized! coherent stateuexpzcl&:

Puexpzcl&
ª

uexpzcl&^expzclu
^expzcluexpzcl&

. ~IV.28!

We note that there exists an analogy between Eqs.~IV.14!–~IV.15! and Eq.~IV.27!, if we
consider~f,h! to be the classical solution:t°(qt ,pt)(gcl). In classical histories, the canonic
transformation, Eqs.~IV.14!–~IV.15!, generated by the history action functional, vanishes o
solution to the equations of motion. On the other hand, when we deal with quantum historie
action operator produces the classical equations of motion, Eqs.~IV.23!–~IV.22!, when we require
that it commutes with the projector@as in Eq.~IV.28!#, which corresponds to a classical solutio
~f,h! of the system. However, we do not imply from this appearance of the classical limit: to m
any such physical predictions, we must involve the decoherence functional and the coarse g
operation.

Notice that the construction above holds for a generic potential, as long as there ex
representation onVcts of the history algebra on which the action operator is defined.

V. THE DECOHERENCE FUNCTIONAL ARGUMENT

In the consistent histories quantum theory, the dynamics of a system is described
decoherence functional. In a classical theory it is the action functional that plays a similar r
regard to the dynamics of the system. It is only natural, then, to seek for the appearance
action operator in the decoherence functional. The aim is to write the HPO expression f
decoherence functional, with respect to an operator that includesS, and to compare this operato
~i.e., its matrix elements!, with the operatorSctsU that appears in the decoherence functional.6
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In the HPO formalism, the decoherence functionald has been constructed for the special ca
of continuous-time projection operators corresponding to coherent states.6 To this end, a continu-
ous product of projectorŝ tPuexpl(t)& is identified withP^ tuexpl(•)& : the projector onto the~non-

normalized! coherent stateŝ tuexpl(t)& in the continuous tensor product̂tLt
2(R). More pre-

cisely, this continuous tensor product is isomorphic to Fock space:

Vctsª^ tPRL2
t~R!'exp„L2~R,dt!…, ~V.1!

and we can identify a projector on the Hilbert spaceVcts as

^ tPRPuexp~l~ t !&5Puexpl~• !& , ~V.2!

with Puexpl(•)&5e2^l,l&uexpl(•)&^expl(•)u. The action of the continuous-time histories projectors
the non-normalized coherent statesuexp„l(•)…& is denoted by

Puexpl~• !&uexp„m~• !…&5e2~l,m2l!uexpl~• !&. ~V.3!

The decoherence functionald(m,n) for two continuous-time histories is denoted by

d~m,n!5trVctŝ Vcts
~Puexpm~• !& ^ Puexp„n~• !…&X!, ~V.4!

where

Xª^0ur2`u0&~SctsU!†
^ ~SctsU!. ~V.5!

The operatorScts that appears in this expression for thed(m,n) was defined as an approximatio
of the derivative operator, in the sense that

Sctsuexpn~• !&5uexp„n~• !1 ṅ~• !…&, ~V.6!

while the dynamics was introduced by the operatorU, defined in such a way that the notion of tim
evolution is encoded,

e^l,l̇&e~ i /\!H@l#5trVcts
~SctsU Puexpl~• !&!. ~V.7!

We expectV and H to play a similar role to that ofScts and U, respectively, inside an
expression for the decoherence functional. To demonstrate this, we will use the type of Fock
construction given in Eqs.~II.33!–~II.34!. In particular, we use the property

G~A!uexpn~• !&5uexp„An~• !…&, ~V.8!

where A is an operator that acts on the elementsn~•! of the base Hilbert spaceH, while the
operatorG(A), defined by Eq.~II.33!, acts on the coherent statesuexpn(•)& of the Fock spaceeH.

We notice thatU is related to the unitary time evolution, Eq.~V.7!, in a similar way to that of
the Hamiltonian operatorH,

eisHuexpn~• !&5G~eisvI !uexpn~• !&5uexp„eisvn~• !…&, ~V.9!

where I is the unit operator. We also notice that the action of the operatoreisH produces phase
changes, as reflected on the right-hand side of Eq.~V.9! ~which has been calculated for the spec
case of the simple harmonic oscillator!. Furthermore, when the operatorScts acts on a coheren
state, Eq.~V.6!, it transforms it to another coherent state, which involves the addition to
defining functionn~•! in a way that involves the time derivative ofn; and it is noteworthy that the
Liouville operatorV acts in a similar way:

eisVuexpn~• !&5G~eisD!uexpn~• !&5uexp„eisDn~• !…&, ~IV.10!
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where

~eisDn!~ t !5n~ t1s!, ~V.11!

whereDª2 i (d/dt). The operatoreisD acts on the base Hilbert space, and corresponds to
operatoreisV under theG construction on the Fock space; that is, it acts on the vectorn(t) and
transforms it to another onen(t1s), which, for each timet, is translation by the time intervals.

This suggests that we define the operatorAsªeisS, whereSª*2`
1`(ptẋt2Ht)dt is the action

operator for the simple harmonic oscillator, which one expects to be related to the operatorSctsU.
For this reason, we write the matrix elements of both operators and compare them.

The general formula for the matrix elements of an arbitrary operatorT with respect to the
coherent states basis in the history space that was used in Ref. 6 is

^expm~• !uT uexpn~• !&5e(^m,d/dl̄&1^d/dl,n&!^expl~• !uT uexpl~• !&ul5l̄50 , ~V.12!

hence we need only compare the diagonal matrix elements of the two operatorsSctsU and As .
Thus, we have

^exp~l~• !uSctsUuexp~l~• !&5e^l,l1l̇&e~ i /\!H@l#, ~V.13!

whereH@l#ª*2`
` H„l(t)…dt andH(l)ªH(l,l)5^luHul&/^lul&; and

^expl~• !uAsuexpl~• !&5e^l,eis~vI 1D !l&, ~V.14!

with

~eis~vI 1D !l!~ t !5eisvl~ t1s!. ~V.15!

We can also write both of the above operators on the history spaceF„L2(R)… using their
corresponding operators on the Hilbert spaceL2(R). TheG construction shows that

SctsU5G~11 is!, ~V.16!

As5G~eiss!5eis dG~s!, ~V.17!

wheres5vI 1 iD , andI is the unit operator. As expressions of the same functions, the operators
SctsU andAs commute. However, we cannot readily compute their common spectrum becau
operatorSctsU is not self-adjoint.

We might speculate that the value of the decoherence functional is maximized
continuous-time projector that corresponds to a coarse graining around the classical path.
if we take such a generic projection operatorP, we expect that it should commute with th
operatorSctsU. In this context, we noticed earlier that the projection operator that correspon
a classical solution~f,h! commutes with the action operator

@SctsU,P~ f ,h!#50. ~V.18!

Finally, this argument should be compared with the similar condition for classical histories

$Sh ,FC%~gcl!50. ~V.19!

VI. CONCLUSIONS

We have examined the example of the simple harmonic oscillator, in one dimension, w
the History Projection Operator formulation of the consistent-histories scheme. We define
action operator as the quantum analog of the classical Hamilton action functional and we
proved its existence by finding a representation on theF„L2(R)… space of the history algebra. W
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have shown that the action operator is the generator of two types of time transformations:
lations in time from one Hilbert spaceHt , labeled by the time parametert, to another Hilbert
space with a different labelt, and phase changes in time with respect to the time parameters of the
standard Heisenberg-time evolution that acts in each individual Hilbert spaceHt . We have ex-
pressed the action operator in terms of the Liouville and Hamiltonian operators—which a
generators of the two types of time transformation— and that correspond to the kinematics a
dynamics of the theory, respectively.

We have constructed continuous-time classical histories defined on the continuous Ca
product of copies of the phase space and demonstrated an analogous expression to the
Hamilton’s equations.

Finally, we have shown that the action operator commutes with the defining operator
decoherence functional, thus appearing in the expression for the dynamics of the theory, as
have been expected.

One of the major reasons for undertaking this study was to provide new tools for tacklin
recalcitrant problem of constructing a manifestly covariant quantum field theory in the cons
histories formalism. Work on this problem is now in progress, with the expectation tha
Hamiltonian and Liouville operators will play a central role in the proof of explicit Poinc´
invariance of the theory.
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The information entropy of a single particle in a quantum-mechanical
D-dimensional central potential is separated in two parts. One depends only on the
specific form of the potential~radial entropy! and the other depends on the angular
distribution~spatial entropy!. The latter is given by an entropic-like integral of the
hyperspherical harmonics, which is expressed in terms of the entropy of the Ge-
genbauer polynomials. This entropy is expressed in terms of the values of the
quadratic logarithmic potential of Gegenbauer polynomialsCn

l(t) at the zeros of
these polynomials. Then this potential for integerl is given as a finite expansion of
Chebyshev polynomials of even order, whose coefficients are shown to be Wilson
polynomials. © 1999 American Institute of Physics.@S0022-2488~99!00111-5#

I. INTRODUCTION

The Boltzmann–Shannon information entropy1,2 of a many particle system cannot have
closed form, although tight rigorous bounds in terms of radial expectation values have
derived.3 Even for single-particle systems with prototypic central potentials~e.g., Coulomb and
harmonic oscillator! this quantity, which measures the spread or extent of the associated qua
mechanical probability density, has been fully determined in an analytical way only recent
quantum-mechanical states located at the two extremes of the energy spectrum.4–9 That is, for the
ground state and the first few lowest-lying excited states~where the wave function has a ver
simple form! and for high-lying~Rydberg! excited states~where the physical entropies are co
trolled by the asymptotics ofLp-like norms of the classical orthogonal polynomials4,6,7,8,10,11!

Let us consider the information entropy of aD-dimensional single-particle system in a cent
potentialV(r ), defined by

Sr52E r~r !logr~r !dr , ~1!

where r5(x1 ,...,xD) and r(r )5uC(r )u2. The wave functionC is given by the Schro¨dinger
equation of the system which in atomic units is

@2 1
2 “

21V~r !#C~r !5EC~r !.

Here, the information entropySr is shown to decompose into two parts; the radial entropy, wh
depends on the specific form of the potentialV(r ), and the angular or ‘‘spatial’’ entropyS(Y,D),
which is an integral involving hyperspherical harmonicsYl ,$m%(VD), as it is shown later on in this
section. The rest of the paper is devoted to the determination of the spatial entropy, what is
56750022-2488/99/40(11)/5675/12/$15.00 © 1999 American Institute of Physics
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out in three steps. First, in Sec. II, this entity is explicitly expressed in terms of the entropy o
orthonormal Gegenbauer or ultraspherical polynomials$Ĉn

l(x); n50,1,...%. Then, in Sec. III, this
Gegenbauer entropyEn

l[En(Ĉn
l) is given in terms of the logarithmic potential of the squares

Gegenbauer polynomials; and, finally, this quadratic logarithmic potential with integer para
l is expressed in the form of a finite Chebyshev expansion, whose coefficients turn out
Wilson polynomials.

To show the entropy decomposition we start writing the kinetic energy operator2 1
2“ in

hyperspherical coordinates,12 this equation is transformed in

F2
1

2 S d2

dr2 1
D21

r

d

dr
2

L2

r 2 D1V~r !GC~r !5EC~r !.

The solution of this equation takes the form

C~r !5Rnl~r !Yl ,$m%~VD!, ~2!

whereRnl(r ) is the radial eigenfunction, i.e., solution of the radial Schro¨dinger equation

F2
1

2 S d2

dr2 1
D21

r

d

dr
1

l ~ l 1D22!

r 2 D1V~r !GRnl~r !5EnlRnl~r ! ~3!

andYl ,$m%(VD) are the eigenfunctions of the nonradial part of the Hamiltonian,L2, i.e.,12

L2Yl ,$m%~VD!5 l ~ l 1D22!Yl ,$m%~VD!, ~4!

where the orbital quantum numberl and the magnetic quantum numbers$m%, are integers verifying

l 5m1>m2>¯>mD21 ,

with mD215umu. The functionsYl ,$m%(VD) are the hyperspherical harmonics, given by12–14

Yl ,$m%~VD!5Nl ,$m%e
imw )

j 51

D22

Cm j 2m j 11

a j 1m j 11~cosu j !~sinu j !
m j 11, ~5a!

with the normalizing constant

Nl ,$m%
2 5

1

2p )
j 51

D22
~a j1m j !~m j2m j 11!! @G~a j1m j 11!#2

p2122a j 22m j 11G~2a j1m j1m j 11!
5

1

2p )
j 51

D22

Nl ,$m%
~ j ! . ~5b!

Here 2a j5D2 j 21, Cn
l(t) is a Gegenbauer polynomial of degreen and parameterl, and the

anglesu1 ,u2 ,...,uD22 , f are defined by

x15r sinu1 sinu2¯sinuD22 cosw,

x25r sinu1 sinu2¯sinuD22 sinw,

x35r sinu1 sinu2¯cosuD22 ,

]]

xD215r sinu1 cosu2 ,

xD5r cosu1 ,

with 0<u j<p, j 51,...,D22, and 0<w,2p.
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As a particular case, in two dimensions, we have

Ym~V2!5
eimw

2p
~6a!

with umu50,1..., and in the three-dimensional case (D53),

Yl ,m~V3!5S ~ l 1 1
2!~ l 2umu!! @G~ umu1 1

2!#
2

2122umup2~ l 1umu!! D 1/2

eimw~sinu! umuCl 2umu
umu11/2~cosu!, ~6b!

with l 50,1,...y umu50,1,...,l . The expression~6b! can be written in terms of Legendre function
using the relationship between these functions and the Gegenbauer polynomials15

Cl 2m
m11/2~ t !5~21!m

~12t2!2m/2m!2m

~2m!!
Pl

m~ t !. ~7!

Then, taking into account~2! and that the volume element in aD-dimensional space is

dr5r D21drdVD , dVD5S )
j 51

D22

sin2a j u jdu j D df,

we have from~1! that the Boltzmann–Shannon entropy of aD-dimensional particle in a centra
potentialV(r ) can be decomposed into two parts,

Sr5S~R;D !1S~Y;D !, ~8!

where

S~R;D !52E r D21Rnl
2 ~r !logRnl

2 ~r !dr ~9!

is the contribution from the radial part of the wave function to the entropy~to be called radial
entropy heretoforth!, and

S~Y;D !52E uYl ,$m%~VD!u2 loguYl ,$m%~VD!u2dVD ~10!

is the contribution from the angular part of the density, to be called spatial entropy heretof
The radial entropyS(R;D) cannot be calculated without knowing the specific form of t

potential V(r ). Moreover, even when this form is known such as for Coulomb and harm
oscillator potentials, its closed form has not yet been derived; despite it, its asymptotic be
has been rigorously found as said before.

On the contrary, the spatial entropyS(Y;D), also called entropy of the hyperspherical ha
monic Yl ,$m%(VD), does not depend on the potential so that it can be evaluated independen
it. This is done in the following sections.

II. SPATIAL ENTROPY AND GEGENBAUER ENTROPY

Taking into account expression~5a! of the hyperspherical harmonics, we find that the spa
entropy of aD-dimensional particle is
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S~Y;D !52E uYl ,$m%~VD!u2 loguYl ,$m%~VD!u2dVD

52 logNl ,$m%
2 1 (

j 51

D22

Nl ,$m%
~ j ! ~S~Cm j 2m j 11

a j 1m j 11
!2m j 11I $m%

~ j ! !, ~11a!

where

S~Cm j 2m j 11

a j 1m j 11![2E
21

11

~12t2!a j 1m j 112~1/2!@Cm j 2m j 11

a j 1m j 11~ t !#2 log@Cm j 2m j 11

a j 1m j 11~ t !#2dt, ~11b!

and

I $m%
~ j ! 5E

21

11

~12t2!a j 1m j 112~1/2!@Cm j 2m j 11

a j 1m j 11~ t !#2 log~12t2!dt, ~11c!

whereS(Cn
a) is the entropy of the Gegenbauer polynomials of degreen and parametera. The

integral I $m%
( j ) can be calculated by use of the following result:16

E
21

1

~12x2!l21/2@Cn
l~x!#2 log~12x2!dx

5
G~2l1n!2122l

n!G2~l!

p

l1n F2c~2l1n!22c~l1n!22 log 22
1

l1nG ,
where c(x) is the digamma or psi function, i.e.,c(x)5G8(x)/G(x). This value can also be
obtained by differentiation of the Gegenbauer orthogonality relation

E
21

11

~12x2!l21/2@Cn
l~x!/~l!n#2dx5

p2122lG~n12l!

n! @G~n1l11!#2

with respect tol and noting that (]/]l)@Cn
l(x)/(l)n# is a polynomial of degreen21.

Taking into account this value and substituting it into~11a!, one has

S~Y;D !5 log 2p2 (
j 51

D22

logNl ,$m%
~ j ! 1 (

j 51

D22

Nl ,$m%
~ j ! S~Cm j 2m j 11

a j 1m j 11!

2 (
j 51

D22

m j 11F2c~2a j1m j1m j 11!22c~a j1m j !22 log 22
1

a j1m j
G . ~12!

Finally, since the orthonormal Gegenbauer polynomialĈn
l(x)5hn

21Cn
l(x), with

hn
25p

2122lG~n12l!

@G~l!#2~n1l!n!
,

one has from~11b!,

S~Y;D !5 log 2p1 (
j 51

D22

E~Ĉm j 2m j 11

a j 1m j 11!

2 (
j 51

D22

m j 11F2c~2a j1m j1m j 11!22c~a j1m j !22 log 22
1

a j1m j
G , ~13a!
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where

E~Ĉm j 2m j 11

a j 1m j 11!52E
21

11

~12t2!a j 1m j 112~1/2!@Ĉm j 2m j 11

a j 1m j 11~ t !#2 log@Ĉm j 2m j 11

a j 1m j 11~ t !#2dt ~13b!

is the entropy of orthonormal Gegenbauer polynomials of degreem j2m j 11 and parametera j

1m j 11 , or simply, Gegenbauer entropy.
So, it is observed that the calculation of the angular entropy of a particle under an arb

central potential gets reduced to the computation of the entropy of Gegenbauer polynomi
particular, we have

~i! For D52, the entropyS(Y;2) is
S~Y;2!5log 2p, ~14!

which does not depend on the magnetic quantum numberm.
~ii ! For D53, Eq. ~12! reduces to

S~Y;3!52EuYlm~V3!u2 loguYlm~V3!u2dV3

5log 2p2logF~l11
2!~l2umu!!@G~umu11

2!#
2

p222umu~l1umu!! G1 ~l11
2!~l2umu!!@G~umu11

2!#
2

p222umu~l1umu!!
S~Cl2umu

umu1~1/2!!

2umuF2c~ l 1umu11!22cS l 1
1

2D22 log 22
1

l11
2
G. ~15!

Also, from Eq.~13b! one has

S~Y;3!5log 2p1E~Ĉl2umu
umu1~1/2!!2umuF2c~ l 1umu11!22cS l 1

1

2D22 log 22
1

l11
2
G.

~16!
It is interesting to note that, using the relations~7! and ~15!, we have the alternative
expression

S~Y;3!52logS~2l11!~l2m!!

4p~l1m!! D1S~2l11!~l2m!!

2~l1m!! DS~Pl
m!, ~17a!

where

S~Pl
m!52E

21

11

@Pl
m~t!#2 log@Pl

m~t!#2dt ~17b!

denotes the entropy of the Legendre functionPl
m(t).

III. ENTROPY AND LOGARITHMIC POTENTIAL OF GEGENBAUER POLYNOMIALS

Aptekarevet al.4 have recently shown that the asymptotic behavior of the entropy of
Gegenbauer polynomialsEn

l5E(Ĉn
l) defined by

En
l
ª2E

21

11

vl~ t !@Ĉn
l~ t !#2 log@Ĉn

l~ t !#2dt ~18!

is given by

En
l'E`

l 5211 log 22I ~r0 ,vl!5211~122l!log 21 logp1o~1!,

where the relative entropy between the equilibrium measure

r0~x!5~1/p!~1/A12x2!
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and the weight functionvl(x)5(12x2)l2(1/2) is

I ~r0 ,vl!5E
21

11

r0~ t !log
r0~ t !

vl~ t !
dt52l log 22 logp.

Also, they observed4 that the rate of convergence ofEn
l is

En
l5E`

l 1
kl

n
1oS 1

nD ~19!

and studied the numerical dependence ofkl on l. Moreover, they conjectured a similar rate
convergence for the entropy of general orthogonal polynomials with a constantk depending only
on the weight function of the polynomials.

Moreover, the consideration of the probability weight function

rl~x!5
lG2~l!

2122lG~2l!p
~12x2!l2~1/2!

and its corresponding orthonormal polynomials

pn
l~x!5FG~2l!~n1l!n!

lG~n12l! G1/2

Cn
l~x!5

2122lG~2l!p

lG2~l!
Ĉn

l~x!

has led to the authors5 to obtain the following asymptotic expression:

En
l52E

21

11

rl~x!@pn
l~x!#2 log@pn

l~x!#2dx

52
n

n1l
22 log

G~n1l!

G~l!n!
@11o~1!#2 log

G~2l!~n1l!n!

lG~n12l!
.

Here we will use a two-step method which allow us to calculate the exact value o
Gegenbauer entropyEn

l for any n. First, we use the expression7

En
l52 loggn22(

j 51

n

Vn
l~xj ,n ;nn!, ~20!

where xj ,n ( j 51,2,...,n) and gn are the zeros and the leading coefficient of the orthonor
Gegenbauer polynomialpn

l(x), respectively,nn is the probability measure given by

dnn~ t !5~12t2!l2~1/2!@pn
l~ t !#2,

and the logarithmic potentialV̂n
l(x,nn) of the measurenn is given by

V̂n
l5V̂n

l~z,nn!5E
21

11

~12t2!l2~1/2!@pn
l~ t !#2 log

1

uz2tu
dt,

which is related to the logarithmic potential of the Gegenbauer polynomialCn
l defined as

Vn
l~z,nn!5E

21

11

~12t2!l21/2@Cn
l~ t !#2 log

1

uz2tu
dt

by the relationship
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V̂n
l~z!5

n1l

n

G~2l!

G~n12l!

n!G~l11!

ApG~l1 1
2!

Vn
l~z!.

Taking into account that

gn5
2nG~l1n11!G~2l!

G~l11!G~n12l!
,

we remark from~20! that the Gegenbauer entropyEn
l can be computed once we will have a prec

knowledge of the logarithmic potentialVn
l at the zeros ofCn

l . The use of the recursive approac
recently developed by the authors7 to determine this logarithmic potential does not allow to find
explicit closed expression for the Gegenbauer entropyEn

l in a simple way save for the first two
integers valuesl50,1,5,7

En
05 log 221, En

152
n

n11
.

To go further we need a procedure to calculate the logarithmic potential other than the afor
tioned recursive approach.7 This is done in the following by expanding it in terms of Chebysh
polynomials of the first kindTk(x); this is the second step of our method.

If Pn (n50,1,2,...) are orthogonal polynomials with respect to the measurem on @21,1#, then
we can use that7

loguz2tu5 log
1

2
22(

k51

`
1

k
Tk~z!Tk~ t !

to find

2E
21

1

logux2tuPn
2~x!dm~x!5 log 2E

21

1

Pn
2~x!dm~x!12(

k51

`
Tk~ t !

k E
21

1

Tk~x!Pn
2~x!dm~x!,

which gives an expansion in terms of Chebyshev polynomials of the first kind, with expa
coefficients in terms of

E
21

1

Tk~x!Pn
2~x!dm~x!,

and these integrals still need to be computed explicitly. Let us apply this idea for Gegen
polynomialsPn(x)5Cn

l(x). The use of Clausen’s formula17

@Cn
l~x!#25F ~2l!n

n! G2

3F2S 2n,n12l,l

2l,l1 1
2

; 12x2D ,

allows us to find

E
21

1

Tk~x!@Cn
l~x!#2~12x2!l2~1/2!dx

5F ~2l!n

n! G2

(
j 50

n
~2n! j~n12l! j~l! j

~2l! j~l1 1
2! j j !

E
21

1

~12x2! j 1l2~1/2!Tk~x!dx.
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If l is an integer, then@Cn
l(x)#2(12x2)l is a polynomial of degree 2n12l, and by the orthogo-

nality of the Chebyshev polynomials the integral will vanish fork.2n12l. Therefore we only
need to considerk<2n12l. By symmetry the integral fork odd vanishes and for even indices w
have18

E
21

1

~12x2!l1 j 2~1/2!T2k~x!dx5~21!k
pG~2 j 12l11!

22 j 12lG~ j 1k1l11!G~ j 1l112k!
.

Using Legendre’s duplication formula for the gamma function givesG(2 j 12l11)
522 j 12lp21/2G( j 1l1 1

2)G( j 1l11) so that

E
21

1

@Cn
l~x!#2~12x2!l2~1/2!T2k~x!dx

5F ~2l!n

n! G2 ~21!kApG~l1 1
2!G~l11!

G~k1l11!G~l112k! 4F3S 2n,n12l,l,l11

2l,l111k,l112k
; 1D . ~21!

Hence, we have

Vn
l~ t !5F ~2l!n

n! G2

ApF log 2
G~l1 1

2!

G~l11! 3F2S 2n,n12l,l

2l,l11
; 1D 1GS l1

1

2DG~l11!

3 (
k51

n1l

~21!kT2k~ t !
1

kG~k1l11!G~l112k! 4F3S 2n,n12l,l,l11

2l,l111k,l112k
; 1D G .

~22!

Observe that this shows that on the interval@21,1# the logarithmic potentialVn
l is a polynomial of

degree 2n12l whenl is an integer, which is indeed compatible with the explicit formulas

V̂n
~0!~ t !5 log 21

T2n~ t !

2n
; n>1

V̂n
1~ t !5 log 22

T2n12~ t !

2n12
; n>0

V̂n
2~ t !5 log 21

n11

n13

T2n14~ t !

2n14
2

U2n12~ t !

~n11!~n13!
1

1

~n11!~n13!
,

already found by us.7

The 3F2 series is terminating and balanced, hence Saalschu¨tz’ theorem19 gives

3F2S 2n,n12l,l

2l,l11
; 1D 5

lG~2l!n!

~n1l!G~2l1n!
.

Also the4F3 series is balanced, but its evaluation is more complicated. A balanced and term
ing 4F3 at unit argument is however a Wilson polynomial or a Racah polynomial taken at s
point. The Wilson polynomialWn is given by

Wn~x2;a,b,c,d!

~a1b!n~a1c!n~a1d!n
54F3S 2n,n1a1b1c1d21,a1 ix,a2 ix

a1b,a1c,a1d
; 1D

~see, e.g., Koekoek and Swarttouw20 or Wilson21,22!. Identifying parameters shows that
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4F3S 2n,n12l,l,l11

2l,l111k,l112k
; 1D 5

Wn~2 1
4;l1 1

2,l2 1
2,k1 1

2,2k1 1
2!

~2l!n~l111k!n~l112k!n
.

Using this and the normalization

n1l

l

G~2l!

G~n12l!

n!G~l11!

ApG~l1 1
2!

Vn
l~ t !5V̂n

l~ t !,

this gives

V̂n
l~ t !5 log 21

2~n1l!G2~l11!

ln! (
k51

n1l

~21!k
T2k~ t !

2k

Wn~2 1
4;l1 1

2,l2 1
2,k1 1

2,2k1 1
2!

G~l1k1n11!G~l2k1n11!
.

~23!

A few comments about Wilson polynomials, which are pertinent to illustrate the effectivene
Eq. ~23!, are contained in the Appendix. Expression~23! for the logarithmic potential with intege
l generalizes our expressions forl50, 1, and 2 already mentioned.

For completeness and comparison, it is worth to mention here that recently Buyarovet al.23

have developed an alternative, fully different method to work out a formula for the logarit
potential~with integerl! evaluated at the zeros of the polynomialCn

l(x). This formula, which
does not use Wilson polynomials, together with Eq.~20! has allowed them to obtain an explic
expression for the entropyEn

l for l, nPN, l>2. In doing so, they corrected and extended
value obtained previously by one of them24 for En

2, which is given by

En
25 log

n13

3~n11!
2

n~n212n21!

~n11!~n12!~n13!
2

2

A~n11!3~n13!3

Tn12- ~zn!

Tn129 ~zn!

5 log
n13

3~n11!
2

n325n2229n227

~n11!~n12!~n13!
2

1

n12 S n13

n11D n12

,

wherezn5n12/A(n11)(n13). Also, they were able to obtain analytically23 that the rate of
convergence ofEn

l , lPN, l>2, is given by

En
l5E`

l 1
gl

n
1O~n22!,

where the dominant term is

E`
l 511 log

G~2l!

G~l!G~l11!

and the second term is controlled by the constant

gl522l21l22(
j 51

l21

Aj j

R

S8

Jl1
1
2

Jl2
1
2

~j j !.

Here, Jl(x) denotes the Bessel function of orderl and j j , j 51,...,l21 are the zeros of the
polynomialS[S2l22(x). The polynomials$S2150, S051,...,S2l22% are generated by the recu
rence relation

Sj 11~x!5~2l22 j 23!Sj~x!2xSj 21~x!,
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and the polynomialR(x) is given by

R~x!5 (
j 50

2l22

~21! jSj 21~x!S2l2 j 23~x!.

Finally, let us mention that there exists another alternative to be explored which replac
second step of our method for the following procedure. Instead of expanding the quadrat
genbauer potentialVn

l in Chebyshev polynomials, one can express it as a sum of linear Ge
bauer potentials by the linearization formula of@Cn

l(t)#2 in terms ofCn
l(t); this can be done by

use of the Dougall’s linearization formula of products of twoCn
l(x) as a sum involvingCk

l(x).
Then, the linear Gegenbauer potential, which is a definite integral of (12z2)l21/2Qn

l(z), can be
evaluated by use of the explicit hypergeometric representation for the Gegenbauer function
second kindQn

l(z).

IV. SUMMARY AND CONCLUSIONS

The spread of the quantum-mechanical probability densityr(r ) for a D-dimensional single-
particle system moving in a potentialV(r ) is controlled by the Boltzmann–Shannon informati
entropy Sr . For central potentials, this quantity can be decomposed in two parts: the r
entropy and the angular or spatial entropy. The former is given by Eq.~9! and it depends on the
analytic form of the potential. The latter, denoted byS(Y;D) and associated to the physical for
of the system, is described in Eq.~10! by the entropic integral or just the ‘‘entropy’’ of the know
hyperspherical harmonicsYl ,$m%(VD). Moreover, the entropyS(Y;D) is explicitly expressed by
Eq. ~13b! in terms of the entropic integral of the orthonormal Gegenbauer polynomialĈn

l , where
n and l depends onD and the quantum numbersl ,$m%. This mathematical notionEn

l[E(Ĉn
l),

defined by Eq.~18! and called Gegenbauer entropy, was naturally encountered in the study
position and momentum information entropies of two specific physical systems: the harm
oscillator and the hydrogen atom.5,7 Its asymptotic (n→`) behavior has been thoroughly inve
tigated specifically4,23 and in the more general context of entropic integrals for general orthog
polynomials.10

Finally, this paper and Ref. 23 describe methods to calculate the Gegenbauer entro
arbitrary integer values ofl andn. However we have not been able yet to extend our results to
or, at least, half-integer values of the parameterl, what is necessary@see, e.g., Eq.~16!# for a
complete description of the entropy of an arbitrary~hyper!spherical harmonic, which describes th
spatial entropy of single-particle systems in arbitrary quantum-mechanical states of an~D-
dimensional! central potential. This would require a generalization of our methods or the desi
a new mathematical strategy to evaluate the Gegenbauer entropyEn

l and/orEn
l for real l.
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APPENDIX: SOME NOTES ABOUT WILSON POLYNOMIALS

Wilson polynomials are invariant under a permutation of the parameters. They are ortho
on @0,̀ ! when all the parametersa,b,c,dare such thatR(a,b,c,d).0 and non-real parameter
occur in conjugate pairs. In our case, one of the parameters2k1 1

2 may be negative~alsol2 1
2

when l,1/2!. If some of the parameters are negative, then Wilson polynomials can sti
orthogonal on@0,̀ )øE, whereE contains mass points of the orthogonality measure on~2`,0#.
The first mass point in this case turns out to be21/4, which is exactly the point where we evalua
the Wilson polynomial.

We will use a generating function for the Wilson polynomials
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2F1S a1 ix,b1 ix

a1b
; t D 2F1S c2 ix,d2 ix

c1d
; t D 5 (

n50

`
Wn~x2;a,b,c,d!

~a1b!n~c1d!n

tn

n!
,

~see Refs. 20 or 21!. In our case the parameters area5l1 1
2, b5l2 1

2, c5k1 1
2, d52k1 1

2, and
the variable isx252 1

4. The generating function then becomes

2F1S l,l21

2l
; t D 2F1S 12k,k11

1
; t D

5 (
n50

`

WnS 2
1

4
;l1

1

2
,l2

1

2
,k1

1

2
,2k1

1

2D tn

~2l!n~n! !2 . ~A1!

Observe that one of the hypergeometric functions on the left is a polynomial of degreek21. From
this generating function we can now obtain the coefficient oftn as the convolution of the coeffi
cients of the two hypergeometric series on the left, giving

WnS 2
1

4
;l1

1

2
,l2

1

2
,k1

1

2
,2k1

1

2D5~2l!n~n! !2(
j 50

k21
~12k! j~k11! j

~ j ! !2

~l!n2 j~l21!n2 j

~2l!n2 j~n2 j !!
,

n>k21. ~A2!
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Bethe Ansatz and thermodynamic limit of affine quantum
group invariant extensions of the t – J model
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~Received 20 October 1998; accepted for publication 26 May 1999!

We have constructed a one-dimensional exactly solvable model, which is based on
the t –J model of strongly correlated electrons, but which has additional quantum
group symmetry, ensuring the degeneration of states. We use Bethe Ansatz tech-
nique to investigate this model. The thermodynamic limit of the model is consid-
ered and equations for different density functions written down. These equations
demonstrate that the additional color degrees of freedom of the model behave as in
a gauge theory, namely, an arbitrary distribution of color indices over particles
leave invariant the energy of the ground state and the excitations. TheS-matrix of
the model is shown to be the product of the ordinaryt –J modelS-matrix and the
unity matrix in the color space. ©1999 American Institute of Physics.
@S0022-2488~99!02411-1#

I. INTRODUCTION

Since the discovery of high-Tc cuprate superconductivity the one-dimensional physics
strongly correlated electrons has been in focus in many publications.1 The Hubbard2 and t –J
models3 are such examples, motivated in part by the fact that high-Tc compounds display antifer
romagnetism in the absence of doping. Thet –J model was proposed by Zhang and Rice3 and
describes strongly correlated electrons with anntiferromagnetic exchange interaction.

The interest in one-dimensional physics grew after Andersons claim4 that two-dimensional
systems may have features in common with one-dimensional systems. In addition it sho
mentioned that powerful methods in 1D such as bosonization, 2D conformal field theory, a
particular the Bethe Ansatz technique allow the detailed study of such systems.

The t –J model may be used as well for the heavy fermion system.5,6

At the supersymmetric pointJ52t the t –J model becomes exactly integrable5,7–12 because
the Hamiltonian can be represented as a graded permutation in a superalgebra of two fermi
one boson.

In Refs. 13–15 we developed the technique for construction of a family of spin chain H
tonians and their fermionic representations, which have the same energy levels as som
model (XXZ, Hubbard,t –J or others! but with huge degeneracy as a result of an affine quan
symmetry added to the basic model. We called this procedure an affinization of the model

The first example of this type of model was constructed in Ref. 16, giving rise to the Hub
Hamiltonian in the infinite repulsion limit.

a!Electronic mail: ambjorn@nbivms.nbi.dk
b!Electronic mail: avakyan@lx2.yerphi.am
c!Electronic mail: hakob@lx2.yerphi.am
d!Electronic mail: sedrak@nbivms.nbi.dk; Permanent address: Yerevan Physics Institute, Br. Alikhanian st. 2, 3

Yerevan, Armenia.
56870022-2488/99/40(11)/5687/15/$15.00 © 1999 American Institute of Physics
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In Ref. 14 we have fermionized the simplest examples of this newly defined family of mo
and have shown that it leads to extensions of one-band Hubbard Hamiltonians. Theh-pairing
mechanism introduced by Yang17,18 was found in one of examples in addition to other exac
solvable Hubbard models with the superconducting ground state.19–23 The essential property o
this extensions is the fact that, besides the ordinary electron hopping and Hubbard inte
terms, they contain also bond-charge interaction, pair-hopping, and nearest-neighbor inte
terms. In Ref. 15 the SU(N) affinization of thet –J model was carried out, giving rise to a mod
where the spin–spin coupling term consists of interaction between the total spins~i.e., the sum of
the spins of all band! at nearest-neighbor sites. The presence of the affine symmetry, w
ensures the degeneracy of levels exponentially proportional to the length~area! of the space, might
lead to a new type of string theory.

In this article we define an extension oft –J model such that an affine quantum grou
symmetry is present, and we use the Bethe Ansatz technique to solve the model. We fi
S-matrix excitations on empty background, the ground state and construct the thermody
limit of the model. As one might expect, theS-matrix of the excitations on empty backgroun
consists of theS-matrix of the ordinaryt –J model multiplied by the unity matrix in the additiona
space of ‘‘colors.’’ Therefore the Bethe equations are not different from ones for thet –J model,
but the rapidities presented in equations correspond to particles with the arbitrary colors
degeneracy of the correspondingn-particle states come from arbitrary partitions of the co
indices over particles. The same is true for the ground state. The situation is exactly as in
theories if we distinguish the states which differ by pure gauge transformations. All these r
are presented in Sec. V.

The thermodynamic limit of the model with corresponding equations are represented in
VI, where we also shown that theS-matrix of our model in an arbitrary background is equal
ordinary t –J model S-matrix multiplied by the Kronecker symbols over the additional co
indices.

II. QUANTUM GROUP INVARIANT HAMILTONIANS FOR REDUCIBLE
REPRESENTATIONS

Let V5 % i 51
N Vl i

be a direct sum of finite dimensional irreducible representationsVl i
of

quantum groupUqg.24–26We denote byV(x1 ,...,xN) the representation with spectral paramet
xi of the corresponding affine quantum groupUqĝ,26

V~x1 ,...,xN!5 %
i 51

M

Nl i
^̂ Vl i

~xi !, ~1!

where all theVl i
(xi) are M nonequivalent irreps andNl i

.CNi have dimensions equal to th

multiplicity of Vl i
(xi) in V(x1 ,...,xN). Note that( i 51

M Ni5N. The ˆ over the tensor produc

signifies thatUqĝ does not act onNl i
^̂ Vl i

(xi) by means of comultiplicationD but instead acts as
id^ g.

In Ref. 14 the general matrix form of the intertwining operator

H~x1 ,...,xN!:

V~x1 ,...,xN! ^ V~x1 ,...,xN!→V~x1 ,...,xN! ^ V~x1 ,...,xN!, ~2!

@H~x1 ,...,xN!, D~a!#50, ;aPUqĝ

had been written using the projection operators

Xb
a5ua&^bu. ~3!
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Here the vectorsua& span the spaceV. In accordance with the decomposition~1! we will use the
double indexa5(ni ,ai), i 51,...,M where the first indexni51,...,Ni characterizes the multiplicity
of Vl i

and the second oneai51,...,dimVl i
is the vector index ofVl i

. Then the intertwining
operator~2! is

H~A,B!5 (
i , j 51

M S (
ni ,nj ,mi ,mj

Ai j ninj

mimj (
ai ,aj

X
~mi ,ai !

~ni ,ai ! ^ X
~mj ,aj !

~nj ,aj !

1 (
ni ,nj ,mi ,mj

Bi j ninj

mimj (
ai ,aj ,ai8 ,aj8

Ri j a
i8a

j8

aiaj ~xi /xj !X~mi ,ai !

~nj ,aj8!
^ X

~mj ,aj !

~ni ,ai8! D , ~4!

where theR-matrix

RVl i
^ Vl j

~xi /xj !uai& ^ uaj&5 (
ai8 ,aj8

Ri j a
i8a

j8

aiaj ~xi /xj !uai8& ^ uaj8&

is the intertwining operator between two actions of affine quantum groupUqĝ on Vl i
^ Vl j

, which

are induced correspondingly by comultiplicationD and opposite comultiplicationD̄,24–26

RVl i
^ Vl j

~xi /xj !D~g!5D̄~g!RVl i
^ Vl j

~xi /xj !.

Ai j and Bi j , Bii 50 in ~4! are arbitrary matrices. In general,H(A,B) depends on deformation
parameterq of quantum group, which is included in theR-matrix. Note thatRVl i

^ Vl j
(xi /xj ) does

not depend onq and is identity only ifl i or l j are trivial one-dimensional representations. So
the special case, when the only nontrivialR-matrixes in~4! are between representations, one
which is trivial representation, the expression ofH(A,B) does not depend onq. ThenH(A,B)
commutes with the quantum group action for all values of deformation parameter. In the follo
we consider only this case.

Following Refs. 13 and 16 we can from the operatorH construct the following Hamiltonian
acting onW5V^ L ~here and in the following we omit the dependence onxi)

H5 (
i 51

L21

Hii 11 , ~5!

where the indicesi and i 11 denote the sites whereH acts nontrivially. By the construction,H is
quantum group invariant,

@H,DL21~g!#50, ;gPUqĝ.

Let us define the projection operatorsQi on V for each class of equivalent irreps (l i ,xi), i
51,...,M ,

Qiv j5d i j v j , ;v jPVl j
~xj !,

(
i 51

M

Qi5 id, ~Qi !25Qi .

Their action onW is given by

Qi5(
l 51

L

Ql
i .
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It is easy to see that these projections commute with HamiltonianH and quantum groupUqĝ,

@Qi ,H#50, @Qi ,Uqĝ#50. ~6!

Denoted byWp1¯pM
the subspace ofW with valuespi of Qi on it. Then we have the decompo

sition

W5 %
p1 ,...,pM

p11¯1pM5L

Wp1¯pM
. ~7!

Let V0 be the linear space, spanned by the highest weight vectors inV,

V0
ª% i 51

N vl i

0 ,

where vl i

0 PVl i
is a highest weight vector. We also defineW0

ªV0^ L. The spaceW0 is

H-invariant. For generalq the action ofUqĝ on W0 generate the whole spaceW. Indeed, the
Uqĝ-action on each state of typevl i 1

0
^¯^ vl i L

0 generates the spaceVl i 1
^¯^ Vl i L

, because the

tensor product of finite dimensional irreducible representations of an affine quantum gro
irreducible.27

Consider now the subspaceWp1¯pM

0 5W0ùWp1¯pM . According to~7! we have the decom

position

W05 %
p1 ,...,pM

p11¯1pM5L

Wp1¯pM

0 . ~8!

Note that

dp1¯pM
ªdimWp1¯pM

0 5S L
p1¯pM

DN1
p1
¯NM

pM.

Let us define byH0 the restriction ofH on W0 : H0ªHuW0
. It follows from ~6! that Hamil-

toniansH and H0 have block diagonal form with respect to the decompositions~7! and ~8!,
respectively. Every eigenvectorwap1¯pM

0 PWp1¯pM

0 with energy valueEap1¯pM
gives rise to an

irreducibleUqĝ-multiplet Wap1¯pM
of dimension

dimWap1¯pM
5)

k51

M

~dimVlk
!pk. ~9!

On Wap1¯pM
the HamiltonianH is diagonal with eigenvalueEap1¯pM

. In particular, in the case

when allVl i
are equivalent, the degeneracy levels are the same for allEap1¯pM

and are equal to

(dimVl)L.
Now, let us assume we know the energy spectrumEap1¯pM

for H0 . Then the statistical sum is

given by

ZH0
~b!5 (

p1 ,...,pM
p11¯1pM5L

(
ap1¯pM

51

dp1¯pM

exp~2bEap1¯pM
!, ~10!

and it follows that the statistical sum ofH has the following form:
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ZH~b!5 (
p1 ,...,pM

p11¯1pM5L

)
k51

M

~dimVlk
!pk (

ap1¯pM
51

dp1¯pM

exp~2bEap1¯pM
!. ~11!

So, if the underlying HamiltonianH0 is integrable and its eigenvectors and eigenvalues can
found, then we know these forH too. Acting with the quantum group on all eigenvectors of
energy level ofH0 one obtains the whole eigenspace ofH for this level.

III. MULTIBAND t – J MODEL WITH VANISHING SPIN–SPIN COUPLING J 50

Let us consider here the quantum groupUqsl̂2 . We chooseV5V0% V j for decomposition~1!
i.e., we take a direct sum of the trivial spin-0 and the 2j 11-dimensional spin-j representation of
Uqsl2 . The R-matrix in the second term in~4! does not depend onq and spectral parametersxi

and coincides with the identity, as it was mentioned above. So, using~4! and ~5!, we obtain the
following Hamiltonian:

H~ t,V1 ,V2!5 (
i 51

L21 F2t (
p51

2 j 11

~Xi0
pXi 11p

01Xi 110
pXi p

0!1V1Xi0
0Xi 110

01V2 (
p,p851

2 j 11

Xi p
pXi 11p8

p8G .

~12!

The HamiltonianH5( iHii 11 was constructed from the operatorH5Hii 11 , whereH can be
written in the matrix form

H5S V1 0 0 0

0 0 2t• id 0

0 2t• id 0 0

0 0 0 V2• id

D . ~13!

The projection on the highest weight space coincides with the constructing block of theXXZ
Hamiltonian in an external magnetic field. This implies that the restriction of~12! to the spaceW0

is

H0~ t,W1 ,W2!5HXXZ~ t,D,B!52
t

2 (
i 51

L21 S s i
xs i 11

x 1s i
ys i 11

y 1Ds i
zs i 11

z 1
B

2
s i

zD , ~14!

where

D52
V11V2

2t
, B5

2

t
~V12V2!. ~15!

For the special caseV11V250 H0 gives rise to the free fermionic~or equivalentlyXY) Hamil-
tonian ~D50!.

The projection operatorsXb
a are expressed through the fermionic creation-annihilation op

tors as follows:

Xi0
p5Pci ,p

1 , Xi p
05ci ,pP,

~16!
Xi p

p5ni ,pP5Pni ,p , Xi0
05~12ni !P5P~12ni !.

Here we introduced the projection operator which forbids double occupation on all sites

P5)
i 51

L

Pi , Pi5 )
pÞp8

~12ni ,pni ,p8!
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and the total particle numberni5(pni ,p at sitei.
After the substitution of the fermionic representation~16! into ~12! we obtain

H~ t,V1 ,V2!5P(
i 51

L21 F2t (
p51

2 j 11

~ci ,p
1 ci 11,p1ci 11,p

1 ci ,p!1Vnini 112V1~ni1ni 11!1V1GP,

~17!

whereV5V11V2 . The chemical potential term2V1( i 51
L21(ni1ni 11) commutes withH and can

be omitted. So, up to unessential boundary and constant terms~17! is a multicomponentt –J
model with vanishing spin–spin coupling (J50),

H~ t,V!5 (
i 51

L21 F2t (
p51

2 j 11

~ci ,p
1 ci 11,p1ci 11,p

1 ci ,p!1Vnini 11G1(
i 51

L

(
pÞp8,

p,p851

2 j 11

Up,p8ni ,pni ,p8 , ~18!

where the infinite Hubbard interaction amplitudeUp,p851` betweenp and p8 bands excludes
sites with double and more occupations. It follows from the above considerations that this
has energy levels which coincide with the levels ofXXZ Heisenberg model, but that the dege
eracy of the levels is different.

For vanishing density–density interactionV50 the Hamiltonian~18! describes the infinite
repulsion limit of the multiband Hubbard model. Thus, according to~15! D50 and it has the
energy levels of the free fermionic model.

IV. MULTIBAND EXTENSION OF THE t – J MODEL WITH AFFINE QUANTUM GROUP
SYMMETRY

In this section we consider Hamiltonians which have the same energy levels as thet –J model
but have affine quantum group symmetry. Because each site in the ordinaryt –J model has three
states, one should for this purpose take the direct sum of three spaces. Let

V5V0% V j % V j . ~19!

Recall that thet –J model is given by

Ht –J~ t,J,V!2P(
i 51

L21 F2t (
s56

1
2

~ci ,s
1 ci 11,s1ci 11,s

1 ci ,s!1JSiSi 111Vnini 11GP, ~20!

wherecs
1 , cs are creation–annihilation operators of spin-1

2 fermion, S5(s,s8cs
1sss8cs8 is the

fermionic spin operator andP5P i 51
L (12ni ,↑ni ,↓) forbids double occupation of sites.

We rewrite it in terms of Hubbard operatorsXb
a , wherea,b50,6 1

2,

H~ t,J,V!5 (
i 51

L21 F (
s56

1
2

S 2t~Xi0
sXi 11s

01Xi 110
sXis

0 !1
1

2
J•Xi 2s

s Xi 11s
2sD

1 (
s,s856

1
2

~ss8J1V!Xis
sXi 11s8

s8G . ~21!

Let us now look at the general expression~4! of intertwining operatorsHi j acting on the space
~19!. For convenience we make index change in the following way. The two spin-j representations
we use are denoted bys561

2. The intrinsic index in eachVj
(s) is denoted byk,k51,...,2j 11. So,

instead of (ni ,ai) in ~4! we have (s,k), if i corresponds to the spin-j multiplet. Because the spin-0
singlet is one dimensional and single, we just use for it the index 0. The nonequivalent irre
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~19! areVj
(s) andV0 and, as mentioned above, theR-matrix for two such representations is th

identity. After performing the first sum in~4! over nonequivalent multiplets we obtain

H~A,a,b1 ,b2!5 (
s1 ,s2 ,s18 ,s28

S A
s1s

18

s2s28(
k,k8

X
~s2 ,k!

~s1 ,k!
^ X

~s28 ,k8!

~s18 ,k8!D 1a•X0
0

^ X0
0

1(
k,s

~b1•X0
~s,k!

^ X~s,k!
0 1b2•X~s,k!

0
^ X0

~s,k!!. ~22!

To implement the restrictionH0(A,a,b1 ,b2) of this operator on the highest weight space one j
should eliminate the sum overk,k8 and putk5k850. Comparing~22! and~21! it follows that the
expressions coincide if one chooses

a50, b15b252t, As2s
2ss5J/2, Ass

s8s85~ss8!•J1V,

and choose the other values ofA
s1s2

s18s28 equal to zero.

So, the HamiltonianH(A,a,b1 ,b2) corresponding to~22! with these values of paramete
gives rise to at –J model ~20! on the highest weight space. According to the previous consi
ations it will have the same energy levels as thet –J model, but with different degeneracy. Reca
that for J52t the t –J model is ‘‘supersymmetric’’ and integrable.

We express the Hubbard operators in terms of multiband fermionic creation–annihi
operators as follows:

Xi0
~s,k!5Pci ,s

k1 , Xi ~s,k!
0 5ci ,s

k P,

~23!

Xi ~2s,k!
~s,k! 5ci ,s

k1ci ,2s
k P5Pci ,s

k1ci ,2s
k , Xi ~s,k!

~s,k!5ni ,s
k P5Pni ,s

k .

Here as before we used the projection operator, which forbids double occupation on all sit

P5)
i 51

L

Pi , Pi5 )
~s,k!Þ~s8,k8!

~12ni ,s
k ni ,s8

k8 !.

Now, we can write down the Hamiltonian~5! in terms of multiband fermions, substituting~23!
into ~22!. We obtain in this way the multiband generalization of~20!,

H~ t,J,V!5P(
i 51

L21 F2t (
k51

2 j 11

(
s56

1
2

~ci ,s
k1ci 11,s

k 1ci 11,s
k1 ci ,s

k !1JSiSi 111Vnini 11GP. ~24!

Herek is the band index, andS5(kS
k, n5(kn

k are total spin and total particle number operato
It is easy to see that we have conservation of the particle number operators( i ,s

k 5nk for the all
colorsk.

V. BETHE ANSATZ FOR THE t – J MODEL WITH AFFINE QUANTUM GROUP
SYMMETRY

The goal of this section is to apply the Bethe Ansatz technique to our model and deriv
corresponding Bethe equations for the excitations.

After making some trivial Pauli matrix calculations one can represent Hamiltonian~24! as
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H~ t,J,V!5P(
i 51

L21 F2t (
k51

2 j 11

(
s56

1
2

~ci ,s
k1ci 11,s

k 1ci 11,s
k1 ci ,s

k !

12J (
k,k8,sÞt

ci ,s
k1ci ,t

k ci 11,t
k81 ci 11,s

k8 1~V2J!nini 11GP. ~25!

Due to the conservation of the particle number operatornk, and according to the coordinate Beth
Ansatz we look for eigenvectors of~25!, corresponding toN fermions of 2j 11 bands in the
following form:

uC&5 (
k1¯kN51

2 j 11

(
x1s1

¯ (
xNsN

ck1¯kN~x1s1 ,...,xNsN!cx1s1

k11
¯cxNsN

kN1 u0&, ~26!

whereu0& is the empty vacuum state.
The eigenvalue equationHuC&5EuC& in the one particle sector

2t~Ck~x21,s!1Ck~x,s!!5ECk~x,s! ~27!

gives us

E522t cosp ~28!

after substituting of the plane wave function with momentump into ~27!.
The eigenvalue equations in the two particle sector allows us to fix the energy of the st

a sum of two one particle energies, as well as the two two particle scattering m

S
s1s2 ,k1k2

s18s28 ,k18k28(p1 ,p2). We choose the antisymmetric wave functionCk1k2(x1s1 ,x2s2) as

ck1 ,k2~x1s1 ,x2s2!5Ak1k2~p1s1 ,p2s2!ei ~p1x11p2x2!2Ak2k1~p2s1 ,p1s2!ei ~p2x11p1x2! ~29!

for x2<x1 and

ck1 ,k2~x1s1 ,x2s2!5Ak2k1~p2s2 ,p1s1!ei ~p1x11p2x2!2Ak1k2~p1s2 ,p2s1!ei ~p2x11p1x2! ~30!

for x1<x2 .
The continuity condition atx1'x2 should be imposed,

Ak1k2~p1s1 ,p2s2!2Ak1k2~p2s1 ,p1s2!5Ak2k1~p2s2 ,p1s1!2Ak2k1~p1s2 ,p2s1!. ~31!

Use of the Hamiltonian~24! and the most general form~26! of the eigenfunctionsc, the eigen-
value equations can be written as

2t@ck1k2~x111s1 ,x2s2!~12dx111,x2
!1ck1k2~x121s1 ,x2s2!~12dx1 ,x211!

1ck1k2~x1s1 ,x211s2!~12dx1 ,x221!1t1ck1k2~x1s1 ,x221s2!~12dx121,x2
!#

12Jd ux1 ,x2u,1c
k1k2~x1s2 ,x2s1!11~V2J!d ux12x2u,1c

k1k2~x1s1 ,x2s2!

5Eck1k2~x1s1 ,x2s2!. ~32!

The terms~12d! appeared near the hopping terms as a result of projective operatoP,
preventing double occupancy of the sites.

Two different cases can be considered:

~i! ux12x2u.1. In this case eigenvalue Eq.~32! is reduced to
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2t@ck1k2~x111s1 ,x2s2!1ck1k2~x121s1 ,x2s2!1ck1k2~x1s1 ,x211s2!

1ck1k2~x1s1 ,x221s2!#5Eck1k2~x1s1 ,x2s2!. ~33!

After substitution of expressions~29!–~30! for the plane waves into~33! and some simple calcu
lations, the spectrum of two particle state can be found,

E522t~cosp11cosp2!. ~34!

~ii ! ux12x2u51. Without loss of generality one can takex25x111. Then the eigenvalue equatio
reduces to

2t@ck1k2~x121s1 ,x2s2!1ck1k2~x1s1 ,x211s2!12Jck1k2~x1s2 ,x2s1!

1~V2J!ck1k2~x1s1 ,x2s2!5Eck1k2~x1s1 ,x2s2!. ~35!

By substitution of~29! and use of continuity conditions~31! one can express the amplitud
Ak2k1(p2s1 ,p1s2) after scattering throughAk1k2(p1s1 ,p2s2) andAk1k2(p1s2 ,p2s1) before, and,
therefore get theR-matrix of the model,

Ak2k1~p2s1 ,p1s2!5R
s1s2 ,k

18k
28

s18s28 ,k2k1Ak18k28~p1s18 ,p2s28!, ~36!

where theR-matrix is the product of the ordinaryt –J modelR-matrix multiplied by the permu-
tation operator in thek-index space,

R
s1s2 ,k

18k
28

s18s28 ,k2k1
5R

s1s2

s18s28~ t2J!•d
k

18

k2
•d

k
28

k1. ~37!

At the supersymmetric point 2J5t, V52J/4,

R
s1s2

s18s28~ t2J!5
~l12l2!P̂1 i Î

l12l21 i
. ~38!

In ~38! l5 1
2 cot (p/2) is the rapidity,Î 5d

s1

s18d
s2

s28, and P̂5d
s1

s28d
s2

s18.

The scattering matrixS
s1s2 ,k1k2

s18s28 ,k18k28 will be defined multiplying theR-matrix by permutation

operatorP̂ in the spin~s! and color~k! spaces.
The exact integrability of the model is connected with the fact that theS-matrix should fulfill

the Yang–Baxter triangular relations

S
s1s2 ,k1k2

s18s28 ,k18k28~l12l2!•S
s

18s3 ,k
18k3

s19s38 ,k19k38~l12l3!•S
s

28s
38 ,k

28k
38

s29s39 ,k29k39~l22l3!

5S
s2s3 ,k2k3

s28s38 ,k28k38~l22l3!•S
s1s

38 ,k1k
38

s18s39 ,k18k39~l12l3!•S
s

18s
28 ,k

18k
28

s19s39 ,k19k29~l12l2! ~39!

and constraints ont,J,V are imposed just by these equations.
Consider nowN itinerant electrons in a box ofL sites with periodic boundary conditions.

we successively make a change of position of an electron and its neighboring electron in a
each interchange produces a scattering matrix and when the particle comes back to its
position from the other side, we will have the cyclic product ofS-matrices, which is called the
transfer matrix,

T̂j~l j !5Ŝj , j 11~l j2l j 11!¯Ŝj ,N~l j2lN!•Ŝj ,1~l j2l1!¯Ŝj , j 21~l j2l j 21!. ~40!
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Here we skip the matrix indexess andk while the hat onSmeans the operator in that spac
The periodicity means that the transfer matrix has to be diagonal for allj 51,...,N with the
eigenvalues exp(ipjN), or, on terms of rapidityl j ,

eip jN5S l j1 i /2

l j2 i /2D
L

. ~41!

The matrix~40! is the trace of the so-called monodromy matrix, which by definition is
product of theS-matrices without taking trace. Hence, the monodromy matrix can be consider
a (232)^ ((2 j 11)3(2 j 11)) matrix in the spins and colork spaces. Let us remember now th
this operator is a unity operator in the color space. We will not describe here the details
algebraic Bethe Ansatz~see, e.g., Ref. 28!, but already now it is clear, that because the mo
dromy matrix of our model is the monodromy matrix of the ordinaryt –J model multiplied by the
unity matrix in thek-space, the generalization of the algebraic Bethe Ansatz to the present m
gives rise to the same equations as the ordinaryt –J model.

Specifically we get

S l j1 i /2

l j2 i /2D
L

5 )
b51

M
l j2Lb1 i /2

l j2Lb2 i /2
, j 51,...,N, ~42!

)
j 51

N
La2l j1 i /2

La2l j2 i /2
52 )

b51

M
La2Lb1 i

La2Lb2 i
, a51,...,M , ~43!

whereL is the number of lattice sites,N is the number of electrons, andM is the number of spin
down electrons.

We see that color disappeared from the equations, which means that we can make an a
partition of color charges on the state ofN particles in a chain and all wave vectors will becom
eigenvalues of the Hamiltonian, provided that theirl’s fulfill the Bethe equations.

Equations~42!–~43! are Lai’s8 form of Bethe equations, written on a basis of empty ba
ground.

The total energy is given by

E522N12(
j 51

N
1/2

l j
211/4

. ~44!

However for the construction of the thermodynamic limit of our model it is more conven
to use the Sutherland’s form7 of the Bethe equations, which is equivalent to Lai’s equations.11,29

In Sutherland’s representation one start with a ferromagnetic pseudovacuum state with all s
and consider excitations asNh-holes~empty sites! andM spin down electrons.

In Sutherland’s representation we have

S l j1 i /2

l j2 i /2D
L

5 )
b51

M
l j2Lb1 i /2

l j2Lb2 i /2
, j 51,...,M1Nh ,

~45!

15 )
j 51

M1Nh l j2Lb1 i /2

l j2Lb2 i /2
, b51,...,M .

Equations~45! have real and complex solutions. The complex solutions are in a form know
strings, which may be found by fixingNh andM ~they are conserved quantities! and letting the
lattice sizeL→`. Following Refs. 11 and 30 one finds complex solutions in the form
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l j5l1 i ~n1122 j !, j 51,...,n,
~46!

Lt5l1 i ~n22t!, t51,...,n21,

for arbitraryn. In a finite box these string solutions are not exact but as in Refs. 8, 31, and 3
will assume that the corrections are small in the power ofL and hence vanish in the thermod
namic limit.

We would like to write the equation for the centrum of the strings of lengthn, la
n ~which are

the real variables!, let their number isM 8 and rapiditiesLb of spin down electrons.
Substituting~45! into Lai’s form of Bethe equations and taking the logarithms from the l

and right-hand sides, one can get

LuS la
n

n D 52pI a
n1 (

m51

`

(
g

Nm

Qnm~la
n2lg

m!1 (
b51

M

uS la
n2Lb

n D ~47!

and

(
n51

`

(
a51

Nn

uS Lb2lpha
n

n D 52pJb , ~48!

whereNm is the number of strings of lengthm, u(x)52 tan21(x), and

Qmn5H uS x

un2mu D12uS x

un2mu12D1¯12uS x

n1m22D if nÞm

2uS x

2D12uS x

4D1¯12uS x

n1m22D if n5m

• ~49!

I a
n andJb are integers~half-integers! appearing after the choice of the branch of the logarithm

The integersM, Nm , andM 8 satisfy the relation

M 85M1 (
m51

`

mNm . ~50!

Any solution is defined by a set ofI a
n andJb . All possible integer~half-integer! values define the

states called vacancies. The vacancies may be occupied by particles of colork or not occupied at
all. In a case of occupied vacancies one can mark the correspondingI a

n andJb by the color index
k as for particles,I a

n,k andJb
k . When the state is empty, the corresponding integer will be m

tioned asĪ a
n and J̄b .

One may calculate the number of string states~46! taking account also color degrees
freedom and will get (2j 11)L.

VI. THE THERMODYNAMIC LIMIT OF THE BETHE ANSATZ EQUATIONS

In the thermodynamic limitL→` the solution becomes densely packed~the difference of two
neighbor solutions is of order 1/L, l j 11

n 2l j
n5O(1/L)) and one can introduce density functions

the states and pass from sums to integrals in Eqs.~47!–~48!.
Let us define the particle and hole densities as follows:
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rp
n,k~l!5 lim

L→`

1

L~l I
j 11
n,k 2l I

j
n,k!

, rh
n~l!5 lim

L→`

1

L~l Ī
j 11
n 2l Ī

j
n!

,

~51!

sp
k~l!5 lim

L→`

1

L~LJ
j 11
k 2LJ

j
k!

, sh~l!5 lim
L→`

1

L~L J̄ j 11
2L J̄ j

!
,

and the sum of the hole and particle densities defines the density functions of vacancies,

r t
n5 (

k51

2 j 11

rp
n,k1rh

n , s t5 (
k51

2 j 11

sp
k1sh . ~52!

The passage from sum to integral is straightforward and in the thermodynamic limit the
equations~47!–~48! become integral equations,

r t
n~l!5 f n~l!2 (

m51

` E
2`

`

dl8An,m~l2l8!rp
m~l8!2E

2`

`

dL f n~l2L!sp~L! ~53!

and

s t~L!5 (
n51

` E
2`

`

dl f n~L2l!rp
n~l!. ~54!

f n(l) andAn,m(l) in Eqs.~53!–~54! are defined by

f n~l!5
1

2p

du~l!

dl
5

1

p

n

l21n2 ~55!

and

An,m5H f un2mu~l!12 f un2mu12~l!1¯12 f n1m22~l!, if nÞm

2 f 2~l!12 f 4~l!1¯12 f 2n22~l!, if n5m
• ~56!

Following Yang and Yang,33 Takahashi,31 and Gaudin,32 we can write down the thermody
namic equilibrium equations. For the ordinaryt –J model it was done in Refs. 5,30, and 34.

The conserved quantities of our model are the following:

~1! The energy~the expression in ferromagnetic background slightly differs from Lai’s expres
~44!!,

E5LS124p(
n51

`

(
k51

2j11 Edlfn~l!rp
n,k~l!D; ~57!

~2! The number of different particles,

Nk5LS12Edl(
n51

`

rp
n,k~l!1EdLsp

k~L!D; ~58!

~3! And the magnetization,

Sz5
L

2 S 12 (
n51

`

(
k51

2 j 11

~2n21!E dlrp
n,k~l!2 (

k51

2 j 11 E dLsp
k~L!D . ~59!

Correspondingly, for the free energyF one can write
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F5E2 (
k51

2 j 11

mkN
k2BSz2TS, ~60!

wheremk are the chemical potentials of particles,B is the external magnetic field, andT is the
temperature. We will calculate the entropyS in a standard way, as the logarithm of the number
possible states of the model in the intervaldl,

N~l,dl!5eS~l!dl5
L~(k51

2 j 11rp
kdl!!

Pk51
2 j 11~Lrp

kdl!! ~Lrhdl!!
. ~61!

By Stirling’s formula one finds from~61!,

S5LH E dl (
m51

` Fr t
n logr t

n2 (
k51

2 j 11

rp
n,k logrp

n,k2ph
n logrh

nG
1E dLFs t logs t2 (

k51

2 j 11

sp
k logsp

k2sh logshG J . ~62!

To obtain the equilibrium equations one should minimize the free energy over density functio
the particles and holes. PutingdF50 for variations of the density functionsrp

n,k , rh
n , sp

k , sh one
gets after some algebraic transformations an infinite set of integral equations for the dens
one defines the excited energies as usual

rp
n,k

r t
n2rp

n,k 5e2~en,k/T!,
sp

k

s t2sp
k 5e2~eL

k /T! ~63!

and

e0
n,k524p f n~l!2~2n21!B1mk , ~64!

we obtain

en,k~l!5e0
n,k1T (

m51

` E dl8An,m~l2l8!log~11e@2em,k~l8!#/T!)

2TE dL f n~l2L!log~11e@2eL
k

~L!#/T!) ~65!

for n51,...,̀ , and

eL
k 52mk2B1T(

n51

` E dl f n~l2L!log~11e@2en,k~l!#/T!. ~66!

It is seen from these equations for densities and excitation energies that if all particles ha
same chemical potentialm5mk , the solutions will be independent ofk. Correspondingly, for
minimum value of the free energy one can has

F

L
5~11B2m!2T (

m51

` E dl f m~l!log~11e@2em~l!#/T!5~122m!2eL~L50! ~67!

in correspondence with Refs. 5 and 30.
In order to analyze the ground state further one should take the limitT→0 Eqs.~65!–~66! and

then put the solution obtained into the expression for the energy~57!. If we suppose thaten.0 for
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n.1 ~which can be checked after all by analysing the corresponding equations for theen’s! in the
sum of the integral Eqs.~65!–~66!, only one term will contribute in the limitT→0, and we have

e1,k~l!5e0
1,k1E dL f 1~l2L!ēL

k ~L!,

~68!

eL
k ~L!52~mk1B!2E dl f 1~L2l!ē1,k~l!,

where

ēL
k ~L!5H eL

k ~L!, if eL
k ~L!,0

0, if eL
k ~L!.0

, ē1,k~l!5H e1,k~l!, if e1,k~l!,0

0, if eL
k ~L!.0

. ~69!

Hence, in Sutherland’s approach we are lead to the concept of two seas; one for real~nonstring!
solutions, another for rapidityL ~spin-down electrons!.

Suppose thate1,k(l)50 at some pointl5Q and eL
k 50 at L5QL , which are the Fermi

rapidities. Then we can write the equations for the ground state energy as

E0

L
5124p (

k51

2 j 11 E
2Q

Q

dl f 1~l!rp
1,k~l!. ~70!

The equations for the density functions also simplify

(
k51

2 j 11

rp
1,k~l!5 f 1~l!2 (

k51

2 j 11 S E
2`

2QL
1E

QL

` D dL f 1~l2L!sp
k~L! ~71!

and

(
k51

2 j 11

sp~L!5 (
k51

2 j 11 E
2Q

Q

dl f 1~L2l!rp
1,k~l!. ~72!

The Fermi boundariesQ and QL are determined from the particle number and magnetiza
equations

N

L
512 (

k51

2 j 11 F E
2Q

Q

dlrp
1,k~l!1S E

2`

2QL
1E

QL

` D dLsp
k~L!G ,

~73!

2Sz

L
512 (

k51

2 j 11 F E
2Q

Q

dlrp
1,k~l!1S E

2`

2QL
2E

QL

` D dLsp
k~L!G .

Due to a theorem by Lieb and Mattis,35 in zero magnetic fieldSz should be zero, which means th
spin-down electrons constitute half of all electronsM5N/2 and there is no string state in th
ground state.

We see that the equations for the ground state are invariant under transformation of the
k, which means that we can arbitrarily distribute the color over the particles. They are as
modes in the vacuum of gauge theories.

In the half-filled caseQL50 and Q5` ~as easy to see in Lai’s form of equations5! and
following Refs. 5 and 9, one can obtainE05122 log 2.

It is also possible, following Ref. 30, to consider the excitations of the model, introduc
so-called shift functions, and write down equations for them. After that, following Ref. 36, one
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find the S-matrix for the excitations of the model. It follows as above, that theS-matrix of our
model is equal to theS-matrix of ordinaryt –J model multiplied by unity operators in an add
tional color space.

VII. CONCLUSIONS

We have constructed a one-dimensional model which is based on thet –J model of strongly
correlated electrons, but which has an additional quantum group symmetry, ensuring the
eration of the states. We use the Bethe Ansatz technique to investigate this model. The eq
for density functions, written in the thermodynamic limit, demonstrate that the additional de
of freedom of the model behave as gauge modes. The presence of these modes, in our
gives rise to the possibility of constructing a new type of integrable models, if one ha
interaction between two models of this kind. Also, different topological properties, usually
pearing in gauge theories, could be present in our model, and would be interesting to inves
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Monotone Riemannian metrics and relative entropy
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We use the relative modular operator to define a generalized relative entropy for
any convex operator functiong on ~0,̀ ! satisfyingg(1)50. We show that these
convex operator functions can be partitioned into convex subsets, each of which
defines a unique symmetrized relative entropy, a unique family~parametrized by
density matrices! of continuous monotone Riemannian metrics, a unique geodesic
distance on the space of density matrices, and a unique monotone operator function
satisfying certain symmetry and normalization conditions. We describe these ob-
jects explicitly in several important special cases, includingg(w)52 logw, which
yields the familiar logarithmic relative entropy. The relative entropies, Riemannian
metrics, and geodesic distances obtained by our procedure all contract under com-
pletely positive, trace-preserving maps. We then define and study the maximal
contraction associated with these quantities. ©1999 American Institute of Phys-
ics. @S0022-2488~99!01410-3#

I. INTRODUCTION

For quantum systems, a state is described by a density matrixP, i.e., a positive semidefinite
operator with trace one. We will letD̄ denote the set ofdensity matrices. For classical discrete o
commutative systems we can identify the states with the subset of diagonal density matrice
of which defines a probability vectorpPRn. For commutative systems the usual logarithm
relative entropy,

H log~p,q!5(
k

pk log~pk /qk!, ~1!

can be generalized to

hg~p,q!5(
k

pkg~qk /pk!, ~2!

whereg is a convex function on~0,̀ ! with g(1)50. It is well known that any suchHg contracts
under stochastic mappings, i.e.,Hg(Ap,Aq)<Hg(p,q) when A is a column stochastic matrix
Cohenet al.1 defined the entropy contraction coefficient as

hg~A!5sup
pÞq

Hg~Ap,Aq!

Hg~p,q!
. ~3!

a!Electronic mail: bruskai@cs.uml.edu
57020022-2488/99/40(11)/5702/23/$15.00 © 1999 American Institute of Physics
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In the pair of papers,1,2 it was shown that for each fixedA all the contraction coefficients assoc
ated with thoseg that are alsooperatorconvex are equivalent, more precisely the following.

Theorem I.1: If g is operator convex, then

hg~A!5h log~A!5h~w21!2~A!<h uw21u~A!. ~4!

A summary of these results is given in Ref. 3. It suffices to mention here that the observa

d2

dt2
Hg~p,p1tv !U

t50

5g9~0!(
k

~vk!
2/pk5H ~w21!2~p,p1v !, ~5!

plays a critical role. The quantity(k(vk)
2/pk can also be written asM p(v,v), where

M p~u,v !52
]2

]a ]b
Hg~p1au,p1bv !U

a5b50

~6!

is the Riemannian metric corresponding to the Fisher information. Cˇ encov4,5 showed that, for
commutative systems, this is theonly Riemannian metric that satisfies the monotonicity condit
MAp(Av,Av)<M p(v,v). Thus, we can regard Theorem I.1 as stating that for operator convg
the maximal contraction of the relative entropy and its associated Riemannian metric are the
Since there is only one Riemannian metric, all the contraction coefficients must be equal.

For quantum systems, the usual logarithmic relative entropy is given by

H log~P,Q!5Tr P~ log P2 logQ! ~7!

5E
0

`

Tr PF 1

Q1tI
~P2Q!

1

P1tI Gdt, ~8!

with P,Q in D, the set of invertible density matrices. The integral representation~8! can be used
to show that

M P
log~A,B![2

]2

]a ]b
H log~P1aA,Q1bB!U

a5b50

5E
0

`

Tr AF 1

P1tI
B

1

P1tI Gdt. ~9!

Although M P
log(A,B) is a monotone Riemannian metric, it is not the only possibility;M P(A,B)

5Tr A* P21B is also monotone under completely positive, trace-preserving maps. The stu
monotone Riemannian metrics on noncommutative probability spaces was initiated by Mor
and Čencov,6 who did not, however, provide any explicit examples. A complete characteriza
of monotone Riemannian metrics~which includes the examples above! was given recently by
Petz.7–10 The quantum structure is much richer because left and right multiplications byP21 are
not equivalent. We will see thatM P(A,B) can always be written in the form TrA* VP(B), where
VP reduces to multiplication byP21 whenP andB commute. Thus, for example,~9! above gives
VP(B)5*0

`@1/(P1tI )#B@1/(P1tI )#dt, which becomesP21B whenP andB commute.
Earlier, Ruskai3 tried to extend the entropy contraction coefficient results of Cohenet al. to

noncommutative situations, but obtained only a few preliminary results. Although one can
mally defineHg(P,Q)5Tr Pg(Q/P) the expressionQ/P is ambiguous in the quantum cas
Using the nonstandard definition Q/P5P21/2QP21/2 @which yields Hg(P,Q)
5Tr P log P21/2QP21/2 rather than~7! when g(w)52 logw# Ruskai and Petz11 were able to
prove an analog of Theorem I.1, using the fact that
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d2

dt2
Hg~P,P1tA!U

t50

5g9~0!Tr AP21A, ~10!

for all g. In essence, their convention forQ/P always yields the Riemannian metricM P(A,B)
5Tr A* P21B.

A better alternative is to use the relative modular operator introduced by Araki12–16,7to define
Q/P. This yields the usual logarithmic entropy~7! and a rich family of generalized relativ
entropies. Moreover, differentiation then yields the entire family of monotone Riemannian m
found by Petz.7–10

In this paper we use the relative modular operator to study both the relative entropie
Riemannian metrics associated with convex operator functions. For simplicity, we restric
selves to the matrix algebras associated with finite dimension systems. Although we do not b
this restriction is essential, it avoids many technical complications.@The most serious arises whe
the condition TrP51 is not compatible with the requirement thatP be invertible~in the sense of
having a bounded inverse in the relevant operator algebra!. In that case, one must restrict th
domain ofHg(P,Q) to those pairsP,Q that have comparable approximate null spaces in so
suitable sense.# We show that each convex operator function defines a convex family of rel
entropies, a unique symmetrized relative entropy, a unique family~parametrized by density ma
trices! of continuous monotone Riemannian metrics, a unique geodesic distance on the sp
density matrices, and a unique monotone operator function. We describe these objects expl
several important special cases, includingg(w)52 logw. We then define and study the contra
tion coefficient associated with the relative entropy, Riemannian metrics, and metrics. Final
present examples showing that these contraction coefficients can have any value in@0,1# for a
suitable stochastic map.

The paper is organized as follows. In Sec. II, we give some basic definitions and resu
relative entropy and Riemannian metrics. In Sec. III, we define the corresponding geodes
tance, including the Bures metric as a special case. Finally, in Sec. IV we study the contrac
all the quantities under stochastic maps and give bounds on the maximal contraction.

II. RELATIVE ENTROPY AND RIEMANNIAN METRICS

A. Definitions

We begin by describing the relative modular operator that was originally introduced by A
to generalize the logarithmic relative entropy to type III von Neumann algebras.12–16,7 Later,
Petz16 used it to generalize relative entropy itself. LetD denote the subset of invertible operato
in D. Let P,QPD, i.e.,P andQ are positive definite matrices with Tr(P)5Tr(Q)51. For matrix
algebras, the relative modular operator associated with the pair of statesrP(A)5Tr(AP) and
rQ(A)5Tr(AQ) reduces to

DQ,P5LQRP
21, ~11!

where LQ and RP are the left and right multiplication operators, respectively. Thus,DQ,P(A)
5QAP21. It is easy to verify directly thatDQ,P is a positive Hermitian operator with respect
the Hilbert–Schmidt inner product.

Definition II.1: Let g be an operator convex function defined on (0,`) such that g(1)50. The
relative g entropy of P and Q is

Hg~P,Q!5Tr„P1/2g~DQ,P!P1/2
…. ~12!

We will let G denote the set of functions satisfying these conditions. Note, however, tha
argument ofg, as defined here, is shifted from that~which we here denotegC! in Refs. 1 and 2 so
that gC(w)5g(w11). Using standard results from the theory of monotone and convex ope
functions, one can show thatG is the class of functions that can be written in the form
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g~w!5a~w21!1b~w21!21c
~w21!2

w
1E

0

` ~w21!2

w1s
dn~s!, ~13!

where b,c.0 and n is a positive measure on~0,̀ ! with finite mass*0
` dn(s). The term

(w21)2/w may seem unfamiliar, as it is usually included implicitly in the integral. Howev
writing it separately will be convenient later and is necessary to ensure that the measure ha
mass. The functiong(w)52 logw yields the usual logarithmic relative entropy~7!, which we
continue to denote asH log(P,Q). The functiong(w)5(w21)2 yields

H ~w21!25Tr~P2Q!P21~P2Q!, ~14!

which we call the ‘‘quadratic relative entropy;’’ it plays an extremely important role in
development. The functiong(w)5(w21)2/(w11) yields the equally important, but less fami
iar, HBures(P,Q)5Tr(P2Q)@LQ1RP#21(P2Q), where we use the subscript Bures because~as
will be explained in Sec. III! it eventually leads to a geodesic onD referred to as the ‘‘metric of
Bures.’’

We will study the properties of relative entropy and related quantities under a class of
referred to as ‘‘stochastic’’ based on the concept of a completely positive, trace-preservin
f:A1→A2 from one operator algebra to another. Such maps are linear and positivity prese
not only on the original algebra, but when lifted to tensors products. A precise definition
useful representation theorems can be found in Stinespring,17 Arveson,18 Choi,19 Kraus,20 and
Lindblad.21 In particular,f is a completely positive map if and only if there exist operators$Vk%
with Vk :A1→A2 , such that

f~A!5 (
k51

N

VkAVk* . ~15!

It then follows thatf is trace preserving if and only if(kVk* Vk5I ; whereasf is unital @i.e.,
f(I 1)5I 2# if and only if (kVkVk* 5I . For von Neumann algebras with finite trace~as is the case
here! one can use the Hilbert–Schmidt inner product^A,B&5Tr A* B to define the adjointf̂ of
any completely positive map so that TrA* f(B)5Tr f̂(A)* B. It is then easy to see thatf̂(A)
5(kVk* AVk and thatf is trace preserving if and only iff̂ is unital. Then, for the finite-
dimensional algebras considered here, we can use the following.

Definition II.2: A stochastic mapf:A1→A2 is a completely positive, trace-preserving ma.
~For general von Neumann algebras, a stochastic map should be defined as the dual of

completely positive map.! For commutative systems, a stochastic map always corresponds
column stochastic matrix, as discussed in the Introduction above and in Refs. 1–3. For no
mutative systems, a partial trace~see Sec. IV D or, e.g., Refs. 22, 21! is an example of a stochasti
map.

B. Relative entropy

We begin by defining a relative entropy distance as a bilinear function onD with the prop-
erties we expect of the relativeg entropyHg(P,Q). It is sometimes convenient to extend o
definition fromD3D to the somewhat larger set of pairsP,Q of positive definite matrices with
Tr P5Tr Q.

Definition II.3: By a relative entropydistancewe mean a function H(P,Q) satisfying the
following.

~a! H(P,Q)>0 with H(P,Q)50⇔P5Q.
~b! H(lP,lQ)5lH(P,Q) for l.0.
~c! H(P,Q) is jointly convex in P and Q.

In addition, we say that the relative entropy ismonotoneif
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~d! H(P,Q) decreases under stochastic mapsf,
that it is symmetricif

~e! H(P,Q)5H(Q,P),
and that it isdifferentiableif

~f! the function g(x,y)5H(P1xA,Q1yB) is differentiable.

Conditions~b!, ~c!, and~d! are not independent. It is well known that by embeddingCn3n in
Cn3n

^ C232 and choosingf to correspond to the partial trace overC2, one can show that~d!
implies the subadditivity relation,

H~P11P2 ,Q11Q2!<H~P1 ,Q1!1H~P2 ,Q2!. ~16!

But for functions satisfying the homogeneity condition~b! this is equivalent to joint convexity
Because any stochastic map can be represented as a partial trace,21 it follows that when~a! and~b!
hold, then (c)⇔(d). Nevertheless, the properties of convexity and monotonicity are eac
sufficient importance to justify explicitly stating them separately.

A relative entropy distance~even if symmetric! is not a metric in the usual sense, becaus
need not satisfy the triangle inequality. Nevertheless, such quantities have been widely us23–25

to measure the difference betweenP and Q. Later, we shall show that every relativeg entropy
defines a relative entropy distance that then defines a Riemannian metric and an associa
desic distance.

Theorem II.4: Every relative g entropy of the form given in Definition II.1 is a differentia
monotone relative entropy distance in the sense of Definition II.3.

Proof: Properties~a!, ~b!, and~f! are straightforward;~d! is due to Petz16 and implies~c! by
the above remarks. A simple new proof of~d! is given in Sec. II F.

Theorem II.5: For each operator convex function gPG,

Hg~P,Q!5Tr~Q2P!@bgP211cgQ21#~Q2P!, ~17!

E
0

`

TrS ~Q2P!
1

LQ1sRP
~Q2P! Ddng~s!

5Tr@~Q2P!RP
21g~DQP!~Q2P!#, ~18!

where bg , cg , and ng are as in (13).
Proof: We first observe that

~DQ,P2I !~P1/2!5~Q2P!P21/25RP21/2~Q2P!, ~19!

so that

Hw21~P,Q!5Tr@P1/2~Q2P!P21/2#50, ~20!

and the linear term in~13! does not contribute. We also find using~19! again,

Hg~P,Q!5^~VQ,P2I !~P1/2!,~DQ,P1sI!21~DQ,P2I !~P1/2!&

5Tr@~Q2P!~DQ,P1sI!21RP21~Q2P!#

5Tr~Q2P!
1

LQ1sRp
~Q2P!. ~21!

Letting s50 yields
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H ~w21!2/w~P,Q!5Tr@~Q2P!Q21~Q2P!#5H ~w21!2~Q,P!, ~22!

and one easily verifies that

H ~w21!2~P,Q!5Tr„~Q2P!P21~Q2P!…. ~23!

Using these results in~13! gives the desired result~17!.
It is worth pointing out that the cyclicity of the trace implies that

Tr~Q2P!
1

RP1sLQ
~Q2P!5Tr~Q2P!

1

LP1sRQ
~Q2P!, ~24!

although

Tr~Q2P!
1

RP1sLQ
~Q2P!ÞTr~Q2P!

1

RQ1sLP
~Q2P!,

in general.
One can also use the heat kernel representation,

~DQ,P1sI!215E
0

`

e2u~DQ,P1sI! du, ~25!

to obtain another integral representation ofHg(P,Q).
Theorem II.6: Let mg(u)5*0

`e2usdn(s) denote the Laplace transform of the measureng .
Then

Hg~P,Q!5bgH ~w21!2~P,Q!1cgH ~w21!2~Q,P!1E
0

`

H ~w21!2e2uw~P,Q!mg~u!du,

where we formally extend our definition of Hg(P,Q) to the nonconvex function g(w)
5(w21)2e2uw.

Proof: We use~25! in ~13! to get

E
0

`

^~DQ,P2I !~P1/2!,~DQ,P1sI!21~DQ,P2I !~P1/2!&dng~s!

5E
0

`

^~DQ,P2I !~P1/2!,e2uDQ,P~DQ,P2I !~P1/2!&mg~u!du

5E
0

`

Tr„~Q2P!~RP21e2uDQ,P!~Q2P!…mg~u!du

5E
0

`

H ~w21!2e2uw~P,Q!mg~u!du,

where we have interchanged the order of integration and then used~19! again.

C. Monotone Riemannian metrics

We now consider the relation between relativeg entropy and Riemannian metrics. Note th
the set of density matricesD has a natural structure as a smooth manifold, so that we can d
a Riemannian metric on its tangent bundleT* D, whose fibers consist of traceless, self-adjo
matrices or

TPD5$A5A* :Tr A50%. ~26!
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Definition II.7: By a Riemannian metric onD, we mean a positive definite bilinear form
M P(A,B) on TPD such that the map P→M P(A,A) is smooth for each fixed APT* D. The metric
is monotone if it contracts under stochastic maps in the sense

mf~P!@f~A!,f~B!#<M P~A,B!, ~27!

whenf is a stochastic map.
Note that this definition of monotone requires that the stochastic mapf act on the base poin

~i.e., the indexing density matrixP! as well as the arguments of the bilinear form.
Theorem II.8: For each gPG and density matrix PPD,

M P
g ~A,B!52

]2

]a ]b
Hg~P1aA,P1bB!U

a5b50

, ~28!

5^A,VP
g ~B!&5Tr AP

g ~B!, ~29!

defines a Riemannian metric on TPD, and a positive linear operatorVP
g on TPD.

The theorem follows easily from the fact thatRP ,LP and their inverses are positive semide
nite operators with respect to the Hilbert–Schmidt inner product, e.g., TrA* RPA.0, and the
integral representation in Theorem II.5. We find

^A,VP
g ~B!&5~bg1cg!Tr@ALP

21~B!1BLP
21~A!#

1E
0

`

Tr@A~LP1sRP!21~B!1B~LP1sRP!21~A!#dng~s!

5~bg1cg!Tr A@LP
211RP

21#~B!

1E
0

`

Tr A@~LP1sRP!211~RP1sLP!21#~B!dng~s!

5E
0

`

Tr A@~LP1sRP!211~RP1sLP!21#~B!Ng~s!ds

5K A,E
0

`

@~LP1sRP!211~RP1sLP!21#~B!Ng~s!dsL , ~30!

where, for simplicity, we temporarily subsume the quadratic terms into the integral by defininNg

so thatNg(s)ds5(bg1cg)d(s)ds1dng(s). It is critical thatA andB are self-adjoint so that we
can interchangeA andB by replacingLP by RP as in

Tr BLP
21~A!5Tr BP21A5Tr ABP215Tr ARP

21~B!. ~31!

This result would not hold if we did not require the perturbations ofP andQ to be self-adjoint.
Given that requirement, the result is necessarily symmetric in the sense that we get the sam
from bothHg(P,Q) andHg(Q,P). This is already evident in the quadratic term, whose coe
cient depends only on the sumb1c, and will be discussed further below.

We can now use~30! to obtain several explicit formulas forVP
g :

VP
g 5E

0

`S 1

sRP1LP
1

1

sLP1RP
DNg~s!ds ~32!

5E
0

` 1

sRP1LP
„Ng~s!1s21Ng~s21!…ds ~33!
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5RP
21E

0

` 1

s1DP,P
sg~s!ds ~34!

5E
0

1S 1

sRP1LP
1

1

sLP1RP
Dsg~s!ds, ~35!

where we have used the change of variables→s21 and

sg~s!5Ng~s!1s21Ng~s21!.

Note thatsg(s21)5ssg(s). Then, if we define

k~l!5E
0

` 1

s1l
sg~s!ds5E

0

1F 1

s1l
1

1

sl11Gsg~s!ds, ~36!

we find thatk(l21)5lk(l), VP
g 5RP

21k(DP,P), and thatk can be expressed in terms ofg as

k~w!5
g~w!1wg~w21!

~w21!2 . ~37!

We will let K denote this set of functions, i.e.,

K5$k:2k is operator monotone,k~w21!5wk~w!, and k~1!51%. ~38!

We have recovered half of Petz’s result7–10 that there is a one-to-one correspondence betw
symmetric Riemannian metrics and functions of the form~36! that satisfy the normalization
conditionk(1)51. ~But note that ourk corresponds to 1/f in Petz’s notation.! Our approach also
easily yields an explicit expression for bothVP

g and its inverse.
Theorem II.9: For each gPG and PPD, the operatorVP

g as defined in Theorem II.8
satisfiesVP

g 5RP
21k(LPRP

21) and @VP
g #215RPf (LPRP

21), where k(w) is given by (37) and
f (w)51/k(w).

Although VP
g is initially defined only onT* D, it can easily be extended to all tracele

matrices using the natural complexification TrA50⇒A5A11 iA2 with A1 ,A2PTPD and then to
all of Cn3n using linearity andVP

g (I )5P21I . The result is equivalent to using any of the formul
for VP

g above together with the obvious extension ofLP andRP to all of Cn3n. We can summarize
this discussion as follows.

Theorem II.10: For each gPG and PPD, the operatorVP
g as defined in Theorem II.8 ca

be extended to a positive linear operator onCn3n so that MP
g (A,B)5Tr A* VP

g (B) defines an
inner product onCn3n. On the other hand, for each gPG and PPD, Eq. (34) defines a positive
linear operatorVP

g on all of Cn3n, and the bilinear form MP
g (A,B)5Tr A* VP

g (B) extends to a
monotone Riemannian metric satisfying the symmetry condition MP

g (A,B)5M P
g (B* ,A* ).

This result is essentially due to Petz,7–10 who also showed the converse result that ev
symmetric monotone Riemannian metric is of this form. We give an independent proof of m
tonicity at the end of this section. That the metric is symmetric is a consequence of the cy
of the trace.

The following result is essentially due to Kubo and Ando,26 who developed a theory o
operator means.

Theorem II.11: If k given by (36) satisfies k(1)51, then for all P,QPD,

RP
211LQ

21>RP
21k~DQ,P!>~RP1LQ!21. ~39!

Proof: This follows easily from~36!, the elementary inequality,
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w11

2w
>

11t

2 F 1

t1w
1

1

tw11G> 2

w11
, ~40!

and the fact that the normalizationk(1)51 implies that 2sg(t)/(t11) is a probability measure on
@0,1#.

As immediate corollaries, we find

VP
~w21!2

5LP
211RP

21>VP
s>~RP1LP!215Vp

Bures, ~41!

M P
~w21!2

~A,A!>M P
g ~A,A!>M P

Bures~A,A!, ~42!

H ~w21!2
sym

~P,Q!>Hg
sym~P,Q!>HBures~P,Q!, ~43!

where the superscript indicates the symmetric relative entropy associated withg. Thus k(w)
52/(w11) corresponds to the minimum symmetric relative entropy and minimum Rieman
metric among the class studied here. By contrast, we will see thatg(w)5(w21)2 corresponds to
k(w)5(w11)/(2w) so that the quadratic relative entropy is maximal.

The operatorsVP
g and@VP

g #21 are noncommutative versions of multiplication byP21 andP,
respectively. Hence, in view of the cyclicity of the trace, the following result is not surprisin

Theorem II.12: The operator VP
g given by (34) satisfiesTr VP

g (A)5Tr AP21 and
Tr@VP

g #21(A)5Tr AP.
Proof: We first observe that in a basis in whichP is diagonal with eigenvaluespk ,

FRP
21 1

s1DP,P
~A!G

jk

5F 1

sRP1LP
~A!G

jk

5
1

spk1pj
ajk , ~44!

so that

@VP
g ~A!# jk5E

0

` ajk

spk1pj
sg~s!ds. ~45!

Then for everygPG, PPD, andAPTPD,

Tr VP
g ~A!5(

j
E

0

` aj j

spj1pj
sg~s!ds

5(
j

pj
21aj j E

0

` 1

s11
sg~s!ds5k~1!Tr P21A5Tr P21A.

The proof for the inverse is similar. Since 1/k is also operator monotone, we can use Theorem
to conclude that@VP

g #21 can be written in the form

@VP
g #215aRP1bLP2E

0

` RP
2

sRP1LP
dm~s!,

for some positive measurem.

D. Correspondence between defining functions

We now make some remarks on the relation betweeng(w), wg(w21), andk(w). It should be
clear from the development above that every functiongPG defines a Riemannian metric and
function k as in ~36! or ~37!. If we now considerĝ(w)5wg(w21), it is easy to verify that
ĝ(w)PG as well and thatHĝ(P,Q)5Hg(Q,P). Thus, the mapg(w)→wg(w21) has the effect of
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switching the arguments of the relative entropy and the functiong(w)1wg(w21) yields the
symmetrized relative entropyHg(P,Q)1Hg(Q,P). Now, if we begin with a functiong and
relative entropyHg(P,Q), the differentiation in~28! automatically yields a symmetric resul
Thus, all convex combinationsag(w)1(12a)ĝ(w) of g and ĝ(w) yield the same Riemannia
metric and the same functionkPK.

Conversely, everykPK defines a uniquesymmetric relative entropy via the function
gsym(w)5(w21)2k(w). It follows immediately from the integral representation~37! and ~13!
that gsym(w) is also inG and thatwgsym(w21)5gsym(w). Thus,k selects from the convex set o
relative entropies associated with a givengPG, the symmetric one. If we observe that the integ
representation~36! is equivalent to2k being an operator monotone function, we can summa
the discussion above as follows.

Theorem II.13: There is a one-to-one correspondence between each of the following.

~a! Monotone Riemannian metrics extended to bilinear forms via the symmetry con
M P

g (A,B)5M P
g (B* ,A* ).

~b! Monotone (decreasing) operator functions satisfying k(w21)5wk(w) with the normaliza-
tion k(1)51.

~c! Convex operator functions inG that satisfy the symmetry relation wg(w21)5g(w).

The relations between these are given by~34!, ~36!, and ~37!. In view of this theorem, it
would be appropriate to identify a given operatorVP

g by using the~unique! symmetric function
gsym. However, we will continue to use the asymmetricg for such familiar cases as the logarithm
One might expect the one-to-one correspondence to extend to twice-differentiable sym
monotone relative entropies. However, Petz and Ruskai11 consider relative entropies of the form
H̃g(P,Q)5Tr Pg(P21/2QP21/2). This class of monotone relative entropies can be symmetri

however, differentiation ofHg yields the Riemannian metricM P
(w21)2(A,B)5Tr A* @P21B

1BP21# for all gPG. Thus, in particularH̃ log(P,Q)5Tr P log(P21/2QP21/2) is an example of a
relative entropy distance~in the sense of Definition II.3! that isnot a relativeg entropy. Another
class of distinct relative entropy distances is given by squares of the geodesic distances intr
in Sec. III. Thus, the properties in Definition 1.3 arenot sufficient to completely characterize th
relativeg entropy and allow us to extend the one-to-one correspondence in Theorem 2.4 to
of relative entropies. Although we believe that such an additional condition must exist, we
not found it.

E. Examples

We now give explicit expressions for the relative entropy,VP
g and related quantities in sever

important special cases. These examples will also illustrate the relation between the functiong, ĝ,
gsym, andk discussed above.

Example 1: Take g(w)52 logw. Then ĝ(w)5w logw, gsym5(w21)logw, k(w)
5(w21)21 logw, Ng(s)5(s11)22 andsg(s)51/(s11). Then,H log(P,Q) is given by~7!, and

H log
sym5H ~w21!log w5Tr~P2Q!@ log P2 logQ# ~46!

5E
0

`

Tr~P2Q!
1

Q1xI
~P2Q!

1

P1xI
dx ~47!

and

VP
log5E

0

`S 1

sRP1LP
1

1

sLP1RP
D 1

~s11!2 ds5E
0

` 1

s11

1

LP1sRP
ds.

Making the change of variabless→sRP in the last integral yields
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VP
log5E

0

` 1

s1LP

1

s1RP
ds, ~48!

so that

^A,VP
log~B!&5TrE

0

`

A*
1

sI1P
B

1

sI1P
ds, ~49!

a result that we obtained earlier~9! using the integral representation~8!, or

log P2 logQ5E
0

`F 1

Q1xI
2

1

P1xIGdx. ~50!

In this case, it is also well known27,15 that the inverse operator can be written as

@VP
log#21~B!5E

0

1

PtBP12t dt. ~51!

Example 2:Take g(w)5(w21)2. Then ĝ(w)5(w21)2/w, gsym(w)5(w21)2(w11)/w
andk(w)5(w11)/(2w). ThenH (w21)2(P,Q) is given by~14!,

H ~w21!2
sym

~P,Q!5Tr~Q2P!@P211Q21#~Q2P!,

VP
~w21!2

5RP
211LP

21,

and

^A,VP
~w21!2

~A!&5H ~w21!2~P,P1A!5Tr AP21A.

The associated function is the maximal function satisfying the prescribed conditions. The op

VP
(w21)2(B)5P21B1BP21, so that

VP
~w21!2

5RP
211LP

215RP
21@RP1LP#LP

21. ~52!

Example 3:For s0.0 take gs0
(w)5(w21)2/(w1s0). Then ĝs0

(w)5(w21)2/(11ws0),
gsym(w)5(w21)2(w11)(11s0)/(11ws0)(w1s0), k(w)5(w11)(11s0)/(11ws0)(w1s0),
andNg(s)5d(s2s0). Thus

V
P

gs05
1

s0RP1LP
1

1

s0LP1RP
5~s011!@s0RP1LP#21@RP1LP#@RP1s0LP#21. ~53!

When no confusion will result, it will be convenient to employ a slight abuse of notation and

VP
s0 for V

P

gs0 . The cases051 is particularly important; we have already seen that it yields

minimal kPK. Then k(w)52/(11w), g(w)5gsym(w)5(w21)2/(w12), andV
P

gs051[VP
Bures

5@RP1LP#21. The corresponding Riemannian metric is^A,VP
Bures(B)&5Tr A* @RP1LP#21(B)

and the corresponding relative entropy,

HBures~P,Q!5Tr~Q2P!@RP1LQ#21~Q2P!5Tr QXPX, ~54!

where X5@RP1LQ#21(Q2P). Because of the cyclicity of the trace,HBures(P,Q) is already
symmetric and@RQ1LP#21 would have given the same result.

Example 4: Take g(w)512wa. Then k(w)5(12wa)(12w12a)/a(12a)(12w)2 and
Ng(s)5(sinps/p)(11s)a22. Thus
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H12wa~P,Q!512Tr QaP12a,

VP
g 5RP

21E
0

` 1

sI1DP,P

sinps

p
~11s!a22 ds.

After the change of variabless→sRP , this becomes

VP
g 5

sinps

p E
0

` 1

LP1s

RP
12a1s12a

~RP1s!22a ds. ~55!

F. Monotonicity proof

We now present a new proof of the monotonicity of the relative entropies and Riema
metrics associated with convex operator functions.

Theorem II.14: For every convex operator function g of the type considered here, both
relative entropy Hg(P,Q) and the corresponding Riemannian metric are monotone, i.e.,

Hg~P,Q!>Hg@f~P!,f~Q!#, ~56!

^AVP
gA&>^f~A!Vf~P!

g f~A!&. ~57!

This result is essentially due to Petz.16 We given an independent proof as an immediate coroll
of the following theorem and the integral representations~17! and ~34!.

Theorem II.15: If f is stochastic,

Tr A*
1

RP1sLQ
A5Tr fS A*

1

RP1sLQ
AD>Tr f~A* !

1

Rf~P!1sLf~Q!
f~A!. ~58!

Proof: If P.0, then TrA* PA>0, and TrA* AP>0, so that bothLP andRP are positive as
operators on the Hilbert–Schmidt space. Thus, forQ.0, the operatorRP1sLQ is also positive.
Let X5@RP1sLQ#21/2(A)2@RP1sLQ#1/2f̂(B) with B5@Rf(P)1sLf(Q)#

21f(A). Then
Tr X* X>0, so that

Tr A*
1

RP1sLQ
A2Tr A* f̂~B!2Tr f̂~B* !A1Tr f̂~B* !@RP1sLQ#f̂~B!>0. ~59!

Since it is easy to see that

2Tr A* f̂~B!2Tr f~B* !A522 Trf~A* !
1

Rf~P!1sLf~Q!
f~A!,

the desired result will follow if we can show that the last term in~59! is bounded above by the
right side of~58!. We find

Tr f̂~B* !@RP1sLQ#f̂~B!5Tr f̂~B* !f̂~B!P1f̂~B* !sQf̂~B!

5Tr f̂~B* !f̂~B!P1f̂~B!f̂~B* !sQ

<Tr f̂~B* B!P1f̂~BB* !sQ,

where the inequality follows from the positivity ofP andQ and the operator inequality:

f̂~B* !f̂~B!<f̂~B* B!, ~60!
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which holds for anyB because the trace-preserving condition onf givesf̂(I 2)5I 1 . Then using,
e.g., Trf̂(B* B)P5Tr B* Bf(P), we find

Tr f̂~B* !@RP1sLQ#f̂~B!<Tr B* Bf~P!1BB* sf~Q!

5Tr B* @Bf~P!1sf~Q!B#

5Tr B* @Rf~P!1sLf~Q!#B5Tr B* f~A!

5Tr f~A* !
1

Rf~P!1sLf~Q!
f~A!.

It is interesting to observe that the strategy used here is very similar to that used by Lie
Ruskai22 to prove a Schwarz inequality for completely positive mappings and, as a special
the monotonicity of the quadratic relative entropy. At that time, Lieb and Ruskai could use
Schwarz inequalities to prove many special cases of the strong subadditivity of the logar
relative entropy, but not the general case. A complete proof of strong subadditivity28 ~see also
Refs. 3, 29! seemed to require one of the convex trace function theorems of Lieb.27 It is therefore
curious that now, some 25 years later, we have finally found a way to recover strong subadd
directly from the Schwarz strategy of Lieb and Ruskai.22

It should also be noted that Uhlmann had earlier30 used a very different approach~based on
interpolation theory! to show the logarithmic relative entropy was monotone under a related
of mappings that are Schwarz in the sensef(A* A)>f(A* )f(A) and Petz16 extended this to
other relative entropies.

III. GEODESIC DISTANCE

We now wish to consider the contraction of the relative entropy and corresponding Riem
ian metric under stochastic mappings. Before doing so, it will be useful to consider the geo
distance that arises from the Riemannian metrics considered here.

Definition III.1: Associated with every Riemannian metric^A,VP
g (B)& of the form (28) is a

geodesic distance Dg(P,Q), which is defined as

Dg~P,Q![ infE
0

1
A^Ṡ~ t !,VS~ t !

g Ṡ~ t !&dt,

where the infimum is taken over all smooth paths S(t) with S(0)5P and S(1)5Q.
Theorem III.2: The square@Dg(P,Q)#2 of every geodesic distance of the form given

Definition III.1 is a differentiable monotone relative entropy distance in the sense of Defin
II.3. In addition, Dg(P,Q) satisfies the triangle inequality Dg(P,R)<Dg(P,Q)1Dg(Q,R).

Proof: Properties~a!, ~b!, and~e! of Definition II.3 are readily verified. Property~d!, i.e., the
monotonicityDg@f(P),f(Q)@<Dg(P,Q), can be proven directly, but also follows easily as
corollary to Theorem IV.2 below. The triangle inequality is standard. ThatDg(P1xA,Q1yB) is
differentiable in the sense of Definition II.3~f! follows from standard results~see, e.g., Theorem
3.6, part~2! of Ref. 31. Q.E.D.

It is well known ~see, e.g., Refs. 32–36! that the metric associated with the minimal functio
k(w)52/(11w), discussed in Example 3, is~except for normalization! the metric of Bures, i.e.,
D2(w21)2/(11w)(P,Q)54DBures(P,Q), where

@DBures~P,Q!#25 inf$Tr~W2X!~W2X!* :WW* 5P,XX* 5Q%

52@12Tr~APQAP!1/2# ~61!

<Tr@AP2AQ#252@12TrAPAQ#5H12Aw~P,Q!. ~62!
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It follows immediately from~41! that

D ~w21!2
sym

~P,Q!>Dg~P,Q!>4DBures~P,Q!, ~63!

so that 4DBures(P,Q) gives the minimal geodesic distance of this type.

IV. CONTRACTION UNDER STOCHASTIC MAPS

A. Contraction coefficients

Because the relative entropies, Riemannian metrics, and geodesic distances all contrac
stochastic maps, their maximal contraction is a well-defined quantity in the following sense

Definition IV.1: For each fixed convex operator function g of the form given in Def. II.1
stochastic mapf, we define three entropy contraction coefficients:

hg
RelEnt~f!5 sup

PÞQ

Hg@f~P!,f~Q!#

Hg@P,Q#
, ~64!

hg
Riem~f!5sup

P
sup

APTPD

^f~A!,Vf~P!
g @f~A!#&

^A,VP
g @A#&

, ~65!

hg
geod~f!5 sup

PÞQ

@Dg„f~P!,f~Q!…#2

@Dg~P,Q!#2 . ~66!

In Refs. 1, 2 it was shown that for commutative systems,hg
RelEnt(f)5hg

Riem(f)
5h (w21)2(f). Here, we will prove some relations between these varioush.

Theorem IV.2: The three contraction coefficients defined above satisfy

1>hg
RelEnt~f!>hg

Riem~f!>hg
geod~f!. ~67!

The intuition behind the second inequality can be seen by lettingA5B5Q2P in the integral
representations of Theorems 2.2 and 2.3. Then the only difference between the ratios in~64! and
~65! is that the modular operator in the former isDQ,P while that in the latter isDP,P . This would
seem to indicate that the first supremum is taken over a larger set. However, the two a
directly comparable because the conditionPÞQ in the first case precludes the choiceDP,P .
Hence, we considerQ5P1eA.

Proof: The upper bound of 1 follows immediately from Theorem II.14. To prove the sec
inequality hg

RelEnt(f)>hg
Riem(f), we consider, as suggested above,Hg(P,P1eA)

5Tr P1/2g(DP,P1eA)(P1/2). Proceeding as in the proof of Theorem II.5, but with the shorth
dNg(s)5(bg1cg)d(s)ds1dng(s), we obtain

Hg~P,P1eA!5e2E
0

`

TrFA
1

LP1eA1sRP
~A!GdNg~s!

5e2E
0

`

TrFA
1

LP1sRP
~A!GdNg~s!1O~e2!

5e2^f~A!,Vf~P!
g ~A!!&1O~e3!.

Thus

hg
RelEnt~f!5 sup

PÞQ

Hg@f~P!,f~Q!#

Hg@P,Q#
>sup

P
sup

APT
*

D

Hg@f~P!,f~P1eA!#

Hg~P,P1eA!
.
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However,

Hg@f~P!,f~P1eA!#

Hg~P,P1eA!
5

^f~A!,Vf~P!
g @f~A!#&1O~e!

^A,VP
g @A#&1O~e!

.

Since the quantity on the right can be made arbitrarily close tohg
Riem(f), we conclude that

hg
RelEnt(f)>hg

Riem(f). Finally, to prove the third inequality we first chooseS0(t) to be a mini-
mizing path forDg(P,Q), i.e.,

Dg~P,Q!5E
0

1

A^Ṡ0~ t !,VS0~ t !
g Ṡ0~ t !&dt.

Then, f+S0 is a smooth path fromf(P) to f(Q). Moreover, the linearity off implies that
(d/dt)f+S0(t)5f+Ṡ0(t). Thus

Dg@f~Q!,f~Q!#<E
0

1

A^f+Ṡ0~ t !,Vf+S0~ t !
g f+Ṡ0~ t !&dt

<@hg
Riem~f!#1/2E

0

1

A^Ṡ0~ t !,VS0~ t !
g Ṡ0~ t !&dt

5@hg
Riem~f!#1/2Dg~P,Q!.

Dividing both sides byDg(P,Q) and taking the supremum of the left-hand side, gives the des
result. Q.E.D.

In this case of the first inequalityhg
RelEnt(f)>hg

Riem(f), we proved slightly more, namely
that either equality holds or the supremum inhg

RelEnt(f) is actually attained for some non-negativ
~but not necessarily strictly positive! density matricesP,Q, i.e., strict inequality implies that ther
existsPÞQPD̄ such that

Hg@f~P!,f~Q!#5hg
RelEnt~f!Hg~P,Q!. ~68!

This follows from the fact that we can always find a maximizing sequence (Pk ,Qk) such that

lim
k→`

Hg@f~Pk!,f~Q!k#

Hg~Pk ,Qk!
5hg

RelEnt~f!.

Since we are in a finite-dimensional space, the space of non-negative density matrices is c
so that we can find a convergent subsequence (Pkj

,Qkj
)→(P,Q). Then eitherP5Q, in which

case we necessarily havehg
RelEnt(f)5hg

Riem(f), or ~68! holds. ~Strictly speaking, we must also
exclude the possibility that bothHg(Pk ,Qk) andHg@f(Pk),f(Qk)# diverge to`.! We expect that
for most choices ofg, Eq. ~68! holds only in very special cases@see, e.g., the partial trace examp
in Sec. IV D, which yieldhg

RelEnt(f)515hg
Riem(f).# Indeed, even for commutative systems, ea

proofs37,1 that equality holds forh log(A)5h(w21)2(A) depended on a demonstration that~68! could
not hold in general.

Another special situation occurs for the minimalg, which yields the Bures metric. IfP,Q
commute, then

HBures~P,Q![Tr~P2Q!~@LP1RQ#211@LQ1RP#21!~P2Q!

52 Tr~P2Q!~P1Q!21~P2Q!52^~P2Q!,VP1Q
Bures@~P2Q!#&.

Thus, if the supremum forhBures
Riem(f) happens to be attained for a commuting pairR,A ~with R

PD andAPTPD! whose imagesf(R),f(A) also commute, then
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HBures@f~R1A!,f~R2A!#5hBures
Riem~f!HBures~R1A,R2A!. ~69!

If hBures
RelEnt(f)5hBures

Riem(f), then this also yields equality in~68!; however, it doesnot give a strict
inequality forhBures

RelEnt(f)>hBures
Riem(f). On the contrary, it seems to offer some heuristic support

equality.
We expect that in those exceptional situations in which the supremumhg

RelEnt(f) is attained
the result is equal tohg

Riem(f) so that equality always holds, at least for the first inequality
Theorem IV.2.

Recall that many common choices forg @e.g.,g(w)5(w21)2 or g(w)52 logw# do not yield
a symmetric relative entropy, i.e.,Hg(P,Q)ÞHg(Q,P). This raises the question of whether or n
the entropy contraction coefficient@which we denotehg

sym(f)[hg(w)1wg(w21)
RelEnt (f)# for the sym-

metrized relative entropy,

Hg
sym~P,Q!5Hg~P,Q!1Hg~Q,P!5Hg~w!1wg~w21!~P,Q!, ~70!

is the same ashg
RelEnt(f). Although we believe equality holds, we can only prove that

hg
sym~f!<hg

RelEnt~f!. ~71!

Nevertheless, Theorem IV.2 holds for anyg. In fact, since there is a unique Riemannian met
associated with allg, which yield the same symmetrized relative entropy, we havehg

RelEnt(f)
>hg

sym(f)>hg
Riem(f). To prove~71! it suffices to observe that

Hg~w!1wg~w21!~P,Q!5Hg
sym~P,Q!5Hg~P,Q!1Hg~Q,P!,

so that

Hg
sym@f~P!,f~Q!#5Hg@f~P!,f~Q!#1Hg@f~Q!,f~P!#

<hg
RelEnt~f!Hg~P,Q!1hg

RelEnt~f!Hg~Q,P!

5hg
RelEnt~f!Hg

sym~P,Q!.

In the case of the quadratic entropy, it easily follows thath (w21)2
Riem (f)5h (w21)2

RelEnt (f)
5h (w21)2

sym (f).
Finally, we note that the joint convexity of relative entropy, Riemannian metrics,

@Dg(P,Q)#2 imply that the corresponding contraction coefficients are convex inf. @Although we
did not explicitly state the joint convexity forM P(A,A) it is an easy consequence of homogene
and contraction under partial traces.#

Theorem IV.3: For each fixed gPG, each of the contraction coefficientshg
RelEnt(f),

hg
Riem(f), and hg

geod(f) is convex inf.
Proof: Since the argument is straightforward, we give details only for the relative entropy

f5xf11(12x)f2 :

Hg@f~P!,f~Q!#5Hg@xf1~P!1~12x!f2~P!,xf1~Q!1~12x!f2~Q!#

<xHg@f1~P!,f1~Q!#1~12x!Hg@f2~P!,f2~Q!#

<xhg
RelEnt~f1!Hg~P,Q!1~12x!hg

RelEnt~f2!Hg~P,Q!

5@xhg
RelEnt~f1!1~12x!hg

RelEnt~f2!#Hg~P,Q!.

Dividing both sides byHg(P,Q) implies

hg
RelEnt~f!<xhg

RelEnt~f1!1~12x!hg
RelEnt~f2!. Q.E.D.
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B. Eigenvalue formulation of hg
Riem

„f…

We now show howhg
Riem(f) is related to the following set of eigenvalue problems:

@f̂+Vf~P!
g +f#~A!5lVP

g ~A!. ~72!

In view of Theorem II.10, this is a well-defined linear eigenvalue problem onCn3n for each fixed
pair f andP. The following remarks are easily verified.

~a! The eigenvalue problem~72! can be rewritten asFP
g +f(B)5lB, where

FP
g[~VP

g !21+f̂+Vf~P!
g . ~73!

Furthermore,FP
g is trace preserving. This follows from Theorem II.12 and

Tr FP
g ~B!5Tr Pf̂+Vf~P!

g ~B!5^P,f̂+Vf~P!
g ~B!&

5^f~P!,Vf~P!
g ~B!&5^Vf~P!

g @f~P!#,B&

5^I ,B&5Tr B.

~b! We can assume without loss of generality that the matrices that are eigenvectors in~72! are

self-adjoint, i.e., thatA5A* . Indeed, it is easy to check that the operatorV
P

gs0(A)5(sRP1LP)

3@RP1LP#21(RP1sLP)(A) satisfies @V
P

gs0(A)#* 5V
P

gs0(A* ). Therefore, the operatorsVP
g ,

Vf(P)
g , f, f̂ andFP

g all map adjoints to adjoints.
~c! For each fixedP, the eigenvalue equation is satisfied withA5P and eigenvaluel51,

which is the largest eigenvalue. The operators on both sides of~72! are self-adjoint~in fact,
positive definite! with respect to the Hilbert–Schmidt inner product and the corresponding
thogonality condition for the other eigenvectors reduces to TrA50.

In view of these observations, it is easy to conclude from the max–min principle tha
second-largest eigenvaluel2

g(f,P) satisfies

l2
g~f,P!5 sup

APTPD

^f~A!,Vf~P!
g @f~A!#&

^A,VP
g @A#&

, ~74!

for each fixedP. Then taking the supremum overD yields
Theorem IV.4: For each gPG and stochastic mapf,

hg
Riem~f!5 sup

PPD
l2

g~f,P!. ~75!

We have already observed that everyVP
g can be regarded as a noncommutative varian

multiplication by P21. Indeed, if both pairs of operatorsP,A andf(P),f(A) associated with a
particular eigenvalue commute for someg, then VP

g (A)5RP21(A)5LP21(A) for all g and the
corresponding eigenvalue equations are the same. It may be tempting to conjecture t
eigenvalue equations for differentg are related by a similarity transform, which would then imp
that all l2(f,P) are equal so that allhg

Riem(f) are identical. However, for a given fixedP, RP ,
andLP commute, which implies thatVP

g andVP
h commute for any pair of functionsg andh. Since

commuting operators are simultaneously diagonalizable and similar operators have the sa
genvalues, this would imply that all of the eigenvalue operatorsB→@(VP

g )21+f̂+Vf(P)
g +f#(B)

are identical. This is easily seen to be false in specific examples. Moreover, as discussed at
of Sec. IV D, one can find examples of nonunitalf for which differenthg

Riem(f) arenot identical.
Theorem IV.5: We can rewrite the eigenvalue problem (72) so that
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l2
g~f,P!5sup

a

^f̂~a!,~VP
g !21@f̂~a!#&

^a,~Vf~P!
g !21@a#&

,

where the supremum is now taken over$aPRange(f):Tr@Vf(P)
g #21(a)50%.

Proof:

l2
g~f,P!5 sup

A:Tr~A!50

^f~A!,Vf~P!
g @f~A!#&

^A,VP
g @A#&

5 sup
B:Tr@VP

g
#21/2~B!50

^B@VP
g #21/2+f̂+Vf~P!

g +f+@VP
g #21/2B#&

^B,B&
.

If we now write G5@Vf(P)
g #1/2+f+@VP

g #21/2, we see thatl2
g(f,P) is the largest eigenvalue o

G* G, whereG maps

$B:Tr@VP
g #21/2~B!50%→$bPRange~f!:Tr@Vf~P!

g #21/2~b!50%.

SinceGG* andG* G have the same nonzero eigenvalues,

l2
g~f,P!5 sup

b:Tr@Vf~P!
g

#21/2~b!50

^b@Vf~P!
g #1/2+f+@VP

g #21+f̂+@Vf~P!
g #1/2#b&

^b,b&

5 sup
a:Tr@Vf~P!

g
#21~a!50

^f̂~a!@VP
g #21f̂~a!&

^a,@Vf~P!
g #21a&

.

If we apply this result withVP
Bures5@RP1Lp#21, it follows easily from the theorem abov

that

l2
Bures~f,P!5 sup

a:Tr f~P!a50

Tr f~a!Pf̂~a!

Tr af~P!a
. ~76!

It is tempting to writef(P)a5b5f(B) and replace the constraint Trf(P)a50 by TrB50.
The denominator would then become^f(B)@f(P)#21f(B)&, which has the same form as th
numerator in~65! whenk(w)5(w11)/2w @corresponding tog5(w21)2#. However, there is no
guarantee thatf(a)5f̂(@f(P)#21#B). On the contrary, this cannot possibly hold because
would then have that thel ~and henceh! for the two extremal functionsk(w)52/(11w) and
k(w)5(w11)/2w are inverses, which is inconsistent withlg(f,P)<hg

Riem(f)<1 ~except in the
casel51, which is not generic!. There is, however, a sense in which the operators associated

these two extremal functions are inverses sinceVP
(w21)25RP

211LP
215RP

21@RP1LP#LP
21

5RP
21@VP

Bures#21LP
21. It seems likely that if thehg

Riem for these two extremal functions are equ
then all of them are.

Unlike the case ofhg
RelEnt(f), we do expect that the supremum forhg

Riem(f) is actually
attained. Indeed, we know that for each fixedP the supremum in~74! is attained for someA
Þ0, which satisfies the eigenvalue problem~72!. As before, we can find a maximizing sequen
of density matricesPk for ~75! so thathg

Riem(f)5 limk→` l2
g(f,Pk). For eachPk , let Ak be the

solution to the eigenvalue problem~72! for l2
g(f,Pk) normalized so that TruAku51. Then we can

find a convergent subsequence for whichPk→PPD and Ak→AÞ0, since TruAuÞ0. It then
follows that ~72! holds for thisP,A with l5hg

Riem(f) ~althoughP is only non-negative!, which
implies that
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^f~A!,Vf~P!
g @f~A!#&5hg

Riem~f!^A,VP
g ~A!&.

C. Bounds on contraction coefficients

We first give an upper bound forh log
Riem using

hDobrushin~f![ sup
APT

*
D

Truf~A!u
TruAu

. ~77!

This can be interpreted as the norm off regarded as an operator on the Banach space of trac
matrices with norm TruAu. Although the functiong(w)5uw21u is not operator convex,
hDobrushin(f) is analogous to the contraction coefficient of the~nondifferentiable! symmetric rela-
tive g entropyH uw21u(P,Q)5TruP2Qu, which, however, isnot the relativeg entropy obtained by
usingg(w)5uw21u in Definition II.1. Nevertheless,hDobrushin(f) is a natural and useful object t
consider. It was shown in Ref. 3~see Theorem 2! that

hDobrushin~f!5 1
2 sup$Truf~E2F !u:E,F 1-dim proj s;EF50%, ~78!

where ‘‘1-dim projs’’ means thatE,F are one-dimensional projections inD̄. The expression on the
right in ~78! shows that we are justified in interpretinghDobrushin(f) as a noncommutative analo
of Dobrushin’s coefficient of ergodicity.

Theorem IV.6: If f is stochastic,

h log
Riem~f!<hDobrushin~f![ sup

APT
*

D

Truf~A!u
TruAu

. ~79!

Proof: The mapB→(VP
log)21+f̂+Vf(P)

log (B)[Flog(B) is positivity preserving, as well as trac
preserving. The former follows from the integral representations~49! and ~51! for VP

log and its
inverse, together with the fact that the composition of positivity-preserving maps is po
preserving. Then, taking the trace of the absolute value of both sides of the eigenvalue p
F@f(A)#5lA and using Theorem 1 of Ref. 3 yields

l TruAu5TruF@f~A!#u<Truf~A!u. Q.E.D. ~80!

Although we believe that this result holds for anyg, we do not have a proof except for the lo
Our proof depended on the observation that in the case of the log the mapFg(B)5(VP

g )21+f̂
+Vf(P)

g (B) is positivity preserving. However, explicit examples can be found to show thatFg is

not positivity preserving in general. Indeed, although bothVP
Bures5@RP1LP#21 and VP

(w21)2

5RP
211LP

21 are positive semidefinite with respect to the Hilbert–Schmidt inner product, the
not positivity preserving in the sense of mapping positive operators to positive operators
difference is analogous to the difference between an ordinary matrix being positive semid
and having positive elements.

We now consider lower bounds onhg
Riem(f). In Ref. 3 it was shown that

hDobrushin~f!<Ah~w21!2
Riem

~f!. ~81!

We now give a lower bound that holds for allhg
Riem(f) when the mapf is unital, i.e.,f(I )

5I .
Theorem IV.7: If f is unital,

hg
Riem~f!> sup

Tr A50

Truf~A!u2

TruAu2
. ~82!
                                                                                                                



e of

f the

the
s
st

hastic

e then

e

5721J. Math. Phys., Vol. 40, No. 11, November 1999 Monotone Riemannian metrics and relative . . .

                    
This is an immediate consequence of the definition~65!; it also follows from Theorem IV.4 and
the fact that the right side of~82! is justl2(f,I ) whenf is unital. The right side of~82! can also
be interpreted as the square of the norm off regarded as an operator on the Banach spac
traceless matrices with Hilbert–Schmidt normATr A* A. Whenf is self-adjoint in the sensef̂
5f, every trace-preserving map is unital.

If f mapsCn3n to itself, then the results of this section can be restated in terms o
eigenvalues and singular values off. Sincef is trace preserving,f(B)5LB implies that either
L51 or TrB50. If we restrictf to the matrices with trace zero, thenhDobrushin(f) is the largest
magnitude of an eigenvalue and for unitalf, l2(f,I ) is the largest eigenvalue off̂f. Thus, for
unital stochastic maps,l2(f,I )5L2(f̂f), where we have continued our convention of using
subscript 2 for eigenvalues of maps restricted toT* D̄. If f is self-adjoint, the two lower bound
~81! and ~82! coincide andl2(f,I )5L2(f̂f)5@L2(f)#2 in the usual sense of second large
eigenvalue of. For general unitalf, ~82! is stronger since

h~w21!2
Riem

~f!>l2~f,I !5L2~f̂f!>@hDobrushin~f!#2. ~83!

We now explicitly state some conjectures that have already been discussed.
Conjecture IV.8: For each fixed gPG,

hg
RelEnt~f!5hg

Riem~f!5hg
geod~f!<hg

Dobrushin~f!. ~84!

Conjecture IV.9: Iff is unital, then

hg
Riem5L2~f̂f![ sup

Tr A50

Truf~A!u2

TruAu2 , ~85!

for all gPG.
If this conjecture holds, then for unitalf the contraction coefficienthg

Riem is independent ofg.
Theorem IV.13 at the end of the next section contains an explicit example of a nonunital stoc
map for whichhg

Riem depends nontrivially ong; therefore, the hypothesis thatf be unital is
essential. In view of~82! it would suffice to show thathg

Riem<L2(f̂f).

D. Examples

We now consider some special classes of stochastic mapsf:A1→A2 . We begin by looking
at some maps for which all contraction coefficients are easily seen to be zero or one. W
consider maps fromC232 to C232 that provide support for the conjectures above.

We first consider the case in whichA2 is one dimensional, e.g.,f projects onto a one-
dimensional subalgebra~which need not have an identity! of A1 . Then, sincef is trace preserving
and maps density matrices to density matrices, we must havef(P)5f(Q), ;P,Q with
Tr w(P)51 so thatf(P)Þ0. Thus,Hg@f(P),f(Q)#5Dg@f(P),f(Q)#50, ;P,Q, which im-
plies hg

RelEnt(f)5hg
geod(f)50. If Tr B50, thenf(B)50. @To see this note that one can finda,b

such thatP5(aI1bB) is a density matrix.# Thus, ^f(B)Vf(P)
g f(B)&50 and Truf(B)u50 for

all B in T* D̄, which implies thathg
Riem(f)5hDobrushin(f)50. We can summarize this as th

following.
Theorem IV.10: If the image of the stochastic mapf is one dimensional, thenhg

RelEnt(f)
5hg

Riem(f)5hg
geod(f)5hDobrushin(f)50 for all gPG.

We next consider the important special case in whichf is a partial tracet. In the simplest
case, lett:C2n32n→Cn3n be the map that takes

M5S A B

C DD→t~M !5A1D, ~86!
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whereMPC2n32n has been written in block form andA,B,C,DPCn3n. Then the homogeneity
of relative entropy~see Definition II.3b! implies that for

P5S P 0

0 PD and Q5S Q 0

0 QD ,

Hg~P,Q!5Hg~2P,2Q!5Hg„t~P!,t~Q!…,

for any g, and, similarly,

^A,VP
g ~A!&5^2A,V2P

g ~2A!&5^t~A!,Vt~P!
g

„t~A!…&,

when

A5S A 0

0 AD .

From this, we easily see that

hg
RelEnt~f!5hg

Riem~f!5hg
geod~f!5hDobrushin~f!51, ~87!

where we have assumed implicitly thatt acts on the full algebra of all 2n32n matrices.
The partial trace described above is similar to a conditional expectation, i.e., a map for

A2 is a subalgebra~with identity! of A1 andf(A)5A, ;APA2 . Both partial traces and condi
tional expectations are included in the following.

Theorem IV.11: If the stochastic mapf is also an isomorphism from a nontrivial subalgeb
(with identity) ofA1 to A2 , then hg

RelEnt(f)5hg
Riem(f)5hg

geod(f)5hDobrushin(f)51 for all g
PG.

Since every completely positive map can be represented as a partial trace,21 this might seem
to suggest thath51 always holds. However, these representations involve multiple copies o
algebra, so that the partial trace is not acting on the full algebra in the higher-dimensional
Thus, the representation ofA1 need necessarily not contain a subalgebra with the desired iso
phism property. Examples of maps withh,1 were already found in Ref. 1 for commutativ
algebras, and two different noncommutative examples are given below.

We now state two results for mapsf:C232→C232. The proofs are postponed to a subsequ
paper.38 Recall that any density matrix inC232 can be written in the form1

2@ I 1w–s#, wherew
PR3 ands denotes the vector of Pauli matrices. The first theorem provides evidence for th
conjectures at the end of the previous section.

Theorem IV.12: For the unital mapfT :I 1w–s→I 1Tw–s,

hg
RelEnt~fT!5hg

Riem~fT!5hg
geod~fT!5iTi2, ;gPG,

and hDobrushin(fT)5iTi .
The next example gives a nonunital stochastic map for whichhg

Riem(f) varies withg. For
a,t.0 with a1t<1, define

fa,t@ I 1w–s#5I 1aw1s11ts2 . ~88!

It is easily seen to be stochastic because the conditiona1t<1 ensures that it is a conve
combination of stochastic maps. Forgs0

(w)5(w21)2/(w1s0) as in Example 3 of Sec. II E,
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hgs0

Riem~f!5 sup
0<v<1

@~12t21~r2a2!v2#@12v2#

@12t22a2v2#@12t2~12r!2~12r!a2v2#

>
a2

12S 12s0

11s0
D 2

t2

,

where 12r5(12s0)/(11s0) and equality holds fors0'0. In particular, we can conclude th
following.

Theorem IV.13: For the nonunital stochastic mapf given by (88), there is an S.0 such that
for s0P@0,S),

hs0

Riem~f!5
a2

12S 12s0

11s0
D 2

t2

.

Furthermore,

h~w21!2
Riem

~f!5
a2

12t2,a5hDobrushin~f!.

If s1P(0,S), we havehs1

Riem(f).hs0

Riem(f)5a2/12t2.
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Theory of separability of multi-Hamiltonian chains
Maciej Błaszak
Physics Department, A. Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
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The theory of separability of one-Casimir bi-Hamiltonian chains is extended onto
unsplit multi-Casimir bi-Hamiltonian chains. Multi-Casimir extensions of the
known one-Casimir chains are constructed. ©1999 American Institute of Physics.
@S0022-2488~99!01811-3#

I. INTRODUCTION

In the last decade considerable progress has been made in construction of new integrab
dimensional dynamical systems showing bi-Hamiltonian property. The majority of them orig
from stationary flows, restricted flows or nonlinearization of Lax equations of underlying so
systems~see Ref. 1 and the literature quoted there!. Quite recently a fundamental property of su
systems has been discovered, i.e., their separability. It was proved1,2,3 that most bi-Hamiltonian
finite dimensional chains, which start with a Casimir of the first Poisson structure and term
with a Casimir of the second Poisson structure, are integrable by quadratures, through th
tions of the appropriate Hamilton–Jacobi equation. In this paper we develop a theory gener
them into multi-Hamiltonian systems with more than one Casimir variable. The results are
trated by several examples of the known and new multi-Hamiltonian systems whose integr
by quadratures is demonstrated.

II. PRELIMINARY CONSIDERATIONS

Let us reexamine some facts about bi-Hamiltonian systems, both finite and infinite d
sional. We recall some definitions. LetM be a differentiable manifold,TM andT* M its tangent
and cotangent bundle. At any pointuPM , the tangent and cotangent spaces are denoted byTuM
andTu* M , respectively. The pairing between them is given by the map^•,•&:Tu* M3TuM→R.
For each smooth functionFPC`(M ), dF denotes the differential ofF ~gradient¹F for finite
systems and variationdF for field systems!. M is said to be a Poisson manifold if it is endowe
with a Poisson bracket$•,•%:C`(M )3C`(M )→C`(M ), in general degenerated. The relat
Poisson tensorp is defined by$F,G%p(u)ª^dG,p+dF&(u)5^dG(u),p(u)dF(u)&. So, at each
point u, p(u) is a linear mapp(u): Tu* M→TuM which is skew-symmetric and fulfills the Jaco
identity. Any functioncPC`(M ), such thatdcPkerp, is called a Casimir ofp. Let p0 ,p1 :
T* M→TM be two Poisson tensors onM. A vector fieldK is said to be a bi-Hamiltonian with
respect top0 andp1 if there exist two smooth functionsH,FPC`(M ) such that

K5p0+dH5p1+dF. ~1!

Poisson tensorsp0 andp1 are said to be compatible if the associated pencilpl5p12ep0 is itself
a Poisson tensor for anyl. Moreover, ifp0 is invertible, the tensorN5p1+p0

21, called a recur-
sion operator, is a Nijenhuis~hereditary! tensor of such a property that when it acts on a giv
bi-Hamiltonian vector fieldK, it produces another bi-Hamiltonian vector field being a symme
generator ofK. Hence, having the invariant Nijenhuis tensor, one can construct a hierarc
Hamiltonian symmetries and related hierarchy of constants of motion for underlying syste
important for its integrability.

Unfortunately, for majority of bi-Hamiltonian finite dimensional systems, both Poisson s
tures are degenerated, so one cannot construct the recursion Nijenhuis tensor inverting on
Poisson structures. Nevertheless, due to the nonuniqueness of Hamiltonian functions, dete
57250022-2488/99/40(11)/5725/24/$15.00 © 1999 American Institute of Physics
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up to an appropriate Casimir function, it is always possible to construct a finite bi-Hamilto
chain starting and terminating with Casimirs ofp0 and p1 , respectively. Actually, as was firs
shown by Gel’fand and Zakharevich,4 having Poisson manifoldM of dimM52n11 with a linear
Poisson pencilpl5p12lp0 of maximal rank, a Casimir of the pencil is a polynomial inl of
ordern

hl5h0ln1h1ln211¯1hn ~2!

and generates a bi-Hamiltonian chain

p0+¹h050

p0+¹h15K15p1+¹h0

p0+¹h25K25p1+¹h1

pl¹hl50⇔ ]

p0+¹hn5Kn5p1+¹hn21

05p1+¹hn,

~3!

whereK[K1 , H[h1 , F[h0 , andd[¹. References 1–3 demonstrate that in canonical coo
nates~q,p,c!, whereq5(q1 ,...,qn)T and p5(p1 ,...,pn)T are generalized coordinates andc is a
Casimir coordinate, a canonicalp0 and noncanonicalp1 Poisson structure~both degenerated! take
the general form

p05S u0 0

0 0D , p1S u1 K̄

2K̄T 0
D , ~4!

where

u05S 0 I

2I 0D , u15S D A

2AT BD ~5!

are nondegenerated Poisson matrices from the spaceM̄{(q,p), K̄5K̄(q,p,c) is related toK1

vector field from the hierarchy~5! in the following way: K15(K̄,0)T and A,B,D are entries
depending on the generalized coordinates~q,p!. Moreover, the operator

N5u1+u0
215S A 2D

B AT D ~6!

is a Nijenhuis tensor onM̄ but not a recursion operator for the projected vector fieldsK̄rPTM̄.
Then, it was shown that each hierarchy~3!, whereu1 takes the form

u15S 0 A~q!

2AT~q! B~q,p!
D , ~7!

or can be transformed into the form~7! by an appropriate canonical transformation, with Ham
tonian functions

hk~q,p,c!5hk~q,p!1cbk~q!, ~8!

is separable. The expression foru1 given by ~7! is the most general form of the second Poiss
tensor when the change from natural coordinates to separation coordinates is given by
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transformation. Actually, first one has to pass to the so-called Darboux–Nijenhuis coord
(l i ,m i) via a canonical transformationf:(l,m)→(q,p). The transformationf is constructed by
a generating functionS5( i 51

n pis i(l) from the equations

qi5
]S

]pi
, m i5

]S

]l i
, ~9!

whereqk5sk(l) are calculated from

bk~q!5~21!k (
j 1 ,...,j k

j 1,.., j k

l j 1
•¯•l j k

ªrk~l!, k51,...,n, ~10!

and b0(q)51ªr0(l), whererk(l) are the so-called Viete polynomials~symmetric polynomi-
als!. In Darboux–Nijenhuis coordinates the chain~3! transforms into a bi-Hamiltonian Nijenhui
chain ~3! where now

p05S 0 I 0

2I 0 0

0 0 0
D , p15S 0 L

]h1

]m

2L 0 2
]h1

]l

2S ]h1

]m D T S ]h1

]l D T

0

D , L5diag~l1 ,...,ln!,

~11!

hk~l,m,c!52(
i 51

n
]rk~l!

]l i

f i~l i ,m i !

D i~l!
1crk~l!5hk~q,p,c!•f,

rk(l) are given by~10!,

D i~l!ª)
j Þ i

~l i2l j ! ~12!

and f i(l i ,m i) are arbitrary smooth functions.
Then, it was demonstrated that for eachhk(l,m,c) there exists a canonical transformatio

(l,m)→(b,a) in the formbi5]W/]ai , m i5]W/]l i , whereW(l,a) is the generating function
such that the related Hamilton–Jacobi equations

hr S l,
]W

]l
,cD5const ~13!

can be solved and hence, the implicit solutions for the trajectoriesl i(t r), with respect to the
evolution parametert r , can be constructed.

In the next section we extend the formalism onto unsplit multi-Casimir chains, i.e., the
with more then one Casimir variable, when each bi-Hamiltonian chain conserves the form~3! and
does not split into two or more sub-chains. So, the theory presented does not cover such ex
as stationary Boussinesq flows.5 The following properties of Vieter r(l) andD i(l) polynomials
will be useful1,2

]r r

]l i
ª2r r 21

i , l i

]r r

]l i
5r r2r r

i , l ir r 21
i 52r r1r r

i , ~14!
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]r r
k

]l i
ª2r r 21

ki , l i

]r r
k

]l i
5r r

k2r r
ki , l ir r 21

ki 52r r
k1r r

ki ,

~15!
]

]l i

1

D i
52

1

D i
(
aÞ i

1

l ia
,

]

]lb

1

D i
5

1

D i

1

l ib
, bÞ i .

III. MULTI-HAMILTONIAN NIJENHUIS CHAINS AND THEIR INTEGRABILITY BY
QUADRATURES

Consider the set of Hamiltonian functions

hr~l,m,c!52(
i 51

n
]r r

]l i

f i~l i ,m i !

D i
1(

j 51

n

cjb j ,r~l!, r 51,...,n, ~16!

whereb1,r(l)[r r(l) andbm,r , m52,...,n, are defined by the recursive formula

bm,r5bm21,r 112bm21,1•b1,r . ~17!

The explicit forms ofb j ,r functions forn52,3 are given in Appendix A.
In this section we prove that functions~16! form ( 2

n11) bi-Hamiltonian chains with respect t
(n11) appropriate Poisson matrices, and then we solve the related Hamilton–Jacobi equ
confirming the separability of dynamical systems generated by Hamiltonians~16!. We start with
proofs of some properties ofhr functions and their components.

Lemma 1:~i! The following representation ofbk,r is valid:

bk,r~l!5(
i 51

n
]r r

]l i

l i
n1k21

D i
52(

i 51

n

r r 21
i

l i
n1k21

D i
. ~18!

~ii ! The following property ofbk,r is fulfilled:

]b r ,k11

]l i
52

]rk11

]l i

]b r ,1

]l i
5rk

i ]b r ,1

]l i
. ~19!

The proof is given in Appendix B.
Lemma 2:Let R5( j 51

n @l j
2(]/]l j )1l j #, then the following relations hold for functionsbk,1 :

~i!

R•bk21,15kbk,1⇒
1

k!
Rk

•b0,15bk,1 , b0,151, ~20!

~ii !

bk,1~l!52 (
i 1 ,...,i k

i 1<...< i k

l i 1
l i 2

...l i k
, k<n. ~21!

The proof is inductive, using the results of Lemma 1.
Notice that according to Lemma 1~i!, functionshr can be put into the form

hr~l,m,c!52(
j 51

n
]r r

]l j

f j~m j ,l j ,c!

D j
, f j~m j ,l j ,c!5 f j~m j ,l j !2(

l 51

n

cll j
n211 l . ~22!

Lemma 3:The respective derivatives ofhr read
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]hr

]m i
52

]r r

]l i

]h1

]m i
5r r 21

i ]h1

]m i
,

]hr

]l i
52

]r r

]l i

]h1

]l i
5r r 21

i ]h1

]l i
, ~23!

]2hr

]l i]l j
52

1

l i2l j

]r r

]l j

]h1

]l i
2

1

l j2l i

]r r

]l i

]h1

]l j
5

r r 21
j

l i2l j

]h1

]l i
1

r r 21
i

l j2l i

]h1

]l j
.

The proof is given in Appendix C.
Now, let us considern11 matrices 3n33n of rank 2n in the following form:

p05S 0 I

0U¯U0
2I 0

0

] 0

0

D ,

p15S 0 L

K1U 0 U¯U0
2L 0

2K1
T

0

] 0

0

D
p251

0 L2

K2UK1U 0 U¯U0
2L2 0

2K2
T

2K1
T

0

] 0

0

2
] ~24!

pn5S 0 Ln

KnUKn21U¯UK1
2Ln 0

2Kn
T

2Kn21
T

] 0

2K1
T

D ,
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where I is n3n unit matrix, Lm5diag(l1
m,l2

m,...,ln
m) where all l i are different andKm

5(]hm /]m1 ,...,]hm /]mn ,2]hm /]l1 ,...,2]hm /]ln)T are Hamiltonian vector fields with
Hamiltonianshr ~16!.

Lemma 4:All functions hr(l,m,c) are in involution with respect to canonical Poisson ten
p0 .

Proof: According to Lemma 1, for a givenr, all termscjb j ,r(l) j 51,...,n can be absorbed by
f i i 51,...,n terms ofhr . However, according to the results from Refs. 1 and 2, functions of
form ~22! are in involution with respect top0 . h

Theorem 1: ~i! Consider two Poisson tensors 3n33n of rank 2n

p05S 0 I

0U¯U0
2I 0

0

] 0

0

D , ~25!

pm51
0 Lm Xm

Ym

U¯UX1

Y1

U 0 U¯U0
2Lm 0

2Xm
T 2Ym

T

] 0

2X1
T 2Y1

T

0

]

0

2 .

The compatibility condition betweenp0 andpm is given by

]Yr j

]m i
1

]Xri

]l j
50, i , j 51,...,n, r 51,...,m ~26!

with admissible solution

Xri 5
] f r

]m i
, Yri 52

] f r

]l i
, f r5 f r~l,m,c!. ~27!

~ii ! Conditions forf r functions to makepm Poissonian follow from Jacobi identity and read

05$$l i ,l j%pm
,ck%pm

1c.p.

m ~28!

05~l j
m2l i

m!
]2f m112k

]m i]m j
1(

r 51

m S ]2f m112k

]m i]cr

] f m112r

]m j
2

]2f m112k

]m j]cr

] f m112r

]m i
D ,

05$$m i ,m j%pm
,ck%pm

1c.p.

m ~29!
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05~l j
m2l i

m!
]2f m112k

]l i]l j
1(

r 51

m S ]2f m112k

]l i]cr

] f m112r

]l j
2

]2f m112k

]l j]cr

] f m112r

]l i
D ,

05$$l i ,m j%pm
,ck%pm

1c.p.

m ~30!

05~l j
m2l i

m!
]2f m112k

]m i]l j
2ml j

m21d i j

] f m112k

]m i

1(
r 51

m S ]2f m112k

]m i]cr

] f m112r

]l j
2

]2f m112k

]l j]cr

] f m112r

]m i
D ,

05$$ci ,cj%pm
,lk~mk!%pm

1c.p.

m

05
]

]mk~lk!
(
l 51

m S ] f m112 i

]l l

] f m112 j

]m l
2

] f m112 i

]m l

] f m112 j

]l l
D ,

m ~31!

05$ f i , f j%pm
, i , j 51,...,m.

Lemma 5:Functionsf r5hr(l,m,c) ~16! fulfill the conditions of Theorem 1. The proof i
given in Appendix D.

Consequently, all matrices~24! are Poissonian and compatible with the canonical one.
Theorem 2: On the extended phase spaceM{(l1 ,...,ln ,m1 ,...,mn ,c1 ,...,cn), the func-

tions

hr~l,m,c!52(
i 51

n
]r r

]l i

f i~l i ,m i !

D i
1(

j 51

n

cjb j ,r~l!,

h12r5cr , r 51,...,n, ~32!

form ( 2
n11) bi-Hamiltonian chains

p i¹h2 i50

p i¹h2 i 115K15pk¹h2k11

p i¹h2 i 125K25pk¹h2k12

] 0< i ,k<n,
~33!

p i¹h2 i 1 j5K j5pk¹h2k1 j

]

p i¹h2 i 1n5Kn5pk¹h2k1n

05pk¹h2k1n11
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with respect to (n11) Poisson tensors~24!.
The proof is given in Appendix E.
From the fact thathn1150 and the validity of the chain~33! we find that the Poisson structur

pm has the following Casimir functions:cm11 ,cm12 ,...,cn ,hn ,...,hn2m11 .
Lemma 6:Functionshr(l,m,c), r 51,...,n are in involution with respect to an arbitrar

Poisson tensorpk , k51,...,n.
Proof: As all hr are in involution with respect top0 and belong to chains~33!, hence

$hi ,hj%pk
5^¹hj ,pk¹hi&5^¹hj ,p0¹hi 1k&5$hi 1k ,hj%p0

50. ~34!

h

Now, we integrate equations of motion from the hierarchy~33! solving the Hamilton–Jacob
equation for Hamiltonians~16!. According to the Hamilton–Jacobi theory, we look for a canoni
transformation (l,m)→(b,a) in the formbi5]W/]ai , m i5]W/]l i , whereW(l,a) is the gen-
erating function, satisfying the Hamilton–Jacobi equation

hr S l,
]W

]l
,cD5 (

k51

n r r 21
k ~l! f k~lk ,]W/]lk!

Dk
1(

i 51

n

cib i ,r~l!5constr . ~35!

Now we demonstrate the separability of Eq.~35!. Take the generatingW(l,a) function in the
form

W~l,a!5(
i 51

n

Wi~l i ,a!, ~36!

apply the result of Lemma 1 and hence, Eq.~35! turns into the form

(
k51

n r r 21
k ~l!@ f k~lk ,]Wk /]lk!2( i 51

n cilk
n211 i #

Dk
5constr . ~37!

Applying the relation

2(
i 51

n
]r r

]l i

l i
m

D i
5(

i 51

n r r 21
i ~l!l i

m

D i
5H 1, m5n2r

0, mÞn2r J , r 51,...,n, ~38!

the solution of Eq.~37! reads

f k~lk ,]Wk /]lk!5g~lk!, constr5an112r , ~39!

where

g~j!5a11a2j1¯1anjn211c1jn1¯1cnj2n21. ~40!

Hence,W(l,a) can be obtained by solvingn decouples first-order ODE~39!. For example, if

f i~l i ,m i !5w~l i ! f ~m i !1c~l i !, ~41!

then we obtain

W~l,a!5 (
k51

n Elk
f 21S g~j!2c~j!

w~j! Ddj. ~42!

In new canonical variablesai , bi5]W/]ai , the Hamiltonianshr(l,m,c) become
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hr5an112r ~43!

with

bi5
]W

]ai
5 (

k51

n Elk
~ f 21!8

j i 21

w~j!
dj, ~44!

where (f 21)8 means derivative off 21. As in the new coordinates eachhr generates a trivial flow

~aj ! tr
52

]hr

]bj
50, ~bj ! tr

5
]hr

]aj
5d j ,n112r , ~cj ! tr

50, ~45!

hence

bi5tn112 i1const. ~46!

Combining~44! with ~46! we arrive at implicit solutions for the trajectoriesl i(tk), with respect to
the evolution parametertk in the form

(
k51

n Elk
~ f 21!8

j i

w~j!
dj5d i ,n2ktk1const, i 50,...,n21. ~47!

IV. MULTI-HAMILTONIAN CHAINS IN ARBITRARY CANONICAL COORDINATES AND
THEIR TRANSFORMATION TO DARBOUX–NIJENHUIS REPRESENTATION

Let us introduce arbitrary coordinates~q,p,c! related to the Darboux–Nijenhuis coordinat
(l,m,c) by a point transformation

qk5zk~l!, k51,...,n, ~48!

which is canonical, i.e., coming from the generating functionS5( i 51
n pizk(l). Then

qi5
]S

]pi
, m i5

]S

]l i
, ~49!

so the first equation reconstructsqi5zk(l) and solving the second one with respect topk we get
the missing part of the canonical transformation

pk5hk~l,m!. ~50!

Applying the inverse of the transformation~48!, ~50! to Hamiltonian functions~16! and Poisson
matrices~24! one finds that

hr~q,p,c!5hr~q,p!1(
i 51

n

cibi ,r~q! ~51!

and the nondegenerated partum of rank 2n of eachpm ~also implectic!

um5Nm+u05S 0 Lm

2Lm 0 D ~52!

takes now the form
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um5Nm+u05S 0 Am~q!

2Am
T ~q! Bm~q,p!

D , m51,...,n, ~53!

where matrix elements (Bm) i j are at most linear inp coordinates.
Conversely, if we have a multi-Hamiltonian chain in~q,p,c! coordinates, and the set of equa-

tions

b1,r~l![r r~l!5b1,r~q!, r 51,...,n ~54!

has the solutionl i5l i(q), i 51,...,n such thatl i(q)Þl j (q) for iÞ j , which is equivalent to the
statement that the Nijenhuis~but not recursion! tensor

N~q,p!5S 0 A1~q!

2A1
T~q! B1~q,p!

D •S 0 I

2I 0D 21

5S A1~q! 0

B1~q,p! A1
T~q!

D ~55!

is nondegenerated and hasn distinct eigenvaluesl i each with multiplicity 2, then the canonical
transformation~48!–~50! transforms a given chain to the one considered in the preceding sect

The admissible reductions of the number of Casimir variables are the following. For arbitr
1<m,n, let ciÞ0, 1< i<m and ci50 for m, i<n. The firstm Poisson structuresp i , i<m

survey the projection (l,m,c1 ,...,cn)PM→M̄{(l,m,c1 ,...,cm) and we have still (2
m11) bi-

Hamiltonian chains~33!.
Remark:In the limit c15¯5cn50, the systems considered lose the bi-Hamiltonian propert

turning into the so-called quasi-bi-Hamiltonian systems1–3,6,7 on a symplectic manifoldM
{(q,p), being still separable and integrable by quadratures. Moreover, because of the pro
~22!, each of the multi-Hamiltonian systems considered on a Poisson manifoldM{(q,p,c) has a
quasi-bi-Hamiltonian representation on a symplectic manifoldM{(q,p).

V. EXAMPLES

The theory developed in the preceding sections will be illustrated by several represent
examples of already known as well as new multi-Hamiltonian systems.

Example 1:Stationaryt2—flow of dispersive water waves.8

The Hamiltonian functions and Poisson structures in Ostrogradsky variables are as follo

h1~q,p,c!524p1p215q2p1
22 5

8q1q2
32 3

4q1
2q22 7

64q2
51 1

2q2c11~ 1
2q11 1

8q2
2!c2 ,

h2~q,p,c!5q1p1
214q2p1p22 5

4q2
2p1

222p2
21 5

64q1q2
42 3

16q1
2q2

22 1
4q1

31
45

63128
q2

6

1~ 1
2q11 3

8q2
2!c12~ 1

4q1q22 3
16q2

3!c2 ,

p05S 0 0 1 0 0 0

0 0 0 1 0 0

21 0 0 0 0 0

0 21 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D ,
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p151
0 0 2

3

2
q2 2

1

2
q12

15

8
q2

2 ]h1

]p1
0

0 0 1 q2
]h1

]p2
0

3

2
q2 21 0 2p1 2

]h1

]q1
0

1

2
q11

15

8
q2

2 2q2 p1 0 2
]h1

]q2
0

2
]h1

]p1
2

]h1

]p2

]h1

]q1

]h1

]q2
0 0

0 0 0 0 0 0

2 ,

p25

¨

0 0
3

8
q2

22
1

2
q1 2

1

4
q1q22

15

16
q2

3 ]h2

]p1

]h1

]p1

0 0 2
1

2
q2 2

1

2
q12

7

8
q2

2 ]h2

]p2

]h1

]p2

2
3

8
q2

21
1

2
q1

1

2
q2 0

1

2
q2p1 2

]h2

]q1
2

]h1

]q1

1

4
q1q21

15

16
q2

3 1

2
q11

7

8
q2

2 2
1

2
q2p1 0 2

]h2

]q2
2

]h1

]q2

2
]h2

]p1
2

]h2

]p2

]h2

]q1

]h2

]q2
0 0

2
]h1

]p1
2

]h1

]p2

]h1

]q1

]h1

]q2
0 0

©
.

Hence, we have three bi-Hamiltonian chains~33!

p0¹c150 p0¹c150

p0¹h15K15p1¹c1 p0¹h15K15p2¹c2

p0¹h25K25p1¹h1p0 ¹h25K25p2¹c1

05p1¹h2 , 05p2¹h1 ,

p1¹c250

p1¹c15K15p2¹c2

p1¹h15K25p2¹c1

05p2¹h1 .

The canonical transformation to the Darboux–Nijenhuis coordinates reads

q152~3l1
213l2

214l1l2!,

q2522~l11l2!,
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p15
1

2

m22m1

l12l2
,

p252
1

2

l1~3m222m1!2l2~3m122m2!

l12l2
,

where nowhr , r 51,2 take the form~16! with

f i~l i ,m i !52l i
62 1

2m i
2.

Example 2:The first two-Casimir extension of the Henon–Heiles system.
In Ref. 1 the first one-Casimir extension of the Henon–Heiles system was considered

form

~q1! tt523q1
22 1

2q2
21c, ~q2! tt52q1q2 ,

with two constants of the motion

h15H5 1
2p1

21 1
2p2

21q1
31 1

2q1q2
22cq1 ,

h25 1
2q2p1p22 1

2q1p2
21 1

16q2
41 1

4q1
2q2

22 1
4q2

2c.

The transformation to Darboux–Nijenhuis coordinates was found in the form

q15l11l2 , p15
l1m1

l12l2
1

l2m2

l22l1
,

q252A2l1l2, p25A2l1l2S m1

l12l2
1

m2

l22l1
D ,

f i~l i ,m i !5l i
41 1

2 l im i
2. ~56!

For a two-Casimir extension we get immediately

b2,152@~l11l2!22l1l2#52~q1
21 1

4q2
2!,

b2,25l1l2~l11l2!52 1
4q1q2

2,

hence, new constants of the motion read

h15H5 1
2p1

21 1
2p2

21q1
31 1

2q1q2
22c1q12~q1

21 1
4q2

2!c2 ,

h25 1
2q2p1p22 1

2q1p2
21 1

16q2
41 1

4q1
2q2

22 1
4q2

2c12 1
4q1qc2 ,

where the Newton equations related to the energyH are

~q1! tt523q1
22 1

2q2
21c112q1c2 , ~q2! tt52q1q21 1

2q2c2 .

This is tri-Hamiltonian system with the following Poisson structures
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p05S 0 0 1 0 0 0

0 0 0 1 0 0

21 0 0 0 0 0

0 21 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D ,

p151
0 0 q1

1

2
q2

]h1

]p1
0

0 0
1

2
q2 0

]h1

]p2
0

2q1 2
1

2
q2 0

1

2
p2 2

]h1

]q1
0

2
1

2
q2 0 2

1

2
p2 0 2

]h1

]q2
0

2
]h1

]p1
2

]h1

]p2

]h1

]q1

]h1

]q2
0 0

0 0 0 0 0 0

2 ,

p25

¨

0 0 q1
21

1

4
q2

2 1

2
q1q2

]h2

]p1

]h1

]p1

0 0
1

2
q1q2

1

4
q2

2 ]h2

]p2

]h1

]p2

2q1
22

1

4
q2

2 2
1

2
q1q2 0

1

2
q1p2 2

]h2

]q1
2

]h1

]q1

2
1

2
q1q2 2

1

4
q2

2 2
1

2
q1p2 0 2

]h2

]q2
2

]h1

]q2

2
]h2

]p1
2

]h2

]p2

]h2

]q1

]h2

]q2
0 0

2
]h1

]p1
2

]h1

]p2

]h1

]q1

]h1

]q2
0 0

©
.

The first two of them come from one-Casimir extension and the last one was constructed a
ing to formula~53!. Notice that again we have three bi-Hamiltonian chains~33!.

Example 3:The second two-Casimir extension of the Henon–Heiles system.
In Ref. 1 the second one-Casimir extension of the Henon–Heiles system was considere

form

~q1! tt523q1
22

1

2
q2

2, ~q2! tt52q1q21
c

q2
3 ,

with two constants of motion

h̄1522q2p1p212q1p2
22

1

4
q2

42q1
2q2

21
2q1

q2
2 c,
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h̄2522H52p1
22p2

222q1
32q1q2

22
1

q2
2 c.

Moreover, a transformation to the inverse Darboux–Nijenhuis coordinates was found. Nev
less, according to the result of Ref. 3, the admissible transformation to the Darboux–Nije
coordinates reads

q15
1

2 S 1

l1
1

1

l2
D , p152l1l2S l1m1

l12l2
1

l2m2

l22l1
D ,

q25
1

A2l1l2

, p2522A2l1l2S l1
2m1

l12l2
1

l2
2m2

l22l1
D ,

f i~l i ,m i !5
1

4
l i

2314l i
4m i

2.

The two-Casimir extension we get by adding new terms to the constants of motion

h1~q,p,c1 ,c2!5h̄1~q,p,c5c1!1b2,1~q!c25h̄1~q,p,c1!2S 4q1
2

q2
4 1

1

q2
2D c2 ,

h2~q,p,c1 ,c2!5h̄2~q,p,c5c1!1b2,2~q!c25h̄2~q,p,c1!1
2q1

q2
4 c2 ,

where the Newton equations related to the energyH521/2h2 are

~q1! tt523q1
22

1

2
q2

22
1

q2
4 c2 , ~q2! tt52q1q21

c1

q2
32

4q1

q2
5 c2 .

Again this is tri-Hamiltonian system, where the first two Poisson structures are given in R
~with additional last row and column with zeros!, while the new third Poisson structure reads

p25

¨

0 0
1

q2
2 2

2q1

q2
3

]h2

]p1

]h1

]p1

0 0 2
2q1

q2
3

4q1
21q2

2

q2
4

]h2

]p2

]h1

]p2

2
1

q2
2

2q1

q2
3 0 2

2q1p2

q2
4 2

]h2

]q1
2

]h1

]q1

2q1

q2
3 2

4q1
21q2

2

q2
4

2q1p2

q2
4 0 2

]h2

]q2
2

]h1

]q2

2
]h2

]p1
2

]h2

]p2

]h2

]q1

]h2

]q2
0 0

2
]h1

]p1
2

]h1

]p2

]h1

]q1

]h1

]q2
0 0

©
.

Example 4: m-Casimir extension of the relativisticn-body problem.
Consider the Hamiltonian dynamical system with the Hamiltonian given by
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H5(
i 51

n
w i~l i !

D i
eam i, ~57!

wherew i are arbitrary smooth functions anda is an arbitrary constant. The corresponding dynam
cal system takes the Newtonian form

~l i ! tt52(
kÞ i

~l i ! t~lk! t

l i2lk
, i 51,...,n, ~58!

which depends explicitly on velocities. The derivative of the formula~58! is given in Appendix F.
Notice that Eqs.~58! do not depend onw i functions, hence the dynamics is not influenced byw i

terms.
Newtonian dynamics~58! is a special case of the integrable relativisticn-body problems

introduced by Ruijsenaars and Schneider.9 Now, comparing~57! with ~22! one immediately con-
cludes that~l,m! is a Darboux–Nijenhuis chart for the HamiltonianH, and as a consequence
system~58! is quasi-bi-Hamiltonian and separable, with solution given by the implicit formu
~47!

1

a (
k51

n Elk j i

g~j!
dj5d i ,n21t1const, i 50,...,n21, ~59!

where g(j)5a11a2j1¯1anjn21. This fact was noticed for the first time by Morosi an
Tondo.10 Notice, that trajectoriesl i(t) do not depend on thew i(l i) factors, as expected, so
without a loss of generality one can putw i(l i)51.

The system~58! can be naturally extended to anm-Casimir one with the Hamiltonian

H5(
i 51

n
w i~l i !

D i
eam i1(

j 51

m

cjb j ,1~l!, 1<m<n ~60!

and the related Newton equations of motion

~l i ! tt52(
kÞ i

~l i ! t~lk! t

l i2lk
2a(

j 51

m

cj

]b j ,1

]l i
~l i ! t . ~61!

The dynamical system~61! hasn constants of motion

hr~l,m,c!52(
i 51

n
]r r~l!

]l i

eam i

D i
1(

j 51

m

cjb j ,r~l!, r 51,...,n,

(m11) Poisson structures~24! and the solution given by implicit formula~59!, where now

g~j!5a11a2j1¯1anjn211c1jn1¯1cmjn1m21.

The one-Casimir extension, which is bi-Hamiltonian, has the following Newton equation
motion:

~l i ! tt52(
kÞ i

~l i ! t~lk! t

l i2lk
1ac~l i ! t , i 51,...,n.

The two-Casimir extension, which is tri-Hamiltonian, has the Newton equations in the form

~l i ! tt52(
kÞ i

~l i ! t~lk! t

l i2lk
1ac1~l i ! t1ac2S l i1 (

k51

n

lkD ~l i ! t , i 51,...,n.
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Example 5:(m11)-Hamiltonian formulation for elliptic separable potentials.
In Ref. 11 a theorem has been proved which says that every natural Hamiltonian syste

H~q,p,c!5 1
2~p,p!1V~q!1 1

2c~q,q! ~62!

separable in generalized elliptic coordinates, in the extended phase space of variables (q,p,c),
where p5(q1 ,...,qn)T, p5(p1 ,...,pn)T and c is additional Casimir variable, admits the b
Hamiltonian formulation

S q
p
c
D

t

5p0¹h15p1¹h0 ,

where

p05S 0 I 0

2I 0 0

0 0 0
D , ~63!

p15S 0 A2 1
2 q^ q ]h1 /]p

2A1 1
2 q^ q 1

2 p^ q2 1
2 q^ p 2]h1 /]q

2~]h1 /]p!T ~]h1 /]q!T 0
D ,

A5diag(a1,...,an), a i are different positive constants,h05c, h15H2cS ia i , ~.,.! stands for the
scalar product and̂ 2 the respective tensor product. The potentialV(q) satisfies the equations

05~a i2ak!
]2V

]qi]qk
1

3

2 S qk

]V

]qi
2qi

]V

]qk
D1

1

2 (
j 51

n S qjqk

]2V

]qi]qj
2qiqj

]2V

]qj]qk
D , ~64!

i ,k51,...,n, which are the iff conditions forp1 to fulfill the Jacobi identity. This bi-Hamiltonian
formulation generates the chain of commuting bi-Hamiltonian vector fields

p0¹h050, p0¹h15p1¹h0 ,..., p0¹hn5p1¹hn21 , 05p1¹hn , ~65!

starting with the Casimirh0 of p0 and terminating with the Casimirhn of p1 , where

hr5 (
k50

r

rk~a!h̄r 2k , h̄r5
1

2 (
i 51

n

a i
r 21Ki1

1

2
c~q,Ar 21q!,

Ki5(
j Þ i

qipj2qj pi

a i2a j
1pi

21Vi~q!, ~66!

rk(a) are Viete polynomials ofa i , Vi(q) are functions ofq such thatS iVi(q)5V(q) and the
Poisson brackets$H,Ki%p0

50, i 51,...,n.
Then, in Refs. 1 and 3 the inverse statement was proved, i.e., every natural Hamil

system~62! admitting the bi-Hamiltonian formulation~63!–~66! is separable in the generalize
elliptic coordinates, which are just the Darboux–Nijenhuis coordinatesl1 ,...,ln .

Now, according to the theory presented, let us generalize the Hamiltonian system~62! to the
form

H~q,p,c!5
1

2
~p,p!1V~q!1 (

k51

m

ckbk,1~q!, m51,...,n ~67!
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being multi-Hamiltonian and separable. The few firstbk,1(q) functions are the following:

b1,1~q!5 1
2~q,q!,

b2,1~q!5 1
2~q,Aq!2 1

4~q,q!2,

b3,1~q!5 1
2~q,q!~q,Aq!2 1

2~q,A2q!2 1
8~q,q!3,... ~68!

being particular solutions of Eq.~64!.
For example, the three Poisson structures of the system~67! with two Casimirs read

p05S 0 I 0 0

2I 0 0 0

0 0 0 0

0 0 0 0

D ,

p15S 0 A2 1
2 q^ q ]h1 /]p 0

2A1 1
2 q^ q 1

2 p^ q2 1
2 q^ p 2]h1 /]q 0

2~]h1 /]p!T ~]h1 /]q!T 0 0

0 0 0 0

D ,

p25S 0 ~A2 1
2 q^ q!2 ]h2 /]p ]h1 /]p

2~A2 1
2 q^ q!2

~A2 1
2 q^ q!~ 1

2 p^ q2 1
2 q^ p!

2]h2/]q 2]h1/]q
1~ 1

2 p^ q2 1
2 q^ p!~A2 1

2 q^ q!

2~]h2 /]p!T ~]h2 /]q!T 0 0

2~]h1 /]p!T ~]h1 /]q!T 0 0

D .

The functionshr(q,p,c), forming three admissible bi-Hamiltonian chains, are given by formu
~66!, where now

h̄r5
1

2 (
i 51

n

a i
r 21Ki1c1b1,r~q!1c2b2,r~q!.

VI. SUMMARY AND FINAL COMMENTS

In this paper we have discussed the separability theory of multi-Hamiltonian systems
case when each Poisson structure has more then one Casimir. In fact, we started from the
written in separated coordinates (m i ,l i) i 51

n . Such a system can be represented byn-point dynam-
ics on some curve. Actually, let us consider a curve in~l,m! plane, in the particular form

f ~l,m!5hl , hl5cln1h1ln211¯1hn , ~69!

where f (l,m) is an arbitrary smooth function. Then, let us taken different points (m i ,l i) from
the curve:

f ~l i ,m i !5cl i
n1h1l i

n211¯1hn , i 51,...,n, ~70!

which will define our separated coordinates. The explicit dependence ofhk on (m i ,l i ,c) i 51
n is

given by the solution ofn linear equations~70!, while for fixed values ofhk5an112k and m i

5]Wi /]l i the system~70! allows us to solve the appropriate Hamilton–Jacobi equations.
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In previous papers1–3 the bi-Hamiltonian chain was constructed for aseparation curvein the
form ~69!. In this paper multi-Hamiltonian chains was constructed for a separation curve i
form

f ~l,m!5cnl2n211¯1c1ln1h1ln211¯1hn . ~71!

Here we have to mension that the idea to relate of multi-Hamiltonian property with
m-parameter family of curves comes from Vanhaecke.12

While in the case of one Casimir the admissible form of a separation curve for which on
construct a Poisson pencil is rather restrictive, in multi-Casimir case the freedom of the cho
much bigger. Here we consider the simplest multi-Casimir extension leading to unsplit chain
in the one-Casimir case. Choosing other admissible forms of the separation curve with mor
one Casimir, one can construct split bi~multi!-Hamiltonian chain, i.e., the chain which splits on
few bi~multi!-Hamiltonian sub-chains, each starting and terminating with some Casimir o
appropriate Poisson structure. The work is still in progress and the results will be publishe
separate paper.

The structure of degenerated Poisson pencilspl expressed in separated coordina
(m i ,l i) i 51

n is particularly clear, i.e., rows and columns related with Casimir variables are ap
priate vector fields from the chain. Hence, the reduction of the pencil onto a symplectic leafp0

~fixing the values of allci) is immediate as obviouslyul5u12lu0 , where

u05S 0 I

2I 0D , u15S 0 L

2L 0 D , ~72!

is a nondegenerated Poisson pencil. Hence, the Marsden–Ratiu bi-Hamiltonian reduction13,14 of
the pairp0 , p1 is trivial in separated coordinates.

Now, let us consider an arbitrary canonical transformation

~q,p!→~l,m!

independent of Casimir coordinates. The advantage of staying inside such class of transform
is that the clear structure of the pencil is preserved and the Marsden–Ratiu reduction
Poisson pencil is still trivial. Of course the most general case of multi-Hamiltonian separa
theory takes place when one goes beyond the set of canonical coordinates. But then the
structure of degenerated Poisson pencil is lost and the nontrivial problem of the Marsden
reduction for such pencil appears.

Although for all examples from previous section the related Nijenhuis tensorN takes the form
~55!, i.e., is diagonalizable by an appropriate point transformation, nevertheless, also the
general case, when a diagonalizing transformation is of nonpoint nature, is also admissible.
the systematic method of construction of separated coordinates in such a case leads thro
so-called Hankel–Fro¨benius coordinates. Some details the reader can find in Ref. 5.

Concluding, it seems that the developing nowadays multi-Hamiltonian separability th
which bases on a Poisson pencil and separation curve, is enough general and efficien
considered as an alternative to the well-known Sklyanin one,15 bases on Lax operator and
spectral curve.

APPENDIX A

n52

b1,152l12l2 , b2,152l1
22l2

22l1l2 ,

b1,25l1l2 , b2,25l1l2~l11l2!,

n53
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b1,152l12l22l3 ,

b1,25l1l21l1l31l2l3 ,

b1,352l1l2l3 ,

b2,152l1
22l2

22l3
22l1l22l1l32l2l3 ,

b2,252l1l2l31l1l2~l11l2!1l1l3~l11l3!1l2l3~l21l3!,

b2,352l1l2l3~l11l21l3!,

b3,152l1
32l2

32l3
32l1l2~l11l2!2l1l3~l11l3!2l2l3~l21l3!2l1l2l3 ,

b3,25l1l2~l1
21l1l21l2

2!1l1l3~l1
21l1l31l3

2!

1l2l3~l2
21l2l31l3

2!12l1l2l3~l11l21l3!,

b3,352l1l2l3~l1
21l2

21l3
21l1l21l1l31l2l3!.

APPENDIX B: THE PROOF OF LEMMA 1

~i! The proof is inductive. As

b1,r~l![r r~l!52(
i 51

n r r 21
i l i

n

D i
,

then

bk11,r~l!5bk,r 112bk,1•b1,r

52(
i 51

n Fr r
i l i

n1k21

D i
2

r rl i
n1k21

D i
G

52(
i 51

n F ~r r1l ir r 21
i !l i

n1k21

D i
2

r rl i
n1k21

D i
G

52(
i 51

n r r 21
i l i

n1k

D i
,

where we used the relationl ir r 21
i 52r r1r r

i . h

~ii !

]b r ,k11

]l i
52

]

]l i
(
l 51

n rk
l l l

n1r 21

D l

52rk
i ]

]l i

l i
n1r 21

D i
2(

lÞ i
l l

n1r 21 ]

]l i

rk
l

D l

52rk
i ~n1r 21!

l i
n1r 22

D i
1rk

i
l i

n1r 21

D i
(
lÞ i

1

l i2l l
1(

lÞ i
rk21

i l
l l

n1r 21

D l

2(
lÞ i

rk
l
l l

n1r 21

D l

1

l l2l i
.
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Applying formulas~14!, ~15!, the last two terms can be transformed into the form

(
lÞ i

S rk21
i l 2

rk
l

l l2l i
D l l

n1r 21

D l
52(

lÞ i

rk
i

l l2l i

l l
n1r 21

D l

52rk
i (

lÞ i

l l
n1r 21

D l

1

l l2l i
,

hence

]b r ,k11

]l i
52rk

i ~n1r 21!
l i

n1r 22

D i
1rk

i S l i
n1r 21

D i
(
lÞ i

1

l i2l l
1(

lÞ i

l l
n1r 21

D l

1

l i2l l
D

52rk
i ]

]l i
(
l 51

n
l l

n1r 21

D l
5rk

i ]b r ,1

]l i
.

h

APPENDIX C: THE PROOF OF LEMMA 3

Applying relations~14!, ~15! and representation~22! we have

]hr

]m i
5r r 21

i S ]

]m i

f̄ i

D i
D

5r r 21
i ]h1

]m i
,

]hr

]l i
5(

j 51

n S ]r r 21
j

]l i

f̄ j

D j
1r r 21

j ]

]l i

f̄ j

D j
D

5r r 21
i S ]

]l i

f̄ i

D i
D 1(

j Þ i
S ]r r 21

j

]l i

f̄ j

D j
1r r 21

j f̄ j

]

]l i

1

D j
D

5r r 21
i S ]

]l i

f̄ i

D i
D 1(

j Þ i
S 2r r 22

j i 1
r r 21

j

l j2l i
D f̄ j

D j

5r r 21
i S ]

]l i

f̄ i

D i
D 1(

j Þ i

r r 21
i

l j2l i

f̄ j

D j

5r r 21
i S ]

]l i

f̄ i

D i
1(

j Þ i

1

l j2l i

f̄ j

D j
D 5r r 21

i ]h1

]l i
.

h

Analogously one can prove the last derivative.

APPENDIX D: THE PROOF OF LEMMA 5

Vector fieldsKr5(Xr ,Yr)
T are Hamiltonian, i.e.,Kr5p0¹Hr . Conditions~28! are fulfilled

as

]

]pi

]

]pj
hr5

]

]pk

]

]cl
hr50, iÞ j .
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Conditions~31! follow from involutivity of hr with respect top0 . Taking into account the result
of Lemma 1~ii ! and Lemma 3, conditions~29! and ~30! reduce to the following three:

ml i
m211 (

k51

m
]bk,1

]l i
rm2k

i 50, j 5 i , ~D1!

~l j
m2l i

m!
1

l i2l j
1 (

k51

m
]bk,1

]l j
rm2k

i 50, j Þ i , ~D2!

~l j
m2l i

m!
1

l i2l j
1 (

k51

m
]bk,1

]l i
rm2k

j 50, j Þ i . ~D3!

First we prove the relation~D1!. From p0¹hr5pm¹hr 2m we get

]hr

]l i
5l i

m ]hr 2m

]l i
1 (

k51

m
]hr 2m2k

]l i
bk,r 2m

⇓

]b l ,r

]l i
5l i

m ]b l ,r 2m

]l i
1 (

k51

m
]b l ,r 2m2k

]l i
bk,r 2m

⇓ Lemma1~ii !

r r 21
i ]b l ,1

]l i
5l i

mr r 2m21
i ]b l ,1

]l i
1 (

k51

m

rm2k
i ]b l ,1

]l i
bk,r 2m

⇓

r r 21
i 5l i

mr r 2m21
i 1 (

k51

m

rm2k
i bk,r 2m ~D4!

⇓ ]

]l i

05ml i
m21r r 2m21

i 1 (
k51

m
]bk,r 2m

]l i
rm2k

i

⇓ Lemma1~i!

05ml i
m21r r 2m21

i 1 (
k51

m
]bk,1

]l i
r r 2m21

i rm2k
i

⇓
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05ml i
m211 (

k51

m
]bk,1

]l i
rm2k

i .

h

To prove relations~D2! and ~D3! substitute~D4! to equality

]

]l j
r2m2 l

i 2
]

]l i
r2m2 l

j 50,

hence we get

05~l j
m2l i

m!rm2 l 21
i j 1 (

k51

m S rm2k
i rm2 l

j ]bk,1

]l j
2rm2k

j rm2 l
i ]bk,1

]l i
D .

Applying the relationr r
i 2r r

j 5(l i2l j )r r 21
i j we have

05F ~l j
m2l i

m!
1

l j2l i
1 (

k51

m

rm2k
i ]bk,1

]l j
Grm2 l

j 1F ~l j
m2l i

m!
1

l i2l j
1 (

k51

m

rm2k
j ]bk,1

]l i
Grm2 l

i .

From arbitrariness ofl one gets equalities~D2! and ~D3!. h

APPENDIX E: THE PROOF OF THEOREM 2

The basic bi-Hamiltonian chains read

pm21¹hr 115pm¹hr , m51,...,n. ~E1!

All the remaining chains can be constructed from~E1! ones. The validity of~E1! can be proved by
induction. Form51 we get

p0¹hr 115p1¹hr

m

]hr 11

]m i
5l i

]hr

]m i
1b1,r

]h1

]m i
, ~E2!

]hr 11

]l i
5l i

]hr

]l i
1b1,r

]h1

]l i
, i 51,...,n, ~E3!

S ]h1

]l D T ]hr

]m
2S ]h1

]m D T ]hr

]l
50. ~E4!

This was proved forc1Þ0 in Ref. 2. Additional terms withcjÞ0, j .1 do not influence~E2! and
from ~E3! have to fulfill the conditions

]b j ,r 11

]l i
5l i

]b j ,r

]l i
1b1,r

]b j ,1

]l i
, j 52,...,n. ~E5!

Equations~E5! are true according to Lemma 1~i! and the relationr r
i 5l ir r 21

i 1r r . Assuming the
validity of the chain

pm22¹hr 115pm21¹hr ~E6!
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we prove the validity of

pm21¹hr 115pm¹hr ~E7!

m

l i
m21 ]hr 11

]m i~l i !
2l i

m ]hr

]m i~l i !
5~bm,r2bm21,r 11!

]h1

]m i~l i !
1~bm21,r2bm22,r 11!

]h2

]m i~l i !
1¯

1~bm112 j ,r2bm2 j ,r 11!
]hj

]m i~l i !
1¯1~b2,r2b1,r 11!

]hm21

]m i~l i !

1b1,r

]hm

]m i~l i !
, i 51,...,n, ~E8!

(
i 51

m21 F S ]hi

]l D T ]hr 11

]m
2S ]hi

]m D T ]hr 11

]l G5(
j 51

m F S ]hj

]l D T ]hr

]m
2S ]hj

]m D T ]hr

]l G
⇔ (

i 51

m21

$hi ,hr 11%p0

5(
j 51

m

$hj ,hr%p0
. ~E9!

Equality ~E9! is fulfilled according to involutivity ofhr with respect top0 . Now, let us consider
~E8! with respect tom i(l i) derivatives. From the analogousi th component of the chain~E6!,
multiplied by l i we get

l i
m21 ]hr 11

]m i~l i !
2l i

m ]hr

]m i~l i !
5~bm21,r2bm22,r 11!l i

]h1

]m i~l i !
1¯

1~bm2 j ,r2bm212 j ,r 11!l i

]hj

]m i~l i !
1¯1b1,rl i

]hm21

]m i~l i !
.

~E10!

Comparing~E8! with ~E10! and using relations from Lemma 3 we get

05~bm,r2bm21,r 11!1~bm21,r2bm22,r 11!~r1
i 2l ir0

i !1¯

1~bm2 j ,r2bm212 j ,r 11!~r j
i 2l ir j 21

i !1¯1b1,r~rm21
i 2l irm22

i !. ~E11!

Taking into account the relationr j
i 2l ir j 21

i 5r j[b1,j , ~E11! turns into

05~bm,r2bm21,r 11!1~bm21,r2bm22,r 11!b1,11¯1~bm2 j ,r2bm212 j ,r 11!b1,j1¯

1~b2,r2b1,r 11!b1,m221b1,rb1,m21 . ~E12!

To verify the equality~E12! we apply the relations

bm2 j ,r2bm212 j ,r 1152bm212 j ,1•b1,r ,

bm,15b1,m2bm21,1•b1,12bm22,1•b1,22¯2b2,1•b1,m222b1,1•b1,m21 ,

following from ~17!. h
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APPENDIX F: THE DERIVATION OF EQUATION OF MOTION „58…

~l i ! t5
]H

]m i
5

aw i~l i !

D i
eam i,

~m i ! t52
]H

]l i
52

]w i

]l i

1

D i
eam i1

w i

l i
eam i(

kÞ i

1

l i2lk
2(

kÞ i

wk

lk
eamk

1

lk2l i

52
]w i

]l i

1

w i

1

a
~l i ! t1

1

a
~l i ! t(

kÞ i

1

l i2lk
2

1

a (
kÞ1

~lk! t

1

lk2l i
,

ln~l i ! t5 ln a1 ln w i1am i2 ln D i ,

~l i ! tt

~l i ! t
5@ ln~l i ! t# t5

~w i ! t

w i
1a~m i ! t2

~D i ! t

D i

5
]w i

]l i

1

w i
~l i ! t1a~m i ! t2(

kÞ i

~lk! t

lk2l i
2~l i ! t(

kÞ i

1

l ilk

522(
kÞ i

~lk! t

lk2l i
,

as

]

]lk
D i5

D i

lk2l i
, kÞ i ,

]

]l i
D i5(

kÞ i

D i

l i2lk
.

h

1M. Błaszak, ‘‘On separability of bi-Hamiltonian chain with degenerated Poisson structures,’’ J. Math. Phys.39, 3213
~1998!.

2M. Błaszak, ‘‘Bi-Hamiltonian separable chains on Riemannian manifolds,’’ Phys. Lett. A243, 25 ~1998!.
3M. Błaszak,Multi-Hamiltonian Theory of Dynamical Systems~Springer-Verlag, Berlin, 1998!.
4I. M. Gel’fand and I. Zakharevich, ‘‘On the local geometry of a bi-Hamiltonian structure,’’ inThe Gelfand Mathematical
Seminars 1990-1992, edited by L. Corwinet al. ~Birkauser, Boston, 1993!, pp. 51–112.

5G. Falqui, F. Magri, and G. Tondo, ‘‘Reduction of bihamiltonian systems and separation of variables: an examp
the Boussinesq hierarchy,’’ Theor. Math. Phys.~in press!.

6R. Brouzet, R. Caboz, J. Rabenivo, and V. Ravoson, ‘‘Two degrees of freedom quasi-bi-Hamiltonian systems,’’ J
A 29, 2069~1996!.

7C. Morosi and G. Tondo, ‘‘Quasi-bi-Hamiltonian systems and separability,’’ J. Phys. A30, 2799~1997!.
8M. Błaszak, ‘‘On a non-standard algebraic description of integrable nonlinear systems,’’ Physica~Utrecht! 198A, 637
~1993!.

9S. N. Ruijsenaars and H. Schneider, ‘‘A new class of integrable systems and its relation to solitons,’’ Ann. Phys.~N.Y.!
170, 370 ~1986!.

10C. Morosi and G. Tondo, ‘‘On a class of systems both Quasi-Bi-Hamiltonian and Bi-Hamiltonian,’’ Phys. Lett. A247,
59 ~1998!.

11S. Rauch-Wojciechowski, ‘‘A bi-Hamiltonian formulation for separable potentials and its application to the K
problem and the Euler problem of two centers of gravitation,’’ Phys. Lett. A160, 149 ~1991!.

12P. Vanhaecke, ‘‘Integrable systems in the realm of algebraic geometry,’’Lecture Notes in Mathematics, Vol. 1638
~Springer-Verlag, New York, 1996!.

13J. E. Marsden and T. Ratiu, ‘‘Reduction of Poisson manifolds,’’ Lett. Math. Phys.11, 161 ~1986!.
14P. Casati, F. Magri, and M. Pedroni, ‘‘Bihamiltonian manifolds andt—function,’’ in Mathematical Aspects of Classica

Field Theory 1991, edited by M. J. Gotayet al., Contemporary Mathematics, Vol. 132, pp. 213–234~American Math-
ematical Society, Washington, DC, 1992!.

15E. K. Sklyanin, ‘‘Separation of variables. New Trends,’’ Prog. Theor. Phys. Suppl.118, 35 ~1995!.
                                                                                                                



f
ly inte-
ion of
-

mely
t

er,

o-
its

ering
f
13. It
f. 10

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 11 NOVEMBER 1999

                    
Nonisospectral scattering problems: A key to integrable
hierarchies

Pilar R. Gordoa and Andrew Pickering
Area de Fisica Teo´rica, Facultad de Ciencias, Edificio de Fisica,
Universidad de Salamanca, 37008 Salamanca, Spain

~Received 12 February 1999; accepted for publication 19 July 1999!

We show that certain partial differential equations associated to nonisospectral
scattering problems in 211 dimensions provide a key to associated integrable
hierarchies of both ordinary and partial differential equations. This is illustrated
using~an extension of! a known second-order and two new third-order nonisospec-
tral scattering problems. These scattering problems allow us to derive new hierar-
chies of integrable partial differential equations, in both 111 and 211 dimen-
sions, together with their underlying linear problems~isospectral and
nonisospectral!; and also new hierarchies of integrable ordinary differential equa-
tions, again with their underlying linear problems. ©1999 American Institute of
Physics.@S0022-2488~99!04210-3#

I. INTRODUCTION

The introduction of the inverse scattering transform~IST! for the Korteweg–de Vries~KdV!
equation1 and the nonlinear Schro¨dinger equation2 marked the birth of a whole new area o
mathematics. Since then, a great deal of effort has been spent on finding new complete
grable systems, i.e., similarly solvable through an underlying linear problem. The extens
these ideas to partial differential equations~PDEs! in multidimensions3,4 and, through the devel
opment of the inverse monodromy transform~IMT !, to ordinary differential equations~ODEs!,5

has led to the huge variety of completely integrable systems that we know today.
In this paper we will be concerned with a particular class of PDEs in multidimensions, na

those arising as the compatibility condition of anonisospectralscattering problem. The firs
example of such a PDE is in fact due to Calogero,6 and has as a subcase the equation

uxt5uxxxy14uxuxy12uxxuy . ~1.1!

This equation arises as the compatibility condition of the Lax pair,

cxx1~ux2l!c50, c t54lcy12uycx2uxyc, ~1.2!

where the spectral parameterl5l(y,t) satisfies the constraint7,8

l t54lly . ~1.3!

Such a construction can be carried out with any number of additional spatial variables, i.e.,y could
be taken to be a vectory5(y1 ,y2 ,...,yn). For the purposes of the present work we will, howev
be takingy to be a scalar.

The application of the inverse scattering transform to Eq.~1.1! has been discussed by Cal
gero and Degasperis.6,7 More recently, Bogoyavlenskii has shown that this equation adm
‘‘breaking soliton’’ solutions.8 Other examples of PDEs associated with nonisospectral scatt
problems in 211 dimensions can be found in Refs. 9, 10, 11. The 211-dimensional extension o
the nonlinear Schro¨dinger equation given in Ref. 9 has also been discussed in Refs. 12 and
is related to the 211-dimensional extension of the classical Boussinesq system given in Re
57490022-2488/99/40(11)/5749/38/$15.00 © 1999 American Institute of Physics
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in the same way as the 111-dimensional systems.14 The systems constructed in Ref. 11 a
multicomponent generalizations of Eq.~1.1! above; more recently we have looked at modificatio
of such systems.

The aim of the present paper is to show that PDEs such as~1.1! above, or in fact generaliza
tions thereof, play a key role in the construction of hierarchies of integrable equations and
associated linear problems. This is one of the reasons why we believe that the study of
having nonisospectral scattering problems is of importance. Another is the connection that
between nonisospectral scattering problems and linear problems for ODEs,15 which we exploit
~and generalize! below. Other reasons include the information they give about the Painleve´ analy-
sis ~including truncation! of whole hierarchies of differential equations, and also the new n
trivial deformations of well-known PDEs that can arise from such scattering problems.16

In what follows we derive a wide variety of new integrable PDEs and ODEs. In their m
general formulation these include nonlocal terms. We also obtain a wide variety of correspo
linear problems; nonisospectral scattering problems for hierarchies of PDEs in 211 dimensions;
nonisospectral and isospectral scattering problems for hierarchies of PDEs in 111 dimensions;
and also monodromy problems for hierarchies of ODEs.

The layout of the paper is as follows. In Sec. II we introduce the main ideas underlyin
approach within the context of the KdV and nonisospectral KdV hierarchies. We show how
hierarchies can be characterized using a single equation. These ideas are then further deve
Sec. III, again within the context of KdV-type scattering problems. We use a single PDE
11 dimensions, and its associated nonisospectral scattering problem, to construct whole
chies of both PDEs and ODEs, together with their corresponding hierarchies of underlying
problems. The extension of our ideas to third-order scattering problems is made in Secs. IV
which deal, respectively, with linear problems based on those for the Kaup–Kupershmidt~KK !
~Refs. 17, 18!, and Sawada–Kotera~SK! ~Refs. 19, 20! hierarchies. In these sections we introdu
new hierarchies of PDEs in 211 and 111 dimensions, together with their underlying line
problems, and also new hierarchies of ODEs, again with their underlying linear problems. T
in addition to new hierarchies of PDEs, and the known hierarchies of ODEs which arise di
as similarity reductions of the KK and SK hierarchies,21,22 we also obtain four new hierarchies o
ODEs. These hierarchies of ODEs govern special integrals of similarity reductions of the mo
KK/SK hierarchy, and we believe them to be analagous to the hierarchy of the first Pa´
equationPI .22 The third order linear problems given here for these hierarchies of ODEs a
new. Our final section is devoted to conclusions.

II. HIERARCHIES FROM NONISOSPECTRAL SCATTERING

In this section we describe our main ideas within the context of the KdV hierarchy. Our c
is that instead of considering Eq.~1.1! as simply an extension of the KdV equation to two spa
dimensions, that in fact this equation embodies information about the entire KdV hierarchy
also about the entire nonisospectral KdV hierarchy. This is done by considering the extra va
not as a spatial variable, but as a temporal variable, sayt, and recalling that~1.1! can be written
as

Ut5RUt , ~2.1!

where

R5]x
214U12Ux]x

21 ~2.2!

is the recursion operator of the KdV hierarchy.6,23 @Equation~1.1! is then recovered by the chang
of variablesU5ux , and relabelingt as y.# In ~2.2! ]x[]/]x. We use such partial differentia
operators in what follows, and without further comment, also in the case of ODEs; similarl
the notationUx .
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Given Eq. ~2.1! together with its Lax pair, we can then write down the Lax pair of a
member of the KdV or nonisospectral KdV hierarchies simply by specifyingt andt to be appro-
priate flow times. Equation~2.1! gives both the iteration required and also our base equation~the
starting point for our iteration!. Thus, takingt5t5 andt5t3 , the fifth order flow of each of these
hierarchies can be written asUt5

5RUt3
, for which we have the Lax pair,

cxx1~U2l!c50, c t5
54lc t3

12@]x
21Ut3

#cx2Ut3
c, ~2.3!

where

l t5
54ll t3

. ~2.4!

This gives the iteration between the fifth order flow and the third order flow. It is this third o
flow which is our base equation, and which then gives the evolution ofU andc with respect tot3

~we could also specify an evolution with respect tot1 as our base equation!. For the nonisospectra
KdV hierarchy we taket5t3 and t5y in ~2.1!, which then givesUt3

5RUy , c t3
54lcy

12@]x
21Uy#cx2Uyc, andl t3

54lly . Combining these last with Eqs.~2.3!, ~2.4! then gives the
fifth order nonisospectral flowUt5

5R2Uy and its Lax pair

cxx1~U2l!c50, c t5
5~4l!2cy12@]x

21~4lUy1RUy!#cx2@4lUy1RUy#c, ~2.5!

wherel now satisfies the constraintl t5
5(4l)2ly . For the isospectral KdV hierarchy we sett

5t3 in ~2.1! and take the reduction]t5]x . This then givesUt3
5RUx , c t3

5(4l12U)cx

2Uxc, andl t3
50. Thus we obtain the well known fifth order KdV flow,Ut5

5R2Ux , together
with its Lax pair ~isospectral sincel t5

50!.
Now, it is a basic technique within the theory of integrable systems to specify a sp

problem of a certain type, and to expand the coefficients as polynomials in the spectral para
thus generating hierarchies of PDEs. This was first done by Ablowitz, Kaup, Newell, and Se
their seminal paper of 1974,24 and was in fact the technique we used in Ref. 11 to gene
multicomponent hierarchies of PDEs in 211 dimensions associated with nonisospectral scatte
problems. Here we have essentially reversed this process; given a recursion operatorR, we
characterize the corresponding hierarchy using a single equation of the form~2.1!, and in this way
generate the corresponding hierarchy of linear problems. It is interesting that this conn
between relations of the formUt5

5RUt3
, implicit whenever we write down higher order mem

bers of a hierarchy, and PDEs of the formUt5RUt , having nonisospectral scattering problem
has not been exploited before.

In fact the equations we will be using are more general than~2.1!, since we are interested no
only in obtaining new hierarchies of PDEs, but also in their reductions to ODEs. The advanta
our approach is that it gives immediately a recursion relation between the coefficients of sca
problems corresponding to successive members of a hierarchy; this makes itself felt when d
with scattering problems of order three or higher. In what follows we do not take different ch
of base equation as we did above, but rather we take one base equation in 211 dimensions. We
then look at reductions or special cases of the resulting hierarchy.

III. THE KORTEWEG–de VRIES CASE

In this section we illustrate our approach using a generalization of the scattering proble
Eq. ~2.1! above. That is, instead of~2.1! we consider the equation

Ut5RUt1g, ~3.1!

whereg5g(t,t), i.e., g is a function of all possible times andy, but not ofx. This PDE has the
Lax pair,
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cxx1~U2l!c50, c t54lct1@2]x
21Ut#cx2Utc, ~3.2!

where the spectral parameterl5l(t,t), again to be thought of as a function of all possible tim
andy, but not ofx, satisfies

l t54llt1g. ~3.3!

We also note that this PDE admits the Darboux transformation~DT!,

Ũ5U12~ ln c!xx ~3.4!

between two solutionsU and Ũ. Given this DT and the Lax pair, it is a simple matter to wr
down a Bäcklund transformation~BT! for ~3.1!.

We now consider the form taken by higher members of a hierarchy, and their correspo
linear problems, if we use~3.1! both as a starting point and also to iterate between succes
flows. The reasons why we are interested in the particular sequence generated by~3.1! will
become clear shortly.

We label the times of our hierarchy ast2n11 , and write a generic member of the hierarchy

Ut2n11
5Qn , ~3.5!

for some~in general nonlocal! functionalQn of U, and we write corresponding generic evolutio
of c andl as

c t2n11
5Gncy12Pncx2Pn,xc, l t2n11

5Ln . ~3.6!

It is then easy to see that~3.1!, ~3.2!, and~3.3! yield the recursion relations

Qn5RQn211gn , ~3.7!

Gn54lGn21 , ~3.8!

Pn54lPn211]x
21Qn21 , ~3.9!

Ln54lLn211gn ~3.10!

~note that we also iterate on the functiong in ~3.1!!.
These are the recursion relations between successive flows of the hierarchy and the

cients of their corresponding linear problems. Since we take as our starting point the PDE

Ut3
5RUy1g1 , ~3.11!

along with its corresponding scattering problem~which gives the evolution ofc andl with t3!, we
obtain in this way the hierarchy of evolution equations

Ut2n11
5Qn5RnUy1(

i 51

n

giRn2 i1. ~3.12!

This has the corresponding hierarchy of nonisospectral scattering problems

cxx1~U2l!c50, c t2n11
5~4l!ncy12Pncx2Pn,xc, ~3.13!

with
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Pn5]x
21(

i 50

n21

~4l!n212 iQi , ~3.14!

where we have setQ05Uy , and wherel satisfies

l t2n11
5~4l!nly1(

i 51

n

~4l!n2 igi . ~3.15!

The flows of the hierarchy~3.12! are nonlocal, because of the action of powers ofR on Uy and
also on 1. This last yields nonautonomous terms, whose inclusion here is new. These flows
made local by introducing suitable auxiliary dependent variables. The DT~3.4! holds, of course,
for every member of this hierarchy, and thus we can easily write down a BT. Allowingt in ~3.1!
to be a vector would allow the construction of a hierarchy consisting of linear combinations o
above flows.

In the special case where allgi[0, the above hierarchy is the one-component breaking so
hierarchy. The DT~3.4! had previously been shown to hold for this special case in Ref.
Making the reduction]y5]x in this special case just obtains the KdV hierarchy, for which
hierarchy of linear problems and DT is of course well-known. We now consider other sub
and reductions.

In addition to nonisospectral scattering problems, our interest here is in obtaining hiera
of ODEs and their linear problems. From~3.12! we consider two alternative routes to a hierarc
of ODEs, via two different hierarchies of PDEs in 111 dimensions. Our first reduction is vi
]y5]x , which requiresgi ,y5ly50, and which leads to a nonisospectral deformation of the K
hierarchy,

Ut2n11
5RnUx1(

i 51

n

giRn2 i1. ~3.16!

This hierarchy could have been obtained immediately through a suitable choice of base eq
~in 111 dimensions! and corresponding nonisospectral Lax pair, i.e.,Ut3

5RUx1g1 , cxx1(U
2l)c50, c t3

5(4l12U)cx2Uxc, andl t3
5g1 . We note that this hierarchy of evolution equ

tions in 111 dimensions can also be found in Ref. 26.
Our second reduction is via] t2n11

50, which then requiresgi ,t2n11
5l t2n11

50, and leads to a
nonisospectral deformation of inverse KdV flows,

RnUy1(
i 51

n

giRn2 i150. ~3.17!

The Lax pairs of~3.16! and ~3.17! follow immediately from those for our 211 hierarchy.
We now consider reductions to ODEs. For the case where an ODE arises as a sta

reduction of an evolution equation having a nonisospectral scattering problem, the conn
between the linear problem for that ODE and the nonisospectral scattering problem was dis
in Ref. 15~e.g., for the casen51 of ~3.16!!. However in this paper we will be interested in mo
than just stationary reductions, and in more than just reductions of evolution equations. In Se
and V we deal with hierarchies of ODEs that apparently do not arise simply as the~integrated!
stationary flows of completely integrable evolution equations. The simplest examples of
ODEs are fourth order.

For the PDEs~3.16! and ~3.17! we consider respectively the reductions] t2n11
50 and ]y

5]x . All gi are now of course just constant parameters. Each of these reductions obtai
sequence of ODEs,
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RnUx1(
i 51

n

giRn2 i150. ~3.18!

A corresponding sequence of linear problems for these ODEs is obtained from the Lax pa
~3.16! and ~3.17!; the reduction from~3.17! requires a generalization of the approach in Ref.
This sequence of linear problems is

cxx1~U2l!c50, S (
i 51

n

~4l!n2 igi Dcl5@~4l!n12Pn#cx2Pn,xc, ~3.19!

where we must assume of course that not allgi are zero, and where

Pn5]x
21S (

i 50

n21

~4l!n212 iFRiUx1(
j 51

i

gjRi 2 j1G D . ~3.20!

It is then straightforward to write down corresponding matrix linear problems for the hiera
~3.18!.

The first of these ODEs and associated linear problems is equivalent, under a simple
of variables, to the first Painleve´ equation and its~scalar or matrix! linear problem, so we do no
consider this case further here. Forn.1, the ODEs~3.18! represent an extension of those d
cussed in Refs. 27, 28, 21, 29~for n52 simply by an additive constant!.

We note that forn.1 the ODEs~3.18! are in the general case nonautonomous, and tha
n.2 they are nonlocal. This last means that forn.2 these ODEs could not be obtained using
standard Painleve´ classification at that order. All of these ODEs can of course be written locall
introducing suitable auxiliary dependent variables.

Let us now consider the case where the ODEs~3.18!, for n.1, are local, i.e., wheregi50 for
i 51,2,...,n22. In this case the hierarchy of ODEs becomes

RnUx1gn21~4U12xUx!1gn50. ~3.21!

For gn21Þ0 this hierarchy has the first integral

FnFn,xx2
1

2
~Fn,x!

21S 2U1
gn

2gn21
DFn

252
1

2 S 1

2
2anD 2

, ~3.22!

where the right-hand side is the constant of integration, and where

Fn5~]x
21Rn21Ux!1gn21x1S (

i 50

n22 S 2
gn

gn21
D n2 i 21

]x
21RiUxD 1

1

2 S 2
gn

gn21
D n

. ~3.23!

The hierarchy~3.22!, ~3.23! is equivalent under the Ba¨cklund transformation,

U5Vx2V22
1

4 S gn

gn21
D , ~3.24!

V52
1

2 S Fn,x1~1/2!2an

Fn
D , ~3.25!

to the generalizedPII hierarchy

~]x12V!Fn U1~1/2!2an50

U5Vx2V22~gn /~4gn21!!
. ~3.26!
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For gn50 the hierarchy~3.22!, ~3.23! is theP34 hierarchy as defined in Ref. 29,~3.24!, ~3.25! is
the Bäcklund transformation21,29 onto the correspondingPII hierarchy,27,5,28 and the hierarchy
~3.21! is a similarity reduction of the standard KdV hierarchyUt2n11

5RnUx ~Refs. 28, 21, 29!
~for which in the casen52 a matrix linear problem is known to the author of Ref. 21!. Thus for
gnÞ0 the above results give a generalization of thisP34 hierarchy, Ba¨cklund transformation,
correspondingPII hierarchy, and KdV similarity reduction. For the special casen52 these results
can be found in Ref. 30. Further generalizations are possible~e.g., see Remark One below!.

Whengn2150 we can integrate~3.21! immediately to obtain the hierarchy of the first Pai
levé equation as defined by Kudryashov,28 i.e.,

~]x
21RnUx!1gnx50, ~3.27!

where our requirement now thatgnÞ0 allows us to set any constant of integration to zero. Ag
it is straightforward to also give matrix linear problems for this hierarchy~with compatibility
condition~3.27! rather than its derivative!. We note that matrix linear problems for the first thr
members of this hierarchy have been obtained in Ref. 31.

Remark one:It is possible to generalize the above results if we allow functions of integra
to be introduced under the application of the recursion operator. A simple way to do this
include an extra term in~3.1! which explicitly represents such an integration, i.e., we cons
Ut5RUt1aUx1g, wherea5a(t,t). The corresponding nonisospectral Lax pair iscxx1(U
2l)c50, c t54lct1@(2]x

21Ut)1a#cx2Utc, wherel satisfies the same equation~3.3!. The
DT ~3.4! also holds for this PDE.

Iterating also ona, we obtain corresponding to~3.12! above the hierarchy of PDEs,

Ut2n11
5RnUy1(

i 51

n

aiRn2 iUx1(
i 51

n

giRn2 i1. ~3.28!

The extra terms correspond of course to the addition of lower order KdV flows. Taking reduc
as before, we obtain corresponding generalizations of our hierarchies of PDEs in 111 dimen-
sions, and also of our hierarchy of ODEs. In the local case this generalized hierarchy of
reads

RnUx1(
i 52

n

aiRn2 iUx1gn21~4U12xUx!1gn50, ~3.29!

wheregn21 , gn ~not both zero! and allai are now constant, and where without loss of genera
we have takena150. Forgn50 these ODEs are just similarity reductions of sums of KdV flow
The above results on first integrals of~3.21! are easily generalized to~3.29!. The casen52 of
~3.29! has recently been obtained by Cosgrove,30 and is known to have hyperelliptic
asymptotics.32 Linear problems for the hierarchy~3.29! are obtained in the same way as describ
above.

Remark two:So far we have insisted that not allgi are zero. If we allow allgi to vanish, in
which case the hierarchy of ODEs~3.29! is autonomous, then, following the approach in Ref. 3
we can use the linear problems to obtain constants of motion. Equivalently, we could also u
corresponding matrix linear problem. For Eq.~3.29! with gn215gn50, this approach then yield
n11 constants of integration. These are easily identified as the fluxes corresponding to con
densities consisting of appropriate linear combinations of the Hamiltonian densities of the
hierarchy. We note that in the casen52 our third constant of motion vanishes when rewritten
the coordinates of the corresponding He´non–Heiles system, which then leaves the two consta
of motion obtained in Ref. 33.
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IV. THE KAUP–KUPERSHMIDT CASE

In this section we consider a PDE associated with a nonisospectral scattering problem
on a member of the KK hierarchy. We write this PDE as the system

Ut5u@U#W, ~4.1!

W5K@U#Ut2qx, ~4.2!

whereq5q(t,t) is a function of all possible times andy, but not ofx, and where the operator
u@U# andK@U# are defined by34,35,36

u@U#5]x
31~U]x1]xU !, ~4.3!

K@U#5]x
21@]x

513~]xU]x
21]x

2U]x!12~]x
3U1U]x

3!18~]xU
21U2]x!#]x

21. ~4.4!

The recursion operator of the KK hierarchy is given byR5u@U#K@U#, so the above system ca
be written

Ut5RUt2q~2U1xUx!. ~4.5!

The Lax pair for the system~4.1!, ~4.2! is

cxxx522Ucx2~Ux2l!c, ~4.6!

c t5227l2ct29l@2~]x
21Ut!#cxx1@9lUt1W#cx2@3lUxt124lU~]x

21Ut!1Wx#c,
~4.7!

wherel5l(t,t) is a function of all possible times andy, but not ofx, and satisfies the equatio

l t5227l2lt23lq. ~4.8!

The compatibility condition of this Lax pair reads

~cxxx! t2~c t!xxx[X1cx1X0c50, ~4.9!

where

X1[2~2Ut1u@U#W!50, ~4.10!

X0[~2Ut1u@U#W!x13l~2Wx1]xK@U#Ut2q!50. ~4.11!

This nonisospectral scattering problem, and the corresponding system of PDEs~4.1!, ~4.2!,
appear to be new. This system admits the Darboux transformation

Ũ5U1 3
2@ log~ccxx2

1
2cx

21Uc2!#xx , ~4.12!

where we also have a corresponding mapping onW, too long to be included here. This DT is o
course the same as that which holds for the 111 KK hierarchy.26

In this section we will construct a new hierarchy of PDEs in 211 dimensions having noni
sospectral scattering problems. By taking various reductions to 111 dimensions we will obtain
new hierarchies of PDEs having isospectral or nonisospectral scattering problems. By
further reductions we will obtain new hierarchies of integrable ODEs, together with their u
lying linear problems. Explicit examples are given in the casen51 and also in Appendix C for
n52.
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It is the system~4.1!, ~4.2! which provides the iteration we use in order to construct
hierarchy of PDEs in 211 dimensions. However we should remember that the KK hierarchy
double sequence of PDEs, defined as34,35,36

Utm
5u@U#Hm@U#, Hm12@U#5K@U#u@U#Hm@U#, ~4.13!

where the two starting points

H0@U#51 and H1@U#5Uxx14U2 ~4.14!

give one sequence beginning with the trivial flowUt0
5Ux , and another beginning with the fifth

order KK equation itself, respectively. However if we use~4.1!, ~4.2! also as our base equation w
will obtain a hierarchy which when we take reductions to 111 dimensions will allow the recovery
of only one of the KK sequences~the first mentioned above, i.e., that which includes the first
seventh order flows!. This problem can be overcome by making a shift in the system~4.1!, ~4.2!.
To do this locally we setU5ux ; we then sendu→u1 1

2]y
21a, wherea is a function of all possible

times andy, but not ofx. This means that as base equation we take the more general 211 system,

Ut1
5u@U#W1 , ~4.15!

W15K@U#Uy1a~Uxx14U2!2q1x. ~4.16!

This PDE has the Lax pair,

cxxx522Ucx2~Ux2l!c, ~4.17!

c t1
5227l2cy29l@2~]x

21Uy!1a#cxx1@9lUy1W1#cx

2@3lUxy124lU~]x
21Uy!112alU1W1,x#c, ~4.18!

wherel satisfies the equation

l t1
5227l2ly23lq1 . ~4.19!

The extra term included in~4.16! is of course just a copy ofH1@U#. This means that reduction
to 111 dimensions of thist1 flow will include both thet2 andt1 ~seventh and fifth order! flows
of the standard KK hierarchy~4.13!, ~4.14!. Similarly, the tn flow of the 211 nonisospectral
hierarchy that we now construct will include amongst its reductions to 111 dimensions both the
t2n andt2n21 flows of the standard KK hierarchy. The DT~4.12! holds also for the system~4.15!,
~4.16!.

Following the approach developed in the last section, we consider a generic member
211 hierarchy,

Utn
5u@U#Wn , ~4.20!

and write corresponding generic evolutions ofc andl as

c tn
5Gncy1Ancxx1Bncx1Cnc, ~4.21!

l tn
5Ln ~4.22!

where the compatibility condition of~4.21! with ~4.6! tells us that we may take

Cn5 1
3~4UAn2An,xx23Bn,x!. ~4.23!
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We then obtain from~4.1!, ~4.2!, ~4.7!, and~4.8! the recursion relations

Wn5K@U#u@U#Wn212qnx, ~4.24!

Gn5227l2Gn21 , ~4.25!

An5227l2An21218l]x
21u@U#Wn21 , ~4.26!

Bn5227l2Bn2119lu@U#Wn211Wn , ~4.27!

Ln5227l2Ln2123lqn ~4.28!

~where we have also iterated on the functionq in ~4.2!!. These recursion relations, together wi
the base Eq.~4.15!, ~4.16!, and its scattering problem, then yield a hierarchy of evolution eq
tions, which for future convenience we note can be written as

Utn
5u@U#Wn , ~4.29!

Wn5~K@U#u@U# !n21K@U#Uy1a~K@U#u@U# !n21H1@U#2(
i 51

n

qi~K@U#u@U# !n2 ix,

~4.30!

or equivalently as

Utn
5Qn5u@U#Wn5RnUy1aRn21u@U#H1@U#2(

i 51

n

qiRn2 iu@U#x. ~4.31!

This hierarchy has the scattering problem

cxxx522Ucx2~Ux2l!c, ~4.32!

c tn
5~227l2!ncy1Ancxx1Bncx1 1

3~4UAn2An,xx23Bn,x!c, ~4.33!

where

An529al~227l2!n21218l]x
21(

i 50

n21

~227l2!n2 i 21Qi , ~4.34!

Bn59l (
i 50

n21

~227l2!n2 i 21Qi1(
i 51

n

~227l2!n2 iWi , ~4.35!

whereQi is as given by~4.31! and we have setQ05Uy . The spectral parameterl satisfies

l tn
5~227l2!nly23l(

i 51

n

~227l2!n2 iqi . ~4.36!

Note that in the above

Bn52
1

2
An,x1(

i 51

n

~227l2!n2 iWi . ~4.37!

The first term on the right-hand side of~4.31! represents a nonisospectral extension to 211
dimensions of the standard KK sequence which includes the seventh order flow. The secon
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is the standard 111-dimensional KK sequence based on the fifth order flow. The last t
represents a nonisospectral deformation which gives rise to nonautonomous terms; forn.1, these
are in the general case nonlocal. This 211 hierarchy can be written locally using suitable aux
iary dependent variables. The DT~4.12! holds, of course, for every member of this hierarch
Allowing t in ~4.1!, ~4.2! to be a vector would allow us to construct a hierarchy consisting
linear combinations of the above flows.

This hierarchy of PDEs in 211 dimensions is new. We now consider reductions of t
hierarchy to 111 dimensions and also to ODEs. In both cases we again obtain new hierarch
equations together with their underlying linear problems.

A. Reductions to hierarchies of PDEs in 1 11 dimensions

In this subsection we discuss reductions to 111 dimensions of our 211 hierarchy. We begin
by looking at reductions which give nonisospectral deformations of the standard KK hier
~4.13!, ~4.14!.

Our first reduction is via]y5]x and a50. This then requiresqi ,y5ly50 and leads to the
sequence of equations

Utn
5u@U#Wn , ~4.38!

Wn5H2n@U#2(
i 51

n

qi~K@U#u@U# !n2 ix, ~4.39!

which we can also write as

Utn
5RnUx2(

i 51

n

qiRn2 iu@U#x. ~4.40!

This is a nonisospectral deformation of the standard KK sequence which includes the trivi
seventh order flows~n50 andn51, respectively!. The Lax pair follows easily from that for ou
211 system.

Our second reduction is via]y50 anda51. This requiresqi ,y5ly50 and leads to

Utn
5u@U#Wn , ~4.41!

Wn5H2n21@U#2(
i 51

n

qi~K@U#u@U# !n2 ix, ~4.42!

which we can also write as

Utn
5Rn21u@U#H1@U#2(

i 51

n

qiRn2 iu@U#x. ~4.43!

This is a nonisospectral deformation of the standard KK sequence which includes fifth orde
itself (n51). Again the Lax pair follows easily from that for our 211 system.

We see from the above that thetn flow has as reductions nonisospectral deformations of b
thet2n andt2n21 flows of the KK hierarchy. Forn.1 the additional nonautonomous terms are
the general case nonlocal. In the special case where allqi50 we just recover the standar
111-dimensional KK hierarchy.

We now look at alternative reductions of our 211 system to hierarchies in 111 dimensions.
We begin by taking the reduction] tn

50, which requiresatn
5qi ,tn

5l tn
50, and which leads to the

system,
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05u@U#Wn , ~4.44!

Wn5~K@U#u@U# !n21K@U#Uy1a~K@U#u@U# !n21H1@U#2(
i 51

n

qi~K@U#u@U# !n2 ix.

~4.45!

This corresponds to a nonisospectral deformation of inverse KK flows,

RnUy1aRn21u@U#H1@U#2(
i 51

n

qiRn2 iu@U#x50. ~4.46!

If we make the further reductionWn50 in ~4.44!, ~4.45! then we obtain the hierarchy

~K@U#u@U# !n21K@U#Uy1a~K@U#u@U# !n21H1@U#2(
i 51

n

qi~K@U#u@U# !n2 ix50,

~4.47!

which again in the general case is nonisospectral. The Lax pairs for Eqs.~4.46! and~4.47! follow
from the Lax pairs for our 211-dimensional system. In the special case where allqi50 these Lax
pairs are isospectral.

B. Reductions to hierarchies of ODEs

We now consider reductions from the 111-dimensional systems given in the previous sect
to hierarchies of integrable ODEs. In what follows we consider reductions to four different
archies of ODEs. The local cases of two of these just correspond to similarity reductions
two sequences of the KK hierarchy, and are known.21,22 The local cases of the other two hiera
chies appear to be analogous to thePI hierarchy and are new. Only the first member of each
these, which arePI and a fourth order equation found by Cosgrove,30 was known previously. The
results presented here for this fourth order ODE, namely, integrable PDEs from which it c
obtained as a reduction, and the underlying linear problems for those PDEs and also for the
are all new. Similarly for every member of these two new sequences of ODEs~except of course
for PI!.

We begin by considering the reduction] tn
50 of the hierarchies~4.40! and ~4.43!, which

gives

RnUx2(
i 51

n

qiRn2 iu@U#x50 ~4.48!

and

Rn21u@U#H1@U#2(
i 51

n

qiRn2 iu@U#x50, ~4.49!

respectively. Allqi are now of course just constant parameters. The inclusion of the non
terms in the above two hierarchies is new. The same two sequences of ODEs can also be o
from the reductions]y5]x anda50, and]y50 anda51, respectively, of~4.46!. Both of these
reductions constitute a generalization of the approach in Ref. 15.

The linear problem for~4.48! is given by

cxxx522Ucx2~Ux2l!c, ~4.50!
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23lS (
i 51

n

~227l2!n2 iqi Dcl5Ancxx1@~227l2!n1Bn#cx1
1

3
~4UAn2An,xx23Bn,x!c,

~4.51!

where we must assume of course that not allqi are zero, and where

An5218l]x
21(

i 50

n21

~227l2!n2 i 21Qi , ~4.52!

Bn59l (
i 50

n21

~227l2!n2 i 21Qi1(
i 51

n

~227l2!n2 iWi , ~4.53!

Wi is as given by~4.39! andQi5u@U#Wi (Q05Ux).
The linear problem for~4.49! is given by

cxxx522Ucx2~Ux2l!c, ~4.54!

23lS (
i 51

n

~227l2!n2 iqi Dcl5Ancxx1Bncx1
1

3
~4UAn2An,xx23Bn,x!c, ~4.55!

where again we must assume that not allqi are zero, and where

An529l~227l2!n21218l]x
21(

i 51

n21

~227l2!n2 i 21Qi , ~4.56!

Bn59l (
i 51

n21

~227l2!n2 i 21Qi1(
i 51

n

~227l2!n2 iWi , ~4.57!

Wi is as given by~4.42! and Qi5u@U#Wi ~and we have used the fact thatQ050!. It is then
straightforward to give corresponding matrix linear problems for the hierarchies~4.48! and~4.49!.

In the local caseqi50, i 51,...,n21, the sequences of ODEs~4.48! and ~4.49! become

RnUx2qn~2U1xUx!50, ~4.58!

and

Rn21u@U#H1@U#2qn~2U1xUx!50, ~4.59!

where our requirement now is thatqnÞ0. These ODEs are just similarity reductions of the K
hierarchy.21,22 First integrals for every member of these hierarchies are given in Refs. 21, 22
also in Ref. 30 for the casen51 of ~4.59!. This casen51 of ~4.59! was derived in Ref. 30 using
Painlevéclassification.

Let us now consider reductions to what are arguably more interesting sequences of
Instead of simply taking the reduction] tn

50 in ~4.38!, ~4.39! and ~4.41!, ~4.42!, we take] tn
50 and alsoWn50 to obtain

H2n@U#2(
i 51

n

qi~K@U#u@U# !n2 ix50 ~4.60!

and
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H2n21@U#2(
i 51

n

qi~K@U#u@U# !n2 ix50, ~4.61!

respectively, where again allqi are just constant parameters. The sequences~4.60! and~4.61! can
also be obtained from the reductions]y5]x and a50, and ]y50 and a51, respectively, of
~4.47!. These sequences of ODEs, except for the casen51 of ~4.61! which is just the first
PainlevéequationPI , apparently do not arise simply as the~integrated! stationary flow of hier-
archies of completely integrable evolution equations. The derivation of the corresponding
problems is therefore nontrivial, and requires a generalization of the approach in Ref. 15.

The linear problem for~4.60! is given by that for~4.48! but with Wn50. This we can write in
the form ~hereAn and Bn have been divided by23l, and so are different from those define
above!

cxxx522Ucx2~Ux2l!c, ~4.62!

S (
i 51

n

~227l2!n2 iqi Dcl5Ancxx1@9l~227l2!n211Bn#cx1
1

3
~4UAn2An,xx23Bn,x!c,

~4.63!

where we assume that not allqi are zero, and where

An56]x
21(

i 50

n21

~227l2!n2 i 21Qi , ~4.64!

Bn523(
i 50

n21

~227l2!n2 i 21Qi19l (
i 51

n21

~227l2!n2 i 21Wi , ~4.65!

Wi is as given by~4.39! andQi5u@U#Wi ~andQ05Ux!.
The linear problem for~4.61! is given by that for~4.49! but again withWn50. This we

rewrite as~againAn andBn have been divided by23l!

cxxx522Ucx2~Ux2l!c, ~4.66!

S (
i 51

n

~227l2!n2 iqi Dcl5Ancxx1Bncx1
1

3
~4UAn2An,xx23Bn,x!c, ~4.67!

where again we must assume that not allqi are zero, and where

An53~227l2!n2116]x
21(

i 51

n21

~227l2!n2 i 21Qi , ~4.68!

Bn523(
i 51

n21

~227l2!n2 i 21Qi19l (
i 51

n21

~227l2!n2 i 21Wi , ~4.69!

Wi is as given by~4.42! andQi5u@U#Wi ~andQ050!.
In the local caseqi50, i 51,...,n21, the sequences of ODEs~4.60! and ~4.61! become

H2n@U#2qnx50, ~4.70!

and

H2n21@U#2qnx50, ~4.71!
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where our requirement now is thatqnÞ0. Corresponding to the above linear problems we can g
matrix linear problems with compatibility conditions Eqs.~4.70! and ~4.71!, rather than their
derivatives. For example, that for the casen51 of ~4.70! is given in Appendix A. These hierar
chies of ODEs~and of course the nonlocal extensions given above! are new. They govern specia
integrals of similarity reductions of the modified KK/SK hierarchy, and we believe them t
analogous to thePI hierarchy.22 A further two such sequences can be derived from the
hierarchy~see Sec. V!. Only two of the above ODEs, namely, the casen51 of each sequence, ar
known. The casen51 of ~4.70! is a special case of an ODE obtained by Cosgrove using Pain´
classification.30 The linear problem given above is new. The casen51 of ~4.71! is just the first
PainlevéequationPI . This ODE does of course have a second order linear problem. How
here it appears as the first member of a sequence of ODEs for which we can give third orde
problems.

Remark one:It is possible to generalize the above results if we allow functions of integra
to be included under the application of the recursion operator. This can be done by including
terms in~4.1!, ~4.2! which explicitly represent the two integrations in the operatorK@U# in R.
Thus instead of~4.1!, ~4.2! we could consider the system

Ut5u@U#W1bUx , ~4.72!

W5K@U#Ut1a~Uxx14U2!2qx, ~4.73!

wherea5a(t,t) andb5b(t,t) are functions of all possible times andy, but not ofx. This system
has the Lax pair

cxxx522Ucx2~Ux2l!c, ~4.74!

c t5227l2ct29l@2~]x
21Ut!1a#cxx1@9lUt1W1b#cx

2@3lUxt124lU~]x
21Ut!112alU1Wx#c, ~4.75!

wherel satisfies the same Eq.~4.8!. The DT ~4.12! also holds for this system.
Iterating also ona andb we obtain corresponding to~4.29!, ~4.30! the hierarchy

Utn
5u@U#Wn1bnUx , ~4.76!

Wn5~K@U#u@U# !n21K@U#Uy1(
i 51

n

aiH2n22i 11@U#

1 (
i 51

n21

biH2n22i@U#2(
i 51

n

qi~K@U#u@U# !n2 ix, ~4.77!

and so we see thata1 here is just the functiona appearing in~4.29!, ~4.30!. Corresponding to
~4.31! we obtain

Utn
5RnUy1(

i 51

n

biRn2 iUx1(
i 51

n

aiRn2 iu@U#H1@U#2(
i 51

n

qiRn2 iu@U#x, ~4.78!

and so we see that the extra terms correspond of course to the addition of lower order KK
Taking reductions as before we obtain corresponding generalizations of our hierarchies of P
111 dimensions and also of our hierarchies of ODEs, together with their associated linear
lems. In the local case~corresponding, respectively, to~4.58!, ~4.59!, ~4.70!, ~4.71!! these gener-
alized hierarchies of ODEs are
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RnUx1(
i 51

n

aiRn2 iu@U#H1@U#1(
i 51

n

biRn2 iUx2qn~2U1xUx!50, ~4.79!

Rn21u@U#H1@U#1(
i 52

n

aiRn2 iu@U#H1@U#1(
i 51

n

biRn2 iUx2qn~2U1xUx!50, ~4.80!

H2n@U#1(
i 51

n

aiH2n22i 11@U#1(
i 51

n

biH2n22i@U#2qnx50, ~4.81!

H2n21@U#1(
i 52

n

aiH2n22i 11@U#1(
i 51

n

biH2n22i@U#2qnx50, ~4.82!

where in the last two equations we have taken the reductionWn52bn instead ofWn50. ~In fact
our requirement thatqnÞ0 allows us to takebn50 in all of the above.! The hierarchies~4.79! and
~4.80! are just similarity reductions of sums of KK flows; the results of Refs. 21, 22 on
integrals of~4.58! and ~4.59! are easily generalized to this case. Forn51 ~4.81! is equivalent to
Cosgrove’s equation,30 including nondominant terms~see Appendix A!. Linear problems for the
above four hierarchies follow in the same way as described above.

Remark two:So far we have insisted that not allqi are zero. If we allow allqi to vanish, in
which case the hierarchies of ODEs~4.79!, ~4.80!, ~4.81!, and ~4.82! are autonomous, then
following the approach in Ref. 33, we can use the linear problems to obtain constants of m
Equivalently, we could also use the corresponding matrix linear problems. For the casen51 of
~4.79! and ~4.80! with qn50 ~ODEs of orders 7 and 5 respectively!, we obtain in this way two
constants of motion; for~4.80! these are as obtained in Ref. 33 for the corresponding He´non–
Heiles system, the first being just the trivial first integral of~4.80!, which corresponds to the
energy. For the casen51 of ~4.81! with qn50 ~an ODE of order 4! this approach yields one
constant of motion, which in addition to a simple first integral then leads to two constan
motion. These are as found in Ref. 30. For~4.82! with qn50, the casen51 is trivial. However the
casen52 ~an ODE of order eight! is less so, and we are able to obtain three constants of mo

C. Examples: n 51

In the casen51 we can setU5ux , and write the system~4.29!, ~4.30! locally as

uxt1
5W1,xxx12uxW1,x1uxxW1 , ~4.83!

W1,x5uxxxxxy110uxxxyux12uxxxxuy115uxxyuxx19uxxxuxy116uxyux
2

116uxxuxuy1a~uxxxx18uxuxx!2q1 , ~4.84!

wherea5a(y,t) andq15q1(y,t). This system is of course just our base equation~4.15!, ~4.16!,
which has Lax pair~4.17!, ~4.18! with l5l(y,t) satisfying~4.19!. We now consider reductions o
this system to PDEs in 111 dimensions, and also to ODEs.

Our first two reductions are to the PDEs,

Ut1
5W1,xxx12UW1,x1UxW1 , ~4.85!

W15H2@U#2q1x5Uxxxx112UUxx16Ux
21 32

3 U32q1x, ~4.86!

and

Ut1
5W1,xxx12UW1,x1UxW1 , ~4.87!
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W15H1@U#2q1x5Uxx14U22q1x, ~4.88!

where in each caseq1 is a function oft1 only. These have temporal part of the Lax pair give
respectively, by

c t1
5218lUcxx1@227l219lUx1W1#cx2@3lUxx124lU21W1,x#c, ~4.89!

and

c t1
529lcxx1W1cx2@12lU1W1,x#c, ~4.90!

where in each casel is a function oft1 only andl t1
523lq1 . This last means that forq1Þ0 the

above Lax pairs are nonisospectral. Whenq150 they become isospectral, in which case~4.85!,
~4.86! and ~4.87!, ~4.88! reduce to seventh and fifth order KK, respectively.

Our second two reductions to PDEs in 111 dimensions are to

05W1,xxx12uxW1,x1uxxW1 , ~4.91!

W1,x5uxxxxxy110uxxxyux12uxxxxuy115uxxyuxx19uxxxuxy

116uxyux
2116uxxuxuy1a~uxxxx18uxuxx!2q1 , ~4.92!

and to its further reduction

05uxxxxxy110uxxxyux12uxxxxuy115uxxyuxx19uxxxuxy

116uxyux
2116uxxuxuy1a~uxxxx18uxuxx!2q1 , ~4.93!

where in each casea andq1 are functions ofy only. The temporal~now y! part of the Lax pair for
~4.91!, ~4.92! is

27l2cy529l@2uy1a#cxx1@9luxy1W1#cx2@3luxxy124luxuy112alux1W1,x#c,

~4.94!

and that for~4.93! is

9lcy523@2uy1a#cxx13uxycx2@uxxy18uxuy14aux#c, ~4.95!

where in each casel is a function ofy only andly52q1 /(9l). For q1Þ0 ~4.91!, ~4.92! is a
nonisospectral deformation of an inverse KK flowRUy1au@U#H1@U#2q1(2U1xUx)50 and
appears to be new. The caseq150 has isospectral Lax pair. Equation~4.93! also appears to be
new and again has isospectral or nonisospectral Lax pair according as to whetherq150 or q1

Þ0, respectively. Details of the Painleve´ analysis of~4.93!, and also of the system~4.83!, ~4.84!,
can be found in Appendix B.

Our first two reductions to ODEs are toRUx2q1u@U#x50, i.e.,

~Uxxxxxx114UUxxxx135UxUxxx1
49
2 Uxx

2 156U2Uxx170UUx
21 56

3 U4! x2q1~2U1xUx!50,

~4.96!

and tou@U#H1@U#2q1u@U#x50, i.e.,

~Uxxxx110UUxx1
15
2 Ux

21 20
3 U3!x2q1~2U1xUx!50. ~4.97!

These ODEs are similarity reductions of seventh and fifth order KK, respectively. They
linear problems withcl given, respectively, by

3lq1cl518lUcxx1@27l229lUx2W1#cx1@3l~Uxx18U2!1W1,x#c, ~4.98!
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whereW1 is given by~4.86!, and

3lq1cl59lcxx2W1cx1@12lU1W1,x#c, ~4.99!

whereW1 is given by~4.88!, and where in each caseq1Þ0. We note that a matrix linear problem
for the ODE~4.97! is known to the author of Ref. 21.

Our second two reductions to ODEs are toH2@U#2q1x50, i.e.,

Uxxxx112UUxx16Ux
21 32

3 U32q1x50, ~4.100!

and toH1@U#2q1x50, i.e.,

Uxx14U22q1x50. ~4.101!

These ODEs have linear problems withcl given by

q1cl56Ucxx1@9l23Ux#cx1@Uxx18U2#c, ~4.102!

and

q1cl53cxx14Uc, ~4.103!

respectively, where in each caseq1Þ0. Equation~4.101! is of course justPI , which has a
well-known second order linear problem. Equation~4.100! is a special case of an ODE found b
Cosgrove using Painleve´ classification,30 although the dominant terms are in fact due to Hara
and Oishi37 ~see also Ito38!. The full equation is~4.82! with n51; a matrix linear problem for this
ODE is given in Appendix A.

V. THE SAWADA–KOTERA CASE

In this Section we consider a PDE associated with a nonisospectral scattering problem
on a member of the SK hierarchy. We note that the structure of the SK hierarchy bears a
resemblence to that of the KK hierarchy. Moreover, these two hierarchies have the same m
hierarchy, and so are related by a Ba¨cklund transformation.18,34

We write our 211-dimensional member of the SK hierarchy as the system

Ut5u@U#W, ~5.1!

W5J@U#Ut2qx, ~5.2!

whereq5q(t,t) is a function of all possible times andy, but not ofx, and where the operator
u@U# andJ@U# are defined by34,35,36

u@U#5]x
31~U]x1]xU !, ~5.3!

J@U#5]x
21@]x

51 1
2~]x

3U1U]x
3!1 1

8~]xU
21U2]x!#]x

21. ~5.4!

The recursion operator of the SK hierarchy is given byR5u@U#J@U#, so the above system ca
be written

Ut5RUt2q~2U1xUx!. ~5.5!

The Lax pair for the system~5.1!, ~5.2! is

cxxx52 1
2Ucx1lc, ~5.6!
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c t5227l2ct2 3
4@6l~]x

21Ut!2UUt2Ux~]x
21Ut!22Uxxt#cxx

1@ 3
4~6lUt22UxUt2UUxt2Uxx~]x

21Ut!22Uxxxt!1W#cx

2 3
2l@2Uxt1U~]x

21Ut!#c, ~5.7!

where the spectral parameterl, again a function of all possible times andy, but not ofx, satisfies
the equation

l t5227l2lt23lq. ~5.8!

The compatibility condition of this Lax pair reads

~cxxx! t2~c t!xxx[X2cxx1X1cx1X0c50, ~5.9!

where

X2[3~2Wx1]xJ@U#Ut2q!x50, ~5.10!

X1[ 3
2~2Wx1]xJ@U#Ut2q!xx1

1
2~2Ut1u@U#W!50, ~5.11!

X0[3l~2Wx1]xJ@U#Ut2q!50. ~5.12!

We note that the spatial part of the above Lax pair and that of the KK hierarchy are rela
arising from different scalar representations of the scattering problem for the aforemen
common modified hierarchy.34

The above nonisospectral scattering problem, and the corresponding system of PDE~5.1!,
~5.2!, appear to be new. This system admits the Darboux transformation

Ũ5U112~ logc!xx , ~5.13!

where we also have a corresponding mapping onW, too long to be included here. This DT is o
course the same as that which holds for the 111 SK hierarchy.26

As in the previous section, we construct a new hierarchy of PDEs in 211 dimensions having
nonisospectral scattering problems; by taking various reductions we obtain new hierarch
PDEs and ODEs together with their underlying linear problems. Once again we give ex
examples in the casesn51 andn52 ~these last can be found in Appendix D!.

It is the system~5.1!, ~5.2! which provides the iteration we use in order to construct
hierarchy of PDEs in 211 dimensions. However the SK hierarchy, just like the KK hierarchy
a double sequence of PDEs. This double sequence is defined as34,35,36

Utm
5u@U#Gm@U#, Gm12@U#5J@U#u@U#Gm@U#, ~5.14!

where the two starting points

G0@U#51 and G1@U#5Uxx1
1
4U

2 ~5.15!

give one sequence beginning with the trivial flowUt0
5Ux , and another beginning with the fifth

order SK equation itself, respectively. In order to include reductions to each of the abov
quences in our 211 hierarchy, we make, in the same way as we did in the KK case, a shift in
system~5.1!, ~5.2!. This then leads to the more general base equation,

Ut1
5u@U#W1 , ~5.16!

W15J@U#Uy1a~Uxx1
1
4U

2!2q1x, ~5.17!
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wherea is a function of all possible times andy, but not ofx. This PDE has the Lax pair,

cxxx52 1
2Ucx1lc, ~5.18!

c t1
5227l2cy

2 3
4@6l~]x

21Uy!2UUy2Ux~]x
21Uy!22Uxxy12a~6l2Ux!#cxx

1@ 3
4~6lUy22UxUy2UUxy2Uxx~]x

21Uy!22Uxxxy22aUxx!

1W1#cx2 3
2l@2Uxy1U~]x

21Uy!12aU#c, ~5.19!

wherel satisfies the equation

l t1
5227l2ly23lq1 . ~5.20!

The extra term included in~5.17! is just a copy ofG1@U#. This means that the 211 nonisospec-
tral hierarchy that we now construct will include amongst its reductions to 111 dimensions both
thet2n andt2n21 flows of the standard SK hierarchy. We also note that the DT~5.13! holds also
for the system~5.16!, ~5.17!.

Following the approach developed in Sec. III, we consider a generic member of this11
hierarchy,

Utn
5u@U#Wn , ~5.21!

and write corresponding generic evolutions ofc andl as

c tn
5Gncy1Ancxx1Bncx1Cnc, ~5.22!

l tn
5Ln , ~5.23!

where the compatibility condition of~5.22! with ~5.6! tells us that we may take

Cn5 1
3~UAn2An,xx23Bn,x!. ~5.24!

We then obtain from~5.1!, ~5.2!, ~5.7!, and~5.8! the recursion relations

Wn5J@U#u@U#Wn212qnx, ~5.25!

Gn5227l2Gn21 , ~5.26!

An5227l2An212 9
2l]x

21u@U#Wn211 3
4@Uu@U#Wn211Ux]x

21u@U#Wn2112]x
2u@U#Wn21#,

~5.27!

Bn5227l2Bn211 9
2 lu@U#Wn21

2 3
4]x@Uu@U#Wn211Ux]x

21u@U#Wn2112]x
2u@U#Wn21#1Wn , ~5.28!

Ln5227l2Ln2123lqn ~5.29!

~where we have also iterated on the functionq in ~5.2!!. These recursion relations, together wi
the base Eq.~5.16!, ~5.17! and its scattering problem, then yield a hierarchy of evolution eq
tions, which for future convenience we note can be written as

Utn
5u@U#Wn , ~5.30!
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Wn5~J@U#u@U# !n21J@U#Uy1a~J@U#u@U# !n21G1@U#2(
i 51

n

qi~J@U#u@U# !n2 ix,

~5.31!

or equivalently as

Utn
5Qn5u@U#Wn5RnUy1aRn21u@U#G1@U#2(

i 51

n

qiRn2 iu@U#x. ~5.32!

This hierarchy has the scattering problem

cxxx52 1
2Ucx1lc, ~5.33!

c tn
5~227l2!ncy1Ancxx1Bncx1Cnc, ~5.34!

where

An52
3

2
a~227l2!n21~6l2Ux!2

9

2
l]x

21(
i 50

n21

~227l2!n2 i 21Qi

1
3

4 (
i 50

n21

~227l2!n2 i 21@UQi1Ux]x
21Qi12]x

2Qi #, ~5.35!

Bn52
3

2
a~227l2!n21Uxx1

9

2
l (

i 50

n21

~227l2!n2 i 21Qi

2
3

4
]x(

i 50

n21

~227l2!n2 i 21@UQi1Ux]x
21Qi12]x

2Qi #

1(
i 51

n

~227l2!n2 iWi , ~5.36!

Cn523al~227l2!n21U2
3

2
l (

i 50

n21

~227l2!n2 i 21@U]x
21Qi12Qi ,x#, ~5.37!

Cn being calculated either directly~by iteration! or from ~5.24! modulo equations~5.17! and
~5.25! and any additive functions ofy and t, and whereQi is as given by~5.32!, and we have se
Q05Uy . The spectral parameterl satisfies

l tn
5~227l2!nly23l(

i 51

n

~227l2!n2 iqi . ~5.38!

Note that in the above

Bn52An,x1(
i 51

n

~227l2!n2 iWi . ~5.39!

The first term on the right-hand side of~5.32! represents a nonisospectral extension to 211
dimensions of the standard SK sequence which includes the seventh order flow. The seco
is the standard 111-dimensional SK sequence based on the fifth order flow. The last term r
sents a nonisospectral deformation which gives rise to nonautonomous terms; forn.1, these are
in the general case nonlocal. This 211 hierarchy can be written locally using suitable auxilia
                                                                                                                



w-
ear

his
ies of

efor-

al and
r

er SK

oth
in

d

5770 J. Math. Phys., Vol. 40, No. 11, November 1999 P. R. Gordoa and A. Pickering

                    
dependent variables. The DT~5.13! holds, of course, for every member of this hierarchy. Allo
ing t in ~5.1!, ~5.2! to be a vector would allow us to construct a hierarchy consisting of lin
combinations of the above flows.

This hierarchy of PDEs in 211 dimensions is new. We now consider reductions of t
hierarchy to 111 dimensions and also to ODEs. In both cases we again obtain new hierarch
equations together with their underlying linear problems.

A. Reductions to hierarchies of PDEs in 1 11 dimensions

As we did above in the KK case, we now discuss reductions to 111 dimensions of our 2
11 hierarchy. Once again, we begin by looking at reductions which give nonisospectral d
mations of the standard flows in 111 dimensions~5.14!, ~5.15!.

Our first reduction is via]y5]x and a50. This then requiresqi ,y5ly50 and leads to the
sequence of equations

Utn
5u@U#Wn , ~5.40!

Wn5G2n@U#2(
i 51

n

qi~J@U#u@U# !n2 ix, ~5.41!

which we can also write as

Utn
5RnUx2(

i 51

n

qiRn2 iu@U#x. ~5.42!

This is a nonisospectral deformation of the standard SK sequence which includes the trivi
seventh order flows~n50 andn51, respectively!. The Lax pair follows easily from that for ou
211 system.

Our second reduction is via]y50 anda51. This requiresqi ,y5ly50 and leads to

Utn
5u@U#Wn , ~5.43!

Wn5G2n21@U#2(
i 51

n

qi~J@U#u@U# !n2 ix, ~5.44!

which we can also write as

Utn
5Rn21u@U#G1@U#2(

i 51

n

qiRn2 iu@U#x. ~5.45!

This is a nonisospectral deformation of the standard SK sequence which includes fifth ord
itself (n51). Again the Lax pair follows easily from that for our 211 system.

We see from the above that thetn flow has as reductions nonisospectral deformations of b
thet2n andt2n21 flows of the SK hierarchy. Forn.1 the additional nonautonomous terms are
the general case nonlocal. In the special case where allqi50 we just recover the standar
111-dimensional SK hierarchy.

We now look at alternative reductions of our 211 system to hierarchies in 111 dimensions.
We begin by taking the reduction] tn

50, which requiresatn
5qi ,tn

5l tn
50, and which leads to the

system,

05u@U#Wn , ~5.46!
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Wn5~J@U#u@U# !n21J@U#Uy1a~J@U#u@U# !n21G1@U#2(
i 51

n

qi~J@U#u@U# !n2 ix.

~5.47!

This corresponds to a nonisospectral deformation of inverse SK flows,

RnUy1aRn21u@U#G1@U#2(
i 51

n

qiRn2 iu@U#x50. ~5.48!

If we make the further reductionWn50 in ~5.46!, ~5.47! then we obtain the hierarchy

~J@U#u@U# !n21J@U#Uy1a~J@U#u@U# !n21G1@U#2(
i 51

n

qi~J@U#u@U# !n2 ix50, ~5.49!

which again in the general case is nonisospectral. The Lax pairs for Eqs.~5.48! and~5.49! follow
from the Lax pairs for our 211-dimensional system. In the special case where allqi50 these Lax
pairs are isospectral.

B. Reductions to hierarchies of ODEs

We now consider reductions from the 111-dimensional systems given in the previous sect
to hierarchies of integrable ODEs. In what follows we consider reductions to four different
archies of ODEs. The local cases of two of these just correspond to similarity reductions
two sequences of the SK hierarchy, and are known.21,22 The local cases of the other two hiera
chies again appear to be analogous to thePI hierarchy, and are new. The first member of each
these is in fact equivalent under a simple rescaling to the corresponding first member of e
the two new hierarchies of ODEs obtained in Sec. IV. The linear problems and other results
here for these two hierarchies are new~except again forPI!.

We begin by considering the reduction] tn
50 of the hierarchies~5.42! and ~5.45!, which

gives

RnUx2(
i 51

n

qiRn2 iu@U#x50 ~5.50!

and

Rn21u@U#G1@U#2(
i 51

n

qiRn2 iu@U#x50, ~5.51!

respectively, where allqi are now just constant parameters. The inclusion of the nonlocal term
the above two hierarchies is new. The same two sequences of ODEs can also be obtained f
reductions]y5]x and a50, and]y50 anda51, respectively, of~5.48!. Again these last two
reductions constitute a generalization of the approach in Ref. 15.

The linear problem for~5.50! is given by

cxxx52 1
2Ucx1lc, ~5.52!

23lS (
i 51

n

~227l2!n2 iqi Dcl5Ancxx1@~227l2!n1Bn#cx1Cnc, ~5.53!

where we must assume of course that not allqi are zero, and where
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An52
9

2
l]x

21(
i 50

n21

~227l2!n2 i 21Qi1
3

4 (
i 50

n21

~227l2!n2 i 21@UQi1Ux]x
21Qi12]x

2Qi #,

~5.54!

Bn52An,x1(
i 51

n

~227l2!n2 iWi , ~5.55!

Cn52
3

2
l (

i 50

n21

~227l2!n2 i 21@U]x
21Qi12Qi ,x#, ~5.56!

Wi is as given by~5.41! andQi5u@U#Wi (Q05Ux).
The linear problem for~5.51! is given by

cxxx52 1
2Ucx1lc, ~5.57!

23lS (
i 51

n

~227l2!n2 iqi Dcl5Ancxx1Bncx1Cnc, ~5.58!

where again we must assume that not allqi are zero, and where

An52
3

2
~227l2!n21~6l2Ux!2

9

2
l]x

21(
i 51

n21

~227l2!n2 i 21Qi

1
3

4 (
i 51

n21

~227l2!n2 i 21@UQi1Ux]x
21Qi12]x

2Qi #, ~5.59!

Bn52An,x1(
i 51

n

~227l2!n2 iWi , ~5.60!

Cn523l~227l2!n21U2
3

2
l (

i 51

n21

~227l2!n2 i 21@U]x
21Qi12Qi ,x#, ~5.61!

Wi is as given by~5.44! and Qi5u@U#Wi ~and we have used the fact thatQ050!. Again it is
straightforward to give corresponding matrix linear problems for the hierarchies~5.50! and~5.51!.

In the local caseqi50, i 51,...,n21, the sequences of ODEs~5.50! and ~5.51! become

RnUx2qn~2U1xUx!50, ~5.62!

and

Rn21u@U#G1@U#2qn~2U1xUx!50, ~5.63!

where our requirement now is thatqnÞ0. These ODEs are similarity reductions of the S
hierarchy.21,22 First integrals for every member of these hierarchies are given in Refs. 21, 22
also in Ref. 30 for the casen51 of ~5.63!. These first integrals of the above hierarchies are rela
by a Bäcklund transformation to those of the hierarchies~4.58! and ~4.59!.22 The casen51 of
~5.63! was derived in Ref. 30 using Painleve´ classification.

We now consider further reductions, as we did in Sec. IV, to what we again consider
perhaps more interesting sequences of ODEs. Thus, instead of simply taking the reduct] tn
50 in ~5.40!, ~5.41! and ~5.43!, ~5.44!, we take] tn

50 and alsoWn50 to obtain
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G2n@U#2(
i 51

n

qi~J@U#u@U# !n2 ix50 ~5.64!

and

G2n21@U#2(
i 51

n

qi~J@U#u@U# !n2 ix50, ~5.65!

respectively, where again allqi are constant parameters. The sequences~5.64! and~5.65! can also
be obtained from the reductions]y5]x , anda50, and]y50 anda51, respectively, of~5.49!. As
with the two sequences~4.60! and ~4.61!, it seems that except for the casen51 of ~5.65! which
is again just the first Painleve´ equationPI , these two sequences do not arise as the~integrated!
stationary flow of hierarchies of completely integrable evolution equations.

The linear problem for~5.64! is given by that for~5.50! but with Wn50. That is, it is~5.52!,
~5.53! ~where we assume that not allqi are zero! with An given by ~5.54!, Bn52An,x1( i 51

n21

(227l2)n2 iWi , i.e.,

Bn5
9

2
l (

i 50

n21

~227l2!n2 i 21Qi

2
3

4
]x(

i 50

n21

~227l2!n2 i 21@UQi1Ux]x
21Qi12]x

2Qi #1 (
i 51

n21

~227l2!n2 iWi , ~5.66!

andCn by ~5.56!, and whereWi is as given by~5.41! andQi5u@U#Wi ~andQ05Ux!.
The linear problem for~5.65! is given by that for~5.51! but again withWn50. That is, it is

~5.57!, ~5.58! ~where we assume that not allqi are zero! with An given by ~5.59!, Bn52An,x

1( i 51
n21(227l2)n2 iWi , i.e.,

Bn52
3

2
~227l2!n21Uxx1

9

2
l (

i 51

n21

~227l2!n2 i 21Qi

2
3

4
]x(

i 51

n21

~227l2!n2 i 21@UQi1Ux]x
21Qi12]x

2Qi #1 (
i 51

n21

~227l2!n2 iWi , ~5.67!

andCn by ~5.61!, and whereWi is as given by~5.44! andQi5u@U#Wi ~andQ050!.
Note that the order of the highest derivative ofU appearing in the above two expressions

Bn ~in the term]x
3Qn21! is the same as the order of the corresponding ODE~~5.64! or ~5.65!,

respectively!, and so this derivative ofU can be replaced. In general, the coefficients ofWn and of
the highest derivative ofU appearing inBn are inherited from our 211-dimensional scattering
problem. In certain of our reductions to PDEs in 111 dimensions and to ODEs, where we c
expressWn locally, we can then eliminate eitherWn or this highest derivative ofU, one in favor
of the other, if we so wish. Of the reductions dealt with in the current paper, it is only in the
of those to the ODEs~5.64! and ~5.65! that the linear problem contains derivatives ofU of the
same order as the ODE, which can then be replaced~see our examples later!. Doing so then gives
a scalar linear problem with compatibility condition~5.64! or ~5.65!, rather than their derivatives

In the local caseqi50, i 51,...,n21, the sequences of ODEs~5.64! and ~5.65! become

G2n@U#2qnx50, ~5.68!

and

G2n21@U#2qnx50, ~5.69!
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where our requirement now is thatqnÞ0. Corresponding to the above linear problems we can g
matrix linear problems with compatibility conditions~5.68! and~5.69!. These hierarchies of ODE
are new, as also are the nonlocal extensions given above. They govern special integrals o
larity reductions of the modified KK/SK hierarchy, and we believe them to be analogous to tPI

hierarchy.22 The first member of each of the above hierarchies is equivalent under a s
rescaling to the corresponding first member of~4.70! and ~4.71!.

Remark one:Again we can generalize the above results if we allow functions of integratio
be included under the application of the recursion operator. Thus instead of~5.1!, ~5.2! we could
consider the system

Ut5u@U#W1bUx , ~5.70!

W5J@U#Ut1a~Uxx1
1
4U

2!2qx, ~5.71!

wherea5a(t,t) andb5b(t,t) are functions of all possible times andy, but not ofx. This system
has the Lax pair

cxxx52 1
2Ucx1lc, ~5.72!

c t5227l2ct

2 3
4@6l~]x

21Ut!2UUt2Ux~]x
21Ut!22Uxxt12a~6l2Ux!#cxx

1@ 3
4~6lUt22UxUt2UUxt2Uxx~]x

21Ut!22Uxxxt22aUxx!

1W1b#cx2 3
2l@2Uxt1U~]x

21Ut!12aU#c, ~5.73!

wherel satisfies the same equation~5.8!. The DT ~5.13! also holds for this system.
Iterating also ona andb we obtain corresponding to~5.30!, ~5.31! the hierarchy

Utn
5u@U#Wn1bnUx , ~5.74!

Wn5~J@U#u@U# !n21J@U#Uy1(
i 51

n

aiG2n22i 11@U#

1 (
i 51

n21

biG2n22i@U#2(
i 51

n

qi~J@U#u@U# !n2 ix, ~5.75!

and so we see thata1 here is the functiona appearing in~5.30!, ~5.31!. Corresponding to~5.32! we
obtain

Utn
5RnUy1(

i 51

n

biRn2 iUx1(
i 51

n

aiRn2 iu@U#G1@U#2(
i 51

n

qiRn2 iu@U#x, ~5.76!

and so we see that the extra terms correspond to the addition of lower order SK flows. T
reductions as before we obtain corresponding generalizations of our hierarchies of PDE
11 dimensions and also of our hierarchies of ODEs, together with their associated linear
lems. In the local case~corresponding, respectively, to~5.62!, ~5.63!, ~5.68!, ~5.69!! these gener-
alized hierarchies of ODEs read

RnUx1(
i 51

n

aiRn2 iu@U#G1@U#1(
i 51

n

biRn2 iUx2qn~2U1xUx!50, ~5.77!
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Rn21u@U#G1@U#1(
i 52

n

aiRn2 iu@U#G1@U#1(
i 51

n

biRn2 iUx2qn~2U1xUx!50, ~5.78!

G2n@U#1(
i 51

n

aiG2n22i 11@U#1(
i 51

n

biG2n22i@U#2qnx50, ~5.79!

G2n21@U#1(
i 52

n

aiG2n22i 11@U#1(
i 51

n

biG2n22i@U#2qnx50, ~5.80!

where in the last two equations we have taken the reductionWn52bn instead ofWn50. ~Again,
our requirement thatqnÞ0 allows us to takebn50 in all of the above.! The hierarchies~5.77! and
~5.78! are just similarity reductions of sums of SK flows. It is straightforward to give first integ
for these two hierarchies and thus generalize the results of Refs. 21,22 for~5.62! and ~5.63!. For
n51 ~5.79! is equivalent to~4.81! ~see Appendix A!. Linear problems for the above four hiera
chies follow in the same way as described above.

Remark two: Once again, we have so far asked that not allqi are zero. If we allow allqi to
vanish, in which case the hierarchies of ODEs~5.77!, ~5.78!, ~5.79!, and~5.80! are autonomous
then we are able to use the linear problems to obtain constants of motion. For the casen51 of
~5.77! and~5.78! with qn50, we obtain two constants of motion; for~5.78! these are as obtaine
in Ref. 33 for the corresponding He´non–Heiles system, the first being just the trivial first integ
of ~5.78!, which corresponds to the energy. The casen51 of ~5.79! with qn50 is equivalent to
the corresponding case of~4.81!, and the first integral obtained here is equivalent~modulo the
additional simple first integral! to the first integral obtained earlier for the latter. The casen51 of
~5.80! with qn50 is trivial; for the casen52 we obtain three constants of motion.

C. Examples: n 51

In the casen51 we can setU5ux , and write the system~5.30!, ~5.31! locally as

uxt1
5W1,xxx12uxW1,x1uxxW1 , ~5.81!

W1,x5uxxxxxy1uxxxyux1 1
2uxxxxuy1 3

2~uxxyuxx1uxxxuxy!

1 1
4~uxyux

21uxxuxuy!1a~uxxxx1
1
2uxuxx!2q1 , ~5.82!

wherea5a(y,t) andq15q1(y,t). This system is just our base equation~5.16!, ~5.17!, which has
Lax pair ~5.18!, ~5.19! with l5l(y,t) satisfying ~5.20!. We now consider reductions of thi
system to PDEs in 111 dimensions, and also to ODEs.

Our first two reductions are to the PDEs,

Ut1
5W1,xxx12UW1,x1UxW1 , ~5.83!

W15G2@U#2q1x5Uxxxx1
3
2UUxx1

3
4Ux

21 1
6U

32q1x ~5.84!

and

Ut1
5W1,xxx12UW1,x1UxW1 , ~5.85!

W15G1@U#2q1x5Uxx1
1
4U

22q1x, ~5.86!

where in each caseq1 is a function oft1 only. These have temporal part of the Lax pair give
respectively, by
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c t1
52 3

2@3lU2UUx2Uxxx#cxx1@227l21 3
2~3lUx2Ux

22UUxx2Uxxxx!

1W1#cx2 3
2l@2Uxx1U2#c ~5.87!

and

c t1
52 3

2~6l2Ux!cxx1~W12 3
2Uxx!cx23lUc, ~5.88!

where in each casel is a function oft1 only andl t1
523lq1 . This last means that forq1Þ0 the

above Lax pairs are nonisospectral. Whenq150 they become isospectral, in which case~5.83!,
~5.84! and ~5.85!, ~5.86! reduce to seventh and fifth order SK, respectively.

Our second two reductions to PDEs in 111 dimensions are to

05W1,xxx12uxW1,x1uxxW1 , ~5.89!

W1,x5uxxxxxy1uxxxyux1 1
2uxxxxuy1 3

2~uxxyuxx1uxxxuxy!

1 1
4~uxyux

21uxxuxuy!1a~uxxxx1
1
2uxuxx!2q1 ~5.90!

and to its further reduction

05uxxxxxy1uxxxyux1 1
2uxxxxuy1 3

2~uxxyuxx1uxxxuxy!

1 1
4~uxyux

21uxxuxuy!1a~uxxxx1
1
2uxuxx!2q1 , ~5.91!

where in each casea andq1 are functions ofy only. The temporal~now y! part of the Lax pair for
~5.89!, ~5.90! is

27l2cy52 3
4@6luy2uxuxy2uxxuy22uxxxy12a~6l2uxx!#cxx

1@ 3
4~6luxy22uxxuxy2uxuxxy2uxxxuy22uxxxxy22auxxx!1W1#

3cx2 3
2l@2uxxy1uxuy12aux#c, ~5.92!

and that for~5.91! is

27l2cy52 3
4@6luy2uxuxy2uxxuy22uxxxy12a~6l2uxx!#cxx

1@ 3
4~6luxy22uxxuxy2uxuxxy2uxxxuy22uxxxxy22auxxx!#cx

2 3
2l@2uxxy1uxuy12aux#c, ~5.93!

where in each casel is a function ofy only andly52q1 /(9l). For q1Þ0 ~5.89!, ~5.90! is a
nonisospectral deformation of an inverse SK flowRUy1au@U#G1@U#2q1(2U1xUx)50 and
appears to be new. The caseq150 has isospectral Lax pair. Equation~5.91! also appears to be
new and again has isospectral or nonisospectral Lax pair according as to whetherq150 or q1

Þ0, respectively. In Appendix B we give details of the Painleve´ analysis of~5.91!, and also of
~5.81!, ~5.82!.

Our first two reductions to ODEs are toRUx2q1u@U#x50, i.e.,

~Uxxxxxx1
7
2UUxxxx1

7
2UxUxxx1

7
2Uxx

2 1 7
2U

2Uxx1
7
4UUx

21 7
24U

4!x2q1~2U1xUx!50,
~5.94!

and tou@U#G1@U#2q1u@U#x50, i.e.,

~Uxxxx1
5
2UUxx1

5
12U

3!x2q1~2U1xUx!50. ~5.95!
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These ODEs are similarity reductions of seventh and fifth order SK, respectively. They have
problems withcl given, respectively, by

3lq1cl5 3
2@3lU2UUx2Uxxx#cxx

1@27l22 3
2~3lUx2Ux

22UUxx2Uxxxx!2W1#cx

1 3
2l@2Uxx1U2#c, ~5.96!

whereW1 is given by~5.84!, and

3lq1cl5 3
2~6l2Ux!cxx1~ 3

2Uxx2W1!cx13lUc, ~5.97!

whereW1 is given by~5.86!, and where in each caseq1Þ0. We note that a matrix linear problem
for the ODE~5.95! is known to the author of Ref. 21.

Our second two reductions to ODEs are toG2@U#2q1x50, i.e.,

Uxxxx1
3
2UUxx1

3
4Ux

21 1
6U

32q1x50, ~5.98!

and toG1@U#2q1x50, i.e.,

Uxx1
1
4U

22q1x50. ~5.99!

These ODEs have linear problems withcl given by

lq1cl5 1
2@3lU2UUx2Uxxx#cxx

1@9l22 1
2~3lUx2 1

4Ux
21 1

2UUxx1
1
6U

32q1x!#cx1 1
2l@2Uxx1U2#c ~5.100!

and

lq1cl5 1
2~6l2Ux!cxx1

1
2~q1x2 1

4U
2!cx1lUc, ~5.101!

respectively, where we have used the ODEs~5.98! and~5.99! to replace the highest order deriva
tives ofU, and where in each caseq1Þ0. Equation~5.99! is just PI , which again we have place
at the base of a hierarchy of ODEs having third order linear problems. Equation~5.98! can be
rescaled onto~4.100! ~see Appendix A!.

VI. CONCLUSIONS

We have shown that certain PDEs associated with nonisospectral scattering problem
11 dimensions play an important role in the construction of hierarchies of integrable PDE
ODEs, together with their underlying linear problems. This approach makes use of a cha
ization of hierarchies using a single equation. We have thus obtained a wide variety o
hierarchies of integrable PDEs and ODEs. These include new PDEs in 211 dimensions having
nonisospectral scattering problems, new PDEs in 111 dimensions having nonisospectral or iso
pectral scattering problems, and also new ODEs and their corresponding monodromy pro
Certain examples of these last appear to be of particular interest. In addition, we have con
the use of linear problems to derive constants of motion. The examples in this paper are ba
KdV, KK, and SK type scattering problems. Further extensions and examples can be found
39.
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APPENDIX A: SCALAR AND MATRIX LINEAR PROBLEMS FOR COSGROVE’S
EQUATION

Here we give scalar and matrix spectral problems for the fourth order ODEs correspond
the casen51 of ~4.81! and ~5.79!, that is, for

Uxxxx112UUxx16Ux
21 32

3 U31a1~Uxx14U2!2q1x50, ~A1!

and

Vyyyy1
3
2VVyy1

3
4Vy

21 1
6V

31ã1~Vyy1
1
4V

2!2q̃1y50, ~A2!

where in each case we have used the fact thatqnÞ0 and q̃nÞ0 to set the additional additive
constant equal to zero. The question of how to find the linear problem for such ODEs w
appear to be nontrivial since they apparently do not arise, for example, as the~integrated! station-
ary flow of an integrable evolution equation. The two PDEs which perhaps most naturally
~A1! and~A2! as reductions, and from which we can most easily obtain the corresponding
problems, are~4.93! and ~5.91!, respectively.

The ODEs~A1! and ~A2! are related by the transformation

U~x!5~V~y!1ã1!/8, x5y2~ ã1
3/~12q̃1!!, a152ã1/2, q15q̃1/8, ~A3!

and in turn to the equation found by Cosgrove using Painleve´ classification30 ~see also Ref. 37!,

Wzzzz218WWzz29Wz
2124W32aW22~a2/9!W2bz50, ~A4!

by the transformation

U~x!52~3W~z!/2!2~a/24!, x5z2~7a3!/~3888b!, a15a/2, q1523b/2. ~A5!

Here we assumebÞ0 and so again set the additive constant to zero. Note that in the gauge c
by Cosgrove, which removes theWzz term, the coefficienta appears nonlinearly, whereas in o
corresponding generalized hierarchies such constants appear linearly~since these consist of
linear combination of such equations!.

Our scalar linear problem for~A1! is

cxxx522Ucx2~Ux2l!c, ~A6!

q1cl5~6U13a1!cxx1~9l23Ux!cx1~Uxx18U214a1U !c, ~A7!

and that for~A2! is

cyyy52 1
2Vcy1lc, ~A8!

lq̃1cl5 1
2@3lV2VVy2Vyyy1ã1~6l2Vy!#cyy

1@9l22 1
2~3lVy2 1

4Vy
21 1

2VVyy1
1
6V

31 1
4ã1V22q̃1y!#cy

1 1
2l@2Vyy1V212ã1V#c. ~A9!

We recall that there is a well-known relationship between the two third order operators~A.6! and
~A.8!.34
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The compatibility condition of the linear problem~A6!, ~A7! gives the derivative of~A1!.
That for ~A8!, ~A9! gives ~A2!. Corresponding to each of these scalar linear problems we
matrix linear problems with compatibility conditions~A1! and~A2!, respectively. The simplest o
these is that corresponding to~A6!, ~A7!, i.e.,

Cx5S 0 1 0

2U 0 1

2l 2U 0
D C, ~A10!

q1Cl5S 2~Uxx12U21a1U ! 3~Ux13l! 23~2U1a1!

2Uxxx27UUx

23l~U2a1!2a1Ux
2~Uxx12U21a1U ! 3~3l2Ux!

2UUxx2Ux
21 14

3 U3

1a1U229l22q1x

Uxxx17UUx1a1Ux

13l~a12U !

2Uxx22U2

2a1U

D C. ~A11!

Corresponding to~A8!, ~A9! we have a matrix linear problem with

Cy5S 0 1 0

2V/4 0 1

2l2~Vy/4! 2V/4 0
D C. ~A12!

The second half of this matrix linear problem is too long to reproduce here.

APPENDIX B: PAINLEVÉ ANALYSIS

In this Appendix we give brief details of the WTC Painleve´ test40 for some of the more
fundamental equations presented in this paper. Thus for example for the 211-dimensional system
~4.83!, ~4.84! we seek expansions about a noncharacteristic movable singular manifoldw50,
assuming a leading order behavioru;u0wa, W;W0wb. Without loss of generality we use
Kruskal’s ‘‘reduced ansatz’’ and takew5x1j(y,t) and all coefficients in the expansion to b
functions ofy and t only. For the system~4.83!, ~4.84! we thus obtain the families

a521 u053/2 b521 W0 arbitrary $21,0,1,2,3,4,4,6,8% ~B1!

a521 u0515/2 b523 W0 arbitrary $25,21,0,1,4,6,8,8,12% ~B2!

a521 u0524 b526 W05295040jy $211,25,21,1,6,8,12,14,18% , ~B3!

where for each leading order behavior the set of numbers in braces is the set of indi
‘‘resonances’’ where arbitrary data is to be introduced into the expansion. The PDE~4.83!, ~4.84!
is then found to pass the WTC Painleve´ test.

The system~4.83!, ~4.84! has as a subequation the 111-dimensional PDE~4.93!. This has the
families

a521 u053/2 $21,1,3,4,6,8%, ~B4!

a521 u0515/2 $2521,1,6,8,12%, ~B5!

whose leading orders and indices are easily seen to be subsets of those of the above fam
~4.83!, ~4.84! ~and so to be consistent under an appropriate reduction!. The PDE~4.93! is again
found to pass the WTC Painleve´ test.

The system~5.81!, ~5.82! also passes the WTC Painleve´ test, with families
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a521 u0512 b524 W0 arbitrary $21,0,1,3,4,5,6,8,10%, ~B6!

a521 u0560 b51 W0 arbitrary $211,25,21,0,1,6,8,11,12%, ~B7!

a521 u0524 b526 W051728jy $22,21,1,3,4,6,8,9,14%. ~B8!

Again this system has a 111-dimensional subequation, namely,~5.91!. This has the families

a521 u0512 $21,1,3,4,6,8%, ~B9!

a521 u0560 $25,21,1,6,8,12%, ~B10!

whose leading orders and indices are clearly subsets of those of the families of~5.81!, ~5.82!.
Equation~5.91! also passes the WTC Painleve´ test.

The families of~4.83!, ~4.84! and~5.81!, ~5.82! correspond to those of seventh order KK a
seventh order SK, respectively. Here we have two additional indices~1 and 6! which correspond
to having taken a potential and an extra derivative, and the remaining seven indices ar
identified with those of the corresponding families of seventh order KK and seventh order
we also take account of any shift on the leading order behavior ofW ~any such shift affects three
of the remaining indices!. We also note that the actual expansion forW for the family ~B7! is
W;j t1W0w, where the extra lower order termj t restores the dominance in~5.81! ~see Ref. 41!.

The families of the ODE~A1! ~equivalently~A2! or ~A4!! correspond in exactly the same wa
to those of the PDEs~4.93! or ~5.91!; again we have the two additional indices 1 and 6. Details
the Painleve´ analysis of this ODE can be found in Ref. 30~the dominant terms and correspondin
families were first given in Ref. 37!.

APPENDIX C: THE KAUP–KUPERSHMIDT CASE: n 52

Here we consider reductions of our 211 system~4.29!, ~4.30! in the special casen52. As
described in Sec. IV, we have reductions to PDEs in 111 dimensions, with isospectral an
nonisospectral Lax pairs. However here, for reasons of brevity, we restrict ourselves to
explicitly only the further reductions of these PDEs down to ODEs.

Our first two reductions are to the ODEsR2Ux2q1Ru@U#x2q2u@U#x50 and
Ru@U#H1@U#2q1Ru@U#x2q2u@U#x50, which we write~hereU (4x) meansUxxxx and U (4x)

2

means (Uxxxx)
2, etc.! as

~U ~12x!126UU ~10x!1143UxU ~9x!1494UxxU ~8x!1260U2U ~8x!

11144UxxxU ~7x!12288UUxU ~7x!11872U ~4x!U ~6x!16292UUxxU ~6x!

14459Ux
2U ~6x!1

3848
3 U3U ~6x!1

2197
2 U ~5x!

2 111102UUxxxU ~5x!

120787UxUxxU ~5x!112636U2UxU ~5x!16374UU ~4x!
2 131200UxUxxxU ~4x!

120618Uxx
2 U ~4x!126312U2UxxU ~4x!136634UUx

2U ~4x!1
10192

3 U4U ~4x!

125480UxxUxxx
2 116146U2Uxxx

2 1122694UUxUxxUxxx130225Ux
3Uxxx

1 88816
3 U3UxUxxx1

83876
3 UUxx

3 1 120315
2 Ux

2Uxx
2 1 64792

3 U3Uxx
2

185176U2Ux
2Uxx1

14560
3 U5Uxx121021UUx

41 40040
3 U4Ux

2

1 4160
9 U7!x2q1~gxxx12Ugx1Uxg!2q2~2U1xUx!50 ~C1!

and
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(U ~10x!122U ~8x!199UxU ~7x!1275UxxU ~6x!1176U2U ~6x!

1495UxxxU ~5x!11188UUxU ~5x!1
605

2 U ~4x!
2 12464UUxxU ~4x!

11716Ux
2U ~4x!1

1936
3 U3U ~4x!11518UUxxx

2 15566UxUxxUxxx

14312U2UxUxxx1
3674

3 Uxx
3 13124U2Uxx

2 18360UUx
2Uxx

1 3520
3 U4Uxx11089Ux

412640U3Ux
21 1408

9 U6)x

2q1~gxxx12Ugx1Uxg!2q2~2U1xUx!50, ~C2!

respectively, where in order to write these ODEs and their corresponding linear problems l
we have defined

g5K@U# f x and f x5u@U#x5~2U1xUx!. ~C3!

Equation~C1! has linear problem withcl given by

23l~q2227l2q1!cl5A2cxx1@~227l2!21B2#cx1 1
3@4UA22A2,xx23B2,x#c, ~C4!

where

A25218l]x
21~Q1227l2Q0!, ~C5!

B259l~Q1227l2Q0!1~W2227l2W1!, ~C6!

]x
21Q05U, W1 is given by~4.86!,

]x
21Q15]x

21u@U#W1

5Uxxxxxx114UUxxxx135UxUxxx1
49
2 Uxx

2

156U2Uxx170UUx
21 56

3 U42q1f ~C7!

and

W25H4@U#2~q1K@U#u@U#x1q2x!

5U ~10x!124UU ~8x!196UxU ~7x!1277UxxU ~6x!1212U2U ~6x!

1495UxxxU ~5x!11272UUxU ~5x!1302U ~4x!
2 12746UUxxU ~4x!

11563Ux
2U ~4x!1

2576
3 U3U ~4x!11686UUxxx

2 15384UxUxxUxxx

15152U2UxUxxx1
3821

3 Uxx
3 13864U2Uxx

2 18596UUx
2Uxx

11680U4Uxx1861Ux
413360U3Ux

21 2240
9 U62~q1g1q2x!. ~C8!

Equation~C2! has a linear problem withcl given by

23l~q2227l2q1!cl5A2cxx1B2cx1 1
3@4UA22A2,xx23B2,x#c, ~C9!

where

A2529l~227l2!218l]x
21Q1 , ~C10!

B259lQ11~W2227l2W1!, ~C11!

W1 is given by~4.88!,
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]x
21Q15]x

21u@U#W15Uxxxx110UUxx1
15
2 Ux

21 20
3 U32q1f , ~C12!

and

W25H3@U#2~q1K@U#u@U#x1q2x!

5U ~8x!120UU ~6x!160UxU ~5x!1134UxxU ~4x!1136U2U ~4x!

184Uxxx
2 1544UUxUxxx1408UUxx

2 1396Ux
2Uxx1

1120
3 U3Uxx

1560U2Ux
21 256

3 U52~q1g1q2x!. ~C13!

In each of the above examplesq1 andq2 are not both zero. The nonlocal terms included in t
above ODEs are new. Whenq150, Eqs.~C1! and~C2! are similarity reductions of thirteenth an
eleventh order KK, respectively.

Our second two reductions to ODEs are toH4@U#2q1K@U#u@U#x2q2x50 and H3@U#
2q1K@U#u@U#x2q2x50, which we can write as

U ~10x!124UU ~8x!196UxU ~7x!1277UxxU ~6x!1212U2U ~6x!

1495UxxxU ~5x!11272UUxU ~5x!1302U ~4x!
2 12746UUxxU ~4x!

11563Ux
2U ~4x!1

2576
3 U3U ~4x!11686UUxxx

2 15384UxUxxUxxx

15152U2UxUxxx1
3821

3 Uxx
3 13864U2Uxx

2 18596UUx
2Uxx

11680U4Uxx1861Ux
413360U3Ux

21 2240
9 U62~q1g1q2x!50 ~C14!

and

U ~8x!120UU ~6x!160UxU ~5x!1134UxxU ~4x!1136U2U ~4x!

184Uxxx
2 1544UUxUxxx1408UUxx

2 1396Ux
2Uxx1

1120
3 U3Uxx

1560U2Ux
21 256

3 U52~q1g1q2x!50, ~C15!

wheref andg are as defined in~C3!. Both of these ODEs are new.
Equation~C14! has a linear problem withcl given by ~C4! with W250, i.e.,

~q2227l2q1!cl5A2cxx1@9l~227l2!1B2#cx1 1
3@4UA22A2,xx23B2,x#c, ~C16!

where now

A256]x
21~Q1227l2Q0!, ~C17!

B2523~Q1227l2Q0!19lW1 , ~C18!

]x
21Q05U, andW1 and]x

21Q1 are given by~4.86! and ~C7!, respectively.

Equation~C15! has a linear problem withcl given by ~C9! with W250, i.e.,

~q2227l2q1!cl5A2cxx1B2cx1 1
3@4UA22A2,xx23B2,x#c, ~C19!

where now

A253~227l2!16]x
21Q1 , ~C20!

B2523Q119lW1 , ~C21!
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andW1 and]x
21Q1 are given by~4.88! and ~C12!, respectively.

Once again in each of the above examplesq1 andq2 are not both zero.

APPENDIX D: THE SAWADA–KOTERA CASE: n 52

Here we consider reductions of our 211 system~5.30!, ~5.31! in the special casen52. As
described in Sec. V, we have reductions to PDEs in 111 dimensions, with isospectral an
nonisospectral Lax pairs. However as in Appendix C, for reasons of brevity, we restrict ours
here to giving explicitly only the further reductions of these PDEs down to ODEs.

Our first two reductions are to the ODEsR2Ux2q1Ru@U#x2q2u@U#x50 and
Ru@U#G1@U#2q1Ru@U#x2q2u@U#x50, which we write as

~U ~12x!1
13
2 UU ~10x!126UxU ~9x!1

169
2 UxxU ~8x!1

65
4 U2U ~8x!

1169UxxxU ~7x!1104UUxU ~7x!1
507

2 U ~4x!U ~6x!1
1105

4 UUxxU ~6x!

1 299
2 Ux

2U ~6x!1
481
24 U3U ~6x!1143U ~5x!

2 1 871
2 UUxxxU ~5x!

1 1443
2 UxUxxU ~5x!1

585
4 U2UxU ~5x!1260UU ~4x!

2 1 2067
2 UxUxxxU ~4x!

1 3029
4 Uxx

2 U ~4x!1
1235

4 U2UxxU ~4x!1325UUx
2U ~4x!1

637
48 U4U ~4x!

1910UxxUxxx
2 1 351

2 U2Uxxx
2 1 4563

4 UUxUxxUxxx1195Ux
3Uxxx

1 2093
24 U3UxUxxx1

6799
24 UUxx

3 1 1755
4 Ux

2Uxx
2 1 3367

48 U3Uxx
2

1 819
4 U2Ux

2Uxx1
455
96 U5Uxx1

273
8 UUx

41 455
48 U4Ux

2

1 65
576U

7!x2q1~gxxx12Ugx1Uxg!2q2~2U1xUx!50 ~D1!

and

~U ~10x!1
11
2 UU ~8x!1

33
2 UxU ~7x!144UxxU ~6x!111U2U ~6x!

166UxxxU ~5x!1
99
2 UUxU ~5x!1

77
2 U ~4x!

2 1 209
2 UUxxU ~4x!

1 99
2 Ux

2U ~4x!1
121
12 U3U ~4x!1

231
4 UUxxx

2 1187UxUxxUxxx

1 187
4 U2UxUxxx1

143
3 Uxx

3 1 77
2 U2Uxx

2 1 275
4 UUx

2Uxx

1 55
12U

4Uxx1
33
8 Ux

41 55
8 U3Ux

21 11
72U

6!x

2q1~qxxx12Ugx1Uxg!2q2~2U1xUx!50, ~D2!

respectively, where in order to write these ODEs and their corresponding linear problems l
we have defined

g5J@U# f x and f x5u@U#x5~2U1xUx!. ~D3!

Equation~D1! has a linear problem withcl given by

23l~q2227l2q1!cl5A2cxx1@~227l2!21B2#cx1C2c, ~D4!

where

A252 9
2l]x

21~Q1227l2Q0!1 3
4@~UQ11Ux]x

21Q112Q1,xx!

227l2~UQ01Ux]x
21Q012Q0,xx!#, ~D5!

B252A2,x1~W2227l2W1!, ~D6!
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C252 3
2l@~U]x

21Q112Q1,x!227l2~U]x
21Q012Q0,x!#, ~D7!

]x
21Q05U,W1 is given by~5.84!,

]x
21Q15]x

21u@U#W1

5Uxxxxxx1
7
2UUxxxx1

7
2UxUxxx

1 7
2Uxx

2 1 7
2U

2Uxx1
7
4UUx

21 7
24U

42q1f ~D8!

and

W25G4@U#2~q1J@U#u@U#x1q2x!

5U ~10x!1
9
2UU ~8x!118UxU ~7x!143UxxU ~6x!1

29
4 U2U ~6x!

166UxxxU ~5x!1
87
2 UUxU ~5x!1

155
4 U ~4x!

2 1 337
4 UUxxU ~4x!

1 123
2 Ux

2U ~4x!1
133
24 U3U ~4x!148UUxxx

2 1197UxUxxUxxx

1 133
4 U2UxUxxx1

271
6 Uxx

3 1 399
16 U2Uxx

2 1 259
4 UUx

2Uxx1
35
16U

4Uxx1
63
8 Ux

4

1 35
8 U3Ux

21 35
576U

62~q1g1q2x!. ~D9!

Equation~D2! has a linear problem withcl given by

23l~q2227l2q1!cl5A2cxx1B2cx1C2c, ~D10!

where

A252 3
2~227l2!~6l2Ux!2 9

2l]x
21Q11 3

4~UQ11Ux]x
21Q112Q1,xx!, ~D11!

B252A2,x1~W2227l2W1!, ~D12!

C2523l~227l2!U2 3
2l@U]x

21Q112Q1,x#, ~D13!

W1 is given by~5.86!,

]x
21Q15]x

21u@U#W15Uxxxx1
5
2UUxx1

5
12U

32q1f ~D14!

and

W25G3@U#2~q1J@U#u@U#x1q2x!

5U ~8x!1
7
2UU ~6x!1

21
2 UxU ~5x!1

37
2 UxxU ~4x!14U2U ~4x!

1 39
4 Uxxx

2 116UUxUxxx112UUxx
2 1 33

2 Ux
2Uxx1

25
12U

3Uxx

1 25
8 U2Ux

21 1
12U

52~q1g1q2x!. ~D15!

In each of the above examplesq1 andq2 are not both zero. The nonlocal terms included in t
above ODEs are new. In the caseq150, Eqs.~D1! and~D2! are similarity reductions of thirteenth
and eleventh order SK, respectively.

Our second two reductions to ODEs are toG4@U#2q1J@U#u@U#x2q2x50 and G3@U#
2q1J@U#u@U#x2q2x50, which we can write as
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U ~10x!1
9
2UU ~8x!118UxU ~7x!143UxxU ~6x!1

29
4 U2U ~6x!

166UxxxU ~5x!1
87
2 UUxU ~5x!1

155
4 U ~4x!

2 1 337
4 UUxxU ~4x!

1 123
2 Ux

2U ~4x!1
133
24 U3U ~4x!148UUxxx

2 1197UxUxxUxxx

1 133
4 U2UxUxxx1

271
6 Uxx

3 1 399
16 U2Uxx

2 1 259
4 UUx

2Uxx

1 35
16U

4Uxx1
63
8 Ux

41 35
8 U3Ux

21 35
576U

62~q1g1q2x!50 ~D16!

and

U ~8x!1
7
2UU ~6x!1

21
2 UxU ~5x!1

37
2 UxxU ~4x!14U2U ~4x!

1 39
4 Uxxx

2 116UUxUxxx112UUxx
2 1 33

2 Ux
2Uxx1

25
12U

3Uxx

1 25
8 U2Ux

21 1
12U

52~q1g1q2x!50, ~D17!

wheref andg are as defined in~D3!. Both of these ODEs are new.
Equation~D16! has a linear problem withcl given by~D4! with W250, i.e.,A2 is as given

by ~D5!, B252A2,x227l2W1 , andC2 is as given by~D7!. In these expressions forA2 , B2 , and
C2 , ]x

21Q05U, W1 and]x
21Q1 are given by~5.84! and ~D8!, respectively, and the tenth orde

derivative ofU appearing inB2 can be replaced using Eq.~D16!.
Equation~D17! has a linear problem withcl given by~D10! with W250, i.e.,A2 is as given

by ~D11!, B252A2,x227l2W1 , andC2 is as given by~D13!. In these expressions forA2 , B2 ,
andC2 , W1 and]x

21Q1 are given by~5.86! and~D14!, respectively, and the eighth order deriv
tive of U appearing inB2 can be replaced using Eq.~D17!.

Once again in each of the above examplesq1 andq2 are not both zero.
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We show that various models of the elliptic Calogero–Moser systems are accom-
panied with an isomonodromic system on a torus. The isomonodromic partner is a
nonautonomous Hamiltonian system defined by the same Hamiltonian. The role of
the time variable is played by the modulus of the base torus. A suitably chosen Lax
pair ~with an elliptic spectral parameter! of the elliptic Calogero–Moser system
turns out to give a Lax representation of the nonautonomous system as well. This
Lax representation ensures that the nonautonomous system describes isomonodro-
mic deformations of a linear ordinary differential equation on the torus on which
the spectral parameter of the Lax pair is defined. A particularly interesting example
is the ‘‘extended twistedBCl model’’ recently introduced along with some other
models by Bordner and Sasaki, who remarked that this system is equivalent to
Inozemtsev’s generalized elliptic Calogero–Moser system. We use the ‘‘root-type’’
Lax pair developed by Bordneret al. to formulate the associated isomonodromic
system on the torus. ©1999 American Institute of Physics.
@S0022-2488~99!02911-4#

I. INTRODUCTION

In 1996, Manin1 proposed a new expression of the sixth Painleve´ equation. This is a differ-
ential equation of the form

~2p i !2
d2q

dt2 5 (
a50

3

aa`8~q1va!, ~1!

where`8(u) is the derivative of the Weierstrass̀function with primitive periods 1 andt,

`~u!5`~uu1,t!5
1

u2 1 (
~m,n!Þ~0,0!

S 1

~u1m1nt!22
1

~m1nt!2D , ~2!

va (a50,1,2,3) are the origin and the three half-periods of the torusEt5C/(Z1tZ),

v050, v15
1

2
, v25

1

2
1

t

2
, v35

t

2
, ~3!

and aa (a50,1,2,3) are the simple linear combinations (a0 ,a1 ,a2 ,a3)5(a,2b,g,1/22d) of
the four parametersa, b, g, andd of the sixth Painleve´ equation

a!Electronic mail: takasaki@yukawa.kyoto-u.ac.jp
57870022-2488/99/40(11)/5787/35/$15.00 © 1999 American Institute of Physics
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dy2

dx2 5
1

2 S 1

y
1

1

y21
1

1

y2xD S dy

dxD
2

2S 1

x
1

1

x21
1

1

y2xD dy

dx

1
y~y21!~y2x!

x2~x21!2 S a1b
x

y2 1g
x21

~y21!2 1d
x~x21!

~y2x!2 D . ~4!

Manin’s equation can be written in the Hamiltonian form

2p i
dq

dt
5p, 2p i

dp

dt
52

]H
]q

, ~5!

with the Hamiltonian

H5
1

2
p22 (

a50

3

aa`~q1va!. ~6!

Since the Hamiltonian depends on the modulust explicitly, this is a nonautonomous Hamiltonia
system. In this new framework, Manin reconsidered the affine Weyl group symmetries of the
Painlevéequation discovered by Okamoto,2 solutions for special values ofa, b, g, andd con-
structed by Hitchin,3 etc.

Manin’s equation reveals an unexpected link between the Painleve´ equation and the elliptic
Calogero–Moser systems, i.e., the Calogero–Moser systems4 with elliptic potentials. In order to
see this relation, we introduce a new variablet and formally replace 2p id/dt→d/dt in the
aforementioned equations. The outcome is the autonomous equation

d2q

dt2
5 (

a50

3

aa`8~q1va! ~7!

and its Hamiltonian form

dq

dt
5p,

dp

dt
52

]H
]q

. ~8!

If all an’s take the same value2g2/8, one can use an identity of thèfunction to rewrite the
above equation as

d2q

dt2
52

g2

8 (
a50

3

`8~q1va!52g2`8~2q!. ~9!

This is exactly the two-body elliptic Calogero–Moser system; thel-body elliptic Calogero–Moser
system (Al 21 model! is defined by the Hamiltonian

H5
1

2 (
j 51

l

pj
21

g2

2 (
j Þh

`~qj2qk!. ~10!

As Krichever5 demonstrated, this elliptic Calogero–Moser system is an isospectral integ
system with a Lax representation

]L~z!

]t
5@L~z!,M ~z!#, ~11!
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where the Lax pairL(z) and M (z) are matrix-valued functions of a spectral parameterz on the
torus Et . Furthermore, the general case falls into Inozemtsev’s generalization of the e
Calogero–Moser system6 defined by the Hamiltonian

H5
1

2 (
j 51

l

pj
21

gm
2

2 (
e,e8561

(
j Þk

`~eqj1e8qk!1
1

2 (
j 51

l

(
a50

3

ga
2`~qj1va!. ~12!

Levin and Olshanetsky7 developed a geometric formulation of isomonodromic systems o
general Riemann surface, and characterized Manin’s equation as an isomonodromic system
torus Et . Their interpretation of isomonodromic deformations is based on the notion o
Hitchin systems.8 According to this interpretation, the coordinatesqj of Calogero–Moser particles
are identified with the moduli of an SU(l ) flat bundle on the torusEt , and theL-matrix L(z) is
nothing but the Higgs field on this bundle.~Such a link between the elliptic Calogero–Mos
systems and the Hitchin systems was already pointed out before their work by Nekraso9 and
Enriquez and Rubtsov.10! Isomonodromic deformations are special deformations of these geo
ric data as the complex structure of the base torus~or, equivalently, the modulust! varies. This
geometric picture suggests a wide range of generalizations of isomonodromic deformation~see,
e.g., the recent work of Levin and Olshanetsky11!.

Unfortunately, however, it is only the special case witha05a15a25a3 that was success
fully treated in the formulation of Levin and Olshanetsky. This is simply because no suitable
representation was available for the Inozemtsev system. Inozemtsev6 presented a Lax represent
tion, but it is not suited for that purpose.

Recently, a new type of Lax pair—the root type Lax pair—was proposed by Bor
et al.12,13,14for various models of the elliptic Calogero–Moser systems including the Inozem
system. This is a Lax pair constructed on the basis of an underlying root system~e.g., theAl 21

root system for the aforementioned elliptic Calogero–Moser system, and theBCl root system for
the Inozemtsev system!. The construction covers not only the ordinary elliptic Calogero–Mo
systems~the ‘‘untwisted models’’! but also the ‘‘twisted models’’ introduced by D’Hoker an
Phong15 and their generalizations~the ‘‘extended twisted models’’!. The Inozemtsev system co
incides with the extended twistedBCl model in the classification of Bordner and Sasaki.14 In
particular, the root type Lax pair for the extended twistedBCl model gives a Lax representation
the aforementioned isospectral analogue of Manin’s equation.

One of the goals of this paper is to show, using the root type Lax pair, that each of
elliptic Calogero–Moser systems are accompanied with an isomonodromic system on a toru
first step of the construction is simply to replace the equations of motions

dq

dt
5$q,H%,

dp

dt
5$p,H% ~13!

of the elliptic Calogero–Moser system by the nonautonomous system

2p i
dq

dt
5$q,H%, 2p i

dp

dt
5$p,H% ~14!

with the same HamiltonianH. We then rewrite this nonautonomous system into a Lax equatio
the form

2p i
]L~z!

]t
1

]M ~z!

]z
5@L~z!,M ~z!# ~15!

using a root type Lax pairL(z) andM (z). This Lax equation implies the Frobenius integrabili
of the linear system
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]Y~z!

]z
5L~z!Y~z!, 2p i

]L~z!

]t
1M ~z!Y~z!50, ~16!

from which one can deduce that the non-autonomous system is an isomonodromic system
torusEt .

Actually, we shall use the root type Lax pair made of slightly different building blocks.
root type Lax pairs, like the previously known Lax pairs, contain complex analytic funct
x(u,z), y(u,z), etc. that satisfy special functional equations~called the ‘‘Calogero functiona
equations’’16!. Bordneret al. use the Weierstrass sigma function to construct those functions
use the Jacobi theta functionu1 instead. This is inspired by the work of Levin and Olshanets
who used substantially the same function to construct theL-matrix ~i.e., the Higgs field in their
framework! for isomonodromic systems on a torus. This minuscule difference is rather cruci
deriving an isomonodromic Lax equation as above.

The functionsx(u,z) andy(u,z) that we use are, in fact, identical to the functions that Fel
and Wieczerkowski17 used in their study on the Knizhnik–Zamolodchikov–Bernard~KZB!
equation.18 This is by no means a coincidence. As Levin and Olshanetsky stressed, the
equation and the Hitchin system~or, rather, its isomonodromic version! are closely related.

In order to illustrate that our method also works for some other cases, we show a constr
of an isomonodromic analogue for the ‘‘spin generalization’’19 of the elliptic Calogero–Moser
system. Actually, a multispin generalization of this construction is also possible, which is no
but the genus-one case of Levin and Olshanetsky’s framework.

This paper is organized as follows: In Sec. II, we illustrate our construction of isomonodr
systems in the case of the most classicalAl 21 model. This will serve as a prototype of th
subsequent discussion. Section III is devoted to the models treated by the root type Lax pa
Sec. IV to the spin generalization. Section V is for concluding remarks. Technically compli
calculations are collected in the Appendices.

II. ISOMONODROMIC SYSTEMS ON THE TORUS: A PROTOTYPE

We start with illustrating our construction for the most fundamental case—theAl 21 model
and its Lax pair in the vector representation of SU(l ).

A. A l 21 model of elliptic Calogero–Moser systems

The Al 21 model is defined by the Hamiltonian

H5
1

2 (
j 51

l

pj
21

g2

2 (
j Þk

`~qj2qk!. ~17!

Here qj and pj ( j 51,...,l ) are the coordinates and momenta of the particles with the cano
Poisson brackets

$qj ,pk%5d jk , $qj ,qk%5$pj ,pk%50. ~18!

Following Manin’s equation, we normalize the primitive periods as

2v151, 2v35t. ~19!

The equations of motion are give by the canonical equations

dqj

dt
5$qj ,H%5pj ,

~20!
dpj

dt
5$pj ,H%52g2(

kÞ j
`8~qj2qk!.
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This elliptic Calogero–Moser system has a Lax pair of the form

L~z!5(
j 51

l

pjEj j 1 ig(
j Þk

x~qj2qk ,z!Ejk ,

~21!

M ~z!5(
j 51

l

D jEj j 1 ig(
j Þk

y~qj2qk ,z!Ejk ,

whereEjk is the matrix unit, (Ejk)mn5dm jdnk . The diagonal elementsD j of M (z) are given by

D j5 ig(
kÞ j

`~qj2qk!, ~22!

andx(u,z) is a function that satisfies, along with itsu-derivative

y~u,z!5
]x~u,z!

]u
, ~23!

the functional equations,

x~u,z!y~v,z!2y~u,z!x~v,z!5x~u1v,z!~`~u!2`~v !!, ~24!

x~u,z!y~2u,z!2y~u,z!x~2u,z!5`8~u!, ~25!

x~u,z!x~2u,z!5`~z!2`~u!. ~26!

Using these functional equations, one can easily prove the following well known result:5

Proposition 1: The matrices L(z) and M(z) satisfy the Lax equation

]L~u!

]t
5@L~z!,M ~z!#. ~27!

As far as the elliptic Calogero–Moser system is concerned, the choice ofx(u,z) and y(u,y) is
rather irrelevant. A standard choice is the function

x~u,z!5
s~z2u!

s~z!s~u!
, ~28!

wheres(u)5s(uu1,t) is the Weierstrass sigma function with primitive periods 1 andt.
Thus, the elliptic Calogero–Moser system is an isospectral integrable system. An invo

set of conserved quantities can be extracted from the traces TrL(z)k, k52,3,... of powers of the
L-matrix. The quadratic trace is substantially the Hamiltonian itself,

Tr
L~z!2

2
5H1~ independent ofp and q!. ~29!

The functionsx(u,z) andy(u,z) based on the sigma function, however, are not very su
for constructing an isomonodromic system. We shall show an alternative in the next subse

B. Our choice of x „u ,z… and y „u ,z…

Inspired by the work of Levin and Olshanetsky,7 we take the following functionx(u,z) and its
u-derivativey(u,z) for constructing an isomonodromic Lax pair:
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x~u,z!5
u1~z2u!u18~0!

u1~z!u1~u!
. ~30!

Hereu1(u) is one of Jacobi’s elliptic theta functions,

u1~u!5u1~uut!52 (
n52`

`

expS p i tS n1
1

2D 2

12p i S n1
1

2D S u1
1

2D D , ~31!

andu18(u) its derivative. Accordingly, the partnery(u,z) can be written

y~u,z!52x~u,z!~r~u!1r~z2u!!, ~32!

wherer(u) denotes the logarithmic derivative ofu1(u),

r~u!5
u18~u!

u1~u!
. ~33!

The functionr(u), too, plays an important role throughout this paper.
Proposition 2: These functions x(u,z) and y(u,z) satisfy the functional equations (24)–(26) and

the differential equation

2p i
]x~u,z!

]t
1

]2x~u,z!

]u]z
50. ~34!

The last differential equation~a kind of 112-dimensional ‘‘heat equation’’! is a characteristic
of our (x,y) pair, and plays a key role in our construction of isomonodromic systems.

We give a proof of these properties in Appendix A. The following are supplementary rem
on these functions:

~a! The proof of~24–26! is based on the following analytical properties ofx(u,z):
~1! x(u,z) is a meromorphic function ofu andz. The poles on theu plane and thez plane
are both located at the lattice pointsu5m1nt andz5m1nt(m,nPZ).
~2! x(u,z) has the following quasiperiodicity:

x~u11,z!5x~u,z!, x~u1t,z!5e2p izx~u,z!,
~35!x~u,z11!5x~u,z!, x~u,z1t!5e2piux~u,z!.

~3! At the origin of theu andz planes,x(u,z) exhibits the following singular behavior:

x~u,z!5
1

u
2r~z!1O~u! ~u→0!,

~36!

x~u,z!52
1

z
1r~u!1O~z! ~z→0!.

~b! These properties are an immediate consequence of the following well known facts:
~1! u1(u) is an entire function with simple zeros at the lattice pointsu5m1nt(m,nPZ).
~2! u1(u) is an odd and quasiperiodic function,

u1~2u!5u1~u11!52u1~u!,
~37!

u1~u1t!52e2p i t22p iuu1~u!.

~c! One can similarly see the following analytical properties ofr(u):
~1! r(u) is a meromorphic function with poles at the lattice pointsu5m1nt(m,nPZ).
~2! r(u) is an odd function with additive quasiperiodicity,
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r~2u!52r~u!, r~u11!5r~u!, r~u1t!5r~u!22pi. ~38!

~3! At the origin u50, r(u) exhibits the following singular behavior:

r~u!5
1

u
1

u1-~0!

3u18~0!
u1O~u3! ~u→0!. ~39!

~d! The proof of~34! is based on the well known ‘‘heat equation’’

4pi
]u1~u!

]t
5

]2u1~u!

]u2 ~40!

of the Jacobi theta function.

C. Isomonodromic deformations

Replacingd/dt→2p id/dt, one obtains a nonautonomous Hamiltonian system,

2p i
dqj

dt
5$qj ,H%5pj ,

~41!

2p i
dpj

dt
5$pj ,H%52g2(

kÞ j
`8~qj2qk!.

We now demonstrate that this gives an isomonodromic system on the torusEt . A key is the
following Lax equation:

Proposition 3: L(z) and M(z) satisfy the Lax equation

2p i
]L~z!

]t
1

]M ~z!

]z
5@L~z!,M ~z!#. ~42!

Proof: Let us notice that the right-hand side of the isospectral Lax equation is in fac
Poisson bracket ofL(z) and the Hamiltonian,

@L~z!,M ~z!#5
]L~z!

]t
5$L~z!,H%. ~43!

Since the phase space and the Hamiltonian are the same as those of the original syst
relation@L(z),M (z)#5$L(z),H% persists in the present setup. Thus the right-hand side of the
equation can be written

@L~z!,M ~z!#5$L~z!,H%5(
j 51

l

$pj ,H%Ej j 1 ig(
j Þk

$qj2qk ,H%y~qj2qk ,z!Ejk . ~44!

On the other hand,

2p i
]L~z!

]t
1

]M ~z!

]z
5(

j 51

l

2p i
dpj

dt
Ej j 1 ig(

j Þk
2p i S dqj

dt
2

dqk

dt D y~qj2qk ,z!Ejk

1 ig(
j Þk

S 2p i
]x~u,z!

]t
1

]y~u,z!

]z D
u5qj 2qk

Ejk . ~45!

The last sum vanishes because of the ‘‘heat equation’’~34!. The other part coincides, term-by
term, with the above expression of the commutator@L(z),M (z)#. Q.E.D.
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This Lax equation enables us to interpret the nonautonomous Hamiltonian system
isomonodromic system on the torusEt . The Lax equation is nothing but the Frobenius integ
bility condition of a linear system of the form

]Y~z!

]z
5L~z!Y~z!, 2p i

]Y~z!

]t
1M ~z!Y~z!50. ~46!

The first equation is an ordinary differential equation on the torusEt , and has a regular singula
point atz50. Analytic continuation of the solution along this singular point yields a monodro
matrix G0 . Besides this local monodromy matrix, there are global monodromy matricesGa and
Gb that arise in analytic continuation along thea(z→z11) andb(z→z1t) cycles. The second
equation of the above linear system implies that these monodromy matrices are left invariat
varies.

Let us specify this observation in more detail. The situation is more complicated
isomonodromic systems on the Riemann sphere. The monodromy ofL(z) andM (z) themselves
are nontrivial,

L~z11!5L~z!, M ~z11!5M ~z!,

L~z1t!5e2p iQL~z!e22p iQ, ~47!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP,

where Q5( j 51
l qjEj j and P5( j 51

l pjEj j . These relations are a consequence of the qu
periodicity of x(u,z), y(u,z), and r(z). The monodromy ofL(z) implies thatY(z) has to be
treated as a section of a nontrivialGL( l ,C)-bundle~or SL( l ,C)-bundle, if we take the center o
mass frame with( j 51

l pj50) on the torusEt . The monodromy matricesG0 , Ga , andGb thus
arise as follows:

Y~ze2p i !5Y~z!G0 , Y~z11!5Y~z!Ga , Y~z1t!5e2p iQY~z!Gb . ~48!

Note that the exponential factor in the last relation reflects the nontrivial monodromy ofL(z)
along theb-cycle. Having this monodromy structure ofY(z), one can deduce the following
fundamental observation:

Proposition 4: The monodromy matrices do not depend ont, i.e.,

dG0

dt
5

dGa

dt
5

dGb

dt
50. ~49!

Proof: Let us rewrite the second equation of the linear system as

M ~z!522p i
]Y~z!

]t
Y~z!21, ~50!

and examine the implication of the monodromy structure ofY(z) noted above. This leads to th
following relations:
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M ~ze2p i !5M ~z!22p iY~z!
]G0

]t
G0

21Y~z!21,

M ~z11!5M ~z!22p iY~z!
]Ga

]t
Ga

21Y~z!21, ~51!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP22p iY~z!
]Gb

]t
Gb

21Y~z!21.

~We have used the relation 2p idQ/dt5P.) These relations are consistent with the aforem
tioned monodromy structure ofM (z) if and only if the monodromy matrices ofY(z) are inde-
pendent oft. Q.E.D.

III. ELLIPTIC CALOGERO–MOSER SYSTEMS BASED ON ROOT SYSTEMS

Here we consider the elliptic Calogero–Moser systems associated with a general irred
~but not necessary reduced! root systemD.

In the following, the root systemD is assumed to be realized in anl-dimensional Euclidean
spaceM5Rl . Let x•y denote the inner product of two vectors inM and its bilinear extension to
the complexificationMC5M ^ RC. The dual spaceM* 5Hom(M ,R) of M is identified withM by
this inner product. Each elementaPD induces a reflection~the Weyl reflection! sa(x)5x2(2a
•x/a•a)a. This gives a representation of the Weyl groupW(D) on M. The root systemD is
invariant under the action of this Weyl group.

The elliptic Calogero–Moser system associated with the root systemD is a Hamiltonian
system on M3M ~or its complexification MC3MC). The orthogonal coordinates (q,p)
5(q1 ,...,ql ,p1 ,...,pl) of M3M give canonical coordinates and momenta with the Pois
brackets

$qj ,pk%5d jk , $pj ,pk%5$qj ,qk%50. ~52!

A. Simply laced models

We first consider the case of simply laced (Al 21 , Dl , andEl) root systems. The associate
elliptic Calogero–Moser system is defined by the Hamiltonian

H5
1

2
p•p1

g2

2 (
aPD

`~a•q!. ~53!

Hereg is a coupling constant, and̀(u) the Weierstrass̀ function with primitive periods 1 and
t. The equations of motion can be written

dq

dt
5p,

dp

dt
52

g2

2 (
aPD

`8~a•q!a. ~54!

We first review the ‘‘root type’’ Lax pair of Bordneret al. for these models,12 then explain
how to convert these isospectral systems to isomonodromic systems.

1. Root-type Lax pair

The ‘‘root-type’’ Lax pair for these simply laced models areD3D matrices, i.e., matrices
whose rows and columns are indexed by the root systemD. They are made of three parts,

L~z!5P1X1~z!1X2~z!, M ~z!5D1Y1~z!1Y2~z!. ~55!

P andD are diagonal matrices,

Pbg5p•bdbg , Dbg5Dbdbg ~b,gPD!, ~56!
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and the diagonal elementsDb of D are given by

Db5 ig`~b•q!1 ig (
gPD,b•g51

`~g•q!. ~57!

X1(z), etc. are diagonal-free matrices of the form

X1~z!5 ig (
aPD

x~a•q,z!E~a!,

X2~z!52ig (
aPD

x~a•q,2z!E~2a!,

~58!

Y1~z!5 ig (
aPD

y~a•q,z!E~a!,

Y2~z!5 ig (
aPD

y~a•q,2z!E~2a!,

wherex(u,z) andy(u,z) are the same as the functions used in the previous section, andE(a) and
E(2a) areD3D matrices of the form

E~a!bg5da,b2g , E~2a!bg5d2a,b2g ~b,gPD!. ~59!

~We have slightly modified the notation of Bordneret al.; x(u,2z), y(u,2z), andE(2a) amount
to xd(u,z), yd(u,z), andEd(a) in their notation.!

These matrices satisfy the Lax equation

]L~z!

]t
5@L~z!,M ~z!# ~60!

under the equations of motions. The traces TrL(z)k, k52,3,..., of powers ofL(z) are conserved,
and an involutive set of conserved quantities can be extracted from these traces. The Ham
itself can be reproduced from the quadratic trace TrL(z)2. We refer the details of these results
the paper of Bordneret al.12 The choice ofx(u,z) andy(u,z) is irrelevant in this case, too.

Thus, in particular, theAl 21 model turns out to have at least two distinct Lax pairs—the L
pair of l 3 l matrices realized in the vector representation ofsl( l ), and the Lax pair ofl ( l 21)
3 l ( l 21) matrices based on theAl 21 root system. This is also the case for the other simply la
root systems. Bordneret al. call the Lax pairs of the first type the ‘‘minimal type,’’ because th
are realized in a minimal representation of the associated~not necessary simply laced! Lie algebra.
It should be noted that the ‘‘root type’’ Lax pairs do not possess a Lie algebraic structure; u
the usual root basis of simple Lie algebras, the matricesE(a) andE(2a) are not closed under th
Lie bracket.

2. Isomonodromic system

The prescription for constructing an isomonodromic analogue is the same as the pr
case, namely, to replaced/dt→2p id/dt. This converts the equations of motion of the ellipt
Calogero–Moser system to the nonantonomous system

2p i
dq

dt
5p, 2p i

dp

dt
52

g2

2 (
aPD

`8~a•q!a. ~61!
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Let x(u,z) be the function defined in~30!, andy(u,z) its u-derivative. The following are the key
to an isomonodromic interpretation.

Proposition 5: 1. L(z) and K(z) satisfy the Lax equation

2p i
]L~z!

]t
1

]M ~z!

]z
5@L~z!,M ~z!#. ~62!

2. L(z) and M(z) have the following monodromy properties:

L~z11!5L~z!, M ~z11!5M ~z!,

L~z1t!5e2p iQL~z!e22p iQ, ~63!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP,

where Q is the diagonal matrix with matrix elements Qbg5q•bdbg .
Proof: The proof is almost the same as the proof for the isomonodromic Lax pair of theAl 21

model in the vector representation. Let us first verify the Lax equation. The right-hand side
Lax equation can be written

@L~z!,M ~z!#5$P,H%1 ig (
aPD

$a•q,H%y~a•q,z!E~a!12ig (
aPD

$a•q,H%y~a•q,2z!E~2a!.

~64!

On the other hand,

2p i
]L~z!

]t
1

]M ~z!

]z
52p i

]P

]t
1 ig (

aPD
2p i

]a•q

]t
y~a•q,z!E~a!

12ig (
aPD

2p i
]a•q

]t
y~a•q,2z!E~2a!

1 ig (
aPD

S 2p i
]x~u,z!

]t
1

]y~u,z!

]z D
u5a•q

E~a!

12ig (
aPD

S 4p i
]x~u,2z!

]t
1

]y~u,2z!

]z D
u5a•q

E~2a!. ~65!

The last two sums vanish because of~34!. The other part coincides by the equations of motio
Thus we obtain the Lax equation. Let us next consider the monodromy ofL(z) andM (z). Note
the commutation relations

@Q,E~a!#5q•aE~a!, @Q,E~2a!#52q•aE~2a!, ~66!

which can be exponentiated as follows:

e2p iQE~a!e22p iQ5e2p iq•aE~a!, e2p iQE~2a!e22p iQ5e4p iq•aE~2a!. ~67!

The monodromy property ofL(z) andM (z) can be derived from these relations and the qua
eriodicity of x(u,z) andy(u,z). Q.E.D.

The rest is parallel to the case in the previous section. The only difference is that the or
differential equation
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dY~z!

dz
5L~z!Y~z! ~68!

on the torusEt hasfour regular singular points atz50,v1 ,v2 ,v3 . The latter three singular point
originates inX2(z). Let Ga (a50,1,2,3) denote the monodromy matrices in analytic continua
of Y(z) around these four points. The Lax equation implies that these local monodromy ma
and the two global onesGa andGb are independent oft,

]G0

]t
5¯5

]G3

]t
5

]Ga

]t
5

]Gb

]t
50. ~69!

B. Nonsimply laced models

The elliptic Calogero–Moser system associated with a nonsimply laced (Bl , Cl , F4 , G2 , and
BCl) root systems can have several independent coupling constants, one for each Wey
orbit in the root system. The root type Lax pairs are extended to the nonsimply laced ca
Bordneret al.13 As they pointed out, one can construct a different root type Lax pair for e
Weyl group orbit of the root system. Thus theBl , Cl , F4 , andG2 models have, respectively, tw
distinct Lax pairs based on the orbits of long and short roots, whereas theBCl model has three
based on the orbits of long, middle, and short roots. Note that each Weyl group orbit cons
roots of the same length.

Although all the nonsimply laced models can be treated in the same way, let us illustra
construction of isomonodromic systems for theBCl model. This is also intended to be a prototy
of the case that we shall consider in the next subsection.

1. BC l model

The BCl root system can be realized inM5Rl ,

D~BCl !5D løDmøDs ,

D l5$62ej u1< j < l % ~ long roots!,
~70!

Dm5$6ej6eku j Þk% ~middle roots!,

Ds5$6ej u1< j < l % ~short roots!,

wheree1 ,...,el are the standard orthonormal basis ofRl . D l , Dm , andDs give the three Weyl
group orbits.

The Hamiltonian of theBCl model takes the form

H5
1

2
p•p1

gm
2

2 (
aPDm

`~a•q!1
gl

2

4 (
aPD l

`~a•q!1g̃s
2 (

aPDs

`~a•q!. ~71!

The equations of motion can be written

dq

dt
5p,

~72!
dp

dt
52

gm
2

2 (
aPDm

`8~a•q!a2
gl

2

4 (
aPD l

`8~a•q!a2g̃s
2 (

aPDs

`8~a•q!a.

gm , gl , andg̃s are three independent coupling constants.g̃s is a modified~‘‘renormalized’’ in the
terminology of Bordneret al.! coupling constant connected with a more fundamental~‘‘bare,’’ so
to speak! coupling constantgs as
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g̃s
25gs

21
gsgl

2
. ~73!

The ‘‘bare’’ coupling constant appears in the construction of a Lax pair.

2. Root-type Lax pair for the BC l model

As mentioned above, there are at least three root type Lax pairs based on the three Wey
orbitsDm , D l , andDs . Bordneret al. constructed only one of them, namely, a Lax pair based
Dm . Here we present a Lax pair based onDs . This is a 2l 32l system, much smaller than the La
pair based onDm , and presumably more suitable for studying the associated isomonodr
deformations.

The Lax pair are indexed byDs and take the following form:

L~z!5P1X1~z!1X2~z!1X3~z!,
~74!

M ~z!5D1Y1~z!1Y2~z!1Y3~z!.

P andD are diagonal matrices,

Pbg5p•bdbg , Dbg5Dbdbg ~b,gPDs!, ~75!

and the diagonal elements ofD are given by

Db5 igm (
gPDs ,b•g51

`~g•q!1 igl`~2b•q!1 igs`~b•q!. ~76!

X1(z), etc. are diagonal-free matrices of the form

X1~z!5 igm (
aPDm

x~a•q,z!E~a!, X2~z!5 igl (
aPD l

x~a•q,z!E~a!,

X3~z!52igs (
aPDs

x~a•q,2z!E~2a!, Y1~z!5 igm (
aPDm

y~a•q,z!E~a!, ~77!

Y2~z!5 igl (
aPD l

y~a•q,z!E~a!, Y3~z!5 igs (
aPDs

y~a•q,2z!E~2a!,

where

E~a!bg5da,b2g , E~2a!bg5d2a,b2g ~b,gPDs!. ~78!

This Lax pair is a specialization of the Lax pair for the extended twisted model that we
present in the next subsection.

3. Isomonodromic system

This system, too, can be converted to an isomonodromic system by replacingd/dt
→2p id/dt. The equations of motion are a nonautonomous system of the form

2p i
dq

dt
5p,

~79!

2p i
dp

dt
52

gm
2

2 (
aPDm

`8~a•q!a2
gl

2

4 (
aPD l

`8~a•q!a2g̃s
2 (

aPDs

`8~a•q!a.
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The following can be verified just as in the case of simply lased models:

~1! L(z) andM (z) satisfy the Lax equation

2pi
]L~z!

]t
1

]M~z!

]z
5@L~z!,M~z!#. ~80!

~2! L(z) andM (z) have the following monodromy property:

L~z11!5L~z!, M ~z11!5M ~z!,

L~z1t!5e2p iQL~z!e22p iQ, ~81!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP.

The interpretation of this Lax equation, too, is parallel to the simply laced models. The ord
differential equation

dY~z!

dz
5L~z!Y~z! ~82!

on the torusEt has four regular singular points atz50,v1 ,v2 ,v3 . The local monodromy matri-
cesGa (a50,1,2,3) at these points and the global monodromy matricesGa andGb are invariant as
t varies.

C. Twisted and extended twisted models

We now proceed to the ‘‘twisted’’ and ‘‘extended twisted’’ models. The Hamiltonian of
untwisted models can be generally written

H5
1

2
p•p1

1

2 (
aPD

guau
2 `~a•q!. ~83!

The twisted models, introduced by D’Hoker and Phong15 for nonsimply laced root systems, ar
defined by a Hamiltonian of the form

H5
1

2
p•p1

1

2 (
aPD

guau
2 `n~a!~a•q!, ~84!

where`n(a)(u) are the`-functions with suitably rescaled primitive periods. D’Hoker and Pho
proved the integrability of those twisted models by constructing a Lax pair in a representat
the associated Lie algebra. Bordner and Sasaki14 proposed an alternative approach based on r
systems rather than Lie algebras, and pointed out that the twisted model of theBl , Cl , andBCl

types can be further extended. The extended twisted models have one~for the Bl andCl models!
or two ~for the BCl model! extra types of elliptic potentials.

Our construction of isomonodromic systems can be extended to the twisted and ex
twisted models. We illustrate this result, just as in the previous subsection, for theBCl model. As
Bordner and Sasaki noted, the extended twistedBCl model is made of five different types o
elliptic potentials, and coincides with the Inozemtsev system.6
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1. Extended twisted BC l model

The extended twistedBCl model is defined by the Hamiltonian

H5
1

2
p•p1

gm
2

2 (
aPDm

`~a•q!1
gl1

2

4 (
aPD l

`~a•q!1
g̃l2

2

4 (
aPD l

` ~2!~a•q!

1g̃s1
2 (

aPDs

`~a•q!1g̃s2
2 (

aPDs

` ~1/2!~a•q!. ~85!

g̃l2 , g̃s1 , and g̃s2 are ‘‘renormalized’’ coupling constants, which are related to unrenormal
coupling constantsgl2 , gs1 , andgs2 as follows:

g̃l2
2 5gl2

2 12gl1gl2 ,

g̃s1
2 5gs1

2 12gs1gs21 1
2~gs1gl11gs1gl21gs2gl2!, ~86!

g̃s2
2 5gs2

2 1
gs2gl1

2
.

` (1/2) and` (2) are the` functions with rescaled primitive periods

` ~1/2!~u!5`~uu 1
2,t!, ` ~2!~u!5`~uu2,t!. ~87!

~This Hamiltonian is slightly different from the Hamiltonian of Bordner and Sasaki, though
contents are essentially the same. With this modification, this model reduces to the untwisteBCl

model asgl2→0 andgs2→0.)

2. Root-type Lax pair for the extended twisted BC l model

One can construct, like the untwisted model, three different root type Lax pairs ca
constructed based on the three Weyl group orbitsDm , D l , andDs . The Lax pair based onDm is
presented by Bordner and Sasaki. The Lax pair based onDs can be obtained by modifying the La
pair for the untwistedBCl model as follows.

The Lax pairL(z) andM (z) are indexed byDs and made of four parts,

L~z!5P1X1~z!1X2~z!1X3~z!,
~88!

M ~z!5D1Y1~z!1Y2~z!1Y3~z!.

The diagonal matrixP is the same as theP in the untwisted model. The diagonal matrices ofD are
given by

Db5 igm (
gPDm ,b•g51

`~g•q!1 igl1`~2b•q!1 igl2` ~2!~2b•q!1 igs1`~b•q!1 igs2` ~1/2!~b•q!.

~89!

X1(z) and Y1(z) are the same as those for the untwisted model. The other matrices tak
following form:
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X2~z!5 (
aPD l

~ igl1x~a•q,z!1 igl2x~2!~a•q,z!!E~a!,

X3~z!5 (
aPDs

~2igs1x~a•q,2z!12igs2x~1/2!~a•q,2z!!E~2a!,

~90!

Y2~z!5 (
aPD l

~ igl1y~a•q,z!1 igl2y~2!~a•q,z!!E~a!,

Y3~z!5 (
aPDs

~ igs1y~a•q,2z!1 igs2y~1/2!~a•q,2z!!E~2a!.

This Lax pair reduces to the Lax pair of the untwisted model ifgl250 andgs250.
The new objects arising here are the functionsx(1/2)(u,z), x(2)(u,z) and theiru-derivatives

y~1/2!~u,z!5
]x~1/2!~u,z!

]u
, y~2!~u,z!5

]x~2!~u,z!

]u
. ~91!

For the consistency of the Lax equation

]L~z!

]t
5@L~z!,M ~z!#, ~92!

these functions have to satisfy several functional equations. D’Hoker and Phong15 and Bordner
and Sasaki14 use a set of functions based on the Weierstrass sigma functions. We use the fu
x(u,z)5x(u,zut) defined in~30! and its modifications

x~1/2!~u,z!52x~2u,zu2t!5
2u1~z22uu2t!u18~0u2t!

u1~zu2t!u1~2uu2t!
,

~93!

x~2!~u,z!5
1

2
xS u

2
,zU t

2D5

u1S z2
u

2 U t

2D u18S 0U t

2D
2u1S zU t

2D u1S u

2 U t

2D .

These functionsx(1/2)(u,z) andx(2)(u,z), too, satisfy 112-dimensional ‘‘heat equations’’ of the
form

2p i
]x~1/2!~u,z!

]t
1

]2x~1/2!~u,z!

]u]z
50,

~94!

2p i
]x~2!~u,z!

]t
1

]2x~2!~u,z!

]u]z
50.

The functional identities for these functions and the proof of the Lax equation are presen
Appendices B and C.

3. Isomonodromic system

Replacingd/dt→2p id/dt, we obtain a nonautonomous Hamiltonian system with the s
Hamiltonian. The isomonodromic interpretation of this nonautonomous system is again ba
the following two observations:
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~1! L(z) andM (z) satisfy the Lax equation

2pi
]L~z!

]t
1

]M~z!

]z
5@L~z!,M~z!#. ~95!

~2! The monodromy ofL(z) and M (z) is the same as the monodromy of the Lax pair for t
untwisted model,

L~z11!5L~z!, M ~z11!5M ~z!,

L~z1t!5e2p iQL~z!e22p iQ, ~96!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP.

The ordinary differential equation defined on the torusEt by the matrixL(z) has four regular
singular points atu50,v1 ,v2 ,v3 . The Lax equation and the monodromy ofL(z) and M (z)
ensure that the local monodromy matricesGa (a50,1,2,3) and the global monodromy matricesGa

andGb are independent oft.

4. Relation to the Inozemtsev system

The final task is to clarify the relation to the Inozemtsev system. In terms of the orthog
coordinatesqj5q•ej andpj5p•ej ( j 51,...,l ), the aforementioned Hamiltonian can be written

H5
1

2 (
j 51

l

pj
21

gm
2

2 (
e,e8561

(
j Þk

`~eqj1e8qk!1
gl1

2

2 (
j 51

l

`~2qj !

1
g̃l2

2

2 (
j 51

l

` ~2!~2qj !12g̃s1
2 (

j 51

l

`~qj !12g̃s2
2 (

j 51

l

` ~1/2!~qj !. ~97!

One can rewrite this Hamiltonian using the identities

`~2u!5 1
4`~u!1 1

4`~u1v1!1 1
4`~u1v2!1 1

4`~u1v3!,

` ~1/2!~u!5`~u!1`~u1v1!2`~v1!, ~98!

` ~2!~2u!5 1
4`~u!1 1

4`~u1v3!2 1
4`~v3!.

The outcome is, up to a termh(t) depending ont only, the Inozemtsev Hamiltonian

H5
1

2 (
j 51

l

pj
21

gm
2

2 (
e,e8561

(
j Þk

`~eqj1e8qk!1(
j 51

l

(
a50

3

ga
2`~qj1va!1h~t!. ~99!

The coupling constantsga (a50,1,2,3) are given by

g0
25

1

8
~gl1

2 1g̃l2
2 !12~ g̃s1

2 1g̃s2
2 !, g1

25
gl1

2

8
12g̃s2

2 , g2
25

gl1
2

8
, g3

25
1

8
~gl1

2 1g̃l2
2 !. ~100!

IV. SPIN GENERALIZATION OF ELLIPTIC CALOGERO–MOSER SYSTEMS

‘‘Spin generalization’’ is a generalization of the elliptic Calogero–Moser systems couple
spin degrees of freedom. Such a spin generalization is characterized by a simple Lie algebr
than a root system. The~classical! spin variables take values in the dual spaceg* , or a coadjoint
orbit therein, of the Lie algebrag. We shall first examine thesl( l ) model as a prototype, the
proceed to the models based on a general simple Lie algebra.
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A. Spin generalization for sl „ l …

Thesl( l ) spin generalization was first introduced by Kricheveret al.19 They obtained the spin
generalization, just like the spinless case,5 via the pole dynamics of the matrix KP hierarchy.

1. Hamiltonian formalism

This model is a constrained Hamiltonian system. The Hamiltonian is given by

H5
1

2 (
j 51

l

pj
22

1

2 (
j Þk

`~qj2qk!F jkFk j . ~101!

Here qj and pj ( j 51,...,l ) are the canonical coordinates and momenta of the Calogero–M
particles, andF jk ( j ,k51,...,l ) a set of classicalsl( l ) spin variables, whose Poisson brackets
determined by the Kostant–Kirillov Poisson structure on the dual space ofsl( l ),

$F jk ,Fmn%5dmkF jn2d jnFmk . ~102!

The equations of motion can be written

dqj

dt
5pj ,

dpj

dt
5(

kÞ j
`8~qj2qk!F jkFk j ,

~103!
dFjk

dt
52 (

mÞ j
`~qj2qm!F jm1 (

mÞk
`~qm2qk!Fmk2`~qj2qk!~F j j 2Fkk!.

In particular, the diagonal elementsF j j of the spin variables are conserved quantities,dFj j /dt
50. Although the Hamiltonian does not contain the diagonal elements explicitly, they do a
in the equations of motion. We now put the constraints

F j j 50 ~ j 51,...,l !. ~104!

These constraints ensure the integrability.~Actually, the integrability is retained if the constrain
are replaced byF j j 5c, j 51,...,l , wherec is a constant.!

2. Lax pair in vector representation

The Lax pair of the spinlessAl 21 model in the vector representation ofsl( l ) can be readily
extended to the spin generalization as follows:

L~z!5(
j 51

l

pjEj j 1(
j Þk

s~qj2qk ,z!Fk jEjk ,

~105!

M ~z!52(
j Þk

s~qj2qk ,z!~r~qj2qk!1r~z2qj1wk!!Fk jEjk ,

where

r~u!5
u18~u!

u1~u!
, s~u,z!5

u1~u2z!u18~0!

u1~z!u1~u!
. ~106!

It is these functions that Felder and Wieczerkowski used in the KZB equation.17 The function
r(u) is already familiar to us. The functions(u,z) is also just a disguise of the functionx(u,z)
that we have used in the preceding sections,

s~u,z!52x~u,z!. ~107!
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We however dare to retain the notation of Felder and Wieczerkowski so as to stress the sim
with their work. In these notations, the aforementioned functional identities ofx(u,z) andy(u,z)
can be rewritten

s~u,z!s~v,z!~r~v !1r~z2v !2r~u!2r~z2u!!5s~u1v,z!~`~u!2`~v !!, ~108!

2s~u,z!s~2u,z!~r~u!1r~z2u!!52`8~u!, ~109!

s~u,z!s~2u,z!5`~z!2`~u!. ~110!

Using these functional identities, one can derive the Lax equation

]L~z!

]t
5@L~z!,M ~z!#. ~111!

Note that the constraints~104! are always assumed when we consider the Lax equation. Thu
spin generalization, too, is an isospectral integrable system. An involutive set of conserved
tities obtained from the traces TrL(z)k, k52,3,... . The Hamiltonian itself can be reproduced fro
the quadratic trace.

The matrixF5( j ÞkFk jEjk , which is the residue ofL(z) at z50, stays on a coadjoint orbi
of sl( l ) as t varies. The phase space of the spin generalization can be thereby restricted
direct product of the phase space of Calogero–Moser particles and a coadjoint orbit of v
dimensions in the dual space ofsl( l ). The lowest dimensional non-trivial coadjoint orbit can
parametrized by 2l variablesaj , bj ( j 51,...,l ) as

F jk5 igbjak ~ j Þk!, ~112!

whereg is a constant. These reduced spin degrees of freedom, however, can be eliminate
diagonal gauge transformation of the Lax equations.~This does not mean thataj and bj are
nondynamical. The elimination procedure is done by partially solving the equations of motio
those variables.! This gauge transformation in turn gives rise to non-zero diagonal elemen
M (z), and the outcome is nothing but the Lax equation of the spinless elliptic Calogero–M
system with coupling constantg. The spinless system is thus embedded in the spin generaliza

3. Isomonodromic system

There is no substantial difference in the construction of an isomonodromic system
equations of motion are given by

2p i
dqj

dt
5pj , 2p i

dpj

dt
5(

kÞ j
`8~qj2qk!F jkFk j ,

~113!

2p i
dFjk

dt
5 (

mÞ j
`~qj2qm!F jm2 (

mÞk
`~qm2qk!Fmk .

~Terms includingF j j ’s have been eliminated by the constraints.! The Lax equation, too, can b
written in the same form

2p i
]L~z!

]t
1

]M ~z!

]z
5@L~z!,M ~z!#. ~114!

Behind this Lax equation is the ‘‘heat equation’’

2p i
]s~u,z!

]t
1

]2s~u,z!

]u]z
50 ~115!
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satisfied bys(u,z). The final piece of the ring is the monodromy ofL(z) andM (z),

L~z11!5L~z!, M ~z11!5M ~z!,

L~z1t!5e2p iQL~z!e22p iQ, ~116!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP.

As opposed to the root type Lax pairs, the ordinary differential equation

dY~z!

dz
5L~z!Y~z! ~117!

on the torusEt has only one regular singularity atz50. Thus the local monodromy matrixG0 and
the global monodromy matricesGa andGb are all that are invariant under the deformations.

B. Preliminaries for the general simple Lie algebra

Let g be a~complex! simple Lie algebra of rankl, h a Cartan subalgebra, andD the associated
root system. The Cartan subalgebra induces a root space decomposition ofg,

g5h% %
aPD

ga . ~118!

We choose a basis$ea ,hmuaPD,m51,...,l % of g as follows:

~1! hm , m51,...,l , are an orthonormal basis ofh with respect to the Killing formB:h3h→C, i.e.,

B~hm ,hn!5dmn . ~119!

~2! The Killing form induces an isomorphismh*5Hom~h,C!.h, which determines an elementha

for eachaPh* . In terms of the basishm of h, this map can be written explicitly,

a°ha5 (
m51

l

a~hm!hm , ~120!

The root subspacega is one dimensional.ea is a basis ofga such that
@ea ,e2a#5ha . ~121!

This choice ofea amounts to the normalization

B~ea ,e2a!51. ~122!

The Lie brackets of the basis elements other than@ea ,e2a# now takes the form

@ea ,eb#5Na,bea1b ~a1bÞ0!,

@hm ,ea#5a~hm!ea , ~123!

@hm ,hn#50.

The structure constantsNa,b are antisymmetric with respect to the indices, and vanish ifa1b¹D.
The following general relation among the structure constants will be used in the course
proof of a Lax equation.

Lemma 1:

N2b,a1b5N2a,2b5Na1b,2a . ~124!
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Proof: If a5b, this relation is trivially satisfied, because all the structure constants vanish
us consider the case whereaÞb. By the Jacobi identity, we have

@ea1b ,@e2a ,e2b##5@@ea1b ,e2a#,e2b#1@e2a ,@ea1b ,e2b##.

This implies the identity

N2a,2bha1b5Na1b,2ahb2Na1b,2bha ,

which, by the relationha1b5ha1hb , can be rewritten

~N2a,2b1Na1b,2b!ha1~N2a,2b2Na1b,2a!hb50.

Since we have assumed thataÞb, ha andhb are linearly independent, so that the two coefficie
in this linear retion are equal to zero. Q.E.D

We can now specify the classical spin variables for a general simple Lie algebra. Thos
variables, by definition, are coordinates of the dual spaceg*5Hom~g,C!. Let Fa andGm be the
coordinates dual to the above basisea andhm . In other words, they are the coefficients ofea and
hm in the linear combination

(
aPD

F2aea1 (
m51

l

Gmhm ~125!

that realizes the isomorphismg*.g induced by the Killing form. The Kostant–Kirillov Poisso
structure ong* determine the Poisson brackets of these spin variables, which take the sam
as the Lie brackets of the Lie algebra basis,

$Fa ,F2a%5Ga5 (
m51

l

a~hm!Gm ,

$Fa ,Fb%5Na,bFa1b ~a1bÞ0!,
~126!

$Gm ,Fa%5a~hm!Fa ,

$Gm ,Gn%50.

C. Spin generalization for the general simple Lie algebra

1. Hamiltonian formalism

The spin generalization based ong, too, is a constrained Hamiltonian system defined
h3h3g* by the Hamiltonian

H5
1

2
B~p,p!2

1

2 (
aPD

`~a~q!!F2aFa ~127!

and the constraints

Gm50 ~m51,...,l !. ~128!

Hereq andp are understood to take values inh. B(p,q) anda(q) amount top•p anda•q in the
models based on root systems. Let us use the same ‘‘dot notation’’ for the Killing formh3h→C
and the pairingh*3h→C. The Hamiltonian then takes a more familiar form

H5
1

2
p•p2

1

2 (
aPD

`~a•q!F2aFa . ~129!
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The equations of motion can be readily written down in the language of the coordinatqm

5q•hm and momentapm5p•hm of Calogero–Moser particles and the spin variablesFa andGm

on g* ,

dqm

dt
5pm ,

dpm

dt
52

1

2 (
aPD

a•hm`8~a•q!F2aFa ,

~130!
dFa

dt
52 (

bPD,a2bPD
`~b•q!Fa2bFbNa,2b2`~a•q!GaFa ,

dGm

dt
50.

In particular, the diagonal elementsGm of the spin variables are conserved quantities. One
thereby safely put the aforementioned constraints.

2. Lax pair

The integrability of our spin generalization is ensured by the existence of a Lax pa
follows:

Proposition 6: Let V be any finite dimensional representation ofg, and Ea and Hm the
endomorphisms on V that represent ea and hm . Then the endomorphisms

L~z!5P1 (
aPD

s~a•q,z!F2aEa P5 (
m51

l

pmHm ,

~131!

M ~z!52 (
aPD

s~a•q,z!~r~a•q!1r~z2a•q!!F2aEa

on V satisfy the Lax equation

]L~z!

]t
5@L~z!,M ~z!#. ~132!

Proof: Using the equations of motion and the constraints, one can express thet-derivative of
the L-matrix as

]L~z!

]t
5I1II1III, ~133!

where

I5 (
m51

l
dpm

dt
Hm52

1

2 (
aPD

`8~a•q!F2aFaHa ,

II5 (
aPD

(
m51

l
da•q

dt

]s~u,z!

]u U
u5a•q

F2aEa

52 (
aPD

a•as~a•q,z!~r~a•q!1r~z2a•q!!F2aEa ,
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III 5 (
aPD

s~a•q,z!
dF2a

dt
Ea52 (

a,bPD,a1bÞ0
s~a•q,z!`~b•q!F2a2bFbN2a,2bEa .

Similarly, the commutator of the Lax pair can be written

@L~z!,M ~z!#5IV1V1VI, ~134!

where VI stands for terms from the commutator@P,M (z)#,

IV52 (
aPD

s~a•q,z!~r~a•q!1r~z2a•q!!F2a@P,Ea#

52 (
aPD

s~a•q,z!~r~a•q!1r~z2a•q!!a•pF2aEa ,

and V1VI are the the other terms grouped into the Cartan part~V! and the off-Cartan part~VI !,

V52 (
aPD

s~2a•q,z!s~a•q,z!~r~a•q!1r~z2a•q!!F2aFa@Ea ,E2a#

52 (
aPD

s~2a•q,z!s~a•q,z!~r~a•q!1r~z2a•q!!F2aFaHa ,

VI52 (
a,bPD,a1bÞ0

s~a•q,q!s~b•q,z!~r~b•q!1r~z2b•q!!F2aFa@Ea ,Eb#

52 (
a,bPD,a1bÞ0

s~a•q,z!s~b•q,z!~r~b•q!1r~z2b•q!!F2aF2bNa,bEa1b .

It is obvious that IV5II. Using ~109!, we can readily see that V5I. Thus it remains to prove tha
VI5III. This is achieved as follows:

VI52
1

2 (
a,bPD,a1bÞ0

s~a•q,z!s~b•q,z!~r~b•q!1r~z2b•q!2r~z2a•q!

2r~a•q!!F2aF2bNa,bEa1b @symmetrized with respect toa and b#,

52
1

2 (
a,bPD,a1bÞ0

s~~a1b!•q,z!~`~a•q!2`~b•q!!F2aF2bNa,bEa1b•@~108! is used#,

5 (
a,bPD,a1bÞ0

s~~a1b!•q,z!`~b•q!F2aF2bNa,bEa1b

@asymmetrized with respect toa and b#,

5 (
a,bPD,a1bÞ0

s~a•q,z!`~b•q!F2a,2bFbNa1b2bEa.

@substitutingb→2b and a→a1b#.

Finally using the identityNa1b,2b52N2a,2b , cf. ~124!, we find that the last sum is equal t
III. Q.E.D.

Note that the above proof persists to be meaningful ifEa and Hm are replaced by the Lie
algebra elementsea andhm . In other words, the Lax equation actually lives in the Lie algebrg
itself rather than its representations. This resembles the case of the Toda systems.
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3. Isomonodromic system

The passage to an isomonodromic analog is straightforward. Replacingd/dt→2p id/dt, one
obtains the nonautonomous system,

2p i
dqm

dt
5pm ,

2p i
dpm

dt
52

1

2 (
aPD

a•hm`8~a•q!F2aFa , ~135!

2p i
dFa

dt
52 (

bPD,a2bPD
`~b•q!Fa2bFbNa,2b .

~Terms includingGm’s have been eliminated by the constraints.! These equations can be convert
to the Lax equation

2p i
]L~z!

]t
1

]M ~z!

]z
5@L~z!,M ~z!#. ~136!

The monodromy ofL(z) andM (z), too, takes the same form,

L~z11!2L~z!, M ~z11!5M ~z!,

L~z1t!5e2p iQL~z!e22p iQ, ~137!

M ~z1t!5e2p iQ~M ~z!12p iL ~z!!e22p iQ22p iP,

whereQ5(m51
l qmHm . The Lax equation implies that the monodromy data of the ordinary

ferential equation

dY~z!

dz
5L~z!Y~z! ~138!

on the torusEt is invariant ast varies.Y(z) now take values in the representation spaceV; the
monodromy around a singular point or of a cycle ofEt is represented by a linear transformatio
on V. The ordinary differential equation has a regular singularity atz50 only. The local mono-
dromy around this singular point is a linear transformationG0PGL(V). Similarly, the global
monodromy along thea and b cycles giveGa , GbPGL(V). These linear transformationsG0 ,
Ga , andGb are the monodromy data that are left invariant.

V. CONCLUSION

We have thus demonstrated that various models of the elliptic Calogero–Moser syste
accompanied with an isomonodromic partner. A technical clue is the choice of fundam
functionsx(u,z), y(u,z), etc. in the Lax pairL(z) and M (z). For L(z) and M (z) to give an
isomonodromic Lax pair, these functions are required to satisfy a kind of ‘‘heat equation’’ be
the functional equations. We have illustrated the construction of the isomonodromic Lax pa
several typical cases—the Lax pair of theAl 21 mode in the vector representation, the root ty
Lax pair for various untwisted and twisted models, and the Lax pair of the spin generaliza

The most interesting case in the context of Manin’s equation is the root type Lax pair fo
extended twistedBCl model ~or, equivalently, the Inozemtsev system!. The root type Lax pair
based on short roots of theBCl root system consists of 2l 32l matrices.

The construction of a Lax pair, however, is merely the first step towards a full understa
of Manin’s equation and its possible generalizations. The next issue is to elucidate the mea
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the affine Weyl group symmetries, various special solutions, etc. in this framework. Recent
by Noumi and Yamada,20 Deift, Its, Kapaev, and Zhou21 and Kitaev and Korotkin22 are very
suggestive in this respect.

The spin generalization that we have discussed is a special case of a more general m
system, i.e., the elliptic Calogero–Moser systems coupled to ‘‘Gaudin spins’’ sitting at the p
tures of a punctured torus.9,10 This is the Hitchin system on a punctured torus; we have consid
the case with only one puncture located atz50. It is rather straightforward, though more com
plicated, to generalize our Lax pair to the multispin generalization. This gives a generalizati
other simple Lie groups, of the SU~2! isomonodromic system of Korotkin and Samtleben.23 The
dynamicalr-matrix in the work of Felder and Wieczerkowski17 plays a central role here. We sha
report this result elsewhere.
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APPENDIX A: PROOF OF FUNCTIONAL IDENTITIES AND HEAT EQUATION FOR
UNTWISTED MODELS

1. Proof of „24…

Let f (u,v,z) denote the difference of both hand sides of~24!,

f ~u,v,z!5x~u,z!y~v,z!2y~u,z!x~v,z!2x~u1v,z!~`~u!2`~v !!. ~A1!

This function turns out to have the following analytical properties:

~1! f (u,v,z) has the same quasiperiodicity asx(u,z) on theu plane, i.e.,
f~u11,v,z!5 f ~u,v,z!, f ~u1t,v,z!5e2p izf ~u,v,z!. ~A2!

~2! f (u,v,z) is an entire function on theu plane.

The first property is obvious from the quasiperiodicity ofx(u,z) and the periodicity of̀ (u).
Furthermore, poles off (u,v,z) can appear only at the lattice pointsu5m1nt (m,nPZ) on theu
plane. Therefore, in order to verify the second property, we have only to show thatf (u,v,z) is
nonsingular at these points. Actually, because of the quasiperiodicity, it is sufficient to con
the pointu50 only. Asu→0, the singular termsx(u,z), y(u,z), and`(u) in f (u,v,z) behave as

x~u,z!5
1

u
1O~1!, y~u,z!52

1

u2 1O~1!, `~u!5
1

u2 1O~u2! ~A3!

so that

f ~u,v,z!5S 1

u
1O~1! D y~v,z!2S 2

1

u2 1O~1! D x~v,z!

2~x~u,z!1y~u,z!u1O~u2!!S 1

u22`~v !1O~u2! D
5O~1!. ~A4!

We can thus verify the above two properties off (u,v,x).
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Actually, any function with these two properties should vanish identically. This can be se
several different ways. The shortest will be to resort to algebraic geometry of line bundles o
torusEt . A more elementary proof is to consider the quotientf (u,v,z)/x(u,z). This quotient is
a doubly-periodic meromorphic function, and all possible poles are located at the lattice
u5m1nt (m,nPZ), and at most of first order. In other words,f (u,v,z)/x(u,z) is a meromor-
phic function on the torus with the only possible pole atu50, but the order of pole cannot b
greater than one. Such a function has to be a constant. On the other hand, because of the
x(u,z) at u50, f (u,v,z)/x(u,z) has a zero atu50. Therefore the constant should be equal
zero.

2. Proof of „25… and „26…

~25! can be readily derived from~24! by letting v→2u. Let us consider~26!. By ~25!,

]

]u
~x~u,z!x~2u,z!!52x~u,z!y~2u,z!1y~u,z!x~2u,z!52`8~u!. ~A5!

Consequently,

x~u,z!x~2u,z!52`~u!1~ independent ofu!. ~A6!

Sincex(u,z)52x(z,u)52x(2u,2z), the left-hand side of the last relation is in fact an an
symmetric function ofu andz. Therefore,

x~u,z!x~2u,z!5`~z!2`~u!1const. ~A7!

Now consider the limit asu→z. Both x(u,z)x(2u,z) and`(z)2`(u) tend to zero in this limit.
Thus the constant on the right-hand side has to be zero.

3. Proof of „34…

Let us rewrite the both hand sides of~34! into a more accessible form. Differentiatingx(u,z)
by t gives

]x~u,z!

]t
5x~u,z!

]

]t
~ logu1~z2u!1 logu18~0!2 logu1~z!2 logu1~u!!. ~A8!

By the heat equation~40! of the Jacobi theta function,

4p i
]

]t
u1~u!5

u19~u!

u1~u!
5

]

]u S u18~u!

u1~u!
D 1S u18~u!

u1~u!
D 2

5r8~u!1r~u!2. ~A9!

Letting u→0 and recalling the singular behavior ofr(u) at u50, we obtain

4p i
]

]t
logu18~0!5 lim

u→0
~r8~u!1r~u!!5

u1-~0!

u18~0!
. ~A10!

Plugging these formulas into the above expression of]x(u,z)/t gives

4p i
]x~u,z!

]t
5x~u,z! f ~u,z!, ~A11!

where
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f ~u,z!5r8~z2u!1r~z2u!21
u1-~0!

u18~0!
2r8~z!2r~z!22r8~u!2r~u!2. ~A12!

On the other hand, we have

]x~u,z!

]u]z
52

]

]z
~x~u,z!~r~u!1r~z2u!!!52x~u,z!g~u,z!, ~A13!

where

g~u,z!5~r~z2u!2r~z!!~r~u!1r~z2u!!1r8~z2u!. ~A14!

The goal is to verify thatf (u,z)52g(u,z). It is sufficient to prove the following two prop
erties of f (u,z)22g(u,z), because such a function has to be identically zero.

~1! f (u,z)22g(u,z) is a doubly-periodic function on theu plane with primitive periods 1 andt.
~2! f (u,z)22g(u,z) is an entire function, and has a zero atu50.

The first property is obvious if one notices the following quasiperiodicity off (u,z) andg(u,z):

f ~u11,z!5 f ~u,z!, f ~u1t,z!5 f ~u,z!14p i ~r~u!1r~z2u!!,
~A15!

g~u11,z!5g~u,z!, g~u1t,z!5g~u,z!12p i ~r~u!1r~z2u!!.

Let us check the second property. Possible poles off (u,z) and g(u,z) are located at the two
pointsu50 andu5z of the fundamental domain of the period latticeZ1tZ. Again recalling the
singular behavior ofr(u) at u50, one can confirm by straightforward calculations that

f ~u,z!5O~u!, g~u,z!5O~u! ~u→0!. ~A16!

Thus f (u,z)22g(u,z) turns out to be nonsingular and have a zero atu50. Similarly, one can see
that f (u,z)22g(u,z) is nonsingular atu5z.

APPENDIX B: VERIFICATION OF THE LAX PAIR FOR EXTENDED TWISTED BC l
MODEL

To prove the Lax equation, it is sufficient to derive the following three equations:

]Xa~z!

]t
5@P,Xa~z!# ~a51,2,3!, ~B1!

dp•m

dt
5@X1~z!1X2~z!1X3~z!,Y1~z!1Y2~z!1Y3~z!#mm , ~B2!

05@X1~z!1X2~z!1X3~z!,D1Y1~z!1Y2~z!1Y3~z!#mn ~mÞn!. ~B3!

m andn run over the setDs of short roots.
The proof of~B1! is quite easy. Let us consider the case ofa51. The t-derivative ofX1(z)

can be written

]X1~z!

]t
5 igm (

aPDm

a•py~a•q,z!E~a!. ~B4!

Using the commutation relation@P,E(a)#5a•pE(a), one can readily see that the right-ha
side is equal to@P,X1(z)#. The other two in~B1! can be similarly derived.

The rest of this Appendix is devoted to the other two equations~B2! and ~B3!.
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1. Proof of „B2…

We calculate the diagonal elements

@Xa~z!,Yb~z!#mm5 (
nPDs

~Xa,mn~z!Yb,nm~z!2Yb,mn~z!Xa,nm~z!! ~B5!

of the nine commutators one-by-one.

a. Vanishing terms

Some part of the matrix elements ofXa(z) andYb(z) turn out to vanish by the nature of th
BCl root system,

X1,m,2m~z!5Y1,m,2m~z!50, ~B6!

X2,mn~z!5Y2,mn~z!50 ~mÞ2n!, ~B7!

X3,mn~z!5Y3,mn~z!50 ~mÞ2n!. ~B8!

The first relation is due to the fact thatm2~2m!52m can never be a middle root. The second a
third relations are obvious if one notices thatm2n is a long root~or, equivalently, twice a shor
root! if and only if m52n.

In particular,

@X1~z!,Y2~z!#mm5@X1~z!,Y3~z!#mm5@X2~z!,Y1~z!#mm5@X3~z!,Y1~z!#mm50. ~B9!

b. Calculation of †X1„z…,Y1„z…‡mm

By definition,

@X1~z!,Y1~z!#mm52gm
2 (

nPDs ,m2nPDm

~x~~m2n!•q,z!y~~n2m!•q,z!

2y~~m2n!•q,z!x~~n2m!•q,z!!. ~B10!

We rewrite this sum to a sum over the middle roota5m2n. Since the middle rootsa of this form
are characterized by the condition thata•m51, the right-hand side can be rewritten

2gm
2 (

aPDm ,a•m51
~x~a•q,z!y~2a•q,z!2y~a•q,z!x~2a•q,z!!.

Actually, the possible values ofa•m are limited to 0 and61 only. Therefore this sum is equal t

2
gm

2

2 (
aPDm

a•m~x~a•q,z!y~2a•q,z!2y~a•q,z!x~2a•q,z!!.

~The factor 1/2 compensates the contributions froma•m51 and a•m521.! Noting that a•m
5$p•m,a•q%, we can express@X1(z),Y1(z)# as a Poisson bracket of the form

@X1~z!,Y1~z!#mm5$p•m,V11%, ~B11!

where

V115
gm

2

2 (
aPDm

x~a•q,z!x~2a•q,z!. ~B12!
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c. Contributions of other commutators

By ~B7! and ~B8!, the diagonal elements of the other commutators are a sum of just
terms,

@Xa~z!,Yb~z!#mm5Xa,m,2mYb,2m,m2Yb,m,2mXa,2m,m . ~B13!

Let us consider the case ofa52 andb52 in some detail. By definition,

@X2~z!,Y2~z!#mm52~gl1x~2m•q,z!1gl2x~2!~2m•q,z!!~gl1y~22m•q,z!1gl2y~2!~22m•q,z!!

1~gl1y~2m•q,z!1gl2y~2!~2m•q,z!!~gl1x~22m•q,z!1gl2x~2!~22m•q,z!!.

Sincea52m is a long root, and long roots with nonvanishing inner product withm are 2m and
22m only, the right-hand side can be rewritten

2
1

4 (
aPD l

a•m~gl1x~a•q,z!1gl2x~2!~a•q,z!!~gl1y~2a•q,z!1gl2y~2!~2a•q,z!!

1
1

4 (
aPD l

a•m~gl1y~a•q,z!1gl2y~2!~a•q,z!!~gl1x~2a•q,z!1gl2x~2!~2a•q,z!!.

~The factor 1/4 compensates the contributions froma•m52 anda•m522.! We can again cast this
into a Poisson bracket,

@X2~z!,Y2~z!#mm5$p•m,V22%, ~B14!

where

V225
1

4 (
aPD l

~gl1x~a•q,z!1gl2x~2!~a•q,z!!~gl1x~2a•q,z!1gl2x~2!~2a•q,z!!. ~B15!

Similarly, one can obtain

@X2~z!,Y3~z!#mm5$p•m,V23%, @X3~z!,Y2~z!#mm5$p•m,V32%,
~B16!

@X3~z!,Y3~z!#mm5$p•m,V33%,

where

V235
1

2 (
aPDs

~gl1x~2a•q,z!1gl2x~2!~2a•q,z!!~gs1x~2a•q,2z!1gs2x~1/2!~2a•q,2z!!,

V325
1

2 (
aPDs

~gs1x~a•q,2z!1gs2x~1/2!~a•q,2z!!~gl1x~22a•q,z!1gl2x~2!~22a•q,z!!,

~B17!

V335 (
aPDs

~gs1x~a•q,2z!1gs2x~1/2!~a•q,2z!!~gs1x~2a•q,2z!1gs2x~1/2!~2a•q,2z!!.

Collecting the results of these calculations, we find that the right-hand side of~B2! takes the
form of the Poisson bracket$p•m,V%, where

V5V111V221V231V321V33. ~B18!
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d. Writing V in terms of ` functions

The final step is to rewriteV in terms of the Weierstrass̀ functions. ForV11, this can be
done by use of~26!. The other parts are due to the following functional identities:

x~1/2!~u,z!x~1/2!~2u,z!52` ~1/2!~u!1` ~1/2!S z

2D , ~B19!

x~2!~u,z!x~2!~2u,z!52` ~2!~u!1` ~2!~2z!, ~B20!

x~u,2z!x~1/2!~2u,2z!1x~1/2!~u,2z!x~2u,2z!522`~u!1const., ~B21!

x~u,2z!x~22u,z!1x~2u,z!x~2u,2z!52`~u!1const., ~B22!

x~u,2z!x~2!~22m,z!1x~2!~2u,z!x~2u,2z!52`~u!1const., ~B23!

x~1/2!~u,2z!x~22u,z!1x~2u,z!x~1/2!~2u,2z!52` ~1/2!~u!1const., ~B24!

x~1/2!~u,2z!x~2!~22u,z!1x~2!~2u,z!x~1/2!~2u,2z!52`~u!1const., ~B25!

x~u,z!x~2!~2u,z!1x~2!~u,z!x~2u,z!522` ~2!~u!1const. ~B26!

The first two are substantially the same as~26! except that the variables and the primitive period
are rescaled. ‘‘const.’’ in the other identities stand for terms that are independent ofu, thereby
negligible in the Poisson bracket withp•m; remember that they are not absolute constants, b
functions of z and t. We shall prove these identities in Appendix C. Using these functio
identities, one can see thatV is equal to the potential part of the HamiltonianH, up to nondy-
namical terms independent ofp andq.

To summarize, we have shown that the sum of the~m,m! elements of the nine commutators
coincides with the Poisson bracket$p•m,V%, which is equal todp•m/dt by the equations of
motion of the model.

2. Proof of „B3…

The proof can be separated into the cases wheren52m andnÞ6m.

a. n52m

The vanishing of the~m,2m! elements of the commutators other than@Xa(z),D# (a51,2,3)
and @X1(z),D# is immediate from~B7! and ~B8!. @Xa(z),D#m,2m vanishes because of the sym
metry D2m5Dm . As for @X1(z),Y1(z)#m,2m , we have

@X1~z!,Y1~z!#m,2m52gm
2 (

nPDs\$6m%
x~~m2n!•q,z!y~~n1m!•q,z!

1gm
2 (

nPDs\$6m%
y~~m2n!•q,z!x~~n1m!•q,z!. ~B27!

By substitutingn→2n, the second sum on the right-hand side turns out to be identical to the
sum. The two sums thus cancel with each other.

b. nÞ6m

The following can be readily seen by using~B7! and ~B8!:

@X2~z!,D#mn5@X3~z!,D#mn50,
~B28!

@X2~z!,Y2~z!#mn5@X2~z!,Y3~z!#mn5@X3~z!,Y3~z!#mn50.
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The ~m,n! elements of other commutators can be calculated as follows:

@X1~z!,D#mn52X1,mm~z!~Dm2Dn!

5gmx~~m2n!•q,z!

3S gs1`~m•q!1gs2` ~1/2!~m•q!1gl1`~2m•q!1gl2` ~2!~2m•q!

2gs1`~n•q!2gs2` ~1/2!~n•q!2gl1`~2n•q!2gl2` ~2!~2n•q!

1 (
lPDm ,a•m51

`~a•q!2 (
aPDm ,a•n51

`~a•q! D , ~B29!

@X1~z!,Y1~z!#mn5 (
lPDs

~X1,ml~z!Y1,ln~z!2Y1,ml~z!X1,ln~z!!

52gm
2 (

lPDs\$m,n%
~x~~m2l!•q,z!y~~l2n!•q,z!

2y~~m2l!•q,z!x~~l2n!•q,z!!, ~B30!

@X1~z!,Y2~z!#mn5X1,m,2n~z!Y2,2n,n~z!2Y2,m,2m~z!X1,2m,n~z!

52gmx~~m1n!•q,z!~gl1y~22n•q,z!1gl2y~2!~22n•q,z!!

1~gl1y~2m•q,z!1gl2y~2!~2m•q,z!!gmx~2~m1n!•q,z!, ~B31!

@X1~z!,Y3~z!#mn5X1,m,2n~z!Y3,2n,n~z!2Y3,m,2m~z!X1,2m,n~z!

52gmx~~m1n!•q,z!~gs1y~2n•q,2z!1gs2y~1/2!~2n•q,2z!!

1~gs1y~m•q,2z!1gs2y~1/2!~m•q,2z!!gmx~2~m1n!•q,z!, ~B32!

@X2~z!,Y1~z!#mn5X2,m,2m~z!Y1,2m,n~z!2Y1,m,2n~z!X2,2n,n~z!

52~gl1x~2m•q,z!1gl2x~2!~2m•q,z!!gmy~2~m1n!•q,z!

1gmy~~m1n!•q,z!~gl1x~22n•q,z!1gl2x~2!~22n•q,z!!, ~B33!

@X3~z!,Y1~z!#mn5X3,m,2n~z!Y1,2n,n~z!2Y1,n,2n~z!X3,2n,n~z!

522~gs1x~m•q,2z!1gs2x~1/2!~m•q,2z!!gmy~2~m1n!•q,z!

12gmy~~m1n!•q,z!~gs1x~2n•q,2z!1gs2x~1/2!~2n•q,2z!!.

~B34!

We now sum up all these quantities, regroup terms into those multiplied by the same monom
coupling constants, and show the cancellation in each partial sum. There are six monom
coupling constants that can occur, i.e.,gm

2 , gmgl1 , gmgl2 , gmgs1 , andgmgs2 .
Let us consider the terms multiplied bygm

2 . This is a sum of the following two quantities:

I5x~~m2n!•q,z!S (
aPDm ,a•m51

`~a•q!2 (
aPDm ,a•n51

`~a•q! D
II52 (

lPDs\$m,n%
~x~~m2l!•q,z!y~~l2n!•q,z!2y~~m2l!•q,z!x~~l2n!•q,z!!.
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By the functional identity~24!, we can rewrite II into a sum over middle roots,

II52 (
lPDs\$m,n%

x~~m2n!•q,z!~`~~m2l!•q!2`~~n2l!•q!!

52x~~m2n!•q,z!S (
aPDm ,a•m51

`~a•q!2 (
aPDm ,a•n51

`~a•q! D .

Here the sum overl has been converted to a sum overa by puttinga5m2l anda5n2l in the
two ` function in the first line. Note thatm, n, andl are all orthogonal to each other. We thus fi
that I1II50.

For the other partial sums, we use the following functional identities, which we shall pro
Appendix C:

x~2u,z!y~2u2v,z!2y~2u,z!x~2u2v,z!1x~u1v,z!y~22v,z!

2y~u1v,z!x~22v,z!2x~u2v,z!~`~2u!2`~2v !!50, ~B35!

x~2!~2u,z!y~2u2v,z!2y~2!~2u,z!x~2u2v,z!1x~u1v,z!y~2!~22v,z!

2y~u1v,z!x~2!~22v,z!2x~u2v,z!~` ~2!~2u!2` ~2!~2v !!50, ~B36!

2x~u,2z!y~2u2v,z!2y~u,2z!x~2u2v,z!1x~u1v,z!y~2v,2z!

22y~u1v,z!x~2v,2z!2x~u2v,z!~`~u!2`~v !!50, ~B37!

2x~1/2!~u,2z!y~2u2v,z!2y~1/2!~u,2z!x~2u2v,z!1x~u1v,z!y~1/2!~2v,2z!

22y~u1v,z!x~1/2!~2v,2z!2x~u2v,z!~` ~1/2!~u!2` ~1/2!~v !!50. ~B38!

By these functional identities, we can confirm that all the partial sums regrouped bygmgl1 ,
gmgl2 , gmgs1 , andgmgs2 , respectively, cancel out.

APPENDIX C: PROOF OF FUNCTIONAL IDENTITIES FOR TWISTED MODELS

We here prove the functional identities that we have encountered in Appendix B. Alth
the proof is optimized to our choice ofx(u,z), x(1/2)(u,z), andx(2)(u,z), the same method can i
principle apply to other solutions of the functional equations, such as the functions us
D’Hoker and Phong15 and Bordner and Sasaki.14

1. Analytical properties of x „1/2…
„u ,z… and x „2…

„u ,z…

The proof of the identities includingx(1/2)(u,z) andx(2)(u,z), like the proof in Appendix A,
is based on the analytical properties of those functions.

~a! x(1/2)(u,z) has the following analytical properties:

~1! x(1/2)(u,z) is a meromorphic function ofu and z. The poles on theu plane and thez
plane are located at the lattice pointsu5m/21nt andz5m12nt (m,nPZ).

~2! x(1/2)(u,z) has the following quasiperiodicity:

x~1/2!~u1 1
2,z!5x~1/2!~u,z!, x~1/2!~u1t,z!5e2p izx~1/2!~u,z!,

~C1!x~1/2!~u,z11!5x~1/2!~u,z!, x~1/2!~u,z12t!5e4p izx~1/2!~u,z!.
~3! At the origin of theu andz planes, this function exhibits the following singular behavi
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x~1/2!~u,z!5
1

u
22r~zu2t!1O~u! ~u→0!,

~C2!

x~1/2!~u,z!52
2

z
12r~2uu2t!1O~z! ~z→0!.

~b! x(2)(u,z) has the following analytical properties:

~1! x(2)(u,z) is a meromorphic function ofu andz. The poles on theu plane and thez plane
are located at the lattice pointsu52m1nt andz5m1nt/2 (m,nPZ).

~2! x(2)(u,z) has the following quasiperiodicity:

x~2!~u12,z!5x~2!~u,z!, x~2!~u1t,z!5e2p izx~2!~u,z!,
~C3!

x~2!~u,z11!5x~2!~u,z!, x~2!Su,z1
t

2D5epiux~2!~u,z!.

~3! At the origin of theu andz planes, this function exhibits the following singular behavi

x~2!~u,z!5
1

u
2

1

2
rS zu t

2D1O~u! ~u→0!,

~C4!

x~2!~u,z!52
1

2z
1

1

2
rS u

2U t

2D1O~z! ~z→0!.

2. Proof of „B35…–„B38…

These four identities can be treated in much the same way. Let us illustrate the proof for~B35!
only. Since the line of the proof is almost the same as the proof of~24!, we show an outline of the
proof and leave the details to the reader.

Let f (u,v,z) denote the left-hand side of~B35!,

f ~u,v,z!5x~2u,z!y~2u2v,z!2y~2u,z!x~2u2v,z!1x~u1v,z!y~22v,z!

2y~u1v,z!x~22v,z!2x~u2v,z!~`~2u!2`~2v !!. ~C5!

Our task is to show the following analytic properties off (u,v,z), which imply that this function
is identically zero:

~1! f (u,v,z) has the quasiperiodicity as follows:

f~u11,v,z!5 f ~u,v,z!, f ~u1t,v,z!5e2p izf ~u,v,z!. ~C6!

~2! f (u,v,z) is an entire function on theu plane.

The first property is immediate from the quasiperiodicity ofx(u,z), etc. Furthermore, it is
obvious from the definition that all possible poles off (u,v,z) on theu plane are limited to the
lattice pointsu5m/21nt/2 and u52v1m1nt (m,nPZ). In view of the quasiperiodicity,
therefore, we have only to verify thatf (u,v,z) is nonsingular atu50,1/2,t/2,1/21t/2, and2v.

The absence of poles atu50,1/2 and2v can be verified by straightforward calculations o
the basis of the singular behavior ofx(u,z), x(1/2)(u,z), andx(2)(u,z) asu→0.

In order to examine the pointsu5t/2 and u51/21t/2, one has to examine the singul
behavior ofx(2u,z) andy(2u,z) asu→t/2,1/21t/2. This can be worked out by combining th
quasiperiodicity ofx(u,z) andy(u,z) and their singular behavior asu→0,

~1! As u→t/2,
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x~2u,z!5e2pizx~2u2t,z!5e2pizS 1

2u2t
1O~1!D,

~C7!
y~2u,z!522pizy~2u2t,z!5e2pizS2 1

~2u2t!2
1O~1!D.

~2! As u→1/21t/2,

x~2u,z!5e2pizx~2u212t,z!5e2pizS 1

2u212t
1O~1!D,

~C8!

y~2u,z!5e2p izy~2u212t,z!5e2p izS 2
1

~2u212t!2 1O~1! D .

Using these observations, one can confirm the absence of poles off (u,v,z) at u5t/2 and 1/21t/2
by direct calculations.

We can thus verify thatf (u,v,z) is indeed an entire function on theu plane.

3. Proof of „B21…–„B26…

Rather than directly proving these identities, let us prove them in a differentiated form
illustration, we consider the first identity~B21!. Differentiating this identity byu gives

x~u,2z!y~1/2!~2u,2z!2y~u,2z!z~1/2!~2u,2z!1x~1/2!~u,2z!y~2u,2z!2y~1/2!~u,2z!x~2u,2z!

52`8~u!. ~C9!

One can prove it directly, repeating the complex analytic reasoning that we have presented i
cases. An alternative way is to take the limit, asv→u, of the functional identity

x~2u,2z!y~1/2!~2u2v,2z!2y~2u,2z!x~1/2!~2u2v,2z!1x~1/2!~u1v,2z!y~22v,2z!

2y~1/2!~u1v,2z!x~22v,2z!2x~u2v,z!~`~2u!2`~2v !!50. ~C10!

~This yields the above identity upon substitutingu→u/2 andv→v/2.) This functional identity can
be derived by the same method as the proof of~B35!–~B38!.

Similarly, the third and fifth of~B21!–~B26! are obtained from the following functiona
identities:

2x~u,2z!y~2!~2u2v,z!2y~u,2z!x~2!~2u2v,z!1x~2!~u1v,z!y~22v,2z!

22y~2!~u1v,z!x~22v,2z!2x~u2v,z!~`~u!2`~v !!50, ~C11!

2x~1/2!~u,2z!y~2!~2u2v,z!2y~1/2!~u,2z!x~2!~2u2v,z!1x~2!~u1v,z!y~1/2!~22v,2z!

22y~2!~u1v,z!x~1/2!~22v,z!2x~u2v,z!~`~u!2`~v !!50. ~C12!

The second, fourth, and sixth of~B21!–~B26! can be similarly derived from the last three
~B35!–~B38!. This completes the proof of the functional identities.

We conclude this Appendix with a comment on the ‘‘const.’’ terms of these identities
principle, these terms can be determined by examining the identities at a special point ofu
plane. Let us consider, e.g.,~B21!. At u5z, the first term on the left-hand side vanishes. Eva
ating the other terms at this point, therefore, one finds that

const.52`~z!2x~1/2!~z,2z!x~2z,2z!. ~C13!

The same formula can be reproduced by substitutingu52z. One can similarly derive an explici
expression for the other identities.
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A Sato formula for reflectionless finite difference
operators

J. F. van Diejen
Universidad de Chile, Departamento de Matema´ticas, Facultad de Ciencias,
Casilla 653, Santiago 1, Chile
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An explicit parametrization of the Jost functions of the reflectionless Jacobi opera-
tors in terms of their spectral data is presented. Interpolation produces a Sato
formula for the eigenfunctions of a class of reflectionless finite difference operators
on the line. © 1999 American Institute of Physics.@S0022-2488~99!00311-4#

I. INTRODUCTION

The works on the underlying algebraic structure of infinite-dimensional integrable sys
first initiated by Sato and then further developed~mainly! by the Kyoto school, stand out as on
of the highlights of soliton theory.1–8 Central in Sato’s scheme is the idea that a large clas
integrable nonlinear evolution equations, among which, e.g., archetype equations a
Korteweg–de Vries~KdV! and the Kadomtsev–Petviashvili~KP! equations, may be understoo
from a conceptual point of view within the framework of the geometry of infinite-dimensio
Grassmann manifolds and the representation theory of Kac–Moody algebras. An importan
tical feature of the Sato construction is that it produces a closed formula for the eigenfuncti
the Lax operator of the associated linear problem. For instance, in the case of the~soliton regime
of the! KdV equation one ends up with an explicit formula for the eigenfunctions of the o
dimensional Schro¨dinger operators with reflectionless rapidly decreasing potentials.1–6,8,9 ~The
potentials of interest are also commonly referred to as soliton potentials or Bargmann pote!

The present paper aims at exhibiting an analogous Sato formula for the eigenfunctions
reflectionless Jacobi operators. To this end we employ inverse-scattering techniques fo
operators that have their origin in the work of Flaschka on the soliton dynamics of the in
Toda chain.10–14 ~The Jacobi operator in turn arises as the Lax operator in the linear pro
associated to the infinite Toda chain.!

The structure of the paper is as follows. Sections II and III serve to prepare the groun
recalling briefly some preliminaries regarding the scattering and inverse scattering theory of
operators. The inverse scattering theory is then applied in Sec. IV so as to produce a determ
formula for theJost functionof the reflectionless Jacobi operator. The method followed her
based on Flaschka’s approach towards corresponding determinantal formulas for thecoefficients
of this Jacobi operator.10–12 In Sec. V we evaluate our determinantal representation for the re
tionless Jost function with the aid of the Cauchy determinant formula; this entails an explicit
type formula for the Jost function under consideration. The transition from the determin
formula for the Jost function to the Sato type formula is to be compared with the passage
Flaschka’s determinantal expressions for the coefficients of the reflectionless Jacobi oper
their explicit representation in terms of tau functions due to Hirota~who, incidentally, used direc
methods rather than inverse scattering theory!.15,16,12Next, in Sec. VI, our Sato formula is inter
polated fromZ to R. The result is a Sato formula for reflectionless finite difference operators li
on the whole line rather than just on the integer lattice.~In other words, we pass from discre
difference operators acting on functions overZ to analytic difference operators acting on functio
over R.! Finally, the paper is concluded with a list of miscellaneous remarks in Sec. VII.
58220022-2488/99/40(11)/5822/13/$15.00 © 1999 American Institute of Physics
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II. SCATTERING

We will start out by recalling some standard notions from the scattering theory for Ja
operators~see, e.g., Refs. 10–12!. Let

D5an T1an21 T21 1bn ~nPZ! ~II.1!

be a Jacobi operator withan.0 andbnPR for nPZ. HereT represents a shift operator that ac
on lattice functionsc:Z→C via (Tc)(n)5c(n11). For the purpose of scattering we are inte
ested in the situation of a Jacobi operator that tends asymptotically to a discrete Laplacian
unu becomes large. More precisely, from now on it will be assumed that forunu→` the coeffi-
cientsan andbn converge rapidly~say exponentially! to 1 and 0, respectively. We then have th
our Jacobi operator constitutes a self-adjoint operator in the Hilbert spacel 2(Z) of square-
summable functions over the integer latticeZ.

The spectral problem associated toD ~II.1! is governed by a discrete difference equation
the form

anc~n11,z!1bnc~n,z!1an21c~n21,z!5~z1z21!c~n,z!, nPZ. ~II.2!

Herez denotes a~possibly complex! spectral parameter. The conditions on the coefficients g
antee that asymptotically~for unu→`) the solutions of the difference equation in Eq.~II.2! de-
compose into a linear combination of the plane waveszn andz2n. The Jost function~of the first
kind! c jost(n,z) is the solution to Eq.~II.2! that is characterized by an asymptotics of the formzn

for n→`. More precisely, one has that

c jost~n,z!→H zn for n→1`

a~z!zn1b~z!z2n for n→2`,
~II.3!

wherea(z) andb(z) represent twoz-dependent coefficients that describe the asymptotics of
Jost function at minus infinity. For genericz, the solutionc jost(n,z) is obtained from a fundamen
tal system consisting of two independent solutions to the second-order difference Eq.~II.2! by
taking an appropriate linear combination. The coefficientsa(z) and b(z) contain important in-
formation regarding the spectrum of the Jacobi operator under consideration. Specifical
zeros ofa(z)—which with our conditions on the coefficientsan and bn are simple, finite in
number, and lie inside the punctured interval ]21,1@ \$0%—determine the discrete spectrum.~No-
tice in this connection that at such spectral values the Jost function decays exponentiallyunu
→`.! Let us denote the zeros in question by 1.z1.z2.•••.zN.21 ~with zjÞ0) and let the
numbersn1 , . . . ,nN.0 be the corresponding normalization constants,

n j5S (
nPZ

c jost
2 ~n,zj ! D 21

, j 51, . . . ,N. ~II.4!

The discrete spectral valuesz1 , . . . ,zN and normalization constantsn1 , . . . ,nN , together with the
reflection coefficient r(z)ª2b(z21)/a(z), are referred to as thespectral dataof the Jacobi
operator.~Our definition ofb(z) differs from the standard conventions~cf. e.g., Refs. 10–12! by
the changeb(z)→2b(z21).! Whenr (z)5b(z)[0 ~identically in z) the Jacobi operator is sai
to be reflectionless.

III. INVERSE SCATTERING

It is known from the inverse scattering theory for Jacobi operators~with an.0, bnPR and
an→1, bn→0 rapidly for unu→`) that both the coefficientsan , bn and the Jost function
c jost(n,z) can be completely recovered from the spectral data.10–12 Specifically, one has that
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an5
K~n11,n11!

K~n,n!
, ~III.1a!

bn5
K~n,n11!

K~n,n!
2

K~n21,n!

K~n21,n21!
, ~III.1b!

and

c jost~n,z!5 (
m5n

`

K~n,m!zm, 0,uzu<1 ~III.2!

(nPZ), whereK(n,m) is a kernel of the form

K~n,m!5H S 11F~2n!1 (
l 5n11

`

k~n,l !F~ l 1n!D 21/2

for m5n,

K~n,n! k~n,m! for m.n.

~III.3!

Here the kernelF( l 1n), which is determined by the function

F~m!5
1

2p i R r ~z!zm21dz1(
j 51

N

n j zj
m ~III.4!

~where the integration is along the unit circle in the positive direction!, encodes the dependence o
the spectral data, and the kernelk(n,m), m.n is obtained fromF(m) ~III.4! as the~unique!
solution of thediscrete Gelfand–Levitan–Marchenko equation

k~n,m!1F~n1m!1 (
l 5n11

`

k~n,l !F~ l 1m!50, m.n. ~III.5!

IV. THE REFLECTIONLESS CASE: DETERMINANTAL REPRESENTATIONS

In the reflectionless situation, i.e., withr (z)[0, the kernel associated toF(m) ~III.4! becomes
seperable and of finite rank,

F~m!5(
j 51

N

n j zj
m . ~IV.1!

It is known from the work of Flaschka that the question of solving the discrete Gelfand–Lev
Marchenko equation~III.5! reduces in this situation to a finite-dimensional problem that can
solved explicitly in closed form.10–12 In this section we will use the exact solution in question
arrive at a determinantal formula for the reflectionless Jost function.

To this end we first recall Flaschka’s solution of the Gelfand–Levitan–Marchenko equ
with r (z)[0. The key step lies in the substitution of the separable ansatz,

k~n,m!5(
j 51

N

kj~n!zj
m ~IV.2!

for the unknown kernelk(n,m). The discrete Gelfand–Levitan–Marchenko equation of
~III.5!—with the functionF(m) is taken from Eq.~IV.1!—produces the relation

(
j 51

N

~n j zj
n1kj~n!!zj

m1 (
i , j 51

N S ki~n!n j zj
m (

l 5n11

`

~zizj !
l D 50. ~IV.3!
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Summation of the geometric series gives rise to the followingN-dimensional linear system for th
quantitiesk1(n), . . . ,kN(n),

kj~n!1n j(
i 51

N

ki~n!
zi

n11zj
n11

12zizj
52n j zj

n , j 51, . . . ,N. ~IV.4!

The linear system is subsequently solved in the standard way by means of Cramer’s Rule

kj~n!5
detA( j )~n!

detA~n!
, j 51, . . . ,N, ~IV.5!

where

A~n!53
11n1

z1
2n12

12z1
2

••• n1

z1
n11zj

n11

12z1zj

••• n1

z1
n11zN

n11

12z1zN

A � A A

n j

zj
n11z1

n11

12zjz1

••• 11n j

zj
2n12

12zj
2

••• n j

zj
n11zN

n11

12zjzN

A A � A

nN

zN
n11z1

n11

12zNz1

••• nN

zN
n11zj

n11

12zNzj

••• 11nN

zN
2n12

12zN
2

4 ~IV.6!

and

A( j )~n!53
11n1

z1
2n12

12z1
2

••• 2n1z1
n

••• n1

z1
n11zN

n11

12z1zN

A � A A

n j

zj
n11z1

n11

12zjz1

••• 2n j zj
n

••• n j

zj
n11zN

n11

12zjzN

A A � A

nN

zN
n11z1

n11

12zNz1

••• 2nNzN
n

••• 11nN

zN
2n12

12zN
2

4 . ~IV.7!

↑
~ j th column!

~The matrixA( j )(n) is obtained fromA(n) ~IV.6! by replacing itsj th column by the transpose o
the vector (2n1z1

n , . . . ,2nNzN
n ).! The ~inverse square of the! diagonal of the kernelK(n,m)

~III.3! is now computed as

K22~n,n! 5
Eqs.~IV.1!,~IV.2!

11(
j 51

N

n j zj
2n1 (

i , j 51

N

ki~n!n j

zi
n11zj

2n11

12zizj

5
Eq. ~IV.4!

12(
j 51

N

kj~n!zj
n
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5
Eq. ~IV.5! detA~n!2( j 51

N zj
n detA( j )~n!

det A~n!

5detA~n21!/detA~n!. ~IV.8!

~In the last step one uses that the differenceA(n21)2A(n) is a rank-one matrix of the form
@n izi

nzj
n#1< i , j <N , whence detA(n21)2det A(n)52( j 51

N zj
n detA( j )(n).!

One thus ends up with the following determinantal representation for the coefficienan

~III.1a!:

an5
AdetA~n11! detA~n21!

detA~n!
, nPZ. ~IV.9!

In a similar way one arrives at a determinantal formula for the coefficientsbn ~III.1b!,

bn 5
Eqs.~III.1b!,~III.3!

k~n,n11!2k~n21,n!

5
Eq. ~IV.2!

(
j 51

N

~kj~n!zj
n112kj~n21!zj

n!

5
Eq. ~IV.5!

(
j 51

N S detA( j )~n!

detA~n!
zj

n112
detA( j )~n21!

detA~n21!
zj

nD
5(

j 51

N S detB( j )~n!

detA~n!
2

detB( j )~n21!

detA~n21! D , ~IV.10!

where

B( j )~n!53
11n1

z1
2n12

12z1
2

••• n1~z12z1
21!

z1
n11zj

n11

12z1zj

••• n1

z1
n11zN

n11

12z1zN

A � A A

n j

zj
n11z1

n11

12zjz1

••• n j~zj2zj
21!

zj
2n12

12zj
2

••• n j

zj
n11zN

n11

12zjzN

A A � A

nN

zN
n11z1

n11

12zNz1

••• nN~zN2zN
21!

zN
n11zj

n11

12zNzj

••• 11nN

zN
2n12

12zN
2

4 .

~IV.11!

↑
~ j th column!

~So the matrixB( j )(n) is obtained fromA(n) ~IV.6! by replacing thej th column by the transpos
of the vector (n1(z12z1

21)z1
nzj

n/(12z1zj ), . . . ,nN(zN2zN
21)zN

n zj
n/(12zNzj )).! In passing from

the third to the fourth line of Eq.~IV.10! it was used that
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(
j 51

N

~detA( j )~n!zj
n112detB( j )~n!!

5(
j 51

N

det3
11n1

z1
2n12

12z1
2

••• n1

z1
n11zj

n11

12z1zj
~zj2z1! ••• n1

z1
n11zN

n11

12z1zN

A � A A

n j

zj
n11z1

n11

12zjz1

••• 0 ••• n j

zj
n11zN

n11

12zjzN

A A � A

nN

zN
n11z1

n11

12zNz1

••• nN

zN
n11zj

n11

12zNzj
~zj2zN! ••• 11nN

zN
2n12

12zN
2

4 50.

↑
~ j th column!

~To see that the determinants on the second line of the above formula indeed sum up to yie
one develops the determinant ofj th term to thej th column; this way it is not difficult to see tha
the subdeterminant in thej th term originating from the minor corresponding to thei th row cancels
against the subdeterminant in thei th term originating from the minor corresponding to thej th
row.! It is immediate from the last line of Eq.~IV.10! that we may write

bn5] t logS detA~n,t !

detA~n21,t ! D U
t50

, nPZ, ~IV.12!

whereA(n,t) denotes the matrix of the form in Eq.~IV.6! with n j→n je
t(zj 2zj

21), j 51, . . . ,N.
The above method for computing the coefficients of the reflectionless Jacobi operator is

Flaschka,10 who used it to arrive at the determinantal representation foran given by Eq.~IV.9!.
The determinantal representation forbn in Eq. ~IV.12! can moreover be found e.g., in the book b
Toda12 ~who provides a somewhat different proof!. More recently an alternative approach towar
the derivation of the determinantal formulas for the coefficientsan andbn was presented in Ref
17 ~see also Refs. 13,14!.

After these preparations we are now finally in the position to present the correspo
determinantal formula for the Jost functionc jost(n,z). Indeed, starting from Eq.~III.2! we get by
successive manipulations,

c jost~n,z! 5
Eqs.~III.3!,~IV.2!

K~n,n!S zn1(
j 51

N

kj~n! (
l 5n11

`

~zjz! l D
5K~n,n!S zn1(

j 51

N

kj~n!
~zjz!n11

12zjz
D

5
Eqs.~IV.5!,~IV.8!

znS detA~n!1(
j 51

N

zj
n detA( j )~n!

zjz

12zjz
D

AdetA~n! detA~n21!

5
zn detC~n,z!

AdetA~n! detA~n21!
, ~IV.13!
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where C(n,z) denotes the matrix obtained fromA(n) ~IV.6! by the substitutionn j→n j (1
2zzj

21)/(12zzj ), j 51, . . . ,N. More explicitly, the matrixC(n,z) is given by

C~n,z!5F 11n1

z1
2n12

12z1
2 S 12zz1

21

12zz1
D ••• n1

z1
n11zN

n11

12z1zN
S 12zz1

21

12zz1
D

A � A

nN

zN
n11z1

n11

12zNz1
S 12zzN

21

12zzN
D ••• 11nN

zN
2n12

12zN
2 S 12zzN

21

12zzN
D G . ~IV.14!

In order to verify that the expressions on the third and fourth line of Eq.~IV.13! are indeed
equivalent, we employ the following pole expansion for the determinant of the matrixC(n,z)
~IV.14!:

detC~n,z!5detC0~n!1(
j 51

N

detCj~n!
zzj

12zzj
, ~IV.15!

whereC0(n)5 limz→0 C(n,z)5A(n) andCj (n) is the matrix obtained fromC(n,z) via the sub-
stitution z5zj

21 after having multiplied thej th row by a factor 12zzj to compensate the singu
larity. Subtraction ofzk

n11/zj
n11 times the j th column of Cj (n) from its kth column ~for k

51, . . . ,N, kÞ j ) and multiplication of the resulting matrix from the left by diag(
2z1 /zj , . . . ,1, . . . ,12zN /zj ) and from the right by diag(1/(12z1 /zj ), . . . ,1, . . .,1/(1
2zN /zj )) ~where the units are in thej th slot!, leads one to a matrix that is equal to the mat
A( j )(n) with its j th column multiplied byzj

n . Hence, we conclude that the expressions on the t
and fourth line of Eq.~IV.13! are equal.

V. THE DISCRETE SATO FORMULA

We will now evaluate the determinantal representations of the previous section with the
the Cauchy determinant formula@see, e.g., Macdonald~Ref. 18, p. 67!#,

detF 1

12xjyk
G

1< j ,k<N

5
)1< j ,k<N~xj2xk!~yj2yk!

)1< j ,k<N~12xjyk!
. ~V.1!

This leads us to an explicit parametrization of the Jost function for the reflectionless J
operator in terms of the spectral data. To describe the result some notation is needed,

t~n!5 (
JP$1, . . . ,N%

)
j PJ

n j zj
2n12

12zj
2 )

j ,k
j ,kPJ

S zj2zk

12zjzk
D 2

, ~V.2a!

s~n!5 (
JP$1, . . . ,N%

(
j PJ

~zj2zj
21!)

j PJ

n j zj
2n12

12zj
2 )

j ,k
j ,kPJ

S zj2zk

12zjzk
D 2

, ~V.2b!

x~n,z!5 (
JP$1, . . . ,N%

)
j PJ

n j zj
2n12

12zj
2 S 12zzj

21

12zzj
D )

j ,k
j ,kPJ

S zj2zk

12zjzk
D 2

. ~V.2c!

The following theorem provides the parametrization of the reflectionless Jost function in
of the spectral data.

Theorem 1 „Spectral Parametrization…: Let D5an T1an21 T211bn be a (self-adjoint)
Jacobi operator in l2(Z) with an.0, bnPR such that an→1, bn→0 rapidly (say exponentially)
                                                                                                                



f
ely,

ec-

rmi-
perator

e

en

5829J. Math. Phys., Vol. 40, No. 11, November 1999 A Sato formula for reflectionless finite . . .

                    
for unu→`. Furthermore, let D be reflectionless(r (z)[0) and characterized by spectral data o
the form1.z1.•••.zN.21, zjÞ0 (corresponding to the discrete spectrum (more precis
the discrete spectrum consists of N eigenvalues of the form(zj1zj

21), j 51, . . . ,N.)) and
n1 , . . . ,nN.0 (corresponding to the associated normalization constants, cf. Eq. (II.4)).

Then the coefficients of D may be written as

an5
At~n11! t~n21!

t~n!
, bn5

s~n!

t~n!
2

s~n21!

t~n21!
,

and the Jost solutionc jost(n,z) of the eigenvalue equation Dc5(z1z21)c with asymptotics of
the formc jost(n,z)→zn for n→1` takes the form

c jost~n,z!5
zn x~n,z!

At~n! t~n21!
.

Here the functionst(n), s(n), andx(n,z) are defined by Eqs. (V.2a), (V.2b) and (V.2c), resp
tively. Moreover, the spatial variable n lives on the integer latticeZ and the spectral variable z is
assumed to take values in the punctured unit disk0,uzu<1.

Proof: The reconstruction from the spectral data given in Sec. IV provides us with dete
nantal representations for the coefficients and Jost function of the reflectionless Jacobi o
~cf. Eqs.~IV.9!, ~IV.12!, and~IV.13!.

It is not very difficult to infer—with the aid of the Cauchy determinant formula~V.1!—that
the determinant of the matrixA(n) ~IV.6! is given byt(n) ~V.2a!. Indeed, the matrixA(n) ~IV.6!
has the structure of an identity matrix plus a matrix of the formNDCD, where N
5diag(n1 , . . . ,nN), D5diag(z1

n11 , . . . ,zN
n11), and C5@(12zjzk)

21#1< j ,k<N . We thus have
that the determinant ofA(n) amounts to the sum of all principal minors of the matrixNDCD,
which are readily evaluated by means of the Cauchy determinant formula~with xj5yj5zj , j
51, . . . ,N) so as to produce detA(n)5t(n). The stated expressions foran , bn , andc jost(n,z)
then follow from Eqs.~IV.9!, ~IV.12!, and~IV.13!. In this connection it is helpful to recall that th
matricesA(n,t) andC(n,z), appearing in Eqs.~IV.12! and~IV.13!, are obtained from the matrix

A(n) ~IV.6! via the substitutionsn j→n je
t(zj 2zj

21) and n j→n j (12zzj
21)/(12zzj ), respectively.

~Thus one has that] t log(detA(n,t))u t505s(n)/t(n) and detC(n,z)5x(n,z).! h

Theorem V immediately implies the following Sato-type formula for~the wave functions of!
the reflectionless discrete difference operators of Jacobi-type.

Corollary 1. (Discrete Sato Formula): Let0,uzu<1, 1.z1.•••.zN.21 with zjÞ0,
n1 , . . . ,nN.0, and lett(n), s(n), andx(n,z) be given by Eqs. (V.2a), (V.2b), and (V.2c). Th
we have that the discrete Sato function of the form

c jost~n,z!5
zn x~n,z!

At~n! t~n21!

solves the discrete difference equation,

an c~n11,z!1bn c~n,z!1an21 c~n21,z!5~z1z21! c~n,z!, nPZ,

with coefficients given by

an5
At~n11! t~n21!

t~n!
, bn5

s~n!

t~n!
2

s~n21!

t~n21!
.
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VI. INTERPOLATION: FROM Z TO R

Next we interpolate the discrete Sato formula of Corollary V so as to arrive at a correspo
Sato formula for certain reflectionless finite difference operators living on the whole line inste
merely on the integer lattice. For this purpose it is convenient to perform a trigonometric ch
of variables/parameters,

z5ey, n5x, zj5e2k j ~ j 51, . . . ,N!. ~VI.1!

The functionst, s, andx of Eqs. ~V.2a!, ~V.2b!, and ~V.2c! pass with these substitutions ov
into

t~x!5 (
JP$1, . . . ,N%

)
j PJ

n je
2k j

2 sinh~k j !
)
j ,k

j ,kPJ

S sinh 1
2~k j2kk!

sinh 1
2~k j1kk!

D 2

expS 22x(
j PJ

k j D , ~VI.2a!

s~x!522 (
JP$1, . . . ,N% F (

j PJ
sinh~k j !)

j PJ

n je
2k j

2 sinh~k j !
)
j ,k

j ,kPJ S sinh 1
2~k j2kk!

sinh 1
2~k j1kk!D 2

3expS 22x(
j PJ

k j D G , ~VI.2b!

x~x,y!5 (
JP$1, . . . ,N% F )

j PJ

n j

2 sinh~k j !

sinh 1
2~y1k j !

sinh 1
2~y2k j !

)
j ,k

j ,kPJ

S sinh 1
2~k j2kk!

sinh 1
2~k j1kk!

D 2

expS 22x(
j PJ

k j D G .

~VI.2c!

The following theorem provides a Sato formula for the wave functions of analytic differe
operators of the formD5a(x) T1a(x21) T211b(x) acting on functionsc:R→C. Here
(Tc)(x)5c(x11) and the coefficientsa(x), b(x) are obtained from the coefficientsan , bn of
Theorem 1/Corollary 2 via the substitutions in Eq.~VI.1!.

Theorem 3. „Difference Sato Formula…: Let 0,k1,•••,kN , n1 , . . . ,nN.0, and let
t(x), s(x). and x(x,z) be given by Eqs. (VI.2a), (VI.2b), and (VI.2c). Then we have that
difference Sato function of the form,

c~x,y!5
exp~xy! x~x,y!

At~x! t~x21!
,

solves the analytic difference equation

a~x! c~x11,y!1b~x! c~x,y!1a~x21! c~x21,y!52 cosh~y! c~x,y!, xPR,

with coefficients given by

a~x!5
At~x11! t~x21!

t~x!
, b~x!5

s~x!

t~x!
2

s~x21!

t~x21!
.

Here it is assumed that the spectral parameter yPC is not equal to k j mod 2p i for j
51, . . . ,N.

Proof: It is clear that, with the stated restrictions on the parameters, the coefficientsa(x),
b(x), and the wave functionc(x,y) are well-defined and regular forxPR. Indeed, the tau
functions in the denominators stay away from zero forxPR, sincet(x) is positive on the real line
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as a sum of positive terms. ForxPZ and Re(y)<0, the statement of the theorem is immedia
from Corollary V. Hence, we have that at such integer values forx the difference equation with
Sato wave function holds as an identity in the parametersk1 , . . . ,kN and n1 , . . . ,nN . The
generalization to generalxPR then follows from the observation that a translationx→x1D, D
PR is equivalent to a reparametrization of the formn j→n je

2D, j 51, . . . ,N, together with a
multiplication of the wave function by the (x-independent! overall factoreDy. The passage fromy
in the left half-plane to general complexyÞk j mod 2p i , j 51, . . . ,N is clear by analyticity. h

VII. MISCELLANEOUS REMARKS

A. Asymptotics

From the formula of Theorem 1/Corollary 2 we read-off that our Jost functionc jost(n,z) has
an asymptotics at infinity of the form

c jost~n,z!→H zn for n→1`

zn)
j 51

N S zj2z

12zjz
D for n→2` .

~VII.1!

This asymptotics is thus of the general form given by Eq.~II.3! with a(z)5) j 51
N @(zj2z/1

2zjz)# andb(z)50. The vanishing ofb(z) is in agreement with the fact that our Jacobi opera
is reflectionless. The formulas moreover confirm that the zeros ofa(z) do indeed correspond to
the valuesz5zj , j 51, . . . ,N. For the wave function of Theorem 3 the asymptotics at infin
becomes (n→x, z→ey andzj→e2k j),

c~x,y!→H exp~xy! for x→1`

exp~xy!)
j 51

N sinh 1
2~y1k j !

sinh 1
2~y2k j !

for x→2` .
~VII.2!

B. Summation and integration formulas

It is clear from the explicit formula of Theorem 1/Corollary 2 that the reflectionless
function c jost(n,z) decays exponentially forunu→` at the discrete spectral valuesz5zj , j
51, . . . ,N. Hence, the wave function is indeed square-summable at these spectral values~As it
should be, because the spectral valuesz1 , . . . ,zN constitute the discrete spectrum.! The interpre-
tation of the parametersn1 , . . . ,nN as the corresponding normalization constants~cf. Eq. ~II.4!!
moreover implies that the wave function of Theorem 1/Corollary 2 satisfies the following
mation identity;

(
nPZ

c jost
2 ~n,zj !51/n j , j 51, . . . ,N. ~VII.3!

For the wave function of Theorem 3 this translates into the summation formula

(
nPZ

c2~n1x,2k j !51/n j , j 51, . . . ,N ~VII.4a!

(xPR). Here it was again used~cf. the proof of Theorem 3! that the shifted functionc(n1x,
2k j ) differs from c(n,2k j ) by a factore2k j x combined with a reparametrization of the for
nk→nke

22kkx, k51, . . . ,N. Multiplication of Eq. ~VII.4a! by e2p imx (mPZ), and integration in
x over a unit interval, entails upon interchanging the summation and integration on the left
side,
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E
2`

`

c2~x,2k j ! e2p imxdx5H 1/n j for m50

0 for mPZ\$0%,
~VII.4b!

j 51, . . . ,N. The integration formula of Eq.~VII.4b! not only follows from the summation for
mula of Eq.~VII.4a! but is in factequivalentto it in view of the Poisson summation formula.

C. Analyticity

The restrictions on the domains of the variables and the parameters in Theorem 3 are n
essential. In fact, we have that for the given wave functionc(x,y) our difference equation hold
as an identity between analytic expressions~with singularities! in the variablesx, y and the
parametersk1 , . . . ,kN , n1 , . . . ,nN . Within the parameter and variable regimes stated by
theorem, however, both our wave function and the coefficients of the difference equatio
regular.

D. Relation to the infinite Toda chain

The expressions for the coefficientsan , bn in the case of a reflectionless Jacobi opera
given by Eqs.~IV.9!, ~IV.12! ~determinantal representations! or by Theorem 1/Corollary 2~ex-
plicit representations in terms of the tau function!, induce formulas for theN-soliton solutions of
the inifinite Toda chain that are due to Flaschka10 and Hirota,15 respectively.

It is well-known that the Jacobi operatorD5anT1an21T211bn may serve as a Lax operato
for the infinite Toda chain. In fact, this observation formed the starting point for Flasch
solution of the equations of motion for this dynamical particle system by means of theInverse
Scattering Transform.10–12In a nutshell, the state of affairs is the following. Let us assume that
Jacobi operatorD is characterized by the spectral data 1.z1.•••.zN.21 (zjÞ0),
n1 , . . . ,nn.0 andr (z). Furthermore, let us denote byan(t), bn(t) the coefficients of the Jacob

operator characterized by the time-dependent spectral datazj (t)5zj , n j (t)5n je
(zj 2zj

21)t ( j

51, . . . ,N) and r (z;t)5r (z)e(z2z21)t, with tPR. Then the quantitiesan(t), bn(t) satisfy ~Fl-
aschka’s version of! the equations of motion for the infinite Toda chain,

ȧn~ t !5an~ t !~bn11~ t !2bn~ t !!/2, ḃn~ t !5an
2~ t !2an21

2 ~ t !, ~VII.5!

with initial conditions given byan(0)5an , bn(0)5bn (nPZ).10–12 In other words, the compli-
cated nonlinear Toda dynamics for the coefficientsan(t), bn(t) is related via the~inverse! scat-
tering transform to a simple linear evolution of the corresponding spectral datazj (t), n j (t), and
r (z;t). The fact that the discrete spectral valuesz1 , . . . ,zN actually turn out to be time-
independent is by no means a coincidence. It is a reflection of a more general pheno
referred to asiso-spectrality, which says that the whole spectrum of the Jacobi operator
coefficients evolving in accordance with the Toda flow~VII.5! does not depend ont.

In the above picturereflectionlessJacobi operators correspond tosoliton solutions of the
infinite Toda chain. The formulas for the coefficientsan , bn in Eqs. ~IV.9!, ~IV.12! thus give

rise—upon plugging in the time-dependence for the normalization constantsn j→n je
(zj 2zj

21)t—to
a determinantal representation for theN-soliton solution of the Toda chain. These are the we
known solutions found by Flaschka.10–12 ~To be precise, Flaschka actually wrote down only t
determinantal formula foran(t); the formula forbn(t) may be found in Ref. 12.! In exactly the
same way the closed expressions for the coefficientsan , bn in terms of the tau functiont(n)
~V.2a! ~cf. Theorem 1 and Corollary 2! are converted into completely explicit formulas for th
N-soliton solutions of the infinite Toda chain. The explicit soliton formulas of this type are
well-known and were in fact first introduced by Hirota using direct methods rather than in
scattering theory.15,16,12For more recent developments pertaining to the integration of the T
equations of motion via inverse scattering techniques we refer, e.g., to Refs. 17,14, and refe
therein.
                                                                                                                



or the
tion of

ndence

way

to an

enko

f the

of
eigen-
l data
of

he
for
ty

of the

ffi-
al
c-

3 for

d Jost
ormula

5833J. Math. Phys., Vol. 40, No. 11, November 1999 A Sato formula for reflectionless finite . . .

                    
In the present paper we concentrated on the solution of the eigenvalue problem f
reflectionless Jacobi operator by means of inverse scattering theory rather than on the solu
the equations of motion for the Toda system. One could nevertheless plug in the time depe

n j→n je
(zj 2zj

21)t also in the Sato formula for the Jost function of Theorem 1/Corollary 2. This
one arrives at a closed expression for the so-calledBaker function~see, e.g., Ref. 5! of ~the linear
problem associated to! the infinite Toda chain. Our original Jost function~i.e., with time-
independent spectral data! is in this context often referred to as thestationary Baker function.
From the point of view of integrable sytems the main result of this paper therefore amounts
explicit ~Sato type! formula for the soliton Baker function of the infinite Toda chain.

E. Bidiagonal reduction: b n50

For the special case of a Jacobi operator with zeros on the main diagonal, i.e., withbn50 for
all nPZ, the inverse scattering theory leading up to the discrete Gelfand–Levitan–March
equation~cf. Eq. ~III.5!! was developed by Case and Chui.19,20 From the point of view of inte-
grable systems~cf. the previous remark!, the specialization tobn50 amounts to a reduction from
the Toda chain to the Kac–van Moerbeke chain.21,12,17,14

It is not difficult to see that the Jost function for the relevant bidiagonal Jacobi operator o
type D5an T1an21 T21 enjoys the symmetry propertyc jost(n,2z)5(21)nc jost(n,z). ~This is
immediate from the definition of the Jost function, cf. Sec. II.! As a consequence, the spectrum
the Jacobi operator is now evenly distributed around the origin. In particular, the discrete
values always occur in even pairs. More precisely, in the bidiagonal situation the spectra
possess the following symmetry properties:~i! r (2z)5r (z), ~ii ! the discrete spectral values are
the form 1.z1.•••.zM.0.zM11.•••.z2M.21 with z2M112 j52zj , and~iii ! the associ-
ated normalization constantsn1 , . . . ,n2M.0 satisfy the symmetry propertyn2M112 j5n j .

Reversely, if we assume that the spectral data of a reflectionless Jacobi operatorD5an T
1an21 T211bn possess the above symmetry properties~ii ! and~iii ! ~the first property is now of
course trivial sincer (z)[0 by assumption!, then it follows that the main diagonal vanishes:bn

50 for all nPZ. To see this it is convenient to employ the representation forbn in the second line
of Eq. ~IV.10! ~with N52M ). Indeed, we have from~ii ! and ~iii ! that k2M112 j (n)
5(21)nkj (n), whence the sums on the second line of Eq.~IV.10! vanish ~since thej th term
cancels against the (2M112 j )th term!. A simple way to deduce the symmetry property of t
kernel functions kj (n), is to convince oneself that the original linear system
k1(n), . . . ,k2M(n) in Eq. ~IV.4! (N52M ) admits a solution with the symmetry proper
k2M112 j (n)5(21)nkj (n) when the spectral data meet conditions~ii ! and ~iii !. Indeed, substitu-
tion of a solution of the type (k1(n), . . . ,kM(n),(21)nkM(n), . . . ,(21)nk1(n)) into Eq. ~IV.4!
reduces the linear system of 2M equations in 2M unknowns~viz., k1(n), . . . ,k2M(n)) to ~two
copies of! a linear system ofM equations inM unknowns~viz., k1(n), . . . ,kM(n)).

The upshot is that for the case of a Jacobi operator with zero diagonal the dimension
determinantal formulas for the coefficientsan and the Jost functionc jost(n,z) given by Eqs.~IV.9!
and ~IV.13! may be reduced from 2M to M. Furthermore, the explicit expressions for the coe
cientsan and the Jost functionc jost(n,z) from Theorem 1/Corollary 2 admit in this bidiagon
situation a corresponding simplification.~Specifically, the sums in the relevant tau and chi fun
tions become over subsets of$1, . . . ,M % rather than$1, . . . ,2M % ~cf. Eqs.~V.2a!–~V.2c!! and the
spectral parametersz andz1 , . . . ,zM ,2zM , . . . ,2z1 enter the formulas via their squaresz2 and
z1

2 , . . . ,zM
2 ). This gives rise to a corresponding reduction of the Sato formula of Theorem

reflectionless difference operators of the formD5a(x) T1a(x21) T21.
For the precise details regarding the resulting parametrization of the coefficients an

function for the bidiagonal reflectionless Jacobi operators, as well as the associated Sato f
for reflectionless analytic difference operators, the reader is referred to Ref. 22.
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Existence and multiplicity results for massive particles
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In an open time-convex regionL of a strongly causal Lorentzian manifold (M,g),
we consider an eventp and a timelike, injective curveg. We look for geodesics
connectingp andg in L and satisfying the conservation lawg(z)@ ż,ż#52E for a
fixed E.0. It is already known that such geodesics are the stationary points of the
arrival time functionalt. Our main result is to prove the existence of a decreasing
flow for t, by means of a shortening procedure. This makes possible to apply tot
global variational methods obtaining existence and multiplicity results~using the
Ljusternik–Schnirelmann category theory! and also to develop a Morse theory.
© 1999 American Institute of Physics.@S0022-2488~99!03210-7#

I. INTRODUCTION AND STATEMENT OF THE RESULTS

This paper deals with the study of timelike geodesics, having a prescribed parameter
proportional to the arc length, on a noncomplete, strongly causal Lorentzian manifold repres
a universe with boundary.

In recent years variational methods have been applied to the study of Lorentzian geode
particular, a large number of papers concerns variational principles which allow us to get exi
and multiplicity results for geodesics connecting a point with a curve~see, e.g., Refs. 1, 2 and 3!.

In Ref. 4, Kovner stated a variational principle for timelike and lightlike geodesics joinin
source with a receiver in a space–time (M,g). The source is represented by a timelike curveg
and the observer by an eventp of M. The principle states that among the future pointing cur
z:@0,1#→M joining p andg and satisfying

g~z!@ ż,ż#52E ~1!

for someE>0, geodesics are the critical points of thearrival time functionalt defined~assuming
that g is injective! in the following way:

t~z!5g21~z~1!!. ~2!

A rigorous mathematical proof of this principle can be found in Ref. 3 for the lightlike case
in Ref. 2 for the timelike case. In Ref. 5, assuming thatM admits a time functionT the authors
develop a Ljusternik–Schnirelmann theory for light rays~namely they takeE50) obtaining some
multiplicity results depending on the topology of the space of the lightlike curves joiningp andg
in a manifold with boundary. They look for the critical points of the functional

a!Electronic mail: germinar@pascal.dm.uniba.it
b!Electronic mail: giannoni@campus.unicam.it
58350022-2488/99/40(11)/5835/14/$15.00 © 1999 American Institute of Physics
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Q~z!5E
0

1

^ ż,¹T~z!&2ds

that are lightlike pregeodesics and they assume thatM is not complete which is equivalent t
search geodesics lying in some open subsetL of a complete manifold. Moreover in Ref. 6 a Morse
theory has been developed for the same problem. In Ref. 2 the variational principle for tim
curves involving the functionalt is examined. Assuming thatM is a manifold without boundary
existence and multiplicity results are obtained. This is done after proving that the critical poi
t on the space of the future pointing curves satisfying~1! are timelike geodesics.

The approach based on the use of the functionalt has some advantages; for example, t
critical points ofQ have not a clear physical meaning and their Euler–Lagrange equation is r
complicated. This makes the proof of the Morse theory in Ref. 6 quite involved. For this reas
Ref. 7, usingt, the Morse relations are stated for timelike geodesics and, with a limit process
for lightlike geodesics.

Our aim in this paper is to prove the existence and the multiplicity~using Ljusternik–
Schnirelmann category theory and Morse theory! of timelike geodesicsz joining a pointp and a
curveg, satisfying~1! for someE.0, when the space–time has a boundary. More precisely
look for geodesicsz lying in an open subsetL of M with topological boundary]L. We are
motivated in this study by the fact that some relevant physical examples of space–times
boundary~e.g., Schwarzchild, Reissner–Nordstro¨m, Kerr space–times!.

We point out that, as it will be clear in the sequel, the presence of]L makes the problem more
difficult. Indeed in Refs. 2 and 7, where the case of manifolds without boundary is studie
functionalt is defined on a manifold of curves of classH1,1, in order to prove that it satisfies th
Palais–Smale condition. On the other hand, whenL has a boundary, the manifold of the curv
joining p andg is not complete andt does not satisfy the Palais–Smale condition because o
existence of sequences of curves approaching]L. A technique based on a penalization argum
~used, for example, in Refs. 5 and 6 with curves of classH1,2) fails with curves of classH1,1. More
precisely, iff is a functional defined on a set of curves of a manifold with boundary, we can
to f a term ~depending on a parameterd! which goes to infinity on each sequence of curv
approaching]L ~see, e.g., Ref. 5, Lemma 7.2!. Then a limit process allows us to get the critic
points of f.

Unfortunately, this approach works when we deal with curves of classH1,m with m.1. When,
as in our case, the natural space for the problem isH1,1, it is not possible to prove that th
penalized functionals satisfy useful completeness and compactness properties because we
able to prove that the penalization term goes to infinity near the boundary.

In this paper we shall use a completely different approach to the problem. Indeed, in c
point theorems and in the Ljusternik–Schnirelmann theory for a functionalf, the Palais–Smale
condition is used for the construction of a flow along whichf is strictly decreasing. Here we sha
directly prove the existence of a decreasing flow for the functionalt, by means of a shortening
method.

This procedure has been firstly introduced for studying Riemannian geodesics connecti
fixed points~see, e.g., Ref. 8!. Recently, in Ref. 9, the authors have used a similar techniqu
stating a Morse theory for lightlike geodesics connecting a point with a curve. Here we sha
with the timelike case. The main difference with respect to Ref. 9 is a different way to prov
existence of minimizers between a point and an integral curve of the vector field giving the
orientation onM.

We wish to point out that the shortening method has a further advantage; it allows us to
in a very general context. Indeed,~a! the Lorentzian manifold is not assumed to be stably cau
but only time orientable;~b! the boundary]L of the open regionL where we search timelike
geodesics is not assumed neither smooth nor having a spacelike normal vector at any point~c! the
curveg is not assumed to be a closed embedding ofR. Moreover, the shortening method~far from
the critical points! makes simpler the proof of the Morse relations~see Ref. 7 for the case withou
boundary!.
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We consider a Lorentzian manifold (M,g) whose metric tensorg will be denoted by

g~z!@•,•#5^•,•&

for anyzPM. It is not restrictive to assume that there exists a time orientationW on M namely
a smooth timelike vector fieldW on M. We recall that a vectorvPTpM, pPM is saidfuture
pointing if

^W~z!,v&,0,

it is calledcausalif

^W~z!,v&<0.

A smooth curvey:I→M is future pointing~respectivelycausal! if ẏ(s) is future pointing~re-
spectively causal! for any sPI . ~We refer to Refs. 10 and 11 for the basic notions of Lorentz
geometry.!

The main results of this paper will be stated assuming thatM is strongly causal. This means
that, for anyqPM, each future pointing causal curve starting arbitrarily close toq and leaving
some fixed neighborhood ofq, can not return arbitrarily close toq ~for more details see Refs. 1
and 11!.

Let L be an open, connected subset ofM, pPL, g:R→L a smooth, timelike curve such tha
p¹g(R). With respect to the orientationW, we assume that

g is future pointing. ~3!

From now on, we fixE.0. To prove the existence of future pointing, timelike curves joiningp
andg we need the following assumption:

there exists aC1-piecewise, future pointing, curvez:@0,1#→L

joining p and g and satisfying^ż,ż&52E ~4!

on any interval wherez is C1.

Moreover we need a time-convexity assumption on the closureL̄ of L. We assume that

L̄ is time-convex, i.e., all the timelike geodesics inLø]L,

whose end points are inL, are entirely contained inL. ~5!

Here ]L denotes the topological boundary ofL. To be sure that the arrival time functionalt
defined in~2! is well defined we need that

g is injective. ~6!

In the following, for anyqPL we shall denote bygq :I→M, ~where I ,R is an interval! the
maximal integral curve ofW starting atq, i.e., the maximal solution of the Cauchy problem

H ḣ5W~h!

h~0!5q.

In order to get a decreasing flow for the functionalt, we shall prove the existence of minimize
in L between events and timelike curves. The following hypothesis will be necessary:

g is an integral curve ofW, ~7!
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;qPL, gq~s!PL, ;s<0. ~8!

We introduce now a space of broken timelike geodesics which will be used as a space
curves. We set

Bp,g,E
1 ~L!5$z:@0,1#→L%uz is a C2-piecewise curve, such that

z~0!5p, z~1!Pg~R! and, on any intervalI where z is C2, z is

a future pointing geodesic satisfyinĝż,ż&52E%.

We want to relate the number of future pointing timelike geodesics satisfying~1! with the
Ljusternik–Schnirelmann category ofBp,g,E

1 (L). In next sections we shall prove the homoto
equivalence betweenBp,g,E

1 (L) ~endowed with the uniform topology! and the Sobolev space o
future pointing geodesics satisfying~1! and joiningp andg. Moreover a timelike extention of the
Fermat principle holds~see Ref. 2!.

Now we can state our last assumption which is equivalent to the ones formulated in R
and 7~as shown in Sec. II!. For anycPR we set

tc5$zPBp,g,E
1 ~L!ut~z!<c%.

Definition I.1: Let c be a real number. We say thatBp,g,E
1 (L) is c-precompact if any sequenc

(zn)nPN,tc has a uniformly convergent subsequence inL̄, up to reparameterization. The func
tional t is said pseudocoercive onBp,g,E

1 (L) if Bp,g,E
1 (L) is c-precompact for any cPR.

We note that, ift is pseudocoercive onBp,g,E
1 (L) and if g is an integral curve ofW, thent is

bounded from below onBp,g,E
1 (L).

We shall prove the following existence result:
Theorem I.2: Let (M,g) be a strongly causal Lorentzian manifold. Let E.0,p,g,L satisfy

assumptions (3)–(8) andt be pseudocoercive onBp,g,E
1 (L). Then there exists at least one futu

pointing, timelike geodesic z joining p andg in L, satisfying (1) and minimizingt on the set of the
future pointing curves joining p andg and satisfying (1).
We shall also prove a multiplicity result by using the Ljusternik–Schnirelmann theory. We re
Ref. 12 for its main properties. Here we only recall that, ifX is a topological space andY is a
subspace ofX, the Ljusternik–Schnirelmann categoryof Y in X, denoted by cat(Y,X), is the
minimal integer number~possibly infinite! of closed, contractible subsets ofX coveringY. We
shall denote by cat(X) the category ofX in itself.

Theorem I.3: Let M,E.0,p,g,L as in Theorem I.2. Assume thatt is pseudocoercive on
Bp,g,E

1 (L). Then there exists at leastcat(Bp,g,E
1 (L)) future pointing, timelike geodesics z joinin

p andg in L and satisfying (1).
The shortening method allows us to state also a Morse theory for this problem. To this

we recall some definitions.
Definition I.4: Let (M,g) be a Lorentzian manifold, and z:@0,1#→M be a geodesic. A

smooth vector fieldz along z is called Jacobi field if it satisfies the equation

Ds
2z1R~z,ż!ż50,

where R is the curvature tensor of the metric g. A point z(s), sP]0,1] is said to be conjugate to
z(0) along z if there exists a nonvanishing Jacobi fieldz along zu@0,s# such that

z~0!5z~s!50. ~9!

The multiplicity of the conjugate point z(s) is the maximal number of linearly independent Jaco
fields satisfying (9).
                                                                                                                



eorem,
s

inting
ain

5839J. Math. Phys., Vol. 40, No. 11, November 1999 Existence and multiplicity results for . . .

                    
Definition I.5: Let z:@0,1#→M be a geodesic. The indexm(z) of z is the number of conjugate
points z(s), sP]0,1] to z(0), counted with their multiplicity.

Let X be a topological space andK a field. For anyl PN let Hl(X;K) be thel th homology
group of X with coefficients inK. SinceK is a field, thenHl(X;K) is a vector space whose
dimensionb l(X;K) ~eventually1`! is called thel th Betti number of X~with coefficients inK!.
The PoincarépolynomialP(X;K) is defined as the following formal series:

P~X;K!~k!5(
l PN

b l~X;K!k l .

Let Gp,g,E
1 (L) be the set of the future pointing geodesics satisfying~1!, joining p andg and whose

image is contained inL.
Theorem I.6: Let (M,g) be a strongly causal Lorentzian manifold. Let E.0,p,g,L satisfy

(3)–(8). Moreover, assume that

~1! for any geodesic zPLp,g,E
1 , z(1) is nonconjugate to z(0)5p;

~2! t is pseudocoercive onBp,g,E
1 (L).

Then, for any fieldK, there exists a formal series S(k) with coefficients inNø$1`%, such that

(
zPGp,g,E

1
~L!

km~z!5P~Bp,g
1 ~L!;K!~k!1~11k!S~k!. ~10!

We point out that Theorem I.6 has been proved in Ref. 7 whenM is a manifold without boundary.
Moreover, we refer to Ref. 9 for a discussion and some consequences of the previous th
which, up to obvious changes hold also for the timelike case. Here we point out that relation~10!
link the number card (Gp,g,E

1 (L)) of geodesics inGp,g,E
1 (L) to the topology of the space

Bp,g,E
1 (L). Indeed, settingk51 in ~10! we get

card~Gp,g,E
1 ~L!!5(

l 50

`

b l~Bp,g,E
1 ~L!;K!12S~1!. ~11!

As S(1) is non-negative, by~11! we can deduce the classical Morse inequalities~see Ref. 8! and
information about the oddity of card(Gp,g,E

1 (L)).
In Sec. II we shall discuss the existence of minimizers between a point and a future po

timelike curve inM. In Sec. III we shall describe the shortening procedure and prove the m
theorems.

II. MINIMIZERS FOR THE ARRIVAL TIME

Let W be the smooth vector field giving an orientation onM. Then, we can equipM with the
Riemannian structure, given by

^z,z&R5^z,z&22
^z,W~z!&2

^W~z!,W~z!&
~12!

for any zPM and zPTzM. It is not difficult to prove that~12! defines a bilinear form onM
whose positivity follows from the wrong way Schwartz inequality~see Ref. 11!. In the sequel we
shall denote bydR the distance induced by~12!. The metric~12! allows us to define in an intrinsic
way the Sobolev space,

H1,2~@0,1#,L!5H zPAc~@0,1#,L!U E
0

1

^ż,ż&Rds,1`J ,
                                                                                                                



iple.

e

5840 J. Math. Phys., Vol. 40, No. 11, November 1999 A. Germinario and F. Giannoni

                    
where Ac~@0,1#,L! is the set of absolutely continuous curves from@0,1# to L ~with respect todR).
It is well known thatH1,2(@0,1#,L) is a smooth Hilbert manifold. Now we set

Vp,g
1,2 5Vp,g

1,2 ~L!5$zPH1,2~@0,1#,L!uz~0!5p z~1!Pg~R!%.

It is not difficult to see thatVp,g
1,2 is a smooth manifold. For anyzPVp,g

1,2 the tangent space atz can
be identified with

TzVp,g
1,2 5$zPH1,2~@0,1#,TL!uz~s!PTz~s!M z~0!50 z~1!i ġ~t~z!!%.

As we look for future pointing timelike geodesics satisfying~1!, we set

Lp,g,E
1 5$zPVp,g

1,2 u^ż,ż&52E, ^W~z!,ż&,0 a.e.%.

By ~4!

Lp,g,E
1 ÞB

and following the results of Refs. 2 and 7, it can be proved that, for anyE.0, Lp,g,E
1 is a C1

Hilbert manifold whose tangent space atzPLp,g,E
1 can be identified with

TzLp,g,E
1 5$zPTzVp,g

1,2 u^ ż,Dsz&50 a.e.%.

The natural scalar product onLp,g,E
1 is

^z,z&15E
0

1

^Ds
Rz,Ds

Rz&Rds1E
0

1

^z,z&Rds ~13!

for anyzPLp,g,E
1 andzPTzLp,g,E

1 , whereDs
R denotes the covariant derivative with respect to~12!

evaluated alongż.
It has been proven in Refs. 2 and 7 the following timelike extension of the Fermat princ
Proposition II.1: Lett be as in (2), E.0 and zPLp,g,E

1 . Then z is a critical point fort in
Lp,g,E

1 if and only if z is a geodesic.
In the sequel, for anyp* PM and any future pointing, injective, timelike curv

g* :]a* ,b* @→L we shall use the following notation:

Lp
*

,g
*

,E
1 ~@a1 ,a2#,L!5$zPVp

*
,g

*

1 ~@a1 ,a2#,L!u^ż,ż&52E, ^W~z!,ż&,0 a.e.%.

We shall again denote byt the functional defined by

g
*
21~z~a2!!

on Lp
*

,g
*

,E
1 (@a1 ,a2#,L).

Remark II.2:For anyzPM there exists a neighborhoodUz of z and a coordinate systemw
5(x1 ,...,xN21 ,t) (N5dimM) on Uz such that

W5
]

]t
, Uz5S3]a1 ,a2@ ,

whereS is a spacelike hypersurface parameterized byx1 ,...,xN21 . Moreover in the coordinate
x5(x1 ,...,xN21) and tP]a1 ,a2@ the metricg is given by

g~x,t !@~j,u!~j,u!#5^a~x,t !j,j&012^d~x,t !,j&0u2b~x,t !u2, ~14!
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where (j,u)PT(x,(a11a2)/2)S3R, ^•,•&0 is the ~positive definite! restriction of g to S, a is a
smooth, symmetric positive definite operator,d is a smooth vector field onS andb is a smooth
positive real function such that

b~x,t !52g~x,t !@W,W# ~15!

~see Ref. 9 for further details!.
Remark II.3:From now on, unless it is to normalize the vector fieldW and to take a repa

rameterization ofg we can assume that

^W~z!,W~z!&521 ;zPM, ~16!

so that by~7!

^ġ,ġ&521 ;sPR.

Therefore in the coordinate systems (x1 ,...,xN21 ,t) ~see Remark II.2!, a curve z5(x,t)
PLp,g,E

1 if and only if

ṫ5^d~x,t !,ẋ&01A^d~x,t !,ẋ&0
21^a~x,t !ẋ,ẋ&01E ~17!

as ~15! becomes

b~x,t !51. ~18!

Moreover, in such a coordinate system, any integral curve ofW can be written as

s°~ x̄,s1 t̄ !

for some (x̄, t̄ ).
Proposition II.4: Let qPM. For any sufficiently small compact neighborhood U of q the

existsr5r(q,U).0 and l5 l (q,U).0 such that, for any integral curveg* of W such that

0,dR~q,Im g* !<r

and for any interval@a1 ,a2# such that

a22a1, l ,

there exists a future pointing geodesic z:@a1 ,a2#→U joining q and g* and minimizingt on
Lq,g

*
,E

1 (@a1 ,a2#,M).

Proof: Let U be a compact neighborhood ofq where the metricg can be written as in~14! of
Remark II.2. Assume that

U5V3]b1 ,b2@ , q5~x1,0!PU

for somex1PV. By Remark II.3, there existsa* ,b* PR such that

g* ~s!5~x2 ,t21s!PU sP]a* ,b* @

for some (x2 ,t2)PU. By Proposition II.1, we have to minimize the functional

F~x!5E
a1

a2
@^d~x,tx!,ẋ&01A^d~x,tx!,ẋ&0

21^a~x,t !ẋ,ẋ&01E#ds
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on the manifoldV1,2(@a1 ,a2#,V) of the curves of classH1,2(@a1 ,a2#,V) joining x1 andx2 , where
tx is the solution of the Cauchy problem

H ṫ5^d~x,t !,ẋ&01A^d~x,t !,ẋ&0
21^a~x,t !ẋ,ẋ&01E

t~0!50.
~19!

As the support of any curvez5(x,tx) is contained in the compact subsetU, thanks to the
Schwartz inequality

u^d~x,tx!,ẋ&0u

A^a~x,tx!ẋ,ẋ&0

<c1

for somec1.0, so that it is not difficult to show that there existsc2 ,c3.0 such that

c2E
a1

a2A^ẋ,ẋ&0ds<F~x!<c3E
a1

a2A^ẋ,ẋ&0ds1AE~a22a1! ~20!

for any curvexPV1,2(@a1 ,a2#,V). Then, by the first inequality of~20!, F is bounded from below.
Now let (xn)nPN be a minimizing sequence forF. We prove that there existsM.0 such that

for any nPN,

d0~xn~sn!,]V!>M , ~21!

wheresn is defined by

d0~xn~sn!,]V!5 min
sP@a1 ,a2#

d0~xn~s!,]V!

andd0 denotes the distance induced by^•,•&0 . Indeed if~21! were not true, up to a subsequenc

lim
n→1`

d0~xn~sn!,]V!50. ~22!

By the first inequality of~20!, there results

F~xn!>c2E
a1

a2A^ẋn ,ẋn&0ds>c2d0~x1 ,xn~sn!!. ~23!

By ~22!, for n sufficiently large,

d0~x1 ,xn~sn!!>
d0~x1 ,]V!

2
.

Then in ~23! we get

inf F>c2

d0~x1 ,]V!

2
. ~24!

On the other hand, lety:@a1 ,a2#→V the geodesic chord joiningx1 and x2 with respect to
^•,•&0 . By the second inequality of~20!, there results

F~y!<c3E
a1

a2A^ ẏ,ẏ&01AE~a22a1!5c3d0~x1 ,x2!1AE~a22a1!. ~25!

By opportunely choosingr and l we get by~25!
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inf F<c2

d0~x1 ,]V!

4

in contradiction with~24!. This proves that each minimizing sequence is uniformly far from]V
and, by the Ekeland variational principle~see Ref. 13!, the existence of a minimizing Palais
Smale sequence~with respect to theH1,1-norm!. SinceF satisfies the Palais–Smale condition wi
respect to theH1,1,-norm~see Ref. 2!, we get the existence of a minimum point ofF whose support
is contained inV. h

As a first consequence of Proposition II.4 we can prove the equivalence of Definition I.1
the corresponding ones of Refs. 2 and 7~where the pseudocoercivity is assumed onLp,g,E

1 ).
Indeed any curvezPLp,g,E

1 can by uniformly approximated by a sequence (zn)nPN,Bp,g,E
1 (L)

~see Ref. 9!. Then it is not difficult to prove the following Proposition.
Proposition II.5: The functionalt is pseudocoercive onLp,g,E

1 if and only if it is pseudoco-
ercive onBp,g,E

1 (L).
The following proposition has already been proven in Ref. 7. However, we give here a s

of the proof. We shall denote byl (z) the length ofz with respect to the Riemann structure~12! for
any zPH1,2(@0,1#,L).

Proposition II.6: LetM be strongly causal andt be pseudocoercive onBp,g,E
1 (L). Then for

any cPR there exists D(c).0 such that for any zPLp,g,E
1 ,

t~z!<c⇒ l ~z!<D~c!.

Proof: Assume by contradiction the existence of a sequence (zm)mPN in Bp,g,E
1 (L) such that

t~zm!<c

and

lim
m→1`

l ~zm!51`. ~26!

As t is pseudocoercive, there exists a curvez:@0,1#→M such that

lim
m→1`

ẑm5z uniformly in @0,1#, ~27!

whereẑm is a reparameterization ofzm . SinceM is strongly causal andz is the uniform limit of
a sequence of causal curves,z is injective or constant. Asp¹g(R), z is nonconstant so it is
injective. Moreoverz(@0,1#) is compact, then it can be covered by a finite number of local ch
where the metric can be written as in~14!. This makes it possible, to construct a smooth mapT on
a relatively compact neighborhoodU of z(@0,1#) such that for anyqPU,

^¹T~q!,¹T~q!&,0, ^¹T~q!,W~q!&,0,

and, form sufficiently large andsP@0,1#,

^¹T~zm!,żm&.0.

By ~27!,

T~zm~1!! is bounded. ~28!

Moreover,

T~zm~1!!2T~p!5E
0

1

^¹T~zm!,żm&ds, ~29!
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and, by the choice of the orientation of¹T, there existsn0.0 such that

^¹T~zm!,żm&>n0A^żm ,żm&R ~30!

for any sP@0,1#. Then, by~28!, ~29!, ~30!, there results thatl (zm) is bounded, in contradiction
with ~26!. h

Proposition II.7: Let E,W,L,p,g:R→L satisfy assumptions (3)–(8), t be pseudocoercive on
Bp,g,E

1 (L) and fix cPR. Then there existsr* 5r* (c).0 and l* 5 l * (c).0 satisfying the fol-
lowing property: for any zPtcùLp,g,E

1 (L), @a1 ,a2#,@0,1# with a22a1< l * , z15z(a1), z2

5z(a2)Pz(@0,1#) with dR(z1 ,z2)<r* and for any zˆ1Pg1(#a1,0]) with dR( ẑ1 ,z1)<r* , there
exists a unique future pointing geodesic w satisfying (1) and such that

~1! w(a1)5 ẑ1 ;
~2! w(a2)Pg2(#a2 ,b2@);
~3! w(s)PL for any sP@a1 ,a2#;
~4! t(w)5 inf$t(y)uyPLẑ1 ,g2 ,E

1 (@a1 ,a2#,L)%;

whereg i :]a i ,b i@→L, i 51,2, denotes the maximal integral curve W inL starting at zi .
Proof: As t is pseudocoercive, there exists a compact subsetK of L̄ such that

z~@0,1# !,K ;zPtcøLp,g,E
1 ~L!.

We can consider a finite number of open subsetsU1 ,...,Um of M coveringK, such thatŪ i is
compact and eachŪ i satisfies the properties of Remarks II.2 and II.3. Ifr* is sufficiently small,
z1 ,z2 ,ẑ1PUiùL for some i 51,...,m. Then, by Proposition II.4 there exists a minimizerw in
Lẑ1 ,g2 ,E

1 (@a1 ,a2#,Ui). Sinceø i 51
m Ūi is compact, as the exponential map is locally invertible a

asw is the minimum point oft, the minimizing geodesic is unique provided thatr* is sufficiently
small. It remains to be proved that the minimizerw is included inL. Note that, by Remarks II.2
II.3, setting z(s)5(x(s),t(s)) in @a1 ,a2#, it is possible to prove the existence of a curveẑ
PLẑ1 ,g2 ,E

1 (@a1 ,a2#,Ui) having the same spatial componentx of z and such that~using comparison

theorems in ordinary differential equations! t( ẑ)<t(z)50. Then asw is the minimum point oft,
also t(w)<0, so that by ~8!, w(a2)PL. Moreover there exists two continuous ma
u1 ,u2 :@0,1#→UiùL such that

~a! for any lP@0,1#, u2(l) is in the future ofu1(l);
~b! u1(0)5 ẑ1 , u2(0)5w(a2);
~c! u1(l)Þu2(l) for any lÞ1;
~d! u1(1)5u2(1);
~e! for any lP@0,1#, denoting byg2(l) the maximal integral curve ofW starting atu2(l),

there exists a unique minimizer oft on Lu1(l),g2(l),E
1 (@a1 ,a2#,Ui).

We set

A5$lP@0,1#uthe geodesic minimizingt on Lu1~l!,g2~l!,E
1 ~@a1 ,a2#,Ui !

does not intersect]L%.

If we chooser* and l * sufficiently small, by Proposition II.4, 1PA so A is not empty. Then we
consider

l05 inf A>0.

It is sufficient to prove thatl0PA andl050. Consider a sequence (ln)nPN,A such that
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lim
n→`

ln5l0

and let (wn)nPN be the corresponding sequence of geodesics such that, for anynPN,wn is the
minimum point oft on Lu1(ln),g2(ln ,)E

1 (@a1 ,a2#,Ui) and

wn~@a1 ,a2# !,L ;nPN.

Up to a subsequence, there exists a geodesicw̄ satisfying~1! such that

lim
n→`

wn5w̄

with respect to theC2-norm and

w̄~a1!5u1~l0!, w̄~a2!PL, w̄~@a1 ,a2# !,L̄.

By the time-convexity ofL̄, we get

w̄~@a1 ,a2# !,L,

thenl0PA and by continuity,l050. h

III. DEFORMATION RESULTS

Here we shall state the existence of a shortening flow fort, adapting to our case the ideas
Ref. 8. This is the crucial step for developing a Ljusternik–Schnirelmann category theory
Morse theory.

Fix c. inf$t(z)uzPLp,g,E
1 %. Let K5K(c) be the compact subset ofL̄ such that

z~@0,1# !,K~c! ;zPtcøLp,g,E
1

whose existence is assured by the pseudocoercivity. We can coverK(c) by a finite number ofUi ,
open subsets ofM, where the metric can be written as in Remarks II.2 and II.3. ConsiderD(c)
as in Proposition II.6,r* (c) and l * (c) as in Proposition II.7, and chooseN5N(c) such that

D~c!

N
,r* ,

1

N
, l * .

Choose a partition

05s0,s1,¯,sN21,sN51

of @0,1#, such that for anyi 51,...,N,

si2si 215
1

N
.

Consider a curvezPtcùLp,g,E
1 and chooseN11 pointsz0 ,...,zN on z(@0,1#) such that for any

i 51,...,N,

z05z~0!5p, zN5z~1!, dR~zi ,zi 21!5
l ~z!

N
.

Denote byg i( i 51,...,N) the maximal integral curve ofW such thatg i(0)5zi . Note thatgN

5g(s1t(z)) for any s. By Proposition II.7, letw1 be the future pointing geodesic minimizingt
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on Lp,g1 ,E
1 (@s0 ,s1#,L) and, for anyi 52,...,N, let wi be the future pointing geodesic minimizin

t on Lwi 21(si 21),g i ,E
1 (@si 21 ,si #,L). Note that, ifr* is opportunely chosen andN is large enough

dR~wi~si !,zi !<r* i 51,...,N.

We define a curveh1PBp,g,E
1 (L) by setting

h1~@si 21 ,si # !5wi i 51,...,N.

By elementary comparison theorems for ordinary differential equations,

t~h1!<t~z!<c,

then

h1~@0,1# !,K~c!.

Starting fromh1 , a second curveh2 can be constructed. On any minimizerwi( i 51,...,N) con-
sider the pointmi such that

dR~wi~si 21!,mi !5dR~mi ,wi~si !!.

Denote byl i the maximal integral curve ofw starting atmi for any i 51,...,N and denote by
lN11(s)5g(s1t(h1)). Consider the partition of@0,1# given by

s050, s i5
2i 21

2N
; i 51,...,N, sN1151.

Denote byu1 the minimizer oft on Lp,l1 ,E
1 (@s0 ,s1#,L) and, by induction, for anyi 51,2,...,N

11 let ui be the minimizer oft on Lui 21(s i 21),l i ,E
1 (@s i 21 ,s i #,L). The curveh2PBp,g,E

1 (L) is

such that

h2~@s i 21 ,s i # !5ui .

Again by using comparison theorems in ordinary differential equations, it is possible to prov

t~h2!<t~h1!.

We can prove now that

t~h2!,t~h1!. ~31!

Indeed, ift(h2)5t(h1), by comparison theorems in ordinary differential equations, there re
that h1 is a minimizer on an interval@s i ,s i 11#. By the above construction,h1 consists of two
timelike geodesics satisfying~1!. If it is not a geodesic,ḣ1 has a discontinuity atsi 115(s i 11

1s i)/2. Denote byUh1
the parallel transport ofġ(t(h1)) alongh1 . Sinceh1 is a minimizer, it

satisfies~see Ref. 2!

E
s i

s i 11 ^ḣ1 ,Dsz&

^Uh1
,ḣ1&

ds50 ~32!

for any C`-vector fieldz alongh1 such thatz(s i)505z(s i 11). By ~32!,

g5
ḣ1

^Uh1
,ḣ1&

PC1~@s i ,s i 11#,TM!, ~33!
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then also

2
E

^Uh1
ḣ1&

2 5^g,g&PC1~@s i ,s i 11#,R!.

As ^Uh1
,ḣ1&

2 is strictly positive,

^Uh1
,ḣ1&PC1~@s i ,s i 11#,R!,

then, by~33!, ḣ1 is of classC1. Then, whenever we are far from timelike geodesics satisfying~1!,
~31! holds.

Now we can construct a continuous flowh(s,z) for any sP@0,1#, zPtc. For any s
P@0,1# we can defineh(s,z) on the interval@s0 ,s1# as follows. Assume thatz(@s0 ,s1#) is
contained inUi . Thanks to Remarks II.2, II.3, we setp5(x0,0), g15(x1 ,t11s) and z(s)
5(x(s),t(s)) in @s0 ,s1#, wherex is a curve joiningx0 andx1 andt satisfies the Cauchy problem
~19!. Let a i andd i be the coefficients of the metricg in Ui . Let y(s) be the minimizer of the
functional

Fs~y!5E
s0

ss1

^d i~y,ty!,ẏ&0ds1E
s0

ss1A^a i~y,ty!ẏ,ẏ&0
21^d i~y,ty!,ẏ&01E ds ~34!

with boundary conditionsy(0)5x0 , y(ss1)5x(ss1), wherety is the solution of~19! in @0,ss1#.
Denote by ŷ(s) the extention ofy(s) to @s0 ,s1# obtained takingŷ(s)(s)5x(s) for any s

P@ss1 ,s1#. Finally denote byt̂ y(s) the corresponding solution of~19! in @s0 ,s1#. We define

h~s,z! u@s0 ,s1#5~ ŷ~s!, t̂ y~s!!.

In the same way,h can be defined on the other intervals@si 21 ,si #. Note that

h~1,z!5h1 .

Similarly, we can extend the flowh to a map on@0,2#3tc in such a way that

h~2,z!5h2 .

Iterating the previous arguments, replacing the original curvez by h2 , we obtain a flowh(s,z)
defined onR13tc.

As a first consequence of the existence of the flowh, since

t~h~s,z!!<t~z!

for any s and for anyz, we immediately deduce the following proposition.
Proposition III.1: Lp,g,E

1 ùtc is homotopically equivalent toBp,g,E
1 (L)ùtc, for any cPR.

Moreover, choosing a suitable continuous mapr* (c) and arguing as in Sec. IX of Ref. 5, we als
obtain

Proposition III.2: Lp,g,E
1 is homotopically equivalent toBp,g,E

1 (L).
Classical deformation results~see, e.g., Ref. 12! can be reproved for the functionalt onLp,g,E

1

by using compactness arguments close to the ones used for the shortening method for Riem
geodesics. More precisely the following propositions hold.

Proposition III.3: Let cbe a regular value fort on Lp,g,E
1 ~namelyt21(c) does not contain

geodesics!. Then, there exists a positive numberd5d(c) and a continuous map HPC0(@0,1#
3tc1d,tc1d), such that

~1! H(0,z)5z, for every zPtc1d;
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~2! H~1,tc1d),tc2d;
~3! H(s,z)Ptc2d, for any sP@0,1# and zPtc2d.

Proposition III.4: Let Kc be the set of the geodesics int21(c)ùLp,g,E
1 . Then for any open

neighborhood U of Kc , there exists a positive numberd5d(U,c) and a homotopy H
PC0(@0,1#3tc1d,tc1d), such that

~1! H(0,z)5z, for any zPtc1d.
~2! H(1,tc1d\U),tc2d;
~3! H(s,z)Ptc2d, for any sP@0,1# and zPtc2d.

Proof of Theorem I.2:As, by Proposition II.5,t is pseudocoercive onLp,g,E
1 and g is an

integral curve ofW, it is not difficult to show thatt is bounded from below onLp,g,E
1 . Then, if

d5 inf
zPLp,g,E

1

t~z!PR

were not a critical value fort, by Proposition III.3, there should existd.0 and a homotopy
betweentd1d andtd2d. But this is a contradiction, astd1dÞB andtd2d5B. h

Proof of Theorem I.3:As Lp,g,E
1 is not empty, cat(Lp,g,E

1 )>1. Then, for anykPN, 0,k
<cat(Lp,g,E

1 ) we can define

Gk5$B,Lp,g,E
1 ucat~B,Lp,g,E

1 !>k%, ck5 inf
BPGk

sup
zPB

t~z!.

By using Propositions III.3 and III.4 and by classical arguments in critical point theory~see, e.g.,
Ref. 12!, eachck is well defined and it is a critical value oft. Moreover if for somek, ck

5ck11 there are infinitely many critical points oft at the levelck , so, by Proposition III.2, the
proof is complete. h

Proof of Theorem I.6:Far from geodesics ofLp,g,E
1 , we can use the shortening flow describ

in this section for studying the homotopy type of the sublevels oft. Near geodesics we ca
proceed as in Ref. 7. This makes it possible to write the classical Morse relations using, f
geodesiczPLp,g,E

1 , the Morse indexm(z,t) of z as a critical point oft. As in Ref. 7 and using
the nondegeneracy assumption 1., it can be proved that

m~z,t!5m~z!

giving the proof of~10!. h
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The system of Einstein–Maxwell equations for fields mentioned in the title is
simplified. Known pure radiation solutions are systematized and new solutions are
given by separating the variables. ©1999 American Institute of Physics.
@S0022-2488~99!00611-8#

I. INTRODUCTION

There exists many papers dealing with algebraically special, expanding and twisting va
pure radiation or Einstein–Maxwell fields. An extensive bibliography up to 1980 exists in Re
Further results on Einstein–Maxwell fields may be found in Ref. 2. Pure radiation fields have
studied extensively in Refs. 3–8. Petrov type II fields are characterized by the nonvanishing
second Weyl scalarC2 ,

C25~m1 iM !r3. ~1!

Here m is the mass parameter,M is the Newman–Unit–Tamburino~NUT! parameter, andr is
given by

r52
1

r 1 iS
, ~2!

wherer is the coordinate along the null congruence of geodesics andS is the twist.1

It has been noticed in different contexts that the conditionM50 simplifies the
equations.2,4,5,7,9 In the present paper we explore this condition with the help of the me
proposed in Ref. 3, putting the emphasis on intrinsically time-dependent solutions. We clari
general structure of the solutions obtained by separation of the traditional variablesr, u, z, z̄,
where u is the retarded time andz, z̄ span a two-dimensional surface. Known solutions
systematized and new solutions are given.

Twisting gravitational fields withM50 generalize the classes of Robinson–Trautman~RT!
~Ref. 10! and Kerr–Schild~KS! fields11 and are physically realistic, their simplest representati
being the Schwarzschild, Kerr, and Vaidya solutions.

In Sec. II the method of Stephani is applied to simplify the Einstein–Maxwell equation
Sec. III the main field equation is reduced to a linear second order equation. Its general s
with separated variables is found and studied in Sec. IV. Section V is devoted to solutions
in u, while in Sec. VI solutions with exponential behavior are discussed. Section VII con
some conclusions.

II. THE METRIC AND FIELD EQUATIONS

The standard form of the metric for expanding and twisting fields is1

ds25
2dzdz̄

rr̄P2 22V@dr1Wdz1W̄dz̄1HV#, ~3!
58490022-2488/99/40(11)/5849/11/$15.00 © 1999 American Institute of Physics
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V5du1Ldz1L̄dz̄.

It is determined by ther-independent real functionsP, m, M and the complex functionL,

2iS5P2~ ]̄L2]L̄ !, ~4!

W5r21Lu1 i ]S, ~5!

H52r ~ ln P!u2~mr1MS2kF1
0F̄1

0!rr̄1
K

2
, ~6!

K52P2Re@]~ ]̄ ln P2L̄u!#, ~7!

where]5]z2L]u andk is the Newton constant. The basic functions satisfy the following sys
of equations:

~]23Lu!~m1 iM !522kP21F1
0F̄2

0, ~8!

P23M5Im ]]]̄]̄V, ~9!

n2

2P2 52P@P23~m1 iM !#u1P~]]]̄]̄V!u2~]]V!u~ ]̄ ]̄V!u , ~10!

~]22Lu!F1
050, ~11!

~]2Lu!~P21F2
0!1~P22F1

0!u50, ~12!

whereVu5P, F1
0, andF2

0 are the essential parts of the Maxwell scalars

F15r2F1
0, ~13!

F25rF2
01r2P~2L̄u2 ]̄ !F1

012ir3P~SL̄u2 ]̄S!F1
0, ~14!

andn is either the energy density of pure radiation~thenF15F250) or is given in the Einstein–
Maxwell case by

n252kF2
0F̄2

0. ~15!

Vacuum solutions haveF15F25n50.
The form of the metric is preserved by certain coordinate transformations, one of which

change of the retarded time

u85F~u,z,z̄ !, ~16!

P85Fu
21P, ~17!

L85FuL2Fz , ~18!

S85Fu
21S, ~19!

~m1 iM !85Fu
23~m1 iM !. ~20!

Let us apply now to the system~8!–~12! the method of Stephani.3 It works when eitherF1
0 or

F2
0 vanishes. Then Eq.~8! is solved by
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m1 iM 5fu
3. ~21!

The complex fieldf is invariant under Eq.~16!. It satisfies]f50, which stated differently gives

L5
fz

fu
. ~22!

WhenM50 we can use Eq.~16! to transformm to a positive or negative constantm0 so that

f5m0
1/3@u1 iq~z,z̄ !#, ~23!

L5 iqz . ~24!

ObviouslyLu50. This gauge differs from the most popular Kerr’s gauge whenPu50, but is very
suitable when the NUT parameter vanishes. Equations~9! and ~10! become

]]]̄]̄V5 ]̄ ]̄]]V, ~25!

n2

2P2 53m0P23Pu1P]]]̄]̄P2]]P]̄ ]̄P, ~26!

with ]5]z2 iqz]u . WhenPuÞ0, n2 can be made positive by the choice ofm0 at least for some
region of space–time.1,4,9

If F1
050, Eq. ~12! gives

F2
05PG~f,z̄ !, ~27!

whereG is an arbitrary function. IfF2
050, Eqs.~11! and ~12! give

F1
05C̄~ z̄ !expF2i E ~ ln P!uqzdz G , ~28!

with C(z) being an arbitrary analytic function. This is a particular case of Theorem 26.2 from
1. The expressions for the other functions in the metric simplify

(5P2Q, ~29!

W5 i ]~P2Q!, ~30!

K5P2~ ]̄]1]]̄ !ln P, ~31!

H52r ~ ln P!u2~m0r 2kF1
0F̄1

0!rr̄1
K

2
. ~32!

We have introduced the real, invariant under~16!, function

Q~z,z̄ !5qzz̄ . ~33!

The Weyl scalars12 contain a lot of terms withLu and also simplify in the gaugeLu50. We quote
only the leading terms:

C25m0r3, ~34!

C352r2P3]I 1O~r3!, ~35!
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C45rP2I u1O~r2!, ~36!

I 5P21]̄ ]̄P. ~37!

What remains to be solved is the couple of Eqs.~25! and~26! for P andq. For pure radiation
Eq. ~26! is just an inequality.

Whenm1 iM 50 ~Petrov types III andN! Eq. ~8! holds identically, but still a potentialf may
be introduced with the property]f50 and we can study the subclass of solutions satisfying
~23! ~with m051). Then in all other equations we can setm050.

III. THE FIELD EQUATION „25…

Equation~25! is a linear equation of fourth order with respect toV. However, in the gauge
Lu50 it becomes a linear equation of second order forP. This can be established with the help
the commutator

@],]̄ #52iQ]u . ~38!

Then Eq.~25! becomes

Qzz̄P12Qz̄Pz12QzPz̄14QPzz̄12i ~qz̄Qz2qzQz̄ !Pu14iQ~qz̄Pzu2qzPz̄u!14Qqzqz̄Puu50.

~39!

This equation characterizes the twisting solutions because whenS50 it is trivial. It is nonlinear in
q except for time-independent solutions when only the first four terms remain. In this case Eq~26!
turns into the equation for type III RT solutions, containing onlyP. It is logical to solve first Eq.
~26! for P and plug the result in Eq.~39! to find q. In the present paper time-dependent solutio
will be discussed mainly. In this case Eq.~39! should be solved forP when q is given and the
result placed in Eq.~26! to find n2 for pure radiation solutions.

Similar equations have been derived for time-independent fields in Ref. 1@see Eq.~25.46!#
and 2@Eq. ~5.12!#. For time-dependent fields and concrete expressions forq such equations can b
found in Refs. 7 and 9. A linear equation of second order for (22S)1/2 is found in Ref. 5 in terms
of Cauchy–Riemann structures admitting Lie groups of symmetries and used in Refs. 4
obtain pure radiation solutions.

If P andq depend onz and z̄ via a single functiona (z,z̄) the terms in brackets in Eq.~39!
cancel and it yields

~Qaaazaz̄1Qaazz̄!P14~Qaazaz̄1Qazz̄!Pa14Qazaz̄~Paa1qa
2 Puu!50. ~40!

Let z5(1/A2)(x1 iy). Suppose thata5x and]y is a Killing vector. Then Eq.~40! becomes

qx
2QPuu1QPxx1QxPx1 1

4QxxP50 ~41!

andQ5 1
2qxx . In the case of axial symmetrya5s5zz̄ and Eq.~40! reads

qs
2 Puu1Pss1

~sQ!s

sQ
Ps1

~sQs!s

4sQ
P50, ~42!

Q5~sqs!s . ~43!

The introduction ofz5 ln s as a variable greatly simplifies Eqs.~42! and ~43! making them an
analog of Eq.~41!,

qz
2QPuu1QPzz1QzPz1

1
4QzzP50, ~44!
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Q5e2zqzz. ~45!

Thus every solution withy-symmetry has an axisymmetric mirror with the sameP andQ but as
functions ofz.

IV. SEPARATION OF VARIABLES

Let us search for twisting solutions by separating the variablesP5p(z,z̄) f (u). Equation~39!
transforms into

f uu1A fu1C f50, ~46!

A5
i

2 F Qz

qzQ
2

Qz̄

qz̄Q
12S pz

qzp
2

pz̄

qz̄p
D G , ~47!

C5~4qzqz̄Qp!21~Qzz̄p12Qz̄pz12Qzpz̄14Qpzz̄!. ~48!

Equation~46! is a well-known linear equation. It requires thatA and C must be constant and
possesses three types of solutions according to the sign ofl254C2A2,

f 5e2~Au/2!~C1e~bu/2!1C2e2~bu/2!!, ~49!

f 5e2~Au/2!S C1 sin
lu

2
1C2 cos

lu

2 D , ~50!

f 5e2~Au/2!~C1u1C2!, ~51!

whereb2[2l2.0, l2.0 andl50, respectively. Notice the common exponential factor ifA
Þ0. It is quite interesting that damping exponential behavior is generic for RT solutions, b
stems from the analog of Eq.~26! in the nontwisting case.13,14 When Eq.~40! holds,A vanishes.
There are still three types of solutions, one of them with exponential behavior. When th
y-symmetry Eqs.~46! and ~41! become

f uu1C f50, ~52!

Qpxx1Qxpx1~ 1
4Qxx2Cqx

2Q!p50. ~53!

In the case of axial symmetry Eq.~52! still holds, but Eq.~53! is replaced either by the sam
equation withx changed toz5 ln s or by

pss1~ ln sQ!sps1F ~sQs!s

4sQ
2Cqs

2 Gp50. ~54!

Let us discuss next Eq.~26! for two of the types ofu-behavior allowed by Eq.~39!. Suppose
first thatP5pecu. Introduce the functionB5peicq. Then Eq.~26! reads

n256m0c12p2~ce24icq!ze
2icq14cu, ~55!

c5BBzz̄z̄2BzBz̄ z̄ . ~56!

When m050 the solution is of type III only whencÞ0 because]I 5c/B2. When m0Þ0 and
c50 the solution is of KS type because]I 5I z50 andI can be nullified by a coordinate trans
formationz̄85ḡ( z̄). This means]]P50 @see Eq.~37!#, which can be lifted to]]V50. The latter
is exactly the Kerr–Schild condition.1,3

Suppose next thatP5pu. When there isy-symmetry Eq.~26! yields
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n25
6m0

u
1

1

2
p2~ppxxxx2pxx

2 !u422p2~qxpx1Qp!2u2. ~57!

When there is axial symmetry Eq.~26! changes into

n25
6m0

u
12p2@2ppss14sppsss1s2~ppssss2pss

2 !#u422s2@~qsp2!s#2u2. ~58!

Finally, let us perform the separation of variables in the Maxwell equations. Equation~28!
simplifies

F1
05C̄~ z̄ ! exp@2iq~ ln f !u#. ~59!

When f 5u and f 5ecu this becomes, respectively,

F1
05C̄~ z̄ !e~2iq/u!, ~60!

F1
05C̄~ z̄ !e2icq. ~61!

Equation~12! or ~27! separates as follows:

P21F2
05N̄~ z̄ !ea~u1 iq !, ~62!

N(z) being another arbitrary analytic function anda is a constant different fromc in general. The
energy density of a null Maxwell field~15! becomes

n2

2P2 5kuN~z!u2e2au. ~63!

Obviously polynomial dependence ofP in Eq. ~26! is not allowed by~63!. Consequently, null
Maxwell fields cannot induce solutions withP5pu. It is seen also from Eqs.~55!, ~57!, and~58!
that vacuum solutions of type II are not possible because the different terms cannot canc
other.

V. SOLUTIONS LINEAR IN U

These are solutions withC50 in Eq. ~46! or Eqs.~52!, ~53!, and~54!. Then these equation
are identical to the equations for au-independentP. Therefore we can use any time-independe
solution of Eqs.~25! and ~26! found in the literature which hasLu50 and axial ory-symmetry.
We can also use time-independent solutions of Eq.~53! or Eq.~54! which are not solutions of Eq
~26!.

For example, let us find polynomial solutions withy-symmetry which capitalize on the onl
known vacuum RT solution for type III fields.1,10 If we take L5 ixb21, bÞ1 then Eq.~53!
becomes the Euler equation

x2pxx1~b22!xpx1 1
4~b22!~b23!p50 ~64!

and its solutions are

p5uxua, ~65!

p5 lnuxu, ~66!

p5uxu~32b!/2@C1 sin~m lnuxu!1C2 cos~m lnuxu!#, ~67!
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whenb,3, b53, andb.3, respectively. Herea5 1
2(32b6A32b) andm5 1

2Ab23. The first
of these solutions has been obtained essentially in Ref. 4 by a rather intricate procedure. P
Eq. ~65! andqx5xb21 into Eq. ~57! yields the inequality to be satisfied,

12m0

u
uxu2~b216A32b!12a~a21!~322a!u42~22A32b!2uxu2bu2>0. ~68!

Throughout the paper we consideru.0. The first term is always positive~we accept thatm0

.0 unless stated otherwise!, the third is always negative, while the second changes sign an
positive for a,0 and 1,a,3/2. The third term has negative poles inx for any bÞ0 and b
Þ21 which cannot be compensated by the second term. Hence, pure radiation solutions
III are not allowed and the first term should be present to compensate the negative pole
positive ones. This is achieved whenb,2. The plus sign in the formula fora must be taken in
both cases. For growingu, however, the first term diminishes to zero. Thus the energy densi
positive forb,2 and small enoughu. Whenb50 the third term isx-independent but the secon
is negative, excluding again a type III solution. Type II solution still exists. Finally, whenb5
21 the third term vanishes but the second is still nonpositive becausea51 or a53. Whena
51 only the first term remains andn is x-independent, positive and bounded. This is a KS solut
because]]V52xqx

2/2 and can be turned into zero by au-independent transformation ofV.
The second solution, given by Eq.~66!, has no free parameters and leads to incurable nega

poles and logarithmic singularities inn and is therefore unphysical. As a last comment, we m
start with p5xb21 in Eq. ~53! and obtain a Euler equation forQ with the corresponding three
types of solutions.

The simplest solution of Eq.~53! is probably whenP is u-dependent only, i.e.,p5p0

5const. ThenQxx50 andP5p0u, L5( i /A2)x(c1x12c2), whereci are arbitrary constants an

n25
6m0

u
22p0

4~c1x1c2!2u6. ~69!

The energy density is positive for anyx whenc150 andu is small enough. This is not a KS field
Another simple solution is obtained whenp5eax, a being some constant. Then Eq.~53! has

constant coefficients and one of the solutions isqx5exp(22ax). The energy density is positive
n256m0 /u and I 5a2/2. Consequently the solution is of type II and is equivalent to a
solution.

Let us investigate next the axisymmetric solutions. As has been mentioned in the pre
sections, Eq.~53! has a counterpart for axisymmetric fields with the sameQ and P but with x
replaced byz. However,q andn are different, being given by Eqs.~45! and ~58! instead ofqxx

52Q and Eq.~57!. The solution withp5p0 has a mirror solution

L5 i z̄~c3 ln s1c4!, ~70!

n25
6m0

u
22c3

2p0
4u6. ~71!

The energy density is positive for smallu. Whenc350 it is positive everywhere and the solutio
is a KS field.

Another solution hasq5s, L5 i z̄, Q51. Then Eq.~54! yields

pss1
1

s
ps50 ~72!

andp5c5 ln s1c6. It was found by a different method in Ref. 9. Whenc550 it coincides with
the previous solution withc350.
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A well-known solution is given byp511s/2. Equation~54! becomes linear with respect t
Q,

~21s!sQss1~215s!Qs14Q50 ~73!

and its solution is the hypergeometric functionF(2,2,1,2s/2). It degenerates into a rationa
function for these values of its parameters and we have

Q5
4k~22s!

~21s!3 , ~74!

L52
ik z̄

~11s/2!2 , ~75!

wherek is an arbitrary constant, characterizing the magnitude of the twist~rotation!. This is the
Kramer solution1,7,8,9 which is of KS type and hasn256m0 /u. It represents a radiating Ker
metric. This is seen best in the gaugePu50.

It must be stressed that any solution of the typeP5pu can be transformed from theLu50
gauge to thePu50 gauge by choosingF5u2/2 in Eq. ~16!. Then P85p, L85(2u)1/2L, m8
5(2u)23/2m which transfers theu-dependence to the mass parameter and the twist.

A generalization of the Kramer solution was undertaken in Ref. 7 for the sameL and the
ansatzP5A(s,u)(11s/2). It was shown thatA satisfies a second order linear equation. T
results of this paper guarantee thatP also satisfies a second order linear equation.

The mirror of the solution with p5eax described above isp5eaz and Q5k(1
22a)e22az, aÞ1/2. Hence,

P5sau, ~76!

L5 ik z̄s22a. ~77!

It is very similar to the Kramer solution fora51. For a51/2, P is still given by Eq.~76! while
L5 ik z̄s21 ln s. The energy density is

n25
6m0

u
22d1,2au2. ~78!

VI. SOLUTIONS WITH EXPONENTIAL BEHAVIOR

These are solutions withP5pecu andC52c2 in Eq. ~46! or Eqs.~52!, ~53!, and~54!. We
shall give two solutions withy-symmetry. First we takeqx52(12b)xb21, where the constan
bÞ1 and put this expression in Eq.~53!,

x2pxx1~b22!xpx1@ 1
4~b22!~b23!14c2~12b!2x2b#p50. ~79!

Whenb50 this is the Euler equation, similar to Eq.~64! and has three types of solutions. The fi
two of them read

p5uxu~3/2!6g, ~80!

p5uxu~3/2! lnuxu, ~81!

when c2,3/16 or c253/16, respectively. Hereg5 1
2(3216c2)1/2. When bÞ0 the solution is

given by Bessel functions,

p5x~32b!/2@C1Jn~exb!1C2Yn~exb!#, ~82!
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wheren5A32b/2b, e52ub21uc/b. In all cases

L5 iA2~12b!xb21. ~83!

These are essentially the solutions found in Ref. 4, wherex-symmetry was used instead togeth
with a special transformation between au-independent and au-dependent solution.

The second solution to be presented is an analog of Eq.~69!, i.e., P5ecu depends only onu.
Then Eq.~53! may be integrated to

Q5 1
2~b22 2

3c
2qx

412dqx!
1/2, ~84!

whereb.0 andd are constants. Whend50, Eq. ~84! is solved by elliptic functions,

L5 i
b

l
cn~lx!, ~85!

wherel5( 8
3b

2c2)1/4 and the modulus ofcn is 1/2. It is clear from Eq.~84! thatQ<b/2. Equation
~55! yields

n256cm024c2Q2e4cu. ~86!

The second term is definitely negative and ifm0.0, c.0 dominates for largeu, no matter how
big m0 is. However, ifm0,0, c,0 the first term remains positive while the second is damp
exponentially for large retarded times. Choosingum0u big enough we can arrange forn2.0.

Let us give next an example of an axisymmetric solution. Let us substitute in Eq.~54! qs

5Q5a5const to obtain the generalization of Eq.~72!,

pss1
1

s
ps1a2c2p50. ~87!

It is solved by Bessel functions, e.g.,

P5ecuJ0~acs!, ~88!

L5 ia z̄. ~89!

This solution was found and discussed in Ref. 9.
Finally, we give an example of a solution withouty-symmetry or axial symmetry. We sha

obtain the most general KS pure radiation field withP5pecu. The results of Sec. IV and Eq.~56!
show that

q5
1

2ic
ln

B

B̄
, ~90!

P5~BB̄!1/2ecu, ~91!

whereB satisfiesc50, namely,

B2~ ln B!zz̄5S~z!. ~92!

S is an arbitrary analytic function. IfSÞ0 we introduce the new variablev5*zS(z8)dz8 and Eq.
~92! transforms into the Liouville equation,

B2~ ln B!vz̄51. ~93!
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Returning to the original variables, its general solution reads

B5S~z!1/2
f ~z!1g~ z̄ !

Af ~z!zg~ z̄ !z̄

. ~94!

The functionsf andg are arbitrary. WhenS50 the solution of Eq.~92! is

B5 f ~z!g~ z̄ !. ~95!

It has zero twist, i.e., it is a RT solution. Then we may setL5q50 which meansf (z)[g(z) and
P5 f f̄ ecu. A coordinate transformation setsf 51. Therefore solution~95! is equivalent toB51.

In Refs. 3 and 15 the general axisymmetric pure radiation KS fields were found. Interes
enough, theiru-dependence covers the three types~49!, ~50!, and~51! with A50. The exponential
solution was generalized in Ref. 3 to a nonsymmetric one with

B5G~z!1 z̄K~z!, ~96!

G and K being arbitrary. Equation~96! may be obtained from the general formula~94! by spe-
cializing to g( z̄)5 z̄,

B5 f ~z!F S~z!

f ~z!z
G1/2

1 z̄F S~z!

f ~z!z
G1/2

. ~97!

The general KS field with nonradiative Maxwell field has been given in Ref. 11. It
remarked in Ref. 1 that no solution with a null Maxwell field has been found. Formulas~94! and
~95! allow the study of this question in the context of solutions with separated variables
energy density~63! tolerates exponential dependence. Equation~55! reads in this case,

3m0c5kN~z!N̄~ z̄ !BB̄. ~98!

ObviouslyB cannot be given by Eq.~94! but a nontwisting solution withB51 is possible. Then
P5ecu andF2

05(3m0c/k)1/2. The mass parameter is constant, as usual,m5m0 . This is nothing
but a special case of the Einstein–Maxwell solution of Robinson and Trautman10 in disguise@see
also Eq.~24.41! in Ref. 1#. The conclusion is that there is no twisting KS solution with a n
Maxwell field and separated variables.

VII. CONCLUSIONS

In this paper we have carried out the idea of Stephani based on the introduction of an inv
potential for algebraically special, twisting and expanding gravitational fields. It works best i
important subclass of fields with vanishing NUT parameter. The system of Einstein–Ma
equations is reduced to the couple of Eqs.~25! and~26! for P andL whereL is represented by a
real function of two variablesq(z,z̄) ~theLu50 gauge!. We have studied mainly pure radiation
solutions for which Eq.~26! is an inequality. The main equation~25!, originally of fourth order,
becomes a linear second order equation forP ~39!, which further simplifies for the most commo
symmetries. In some cases it is linear forqx , too. Of course, it is not possible to enumerate
solutions of Eq.~39!. The method of separation of variables was used to systematize most
known solutions obtained in the past by a variety of different approaches. We have also in
gated the region where the energy density of pure radiation is positive. Samples of new so
were given to illustrate the application of Eqs.~39!, ~53!, ~54!, and~55!. Three types of behavio
with respect to the retarded time have been found; exponential, trigonometric, and linear. A
the new solutions is the most general KS pure radiation field with exponential time behav
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was shown that the radiation field cannot be a null Maxwell field unless the twist vanishes. F
it should be mentioned that the casem50, MÞ0 is much more difficult because Eq.~9! remains
nonlinear inP.
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The nature of the classical canonical phase-space variables for gravity suggests that
the associated quantum field operators should obey affine commutation relations
rather than canonical commutation relations. Prior to the introduction of con-
straints, a primary kinematical representation is derived in the form of a reproduc-
ing kernel and its associated reproducing kernel Hilbert space. Constraints are
introduced following the projection operator method, which involves no gauge
fixing, no complicated moduli space, nor any auxiliary fields. The result, which is
only qualitatively sketched in the present paper, involves another reproducing ker-
nel with which inner products are defined for the physical Hilbert space and which
is obtained through a reduction of the original reproducing kernel. Several of the
steps involved in this general analysis are illustrated by means of analogous steps
applied to one-dimensional quantum mechanical models. These toy models help in
motivating and understanding the analysis in the case of gravity. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!02011-3#

I. INTRODUCTION

General relativity is, in certain ways, fundamentally different than most other physi
relevant classical field theories, and the same remark applies to attempts to provide ass
quantum formulations. The space–time metricgmn(x), xPR4, m,n50,1,2,3, possesses a sign
ture requirement that is incompatible with the space of metrics being a linear vector s
~Although we assume a 311 theory of gravity for illustrative purposes, it is straightforward
generalize to ans11 theory as well,s>1.! The inverse metricgsm(x), defined so that
gsm(x)gmn(x)5dn

s , is classically trivial but it is quantum mechanically challenged since
left-hand side involves the product of two operator-valued distributions. Moreover, the spatia
temporal constraints that hold at each space–time point classically close algebraically, bu
exhibit an anomaly~more commonly called a factor-ordering problem! when quantized. In effect
this fact changes the constraints from first class~classically! to second class~quantum mechani-
cally!. And, of course, there is the well-known fact that unlike other theories that take place
fixed space–time stage, the theory of gravity involves the dynamics of the space–time stage
Our purpose in this article is to discuss some basic issues surrounding quantum gravity
viewpoint different than traditional ones.~Remark: The closest work in spirit to that discussed
this paper is that of the author,1 Isham and Kakas,2 and especially Pilati.3 See Sec. V for an
extensive discussion. We do not directly comment on current schemes for quantizing grav!

Let us outline the general approach we shall adopt. First, we focus on basic kinematics a
quantum theory of positive definite, 333 matrix-valued field variables and associated noncan
cal ‘‘conjugate’’ field variables, designed to offer an initial class of coherent states and coh
state induced Hilbert space representations. In this step it is noteworthy that, besides the si
issue for the metric, the existence of an operatorgjk(x), j ,k51,2,3, inverse togkl(x) is shown,
such that, when suitably defined, the equationgjk(x)gkl(x)5dk

j is fulfilled. Second, we introduce

a!Electronic mail: klauder@phys.ufl.edu
58600022-2488/99/40(11)/5860/23/$15.00 © 1999 American Institute of Physics
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the spatial and temporal constraints in the projection operator approach recently developed
author and others.4–7 This procedure has the advantage of working entirely with the class
degrees of freedom, including thec-number Lagrange multipliers—specifically, the lapse and s
functions. It is not necessary to introduce additional fields~e.g., ghosts with false statistics!, nor
choose gauges, nor pass to moduli spaces, etc. Initially, the constraints are imposed in a
ized fashion. Subsequently, the removal of the regularization is analyzed, a process tha
involves an automatic change of Hilbert-space representation. Assuming that the limit rem
the regularization exists, the physical Hilbert space that arises is then, generally speakin
described as a reproducing kernel Hilbert space that emerges from the reduction of the o
reproducing kernel.

Before we undertake any discussion of gravity, however, we sketch in Sec. II the key con
as applied to some simple, few degree-of-freedom systems. In Sec. III we construct a s
kinematical framework for quantum gravity, while in Sec. IV we analyze the introduction
constraints. Section V contains a general discussion about operator representations and co
in relation to reparametrization invariance. In Part II of this work, the analysis of gravitati
constraints is discussed in detail. In addition, the classical limit of the affine gravitational qua
theory developed in Secs. III–IV will be discussed and compared with classical gravity.

II. ELEMENTARY ILLUSTRATION OF KEY CONCEPTS

As is generally well known, there is only one irreducible representation up to unitary eq
lence of the canonical, self-adjoint operatorsP andQ satisfying the Weyl form of the canonica
commutation relations. This representation, equivalent to the Schro¨dinger representation, implie
that the spectrum of bothP andQ cover the whole real line. Such operator degrees of freedom
appropriate for many systems with a finite or an infinite number of degrees of freedom, bu
are inappropriate for gravity. The reason for this is that the classical 333 metric is strictly positive
definite and the associated quantum field operator cannot be represented by an operato
spectrum is unbounded above and below. Instead of the usual relation@Q,P#5 i , with \51, one
is led to consider anaffine commutation relation,8 which for a single degree of freedom takes t
form

@Q,D#5 iQ. ~1!

HereD[(PQ1QP)/2 denotes the dilation operator, and it follows9,10 that solutions of the affine
commutation relations exist with irreducible, self-adjoint operatorsD andQ for which—and this
is the important part—Q.0. „There are two other inequivalent self-adjoint solutions: one wh
Q,0, which is rather like the representation of interest, and another for whichQ50.9 Neither of
these representations will be of interest in this article.… Even though the operatorP is only a
symmetric operator that has no self-adjoint extension, the introduction of the self-adjoint op
D provides the substitute commutation relation given above. These two commutation relatio
not in conflict since the affine commutation relation follows directly from the Heisenberg c
mutation relation simply by multiplication of the latter byQ. We note that an analog of the affin
variables will be used in the case of the gravitational field to maintain the positivity of the
quantum field operator for the 333 spatial metric.

Continuing with the one-dimensional example, and based on self-adjoint operators that
the affine commutation relation, let us introduceaffine coherent states,11 up,q&PH, defined by the
expression

up,q&[eipQe2 i ln~q)Duh&, 2`,p,`, 0,q,`. ~2!

Here, the fiducial vectoruh& is chosen to satisfy several conditions, which, using the shorth
^( • )&[^hu( • )uh&, are specifically given by

^Q21&[C,`, ^1&51, ^Q&51, ^D&50, ^P&50. ~3!
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The first condition is required, while the remaining conditions are chosen for convenience
coherent states also admit a resolution of unity11 expressed in the form

15E up,q&^p,qu dt~p,q!, dt~p,q!5dp dq/2pC, ~4!

integrated over the half-planeR3R1 .
In particular, diagonalizing the self-adjoint operatorQ5*0

`xux&^xu dx in terms of standard
Dirac-normalized eigenvectors, leads to a representation for the coherent-state overlap giv

^p,qur ,s&[^huei ln(q)De2 ipQ eirQe2 i ln(s)D uh&

5~qs!21/2E
0

`

h~x/q!* e2 ix(p2r )h~x/s! dx, ~5!

where the fiducial functionh(x)5^xuh& denotes the Schro¨dinger representation of the fiducia
vector uh&. It is important to observe, for some suitable functionF, that

^p,qur ,s&5F~q,p2r ,s!, ~6!

namely, thatp and r universally enter in the formp2r . It is also clear that̂ p,qur ,s& defines a
continuous, positive-definite function, which, apart from the continuity, means that

(
n,m51

N

an* am ^pn ,qnupm ,qm&>0, ~7!

for arbitrary complex$an%n51
N and real$pn ,qn%n51

N sequences, withN,`. The function~5! may
be taken as thereproducing kernel for a reproducing kernel Hilbert space.12 Note that the infor-
mation in^p,qur ,s& is enough to recoverh(x) apart from an overall constant phase factor. Th
different fiducial functions~not related by a constant phase factor! generate distinct reproducin
kernels. Since each reproducing kernel Hilbert space has one and only one reproducing k12

it follows for differenth(x) that the Hilbert space functional realizations are completely disjo
except for the zero element. Basic elements of a dense set of vectors in each such Hilbert sp
given by continuous functions of the form

c~p,q![ (
n51

N

an^p,qupn ,qn&, ~8!

defined for arbitrary complex$an%n51
N and real$pn ,qn%n51

N sequences, withN,`. Let a second
such function be given by

f~p,q![(
j 51

J

b j^p,qu p̄ j ,q̄ j&, ~9!

defined for arbitrary complex$b j% j 51
J and real$ p̄ j ,q̄ j% j 51

J sequences, withJ,`. The inner
product of two such vectors is thendefined12 to be

^cuf&[„c~•,• ! f~•,• !…[ (
n51

N

(
j 51

J

an* b j^pn ,qnu p̄ j ,q̄ j&, ~10!

which whenuf&5uc& is, by definition, non-negative. The resultant pre-Hilbert space is compl
to a ~reproducing kernel! Hilbert spaceC by including all Cauchy sequences in the normiuc&i
[A^cuc& asN tends to infinity. Finally, we note that the space of functions appropriate to
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reproducing kernel isidentical to the space of functions appropriate to a second reprodu
kernel that is just a constant multiple of the first reproducing kernel. This fact does not cont
the uniqueness of the reproducing kernel for each Hilbert space because strictly differen
products are assigned in the two cases. Of course, the foregoing discussion applies quite g
and is not limited to any one sort of reproducing kernel.

When the statesup,q& form a set of coherent states—as we assume in the present case
inner product has analternative representationgiven by a local integral of the form

^cuf&5E c~p,q!* f~p,q! dt~p,q!, ~11!

expressed in terms ofc(p,q)[^p,quc& andf(p,q)[^p,quf&. It follows that this formula holds
for all elements of the completed Hilbert spaceC, and, moreover, every element of the s
completed space is abounded and continuous function, the collection of which forms a rathe
special closed subspace ofL2(R2,dt).

Thanks to the coherent-state resolution of unity, it follows that the coherent state ov
function satisfies the integral equation

^p9,q9up8,q8&5E ^p9,q9up,q&^p,qup8,q8& dt~p,q!, ~12!

a basic relation, which, if it was established as a first step for the continuous fun
^p9,q9up8,q8& @5^p8,q8up9,q9&* #, guarantees the existence of a local integral representatio
the inner product of two arbitrary elements in the associated reproducing kernel Hilbert s
Several useful properties follow from this reproducing property. For example, repeated use
resolution of unity leads to the fact that

^p9,q9up8,q8&5 lim
L→`

E •••E )
l 50

L

^pl 11 ,ql 11upl ,ql& )
l 51

L

dt~pl ,ql !, ~13!

in which we have identifiedp9,q95pL11 ,qL11 and p8,q85p0 ,q0. In turn, making an~unjusti-
fied!! interchange of the~continuum! limit with the integrations, and writing for the integrand th
form it would assume for continuous and differentiable paths, gives rise to the suggestiv
strictly formal expression13

^p9,q9up8,q8&5E e2 i *0
T q(t) ṗ(t) dt Dt~p,q!, ~14!

which determines a formal path integral representation for the kinematics that applies forT
.0. Thus, the existence of a coherent state resolution of unity is the necessary and su
condition to introduce a traditional coherent state phase-space path integral representation
kinematics, which specifically leads to the reproducing kernel. A path integral for the kinem
is a necessary prerequisite to obtain a path integral for the dynamics. While less than ide
formal path integral itself may be used as a starting point for quantization. Even though the f
nature of the path integral renders it basically undefined, one may always~re!introduce a regular-
ization by a lattice-limit formulation~as above!, using suitable ingenuity to choose an accepta
integrand. This procedure is more or less standard by now.

However, it must be appreciated that reproducing kernels for reproducing kernel H
spaces arenot requiredto fulfill a ~positive! local integral representation for the inner product.
cases where the integral for the resolution of unity does not exist, one must accept the
product that is given directly by the reproducing kernel, which means that the integral relatio~12!
is replaced by

„^•,•up9,q9& ^•,•up8,q8&…[^p9,q9up8,q8&. ~15!
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When this is the case, we say that$up,q&% forms a set ofweak coherent states,14 i.e., the elements
of $up,q&% span the Hilbert spaceH, but do not admit a local integral representation for the in
product of elements in the associated reproducing kernel Hilbert space.

A simple example of a reproducing kernel Hilbert space without a local integral repres
tion for the inner product is determined, foru9,u8PR, by the reproducing kernel̂u9uu8&
[exp@2(u92u8)2#; here, one must use„^ • uu9& ^ • uu8&…[^u9uu8&, which is then extended by
linearity and continuity to all Hilbert space vectors.

A more relevant set of examples is given by the following discussion applied to our si
model. Leta.2 1

2, and chooseh(x)[N xa exp(2bx). Here the factorN is fixed by requiring
*0

`uh(x)u2 dx51. The two conditionŝ Q&51 and^Q21&5C,`, lead tob2 1
25a.0; in this

caseC5121/(2b). In turn, the reproducing kernel is given explicitly15 by

^p,qur ,s&5F ~qs!21/2

1
2~q211s21!1 i 1

2b
21~p2r !

G 2b

5exp„22b ln$@ 1
2~q211s21!1 i 1

2b
21~p2r !#/~qs!21/2%…; ~16!

the second form is given for comparison purposes to the gravitational case. As long asb. 1
2, it

follows that the statesup,q& form a set of coherent states with a proper resolution of unity,
therefore a local integral representation for the inner product exists. In this case, path in
exist as lattice limits, and the whole situation seems familiar. On the other hand, if 0,b< 1

2, the
overlap function̂ p,qur ,s& defined above is still a positive-definite function and, therefore, it
valid reproducing kernel that leads to an associated reproducing kernel Hilbert space; ho
such a Hilbert space does not admit a local integral representation for the inner product in t
of the given representatives. Therefore, there isno conventional coherent state path integral for t
kinematics, and thus also for the dynamics, in a reproducing kernel Hilbert space represe
when 0,b< 1

2. This lack of a conventional coherent state path integral representation may a
to be detrimental to any program to introduce quantization, dynamics, etc.—but there is ho

There is another way to generate the reproducing kernel for the given family of fid
vectors that may be applied for allb.0. Let us first focus onb. 1

2. In that case, observe, b
construction and using]p[]/]p, etc., that for everyuc&PH,

B c~p,q![$2 iq21]p111b21q ]q% c~p,q!50, ~17!

an equation that represents a~complex! polarization16 of L2(R2,dt). It follows that the second-
order differential operatorA[ 1

2bB†B>0, and thereforeA can be used to generate a semigroup
particular, for anyT.0 and asn→`, the expressione2nTA becomes aprojection operatoronto
the subspaceC of solutions to the polarization equation.17 In a two degree of freedom Schro¨dinger
representation—symbolized byup,q), where (p,q)PR3R1 and (p,qur ,s)5d(p2r )d(q2s)—it
follows, from a two-variable Feynman–Kac–Stratonovich path integral formula,18 that

^p9,q9up8,q8&[ lim
n→`

~p9,q9ue2nTAup8,q8!

5 lim
n→`

NE e2 i *0
Tq(t) ṗ(t) dt2(1/2n)*0

T[b21q(t)2ṗ(t)21bq(t)22q̇(t)2] dt Dp Dq

[ lim
n→`

enT/2E e2 i *0
Tq(t) dp(t) dWn~p,q!, ~18!

whereWn denotes a two-dimensional Wiener measure with diffusion constantn, pinned att50 to
p8,q8 and at timet5T to p9,q9, which is supported on a space of constant negative curva
R522/b. It is noteworthy in~18! that the variablep(t) enters only in the formṗ(t), a fact which
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leads to the result depending only on the difference,p92p8. For everyn,`, and with probability
one, all Wiener paths in the given path integral arecontinuous, and, for purposes of coordinat
transformations, it is convenient to adopt the~midpoint! Stratonovich rule to define the stochas
integral 2*q(t) dp(t) since, in that case, the rules of the ordinary calculus hold. Such a re
sentation is said to involve acontinuous-time regularization.19

Now we consider the case where 0,b< 1
2. The solutions to~17! are, up to a factor, analytic

functions, but they are no longer square integrable, as is clear from the fact that the laq
behavior of~16! is controlled only by the factorq2b . As a consequence, the operatorA>0 has
only a continuous spectrum. The family of operatorse2nTA is still a semigroup, and the expressio
(p9,q8ue2nTAup8,q8) still has the formal path integral representation given in the middle line
~18!. However, asn→`, e2nTA does not lead to a projection operator; instead we need to ex
the germ of that semigroup asn→`. If we let E>0 denote continuum eigenvalues for the opera
1
2B

†B, we can write

~p9,q9ue2nTAup8,q8!5E ~p9,q9uE,v ! e2nTbE~E,vup8,q8! r~E,v ! dE dv, ~19!

for some density of statesr(E,v). Here, the variablev labels degeneracy for12B
†B. For the sake

of illustration, let us assume thatr(E,v).C̄Ew r̄(v), w.21, for E!1. We base this assump
tion on the fact that there is no reason for anE-dependent degeneracy for very tinyE. Thus, we
consider the expressionJ(n)[(nbT)w11/C̄ G(w11), and are led to the fact that

lim
n→`

J~n! ~p9,q9ue2nTAup8,q8!

5 lim
n→`

E ~p9,q9uE,v ! e2nTbE~E,vup8,q8! J~n! r~E,v ! dE

5E ~p9,q9u0,v !~0,vup8,q8! r̄~v ! dv. ~20!

In effect, this procedure has enabled us to pass to the germ of the semigroup. Observe
rescaling factor is independent of the coherent state labels, and thus we are only ma
n-dependent rescaling before the limitn→` is taken. If necessary, we can rescale our expres
by letting J(n)→ J̄(n)5M (p9,q9) M (p8,q8) J(n) to achieve normalization without affecting it
positive-definite character. In summary, for 0,b< 1

2, we claim that instead of~18! we can write

^p9,q9up8,q8&[ lim
n→`

J̄~n!~p9,q9ue2nTAup8,q8!

5 lim
n→`

N̄E e2 i *0
Tq(t) ṗ(t) dt2(1/2n)*0

T[b21q(t)2ṗ(t)21bq(t)22q̇(t)2] dt Dp Dq

[ lim
n→`

J̄~n! enT/2E e2 i *0
Tq(t) dp(t) dWn~p,q!. ~21!

Convergence in this case is initially regarded in the sense of distributions. To lead to the d
result, we appeal to analyticity~up to a specific factor! of the result inq211 ib21p, analyticity
~up to another factor! in the variables212 ib21r , and dependence onp2r @cf. ~16!#.Note that
J̄(n) can always be determined self-consistently by insisting that^p,qup,q&51 for all (p,q). In
simpler terms, we can always regardJ̄(n) as part of the needed normalization coded intoN̄ in the
formal path integral expression.

As will become evident later, various features of reproducing kernels, reproducing k
Hilbert spaces, and associated rules for defining inner products illustrated above will carry
into the quantum gravity case as well.
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A. Operators and symbols

In addition to the properties of the reproducing kernel Hilbert space, certainsymbolsassoci-
ated with operators are important. Let us introduce the upper symbolH(p,q) associated to the
operatorH(P,Q) and defined, modulo suitable domain conditions, by the expression

H~p,q![^p,quH~P,Q!up,q&5^H~p1P/q,qQ!&. ~22!

For example, if H(P,Q)5P22Q21 denotes a quantum Hamiltonian, thenH(p,q)5p2

1^P2&/q22C/q. SinceC5O(1) ~e.g., for largeb! and ^Q&51, it follows that ^P2&5O(\2).
Observe thatH basically agrees with the expected classical Hamiltonian in the limit that\→0, but
prior to that limit H includes a quantum-induced barrier to singularities in solutions of the u
classical equations of motion. We adopt the expressionH(p,q) as the~\-augmented! classical
Hamiltonian and refer to the connection between the quantum generatorH and the classica
generatorH as theweak correspondence principle.20 In this way, the classical and quantu
theories may bothcoexist, as they do in Nature.

There is also another set of symbols that are important. We introduce the lower sy
h(p,q) that is related to the operatorH(P,Q) by the expression

H~P,Q!5E h~p,q! up,q&^p,qu dt~p,q!. ~23!

For the one-parameter class of fiducial vectors leading to~16!, it follows that a dense set o
operators admit such a symbol for a reasonable set of functions.

In the quantum gravity case, there are twin goals:~i! to ensure that the field operators
interest are well defined and locally self-adjoint in the given field operator representation; a~ii !
to choose locally self-adjoint constraint operators that have a weak correspondence pr
which connects them with the desired form of the classical constraint generators~possibly \
augmented!.

B. Imposition of constraints

We adopt the projection operator approach to the quantization of systems with constrai4–7

Let $Fa(P,Q)%a51
A , A,`, denote a set of constraints, each element given by a self-ad

operator. Further, assume thatF•F[Sa51
A (Fa)2 is also self adjoint. We define the~provisional!

physical Hilbert spaceHphys[EH, whereE5E†5E2 is a uniquely defined projection operator, a
in turn choose

E[E„F•F<d~\!2
…, ~24!

whered~\! is not a d-function but a small, positive, possibly\-dependent,regularization param-
eter for the set of constraints. As shown below,d~\! is chosen so thatE is the desired projection
operator. This choice may entail a specific representation of the Hilbert space and a suitab
asd→0 to extract the germ of the projection operator.

We may illustrate this latter situation for the constraintF[Q21, assuming initially thatd,1.
In this case

^cuE„~Q21!2<d2
…uf&5E

12d

11d
dxE ds~y! c~x,y!* f~x,y!, ~25!

wheres accounts for any degeneracy that may be present. When restricted to functionsc0 andf0

in the dense setD, where~say!

D[$ polynomial~x,y! e2x22y2
%, ~26!

and rescaled by a suitable factor, the projection operator matrix elements lead to the expr
                                                                                                                



ace by

s

quali-

d state
e

ro

ose

hich
iscus-

n

ics is
m plus
ith the

ure

kernel

5867J. Math. Phys., Vol. 40, No. 11, November 1999 Noncanonical quantization of gravity. I. . . .

                    
~2d!21^c0uE„~Q21!2<d2
…uf0&5~2d!21E

12d

11d
dxE ds~y! c0~x,y!* f0~x,y!. ~27!

Now, asd→0, this expression becomes

E c0~1,y!* f0~1,y! ds~y![~~c0 ,f0!!. ~28!

Interpreting this final expression as a sequilinear form, one completes the desired Hilbert sp
adding all Cauchy sequences in the associated normiuc0))i[A((c0 ,c0)) . The result is the true
physical Hilbert space in which the constraintQ2150 is fulfilled, and this example illustrate
how constraints are to be treated whenF•F has its zero in the continuous spectrum.

A second example of an imposition of constraints is given byF15Q21, as before, along
with F25D. This situation corresponds to second class constraints, and serves as a simple
tative model of what occurs in the gravitational case. In this case

E5E„D21~Q21!2<d~\!2
…. ~29!

Here, the left-hand side of the argument can be regarded as a ‘‘Hamiltonian,’’ and the groun
u08& for such a system~nondegenerate, in the present example! can be sought. In particular, ther
are two positive parameters,d8 andd9, such that, for alld with d8<d,d9, then

E5E„D21~Q21!2<d~\!2
…[u08&^08u. ~30!

This is the desired choice to make forE in the case whereF•F has a discrete spectrum near ze
that does not include zero.

For completeness, ifF•F has a discrete spectrum including zero, then it suffices to cho

E5E„F•F50…5E„F•F<d~\!2
…, ~31!

where in the present cased~\!.0 is chosen small enough to include only the subspace for w
F•F50. This simple case does not seem to arise in quantum gravity. See Refs. 4,7 for a d
sion of gauge invariance.

When the number of constraints is infinite, A5`, as will be the case for a field theory, the
a slightly different approach is appropriate. One form this takes is dealt with in Sec. IV.

C. Appearance of time

In a reparametrization-invariant problem in quantum mechanics it is typical that dynam
cast in the guise of kinematics at the expense of introducing an additional degree of freedo
a first-class constraint; see, e.g., Ref. 21. Let the resultant kinematical reproducing kernel w
extra degree of freedom be given by^p9,q9,s9,t9uEup8,q8,s8,t8&, whereE is the projection op-
erator enforcing the constraint. Next, reduce this expression, for example, as in the proced

^p9,q9,t9up8,q8,t8&[E E ^p9,q9,s9,t9uEup8,q8,s8,t8& ds9 ds8. ~32!

The result is a new positive-definite function that can be used to define a reproducing
Hilbert space. However, it may well happen that the following identity holds:

^p9,q9,t9up8,q8,t8&5„^•,•,•up9,q9,t9& ^•,•,•up8,q8,t8&…

5„^•,•,tup9,q9,t9&^•,•,tup8,q8,t8&…. ~33!

This equation means that the space spanned by the statesup,q,t& by varyingp, q, and t is thesame
spacespanned, by the same states, by varyingp andq but with t held fixedat some value~e.g.,
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t50). This situation implies that the statesup,q,t& areextended coherent statesin the sense of
Ref. 22, and, in particular, thanks to using canonical group coordinates in the coheren
parametrization, thatup,q,t&5exp(2iHt)up,q,0& for some self-adjoint ‘‘Hamiltonian’’H. The
parametert is then recognized as the ‘‘time’’t. For an explicit example of how this procedu
works in detail, see Ref. 23.

It is expected that a suitable time parameter will emerge in the extension of these ideas
gravitational case.

D. Matrix generalization

Our preceding analysis has been confined to a singlep and q and the associated affin
quantum operators. In any generalization to the gravitational case, it will first be necess
generalize the preceding discussion to 333 ~or more generally tos3s! matrix degrees of freedom
and repeat an analysis similar to that of the present section. We do not include this discussi
since that is the subject of a separate work.24 It is safe to say, apart from some technical deta
that there are no special surprises in this generalization, and the basic concepts that we sh
are already present in the simplest case on which we have concentrated.

III. GRAVITATIONAL KINEMATICS

A. Preliminaries

Let us start with the introduction of a three-dimensional topological spaceS that is locally
isomorphic to a subset ofR3 . Locally, we generally use three ‘‘spatial’’ coordinates, sayxj , j
51,2,3, to label a point inS. This labeling is nonsingular and thus one-to-one. Whether a si
coordinate chart coversS depends on the global topological structure ofS. Let us fix this global
topological structure from the outset—for example, topologically equivalent toR3, S3, T3, etc.
The theory of quantum gravity developed here does not engender topological changes
underlying topological spaceS. Note this lack of topological change applies only to the spaceS.
It is unrelated to any presumed ‘‘space’’ and/or ‘‘topology’’ associated with any quantum m
tensor, which, after all, is typically distributional in character.

If the spaceS is such that more than one coordinate patch is required we arrange fo
necessary matching conditions and rename the coordinates within each patch byxj , j 51,2,3, for
some domain. We can also consider alternative coordinates, sayx̄ j , j 51,2,3, which are also
nonsingular. We admit only differentiable coordinate transformations such that the Jac

@]x/] x̄#[det(]xj /] x̄k)Þ0 everywhere. The group composed of such invertible coordinate tr
formations is thediffeomorphism group.

We can also introduce functions on the spaceS which in coordinate form may be denoted b
f (x). A scalar function is one for whichf̄ ( x̄)5 f (x), while a scalar density of weight one satisfi
b̄( x̄)5@]x/] x̄# b(x), or stated as a volume form,dV5b̄( x̄) d3x̄5b(x) d3x. Observe that it is not
necessary to have a metric in order to have a volume form. WhetherS is compact or noncompact
we assume that 0,b(x),` for all x and therefore 0,b(x)21,` for all x as well. These
properties are still valid after a nonsingular coordinate change. Integrals of a scalar functio
the form * f dV5* f (x) b(x) d3x and are invariant under any coordinate transformation in
diffeomorphism group.

In the ADM ~Arnowitt, Deser, Misner!25 canonical formulation of classical gravity there a
two fundamental fieldsgkl(x) @5glk(x)# andpkl(x) @5p lk(x)#. The metricgkl(x) transforms
as a~two-valent covariant! tensor, while the momentumpkl(x) transforms as a~two-valent con-
travariant! tensor density of weight one. Thus*gkl(x) pkl(x) d3x @or even
*gkl(x,t) ṗkl(x,t) d3x dt# is an invariant under diffeomorphism group transformations~on the
spatial hyperspace, of course!. Note well: The latter example pertains to a generalization of
former one, including an additional independent variablet that possibly could be identified with
~coordinate! ‘‘time.’’
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A metric is not an arbitrary tensor but is restricted to be positive definite. Specifically, for
real a j , j 51,2,3, whereS j 51

3 (a j )2.0, it follows that ak gkl(x) a l.0 for all x. As a conse-
quence, the positive-definite~two-valent contravariant! tensorgkl(x) exists at each point and i
defined so thatgkl(x) glm(x)5dm

k . In addition,Ag(x)[Adet@gkl(x)#.0 transforms as a scala
density of weight one. Thus, as is well known,Ag(x) d3x characterizes a volume form, but th
choice ties the volume form to a specific metric, or at least to a specific class of metrics. This
association to specific metrics is something we would like to avoid, and it leads us to c
b(x) d3x as the preferred volume form. Of course, ifb(x)5Ag(x) everywhere in any coordinat
system, then the volume formb(x) d3x is identical to the one based on a metric space and g
by Ag(x) d3x.

B. Reproducing kernel—Original Hilbert space

A study of canonical quantum gravity begins with the introduction of metric and momen
local quantum field operators, which we denote byskl(x) @5s lk(x)# and mkl(x) @5m lk(x)#,
respectively. For such fields one postulates the canonical commutation relations,

@skl~x!, m rs~y!#5 i dkl
rs d~x,y!,

@skl~x!, s rs~y!#50, ~34!

@mkl~x!, m rs~y!#50,

with dkl
rs[(dk

r d l
s1d l

rdk
s)/2. Since the right-hand side of the first equation is a tensor densit

weight one, it is consistent that we defineskl(x) to be a tensor andm rs(x) to be a tensor density
of weight one. However, just as its one-dimensional counterpart, there are no local self-a
field and momentum operators that satisfy the canonical commutation relations as well
requirement that$skl(x)%.0. To arrive at a suitable substitute set of commutation relations
introduce, along with the local metric field operatorskl(x), the local ‘‘scale’’ field operatorkk

r (x),
which together obey theaffine commutation relations1–3

@kk
r ~x!, k l

s~y!#5 i 1
2 @dk

s k l
r~x!2d l

r kk
s~x!# d~x,y!,

@skl~x!, ks
r~y!#5 i 1

2 @dk
r s ls~x!1d l

r sks~x!# d~x,y!, ~35!

@skl~x!, s rs~y!#50.

In these relations,skl(x) remains a tensor, whileks
r(x) is a tensor density of weight one und

coordinate transformations. The local operatorsks
r(x) are generators of the GL~3,R!` group,2,3

while the local operatorsskl(x) are commuting ‘‘translations’’ coupled with the GL~3,R!` group
by a semidirect product. The given affine commutation relations are the natural generaliza
the one-dimensional affine commutation relation presented in~1!. In the case of one degree o
freedom, the affine commutation relations follow from the canonical ones, while in the ca
fields this is, strictly speaking, incorrect. It is true that

kk
r ~x!5 1

2@skl~x! m lr ~x!1m rl ~x!s lk~x!#R , ~36!

where the subscriptR denotes an infinite multiplicative renormalized product to be defined la
However, the presence of an infinite rescaling means that either the canonical or the affine
commutation relations can hold, but not both at the same time. Since it is the affine commu
relations that are consistent with local self-adjoint operator solutions enjoying metric posi
we shall adopt the noncanonical affine commutation relations. The choice of the affine com
tion relations means that the canonical commutation relations donot hold, and therefore we are
dealing with anoncanonical quantization of the gravitational field.
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Accepting the affine field operators as generators, we introduce a primary set of norm
affine coherent states each of which—in a deliberate abuse of notation—is defined by

up,g&[ei *pkl(x) skl(x) d3x e2 i *gs
r (x) kr

s(x) d3x uh&, ~37!

for a suitable fiducial vectoruh& characterized below. Inup,g& the argument ‘‘p’’ denotes the
momentum matrix fieldpab while ‘‘ g’’ denotes the metric matrix fieldgab . By all rights, the
states in question should have been calledup,g&, but as we shall see, the overlap of two such sta
for the featured choice ofuh& @cf. ~70!#, depends only on the matrix~for each pointx! g
[exp(gT/2)exp(g/2)[$gab%, whereT means ‘‘transpose.’’@Observe by this parametrization th
g.0, as opposed to a traditional triad for whichg>0. To see that this distinction may possib
make a real difference, see Ref. 15. We remark that the nonsymmetric matrix exp(g/2) would have
relevance for spinor fields.# If the spaceS is noncompact, then, as smoothc-number fields, bothp
andg should go to zero sufficiently fast so that the indicated smeared field operators are i
self-adjoint operators and generate unitary transformations as required. On the other hand
shall shortly see, this asymptotic behavior can, effectively, be significantly relaxed.

The overlap of two such coherent states leads to an expression of the form

^p9,g9up8,g8&5F~g9,p92p8,g8!, ~38!

for some continuous functionalF that depends only on the difference of the fields,p9(x)
2p8(x), an analog of which already occurred for the one-dimensional example. Whatever c
is made for the fiducial vectoruh&, the coherent state overlap function defines a continuo
positive-definite functional, which, therefore, defines a reproducing kernel and its asso
~separable! reproducing kernel Hilbert spaceC. By construction, therefore, the set of cohere
states$up,g&% span the Hilbert spaceH. As such they form a basis~overcomplete to be sure!! for
H. Based on arguments to follow, we are led to the proposal@cf., ~16!# that

^p9,g9up8,g8&5expS 22E b~x! d3x ln

3H det$ 1
2@g9kl~x!1g8kl~x!#1 i 1

2b~x!21@p9kl~x!2p8kl~x!#%

~det@g9kl~x!# !1/2~det@g8kl~x!# !1/2 J D . ~39!

This equation is central to our analysis of quantum gravity.
The coherent-state overlap~39! may be read in two qualitatively different ways. Althoug

arrived at on the basis thatp9(x),p8(x)→0 andg9(x),g8(x)→0 asuxu→`, the given expression
exists for a far wider limiting behavior. In particular, suppose there is afixed asymptotic behavio

such that for bothp5p9 and p5p8, pab(x)2p̃ab(x)→0 and for bothg5g9 and g5g8,
gab(x)2g̃ab(x)→0, all terms vanishing sufficiently fast asuxu→`. In this caseg[exp
(gT/2)g̃ exp(g/2). Note that the asymptotic fields can depend onx. In this case the coherent-sta
overlap still holds in the form given. This kind of asymptotic behavior reflects a change o
fiducial vectoruh&, which now depends on the explicitly chosen asymptotic form for the mom
tum and metric—or, equivalently, as we effectively do, one can holduh& fixed and change the
representations of the operator@cf. ~71!#. By choosing a suitable asymptotic momentum and me
one can, in effect, redefine the topology of the underlying spaceS. However, for simplicity, we
shall assume simple Euclidean-like asymptotic behavior of the momentum and metric@p̃ab(x)
[0 andg̃s

r(x)[0, i.e., g̃ab(x)[dab#.
A second way to study the coherent-state overlap is under coordinate transformation

serve that̂ p9,g9up8,g8& is invariant if, everywhere, we make the replacements
~i! b(x) d3x, by b̄( x̄) d3x̄5b(x) d3x,
~ii ! gkl(x), by ḡkl( x̄)5Mr

k(x) grs(x) Ms
l (x),
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~iii ! b(x)21pkl(x), by b̄( x̄)21p̄kl( x̄)5b(x)21Mr
k(x)p rs(x)Ms

l (x),

all for an arbitrary nonsingular matrixM[$Mr
k%, Mr

k(x)[(] x̄k/]xr)(x), which arises from a
nonsingular coordinate transformationx→ x̄5 x̄(x). It suffices to restrict attention to those coo
dinate transformations continuously connected to the identity. WhenS is compact, a wide class o
M is allowed; whenS is noncompact, the allowed elementsM must also map coherent states in
coherent states for the same fiducial vector. This restriction excludes any connection by coo
transformations of two field sets with fundamentally different asymptotic behavior; such field
in disjoint sets. The invariance under admissible coordinate transformations is symbolized
statement that

^p̄9,ḡ9up̄8,ḡ8&5^p9,g9up8,g8&, ~40!

for all suitableM. Since the allowedM form a representation of the connected component of
diffeomorphism group, it follows from this identity, and suitable continuity, that for sufficien
restrictedM, the transformationup,g&→up̄,ḡ& is induced by aunitary transformation, specifically
that

up̄,ḡ&[U~M !up,g&, ~41!

U~M ![expF2 i E Nj~x!Hj~x!d3xG . ~42!

HereHj (x) denotes a local operator tensor density of weight one whileNj (x) denotes ac-number
tensor with sufficiently rapid decay at spatial infinity. Furthermore, using the shorthand
*NjH j[*Nj (y)H j (y)d3y, the connection betweenM andNj is implicitly given by

Mr
agrsMs

b5gab2 H E NjH j ,gabJ 1
1

2! H E NkHk ,H E NjH j ,gabJ J 1 . . . [e2$*NjH j ,•%gab, ~43!

where $•,•% denotes the classical Poisson brackets, and specifically, e.g.,$gab(x),p rs(y)%
5dab

rs d(x,y). In this expression,H j (x)522gjk(x)p u l
kl(x), j 51,2,3, where ( )u l is the covariant

derivative with respect to the 333 metric, denotes the classical generators of the diffeomorph
group.26 The relationship ofH j (y) andHj (y) may be determined as follows. Expansion of t
relation

^p9,g9ue2 i *Nj (x)Hj (x)d3xup8,g8&5^p9,g9up̄8,ḡ8&, ~44!

to first order inNj , leads to

^p9,g9u E Nj~x!Hj~x!d3xup8,g8&/^p9,g9up8,g8&

52 i2E b~x!d3x~@g9kl~x!1g8kl~x!#1 ib~x!21@p9kl~x!2p8kl~x!# !21

3@dg8kl~x!2 ib~x!21dp8kl~x!#1 i E b~x!d3x gkl8 ~x!dg8kl~x!, ~45!

where

dg8kl~x![g8, j
kl~x!Nj~x!2g8 j l ~x!N, j

k ~x!2g8k j~x! N, j
l ~x!, ~46!

and likewise fordp8kl(x). This relation determines the coherent state matrix elements ofHj (x).
Finally, observe that the diagonal coherent state matrix elements read as
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^p,guHj~x!up,g&522gjk~x!p u l
kl~x!, ~47!

in conformity with the weak correspondence principle.

C. Path integral construction

If the given coherent statesup,g& possessed a resolution of unity, namely a non-nega
measurer(p,g) ~countably or even finitely additive!, such that

E ^p9,g9up,g&^p,gup8,g8&dr~p,g!5^p9,g9up8,g8&, ~48!

then the construction of a path integral for the reproducing kernel would be straightforwar
would follow the pattern illustrated in Sec. II for a single degree of freedom. However, fo
proposed reproducing kernel^p9,g9up8,g8& given in ~39!, no such measure exists and thus t
traditional resolution of unity is unavailable. Consequently, as defined,$up,g&% is a set of weak
coherent states.

A similar kind of problem arose in the simple model discussed in Sec. II~when 0,b< 1
2). In

that case, the construction of a path integral representation proceeded in an alternative m
beginning first with a polarization. We assert that each of the given Hilbert space represent

c~p,g![^p,guc&5 (
n51

N

an^p,gupn ,gn&PC, ~49!

satisfies the functional differential equation@cf. ~17!#,

Bs
r~x!c~p,g![F2 igrt~x!

d

dp ts~x!
1d s

r1b~x!21gst~x!
d

dgtr~x!Gc~p,g!50, ~50!

for all spatial pointsx. Next, let us introduce the operator

A[ 1
2E Br

s~x!†Bs
r~x!b~x!d3x, ~51!

and observe thatA>0. Thus, withT.0 and asn→`, it follows thatJ̄(n)e2nTA, for someJ̄(n),
serves to select out the subspace where~50! is fulfilled. Just as in the toy model of Sec. II, th
operatorA is a second-order~functional! differential operator, and, as a consequence, a Feynm
Kac–Stratonovich path~i.e., functional! integral representation may be introduced. In particu
we obtain the formal expression@cf. ~21!#,

^p9,g9up8,g8&5 lim
n→`

N̄E expF2 i E gabṗ
ab d3x dtGexpH 2~1/2n!E @b~x!21gabgcdṗ

bcṗda

1b~x!gabgcdġbcġda#d
3x dtJ)

x,t
)
a<b

dpab~x,t !dgab~x,t !. ~52!

Here, let us interprett, 0<t<T, as coordinate ‘‘time.’’ On the right-hand side the canonical fie
are functions of space and time, that is,

gab5gab~x,t !, pab5pab~x,t !; ~53!

the overdot (̇ ) denotes a partial derivative with respect tot, and the integration is subject to th
boundary conditions thatp(x,0),g(x,0)5p8(x),g8(x) and p(x,T),g(x,T)5p9(x),g9(x). Ob-
serve that the fieldp enters this path integral expression only in the formṗ; this fact is responsible
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for the result of the path integral depending only onp92p8. It is important to note, for anyn,`,
that underlying the formal measure given above, there is a genuine, countably additive mea
~generalized! functionsgkl andp rs . Loosely speaking, such functions have Wiener-like behav
with respect to time andd-correlated, generalized Poisson-like behavior with respect to spac

While ~52! is invariant under spatial diffeomorphisms, it is less evident that it is also inva
under transformations of the time coordinate~by itself!. ~The author thanks A. Ashtekar for raisin
the question of temporal transformation properties.! Formally speaking, the role of the limitn→`
is to remove the effects of the continuous-time regularization. It is clear, however, that there
need that removing those effects must be done in auniformway independent ofx. Thus, we may
replacen by nN(x)—now under the integral sign—whereN(x), 0,N(x),`, is smooth and
reflects the relative rate at which the regularization is removed at different spatial points. Th
result is invariant under such a change. Moreover, at each pointx we can run the process wit
different ‘‘clock’’ rates, i.e.,N(x)dt→N(x,t)dt as long as the elapsed time is qualitatively u
changed. This remark means that we can choose any smoothlapse function N(x,t), 0,N(x,t)
,`, with the consequence that

^p9,g9up8,g8&5 lim
n→`

N8E expF2 i E gabṗ
ab d3x dtGexpH 2~1/2n!E @b~x!21gabgcdṗ

bcṗda

1b~x!gabgcdġbcġda#N~x,t !21 d3x dtJ)
x,t

)
a<b

dpab~x,t !dgab~x,t !. ~54!

The necessary conditions for this more general expression to hold are, for allT, 0,T,`, and at
all x, that

E
0

T

N~x,t !dt,`, ~55!

E
0

`

N~x,t !dt5`. ~56!

In this sense we observe that our formal path integral representation~52! for the coherent-state
overlap is actuallyinvariant under transformations of the time coordinate.

D. Metrical quantization

The formal,n-dependent, weighting factor in the path integral expression~52! involves a
metric dS2 on the classical phase space, which may be read out of the expression

dS2/dt25E @b21gklgrsṗ
lr ṗsk1bgklgrsġlr ġsk#d

3x. ~57!

As presented, this expression fordS2 is aderivedquantity. Alternatively, it is clear that one coul
start the analysis bypostulatinga specific functional form fordS2 to be used in a continuous-tim
regularization in the path integral construction of the reproducing kernel, and, finally, by appe
to the GNS~Gel’fand, Naimark, Segal! Theorem,27 to recover the representation of the local fie
operatorsskl(x) andks

r(x). Adopting a metric on the classical phase space as the first step
quantization procedure is calledmetrical quantization.28 To carry out such a scheme for gravity,
is necessary that any postulateddS2 satisfy several properties. First, it must be diffeomorphi
invariant and, second, on physical grounds, it should only depend ondpkl ~or ṗkl for dS2/dt2)
and not onpkl itself. Hence, we are initially led to consider

dS2/dt25E @b22Labcdṗ
bcṗda1Mabcdġbcġda#b~x!d3x, ~58!
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for suitable, positive-definite tensorsL andM constructed just fromgkl . The given choice forL
andM, i.e.,Labcd5

1
2@gabgcd1gacgbd# andMabcd5 1

2@gabgcd1gacgbd# satisfyM5L21 as matri-
ces. This choice is very natural and moreover is identical to the form suggested by the st
certain GL~3,R! coherent states for a 333 positive-definite matrix degree of freedom.24

Nevertheless, in a metric-first quantization scheme, it is appropriate to examine other c
as well. For example, a term such asb(x)21ġab(x)ṗab(x) might be included, but this term ma
be eliminated by a translation of the momentum. Additionally, one may consider nonlocal c
butions involving, for example, the termġbc(x)ġda(y), together with a kernelK(x,y) specifying
the interrelationship of the field aty to the field atx. However, no satisfactory solution forK(x,y)
other than one proportional tod(x,y) will lead to an expression fordS2 that isinvariant under all
diffeomorphisms. In point of fact, the possible choices forL andM are rather limited, especially
when one requires that the~formal! integration measure at each point is canonical and thus ha
form Pa<b dpab dgab . For example, forl.0, let us consider the proposal that

Labcd~l![ 1
2@gabgcd1gacgbd1~l21!gbcgda#. ~59!

Then in order to lead to a canonical integration measure, it would be necessary that

Mabcd~l![ 1
2@gabgcd1gacgbd1~l2121!gbcgda#. ~60!

Only for l51 is M5L21, which is just the choice we have made.~The form for the DeWitt
metric,29 wherel521, is excluded because we require thatL andM be positive definite.!

The preceeding discussion has rather convincingly suggested the specifically chosen
tional form for dS2—apart from one issue. It may seem even more natural to choose30

dS2/dt25E @g21/2gabgcdṗ
bcṗda1g1/2gabgcdġbcġda#d

3x, ~61!

rather than the choice we have made. This is a natural choice from a classical point of vie
it is less satisfactory from a quantum point of view. In either case, observe that a path integra
as ~52! involves fields with 311 independent variables; however, there are nospace derivatives
involved, onlytime derivatives. Such a model is known as anultralocal quantum field theory, and
by now there is much that is known about the rigorous construction and evaluation of
nontrivial ~i.e., non-Gaussian! functional integrals through the study, for example, of ultralo
scalar quantum fields.31 It is through the analysis of the gravitational models as ultralocal quan
field theories that the metric~61! is ruled out; for a simple reason, see Sec. V.

E. Operator realization

In order to realize the metric and scale fields as quantum operators in a Hilbert space,H, it is
expedient to introduce a set of conventional localannihilation and creation operators, A(x,k) and
A(x,k)†, respectively, with the only nonvanishing commutator given by

@A~x,k!, A~x8,k8!†#5d~x,x8!d~k,k8!1, ~62!

where1 denotes the unit operator. Here,xPR3, while k[$krs% denotes a positive-definite, 333
matrix degree of freedom confined to the domain where$krs%.0. We introduce a ‘‘no-particle’’
stateu0& such thatA(x,k)u0&50 for all arguments. Additional states are determined by suita
smeared linear combinations of

A~x1 ,k1!†A~x2 ,k2!†
•••A~xp ,kp!†u0&, ~63!
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for all p>1, and the span of all such states isH provided, apart from constant multiples, thatu0&
is the only state annihilated by all theA operators. Thus, we are led to a conventional Fo
representation for theA andA† operators. Note that the Fock operators are irreducible, and thu
operators acting inH are given as suitable functions of them.

Next, letc(x,k) be a possibly complex,c-number function and introduce the translated Fo
operators,

B~x,k![A~x,k!1c~x,k!1, ~64!

B~x,k!†[A~x.k!†1c~x,k!* 1. ~65!

Evidently, the only nonvanishing commutator of theB andB† operators is

@B~x,k!,B~x8,k8!†#5d~x,x8!d~k,k8!1, ~66!

the same as theA andA† operators. With regard to transformations of the coordinatex, it is clear
that c(x,k) ~just like the local operatorsA andB! should transform as a scalar density of weig
one-half. Thus, we set

c~x,k![b~x!1/2d~x,k!, ~67!

whered(x,k) transforms as a scalar. The criteria for acceptabled(x,k) are, for eachx, that

E
1

u d~x,k!u2 dk5`, ~68!

E
1

krsud~x,k!u2dk52d rs , ~69!

the latter assuming@cf. the discussion following~39!# that g̃kl(x)5dkl . In ~68! and~69! we have
introduceddk[Pa<b dkab , and the symbol ‘‘1’’ signifies an integration over only thosek values
for which $kab%.0.

We shall focus on only one particular choice ford, specifically,

d~x,k![
Ke2tr(k)

det~k!
, ~70!

which is everywhere independent ofx; K denotes a positive constant to be fixed later. The giv
choice for d corresponds to the case where the asymptotic fieldsp̃kl(x)[0 and g̃kl(x)[dkl .
†Remark:For different choices of asymptotic fields it suffices to choose

d~x,k!→d̃~x,k![
K e2 ib(x)21p̃ab(x)kab e2g̃ab(x)kab

det~k!
. ~71!

We shall not explicitly discuss this case further.‡

In terms of these quantities, the local metric operator is defined by

sab~x![b~x!21E
1

B~x,k!†kabB~x,k!dk, ~72!

and the local scale operator is defined by

ks
r~x![2 i

1

2E1
B~x,k!†~kst]W

tr2]Q rtkts!B~x,k!dk. ~73!
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Here ]W st[]/]kst , ]Q rt[]/]krt acting to the left, andsab(x) transforms as a tensor whileks
r(x)

transforms as a tensor density of weight one. It is straightforward to show that these ope
satisfy the required affine commutation relations, and, moreover, that31,32

^0uei *pab(x)sab(x)d3xe2 i *gr
s(x)ks

r (x)d3xu0&

5expH 2K2E b~x!d3xE @e22dabkab2e2 ipab(x)kab /b(x)e2[(dab1gab(x))kab] #dk/~detk!2J
5expF22E b~x!d3x lnX@det„gab~x!…#1/2detH 1

2
@dab1gab~x!#2 i

1

2
b~x!21pab~x!J CG,

~74!

whereK has been chosen so that

K2E
1

krse
22 tr(k) dk/~detk!252d rs . ~75!

An obvious extension of this calculation leads to~39!.

F. Local operator products

Basically, local products for the gravitational field operators follow the pattern for o
ultralocal quantum field theories.31,32 As motivation, consider the product

sab~x!scd~y!5b~x!22E
1
E

1
B~x,k!†kab@B~x,k!,B~y,k8!†#kcd8 B~y,k8!dk dk81:sab~x!scd~y!:

5b~x!22d~x,y!E
1

B~x,k!†kabkcdB~x,k!dk1:sab~x!scd~y!:, ~76!

where : : denotes normal ordering with respect toA andA† . Wheny5x, this relation formally
becomes

sab~x!scd~x!5b~x!22d~x,x!E
1

B~x,k!†kabkcdB~x,k!dk1:sab~x!scd~x!:. ~77!

We define the renormalized~subscript ‘‘R’’ ! local product,

@sab~x!scd~x!#R[b~x!21E
1

B~x,k!† kab kcd B~x,k! dk, ~78!

after formally dividing both sides by the divergent dimensionless ‘‘scalar’’b(x)21d(x,x).
@Remark: For scalar ultralocal theories, the formal dividing factor is the divergent dimension
‘‘number’’ b21d(0), whereb.0 is an arbitrary factor with suitable dimensions. For gravityb
→b(x), our scalar density of weight one. Note that limits involving test functions offer a rigo
definition of the renormalized product.31,32# Higher-order local products exist as well, for examp

@sa1b1
~x!sa2b2~x!sa3b3

~x!•••sapbp
~x!#R

[b~x!21E
1

B~x,k!† ~ka1b1
ka2b2ka3b3

•••kapbp
! B~x,k! dk , ~79!

which, after contracting onb1 andb2, implies that
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@sa1b~x!sa2b~x!sa3b3
~x!•••sapbp

~x!#R5da1

a2 @sa3b3
~x!•••sapbp

~x!#R . ~80!

It is in this sense that@sab(x)sbc(x)#R5da
c .

We take up only one further point regarding local products. It is rather natural31,32 to try to
define the local momentum ‘‘operator’’ by

m rs~y!52 i
1

2E1
B~y,k!† ~]W rs2]Q rs! B~y,k! dk, ~81!

but this expression only leads to a form and not a local operator. Furthermore, the pu
canonical commutation relation becomes

@sab~x!, m rs~y!#5 i dab
rs d~x,y! b~x!21 E

1
B~x,k! B~x,k! dk

5 i dab
rs d~x,y! @*1ud~x,k!u2 dk1•••#, ~82!

which has a divergent multiplier and is, therefore, not even a form. On the other hand, it i
that

1
2@s rl ~x!m ls~x!1msl~x!s lr ~x!#R52 i 1

2E
1

B~x,k! ~krl ]W
ls2]Q slklr ! B~x,k! dk

5k r
s~x!, ~83!

as claimed.

IV. IMPOSITION OF CONSTRAINTS

Gravity has four constraints at every pointxPS, and, when expressed in suitable units, th
are the familiar spatial and temporal constraints, all densities of weight one, given by26

Ha~x!522gab~x!p uc
bc ~x!, ~84!

H~x!5 1
2g~x!21/2@gab~x!gcd~x!1gad~x!gcb~x!22gac~x!gbd~x!#

3pac~x!pbd~x!1g~x!1/2 (3)R~x!. ~85!

The spatial constraints are comparatively easy to incorporate since their generators serve
erators of the diffeomorphism group acting on functions of the canonical variables. Stated
wise, finite spatial diffeomorphism transformations map any coherent state onto another co
state as in~41! and~42!. However, this is decidely not the case for the temporal constraint. W
follows is an account of what to do about these constraintsin principle; in Part II on this subject,
we will discuss how to accomplish these goals.

One satisfactory procedure to incorporate all the necessary constraints is as follow
$hp(x)%p51

` denote a complete, orthonormal set of real functions onS relative to the weightb(x).
In particular, we suppose that

E hp~x! hn~x! b~x! d3x5dpn , ~86!

b~x! Sp51
` hp~x! hp~y!5d~x,y!. ~87!

Based on this orthonormal set of functions, we next introduce four infinite sequences o
straints,
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H (p) a[E hp~x! Ha~x! d3x, ~88!

H (p)[E hp~x! H~x! d3x, ~89!

1<p,`, all of which vanish in the classical theory.
For the quantum theory let us assume, for eachp, that H(p) a and H(p) are selfadjoint, and

even stronger that

XP
2[Sp51

P 22p @Sa51
3 ~H(p) a!21~H(p)!

2#, ~90!

is selfadjoint for allP,`. Note well, as one potential example, the factor 22p introduced as part
of a regulator asP→`; we comment on this regulator in the next section. For eachd[d~\!.0, let

EP[E„XP
2<d2

… ~91!

denote a projection operator depending onXP andd, as indicated. How such projection operato
may be constructed is discussed in Ref. 7 and will be dealt with in Part II. Let

SP[ lim sup
p, g

^p,guEPup,g&, ~92!

which satisfiesSP.0 sinceEP[” 0 when restricted to sufficiently larged. Finally, we define

^^p9,g9up8,g8&&[ lim sup
P→`

SP
21 ^p9,g9uEPup8,g8&, ~93!

as a reduction of the original reproducing kernel. The result is either trivial, say ifd is too small,
or it leads to a continuous, positive-definite functional on the original phase space variable
focus on the latter case.

To obtain the final physical Hilbert space, one must study^^p9,g9up8,g8&& as a function of
the regularization parameterd. Since gravity has an anomaly,33 there should be a minimum valu
of d, which is still positive, that defines the proper theory, rather like the example in~30!.
Assuming we can find and then use that value,^^p9,g9up8,g8&& becomes the reproducing kern
for the physical Hilbert spaceHphys. Attaining this goal would then permit the real work o
extracting the physics to begin.

Our discussion regarding constraints in this paper has indeed been brief. Although th
gram we have in mind is not simple, it has the virtue of being realizable, at least in principle.
all, before any calculational scheme is developed it is always wise to ensure that the objec
study has a good chance of existing!

V. DISCUSSION

In the preceding sections we have outlined an approach to quantum gravity that it is som
different than currently considered. As a background to our philosophy, let us briefly review
of the common weak points in the standard ways of quantizing gravity, and use these com
as motivation for our approach.

A. Traditional viewpoints and commentary

~i! Viewed by way of conventional perturbation theory, quantum gravity has two main d
culties of principle. On the one hand, the perturbative split of the metric in the formgmn(x)
5hmn1hmn(x) ~or any other background metric!, with canonical quantization of the ‘‘small’’
deviationhmn(x) violates signature properties, since in that case the spectrum ofhmn(x) is un-
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bounded above and below. On the other hand, as an asymptotically nonfree theory, gra
nonrenormalizable and poorly described by a perturbation theory that needs an unending a
of distinct counterterms with divergent coefficients.

To address these obstacles, we first note that the affine approach guarantees a prope
signature from the very beginning, and, second, we remind the reader that certain asympt
nonfree, nonrenormalizable models have indeed been solved,31 and their solution procedures form
the core of the present approach to quantize gravity.

~ii ! While the constraints of classical gravity are first class, there is an anomaly in the qua
constraints and thus they are effectively second class. Usual views toward second-class con
involve solving and eliminating them, introducing and then quantizing Dirac brackets, o
conversion of second-class constraints into first-class constraints. Each of these methods
complicated and not all are guaranteed to be valid beyond a semiclassical treatment if the c
constraint hypersurface has a non-Euclidean geometry.34 These difficulties have stimulate
searches to get around the second-class character altogether, either by introducing non-H
constraint operators that may close algebraically,35 or by introducing additional fields and space
time dimensions until the anomaly cancels.

Regarding these comments, we accept the anomaly and the second-class constraint
implies. Giving up a classical symmetry is not so heretical as it may seem. For example, H
tonian classical mechanics enjoys a full covariance under general canonical coordinate tr
mations, but that invariance isnot preservedin its classical formwhen we go to the quantum
theory. For example, consider the classical Poisson brackets for a set of generator elemen

$eap1bq, ecp1dq%5~bc2ad! e(a1c)p1(b1d)q, ~94!

wherea,b,c, and d are parameters, while in canonical quantum mechanics we have the c
sponding commutator algebra,

@eaP1bQ, ecP1dQ#5~2i !sin@~bc2ad!/2# e(a1c)P1(b1d)Q. ~95!

These expressions agree in their algebraic structure for selected elements, but not for the
algebra. Equivalence begins to break down at the quadratic level, which is exactly the case
temporal constraint in gravity. In particle mechanics there are sound physical reasons36 for this
‘‘breakdown’’ of symmetry, and attempts to restore the symmetry—as in geom
quantization37—go counter to such sound physical principles. There is no reason that a s
scenario does not hold for gravity. The breakdown of the classical symmetry and the appe
of a quantum ‘‘anomaly’’~better called a ‘‘quantum mechanical symmetry breaking’’38! could,
just as in the quantum mechanics case, carry real physics.

Accepting the second-class nature of~part of! the constraints of quantum gravity means
different approach must be taken. As already noted, earlier approaches required solving
eliminating the unphysical variables, the introduction of Dirac brackets, etc., all of which
rather technical and may be extremely complicated. In the present view, afforded by the pro
operator approach to constraints—second-class constraints included—none of these particula
complications arise. Instead, one projects onto the state~or, with degeneracy, states! for which the
sum of the square of the constraints is bounded. Why the square and not the fourth power?
the fourth power would not be wrong; the only change would involve a unitary transformatio
the original result, which maps one set of ‘‘ground’’ states onto another set of ‘‘ground’’ st
The square is chosen for simplicity, not for any reasons of exclusivity.

B. Relation to earlier work

Pilati, in a series of papers3 ~see also Ref. 2!, analyzed a strong coupling model of quantu
gravity in which the temporal constraint given in~85! was modified to read as

H8~x!5 1
2g~x!21/2@gab~x!gcd~x!1gad~x!gcb~x!22gac~x!gbd~x!# pac~x!pbd~x!, ~96!
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namely, the second term involving the scalar curvature(3)R(x) based on the metricgab(x) was
dropped. The reason for doing so was to achieve a theory in which the temporal constraintH8(x)
itself was patterned after the Hamiltonian density of an ultralocal theory. This modification
thought to be advantageous because then all the machinery developed for ultralocal quantu
theory could be used for the strong coupling gravitational model. Once that model was
control, it was the hope to reintroduce the dropped term by a perturbation theory analysis.
tunately, the reintroduction of dropped terms involving spatial gradients has never been su
fully accomplished by a perturbation analysis about a non-Gaussian ultralocal model. This
is most likely because such ‘‘interaction terms’’ generally amount to nonrenormalizable pert
tions of the unperturbed~ultralocal! models.

The program advanced in the present paper takes a different view toward these issue
First, we focus on kinematics with the knowledge that for pure gravity the Hamilto

operator vanishes, as it does in any situation that is reparametrization invariant. In its place w
constraints, and the real physical content of the theory lies in the particular constraints. Ho
before the constraints can be introduced, there must be a ‘‘primary container’’ to receive the
our case, this primary container is the Hilbert space and set of relevant operators prior
introduction ofany form of the constraints, and which is based on the fundamental physical n
of the variables, i.e., positive-definite, 333 matrix-valued, local field operators, etc. This is t
preferred procedure:Quantization before the introduction of any constraints. At this primary level,
there is no coupling of one degree of freedom with another—any coupling comes throug
enforcement of specific constraints. Hence, in the primary container the degrees of freed
mutually independent of each other. For finitely many kinematical degrees of freedom this m
that the Hilbert space is a product over spaces for each of the separate degrees of freedo
field theory, this independence means that the kinematical operators enter as ultralocal fi
erators. Consequently, even though the several constraint operators waiting to be introduc
themselvesnot be ultralocal in nature, the primary container itself, which has been prepare
receive them, is ultralocal.

At this point the reader may wish to reexamine~39!—in essence our ‘‘primary container’’—to
recall the appearance of an ultralocal state on a set of field operators. Apart from the 333 matrix
character, the functional form of~39! emerges from~i! the product ofN expressions of the form
~16! for independent argumentspn ,qn ,r n ,sn , 1<n<N; ~ii ! the replacement ofb by bnD and
(pn2r n) by (pn2r n)D; and~iii ! the limit asN→`, D→0 such thatS(•) bn D→*(•) b(x) dx. In
this way we have created, from a collection of independent single affine degrees of freedo
reproducing kernel for affine gravity in 111-dimensional space. In a similar manner, a set
independent 333 affine degrees of freedom can be~and were! used to build an ultralocal repre
sentation for 333 metric and momentum fields in~39!; moreover, this type of construction doe
not favor the ‘‘natural’’ phase-space metric~61!. In summary, we emphasize that whenever
‘‘dynamics’’ appears through constraints, the primary container should be ultralocal in char
We next turn our attention to the introduction of the constraints.

In the projection operator approach it is recognized from the outset that the physical H
space—or better theregularizedphysical Hilbert space—is asubspaceof the original Hilbert
space that is uniquely determined by an associated projection operatorE. Whatever form the
constraints may take, they are ‘‘encoded’’ into the projection operatorE, and a regularization
means that the constraints are satisfied to a certain level of precision determined by a reg
tion parameterd. How to turn constraint operators into projection operators in general has
discussed in Ref. 7; as regards the gravitational case, that project will be discussed in Par

Continuing still in a general framework, let us consider an expression that may be used
to generate dynamics or to enforce constraints. From a classical point of view, and especial
a path integral point of view, it may seem that quantities used in either of these ways may be
similar. However, it is important to already understand that there is a fundamental distin
between the use of a quantum operator either~i! to generate unitary transformations or~ii ! to serve
as a constraint operator in a given system. In the first case, the operator must be self-adjo
thus densely defined, while in the second case the operator may be defined on only the zero
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This fact has profound consequences. In particular, to have a self-adjoint generator requir
the operator representation in the primary container must already be finely ‘‘tuned’’ to ensur
the generator that will be introduced is self-adjoint~as in Haag’s Theorem39!. For constraint
operator imposition this need not be the case, and the reason this is so is because we a
changes, i.e., adaptions, of the primary container representations through the process of re
of the reproducing kernel. As an example, let us consider only the local temporal operatorH(x)
for gravity. On the one hand, to generate unitary time evolutions it may be necessar
*H(x) d3x be self-adjoint. On the other hand, to enforce constraints, it is only necessary thaH(p)

@cf. ~89!# be ‘‘small,’’ but there is no requirement that these operators must beuniformly ‘‘small.’’
Instead they can be ‘‘small’’ in the sense thatX2[Sp51

` sp(H(p))
2 is ‘‘small,’’ where the set of

positive constants$sp% serve as regulators to control convergence of the series. The exa
chosen was thatsp522p, but there is nothing special about that choice. Any reasonable ch
that leads to a self-adjoint operatorX should lead to the same reproducing kernel in the fi
analysis when the regularization parameterd attains its final value for the problem at hand.

A rather simple example of the general procedure discussed above can be seen in
involving product representations.40 Additionally, it is instructive to reanalyze the relativistic fre
field by this procedure to see how ultralocal representations turn into nonultralocal represent

Suffice it to say, it is this vast difference between the required nature of constraint ope
and unitary generators that permits us to start with ultralocal field operator representation
emerge withnonultralocal operators in the physical Hilbert space.
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K slicing the Schwarzschild and the Reissner–Nordstrom
spacetimes
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A K slicing of the Reissner–Nordstrom~RN! spacetime is shown to provide a
complete foliation of the region up to the inner horizon, and the horizon to corre-
spond to the limit asK→6`. The implications of this foliation in the context of
York time are discussed. ©1999 American Institute of Physics.
@S0022-2488~99!00909-3#

I. INTRODUCTION

In an earlier paper1 we had followed up the proposal of Brillet al.2 ~hereafter referred to a
BCI! for foliating the Schwarzschild spacetime by a sequence of spacelike hypersurfac
constant mean extrinsic curvature,K. They used a variational principle for minimizing the~32!
area of the hypersurface for a given~42! volume of the world tube traced out by it. The corr
sponding Lagrange multiplier turns out to beK. Using Kruskal–Szekres~KS! coordinates (v,u),3

BCI obtained theK-slicing equation,

dv
du

5
Av1Eu

Au1Ev
, ~1!

E5H2Kr 3/3, A5@E21r 3~r 2r s!#
1/2, ~2!

wherer s is the Schwarzschild radius~2m in gravitational units! andH is an arbitrary paramete
that measures how much the intrinsic and extrinsic curvatures vary on theK surface. We converted
to the compactified KS coordinates~c,j!, given by4

c5tan21~v1u!1tan21~v2u!,
~3!

j5tan21~v1u!2tan21~v2u!,

so as to be able to see the foliation in a Penrose diagram. In these coordinates, Eq.~1! becomes

dc

dj
5

A sinc cosj1E sinj cosc

A sinj cosc1E sinc cosj
. ~4!

Our procedure was to take a trial value of the initialr for a givenK, r i , and put

H5Kr i
3/36Ar i

3~r s2r i !. ~5!

We found that the hypersurfaces would rise, very slowly at first. Takingr i such that it rose leas
allowed r f ~the final value ofr! to come atI ° ~c50, j5p!. Thus, our ansatz required that th
hypersurfaces havedc/djuj5050 and that they end atI °. The procedure worked but we ha

a!Senior Associate Member of the International Center for Theoretical Physics, Trieste, Italy. Electronic
qadirs@isb.pol.com.pk

b!Present address: College of Electrical and Mechanical Engineering, National University of Sciences and Tech
Rawalpindi, Pakistan.
58830022-2488/99/40(11)/5883/7/$15.00 © 1999 American Institute of Physics
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provided no proof that we had a complete foliation. In this paper we provide a proof th
complete foliation was achieved by the ansatz for the Schwarzschild spacetime and extend
Reissner–No¨rdstrom geometry. It is shown that a completeK foliation of the spacetime up to th
inner horizon is achieved, but it does not proceed beyond it.

II. PROOF OF COMPLETENESS OF THE SCHWARZSCHILD FOLIATION

To prove completeness we need to verify that no region of the spacetime is left out fro
foliation and that the foliating hypersurfaces do not intersect anywhere. We first discus
hypersurfaces for limiting values ofK. K50 corresponds to the hypersurface,c50. For this
hypersurface the value ofr at j50, r i , is r s . We now consider the limit asuKu→`. It had been
seen that as we increaseduKu we had to choose smaller values forr i . Let us suppose that for som
very largeuKu, r i5er s.0 is such thate!1. Then, from Eq.~5!,

H5Kr s
3e3/36r s

2e3/2~12e!1/2. ~6!

Now E andA cannot remain small for sufficiently largeuKu unlessr 5r i throughout. Thus, con-
sidering Eqs.~6! and~4!, we require that asuKu→`, either:~i! e→0 and hencer 2er s→0; or ~ii !
ey0 and hencer, A, uEu→`. In fact, for case~i! e;uKu21/3 so thatH, E, andA remain constant.
Hence, the limituKu→` corresponds to the limiting hypersurfacer 50, which isv5`(uÞ`) or
c5p/2, uju,p/2. In case~ii ! A;6E. In that case Eq.~4! givesdc/dj561. Thus, the rest of the
hypersurface is atc56j1p and c56j2p with r at infinity. Hence the complete hypersu
faces areI L

2ø$r 50%øI R
2 for K52` and I L

1ø$r 50%øI R
1 for K51`, where the sub-

script L refers to the left andR to the right side of the Penrose diagram. Notice that th
hypersurfaces are not spacelike in themselves~I 6 being null!. This does not reflect a problem
with the foliation as that consists of spacelike hypersurfaces that tend to these null hypersu
as uKu→`. Also notice that the family of hypersurfaces is symmetric underc reflection, with
K↔2K.

It remains to verify that the hypersurfaces before the limit do cover the whole space a
not intersect. The key point is the existence and uniqueness of the solution of differential eq
~4!. It can be written in~t,r! coordinates as

dt

dr
5 f ~r !5

rE

~r 2r s!A
, ~7!

which is a function ofr only. It is continuous and limr→` f (r )51 while lim r→0 f (r )50. The
boundedness of the function atr 5r s , which is the Schwarzschild coordinate singularity, can
seen in~c,j! coordinates from Eq.~4!, lim r→r s

f (r )5 limc→6j f (c,j)561. Further, writing
f (r ) as f (t,r ), it clearly satisfies the Lipshitz condition:

u f ~ t1 ,r !2 f ~ t2 ,r !u5u f ~r !2 f ~r !u50<Nut12t2u, ~8!

whereN is a 1ve constant. Therefore'! solution of Eq.~4! for the given conditions. There ar
two free parametersH and K in Eq. ~4!. These two parameters are fixed by our requireme
dc/djuj5050 andc(p)50. Let us consider two different hypersurfaces:c1(j) andc2(j), for
two different values of the curvatureK1ÞK2 satisfying the requirements. Suppose that th
hypersurfaces intersect at some pointj5j0 . Consideringj5j0 as our starting point,c1(j0)
5c2(j0) fixes one of the parameters, sayH. Now, by the uniqueness of the solution of Eq.~4! two
different values ofK, K1 andK2 , cannot give the same end pointc1(p)505c2(p). Hence, our
assumption that the two hypersurfaces intersect must be wrong. This proves that the hypers
do not intersect.

To show that the hypersurfaces cover the whole space, we write Eq.~4! as the integral
equation,
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c~j!5E
z50

j

f „c~z!,z,K,H…dz1C. ~9!

Using the requirementdc/djuj5050, in principle, we can eliminateH from Eq. ~9!.
Now, requiring that (c0 ,j0) lies on the hypersurface, and thatc(p)50, gives

c~j!52E
j

p

f „c~z!,z,K…dz. ~10!

This proves the existence of hypersurfaces passing through every pair (c0 ,j0). Hence, the hy-
persurfaces cover the whole space. Note that for a given (c0 ,j0) there will be a specificK that
satisfies Eq.~10!.

III. FOLIATION OF THE REISSNER–NÖRDSTROM SPACETIME

We now turn our attention to the RN geometry. Following the BCI procedure again lea
Eq. ~4! with v andu in Eq. ~3! being the generalized KS~GKS! coordinates,5

FIG. 1. Foliation of the compactified RN spacetime, withQ/m50.8, by spacelikeK slices. The hypersurfaces are labele
according to their serial numbers in Table I. Notice that only the regionr 2,r ,` is covered by them. In the limit of
K→1` we get the upper boundary of the central block,I L

1ø$r 5r 2u%øI R
1 and in the limit ofK→2` we get the

lower boundary,I L
2ø$r 5r 2d%øI R

2 .

TABLE I. ElevenK slices for different values of the mean extrinsic curva-
ture, K, for an RN black hole withQ/m50.8, are described by the corre-
sponding values for the initial value ofr, r i , the constantH, and the initial
value of c in the Penrose diagram,c i . The maximum~minimum for K
,0! value,c* , in these cases is identical toc i .

No. K r i /2m H c i

0 0.0 0.8 0.0 0.0
61 0.01 0.799 70.0179 60.418
62 0.02 0.796 70.0335 60.801
63 0.05 0.779 70.0780 61.534
64 0.1 0.732 70.1062 62.078
65 0.8 0.538 70.1186 62.516
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FIG. 2. Hypersurfaces foruKu50.01, 0.02, and 0.1 in an RN black hole, with~a! Q/m50.6, ~b! Q/m50.8, and~c!:
Q/m50.95 are shown. The hypersurfaces are labeled according to their serial numbers in Table II.
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v5a exp~r /b1!U r

r 1
21U r 1

2 /b1~r 12r 2!U r

r 2
21U2r 2

2 /b1~r 12r 2!

cosh~ t/b1!,

~11!

u5a exp~r /b1!U r

r 1
21U r 1

2 /b1~r 12r 2!U r

r 2
21U2r 2

2 /b1~r 12r 2!

sinh~ t/b1!,

for r 1,r ,` andv, u interchanged forr 2,r ,r 1 , where

r 65m6Am22Q2, ~12!

are the outer and inner horizons~Q being the RN black hole charge! anda, b1 are the constants

a5
16r 1r 2

r 12r 2
, b15

2r 1
2

r 12r i
. ~13!

The entire spacetime cannot be covered simply by these coordinates. For 0,r ,r 2 they are not
applicable. There we must replaceb1 by b2 with the obvious change in Eq.~13!. The two
patches together are adequate for the entire spacetime, the latter being valid for 0,r ,r 1 . In the
regionr 2,r ,r 1 we can patch the coordinate systems together by providing a coordinate
formation.

We now follow the rest of the procedure as before. NowA of Eq. ~2! is modified to

A5@E21r 2~r 2r 1!~r 2r 2!#1/2, ~14!

while E is unaltered. For the ansatz, Eq.~5! is altered to

H5Kr i
3/36r iA~r 12r i !~r i2r 2!, ~15!

in the regionr 2,r ,r 1 . Note thatr i<r 1 always, as is obvious from the Penrose diagram~since
we takej i50!. We again require that the hypersurfaces havedc/djuj5050 and ask that the
hypersurfaces extend toI °.

The foliation proceeds smoothly for medium values ofuKu ~about 0.01–0.8! but runs into
problems of numerical instability at very high or very low values ofuKu. By using more computer
time one can extend the range of stability. As such, there is no inherent problem with the nu
but merely a matter of economizing the use of the computer. Typical hypersurfaces are giv
six values ofuKu for an RN black hole withQ/m50.8, in the Penrose diagram given in Fig. 1

Table I gives the values ofK with r i and the correspondingc i . We note that it is only the
regionr 2,r ,` that is covered by this foliation. This is not surprising as the requirements,
the hypersurfaces be spacelike and reachI °, could not be met by hypersurfaces that enter

TABLE II. Eighteen K slices for different values of ‘‘K’’ and Q/m are
described by the corresponding values ofc i . The maximum~minimum for
K,0! value,c* , in these cases is identical toc i .

No. K Q/m c i

61 3.0/5 60.317
62 60.01 4/5 60.418
63 4.75/5 60.537

64 3.0/5 60.592
65 60.02 4/5 60.801
66 4.75/5 60.918

67 3.0/5 61.576
68 60.1 4/5 62.078
69 4.75/5 62.353
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region r ,r 2 . We will consider the physical implications of this observation shortly. At pres
we need to verify that our ansatz provides a complete foliation of the central block of the Pe
diagram, shown in Fig. 1.

IV. PROOF OF COMPLETENESS OF THE REISSNER–NÖRDSTROM FOLIATION

To see this we note that Eqs.~2! and~5! as modified by Eqs.~14! and~15! allow two possible
solutions asuKu→`: ~i! eitherr→r i throughout,A, E→0 anddc/dj→61 or ucu52p6j; or
~ii ! r, A, uEu→` and againdc/dj→61 or ucu5p6j. Thus, the hypersurfacesK56` corre-
spond toI L

1ø$r 5r 2u%øI R
1 and I L

2ø$r 5r 2d%øI R
2 in Fig. 1. Thus, our ansatz works an

gives the boundary of the central block as the limit asK→6`. Again the differential equation~4!
with E unaltered andA now given by Eq.~14!, satisfies all the conditions for the existence of t
unique solution. The same argument that is used for the Schwarzschild case can be applied
prove that the hypersurfaces do not intersect and cover the whole spaceup to the inner horizon.

V. DISCUSSION OF THE RESULTS

We now turn to the discussion of the implications of our foliation. It had been argued6 that
there is a special significance of the York time in a cosmological context. Namely, in term
such a time parameter the formation of a black hole singularity is simultaneous with the
crunch’’ singularity of a closed universe containing the black hole. In the sense of a compa
~‘Schwarzschild universe’! the same point was noted in our foliation of the Schwarzschild sp
time byK surfaces.1 Of course, our foliation procedure is not the only one for obtainingK slices.
Since the singularity,r 50, is timelike, here it does not appear to be possible to obtain spac
K slices in the region 0,r ,r 2 . In this foliation it appears that we should regard the inn
horizon as simultaneous with the end of the ‘‘compactified RN universe.’’ This is, of cou
consistent with the fact thatr 5r 2 is a blue-shift horizon and the barrier that forms at this pla
due to backreaction that was noticed by Matzneret al.7 and the infinitely blue-shifted radiation
from the outside universe pointed out by Penrose and Simpson.8 We conjecture that there may b
a physical barrier atr 5r 2 . This would remove the enormous difference between the topolog
the Schwarzschild and RN–Penrose diagrams. This argument would be stronger if the
foliation could be proved to be unique, but we have not been able to prove it so far.

It is now necessary to investigate how a variation ofQ/m changes the behavior of th
hypersurfaces. In the caseQ/m50 we have the Schwarzschild spacetime1 and some hypersurface
first rise then fall toI ° ~for K.0!. For the RN spacetime withQ/m50.8, we found that the
hypersurfaces started flat~i.e., dc/dj50! at the highest point and then dropped toI ° ~again for
K.0!. For comparison we considered hypersurfaces foruKu50.01, 0.02 and 0.1 withQ/m
50.6, 0.8, and 0.95 in Fig. 2. It is seen that for a givenK thec i is raised or lowered by raising o
lowering Q/m.

Finally, it is worthwhile to comment on wider applications of the BCI procedure to ob
K-slice foliations. It is natural to limit the attempt to static spacetimes, where there can be g
expectations of achieving the foliation. However, one could try to look for stationary but non
solutions of the Einstein equations, such as the Kerr metric. We find that the procedure is
mentable to the extent of providing theK-slicing equation. Work is in progress to check if o
ansatz can be appropriately modified for the purpose. Other such investigations would be v
in view of the importance ofK slicing.6
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Exact solutions in Einstein–Yang–Mills–Dirac systems
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For the first time, exact solutions for the full self-consistent Einstein–Yang–Mills–
Dirac systems with gauge groupsSU(2) andSU(4) in Robertson–Walker space–
time R3S3 are presented, which are symmetric under the action of the group
SO(4) of spatial rotations. The approach is based on the dimensional reduction
method for gauge, spinor, and gravitational fields and relates symmetric solutions
in EYMD theory to certain solutions of an effective dynamic system. The solutions
are interpreted as solutions of the cosmological type with an oscillating Yang–
Mills field, which exchanges energy with a spinor field. The explicit form of the
solution for the spinor field shows that its energy changes the sign in the process of
the evolution of the Yang–Mills field from one vacuum to another. ©1999
American Institute of Physics.@S0022-2488~99!04710-6#

I. INTRODUCTION

Exact solutions in gravity coupled to fields of different types have always attracted m
attention. In particular, the last few years witnessed a great interest in solutions to EYM sy
There were found both numerical1 and exact solutions withSO(3) andSO(4) groups of spatial
symmetry.2,3 The exactSO(3)-symmetric solutions turn out to be static and singular and are
fact, a generalization of Reissner–Nordstro¨m solutions to non-Abelian gauge theories. T
SO(4)-symmetric solutions correspond to the Robertson–Walker ansatz for the metric an
interpreted either as wormhole solutions in the Euclidean domain4 or as cosmological solutions fo
the radiation dominated universe.5

The study of exact solutions in Einstein–Dirac systems also attracted attention.6,7 It was found
that the Robertson-Walker ansatz in such a system leads to the so-called ‘‘ghost solutions’’
systems, for which the Dirac field has a vanishing energy–momentum tensor.

In the present paper we consider a self-consistent EYMD system and find exact solutio
the case of the gauge groupsSU(2) andSU(4). ThegroupSU(4) is the simplest gauge group
which gives qualitatively new results in comparison with the groupSU(2). Wewould like to note
that the obtained solutions are interesting in their own right as the first example of exac
consistent solutions in the Einstein–Yang–Mills–Dirac system. Our solutions are of the radi
dominated type and describe an exchange of energy between the YM and Dirac fields. Th
be considered as a first step toward finding cosmological solutions with the energy–mom
tensors derived from the fundamental Lagrangians of particle physics, rather than with ph
enological ones, which is important for treating the dynamics of the early Universe. We also
that our solutions explain the phenomenon of the ‘‘ghost solutions’’ in ED systems.

To find these solutions we employ the dimensional reduction method for gravitational, g
and spinor fields,8,9 which enables us to relate symmetric solutions in EYMD system to cer
solutions of an effective dynamic system and essentially simplifies the problem of finding
metric solutions.

a!Electronic mail: volobuev@theory.npi.msu.su
58900022-2488/99/40(11)/5890/15/$15.00 © 1999 American Institute of Physics
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II. THE EFFECTIVE ACTION

We consider anSO(4)-symmetric Einstein–Yang–Mills–Dirac system with the standard
tion in space–timeM5R3S3:

S5SE1SYM1SD , ~1!

where

SE5
1

16pk E
M

~R2L!dv, ~2!

SYM5
1

8g2 E
M

tr~FabFab!dv, ~3!

SD5E
M

i

2
c̄gaEa

mS ]

]xm2
1

8
vmab@ga,gb#1d8~Am! Dc dv1h.c. ~4!

Here L denotes the cosmological constant~which is assumed to be positive and very small,
accordance with the existing experimental data!, R is the scalar curvature, anddv
5Audet(g)ud4x is the canonical volume form corresponding to a metricg on M5R3S3. F andA
are the Yang–Mills field strength and potential, respectively, and the trace is taken in the a
representation of the Lie algebra of the gauge group. In the Dirac action,c denotes the spino
field, $Ea5Ea

m]m% is an orthonormal frame onM5R3S3, vmab5vab(]m)5g(Ea ,“mEb) is
the spin connection,$ga% are the gamma matrices,d is the representation of the gauge group in t
spinor space, andd8 denotes the induced representation of its Lie algebra. Finally, h.c. stand
Hermitian conjugate.

We identifyS3 with the group manifold ofSU(2). Then the actions of the symmetry group,
K5SO(4)[„SU(2)3SU(2)…/$1,21% on SU(2), is given by

s„~k1 ,k2!,x…5k1xk2
21, ~k1 ,k2!PSU~2!3SU~2!, xPSU~2!. ~5!

The isotropy subgroupH at x51SU(2) is isomorphic toSU(2), and isgiven by

H5$~k,k!PK, kPSU~2!%. ~6!

Further, we have the reductive decompositionK5H% M of the Lie algebraK of K, where

H5$~X,X!; XPsu~2!%, ~7!

M5$~X,2X!; XPsu~2!%. ~8!

ObviouslyS35„SU(2)3SU(2)…/H is a symmetric space, andSO(4) invariance is equivalent to
invariance underSU(2)3SU(2). Theisotropy representation ofH5SU(2) in M is 3I , i.e., it is
equivalent to the adjoint representation.

Now we have to reduce the action of the original theory due to theSO(4) symmetry. We
begin with the action of the gravitational field.

The most general form of anSO(4)-invariant metricg on M is

g52N2~ t !dt21a2~ t !dVS3
2 , ~9!

where dVS3
2 is the standard line element on a 3-sphere of radius 2 corresponding to the K

metric onSU(2)[S3 multiplied by 2 1
2, andN(t),a(t) are arbitrary functions of time. For th

sake of the future convenience, we assumeN(t) anda(t) to have the dimension of length andt
and dVS3

2 to be dimensionless. Though the metric~9! can be brought to the conformal form wit
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N(t)5a(t) by an appropriate reparametrization of time, in the Lagrangian formalismN(t) must
be kept arbitrary, until the equations of motion are obtained with the help of the variat
principle, because it plays the role of a Lagrange multiplier in the gravitational action~2!.

An orthonormal coframe$um% on M is given by

u05N dt, u i5aq i , i 51,2,3, ~10!

whereq is i /(2i )[q is the canonical left-invariant 1-form onSU(2), s i being the Pauli matrices
In what follows we put tk5sk /(2i ) and denote byhab the Minkowski metric hab

5diag(21,1,1,1). It is a matter of simple calculations to find the components of the spin con
tion on M:

v0i52v i052ȧ
1

aN
d i l u

l ,

~11!

v ik52
1

2a
e iklu

l , i 51,2,3.

Using the standard formulas for the curvature, substituting it into~2!, and integrating overS3, one
easily finds the reduced gravitational action,

SE5
16p2

16pk E
R
a3NS 3

2a2 16S ȧ
1

aND 2

2ȧṄ
6

aN3 1ä
6

aN22L Ddt, ~12!

where 16p2 is the volume ofSU(2)5S3 with the standard metric dVS3
2 .

In accordance with the principle of the least action, to obtain the corresponding equatio
motion we have to vary this action, keeping all the variations equal to zero at the bound
Therefore, it is possible to omit a complete divergence in this action without altering the equ
of motion ~Ref. 10, Sec. 93!. Doing so, we get the effective action

SE
eff5

16p2

16pk E
R
S 3

2
aN2La3N26

1

N
aȧ2Ddt, ~13!

which we consider as the reduced action of the gravitational field.
Next, we turn to the gauge field action~3!. It is common knowledge that symmetric gaug

fields are pull-backs to the base manifold of the invariant connections in the corresponding
cipal fiber bundles. The classification of invariant connections for the case of fiber-transitive
action is given by Wang’s theorem~Ref. 11, Chap. 2, Sec. 11!. A generalization to the case o
nontransitive symmetry group action was given in Ref. 12, and the problem of lifting the
metry group action to the bundle was considered in Ref. 13. Using the results of these pap
get that anSO(4)-symmetric gauge potentialA on R3S3 is in one-to-one correspondence with
triplet $t, A, F%, wheret is a homomorphism from the isotropy groupH into the gauge groupG,
defined up to conjugacy,

t:H→G, ~14!

A is a gauge potential onR with values in the centralizerCG„t8(H)… of t8(H) in G5Lie(G) and
F is a linear mapping,

F:R→M* ^ G, ~15!

satisfying

F+Ad~h!5Ad„t~h!…+F, ;hPH. ~16!
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Here Ad(h) is the restriction toH of the adjoint representation ofK applied toM and Ad„t(h)…
is the restriction tot(H) of the adjoint representation ofG in G. In fact, Eq.~16! means that the
mappingF intertwines these representations.

As we have already mentioned, we will consider gauge groupsSU(2) andSU(4). It turns out
that the corresponding principal bundles are trivial, because they are classified by the
Chern number, which is equal to zero due toH4(R3S3)50. Therefore, the gauge potentialA is
defined onR3S3 globally for both gauge groups.

Further, since the isotropy subgroup is simple, the homomorphismt can be either injective or
trivial. In the latter case the intertwining operatorF50, and it is easy to see that the spinor fie
decouples from the EYM system, which leads to the known ‘‘ghost solutions’’ for this field.
same is valid, when the representationd is trivial. Therefore, we discard these possibilities in t
sequel.

If the homomorphismt is injective, the intertwining operatorF is nontrivial for any gauge
groupG, because the isotropy representation in the case under consideration is equivalen
adjoint one and the restriction tot(H) of the adjoint representation ofG always contains at leas
one adjoint representation ofH. Thus, we see that the gauge fields onR3S3 always possess
symmetric degrees of freedom for injective homomorphismst.

As for the spinor field, the situation is more complicated: it is quite possible that there a
symmetric spinor fields onR3S3 for some injective homomorphismst and some representation
d of the gauge group carried by the spinor field. A sufficient condition for the existenc
symmetric spinor fields onR3S3 is that the restriction ofd to t(H) contains a representation 2I of
H5SU(2) ~see, for example, Ref. 9!. If we restrict ourselves to gauge groups of theSU(n) series
and to the fundamental representationsd, this condition is fulfilled, in particular, for regula
embeddings ofSU(2) into SU(n), but it turns out that the resulting effective dynamic systems
the same, as for the gauge groupSU(2). Thefirst qualitatively new case is that of the gauge gro
SU(4) with the nonregular embeddingSU(2)→SU(4) defined by the decomposition of th
fundamental representation ofSU(4), 4I →2I % 2I . Effective dynamic systems for other gaug
groups and similar nontrivial embedding look very much like this one. It is for these reason
in the present paper we restrict ourselves to the consideration of the gauge groupsSU(2) and
SU(4).

It is easy to see that in the case of the gauge groupSU(2) the centralizer is trivial, and ther
is no reduced gauge potentialA, whereas in the second case there can be a nontrivial centra
Therefore, the case of the groupSU(4) is more general, and we will carry out all the calculatio
for this case and then explain the difference from the case ofSU(2).

Thus, we take the gauge groupG5SU(4) and define the homomorphismt:H→G by the
decomposition of the fundamental representation 4I of SU(4):

4I →~2I ,2I !, ~17!

i.e., we represent the spaceC4 as the tensor productC2
^ C2 and let the fundamental represent

tion of t(H) act on the first factor and the fundamental representation of the centra
CG„t(H)…5SU(2) act on the second factor.

It is known that the adjoint representation ofsl(n) can be expressed in terms of its fund
mental representation by14

adsl~n!5nI * ^̃ nI , ~18!

where an overtilde means dropping a one-dimensional trivial representation andnI * denotes the
contragradient representation,t(x)* 52t(x)T. Therefore, we get

adsu~4!→~2I ,2I !* ^̃ ~2I ,2I !5~3I ,1I ! % ~3I ,3I ! % ~1I ,3I !. ~19!

A basis insu(4) adapted to this decomposition is
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Hk5tk^ 15S tk 0

0 tk
D , ~20!

PkA5tk^ sA , ~21!

HA51^ tA , ~22!

where Eq.~20! explains our rule for evaluating the tensor product of matrices. It is eas
calculate the commutators of these generators, for instance,

@PkA ,PlB#5eklmHmdAB1eABCHCdkl . ~23!

The constraint~16! means that the mappingF is an intertwining operator, which intertwines th
isotropy representation 3I of H5SU(2) in M with the representation~19!. We introduce basic
intertwining operators fromM into G defined by the relations

I „~tk ,2tk!…5Hk , ~24!

I A„~tk ,2tk!…5PkA . ~25!

Then for anyX5(Xktk)Psu(2), wehave

F„~X,2X!…5jI ~X,2X!1jAI A~X,2X!, ~26!

5Xk~jHk1jAPkA!5X^ ~j11jAsA!, ~27!

wherej andjA, A51,2,3, are real-valued functions onR. In what follows we denote the vecto
(j1,j2,j3) by jW and put ĵ5j11jAsA and j̃5jAsA . The centralizerCsu(4)(t8„su(2)…) of
t8„su(2)… in G5su(4) is su(2) and is spanned by the Lie algebra elementsHA , A51,2,3. The
matrix ĵ is in the representation (1I 13I ) of the centralizerC and i ĵPu(2).

The symmetric gauge potentialA on R3S3 can be easily expressed in terms of the matrixĵ
and the canonical left-invariant 1-formq5q it i on SU(2)[S3:

A5
j11

2
Hiq

i1
1

2
jAPkAqk1A0

AHA dt5
1

2
q ^ ~ ĵ11!11^ A0 dt. ~28!

Here A0 is a function onR with values insu(2), i.e.,A05A0
AtA . The term1^ A0 dt is the reduced

gauge potential onR, which can be gauged out, but we keep it for the moment, because
necessary for deriving the equations of motion. It is not difficult to calculate the correspo
field strengthF and to obtain the reduced Yang–Mills action, which takes the simple form

SYM5
16p2

8g2 E
R
24S a

2N
j̇21

a

2N
~jẆ1AW 03jW !22

N

8a
~„j21~jW !221!214j2~jW !2

…Ddt, ~29!

whereAW 0 is the vector (A0
1,A0

2,A0
3) andAW 03jW is the vector product ofAW 0 andjW .

If the gauge group isG5SU(2), the unique ~up to conjugacy! nontrivial homomorphism
t:H→G can be defined by the identity mapping, i.e.,

t„~k,k!…5k, kPSU~2!. ~30!

In this case, the centralizerCG„t8(H)… is trivial, and the intertwining operator is

F„~X,2X!…5j~ t !X, XPsu~2!, j~ t !PR. ~31!
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It is clear that the gauge potentialA on R3S3 still has the form~28! with jW50, A050. The
reduced Yang–Mills action is also given by~29!, provided one putsjW50 and rescales the cou
pling constantg→2g.

Next we have to reduce the action~4! for a symmetric spinor field. We choosed to be the
fundamental representation, i.e., we can write the spinorc as a 434, resp., 432 matrix on which
an elementg of SU(4), resp.,SU(2) acts via right multiplication byg21.

In accordance with our choice of the metric signature~9!, we have

$gm,gn%522hmn, hmn5diag~21,1,1,1!, g55 ig0g1g2g3, ~32!

g05S 0 1

1 0D , g i5S 0 2s i

s i 0 D , i 51,2,3, g55S 1 0

0 21D . ~33!

The bispinor representationD(s) is defined by

D~s!21gmD~s!5L~s!m
rgr, ~34!

wheres is an element of the group Spin~1,3! andL is the covering homomorphism from Spin~1,3!
onto SO(1,3). On the Lie algebra level we get

@D8~A!,gm#52Am
ngn, D8~A!52 1

8A
m

n@gm ,gn#, ~35!

whereAmn52Anm is an element ofso(1,3)[spin(1,3)[sl(2,C).
An SO(4)-symmetric spinor fieldc on R3S3 is in one-to-one correspondence with a matr

valued functionr on R, which satisfies the condition9

~d8„t8~h!…1D8„l8~h!…!r50, ;hPH. ~36!

Herel8:H→so(1,3) is the homomorphism induced by the isotropy representation, which ca
calculated explicitly:l8(ta)c

b52eac
b . Therefore, if the gauge groupG is SU(4), Eq. ~36! reads

as

„

1
4g

ig je i jk1d8~Hk!…r5„~tk^ 1!r2r~tk^ 1!…50. ~37!

The general solution of this constraint equation is

r5S u11 u21

v11 v21D 51^ S u1 u2

v1 v2
D , u1 ,u2 ,v1 ,v2PC`~R!, ~38!

i.e., a symmetric spinor onR3S3 is parametrized by two complex doubletsu5(u1 ,u2)T andv
5(v1 ,v2)T, one for each chirality. We see from~38! that the reduced gauge groupC5SU(2) acts
on both doublets by the fundamental representation. Taking into account Eqs.~11! and~28!, it is
a matter of simple calculations to get the reduced action,

SD516p2E
R
a3NS i

N
~ ūu̇2uG u1 v̄ v̇2vG v !1

1

N
A0

B~ ūsBu1 v̄sBv !2
3

2a
~ ūĵu2 v̄ ĵv ! Ddt.

~39!

If the gauge groupG is SU(2), Eq. ~36! reads as

„~tk^ 1!r2rtk…50, ~40!

and we get
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r5S u1
v1D51^ S u

v D , u,vPC`~R!, ~41!

i.e., a symmetric spinor onR3S3 for G5SU(2) depends on two arbitrary complex functionsu

andv, one for each chirality. The reduced action has the same form~39!, if we put therejW50,
A050.

Now we can write down the reduced action of the coupled EYMD system. In the case o
gauge groupSU(4) it has the form

S5SE
eff1SYM1SD516p2E

R
H 1

16pk S 3

2
aN2La3N26

a

N
ȧ2D

1
24

8g2 S a

2N
j̇21

a

2N
~jẆ1AW 03jW !22

N

8a
~„j21~jW !221…214j2~jW !2! D

1S ia3~ ūu̇2uG u1 v̄ v̇2vG v !1a3A0
B~ ūsBu1 v̄sBv !2

3a2N

2
~ ūĵu2 v̄ ĵv ! D J dt. ~42!

If we choose the gauge group to beSU(2), wehave to putjW50, A050 in this action, to rescale
the coupling constantg→2g, and to take into account that the variablesu and v are no longer
isospinors, but ordinary functions.

At this point, we have to comment on the meaning of our classical spinor field. It is clea
it can describe the symmetric energy levels of the Dirac field in the EYM background: eithe
lowest one with the positive energy, or the highest one with the negative energy. Therefo
have to assume that the spinor field of our solutions is a one-particle Dirac wave functio
should be normalized to unity, which, in the case of symmetric fields, amounts to

16p2a3~ ūu1 v̄v !51. ~43!

It turns out that this constraint is compatible with the equations of motion derived from the a
~42!.

III. THE FIELD EQUATIONS AND SOLUTIONS

Variation of this action with respect toa, N, j, jW , u, v and ū, v̄ gives us the field equations
When taken in the special gaugeA050 and in the conformal time@the latter condition means tha
now N(t)5a(t)#, they have the form

a
d

da
S5

1

16pk S 3

2
a223La426ȧ2112aäD1

3

2g2 S j̇21~jẆ !21
1

4
~„j21~jW !221…214j2~jW !2! D

13a3
„i ~ ūu̇2uG u1 v̄ v̇2vG v !2~ ūĵu2 v̄ ĵv !…50, ~44!

a
d

dN
S5

1

16pk S 3

2
a22La416ȧ2D2

3

2g2 S j̇21~jẆ !21
1

4
~„j21~jW !221…214j2~jW !2! D

2
3

2
a3~ ūĵu2 v̄ ĵv !50, ~45!

d

dj
S52

3

2g2 ~2j̈1~j„j21~jW !221…12j~jW !2!!2
3

2
a3~ ūu2 v̄v !50, ~46!

d

djA S52
3

g2 S j̈A1
1

2
~jA

„j21~jW !221…12j2jA! D2
3

2
a3~ ūsAu2 v̄sAv !50, ~47!
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1

2
a23/2

d

dū
S5 i

d

dt
a3/2u2

3

4
ĵa3/2u50,

~48!
1

2
a23/2

d

du
S5 i

d

dt
a3/2ū1

3

4
a3/2ūĵ50,

1

2
a23/2

d

d v̄
S5 i

d

dt
a3/2v1

3

4
ĵa3/2v50,

~49!
1

2
a23/2

d

dv
S5 i

d

dt
a3/2v̄2

3

4
a3/2v̄ ĵ50.

Variation with respect toA0 gives a constraint,

dS

dA0
B 5

3

g2 ~eBCDjCj̇D!1a3~ ūsBu1 v̄sBv !50, ~50!

which means that the total isospin of the gauge and the spinor fields equals zero.
Now we will show that it is possible to find exact solutions to this system of equations

begin with the simpler case of the gauge groupSU(2). There is no constraint~50! in this case, and
we also have to drop the equation~47!, to put jW50 in the others and to rescaleg→2g.

The Dirac equations~48! and ~49! give

ūu5
Cu

a3 , v̄v5
Cv

a3 ~51!

and

ūu̇2uG u52
3i

2
jūu, ~52!

v̄ v̇2vG v5
3i

2
j v̄v, ~53!

where, in accordance with~43!, the positive constantsCu andCv fulfill the normalization condi-
tion

16p2~Cu1Cv!51. ~54!

We will discuss the explicit choice of these constants later.
Now Eqs.~44! and ~45! simplify considerably. Their sum gives

1

16pk
~3a224La4112aä!50. ~55!

Multiplying this equation byȧ/a and integrating, we see that

3
2a

22La416ȧ25E, ~56!

where E is an arbitrary constant, which has the meaning of the total energy of the sy
Equation~56! is the standard Friedman equation for the radiation-dominated universe and
simple analog in mechanics. We can considera as the coordinate of a particle with unit mass a
energyE/12, which moves in an inverted double-well potential~recall thatL.0),
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W~a!5 1
8a

22 1
12La4. ~57!

If L,LE59/16E, then the motion will be periodic. This means that our solution describ
universe that first expands and then contracts, wherea50 corresponds to a singular metric in th
beginning and the end. IfL>LE , then the solution can be either static or can describe
expanding or contracting universe, but such solutions are of no interest from the physical p
view, and we will not discuss them in more detail.

Next we turn to the YM equation~46! ~we recall that we have rescaledg→2g in the case
under consideration!. Due to Eq.~51!, it decouples from the equations foru andv:

3

8g2 ~2j̈1„j~j221!…!1
3

2
~Cu2Cv!50. ~58!

The first integral of this equation is

3

8g2 S j̇21
1

4
~j221!2D1

3

2
j~Cu2Cv!5

E

16pk
, ~59!

where the integration constant is due to Eqs.~45! and ~56!.
Equation ~59! also has an analog in mechanics. A point particle with unit mass, en

g2E/(12pk) and coordinatej, moves in a double-well potential,

V~j!5 1
8~j221!212g2j~Cu2Cv!. ~60!

We can interpret the first term in~59! as the energy of the Yang–Mills field and the second te
as the energy of the Dirac field due to the interaction with the gauge field, the equation desc
an exchange of energy between the two fields. The exact solution of Eq.~59! is possible in terms
of elliptic functions of the first kind.15

It is not difficult to see that for sufficiently small values of the coupling constant, for exam
g2/4p,1, potential~60! always has three extrema: the absolute minimum, a local minimum,
a local maximum. We consider, for instance, the case whereCu2Cv,0 and the energy of the
systemg2E/(12pk) lies between the local minimum and the local maximum of the poten
V(j). Then the system will move between the turning points defined by the real zeros o
polynomial,

g2E

12pk
2V~j!. ~61!

In the case under consideration we have four real zerosd,c,b,a, i.e.,

1

2
j̇25

g2E

12pk
2V~j!5

1

8
~a2j!~b2j!~c2j!~j2d!. ~62!

Moreover, the form of the potential~60! stipulates that in the caseCu2Cv,0 we haved,c
,0.

The equations of motion have two solutions with eitherb<j<a or d<j<c. The solution for
the latter case is given by the integral

t~j!5E
d

j dx

Ag2E

6pk
2

1

4
~x221!224g2x~Cu2Cv!

, ~63!

which can be solved explicitly,15
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t~j!5
2

A~a2a!~b2d!
FS arcsinA~a2c!~j2d!

~c2d!~a2j!
,A~a2b!~c2d!

~a2c!~b2d!
D , ~64!

whereF is the elliptic integral of the first kind. This function can be inverted, and we can getj(t)
expressed in terms of the Jacobi elliptic functionsinus amplitudinis. Solutions for other values o
E andCu2Cv can be written out in a similar way with the help of the formulas available in R
15.

With a given solutionj we can solve the Dirac equations~48! and ~49!,

u5ACu

a3 expH 2 i E 3

4
j dtJ , ~65!

v5ACv

a3 expH i E 3

4
jdtJ . ~66!

One easily checks that our solution fulfills the whole system of field equations.
Now we consider the case of gauge groupSU(4). TheDirac equations~48! and ~49! again

lead to~51!, but instead of~52! and ~53! we now have

ūu̇2uG u52
3i

2
ūĵu, ~67!

v̄ v̇2vG v5
3i

2
v̄ ĵv. ~68!

These equations are also sufficient to decouple the Friedman equation from the Yang–Mills
equations, and we get again the equation~56! for the scale factora.

Now we have to solve the Yang–Mills equations~46! and~47!. We start with the discussion
of the constraint~50!. In what follows we restrict ourselves to the case where

eBCDjCj̇D50, for B51,2,3, ~69!

i.e., the isospins of the gauge field and the Dirac field vanish separately. This equation mea
the angular momentum of the motion in thejW space equals zero, that is, the motion goes alon
straight line passing through the origin, and the vectorjW is always proportional to a fixed vecto
jW0 . We use the remaining gauge freedom to choosejW05(0,0,1), i.e.,j̃5zs3 , zPR. In this gauge
we obtain from the Yang–Mills equations~47!,

ūsAu2 v̄sAv50, for A51,2. ~70!

Further, we get from Eqs.~50! and ~69!,

ūsBu1 v̄sBv50, B51,2,3. ~71!

Hence, we haveūs1u5ūs2u50. These equations have two solutions:

1st case: u5a23/2a1w1 , v5a23/2b1w2 ~72!

2nd case: u5a23/2a2w2 , v5a23/2b2w1 , ~73!

where
                                                                                                                



e case

her
ergy

5900 J. Math. Phys., Vol. 40, No. 11, November 1999 Rudolph, Tok, and Volobuev

                    
w15S 1
0D , w25S 0

1D , ~74!

and a i ,b iPC, ua i u5ub i u, i 51,2. In particular, we obtainCu5Cv5ua i u251/(32p2) in the i th
case, because the constants also must fulfill the normalization condition~54!.

If we put j̃5zs3[0, then the Yang–Mills equations~47! demandu5v50. Therefore, we
consider only the nontrivial case, whenj̃Ó0. Hence, we have two Yang–Mills equations~46! and
~47!, which now take the form

3

2g2 ~2j̈1„j~j21z221!12jz2
…!50, ~75!

3

2g2 ~2z̈1„z~j21z221!12j2z…!13S50, ~76!

with SªCu51/(32p2) in the first andSª2Cu521/(32p2) in the second case.
To solve Eqs.~75! and ~76!, we pass to new variables, in accordance with

j5 1
2~x1y!,

~77!

z5 1
2~x2y!.

It is easy to check that the equations forx andy decouple and take the form

3

2g2 „2ẍ1x~x221!…13S50, ~78!

3

2g2 „2ÿ1y~y221!…23S50. ~79!

The first integrals of these equations are

3

2g2 S ẋ21
1

4
~x221!2D13Sx5

E1

8pk
, ~80!

3

2g2 S ẏ21
1

4
~y221!2D23Sy5

E2

8pk
, ~81!

where due to~45! and ~56! the constantsE1 andE2 fulfill

E11E25E. ~82!

These equations can also be solved exactly in terms of Jacobi elliptic functions, but unlike th
of the groupSU(2), there will be two different periods of motion inx andy.

We would like to note here that equations of the type~75!, ~76! with S50 for the Euclidean
EYM system were first found in Ref. 4, but they were solved there only for the case of eitj
50 or z50. It is likely that the existence of two periods can modify the equations for the en
quantization of the wormholes.4,16

Substituting the solutions forj andz into Eq. ~28!, we get
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A5
1

2
u ^ ~ ĵ11!5S 11x

2
u 0

0
11y

2
u
D , ~83!

i.e., the gauge potentialA takes values only in thesu(2)% su(2) subalgebra ofsu(4), eachsu(2)
part of the gauge potential being coupled to only one of the spinor fieldsu, resp.,v.

If we have a solution to the system of equations~80! and~81!, it is easy to integrate the Dira
equations~48! and ~49!. With given solutionsj andz we obtain

u5w1ACu

a3 expH 2 i E 3

4
x dtJ , ~84!

v5w2ACu

a3 expH i E 3

4
y dt1 iw1J ~85!

in the first and

u5w2ACu

a3 expH 2 i E 3

4
y dtJ , ~86!

v5w1ACu

a3 expH i E 3

4
xdt1 iw2J , ~87!

in the second case,w1 andw2 being arbitrary constant phases.

IV. DISCUSSION

In studying the self-consistent EYMD system we have found that the evolution of the m
decouples from the remaining system and is described by the Friedman equation for the rad
dominated universe. The same result for the case of EYM systems was obtained earlier in R
5, and solutions for the spinor field in this background were studied in Ref. 17. Unlike the
solutions, our solutions take into account the back-reaction of the spinor field on the YM
gravitational fields.

As we have already mentioned, our solutions describe just one energy level of the Dira
in the EYM background, which is the symmetric one and therefore exactly the lowest one
easy to see from the Dirac equations~48!, ~49! that the symmetric lowest level has a nonze
energy, whenjÞ0 in the caseG5SU(2) and detĵ5j22jW2Þ0 in the caseG5SU(4). It makes
clear that, in the absence of gauge fields, the symmetric level of the Dirac field always ha
energy. Therefore, the corresponding energy–momentum tensor vanishes, an
SO(4)-invariant solution for the Dirac field becomes a ‘‘ghost solution.’’

Now we will discuss our solutions in more detail. We start with the simpler case of the g
groupSU(2). In this case the Yang–Mills equations admit three static solutions: two minima
one local maximum of the potential,

V~j!5 1
8~j221!212g2j~Cu2Cv!. ~88!

Of course, these are solutions of the whole system only if the constantE is equal to the value of
V(j) in these extrema. In the absence of the spinor field, these extrema are two vacuaj521,
j511 of the YM field with Chern–Simons numbersq50 andq51 and a sphaleronlike solutio
j50 with Chern–Simons numberq5 1

2 lying on top of the potential barrier between the vacu
where the Chern–Simons number is defined for anyt as
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q~ t !5
1

8p2 E
$t%3S3

trdS A∧dA1
1

3
A∧@A,A# D ,

the trace being taken in the representationd of the gauge group in the spinor space. In the case

symmetric gauge fields this number can be calculated explicitly to beq(t)5( 1
4)(213j(t)

2„j(t)…3). Chiral spinor field configuration shifts the position of the extrema and the Che
Simons index of the corresponding gauge field configurations, which is quite natural in the
ence of matter fields.18–22

By fine tuning the cosmological constantL and the energyE, we can get a static sphaleronlik
solution of the whole system. This solution corresponds to the local maxima ofV(j) ~60! and
W(a) ~57!. Obviously, this solution has two unstable modes—one in the gravitational and o
the gauge field sector. This is another indication that the static solution is a ‘‘cosmolog
analog of the first Bartnik–McKinnon solution.23

Next, we observe that Eq.~45! is the~0,0! component of the Einstein equations, and theref
we can interpret the constantE, see Eq.~56!, as the total energy of the YMD system. Then E
~59! describes, in particular, the exchange of energy between Yang–Mills and spinor fields
interpretation is in agreement with the solutions~65! and~66! for the spinor field in the case of th
gauge groupSU(2): themomentary frequency, resp., energy of the spinor field is given by
integrand in the exponent of the solutions, and this is up to a factorj.

At this point we encounter the problem of positive definiteness of the energy, which is
known in classical Dirac theory. We see that the left-handed and the right-handed spinors
contributions of opposite sign to the energy of the system~59!. Therefore, a physically meaningfu
solution in our case can only be a solution with either left-handed or right-handed spinors a
Yang–Mills field j taking values in the interval, where the energy of the corresponding sp
field is positive. Thus, the solution~64! with Cu50, Cv51/(16p2) is physically meaningful,
becausej,0 for this solution and the energy of the left-handed spinor fieldv is positive definite,
which is also seen from Eq.~59!.

If the total energy of the YMD system is larger than the local maximum of the potentialV(j),
the motion in the variablej, stemming from the YM field, will go over an interval, including bo
minima of the potentialV(j). Whenj crosses zero, the energy of the spinor field also change
sign. This is in accordance with the observations in Refs. 17 and 24, where it was shown th
spinor field has zero modes in the sphaleron background and that moving between neigh
vacua of the gauge field results in a shift of the energy levels of the spinor field. We also o
from our solution that the effect is opposite for the spinor fields with opposite chirality.

However, whenj crosses zero, our solution describes spinor matter with negative en
which is unphysical. Furthermore, because we are dealing with a one-particle system, we
consistently describe the process of creation and annihilation of fermions. This is also easil
from the fact that the classical axial current of the Dirac field, given in the case under con
ation by

j 5c̄gag5cua52c̄gacua52
Cv

a3 u0, ~89!

is classically conserved, i.e.,d(* j )50, whereas the anomaly equation,18,19,25,22

d~* j !52~1/8p2!trd~F∧F !, ~90!

implies that the evolution of the YM field between topologically distinct vacua must result
change of the fermion number,

NL~ t !52E
$t%3S3* j . ~91!
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Thus, within our interpretation of the solutions, only the motion in the vicinity of a certain vac
is allowed.

Finally, we comment on the case of gauge groupSU(4). Under assumption~69!, we can
completely solve the field equations. Equation~83! means that the Yang–Mills potential take
values only in ansu(2)% su(2) subalgebra ofsu(4) and, therefore, splits into two parts. Ea
part is coupled to one spinor field of a definite chirality. Thus, in some sense, we simply h
doubling of the solution forSU(2).

Similar to ~59!, Eqs.~80! and ~81! describe the exchange of energy between the spinor
gauge field. In the absence of the spinor field, the YM field has the following extrema:
a local maximum,

j50, z50, q51;

four minima,

j51, z50, q52,

j50, z561, q51,

j521, z50, q50;

and four saddle points,

j5 1
2, z56 1

2, q5 3
2,

j52 1
2, z56 1

2, q5 1
2,

the Chern–Simons number now being given byq(t)5( 1
2)(213j(t)2„j(t)…323j(t)„z(t)…2).

For sufficiently small values of the coupling constant@approximately,g2/(16p),1#, the
inclusion of the spinor field lifts the degeneracy so that three of the four absolute minima be
local minima. Again, by fine tuning the constantsE1 andE2 and the cosmological constantL we
can obtain the corresponding static solutions, some of them being stable and some unstab

If the constantsE1 andE2 are such that the variablesx andy describe a motion in the vicinity
of the local minimum, where the energy of both left-handed and right-handed spinors is po
the corresponding solutions are physically meaningful. Such solutions exist for any sign
constantS ~76!, but, in contrast to theSU(2) case, we have no chiral solutions.

If the energiesE1 andE2 are large enough, in the case of gauge groupSU(4) we also have
the phenomenon of energy level crossing in the evolution of the spinor field. But similar t
case of the gauge groupSU(2), these solutions become unphysical, because of negative ener
the Dirac field. Therefore, they are unable to describe transitions between the topologically d
vacua, which the system has in this case.

In the end we would like to emphasize once again that the obtained solutions are inter
in their own right as the first example of exact self-consistent solutions in the Einstein–Y
Mills–Dirac system. They can be of use for constructing cosmological solutions in EYMD t
ries, which would take into account the excited levels of the Dirac field as well. Their phy
interpretation is not clear yet. For example, they can be considered as describing baby univ26

but it is quite possible that there can exist other interpretations of these solutions, which
from the one proposed here.
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The identities of the algebraic invariants
of the four-dimensional Riemann tensor. III
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This paper extends the investigation of the invariants of the Riemann tensor to
include the invariants that are of odd degree in the trace-free Ricci tensor. It is
shown that these invariants can be expressed in terms of 15 such invariants that are
irreducible. As a consequence, it is possible to write down a complete set of in-
variants of the Riemann tensor. Several syzygies for these invariants have been
found and examples of these are given. These syzygies suggest there may be
several new syzygies of invariants with even degree in the trace-free Ricci tensor.
A large number of these have also been found and are discussed in the paper.
© 1999 American Institute of Physics.@S0022-2488~99!04110-9#

I. INTRODUCTION

As the title suggests, the aim of this paper is to extend the recent work of the author1,2 on the
invariants of the Riemann tensor. The main result is to include those invariants that are o
degree in the trace-free Ricci tensor and thereby find a complete set of Riemann invariant

An invariant of a set of tensors inn dimensions is a polynomial function of the componen
of those tensors that is invariant under some group of transformations of the tensors. It is k3

that any invariant of a set of tensors can be expressed as a linear combination of co
contractions of products of those tensors~together with the metric ore i 1¯ i n

as appropriate!. In our
case, the components of the Riemann tensor transform under the proper Lorentz group.com-
plete set of invariants,$I 1 ,...,I m%, is one for which any other invariantI can be written as a
polynomial function of$I 1 ,...,I m%, but no element of the set can be written as a polynom
function of the others. Anindependentset of invariants,$I 1 ,...,I m%, is one for which
f (I 1 ,...,I m)50 implies thatf is the trivial function,f [0. An invariant,T, is reducibleif it can be
written as a polynomial whose arguments are invariants of lower degree thanT. This shall be
written asT'0. Two invariants will be said to beequivalentif their difference is reducible.

In the past 50 years there have been several attempts to understand the invariants
Riemann tensor and the relations between them. Initial attempts were directed towards fin
suitable set of independent invariants4–8 and, more recently, the physical interpretation of some
the invariants.9,10 Carminati and McLenaghan9 pointed out that in many cases an independent
is not sufficient, and that it is important to have a complete set of invariants. Such a set can b
to find all other invariants in any algebraically special case, as well as in the general case.
sense, a complete set will contain all possible information about the invariants.

However, a complete set of invariants typically will contain more elements than an inde
dent set, and so there must be relationships~syzygies! between them. Carminati and McLenagha
McIntosh and Zachary,11 and Zachary and McIntosh12 have made some preliminary investigatio
into these relationships in algebraically special cases. Sneddon1,2 showed how the complex bivec
tor representation, together with some results from invariant theory, could be used to obtain
number of the identities connecting the invariants of the Riemann tensor. These papers s
referred to as I and II, respectively. The bivector formalism used is that of Buchdahl.13 ~A

a!Electronic mail: Graeme.Sneddon@jcu.edu.au
59050022-2488/99/40(11)/5905/16/$15.00 © 1999 American Institute of Physics
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summary is given in I.! In this formalism, the Riemann tensor is represented by two com
333 matrices together with the Ricci scalar,R. The matrix,C, that corresponds to the Wey
tensor, is symmetric and trace-free. The other matrix,G, corresponds to the trace-free part of t
Ricci tensor and is Hermitian. Under a proper Lorentz transformation, the bivectors unde
complex orthogonal transformation.13

It was observed in II that there are two subsets of the invariants for which the proble
finding a complete set simplifies somewhat. The first subset is the set of invariants in whG

appears only in the combinationK5GḠ. The second is the set of invariants of even degree inG.
For simplicity, it is convenient to refer to invariants that are of even degree in the trace-free
tensor as ‘‘even’’ invariants, and those with odd degree as ‘‘odd’’ invariants.

Since the product of any two odd invariants will be an even invariant, the view was expr
in II that, in most cases, it may be sufficient to consider the even invariants only. However,
are a number of reasons why the odd invariants should also be investigated. First, vario
invariants have been used previously. The invariantSi

jS
j
kS

k
i , whereSi

j is the trace-free Ricci
tensor, is the most elementary of these. This is proportional to the invariantr 2 of Carminati and
McLenaghan. There is also the invariant,D2D1S, of Géhéniau and Debever5 ~as expressed by
Campbell and Wainwright14!. This is proportional to the odd invariantm4 introduced by Carminati
and McLenaghan. It is important to understand how these quantities relate to the even inv
described in II. Second, there is the hope that it may be possible to simplify the rather large
invariants found in II if the odd invariants are included. Third, it may be possible to simplify
syzygies of the even invariants if they can be written in terms of the odd invariants. At the
least, it may be possible to gain further insight into the nature of these syzygies. Unfortun
these hopes are realized to a limited extent only. While the inclusion of the odd invariants m
that some even invariants are no longer needed in a complete set, there is a greater numbe
invariants that need to be added to the set. Also, there does not seem to be any great simpl
of the syzygies of even invariants beyond the observation that some can be obtained from
sponding syzygies of odd invariants. However, one consequence of this work is that severa
syzygies of even invariants have been found. Some of these have total degree that is less
total degree of those in II and so, in this sense, are more fundamental.

The initial goal is to find a set,K0 , of odd invariants which are irreducible and for which a
other odd invariant can be expressed as a polynomial function of the elements ofK0 together with
the even invariants. Section II summarizes the existing results for even invariants. In Sec.
nature of the odd invariants is discussed and some preliminary results are obtained. It is
that any odd invariant can be written as a linear function of a small number of odd invariants
the coefficients of these terms being even invariants. In Sec. IV, a suitable set of odd invari
obtained. Since these invariants are irreducible, they will form the setK0 . A complete set,K, of
invariants ofC and G can then be given. Section V describes some of the syzygies of the
invariants. Many of these syzygies are obtained by the method of skew-symmetrizing
n11 indices that was discussed in II. Others are obtained by a ‘‘method of undetermined
ficients,’’ a numerical procedure developed by Ouchterlony15 for finding syzygies. In Sec. VI, it is
noted that several of these syzygies can be used to obtain syzygies of even invariants. The
of undetermined coefficients is then used to find those syzygies of even invariants that ha
lowest possible degree. Examples of some of the new syzygies are given in the appendice
are also available in an electronic form from http://www.jcu.edu.au/~mages/.

Throughout, the notation used is that of I and II. Indicesi , j ,... will range from 1 to 4, while
bivector indicesA,B,... will range from 1 to 3. Square brackets will be used to denote the trac
a matrix. Thus@AB# is the trace of the matrixAB. Details of the symbols used are in Appendix

II. THE EVEN INVARIANTS

For those invariants whereG appears only in the combinationGḠ, the invariants are bes

expressed in terms of the matricesA5C andB5GḠ. It was demonstrated in I that a complete s
for these invariants is the set,I, given by
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@A2# @A3#

@B# @AB# @A2B#

@B2# @AB2# @A2B2#

@B3#.

~1!

Since there will be 15 real invariants inI, and there can only be 13 independent invariants oC
andG, there must be two identities connecting these invariants. In fact,@A2B2# satisfies a cubic
equation whose coefficients are functions of the other invariants in~1!. This equation was given in
I and II, but in an incorrect form.16 The corrected version is given in Appendix A.

For the set of even invariants, the fact thatG is Hermitian means that it transforms asG

→SGS̄21 and this complicates the invariants and their relationships quite considerably. In
was claimed that the set,J, given in Table I, is a complete set for these invariants. This table g

the invariants in terms of the symmetric matricesC5GCḠ andD5GC2Ḡ. Also, the invariants
detA and detB have been used instead of@A3# and @B3#. While it was not proved that every
element ofJ is irreducible, it seemed unlikely that there would be any identity to express an
them in term of even invariants of lower degree. In fact, this is confirmed in Sec. VI.

Also in II, a large number of syzygies were found by making use of the fact that s
symmetrizing overn11 indices will give an expression which is zero. For example, for a
333 matrices,X, Y, andZ,

X[A
AYB

BZC
CdD]

E50. ~2!

When expanded, this equation gives a matrix identity satisfied by 333 matrices. Several syzygie
of even invariants were obtained by multiplying such matrix identities byC, D or CD and then
taking the trace. These syzygies are linear in the invariants

u5~@AC#,@ABC#,@AB2C# !T,

v5~@A2C#,@A2BC#,@A2B2C# !T,

w5~@A2D#,@A2BD#,@A2B2D# !T.

Other syzygies were found that were quadratic in these invariants.

TABLE I. This is the setJ. Any invariant ofC andG that is of even degree
in G can be written as a polynomial function of these invariants.

Real invariants Complex invariants

@B#5@K#
@B2#5@K2# @A2#5@C2#
detB5detK detA5detC

@AB#5@CK#5@C#

@AB2#5@CK2#5@BC#

@A2B#5@C2K#5@D#

@A2B2#5@C2K2#5@BD#

@AC#5@CGC̄Ḡ# @AD#5@CGC̄2Ḡ#

@ABC#5@CKGC̄Ḡ# 5@A2C#

@AB2C#5@CK2GC̄Ḡ# @ABD#5@CKGC̄2Ḡ#

@A2D#5@C2GC̄2Ḡ# 5@A2BC#

@A2BD#5@C2KGC̄2Ḡ# @AB2D#5@CK2GC̄2Ḡ#

@A2B2D#5@C2K2GC̄2Ḡ# 5@A2B2C#

@A2BACD#5@C2KCGC̄K̄C̄2Ḡ#
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III. SOME PRELIMINARY RESULTS

Any invariant of C and G can be expressed in terms of fully contracted products ofCA
B ,

GA
Ḃ , eABC and their conjugates. Since dotted and undotted indices must both occur in pairs

term in an invariant of odd degree inG must have an odd number of factors ofeABC and an odd

number of factors ofe ȦḂĊ. Furthermore, since any two factors ofeABC ~and any two ofe ȦḂĊ) can
be written in terms of Kronecker delta functions, it will be sufficient to consider odd invari

that have one factor ofeABC and one factor ofe ȦḂĊ. Note that each of these factors will chan

sign under an orthogonal transformation whose determinant is21, but the product,eABCe ȦḂĊ,
will transform as a tensor under any orthogonal transformation. The simplest odd invari

det(GA
Ḃ)51

6e
ȦḂĊeABCG

A
ȦGB

ḂGC
Ċ . However, this quantity is complex unlessa, the determinant of

the metric of the space of bivectors, is real. For this reason, it is preferable to express th
invariants in terms ofeABC5AaeABC . Then,

D5
1

6
eȦḂĊeABCGA

ȦGB
ḂGC

Ċ5Aa

ā
det~GA

Ḃ! ~3!

is real. This is the same quantity,D, that was introduced in I and it is proportional to the invaria
r 2 , of Carminati and McLenaghan.

Any odd invariant will be a sum of terms, each of which is an even invariant~or a constant!
multiplied by an invariant of the form

~L,M ,N!5eȦḂĊeABCLA
ȦMB

ḂNC
Ċ , ~4!

whereL, M, andN are each products of the matricesC, C̄, G, andḠ. Therefore, the elements o
K0 can be assumed to have this form. The following theorem further restricts the possible fo
the elements ofK0 . In the statement of the theorem,C andC2 are treated as distinct quantitie

Theorem: The elements ofK0 can be chosen to have the form of either(G,G,N), where N

has at most one factor of each ofC, C2, C̄ andC̄2, or (G,M ,N), where M and N between them

have exactly one factor of each ofC, C2, C̄, and C̄2.
In order to prove this theorem, some intermediate results are needed.
Lemma 1: Any invariant of the form (L,M,N) is equivalent to an expression where the

invariants all have the form(G,M ,N).

Proof: It follows from the identity, eȦḂĊe[ABCPA
D]Q

D
ȦMB

ḂNC
Ċ50, that, if LA

Ȧ

5PA
DQD

Ȧ ,

~PQ,M ,N!5@P#~Q,M ,N!2~Q,PM,N!2~Q,M ,PN!

'2~Q,PM,N!2~Q,M ,PN!. ~5!

Similarly, if LA
Ȧ5PA

ḊQḊ
Ȧ , then (PQ,M ,N)'2(P,MQ,N)2(P,M ,NQ). Therefore, if L

5PGQ,

~PGQ,M ,N!'~G,PMQ,N!1~G,PM,NQ!1~G,MQ,PN!1~G,M ,PNQ!,

and hence the result. h

Lemma 2: Any invariant of the type(G,GM ,GN) can be factorized and so is reducible.

Proof: In the expression,eȦḂĊeABCGA
ȦGB

ḊMḊ
ḂGC

ĖNĖ
Ċ , the factorseABCGA

ȦGB
ḊGC

Ė can
be replaced byDeȦḊĖ and it follows that (G,GM ,GN)5D(@M #@N#2@MN#). This result is a
generalization of the factorization of the invariantD2D2S ~of Géhéniau and Debever5! first noted
by Carminati and McLenaghan and also discussed in I.

In I it is shown that, if any matrix product has two separate factors ofC, Eq. ~2! can be used
to combine these two factors into a single factor ofC2. A similar result holds for (G,M ,N).
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Lemma 3: Any invariant, (G,M ,N), for which M andN between them contain two separa
factors ofC can be expressed in terms of invariants with the factors ofC combined into a single
factor of C2.

Proof: If both factors ofC were in eitherM or N, Eq. ~2! could be used to combine them int
C2. Therefore,C would need to be a factor of bothM andN. If C was not the first factor of eithe
M or N then, by Lemma 2, (G,M ,N) could be factorized.

If C was the first factor ofM but not ofN, (G,M ,N)5(G,CP,GQ) whereQ has a factor of
C. Making use of the result following Eq.~5!, (G,CP,GQ)'2(GQ,CP,G)2(G,CPQ,G), so
(G,CP,GQ)'2 1

2(G,CPQ,G). ThenCPQ can be written in terms of matrix products where t
two factors ofC have been combined.

If C was the first factor of bothM andN then, making use of Eq.~5!,

~G,M ,N!5~G,CP,CQ!

'2~G,C2P,Q!2~CG,CP,Q!

'2~G,C2P,Q!1~C2G,P,Q!1~CG,P,CQ!

'2~G,C2P,Q!1~C2G,P,Q!2~G,P,C2Q!2~G,CP,CQ!,

and, once again, (G,M ,N) can be expressed in terms of invariants where the two factors oC
have been combined.

This result can be extended to factors ofC2, C̄, andC̄2. Therefore, the elements ofK0 can

be chosen so thatM andN between them have at most one factor ofC, C2, C̄, andC̄2.
Proof of Theorem:In order to obtain the main theorem it remains to show that, ifM andN do

not have exactly one factor of each ofC, C2, C̄, and C̄2, then (G,M ,N) can be reduced to
(G,G,P).

If neitherM or N contains a factor ofC̄, for example, one of them~M say! must haveG as its
last factor. Then (G,QG,N)'2(QG,G,N)2(G,G,QN). Therefore, (G,QG,N)'2 1

2

3(G,G,QN). The result forC, C2, andC̄2 can be obtained similarly. h

IV. THE ODD INVARIANTS

It turns out that any invariants with a given degree inG, C, andC̄ will be equivalent to each
other to within a constant multiple. Thus it is sufficient to take one representative of each
The odd invariants of degree three inG will be considered first. The invariant,D, with no factors
of C, etc. has already been defined in Eq.~3!. Qmn will denote an invariant of degree three inG

and degreesm andn in C andC̄, respectively. It follows from Lemma 2 that these invariants m

contain at least one factor ofC or C2 and one ofC̄ or C̄2. Thus the next simplest odd invarian
after D is

Q115
1
2~G,G,CGC̄!.

Q11 is real and is proportional to the invariantm4 defined by Carminati and McLenaghan.9 By
multiplying out the expressions forD andQ11, it is straightforward to show that

DQ115@AB2C#2@B#@ABC#2 1
2~@B2#2@B#2!@AC#. ~6!

This is actually a modified version of the equation form4 given in I. It also shows that, when th
odd invariants are included,@AB2C# is reducible.
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Other invariants of this type are

Q215Q̄125
1
2~G,G,C2GC̄!,

Q225
1
2~G,G,C2GC̄2!,

Q335
1
2~G,CGC̄,C2GC̄2!.

Note that there are no invariants with degree three inG that have degree three in eitherC or C̄,
but not both. Equations similar to Eq.~6! for DQmn can also be found using straightforward ind
manipulations, except for the equation forDQ33. This equation is longer than the others and
manipulations needed would be quite complicated. It was actually obtained by the meth
undetermined coefficients developed by Ouchterlony15 and described in the next section. Th
equation is given in the Appendix. The equations forDQmn show that @AB2C#, @A2B2C#,
@A2B2D#, and @A2BACD# are reducible and so would no longer be in the complete set. T
would be replaced byQ11, Q12, Q22, andQ33. Similarly, detB would be replaced byD. Since
the product of any two odd invariants must be of degree six inG, it is clear that these are the onl
elements ofJ that are reducible in this way. The invariants,Qmn , are irreducible and so must b
in the setK0 . They would also be contained in a complete set of invariants of the Riemann te

The idea that some elements ofJ can simply be replaced by an element ofK0 to form a
complete set for all invariants is rather appealing. Unfortunately, there are several othe
invariants that are irreducible that also need to be included in a complete set. These are inv
of degree five inG and can be defined as follows:

L115
1
2~G,G,CKGC̄!,

L215L̄125
1
2~G,G,C2KGC̄!,

L225
1
2~G,G,C2KGC̄2!,

L315L̄135
1
2~G,G,C2KCGC̄!,

L325L̄235
1
2~G,G,C2KCGC̄!,

L335
1
2~G,G,CGC̄2ḠC2GC̄!.

Note that there are several possible forms for the invariant of degree three inC and C̄. For

example, (G,KCGC̄,C2GC̄2) and (G,CKGC̄,C2GC̄2) are two possibilities. The first is

equivalent to 2 1
2(G,G,C2GC̄2ḠC̄GC̄). The second is equivalent to (CGC̄,KG,C2GC̄2)

which, in turn, is equivalent to invariants like the first. In all cases, the invariant can be put in
form (G,G,N). Different orderings of the factors inN result in invariants that are equivalent
L33 above.

It can be shown that none of these invariants is reducible. One way to see this is as fo
If L11 is reducible, it must be a linear combination of odd invariants of lower degree. The
possibility would beL115E1Q111E2D, whereE1 andE2 are even invariants of the appropria
degree. If this equation is multiplied byD, it should be possible to identifyE1 andE2 so that either
the equation is identically satisfied, or the result is syzygy of even invariants. Neither of
situations is the case, soL11 is irreducible. This method can be extended to the other invaria
Lmn .

Invariants of degree greater than five inG can be shown to be reducible. For example, for

invariant, (G,G,CK2GC̄), CK2GC̄'2KCKGC̄2K2CKGC̄. Therefore (G,G,CK2GC̄) can
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be reduced to invariants for which the first factor of each matrix isG. These can be factorized, s
the invariant is reducible. Similar arguments can be applied to most other invariants of d

greater than 5 inG. The exception is those invariants of degree three in bothC andC̄ and degree
7 in G. It is not too difficult to show that each such invariant can be expressed in term
invariants of the type (G,G,N). These invariants can then be reduced to one of the following

~G,G,CKGC̄2ḠC2GC̄!,

~G,G,CGC̄2ḠKC2GC̄!,

~G,G,CGC̄2ḠC2KGC̄!,

~G,G,CKC2GC̄2K̄C̄!.

To show that the first three are equivalent, use the expanded form of Eq.~2! and Lemma 2. Thus

the first few factors ofN in the first invariant can be written as (C)(K)(GC̄2Ḡ) which is equiva-

lent to 2(C)(GC̄2Ḡ)(K) 1 ‘‘terms whose first factor isG.’’ Therefore, the first invariant is
equivalent to a multiple of the second. Similarly, it is also equivalent to a multiple of the third.

equivalence to the final invariant follows fromC(K)(GC̄2Ḡ)(C2)'2C(K)(C2)(GC̄2Ḡ)

2C(GC̄2Ḡ)(C2)(K)2C(GC̄2Ḡ)(K)(C2). There is a slight advantage in choosing

L̃335
1
2~G,G,C2KCGC̄K̄C̄2!

as the representative of these invariants. We should now investigate whether or notL̃33 is reduc-
ible. In fact it is quite difficult~though presumably not impossible! to show this one way or the
other by using the current techniques. However, the fact that it is reducible can be demonstr
once again using the method of undetermined coefficients. This method, and the result foL̃33,
will be discussed in the next section.

Taking this work into account, it is clear that the elements of the setK0 , are

D

Q11,L11, Q12,L12, L13

Q21,L21, Q22,L22, L23

L31, L32, Q33,L33.

~7!

There are 15 real invariants and they would all need to be included in a complete set
invariants of the Riemann tensor. On the other hand, some of the elements ofJ will not appear in
the complete set. These are the six invariants

detB

@AB2C#, @AB2D#,

@A2B2C#, @A2B2D#,

@A2BACD#.

~8!

Therefore, including the odd invariants will increase the size of the complete set by 9
complete set,K, is given in Table II. If the Ricci scalar,R, is included, the set will be a complet
set of Riemann invariants.
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V. SYZYGIES OF THE ODD INVARIANTS

One identity that remains to be found for the work in Sec. IV is the one that give
expression forL̃33 in terms of the other invariants. The Second Fundamental Theorem state
it must be possible to obtain any such identity from the property that skew-symmetrizing ove
indices must annihilate any tensor in three dimensions. Unfortunately, the details of how
might be achieved in this case remain unclear. Therefore, we resort to other means. The
must have the form,

a1L̃335(
i 51

15

EiOi , ~9!

where theOi are the elements ofK0 and each of theEi is an even invariant of the appropria

degree. For example, the coefficient ofQ22 in Eq. ~9! will be of first degree inC andC̄ and fourth
degree inG ~or second degree inK!. It must have the form

a@B#@AC#1b@ABC#1c@AB#@C#,

wherea, b, andc are undetermined coefficients. Altogether there are 65 undetermined coeffic
ai , ~including a1) in Eq. ~9!.

Ouchterlony15 has shown that if the form of the syzygy is known as in this case, the co
cients can often be determined by a numerical procedure. Using the procedure, he indepe
found the syzygy for nonsymmetric 333 matrices@Eq. ~6! of II # as well as several syzygies fo
sets of 232 matrices. The coefficients,ai , have the property that they will satisfy Eq.~9! for any
choice of the components ofC andG. Hence, each numerical choice for these components
give a homogeneous equation for theai . A set of 65 or more numerical values ofC andG chosen

TABLE II. This is the setK. Any invariant ofC andG can be written as a
polynomial function of these invariants.

Real invariants Complex invariants

@B#5@K#
@B2#5@K2# @A2#5@C2#
D5detG detA5detC

@AB#5@CK#5@C#

@AB2#5@CK2#5@BC#

@A2B#5@C2K#5@D#

@A2B2#5@C2K2#5@BD#

@AC#5@CGC̄Ḡ# @AD#5@CGC̄2Ḡ#

@ABC#5@CKGC̄Ḡ# 5@A2C#

Q115
1
2(G,G,CGC̄) @ABD#5@CKGC̄2Ḡ#

@A2D#5@C2GC̄2Ḡ# 5@A2BC#

@A2BD#5@C2KGC̄2Ḡ# Q215
1
2(G,G,C2GC̄)

Q225
1
2(G,G,C2GC̄2) 5Q̄12

Q335
1
2(G,CGC̄,C2GC̄2)

L215
1
2(G,G,C2KGC̄)

L115
1
2(G,G,CKGC̄) 5L̄12

L225
1
2(G,G,C2KGC̄2) L315

1
2(G,G,C2KCGC̄)

L335
1
2(G,G,CGC̄2ḠC2GC̄) 5L̄13

L325
1
2(G,G,C2KCGC̄2)

5L̄23
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at random should give a complete set of equations for theai . If the coefficient matrix of this set
of homogeneous equations isM, the null space ofM will contain the possible solutions forai . If
the values of the components and the subsequent calculations have finite precision, these s
and the resulting syzygies will only be approximate. The exact, rational coefficients can be
by taking linear combinations so that the first nonzero component of each vector is 1 and,
is the i th component,ai50 for each of the other vectors. Once this is done, the remain
components will be close to rational numbers, and it should be possible to identify the c
values. Finally, the syzygies can often be simplified further by taking appropriate linear co
nations. This method is used here to obtain some of the syzygies of odd invariants, and is
Sec. VI to find some more syzygies of even invariants.

The application of the method to find the syzygies~9! is straightforward and it turns out tha
there are six syzygies of this type. One of these@Eq. ~B1!# is an equation forL̃33 so this invariant
is reducible. The other five express homogeneous linear relations between the elementsK0 ,
where the coefficients are even invariants. One linear combination of these syzygies do
contain any of theLmn . This is also given in the Appendix. The same method was used to se
for any identities of lower degree that were linear in the odd invariants, but none were found
confirms that the invariantsQmn andLmn are irreducible. It is possible there will be syzygies
higher degree, but no attempt has been made to find these.

There are also syzygies that are quadratic in the odd invariants. The equations forDQmn

mentioned in the previous section are examples of these. However, these identities can be
for @AB2C#, etc. and so are best seen as ‘‘reducing equations’’ for these invariants rather t
syzygies of invariants of a complete set. Expressions can also be found forDLmn . The expression
for DL11 is given in Appendix B. There will be similar equations to express the product of
two odd invariants in terms of even invariants. These equations can be found by writin

product of the two odd invariants in index notation and then expressingeABCeDEF andeȦḂĊeḊĖḞ

in terms of Kronecker delta functions. They can also be found by using the numerical proc
described above. The equation forQ11

2 is in Appendix B.

VI. SYZYGIES OF THE EVEN INVARIANTS

Now the syzygies of odd invariants in Sec. V can be used to obtain some new syzyg

even invariants. As in II, each identity will be characterized by its degree inC, K, andC̄, even
though some identities may have a fractional degree inK. A syzygy whose degrees inC, K, and

C̄ are l, m, andn, respectively will be said to have degree~l,m,n!. If the five syzygies that are
linear in the odd invariants are multiplied byD, and the expressions forDQmn andDLmn are used,
the result is some syzygies of even invariants that have degree~3,5,3!. A check with the degrees
of the identities found in II shows that these must be new identities. The appearance of the
identities suggests that there may be more. These could be found by an exhaustive use
property that skew-symmetrizing overn11 indices gives an expression that is zero. Howev
once again, it is simplest to use the method of undetermined coefficients to obtain the re
relations. The idea is, for any given degree, construct all products,Ei , of invariants inJ that have
that degree and use the method to find all sets of coefficientsai such that

( aiEi50

for any numerical choice ofC andG.
The method of construction of the identities in II indicates that all syzygies of first degre

C̄ have already have been found. Consequently, all syzygies of first degree inC will also be
known. The next group to look at is those with degree (2,m,2). The first one to be found ha
degree~2,4,2!. Of all the syzygies of invariants of even degree, this one has the lowest degre

the degree ofC, K, or C̄ is increased, the number of syzygies also increases. Incidently,
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procedure also showed that there were no syzygies of degree~3,3,3!. This fact rules out the
possibility that the invariant,@A2BACD#, can be expressed as a polynomial function of ev
invariants of lower degree. In fact, all the elements ofJ can similarly be shown to be irreducibl
~in terms of even invariants!, thereby justifying the claim thatJ is a complete set for the eve
invariantsC andG.

The degrees of the syzygies found, and the number of new independent syzygies o
degree are

(2,4,2)
1 syzygy

(3,4,2)
1 syzygy

(3,4,3)
2 syzygies

(2,5,2)
1 syzygy

(3,5,2)
2 syzygies

(3,5,3)
5 syzygies

(2,6,2)
2 syzygies

(3,6,2)
3 syzygies

(3,6,3)
3 syzygies

.

The complex conjugates of syzygies of degree (3,m,2) are syzygies of degree (2,m,3). The rest
are real or, in some cases, purely imaginary. Also, the five syzygies of degree~3,5,3! are simply
independent linear combinations of those obtained from the syzygies that are linear in th
invariants. While this list is exhaustive for the given degrees, there may be syzygies of still h
degree. Of course, syzygies of a given degree can include multiples of syzygies of lower d
There were 28 syzygies of degree~3,6,3!. However, 21 of these could be obtained as multiples
other syzygies, leaving 7 new syzygies.

Since there is only one syzygy of degree~2,4,2!, it can be labeled byT242. The terms that are
quadratic inu, v, andw are given by

T2425uTF1u1¯ , ~10!

where

F15S 2 1
2@B#21 1

2@B2#, @B#, 21

@B#, 21, 0

21, 0, 0
D .

The syzygy of degree~3,4,2! has the form

T3425vTF1u1¯ . ~11!

There are two syzygies of degree~3,4,3!. These can be arbitrarily labeledT343a andT343b. They
are given by

T343a5 v̄TF1v1wTF1u1¯ ,

T343b5 v̄TF2v2wTF2u24@B#@A2BACD#1¯ , ~12!

where

F25S @B#225@B2#, 2@B#, 6

2@B#, 218, 0

6, 0, 0
D ,

and the term involving@A2BACD# has been included. By taking the appropriate linear comb
tions of all these syzygies, there does appear to be some common elements in some of the
can be seen in those terms of the syzygies that are quadratic inu, v, andw. These terms are given
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in Appendix C. The full equation forT242 is also given in the Appendix. The complete set
equations is available from the web site, http://www.jcu.edu.au/~mages/ in a form suitable fo
input into most computer algebra packages. Alternatively, they may be obtained directly fro
author.

VII. CONCLUSION

This work substantially completes the program, begun in Ref. 1, of finding a complete
invariants of the Riemann tensor. The complete set consists of the elements ofK together with the
Ricci scalar,R, a total of 38 real invariants. Incorporating the odd invariants has made
complete set more cumbersome, rather than enabling some simplification. Clearly, such
complete set will be unwieldy in most situations. However, there are now a large numb
syzygies available that can be used to express the elements of this set in terms of some sm
The possibilities seem to separate into two cases, depending on whetherD is zero or nonzero. In
either case, the syzygies contain sufficient information to calculate all elements of the compl
from a relatively small number of them.

If D is known andDÞ0, the odd invariants~which have been the focus of this paper! can
readily be obtained from the set of even invariants,J. In this case, apart fromD itself, the odd
invariants may assume less importance. On the other hand, it was noted in II that theI,
together withu, will be sufficient to determine all elements ofJ by the solution of linear equation
only. ~Indeed, it may be possible to achieve this starting with justI and@AC#.! Therefore, for most
purposes, ifDÞ0, it will be sufficient to have a knowledge of the setI ~with detB replaced byD!
and the invariantsu andR.

There are several Segre-types of the Ricci tensor for whichD50 and so this case should no
be overlooked. It might be expected that the odd invariants are more important in this casD
is equal to zero, the equations forDQmn andDLmn show that there will be many more relation
ships between the elements ofJ, and it may be possible to use these to determineJ from a
knowledge ofI only. At the same time, it should also be possible to start with one of the
invariants,Q11 say, and use the equations for their products to calculate the remaining
invariants. For the specific case of metrics generated by Maxwell fields this task is even eas
these metrics,GAḂ}FAF̄ Ḃ and, of all the odd invariants defined, the only one that is nonzer
Q33.

There remains the task of relating algebraic properties of elements of the complete
geometric and physical properties of space–time. It is expected that the syzygies found
paper and the preceding two papers will play an important role in that work.
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APPENDIX A: SYZYGY FOR SYMMETRIC MATRICES

This is the corrected version of the syzygy connecting the elements of a complete set f
symmetric 333 matrices. If both matrices are trace-free,

c3@A2B2#31c2@A2B2#21c1@A2B2#1c050,
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where

c3524,

c25@AB#215@A2#@B2#,

c152@B2#@A2B#212@A2#@AB2#222@AB#@AB2#@A2B#22@A2#@B3#@A2B#

22@A3#@B2#@AB2#2@A2#@B2#@AB#212@A3#@B3#@AB#22@A2#2@B2#2,

c052 4
3~@B3#@A2B#31@A3#@AB2#3!1@A2B#2@AB2#22 1

2@A2#@B2#~@B2#@A2B#21@A2#@AB2#2!

12@A3#@B3#@A2B#@AB2#2 4
9@A3#@B3#@AB#31 2

3@AB#2~@A3#@B2#@AB2#1@A2#@B3#@A2B# !

1 1
4@A2#2@B2#2@AB#22 1

3@AB#~@A2#2@B3#@AB2#1@A3#@B2#2@A2B# !1 2
3@A2#@B2#~@A3#@B2#

3@AB2#1@A2#@B3#@A2B# !2 2
3@A2#@A3#@B2#@B3#@AB#1 1

4@A2#3@B2#31 1
18~@A3#2@B2#3

1@A2#3@B3#2!2 1
3@A3#2@B3#2.

APPENDIX B: SYZYGIES OF ODD INVARIANTS

This Appendix contains some of the syzygies of odd invariants. The first is the equatio
L̃33 in terms of the other invariants,

8L̃335D~2@Ā2#@A2C#@AB#22 detĀ@A2#@AB2#24@A2#@Ā2#@ABC#22@A2B#@Ā2#@AC#

12 detĀ@A2#@AB#@B#14@A2#@Ā2#@AC#@B#14 detA detĀ@B#224 detA detĀ@B2#

22 detA@Ā2#@BC#12@A2#@AD#@C#12 detA@Ā2#@B#@C#22@A2#@AC#@D# !

1~4@A2B2#@Ā2#216@A2BD#24@A2B#@Ā2#@B#18@A2D#@B#1@A2#@Ā2#@B#2

2@A2#@Ā2#@B2#14@A2#@BD#18@A2B#@D#24@A2#@B#@D# !Q111~8@ABC#

28@AC#@B# !Q2218@AC#L22. ~B1!

There are five other syzygies of the same degree that are linear in the odd invariants. One o
is real, and does not involve any of theLmn ,

05D~2@Ā2#@A2C#@AB#24@A2#@Ā2#@ABC#22@A2B#@Ā2#@AC#16@A2D#@AC#26@A2C#@AD#

12@A2#@Ā2#@AC#@B#13 detA detĀ@B#223 detA detĀ@B2#12@A2#@Ā2#@AB#@C#

12@A2#@AD#@C#22@A2#@AC#@D# !1~24@B#214@B2# !Q331~24@A2B2#@Ā2#

112@A2BD#14@A2B#@Ā2#@B#24@A2D#@B#2@A2#@Ā2#@B#21@A2#@Ā2#@B2#

24@A2#@BD#28@A2B#@D#14@A2#@B#@D# !Q111~4@Ā2#@AB2#212@ABD#

24@Ā2#@AB#@B#14@AD#@B#18@AB#@D# !Q211~212@A2BC#14@A2C#@B#

14@A2#@BC#18@A2B#@C#24@A2#@B#@C# !Q121~12@ABC#24@AC#@B#

28@AB#@C# !Q22. ~B2!

The following is the equation forDQ33. This equation shows that@A2BACD# is reducible.
Also given is the equation forDL11. Other expressions forDLmn are a bit longer, with the
equation forDL33 having 61 terms,
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8DQ33528@A2BACD#112 detA detĀ detB22 detĀ@A2B2#@AB#22 detĀ@A2B#@AB2#

12@A2#@Ā2#@AB2C#14@A2D#@ABC#24@A2C#@ABD#14@A2BD#@AC#

24@A2BC#@AD#14 detĀ@A2B#@AB#@B#22@A2#@Ā2#@ABC#@B#22@A2D#@AC#@B#

12@A2C#@AD#@B#1@A2#@Ā2#@AC#@B#21detA detĀ@B#32@A2#@Ā2#@AC#@B2#

2detA detĀ@B#@B2#14@A2B#@AD#@C#22 detA@BD#@C#14@A2C#@AB#@D#

22 detA@BC#@D#14 detA@B#@C#@D#. ~B3!

4DL11522 detB@AC#14@AB2C#@B#22@ABC#@B#21@AC#@B#322@ABC#@B2#

2@AC#@B#@B2#12@AB2#@BC#22@AB#@B#@BC#22@AB2#@B#@C#1@AB#@B#2@C#

1@AB#@B2#@C#. ~B4!

The following is the equation forQ11
2 :

8Q11
2514D2@A2#@Ā2#14@Ā2#@AB#@AB2#216@AB#@ABD#216@ABC#@AC#18@AB2#@AD#

14@A2B2#@Ā2#@B#216@A2BD#@B#24@Ā2#@AB#2@B#18@AC#2@B#22@A2B#@Ā2#@B#2

112@A2D#@B#21@A2#@Ā2#@B#322@A2B#@Ā2#@B2#24@A2D#@B2#2@A2#@Ā2#@B#@B2#

18@A2C#@BC#18@A2B#@BD#14@A2#@B#@BD#216@A2BC#@C#18@AB#@AC#@C#

14@A2#@BC#@C#18@A2B#@C#224@A2#@B#@C#218@A2B2#@D#18@AB#2@D#

28@A2B#@B#@D#22@A2#@B#2@D#22@A2#@B2#@D#248DQ22. ~B5!

APPENDIX C: SYZYGIES OF EVEN INVARIANTS

The quadratic terms~as well as the coefficient of@A2BACD#) of the remaining syzygies o
even invariants are given below,

T2525uTG1u1¯ ,

T352a5uTG1v1¯ ,

T352b5uTG2v1¯ ,

T353a5 v̄TG1v1wTG1u1¯ ,
~C1!

T353b5wTG2u1¯ ,

T353c5 v̄TG2v1¯ ,

T353d5 v̄TG3v2wTG3u22~@B#21@B2# !@A2BACD#1¯ ,

T353e5 v̄TG4v2wTG4u2~2@B#228@B2# !@A2BACD#1¯ ,

where

G15S detB, 0, 0

0, 2@B#, 1

0, 1, 0
D , G25S 0, @B2#, 2@B#

2@B2#, 0, 3

@B#, 23, 0
D ,
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G35S 22@B#@B2#, 3@B#222@B2#, 3@B#

3@B#222@B2#, 216@B#, 3

3@B#, 3, 0
D ,

G45S 3 detB, 4@B2#22@B#2, 22@B#

4@B2#22@B#2, 9@B#, 23

22@B#, 23, 0
D ,

T262a5uTH1u1¯ ,

T262b5uTH2u1¯ ,

T362a5uTH1v1¯ ,

T362b5uTH2v1¯ ,

T362c5uTH3v1¯ ,

T363a52 v̄T~H11H2!v1~232 detB14@B#328@B#@B2# !@A2BACD#1¯ ,
~C2!

T363b5wT~H11H2!u1~232 detB14@B#328@B#@B2# !@A2BACD#1¯ ,

T363c5 v̄TH1v1wTH1u1¯ ,

T363d5 v̄TH3v1¯ ,

T363e5wTH3u1¯ ,

T363f5 v̄TH4v2wTH4u1~224 detB14@B#328@B#@B2# !@A2BACD#1¯ ,

T363g5 v̄TH5v2wTH5u1~42 detB25@B#319@B#@B2# !@A2BACD#1¯ ,

where

H15S 0, 2 detB, 0

2 detB, 2@B#21@B2#, 0

0, 0, 2
D ,

H25S 0, 2@B#31@B#@B2#, 2@B#222@B2#

2@B#31@B#@B2#, 7@B#21@B2#, 212@B#

2@B#222@B2#, 212@B#, 18
D ,

H35S 0, 6 detB2@B#32@B#@B2#, 4@B#222@B2#

26 detB1@B#31@B#@B2#, 0, 210@B#

24@B#212@B2#, 10@B#, 0
D ,

H45S 0, 2@B#313@B#@B#2, 22@B2#

2@B#313@B#@B#2, 5@B#229@B2#, 22@B#

22@B2#, 22@B#, 6
D ,
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H55S 0, 2@B#@B#2, 2@B#22@B2#

2@B#@B#2, @B#213@B2#, 27@B#

2@B#22@B2#, 27@B#, 12
D .

T24250 is the syzygy of lowest degree. It is given by

8T242524 detB@A2B#@Ā2#124 detB@A2D#14@Ā2#@AB2#2216@AB#@AB2D#28@ABC#2

216@AB2#@ABD#216@AB2C#@AC#216@A2B2D#@B#16 detB@A2#@Ā2#@B#

24@Ā2#@AB#@AB2#@B#116@AB#@ABD#@B#116@ABC#@AC#@B#18@AB2#@AD#@B#

24@A2B2#@Ā2#@B#2116@A2BD#@B#212@Ā2#@AB#2@B#224@AC#2@B#2

28@AB#@AD#@B#214@A2B#@Ā2#@B#328@A2D#@B#32@A2#@Ā2#@B#4

18@A2B2#@Ā2#@B2#216@A2BD#@B2#22@Ā2#@AB#2@B2#14@AC#2@B2#

18@AB#@AD#@B2#28@A2B#@Ā2#@B#@B2#116@A2D#@B#@B2#13@A2#@Ā2#@B#2@B2#

22@A2#@Ā2#@B2#2216@A2BC#@BC#18@AB#@AC#@BC#18@A2C#@B#@BC#

14@A2#@BC#2216@A2B2#@BD#18@AB#2@BD#116@A2B#@B#@BD#24@A2#@B#2@BD#

18@A2#@B2#@BD#216@A2B2C#@C#18@AB2#@AC#@C#116@A2BC#@B#@C#

28@AB#@AC#@B#@C#28@A2C#@B#2@C#18@A2C#@B2#@C#18@A2B#@BC#@C#

24@A2#@B#@BC#@C#18@A2B2#@C#228@A2B#@B#@C#212@A2#@B#2@C#2

22@A2#@B2#@C#224 detB@A2#@D#18@AB#@AB2#@D#116@A2B2#@B#@D#

28@AB#2@B#@D#216@A2B#@B#2@D#14@A2#@B#3@D#18@A2B#@B2#@D#

28@A2#@B#@B2#@D#. ~C3!

APPENDIX D: NOTATION

TABLE III. This is a list of the main symbols used in this paper.

C, G 333 complex matrices that represent
the Weyl tensor and the trace-free
Ricci tensor

A C
B5K GḠ
C GC̄Ḡ
D GC̄2Ḡ
@A# Square brackets are used to denote

the trace of a matrix
u (@AC#,@ABC#,@AB2C#)T

v (@A2C#,@A2BC#,@A2B2C#)T

w (@A2D#,@A2BD#,@A2B2D#)T

D 1
6eȦḂĊeABCGA

ȦG
B

ḂGC
Ċ

5Aa/ā det(G
Ḃ

A
)

~L,M,N! eȦḂĊeABCLA
ȦMB

ḂNC
Ċ

I A complete set for invariants ofC
andK

J A complete set for even invariants of
C andG

K0 A set of irreducible odd invariants
K A complete set for invariants ofC

andG
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Symplecton for Uh„sl „2…… and representations of SL h„2…
N. Aizawa
Department of Applied Mathematics, Osaka Women’s University,
Sakai, Osaka 590-0035, Japan

~Received 22 March 1999; accepted for publication 14 June 1999!

Polynomials of boson creation and annihilation operators which form irreducible
tensor operators for Jordanian quantum algebraUh(sl(2)), called h-symplecton,
are introduced and their properties are investigated. It is shown that many proper-
ties of symplecton for Lie algebrasl(2) are extended toh-symplecton. The
h-symplecton is also a basis of irreducible representation ofSLh(2) dual to
Uh(sl(2)). As anapplication of the procedure used to constructh-symplecton, we
construct the representation bases ofSLh(2) on the quantumh-plane. © 1999
American Institute of Physics.@S0022-2488~99!01211-6#

I. INTRODUCTION

It is no doubt that well-developed representation theories are necessary when we appl
braic objects to physics. The simplest examples in quantum physics are angular momentum
bra su(2) and rotation matrices in three-dimensional space SO~3!. Their algebraic structure is
simple but contents of representation theories are quite rich.1 To investigate these algebraic objec
or their complexification could be a foundation for further investigation of higher dimensi
objects.

As for deformation of Lie groups and Lie algebras,q-deformation of Lie algebrasl(2) and
Lie group SL(2) ~and their real form! is studied quite well. Their representation theories ha
attracted much interest in both physics and mathematics and give a way to higher dimen
cases.2 There exists, however, some other deformation of Lie groups and algebras and the
generally called nonstandard deformation. The most studied one may be the so-called Jo
deformation obtained by Drinfeld twist from a Lie algebra or a known quantum algebra.
simplest examples are, of course, the Jordanian deformation of Lie algebrasl(2) and its dual. The
Jordanian deformation of Lie groupSL(2), denoted bySLh(2), isstudied in Refs. 3, 4, 5 and the
Ohn introduced its dual algebra, namely, Jordanian deformation ofsl(2) denoted byUh(sl(2)).6

The Jordanian quantum algebraUh(sl(2)) is more natural than theq-deformedsl(2) in the sense
that it is regarded as the angular momentum algebra with nonstandard coproduct~Sec. III! and we
can use ordinary boson operators to representUh(sl(2)), while it is hard to regard theq-deformed
sl(2) as angular momentum andq-deformed boson algebras are used for representations.7 How-
ever, the representation theories ofUh(sl(2)) andSLh(2) have not been developed yet. We do n
know, for example, the Racha coefficients and matrix elements of the universalR-matrix for
Uh(sl(2)). As for SLh(2), even its representation matrices are not obtained.

In this article, in order to develop representation theories for Jordanian deformed algebr
study symplecton forUh(sl(2)) andapply it to investigate representation matrices ofSLh(2). The
use of symplecton could be legitimated by recalling the properties of symplecton andq-deformed
case. The symplecton, introduced by Biedenharn and Louck,8,9 is a polynomial of boson creation
and annihilation operators which form an irreducible tensor operator ofsl(2), that is, symplecton
is a basis of irreducible representation~irrep.! for both sl(2) andSL(2). It is known that the
symplecton is written in terms of Gauss hypergeometric function and product of two sympl
is reduced to a series of symplecton with Racha coefficients. In Ref. 8, application of symp
to the Elliot model for nuclei is discussed, then it is found that Weyl-ordered polynomials
position and momentum operators are equivalent to symplecton.10 Many properties of symplecton
are inherited fromsl(2) to the q-deformed case.2,11,12 The q-deformed symplecton, called
59210022-2488/99/40(11)/5921/18/$15.00 © 1999 American Institute of Physics

                                                                                                                



o

c-

plec-
s
be

ffi-
g to
ined by

e

n
where
of the

y

al
the

y

5922 J. Math. Phys., Vol. 40, No. 11, November 1999 N. Aizawa

                    
q-symplecton, is a irreducible tensor operator so that it is a irrep. basis forq-deformedsl(2) and
SL(2). Theq-symplecton is written in terms ofq-hypergeometric function and product of tw
q-symplecton is reduced to a series ofq-symplecton withq-Racha coefficients.q-Deformation of
the Weyl-ordered polynomial13 is formulated withq-symplecton. These facts show that symple
ton is a powerful tool to investigate representation.

The plan of this article is as follows. Next three sections are mainly preparation for sym
ton of Uh(sl(2)). Weoften call the symplecton forUh(sl(2)) h-symplecton. The next section i
a review of symplecton forsl(2). Some of the properties of symplecton listed in Sec. II will
extended toh-symplecton. Section III is devoted to the Jordanian quantum algebraUh(sl(2)) and
Jordanian quantum groupSLh(2). We give new results on the twist element and Racha coe
cients forUh(sl(2)). In Sec. IV, tensor operators for a Hopf algebra is introduced accordin
Ref. 14 and the relation between tensor operators for a Lie algebra and a Hopf algebra obta
Drinfeld twist is discussed. Applying the result in Sec. IV, theh-symplecton is constructed from
thesl(2) symplecton in Sec. V. The properties ofh-symplecton are studied in Secs. V and VI. W
shall consider another irreducible tensor operators obtained from the quantumh-plane for
Uh(sl(2)) in Sec. VII and using these tensor operators, as well ash-symplecton, irreps. ofSLh(2)
are considered. Section VIII is concluding remarks.

II. SYMPLECTON FOR sl „2…

The symplecton realization ofsl(2) is said to be ‘‘minimal,’’ since only one kind of boso
operator is used. It is in marked contrast to the well-known Jordan–Schwinger realization
two kinds of bosons are necessary. Let us first review the definition and important properties
sl(2) symplecton.8,9

Let ā,a be boson operators satisfying@ ā,a#51, and define

J152 1
2a

2, J25 1
2ā

2, J05 1
2~aā1āa!. ~II.1!

It is easy to verify that~II.1! satisfies thesl(2) commutation relations

@J0 ,J6#562J6 , @J1 ,J2#5J0 . ~II.2!

The symplecton is a polynomial inā and a and form a irreducible tensor operator ofsl(2)
belonging to the spinj representation (j 5 1

2,1,32,...). Namely the symplecton, denoted b
Pj

m(a,ā), is defined by

@J6 ,Pj
m#5A~ j 7m!~ j 6m11!Pj

m61,
~II.3!

@J0 ,Pj
m#52mPj

m .

The basic idea of symplecton is to treatā anda in a symmetric way. To this end, the usu
‘‘boson calculus’’ is replaced with the so-called ‘‘symplecton calculus,’’ that is, instead of
boson vacuumu0& satisfyingāu0&50, the formal ketu & which is not annihilated by bothā anda
is introduced. The representation bases in the realization~II.1! are formed by lettingPj

m act onu &,
and the action of generators on the bases is defined byJau jm&5@Ja ,Pj

m#u &. There exists an
appropriate definition of an inner product for theseu jm&, so that we obtain the usual unitar
representations ofsl(2) with spin j.

The explicit form of the polynomialsPj
m(a,ā) is found by solving@J1 ,Pj

j #50 to obtain
Pj

j5a2 j , and then using the action ofJ2 to calculatePj
m ,

Pj
m~a,ā!5

1

2 j 2m F ~2 j !! ~ j 2m!!

~ j 1m!! G1/2

(
s50

j 2m
āj 2m2saj 1mās

s! ~ j 2m2s!!
. ~II.4!

An alternative form forPj
m is obtained by starting withPj

2 j5ā2 j and then using the action ofJ1 ,
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Pj
m~a,ā!5

1

2 j 1m F ~2 j ! !! ~ j 1m!!

~ j 2m!! G1/2

(
s50

j 1m
asāj 2maj 1m2s

s! ~ j 1m2s!!
. ~II.5!

We would like to list some properties ofsl(2) symplecton. For their proof or detail, we refe
the reader to Refs. 8 and 9.

~1! A set of polynomials$Pj
m(a,ā)um52 j ,2 j 11,...,j % forms representation bases for the L

groupSL(2) as well as the Lie algebrasl(2). Theboson commutation relation is covaria
under the action ofSL(2) defined by

~a8,ā8!5~a,ā!Sx u

v yD, ~II.6!

where the 232 matrix is an element ofSL(2). The transformed polynomialPj
m(a8,ā8) is

decomposed intoPj
m(a,ā) multiplied by polynomials in the entries ofSL(2) matrix,

Pj
m~a8,ā8!5(

n
Pj

n~a,ā!dnm
j ~g! gPSL~2!. ~II.7!

The (2j 11)3(2 j 11) matrix dnm
j (g) gives an irrep. ofSL(2) and is called Wigner’s

d-function in physics terminology.
~2! The polynomialsPj

m(a,ā) have a generating function. Letj, h be ordinaryc-numbers com-
muting with a,ā. Then

~ja1hā!2j5A~2 j !! (
m52 j

j

F jm~j,h!Pj
m~a,ā!, ~II.8!

whereF jm are well-known representation bases of bothsl(2) andSL(2),

Fjm~j,h!5
j j1mh j2m

A~ j 1m!! ~ j 2m!!
. ~II.9!

Irreps. ofsl(2) are constructed on~II.9! by the realization

J15j
d

dh
, J25h

d

dj
, J05j

d

dj
2h

d

dh
, ~II.10!

while irreps. ofSL(2) are obtained by the following transformation:

~j8,h8!5~j,h!Sx u

v yD, ~II.11!

it follows that

Fj
m~j8,h8!5(

n
Fj

n~j,h! d nm
j ~g!, ~II.12!

where we have obtained the samed-function as~II.7!.
~3! The symplecton polynomials can be expressed in terms of Gauss hypergeo

function 2F1(a,b;c;z). The polynomial2F1(a,b;c;z) is defined by

2F1~a,b;c;z!5(
n50

`
~a!n~b!n
n!~c!n

zn, ~II.13!

where (a)n stands for the sifted factorial

~a!n5H 1
a~a11!¯~a1n21!

n50
n51,2,.... ~II.14!

Now define the operatorN5aā, then the symplectonPj
m(a,ā) is written in terms

of 2F1(a,b;c;z) with z521 and the parametersa, c become functions of operatorN. The
expression~II.4! becomes

Pj
m5

1

2j1mF ~2j!!

~ j1m!!~ j2m!!G
1/2~N1 j 2m!!

~N22m!! 2F1~2N12m,2 j 1m;2N2 j 1m;21!~ ā!22m.

~II.15!
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In this way, properties ofPj
m are reduced to properties of the hypergeometric function. E

cially, the equivalence of two form~II.4! and ~II.5! is explained by the formula

2F1~a,b;c;z!5~12z!c2a2b
2F1~c2a,c2b;c;z!. ~II.16!

~4! The polynomialsPj
m(a,ā) are transformed under the actiona→ā, ā→2a,

Pj
m~ā,2a!5~21!j2mPj

2m~a,ā!. ~II.17!

To define an inner product for the basesu jm&5Pj
mu &, the property~II.17! and the product

formula discussed below play a crucial role.

~5! Let Pj
m andPj 8

m8 be the symplecton polynomials, then they obey the product law

Pj
mPj8

m85 (
k5uj2j8u

j1j8

^kujuj8&Cm8,m,m1m8
j8,j8,k Pk

m1m8 , ~II.18!

where

^kujuj8&52k2j2j8~2k11!21/2¹~k j j 8!,

¹~abc!5F ~a1b1c11!!

~a1b2c!~a2b1c!! ~2a1b1c!! G
1/2

, ~II.19!

andCm8,m,m1m8
j 8, j ,k is the Clebsch–Gordan coefficient~CGC! for sl(2). Theassociativity of the

products (Pa
aPb

b)Pc
g5Pa

a(Pb
bPc

g) gives a relation between ‘‘triangle functions,’’

¹~acf !¹~bdf !5~2 f11!(
e

W~abcd;ef !¹~abe!¹~cde!, ~II.20!

whereW(abcd;e f ) is the Racha coefficient.

The inner product forujm& is defined by

^ jmu j 8m8&5^u~21! j 2mPj
2m

•Pj 8
m8u&, ~II.21!

and the operation̂u~¯!u& means to take only thej 50 part of the expression~¯!. Applying the
product law~II.18! to the RHS of~II.21!, we see that that thej 50 part is given by the CGC

Cm,m8,0
j , j 8,0 , so that the basesujm& are orthonormal.

III. JORDANIAN DEFORMATION OF sl „2… AND SL „2…

The Jordanian quantum algebrasUh(g) are obtained from the~universal enveloping algebr
U~g! of! Lie algebrasg from Drinfeld twist.15 We denote the coproduct, conuit and antipode
U~g!, when it is regarded as a Hopf algebra, byD, e, S, respectively. With the invertible elemen
FPU(g) ^ U(g) satisfying

~e ^ id !~F!5~ id ^ e!~F!51, ~III.1!

F12~D ^ id !~F!5F23~ idD!~F!, ~III.2!

the algebraUh(g) is defined by the same commutation relations asg and the following Hopf
algebra mappings:

D̃5FDF 21, ẽ5e, S̃5uSu21, ~III.3!

where u5m( id ^ S)(F), u215m(S^ id)(F 21), m denotes the usual product ing. This is a
triangular Hopf algebra whose universalR-matrix is given byR5F21F 21.

For the case ofg5sl(2), F is given by16
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F5exp~2 1
2 J0^ s!, s52 ln~122hJ1!. ~III.4!

The twist elementF used here gives different form ofUh(sl(2)) from the one in Ref. 6. The
relationship between these two forms is given in Appendix A. The explicit form of Hopf alge
mappings forUh(sl(2)) is summarized in Appendix B~some of them will be used in the later
computation!. An application of theUh(sl(2)) to theHeisenberg spin chain is found in Ref. 16
The finite dimensional highest weight irreps. forUh(sl(2)) aresame assl(2), because of the same
commutation relations. We shall use the following lemmas on tensor product representatio
subsequent sections.

Lemma III.1~Ref. 16!: Let Vj 1, Vj 2 be the representation space with the highest weight j1 ,
j 2 . Then the tensor product of them is completely reducible, i.e.,

Vj 1^ Vj 25 %
j 5u j 12 j 2u

j 11 j 2

Vj ,

and the bases of Vj are given by

em
~ j 1 j 2! j

5( Cm1 ,m2 ,m
j 1 , j 2 , j Fk1 ,k2 ,m1m2

j 1 , j 2 ek1

j 1 ^ ek2

j 2, ~III.5!

where Cm1 ,m2 ,m
j 1 , j 2 , j is the CGC of sl(2) and Fk1 ,k2 ,m1 ,m2

j 1 , j 2 is the matrix element ofF on Vj 1^ Vj 2.

The explicit form of matrix elementsFk1 ,k2 ,m1 ,m2

j 1 , j 2 is given in Appendix C.~It seems to be the first

time to show the explicit form ofFk1 ,k2 ,m1 ,m2

j 1 , j 2 in the literature, and this also gives the explicit form

of the R-matrix for Uh(sl(2)).!
Lemma III.2: The Racha coefficients for sl(2) and Uh(sl(2)) coincide.

Lemma III.2 is proved in Appendix D.
The matrix quantum group dual toUh(sl(2)) is called the Jordanian quantum groupSLh(2).

It is generated by four elementsx, y, uandv subject to the relations3,4,5

@v,x#5hv2, @u,x#5h~12x2!,

@v,y#5hv2, @u,y#5h~12y2!, ~III.6!

@x,y#5h~xv2yv !, @v,u#5h~xv1vy!.

It follows that the central element ofSLh(2) which gives the determinant of the quantum matr

T5S x u

v yD ~III.7!

is defined by

detT5xy2uv2hxv51. ~III.8!

The SLh(2) has a Hopf algebra structure. The relations~III.6! and Hopf algebra mappings are
summarized in the FRT-formalism17 with the R-matrix

R5S 1 h 2h h2

0 1 0 h

0 0 1 2h

0 0 0 1

D . ~III.9!
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The coproduct, the counit, and the antipode are given by

D~T!5T^ T,

e~T!5S 1 0

0 1D ,

S~T!5T215S y2hv 2u2h~y2x!1h2v

2v x1hv D .

Let us define thed-function for SLh(2) using the notion of comodule. A vector spaceM is
called rightSLh(2) comodule if there is a mapr:M→M ^ SLh(2) such that the following rela-
tions are satisfied

~r ^ id !+r5~ idM ^ D!+r, ~ idM ^ e!+r5 idM , ~III.10!

whereidM stands for the identity map inM. Using basesei of M, the mapr is written as

r~ei !5(
j

ej ^ d̃ j i , ~III.11!

it follows that the relations~III.10! are rewritten as

D~ d̃i j !5(
k

d̃ik ^ d̃k j , e~ d̃i j !5d i j . ~III.12!

We call thed̃i j satisfying~III.11! and~III.12! thed-function forSLh(2). In thefollowing sections,
we deal with the case in which the vector spaceM has an algebraic structure. It is natural, in th
case, to require that the mapr should respect the extra structure onM.

IV. TENSOR OPERATORS AND TWIST

To define the symplecton forUh(sl(2)), it is necessary to extend the notion of tensor ope
tors to Hopf algebra. This has been carried out by Rittenberg and Scheunert.14 Tensor operators
are defined for each realization of the Hopf algebraH under consideration. Assuming that we ha
a realization ofH, we first define the adjoint action.

Definition IV.1: Let W,W8 be a representation space ofH, and let t be an operator which
carries W into W8. Then the adjoint action of XPH on t is defined by

adX~ t !5m~ id ^ S!~D~X!~ t ^ 1!!. ~IV.1!

The adjoint action has two important properties

adXX8~ t !5adX+adX8~ t !, adX~ t ^ s!5(
i

adXi~ t ! ^ adXi8~s!, ~IV.2!

where the coproduct forX is written asD(X)5( iXi ^ Xi8 . From these properties, we see that t
adjoint action gives a representation ofH,

ad@X,X8#~ t !5@adX,adX8#~ t !. ~IV.3!

Tensor operators forH are defined as operators which form representation bases ofH under the
adjoint action.

Definition IV.2: Let D(X) be a representation matrix of XPH. The operators ta are called
the tensor operator, if they satisfy the relation
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adX~ ta!5(
b

D~X!batb . ~IV.4!

If the representation is irreducible, the tensor operators are called irreducible tensor opera
The explicit form of the adjoint action forUh(sl(2)) reads

adJ0~ t !5@J0 ,t#e2s,

adJ1~ t !5e2s@J1es,t#, ~IV.5!

adJ2~ t !5FJ21hJ01
h

2
J0

2,t Ge2s2h@J0 ,t#e22s2
h

2
@J0 ,@J0 ,t##e22s.

Some examples of theUh(sl(2)) tensor operators are considered in Ref. 18 and they are ap
to construct boson algebra which is covariant under the action of Jordanian matrix qu
groups.19

Since the coproduct for the Lie algebra and Jordanian quantum algebra is related via th
element~III.3!, tensor operators for these algebras are also related by twisting viaF.20

Lemma IV.1: Let ta be tensor operators for the Lie algebrag and t̃a be corresponding ones
for Jordanian quantum algebraUh(g). Then these tensor operators are related via the tw
elementF,

t̃ a5m~ id ^ S̃!~F~ ta ^ 1!F 21!, ~IV.6!

ta5m~ id ^ S!~F 21~ t̃ a ^ 1!F !. ~IV.7!

Proof: The first relation~IV.6! is derived in Ref. 20~Proposition 3!. The second one~IV.7! is
its inverse. The expression used in Lemma IV.1 is different from Ref. 20, it may be good to
the second relation as an example of the proof. It is proved by showing the substitution of~IV.7!
into ~IV.6! gives the identity map.

Let us write the twist element and its inverse as

F5( f a
^ f a , F 215( ga

^ ga ,

then

u5( f aS~ f a!, u215( S~ga!ga ,

and the relation~IV.6! becomes

t̃ a5( f atagbS̃~ f agb!5( f atagbuS~ f agb!u215( f ataS~ f a!u21, ~IV.8!

where we used

( gbuS~gb!5( gbf aS~gbf a!5m~ id ^ S!~F 21F !51.

On the other hand, the relation~IV.7! is rewritten

ta5( gat̃ a f bS~gaf b!5( gat̃ auS~ga!. ~IV.9!
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Substituting~IV.9! into ~IV.8!,

t̃ a5( f agbt̃ auS~ f agb!u215( f agbt̃ aS̃~ f agb!5m~ id ^ S̃!~FF 21~ t̃ a ^ 1!!5 t̃ a .

This proves the second relation in Lemma IV.1. h

V. SYMPLECTON POLYNOMIALS FOR Uh„sl „2……

In this section, we derive the explicit form of the symplecton forUh(sl(2)) andinvestigate its
properties. SinceUh(sl(2)) has thesame commutation relations assl(2), Uh(sl(2)) andsl(2)
have the same realizations. Therefore the symplecton realization forUh(sl(2)), which is identical
to the one forsl(2), is therealization in terms of the usual boson operators. This is a contra
the q-symplecton where theq-deformed boson operators are used.

Let ā and a be boson operators satisfying@ ā,a#51, then the generators ofUh(sl(2)) are
realized by

J152 1
2a

2, J25 1
2ā

2, J05 1
2~aā1āa!. ~V.1!

The h-symplecton, denoted byP̃j
m(a,ā), is defined as a polynomial inā,a satisfying

adJ6~ P̃j
m!5A~ j 7m!~ j 6m11!P̃j

m61,
~V.2!

adJ0~ P̃j
m!52mP̃j

m ,

where the adjoint action on the LHS is given by~IV.5!. Using Lemma IV.1, the explicit form of
h-symplecton is obtained from the corresponding one forsl(2).

Proposition V.1: The explicit form of the h-symplecton defined by (V.2) is given by

P̃j
m~a,ā!5Pj

m~a,ā!ems, ~V.3!

wheres is given in (III.4) and Pj
m(a,ā) denotes sl(2) symplecton.

Proof: By definition of sl(2) symplecton, it holds that

~J022m!Pj
m5Pj

mJ0 .

Using this and the RHS of~IV.8!,

P̃j
m5 (

n50

`
1

n! S 2
1

2D n

Pj
m~J012m!nS~s!nu215Pj

m(
n50

`

(
s50

n
~21!n~2m!s

2n~n2s!!s!
J0

n2s~s!nu21.

Changing the order of sum, then replacingn2s with n, we obtain

P̃j
m5Pj

m (
s,n50

`
~21!n1s~2m!s

2n1sn!s!
J0

nS~s!n1su21. ~V.4!

Note that

u5 (
n50

` S 2
1

2D n 1

n!
J0

nS~s!n,

and ~III.3!, it follows that ~V.4! is rewritten as
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P̃j
m5Pj

m(
s50

` S 2
1

2D s ~2m!s

s!
S̃~s!s5Pj

mems,

where~B4! is used in the last equality. h

We would like to show some explicit form ofh-symplecton. Forj 51/2,

P̃1/2
21/25āe2s/2[āh , P̃1/2

1/25āes/2[ah , ~V.5!

and for j 51,

P̃1
215ā2e2s5āh

21hāhah ,

P̃1
05~ āa1aā!/&5~ āhah1ahāh2hah

2!/&, ~V.6!

P̃1
15a2es5ah

2.

The j 51/2 h-symplecton forms covarianth-deformed oscillator algebra

@ āh ,ah#512hah
2, ~V.7!

i.e., the commutation relation~V.7! is preserved under the action ofSLh(2),

~ah8 ,āh8!5~ah ,āh!S x u

v yD . ~V.8!

This shows that it is possible to construct representations of SLh(2) on h-symplecton. We shall
discuss it later. It may be worth noting that the action~V.8! is different from the ones in Refs. 1
and 20, wherea and ā arenot mixed by the action of quantum groups.

The j 51 h-symplecton forms an algebra isomorphic tosl(2). Its commutation relations are

@P0
1,P1

1#52&P1
1~12hP1

1!,

@P1
0,P1

21#522&P1
21~12hP1

1!, ~V.9!

@P1
1P1

21#522&~12hP1
1!P1

0.

The generators ofsl(2) are written in terms ofP1
m ,

J152 1
2P1

1~12hP1
1!, J05

1

&
P1

0, J25 1
2P1

21~12hP1
1!. ~V.10!

We see, from the explicit form ofh-symplecton~V3!, that theh dependence of polynomia
P̃j

m(a,ā) is absorbed ins which is an infinite polynomial ina2. Recall that the relationship
betweensl(2) symplecton and Gauss hypergeometric function2F1 is given in terms of the
operatorN5aā, then we see that the factorems in ~V.3! does not affect this relationship. There
fore the specific hypergeometric function forh-symplecton may be again2F1 .

The fact that thej 51/2 h-symplecton forms covarianth-oscillator algebra may suggest that
is useful to writeh-symplecton in terms of covarianth-oscillators~V.5!.

Proposition V.2: The h-symplecton is written in terms of covariant h-oscillators as follo
The corresponding expression for (II.4) is
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P̃j
m~ah ,āh!5

1

2 j 2m F ~2 j !! ~ j 2m!!

~ j 1m!! G1/2

(
s50

j 2m
1

s! ~ j 2m2s!!

3āh~ āh1hah!¯$āh1~ j 2m2s21!hah%ah
j 1m

3$āh2~2m1s!hah%$āh2~2m1s21!hah%¯$āh2~2m11!hah%, ~V.11!

and for (II.5) is

P̃j
m~ah ,āh!5

1

2 j 1m F ~2 j !! ~ j 1m!!

~ j 2m!! G1/2

(
s50

j 1m
1

s! ~ j 1m2s!!

3ah
s~ āh2hsah!$āh1h~12s!ah%¯$āh1h~ j 2m212s!ah%ah

j 1m2s .

~V.12!

Proof: From ~V.5!,

ā5āhes/2, a5ahe2s/2.

Substituting these into~II.4! and ~II.5!, straightforward calculation proves the proposition. h

In order to discuss generating functions forh-symplecton, it is possible to apply Lemma IV.
to the generating function~II.8! for sl(2) symplecton, since the RHS of~II.8! is a sum of tensor
operators ofsl(2). It follows that the RHS of~II.8! becomes the sum ofh-symplecton;

A(2 j )! (
m52 j

j

F jmP̃j
m . However the LHS may be quite complicated and may not be in closed fo

Another way to obtain generating functions forh-symplecton is to substitute~V.3! and~V.5! into
~II.8!,

~jahe2s/21hāhes/2!2 j5A~2 j !! (
m52 j

j

F jm~j,h!P̃j
m~ah ,āh!e2ms. ~V.13!

It is possible to removes from ~V.13! by using the relationes1hah
251, however, the obtained

relation is quite complicated. Therefore the simplest generating function forh-symplecton may be
~V.13!, where thes is regarded as a independent quantity subject to the relations

@s,ah#50, @s,āh#52hah , ~V.14!

and lim
h→0

s50.

VI. PRODUCT LAW FOR h-SYMPLECTON

It is possible to extend the product law~II.18! for sl(2) symplecton toh-symplecton. The
product law plays a crucial role when the symplecton calculus is considered. In this sectio
first prove the product law forh-symplecton by using the one forsl(2) symplecton, then conside
the symplecton calculus forUh(sl(2)).

Theorem VI.1: Let P̃j
m and P̃j 8

m8 be h-symplecton, then these obey the product law,

P̃j
mP̃j 8

m85 (
k5u j 2 j 8u

j 1 j 8

(
n,n8

^ku j u j 8&~F21!n,n8m,m8
j , j 8 Cn8,m,n81m

j 8, j ,k P̃k
n81m , ~VI.1!

where Cm1 ,m2 ,m
j 1 , j 2 , j is the CGC for sl(2) and

^ku j u j 8&52k2 j 2 j 8~2k11!21/2¹~k j j 8!,
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¹~abc!5F ~a1b1c11!!

~a1b2c!! ~a2b1c!! ~2a1b1c!! G
1/2

. ~VI.2!

Proof: From Proposition V.1,

P̃j
mP̃j 8

m85Pj
memsP̃j 8

m8e2msems.

Using the Hopf algebra mappings fors given in ~B4!, we see that the adjoint action ofems is
given by

adems~ t !5emste2ms. ~VI.3!

h-Symplecton is an irreducible tensor operator ofUh(sl(2)), and itfollows that

emsP̃j 8
m8e2ms5adems~ P̃j 8

m8!5(
n8

~ems!n8,m8
j 8 P̃j 8

n8

5 (
n,n8

dn,m~ems!n8,m8
j 8 P̃j 8

n85 (
n,n8

~F21!n,n8m,m8
j , j 8 P̃j 8

n8 , ~VI.4!

where the matrix elements ofF ~C4! is used in the last equality. Therefore, we have

P̃j
mP̃j 8

m85 (
n,n8

~F21!n,n8m,m8
j , j 8 Pj

mP̃j 8
n8ems5 (

n,n8
~F21!n,n8m,m8

j , j 8 Pj
mPj 8

n8e~n81m!s.

Applying the product law~II.18! for sl(2) symplecton, Theorem VI.1 is proved. h

Corollary VI.1: The associativity of the products( P̃a
aP̃b

b) P̃c
g5 P̃a

a( P̃b
bP̃c

g) gives the same
relation as (II.20) for the triangle function¹(abc) that appeared in Theorem VI.1.

Proof: The associativity gives the same relation as~II.20!, but the Racha coefficients ar
replaced with the ones forUh(sl(2)). From Lemma III.2, these two kinds of Racha coefficien
coincide. h

Let us now consider theh-symplecton calculus. We assume the formal ketu & and that bothāu &
and au & are nonvanishing vectors. Then the vectors defined byu jm&5 P̃j

mu & are irrep. bases o
Uh(sl(2)) provided that the action ofXPUh(sl(2)) is defined byXu jm&5adX( P̃j

m)u &. The dual
bases are defined bŷjmu5^ uP̃j

2m(21) j 2m in order to keep the correspondence with theh50
case. The action ofXPUh(sl(2)) is, of course, given bŷ jmu5^ uadX( P̃j

2m)(21) j 2m. The inner
product is defined in the same manner ash50 case, namely,

^ jmu j 8m8&5^ u~21! j 2mP̃j
2m

• P̃j 8
m8u &,

the operation̂u~¯!u& means to take only thej 50 part of the expression~¯!. Applying the product
law ~VI.1! for h-symplecton, we obtain

^ jmu j 8m8&5d j , j 82
22 jF2m,m 2m,m8

j , j . ~VI.5!

Therefore the vectorsujm& and u j 8m8& are orthonormal if they belong to different irreps. butnot
orthonormal if they belong to a same irrep. The nonvanishing part on the RHS of~VI.5! depends
on only the twist elementF.

From the product law, we can show the following relations forh-symplecton:
Proposition VI.1: The following relations hold for h-symplecton:

(
m,m8

P̃j
mP̃j 8

m8Fm,m8 l ,l 8
j , j 8 5(

k
^ku j u j 8&Cl 8,l ,l 81k

j 8, j ,k P̃k
l 1 l 8 , ~VI.6!
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P̃j 8
m8~ah ,āh12hmah!5(

l 50
~F21!n,n8m,m8

j , j 8 P̃j 8
m81 l

~ah ,āh!. ~VI.7!

Proof: The relation~VI.6! is easily proved by multiplying the product law~VI.1! by Fn,n8m,m8
j , j 8

and summing overm,m8. The relation~VI.7! is derived by movingems to the right ofPj 8
m8 in

~VI.4!. One can do that by using the relations

emsah5ahems, emsāh5~ āh12hmah!ems.
h

VII. QUANTUM h-PLANE AND REPRESENTATIONS OF SL h„2…

The Jordanian quantum algebraUh(sl(2)) and Jordanian quantum groupSLh(2) are dual
each other. It follows that any representation basis ofUh(sl(2)) is also representation basis fo
SLh(2) belonging to the same representation. Sinceh-symplecton is an irrep. basis ofUh(sl(2)),
it is also an irrep. basis ofSLh(2). Wehave seen this forj 51/2 in Sec. V. The relation~V.8! can
be generalized to arbitraryj,

P̃j
m~ah8 ,āh8!5(

n
P̃j

n~ah ,āh!d̃nm
j ~g! gPSLh~2!. ~VII.1!

We can obtaind-functions for Uh(sl(2)) by substituting ~V.8! into the explicit form of
h-symplecton given in Proposition V.2. However, as is seen from the explicit form, the a
computation seems to be complicated.

The use of quantumh-plane21 provides us a procedure which is a little bit simpler in comp
tation. In this section, we shall find irrep. bases forSLh(2) in terms of the quantumh-plane which
give the same irreps. ash-symplecton by using the tensor operator approach. Recall tha
functionsF jm(j,h) defined by~II.9! are irrep. bases ofsl(2) in the realization~II.10! and irrep.
bases of SL~2! under~II.11! as well. We can regardF jm(j,h) as an irreducible tensor operator
sl(2), since it is easy to verify that

@J6 ,F jm#5A~ j 7m!~ j 6m11!F jm61 ,
~VII.2!

@J0 ,F jm#52mF jm .

From Lemma IV.1, it is easy to find the corresponding irreducible tensor operators forUh(sl(2)).
Proposition VII.1: Letj, h be commutative numbers, then the following are irreducible ten

operators forUh(sl(2)):

F̃jm~j,h!5F jm~j,h!ems, ~VII.3!

where

s52 lnS 122hj
d

gh D .

For j 51/2, we have

F̃~1/2!~1/2!5jes/2[jh , F̃~1/2!~21/2!5he2s/2[hh , ~VII.4!

and they satisfy the commutation relation

@jh ,hh#5hjh
2, ~VII.5!
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this corresponds to the commutation relation of quantumh-plane in Ref. 21. It is easily verified
that the commutation relation~VII.5! is preserved under the action ofSLh(2),

~jh8 ,hh8!5~jh ,hh!S x u

v yD . ~VII.6!

It is an easy exercise to writeF̃jm in terms ofjh andhh . ThenF̃jm(jh ,hh) forms irrep. bases of

SL(2), that is, thed-functions forSLh(2) are obtained by substituting~VII.6! into F̃jm(jh ,hh).
Proposition VII.2: Irreps. of SLh(2) on the quantum h-plane are obtained by

F̃jm~jh8 ,hh8!5(
k

F̃jk~jh ,hh!d̃km
j , ~VII.7!

where the irrep. bases are given by

F̃jm5cjmj h
j 1m~hh2h~ j 1m!jh!~hh2h~ j 1m21!jh!¯~hh2h~2m11!jh!,

~VII.8!
5cjmhh~hh1hjh!¯~hh1~ j 2m21!hjh!jh

j 1m ,

with

cjm5
1

A~ j 1m!! ~ j 2m!!
.

SinceP̃jm andF̃jm give the same irreps. ofUh(sl(2)), they also give the samed-functions of
SLh(2). Indeed, the explicit computation shows that we obtain the samed-functions for j 51/2
and j 51. The j 51/2 case gives the 232 quantum matrixT ~III.7! itself, while j 51 d-function
reads

d15S x21hxv &~ux1huv ! u21hu~x1y1hv !

&xv 112uv &~uy1huv !

v2 &yv y21hyv
D . ~VII.9!

The d-functions for SLh(2) are also discussed in Ref. 22, where the authors assert tha
d-functions can be obtained from theq-deformed ones via a contraction method and show so
explicit examples. Another way to obtain thed-functions is to use the recurrence relations
d-functions. This will be discussed in a separate publication.

VIII. CONCLUDING REMARKS

We have constructedh-symplecton in this article and investigated some of its propertie
has been seen that many properties ofsl(2) symplecton are inherited toh-symplecton. Unfortu-
nately, h-dependence ofh-symplecton is absorbed ins, namely, twist elementF, so that we
cannot see specific hypergeometric function forh-deformation. It will become clear what kind o
hypergeometric functions are specific toh-deformed quantities if we obtain explicit form o
d-function forSLh(2) as in the case ofq-deformedSU(2).23 Thesl(2) symplecton has a simpl
generating function. We presented~V.13! as a generating function forh-symplecton. However,
this may be one of possible choices, we might find simpler generating function. The u
quantumh-planejh ,hh instead ofj, h is one of the possibilities. We have done some calculat
to find simpler form of generating function in terms ofjh andhh , however, all what we obtained
have more complicated form.

We would like to emphasize the usefulness of Lemma IV.1. This provides us with a m
simpler procedure to obtainh-symplecton than starting with the definition~V.2! and using the
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lemma, we could easily find another irrep. bases~VII.8! for SLh(2). This lemma is, of course
applicable to any Jordanian quantum algebra, since we usually know the explicit form of
element. Furthermore, the lemma is extended to quasitriangular Hopf algebras.24 For quasitrian-
gular Hopf algebras, the twist elements are usually not known, they are known up to certain
of the deformation parameters. It is expected that many properties of tensor operators for
triangular Hopf algebras are studied based on the present knowledge of the tensor opera
Lie algebras via Lemma IV.1, even if the explicit form of tensor operators is not obtained. It
also be possible to apply Lemma IV.1 to the investigation ofq-symplecton.

APPENDIX A: RELATION TO OHN’s Uh„sl „2……

Ohn defined in Ref. 6Uh(sl(2)) as analgebra generated byH, X, andY subject to

@X,Y#5H, @H,X#52
sinhhX

h
,

~A1!
@H,Y#52Y~coshhX!2~coshhX!Y.

Meanwhile, the commutation relations ofJ6 , J0 , which are generators ofUh(sl(2)) in this
article, are same assl(2). These two kinds of generators are related by

H5e2s/2J0 , X5
s

2h
,

~A2!

Y5e2s/2S J21
h

2
J0

2D2
h

8
es/2~e2s21!.

By this relation, not only the commutation relations but also the Hopf algebra mapping
transformed each other. The relation~A2! corresponds to the one parameter case discussed in
25, where the two parameter Jordanian deformation ofgl(2) is considered.

APPENDIX B: HOPF ALGEBRA STRUCTURE OF Uh„sl „2……

We here give explicit formulas for the coproduct, counit, and antipode ofUh(sl(2)) calculated
from ~III.3!.
~i! Coproduct,

D̃~J0!5J0^ es11^ J0 ,

D̃~J1!5J1 ^ 11e2s
^ J1 , ~B1!

D̃~J2!5J2 ^ es11^ J22hJ0^ esJ02
h

2
J0~J012! ^ es~es21!.

~ii ! Counit,

ẽ~X!50, X5J6 ,J0 . ~B2!

~iii ! Antipode,

S̃~J0!52J0e2s, S̃~J1!52J1es,
~B3!

S̃~J2!52J2e2s2
h

2
J0

2~e2s11!e2s1hJ0~e2s21!e2s.
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All of these are reduced to the ones forsl(2) in the limit of h50. The Hopf algebra mappings fo
s have simple form

D̃~s!5s ^ 111^ s, ẽ~s!50, S̃~s!52s. ~B4!

APPENDIX C: MATRIX ELEMENTS OF F

In this Appendix, we show the explicit formula of matrix elements of the twist elemenF
~III.4! and some of their properties. We denote an irrep. basis ofUh(sl(2)) by thebracket notation
ujm& for the sake of simplicity.

It is easily verified the following relations from~III.3!:

D̃~J6!F u j 1m1& ^ u j 2m2&5A~ j 17m1!~ j 16m111!F u j 1m161& ^ u j 2m2&

1A~ j 27m2!~ j 26m211!F u j 1m1& ^ u j 2m261&,
~C1!

D̃~J0!F u j 1m1& ^ j 2m2&52~m11m2!F u j 1m1& ^ u j 2m2&.

It shows that the vectorsF u j 1m1& ^ u j 2m2& for Uh(sl(2)) play the same role asu j 1m1& ^ u j 2m2&
for sl(2). Equation~III.5! is readily obtained from this. Another proof of Lemma III.1 with th
bases ofUh(sl(2)) in Ref. 6 is found in Refs. 26 and 27.

In the bracket notation, matrix elements ofF are defined by

Fk1 ,k2 m1 ,m2

j 1 , j 2 5^ j 1k1u ^ ^ j 2k2uF u j 1m1& ^ u j 2m2&.

We first show a relationship between the matrix elements ofF and its inverse

F
2n1 ,2n2 2m1 ,2m2

j 1 , j 2 5~F21!m1 ,m2 n1 ,n2

j 1 , j 2 . ~C2!

The LHS of ~C2! is calculated as

LHS5^ j 12n1u ^ ^ j 22n2u(
l 50

`
~2J0! l

^ s l

2l l !
u j 12m1& ^ u j 22m2&

5dn1 ,m1
^ j 22n2uexp~n1s!u j 22m2&, ~C3!

where^ j 12n1uJ0522n1^ j 12n1u is used. While the RHS is

RHS5^ j 1m1u ^ ^ j 2m2u(
l 50

` J0
l

^ s l

2l l !
u j 1n1& ^ u j 2n2&5dm1 ,n1

^ j 2m2uexp~n1s!u j 2n2&. ~C4!

Note that

J1u jm&5A~ j 2m!~ j 1m11!u jm11&,

^ j 2muJ15A~ j 2m!~ j 1m11!^ j 2m21u.

It follows that any polynomials inJ1 , denoted byf (J1), satisfies

^ jmu f ~J1!u jn&5^ j 2nu f ~J1!u j 2m&. ~C5!

Sinces is a polynomial inJ1 , we see that~C3! is equal to~C4!. Thus~C2! has been proved.
We next show that the matrix elements ofF are given by
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Fk1 ,k2 m1 ,m2

j 1 , j 2 5dk1 ,m1
u~m2<k2< j 2!

3Sk2 ,m2

j 2 5
~2k222m122m222!!!

~k22m2!! ~22m122!!!
hk22m2, for m1<0,

~22h!k22m2 (
l 50

j 22m2

~21! l S 2m1

k22m22 l D ~2l 12m122!!!

2l l ! ~2m122!!!
, for m1.0,

~C6!

wheren!! 51 for n<0 andu(m2<k2< j 2)51 if and only if the inequality in the parenthese
holds, otherwiseu vanishes.Sk2 ,m2

j 2 is defined by

Sk2 ,m2

j 2 5H ~ j 22m2!! ~ j 21k2!!

~ j 21m2!! ~ j 22k2!! J 1/2

.

To prove~C6!, note that similar to~C4!, we have

Fk1 ,k2 m1 ,m2

j 1 , j 2 5dk1 ,m1
^ j 2k2ue2m1su j 2m2&. ~C7!

One can use the power series expansion in order to compute the RHS of~C7!,

~12X!2 l /25 (
n50

`
~2n1 l 22!!!

2nn! ~ l 22!!!
Xn, l PZ1 . ~C8!

~i! For m1<0.
Let m152 l /2 (l PZ1) and using~C8!,

e2m1suj2m2&5~122hJ1!2l/2u j 2m2&

5 (
n50

j 22m2 ~2n1 l 22!!!

2nn! ~ l 22!!!
~2h!nH ~ j 22m2!! ~ j 21m21n!!

~ j 21m2!! ~ j 22m22n!! J 1/2

u j 2m21n&.

Therefore^ j 2k2ue2m1su j 2m2& takes values if and only ifk25m21n. This proves the first
part of ~C6!.

~ii ! For m1.0.
Let m15 l /2 (l PZ1). Since

e2m1suj2m2&5e2lsels/2u j 2m2&,

we can apply the previous result to computeels/2u j 2m2& and then applying the binomia
expansion toe2 ls5(122hJ1)2

l ,

e2m1suj2m2&5 (
t50

j22m2 ~2t1l22!!!

2tt!~l22!!!
~2h!tH~ j22m2!!~ j21m21t!!

~ j21m2!!~ j22m22t!!J1/2

e2 lsu j 2m21t&

5 (
n50

l

(
t50

j 22m2 S l
nD ~2t1 l 22!!!

2tt! ~ l 22!!!
~21!n~2h! t1nH ~ j 22m2!! ~ j 21m21t1n!!

~ j 21m2!! ~ j 22m22t2n!! J 1/2

3u j 2m21t1n&.

Replacingt1n with n, we obtain
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e2m1su j 2m2&5(
t,n

~21! t~22h!nS l
n2t D

3
~2t1 l 22!!!

2tt! ~ l 22!!! H ~ j 22m2!! ~ j 21m21n!!

~ j 21m2!! ~ j 22m22n!! J 1/2

u j 2m21n&.

Again ^ j 2k2ue2m1su j 2m2& takes values if and only ifk25m21n. This completes the proof o
~C6!.

We can obtain the explicit formula for the universalR-matrix in the irreps. with highes
weight j 1 and j 2 by combining~C6! and relation~C2!, since the universalR-matrix for Uh(sl(2))
is given byR5F21F 21.

APPENDIX D: PROOF OF LEMMA III.2

Let Va, andVb, andVc be representation spaces ofUh(sl(2)) with highest weighta, b, and
c, respectively. Bases of each space are denoted asea

a , 2a<a<a. We would like to construct
irrep. bases in the spaceVa

^ Vb
^ Vc in two ways, namely, (Va

^ Vb) ^ Vc and Va
^ (Vb

^ Vc).
According to the discussion in Appendix B, irrep. bases in the spaceVa

^ Vb are given by

ed
~ab!d5( Ca,b,d

a,b,d F ea
a

^ eb
b .

Then we couple these with the bases inVc to obtain

ce
e5( Cd,g,e

d,c,e~D̃ ^ id !~F!ed
~ab!d

^ cg
c5( Cd,g,e

d,c,eCa,b,d
a,b,d ~D̃ ^ id !~F!F12ea

a
^ eb

b
^ eg

c .

Similarly we obtain the following bases when we coupleVb andVc first:

ce8
e5( Ca,r,e

a, f ,e Cb,g,r
b,c, f ~ id ^ D̃ !~F!F23ea

a
^ eb

b
^ eg

c .

From ~B4!,

~ id ^ D̃ !~F!5exp~2 1
2J0^ D̃~s!!5F12F13.

Using the relations~III.3!, ~III.2! and above

~D̃ ^ id !~F!5F12~D ^ id !~F!F12
215F23~ id ^ D!~F!F12

215~ id ^ D̃ !~F!F23F12
215F12F13F23F12

21.

It follows that ce
e andce8

e are rewritten as

ce
e5( Cd,g,e

d,c,eCa,b,d
a,b,d F12F13F23ea

a
^ eb

b
^ eg

c ,

ce8
e5( Ca,r,e

a, f ,e Cb,g,r
b,c, f F12F13F23ea

a
^ eb

b
^ eg

c .

The Racha coefficientsWh(abce;d f ) for Uh(sl(2)) is defined by
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ce
e5(

f
A~2d11!~2 f 11!Wh~abce;d f !ce8

e . ~D1!

It is now obvious that the Racha coefficients forUh(sl(2)) satisfy the relation

(
d

Cd,g,e
d,c,eCa,b,d

a,b,d 5(
f ,r

Ca,r,e
a, f ,e Cb,g,r

b,c, f A~2d11!~2 f 11!Wh~abce;d f !. ~D2!

This is the same relation for the Racha coefficients forsl(2). This proves Lemma III.2.
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Towards the canonical tensor operators of u q„3…. II.
The denominator function problem

Sigitas Ališauskasa)

Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, Vilnius 2600, Lithuania

~Received 17 May 1999; accepted for publication 21 July 1999!

The explicit denominator~normalization! function of the canonical tensor operators
of the quantum algebrauq(3), corresponding to the maximal null space case is
derivedab initio in terms of double basic hypergeometric series, which cannot be
obtained as anyq-extension of the SU~3! denominator polynomialGb9

1 (D,x) in
terms of multiple~double or triple! balanced hypergeometric series, introduced by
Biedenharn, Louck, and their collaborators~although theirq51 versions are shown
being equivalent!. The corresponding orthonormal seed isoscalar factors of the
coupling~Wigner–Clebsch–Gordan! coefficients ofuq(3) and SU~3! with multiple
irreducible representations are presented. Conjectured expression of the
q-polynomials @which ratios appear in theuq(3) and ~new! SU~3! denominator
functions for an arbitrary value of the canonical multiplicity labelt of the repeating
irreducible representations# in terms of multiple partition dependentq-series~ex-
tension of the maximal and minimal null space versions! is presented and consid-
ered. © 1999 American Institute of Physics.@S0022-2488~99!01311-0#

I. INTRODUCTION AND PRELIMINARIES

The matrix elements of unit SU~3! canonical tensor operators,1–4 which are characterized b
the null space inclusion property, together with their Hermitian and conjugation propertie
vanishing conditions of certain SU~3!:U~2! maximal shift isoscalar factors~isofactors or matrix
elements of projective3 canonical tensor operators!, reveal themselves as the most universal co
plete algebraic system for the orthonormal coupling~Wigner or Clebsch–Gordan! coefficients of
the SU~3! group with the repeating irreducible representations~irreps! in the direct product de-
composition.~For their numerical applications, see Ref. 5.! It is noticeable that the normalizatio
problem of the coupling coefficients in the canonical splitting of the multiplicity for SU~3! ~em-
phasized in many papers by Biedenharn, Louck and their collaborators! has been solved
explicitly.4,6 with the normalization coefficients or denominator functionsD2(G t ,x) expressed in
terms of the ratio of the preliminary guessed remarkable polynomialsGb9

t (D;x), which for the
fixed multiplicity label t are completely determined by their null space~the weight space distri-
bution of zeros!, polynomial, and symmetry properties.3 ~We are using here and throughout a
integer b9 for the irrep parameter instead ofq in order to escape mixing with a deformatio
parameter.! Particularly, the investigation of the new class of special functions was started
the polynomialsGb9

1 (D;x) of the maximal null space case;7,8 their multiple well-poised series
version of Holmanet al.9 has been extended to SU(n) by Milne.10 However, the role of
q-extension11 of this multiple well-poised series for the quantum algebrauq(n) is not clear and the
rather complicated generating and denominator function technique of Refs. 3, 4 hardly m
extended from SU~3! to the quantum algebrauq(3) with genericqÞ1.

In a previous paper,12 some important constructive elements of the explicit matrix element
theuq(3) canonical tensor operators were derived using the generalized projection operato
nique@extended from SU~3! canonical tensor operators as presented in Ref. 13# and some distinc-

a!Electronic mail: sigal@itpa.lt
59390022-2488/99/40(11)/5939/17/$15.00 © 1999 American Institute of Physics
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tive and symmetry properties of the SU~3! anduq(3) canonical isofactors were considered. P
ticularly, explicit normalized isofactors ofuq(3) characterized by the maximal null space we
presented. However, the expressions of normalization coefficients~3.7b! and~3.14b! of Ref. 12 in
terms of double sums are not universal~in some regions they are indefinite!, although Eq.~3.14b!,
together with the symmetry relations~3.7a! and ~3.14a!, always can be helpful. Both Eqs.~3.7b!
and~3.14b! turn into finite series only for the definite couples of fixed integers, related to res
tion of the multiplicity of repeating irreps, in contrast with the SU~3! case,4,7 when a single of such
fixed integer parameters is sufficient.

In our paper,14 mainly devoted to the overlaps of biorthogonal coupling coefficients of SU~3!
anduq(3) ~expressed in terms of classic and basic hypergeometric series!, some matrix elements
of the self-adjoint unit canonical tensor operators with the minimal null space are also de
~including their explicit normalization! and some boundary~seed! isofactors with the maximal nul
space12 are specified as single sums~related to basic hypergeometric series, in contrast w
multiple series,15,16cf. Ref. 17!. In our last paper,18 the expansion of the matrix elements of SU~3!
anduq(3) canonical tensor operators in terms of the biorthogonal~dual! coupling coefficients19,20

is considered. The composition of these dual expansions gives the explicit overlap coefficie
the Draayer–Akiyama construction5,13 and, particularly, the normalization of explicit canonic
seed isofactors, specified for the minimal null space cases~more general as the self-adjoint one!
and also presented as single sums~again related to the classic or basic hypergeometric se
respectively!. In this minimal null space case, the normalization coefficients or denominator f
tions are expressed in terms of double sums and turn into finite series for a fixed integer,
to the multiplicity of repeating irreps. In this aspect they are similar to the denominator func
in the SU~3! case,4,7,21 although they are rather different in their structure.

In the present paper, the solution of problems of Ref. 12 is under continuation; the no
ization coefficients~denominator functions! of the canonical tensor operators are considered
the quantum algebrauq(3) and reconsidered for the SU~3! group. Some previously derived resul
are reviewed below in this section. In Sec. II, new expressions of the normalization coeffi
~denominator functions! for the matrix elements of the SU~3! and uq(3) unit canonical tensor
operators with the maximal null space are derivedab initio, using the dual expansion
technique.14,18 The extreme canonical seed isofactors and their normalization coefficient
expressed in terms of the finite series~single and double, respectively! for fixed multiplicity of
repeating irreps. The symmetry properties@which were essential for the proof3,8 of the uniqueness
of solutions4,7 for the denominator functions in the SU~3! case# are also demonstrated for the ne
denominator functions. In Sec. III, a conjecture about aq-generalization of the polynomia
Gb9

t (D;x) in terms of partition dependent multipleq-factorial series for an arbitrary value of th
multiplicity label t ~valid also for the maximalt! is presented and discussed. Some symmetries
other properties of these new multipleq-factorial series are compared with the SU~3! case.4

Here and in what follows we use the same notations for irreps and basis states of SU~3! and
uq(3) as were used in Refs. 12–14, 18, 19, with~a b! for the mixed tensor irreps anda5m13

2m23, b5m232m33 where@m13,m23,m33# is a partition andmi j are the Gelfand–Tsetlin param
eters. The basis states are labeled by the hyperchargey5m121m222

2
3 (m131m231m33) @or z

5 1
3(b2a)2 1

2y5m232
1
2(m121m22)#, the isospin i 5 1

2(m122m22) and its projectioni z5m11

2 1
2(m121m22). The parameterz usually is more convenient in explicit expressions thany, be-

cause linear combinationsi 6z>0, a1z2 i>0, b2z2 i>0 are integers. For the state of irre
~a b! in the coproduct (a8b8) ^ (a9b9) decomposition,z5z81z91v, where againv5 1

3(a82b8
1a92b92a1b) is an integer. The parameters of the highest weight state take on the v

y05 1
3(a12b), i 05 1

2a52z0 , while for the lowest weight stateȳ052 1
3(2a1b), ī 05 1

2b5 z̄0 and
for the maximal isospin stateym5 1

3(a2b), i m5 1
2(a1b), zm5 1

2(b2a).
The multiplicity r of irrep ~ab! in the coproduct (a8b8) ^ (a9b9) decomposition~intertwining

number! is equal tor 5min rabg11 (a51,2,3;b51,2,3,;g51,2) where integersr abg form the 3
3332 array~1.3b! of Ref. 12 with equidistant parameters in the layers, rows, and columns.

multiplicity M of the canonical tensor operatorsTy9 i 9 i 9
(a9b9)t

with fixed shiftsa2a8 andb2b8 may

0 0 z
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exceed the external multiplicityr ~see Refs. 12–14! and in this case the lowest values of th
canonical multiplicity labelt51,2,...,M may be eliminated by the null space inclusion propert3

We use the Cartan–Weyl generatorsEik( i , j ,k51,2,3) of the unitary quantum algebr
uq(3)5Uq(u(3)), with genericq and composite generators expressed in terms ofq-deformed
commutators, which satisfy the commutation relations12,22,23 and the corresponding coprodu
expansion rules. Here and in what follows@x# and @x#! are, respectively, theq-numbers and
q-factorials,

@x#5~qx2q2x!/~q2q21!, @x#! 5@x#@x21#...@2#@1#,

~auq!n5 )
k50

n21

@a1k#, @auq#n5 )
k50

n21

@a2k#, ~1.1!

@1#! 5@0#! 5~auq!05@auq#051,

which are invariant under substitutionq↔q21.
Solution of the equation system~2.14! of Ref. 12 for the bilinear combinations of canonic

isofactors under conditionst< Î 82 i m1 i m9 11 is not always possible, in contrast with the results
our last papers,14,18 where using the recursive constructions@a recoupling technique analogou
with ~2.13! and ~5.1! of Ref. 13# the following superpositions of the canonical boundary~asym-
metric seed! isofactors were derived:

~ T̃kuh2,1, Ĩ !q5 (
t>k11

U35 ~a8b8! ~a92k,b92k!
1

~a b!

~k k!
k11

~a b! ~a9b9!
t 6

q

F ~a8b8! ~a9b9!
t

~ab!

y08i 08 ȳ09 ī 09 ỹ Ĩ
G

q

~3!

~1.2a!

5
~@a11#@b11#@a1b12#@b8#! @a81b811#! !1/2G@ab Ĩz̃#¹@ ī 09i 08 Ĩ #

~@b9#! !1/2N~a9b9
q,k

!@a8b8;ab#

3(
j , j 8

~21!~b92a92k!/22 Ĩ 1 jqQ61 j ~ j 11!2 j 8~ j 811!13 Ĩ /~ Ĩ 11!/2

¹2@ 1
2~a92k!, 1

2a8, j #¹2@ 1
2~a81a92a2k!2v, 1

2a, j #

3
@2 j 11#@2 j 811#

@b2v1 1
2~a81a92k!2 j 11#! @b2v1 1

2~a81a92k!1 j 12#!

3
¹2@ 1

2~a91b9!2k,k8, j #

¹2@ 1
2~b92k!, 1

2a8, j 8#¹2@ 1
2k, j 8, Ĩ #G2@ab j8,z̃2 1

2k#
, ~1.2b!

~which can be also used for expansion of more universal coupling coefficients in terms of
thogonal isofactors with superscript2, 1, Ĩ !. Here and in what followsz̃5 1

2(b92a8)1v),
¹@abc# andG@abiz# denote, respectively, the functions

¹@abc#5S @a1b2c#! @a2b1c#! @a1b1c11#!

@b1c2a#! D 1/2

, ~1.3!

and
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G@abiz#5S @ i 1z#! @a1z2 i #! @a1z1 i 11#!

@ i 2z#! @b2z2 i #! @b2z1 i 11#!
D 1/2

. ~1.4!

The renormalization factor

NS q,k
a9b9 D @a8b8;ab#5

DS q,t51
a92k,b92kD @a8b8;ab#DS q,t5k11

k k D @a b;a b#

@a92k#! @b92k#! ~@k#! !1/2 ~1.5!

is expressed in terms of the denominator functions12,14 D( ...
q,t)@¯# of the uq(3) canonical tensor

operators with maximal and minimal null space, respectively, and the correspondingq-phaseQ6 is
expressed as follows:

Q65~b82v11!~b81b92b1v2k!2 1
8~a81b92k!~a81b92k12!

2 1
2~a92k!~a1b82a91k1v !1 1

2~b92k!~b92b1v2k!

2 1
4~a1b2b82b92v1k!~a1b2b82b92v1k12!2 1

8k
21 3

4k1 1
2kz̃. ~1.6!

Particular canonical boundary~seed! isofactors may be derived from~1.2b! by means of a
Gram–Schmidt procedure, beginning fromk5M21, and using the overlaps (T̃kuT̃k8)q equivalent
to bilinear combination of special recoupling coefficients~3.16! of Ref. 18,

(
t.max~k,k8!

U35 ~a8b8! ~a92k,b92k!
1

~ab!

~kk!
k11

~ab! ~a9b9!
6

q

3 U35 ~a8b8! ~a92k8,b92k8!
1

~ab!

~k8k8!
k811

~ab! ~a9b9!
t 6

q

~1.7a!

5~ T̃kuT̃k8!q5(
j̃ 8, Ĩ

~ T̃kuh1, j̃ 9,1!q~h1, j̃ 9,1uh2,1, Ĩ !q~h2,1, Ĩ uT̃k8!q .

~1.7b!

Here the expansion coefficients of the twisted tensor operatorsT̃y9 i 9 i
z9

(a9b9)t5k11,q
in terms of nonor-

thonormal tensor operators, which correspond to the dual coupled statesuh1, j̃ 9,1)q , is expressed
@see~3.13b! of Ref. 18# as follows:
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~ T̃kuh1, j̃ 9,1!q5
~21! j̃ 9,z̃9@a1b82a91v1k11#!

NS q,k

a9b9
D @a8b8;ab#¹@ 1

2b8, 1
2b, j̃ 9#~@ j̃ 91 z̃9#! !1/2

3
H@a9b9 j̃ 9z̃9#~@2 j̃ 911#@ j̃ 82 z̃8#! !1/2

~@a11#! @a1b12#! @a8#! @a81b811#! @a9#! @b9#! @a91b911#! !1/2

3 (
n,s8,s9

~21!n1s8qR1~s92s8!~b81b91a1v13!1k~s82b8!1n~a1b82a91v1k12!

@n#! @b91v2k2n#! @a81a92a2v2k2n#! @a2a81v1n#!

33
@a82n#! @b2b92v1k1n#! @ j̃ 91 z̃91s8#! @s9#! @b2b82v1s9#!

@s8#! @ j̃ 92 z̃92s8#! @b2b82v1s8#! @s92s8#! @k1s82s9#!

3
@a2a81b91v2k1s91n11#! @a1b91v1s812#!

@a2a81b91v2k1s911#! @b81v2s9#! @b92k1s911#!

3
@b81v2s8#!

@a2a82a91v1ks91n#! @s1b91v2k1s912#!
, ~1.8!

wherez̃95 1
2(b2b8)2v, z̃85 1

2(a92a)2v andH@abiz# denotes the function

H@abiz#5~@a1z2 i #! @a1z1 i 11#! @b2z2 i #! @b2z1 i 11#! !1/2. ~1.9!

In Eq. ~1.8! the same renormalization factor~1.5! and theq-phase,

R52Q1~b8a8aba9b9; j̃ 9z̃9!2 1
2z̃8~3z̃812a822b8!

2 1
8~a22a92!1 1

2a8b81b82 1
2~a1b23a82a92b9!

1a9~b91v2k!1 1
2~b92k!~a82b82b91b2v1k!1 1

2~a92k!

3~2a22b2a91v1k24!1~a2a81v !~a1b81v12!

1 1
2k~k22a91v23!2 1

4~a2a912v !~a912b9!, ~1.10!

with

Q1~a8b8a9b9a b; J̃z̃!5Q1~b9a9b8a8b a; J̃,2 z̃!

5 1
2$J̃~ J̃11!1 z̃~3z̃12a22b!2ab1 1

2~a81b9!1a91b82a2b%

~1.11!

are used.
The auxiliary triangle overlap matrix in Eq.~1.7b! is expressed as follows:

~h1, j̃ 9,1uh2,1, Ĩ !q5qQ1~baa8b8b9a9; j̃ 9,2 z̃92Q1~b9a9b8a8ba; Ĩ ,2 z̃!2b8/22a8

3~21! j̃ 92 z̃9
@2 Ĩ 11#¹@ 1

2b8, 1
2b, j̃ 9#H@a9b9 j̃ 9z̃9#

¹@ 1
2a8, 1

2b9, Ĩ #H@ab Ĩz̃#

3S @a#! @a1b11#! @a8#! @ j̃ 92 z̃9#! @ Ĩ 1 z̃#! @2 j̃ 911#

@a9#! @a91b911#! @b8#! @ j̃ 91 z̃9#! @ Ĩ 2 z̃#! @b11#
D 1/2
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@ Ĩ 1 j̃ 91 1
2~a2a91v !#! ~a2a91vuq! Ĩ 2 j̃ 91~a92a2v !/2

@ Ĩ 2 j̃ 91 1
2~a92a2v !#! @ Ĩ 1 j̃ 91 1

2~a92a2v !11#!

~see corrected Eq.~3.17! of Ref. 18!.

II. DENOMINATOR FUNCTIONS OF CANONICAL TENSOR OPERATORS WITH THE
MAXIMAL NULL SPACE

Using ~3.1! of Ref. 12~as a double sum, with fixed summation parametersj 85 1
2b8 andm8!

and q-version of Minton’s summation formula we derived~cf. Ref. 14! the boundary~seed!
canonical isofactors with the multiplicity label, which corresponds to the maximal null spac

F ~a8b8! ~a9b9!

t51

~ab!

ȳ08 ī 08 ỹ9 j̃ 9 ȳ0 ī 0

G
q

~3!

5~21!a81a92a2v
~@a11#! @a1b12#! @a8#! @a81b811#! !1/2

DS q,t51
a9b9 D @a8b8;ab#¹@ 1

2b, 1
2b8, j̃ 9#

3
~@a9#! @b9#! @a91b911#! @2 j̃ 911#@ j̃ 92 z̃9#! !1/2

~@ j̃ 91 z̃9#! !1/2H@a9b9 j̃ 9z̃9#@a81a92v11#!

3(
s

~21!sqQ52s~a81a92v11!@ j̃ 91 z̃91s#! @b81v2s#!

@s#! @ j̃ 92 z̃92s#! @2v1s#! @a81a91b2v2s12#!
, ~2.1a!

5~21!b92 z̃92 j̃ 9
D@ 1

2b, 1
2b8, j̃ 9#~@a11#! @a1b12#! @a8#! @a81b811#! !1/2

DS q,t51

a9b9
D @a8b8;a b#H@a9b9 j̃ 9z̃9#

3
~@a9#! @b9#! @a91b911#! @2 j̃ 911#@ j̃ 92 z̃9#! @ j̃ 91 z̃9#! !1/2

@a81a91b2v12#! @b81b91a1v12#!

3(
s

qQ52~ j̃ 92 z̃9!~a1b81b91v2 j̃ 92 z̃912!1s$~b81b!/22 j̃ 911%

@s#! @ j̃ 92 z̃92s#! @ j̃ 91 1
2~b2b8!2s#! @2v1s#!

3
@b81b91a1v1s12#!

@a81a91v1 z̃92 j̃ 91s11#!
, ~2.1b!

whereD@a,b,c# denotes the triangle coefficient

D@a,b,c#5S @a1b2c#! @a2b1c#! @2a1b1c#!

@a1b1c11#! D 1/2

, ~2.2!

andQ5 denotes theq-phase,
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Q55~a81a92a2v !21 1
2$~b81b92b1v !~a1b22b922v !1av

1 ĩ 9~ ĩ 911!%2 1
8~b2b8!~b2b812!. ~2.3!

The sums that appeared in~2.1a! and~2.1b! can be expressed in terms of the basic hypergeome
series3f2 related to the Clebsch–Gordan coefficient of the quantum algebrauq(1,1). Second
version ~2.1b! is more convenient for numerical calculations24 ~because it includes a minima
number of terms in the sum, and all its terms are of the same sign! and is derived using the
following rearrangements of series:

(
s

q2s$~b81b!/21 j̃ 911%

@s#! @ j̃ 92 z̃92s#! @ j̃ 91 1
2~b82b!2s#! @b2b82v1s#!

3
@a1b91v1s11#!

@ 1
2~b81b!2 j̃ 91b91a1v1s12#!

5 (
s,s8,u8

q2s~ j̃ 91 z̃91u8!2s8~b81v2u8!1u82 j̃ 91 z̃9

@s2 j̃ 91 z̃91u8#! @ j̃ 92 z̃92s#! @ j̃ 91 1
2~b82b!2s#! @b2b82v1s#!

3
~21! j̃ 92 z̃92s82u8@a1b91v1s811#!

@s8#! @ j̃ 92 z̃92s82u8#! @ 1
2~b81b!2 j̃ 91b91a1v1s812#!

~2.4a!

5 (
s,s8,u

q2s~b81b91a1v1u12!1s8~a1b92 z̃92 j̃ 91u12!

@s2 j̃ 91 z̃91u#! @ j̃ 92 z̃92s#! @ j̃ 91 1
2~b82b!2s#! @b2b82v1s8#!

3
~21! j̃ 92 z̃92s82u@a1b91v1s811#!

@s8#! @ j̃ 92 z̃92s82u#! @ 1
2~b81b!2 j̃ 91b91a1v1s12#!

~2.4b!

in analogy with Refs. 25, 26. Summation overu8 or u in ~2.4a! or ~2.4b! is related tods,s8 and
gives the l.h.s., when the Chu–Vandermonde summation formulas~cf. Refs. 25–27! lead either to
the sum in~2.1a! or to the sum in~2.1b!.

Denominator functionD(a9b9
q,t51)@a8b8;ab# may be derived from overlap

~ T̃0uT̃k8!q5d0,k85(
j̃ 9, Ĩ

~ T̃0uh1, j̃ 9,1!q~h1, j̃ 9,1uh2,1, Ĩ !q~h2,1 Ĩ uT̃0!q

5(
j̃ 9

~ T̃0uh1, j̃ 9,1!qF ~a8b8! ~a9b9!
t51

~a b!

ȳ08 ī 08 ỹ9 j̃ 9 ȳ0 ī 0

G
q

~3!

, ~2.5!

with the boundary~seed! canonical isofactors expressed by means of~2.1a! and overlaps~expan-
sion coefficients!
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~ T̃0uh1, j̄ 9,1!q5~21!b92 z̃92 j̃ 9
qR1~a81a92a2v !~a1b82a91v12!@a1b82a91v11#!

DS q,t51

a9b9
D @a8b8;a b#H@a9b9 j̃ 9z̃9#¹@ 1

2b8, 1
2b, j̃ 9#

3S @a9#! @b9#! @a91b911#! @2 j̃ 911#@ j̃ 92 z̃9#!

@a11#! @a1b12#! @a8#! @a81b811#! @ j̃ 91 z̃9#!
D 1/2

3(
n

q2n~a1b82a91v12!@ j̃ 91 z̃91n#! @b81v2n#! @a2a91v1n#!

@n#! @ j̃ 92 z̃92n#! @b2b82v1n#!
~2.6!

derived as a special case of~1.8! after summation overs5s8 of the balanced basic hypergeometr
series27

3f2 , which appeared fork50. Hence we write

D2S q,t51

a9b9
D @a8b8;a b#

5qQ51R
@a9#! @b9#! @a91b911#! @a1b82a91v11#!

@a81a92v11#!

3 (
j̃ 9,n,s8

~21! j̃ 92 z̃91s8@2 j̃ 911#@ j̃ 92 z̃9#! @ j̃ 91 z̃91n#!

@ j̃ 91 z̃9#! @ 1
2~b81b!2 j̃ 9#! @ 1

2~b81b!1 j̃ 911#!

3
q~a81a92a2v2n!~a1b82a91v12!@b81v2n#! @a2a91v1n#!

H2@a9b9 j̃ 9z̃9#@n#! @ j̃ 92 z̃92n#! @b2b82v1n#!

3
q2s~a81a91v11!@ j 91 z̃91s8#! @b81v2s8#!

@s8#! @ j̃ 92 z̃92s8#! @2v1s8#! @a81a91b2v2s812#!
~2.7a!

5
qQ51R@a9#! @b9#! @a1b82a91v11#!

@a81a92v11#! @b81b91v11#! @a91b2v11#!

3 (
s,s8,n

~21!b2b82s1s8@b81v2s8#! @a2a91v1n#! @b81v2n#!

@2v1s8#! @a81a91b2v2s812#! @a2a81b91v2s#!

3
q~a81a92a2v2n!~a1b82a91v12!2s~a81a92v11!

@s#! @b92s#! @b2v2s#! @b2b822v1s81n2s#!

3
@a91b91b2v2s11#! @b2b822v1s81n#!

@b2b82v1n#! @b82b12v2s81s#! @b82b12v2n1s#!
. ~2.7b!

We rearranged the sum overj̃ 9 as a very well-poised8f7 series of~2.7a! into the balanced4f3

series which corresponds to the sum overs in ~2.7b! ~related to the most symmetric expression f
q26 j coefficient! in analogy with~4.8! of Ref. 18 using Watson’s formula~2.5.1! of Ref. 27 as
presented by~6.10! of Ref. 28 with parameters

a→b82b12v11, b→s811, c→2b1v12,

d→n11, e→a82b92a2v, N→b9, s→ j̃ 91 z̃9.

Further we replace some factors in~2.7b! as follows:
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@b2b822v1s81n#!

@2v1s8#! @b2b82v1n#! @s#! @b2b822v1s81n2s#!

5(
s9

qs9~b2b822v1s81n!2s~s82v !

@s9#! @s82v2s9#! @s2s9#! @b2b82v1n2s1s9#!

and use the Chu–Vandermonde formulas25–27 for summation overs,s8.
Finally after change of summation parameters we obtain the new expression for the de

nator function

D2S q,t51
a9b9 D @a8b8;a b#

5q2~a81b22v12!~a81a92a2v !2v~b81v11!1~b91v !~b81b12!

3
@a9#! @b9#! @a1b82a91v11#! @a82b91b2v11#!

@a81a92v11#! @b81b91v11#! @a1b91v11#! @a91b2v11#!

3 (
n,n8

qn~a81a12!2n8~b81b12!@b2b92v1n#! @b1a92v1n11#!

@n#! @a2a81v1n#! @n8#! @b82b1v1n8#! @b92n2n8#! @b91v2n2n8#!

3
@a82b92v1n8#! @a81a92v1n811#!

@a1b82a92b91v1n1n811#! @a1b81v1n1n812#!
, ~2.8!

which is indefinite only if both

b2b92v,0 and b82a91v,0,

or

a82b92v,0 and a2a91v,0,

i.e., in the null space situation, when isofactors~2.1b! are vanishing.
We see that the expression for denominator function~2.8! satisfies the symmetry relations

D2S q,t51
a9b9 D @a8b8;a b#5D2S q21,t51

b9a9 D @b8a8;b a# ~2.9a!

5qb8~a82b91b2v12!2a9~b82a91a1v12!D2S q21,t51
a9b9 D @ba;b8a8#

~2.9b!

5
qv~3v2a82b8!@a9#! @b9#!

@a92v#! @b91v#!
D2S q,t51

a92v,b91v D @a82v,b81v;a1v,b2v#

~2.9c!

5
q~a82a2v !~a1b82a92b912!@a9#! @b9#!

@a81a92a2v#! @a2a81b91v#!

3D2S q21,t51
a81a92a2v,a2a81b91v D @a1v,b8;a82v,b# ~2.9d!
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5
q~b2b82v !~a1b82a91v12!@a9#! @b9#!

@a92b81b2v#! @b81b92b1v#!

3D2S q21,t51
a92b81b2v,b81b92b1v D @a8,b2v;a,b81v#. ~2.9e!

Relations~2.9a! and ~2.9b! coincide with ~3.7a! and ~3.14a! of Ref. 12, when the Regge-typ
symmetry relations~2.9c!, ~2.9d!, and ~2.9e! correspond to transposition of layers, rows, a
columns, respectively, in subarray~1.5b! of Ref. 12, characterizing the multiplicity of the canon
cal tensor operators. Substitutionq→q21 in ~2.9a! and ~2.9b! is correlated with transposition o
the whole array~1.3b! ~interchange of its rows and columns!. Hence, the symmetry group o
denominator function~2.8! includes 16 elements. In analogy with Refs. 4 and 21 for fixed inte
b9 we may re-express the denominator function,

D2S q,t51
a9b9 D @a8b8;a b#5

q2~a81b22v12!~a81a92a2v !2v~b81v11!1~b91v !~b81b12!

@b81b91v11#! @a1b91v11#! @b91v#!

3
@a9#! @a82b91b2v11#! @b2b92v#! @a82b92v#!

@a2a81b91v#! @b81b92b1v#! @a1b81b91v12#!
Gb9

1
~D;x!q

~2.10!

in terms ofq-polynomials,

Gb9
1

~D1 ,D2 ,D3 ;x1 ,x2 ,x3!q

5 (
n,n8

qn~a81a12!2n8~b81b12!

@n#! @n8#! @b92n2n8#!

3@a2a81b91vuq#b92n~b2b92v11uq!n~b1a92v12uq!n

3@b91vuq#n1n8@a1b81b91v12uq#b92n2n8

3@a1b82a91v11uq#b92n2n8

3@b81b92b1vuq#b92n8~a82b92v11uq!n8~a81a92v12uq!n8 ~2.11a!

5@a2a81b91vuq#b9@b91vuq#b9@b81b92b1vuq#b9

3 (
n,n8

qn~a81a12!2n8~b81b12!
~b2b92v11uq!n~b1a92v12uq!n

@n#! ~a2a81v11uq!n

3
~2a2b82b92v22uq!b92n2n8~2a2b81a92v21uq!b92n2n8

@b92n2n8#! ~v11uq!b92n2n8

3
~a82b92v11uq!n8~a81a92v12uq!n8

@n8#! ~b82b1v11uq!n8
, ~2.11b!

where

x15b811, x252a82b822, x35a811,

D15a2a81b91v, D25b91v, D35b81b92b1v. ~2.12!
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The symmetry properties of the polynomialsGb9
t (D1 ,D2 ,D3 ;x1 ,x2 ,x3) were quite important

for the proof of the uniqueness of solution in Ref. 4. Let us consider the symmetrie
Gb9

1 (D1 ,D2 ,D3 ;x1 ,x2 ,x3)q . The evident symmetry properties

Gb9
1

~D1 ,D2 ,D3 ;x1 ,x2 ,x3!q5Gb9
1

~D3 ,D2 ,D1 ;x3 ,x2 ,x1!q21 ~2.13a!

5qb9~b81b12!Gb9
1

~D1 ,D3 ,D2 ;x1 ,x3 ,x2!q21 ~2.13b!

5q2b9~a81a12!Gb9
1

~D2 ,D1 ,D3 ;x2 ,x1 ,x3!q21 ~2.13c!

5q2b9~b81b12!Gb9
1

~D2 ,D3 ,D1 ;x2 ,x3 ,x1!q ~2.13d!

5qb9~a81a12!Gb9
1

~D3 ,D1 ,D2 ;x3 ,x1 ,x2!q ~2.13e!

~with a9,b9 fixed! correspond to substitutions

a8↔b, b8↔a;

a8→2a2b23, b8↔b, a→2a82b823, v→b82b1v;

a8↔a, b8→2a2b23, b→2a82b823, v→a2a81v;

a8→b8→2a82b823, a→b→2a2b23, v→b82b1v;

b8→a8→2a82b823, b→a→2a2b23, v→a2a81v;

respectively, or to the row permutations in arrayA1 ,

A1~D;x!5F D1 D21x1 D32x1

D2 D31x2 D12x2

D3 D11x3 D22x3

G ~2.14a!

5F a2a81b91v b81b91v11 b92b1v21

b91v b92a82b1v22 b81b91a1v12

b81b92b1v a1b91v11 b92a81v21
G ~2.14b!

@see Eq.~1.6! of Ref. 4#. Relation~2.13a! follows directly from~2.9b!, but we failed to find such
definition of q-polynomial which allowed to escape additionalq-phases in other symmetry rela
tions.

In order to check the symmetry ofq-polynomial~2.11a! with respect to the column permuta
tions and transpositions of arrayA1 , ~and to find the correspondingq-phases!, we use in~2.7b! the
rearranged sums overs,

(
s

@a91b91b2v2s11#!

@s#! @b92s#! @a2a81b91v2s#! @b2b822v1s81n2s#!

3
~21!b2b81s

@b2v2s#! @b82b12v2s81s#! @b82b12v2n1s#!

5
@a91b91b81v2s82n11#!

@b81v2s8#! @b81v2n#! @a81a92a2v2s8#!
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3
@b81b91v11#!

@a81a92a2v2n#! @a2a81b91v#! @b2b822v1s81n#!

3(
s

~21!s81n1s
@a81a92a2v2s#! @b81v2s#! @a2a81b91v1s#!

@s#! @n2s#! @s82s#! @a92s82n1s#! @b81b91v2s11#!

~2.15a!

5
@b81b91v11#! @a91b2v11#!

@b2b822v1s81n#! @b2v#! @n#! @b81v2s8#! @a92n#! @a81a92a2v2n#!

3(
s

~21!a92s
@a91b2v2s82s#! @b2b81a922v1n2s#!

@s#! @a92s82s#! @a2a81b91v2s#!

3
@a81a92a2v2n1s#!

@a82a2v1s#! @a91b2v2s11#!
, ~2.15b!

in accordance with alternative expressions and the Regge symmetry ofq26 j coefficients.25,26

Hence instead of~2.8! we obtain

D2S q,t51
a9b9 D @a8b8;a b#

5
q~a1b812v12!~a81a92a2v !2v~b81v11!2a9~a1b12!@a9#! @b9#!

@b91v#! @b81b92b1v#! @a2a81b91v#! @a81a92v11#! @a91b2v11#!

3(
s,s9

~21!a92s9
qs9~a1b2a811!2s~a1b812!@b81v2s#! @a2a81b91v1s#!

@s#! @a81a92a2v2s#! @s92s#! @a92b81b2v1s2s9#!

3
@a1v1s2s9#! @b81b92b1v1s92s8#! @a91b91v2s9#!

@2v1s9#! @a92s9#! @a81a91b2v2s912#!
~2.16a!

5q~a1b81v12!~a81a92a2v !1vb92a9~b81b91a1v12!

3
@a9#! @b9#! @a1b82a91v11#!

@b81b91a1v12#!

3(
s,n

qs~b1b91a1v12!2n~a1b82a91v12!@b81v2n#! @a2a91v1n#!

@n#! @a92n#! @a81a92a2v2n#! @b2b82v1n#! @s#! @a92v2s#!

3
@a2a81b91v1n2s#! @a81a92a2v2n1s#!

@a2a81b91v2s#! @a82a2v1s#! @a81s11#! @a91b2v2s11#!
, ~2.16b!

in the first case replacing some factors in~2.7b! with inserted~2.15a! by

(
s9

~21!a92n1s2s9
q~s92s8!~b81a91b91v2s82n11!2~a92s82n1s!~a81a91b2v2s812!@a1v1s2s9#!

@s92s8#! @a92n1s2s9#! @a81a91b2v2s912#!

and using the Chu–Vandermonde formulas25–27for summation overs,s8, and in the second case
using the Chu–Vandermonde formula, after inserting~2.15b!, for summation overs8. Expression
~2.16a! @with factor qb9(a2b8)# may be also derived from~2.8!, applying ~2.9a! and using inter-
change of the first and third column of array~2.14b!, together with transitionq→q21.

Otherwise, expression~2.16b! is an analog of~3.14b! or ~3.7b! of Ref. 12, but in contrast with
these two formulas, all its terms are positive and~in all non-null-space situations! definite. Besides
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it is invariant~up to an elementary factor! with respect to transposition of arrayA ~2.14b!. In the
SU~3! (q51) case~2.16b! may be rearranged replacing some ratios of factorials by the C
Vandermonde formulas in analogy with~3.17! of Ref. 13. This way the SU~3! denominator
function may be written as follows:

D2S t51
a9b9 D ~a8b8;a b!

5
a9!b9! ~a1b82a91v11!! ~a82b91b2v11!!

~a81a91b2v12!! ~b81b91a1v12!! (
n,n8

~b2b92v1n!!

n! ~a2a81v1n!!

3
~a82b92v1n8!!

~b81b91v2n11!!n8! ~b82b1v1n8!! ~b92n2n8!! ~b91v2n2n8!!

3
~a81a91b91b2v2n2n812#!

~a1b91v2n811!! ~a1b82a92b91v1n1n811!!
~2.17!

accepting the form related to less symmetric form~5.6! of Gb9
1 (A) function.4 Although expression

~2.17! resembles Eq.~2.8! ~the majority of factorial arguments, dependent on summation par
eters, coinciding in the both versions!, the separate sums in~2.17! are related to the balance
hypergeometric functions, whichq-extension cannot includeq-phases dependent on summati
parameters, in contrast with~2.8!.

We may apply also theq-Saalschu¨tz identity,

(
r

~auq!r~buq!r

@r #! ~cuq!r

~c2a2buq!s2r

@s2r #!
5

~c2auq!s~c2buq!s

~cuq!s@s#!
, ~2.18!

as presented in Refs. 29, 30, separately to each row of theq-polynomial~2.11b! depending onn,
b92n2n8, and n8, respectively, and perform the summation overn,n8, using the Chu–
Vandermonde formulas. This way we obtain a new expression

Gb9
1

~D1 ,D2 ,D3 ;x1 ,x2 ,x3!q

5@a2a81b91vuq#b9@b91vuq#b9@b81b92b1vuq#b9

3(
s,s8

qs~a81a12!2s8~b81b12!
~2b82b92v21uq!s~a92b82vuq!s

@s#! ~a2a81v11uq!s

3
~a82b91b2v12uq!b92s2s8~a81a91b2v13uq!b92s2s8

@b92s2s8#! ~v11uq!b92s2s8

3
~2a2b92v21uq!s8~a92a2vuq!s8

@s8#! ~b82b1v11uq!s8
, ~2.19!

which corresponds to permutation of the second and third column of arrayA1 ~2.14b!, together
with transitionq→q21. Thus, the determinantal symmetry of theq-polynomialGb9

1 (D;x)q with
72 elements~in terms of the transpositions of the elements of arrayA1! is demonstrated.

Otherwise, the symmetry relations~2.9c!, ~2.9d!, and~2.9e! with 8 elements@in terms of the
transpositions of the elements of subarray~1.5b! of Ref. 12# correspond to the reduction formula
of G functions.3,4

III. CONJECTURE ABOUT GENERIC DENOMINATOR FUNCTIONS

In Refs. 3 and 4, it was demonstrated, that the ratioGb9
t21(D;x)/Gb9

t (D;x) of subsequent

polynomials~4.2! or ~5.6! of Ref. 4 ~with Gb9
0

5Gb9
b911

51! appears, together with the definit
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linear factors, under the square root sign in the denominator~normalization! functionD(G t ;x) of
the SU~3! canonical tensor operators. For the denominator function of theuq(3) canonical tensor
operators, the corresponding linear factors turn into the definiteq-numbers, together with the
definiteq-phase factors, butq-extension of expression~4.2! or ~5.6! of Ref. 4 is meaningless. We
introduce here the followingq-analog of the denominator polynomial,

Gb9
t

~D1 ,D2 ,D3 ;x1 ,x2 ,x3!q

5)
s51

t
@b92s11#!

@s21#! (
l,m,n

g~l,m,n;@b92t11# t!

M @l#M @m#M @n#
q~a81a12!(sls2~b81b12!(sms

3)
s51

t

~x12D31t2suq!ls
~x12D31a91b9122suq!ls

@D1112suq#b92t112ls

3@D12x22t1suq#ns
@D12x22a92b9221suq#ns

@D2112suq#b92t112ns

3~x32D21t2suq!ms
~x32D21a91b9122suq!ms

@D3112suq#b82t112ms

~3.1a!

5)
s51

t
@b92s11#!

@s21#! )
i 51

3

)
s51

t

@D i112suq#b92t11

3 (
l,m,n

g~l,m,n;@b92t11# !q~a81a12!(sls2~b81b12!(sms

3^2F1@b2b92v1t,a91b2v12;a2a81v1t#ul&q

3^2F1@2a2b82b92v1t23,2a2b81a92v21;v1t#un&q

3^2F1@a82b92v1t,a81a92v12;b82b1v1t#um&q ~3.1b!

in terms of variables~2.12!, wherel5@l1 ,l2 ,...,l t#, m, n are the partitions which may denot
irreps of U(t). Coefficientsg(l,m,n;@b92t11# t) are the Littlewood–Richardson numbers, i.
they are equal to the multiplicity of the irrep@b92t11,...,b92t11# (b92t11 repeatedt times!
in the direct productl3m3n decomposition. FactorM @l# corresponds to aq-analog of the
measure of the Young framel,

M @l#5
Ps51

t @ls1t2s#!

P r ,s@l r2ls1s2r #
5~dim@l#!21)

s51

t

~ t2s11uq!ls
,

~3.2!

dim@l#5
P r ,s@l r2ls1s2r #

@1#! @2#!¯@ t21#!
.

Generalizedq-hypergeometric coefficients in~3.1b! are defined by

^2F1@a,b;c#ul&q5M 21@l#)
s51

t ~a2s11uq!ls
~b2s11uq!ls

~c2s11uq!ls

~3.3!

~cf. Refs. 4, 29–31! and appear as expansion coefficients of generalizedq-hypergeometric~Gauss!
series

2F1@a,b;c;q;z#65(
l

^2F1@a,b;c#ul&qq6~a1b2c2t !(lsel~z! ~3.4!
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in terms of symmetric~Schur! functionsel(z) with z5(z1 ,z2 ,...,zt).
Expression~3.1a! turn into ~2.11a! for t51 with g(l,m,n;@b92t11#)5dl11m11n1 ,b9 .

Otherwise, fort5b9 we obtain

Gb9
b9~D1 ,D2 ,D3 ;x1 ,x2 ,x3!q

5 (
n,n8

qn~a81a12!2n8~b81b12!

@n#! @n8#! @b92n2n8#!

3~a2a81v11uq!b92n@b2vuq#n@b1a92v12uq#n

3~v11uq!n1n8~a1b81v13uq!b92n2n8~b82a91a1v11uq!b92n2n8

3~b82b1v11uq!b92n8@a82vuq#n8@a81a92v12uq#n8 , ~3.5!

since g(l,m,n;@1b9#)51 only if l5@1n#, m5@1n8#, n5@1b92n2n8# and vanishes otherwise

FunctionGb9
b9 is equivalent to theq-polynomial factor of the denominator functionD2( a9b9

q,t5b911)
@a8b8;ab#, which may be derived from~4.8c! of Ref. 18 after interchange of layers of arra

~1.3b! of Ref. 12, i.e., applying toD2( a9b9
q,t5b91v11)@a8b8;ab# the substitution

a8↔a82v, b8↔b81v, a9↔a92v,

b9↔b91v, a↔a1v, b↔b2v. ~3.6!

In a similar manner as in Sec. IV of Ref. 4 we may derive for~3.1a! the reduction formulas
and find the weight spaceWb9

t (D) of zeros. For example, whenv,0 the separate factors

)
s51

t

@a2a81b91v112suq#2v@b81b92b1v112suq#2v

3@a1b81s12uq#2v@a1b82a91v1suq#2v ~3.7!

may be extracted from~3.1a!, since the factor@b91v112suq#b92t112ns
vanish unlessn t>

2v. In this case the separate blocks of~3.1a! may be rearranged into a close form as~4.9! and
~4.10! of Ref. 4, with new parameters, using the new summation partitionn t85@n11v,n2

1v,...,n t1v#, and taking into account the identity

g~l,m,n;@b92t11# t!

M @n# )
s51

t

@b92s11#! @b91v112suq#b92t112ns

5
g~l,m,n8;@b91v2t11# t!

M @n8# )
s51

t

@b91v2s11#! @b9112suq#b92t112n
s8
. ~3.8!

Hence, fort5b91v, v,0 theq-polynomial factor of~3.1a! accepts after rearrangement the for

related to the correspondingq-polynomial factor ofD2( a9b9
q,t5b91v11)@a8b8;ab#, as presented by

~4.8c! of Ref. 18. Analogical rearrangement of~3.1a! is also possible whena2a81v,0 or b8
2b1v,0.

We are still unable to prove the general expression~3.1a! for 1,t,M in the genericuq(3),
qÞ1, case. As it is shown by Theorem 3.2 of Ref. 4 the polynomialGb9

t (D;x) is the unique
polynomial that possesses the following properties:~i! total degree 2t(b92t11) in x1 ,x2 ,x3 , ~ii !
determinantal symmetry, and~iii ! the weight spaceWb9

t (D) of zeros. The properties~i! and~iii ! for
Gb9

t (D1 ,D2 ,D3 ;x1 ,x2 ,x3)q51 may be checked in a similar manner as it was done in Sec. IV
Ref. 4. Evidently, this polynomial is invariant under row interchange in array
                                                                                                                



als-
lized

n

n
e

–

ch

factors
red

5954 J. Math. Phys., Vol. 40, No. 11, November 1999 Sigitas Ališauskas

                    
At~D;x!5F D12t11 D21x12t11 D32x12t11

D22t11 D31x22t11 D12x22t11

D32t11 D11x32t11 D22x32t11
G . ~3.9!

Otherwise, the generalized hypergeometric coefficients^2F1(a,b;c)ul&, ^2F1(a8,b8;c8)um&, and
^2F1(a9,b9;c9)un& in ~3.1b! for q51 either may be expanded using the generalization of Sa
chütz identity29–31separately, or their product may be rearranged using the following genera
version of~2.2! of Ref. 30,

(
l,m,n

g~lmn;L!^2F1~c2a,c2b;c!ul&^2F1~c82a8,c82b8;c8!um&

3^2F1~c92a9,c92b9;c9!un&

5 (
l,m,n,k

g~lmnk;L!^2F1~a,b;c!ul&^2F1~a8,b8;c8!um&^2F1~a9,b9;c9!un&

3^1F0~c2a2b1c82a82b81c92a92b9!uk&, ~3.10!

where

^1F0@d#k&q5M 21@k#)
s51

t

~d2s11uq!ks
~3.11!

@taking the three factor version of generalized Euler identity~2.1! of Ref. 30 as generating functio
for relation ~3.10!#. Since in the~3.1b! cased5c2a2b1c82a82b81c92a92b950, factor
^1F0(0)uk&50, unlessk is a trivial partition of 0. Hence Eq.~3.10! corresponds to the colum
2–column 3 interchange of the arrayAt . In the genericqÞ1 case for this purpose it would b
reasonable to use theq-generalized partition dependent Saalschu¨tz identity,

(
m,n

g~mn;l!^2F1@a,b;c#um&q^1F0@c2a2b#un&q5^2F1@c2a,c2b;c#ul&q , ~3.12!

and theq-generalized partition dependent binomial identity~a multiple q-analog of the Chu–
Vandermonde formula!,

(
m,n

g~mn;l!qy(ms2x(ns^1F0@x#um&q^1F0@y#un&q5^1F0@x1y#ul&q , ~3.13!

~cf. Refs. 29–31!. Although we did not prove Eqs.~3.12! and~3.13! for genericl andqÞ1, it was
demonstrated that coefficientsg(mn;l) appear here and in the multiple series~3.1a!–~3.1b! as
usual Littlewood–Richardson numbers rather than specialq-dependent analogs of Littlewood
Richardson coefficients.32–35

Unfortunately, we had not proved the symmetry of polynomial

Gb9
t

~D1 ,D2 ,D3 ;x1 ,x2 ,x3!q51

with respect of the transposition of arrayA. The attempts to perform the transformations whi
lead from~2.8! to ~2.16b! in the generict.1 case were unsuccessful.

IV. CONCLUDING REMARKS

We obtained completed and universal solutions for the normalized canonical seed iso
of SU~3! anduq(3) with extreme values of multiplicity label, which may replace the conjectu
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algorithm~20! and other initial steps of computation algorithm5 of the normalized SU~3! coupling
coefficients. New expressions for the denominator function of the maximal null space case
uq(3) canonical tensor operators, which cannot be derived in frames of the traditional S~3!
technique,7–10 give also the new expressions and relations for the denominator function o
SU~3! canonical tensor operators as special function accepting the different forms. Neverth
similarly as algorithm~20! of Ref. 5 and extended for more than 20 years~beginning in
1972–19757,8,21,36! resolution of the SU~3! denominator function problem before the final result4,31

was derived, the present study of the normalization coefficients for theuq(3) canonical tensor
operators in the generic multiplicity label case is inconclusive and search for generating fun
related to multipleq-version of Euler identity and other techniques for investigation of multi
partition dependentq-factorial series need to be developed.
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We derive Galilean wavelets, by which we mean coherent states of the affine
Galilei group, that is, the Galilei group extended by independent space and time
dilations. The construction follows a general method based on square integrable
group representations, possibly modulo a subgroup, i.e., on a homogeneous space
of the underlying group. We also examine the restriction to the Schro¨dinger sub-
group, which contains only dilations that leave invariant the Schro¨dinger and the
heat equations. ©1999 American Institute of Physics.@S0022-2488~99!01111-1#

I. INTRODUCTION: SPACE–TIME WAVELETS

Wavelet analysis has become by now a widely used technique in signal and image proc
It is a particular time-frequency, or rather time-scale, method, which is specially efficie
detecting and analyzing nonstationary effects in signals, such as discontinuities, transien
Mathematically speaking, wavelets are simply coherent states associated to affine groups
ous dimensions.

However, for analyzing a signal with such a technique, which privileges prior knowledge
advisable to choose a wavelet that matches the characteristics of the signal as well as poss
instance, analyzing a static signal requires only a static wavelet, that is, a coherent state as
to some symmetry group of space, containing dilations of some kind. On the contrary, in th
of a time-dependent signal~such as a movie or video sequence!, one needs atime-dependent
wavelet, in other words, a coherent state associated to a symmetry group of space–time.

Then the question arises, how does one construct wavelets adapted to a given se
possible answer is given by the general theory of coherent states developed in Refs. 1 an
thoroughly described in Refs. 3 and 4. The construction proceeds in two steps. First, one c
an appropriate groupG of transformations applicable to the signal under consideration. Next
selects a square integrable representationU of G, possibly modulo a subgroup, if any. Then th
corresponding coherent states~CS! are simply the elements of the orbit underU of a fixed vector
h in the representation space.

In this paper, we will apply this approach to the construction of time-dependent wav
However, there are several possibilities for the groupG, depending on the kinematics~i.e., rela-
tivity group! one chooses.

~i! Kinematical or Euclidean wavelets:This is the simplest case.G consists of space–time
translations, space–time dilations~denoteda, a0 , respectively!, space rotations~which
reduce to reflections in one space dimension!, and time reflection.

~ii ! Galilean wavelets: Gis the affine Galilei group, which combines the~extended! Galilei
group with independent space and time dilations (a,a0).

a!Electronic mail: antoine@fyma.ucl.ac.be
b!Present address: Faculte´ des Sciences, Universite´ du Burundi, Bujumbura, Burundi.
59560022-2488/99/40(11)/5956/16/$15.00 © 1999 American Institute of Physics
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~iii ! Schrödinger wavelets:HereG consists of the Galilei group plus Schro¨dinger dilations, i.e.,
with the constrainta05a2 ~that is, dilations that leave invariant the Schro¨dinger and the
heat equations!.5,6

~iv! Relativistic wavelets: Gis theWeyl–Poincarégroup, combining the Poincare´ group with
relativistic space–time dilations, characterized by the relationa05a.

Kinematical wavelets have been introduced by Duval-Destin and Murenzi7 for the analysis of
simple motion, and later applied by Murenziet al.8 to various practical problems of motio
tracking. Relativistic~Poincare´! wavelets have been constructed by Bohnke´,9 using mathematica
work of Unterberger,10 and also~in 111 dimensions!, by Bertrand and Bertrand.11 But the Gal-
ilean case has been largely undocumented up to now, maybe because of the complicated s
of the Galilei group.12,13Some results were obtained in Ref. 14, but a comprehensive study is
missing, except for the brief overview given in Ref. 15. This paper aims at filling this gap.

The general affine Galilei group and the Schro¨dinger subgroup are treated in Secs. II and
respectively. For the convenience of the reader, we have briefly summarized in Appendices
B the general construction method of coherent states associated to square integrable grou
sentations, following Refs. 1–4, and the Mackey method of induced representations.

II. THE EXTENDED AFFINE GALILEI GROUP AND ITS UNITARY REPRESENTATIONS

A. The affine Galilei group

The kinematics of a free nonrelativistic physical particle is governed by its invariance u
the action of the Galilei group,12 which is a ten parameter groupG0 of transformations of New-
tonian space–time~we work in 3 space dimensions, although the whole discussion extendsn
dimensions, for anyn>3!. An elementgPG0 is of the form

g5~b,a,v,R!, bPR, a,vPR3, RPSO~3!, ~2.1!

whereb is a time translation anda a spatial translation,v a velocity boost, andR a spatial rotation.
The action ofg on a space–time point (x,t) is given byg(x,t)5(x8,t8), where

x85Rx1vt1a, t85t1b. ~2.2!

The group law ofG0 is

~b,a,v,R!~b8,a8,v8,R8!5~b1b8,a1b8v1Ra8,v1Rv8,RR8!. ~2.3!

The next step is to construct projective representations ofG0 by the standard method of centr
extensions.12

In order to get Galilean wavelets, we have to replaceG0 by the affine group obtained b
combiningG0 with independent space and time dilations. Thus our program should be, fir
define the semidirect productG0’D2 of the pure Galilei groupG0 with a two-dimensional dilation
groupD2[(R

*
1)2.R2, and then to construct projective representations of the resulting grou

usual. However, a straightforward computation, given in Appendix C, shows that the only c
extensions ofG0’D2 by R are of the formG0’GWH , whereGWH is the Weyl–Heisenberg group
itself a central extension ofD2 . In particular, the central extension procedure fails to gene
mass, as it does in the usual situation, where no dilations are considered.

The only alternative is to reverse the order of the two constructions:

~1! Take first a central extension ofG0 by R, which yields the extended Galilei groupGM corre-
sponding to the extension parameterM.0.

~2! Construct the semidirect productGaff
M 5GM

’D2 , the extended affine Galilei group.

However, as we shall see below,M shouldnot be interpreted as mass, but rather as a mass un
mass scale~the physical mass varies under dilations, whereasM is fixed!.
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As for the first step, the groupG0 admits a one-parameter family of central extensionsGM,
indexed byM.0.12,13 Writing a generic element ofGM as g5(u,b,a;v;R), with uPR, the
structure ofGM is defined by the multiplication law

gg85~u,b,a;v;R!~u8,b8,a8;v8;R8!

5~u1u81j~g,g8!,b1b8,a1b8v1Ra8;v1Rv8;RR8!. ~2.4!

The quantityj: G03G0→R is amultiplier, which up to equivalence~in the sense of cocycles!, can
be taken as

j~g,g8!5M @v•Ra81 1
2b8v2#, M5const.0. ~2.5!

Next we introduce separate space (a[es) and time (a0[et) dilations, corresponding to the
following action on space–time, which replaces~2.2!,

x85esRx1etvt1a, t85ett1b, s,tPR. ~2.6!

Then the multiplication law ofGaff
M reads, withg[(u,b,a;v;R,s,t),

gg85~u1e2s2tu81M @esv•Ra81 1
2e

tv2b8#,b1etb8,a1etb8v1esRa8;

3v1es2tRv8;RR8,s1s8,t1t8!. ~2.7!

The inverse of an elementgPGaff
M is given by

~u,b,a;v;R;s,t!215~2et22su1Met22s@v–a2 1
2bv2#,2e2tb,e2sR21~bv2a!;

2et2sR21v;R21,2s,2t!. ~2.8!

From this law, we note thatGaff
M is a semidirect product,

Gaff
M 5T’~V’~SO~3!3R2!!, ~2.9!

where T5$(u,b,a;0;I ,0,0)%;R5 and V5$(0,0,0;v;I ,0,0)%;R3 are two Abelian subgroups o
Gaff

M .
In addition, the center ofGaff

M is trivial, which shows indeed that the latter cannot be a cen
extension. However, it is in fact an extension ofG0’D2 , but a noncentral one.

B. Orbits under V’„SO„3…3R2
… in T *

Since Gaff
M is a semidirect product of the formG5T’H, with T Abelian and H

5V’(SO(3)3R2), its unitary irreducible representations~UIR! may be constructed by th
Mackey method of induced representations. As described in Appendix B, the first step
scheme is to compute the orbits underH in T * , the dual ofT.

According to~2.7!, the action of (v;R,s,t)PV ’(SO(3)3R2) on the element (u,b,a)PT is
given by

~v;R,s,t!~u,b,a!5~e2s2tu1M @esv•Ra1 1
2e

tbv2#,etb,etbv1esRa!. ~2.10!

Let us denote by (q,E,p) the generic element ofT * . The action of (q,E,p) on (u,b,a) is defined
by

^q,E,puu,b,a&5qu1Eb2p–a, ~2.11!

wherep–a denotes the Euclidean scalar product inR3. According to~B1! and~2.10!, the action of
(v;R,s,t)PH on (q,E,p) is defined by
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^~v;R,s,t!~u,b,a!u~q,E,p!&5^~u,b,a!u~v;R,s,t!21~q,E,p!&. ~2.12!

A straightforward calculation then gives

~v;R,s,t!~q,E,p!5~et22sq,e2tE1e2sRp•v1 1
2qMet22sv2,e2sRp1et22sqMv!.

~2.13!

These relations, which are a part of the coadjoint action ofGaff
M ,15 show that the real mas

parameter is notM, but rather the combinationqM, and it varies under dilations, as it should.
The determination of the orbits underH5V’(SO(3)3R2) in T * is equivalent to solving the

following problem. Given two elements (q,E,p), (q8,E8,p8) in T * , does there exist an elemen
(v;R,s,t) in V’(SO(3)3R2) such that (v;R,s,t)(q,E,p)5(q8,E8,p8)? From~2.13!, answer-
ing this question amounts to solving the system

q85et22sq,

E85e2tE1e2sv•Rp1 1
2e

t22sqMv2, ~2.14!

p85e2sRp1et22sqMv,

in the unknown (v;R,s,t). From ~2.14! it is clear that the sign ofq is invariant on each orbit.
Then a straightforward calculation yields

et5
q8

q
e2s, qS E2

p2

2qM D5e2sq8S E82
p82

2q8M D , v5
1

q8M
~p82e2sRp!. ~2.15!

Therefore, the sign ofE2(p2/2qM) is also invariant on each orbit. All the elements (q,E,p) such
thatE2(p2/2qM).0 ~resp.E2(p2/2qM),0! are on the same orbit, which has the same dim
sion asT, namely 5. Similarly, the elements (q,E,p) such thatE2(p2/2qM)50 are on the same
orbit, of dimension 4.

C. The UIR associated with the orbit q>0, E2„p2/2qM …>0

Let us consider inT * the pointp0[(q0 ,E0 ,p0)5(1,1,0). The isotropy group ofp0 is SO~3!.
Thus the inducing subgroup isK5T’SO(3) and there is a one-to-one correspondence betw
X[Gaff

M /K and the set $(et22s,e2t1 1
2e

t22sMv2,et22sMv)% with (v;I ,s,t)PV’(SO(3)
3R2).

Since the isotropy group ofp0 is SO~3!, the elementLp defined in~B3!, that is,

Lpp05p, with p[~q,E,p!, ~2.16!

may be taken in the formLp5(v;I ,s,t). Thus we obtain the system

q5et22s, E5e2t1 1
2e

t22sMv2, p5et22sMv, ~2.17!

whose solution reads

v5
p

qM
, t52 lnS E2

p2

2qM D , s52 1
2 ln qS E2

p2

2qM D . ~2.18!

In this way, we have defined a sections: X→Gaff
M as required in~B3!. Let us consider the elemen

(a,L)21(0,Lp) and denote by (0,Lp8) the representative of its class~here we have puta
[(u,b,a)PT andL[(v;R,s,t)PH!. A straightforward calculation then yields

~a,L!21~0,Lp!5~0,Lp8!•k, ~2.19!
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with

k215~Lp
21a,I !~0,R!, ~2.20!

and

p8[~q8,E8,p8!5L21p5~v;R,s,t!21p

5~e2s2tq,et@E2p•v1 1
2qMv2#,esR21@p2qMv# !. ~2.21!

We may define a UIR ofK by

L~k21!5ei ^p0uLp
21a&D j~R!5ei ^pua&D j~R! ~2.22!

with D j a UIR of SO~3!. From ~2.21! it is easy to check that

dq8dE8d3p85e5sdqdEd3p. ~2.23!

The representation~2.22! of K then induces a UIR ofGaff
M defined according to~B6! by the

following formula:

~U11~g!c!~Lp![~U11~u,b,a;v;R,s,t!c!~Lp!

5ei ~qu1Eb2p–a!e5s/2D j~R!c~Lp8!, ~2.24!

with p8 given by~2.21!. The representation space ofU11 is HL.L2(X11 ,dqdEd3p;Hj ), where
X115$(q,E,p):q.0,E2p2/2qM.0% andHj is the representation space ofD j .

D. Square integrability of the representation U11

The left invariant measure onGaff
M is given by the formula

dm l~g!5e3t28sdu db d3a d3v dm~R!dsdt, g[~u,b,a;v;R,s,t!, ~2.25!

with dm(R) the usual invariant measure on SO~3!. The square integrability condition~A2! is
satisfied if there exists a nonzerocPHL such that

d~c![E
Gaff

M
u^U11~g!cuc&u2dm l~g!,`. ~2.26!

In the sequel we consider for SO~3! only the trivial, spin 0, representationD j5I , the generaliza-
tion to others being straightforward. The square integrability condition~2.28! then reads

0,E
Gaff

M H E
X11

e5s/2e2 i ~qu1Eb2p–a!c~~v;R,s,t!21~q,E,p!!c~q,E,p!dqdEd3pJ
3H E

X11

e5s/2ei ~ q̂u1Êb2p̂–a!c~~v;R,s,t!21~ q̂,Ê,p̂!!c~ q̂,Ê,p̂!dq̂dÊd3p̂J
3e3t28sdu db d3a d3 vdm~R!dsdt,`. ~2.27!

After integration overu, b, a, condition~2.27! reduces to

0,E e3~t2s!uc~q,E,p!u2uc~~v;R,s,t!21~q,E,p!!u2dqdEd3p d3v dsdtdm~R!,`,

~2.28!

and, since SO~3! is compact,~2.28! holds if
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E e3~t2s!uc~q,E,p!u2uc~~v;R,s,t!21~q,E,p!!u2dqdEd3p d3v dsdt,`. ~2.29!

For the analysis of~2.29!, let us perform the coordinate transformation (q,E,p)°(j,I ,h,z)
PV’(SO(3)3R2 defined by

~q,E,p!5~j;I ,h,z!~1,1,0!5~ez22h,e2z1 1
2Mez22hj2,ez22hMj!. ~2.30!

Since (v;R,s,t)21(j;I ,h,z)5(ez2hR21(v2j);I ,s2h,t2z)21(0;R21,0,0), we may also de-
fine new coordinatesv8, s8, t8 by the formula

~ez2hR21~v2j!;I ,s2h,t2z!21~0;R,0,0!215~v8;I ,s8,t8!~0;R21,0,0!. ~2.31!

Taking inverses, we can write~2.31! in the form

ez2h~v2j!52et82s8v8, s52s81h, t52t81z. ~2.32!

From the coordinate transformations defined by~2.30! and ~2.32!, we deduce directly

dqdEd3p52M3e3z28hdh dz d3j, ~2.33!

e3~t2s!d3vdsdt5d3v8ds8dt8. ~2.34!

The square integrability condition~2.29! then reads

E e3t28huc̃~j,h,z!u2d3j dh dzE uc̃~v,s,t!u2d3v dsdt,`, ~2.35!

where we have writtenc̃(j,h,z)[c(q,E,p)5c((j;I ,h,z)(1,1,0)). More generally, the squar
integrability condition

d~c,f![E
Gaff

M
u^U11~g!cuf&u2dm l~g!,`, ;fPHL ~2.36!

is easily shown, using~2.33! and ~2.18! again, to be equivalent to

d~c,f!;ifi2E uc̃~v;s,t!u2d3vdsdt5ifi2E
X11

uc~q,E,p!u2

q4S E2
p2

2qM D dqdEd3p,`, ;fPHL .

~2.37!

There is obviously a dense set of functionsc satisfying this condition, so that we obtain th
following:

Proposition 1: The representation U11 defined by (2.26) is square integrable over the gro
Gaff

M , a vectorcPhL being admissible iff the last integral in (2.37) converges.
Of course, the same property holds for the irreducible representations associated to th

five-dimensional orbits, corresponding to (E2(p2/2qM)),0 and/orq,0. Since these are all th
orbits which have nonzero Lebesgue measure inT * , we could have inferred the result from th
general study of square integrability made by Anielloet al.16 We refer the reader to the forthcom
ing monograph, Ref. 4, for a systematic analysis.
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E. Galilean wavelets

According to Proposition 1, any admissible vectorhPHL generates a tight frame of Galilea
wavelets, indexed byGaff

M itself and defined, as usual~see Appendix A! by hg5U11(g)h, g
PGaff

M , with the expression~2.24! for the representation. These are of course CS of the Gilmo
Perelomov-type.

In addition, it is possible to construct sets of wavelets indexed by fewer parameters by
quotientsY5Gaff

M /K by various closed subgroupsK and appropriate sectionss:Y→Gaff
M . The

simplest example is obtained if we take forK the subgroupT0.R of time dilationse2t. The
corresponding coset spaceY5Gaff

M /T0 is parametrized by pointsy5(u,b,a;v;R,s). We consider
first the basic or Galilean sections0 :Y→Gaff

M ,

s0~y!5~u,b,a;v;R,s,0!. ~2.38!

A straightforward calculation shows that the admissibility condition~A11! reduces to setting
E2(p2/2qM)51 ~or a constant different from 0! in the integral~2.37!, that is, a vectorhPHL is
admissible mod(T0 ,s0) iff the following integral converges:

EE
q.0

q24UhS q,11
p2

2qM
,pD U2

dqd3p,`. ~2.39!

We consider now a general section,

sb~y!5s0~y!~0,0,0;0;I ;0,b~y!!5~u,b,a;v;R,s,b~y!!, ~2.40!

where b:Y→T0[R is a Borel function andb(y)PT0 represents a time dilation. Again thi
corresponds to a relation between the variables (q,E,p), which may conveniently be written a
f b(q,E,p)50. Thus the admissibility condition mod(T0 ,sb) reads

E
X11

uh~q,E,p!u2

q4S E2
p2

2qM D d~ f b~q,E,p!!dqdEd3p,`. ~2.41!

For any such admissible vectorh, one obtains a dense set of CS, indexed byY5Gaff
M /T0 and given

by hsb(y)5U11(sb(y))h, whereU11(sb(y)) is the representation~2.24! with t replaced by
b(y) in ~2.21!. Of course, forb(y)[0, one recovers the Galilean sections0 .

An interesting example is given byb(y)52s, i.e., the Schro¨dinger case. The correspondin
constraint relation is simplyq51, so that we get the admissibility condition,

EE
E2p2/2M.0

uh~1,E,p!u2

E2
p2

2M

dEd3p,`. ~2.42!

Notice that theq-integration has disappeared in~2.42!, because inserting the factord(q21) in
~2.41! is equivalent to quotienting out the subgroupQ of phase factors, in addition toT0 . We will
study this example in detail in the next section.

III. PROJECTIVE REPRESENTATIONS OF THE SCHRÖDINGER GROUP

Another possibility is to impose from the beginning the relationt 52s, that is, to start from
the Galilei–Schro¨dinger groupGS5G0’DS , where DS is the corresponding one-dimension
subgroup ofD2 , and then to construct projective representations of it, that is, to determine c
extensionsGS

M of GS by R. The motivation for this restriction is thatGS is a natural invariance
group of both the Schro¨dinger and the heat equations5,6 ~the full invariance group, called the
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Schrödinger group, contains in addition the so-calledexpansions, the nonrelativistic analogs o
pure conformal transformations!. This restriction leads to several drastic modifications with
spect to the case ofGaff

M .
The group law ofGS

M reads

~u,b,a;v;R,s!~u8,b8,a8;v8;R8,s8!

5~u1u81M @esv•Ra81 1
2e

2sv2#,b1e2sb8,

a1e2sb8v1esRa8;v1esRv8;RR8,s1s8). ~3.1!

As a consequence,GS
M has a nontrivial center, namely the one-dimensional subgroupQ of phase

factors, isomorphic toR. The group GS
M is a semidirect product, with structureGS

M

5T’(V’SO~3!3R).
As shown in Appendix C, the extended Galilei–Schro¨dinger groupGS

M coincides with the
subgroup ofGaff

M defined by the equationt52s. Therefore,GS
M is also a semidirect product ofGM

by DS , and we have, withvM denoting a central extension with parameterM,

GS
M5RvMGS[RvM~G0’DS!5GM

’DS[~RvMG0!’DS .

Thus, in the Schro¨dinger case, the two operationsvM and’ commute.
Next we proceed with the construction of the induced UIRs ofGS

M , exactly as in the previous
sections. According to~2.15!, the automorphisms induced inT * by V’(SO(3)3R) are given by

~v;R,s!~q,E,p!5~q,e22sE1e2sv•Rp1 1
2qMv2,e2sRp1qMv!. ~3.2!

Thusq is a constant on each orbit. Let us fixq5q0.0. Then we have three cases to analyze

E2
p2

2q0M
,0, E2

p2

2q0M
50, E2

p2

2q0M
.0, ~3.3!

the first and the last ones corresponding to generic orbits, the second one to a degenerat
dimensional orbit. As before, we consider only the last case.

It is easy to check that all the points (E,p) such thatE2(p2/2q0M ).0 are equivalent to the
point ~1,0!, whose isotropy group is SO~3!. The inducing group is thenK5T’SO(3). The
sections:X5GS

M/K→GS
M is defined as forGaff

M and we obtain the following UIR ofGS
M :

~U
1

~q0!
~u,b,a;v;R,s!c!~E,p!5e5s/2ei ~q0u1Eb2p–a!D j~R!c~~v;R,s!21~E,p!!, ~3.4!

with D j a UIR of SO~3! and

~v;R,s!21~E,p!5~e2s@E2p–v1 1
2q0Mv2#,esR21@p2q0Mv# !. ~3.5!

The representation space ofU
1

(q0) is HL
(q0).L2(X

1

(q0) ,dEd3p;Hj ), where X
1

(q0)
5$(E,p):

E2p2/2q0M.0% andHj is the representation space ofD j .
For the purpose of the analysis of the square integrability of the representation~3.3!, we

consider again the trivial, spin zero, representationD0 of SO~3!. From ~2.25!, the left invariant
measure onGS

M is

dm l~g!5e22sdu db d3a d3v dm~R!ds, g[~u,b,a;v;R,s!, ~3.6!

with dm(R) the usual invariant measure on SO~3!. Of course, the representationU
1

(q0) cannot be
square integrable on the whole groupGS

M , since the centerQ.R of the latter is noncompact. Thu
we consider the square integrability on the quotientY5GS

M/Q. We define a sections:Y→GS
M as

follows:
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s~b,a;v;R,s!5~0,b,a;v;R,s!. ~3.7!

The square integrability mod(Q,s) amounts to

E uc~E,p!u2uc~~v;R,s!21~E,p!!u2e3sdEd3p d3v ds,`. ~3.8!

In order to verify the validity of this relation, we proceed exactly as in Sec. D above. Firs
perform the following coordinate transformation (E,p)°(j,I ,h) defined by

~E,p!5~j,I ,h!~1,0!5~e22h1 1
2q0Mj2,q0Mj!. ~3.9!

Since (v;R,s)21(j,I ,h)5(ehR21@v2j#,I ,s2h)21(0,R,0)21, we may also define new coord
nates by the formula

~ehR21@v2j#,I ,s2h!21~0,R,0!215~v8,I ,s8!~0,R,0!21, ~3.10!

or, equivalently,

eh~v2j!52es8Rv8, s852s1h. ~3.11!

From the coordinate transformations~3.9! and ~3.11!, we deduce

dEd3p52M3e22hdhd3j, e3sd3v ds5d3v8ds8. ~3.12!

The square integrability condition~3.8! then reads

ici2E uc̃~v;s!u2d3v ds5
ici2

q0
4 E

X
1

~q0!

uc~E,p!u2

E2
p2

2q0M

dEd3p,`. ~3.13!

In conclusion, we may state
Proposition 2: The representation U

1

(q0) defined by (3.4) is square integrable over the gro
GS

M modulo its centerQ, the phase subgroup, and the section s given in (3.7), a vectoc
PHL

(q0) being admissible iff the integral in (3.13) converges.
A similar result may be obtained for the (n11)-dimensional Schro¨dinger group, for anyn

>1.
Clearly there is a dense set of admissible vectorsc, and each of them generates a tight fram

of CS, of the Gilmore–Perelomov-type. Typical wavelets of this kind are, for instance, in sp
time:
~a! the Schro¨dinger–Marr wavelet,

čSM~x,t !5S i ] t1
D

2mDe2~x21t2!/2;

~b! the Schro¨dinger–Cauchy wavelet,

čSC~x,t !5S i ] t1
D

2mD 1

~ t1 i !P j 51
3 ~xj1 i !

.

Here we have putm5q0M , so thatm is the true mass, as it appears in the Schro¨dinger equation,
as observed in Ref. 13. Preliminary numerical analysis of these functions reveal a rather c
cated structure. Yet the wavelet transform they generate is, by construction, well adap
quantum situations governed by the Schro¨dinger equation, and one may hope that they will pro
useful in problems such as the description of Rydberg states in atomic physics, or in the d
tion of laser–atom interactions.
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Our last remark is to make the connection between the analysis of the extended G
Schrödinger groupGS

M and the special subgroup discussed at the end of Sec. E. Mathemat
imposing the constraintq51 in ~2.41!, inserting a factord(q21), is equivalent to quotienting ou
the subgroup Q. In technical terms, the original representation spaceHL

.L2(X11 ,dqdEd3p;Hj ) is a direct integral overq,

HL5E
q.0

%

HL
~q!dq, ~3.14!

and we are taking the restriction to a single component, corresponding toq51, or, more generally,
q5q0 . As a result, the phase factor inU

1

(q0) is trivial, and may be factored out, exactly as for t
Weyl–Heisenberg group.

We also note, in conclusion, that the same analysis may be done for the other nondeg
orbit, corresponding toE2(p2/2q0M ),0. One gets another UIR ofGS

M , calledU
2

(q0) , and acting

in the Hilbert spaceHL2

(q0)
[L2(X

2

(q0) ,dEd3p;Hj ). The two spacesHL6

(q0)
[L2(X

6

(q0) ,dEd3p;Hj )
deserve to be called Schro¨dinger–Hardy spaces, because they are the genuine analogs of the
Hardy spaces onR, i.e., the subspaces of progressive, resp. antiprogressive, wavelets.
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APPENDIX A: GROUP RELATED COHERENT STATES: A GENERAL FORMALISM

In this section, we present a quick survey of the main results of the coherent state form
Besides the standard texts such as Ref. 17 or Ref. 18, a systematic discussion may be foun
review paper, Ref. 3, or the original papers.1,2

1. Coherent states on a locally compact group

Let G be a locally compact group,dg the left invariant Haar measure onG andg°U(g) a
continuous, unitary irreducible representation ofG in a Hilbert spaceH.

A vector hPH is said to beadmissibleif

d~h!5E
G

u^U~g!huh&u2dg,`, ~A1!

or, equivalently, if

0,E
G

u^U~g!huf&u2dg,`, ;fPH. ~A2!

Let A be the set of all admissible vectors inH. If AÞ$0%, then it is dense inH. In particular,
A5H if and only if G is unimodular, i.e., it has a Haar measure which is both left and r
invariant. If AÞ$0%, the representationU of G in H is said to besquare integrable. The positive
constantd(h) is often called the formal dimension ofU.

Let hPA be fixed. Then the mapWh :H→L2(G,dg), defined by

~Whf!~g!5d~h!1/2^U~g!huf&, fPH, ~A3!

is isometric. Equivalently, the vectorshg[U(g)h generate a a resolution of the identity
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d~h!21E
G

uhg&^hgudg5I H , ~A4!

whereI H is the identity operator inH. Then the orbitS(h)5$hg[U(g)h,gPG% of h under the
action ofG is an overcomplete family of vectors inH, indexed by the points ofG. These vectors
are calledcoherent states~CS! associated with the representationU and the mapWh thecoherent
state map, or thewavelet transform.3

In addition, the mapWh intertwinesU with the left regular representationUL of G,

WhU~g!5UL~g!Wh , ;gPG. ~A5!

This means that every square integrable representation is unitarily equivalent to a subrepr
tion of the left regular representation ofG. The set of UIR’s with this property is called th
discrete seriesof representations ofG, since they correspond to the discrete~or atomic! part of the
Plancherel measure that governs the decomposition of the left regular representation into i
ible components. However, the square integrability property itself is sometimes taken as
nition of the discrete series representations. For further information, see, for instance, Ref

The isometry property ofWh has interesting consequences.

~1! The rangeHh of Wh is a closed subspace ofL2(G,dg). Denote byPh the corresponding
projection operator,Hh5WhH5PhL2(G,dg), with

WhWh*5Ph , Wh*Wh5IH . ~A6!

Then the projection operatorPh is an integral operator, with kernelKh :G3G→C given by
Kh(g,g8)5d(h)21^hguhg8&, that is,

~Phf!~g!5E
G

K~g,g8!f~g8!dg8, ;fPL2~G,dg!. ~A7!

~2! SincePh5Ph
2, the kernel satisfies the relation

Kh~g,g8!5E
G

Kh~g,g9!Kh~g9,g8!dg9. ~A8!

In particular, Eq.~A8! gives the reproducing property of the kernelKh ,

fh~g!5E
G

Kh~g,g8!fh~g8!dg8, ;gPG, ;fhPHh . ~A9!

ThusKh is called areproducing kerneland the spaceHh is called a reproducing kernel Hilber
space.

~3! Finally, again by the isometry property~A6!, the mapWh may be inverted on its range by th
adjoint operator, and one obtains areconstruction formula,

Wh
21F5E

G
F~g!hgdg, FPHh . ~A10!

Typical examples of square integrable representations are the natural representations of th~con-
nected! affine groups of the line or the plane, namely, the ‘‘ax1b’’ group ~translations and
dilations ofR! and the similitude group of the plane, SIM(2)5R2

’(R
*
13SO(2)) ~translations,

dilations, and rotations ofR2!. The corresponding coherent states are the familiarwavelets, in one
and two dimensions, respectively.
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2. Generalization: CS on homogeneous spaces

However, most continuous UIRs ofG are not square integrable. For instance, there is non
the center ofG is noncompact or, more generally, ifG has no discrete series, like the Poinca´
group. Moreover, it might be desirable to have a family of coherent states which are not in
by the points ofG itself, but rather by the points of some homogeneous spaceX5G/H, whereH
is a closed subgroup ofG. A typical example isH5Hh , the isotropy subgroup~up to a phase! of
h: this is the familiar case of the Gilmore–Perelomov coherent states.18,20,21

In all such cases, one may recover most of the previous theory under additional conditio
follows. Let U be a UIR of G on a Hilbert spaceH, n be a ~quasi-!invariant measure onX
5G/H ands:X→G a Borel section. The representationU is then said to besquare integrable
mod (H,s) if there exists a nonzerohPH such that

0,E
X
u^U~s~x!!huf&u2dn~x!5^fuAsf&,`, ;fPH, ~A11!

whereAs is a bounded invertible operator. For such a vectorh, which is said to be admissible
mod(H,s), one defines as(covariant) coherent statesthe vectorshs(x)5U(s(x))h, xPX. In
this way one obtains a total setSs5Ss(h) of vectors inH, indexed by the points ofX.

If the inverse operatorAs
21 is also bounded, the setSs is called aframe, and atight frameif

As is a multiple of the identity,As5lI H . This terminology is borrowed from the theory o
nonorthogonal expansions,22,23 to which the present construction reduces in the whereX is a
purely discrete space, withn a counting measure.

The covariant coherent states have essentially the same properties as the ordinary on
sume for simplicity that we have a frame and that the measuren is invariant. Then one has
successively

~1! A coherent state map Wh : H→L2(X,dn), given by

f °~Whf!~x!5^hs~x!uf&. ~A12!

Then Hh5RanWh is complete with respect to the scalar product^FuC&h

[^FuWhAs
21Wh

21C&, andWh : H→Hh is an isometry.
~2! A resolution of the frame operator As:

E
X

uhs~x!&^hs~x!udn~x!5As . ~A13!

~3! A reproducing kernel:The orthogonal projectorPh :L2(X,dn)→Hh is an integral operatorKs

with reproducing kernelKs(x,y)5^hs(x)uAs
21hs(y)&.

~4! A reconstruction formula: Wh is invertible on its range and

Wh
21F5E

X
F~x!As

21hs~x!dn~x!, FPHh . ~A14!

This general construction encompasses, of course, the standard Gilmore–Perelomov C
as18,20,21

~a! CS of semisimple groups, such as SU~2!, which yields spin CS, SU~1,1!, used for defining
path integrals, or SO~3,2! and Sp~4,R!, familiar in nuclear physics.

~b! The Weyl–Heisenberg groupGWH , which yields the canonical~oscillator! CS~hereH is the
center ofGWH!; the mapWh is called the Windowed Fourier Transform or Gabor Tran
form.

~c! The similitude group SIM(n) of Rn(n>3): for H5SO(n21), one gets the axisymmetri
n-dimensional wavelets.
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In addition, it yields CS for many groups which have no square integrable representation
are thus inaccessible to the Gilmore–Perelomov method. A notable example is that of the r
ity groups, such as the Euclidean, the Galilei or the Poincare´ groups, or more generally, th
semidirect productG5V’S of a vector spaceV by a semisimple groupSof automorphisms ofV.
In that case, one usually takes forX5G/H a coadjoint orbit ofG, i.e., a natural phase space f
the system at hand. It follows thatHÞHh , for any h, sinceH contains translations. Thus it i
imperative to use the general construction in order to get CS.2,3

The interesting point is that, when one combines these groups with dilations, thus getti
corresponding affine groups, square integrability is often regained. This is true in the Po´
case, as shown by Unterberger10 and Bohnke´.9 It is also true for the~extended! Galilei group, as
shown in this paper. But it isnot true in the Weyl–Heisenberg case; the affine Weyl–Heisenb
group has no square integrable representations, and one has to go to appropriate homo
spaces.24

APPENDIX B: THE MACKEY METHOD OF INDUCED REPRESENTATIONS

For the convenience of the reader, we recall briefly in this Appendix the essential points
Mackey method of induced representations. LetG be a Lie group of the formG5T’H, a
semidirect product of the Abelian groupT;Rn (n.0) with the semisimple groupH. We denote
by T * the dual ofT and by^xua& the action of the elementxPT * on the elementaPT. Every
elementhPH induces an automorphism inT, and thus by duality induces the automorphism inT *
defined as follows:

^hxua&5^xuh21a&, ;~a,x!PT 3T * . ~B1!

The unitary irreducible representations ofT are one-dimensional, that is, characters, and are g
by

xx0
~a!5exp i ^x0ua&, ;aPT, ~B2!

with x0 a fixed element ofT * . Given x0PT * , let H0,H be its isotropy subgroup,K5T’H0

andX5G/K.H/H0 . Then there is a one-to-one correspondence betweenX and the setHx0 , and
we may define a section

s:X→G:s~x!5~0,Lx!, where Lxx05x. ~B3!

Let L be the UIR ofK which coincides withxx0
on T and with the UIRD of H0 on H0 . Then the

Hilbert spaceHL of the UIR of G induced byL is defined as follows.
We consider functionsf defined onG with values inKL , the Hilbert space of the represen

tation L, and satisfying the following covariance property:

f ~gk!5L~k21! f ~g!, gPG, kPK. ~B4!

Therefore,f is completely determined if we define its value for an arbitrary element of every
coset moduloK. Since left cosets are labeled by elements ofHx0 according to~B3!, we may
choose a quasi-invariant measuredm(x) on X5G/K and then consider elementsf :G→KL ,
whose restriction f (Lx)[ f (0,Lx) to the representatives (0,Lx) form a Hilbert spaceHL

.L2(X,dm;KL) with respect to the scalar product

^ f 8u f &5E
X
^ f 8~Lx!u f ~Lx!&Ldm~x!, ~B5!

where^•u•&L denotes the scalar product inKL . The representationU of G in HL induced by the
representationL of K is then defined as follows:
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~U~a,L! f !~Lx!5Udm~x8!

dm~x!
U1/2

ei ^xua&D~Lx
21LLx8! f ~Lx8!, ~B6!

with (0,Lx8) the representative of the class of the element (a,L)21(0,Lx). It is easy to check tha
Lx

21LLx8PH0 .
Remark:If x08PHx0 , its isotropy groupH08 is conjugate toH0 . The point is that the inducing

procedure applied tox08 gives the same representationU ~up to equivalence!, provided the equiva-
lence class ofD does not change. Therefore the Mackey method implies the determination
the orbits underH in T * and their respective isotropy groups~up to conjugation!.

APPENDIX C: CENTRAL EXTENSIONS OF G0’D2 BY R

1. The structure of G0’D2

The generic elementgPG0’D2 is parametrized asg5(b,a;v;R,s,t) and the multiplication
law is defined by

~b,a;v;R,s,t!~b8,a8;v8;R8,s8,t8!

5~b1etb8,a1es@b8v1Ra8#;v1es2tRv8;RR8,s1s8,t1t8!, ~C1!

with b,a,v,R,s,t representing, respectively, time translations, space translations, pure G
transformations, rotations, space dilations, and time dilations. Their respective infinitesima
erators are given byH for the subgroup of time translations,Pi ( i 51,2,3) for translations along
the coordinate axisi, Ki ( i 51,2,3) for pure Galilei transformations along the axisi, Ji ( i
51,2,3) for rotations around the coordinate axisi, DS for space dilations,DT for time dilations.
The only nonvanishing commutators between these generators are the following, wheree i jk is the
totally antisymmetric tensor of order three:

@Ji ,Jj #5e i jkJk , @H,DT#52H,

@Ji ,Pj #5e i jk Pk , @Pi ,DS#52Pi ,
~C2!

@Ji ,K j #5e i jkKk , @Ki ,DS#52Ki ,

@H,Ki #52Pi , @Ki ,DT#5Ki .

In particular, one has

@DS ,DT#50. ~C3!

2. Central extensions of G0’D2

In order to construct central extensions of Lie groups, it is easier to deal with the Lie al
of the group than with the group itself. Therefore, instead of searching for the central exten
of the groupG0’D2 , we will determine the equivalence classes of central extensions of its
algebra.

Let g be a real Lie algebra. Then every central extension ofg is determined by a skew
symmetric bilinear formB:g→R such that

B~@X,Y#,Z!1B~@Y,Z#,X!1B~@Z,X#,Y!50, ;X,Y,ZPg, ~C4!

with @•,•# denoting the Lie bracket ing. The extension associated toB is trivial if there exists a
linear form f :g→R such that

B~X,Y!5 f ~@X,Y# !, ;X,YPg, ~C5!
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and two extensions are equivalent if their bilinear forms differ by a trivial one.
For the Lie algebra ofG0 the existence of a one-parameter family of nontrivial extension

due to the fact thatB(Ki ,Pj )5gd i j , with gPR an arbitrary number, which is related to the usu

physical concept of mass.12 In the case ofG0’D2 , however, this is impossible. Indeed, we ha

B~@DS ,Ki #,Pi !1B~@Ki ,Pi #,DS!1B~@Pi ,DS#,Ki !50, ~C6!

which implies, using~C2!, that

B~Ki ,Pi !50. ~C7!

The relation~C7! can also be obtained usingDT ,

B~@DT ,Ki #,Pi !1B~@Ki ,Pi #,DT!1B~@Pi ,DT#,Ki !50. ~C8!

On the other hand, we may write

B~DS ,DT!5g, ~C9!

with gPR an arbitrary number. It is then easy to check that the commutation relations o
central extensions of the Lie algebra~C2! coincide with the latter, except for~C3!, which now
reads

@DS ,DT#5gI , ~C10!

whereI is the generator of the center of the extension. Since~C10! means that$DS ,DT ,I % is a Lie
algebra isomorphic to the Weyl–Heisenberg algebra, the central extensions so obtained
semidirect products ofG0 with the Weyl–Heisenberg group, and none of them yields a m
observable.

Alternatively, one may ask whether the Lie algebra~C2! contain a subalgebra, whose centr
extensions generate the mass in the usual sense. Since~C7! can be derived from~C6! as well as
from ~C8!, such a subalgebra, if it exists, must contain an element of the form

DST5DS1lDT ~C11!

with lÞ0. ReplacingDS by DST in ~C6! gives

~22l!B~Ki ,Pi !50. ~C12!

Thus the only solution generating a mass operator is given byl52, namely,

B~Ki ,Pi !5g, @Ki ,Pi #5gI , ~C13!

with gPR and I the generator of the center of the extension. Hence we obtain precisel
commutation relations of the central extensions of the Schro¨dinger group. It is then easy to chec
that these extensions coincide with the subgroup ofGaff

M defined by the equation

t52s. ~C14!

In other words, in the Schro¨dinger case, the two operations of central extension and of taki
semidirect product with the dilation group commute.
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On the braided Fourier transform on the n -dimensional
quantum space
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We work out in detail a theory of integrability on the braided covector Hopf algebra
and the braided vector Hopf algebra of typeAn introduced by Majid. Using a
braided Fourier transform very similar to the one defined by Kempf and Majid we
obtainn-dimensional analogs of results by Koornwinder expressing the correspon-
dence between products of theq2-Gaussiangq2(xI ) times monomials, and products
of theq2-GaussianGq2(]I ) timesq2-Hermite polynomials under the transform. We
invert the correspondence by finding a suitable inversion, different from the one of
Kempf and Majid. We show that with this transforms, whenevern>2, the
Plancherel measure will depend on the parity of the power series that we are
transforming. ©1999 American Institute of Physics.@S0022-2488~99!00410-7#

I. INTRODUCTION

Recently Majid~see Ref. 1 and references therein! has defined a generalization of the conce
of Hopf algebra, namely braided groups. Hopf superalgebras and genuine Hopf algebr
examples of these objects, but there are more examples, associated to quantum groups, s
category of representations of a quasitriangular Hopf algebra is braided. These objects app
in Ref. 2 with different terminology.

Kempf and Majid introduced3 an integration theory for a class of braided groups arising fr
matrix solutions of the quantum Yang–Baxter equation as ‘‘braided covector algebras’’~see also
Ref. 1!. They used this theory to define a formal braided Fourier transform and its inverse on
algebras. In their paper they also present the case of the braided line as an example,
n-dimensional case in less detail.

The main problem in their theory is that it is very difficult to find an explicit integral t
behaves well enough. They provide powerful general results in a theoretical way, but the de
tion in specific cases is often hard to handle. Besides, they do not provide a definition of co
gence of an integral nor do they treat in their article the case when a generalized function m
called integrable.

The purpose of this paper is to work out as far as we can the example of then-dimensional
quantum space of typeAn viewed as a braided group. We will provide different definitions
integrability, with examples and counterexamples, with respect to an integral similar to that in
3. Our definitions are based on extensions of representations of the braided covector and
algebras. Using these facts, one can show in a more rigorous way the translation invariance
integral proved in Ref. 3. We define different types of Fourier transforms, all based on
different from Ref. 3. One of them looks more like that in Ref. 4 since the integral does not
trivial braiding with elements in the braided group, and because the braided antipode app
the definition. We also took inspiration from Ref. 5, where an analog of the Fourier transfor
the case of the braided line is also studied, although the transform in Ref. 5 goes from an a
to itself, while we are looking for a transform going from an algebra to its braided dual, as in
3, 4, and 6.

We find ann-dimensional analog of the correspondence between products ofq2-Gaussians

a!Electronic mail address: carnoval@math.u-cergy.fr
59720022-2488/99/40(11)/5972/26/$15.00 © 1999 American Institute of Physics
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times monomials and otherq2-Gaussians timesq2-Hermite polynomials, similar to the classica
case and to the results for the braided line in Ref. 5. We give also inverses for our transform
invert the correspondence mentioned above, similarly to what appears in Ref. 5. The main t
this inversion formula is the symmetry between the braided vector algebra and the braide
ector algebra. Kempf and Majid had already defined an inversion formula in their article, bu
used properties that our integral does not have. Other inversion formulas for the braided li
to be found in Ref. 6 where the case of distributions is also treated.

One of the most interesting results is that whenevern>2, there is a loss of symmetry, so th
the Plancherel measure will no longer be the same in the whole space. Indeed there is a a
Z2

n associated to the parity of the power series we are working with, and the Plancherel m
will be constant only on the subspaces of power series with constant parity. Therefore, the
forms we define can also be seen as sine and cosine transform. A phenomenon of b
symmetry forq-integrals was also noted in Ref. 7, where the authors were defining a cal
associated to aq-deformed Heisenberg algebra.

Other definitions of analogs of the Fourier transform on genuine Hopf algebras, qua
spaces, or commutative algebras appeared before Ref. 5 in Refs. 8–10.

II. NOTATION AND PRELIMINARIES

In this paper a complex algebra has, unless otherwise stated, always a unit andq is a real
number in~0,1!. For a positive integerm, and for anyqÞ1 we write@m#q5(qm21)/(q21) and
@m#q! 5P j 51

m @ j #q .
For anyaPR and for anykPZ>0 , we will put (a;q)k5P l 50

k21(12aql). We will also write
(a;q)`5 limk→`(a;q)k and for r real numbers a1 ,...,ar we will put (a1 ,...,ar ;q)`

5P j 51
r (aj ;q)` . Finally, for a>b with a and b both in Z>0 in we will use theq-binomial

coefficient@b
a#q5@a#q!/ @b#q! @a2b#q! 5(q;q)a /(q;q)b(q;q)a2b .

Whenever for any capital characterE we have a multi-indexE5(e1 ,...,en) we will put Ei

5( j 51
i 21ej andEi5( j 5 i 11

n ej . HenceuEu5ei1Ei1Ei for every i.
We identify the set$1,2% with Z2 , letting1correspond to 0̄and2correspond to 1̄, so that

n-tuples in $1,2%n can be identified withn-tuples in Z2
n . By means of this identification we

define the mapA:Zn→Z2
n→$1,2%n by reducing modulo 2 first, i.e.,A(b)51 if b is even

and2otherwise. We will also denote byB:$1,2%n→$0,1%n,Zn the map sending each ‘‘even’
entry to 0 and each ‘‘odd’’ entry to 1.

Given an operator on the twofold tensor product of ann-dimensional vector spaceV, we
identify this operator with then23n2 matrix R and we denote its entries byRcd

ab wherea, b are the
row entries andc, d are the column entries. For such anR, the operator acting on thep-fold tensor
product ofV ~for p>2) asR on theith andjth components and as the identity elsewhere will
denoted byRi j . For summation we will use Einstein convention.

We recall that a braided group over a fieldK is an associative algebraA with multiplicationm
and a coassociative coalgebra with comultiplicationD and counit« together with an invertible
linear mapC:A^ A→A^ A called braiding, and a linear mapS:A→A called braided antipode
such that the following properties hold:C(m^ id!5~id^ m)(C ^ id!~id^ C); C(id^ m)5(m
^ id!~id^C!~C^id); ~id^D!+C5~C^id!~id^C!~D^id!; ~D^id!+C5~id^C!~C^id!~id^D!; 1«
5m(id^ S)D5m(S^ id)D; Dm5(m^ m)(id^C^id)(D ^ D); «+m5« ^ «; and D~1!51^1. If
there is no braided antipode,A is called a ‘‘braided bialgebra.’’

We will work with two particular braided groups, namely the braided covector Hopf alg
V̂(R) and the braided vector algebraV(R) associated to the standard matrix solutionR of the
quantum Yang–Baxter equation of typeAn @i.e., defining the quantum group SLq(n)]. For a
general definition of braided covector and vector algebra, see Ref. 1, Chap. 10. One sees th
these algebras are comodule algebras for SLq(n), and that all possible vector spaces obtained
tensoringV̂(R) and V(R) can be provided by an algebra structure such that they are a
comodule algebras for SLq(n). The product is then defined by means of the braidings and
product inV̂(R) andV(R).
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In this particular caseV̂(R) is the unital associative algebra generated byx1 ,...,xn , with
relations given byxixj5qxjxi if i . j , i.e., V̂(R) is then-dimensional quantum space. The cou
is given by«(xj )50 for every j. We know that this algebra has a basis given by~increasing!
ordered monomialsx1

e1...xn
en. The general formulas for the braidingC, the comultiplicationD, and

the antipodeS in Ref. 1 reduce as follows:

C~xi ^ xj !5H qxj ^ xi , if i , j ,

q2xi ^ xi , if i 5 j ,

~q221!xi ^ xj1qxj ^ xi , if i . j ,

so that, fori , j , C(xi
a

^ xj
b)5qabxj

b
^ xi

a ,

D~x1
e1
¯xn

en!5 (
j 150

e1

¯ (
j n50

en S )
i 51

n Fei

j i
G

q2
D q(vJv~ev2 j v!x1

e12 j 1
¯xn

en2 j n^ x1
j 1
¯xn

j n,

andS(x1
e1
¯xn

en)5(21)uEuquEu22uEux1
e1
¯xn

en.
Here V(R) is the associative unital algebra generated by]1 ,...,]n , with relations given by

] i] j5q] j] i if i , j . The ordered monomials provide a basis forV(R). In this case we fix the basi
given by ordered monomials with decreasing order. The braiding, counit, comultiplication
antipode are given by

C~] i ^ ] j !5H q] j ^ ] i , if i . j ,

q2] i ^ ] i , if i 5 j ,

~q221!] i ^ ] j1q] j ^ ] i , if i , j ,

«(] j )50 for everyj, S(]n
en
¯]1

e1)5(21)uEuquEu22uEu]n
en
¯]1

e1, and

D~]n
en
¯]1

e1!5 (
j n50

en

¯ (
j 150

e1 S )
i 51

n Fei

j i
G

q2
D q(uJu~eu2 j u!]n

en2 j n
¯]1

e12 j 1^ ]n
j n
¯]1

j 1.

By Majid’s theory~see Corollary 9.2.14 and Proposition 10.3.6 in Ref. 1! we recover the braiding
betweenV̂(R) andV(R) and betweenV(R) and V̂(R). They are given by

CV~R!,V̂~R!~] i ^ xj !5H q21xj ^ ] i , if iÞ j ,

q22xj ^ ] j1(
r . j

~q2221!xr ^ ] r , if i 5 j ,

C V̂~R!,V~R!~xi ^ ] j !5H q21] j ^ xi , if iÞ j ,

(
r , j

~q2221!q22~ j 2r !] r ^ xr1q22] j ^ xj , if i 5 j .

For every choice of nonzero constantscj , for j 51,...,n, there is an algebra isomorphismc
betweenV̂(R) andV(R) mappingxj to cj]n112 j , such thatDV(R)+c5(c ^ c)+D V̂(R) andSV(R)

+c5SV̂(R) . In particular, for cj5q2 j 1(1/2)(n21) for every j, then we also haveCV(R),V(R)(c
^ c)5C V̂(R),V̂(R) .

For this choice of thecj ’s we have

~c21
^ c!+C V̂~R!,V~R!5CV~R!,V~R!+~c ^ c21!,

~c ^ c21!+CV~R!,V̂~R!5C V̂~R!,V~R!+~c21
^ c!,
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however, c is not a morphism in the braided category since it isnot true that (c ^ id)
+C V̂(R),V(R)5C V̂(R),V̂(R)+(id^ c), as one can easily see by computing the actions of the left-h
side and of the right-hand side on (]2^ x1) for n52. This has to do with the fact thatV̂(R) and
V(R) are not dual as braided groups in the sense that there is no invariant quantum metr~see
Ref. 1 and references therein!.

It is also well known that there is a left action ofV(R) on V̂(R) where each] j acts by means
of braided partial differentiation with respect toxj . In the An case, this turns out to be, fo
f (xI )PV̂(R),

] j f ~xI !5xj
21F f ~q2x1 ,...,q2xj ,xj 11 ,...,xn!2 f ~q2x1 ,...,q2xj 21 ,xj ,...xn!

~q221! G ,
where the inverse ofxj is only formal, and ‘‘apparent.’’ In particular, one has

] j~x1
e1
¯xn

en!5@ej #q2qEjx1
e1
¯xj 21

ej 21xj
ej 21xj 11

ej 11
¯xn

en.

Formally we can repeat the same constructions withV̂(R)ext @resp.V(R)ext], the algebra of formal
power series in thexj ’s ~resp.] j ’s! with the given defining relations. In this case everything t
we have described above is defined as inV̂(R) andV(R).

Specializing the results about the braided exponential map in Ref. 1 and references t
one has

exp~xu]!ª (
e1 ,...,en>0

x1
e1
¯xn

en^

]n
en

@en#q2!
¯

]1
e1

@e1#q2!
.

By Example 10.4.16 in Ref. 1 this is equal toeq22„(12q22)( i 51
n xi ^ ] i…, where eq(z)

5(k50
` zk/(q;q)k ~see Ref. 5 for further details!. It follows by straightforward computation tha

exp (xu]) is also equal toEq2„(12q2)( i 51
n xi ^ ] i…, where Eq2(z)5(k50

` q(1/2)k(k21)zk/(q;q)k.
Corollary 10.4.17 in Ref. 1, which appeared first in Ref. 11, gives us also a braided version
Taylor formula. This is given by

f „D~x1!,...,D~xn!…5 f ~x11y1 ,...,xn1yn!

5 (
e1 ,...,en>0

y1
e1
¯yn

enS ]n
en

@en#q2!
¯

]1
e1

@e1#q2!
f ~x1 ,...,xn!D

5exp~yu]! f ~xI !

whereyj5xj ^ 1 andxi stands for 1̂ xi after the second equality sign.

III. INTEGRATION ON V̂„R…

ext

We start with the ‘‘indefinite’’ integral with respect toxi . We repeat shortly the definition in
Ref. 3, where the integral is viewed as an operator onV̂(R)ext.

Definition 3.1: The braided partial integral with respect to xi acting on f(xI )PV̂(R)ext is given
by

E
0

xi
fª~12q2!(

k50

`

q2kxi f ~q22x1 ,...,q22xi 21 ,q2kxi ,xi 11 ,...,xn!.

It is easy to see that the operator defined above acts as a pseudo inverse for the
differential operator] i . It is indeed only a right inverse, since it acts as a left inverse for] i only
on series containingxi in every monomial of its expansion~see remark in Ref. 3, p. 6815!. Each
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*0
xi is a well-defined operator fromV̂(R)ext to V̂(R)ext since for every basis monomialx1

e1
¯xn

en we

can write*0
xix1

e1
¯xn

en as a monomial in thexj ’s with a coefficient that is aconvergentseries of

complex numbers. Since one can read*0
xi f as a ‘‘function’’ of thexj ’s, it makes sense to conside

*0
axi for a nonzero constanta. In particular we can define*0

(21)rq1xi f for every integerr and l as
(21)r(12q2)(k50

` q2k1 lxi f (q22x1 ,...q22xi 21 ,(21)rq2k1 lxi ,xi 11 ,...xn).
Then, for everyf PV̂(R)ext

E
2xi

xi
fªE

0

xi
f 2E

0

2xi
f and E

2xi•`

xi•`

fª lim
r→`

E
2q22rxi

q22rxi
f

are defined. The last definition is only formal so far, because the image of a power series
longer a power series~coefficients might be infinite sums themselves!, and we have no notion o
convergence. One cannot find a convergence set because one cannot give nonzero v
noncommuting variables. This issue can be solved in different ways, so that we can g
meaning to equalities as well. The ideas here are based on the approaches of Kempf and M
Ref. 3 and of Koornwinder in Ref. 5 who treated the one-dimensional case. His approach w
means of extension of a suitable representation ofV̂(R)ext and the search of a family of eigen
vectors for which the integral would have a convergent eigenvalue. We approach the proble
for a single infinite integral, but for then-dimensional integralI ( f )ª*

2xn•`
xn•`

¯*
2xi•`
x1•` f which is

formally

~12q2!n (
kn52`

`

¯ (
k152`

`

(
«P$61%n

q2uKu1~2
n
!x1¯xnf ~«1q2k1x1 ,...,«nq2knxn!.

As we said,I ( f ) is not an element ofV̂(R)ext, in general, since the coefficients with respect to
elements of the basis are not always definite. In order to define integrability, we fix an act
V̂(R) on the space of power series in then commuting variablesz1 ,...,zn with complex coeffi-
cients. This representation corresponds with the choice of a normal form for the monom
V̂(R). The representation, denoted byx, for monomials in thexi ’s acting on monomials in the
zj ’s, is given by

x1
e1
¯xn

enxz1
h1
¯zn

hn5q( i 51
n ejHiz1

h11e1
¯zn

hn1en,

and can be extended linearly to an action ofV̂(R) on formal power series in thezj ’s. We can
restrict the space on which we act by taking the spaceV of power series which are absolute
convergent in a neighborhood of zero. This makes sense because thezi ’s commute with each
other. We see that this space is invariant under the action ofV̂(R). Moreover, we see that we ca
extend the representation ofV̂(R) on V to a representation of the classC given by the power series
f in the xi ’s such thatf x1PV. Indeed one can see that

~A! ; f 5 f (xI )PC and;g5g(zI )PV it holds that (f xg)(zI ) belongs toV because the asso
ciated series of absolute values is majorized by the product inV of series of absolute value
associated tof x1 andg.

~B! ; f andgPC, their productf gPC because (f g)x15 f x(gx1)PV by property~A!.
Moreover,
~C! ; f PC, f x150⇔ f [0.
From now on we writef

•1 for f x1, for any expressionf (xI ) for which the action on 1 make
sense. We would like to extend the representation now to the formal expressions of typeI ( f ) for
f PC. This does not always make sense, hence we have to add further conditions. Let us t
subclassC8 of C given by the series inC such that

~a! f
•1 can be continued analytically onRn1 iU for some open neighborhoodU of 0 in Rn;

~b! f
•1 is absolutelyq2-integrable for everyzIPRn for which everyzjÞ0, i.e.,
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(
k152`

`

¯ (
kn52`

`

(
«P$61%n

q2uKuuz1u¯uznuu f
•1~«1q2k1z1 ,...,«nq2knzn!u,`

for zI outside the standard hyperplanes.
The classC8 will be the class of integrable power series. For those series we can com

I ( f )
•1 , and this turns out to be

~ I ~ f !!
•15~12q2!nF (

kn52`

`

¯ (
k152`

`

(
«

q2uKu1~2
n
!x1¯xnf ~«1q2k1x1 ,...,«nq2knxn!Gx1

5E
2qn21z1•`

qn21z1•`
¯E

2qn2 i zi•`

qn2 i zi•`
¯E

2zn•`

zn•`

f
•1~ t1 ,...,tn!dq2tn¯dq2t1 ,

where theq2-integral in the last line is theq2-Jackson integral inn variables obtained by iterating
~8.11! in Ref. 5. It is clear that iff PC8, then„I ( f )…

•1 converges wheneverzjÞ0 for everyj.
Because of~C!, two objects inC are equal if and only if they act in the same way on

Following this philosophy, we say that twoq2-integrals of objects inC8 are equal if and only if
they act in the same way on 1. This will be our tool to show equalities then.

The first purpose is to show translation invariance of the operatorI in a less formal way than
in Ref. 3 where this appeared first. For this we need an extra assumption on the elementsC8,
since we have to use Taylor’s series, hence partial derivatives. We considerf PC8 satisfying the
following.

~c! For someh.0 there exists for eachJP(Z>0)n some constantCJ such that

u~D
1,q2
j 1

¯D
n,q2
j n f

•1!~z1 ,...,zn!u<CJ)
k51

n

~11uzku2!2~11h!

if zIPRn, whereD j ,q2 denotes the standardq2-Jackson partial derivative with respect tozj .
For an f in C8, condition ~c! implies that all the Jackson derivatives off

•1 are absolutely
q2-integrable for allzI in a neighborhood of 0 minus the intersection with the standard hy
planes.

One sees immediately that (] i f )
•15(Di ,q2f

•1)(qz1 ,...,qzi 21 ,zi ...,zn). We show now that it
makes sense to computeI (]n

j n
¯]1

j 1f )x1, and that this is equal to zero whenever (j 1 ,...,j n)
Þ(0,...,0). We write

F
•1
J ~z1 ,...,zn!ª~]n

j n
¯]1

j 1f !x15„D
1,q2
j 1

¯D
n,q2
j n ~ f

•1!…~qJ1
z1 ,...,qJn

zn!.

HenceF
•1
J (zI )PV if f satisfies condition~c!. Moreover,F

•1
J is absolutelyq2-Jackson integrable if

and only if for every choice of (h1 ,...,hn)P$61%n

(
«I P$61%n

(
ki50

`

¯ (
kn50

`

q2K•Huz1¯znuuF
•1
J ~q2k1h1«1z1 ,...,q2knhn«nzn!u

has a positive radius of convergence. Hence, if condition~c! holds for f (xI ), and since the above
sums are of the form

(
«I

(
k150

`

¯ (
kn50

`

q2K•Huz1¯zn~D
1,q2
j 1

¯D
n,q2
j n f

•1!~q2k1h11J1
«1z1 ,...,q2knhn1Jn

«nzn!u

<CJuz1¯znu(
«I

(
k150

`

¯ (
kn50

`

q2K•H)
r 51

n

~11uq2krhrzr u2!2~11h!
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that converges sinceqP(0,1), one sees that theF
•1
J areq2-integrable.

Moreover, for everyg5(g1 ,...,gn) with g j in R2$0% we have

q(k51
n JkE

2g1•`

g1•`

¯E
2gn•`

gn•`

F
•1
J ~ t1 ,...,tn!dq2tn¯dq2t1

5E
2qJ1

g1•`

qJ1
g1•`

¯E
2qJn

gn•`

qJn
gn•`

D
1,q2
j 1

¯D
n,q2
j n f

•1~ t1 ,...,tn!dq2tn¯dq2t150.

The proof is as in the one-dimensional case~see Ref. 5!. Hence we can state the following.
Lemma 3.2: Let fPC8 satisfy condition ~c!. Then for every JÞ0I there holds

„I (]n
j n
¯]1

j 1f )…x1[0, so that we can conclude that I(]n
j n
¯]1

j 1f )50.
Proof: One has

„I ~]n
j n
¯]1

j 1f !…
•15E

2qn21z1•`

qn21z1•`
¯E

2qn2 i zi•`

qn2 i zi•`
¯E

2zn•`

zn•`

F
•1
J ~ t1 ,...,tn!dq2tn¯dq2t150.

h

Proposition 3.3: Let fPC8 satisfy~c!. Then~id^I!D~f!51^~If!.
Proof: By the braided Taylor formula we have

~ id^ I !~D f !5 (
j 1 ,...,j n>0

y1
j 1
¯yn

j n

@ j 1#q2!¯@ j n#q2!
I ~]n

j n
¯]1

j 1f !,

but this is by Lemma 3.2 equal to the term with allj k’s equal to 0. h

Proposition 3.4: Let f~xI!PC such that~c! holds for everyh.0. Then the statement of Propo
sition 3.3 holds for every polynomial p~xI! times f~xI!.

Proof: It is not restrictive to assume thatp(xI ) is a monomial. By property~A! there follows
that alsop(xI ) f (xI )PC. We have to check that condition.~c! holds for every element of the form
x1

e1
¯xn

enf (xI ). One sees immediately that

„x1
e1
¯xn

enf ~xI !…x15 f
•1~qE1

z1 ,...,qEn
zn!z1

e1
¯zn

enPV

if f (xI )PC, so that„x1
e1
¯xn

enf (xI )…
•1 makes sense.

Condition~c! is on theq2-Jackson partial derivatives on commuting variables, and it holds
x1

e1
¯xn

enf (xI ) as a consequence of the fact that for two functionsa(zI ) and b(zI ) and for anyj
51,...,n,

D j ,q2„a~zI !b~zI !…5„D j ,q2a~zI !…„b~z1 ,...,zj 21 ,q2zj ,zj 11,...,zn!…1a~zI !D j ,q2„b~zI !….

Then, by Proposition 3.3 we have the statement. h

We have a description of a class of power series in thexi ’s for which integration makes sense
although we are not able so far to make a complete classification of integrable functions. The
problem is treated in Ref. 6 for the one-dimensional case. Still, what we have is enough to
computations in the following case.

Example 1:The q2-Gaussiangq2(xI ) is

gq2~xI !ªeq4~2xI •xI !5eq4S 2(
j 51

n

xj
2D 5)

j 51

n

eq4~2xj
2!,
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where the last equality holds because of Proposition 3.1 in Ref. 5~this result was already in Ref
12! and the product in the above formula is taken with increasing order on the variables. It sa
conditions~a!, ~b!, and~c! for everyh.0. This is a consequence of the one-dimensional case~see
Ref. 5! and the fact that

„gq2~xI !…
•1~zI !5)

j 51

n

eq4~2zj
2!, ] j„gq2~xI !…52

xj

~12q2!
gq2~xI !

and that

D
q2,1

j 1
¯D

q2,n

j n Xeq4S 2 (
k51

n

zk
2D C5p~zI !eq4S 2 (

k51

n

zk
2D ,

wherep(zI ) is a polynomial in thezj ’s.
It follows then that also elements of the form

x1
a1gq2~x1!¯xn

angq2~xn!5x1
a1
¯xn

aneq4S 2(
j

~q2Aj
xj !

2D
satisfy condition~c!, so that for everypj (xj )PV̂(R) we can integrate every element of the for
p1(x1)gq2(x1)¯pn(xn)gq2(xn).

In particular, forf (xI )5gq2(x1)x1
a1
¯gq2(xn)xn

an one can compute

„I ~ f !…
•1uzI5g5E

2qn21g1•`

qn21g1•`
¯E

2qn2 ig i•`

qn2 ig i•`
¯E

2gn•`

gn•`

f
•1~ t1 ,....tn!dq2tn¯dq2t1

5)
j 51

n S E
2qn2 jg j •`

qn2 jg j •`
eq4~2t j

2!t j
ajdq2t j D

5H )
j 51

n

~cq2~g jq
n2 j !q2aj

2/2~q2;q4!aj /2
!, if aj even ; j ,

0, otherwise,

where

cq2~g!5
2~12q2!~q4,2q2g2,2q2g22;q4!`

~2g2,2q4g22,q2;q4!`

as in formula~8.15! in Ref. 5. In particular,

„I ~ f !…
•1uzI5g5q2( j aj

2/2)
j

~q2;q4!aj /2
~ I „gq2~xI !…!uzI5g

if all aj ’s are even, and 0 otherwise, hence we can conclude that

I ~ f !5H q2( j aj
2/2)

j
~q2;q4!aj /2

~ I „gq2~xI !…!, if aj is even ; j ,

0, otherwise.

The observation that the integral of the Gaussian times a monomial is equal to a constant tim
integral of the Gaussian appeared in Refs. 1 and 3 first. In our case we have to deal with th
and this depends on the choice of our global integral. ;
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Remark:The reader may wonder whether we could have chosen another realization ofV̂(R)ext

and of the integrals of elements ofV̂(R)ext other thanf x1. Of course one might consider
different representation, or a different choice of the normal form. The advantages of a rep
tation associated to the choice of a normal form is the fact that it is enough to test operator
to state an equivalence inV̂(R). The advantage of the particular normal form that we have cho
is based on the fact thatC is closed under product, hence we have a map from formal expres
in x1 ...,xn to formal expressions in thez1 ,...,zn such that on rather big subspaces it comes exa
from an algebra homomorphism. If we had chosen another normal form, we could no l
extend the representationp of V̂(R) on V to a representation of the subsetSof V̂(R)ext such that
p(S)(1),V. Take, for instance,n52, and the representation ofV̂(R) on R†@z,w#‡ given by
p(x1)„f (z,w)…5z f(z,q21w) andp(x2)„f (z,w)w…5 f (z,w). This is the representation associat
to the choice of the normal form withx2 precedingx1 . ;

Then a5(k50
` x1

k and b5( l 50
` x2

l belong to S, but ab does not belong toS since
p((k50

` x1
k)„p(( l 50

` x2
l )(1))5(k,l 50

` q2klzkv l¹V.

IV. LATTICE INTEGRABILITY

In the previous section we saw a definition of integrable series inV̂(R)ext. Unfortunately, the
above method fails for another analog of the Gaussian we would like toq2-integrate, namely the
q2-Gaussian

Gq2~xI !ªEq4~2xI •xI !5Eq4S 2(
j 51

n

xj
2D 5Eq4~2xn

2!¯Eq4~2x1
2!.

In Ref. 5, Sec. 9, it is also shown thatGq2(xI ) does not satisfy condition~c!, nor condition~b! for
n51. On the other hand, it is also shown there that for a given choice of aq2-lattice of the form
$6q2kgukPZ%, namely forg51, (I „Gq2(x1)…)

•1uz151 is absolutely convergent. Hence one c

introduce a weaker version of integrability inV̂(R)ext, which we will call ‘‘ lattice integrability,’’
requiring for an f (xI ) such that f

•1 is entire that there is aq2-lattice L(g)5$(6g1q2k1,...,
6gnq2kn)uKPZn% in RÞ0

n such that the expression„I ( f )…
•1uzIPL(g) is absolutely convergent. O

course if a generalized function isq2-integrable, then it is lattice integrable for every choice o
lattice. One can easily see that the power seriesEq4(2x1

2)¯Eq4(2xn
2) is lattice integrable for

g5(qn21,...,qn2 j ,...,1). Unfortunately, this power series is not theq2-GaussianGq2(xI ) that we
wanted to integrate, forn>2. Besides, we can show that already forn52, Gq2(xI ) is not lattice
integrable although it is entire.

(Counter)example 1:Let us considerGq2(xI ) for n52. We write for simplicityx15x and
x25y, andz15z, z25w. Then

Gq2~xI !5 (
k,l 50

`
~21!k1 lq2k212l 222k22l y2lx2k

~q4;q4! l~q4;q4!k
5(

l 50

`
~21! lq2l 222lEq4„2~q2lx!2

…y2l

~q4;q4! l
,

hence

Gq2~xI !
•15 (

k,l 50

`
~21!k1 lq2k212l 222k22lq4klz2kw2l

~q4;q4! l~q4;q4!k

5(
l 50

`
~21! lq2l 222lEq4„2~q2lz!2

…w2l

~q4;q4! l

5 (
k50

`
~21!kq2k222kEq4„2~q2kw!2

…z2l

~q4;q4!k
,
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which is entire since it is majorized byEq4(uwu2)Eq4(uzu2). Now we wonder whether this expres
sion is lattice integrable or not. In order to have that, we would need that for somg
5(g1 ,g2),

E
2qg1•`

qg1•` E
2g2•`

g2•`

u~Gq2!
•1~ t1 ,t2!u dq2tI,`.

For this we would need that

(
h152`

`

(
h252`

`

q2uHuU(
l 50

`
~21! lq2l 222lEq4~2~q2l 12h1qg1!2!~q2h2g2!2l

~q4;q4! l
U,`,

therefore we have to look at the limit forhj→2` of the summands. Clearly by the discussion
Sec. 9 of Ref. 5, we see that we would need to haveg15q. With a similar reasoning we see tha
g2 must be equal to 1. Now, for generalz andw we have

„Gq2~xI !
•1…~z,w!5(

l 50

`
~21! lq2l 222lw2l~q4lz2;q4!`

~q4;q4! l

5~z2;q4!`(
l 50

`
~21! lq2l 222lw2l

~q4;q4! l~z2;q4! l

5~z2;q4!`1f1~0;z2;q4,w2!,

which is theq4 version of theq-Bessel function described in Ref. 9. For (z,w)5(q222r ,q2s) with
r>0 ands any integer, we have, by the estimates~2.6! and the following extimates in Ref. 9, tha

u~Gq2~xI !
•1!~q222r ,q2s!u5q2r ~r 21!q4rs~q4r 14;q4!`u1f1~0;q4r 14;q4,q4r 14s!u.

For r→` ands52r this behaves likeq2r (r 21)24r 2→`. HenceGq2(xI ) is not lattice integrable.;
Remarks:An analog of the symmetry~2.2! for q-Bessel functions in Ref. 9 holds in our cas

namely,

Eq4~2x1
2!1f1~0;x1

2;q4,x2
2!5Gq2~xI !51f1~0;x2

2;q4,x1
2!Eq4~2x2

2!,

once we agree that in1f1 every time we have a product of typex2
1/(x1

2;q4) l , the terms inx1 have
to be takenbeforethe terms inx2 . Hence, in general, one has

Eq~2x12x2!5Eq~2x1!1f1~0;x1 ;q,x2!51f1~0;x2 ;q,x1!Eq~2x2!

with the above meaning for1f1 in noncommuting variables.
Another equality involving a1f1 and exponentials inq-commuting variables is obtained b

writing Eq(2x1)Eq(2x2) as

~x2 ;q!`(
l 50

`
~21! lq~1/2!~ l 22 l !~q21x2 ;q! lx1

l

~q;q! l

and using~3.12! in Ref. 5 withx152y andx252x. Then one obtains

(
l 50

`
~21! lq~1/2!~ l 22 l !x1

l ~x2 ;q! l

~q;q! l
5Eq~x1x2!Eq~2x1!,
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where the sum on the left-hand side can be considered as a1f1 in noncommuting variables onc
assumed thatx1 always precedesx2 in products. These facts were pointed out to me by
Koornwinder. ;

On the other hand, one can easily check that for everyA5(a1 ,...,an) in R.0
n and everyE

5(e1 ,...,en), thenx1
e1
¯xn

enEq4„2(a1x1)2
…¯Eq4„2(anxn)2

… is lattice integrable in theq2-lattice

generated byg whereg j5aj
21qn2 j 1Ej

. Unfortunately, lattice integrability carries a lot of techn
cal work with it whenever one wants to prove anything like translation invariance, for insta
This is a consequence of the fact that, in order to state that the integral of]n

en
¯]1

e1f (xI ) is zero,
one needs to keep track of the lattice in which this series is integrable, which in general is n
same as the lattice in whichf (xI ) is integrable, unlessej is even for everyj. Indeed, considern
52 and f (xI )5Eq4(2x1

2)Eq4(2x2
2). Then, f (xI ) is integrable for (g1 ,g2)5(q,1) while

]2„f (xI )…52Eq4(2q2x1
2)@x2 /(12q2)#Eq4(2q4x2

2) is integrable for (g1 ,g2)5(1,1). However,
since ‘‘morally’’ the integral of a function which is odd in a variable is zero, we might as w
definethe integral of every odd function to be zero by changing the definition of the inte
Namely, we define the new integralI 8 to be the integral of the even part of the seriesf (xI ). We
formalize this definition.

Let f (xI ) be any formal power series in thexj ’s. We want to decompose it in 2n series
depending on the parity with respect to each variable. Let

P j
6 :V̂~R!ext→V̂~R!extf ~xI !° 1

2„f ~xI !6 f ~x1 ,...,xj 21 ,2xj ,xj 11 ,...,xn!…

for everyj and for any choice of6. This makes sense formally, and makes sense even concr
for the series inC. Clearly those operators commute; they are projections on the space of p
series that are even~resp. odd! in the jth variable, so thatP j

1P j
250 for everyj. We define then

for every choice ofb in $6%n the operatorsPb :V̂(R)→V̂(R) as (P1
b1)+¯+(Pn

bn). They are all
projections on their imageEb , and clearly the decomposition of the space of power series in
xi ’s descends to a decomposition of the spaceC in 2n spaces that we will callCb . We also write
Vb

ªCbx1. We will denoteP (1,...,1) by P0 for simplicity.
In particular,P0f (xI )522n(«P$61%nf («1x1 ,...,«nxn) is even in every variable, and we defin

the integralI 8 to be the compositionI +P0 .
Remarks:Since we work in characteristic zero,I 8 f is also formally equal to

E
0

xn•`

¯E
0

x1•`

(
«P$6%n

f ~«1x1 ,...,«nxn!.

Clearly the class ofI 8 integrable series is bigger than the class ofI integrable series, since all od
series are integrable and their integral is zero. SinceI 8 integrability of a seriesf (xI ) coincides with
I integrability of P0f (xI ), if f (xI ) is a series which is even in all the variables, thenf (xI ) is I
integrable⇔ f (xI ) is I 8 integrable sincef (xI )5P0f (xI ). ;

One can also introduce latticeI 8 integrability. Again, for series inC(1,...,1) , lattice integra-
bility and latticeI 8 integrability trivially coincide, and for a genericf (xI ), lattice I 8 integrability
trivially coincides with latticeI integrability of P0f (xI ) in the same lattice.

We can provide generalizations of Lemma 3.2, and Propositions 3.3 and 3.4 by introd
condition ~c8! for an f such thatP0f PC8:

~c8! For someh.0, there exists for eachJ5( j 1 ,...,j n)PZ>0
n and bP$6%n such thatj k is

even~resp. odd! if bk51(resp.2), some constantKJ such that

u~D
1,q2
j 1

¯D
n,q2
j n ~Pb f !

•1!~z1 ,...,zn!u<KJ)
k51

n

~11uzku2!2~11h!

if zIPRn.
Then we have the following Lemma
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Lemma 4.1: Let fPC8 satisfy condition ~c8!. Then for every JÞ0I there holds
„I 8(]n

j n
¯]1

j 1f )…x1[0, so that we can conclude that I8(]n
j n
¯]1

j 1f )50.

Proof: I8(]n
j n
¯]1

j 1f )5I (]n
j n
¯]1

j 1Pb f ) for b related toJ as in condition~c8!. h

Proposition 4.2: Let fPC8 satisfy~c8!. Then(id^ I 8)D( f )51^ (I 8 f ). h

Proposition 4.3: Let f(xI )PC such that~c8! holds for everyh.0. Then the statement o
Proposition 3.2 holds for every polynomial p(xI ) times f(xI ). h

We also have another invariance property that is analogous to the classical property~for n
51):

E
2`

` 1

2
„f ~x!1 f ~2x!… dx5E

2`

` 1

2
„f ~x1y!1 f ~x2y!… dx.

Proposition 4.4: Let f(xI )PC8 satisfy~c8!. Then(id^ I )(P0^ id)D( f )51^ (I 8 f ). If f (xI ) satisfies
condition~c8! for everyh.0, then the statement is true for every series of the form x1

e1
¯xn

enf (xI ).
Proof: The proof uses Taylor’s formula with summation only on evenj k’s. h

Observe that for evenj k’s

„I ~]n
j n
¯]1

j 1f !…
•15„I 8~]n

j n
¯]1

j 1f !…
•1

5q2(kJkE
2qn21z1•`

qn21z1•`
¯E

2zn•`

zn•`

D
1,q2
j 1

¯D
n,q2
j n f

•1~ t1 ,...,tn!dq2tn¯dq2t1 ,

hence the proposition above is interesting also because it can be proved for lattice integ
with simple changes in the hypothesis and in the proof. This reads as follows. Lg
5(g1 ,...,gn)PRn. We define the following spaces,

C~g!5$ f ~xI !PV̂~R!extu f
•1uzI5g is absolutely convergent%

andC(q2K,g) as the space off (xI )PC(g) such thatf
•1 can be continued analytically on a doma

containing theq2-lattice L(g) generated byg. Clearly C(g) is closed with respect to the multi
plication, hence it acts on the spaceVg of power series in commuting variablesz1 ,...,zn that are
absolutely convergent forz5g, hence on a polydisc with polyradius (ug1u,...,ugnu). Let f (xI ) be
a series inC(q2Kg) for a giveng. Then it makes sense to investigateI 8„f (xI )…

•1 at zj5qn2 jg j and
if this expression is absolutely convergent, then we say thatf (xI ) is lattice integrable. Actually, we
would only needP0( f )PC(q2K,g), but, since we want to compute integrals of products, we k
the restriction onf (xI ).

Consider now the lattice version of condition~c!:
~c9! Let f (xI )PC(q2K,g) be such that for everyJ with even entriesj 1 ,...,j n , the Jackson

partial derivativesD
1,q2
j 1

¯D
n,q2
j n f

•1 exist on the latticeL(g), and are such that

u„D
1,q2
j 1

¯D
n,q2
j n ~ f

•1!…~q62k1g1 ,...,q62kngn!u5O~q2~11h!K2!

for ki→`, for someh.0, whereK2 is the sum of thekj ’s appearing with the minus sign.
We introduce the equivalence relation;g between two expressionsf (xI ) andg(xI ) belonging

to C(q2K,g) as follows:

f ~xI !;gg~xI !⇔ f
•1~zI !5g

•1~zI !,;zIPL~g!.

Proposition 4.5: Let f(xI ) satisfy condition~c8! for a given g, and let g8 denote the n-tuple
(qn21g1 ,...,qn2 jg j ,...,gn). Then we have the following.

~i! For every J such that every jk is even, I 8(]n
j n
¯]1

j 1f );g850.
~ii ! (id^ I )(P0^ id)D( f );g81^ (I 8 f ).
Moreover, if f(xI) satisfies condition~c9! for everyh and for every JPZ>0

n , then for every
monomial x1

e1
¯xn

en we have the following.
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~iii ! I 8(]n
2 j n

¯]1
2 j 1

„x1
e1
¯xn

enf (xI )…);g90 for every J, whereg j95qn2 j 1Ej
g j .

~iv! (id^ I )(P0^ id)D„x1
e1
¯xn

enf (xI )…;g91^ I 8„x1
e1
¯xn

enf (xI )… whereg9 is as above.
Proof: Statements~i! and ~ii ! are clear by the remark after the proof of Proposition 4.4.

order to prove~iii ! we recall that

q4(kJk
I 8~]n

2 j n
¯]1

2 j 1
„x1

e1
¯xn

enf ~xI !…!
•1

5E
2qn21z1•`

qn21z1•`
¯E

2zn•`

zn•`

D
1,q2
2 j 1

¯D
n,q2
2 j n

„t1
e1
¯tn

enf
•1~qE1

t1 ,...,qEn
tn!… dq2t,

hence forzI5g9 this expression converges, and it converges to zero. By invariance underq2-shifts
of the Jackson integral we get the statement. Statement~iv! follows from statement~iii !. h

Remark:Observe that in the proof of~iii ! in Proposition 4.5 the lattice in which we compu
the equality depends only on the parity of theej ’s and that it is enough to be able to keep und
control the partial Jackson derivatives of (Pb f )

•1 with b j51(resp.2) if ej is even~resp. odd!.;
One may check thatEq4(2x1

2)¯Eq4(2xn
2) satisfies all conditions of Proposition 4.5. Com

putations are left to the reader.

V. LATTICE ORDER INTEGRABILITY

We are still left with the problem that theq2-GaussianGq2(xI ) is not lattice integrable, even
with respect toI 8. We have to weaken again our condition and introduce the concept oflattice
order integrability. To simplify notation, we use analogs ofI 8 instead of I. What we do is
repeatedly apply a one-dimensional integral with respect to a noncommutative variable, sayxj . If
this expression ‘‘has a meaning’’~i.e., this expression applied to 1 converges after evaluatio
zj5g j ), then we will identify it with a power series in noncommuting variables, in one varia
less, and we are allowed to go further and repeat the procedure. Namely:

Definition 5.1: A formal power series f(xI )PC is said to be lattice order integrable (l.o
integrable) if there is an ordering of 1,...,n, denoted by the corresponding permutationsPSn ,
and an n-tuplegPR.0

n such that for every jP$1,...,n% the expression*s( j )(I s( j 21)¯I s(1)f ) is
entire, where*s(k)g and Is(k)g are defined inductively as follows. For a formal power series
$x1 ,...,xn%2$xs(1) ,...,xs(k21)%, *s(k) f is the formal expression in the commuting variabl
$z1 ,...,zn%2$zs(1) ,...,zs(k)% defined as

S E
s~k!

f D ~zI !ªS E
2xs~k!•`

xs~k!•`

)
0

f D
•1
U

zs~k!5gs~k!

.

If *s(k) f is entire, I s(k) f will denote the unique power series in the noncommuting indetermin
$x1 ,...,xn%2$xs(1) ,...,xs(k)% such that(*s(1)f )5(I s(1)f )

•1 . If f (xI ) is l.o. integrable, we define
the constant I(s,g)9 fª*s(n)(I s(n21)¯I s(1)f ) to be the lattice order integral of f(xI ) associated to
the orders and the lattice L(g).

Clearly there is quite a difference betweenI and I (s,g)9 since I maps formal power series t
formal expressions inx1 ,...,xn while I (s,g)9 maps l.o. integrable power series to constants. We
see later what the relation is between the two maps, on the space where they are both defin
will also see in the examples that even if a power series is l.o. integrable for every order, it
still not be lattice integrable.

Observe that by definition of* l , power series that are odd in some variables are automati
defined to be l.o. integrable and that the integral will be zero for every choice ofs. For this reason,
we will only investigate lattice order integrability for even power series. We can state a few re
about lattice order integrability.

Proposition 5.2: Let f(xI ) be an even element of Vˆ (R)ext such that, for sometPSn , and
for some power series in one indeterminate f1 ,...,f n , we can write f( xI ) 5 f r ( 1 ) (xr(1))¯
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fr(n)(xr(n)) wherer5t21. If f (xI ) is l.o. integrable and every* l f Þ0, then each fj (viewed as a
power series in one variable) is entire and lattice integrable. Conversely, if each fj (viewed as a
power series in one variable) is entire and lattice integrable, then f(xI ) is l.o. integrable. In this
case, f (xI ) is lattice order integrable for every orders and a suitable lattice depending ons.
Moreover, one has

I ~s,g!9 „f ~xI !…5ql~s!1l~t!)
j 51

n E
2g j •`

g j •`

~ f j !•1~ t j ! dq2t j ,

wherel denotes the usual length of a permutation.
Proof: ~⇒! Suppose thatf (xI ) is as in the hypothesis, and that eachf j is entire and lattice

integrable for a giveng̃ j . We write f j (xj )5(kcjkxj
k for every j. For ann-tuple K and for p

P$1,...,n%, we will also write

Kt,pª (
j .p

t~ j !,t~p!

kj and Kt,p
ª (

j ,p
t~ j !.t~p!

kj .

We fix a s. Then fors(1)5 l andg l5g̃ l one has

S E
l
f D ~z1 ,...,zl 21 ,zl 11 ,...,zn!

52~12q2! (
h52`

`

q2hg l(
K8

c1k1
¯ ĉlkn

¯cnkn
~q21z1!k1

¯~q21zl 21!kl 21

3zl 11
kl 11

¯zn
knq( j Þ l kjKt, j8 f l~q2h1Kt,p8 1K8t,pg l !,

whereK8 is the (n21)-tuple obtained byK by deletings(1)5 l , and

Kt,p8 ª (
lÞ j .p

t~ j !,t~p!

kj and Kt,p
ª (

lÞ j ,p
t~ j !.t~p!

kj .

The last equality holds because

(
p

kpKt,p5klKt,l1(
p. l

kpKt,p1(
p, l

kpKt,p

5klKt,l1(
p. l

kpKt,p8 1(
p, l

kpKt,p8 1 (
p, l

t~ l !,t~p!

kpkl

5kl~Kt,l1Kt,l !1(
pÞ l

kpKt,p8 .

By convergence of theq2-Jackson integral off l •1 , together with the fact that the otherf k’s are
entire and the fact thatKt,p8 1K8t,p is an even number because thef j ’s are even, one can invert th
order of summation in the above sum, using dominated convergence. One gets
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S E
l
f D ~z1 ,...,zl 21 ,zl 11 ,...,zn!

5(
K8

q( j Þ l kjKt, j8 c1k1
¯cnkn

~q21z1!k1
¯~q21zl 21!kl 21zl 11

kl 11
¯zn

kn

3q2Kt,p8 2K8t,pE
2qKt,p8 1K8t,p

g l•`

qKt,p8 1K8t,pg l•`

~ f l !•1~ t l ! dq2t l .

The above power series is entire since all thef j ’s are, and one finds that

I s~1! f 5S E
2g l•`

g l•`

~ f l !•1~ t l ! dq2t l D )
j

r~ j !Þ l

f r~ j !~qhr~ j !1ur~ j !xr~ j !!

with

hk5H 21, if k,s~1!,

0, if k.s~1!,
uk5H 21, if k, l and t~k!.t~ l !,

1, if k. l and t~k!,t~ l !,

0, otherwise.

Therefore, we are again in the hypothesis of the proposition, but in the case (n21). Since the
statement in one dimension is obvious, lattice order integrability is proved, considering a s
lattice. For every new step we make, the argument of thef j that still has to be integrated will be
shifted by powers ofq. If one goes through computations, one finds that the exponential ofq in the
shift of the argument off r with r 5s(s) is

2Ss~s,t!52@#$ j ,sus~s!,s~ j !%1#$ j ,su„s~ j !2s~s!…„ts~ j !2ts~s!…,0%#,

hence the right lattice to integrate is the one defined bygs(s)5g̃s(s)q
Ss(s,t). In this setting, the

integral will be the product of theq2-Jackson integrals of thef j •1’s multiplied by a power ofq
with exponent

(
s51

n

Ss~s,t!5 l ~s!1(
s51

n

#$ j ,su„s~ j !2s~s!…„ts~ j !2ts~s!…,0%5 l~s!1l~t!,

since the second term in the sum is equal to the cardinality of

$ j ,su j ,s%ù~$ j ,sus~ j !,s~s!,ts~ j !.ts~s!%ø$ j ,sus~s!,s~ j !,ts~s!.ts~ j !%!.

For the converse of the statement, one sees that iff (xI ) can be written as a product of one
dimensional power series, those series have to be entire, and if there is as such thatf (xI ) is lattice
order integrable, this means thatf s(1) is lattice integrable onq2k1gs(1) , and so on, for the
following f j ’s, with shifted argument. By the⇒ part, we see that lattice order integrability has
hold for everys8. h

Example 1:By the above proposition, for everyajÞ0 and for everyejPZ>0 the formal
power series

f ~xI !5xn
enEq4~2an

2xn
2!¯x1

e1Eq4~2a1
2x1

2!

is l.o. integrable for everys and gs(k)5as(k)
21 q(k21)1#$ j ,kus(k),s( j )%, since in this caset(k)5n

2k11. In particular,Gq2(q2xI ) and all products of typeGq2(q2xI )x1
e1
¯xn

en are l.o. integrable for
every choice of the orders. One has
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I ~s,g!9 f 5H bq2
n F)

j
~q2;q4! f j Gq2n12uEuq~2

n
!ql ~s!)

j 51

n

aj
212ej if ej52 f j for every j ,

0, otherwise,

wherebq25(12q2)(q2,2q2,21;q2)` and the result follows by Ref. 5. In particular we obser
that the result depends on the choice ofs only in a straightforward way and thatL(g) does not
depend onE, but only ons and theaj ’s. Therefore one may consider the relation betweenI (s,g)9 f
and I (s,g)9 „Eq4(2(kak

2xk
2)…. One immediately sees that if all theej ’s are even,

I ~s,g!9 ~ f !5
~P j~q2;q4! f j

!q2uEu

~P jaj
ej !

I ~s,g!9 XEq4S 2(
k

ak
2xk

2D C.
We say in this case~and whenever an equivalence of integralsI (s,g)9 holds, with the sames and
g on both sides! that I „xn

enEq4(2an
2xn

2)¯x1
e1Eq4(2a1

2x1
2)… is ‘‘ weakly equivalent’’ to

I „Eq4x(2(kak
2xk

2)…. In particular, one has weak equivalence of the expressionI „xn
en

3Eq4(2q2xn
2)¯x1

e1Eq4(2q2x1
2)… and the expressionP j (q

2;q4) f j
I „Gq2(q2xI )…. We also want to

point out that the abovef (xI ) is an example of the fact that one can have l.o. integrability for ev
order and still not have lattice integrability. ;

Properties and Remarks:

~a! It is easy to check that iff (xI ) is l.o. integrable for the orders and the latticeL(g). Then,
for every n-tuple of nonzero real numbers (a1 ,...,an), the power seriesf A(xI )
5 f (a1x1 ,...,anxn) is also l.o. integrable for the same orders and forg replaced byg̃ where
g̃ j5aj

21g j for every j. Then one has equivalence of the numbersI (s,g)9 ( f )
5(a1¯an)I (s,g̃)9 ( f A).

~b! It is also obvious that iff (xI ) is l.o. integrable fors andg. Then the resultingI (s,g)9 ( f ) is
invariant under shifts of eachg j by even powers ofq.

~c! In the definition of lattice order integrability the requirement on the*s(k) f ’s to be entire for
everyk can be weakened to analyticity. The weaker version of the definition is left to
reader. ;

h

By the discussion above, one can conclude that for well-behaved series@by this we mean
series satisfying condition~c!, ~c8!, etc.# also the integralI (s,g)9 is invariant under translation.

Remarks:The whole construction of lattice order integrability may look artificial, and it m
seem to be a definition that is useful only in a noncommutative setting. However, this is n
case. One can define a similar concept of integrability also for power series in commu
variables.

VI. THE BRAIDED FOURIER TRANSFORM

Now we have all ingredients for the introduction of braided Fourier transforms on a sub
of V̂(R)ext. We introduce two transforms, related to each other by a shift in the arguments an
application of the antipode to one of them. As we already said, the first time that a Fo
transform for this kind of algebra appeared was in Ref. 3, from which we took inspiration. O
the goals of this section is to providen-dimensional analogs to formulas~8.19!–~8.21!, hence to
Theorem 8.1 in Ref. 5. The difference with Ref. 5 is that in our version, the algebraV̂(R)ext

^ V(R)ext has the braided product (m^ m)(id^C^id) instead of the ordinary one, although
normal form his formulas and ours forn51 coincide. The difference with Ref. 3 lies mainly in th
fact that our integral is not bosonic@i.e., it does not have trivial braiding with elements of th
algebrasV̂(R)ext andV(R)ext]. The use of the antipode appears also in Ref. 4 where the ca
finite-dimensional braided groups is treated. The following transforms behave nicely with re
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to a convolution product and with respect to the action ofV(R) on V̂(R)ext. They also respec
various classical properties of the Fourier transform. These facts are developed in Refs. 3 a

We say that an elementf (xI ) of V̂(R)ext is of classI if f (xI )x1
e1
¯xn

en is I 8 integrable for every

monomialx1
e1
¯xn

en. We say that it is of classI(s,g) if for every monomialx1
e1
¯xn

en, the power

seriesf (xI )x1
e1
¯xn

en is lattice order integrable fors andg.
Again, we do not provide a complete classification ofI, but we give a class for which this

makes sense, which is big enough to reach our goal. Indeed, power series satisfying condi~c!
of Sec. III belong toI, hence products ofeq2(2xj

2) and polynomials belong toI provided that for
every j P$1,...,n%, the one-dimensionalq2-Gaussianeq2(2xj

2) appears in the product.
Definition 6.1: The braided Fourier transforms F and FS are defined on the classI and they

have images in Vˆ (R)ext
^ V(R)ext. They are given by

Fª~ I 8^ id!~m^ id!Xid^ expS xU i

~12q2!
~]1 ,...,q2 j 11] j ,...,q2n11]n! D C,

FSª~ I 8^ S!~m^ id!Xid^ expS xU iq2

~12q2!
~qn21]1 ,...,qn2 j] j ,...,]n! D C.

For an f (xI )PIùCb one has that

F„f ~xI !…ª~ I 8^ id!Xf ~xI !Eq2S i (
j 51

n

xj ^ q2~ j 21!] j D C
5 (

e1 ,...,en
A~ej !5b j

I ~ f ~xI !x1
e1
¯xn

en! ^
i uEuq2( jE

j

P j 51
n ~q2;q2!ej

]n
en
¯]1

e1

and

FS~ f ~xI !!ª~ I 8^ S!Xf ~xI !Eq2S iq2(
j 51

n

xj ^ q~n2 j !] j D C
5 (

e1 ,...,en
A~ej !5b j

I „f ~xI !x1
e1
¯xn

en
…^

~2 i ! uEuquEu22( j ejEj 1uEu1( jEj

P j 51
n ~q2;q2!ej

]1
e1
¯]n

en,

where A(ej )51(resp.2) if ej is even ~resp. odd!. Here we used thatS(]n
en
¯]1

e1)

5(21)uEuquEu22uEu2( j ejEj]1
e1
¯]n

en. It is clear that the second components in the tensor produc
F„f (xI )… and ofFS„f (xI )… will also have parityb. In order to provide formulas analogous to~8.21!
and ~8.19! in Ref. 5, we need to computeFS for

M ~xI ,A!5eq4~2x1
2!x1

a1
¯eq4~2xn

2!xn
an5x1

a1
¯xn

aneq4S 2(
j

~q2Ajxj !
2D

and for H(xI ,A)5eq4(2x1
2)h̃a1

(x1 ;q2)¯eq4(2xn
2)h̃an

(xn ;q2) where theh̃aj
’s are thediscrete

q-Hermite II polynomials~see Ref. 14 and references therein! that are defined by

h̃l~z;q!ªzl
2f1~q2n,q2n11;0;q2,2q2z22!5~q;q! l (

k50

@1/2#
~21!kq22kl1k~2k11!zl 22k

~q2;q2!k~q;q! l 22k
.

Both M (xI ,A) andH(xI ,A) satisfy condition~c! of Sec. III, so that the transform in defined on bo
series. We first compute the transformFS on a genericf (xI ). In order to give a meaning to th
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transform we apply the realization mappg sending a power seriesg(xI ) to g
•1(zI ), followed by

evaluation atzI5g, to the first component ofFS„f (xI )…. By the assumption thatf (xI )PI we know
that this is well defined so that (pg ^ id)FS„f (xI )… is a genuine power series in the noncommuti
] j ’s. By the computations in the previous section, one obtains, for anf (xI )PCbùI,

~pg ^ id!~FS„f ~xI !…!5 (
e1 ,...,en
A~ej !5b j

~2 i ! uEuq( j ~ej
2
1ej !

Pk51
n ~q2;q2!ek

3S E
2g1qn211E1•`

g1qn211E1•`
¯E

2gnqEn•`

gnqEn•`
f
•1~ tI!t1

e1
¯tn

endq2tID ]1
e1
¯]n

en.

By invariance of theq2-integral we see that the integration bounds do not depend onE, but only
on the parity of its components, hence they only depend onb. In particular, for f (xI )
5 f 1(x1)¯ f n(xn)PIùCb one has that

~pg ^ id!FS„f ~xI !…5)
k51

n F (
A~ek!5bk

~2 i !ekqek
2
1ek]k

ek

~q2;q2!ek

S E
2qB~b!k1n2kgk•`

qB~b!k1n2kgk•`
@~ f k!•1~ tk!#tk

ekdq2tkD G ,

where the product is taken inincreasingorder andB(b)5(b(b)1 ,...,b(b)n) is then-tuple$0,1%n

such that thekth entry is 0~resp. 1! if bk is even~resp. odd! andB(b)k5( j 51
k21b(b) j as usual.

Hence we come to ann-dimensional version of formula~8.21! in Ref. 5. Let M (xI ,A) as
above. We remind the reader that in this caseb j51(resp.2) if aj is even~resp. odd!. Then we
use the one-dimensional case to obtain our result. Indeed, expanding in power series the le
side of ~8.21! and usingq2 instead ofq one has

cq2~g!q2a22ai aha~ t;q2!Eq4~2q4t2!5 (
k>0

k1a even

i kqk21k

~q2;q2!k
S E

2g•`

g•`

xa1keq4~2x2! dq2xD tk

5 (
k>0

k1a even

i kqk21k

~q2;q2!k
cq2~g!q2~a1k!2/2~q2;q4!~a1k!/2t

k.

Using the above formula we obtain

(pg ^ id)FS„M (xI ,A)…5)
j 51

n F cq2(qn2 j 1B~b! jg j )

3 (
ej>0

ej 1aj even

S ~2 i !ejqej
2
1ej

~q2;q2!ej

q2~ej 1aj !
2/2(q2;q4)ej 1aj /2D ] j

ejG
5(2 i ) uAuF)

j 51

n

cq2(qn2 j 1B~b! jg j )Gq( j aj ~12aj !

3)
k51

n

@Eq4~2q4]k
2!hak

~]k ;q2!#, ~1!

where

~i! the product is taken inincreasingorder, and
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~ii ! hl(z;q2) is the discreteq2-Hermite I polynomial of degreel ~see Ref. 14 and reference
therein! and is defined as

hl~z;q2!ªzl
2f0~q221,q2221;;q4,q4l 22z22!5~q2;q2! l (

k50

@1/2#
~21!kq2k~k21!zl 22k

~q4;q4!k~q2;q2! l 22k
.

We observe that the only part of (pg ^ id)FS„M (xI ,A)… involving theg j ’s is the coefficient,

equal to@*
2qB(b)nxn•`

qB(b)nxn•`
¯*

2qB(b)1x1•`

qB(b)1x1•`
gq2#

•1uzI5g, i.e., it is a shifted integral of the Gaussiangq2(xI )

where the shift only depends on the parity of the functionM (xI ,A), i.e., only on the parity of the
aj ’s. So, we conclude that

FS„eq4~2x1
2!x1

a1
¯eq4~2xn

2!xn
an
…5F E

2qB~b!nxn•`

qB~b!nxn•`
¯E

2qB~b!1x1•`

qB~b!1x1•`
gq2G

^ ~2 i ! uAuq( j aj ~12aj !)
k51

n

@Eq4~2q4]k
2!hak

~]k ;q2!#. ~2!

The above result gives the analog of the classical reciprocity between Gaussians times a mo
and rescaled Gaussians times a Hermite polynomial under the Fourier transform inRn. From the
above result we derive an analog of formula~8.19! in Ref. 5, forH(xI ,A) defined above.H(xI ,A)
is also contained in one of the subspacesCb since eachh̃a(xj ;q2) has constant parity. We obtain

FS„eq4~2x1
2!h̃a1

~x1 ;q2!¯eq4~2xn
2!h̃an

~xn ;q2!…

5F E
2qB~b!nxn•`

qB~b!nxn•`
¯E

2qB~b!1x1•`

qB~b!1x1•`
gq2G

^ )
k51

n F ~q2;q2!ak (
Sk50

@1/2ak#
~2 i !akq2ak

2
1ak

~q4;q4!sk
~q2;q2!ak22sk

hak22sk
~]k ;q2!Eq4~2q4]k

2!G
5F E

2qB~b!nxn•`

qB~b!nxn•`
¯E

2qB~b!1x1•`

qB~b!1x1•`
gq2G~2 i ! uAuq(k~ak2ak

2
!
^ )

j 51

n

„] j
ajEq4~2q4] j

2!…, ~3!

where the last equality follows from~10! in Ref. 5 and the product is taken in increasing orde
Observe that for well-behaved functions, and for ann-tuple A5(a1 ,...,an) of nonzero real

numbers, the braided Fourier transform off (a1x1 ,...,anxn) can be obtained by the braided Fou
rier transform of f (xI ). More precisely, (pg ^ id)FS„f (a1x1 ,...,anxn)…5(P jaj )

21(pg̃ ^ id)
3(FS„f (xI )…)(a1

21]1 ,...,an
21]n), where g̃ denotes then-tuple obtained byg multiplying each

componentg j by aj . Clearly, similar results holds for (pg ^ id)F, hence they hold forFS and for
F.

Now we want to compute the braided Fourier transform for monomials or polynomials ti
a q2-Gaussian of typeGq2(xI ). We cannot use the same definition sinceGq2(xI ) is not even lattice
integrable. Therefore, we introduce a weaker notion of braided Fourier transform.

Definition 6.2: The ‘‘weak’’ braided Fourier transforms F9(s,g) and FS9(s,g) are defined
on the classI(s,g) . They map this class to V(R)ext and they are defined as

F9~s,g!ª~ I ~s,g!9 ^ id!~m^ id!Xid^ expS xU i

~12q2!
~]1 ,...,q12 j] j ,...,q12n]n! D C,

FS9~s,g!ª~ I ~s,g!9 ^ S!~m^ id!Xid^ expS xU iq2

~12q2!
~qn21]1 ,...,qn2 j] j ,...,]n!CC.
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We will use this new notion in order to derive ann-dimensional version of~8.20! in Ref. 5.
Namely, we will derive the transformF9(s,g) of the formal power seriesN(xI ,A)
5Eq4(2q4xn

2)xn
an
¯Eq4(2q4x1

2)x1
a1 for given positive integersa1 ,...,an . One has to compute

I (s,g)9 „N(xI ,A)x1
e1
¯xn

en
… for everyE with eachej[aj ~mod 2!, for some fixeds andg. This makes

sense by the computations in Sec. V becauseN(xI , A)x1
e1
¯xn

en is equal to

q2( jE
j ~ej 1aj !Eq4~2q422En

xn
2!xn

ej 1aj
¯Eq4~2q422E1

x1
2!x1

e11a1,

which is l.o. integrable for everys, with gs(k)5q(k21)1As(k)1#$ j ,kus( j ).s(k)%. In particular, since
we showed that the resulting integrals differ only by a factorql (s), we compute it only fors5id
andgk5qk211Ak

. Then, denoting byN8(xI ,A) the power series obtained byN(xI ,A) by multiply-
ing the argument of theEq4(2xj

2) by q2Ej
for every j, one has

F9~s,g!„N~xI ,A!…5 (
e1 ,...,en

ej 1aj 52hj

i uEuq2( j Ej2( jE
j ~ej 1aj !

P j~q2;q2!ej

~ I ~ id,g!9 „N8~xI ,A1E!…!]n
en
¯]1

e1.

Hence

F9~s,g!„N~xI ,A!…5~21! uAuI ~ id,g̃ !
9 XEq4S 2(

j
q4xj

2D C)
j 5n

1 F (
ej 1aj 52hj

~2 i !ej~q2;q4!hj

P j~q2;q2!ej

] j
ejG

5q( j ~aj
2
2aj !i uAubq2

n q~2
n
!S )

j 5n

1

h̃aj
~] j ;q2!eq4~2] j

2!D . ~4!

Here g̃ denotes then-tuple such thatg̃k5qAk
gk and the product is taken in decreasing order. F

the last equality we used~9.15! and ~8.20! in Ref. 5.
Using the definition of thehaj

’s, formula~4! above, and formula~8.17! in Ref. 5 one also gets
the following result:

F9~s,g!„Eq4~2q4xn
2!han

~xn ;q2!¯Eq4~2q4x1
2!ha1

~x1 ;q2!…

5 i uAuq( j ~aj
2
2aj !I ~s,g̃ !

9 XEq4S 2q4(
j

xj
2D C)

j 5n

1

] j
ajeq4~2] j

2!, ~5!

where the product is taken indecreasingorder andg̃ is given byg̃k5qAk
gk for everyk as before.

VII. INTEGRAL ON V„R…

ext AND INVERSE TRANSFORM

We provide now an inverse for the braided Fourier transforms, at least on the subspaces
image ofI andI(s,g) . In order to do this we need also the integral onV(R)ext. Since there is a
symmetry betweenV̂(R)ext andV(R)ext, one can simply repeat the definitions and computati
keeping in mind that whenever we had a left action involvingV̂(R)ext, we will need a right action
in the case ofV(R)ext. We will only provide the necessary formulas, while the properties and
proofs of similar statements as those of Secs. III–V are left to the reader. We observe that
results in this Section can be achieved both by direct computation or by using the sym
c:V̂(R)ext→V(R)ext defined in Sec. II.

Similarly as forV̂(R)ext, V̂(R)ext acts on the right onV(R)ext by braided partial differentia-
tion. For a monomial]n

en
¯]1

e1, and for j P$1,...,n% we have

~]n
en
¯]1

e1!↼xj5@ej #q2]n
en
¯] j 11

ej 11] j
ej 21

~q] j 21!ej 21
¯~q]1!e1.
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There holds a right version of Taylor’s formula, namely,

D„g~]I !…5g„D~]I !…5g~]I !↼S (
e1 ,...,en>0

x1
e1
¯xn

en^ ]n
en
¯]1

e1

@e1#q2!¯@en#q2! D .

The ~indefinite! q2-integral acting from the right is

g~]I !↼E
0

] i
ª~12q2!(

k50

`

g~]n ,...,q2k] i ,q22] i 21 ,...,q22]1!q2k] i ,

and again as in the case ofV̂(R)ext, one can define*0
a] i for a nonzero constanta. The global

integral is formally obtained as the limit for allr j→` of

g~]I !↼E
2q22r 1]1

q22r 1]1
¯E

2q22r n]n

q22r n]n
,

where

g~]I !↼E
2a] j

a] j
ªS g~]I !↼E

0

a] j D 2S g~]I !↼E
0

2a] j D
for everya. Hence we have formally

g~]I !↼E ]I

ªg~]I !↼E
2]1•`

]1•`

¯E
2]n•`

]n•`

5~12q2!n (
«I P$61%n

(
kn52`

`

¯ (
k152`

`

g~«nq2kn]n ,...,«1q2k1]1!q2uKu]1¯]n .

As in Sec. III, one can define an action ofV(R) on the power series in then commuting
indeterminatesz1 ,...,zn , in order to give a meaning to the integral. One can use this actio
define integrability, lattice integrability, and lattice order integrability as in Secs. IV and V, an
leave this to the reader. The action will be the right regular action after the choice of a n
form. It is denoted byv and it is defined on monomials as

~z1
k1
¯zn

kn!v]n
en
¯]1

e1
ªq( jK jejze11k1

¯zn
en1kn5z1

k1~qK1z1!e1
¯zn

kn~qKnzn!en.

For simplicity we will denote 1vg(]I )ª1•g(zI ) for every expressiong(]I ) for which the action on
1 makes sense.

As in Sec. IV we construct projectionsPj
6 defined onV(R) and V(R)ext for every j

51,...,n and every choice of1 or 2 as follows:

Pj
6 :V~R!ext→V~R!extg~]I !° 1

2@g~]I !6g~ ...,2] j ,...!#.

Again, the Pj
6’s commute with each other, they are projections on the subspaces ofV(R)ext

consisting of even~resp. odd! elements with respect to thejth variable, andPj
1Pj

250 for everyj.
Then, for everybP$2,1%n we definePb as the compositeP1

b1+¯+Pn
bn. The Pb’s are all

projections on their imageGb and clearly the decompositionV(R)ext5 % bGb corresponds to the
decomposition ofC@@zI ## in series that are either odd or even in each variable after applying
action on 1. We writeP0 for P(1,...,1) . We can define again the integralJ8 defined byJ8g

ª(P0g)↼*]I .
In particular one can check that for ag(]I ) for which this makes sense one has
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1•S ~P0„g~]I !…!↼E ]I D5E
2z1qn21

•`

z1qn21
•`

¯E
2znqn2n

•`

znqn2n
•`

1•„P0~g!…~ tI! dq2tI

and

1•~g↼D1
j 1
¯Dn

j n!5„Dq2
J

~1•g!…~qJ1
z1 ,...,qJn

zn!,

We also observe that under the ‘‘symmetry’’c:V̂(R)ext→V(R)ext mapping xj to
q2 j 1(1/2)(n21)]n2 j 11 one has

c„I f ~x1 ,...,xn!…5q2nF ~c„f ~xI !…~]I !!↼E
2q2n11]1•`

q2n11]1•`
¯E

2q2n12 j 21] j •`

q2n12 j 21] j •`
¯E

2qn21]n•`

qn21]n•` G . ~6!

One defines the integralJ(s,g)9 for l.o. integrable power series as the right-handed version ofI (s,g)9 .
We will needJ(s,g)9 „Eq4(2q4]1

2)]1
a1,...,Eq4(2q4]n

2)]n
an
…. One checks as for the case ofV̂(R)ext

that the integrand is actually is l.o. integrable for everys for a suitable choice ofg, and that the
results differ only by a factorql(s). In particular, fors5id one needsgk5q(k21)1Ak

and one gets

J~s,g!9 „Eq4~2q4]1
2!]1

a1,...,Eq4~2q4]n
2!]n

an
…5H q~2

n
!bq2

n )
j

~q2;q4!bj
, if aj52bj; j ,

0, otherwise.

Hence,

J~s,g!9 „Eq4~2q4]1
2!]1

a1...,Eq4~2q4]n
2!]n

an
…5S J~s,g!9 XEq4S 2q4(

j
] j

2D CD)
j

~q2;q2!bj

if aj52bj for every j.
Properties like right invariance of the integral, nullity of the integral of the partial deriva

of a power series, etc., can be proved as in Sec. III–V.
We introduce now an inversion formula forFS andF and their weak analogs. We will use th

symmetry betweenV̂(R)ext andV(R)ext and the results at the end of the previous section in or
to provide an analog of Theorem 8.1 in Ref. 5. An inversion formula for the braided Fo
transform is to be found in Ref. 3, but the authors had the hypothesis that the integ
‘‘bosonic,’’ i.e., it has a trivial braiding withV̂(R), or V(R) for n>2, which is not our case as th
reader can easily check~see also Ref. 15 for a few remarks about this property of the integ!.
Moreover, the elementvol in Ref. 3 is not necessarily convergent.

We say that a power seriesg(]I ) in V(R)ext is of classJ if every monomial timesg(]I ) is J8
integrable. This is possible, for instance, ifg(]I ) satisfies conditions similar to condition~c! of Sec.
III. We say thatg(]I ) is of classJ(s,g) if there is an orders and a latticeL(g) such that every
monomial timesg(]I ) is lattice order integrable fors andg.

Definition 7.1: We define the linear maps G, GS :J→V̂(R)ext
^ V(R)ext by

GªF ~ id^ m!XexpS xU i

~12q2!
~]1 ,...,q2 j 11] j ,...,q2n11]n! D ^ idCG↼~ id^ J8!,

GSªF ~S^ m!XexpS xU iq2

~12q2!
~qn21]1 ,...,qn2 j] j ,...,]n! D ^ idCG↼~ id^ J8!.

For instance, forGS , the transform of a giveng(]I )PJ of fixed parityb will be
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GS„g~]I !…5S ~S^ id!XEq2S iq2(
j

q~n2 j !xj ^ ] j D Cg~]I ! D↼~ id^ J8!

5 (
e1 ,...,en
A~ej !5b j

~2 i ! uEuquEu21uEuq( j ~n2 j !ej

P j~q2;q2!ej

x1
e1
¯xn

en^ „]n
en
¯]1

e1g~]I !↼~ id^ J8!….

If t:V(R)ext
^ V̂(R)ext→V̂(R)ext

^ V(R)ext denotes the usual flip operator, puttingcj

5q2 j 1(1/2)(n21) for every j 51,...,n we observe after some computations that, forf (xI )
5 f 1(x1)¯ f n(xn) with f j of parity b j , there holds

t~c ^ c21!FS„f ~xI !…5 (
e1 ,...,en
A~ej !5b j

~2 i ! uEuquEu21uEu1( jE
j

P j~q2;q2!ej

~c1
21x1!en

¯~cj
21xj !

en2 j 11
¯~cn

21xn!e1

^ @]n
e1
¯]1

enf 1~]n!¯ f n~]1!#↼E
2q2n111En2E1cn]1•`

q2n111En2E1
cn]1•`

¯E
2c1qn211E12En

]n•`

c1qn211E12En
]n•`

.

Hence, we see that the formal expression oft(c ^ c21)FS„f (xI )… coincides with the formal ex-
pression of

GS„f 1~]n!¯ f n~]1!…„~c1
21x1 ,...,cn

21xn! ^ ~qn211E12E1
c1]n ,...,qEn2En112ncn]1!….

In the same way one shows that the formal expression oft(c ^ c21)F„f (xI )… coincides with

G„f 1~]n!¯ f n~]1!…„~c1
21x1 ,...,cn

21xn! ^ ~qn211E12E1
c1]n ,...,qEn2En112ncn]1!….

We can use the symmetry betweenFS and GS , together with formula~2!, in order to compute
GS„]n

aneq4(2]n
2)¯]1

a1eq4(2]1
2)… for given positive integersa1 ,...,an of parity, respectively,

b1 ,...,bn . This symmetry tells us that

GS„eq4~2]n
2!]n

an
¯eq4~2]1

2!]1
a1
…5~Lc ^ Lc,b8 !@t~c ^ c21!tFS~eq4~2x1

2!x1
an
¯eq4~2xn

2!xn
a1!#,

whereLc is the shift operator mappingxj to cjxj and Lc,b8 is the shift operator mapping] j to
qn22 j 111B(b) j 2B(b) jcn2 j 11

21 ] j . Then the above expression is equal to

~2 i ! uAuq( j ~aj 2aj
2
!)
j 5n

1

@Eq4~2q4xj
2!haj

~xj ;q2!# ^ Lc,b8 cE
2qB~b!1

xn•`

qB~b!1
xn•`

¯E
2qB~b!n

x1•`

qB~b!n
x1•`

gq2

5~2 i ! uAuq( j ~aj 2aj
2
!)
j 5n

1

@Eq4~2q4xj
2!haj

~xj ;q2!#

^ q2nLc,b8 S gq2~c1]n ,...,cn]1!↼E
2qB~b!12n11]1•`

qB~b!12n11]1•`
¯E

2qB~b!n1n21]n•`

qB~b!n1n21]n•` D .

Hence we can conclude that

GS„eq4~2]n
2!]n

an
¯eq4~2]1

2!]1
a1
…5~2 i ! uAuq( j ~aj 2aj

2
!)
j 5n

1

@Eq4~2q4xj
2!haj

~xj ;q2!#

^ S gq2↼E
2qB~b!1]1•`

qB~b!1]1•`
¯E

2qB~b!n]n•`

qB~b!n]n•` D , ~7!
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where the second component of the tensor product clearly depends only on the parity of thaj ’s.
Formula~7! can also be obtained by direct computation. Using the definition of theh̃m(z;q2), with
the same relation as before between theaj ’s and theb j ’s, one obtains

GS„h̃an
~]n ;q2!eq4~2]n

2!¯h̃a1
~]1 ;q2!eq4~2]1

2!…

5~2 i ! uAuq( j ~aj 2aj
2
!)
j 5n

1

@Eq4~2q4xj
2!xj

aj # ^ S gq2↼E
2qB~b!1]1•`

qB~b!1]1•`
¯E

2qB~b!n]n•`

qB~b!n]n•` D , ~8!

which is theV(R)ext version of~3!. By these results we can conclude the following:
Proposition 7.2: Letb5(b1 ,...,bn)P$61%n, s be any order, andg be the n-tuple with

components given bygs(k)5qB(b)s(k)1k211#$ j ,kus( j ).s(k)%. Then on power series in Vˆ (R)ext of
type Eq4(2q4xn

2)pn(xn)¯Eq4(2q4x1
2)p1(x1), where the pi ’s are polynomials of fixed parity

b1 ,...,bn , there holds

GS+F9~s,g!5 id^ „I ~s,g̃ !
9 Gq2~q2xI !…S gq2↼E

2qB~b!1]1•`

qB~b!1]1•`
¯E

2qB~b!n]n•`

qB~b!n]n•` D ,

whereg̃ is such thatg̃k5gkq
B(b)k for every k. Therefore for power series in V(R)ext of the form

wn(]n)eq4(2]n
2)¯w1(]1)eq4(2]1

2), where the wj ’s are polynomials of fixed parityb1 ,...,bn ,
one has

„F9~s,g! ^ id…GS5 id^ „I ~s,g̃ !
9 Gq2~q2xI !…S gq2↼E

2qB~b!1]1•`

qB~b!1]1•`
¯E

2qB~b!n]n•`

qB~b!n]n•` D
with g̃ as before.

Proof: It follows by ~5! and ~7!. h

A slightly more general version of this proposition holds by considering a properg and
q2-Gaussians where the argument is multiplied by a nonzero constant.

We also want to consider another inverse transform, the weak transform inverting~2! and~3!.
Definition 7.3: The ‘‘weak’’ transforms G9(s,g) and GS9(s,g) mapJ(s,g) to V̂(R)ext and are

defined as

G9~s,g!ªF ~ id^ m!XexpS xU i

~12q2!
~]1 ,...,q2 j 11] j ,...,q2n11]n! D ^ idCG↼~ id^ J~s,g!9 !,

GS9~s,g!ªF ~S^ m!XexpS xU iq2

~12q2!
~qn21]1 ,...,qn2 j] j ,...,]n! D ^ idCG↼~ id^ J~s,g!9 !.

As in formulas~4! and~5!, one finds, fors5id andgk5qAk1k21 ~and similarly for different
s’s!,

G~ id,g!9 „Eq4~2q4]1
2!]1

a1
¯Eq4~2q4]n

2!]n
an
…5q( j~aj

22aj !i
uAuS )

j 51

n

h̃aj
~xj ;q2!eq4~2xj

2!D
3@J~ id,g̃ !

9 „Gq2~q2]I !…# ~9!

and

G~ id,g!9 „Eq4~2q4]1
2!ha1

~]1!¯Eq4~2q4]n
2!han

~]n!…

5q( j ~aj
2
2aj !i uAuS )

j 51

n

xj
ajeq4~2xj

2!D @J~ id,g̃ !
9 „Gq2~q2]I !…#, ~10!
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where in both formulasg̃k5qk21 for everyk and the product is taken in increasing order. The
formulas can be obtained by using the symmetry or by direct computation. One has the s
inversion property.

Proposition 7.4: Letb5(b1 ,...,bn)P$61%n, s be any order, andg be the n-tuple with

components given bygs(k)5qB(b)s(k)1k211#$ j ,kus( j ).s(k)%. Then on power series in V(R)ext of
type Eq4(2q4]1

2)p1(]1)¯Eq4(2q4]n
2)pn(]n), where the pj ’s are polynomials of fixed parity

b1 ,...,bn , there holds

FS+G9~s,g!5F E
2qB~b!nxn•`

qB~b!nxn•`
¯E

2qB~b!1x1•`

qB~b!1x1•`
gq2G~J~s,g̃ !

9 „Gq2~q2]I !…! ^ id,

where g̃s(k)5gs(k)q
B(b)s(k)

. Therefore for power series in Vˆ (R)ext having the form w1(x1)
3eq4(2x1

2)¯wn(xn)eq4(2xn
2) where the wj ’s are polynomials of fixed parityb1 ,...,bn , one has

„id^ G9~s,g!…FS5F E
2qB~b!nxn•`

qB~b!nxn•`
¯E

2qB~b!1x1•`

qB~b!1x1•`
gq2G~J~s,g̃ !

9 „Gq2~q2]I !…! ^ id

with g̃ as before.
Proof: It follows by ~2!, ~3!, ~9!, and~10!. h

One observes that in this case the Plancherel measure is always a product of integ
q2-Gaussians, but the integration bounds depend on the parity of the power series. So
transforms could also be seen as sine and cosine transforms~see for this also Ref. 9 where th
q-sine andq-cosine transforms in commuting variables are defined!.

Remark:The break in symmetry appearing inq2-integration is a phenomenon that has r
cently been observed in Ref. 7. Sometimes this lack of symmetry can be avoided, for insta
the generalized functionf (xI ) that we want to integrate~and transform! is lattice integrable in
L(g) and L(qg). In this case we could replaceq2-integration by q-integration since
*2g•`

g•` f
•1(t) dqt5*2g•`

g•` f
•1(t) dq2t1*2qg•`

qg•` f
•1(t) dq2t. The new defined integral will be agai

invariant under translation. Theq-integral of aq2-Gaussiansgq2(xI ) times a monomial will be
similar to theq2-integral of the same expression. Using theq-integral in the definition of (pg

^ id)FS will provide results similar to formula~1! but with P j cq2(qn2 j 1B(b) jg j ) replaced by
P j„cq2(g j )1cq2(qg j )…. The result will be therefore independent of the parity of theaj ’s. How-
ever, this approach cannot be used forGq2(xI ), since we have seen that there is only oneq2-lattice
for which Gq2(xI ) is lattice order integrable. ;
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We introduce a noncommutative differential calculus on the two-parameter
h-superplane via a contraction of the~p,q!-superplane. We manifestly show that the
differential calculus is covariant underGLh1 ,h2

(1u1) transformations. We also give
a two-parameter deformation of the (111)-dimensional phase space algebra.
© 1999 American Institute of Physics.@S0022-2488~99!04010-4#

I. INTRODUCTION

Quantum groups are a generalization of the concept of classical groups. The theory of
tum groups has become an important branch of mathematical physics and a new branch o
ematics. An approach to obtain the quantum groups is to identify the elements of a quantum
with the linear transformations of a space with noncommuting coordinates. It is known, from
work of Woronowicz,1 that one can define a consistent differential calculus on the noncomm
tive space of a quantum group. Thus quantum group is a concrete example of noncomm
differential geometry.2

During the past few years, Wess–Zumino3 have developed a differential calculus on t
quantum~hyper!plane which is covariant under the action of the quantum groupGLq(n). The
natural extension of their scheme to superspace4 was given by Soni5 and the two-paramete
differential calculus on the superplane has been worked out by Chung.6 A differential calculus on
the h-plane was given by Karimipour7 and the two-parameter analog was introduced
Aghamohammadi.8

In this paper we construct a two-parameter differential calculus on the quantumh-superplane
using the methods of Ref. 9. The paper is organized as follows: in Sec. II we obtai
(h1 ,h2)-superplanes via a contraction from the~p,q!-superplanes. We define derivatives and d
ferentials on the (h1 ,h2)-superplane of noncommuting coordinates and give their commuta
rules. In Sec. III we manifestly show that the differential calculus is covariant under the acti
the quantum supergroupGLh1 ,h2

(1u1) of Ref. 10. We give a two-parameter deformation of t
(111)-dimensional phase space algebra in Sec. IV, and in the following section we show th
~p,q!-deformed superoscillator algebra satisfies the undeformed super-oscillator algebra wh
jects are transformed into new objects such that they are singular for certain values of the
mation parameters.

II. DIFFERENTIAL CALCULUS ON THE h-SUPERPLANE

In this work we denote~p,q!-deformed objects by primed quantities. Unprimed quanti
represent transformed coordinates. As usual, we shall always assume that even~bosonic! objects
commute with everything and odd~Grassmann! objects anticommute among themselves. Bef
discussing the two-parameter differential calculus on theh-superplane we give some notations a
useful formulas in the following section. This first section closely follows the approach of Re

a!Electronic mail: scelik@fened.msu.edu.tr
59980022-2488/99/40(11)/5998/11/$15.00 © 1999 American Institute of Physics
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A. Quantum h-superplane

Quantum superplane is an associative coordinate algebraAq equipped with a set$x8,u8% of
generatorsx8, u8. The commutation relations of the generators is defined by4

x8u82qu8x850. ~1a!

u8250, ~1b!

where q is a nonzero complex deformation parameter. The coordinates neither commu
anticommute unlessq→61, respectively. In this work we shall use the limitsp→1,q→1 to
make a contraction.

We now introduce new coordinatesx andu, in terms ofx8 andu8, by10

x5x82
h1

p21
u8,

~2!

u52
h2

q21
x81S 12

h1h2

~p21!~q21! D u8.

Using relation~1!, it is easy to verify that

xu5qux1h2x2, ~3a!

where the new deformation parameterh2 commutes with the coordinatex and anticommutes with
the coordinateu. Similarly, from ~1a! one obtains

u252h2ux. ~3b!

where

h1h252h2h1 , h1
2505h2

2. ~4!

That is, the new deformation parametersh1 andh2 are odd~Grassmann! numbers which anticom-
mute. Note that although in thep→1, q→1 limits the transformation~2! is ill behaved, the
resulting commutation relations are well defined.

The relations~3! define a new deformation,11 which we called theh2-deformation of the
algebra of coordinate functions on the Manin superplane generated byx and u in the limit
q→1, and will be denoted byAh2

.
Differential calculus on the quantum superplaneAh2

requires the introduction of differential
dx,du. The complete framework also includes the commutation relations of these differe
with the coordinates and derivatives.

B. Relations between coordinates and differentials

To establish a noncommutative differential calculus on the quantum superplaneAh2
, we

assume that the commutation relations between the coordinates and their differentials ha
following form:

x8dx85Adx8x8,

x8du85C11du8x81C12dx8u8,
~5!

u8dx85C21dx8u81C22du8x8,

u8du85Bdu8u8.
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Now we would like to transform these relations to unprimed quantities to determine the c
cientsA, B, andCi j . We first introduce the exterior differentiald.

The exterior differentiald is an operator which gives the mapping from the coordinates to
differentials

d:Zi→dZi , ~6!

whereZ15x, Z25u, dZ15dx, anddZ25du. We demand that the exterior differentiald has to
satisfy two properties; the nilpotency

d250, ~7!

and the graded Leibniz rule

d~FG!5~dF !G1~21!F̂F~dG!, ~8!

where F̂ is the Grassmann degree ofF, that is, F̂50 for even variables andF̂51 for odd
variables. We wish to substitute into~5! the differentialsdx8 anddu8 together with the coordi-
natesx8 and u8. The deformation parametersh1 and h2 are both odd numbers and the exteri
differential d is also odd. Therefore the action of the exterior differentiald on au is defined by

d~au!5~21!âadu, ~9!

wherea is a number~even or odd! andu is a coordinate of superplane. So we can write from~2!

dx5dx81
h1

p21
du8,

~10!

du5
h2

q21
dx81S 12

h1h2

~p21!~q21! Ddu8.

Note that if we considerx andu as functions of two variables~sayx8 andu8) and differentiate~2!,
as usual, then we do not obtain the expressions in~10!. To obtain~10! one must take the differ-
ential from the left in Eq.~2!. In the Appendix, we explain this in detail.

We now substitute~2! and ~10! into ~5! which are not explicitly written here. It will be
calculate the coefficientsA, B andCi j . We first assume that

dx8du85p21du8dx8, ~dx8!250. ~11!

Then we have

dudx5pdxdu2h1~du!2, ~12a!

and

~dx!25h1dxdu. ~12b!

Consequently, the coefficients are determined as follows:

A undetermined, B51,
~13!

C115q, C125pq21, C2150, C2252p.

Here we shall chooseA equal topq since the relations are then well defined.
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C. Relations of derivatives and coordinates

In this section we shall define the derivatives and find the commutation relations of deriv
with coordinates and the commutation relations between derivatives. We first introduc
matrix10

g5S 11h1h2 /~p21!~q21! h1 /~p21!

h2 /~q21! 1 D . ~14!

It is easy to verify that the matrixg is a supermatrix. Thus we can write the transformation in~2!
of the form

Z85gZ, Z85S x8
u8 D . ~15!

Let us denote the partial derivatives with respect tox8 andu8 by

]x85
]

]x8
, ]u85

]

]u8
,

respectively. The transformation law of the partial derivatives is then defined by

]85~gst!21], ]5S ]x

]u
D , ~16!

wheregst denotes the supertranspose ofg. Explicitly

]x85]x2
h2

q21
]u , ]u85

h1

p21
]x1S 12

h1h2

~p21!~q21! D ]u . ~17!

Note that, when one demands the validity of the chain rule, to obtain the expressions in~17! it
must be assumed that the derivatives act from the left on the transformed variables. This ca
also be explained in detail in the Appendix.

We know that the exterior differentiald is defined by

d5dx8]x81du8]u8 . ~18a!

Substituting~10! and ~17! into ~18a! one obtains

d5dx]x1du]u , ~18b!

that is,d preserves its form. So, since

dF~x,u!5dx]xF1du]uF, ~19!

for any functionF, replacingF with xF anduF we get the following relations:

]xx511pqx]x1h1u]x1h2x]u1h1h2~x]x1u]u!1~pq21!u]u ,

]xu5pu]x2ph2~x]x1u]u!,
~20!

]ux5qx]u2qh1~x]x1u]u!,

]uu512u]u1h1u]x1h2x]u1h1h2~x]x1u]u!.
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We now find the commutation rules between derivatives. These rules can be easily ob
by using the nilpotency of the exterior differential. Thus we write

05d25dxdu~p]x]u2]u]x1h1]x
2!1~du!2~]u

22h1]x]u!,

which says that

]u]x5p]x]u1h1]x
2, ]u

25h1]x]u . ~21!

The complete framework of the differential calculus requires commutation relations o
differentials with derivatives.

D. Relations of differentials with derivatives

Finally we shall find the commutation relations between differentials and derivatives
assume that they have the following form in terms of primed quantities:

]x8dx85A11dx8]x81A12du8]u8 ,

]x8du85A21du8]x81A22dx8]u8 ,
~22!

]u8dx85B11dx8]u81B12du8]x8 ,

]u8du85B21du8]u81B22dx8]x8 .

Substituting~10! and ~17! into ~22! and using

d~dx!52~dx!d, d~du!5~du!d, ~23a!

and the relation

] i~XjdXk!5d i
jd

k
ldXk, ~23b!

where]15]x and]25]u , we determine the coefficientsAi j andBi j . So one has

]xdx5pqdx]x1h1du]x2h2dx]u1h1h2~dx]x1du]u!1~pq21!du]u ,

]xdu5pdu]x1ph2~dx]x1du]u!,
~24!

]udx52qdx]u2qh1~dx]x1du]u!,

]udu5du]u2h1du]x1h2dx]u1h1h2~dx]x1du]u!.

E. Algebra of one-forms

In this section we shall define two one-forms using the generators ofA and find the commu-
tation relations of one-forms.

If we call themw andu then one can define them as follows:

w5dxx21, u5dux212dxx21ux21. ~25!

We denote the algebra of one-forms generated by two elementsw andu by V. The generators of
the algebraV with the generators ofA satisfy the following relations:

xw5wx2h1ux, uw52wu1h1uu,
~26!

xu5ux, uu5uu2h2~wu1ux!.
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The commutation rules of the generators ofV are

w250, wu5uw. ~27!

Using ~18b! and ~25!, if we define the operatorsT and¹ as

T5x]x1u]u , ¹5x]u , ~28!

then we have

T¹5¹T, ¹250, ~29!

as a subalgebra of gl~1u1!.
The action ofT and¹ on the generatorsx andu is

Tx5x1xT, ¹x5x¹2h1xT,
~30!

Tu5u1uT, ¹u5x2u¹1h1uT.

III. THE SUPERGROUP GL h 1 ,h 2
„1z1… AND COVARIANCE

It is well known that the quantum supergroupGLp,q(1u1) acts as a linear transformation o
the quantum superplane, preserves~1! and the dual relations

w8250, w8y82p21y8w850. ~31!

In extending this property of covariance under the coaction ofGLp,q(1u1), from the superplane to
its calculus, it will be assumed that the deformed group structure implies and is implie
invariance of the intermediary relations~5! under linear transformations of the quantum sup
plane. In the present work, this will be applied to the (h1 ,h2)-deformed superplane.

In this section we would like to discuss the meaning of covariance in a graded versi
noncommutative differential calculus of Wess–Zumino3 for the two-parameter case. Before pr
ceeding, we define the dual quantumh-superplane.

To define the dual quantum superplane, we interpret the differentialsdx and du, as the
coordinates of the dual superplane, as follows:

dx5w, du5y. ~32!

Now the quantum dualh-superplane generated byy, w with the relations~12! in the limit p→1
will be denoted bydAh1

. If we assume thatAh2
anddAh1

have to be covariant under the coactio

d~x!5a^ x1b ^ u, d~u!5g ^ x1d^ u, ~33a!

d~dZ!5~t ^ d!d~Z!, t~u!5~21! ûu, ~33b!

and thatb, g anticommute withu, w, h1 , andh2 we get the corresponding (h1 ,h2)-deformation of
the supergroupGL(1u1) as a quantum matrix supergroupGLh1 ,h2

(1u1) generated bya, b, g, d

with the relations10
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ab5ba2h1~a22bg2ad!, db5bd1h1~d21bg2da!,

ag5ga1h2~a21gb2ad!, dg5gd2h2~d22gb2da!,

b25h1b~a2d!, g25h2g~d2a!, ~34!

bg52gb1~h1g2h2b!~a2d!,

ad5da1h1~a2d!g1h2b~a2d!,

where

D5ad212bd21gd215d21a2d21bd21g.

The two-parameter differential calculus on the quantum superplane is explicitly as follo
The commutation relations of variables and their differentials are

xu5ux1h2x2, u252h2ux,
~35!

wy5yw1h1y2, w25h1wy.

Note that the last two relations of~35! are obtained from~14! and~15!. However they can also be
obtained from~31! with the limits p→1,q→1.

The commutation relations between variables and derivatives are

]xx511x]x2h1u]x1h2x]u1h1h2~x]x1u]u!,

]xu5u]x2h2~x]x1u]u!,
~36!

]ux5x]u2h1~x]x1u]u!,

]uu512u]u2h1u]x1h2x]u1h1h2~x]x1u]u!,

and those among the derivatives are

]x]u5]u]x2h1]x
2, ]u

25h1]u]x . ~37!

The commutation relations of variables with their differentials are

xw5wx1h1~wu2yx!1h1h2wx,

xy5yx2h1yu2h2wx1h1h2wu,
~38!

uw52wu1h1yu2h2wx2h1h2yx,

uy5yu2h2~wu1yx!2h1h2yu.

The commutation relations between derivatives and differentials are

]xw5w]x1h1y]x2h2w]u1h1h2~w]x1y]u!,

]xy5y]x1h2~w]x1y]u!,
~39!

]uw52w]u2h1~w]x1y]u!,

]uy5y]u2h1y]x1h2w]u1h1h2~w]x1y]u!.
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Note that this calculus goes back to those of Ref. 9 whenh150 and h25h. This calculus is
slightly different from Ref. 10. The reason for this difference is the use of commutation rela
of the dualexterior superplane in Ref. 10 instead of the dual superplane in this work.

We now discuss the covariance of the differential calculus. The covariance here means
the relations between coordinatesx,u, differentialsdx,du and derivatives]x , ]u , etc. must pre-
serve their form when one changes the coordinates by

x→ax1bu, u→gx1du, ~40!

where the matrixT5(g
a

d
b) is an element of the quantum supergroupGLh1 ,h2

(1u1) acting on the
quantum superplane. We must change the differentials by

dx→adx2bdu, du→2gdx1ddu, ~41!

since the odd objects anticommute among themselves. Covariance can be maintained
defines the transformation law of the partial derivatives as follows:

]x→~a212a21gd21ba21!]x2a21gd21]u ,
~42!

]u→~d212d21ba21gd21!]u1d21ba21]x .

IV. A TWO-PARAMETER DEFORMATION OF CLASSICAL PHASE SPACE

We shall now give a two-parameter deformation of the (111)-dimensional classical phas
space. We denote the algebra~35!–~37! generated by coordinatesx,u and the derivatives]x and
]u by Bh1 ,h2

. It is interesting to note that simply identifying]x and ]u with ipx and pu is not
compatible with the hermiticity of coordinates and momenta. To identify]x and ]u with the
momentaipx andpu , one must take care of the Hermiticity of the coordinates and momenta
this end, we first define the Hermitian conjugation of the coordinatesx andu, respectively, as

x15~112h1h2!x12h1u, u15~122h1h2!u12h2x. ~43!

It is then easy to see that the Hermiticity ofx1 andu1 impose some condition on the deformatio
parameters, i.e.,h1 is a real parameter andh2 is a pure imaginary parameter,

h15h1 , h252h2 , ~44!

where the bar denotes complex conjugation. In this case, the Hermitian conjugation of the d
tives ]x and]u are

]x
152~112h1h2!]x12h2]u , ]u

15~122h1h2!]u12h1]x . ~45!

In the h1→0,h2→0 limits the definitions~43! and ~45! go back to those of the classical case
The relations~35!–~37! are now invariant under the transformations~43! and~45!. The above

involution allows us to define the Hermitian operators,

x̂5~11h1h2!x1h1u, û5~12h1h2!u1h2x, ~46!

and, as bosonic and fermionic momenta,

p̂x5 i @~11h1h2!]x2h2]u#, p̂u5~12h1h2!]u1h1]x . ~47!

The final form of the (h1 ,h2)-deformed phase space algebra is
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x̂û5 û x̂1h2x̂2, û252h2û x̂,

p̂xp̂u5 p̂up̂x1 ih1p̂x
2, p̂u

252 ih1p̂xp̂u ,

p̂xx̂5 i 1 x̂p̂x1 ih2x̂p̂u2h1û p̂x1h1h2~11 x̂p̂x1 i û p̂u!,
~48!

p̂xû5 û p̂x2h2~ x̂p̂x1 i û p̂u!,

p̂ux̂5 x̂p̂u1h1~ i x̂ p̂x2 û p̂u!,

p̂uû512 û p̂u1h2x̂p̂u1 ih1û p̂x2h1h2~11 i x̂ p̂x2 û p̂u!.

This gives a (h1 ,h2)-deformed phase space algebra which may be used to study
(111)-dimensional quantum phase space.

Note that we can derive a deformed super-Clifford algebra from the phase space alge
follows: suppose that we define gamma matrices

g1[ p̂u , g2[û, c1[ p̂x , c2[ x̂. ~49!

Then, they satisfy the super-Clifford algebra,

c1c25c2c12h1g2c11 i ~11h2c2g1!1h1h2~11g2g11c2c1!,

c1g25g2c12h2~c2c11 ig2g1!,

g1c15c1g12 ih1~c1!2, g1c25c2g12h1~g2g12 ic2c1!,
~50!

g1g2512g2g11 ih1g2c11h2c2g12h1h2~11c2c12g2g1!,

~g1!252 ih1c1g1, ~g2!252h2g2c2,

g2c25c2g22h2~c2!2.

V. A COMMENT ON SUPEROSCILLATORS

We know that introducing one ‘‘bosonic’’ and one ‘‘fermionic’’ oscillator,A andB, respec-
tively, and making the usual identification

x8↔A1, u8↔B1, ]x8↔A, ]u8↔B. ~51!

one constructs the quantum superoscillator algebra which is covariant under the quantum
groupGLp,q(1u1). Under identification~2! and ~17! one has

x↔A12
h1

p21
B1, ]x↔S 11

h1h2

~p21!~q21! DA1
h2

q21
B,

~52!

u↔S 12
h1h2

~p21!~q21! DB12
h2

q21
A1, ]u↔B2

h1

p21
A,

where

p̄5q. ~53!

Substituting~52! into ~20! and ~3!, surprisingly all (h1 ,h2)-dependence cancels and one obta
the usual~p,q!-deformed superoscillator algebra12
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AA1511pqA1A1~pq21!B1B,

BB1512B1B, B2505B12,
~54!

AB15pB1A, AB5p21BA,

A1B5q21BA1, A1B15qB1A1.

In the p→1,q→1 limits, we get an undeformed superoscillator algebra.

APPENDIX: NONVALIDITY OF THE ACT FROM THE RIGHT

In this appendix, we show that a two-parameter covariant differential calculus on the qua
h-superplane can be constructed only if the derivatives and differentials act from the left.

Consider the change of coordinates which is given by~2!

x85S 11
h1h2

~p21!~q21! D x1
h1

p21
u, u85u1

h2

q21
x. ~A1!

If we interpret the symbolsdx and du as differentials acting from the right and demanding t
validity of the chain rule, we have

dx5dx8
]x

]x8
1du8

]x

]u8
5dx81du8S 2

h1

p21D5dx82
h1

p21
du8 ~A2!

and

du5
h2

q21
dx81S 11

h1h2

~p21!~q21! Ddu8. ~A3!

Therefore, for example,

dx85S 11
h1h2

~p21!~q21! Ddx1
h1

p21
du, ~A4!

so that

RHS of ~A4!5S 11
h1h2

~p21!~q21! Ddx82
h1

p21
du81

h1

p21
du81

h1h2

~p21!~q21!
dx8Þdx8.

Similarly, if we write, from the chain rule,

]x5S 11
h1h2

~p21!~q21! D ]x81
h2

q21
]u8 , ~A5!

and

]u5
h1

p21
]x81]u8 , ~A6!

then

]x85]x2
h2

q21
]u , ]u852

h1

p21
]x1S 12

h1h2

~p21!~q21! D ]u , ~A7!
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so that, for example

RHS of ~A6!5S 122
h1h2

~p21!~q21! D ]uÞ]u .

This asymmetry between right and left derivative and differential for transformed varia
stems from the matrixg in ~14! which off-diagonal elements are odd. That is,g is a supermatrix
and so the supertranspose must be used.
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After defining cohomologically higher-order BRST and anti-BRST operators for a
compact simple algebraG, the associated higher-order Laplacians are introduced
and the corresponding supersymmetry algebraS is analyzed. These operators act
on the states generated by a set of fermionic ghost fields transforming under the
adjoint representation. In contrast with the standard case, for which the Laplacian is
given by the quadratic Casimir, the higher-order LaplaciansW are not, in general,
given completely in terms of the Casimir–Racah operators, and may involve the
ghost number operator. The higher-order version of the Hodge decomposition is
exhibited. The example ofsu(3) is worked out in detail, including the expression
of its higher-order LaplacianW. © 1999 American Institute of Physics.
@S0022-2488~99!03010-8#

I. INTRODUCTION

BRST symmetry,1,2 or ‘‘quantum gauge invariance,’’ has played an important role in
quantization of non-Abelian gauge theories. The nilpotency of the operatorQ generating the
global BRST symmetry implies that the renormalization of gauge theories involves cohomolo
aspects: the physical content of the theory belongs to the kernel ofQ, the physical~BRST-
invariant! states being defined by BRST-cocycles modulo BRST-trivial ones~coboundaries!. The
inclusion of the BRST symmetry in the Batalin–Vilkovisky antibracket–antifield formalism~see
Refs. 3, 4 for further references!, itself of a rich geometrical structure,3–9 and where the antifields
are the sources of the BRST transformations, has made of BRST quantization the most po
method for quantizing systems possessing gauge symmetries. In particular, it is indispensa
understanding the general structure of string amplitudes. It is thus interesting to explore it
sible generalizations and their cohomological structure.

An essential ingredient ofQ is what we shall denote here the BRSToperator,

s52
1

2
Ci j

kcicj
]

]ck i , j ,k51,...,r 5dimG, ~1.1!

where theci are anticommuting Grassmann~or ghost! variables transforming under the adjoi
representation of the~compact semisimple! Lie groupG of Lie algebraG. In Yang Mills theories

a!Electronic mail address: chryss@lie.ific.uv.es
b!Electronic mail: azcarrag@lie1.ific.uv.es
c!Electronic mail: a.j.macfarlane@damtp.cam.ac.uk
d!Electronic mail: pbueno@lie.ific.uv.es
60090022-2488/99/40(11)/6009/24/$15.00 © 1999 American Institute of Physics
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the c’s correspond to the ghost fields, and~1.1! above is just part of the generator of the BRS
transformations for the gauge groupG. This paper is devoted to the generalizations of~1.1! and its
associatedanti-BRST operator s̄.10–16

Using a Euclidean metric to raise and lower indices,17 s̄ is given by

s̄5
1

2
Ci j

kck

]

]ci

]

]cj
. ~1.2!

The s( s̄) operator increases~decreases! the ghost number by one. The BRST and anti-BR
operators may be used to construct a Laplacian,18,12,13,19,14,16D5 s̄s1ss̄; clearly, D does not
change the ghost number. It turns out~see Refs. 12–14! that this operator is given by the~second-
order! Casimir operator ofG.

A few years ago, van Holten14 discussed the BRST complex, generated by thesr and s̄r

operators,

sr5cir~Xi !2
1

2
Ci j

kcicj
]

]ck , s̄r52r~Xi !
]

]ci
1

1

2
Ci j

kck

]

]ci

]

]cj
, ~1.3!

in connection with the cohomology of compact semisimple Lie algebras. They act on ge
states of ghost numberq of the form

c5
1

q!
c i 1¯ i q

A ci 1
¯ci q^ eA . ~1.4!

The operators in~1.3! differ from those in~1.1!, ~1.2! by the inclusion of ther term, whererA
B

is a representation of the Lie algebraG on a vector spaceV with basis$eA%, A51,...,dimV.
However ~see theRemarkin Sec. II!, only the trivial representation case is interesting. For
50 the generic states have the form

c5
1

q!
c i 1¯ i q

ci 1
¯ci q, ~1.5!

and we shall consider mostly this case. The operatorss, s̄ and the LaplacianD may be used to
defines-closed,s̄-closed~coclosed!, and harmonic states. A statec @Eq. ~1.5!# is calleds-closed,
s̄-closed, or harmonic ifsc50, s̄c50, or Dc50, respectively. In this way, and using the nilp
tency ofs and s̄, one may introduce a Hodge decomposition for~1.5! as a sum of ans-closed, an
s̄-closed, and a harmonic state. The interesting fact is that, using the above Euclidean metriG,
one may introduce a positive scalar product among statesc8, c, of ghost numbersq8, q by

^c8,c&ª
1

q!
c j 1¯ j q

8 c j 1¯ j qdq8q . ~1.6!

Using the Hodge* operator ford i j , it follows thats5(21)r (q11)* s̄* ~on states of ghost numbe
q!, and thats and s̄ are also adjoint to each other with respect to the scalar product~1.6!. As a
result, there is a complete analogy between the harmonic analysis of forms, in whichd and d
5(21)r (q11)11* d* are adjoint to each other, and the Hodge-like decomposition of statesc for
the operatorss, s̄14 ~see also Sec. II!. This follows from the fact that, due to their anticommutin
character, the ghost variablesc may be identified20 with ~say! the left-invariant one-forms on the
group manifoldG, so that the action ofs on c determines the Maurer–Cartan~MC! equations.

The nilpotency of the BRST operators~1.1! or ~1.3! results from the Jacobi identity satisfie
by the structure constantsCi j

k of G. This identity can also be viewed as a three-cocycle condi
on the fully antisymmetricCi jk , which define a nontrivial three-cocycle for any semisimpleG.
This observation indicates the existence of a generalization by using the higher-order cocyc
G. The cohomology ring of all compact simple Lie algebras of rankl ~for simplicity, we shall
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assumeG simple henceforth! is generated byl ~classes of! nontrivial primitive cocycles, associ
ated with thel invariant, symmetric primitive polynomials of orderms (s51,...,l ) which, in turn,
define thel Casimir–Racah operators~Refs. 21–23; also see Ref. 24 and references therein!. The
different integersms depend~for sÞ1! on the specific simple algebra considered. It has b
shown in Ref. 25 that, associated to each cocycle of order 2ms21 there exists a higher-orde
BRST operators2ms22 carrying ghost number 2ms23, defined by the coordinatesV i 1 ...i 2ms22

j of

the (2ms21)-cocycle onG @we shall also give in~3.17! the corresponding operatorsr(2ms22) for

therÞ0 case#. TheV i 1 ...i 2ms22

j may also be understood as being the~fully antisymmetric! higher-

order structure constants of a higher (2ms22)-order algebra,25 for which the multibrackets have
(2ms22) entries. The standard~lowest,s51! case corresponds tom152, ; G ~the invariant is
Cartan–Killing metric!, to the three-cocycleCi jk and to the ordinary Lie algebra bracket. Th
(2ms22)-brackets of these higher-order algebras satisfy a generalized Jacobi identity,
again follows from the fact that the higher-order structure constants define (2ms21)-cocycles for
the Lie algebra cohomology. These (2ms22)-algebras constitute a particular example~in which
only one coderivation survives! of the strongly homotopy algebras,26 which have recently ap-
peared in different physical theories that share common cohomological aspects, as in close
field theory,27,28the higher order generalizations of the antibracket29,30and the Batalin–Vilkovisky
complex~see Ref. 31 and references therein!. Higher-order structure constants satisfying gene
ized Jacobi identities of the types considered in Ref. 25@see~3.11! below# and Ref. 32 have also
appeared in a natural way in the extended master equation in the presence of higher-ord
servation laws.9

In Sec. III of this paper we introduce, together with thel general BRST operators for a simp
Lie algebra, the correspondingl anti-BRST operatorss̄2ms22 and their associated higher-ord
Laplacians. We show there that harmonic analysis may be carried out in general~the standard case
in Ref. 14 corresponds toms5m152!, although the Laplacians do not, in general, correspon
the Casimir–Racah operators. Nevertheless, we shall show thats2ms22 and s̄2ms22 are related to
each other by means of the Hodge* operator, and that they are also adjoints of each other. A
showing that the different higher-order BRST, anti-BRST, and Laplacian operators genera
each values51,...,l , a supersymmetry algebraSms

, we discuss its representations. The exam
of G5su(3) is studied in full in Sec. IV, where we construct the generalsu(3) states and show
the su(3) representations contained in theSms

5S2 ,S4 irreducible multiplets.

II. THE STANDARD BRST COMPLEX AND HARMONIC STATES

Let G be defined by

@Xi ,Xj #5Ci j
kXk , i , j ,k51,...,r[dimG, ~2.1!

where$Xi% i 51
r is a basis ofG. For instance, we may think of$Xi% as a basis for the left-invarian

~LI ! vector fieldsXi
L(g)[Xi(g) on the group manifoldG„Xi(g)PXL(G)….

Let V be a vector space. In the Chevalley–Eilenberg formulation~CE!33 of the Lie algebra
cohomology, the space ofq-dimensional cochainsCq(G,V) is spanned by theV-valued skew-
symmetric mappings,

c:G∧¯
q

∧G→V, c~g!5
1

q!
c i 1¯ i q

A v i 1~g!∧¯∧v i q~g! ^ eA , ~2.2!

where the$v i(g)% form a basis ofG* ~LI one-forms onG!, dual to the basis$Xi% of LI vector
fields onG, and the indexA51,...,dimV labels the components inV. Let r be a representation o
G on V „r:G→End(V)…. The action of the Lie algebra coboundary operatorsr , sr

250, on the
q-cochainscA ~1.4! is given by the following.
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Definition 2.1:~Coboundary operator! The coboundary operatorsr : Cq(G,V)→Cq11(G,V) is
defined by

~src!A~X1 ,...,Xq11!ª(
i 51

q11

~21! i 11r~Xi ! .B
A
„cB~X1 ,...,X̂i ,...,Xq11!…

1 (
j ,k51
j ,k

q11

~21! j 1kcA~@Xj ,Xk#, X1 ,...,X̂j ,...,X̂k ,...,Xq11!. ~2.3!

The space ofq-cocyclesZr
q(G,V) ~i.e., Kers) modulo theq-coboundariesBr

q(G,V) ~i.e., Ims)
defines theqth Lie algebra cohomology groupHr

q(G,V).
Since we are assumingG semisimple, Whitehead’s lemma states that, forr nontrivial,

Hr
q~G,V!50, ;q>0, ~2.4!

and we can restrict ourselves tor50 cohomology for which the action ofsr reduces to the secon
term on the rhs of Eq.~2.3!.

For the trivial representation,s acts onc ~1.5! in the same manner as the exterior derivat
d acts on LI forms. It is then clear that we may replace the$v i(g)% by the ghost variables$ci%,

cicj52cjci S $ci ,cj%50, H ci ,
]

]cj J 5d j
i D , i , j 51,...,r , ~2.5!

and the space ofq-cochains by polynomials of~ghost! numberq<r . The BRST operator~1.1!
s5s2 ~the subindex 2 is added for convenience; its meaning will become clear in Sec. III! may be
taken as the coboundary operator for the (r50) Lie algebra cohomology.20 Indeed, the relations

s2ck52 1
2Ci j

kcicj @or s2c52 1
2@c,c#, c5cir~Xi !#, ~2.6!

reproduce the MC equations. As a result, the Lie algebra cohomology may be equivalent
mulated in terms of skew-symmetric tensors onG, LI forms onG, or polynomials in ghost spac
~see, e.g., Ref. 34!.

In the sequel we shall introduce the Grassmann variablesp i to refer to the ‘‘partial deriva-
tive’’ ]/]ci , appropriate for using the ‘‘ghost representation’’ for the cochains/states. Thes
sets of variables (ci ,p j ) generate a Clifford-like algebra,35 defined by

$ci ,p j%5d i j , $ci ,cj%505$p i ,p j%. ~2.7!

The algebra~2.7! admits the~order reversing! involution •̄:ci ° c̄i5p i , p i °p̄ i5ci . Theanti-
BRST operator s̄2 is given by

•̄:s2° s̄2 , s̄25
1

2
Ci j

kckp
ip j S 5

1

2
Ci j

kck

]

]ci

]

]cj
D , ~2.8!

and it is also nilpotent. Denoting the space of the BRSTq-cochains~1.5! by Cq(G), it follows that

s2 :Cq~G!→Cq11~G!, s̄2 :Cq~G!→Cq21~G!. ~2.9!

The presence of a metric (d i j ) on G allows us to introduce the* operator @* :Cq(G)
→Cr 2q(G)# in the standard way. Onq-forms onG,

~* c!5
1

q!

1

~r 2q!!
e i 1¯ i r

c i 1¯ i qv i q11∧¯∧v i r. ~2.10!

and
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* 25~21!q~r 2q!5~21!q~r 21!. ~2.11!

The scalar product of two LIq-forms onG, ^•,•&:Cq(G) ^ Cq(G)→R is then given by

^c8,c&ªE
G

c8∧* c5E
G

1

q! 2

1

~r 2q!!
c j 1¯ j q

8 e i 1¯ i qj q11¯ j r
c i 1¯ i qe j 1¯ j rv1∧¯∧v r

5E
G

1

q! 2 e i 1¯ i q

j 1¯ j qc j 1¯ j q
8 c i 1¯ i qv1∧¯∧v r

5
1

q!
c j 1¯ j q

8 c j 1¯ j qE
G

v1∧¯∧v r , ~2.12!

and, normalizing the~compact! group volume*Gv1∧¯∧v r to 1, reduces to~1.6!. Clearly,36

^c8,c&5^c,c8&, ^c,c&.0 ;cÞ0. ~2.13!

The codifferentiald is introduced, as usual, as the adjoint of the exterior derivatived, i.e., for
a (q21)-form c8,

^dc8,c&5E
G

dc8∧* c5~21!qE
G

c8∧d* c

5~21!q1~q21!~r 2q11!E
G

c8∧* ~* d* c!

[E
G

c8∧* dc5^c8,dc&, ~2.14!

so that

d5~21!r ~q11!11* d* , „d5~21!r ~q11!* d* …, d250. ~2.15!

The correspondencev i(g)↔ci , d↔s2 above allows us to translate all this into the BRS
language. First one checks, on any BRSTq-cochain~1.5!, that the basic operatorsci andp i are
transformed by* , according to

p i5~21!r ~q11!* ci* , ci5~21!r ~q11!11* p i* , ~2.16!

so that

* ~ci 1
¯ci 2k!* 5~21!~r 11!q1kp i 1

¯p i 2k, * ~ci 1
¯ci 2k11!* 5~21!r ~q11!1kp i 1

¯p i 2k11,
~2.17!

* ~p i 1
¯p i 2k!* 5~21!~r 11!q1kci 1

¯ci 2k, * ~p i 1
¯p i 2k11!* 5~21!r ~q11!1k11ci 1

¯ci 2k11.

As a consequence of~2.16!, one finds forc8PCq11(G), cPCq(G),

^c8,cic&5E
G

c8∧* cic5~21!q~r 2q!E
G

c8∧* ci** c

5~21!qE
G

c8∧p i* c

5E
G

p ic8∧* c5^p ic8,c&, ~2.18!
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using the fact thatp i is a graded derivative and thatc8∧* c[0. Thus,ci andp i are adjoints to
each other with respect to the inner product^,& or, in other words, the involution•̄ defines the
adjoint with respect tô,&. Thus,s2;d and ~2.15! lead to

s̄25~21!r ~q11!11* s2* , ~2.19!

since

d5~21!r ~q11!11* d* ;~21!r ~q11!11* s2*

52~21!r ~q11!11 1
2Ci j

k* cicjpk*

52~21!r ~q11!111~q21!~r 2q11!1q~r 2q! 1
2Ci j

k* ci** cj** pk*

5 1
2Ci j

kp ip j ck5 s̄2 . ~2.20!

The anticommutator of the nilpotent operatorss2 and s̄2 defines the LaplacianD[W2 ,
W2 :Cq(G)→Cq(G),

W2ª$s2 ,s̄2%5~s21 s̄2!2. ~2.21!

The operatorsW2 , s2 , s̄2 generate the supersymmetry algebraS2 ,

@s2 ,W2#50, @ s̄2 ,W2#50, $s2 ,s̄2%5W2 . ~2.22!

S2 has the structure of a central extension of (s2 ,s̄2) by W2 , the Laplacian being the centra
generator. The operatorW2 is invariant under the involution•̄(W25W̄2) and commutes with* ,
since

* W2* 5* ~s2s̄21 s̄2s2!* 5~21!~q21!~r 2q11!* ~s2** s̄21 s̄2** s2!*

5~21!~q21!~r 2q11!1r ~q21!111rq~ s̄2s21s2s̄2!

5~21!q~r 2q!W2 , ~2.23!

which, with the help of~2.11!, implies @W2 ,* #50. Then, as in the standard Hodge theory
compact Riemannian manifolds, we have the following.

Lemma 2.1:A BRST cochainc is W2 harmonic,W2c50, iff it is s2 and s̄2 closed.
Proof: It is clear that ifs2c505 s̄2c, thenW2c50. Now, if W2c50,

05^c,W2c&5^c,~s2s̄21 s̄2s2!c&5^s̄2c,s̄2c&1^s2c,s2c&; ~2.24!

from ~2.13! easily follows that both terms have to be zero, and hences2c505 s̄2c.
Theorem 2.1:Each BRST cochainc admits the Hodge decomposition,

c5s2a1 s̄2b1g, ~2.25!

whereg is W2 harmonic~the proof of Theorem 3.1 below includes this case!.
To find the algebraic meaning ofW2 , let us write the generatorsXi on ghost space as

Xi[2Ci j
kcjpk . ~2.26!

They act on BRST cochains in the same way as the Lie derivatives with respect to the LI
fields onG act on LI forms onG:

Xic
k52Ci j

kcj ~2.27!
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@cf. LXi
vk52Ci j

kv j , in which XiPXL(G) andvPX* L(G)]. The Xi in ~2.26! are in the adjoint

representation ofG and satisfyX̄i52Xi and * Xi5Xi* . Invariant statesare those for which
Xic50, i 51,...,r .

In terms ofXi , the operatorss2 and s̄2 may be written as

s25 1
2c

iXi , s̄252 1
2p

jXj , ~2.28!

Using the fact thatci andp j transform in the adjoint representation,

Xkc
i52Ckr

icr , Xkp
i52Ckr

ip r , ~2.29!

it is easy to see that38

W252 1
2C~2!52 1

2d
i j XiXj , ~2.30!

i.e., the Laplace-type operator is proportional to the second-order Casimir operator of the a
Remark:The expression forW2 in Refs. 12–14 contains more terms due to the fact that th

authors considerrÞ0, in general. But, as noticed in Ref. 14,r50 is the only possibility if we
restrict ourselves tonontrivial harmonic states. In fact, we prove here that this is a direct co
quence of Whitehead’s lemma~2.4!. Let t be the operator defined by its action on (V-valued!
q-cochainsc through

~tc! i 1¯ i q21

A 5ki j r~Xi !B
Ac j i 1¯ i q21

B . ~2.31!

It may be verified that

@~srt1tsr!c# i 1¯ i q
A 5c i 1¯ i q

B C~2!~r!B
A , ~2.32!

where C(2)(r)B
A[ki j r(Xi)C

Ar(Xj )B
C is the Casimir operator for the representationr, and hence

proportional todB
A . It then follows that for anyrÞ0 q-cocyclec (src50),

sr„tcC~2!~r!21
…}c, ~2.33!

i.e., c is a ~trivially harmonic state! coboundary generated by a (q21)-cochain proportional to
tcC(2)(r)21, q.e.d. Hence, any nontrivial BRST-invariant statec (s2c50, cÞs2w) is aG singlet
and, as a consequence of Theorem 2.1, its class contains a uniqueW2 harmonic representative.

From ~2.30! we also deduce the following.
Lemma 2.2:A statec is W2 harmonic iff it is invariant,39 Xic50.
Proof: If c is invariant,W2c52 1

2d
i j XiXjc50. If c is W2 harmonic,

05^c,W2c&52 1
2^c,d i j XiXjc&5 1

2d
i j ^Xic,Xjc&, ~2.34!

andXjc50, since^, & is nondegenerate, q.e.d. In fact, ifc is invariant,c is boths2 ands̄2 closed
by ~2.28!.

Corollary 2.1:Each nontrivial element in the cohomology ringH* (G) may be represented b
an invariant state.

Proof: Let cPZ(G) be nontrivial. Hence, its decomposition has the form

c5s2a1g. ~2.35!

Thereforec2s2a is in the cohomology class ofc and is harmonic~and hence invariant!.
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III. HIGHER-ORDER BRST AND ANTI-BRST OPERATORS

A. Invariant tensors

The considerations of the previous section rely on the nilpotent operators2 and its adjoint,
both constructed out of the structure constantsCi jk . The latter determine a skew-symmetric tens
of order three, which can be seen as a third-order cocycleC5Ci jkcicjck and, additionally, is
invariant under the action of the Lie algebra generatorsXk . Indeed, acting onC with theX’s, one
gets a sum of three terms, in each of which one of the indices ofC is transformed in the adjoin
representation and the statement of invariance is equivalent to the Jacobi identity. Notice t
need not saturate every index ofCi jk with the same type of variable in order to get an invaria
quantity—it suffices that each type of variable transforms in the adjoint representation@for ex-
ample,s2 in ~1.1!, which is also invariant, involves saturating twoc’s and onep#.

The cohomology of simple Lie algebras contains, besides the three cocycleC above, other,
higher-order skew-symmetric tensors with similar properties. As mentioned in the Introdu
any compact simple Lie algebraG of rank l has l primitive cocycles given by skew-symmetri
tensorsV i 1i 2¯ i 2ms21

(2ms21) (s51,...,l ), associated to thel Casimir–Racah primitive invariants of ran

ms .21–23,25Their invariance is expressed by the equation

(
j 51

2ms21

Cbi j
aV

i 1i 2¯ îj ai j 11¯ i 2ms21

~2ms21!
50. ~3.1!

Due to the MC equations, the above relation implies thatV i 1¯ i 2ms21

(2ms21)
v i 1

¯v i 2ms21 is a cocycle for

the Lie algebra coboundary operator~2.3! for r50 ~in the language of forms, this is equivalent
saying that any bi-invariant form is closed, and hence a CE cocycle!. The existence of these
cocycles is related to the topology of the corresponding group manifold, in particular, t
odd-sphere product structure that the simple compact group manifolds have from the point o
of real homology~see, e.g., Refs. 33, 40–42, 34!. We may use the correspondenceci↔v i and the
discussion after Theorem 2.1 to move freely from the CE approach to the BRST one here

Let us consider for definiteness the case ofsu(n), for which m152, m253,..., ml5n, and
there existl 5(n21) different primitive skew-symmetric tensors of rank 3,5,...,2n21. Consider,
for a givenm, the (2m21)-form,

V~2m21!5
1

~2m21!!
Tr~u∧ ¯

2m21

∧u!, ~3.2!

where u[v iTi and TiPG is in the defining representation ofsu(n). SincedV (2m21)50, the
coordinates ofV (2m21) provide a (2m21)-cocycle onsu(n). One can show~see, e.g., Ref. 24!
that

Vr i 2¯ i 2m22s
~2m21! 5

1

~2m23!!
kr l 1¯ l m21

Cj 2 j 3

l 1
¯Cj 2m22s

l m21e i 2¯ i 2m22

j 2¯ j 2m22, ~3.3!

is a skew-symmetric tensor, where

kr l 1¯ l m21
5s Tr~TrTl 1

¯Tl m21
! ~3.4!

is a symmetric invariant tensor given by the symmetrized trace of a product ofm generators@its
invariance can be expressed by an equation similar to~3.1!#. Symmetric invariant tensorski 1¯ i m
give rise to Casimir–Racah operators,
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C~m!5ki 1¯ i mXi 1
¯Xi m

, ~3.5!

which commute with the generators;C(2) is the standard quadratic Casimir operator.

B. Higher-order operators

The above family of cocyclesV can be used to constructhigher-orderBRST operators.25,32

To each invariant tensor of rankms corresponds a BRST operators2ms22 , which in terms of the
coordinatesV i 1¯ i 2ms22

s of the (2ms21)-cocycle~3.3!, is given by

s2ms2252
1

~2ms22!!
V i 1¯ i 2ms22

~2ms21! sci 1ci 2
¯ci 2ms22ps . ~3.6!

These operators are particularly interesting in view of the property

$s2ms22 ,s2ms822%50, s,s851,...,l ; ~3.7!

i.e., they are nilpotent and anticommute~see Ref. 25 for a proof!.
For eachms , s.1, we may look ats2m22 ~we shall often writem for ms henceforth! as a

higher-order coboundaryoperator,s2m22 : Cq(G)→Cq1(2m23)(G). The analog of the MC equa
tion ~2.6! for s2m22 is given by

s2m22ca52
1

~2m22!!
V i 1¯ i 2m22

~2m21! aci 1ci 2
¯ci 2m22, ~3.8!

which may also be written as

s2m22c52
1

~2m22!!
@c, ¯

2m22

,c#, ~3.9!

where @c, ¯

2m22

,c# ª ci 1
¯ci 2m2@Ti 1

,...,Ti 2m22
# and the higher-order structure constants of

(2m22) bracket25 are given by the (2m21) cocycle, i.e.,

@Ti 1
,...,Ti 2m22

#5V i 1¯ i 2m22

~2m21! aTa . ~3.10!

Using ~3.9!, the nilpotency ofs2m22 follows from the higher-order Jacobi identity,

s2m2

2 c52
1

~2m22!!

1

~2m23!!
@c, ¯

2m23

,c,@c, ¯

2m22

,c##50, ~3.11!

which the rhs of~3.11! satisfies as a consequence ofV i 1¯ i 2m22

(2m21) a being a cocycle.

Moreover, for eachG we may introduce thecomplete BRST operators,25

s52
1

2
Cj 1 j 2

scj 1cj 2ps2¯2
1

~2ms22!!
V j 1¯ j 2ms22

~2ms21! scj 1
¯cj 2ms22ps2¯

2
1

~2ml22!!
V j 1¯ j 2ml22

~2ml21! scj 1
¯cj 2ml22ps

[s21¯1s2ms221¯1s2ml22 . ~3.12!

This operator is nilpotent, and its terms have~except for some additional ones that break t
generalized Jacobi identities, which are at the core of the nilpotency ofs2ms22), the same structure
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as those that appear in closed string theory27 and lead to a strongly homotopy algebra.26 In fact, the
higher-order structure constants~which here have definite values and a geometrical meanin
higher-order cocycles ofG! correspond to the string correlation functions giving the string c
plings. Since the expression fors in the homotopy Lie algebra that underlies closed string the
already includes a term of the formf j 1

s cj 1ps , f nilpotent,s250 is not satisfied@as it is for~3.12!#

by means of a sum of independently satisfied Jacobi identities, and, in particular, theCi j
k do not

satisfy the Jacobi identity and hence do not define a Lie algebra.
For eachs2m22 we now introduce its adjointanti-BRST operator s̄2m22 ,

s̄2m2252
1

~2m22!!
V i 1¯ i 2m22

~2m21! scsp i 2m22
¯p i 1

52
~21!m21

~2m22!!
V i 1¯ i 2m22

~2m21! scsp i 1
¯p i 2m22. ~3.13!

Each pair (s2m22 ,s̄2m22) allows us to construct ahigher-orderLaplacianW2m22 ,

W2m225~s2m221 s̄2m22!25s2m22s̄2m221 s̄2m22s2m22 . ~3.14!

Clearly, s2m22 , s̄2m22 , andW2m22 all commute with the generatorsXi , and we have the fol-
lowing.

Lemma 3.1:For eachs51,...,l , the higher-order BRST and anti-BRST operatorss2ms22 and
s̄2ms22 , together with their associated LaplacianW2ms22 define the superalgebraSms

,

@s2ms22 ,W2ms22#50, @ s̄2ms22 ,W2ms22#50, $s2ms22 ,s̄2ms22%5W2ms22 , ~3.15!

which has a central extension structure.
For s51, m152, W25D, and the above expressions reproduce~1.1!, ~2.6!, ~2.8!, and~2.22!.
The BRST ~anti-BRST! operators2m22 ( s̄2m22), acting on a monomial in thec’s, raises

~lowers! its ghost number by 2m23 while W2m22 leaves the ghost number invariant and
self-adjoint. We notice that all terms ins2m22 ( s̄2m22) contain one (2m22)p, and that the term
with the maximum number ofp’s in W2m22 contains~at most! 2m22 of them. This is so becaus
the two terms with 2m21 p’s ~from s2m22s̄2m22 , s̄2m22s2m22) cancel, as one can verify. Th
BRST operators2m22 annihilates all states of ghost numberq.r 22m12, as well as zeroth-orde
states. Similarly,s̄2m22 annihilates states of ghost numberq,2m22 and the top statec1¯cr . It
follows that zero- andr-ghost number states are bothW2m22 harmonic.

Let us establish now the relation between the•̄ operation@the adjoint with respect to the inne
product in~2.12!# and the conjugation by the Hodge* operator, as these apply tos2m22 .

Lemma 3.2:The following equalities hold on any state~BRST cochain! of ghost numberq,

s̄2m225~21!r ~q11!11* s2m22* , s2m225~21!r ~q11!* s̄2m22* , s2m22* 5~21!q* s̄2m22 ;

~3.16!

notice that the sign factors do not depend onm and hence they coincide with those of~2.15!. The
proof is straightforward, using~2.11!, ~2.17!, where care should be taken to substitute the gh
numbers actually ‘‘seen’’ by the operators.

Although we shall not use them here we also introduce, for the sake of completenes
V-valued higher-order coboundary operatorssr(2ms22)

for a nontrivial representationrPEndV of

the (2ms22)-algebra. They are given by

sr~2ms22!5ci 1
¯ci 2ms23r~Xi 1

!¯r~Xi 2ms23
!2

1

~2ms22!!
V i 1¯ i 2ms22

~2ms21! sci 1ci 2
¯ci 2ms22ps .

~3.17!
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It may be seen that the nilpotency ofsr(2ms22)
is guaranteed by the fact that the skew-symme

product of (2ms22) r’s, which defines the multibracket (2ms22)-algebra for an appropriater
@Eq. ~3.10! with T→r], satisfies the corresponding generalized Jacobi identity as before.

C. Higher-order Hodge decomposition and representations of Sm s

Let us now look at the irreducible representations of~3.15!, which have the same structure a
the supersymmetry algebra. SinceW2m22 commutes withs2m22 ,s̄2m22 , each multiplet of states
will have a fixedW2m22 eigenvalue. Let us callg a W2m22-harmonic stateiff W2m22g50. Then
Lemma 2.1 transcribes trivially to the present higher-order case so thatg is harmonic iff it is
s2m22 and s̄2m22-closed. Hence, a harmonic stateg is a singlet ofSm . We may also extend
Theorem 2.1 and prove the following.

Theorem 3.1: ~Higher-order Hodge decomposition! Each BRST cochainc admits a unique
decomposition,

c5s2m22a1 s̄2m22b1g, ~3.18!

whereg is W2m22-harmonic.
Proof: We denote byS the space of all states~i.e., skew-symmetric polynomials in thec’s!,

K2m22 the kernel ofW2m22 (W2m22-harmonic space! andK2m22
' the complement ofK2m22 in S.

Let PW
(0) be the projector fromS to K2m22 . Let cPS; then, (12PW

(0))c lies in K2m22
' . However,

since the restriction ofW2m22 to K2m22
' is invertible, there exists a uniquef in K2m22

' such that
(12PW

(0))c5W2m22f, from which we get

c5W2m22f1PW
~0!c5s2m22~ s̄2m22f!1 s̄2m22~s2m22f!1PW

~0!c, ~3.19!

which provides the desired decomposition ofc with a5 s̄2m22f, b5s2m22f, and g5PW
(0)c,

q.e.d.
To complete the analysis of the irreducible representations ofS, consider now an eigenstatex

of W2m22 for nonzero~and hence positive! eigenvaluew, W2m22x5wx, w.0. This gives rise to
the states

f[s2m22x, c[ s̄2m22x, s[s2m22s̄2m22x. ~3.20!

Further applications ofs2m22 or s̄2m22 produce linear combinations of the above states,
example,s̄2m22s2m22x5W2m22x2s2m22s̄2m22x5wx2s, etc. The quartet$x,f,c,s% collapses
to a doublet if eithers2m22x50 or s̄2m22x50. In this case,x is the Clifford vacuum ands2m22 ,
or s̄2m22 , respectively, plays the role of the annihilation operator. Letx be neithers2m22 nor
s̄2m22-closed. The states of ~3.20! is, by construction,s2m22-closed. Then, we can always choo
a linear combination ofx ands that iss̄2m22 closed. Indeed, for the$x,f,c,s% of ~3.20!, we easily
compute

ifi21ici25^s2m22x,s2m22x&1^s̄2m22x,s̄2m22x&5^x,W2m22x&5w, ~3.21!

where we have takenixi2[^x,x&51. Setting

q5Aw, ifi5q sinu, ici5q cosu, ~3.22!

we find that the following linear combinations:

x85
1

q sinu
~qx2q21s!, s85

1

q2 cosu
s, f85

1

q sinu
f, c85

1

q cosu
c, ~3.23!

form an orthonormal set, with the doublet$x8,f8% satisfying
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s̄2m22x850, s2m22x85qf8; s2m22f850, s̄2m22f85qx8, ~3.24!

and similarly for$c8,s8%, i.e., the two doublets decouple. Notice thatu in ~3.22!, 0,u,p/2, is
the angle betweenx ands in the x2s plane:

^x,s&5q2 cos2 u5ixi•isicosu. ~3.25!

Once in the primed basis of~3.23!, s2m22s̄2m22j ~wherej stands for any of the four primed state
above! is equal to eitherwj or 0, and hence,s2m22s̄2m22 commutes with all operators tha
commute withW2m22 ~similarly for s̄2m22s2m22). Thus, the representation of the different sup
ralgebrasSm fall, in all cases, into singlets~harmonic states! and pairs of doublets. Singlets an
doublets here are the trivial analogs of the ‘‘short’’~massless! and ‘‘long’’ ~massive! multiplets of
the standard supersymmetry algebra.

Owing to the particular importance of harmonicity, we investigate the relation betwee
kernel of a higher-order Laplacian and that ofW2}C(2). To this end, we rewrites2m22 as~Greek
indices below also range in 1,...,r[dimG),

s2m2252
1

~2m22!!
V i 1¯ i 2m22

~2m21! sci 1
¯ci 2m22ps

52
1

~2m22!!
kj 1¯ j m21

sCr i 2
j 1
¯Ci 2m23i 2m22

j m21crci 2
¯ci 2m22ps

5
1

~2m22!! S (
r 52

m21

ki 2 j 2¯ ĵ ra¯ j m21

sCr j r

aCi 3i 4
j 2
¯Ci 2r 21i 2r

j r
¯Ci 2m23i 2m22

j m21

1ki 2 j 2¯ j m21

aCar
sCi 3i 4

j 2
¯Ci 2m23i 2m22

j m21D crci 2
¯ci 2m22ps

5
1

~2m22!!
kb j 1¯ j m22

aCi 1i 2
j 1
¯Ci 2m25i 2m24

j m22cbci 1
¯ci 2m24Xa , ~3.26!

where the invariance ofkj 1¯ j m21

s has been used in the third line and the Jacobi identity in the
equality. Similarly,s̄2m22 may be written as

s̄2m2252~21!m
1

~2m22!!
kb j 1¯ j m22

aCi 1i 2
j 1
¯Ci 2m25i 2m24

j m22pbp i 1
¯p i 2m24Xa .

~3.27!

This proves the following.
Lemma 3.3:The higher-order BRST and anti-BRST operatorss2m22 , s̄2m22 may be written

as

s2m225VaXa , s̄2m2252V̄aXa , ~3.28!

where

Va[
1

~2m22!!
kb j 1¯ j m22

aCi 1i 2
j 1
¯Ci 2m25i 2m24

j m22cbci 1
¯ci 2m24, ~3.29!

V̄a[~21!m
1

~2m22!!
kb j 1¯ j m22

aCi 1i 2
j 1
¯Ci 2m25i 2m24

j m22pbp i 1
¯p i 2m24. ~3.30!
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For m52 one getsVa5 1
2c

a,V̄a5 1
2p

a and the expression~2.28! for s2 , s̄2 is recovered. As a
W2-harmonic state is invariant, the above relation shows that the kernel ofW2 is contained in the
kernel ofW2ms22 for all ms , s52,...,l . It follows from ~3.28! that an invariant state iss2m22 and
s̄2m22-closed, and hence the following lemma.

Lemma 3.4:Every invariant state isW2m22 harmonic.
In the particular realization of theSms

algebra~3.15! in terms of ghosts and antighosts give
in ~3.6!, ~3.13!, W2ms22 is ghost number preserving and commutes with the Lie algebra gener
Xi . There exists therefore a basis of thec’s in which W2ms22 , s51,...,l is diagonal. For a fixed

ghost numberq, the (q
r ) independent monomialsci 1

¯ci q
transform as the fully antisymmetric pa

of the qth tensor power of the adjoint representation ofG. This antisymmetric part isG-reducible
andW2ms22 will have a fixed eigenvalue in each of its irreducible components~which will change,
in general, when going from one irreducible representation to another of the same or dif
ghost number!. s2ms22 and s̄2ms22 connect states belonging to the sameG-irreducible representa
tion and with the sameW2ms22-eigenvalue~but of different ghost number!, and such states wil
fall into one of theSms

multiplets ~singlets or doublets! discussed above. As the generatorsXi

commute with* , theG-irreducible representation decomposition pattern will be symmetrical u
q→r 2q.

The l Casimir–Racah operatorsC(ms), take fixed eigenvalues within eachG-irreducible com-
ponent, which is uniquely labeled by them. The same irreducible representation may appea
than once, with equal or with different ghost numbers; the Casimirs will not distinguish am
these different copies of the same irreducible representation. As mentioned,W2[D52 1

2C(2) @Eq.
~2.30!#. An important question that naturally arises is whetherW2ms22 also reduces, fors.2, to
some higher-order Casimir–Racah operator or, more generally, to a sum of products of
SinceW2ms22 commutes with theX’s @realized in ghost space via~2.26!# an equivalent question
is whether it belongs to the universal enveloping algebraU~G! of G. The answer is negative and w
address this point in the next section, working out in full thesu(3) case.

IV. THE CASE OF su „3…

We opt here for mild departures from our previous conventions: the generators will no
chosen Hermitian so as to work with real eigenvalues and the normalization of all operat
such that fractional eigenvalues are avoided.

A. Invariant tensors and operators

The su(3) algebra@Ti ,Tj #5 i f i j
kTk , i 51,...,8, is determined by the nonzero structure c

stantsf i j
k that are reproduced for convenience~Table I!. These are also the coordinates of t

su(3) three-cocycle. The well-known third-order symmetric tensordi jk ~Table II! gives the third-
order Casimir–Racah operator. Fromdi jk and~3.3! one finds thesu(3) five-cocycle coordinates24

~Table III!.
The CasimirsC2 andC3 ,

C25TiTi , C35di jkTiTjTk , ~4.1!

are related to the operators~3.5! simply by

C252C~2!, C352 iC~3!. ~4.2!

TABLE I. Nonzero structure constants forsu(3).

f 12351 f 14751/2 f 156521/2
f 24651/2 f 25751/2 f 34551/2
f 367521/2 f 4585)/2 f 6785)/2
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The antisymmetric cocycles, on the other hand, give rise to the BRST and anti-BRST ope
s2 , s̄2 , s4 , s̄4 @see also~3.13!#,

s252
1

2
f i j

kcicjpk , s452
1

4!
V i 1i 2i 3i 4

sci 1ci 2ci 3ci 4ps ; ~4.3!

s2
25s4

2505 s̄2
25 s̄4

2, s2s41s4s2505 s̄2s̄41 s̄4s̄2 . ~4.4!

The corresponding Laplacians are

W25~s21 s̄2!25s2s̄21 s̄2s2 , W45~s41 s̄4!25s4s̄41 s̄4s4 , ~4.5!

and satisfy, in addition to~2.22!,

@W2 ,~s4 ,s̄4 ,W4!#50, @W4 ,s4#505@W4 ,s̄4#. ~4.6!

Notice thatW4 does not commute withs2 or s̄2 ~but, being invariant, it does commute withW2).
As W2 is proportional toC2 , we only refer to the latter in the sequel. Also, to avoid fractio
eigenvalues, we defineW[4!W4 .

B. Decomposition into irreducible representations

In general, a monomial in thec’s of ghost numberq transforms in8∧q, the part of theqth
tensor power ofsu(3) adjoint representation that is totally antisymmetric in theq factors. The
reduction of8∧q into irreducible representations ofsu(3) can be achieved by a variety of method
One way, which gives results useful in our analysis below, employs conventional tensor me
We first quote the results:

8∧05158∧8

8∧15858∧7

8∧25811011058∧6 ~4.7!

8∧3511811011012758∧5

8∧4523812327,

noting the symmetry8∧q58∧(r 2q), and then describe the tensorial method of developing
results in a fully explicit form.

We may refer tosu(3) irreducible representations either by dimension, or else in hig
weight $l1 ,l2% notation. In the latter notation$1,0% and $0,1% denote the ‘‘quark’’ and ‘‘anti-
quark’’ representations3 and 3̄ each of dimension 3, and$l1 ,l2% denotes the representatio
whose highest weight isw(l1 ,l2)5l1w(1,0)1l2w(0,1), wherew~1,0!, w~0,1! are the weights
of 3, 3̄, respectively. The representation$l1 ,l2% has dimension

TABLE II. Nonzero-components of the symmetric invariantdi jk for su(3).

d11851/) d22851/) d33851/) d888521/)
d448521/(2)) d558521/(2)) d668521/(2)) d778521/(2))
d14651/2 d15751/2 d247521/2 d25651/2
d34451/2 d35551/2 d366521/2 d377521/2
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d~l1 ,l2!5 1
2~l111!~l211!~l11l212!, ~4.8!

and Casimir operators~4.1! whose eigenvalues are43

C2~l1 ,l2!5 1
3~l1

21l1l21l2
2!1l11l2 , ~4.9!

C3~l1 ,l2!5 1
18~l12l2!~l112l213!~2l11l213!52C3~l2 ,l1!. ~4.10!

SinceC3(l1 ,l2)52C3(l2 ,l1), C3 vanishes for all self-conjugate (l15l2) irreducible repre-
sentations. The results for the representationsr that occur in~4.7! are given in the table,

dimr $l1 ,l2% ~C2 ,C3!

1 $0,0% ~0,0!

8 $1,1% ~3,0!

10 $3,0% ~6,9!

10 $0,3% ~6,29!

27 $2,2% ~8,0!

. ~4.11!

Turning to the tensor analysis of tensors spanned, for 0<q<8, by the monomialsci 1
¯ci q

,
we start with the caseq51, whereci describes the basis of thesu(3) adjoint representation, i.e
an octet. In the caseq52,

di5 f i jkcjck ~4.12!

describes an independent octet, the only one available sincedi jkcjck[0. The remaining tensor
irreducible over the fieldR is

cicj2
1
3 f i jkdk5~202! i j , ~4.13!

for which f i jk(202) i j 50 by construction. The notation implies that it has 20 components, agre
with the simple count (2

8)28. To reduce it into separate10 and10 pieces can be done only ove
the field of complex numbers, but this is not needed here.44 We may also write

cicj5~cicj2
1
3 f i jkdk!1 1

3 f i jkdk5~P20! i j ,pqcpcq1~P8! i j ,pqcpcq , ~4.14!

where the projectors are given by

~P20! i j ,pq5 1
2~d ipd jq2d iqd jp!2 1

3 f i j l f lpq ,
~4.15!

~P8! i j ,pq5 1
3 f i j l f lpq .

The projection properties and orthogonality can be checked using well-known properties ofsu(3)
f tensors,24,45 etc. Also, we have trivially,

P201P85U, Ui j ,pq5 1
2~d ipd jq2d iqd jp!, ~4.16!

TABLE III. Nonzero coordinates of thesu(3) five-cocycle.

V1234551/4 V1236751/4 V124585)/12
V1267852)/12 V1346852)/12 V1357852)/12
V234785)/12 V2356852)/12 V4567852)/6
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whereU is the relevant form of the unit operator in the ghost numberq52 space spanned by th
antisymmetric tensorscicj . Direct calculations on the explicit form fordk given by~4.12! and for
(202) i j by ~4.13! show that these have theC2 eigenvalues 3 and 6 in~4.11!.

The space spanned atq53 by the tensor componentscicjck gives rise easily to the single
~0,0!,

Y5 f i jkcicjck5cidi , ~4.17!

and thesu(3) octet,

ei5di jkcjdk . ~4.18!

This is the onlyq53 octet, since

j i5 f i jkcjdk50 ~4.19!

follows from the definition~4.12! of dk and the Jacobi identity for thef tensor. We note, however
thatj i50 is a set of eight nonempty verifiable identities among various trilinearscicjck . To build
other irreducible tensors, it is natural to look at the tensors

cidj2cjdi , ~4.20!

cidj1cjdi , ~4.21!

with a priori 28 and 36 components. The former~4.20! is irreducible and defines (203) i j as it
stands, becausej i50 yield eight identities automatically satisfied by its components. It is also
hard to check that theC2 eigenvalue is 6. The latter~4.21! is not irreducible, but by extracting th
scalar~4.17! and the octet~4.18!, we find the irreducible tensor of 275362128 components,

~273! i j 5cidj1cjdi2
1
4d i j Y2 6

5di jkek . ~4.22!

It is easy to see that contracting withd i j and di jk gives zero as irreducibility requires. It i
hard, needing a good selection ofsu(3) suchf- and d-tensor identities, as found in Ref. 24, t
prove thatC2 indeed has eigenvalue 8 for (273) i j . We could turn results~4.17!, ~4.18!, ~4.20!, and
~4.22! into the form

cicjck5(
R

Pi jk ,pqr
R cpcqcr , ~4.23!

involving a complete set of orthogonal projectors forR51, 8, 20, and 27.
Since the case atq54 involves repetitions, it is best at this point to review the situat

regarding octets. Atq51, 2, 3, we have

ci , di , ei , ~4.24!

and no others. Atq54, we find

f i5di jkdjdk5V i i 1i 2i 3i 4
ci 1

ci 2
ci 3

ci 4
, ~4.25!

but f i jkdjdk[0. A second octet that can be checked easily to be linearly independent off i is Yci .
We may build otherq54 octets, but these will not give anything new, since, e.g., we can p
the results

di jkcjek52 2
3ciY, f i jkcjek5 f i . ~4.26!

It is thus now obvious that the complete family of octets can be presented as
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q51 2 3 4 5 6 7

ci di ei f i

Yci Ydi Yei Y fi .

~4.27!

As a check, we find thatY fi ~for example! is as expected,

Y f1;c2c3c4c5c6c7c8;* c1 . ~4.28!

An alternative but equivalent treatment would employ certain duals off i , ei , di , ci in place
of Yci , Ydi , Yei , Y fi in ~4.27!. Of course, for the last case, we have just proved the easy b
the equivalence. In fact, the use of duals in explicit work is much less convenient than the c
used in~4.27!. To indicate this, and to do something instructive in its own right, we make exp
the dual relation off i andYci ~see also Ref. 24, Sec. 8!.

To make contact with a dual to the octetf i of ~4.25! replace ci 1
ci 2

ci 3
ci 4

there by
e i 1i 2i 3i 4 j 1 j 2 j 3 j 4

cj 1
cj 2

cj 3
cj 4

to reach

pi5V i i 1i 2i 3i 4
e i 1i 2i 3i 4 j 1 j 2 j 3 j 4

cj 1
cj 2

cj 3
cj 4

, ~4.29!

which clearly belongs to8∧4. To relatepi to Yci , we need the identity

1

4!
V i i 1i 2i 3i 4

e i 1i 2i 3i 4 j 1 j 2 j 3 j 4
5

2

)
d i [ j 1

f j 2 j 3 j 4] , ~4.30!

in which the divisor 4! on the left is actually matched by one implicit in our definition of squ
antisymmetrization brackets on the right. Identity~4.30! allows us to prove

pi5
4!•2

&
ciY52

4!•2

)
Yci , ~4.31!

as expected.
The contractioni 5 j 1 of ~4.30! gives

1

4!
V i 1i 2i 3i 4i 5

e i 1i 2i 3i 4i 5 j 1 j 2 j 3
5

5

2)
f j 1 j 2 j 3

, ~4.32!

which is an evident and easily checked analog of the result,

1

3!
f j 1 j 2 j 3

e j 1 j 2 j 3i 1i 2i 3i 4i 5
522)V i 1i 2i 3i 4i 5

, ~4.33!

given in Ref. 24, Eq.~8.14!. The latter is a contraction of the more useful identity,

1

3!
f i j 1 j 2

e j 1 j 2i 1i 2i 3i 4i 5i 6
524)d i [ i 1

V i 2i 3i 4i 5i 6] . ~4.34!

This may be used, as we used~4.30!, to reach, e.g., eventually the dual relationship ofdi to Yei .
While the above tensorial analysis provides an explicit construction from first principles

the entries of~4.7!, the use ofs2 ands4 expedites explicit work. For example, since@s2 ,Xi #50
5@s4 ,Xi #, s2 ands4 also commute withC2 andC3 . Thus,s2 ~for example! either raises the ghos
number of a tensor by one, leaving itssu(3) nature unaltered or else annihilates it. Thuss2ci

;di , s2di50. Similarly, s4ci; f i and s̄2s4f i;ei . Likewise,
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s2~202! i j 5s2~cicj2
1
3 f i jkdk!;dicj2cidj52~203! i j , ~4.35!

sinces2di50, which confirms what has been seen to hold above.
Further, we might expects2(273) i j to yield one of the required (274) i j . Indeeds2di50,

s2Y50, ands2ek5 f k allow us to write

s2~273! i j 5didj2
3
5di jk f k[~274! i j . ~4.36!

A second 27-tensor in8∧4 that is linearly independent of (274) i j of ~4.36! is suggested immedi
ately by duality arguments. One replacesci 1

ci 2
ci 3

ci 4
in didj5 f i i 1i 2

f j i 3i 4
ci 1

ci 2
ci 3

ci 4
, etc. by

e i 1i 2i 3i 4 j 1 j 2 j 3 j 4
cj 1

cj 2
cj 3

cj 4
. We thereby reach a tensor (2748) i j that is plainly linearly independent o

(274) i j . It turns out to be proportional to

~2748! i j 5ciej1cjei2
4
5di jkYck , ~4.37!

which can be seen to satisfydi j l (2748) i j 50, using ~4.26!, as well as (2748) i i 50, so that it is
irreducible, with 27 components. Further, (275) i j can now be written down explicitly by the actio
of s2 on (2748) i j . No systematic work on projectors forq54 has been done.

C. The Laplacian W

From the analysis of Sec. IV B of thesu(3) representations contained in8∧q, 0<q<8, where
q is the ghost number, it can be seen that the statesw of the system are labeled by the eigenvalu
of the ghost number operatorQ5cip i , Qw5qw, and of thesu(3) CasimirsC2 andC3 that label
states within eachsu(3) representation. SinceW commutes withQ, C2 , C3 , we expect it to have
well-defined eigenvalues on all the states of the system, and we might further expect it
defined as a specific function ofQ, C2 , C3 .

Some progress can be made analytically to computeW eigenvalues. For example, forci and
di given by ~4.12!, which describeq51, q52 octets, we may compute directly from~4.5! the
results

Wci55ci , Wdi50. ~4.38!

These calculations, the latter already nontrivial, depend, among other things, on the identi

V i 1i 2i 3i 4pV i 1i 2i 3i 4q55dpq ,

~4.39!
V i 1i 2i 3abV i 1i 2i 3pq5 1

2~dapdbq2daqdbp1 f abif pqi!,

of which only the first follows from the definition ofV easily. Note also that sinceW distinguishes
between different octets, Eq.~4.38!, it cannot be a pure function of the Casimirs: it depends a
on Q, which does not belong to theU„su(3)… enveloping algebra.

The results of Sec. IV A also allow the minimal polynomials forC2 andC3 to be deduced.
These are

C2~C223!~C226!~C228!50, ~4.40!

C3~C319!~C329!50, ~4.41!

and the orthogonal projectors on the various eigenspaces forC2 andC3 are
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P0
~2!52 1

144~C223!~C226!~C228!, P0
~3!52 1

81~C319!~C329!,

P3
~2!5 1

45C2~C226!~C228!, P29
~3!5 1

162C3~C329!,

P6
~2!52 1

36C2~C223!~C228!, P9
~3!5 1

162C3~C319!,

P8
~2!5 1

80C2~C223!~C226!.

~4.42!

Further progress by analytic methods soon becomes difficult, and we have made
FORM.46 This enables us first to compute allW eigenvalues, discussed below, and to find
following identities:

C2C356C3 ,

C3
252 9

4C2~C223!~C228!,
~4.43!

C2W53W2 1
2C2~C223!~C228!,

W255W1 2
27C3

2.

These results allow the recovery of~4.40!, ~4.41! as a mild check on our procedures, and t
deduction of the minimal polynomial ofW,

W~W25!~W26!50, ~4.44!

which comprises, as it should, all the eigenvalues ofW found in practice. Also, the orthogona
projectors onto the eigenspaces ofW are

P0
~W!5 1

30~W25!~W26!, P5
~W!52 1

5W~W26!, P6
~W!5 1

6W~W25!. ~4.45!

Various useful inferences can be made regarding eigenspaces. For example, alongside the
result kerC2#kerW, we have kerW#kerC3 . Also,

P9
~3!1P29

~3!5P6
~2!5P6

~W! ,

P0
~2!P0

~W!5P0
~2! ,

~4.46!
P8

~2!P0
~W!5P8

~2! ,

P0
~W!1P5

~W!5P0
~3! .

So far no explicit expression forW in terms ofQ, C2 , C3 is at hand. The major complicatio
in the pattern of theW-eigenvalues of thesu(3) representations in8∧q concerns the octets. Fo
these, the ghost numberq51, 4, 4, 7 octets have eigenvalueW55 and theq52, 3, 5, 6 octets
W50. This suggests the use of Lagrangian interpolation to define a function,

f ~q!5 1
360@~q24!2210~q27!~q21!#~q22!~q23!~q25!~q26!, ~4.47!

which equals 1 atq51, 4, 4, 7 and 0 atq52, 3, 5, 6, so that for these values,f (q)25 f (q). It is
then immediate to see that the formula

W5 1
9C2~C226!~C228! f ~Q!2 1

6C2~C223!~C228!55P3
~2! f ~Q!16P6

~2! , ~4.48!

correctly predicts theW-eigenvalues of all states. The last two equations of~4.43! also follow
directly, using projector properties,f (Q)25 f (Q), and the second equation of~4.43!. We should
                                                                                                                



of

enting

ucible
outside

6028 J. Math. Phys., Vol. 40, No. 11, November 1999 Chryssomalakos et al.

                    
stress here thatf (Q)25 f (Q) holds only forqP$1,2,...,7%, whereas the allowed range of values
q is $0, 1,..., 8%. But this does not matter for~4.48!, because althoughf (Q) is finite ~5227! at
q50 andq58, C250 for theq50 andq58 states. Finally,FORM confirms thatW defined by
~4.48!, andW54!W4 given by ~4.5! are equal as operators.

A final remark about the form of~4.47!, ~4.48! is in order here. Observing thatf (Q)5
f (82Q), one is led to write~4.47! in terms ofuªQ(82Q), finding

f ~Q!5F~u!ª 1
40~u26!~u212!~u215! ~4.49!

~a form that can also be directly derived by Lagrangian interpolation!. A different approach is to
start from the minimal polynomial foru,

u~u27!~u212!~u215!~u216!50, ~4.50!

and write down directly a functionF̃(u), with F̃(u)50 atu50, 12, 15 andF̃(u)51 atu57, 16,

F̃~u!5P7
~u!1P16

~u! , ~4.51!

the projectorsPl
(u) being defined in the standard way from~4.50!. Using thisF̃(u) in place of

F(u)5 f (Q) in ~4.48! also gives correctlyW—the differenceF̃2F is annihilated byP3
(2) . We

note incidentally that the operatorsMi jªcip j2cjp i , i , j , generate the algebra spin~8!, the
quadratic Casimir of which is proportional tou ~since Mi j M i j 522u), i.e., ~4.48! gives W in
terms of the quadratic Casimirs ofsu(3) and spin~8!.

The results of the previous analysis may be summarized in the diagram of Fig. 1 repres
the spectra ofC2 , C3 , andW. The solid circular disk represents all the 285256 states available
in % i 50

8 8∧ i . The four quadrants represent the four eigenspaces~0, 3, 6, 8! of C2 while the numbers
in parentheses are the eigenvalues ofC2 , C3 valid in each disk segment~bordered by solid black
lines!. Dashed lines within each disk segment separate multiple copies of the same irred
representation, corresponding, in general, to states of a different ghost number. The arcs
the disk specify the three~0,5,6! W-eigenspaces. We summarize its key features.

FIG. 1. The spectrum of the Casimirs (C2 ,C3) and ofW4}W.
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~i! The eigenspace ImP6
(2) , equal to ImP6

(W) , is split into two parts with the same number
states, labeled by theC3 eigenvalues 9 and29. With the help of~4.11! we recognize these
respectively, as the10 and10 su(3) representations, each of which appears four times, with g
numbers 2, 3, 5, and 6.

~ii ! The ~0, 0! subspace~i.e., kerC25K2), contains four invariant states@the su(3) singlets
1#, with ghost numbers 0, 3, 5, and 8. All of them areW harmonic as well, i.e.,S4 singlets.

~iii ! ~8, 0! ~527! appears four times, with ghost numbers 3, 5, and 4~twice! and is alsoW
harmonic.

~iv! ~3, 0! ~58! appears eight times, with ghost numbers 1 to 7~twice for 4!.
The diagram shows thatK21Im P8

(2),K4,kerC3 . K4 contains half of the copies of th
adjoint representation, the rest belonging to theW eigenvalue 5.

To look now at the representations ofS2 andS4 in ~2.22! and~3.15!, it is convenient to depict
the su(3) representations as in the diagram of Fig. 2 and to analyze there the role playeds2 ,
s4 and their adjointss̄2 , s̄4 in interconnecting them. Eachstraight linesegment in this diagram
represents an irreducible representation. All segments in the same line correspond to th
ghost number, while singlets are represented by circles. The arrows between segments de
action of thes’s @solid ~black! lines for s2 , s̄2 , dotted~gray! lines for s4 , s̄4]; the number below
each segment is theW eigenvalue of the irreducible representation. In the following we den
e.g., by103 the irreducible representation10 with ghost number 3, while a further superscriptu( l )
@for upper~lower!# distinguishes between the two ghost number 4 representations84’s and274’s.
We point out the following.

~i! Referring to multiplets of the superalgebra~3.15! quartets-turned-into-pairs-of-doublet
according to the remark of Sec. III C, appear three times. ForS2 , the quartet$84

u ,85 ,83 ,84
l %

actually consists of the pair of doublets$85 ,84
u%, $84

l ,83%—a similar pattern is exhibited by th
27’s in the same orders as well as by theS4 quartet$84

u ,87 ,81 ,84
l %. The degeneracy seen in th

FIG. 2. Decomposition of% i 50
8 8∧ i into irreps of su(3) and the action ofs2( s̄2) and s4( s̄4) on them ~notice that

@s2( s̄2),W#Þ0). The eigenvalue ofW appears under each irrep.
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q54 line is then resolved by noting thats2 annihilates one octet ands̄2 the other~and similarly for
the 27!.

~ii ! Besides the above ‘‘split quartets,’’ we also have theS2 doublets$82 ,81%, $103 ,102%,
$103 ,102%, the S4 doublets $105 ,102%, $105 ,102%, and their * images $87 ,86%, $106 ,105%,
$106 ,105% and $106 ,103%, $106 ,103%, respectively. Notice thatW changes eigenvalue within a
S2 doublets involving8’s, reflecting its failure to commute withs2 .

~iii ! Thesu(3) ~and henceS2 , S4) singlet10 is simply the constant monomial 1, while13 is
the three-cocyclef i jkcicjck5Y. The other two singlets are the ‘‘top form’’c1¯c8 and the
five-cocycleV i 1¯ i 5

ci 1
¯ci 5, * images of the first two, respectively.

~iv! 81 consists of the eightck’s. This is ‘‘lifted’’ by s2 to give 82;$ f i j
kcicj% and bys4 ,

giving 84
l ;$V i 1i 2i 3i 4

kci 1ci 2ci 3ci 4%. 83 is the image of 81 under s̄2s4 , i.e., 83

;$ f i 1abV i 2i 3
abkci 1ci 2ci 3%. Theq→r 2q symmetry accounts for the rest of the8’s. Notice that82 ,

83 cannot be lifted bys4 since they areW-harmonic.

V. CONCLUDING REMARKS

We have introduced and studied in this paper the supersymmetry algebra generated
higher-order BRST operators. The central term in the algebra is given, in the standard~lowest-
order! case, by the~quadratic! Casimir. As shown explicitly by the expression ofW4 for the
algebraG5su(3), the higher-order Laplacians may involve the ghost number operator, wh
unlike the Casimir–Racah operators, lies outside the enveloping algebraU~G!. Thus, the fact that
DPU(G) in the standard case is rather exceptional.

We wish to conclude with a purely mathematical remark. Using the correspondenceci↔LI
forms on the group manifold, the standard BRST operators2 may be identified with the exterio
derivatived acting on forms. The basic properties ofd, d:∧q→∧q11, d250 ~and of the codiffer-
entiald! may be extended by introducing generalized operatorsd̄ in two different ways. One is by
replacing the exterior differential by a higher-order nilpotent endomorphismd̃8 satisfying (d̃8)k

50, to study the associated generalized homology, etc.47,48 This approach is reminiscent of th
one used to generalize ordinary supersymmetry to fractional supersymmetry~for a review with
earlier references see Ref. 49!. The second one replacesd by a pth-order differential,d̃, p odd,
satisfying d̃p :∧q→∧q1p, d̃p

250, and it is this second point of view that corresponds to
analysis presented in this paper. In fact, the higher BRST operators2m23 may be considered as a
explicit construction of this differential forp5(2m23), which actson LI forms on the group
manifold by translating~3.8! using the above correspondence.d̄p is an odd operator satisfying

d̃p~a∧b!5~ d̃pa!∧b1~21!na∧~ d̃pb!, ~5.1!

where n is the order of the LI forma. We recall that, using the~standard! product between
manifolds and forms~given by ^M,a&5*Ma) one can define the adjoint] of the exterior
derivatived. Acting on manifolds,] reduces their dimension by one, is nilpotent, and admits
interpretation as a boundary operator. Using an analogous procedure, one might think of d
the adjoint]̃p of d̄p as an operator. Acting on manifolds, it would reduce their dimension bp,
being also nilpotent, and the question would arise whether it, too, admits a simple topol
interpretation. One might also ask further, whether an analog of Stokes’ theorem could be f
lated along these lines or whether the spectrum of the higher-order Laplacians studied he
vides topological information about the underlying manifold. We do not know whether t
mathematical constructions involvingd̄p can be carried through, in general.

To conclude we would like to stress that the cohomological properties used in this pap
also relevant in other related fields, although it may not be directly apparent. They determin
classify, for instance, the local conserved charges, in principal, chiral models~see Refs. 50 and
references therein!, and are also important inW algebras~see, for instance, Refs. 51–54!, where
BRST-type techniques, and hence Lie algebra cohomology, are relevant.
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We make use of the properties of product integrals to obtain a surface product
integral representation for the Wilson loop operator. The result can be interpreted
as the non-Abelian version of Stokes’ theorem. ©1999 American Institute of
Physics.@S0022-2488~99!04610-1#

I. INTRODUCTION

Our main purpose of this work is to make use of product integrals to give two unambig
proofs of the non-Abelian version of Stokes’ theorem. The product integral formalism has
used extensively in the theory of differential equations and of matrix-valued functions.1 In the
latter context, it has a built-in feature for keeping track of theorder of the matrix-valued functions
involved. As a result, product integrals are ideally suited for the description ofpath ordered
quantities such as holonomies. Moreover, since the theory is well developed independe
particular applications, we can be confident that the properties of such path ordered quantit
we establish using this method are correct and unambiguous.

Among the important advantages of the product integral representation of the path-dep
exponential of a matrix-valued function is that in such a framework the Banach space struc
the corresponding matrix-valued functions is already built into the formalism. In particular,
closed path enclosing an orientable two-surface, this will permit a surface representation o
operators. Based on the central role of Stokes’ theorem in physics and in mathematics, it
surprising that the non-Abelian version of this theorem has attracted a good deal of attention
physics literature.2–12 The central features of the earlier attempts2–8 have been reviewed an
improved upon in a recent work.9 Other recent works on the non-Abelian Stokes theorem10–12

focus on specific problems such as confinement,11 zigzag symmetry12 suggested by Polyakov,13

etc. With one exception,9 the authors of these works seem to have been unaware of a 1927
in the mathematical literature by Schlessinger14 that bear strongly on the content of this theore
Schlesinger’s work dealt with integrals of matrix-valued functions and their ordering probl
This amounts to establishing the non-Abelian Stokes theorem in two~target space! dimensions. By
an appropriate extension and reinterpretation of his results, we show using the product i
approach that this theorem is valid in any target space dimension.

This work is organized as follows: To make this manuscript self-contained, we review in
II the main features of product integration1 and state without proof a number of theorems that w
be used in the proof of the non-Abelian Stokes theorem. In Sec. III, we deal with path or
exponentials of matrix-valued functions that can be expressed as product integrals and turn
proof of the non-Abelian Stokes theorem for orientable surfaces. In Sec. IV, we give a vari
this proof. In Sec. V, we explicitly demonstrate the gauge covariance of the results obtain
Secs. III and IV. Finally, Sec. V is devoted to some additional remarks.

a!Electronic mail: karp@physics.uc.edu
b!Electronic mail: mansouri@uc.edu
c!Electronic mail: rno@uc.edu
60330022-2488/99/40(11)/6033/11/$15.00 © 1999 American Institute of Physics
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II. SOME PROPERTIES OF PRODUCT INTEGRALS

One of the initial motivations for the introduction of product integrals was1 to solve differen-
tial equations of the type

Y8~s!5A~s!Y~s!. ~1!

In this expression,Y(s) is ann-dimensional vector,A(s) is a matrix-valued function, and a prim
indicates differentiation. So, for two real numbersa andb, the problem is to obtainY(b) given
Y(a). To deal with this problem, we make a partitionP5$s0 ,s1 ,...,sn% of the interval@a,b#. Let
Dsk5sk2sk21 for k51,...,n, and seta5s0 , b5sn . Then, solving the differential equation i
each subinterval, we can write approximately1

Y~b!')
k51

n

eA~sk!DskY~a![PP~A!Y~a!. ~2!

SinceA(s) is matrix valued, the order in this product is important. Letm(P) be the length of the
longestDsk in the partitionP. Then, asm(P)→0, we get

Y~b!5 lim
m~P!→0

PP~A!Y~a!. ~3!

The limit is clearly valid for allY(a).
The limit of the ordered product on the right-hand side of Eq.~3! is the fundamental expres

sion in the definition of a product integral.1 It is formally defined, in an obvious notation, as

)
a

x

eA~s!ds5 lim
m~P!→0

PP~A![F~x,a!. ~4!

It is easy to see thatF(x,a) satisfies the differential equation

d

dx
F~x,a!5A~x!F~x,a!, ~5!

with F(a,a)51. The corresponding integral equation is

F~x,a!511E
a

x

ds A~s!F~s,a!. ~6!

Clearly,F(a,a)51, andF(x,a) is unique.
Consider now some of the properties of the product integral matrices. For eachxP@a,b# the

product integral is nonsingular, and its determinant is given by

detS )
a

x

eA~s!dsD 5e*a
x tr A~s!ds. ~7!

In analogy with the additive property of ordinary integrals, product integrals have the multip
tive property, or the composition rule,

)
z

x

eA~s!ds5)
y

x

eA~s!ds)
z

y

eA~s!ds, ~8!

wherex,y,ze@a,b# and z<y<x. The result is independent of the choice ofy and any further
decomposition of the products on the right-hand side.

Derivatives with respect to the end points are given by
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]

]x )
y

x

eA~s!ds5A~x!)
y

x

eA~s!ds, ~9!

and

]

]y )
y

x

eA~s!ds52)
y

x

eA~s!dsA~y!. ~10!

One of the fundamental features associated with a connection is the notion of parallel transp
see how it can be formulated in product integral formalism, consider a mapP:@a,b#→Cn3n ,
which is continuously differentiable. ThenP(x) is an indefinite product integral if for a give
A(s),

P~x!5)
a

x

eA~s!dsP~a!. ~11!

Next, we define an operation known asL operation that is like the logarithmic derivativ
operation on non-singular functions. Let

LP~x!5P8~x!P21~x!, ~12!

where the prime indicates differentiation. Then, from Eq.~11! it follows that

~LP!~x!5A~x!.

One of the byproducts of this operation is that

L~PQ!~x!5LP~x!1P~x!„LQ~x!…P21~x!. ~13!

The L operation is a crucial ingredient in establishing the analog of the fundamental theor
calculus for product integrals. With the mapP as defined above, this theorem states that

)
a

x

e~LP!~s!ds5P~x!P21~a!. ~14!

From the results given above, it follows thatP is a solution of the initial value problem,

P8~x!5~LP~x!!P~x!. ~15!

With the unique solution given by Eq.~11!, this establishes the fundamental theorem of prod
integration. Just as in ordinary integration, the knowledge of simple product integrals can b
to evaluate more complicated product integrals. For example, one can prove thesum rule for
product integrals:

)
a

x

e@A~s!1B~s!#ds5P~x!)
a

x

eP21~s!B~s!P~s!ds. ~16!

Finally, we state two other important properties of product integrals that will be used in the se
One is thesimilarity theorem, which states that

P~x!)
a

x

eB~s!dsP21~a!5)
a

x

e@LP~s!1P~s!B~s!P21~s!#ds. ~17!

The other property is differentiation with respect to a parameter. Let
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P~x,y;l!5)
y

x

eA~s;l!ds, ~18!

wherel is a parameter. Then the differentiation rule with respect to this parameter is given

]

]l
P~x,y;l!5E

y

x

ds P~x,s;l! S ]

]l
A~s;l! D P~s,y;l!. ~19!

III. THE NON-ABELIAN STOKES THEOREM

To provide the background for using the product integral formalism of Sec. II to prove
non-Abelian Stokes theorem, we begin with a statement of the problem as it arises in a ph
context. LetM be ann-dimensional manifold representing the space–time~target space!. Let A be
a ~connection! one-form onM. WhenM is a differentiable manifold, we can choose a local ba
dxm, m51,...,n, and expressA in terms of its components:

A~x!5Am~x!dxm.

We takeA to have values in the Lie algebra, or a representation thereof, of a Lie group. Then
Tk , k51,...,m, representing the generators of the Lie group, the components ofA can be written
as

Am~x!5Am
k ~x!Tk .

With these preliminaries, we can express the path ordered phase factor of the non-Abelian
theories15–18 in the form

Wab~C!5Pe*e
bA,

whereP indicates path ordering, andC is a path inM. When the pathC is closed, the correspond
ing holonomy operator becomes

W~C!5PerA. ~20!

The pathC in M can be described in terms of an intrinsic parameters, so that for pointsxm of M,
which lie on the pathC, we havexm5xm(s). One can then write

Am„x~s!…dxm5A~s!ds,

where

A~s![Am
„x~s!…

dxm~s!

ds
.

It is the quantityA(s), and the variations thereof, which we will identify with the matrix-valu
functions of the product integral formalism.

Let us next consider the loop operator. For simplicity, we assume thatM has trivial first
homology group with integer coefficients, i.e.,H1(M ,Z)50. This ensures that the loop may b
taken to be the boundary of a two-dimensional surfaceS in M. More explicitly, we take the
two-surface to be an orientable submanifold ofM. It will be convenient to describe the propertie
of the two-surface in terms of its intrinsic parameterss andt or sa, a50,1. So, for the points of
the manifoldM, which lie onS, we havex5x(s,t). The components of the one-formA on S can
be obtained by means of the vielbeins~by the standard pullback construction!:

va
m5]axm~s!.
                                                                                                                



ecific
s of a

ral as

the
actor

l,
ilarly

oduct
two-

tes of

r
con-

6037J. Math. Phys., Vol. 40, No. 11, November 1999 Product integral formalism and non-Abelian . . .

                    
Thus, we get

Aa5va
mAm .

The curvature two-formF of the connectionA is given by

F5dA1A∧A5 1
2Fmn dxm∧dxn.

The components ofF on S can again be obtained by means of the vielbeins:

Fab5va
mvb

nFmn .

We want to express the loop operator in terms of the product integral definition in a sp
way. To achieve this, we begin with the definition of the path ordered phase factor in term
product integral. Consider the continuous mapA:@s0 ,s1#→Cn3n , where@s0 ,s1# is a real interval.
Then, we define the non-Abelian phase factor given above in terms of a product integ
follows:

Pe*
s0

s1A~s!ds[)
s0

s1

eA~s!ds.

In particular, anticipating that we will identify the closed pathC over which the Wilson loop is
defined with the boundary of a two-surface, it is convenient to work from the beginning with
matrix-valued functionsA(s,t). This means that our expression for the path ordered phase f
will depend on a parameter. That is, let

A:@s0 ,s1#3@t0 ,t1#→Cn3n , ~21!

where @s0 ,s1# and @t0 ,t1# are real intervals on the two surfaceS and hence inM. Then, we
define the path ordered phase factor,

P~s,s0 ;t!5)
s0

s

eA1~s8;t!ds8[Pe*s0

s A1~s8;t!ds8. ~22!

In this expression,P indicates path ordering with respect tos as defined by the product integra
while t is a parameter. To be able to describe such an operator for a closed path, we sim
define the path-dependent operator,

Q~s;t,t0!5)
t0

t

eA0~s;t8!dt8[Pe*t0

t A0~s;t8!dt8. ~23!

In this case, the path ordering is with respect tot, ands is a parameter.
To prove the non-Abelian version of the Stokes theorem, we want to make use of pr

integration techniques to express the holonomy loop operator as an integral over a
dimensional surface bounded by the corresponding loop. In terms of the intrinsic coordina
such a surface, we can write this loop operator in the form

W~C!5PerAa dsa
, ~24!

where, as mentioned above,

sa5~t,s!; a5~0,1!. ~25!

The expression for the loop operator depends only on the homotopy class of paths inM to which
the closed pathC belongs. We can, therefore, parametrize the pathC in any convenient manne
consistent with its homotopy class. In particular, we can break up the path into piecewise
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tinuous segments along which eithers or t remains constant. The composition rule for produ
integrals given by Eq.~8! ensures that this breakup of the closed loop into a number of segm
does not depend on the intermediate points on the closed path, which are used for this purp
we write the closed loop operator as

W5W4W3W2W1 . ~26!

In this expression,Wk , k51,...,4, are Wilson lines such thatt5const alongW1 andW3 , ands
5const alongW2 andW4 . We emphasize that the expressionss5const andt5const represen
arbitrary curves.

To see the advantage of parametrizing the closed path in this manner, consider the ex
of Eq. ~24!:

Aa dsa5A0 dt1A1 ds. ~27!

Along each segment, one or the other of the terms on the right-hand side vanishes. For ex
along the segment@s0 ,s#, we havet85t05const. Recalling Eqs.~22! and ~23!, we get for the
segmentsW1 andW2 , respectively,

W15)
s0

s

eA1~s8;t0!ds8[Pe*s0

s A1~s8;t0!ds85P~s,s0 ;t0!, ~28!

and

W25)
t0

t

eA0~s;t8!dt8[Pe*t0

t A0~s;t8!dt85Q~s;t,t0!. ~29!

When the two-surfaceS requires more than one coordinate patch to cover it, the connec
in different coordinate patches must be related to each other in their overlap region by tran
functions.16 Then, the decomposition given in Eq.~26! must be suitably augmented to take th
complication into account. The product integral representation of the path ordered phase fac
the composition rule for product integrals given by Eq.~8! will still make it possible to describe
the corresponding loop operator as a composite product integral. For definiteness, we will c
ourselves to the representation given by Eq.~26!.

It is convenient for later purposes to define two composite Wilson line operatorsU and T
according to

U~s,t!5Q~s;t,t0!P~s,s0 ;t!, ~30!

T~s;t!5P~s,s0 ;t!Q~s0 ;t,t0!. ~31!

Using the first of these, we have

W2W15U~s,t!. ~32!

Similarly, we have, forW3 andW4 ,

W35P21~s,s0 ;t!, ~33!

and

W45Q21~s0 ;t,t0!. ~34!

From Eq.~31!, it follows that

W4W35T21~s,t!. ~35!
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Appealing again to Eq.~8! for the composition of product integrals, it is clear that this express
for the Wilson loop operator is independent of the choice of the point~s,t!. In terms of the
quantitiesT andU, the closed loop operator will take the compact form

W5T21~s;t!U~s;t!. ~36!

As a first step in the proof of the non-Abelian Stokes theorem, we obtain the action o
L-derivative operator onW:

LtW5Lt@T21~s,t!Q~s;t,t0!P~s,s0 ;t0!#. ~37!

Using the definition of theL operation given by Eq.~12!, noting thatP(s,s0 ;t0) is independent
of t, and carrying out theL operations on the right-hand side~rhs!, we get

LtW5LtT
21~s,t!1T21~s,t!@LtQ~s;t,t0!

1Q~s;t,t0!„LtP~s,s0 ;t0!…Q21~s;t,t0!#T~s,t!. ~38!

Simplifying this expression by means of Eqs.~12! and ~13!, we end up with

LtW5T21~s,t!@A0~s,t!2LtT~s,t!#T~s,t!. ~39!

Next, we prove the analog of Eq.~14!, which applies to an elementary product integral, for t
composite loop operator defined by Eqs.~26! and ~36!.

Theorem 1: The loop operator given by Eq. (36) can be expressed in the form

W5)
t0

t

eT21~s,t8!@A0~s,t8!2LtT~s,t8!#T~s,t8!dt8. ~40!

To prove this theorem, first we note from the definition of theL operation that the right-hand sid
~rhs! of this equation can be written as

rhs5)
t0

t

e@T21~s;t8!A0~s;t8!T~s;t8!2T21~s;t8!~]/]t8!T~s;t8!#dt8. ~41!

Noting that2T21 ]tT5LtT, we can use the similarity theorem given by Eq.~17! to obtain

rhs5T21~s;t!)
t0

t

eA0~s;t8!dt8T~s;t0!. ~42!

Moreover, making use of the defining Eq.~23!, we get

rhs5T21~s;t!Q~s;t,t0!P~s,s0 ;t0!Q~s;t0 ,t0!5T21~s;t!U~s;t!. ~43!

The last line is clearly the expression forW given by Eq.~36!.
Finally, we want to express the quantityW in yet another form, which we state as th

following.
Theorem 2: The loop operator defined in Eq. (36) can be expressed as a surface integ

the field strength:

W5)
t0

t

e*s0

s T21~s8;t8!F01~s8;t8!T~s8;t8!ds8 dt8, ~44!

where F01 is the 0–1 component of the non-Abelian field strength.
To prove this theorem, we note that
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]

]s
@T21~s,t!A0~s,t!T~s,t!#5T21~s,t!@]sA0~s,t!1@A0~s,t!,A1~s,t!##T~s,t!.

~45!

Moreover,

]

]s
$T21~s,t!~LtT~s,t!!T~s,t!%5T21~s,t!]tA1~s,t!T~s,t!. ~46!

It then follows that

]

]s
„$T21~s,t!@A0~s,t!2LtT~s,t!#%T~s,t!…

5T21~s,t!F ]

]s
A0~s,t!2

]

]t
A1~s,t!1@A0~s,t!,A1~s,t!#GT~s,t!

5T21~s,t!F01~s,t!T~s,t!. ~47!

The last step follows from the definition of the field strength in terms of the connection g
above:

F015
]

]s
A0~s,t!2

]

]t
A1~s,t!1@A0~s,t!,A1~s,t!#. ~48!

Integrating Eq.~47! with respect tos, we get

T21~s,t!@A0~s,t!2LtT~s,t!#T~s,t!5E
s0

s

T21~s8;t8!F01~s8;t8!T~s8;t8!ds8 dt8.

~49!

We thus arrive at the surface integral representation of the loop operator:19

W5)
t0

t

e*s0

s T21~s8;t8!F01~s8;t8!T~s8;t8!ds8 dt8. ~50!

We note that in this expression the ordering of the operators is defined with respect tot, whereas
s is a parameter. Recalling the antisymmetry of the components of the field strength, w
rewrite this expression in terms of path ordered exponentials familiar from the physics liter

W5Pte
~1/2!*Sdsab T21~s;t!Fab~s;t!T~s;t!, ~51!

wheredsab is the area element of the two-surface. Despite appearances, it must be remem
that s andt play very different roles in this expression.

IV. A SECOND PROOF

To illustrate the power and the flexibility of the product integral formalism, we give he
variant of the previous proof for the non-Abelian Stokes theorem. This time the proof m
essential use of the nontrivial relation~19! for product integrals. We start with the form ofW given
in Eq. ~36! and take its derivatives with respect tot:
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]W

]t
5]tQ

21~s0 ;t,t0!P21~s,s0 ;t!Q~s;t,t0!P~s,s0 ;t0!

1Q21~s0 ;t,t0!]tP
21~s,s0 ;t!Q~s;t,t0!P~s,s0 ;t0!

1Q21~s0 ;t,t0!P21~s,s0 ;t!]tQ~s;t,t0!P~s,s0 ;t0!. ~52!

Here, we have made use of the fact thatP(s,s0 ;t0) is independent oft. Applying Eq.~12! to W
and using Eq.~31!, we get

LtW5
]W

]t
W215T21~s;t!@A0~s;t!2P~s,s0 ;t!A0~s0 ;t!P21~s,s0 ;t!

2]tP~s,s0 ;t!P21~s,s0 ;t!#T~s;t!. ~53!

Now we can use Eq.~19! to evaluate the derivative of the product integral with respect to
parametert :

]tP~s,s0 ;t!5E
s0

s

ds8 P~s,s8;t!]tA1~s8;t!P~s8,s0 ;t!. ~54!

Then, after some simple manipulations using the defining equations for the various terms
~53!, we get, settingP(s,s0;t)5P(t),

T21~s;t!]tP~t!P21~t!T~s;t!5E
s0

s

ds8 T21~s8;t!]tA1~s8;t!T~s8;t!. ~55!

Using Eq.~9! and the fact thatP(s0 ,s0 ;t)51, we can write the rest of Eq.~53! as an integral
too:

T21~s;t!@A0~s;t!2P~s,s0 ;t!A0~s0 ;t!P21~s,s0 ;t!#T~s;t!

5Q21~s0 ;t,t0!@P21~s,s0 ;t!A0~s;t!P~s,s0 ;t!2A0~s0!#Q~s0 ;t,t0!

5E
s0

s

ds8 P21~s8,s0 ;t!„]tA0~s8,t!1@A0~s8,t!,A1~s8,t!#…P~s8,s0 ;t!. ~56!

Combining Eqs.~53!, ~55!, and~56!, we obtain

LtW5
]W

]t
W215E

s0

s

ds8 T21~s8,t!F01~s8,t!T~s8,t!. ~57!

Finally, recalling Eq.~14!, we are immediately led to Eq.~50!, which was obtained by the
previous method of proof.

There are two reasons for the relative simplicity of this proof over the one that was giv
the previous section. One is due to the use of differentiation with respect to a parameter acc
to Eq.~19!. The other is due to the use of Eq.~14! for the composite operatorW. In the first proof,
the use of this theorem forW was not assumed. Its justification for using it in the second proof
in the composition law for product integrals given by Eq.~8!.

V. GAUGE COVARIANCE OF THE RESULT

As a consistency check, we must show that the surface representation given by Eq.~50! is
gauge covariant. To this end, it will be recalled that under a gauge transformation, the comp
of the connection, i.e., the gauge potentials, transform according to20
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Am~x!→g~x!Am~x!g21~x!2g~x!]mg~x!21. ~58!

The components of the field strength~curvature! transform covariantly:

Fmn~x!→g~x!Fmn~x!g21~x!. ~59!

From these, it follows that20

Pe*a
bAm~x!dxm→g~b!~Pe*a

bAm~x!dxm
!g21~a!. ~60!

Equivalently, from its definition~22! in terms of product integrals, it is easy to show that the ga
transform of the quantityP(s,s0 ;t) has the form

g~s;t!g21~s0 ;t!)
s0

s

eg~s0 ;t!A1~s8;t!g21~s0 ;t!. ~61!

To show the gauge covariance of the surface representation, we need to know ho
operatorT(s,t) transforms under gauge transformations. To this end, we note that the Wilso
Q(s;t,t0) given by Eq.~23! transforms as

Q~s;t,t0!5)
t0

t

eA0~s;t8!dt8→g~s;t!Q~s;t,t0!g21~s;t0!. ~62!

Then, the gauge transform of the composite operatorT(s,t) given by Eq.~31! follows immedi-
ately:

T~s;t!5P~s,s0 ;t!Q~s0 ;t,t0!→g~s;t!T~s;t!g21~s0 ;t0!. ~63!

From the above results, it is straightforward to show that the surface integral representa
Wilson loop transforms as

W→)
t0

t

eg~s0 ;t0!~*s0

s T21~s8;t8!F01~s8;t8!T~s8;t8!dt8!g21~s0 ;t0!. ~64!

It follows from the composition rule~8! that the constant factors in the exponent factorize, so
under gauge transformations the surface representation of transforms covariantly, i.e.,

W→g~s0 ;t0!)
t0

t

e*s0

s T21~s8;t8!F01~s8;t8!T~s8;t8!dt8g21~s0 ;t0!. ~65!

We view this result as a nontrivial confirmation of our proofs.

VI. CONCLUDING REMARKS

We have provided two proofs of the non-Abelian Stokes theorem using the product in
method. An immediate question that comes to mind is whether there is a supersymmetric
alization of this theorem. Given the important developments in supersymmetric gauge theo
recent years, this question is not merely of academic interest. To explore this possibility usi
product integral method, it is necessary to generalize this method to encompass Grassmann
operators. It turns out that such a generalization is indeed possible.21 Further developments of thi
subject will be reported in a forthcoming work.
                                                                                                                



OE-
is also
itial

ys.
s.

ys.
bles

tokes

. Rev.

6043J. Math. Phys., Vol. 40, No. 11, November 1999 Product integral formalism and non-Abelian . . .

                    
ACKNOWLEDGMENTS

This work was supported in part by the Department of Energy under Contract No. D
FGO2-84ER40153. The hospitality of the Aspen Center for Physics in the Summer of 1998
gratefully acknowledged. We are also grateful to Dr. M. Awada for valuable input at the in
stages of this work.

1J. D. Dollard and C. N. Friedman, Product Integration~Addison-Wesley, New York, 1979!.
2M. B. Halpern, ‘‘Field strength and dual variable formulations of gauge theory,’’ Phys. Rev. D19, 517 ~1979!.
3Y. Aref’eva, ‘‘Non-Abelian Stokes formula,’’ Theor. Math. Phys.43, 353 ~1980!.
4P. M. Fishbane, S. Gasiorowicz, and P. Kaus, ‘‘Stokes’ Theorems for non-Abelian fields,’’ Phys. Rev. D24, 2324
~1981!.

5N. E. Bralic, ‘‘Exact computation of loop averages in two-dimensional Yang–Mills theory,’’ Phys. Rev. D22, 3090
~1980!.

6L. Diosi, ‘‘Comments on the non-Abelian Stokes theorem,’’ Phys. Rev. D27, 2552~1983!.
7Y. A. Simonov, ‘‘Cluster expansion, non-Abelian Stokes theorem, and magnetic monopoles,’’ Sov. J. Nucl. Ph50,
134 ~1989!; Y. A. Simonov, ‘‘Topological charges and convergence of the cluster expansion,’’ Sov. J. Nucl. Phy50,
310 ~1989!.

8B. Broda, inAdvanced Electromagnetism, edited by T. Barrett and D. Grimes~World Scientific, Singapore, 1995!.
9M. Hirayama and S. Matsubara, ‘‘Stokes theorem for loop variables of non-Abelian gauge field,’’ Prog. Theor. Ph99,
691 ~1998!; M. Hirayama, M. Kanno, M. Ueno, and H. Yamakoshi, ‘‘Non-Abelian Stokes theorem for loop varia
associated with nontrivial loops,’’ hep-th/9806098.

10D. Diakonov and V. Petrov, ‘‘Non-Abelian Stokes theorem and quark–monopole interaction,’’ hep-th/9606104.
11F. A. Lunev, ‘‘Pure bosonic worldline path integral representation for fermionic determinants, non-Abelian S

theorem, and quasiclassical approximation in QCD,’’ Nucl. Phys. B494, 433 ~1997!.
12E. Alvarez, C. Gomez, and T. Ortin, ‘‘String representation of Wilson loops,’’ hep-th/9806075.
13A. M. Polyakov, ‘‘String theory and quark confinement,’’ Nucl. Phys.~Proc. Suppl.! 68, 1 ~1997!; A. M. Polyakov, ‘‘The

wall of the cave,’’ hep-th/9809057.
14L. Schlessinger, Math. Ann.99, 413 ~1927!.
15S. Mandelstam, ‘‘Gauge independent formulation of electrodynamics,’’ Ann. Phys.~N.Y.! 19, 1 ~1962!.
16T. T. Wu and C. N. Yang, ‘‘Concept Of non-integrable phase factors and global formulation of gauge fields,’’ Phys

D 12, 3845~1975!.
17K. G. Wilson, ‘‘Confinement of quarks,’’ Phys. Rev. D10, 2445~1974!.
18A. M. Polyakov, ‘‘Compact gauge fields and the infrared catastrophe,’’ Phys. Lett. B59, 82 ~1975!.
19A preliminary version of this work was presented at theInternational Conference on Orbis Scientiae 1998, Fort

Lauderdale, Florida, 17–21 December 1998.
20Our conventions follow closely M. E. Peskin and D. V. Schroeder,An Introduction to Quantum Field Theory~Addison-

Wesley, New York, 1995!.
21R. L. Karp and F. Mansouri, University of Cincinnati preprint UCTP102.99, and in preparation.
                                                                                                                



ssical
l de-
-

i-
imple
thod
antum
er
iver-
al
More-
rential

f
tions.
eed of

egant
ant of

rator.
ressed

ode,
he ratio

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 11 NOVEMBER 1999

                    
Functional determinants from Wronski Green functions
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A general technique is developed for calculating functional determinants of second-
order differential operators with Dirichlet, periodic, and antiperiodic boundary con-
ditions, without the knowledge of spectral properties. As an example, we give
explicit formulas for a harmonic oscillator with an arbitrary time-dependent fre-
quency, where our result is a generalization of the Gel’fand–Yaglom famous for-
mula for Dirichlet boundary conditions. Our technique is based on the Wronski’s
construction of Green functions, which does not require spectral knowledge. Our
final formula expresses the ratios of functional determinants in terms of an ordinary
232 determinant of a constant matrix constructed from two linearly independent
solutions of the homogeneous differential equations associated with second-order
differential operators. For ratios of determinants encountered in semiclassical fluc-
tuations around a classical solution, the result can further be expressed in terms of
the classical solution. Special properties of operators with a zero mode are exhib-
ited. © 1999 American Institute of Physics.@S0022-2488~99!02609-2#

I. INTRODUCTION

Gaussian path integrals appear in many physical problems, for instance, in all semicla
approximations of fluctuating systems. They typically require the evaluation of a functiona
terminant of a second-order differential operator.1 For Dirichlet boundary conditions, a first gen
eral solution of this problem was given by Gel’fand and Yaglom,2 based on the lattice approx
mation to path integrals in the continuum limit. Their result was expressed in terms of a s
differential equation for the functional determinant. Unfortunately, the Gel’fand–Yaglom me
becomes rather complicated for periodic and antiperiodic boundary condition relevant in qu
statistics~see Sec. 2.12 in Ref. 1!. In recent work,3,4 functional determinants of second-ord
differential operators were calculated via a reduction to the simpler first-order formalism. D
gences were removed by zeta-function regularization,5 which has the disadvantage of a physic
quantity depending unnecessarily on the analytic properties of generalized zeta functions.
over, the first-order formalism makes the treatment of zero modes of the second-order diffe
operator quite cumbersome.6

In this paper we present a systematic method for findingratio functional determinants o
second-order differential operators with Dirichlet, periodic, and antiperiodic boundary condi
By focusing our attention upon ratios instead of the determinants themselves, we avoid the n
regularization. The main virtue of our method is that it takes advantage of Wronski’s el
construction method for Green functions. This permits us to reduce the functional determin
a second-order differential operator to an ordinary determinant of a constant 232 matrix formed
from solutions of the homogeneous differential equation associated with the differential ope

For semiclassical fluctuations around a classical solution, our final result can be exp
entirely in terms of a classical trajectory. Furthermore, for fluctuation operators with a zero m
a case encountered in many semiclassical calculations, we find a universal expression for t
of determinants without the zero mode.

a!Electronic mail: kleinert@physik.fu-berlin.de
b!On leave from LCTA, JINR, Dubna, Russia.
60440022-2488/99/40(11)/6044/8/$15.00 © 1999 American Institute of Physics
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II. BASIC RELATIONS

The typical fluctuation action arising in semiclassical approximations has a quadratic
grangian of the form

Lfl5
M

2
@ ẋ22V2~ t !x2#. ~1!

Physically, this Lagrangian describes a harmonic oscillator with a time-dependent frequ
V(t). The path integral for such a system was studied in several papers.7,8 For such an oscillator,
both the quantum mechanical propagator and the thermal partition function contain a phase
exp@iAcl(x)# and are multiplied by a pre-exponential fluctuation factor proportional to

F~ tb ,ta!;S DetK1

DetK̃
D 21/2

, ~2!

whereK152] t
22V2(t)[K02V2(t) is the kernel of the second variation of actionA@x#) along

the classical pathxcl(t). The linear operatorK1 acts on the space of twice differentiable function
y(t)5dx(t) on an intervaltP@ ta ,tb# with appropriate boundary conditions. These are Dirich
boundary conditionsy(ta)5y(tb)50 in the quantum-mechanical case, and periodic~antiperiodic!
y(tb)56y(ta),ẏ(tb)56 ẏ(ta) in the quantum statistical case. In these two cases the operatK̃
may be chosen asK0 or K02v0

2, respectively, wherev0 is a time-independent oscillator fre
quency. The ratio of determinants~2! arises naturally from the normalization of the path integr
and is well defined.1 Furthermore, this ratio has the Fredholm property

DetK1

DetK̃
5DetK̃21K1 , ~3!

with a multiplicative anomaly being equal to unity.9 Since the operatorK̃21K1 is of the formI
1B, with B an operator of the trace class, it has a well-defined determinant, even withou
regularization.

To calculateF(tb ,ta), we introduce a one-parameter family of operatorsKg depending lin-
early on the parameterg:Kg5K02gV2(t), 0<g<1. The above property~3! allows us to make
use of the well-known formula log DetK̃21Kg5Tr log K̃21Kg to relate theg derivative of the
logarithm of the ratio~2! to the trace of the Green function of the operatorKg as follows:

]g log DetK̃21Kg52Tr V2~ t !Gg~ t,t8!, ~4!

the Green function being defined by

Gg~ t,t8!5@2] t
22gV2~ t !#21d~ t2t8!. ~5!

Another proof of Eq.~4! can be found in Ref. 3. Note that formula~4! holds for the operatorKg

by itself rather than the ratioK21Kg , provided we regularize the divergent trace on the right-ha
side with the help of a generalized zeta functionszKg

(s)5( il
2s, where the sum runs over al

eigenvalues of the operatorKg . The sum converges for sufficinetly larges and may be defined for
smallers by analytic continuation~see Ref. 5!. The zeta function yields the functional determina
itself via the formula DetKg5exp@2zKg

8 (0)#.

By integrating~4!, we obtain for the ratio of functional determinants~3!:

DetK̃21Kg5C expH 2E
0

g

dg8E
ta

tb
dt V2~ t !Gg8~ t,t !J , ~6!
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whereC5DetK̃21K0 is a g-independent constant. This is our basic formula to be suppleme
by an appropriate boundary condition to Eq.~5! for the Green function, as we shall now discuss
detail.

III. DIRICHLET BOUNDARY CONDITIONS

A general solution of Eq.~5! may be expressed in terms of advanced or retarded G
functions as follows:

Gg
2~ t,t8!5Gg

1~ t8,t !5Q tt8• f g~ t,t8!, ~7!

whereQ tt85Q(t2t8) is Heaviside’s function andf g(t,t8) is a combination,

f g~ t,t8!5
1

Wg
@hg~ t !jg~ t8!2jg~ t !hg~ t8!#, ~8!

of two linearly independent solutionshg(t) andjg(t) of the homogeneous equation,

@2] t
22gV2~ t !#hg~ t !50. ~9!

The constantWg is the time-independent Wronski determinantWg5hgj̇g2ḣgjg . The solution
~7! is not unique since it leaves room for an additional general solution of the homogen
equation~9! with an arbitrary coefficient. This freedom is removed by appropriate boun
conditions. Consider first the quantum mechanical case, which requires Dirichlet boundar
ditions y(tb)5y(ta)50 for the eigenfunctionsy(t) of K1 , implying for the Green function the
boundary conditions

Gg~ ta ,t8!50, t<t8,
~10!

Gg~ t8,tb!50, t8<t.

The operatorK̃ in the ratio ~2! is equal toK0 , and the constantC in Eq. ~6! is unity. After
imposing~10!, the Green function is uniquely given by Wronski’s formula:

Gg~ t,t8!5
Q tt8 f g~ t8,ta! f g~ tb ,t !1Q t8t f g~ t,ta! f g~ tb ,t8!

f g~ ta ,tb!
, ~11!

where

f g~ ta ,tb!5
DetLg

Wg
Þ0, ~12!

with L being a constant (232)-matrix,

L5S ha ja

hb jb
D , ~13!

formed from the solutionshg(t) and jg(t) at arbitrarygÞ1. Note that these solutions are r
stricted only to the condition~12!. The result is unique and well defined, assuming the absenc
a zero modej(t) of the operatorK1 with Dirichlet boundary conditionsja5jb50. Such a mode
would cause problems, since according to~10!, the Wronski determinantW would vanish at the
initial point, and thus for allt.

Excluding zero modes, we obtain from~8!:
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Tr V2~ t !Gg~ t,t8!5
1

f g~ ta ,tb!
E

ta

tb
dt V2~ t ! f g~ t,ta! f g~ tb ,t !. ~14!

To perform the time integral on the right-hand side, we make use of the identity

V2~ t !j~ t !h~ t !5] t@ḣg~ t !]gjg~ t !2hg~ t !]gj̇g~ t !#. ~15!

This follows from Eq.~9! for hg(t), and an analogous equation forj g̃(t), after multiplying the
first by j g̃(t) and the second byhg(t), and taking their difference. In the limitg̃→g, we obtain
~15! from the linear term ing̃2g. Inserting~15! into ~14!, we see that

Tr V2~ t !Gg~ t,t8!52]g logS DetLg

Wg
D . ~16!

Substituting~16! into ~6!, we find

DetK0
21K15

DetL1

W1
Y DetL0

W0
, ~17!

where DetL0 /W05tb2ta . In a time-sliced quantum mechanical path integral, where the
slices have the widthe, the determinant ofK052] t

2 is finite and has the value1

DetK05~ tb2ta!/e, ~18!

so that we obtain

DetK15D~ tb!/e, ~19!

whereD(t)5@h1(ta)j1(t)2h1(t)j1(ta)#/W1 is a solution of the Gel’fand–Yaglom initial valu
problem~see Sec. 2.7 in Ref. 1!:

K1D~ t !50; D~ ta!50, Ḋ~ ta!51. ~20!

For a harmonic oscillator with a time-dependent frequencyV(t), it is convenient to relate the se
of two independent solutionsh1(t) andj1(t) to the classical pathxcl(t)5xaj(t)1xbh(t) satis-
fying the end point conditionsxcl(ta)5xa and xcl(tb)5xb . Since this construction satisfiesha

5jb50, hb5ja51, andW5 j̇b52ḣa , the explicit solution being

j~ t !5
]xcl~ t !

]xa
5

q~ t !qb sinv0~tb2t!

qaqb sinv0~tb2ta!
,

~21!

h~ t !5
]xcl~ t !

]xb
5

q~ t !qa sinv0~t2ta!

qaqb sinv0~tb2ta!
.

They are parametrized by two functionst(t) andq(t) satisfying the constraint

v0ṫq251, ~22!

where v0 is an arbitrary constant frequency. The functionq(t) satisfies the Ermakov–Pinne
equation,10

q̈1V2~ t !q2q2350. ~23!
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Inserting~21! into ~17!, we obtain for the harmonic oscillator with a time-dependent freque
V(t) the ratio of functional determinants,

DetK0
21K15

qaqb sinv0~tb2ta!

~ tb2ta!
, ~24!

where subscriptsa and b indicate evaluation att5ta and t5tb , respectively. We check this
representation by expressing the right-hand side in terms of the classical actionAcl(x). With the
same normalization as in~18!, this yields the well-known one-dimensional Van-Vleck formula

DetK152M @]2Acl~xa ,xb ;tb2ta!/]xa ]xb#21. ~25!

To conclude this section we note that the ratio~17! can easily be extended to the stochas
case, where the final position of the trajectoryx(t) remains unspecified. To this end we consid
Eqs. ~14! and ~15! with a variable upper timet8>t>ta . Then the eigenvalues of the operat
K0

21K1 become functions oft8 with a phase factor produced by each passage through a
point.

IV. PERIODIC AND ANTIPERIODIC BOUNDARY CONDITIONS

Consider now periodic~antiperiodic! boundary conditionsy(tb)56y(ta), ẏ(tb)56 ẏ(ta) for

the eigenfunctionsy(t) of the operatorK1 and for the Green functionG
p
a(t,t8):

Ga
p
~ tb ,t8!56Ga

p
~ ta ,t8!,

~26!

Ġa
p
~ tb ,t8!56Ġa

p
~ ta ,t8!,

whereT5tb2ta is the period. In both cases, the frequencyV(t) and Dirac’sd function in Eq.~5!
are also assumed to be periodic~antiperiodic! with the same period. The general solution of E
~5! satisfying the boundary conditions~26! is constructed by adding to~7! an expression of the
same type as before, using the same homogeneous solutionshg(t) andjg(t). The result has the
form

G
g
a
p

~ t,t8!5Gg~ t,t8!7
@ f g~ t,ta!6 f g~ tb ,t !#@ f g~ t8,ta!6 f g~ tb ,t8!#

Da
p
• f g~ ta ,tb!

, ~27!

with the condition

Da
p
5

DetL̄
g
a
p

Wg
Þ0, ~28!

whereL̄a
p

are now the (232)-constant matrices,

L̄a
p
5S ~hb7ha! ~jb7ja!

~ ḣb7ḣa! ~ j̇b7 j̇a!,
D , ~29!

evaluated atgÞ1. In analogy to Eq.~16! we now find the formula

Tr V2~ t !Gg
a
p

~ t,t8!52]g logS DetL̄
g
a
p

Wg
D . ~30!
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Substituting this into~6! and settingg51, we obtain the ratio of the functional determinants
periodic boundary conditions,

DetK̃21K15
DetL1

p

W1
Y4 sin2

v0~ tb2ta!

2
. ~31!

Here DetK̃5Det(2] t
22v0

2) is the fluctuation determinant of the harmonic oscillator, which in
same normalization as in~18! is equal to

DetK̃54 sin2
v0~ tb2ta!

2
, ~32!

and thus the formula

DetK15
~hb2ha!~ j̇b2 j̇a!2~jb2ja!~ ḣb2ḣa!

W
, ~33!

the right-hand side being evaluated atg51. For antiperiodic boundary conditions, the analogo
expressions are

DetK̃1
215

DetL1
a

W1
Y4 cos2

v0~ tb2ta!

2
, ~34!

DetK15
~hb1ha!~ j̇b1 j̇a!2~jb1ja!~ ḣb1ḣa!

W
. ~35!

For a harmonic oscillator with a time-dependent frequencyV(t), we use again the representatio
~21! for j(t) andh(t) in terms of the functionsp(t) andq(t), which, in addition to~22! and~23!,
have the following properties: the functionp(t) is periodic and even,

p~ t1T!5p~ t !, p~2t !5p~ t !, ~36!

so thatpb5pa , whereas the functionq(t) satisfies

q~ t1T!5q~ t !1qb , qa50, ~37!

where T[(tb2ta). Inserting now the solutions~21! into ~31! and ~34!, we find the ratio of
functional determinants for a harmonic oscillator with a time-dependent frequencyV(t) with
periodic boundary conditions,

DetK̃21K154 sin2
v0qb

2 Y 4 sin2
v0t

2
, ~38!

and with antiperiodic boundary conditions,

DetK̃21K154 cos2
v0qb

2 Y 4 cos2
v0t

2
. ~39!

Only formula~24! for the Dirichlet boundary condition has been known in the literature~see Refs.
7 and 8!. The periodic and antiperiodic formulas~38! and ~39! are new, although they have ha
predecssors on the lattice.11 Moreover, our new derivation has the advantage of employing o
Wronski’s simple construction method for Green functions. The general expressions for the
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tional determinants~19!, ~33!, and ~35! are form invariant under an arbitrary changes (h,j)
→(h̃,j̃) of the basic seth(t) andj(t) of two independent solutions of the homogeneous equa
~9!.

V. TREATMENT OF ZERO MODE

Contrary to the case of a harmonic oscillator with a time-dependent frequencyV(t), in which
the operatorK1 has no zero mode, consider now the situation where such a zero mode is pr
It is typically encountered for fluctuations around localized classical solutionsxcl(t) such as
solitons or instantons,1 where the frequencyV(t) in the operatorK1 has the special formV2(t)
5V9„xcl(t)…/M . The fluctuation Lagrangian~1! arises from the second-order variation arou
x(t)5xcl(t) of a LagrangianL5 ẋ2/22V(x), which has no explicit time dependence, so thatxcl(t)
andxcl(t1t0) are equally good solutions ofẍ52V8(x), which makesẋcl(t) a zero mode ofK1 ,
caused by translation invariance along the time axis.12

For simplicity, we shall assume the presence of only a single zero mode, which we cho
one of two independent solutions of the homogeneous differential equation, sayh(t). For Dirich-
let boundary conditions, we call this a Dirichlet zero mode with the properties

hb50, ha50. ~40!

For periodic and antiperiodic boundary conditions, the zero mode satisfies

hb7ha50, ḣb7ḣa50, ~41!

respectively. As pointed out earlier, the Wronski construction for evaluating ratios of funct
determinants is not applicable here since the conditions~12! and ~28! are violated as a conse
quence of~40! and~41!. In order to enforce~12! and~28!, we modify the boundary conditions~40!
and~41! by a small regulator parametere.0, and determine new independent solutionshe(t) and
je(t) with he(t)→h(t) and je(t)→j(t) for e→0. The specific form of regularized bounda
conditions will be irrelevant, requiring only the condition for the regularized Wronskian,

We5hej̇e2ḣeje5W, ~42!

being independent ofe. One may imagine such a regularization as a simple shifting of limi
end points of the time interval (ta ,tb), provided that the operatorK1 remains nonsingular. Sinc
the conditions~12! and~28! are now satisfied, the Wronski construction and our modification
periodic and antiperiodic boundary conditions provides us directly with the regularized det
nants DetK1

e , which tend to small values in the limite→0. In terms ofhe(t) and je(t), these
determinants are given explicitly by the expressions~19!, ~33!, and ~35! for Dirichlet, periodic,
and antiperiodic boundary conditions, respectively. We now remove the zero mode fro
determinant using the standard methods.13 The determinant without such a zero mode is defin
by

Det8 K15 lim
«→0

DetK1
«

dl«
, ~43!

wheredl« is a small eigenvalue associated with the eigenfunctionh«(t)1dh«(t),

K1 dh«5dl« h«, ~44!

with the limit dl«→0 for «→0. To first order in«, it follows from ~44! that

~dh« ḣ«2dḣ« h«!u ta
tb'dl«E

ta

tb
dth2~ t ![dl«^huh&. ~45!
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Substituting~19! and~45! into ~43!, we obtain the functional determinant without a zero mode
the operatorK1 with Dirichlet boundary conditions,

Det8 K152 lim
«→0

ja
«jb

«

W2
^huh&52

^huh&

ḣbḣa

. ~46!

For the operatorK1 with periodic and antiperiodic boundary conditions, the analogous calcula
extracting the zero mode from the functional determinant gives

Det8 K156 lim
«→0

~ja
«j̇b

«2jb
«j̇a

«!

W2
^huh&52

~jb7ja!^huh&
hbW

. ~47!

These formulas are useful for semiclassical calculations of path integrals processing non
classical solutions such as solitons or instantons.1 Note that our expressions~46! and~47! for the
functional determinants are independent of the specific choice of regularization.

Note added.Further useful formulas, in particular an extremely efficient one for the fluc
tion determinant of a solution of the equation of motion, can be found in recent detailed pap
H. Kleinert and A. Chervyakov, ‘‘Simple explicit formulas for Gaussian path integrals w
time-dependent frequencies,’’ quantph/9803016, Phys. Lett.A245, 345 ~1998!.
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The inhomogeneous quantum groups from differential
calculi with classical dimension
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From the bicovariant first-order differential calculus on inhomogeneous Hopf alge-
braB we construct the set of right-invariant Maurer–Cartan one-forms considered
as a right-invariant basis of a bicovariantB-bimodule over which we develop the
Woronowicz general theory of differential calculus on quantum groups. In this
formalism, we introduce suitable functionals onB which control the inhomoge-
neous commutation rules. In particular, we find that the homogeneous part of com-
mutation rules between the translations and those between the generators of the
homogeneous part ofB and translations are controlled by differentR-matrices
satisfying characteristic equations. ©1999 American Institute of Physics.
@S0022-2488~99!00110-3#

I. INTRODUCTION

The Poincare´ group plays a fundamental role in physics. It is intrinsically connected to
geometry of the space-time on which the physical systems are described and could be in
under its action. Then, it is especially interesting to study the noncommutative version o
Poincare´ group from which one can hope to obtain new insight on the underlying space–
geometry as, for example, an improved ultraviolet in quantum field theories or a descripti
symmetries in a future quantum Einstein–Cartan gravity.

The construction of quantum Poincare´ group and quantum space–times has already b
considered by several authors.1–8 These constructions start either from the existence of
R-matrix and the consistency of the commutation rules between the different elements
generators of the Poincare´ group and those of the quantum space–times or from the projectio
homogeneous quantum groups. In certain works this consistency is only obtained by intro
an extra generator.4,6

Recently, in the work Podles and Woronowicz9 inhomogeneous commutation rules for a
inhomogeneous Hopf algebra without dilatation have been constructed. This construction is
on the existence of a bicovariant submodule of the inhomogeneous algebra regarded a
module ~over the homogeneous part! generated by translations and leads to the sameR-matrix,
subject to the conditionR25I ^ 2, which controls the homogeneous parts of the different com
tation rules.

It is well known that the usual way of constructing differential calculus on quantum gro
consists first of constructing the quantum group, and then defining the bicovariant calculi,
right ad-invariant ideals. In such a case, for some deformations the basic one-forms span th
with dimension exceeding the group dimension or the number of its Lie algebra generators.
paper, we present a quite different way based on the inverse order of construction: we int
first the right-invariant differential calculus by assuming Cartan–Maurer types of formulas
then show which classes of deformations of inhomogeneous symmetries are required for b
riance of an assumed differential calculus. Using the fact that the homogeneous part
inhomogeneous quantum group is a Hopf subalgebra, we obtain inhomogeneous comm
rules between elements of the inhomogeneous Hopf algebraB. In particular, the homogeneou
parts of the commutation rules are controlled by differentR-matrices satisfying characteristi
equations. This formalism eliminates from the beginning the mismatch of the space of the
60520022-2488/99/40(11)/6052/19/$15.00 © 1999 American Institute of Physics
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one-forms and the group dimensions and gives an extension of the results presented in Re
the condition of the existence of differential calculus, with the classical dimension of Ref. 1

The present paper is organized as follows: In Sec. II, we recall some basic notions abo
inhomogeneous Hopf algebra and construct a right-invariant basis of the bimodule ove
algebra. This right-invariant basis allows us to generalize, in Sec. III, the Woronowicz prop11

to the inhomogeneous Hopf algebra by introducing suitable functionals overB. The study of these
functionals leads us to construct inhomogeneous commutation rules between the elemenB
whose homogeneous parts are controlled by differentR-matrices satisfying characteristic equ
tions. Finally, we investigate in Sec. IV the consistency conditions between these functiona
the different commutation rules of the inhomogeneous quantum group. Throughout this pap
use Einstein’s convention~sum over repeated indices! and for the simplicity of calculations we
definevTwPMNN(B) by (vTw)kl

nm5vk
nwl

m , n,m,k,l P1,...,N, for anyv andwPMN(B).

II. DIFFERENTIAL CALCULUS ON INHOMOGENEOUS QUANTUM GROUPS

In this section, we start by recalling some basic background about inhomogeneous
algebraB and the covariant first-order differential calculus to construct a bicovariant bimoduG
of one-forms overB and a basis of the vector spaceG inv,G of all right-invariant elements ofG.

An inhomogeneous quantum groupG is built from a quantum groupH and translations
described by elementspn, n51,...,N corresponding to an irreducible representationLm

n of H. The
corresponding Hopf algebras are treated as algebras of functions on quantum groups, Poly~G!5B
and Poly~H!5A. More precisely, following Ref. 9, one definesB as follows.

~1! An abstract unital Hopf algebra generated byA and elementspn such thatI B5I A5I .
~2! A is a Hopf subalgebra ofB.
~3! P5(0

L
I
p) is a representation ofG.

~4! There existsnP1,...,N such thatpn¹A.
~5! GpA,Gp , whereGp5AX1A, X5span (pn,n51,...,N).

By virtue of ~2! and ~3! above,B is endowed with the following linear maps:
~i! The coaction~algebra homomorphism! D:B→B^B,

D~a!5a~1! ^ a~2! , aPB,

satisfyies the coassociativity condition

~D ^ id!D~a!5~ id^ D!D~a!5a~1! ^ a~2! ^ a~3! .

Due to the representationP of G the coaction acts on the generators as

D~Lm
n !5Lk

n
^ Lm

k ,

D~pn!5Lk
n

^ pk1pn
^ I .

~ii ! The counit~character! «:B→C satisfies

~« ^ id!D~a!5~ id^ «!D~a!5a, aPB,

acts on the generators as

«~Lm
n !5dm

n and «~pn!50.

~iii ! The antipode~algebra antihomomorphism! S:B→B satisfies

m+~S^ id!D~a!5m+~ id^ S!D~a!5I B«~a!, aPB,
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wherem:B^ B→B is the multiplication map. It acts on the generators as

S~Lk
n!Lm

k 5«~Lm
n !5dm

n 5Lk
nS~Lm

k !,

S~Lk
n!pk1S~pn!5«~pn!505Lk

nS~pk!1pn.

One says11 that (G,d) is a first-order differential calculus on the inhomogeneous Hopf alge
(B,D,S,«) if d:B→G is a linear map obeying the Leibniz rule,d(ab)5(da)b1a(db) for any
a,bPB. G is a bimodule overB and every element ofG is of the form(kakdbk , whereak , bk

PB. We say that (G,d) is left covariant if for anyak , bkPB

(
k

akdbk50⇔(
k

D~ak!~ id^ d!D~bk!50

and is right covariant if

(
k

akdbk50⇔(
k

D~ak!~d^ id!D~bk!50.

(G,d) is bicovariant if it is left and right covariant. This notion of covariant differential calcu
leads to the left-coactionDL and right-coactionDR which are bimodule homomorphisms

DL~R!~arb!5D~a!DL~R!~r!D~b!, a,bPB,rPG, ~1!

and satisfy

DLd5~ id^ d!D, DRd5~d^ id!D,
~2!

~« ^ id!DL5 id and ~ id^ «!DR5 id.

For a bicovariant bimodule, the following condition is satisfied:

~DL ^ id!DR5~ id^ DR!DL .

Since,B5Poly (G)5Poly (L,p), dLm
n anddpn generateG as a bimodule of one-forms overB.

We therefore have the following.
Lemma (2.1):

URm
n 5dLk

nS~Lm
k ! and PR

n5dpn2Uk
npk ~3!

form a basis of the vector spaceG inv,G of all right-invariant elements ofG.
Proof: Sincepn correspond to an irreducible representationL of H, they are linearly inde-

pendent, and so areS(pn)52S(Lm
n )pm. ThendLm

n anddpn or dLm
n anddS(pn) form a basis of

the one-form vector space which generatesG as aB-bimodule from which we can choose a
another basisd(Lk

n)S(Lm
k )5URm

n andLk
ndS(pk)5pn2URm

n pm5PR
n . To show the right invari-

ance, it suffices to apply~1!, ~2!, and the properties of the Hopf algebra structure ofB to get

DR~URm
n !5dL l

nS~Lm
p ! ^ Lk

l S~Lp
k!5URm

n
^ I , ~4!

DR~PR
n !5dLk

n
^ pk1dpn

^ I 2URm
n Lk

m
^ pk2URm

n pm
^ I

5URm
n Lk

m
^ pk1~dpn2URm

n pm! ^ I 2URm
n Lk

m
^ pk5PR

n
^ I , ~5!

DL~URm
n !5L l

nS~Lm
k ! ^ URk

l , ~6!
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DL~PR
n !5Lk

n
^ dpk2Lk

nS~Lm
l !Lp

m
^ URl

k pp2Lk
nS~Lm

l !pm
^ URl

k

5Lk
n

^ ~dpk2URl
k pl !1Lk

nS~pl ! ^ URl
k 5Lk

n
^ PR

k 1Lk
nS~pl ! ^ URl

k . ~7!

Q.E.D.

Remark (2.1):Note that we can construct fromPR
n andURm

n a left-invariant basis as

ULm
n 5S~Lk

nS~Lm
l !!URl

k , ~8!

PL
n5S~Lm

n !PR
m1S„Lm

n S~pk!…URk
m , ~9!

satisfying

DL~ULm
n !5I ^ ULm

n and DL~PL
n!5I ^ PL

n ,

DR~ULm
n !5ULl

k
^ S„Lk

nS~Lm
l !…,

DR~PL
n!5PL

k
^ S~Lk

n!1ULl
k

^ S„Lk
nS~pl !….

The bicovariance condition of these bases can be checked by direct computation. In the foll
we consider the basesURm

n 5Um
n andPR

n5Pn.

III. COMMUTATION RULES FOR INHOMOGENEOUS HOPF ALGEBRAS

Now, we are ready to study the commutation rules for inhomogeneous Hopf algebr
generalizing the formalism of the bicovariant bimodule theory of Ref. 11 to our bimodule
sented in the previous section. SincePn andUm

n form a right-invariant basis, we are in the ca
where we can apply the different stages of Theorem~2.3! of Ref. 11 to state that there exist linea
functionalsf m

n , f m
nk , f km

n , and f mk
nl PB8 such that

Pna5~a! f k
n!Pk1~a! f k

nl!U l
k , ~10!

Um
n a5~a! f mk

n !Pk1~a! f mk
nl !U l

k , ~11!

and

bPn5Pk~b! f k
n+S!1U l

k~b! f k
nl+S!,

bUm
n 5Pk~b! f mk

n +S!1U l
k~b! f mk

nl +S!

where the convolution product of a functionalf PB8 and an elementa of B is defined asa! f
5( f ^ id)D(a). From ~10! and ~11!, one deduces

f k
n~ I !5dk

n , f mk
nl ~ I !5dk

ndm
l , f mk

n ~ I !50, f k
nl~ I !50 ~12!

by settinga5I , and

Pnab5~ab! f k
n!Pk1~ab! f k

nl!U l
k

5„~a! f l
n!~b! f k

l !1~a! f q
np!~b! f pk

q !…Pk1„~a! f q
n!~b! f k

ql!1~a! f q
np!~b! f pk

ql !…U l
k ,

Um
n ab5~ab! f mk

n !Pk1~ab! f mk
nl !U l

k

5„~a! f mq
n !~b! f k

q!1~a! f mp
nq !~b! f qk

p !…Pk1„~a! f mq
n !~b! f k

ql!1~a! f mq
np !~b! f pk

ql !…U l
k ,

for any a,bPB. Comparing the coefficients multiplyingP andU and then applying«, we get
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f m
n ~ab!5 f k

n~a! f m
k ~b!1 f l

nk~a! f km
l ~b!, ~13!

f ml
nk~ab!5 f mq

np ~a! f pl
qk~b!1 f mq

n ~a! f l
qk~b!, ~14!

f ml
n ~ab!5 f mq

np ~a! f pl
q ~b!1 f mk

n ~a! f l
k~b!, ~15!

f l
nk~ab!5 f q

n~a! f l
qk~b!1 f q

np~a! f pl
qk~b!. ~16!

Applying now DL on both sides of~10! and ~11!, we obtain, respectively,

Lp
na~1! ^ Ppa~2!1Lp

nS~pq!a~1! ^ Uq
pa~2!

5 f p
n~a~1!!a~2!Lk

p
^ a~3!P

k1„f p
nq~a~1!!a~2!Lk

pS~Lq
l !1 f p

n~a~1!!a~2!Lk
pS~pl !…^ a~3!U l

k ~17!

and

Lq
nS~Lm

p !a~1! ^ Up
qa~2!5 f mp

n ~a~1!!a~2!Lk
p

^ a~3!P
k1„f mp

n ~a~1!!a~2!Lk
pS~pl !

1 f mp
nq ~a~1!!a~2!Lk

pS~Lq
l !…^ a~3!U l

k . ~18!

By virtue of ~10! and~11!, the left-hand sides of previous equations can be rewritten respect
as

„Lp
na~1! f k

p~a~2!!1Lp
nS~pq! f qk

p ~a~2!!…^ a~3!P
k

1„Lp
na~1! f k

pl~a~2!!1Lp
nS~pq!a~1! f qk

pl ~a~2!!…^ a~3!U l
k

and

Lq
nS~Lm

p !a~1! f pk
q ~a~2!! ^ a~3!P

k1Lq
nS~Lm

p !a~1! f pk
ql ~a~2!! ^ a~3!U l

k .

Substituting the first expression into the left-hand side of~17! and the second into the left-han
side of~18!, comparing the coefficients multiplyingI ^ P and I ^ U, and then applyingI ^ «, we
obtain

Lk
n~ f m

k !a!1Lk
nS~pl !~ f lm

k !a!5~a! f k
n!Lm

k , ~19!

Lk
n~ f m

kl!a!1Lk
nS~pq!~ f qm

kl !a!5~a! f k
n!Lm

k S~pl !1~a! f q
nk!Lm

q S~Lk
l !, ~20!

Lk
nS~Lm

q !~ f ql
k !a!5~a! f mk

n !L l
k , ~21!

Lk
nS~Lm

q !~ f ql
kp!a!5~a! f mk

n !L l
kS~pp!1~a! f mk

nq !L l
kS~Lq

p!, ~22!

for any aPB. In the following, we assume that

f ml
nk5 f̃ m

k ! f l
n , f m

nk5h̃k! f m
n , and f km

n 5h̃k! f m
n ~23!

where h̃n, h̃n and f̃ m
n PB8 and the convolution product of two functionalsPB8 is defined as

( f 1! f 2)(a)5( f 1^ f 2)D(a) for any aPB. The substitution of~23! into ~12! gives

h̃n~ I !50, h̃n~ I !50, and f̃ m
n ~ I !5dm

n , ~24!

and the substitution of~23! into ~13!–~16! and ~19! gives, respectively,

f m
n ~ab!5„«~a~1!!«~b~1!!1h̃k~a~1!!h̃k~b~1!!…f l

n~a~2!! f m
l ~b~2!!, ~25!
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f ml
nk~ab!5 f̃ m

k ~a~1!b~1!! f l
n~a~2!b~2!!5„ f̃ m

p ~a~1!! f̃ p
k~b~1!!1h̃m~a~1!!h̃

k~b~1!!…f q
n~a~2!! f l

q~b~2!!,

~26!

f km
n ~ab!5h̃k~a~1!b~1!! f m

n ~a~2!!b~2!)5„ f̃ k
p~a~1!!h̃p~b~1!!1h̃k~a~1!!«~b~1!!…f q

n~a~2!! f m
q ~b~2!!,

~27!

f m
nk~ab!5h̃k~a~1!b~1!! f m

n ~a~2!b~2!!5„«~a~1!!h̃
k~b~1!!1h̃p~a~1!! f̃ p

k~b~1!!…f q
n~a~2!! f m

q ~b~2!!,

~28!

and

Lk
n~ f m

k !a!1Lk
nS~pl !~ h̃ l! f m

k !a!5~a! f k
n!Lm

k . ~29!

Using now the associativity of the convolution product and making the substitution of~29! into the
right-hand side of~20!–~22!, we get

h̃ i! f j
k!a1S~pl !~ f̃ l

i! f j
k!a!5~ f j

k!a!S~pi !1~ f j
k!a!h̃ l !S~L l

i !1S~pl !~ h̃ l! f j
k!a!S~pi !1S~pp!

3~ h̃p! f j
k!a!h̃ l !S~L l

i !, ~30!

S~Lm
k !~ h̃k! f l

n!a!5~ f l
n!a!h̃m!1S~pk!~ h̃k! f l

n!a!h̃m!, ~31!

and

S~Lm
l !~ f̃ l

i! f j
k!a!5S~Lm

l !~ h̃ l! f j
k!a!S~pi !1~ f j

k!a! f̃ m
l !S~L l

i !1S~pq!~ h̃q! f j
k!a! f̃ m

l !S~L l
i !,

~32!

where we have multiplied from the left byS(Ln
p) and we have used~21! before~29! to obtain

~32!. We see from these relations that for anyaPA, ~30! is a commutation rule between elemen
of A andpn and~29!, ~31!, and~32! involve pn in the commutation rules between elements ofA.
DemandingA to be a Hopf subalgebra ofB @condition ~2!# leads to the following.

Proposition (3.1):A is a Hopf subalgebra ofB iff

h̃n~a!50, aPA. ~33!

Proof: For A to be a Hopf subalgebra ofB, ~29! and ~32! must involve commutation rules
between elements ofA only. This is satisfied if the termLk

nS(pl)(h̃ l! f m
k !a) of ~29! vanishes.

Multiplying it from the left by S(Ln
i ) and using the fact thatS(pl) are linearly independent an

generate with the unity the bimoduleGp @see condition~5!#, one obtainsh̃ l! f m
i !a50 which

permits us to write, for anya andbPA, ~25! under the form

f m
n ~ab!5 f k

n~a! f m
k ~b!⇒ f k

n! f m
k +S5 f k

n+S! f m
k 5dm

n «. ~34!

Replacinga by f k
m+S!a into h̃ l! f m

i !a50 and then acting«, we get h̃ l(a)50 for any aPA
which implies also that Eq.~31! is trivial and the term of~32! which involvespn in the commu-
tation rules between elements ofA vanishes. Conversely, it is easy to see that ifh̃ l(a)50 for any
aPA, the relations~29! and ~32! involve commutation rules between elements ofA only and,
therefore,A is a Hopf subalgebra ofB. Q.E.D.

By virtue of this proposition, one deduces certain results which will be used in the follow
~1! Equation~11! can be written as

Um
n a5~a! f mk

nl !U l
k , aPA,
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which shows that the set of the right-invariant one-formsUm
n generates a subimodule,GA,G,

over A and for h̃n(pk)50 it generates aB-subimodule ofG. Since it transforms according to a
adjoint representationL of H ~6!, the assumptionf mk

nl 5 f̃ m
l ! f k

n is justified.12

~2! For anyaPA, ~26! can be written as

f̃ m
k ~a~1!b~1!! f l

n~a~2!b~2!!5 f̃ m
p ~a~1!! f̃ p

k~b~1!! f q
n~a~2!! f l

q~b~2!!5 f̃ m
p ~a~1!! f̃ p

k~b~1!! f l
n~a~2!b~2!!,

where we have used~34! to get the right-hand side. Multiplying both sides from the right
f r

l
„S(a(3)b(3))… and using again~34!, we get

f̃ m
n ~ab!5 f̃ m

k ~a! f̃ k
n~b!, a,bPA. ~35!

Following similar considerations, one obtains from~28!

h̃n~ab!5«~a!h̃n~b!1h̃m~a! f̃ m
n ~b!, a,bPA, ~36!

which leads to

h̃ l
„Lk

nS~Lm
k
…5h̃ l~dm

n !505h̃ l
„S~Lm

n !…1h̃q~Lk
n! f̃ q

l
„S~Lm

k !…,
~37!

h̃ l
„S~Lk

n!Lm
k
…5h̃ l~dm

n !505h̃ l~Lm
n !5h̃q

„S~Lk
n!… f̃ q

l ~Lm
k !.

Now replacingab by 2S(Lb
a)pb5S(pa) into ~28! and using~37!, one obtains

h̃n
„S~pa!…52h̃n~pa!2h̃k

„S~Lb
a!… f̃ k

n~pb!. ~38!

On the other hand, by using~33!, ~27! gives

~ h̃k! f m
n !„S~pa!…5h̃k„S~pc!…f m

n
„S~Lc

a!…52~ h̃k! f m
n !„S~Lb

a!pb
…52 f̃ k

p
„S~Lb

c!…h̃p~pb! f m
n
„S~Lc

a!…,

which can be multiplied from the right byf l
m(Ld

c) to give

h̃n„S~pa!…52 f̃ n
k
„S~Lb

a!…h̃k~pb!. ~39!

A similar computation gives respectively from~25! and ~26!

f m
n ~pa!52 f m

n
„Lb

aS~pb!…52 f k
n~Lb

a! f m
k
„S~pb!…2h̃k~Lb

a!h̃k„S~pb!…dm
n ~40!

and

f̃ m
n ~pa!52 f̃ m

k ~Lb
a! f̃ k

n
„S~pb!…1h̃k~Lb

c!h̃k„S~pb!… f̃ m
n ~Lc

a!. ~41!

We are now ready to investigate the different commutation rules of the inhomogeneous
algebraB.

First, due to Proposition~3.1!, ~29! reduces to

Lk
n~ f m

k !a!5~a! f k
n!Lm

k ~42!

for any aPA and gives

Lm
n pa5 f k

n~Lb
a!pbLm

k 1 f k
n~pa!Lm

k 2Lk
nLb

af m
k ~pb!2Lm

n S~pl !Lb
ah̃ l~pb! ~43!

for a5pa.
Second, replacingaPB by S(a) into ~30!–~32! and then acting on both sidesS21, we get,

respectively,
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~a! f m
k +S!h̃ l+S!1~a! f m

k +S! f̃ q
l +S!pq

5pl~a! f m
k +S!1pl~a! f m

k +S!h̃q+S!pq1Lp
l ~ h̃p+S!a! f m

k +S!

1Lp
l ~ h̃p+S!a! f m

k +S!h̃q+S!pq, ~44!

~a! f l
n+S!h̃k+S!Lm

k 5h̃m+S!a! f l
n+S1~ h̃m+S!a! f l

n+S!h̃q+S!pq, ~45!

and

~a! f j
k+S! f̃ l

i+S!Lm
l 5pi~a! f j

k+S!h̃ l+S!Lm
l 1L l

i~ f̃ m
l +S!a! f j

k+S!1L l
i~ f̃ m

l +S!a! f j
k+S!h̃q+S!pq.

~46!

Due to Proposition~3.1!, ~45! is trivial for aPA and, by replacinga by (a! f k
n)PA, the equations

~46! and ~44! give, respectively,

Lk
n~ f̃ m

k +S!a!5~a! f̃ k
n+S!Lm

k ~47!

and

pna5~a! f̃ k
n+S!pk1a!h̃n+S2Lk

n~ h̃k+S!a!. ~48!

For a5pa, the equations~45! and ~46! give, respectively,

Lm
k h̃k„S~pa!…5h̃m„S~pb!…Lb

a ~49!

and

Lm
n pb~db

a1h̃b„S~pa!…!5~ f̃ k
n
„S~Lb

a!…2db
nh̃k„S~pa!…!pbLm

k 1 f̃ k
n
„S~pa!…Lm

k 2Lk
nLb

af̃ m
k
„S~pb!….

~50!

To compare~50! with ~43!, we have to compute the fourth term of the right-hand side of~43!,
which can be written as

2Lm
n S~pl !Lc

ah̃ l~pc!5Lm
n S~Lk

l !pkLc
ah̃ l~pc!

52Lm
n pl h̃ l~pa!1Lm

n h̃k
„S~Lb

a!…h̃k~pb!2Lm
n Lb

ah̃k
„S~Lc

b!…h̃k~pc!,

~51!

where we have used~39!,

pkLc
a5 f̃ l

k
„S~Lb

a!…Lc
bpl1h̃k

„S~Lb
a!…Lc

b2L l
kLb

ah̃ l
„S~Lc

b!…, ~52!

obtained from~48! by settinga5Lc
a , and

S~Lm
k !Lc

ah̃k~pc!5h̃m~pa!, ~53!

obtained from~21! by settinga5pa and by using~23! and Proposition~3.1!.
Replacing the fourth term of the right-hand side of~43! by ~51!, we get

Lm
n pb~db

a1h̃b„S~pa!…!5 f k
n~Lb

a!pbLm
k 1~ f k

n~pa!1dk
nh̃p

„S~Lb
a!…h̃p~pb!!Lm

k

2Lk
nLb

a~ f m
k ~pb!1dm

k h̃p
„S~Lc

b!…h̃p~pc!!, ~54!

which can be written, after the make of use of~37!, ~39!, and~40!, under the form
                                                                                                                



an

6060 J. Math. Phys., Vol. 40, No. 11, November 1999 M. Lagraa and N. Touhami

                    
Lm
n pb~db

a1h̃b„S~pa!…!5 f k
n~Lc

a!pcLm
k 2 f l

n~Lb
a! f k

l
„S~pb!…Lm

k 1Lk
nLb

af l
k~Lc

b! f m
l
„S~pc!….

~55!

Therefore, by virtue of the condition~5! of the inhomogeneous Hopf algebra definition, we c
deduce from~55! and ~50! that

f̃ k
n
„S~Lb

a!…5 f k
n~Lb

a!1db
nh̃k„S~pa!… ~56!

and

f̃ k
n
„S~pa!…52 f l

n~Lb
a! f k

l
„S~pb!…5 f k

n~pa!1dk
nh̃ l

„S~Lb
a!…h̃ l~pb!, ~57!

where we have used~40! to get the second relation. Let us note that, fora5Lb
a , the equations~47!

and ~42! are consistent in virtue of~56! and ~49!.
Now, multiplying both sides of~55! from the left by f „S(L)…, we get

pnLm
k 5 f q

k
„S~Lp

n!…~d l
p1h̃ l„S~pp!…!Lm

q pl1 f q
k
„S~pn!…Lm

q 2Lq
nLp

k f m
p
„S~pq!…, ~58!

where we have used~42!. Comparing the latter equation with~52!, we obtain

f̃ l
n
„S~Lq

k!…5 f q
k
„S~Lp

n!…~d l
p1h̃ l„S~pp!…! ~59!

and

h̃n
„S~Lq

k!…5 f q
k
„S~pn!…. ~60!

Substituting~56! into ~59!, we get

f l
n~Lq

k!1dq
nh̃ l„S~pk!…5 f q

k
„S~Lp

n!…~d l
p1h̃ l

„S~pp!…!, ~61!

which can be written, after multiplying both sides byf k
m(Ln

t ), as

„f k
m~Ln

t !2dn
mdk

t
…~ f l

n~Lq
k!1dq

nd l
k1dq

nh̃ l„S~pk!…!50 ~62!

or, using again~56!,

~ f̃ k
m
„S~Ln

t !…2dn
mdk

t 2dn
mh̃k„S~pt!…!~ f̃ l

n
„S~Lq

k!…1dq
nd l

k!50, ~63!

which are the characteristic equations for the matricesRnk
mt5 f k

m(Ln
t ) and R̃nk

mt5 f̃ k
m
„S(Ln

t )…. To
have the commutation rules between the translations, it suffices to replacea by pa into ~44! to get
after some straightforward computation

pnpm5~ f̃ k
n
„S~L l

m!…2d l
nh̃k„S~pm!…!plpk1h̃n

„S~Lk
m!…pk1 f̃ k

n
„S~pm!…pk

1h̃n
„S~pm!…2Lk

nL l
mh̃k

„S~pl !…

5 f k
n~L l

m!plpk2„f k
n~L l

m!2d l
ndk

m
…h̃ l

„S~Lp
k!…pp

1h̃n
„S~pm!…2Lk

nL l
mh̃k

„S~pl !…, ~64!

where we have used~56!, ~57!, and~60!. With the assumption~23!, we have the following from
the previous considerations.

Theorem „3.1…: Let B an inhomogeneous Hopf algebra satisfying conditions~1!–~5! on
which there exists a bicovariant differential calculus. Then there exist functionalsf m

n , f̃ m
n , h̃n, and

h̃mPB8 satisfying ~24!, ~25!–~28!, ~33!, ~56!, ~57!, ~59!, and ~60! such that the relations~42!,
~48!, and~64! are satisfied.
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IV. CONSISTENCY CONDITIONS

Here we shall continue the study of the consistency conditions between the different
tionals and the commutation rules of the generators ofG. In the following we setRml

kn5 f l
k(Lm

n ),
R̃ml

kn5 f̃ l
k
„S(Lm

n )…, Qk
n5h̃k„S(pn)…, Zk

nm5h̃n
„S(Lk

m
…5 f k

m
„S(pn)… @see ~60!#, Z̃k

nm5 f̃ k
n
„S(pm)…5

2Rpq
nmZk

pq @see~57!#, andTnm5h̃n
„S(pm)…. We start this study as follows.

Lemma (4.1):

Qm
n 5ldm

n , lPC, lÞ21. ~65!

Proof: Applying f b
a and f̃ b

a+S on both sides of~49!, we obtain respectively (I ^ Q)R5R(Q
^ I ) and (I ^ Q)R̃5R̃(Q^ I ), implying, due to~56! (R̃5R1I ^ Q), I ^ Q25Q^ Q which solu-
tion is of the form~65!. For l521, we see from~62! that theR-matrix is not invertible. Q.E.D.

Applying f b
a on both sides of~42! and f̃ b

a+S on both sides of~47! for a5Lq
p and using~34! and

~35!, we get the Yang–Baxter equations for the matricesR,

~ I ^ R!~R^ I !~ I ^ R!5~R^ I !~ I ^ R!~R^ I !, ~66!

and R̃,

~ I ^ R̃!~R̃^ I !~ I ^ R̃!5~R̃^ I !~ I ^ R̃!~R̃^ I !. ~67!

Since theR̃-matrix is tied to theR-matrix by~56!, it is necessary to check the consistency betw
both Yang–Baxter equations. Applyingf b

a on both sides of~47! and f̃ b
a+S on both sides of~42! for

a5Lq
p , we obtain

~R^ I !~ I ^ R!~R̃^ I !5~ I ^ R̃!~R^ I !~ I ^ R! ~68!

and

~R̃^ I !~ I ^ R̃!~R^ I !5~ I ^ R!~R̃^ I !~ I ^ R̃!. ~69!

Replacing~56! on both sides of~68! and ~69! and using~66!, we obtain, respectively,

~R^ I !~ I ^ R!~ I ^ Q^ I !5~ I ^ I ^ Q!~R^ I !~ I ^ R!,

and

~R^ I !~ I ^ I ^ Q!~R^ I !1~ I ^ Q^ I !~ I ^ R!~R^ I !1~ I ^ Q^ I !~ I ^ I ^ Q!~R^ I !

5~ I ^ R!~R^ I !~ I ^ I ^ Q!1~ I ^ R!~ I ^ Q^ I !~ I ^ R!1~ I ^ R!~ I ^ Q^ I !~ I ^ I ^ Q!.

By virtue of ~65! the first equation is satisfied and, using~62! @R252R(I ^ Q)1I ^ I 1I ^ Q#, we
can see that the second equation is also satisfied. Now, replacing the third factor of the le
side and the first factor of the right-hand side of~67! by ~56! and using~69!, we get

~R̃^ I !~ I ^ R̃!~ I ^ Q^ I !5~ I ^ I ^ Q!~R̃^ I !~ I ^ R̃!,

which is satisfied in virtue of~65!. Therefore~66!–~69! are equivalent. The action ofh̃a+S on both
sides of~49! gives

ZQ5~ I ^ Q!Z, ~70!

and on~42! and ~47! gives, fora5Lq
p ,

~Z^ I !R1~R̃^ I !~ I ^ Z!R5~ I ^ R!~Z^ I !1~ I ^ R!~R̃^ I !~ I ^ Z! ~71!
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and

~Z^ I !R̃1~R̃^ I !~ I ^ Z!R̃5~ I ^ R̃!~Z^ I !1~ I ^ R̃!~R̃^ I !~ I ^ Z!, ~72!

where we have used~36!. Due to~65!, the equation~70! is satisfied and if we use~56! in ~72! and
compare with~71!, we obtain

~Z^ I !~ I ^ Q!1~R̃^ I !~ I ^ Z!~ I ^ Q!5~ I ^ I ^ Q!~Z^ I !1~ I ^ I ^ Q!~R̃^ I !~ I ^ Z!,

which is satisfied by virtue of~65! or ~70!. Therefore, the relation~71! implies ~72!.
We pass now to the action of the different functionals on the commutation rules betwee

generators ofA and the translations. Applyingh̃a+S on both sides of~52! and using the relations

h̃a„aS~pn!…5 f̃ a
b~a!h̃b„S~pn!…

and

h̃a„S~pn!a…5h̃a„S~pn!…«~a!

obtained from~27! for any aPA, we get (Q^ I )R̃5R̃(I ^ Q), which is satisfied due to~65!.
Applying f b

a+S and f̃ b
a+S on both sides of~52!, we get, respectively,

~ I ^ R21!~Z^ I !1~ I ^ R21!~R21
^ I !~ I ^ Q^ I !~ I ^ Z!

5~R̃^ I !~ I ^ Z!R211~Z^ I !R212~ I ^ R21!~R21
^ I !~ I ^ Z! ~73!

and

~ Z̃^ I !R̃2~ I ^ Z!R̃2~ I ^ Q^ I !~ I ^ Z!R̃

5~ I ^ R̃!~R̃^ I !~ I ^ Z̃!1~ I ^ R̃!~ I ^ I ^ Q!~Z^ I !2~R̃^ I !~ I ^ R̃!~Z^ I !, ~74!

where we have used~25! to have the first equation and

f̃ b
a
„S~pn!a…5 f̃ b

c
„S~pn!… f̃ c

a~a!1h̃b„S~pn!…h̃a~a!

and

f̃ b
a
„aS~pn!…5 f̃ b

c~a! f̃ c
a
„S~pn!…2 f̃ b

a~a~1!!h̃
d~a~2!!h̃d„S~pn!…,

obtained from~26! for any aPA, to have the second equation. Multiplying both sides of~71!
from the left byI ^ R21 and from the right byR21 and using~59! @R̃5R211R21(I ^ Q)#, we
retrieve the equation~73!. To investigate the equation~74!, we have to multiply both sides of~72!
from the left by2(R^ I ) to get

~ Z̃^ I !R̃2~ I ^ Z!R̃2~ I ^ Q^ I !~ I ^ Z!R̃52~R^ I !~ I ^ R̃!~Z^ I !2~R^ I !~ I ^ R̃!~R̃^ I !~ I ^ Z!,

where we have usedZ̃52RZ andRR̃5I ^ I 1I ^ Q. ReplacingR by R̃2I ^ Q on the right-hand
side and using~67! and againZ̃52RZ, we retrieve~74!. Therefore,~71! implies ~73! and ~74!.

Finally the action ofh̃a+S on both sides of~52! gives

~R^ I 2I ^ I ^ I !„~ I ^ Z!Z2~Z^ I !Z…1T^ I 2~ I ^ R̃!~R̃^ I !~ I ^ T!50, ~75!

where we have used the relations

h̃a
„S~apn!…5h̃b

„S~pn!… f̃ b
a
„S~a!…
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and

h̃a
„S~pna!…5«„S~a!…h̃a

„S~pn!…1h̃b
„S~a!… f̃ b

a
„S~pn!…2h̃a

„S~a~2!!…h̃
b
„S~a~1!!…h̃b„S~pn!…

obtained from~28! for any aPA.
We consider now the commutation rules between the translations. From

h̃a„S~pm!S~pn!…5 f̃ a
b
„S~pm!…h̃b„S~pn!…2h̃a„S~pk!…h̃b

„S~Lk
m!…h̃b„S~pn!…,

obtained from~27!, we can see that the action ofh̃a+S on both sides of~64! gives

~R2I ^ I !„~Q^ I !Z̃2~Q^ I !ZQ2ZQ…50.

From ~65! and Z̃52RZ we can rewrite the left-hand side of this equation as2(R2I ^ I )(R1I
^ I 1I ^ Q)ZQ, which vanishes by virtue of~62!. Applying f b

a+S, f̃ b
a+S, andh̃a+S on both sides

of ~64!, we get, respectively,

~R^ I 2I ^ I ^ I !„~ I ^ Z!Z2~Z^ I !Z1~ I ^ R21!~R21
^ I !~ I ^ Q^ I !~ I ^ T!…

1~T^ I !2~ I ^ R21!~R21
^ I !~ I ^ T!50, ~76!

~ I ^ R2I ^ I ^ I !„~ Z̃^ I !Z̃1~T^ I !Q2~ I ^ Q^ I !~ I ^ Z!Z̃2~ I ^ Q^ I !~ I ^ T!

2~ I ^ Z!Z̃…1~ I ^ T!2~R̃^ I !~ I ^ R̃!~T^ I !50, ~77!

and

~ I ^ R2I ^ I ^ I !„~ Z̃^ I !T2~ I ^ Z̃!T…2~Z^ I !T2~R̃^ I !~ I ^ Z!T50, ~78!

where we have used~25! to have~76!,

f̃ b
a
„S~pm!S~pn!…5 f̃ b

c
„S~pm!… f̃ c

a
„S~pn!…1h̃b„S~pm!…h̃a

„S~pn!…

2 f̃ b
a
„S~pk!…h̃c

„S~Lk
m!…h̃c„S~pn!…2db

ah̃c
„S~pm!…h̃c„S~pn!…

obtained from~26! to have~77!, and

h̃a
„S~pm!S~pn!…5h̃b

„S~pm!… f̃ b
a
„S~pn!…2h̃a

„S~pk!…h̃b
„S~Lk

m!…h̃b„S~pn!…

obtained from~28! to have~78!. The consistency of~75!–~78! requires the following.
Lemma (4.2):The relations~75!–~78! are consistent if

T52R̃T, lÞ0, 22. ~79!

Proof: Multiplying both sides of~75! and~76! from the left by (R̃^ I 1I ^ I ^ I ) and both sides of
~77! and~78! from the left by (I ^ R̃1I ^ I ^ I ) and using the relation (R̃1I ^ I )(R2I ^ I )50, we
obtain the following consistency conditions:

~R̃^ I 1I ^ I ^ I !„T^ I 2~ I ^ R̃!~R̃^ I !~ I ^ T!…50, ~80!

~R̃^ I 1I ^ I ^ I !„T^ I 2~ I ^ R21!~R21
^ I !~ I ^ T!…50, ~81!

~ I ^ R̃1I ^ I ^ I !„I ^ T2~R̃^ I !~ I ^ R̃!~T^ I !…50, ~82!

and
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~ I ^ R̃1I ^ I ^ I !„~Z^ I !T1~R̃^ I !~ I ^ Z!T…50. ~83!

From ~80! and ~81!, it follows

~R̃^ I 1I ^ I ^ I !„~ I ^ R̃!~R̃^ I !~ I ^ T!…2~ I ^ R21!~R21
^ I !~ I ^ T!)50, ~84!

and from~67! and (I ^ R21)(R21
^ I )(I ^ R̃)5(R̃^ I )(I ^ R21)(R21

^ I ) obtained by multiplying
both sides of~68! from the left and from the right by (I ^ R21)(R21

^ I ), we can rewrite~84! as

„~ I ^ R̃!~R̃^ I !2~ I ^ R21!~R21
^ I !…„I ^ ~R̃T1T!…50.

Multiplying it by (R^ I )(I ^ R) and usingRR̃5I ^ I 1I ^ Q, we obtain „I ^ I ^ Q(21Q)…„I
^ (R̃T1T)…50, which is equivalent, by virtue of~65!, to l(21l)(R̃1I ^ I )T50 leading to~79!
for lÞ0 or 22. From~79! and ~67! we may see that the equation~82! is satisfied and it is also
easy to see that the equation~83! is obtained by multiplying both sides of~72! from the right by
T and by using~79!. Q.E.D.

Remark (4.1):Note that forl522 the characteristic equation~62! reduces to (R2I ^ I )2

50 showing thatR does not possess negative eigenvalues and, therefore, in this case, we
construct from it antisymmetric products.@In the following we shall assume the relation~79! for
l522.#

Remark (4.2):For the casel50 we haveR̃5R5R21 from which we see that the relation
~80! and~81! are identical and cannot imply~79!. However, by multiplying both sides of~64! by
R̃1I ^ I and by using~62! we can deduce in this case the following consistency condition,

Cnm2Lk
nL l

mCkl50, ~85!

where we have used~47! for a5L andCnm5(R̃kl
nm1dk

nd l
m). In fact, by applyingf b

a+S and f̃ b
a on

both sides of~85!, we get, respectively,

~R̃^ I 1I ^ I ^ I !~T^ I !2~ I ^ R21!~R21
^ I !~ I ^ R̃1I ^ I ^ I !~ I ^ T!50

and

~ I ^ R̃1I ^ I ^ I !~ I ^ T!2~R̃^ I !~ I ^ R̃!~R̃^ I 1I ^ I ^ I !~T^ I !50,

which are identical to the relations~81! and ~82! by virtue of ~67!. To get the relation~83!, we
apply h̃a+S on both sides of~85! to have

~Z^ I !~R̃1I ^ I !T1~R̃^ I !~ I ^ Z!~R̃1I ^ I !T50,

where we have used~24! and~36!. By virtue of ~72! we can see that this relation is equivalent
~83!. Therefore, forl50 the consistency condition is notRT52T as assumed in remark~3.11! of
Ref. 9 but~85!.

Comparing now~75! with ~76!, we obtain

~R^ I 2I ^ I ^ I !~ I ^ R21!~R21
^ I !~ I ^ Q^ I !~ I ^ T!2~ I ^ R21!~R21

^ I !~ I ^ T!

52~ I ^ R̃!~R̃^ I !~ I ^ T!. ~86!

ReplacingR by R̃2I ^ Q and using (R̃^ I )(I ^ R21)(R21
^ I )5(I ^ R21)(R21

^ I )(I ^ R̃), ~65!
and ~79!, we can write the left-hand side as

2~ I ^ R21!~R21
^ I !~ I ^ I ^ I 1I ^ I ^ Q1I ^ Q^ I 1I ^ I ^ Q2!~ I ^ T!,
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which can be identified as the right-hand side of~86! by using~59! and ~65!. Therefore,~75! is
equivalent to~76!.

Remark (4.3):For l50 the relations~75! and ~76! are identical, but forl522 we must
assume the relation~79! to have the equivalency between~75! and ~76!.

To investigate the equation~77!, we multiply both sides of~71! from the left by (R^ I ) and
from the right byZ to obtain

~ Z̃^ I !Z̃1~ I ^ R̃!~ I ^ Z̃!Z̃5~R^ I !~ I ^ R!~Z^ I !Z1~R^ I !~ I ^ R!~R̃^ I !~ I ^ Z!Z,

where we have usedZ̃52RZ and RR̃5I ^ I 1I ^ Q5R̃R5I ^ I 1Q^ I @due to ~62! and ~65!#.
Now, multiplying both sides from the left byI ^ R2I ^ I ^ I , we obtain

~ I ^ R2I ^ I ^ I !„~ Z̃^ I !Z̃2~ I ^ Z̃!Z̃…

5~ I ^ R2I ^ I ^ I !~R^ I !~ I ^ R!„~Z^ I !Z1~R̃^ I !~ I ^ Z!Z…,

where we have used~68! and (R2I ^ I )R̃52(R2I ^ I ). Taking into account this equation,~77!
can be written as

~ I ^ R2I ^ I ^ I !~~R^ I !~ I ^ R!„~Z^ I !Z1~R̃^ I !~ I ^ Z!Z…1~ I ^ I ^ Q!~T^ I !

2~ I ^ Q^ I !~ I ^ T!!1I ^ T2~R̃^ I !~ I ^ R̃!~T^ I !50.

Multiplying both sides from the left by2(I ^ R21)(R21
^ I ) and using (I ^ R21)(R21

^ I )(I
^ R)5(R^ I )(I ^ R21)(R21

^ I ), we obtain

~R^ I 2I ^ I ^ I !~~ I ^ Z!Z2~Z^ I !Z2~ I ^ R21!~R21
^ I !~ I ^ I ^ Q!~T^ I !1~ I ^ R21!~R21

^ I !

3~ I ^ Q^ I !~ I ^ T!!2~ I ^ R21!~R21
^ I !~ I ^ T!1~ I ^ R21!~R21

^ I !~R̃^ I !~ I ^ R̃!~T^ I !

5052~R^ I 2I ^ I ^ I !~ I ^ R21!~R21
^ I !~ I ^ I ^ Q!~T^ I !2T^ I

1~ I ^ R21!~R21
^ I !~R̃^ I !~ I ^ R̃!~T^ I !,

where we have used~76! to have the right-hand side which gives, by using~56! into the third
factor of the last term,

2~R^ I 2I ^ I ^ I !~ I ^ R21!~R21
^ I !~ I ^ I ^ Q!~T^ I !1~ I ^ R21!~ I ^ I ^ Q!~T^ I !

1~ I ^ R21!~R21
^ I !~ I ^ R̃!~ I ^ I ^ Q!~T^ I !50.

For l50 this relation is trivial, and forlÞ0 we use~79! and ~59! into the second term and~56!
into the third term to obtain

2~R^ I 2I ^ I ^ I !~ I ^ R21!~R21
^ I !~ I ^ I ^ Q!~T^ I !2~ I ^ R21!~R21

^ I !~ I ^ I ^ Q!~T^ I !

1~ I ^ R21!~R21
^ I !~ I ^ R!~ I ^ I ^ Q!~T^ I !50,

which is satisfied by virtue of (I ^ R21)(R21
^ I )(I ^ R)5(R^ I )(I ^ R21)(R21

^ I ). Therefore,
~77! is also equivalent to~75! and ~76!.

Now, we consider the consistency of the commutation rules~64! and the braiding propertie
of the product of three generators ofB. After the insertion of~64! into the first term of the
right-hand side of~64! itself, we get

pTp5R2~pTp!2~R1I ^ I !~R2I ^ I !Zp1~R1I ^ I !T2~LTL!~R1I ^ I !T

5pTp2~ I ^ Q!~~R2I ^ I !„~pTp!2Zp!1T2~LTL!T…,
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where we have used into the first right-hand side~42! for a5L to have the last term and~62!,
~56!, and~79! to have the second right-hand side. We observe from~64! that the second term o
the second right-hand side vanishes, implying the consistency of these commutation rules.
product of three translations, we have

pTpTp5~pTp!Tp

5~R^ I !~pT~pTp!!1rTp

5~R^ I !~~ I ^ R!~~pTp!Tp!1pTr !1rTp

5~R^ I !~ I ^ R!~R^ I !~pTpTp!1~R^ I !~ I ^ R!~rTp!1~R^ I !~pTr !1rTp,

wherer 52(R2I ^ I )Zp1T2(LTL)T. On the other hand,

pTpTp5pT~pTp!5~ I ^ R!~~pTp!Tp!1pTr

5~ I ^ R!~~R^ I !~pT~pTp!!1rTp!1pTr

5~ I ^ R!~R^ I !~ I ^ R!~pTpTp!1~ I ^ R!~R^ I !~pTr !

1~ I ^ R!~rTp!1pTr .

The Yang–Baxter equation~66! implies

A~rTp!5B~pTr !, ~87!

where

A5~R^ I !~ I ^ R!2I ^ R1I ^ I ^ I ,

B5~ I ^ R!~R^ I !2R^ I 1I ^ I ^ I .

Replacing on both sides of~87! r by 2(R2I ^ I )Zp1T2(LTL)T, we obtain

2A~R^ I 2I ^ I ^ I !~Z^ I !~pTp!1A~T^ I !p2A~LTLTp!T

52B~ I ^ R2I ^ I ^ I !~ I ^ Z!~pTp!1B~ I ^ T!p2B~pTLTL!T. ~88!

Using ~52! @pTL5R̃(LTp)1ZL2(LTL)Z#, we can rewrite the third term of the right-han
side of ~88! as

B~pTLTL!T5B~R̃^ I !~LTpTL!T1B~Z^ I !~LTL!T2B~LTLTL!T

5B~R̃^ I !~ I ^ R̃!~LTLTp!T1B~R̃^ I !~ I ^ Z!~LTL!T

2B~R̃^ I !~LTLTL!~ I ^ Z!T1B~Z^ I !~LTL!T2B~LTLTL!~Z^ I !T.

~89!

A straightforward computation shows that

B~R̃^ I !~ I ^ R̃!5A1~ I ^ I ^ Q!~R̃^ I 1I ^ I ^ I !, ~90!

where we have usedRR̃5I ^ I 1I ^ Q and~56!. Multiplying both sides of~90! from the right by
(LTLTp)T and using~47! for a5L and ~79!, we get

A~LTLTp!T5B~R̃^ I !~ I ^ R̃!~LTLTp!T.
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We see from~90! that forl50 this relation is satisfied without using~79!. On the other hand, by
using ~42! and ~47! for a5L, we can rewrite the third and the fifth terms of the right-hand s
of ~89! as

~LTLTL!B„Z^ I 1~R̃^ I !~ I ^ Z!…T.

Using Z̃52RZ, RR̃5R̃R5I ^ I 1I ^ Q, and~56! we get

B~Z^ I 1~R̃^ I !~ I ^ Z!T52~ I ^ R2I ^ I ^ I !~ Z̃^ I 2I ^ Z̃!T1~Z^ I !T1~R̃^ I !~ I ^ Z!T,
~91!

which vanishes by virtue of~78!. Therefore~88! reduces to

2A~R^ I 2I ^ I ^ I !~Z^ I !~pTp!1A~T^ I !p

52B~ I ^ R2I ^ I ^ I !~ I ^ Z!~pTp!1B~ I ^ T!p2B~Z^ I 1~R̃^ I !~ I ^ Z!!~LTL!T.

~92!

Using now

A~R^ I 2I ^ I ^ I !5B~ I ^ R2I ^ I ^ I !5L3 ,

we may rewrite~92! as

L3~Z^ I 2I ^ Z!~pTp!2A~T^ I !p1B~ I ^ T!p2B„Z^ I 1~R̃^ I !~ I ^ Z!…~LTL!T50.
~93!

From the properties ofL3 and (R2I ^ I )R̃52(R2I ^ I ), we have

L3~Z^ I 2I ^ Z!~pTp!5L3„Z^ I 1~R̃^ I !~ I ^ Z!…~pTp!

5B~ I ^ R!~Z^ I 1~R̃^ I !~ I ^ Z!!~pTp!2B„Z^ I 1~R̃^ I !~ I ^ Z!…~pTp!.

Using ~64! in the second term of the right-hand side, we obtain

B~ I ^ R!„Z^ I 1~R̃^ I !~ I ^ Z!…~pTp!2B„Z^ I 1~R̃^ I !~ I ^ Z!…R~pTp!

1B„Z^ I 1~R̃^ I !~ I ^ Z!…~R2I ^ I !Zp2B„Z^ I 1~R̃^ I !~ I ^ Z!…T

1B„Z^ I 1~R̃^ I !~ I ^ Z!…~LTL!T.

The first and the second terms vanish by virtue of~71! and the fourth term vanishes by virtue o
~91!. Therefore,~93! reduces to

1B„Z^ I 1~R̃^ I !~ I ^ Z!…~R2I ^ I !Zp2A~T^ I !p1B~ I ^ T!p,

which can be written, after making of use of~71!, as

1B~ I ^ R2I ^ I ^ I !„Z^ I 1~R̃^ I !~ I ^ Z!…Zp2A~T^ I !p1B~ I ^ T!p

5L3~Z^ I 1~R̃^ I !~ I ^ Z!!Zp2A~T^ I !p1B~ I ^ T!p

5A~R^ I 2I ^ I ^ I !„~Z^ I !Z2~ I ^ Z!Z…p2A~T^ I !p1B~ I ^ T!p,

which reduces, due to~75!, to

2A~ I ^ R̃!~R̃^ I !~ I ^ T!p1B~ I ^ T!p,
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which vanishes according to the same calculation of~90!.
The same procedure is applied topTpTL to have

pTpTL5pT~pTL!5~ I ^ R̃!~~pTL!Tp!1~ I ^ Z!~pTL!2~~pTL!TL!Z

5~ I ^ R̃!~R̃^ I !~LT~pTp!!1~ I ^ R̃!~Z^ I !~LTp!2~ I ^ R̃!~LTLTp!Z

1~ I ^ Z!R̃~LTp!1~ I ^ Z!ZL2~ I ^ Z!~LTL!Z2~R̃^ I !~LT~pTL!!Z

2~Z^ I !~LTL!Z1~LTLTL!~Z^ I !Z

5~ I ^ R̃!~R̃^ I !~ I ^ R!~LTpTp!2~ I ^ R̃!~R̃^ I !~ I ^ R2I ^ I ^ I !~ I ^ Z!

3~LTp!1~ I ^ R̃!~R̃^ I !~ I ^ T!L2~ I ^ R̃!~R̃^ I !~LTLTL!~ I ^ T!

1~ I ^ R̃!~Z^ I !~LTp!2~ I ^ R̃!~LTLTp!Z1~ I ^ Z!R̃~LTp!

1~ I ^ Z!ZL2~ I ^ Z!~LTL!Z2~R̃^ I !~ I ^ R̃!~LTLTp!Z2~R̃^ I !

3~ I ^ Z!~LTL!Z1~R̃^ I !~LTLTL!~ I ^ Z!Z2~Z^ I !~LTL!Z

1~LTLTL!~Z^ I !Z.

On the other hand,

pTpTL5~pTp!TL5~R^ I !~pT~pTL!!2~R^ I 2I ^ I ^ I !~Z^ I !~pTL!

1~T^ I !L2~LTLTL!~T^ I !

5~R^ I !~ I ^ R̃!~~pTL!Tp!1~R^ I !~ I ^ Z!~PTL!2~R^ I !

3~~pTL!TL!Z2~R^ I 2I ^ I ^ I !~Z^ I !R̃~LTp!2~R^ I 2I

^ I ^ I !~Z^ I !ZL1~R^ I 2I ^ I ^ I !~Z^ I !~LTL!Z1~T^ I !L

2~LTLTL!~T^ I !

5~R^ I !~ I ^ R̃!~R̃^ I !~LTpTp!1~R^ I !~ I ^ R̃!~Z^ I !~LTp!

2~R^ I !~ I ^ R̃!~LTLTp!Z1~R^ I !

3~ I ^ Z!R̃~LTp!1~R^ I !~ I ^ Z!ZL2~R^ I !~ I ^ Z!~LTL!Z

2~R^ I !~R̃^ I !~LTpTL!Z2~R^ I !~Z^ I !~LTL!Z1~R^ I !

3~LTLTL!~Z^ I !Z2~R^ I 2I ^ I ^ I !~Z^ I !R̃~LTp!

2~R^ I 2I ^ I ^ I !~Z^ I !ZL1~R^ I 2I ^ I ^ I !~Z^ I !

3~LTL!Z1~T^ I !L2~LTLTL!~T^ I !.

Using again~52!, we can replace (R^ I )(R̃^ I )(LTpTL)Z by

~R^ I !~R̃^ I !~ I ^ R̃!~LTLTp!Z1~R^ I !~R̃^ I !~ I ^ Z!~LTL!Z

2~R^ I !~R̃^ I !~LTLTL!~ I ^ Z!Z.

We remark that~69! implies the equality between the coefficients multiplyingLTpTp.
For the coefficient multiplyingLTp, we must have the following relation,
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~R^ I !~ I ^ R̃!~Z^ I !1~R^ I !~ I ^ Z!R̃2~R^ I 2I ^ I ^ I !~Z^ I !R̃

52~ I ^ R̃!~R̃^ I !~ I ^ R2I ^ I ^ I !~ I ^ Z!1~ I ^ R̃!~Z^ I !1~ I ^ Z!R̃,

which can be written under the form

~R^ I 2I ^ I ^ I !„~ I ^ R̃!~Z^ I !2~Z^ I !R̃1~ I ^ Z!R̃1~ I ^ R̃!~R̃^ I !~ I ^ Z!…50

where we have used~69!. By using (R2I ^ I )R̃52(R2I ^ I ) we can replace the third term of th
second factor by2(R̃^ I )(I ^ Z)R̃ to see that this relation is satisfied by virtue of~72!. It is also
easy to see that the coefficients multiplyingL are precisely the relation~75! and those multiplying
(LTL)Z and (LTLTp)Z are equal in virtue ofRR̃5I ^ I 1I ^ Q and ~56!. Using ~42! and ~47!
for a5L, we obtain for the coefficients multiplyingLTLTL the same relation as~75! yielding the
consistency of the braiding ofpTpTL.

Finally by usingLTL5R(LTL)R21, obtained from~42! for a5L, and~71! we can show
by a similar way the consistency of the braiding ofpTLTL.

Then from the results of this section, we have the following.
Theorem „4.1…: Let G be an inhomogeneous quantum group, as defined in Sec. II, with

following commutation rules

R~LTL!5~LTL!R,

pTL5R̃~LTp!1ZL2~LTL!Z,

pTp5R~pTp!2~R2I ^ I !Zp1T2~LTL!T.

Then,

R̃5R1I ^ Q5R211R21~ I ^ Q!,

Q5lI , lPC, lÞ21,

T52R̃T for lÞ0 or ~R̃1I ^ I !T2~LTL!~R̃1I ^ I !T50 for l50,

~R^ I !~ I ^ R!~R^ I !5~ I ^ R!~R^ I !~ I ^ R!,

~Z^ I !R1~R̃^ I !~ I ^ Z!R5~ I ^ R!~Z^ I !1~ I ^ R!~R̃^ I !~ I ^ Z!,

~R^ I 2I ^ I ^ I ! ~~ I ^ Z!Z2~Z^ I !Z!1T^ I 2~ I ^ R̃!~R̃^ I !~ I ^ T!50

and

~ I ^ R!2I ^ I ^ I )~~ Z̃^ I !T2~ I ^ Z̃!T!2~Z^ I !T2~R̃^ I !~ I ^ Z!T50

with

Z̃52RZ.

V. DISCUSSIONS AND CONCLUSIONS

We end this paper by noticing the following.
~1! Let us recall that~10! and~11! imply that f l

n , f kl
nm , f l

nm , and f kl
n are linear functionals on

B, but not f̃ k
m , h̃m, and h̃k . Then their action on both sides of inhomogeneous commuta

relations~48! and ~64! is not justified, but a tedious and straightforward computation shows
they give the same results that those obtained directly by usingf kl

nm , f l
nm , and f kl

n .
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~2! From ~35!, ~36!, and~24!, we see thatA{a→ r̃(a)5(0
f̃ (a)

«(a)
h̃(a))PMN(C) is a unital anti-

homomorphism.
~3! Replacinga andbPA, respectively, byS(a) andS(b) into ~36! and by settinghk5h̃k

+S, we get

hn~ab!5hn~a!«~b!1 f̃ m
n
„S~a!…hm~b!, a,bPA. ~94!

Then, although the formalism presented above is quite different from those of Ref. 9, we ar
similar results for the commutation rules between the elements ofA and the translations~48! and
~94!. These formulas become identical with those of Ref. 9 iff̃ m

n
„S(a)…5 f m

n (a) for anyaPA. The
latter condition is satisfied forh̃n(pa)50 and it is true, as a consequence of~56! and~57!, for any
aPB. In this case,~34!, ~35!, and~94! are also true for anya andbPB and~94! can be combined
with ~34! to see thatA{a→r(a)5(0

f (a)
«(a)
h(a))PMN(C) is a unital homomorphism. In this case th

R-matrix is subject to a strong constraintR25I ^ 2 as in Ref. 9.
~4! Using~85! and settingT522T8 we can rewrite, forl50, the commutation rules betwee

the translations as

~Rkl
nm2dk

nd l
m!~pkpl2Zq

klpq1T8kl2Lq
kLp

l T8qp!50,

which are identical to those of Ref. 9. In this case one can also see that~75! reduces to the
condition of the existence of covariant differential calculus on a quantum Minkowski space f
in Ref. 10.
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A four-field lattice furnished by Blaszak and Marciniak is transformed into bilinear
form upon introducing two auxiliary independent variables. A Ba¨cklund transfor-
mation in bilinear form is found for the lattice and the corresponding nonlinear
superposition formula is rigorously established. As a consequence, soliton solutions
to the lattice are derived. ©1999 American Institute of Physics.
@S0022-2488~99!02811-X#

I. INTRODUCTION

Recently, Blaszak and Marciniak have derived several three-field and four-field lattices1 as an
application ofr-matrix formalism to the algebra of shift operators. Two examples are

at~n!5c~n11!2c~n21!, ~1!

bt~n!5a~n21!c~n21!2a~n!c~n!, ~2!

ct~n!5c~n!~b~n!2b~n11!!, ~3!

and

ut~n!5u~n!~v~n!2v~n21!!, ~4!

v t~n!5w~n!u~n11!2u~n!w~n21!, ~5!

wt~n!5q~n!u~n12!2u~n!q~n21!, ~6!

qt~n!5u~n13!2u~n!, ~7!

both of which have Abelian symmetry algebras of infinite dimensions. Recently, an integ
symplectic map connected with~1!–~3! and its hierarchy was obtained by Wu and Geng2 and

a!Electronic mail: hxb@lsec.cc.ac.cn
60710022-2488/99/40(11)/6071/16/$15.00 © 1999 American Institute of Physics
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master symmetries were presented by the discrete zero curvature equation by one of the
~Ma! and Fuchssteiner.3 Moreover,~1!–~3! were transformed into bilinear equations by introdu
ing an auxiliary independent variable, and thus a Ba¨cklund transformation and its nonlinear s
perposition formula were established by one of the authors~X.-B.H.! and Zhu.4 As a result, soliton
solutions to Eqs.~1!–~3! were found.

However, to the best of our knowledge, so far there have not been any results on solut
the lattice~4!–~7! in the literature. In this paper, we would like to present a way to const
solutions to the Eqs.~4!–~7! by establishing a Ba¨cklund transformation and its nonlinear supe
position formula for the lattice~4!–~7!. As an application of the obtained results, soliton solutio
of ~4!–~7! are derived. The basic tool used in this paper is Hirota’s bilinear formalism. As u
the crucial step of using Hirota’s method is to transform the system of equations under con
ation into bilinear form, which is far from algorithmic and often highly technical. In Sec.
through a long computation, we will show a way of deriving a bilinear form for the lattice~4!–~7!.
Then a Ba¨cklund transformation in bilinear form will be presented in Sec. III and the corresp
ing nonlinear superposition formula will be established in Sec. IV. Finally in Sec. V, a conclu
will be given. Some bilinear operator identities, which are fundamental and necessary fo
discussion, are listed in Appendix A.

II. BILINEAR FORM

In this section, we want to derive a bilinear form for the lattice~4!–~7!. To that end, let us
make

u~n!5
f ~n11! f ~n21!

f 2~n!
, v~n!5S ln

f ~n11!

f ~n! D
t

. ~8!

Our choice of the above-mentioned transformation comes from an observation that the first~4!
of the lattice can be transformed into the following form:

~ ln u~n!! t5v~n!2v~n21!.

Furthermore let us introduce an auxiliary independent variablez such that

~DtDz22eDn12! f ~n!• f ~n!50, ~9!

where Hirota’s bilinear differential operatorDx
mDt

k , bilinear difference operator exp(dDn) and
bilinear differential-difference operatorDx

mDt
k exp(dDn) are defined as follows:5–9

Dx
mDt

ka•b[S ]

]x
2

]

]x8
D mS ]

]t
2

]

]t8
D k

a~x,t !b~x8,t8!ux85x,t85t ,

exp~dDn!a~n!•b~n![expFdS ]

]n
2

]

]n8
D Ga~n!b~n8!un85n5a~n1d!b~n2d!,

Dx
mDt

k exp~dDn!a~n!•b~n![S ]

]x
2

]

]x8
D mS ]

]t
2

]

]t8
D k

a~n1d,x,t !b~n2d,x8,t8!ux85x,t85t .

Then from~7! to ~9!, we know that

qt~n!5
f ~n14! f ~n12!

f 2~n13!
2

f ~n11! f ~n21!

f 2~n!
5

]2

]t]z
ln

f ~n13!

f ~n!
,

which implies that we can choose
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q~n!5
]

]z
ln

f ~n13!

f ~n!
. ~10!

From here it is clear that the introduction of auxiliary variablez makes it easy to solveq(n) in
terms off without containing any explicit integral. That is also our motivation for introducing
auxiliary variablez. Substituting~8! and ~10! into Eq. ~5! allows us to take

~ ln f ~n11!! tt5w~n!u~n11!,

from which it follows that

w~n!5
1

2

Dt
2f ~n11!• f ~n11!

f ~n12! f ~n!
. ~11!

Furthermore from~6! we have

1

2

Dt~Dt
2f ~n11!• f ~n11!!• f ~n12! f ~n!

f 2~n12! f 2~n!
5

f ~n11!Dzf ~n13!• f ~n!

f 2~n12! f ~n!

2
f ~n11!Dzf ~n12!• f ~n21!

f 2~n! f ~n12!

or

1
2 Dt~Dt

2f ~n!• f ~n!!•~eDnf ~n!• f ~n!!

52 sinh~ 1
2 Dn!~Dze

~3/2!Dnf ~n!• f ~n!!•~e~1/2!Dnf ~n!• f ~n!!. ~12!

By use of~9! and ~A1!–~A3!, we can compute that

Dt~Dt
2f ~n!• f ~n!!•~eDnf ~n!• f ~n!!5Dt~Dt

2f ~n!• f ~n!!• f 2~n!1 1
6Dt~Dt

3Dzf ~n!• f ~n!!• f 2~n!

2 2
3sinh~ 1

2 Dn!@~Dt
3e~1/2!Dnf ~n!• f ~n!!•~e~1/2!Dnf ~n!• f ~n!!

13~Dte
~1/2!Dnf ~n!• f ~n!!•~Dt

2e~1/2!Dnf ~n!• f ~n!!#. ~13!

Now from ~12! and by use of~13!, ~A4!, and~A5! we can have the following relation:

2sinh~ 1
2 Dn!~Dze

~3/2!Dnf ~n!• f ~n!!•~e~1/2!Dnf ~n!• f ~n!!

5 3
8Dt~Dt

2f ~n!• f ~n!!• f 2~n!1 1
16Dt~Dt

3Dzf ~n!• f ~n!!• f 2~n!

1 1
8Dt~Dt

2eDnf ~n!• f ~n!!• f 2~n!2 1
2 sinh~ 1

2 Dn!~Dt
3e~1/2!Dnf ~n!• f ~n!!

•~e~1/2!Dnf ~n!• f ~n!!1 1
2 $sinh~ 1

2 Dn!~DtDye
~1/2!Dnf ~n!• f ~n!!

•~e~1/2!Dnf ~n!• f ~n!!2 1
2 Dt~Dye

Dnf ~n!• f ~n!!• f 2~n!%, ~14!

where we have introduced another auxiliary independent variabley such that

Dt
2e~1/2!Dnf ~n!• f ~n!5Dye

~1/2!Dnf ~n!• f ~n!.

Finally, ~14! can be decoupled into the following two bilinear equations:

~Dt
2eDn13Dt

21 1
2 Dt

3Dz22Dye
Dn! f ~n!• f ~n!50,
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~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn! f ~n!• f ~n!50.

To sum up, we obtain the following bilinear form for the lattice~4!–~7!:

~DtDz22eDn12! f ~n!• f ~n!50, ~15!

Dt
2e~1/2!Dnf ~n!• f ~n!5Dye

~1/2!Dnf ~n!• f ~n!, ~16!

~Dt
2eDn13Dt

21 1
2 Dt

3Dz22Dye
Dn! f ~n!• f ~n!50, ~17!

~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn! f ~n!• f ~n!50. ~18!

III. BÄCKLUND TRANSFORMATION

In this section, we derive a bilinear Ba¨cklund transformation~BT! for the system of the
bilinear Eqs.~15!–~18!. The concrete form of BT is presented as follows:

Theorem 1: The bilinear system of Eqs.~15!–~18! has the following Ba¨cklund transforma-
tion:

~Dz1l21e2Dn1m! f ~n!•g~n!50, ~19!

~Dte
2 ~1/2!Dn2le~1/2!Dn1ge2 ~1/2!Dn! f ~n!•g~n!50, ~20!

~Dye
2 ~1/2!Dn2lDte

~1/2!Dn2lge~1/2!Dn1ve2 ~1/2!Dn! f ~n!•g~n!50, ~21!

~l21Dt
3e2 ~1/2!Dn1Dt

2e~1/2!Dn12gDte
~1/2!Dn14g2e~1/2!Dn13l21gDt

2e2 ~1/2!Dn22Dye
~1/2!Dn

22ve~1/2!Dn1ne2 ~1/2!Dn! f ~n!•g~n!50, ~22!

~2Dt
3e2Dn12DtDye

2Dn16gDt
2e2Dn1 1

2 lne2Dn18l21e22Dn12vDte
2Dn12gDye

2Dn

14l2Dte
Dn16g2Dte

2Dn12vge2Dn13g3e2Dn1ueDn! f ~n!•g~n!50, ~23!

wherel, m, g, v, n, andu are arbitrary constants.
Proof: Let f (n) be a solution of Eqs.~15!–~18!. What we need to prove is that the functio

g(n) satisfying~19!–~23! is another solution of Eqs.~15!–~18!, i.e.,

P1[~DzDt22eDn12!g~n!•g~n!50,

P2[~Dt
2e~1/2!Dn2Dye

~1/2!Dn!g~n!•g~n!50,

P3[~Dt
2eDn13Dt

21 1
2 Dt

3Dz22Dye
Dn!g~n!•g~n!50,

P4[~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn!g~n!•g~n!50.

In fact, a similar deduction to that in Refs. 10 and 11 can give rise toP150, P250. Thus we
focus on showing thatP350 andP450. Let us first prove thatP350. Making use of~A6! and
~A7! can give

22P3f 2~n!52@~Dt
2eDn13Dt

21 1
2 Dt

3Dz22Dye
Dn! f • f #g2

22@~Dt
2eDn13Dt

21 1
2 Dt

3Dz22Dye
Dn!g•g# f 213@~DzDt22eDn12! f • f #

3~Dt
2g•g!23~Dt

2f • f !@~DzDt22eDn12!g•g#
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5I 128sinh~ 1
2 Dn!@~Dye

~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!2~e~1/2!Dnf •g!

•~Dye
2 ~1/2!Dnf •g!#24Dtcosh~ 1

2 Dn!@~Dte
~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!

2~e~1/2!Dnf •g!•~Dte
2 ~1/2!Dnf •g!#24sinh~ 1

2 Dn!@~Dt
2e~1/2!Dnf •g!

•~e2 ~1/2!Dnf •g!22~Dte
~1/2!Dnf •g!•~Dte

2 ~1/2!Dnf •g!

1~e~1/2!Dnf •g!•~Dt
2e2 ~1/2!Dnf •g!#, ~24!

where the functionI 1 is defined by

I 1[@~Dt
3Dz16Dt

216Dt
2eDn! f • f #g22 f 2~Dt

3Dz16Dt
216Dt

2eDn!g•g

13@~DzDt22eDn12! f • f #~Dt
2g•g!23~Dt

2f • f !@~DzDt22eDn12!g•g#.

Using a similar deduction to that in Ref. 12, we have

I 154l21sinh~ 1
2 Dn!~Dt

3e2 ~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!112sinh~ 1
2 Dn!~Dt

2e~1/2!Dnf •g!

•~e2 ~1/2!Dnf •g!124gsinh~ 1
2 Dn!~Dte

~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!124g2sinh~ 1
2Dn!

3~e~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!112l21gsinh~ 1
2 Dn!~Dt

2e2 ~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!.

Thus by using~A8!–~A11!, ~20!, and~21! equality ~24! can be further reduced to the following

22P3f 2~n!54l21sinh~ 1
2 Dn!~Dt

3e2 ~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!14sinh~ 1
2 Dn!~Dt

2e~1/2! Dnf •g!

•~e2 ~1/2!Dnf •g!18gsinh~ 1
2 Dn!~Dte

~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!116g2sinh~ 1
2 Dn!

3~e~1/2Dnf •g!•~e2 ~1/2!Dnf •g!112l21gsinh~ 1
2 Dn!~Dt

2e2 ~1/2!Dnf •g!

•~e2 ~1/2!Dnf •g!28sinh~ 1
2 Dn!~Dye

~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!

28vsinh~ 1
2 Dn!~e~1/2!Dnf •g!•~e2 ~1/2!Dnf •g!50,

which implies thatP350.
Second, let us prove thatP450. By using~A12!–~A25! and ~19!–~22!, we can deduce the

following relation

2P4e~3/2!Dnf • f 5@~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn! f • f #@e~3/2!Dng•g#2@e~3/2!Dnf • f #

3@~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn!g•g#

5sinh~ 1
2 Dn!~eDnf •g!•@~2Dt

3e2Dn12DtDye
2Dn16gDt

2e2Dn1 1
2 lne2Dn

18l21e22Dn12vDte
2Dn12gDye

2Dn14l2Dte
Dn16g2Dte

2Dn

12vge2Dn! f •g#23g2sinh~Dn!~e~1/2!Dnf •g!•~2ge2 ~1/2!Dnf •g!

5sinh~ 1
2 Dn!~eDnf •g!•@~2Dt

3e2Dn12DtDye
2Dn16gDt

2e2Dn1 1
2 lne2Dn

18l21e22Dn12vDte
2Dn12gDye

2Dn14l2Dte
Dn16g2Dte

2Dn12vge2Dn

13g3e2Dn! f •g#50.

Thus the proof of Theorem 1 is completed.
                                                                                                                



e

e

6076 J. Math. Phys., Vol. 40, No. 11, November 1999 Ma et al.

                    
By using the BT given by~19!–~23!, we can easily obtain the following solution from th
trivial solution f (n)51:

g~n!511exp~h!, h5pn1qt1rz1sy1h0 ~25!

with

l45ep~11ep1e2p!, m52l21, g5l, v5l2, n522l2, u524l328l21,

wherep is an arbitrary constant,q5l(12e2p), r 5l21(ep21), s5l2(12e22p) andh0 is an
arbitrary constant. Therefore the corresponding one-soliton solution of the lattice~4!–~7! is

u~n!5
g~n11!g~n21!

g2~n!
, v~n!5S ln

g~n11!

g~n! D
t

,

~26!

q~n!5S ln
g~n13!

g~n! D
z

, w~n!5
1

2

Dt
2g~n11!•g~n11!

g~n12!g~n!
,

with g(n) being given by~25!. The plot of the solution~26! is shown in Fig. 1, where we choos
p50.7, l'1.94,h050, z51, y51.

IV. NONLINEAR SUPERPOSITION FORMULA

In the following, we shall simply denote, without confusion,f (n,t) by f (n) or f. The corre-
sponding nonlinear superposition formula is shown in the following theorem.

FIG. 1. 1-soliton solution of the lattice~4!–~7!.
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Theorem 2: Let f 0 be a solution of Eqs.~15!–~18!. Suppose thatf i ( i 51,2) are two other
solutions of ~15!–~18! which are related tof 0 under the BT~19!–~23! with parameters
(l i ,m i ,g i ,v i ,n i ,u i), i.e., f 0→ (l i ,m i ,g i ,v i ,n i .u i ) f i ( i 51,2), wherel1l2Þ0, f jÞ0 ( j 50,1,2).
Then f 12 defined by

exp~2 1
2 Dn! f 0• f 125k@l1exp~2 1

2 Dn!2l2exp~ 1
2 Dn!# f 1• f 2 , ~27!

wherek is a nonzero constant, is a new solution which is related tof 1 and f 2 under the BT~19!-
~23! with parameters (l2 ,m2 ,g2 ,v2 ,n2 ,u2) and (l1 ,m1 ,g1 ,v1 ,n1 ,u1), respectively.

In order to prove Theorem 2, we first establish some basic lemmas. In what follows
always assume that the hypotheses of Theorem 2 are satisfied andf 12 is determined by~27!.
Besides we set

Ji~n![~Dte
2 ~1/2!Dn2l ie

~1/2!Dn1g ie
2 ~1/2!Dn! f 0~n!• f i~n!, i 51,2

Ki~n![~Dye
2~1/2!Dn2l iDte

~1/2!Dn2l ig ie
~1/2!Dn1v ie

2 ~1/2!Dn! f 0~n!• f i~n!, i 51,2

Li~n![~l i
21Dt

3e2~1/2!Dn1Dt
2e~1/2!Dn12g iDte

~1/2!Dn14g i
2e~1/2!Dn13l i

21g iDt
2e2 ~1/2!Dn

22Dye
~1/2!Dn22v ie

~1/2!Dn1n ie
2 ~1/2!Dn! f 0~n!• f i~n!, i 51,2.

Lemma 1:The bilinear relations hold:

~Dz1l2
21e2Dn1m2! f 1• f 1250, ~28!

~Dz1l1
21e2Dn1m1! f 2• f 1250, ~29!

~Dte
2~1/2!Dn2l2e~1/2!Dn1g2e2~1/2!Dn! f 1• f 1250, ~30!

~Dte
2~1/2!Dn2l1e~1/2!Dn1g1e2~1/2!Dn! f 2• f 1250, ~31!

2Dzf 1• f 21~m12m2! f 1f 22
1

kl1l2
e2Dnf 0• f 1250, ~32!

~l2Dte
~1/2!Dn1l1Dte

2 ~1/2!Dn22l2g1e~1/2!Dn12l1g2e2 ~1/2!Dn! f 1• f 21
1

k
Dte

2~1/2!Dnf 0• f 1250.

~33!

Proof: ~28!–~33! can be proved similarly as in Refs. 10 and 11.
Lemma 2:The bilinear relations hold:

2Dt f 1• f 21~g12g2! f 1f 22
1

k
f 0f 1250, ~34!

Dye
2 ~1/2!Dnf 1• f 125~l2Dte

~1/2!Dn1l2g2e~1/2!Dn2v2e2 ~1/2!Dn! f 1• f 12, ~35!

Dye
2 ~1/2!Dnf 2• f 125~l1Dte

~1/2!Dn1l1g1e~1/2!Dn2v1e2 ~1/2!Dn! f 2• f 12. ~36!

Proof: First, according to the hypotheses of Theorem 2, we have

J1~n! f 2~n1 1
2 !2J2~n! f 1~n1 1

2 !50,

from which, by use of~A26! and ~27!, it follows that ~34! holds. Next, sincef 1 and f 2 are two
solutions of~15!–~18!, we have
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@~Dt
2e~1/2!Dn2Dye

~1/2!Dn! f 1• f 1#~e~1/2!Dnf 2• f 2!

2~e~1/2!Dnf 1• f 1!@~Dt
2e~1/2!Dn2Dye

~1/2!Dn! f 2• f 2#50,

which can be rewritten as

2
1

kl2
~e2 ~1/2!Dnf 0• f 2!@~Dye

2 ~1/2!Dn2l2Dte
~1/2!Dn2l2g2e~1/2!Dn1v2e2 ~1/2!Dn! f 1• f 12#50

by use of~A2!, ~A27!–~A30!, ~27!, ~30!, and~34!. Therefore~35! holds. Similarly we can prove
that ~36! also holds.

Lemma 3:The bilinear relations hold:

~l2
21Dt

3e2 ~1/2!Dn1Dt
2e~1/2!Dn12g2Dte

~1/2!Dn14g2
2e~1/2!Dn13l2

21g2Dt
2e2 ~1/2!Dn

22Dye
~1/2!Dn22v2e~1/2!Dn1n2e2 ~1/2!Dn! f 1• f 1250, ~37!

~l1
21Dt

3e2 ~1/2!Dn1Dt
2e~1/2!Dn12g1Dte

~1/2!Dn14g1
2e~1/2!Dn13l1

21g1Dt
2e2 ~1/2!Dn

22Dye
~1/2!Dn22v1e~1/2!Dn1n1e2 ~1/2!Dn! f 2• f 1250. ~38!

Proof: Since f 1 and f 2 are two solutions of Eqs.~15!–~18!, we have

@~Dt
3Dz16Dt

212Dt
2eDn24Dye

Dn! f 1• f 1# f 2
22@~Dt

3Dz16Dt
212Dt

2eDn24Dye
Dn! f 2• f 2# f 1

2

13@~DzDt22eDn12! f 1• f 1#~Dt
2f 2• f 2!23~Dt

2f 1• f 1!@~DzDt22eDn12! f 2• f 2#50.

On the other hand, using a similar deduction as in Ref. 12, we obtain that

@~Dt
3Dz16Dt

216Dt
2eDn! f 1• f 1# f 2

22@~Dt
3Dz16Dt

216Dt
2eDn! f 2• f 2# f 1

2

13@~DzDt22eDn12! f 1• f 1#~Dt
2f 2• f 2!23~Dt

2f 1• f 1!@~DzDt22eDn12! f 2• f 2#

52
2

kl1l2
e2~1/2!Dn$@~Dt

3e2~1/2!Dn13l2Dt
2e~1/2!Dn13g2Dt

2e2~1/2!Dn16l2g2
2e~1/2!Dn

16l2g2Dte
2~1/2!Dn! f 0• f 2#•~e2~1/2!Dnf 1• f 12!2~e2~1/2!Dnf 0• f 2!•@~Dt

3e2 ~1/2!Dn

13l2Dt
2e~1/2!Dn13g2Dt

2e~1/2!Dn16l2g2
2e~1/2!Dn16l2g2Dte

2 ~1/2!Dn! f 1• f 12#%.

Thus by using~A6!, ~A7!, ~A31!–~A33!, ~27!, and~34!, we have

2

kl1
e2 ~1/2!Dn~e2 ~1/2!Dnf 0• f 2!•@~l2

21Dt
3e2 ~1/2!Dn1Dt

2e~1/2!Dn12g2Dte
~1/2!Dn14g2

2e~1/2!Dn

13l2
21g2Dt

2e2 ~1/2!Dn22Dye
~1/2!Dn22v2e~1/2!Dn1n2e2 ~1/2!Dn! f 1• f 12#50,

which implies that~37! holds. Similarly we can show that~38! holds.
Lemma 4:The bilinear relation holds:

~l1Dt
2e2 ~1/2!Dn2l2Dt

2e~1/2!Dn14l2g1Dte
~1/2!Dn14l1g2Dte

2 ~1/2!Dn24l2g1
2e~1/2!Dn

14l1g2
2e2 ~1/2!Dn! f 1• f 22

1

k
Dt

2e2 ~1/2!Dnf 0• f 121
4

k
l1l2e~1/2!Dnf 0• f 1250. ~39!

Proof: According to the hypotheses of Theorem 2, we have
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1

l1
@J1~n!# t f 2S n2

1

2 D2
1

l2
@J2~n!# t f 1S n2

1

2 D2
g1

l1
J1~n! f 2S n2

1

2D1
g2

l2
J2~n! f 1S n2

1

2D50,

which implies that~39! holds by use of~27!, ~33!, and~34!.
Lemma 5:The bilinear relation holds:

~l1Dye
2 ~1/2!Dn1l2Dye

~1/2!Dn12l1v2e2 ~1/2!Dn22l2v1e~1/2!Dn! f 1• f 2

1S 1

k
Dye

2 ~1/2!Dn1
2

k
l1l2e~1/2!DnD f 0• f 1250. ~40!

Proof: Based on the hypotheses of Theorem 2, we have

l2K1~n! f 2~n2 1
2 !2l1K2~n! f 1~n2 1

2 !50,

which implies that~40! holds upon using~27! and ~33!.
Lemma 6:The bilinear relation holds:

Dyf 1• f 21~v22v1! f 1f 21
1

k
Dt f 0• f 121

1

k
~g11g2! f 0f 1250. ~41!

Proof: According to the hypotheses of Theorem 2, we obtain

K1~n! f 2~n1 1
2 !2K2~n! f 1~n1 1

2 !50,

which lead to~41! upon taking into account~27! and ~33!.
Lemma 7:The bilinear relation holds:

2
1

k
Dt

3e2 ~1/2!Dnf 0• f 121
4l1l2

k
Dte

~1/2!Dnf 0• f 122
8l1l2

k
~g11g2!e~1/2!Dnf 0• f 12

16l2g1Dt
2e~1/2!Dnf 1• f 226l1g2Dt

2e2 ~1/2!Dnf 1• f 212l1l2n1e~1/2!Dnf 1• f 2

22l1l2n2e2 ~1/2!Dnf 1• f 2212l1g2
2Dte

2 ~1/2!Dnf 1• f 2212l2g1
2Dte

~1/2!Dnf 1• f 2

112l2g1
3e~1/2!Dnf 1• f 2212l1g2

3e2 ~1/2!Dnf 1• f 2

2l1Dt
3e2 ~1/2!Dnf 1• f 22l2Dt

3e~1/2!Dnf 1• f 250. ~42!

Proof: It follows from the hypotheses of Theorem 2 that

1

4
L1~n! f 2S n2

1

2D2
1

4
L2~n! f 1S n2

1

2D1
3

2

g1
2

l1
J1~n! f 2S n2

1

2D2
3

2

g2
2

l2
J2~n! f 1S n2

1

2D
2

3

2

g1

l1
@J1~n!# t f 2S n2

1

2D1
3

2

g2

l2
@J2~n!# t f 1S n2

1

2D1
3

4
l1

21@J1~n!# tt f 2S n2
1

2D
2 3

4 l2
21@J2~n!# tt f 1~n2 1

2!50.

This tells that~42! holds by using~27!, ~33!, ~A34!, and~A35!.
Lemma 8:The bilinear relation holds:

@2DyDte
2 ~1/2!Dn12l1l2Dte

~1/2!Dn14l1l2~g11g2!e~1/2!Dn# f 0• f 121k~2l2v1Dte
~1/2!Dn

12l1v2Dte
2 ~1/2!Dn12l2g1Dye

~1/2!Dn12l1g2Dye
2 ~1/2!Dn2l2DyDte

~1/2!Dn

1l1DyDte
2 ~1/2!Dn24l2g1v1e~1/2!Dn14l1g2v2e2 ~1/2!Dn! f 1• f 250. ~43!
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Proof: According to the hypotheses of Theorem 2, we have

l1
21@K1~n!# t f 2S n2

1

2D2l2
21@K2~n!# t f 1S n2

1

2D2
g1

l1
K1~n! f 2S n2

1

2D
1

g2

l2
K2~n! f 1S n2

1

2D50,

which shows that~43! holds by using~27!, ~33!, ~A36!, and~A37!.
Lemma 9:The bilinear relation holds:

2g2sinh~Dn!~e~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!2Dtcosh~Dn!~e~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!

1sinh~Dn!@~Dte
~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!1~e~1/2!Dnf 0• f 12!•~Dte

~1/2!Dnf 1• f 2!#

52
l2

l1
e2 ~1/2!Dn@~eDnf 0• f 2!•~Dte

Dnf 1• f 12!2~Dte
Dnf 0• f 2!•~eDnf 1• f 12!#. ~44!

Proof. On the one hand, by use of~A38!, ~A39!, and~30!, we can have

2g2sinh~Dn!~e~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!2Dtcosh~Dn!~e~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!

1sinh~Dn!@~Dte
~1/2!Dnf 0• f 12!•~e~1/2!Dnf 1• f 2!1~e~1/2!Dnf 0• f 12!•~Dte

~1/2!Dnf 1• f 2!#

5l2@~e~3/2!Dnf 0• f 2!~e~1/2!Dnf 1• f 12!2~e~1/2!Dnf 0• f 2!~e~3/2!Dnf 1• f 12!.

On the other hand, by use of~A40! and ~30!, we can have

e2 ~1/2!Dn@~eDnf 0• f 2!•~Dte
Dnf 1• f 12!2~Dte

Dnf 0• f 2!•~eDnf 1• f 12#

52l1@~e~3/2!Dnf 0• f 2!~e~1/2!Dnf 1• f 12!2~e~1/2!Dnf 0• f 2!~e~3/2!Dnf 1• f 12!#.

Therefore combining these two equalities leads to the required equality~44!.
We now turn to the proof of Theorem 2. Based on Lemma 1, Lemma 2, and Lemma

suffices to show that

~2Dt
3e2Dn12DtDye

2Dn16g2Dt
2e2Dn1 1

2 l2n2e2Dn18l2
21e22Dn12v2Dte

2Dn12g2Dye
2Dn

14l2
2Dte

Dn16g2
2Dte

2Dn12v2g2e2Dn13g2
3e2Dn1u2eDn! f 1• f 1250, ~45!

~2Dt
3e2Dn12DtDye

2Dn16g1Dt
2e2Dn1 1

2 l1n1e2Dn18l1
21e22Dn12v1Dte

2Dn12g1Dye
2Dn

14l1
2Dte

Dn16g1
2Dte

2Dn12v1g1e2Dn13g1
3e2Dn1u1eDn! f 2• f 1250. ~46!

Since f 1 and f 2 are two solutions of Eqs.~15!–~18!, we have

@~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn! f 1• f 1#@e~3/2!Dnf 2• f 2#

2@~Dt
3e~1/2!Dn14Dze

~3/2!Dn2DyDte
~1/2!Dn! f 2• f 2#@e~3/2!Dnf 1• f 1#50. ~47!

Taking advantage of~A12!–~A14!, ~A41!–~A43!, ~27!, ~32!–~34!, and~39!–~44!, we can rewrite
~47! as
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2
1

kl1
e2 ~1/2!Dn~eDnf 0• f 2!•F S Dt

3e2Dn1DyDte
2Dn13g2Dt

2e2Dn1
1

4
l2n2e2Dn

14l2
21e22Dn1v2Dte

2Dn1g2Dye
2Dn12l2

2Dte
Dn13g2

2Dte
2Dn1v2g2e2Dn

1
3

2
g2

3e2Dn1
1

2
u2eDnD f 1• f 12G50, ~48!

which implies that~45! holds. Similarly we can prove that~46! also holds. Therefore we hav
completed the proof of theorem 2.

As an application of the nonlinear superposition formula~27!, we can construct soliton solu
tions of the Blaszak–Marciniak lattice of the Eqs.~15!–~18!. Choose for examplef 051,k
5 1/l12l2. It is easily verified that

where f 12 is given by

f 12511
l1e2p12l2

l12l2
eh11

l12l2e2p2

l12l2
eh21

l1e2p12l2e2p2

l12l2
eh11h2 ~49!

with

h i5pin1qi t1r iz1siy1h i
0 , qi5l i~12e2pi !, r i5l i

21~epi21!, si5l i
2~12e22pi !

and

l i
45epi~11epi1e2pi !, m i52l i

21 , g i5l i , v i5l i
2 , n i522l i

2 , u i524l i
328l i

21

in which the pi ( i 51,2) are arbitrary constants. Thus the corresponding 2-soliton solutio
~4!–~7! is

u~n!5
f 12~n11! f 12~n21!

f 12
2 ~n!

, v~n!5S ln
f 12~n11!

f 12~n! D
t

~50!

q~n!5S ln
f 12~n13!

f 12~n! D
z

, w~n!5
1

2

Dt
2f 12~n11!• f 12~n11!

f 12~n12! f 12~n!

with f 12(n) being given by~49!. The plot of ~50! is shown in Fig. 2 where we chosep151.2,
p251.42,l1'22.67,l2'3.10,h1

05h2
050, z51, y51.

In general, along this line, we can generate multisoliton solutions for the Blaszak–Marc
lattice ~4!–~7! successively.

V. CONCLUSION

By introducing two auxiliary variables, a four-field lattice introduced by Blaszak
Marciniak1 is transformed into Hirota’s bilinear form. The transformation of the dependent
ables are given by~8!, ~10!, and~11!. A bilinear Bäcklund transformation~Theorem 1! is found
and its corresponding nonlinear superposition formula~Theorem 2! is rigorously proved. As a
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consequence, one-soliton and two-soliton solutions to the lattice are constructed. In princip
resulted nonlinear superposition formula guarantees the existence of multisoliton solution
tells us how to construct them explicitly.
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APPENDIX: HIROTA BILINEAR OPERATOR IDENTITIES

The following bilinear operator identities hold for arbitrary functionsa,b,c andd:

Dt
3~DzDta•a!•a25Dt@~Dt

3Dza•a!•a213~DtDza•a!•~Dt
2a•a!#, ~A1!

Dt
2n11a•a50, n50,1,2, . . . , ~A2!

Dt
3~eDna•a!•a252sinh~ 1

2Dn!@~Dt
3e~1/2!Dna•a!•~e~1/2!Dna•a!

13~Dte
~1/2!Dna•a!•~Dt

2e~1/2!Dna•a!#, ~A3!

Dt@~Dt
2eDna•a!•a21~eDna•a!•~Dt

2a•a!#

52sinh~ 1
2 Dn!@~Dt

3e~1/2!Dna•a!•~e~1/2!Dna•a!1~Dt
2e~1/2!Dna•a!•~Dte

~1/2!Dna•a!#,

~A4!

2sinh~ 1
2 Dn!@~DyDte

~1/2!Dna•a!•~e~1/2!Dna•a!1~Dte
~1/2!Dna•a!•~Dye

~1/2!Dna•a!#

5Dt~Dye
Dna•a!•a2, ~A5!

FIG. 2. 2-soliton solution of the lattice~4!–~7!.
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~Dye
Dna•a!b22a2Dye

Dnb•b52sinh~ 1
2 Dn!@~Dye

~1/2!Dna•b!•~e2~1/2!Dna•b!

2~e~1/2!Dna•b!•~Dye
2 ~1/2!Dna•b!]

52Dycosh~ 1
2 Dn!~e~1/2!Dna•b!•~e2 ~1/2!Dna•b!,

~A6!

~Dt
2eDna•a!b22a2Dt

2eDnb•b5Dtcosh~ 1
2 Dn!@~Dte

~1/2!Dna•b!•~e2 ~1/2!Dna•b!2~e~1/2!Dna•b!

•~Dte
2 ~1/2!Dna•b!#1sinh~ 1

2 Dn!@~Dt
2e~1/2!Dna•b!

•~e2 ~1/2!Dna•b!22~Dte
~1/2!Dna•b!•~Dte

2 ~1/2!Dna•b!

1~e~1/2!Dna•b!•~Dt
2e2 ~1/2!Dna•b!#

5Dtcosh~ 1
2 Dn!@~Dte

~1/2!Dna•b!•~e2 ~1/2!Dna•b!

2~e~1/2!Dna•b!•~Dte
2 ~1/2!Dna•b!#

1Dt
2sinh~~1/2!Dn!~e~1/2!Dna•b!•~e2 ~1/2!Dna•b!, ~A7!

Dtcosh~ 1
2 Dn!@~Dte

~1/2!Dna•b!•~e2 ~1/2!Dna•b!1~e~1/2!Dna•b!•~Dte
2 ~1/2!Dna•b!#

5sinh~ 1
2 Dn!@~Dt

2e~1/2!Dna•b!•~e2 ~1/2!Dna•b!2~e~1/2!Dna•b!•~Dt
2e2 ~1/2!Dna•b!#,

~A8!

Dtcosh~ 1
2 Dn!a•a50, ~A9!

sinh~ 1
2 Dn!a•a50, ~A10!

Dtcosh~ 1
2 Dn!~e~1/2!Dna•b!•~e2 ~1/2!Dna•b!5sinh~ 1

2 Dn!@~Dte
~1/2!Dna•b!•~e2 ~1/2!Dna•b!

2~e~1/2!Dna•b!•~Dte
2 ~1/2!Dna•b!#, ~A11!

~Dt
3e~1/2!Dna•a!~e~3/2!Dnb•b!2~e~3/2!Dna•a!~Dt

3e~1/2!Dnb•b!

52sinh~ 1
2 Dn!~eDna•b!•~Dt

3e2Dna•b!1 1
2 sinh~Dn!@~Dt

3e2 ~1/2!Dna•b!

•~e~1/2!Dna•b!13~Dte
2 ~1/2!Dna•b!•~Dt

2e~1/2!Dna•b!#23Dtcosh~Dn!

3~Dte
2 ~1/2!Dna•b!•~Dte

~1/2!Dna•b!1 3
2Dt

2sinh~Dn!~Dte
2 ~1/2!Dna•b!•~e~1/2!Dna•b!

5 1
4Dt

3cosh~Dn!~e2 ~1/2!Dna•b!•~e~1/2!Dna•b!1 3
4Dt

2sinh~Dn!

3@~Dte
2 ~1/2!Dna•b!•~e~1/2!Dna•b!2~e2 ~1/2!Dna•b!•~Dte

~1/2!Dna•b!#

1 3
4Dtcosh~Dn!@~Dt

2e2 ~1/2!Dna•b!•~e~1/2!Dna•b!1~e2 ~1/2!Dna•b!•~Dt
2e~1/2!Dna•b!

22~Dte
2 ~1/2!Dna•b!•~Dte

~1/2!Dna•b!#1 1
4sinh~Dn!@~Dt

3e2 ~1/2!Dna•b!•~e~1/2!Dna•b!

13~Dte
2 ~1/2!Dna•b!•~Dt

2e~1/2!Dna•b!2~e2 ~1/2!Dna•b!•~Dt
3e~1/2!Dna•b!

23~Dt
2e2 ~1/2!Dna•b!•~Dte

~1/2!Dna•b!#, ~A12!

~Dze
~3/2!Dna•a!~e~3/2!Dnb•b!2~e~3/2!Dna•a!~Dze

~3/2!Dnb•b!52sinh~ 3
2Dn!~Dza•b!•ab,

~A13!
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~DyDte
~1/2!Dna•a!~e~3/2!Dnb•b!2~e~3/2!Dna•a!~DyDte

~1/2!Dnb•b!

522sinh~ 1
2 Dn!~eDna•b!•~DtDye

2Dna•b!2sinh~Dn!@~Dye
2 ~1/2!Dna•b!•~Dte

~1/2!Dna•b!

1~Dte
2 ~1/2!Dna•b!•~Dye

~1/2!Dna•b!#1Dycosh~Dn!~Dte
2 ~1/2!Dna•b!•~e~1/2!Dna•b!

1Dtcosh~Dn!~Dye
2 ~1/2!Dna•b!•~e~1/2!Dna•b!5 1

2 DyDtsinh~Dn!~e2 ~1/2!Dna•b!

•~e~1/2!Dna•b!1 1
2 Dtcosh~Dn!@~Dye

2 ~1/2!Dna•b!•~e~1/2!Dna•b!2~e2 ~1/2!Dna•b!

•~Dye
~1/2!Dna•b!#1 1

2 Dycosh~Dn!@~Dte
2 ~1/2!Dna•b!•~e~1/2!Dna•b!2~e2 ~1/2!Dna•b!

•~Dte
~1/2!Dna•b!#1 1

2 sinh~Dn!@~DyDte
2 ~1/2!Dna•b!•~e~1/2!Dna•b!1~e2 ~1/2!Dna•b!

•~DyDte
~1/2!Dna•b!2~Dye

2 ~1/2!Dna•b!•~Dte
~1/2!Dna•b!2~Dte

2 ~1/2!Dna•b!

•~Dye
~1/2!Dna•b!#, ~A14!

2sinh~Dn!~Dt
2e~1/2!Dna•b!•~e~1/2!Dna•b!

5Dt@~Dte
~3/2!Dna•b!•~e2 ~1/2!Dna•b!1~e~3/2!Dna•b!•~Dte

2 ~1/2!Dna•b!#, ~A15!

2Dtcosh~Dn!~Dte
~1/2!Dna•b!•~e~1/2!Dna•b!

5Dt@~Dte
~3/2!Dna•b!•~e2 ~1/2!Dna•b!2~e~3/2!Dna•b!•~Dte

2 ~1/2!Dna•b!#, ~A16!

sinh~Dn!@~Dt
2e~1/2!Dna•b!•~e2 ~1/2!Dna•b!1~e~1/2!Dna•b!•~Dt

2e2 ~1/2!Dna•b!

12~Dte
~1/2!Dna•b!•~Dte

2 ~1/2!Dna•b!#

5sinh~ 1
2 Dn!@~Dt

2eDna•b!•~e2Dna•b!1~eDna•b!•~Dt
2e2Dna•b!12~Dte

Dna•b!

•~Dte
2Dna•b!#, ~A17!

Dtcosh~Dn!@~Dte
2 ~1/2!Dna•b!•~e~1/2!Dna•b!11~e2 ~1/2!Dna•b!•~Dte

2 ~1/2!Dna•b!#

52sinh~ 1
2 Dn!@~Dt

2eDna•b!•~e2Dna•b!2~eDna•b!•~Dt
2e2Dna•b!#, ~A18!

Dt
2sinh~Dn!~e2 q~1/2!Dna•b!•~e~1/2!Dna•b!

52sinh~ 1
2 Dn!@~Dt

2eDna•b!•~e2Dna•b!22~Dte
Dna•b!•~Dte

2Dna•b!

1~eDna•b!•~Dt
2e2Dna•b!#, ~A19!

sinh~Dn!~e2 ~1/2!Dna•b!•~e~1/2!Dna•b!52sinh~ 1
2 Dn!~eDna•b!•~e2Dna•b!, ~A20!

sinh~ 3
2Dn!~e2Dna•b!•ab52sinh~ 1

2 Dn!~eDna•b!•~e22Dna•b!, ~A21!

sinh~Dn!@~Dte
2~1/2!Dna•b!•~e~1/2!Dna•b!1~e2~1/2!Dna•b!•~Dte

~1/2!Dna•b!#

52sinh~ 1
2Dn!@~Dte

Dna•b!•~e2Dna•b!1~eDna•b!•~Dte
2Dna•b!#, ~A22!

Dtcosh~Dn!~e2~1/2!Dna•b!•~e~1/2!Dna•b!

52sinh~ 1
2Dn!@~Dte

Dna•b!•~e2Dna•b!2~eDna•b!•~Dte
2Dna•b!#, ~A23!

Dt~e~3/2!Dna•b!•~e~1/2!Dna•b!522sinh~ 1
2Dn!~eDna•b!•~Dte

Dna•b!, ~A24!
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Dt~e~3/2!Dna•b!•~e2~1/2!Dna•b!52sinh~ 1
2Dn!~Dte

~1/2!Dna•b!•~e~1/2!Dna•b!, ~A25!

~Dta•b!c2~Dta•c!b52aDtb•c, ~A26!

~Dt
2e~1/2!Dna•a!~e~1/2!Dnb•b!2~e~1/2!Dna•a!~Dt

2e~1/2!Dnb•b!52Dtcosh~ 1
2Dn!~Dta•b!•ab,

~A27!

~Dye
~1/2!Dna•a!~e~1/2!Dnb•b!2~e~1/2!Dna•a!~Dye

~1/2!Dnb•b!

5Dy~e~1/2!Dna•b!•~e2~1/2!Dna•b!, ~A28!

2Dtcosh~ 1
2Dn!ab•cd5~Dte

~1/2!Dna•d!~e2~1/2!Dnc•b!2~e~1/2!Dna•d!~Dte
2~1/2!Dnc•b!

1~Dte
2~1/2!Dna•d!~e~1/2!Dnc•b!2~e2~1/2!Dna•d!~Dte

~1/2!Dnc•b!,

~A29!

Dy~e2~1/2!Dna•b!•~e2~1/2!Dnc•d!5~Dye
2~1/2!Dna•d!~e2~1/2!Dnc•b!2~e2~1/2!Dna•d!

3~Dye
2~1/2!Dnc•b!, ~A30!

2Dycosh~~ 1
2Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!

5e2~1/2!Dn@~Dye
~1/2!Dna•d!•~e2~1/2!Dnc•b!2~e~1/2!Dna•d!•~Dye

2~1/2!Dnc•b!

1~Dye
2~1/2!Dna•d!•~e~1/2!Dnc•b!2~e2~1/2!Dna•d!•~Dye

~1/2!Dnc•b!#, ~A31!

2Dt
2sinh~ 1

2Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!

5e2~1/2!Dn@~Dt
2e~1/2!Dna•d!•~e2~1/2!Dnc•b!1~e~1/2!Dna•d!•~Dt

2e2~1/2!Dnc•b!

22~Dte
~1/2!Dna•d!•~Dte

2~1/2!Dnc•b!2~Dt
2e2~1/2!Dna•d!•~e~1/2!Dnc•b!

2~e2~1/2!Dna•d!•~Dt
2e~1/2!Dnc•b!12~Dte

2~1/2!Dna•d!•~Dte
~1/2!Dnc•b!#,

~A32!

2Dtcosh~ 1
2Dn!@~Dte

2~1/2!Dna•b!•~e~1/2!Dnc•d!1~e2~1/2!Dna•b!•~Dte
~1/2!Dnc•d!#

5e2~1/2!Dn@~Dt
2e~1/2!Dna•d!•~e2~1/2!Dnc•b!2~e~1/2!Dna•d!•~Dt

2e2~1/2!Dnc•b!

1~Dt
2e2~1/2!Dna•d!•~e~1/2!Dnc•b!2~e2~1/2!Dna•d!•~Dt

2e~1/2!Dnc•b!#, ~A33!

atttb5 1
8 @Dt

3a•b1~ab! ttt13~Dta•b! tt13~Dt
2a•b! t#, ~A34!

abttt5
1
8 @2Dt

3a•b1~ab! ttt23~Dta•b! tt13~Dt
2a•b! t#, ~A35!

aytb5 1
4 @DyDta•b1~ab!yt1~Dya•b! t1~Dta•b!y#, ~A36!

abyt5
1
4 @DyDta•b1~ab!yt2~Dya•b! t2~Dta•b!y#, ~A37!

2sinh~Dn!~e~1/2!Dna•b!•~e~1/2!Dnc•d!5~e~3/2!Dna•d!~e2~1/2!Dnc•b!2~e2~1/2!Dna•d!

3~e~3/2!Dnc•b!, ~A38!
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sinh~Dn!@~Dte
~1/2!Dna•b!•~e~1/2!Dnc•d!1~e~1/2!Dna•b!•~Dte

~1/2!Dnc•d!#

2Dtcosh~Dn!~e~1/2!Dna•b!•~e~1/2!Dnc•d!

5~e~3/2!Dna•d!~Dte
2~1/2!Dnc•b!2~Dte

2~1/2!Dna•d!~e~3/2!Dnc•b!, ~A39!

e2~1/2!Dn@~eDna•b!•~Dte
Dnc•d!2~Dte

Dna•b!•~eDnc•d!#

52eDn@~Dte
2~1/2!Dna•c!•~e~1/2!Dnd•b!2~e2~1/2!Dna•c!•~Dte

~1/2!Dnd•b!#,

~A40!

2Dtcosh~Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!22sinh~Dn!@~Dte
2~1/2!Dna•b!•~e~1/2!Dnc•d!

1~e2~1/2!Dna•b!•~Dte
~1/2!Dnc•d!#

52e2~1/2!Dn@~Dte
2Dna•d!•~eDnc•b!2~eDna•d!•~Dte

2Dnc•b!#, ~A41!

1
4Dt

3cosh~Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!2 3
4Dt

2sinh~Dn!@~Dte
2~1/2!Dna•b!•~e~1/2!Dnc•d!

1~e2~1/2!Dna•b!•~Dte
~1/2!Dnc•d!#1 3

4Dtcosh~Dn!@~Dt
2e2~1/2!Dna•b!•~e~1/2!Dnc•d!

1~e2~1/2!Dna•b!•~Dt
2e~1/2!Dnc•d!12~Dte

2~1/2!Dna•b!•~Dte
~1/2!Dnc•d!#

2 1
4sinh~Dn!@~Dt

3e2~1/2!Dna•b!•~e~1/2!Dnc•d!1~e2~1/2!Dna•b!•~Dt
3e~1/2!Dnc•d!

13~Dte
2~1/2!Dna•b!•~Dt

2e~1/2!Dnc•d!13~Dt
2e2~1/2!Dna•b!•~Dte

~1/2!Dnc•d!#

52e2~1/2!Dn@~eDna•d!•~Dt
3e2Dnc•b!2~Dt

3e2Dna•d!•~eDnc•b!#, ~A42!

2 1
2DyDtsinh~Dn!~e2~1/2!Dna•b!•~e~1/2!Dnc•d!1 1

2Dycosh~Dn!@~Dte
2~1/2!Dna•b!

•~e~1/2!Dnc•d!1~e2~1/2!Dna•b!•~Dte
~1/2!Dnc•d!#1 1

2Dtcosh~Dn!@~Dye
2~1/2!Dna•b!

•~e~1/2!Dnc•d!1~e2~1/2!Dna•b!•~Dye
~1/2!Dnc•d!#2 1

2sinh~Dn!@~DyDte
2~1/2!Dna•b!

•~e~1/2!Dnc•d!1~e2~1/2!Dna•b!•~DyDte
~1/2!Dnc•d!1~Dye

2~1/2!Dna•b!•~Dte
~1/2!Dnc•d!

1~Dte
2~1/2!Dna•b!•~Dye

~1/2!Dnc•d!#

52e2~1/2!Dn@~eDna•d!•~DyDte
2Dnc•b!2~DyDte

2Dna•d!•~eDnc•b!#. ~A43!
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We describe the construction of some finite dimensional nonunitary representations
of E(2), the Liegroup of Euclidean transformations in the plane. Some properties
of these representations are also discussed, with emphasis on indecomposable rep-
resentations. ©1999 American Institute of Physics.@S0022-2488~99!02711-5#

I. INTRODUCTION

The groupE(2) of Euclidean transformations in two dimensions is the noncompact semid
product group@R2#SO~2!, which consists of Abelian translations in the plane together with ro
tions. Its unitary irreducible representations~unirreps! are either one-dimensional representatio
or infinite dimensional representations which can be constructed in the standard wa
induction.1 Much less is known about the finite dimensional, nonunitary representations ofE(2),
the prototype of which is the ‘‘natural’’ representation

p:~R~u!,x,y!°S cosu 2sinu x

sinu cosu y

0 0 1
D ~1!

in terms of 333 matrices, whereR(u) is the SO~2! rotation parametrized by the angleu, and
(x,y) is a vector describing the translation part of the transformation.

The representation of Eq.~1! was obtained in the familiar way from a 232 representation of
SO~2!, which is extended to a 333 matrix by addition of an extra line and an extra column wi
appropriate entries to account for the translation part ofE(2). This representation is not irreduc
ible, but it is indecomposable.

It is the objective of this paper to present an explicit method of obtaining some fin
dimensional indecomposable representations ofE(2).

One can verify, using Eq.~1!, the composition rule forE(2) elements,

~R~u1!,x1 ,y1!•~R~u2!,x2 ,y2!5~R~u11u2!,x11x2 cosu12y2 sinu1 ,y11x2 sinu11y2 cosu1!.
~2!

From this composition rule, we can write a general element (R(u),x,y) as the product
(1,x,y)•(R(u),0,0), where (1,0,0)5(R(u50),0,0) is the unit element.

Throughout this paper, we will use complex coordinates, withz5x1 iy . We can then obtain
the 232 representations

p:~R~u!,x,y![~R~u!,z!°S eiu z

0 1D , p̃:~R~u!,z!°S 1 0

z̄ e2 iuD , ~3!
60870022-2488/99/40(11)/6087/23/$15.00 © 1999 American Institute of Physics
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where (R(u),z) now denotes an element ofE(2), andwhere the bar denotes complex conjugatio
The composition rule now reads

~R~u1!,z1!•~R~u2!,z2!5~R~u11u2!,z11z2eiu1!. ~4!

The full transformation in real space can be obtained from the real and imaginary parts
complex transformation.

A motivation for our work is thatE(2);@R2#SO~2! represents the simplest nontrivial e
ample of a semidirect product group, a family very useful in physics as it contains, am
others, the rigid rotor group@R5#SO~3! of nuclear and molecular physics and the Poincare´ group
@R4#SO~3,1! of spacetime translations and boosts.

The starting point of our method is the Lie algebrae(2) of the groupE(2). ~We will jump
freely between the algebrae(2) and the groupE(2); all representations ofe(2) discussed here
can be integrated to representations ofE(2).! Thus, suppose thatp(R(u),z) is a representation o
E(2) on a finite-dimensional spaceV. ~It is a slight abuse of notation to writep(R(u),z) because
the representations will, in general, depend on bothz and z̄. However, this shorthand notatio
causes no problem. Technically speaking, we are thinking ofz as an element of the complex plan
regarded as areal Lie group, not a complex Lie group.! Then,V decomposes into weight sub
spaces according to the action of SO~2!,

V5 % Wk ,

where

Wk5$vPV:p~R~u!,0!v5eikuv%, ~5!

wherekPZ so thatp(R(u12p),z)5p(R(u),z) for representations ofE(2). Wedenote by

l 052 i
]

]u
p~R~u!,z!uu5z50 , p15

]

]z
p~R~u!,z!uu5z50 , p25

]

] z̄
p~R~u!,z!uu5z50 , ~6!

a basis for thee(2) algebra, with nonzero commutation relations given by

@p1 ,p2#50, @ l 0 ,p6#56p6 . ~7!

The elementsp1 andp2 are, respectively, ‘‘raising’’ and ‘‘lowering’’ operators, in the sense th

p1Wk#Wk11 , p2Wk#Wk21 . ~8!

In particular, for finite dimensional representations, they are nilpotent.
We have found that a useful and compact way of describing a representation of thee(2)

algebra is to display the result of Eqs.~7! and~8! in a graphical or diagrammatic form. We deriv
in Sec. II the rules for constructing representations ofe(2) that have no weight multiplicity. The
tensor product of two such representations is simply obtained by combining their resp
graphs in an appropriate way, as shown in Sec. II C. The resulting graph describes a repres
of e(2) which may or may not be decomposable; the problem of decomposing a tensor p
turns out to be highly nontrivial, and we present in Sec. VIII some results on this issue.

A feature of tensor product representations and of certain other representations that w
present is that they typically contain indecomposable submodules with nontrivial weight m
plicities. One should recall that, thus far, the bulk of the results forE(2) have dealt with unitary
infinite dimensional representations, obtained either by induction or by the metho
contraction,2,3 where one considers representations ofE(2) as appropriate limits of representatio
of SU~2!; in both cases, the weight multiplicity is never greater than 1. For the finite dimens
case, some of our representations can be thought of as smooth deformations of SU~2! representa-
tions. More generally, representations with trivial weight multiplicities are best accommod
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inside the formalism of graded contractions4 of SU~2!, where the grading subgroup is the contin
ous subgroup SO~2!,E(2). However, it is clear that the contraction of an SU~2! irrep cannot
possibly yield a representation ofE(2) with nontrivial weight multiplicities. The possibility of
constructing indecomposable modules containing arbitrarily high weight multiplicities is there
to our knowledge, completely new.

The representations ofE(2) that we construct belong to an identifiable family which, w
think, is likely to contain many representations useful in physics. To illustrate this point, we
in Sec. V, some explicit realizations of our representations. Moreover, the graphical m
behind our results can certainly be adapted to more complicated semidirect product group5

II. STRING REPRESENTATIONS

In this section we discuss representations with weight multiplicities equal to 1, i.e., repr
tationsV for which, in the notation of~5!, dim(Wk)<1, for all k. For such a representation, we l
M andN be, respectively, the maximum and minimum nontrivial weights.

A. Some lemmas

Lemma 0:Every one-dimensional representation ofE(2) is of the form

xk :~R~u!,z!°eiku, ~9!

for somekPZ.
Proof: The translation subgroupT, i.e., the subgroup consisting of all elements of the fo

(R(0),z), is the commutator subgroup ofE(2). So anyone-dimensional representation ofE(2)
must factor through the quotientE(2)/T, which is isomorphic to SO~2!; the one-dimensiona
representations of SO~2! are of the specified form. h

Lemma 1:Let 0Þuwk& be an arbitrary vector in the one-dimensional subspaceWk,V. Then,
at least one ofp1uwk& andp2(p1uwk&) must be zero for@p1 ,p2#50 to be satisfied.

Proof: The raising and lowering operatorsp1 andp2 are nilpotent and, since they commut
so is their product, the so~2!-invariant operatorp1p2 . The restriction ofp1p2 to anyWk sub-
space is therefore nilpotent. The only nilpotent operator on a one-dimensional space is th
operator. If theWk subspaces are all one-dimensional, this shows thatp1p250 on V.

For an alternate, more explicit, proof, letp1p2uwk&5akuwk&, whereak is a proportionality
constant. This holds since the subspaceWk is one-dimensional andp1p2 is a weight-preserving
operator. Since the representation is finite dimensional, there existsn such that (p1p2)nuwk&
5(p1)n(p2)nuwk&5ak

nuwk&50, from which it follows thatak50. h

Proposition 1: If we specify on which subspaces Wm the raising and lowering operators are
zero and on which they are nonzero, subject to the condition in lemma 1, this determines a
representation of e(2). The resulting representation is indecomposable if and only if p1Wm and
p2Wm11 are not both zero for any m with N<m,M .

Proof: Because of the condition, we can choose a basis$uwm& s.t. l 0uwm&5muwm&% of eigen-
states ofl 0 , with uwm&PWm , for eachm, and such that for eachmP$N, . . . ,M21%, precisely
one of the following holds:

~i! p1uwm&5uwm11& andp2uwm11&50, which we represent by
uwm11&

uwm&
~ii ! p1uwm&50 andp2uwm11&5uwm&, with graph,
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uwm11&

uwm&
or

~iii ! p1uwm&50 and p2uwm11&50, i.e., there is no arrow betweenuwm11& and uwm&,

uwm&
:

uwm11&
.

Relative to the basis$uwM&,uwM21&, . . . ,uwN11&,uwN&%, so~2! acts diagonally,p1 is represented
by a matrix which is zero except for a 1 immediately above the diagonal corresponding to em
for which possibility~i! above holds, andp2 is represented by a matrix which is zero except
a 1 immediately below the diagonal corresponding to eachm11 for which possibility~ii ! above
holds.

Clearly the matrices forp1 and p2 commute. The remaining commutators@ l 0 ,p6#56p6

are satisfied since, for instance, (l 0p12p1l 0)uwm&5 l 0uwm11&2mp1uwm&5uwm11&5p1uwm& by
construction.

If p1Wk505p2Wk11, then

V5~ % m<kWm! % ~ % m.kWm! ~10!

is an e(2)-decomposition. Conversely, supposeV5U % U8 is an e(2)-decomposition but tha
condition ~iii ! above does not hold for anykP$N,N11,...,M21%. We can assume there exis
mP$N,N11,...,M21% such thatWm#U, Wm11#U8. Then eitherp1(Wm) or p2(Wm11) is
nonzero. SinceU andU8 are bothe(2)-spaces, this showsUùU8Þ$0%, a contradiction. h

Representations with weight multiplicities all equal to 1 will be called string representat

B. String representations in graphical form

To a representation thus constructed, we can associate a graph as a mnemonic de
remember which of the conditions~i!, ~ii ! or ~iii ! hold between two neighboring weight subspac
Wm andWm11 by drawing an up arrow fromWm to Wm11 when~i! applies, a down arrow from
Wm11 to Wm when ~ii ! applies, and no arrow when~iii ! occurs; subgraphs of the type

uwm11&

uwm&
for which p1uwm&Þ0 andp2uwm11&Þ0, cannot occur.

To obtain a representation ofE(2) relative to the chosen basis, we start by exponentia
separately the diagonal matrix ofl 0 to obtain the image of (R(u),0)P SO~2!, and the off-diagonal
matrix elements of the generators of translationsp1 andp2 to obtain (1,z). The element (R(u),z)
is then constructed from the matrix multiplication of (1,z)•(R(u),0).
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For instance, the ‘‘raising string’’ representation ofe(2), with a graph consisting only of up
arrows, exponentiates to theE(2) representation,

⇒p1:~R~u!,z!°SeiMu ei(M21)uz ei(M22)u 1
2 z2 . . .

ei(N11)u

~M2N11!!
zM2N11

eiNu

~M2N!!
zM2N

0 ei(M21)u ei(M22)uz . . .
ei(N11)u

~M2N12!!
zM2N12

eiNu

~M2N11!!
zM2N11

A A A A A

0 0 0 . . . ei(N11)u eiNu z

0 0 0 . . . 0 eiNu

D,

~11!

containing the SO~2! unirrepsM ,M21, . . . ,N each with multiplicity 1. It is indecomposable.
The ‘‘lowering string’’ representation

⇒p2:~R~u!,z!°1
eiMu 0 0 . . . 0 0

eiM uz̄ ei (M21)u 0 . . . 0 0

eiM u 1
2z̄2 ei (M21)uz̄ ei (M22)u . . . 0 0

A A A A A

eiM u

~M2N21!!
z̄M2N21

ei (M21)u

~M2N22!!
z̄M2N22 . . . . . . ei (N11)u 0

eiM u

~M2N!!
z̄M2N

ei (M21)u

~M2N21!!
z̄M2N21 . . . . . . ei (N11)uz̄ eiNu

2
~12!

contains the SO~2! unirrepsM ,M21, . . . ,N each with multiplicity 1, and nontrivial lowering
operators between each pair of adjacent SO~2! subspaces. It is also indecomposable.

The five-dimensional representation with graph

⇒p3:~R~u!,z!°S e2iu 0 0 0 0

e2iuz̄ eiu z 0 0

0 0 1 0 0

0 0 0 e2iu e22iu z

0 0 0 0 e22iu

D ~13!

is decomposable into two subspacesV1% V2, containing respectively the SO~2! irreps 2,1,0 and
21,22.

The three-dimensional representation

⇒p4:~R~u!,z!°Seiu z 0

0 1 0

0 z̄ e2iu
D ~14!

is indecomposable and equivalent to the ‘‘natural’’ representation of Eq.~1!.
Note that, ifp is anE(2) representation containing the SO~2! irreps M ,M21, . . . ,N, then

xk•p is another ~inequivalent! representation containing the SO~2! irreps M1k,M21
1k, . . . ,N1k.
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C. Tensor product of two strings

Finally, it is also easy to represent the tensor product of two string representations
graphical way. Thus, ifV1 and V2 are two representations ofE(2) spanned, respectively, b
$v i ,i 5m1 ,m121, . . .n1% and $wj , j 5m2 ,m221, . . . ,n2%, then a basis for the tensor produ
representationV1^ V2 is given by the pointsv i ^ wj having coordinates (i , j ) on a two-
dimensional grid. The arrows between pointv i ^ wj andvk^ wl are determined from the action o
the e(2) elements onv i or wj . Thus, for instance, consider the following tensor product:

~15!

where the final two-dimensional graph has been tilted so that states with the same weight o
the same horizontal height.~The ‘‘corner’’ states on the graph have been explicitly indicated.!

III. PARALLELOGRAM REPRESENTATIONS

A. The parallelogram representation as tensor product

Consider the representation

p5 :~R~u!,z!°S 1 0

z̄ e2 iuD ^ S eiu z

0 1D 5S eiu z 0 0

0 1 0 0

eiuz̄ zz̄ 1 e2 iuz

0 z̄ 0 e2 iu

D , ~16!

which is obtained from the tensor product of the two-dimensional lowering string represen
and the two-dimensional raising string representation, with graph

~17!

Claim: The representationp5 is indecomposable.
Proof: Otherwise supposeV5U % U8 is a nontrivial decomposition, and that one of the tw

subspaces, sayU, contains a vectorv in the two-dimensional subspaceW0 of weight 0 of the form
v5a1(v0^ w0)1a2(v1^ w21), with a1Þ0. By acting with p1p2 , we find p1p2v5a1(v1

^ w21) must also be inU. Thus,v1^ w21PW0 is also inU ~sincea1Þ0) and sov2a2(v1

^ w21)5a1(v0^ w0)PU. Sincep1(v0^ w0)5v1^ w0PU and p2(v0^ w0)5v0^ w21PU as
well, we find thatU5V,U85$0%, a contradiction. h
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This generalizes to larger representations. ForM>0, let VM be the ‘‘raising-string’’ repre-
sentation with lowest weight 0 and highest weightM. It has a weight basis consisting of the lowe
weight vectorv0 of weight 0, and nonzero weight vectorsvk5(p1)kv0, for k51,...,M , with
p1(vM)50; the dimension isM11. Similarly, for N>0, let V2N be the ‘‘lowering-string’’
representation with lowest weight2N and highest weight 0. It has a weight basis consisting of
highest weight vectorw0 of weight 0, and nonzero weight vectorsw2k5(p2)kw0, for k
51,...,N, with p2(w2N)50; the dimension isN11. The action ofp2 on VM and the action of
p1 on V2N are both trivial.

The ‘‘parallelogram’’ representationVM ,2N is the tensor productVM ,2N5VM ^ V2N ; it has
lowest weight 2N, highest weight M, and dimension (M11)(N11). Since vk^ w2 l

5(p1)k(p2) lv0^ w05(p2) l(p1)kv0^ w0, we see thatVM ,2N is generated by the weight vecto
v0^ w0, which we call the ‘‘initial vector.’’ Twisting by the characterx r :(R(u),z)°eir u, r PZ,
gives a parallelogram representationVM ,2N;r5x r ^ VM ,2N with lowest weight r 2N, highest
weight r 1M , and dimension (M11)(N11); it is generated by the ‘‘initial vector’’x r ^ v0

^ w0.
For instance, the graph

~18!

is associated with theV3,22;r parallelogram representation.
Lemma 2: The parallelogram representation VM ,2N;r is indecomposable.
Proof: Let VM ,2N;r5U % U8 be a decomposition. Choose a basisT whose first vector isf0

5x r ^ v0^ w0 and whose firstdr vectorsf0 ,p1p2f0 ,(p1p2)2f0 , . . . ,(p1p2)dr21f0 span the
weight subspaceWr ~of dimensiondr). Writing vectors in terms of this basis, we have that t
initial vector isf05x r ^ v0^ w05(1,0,0, . . . )T. Let v5(a1 ,a2 , . . . ,adr

,0, . . . )T,a1Þ0, be an
otherwise arbitrary vector inWr . Assume thatvPU, and consider

p1p2v5~0,a1 ,a2 , . . . ,adr21 ,0, . . .!TPU,

~p1p2!2v5~0,0,a1 ,a2 , . . . ,adr22,0, . . .!TPU,

A

~p1p2!dr23v5~0, . . . ,a1 ,a2 ,a3,0, . . .!TPU,

~p1p2!dr22v5~0, . . . ,a1 ,a2,0, . . .!TPU,

~p1p2!dr21v5~0, . . . ,0,a1,0, . . .!TPU. ~19!

Thus, thedr th basis vector

vdr
5

1

a1
~p1p2!dr21~x r ^ v0^ w0!5~0, . . . ,1,0, . . .!TPU ~20!

~sincea1Þ0 by assumption!. If this vector is inU, then the vector
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vdr215
1

a1
~~p1p2!dr22v2a2vdr

!5~0, . . . ,1,0,0, . . . !TPU ~21!

as well, and so is

vdr225
1

a1
~~p1p2!dr23v2a2vdr212a3vdr

!5~0, . . .,1,0,0,0, . . . !TPU, ~22!

and so forth until one shows that all basis vectors inWr are inU. In effect, this argument is base
on the observation that the matrix of the restriction to each weight space of the operatorp1p2 is
a triangular matrix.

In particular, the initial vectorx r ^ v0^ w0 is in U and, since an arbitrary basis statex r ^ vs

^ w2qPV can be obtained as (p1)s(p2)q(x r ^ v0^ w0), it follows that U5V and U85$0%,
which shows thatV is indecomposable. h

In this way, we can construct indecomposable representations with arbitrarily high w
multiplicities.

B. Subrepresentations of the parallelogram

Observation:A vector Xk,2 l ,r5x r ^ vk^ w2 l5(p1)k(p2) l(x r ^ v0^ w0) generates a subrep
resentation ofVM ,2N;r that is isomorphic toVM2k,l 2N;r 1k2 l . An example of this is given in Eq
~23!, where, inV3,22;0, a 232 parallelogram subrepresentationV1,21;1 is generated byX2,1,0

5(p1)2p2(v0^ w0),

~23!

Proposition 2: Every subrepresentation of a parallelogram representation VM ,2N;r can be
expressed as the subrepresentation generated by finitely many ‘‘initial vectors’’ of the
(p1)k(p2) l(x r ^ v0^ w0), for suitable k, l. The subrepresentations of VM ,2N;r are all indecom-
posable.

Proof: First, note that the weight subspaceWs,VM ,2N;r is spanned by vectors of the form
$(p1)k(p2) l(x r ^ v0^ w0)uk2 l 5s2r %. The action ofp1p2 on this basis is to map

p1p2 :~p1!k~p2! l~x r ^ v0^ w0!°~p1!k11~p2! l 11~x r ^ v0^ w0!. ~24!

Now, supposeU,VM ,2N;r is an indecomposable subrepresentation with nontrivial intersec
with the weight spaceWs . Choose the minimalk such thatU contains a nonzero vectorvPWs of
the form

v5(
i>0

a i~p1! k̃1 i~p2! l̃ 1 i~x r ^ v0^ w0!, a0Þ0, k̃2 l̃ 5s2r . ~25!

Then, by thep1p2 argument of Lemma 2, all vectors of the form
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~p1! k̃1 i~p2! l̃ 1 i~x r ^ v0^ w0!, i>0, ~26!

must be inU, and (p1) k̃(p2) l̃ (x r ^ v0^ w0) is an initial vector for the subspace of weights in U.
Do this for each weights of U and discard redundant choices~vectors as above that ar

contained in the subspace generated by another such vector!. The remaining finitely many ‘‘initial
vectors’’ generate the whole spaceU. Note that the initial vectors have distinct weights.

Now supposeU5U1% U2 is a decomposition. Fix one of the initial vectors described abo
Then one ofU1 , U2, say U1, contains a weight vector with nonzero overlap with this cho
initial vector. But thenU1 actually contains that initial vector, because of the triangularity of
operatorp1p2 , as above. If there is only one initial vector, then we are done, by Lemma 2
the previous Observation. Otherwise, notice that onceU1 contains (p1)k(p2) l(x r ^ v0^ v0), it
must also contain the ‘‘final vector’’ (p1)m(p2)n(x r ^ v0^ v0)5(p1)m2k

3(p2)n2 l((p1)k(p2) l(x r ^ v0^ v0)). But thenU1 must contain all the initial vectors, and hen
all of U, soU is indecomposable. h

Corollary: A basis for any subrepresentation of the parallelogram representation Vm,2n;r is
given by vectors of the form(p1)k(p2) l(x r ^ v0^ v0) contained in this subrepresentation.

C. Quotient representations

Consider the representation associated with the graph

⇒p6:~R~u!,z!°

¨

e4iu ze3iu 1
2z

2e2iu 0 1
6 z3eiu 0 0 0 0

0 e3iu ze2iu 0 1
2z

2eiu 0 0 0 0

0 0 e2iu 0 zeiu 0 0 0 0

0 z̄e3iu 0 e2iu 0 zeiu 1
2z

2 0 0

0 0 0 0 eiu 0 0 0 0

0 0 z̄e2iu 0 0 eiu z 0 0

0 0 0 0 z̄eiu 0 1 0 0

0 0 1
2z

2e2iu 0 0 zeiu 0 1 ze2iu

0 0 0 0 1
2z̄

2eiu 0 z̄ 0 e2iu

©
.

~27!

This representation can be constructed by starting from the parallelogramV3,22;0, and by remov-
ing ~or, equivalently, setting to 0! each line and column corresponding to a node in the subre
sentation with initial vectorsv3^ w21 andv2^ w22. It is therefore a quotient of the parallelogra
V3,22;r .

Lemma 3: Quotient representations of a parallelogram are indecomposable.
Proof: Such a quotient representation has a single initial vector,v5v0^ w0. Let V5V1

% V2 be a decomposition. By thep1p2 triangularity argument, the whole weight space contain
v must be in eitherV1 or V2; without loss of generality, we assume that it is inV1, and thusv
itself is in V1. Since everything inV can be obtained fromv5v0^ w0 by acting with e(2)
generators, it follows thatV15V,V25$0%, i.e., V is indecomposable. h

It is also possible to take quotients of subrepresentations of a parallelogram, as shown
left-hand side of Eq.~28!, or even to make a string representation out of a quotient of a sub
allelogram, as shown on the right-hand side of that figure.
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~28!

Thus, we can claim that
Proposition 3: A subquotient of a subrepresentation of the parallelogram Vm,2n;r (i.e., the

quotient of two subrepresentations of the parallelogram Vm,2n;r ) is indecomposable, provided tha
its graph is connected.

Proof: Let i , j uniquely label a minimal set of initial vectorsXi , j ,r5(p1) i(p2) j (x r) ^ v0

^ w0) of weight r 1 i 2 j in such a representationV. Because initial vectors cannot have the sa
weight, the elements in the set$Xi , j ,k% can be ordered by increasing weight. These initial vect
are also those of a subrepresentation of the parallelogramVm,2n;r . Let V5V1% V2. Using the
p1p2 triangularity argument, the vectors generated from an initial vector all belong to the
subspace, eitherV1 or V2, depending on whether the initial vector is inV1 or V2. However, the
subspaces generated by two consecutive initial vectors must have a nontrivial intersecti
otherwise the graph would be disconnected~into the vectors in or above the higher subspace
the vectors in or below the lower subspace!.

By the p1p2 triangularity argument, each weight space in this intersection must belon
only one of V1 or V2. Thus, the subspaces generated by two consecutive initial vectors
belong to the same subspace, and, continuing this way, all subspaces must belong to th
subspace, sayV1. This means thatV2 is empty and we are done. h

The last noteworthy result on quotients of subparallelograms is as follows:
Proposition 4: Given a (connected) string representation, there exists a subquotient

parallelogram which is isomorphic to this string.
Proof: In the string representation, letm be the number of up arrows,n the number of down

arrows, and constructVm,2n;r , with r adjusted so that the highest weight ofVm,2n;r is equal to the
highest weight of the string, i.e.,m1r . If the topmost arrow of the string is a down arrow then t
highest weight state of the representation,x r ^ vm^ w0 is the heaviest initial vector of the subrep
resentation. Otherwise, the initial vectors are ‘‘sources’’ of the type

unless the bottom-most arrow of the string is an up arrow, in which case the lightest initial v
is the lowest weight vector of the representation,x r ^ v0^ w2N . The heaviest initial vector, for
instance, is always of the formx r ^ v l ^ w0. Next, we note that terminal vectors are either high
or lowest weight vectors or ‘‘sinks’’ of the type

If the topmost arrow in the string is a down arrow, thenx r ^ vn^ w0 is an initial vector; if the
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bottommost arrow is an up arrow, thenx r ^ v0^ w2m is an initial vector. For each ‘‘source,’’ a
described above,V has an initial vectorx r ^ vk^ w2 l , wherem2k is the number of up arrows
above the source andn2 l is the number of down arrows below it.

Having identified the initial vectors, one then constructs the corresponding subreprese
V of Vm,2n;r . Consider now the subrepresentationV8,V obtained by applying the operato
p1p2 to V, i.e., V85p1p2(V). The original string is the subquotientV/V8. h

IV. GLUING

Not all representations need be quotients or subquotients of parallelograms. For ins
consider the representation

⇒p7:~R~u!,z!°1
eiu z 0 0 0 0

0 1 0 0 0 0

eiuz̄ zz̄ 1 e2iuz e2iuz e22iu 1
2z

2

0 z̄ 0 e2iu 0 0

0 0 0 0 e2iu e22iuz

0 0 0 0 0 e22iu

2
~29!

with dim(W1)51, dim(W0)5dim(W21)52, dim(W22)51. It is constructed by identifying the
terminal vector of the 232 parallelogram representation of Eq.~17! with the terminal node of an
extra two-element raising string ending at the terminal node, i.e., by ‘‘gluing’’ the parallelog
and the raising string at one node in the manner indicated by the graph.

Claim: The representationp7 is indecomposable.
Proof: Otherwise supposeV5U % U8 is a nontrivial decomposition. We can assumeU con-

tains the weight spaceW22. In this case, it also contains the standard basis vectorsê5

5(0,0,0,0,1,0)T and ê45(0,0,0,1,0,0)T. But this last vector is the ‘‘terminal node’’ of the sub
space which is isomorphic top5, and the argument given in connection to this representa
shows that eitherU or U8 must contain all of this subspace. Since we have already seen thU
must containe4, it must contain all of thep5 subspace, and therefore must be all ofV. h

This can be generalized to other more complicated examples. For instance, the represe

~30!

can be realized as shown as a two-point gluing. Note that the factors of 2 in the graph indica
the corresponding matrix element is of strength 2 rather than 1, as has been thus far a
throughout this paper. The representationp8 can also be shown to be indecomposable.

Not all gluings are indecomposable. The representation of Fig.~53!, which is obtained by
gluing together two strings, is decomposable, as will be seen in Sec. VII.
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V. EXPLICIT REALIZATIONS

In this section, we would like to exhibit some of the more interesting amongst the m
explicit realizations of thee(2) algebra, along with examples of the kind of representations
we have so far described.

Nonunitary representations occur in physics mostly as representations carried by tens
erators. Thus, ifT̂i

l is thei th component of a tensor operatorT̂l transforming by the representatio
l, and if O is a representation of an element ofe(2) by linear operators, then the action ofO on
T̂l is given by

O:T̂i
l°@O,T̂i

l#5(
j

a i j T̂ j
l , ~31!

wherea i j are, in general, complex coefficients.

A. The adjoint representation

Let,

p1° 1
2e

2 iuS ]

]r
2

i

r

]

]u D , p2° 1
2e

iuS ]

]r
1

i

r

]

]u D , l 0° i
]

]u
. ~32!

If we let these operators act on one another, we obtain the adjoint representation ofe(2), with
the graph given in Eq.~14!.

B. Raising string or lowering string representations

Let

p1°eiu
]

]r
, p2°0, l 0°2 i

]

]u
, ~33!

and consider the set of polynomials$eikur q,ei (k11)ur q21,ei (k12)ur q22, . . . ,ei (k1q)u%, with k
PZ,qPZ1.

Using Eq. ~31! and the realization of Eq.~33!, one sees that these polynomials carry
representation equivalent to a raising string representation of dimensionq11 with lowest weight
k.

Similarly, the realization

p1°0, p2°e2 iu
]

]r
, l 0°2 i

]

]u
, ~34!

action on the polynomials$einur q,ei (n21)ur q21, . . . ,ei (n2q)u%, with nPZ,qPZ1, is a lowering
string representation of dimensionq11 with lowest weightn2q.

We obtain a less trivial example if we let the operators of Eq.~32! act on the polynomials
$r teitu,r t21ei (t21)u, . . . ,1%, which yields a raising string representation with highest weight ve
r teitu of weight t.

In a similar way, the polynomials$r te2 i tu,r t21e2 i (t21)u, . . . ,1% span a lowering string rep
resentation ofE(2) under the action of the operators of Eq.~32!.

C. Parallelograms

Consider the three operators

p15
]2

]x2 12i
]2

]x]y
2

]2

]y2 5
]2

]w̄2
,
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p25
]2

]x2 22i
]2

]x]y
2

]2

]y2 5
]2

]w2 , ~35!

l 052
i

2 S x
]

]y
2y

]

]xD5w
]

]w
2w̄

]

]w̄
. ~36!

With the identificationp6↔Q̂62 ,l 0↔ 1
2 l̂ z , these are easily recognized as forming ane(2) sub-

algebra of@R#5so~3!, the algebra of the rigid rotor.
We now consider the operators

X̂LM5A2L1M~L1M !! ~L2M !!L!

~2L !! (
t

v tṽ t2MzL1M22t

2tt! ~ t2M !! ~L1M22t !!
, ~37!

which can be recognized as proportional to the spherical harmonics

YLM~u,w!5A~2L11!!

4p2LL!
X̂LM ~38!

if we make the identifications

v5
2eiw sinu

A2
, z5cosu, ṽ5

e2 iw sinu

A2
. ~39!

In general, we have

@p6 ,X̂LM#5aLMX̂L22,M62 , ~40!

with

aLM5^X̂L22,M62up6uX̂LM&, ~41!

with the upper and lower sign valid forp6 , respectively, and where the numb

^X̂L22,M62up6uX̂LM& is computed using the standard boson inner product. With these we can
a variety of parallelograms.~Note that thee(2) weight is 1

2M .)
Thus, for instance, the set of nine operators$X̂80,X̂6,62 ,X̂4,64 ,X̂40,X̂2,62 ,X̂00% are the com-

ponents of a tensor which carries the parallelogram representationV2,22,0 with

^X̂L22,M62up6uX̂LM&5A~2L11!L~L21!

2L23
~L,M ;2,62uL22,M62!, ~42!

where (L,M ;2,62uL22,M62) is an SO~3! Clebsch–Gordan coefficient.
Similarly, the set$X̂71,X̂51,X̂5,23 ,X̂33,X̂3,21 ,X11% are the six components of a tensor whi

carries the parallelogram representationV2,21;1.
Subparallelograms of these or of any parallelogram are obtained by simply removing fro

original parallelogram all the basis polynomials not contained in the subrepresentations.
It is also possible to obtain parallelograms from the realization of Eq.~32!. Repeated action o

these operators on the initial vectorr peinu produce the parallelogram representati
V(1/2)(p1n),2(1/2)(p2n);n . Note that, since1

2(p1n) and 1
2(p2n) must be integers,p1n must be

even for the representation to remain finite dimensional.
The realization of Eq.~32! is a special case of the more general realization
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p1°r xei (x21)uS ]

]r
2

i

r

]

]u D ,p2°r 2yei (y11)uS ]

]r
1

i

r

]

]u D ,

l 0° i
~x2y22!

2~x21!~y11!

]

]u
1

~x1y!

2~x21!~y11!
r

]

]r
, ~43!

from which we can extract various parallelograms.~The exponentsm,n of the initial vectorr meinu

must satisfy some conditions if the representation is to remain finite dimensional.!

D. Quotients and strings

Consider now the realization

p1°eiu
]2

]r 2 , p2°e2 iu
]

]r
, l 052 i

]

]u
. ~44!

Acting on the initial vectorr 4 to generate a parallelogram, and removing from this parallelog
the basis statesr 4 and r 3e2 iu, we obtain the string representation

⇒p9:~R~u!,w!°1
e24iu w̄e23iu 1

2w̄
2e22iu 0 0 0 0

0 e23iu w̄e22iu 0 0 0 0

0 0 e22iu 0 0 0 0

0 0 we22iu e2iu w̄ 1
2w̄

2eiu 0

0 0 0 0 1 w̄eiu 0

0 0 0 0 0 eiu 0

0 0 0 0 0 weiu e2iu

2,

~45!
spanned by the basis states$e2iu,eiur 2,r ,e2 iu,e22iur 2,e23iur ,e24iu%.

A nice feature of this string is that it represents an example of aZ3 graded-contraction of su~2!
into e(2), asdiscussed in Ref. 4. The grading is generated by the SO~2! subgroupe(2p/3)l 0. The
carrier spaceV decomposes intoV5V0% V1% V2, which contain the basis states

V05$r ,e23iur %, V15$eiur 2,e22iur 2%, V25$e2iu,e2 iu,e24iu%, ~46!

while the basis elements of Eq.~44! have grades 1, 2, and 0, respectively.

VI. TENSORING TWO RAISING OR TWO LOWERING STRINGS

In Sec. III A, we considered the tensoring of a raising and a lowering string represent
The resulting parallelogram, as well as all its subrepresentations and ‘‘connected’’ subquo
were shown to be indecomposable.

The next simplest example of tensor product is the product of two raising or two lowe
string representations. This yields a tensor product representation that is always decomposa
a sum of raising or lowering string representations. The decomposition is closely related
decomposition of SU~2! tensor products.

In this section, we discuss only the tensor product of two raising string representations
the case of two lowering strings is handled in the exact same way.

A. Raising strings as contractions of su „2… irreps

Consider the su~2! algebra spanned by the operators$L1 ,L2 ,L0%, with the usual nonzero
commutation relations

@L0 ,L6#56L6 , @L1 ,L2#52L0 . ~47!
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If we now rescale the su~2! generators to

L2→L25eL2 , L1→L15L1 , L0→L05L0 , ~48!

express the su~2! commutation relations in terms of theL generators, and take the limit ase
→0, we see that

@L1 ,L2#5 lim
e→0

e@L1 ,L2#5 lim
e→0

e2L05 lim
e→0

2eL050,

~49!

@L0 ,L2#5 lim
e→0

e@L0 ,L2#5 lim
e→0

2eL252L2 ,

with the commutator@L1 ,L0# remaining unchanged from the su~2! commutator. We recover the
algebrae(2) by the identificationL65p6 ,L05 l 0, but, because the generatorsL2 andL1 have
been treated asymmetrically, the resulting representation cannot be unitary.

This is an example of a contraction.2 The more familiar example of rescaling, whereL2 and
L1 are treated on the same footing and both multiplied by the scale factor«, leads to unitary
infinite dimensional representations. Coming back to Eq.~49!, suppose that we are given a sta
dard unitary representationG j of the su~2! algebra, of dimension, say, 2j 11. The effect of taking
the e→0 limit of the asymmetric scaling is to leave matrix elements ofL15L1 and L05L0

unchanged, while setting to 0 the matrix elements ofL25eL2 . The resulting representation
wherep25L250 everywhere but wherep15L1 acts by raising the weight of the su~2! states,
is clearly equivalent to a (2j 11)-dimensional raising string representationg j . The equivalence
relation just rescales the nonzero su~2! matrix elements ofL1 to the standarde(2) matrix ele-
ments ofp1 , which are 1. Thus, we can write, for a raising string representation

g j5 lim
e→0

G j . ~50!

The lowest weight ofg j is 2 j . A general raising string representationg j ;k of dimension 2j 11
with lowest weight2 j 1k can be obtained by twistingg j by a characterxk .

~Note that one can obtain a lowering string representation from an su~2! representation by
scalingL1→L15eL1 and leaving the other two generators unchanged.!

The advantage of introducing limits in such a fashion is that one can then think of ra
string representations as smooth deformations of su~2! representations.

B. Decomposing tensor products of two raising strings

First, recall that the tensor productj 1^ j 2 of two su~2! representationsj 1 and j 2 of dimensions
2 j 111 and 2j 211, respectively, decomposes into a sum of su~2! representations of dimensio
2 j 11, with possible values ofj given byu j 12 j 2u,u j 12 j 2u11,u j 12 j 2u12, . . . ,j 11 j 2, and where
each value ofj allowed by the inequality occurs exactly once.

Proposition 5: The tensor product of two raising string representationsg j 1 ;r 1
^ g j 2 ;r 2

of

dimensions2 j 111 and 2 j 211, respectively, decomposes into a sum of raising string repre
tations. The representations occuring in this tensor product have the dimensions2 j 11, where j
takes the possible valuesu j 12 j 2u,u j 12 j 2u11,u j 12 j 2u12, . . . ,j 11 j 2, and where each value of
allowed by the inequality occurs exactly once.

Proof: Write
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g j 1 ;r 1
^ g j 2 ;r 2

5x r 1
^ ~ lim

e→0
G j 1

! ^ x r 2
^ ~ lim

e→0
G j 2

!

5x r 11r 2
^ ~ lim

e→0
G j 1

^ G j 2
!

5x r 11r 2
^ S lim

e→0
(

j
G j D , u j 12 j 2u< j < j 11 j 2 ,

5x r 11r 2
^ S (

j
g j D ,

5(
j

g j ;r 11r 2
. ~51!

h

Note that, because the limiting process by which we transform the su~2! irrep into ane(2)
representation is smooth, i.e., because it is possible to define a sequence of su~2! representations
parametrized bye such that the limit whene→0 of this sequence corresponds to a raising str
representation, it is possible to interchange the process of taking the limit with the proce
taking the tensor product.

One may further remark that this limiting process cannot be used to analyze parallelo
representations, since those correspond to tensor products of a raising and a lowering
representations, i.e., a tensor product of ‘‘different’’ contractions.

VII. ACYCLIC REPRESENTATIONS AS SUMS OF STRINGS

The decomposition of the tensor product of two raising or two lowering representation
special case of a more general theorem regarding ‘‘acyclic’’ representations, i.e., represen
containing no ‘‘cycles’’ of the form

An algebraic characterization of such acyclic representations is that the operatorp1p2 is 0
everywhere. The main result of this section is that acyclic representations are always deco
able into sums of string representations.

Definition: A finite-dimensional representationV of E(2) is said to beacyclic if p1p250 on
V.

Clearly a string is acyclic, by Proposition 1. For that matter, a direct sum of strings mu
acyclic. The goal of this section is to prove the converse: that any acyclic representation m
a direct sum of strings. We begin by establishing some machinery.

We need first a concept which is not restricted to acyclic representations, that of a ‘‘ch
We define a ‘‘chain’’ to be a finite sequence of strictly increasing weight vectorsv r ,v r 11 ,...,vs

in V, where eachv j has weightj, and such that for eachr< j ,s, either p1(v j )5v j 11 or
p2(v j 11)5v j .

Thus, for instance, in the 232 parallelogram representation of Eq.~17!, which is not acyclic,
there are infinitely many chains, each containingv1^ w0 and v0^ w21 but each containing as
middle element an otherwise arbitrary nonzero linear combination ofv0^ w0 andv1^ w21.

Specializing now to acyclic representations, we see that the conditionp1p250 implies that
it is not possible to have bothp1(v j )Þ0 and p2(v j 11)Þ0. A chain is ‘‘maximal’’ if it cannot be
extended by including additional vectors~necessarily at the top or the bottom!. The space spanne
by the vectors in a maximal chain is a subrepresentation ofV, necessarily a string.
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Begin by observing that any weight vector can always be embedded in a maximal chai
it is always possible to find a maximal chain which contains a specified weight vector. Su
that we have already definedN maximal chains,

v r 1

1 ,v r 111
1 , . . . ,vs1

1 ;

v r 2

2 ,v r 211
2 , . . . ,vs2

2 ;

. . . ~52!

. . .

v r N

N ,v r N11
N , . . . ,vsN

N .

Note that we have displayed the chains horizontally rather than vertically for convenience
chains need not all start nor end at the same weight nor all have the same length. Suppose t
are ‘‘fully independent,’’ in the sense that the vectors$v i

m% form a linearly independent set. Not
that if v is any vector in the ‘‘span’’ of theN chains, i.e., the space spanned by the vectors$v i

m%,
thenp1(v) andp2(v) are also in the span of these chains, again because of the assumptio
p1p250.

As an inductive step, we have to show how to findN11 fully independent maximal chains i
V. It will be fruitful to illustrate the various steps of the induction with the following exampl

~53!

This representation is found by gluing the string representations containing$h4 ,h3 ,h2 ,h1 ,h0%
and $j3 ,j2 ,j1 ,h0% at the common nodeh0. In the example, we assume thatN51 and that the
first maximal chain inp10 contains$v4

15h4 ,v3
15h3 ,v2

15h2 ,v1
15h1 ,v0

15h0%.
Let k be the highest weight for which thekth weight space is not spanned by the vect

$vk
m :m51,...,N% that lie in thekth weight space of the firstN chains.~In p10, we havek53.!

If there is a vectorv in thekth weight space which satisfiesp1(v)50 but which is not in the
span of the$vk

m%, we will choose it as the top vector in a new chain. Because the (k11)th weight
space is by construction contained in the span of theN chains, the action ofp2 on vectors in the
(k11)th weight space must also take them into the span of theseN chains, so thatv cannot be in
the image ofp2 .

The other possibility is that everyv in the kth weight space which is not in the span of th
$vk

m% satisfiesp1(v)Þ0. Choose such av. But the intersection of the (k11)th weight space with
the image ofp1 is spanned by the vectors$p1(vk

m)%. It is therefore possible to find a~nonzero!
vector of the formv85v2(cmvk

m satisfyingp1(v8)50; sincev8 is not in the span of the$vk
m%,

this is a contradiction.
In the example, this first step could yieldv3

25j3 as the top state of the second chain inp10.
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Having found the top vector for a new chain,vsN11

N11 , with sN115k, we can attempt to con

struct the rest of the chain inductively by extending it from below.
Suppose we have constructed a chainvsN11

N11 , . . . ,v l 11
N11 ,v l

N11 so that it and the originalN

maximal chains form a fully independent set, in the sense defined above.
If p2(v l

N11)50, and ifv l
N11 is not in the image ofp1 , then we have constructed a maxim

chain, withr N115 l , completing the inductive step. In all other cases, it necessary to perfor
induction to extend the chain.

In general, the situation is that the induction leaves us with the possibility of constru
N11 fully independent chains, none of which can be extended at the ‘‘top,’’ meaning tha
eachm51,...,N11, p1(vsm

m )50 andvsm

m is not in the image ofp2 . At least one of the chains is

nonmaximal; we will assume that the (N11)th chain is nonmaximal, with lowest weightl , and
that l is the maximum of the lowest weights of the nonmaximal chains.~Note that, although the
(N11)th chain has so far only been extended as low as weightl , it is, by assumption, not
maximal and can therefore certainly be extended belowl .! Let L be the number of nonmaxima
chains with lowest weightl .

We will produceN11 chains, none of which can be extended at the top, so that the nu
of nonmaximal chains with lowest weightl is strictly less thanL, and so that none of the chain
are nonmaximal with lowest weight greater thanl . Induction onL will then allow us to construct
N11 chains so that any nonmaximal chains among them have lowest weight belowl , and,
continuing in this way, we can produceN11 maximal chains.

If p2(v l
N11)50 andv l

N115p1(v9), for some weight vectorv9 of weight l 21, then choose
such av9 and letv l 21

N115v9. Note that the resulting chain and the chains labeled 1 toN still form
a fully independent set, becausev l 21

N11 cannot possibly be in the span of the chains labeled 1 toN,
sincep1(v l 21

N11)5v l
N11 is not in thoseN chains. Extending the (N11)th chain by addingv l 21

N11

gives a chain which has lowest weightl 21, which reduces the number of nonmaximal cha
with lowest weightl and completes the inductive step in this case.

If p2(v l
N11) is nonzero but linearly independent of$v l 21

1 ,v l 21
2 ,...,v l 21

N %, then let v l 21
N11

5p2(v l
N11). The resulting (N11)th chain and the originalN maximal chains still form a fully

independent set, and the (N11)th chain has lowest weightl 21, which completes the inductive
step in this case.

In the example ofp10, these two situations occur. Starting with the top vectorj3, we see that
p2j350 but thatp1j25j3, so that the chain containingj3 can be extended to includej2. Since
p2j25j1, which is linearly independent ofh1, the vector of weight 1 which is in the firs
maximal chain, we can again extend the chain containing$j3 ,j2% to include j1. However,
p2j15h0, which is already in the first maximal chain. We therefore havel 51. The second chain
contains$j3 ,j2 ,j1%, and it is not maximal.

It could be, ~as in the case withj1 in p1), that p2(v l
N11) is in the span of

$v l 21
1 ,v l 21

2 ,...,v l 21
N %. Suppose

p2~v l
N11!5 (

m51

N

amv l 21
m 5 (

m51

N

amp2~v l
m!. ~54!

~The last equality holds because a linear combination of vectors from theN chains that is in the
image ofp2 must be the image underp2 of a linear combination of vectors from theN chains,
because of our assumption thatp1p250.) Then letaN11521 and consider the vector

ul52v l
N111 (

m51

N

amv l
m5 (

m51

N11

amv l
m . ~55!

It satisfiesp2(ul)50. Note that, althoughv l
N11 is not in the image ofp1 , this is not necessarily
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true oful . Reordering if necessary, we can assume thatul5(m51
N0 amv l

m , with 1<N0<N11 and
amÞ0, p2(v l

m)Þ0, for 1<m<N0 ~i.e., we reorder so that the firstm coefficients inul are
nonzero.!

In the example ofp10, Eq. ~55! produces the vectoru152j11h1, which is not in the first
~maximal! nor in the second~nonmaximal! chain. There is no reordering necessary asu1 is a
linear combination of the two vectors in the first and second chains, i.e.,a1 ,a2Þ0, so thatN0

525N.
The situation is as follows. We haveN11 ‘‘bottom’’ vectors;ul and the bottom vectors of th

original N maximal chains. We haveN11 top vectors and the subspace spanned by the vecto
the N11 chains, but no chains containingul . It is then a matter of reorganizing the states in t
subspace so as to replace one of the existingN11 chains with one that containsul . First we
construct a chain containingul . There is a unique integerm1> l so that (p1)m12 l(ul)Þ0 and
(p1)m12 l 11(ul)50; let ui5(p1) i 2 l(ul), for l< i<m1.

In the example ofp10, this integer ism153 since it is possible to actm12 l 532152 times
on u152j11h1 before getting (p1)3(2j11h1)50. Thus we haveu152j11h1 ,u25h2 ,u3

5h3.
Reordering the chains if necessary, we can assume thatum1

5(m51
N1 amvm1

m , with amÞ0 when-

ever 1<m<N1, for someN1<N0. ~In p1, we haveN151 sinceu3 can be expressed as a line
combination of a single vector.!

If um1
is not in the image ofp2 , then the chainul ,...,um1

cannot be extended further at th
top; it is a ‘‘raising chain.’’ If um1

is in the image ofp2 , then it is possible to add a ‘‘lowering
chain’’ above it. Indeed, in this case there is somen1>1 so that

~p2! i 2m1S (
m51

N1

amv i
mD 5um1

, ~56!

for all i with m1< i<n1, and so that(m51
N1 amvn1

m is not in the image ofp2 . For all i with m1

< i<n1, let ui5(m51
N1 amv i

m . These vectors form a lowering chain.
In the example ofp10, we haven154 sincep2h45h35u3. The chain now containsu15

2j11h1 , u25h2 , u35h3 , u45h4 .
We continue in the same way, finding positive integersN0>N1>N2>•••>Nt and integers

l 5m05n0<m1,n1,m2,n2,•••,m t<n t ; making a suitable rearrangement of theN11
chains; and for each 1< j <t, and for eachi with n j 21< i<m j , letting

ui5~p1! i 2n j 21~un j 21
!, ~57!

and for eachi with m j< i<n j , letting

ui5 (
m51

Nj

amv i
m , ~58!

so that for eachi with m j, i<n j ,

p2~ui !5ui 21 . ~59!

In this way we have constructed a lowering chain between eachm j andn j . Because

p1~ui !5ui 11 , ~60!

for eachi with n j 21< i ,m j , j 51,...,t, there is a raising chain between eachn j 21 andm j .
In the example ofp10, we havet51, as there is only one raising and one lowering chain

be glued to the vectoru152j11h1. Our process therefore stops atn154.
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We can continue the construction until we reach a point wherep1(un t
)50, so the chain

cannot continue up to higher weights. Note that for

un t
5 (

m51

Nt

amvn t

m ~61!

to be in the kernel ofp1 , it must be true thatp1(vn t

m)50, for each 1<m<Nt . And if un t
is not

in the image ofp2 , then at least one of the vectorsvn t

m , for 1<m<Nt , must not be in the image

of p2 . Renumbering yet again, if necessary, we can assume that this is true form51, which
means thatn t is the highest weight of the chain$v i

1%.
In the example ofp10, we haveu45h4 as the top vector;h4 is in the kernel ofp1 and not

in the image ofp2 . Thus, with the renumbering, the chain$u4 ,u3 ,u2 ,u1% becomes the first chain
The vectorsul ,ul 11 ,...,un t

form a chain. They all lie in the span of the linearly independ

vectors making up theN11 chains$v i
m%, for m51,...,N11. Sincep2(ul)50, eitherul is not in

the image ofp1 , in which case the chain$ul ,ul 11 ,...,un t
% is maximal, orul5p1(ul 21), for

some weight vectorul 21 of weight l 21. It can be added to produce a longer cha
$ul 21 ,ul ,ul 11 ,...,un t

%. Observe thatul 21 cannot be in the space spanned by the cha

$v i
1%,...,$v i

N11%. We have constructed a chain$ui%; in one case it is maximal, and in the other
has lowest weightl 21.

In the example ofp10, the chain is maximal sinceu152j11h1 is not in the image ofp1 .
Since every one of the vectorsui , for i> l , contains a nonzero component in what is no

labeled as the first chain$v i
1%, we can replace the chain$v i

1% with the chain$ui% and the resulting
N11 chains will still be fully independent.

At this point there are different possibilities. One is that the chain labeled$v i
1% that was

removed was the original nonmaximal chain$v i
N11%, and it has just been replaced by the cha

$ui%. This does not apply top10; the original second chain is not identical to the newly co
structed maximal chain.

Otherwise, the original nonmaximal chain$v i
N11% with lowest weightl is still present. In this

case we can change its label back tov l
N11,...,vsN11

N11 . But nowp2(v l
N11) is not in the span of the

vectors in the otherN chains, sincep2(v l
1) is no longer present in the otherN chains. This means

that the (N11)th chain can be extended to includep2(v l
N11) as its ‘‘bottom’’ vector.

In the example ofp10, this is what happens. The original second chain contained$j3 ,j2 ,j1%.
Sincep2j15h0, which is no longer in the span of the newly constructed first maximal chain
can extend this second chain to includeh0.

In either case, the number of nonmaximal chains with lowest weightl has been reduced.
In the example ofp10, we now restart the induction with$h4 ,h3 ,h2 ,2j11h1% as the first

maximal chain and$j3 ,j2 ,j1 ,h0% as the second chain, we find that nowk53, N51 but l 50.
However,p2h050 andh0 is not in the image ofp1 . Thus, the second chain is maximal as it
This concludes the inductions: we have found the decomposition ofp10 as the sum of two strings

Theorem 1: A finite-dimensional representationV of E(2) is acyclic if and only ifV is a
direct sum of indecomposable representations, in each of which the weight spaces are
dimension 1.

Proof: (⇐) Trivial.
(⇒) The above argument shows that, givenN fully independent maximal chains that do n

span all ofV, it is possible to constructN11 fully independent maximal chains.
In attempting this construction, we may reach a situation where there areN11 fully inde-

pendent chains, but not all of them are maximal. We letl be the maximum of the lowest weight
of the nonmaximal strings. The inductive step described above reduces the number of nonm
strings with lowest weightl . Repeated application of this procedure will eventually reducel , the
maximum of the lowest weights of the nonmaximal strings.

Continuing with an induction onl , we can eventually eliminate all the nonmaximal chai
producingN11 fully independent maximal chains, as required.
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Then, since the number of fully independent chains is certainly bounded by the dimens
the whole spaceV, we will eventually be able to construct enough chains that they span the w
space. h

VIII. DISCUSSION AND CONCLUSION

In this paper, we have described numerous finite dimensional indecomposable represen
of E(2) by means of a method which encapsulates in graphical form all the necessary inform
to explicitly construct, up to a character, a representation.

The basic type representation is the string, in which all the weight subspaces are of dim
one. Using lemma 1 and proposition 1, we can associate to a string representation a grap
which it is easy to determine if the representation is decomposable or not. In an indecomp
string representation, the ‘‘strength’’ of thee(2) matrix element connecting two states is irre
evant; all indecomposable strings representations are equivalent to representations for wh
matrix element is 1.

We have been successful in showing the indecomposability of another very important cl
representations, the parallelograms and all their subrepresentations and quotients. Paralle
and their subrepresentations may contain nontrivial weight multiplicities, an unusual featu
representations ofE(2). Wehave also shown how acyclic representations can be decompose
sums of string representations.

The problem of decomposing a general graph containing nontrivial weight multiplicities
ing either per se or as from the tensor product of two general string representations is diffi

Consider for instance the acyclic graph

~62!

with basis states$j,w,z,c%, in which p1w5ac, with all other nonzero matrix elements being
When a521, the representation decomposes into a sum containing two~inequivalent! two-
dimensional subrepresentations.

When aÞ21, however, this can be decomposed into a sum of a three-dimensional
one-dimensional string. The special case wherea51 corresponds to a tensor product of t
two-dimensional raising string with itself.

The decomposability of some graphs can be understood in terms of representations ofSn , the
permutation group ofn objects. Unfortunately, arguments based on the permutation group a
limited use because~i! the Sn-invariant subspaces may themselves decompose further~for in-
stance, in the tensor product of a three-dimensional raising string with itself, the six-dimen
subspace that carries the fully symmetric representation ofS2 can be divided into a five-
dimensional and a one-dimensional indecomposable raising string!, ~ii ! experience has shown tha
the problem of deciding if a given graph~string or otherwise! can be obtained by tensoringn
copies of a given string is nontrivial.

There is, however, one case which we would like to mention. Consider the tensor prod
an indecomposable stringV, with a basis of weight vectorsv l , . . . ,vm with l<m, with another
indecomposable stringV8 With weight vectorsv2m8 , . . . ,v2 l8 such thatp1v2k218 5v2k8 if and
only if p1vk5vk11 andp2v2k8 5v2k21 if and only if p2vk115vk . The tensor productV^ V8 is
decomposable into two parts, one of which is the one-dimensional indecomposable represe
with basis vectorv5(k5 l

m(21)kvk^ v2k8 , becauseV8 occurs when we tensor together (l 2m
21) copies ofV.
                                                                                                                



able.

s fol-

g

re-
by

ero

c

er can
sable

,
of this

other
at
f other

ons to
ncepts,

6108 J. Math. Phys., Vol. 40, No. 11, November 1999 J. Repka and H. de Guise

                    
The simplest example of this is found in~63!.

~63!

In this example,V^ V8 decomposes into an eight-dimensional representation isomorphic to~30!
and a one-dimensional subspacev5v0^ v082v1^ v218 1v2^ v228 . Note that, obviously, the
weights ofV8 could be shifted up or down and the tensor product would still be decompos
What is important is the relative positions of the arrows, not the actual weights.

This family of decomposable tensor products can be related to the symmetric group a
lows. It can be shown that, if the dimension ofV is d, then the (d21)-fold tensor product ofV
with itself contains, up to a character,V8 in the Sd21-invariant subspace labeled by a Youn
tableau containing a single column ofd21 boxes.

In the example of~63!, V is of dimensiond53, and a basis for the three-dimensional rep
sentation ofV^ V which carries theS2 representation labeled by 1 column of 2 boxes is given

v228 5x23^ detUw1 x1

w0 x0U , v218 5x23^ detUw2 x2

w0 x0U , v085x23^ detUw2 x2

w1 x1U , ~64!

wherewi ,xj ,i , j 50,1,2 are basis states for the first and second copy ofV in the tensor product
V^ V, respectively. The representationV8 can be reconstructed if we observe that the nonz
matrix elements ofp6 are given by

p1v228 5x23^ detUp1w1 p1x1

w0 x0
U1detU w1 x1

p1w0 p1x0
U5x23^ detUw2 x2

w0 x0
U5v218 ,

~65!

p2v085x23^ detUp2w2 p2x2

w1 x1
U1x23^ detU w2 x2

p2w1 p2x1
U5x23^ detUw2 x2

w0 x0
U5v08 .

From this, it can be seen how the decomposition ofV^ V8 is related to the action of symmetri
group on (V)d, and why the scalarv is alternating in nature.

Finally, even if all the examples of decomposable tensor products discussed in this pap
ultimately be related to the symmetric group, we believe that there very likely exist decompo
graphs with nontrivial weight multiplicities which are unrelated toSn . We have, unfortunately
been unable to isolate a provable conjecture on this matter. The low-dimensional examples
section are sufficiently complex to illustrate the difficulty of the general problem.

In a subsequent publication, we will investigate the role of gluings of the type found in~30!
in the construction of finite dimensional representations.

There is no doubt that results similar to Lemma 1 and Proposition 1 can be extended to
groups,5 in particular within the context of graded contractions.4 It is also reasonable to expect th
the method can be generalized to the construction of finite dimensional representations o
semidirect product groups. In that regard, one should observe that the operatorp1p2 is in fact, the
e(2) Casimir operator, so that one way of generalizing the concept of string representati
other groups is to require that the appropriate Casimir be 0. It remains to see how other co
such as parallelograms, can be generalized to other examples.
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Level-one representations and vertex operators
of quantum affine superalgebra Uq†gl „N̂zN…‡

Yao-Zhong Zhang
Department of Mathematics, University of Queensland, Brisbane,
Queensland 4072, Australia
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Level-one representations of the quantum affine superalgebraUq@gl(N̂uN)# asso-
ciated with the appropriate nonstandard system of simple roots andq-vertex opera-
tors ~intertwining operators! associated with the level-one modules are constructed
explicitly in terms of free bosonic fields. ©1999 American Institute of Physics.
@S0022-2488~99!02111-8#

I. INTRODUCTION

The algebraic analysis approach1,2 based on quantum affine algebra symmetries enables
not only to solve massive or off-critical integrable models directly in the thermodynamic limi
also to compute their correlation functions3 and form factors4 in the form of integrals by applying
the techniques similar to those used so successfully in the critical cases~see, for example, Ref. 5!.
The key components behind this method are infinite dimensional highest weight representat
the quantum affine algebras and the correspondingq-vertex operators6 which are intertwiners of
these representations. As in the critical cases, this procedure requires the explicit construc
the highest weight representations and vertex operators in terms of free bosonic fields.

By now, the level-one representations and vertex operators have been constructed in te
free bosons for most quantum affine bosonic algebras~see, e.g., Refs. 7–12!. In contrast, much
less has been known for the case of quantum affine superalgebras. For the type I quantum

superalgebraUq@gl(M̂ uN)#, MÞN, the level-one representations and vertex operators have

investigated in Ref. 13~see Ref. 14 for a level-k free boson realization ofUq@sl(2̂u1)#). In

particular, the level-one irreducible highest weight representations ofUq@gl(2̂u1)# were studied in
some details and the corresponding characters were derived.13 These representations have be
re-examined and used to compute the correlation functions of theq-deformed supersymmetrict
2J model in Ref. 15.

So far in the literature, the very interesting case ofM5N has been largely ignored. The on
exception is16 where the special case ofM5N52 was treated and the type I vertex operato
involving infinite dimensional evaluation~or level-zero! representations were also constructed
this special case. By contrast, we shall consider the generalM5N case and investigate both typ
I and type II vertex operators with respect to finite dimensional evaluation modules. TheM5N

case is interesting since it seems to us thatUq@gl(N̂uN)# is the only untwisted superalgebra whic
has a nonstandard system where all simple roots are odd or fermionic. It also seems to be t
superalgebra where a vertex type quasi-Hopf twistor can be constructed17 and thus the correspond
ing elliptic quantum supergroupAq,p@gl(N̂uN)# can be introduced.

In this paper, we construct a level-one representation ofUq@gl(N̂uN)# by bosonizing the
Drinfeld generators. We also construct the vertex operators associated with the level-one
sentations in terms of the free bosonic fields.

It should be pointed out that theM5N case, treated in this paper, is more complicated t
theMÞN case considered in Ref. 13. For theM5N case, the Cartan matrix is degenerate, i.e.,
invertible. As is well known, the invertibility of Cartan matrix is essential in the construction
vertex operators. We overcome this problem by enlarging the Cartan subalgebra in an appr
61100022-2488/99/40(11)/6110/15/$15.00 © 1999 American Institute of Physics
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way. Moreover, we shall work in a nonstandard system of simple roots, in contrast to Ref.
which a standard system was used. Then our method is a generalization and modification
used in Ref. 13. We also remark that the ideas in the present paper is applicable to the s
higher level vertex operator representations of quantum affine superalgebras.

The layout of this paper is the following. In Sec. II, we describe the Drinfeld realization18 of
Uq@gl(N̂uN)# in the nonstandard system of simple roots and determine the ‘‘main terms’’19 in the
coproduct formulas of the Drinfeld generators. In Sec. III, we derive the 2N-dimensional evalu-
ation ~or level-zero! representations ofUq@gl(N̂uN)#. In Sec. IV, we investigate the bosonizatio
of Uq@gl(N̂uN)# and construct an explicit level-one representation in terms of free bosonic fi
Section V is devoted to the study of the bosonization of the level-one vertex operators.

II. QUANTUM AFFINE SUPERALGEBRA Uq†gl „N̂zN…‡

As is well-known, a given Kac–Moody superalgebra20 allows many inequivalent systems o
simple roots. A system of simple roots is called distinguished if it has minimal odd roots. Let$a i ,
i 50,1,...,2N21% denote a chosen set of simple roots of the affine superalgebragl(N̂uN). Let ~,!
be a fixed invariant bilinear form on the root space. LetH be the Cartan subalgebra and throug
out we identify the dualH* with H via ~,!. As is shown in Ref. 17,gl(N̂uN) has a simple root
system in which all simple roots are odd~or fermionic!. This system can be constructed from t
distinguished simple root system by using the ‘‘extended’’ Weyl operation21 repeatedly. We have
the following simple roots, all of which are odd~or fermionic!

a05d2e11e2N ,

a l5e l2e l 11 , l 51,2,...,2N21 ~II.1!

with d, $ek%k51
2N satisfying

~d,d!5~d,ek!50, ~ek ,ek8!5~21!k11dkk8 . ~II.2!

Such a simple root system is usually called non-standard. The generalized symmetric
matrix (aii 8) takes the form

a01[~a0 ,a1!521, a0,2N21[~a0 ,a2N21!51,

all 8[~a l ,a l 8!5~21! l 11~d l ,l 8212d l ,l 811!, l ,l 851,2,...,2N21. ~II.3!

This Cartan matrix is degenerate. To obtain a nondegenerate Cartan matrix, we extend ReH
by adding to it the element

a2N5 (
k51

2N

ek . ~II.4!

In the following, we denote byH̃ the extended Cartan subalgebra and byH̃* the dual ofH̃. The
enlarged Cartan matrix has the following extra matrix elements:

a2N,2N[~a2N ,a2N!50, ai ,2N[~a i ,a2N!52•~21! i 11. ~II.5!

Let $h0 ,h1 ,...,h2N ,d% be a basis ofH̃, whereh2N is the element inH̃ corresponding toa2N

and d is the usual derivation operator. We shall writehi5a i ( i 50,1,...,2N) with a i given by
~II.1!, ~II.4!. Let $L0 ,L1 ,...,L2N ,c% be the dual basis withL j being fundamental weights andc
the canonical central element. We have17
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L2N5
1

2N (
k51

2N

~21!k11ek ,

L i5d1 (
k51

i

~2k!k11ek2
i

2N (
k51

2N

~21!k11ek , ~II.6!

wherei 50,1,...,2N21.
The quantum affine superalgebraUq@gl(N̂uN)# is a quantum~or q-! deformation of the

universal enveloping algebra ofgl(N̂uN) and is generated by the Chevalley generators$ei , f i qhj ,
du i 50,1,...,2N21, j 50,1,...,2N%. The Z2-grading of the Chevalley generators is@ei #5@ f i #51,
i 50,1,...,2N21 and zero otherwise. The defining relations are

hh85h8h, ;hPH̃,

qhjeiq
2hj5qai j ei , @d,ei #5d i0ei ,

qhj f iq
2hj5q2ai j f i , @d, f i #52d i0f i ,

@ei , f i 8#5d i i 8

qhi2q2hi

q2q21 ,

@ei ,ei 8#5@ f i , f i 8#50, for aii 850,

@@e0 ,e1#q21,@e0 ,e2N21#q#50,

@@el ,el 21#q~21! l ,@el ,el 11#q~21! l 11#50,

@@e2N21 ,e2N22#q21,@e2N21 ,e0#q#50,

@@ f 0 , f 1#q21,@ f 0 , f 2N21#q#50,

@@ f l , f l 21#q~21! l ,@ f l , f l 11#q~21! l 11#50,

@@ f 2N21 , f 2N22#q21,@ f 2N21 , f 0#q#50, l 51,2,...,2N22. ~II.7!

Here and throughout,@a,b#x[ab2(21)@a#@b#xba and @a,b#[@a,b#1 . The fourth orderq-Serre
relations are obtained by using Yamane’s Dynkin diagram procedure.23

Uq@gl(N̂uN)# is a Z2-graded quasitriangular Hopf algebra endowed with the following
productD, counit e and antipodeS:

D~h!5h^ 111^ h,

D~ei !5ei ^ 11qhi ^ ei , D~ f i !5 f i ^ q2hi11^ f i ,

e~ei !5e~ f i !5e~h!50,

S~ei !52q2hiei , S~ f i !52 f iq
hi, S~h!52h, ~II.8!

where i 50,1,...,2N21 andhPH̃. Notice that the antipodeS is a Z2-graded algebra antihomo
morphism. Namely, for any homogeneous elementsa,bPUq@gl(N̂uN)# S(ab)
5(21)@a#@b#S(b)S(a), which extends to inhomogeneous elements through linearity. Moreo

S2~a!5q22raq2r, ;aPUq@gl~N̂uN!#, ~II.9!
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wherer is an element inH̃ such that (r,a i)5(a i ,a i)/2 for any simple roota i , i 50,1,2,...,2N
21. Explicitly,

r5
1

2 (
k51

2N

~21!kek , ~II.10!

which coincides withr̄, the half-sum of positive roots ofgl(NuN) in the present simple roo
system. The multiplication rule on the tensor products isZ2-graded: (a^ b)(a8^ b8)
5(21)@b#@a8#(aa8^ bb8) for any homogeneous elementsa,b,a8,b8PUq@gl(N̂uN)#. We can also
introduce the element inH̃,

r̃5 (
i 50

2N21

L i1jNL2N , ~II.11!

which gives the principal gradation

@ r̃,ei #5ei , @ r̃, f i #52 f i , i 50,1,...,2N21. ~II.12!

In ~II.11!, j is an arbitrary constant.

Uq@gl(N̂uN)# can also be realized in terms of the Drinfeld generators18 $Xm
6,i , Hn

j , q6H0
j
, c

dumPZ, nPZ2$0%, i 51,2,...,2N21, j 51,2,...,2N%. TheZ2-grading of the Drinfeld generator
is given by @Xm

6,i #51 for all i 51,...2N21, mPZ and @Hn
j #5@H0

j #5@c#5@d#50 for all j
51,...,2N, nPZ2$0%. The relations satisfied by the Drinfeld generators reads~see Refs. 23, 24
for the Drinfeld realization ofUq@gl(N̂uN)# in the distinguished system of simple roots!

@c,a#5@d,H0
j #5@H0

j ,Hn
j 8#50, ;aPUq@gl~N̂uN!#,

qH0
j
Xn

6,iq2H0
j
5q6ai j Xn

6,i , @d,Xn
6,i #5nXn

6,i , @d,Hn
j #5nHn

j ,

@Hn
j ,Hm

j 8#5dn1m,0

@aj j 8n#q@nc#q

n
, @Hn

j ,Xm
6,i #56

@ai j n#q

n
Xn1m

6,i q7unuc/2,

@Xn
1,i ,Xm

2,i 8#5
d i i 8

q2q21 ~q~c/2!~n2m!cn1m
1,i 2q2~c/2!~n2m!cn1m

2,i !,

@Xn
6,i ,Xm

6,i 8#50 for aii 850, @Xn11
6,i ,Xm

6,i 8#q6aii 82@Xm11
6,i 8 ,Xn

6,i #q6aii 850,

@@Xm
6,l ,Xm8

6,l 21
#q~21! l ,@Xn

6,l ,Xn8
6,l 11

#q~21! l 11#

1@@Xn
6,l ,Xm

6,l 21#q~21! l ,@Xm
6,l ,Xn8

6,l 11
#q~21! l 11#50, l 52,...,2N22, ~II.13!

where@x#q5(qx2q2x)/(q2q21) andcn
6, j are related toH6n

j by relations

(
nPZ

cn
6, j z2n5q6H0

j
expS 6~q2q21! (

n.0
H6n

j z7nD . ~II.14!

The following relations can be proved by induction:

Hn
j 5

1

q2q21 (
p112p21¯1øn5n

~21!(pi21~(pi21!!

p1!¯pn!
~q2H0

j
c1

1, j !p1
¯~q2H0

j
cn

1, j !pn,
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H2n
j 5

1

q212q (
p112p21¯1npn5n

~21!(pi21~(pi21!!

p1!¯pn!
~qH0

j
c21

2, j !p1
¯~qH0

j
c2n

2, j !pn.

~II.15!

The Chevalley generators are related to the Drinfeld generators by the formulas,

hi5H0
i , ei5X0

1,i , f i5X0
2,i , i 51,2,...,2N21,

h2N5H0
2N , h05c2 (

k51

2N21

H0
k ,

e05@X0
2,2N21,@X0

2,2N22,...,@X0
2,3 ,@X0

2,2 ,X1
2,1#q#q21¯#q#q21q2(k51

2N21H0
k
,

f 05~21!Nq(k51
2N21H0

k
@@¯@@X21

1,1 ,X0
1,2#q21,X0

1,3#q ,...,X0
1,2N22#q21,X0

1,2N21#q . ~II.16!

The coproduct of the Drinfeld generators is not known in full. However, for our purpo
suffices to derive the ‘‘main terms’’19 in the coproduct formulas. We have

Proposition 1: For mPZ>0 , nPZ.0 and i51,2,...,2N21,

D~Xm
1,i !5Xm

1,i
^ qmc1qH0

i
12mc

^ Xm
1,i1 (

k50

m21

q~1/2!~m13k!ccm2k
1,i

^ q~m2k!cXk
1,i modN2 ^ N1

2 ,

D~X2n
1,i !5X2n

1,i
^ q2nc1q2H0

i
^ X2n

1,i1 (
k51

n21

q~1/2!~n2k!cck2n
2,i

^ q~k2n!cX2n
1,i modN2 ^ N1

2 ,

D~Xn
2,i !5Xn

2,i
^ qH0

i
1qnc

^ Xn
2,i1 (

k51

n21

q~n2k!cXk
2,i

^ q~1/2!~k2n!ccn2k
1,i modN2

2
^ N1 ,

D~X2m
2,i !5X2m

2,i
^ q2H0

i
22mc1q2mc

^ X2m
2,i

1 (
k50

m21

q~k2m!cX2k
2,i

^ q2~1/2!~m13k!cck2m
2,i modN2

2
^ N1 ,

D~Hn
i !5Hn

i
^ q~1/2!nc1q~3/2!nc

^ Hn
i modN2 ^ N1 ,

D~H2n
i !5H2n

i
^ q2~3/2!nc1q2~1/2!nc

^ H2n
i modN2 ^ N1 , ~II.17!

where N6 and N6
2 are the left ideals generated by Xl

6,k and Xl
6,kXl 8

6,k8 , k, k851,...,2N21; l,
l 8PZ, respectively.

Remark:~i! We do not write down the formulas forD(H6n
2N ) because they are not needed

this paper.D(H6n
2N ) can be determined by requiring thatD preserves the commutation relation

~II.13!. ~ii ! Modulo N1 ^ N21N2 ^ N1 , the elementsc6n
6,i (n>0) are grouplike,

D~cn
1,i !5 (

k50

n

q~3/2!kccn2k
1,i

^ q~1/2!~n2k!cck
1,i ,

D~c2n
2,i !5 (

k50

n

q2~1/2!kcck2n
2,i

^ q~3/2!~k2n!cc2k
2,i . ~II.18!

Define the Drinfeld currents or generating functions,
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X6,i~z!5 (
nPZ

Xn
6,iz2n21, c6, j~z!5 (

nPZ
cn

6, j z2n. ~II.19!

In terms of these currents,~II.13! read

c6, j~z!c6, j 8~w!5c6, j 8~w!c6, j~z!,

c1, j~z!c2, j 8~w!5
~z2wqc1aj j 8!~z2wq2c2aj j 8!

~z2wqc2aj j 8!~z2wq2c1aj j 8!
c2 j 8~w!c1, j~z!,

c1, j~z!X6,i~w!5q6ai j
z2wq7~c/2!7ai j

z2wq7~c/2!6ai j
X6,i~w!c1, j~z!,

c2, j~z!X6,i~w!5q6ai j
z2wq6~c/2!7ai j

z2wq6~c/2!6ai j
X6,i~w!c2, j~z!,

@X1,i~z!,X2,i 8~w!#5
d i i 8

~q2q21!zw S dS w

z
qcDc1,i~wq~c/2!!2dS w

z
q.

2cDc2,i~wq2~c/2!! D ,

X6,i~z!X6,i 8~w!1X6,i 8~w!X6,i~z!50, for aii 850,

~z2wq6aii 8!X6,i~z!X6,i 8~w!1~zq6aii 82w!X6,i 8~w!X6,i~z!50,

$@@X6,l~z1!,X6,l 21~z!#q~21! l ,@X6,l~z2!,X6,l 11~w!#q~21! l 11#%1$z1↔z2%50, l 52,3,...,2N22.
~II.20!

These current commutation relations can be derived from the super version24,25of the RS algebra26

by means of the Gauss decomposition technique of Ding and Frenkel.27

III. LEVEL-ZERO REPRESENTATION

We consider the evaluation representationVz of Uq@gl(NûN)#, whereV is an 2N-dimensional
graded vector space with basis vectors$v1 ,v2 ,...,v2N%. The Z2-grading of the basis vectors
chosen to be@v j #5@(21) j11#/2. Let ej , j 8 be the 2N32N matrices satisfying (ej , j 8)kk8
5d jkd j 8k8 or equivalentlyei , jvk5d jkv i , ~which implies that for any operatorA its matrix ele-
mentsAj ,i are defined byAv i5Aj ,iv j ). In the homogeneous gradation, the Chevalley genera
on Vz are represented by

ei5ei ,i 11 , f i5~21! i 11ei 11,i , i 51,2,...,2N21,

hi5~21! i 11~ei ,i1ei 11,i 11!, h2N5 (
k51

2N

~21!k11ek,k ,

e05ze2N,1 , f 052z21e1,2N , h052e1,12e2N,2N . ~III.1!

Let V* S be the left dual module ofV, defined by

~a•v* !~v !5~21!@a#@v* #v* ~S~a!v !, ;aPUq@gl~NûN!#, vPV,v* PV* . ~III.2!

Namely, the representations onV* S are given by

pV* S~a!5pV~S~a!!st, ;aPUq@gl~NûN!#, ~III.3!
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where st denotes the supertransposition defined by (Ai , j )
st5(21)@ j #(@ i #1@ j #)Aj ,i . Note that in

general ((Ai , j )
st)st5(21)@A#Ai , jÞAi , j . Let Vz*

S be the 2N-dimensional evaluation module corre
sponding toV* S. On Vz*

S , the Chevalley generators are represented by

ei52~21! iq~21! i
ei 11,i , f i52q~21! i 11

ei ,i 11 , i 51,2,...,2N21,

hi5~21! i~ei ,i1ei 11,i 11!, h2N5 (
k51

2N

~21!kek,k ,

e05zqe1,2N , f 05z21q21e2N,1 , h05e1,11e2N,2N . ~III.4!

Proposition 2: The Drinfeld generators are represented on Vz by

Hm
i 5~21! i 11

@m#q

m
q~21! im~qxiz!m~ei ,i1ei 11,i 11!,

Hm
2N5zm

@2m#q

m F2qm(
l 51

N

e2l ,2l1(
l 51

N

~y1~ l 21!~12qm!!~e2l 21,2l 211e2l ,2l !G ,

H0
i 5~21! i 11~ei ,i1ei 11,i 11!, H0

2N5 (
k51

2N

~21!k11ek,k ,

Xm
1,i5~qxiz!mei ,i 11 , Xm

2,i5~21! i 11~qxiz!mei 11,i , ~III.5!

and on Vz*
S by

Hm
i 5~21! i

@m#q

m
q~21! i 11m~q2xiz!m~ei ,i1ei 11,i 11!,

Hm
2N52zm

@2m#q

m F2q2m(
l 51

N

e2l ,2l1(
l 51

N

~2y* 1~ l 21!~12q2m!!~e2l 21,2l 211e2l ,2l !G ,

H0
i 5~21! i~ei ,i1ei 11,i 11!, H0

2N5 (
k51

2N

~21!kek,k ,

Xm
1,i52~21! iq~21! i

~q2xi z!mei 11,i , Xm
2,i52q~21! i 11

~q2xi z!mei ,i 11 , ~III.6!

where i51,...,2N21, xi5( l 51
i (21)l 115@(21)i 1111#/2 and y, y* are arbitrary constants.

IV. FREE BOSON REALIZATION AT LEVEL ONE

We use the notations similar to those in Refs. 9 and 13. Let us introduce bosonic osci
$An

j , cn
l , QAj , QclunPZ, j 51,2,...,2N, l 51,2,...,N% which satisfy the commutation relations

@An
j ,Am

j 8#5dn1m,0

@aj j 8n#q@n#q

n
, @A0

j ,QA j8#5aj j 8 ,

@cn
l ,cm

l 8#5d l l 8dn1m,0

@n#q
2

n
, @c0

l ,Qcl 8#5d l l 8 . ~IV.1!

The remaining commutation relations are zero. Introduce the currents
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H j~z;k!5QAj1A0
j ln z2 (

nÞ0

An
j

@n#q
qkunuz2n,

cl~z!5Qcl1c0
l ln z2 (

nÞ0

cn
l

@n#q
z2n ~IV.2!

and set

H6
j ~z!5H j~q1~1/2!z;2 1

2!2H j~q7~1/2!z; 1
2!56~q2q21! (

n.0
A6n

j z7n6A0
i ln q. ~IV.3!

We make a basis transformation and expressAn
j and QAj in terms of a new set of bosoni

oscillators$an
j , Qaj u j 51,2,...,2N% as

An
i 5~21! i 11~an

i 1an
i 11!, An

2N5
qn1q2n

2 (
l 51

2N

~21! l 11an
l ,

QAi5~21! i 11~Qai1Qai 11!, QA2N5(
l 51

2N

~21! l 11Qal, ~IV.4!

wherei 51,...,2N21 and$an
j ,Qaj% satisfy the commutation relations

@an
j ,am

j 8#5~21! j 11d j j 8dn1m,0

@n#q
2

n
, @a0

j ,Qaj 8#5~21! j 11d j j 8 . ~IV.5!

Now we state our main result in this section on the free boson realization ofUq@gl(NûN)# at level
one.

Theorem 1: The Drinfeld generators of Uq@gl(NûN)# at level one are realized by the fre
boson fields as

c51, c6,j~z!5eH6
j

~z!, j51,2,...,2N,

X6,i~z!5:e6Hi ~z;71/2!Y6,i~z!:F6,i , i 51,2,...,2N21, ~IV.6!

where

F6,2k215)
l 51

k21

e6A21pa0
2l 21

, F6,2k5)
l 51

k

e7A21pa0
2l 21

,

Y1,2k21~z!5eck~z!,

Y2,2k21~z!5
1

z~q2q21!
~e2ck~qz!2e2ck~q21z!!,

Y1,2k~z!5Y2,2k21~z!5
1

z~q2q21!
~e2ck~qz!2e2ck~q21z!!,

Y2,2k~z!52Y1,2k21~z!52eck~z!, k51,2,...,N. ~IV.7!

Proof: We prove this theorem by checking that they satisfy the defining relations~II.20! of

Uq@gl(NûN)# with c51. It is easily seen that the first two relations in~II.20! are true by con-
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struction. The third and fourth ones follow from the definition ofX6,i(z) and the commutativity
betweenan

j andcn
l . So we only need to check the last three relations in~II.20!.

We write

Z6,i~z!5:e6Hi ~z;71/2!:F6,i . ~IV.8!

It is easily shown that

Z1,i~z!Z1,i 8~w!55
:Z1,i~z!Z1,i 8~w!: for aii 850 and i< i 8,

2:Z1,i~z!Z1,i 8~w!: for aii 850 and i . i 8,

~z2q21w!:Z1,i~z!Z1,i 8~w!: for aii 851 and i , i 8,

2~z2q21w!:Z1,i~z!Z1,i 8~w!: for aii 851 and i . i 8,

~z2q21w!21:Z1,i~z!Z1,i 8~w!: for aii 8521,

~IV.9!

Z2,i~z!Z2,i 8~w!55
:Z2,i~z!Z2,i 8~w!: for aii 850 and i< i 8,

2:Z2,i~z!Z2,i 8~w!: for aii 850 and i . i 8

~z2qw!:Z2,i~z!Z2,i 8~w!: for aii 851 and i , i 8,

2~z2qw!:Z2,i~z!Z2,i 8~w!: for aii 851 and i . i 8,

~z2qw!21:Z2,i~z!Z2,i 8~w!: for aii 8521,

~IV.10!

Z1,i~z!Z2,i 8~w!55
:Z1,i~z!Z2,i 8~w!: for aii 850 and i< i 8,

2:Z1,i~z!Z2,i 8~w!: for aii 850 and i . i 8,

~z2w!21:Z1,i~z!Z2,i 8~w!: for aii 851 and i , i 8,

2~z2w!21:Z1,i~z!Z2,i 8~w!: for aii 851 and i . i 8,

~z2w!:Z1,i~z!Z2,i 8~w!: for aii 8521.

~IV.11!

We have similar formulas forZ1,i 8(w)Z1,i(z), Z2,i 8(w)Z2,i(z), andZ2,i 8(w)Z1,i(z).
We now compute operator productsY1,i(z)Y1,i 8(w) andY1,i(z)Y2,i 8(w). It is easily seen

from the definition ofY6,i(z) that the nontrivial products are those corresponding toi 5 i 8 and
aii 851. Note thataii 851 wheneveri 52k21, i 852k ~or i 52k, i 852k21) wherek51,2,...,N
21. The corresponding operator products are

Y1,2k21~z!Y1,2k~w!5
1

w~q2q21!
S :eck~z!e2ck~qw!:

z2qw
2

:eck~z!e2ck~q21w!:

z2q21w
D ,

Y2,2k21~z!Y2,2k~w!52
1

z~q2q21!
S :e2ck~qz!eck~w!:

qz2w
2

:e2ck~q21z!eck~w!:

q21z2w
D ,

Y1,2k21~z!Y2,2k~w!52~z2w!:Y1,2k21~z!Y2,2k~w!:

Y1,2k~z!Y2,2k21~w!5
1

zw~q2q21!
~q~z2w!:e2ck~qz!e2ck~qw!:

2q21~z2w!:e2ck~q21z!e2ck~q21w!:

2~qz2q21w!:e2ck~qz!e2ck~q21w!:

2~q21z2qw!:e2ck~q21z!e2ck~qw!: !. ~IV.12!
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Since Y1,2k(z)5Y2,2k21(z) and Y2,2k(z)52Y1,2k21(z), the productsY1,i(z)Y1,i(w) and
Y6,i(z)Y7,i(w) can be deduced from~IV.12!. For example,

Y1,2k~z!Y2,2k~w!52Y1,2k~z!Y1,2k21~w!5
1

z~q2q21!
S :e2ck~q21z!eck~w!:

q21z2w
2

:e2ck~qz!eck~w!:

qz2w
D .

~IV.13!

By means of~IV.9!, ~IV.11!, ~IV.10!, and~IV.12! we can show that the last three relations
~II.20! are satisfied by~IV.7!. For instance,

@X1,2k~z!,Z2,2k21~w!#52
1

zw~q2q21!2 :Z1,2k~z!Z22,k21~w!:S 1

z2w
1

1

w2zD
3~~qz2q21w!:e2ck~qz!e2ck~q21w!:1~q21z2qw!:e2ck~q21z!e2ck~qw!: !

52
1

z2w~q2q21!2 :Z1,2k~z!Z2,2k21~w!:dS w

z D
3~~qz2q21w!:e2ck~qz!e2ck~q21w!:1~q21z2qw!:e2ck~q21z!e2ck~qw!: !

50. ~IV.14!

V. BOSONIZATION OF LEVEL-ONE VERTEX OPERATORS

In this section, we study the level-one vertex operators6 of Uq@gl(NûN)#. Let V(l) be the

highest weightUq@gl(NûN)#-module with the highest weightl. Consider the following intertwin-

ers ofUq@gl(NûN)#-modules:2

Fl
mV~z!: V~l!→V~m! ^ Vz , ~V.1!

Fl
mV* ~z!: V~l!→V~m! ^ Vz*

S , ~V.2!

Cl
Vm~z!: V~l!→Vz^ V~m!, ~V.3!

Cl
V* m~z!: V~l!→Vz*

S
^ V~m!. ~V.4!

They are intertwiners in the sense that for anyxPUq@gl(NûN)#,

J~z!•x5D~x!•J~z!, J~z!5Fl
mV~z!, Fl

mV* ~z!, Cl
Vm~z!, Cl

V* m~z!. ~V.5!

These intertwiners are even operators, that is their gradings are@Fl
mV(z)#5@Fl

mV* (z)#

5@Cl
Vm(z)#5@Cl

V* m(z)#50. According to Ref. 2,Fl
mV(z) (Fl

mV* (z)) is called type I~dual!

vertex operator andCl
Vm(z) (Cl

V* m(z)) type II ~dual! vertex operator.
We expand the vertex operators as2

Fl
mV~z!5(

j 51

2N

Fl, j
mV~z! ^ v j , Fl

mV* ~z!5(
j 51

2N

Fl, j
mV* ~z! ^ v j* ,

Cl
Vm~z!5(

j 51

2N

v j ^ Cl, j
Vm~z!, Cl

V* m~z!5(
j 51

2N

v j* ^ Cl, j
V* m~z!. ~V.6!

Then the intertwining property~V.5! reads in terms of components,
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( Fl, j
mV~z!x^ v j~21!@v j #@x#5( x~1!Fl, j

mV~z! ^ x~2!v j~21!@v j #@x~2!#,

( Fl, j
mV* ~z!x^ v j* ~21!@v j* #@x#5( x~1!Fl, j

mV* ~z! ^ x~2!v j* ~21!@v j* #@x~2!#,

( v j ^ Cl, j
Vm~z!x5( x~1!v j ^ x~2!Cl, j

Vm~z!~21!@v j #@x~2!#,

( v j* ^ Cl, j
V* m~z!x5( x~1!v j* ^ x~2!Cl, j

V* m~z!~21!@v j* #@x~2!#, ~V.7!

where we have used the notationD(x)5(xx(1)^ x(2) and the fact that the vertex operators a

even which implies@Fl, j
mV(z)#5@Fl, j

mV* (z)#5@Cl, j
Vm(z)#5@Cl, j

V* m(z)#5@v j #5@(21) j11#/2.
Introduce the even operatorsf(z), f* (z), c(z), andc* (z),

f~z!5(
j 51

2N

f j~z! ^ v j , f* ~z!5(
j 51

2N

f j* ~z! ^ v j* ,

c~z!5(
j 51

2N

v j ^ c j~z!, c* ~z!5(
j 51

2N

v j* ^ c j* ~z!. ~V.8!

The grading of the components is given by@f j (z)#5@f j* (z)#5@c j (z)#5@c j* (z)#5@(21) j

11#/2. Now we state
Proposition 3: Assume that the operatorsf(z), f* (z), c(z), c* (z) satisfy the intertwining

relations (V.7). Then the operatorsf(z) and c(z) with respect to Vz are determined by the
componentsf2N(z) and c1(z), respectively. With respect to Vz*

S , the operatorsf* (z) and
c* (z) are determined byf1* (z) and c2N* (z), respectively. More explicitly, we have for
51,2,...,2N21,

~21! lf l~z!5@f l 11~z!, f l #q~21! l ,

@f l~z!, f l #q~21! l50,

@fk~z!, f l #50, kÞ l ,l 11, ~V.9!

q~21! l 11
f l 11* ~z!5@f l* ~z!, f l #q~21! l 11 ,

@f l 11* ~z!, f l #q~21! l 1150,

@fk* ~z!, f l #50, kÞ l ,l 11, ~V.10!

c l 11~z!5@c l~z!,el #q~21! l 11 ,

@c l 11~z!,el #q~21! l 1150,

@ck~z!,el #50, kÞ l ,l 11, ~V.11!

~21! l 11q~21! l
c l* ~z!5@c l 11* ~z!,el #q~21! l ,

@c l* ~z!,el #q~21! l50,
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@ck* ~z!,el #50, kÞ l ,l 11. ~V.12!

Next we determine the relations of the componentsf2N(z), f1* (z), c1(z), c2N* (z) and the
Drinfeld generators. By means of proposition 1 and the intertwining relations, we have

Proposition 4: Forf(z) associated with Vz ,

@f2N~z!,X1,i~w!#50,

qhif2N~z!q2hi5q2d i ,2N21f2N~z!,

@Hn
i ,f2N~z!#52d i ,2N21q~3/2!n

@n#q

n
znf2N~z!,

@H2n
i ,f2N~z!#52d i ,2N21q2~1/2!n

@n#q

n
z2nf2N~z!; ~V.13!

for f* (z) associated with Vz* ,

@f1* ~z!,X1,i~w!#50,

qhif1* ~z!q2hi5qd i ,1f1* ~z!,

@Hn
i ,f1* ~z!#5d i ,1q

~3/2!n
@n#q

n
znf1* ~z!,

@H2n
i ,f1* ~z!#5d i ,1q

2~1/2!n
@n#q

n
z2nf1* ~z!; ~V.14!

for c(z) associated with Vz ,

@c1~z!,X2,i~w!#50,

qhic1~z!q2hi5q2d i ,1c1~z!,

@Hn
i ,c1~z!#52d i ,1q

~1/2!n
@n#q

n
znc1~z!,

@H2n
i ,c1~z!#52d i ,1q

2~3/2!n
@n#q

n
z2nc1~z!; ~V.15!

and for c* (z) associated with Vz* ,

@c2N* ~z!,X2,i~w!#50,

qhic2N* ~z!q2hi5qd i ,2N21c2N* ~z!,

@Hn
i ,c2N* ~z!#5d i ,2N21q~1/2!n

@n#q

n
znc2N* ~z!,

@H2n
i ,c2N* ~z!#5d i ,2N21q2~3/2!n

@n#q

n
z2nc2N* ~z!. ~V.16!
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In order to obtain bosonized expressions of the vertex operators, we introduce the foll
combinations of the bosonic oscillators

An*
i5 (

l 51

2N21

ail
21An

l 1
2

qn1q2n ai ,2N
21 An

2N ,

A0*
i5(

l 51

2N

ail
21A0

l , QAi* 5(
l 51

2N

ail
21QAl, i 51,2,...,2N21, ~V.17!

which satisfy the relations

@An*
i ,Am

i 8#5d i i 8dn1m,0

@n#q
2

n
,

@An*
i ,Am*

i 8#5aii 8
21dn1m,0

@n#q
2

n
,

@A0*
i ,QAi 8#5d i i 8 , @A08 ,Q

Ai 8
* #5d i i 8 ,

@A0*
i ,Q

Ai 8
* #5aii 8

21, i ,i 851,2,...,2N21. ~V.18!

Introduce the currents,

H* , j~z;k!5QAj* 1A0*
j ln z2 (

nÞ0

An*
j

@n#q
qkunuz2n. ~V.19!

Now we state our main theorem in this section on the bosonic realization of the ope
f(z), f* (z), c(z), andc* (z) at level one. Thanks to the previous propositions, we only nee
determine one component for each operator and the other components are represented
integral of the currents.

Theorem 2: The componentsf2N(z), f1* (z), c1(z), andc2N* (z) can be realized explicitly as
follows:

f2N~z!5:e2H* ,2N21~qz;~1/2!!ecN~qz!:e2A21pa0
1

)
l 51

N21

e2A21p@~2N1 l !/2N#a0
2l 11

,

f1* ~z!5:eH* ,1~qz;~1/2!!: )
l 51

N21

eA21p@~2N2 l !/2N#a0
2l 11

,

c1~z!5:e2H* ,1~qz;2~1/2!!: )
l 51

N21

eA21p@~2N2 l !/2N#a0
2l 11

,

c2N* ~z!5
1

z~q2q21!
:eH* ,2N21~qz;2~1/2!!~e2cN~q2z!2e2cN~z!!:

3e2A21pa0
1

)
l 51

N21

e2A21p@~2N11!/2N#a0
2l 11

. ~V.20!

Proof: This theorem is proved by checking that the construction satisfies all the intertw
relations.
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Remark:The following inverse elements of the extended Cartan matrix are needed to
mine the cocycle factors appearing in above theorem:

a2N21,2l
21 5a2N21,2l 11

21 52
l

N
, l 51,2,...,N21,

a2N21,1
21 50, a2N21,2N

21 5
1

2N
,

a1,2l 21
21 5a1,2l

215
N2 l

N
, l 51,2,...,N21,

a1,2N21
21 50, a1,2N

21 5
1

2N
. ~V.21!

We are now in a position to state the following result:

Proposition 5: The vertex operatorsFl
mV(z), Fl

mV* (z), Cl
Vm(z), andCl

V* m(z), if they exist,
have the same bosonized expressions as the operatorsf(z), f* (z), c(z), and c* (z), respec-
tively.

This proposition follows immediately from the fact that the formers and the latters obe

same intertwining properties. IdentifyingFl
mV(z), Fl

mV* (z), Cl
Vm(z), andCl

V* m(z) with f(z),
f* (z), c(z), and c* (z), respectively, then the bosonic realization of the vertex operator
easily seen to be given by propositions 3, 4 and theorem 2.
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Erratum: ‘‘Analytical solution of the relativistic Coulomb
problem with a hard core interaction for a
one-dimensional spinless Salpeter equation’’
†J. Math. Phys. 40, 1119 „1999…‡

F. Brau
Universitéde Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium

~Received 15 June 1999; accepted for publication 7 July 1999!

@S0022-2488~99!01911-8#

The supposedly exact formula for the bound-state spectrum of the one-dimensional rela
Coulomb problem with a hard core interaction, given in Eq.~33! of this paper, is incorrect. The
first part of this paper~Sec. II! which contains the evaluation of the action of the opera
A2dx

21m2 on the functionsxne2bx ~using the integral representation of this operator obtaine
this paper!, is correct if we consider the wholex axis. Application to the Coulomb problem mu
involve normalizable wave functions. That is why we have only considered the positive part
x axis leading to wave functions of the form:Pn(x)e2bxu(x), where u(x) is the Heaviside
function. Unfortunately, as a consequence of the nonlocality of the square root operator, the
of this operator on these functions leads to rather different expressions than the action
functionsPn(x)e2bx, as calculated in Sec. II, even if we consider the results of these actions
on the positivex axis. We have not obtained the correct spectrum and the correct wave func
We regret that we did not point out this problem earlier.
61250022-2488/99/40(11)/6125/1/$15.00 © 1999 American Institute of Physics
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Erratum: ‘‘Rest frame system for asymptotically flat
space–times’’ †J. Math. Phys. 39, 6631 „1998…‡

Osvaldo M. Moreschia) and Sergio Dainb)

FaMAF, Universidad Nacional de Co´rdoba, Ciudad Universitaria,
5000 Córdoba, Argentina

~Received 11 June 1999; accepted for publication 12 July 1999!

There is an error in the original presentation of the theorem 6.1. The corrected Sec. V

VI. GLOBAL EXISTENCE OF NICE SECTIONS NEAR THE STATIONARY CASE

The results appearing in the previous sections deal only with local properties of nice sec
in this section the issue of global existence will be tackled. In Ref. 2 it was proved that there
a four-parameter family of nice sections in a stationary space–time. This suggests that
radiation is ‘‘small’’ one could probably find an analogous result. In what follows we will ap
once more the implicit function theorem to prove this assertion.

Let C0(I 1) represent the vector space of all bounded continuous functions on scri plus
the normiFiC0(I1)5supuF(u,z,z)u. The vector spaceC0(I 1) defines a Banach space.

Let X, Y and Z represent the spaces defined in Sec. III, and let us denote withJ the space
whose elements are of the formj5(x,F), with xPX, FPC0(I 1) and with normiji5ixiX

1iFiC0(I1) . The spaceJ is a Banach space. Consider now the map from (J,Y) into Z defined
by

F~j,y!5Dy2S E
u0

x1y

F~u,z,z̄ !du1C~u0 ,z,z̄ !1K~x1y,F;z,z̄ !3M ~x1y,F ! D , ~71!

which coincide with the mapf (x,y) defined in Sec. III, but where now it is taken into accou
explicitly the dependence on the fluxF. The Fréchet derivative of this map with respect to th
variabley is

Fy~j,y!dy5Ddy2FF~u5g5x1y,z,z̄ !dy1K3S 4PaI

M
23K l aI ~z,z̄ ! D dPaI G , ~72!

wherePaI , M, andK are evaluated atu5g5x1y; in particular one has

PaI ~g!52
1

4pE l aI ~z,z̄ !E
u0

g

F~u,z,z̄ !du dS21PaI ~u5u0! ~73!

anddPaI is given by

dPaI 52
1

4pE l aI ~z,z̄ !F~u5g5x1y,z,z̄ !dy dS2. ~74!

Let us denote withj0 the nonradiation case, that is,j05(x0 ,F50); we have shown in Ref
2 that there exists a relationy0(x0) such thatF(j0 ,y0)50, for any translationx0 ; in other words,

a!Member of CONICET; electronic mail: moreschi@fis.uncor.edu
b!Fellowship holder from CONICOR; electronic mail: dain@fis.uncor.edu
61260022-2488/99/40(11)/6126/2/$15.00 © 1999 American Institute of Physics
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in the absence of radiation (F50), the mapg0(x0)5x01y0(x0) defines a four-parameter famil
of nice sections globally on scri. It is observed thatdPaI (F50)50; therefore

Fy~j~x,F50!,y!dy5Ddy, ~75!

and it is clear that the mapdz5Fy(j(x,F50),y)dy from Y onto Z is invertible; that is, it is an
homeomorphism ofY onto Z.

The implicit function theorem implies that there exists a unique continuous mappingG de-
fined in a neighborhoodU0,C0(I 1) of F50, G:U0→Y, parametrized byx0 , such that
G(j(x0 ,F50))5y0 andF(j(x0 ,F),y)50 for FPU0 .

Let us callsmall radiation datathe one that satisfiesṡsG 5FPU0 in the last result. Then, the
continuity properties contained in the implicit function theorem and the fact thatx lives in a
four-dimensional vector space, imply the following result:

Theorem 6.1:
For small radiation data there exists a global four-parameter family of nice sections at

ACKNOWLEDGMENT

We would like to thank A. Rendall for pointing out the error and for discussions.
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Quantum description of rigidly or adiabatically
constrained four-particle systems and supersymmetry

E. Baloı̈tcha and M. N. Hounkonnoua)

Unité de Recherche en Physique The´orique (URPT), Institut de Mathe´matiques
et de Sciences Physiques (IMSP), B.P. 613 Porto-Novo, Be´nin

~Received 18 May 1999; accepted for publication 13 July 1999!

A general formalism for the quantum description of many-body systems is devel-
oped, using the principal-axis hyperspherical parametrization of coordinates. This
formalism is applied to four-particle systems for which the exact kinetic energy
operator is derived using a model constraints and dynamical constraints. Then,
using the supersymmetry and shape invariance approach, we obtained in a closed
form the eigenvalues and eigenfunctions of a wide class of noncentral potentials for
the adiabatically constrained four-particle systems. ©1999 American Institute of
Physics.@S0022-2488~99!00112-7#

I. INTRODUCTION

In the field of molecular and chemical physics, the parametrization~for the purpose of dy-
namical studies! of the configuration ofN-atom system which is likely to undergo very larg
amplitude deformations is, in most cases, looked for in terms of coordinates among whic
distances are as few as possible and, on the contrary, the angles as many as possible. Thi
the context of quantum mechanics and in view of variational calculations requiring the evalu
of matrix elements, because of a practical intrinsic weakness of the radial function basis
have to span the domain@0,̀ @ and are often of a delicate use for computing Hamiltonian ma
elements, whereas~owing to the cyclic character of the angular coordinates! there exist a variety
of practicable analytical angular function basis sets, for instance the spherical harmonics ba
any pair of angles that are mathematically spherical.

Moreover, the configuration of the molecular system is usually thought of in terms oN
26 internal coordinates. This is consistent with the description of the rotation of a very de
able system as that of a body-fixed~BF! frame of reference, i.e., a frame with its origin at th
center of mass and its axes rotating in a prescribed manner when the atoms~or only a few of them!
move. With respect to the space-fixed~SF! frame of reference~with origin at the center of mas
and axes parallel to those of the laboratory-fixed~LF! frame!, the BF frame is oriented by mean
of three Euler angles. Finally, the translation of the center of mass in the LF frame is gen
eliminated.

It has been established1–5 that an useful expression of the exact nonrelativistic quant
mechanical Hamiltonian operator of a molecular system made up ofN atoms viewed in a BF
frame of reference (O,x,y,z) and described in size and shape by a complete set of inte
coordinates$qi ; i 51,2, . . . ,3N26% is very complex and contains at least seven terms plus
potential energy term.

The 3N26 internal coordinatesqi are invariant under rotations; this means that the exp
sionsqi5qi(x1,x2, . . . ,xa, . . . ,x3N), where thexa are the Cartesian BF-coordinates of the p
ticles, are unchanged whatever orientation of the BF-frame. In most cases, such coordina
out to be either distances between two points, or planar angles between three points,
dihedral atoms or centers of mass of groups of atoms as well. Next, the orientation of th
frame is supposed to be uniquely defined by means of the three so-called ‘‘axial constrain4,6

a!Electronic mail: hounkon@syfed.bj.refer.org
61330022-2488/99/40(12)/6133/12/$15.00 © 1999 American Institute of Physics
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Last of all, the Hamiltonian of the system expressed with respect to the particle coord
in the BF-frame, is designed to operate on a wave function that is normalized according
usual ~i.e., Euclidean! normalization convention, i.e., the volume elementdt1

5@g(q)#21/2dq1dq2•••dq3N26dcdbdg ~the parameters will be defined later! is to be used when
calculating matrix elements.

The hyperspherical parametrizations constitute the most appropriate answer to the requ
of few distances and many angles among the internal coordinates describing molecular s
with possible very deformed configurations. Their main feature is that the length-type in
coordinates are reduced to a single one~the so-called hyperradiusr), all the others being angle
~with various possible definitions, see below! so that, the overall rotation being also consider
the system configuration and orientation are described by one distance (r) and 3N24 angles.
Whatever the actual parametrization, the hyperradius definition is unique and invariant,7

r25 (
l51

N21

mlrl
25 (

a51

N

(
g

ur agu2,

where, any set ofn5N21 Jacobi vectors$rl
2% being associated with theN-atom system,ml and

rl are, respectively, the reduced mass and the length of one vector,m is the totally symmetric
characteristic mass, andr ag denotes the component (g5x,y,z) of the mass-weighted positio
vector ra of the ath particle viewed in the body-fixed frame~BF!.

The analytical treatment of this system has been the subject of many investigations the
years.3,4 Among the most remarkable works, we can quote the papers by Parker,8 Kosloff et al.,9

and other remarkable contributions.10–18

To treat four-particle systems, we subject the system to model constraints, e.g., eit
rigidifying a few bonds or entire atomic groups or in adjusting the variations of some inte
coordinates~called inactive! to those of a few coordinates considered the most important one
the dynamics. Indeed imposing model constraints alters the dimensions of the configuration
so each differential operator must be modified accordingly.19 Moreover, when only internal de
formations are considered, the molecule is studied for zero total angular momentumJ, a condition
that is physically realistic sinceJ is a constant of motion. One of the purposes of this paper is
the adiabatically constrained four-particle systems, to show that noncentral potentials th
separable in their coordinates and may have up to nine parameters can be solved by the o
method by using the well known results for the various shape invariance potentials~SIP!. More
precisely, we show that the energy eigenvalues and eigenfunctions of noncentral but se
potentials in PAH coordinates can be simply written down by applying supersymmetry and
invariance tou3 ,f,u, andr dependent potentials.

The paper is organized as follows: In Sec. II, we recall a general formalism of quantizati
many-body systems. In Sec. III, we construct the quantum-mechanical Hamiltonian for
particle systems in terms of the quasimomenta using principal axis hyperspherical~PAH! coordi-
nates. In Sec. IV, we subject the four-particle to model constraints and derive the exact k
energy operator derived. In Sec. V, using the results for the known SIP, we obtain in a close
the eigenvalues and the eigenfunctions for noncentral but separable potentials.

II. GENERAL FORMALISM OF THE MANY BODY SYSTEM QUANTIZATION

Let q5(q1,q2, . . . ,q3n), n5N21 be a set of curvilinear coordinates well suited for t
description of a dynamical system, and letp5(p1 ,p2 , . . . ,p3n) be the corresponding conjuga
momenta in classical mechanics. The kinetic energyT can always be expressed as a quadra
form of momenta,

T5
1

2 (
i , j 51

3n

pig
i j ~q!pj , ~2.1!
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where

@gi j #5F S~q! C†~q!

C~q! I ~q!
G21

5FS G†

G m G ~2.2!

with S(q) the (3N26)-dimensional symmetric matrix of elements,

Si j 5 (
a51

N

@]qi
r ax]qj

r ax1]qi
r ay]qj

r ay1]qi
r az]qj

r az# ~ i , j 51,2, . . . ,3N26!; ~2.3!

C(q) the 33(3N26) Coriolis matrix of elements,

Cg j5 (
a51

N

@r ag8]qj
r ag92r ag9]qj

r ag8# ~2.4!

~ j 51,2, . . . ,3N26;g,g8,g9 is an even permutation ofx,y,z!,

and I (q) being the usual inertia tensor represented by the three-dimensional symmetric ma
elements,

I gg85 (
a51

N F(
g9

r ag9
2 dgg82r agr ag8G ~g,g85x,y,z!. ~2.5!

Now, one is always at liberty to use anonsingular3n-dimensional matrixB(q), depending
only on the coordinates, to transform the momenta into quasimomenta, namely,

pK5(
i 51

3n

@B~q!#K
i pi ~K51,2, . . . ,3n!. ~2.6!

The determinant ofB(q) is denoted by

t215Det~B~q!!. ~2.7!

T can be rewritten as

T5
1

2 (
K,L51

3n

p
K
gKL~q!p

L
~2.8!

with

gKL~q!5 (
i , j 51

3n

@B21~q!# i
Kgi j ~q!@B21~q!# j

L ~K,L51,2, . . . ,3n! ~2.9!

so that, ifg(q)5Det(@gi j (q)#) and g̃(q)5Det(@gKL(q)#), then

g~q!5g̃~q!t22~q!. ~2.10!

In quantum mechanics, letpi be replaced by the Hermitian operatorp̂i . Operatorsq̂ andp̂ act
in the standard Hilbert spaceH and must satisfy the Heisenberg commutation relations

@ q̂i ,p̂ j #5 i\d j
i , @ q̂, Î d#5@ p̂, Î d#50.
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Here Î d is the identity operator,\ is Planck’s constant, and the bracket means the commu

@Â,B̂#5ÂB̂2B̂Â.

p̂i52 i\
1

g21/4]qi
g21/4 ~ i 51,2, . . . ,3n!. ~2.11!

In keeping, for the quasimomentum operators, with the same definition as above

p̂K5(
i 51

3n

@B~q!#K
i p̂i ~K51,2, . . . ,3n!. ~2.12!

As long as the Euclidean volume element of the configuration space

dt15dx1dx2dx3•••dx3N5@g~q!#21/2dq1dq2•••dq3N26dc db dg

is used for the calculation of the matrix elements as integrals, the differential kinetic e
operator must be written as

T̂5
1

2 (
K,L51

3n

p̂
K
gKL~q! p̂

L
1VD~q! ~2.13!

52
\2

2 (
K,L51

3n F 1

g21/4]q
KgKL]q

Lg21/42S 1

g21/4]q
KgKL]q

Lg21/4D G ~2.14!

52
\2

2 (
K,L51

3n F 1

g21/2]q
KgKLg21/2]q

LG ~2.15!

52
\2

2 (
K,L51

3n FgKL]q
K]q

L1S 1

g21/2]q
KgKLg21/2D ]q

LG ~2.16!

52
\

2 (
K,L51

3n

@gKL]q
K]q

L1G1
L]q

L#. ~2.17!

The four expressions~2.13!–~2.16! call for several definitions and a few comments.
~i! Since the kinetic energy operator must be purely differential~in Euclidean normalization!,

whereas

(
K,L51

3n F 1

g21/4
]q

KgKL]q
Lg21/4G

only is not;VD(q) the so-called ‘‘extra potential’’~term discussed in Ref. 14, Appendix 2!, which
is a pure multiplicative operator, appears to make up theT differential.

~ii ! When an operator appears in an expression in parentheses, it is always assumed
operate beyond these parentheses.

If the classical Hamiltonian is known in the form

H5T~q,p!1V~q!, ~2.18!

whereT(q,p) is written as in Eq.~2.8!, its quantization simply amounts to rewriting it as in E
~2.13! by means of the quantities in Eqs.~2.11! that are to be explicitly calculated.
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III. QUANTUM-MECHANICAL PAH HAMILTONIAN FOR THE UNCONSTRAINED
FOUR-PARTICLE SYSTEM IN TERMS OF THE QUASIMOMENTA

In this case, the set of the PAH coordinates is (r,u,f,u1 ,u2 ,u3 ,c,b,g), wherer is the
hyperradius;u andf the spherical coordinates to parametrize the mass-weighted gyration
c,b, andg the three usual Eulerian angles to orient the~BF! with respect to the~SF!; u1 ,u2 , and
u3 are the so-called hyperangles.10,11,15We deal withn5N2153 in all the above expression
~2.1!–~2.18!. So we have

@gKL#5S s~q! 0 0

0
1

r2
b~q!

1

r2
d~q!

0
1

r2
d~q!

1

r2
b~q!

D , ~3.19!

where each element in the matrix above denotes a 333 diagonal matrix, respectively,

s~q!5S 1 0 0

0
1

r2
0

0 0
1

r2 sin2 u

D , ~3.20!

b~q!5S cos2 u1sin2 u sin2 f

~cos2 u2sin2 u sin2 f!2
0 0

0
cos2 u1sin2 u cos2 f

~cos2 u2sin2 u cos2 f!2
0

0 0
1

sin2 u cos2 2f

D , ~3.21!

and

d~q!5S sin 2usinf

~cos2 u2sin2 u sin2 f!2
0 0

0
sin 2u cosf

~cos2 u2sin2 u sin2 f!2
0

0 0
sin 2f

sin2 u cos2 2f

D . ~3.22!

r,u, and f are the three spherical coordinates which allow the parametrization of the
mass-weighted gyration radii of the system. The following result is obtained:

g̃~q!5
16

@r8 sin3 u cos 2f~4 cos2 u cos 2u1sin4 u sin2 2f!#2
. ~3.23!

Here, the number of the Jacobi vectors describing the internal conformation of the systemn
53.
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In addition, we have

S K̂x

K̂y

K̂z

D 52 i\B̃~u1 ,u2!S ]u1

1

Asinu2

]u3
Asinu2

]u3

D , ~3.24!

where the 333-dimensional matrixB̃(u1 ,u2), according to relation~2.6!, is defined by

B̃5v* 21,

where v* 21 is still the 333 matrix, appears in the expression ofB(q), the overall matrix
transforming the momenta into quasimomenta, as follows:

B~q!9395S 1333 0333 0333

0333 B̃~u1 ,u2!333 0333

0333 0333 v* 21~g,b!333

D . ~3.25!

This corresponds to the fact that
~i! The operators in the left hand column vector of Eq.~3.24! are actually the quasimomentum

operators to be used;
~ii ! The 333 unit matrix in the upper ofB(q) in Eq. ~3.25! is for

p̂r52 i\ ~1/r4! ]rr4, p̂u52 i\ ~1/Agu! ]uAgu, p̂f52 i\]f ,

with

gu5sin3 u~4 cos2 u cos 2u1sin4 u sin2 2f!,

which are unaffected by the transformation, and
~iii ! v* 21(g,b) in the lower right corner is for the overall-rotation angular-momentum ve

operator definition,

v* 21~u1 ,u2!5S 2sinu1 cotu2 cosu1 sinu1 /sinu2

2cosu1 cotu2 2sinu1 cosu1 /sinu2

1 0 0
D . ~3.26!

This matrix stands for the transformation of angular~quasi! velocities into angular~quasi!
momenta, namely,

S K̂x

K̂y

K̂z

D 52 i\v* 21~u1 ,u2!S ]u1

1

Asinu2

]u2
Asinu2

]u3

D ~3.27!

as well as
                                                                                                                



l

he
f the 3
ass. In

6139J. Math. Phys., Vol. 40, No. 12, December 1999 Quantum description of rigidly or . . .

                    
S Ĵx

Ĵy

Ĵz

D 52 i\v* 21~g,b!S ]g

1

Asinb
]bAsinb

]c

D . ~3.28!

K̂ is the so-called pseudo-angular momentum vector operator,10,12which concerns the interna
motion of the system~the hyperanglesu1 ,u2 , andu3 are actually internal coordinates!, whereasĴ
is the usual total angular momentum operator for the overall rotation of the system~Eulerian
anglesc,b,g). This results in

Ĵz52 i\]g

~3.29!

Ĵ252\2F 1

sin2 b
~]g

21]c
222 cosb]c]g!1]b

21cotb]bG
and similar expressions forK̂ , by substitutingu1 ,u2 , andu3 for g,b, andc.

Let us come back to the quantization problem. SinceB is block triangular, we have

t215Det~v* 21~u1 ,u2!!Det~v* 21~g,b!! ~3.30!

so that

ut21u5
1

sinb sinu2
~3.31!

and Eqs.~2.10! and ~3.23! yield

@g~q!#21/25r8 sin3 u cos 2f~4 cos2 u cos 2u1sin4 u sin2 2f!sinu2 sinb. ~3.32!

g clearly does not depend onu1 ,u3 ,g, andc.
Now, for Euclidean volume element of the configuration space,

dt15@g~q!#21/2dr du df du1 du2 du3 dc db dg.

The PAH Hamiltonian is written as

Ĥ15T̂11V~r,u,f,u1 ,u2 ,u3!. ~3.33!

Equations~2.16! and ~3.32! yield

T̂152
\2

2 F]r
21

8

2r
]rG1

@L̂8
2#1

2r2
~3.34!

52
\2

2
L̂9 , ~3.35!

L̂9 being the Laplacian.@L̂8
2#1 is the so-called ‘‘grand-angular-momentum’’ operator, for t

eight-dimensional hypersphere embedded into the nine-dimensional configuration space o
mass-weighted Jacobi vectors describing the system, after separation of the center of m
applying the quantization rules given in section above,@L̂8

2#1 is written as
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@L̂8
2#152\2F ]u

21Lu* ]u1
1

sin2 u
@]f

2 1Lf* ]f#G1 (
g5x,y,z

@bgg~ Ĵg
21K̂g

2!12dggĴgK̂g#,

~3.36!

where thebgg and dgg’s depend onu and f only @they are given in Eqs.~3.21! and ~3.22!,
respectively# andLu* andLf* are given by

Lu* 53 cotu22 sin 2u
4 cos2 u12 cos 2u2sin2 u sin2 2f

4 cos2 u cos 2u1sin4 u sin2 2f
;

Lf* 52F2tan 2f1
sin4 u sin 4f

4 cos2 u cos 2u1sin4 u sin2 2f
G . ~3.37!

Obviously, the part ofT̂1 that is linear in]u1 ,]u2 ,]u3 as it comes out of Eq.~2.16!, i.e., the
GL(q) coefficients in Eq.~2.18!, has been entirely re-expressed in terms of the quasimome
operatorsK̂g (g5x,y,z).

IV. RIGIDLY OR ADIABATICALLY CONSTRAINED FOR THE FOUR-PARTICLE SYSTEM

In order to avoid untractable calculations, we decide to freezem of 3N26 internal coordi-
nates, in other words if we decide to subject the system tom model constraints, it is convenient t
split up the set of the 3N26 coordinatesq as follows:q5(q8,q9) whereq85(q1,q2, . . . ,qn) is
the set ofn53N262m coordinates that remain free andq95(qn11,qn12, . . . ,q3N26) is the set
of the m coordinates that are frozen, so that imposing them model constraints comes down t
putting q95q90 ~and henceq̇950) with q90 a set ofm constants. The partition ofS into S8, S9,
ands, and that ofG into G8 andG9, result from the splitting ofq into q8 andq9. The constraint-
free Hamiltonian expression ofT @Eq. ~2.1!# can be written also as Eq.~4.38!,19,20

T5
1

2
@p8z p9z J#F S8 s† G8†

s S9 G9†

G8 G9 m
GF p8†

p8†

J†
G , ~4.38!

wherep8 andp9 denote the quasimomenta conjugate to the internal coordinatesq8, q9, andJ the
total angular momentum.

~a! Distinguishing carefully the independent dynamic variablesp and J in the Hamiltonian
approach, cf. Eq.~2.1!, from their expressions as linear combinations ofq̇8 andv, the latter being
the independent dynamic variables in the Lagrangian frame work, will turn out to be an imp
point.

~b! Imposing model constraints amounts to cancelling components ofq̇ ~other thanv), which
equally means suppressing the corresponding lines and columns of matrix@gi j # ~inverse of@gi j #
in relation ~2.2!!; whereas forcing the dynamical constraintJ50 amounts to suppressing the la
three lines and columns in matrix@gi j #.

Let us apply the dynamic constraintJ50 and the model constraints$u̇15 u̇250% to our
four-particle system, puttingq85(r,u, f, u3). The square matrix in relation~4.38! yields @see
also ~3.19!#,

S85@gKL#5@gKL#constraint, ~4.39!

whereS8 is the diagonal matrix obtained by suppressing the 4th, 5th, and the three last co
and rows of the matrix in relation~3.19!. So the elementary volume of the constrained sp
configuration isdt15dt1uconstraint5r3 sin2 u cos 2fdr du df du3.

The constrained Hamiltonian writes
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Ĥ5Ĥuconstraint52
\2

2 F S ]r
21

3

r
]rD1

1

r2 sin2 u
]u sin2 u]u

1
1

r2 sin2 u
~]f

2 22tan2f]f!1
1

r2 sin2 u cos2 2f
]u3

2 G . ~4.40!

V. SUPERSYMMETRY CONSTRAINED FOUR-PARTICLE SYSTEM

In this section, we first explain how supersymmetric shape-invariant potentials may be u
solve a problem of constrained four-particle system. The potential of this problem in PAH
dinates is denoted byV(r,u,f,u3), and the problem is formally equivalent to that of one parti
in a four-dimensional hyperspherical coordinate.21 It is well known that further separation of th
variablesr,u,f, andu3 in classical~or quantum! equations of motion takes place22 for the form

V~r,u,f,u3!5V~r!1
V~u!

r2 1
V~f!

r2 sin2 u
1

V~u3!

r2 sin2 u cos2 2f
, ~5.41!

whereV(r),V(u),V(f), andV(u3) are arbitrary functions of their argument. For such a form,
problem is immediately integrable and the four constants of motion are easily obtained
Schrödinger equation for the eigenvalue problem is (\51,r2→2r2),

@Ĥucon1V~r,u,f,u3!#Cnn1n2n3
5Enn1n2n3

Cnn1n2n3
. ~5.42!

Writing the eigenfunctionC(r,u,f,u3) as

C~r,u,f,u3!5
U~r!

r3/2
3

H~u!

sinu
3

Q~f!

cos1/22f
3K~u3!, ~5.43!

after some algebra, we obtain

2
d2

du3
2

K~u3!1V~u3!K~u3!5k2K~u3!, ~5.44!

2
d2

df2
Q~f!1@V~f!1~k221!sec2 2f#Q~f!5m2Q~f!, ~5.45!

2
d2

du2
H~u!1@V~u!1~m221!csc2 u#H~u!5 l 2H~u!, ~5.46!

2
d2

dr2 U~r!1FV~r!1
~ l 22 1

4!

r2 GU~r!5Enn1n2n3
U~r!. ~5.47!

The four constants of motion are the eigenvaluesEnn1n2n3
,l 2,m2, andk2.

At this stage, we use the well known result of supersymmetry that for shape-invariant p
tials, the solutions may be obtained algebraically.23–25 To appreciate what is meant by shap
invariance, consider a ‘‘super potential’’W(u), where the variableu may stand forr,u,f, or u3 .
The supersymmetric partnersV2(u) andV1(u) are (W22W8) and (W21W8), respectively, the
prime denoting a differentiation with respect tou. If the pairV6 are of the same shape, but diffe
only in the parameters which appear in them, they are said to be shape invariant. More pre
if the partner potentialsV6(u,a1) satisfy the condition26,27
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V1~u,a1!5V2~u,a2!1R~a1!, ~5.48!

wherea1 is a set of parameters,a2 is a function ofa1 ~saya25 f (a1)) and the remainderR(a1)
is independent ofu, V6 are said to be shape invariant. In such a case, the energy spectrum
Hamiltonian with the potentialV2 is given by

En
(2)~a1!5(

j 51

n

R~aj !, E0
(2)~a1!50 ~5.49!

with aj5 f j 21(a1), i.e., the functionf applies (j 21)-times. Subsequently, it has been shown t
the corresponding eigenfunction can be obtained algebraically.25,28,29

Take

V~r,u,f,u3!5
V2

4
r21

d

r2 1
C

r2 sin2 u
1

D

r2 cos2 u
1

F

r2 sin2u sin22f
1

G

r2 sin2 u cos2 2f

1
I

r2 sin2 u cos2 2f sin2 mu3

1
J

r2 sin2 u cos2 2f cos2 mu3

, ~5.50!

with nine parametersV,d,C,D,F,G,I ,J, and m. Comparing Eqs.~5.41! and Eqs.~5.50!, we
obtain

V~u3!5I csc2 mu31J sec2 mu3 ~5.51!

and if the superpotentialW is chosen as

W5A tanmu32B cotmu3 , A,B.0, ~5.52!

then, the corresponding~shape invariant! potentialsV7 are

V752~A1B!21A~A7m!sec2 mu31B~B7m!csc2 mu3 . ~5.53!

Hence,

V1~u3 ,A,B,m!5V2~u3 ,A1m,B1m,m!1~A1B12m!22~A1B!2. ~5.54!

On comparing Eqs.~5.51! and ~5.53!, we see that, discounting the overall constant2(A
1B)2, V(u3) andV2 are identical ifI 5B(B2m) andJ5A(A2m).

Thus, the energy eigenvaluesk2 of Eq. ~5.44! with V(u3)5V2(u3) follow from Eqs.~5.44!,
~5.48!, and~5.54!,

k25~A1B12nm!2 n50,1,2, . . . . ~5.55!

The corresponding eigenfunctions are given by27,28

K~u3!5~sinmu3!B/m~cosmu3!A/mPn
~B/m! 2 ~1/2! , ~A/m!2 ~1/2!~cos 2mu3!, ~5.56!

wherePn
a,b is the Jacobi polynomial.

Using the same algebra procedure as before, the eigenvaluesm2 and l 2 with their eigenfunc-
tions are found to be, respectively,

m25~A11B114n111!2, ~5.57!
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Q~f!5~sin 2f!B/2~cos 2f!~A1/2! 1 ~1/2!Pn1

~B/1/2!2 ~1/2! , ~A1/2!
~cos 4f!, ~5.58!

whereG1k25A1
2 , F5B1(B122), n150,1,2, . . . , and

l 25~A21B212n211!2, ~5.59!

H~u!5~sinu!B211~cosu!A2Pn1

B21 ~1/2! ,A22 ~1/2!
~cos 2u!, ~5.60!

whereC1m25B2
2 ,D5A2(A221),n250,1,2, . . . .

Choosing the superpotential

W5A3r2
~B311!

r
, ~5.61!

the corresponding shape invariant potentialV2 is given by

V2~r!5A3
2r21

B3~B311!

r2 2A3~2B313!. ~5.62!

Some algebra shows that

V1~r,A3 ,B3!5V2~r,A3 ,B311!2A3~2B313!1A3~2B311!. ~5.63!

The energy eigenvalues of the potential in Eq.~5.50! is ((v2/4) 5A2
2 , d1 l 25(B311/2)2),

En,n1 ,n2 ,n3
5~2n31B31 3

2!v, ~5.64!

while the corresponding hyperradial part of the eigenfunction is30

U~r!5rB311 expF2
vr2

4 GLn3

B31 ~1/2!S 1

2
vr2D . ~5.65!

La
b is the Laguerre polynomials.

Thus the total eigenfunction for the noncentral potential Eq.~5.50! is given by the form~5.43!,
with U(r),H(u),Q(f), andK(u3) given by Eqs.~5.65!, ~5.60!, ~5.58!, and~5.56!, respectively.

The energy eigenvalues are expressed in terms of the nine parameters,

En,n1 ,n2 ,n3
5@~2n311!1~d1 l 2!1/2#v, ~5.66!

l 25US 2n21
3

2D1AD1
1

4
1H C1F2~2n111!1A11F

1S G1SAI 1
m2

4
1AJ1

m2

4
1~2n11!m D 2D 1/2G2J 1/2U2

. ~5.67!

To conclude, let us point out that the four-body constrained systems involved here lea
solvable potential with nine parameters. This is remarkable. Recall that the most general so
central potentials of Natanzon-type25,31are built with six parameters while the noncentral solva
potential reconstruction needs seven parameters in three dimensions.
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The motivation for the present paper lies in the fact that the literature concerning
the Coulomb wave functionsFL(h,r) andGL(h,r) is a jungle in which it may be
hard to find a safe way when one needs general formulas for the Coulomb wave
functions with complex values of the variabler and the parametersL andh. For the
Coulomb wave functions and certain linear combinations of these functions we
discuss the connection with the Whittaker function, the Coulomb phase shift,
Wronskians, reflection formulas (L→2L21), integral representations, series ex-
pansions, circuital relations (r→re6 ip) and asymptotic formulas on a Riemann
surface for the variabler. The parametersL andh are allowed to assume complex
values. © 1999 American Institute of Physics.@S0022-2488~99!01710-7#

I. INTRODUCTION

The literature on Coulomb wave functions is very extensive and difficult to survey.
presentation of Yost, Breit, and Wheeler,1 which contains the first general treatment, was la
followed by the review article by Hull and Breit.2 For particular purposes one has found
convenient to introduce a large number of functions that are solutions of the Coulomb differ
equation.3–9 For the standard Coulomb wave functionsFL(h,r) andGL(h,r) in Abramowitz and
Stegun,10 one, in general, assumes the variabler to be real, the angular momentum quantu
numberL to be a non-negative integer, and the parameterh to be real. However, in theoretica
physics there appear problems in which one needs Coulomb wave functions with complex
of the variabler and the parametersL andh. This is the case, for instance, in Regge pole theo
where the angular momentum is complex, in scattering theory, when the energy is comple
in quantum defect theory for closed channels. In the existing literature it is, however, ha
impossible to find general formulas for the standard Coulomb wave functionsFL(h,r) and
GL(h,r) with complex values of the variabler and the parametersL andh. For such values of the
parameters the analytic properties of the Coulomb phase shiftsL(h) make the discussion of thes
Coulomb wave functions much more complicated than the discussion of the related Wh
function, and it is therefore desirable to present the result of such a discussion in a surveyab

Our purpose in the present paper is to present and collect general formulas for the st
Coulomb wave functionsFL(h,r) andGL(h,r), which are solutions of the differential equatio

d2c

dr2 1S 12
2h

r
2

L~L11!

r2 Dc50, ~1.1!

and certain linear combinations of these functions, viz.,

c6~L,h,r!5GL~h,r!6 iF L~h,r!, ~1.2!

when the variabler and the parametersL andh are allowed to assume complex values witho
unnecessary restrictions. In Sec. II we express the functionsc1(L,h,r) andc2(L,h,r) in terms
of the Whittaker function. For the Coulomb phase shiftsL(h), which appears in these formula
we investigate the rather complicated limiting properties whenL andh are complex andh→0, and
61450022-2488/99/40(12)/6145/22/$15.00 © 1999 American Institute of Physics

                                                                                                                



ed
2
y.

:

6146 J. Math. Phys., Vol. 40, No. 12, December 1999 Dzieciol, Yngve, and Fröman

                    
we also present the behavior ofsL(h) when the quantitiesL116 ih are both large. Wronskian
relations for the functions in~1.2! are also presented. In Sec. III we expressc6(2L21,h,r) in
terms ofc6(L,h,r), and we also expressF2L21(h,r) and G2L21(h,r) in terms ofFL(h,r)
andGL(h,r). In these formulas there appears a quantityx(L,h), the rather complicated limiting
properties of which ash→0 we investigate. From the definition ofx(L,h) we first derive an
alternative formula forx(L,h) and then formulas for]x(L,h)/]L and]x(L,h)/]h. When 2L is
an integer andhÞ0, we obtain a simple formula forx(L,h), with the aid of which we can
simplify the previously mentioned formulas that expressc6(2L21,h,r) in terms of
c6(L,h,r), as well as the formulas that expressF2L21(h,r) and G2L21(h,r) in terms of
FL(h,r) and GL(h,r). In Sec. IV we present integral representations forc6(L,h,r) and
FL(h,r). In Sec. V,FL(h,r) is expanded in powers ofr, and from this formula we obtain a
formula for ] ln FL(h,r)/]L when 2L11 is not a negative integer. Simplified formulas obtain
whenL52 1

2 are also given. Formulas forGL(h,r) are presented in Sec. VI. The cases whenL
is not an integer and when 2L is an integer~in particular, whenL52 1

2! are discussed separatel
In Sec. VII, c1(L,h,r) and c2(L,h,r) are expressed in terms ofc1(L,2h,re1 ip) and
c2(L,2h,re1 ip), as well as in terms ofc1(L,2h,re2 ip) and c2(L,2h,re2 ip), and
FL(h,r) andGL(h,r) are expressed in terms ofFL(2h,re1 ip) andGL(2h,re1 ip), as well as
in terms ofFL(2h,re2 ip) and GL(2h,re2 ip). General asymptotic formulas forc6(L,h,r),
FL(h,r), andGL(h,r), valid for fixed complex values ofL andh, whenr tends to infinity, while
argr has an arbitrary fixed value, are given in Sec. VIII.

II. COULOMB WAVE FUNCTIONS EXPRESSED IN TERMS OF THE WHITTAKER
FUNCTION, COULOMB PHASE SHIFT, AND WRONSKIANS

One can expressc1(L,h,r) andc2(L,h,r) in terms of the Whittaker function as follows

c1~L,h,r!5exp$ i @sL~h!2~L1 ih!p/2#%W2 ih,L11/2~2re2 ip/2!, ~2.1a!

c2~L,h,r!5exp$2 i @sL~h!2~L2 ih!p/2#%Wih,L11/2~2re1 ip/2!, ~2.1b!

wheresL(h) is the Coulomb phase shift, defined as

sL~h!5
1

2i
@ ln G~L111 ih!2 ln G~L112 ih!#, ~2.2!

and the logarithms lnG(L116ih)5lnuG(L116ih)u1i argG(L116ih) are uniquely determined by
the requirements that

L116 ihÞ0, 2p,arg~L116 ih!,p, ~2.3a!

ln G~L116 ih! is real whenL116 ih is positive. ~2.3b!

WhenL is not a negative number<21, we obtain from~2.2!,

sL~0!50, except whenL is real and<21. ~2.4a!

WhenL is a real number,21 but not an integer, we realize that

lim
h→0

ln G~L116 ih!2 lnuG~L11!u57@2L#p i , when Reh.0, ~2.5a!

lim
h→0

ln G~L116 ih!2 lnuG~L11!u56@2L#p i , when Reh,0, ~2.5b!

where@2L# denotes the integer part of2L, and hence we obtain from~2.2!,
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lim
h→0

sL~h!5 H 2@2L#p, when Reh.0,
1@2L#p, when Reh,0.

when L is a negative number,21 but not an integer. ~2.4b!

WhenL is a negative integer, andh is sufficiently small, we have the approximate formula

G~L116 ih!5
~21!2L211O~h!

~2L21!! ~6 ih!
, ~2.6!

with the aid of which we obtain

lim
h→0

$ ln G~L116 ih!1 ln@~2L21!! uhu#%

5 i @6~L1 1
2!p1p/22arg~ ih!#, when 0,arg~ ih!,p, ~2.7a!

lim
h→0

$ ln G~L116 ih!1 ln@~2L21!! uhu#%

5 i @7~L1 1
2!p2p/22arg~ ih!#, when 2p,arg~ ih!,0, ~2.7b!

and hence we obtain from~2.2!,

lim
h→0

sL~h!5H 1~L1 1
2!p, when Reh.0,

2~L1 1
2!p, when Reh,0,

L5negative integer. ~2.4c!

Since the functions lnG(L116ih) are uniquely defined when the conditions~2.3a! and~2.3b!
are fulfilled, one obtains from~2.2! the formula

sL~2h!52sL~h!, ~2.8!

which is consistent with~2.4a!–~2.4c!. From ~2.2!, it also follows that

exp@6 isL~h!#5S exp@ 1
2 ln G~L111 ih!#

exp@ 1
2 ln G~L112 ih!#

D 61

5S G~L111 ih!

G~L112 ih! D
61/2

, ~2.9!

exp@1 isL~h!#

G~L111 ih!
5

exp@2 isL~h!#

G~L112 ih!
5exp@2 1

2 ln G~L111 ih!#exp@2 1
2 ln G~L112 ih!#

5@G~L111 ih!G~L112 ih!#21/2, ~2.10!

the expressions in the last members of~2.9! and ~2.10! being only shorthand notations for th
precise expressions in the penultimate members.

We shall now investigate the behavior ofsL(h) when the quantitiesL116 ih are both large.
Replacing~2.3a! by the more restrictive requirements that

uL116 ihu@1, 2p1e<arg~L116 ih!<p2e, ~2.3a8!

wheree is a fixed, arbitrarily small, positive number, we have the asymptotic expansion give
Eq. ~5! on p. 32 in Ref. 11, i.e., with our notation,
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ln G~L116 ih!;~L1 1
26 ih!ln~L1 1

26 ih!2~L1 1
26 ih!1 ln~2p!1/2

2
1

24~L1 1
26 ih!

1¯ , uL1 1
26 ihu@1, ~2.11!

where, for defining the appropriate branch of ln(L11
26ih), one has to choose ln(L11

26ih) to be
close to ln(L116ih) whenL1 1

26 ih is large. Using~2.11!, we obtain from~2.2! the formula

sL~h!;
1

2i
@~L1 1

21 ih!ln~L1 1
21 ih!2~L1 1

22 ih!ln~L1 1
22 ih!#2h,

uL1 1
26 ihu@1. ~2.12!

In the particular situation whenL andh are real, we can write~2.12! as

sL~h!;~L1 1
2!arctan

h

L1 1
2

1h ln@~L1 1
2!

21h2#1/22h,

L andh are real,L1 1
26 ihu@1. ~2.13!

Using Eq.~34b! in Sec. 2 of Ref. 12 and~2.1a! and~2.1b! in the present paper, one finds th

c1~L,h,r!
d

dr
c2~L,h,r!2c2~L,h,r!

d

dr
c1~L,h,r!522i . ~2.14!

From ~1.2! and ~2.14! we get

GL~h,r!
d

dr
FL~h,r!2FL~h,r!

d

dr
GL~h,r!51, ~2.15!

and hence

d

dr

GL~h,r!

FL~h,r!
52

1

@FL~h,r!#2 . ~2.16!

From this formula, it follows that

GL~h,r!

FL~h,r!
52E

r0

r dr

@FL~h,r!#2 , ~2.17!

where, however, the constant lower limit of integrationr0 is unknown.
In the next section we shall relate the Coulomb wave functions with the parameters2L21

andh to the Coulomb wave functions with the parametersL andh. To that purpose we also nee
the phase shifts2L21(h) for the unique definition of which we, in analogy to~2.3a! and~2.3b!,
require that

2L6 ihÞ0, 2p,arg~2L6 ih!,p, ~2.18a!

ln G~2L6 ih! is real when2L6 ih is positive. ~2.18b!

Throughout the next section we shall thus assume that the conditions~2.3a!, ~2.3b! and ~2.18a!,
~2.18b! are fulfilled simultaneously. As we shall now show, the requirements~2.3a! and ~2.18a!
can be reformulated in a more concrete way.

Sinceu(L111 ih)2(2L2 ih)u52uL1 1
21 ihu and@(L111 ih)1(2L2 ih)#/25 1

2, the dis-
tance in a complex plane between the pointsL111 ih and 2L2 ih is 2uL1 1

21 ihu, and the
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middle point of the straight line segment joining these two points is the point1
2. When uL1 1

2

1 ihu, 1
2, the conditions~2.3a! with the upper signs, as well as the conditions~2.18a! with the

lower signs, are thus automatically fulfilled. WhenuL1 1
21 ihu> 1

2 these conditions are fulfilled if
either2p,arg(L111ih),0 or 0,arg(L111ih),p. By replacingh by 2h we obtain similar
conditions under which~2.3a! with the lower signs and~2.18a! with the upper signs are fulfilled

III. REFLECTION FORMULAS „L˜2L 21…

Throughout this section we shall assume that the conditions stated at the end of the pr
section, implying the simultaneous validity of~2.3a!, ~2.3b! and ~2.18a!, ~2.18b!, are fulfilled.
Then the Coulomb phase shiftssL(h) ands2L21(h) are both defined.

Replacing in~2.1a! and ~2.1b! L by 2L21, we obtain

c1~2L21,h,r!5exp$ i @s2L21~h!1~L112 ih!p/2#%W2 ih,2L21/2~2re2 ip/2!, ~3.1a!

c2~2L21,h,r!5exp$2 i @s2L21~h!1~L111 ih!p/2#%Wih,2L21/2~2re1 ip/2!. ~3.1b!

Since, according to Eq.~18a! in Sec. 2 of Ref. 12, the Whittaker functionWk,m/2(z) is an even
function of the parameterm, we obtain from~2.1a! and ~3.1a!,

c1~2L21,h,r!5exp@ ix~L,h!#c1~L,h,r!, ~3.2a!

and from~2.1b! and ~3.1b!,

c2~2L21,h,r!5exp@2 ix~L,h!#c2~L,h,r!, ~3.2b!

where the phasex(L,h) is defined as

x~L,h!5~L1 1
2!p1s2L21~h!2sL~h!, ~3.3!

and thus has the property that

x~2L21,h!52x~L,h!. ~3.4!

From ~1.2! ~3.2a!, and~3.2b!, we obtain

F2L21~h,r!5cosx~L,h!FL~h,r!1sinx~L,h!GL~h,r!, ~3.5a!

G2L21~h,r!52sinx~L,h!FL~h,r!1cosx~L,h!GL~h,r!. ~3.5b!

Next, we shall derive formulas forx(L,h) in the limit whenh→0. We remark in advance tha
the resulting formulas~3.6a!–~3.6d! fulfill ~3.4!.

WhenL is not a real number<21 or >0, we obtain from~3.3! with the aid of~2.4a! and the
corresponding formula withL replaced by2L21,

x~L,0!5~L1 1
2!p, except whenL is real and<21 or >0. ~3.6a!

WhenL is a real number,21 butnot an integer, we haves2L21(0)50 according to~2.4a!
with L replaced by2L21, and we obtain limh→0 sL(h) from ~2.4b!. From ~3.3!, we then obtain

lim
h→0

x~L,h!5H ~L1 1
21@2L# !p, when Reh.0,

~L1 1
22@2L# !p, when Reh,0,

when L is a real number,21 but not an integer. ~3.6b!

WhenL is a real number.0 but not an integer, we havesL(0)50 according to~2.4a!, and
we obtain limh→0s2L21(h) from ~2.4b! with L replaced by2L21. From~3.3! we then obtain
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lim
h→0

x~L,h!5H ~L1 1
22@L11# !p, when Reh.0,

~L1 1
21@L11# !p, when Reh,0,

when L is a real number.0 but not an integer. ~3.6c!

When L is an integer~positive, negative, or zero!, we use~2.4a!, ~2.4c!, and also these
formulas withL replaced by2L21, to obtain from~3.3!,

lim
h→0

x~L,h!5 H0, when Reh.0,
~2L11!p, when Reh,0, L5 integer. ~3.6d!

Replacing in~2.2! L by 2L21, we get

s2L21~h!5
1

2i
@ ln G~2L1 ih!2 ln G~2L2 ih!#, ~3.7!

where the branches of the logarithms are to be chosen such that lnG(2L1ih) is a real number
when 2L1 ih is a positive number, and lnG(2L2ih) is a real number when2L2 ih is a
positive number. With the aid of~2.2! and ~3.7!, we obtain

exp$2i @s2L21~h!2sL~h!#%5
G~2L1 ih!G~L112 ih!

G~2L2 ih!G~L111 ih!
, ~3.8!

and hence with the use of the reflection formula for the gamma function,

exp$2i @s2L21~h!2sL~h!#%5
sin@p~L111 ih!#

sin@p~L112 ih!#
. ~3.9!

Using ~3.9!, we obtain from~3.3!,

exp@2ix~L,h!#5exp@~2L11!p i #
sin@p~L111 ih!#

sin@p~L112 ih!#
, ~3.10!

and thus

x~L,h!5~L1 1
2!p1

1

2i
ln

sin@p~L111 ih!#

sin@p~L112 ih!#
, ~3.11!

where according to~3.6a! the branch of the logarithm is to be chosen such that the logarith
equal to zero whenh50 andL is a real number between21 and 0. We can also write~3.10! as

exp@2ix~L,h!#5
12exp@12p i ~L1 ih!#

12exp@22p i ~L2 ih!#
. ~3.12!

By partial logarithmic differentiation of~3.12! with respect toL, we obtain the formula

]x~L,h!

]L
5

2p@12cos~2pL !exp~2ph!#

122 cos~2pL !exp~2ph!1exp~4ph!

5
2p@12cos~2pL !exp~2ph!#

@12cos~2pL !exp~2ph!#21sin2~2pL !exp~4ph!
, ~3.13a!

and by partial logarithmic differentiation of~3.12! with respect toh, we obtain the formula
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]x~L,h!

]h
5

2p sin~2pL !exp~2ph!

122 cos~2pL !exp~2ph!1exp~4ph!

5
2p sin~2pL !exp~2ph!

@12cos~2pL !exp~2ph!#21sin2~2pL !exp~4ph!
. ~3.13b!

When 2L is an integer and RehÞ0, we obtain from~3.13a!,

]x~L,h!

]L
5

2p

12~21!2L exp~2ph!
, RehÞ0, 2L5 integer, ~3.14!

and from~3.13b!, ]x(L,h)/]h50, and hence, when argh is kept constant,

x~L,h!5 lim
h→0

x~L,h!, RehÞ0, 2L5 integer. ~3.15!

From this formula it follows, with the use of~3.6a!–~3.6d!, that

x~L,h!5 H0 when Reh.0,
~2L11!p, when Reh,0, 2L5 integer. ~3.16!

Using ~3.16!, we obtain from~3.2a! and ~3.2b!,

c6~2L21,h,r!5 Hc6~L,h,r!, when Reh.0,
~21!2L11c6~L,h,r!, when Reh,0, 2L5 integer, ~3.17!

and from~3.5a! and ~3.5b!,

F2L21~h,r!5 HFL~h,r!, when Reh.0,
~21!2L11FL~h,r!, when Reh,0, 2L5 integer, ~3.18a!

G2L21~h,r!5 HGL~h,r!, when Reh.0,
~21!2L11GL~h,r!, when Reh,0, 2L5 integer. ~3.18b!

From ~3.18a! and ~3.18b! one obtains the formula

G2L21~h,r!

F2L21~h,r!
5

GL~h,r!

FL~h,r!
, when RehÞ0, 2L5 integer, ~3.19!

which can also be obtained from~3.5a!, ~3.5b! and ~3.16!.

IV. INTEGRAL REPRESENTATIONS

According to Eq.~5! in Sec. 5 of Ref. 12, we have for the Whittaker function the integ
representation

Wk,m/2~z!5
zke2z/2

G„~m11!/22k… E0

`

exp~2w!w~m21!/22kS 11
w

z D ~m21!/21k

dw,

zÞ0, 2p,argz,p, ~4.1!

which is valid when Re@(m11)/22k#.0; otherwise the integral does not converge atw50. The
integration in~4.1! is to be performed along the positive part of the realw axis with argw50 and
arg(11w/z)→2argz asw→`.

With the aid of~4.1! we obtain from~2.1a!,
                                                                                                                



(
t

d also,

hat

nd

6152 J. Math. Phys., Vol. 40, No. 12, December 1999 Dzieciol, Yngve, and Fröman

                    
c1~L,h,r!5
exp$1 i @r2h ln~2r!2Lp/21sL~h!#%

G~L111 ih!

3E
0

`

exp~2w!wL1 ihS 11
we1 ip/2

2r D L2 ih

dw,

rÞ0, 2p/2,argr,3p/2, Re~L111 ih!.0, ~4.2a!

and from~2.1b!,

c2~L,h,r!5
exp$2 i @r2h ln~2r!2Lp/21sL~h!#%

G~L112 ih!

3E
0

`

exp~2w!wL2 ihS 11
we2 ip/2

2r D L1 ih

dw,

rÞ0, 23p/2,argr,p/2, Re~L112 ih!.0. ~4.2b!

The integrations in~4.2a! and~4.2b! are to be performed along the positive part of the realw axis
with argw50 and arg@11weip/2/(2r)#→p/22argr as w→` in ~4.2a!, but arg@1
1we2ip/2/(2r)#→2p/22argr asw→` in ~4.2b!. For the sake of clarity, we remark that ReL
116ih).0 implies that the conditions~2.3a! are fulfilled. Referring to~2.2!, we emphasize tha
always when the Coulomb phase shiftsL(h) or a Coulomb wave function~includingc1 andc2!
with the parametersL andh appears, it is tacitly assumed that the conditions~2.3a! and~2.3b! are
fulfilled. Therefore we have, in general, not found it necessary to repeat these conditions, an
in the following, we shall assume that these conditions~even if they are not stated explicitly! are
fulfilled for formulas involvingsL(h) or Coulomb wave functions with the parametersL andh.

When L1 ih and L2 ih, respectively, is not an integer, the integrand in~4.2a! and ~4.2b!,
respectively, has a branch point atw50, and we can rewrite the integral by using a contour t
encircles the pointw50. Thus, if we introduce a contour of integrationG, which will be defined
below, and use the reflection formula for the gamma function, we can rewrite~4.2a! as

c1~L,h,r!52
1

2p i
exp$1 i @r2h ln~2r!23Lp/22 ihp1sL~h!#%G~2L2 ih!

3E
G

exp~2w!wL1 ihS 11
we1 ip/2

2r D L2 ih

dw,

rÞ0, 2p/2,argr,3p/2, L1 ihÞ integer, ~4.3a!

and ~4.2b! as

c2~L,h,r!52
1

2p i
exp$2 i @r2h ln~2r!1Lp/22 ihp1sL~h!#%G~2L1 ih!

3E
G

exp~2w!wL2 ihS 11
we2 ip/2

2r D L1 ih

dw,

rÞ0, 23p/2,argr,p/2, L2 ihÞ integer, ~4.3b!

whereG is a contour of integration that begins at infinity with argw50, encircles the origin in the
positive sense without encircling the point 2ir for ~4.3a! and point22ir for ~4.3b!, and ends at
infinity with argw52p; see Fig. 1. The conditions Re(L116ih).0 in ~4.2a! and ~4.2b! do not
apply to ~4.3a! and ~4.3b!. With the aid of the reflection formula for the gamma function a
~2.10!, the formulas~4.2a!, ~4.2b! and ~4.3a!, ~4.3b! can be rewritten in alternative ways.
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Introducing instead ofw a new integration variables by putting in ~4.2a!,

w5eip/2r~11s!, rÞ0, arg~11s!52p/22argr

11weip/2/~2r!5~12s!/2, arg~12s!→p/22argr as s→`, ~4.4a!

and in ~4.2b!,

w5e2 ip/2r~12s!, rÞ0, arg~12s!5p/22argr,

11we2 ip/2/~2r!5~11s!/2, arg~11s!→2p/22argr as s→`, ~4.4b!

we get

c1~L,h,r!5
2i exp@ isL~h!2hp/2#

G~L111 ih!
~r/2!L1 i

3E
21

1`e2 ip/2/r
exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

rÞ0, 2p/2,argr,3p/2, Re~L111 ih!.0, ~4.5a!

and, when~2.10! is also used,

c2~L,h,r!5
2i exp@ isL~h!2hp/2#

G~L111 ih!
~r/2!L11

3E
1

1`e2 ip/2/r
exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

rÞ0, 23p/2,argr,p/2, Re~L112 ih!.0. ~4.5b!

Using ~1.2!, ~4.5a!, and~4.5b!, we obtain

FIG. 1. The contourG, which must not encircle the points12ir and22ir.
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FL~h,r!5
exp@ isL~h!2hp/2#

G~L111 ih!
~r/2!L11E

21

11

exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

Re~L111 ih!.0, Re~L112 ih!.0. ~4.6!

Although ~4.6! has been obtained from~4.5a! and ~4.5b!, which are simultaneously valid only
when rÞ0 and2p/2,argr,p/2, one realizes by means of analytic continuation that~4.6! is
valid for any value of argr ~whenrÞ0! and also forr50. With the aid of~2.10!, the formula
~4.6! can be written in alternative ways.

Assuming thatL1 ihÞ integer andL2 ihÞ integer, so that the integrand in~4.6! has branch
points ats521 ands511, we letg be a contour of integration that starts at a point on the r
s axis betweens521 ands511, where arg(11s)5arg(12s)50, encircles successively, on
Riemann surface,s511 in the positive sense,s521 in the positive sense,s511 in the nega-
tive sense,s521 in the negative sense, and returns to the starting point; see Fig. 2. Whe
make this contour as small as possible, it coincides with the reals axis betweens521 ands5
11, except for infinitesimally small circles arounds521 ands511, and then we find that

E
g

exp~2 irs!~11s!L1 ih~12s!L2 ih ds

5E
21

11

exp~2 irs!~11s!L1 ih~12s!L2 ih ds

1exp@2p i ~L2 ih!#E
11

21

exp~2 irs!~11s!L1 ih~12s!L2 ih ds

1exp@2p i ~L1 ih!12p i ~L2 ih!#E
21

11

exp~2 irs!~11s!L1 ih~12s!L2 ih ds

1exp@2p i ~L1 ih!#E
11

21

exp~2 irs!~11s!L1 ih~12s!L2 ih ds

5$12exp@2p i ~L1 ih!#%$12exp@2p i ~L2 ih!#%

3E
21

11

exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

FIG. 2. The contourg.
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where arg(11s)5arg(12s)50 in each integral with the limits of integration21 and11. Using
this formula, we can write~4.6! as

FL~h,r!5
exp@ isL~h!2hp/2#

G~L111 ih!$12exp@2p i ~L1 ih!#%$12exp@2p i ~L2 ih!#%

3~r/2!L11E
g

exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

L1 ihÞ integer, L2 ihÞ integer. ~4.7!

Note that although the derivation of~4.7! was made under the conditions Re(L111ih).0,
Re(L112ih).0 and L1 ihÞ integer, L2 ihÞ integer ~the last two conditions ensure that th
contour of integrationg cannot be shrunk to a point!, we can now disregard the first two cond
tions. The formula~4.7! is still valid on account of analytic continuation.

Introducing in~4.3a! instead ofw a new integration variables by putting in analogy to~4.4a!,

w5eip/2r~11s!, rÞ0, arg~11s!52p/22argr1argw,

11weip/2/~2r!5~12s!/2,

arg~12s!→p/22argr at infinity, where the integration starts and stops, ~4.8a!

we get

c1~L,h,r!52
1

p
exp@ isL~h!2hp/22 i ~L1 ih!p#G~2L2 ih!~r/2!L11

3E
g~21!

exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

rÞ0, 2p/2,argr,3p/2, L1 ihÞ integer, ~4.9a!

FIG. 3. The contoursg~21! andg~11!, drawn for the special case when argr50.
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whereg~21! is a contour of integration that starts at infinity with arg(11s)52p/22argr and
arg(12s)5p/22argr, encircles the points521 in the positive sense without encircling the poi
s511, and returns to infinity with arg(11s)53p/22argr and arg(12s)5p/22argr; see Fig. 3.
Recalling~4.8a! and the restrictions on argr in ~4.9a!, we see that22p,arg(11s),0 and2p
,arg(12s),p at the point at infinity where the integration starts, and 0,arg(11s),2p and
2p,arg(12s),p at the point at infinity where the integration stops.

Introducing in~4.3b! instead ofw a new integration variables by putting in analogy to~4.4b!,

w5e2 ip/2r~12s!, rÞ0, arg~12s!5p/22argr1argw,

11we2 ip/2/~2r!5~11s!/2,

arg~11s!→2p/22argr at infinity, where the integration starts and stops,~4.8b!

we get

c2~L,h,r!52
1

p
exp@2 isL~h!2hp/22 i ~L2 ih!p#G~2L1 ih!~r/2!L11

3E
g~11!

exp~2 irs!~11s!L1 ih~12s!L2 ih ds,

rÞ0, 23p/2,argr,p/2, L2 ihÞ integer, ~4.9b!

where g~11! is a contour of integration that starts at infinity with arg(12s)5p/22argr and
arg(11s)52p/22argr, encircles the points511 in the positive sense without encircling th
point s521, and returns to infinity with arg(12s)55p/22argr and arg(11s)52p/22argr; see
Fig. 3. Recalling~4.8b! and the restrictions on argr in ~4.9b!, we see that 0,arg(12s),2p and
2p,arg(11s),p at the point at infinity where the integration starts, and 2p,arg(12s),4p and
2p,arg(11s),p at the point at infinity where the integration stops.

The formula~4.7! can also be derived from~4.9a! and~4.9b!, but that derivation is much more
complicated than the derivation given previously in the present paper.

V. POWER SERIES FOR FL„h,r…

Expanding in~4.6! the exponential exp(2irs) in a power series and substitutings56(2u
21), where either the upper or the lower sign can be used, we obtain

FL~h,r!5
exp@ isL~h!2hp/2#

2G~L111 ih!

3~2r!L11(
k50

`
~6 ir!k

k! (
m50

k S k
mD ~22!mE

0

1

um1L6 ih~12u!L7 ih du,

Re~L111 ih!.0, Re~L112 ih!.0, ~5.1!

where the integration is performed along the realu axis with argu5arg(12u)50. In a similar way,
as ~4.7! was obtained from~4.6! we obtain from~5.1!,

FL~h,r!5
exp@ isL~h!2hp/2#

2G~L111 ih!$12exp@2p i ~L1 ih!#%$12exp@2p i ~L2 ih!#%

3~2r!L11(
k50

`
~6 ir!k

k! (
m50

k S k
mD ~22!mE um1L6 ih~12u!L7 ih du,
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L1 ihÞ integer, L2 ihÞ integer, ~5.2!

where the integration is performed along a contour that starts at a point on the realu axis between
u50 andu511, where argu5arg(12u)50, encircles successively, on a Riemann surface,u5
11 in the positive sense,u50 in the positive sense,u511 in the negative sense,u50 in the
negative sense, and returns to the starting point. This contour of integration is thus analog
the contour of integrationg in Fig. 2. Recalling the definition of the beta function and t
expression for the beta function in terms of gamma functions, we have

E
0

1

um1L6 ih~12u!L7 ih du5B~m1L116 ih,L117 ih!

5
G~m1L116 ih!G~L117 ih!

G~m12L12!
,

Re~L111 ih!.0, Re~L112 ih!.0, ~5.3!

where the integration is performed along the realu axis, and

*um1L6 ih~12u!L7 ih du

$12exp@2p i ~L1 ih!#%$12exp@2p i ~L2 ih!#%

5B~m1L116 ih,L117 ih!5
G~m1L116 ih!G~L117 ih!

G~m12L12!
,

L1 ihÞ integer, L2 ihÞ integer, ~5.4!

where the contour of integration is the same as in~5.2!. From~5.1!, ~5.3!, and~2.2!, or from ~5.2!,
~5.3!, and~2.2!, we obtain

FL~h,r!5exp@7 isL~h!2hp/2#~2r!L11(
k50

`
~6 ir!k

k! (
m50

k S k
mD ~22!m

G~m1L116 ih!

2G~m12L12!
,

~5.5!

where one can use either the upper or the lower signs. Since it follows from~2.3a! that L6 ih
must not be a negative integer, the gamma functionsG(m1L116 ih) cannot have poles fo
allowed values of the parametersL andh. The conditions in~5.1!, ~5.3! and~5.2!, ~5.4!, which are
associated with the integral representations used, do not apply anymore. With the use of~2.9! or
~2.10!, we can write~5.5! as

FL~h,r!5
@G~L111 ih!G~L112 ih!#1/2

2 exp~hp/2!
~2r!L11F̄L~h,r!, ~5.6!

with

F̄L~h,r!5
1

G~L116 ih! (
k50

`
~6 ir!k

k! (
m50

k S k
mD ~22!m

G~m1L116 ih!

G~m12L12!
. ~5.7!

For the precise definition of the square root in~5.6! we refer to the explanation below~2.10!. As
regards~5.7!, we note thatG(L116 ih) cannot be equal to zero and is finite because of~2.3a!.

When L, h, and r are real, the functionF̄L(h,r) is according to~5.7! given by either of two

complex conjugate expressions, and henceF̄L(h,r) must in that case be real. Our formulas~5.6!
and~5.7! are to be compared with formulas in subsections 14.1.4–14.1.7 in Ref. 10, which
whenL is a nonnegative integer andh is real.
                                                                                                                



e
t to

ns,

0,

6158 J. Math. Phys., Vol. 40, No. 12, December 1999 Dzieciol, Yngve, and Fröman

                    
When 2L11 is not a negative integer, the terms in~5.7! corresponding tok<22L22
52uLu22 vanish. The first nonvanishing term in the series~5.7! is then proportional tor2uLu21 .

When 2L11 is not a negative integer,G(2L12) is finite and different from zero, and th
term corresponding tok50 in ~5.7! is finite and does not vanish. In this case it is convenien
rewrite ~5.6! along with ~5.7! as follows:

FL~h,r!5
@G~L111 ih!G~L112 ih!#1/2

2 exp~hp/2!G~2L12!
~2r!L11(

k50

`

cL,k~h!rk, cL,0~h!51,

2L11Þnegative integer, ~5.8!

where

cL,k~h!5
~6 i !k

k! (
m50

k S k
mD ~22!m

G~2L12!G~m1L116 ih!

G~m12L12!G~L116 ih!
, 2L11Þnegative integer.

~5.9!

In ~5.9! one can use either the upper or the lower signs, and thus it is seen that

cL,k~h!5~21!kcL,k~2h!. ~5.10!

Inserting c5FL(h,r) with the expression~5.8! for FL(h,r) into ~1.1!, and recalling that
cL,0(h)51, we obtain the formulas

cL,0~h!51, ~5.11a!

cL,1~h!5h/~L11!, ~5.11b!

k~k12L11!cL,k~h!52hcL,k21~h!2cL,k22~h!, k>2, ~5.11c!

which one can use instead of~5.9! to calculate the coefficientscL,k(h). WhenL andh are real, the
coefficientscL,k(h) are according to~5.9! given by either of two complex conjugate expressio
and hencecL,k(h) must in that case be real. This also follows from~5.11a!–~5.11c!. In the still
more particular case whenL is a non-negative integer andh is real, ~5.8! along with ~5.11a!–
~5.11c! agrees with the power series forFL(h,r) given in subsections 14.1.4–14.1.7 in Ref. 1
our cL,k(h) being the same as theirAL111k

L (h).
From ~5.8!, it follows that

]

]L
ln FL~h,r!5 ln~2r!2

2G8~2L12!

G~2L12!
1

G8~L111 ih!

2G~L111 ih!
1

G8~L112 ih!

2G~L112 ih!

1
(k50

` ~]cL,k /]L !rk

(k50
` cL,kr

k , 2L11Þnegative integer. ~5.12!

To obtain the coefficients]cL,k /]L in ~5.12! we differentiate~5.11a!–~5.11c! partially with re-
spect toL, getting

]cL,0

]L
50, ~5.13a!

]cL,1

]L
52

h

~L11!2 , ~5.13b!
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k~k12L11!
]cL,k

]L
52h

]cL,k21

]L
2

]cL,k22

]L
22kcL,k , k>2. ~5.13c!

Of special interest, when 2L11 is not a negative integer, is the particular caseL52 1
2. For

L52 1
2 we obtain from~5.8!, with the aid of the reflection formula for the gamma function,

F21/2~h,r!5S p

exp~2ph!11D 1/2

r1/2(
k50

`

c21/2,kr
k, c21/2,051, ~5.14!

where the square root is positive for real values ofh, and from~5.12!,

S ]

]L
ln FL~h,r! D

L521/2

5 ln~2r!12g1
G8~ 1

21 ih!

2G~ 1
21 ih!

1
G8~ 1

22 ih!

2G~ 1
22 ih!

1
(k50

` ~]cL,k /]L !L521/2r
k

(k50
` c21/2,kr

k ,

~5.15!

whereg52G8(1)/G(1)52G8(1)50.5772... is Euler’s constant. Defining

d052S ln 212g1
G8~ 1

21 ih!

2G~ 1
21 ih!

1
G8~ 1

22 ih!

2G~ 1
22 ih!

D , ~5.16!

and expanding@cf. ~5.11a!, ~5.13a!, and~5.13b!#

(k50
` ~]cL,k /]L !L521/2r

k

(k50
` c21/2,kr

k 52 (
k51

`

dkr
k52~4hr1¯ !, ~5.17!

we can write~5.15! as

S ]

]L
ln FL~h,r! D

L521/2

52S ln~1/r!1 (
k50

`

dkr
kD 5@ ln~1/r!14hr1¯#. ~5.18!

VI. FORMULAS FOR GL„h,r…

Solving the reflection formula~3.5a! with respect toGL(h,r), we obtain

GL~h,r!5
F2L21~h,r!2cosx~L,h!FL~h,r!

sinx~L,h!
. ~6.1!

This formula can be directly used only when sinx(L,h)Þ0, and from ~3.12! it follows that
sinx(L,h)Þ0 when and only when 2L is not an integer~positive, negative, or zero!, while h is
unspecified. When 2L is not an integer, one can thus use~6.1! directly, and by inserting into this
formula ~5.8! and the formula that one obtains from~5.8! by replacingL by 2L21, one obtains
GL(h,r) as the sum of two series in which there is no term containing lnr. Since the series~5.8!
for FL(h,r) contains the factor (2r)L11, and the corresponding series forF2L21(h,r) contains
the factor (2r)2L, and since 2L is not an integer, one obtainsGL(h,r) as the sum of two serie
that cannot be combined into one series.

When 2L is an integer, the denominator of~6.1! is equal to zero according to~3.16!, and the
numerator of~6.1! is equal to zero according to~3.16! and ~3.18a!. To use ~6.1! in such a
particular case, one applies l’Hospital’s rule, getting, since according to~3.16! the phasex(L,h)
is an integer multiple ofp,
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GL~h,r!5

]F2L21~h,r!

]L
2cosx~L,h!

]FL~h,r!

]L

cosx~L,h!
]x~L,h!

]L

, 2L5 integer. ~6.2!

With the use of~3.14! and ~3.16! we obtain from~6.2!,

GL~h,r!5
~21!2L exp~2ph!21

2p

3H S ]FL~h,r!

]L
1

]F2L21~h,r!

]~2L21! D , when Reh.0,

S ]FL~h,r!

]L
1~21!2L11

]F2L21~h,r!

]~2L21! D , when Reh,0,

2L5 integer.

~6.3!

From ~6.3! we obtain with the use of~3.18a! the formula

GL~h,r!

FL~h,r!
5

~21!2L exp~2ph!21

2p S ] ln FL~h,r!

]L
1

] ln F2L21~h,r!

]~2L21! D ,

RehÞ0, 2L5 integer, ~6.4!

from which one easily obtains~3.19! in an alternative way.
When 2L521 we obtain from~6.4!,

G21/2~h,r!

F21/2~h,r!
52

exp~2ph!11

p S ] ln FL~h,r!

]L D
L521/2

. ~6.5!

Inserting~5.18! into ~6.5!, we obtain

G21/2~h,r!

F21/2~h,r!
5

exp~2ph!11

p S ln~1/r!1 (
k50

`

dkr
kD 5

exp~2ph!11

p
@ ln~1/r!14hr1¯#.

~6.6!

When 2L is an integerÞ21 we first note that because of~3.19! it is sufficient to consider the
case whenL>0. Then we write~6.4! as

GL~h,r!

FL~h,r!
5

~21!2L exp~2ph!21

2p H 2 lnr1
] ln@r2L21FL~h,r!#

]L

1r2~2L11!Fr~2L11!
] ln@rLF2L21~h,r!#

]~2L21! G J , ~6.7!

and point out that from~5.6! and ~5.7! it follows that ] ln@r2L21FL(h,r)#/]L as well as
r (2L11)] ln@rLF2L21(h,r)#/](2L21) can be expanded in a power series ofr with the constant term
Þ0. The formula thus obtained from~6.7! is related to formulas in subsections 14.1.14–14.1.20
Ref. 10.
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VII. CIRCUITAL RELATIONS

To obtain formulas for the Coulomb wave functions for arbitrary values of argr, it is conve-
nient to use circuital relations. For the Coulomb wave functionFL(h,r) with complex values of
r, and allowed complex values ofL andh, one obtains from~5.8! and~5.10! the circuital relation

FL~h,r!52exp@1 ip~L1 ih!#FL~2h,re2 ip!, ~7.1a!

which remains valid ifi is replaced by2 i . For the linear combinations~1.2! of the Coulomb wave
functions with arbitrary complex values ofr, and allowed complex values ofL andh, one obtains
from ~2.1a!, ~2.1b!, and~2.8! the circuital relation

c1~L,h,r!5exp@2 ip~L1 ih!#c2~L,2h,re2 ip!. ~7.2a!

Using ~1.2!, ~7.1a!, and~7.2a!, we obtain

c2~L,h,r!5exp@1 ip~L1 ih!#c1~L,2h,re2 ip!

2$exp@1 ip~L1 ih!#2exp@2 ip~L1 ih!#%c2~L,2h,re2 ip!. ~7.2b!

Using ~1.2!, ~7.1a!, and~7.2a!, we then obtain

GL~h,r!5exp@2 ip~L1 ih!#GL~2h,re2 ip!

1 i $exp@1 ip~L1 ih!#2exp@2 ip~L1 ih!#%FL~2h,re2 ip!. ~7.1b!

Now we obtain from~7.1a!,

FL~h,r!52exp@2 ip~L2 ih!#FL~2h,re1 ip!, ~7.3a!

which like ~7.1a! remains valid wheni is replaced by2 i , from ~7.1a! and ~7.1b!,

GL~h,r!5exp@1 ip~L2 ih!#GL~2h,re1 ip!

1 i $exp@1 ip~L2 ih!#2exp@2 ip~L2 ih!#%FL~2h,re1 ip!, ~7.3b!

from ~7.2a! and ~7.2b!,

c1~L,h,r!5$exp@1 ip~L2 ih!#2exp@2 ip~L2 ih!#%c1~L,2h,re1 ip!

1exp@2 ip~L2 ih!#c2~L,2h,re1 ip!, ~7.4a!

and from~7.2a!,

c2~L,h,r!5exp@1 ip~L2 ih!#c1~L,2h,re1 ip!. ~7.4b!

For the Weber functions, which are related to Coulomb wave functions withL52 1
4, circuital

relations were obtained by P. O. Fro¨man, Karlsson, and Yngve~unpublished report included in
Yngve’s thesis 1972! who noticed that the circuital relations for these functions given in Ref.
subsections 19.18.4 and 19.18.5, and in Ref. 13, Eqs.~281! and~282!, have to be corrected by th
replacement off2 by iap/2 and of@G(1/22 ia)/G(1/21 ia)#1/2 by exp(ap/2).

VIII. ASYMPTOTIC FORMULAS

We recall that when considering a Coulomb wave function with the parametersL andh, or a
linear combinationc6 of two such Coulomb wave functions, we always assume that the co
tions ~2.3a! and ~2.3b! are fulfilled.

In Sec. IV we have, for the sake of simplicity, used fixed contours of integration in
formulas~4.1!, ~4.2a!, ~4.2b!, ~4.3a!, and~4.3b!. We can, however, rotate these contours of in
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gration as long as the integrals remain convergent, and thus extend the region of validity forr.
After the contours in~4.2a!, ~4.2b! and~4.3a!, ~4.3b! have been rotated, we introduce the expa
sions

S 11
we6 ip/2

2r D L7 ih

5 (
k50

` S L7 ih
k D S we6 ip/2

2r D k

, ~8.1!

and change the order of summation and integration to get the asymptotic expansions

c1~L,h,r!;
exp$1 i @r2h ln~2r!2Lp/21sL~h!#%

G~L111 ih!

3 (
k50

` S L2 ih
k D S 21

2ir D kE
0

`

exp~2w!wL1 ih1k dw,

2p,argr,2p, Re~L111 ih!.0, ~8.2a!

c2~L,h,r!;
exp$2 i @r2h ln~2r!2Lp/21sL~h!#%

G~L112 ih!

3 (
k50

` S L1 ih
k D S 1

2ir D kE
0

`

exp~2w!wL2 ih1k dw,

22p,argr,p, Re~L112 ih!.0, ~8.2b!

and

c1~L,h,r!;2
1

2p i
exp$1 i @r2h ln~2r!23Lp/22 ihp1sL~h!#%G~2L2 ih!

3 (
k50

` S L2 ih
k D S 21

2ir D kE
G

exp~2w!wL1 ih1k dw,

2p,argr,2p, L1 ihÞ integer, ~8.3a!

c2~L,h,r!;2
1

2p i
exp$2 i @r2h ln~2r!1Lp/22 ihp1sL~h!#%G~2L1 ih!

3 (
k50

` S L1 ih
k D S 1

2ir D kE
G

exp~2w!wL2 ih1k dw,

22p,argr,p, L2 ihÞ integer. ~8.3b!

Note that we started with the rotated contours, but in~8.2a!, ~8.2b! and ~8.3a!, ~8.3b!, where the
regions of argr for the validity of the formulas are extended, we could, according to Cauc
integral theorem, use the fixed contours again. This is possible onlyafter we have made the
expansions~8.1!. Since

E
0

`

exp~2w!wL6 ih1k dw5G~L116 ih1k!, ~8.4!

we obtain from~8.2a! and ~8.2b!,
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c1~L,h,r!;
exp$1 i @r2h ln~2r!2Lp/21sL~h!#%

G~L111 ih! (
k50

` S L2 ih
k D S 21

2ir D k

G~L111 ih1k!,

2p,argr,2p, ~8.5a!

c2~L,h,r!;
exp$2 i @r2h ln~2r!2Lp/21sL~h!#%

G~L112 ih! (
k50

` S L1 ih
k D S 1

2ir D k

G~L112 ih1k!,

22p,argr,p, ~8.5b!

and since, as a consequence of~8.4!,

E
G

exp~2w!wL6 ih1k dw5~21!k11
2p i exp@~L6 ih!p i #

G~2L7 ih2k!
, ~8.6!

we obtain from~8.3a! and ~8.3b!,

c1~L,h,r!;exp$1 i @r2h ln~2r!2Lp/21sL~h!#%

3 (
k50

` S L2 ih
k D S 1

2ir D k G~2L2 ih!

G~2L2 ih2k!
,

2p,argr,2p, ~8.7a!

c2~L,h,r!;exp$2 i @r2h ln~2r!2Lp/21sL~h!#%

3 (
k50

` S L1 ih
k D S 21

2ir D k G~2L1 ih!

G~2L1 ih2k!
,

22p,argr,p. ~8.7b!

With the aid of the reflection formula for the gamma function, one can easily show that~8.5a! and
~8.5b! are the same as~8.7a! and ~8.7b!, respectively. The conditions~2.3a! are, of course, as
sumed to be fulfilled, but the limitations on the parametersL andh associated with the integra
representations used in Sec. IV do not appear in~8.5a!, ~8.5b! and ~8.7a!, ~8.7b!.

Keeping in~8.5a!, ~8.5b! or ~8.7a!, ~8.7b! only the term corresponding tok50, we obtain the
asymptotic formulas~8.8b!, ~8.8b8 ! corresponding ton50 ~to be given below!, and from these
formulas we obtain with the aid of the circuital relations~7.2a!, ~7.2b! and ~7.4a!, ~7.4b! the
asymptotic formulas~8.8a!, ~8.8a8!, ~8.8b!, ~8.8b8!, and~8.8c!, ~8.8c8! for an arbitrary integern.
From the asymptotic formulas~8.8a!–~8.8c8!, wheren is an arbitrary integer, and« is a fixed,
arbitrarily small, positive number, one obtains with the aid of~1.2! the asymptotic formulas
~8.9a!–~8.9c8!, the consistency of which can be checked with the aid of the circuital relat
~7.1a!, ~7.1b! and~7.3a!, ~7.3b!. The consistency of the asymptotic formulas given below can a
be checked with the aid of the reflection formulas~3.2a!, ~3.2b! and~3.5a!, ~3.5b!. The asymptotic
formulas below, in which, for the sake of simplicity, we have writtensL instead ofsL(h), are
valid when the parametersL andh are kept fixed, whiler is sufficiently large. We also remark tha
one can replace exp@6isL(h)# by the last member of~2.9! with the branch of the square roo
chosen as described below~2.9! and ~2.10!.

The asymptotic formulas~8.8a!–~8.8c8! and ~8.9a!–~8.9c8! are, in general, valid in intervals
for argr of the extension 2p22«. However, forn50 ~8.8b! and~8.8c! give the same asymptoti
formula forc1 , which is thus valid for2p1«,argr,2p2«, and forn50 ~8.8a8! and~8.8b8!
give the same asymptotic formula forc2 , which is thus valid for22p1«,argr,p2«. For the
particular valuen50 the asymptotic formulas~8.8b!, ~8.8c! and~8.8a8!, ~8.8b8! are thus valid in
intervals for argr of the extension 3p22«, as is also seen from~8.5a!, ~8.5b! and~8.7a!, ~8.7b!.
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When(2n22)p1e,argr,2np2e we have

c1;
exp@22~n21!ph#

sin~2pL !
$sin~2npL !2sin@2~n21!pL#exp~22ph!%

3exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp~12nph!

sin~2pL !
sin@2~n21!pL#$12exp@22p i ~L2 ih!#%

3exp$2 i @r2h ln~2r!2Lp/21sL#% ~8.8a!

and

c2;
exp@22~n21!ph#

sin~2pL !
sin~2npL !$12exp@2p i ~L1 ih!#%exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@12~n21!ph#

sin~2pL !
$sin@2~n21!pL#exp~2ph!2sin~2npL !%

3exp$2 i @r2h ln~2r!2Lp/21sL#%, ~8.8a8!

and hence

FL~h,r!;
exp@12np i ~L1 ih!#

2i
exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@12~n21!p i ~L2 ih!#

2i
exp$2 i @r2h ln~2r!2Lp/21sL#%, ~8.9a!

and

GL~h,r!;
exp@22~n21!ph#

2 sin~2pL !
„sin~2npL !$22exp@2p i ~L1 ih!#%

2sin@2~n21!pL#exp~22ph!…exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp~12nph!

2 sin~2pL !
„sin@2~n21!pL#$22exp@22p i ~L2 ih!#%

2sin~2npL !exp~22ph!…exp$2 i @r2h ln~2r!2Lp/21sL#%. ~8.9a8!

When(2n21)p1e,argr,(2n11)p2e, we have

c1;
exp@22~n21!ph#

sin~2pL !
ˆsin~2npL !2sin@2~n21!pL#exp~22ph!‰

3exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@12~n11!ph#

sin~2pL !
sin~2npL !$12exp@22p i ~L2 ih!#%

3exp$2 i †r2h ln~2r!2Lp/21sL‡% ~8.8b!

and
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c2;
exp@22~n21!ph#

sin~2pL !
sin~2npL !$12exp@2p i ~L1 ih!#%

3exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp~12nph!

sin~2pL !
$sin~2npL !exp~2ph!2sin@2~n11!pL#%

3exp$2 i @r2h ln~2r!2Lp/21sL#%, ~8.8b8!

and hence

FL~h,r!;
exp@2np i ~L1 ih!#

2i
exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@2np i ~L2 ih!#

2i
exp$2 i @r2h ln~2p!2Lp/21sL#% ~8.9b!

and

GL~h,r!;
exp@22~n21!ph#

2 sin~2pL !
„sin~2npL !$22exp@2p i ~L1 ih!#%

2sin@2~n21!pL#exp~22ph!…exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@2~n11!ph#

2 sin~2pL !
„sin~2npL !$22exp@22p i ~L2 ih!#%

2sin@2~n11!pL#exp~22ph!…exp$2 i @r2h ln~2r!2Lp/21sL#%. ~8.9b8!

When2np1e,argr,(2n12)p2e, we have

c1;
exp~22nph!

sin~2pL !
$sin@2~n11!pL#2sin~2npL !exp~22ph!%

3exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@12~n11!ph#

sin~2pL !
sin~2npL !$12exp@22p i ~L2 ih!#%

3exp$2 i @r2h ln~2r!2Lp/21sL#% ~8.8c!

and

c2;
exp~22nph!

sin~2pL !
sin@2~n11!pL#$12exp@12p i ~L1 ih!#%

3exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp~12nph!

sin~2pL !
$sin~2npL !exp~2ph!2sin@2~n11!pL#%

3exp$2 i @r2h ln~2r!2Lp/21sL#%, ~8.8c8!

and hence
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FL~h,r!;
exp@2~n11!p i ~L1 ih!#

2i
exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@2np i ~L2 ih!#

2i
exp$2 i @r2h ln~2r!2Lp/21sL#% ~8.9c!

and

GL~h,r!;
exp~22nph!

2 sin~2pL !
„sin@2~n11!pL#$22exp@2p i ~L1 ih!#%

2sin~2npL !exp~22ph!…exp$1 i @r2h ln~2r!2Lp/21sL#%

2
exp@2~n11!ph#

2 sin~2pL !
„sin~2npL !$22exp@22p i ~L2 ih!#%

2sin@2~n11!pL#exp~22ph!…exp$2 i @r2h ln~2r!2Lp/21sL#%. ~8.9c8!
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Phase-integral formulas for Coulomb wave functions
with complex values of the variable and the parameters

Aleksander Dzieciol, Staffan Yngve, and Per Olof Fröman
Department of Theoretical Physics, University of Uppsala,
Box 803, S-751 08 Uppsala, Sweden
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Phase-integral formulas for the Coulomb wave functionsFL(h,r) and GL(h,r)
and certain linear combinations of these functions, with complex values of the
variabler and the parametersL andh, are obtained explicitly up to the fifth order
of the phase-integral approximation for two different choices of the base function.
© 1999 American Institute of Physics.@S0022-2488~99!00710-0#

I. INTRODUCTION

The central role played by Coulomb wave functions in different fields of theoretical phy
made the need for easily tractable analytic approximate formulas apparent already in the
days of quantum mechanics. The WKB method was a powerful tool, which, however,
revealed certain deficiencies that have remained unremedied in the literature on Coulomb
functions. Already, Kramers1 had found that to obtain correct results for a quantal particle in
attractive Coulomb field by means of the ordinary WKB method in first-order approximation
necessary to replaceL(L11) by (L11/2)2, whereL is the angular momentum quantum numb
When applying that method to hydrogenic atoms, Young and Uhlenbeck2 also found that the sam
replacement is necessary to obtain the correct wave function close to the origin and the
Balmer formula. In their well-known and frequently quoted article Yost, Wheeler, and B3

pointed out that the WKB method gives only a crude approximation of the Coulomb wave
tions, frequently with errors of an unknown amount, and that the replacement ofL(L11) by
(L11/2)2 does not always improve formulas obtained by means of the ordinary WKB me
Langer4 gave a new argument for the replacement in question. Bartlett, Rice, and Good5

confirmed that the applicability of the ordinary WKB method to the differential equation for
Coulomb wave functions is uncertain in the neighborhood of the origin, and that it woul
desirable to have a more definite method, which did not require an adjustment of the appro
solution. In their comprehensive review article on Coulomb wave functions, M. H. Hull, Jr.,
Breit6 state that Langer’s above-mentioned argument cannot be regarded as more than an
tion of likelihood regarding the applicability of the approximation.

The literature on Coulomb wave functions is to a large extent restricted to the considerat
real values of the variabler and the parametersL andh. Thus, one does not find general formul
that apply to complex values of the variabler and the parametersL andh in standard handbooks
see, for instance, Abramowitz and Stegun.7 However, in theoretical physics there often appe
problems in which one uses Coulomb wave functions with complex values of the variable a
parameters. This is the case, for instance, in Regge pole theory, where the angular mome
complex, in scattering theory, when the energy is complex, and in quantum defect theo
closed channels.

Accurate approximations for special functions of mathematical physics can be obtain
means of the phase-integral method in which one uses a phase-integral approximation of a
order generated from an unspecified base function. This method has its origin in the WKB m
but further development has yielded the just mentioned phase-integral method, which in es
respects differs from the WKB method; see Chap. 1 in a book by Fro¨man and Fro¨man8 and a paper
by Dammert and P. O. Fro¨man.9 The phase-integral method is freed from the previously m
tioned deficiencies of the WKB method, and, when a conveniently high order of the phase-in
61670022-2488/99/40(12)/6167/11/$15.00 © 1999 American Institute of Physics
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approximation is used, it yields formulas of very high accuracy within their regions of validity
application of the phase-integral method to special functions has been made in a paper b
Fröman, Karlsson, and Yngve,10 in which phase-integral formulas for Bessel functions were
tained.

Our purpose in the present paper is to use the phase-integral method to derive phase-
formulas up to the fifth-order approximation for the Coulomb wave functionsFL(h,r) and
GL(h,r), and certain linear combinations of these functions, which are solutions of the diff
tial equation,

d2c/dr21@122h/r2L~L11!/r2#c50. ~1.1!

The phase-integral formulas obtained are very general, since we allow the variabler and the
parametersL and h to assume complex values without unnecessary restrictions. To mak
formulas valid for a large range of parameter values, we consider two essentially different c
of the base function, which are appropriate whenL is sufficiently large, and whenL is sufficiently
small whileh is sufficiently large, respectively. The phase-integral formulas are valid closer
50 only for the one of the choices of the base-function, which is appropriate whenL is suffi-
ciently large.

II. PHASE-INTEGRAL APPROXIMATION GENERATED FROM AN UNSPECIFIED BASE
FUNCTION

In this section we consider the Schro¨dinger-like differential equation,

d2c/dr21R~r!c50, ~2.1!

where for the moment we letR(r) be an unspecified analytic function of the complex variabler.
As described in more detail by Fro¨man and Fro¨man,8 Chap. 1, Sec. 1.3.1, we introduce into~2.1!
a ‘‘small’’ book-keeping parameterl that is finally put equal to unity. Thus we get the auxilia
differential equation,

d2c/dr21@Q2~r!/l21R~r!2Q2~r!#c50, ~2.2!

which goes over into~2.1! whenl51. The functionQ(r) is the unspecified base function from
which the phase-integral approximation is generated. The auxiliary differential equation~2.2! has
two linearly independent solutions of the form

f 1~r!5q21/2~r!exp@1 iw~r!#, ~2.3a!

f 2~r!5q21/2~r!exp@2 iw~r!#, ~2.3b!

where

w~r!5Er

q~r!dr. ~2.4!

Inserting~2.3a! or ~2.3b! for c into ~2.2!, we obtain

q11/2d2q21/2/dr22q21Q2~r!/l21R~r!2Q2~r!50. ~2.5!

Introducing instead ofr the variable

z5Er

Q~r!dr, ~2.6!

we can write~2.5! in the form
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12S ql

Q~r! D
2

1e0l21S ql

Q~r! D
11/2 d2

dz2 S ql

Q~r! D
21/2

l250, ~2.7!

where

e05Q23/2~r!d2Q21/2~r!/dr21R~r!/Q2~r!21. ~2.8!

To obtain a formal solution of~2.7!, we put

ql/Q~r!5 (
n50

`

Y2nl2n, ~2.9!

where Y0 is assumed to be different from zero, andY2n (n50,1,2,...) are independent ofl.
Inserting the expansion~2.9! into ~2.7!, expanding the left-hand member in powers ofl, and
putting the coefficient of each power ofl equal to zero, we getY0561 and a recurrence formula
from which one can successively obtain the functionsY2 ,Y4 ,Y6 ,..., each one of which can be
expressed in terms ofe0 , defined by~2.8!, and derivatives ofe0 with respect toz. Since we have
both1 and2 in the exponents of~2.3a! and~2.3b!, it is no restriction to chooseY051. The first
few functionsY2n are then

Y051, ~2.10a!

Y25
1

2
e0 , ~2.10b!

Y452
1

8 S e0
21

d2e0

dz2 D . ~2.10c!

The choice of the unspecified base functionQ(r) shows itself only in the expressions~2.6!
and ~2.8! for z and e0 , respectively, which depend explicitly onR(r) and Q(r), while the
expressions for the functionsY2n , which are given in terms ofe0 and derivatives ofe0 with
respect toz, do not depend explicitly onR(r) and the choice of the base functionQ(r). The
expressions for the functionsY2n can therefore be determined once and for all. We also rem
that at the zeros and poles ofQ2(r) the functionsQ(r) andQ21/2(r) may have branch points
whereas the functionse0 , Y2n andq(r)/Q(r) are all single valued.

Truncating the infinite series in~2.9! at n5N, we obtain

q~r!5Q~r! (
n51

N

Y2nl2n21. ~2.11!

Inserting~2.11! into ~2.3a!, ~2.3b!, and~2.4!, and puttingl51, we get the phase-integral approx
mation of the order 2N11, generated from the base functionQ(r), which is an approximate
solution of the original differential equation~2.1!. For N.0 the functionq(r) has poles at the
transition zeros and simple zeros in the neighborhood of each transition zero.11 In the first order
the phase-integral approximation is the same as the usual JWKB approximation ifQ(r)
5R1/2(r), but in higher orders it differs in essential respects from the JWKB approximatio
corresponding order; see Chap. 1 in Refs. 8 and 9.

In the present paper we would prefer to choose as the fixed lower limit of integration in~2.4!
and~2.6! either a first-order zero or a first-order pole ofQ2(r). Unfortunately, this can be done i
~2.4! only for the first order of the phase-integral approximation, since for the higher-orde
proximations the integral would be divergent. In this situation we replace~2.4! and ~2.6! by
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w~r!5E
~ t !

r

q~r!dr5
1

2 EG t~r!
q~r!dr, ~2.12a!

z~r!5E
t

r

Q~r!dr, ~2.12b!

wheret is the first-order zero or first-order pole in question. The integral in the second memb
~2.12a! is a shorthand notation, introduced by Fro¨man et al.,12 pp. 158–161, for the contou
integral in the last member of~2.12a!, whereG t(r) is a path of integration that starts at the po
corresponding tor on a Riemann sheet adjacent to the complexr plane under consideration
encirclest in the positive or in the negative sense, and ends atr. It is immaterial for the value of
the contour integral whether the path of integration encirclest in the positive or in the negative
sense, but the terminal point must be the pointr in the complexr plane under consideration. In th
first order of the phase-integral approximation, the contour integral can be replaced by an or
integral fromt to r, i.e.,

E
~ t !

r

q~r!dr5E
t

r

Q~r!dr5z~r!, first-order approximation. ~2.13!

In the present paper we shall consider the differential equation for the Coulomb wave
tions, which one obtains by putting in~2.1!, with well-known notations,

R~r!5122h/r2L~L11!/r2, ~2.14!

and we shall choose the base function to be

Q~r!5~122h/r2L2/r2!1/2, ~2.15!

where L is a conveniently chosen complex constant. From experience with the phase-in
method it is known that whenL is sufficiently large, it is convenient to chooseL5L1 1

2, whereas
whenL is sufficiently small andh is sufficiently large, it is convenient to chooseL50. We restrict
ourselves to cases whenr2Q2(r) has simple zeros by assuming thath21L2Þ0. We introduce in
the complexr plane a cut that joins the rootsh6(h21L2)1/2 of the equationr2Q2(r)50. When
LÞ0, we extend this cut by a cut from one of these roots to the origin. As a resultQ21/2(r), and
henceq21/2(r) is a single valued function ofr, whetherL is equal to zero or different from zero
The phase ofQ21/2(r) is chosen such thatQ21/2(r)→1 as r→`. To make the integrals in
~2.12a! and~2.12b! single valued, we replace the complexr plane by a Riemann surface with th
above-mentioned cut on each Riemann sheet. Since the pointt is assumed to be a simple zero
r2Q2(r), it is either a first-order zero or a first-order pole ofQ2(r).

We now define

d5 lim
r→`

S E
~ t !

r

q~r!dr2@r2h ln~2r!# D , ~2.16!

where the path of integration is the same as in~2.12a!. The branch of ln(2r) is determined by the
value of ln(2t), which will be prescribed later. The value ofd depends onL, h, L, and the order
2N11 of the phase-integral approximation. It also depends on the choice of the transition pt.
Inserting~2.11! with l51 into ~2.16!, we obtain

d5 (
n50

N

d~2n11!, ~2.17!

with
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d~1!5 lim
r→`

S E
t

r

Q~r!dr2@r2h ln~2r!# D , ~2.18a!

d~2n11!5E
~ t !

`

Y2nQ~r!dr, n.0. ~2.18b!

As already mentioned, the phase ofQ21/2(r) is chosen such thatQ21/2(r) tends to unity asr
tends to infinity, and the caseL56 ih is excluded, since we assumer2Q2(r) to have twosimple
zeros; see~2.15!. We thus assume thath21L2Þ0.

The essential problem in the present paper is the calculation ofd (2n11). This is problematical
for n50, since the expression for the integral in~2.18a! contains a logarithm, the appropria
branch of which must be clearly specified whenr moves away fromt. For n.0 there are no rea
difficulties but only the question of evaluating rather complicated integrals.

III. CALCULATION OF d „2n 11…

The integral in~2.18a! can be evaluated in explicit analytical form. For the correspond
indefinite integral one obtains with the aid of~2.15! the formula

Er

Q~r!dr5rQ~r!2h ln$r@11Q~r!#2h%1
L

2i
ln

LQ~r!1 i ~h1L2/r!

LQ~r!2 i ~h1L2/r!
. ~3.1!

With the aid of~2.15! one also obtains the identities

$r@11Q~r!#2h%$r@12Q~r!#2h%5h21L2, ~3.2a!

@LQ~r!1 i ~h1L2/r!#@LQ~r!2 i ~h1L2/r!#5~h21L2!. ~3.2b!

Sinceh21L2Þ0 it follows from ~3.2a! and ~3.2b! that no one of the logarithms in~3.1! has a
branch point off the cuts of the Riemann surface for the complex variabler. The logarithms in
~3.1! are thus single-valued whenr does not encircle the cut, but the first logarithm in~3.1!
changes whenr moves from one Riemann sheet to another. To obtain the definite integr
~2.18a!, we choose the constant lower limit of integration in~3.1! to be one of the two roots of the
equationr2Q2(r)50, i.e., from~2.15!,

t5h6~h21L2!1/2, ~3.3!

where we choose (h21L2)1/25h whenL50 and (h21L2)1/25L whenh50. From ~3.1! we
now obtain the formula

E
t

r

Q~r!dr5rQ~r!2h ln
r@11Q~r!#2h

t2h
1LS 1

2i
ln

LQ~r!1 i ~h1L2/r!

LQ~r!2 i ~h1L2/r!
2

p

2 D , ~3.4!

where forr5t the first logarithm is equal to zero and the second logarithm~whenLÞ0) is equal
to p i ; note thattÞ0 andQ(t)50 whenLÞ0. Since the logarithms in~3.4! have no branch points
off the cuts of the Riemann surface, they are uniquely determined on that surface.

To treat the first logarithm in~3.4!, we want to find a curve on which that logarithm is real a
increases from 0 to1` asr moves fromt to `. To this purpose we put

r@11Q~r!#2h

t2h
5r , ~3.5!

where it is required thatr is real and>1. From~3.5! we obtain
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Q~r!5
r ~ t2h!1h

r
21. ~3.6!

Inserting~2.15! into ~3.6! and squaring the resulting equation, and noting thath21L25(t2h)2

according to~3.3!, we obtain after some calculations,

r5 1
2~r 11/r !~ t2h!1h. ~3.7!

From ~3.7! it is seen that asr increases from 1 to1`, r moves fromt to ` along the straight line
that emerges fromt in the direction opposite to the direction fromt to h. By means of~3.7! and
~3.3! one finds that the pointr50 may lie on this straight line whenL/h is purely imaginary and
to its absolute value smaller than unity. WhenL50 the straight line may emerge from but n
pass through the pointr50. WhenLÞ0 andr is sufficiently small, the left-hand member of~3.5!
is a single valued function ofr that does not change sign whenr changes sign, and there appe
therefore no difficulties if the straight line passes throughr50. SinceQ(r)→1 asr→`, and
because of~3.7!, we obtain from~3.5!,

ln
r@11Q~r!#2h

t2h
; ln~2r!2 ln~ t2h!, r→`, ~3.8!

where Im ln(2r)5Im ln(t2h)5arg(t2h) when argr5arg(t2h).
To discuss the second logarithm in~3.4!, we consider first the particular case whenLÞ0 and

h50, and we choose the sign ofL such thatt5L; see~3.3!. With h50 we obtain from~2.15!,

r5
L

~12Q2!1/2
, h50, ~3.9!

where we choose the sign of the square root such thatr5L5t whenQ(r)50. With the aid of
~3.9! we can write the second logarithm in~3.4! with h50 as

ln
Q~r!1 i @12Q2~r!#1/2

Q~r!2 i @12Q2~r!#1/2
, h50. ~3.10!

This logarithm is equal top i whenr5t, i.e., whenQ(r)50, since the second logarithm in~3.4!
is equal top i whenLÞ0 andr5t. Letting r move fromt to ` in such a way thatQ(r) is real
and increases monotonically from 0 to 1, which according to~3.9! means that argr5argL, we
find from ~3.10! that the value of the logarithm atr51` exp(i argL) is equal to 0. Whenr
→1` exp(i argL) we therefore have for the second logarithm in~3.4! the expression

ln
L1 ih

L2 ih
→0, as h→0. ~3.11!

This must be true for any value of argr, since in the limitr→` the logarithm is independent o
r.

In the limit r→` we obtain from~3.4! with the aid of~2.15!, ~3.8!, and~3.11! the formula

E
t

r

Q~r!dr;r2h ln~2r!1h@ ln~ t2h!21#1LS 1

2i
ln

L1 ih

L2 ih
2

p

2 D , ~3.12!

where Im ln(2r)5Im ln(t2h)5arg(t2h) when argr5arg(t2h), and the last logarithm in~3.12!
tends to 0 ash→0.

Inserting~3.12! into ~2.18a!, we obtain the formula
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d~1!5h@ ln~ t2h!21#1LS 1

2i
ln

L1 ih

L2 ih
2

p

2 D , L50 or LÞ0. ~3.13!

It is seen thatd (1) depends on the choice of the transition pointt. In the particular situation when
L andh are real, and we use the upper sign in~3.3!, we can write~3.13! as

d~1!5h@ ln~ t2h!21#1L@arctan~h/L!2p/2#

5h@ ln~h21L2!1/221#1L@arctan~h/L!2p/2#, L50 or LÞ0. ~3.138!

As regards the higher-order contributionsd (2n11) (n.0), which one obtains from~2.18b!, we
shall not present the derivation, but only give the expressions ford (3) andd (5).

WhenL50, one obtains

d~3!52
116L~L11!

12h
5

123~2L11!2

24h
, L50, ~3.14a!

d~5!5
1230@L~L11!#2

360h3
5

7230~2L11!2115~2L11!4

2880h3
, L50. ~3.15a!

It is seen that these quantities are independent of the choice of the transition pointt.
If in Eqs. ~6.3.44a!–~6.3.44c! in Ref. 13 we replacel by L and h0 by h and puth25h4

50, we obtain from Eq.~6.3.44a! in Ref. 13 our formula~3.138!, and we obtain from Eqs
~6.3.44b! and ~6.3.44c! in Ref. 13 our formulas~3.14a! and ~3.15a!.

WhenLÞ0, one obtains

d~3!5
~L1 1

2!
22L2

2L S 1

2i
ln

L1 ih

L2 ih
2p/2D1

h

24~L21h2!
, LÞ0, ~3.14b!

d~5!52
@~L1 1

2!
22L2#2

8L3 S 1

2i
ln

L1 ih

L2 ih
2p/2D 2

h

2~L21h2!
S ~L1 1

2!
22L2

2L
D 2

2
h@~L1 1

2!
22L2#

24~L21h2!2 2
7h

960~L21h2!2 1
7h3

720~L21h2!3 , LÞ0. ~3.15b!

It is seen thatd (3) andd (5) do not depend on the choice of the transition pointt. In the particular
situation whenL andh are real, we can write~3.14b! and ~3.15b! as

d~3!5
~L1 1

2!
22L2

2L
@arctan~h/L!2p/2#1

h

24~L21h2!
, LÞ0, ~3.14b8!

d~5!52
@~L1 1

2!
22L2#2

8L3
@arctan~h/L!2p/2#2

h

2~L21h2!
S ~L1 1

2!
22L2

2L
D 2

2
h@~L1 1

2!
22L2#

24~L21h2!2
2

7h

960~L21h2!2
1

7h3

720~L21h2!3
, LÞ0. ~3.15b8!

If in Eqs. ~6.3.35a!–~6.3.35c! in Ref. 13, we replacej0 by L andh0 by h, and use forj2 and
j4 Eqs. ~6.3.34a! and ~6.3.34b! in Ref. 13 with l replaced byL, and puth25h450, we obtain
~3.138!, ~3.14a8!, and~3.15b8!.
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WhenLÞ2 1
2 and one wants the phase-integral functions to be approximate solutions o

differential equation for the Coulomb wave functions also close tor50, one choosesL5L1 1
2.

WhenL is chosen in this way, the formulas~3.14b!, ~3.14b8! and~3.15b!, ~3.15b8! are simplified
considerably.

IV. PHASE-INTEGRAL FORMULAS FOR COULOMB WAVE FUNCTIONS

According to~2.3a!, ~2.3b!, ~2.12a!, ~2.15!, and~2.16!, we have, whenr→` for fixed L, h
andL,

f 1~r!;exp$1 i @r2h ln~2r!2Lp/21sL~h!2D#%, r→`, ~4.1a!

f 2~r!;exp$2 i @r2h ln~2r!2Lp/21sL~h!2D#%, r→`, ~4.1b!

where@cf. Eq. ~6.3.26! in Ref. 13#

D5sL~h!2Lp/22d. ~4.2!

According to Eqs.~8.8a–c8! and~8.9a–c8! in Ref. 14, the Coulomb wave functionsFL(h,r)
and GL(h,r), as well as the functionsc6(L,h,r) defined by Eq.~1.2! in Ref. 14, are asymp-
totically, for fixed values ofL and h and large values ofr, linear combinations of exp$6i@r
2h ln(2r)2Lp/21sL(h)#%. For sufficiently large values ofr and fixed values ofL, h, andL, one
can, according to~4.1a! and ~4.1b!, replace exp$1i@r2h ln(2r)2Lp/21sL(h)#% by exp
(1iD)f1(r) and exp$2i@r2h ln(2r)2Lp/21sL(h)#% by exp(2iD)f2(r). Equations~8.8a–c8! and
~8.9a–c8! in Ref. 14, which give asymptotic expressions forc6(L,h,r), FL(h,r), andGL(h,r)
whenr→` for fixed L andh, can therefore be written as follows.

When(2n22)p1e,argr,2np2e, we get

c1;
exp@22~n21!ph1 iD#

sin~2pL !
$sin~2npL !2sin@2~n21!pL#exp~22ph!% f 1~r!

2
exp~12nph2 iD!

sin~2pL !
sin@2~n21!pL#$12exp@22p i ~L2 ih!#% f 2~r!, ~4.3a!

c2;
exp@22~n21!ph1 iD#

sin~2pL !
sin~2npL !$12exp@2p i ~L1 ih!#% f 1~r!

2
exp@12~n21!ph2 iD#

sin~2pL !
$sin@2~n21!pL#exp~2ph!2sin~2npL !% f 2~r!,

~4.3a8!

FL~h,r!;
exp@12np i ~L1 ih!1 iD#

2i
f 1~r!2

exp@12~n21!p i ~L2 ih!2 iD#

2i
f 2~r!,

~4.4a!

GL~h,r!;
exp@22~n21!ph1 iD#

2 sin~2pL !
„sin~2npL !$22exp@2p i ~L1 ih!#%

2sin@2~n21!pL#exp~22ph!…f 1~r!

2
exp~12nph2 iD!

2 sin~2pL !
„sin@2~n21!pL#$22exp@22p i ~L2 ih!#%

2sin~2npL !exp~22ph!…f 2~r!. ~4.4a8!
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When(2n21)p1e,argr,(2n11)p2e, we get

c1;
exp@22~n21!ph1 iD#

sin~2pL !
$sin~2npL !2sin@2~n21!pL#exp~22ph!% f 1~r!

2
exp@12~n11!ph2 iD#

sin~2pL !
sin~2npL !$12exp@22p i ~L2 ih!#% f 2~r!, ~4.3b!

c2;
exp@22~n21!ph1 iD#

sin~2pL !
sin~2npL !$12exp@2p i ~L1 ih!#% f 1~r!

2
exp~12nph2 iD!

sin~2pL !
$sin~2npL !exp~2ph!2sin@2~n11!pL#% f 2~r!, ~4.3b8!

FL~h,r!;
exp@2np i ~L1 ih!1 iD#

2i
f 1~r!2

exp@2np i ~L2 ih!2 iD#

2i
f 2~r!, ~4.4b!

GL~h,r!;
exp@22~n21!ph1 iD#

2 sin~2pL !
„sin~2npL !$22exp@2p i ~L1 ih!#%

2sin@2~n21!pL#exp~22ph!…f 1~r!

2
exp@2~n11!ph2 iD#

2 sin~2pL !
„sin~2npL !$22exp@22p i ~L2 ih!#%

2sin@2~n11!pL#exp~22ph!…f 2~r!. ~4.4b8!

When2np1e,argr,(2n12)p2e, we get

c1;
exp~22nph1 iD!

sin~2pL !
$sin@2~n11!pL#2sin~2npL !exp~22ph!% f 1~r!

2
exp@12~n11!ph2 iD#

sin~2pL !
sin~2npL !$12exp@22p i ~L2 ih!#% f 2~r!, ~4.3c!

c2;
exp~22nph1 iD!

sin~2pL !
sin@2~n11!pL#$12exp@12p i ~L1 ih!#% f 1~r!

2
exp~12nph2 iD!

sin~2pL !
$sin~2npL !exp~2ph!2sin@2~n11!pL#% f 2~r!, ~4.3c8!

FL~h,r!;
exp@2~n11!p i ~L1 ih!1 iD#

2i
f 1~r!2

exp@2np i ~L2 ih!2 iD#

2i
f 2~r!, ~4.4c!

GL~h,r!;
exp~22nph1 iD!

2 sin~2pL !
„sin@2~n11!pL#$22exp@2p i ~L1 ih!#%

2sin~2npL !exp~22ph!…f 1~r!

2
exp@2~n11!ph2 iD#

2 sin~2pL !
„sin~2npL !$22exp@22p i ~L2 ih!#%

2sin@2~n11!pL#exp~22ph!…f 2~r!. ~4.4c8!
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The asymptotic formulas~8.8a–c8! and ~8.9a–c8! in Ref. 14, from which the phase-integra
formulas~4.3a–c8! and~4.4a–c8! in the present paper have been derived, are valid only when
fixed values ofL andh, r tends to infinity. The phase-integral formulas~4.3a–c8! and~4.4a–c8! in
the present paper, however, may remain valid when, still for fixed values ofL andh, the variable
r moves from infinity along convenient paths of monotonicity, provided thatr does not come too
close to a transition point. These formulas have thus a considerably larger region of validity
Riemann surface for the complex variabler than the formulas~8.8a-c8! and~8.9a–c8! in Ref. 14.
To determine in detail the regions of validity for~4.3a–c8! and ~4.4a–c8! and the significance o
each one of the two terms in these formulas, one uses the basic estimates~4.3a!–~4.3d! in Ref. 15,
which apply to a path on which the absolute value of exp@iw(r)# increases monotonically~in the
nonstrict sense! from the initial point to the final point, and the corresponding basic estimate
a path on which the absolute value of exp@2iw(r)# increases monotonically~in the nonstrict sense!
from the initial point to the final point.

For large values ofr the phase-integral formulas~4.3a–c8! and~4.4a–c8!, like the asymptotic
formulas ~8.8a–c8! and ~8.9a–c8! in Ref. 14, are, in general, valid in intervals for argr of the
extension 2p22e, but for the reasons mentioned in Sec. VIII of Ref. 14, the phase-inte
formula ~4.3b,c! with n50 for c1 is valid for 2p1e,argr,2p2e, and the phase-integra
formula ~4.3a8,b8! with n50 for c2 is valid for 22p1e,argr,p2e. For the particular value
n50, the phase-integral formulas~4.3b,c! and ~4.3a8,b8! for c1 and c2 , respectively, are thus
valid in intervals for argr of the extension 3p22e, whenr is large.

We recall that on the Riemann surface for the complex variabler we have introduced the cu
described below~2.15! in Sec. II. We also remark that because of~4.2! the quantities exp
(6isL), which depend on bothL andh, appear in~4.3a–c8! and ~4.4a–c8!, and that these quan
tities can be replaced by the expressions given in Eq.~2.9! in Ref. 14.

V. CONCLUSIONS

Up to the fifth-order approximation phase-integral formulas are given, in~4.4a–c8! for the
Coulomb wave functionsFL(h,r) and GL(h,r), and in ~4.3a–c8! for the linear combinations
c6(L,h,r)5GL(h,r)6 iF L(h,r). The quantityD in these phase-integral formulas, which
given by~4.2!, ~2.17!, ~2.18a!, and~2.18b!, depends on the choice of the base functionQ(r) and
the order 2N11 of the phase-integral approximation. The base functionQ(r) is given by~2.15!,
whereL may be either equal zero~which is appropriate whenL is sufficiently small, whileh is
sufficiently large! or different from zero~which is appropriate whenL is sufficiently large!. The
phase ofQ21/2(r) is chosen such thatQ21/2(r)→1 as r→`, the restrictionh21L2Þ0 is
introduced on the parametersL andh, and certain cuts are introduced, as explained between~2.15!
and~2.16!. The phase-integral approximation is valid close tor50 only whenL5L1 1

2Þ0. The
quantitiesd (2n11) in ~2.17! are for 2n1151, 3, and 5 given by~3.13!, ~3.138!, ~3.14a!, and
~3.15a! when L50, and by~3.13!, ~3.138!, ~3.14b!, ~3.14b8!, ~3.15b!, and ~3.15b8! when LÞ0.
For the choiceL5L1 1

2 the formulas~3.14b!, ~3.14b8! and~3.15b!, ~3.15b8! become considerably
simplified.
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The collective dynamics of solitons with a coset spaceG/H as moduli space is
studied. It is shown that the collective band for a vibrational state is given by the
inequivalent coset space quantization corresponding to the representation ofH car-
ried by the vibration. To leading order the collective dynamics is free motion in
G/H coupled to background gauge fields determined by the vibrational state.
© 1999 American Institute of Physics.@S0022-2488~99!01412-7#

I. INTRODUCTION

Solitons arise as static finite energy solutions to the equations of motion of nonlinear
theories. In general, a given soliton depends upon a set of parameters or moduli, and is a p
the manifold of solutions of equal energy, or moduli space. In many cases this manifold is s
an homogeneous or coset spaceG/H, whereG is the group of symmetries of the action andH,G
is the symmetry of the solitonic solution.

Around a soliton there are two kinds of quantum excitations. The first corresponds to c
tive motion in the moduli space. The second are vibrational~intrinsic! excitations out of it. If the
energy for the collective excitations is much lower than that for the vibrational ones the
energy spectrum can be approximately described by collective bands associated with each
tional state. These bands can be described by an effective quantum mechanical problem g
the motion of a particle in the moduli space. However, as is well known from molecular
nuclear rotational bands, different vibrational states may have different collective bands. It
purpose of this paper to show that in the case when the moduli space of the soliton is a cose
G/H a simple description of the collective bands of vibrational states can be given in term
inequivalent coset space quantizations introduced by Mackey,1 and more recently studied b
Landsman and Linden2 and McMullan and Tsutsui,3 among others.

Since the soliton is invariant under the subgroupH, vibrational excitations fit into irreducible
representations~irreps! of H. Below we show that the collective band corresponding to a vib
tional state in a representationx of H realizes a representation ofG induced byx. This represen-
tation ofG is reducible, and when it is broken into irreducible representations the whole colle
band is obtained. This is equivalent to saying that the collective band for a vibrational st
given by the inequivalent quantization ofG/H corresponding to the irrepx of H carried by the
vibration. In this way we find that collective motion is a physical example of the inequiva
coset space quantizations.

The lowest energy collective band of the soliton is that of the ground state of the vibra
If the ground state is in the trivial representation ofH, our results provide nothing new fo

a!Present address: Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX
United Kingdom. Electronic mail: garrahan@df.uba.ar

b!Present address: Institutionen fo¨r Teoretisk Fysik, Box 803, S-751 08 Uppsala, Sweden.
61780022-2488/99/40(12)/6178/11/$15.00 © 1999 American Institute of Physics
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determining this band, which is obtained from the usual~trivial! quantization of free motion in
G/H. However, although the soliton is invariant underH, the quantum ground state need not
in the trivial representation because of topological factors which may arise when adiaba
performing the operations ofH. For example, in the SU~3! Skyrmion the Wess–Zumino–Witte
term4 contributes with an extra phase. The same happens with the SU~2! Skyrmion5 when it is
quantized as a fermion. For theB51 Skyrmion the result is the well-known fact that the grou
state has spin an isospin 1/2.

The outline of this paper is as follows: In Sec. II we introduce a model6 which generically
describes a soliton model. The action is invariant under a groupG of transformation of the fields
but the soliton only under a subgroupH, so that the moduli space is a coset spaceG/H. In Sec.
III we summarize Mackey’s1 approach to the quantization on a coset space, and the more r
results by Landsman and Linden2 and McMullan and Tsutsui.3 Section IV is the main section o
this paper. There we demonstrate the relation between the wave functions and energies
collective bands of vibrational states and the corresponding ones of the inequivalent cose
quantizations. Finally, in Sec. V we give our conclusions. We also discuss an example
possible application of our results.

II. THE MODEL

Let us consider a general bosonic field theory ind11 dimensions. The fieldsfs(x,t) are real
and take their values in an internal spaceT. The variablesx andt are space and time coordinate
ands51...dim(T ) is an internal index. At any given time the fieldsfs(x,t) determine a configu-
ration of the system, given by a map fromRd ~or a compactification of it! into T. The set of these
maps corresponds to the configuration spaceC of the theory. The action is taken to be quadratic
the time derivatives of the fields, namely,

S5E dtddxS 1

2
Gstḟ

s~x,t !ḟ t~x,t !2VD , ~1!

where sums over repeated indices are implicit and,

Gst5Gst@f~x!#5Gst~fs1,] i 1
fs2,...,] i 1¯ i n

fsn!,

V5V@f~x!#5V~fs1,] i 1
fs2,...,] i 1¯ i n

fsn!,

are functions of the fields and a finite number of its spatial derivatives. For example if the a
corresponds to a nonlinears-model,

S5E dtddxS 1

2
gst~f!]mfs~x,t !]mf t~x,t !2v~f! D , ~2!

the functionalsGst andV are given by,

Gst5gst~f!, V5gst~f!fsf t1v~f!, ~3!

that is, the spatial derivatives are included inV. In other cases, for example the Skyrme mode5

the functionGst depend also on the spatial derivatives of the field. A useful way of thinking a
the system is to consider it as a particle moving in the infinite dimensional space of configur
C ~i.e., of maps fromRd into T ! with a potentialV and a metric given bygst(x,y)5Gstd

d(x
2y).

The equations of motion following from the action~1! have static solutions which satisfy

d

dfs~x!
E ddyV@f~y!#5

]V

]fs~x!
2] i 1

]V

]~] i 1
fs~x!!

1¯1~2 !n] i 1¯ i n

]V

]~] i 1¯ i n
fs~x!!

50. ~4!
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For our present purpose we assume that Eqs.~4! have soliton solutions. We consider the case
which the actionS is invariant under an unbroken finite-dimensional compact groupG of trans-
formations of the fields,

fs~x!°Rg
s@f~x!#, gPG. ~5!

This group usually includes spatial rotations and internal transformations of the fields. The i
ance of the action under these transformations is expressed as,

Gst@f~x!#d3~x2y!5E ddz
dRg

u@f~z!#

dfs~x!

]Rg
v@f~z!#

df t~y!
Guv@f~z!#, ~6!

E ddxV@f~x!#5E ddxV@Rg@f~x!##. ~7!

The first condition can be rephrased saying that the transformations are isometries of the sC.
Let us consider a soliton solutionf̃(x) of ~4!, i.e., a minimum of the potential*V@f#ddx. In

general,f̃(x) is only invariant under a subgroupH of the symmetry groupG of the action. Due
to the invariance of the potential underG, any configurationRg@f̃(x)# obtained by acting withG
on f̃(x) is also a solution. The whole family of solutions, known as the moduli space of
soliton, is thus given by the orbit off̃(x) underG, and is therefore an homogeneous or co
space,

M5OG~f̃ !5G/H. ~8!

It is possible that there exist other zero modes not related to symmetries of the action, but w
ignore that possibility here. Consider now fluctuations around the soliton,f̃(x)→f̃(x)
1w(x,t). The linearized equations for the fluctuations read,

G̃stẅ
t~x,t !1E ddyKst~x,y!w t~y,t !50, ~9!

whereG̃st is evaluated on the solution,G̃st5Gst@f̃(x)# and,

Kst~x,y!5
d2V

dfs~x!df t~y!
U

f5f̃

. ~10!

The fluctuations can be understood as infinitesimal vectors in the tangent space toC at the point
f̃(x). The~infinite! set of those normal to the moduli spaceM are massive excitations, sinceM
is the ‘‘valley’’ of minima of the static energy. They satisfy,

E ddyKst~x,y!w t~y,t !2vn
2G̃stcn

t ~x!50, ~11!

wheren labels the modes,vnÞ0, andcn
s(x) are the corresponding normalized eigenfunctio

*ddxG̃stcn
s(x)cm

t (x)5dnm . The fluctuations tangent toM are massless, and are usually know
as zero modes. They satisfy,

E ddyKst~x,y!w t~y,t !ca
t ~y!50, ~12!
                                                                                                                



imal
to

ile the
rgy

n
ation

t
prove
of the

r-

rary

6181J. Math. Phys., Vol. 40, No. 12, December 1999 Collective dynamics of solitons . . .

                    
wherea51,...,dim(G/H) label the zero modes, which are given by the nonvanishing infinites
transformations~5! of the soliton,ca

s (x)5daf̃s(x). The norm of the zero modes corresponds
the inertia tensor of the soliton,

Iab5E ddxG̃stc a
s ~x!cb

t ~x!. ~13!

The massive and zero modes satisfy the completeness relation,

G̃st@dnmc n
s~x!cm

t ~y!1Iabca
s ~x!cb

s ~y!#5dd~x2y!, ~14!

whereIab is the inverse of the inertia tensor.
Quantum-mechanically, the massive modes correspond to vibrations of the soliton, wh

zero modes to collective motion inM. We are interested in the case in which the collective ene
is much smaller than the vibrational one. Schematically, this is given by

\2

I !\v⇒ \

Iv
!1, ~15!

whereI is the inertia for the collective motion andv the frequency for the intrinsic excitations. I
this regime it is natural to treat the collective motion exactly and the vibrations in perturb
theory. The relation~15! implies that the small parameter is proportional to\, and therefore the
perturbative expansion is an expansion in loops~in powers of\!. In the following\51, so that the
expansion parameter is 1/Iv.

In order to proceed with the quantization around the solitonf̃(x) it is necessary to trea
differently the massive vibrations from the zero modes. One possible approach, which will
useful to our purposes, is to introduce collective coordinates by performing a transformation
fields fs(x,t) with time dependent parameters,7–10,6

fs~x,t !°Rg~a!
s @f~x,t !#, ~16!

whereaa(t) (a51,...,dim(G)) parameterizeG. The action~1! is not symmetric under this time
dependent transformations, and it changes to,

S°E dtddxS 1

2
GstD0fs~x,t !D0f t~x,t !2VD . ~17!

The covariant time derivatives are given by,

D0fs~x,t !5ḟs~x,t !1ȧa~ t !za
b~a~ t !!dbfs~x,t !, ~18!

where za
b(a) are components of the left-invariant Cartan–Maurer one-formg21dg

5daaza
b(a)Tb , with Ta being the infinitesimal group generators, anddafs(x,t) correspond to the

infinitesimal transformations~5!. The transformed action~17! is invariant under gauge transfo
mations, i.e., time dependent transformations of the fields and the collective coordinates,

d«fs~x,t !5«a~ t !dafs~x,t !, d«aa~ t !52«b~ t !Qb
a~a~ t !!, ~Q5z21!. ~19!

The transformed action~17! can be understood as describing the problem from an arbit
moving frame of reference, its motion given by the collective coordinates.

The classical Hamiltonian corresponding to the action~17! is given by

H5E ddxS 1

2
Gst@f~x,t !#ps~x,t !p t~x,t !1V@f~x,t !# D2la~ t !Fa~ t !, ~20!
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where ps(x,t) are the canonical momenta conjugate tofs(x,t), i.e., $ps(x,t),f t(y,t)%
52d s

t dd(x2y), and la(t) are Lagrange multipliers which impose the first class constra
Fa5Ja2I a , which generate the gauge transformations~19!.11 We display also the explicit de
pendence ofGst and V on the fields. The operatorsJa are the generators for the infinitesim
transformations of the fields,

Ja5E ddxps~x!dafs~x!, ~21!

and I a are the right generators for the collective coordinates,I a5Qa
bPb , wherePa are the con-

jugate momenta to the collective coordinates,$aa,Pb%5db
a . While the gauge symmetry~19! acts

from the right on the collective coordinates, the original symmetryG acts from the left. The
operators that generate the left infinitesimal transformations of the collective coordinate
correspondingly given byLa5Q̂a

bPb , whereẑa
b(a) are components of the right-invariant Cartan

Maurer one-formdgg215daaẑa
b(a)Tb , andQ̂5 ẑ21.

The gauge algebrag, generated by the constraintsFa5Ja2I a , can be decomposed intog
5h1p, where the subalgebrah is generated byF i5Ji2I i ( i 51,...,dim(H)), while the comple-
mentp is generated byFa5Ja2I a (a5dim(H)11,...,dim(G)). The operatorsJi generate the
subgroup of transformations of the fields that leave the solitonf̃(x) invariant, whileJa generate
the transformations which change it. SinceH is a subgroup, the operatorsJi close under commu-
tation,@Ji ,Jj #5 iCi j

k Jk , whereCab
c are the structure constants ofG. Furthermore, asG is compact

the generatorsJa can be chosen in such a way that

@Ji ,Ja#5 iCia
b Jb , ~22!

which shows thatJa transform in a representation~possibly reducible! of H.
As is usual in this kind of problems, the idea is to replace the zero mode excitations o

fields f(x,t) by the collective coordinatesa(t), by means of a suitable gauge fixing of actio
~17!. It is important to note that the number of zero modes is equal to the dimension ofG/H,
while the number of collective variables is dim(G). By gauge fixing the constraintsFa we will
eliminate the zero modes in favor of the collective coordinatesaa on G/H. We will make use of
the remainingH-gauge symmetry to prove that the effective collective dynamics of the soliton
be understood in terms of inequivalent coset space quantizations.

III. INEQUIVALENT COSET SPACE QUANTIZATIONS

In this section we review briefly the approach developed by Mackey to the quantization
system whose configuration space is a coset spaceG/H.1 This must be distinguished from th
quantization ofG/H as a phase space, which is discussed for example in Ref. 12~and references
therein!. It was shown by Mackey that when the configuration space is a coset spaceG/H there
are many different quantizations not equivalent to each other by unitary transformations, whi
labeled by the unitary irrepsx of the subgroupH. The wave functions in a given inequivalen
quantization are vector valued, taking values in the representation spaceVx . They can be obtained
from vector valued functions inG which satisfy~x-equivariant condition!,

f m~gh!5pnm
x ~h! f n~g!, ~23!

wheregPG, hPH, andpx(h) are the matrices of the representationx of H. The left regular
representation ofG is defined on functions ofG acting as,

f ~g!→
g1

f ~g1
21g!. ~24!
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Equation ~23! is invariant under this action. Therefore, the set of functionsf m(g) satisfying
condition~23! transforms under the left action ofG in a representation called the representation
G induced byx. See Refs. 1 and 13 for the definition and properties of induced representa

Given a local sections:G/H→G every elementgPG can be uniquely written as,

g5s~j~g!!hs~g!, ~25!

wherejPG/H andhPH. This allows to define a one-to-one correspondence between the s
functions f m(g) and functionsFm :G/H→Vx such that,

f m~g!5pnm
x ~h~g!!Fn~j~g!!. ~26!

The functionsFm(j) transform underG in the induced representation as,

Fm~j!→
g

pnm
x ~hs~g21s~j!!!Fn~g21j!, ~27!

whereg21j5j(g21s(j)) defines the action ofG on G/H.
Landsman and Linden2 studied the dynamical consequences of the inequivalent quantiza

for the motion of a particle inG/H. They discovered that in the nontrivial quantum sectors
particle couples to a background gauge fieldAa , known as theH-connection, which takes value
in the representation of the sub-algebrapx(h). The Hamiltonian is given by,

H52 1
2g

ab~¹a1Aa!~]b1Ab!, ~28!

where ¹a is the covariant derivative constructed out of the metricgab on G/H. Due to the
H-connection the Hamiltonian is matrix valued~in the trivial representation ofH it reduces to
minus one-half the Laplacian2 1

2DG/H52 1
2g

ab¹a]b!.
McMullan and Tsutsui3 developed a different approach to the inequivalent quantizati

Using the fact that in Eq.~25! hPH can be further decomposed ash5r (h)s(h), wheres belongs
to the Cartan subgroup ofH, they showed that instead of Mackey’s functionsf m(g) one can use
its highest weight componentf x evaluated atg5sr ~i.e., s51!. The condition~23! implies that
these functions are annihilated by the raising operatorsEw.0 in the Chevalley basis$Ha ,Ew% of
h. In this case the wave functions are scalars, which allows for a simpler definition of the c
sponding path integral.

IV. COLLECTIVE DYNAMICS

In this section we will prove that the collective band associated with an intrinsic vibrati
state can be obtained from the inequivalent quantization corresponding to the representatio
subgroupH carried by the vibration. To see this we consider the canonical quantization o
action~17! introduced in Sec. II. This action has aG-gauge invariance due to the introduction
the collective coordinates as additional variables. Gauge fixing theG/H part of the gauge sym
metry allows to eliminate the zero modes in favor of the collective coordinates. The rema
H-gauge invariance can be treated with the Dirac method of imposing the constraints on the
functions.11 In our case this becomes Mackey’s condition~23! for the collective wave functions
associated to a given vibrational state. Alternatively, the collective coordinates which parame
H can be eliminated, fixing theH-gauge symmetry. In this case the wave functions becomeFm(x)
of Eq. ~27! and the Hamiltonian that of Landsman and Linden.

A. Elimination of the zero modes

We start by eliminating the zero modes in favor of collective coordinates onG/H.
Let us expand the fields in terms of fluctuations around the soliton. The fluctuations c

written as linear combinations of the normal modes~11! and ~12!,
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fs~x,t !5f̃s~x!1cn
s~x!qn~ t !1ca

s ~x!qa~ t !, ~29!

where the time dependent coefficientsqA(t) ~A stands both forn anda! are now the dynamica
degrees of freedom. The conjugate momenta to the fields read,

ps~x,t !5G̃st@cn
t ~x!pn~ t !1Iabca

t ~x!pb~ t !#, ~30!

wherepA are conjugate toqA . Inserting these expressions into the Hamiltonian~20!, and making
use of the equations for the normal modes~11!, ~12! and their orthogonality relations, we obta
up to quadratic order in the fluctuations,

H5Eclas1
1
2 ~pn

21vn
2qn

2!1 1
2 Iabpapb2laFa1O~q3,pq2!. ~31!

The first term is the classical soliton energyEclas5*ddxV@f̃(x)#. The second are the~infinite!
harmonic oscillators corresponding to the vibrations of the soliton. The third term are the
modes, and is purely kinetic. Anharmonic terms have been omitted.

Expanding similarly the constraints we get,

Fa5pa1~Da!ABpAqB2I a1O~pq2!, ~32!

F i5~Di !ABpAqB2I i1O~pq2!, ~33!

where we have kept up to quadratic terms in the fluctuations but the collective operato
treated exactly. The matrices (Da)AB are defined as,

~Da!AB5E ddxG̃stcA
s ~x!dacB

t ~x!, ~34!

wheredacA
t (x) are the infinitesimal transformations~5! of the eigenfunctions, and correspond

the representation ofG under which the fluctuations transform.
We want to eliminate the degrees of freedom associated with the zero energy fluctu

(qa ,pa). We achieve this by choosing to fix the gauge invariance generated byFa the following
gauge fixing conditions,

qa50, ~a51,...,dim~G/H !!, ~35!

which satisfy, $qa ,Fb%'dab1(Db)anqn1O(q2), where ' indicates evaluated where~35!
holds. This gauge conditiondoes not fix the H-gauge invariance generated byF i since,
$qa ,F i%'0, where we have used the fact that massive and zero fluctuations do not mix unH
and therefore (Di)an50.

We now replace the Poisson brackets by Dirac brackets,11

$A,B%D5$A,B%2$A,qa%~dab2Dbanqn!$Fb ,B%, ~36!

in order to treat the gauge conditions and constraints as operator identities. We are then
solvepa from the equationsFa50,

pa5I a2~Da!nmPnqm1O~pq2,Iq !. ~37!

Replacing (qa ,pa) by Eqs.~35!, ~37! in the Hamiltonian~31! we obtain,

H5Eclas1
1
2~pn

21vn
2qn

2!1 1
2IabI aI b2IabI a~Db!nmpnqm2l i~ t !F i~ t !1O~q3,pq2,Ipq2!.

~38!
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The zero modes have been completely eliminated. Instead we have a kinetic term for the co
coordinates and a coupling between the collective coordinates and the vibrations. Anha
terms in the vibrations and higher order vibration-collective couplings have been omitted.

B. Collective energy eigenfunctions

The Hamiltonian~38! describes the dynamics of the system in the 1-loop approximation
the vibrations, while the collective motion is treated exactly. To this order, the spectrum c
sponds to vibrational states and on top of each state a collective band. There is still theH-gauge
symmetry.

Since the soliton is invariant under the subgroupH, the vibrations split into irreducible
representations~irreps! of H. Consider now a given vibrational state classified by the irrepx of H,
and lets derive theeffectivecollective dynamics for this state from the Hamiltonian~38!. In other
words, we restrict to energies which can only excite collective modes, but not any other
tional ones. Taking into account this restriction, the wave functions for a state in the colle
band has the general form,

c~q,a!5wm~q! f m~a!. ~39!

The functionswm(q) (m51,...,dim(x)) form a basis for the irrepx of the vibration, while the
collective functionsf m(a) are arbitrary and have to be determined. We still have to take
account theH-gauge invariance. As mentioned above, to deal with it we apply Dirac’s metho
imposing the constraints on the wave functions.11 This restricts the wave functions~39! to satisfy
F ic(q,a)50; i , which imposes on the collective functions the conditions,

I i f m~a!5 i ~Ti !nm
x f n~a! ; i . ~40!

Here (Ti)mn
x are the infinitesimal generators ofH in the x representation. This is the infinitesima

version of Eq.~23!. This condition also holds for the discrete transformationshPH, which
together with~40! imply for all hPH,

Rhf m~a!5pnm
x ~h! f n~a!, ~41!

where Rh stands for the right action ofh on the group element parameterized bya, g(a)
→g(a)h. Therefore, the collective functionsf m(a) satisfy Mackey’s condition~23!, i.e., they
transform under the left action ofG in the representation ofG induced by the representationx of
H.13 In other words, the states in the collective band are those of the inequivalent quantiza
G/H given by the representationx of H carried by the intrinsic state.

In order to diagonalize the Hamiltonian~38! we can make use of the original symmetryG.
The induced representation ofG under which the collective functions in~39! transform is reduc-
ible. It can be broken into irreducible components. In fact, by the Peter–Weyl theorem13 the
collective functionsf m(a) can be rewritten as,

f m~a!5Cm
IMNDMN

I ~a!, ~42!

where the sum is over all irrepsI of G defined by the matricesDMN
I (a). Under the left action of

G each term of the sum transforms in the corresponding representationI of G. Under the right
action ofH each term in~42! transforms in the representationI of G considered as a representatio
of H. This representation ofH is in general reducible and can be broken in irreducible pie
I uH5x11¯1xn , wherex i are irreps ofH. In this decomposition, the representationx carried by
the vibrations appears a number of times we denote bydIx , that is, I uH5dIxx1other irreps.
Condition ~41! implies that the linear combination~42! must be restricted to

f m~a!5Ck
IMNDMmk

I ~a!, ~43!
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wherek runs over thedIx representationsxk5x, andmk indicates themth component of irrepxk .
This means that each representationI of G appears in the collective band a number of times eq
to dIx .

The collective band of the vibration is given by the restriction of the Hamiltonian~38! to the
subspace of functions~39!, which satisfy the condition~41!. The first two terms in~38! are
constant throughout the band, and the last one vanishes on physical states. The collective
tonian reads,

Hcoll5const1 1
2 IabI aI b2IabI aMb , ~44!

where Ma stand for the restriction of the operators (Da)nmpnqm to the subspace span by th
vibrational functionswm(q), that is,Ma5^wmu(Da)nmpnqmuwn&. The collective Hamiltonian is
invariant under the action ofG by the left, and so does not mix different representationsI.
Therefore, it can be diagonalized in subspaces of dimensiondIx . It is easy to check that it also
commutes with the simultaneous action ofH on the intrinsic states (Ji) and on the collective
coordinates from the right (I i). This ensures that it preserves the physical conditionF i50 which
the statesc of Eq. ~39! satisfy.

The diagonalization ofHcoll in each subspace of dimensiondIx.1 must be performed case b
case. However, some more information can be obtained using theH-invariance. The restricted
matricesMa no longer satisfy theG algebra, but they still satisfy,

@Ji ,Ma#5 iCia
b Mb , ~45!

which means that they transform underH in the same representation asJa . By the Wigner–Eckart
theorem in the groupH, they are determined by Clebsch–Gordan coefficients up to as m
independent constants as irreps ofH are contained in this representation. The number of irreps
gives the number of independent inertia moments inIab . This is as far as we can go usin
symmetry arguments in the general case.

If G/H is a symmetric space a considerable simplification arises. In this case, there
involutive automorphismt:g→g (t25 idg) under which the generators satisfy,13

tJit5Ji , ~46!

tJat52Ja . ~47!

We assume thatt acts on the fieldsfs(x,t) as t:fs(x,t)°ts@f(x,t)# with ts@f̃(x)#5f̃(x).
Equation~46! states thatt commutes withJi , so a representation ofH has a definite eigenvalue o
t (61), and therefore by~47! we haveMa50. Another simplification is that the representation
H under whichJa transform is irreducible, so there is only one moment of inertiaI. The collective
Hamiltonian becomes,

Hcoll5
1

2I I a
25

1

2I ~ I a
22I i

2!, ~48!

and thedIx states,

c IM x~q,a!5wm~q!DMmk

I ~a! ~k51,...,dIx!, ~49!

are degenerate eigenstates, sinceI a
2 and I i

2 are Casimirs ofG andH, respectively.
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C. Landsman and Linden Hamiltonian

In the previous section we found the collective wavefunctions by treating theH-gauge invari-
ance by means of the Dirac method of imposing the constraints on the states. Howev
dynamical consequences of the Mackey condition~41! on the collective functions are best unde
stood by fixing theH-gauge symmetry.

Let us make the natural gauge choice of setting the collective coordinates related to mot
the subgroupa i50. This fixes theH-gauge symmetry generated byF i , i.e., $a i ,F j%'d j

i . Pro-
ceeding as before, we eliminate the pairs (a i ,Pi) by solvingPi from the equationsF i50. This
gives

Pi5~Di !nmpnqm , ~50!

where we have used thatQ i
j (0)5d j

i . Since the vibrations fall into irreps ofH, if we restrict to a
given vibrational state classified byx, the above equation reduces to,

Pi5^wmu~Di !nmpnqmuwn&52 i ~Ti !mn
x , ~51!

where (Ti)mn
x are the generators ofH in the irrepx. Replacing in the collective operatorsI a we

get,

I a5Qa
b~j!Pb1 iQa

b~j!zb
i ~j!~Ti !mn

x , ~52!

wherejPG/H0 ~i.e., the coordinatesaa51,...,dim(G/H)!, beingH0 the identity component ofH. In
this gauge the collective functionsf m become the functionsFm(j) of Sec. III, and the collective
Hamiltonian~44! becomes,

Hcoll5const2 1
2 gab~¹a1Aa!~]b1Ab!2 1

2g
ab@~¹a1Aa!Bb1Ba~]b1Ab!#. ~53!

The second term corresponds to Landsman–Linden Hamiltonian~28!, with the metric onG/H0

given bygab(j)5Igdza
g(j)zb

d (j), and theH0-connection by,

~Aa!mn52 i za
i ~Ti !mn

x . ~54!

The third term in~53! gives the coupling to an extra background field,

~Ba!mn52 i za
b~Mb!mn , ~55!

which comes from the ‘‘Coriolis’’ terms in~44!. In general, for real representations, this is
SO~dimx) connection, and is similar to the induced connections studied in Ref. 14.

TheH0-connection ensures that Hamiltonian~53! applied to functions independent ofa i gives
the same result as Hamiltonian~44! acting on functions overG which satisfy Mackey condition
~40!. When H0ÞH the functionsFm(j) are still restricted by condition~41! for the discrete
elements ofH. This restriction can be lifted including a pure gauge connection which associa
discrete element ofH with each nontrivial path inP1(G/H) ~holonomy factors!. The relation
between inequivalent quantizations and holonomy factors in the path integral is discussed
15.

V. CONCLUSIONS

We have discussed the collective bands of intrinsic states found when quantizing aro
soliton solution with moduli space isomorphic toG/H. The result is that the collective band of a
intrinsic vibrational state realizes an inequivalent coset space quantization given by the rep
tation of H under which the intrinsic state transforms. The collective Hamiltonian is tha
Landsman and Linden,2 which describes free motion onG/H coupled to a backgroundH-gauge
field. Besides, there may be other background gauge fields coming from the Coriolis term
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extra degrees of freedom associated with the nontrivial quantizations are given by the in
coordinates. In this way, we have given a physical example of the inequivalent quantiz
studied in Refs. 1–3.

Some of the consequences for the collective quantization of a soliton with moduli spaceG/H
are the following. The states in the collective band of a vibration carrying the representatiox of
H are classified by the irreducible representationsI of the symmetry groupG. Each irrepI appears
in the band as many times asx is contained in its decomposition into irreps ofH. This also gives
to lowest order the dimension of the collective Hamiltonian matrix within this subspace,
which the energies of the states are obtained. Determining the collective bands is analog
calculating the rotational spectra of polyatomic molecules,16 and our results can be understood
a generalization of this problem to a general symmetry group.

This work may be of interest for obtaining the spins and isospins bands of the ground s
multiskyrmions17,18 and their excited states, which have been found for topological chargB
52 andB54 by Barneset al.19,20The symmetry group of the Skyrme model is the direct prod
of the spatial and isospatial rotations and the combined parity~without considering spatial trans
lations! G5SO~3!S3SO~3!I3P. As described in Ref. 21, the symmetry group of a Skyrm
H,G is given by pairs (h,D(h)), whereh is an element of the spatial group O~3!S , andD(h) an
element of the isospin group O~3!I . The mappingD:h°D(h) is a three-dimensional real repre
sentation ofH, and deth5detD(h). For example, for theB52 caseH5D` ~not considering
parity!. The ground state is in the non trivial one-dimensional representationS2 if the Skyrmion
is quantized as a fermion. Therefore, the lowest allowed state of the band are~I 51, S50! or ~I
50, S51!, since they are the lowest irreps ofG containingS2 in its decomposition. Similarly,
the other states of the band can be obtained. TheB52 case has already been considered in R
22, but we expect the more systematic treatment presented here will be useful in more comp
situations, as forB.2, where the subgroupH is discrete.23
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Ground states of a model in nonrelativistic quantum
electrodynamics. I

Fumio Hiroshimaa)
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The system of a one charged nonrelativistic particle with external potentials
minimally coupled to a massless quantized radiation field is considered. An ultra-
violet cutoff is imposed on the quantized radiation field and the charged particle has
spin 1/2. The class of external potentials considered in this paper containsCoulomb
potentials. It is shown that the ground states of the system exist provided that a
coupling constant is in a region. ©1999 American Institute of Physics.
@S0022-2488~99!03111-4#

I. INTRODUCTION

In this paper and Ref. 1 we are concerned with the ground states of a model in nonrela
quantum electrodynamics. In the present paper we prove the existence of the ground state
model which describes the system of a nonrelativistic spin 1/2 particle minimally coupled
massless quantized radiation field with external potentials~the Pauli–Fierz model2!. The class of
the external potentials considered in this paper includes Coulomb potentials. The quantized
tion field is quantized in the Coulomb gauge and has an ultraviolet cutoff. The Pauli–Fierz m
interprets the physical phenomenon ‘‘Lamb shift.’’3–7

In the past few decades, several articles have been devoted to the study of the Paul
model and has provoked a great deal of controversy.8–14 A great deal of effect has been made
showing the existence of ground states of related models.11,14–19

In the previous paper14 we have proved the existence of the ground states of the Pauli–
model with external potentialsV such asV5x21V0 , where V0 is infinitesimally small with
respect to the Laplacian. Hence this derives us to a question whether the ground states
system with Coulomb potentials exist or not.13 The goal of this paper is to prove the existence
the ground states of the Pauli–Fierz model with a general class of external potentials con
Coulomb potentials.

We shall show the strategy of this paper. A good place to start is to survey Ref. 14. LetH be
the Hamiltonian of the system, which is a self-adjoint operator acting in a Hilbert spaceH. One
first introduces artificial massm.0 of photon and defineHm . Second, we defineHm

a by lattice
approximation ofHm with lattice length 2p/a.11,14,16,17,20We call the bottom of the spectrum o
self-adjoint operatorT by the ground state energy ofT. It is established that the spectrum ofHm

a

is purely discrete in the neighborhood of its ground state energy. Then the ground states ofH have
been constructed in Ref. 14 through~1! a norm resolvent convergence ofHm

a to Hm asa→` ~thus
one knows that the ground states ofHm exist!; ~2! nonzero weak limit of a ground state ofHm as
m→0 ~the limit is just a ground state ofH!. To show~1! in Ref. 14 it plays an important role tha
particles are confined by external potentials such asV5x21V0 . Then in our case it seems
however, to be difficult to show~1!. In order to avoid such sufferings we shall find a family
unitary transformationsUa . That goes to the very heart of solving our problem. We shall sh
that, instead ofHm

a , the operatorUaHm
a Ua

21 converges to an operator which is unitarily equivale
to Hm asa→` in the norm resolvent sense. Then we see thatHm has a ground state. Finally in th
similar way as that of Ref. 14 we prove the existence of the ground states ofH.

a!Electronic mail: hiro@mathematik.tu-muenchen.de
62090022-2488/99/40(12)/6209/14/$15.00 © 1999 American Institute of Physics
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This paper is organized as follows: In Sec. II, we define the Pauli–Fierz model and we
Hypotheses 1, 2, and 3. Section III A is devoted to defining the lattice approximated Hamilto
gives Hypothesis 4 and considers the spectrum in the neighborhood of their ground state
In Sec. III B, we introduce a family of unitary transformations. Section III C offers the key
proving existence of ground states; we shall show convergence of operators in a norm re
sense. In Sec. III D we give Hypothesis 5 and some binding. In Sec. III E we give Hypothe
and state the main theorem~Theorem 3.14!. In Sec. III F we show a weak convergence of grou
states.

II. DEFINITION OF A HAMILTONIAN

In this section we give a quick sketch of definition of the Pauli–Fierz model and care
show some inequalities.

A. Quantized radiation fields

The Boson Fock spaceF over WªL2(R3) % L2(R3) is defined byFª% N50
` @ ^ s

NW#, where
^ s

NW, N>1, denotes theN-fold symmetric tensor product ofW and ^ s
0WªC. We denote byFfin

the finite particle subspace~Ref. 21, X.7!. The bare vacuum vectorVPF is defined byV
ª$1,0,0,...%. We denote by (•,•)K the scalar product on Hilbert spaceK and byi•iK the associ-
ated norm. Scalar product (f ,g)K is linear in g and antilinear inf. Unless confusion arising we
omit K in i•iK and (•,•)K , respectively. We denote bya†(F) and a(F), FPW, the smeared
creation operator and the smeared annihilation operator defined onFfin , respectively. In particular,
for notational convenience, we definea†r andar , r 51,2, bya†1( f )ªa†( f % 0), a†2( f )ªa†(0
% f ) and a1( f )ªa( f % 0), a2( f )ªa(0% f ), f PL2(R3), respectively. They satisfy canonica
commutation relations onFfin ,

@ar~ f !,a†s~g!#5d rs~ f̄ ,g!, ~2.1!

@ar~ f !,as~g!#5@a†r~ f !,a†s~g!#50, r ,s51,2, ~2.2!

~ar~ f !C,F!5~C,a†r~ f̄ !F!, F,CPFfin , ~2.3!

where f̄ is the complex conjugate off. We formally writea]r( f )5*a]r(k) f (k)dk, r 51,2, where
a]r denotesar or a†r . For a contraction operatorT on W, the second quantization ofT is denoted
by G(T) ~Ref. 21, X.7!. In particular, for a nonnegative self-adjoint operatorh in W, G(e2th),t
>0, is a strongly continuous symmetric one-parameter semigroup onF. Hence we can define a
nonnegative self-adjoint operatordG(h) in F by G(e2th)5e2tdG(h),t>0. Note thatdG(h)V
50. The free HamiltonianH f in F is defined byH fªdG(v % v), wherev is the multiplication
operator byv(k)ªuku ~uku is the three-dimensional Euclidean norm ofk!. Besides the numbe
operatorN is defined byNªdG(I % I ). We set

Mª$ f :Borel measureableui f inªivn/2f iL2~R3!,`%.

The following relative bounds are well known:

ia†r~ f !Ci<i f i21iH f
1/2Ci1i f i0iCi , f PM21ùM0 , ~2.4!

iar~ f !Ci<i f i21iH f
1/2Ci , f PM21ùM0 , ~2.5!

ia†r~ f !Fi<i f i0i~N1I !1/2Fi , f PM0 , ~2.6!

iar~ f !Fi<i f i0iN1/2Fi , f PM0 , ~2.7!

whereCPD(H f
1/2) andFPD(N1/2). With an ultraviolet cutoffr, we define a quantized radiatio

field Am(x) and a quantized magnetic fieldBm(x),m51,2,3, by
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Am~x!ªAm~r,x!ª(
r 51

2 E dk

A2v~k!
$r~k!em

r ~k!e2 ikxa†r~k!1r~2k!em
r ~k!eikxar~k!%,

Bm~x!ªBm~r,x!

ª2 i (
r 51

2 E dk

A2v~k!
$r~k!~k3er~k!!me2 ikxa†r~k!1r~2k!~2k3er~k!!meikxar~k!%,

whereer5(e1
r ,e2

r ,e3
r ), r 51, 2, are polarization vectors which satisfyer(k)es(k)5d rs , ker(k)

50, a.e.kPR3. We setAmªAm(r)ªAm(r,0) andBmªBm(r)5Bm(r,0), m51,...,d.

B. Definition of a Hamiltonian

The Hilbert spaceH of the system is given by

HªL2~R3;C2! ^ FªHp^ F.

We work in units which isc5\51 and put the mass of the particle one. Then the HamiltoniaH
of the system is defined by

H5~1/2!$s•~P^ I 2eA~x!!%21V^ I 1I ^ H f ,

whereA(x)ª(A1(x),A2(x),A3(x)), Pª(P1 ,P2 ,P3)ª(2 i¹x1
,2 i¹x2

,2 i¹x3
),V is an external

potential, andsª(s1 ,s2 ,s3) defined by

s1ªS 0 1

1 0D , s2ªS 0 2 i

i 0 D , s3ªS 1 0

0 21D .

We immediately see that onEªC0
`(R3) ^̂ Ffin ,

H5Hp^ I 1I ^ H f1eHI1e2HII 1eHIII ,

whereHpª2(1/2)D1V, HIª2(P^ I )•A(x), HIIª(1/2)A(x)•A(x), HIIIª(1/2)s•B(x). Un-
less confusion arising we abbreviate bothX^ I and I ^ X as X in what follows. We introduce
Hypotheses 1 and 2.

Hypothesis 1:The ultraviolet cutoffr is such thatrPM22ùM21ùM0ùM1 and that
r(k)5r(2k).

Hypothesis 2:The external potentialV is such thatHp is essentially self-adjoint onC0
`(R3)

and that there exist constantsa andb such that

i2~1/2!D f i<aiHpf i1bi f i2, f PC0
`~R3!. ~2.8!

Moreover there existsS<` such that (2`,S#ùs(Hp),sd(Hp), wheres(T) and sd(T)
denote the spectrum and the discrete spectrum ofT, respectively.

Note that~2.8! implies that, with the samea as in ~2.8!,

~ f ,2~1/2!D f !<a~ f ,Hpf !1b8i f i , f PC0
`~R3!,

where b8 is a positive constant. We fixa, b, b8 and S throughout this paper. We have tw
standard examples in mind. One choice is~1! VPL2(R3)1L`(R3) with isolated ground state
energy, e.g.,V(x)521/uxu. The other is~2! V(x)→` as uxu→`, e.g.,V(x)5uxu2. For the first
case~1!, the essential spectrum ofHp has continuum edge, i.e.,S,`. For the latter case~2!, Hp

has purely discrete spectrum, i.e., one can takeS5`. Let

r nªirin .
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We have, by~2.4! and ~2.5!, for CPE,

iHICi<AiH fCi1BiHpCi1CiCi , ~2.9!

iHII Ci<DiH fCi1EiCi , ~2.10!

iHIII Ci<FiH fCi1GiCi , ~2.11!

where

Aª6r 22 , Bª6a~2r 221r 21!, Cª6b~2r 221r 21!13r 21 ,

D5Eª6~r 221r 21!213k~r 221r 21!~r 01r 1!, ~2.12!

Fª6r 0 /&, Gª3r 1 /&, kª~2p!25/2E
0

`
Al/~l11!dl.

We define

e0ª
2~A1B1F !1A~A1B1F !214D

2D
.

We setg@T#ª inf s(T). In particular we setS0ªg@Hp#. Hypothesis 3 is as follows:
Hypothesis 3:The coupling constante is such that 0<e,e0 .
Proposition 2.1 (Ref. 22): We assume that Hypotheses 1, 2, and 3 hold. Then H is self-a

on D(Hp)ùD(H f), bounded below and essentially self-adjoint on any core of H0ªHp1H f .
Proof: Note that iH fCi<iH0Ci1uS0uiCi and iHpCi<iH0Ci12uS0uiCi . Then, by

~2.9!, ~2.10!, and~2.11!, we see that forCPE,

iHICi<~A1B!iH0Ci1CiCi1~A12B!uS0uiCi , ~2.13!

iHII Ci<DiH0Ci1EiCi1DuS0uiCi , ~2.14!

iHIII Ci<FiH0Ci1GiCi1FuS0uiCi . ~2.15!

Hence Kato–Rellich Theorem~Ref. 21, Theorem X.12! yields the desired results. h

Remark 2.2: Essential self-adjointness of H for arbitrary coupling constant ePR is studied in
Ref. 23.

We shall estimate the ground state energy ofH. Let CPE. We have

u~C,HIC!u<A8~C,H fC!1B8~C,HpC!1C8iCi2

<~A81B8!~C,H0C!1~C82A8S0!iCi2, ~2.16!

u~C,HII C!u<D8~C,H fC!1E8iCi2<D8~C,H0C!1~E82D8S0!iCi2, ~2.17!

u~C,HIII C!u<F8~C,H fC!1G8iCi2<F8~C,H0C!1~G82F8S0!iCi2, ~2.18!

where

A8ª6r 22 /&, B8ª6a&r 22 , C8ª6b&r 22 , D8ª3~r 221r 21!r 22 ,
~2.19!

E8ª~3/2!~r 221r 21!r 21 , F85G856r 0 /~2& !.

Hence we see that
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~12eA82eB82e2D82eF8!~C,H0C!1~eA81e2D81eF8!S0iCi2

2~eC81e2E81eG8!iCi2<~C,HC!. ~2.20!

Moreover we have

~C,HC!<~11eA81eB81e2D81eF8!~C,H0C!

1~eC81e2E81eG8!iCi22~eA81e2D81eF8!S0iCi2. ~2.21!

SinceH is essentially self-adjoint on any core ofH0 for coupling constant 0<e,e0 , in view of
~2.20! and ~2.21!, we get, for 0<e,e0 ,

ug@H#2S0u<D~r!, ~2.22!

where

D~r!ªe~B8S01C8!1e2E81eG8

5e6&r 22~aS01b8!1e23~2r 221r 21!r 21/21e3r 0 /&.

Note thataS01b8>0.

III. EXISTENCE OF GROUND STATES

Before we come on to a closer analysis of the existence of the ground states ofH, let us pause
here to look briefly at our strategy. We shall introduce three parametersm, a, L, and define
self-adjoint operatorsHmL

a , HmL , andHm , respectively. In addition to this we construct unita
operatorsU andUa in H, and defineĤmLªUHmLU21 and ĤmL

a
ªUaHmL

a Ua
21, respectively.

First, we shall show thatHmL
a has purely discrete spectrum in the neighborhood ofg@HmL

a #.
Second, we shall show the norm resolvent convergence ofĤmL

a to ĤmL asa→`. Then by unitary
equivalences betweenHmL

a , andĤmL
a , and betweenHmL andĤmL , we can see thatHmL has also

purely discrete spectrum in the neighborhood ofg@HmL#. ~See diagram 1, wherea→` and L
→` are in the sense of norm resolvent andm→0 in the sense of strong resolvent.! Finally the
similar arguments onL→` andm→0 as those in Ref. 16 lead us to the final goal; we show
existence of the ground states ofH. Remark that it isdifficult to show the norm resolvent conve
gence ofHmL

a →HmL asa→` directly with potentialsV in Hypothesis 2.

A. Lattice approximation

Lattice approximation is essentially contained in Ref. 20; to make this paper as self-con
as possible we include a version of the proof here for the convenience of the reader. Define
of lattice points byGaª$k5(k1 ,k2 ,k3)ukm52pnm /a,nmPZ,m51,2,3%. Let l 2(Ga) be the set of
l 2 sequences overGa . We defineFa as Faª% n50

`
^ s

n@ l 2(Ga) % l 2(Ga)#. By the mapl 2(Ga)
{$al% l PGa

°(a/2p)S l PGa
alXG( l ,a)(•)PL2(R3), we identify l 2(Ga) with a subspace inL2(R3),

whereXG( l ,a)(•),l PGa , is the characteristic function of

G~ l ,a!ª@ l 1 ,l 112p/a!3@ l 2 ,l 212p/a!3@ l 3 ,l 312p/a!,R3.
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Then we identifyl 2(Ga) % l 2(Ga) with the subspace ofW and regardFa as the closed subspace
F. For 0,m and 0,a, we define nonnegative self-adjoint operators by

H f m
a
ªdG~~va1m! % ~va1m!!,

H f mªdG~~v1m! % ~v1m!!,

where va(k)ªv(ka) and kaª(k1,a ,k2,a ,k3,a) is a step function, i.e.,km,a52pn/a, if km

P@2pn/a,2pn/a12p/a),nPZ. The operatorH f m
a is reduced byFa and H f m

a dFa
has purely

discrete spectrum. We define

Am
a ~x!ª(

r 51

2 E dk (
l PGa

XG~ l ,a!~k!H r~ l !e2 i lxem
r ~ l !

A2v~ l !
a†r~k!1

r~2 l !eilxem
r ~ l !

A2v~ l !
ar~k!J ,

Bm
a ~x!ª2 i (

r 51

2 E dk (
l PGa

XG~ l ,a!~k!

3H r~ l !e2 i lx~ l 3er~ l !!m

A2v~ l !
a†r~k!1

r~2 l !eilx~2 l 3er~ l !!m

A2v~ l !
ar~k!J .

ThusHm
a andHm are given by

Hm
a
ªHp1H f m

a 1eHI
a1e2HII

a 1eHIII
a ,

HmªHp1H f m1eHI1e2HII 1eHIII ,

whereHI
a , HII

a , andHIII
a are defined withAm(x) and Bm(x) in HI , HII , andHIII replaced by

Am
a (x) andBm

a (x), respectively. LetXL be the characteristic function of$kPR3iku,L%. We set
rLªXLr. We define HmL

a by Hm
a with r replaced by rL . We set Am

a
ªAm

a (r,0), Bm
a

ªBm
a (r,0), ALm

a
ªAm

a (rL,0), BLm
a

ªBm
a (rL,0), ALmªAm(rL,0) andBLmªBm(rL,0).

Lemma 3.1: We assume that Hypotheses 1, 2, and 3 hold. Then (1) Hm is self-adjoint on
DmªD(Hp)ùD(H f m), bounded below and essentially self-adjoint on any core of

H0,mªHp1H f m ;

(2) for sufficiently large a, HmL
a is self-adjoint onDm , bounded below and essentially self-adjoi

on any core of

H0,m
a

ªHp1H f m
a .

Proof: Proof is the same as that of Proposition 2.1. We omit it. h

Let A8, B8, C8, D8, E8, F8, andG8 be in~2.19!, andAaL8 , BaL8 , CaL8 , DaL8 , EaL8 , FaL8 , and
GaL8 , are defined byA8, B8, C8, D8, E8, F8, G8 with r replaced by raLªS l PG l

XG( l ,a)

(•)rL( l ), respectively.
Lemma 3.2: Assume that Hypotheses 1, 2, and 3 hold. LetCPE. Then the following inequali-

ties hold:

~1! ~12eA82eB82e2D82eF8!~C,H0,mC!1~eA81e2D81eF8!S0iCi2

2~eC81e2E81eG8!iCi2<~C,HmC!; ~3.1!

~2! ~C,HmC!<~11eA81eB81e2D81eF8!~C,H0,mC!

1~eC81e2E81eG8!iCi22~eA81e2D81eF8!S0iCi2; ~3.2!
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~3! ~12eAaL8 2eBaL8 2e2DaL8 2eFaL8 !~C,H0,m
a C!1~eAaL8 1e2DaL8 1eFaL8 !S0iCi2

2~eCaL8 1e2EaL8 1eGaL8 !iCi2<~C,HmL
a C!; ~3.3!

~4! ~C,HmL
a C!<~11eAaL1eBaL1e2DaL1eFaL!~C,H0,m

a C!

1~eCaL1e2EaL1eGaL!iCi22~eAaL1e2DaL1eFaL!S0iCi2.

~3.4!

In particular,

uS02g@Hm#u<D~r!, ~3.5!

uS02g@HmL
a #u<D~raL!. ~3.6!

Proof: Note that for sufficient large a, (C,H0C)<(C,H0,m
a C). Then by~2.16!, ~2.17!, and

~2.18!, one sees~3.3! and ~3.4!. ~3.1! and ~3.2! are proved quite similarly. h

We introduce Hypothesis 4:
Hypothesis 4:The coupling constante is such that 2D(r)/(12eB8),S2S0 .
Lemma 3.3: We assume that Hypotheses 1, 2, 3, and 4 hold. Let a be sufficiently large

be such that

0,m<~12eB8!~S2S0!22D~r!. ~3.7!

Then@g@HmL
a #,g@HmL

a #1m),sd(HmL
a ).

Remark 3.4: By (3.6) and a limiting argument, for sufficiently large a, (3.7) implies that

0,~12eBaL8 !~S2S0!1~S02g@HmL
a # !2D~raL!2m. ~3.8!

Proof: For notational brevity, we putHaªHmL
a and gaªg@HmL

a #. Moreover setHpªHp

2S0 . Let ET(B) be the spectral projection of operatorT on Borel setB,R and dimET(B) the
dimension of the range ofET(B). Put

H5Hp^ @Fa% Fa
'#5@Hp^ Fa# % @Hp^ Fa

'#ªH1% H2 .

We see thatHa is reduced byH1 ~Ref. 14, Lemma 3.7!. By ~2.16!, ~2.17!, and~2.18!, we have

~C,HaC!>~C,~bH f1aHp2D~raL!1S0!C!, ~3.9!

whereaª12eBaL8 , bª12(eAaL8 1e2DaL8 1eFaL8 ). Note that by Hypothesis 3,a.0 andb
.0. We have, forC1PH1ùD(Ha), by ~3.9!,

~C1 ,~Ha2m2ga!C1!

>~C1 ,EHp
~@0,S2S0!! ^ ~bH f m

a 2~m1ga2S01D~raL!!!C1!

1$a~S2S0!2~m1ga2S01D~raL!!%~C1 ,EHp
~@S2S0 ,`!!C1! ~3.10!

1~C1 ,EHp
~@S2S0 ,`!! ^ bH f m

a C1!. ~3.11!

By virtue of ~3.8!, ~3.10! is non-negative, and~3.11! is also non-negative. Therefore we have

RanEHa
~@ga ,ga1m!!dH1

,RanEHp
~@0,S2S0!! ^ EH

f m
a ~@0,~m1ga2S01D~raL!!/b!!dH1

.

Note thatga1D(raL)>S0 . Thus it follows that
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dim EHa
~@ga ,ga1m!!dH1

<dimEHp
~@0,S2S0!!•dimEH

f m
a ~@0,~m1ga2S01D~raL!!/b!!.

On the other hand, we have (C2 ,HaC2)>(ga1m)iC2i2 ~Ref. 6, Lemma 3.7!. Thus we obtain
RanEHa

(@ga ,ga1m))5RanEHa
(@ga ,ga1m)) dH1

. Hence it follows that

dimEHa
~@ga ,ga1m!!<dimEHa

~@ga ,ga1m!!dH1
,`.

Thus proof is complete. h

B. Unitary transformations

We define unitary transformationsU andUa by

UªexpS i (
m51

3

xm ^ dG~km!D , UaªexpS i (
m51

3

xm ^ dG~km,a!D , a.0.

Define

OªL$F~x!a†r1~e2 iu1~k!xf 1!¯a†r n~e2 iun~k!xf n!V,VuFPC0
`~R3!, f jPLc

2~R3!,

u j~k!PL$k,ka%,r j51,2, j 51,2,...,n,nPN%,

whereL$¯% denotes the finite linear hull of the vectors in$¯% andLc
2(R3) is the set of functions

in L2(R3) with compact support. SinceO is a core for bothH0,m andH0,m
a , by Lemma 3.1,O is

a core for bothHmL and HmL
a . Note that operatorsU,Ua ,dG(km), dG(km,a), H f m , H f m

a , and
a]r(e2 iu(k)xf ), u(k)PL$k,ka%, leaveO invariant.

Lemma 3.5: The unitary operators U and Ua satisfy that, onO,

UHmLU215~1/2!$s•~PT2eAL!%21H f m1V, ~3.12!

UaHmL
a Ua

215~1/2!$s•~PT
a2eAL

a !%21H f m
a 1V, ~3.13!

where PTª(PT1 ,PT2 ,PT3) and PT
a
ª(PT1

a ,PT2
a ,PT3

a ) with PTmªPm2dG(km) and PTm
a
ªPm

2dG(km,a), m51,2,3.Moreover Ua leavesH1 invariant.
Proof: It is easily seen that, onO, UPU215PT , UaPUa

215PT
a , Uar(eikxf )U215ar( f ),

Ua†r(e2 ikxf )U215a†r( f ), Uaar(eikaxf )Ua
215ar( f ), Uaa†r(e2 ikaxf )Ua

215a†r( f ),
UH f mU215H f m , UaH f m

a Ua
215H f m

a . Thus ~3.12! and ~3.13! follow. Let C5F
^ a†r 1( f 1)¯a†r n( f n)V, FPC0

`(R3), f jP l 2(Ga), j 51,...,n. The finite linear hull of the form of
C’s is dense inH1 . Sincee2 ikaxf jP l 2(Ga), j 51,...,n, for eachxPR3, we have

UF ^ a†r 1~ f 1!¯a†r n~ f n!V5Fa†r 1~e2 ikaxf 1!¯a†r n~e2 ikaxf n!VPH1 .

ThusU leavesH1 invariant. h

We write the right-hand sides of~3.12! and ~3.13! as ĤmL and ĤmL
a , respectively.

Lemma 3.6: The operators Hˆ
mL and ĤmL

a are essentially self-adjoint onO. The unitary

operator U maps D(ĤmL) onto D(HmL) with ~3.12! and Ua maps D(ĤmL
a ) onto D(HmL

a ) with
~3.13!.

Proof: Since O is a core forHmL and U mapsO onto itself, UHmLU21dO is essentially
self-adjoint, which implies thatĤmLdO is essentially self-adjoint. ThusU mapsD(ĤmL) onto
D(HmL) with ~3.12!. For the case ofĤmL

a , HmL
a , andUa , it is similarly proved. h

We define HTªPT•PT1V1H f m and HT
a
ªPT

a
•PT

a1V1H f m
a . Then ĤmL

a 5HT
a1Qa and

ĤmL5HT1Q, where Qaª2ePT
a
•AL

a 1(e2/2)AL
a
•AL

a 1(e/2)s•BL
a and Qª2ePT

a
•AL

1(e2/2)AL•AL1(e/2)s•BL .
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Lemma 3.7: Assume that Hypotheses 1, 2, and 3 hold. Then, for sufficiently large a, ther
positive constantg which is independent of sufficiently large a so that, forCPO,

iHTCi<g~ iĤmLCi1iCi !, ~3.14!

iHT
aCi<g~ iĤmL

a Ci1iCi !. ~3.15!

Proof: One sees that there exists constantsa,1 andb>0 which are independent of largea
so thati(eHI

a1e2HII
a 1eHIII

a )Ci<aiH0,m
a Ci1biCi for CPO. SinceUa leavesO invariant,

iQaCi<aiHT
aCi1biCi for CPO. Thus it follows thatiHT

aCi<(12a)21iĤmL
a Ci1b(1

2a)21iCi , which implies~3.15!. ~3.14! is proved similarly. h

C. Existence of ground states with artificial mass

The purpose of this subsection is to obtain the following lemma:
Lemma 3.8: We assume that Hypotheses 1, 2, and 3 hold. Then, for zPC\R,

lim
a→`

~ĤmL
a 2z!215~ĤmL2z!21 ~3.16!

in the uniform norm.
Before proving Lemma 3.8, we prepare a lemma. We have 0<km2km,a<2p/a, m51,2,3.

Then it follows that forCPD(H f m),

i~dG~km!2dG~km,a!!Ci<
2p

ma
iH f mCi , m51,2,3. ~3.17!

Lemma 3.9: LetCPO. Then there exists a positive constanta so that

iPTm
a Ci<a~ iHT

aCi1iCi !, m51,2,3,

iH f
1/2Ci<a~ iHTCi1iCi !, iH f

1/2Ci<a~ uvHT
aCi1iCi !,

iH f mCi<a~ iHTCi1iCi !, iH f mCi<a~ iHT
aCi1iCi !.

Proof: One sees thatiPmCi<a(iH0,m
a Ci1iCi). Since Ua leavesO invariant, the first

inequality holds. The other inequalities are handled similarly.
Proof of Lemma 3.8:

We setRª(ĤmL2z)21 andRaª(ĤmL
a 2z)21. We have

R2Ra5 (
m51

3

~ I m
a 1eIIm

a 1e2III m
a 1eIVm

a !1Ra,

where

I m
a
ªRa~~PTm

a !22~PTm!2!R, II m
a
ªRa~PTm

a ALm
a 2PTmALm!R,

III m
a
ªRa~~ALm

a !22~ALm!2!R, IVm
a
ªRa~smBLm

a 2smBLm!R,

Ra
ªRa~H f m

a 2H f m!R.

We shall check thatI m
a , II m

a , III m
a , IVm

a , andRa go to zero asa→`, respectively. We also denot
the norm of operators inH by i•i. For f PMn , we defineRn( f )ªi f 2S l PGa

f ( l )XG( l ,a)in . Note
that, if f has a compact support, thenRn( f ) goes to zero asa→`. We put
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Xnª max
m51,2,3,r 51,2

RnS rLem
r

A2v
D , Ynª max

m51,2,3,r 51,2
RnS rL~k3er !m

A2v
D , Znª max

m51,2,3,r 51,2
I rLem

r

A2v
I

n

.

Define

aªmaxH iH f m~HT
a2z* !21i , iH f m~HT2z* !21i

iH f
1/2~HT

a2z* !21i , iH f
1/2~HT2z* !21i

iPTm
a ~HT

a2z* !21i
J , bªmax$iHT

aRa
]i ,iHTR]i%,

whereR] ~resp.Ra
]! denotesR or R* ~resp.Ra or Ra* ! andz* , z or z̄. The existence ofa andb

is ensured by Lemmas 3.7 and 3.9. Note thati(H f m2H f m
a )Ci<2Ca(12Ca)21iH f mCi for C

PD(H f m), whereCaª)(p/a)(1/(2m)11) ~Ref. 16, Lemmas 3.1 and 3.6!. Thus

iRai<
1

uFzu
2Ca

12Ca
ab. ~3.18!

We see that, by~3.17!,

u~C,I m
a F!u<u~PTm

a Ra* C,~PTm
a 2PTm!RF!u1u~~PTm

a 2PTm!Ra* C,PTmRF!u

<
2p

ma
$iPTm

a ~HT
a2 z̄!21~HT

a2 z̄!Ra* CiiH f m~HT2z!21~HT2z!RFi

1iH f m~HT
a2 z̄!21~HT

a2 z̄!Ra* CiiPTm~HT2z!21~HT2z!RFi%

<
2•2p

ma
~ab!2iCiiFi . ~3.19!

We see that by Lemma 4.10,

u~C,II m
a F!u<iPTm

a Ra* Cii~AALm

a 2ALm!RFi1i~PTm
a 2PTm!Ra* CiiALmRFi

<2iPTm
a ~HT

a2 z̄!21~HT
a2 z̄!Ra* Ci

3$2X21iH f
1/2~HT2z!21~HT2z!RFi1X0iRFi%

1S 2•2p

ma D iH f m~HT
a2 z̄!21~HT

a2 z̄!Ra* Ci

3$2Z21iH f
1/2~HT2z!21~HT2z!RFi1Z0iRFi%

<2H abS 2abX211
X0

uFzu D1
2p

ma
abS 2abZ211

Z0

uFzu D J iCiiFi . ~3.20!

We have

III m
a 5~1/2!Ra$~ALm

a 2ALm!ALm1ALm
a ~ALm

a 2ALm!%R.

The first term inIII m
a can be estimated as follows:

u~~ALm
a 2ALm!Ra* C,ALmRF!u

<2$X21iH f
1/2~HT

a2 z̄!21~HT
a2 z̄!Ra* Ci1X0iRa* Ci%

3$2Z21iH f
1/2~HT2z!21~HT2z!RFi1Z0iRFi%
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<2S 2aAX211
X0

uFzu D S 2abZ211
Z0

uFzu D iCiiCi . ~3.21!

The second term inIII m
a are similarly handled. We see that

u~C,IVm
a F!u<2iRa* Ci$2Y21iH f

1/2~HT2z!21~HT2z!RFi1Y0iRFi%

<
2

uFzu S 2abY211
Y0

uFzu D iCiiFi . ~3.22!

Thus, by~3.18!, ~3.19!, ~3.20!, ~3.21!, and~3.22!, Ra, I m
a , II m

a , III m
a , and IVm

a , m51,2,3, go to
zero, asa→`, respectively. Hence~3.16! follows.

Lemma 3.10: We assume that Hypotheses 1, 2, 3, and 4 hold and that m satisfies~3.7!. Then
@g@Hm#,g@Hm#1m),sd(Hm). In particular, the ground states of Hm exist.

Proof: By Lemma 3.3 and~3.13!, @g@ĤmL
a #,g@ĤmL

a #1m),sd(ĤmL
a ). Lemma 3.9 and~Ref.

24, Lemma 4.6! yield that @g@ĤmL#,g@ĤmL#1m),sd(ĤmL), which implies that, by~3.12!,
@g@HmL#,g@HmL#1m),sd(HmL). SinceirL2rin→0 asL→` for n522,21, limL→`(HmL

2z)215(Hm2z)21 in the uniform norm. Then@g@Hm#,g@Hm#1m),sd(Hm). h

D. Binding

Let Vm be a ground state ofHm . Define TªK ^ EH f
($0%), where K is a projection on

L2(R3). In this subsection, we estimate bothiN1/2Vmi and u(TVm ,(eHI1e2HII 1eHIII )Vm)u.
NotationA,B,C,D,E,F,G are in ~2.12!. Define

A9ªA/2,B9ª6ar22 ,C9ª6br22 ,C9ª6br22 ,D9ªE9ªD/25E/2,F9ªG9ªF/25G/2.

Let

Pªe~A1B1F !1e2D, Q1ªe~C1G!1e2E, Q2ªe~A12B1F !1e2D,

P9ªe~A91B91F9!1e2D9, Q19ªe~C91G9!1e2E9, Q29ªe~A912B91F9!1e2D9.

We defineBªmax$uS02D(r)u,uS01D(r)u%. By ~3.5!, ug@Hm#u<B. We have

iPm
2 Vmi<iPm

2 ~H02 i !21ii~H02 i !~Hm2 i !21ii~Hm2 i !Vmi

<iPm
2 ~H02 i !21ii~H02 i !~Hm2 i !21i~B11!iVmi .

SinceiPm
2 Ci<2aiHpCi12biCi<2aiH0Ci1(4auS0u12b)iCi for CPE,

iPm
2 ~H02 i !21i<2a12b14au(0u. ~3.23!

Moreover sinceiH0Ci<iHmCi1eiHICi1e2iHII Ci1eiHIII Ci12uS0uiCi for CPE,

iH0Ci<
1

12P
$iHmCi1~Q11~Q212!u(0u!iCi%. ~3.24!

Hence it follows that

i~H02 i !~Hm2 i !21i<
1

12P
1

Q11~Q212!u(0u
12P

11. ~3.25!

We defineAª(22P1Q11(Q212)uS0u)(2a12b14auS0u)(12P)21. Thus, by ~3.23! and
~3.25!, iPm

2 Vmi<A(B11)iVmi . In particular,
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iPmVmi<AA~B11!iVmi . ~3.26!

We introduce Hypothesis 5:
Hypothesis 5:The ultraviolet cutoffr holds thatr 23,` and the coupling constante satisfies

that

r 23<
123er21 /&

6e~AA~B11!/213er21/2!
.

Lemma 3.11: We assume that Hypotheses 1, 2, 3, 4, and 5 hold. TheniN1/2Vmi<d(e),1,
whered(e) is a positive constant.

Proof: By ~2.6!, ~2.7!, and~3.26!, we have

iN1/2Vmi2<
3•2e

&
r 23iN1/2VmiAA~B11!iVmi

1
3•2e2

2
r 23r 21iN1/2Vmi~ iN1/2Vmi1i~N1I !1/2Vmi !1

3•2e
2&

r 21iN1/2VmiiQmi .

Hence from Hypothesis 5 it follows that

iN1/2Vmi
iVmi <

6er23~AA~B11!/21er21/2!13e/&r 21

126e2r 23r 21
ªd~e!,1.

Thus lemma follows. h

Next we shall estimateu(TVm ,(eHI1e2HII 1eHIII )Vm)u. Note thatar( f )QC50 for f
PL2(R3). We have

u~TVm ,HIVm!u
iTVmi <~A91B9!iH0Vmi1C8iVmi1~A912B9!u(0uiVm i ,

u~TVm ,HII Vm!u
iTVmi <D9iH0Vmi1E9iVmi1D9u(0uiVmi ,

u~TVm ,HIII Vm!u
iTVmi <F9iH0Vmi1G9iVmi1F9u(0uiVmi .

From ~3.24! it follows that

u~TVm ,~eHI1e2HII 1eHIII !Vm!u
iTVmi <

P9

12P
$B1Q11~Q212!u(0u!%1Q191Q29u(0u.

~3.27!

We put the right-hand side of~3.27! by C.

E. Overlap and existence of ground states

Without loss of generality, we can assume thatiVmi51. Then we can find a subsequen
$mj% j 51

` so thatV0ªw2 lim j→` Vmj
exists.

Lemma 3.12: We assume that Hypotheses 1, 2, and 3 hold. Thenlimm→0 g@Hm#5g@H#.
Proof: See Ref. 14, Lemma 3.13: h

We introduce Hypothesis 6:
Hypothesis 6:The coupling constante is such thatS2S0.D(r)1C/A12d(e)2. Note that

Hypothesis 6 implies thatS2g@Hm#.0.
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Lemma 3.13: We assume that Hypotheses 1, 2, 3, 4, 5, and 6 hold. ThenV0Þ0.
Proof: Put PªEHp

(@S0 ,S)) ^ EH f
($0%), QªEHp

(@S,`)) ^ EH f
($0%). Then we have

(Vm ,PVm)>12iN1/2Vmi22(Vm ,QVm). Since (Vm ,Q(Hp2g@Hm#)Vm)52(Vm ,Q(eHI

1e2HII 1eHIII )Vm), ~3.27! implies that (S2g@Hm#)(Vm ,QVm)<CiQVmi . Hence,

~Vm ,PVm!>12d~e!22~C/(2g@Hm# !)2. ~3.28!

Taking the subsequence$mj% j 51
` , we see that both sides of~3.28! converge with

~V0 ,PV0!>12d~e!22~C~(2g@H# !!2. ~3.29!

The right-hand side of~3.29! is positive by Hypotheses 5 and 6. Thus lemma follows. h

We state the main theorem.
Theorem 3.14:We assume that Hypotheses 1, 2, 3, 4, 5, and 6 hold. ThenV0 is a ground

state of H. In addition to this, we assume that Hp has a unique ground statef. Then,

lim
e→0

if ^ V2V0i50.

Proof: By Lemmas 3.12 and 3.13, the theorem follows. h

F. Convergence of ground states

Define the Hamiltonian with ‘‘g-factor’’ as follows:

Hgª~1/2!~P2eA~x!!21V1H f1~g/2!s•B~x!.

Since 0<g<1, under Hypotheses 1, 2, 3, 4, 5, and 6, their ground states exist. We den
normalized ground state ofHg by V(g);iV(g)i51. Then there exists a subsequence$gj% j 51

` so

that Ṽªw2 lim j→` V(gj ) exists.
Theorem 3.15:We assume that Hypotheses 1, 2, 3, 4, 5, and 6 hold, and the ground

V(0) is a unique ground state of Hg50 . ThenṼ5uV(0), where0,uuu<1.
Proof: It is easily seen thatHg converges toHg50 asg→0 in the sense of the norm resolven

Thusg@Hg#→g@Hg50# asg→0. We defineÃ, B̃, andC̃ by A, B, andC with F, G, F8, G8, F9,
andG9 replaced by zero, respectively. LetP5EHp

(@S0 ,S)) ^ EH f
($0%). From ~3.29! it follows

that

~Ṽ,PṼ!>12H 6er23~AÃ~B̃11!/21er21/2!

126e2r 23r 21
J 2

2S C̃
(2g@Hg50#

D 2

.0.

HenceṼÞ0. ThenṼ is a ground state ofHg50 . Thus, the theorem follows. h

Remark 3.16: In the case of g.1, taking the coupling constant e sufficiently small, we can
that ground states of Hg exists and Theorem 3.15 holds.

Remark 3.17: In the case ofS5`, we do not need Hypotheses 4 and 6 in Theorems 3.14
3.15.

Note added in proof:After the completion of this paper, by V. Bach we have learned t
Hypothesis 5~infrared cutoff! is not needed25 ~cf. Ref. 26!.
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Spherically symmetric solutions of the SU „N…

Skyrme models
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Recently we have presented an ansatz which allows us to construct skyrmion fields
from the harmonic maps ofS2 to CPN21. In this paper we examine this construc-
tion in detail and use it to construct, in an explicit form, new static spherically
symmetric solutions of the SU(N) Skyrme models. We also discuss some proper-
ties of these solutions. ©1999 American Institute of Physics.
@S0022-2488~99!02612-2#

I. INTRODUCTION

The Skyrme model presents an opportunity to understand nuclear physics as a low
limit of quantum chromodynamics~QCD!. The model was initially proposed as a theory of stro
interactions of hadrons,1 but recently, it was shown to be the low energy limit of QCD in the lar
Nc limit.2 Since then further work has suggested that topologically nontrivial solutions of
model, known as skyrmions, can be identified with classical ground states of light nuclei.
ever, a thorough understanding of the structure and dynamics of multiskyrmion configurati
required before a more qualitative assessment of the validity of this application of the mod
be made.

The SU(N) Skyrme model involves fields which take values in SU(N); i.e., are described by
SU(N) valued functions ofxW and t. Its static solutions correspond to field configurations desc
ing multiskyrmions. In this paper we construct new solutions for fields whose energy dens
spherically symmetric.

Multiskyrmions are stationary points~maxima or saddle points! of the static energy func-
tional, which is given in topological charge units by

E5
1

12p2 E
R3H 2

1

2
tr~] iUU2!22

1

16
tr@] iUU21,] jUU21#2J d3xW , ~1!

whereU(xW )PSU(N).
In this case multiskyrmions are solutions of the equation

] i~] iUU212 1
4@] jUU21,@] jUU21,] iUU21## !50. ~2!

We have, for simplicity, set the mass terms to zero. This has been done for convenience, si
conventional mass terms introduce only small changes and, as we will see later, affect only
functions. Therefore, all our discussion can be easily generalized to include such mass ter

a!Electronic mail: T.Ioannidou@ukc.ac.uk
b!Electronic mail: B.M.A.G.Piette@durham.ac.uk
c!Electronic mail: W.J.Zakrzewski@durham.ac.uk
62230022-2488/99/40(12)/6223/11/$15.00 © 1999 American Institute of Physics
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Finiteness of the energy functional requires that U(xW ) approaches a constant matrix at spat
infinity, which can be chosen to be the identity matrix by a global SU(N) transformation. So,
without any loss of generality, we can impose the following boundary condition onU: U→I as
uxW u→`.

Since U→I as uxW u→` is a mapping fromS3→SU(N), it can be classified by the third
homotopy groupp3(SU(N))[Z or, equivalently, by the integer valued winding number

B5
1

24p2 E
R3

e i jk tr~] iUU21] jUU21]kUU21!d3xW , ~3!

which is a topological invariant. This winding number classifies the solitonic sectors in the m
and as Skyrme has argued,1 B(U) may be identified with the baryon number of the field config
ration.

Up to now most of the studies involving the Skyrme model have concentrated on the S~2!
version of the model and its embeddings into SU(N). The simplest nontrivial classicalsolution
involves a single skyrmion (B51) and has already been discussed by Skyrme.1 The energy
density of this solution is radially symmetric and, as a result, using the so-called hedgehog
one can reduce~2! to an ordinary differential equation, which then has to be solved numeric
Many solutions withB.1 of the SU~2! model have also been computed numerically and, in
cases, the solutions are very symmetrical~cf. Battye, and Sutcliffe,3 and references therein!.
However, since the model is not integrable, with few exceptions, explicit solutions~even! for
spherical symmetric SU(N) skyrmions are not known.

The first example of anonembeddedsolution for a higher group was the SO~3! soliton,
corresponding to a bound system of two skyrmions, which was found by Balachandranet al.,4

Another solution, with a large SU~3! strangeness content, was found by Kopeliovic
Schwesinger, and Stern.5 However, all other known multiskyrmion configurations seem to be
embeddings of the solutions of the SU~2! model.

Recently, we have shown6 how to construct low energy states of the SU(N) model by using
CPN21 harmonic maps. Our discussion involved only one projector. In this paper, we exten
method to more projectors. We show that, for the SU(N) model, when we takeN21 projectors
which lead to spherically symmetric energy densities, the full equations of the model separa
the problem of finding exact solutions is reduced to having to solveN21 coupled nonlinear
ordinary differential equations forN21 profile functions. This way we obtain a whole family o
new spherical symmetric multibaryon solutions of the SU(N) models. Our solutions include th
SU~3! dibaryon configuration of Balachandranet al.4 and the nontopological SU~3! four baryon
configuration of Ref. 6. Our solutions do not correspond to the global minima of the en
density as the SU~2! embedded solutions with the same baryon number have energies smalle
the energy of the solutions we present here.

II. HARMONIC MAPS

In Ref. 6 we generalized the SU~2! ansatz of Houghton, Manton, and Sutcliffe7 to SU(N).
This generalization involved rewriting the expression of Houghton and co-workers as a pro
from S2 to CPN21. It gave us a new way of interpreting old results and of deriving expression
the low energy SU(N) field configurations which arenot simple embeddings of SU~2! fields. In
particular, the energy distributions exhibit very different symmetries from those of the em
dings. The method also gave us a new solution of the SU~3! model, which lies in the topologically
trivial sector of the model~i.e., it has zero baryon number! and so, obviously, is not stable.

The method of Ref. 6 can be generalized further, to involve more projectors. In fact, w
exploit here some ideas taken from the theory of harmonic maps ofS2→CPN21,8,9 since they
play an important role in our construction.

Recall ~cf. Ref. 9! that in N-dimensional space there is a ‘‘natural’’ set of projectors:S2

→CPN21 maps, which are constructed as follows.
Write each projectorP as
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P~V!5
V^ V†

uVu2
, ~4!

whereV is a N-component complex vector of two variablesj and j̄ which locally parameterize
S2. In terms of the more familiaru andw, they are given byj5tan(u/2)eiw. The first projector is
obtained by takingV5 f (j), i.e., an analytic vector ofj; while the other projectors are obtaine
from the originalV by differentiation and Gramm–Schmidt orthogonalization. If we define
operatorP1 by its action on any vectorvPCN9 as

P1v5]jv2v
v†]jv
uvu2

, ~5!

then the further vectorsP1
k v can be defined by induction:P1

k v5P1(P1
k21v).

Therefore, in general, we can consider projectorsPk of the form ~4! corresponding to the
family of vectorsV[Vk5P1

k f @for f 5 f (j)# as

Pk5P~P1
k f !, k50,...,N21, ~6!

where, due to the orthogonality of the projectors, we have(k50
N21 Pk51.

The orthogonality properties of our projectors follow from the following properties of vec
P1

k f which hold whenf is holomorphic:

~P1
k f !†P1

l f 50, kÞ l , ~7!

]j̄~P1
k f !52P1

k21f
uP1

k f u2

uP1
k21f u2

, ]jS P1
k21f

uP1
k21f u2D 5

P1
k f

uP1
k21f u2

. ~8!

Note that, for SU(N), the last projectorPN21 in the sequence corresponds to an antianal
vector;~i.e., the components ofVN215P1

N21f , up to an irrelevant overall factor which cancels
the projector, are functions of onlyj̄).

Our new SU(N) generalisation of Ref. 6 involves the introduction ofN21 projectors, i.e.,

U5expH ig0S P02
I

ND1 ig1S P12
I

ND1¯1 igN22S PN222
I

ND J
5e2 ig0 /N~ I 1A0P0!e2 ig1 /N~ I 1A1P1!¯e2 igN22 /N~ I 1AN21PN22!, ~9!

where gk5gk(r ), for k50,...,N22, are the profile functions andAk5eigk21. Note that the
projectorPN21 is not included in Eq.~9! since it is the linear combination of the others.~Our
previous ansatz given in Ref. 6 corresponds to putting all the profile functions, but the firs
equal to zero.!

The spherically symmetric maps intoCPN21 are given by

f 5~ f 0 , f 1 ,...,f N21! t,

where

f k5jkACk11
N21, ~10!

where Ck11
N21 denote the binomial coefficients. Furthermore, as we prove in the Appendix

modulus of the corresponding vectorP1
k f for f of the above-mentioned form is

uP1
k f u25a~11uju2!N22k21, ~11!

wherea depends onN andk.
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III. CONSTRUCTING THE SKYRMION SOLUTIONS

In this section we construct a family of exact spherical symmetric solutions of the SUN)
Skyrme models. In fact, we show that for each SU(N) model the Skyrme field involvingN21
projectors leads to an exact solution involvingN21 profile functions.

A. Skyrme equations

The Skyrme equations~2!, when rewritten in spherical coordinates, take the form:

] rF r 2Rr1
1

4 S Auru1
1

sin2 u
AwrwD G1

1

sinu
]uFsinuH Ru1

1

4 S Arur1
1

r 2 sin2 u
AwuwD J G

1
1

sin2 u
]wFRw1

1

4 S Arwr1
1

r 2 AuwuD G50, ~12!

whereRi5U21Ui andAabg[@Ra ,@Rb ,Rg##.
It is easy to see, using~9!, that

Rr5 i (
j 50

N22

ġ j S Pj2
I

ND , ~13!

whereġ j (r ) denotes the derivative ofgj (r ) with respect to its argument; and that, in terms of t
holomorphic variablesj and j̄,

Rj5expF S 2 i (
k50

N22

gkPkD G]j FexpS i (
i 50

N22

gi Pi D G
5F11 (

k50

N22

~e2 igk21!PkGF (
l 50

N22

~eigl21!Pl jG
5 (

i 51

N21

@ei ~gi2gi 21!21#
ViVi 21

†

uVi 21u2 , ~14!

where the last line follows from the identity exp@(2i(k50
N22gkPk)#511(k50

N22(e2igk21)Pk . Here,
gN2150 andRj̄52(Rj)

†.
Next we note that

]u5
11uju2

2Auju2
~j]j1 j̄] j̄!, ]w5 i ~j]j2 j̄] j̄!, ~15!

and rewrite all the terms in~12! in terms ofRj , Rj̄ , andRt and their commutators, i.e.,

]u~sinuRu!1
1

sinu
]fRf5~11uju2!Auju2~~Rj!j̄1~Rj̄ !j!, ~16!

Auru1
1

sin2 u
Awrw5

~11uju2!2

2
$@Rj̄ ,@Rr ,Rj##1@Rj ,@Rr ,Rj̄# #%, ~17!

sinu]u~sinuArur !1]f~Arwr !52uju2~@Rr ,@Rj ,Rr ## j̄1@Rr ,@Rj̄ ,Rr ##j!, ~18!

]uS Awuw

sinu D1
1

sinu
]f~Auwu!5

~11uju2!Auju2

2
@]j̄~~11uju2!2@Rj ,@Rj ,Rj̄# # !

2]j~~11uju2!2@Rj̄ ,@Rj ,Rj̄# # !#. ~19!
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Thus Eq.~12!, when rewritten in the holomorphic variables, becomes

] rF r 2Rr1
~11uju2!2

8
~@Rj̄ ,@Rr ,Rj##1@Rj ,@Rr ,Rj̄# # !G1

~11uju2!2

2
~~Rj̄ !j1~Rj!j̄!

1
~11uju2!3

8r 2 ~j@Rj ,@Rj ,Rj̄# #2 j̄@Rj̄ ,@Rj ,Rj̄# # !1
~11uju2!4

16r 2 ~@Rj ,@Rj ,Rj̄# # j̄

2@Rj̄ ,@Rj ,Rj̄# #j!1
~11uju2!2

8
~@Rr ,@Rj̄ ,Rr ##j1@Rr ,@Rj ,Rr ## j̄!50. ~20!

Using ~9! we observe that

@Rj ,Rj̄#52P0

uV1u2

uV0u2 ~12cos~g12g0!!22PN21

uVN21u2

uVN22u2 ~12cos~gN22!!

12 (
i 51

N22

PiF uVi 11u2

uVi u2
~12cos~gi 112gi !!2

uVi u2

uVi 21u2 ~12cos~gi2gi 21!!G , ~21!

@Rj ,@Rj ,Rj̄# #5 (
i 51

N21 S m i

uVi 12u2

uVi 11u2
1n i

uVi 11u2

uVi u2 1r i

uVi u2

uVi 21u2D ViVi 21
†

uVi 21u2
, ~22!

@Rr ,@Rj̄ ,Rr ##5 (
i 51

N21

si

Vi 21Vi
†

uVi 21u2
, ~23!

wherem, n, andr are functions ofgk(r ), only; while si are functions ofgk(r ) and their deriva-
tives.

Since Vk5P1
k f , one can show thatuVi u2/uVi 21u2}(11uju2)22; while ]j(11uju2)22

522j̄(11uju2)23 and thus, the derivative terms involving@Rj ,@Rj ,Rj̄# # in ~20! cancel leaving
us with derivatives of ViVi 21

† /uVi 21u2—which are proportional to( i 51
N21(11uju2)22(Pi

2Pi 21)hi , wherehi involve functions ofgk(r ) @due to ~8!#, multiplied by terms of the form
uVi u2/uVi 21u2. So the factors (11uju2)24 in ~20! cancel—leaving us with a sum of differences
two successive projectors multiplied by functions dependent only onr.

Following the above argument and using the properties ofRr , etc., one can show that th
terms @Rr ,@Rj ,Rr ## j̄ in ~20! are proportional to( i 51

N21 Si(11uju2)22(Pi2Pi 21), whereSi are
functions ofgk(r ) and their derivatives—leaving us, once again, with a sum of differences of
successive projectors multiplied by functions dependent only onr.

Finally, the contribution of the terms (11uju2)Rjj̄ is given by( i 51
N21(Pi2Pi 21)Hi , whereHi

are only functions ofgk ; while the commutators in~17! are equal to a sum of projectors multiplie
by (11uju2)22, which cancel out in~20!. In addition,] r(r

2Rr)5 i ( i 50
N22(Pi2I /N)(2rġ i1r 2g̈i).

We note that, for our choice of the vectorsVk , all the dependence onj and j̄ in ~20! resides
only in the projectors~the rest of it cancels out!. The terms involving] r(r

2Rr) give us expressions
involving I /N2Pi while all the other terms give us expressions involvingPi2Pi 21 . AlthoughN
projectors arise in~20!, the projectorPN21 can be re-expressed in terms of the previous one
giving N21 factors involving the harmonic mapsPi2I /N ~for i 50,...,N22). To satisfy~20! the
coefficients of such factors have to vanish leaving us withN21 equations for theN21 profile
functionsgi . Hence, if these equations have solutions then they correspond to exact soluti
the SU(N) Skyrme models.

Notice that~10! implies that these solutions have a covariant spherical symmetry. A ge
rotation of the sphere realized by the Mo¨bius transformationz→ z̃5(az1b)/(ā2b̄z) where
uau21ubu251. It is easy to show thatf̃ (z)5@1/(ā2b̄z)N21#A f whereA is a matrix depending
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only on a and b and their complex conjugates. MoreoveruA f(z)u25u f̃ (ā2b̄z)N21u25(uzu2

11)N215u f (z)u2 proving thatA is an SU(N) matrix and that a rotation of the sphere inR3 is
equivalent to a global gauge transformation onf.

We must now show thatP1
k f→AP1

k f under the Mo¨bius transformation. To do this we use th
fact thatP1

k f 5(12P02P12¯2Pk21)]z
kf . As ]̃z5(ā2b̄z)2]z we can write

]̃z
k f̃ 5~ ā2b̄z!2]zS A f

~ ā2b̄z!kD , ~24!

implying that

P1
k f̃ 5~12 P̃02 P̃12¯2 P̃k21!

1

~ ā2b̄z!N22k
A]zkf . ~25!

By induction, this shows that thePk all transform under the same unitary conjugation and that
Möbius transformation is equivalent to a global SU~N! gauge transformation on~9!.

The N21 equations for the profile functions can be obtained either from~20!—which is a
hard task; or from the variation of the energy~1!—using~9! and integrating outj andj̄ variables.
Clearly, the two methods give the same equations.

Let us stress that our procedure hinges on havingN21 profile functions and on the ver
special form of our vectorsVk . Had we taken other vectorsVk , we would have obtained somej
andj̄ dependence outside the projectors; while had we taken less thanN21 profile functions and
projectors we would have obtained too many equations for our functions. It is only in the ca
N21 projectors that we get the right number of equations.

B. Energy dependence on profile functions

The energy~1!, when written in the holomorphic variables, becomes

E52
i

12p2 E r 2 dr dj dj̄ tr S 1

~11uju2!2 Rr
21

1

r 2 uRju2

1
1

4r 2 @Rr ,Rj#@Rr ,Rj̄#2
~11uju2!2

16r 4 @Rj̄ ,Rj#
2D . ~26!

Using ~13! and ~14! we find that

tr Rr
25

1

N S (
i 50

N22

ġi D 2

2 (
i 50

N22

ġi
2, ~27!

truRju2522 (
i 51

N21

Bi , ~28!

tr~@Rr ,Rj#@Rr ,Rj# !522 (
k51

N21

Bk~ ġk2ġk21!2, ~29!

tr@Rj̄ ,Rj#
254S B1

21 (
i 51

N22

~Bi2Bi 11!21BN21
2 D , ~30!

whereBi5uVi u2/uVi 21u2(12cos(gi2gi21)) and @Rj̄ ,Rj#52( l 51
N21(Pl 212Pl)Bl .
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SinceuVku2/uVk21u25k(N2k)(11uju2)22 ~see the Appendix! all terms in~26! have a factor
(11uju2)22 and the integration overj and j̄ is a topological constant, i.e.,i *dj dj̄(11uju2)22

52p. Thus we get

E5
1

6p E r 2 drH 2
1

N S (
i 50

N22

ġi D 2

1 (
i 50

N22

ġi
21

1

2r 2 (
k51

N21

~ ġk2ġk21!2Dk

1
2

r 2 (
k51

N21

Dk1
1

4r 4 S D1
21 (

k51

N22

~Dk2Dk11!21DN21
2 D J , ~31!

whereDk5k(N2k)(12cos(gk2gk21)).
Let us, for simplicity, takeFk5gk2gk11 ,(k50,...,N22) with FN225gN22 . Then, the

variation of the integrand of the energyẼ with respect to the functionsḞ l ~for l 50,...,N22) is

]Ẽ

]Ḟ l

5F2
2~ l 11!

N
(
i 50

N22

~ i 11!Ḟ i12(
k50

l S (
i 5k

N22

Ḟ i D 1
1

r 2
Ḟ lDl 11G r 2, ~32!

whereDk5k(N2k)(12cosFk21).
Therefore, the equations of motion for the functionsFi , and thus for the profile functions, ar

2
2~ l 11!

N (
i 50

N22

~ i 11!F̈ i12(
k50

l

(
i 5k

N22

F̈ i1
1

r 2 F̈ l~ l 11!~N2 l 21!~12cosFl !

1
1

2r 2 Ḟ l
2~ l 11!~N2 l 21!sinFl1

2

r S 2
2~ l 11!

N (
i 50

N22

~ i 11!Ḟ i12(
k50

l S (
i 5k

N22

Ḟ i D D
2

2

r 2 ~ l 11!~N2 l 21!sinFl2
1

r 4 ~ l 11!2~N2 l 21!2~12cosFl !sinFl

1
1

2r 4 ~ l 11!~N2 l 21!sinFl@ l ~N2 l !~12cosFl 21!

1~ l 12!~N2 l 22!~12cosFl 11!#50. ~33!

Equation~33! can be solved numerically by imposing the appropriate boundary conditions o
profile functions. To do this we have to specialize to a particular model, i.e., for specificN and
diagonalize the terms involving the second derivatives. The simplest cases:N52, N53, andN
54 involve 1, 2, or 3 functions and will be discussed in the next sections.

IV. TOPOLOGICAL PROPERTIES AND SYMMETRIES

Before we discuss special cases, let us first investigate the general topological prope
our fields.

The topological charge~3!, which in many applications of the Skyrme model is identified w
the baryon number, is given by

B5
1

8p2 E dr dj dj̄ tr~Rr@Rj̄ ,Rj# !, ~34!

when written in the complex coordinates.
Due to ~21! and ~13! the terms involvingġi /N in Rr after taking the trace cancel and th

expression for the baryon number simplifies to
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B52
i

4p2 E dr dj dj̄ (
i 50

N22

Ḟ i~12cosFi !
uVi 11u2

uVi u2

5
1

2p E dr (
i 50

N22

Ḟ i~12cosFi !~ i 11!~N2 i 21!

5
1

2p (
i 50

N22

~ i 11!~N2 i 21!~Fi2sinFi !r 50
r 5` . ~35!

As gi(`)50 ~required for the finiteness of the energy! the only contributions to the topologica
charge come fromFi(0).

The N21 equations for the profile functions and their differences given in~33! have many
symmetries. These symmetries can be used to derive special skyrmion solutions which inv
smaller number of profile functions and projectors.

The main symmetry of our expressions, are the independent interchanges

Fk↔FN2k22 for k50,...,N22. ~36!

This symmetry follows from the fact the termsDk5k(N2k)(12cosFk21) which appear in the
energy are symmetric under the interchange:Dk↔DN2k when Fk21↔FN2k21 . In addition, all
the other terms in the energy also exhibit this symmetry since they are combinations ofFi and
their derivatives.

V. SPHERICAL SKYRMIONS

The simplest case corresponds to the SU~2! spherically symmetric skyrmion. This is th
solution which was found 30 years ago by Skyrme and is usually presented in terms
well-known hedgehog ansatz.

A. SU „3… Skyrme model

In this caseN53 and we have two functions:F0 and F1 . The energy densityE, such that
E5(6p)21*Er 2 dr, is given by

E5
2

3
~ Ḟ0

21Ḟ1
21Ḟ0Ḟ1!1

1

r 2 @~ Ḟ0
214!~12cosF0!1~ Ḟ1

214!~12cosF1!#

1
2

r 4 @~12cosF0!22~12cosF0!~12cosF1!1~12cosF1!2#, ~37!

and the equations for the profile functions are

F̈0S 11
3

2r 2 ~12cosF0! D1
F̈1

2
1

2Ḟ01Ḟ1

r
1

3 sinF0

4r 2 F Ḟ0
2242

4~12cosF0!

r 2 1
2~12cosF1!

r 2 G
50,

~38!

F̈1S 11
3

2r 2 ~12cosF1! D1
F̈0

2
1

2Ḟ11Ḟ0

r
1

3 sinF1

4r 2 F Ḟ1
2242

4~12cosF1!

r 2 1
2~12cosF0!

r 2 G
50.

These equations can be solved numerically when the right boundary conditions have be
posed.

However, by lettingF05F15F ~i.e., using the symmetry! they reduce to
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F̈S 11
12cosF

r 2 D1
2Ḟ

r
1

sinF

2r 2 F Ḟ2242
2~12cosF !

r 2 G50. ~39!

Equation~39! coincides with the equation for the profile function of a single SU~2! skyrmion.
Here we note that asF0(0)5F1(0)52p the topological charge of our solution is four. Thus t
energy of this configuration, which corresponds to four skyrmions isEB545431.232, i.e., is
exactly four times the energy of one skyrmion. We see that we have a static solution corre
ing to four noninteracting skyrmions, placed on top of each other in such a way that their e
density is spherically symmetric.

In addition, there is a further symmetry which allows us to setF052F15G. In this case the
equations reduce to

G̈S 1

2
1

3

2r 2 ~12cosG! D1
Ġ

r
1

3 sinG

4r 2 F Ġ2242
2~1-cosG!

r 2 G50. ~40!

Let us note that, sinceF05g02g1 andF15g1 , this case corresponds tog050 and thus, the field
~9! involves only one projector, namelyP1 . This solution is the topologically trivial solution
discussed in Ref. 6 and its energy is 3.861.

Finally, the Balachandranet al. skyrmion solution can be obtained from~38! by imposing the
following boundary conditions:g0(0)52p, g1(0)50, andg0(`)50, g1(`)50; its energy is
EB5252.3764.

B. SU „4… Skyrme model

In this case the energy density becomes

E5
1

4
~3Ḟ0

214Ḟ1
213Ḟ2

214Ḟ0Ḟ114Ḟ1Ḟ212Ḟ0Ḟ2!1
1

2r 2 @3~ Ḟ0
214!~12cosF0!

14~ Ḟ1
214!~12cosF1!13~ Ḟ2

214!~12cosF2!#1
1

2r 4 $9~12cosF0!2116~12cosF1!2

19~12cosF2!2212~12cosF0!~12cosF1!212~12cosF1!~12cosF2!%, ~41!

while the equations forF0 , F1 , andF2 are more complicated:

F̈0S 11
2~12cosF0!

r 2 D1
2F̈11F̈2

3
1

3Ḟ014Ḟ112Ḟ2

3r

1
sinF0

r 2 F Ḟ0
2242

6~12cosF0!

r 2 1
4~12cosF1!

r 2 G50,

F̈1S 11
2~12cosF1!

r 2 D1
F̈01F̈2

2
1

2Ḟ11Ḟ01Ḟ2

r

1
sinF1

r 2 F Ḟ1
2242

8~12cosF1!

r 2 1
3~12cosF0!

r 2 1
3~12cosF2!

r 2 G50, ~42!

F̈2S 11
2~12cosF2!

r 2 D1
F̈012F̈1

3
1

6Ḟ212Ḟ014Ḟ1

3r

1
sinF2

r 2 F Ḟ2
2242

6~12cosF2!

r 2 1
4~12cosF1!

r 2 G50.
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These equations have the previously mentioned symmetryFk↔FN2k22 , which allows us to set
F05F2 by keepingF1 arbitrary.

In addition, lettingF05F15F25F the above-mentioned system reduces to Eq.~39! and
therefore, the configuration which consists of ten skyrmions~as B5@3F0(0)14F1(0)
13F2(0)#/2p510) is EB51051031.232, i.e., is exactly ten times the energy of one skyrmi
Once again we have a solution describing many skyrmions, which are noninteracting and
energy density is spherically symmetric.

In addition, lettingF052F25G we spot that whenF150, we have a solution of the form

G̈S 11
3~12cosG!

r 2 D1
2Ġ

r
1

3 sinG

2r 2 F Ġ2242
6~12cosG!

r 2 G50, ~43!

which corresponds to a nontopological solution, i.e., its baryon number is zero; howeve
corresponding configuration consists of three skyrmions and three antiskyrmions.@Recall that the
profile functions areg050 and g15g2 , i.e., the field~9! involves only one projector of rank
two—namelyP11P2 .#

In general, however, the solutions depend on more functions. We can always assume t
functionsFi go to zero at infinity, so the topological charge of a solution is determined, using~35!,
by the boundary value of eachFi at the origin. When each of these values is positive the solu
is a mixture of skyrmions. When someFi ’s take positive and someFi ’s take negative values at th
origin the solution corresponds to a mixture of skyrmions and antiskyrmions. This is very si
to what happens in the two-dimensional Grasmannian sigma model.8

We have solved numerically Eq.~42! taking all combinations, modulo the exchange ofF0 and
F2 , of 0, 2p, and22p for the value ofFi at the origin. The results are summarized as follow

F0(0) F1(0) F2(0) B Energy E/baryon SU~2! En

2p 0 0 3 3.518 1.173 3.429
0 2p 0 4 4.788 1.197 4.464

2p 0 2p 6 7.225 53 1.204 6.654
2p 2p 0 7 8.452 19 1.207 7.7693
2p 2p 2p 10 12.32 1.232 ¯

2p 22p 2p 6-4 8.852 0.8852 ¯

2p 2p 22p 7-3 9.896 0.9896 ¯

2p 0 22p 3-3 6.634 22 1.106 ¯

22p 2p 0 4-3 6.614 78 0.945 ¯

The first five solutions are bound states of skyrmions with energies larger than the ener
the corresponding SU~2! solutions.3 Moreover, the excitation energy of the first two solutions
very small. As previously mentioned, the energy of theB510 solution is exactly ten times th
energy of a single skyrmion solution. These solutions are all spherically symmetric and thu
are all more symmetrical than the corresponding SU~2! solutions.

The last four solutions are bound states of skyrmions and antiskyrmions. Although
energies are very small, we know that these solutions must be unstable.

VI. CONCLUSIONS

In this paper we have shown how to construct radially symmetric solutions of the SU~N!
Skyrme models. In the general case these solutions depend onN21 profile functions which have
to be determined numerically. In some cases we can exploit symmetries of our expressio
reduce the number of functions. Thus in the case of SU~3! we can recover the topologically trivia
solution discussed in Ref. 6.

We have not discussed the derived solutions in much detail. Their properties and their re
to physics deserve further study and these topics are currently under investigation.
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APPENDIX: MODULUS OF zPk
1f z2

Here we prove Eq.~11! for f given by~10!. This result can be proved by induction. Note th
the modulus of theN-dimensional vectorf is u f u25(11uju2)N21 and therefore,uP1 f u2u f u2

5u f u2u]1 f u22u f †]1 f u25(N21)(11uju2)N23u f u2, therefore,uP1 f u25(N21)(11uju2)N23.
As

P1
k11f 5]jP1

k f 2P1
k f

~P1
k f !†]jP1

k f

uP1
k f u2

, ~A1!

using ~8! we get

uP1
k11f u2uP1

k f u25u]jP1
k f u2uP1

k f u22u]juP1
k f u2u2, ~A2!

]j]j̄uP1
k f u25u]jP1

k f u21~P1
k f !†]j̄]jP1

k f , ~A3!

~P1
k f !†]j]j̄~P1

k f !52~P1
k f !†]j~P1

k21f !
uP1

k f u2

uP1
k21f u2 52

uP1
k f u4

uP1
k21f u2

, ~A4!

which finally, leads to

uP1
k11f u25]j]j̄uP1

k f u21
uP1

k f u4

uP1
k21f u22

u]juP1
k f u2u2

uP1
k f u2

. ~A5!

Therefore ifuP1
k f u25a(11uju2)N22k21 and uP1

k21f u25b(11uju2)N22k61 then

uP1
k11f u25g~11uju2!N22k23, ~A6!

whereg5a(N22k21)1a2/b. To find g we again use induction, recalling that the coefficie
of the two lowest terms in the sequence are 1 andN21, respectively. Then it is easily seen th

uP1
k f u25k! ~N21!~N22!¯~N2k!~11uju2!N22k21, ~A7!

in which the last term in the sequence corresponds tok5N21.

1T. H. R. Skyrme, Nucl. Phys.31, 556 ~1962!.
2E. Witten, Nucl. Phys. B223, 422 ~1983!.
3R. A. Battye and P. M. Sutcliffe, Phys. Rev. Lett.79, 363 ~1997!.
4A. P. Balachandran, A. Barducci, F. Lizzi, V. G. J. Rodgers, and A. Stern, Phys. Rev. Lett.52, 887 ~1984!.
5V. B. Kopeliovich, B. E. Schwesinger, and B. E. Stern, JETP Lett.62, 185 ~1995!.
6T. Ioannidou, B. Piette, and W. J. Zakrzewski, ‘‘Low Energy States in the SU~N! Skyrme Model,’’ hep-th/9811071
1999.

7C. J. Houghton, N. S. Manton, and P. M. Sutcliffe, Nucl. Phys. B510, 507 ~1998!.
8W. J. Zakrzewski,Low Dimensional Sigma Models~IOP, Bristol, 1989!.
9A. Din and W. J. Zakrzewski, Nucl. Phys. B174, 397 ~1980!.
                                                                                                                



detail.
d the

h we
he
da-
ferent

ich
ar,

les in

r
in-
ified

a

n be

GNS-
tage

il:

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 12 DECEMBER 1999

                    
Two algebraic properties of thermal quantum
field theories

Christian D. Jäkela)

Dipartimento di Matematica, Via della Ricerca Scientifica, Universita` di Roma
‘‘Tor Vergata,’’ I-00133 Roma, Italy

~Received 26 April 1999; accepted for publication 23 August 1999!

We establish the Schlieder and the Borchers property for thermal field theories. In
addition, we provide some information on the commutation and localization prop-
erties of projection operators. ©1999 American Institute of Physics.
@S0022-2488~99!00312-6#

I. INTRODUCTION

Recently, the author has explored the general structure of thermal field theories in some
Here we would like to fill in a gap which concerns two basic results, namely, the Borchers an
Schlieder property. Both results will look familiar to the experts and even the proofs whic
will present here are more or less standard~see, e.g., Ref. 1 for a convenient collection of t
corresponding results in the vacuum sector!. However, a close inspection shows that the fun
mental differences between thermal and vacuum QFT are clearly reflected in slightly dif
assumptions and consequences. For completeness we add a list of properties~due to Florig and
Summers2! which are all equivalent to the Schlieder property.

In the algebraic formulation~as described in the monograph by Haag!3 a QFT is cast into an
inclusion preserving map

O→A~O! ~1!

which assigns to any open bounded regionO in Minkowski spaceR4 a unitalC* -algebraA(O).
The Hermitian elements of theabstract C* -algebraA(O) are interpreted as the observables wh
can be measured at times and locations inO. The physical states are described by positive, line
and normalized functionals. By the GNS-construction, any statev on A gives rise to a Hilbert
spaceHv and a representationpv together with a cyclic vectorVv , such that

v~a!5~Vv ,pv~a!Vv! ;aPA5 ø
O,R4

A~O!C* . ~2!

The representationpv automatically determines the values of certain macroscopic observab
all states, which are normal~A linear functional onA is said to be normal relative topv , if it is
continuous with respect to the ultraweak topology determined bypv . Since normal states diffe
only locally from v, various global physical situations will manifest themselves in unitarily
equivalent GNS-representations.! w.r.t. pv ~these are exactly those states which can be spec
by density matricesrPB(Hv), r.0, Trr51). Thus a state is specified macroscopically by
representation and microscopically by a density matrix.

The relevant states describing thermal equilibrium, the so-called KMS-states, will soo
distinguished within the set of all time-invariant normalized, positive linear functionals ofA by
their stability properties with respect to timelike translations. Since the associated
representations will allow a unitary implementation of the time-evolution, we will take advan

a!Present address: Institut f. theor. Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria. Electronic ma
cjaekel@esi.ac.at
62340022-2488/99/40(12)/6234/11/$15.00 © 1999 American Institute of Physics
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of it and formulate our problems in the better developed Hilbert space setting. But before
so, we should mention that the netO→A(O) satisfies a number of properties which do not depe
on the representation:

~i! The netO→A(O) is isotonous, i.e., there exists a unital embedding
A~O1!�A~O2! if O1,O2 . ~3!

This property, called isotony, allows us to consider the quasilocal algebraA which is
defined in~2! as theC* -inductive limit of the local algebras. The elements ofA are called
quasilocal observables; they can be approximated in norm topology by strictly loca
ments; the total energy, total charge, etc., are considered as unobservable; these qu
refer to infinitely extended regions and cannot be controlled by local measurements

~ii ! Observables localized in spacelike separated space–time regions commute,

A~O1!,Ac~O2! if O1,O28 . ~4!

HereO8 denotes the spacelike complement ofO andAc(O) denotes the set of operators
A which commute with all operators inA~O!.

~iii ! The space–time symmetry of Minkowski space manifests itself in the existence of a
resentation

a:~L,x!°aL,xPAut~A!, ~L,x!PP1
↑ , ~5!

of the ~orthochronous! Poincare´ group P1
↑ . Lorentz-transformationsL and space–time

translationsx act geometrically,

aL,x~A~O!!5A~LO1x! ;~L,x!PP1
↑ . ~6!

For the present letter we may restrict our list of assumptions to include only the~strongly
continuous! one-parameter subgroup of time-translationst:R→Aut(A). Of course, it acts
geometrically, i.e.,

tt~A~O!!5A~O1te! ;tPR. ~7!

Heree is a unit vector denoting the time direction with respect to a given Lorentz-fra

Remark:Let hPL1(R,dt) such that the Fourier-transformh̃ of h has compact support. If the
group of automorphismst:R→Aut(A) is strongly continuous, then the Bochner integral

ah5E dth~x!t t~a!, aPA, ~8!

exists inA and defines an entire analytic element for the time-translations. Recall thatbPA is
called an analytic element for the groupt, if there exists somel.0, a strip S(2l,l)ª$z
PC:uFzu,l% and a functiong:S(2l,l)→A such that

~a! g(t)5t t(b) for all tPR;
~b! z°v(g(z)) is analytic for all statesv over A.

An analytic element is called entire analytic, ifl5`; i.e.,S(2l,l)5C. At will denote the set of
entire analytic elements for the groupt.

We now turn to thermal equilibrium states. Kubo4 and subsequently Martin and Schwinge5

found out that the Green’s functions of finite-volume Gibbs-states satisfy an auxiliary bou
condition in the complex plane with respect to the time-evolution. The crucial step was to r
nize that the so-called KMS-condition not only characterizes the finite-volume Gibbs-state
remains valid in the thermodynamic limit.6 Nowadays, the KMS-condition is commonly accept
as the appropriate criterion for equilibrium of finite and infinite systems. However, only rec
Buchholz and Junglas have shown that a large class of relativistic models admits KMS-sta7

Definition: A statevb over A is called a~t, b!-KMS-state for somebPRø$6`%, if

vb~at ib~b!!5vb~ba! ~9!

for all a, b in a norm dense,t-invariant* -subalgebra ofAt .
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The GNS-representation (pb ,Hb ,Vb) of the netO→A(O) associated with a KMS-statevb

assigns to anyO,R4 a von Neumann algebra

Rb~O!5pb~A~O!!9. ~10!

Rbªpb(A)9 possesses a cyclic~due to the GNS-construction! and separating~due to the KMS-
condition! vector, namely,Vb .

The general analysis of KMS-states~see, e.g., Ref. 8! extends a number of results well know
in classical ergodic theory to the noncommutative case. For instance, the set of KMS-states
fixed b.0 is a weak-* compact, convex set. In fact, an arbitrary KMS-state can be represent
a unique manner as a convex superposition of extremal KMS-states.~A KMS-state is called
extremal, if it cannot be decomposed into other KMS-states.! Moreover, KMS-states can b
distinguished within the set of all~physical! states from first principles. In a number of pioneeri
articles it has been demonstrated that the extremal KMS-states of an infinitely extended m
change continuously as the Hamiltonian is perturbed slightly. This condition characterize
extremal KMS-states; they are precisely those states which are distinguished among~possible
other! stationary states by the fact that they turn continuously into the unperturbed state
certain family of perturbations tends to zero.9,10 The same condition may also be interpreted as
adiabatic invariance.11 Extremal KMS-states return to their original form at the end of a proced
in which the dynamical law is changed by a local perturbation which is slowly switched on
as t→` slowly switched off again. A further important characteristic of KMS-states is t
passivity,12 which is the requirement that the energy of the system at timet can only have
increased if the Hamiltonian depends on the time and has returned to its initial form at timet. This
condition is just the second law of thermodynamics; it fixes the sign ofb and means that no energ
can be removed from a KMS-state havingb.0, just as a periodic process can extract no ene
from the ground state.

Although the representation independent aspects of the mapO→A(O) clearly deserve atten
tion @it seems that the abstract operator algebraic formulation is inevitable for the descript
nonequilibrium situations in which also the macroscopic observables~e.g., the specific heat, th
mean magnetization, etc.! will change in the course of time#, we will now specify our results and
assumptions in the more restrictive Hilbert space framework. To be precise, in the remain
this letter we will consider a thermal field theory~TFT!, specified by a von Neumann algebraRb

with a cyclic and separating vectorVb and a net of subalgebras

O→Rb~O! ~11!

subject to the following conditions:

~i! The subalgebras associated with spacelike separated space–time regions commute

Rb~O1!,Rb~O2!8 if O1,O28 . ~12!

Note thatRb(O)8 denotes the commutant ofRb(O) in B(Hb); i.e.,Rb(O)8 includes both
Rb8 andRb(O8) as subalgebras.

~ii ! The time-evolution is unitarily implemented by the modular groupt°D i t ~see, e.g., Ref. 8!
associated with the pair (Rb ,Vb), i.e.,

D5e2bHb and D2it/bRb~O!D i t /b5Rb~O1te! ;tPR. ~13!

HereHb denotes the generator of the time-evolution ande is the unit vector denoting the
time direction w.r.t. the distinguished rest frame.

~iii ! Hb is separable andVb is the unique—up to a phase—time-invariant vector inHb .
~iv! Vb is cyclic for Rb(O), whereO is any open subset ofR4, i.e.,

Rb~O!Vb5Hb . ~14!

Vb shares the ‘‘Reeh–Schlieder property’’~14! with the following dense set of vectors,
Dt5$C5pb~a!VbPHb :a,a21PAt%,RbVb . ~15!
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We will show that under these assumptions the following statements are valid:

~i! ~Schlieder property!. Given two open space–time regionsO, Ô and somed.0 such that
O1te,O for utu,d, ~16!

the Schlieder property holds for the algebrasRb(O) andRb(Ô)8. ~Recall that a pair of
von Neumann algebrasM and N satisfies the Schlieder property iff 0ÞMPM and 0
ÞNPN implies thatMNÞ0.)

~ii ! ~Borchers property; also called Property B!. Given a nonzero projection operatorE
PRb(O), whereO,R4 is bounded, there exists a partial isometryV in the von Neumann

algebraRb(Ô!, associated with a slightly larger regionÔ, such thatV* V51 and VV*
5E. One writes

E;1modRb~O! . ~17!

Recall that a factorM is called type III, if E;1modM for all self-adjoint projectionsE
PM. ThusRb(O) is ‘‘almost’’ a factor of type III.

Remark:If the pair ~A, t! is asymptotically Abelian in time, i.e.,

lim
t→`

i@a,t t~b!#i50 ;a,bPA ~18!

andvb is an extremal KMS state, thenVb is the unique—up to a phase—time-invariant vector
Hb . The Reeh–Schlieder property~iv! can be derived from the relativistic KMS-condition13

provided the netO→Rb(O) satisfies additivity.14 @The net O→Rb(O) is called additive if
ø iOi5O⇒~ iRb(Oi)5Rb(O). HereR1~R2 denotes the von Neumann algebra generated
the algebrasR1 and R2 .] Junglas15 has shown that the Reeh–Schlieder property ofVb also
follows from the standard KMS-condition, ifvb is locally normal w.r.t. the vacuum represent
tion. Note that we donot require that there exists a group of unitary operators inB(Hb) which
implements spacelike translations, since spatial translation invariance may be spontaneou
ken in a KMS-state.

II. TWO BASIC PROPERTIES OF TFTs

We start with the analogon of a result of Borchers~see Ref. 16!.
Lemma II.1: Let EPRb , iEi51 and let F5F* 5F2PB(Hb) be a projection operator such

that

@e2 i tH bFeitH b,E#50 ;utu,d. ~19!

Then FE50 implies FeitH bE50 for all t PR.
Proof: It is sufficient to show that

~F,e2 i tH bFeitH bEC!50 ;tPR ~20!

for the dense set of vectorsF, CPDt introduced in~15!. By construction, the vectors inDt are
entire analytic for the energy, i.e.,Dt,D(e2zHb) for all zPC. Due to the KMS-relation,

RbVb,D~e2lHb! ;0<l<b/2. ~21!

Thus the function

z°~eiz̄HbF,FeizHbEC! ~22!

is analytic in the strip 0,Fz,b/2, while the function

z°~eiz̄HbE* F,FeizHbC! ~23!
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is analytic in the strip2b/2,Fz,0. Both functions are bounded and analytic and have cont
ous boundary values forFz↘0 andFz↗0, respectively. Now~19! implies

lim
Fz↘0

~eiz̄HbF,FeizHbEC!5 lim
Fz↗0

~eiz̄HbE* F,FeizHbC! ;utu,d. ~24!

Using the Edge-of-the-Wedge Theorem17 one concludes that there exists a function

f E,F :Gd→C ~25!

which is analytic on the doubly cut strip

Gd5$zPC:2b/2,Fz,b/2%\$zPC:Fz50,uRzu>d% ~26!

and satisfies

f E,F~z!5H ~eiz̄HbF,FeizHbEC!

~eiz̄HbE* F,FeizHbC!J for H 0,Fz,b/2
2b/2,Fz,0J . ~27!

Continuity andFE50 imply f E,F(0)50. According to Lagrange’s theoremf E,F(z) vanishes
identically if 0 is a zero of infinite order. This follows from the original arguments of Borch
put

t j
~ i !
ª

d j

2in
, i PN, j 51,...,n. ~28!

Now set

f t
1
~ i ! ,...,t

n
~ i !

1
~z!ª~eiz̄HbF,F~ t1

~ i !!¯F~ tn
~ i !!eizHbEC! for 0<Fz<b/2 ~29!

and

f t
1
~ i ! ,...,t

n
~ i !

2
~z!ª~eiz̄HbE* F,F~ t1

~ i !!¯F~ tn
~ i !!eizHbC! for 2b/2<Fz<0, ~30!

where

F~ t j
~ i !!ªe2 i t j

~ i !HbFeit j
~ i !Hb. ~31!

Both functions are analytic in the interior of their domains and bounded and continuous
boundary. Sinceut j

( i )u<d/2 for all i PN and j P$1,...,n% implies that

@E,e2 i tH bF~ t1
~ i !!¯F~ tn

~ i !!eitH b#50 ;uRzu,d/2, ~32!

the boundary values forFz↘0 resp.Fz↗0 coincide foruRzu,d/2. Applying the Edge-of-the-
Wedge Theorem17 one concludes thatf 1 and f 2 are the restrictions to the upper~resp. lower! half
of the doubly cut stripGd/2 of a function

f t
1
~ i ! ,...,t

n
~ i !~z!ªH f t

1
~ i ! ,...,t

n
~ i !

1
~z!

f t
1
~ i ! ,...,t

n
~ i !

2
~z!J for H 0,Fz,b/2

2b/2,Fz,0J , ~33!

which is defined and analytic forzPGd/2 . The function f t
1
( i ) ,...,t

n
( i )(z) has continuous boundar

values forz→]Gd/2 . SinceF andC are elements ofDt ~see~15!!, there exist two operatorsA,
BPpb(At) such thatF5AVb and C5BVb . Applying the maximum modulus principle w
obtain the following estimate:
                                                                                                                



s

l

n

6239J. Math. Phys., Vol. 40, No. 12, December 1999 Two algebraic properties of thermal quantum . . .

                    
u f t
1
~ i ! ,...,t

n
~ i !~z!u< sup

wP]Ge

u f t
1
~ i ! ,...,t

n
~ i !~w!u

<max$ie~b/2!HbAVbiiBi ,iAiie~b/2!HbBVbi%

<iAiiBi5:MF,C ;zPGd/2 . ~34!

For example,

sup
$wPC: Im w5b/2%

f t
1
~ i ! ,...,t

n
~ i !~w!5sup

sPR
~e~ is1~b/2!!HbAVb ,F~ t1

~ i !!¯F~ tn
~ i !!eisHbJ2e2~b/2!HbEBVb!

5sup
sPR

~e~b/2!HbAVb ,e2 isHbF~ t1
~ i !!¯F~ tn

~ i !!eisHbJB* E* Vb!

<ie~b/2!HbAVbiiBi<iJiiA* VbiiBi<iAiiBi . ~35!

Here we usediVbi51, iEi51, iFi51 andie2 isHbi51 for all sPR. We emphasize that at thi
point also the specific properties of a KMS state are used; in the last line of~35! we made use of
the modular conjugationJ associated with the pair (Rb ,Vb) ~see, e.g., Ref. 8 for a genera
account on modular theory!. By assumptionFE50, hence

f t
1
~ i ! ,...,t

n
~ i !~2t j

~ i !!50. ~36!

We conclude that inside the circleuzu,d/2 each of the functionsf t
1
( i ) ,...,t

n
( i )(z) possessesn zeros

for pairwise different values oft j
( i ) . Thus all of the functions

f t
1
~ i ! ,...,t

n
~ i !~z!

) j 51
n ~z1t j

~ i !!
, i PN, ~37!

are analytic in the open diskDd/2 of radiusd/2 centered at the origin. Note that by definitio
Dd/2,Gd/2 . Yet the number of zeros does not change in the limiti→` and consequently, fori
.1,

U f t
1
~ i ! ,...,t

n
~ i !~z!

) j 51
n ~z1t j

~ i !!
U< sup

wP]Dd/2

u f t
1
~ i ! ,...,t

n
~ i !~w!u

) j 51
n uw1t j

~ i !u
<MF,C•S 4

d D n

;zPDd/2 . ~38!

In the last inequality we useduw1t j
( i )u> zuwu2ut j

( i )uz and uwu5d/2 together withut j
( i )u,d/4 for i

.1 and j P$1,...,n%. Hence,

u f t
1
~ i ! ,...,t

n
~ i !~z!u<MF,C•S 4

d D n

)
j 51

n

uz1t j
~ i !u<const•uzun as i→` ;zPDd/2 . ~39!

Because ofF25F, it is obvious thatf 0,...,0(z)5 f E,F(z). The mapt°eitH b is strongly continuous,
thus

u f t
1
~ i ! ,...,t

n
~ i !~z!2 f 0,...,0~z!u→0 as i→`, ~40!

uniformly in zPGd/2 . Thus

u f E,F~z!u<const•uzun ;zPDd/2 . ~41!

Hence 0 is a zero ofnth order. SincenPN was arbitrary, we conclude thatf E,F(z) vanishes
identically for all choices ofF, CPDt . h
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As a consequence of assumption~iii ! vb is mixing and therefore the next lemma is more
less obvious.

Lemma II.2: Let E, FPB(Hb) be two projection operators and assume that

FeitH bE50 ;tPR. ~42!

It follows that EVbÞ0 implies FVb50.
Proof: By assumption,Vb is the unique—up to a phase—normalized eigenvector for

discrete eigenvalue$0%, thus~Ref. 8!

05 lim
T→`

1

2T E
2T

T

dt~Vb ,EeitH bFVb!5~Vb ,EVb!~Vb ,FVb!5iEVbi2
•iFVbi2. ~43!

Hence, ifEVbÞ0, thenFVb50. h

We add a result whose analogon in the vacuum sector is due to Schlieder~see Ref. 18, p. 220!.
Corollary II.3: Let EPRb be a nonzero projection andjPHb an arbitrary nonzero vector.

It follows that the set of points

$tPR:EeitH bjÞ0% ~44!

is dense inR.
Proof: For tPR fixed, the set of vectors

Htª$CPHb :EeiH btC50% ~45!

is a closed subspace ofHb . We set

H] 2`,`@ª ù
2`,t,`

Ht . ~46!

By construction,H] 2`,`@ is the intersection of closed subspaces and thereforeH] 2`,`@ itself is a
closed subspace ofHb . Let P denote the projection ontoH] 2`,`@ . Clearly,

EeitH bP50 ;tPR. ~47!

Now 0ÞEPRb implies EVbÞ0. Therefore Lemma II.2 impliesPVb50. Sincee2 iH b
t
EeiH b

t

PRb for all tPR, we conclude that

e2 iH btEeitH bDP50 ;DPRb8 , ;tPR. ~48!

Let P̂ denote the projection onto the closed linear subspaceRb8H] 2`,`@. Clearly,

EeitH bP̂50 ;tPR. ~49!

But by definitionP is the maximal projection such thatEeiH b
t
P50 holds for alltPR. It follows

that P̂<P. On the other hand

H] 2`,`@,Rb8H2`,`@ ~50!

implies P< P̂, thus P5 P̂. We conclude thatPPRb . SinceVb is separable forRb , PVb50
implies P50. It follows that for any vectorjPHb there exists sometPR such that

EeitH bjÞ0. ~51!

Now consider the projectionPj onto the one-dimensional subspaceC•j and assume there exis
somed.0 such that
                                                                                                                



ll.

d)

h

at

f

6241J. Math. Phys., Vol. 40, No. 12, December 1999 Two algebraic properties of thermal quantum . . .

                    
EeitH bPj50 ;ut2su,d ~52!

with sPR fixed. SetPj(s)5eisHbPje
2 isHb. ThenPj(s)5Pj(s)25Pj(s)* is a projection and

EeitH bPj~s!50 ;utu,d. ~53!

Lemma II.1 implies that

EeitH bPj50 ;tPR, ~54!

in contradiction to~51!. Thus the set$tPR:EeitH bjÞ0% does not contain any open interva
Consequently, it is dense inR. h

Theorem II.4: (Schlieder property). LetO andÔ denote two open (not necessarily bounde
space–time regions such that

O1te,Ô ;utu,d, d.0. ~55!

It follows that0ÞAPRb(O) and 0ÞBPRb(Ô)8 implies ABÞ0.

Proof: Let APRb(O) and BPRb(Ô)8. We have to show thatAB50 implies A50 or B
50. If eitherA or B is unitary, thenAB50 impliesB50 or A50. Thus only the case when bot
A andB are not unitary has to be considered in detail. In this case one of the expressionsA* A or
AA* is unequal to1. The same is true forB* B or BB* . Without loss of generality we assume th
A* AÞ1 andBB* Þ1. With A* A also the spectral projections ofA* A belong toRb(O) and with

BB* also the spectral projections ofBB* belong toRb(Ô)8. Thus

A* ABB* 50 ~56!

impliesFE50 for all spectral projectionsEPRb(O), FPRb(Ô)8 from the spectral resolution o

A* A andBB* , respectively. SinceEPRb(O) andFPRb(Ô)8 we find

@e2 i tH bFeitH b,E#50 ;utu,d. ~57!

Consequently, Lemma II.1 implies

FeitH bE50 ;tPR ~58!

and from Lemma II.2 it follows thatEVb50 or FVb50. Finally, Vb is separating for both

Rb(O) andRb(Ô)8. ThusE50 or F50.
Remark:The Schlieder property implies thatRb(O) is almost a factor, namely,

Rb~O!ùRb~Ô!85C•1. ~59!

This can be seen as follows: assume

Rb~O!ùRb~Ô!8ÞC•1. ~60!

It follows that there exists a nontrivial projectionP such that both

PPRb~O!ùRb~Ô!8 and ~12P!PRb~O!ùRb~Ô!8. ~61!

SetA5P andB5(12P). The Schlieder property impliesP50 or 12P50, in contradiction to
the assumption thatP is a nontrivial projection.
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The Schlieder property is a first step towards the ‘‘statistical independence’’ ofRb(O) and
Rb(Ô)8. In fact, several precise conditions for ‘‘statistical independence’’ have been propose
overview can be found in Ref. 19. Florig and Summers have collected a list of properties
are equivalent to the Schlieder property.2

Corollary II.5 (Florig and Summers): Assume thatHb is separable. LetO, Ô denote a pair of

space–time regions such that the closure of the open regionO is contained in the interior ofÔ.
It follows that

~i! Rb(O) andRb(Ô)8 areC* -independent, i.e., for every statev1 on Rb(O) and every state

v2 on Rb(Ô)8 there exists a statev on Rb such thatv uRb(O)
5v1 andv uRb(Ô)8

5v2 .

~ii ! Rb(O) andRb(Ô)8 are W* -independent, i.e., for every normal statev1 on Rb(O) and

every normal statev2 on Rb(Ô)8 there exists a normal statev on Rb such thatv uRb(O)

5v1 andv uRb(Ô)8
5v2 .

~iii ! For any nonzero vectorsF, CPHb there existsA8PRb(O)8 andB8PRb(Ô) such that
A8F5B8CÞ0.

~iv! The ordered pair (Rb(O),Rb(Ô)8) is strictly local; i.e., for any nonzero projectionE

PRb(O) and any statevPRb(Ô)
*
8 there exists a statefP(Rb(O)∨Rb(Ô)8)* such that

f(E)51 andf uRb(Ô)8
5v.

~v! For any nontrivial projectionsEPRb(O), FPRb(Ô)8 andl, mP@0,1# there exists a state
f on B(Hb) such thatf(E)5l andf(F)5m.

~vi! Rb(O) andRb(Ô)8 are statistically independent in the sense of Haag and Kastler; i.e

every statev1 on Rb(O) and every statev2 on Rb(Ô)8 there exists a statev on R such
that

v~AB!5v1~A!v2~B! ~62!

for all APRb(O) and allBPRb(Ô)8.

~vii ! iABi5iAiiBi for all APRb(O) and allBPRb(Ô)8.

~viii ! The von Neumann algebrasRb(O) andRb(Ô)8 are algebraically independent; i.e., give
two arbitrary sets$Ai : i 51,...,m% and $Bj : j 51,...,n% of linear independent elements o

Rb(O) and Rb(Ô)8, respectively, the collection$AiBj : i 51,...,m; j 51,...,n% is linearly

independent inRb(O)(Rb(Ô)8.

~ix! The maph:(Rb(O),Rb(Ô)8)→Rb(O)(Rb(Ô)8 defined by

h~A,B!5A^B, APRb~O!, BPRb~Ô!8, ~63!

is an isomorphism continuous in the minimalC* -cross norm on the algebraic tensor pro

uct Rb(O)(Rb(Ô)8 and can therefore be continuously extended to a surjective ho

morphismh̄:Rb(O)∨Rb(Ô)8→Rb(O) ^ Rb(Ô)8.

Remark:If Rb(O) is a factor of type III acting on a separable Hilbert space, then Corollary

remains valid, if we replaceRb(Ô)8 by Rb(O)8. It is remarkable that for such a pair all norm
partial states have normal extensions, none of which is allowed to be a product state, and
partial states have extensions to product states, none of which can be normal.

Theorem II.6: (Borchers property). LetO and Ô denote two open and bounded space–time
regions such that

O1te,Ô ;utu,d, d.0. ~64!

Given a nonzero projection EPRb(O), there exists a partial isometry VPRb(Ô) such that
V* V51 and VV* 5E.
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Proof: Once the Schlieder property is proven forRb(O) andRb(Ô)8, the Borchers property
follows by standard arguments~see Refs. 16, 1 for the corresponding result in the vacuum sec!.
We present them here for the sake of completeness only. By assumption the spacelike com

Ô8 of Ô is not empty. Thus any vectorFPDt is cyclic forRb(Ô)8.Rb(Ô8). We show thatEF

is separating forRb(Ô)8; choose a regionO0 such that

O0,O8ùÔ ~65!

and consider someBPRb(Ô)8 such thatBEF50. Locality implies thatBECF50 for any C
PRb(O0). By the Reeh–Schlieder property the set$CF:CPRb(O0)% is dense inHb and there-

fore BE50. Now the Schlieder property forRb(O) andRb(Ô)8 impliesB50, since by assump

tion EÞ0. We conclude thatEF is separating forRb(Ô)8. Hence, the normal state

B°~EF,BEF! ~66!

is faithful on Rb(Ô)8 and there exists a vectorCPHb cyclic for Rb(Ô)8 such that

~EF,B* BEF!5~C,B* BC! ;BPRb~Ô!8. ~67!

It follows that V:Hb→Hb , given by

VBC5BEF ;BPRb~Ô!8, ~68!

defines an isometry. BothF andC are cyclic forRb(Ô)8, thusV is densely defined and its rang
spansEHb . Moreover,

CVBC5CBEF5VCBC ;CPRb~Ô!8. ~69!

ThusV commutes with allCPRb(Ô)8 on the dense set$BC:BPRb(Ô)8%,Hb and therefore

VPRb(Ô). h

Remark:The Borchers property has interesting consequences for the actual prepara

states: Given an arbitrary statev on Rb(O)∨Rb(Ô)8, we set

vV~C!ªv~V* CV! ;CPRb~O!VR~Ô!8. ~70!

It follows that

vV~E!5v~V* VV* V!51 and vV~12E!50. ~71!

Moreover,

vV~B!5v~V* BV!5v~B! ;BPR~Ô!8. ~72!

This demonstrates that the Borchers property allows us to prepare a statevV which satisfies the
properties~71! and ~72! by a strictly local operation. We emphasize that the state given rem

completely unchanged in the spatial complement ofÔ. This is a remarkable difference to the usu
collapse of the wave-function type of preparation.
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Nonrelativistic quantum Hamiltonian for Lorentz violation
V. Alan Kostelecký and Charles D. Lane
Physics Department, Indiana University, Bloomington, Indiana 47405
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A method is presented for deriving the nonrelativistic quantum Hamiltonian of a
free massive fermion from the relativistic Lagrangian of the Lorentz-violating
standard-model extension. It permits the extraction of terms at arbitrary order in a
Foldy–Wouthuysen expansion in inverse powers of the mass. The quantum particle
Hamiltonian is obtained and its nonrelativistic limit is given explicitly to third
order. © 1999 American Institute of Physics.@S0022-2488~99!01712-0#

I. INTRODUCTION

Establishing the physical relevance of a Lagrangian in relativistic quantum field theory
requires a determination of its nonrelativistic content. The Foldy–Wouthuysen~FW!
transformation1 provides a systematic approach to understanding the low-energy effects of c
theories. Given the relativistic quantum Hamiltonian for a theory of massive four-compo
fermions, the nonrelativistic quantum Hamiltonian for the corresponding two-component pa
can be derived in an expansion in inverse powers of the fermion mass.

In this work, we use generalized FW methods to investigate the quantum particle Hamilt
that describes the physics of a free massive two-component fermion emerging from the rela
Lagrangian of the Lorentz-violating standard-model extension.2 This standard-model extension
based on the idea of spontaneous Lorentz breaking in an underlying theory3 and has been used fo
various investigations placing constraints on possible violations of Lorentz symmetry,2,4–15several
of which depend crucially on the nonrelativistic physics of free massive fermions. In these i
tigations, specific terms in the nonrelativistic Hamiltonian have been derived as needed, bu
treatment has been lacking. Here, we provide a systematic approach that permits extractio
relevant terms in the nonrelativistic Hamiltonian at arbitrary order in the FW approximation
obtain the quantum particle Hamiltonian and provide explicitly the form of the nonrelativ
Hamiltonian to third order. Our results are directly relevant to recent analyses of muon
clock-comparison experiments14,15 and are expected to have substantial impact on further stu
of the physical implications of the standard-model extension.

The general form of the relativistic Lagrangian for a free spin-1
2 Dirac fermionc of massm in

the standard-model extension is2

L5 1
2i c̄~gn1cmngm1dmng5gm1en1 i f ng51 1

2glmnslm! ]Jnc

2c̄~m1amgm1bmg5gm1 1
2Hmnsmn!c. ~1!

This is a generalization of the usual relativistic Lagrangian for a free massive Dirac fermion
Dirac matrices$1,g5 ,gm,g5gm,smn% have conventional properties, and the Minkowski metrichmn

has signature22. The parametersam , bm , cmn , dmn , em , f m , glmn , andHmn control the extent
of Lorentz violation in the theory. In a given observer inertial frame, they can be regarded as
real Lorentz vectors or tensors. Note thatHmn can be taken as antisymmetric,cmn and dmn as
traceless, andglmn as antisymmetric in the first two indices. Since Lorentz symmetry is know
be valid to high precision, any nonzero parameters in nature would need to be minuscu
therefore restrict our attention in this work to terms linear in these parameters.

In Sec. II, the relativistic particle–antiparticle HamiltonianH corresponding to the Lagrangia
~1! is obtained. Some basic information about our procedure for extracting its FW form is
62450022-2488/99/40(12)/6245/9/$15.00 © 1999 American Institute of Physics
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cussed in Sec. III, together with our definition of the relevant FW sequence. Features o
sequence are derived in Sec. IV, and the quantum particle Hamiltonian and its nonrelativisti
to third order are explicitly presented in Sec. V.

II. RELATIVISTIC QUANTUM HAMILTONIAN

The first step in deriving low-energy effects of the Lorentz-violating terms is to obtain
relativistic HamiltonianH associated with the Lagrangian~1!. However, methods for direct con
struction ofH are inadequate because Eq.~1! contains couplings involving time derivatives. Fo
example, applying the Euler–Lagrange equations toL and solving forH from the equation
i ]0c5Hc results in a non-Hermitian Hamiltonian and a corresponding nonunitary time evolu

One method of bypassing this technical difficulty is to perform a field redefinitionc5Ax in
the Langrangian,5 with A chosen such that the dependence of the Lagrangian on]0x is just that of
the usual Dirac Lagrangian. Then, the wave function associated withx evolves conventionally in
time. The field redefinition leaves unchanged the physics, while it causes the time-deri
couplings to be replaced by extra terms in the Lagrangian.

To implement this idea, we write the Lagrangian~1! in the forms

L[ 1
2i c̄Gn ]Jnc2c̄Mc5 1

2i x̄g0]J0x1 1
2i x̄~ĀG jA! ]J jx2x̄~ĀMA!x, ~2!

where Gn and M are defined according to the correspondence with Eq.~1!, and c̄5x̄Ā with
Āªg0A†g0. In the second expression the Lorentz indices are separated into timelike and
like Cartesian components,m[0 and j 51, 2, 3, with summation on repeated indices understo

The choice

A512 1
2g

0~G02g0!, Ā512 1
2~G02g0!g0 ~3!

implements the equality~2! to linear order in the parameters for Lorentz violation. Derivation
the relativistic HamiltonianH can then proceed through the Euler–Lagrange equations, which
the form of a modified Dirac equation:

~ iĀGmA]m2ĀMA!x50. ~4!

We find

H52g0ĀG jApj1g0ĀMA, ~5!

where the three-momentum of the particle is denotedpj , andH obeys the equationi ]0x5Hx.
Explicitly, the relativistic Hamiltonian can be written

H5m~g01P01O01E0!, ~6!

where

mP0ª2pjg
0g j ,

mO0ª@2b01~d0 j1dj 0!pj #g51@aj2~cjk2c00h jk!pk#g0g j1 i f j p
jg5g0

1 i @H0 j1~gj 0k1gjk0!pk#g j ,
~7!

mE0ª@a02~c0 j1cj 0!pj2me0#1@2bj1~djk2d00h jk!pk2 1
2meklmh jmgkl0#g5g0g j

2@mc001ej p
j #g02@ 1

2e
klmh jmHkl1mdj 02e lmnh jn~ 1

2glmk2hkmgl00!p
k#g5g j .
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In these expressions, the totally antisymmetric rotation tensore jkl satisfiese123511 and e jkl

52e jkl . The particular decomposition ofH into the four terms in~6! is chosen for later conve
nience.

As an aside, we remark that the relativistic Hamiltonian is also readily found if the theor~1!
is extended to include a minimal coupling to a U(1) gauge fieldAm . It suffices to replace the
partial derivativei ]m in Eq. ~1! with the covariant derivativeiD mª i ]m2qAm , whereq is the
particle charge. The relativistic Hamiltonian then has the same form as in Eqs.~6! and~7!, except
that all occurrences ofpj must be replaced withp jªpj2qAj and the termqA0 must be added to
Eq. ~6!. The resulting Hamiltonian is relevant, for example, for studies of Lorentz-violating eff
in quantum electrodynamics.

III. DEFINITION OF THE FW SEQUENCE

In the strict nonrelativistic limit, the lower two components of the relativistic wave functiox
are negligible, so the upper two components ofx suffice to determine the nonrelativistic partic
behavior. However, more generally the Dirac equation couples the upper and lower compon
x. The object of the Foldy–Wouthuysen procedure is to find a~momentum-dependent! unitary
transformation

H°H̃ªeiSHe2 iS5exp@ad~ iS!#H, ~8!

where ad(X)Yª@X,Y#, such thatH̃ is 232 block diagonal. This therefore decouples the up
and lower components of the FW-transformed wave functionfªeiSx. Requiring hermiticity ofS
ensures thateiS is unitary. It follows thatH̃ is Hermitian and that both HamiltoniansH and H̃
describe the same physics. The FW transformation amounts to a unitary rotation in the H
space of the free-particle states that preserves the dominance of the upper two componen
wave function. The quantum particle Hamiltonianhrel and the nonrelativistic limith we seek are
given by the leading 232 block of H̃.

Solving directly forH̃ would be of interest but is challenging in the general case. Instead
present a method that allows approximation ofH̃ to arbitrary accuracy in an expansion in powe
of upW u/m. The basic idea is to apply a succession of transformations of the type~8!, chosen so that
each iteration of the transformed Hamiltonian has a smaller block off-diagonal part tha
previous one. The exact FW transformation is the limit of this sequence. Although more
approaches can yield a low-order approximation toh without the use of our method, the resul
derived here permit straightforward calculation ofhrel and ofh to any desired order.

For definiteness in what follows, we work within the Dirac-Pauli representation of the D
matrices, for which

g05S 1 0

0 21D , g j5S 0 s j

2s j 0 D ,

wheres j are the usual Pauli matrices. We define a matrix to beevenif it is block diagonal andodd
if it is block off-diagonal. Any 434 matrixX can be uniquely written as the sum of an even p
and an odd part,X5even(X)1odd(X), where odd(X)5 1

2g
0@g0,X# and even(X)5 1

2g
0$g0,X%.

We seek a sequence of FW transformations such that the odd part of the Hamiltonia
gressively decreases in some suitable matrix norm, such asiAiªmaxa,b$uAabu% for a,b51,2,3,4. In
the remainder of this section, an appropriate sequence$Hn% of Hamiltonians is introduced. Fo
eachn, we also introduce a parametertn that turns out to provide a measure of the size
odd(Hn). We show in Sec. IV that with our definition for the FW sequence roughlyN iterations
are needed to arrive at a nonrelativistic Hamiltonian that is even to order (upW u/m)(3N21).

To start the FW sequence, choose

H05m0~g01P01O01E0!, ~9!
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wherem0ªm and the termsP0 , O0 , andE0 are defined in Eq.~7!. This decomposition ofH0 into
four parts has the following useful properties:~i! P0 andO0 are odd;~ii ! E0 is even;~iii ! O0 and
E0 are first order in parameters for Lorentz violation, so products of these quantities c
neglected; and~iv! P0

2 is proportional to the 434 Dirac identity matrix, with proportionality
coefficient t0

25upW u2/m2. We choose for the initial FW transformation the Hermitian matrixS0

defined by

iS0ª
1

2m0
g0@odd~H0!#5 1

2g
0~P01O0!. ~10!

This choice ensures that the odd part of exp@ad(iS0)#H0 is smaller than the odd part ofH0 .
Our FW sequence is then defined iteratively by

~11!

and

iSn11ª
1

2mn11
g0@odd~Hn11!#. ~12!

Note that

Hn115H )
k50

n

exp@ad~ iSk!#J H0 , ~13!

where the product represents map composition.
In Sec. IV, we find that eachHn11 can be written in the form

Hn115mn11~g01Pn111On111En11!, ~14!

where the decomposition has the following useful properties:~i! Pn11 andOn11 are odd;~ii ! En11

is even;~iii ! On11 andEn11 are first order in parameters for Lorentz violation; and~iv! Pn11
2 is

proportional to the identity matrix, with proportionality coefficienttn11
2 determined bytn

2. The
existence of a decomposition of the form~14! for arbitraryn, as well as the case~9! above, is a key
feature making it feasible to calculate the quantum particle Hamiltonian.

IV. CALCULATION OF THE FW SEQUENCE

To calculate the FW sequence defined in Sec. III, the explicit form is needed of the op
exp@ad(iSn)# connectingHn to Hn11 according to Eq.~11!. Although ad(iSn)Hn can be obtained
directly using the properties of the Dirac matrices, calculation of exp@ad(iSj )#Hn is more chal-
lenging because it is defined by an infinite series. To address this issue, we adopt the fol
approach: regard ad(iSn) as a linear map on a suitable vector spaceVn containing bothHn and
Hn11 , and find a matrix expression of this map that can be exponentiated.

The first step in implementing this approach is to defineVn for eachn. It is convenient to
introduce Vn as the span of a set of basis vectorsBn , defined in terms of the operator
g0,Pn ,On ,En determiningHn together with the particular combinations of these four opera
that determine ad(iSn)Hn and thus alsoHn11 . For eachn, we define the ordered set

Bnª$g0,Pn ,On ,Pn$Pn ,On%,g
0@Pn ,En#,En ,g0$Pn ,On%,Pn@Pn ,En#%. ~15!
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The eight-dimensional vector spaceVn is formally defined as the real span of this set, so
elements ofBn by definition form a~linearly independent! basis. One advantage of this vect
space is its relatively small dimensionality, which makes it susceptible to practical calculation
can thus specify a vectorVPVn by eight componentsV1 ,...,V8 :

VªV1g01V2Pn1V3On1V4Pn$Pn ,On%1V5g0@Pn ,En#

1V6En1V7g0$Pn ,On%1V8Pn@Pn ,En#

↔~V1 ,...,V8!. ~16!

For example,Hn↔mn(1,1,1,0,0,1,0,0).
The reader is warned to avoid confusing the properties of the elements~15! as a basis for the

vector spaceVn with their possible relationships when viewed as operators on the Hilbert spa
wave functions. For example, the calculations below hold even if certain basis elements va
operators. Note also that for differentn the corresponding vector spacesVn differ a priori. How-
ever, since bothHnPVn and Hn11PVn , the vector spaceVn is invariant under the action o
exp@ad(iSn)#, which meansVn$Vn11 for all n.

With the above notation, we can present the results of a direct calculation of ad(iSn)V for
VPVn performed using the properties of the Dirac matrices:

ad~ iSn!V↔~ tn
2V2 ,2V1 ,2V1 ,2V7 , 1

2V61tn
2V8,0,12V21 1

2V31tn
2V4 ,2V5!. ~17!

In this expression,tn
2 is determined iteratively fromtn21

2 through the relation

tn11
2 5S costn2

sintn

tn

costn1tn sintn

D 2

tn
2. ~18!

Here and in what follows, we define functions oftn through their power-series expressions. A
relevant functions oftn implicitly involve only powers of tn

2 ~and hence powers oft0
2

5upW u2/m2), so it suffices to definetn
2. Note thattn11;tn

3 to leading order intn , sotn;t0
(3n) . This

means thattn rapidly approaches zero ift0!1, which ultimately is the reason for the rap
convergence of our FW sequence.

With respect to the basisBn , the matrix map of ad(iSn) can be extracted from Eq.~17! and
is given by

ad~ iSn!↔1
0 tn

2 0 0 0 0 0 0

21 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

0 0 0 0 0 0 21 0

0 0 0 0 0 1
2 0 tn

2

0 0 0 0 0 0 0 0

0 1
2

1
2 tn

2 0 0 0 0

0 0 0 0 21 0 0 0

2 . ~19!

The exponential of this matrix can be found in closed form, but its detailed expression is
portant. It can be used to calculate exp@ad(iSn)#Hn , which allows us to expressHn11 in terms of
Hn according to Eq.~14! with
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mn115~costn1tn sintn!mn , mn11Pn115S costn2
sintn

tn
DmnPn ,

mn11On115S costn2
sintn

tn
DmnOn1

1

2tn
2 S sintn

tn
2tn sintn2costnDmnPn$Pn ,On%

1
sintn

2tn
mng0@Pn ,En#, ~20!

mn11En115mnEn1~ 1
2costn!mng0$Pn ,On%1S costn21

2tn
2 DmnPn@Pn ,En#.

A measure of the convergence of the FW sequence can be introduced usingtn;t0
(3n) . In terms

of a suitable matrix norm,iodd(Hn11)i;tn
2iodd(Hn)i1tniE0i;t0

2(3n)iodd(Hn)i1t0
(3n)iE0i .

Thus, asn grows iodd(Hn)i rapidly approaches zero as (upW u/m)3n
. Even a relatively small value

of n can therefore produce a good approximation to the quantum particle Hamiltonian.

V. NONRELATIVISTIC QUANTUM HAMILTONIAN

The quantum particle Hamiltonianhrel and its nonrelativistic quantum limith are generated in
the limit of the FW sequence studied in the last section. Next, we demonstrate how to obtain
using simple matrix multiplication, and we explicitly presenthrel andh to ordert0

3.
The calculation at thekth-iteration level in the FW sequence requires obtaining the compo

map )n50
k exp@ad(iSn)#. For eachn in the FW sequence, the matrix ad(iSn) and the action of

exp@ad(iSn)# are given with respect to the basisBn . Since in general the vector spaceVn varies
with n, immediate calculation of)n50

k exp@ad(iSn)# by matrix multiplication is inappropriate
Instead, we first obtain the components of each matrix with respect to the special basB0 .
Ordinary matrix multiplication can then be used to derive)n50

k exp@ad(iSn)#.
The matrix for each map exp@ad(iSn)# can be expressed in terms oftn . Explicitly, the

nonzero entries for exp@ad(iSn)# with respect to the basisB0 are:

exp@ad~ iSn!#↔1
cn1tn

2sn 0 0 0 0 0 0 0

0 cn2sn 0 0 0 0 0 0

0 0 cn2sn 0 0 0 0 0

0 0 ~sn2tn
2sn2cn!/2t0

2 2tn
2sn 0 0 2tnsn /t0 0

0 0 0 0 2tn
2sn tnsn/2t0 0 t0tnsn

0 0 0 0 0 1 0 0

0 0 tncn/2t0 t0tncn 0 0 cn 0

0 0 0 0 2tncn /t0 ~cn21!/2t0
2 0 cn

2 ,

~21!

where we have definedcnªcostn'121
2tn

2, andsnªsintn /tn'121
6tn

2.
Sincetn→0 asn→`, it follows that exp@ad(iSn)# becomes a diagonal matrix with entries~1,

0, 0, 0, 0, 1, 1, 1! in this limit. The product)n50
k exp@ad(iSn)# therefore converges ask→`, so

the limiting FW sequence giving the quantum particle Hamiltonian indeed exists. It can be s
that
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)
j 50

`

exp@ad~ iSj !#↔1
g 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0
1

2g
@ t0

2# 0 0 @12 1
2t0

2# 0

0 0 0 0 F211
1

2
t0
2G 2

1

2g~g11!
0 F12

1

2
t0
2G
2 ,

~22!

wheregªA11t0
2 is the usual relativistic gamma factor. Since the limiting FW Hamiltonian

obtained by applying this matrix toH0↔(1,1,1,0,0,1,0,0), the entries in brackets are irrelev
and so we have evaluated them only to ordert0

2. Thus, we find the limiting FW Hamiltonian to b

H̃5gm0g01m0E01
m0

2g
g0$P0 ,O0%2

m0

2g~g11!
P0@P0 ,E0#, ~23!

an expression that is accurate to all orders int0 . Substitution from Eq.~7! yields the explicit form

H̃5gmg01H a02me02m~c0 j1cj 0!
pj

mJ 1H 2
mc00

g
1~aj2mej !

pj

gm
2m~cjk2h jkc00!

pj pk

gm2J g0

1H 2~mdj 01 1
2e

kl
j Hkl!1F2

b0h jk

g
1me lm

j~
1
2glmk2hkmgl00!G pk

m

1Fm~d0l1dl0!2
~g21!m2

p2 ~mdl01 1
2e

mn
lHmn!Gh jk

plpk

gm2

1F ~g21!m2

2p2 menq
l gnqkGh jm

pkplpm

gm3 J g5g j

1H F2bj2
1

2
mekl

j gkl0G 1

g
1@e l

k jH0l1m~djk2h jkd00!#
pk

gm

1Fmem
l j ~gm0k1gmk0!1

~g21!m2

p2 h j l S bk1
1

2
memn

k gmn0D G pkpl

gm2

1F2
~g21!m2

p2 m~dkl2hkld00!Gh jm

pkplpm

gm3 J g5g0g j . ~24!

This equation gives the FW form of the relativistic quantum Hamiltonian for a four-compo
fermion.

Certain limiting forms of Eq.~24! are directly relevant to experiment. For applications invo
ing relativistic two-component particles, such as the analysis of muon storage-ring experim14

it suffices to retain only the upper left blockhrel of H̃:
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hrel5gm1S a02
mc00

g
2me0D1@aj2gm~c0 j1cj 0!2mej #

pj

gm

2m~cjk2h jkc00!
pj pk

gm2 1H F2
1

g
bj1mdj 01

1

2
ekl

jHkl2
1

2g
mekl

jgkl0G
1Fh jkb01m~djk2h jkd00!1e l

k jH0l2gme lm
j S 1

2
glmk2hkmgl00D G pk

gm

1F ~g21!m2

p2 S bk1mdk01
1

2
emn

kHmn1
1

2
memn

kgmn0Dh j l

2m~d0k1dk0!h j l 1mem
l j ~gm0k1gmk0!G pkpl

gm2

1
~g21!m2

p2 F2m~dkl2hkld00!2
1

2
menq

lgnqkGh jm

pkplpm

gm3 Js j . ~25!

This is the quantum particle Hamiltonian associated with the original Lorentz-violating theo
For many low-energy applications, including analyses of high-precision ato

experiments,5–8,15 only nonrelativistic and subleading relativistic terms in the quantum par
Hamiltonian are needed. To third order inupW u/m, the nonrelativistic quantum Hamiltonianh for
the two-component fermion is

h5m1
p2

2m
1~a02mc002me0!1S 2bj1mdj 02

1

2
me jklgkl01

1

2
e jklHklDs j

1@2aj1m~c0 j1cj 0!1mej #
pj

m

1Fb0d jk2m~dk j1d00d jk!2meklmS 1

2
gml j1gm00d j l D2e jklHl0G pj

m
sk

1FmS 2cjk2
1

2
c00d jkD G pj pk

m2

1H Fm~d0 j1dj 0!2
1

2 S bj1mdj 01
1

2
me jmngmn01

1

2
e jmnHmnD Gdkl

1
1

2 S bl1
1

2
me lmngmn0D d jk2me j lm~gm0k1gmk0!J pj pk

m2 s l1
1

2
~ajdkl2mejdkl!

pj pkpl

m3

1
1

2 F ~2b0d jm1mdm j1e jmnHn0!dkl1S 2mdjk2
1

2
meknpgnp jD d lmG pj pkpls

m

m3 . ~26!

Note that the form of Eq.~23! includes all even elements of the basis setB0 . This means that all
possible combinations of the parameters for Lorentz violation are already contained in Eq~26!.
Higher-order corrections to the nonrelativistic Hamiltonian involve only products of these
binations with powers ofupW u2/m2. One interesting implication of this result is that nonrelativis
experiments with single free fermions~or fermions in weak external fields! can at most be sensi
tive to the particular linear combinations of parameters for Lorentz violation appearing in Eq.~26!.
Disentangling individual parameters requires a different class of experiment.

As a final remark, note that our methods can also be used to obtain the nonrelativistic qu
Hamiltonianh̄ for the antifermion. The result forh̄ can be expressed in the same form as Eq.~26!,
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with the substitutionsam→ām52am , bm→b̄m51bm , cmn→ c̄mn51cmn , dmn→d̄mn52dmn ,
em→ēm52em , f m→ f̄ m52 f m , glmn→ḡlmn51glmn , Hmn→H̄mn52Hmn . This result is useful
for experiments testing Lorentz symmetry with antimatter.
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A simple method is proposed to construct the spectral zeta functions required for
calculating the electromagnetic vacuum energy with boundary conditions given on
a sphere or on an infinite cylinder. When calculating the Casimir energy in this
approach no exact divergencies appear and no renormalization is needed. The start-
ing point of the consideration is the representation of the zeta functions in terms of
contour integral, further the uniform asymptotic expansion of the Bessel function is
essentially used. After the analytic continuation, needed for calculating the Casimir
energy, the zeta functions are presented as infinite series containing the Riemann
zeta function with rapidly falling down terms. The spectral zeta functions are con-
structed exactly for a material ball and infinite cylinder placed in a uniform endless
medium under the condition that the velocity of light does not change when cross-
ing the interface. As a special case, perfectly conducting spherical and cylindrical
shells are also considered in the same line. In this approach one succeeds, specifi-
cally, in justifying, in mathematically rigorous way, the appearance of the contri-
bution to the Casimir energy for cylinder which is proportional to ln(2p). © 1999
American Institute of Physics.@S0022-2488~99!04507-7#

I. INTRODUCTION

A considerable achievement in theoretical investigations of the Casimir effect1,2 was its cal-
culation for massive fields~scalar and spinor! with boundary conditions on a sphere.3,4 The
various divergent contributions had been discussed in detail from the point of view of the ge
theory of adiabatic expansions~resp. heat kernel expansion!. In a subsequent paper5 it was clari-
fied in which cases the calculation of the Casimir energy, after the proper renormalization,
a meaningful~unique! result and in which not independently of the regularization used. F
massive field a well defined result can be obtained in any case using the normalization co
proposed there. Instead, for a massless field the heat kernel coefficienta2 must vanish in order to
allow for a meaningful calculation of the Casimir energy. For instance, this is the case
material body characterized by a polarizability and a permittivity when the speeds of light i
and outside are the same or their difference is small. The vanishing ofa2 for the Dirichlet and
Robin boundary conditions~and as a consequence for the conductor and bag boundary condi!
when taking inside and outside contributions together made Boyer’s6 and all subsequent calcula

a!Electronic mail: lambiase@physics.unisa.it
b!Electronic mail: nestr@thsun1.jinr.ru
c!Electronic mail: Michael.Bordag@itp.uni-leipzig.de
62540022-2488/99/40(12)/6254/12/$15.00 © 1999 American Institute of Physics
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tions possible and meaningful. When using a clever regularization~like the zeta functional one7,8!
it is even possible to avoid the appearance of divergencies other than that in the Minkowski
contribution at all.

Practically every problem on calculation of the Casimir energy~or force! has been considere
multiply with employment of more and more effective and elaborated mathematical method
example, the first calculation of the Casimir energy of a perfectly conducting spherical6

carried out by Boyer in 1968 has required computer calculations during 3 years.9 Later this
problem was considered in many papers.10–12 By making use of the modern methods13 it can be
solved practically without numerical calculations~with a precision of a few percent!. It requires
only the application of the uniform asymptotic expansion for the Bessel functions.

In recent papers14,15 the Casimir energy of a compact ball16 and infinite cylinder has been
calculated by making use of the mode-by-mode summation technique. In these problems tw
appear, over the roots of radial frequency equation at fixed value of angular momentum an
over angular momentum. The either of these sums is divergent. In papers14,15 for each of these
summation a separate regularization has been used. The first summation was carried
applying the contour integration with subsequent subtraction of the contribution of an in
homogeneous space. The second sum was evaluated by making use of the Riemannz function
technique. However the procedure of analytic continuation, required by rigorous approach, h
been considered there.

The present paper pursues the aim to eliminate the minor points of preceding consider
i.e., the Casimir energy for two configurations mentioned above will be calculated by the rig
z function techniques, and the analytic continuation of the relevant spectralz functions will be
carried out exactly. An essential advantage of this regularization procedure is that no man
divergent expressions arise in its framework, and it gives a final finite result without any su
tions ~renormalizations!.

The layout of this paper is as follows. In Sec. II, the spectral zeta function is constructe
a compact ball placed in uniform endless medium when the light velocity is the same insid
outside the ball. As a special case the zeta function for perfectly conducting spherical shell
considered. In Sec. III the spectral functions for infinite cylinder are constructed under the
conditions. These results provide a firm footing for the previous calculations of the Casimir e
for given boundary conditions by making use of a ‘‘naive’’ zeta function method. In Sec. IV
obtained results are shortly discussed.

II. CASIMIR ENERGY OF A COMPACT BALL UNDER THE CONDITION em51

In the z function method7,8 the Casimir energyEC is defined in the following way. Letvp’s
be the eigenfrequencies of the quantum field system under the influence of the boundary
tions, and letv̄p’s be the same frequencies when the boundaries are removed. By making
this spectrum one defines thez function for the problem in hand,

z~s!5(
$p%

~vp
2s2v̄p

2s!. ~2.1!

Here the summation~or integration! should be done over all the quantum numbers$p% specifying
the spectrum. The parameters is considered at first to belong to region of the complex plans
where the sum~2.1! exists. Further the analytic continuation of~2.1! to the points521 should be
constructed. After that one puts

EC5 1
2z~s521!. ~2.2!

Let us consider a solid ball of radiusa, consisting of a material which is characterized
permittivity e1 and permeabilitym1 . The ball is assumed to be placed in an infinite medium w
permittivity e2 and permeabilitym2 . The eigenfrequencies of electromagnetic field for this c
figuration are determined by the frequency equation for the TE modes,17
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D l
TE~av![Ae1m2 s̃l8~k1a!ẽl~k2a!2Ae2m1 s̃l~k1a!ẽl8~k2a!50, ~2.3!

and the analogous equation for the TM modes

D l
TM~av![Ae2m1 s̃l8~k1a!ẽl~k2a!2Ae1m2 s̃l~k1a!ẽl8~k2a!50, ~2.4!

whereki5Ae im iv, i 51,2 are the wave numbers inside and outside the ball, respectively.
s̃l(x) and ẽl(x) are the Riccati–Bessel functions,

s̃l~x!5Ap

2x
Jl 11/2~x!, ẽl~x!5Ap

2x
Hl 11/2

~1! ~x!, ~2.5!

and prime stands for the differentiation with respect to their arguments,k1a or k2a. The orbital
momentuml in Eqs.~2.3! and ~2.4! assumes the values 1,2,... .

As usual when one is dealing with an analytic continuation, it is convenient to represe
sum ~2.1! in terms of the contour integral

zC~s!5(
l 51

`
2l 11

2p i
lim

m→0
R

C
dz~z21m2!2s/2

d

dz
ln

D l
TE~az!D l

TM~az!

D l
TE~`!D l

TM~`!
, ~2.6!

where the contourC surrounds, counterclockwise, the roots of the frequency equations in the
half-plane. For brevity we write in~2.6! simply D l(`) instead of lima→` D l(az). Transition to the
complex frequenciesz in Eq. ~2.6! is accomplished by introducing the unphysical photon massm,

v→~z21m2!s/2um→0 . ~2.7!

Extension to the complexz-plane of the frequency equationsD l
TE(az) and D l

TM(az) should be
done in the following way. In the upper~lower! half-plane the Hankel functions of the firs
~second! kind Hn

(2)(az)(Hn
(1)(az)) must be used.18 Location of the roots of Eqs.~2.3! and ~2.4!

enables one to deform the contourC into a segment of the imaginary axis (2 iL,iL) and a
semicircle of radiusL in the right half-plane. WhenL tends to infinity the contribution along th
semicircle intozball(s) vanishes because the argument of the logarithmic function in the integ
tends in this case to 1. As a result we obtain

zball~s!52as(
l 51

`
~2l 11!

2p i
lim

m→0
E

2 i`

1 i`

dz~z21m2!2s/2
d

dz
ln

D l
TE~z!D l

TM~z!

D l
TE~`!D l

TM~`!
. ~2.8!

Now we impose the condition that the velocity of light inside and outside the ball is the sa

e1m15e2m25c22. ~2.9!

Under this assumption the argument of the logarithm in~2.8! can be simplified considerably14 with
the result

zball~s!5S c

aD 2s

(
l 51

`

~2l 11!
sin~ps/2!

p E
0

`

dyy2s
d

dy
ln@12j2s l

2~y!#, ~2.10!

where

j5
e12e2

e11e2
, s l~y!5

d

dy
@sl~y!el~y!#. ~2.11!

Heresl(y) andel(y) are the modified Riccati–Bessel functions,
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sl~x!5Apx

2
I n~x!, el~x!5A2x

p
Kn~x!, n5 l 11/2. ~2.12!

More details concerning the contour integral representation of the spectralz functions can be
found in Refs. 3, 19–21.

Further the analytic continuation of Eq.~2.10! is accomplished by expressing the sum ovel
in terms of the Riemannz function. This cannot be done in a closed form. Making use of
uniform asymptotic expansion~UAE! for the Bessel functions in increase powers of 1/n enables
one to construct the analytic continuation looked for in the form of the series, the terms of w
are expressed through the Riemannz function. The problem of the convergence of this series d
not arise because its terms go down very fast.

We demonstrate this keeping only two terms in the UAE for the product of the Be
functionsI n(nz)Kn(nz),22

I n~nz!Kn~nz!.
t

2n F11
t2~126t21t4!

8n2 1¯G , t5
1

A11z2
. ~2.13!

After changing the integration variabley5nz in Eq. ~2.10! we substitute~2.13! into this formula
and expand the logarithm function up to the ordern23 keeping at the same time only the term
linear in j2. The last assumption is not principal. It is introduced for simplicity and in orde
have possibility of a direct comparison with the results of Ref. 14. Thus we have

d

dz
lnH 12j2F d

dz
~zIn~nz!Kn~nz!!G2J

5
3

2

j2

n2 zt81
j2

16n4 zt8~2121216t22600t41420t6!1O~n26!. ~2.14!

Integration overz can be done by making use of the formula

E
0

`

z2a21tbdz5
1

2

GS a1b

2 DGS 2
a

2 D
GS b

2 D . ~2.15!

Also the properties of theG function,

G~z!G~12z!5
p

sinpz
, G~11z!5zG~z! ~2.16!

prove to be useful. After simple calculations we arrive at the result

zball~s!.
j2

32S c

aD 2s

s~21s!~41s!S (
l 51

`

n212s1p~s!(
l 51

`

n232s1¯ D , n5 l 11/2,

~2.17!

where

p~s!52
1

2 F12
9

4
~61s!1

5

8
~61s!~81s!2

7

192
~61s!~81s!~101s!G . ~2.18!

The zeta functionzball(s) represented in the form~2.17! is defined for Res.0 due to the first sum
over l. This term corresponds to the order 1/n in the uniform asymptotic expansion~2.13!. The
second sum in~2.17!, defined at Res.22, has been generated by the term;1/n3 in Eq. ~2.13!.
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It is clear that the terms of order 1/n2k11 in ~2.13! will give rise to the singularity ofzball(s) at the
pointss522k, k50,1,2,... . Due to the multipliers in front of the square brackets in~2.17! the
first three singularities are really the indefinitenesses like 0•`.

The analytic continuation of Eqs.~2.17!, ~2.18! into the region Res<0 can be accomplished
by expressing the sums over angular momentuml through the Riemannz function according to the
formula,23

(
l 51

`

n2s5~2s21!z~s!22s, n5 l 11/2. ~2.19!

As a result one gets

zball~s!.
j2

32S c

aD 2s

s~21s!~41s!$~211s21!z~11s!

2211s1p~s!@~231s21!z~11s!2231s#1¯%. ~2.20!

The singularities in Eq.~2.17! are transformed in~2.20! into the poles of the Riemannz functions
at the pointss52k, k50,1,2,...,

z~11s!.
1

s
1g1¯ , s→0,

z~31s!.
1

s12
1g1¯ , s→22, ~2.21!

z~51s!.
1

s14
1g1¯ , s→24,

whereg is the Euler constant. The first three poles are annihilated by the multipliers in front o
curly brackets in Eq.~2.20!. The first surviving singularity~simple pole! appears only at the poin
s526. Thus the formula~2.20! affords the required analytic continuation of the functionzball(s)
into the region Res,0. In view of Eq.~2.2! we are interested in the points521, wherezball(s)
given by ~2.20! is regular,

zball~21!5
3j2c

32a F11
9

128S p2

2
24D1¯G . ~2.22!

It is exactly the first two terms in Eq.~3.10! of Ref. 14. The procedure of analytic continuatio
presented above can be extended in a straightforward way to the arbitrary order of the u
asymptotic expansion~2.13!. Certainly in this case analytical calculations should be done
making use ofMATHEMATICA or MAPLE.

The problem under consideration withj51 is of a special interest because in this case it gi
the Casimir energy of a perfectly conducting spherical shell. As it was noted above, this co
ration has been considered by many authors. We present here the basic formulas which af
analytical continuation of the corresponding spectralz function. We again content ourselves wi
two terms in the UAE~2.13!. It is impossible to put simplyj51 in the next formula~2.14!. One
has to do the expansion here anew keeping all the terms;1/n4. This gives

d

dz
lnH 12F d

dz
~zIn~nz!Kn~nz!!G2J 5F 3

2n2 zt81
3

4n4 zt8~21118t2250t4135t6!1O~n26!G .
~2.23!
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After integration and elementary simplifications we arrive at the following result for the spe
zeta function in hand,

zshell~s!.
1

32a2s s~21s!~41s!F(
l 51

`

n212s1q~s!(
l 51

`

n232s1¯G , ~2.24!

where

q~s!5
1

3840
~4801868s1504s2171s3!. ~2.25!

Obviously formula~2.23! has the same singularities as Eq.~2.17!, i.e., it is defined for Res.0.
The analytic continuation is accomplished by making use of Eq.~2.19!,

zshell~s!.
1

32a2s s~21s!~41s!$~211s21!z~11s!

2211s1q~s!@~231s21!z~31s!2231s#1¯%. ~2.26!

The nearest singularity in this formula is simple pole ats526. As above it is originated in the
term ;1/n7 in the UAE ~2.13!. At the points521 the spectral zeta functionzshell(s) is regular
and gives the following value for the Casimir energy of a perfectly conducting spherical sh

Eshell~21!5
1

2
zshell~21!5

3

64a F12
3

256S p2

2
24D1¯G5

1

a
0.046361... . ~2.27!

Without considering the analytic continuation and by not carrying out the analysis of the s
larities in the complexs plane this result has been obtained in Ref. 13.

Undoubtedly, the calculation of the Casimir energy of a nonmagnetic dielectric ball (e1m1

Þe2m2) by a rigorousz function method is also of a special interest. However, in this case
very definition of the spectral zeta function should probably be changed in order to incorpora
contact terms which seem to be essential in this problem.24–26

III. VACUUM ENERGY OF ELECTROMAGNETIC FIELD WITH BOUNDARY CONDITIONS
GIVEN ON AN INFINITE CYLINDER

Calculation of the Casimir energy of an infinite cylinder27,15 proves to be a more involved
problem in comparison with that for a sphere. In this section the spectral zeta functionzcyl(s), for
this configuration will be constructed, its analytical continuation into the left half-plane of
complex variables will be carried out, and relevant singularities will be analyzed.

Thus we are considering an infinite cylinder of radiusa which is placed in a uniform un-
bounded medium. The permittivity and the permeability of the material making up the cylinde
e1 andm1 , respectively, and those for the surrounding medium aree2 andm2 . We assume again
that the condition~2.9! is fulfilled. In this case the electromagnetic oscillations can again
divided into the transverse-electric~TE! modes and transverse-magnetic~TM! modes. In terms of
the cylindrical coordinates (r ,u,z) the eigenfunctions of the given boundary value problem c
tain the multiplier

exp~6 ivt1 ikzz1 inu! ~3.1!

and their dependence onr is described by the Bassel functionsJn for r ,a and by the Hankel
functionsHn

(1) or Hn
(2) for r .a. The frequencies of TE- and TM-modes are determined, res

tively, by the equations17

Dn
TE~l,a![la@m1Jn8~la!Hn~la!2m1Jn~la!Hn~la!8#50, ~3.2!
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Dn
TM~l,a![la@e1Jn8~la!Hn~la!2e1Jn~la!Hn~la!8#50, ~3.3!

wheren50,61,62,... . Herel is the eigenvalue of the corresponding transverse~membranelike!
boundary value problem

l25
v2

c2 2kz
2. ~3.4!

In a complete analogy with the preceding section we define the Casimir energy per unit len
the cylinder through the spectral zeta function

Ecyl5
1
2zcyl~21!. ~3.5!

Let lnr be the roots of the frequency Eqs.~3.2! and~3.3!, then the functionzcyl(s) is introduced
in the following way:

zcyl~s!5c2sE
2`

1` dkz

2p (
n,r

@~lnr~a!1kz
2!2s/22~lnr~`!1kz

2!2s/2#. ~3.6!

In terms of the contour integral it can be represented in the form

zcyl~s!5
c2s

2p i E2`

1` dkz

2p (
n52`

1` R
C
~l21kz

2!2s/2dl ln
Dn

TE~la!Dn
TM~la!

Dn
TE~`!Dn

TM~`!
. ~3.7!

Again we can take the contourC to consist of the imaginary axis (1 i`,2 i`) closed by a
semicircle of an infinitely large radius in the right half-plane. Continuation of the express
Dn

TE(la) and Dn
TM(la) into the complex planel should be done in the same way as in t

preceding section, i.e., by usingHn
(1)(l) for Im l,0 andHn

(2)(l) for Im l.0. On the semicircle
the argument of the logarithm in Eq.~3.7! tends to 1. As a result this part of the contourC does
not give any contribution into the zeta functionzcyl(s). When integrating along the imaginary ax
we choose the branch line of the functionf(l)5(l21kz

2)2s/2 to run between2 ikz and1 ikz ,
wherekz51Akz

2.0 and use further that branch of this function which assumes real values
uyu,kz , wherey5Im l. More precisely we have

f~ iy !5H e2 ips/2~y22kz
2!2s/2, y.kz ,

~kz
22y2!2s/2, uyu,kz ,

eips/2~y22kz
2!2s/2, y,2kz .

~3.8!

Employment of the Hankel functionsHn
(1)(l) andHn

(2)(l) by extending the expressionsDn
TE(l)

andDn
TM(l) into the complex planel, as it was noted above, gives rise to the argument of

logarithm function depending only ony2 on the imaginary axis. It means that the derivative of t
logarithm is an odd function ofy. As a result the segment of the imaginary axis (2 ikz ,1 ikz)
gives zero, and Eq.~3.7! acquires the form

zcyl~s!5
c2s

p2 sin
ps

2 (
n52`

1` E
0

`

dkzE
kz

`

~y22kz
2!2s/2dy ln

DTE~ iay!nDn
TM~ iay!

Dn
TE~ i`!Dn

TM~ i`!
. ~3.9!

Changing the order of integration ofkz andy and taking into account the value of the integral

E
0

y

dkz~y22kz
2!2s/25

Ap

2
y12s

GS 12
s

2D
GS 32s

2 D , Res,2, ~3.10!
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we obtain after the substitutionay→y,

zcyl~s!5
1

2ApaGS s

2DGS 32s

2 D S c

aD 2s

(
n52`

1` E
0

`

dyy12s
d

dy
ln@12j2mn

2~y!#, ~3.11!

where

mn~y!5y~ I n~y!Kn~y!!8, j5
e12e2

e11e2
. ~3.12!

We shall again content ourselves with the first two terms in the uniform asymptotic expa
~2.13! and take into account only the terms linear inj2. In this approximation, upon changing th
integration variabley5nz, n561,62,..., we have

lnH 12j2Fz
d

dz
~ I n~nz!Kn~nz!!G2J 52j2

z4t6

4n2 F11
t2

4n2 ~3230t2135t4!1O~n24!G . ~3.13!

Now we substitute~3.13! into all the terms in~3.11! with nÞ0. The term withn50 in this sum
will be treated by subtracting and adding to the logarithmic function the quantity

2
j2

4

y4

~11y2!3 . ~3.14!

As a result the zeta functionzcyl(s) can be presented now as the sum of three terms,

jcyl~s!5Z1~s!1Z2~s!1Z3~s!, ~3.15!

where

Z1~s!5

S c

aD 2s

2ApaGS s

2DGS 32s

2 D E0

`

dyy12s
d

dy H ln@12j2m0
2~y!#1

j2

4
y4t6J , ~3.16!

Z2~s!52j2S c

aD 2s 2(n51
1` n2s2111

8ApaGS s

2DGS 32s

2 D E0

`

dzz12s
d

dz
~z4t6!, ~3.17!

Z3~s!52j2

2S c

aD 2s

(n51
1` n232s

32ApaGS s

2DGS 32s

2 D E0

`

dzz12s
d

dz
@z4t8~3230t2135t4!#. ~3.18!

In these equationsZ1(s) has accumulated the term withn50 from Eq. ~3.11! subtracted by
~3.14!; Z2(s) involves the contribution of the term of order 1/n2 in expansion~3.13! and the added
expression~3.14!; Z3(s) is generated by the terms of order 1/n4 in the expansion~3.13!.

Taking into account that

m0
2~y!uy→0→1 and m0

2~y!uy→`→ 1

4y2 1
3

16y4 , ~3.19!

the integration by parts in Eq.~3.16! can be done for23,Res,1 with the result
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Z1~s!5
s21

2ApaGS s

2DGS 32s

2 D S c

aD 2sE
0

`

dyy2sH ln@12j2m0
2~y!#1

j2

4
y4t6~y!J . ~3.20!

With allowance for~3.19! one infers easily that the functionZ1(s) is an analytic function of the
complex variables in the region23,Res,1. In the linear order ofj2 it reduces to

Z1
lin~s!5j2

s21

2ApaGS s

2DGS 32s

2 D S c

aD 2sE
0

`

dyy2sF y2

4~11y2!32m0
2~y!G . ~3.21!

This function is also analytic in the region23,Res,1. Integration in Eq.~3.17! can be accom-
plished exactly by making use of the formula

E
0

`

dzz12s
d

dz
~z4t6!5

s21

4
GS 11s

2 DGS 52s

2 D , 21,Res,5. ~3.22!

This gives forZ2(s) in ~3.17!,

Z2~s!5j2S c

aD 2s ~12s!~32s!

64Apa
S 2(

n51

`

n2s2111D GS 11s

2
D

GS s

2D . ~3.23!

In view of the sum overn in ~3.23! the functionZ2(s) is defined only for Res.0.
For simplicity we apply in Eq.~3.18! the integration by parts which is correct for23

,Res,2 and leads to the result,

Z3~s!5j2S c

aD 2s ~12s!~32s!~7s224s227!

6144Apa

GS 31s

2 D
GS s

2D (
n51

`

n2s23. ~3.24!

Again the sum overn in ~3.24! gives the restriction Res.22 for definition of the functionZ3(s).
Thus the spectral zeta functionzcyl(s) in the linear approximation with respect toj2 and with

allowance for the first two terms in the UAE~3.13! is given by

zcyl~s!5Z1
lin~s!1Z2~s!1Z3~s!, ~3.25!

where theZ’s are presented in Eqs.~3.21!, ~3.23!, and ~3.24!, respectively. Summing up all th
restrictions on the complex variables which have been imposed when deriving Eqs.~3.21!, ~3.23!,
and ~3.24!, we infer thatzcyl(s) is defined in the strip 0,Res,1. In order to continue these
equations into the surroundings of the points521, it is sufficient to express the sum in Eq.~3.23!
in terms of the Riemannz function and consider the right-hand side of Eq.~3.22! as an analytic
continuation of its left-hand side to this region,

Z2~s!5j2S c

aD 2s ~12s!~32s!

64Apa
@2z~s11!11#

GS 11s

2 D
GS s

2D . ~3.26!
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It is left now to take the limits→21 in Eqs.~3.21!, ~3.23!, and~3.26!. A special care should be
paid when calculating this limit in~3.26! in view of the poles of the functionG((11s)/2) at this
point. Using the values

z~0!52 1
2, z8~0!52 1

2 ln 2p, G8~1!52g, ~3.27!

one derives

lim
s→21

@2z~11s!11#GS 11s

2 D5 lim
s→21

@2z~0!12z8~0!~11s!1O~~11s!2!11#

3F 2

11s
2g1O~11s!G522 ln~2p!. ~3.28!

With allowance for this we obtain from~3.26!

Z2~21!5
cj2

2pa2

1

4
ln~2p!. ~3.29!

The appearance of the finite term proportional to ln(2p) is remarkable for the problem unde
consideration. It is derived here in a consistent way by making use of an analytic continuat
the relevant spectral zeta function. In Ref. 15 it was obtained in a more transparent thou
rigorous way.

Gathering together Eqs.~3.21!, ~3.24! with s521 and Eq.~3.29! we have

jcyl~21!5
cj2

2pa2 H E
0

`

ydyF y4

4~11y2!32m0
2~y!G1

1

48 (
n51

1`
1

n2 1
1

4
ln~2p!J

5
cj2

2pa2 ~20.49087810.3426910.459469!5
cj2

2pa2 0.002860. ~3.30!

This result is not the final answer in the problem in hand. The point is that in view of se
cancellations in~3.30! the contribution of the next term in the UAE~3.13! proves to be essentia
Its account gives15

zcyl~21!50. ~3.31!

Thus the Casimir energy of a compact cylinder possessing the same speed of light insi
outside proves to be zero. The consideration presented in this section can be extended to
term of order;1/n6 in the UAE ~3.13! in a straightforward way. Therefore we shall not pres
here these rather cumbersome expressions.28

Now we address the consideration of a special case whenj51. It corresponds to a perfectl
conducting cylindrical shell.15 Instead of the expansion~3.13! we have

lnH 12Fz
d

dz
~ I n~nz!Kn~nz!!G2J 52

z4t6

4n2 F11
t2

4n2 S 3230t2135t41
1

2
z4t4D1O~n24!G . ~3.32!

Proceeding in the same way as above we obtain for the spectral zeta function concerned

zcyl
shell~s!5Z1~s!1Z2~s!1Z3~s!, ~3.33!

whereZ1(s) is given by Eq.~3.20! with c51, j51, Z2(s) is the same as in Eq.~3.26! with c
51, andZ3(s) now is
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Z3~s!5
~12s!~32s!~71s2252s2235!

61440Apa12s

GS 31s

2 D
GS s

2D (
n51

1`

n232s. ~3.34!

At the points521 it has the value

zcyl
shell~21!5

1

2pa2 ~20.6517!1
1

2pa2

7

480(
n51

1`
1

n2 1
1

8pa2 ln~2p!

5
1

2pa2 ~20.651710.024010.4595!52
1

a2 0.0268. ~3.35!

This exactly reproduces the contribution of the first two terms in calculations of the Ca
energy for cylindrical shell in Ref. 15. With higher accuracy this energy is given by27

Ecyl
shell52

1

a2 0.01356. ~3.36!

In a recent paper29 the vacuum energy of a perfectly conducting cylindrical surface has b
calculated to much higher accuracy by making use of another version of the zeta function
nique. By integrating overdkz directly in Eq. ~3.6! the authors reduced this problem to inves
gation of the zeta function for circle, which has been considered earlier by introducing the p
wave zeta functions for interior and exterior region separately. In this respect our approach d
only with one spectral zeta function for given boundary conditions proves to be more simpl
straightforward.

IV. CONCLUSION

The method for constructing the spectral zeta functions developed here proceeds fro
contour integral representation with a subsequent employment of the uniform asymptotic e
sions for the Bessel functions. Upon an analytic continuation the zeta functions prove
presented as~infinite! series over the Riemannz functions with rapidly decreasing terms@see, for
example, Eqs.~2.20! and ~2.26!#.

We did not pursue here the goal of obtaining high accuracy when calculating the Ca
energy. In fact we seek to present the consideration in such a form that no manifest diverg
appear. An obvious advantage of the regularization method in hand does not need any ren
ization.

By treating the boundary condition given on an infinite cylinder, we have clearly dem
strated the importance of a consistent analytic continuation of the relevant spectral zeta fu
in contrast to identifying simply the sum of the type(n51

` n2s with the Riemannz function, in
order to involve correctly the contributions to the Casimir energy proportional to ln(2p).

Consideration in this framework of the same configuration of vacuum electromagnetic
but with different velocities of light inside and outside the boundaries probably will demand
modification of the definition of the spectral zeta functions for incorporating in a proper wa
contact terms important in this case.24–26
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Quasilinearization method and its verification on exactly
solvable models in quantum mechanics
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The proof of the convergence of the quasilinearization method of Bellman and
Kalaba, whose origin lies in the theory of linear programming, is extended to large
and infinite domains and to singular functionals in order to enable the application of
the method to physical problems. This powerful method approximates solution of
nonlinear differential equations by treating the nonlinear terms as a perturbation
about the linear ones, and is not based, unlike perturbation theories, on existence of
some kind of small parameter. The general properties of the method, particularly its
uniform and quadratic convergence, which often also is monotonic, are analyzed
and verified on exactly solvable models in quantum mechanics. Namely, applica-
tion of the method to scattering length calculations in the variable phase method
shows that each approximation of the method sums many orders of the perturbation
theory and that the method reproduces properly the singular structure of the exact
solutions. The method provides final and reasonable answers for infinite values of
the coupling constant and is able to handle even super singular potentials for which
each term of the perturbation theory is infinite and the perturbation expansion does
not exist. © 1999 American Institute of Physics.@S0022-2488~99!01812-5#

I. INTRODUCTION

Most problems of physics are not solvable exactly and therefore should be tackled wi
help of analytical or numerical approximation methods. In quantum mechanics and quantum
theory over the years many such methods were developed, from perturbation theories, We
Kramers–Brillouin~WKB! approach and Monte Carlo simulations to lattice computations, str
coupling approximation, 1/N expansion, and so on. The purpose of this paper is to ap
quantum mechanical problems an additional very powerful approximation technique calle
quasilinearization method~QLM!, whose origin lies in the theory of linear programming. T
method, whose iterations are carefully constructed to yield rapid quadratic convergence an
monotonicity, was developed around 30 years ago by Bellman and Kalaba to solve a wide
of nonlinear ordinary and partial differential equations or their systems arising in such diff
physics, engineering, and biology problems as orbit determination, detection of periodi
radiative transfer, and cardiology.1,2 The modern developments and applications of the metho
different fields are given in Ref. 3. QLM, however, was never systematically studied or e
sively applied in quantum physics though references to it could be found in well-kn
monographs4,5 dealing with the variable phase approach to potential scattering as well as in
scattered research papers.6–9 This could be explained by the fact that convergence of the me
has been proved only under rather restrictive conditions1,2 which generally are not fulfilled in
physical applications, such as, for example, a rather small domain of variables or forces wh
finite everywhere in the domain~see the following!. A goal of this work is to reformulate the proo
of the convergence for more realistic physical conditions of infinite domains and forces w

a!Electronic-mail: victor@vms.huji.ac.il
62660022-2488/99/40(12)/6266/26/$15.00 © 1999 American Institute of Physics
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could be singular at certain points of the domains. We also show how to deal with solutions
themselves could be infinite at certain values of variable such as, for example, scattering
tudes at values corresponding to bound state energies, etc.

Since this is our first paper on the subject, in order to make presentation as simple an
as possible, we limit ourselves to the case of the first-order nonlinear ordinary differential eq
in one variable. Physically this covers the quantum mechanics of one particle in a centra
since in this case the Schro¨dinger equation for a wave function could be rewritten as the Ric
equation for its logarithmic derivative.

Our proof of the convergence of the quasilinearization method for a general nonlinear
nary or partialnth order differential equation inN-dimensional space could be formulated alo
the same lines and will be given in a subsequent article.

The paper is arranged as follows. In Sec. II we present the main ideas and conditio
convergence of the quasilinearization approach, formulated by Bellman and Kalaba1,2 for the case
of the first-order nonlinear ordinary differential equation in one variable, and modify their pro
order to meet the physical reality of infinite interval of the variable or the possibility of sing
potentials. In order to highlight the power of the method in Sec. III we consider exampl
different singular and nonsingular, attractive and repulsive potentialsV(r ) for which the nonlinear
first-order ordinary differential equation

da~r !

dr
52V~r !~r 1a~r !!2, a~0!50, ~1.1!

for an S-wave scattering lengtha05a(`), obtained in variable phase approach,4,5 can be solved
exactly and compare the iterations obtained by the Bellman–Kalaba linearization method
exact solutions and with the usual perturbation theory. Our results, advantages of the meth
its possible future applications are discussed in Sec. IV.

II. THE QUASILINEARIZATION METHOD „QLM…

The aim of QLM is to obtain the solutionv(z) of a nonlinear first-order differential equatio

dv~z!

dz
5g~v~z!,z! ~2.1!

with the boundary conditionv(a)5c as a limit of a sequence of linear differential equations. T
goal is easily understandable in view of the fact that there is no useful technique of present
general solution of Eq.~2.1! in terms of a finite set of particular solutions as in a linear case wh
as a result of the superposition property, the equation could be solved analytically or nume
in a convenient fashion. In addition, the sequence should be constructed in such a way as to
quadratic convergence and, if possible, monotonicity.

The shift of the coordinatez5x1a and of the solution itselfu(x)5v(x1a)2c reduces Eq.
~1! to the canonical form10

du~x!

dx
5 f ~u~x!,x!, u~0!50, ~2.2!

where f (u(x),x)[g(u(x)1c,x1a).
The QLM prescription1,2 determines then11 iterative approximationun11(x) to the solution

of Eq. ~2.2! as a solution of

un118 ~x!5 f ~un ,x!1~un11~x!2un~x!! f u~un ,x!, un11~0!50, ~2.3!
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where the functionf u(u,x)5 ] f (u,x)/]u is a functional derivative of a functionalf (u(x),x). If
one definesm as an upper limit of a maximum of absolute values of the functional and its first
second functional derivatives

max~ u f ~u~x!,x!u,u f u~u,x!u,u 1
2 f uu~u,x!u!<m,`, ~2.4!

one can prove that the sequence of iterationsun(x), n51,2, . . . convergesuniformly and qua-
dratically on the interval@0,b# to solutionu(x) of Eq. ~2.2! for bm sufficiently small. Indeed,
introducing the metricigi of the functiong(x) as a maximum of the function on the interv
@0,b#,

igi5maxug~x!u,0<x<b, ~2.5!

and introducing notationsDun11(x)5u(x)2un(x), dun11(x)5un11(x)2un(x) one proves1,2

the following inequalities:

iDun11i<kiDuni2, ~2.6!

idun11i<kiduni2, ~2.7!

k5
bm

12bm
, ~2.8!

which establish the uniform quadratic convergence of sequenceun(x) on @0,b# for sufficiently
smallbm. A simple induction of Eq.~2.7! shows2 thatdun11(x) for an arbitraryl ,n satisfies the
inequality

idun11i<~kidul 11i !2n2 l
/k, ~2.9!

or for l 50,

idun11i<~kidu1i !2n
/k. ~2.10!

The convergence depends therefore upon the quantityq15kiu12u0i , where zero iterationu0(x)
satisfies the conditionu0(0)50 and is chosen from physical and mathematical consideration
view of Eq. ~2.8! the convergence is reached ifbm is sufficiently small. However, from Eq.~2.9!
it follows that for the convergence it is sufficient that just one of the quantitiesqm5kidum11i will
be small enough. Consequently, one can always hope2 that even if the first convergent coefficien
q1 is large a well chosen initial approximationu0 results in a smallness of at least one of t
convergence coefficientsqm , m.1, which enables a rapid convergence of the iteration series
n.m.

One can prove in addition1,2 that the convergence is monotonic from below~above!, if func-
tional f (u(x),x) is strictly convex~concave!, that is if the second functional derivativef uu(u,x) in
interval @0,b# exists and is strictly positive~negative!.

The QLM treats the nonlinear terms as a perturbation about the linear ones1,2 and is not based
unlike perturbation theories, on the existence of some kind of small parameter. In the pr
Bellman and Kalaba, a small parameter,bm, however, does appear sort of through the back do
The requirement of smallbm is unfortunately too restrictive in most physical problems wherem
and b are often large or infinite, sincex normally changes in an infinite domain and ma
potentials are infinite at some points in the domain. For example, in the case of the variable
equation—Eq.~1.1!, since most of the realistic forces, like Yukawa, Coulomb, van der Waals
hard core potentials, are infinite at origin, a function

f ~a~x!,x!52V~x!~x1a~x!!2 ~2.11!
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or its first

f a~a~x!,x!522V~x!~x1a~x!! ~2.12!

or second

f aa~a~x!,x!522V~x! ~2.13!

functional derivatives, are infinite at the origin. This meansm5`, which is a zero convergenc
interval. However it has been well known for a long time4,5,11 that a first approximation of QLM
gives finite and reasonable results even for super singular 1/r n , n>4 potentials for which all the
terms of the usual perturbation theory are strongly divergent. It indicates that the conditiobm
being small may be too restrictive and should be relaxed.

Our goal now is to modernize the proof of uniform quadratic convergence of QLM so
requirement of smallness of an interval for largem as well as the requirement ofm being finite is
removed. Let us subtract from both sides of Eq.~2.2! a termh(w(x),x)u(x), wherew(x) and
h(w(x),x) are some arbitrary function and functional, respectively, which we chose later
obtain

du~x!

dx
2h~w~x!,x!u~x!5 f ~u~x!,x!2h~w~x!,x!u~x!, u~0!50. ~2.14!

The integral form of Eq.~2.14! is

u~x!5E
0

x

ds~ f ~u~s!,s!2h~w~s!,s!u~s!!expE
s

x

dth~w~ t !,t !, ~2.15!

or, in case of nonzero boundary conditionu(0)5c,

u~x!5c expE
0

x

dth~w~ t !,t !1E
0

x

ds~ f ~u~s!,s!2h~w~s!,s!u~s!!expE
s

x

dth~w~ t !,t !,

~2.16!

which can be checked easily by a simple differentiation.
We consider three different forms of functionw(x) and its functionalh(w(x),x):

h~w~x!,x!)[0, ~2.17!

h~w~x!,x!5 f w~w~x!,x!, w~x![0, ~2.18!

h~w~x!,x!5 f w~w~x!,x!, w~x![u~x!. ~2.19!

We can now define the iteration scheme by setting the functionu(x) on the right equal to itsnth
approximationun(x) and obtaining the (n11)th approximation on the left-hand side. The ze
approximationu0(x) is chosen from some mathematical or physical considerations and sa
the boundary conditionu0(0)50. We get three different iteration schemes, corresponding to
~2.17!–~2.19!, respectively:

un11~x!5E
0

x

ds~ f ~un~s!,s!, ~2.20!

un11~x!5E
0

x

ds~ f ~un~s!,s!2 f u~0,s!un~s!!expE
s

x

dt fu~0,t !, ~2.21!

and
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un11~x!5E
0

x

ds~ f ~un~s!,s!2 f u~un~s!,s!un~s!!expE
s

x

dt fu~un~ t !,t !. ~2.22!

In case of nonzero boundary conditionu(0)5c the iteration sequence should be slightly modifie
For example, in this case, according to Eq.~2.16!, Eq. ~2.22! has a somewhat different form
namely

un11~x!5c expE
0

x

dt fu~un~ t !,t !1E
0

x

ds~ f ~un~s!,s!2 f u~un~s!,s!un~s!!expE
s

x

dt fu~un~ t !,t !.

~2.23!

Let us concentrate in the beginning on Eq.~2.22!, which, being the solution of Eq.~2.3!,
displays the iteration sequence of the QLM. The subtraction of Eq.~2.3! for n andn21 gives a
similar differential equation for the differencedun11(x)5un11(x)2un(x):

dun118 ~x!5 f ~un~x!,x!2 f ~un21~x!,x!1dun11~x! f u~un~x!,x!2dun~x! f u~un21~x!,x!,

dun11~0!50. ~2.24!

By use of the mean value theorem12 one can write

f ~un~x!,x!5 f ~un21~x!,x!1dun~x! f u~un21~x!,x!1 1
2 f uu~ ūn~x!,x!dun

2~x!, ~2.25!

whereūn(x) lies betweenun(x) andun21(x). As a result Eq.~2.24! could be written as

dun118 ~x!2dun11~x! f u~un~x!,x!5 1
2 f uu~ ūn~x!!dun

2~x!, ~2.26!

whose solution has a form

dun11~x!5
1

2 E
0

x

ds fuu~ ūn~s!,s!dun
2~s!expE

s

x

dt fu~un~ t !,t !. ~2.27!

Obviously,

udun11~x!u<
1

2 E
0

x

dsu f uu~ ūn~s!,s!uudun~s!u2 expE
s

x

dt fu~un~ t !,t !

<kn~x!•udun~ x̄!u2<kn~b!•iduni2. ~2.28!

Here x̄ is the point on the interval@0,x# whereudun(x)u is maximal,

kn~x!5
1

2 E
0

x

dsu f uu~ ūn~s!,s!uexpE
s

x

dt fu~un~ t !,t !, ~2.29!

and positiveness of the integrand in Eq.~2.29! as well as definition~2.5! are used. Since Eq.~2.28!
is correct for anyx in the interval@0,b#, it is correct also for a value ofxP@0,b# for which
udun11(x)u reaches its maximal value. This gives

idun11i<kn~b!•iduni2. ~2.30!

Let us assume the boundness of the first two functional derivatives off (u(x),x)), that is the
existence of bounding functionsF(x) andG(x) which for anyu andx satisfy

f u~u~x!,x!)<F~x!, u f uu~u~x!,x!u<G~x!. ~2.31!
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In this casekn(b)<k(b), where

k~b!5
1

2 E
0

b

ds G~s!expE
s

b

dt F~ t !, ~2.32!

and Eq.~2.30! could be written in the form

idun11i<k~b!•iduni2, ~2.33!

which is identical to Eq.~2.7! but with k5k(b) instead ofk given by Eq.~2.8!. We can reproduce
the results of Bellman and Kalaba1,2 by following their bounding restriction Eq.~2.4! and setting
F(x)5m, G(x)52m. In this case the integrals in Eq.~2.32! could be easily calculated and giv
k(b)5 (12e2mb)/e2mb, which for smallmb reduces to the expression fork given by Eq.~2.8!.
However, as we will see in different examples in Sec. III,k(b) given by Eq.~2.32!, unlikek given
by Eq. ~2.8!, could be sufficiently small also for an infinite interval lengthb and for singular
functionsG(x) andF(x). This means that the quantityq1(b),

q1~b!5k~b!iu12u0i , ~2.34!

which is responsible for the convergence@see the discussion after Eq.~2.10!# could be less than
unity and thus assure the convergence even in this case. As was pointed out there, th
convergence is actually enough that an initial guess for zero iteration is sufficiently good to e
the smallness of just one of the convergence coefficientsqm(b)5k(b)ium112umi .

With the uniform quadratic convergence of the sequenceun(x) for the intervals@0,b# in
which at least one of the convergence coefficientsqm(b),1 now proven, one can conclude from
Eq. ~2.27!, that in addition for strictly convex~concave! functionals f (u(x),x) the difference
un11(x)2un(x) is strictly positive~negative!, which establishes the monotonicity of the conve
gence from below~above!, respectively, on this interval.

If F(x) is a sign-definite function andG(x)5uF(x)u, the integral in Eq.~2.32! could be taken
explicitly and produces a simple expression fork(b),

k~b!5
1

2
uexpE

0

b

dt F~ t !21u. ~2.35!

The subtraction of Eq.~2.3! from Eq. ~2.2! gives

Dun118 ~x!5 f ~u,x!2 f ~un~x!,x!1Dun11~x! f u~un~x!,x!2Dun~x! f u~un~x!,x!,

Dun11~0!50, ~2.36!

which is similar to Eq.~2.24!—the starting point for our derivation of Eq.~2.33!. The derivation
along the same lines, starting from Eq.~2.36!, gives the analog of Eq.~2.6! with k changed to
k(b):

iDun11i<k~b!•iDuni2. ~2.37!

Equation~2.31! again confirms the uniform quadratic convergence of the sequenceun to a solution
u(x) of Eq. ~2.2!. One can show in exactly the same fashion as before that for strictly co
~concave! functionals f (u(x),x) differenceDun11 is strictly positive~negative!, proving in this
case the monotonic convergence to a limiting functionu from below ~above!, respectively.

In case the solutionu(x) and, respectively, its iterationsun(x) are going to infinity at some
points on interval@0,b#, Eq. ~2.22! could become meaningless. To deal with it, it is necessar
regularize Eq.~2.2!, that is reformulate it in terms of a new functionv(x) which is finite, as, for
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example, to change to functionv(x)5 1/u(x) for uu(x)u.1, the prescription which is used in th
present work, or to setu(x)5tanv(x) as it was suggested in Refs. 13 and 14. The correspon
nonlinear equations forv(x) have the form

dv~x!

dx
52v~x!2f S 1

v~x!
,xD , v~0!5u~c!, uu~c!u51, ~2.38!

and

dv~x!

dx
5cos2 v~x! f ~ tanv~x!,x!, v~0!50, ~2.39!

respectively.
Let us now turn our attention to the iteration sequences given by Eqs.~2.20! and~2.21!. These

successive approximation schemes were considered by Picard15 and Calogero, Babikov, and Flue
gge~CBF!,4,5,11 respectively. The quadratic convergence, reached in QLM, is based on a sp
choice of functionw(x) and its functionalh(w(x),x) given by Eq.~2.19! which, in view of the
mean value theorem of Eq.~2.25!, assures cancellation of the first power ofdun(x) andDun(x) in
recurrence relations of Eqs.~2.24! and~2.36!, respectively. Such cancellation will not happen f
the Picard and CBF choices ofw(x) andh(w(x),x), given by Eqs.~2.17! and~2.18!. One obtains,
therefore, for these approximation schemes the usual inequality characteristic of the firs
convergence

idun11i,piduni , ~2.40!

wherep is a correspondent convergence coefficient. This leads, instead of the very rapid 2n-power
type of convergence, displayed in Eqs.~2.33! and ~2.37!, to the much slower geometric conve
gence

idun11i,pnidu1i . ~2.41!

III. QLM SCATTERING LENGTH CALCULATIONS AND THEIR COMPARISON WITH THE
PERTURBATION THEORY AND EXACT SOLUTIONS

In Sec. II we proved that the QLM successive approximations to the exact solutionu(x) of
Eq. ~2.22! given by Eq.~2.2! converge quadratically and uniformly on interval@0,b#, whereb is
found from the requirement that one of the convergent coefficientsqm(b) defined in a paragraph
following Eq. ~2.34! is less than unity. In addition for strictly convex~concave! functionals
f (u(x),x) the convergence to a limiting functionu is monotonic from below~above!, respec-
tively.

In order to highlight the power of the method in this section we consider examples of diff
singular and nonsingular, attractive and repulsive potentials for which the nonlinear first-
ordinary differential equation for anS-wave scattering length, Eq.~1.1!, obtained in variable phas
approach4,5 could be solved exactly. We will compare the iterations obtained by the Bellm
Kalaba quasilinearization method~QLM! with exact solutions and with the usual perturbati
theory.

A. Square well potential

1. Repulsive square well

Let us start from the repulsive square well potential

V~r !5
l

R2 Q~R2r !, ~3.1!
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whereQ(R2r ) is the Heavyside function andl is a potential strength, which for now is assum
to be positive. The change of variables to the dimensionless variablex5Al(r /R) and dimension-
less functionA(x)5Al@a(x R/Al)#/R allows one to express Eq.~1.1! for x<x0 , x05Al in a
form

dA~x!

dx
52~x1A~x!!2, A~0!50. ~3.2!

For x.x0 A(x) is a constant equal to the dimensionless scattering lengthA05Al(a0 /R), the
scattering length itself beinga0[a(R). A further change of the function tou(x)5x1A(x) gives
a familiar equation for the hyperbolic tangent,

du~x!

dx
512u2~x!, u~0!50. ~3.3!

The exact variable scattering lengtha(r ) for the repulsive square well potential is therefore

a~r !5
R

Al
tanhSAl

r

RD2r , ~3.4!

while the scattering length is given by

a05RS tanhAl

Al
21D [RS tanhx0

x0
21D . ~3.5!

Here we use the Calogero definition of the scattering length4

a05 limk→0

tand~k!

k
, ~3.6!

d is a scattering phase, which is different in sign from the definition used in most publicatio
Before considering the QLM, let us turn to the usual perturbation theory. Displaying expl

the dependence of the potential on the coupling constantV(r )5lv(r ) and expandinga(r ) in
powers ofl, one obtains from Eq.~1.1!:

(
k51

`

lkak8~r !52lv~r !S r 1 (
n51

`

lnan~r !D 2

. ~3.7!

Comparisons of coefficients before the powers ofl gives the recurrence relation

ak8~r !52v~r !S r 2dk112rak21~r !1 (
n51

k22

ak2n21~r !•an~r !D , k51,2,3. . . ~3.8!

The successive integrations of Eq.~3.8! produce the expansiona(r ) in the powers of the coupling
constant. The first three terms of the perturbation expansion of the variable scattering leng
example, are

a1~r !52E
0

r

ds s2v~s!,

a2~r !52E
0

r

ds2sv~s!a1~s!, ~3.9!
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a3~r !52E
0

r

dsv~s!~2sa2~s!1a1
2~s!!,

and so on. Foru(x) this expansion gives

u~x!5x2
1

3
x31

2

15
x52

17

315
x71

62

2835
x92

1382

155 925
x111

21 844

6 081 075
x13

2
929 569

638 512 875
x151

6 404 582

10 854 718 875
x171O~x19!. ~3.10!

These series, of course, could also be obtained by using the power series expansion of tanhx). The
power expansion of scattering length is given by Eqs.~3.10! and~3.5!, the latter can be written in
the forma05R(@u(x0)/x0# 21).

Let us consider now the approximate QLM solutions of Eq.~3.3!, choosing as a zero approx
mation a solution of this equation for a very smallx: u0(x)5x. The recurrence relation~2.22!
now has the form

un11~x!5E
0

x

ds~11un
2~s!!expS 22E

s

x

dt un~ t ! D , ~3.11!

while thenth approximation to the scattering length is given by

a0,n5RS un~x0!

x0
21D . ~3.12!

The substitution of the zero iteration in Eq.~3.11! leads to a first-order approximation,

u1~x!52 i
Ap

4
erf~ ix !e2x2

1
x

2
, ~3.13!

where erf(x) is the error function.16 Expansion of~3.13! in power series enables a comparison w
perturbation series~3.10!,

u1~x!5x2
1

3
x31

2

15
x52

4

105
x71

8

945
x91O~x11!, ~3.14!

which shows that the first approximation reproduces exactly three terms of the perturbation
that is two more terms than was given correctly by the zero QLM approximationu0(x)5x. This
improvement of the representation of the perturbation series not by one, but by two powerl
is, of course, precisely what one should expect from the quadratic convergence. In additio
fourth term is also mostly correct being2 12

315 vis-a-vis exact2 17
315. The second iterationu2(x)

could not be calculated analytically, but could be computed numerically or expressed by
series expansion with the help of symbolic computation program.17 The latter gives

u2~x!5x2
1

3
x31

2

15
x52

17

315
x71

62

2835
x92

1382

155 925
x111

21 844

6 081 075
x13

2
918 844

638 512 875
x151

39 944

70 945 875
x171O~x19!. ~3.15!

One can see that the second iteration of QLM reproduces correctly the first seven terms
perturbation series, an improvement by 4 powers ofl compare with previous QLM approximatio
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u1(x). In addition, the eighth and ninth terms of the power series expansion ofu2(x) are very
close to their precise values in perturbation theory, being2 918 844

638 512 875 and, 5.6331024 vis-a-vis
exact values2 929 569

638 512 875and 5.9031024, respectively.
Aside from the fact that already first QLM approximations sum many orders of the u

perturbation theory, the QLM iterations, unlike the perturbation series, have meaning also
large or even infinite values of coupling constant. Indeed, forl→` any term of the perturbation
series is infinite. Even for a finite moderately large potential strengthl>2.5 perturbation expan
sion ~3.10! diverges since the power series expansion of the hyperbolic tangent ofx0 converges16

only for x0,p/2, that is forl,p2/4. On the other side, the QLM approximations to the scatter
length are finite. The first QLM approximation to scattering length~3.13! in view of an asymptotic
expression

erf~z!.S 12
e2z2

Apz
D ~3.16!

for uzu→`16 shows that the scattering length in this approximation equals2 R/2, a reasonable
approximation to exact valuea052R. The computation of the scattering length in the seco
QLM approximation gives again a finite and improved resulta052 3

4R.
To tackle more rigorously the question of convergence of the iteration series for dimen

less scattering lengthA0,n5a0,n /R given by Eqs.~3.11! and~3.12! to exact resultA05a0 /R let us
turn to the convergence condition demanding the smallness of convergence coefficient~2.34!,
which in this case is given by

q1~b!5k~b!ia0,12a0,0i5k~b!Iu1~x!2u0~x!

x I5k~b!•max0<x<bUu1~x!

x
21U. ~3.17!

To calculateq1(b) one first has to estimatek(b) using, for example, Eq.~2.35!. From Eq.
~3.3! and the boundary condition there followsu(2x)52u(x). We can consider therefore onl
positive branch of the solution whose extremum is reached whenu8(x)512u2(x)50, that is
whenu(x)51. This means that 0<u(x)<1. Since the first and second functional derivatives
f (u(x),x)512u2(x) equal 22u(x) and 22, respectively, one can setF(x)522 and G(x)
5uF(x)u52, which gives

k~b!5 1
2 ue22b21u< 1

2 . ~3.18!

In view of the fact that, due to the properties16 of the error functionu u1(x)/x 21u< 1
2 for all

positivex, one obtains thatq1(b)< 1
4 for all values ofb. Thus the convergence of QLM approx

mations Eq.~3.11!, and thereforea0,n , given by Eq.~3.12!, to the exact scattering lengtha0 in
case of the repulsive square well is uniform and quadratic for all values ofx0 , that is for all values
of coupling constantl.

2. Attractive square well

The same conclusions are correct also for the attractive square well potential the equati
which are obtained by changingl to 2l. The equation foru(x) now has a form

du~x!

dx
511u2~x!, u~0!50. ~3.19!

Its solution is

u~x!5tanx ~3.20!

and the scattering length is given by
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a05RS tanAl

Al
21D [RS u~x0!

x0
21D . ~3.21!

The QLM subsequent approximations are obtained with the help of recursion equations

un11~x!5E
0

x

ds~12un
2~s!!expS 2E

s

x

dt un~ t ! D . ~3.22!

Choosing the zero QLM approximation as before in formu0(x)5x leads to first QLM approxi-
mation,

u1~x!5
Ap

4
erf~x!ex2

1
x

2
. ~3.23!

Now there is, however, an additional difficulty, since exact scattering lengtha0(x0) is a singular
function ofx05Al and becomes infinite at values of the coupling constant corresponding to
bound state energiesl5((2n11) p/2)2. This finds reflection in the fact thatu1(x0) is increasing
very fast forx0 aroundp/2. To deal with it let us, in accordance with the discussion in Sec
regularize Eq.~3.19!, that is to rewrite it foruu(x)u.1 in terms of a new function

v~x!5
1

u~x!
. ~3.24!

Definingc as a singular point whereu(c)5` one obtains, according to Eq.~2.38!, the following
nonlinear equation forv(x):

dv~x!

dx
52~11v~x!2!, v~c!5

1

u~c!
50. ~3.25!

In view of Eq. ~3.19! a solution of Eq.~3.25! is v(x)5u(c2x). Equation~3.24! then gives

u~x!5
1

u~c2x!
. ~3.26!

Settingx5 c/2 allows us to write

u2S c

2D51 ~3.27!

for constant c. Since the solution of Eq.~3.19! should be an odd function ofx,

u~2x!52u~x!, ~3.28!

it is enough to choose only a positive branch of Eq.~3.27!, that is

uS c

2D51. ~3.29!

From Eqs.~3.26! and ~3.28! follows the 2c periodicity of solutionu(x): u(x12c)5 1/u(c2(x
12c)) 52 1/u(x1c) 52u(c2(c1x))5u(x). Thus it is enough to find a solution only on th
interval (0,2c). We can now formulate the following result.

The nth QLM approximationUn(x) to the solution of Eq.~3.19! on the interval@0,2cn#,
which is able to properly describe a singularity, is given by
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Un~x!5un~x!QS cn

2
2xDQ~x!1

1

un~cn2x!
QS x2

cn

2 DQS 3cn

2
2xD

1un~x22cn!QS x2
3cn

2 DQ~2cn2x!, ~3.30!

where thenth QLM approximationun(x) on interval (0,cn/2) is found with the help of recurrenc
relations Eq.~3.22! and thenth approximate valuecn of c is given by

unS cn

2 D51. ~3.31!

Computation ofcn/2 shows that the differences between the exact valuec5 p/2 and approximate
valuescn are very small already for the first and second QLM iterations, namely (c12 p/2) and
(c22 p/2) are 0.005 29 and 0.000 001 32, the errors of 0.5% and 1024%, respectively. Since the
nth QLM approximation, Eq.~3.30!, has a pole atx05cn , l5cn

2 gives a value of potentia
strength corresponding to a zero energy bound state. One sees that the QLM description
state is extremely accurate already in the first and especially in the second approximation

To prove the uniform quadratic convergence of the QLM iterations it is enough, in vie
Eqs.~3.28! and~3.30! to considerun(x) only on intervals (0,cn/2) which are very close to interva
(0,p/4). Since the first and second functional derivatives of the left-hand side of Eq.~3.19! are
2u(x) and 2, respectively, anduu(x)u<1, one can choseF(x)5G(x)52 and use Eq.~2.35!,
which produces a simple expression fork(b),

k~b!5 1
2 ~e2b21!. ~3.32!

This leads to the following result forq1(b):

q1~b!5
1

2
~e2b21!SAp

4
erf~b!eb2

2
b

2D . ~3.33!

A simple computation shows that 0,q1(b),1 for 0,b,0.92, which proves the uniform qua
dratic convergence of the QLM iterations on even larger interval~0,0.92! than interval (0,p/4) and
thus the convergence of the sequenceUn(x0) to the exact solution tanx0 on the interval (0,2cn)
'(0,p). In view of its 2cn'p periodicity thenth QLM approximationUn(x0) converges there-
fore to the exact solution for allx0 , that is for all values of the coupling constantl.

The extremely fast convergence of QLM approximations given by Eq.~3.30! is evident from
the ratios of the first@Eq. ~3.23!# and second@Eq. ~3.22! for n51] QLM iterations to the exact
solution ~3.20!, which are shown in Figs. 1 and 2, respectively.

B. d-function potential

In case of thed-function potential

V~r !5
l

R
d~r 2R!, ~3.34!

Eq. ~1.1! for the scattering length has the form

A8~x!5l~x2A~x!!2d~x21![l~12A~x!!2d~x21!, A~0!50, ~3.35!

where x5 r /R and A(x)52 a(r )/R are dimensionless variable and variable scattering len
respectively; note, that in Eq.~3.35! A(x) could not be set equalA(1), sinceA(x) is discontinu-
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ous atx51, its derivative being proportional to thed-function. Introduction of a new function
y(x)5lQ(x21), y(0)50, y(`)5l with a derivativedy(x)5ld(x21)dx reduces Eq.~3.35!
to the form

dA~y!

dy
5~12A~y!!2, A~y!y5050. ~3.36!

A solution of Eq.~3.36! is

A~y!5
y

11y
. ~3.37!

An exact solution of Eq.~1.1! for the d-potential thus is given bya(r )52RA(y)[2R @lQ(r
2R)#/@11lQ(r 2R)#. The scattering lengtha0 equalsa(r ) r 5`[2Rl/(11l). It is is singular
at l521, reflecting the existence of the zero energy bound state for the unit potential stre

FIG. 1. The ratio of the first QLM iteration to the exact solution for the attractive square well as a function of the po
strengthl ~axis x).

FIG. 2. Same as in Fig. 1, but for the second QLM approximation.
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1. Repulsive d-function potential

Let us now consider QLM approximations to the exact solution~3.37! in the case of the
repulsived-function potential,l.0. According to Eq.~2.22! they are given by the following
iteration sequence:

An11~y!5E
0

y

ds~12An
2~s!!expS 22E

s

y

dt(12An(t) D , ~3.38!

since the functional derivative of the right-hand part of Eq.~3.36! equals22(12A(y)). The
introduction of thenth approximationun(y)512An(y) to a function u(y)512A(y)5 1/(1
1y) helps to write recurrence relationship~3.38! in a simpler form:

un11~y!5expS 22E
0

y

dt un(t) D 1E
0

y

ds un
2~s!)expS 22E

s

y

dt un(t) D , ~3.39!

which coincides with the QLM iteration scheme~2.23! for Eq. ~3.36!, rewritten with the help of
the functionu(x)512A(x) as

u8~x!52u~x!2, u~0!51, ~3.40!

Since forx5` y5l, un(l) gives thenth approximation tou(l)512A0(l)5 1/(11l) where
A0(l) is the exact dimensionless scattering length.

Let us chose as a zero approximationu0(y)[u(0)51. The substitution in Eq.~3.39! for n
50 gives

u1~y!5 1
2 ~11e22y!. ~3.41!

One can see that already the first approximationu1(l) for l→` is finite and equals12, which
gives a value of12 for the approximate dimensionless scattering length vis-a-vis the exact v
A051. Each term in the perturbation series foru(l),

u~l!5 (
m50

`

~2l!m, ~3.42!

in this case is infinite while the perturbation expansion itself is divergent already forulu>1. The
comparison of perturbation expansion~3.42! with the perturbative expansion of the first QLM
approximation~3.41!,

u1~l!5 1
2 ~11e22l!512l1l22 2

3 l31 1
3 l42 2

15 l51O~l6!, ~3.43!

shows that in this approximation the perturbation series is correct up to the fourth term. The
second approximation also could be calculated analytically with the help of symbolic compu
program17 and gives the rather cumbersome expression

u2~l!521/4

22Aee22l
2e1/22l1A2p erfSe2l

&
DAee22l

e1/22e1/21l2A2p erfS 1

&
De1/2Aee22l

Aee22l
e1/2(2e22l12l11)

.

~3.44!
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For l→` the largest term both in the numerator and denominator ise1/21l. Thereforeu2(`)
5 1

4, which corresponds to the second QLM approximation toA0 being 3
4, a significant improve-

ment compared with the result, obtained in this limit in the first QLM approximation~3.41!. The
computation of the power series expansion yields

u2~l!512l1l22l31l42l51l62
62

63
l71

79

84
l82

4931

5670
l91O~l10!. ~3.45!

The perturbation series in the second QLM approximation is given correctly up to the se
term, while the coefficients of the eighth and ninth terms are different only by1

63 and 5
84, that is by

1.6% and 6%, respectively.
Analytic calculation of the third QLM approximation seems impossible but the power s

expansion could be evaluated with the help of the same program,17 which yields

u3~l!512l1l22l31l42l51l62l71l82l91l102l111l122l131l14

2
59 534

59 535
l151

1 904 891

1 905 120
l162

12 139 457

12 145 140
l17

1
161 721 779

161 935 200
l182

113 880 892 943

114 225 041 700
l191O~l20!. ~3.46!

In the third QLM approximation the first 15 terms of the perturbation series are given ex
while the next 5 terms have coefficients extremely close to being exact.

Summing up, the number of the terms given precisely in the zero, first, second, and third
approximations equals 1, 3, 7, and 15, increasing by 2, 22 and 23, respectively, that is accordin
to geometric progression withq52, exactly as one should expect from the quadratic law of
convergence. The numberNn of perturbation series terms reproduced exactly in thenth QLM
approximation is therefore

Nn5 (
k50

n

qk5
qn1121

q21
52n1121 ~3.47!

and for largern approximately doubles withn increasing by each unit. For example, the six
QLM approximation reproduces exactly 27215127 terms of the perturbation expansion, wh
the twelfth approximation reproduces already 2132158191 terms, and so on.

The numerical computation ofu3(`) gives 0.125, corresponding toA050.875, a finite and
gratifying result.

Comparison of the first three QLM approximationsun(l), n51,2,3 with exact solution
u(l)5 1/(11l) and its perturbation expansion~3.42! containing 15 terms~up tol14, inclusively!
for the d-function potential with the potential strengthl changing in the interval~0,10! is shown
graphically in Fig. 3. One can see that each subsequent QLM approximation reproduces th
solution better than the previous one up to infinite values of the coupling constant, while ev
15th-order perturbation theory is not able to describe the exact solution adequately beyl
51.

To prove the uniform quadratic convergence of QLM iterations let us note that the firs
second functional derivatives of the left hand side of Eq.~3.40! are22u(x) and22, respectively,
exactly as in the case of the repulsive square well which was discussed earlier. The extrema
of u(x), reached whenu8(x)52u2(x)50, is, obviously, zero, which, in view of boundar
condition u(0)51, means 0<u(x)<1. This allows one to choose the same functionsF(x)
522, G(x)52 as for the repulsive square well, and consequently results in the same expr
3.18 for k(b). Since it follows from Fig. 3 that the maximal difference between zero and
QLM approximationsiu1(x)2u1(x)i equals1

2, one obtains as beforeq1(b)< 1
4, which proves the

uniform quadratic convergence of the QLM iterations for all values ofb. This means that the
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convergence of subsequent QLM approximations to the exact scattering length for the rep
d-function potential is uniform and quadratic for all values of coupling constantl, including very
large and infinite ones.

2. Attractive d-function potential

For negativel the subsequent approximationsun(l) start to increase very rapidly withulu as
one can see, for example, from analytic expressions~3.41! and ~3.44!. According to discussion
before Eq.~2.38! we have to switch in this case in Eq.~3.40! to a new functionv(x)5 1/u(x),
which thus satisfies the trivial equationv8(x)51 with a boundary conditionv(0)51. The QLM
solution of this equation in thenth approximation, calculated from Eq.~2.23!, is vn(x)511x or
un(x)5 1/(11x) for any n, which means that this form of the equation for the attract
d-function potential generates an exact solution in any QLM approximation and there is no
for further investigation.

C. Inverse square potential

Let us consider now the inverse square potential

V~r !5
l

r 2 Q~R2r !, ~3.48!

wherel is the dimensionless coupling constant. As is well known,18 this potential produces a fal
to the center in case ofl,2 1

4. For r<R, Eq. ~1.1! for the scattering length could be written i
the form

A8~x!52lS 11
A~x!

x D 2

, A~0!50, ~3.49!

wherex5 r /R andA(x)5 a(r )/R are the dimensionless variable and variable scattering len
respectively; forx.1, A(x)[A(1) is a constant and represents the dimensionless scatt
lengthA0 . Looking for a solution in the formA(x)5xa(x), we obtain fora(x),

a8~x!52
1

x
@a~x!1l~11a~x!!2. ~3.50!

FIG. 3. Comparison of first three QLM approximationsun(l),n51,2,3, curves a, b, and c, respectively, with exa
solutionu(l)5 1/(11l), curve d, and its perturbation expansion~3.42!, curve e, containing 15 terms~up to l14, inclu-
sively!, for thed-function potential with the potential strengthl ~axis x) changing in the interval~0,10!.
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Note, that in this equation boundary conditiona(0)50 is not necessary:a(x) could be any
function regular atx50 so that conditionA(0)50 is satisfied. Settinga(x)5constant[A0 gives
an algebraic equationA052l(11A0)2 whose solution is given byA05212 1/2l (1
6A114l). Since for l→0 there should be no scattering only solution with the minus s
before the square root should be chosen, since only for this solutionA0→0 whenl→0. Setting
for convenienceg54l we finally obtain

A05212
2

g
~12A11g!. ~3.51!

The solution has a singularity, namely a branch point, atg521, that is atl52 1
4. The singularity

marks the beginning of interval2`,l,2 1
4 where a fall to the center takes place18 and the

expression for the scattering length becomes complex, its real and imaginary parts forg,21 are
given by

ReA05212
2

g
, Im A05

2

g
A212g. ~3.52!

Note that in view of our definition~3.6! of the scattering length one has to chose ImA0>0.18 The
perturbation series for the scattering length could be obtained by expansion of the square
Eq. ~3.51! in the power series which gives

A052
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g62

429

16 384
g7

1
715

32 768
g8

2431

131 072
g91

4199

262 144
g102

29 393

2 097 152
g111

52 003

4 194 304
g12

2
185 725

16 777 216
g131

334 305

33 554 432
g142

9 694 845

1 073 741 824
g151

17 678 835

2 147 483 648
g16

2
64 822 395

8 859 934 592
g171

119 409 675

17 179 869 184
g182

883 631 595

137 438 953 472
g19

1
1 641 030 105

274 877 906 944
g202

6 116 566 755

1 099 511 627 776
g211

11 435 320 455

2 199 023 255 552
g22

2
171 529 806 825

35 184 372 088 832
g231

322 476 036 831

70 368 744 177 664
g242

1 215 486 600 363

281 474 976 710 656
g25

1
2 295 919 134 019

562 949 953 421 312
g262

17 383 387 729 001

4 503 599 627 370 496
g27

1
32 968 493 968 795

9 007 199 254 740 992
g282

125 280 277 081 421

36 028 797 018 963 968
g29

1
238 436 656 380 769

72 057 594 037 927 936
g302

14 544 636 039 226 909

4 611 686 018 427 387 904
g31

1
27 767 032 438 524 099

9 223 372 036 854 775 808
g321O~g33!. ~3.53!

The expansion is convergent16 for ugu,1, that is forulu, 1
4.
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Let us now turn our attention to QLM approximations and their convergence. The Q
iterations sequences are easiest to find by considering differential form 2.3 of Eq.~2.22! which
could be written as

an118 ~x!52
1

x Fg

4
~12an

2~x!!1an11~x!S 11
g

2
~11an~x!! D G . ~3.54!

The assumption thatan(x) are constant functions,an(x)[cn , immediately establish the QLM
recurrence relationship

cn1152g
12cn

2

412g~11cn!
. ~3.55!

Note that sincecn11→0 wheng→0 each approximation to the scattering amplitude vanishes
g50 as it should be since in the absence of the potential there is no scattering. The conve
of the QLM iteration sequence to the exact solution~3.51! is obvious. Indeed, forn→`, Eq.
~3.55! is

c`52g
12c`

2

412g~11c`!
, ~3.56!

whose solution vanishing forg→0 is given by the expression forA0 in Eq. ~3.51!. The QLM
approximationcn to the dimensionless scattering length for an infiniten therefore indeed isc`

[A0 as we wanted to show.
The explicit calculation of the first few QLM approximations, starting from the usual in

guessc050 gives

c152
g

412g
, ~3.57!

c2521/4
~16116g13g2!g

~818g1g2!~21g!
, ~3.58!

c3521/8
~4096112 288g114 080g217680g312016g41224g517g6!g

~1281256g1160g2132g31g4!~21g!~818g1g2!
. ~3.59!

These expressions, unlike that of the perturbation theory, give finite values also forg.1 or even
for g5`, where the first, second, and third QLM approximations give2 1

2, 2 3
4, 2 7

8 vis-a-vis the
exact valueA0521; the fourth approximation, not given here because of its cumbersome f
results in2 15

16, and so on. The convergence of these values is from above in agreement w
law of convergence for the concave functions proved in Sec. II, since the second func
derivative2 l/x2 of the right-hand side of Eq.~3.49! is negative for the repulsive potential.

The expansion of the QLM approximations in the power series in the coupling constant s
as in previous examples that each QLM iteration sums exactly many perturbation series
whose number is given by Eq.~3.47!. One obtains:

c050, ~3.60!

c152
1

4
g1

1

8
g22

1

16
g31

1

32
g42

1

64
g51O~g6!, ~3.61!
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c252
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g6

2
107

4096
g71

177

8192
g82

593

32 768
g91O~g10!, ~3.62!

c352
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g62

429

16 384
g71

715

32 768
g8

2
2431

131 072
g91

4199

262 144
g102

29 393

2 097 152
g111

52 003

4 194 304
g122

185 725

16 777 216
g13

1
334 305

33 554 432
g142

2 423 711

268 435 456
g151

4 419 705

536 870 912
g162

16 205 537

2 147 483 648
g17

1
29 852 049

4 294 967 296
g182

220 900 693

34 359 738 368
g191O~g20!, ~3.63!

c452
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g62

429

16 384
g71

715

32 768
g8

2
2431

131 072
g91

4199

262 144
g102

29 393

2 097 152
g111

52 003

4 194 304
g12

185 725

16 777 216
g13

1
334 305

33 554 432
g142

9 694 845

1 073 741 824
g151

17 678 835

2 147 483 648
g162

64 822 395

8 589 934 592
g17

1
119 409 675

17 179 869 184
g182

883 631 595

137 438 953 472
g191

1 641 030 105

274 877 906 944
g20

2
6 116 566 755

1 099 511 627 776
g211

11 435 320 455

2 199 023 255 552
g222

171 529 806 825

35 184 372 088 832
g23

1
322 476 036 831

70 368 744 177 664
g242

1 215 486 600 363

281 474 976 710 656
g251

2 295 919 134 019

562 949 953 421 312
g26

2
17 383 387 729 001

4 503 599 627 370 496
g271

32 968 493 968 795

9 007 199 254 740 992
g28

2
125 280 277 081 421

36 028 797 018 963 968
g291

238 436 656 380 769

72 057 594 037 927 936
g30

2
3 636 159 009 806 727

1 152 921 504 606 846 976
g311

6 941 758 109 631 017

2 305 843 009 213 693 952
g321O~g33!. ~3.64!

Comparison of Eqs.~3.60!–~3.64! with Eq. ~3.53! shows that the QLM iterations withn
50,1,2,3,4 reproduce exactly 1,3,7,15,31 terms of the perturbation series, respectively, in
agreement with Eq.~3.47!, while the next few terms have coefficients extremely close to be
exact. The number of terms given precisely by the zero, first, second, third and fourth
approximations is increasing by 2, 22, 23 and 24, exactly as we saw earlier in the case of t
d-function potential and in precise agreement with the quadratic law of the convergence, pro
Sec. II. Due to simplicity of the algebraic recurrence relations~3.55! Eq. ~3.47! for numberNn of
the perturbation series terms given precisely by thenth QLM approximation could be checked fo
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higher QLM approximations. For example, in Sec. III B on the example of the repu
d-potential we concluded thatN65127. The simple calculation using a symbolic manipulati
program17 shows immediately that it is precisely the same for the inverse square potential. In
the first seven nonzero terms of the expansion in powers ofg of differenceA02c6 between exact
scattering length Eq.~3.51! and its sixth QLM approximation are

2
1

28 948 022 309 329 048 855 892 746 252 171 976 963 317 496 166 410 141 009 864 396 001 978 282 409 984
g127

1
127

57 896 044 618 658 097 711 785 492 504 343 953 926 634 992 332 820 282 019 728 792 003 956 564 819 968
g128,

2
16319

231 584 178 474 632 390 847 141 970 017 375 815 706 539 969 331 281 128 078 915 168 015 826 259 279 87
g129,

1
707 135

463 168 356 949 264 781 694 283 940 034 751 631 413 079 938 662 562 256 157 830 336 031 652 518 559 74
g130,

2
92 988 123

3 705 346 855 594 118 253 554 271 520 278 013 051 304 639 509 300 498 049 262 642 688 253 220 148 477 9
g131,

1
2 473 622 041

7 410 693 711 188 236 507 108 543 040 556 026 102 609 279 018 600 996 098 525 285 376 506 440 296 955 9
g132,

2
110 916 205 323

29 642 774 844 752 946 028 434 172 162 224 104 410 437 116 074 403 984 394 101 141 506 025 761 187 823 6
g133,

~3.65!

exactly as one expects from Eq.~3.47!. In addition, one can see that the next terms of
perturbation series are also reproduced extremely well, their difference with the precise
being infinitesimally small. Namely, the coefficient of 127th power ofg is about 3.45310276, the
coefficient of 128th power is about 2.19310274, and so on.

For the attractive potential expressions~3.57!–~3.59! become singular, with the number o
zeros of denominators increasing with each iteration. This, of course, is a reflection of the fa
the exact scattering lengthA0 has a branch point atg521 and a cut line along the real ax
betweeng521 andg52`. Whenn is increasing, the poles are getting closer and closer to e
other and fuse together atn5`, where, as we saw earlier, the exact amplitude and its singul
are reproduced.

To handle the singularities one can try, as we have discussed earlier, to consider instea
function a(x) a new functionb(x) such thata(x)5 1/b(x). Substitution of Eq.~3.65! into Eq.
~3.50! leads to

b8~x!5
1

x
@b~x!1l~11b~x!!2, ~3.66!

which is different from Eq.~3.50! only by the sign of the right-hand side. The QLM iteratio
sequence is found as before by considering differential form~2.3! of Eq. ~2.22!:

bn118 ~x!5
1

x Fg

4
~12bn

2~x!!1bn11~x!S 11
g

2
~11bn~x!! D G , ~3.67!

which leads under a previous assumption ofbn being a constant function,bn[cn , to exactly the
same QLM recurrence relations~3.55!. Again, the convergence of the QLM series follows fro
the fact that atn→` we have the same Eq.~3.56!, as before, with only distinction—since now th
scattering amplitude in the limitn5` is given by 1/b` , one should take a solution of thi
equation which is going to infinity atg→0 rather than to zero. Such solution is given by
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b`5212
2

g
~11A11g!. ~3.68!

The n5` QLM approximation to the scattering lengthA0 thus equals to

1

b`
5

1

212
2

g
~11A11g!

[212
2

g
~12A11g!, ~3.69!

which indeed coincides exactly with expression~3.51! for A0 .
Since the change tobn(x)5 1/an(x) does not give anything new, the only way to avoid t

singularities in the case of attractive potential seems therefore to use the fact that the ze
proximation could be an arbitrary, not necessarily real, number, and to choosec0 as a complex
number with a positive imaginary part of the same order as a real part. The necessity of ch
c0 complex in the case of the attractive potential follows also from the fact that in this case th
to the center happens. The inelastic cross section for zero energies, determined by the im
part of theS-wave scattering length,18 could not therefore be zero; however, from recurren
relations~3.55! it is obvious that unless the initial guessc0 is a complex number, all subseque
QLM approximations are real.

Comparison of real and imaginary parts of the scattering length with those calculated
second and third QLM approximations for an arbitrary initial guessa0511 i and for coupling
constant valuesulu<2 (ugu<8) is shown in Figs. 4–7. One can see that already for the sec
QLM iteration the agreement between the exact scattering length and the QLM approxima
it is quite good. It improves visibly for the next QLM iteration. For the fourth and next iterati
the distinction between exact and approximate scattering length is difficult to see and theref
correspondent graphs are not shown.

D. Inverse quartic potential

Our next and last example is the inverse quartic potential of radiusr,

V~r !5l
R2

r 4 Q~r2r !, ~3.70!

FIG. 4. Comparison of real parts of the exact scattering length~curve a! and of the second QLM approximation to it~curve
b! for inverse square potential,ugu<8.
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where l is a dimensionless coupling constant. Forr<r the equation for a variable scatterin
lengtha(r ) is given by

da~r !

dr
52l

R2

r 4 ~r 1a~r !!2, a~0!50, ~3.71!

while the scattering lengtha0 equalsa(r). Introduction of the dimensionless functiona(x)
5 a(r )/RAl and of the dimensionless variablex5 r /RAl reduces Eq.~3.71! to

da~x!

dx
52

1

x4 ~x1a~x!!2, a~0!50, ~3.72!

whose solution is obviously given by

a~x!52
x

11x
. ~3.73!

Since for r 5r x5x05r/RAl, and a(r/RAl)52 r/(r1RAl), the dimensionless scatterin
lengthA05a0 /R is given by

FIG. 5. Comparison of imaginary parts of the exact scattering length~curve a! and of the second QLM approximation t
it ~curve b! for inverse square potential,ugu<8.

FIG. 6. Same as in Fig. 4, but in the third QLM approximation.
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A05AlaS r

RAl
D 52

rAl

r1RAl
[2

r

R

y0

11y0
, y05

1

x0
5

R

r
Al, ~3.74!

which coincides with that found in Ref. 19 and also in Refs. 4, 11, and 14, wherer is set to`. The
solution has a singularity, namely a branch point, atl50. The singularity marks the beginning o
interval2`,l,0, where potential is attractive and a fall to the center takes place18,20and where
the expression for the scattering lengthA0 becomes complex. We consider therefore only rep
sive potentials.

As always, let us start from the perturbation expansion~3.7!, whose coefficientsan(r ) are
calculated from recurrence relations~3.8!. In view of a strong singularity of the potential at th
origin from Eq.~3.9! it follows, however, that first coefficienta1(r ), and therefore all the others
are infinite. The perturbation expansion does not exist, which, of course, is a consequence
branch point singularity of the scattering length directly atl50.

There is, however, no problems with the QLM approximations to solution~3.73!, whose
iteration sequence in this case is given by

an11~x!52E
0

x ds

s4 @s22an
2~s!#expS 22E

s

x dt

t4 (t1an(t)) D . ~3.75!

Starting from the usual initial guessa0(x)50 one easily computes4,11 the first iterationa1(x)
52exp(1/x2*0

x ds/s2 e2 1/s2
), which substitution s5 1/At reduces to a form a1(x)

52 1
2exp(1/x2*1/x2

` dt/t1/2e2t)[2 Ap/2e1/x2
erfc(1/x). The dimensionless scattering length in t

first QLM approximation therefore is

A0,15Ala1~x0!52
Ap

2

r

R
y0ey0

2
erfc~y0!, ~3.76!

where erfc(x)512erf(x) is the complementary error function.16 One can see thatA0,1, like A0 , is
a function ofy0 and therefore has the same branch point singularity atl50 as the exact scatterin
length.

To obtain a higher QLM approximation it is convenient to remove a fourth power of vari
in the denominators of the integrals in Eq.~3.75!. To do this, let us introduce a new variabley
5 1/x and a new functionb(x)5a(1/x) with a boundary conditionb(`)5a(0)50. Equation
~3.72! then has the form

db~y!

dy
5~11yb~y!!2, b~`!50, ~3.77!

whose exact solution is given by

b~y!52
1

~11y!
, ~3.78!

while Eq. ~3.75! is written as

bn11~y!52E
y

`

ds@12s2bn
2~s!#expS 2E

s

y

dtt(11bn(t)) D . ~3.79!

The nth QLM approximation toa(x) is an(x)5bn(1/x)[bn(y) so thata(x0)[b(y0) and the
initial guess could be chosenb0(x)[b(`)50. In the long ranged caser5`, y050, and, since
erfc(0)51, A0,152 Ap/2Al520.886Al, a very good approximation11 to exact valueA0

52Al. The next QLM approximation, which can be computed numerically, results inA0,2

520.988Al, a precision of 1.2%. For comparison, calculation ofA0 in the second CBF approxi
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mation, Eq.~2.21!, which in this case reduces to a simple minded linearization approach,11 based
on neglecting a nonlinear term, givesA0,2520.954Al, precision of only 4.6%. In the infinite
coupling finite range casey0 is very large and one can use asymptotic expression~3.16!, which
gives A0,152 1

2r/R, a reasonable first approximation to exact valueA052 r/R. In the next,
second QLM approximation, the numerical computation yeldsA0,252 3

4r/R, a significant im-
provement.

The uniform quadratic convergence of QLM sequence~3.75! is proved, according to Eq
~2.34!, by showing that the first convergence coefficientq1(b) is less than unity. In our case, w
have chosena0(x)[0 and thereforeq1(b)5k(b)ia1(x)i<k(b), since in view of the properties
of the complimentary error function16 ua1(x)u<1 for all x.

To estimatek(b) we have to knowG(x) andF(x), which have to satisfy inequalities~2.31!.
Since the first and the second derivatives of the right-hand side of Eq.~3.72! are 2 2/x4 (x
1a(x)) and2 2/x4, respectively, and since the scattering length for the repulsive potential h
poles and should be finite,a(x)<M whereM is some positive constant, and therefore one
chooseG(x)5F(x)[F1(x)5 2M /x4. For small (x<e), wheree!1 is some small but finite
number, looking fora(x) in the form a(x);ax1bx2 and substituting in Eq.~3.72! gives a
521, b51. The first functional derivative for smallx therefore equals2 2/x2 and one can choos
in this case negative boundary functionF(x)[F2(x)52 2/x2 andG(x)5uF2(x)u.

Separating in Eq.~2.35! for k(b) smaller and larger values ofx gives

k~b!5
1

2 UC expE
0

e

dt F2~ t !21U, ~3.80!

whereC5exp*e
bdt F1(t) is a finite constant even for infinite intervalb5`. Since exp(*0

edtF2(t))
5exp(22*0

bdt1/t2)5exp(2/t u10
e )50, Eq. ~3.80! givesk(b)[ 1

2 und thusq1(b)< 1
2, which proves

uniform quadratic convergence of QLM iteration sequencean(x0), Eq. ~3.75!, on the whole
interval ~0,̀ !, that is for all values of coupling constantl, including large and infinite ones.

IV. CONCLUSION

Summing up, we have reformulated the proof of the convergence of the quasilineari
method~QLM! of Bellman and Kalaba1,2 by removing unnecessary restrictive conditions gen
ally not fulfilled in physical applications, and have generalized the proof for large or infi
domains of variables and for functionals which are singular at some points in the domain. W
have shown how to deal with solutions which are infinite at certain values of variable such a
example, scattering amplitudes at values corresponding to bound state energies, etc.

FIG. 7. Same as in Fig. 5, but in the third QLM approximation.
                                                                                                                



es here
hysi-

arith-

e

es of

ined
ation

ne of

result,
pling

pro-
orders
umber

. The
ation,
elfth

ared
es of
which
der of

s or
ns.
the

-
of
e esti-

field
ethod
rbation
tant,

6290 J. Math. Phys., Vol. 40, No. 12, December 1999 V. B. Mandelzweig

                    
In order to make presentation as simple and short as possible, we have limited ourselv
to the case of the first-order nonlinear ordinary differential equation in one variable, which p
cally covers the quantum mechanics of one particle in a central field~in this case the Schro¨dinger
equation for a wave function could be rewritten as the nonlinear Ricatti equation for its log
mic derivative! though the same modernization of the Bellman and Kalaba proof1,2 could be
provided also for a general nonlinear ordinary or partialnth order differential equations in th
N-dimensional space.

In order to highlight the power of the method in Sec. III we have considered exampl
different singular and nonsingular, attractive and repulsive potentialsV(r ) for which the nonlinear
first-order ordinary differential equation~1.1! for theS-wave scattering lengtha05a(`) obtained
in variable phase approach4,5 could be solved exactly and have compared the iterations obta
by the Bellman–Kalaba linearization method with exact solutions and with the usual perturb
theory. The results could be summed up as follows.

~i! The sequenceun(x), n51,2, . . . of QLM iterations, Eq.~2.22!, convergesuniformly and
quadratically to solutionu(x) of Eq. ~2.2!. For the convergence on the interval@0,b# is enough
that an initial guess for zero iteration is sufficiently good to ensure the smallness of just o
convergence coefficientsqm(b)5k(b)ium112umi , wherek(b) is given by Eq.~2.32! or Eq.
~2.35!. In addition, for strictly convex~concave! functionals f (u(x),x) difference un11(x)
2un(x) is strictly positive~negative!, which establishesthe monotonicityof the convergence from
below ~above!, respectively, on this interval.

~ii ! The QLM treats the nonlinear terms as a perturbation about the linear ones1,2 and is not
based, unlike perturbation theories, on the existence of some kind of small parameter. As a
it is able to handle, unlike the perturbation theory, large or even infinite values of the cou
constant.

~iii ! Comparison of QLM with the perturbation theory shows that each QLM iteration re
duces and sums many orders of perturbation theory exactly and in addition many more
approximately. Namely, in agreement with the quadratic pattern of the convergence, the n
Nn of the terms of the perturbation series, reproduced exactly in thenth QLM approximations,
equals 2n1121, and approximately the same number of terms is reproduced approximately
number of the exactly reproduced terms thus doubles with each subsequent QLM approxim
and reaches, for example, 127 terms in the sixth QLM approximation, 8191 terms in the tw
QLM approximation and so on.

~iv! QLM handles without any problems not only singular potentials, like the inverse squ
potential, for which the perturbation theory is divergent outside a narrow interval of the valu
the coupling constant, but even super singular potentials, like reverse quartic potential, for
perturbation series are not existent at all, since their calculation leads to infinities in each or
the perturbation expansion.

~v! As we saw in all of our examples, QLM easily handles different singularities, like pole
branch point singularities, reproducing correct type of the singularity already in first iteratio

~vi! Although the analytic calculations of third and higher approximation in QLM, like in
usual perturbation theory, in most cases~excluding inverse square potential! seem impossible, the
simplicity of the QLM iterational sequence Eq.~2.22! ~which, unlike perturbation theory, con
taines no sums on intermediate energy states! assures nonproblematic numerical calculation
higher order iterations, while the extremely fast convergence of the method allows accurat
mate of the solution after relatively small number of iterations.

In view of all this, since most equations of physics, from classical mechanics to quantum
theory, are either not linear or could be transformed to a nonlinear form, the quasilinear m
may turn out to be extremely useful and in many cases more advantageous than the pertu
theory or its different modifications, like expansion in inverse powers of the coupling cons
1/N expansion, etc.
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In general, Whitham dynamics involves infinitely many parameters called Whitham
times, but in the context ofN52 supersymmetric Yang–Mills theory it can be
regarded as a finite system by restricting the number of Whitham times appropri-
ately. For example, in the case of SU(r 11) gauge theory without hypermultiplets,
there arer Whitham times and they play an essential role in the theory. In this
situation, the generating meromorphic one-form of the Whitham hierarchy on the
Seiberg–Witten curve is represented by a finite linear combination of meromorphic
one-forms associated with these Whitham times, but it turns out that there are
various differential relations among these differentials. Since these relations can be
written only in terms of the Seiberg–Witten one-form, their consistency conditions
are found to give the Picard–Fuchs equations for the Seiberg–Witten periods.
© 1999 American Institute of Physics.@S0022-2488~99!03411-8#

I. INTRODUCTION

Thanks to the study of electromagnetic duality initiated by Seiberg and Witten,1 the prepo-
tential of the low energy effective action ofN52 supersymmetric Yang–Mills theory was turne
out to be viewed as a function on a complex projective space having singularities when the m
of charged particles vanish. This complex projective space can be identified with the moduli
of a Riemann surface determined by several physical requirements, thus the effective theo
be considered to be controlled by the geometry of moduli space of a Riemann surface.2–16 Ac-
cording to this observation, since the effective coupling constants of the theory are interpre
the period matrix of a Riemann surface, determining the period matrix from the calculati
periods becomes equivalent to evaluating effective coupling constants. It is interesting th
instanton contributions to prepotential17 can be obtained from the evaluation of periods and
prepotentials obtained in this way18–26are known to be consistent with the instanton calculus.26–33

In these studies, the method based on Picard–Fuchs equations18–25,34–38played a crucial role.
However, on the one hand, the theory of prepotential often shows unexpected aspects

the effective theory. For example, it is known that the Seiberg–Witten solutions can be unde
in the framework of Whitham theory.39,40 Gorskyet al.41 noticed that the Whitham dynamics i
N52 Yang–Mills theory could be written essentially by only a finite number of Whitham tim
and found that the second-order derivatives of prepotential over the Whitham times cou
represented by an elliptic function associated with the Seiberg–Witten curve.

However, we can further learn more aspects of the Whitham hierarchy in gauge theory
the basic idea of Gorskyet al.41 For instance, note that since the number of time variables of
hierarchy is restricted to be finite the generating meromorphic one-form of the Whitham hier
is represented by a finite linear combination of meromorphic one-forms associated with
Whitham times. Then we can expect that there must be closed differential relations among
meromorphic differentials associated with Whitham times. In fact, a detailed study suppor
62920022-2488/99/40(12)/6292/10/$15.00 © 1999 American Institute of Physics
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observation and the aim of the paper is to show the consequence of these relations, espe
connection to Picard–Fuchs equations for the Seiberg–Witten periods.

The paper is organized as follows. In Sec. II, we briefly summarize the Whitham dynam
SU(r 11) gauge theory. In addition, following Gorskyet al.,41 we consider the situation where th
number of Whitham times is finite. Since the meromorphic one-forms on a Seiberg–Witten
consisting of the Whitham hierarchy must always be represented by simply a linear combi
of Abelian differentials, we can expect the existence of differential relations among these
morphic one-forms. In Sec. III, it is shown that such relations can in fact be found and as a
Picard–Fuchs equations for the Seiberg–Witten periods are available from this view po
should be noted that the generating meromorphic differential of the Whitham hierarchy c
written in terms of the Seiberg–Witten one-form. This indicates that it is sufficient to con
only the Seiberg–Witten periods in order to calculate the periods of the Whitham hierarch
Sec. IV, it is shown that the SU~3! Picard–Fuchs equations for the Seiberg–Witten periods ca
obtained from the Picard–Fuchs equations with Whitham times for the periods of the Wh
hierarchy by considering the specialization condition to the Seiberg–Witten model. Section
brief summary.

II. WHITHAM HIERARCHY IN GAUGE THEORY

In this section, we briefly sketch the relation between the Seiberg–Witten solution
Whitham dynamics in the context ofN52 supersymmetric Yang–Mills theory.39–41

A. Seiberg–Witten solution

To begin with, let us recall that the Seiberg–Witten curve in SU(r 11) gauge theory without
matter hypermultiplets2–4 is given by the characteristic equation

det@x2L~v!#50 ~2.1!

of the Lax operatorL(v) for Toda chain withr 11 sites,39 wherex is the eigenvalue ofL(v) and
v is the spectral parameter.~2.1! can be rewritten in the form of spectral curve

P~x!5LSU~r 11!
r 11 S v1

1

v D , ~2.2!

whereLSU(r 11) is the dynamical mass parameter and

P~x!ªxr 112(
i 52

r 11

uix
r 112 i ~2.3!

represents the simple singularity of typeAr with moduli ui . This spectral curve~2.2! can be
further rewritten in the familiar hyperelliptic form2–4

y25P224L2, ~2.4!

whereLªLSU(r 11)
r 11 and we have introduced

yªLSU~r 11!
r 11 S v2

1

v D . ~2.5!

Note that the hyperelliptic curve~2.4! is a Riemann surface of genusr.
For a study of Riemann surface, it is often useful to consider the periods of Abelian d

entials over the one-cycles on the surface. In the case at hand, we can take 2r one-cycles
(Ai ,Bi) ( i 51,...,r ) on ~2.4! as a canonical basis (Bi are symplectic duals ofAi), which can be
expressed by using the branching points of~2.4!.
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On the other hand, in order to interpret the components of a period matrix constructed
periods of Abelian differentials as the effective coupling constants, the combination of Ab
differentials must be fixed uniquely up to total derivatives. In addition, in general, there are
kinds of Abelian differentials on a Riemann surface, but that of the third kind is not required
because we are considering a pure gauge theory. Therefore, the expected meromorphic diff
one-form is expressed by the Abelian differentials of the first and second kinds, and th
satisfying these requirements is called the Seiberg–Witten differentialdSSW, given by

dSSWªx
dv

v
5x

]xP

y
dx, ~2.6!

where we have ignored the numerical normalization for simplicity, and then the Seiberg–W
periods are given by the loop integrals over the canonical cycles

aiª R
Ai

dSSW, aDi
ª R

Bi

dSSW. ~2.7!

Note thatdSSW can be viewed as the canonical one-form of the integrable system. In this wa
can see the relation between the Seiberg–Witten solution and integrable system.

B. Whitham hierarchy

We have seen that the Seiberg–Witten solution has a connection to the integrable syst
it can also be viewed as part of the Whitham theory of solitons on a Riemann surface.

To see this, let us recall that in general Whitham theory consists of the following
ingredients:42

~1! Riemann surface of genusg.
~2! Punctures on the surface.
~3! Existence of local coordinates near the punctures.

Gorsky et al.41 noticed that the meromorphic differentials of the second kinddVn of (n
11)th order punctures (n.0) on a Riemann surface were defined up to a linear combinatio
g holomorphic differentialsdv i and considered how to fix this combination by taking two ba
requirements. The first one was to require

R
Ai

dVn50 ~2.8!

and the second one was to introduce new meromorphic differentialsdV̂n , which enjoy the prop-
erty that their differentiations over the moduli coincide with holomorphic differentials.

According to their result,41 the differential

dSª(
n51

`

TndV̂n5(
i 51

g

a idv i1 (
n51

`

TndVn ~2.9!

with infinitely many parametersTn called Whitham times is found to be the expected solut
which is suitable for applications to gauge theory. For this new meromorphic differentialdS, the
periods

a iª R
Ai

dS, aDi
ª R

Bi

dS ~2.10!

can be defined in a natural way.
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Next, in order to make contact with the Seiberg–Witten solution, Gorskyet al.41 regarded the
Riemann surface used here as the Seiberg–Witten hyperelliptic curve~2.4!.

In such a situation, they found that the Whitham hierarchy could actually be written on
first r time variables and gave an explicit expression ofdS. In particular, in the case of SU(r
11) gauge theory,n is restricted ton,r 11. Namely, in this situation, the periods~2.10! reduce
to

a i5 (
n51

r

Tn R
Ai

dV̂n , aDi
5 (

n51

r

Tn R
Bi

dV̂n ~2.11!

anddV̂n are given by

dV̂n5Rn

dv

v
, RnªP1

n/~r 11! . ~2.12!

In this expression,P1
n/(r 11) means the non-negative terms in the expansion ofPn/(r 11) for a large

x, and in general,Pn/(r 11) in SU(r 11) gauge theory is easily found to give

Pn/~r 11!5xn2
n

r 11
u2xn222

n

r 11
u3xn232

n

r 11 Fu41
u2

2

2 S 12
n

r 11D Gxn242¯ .

~2.13!

Note that the periods are now represented by a finite linear combination ofdV̂n because we
are only considering for then,r 11 case. In addition, from~2.12!, it is immediately seen that the
Seiberg–Witten solution is recovered at the point

~T1 ,T2 ,T3 ,...,Tr !5~1,0,0,...,0!. ~2.14!

In fact, we finddV̂15dSSW. Of course, in this case, we havedS5dSSW.

III. PICARD–FUCHS STRUCTURE BEHIND WHITHAM HIERARCHY

A. Relations among meromorphic differentials

We have seen thatdS is represented by a linear combination ofdV̂n and also thatdV̂1

5dSSW. Then, aredV̂n for nÞ1 related todSSW? If we can find any relation among them, th
role of the Seiberg–Witten solution in Whitham dynamics will be clarified.

To find an answer to this question, let us notice that any meromorphic differential
Riemann surface must always be written in terms of the basis of Abelian differentials o
surface. Of course, this must be true also fordV̂n for all n. Therefore, if we consider a differen
tiation of dV̂n over moduli, it will ultimately be represented by a linear combination of vari
dV̂n and their derivatives. However, actually, in the case of the Seiberg–Witten Riemann su
we can show that the derivatives ofdV̂n for n.1 are obtained from the Seiberg–Witten diffe
entialdV̂1 . Thus as a result, we can conclude thatdS is generated fromdV̂1 and accordingly the
periods ofdS can be directly determined through the Seiberg–Witten periods themselves.

To see this more concretely, let us consider the case ofdV̂2 as an example. Since th
differentiations ofdV̂2 over moduli are

]dV̂2

]ui
5

dx

y F22d2,i xr1
d2,i

r 11 (
j 52

r 11

~r 112 j !ujx
r 2 j12xr 122 i G , ~3.1!

whered i , j are Kronecker’s delta symbols, and those fordV̂1 are
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]dV̂1

]ui
5

xr 112 i

y
dx, ~3.2!

it is easy to see that

]dV̂2

]u2
5

2

r 11 (
i 52

r 11

~r 112 i !ui

]dV̂1

]ui 11
,

]dV̂2

]ui
52

]dV̂1

]ui 21
~ iÞ2!. ~3.3!

Note that in the derivation of~3.1! and ~3.2! we have used the general formulas

]dV̂n

]ui
5

dx

y
@]ui

Rn•]xP2]xRn•]ui
P#1dS Rn]ui

P

y
D . ~3.4!

In a similar way, we can obtain differential relations betweendV̂n for n.1 anddV̂1 , but we
omit the derivations for them and show only the result forn53 and 4 cases here.

For dV̂3 :

]dV̂3

]u2
52

3

r 11 Fu2

]dV̂1

]u2
2(

i 52

r 11

~r 112 i !ui

]dV̂1

]ui
G ,

]dV̂3

]u3
52

3

r 11 Fu2

]dV̂1

]u3
2(

i 52

r 11

~r 112 i !ui

]dV̂1

]ui 11
G , ~3.5!

]dV̂3

]ui
53F ]dV̂1

]ui 22
2

u2

r 11

]dV̂1

]ui
G ~ iÞ2,3!.

For dV̂4 :

]dV̂4

]u2
52

4

r 11 Fu3

]dV̂1

]u2
2(

i 53

r 11

~r 112 i !ui

]dV̂1

]ui 21
2

r 23

r 11
u2(

i 52

r 11

~r 112 i !ui

]dV̂1

]ui 11
G ,

]dV̂4

]u3
52

4

r 11 F2u2

]dV̂1

]u2
1u3

]dV̂1

]u3
2(

i 52

r 11

~r 112 i !ui

]dV̂1

]ui
G ,

~3.6!

]dV̂4

]u4
52

4

r 11 F2u2

]dV̂1

]u3
1u3

]dV̂1

]u4
2(

i 52

r 11

~r 112 i !ui

]dV̂1

]ui 11
G ,

]dV̂4

]ui
54F ]dV̂1

]ui 23
2

2u2

r 11

]dV̂1

]ui 21
2

u3

r 11

]dV̂1

]ui
G ~ iÞ2,3,4!.

B. Picard–Fuchs equations from Whitham hierarchy

If the derivatives ofdV̂n over moduli forn.1 are eliminated from relations~3.3!, ~3.5!, and
~3.6! by using differentiations, the equations satisfied bydV̂1 will be obtained. Furthermore, sinc
dV̂15dSSW, we can identify such equations as Picard–Fuchs equations for Seiberg–Witte
riods.
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To see this, it is enough to consider the cross derivatives ofdV̂n . For example, fordV̂2 , from
@]2] i2] i]2#dV̂250, where] iª]/]ui , we get

F ~r 11!]2] i 212~r 112 i !] i 112(
j 52

r 11

~r 112 j !uj] i] j 11GdV̂150 ~ iÞ2!, ~3.7!

which are the Picard–Fuchs equations obtained by several authors.26,37 For otherdV̂n , we can
construct similar equations and, in fact, we can obtain the ‘‘hierarchy’’ of Picard–Fuchs equa
as follows:

F (
i 52

r 11

~r 112 i !ui~]3] i2]2] i 11!GdV̂150,

F ~r 112 i !] i 112~r 11!]3] i 221(
j 52

r 11

~r 112 j !uj] i] j 11GdV̂150 ~ iÞ2,3!,

F ~r 11!]2] i 222~r 122 i !] i2(
j 52

r 11

~r 112 j !uj] i] j GdV̂150 ~ iÞ2,3!,

F2~r 11!u2]2
21~r 23!~r 22!u2]41~r 11!(

i 53

r 11

~r 112 i !ui] i 21]31~r 23!u2

3(
i 52

r 11

~r 112 i !ui] i 11]32~r 11!(
i 52

r 11

~r 112 i !ui] i]2GdV̂150,

F2~r 11!u2]2]31~r 23!2u2]51~r 11!(
i 53

r 11

~r 112 i !ui] i 21]42~r 11!

3(
i 52

r 11

~r 112 i !ui] i 11]21~r 23!u2(
i 52

r 11

~r 112 i !ui] i 11]4GdV̂150, ~3.8!

F ~r 11!2]2] i 2322~r 11!u2] i 21]22~r 11!~r 132 i !] i 212~r 23!~r 112 i !u2] i 11

2~r 11!(
j 53

r 11

~r 112 j !uj] i] j 212~r 23!u2(
j 52

r 11

~r 112 j !uj] i] j 11GdV̂150

~ iÞ2,3,4!,

F2u2~]2]42]3
2!2(

i 52

r 11

~r 112 i !ui~]4] i2]3] i 11!GdV̂150,

F2u2~]3] i2]4] i 21!1~r 11!]4] i 232~r 112 i !] i 112(
j 52

r 11

~r 112 j !uj] i] j 11GdV̂150

~ iÞ2,3,4!,
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F2u2~] i]22]3] i 21!1~r 11!]3] i 232~r 122 i !] i2(
j 52

r 11

~r 112 j !uj] i] j GdV̂150 ~ iÞ2,3,4!.

Note that the equations in~3.8! are all second-order equations and in some cases we
simplify them by using (] i] j2]p]q)dV̂150, wherei 1 j 5p1q.26,37

C. Picard–Fuchs equations as a complete system

Of course, as a complete Picard–Fuchs system, it is not necessary to consider all equa
~3.7! and~3.8!. In general, since there arer moduli parameters in the SU(r 11) gauge theory, it is
sufficient to extract at leastr independent equations from them.

To see this, let us notice the equations in~3.7!. Since the number of the equations isr 21, one
more equation is necessary. However, we cannot obtain the expected equation from~3.8! because
the equations presented there do not have the instanton corrections. If the instanton co
terms are not included in any one of Picard–Fuchs equations, the prepotential obtained from
will not show the instanton corrections precisely. Therefore, we require that the remainin
must include instanton terms.

Actually, such an equation was recognized by Ito and Yang43 as the scaling relation. There
the Picard–Fuchs system was realized by two kinds of equations, one of which is the G
Manin system and the other is the scaling relation. Since the Gauss–Manin system do
involve instanton corrections, the situation looks like ours. Therefore, also for our case, the s
relation may be used as the remaining Picard–Fuchs equation.

For this, let us consider the Eulerian operator

Eª(
i 52

r 11

iui] i1~r 11!L]L , ~3.9!

which acts as

E dV̂n5ndV̂n ~3.10!

for all n.0. ~3.10! indicates that the degree ofdV̂n is n. Realizing~3.10! as an equation only in
terms of moduli derivatives can be easily accomplished by considering the squaring equaE
2n)2dV̂n50.37,43

In this way, we can associater independent Picard–Fuchs equations fordV̂1 .

IV. PICARD–FUCHS EQUATIONS WITH WHITHAM TIMES

A. The SU „3… Picard–Fuchs equations

Next, let us consider Picard–Fuchs equations for the periods (a i ,aDi
) of the Whitham hier-

archy. In the case ofr 51, the resulting Picard–Fuchs equation takes the same form with the
one18 up to rescaling ofT1 . For this reason, we do not discuss this case, and instead, l
consider ther 52 case in order to find a nontrivial example of Picard–Fuchs equations
Whitham times.

In this case, the Picard–Fuchs equations with the Whitham times are found to be in the

Lj~a i ,aDi
!50, ~4.1!

where
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L15
54u2vT1T22~108L224u3227v2!~uT2

223T1
2!

u~23T1
214uT2

2!
]u

2

2
3@~2108L214u3127v2!T1T218uv~uT2

223T1
2!#

2~3T1
224uT2

2!
]u]v

1
T2@8~108L224u3227v2!~23T1

21uT2
2!T229uvT1~15T1

2128uT2
2!#

2u~3T1
224uT2

2!2 ]u

1
2~108L224u3227v2!~3T1

22uT2
2!T1T213uv~9T1

4127uT1
2T2

224u2T2
4!

u~3T1
224uT2

2!2 ]v11,

~4.2!

L25
254u2vT1T21~108L224u3227v2!~uT2

223T1
2!

3~3T1
224uT2

2!
]v

2

2
3@8uv~uT2

223T1
2!1~2108L214u3127v2!T1T2#

2~3T1
224uT2

2!
]u]v

2
45vT1T2

2~3T1
224uT2

2!
]u1

3v~3T1
21uT2

2!

3T1
224uT2

2 ]v11.

Though the derivation of Picard–Fuchs equations for other higherr is straightforward, the
result turns out to be too lengthy and complicated, so we do not consider these cases in this

B. Specializations of SU „3… Picard–Fuchs equations

It may be instructive to see specializations of~4.2!. With the help of~2.14!, it is straightfor-
ward to make sure that the equations in~4.2! yield the usual SU~3! Picard–Fuchs equations18

Lj (ai ,aDi
)50 for the Seiberg–Witten periods, which can be identified with Appell’sF4

system,44–47

L1→L1ª~4u3127v22108L2!]u
2112u2v]u]v13uv]v1u,

~4.3!

L2→L2ª~4u3127v22108L2!]v
2136uv]u]v19v]v13.

Note that the consistency condition of~4.3! leads to@u]v
223]u

2#(ai ,aDi
)50, which coincides

with ~3.7! for r 52.
On the other hand, from~4.2! with (T1 ,T2)5(0,1), we can also consider Picard–Fuc

equationsL̂ j (rAi
dV̂2 ,rBi

dV̂2)50 for the periods ofdV̂2 , where

L1→L̂1ªu~4u3127v22108L2!]u
2112u3v]u]v2~4u3127v22108L2!]u23u2v]v14u2,

~4.4!

L2→L̂2ª~4u3127v22108L2!]v
2136uv]u]v29v]v112.

From ~4.4!, we can obtain a relation like that from~4.3!, but the same equation is also availab
from ~3.3!, provided]dV̂1 /]ui are eliminated from~3.3!.

Finally, note that we have
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L̂ j~a i ,aDi
!5T1L̂ j S R

Ai

dV̂1 , R
Bi

dV̂1D , L j~a i ,aDi
!5T2L j S R

Ai

dV̂2 , R
Bi

dV̂2D ~4.5!

from ~2.9!, ~4.3!, and~4.4!.

V. SUMMARY

In this paper, we have discussed the SU(r 11) gauge theory in the standpoint of Whitha
dynamics and realizedr 21 Picard–Fuchs equations for Seiberg–Witten periods as consist
equations among meromorphic differentials associated with Whitham times. In addition, we
used the scaling relation as the remaining independent equation in order to include the ins
corrections. Though the generalization to other cases except SU(r 11) group is straightforward,
the case of exceptional gauge groups would be interesting because there are two types of S
Witten curves in these gauge theories.7,11–16In particular, it may be interesting to know how th
differences of physics expected from these two curves12,16,24,25are reflected in the Whitham theor
and the Picard–Fuchs structure behind it.

Of course, our construction of Picard–Fuchs equations may provide helpful informatio
only for these cases but also when we consider the relation among flat coordinates,48,49 Witten–
Dijkgraaf–Verlinde–Verlinde equations,50–55 and the Whitham hierarchy.39–41 We are now plan-
ning a discussion with respect to this point.
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The Wigner–Weyl quantum-to-classical correspondence rule is nonunique with
respect to coordinate choice. This ambiguity can be exploited to improve the accu-
racy of semiclassical approximations. For instance, the well-known Langer modi-
fication was recently derived by applying a coordinate transformation to the radial
Schrödinger equation prior to using the Wigner–Weyl rule—albeit only by presum-
ing exact quantum solutions for all nonradial degrees of freedom@J. J. Morehead, J.
Math. Phys.36, 5431 ~1995!#. In this paper, the full classical Hamiltonian is de-
rived in all degrees of freedom, using a~hyper!spherical coordinate Wigner–Weyl
correspondence with a Langer-like modification of polar angles. For central force
Hamiltonians, the new result is radially equivalent to that of Langer, and to the
standard Cartesian form. The new correspondence is superior with respect to all
angular momentum operators however, in that the resultant semiclassical eigenval-
ues are exact—a desirable goal, evidently achieved here for the first time. ©1999
American Institute of Physics.@S0022-2488~99!01912-X#

I. INTRODUCTION

When viewed as mathematical structures, classical and quantum mechanics are in m
spects very similar. In both cases, physical observables may be regarded as elements of
Lie * -algebra.1 Moreover, in each case there is an important class of algebra automorphisms
canonical~unitary! transformations—which induces an equivalence relation on the algebraic
ments. Physically, this reflects the fact that canonically~unitarily! equivalent observables ar
indistinguishable from one another—these observables can even be regarded as charac
‘‘the same’’ physical system, if the transformation is interpreted as a passive change of c
nates.

Despite similarities, though, the classical and quantum algebras arenot isomorphic. Thus,
although a one-to-one correspondence can be established between the two, it is impos
preserve the equivalence relation described above. The upshot is that a given quantum opeÂ
can be mapped to physically distinct classical observablesA,A8,A9,..., depending on the choice
of coordinates. This is a basic theoretical fact, which has thus far received surprisingly
attention; the issue is addressed in some detail in Sec. II. Indeed, even the corresponden
itself2–7—discovered independently by Weyl2 and Wigner3 in the early days of the quantum
theory—is usually omitted from the standard texts.

In any event, this paper concerns itself with semiclassical approximations, and how th
affected by the choice of correspondence coordinates. All semiclassical methods are cano
invariant in the following sense: Once the classical observable has been established, qu
such as Wentzel–Kramers–Brillouin~WKB! eigenvalues are the same in all canonical coordin
systems. However, because the Wigner–Weyl~WW! rule itself isnoninvariant, these quantities d
vary with the coordinates used to obtain the correspondence. It follows that in this sense
coordinate systems are better than others, vis-a`-vis the accuracy of the resultant WKB approx
mations. It is the author’s contention that a basic understanding of these preferred coo

a!Electronic mail: billp@rainbow.uchicago.edu
63020022-2488/99/40(12)/6302/17/$15.00 © 1999 American Institute of Physics
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systems is a worthwhile pursuit—with respect to improving semiclassical calculations, and
haps also in terms of providing physical insight.

The central force HamiltoniansH5T1V(r ) ~Sec. III! and their generalizations with respe
to dimensionality and form~respectively, Secs. IV and V! constitute the particular focus of th
present work. These systems have always occupied a special role in physics, in part bec
their prevalence in nature, but also because they lend themselves readily to analytical solu
is well-known that the three-dimensional central force problem decouples, if spherical—
than Cartesian—coordinates are used. The former are closely related to the action-angle va
and are therefore more fundamentally associated with the Hamiltonian than the latter—desp
simplicity of the Cartesian expressions.

If the theories of mechanics admit any favoritism at all with respect to coordinates, then s
the action-angle variables are the preferred choice. It is therefore natural to ask whether pro
to action-angle coordinates is related to the efficacy of the resultant WW correspondence
paper attempts to provide at least a partial answer to this question. More specifically, we det
whether the WKB approximation, as applied to the classical central force Hamiltonians ob
from a correspondence in spherical coordinates, is better or worse than that obtained fro
standard correspondence in Cartesian coordinates.

The question of choosing correspondence coordinates appropriate for central force Ha
nians has been addressed previously, albeit in a context of reduced dimensionality. If the qu

Hamiltonian is expressed in spherical coordinates, and the angular momentum operatorL̂2 re-
placed with its exact quantum eigenvalues, then the one-dimensional radial Schro¨dinger equation
results. This equation is often tackled semiclassically; in this context, it is well known tha
results are improved dramatically under the ‘‘Langer modification’’8–11—which amounts to add-
ing an extra11/(8mr2) term to the classical Hamiltonian~in units where\51, as will be used
throughout this paper!.

Over the years, many justifications for the introduction of Langer’s extra term have
provided—beginning with that of Langer himself,8 who believed it necessary to retain a differe
tial equation with a Schro¨dinger-like form. In more recent years, the intrinsic Gaussian curva
of the constrained configuration space12–16 has come to be regarded as the essential ration
These treatments do not focus on the issue of correspondence coordinates; implicitly ho
they presume a WW correspondence in the radial coordinater. On the other hand, if the WW
correspondence is obtained in the coordinatex5 ln r rather than inr itself, then the ‘‘extra’’ term
is present right from the start.

Evidently, this line of reasoning was first proposed in a paper by Morehead,17 which shall be
referred to extensively in this work. It should be noted that Langer himself made use of the
logarithmic coordinate transformation as Morehead, but not in any canonically meaningful
Langer’s procedure is related to the Podolsky transformation,18 which can be regarded as a spec
case of the WW correspondence rule—though it is doubtful that Langer was aware of this. U
the WW rule however, the Podolsky procedure is inherently limited to observables that are
dratic in the momenta. Consequently, Langer’s original derivation applies only toT1V(r ) Hamil-
tonians, whereas Morehead’s approach allows the modification to be generalized for ar
radial operators.

The approach of this paper, in turn, can be considered a generalization of Morehead’s
The notion of the coordinate dependence of the WW correspondence rule is used througho
Langer’s modification—whose appropriate extension to polar angles is investigated herei
present method is a fully WKB treatment however—i.e., one in which all of the degree
freedom are treated semiclassically. In contrast, Morehead uses a mixed method, for which
the radial degree of freedom are treated quantum mechanically. The mixed method is th
only applicable to radial Hamiltonians, for which the two approaches will be shown to be e
tially identical. However, the present method can also be applied to quantities that depend

spherical angles, such as angular momenta. Indeed, WKB results forL̂2 and itsN-dimensional
generalizations shall be presented, which reproduce the quantum eigenvalues and dege
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exactly. To the author’s best knowledge, there is no other semiclassical treatment in the c
literature that also does so.

II. THEORETICAL BACKGROUND

In this section, we review the Wigner–Weyl~WW! correspondence rule, the Podolsky kine
energy transformation, Morehead’s derivation of the Langer modification, and other theor
aspects pertinent to the subsequent discussion. We begin with the basic task of specify
exact correspondence between quantum operators and classical observables, for one-dim
systems.

This fundamental problem has been with us since the inception of quantum mechanic
conventional wisdom states that~1! there is no difficulty for kinetic-plus-potential (T1V) Hamil-
tonians, and~2! the more general case with position-momentum cross terms is an inher
many-to-one correspondence—presumably because multiplicative ordering matters in qu
mechanics, but not in classical mechanics. This seemingly innocuous description is intu
sensible, and can even be found in standard texts.19 Nevertheless, such a viewpoint is essentia
incorrect on both points.

The cross terms dilemma was effectively resolved with the advent of the correspondenc
of Weyl and Wigner. Weyl’s approach is to allow just one possible ordering ofq̂ and p̂ operators
to correspond to each classical monomialqmpn,20 whereq andp are canonically conjugate pos
tion and momentum variables. Quantum operators which are properly ‘‘Weyl-ordered’’ thus
respond to classical observables—the ‘‘Weyl symbols’’—in a manifestly unique manner.2,6 Wign-
er’s method, on the other hand, converts the position matrix representation of the operat
mixed position-momentum representation, using a Fourier-like transformation.3,5 That the end
result of the Wigner prescription is identical to the Weyl symbol—if~q,p! are true canonica
coordinates, and for legitimate polynomial expansions—was shown by Moyal.4

The WW rule certainly provides a one-to-one correspondence between quantum operat
classical Weyl symbols, and would appear to remove all arbitrariness from the correspon
procedure. As mentioned in Sec. I, however, a more subtle ambiguity still remains with resp
the property of canonical~unitary! invariance. It is in this sense that the WW correspondence
to be unique; for one could always choose to express the initial Hamiltonian in a different
dinate system, thereby obtaining a canonically inequivalent correspondence. Moreover,no Hamil-
tonians are safe from this kind of ambiguity—not even those of the standardT1V form. The only
class of observables whose WW correspondence is always canonically invariant are the ca
coordinates themselves.

It is helpful to express these ideas in more precise mathematical language. LetÂ5A(q̂,p̂) be
a Hermitian operator, expressed in terms ofq̂ andp̂, the generators of the quantum algebra. Th
generators are presumed to be a conjugate pair of position and momentum operators, satisf
canonical commutation relation

q̂p̂2 p̂q̂5 i Î . ~2.1!

Because the algebraic relation of Eq.~2.1! holds, there can be many different algebraic expr
sionsA(q̂,p̂) that result in the same operatorÂ. For convenience, we chooseA(q̂,p̂) to be Weyl-
ordered. Thus, if ‘ ‘W@ # ’ ’ denotes the WW mapping from quantum operators to classical W
symbols, thenW@Â#5A(q,p). The real-valued classical functionA(q,p) is the Weyl symbol
corresponding toÂ, as obtained in the coordinates(q̂,p̂).

Let us consider a unitary transformationÛ that has the following effect on the generators

Û†q̂Û5Q̂5Q~ q̂,p̂!, ~2.2!

Û†p̂Û5 P̂5P~ q̂,p̂!, ~2.3!
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where the algebraic expressionsQ(q̂,p̂), etc., are once again presumed to be Weyl-ordered.
new operatorsQ̂ and P̂ satisfy Eq.~2.1!, and are therefore canonically conjugate in the quan
sense. In addition, it can be shown that the corresponding Weyl symbolsQ(q,p) and P(q,p)
satisfy the classical Poisson bracket—thereby comprising a canonically conjugate pair
classical sense as well. We can therefore establish a one-to-one correspondence between
unitary transformationsÛ, and classical canonical transformations—designatedCU . It can be
shown, moreover, that this correspondence preserves the group properties of the transform
so thatÛ21 corresponds toCU

21, etc.
Under the passive unitary transformationÛ21, the algebraic expression forÂ becomes

Â5A~q~Q̂,P̂!,p~Q̂,P̂!!. ~2.4!

Under the corresponding canonical transformationCU
21, the Weyl symbolA(q,p) becomes

A(q(Q,P),p(Q,P)). However, the right-hand side of Eq.~2.4! is not, in general, Weyl-ordered in
Q̂ and P̂. Therefore,

A~q~Q,P!,p~Q,P!!ÞA8~Q,P!, ~2.5!

whereA8(Q,P) is the Weyl symbol forÂ that actually is obtained in the coordinates (Q̂,P̂).
Therefore, the Weyl symbolsA(q,p) andA8(Q,P) are not in general canonically equivalent.

In the preceding analysis, and throughout this paper, we rely on the notion of ‘‘true cano
coordinates,’’ which can be defined algebraically as the set of Hermitian elementsq̂ for which
there exists a~conjugate! Hermitian elementp̂ such that Eq.~2.1! is satisfied. Not all Hermitian
operators fit the bill—implying that the simple practice of assigningp̂→2 i ]/]q is not always
valid. For example, the spectrum of a true canonical coordinate must be Cartesian—i.e.,
generate, real, and ranging continuously from2` to 1`. This follows from Eq.~2.1!, and from
the fact that the translation operator exp(iq0 p̂) is unitary for all realq0 . In this strict sense,
therefore, all bounded coordinates such as radii and angles, are not considered truly cano

A similar situation also holds in the classical realm. Consider the action-angle transform

f52arctan~p/q!, J5~q21p2!/2. ~2.6!

The coordinates (f,J) arealmosttruly canonical, but not quite—because Eq.~2.6! is ill-defined at
the origin~although the classical Poisson bracket is satisfied everywhere else in phase spac!. This
disqualifiesf and J from being true canonical coordinates, although they are obviously
useful; we shall refer to such coordinates as being ‘‘canonical-like.’’

This distinction is relevant for the Hamiltonians of this paper, for which ‘‘hyperspher
coordinates’’—the N-dimensional generalization of (r ,u,f)—shall be employed. Thes
coordinates—also called ‘‘ultraspherical’’21–23—are significant, because the Hamiltonian a
other constants of the motion become weakly separable when expressed in hyperspheric
~Appendix!. Weakly separable basis representations have previously been investigated fo
quantum applications.24–26 Among other advantages, such representations necessarily in
product—though not necessarily direct product—basis sets.

Hyperspherical coordinates are not true canonical coordinates, because the transfo
from the original Cartesian system is ill-defined at the origin. The standard WW rule doe
apply in such cases; therefore there is some question as to how to establish a corresponde
provisional resolution shall be to retain Weyl ordering in the canonical-like conjugate pairs su
(f̂,p̂f), with the usual conjugate momenta assignments, i.e., (N53),

p̂r→2 i
]

]r
, p̂u→2 i

]

]u
, p̂f→2 i

]

]f
. ~2.7!
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There is empirical evidence suggesting that this rule is appropriate, at least for localized ope
i.e., those that depend polynomially on the hyperspherical momenta~Sec. V!.17,27We presume this
to be the case for the Hamiltonians considered in this paper.

There is another, less fundamental context in which Eq.~2.7! may not hold—even for true
canonical coordinates. In general, differential quantum operator assignments are mean
unless the associated Jacobian weight factor that appears in the orthonormality relations
specified. In particular, Eq.~2.7! applies only if the Jacobian weight factor is unity.18 We shall
refer to differential operator expressions as being in ‘‘canonical~-like! form’’ if the associated
weight factor is unity over all of configuration space~except for subspaces of measure zer!.
Although the standard Cartesian differential expressions are almost always in canonical
nontrivial weight factors can accrue, for instance, when the chain rule is used to effect a coor
transformation.

The chain rule is usually invoked in the context of point transformations, i.e., cano
transformations for which the new positions are functions of the old positions only. Althoug
chain rule is perfectly valid for this, the Podolsky transformation—where applicable—is us
preferred, because it automatically preserves the canonical-like form of the differential e
sions. It is for this reason that the Podolsky transformation is closely related to the WW c
spondence in the new coordinates. In fact, by Weyl-ordering the Podolsky-transformed k
energy, and then transforming classically back to the original coordinates, one obtains the o
Weyl symbol plus an additional ‘‘quantum correction’’ term. Quantum corrections are mass
\-dependent functions of position, that appear in the classical expressions when cross te
introduced by the coordinate transformation.28,29They can be interpreted as a measure of the l
of canonical invariance associated with the WW correspondence for a particular observab

It is as a quantum correction term, for instance, that the Langer modification arises in the
transformation of the one-dimensional radial Schro¨dinger equation, from the coordinater to the
coordinatex5 ln r. This is, at any rate, the essence of Morehead’s argument.17 His analysis does
not tell us, however, why thisparticular coordinate should be singled out for the corresponden
Given that any other choice would result in a different classical Hamiltonian, it remains a my
as to whyx happens to be so beneficial for the subsequent semiclassical analysis~designated
‘‘method I’’ !. Most likely, this question cannot be properly addressed unless a fully WKB t
ment is used. The method of this paper does in fact constitute such a treatment; accordingly
tentative arguments are presented in Sec. V—but the question is still very much an open

As it happens, Langer’s classical Hamiltonian has also been obtained using an alternat
WKB method. In this second approach—which doesnot employ any modification—the WW
correspondence is obtained in the original Cartesian coordinates, and then solved semicla
using Einstein–Brillouin–Keller~EBK! quantization. This second approach shall be referred t
‘‘method II,’’ in contradistinction to the mixed, spherical coordinate method I of the prece
paragraph. Evidently, there is no improvement to be gained from a Langer-like modificati
Cartesian coordinates are used to begin with. This suggests that method I’s success may be
to the fact thatx5 ln r is more Cartesian-like thanr ~Sec. V!—an idea that will motivate a simila
transformation of the polar angle coordinates in Sec. III and IV.

Given that the Cartesian correspondence~method II! already yields Langer’s result for th
N53 central force Hamiltonians, and also that the Cartesian forms are the simplest becau
do not involve quantum corrections, one may well ask whether there is any point to consid
other coordinates. There are, however, several important reasons for doing so. The Ca
correspondence does not, for instance, yield very good WKB results for the angular mom

operators such asL̂2. For radial operators, moreover, the advantages of method II do not exte
more general Hamiltonian forms, as Morehead discovered. He found in fact, that metho
generally preferable to method II. The comparison is a bit unfair though, because the
method I assumes exact eigenvalues for the angular momentum operators, whereas the ful
method II does not. We can, however, legitimately compare method II to the fully WKB me
III introduced in this paper, which is closely related to method I.
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III. THREE-DIMENSIONAL T1V„r … HAMILTONIANS

The nonrelativistic quantum central force Hamiltonian of arbitrary dimensionality is give
Cartesian coordinates as

Ĥ5
p̂1

21¯1 p̂N
2

2m
1V~ r̂ !, ~3.1!

wherer̂ 25 x̂1
21¯1 x̂N

2 , andN53 for the standard three-dimensional case. For our purposes
quantum Hamiltonian isalways equivalent to Eq.~3.1!, regardless of the particular coordina
system in which it might be expressed.

In contrast, the Weyl symbol ofĤ, and all associated canonically invariant quantities~e.g.,
WKB eigenvalues! depend on the correspondence coordinates; but once the classical symbH is
obtained, any canonical transformation can be applied without affecting those quantities. W
often find it convenient to use one set of coordinates to obtain the correspondence, and an
express the Hamiltonian. To avoid confusion,all explicit references and equation labels henc
forth refer to the correspondence coordinates; the expression coordinates are generally s
evident from the context. Thus, the ‘‘Cartesian Weyl symbol’’ that corresponds to theN53
Hamiltonian of Eq.~3.1! can be given as follows:

H5
pr

2

2m
1S 1

2mr2D S pu
21

pf
2

sin2 u D 1V~r ! ~Cartesian!. ~3.2!

Although we have chosen to express this symbol in spherical coordinates, the label ‘‘~Cartesian!’’
denotes the coordinates that were actually used for the correspondence.

In dealing with multidimensional Hamiltonians, it is useful both classically and quantall
obtain the other independent constants of the motion. In the present case, these are of cour
in the angular momentum operatorsL̂2 and L̂z . The Cartesian Weyl symbols for these operat
are as follows:

L25pu
21

pf
2

sin2 u
, Lz5pf ~Cartesian!. ~3.3!

The Cartesian symbols forĤ, L̂2, and L̂z are very straightforward, even when expressed
spherical coordinates, because they do not involve quantum correction terms.

On the other hand, when the WW correspondence is obtained directly in spherical c
nates, potential-like quantum correction terms arise~Sec. II!. TheLz symbol is unaffected, butL2

becomes

L25pu
21

pf
2

sin2 u
2

1

2
2

1

4
cot2 u ~spherical!, ~3.4!

with a corresponding change in the symbol forH. In principle, thepr
2 term in Eq.~3.2! might have

also gained a quantum correction, but this turns out to be zero whenN53.
Thus far, we have not improved matters much by switching the correspondence from

sian to spherical coordinates. The new, negatively singular contribution toL2 is clearly unphysi-
cal, and the corresponding WKB eigenvalues are less accurate than the Cartesian ones.
they are not even properly degenerate, as is easy to demonstrate. First, solve theLz problem
semiclassically; then, substitute the resultant eigenvaluesLz→mPZ into the classicalL2 expres-
sion, and solve the resultantu problem semiclassically. Labeling the resultant eigenstates via
index nuP$0,1,...%, the WKB eigenvalues ofL2 are obtained as a function ofm andnu . If this
function depends only onl 5nu1umu, then the degeneracy pattern is correct; this is true for
~3.3!, but not for Eq.~3.4!.
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The situation can be improved somewhat by usingm5cosu rather thanu for the polar
correspondence, as was explored by the author in a recent paper.30 This yields the much simple
quantum correction of21/2. Moreover, the WKB eigenvalues are now properly degener
and—in comparison with the true quantum results—are seen to be toosmallby 21/4 ~in contrast
with the Cartesian values, which are well known to be too large by this amount!.

Before proceeding, it is worth examining the ‘‘m-spherical’’ L2 symbol as expressed in th
m-spherical coordinates themselves.30

L25~12m2!pm
2 1

pf
2

~12m2!
2

1

2
~m-spherical!. ~3.5!

Because of the altered form of the kinetic energy, Eq.~3.5! is no longer Schro¨dinger-like. Nev-
ertheless, Eq.~3.5! bears a strong resemblance to the~free-particle! radial Hamiltonian as consid
ered by Langer, in that there is a positive centrifugal barrier inm, which diverges in an inverse
squared fashion as either end point is approached. This similarity shall soon be exploi
develop a Langer-like modification for polar angles.

In the present state of affairs, the WKB eigenvalues forL̂2 are still too low; our task is thus
to determine whether it is expedient to improve the situation via yet another coordinate tra
mation. In doing so, let us reiterate the primary motivation for considering spherical coordina
that they separate the full Hamiltonian problem into three one-dimensional problems, an
therefore closely related to the action-angle coordinates. BecauseH is only weakly separable in
(r ,u,f) however, the one-dimensional problems must be solved in a specific order, as dis
in the Appendix.

If separability is in fact the principal criterion for distinguishing the most successful co
spondence coordinates, then the spherical coordinates are by no means the only choice tha
bill. It has been shown25 that any arbitrary canonical transformation acting on each of the sphe
coordinatesindependently, will yield a new coordinate system that preserves the weak separa
property~Appendix!. Any modifiedspherical coordinates obtained in this fashion should there
also be under consideration. For the present application let us restrict ourselves to point tr
mations, but otherwise allow the mapping (r ,u,f)→(x,b,a) given by

x5X~r !, b5B~u!, a5A~f! ~3.6!

to be completely arbitrary.
As for specifying the ‘‘best’’ transformationsX(r ), B(u), and A(f), this is somewhat

difficult to justify a priori. Motivated by past successes however, we shall remain as clo
Langer as possible. The choice forX(r ) should evidently be that of Langer and Morehead, i
x5 ln r. With this choice, the current approach~method III! becomes closely related to method
the only difference between the two is that method I requires the exact solution of theL̂2 problem,
whereas this is dealt with semiclassically in method III.

Without explaining preciselywhy the Langer/Morehead transformation works as well a
does for the radial coordinate, let us consider something similar for the angular coordinatesu and
f. In the case off, Lz is the conjugate momentum itself, implying that the WW corresponde
is canonically invariant in this case~Sec. II!. However, it isLz

2 rather thanLz that appears in Eq
~3.4!; given that the WKB eigenvalues ofL̂z

2 are already exact in thef correspondence, this
coordinate is left alone. No modification is required here—perhaps because the azimuthal
nate, though finite, is unbounded~Sec. V!.

On the other hand, the sphericalL2 symbol is an ideal candidate for a Langer-like modific
tion in u. In the Langer modification proper, the singular bound atr 50 is extended tox52`. In
the case ofu, there are two singular bounds instead of one; nevertheless, a logarithmic tra
mation that extendsb to 6` can still be defined—one simply deals withb<0 andb>0 sepa-
rately. The question arises as to whetheru or m should be used in the exponential relation. W
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choosem, because the centrifugal singularity is more like that of the radial problem, and
because the WKB eigenvalues of Eq.~3.5! exhibit the physically correct degeneracies. The pie
wise transformations are as follows:

m5eb21 ~m,b<0!,
~3.7!

m512e2b ~m,b>0!.

The above-mentioned transformation relations are a primary result of this paper, an
believed to comprise the correct generalization of Langer’s modification for polar angle co
nates. A composite graph is given in Fig. 1. Despite the awkward discontinuity in the se
derivative atb50, it is unlikely that any other point transformation is as effective as Eq.~3.7!,
insofar as semiclassical accuracy is concerned. This issue is examined more closely in Se

Having specified the transformationsA(f), B(u), and X(r ), it remains to determine the
modifications to theL2 andH Weyl symbols that result when the WW correspondence is obta
in the new, modified spherical coordinates. Using the standard Podolsky expression with
ordering~Sec. II!, it can be shown that the quantum correction to the sphericalpu

2 symbol of Eq.
~3.4! is

1
4~g8~b!!2,

where

g~b!51/u8~b!, u5u~b!5B21~b!. ~3.8!

In the b>0 region for instance, whereu5arccos(12e2b), the correction is found to be

QC~u→b!5 1
4csc2 u. ~3.9!

It is easy to verify that Eq.~3.9! is also correct forb<0. In any event, when the above resu
is combined with Eq.~3.4!, the total quantum correction forL2 @as compared to the Cartesia
symbol of Eq.~3.3!# becomes simply21/4. The WKB eigenvalues ofL2 under the new corre-
spondence are thereforeexact. Moreover, the degeneracy pattern is also correct, in that

Lm,nu

2 5l ~ l 11!, l 5nu1umu. ~3.10!

FIG. 1. Langer-like transformation from the unbounded, Cartesian-like coordinateb to the doubly bounded, polar angl
coordinateu. There is a discontinuity in the second derivative atb50.
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Moving on toH, it is immediately clear from the exactness of theL2 eigenvalues that the new
radial Hamiltonian must be identical to the standard Langer-modified form of method I. M
explicitly, the 21/(8mr2) correction from theL2 contribution is exactly cancelled by th
11/(8mr2) Langer modification term fromp̂r

2, thus resulting in a classicalH symbol that is
equivalent to the Cartesian symbol of method II. The coordinates (x,b,f) shall be referred to as
‘‘modified’’ or ‘‘logarithmic’’ spherical coordinates; the associated WW correspondence and
sequent WKB quantization comprise the new method III.

The accuracy of all three methods, with respect to semiclassical approximations for
dimensional central force Hamiltonians, is therefore identical. In method III however, we
have a fully WKB approach—incorporating the standard Langer modification explicitly—ag
which direct comparisons with method II can be legitimately made. Despite the elegance
Cartesian symbols of method II, method III is evidently superior, for the WKB eigenvalues oL2

as determined by method II are only approximate.

IV. N-DIMENSIONAL T1V„r … HAMILTONIANS

For N.3, the generalization of the spherical coordinates are the hyperspherical coord
discussed in Sec. II. These are appropriate for our purposes, because they rend
N-dimensionalT1V(r ) Hamiltonians of Eq.~3.1! weakly separable, regardless of the dimensi
ality ~Appendix!. We shall continue to refer to these as ‘‘central force Hamiltonians,’’ though
in the sense of a many-body system with central force pair potentials. In any event, one s
an azimuthal anglef and a radial coordinater; but arranged in between these two are nowN
22) polar anglesuk , with 1<k<(N22).

Associated with each polar angle coordinateuk is a constant of the motionÎ (k), where our use
of the indexk is slightly different from that of Morehead,17 and very different from that of
Alcarás.23 For convenience, let us define a zeroth constantÎ (0)5 p̂f

2 . The collection of (N21)
constantsÎ (k) are in involution~commute! with the HamiltonianĤ, and with each other. They ar
conveniently expressed in terms of certain angular momentum quantities, withÎ (N22) being
equivalent toL̂2.

Being weakly separable, theN-dimensional Hamiltonian problem is equivalent to a collecti
of N one-dimensional problems, one for each of the hyperspherical coordinates—but thes
dimensional problems must be solved in the proper order, starting with theÎ (0) problem inf, and
working up to the generalized radial Schro¨dinger equation inr. Using hyperspherical coordinate
Morehead found that methods I and II can be generalized in a straightforward manner for ar
dimensionalityN; moreover, he found the two to be equivalent with respect toN-dimensional
central force Hamiltonians. Our task in this section is therefore to generalize method III in a
gous fashion.

We must first work out the explicit Weyl symbols for theÎ (k) operators in the various coor
dinate systems. The operators themselves are conveniently expressed in the Cartesian coo
( x̂i ,p̂i) as sums of the squared generalized angular momentum operators23,31

L̂ i j
2 5~ x̂i p̂ j2 x̂ j p̂i !

2. ~4.1!

Despite the quadraticity in the momenta, the Cartesian Weyl symbols of theL̂ i j
2 ’s do not have

quantum corrections. In other words, the operator ordering in Eq.~4.1! is equivalent to Weyl
ordering, so that the corresponding symbols are obtained by simply removing the carets
Eq. ~4.1!.

In any event, when the above-mentioned Cartesian Weyl symbols are expressed in
spherical coordinates, the following recursive relations are obtained:17,23

I ~0!5pf
2 ,
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I ~1!5pu1

2 1I ~0! csc2 u1 ,

]

I ~k!5puk

2 1I ~k21! csc2 uk ,

]

I ~N22!5puN22

2 1I ~N23! csc2 uN22 ~Cartesian!. ~4.2!

The above-mentioned Cartesian relations are undeniably elegant, in that everyI (k) is recursively
equivalent to every other. Moreover, a successive WKB analysis of each of theI (k) in turn, yields
the correct degeneracy structure to the pattern of eigenvalues. This pattern is extremely d
ate; for eachI (k), the allowed quantum numbersl k are given byl k5n11¯1nk1umu, where
each of theni is a non-negative integral index, as in Eq.~3.10!.

Despite the correct degeneracy, however, the WKB eigenvalues themselves are quanti
far from exact in the Cartesian correspondence. Moreover, the errors becomequadraticallyworse
with increasingk, and are least accurate for the most physically relevant of the const
Î (N22)5L̂2. More specifically, the Cartesian WKB eigenvalues are given as

I l k

~k!5S l k1
k

2D 2

5l k
21kl k1

k2

4
~Cartesian!, ~4.3!

whereas the exact quantum results are

I l k

~k!5l k~ l k1k!5l k
21kl k ~exact quantum!. ~4.4!

The Cartesian WKB eigenvalues are therefore too large, byk2/4.
Now on to the hyperspherical correspondence. It is natural to deal with the recursive rel

of Eq. ~4.2! by induction. Assuming, therefore, that the hypersphericalI (k21) symbol is known,
then the Eq.~4.2! relation must also hold for the hypersphericalI (k) symbol, apart from a
potential-like quantum correction term inuk . In other words,

I ~k!5puk

2 1
I ~k21!

sin2 uk
1QCk~uk! ~hyperspherical!. ~4.5!

It is necessary to derive an explicit expression for the QCk(uk). The most straightforward way to
obtain these is to apply the Podolsky procedure with Weyl ordering to the CartesianL̂ i j

2 ’s of Eq.
~4.1!. However, it is more convenient simply to use the known differential forms of these op
tors in hyperspherical coordinates. This will involve another kind of transformation however,
standard to canonical-like form~Sec. II!.

The standard differential forms of theÎ (k) operators are usually expressed in the ‘‘m-
hyperspherical’’ coordinates (r ,m1<k<(N22) ,f), where mk5cosuk . From the standard ultras
pherical equation32 we find

Î 0
~k!52~12mk

2!
d2

dmk
2 1~k11!mk

d

dmk
~standard form!, ~4.6!

where Î 0
(k)5 Î (k)2 Î (k21) csc2 ûk . The standard form of Eq.~4.6! is associated with a nontrivia

Jacobian weight factor that depends on them-hyperspherical coordinates. The Eq.~4.6! differential
expression is therefore not in canonical-like form, in thatp̂mk

is not equivalent to2 id/dmk

~Sec. II!.
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In addition to converting Eq.~4.6! into canonical-like form, we also transform from
m-hyperspherical to hyperspherical coordinates. Note that all of these manipulations are
quantum mechanical, and as yet have nothing to do with the WW correspondence. The fin
will be to properly Weyl order the new expression forÎ 0

(k) in ûk and p̂uk
, so that the WW

correspondence in these coordinates becomes manifest.
Using the chain rule to transform Eq.~4.6! to the coordinateuk yields

Î 0
~k!52

d2

duk
22k cotuk

d

duk
~standard form!, ~4.7!

where we have not yet taken the Jacobian weight factor into account. The original weight fa21

was (sinuk)
k21; however, the transformation frommk to uk introduces an extra sinuk factor,

resulting in the new weight factor

wk~uk!5sink uk . ~4.8!

A canonical-like form for the differentialÎ 0
(k) expression of Eq.~4.7! is easily obtained by

substituting the differentials with the correct expressions for thep̂uk
. These are as follows:33

p̂uk
52 iwk

21/2 d

duk
wk

1/252 i
d

duk
2 i

k

2
cotuk ~standard form!. ~4.9!

Substituting Eq.~4.9! into Eq. ~4.7! yields

Î 0
~k!5 p̂uk

2 1
k2

4
cot2 ûk2 i

k

2
~cotûkp̂uk

2 p̂uk
cotûk!. ~4.10!

Although ûk and p̂uk
are not true canonical coordinates, we nevertheless proceed using Eq~2.1!

to evaluate the last term in Eq.~4.10!—which in any case is a localized operator~Sec. II!. The last
term thereby becomes2k/(2 sin2 ûk).

Thus far we have been working withÎ 0
(k) , for which Î (k21) is in effect taken to be zero. By

induction, however, we can restore the fullÎ (k) expression for anyk, resulting at last in the
following recursive, canonical-like relation:

Î ~k!5 p̂uk

2 1
Î ~k21!

sin2 ûk

1
k2

4
cot2 ûk2

k/2

sin2 ûk

~canonical-like form!. ~4.11!

Since Eq.~4.11! is already manifestly Weyl ordered in the$û i<k ,p̂u i<k
%, the hyperspherical Wey

symbols are once again obtained by simply removing the carets. Note that the (k125N53)
result is consistent with Eq.~3.4!.

The quantum correction terms in the caretless version of Eq.~4.11! arek dependent, so tha
the variousuk problems are no longer recursively equivalent to each other. Nevertheless,
generalization of method III, let us employ the same exponential transformation for each
(N22) polar coordinates. In other words, the modified hyperspherical~MHS! coordinates become
(x,bN22 ,...,b1 ,f), wherebk is given in terms ofmk via Eq. ~3.7!.

In switching the WW correspondence from the hyperspherical to the modified hypersph
coordinates, it is only thep̂uk

2 term in Eq. ~4.11! that contributes to the modification. This

because the coordinate change is a point transformation of the positions only. Moreover, si
of the p̂uk

2 terms look alike, the modification must take the same form for each value ofk, i.e., that

of Eq. ~3.9!.
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Incorporating the above modification, the total quantum correction for the MHS Weyl sy
for Î (k) ~again, as compared to the Cartesian symbols! can be written as follows:

QCk~Cartesian→MHS!5
~k21!2/4

sin2 uk
2

k2

4
. ~4.12!

We shall prove by induction that the WKB eigenvalues for theI (k), obtained using the above
mentioned corrections, are exact for allk.

Let us assume that the WKB eigenvalues forÎ (k21) are exact in the MHS correspondence.
so, then we can replace the MHS symbolI (k21) with one of its exact eigenvalues, in the MH
expression forI (k). In other words, we make the substitution

I ~k21!→I l k21

~k21!5l k21
2 1~k21!l k21 . ~4.13!

By combining like terms in the MHS expression forI (k), we obtain an expression that defines t
one-dimensional classical problem inuk :

I ~k!~uk ,puk
!5puk

2 1
~ l k211~k21!/2!2

sin2 uk
2

k2

4
~MHS!. ~4.14!

Now in view of Eqs.~4.3! and ~4.4!, it is clear that WKB quantization of Eq.~4.14! yields
exact eigenvalues for the correspondingÎ (k) operators. This is, of course, provided that the WK
eigenvalues are exact for the MHS symbol forÎ (k21). The WKB eigenvalues of the MHS symbo
I (0) are the same as in Sec. III, and are therefore known to be exact. By induction then, th
WKB eigenvalues of theI (k) observables in the MHS correspondence are also exact, for all va
of k.

The degeneracy pattern of the WKB eigenvalues is also correct. This is due to the p
square form of the numerator in the second term on the right-hand side of Eq.~4.14!. Such a form
is required to ensure that the eigenvalues ofI (k) are degenerate inl k5nk1 l k21 . Of course, the
true quantum eigenvalues arenot perfect~half-!integral squares, but quantities which are sma
by a k-dependent constant. Thus, the quantum correction terms of Eq.~4.12! perform a delicate
‘‘balancing act,’’ wherein the first correction term compensates for the deviation from squar
of the I (k21) contribution, and the second term introduces the correct deviation for the overaI (k)

expression.
It should be emphasized that such a situation would be impossible under the standard

sian correspondence. Using a Cartesian approach, one would have to substituteeither the fully
WKB valuesor the exact quantum values forI (k21) in Eq. ~4.2!. The former choice~method II!
would yield the right degeneracy pattern, but highly inaccurate eigenvalues. More accurate
would be obtained with the latter choice~similar to method I!, but these would no longer b
properly degenerate. Obtaining both accuracy and degeneracy is evidently nontrivial.

It remains only to examine the radial coordinate WKB problem, as specified by the ce
force HamiltonianĤ itself @Eq. ~3.1!# under the MHS correspondence. Comparing this to the o
two methods is trivial; since the MHS WKB eigenvalues forÎ (N22)5L̂2 are exact, then method
III must once again be equivalent to method I, and also to method II. It follows, for instan17

that the WKB wave functions for the radial states will have the correct asymptotic behavi
r→0.

To summarize the results thus far, we find that for allT1V(r ) Hamiltonians of arbitrary
dimensionality, all three semiclassical methods yield identical results. However, only meth
and III are fully WKB treatments, admitting of a legitimate comparison. Although the ra
coordinate WKB problems are the same for all three methods, method III is the only one
yields exact eigenvalues for the physically relevant Casimir-invariant quantitiesÎ (k), associated
with the angular hyperspherical coordinates.
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V. ARBITRARY SPHERICALLY SYMMETRIC OBSERVABLES

In this section, we extend the analysis to arbitrary spherically symmetric observable
necessarily of the Eq.~3.1! form. As noted by Morehead, the ability to generalize the Lan
procedure to incorporate non-Schro¨dinger-like operators is a direct consequence of the WW c
respondence interpretation, and would certainly not be possible using Langer’s original theo
another way, Weyl ordering is more general than the Podolsky method, because it is not lim
polynomial forms in the momenta of order two or less.

Regardless of the total dimensionalityN, a spherically symmetric operatorÂ can be written as

Â5A~ r̂ ,p̂r ; Î ~N22!! with Î ~N22!5L̂2. ~5.1!

Thus,Â depends only onr̂ , p̂r , andL̂2. Once again, theÎ (k) are all constants of the motion, so th
Â is weakly separable in the hyperspherical coordinates. For such operators, Morehead fou
methods I and II arenot equivalent to each other.17 It is therefore natural to ask which of the tw
should perform better, with respect to the accuracy of WKB results. Without offering a ge
proof, he suggested that method I is better, a claim which he supported with several s
results.

For example, Morehead showed that for allÂ’s that are localized operators~differential
operators in his language!, method I yields exact asymptotic behavior for the radial WKB wa
functions in the limitr→0. He also showed by constructing an explicit counterexample that
is false for method II. As for the accuracy of the WKB eigenvalues, this is very difficul
characterize in general. However, for the following simple non-Schro¨dinger-like test case

Â5
1

2
~ r̂ p̂21 p̂2r̂ !1 r̂ , p̂25 p̂r

21
L̂2

r̂ 2 , ~5.2!

Morehead showed that method I yields exact eigenvalues, whereas the eigenvalues of me
are inexact.

Insofar as method III is concerned, it is a trivial matter to show that III is equivalent to IÂ

is linear inL̂2—again, because the MHS WW correspondence yields exact WKB eigenvalue
L̂2. TheÂ of Eq. ~5.2! is a linearL̂2 operator, for example. For such operators, method III sho
perhaps be considered a derivation of method I—it is in any event probably the best justifi
that one can provide for comparing the radial Langer-modified WKB method~I! to the Cartesian
approach~method II!.

On the other hand, it is impossible forany fully semiclassical method to be equivalent
method I in the more general case whereÂ may dependnonlinearly onL̂2. This is due to the fact
that the WW correspondence fails to preserve algebraic relationships, regardless of the coo
system. Consequently,W@ f (L̂2)#Þ f (W@ L̂2#) generally, so that the WKB eigenvalues off (L̂2)
are not necessarily exact. Nevertheless, the situation characterizing the present metho
probably the best that can be expected of a fully WKB approach.

There is a sense in which we can meaningfully extend the correspondence between m
I and III still further, however. Mathematically, an arbitrary weakly separable operator in hy
spherical coordinates~Appendix! is given by

Â5A~ r̂ ,p̂r ; Î ~N22!,...,Î ~0!!. ~5.3!

If we restrict ourselves to weakly separable operators which depend no more than linearly o
of the Î (k)’s individually, then methods I and III are once again equivalent.

Equation~5.3! is not necessarily spherically symmetric. Nevertheless, we can still solve
radial problem independently of the other coordinates, for it is weak separability that is m
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ematically required in this regard, not rotational invariance. Even in just three dimension
expanded class of Eq.~5.3! contains some physically relevant operators that would not other
be included, such as

Â5B~ L̂x
21L̂y

2!1CL̂z
2, ~5.4!

reminiscent of the symmetric top free rotor.
In all cases such as Eq.~5.4! ~or evenÂ5L̂21 Î (0)Î (1)Î (2)) where Â is independent of the

radial coordinate, the WKB eigenvalues of method III are exact. In the more general case i
ing r̂ and p̂r , the advantages of method I/III over method II, as discussed in Sec. IV, still a
In particular, the eigenvalue spectra of the former are expected to be more accurate, a
asymptotic behavior of the radial wave functions is exact.

Having presented some of the advantages that the MHS correspondence provides, as
a fairly broad class of observables which evidently benefit from such a treatment, some po
explanations shall now be offered as to why this approach seems to work so well. As Mor
put it however,17 ‘‘there still appears to be no general proof.’’ The arguments sketched in
remainder of this section should therefore be considered somewhat speculative.

Putting off consideration of the Langer-like modifications for the moment, it seems likely
the success of a correspondence obtained in some kind of hyperspherical-like coordinate system is
probablydue to the fact that the Hamiltonians considered are separable when expressed i
coordinates. Presumably, the closer one can get to action-angle coordinates, the better—p
of course, that the system is integrable.

One indication that a rationale such as this might be correct is that the WW corresponde
action-angle coordinates actually does preserve the algebraic structure, due to the mutual c
tativity of the action operatorsĴk ~Appendix!. In other words,

W@H~ Ĵ1 ,...,ĴN!#5H~J1 ,...,JN!, ~5.5!

presuming of course that the Weyl ordering rule still holds, at least for a reasonable class o
H( Ĵ1 ,...,ĴN!’s. In any case, this is significant because it implies that if theĴi are quantized
exactly, then so would be all Hamiltonians obtained from them.

On the other hand, it is not entirely clear whether one can define a general WW corre
dence rule in action-angle coordinates, and if so, for which observables conventional Weyl
ing would still apply. After all, the action-angle coordinates are not truly canonical,
canonical-like, as discussed in Sec. II. Even in hyperspherical coordinates, the validity of usi
Weyl ordering rules for nonlocalized operators has been called into question. The author
Morehead’s view that a generalized new correspondence rule, for use with canonical-like c
nates such as radii and angles, is probably in order.

At present however, we have only the WW correspondence rule at our disposal; its us
canonical-like coordinates should be regarded as increasingly suspect, the further removed
from a Cartesian system. The present application~i.e., weakly separable Hamiltonians i
hyperspherical-like coordinates! should perhaps be viewed as a happy medium between Cart
and action-angle coordinates. Because of the centrifugal potentials, the nonazimuthal coor
are effectively somewhat Cartesian; and we can evidently get away with using Weyl orderi
least for localized Hamiltonians.

As for the advantages of the Langer and related modifications, the improvement is
related to the fact that the new coordinates are more like true canonical coordinates—rangin
2` to 1`, etc. Qualitative supporting evidence is provided by the following fact: Any Eq.~3.6!
transformation which extends the coordinate bounds to6` gives rise to a positive quantum
correction term. This results in corrections to the WKB eigenvalues which are also positive
in the direction of the true eigenvalues.

There are, however, many such transformations available; and we have yet to account f
the specific exponential transforms of Langer and Eq.~3.7!—which yield exact results for the
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kinetic energies$ Î (0),...,Î (N22),T̂r% in the WKB approximation—work as well as they do. Mo
likely this is related to the specific form of these observables, rather than to some intrins
special property of the exponential function. It is nevertheless worth investigating how ‘‘spe
these transformations really are.

There is one obvious generalization of the Langer and Eq.~3.7! transformations that does no
affect the semiclassical results at all. The scale transformationb→ab with a a real constant,
results in the same quantum correction topu

2 as for a51. Thus, we can alter the length sca
arbitrarily in Eq. ~3.7!, by replacingb with ab. Apart from this small generalization howeve
there appears to be little room for modification. As discussed in Sec. IV, there is a very de
balance required of the quantum corrections in the polar angle problems.

Even for the simplest case ofN53, the author has been unable to find any transforma
other than Eq.~3.7! that yields exact results forL̂2—including the seemingly more ‘‘natural’
choicesu5arccos(2tanhb) and u5arctan(b)1p/2. It is extremely unlikely that there areany
other transformations that yield the right quantum correction potentials forall values ofk; al-
though a rigorous proof would involve a careful analysis of the appropriate nonlinear differe
equation implied by Eqs.~3.8! and ~4.12!.

VI. CONCLUSIONS

This paper builds upon the earlier work of Langer8 and Morehead.17 In particular, the lack of
canonical symmetry of the Wigner–Weyl correspondence rule has been exploited to impro
accuracy of semiclassical quantization, via a change of coordinates involving allN degrees of
freedom. This has led to the somewhat surprising result that the Cartesian correspondencnot
ideal from a semiclassical perspective, despite the elegance of the Cartesian expressions.

In its stead, a modified~hyper!spherical correspondence is proposed, which has been sho
be better than the Cartesian correspondence in several respects, for both Hamiltonian and
momentum observables. The WKB eigenvalue spectra of the angular momentum-related
ties Î (k) was shown to be exact, for instance. Although a complete explanation for this succ
still lacking, the weak separability of the observables in a hyperspherical-like coordinate sys
almost certainly a key factor, as is the transformation from polar to Cartesian-like coord
induced by Eq.~3.7!.

Being a fully WKB method that treats all degrees of freedom semiclassically, the mod
hyperspherical method III presented in this paper can be legitimately compared with the sta
Cartesian method II. This situation is unlike that of previous spherical coordinate approache
as Morehead’s method I, which have tended to be mixed methods. Some of the latter r
geometric curvature or theory-of-constraints arguments to justify the introduction of the La
modification.12–16It should perhaps be noted that the present work seems to question the es
significance of such arguments, in that the entire, unconstrained configuration space is em
here. Moreover, it is not clear that these other approaches would generalize as successfully
the three-dimensional case—though this has yet to be investigated, to the author’s best kno
In contrast, the success of the modified hyperspherical method has been verified for ar
dimensionality, and for an extended class of Hamiltonians.

It was also demonstrated in a fully WKB manner, that for this extended class, the radial
wave functions exhibit the correct asymptotic behavior asr→0. In the future, the author would
like to apply a similar analysis~i.e., the method of comparison equations10,17! to the WKB wave
functions associated with the various polar angles forN.3, the so-called ‘‘hyperspherica
harmonics.’’21,23 It is also hoped that some progress will be made toward an improved corre
dence rule for canonical-like coordinates. Such a rule would presumably extend the benefits
modified ~hyper!spherical correspondence tononlocalized observables, and might also enabl
correspondence directly in the action-angle coordinates.
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APPENDIX: WEAKLY SEPARABLE HAMILTONIANS

The notion of weak separability in quantum mechanics has been examined in a se
earlier papers.24–26This appendix investigates a form of weak separability for which each de
of freedom comprises its own coordinate tier.25 The present analysis is presented from a class
perspective, although all results could apply equally well to quantum mechanics.

A HamiltonianH is said to be ‘‘weakly separable’’ in theN coordinatesj i ~with 1< i<N),
provided there existN constants of the motionFi such that

H5H~F1 ,...,FN!, Fi5Fi~j i ,pi ,F1 ,...,Fi 21!, ~A1!

with pi canonically conjugate toj i . TheFi comprise a cascading, ordered sequence of cons
of the motion, in involution with the Hamiltonian and with each other. They cannot in gener
considered action coordinates, although their existence implies thatH is integrable.

In fact, the solution of eachFi problem—treated as a one-dimensional observable in (j i ,pi)
parametrized by theF j , i—gives rise to the transformation to the true action-angle coordin
(f i ,Ji). The explicit transformation is given by

f i~j1 ,p1 ...,j i ,pi !5f i
~F1 ,...,Fi 21!

~j i ,pi !,

~A2!
Ji~j1 ,p1 ...,j i ,pi !5Ji

~F1 ,...,Fi 21!
~j i ,pi !,

Where Ji
(F1 ,...,Fi 21)(j i ,pi) is the parametrized action associated with the one-dimensionaFi

problem, etc.
In contrast to the weakly separable situation,H is said to be ‘‘strongly separable’’ in thej i

coordinates if

H5H~F1 ,...,FN!, Fi5Fi~j i ,pi !. ~A3!

The Eq.~A3! definition of strong separability is slightly more general than what has been us
the past.25

As in the weakly separable case, a strongly separable system can be solved comple
treating each of theFi ’s as independent, one-dimensional systems. The indexing of the varioFi

problems is arbitrary however, unlike that of the weakly separable case. As a result, the st
separableFi problems can be solved in any order, whereas in the weakly separable case, w
proceed in sequence fromF1 to FN , due to the fact that theF j , i appear as parameters in theFi

problem.
The ordering requirement on weakly separable systems is not, in practice, a serious limi

for all intents and purposes, a weakly separable representation is as convenient as a s
separable one. As a constraint upon possible coordinate systems in which to express a partH
however, the weakly separable form is much preferred over the strongly separable form, b
it is far less restrictive than the latter. There is, in general, an enormous variety of coord
systems in which the expression of a given Hamiltonian is weakly separable. For the str
separable case, however, one is in effect constrained to using action-angle coordinates on

More accurately, each of the action-angle coordinate pairs (f i ,Ji), when viewed as functions
of the strongly separable coordinates, must depend only on the single pair (j i ,pi). In the weakly
separable case however, the corresponding limitation is much less severe: (f i ,Ji) may depend
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arbitrarily on the entire set of coordinates$j1 ,p1 ,...,j i ,pi%, for each value ofi. Incidentally, these
restrictions imply that both strong separability and weak separability are preserved by can
transformations that affect each (j i ,pi) pair independently.

A weakly separable treatment is particularly useful for the Hamiltonians considered in
paper, because only a point transformation of the original Cartesian positions is required to
a weakly separable expression forH. In contrast, any strongly separable expression would req
a more general canonical transformation involving both positions and momenta. The subs
modification via Eq.~3.6!, in addition to preserving weak separability, also preserves the p
transformation property.
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On separable Schro¨ dinger equations
Renat Zhdanova) and Alexander Zhalijb)

Institute of Mathematics of the Academy of Sciences of Ukraine,
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We classify (113)-dimensional Schro¨dinger equations for a particle interacting
with the electromagnetic field that are solvable by the method of separation of
variables. As a result, we get 11 classes of the vector potentials of the electromag-
netic field A(t,xW )5„A0(t,xW ),AW (t,xW )… providing separability of the corresponding
Schrödinger equations. It is established, in particular, that the necessary condition
for the Schro¨dinger equation to be separable is that the magnetic field must be
independent of the spatial variables. Next, we prove that any Schro¨dinger equation
admitting variable separation into second-order ordinary differential equations can
be reduced to one of the 11 separable Schro¨dinger equations mentioned above and
carry out variable separation in the latter. Furthermore, we apply the results ob-
tained for separating variables in the Hamilton–Jacobi equation. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!02211-2#

I. INTRODUCTION

Being invented by Fourier and Euler long ago, the method of separation of variables is s
most powerful and efficient one for integrating linear partial differential equations~PDEs!. This is
especially the case for PDEs having variable coefficients, where the standard Fourier trans
no longer applicable. Moreover, this method proves to be a useful tool for constructing part
solutions of some nonlinear partial differential equations such as the nonlinear Laplace,1 wave,2,3

and heat conductivity equations4–6 in (111) dimensions.
The principal object of study in the present paper is a problem of the separation of var

in the Schro¨dinger equation~SE! for a particle interacting with the electromagnetic field,

~p02papa!c~ t,xW !50. ~1!

Here we use the notations

p05 i
]

]t
2eA0~ t,xW !, pa5 i

]

]xa
2eAa~ t,xW !, a51,2,3,

whereA5(A0 ,A1 ,A2 ,A3) is the vector potential of the electromagnetic field,e5const. Hereafter
the summation over the repeated indices from 1 to 3 is understood.

Böcher is believed to be the first to obtain in Ref. 7 a systematic classification of coordina
systems enabling separability of the three-dimensional stationary SE,

~2D1E!c~xW !50, ~2!

whereD is the Laplacian in three dimensions.
He has shown that Eq.~2! is separable via the separationAnsatz,

c~xW !5w1„v1~xW !…w2„v2~xW !…w3„v3~xW !…, ~3!

a!Electronic-mail: renat@imath.kiev.ua
b!Electronic-mail: zhaliy@imath.kiev.ua
63190022-2488/99/40(12)/6319/20/$15.00 © 1999 American Institute of Physics
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in 11 inequivalent coordinate systemsv1(xW ),v2(xW ),v3(xW ). We list these following the famous
paper by Eisenhart,8 where a rigorous geometric derivation of the corresponding results is g
Note that the coordinate systems are given in the implicit formxa5za(v1 ,v2 ,v3), a51,2,3.

~1! Cartesian coordinate system,

z15v1, z25v2, z35v3,

v1,v2,v3PR.
~2! Cylindrical coordinate system,

z15ev1 cosv2, z25ev1 sinv2, z35v3,

0<v2,2p, v1,v3PR.
~3! Parabolic cylindrical coordinate system,

z15~v1
22v2

2!/2, z25v1v2 , z35v3 ,

v1.0, v2 ,v3PR.
~4! Elliptic cylindrical coordinate system,

z15acoshv1 cosv2, z25asinhv1 sinv2, z35v3,

v1.0, 2p,v2<p, v3PR, a.0.
~5! Spherical coordinate system,

z15v1
21 sechv2 cosv3,

z25v1
21 sechv2 sinv3,

z35v1
21 tanhv2,

v1.0, v2PR, 0<v3,2p.
~6! Prolate spheroidal coordinate system,

z15acosechv1 sechv2 cosv3, a.0,

z25a cosechv1 sechv2 sinv3,

z35acothv1 tanhv2,
~4!v1.0, v2PR, 0<v3,2p.

~7! Oblate spheroidal coordinate system,
z15acosecv1 sechv2 cosv3, a.0,

z25a cosecv1 sechv2 sinv3,

z35acotv1 tanhv2,

0,v1,p/2, v2PR, 0<v3,2p.
~8! Parabolic coordinate system,

z15ev11v2 cosv3, z25ev11v2 sinv3,

z35~e2v12e2v2!/2,

v1 ,v2PR, 0<v3<2p.
~9! Paraboloidal coordinate system,

z152acoshv1 cosv2 sinhv3, a.0,

z252a sinhv1 sinv2 coshv3,

z35a~cosh 2v11cos 2v22cosh 2v3!/2,

v1 ,v3PR, 0<v2,p.
~10! Ellipsoidal coordinate system,

z15a
1

sn~v1 ,k!
dn~v2 ,k8!sn~v3 ,k!, a.0,

z25a
dn~v1 ,k!

sn~v1 ,k!
cn~v2 ,k8!cn~v3 ,k!,
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z35a
cn~v1 ,k!

sn~v1 ,k!
sn~v2 ,k8!dn~v3 ,k!,

0,v1,K, 2K8<v2<K8, 0<v3<4K.
~11! Conical coordinate system,

z15v1
21 dn~v2 ,k8!sn~v3 ,k!,

z25v1
21 cn~v2 ,k8!cn~v3 ,k!,

z35v1
21 sn~v2 ,k8!dn~v3 ,k!,

v1.0, 2K8<v2<K8, 0<v3<4K.

Here we use the usual notations for the trigonometric, hyperbolic and Jacobi elliptic func
k(0,k,1) being the modulus of the latter andk85(12k2)1/2.

By the evident reasons, the coordinate systems 1, 2–4, and 5–11 from the above list are
completely split, partially split, and nonsplit, correspondingly.

Note that the above list differs slightly from the one presented in Ref. 8, since we
rearranged the coordinate systemsv1 ,v2 ,v3 in such a way that the relations

Dva50, a51,2,3 ~5!

hold for all the cases 1–11.
Next, for each of the coordinate systems, Eisenhart9 determined the form of the potentialV(xW )

that permits the separation of variables.
The Eisenhart’s technique has been applied by Olevskii10 for separating variables in th

Laplace–Beltrami operator in the spaces of constant curvature~see, also Ref. 11!.
Smorodinsky and Winternitz with co-workers12,13 started a systematic study of potentials f

which the stationary SE in two and three dimensions admits the separation of variables in
more coordinate systems~so-called superintegrable potentials!. The classification of these poten
tials has been completed by Evans.14

In the mid 1970s a series of papers by Miller and Kalnins appears, where a symmet
proach to variable separation has been developed. This approach is based on the well-kno
that a solution with separated variables is a common eigenfunction of first- or second
differential operators, which commute each with another and with the operator of an eq
under consideration. Further details and an extensive list of references can be found
monograph15 ~also see, the review by Koornwinder16!. Boyer, Kalnins, and Miller have obtaine
a systematic solution of the variable separation in the time-dependent (112)-dimensional free SE
within the framework of the symmetry approach.17 Later on, Boyer has described all coordina
systems providing separability of the (112)-dimensional SE having the potentialV(x1 ,x2)
5a/x1

21b/x2
2.18 Reid has completely solved the problem of variable separation in the th

dimensional time-dependent SE for a free particle.19

Independently, the symmetry approach to the separation of variables in the equatio
quantum mechanics and quantum field theory was developed by Shapovalov, who was the
give a systematic treatment of the problem of variable separation in the Dirac equation us
non-Lie symmetry20 and by Bagrov with collaborators~see, Ref. 21 and references therei!.
Shapovalov and Sukhomlin22 have obtained some separable SEs of the form~1!, however, their
results are not complete. Let us also mention the papers23,24 where the physical aspects of th
problem of the separation of variables in some (113)- and (111)-dimensional SE with time-
dependent potentials are studied.

In the present paper we are mainly devoted to the inverse problem of variable separation
~1!, namely, to one of the classifying PDEs of the form~1! that can be solved by the method
separation of variables. Clearly, to be able to handle this problem efficiently, we need a p
algorithmic definition of what the separation of variables is. We have suggested a possibl
nition of the separation of variables applicable both to linear25,26 and nonlinear27 PDEs, which
enables developing an efficient approach to solving classification problems
                                                                                                                



of

of the

s in the

prob-
e
ulomb

third
n the
urther

e the

dinary

for
rable

6322 J. Math. Phys., Vol. 40, No. 12, December 1999 R. Zhdanov and A. Zhalij

                    
(112)-dimensional time-dependent Schro¨dinger equations having time-independent26,27 and
time-dependent scalar potentials.28 Recently, we have obtained an exhaustive classification
separable Schro¨dinger equations~1! in (112) dimensions withA350.29

In the present paper we solve completely the problem of variable separation in SE~1! into
second-order ordinary differential equations in a sense that we obtain all possible forms
vector potentialA(t,xW )5„A0(t,xW ),A1(t,xW ),A2(t,xW ),A3(t,xW )… providing separability of~1!. Fur-
thermore, we construct inequivalent coordinate systems enabling us to separate variable
corresponding SEs and carry out variable separation.

The paper has the following structure. In the second section we solve the classification
lem for SE~1! and obtain all vector functionsA(t,xW ) such that~1! is separable. What is more, w
consider briefly the problem of the separation of variables in SE having the generalized Co
potential and construct all the possible coordinate systems providing its separability. The
section is devoted to the application of the results of Sec. II to separate variables i
(113)-dimensional Hamilton–Jacobi equation. In a concluding section we indicate some f
applications of the results obtained in the paper.

II. SEPARATION OF VARIABLES IN THE SCHRÖ DINGER EQUATION

With all the variety of approaches to a separation of variables in PDEs, one can notic
three generic principles respected by all of them, namely, the following.

~1! Representation of a solution to be found in a separated~factorized! form via several functions
of one variable.

~2! Requirement that the above mentioned functions of one variable should satisfy some or
differential equations.

~3! Dependence of the so found solution on several arbitrary~continuous or discrete! parameters,
called spectral parameters or separation constants.

By a proper formalizing the above features we have formulated in Ref. 27 an algorithm
variable separation in linear PDEs. Below we apply this algorithm in order to classify sepa
SEs of the form~1!.

We say that SE~1! is separable in a coordinate systemt, va5va(t,xW ), a51,2,3 if the
separation Ansatz,

c~ t,xW !5Q~ t,xW !w0~ t !)
a51

3

wa„va~ t,xW !,lW …, ~6!

reduces PDE~1! to four ordinary differential equations for the functionswm , (m50,1,2,3),

w085U0~ t,w0 ;lW !, wa95Ua~va ,wa ,wa8 ;lW !. ~7!

Here U0 ,...,U3 are some smooth functions of the indicated variables,lW 5(l1 ,l2 ,l3)PL
5$an open domain inR3% are separation constants and, what is more,

rankI ]U0

]l1

]U0

]l2

]U0

]l3

]U1

]l1

]U1

]l2

]U1

]l3

]U2

]l1

]U2

]l2

]U2

]l3

]U3

]l1

]U3

]l2

]U3

]l3

I 53. ~8!
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The above condition secures the essential dependence of a solution with separated variable
separation constantslW .

Formulas~6!–~8! form the input data of the method. The principal steps of the procedur
variable separation in SE~1! are as follows.

~1! We insert theAnsatz~6! into SE and express the derivativesw08 ,w19 ,w29 ,w39 in terms of
functionsw0 ,w1 ,w2 ,w3 ,w18 ,w28 ,w38 using Eqs.~7!.

~2! We regardw0 ,w1 ,w2 ,w3 ,w18 ,w28 ,w38 ,l1 ,l2 ,l3 as the new independent variablesy1 ,...,y10.
As the functionsQ,v1 ,v2 ,v3 are independent of the variablesy1 ,...,y10 we can split by
these and get an overdetermined system of nonlinear partial differential equations fo
known functionsQ,v1 ,v2 ,v3 .

~3! After solving the above system we get an exhaustive description of coordinate system
viding separability of SE.

Having performed the first two steps of the above algorithm, we arrive at the conclusio
the separation equations~7! are linear both inw0 ,...,w3 andl1 ,l2 ,l3 @the principal reason for
this is the fact that SE~1! is linear#.

Next, we introduce an equivalence relationE on the set of all coordinate systems providing t
separability of SE. We say that two coordinate systemst,v1 ,v2 ,v3 and t̃ ,ṽ1 ,ṽ2 ,ṽ3 are equiva-
lent if the correspondingAnsätze ~6! are transformed one into another by the group transfor
tions from the Lie transformation group admitted by SE~1! with A50; the invertible transforma-
tions of the form

t→ t̃ 5 f 0~ t !, v i→ṽ i5 f i~v i !, ~9!

Q→Q̃5Ql0~ t !l 1~v1!l 2~v2!l 3~v3!, ~10!

where f 0 ,...,f 3 ,l 0 ,...,l 3 are some smooth functions andi 51,2,3.
This equivalence relation reflects the freedom in the choice of the functionsQ,v1 ,v2 ,v3 and

separation constantsl1 ,l2 ,l3 preserving the form of the separationAnsatz~6!. It splits the set of
all possible coordinate systems into equivalence classes. In a sequel, when presenting the
coordinate systems enabling us to separate variables in SE we will give only one representa
each equivalence class.

Within the equivalence relationE we can always choose the reduced equations~7! to be

iw085„T0~ t !2Ti~ t !l i…w0 , wa95„Fa0~va!1Fai~va!l i…wa , ~11!

whereT0 ,Ti ,Fa0 ,Fai are some smooth functions of the indicated variables,a51,2,3. With this
remark the system of nonlinear PDEs for unknown functionsQ,v1 ,v2 ,v3 takes the form

]v i

]xa

]v j

]xa
50, iÞ j , i , j 51,2,3; ~12!

(
i 51

3

Fia~v i !
]v i

]xj

]v i

]xj
5Ta~ t !, a51,2,3; ~13!

2S ]Q

]xj
1 ieQAj D ]va

]xj
1QS i

]va

]t
1DvaD50, a51,2,3; ~14!

Q(
i 51

3

Fi0~v i !
]v i

]xj

]v i

]xj
1 i

]Q

]t
1DQ12ieAa

]Q

]xa
1QS T0~ t !1 ie

]Aa

]xa
2eA02e2AaAaD50.

~15!
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Thus, the problem of variable separation in SE reduces to integrating the system
nonlinear PDEs for four functions. What is more, some coefficients are arbitrary functions
should be determined while integrating Eqs.~12!–~15!. We have succeeded in constructing t
general solution of the later, which yields, in particular, all possible vector-potentialsA(t,xW )
5(A0(t,xW ),...,A3(t,xW )) such that SE~1! is solvable by the method of separation of variables

The integration procedure relies heavily upon the results on the separation of variables
stationary SE~2!. That is why we will briefly consider the principal steps of application of o
approach for separating variables in Eq.~2! with E51,

D3c2c50. ~16!

Inserting the separationAnsatz,

c~xW !5Q~xW !w1„v1~xW !…f2„v2~xW !…w3„v3~xW !…,

into ~16! and taking into account the relations

wa95„Fa1~va!1Fa2~va!l11Fa3~va!l2…wa , a51,2,3,

we get the system of nonlinear partial differential equations for the functionsQ,v1 ,v2 ,v3 ,

~ i!
]v i

]xa

]v j

]xa
50, iÞ j , i , j 51,2,3;

~ ii ! (
i 51

3

Fia~v i !
]v i

]xj

]v i

]xj
50, a52,3;

~17!

~ iii ! 2
]Q

]xj

]va

]xj
1QDva50, a51,2,3;

~ iv! Q(
i 51

3

Fi1~v i !
]v i

]xj

]v i

]xj
1DQ2Q50.

Now we can utilize the classical results on variable separation in the stationary SE~16!.
According to Ref. 8 the general solutionvW 5vW (xW ) of system~17! splits into 11 inequivalent
classes whose representatives are given in~4!.

As v1 ,v2 ,v3 are functionally independent, the inequality

detI ]v i

]xa
I

i ,a51

3

Þ0, ~18!

holds. Taking into account this fact and relations~5!, we get from~iii ! that Q(xW )5const, whence
it follows that without losing generality we may chooseQ(xW )51. In view of this we rewrite
system~17! in the following way:

]v i

]xa

]v j

]xa
50, iÞ j , i , j 51,2,3;

~19!

(
i 51

3

Fi j ~v i !v ixa
v ixa

5d1 j , j 51,2,3,

whered1 j is the Kronecker symbol.
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System~19! coincides with the system of Eqs.~12! and~13! underT151, T25T350. Next,
in view of arbitrariness of the choice of the separation constantsl1 ,l2 ,l3 we can always suppos
that T1(t0)51, T1(t0)5T2(t0)50 for somet0PR. Consequently, system~12!, ~13! with t5t0

takes the form~19!. This is a key point enabling us to use the results of Ref. 8 for integra
system~12!, ~13!.

Lemma 1: The general solutionvW 5vW (t,xW ) of the system of partial differential equations (12
(13) is given implicitly by the following formulas:

xW5T ~ t !H~ t !zW~vW !1wW ~ t !. ~20!

Here T(t) is the time-dependent333 orthogonal matrix:

T~ t !5S cosa cosb2sina sinb cosg
sina cosb1cosa sinb cosg

sinb sing

2cosa sinb2sina cosb cosg
2sina sinb1cosa cosb cosg

cosb sing

sina sing
2cosa sing

cosg
D

~21!

a,b,g being arbitrary smooth functions of t;zW5zW(vW ) is given by one of the 11 formulas from
(4); H(t) is the333 diagonal matrix,

H~ t !5S h1~ t ! 0 0

0 h2~ t ! 0

0 0 h3~ t !
D , ~22!

where (a) h1(t),h2(t),h3(t) are arbitrary smooth functions for the completely split coordina
system [case 1 from (4)], (b) h1(t)5h2(t), h1(t), h3(t) being arbitrary smooth functions, for th
partially split coordinate systems [cases 2–4 from (4)], (c) h1(t)5h2(t)5h3(t),h1(t) being an
arbitrary smooth function, for nonsplit coordinate systems [cases 5–11 from (4)], andvW (t) stands
for the vector column whose entriesv1(t),v2(t),v3(t) are arbitrary smooth functions of t.

Proof: First we perform the hodograph transformation in the system of PDEs~12!, ~13!,

t5t, xa5ua~ t,v1 ,v2 ,v3!, a51,2,3. ~23!

Direct computation shows that the following identities hold:

~1! v ixa
v jxa

[
1

d2 ~V ikV jk2V i j Vkk!, ~ i , j ,k!5cycle~1,2,3!,

~2! v ixa
v ixa

[
1

d2 ~V j j Vkk2V jk
2 !, ~ i , j ,k!5cycle~1,2,3!, ~24!

where

V i j 5
]ua

]v i

]ua

]v j
, d5detI ]ua

]vb
I

a,b51

3

Þ0.

Consequently, the initial system~12!, ~13!, after being rewritten in the new variables, reads

]ua

]v i

]ua

]v j
50, iÞ j , i , j 51,2,3;

~25!

(
~ i , j ,k!5cycle~1,2,3!

Fia~v i !
]ub

]v j

]ub

]v j

]uc

]vk

]uc

]vk
5d2Ta~ t !, a51,2,3.
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If we introduce three vectors,

vW 15
]uW

]v1
, vW 25

]uW

]v2
, vW 35

]uW

]v3
,

then the first three equations of system~25! read asvW avW b50, (a,b51,2,3,aÞb). Consequently
vW 1 ,vW 2 ,vW 3 form an orthogonal system of vectors in the spaceR3. It is well known from the
analytical geometry that the most general form of these vectors can be expressed via th
angles,

]uW

]v1
5R1H cosf 1 cosf 22sin f 1 sin f 2 cosf 3

sin f 1 cosf 2 1cosf 1 sin f 2 cosf 3

sin f 2 sin f 3

J ,

]uW

]v2
5R2H 2cosf 1 sin f 22sin f 1 cosf 2 cosf 3

2sin f 1 sin f 21cosf 1 cosf 2 cosf 3

cosf 2 sin f 3

J , ~26!

]uW

]v3
5R3H sin f 1 sin f 3

2cosf 1 sin f 3

cosf 3

J ,

where f 1 ,..., R3 are arbitrary smooth functions oft, v1 ,v2 ,v3 . The above formulas give the
most general form of functions]ua /]vb , a,b51,2,3 that satisfy the first three equations fro
~25!. Next, inserting~26! into the remaining equations from~25! yields

(
i 51

3

Fi j ~v i !Ri
225Tj~ t !, j 51,2,3. ~27!

Thus, we have transformed system~25! to equivalent form~26!, ~27!, where one should take
into account the compatibility conditions for the system of PDEs~26!,

]

]vk
S ]ui

]v j
D5

]

]v j
S ]ui

]vk
D , j Þk, i , j ,k51,2,3.

Hence, we get the overdetermined system of nonlinear PDEs for the functionsf 1 , f 2 , f 3 ,

cosf 3

] f 1

]v1
1

] f 2

]v1
52R2

21 ]R1

]v2
,

cosf 3

] f 1

]v2
1

] f 2

]v2
5R1

21 ]R2

]v1
,

cosf 3

] f 1

]v3
1

] f 2

]v3
50,

cosf 2

] f 3

]v1
1sin f 2 sin f 3

] f 1

]v1
50,

cosf 2

] f 3

]v2
1sin f 2 sin f 3

] f 1

]v2
52R3

21 ]R2

]v3
,
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cosf 2

] f 3

]v3
1sin f 2 sin f 3

] f 1

]v3
5R2

21 ]R3

]v2
,

sin f 2

] f 3

]v1
2cosf 2 sin f 3

] f 1

]v1
52R3

21 ]R1

]v3
,

sin f 2

] f 3

]v2
2cosf 2 sin f 3

] f 1

]v2
50,

sin f 2

] f 3

]v3
2cosf 2 sin f 3

] f 1

]v3
5R1

21 ]R3

]v1
.

While integrating the above system we have to differentiate between the two case~1!
sin f3Þ0 and~2! sin f350.

Case 1. Suppose the condition sinf3Þ0 holds. Then we can solve the above system w
respect to] f a /]vb , (a,b51,2,3) and get

] f 1

]v1
5R3

21 ]R1

]v3
cosf 2 cosecf 3 ,

] f 1

]v2
52R3

21 ]R2

]v3
sin f 2 cosecf 3 ,

] f 1

]v3
5R2

21 ]R3

]v2
sin f 2 cosecf 32R1

21 ]R3

]v1
cosf 2 cosecf 3 ,

] f 2

]v1
52R2

21 ]R1

]v2
2R3

21 ]R1

]v3
cosf 2 cot f 3 ,

] f 2

]v2
5R1

21 ]R2

]v1
1R3

21 ]R2

]v3
sin f 2 cot f 3 , ~28!

] f 2

]v3
52R2

21 ]R3

]v2
sin f 2 cot f 31R1

21 ]R3

]v1
cosf 2 cot f 3 ,

] f 3

]v1
52R3

21 ]R1

]v3
sin f 2 ,

] f 3

]v2
52R3

21 ]R2

]v3
cosf 2 ,

] f 3

]v3
5R2

21 ]R3

]v2
cosf 21R1

21 ]R3

]v1
sin f 2 .

From the compatibility conditions of the above system of PDEs we get the system of no
ear differential equations forR1 ,R2 ,R3 :

~1! R1R2

]2R3

]v1]v2
2R1

]R2

]v1

]R3

]v2
2R2

]R1

]v2

]R3

]v1
50,
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~2! R2R3

]2R1

]v2]v3
2R2

]R1

]v3

]R3

]v2
2R3

]R1

]v2

]R2

]v3
50,

~3! R1R3

]2R2

]v1]v3
2R3

]R1

]v3

]R2

]v1
2R1

]R2

]v3

]R3

]v1
50,

~4! R1
2R2

2 ]R2

]v3

]R3

]v3
1R1

2R3
2 ]R2

]v2

]R3

]v2
2R2

2R3
2 ]R2

]v1

]R3

]v1
2R1

2R2
2R3

]2R2

]v3 ]v3
2R1

2R2R3
2 ]2R3

]v2 ]v2
50,

~29!

~5! R1
2R2

2 ]R1

]v3

]R3

]v3
2R1

2R3
2 ]R1

]v2

]R3

]v2
1R2

2R3
2 ]R1

]v1

]R3

]v1
2R1

2R2
2R3

]2R1

]v3 ]v3
2R1R2

2R3
2 ]2R3

]v1 ]v1
50,

~6! 2R1
2R2

2 ]R1

]v3

]R2

]v3
1R1

2R3
2 ]R1

]v2

]R2

]v2
1R2

2R3
2 ]R1

]v1

]R2

]v1
2R1

2R2R3
2 ]2R1

]v2 ]v2

2R1R2
2R3

2 ]2R2

]v1 ]v1
50.

Remarkably, there is no need for a direct integrating of the system of nonlinear PDEs~29!,
since it has been solved by Eisenhart8 under the assumption thatR1 ,R2 ,R3 are independent oft.
The only thing to be done is to find out in which way the temporal variablet enters into the genera
solution of system~26!–~29! in the case under study.

As shown above, the problem of variable separations in SE~16! reduces to integrating system
~19! and, what is more, the general solution of the latter is given within the equivalence re
~9! by one of the formulas from~4!. Consequently, if we fix the temporal variablet to be equal to
t0PR, then after integrating equations~26!–~29! we get within the equivalence relation~9! for-
mulas~4!.

In view of this fact we can solve relations~25! undert5t0 with respect toFi j (v i) @note that
Fi j are independent oft# for each class of functionsxW5zW(vW ) given in ~4!. The results of these
calculations are presented below in the form of 333 Stäckel matricesF1 ,..., F11, whose (i , j )th
entry is the corresponding functionFi j (v i). We give the canonical forms of the matricesF1 ,...,
F11 up to the choice of separation constantsl i , i 51,2,3 in ~11!:

F15S 1 0 0

0 1 0

0 0 1
D , F25S e2v1 21 0

0 1 0

0 0 1
D ,

F35S v1
2 21 0

v2
2 1 0

0 0 1
D , F45S a2 cosh2 v1 1 0

2a2 cos2 v2 21 0

0 0 1
D ,

F55S v1
24 2v1

22 0

0 cosh22 v2 21

0 0 1
D ,

F65S a2 sinh24 v1 2sinh22 v1 21

a2 cosh24 v2 cosh22 v2 21

0 0 1
D ,
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F75S a2 sin24 v1 2sin22 v1 1

2a2 cosh24 v2 cosh22 v2 21

0 0 1
D ,

F85S e4v1 2e2v1 21

e4v2 e2v2 21

0 0 1
D , ~30!

F95S a2 cosh2 2v1 2a cosh 2v1 21

2a2 cos2 2v2 a cos 2v2 1

a2 cosh2 2v3 a cosh 2v3 21
D ,

F105S dn4~v1 ,k!

sn4~v1 ,k!
2

dn2~v1 ,k!

sn2~v1 ,k!
1

2k84 cn4~v2 ,k8! k82 cn2~v2 ,k8! 21

k4 cn4~v3 ,k! k2 cn2~v3 ,k! 1

D ,

F115S v1
24 2v1

22 0

0 k82 cn2~v2 ,k8! 21

0 k2 cn2~v3 ,k! 1
D .

With the explicit forms of the functionsFi j , (i , j 51,2,3) in hand, we can solve~27! with
respect toR1 ,R2 ,R3 . Inserting the result obtained into~29! and splitting byv1 ,v2 ,v3 yield the
final forms of the functionsR1 ,R2 ,R3 :

~1! Ri
25Ti

21, i 51,2,3;

~2! R1
25R2

25T1
21e2v1, R3

25T3
21;

~3! R1
25R2

25T1
21~v1

21v2
2!, R3

25T3
21;

~4! R1
25R2

25T1
21a2~cosh 2v12cos 2v2!, R3

25T3
21;

~5! R1
25T1

21v1
24, R2

25R3
25T1

21v1
22 cosh22 v2 ;

~6! R1
25T1

21a2 sinh22 v1~sinh22 v11cosh22 v2!,

R2
25T1

21a2 cosh22 v2~sinh22 v11cosh22 v2!,

R3
25T1

21a2 sinh22 v1 cosh22 v2 ;

~7! R1
25T1

21a2 sin22 v1~sin22 v12cosh22 v2!,

R2
25T1

21a2 cosh22 v2~sin22 v12cosh22 v2!,

R3
25T1

21a2 sin22 v1 cosh22 v2 ;

~8! R1
25T1

21e2v1~e2v11e2v2!, R2
25T1

21e2v2~e2v11e2v2!,

R3
25T1

21e2~v11v2!;
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~9! R1
25T1

21a2~cosh 2v12cos 2v2!~cosh 2v11cosh 2v3!,

R2
25T1

21a2~cosh 2v12cos 2v2!~cos 2v21cosh 2v3!,

R3
25T1

21a2~cosh 2v11cosh 2v3!~cos 2v21cosh 2v3!;

~10! R1
25T1

21S dn2~v1 ,k!

sn2~v1 ,k!
2k82 cn2~v2 ,k8! D S dn2~v1 ,k!

sn2~v1 ,k!
1k2 cn2~v3 ,k! D ,

R2
25T1

21S dn2~v1 ,k!

sn2~v1 ,k!
2k82 cn2~v2 ,k8! D „k82 cn2~v2 ,k8!1k2 cn2~v3 ,k!…,

R3
25T1

21S dn2~v1 ,k!

sn2~v1 ,k!
1k2 cn2~v3 ,k! D „k82 cn2~v2 ,k8!1k2 cn2~v3 ,k!…;

~11! R1
25T1

21v1
24, R2

25R3
25T1

21v1
22

„k82 cn2~v2 ,k8!1k2 cn2~v3 ,k!…. ~31!

Inserting the above expressions into~28!, we see that the system obtained~we denote it
temporarily asS! does not depend explicitly ont. It is in involution and hence its general solutio
depends on three arbitrary functions oft. As a direct check shows the functions

f 15arccot„cosg cot~ f̃ 11b!1sing cot f̃ 3 cosec~ f̃ 11b!…1a,

f 25arccot„cosf̃ 3 cot~ f̃ 11b!1sin f̃ 3 cotg cosec~ f̃ 11b!…1 f̃ 2 ,

f 35arccos„cosg cosf̃ 32sing sin f̃ 3 cos~ f̃ 11b!…, ~32!

wherea, b, g are arbitrary functions oft and f̃ 1 , f̃ 2 , f̃ 3 are ~time-independent! solutions of the
systemS undert5t0 , satisfy the systemS identically. Since formulas~32! contain three arbitrary
functions oft, they give the general solution of the systemS. Substituting~32! into ~26! yields

]uW

]v1
5R1T~ t !H cosf̃ 1 cosf̃ 22sin f̃ 1 sin f̃ 2 cosf̃ 3

sin f̃ 1 cosf̃ 21cosf̃ 1 sin f̃ 2 cosf̃ 3

sin f̃ 2 sin f 3

J ,

]uW

]v2
5R2T~ t !H 2cosf̃ 1 sin f̃ 22sin f̃ 1 cosf̃ 2 cosf̃ 3

2sin f̃ 1 sin f̃ 21cosf̃ 1 cosf̃ 2 cosf̃ 3

cosf̃ 2 sin f 3

J , ~33!

]uW

]v3
5R3T~ t !H sin f̃ 1 sin f̃ 3

2cosf̃ 1 sin f̃ 3

cosf̃ 3

J ,

where the matrixT(t) is given by formula~21!.
If we choose in the system obtainedt5t0 , then its general solution is given within th

equivalence relationE ~9! by one of the formulas from~4!. In view of this fact it is not difficult to
integrate system~33! and thus get formulas~20!, where h1(t),h2(t),h3(t) are expressed via
T1(t),T2(t),T3(t),
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~1!

~2!–~4!

~5!–~11!

Ti5hi
22, i 51,2,3;

T15h1
22, T250, T35h3

22;

T15h1
22, T25T350.

~34!

Case 2. Let the relation sinf350 be valid. In this case we have an analog of system~28!,

]g

]v1
52R2

21 ]R1

]v2
,

]g

]v2
5R1

21 ]R2

]v1
,

~35!
]g

]v3
50,

]R1

]v3
50,

]R2

]v3
50,

]R3

]v1
50,

]R3

]v2
50,

with g56 f 11 f 2 and an analog of system~29!,

R1
2R3

2 ]R1

]v2

]R2

]v2
1R2

2R3
2 ]R1

]v1

]R2

]v1
2R1

2R2R3
2 ]2R1

]v2 ]v2
2R1R2

2R3
2 ]2R2

]v1]v1
50,

~36!
]R1

]v3
50,

]R2

]v3
50,

]R3

]v1
50,

]R3

]v2
50.

A system of PDEs~35!, ~36! is fairly simple and is easily integrated. As a result we ge
particular case of~20! with sing50. The lemma is proved.x

With this result in hand it is not difficult to integrate the remaining equations from the sy
under study. Indeed, Eqs.~14! and ~15! may be treated as algebraic equations for the functi
Aj (t,xW ), j 51,2,3 andA0(t,xW ), correspondingly.

There are two different configurations of the electromagnetic field that should be consi
separately. The first one is the case of a vanishing magnetic fieldHW 5rotAW , namely, the case whe

Aix j
5Ajxi

, iÞ j , i , j 51,2,3. ~37!

Provided the above equality does not hold we have a nonvanishing magnetic fieldHW .

A. The case of nonvanishing magnetic field

Let us represent the complex-valued functionQ in ~6! asQ5exp(S11iS2), whereS1 ,S2 are
real-valued functions. Now, if we take into account that the components of the vector pot
A(t,xW ) and functionsv1 ,v2 ,v3 are real-valued functions, then after insertingQ into ~14! with the
use of~5! we can split the obtained equations into real and imaginary parts:

]S1

]xj

]va

]xj
50, a51,2,3; ~38!

2S ]S2

]xj
1eAj D ]va

]xj
1

]va

]t
50, a51,2,3. ~39!

In view of ~18! we get from~38! the relationsS1xj
50, j 51,2,3. Hence,S15S1(t) and within

the equivalence relationE ~10! we may chooseS1 to be equal to 0. Next, making use of the gau
invariance of SE~1! we get from~39! that within the equivalence relationE the equalitiesS2xi

50, i 51,2,3 hold, whenceS25S2(t). Again, in view of ~10! we may putS250, which means
that the factorQ may be chosen as 1. With this result system~39! reduces to the system of thre
linear algebraic equations for the functionsA1 ,A2 ,A3 ,
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vat522evaxi
Ai , a51,2,3.

The determinant of this system is not equal to zero due to~18!. Consequently, it has a uniqu
solution. Making in this solution the hodograph transformation~23!, we get the following expres-
sions forA1 ,A2 ,A3 :

AW 5
1

2e

]uW ~ t,vW !

]t
.

Inserting into the above formulaxW5uW (t,vW ) from ~20! yields the explicit forms of the spacelik
components of the vector potential of the electromagnetic fieldA(t,xW ),

AW ~ t,xW !5
1

2e
„M~ t !~xW2wW !1wẆ …. ~40!

Here we use the designation

M~ t !5Ṫ~ t !T 21~ t !1T~ t !Ḣ~ t !H21~ t !T 21~ t !, ~41!

whereT(t), H(t) are variable 333 matrices defined by formulas~21! and~22!, correspondingly,
wW 5„w1(t),w2(t),w3(t)…T and the dot over a symbol means differentiation with respect tot.

Given the form~40! of the spacelike components of the vector potentialA(t,xW ), the condition
for the magnetic fieldHW not to vanish means that at least one of the expressions,

ȧ1ḃ cosg, ḃ cosa sing2ġ sina, ḃ sina sing1ġ cosa, ~42!

does not turn into zero. Hence, in view of the identity

Ṫ T 215S 0 2~ ȧ1ḃcosg! 2~ ḃ cosa sing2ġ sina!

ȧ1ḃ cosg 0 2~ ḃ sina sing1ġ cosa!

ḃ cosa sing2ġ sina ḃ sina sing1ġ cosa 0
D ,

whose validity is checked by straightforward computation, we conclude thatTÞconst. At last,
solving ~15! yields the explicit form ofA0 ,

A0~ t,xW !5
1

e S (
i 51

3

Fi0~v i !
]v i

]xj

]v i

]xj
1T0~ t !D 1 iAaxa

2eAaAa .

As the functionA0 is real valued, we have to find the real part of the right-hand side of
above equality. Making use of~40! yields

2eAaxa
5(

i 51

3
ḣi

hi
.

This, in its turn, gives the imaginary part ofT05T0(t),

T05T̃02
i

2 (
i 51

3
ḣi

hi
, Im T̃050. ~43!

Finally, we get
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A0~ t,xW !5
1

e S (
i 51

3

Fi0~v i !
]v i

]xj

]v i

]xj
1T̃0~ t !D 2eAaAa , ~44!

whereF10(v1),F20(v2),F30(v3) are arbitrary smooth functions,A1 ,A2 ,A3 are given by~40!, and
the functionsva5va(t,xW ), a51,2,3 are defined implicitly by formulas~20!–~22! and ~4!. In
order to keep an exposition of the results compact, we do not present hereA0(t,xW ) in full detail,
since the corresponding expressions are too cumbersome.

Thus we have proved the following assertion.
Theorem 1: SE (1) for the case of nonvanishing magnetic field admits separation of varia

if and only if the spacelike components A1 ,A2 ,A3 of the vector potential of the electromagnet
field are linear in the spatial variables and given by (40) and, furthermore, the timelike compo
A0 is given by (44).

Summing up, we conclude that conditions~40! and ~44! provide separability of SE for the
case of a nonvanishing magnetic field. And what is more, the solutions with separated va
are of the form~6! with Q51, where the functionsv1(t,xW ),v2(t,xW ),v3(t,xW ) are given implicitly
by formulas~20!–~22! and ~4!. In fact, we have the 11 classes of vector potentialsA(t,xW ) corre-
sponding to the 11 classes of coordinate systemsva5va(t,xW ), a51,2,3. SE~1! for each class of
the functionsA0(t,xW ),AW (t,xW ) defined by~40! and ~44! under arbitraryT̃0(t),Fa0(va), and fixed
arbitrary functionsa(t),b(t),g(t),wa(t),ha(t), a51,2,3 separates in exactly one coordinate s
tem. The separation equations read as~11!, where the coefficientsFai , a,i 51,2,3 are the entries
of the corresponding Sta¨ckel matrices~30!, functionsTa , a51,2,3 are listed in~34!, and the
functions T0 , Fa0 , a51,2,3 are arbitrary smooth functions defining the form of the timel
component of the vector potentialA(t,xW ) @see~44!#.

Note that proper specifying the functionsFa0(va), a51,2,3, may yield additional possibili
ties for variable separation in the corresponding SE. What we mean is that for some par
forms of the vector potentialA(t,xW ) ~40!, ~44! there might exist several coordinate syste
~20!–~22! enabling us to separate the corresponding SE. However, the detailed study o
problem goes beyond the scope of the present paper.

As an illustration the previous section, we consider the problem of separation of variab
SE ~1!, where the vector potential of the electromagnetic field is of the form

2eAW 5S 0 2s1~ t ! 2s2~ t !

s1~ t ! 0 2s3~ t !

s2~ t ! s3~ t ! 0
D xW , ~45!

eA05
q

uxW u
2

1

4
~„s1~ t !x21s2~ t !x3…

21„s1~ t !x12s3~ t !x3…
21„s2~ t !x11s3~ t !x2…

2!.

Hereq5const and

s1~ t !5ȧ~ t !1ḃ~ t !cosg~ t !,

s2~ t !5ḃ~ t !cosa~ t !sing~ t !2ġ~ t !sina~ t !,

s3~ t !5ḃ~ t !sina~ t !sing~ t !1ġ~ t !cosa~ t !,

where a(t),b(t),g(t) are arbitrary smooth functions. Evidently, choosinga(t)5const, b(t)
5const, andg(t)5const yields the standard Coulomb potential.

Making use of the results of Theorem 1, we conclude that SE with potential of the form~45!
separates in four coordinate systems,

xW5T ~ t !zW,
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whereT is the time-dependent 333 orthogonal matrix~21!, andzW is one of the following coor-
dinate systems:

~1! spherical@formula 5 from~4!#,
~2! prolate spheroidal II @formula 6 from ~4!#, where one should replacez3 with

z35a(cothv1 tanhv261),
~3! parabolic@formula 8 from~4!#,
~4! conical @formula 11 from~4!#.
The separation equations~11! for these cases take the form
~1!

iw0852l1w0 ,

w195~l1v1
242l2v1

221qv1
23!w1 ,

w295~l2 sech2 v22l3!w2 ,

w395l3w3 .

Integrating these equations yields a family of exact solutions of SE~1! with potential~45! that are
products of the exponential, confluent hypergeometric,30 and Legendre30 functions:

~2!

iw0852l1w0 ,

w195~l1a2 sinh24 v12l2 sinh22 v12l31qa coshv1 sinh23 v1!w1 ,

w295~l1a2 cosh24 v21l2 cosh22 v22l37qa sinhv2 cosh23 v2!w2 ,

w395l3w3 .

Integrating these equations yields a family of exact solutions of SE~1! with potential ~45! in
separated form that are products of the exponential and Coulomb spheroidal functions.31

~3!

iw0852l1w0 ,

w195~l1e4v12l2e2v12l312qe2v1!w1,

w295~l1e4v21l2e2v22l3!w1 ,

w395l3w3 .

Integrating these equations yields a family of exact solutions of SE~1! with potential~45! that are
products of the exponential and confluent hypergeometric functions.

~4!

iw0852l1w0 ,

w195~l1v1
242l2v1

221qv1
23!w1 ,

w295~l2k82 cn2~v2 ,k8!2l3!w2 ,

w395~l2k2 cn2~v3 ,k!1l3!w3 .
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Integrating these equations yields a family of exact solutions of SE~1! with potential~45! that are
products of the exponential, confluent hypergeometric, and Lame´30 functions.

Note that these families are parametrized both by integration constants and by the
continuous spectral parametersl i ,i 51,2,3. Under appropriate initial and boundary conditions
latter become discrete, i.e.,l i5l in ,n51,2,3,..., and we get a basis for expanding arbitrary smo
solutions of SE~1! with potential~45! in a properly chosen Hilbert space~for more details, see
Ref. 15!.

B. The case of vanishing magnetic field

Provided condition~37! holds true, we can, without loss of generality, putAW 50 at the expense
of the gauge invariance of SE. Representing the complex-valued functionQ in ~6! as Q
5exp(S11iS), inserting into~14! and splitting the obtained equations into real and imaginary p
analogously to what has been done for the case of a nonvanishing magnetic field we arrive
conclusion thatS1 may be chosen to be equal to zero. Furthermore, the functionS5S(t,xW ) satisfy
the over-determined system of linear partial differential equations

2
]S

]xj

]va

]xj
1

]va

]t
50, a51,2,3. ~46!

Solving it with respect to the derivatives]S/]xj , j 51,2,3 @which is always possible due to~18!#
and making in the relations obtained the hodograph transformation~23!, yields

2 ¹W S5M~ t !~xW2wW !1wẆ , ~47!

whereM(t) is the 333 matrix ~41! andwW 5„w1(t),w2(t),w3(t)…T. The direct check shows tha
system~47! is compatible if and only if all the expressions given in~42! vanish identically. Hence
we conclude that the matrixT is constant. Utilizing the invariance of SE~1! with respect to the
rotation group we can chooseT5I , whereI is the unit 333 matrix. Given this condition,~20!
takes the form

xW5H~ t !zW~vW !1wW ~ t !, ~48!

and, furthermore,

M~ t !5Ḣ~ t !H21~ t !.

Next, integrating~47! and taking into account the equivalence relation~10! we get

S5
1

2 (
i 51

3 S ḣi

hi
S xi

2

2
2wixi D 1ẇixi D . ~49!

Substituting~49! into ~15! yields the form ofA0(t,xW ),

eA0~ t,xW !5(
i 51

3

Fi0~v i !
]v i

]xj

]v i

]xj
1T̃0~ t !2

1

4 (
i 51

3 S ḧi

hi
xi

212S ẅi2
ḧi

hi
wi D xi1S ẇi2

ḣi

hi
wi D 2D , ~50!

the functionT0(t) being given by~43!.
Thus, we have proved the following assertion.
Theorem 2: Given the restriction (37), SE (1) admits a separation of variables if and on

it is gauge equivalent to SE with AW 50W and A0 being given by (50).
Consequently, the conditionsAW 50W and ~50! provide separability of SE for the case of

vanishing magnetic field. Furthermore, the solutions with separated variables are of the fo~6!
with Q5exp(iS), whereS5S(t,xW ) is given by ~49!, the functionsv1(t,xW ),v2(t,xW ),v3(t,xW ) are
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given implicitly by formulas~48!, ~22!, and~4!. Again, we have the 11 classes of vector potenti
A(t,xW ) corresponding to the 11 classes of coordinate systemsva5va(t,xW ), a51,2,3. SE~1! for
each class of the functionsA0(t,xW ),AW (t,xW )50W defined by~50! under arbitraryT̃0(t),Fa0(va), and
fixed arbitrary functionswa(t),ha(t), a51,2,3 separates in exactly one coordinate system.
separation equations read as~11!, where the coefficientsFai , a,i 51,2,3 are the entries of th
corresponding Sta¨ckel matrices~30!, functionsTa , a51,2,3 are listed in~34! and the functions
T0 ,Fa0 ,a51,2,3 are arbitrary smooth functions defining the form of the timelike componen
the vector potentialA(t,xW ) @see~50!#.

If we fix the temporal variablet to be equal tot0PR in the above obtained results, then it
not difficult to classify separable stationary Schro¨dinger equations for a particle interacting wi
the electromagnetic fieldA(xW )5„A0(xW ),AW (xW )…,

~papa1eA01E!c~xW !50, ~51!

wherepa5 i ]/]xa2eAa , a51,2,3,e5const, andE is a spectral parameter, and thus recover
classical result by Eisenhart.9

III. SEPARATION OF VARIABLES IN THE HAMILTON–JACOBI EQUATION

It is well known that there exists a deep connection between the separation of variables
Schrödinger and Hamilton–Jacobi equations~see, e.g., Ref. 16!. The Hamilton–Jacobi equation

ut1eA01~uxa
1eAa!~uxa

1eAa!50, ~52!

separates in any coordinate system providing separability of the Schro¨dinger equations~1! and,
what is more, the inverse assertion is not true. We will make use of this connection for the s
classifying separable Hamilton–Jacobi equations.

First we fix the usual form of the separationAnsatzfor the Hamilton–Jacobi equation,

u~ t,xW !5S~ t,xW !1w0~ t !1(
i 51

3

w i„v i~ t,xW !…, ~53!

and, furthermore, fix the form of the ordinary differential equations forw0 ,w1 ,w2 ,w3 ,

w0852T0~ t !2Ti~ t !l i , wa85„2Fa0~va!1Fai~va!l i…
1/2. ~54!

Now, inserting theAnsatz~53! into Eq. ~52!, eliminating the first derivatives of the function
w0 ,w1 ,w2 ,w3 with the use of the above equations and splitting by the varia
w0 ,w1 ,w2 ,w3 ,l1 ,l2 ,l3 , we arrive at the following system of nonlinear partial differential eq
tions for the functionsS,v1 ,v2 ,v3 :

]v i

]xa

]v j

]xa
50, iÞ j , i , j 51,2,3;

(
i 51

3

Fia~v i !
]v i

]xj

]v i

]xj
5Ta~ t !, a51,2,3;

2S ]S

]xj
1eAj D ]va

]xj
1

]va

]t
50, a51,2,3;

2(
i 51

3

Fi0~v i !
]v i

]xj

]v i

]xj
1

]S

]t
12eAa

]S

]xa
1

]S

]xa

]S

]xa
2T0~ t !1eA01e2AaAa50. ~55!
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The general solutionvW 5vW (t,xW ) of the first six equations of the above system@which coincide
with Eqs.~12! and~13!# can be reduced with the help of an appropriate equivalence transform
E to such a form that it satisfies the Laplace equation~5!.

It is not difficult to become convinced of the fact that making the change of variables,

Q~ t,xW !5exp„iS~ t,xW !…, ~56!

in ~12!–~15! yields the system that coincides with~55! with an exception of the last equation
where an additional term2 i (DS1eAaxa

) appears. As shown in the previous section, this term
a function oft only and is absorbed byT0 . Consequently, all the results on variable separation
SE apply to the case of the Hamilton–Jacobi equation~52! as well.

IV. CONCLUDING REMARKS

Theorems 1–2 give a complete solution of the problem of classification of SE’s~1! and~51!
that are solvable within the framework of the method of separation of variables. By appro
reductions of these results we can get the results on the separation of variables in SE’
particle interacting with the electromagnetic field in one24 and two26,27 spatial dimensions. Fo
example, in order to recover the results of Ref. 27 one has to choose]c/]x350 and consider the
completely and partially split coordinate systems from the list~4!.

It follows from Theorem 1 that the choice of magnetic fieldsHW allowing for variable separa
tion in the corresponding SE is very restricted. Namely, the magnetic field should be indepe
of spatial variablesx1 ,x2 ,x3 in order to provide the separability of SE~1! into three second-orde
ordinary differential equations. However, if we allow for separation equations to be of lo
order, then additional possibilities for variable separation in SE arise. As an example we gi
vector-potential,

A~ t,xW !5~A0~Ax1
21x2

2!,0,0A3~Ax1
21x2

2!!,

whereA0 ,A3 are arbitrary smooth functions. SE~1! with this vector potential separates in th
cylindrical coordinate systemt,v15 ln(Ax1

21x2
2), v25arctan(x1 /x2), v35x3 into two first-order

and one second-order ordinary differential equations. The corresponding magnetic fieHW

5rotAW is evidentlyx dependent.
As mentioned in the Introduction, a possibility of variable separation in SE is intima

connected to its symmetry properties. Namely, solutions with separated variables are co
eigenfunctions of three mutually commuting symmetry operators of SE. For all the cas
variable separation in SE~1! these operators can be constructed in explicit form, in analog
what has been done in Ref. 26 for the (112)-dimensional case. They are expressed in terms of
coefficients of the separation equations~11!. This fact enables application of the methods of t
representation theory of Lie algebras for a further analysis of special functions arising as so
of separation equations in the spirit of the famous Bateman’s project15.

The last remark is that the technique developed in the present paper can be directly app
order to separate variables in the Pauli equation for a particle with spin1

2 moving in the electro-
magnetic field and in the Fokker–Planck equation with a constant diagonal diffusion matri

A study of the above-mentioned problems is in progress now and will be reported in
future publications.
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On the explicit solutions of the elliptic Calogero system
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Let q1 ,q2 , . . . ,qN be the coordinates ofN particles on the circle, interacting with
the integrable potential( j ,k

N `(qj2qk), where` is the Weierstrass elliptic func-
tion. We show that every symmetric elliptic function inq1 ,q2 , . . . ,qN is a mero-
morphic function in time. We give explicit formulas for these functions in terms of
genusN21 theta functions. ©1999 American Institute of Physics.
@S0022-2488~99!01512-1#

I. INTRODUCTION

The elliptic Calogero system,1

d2

dt2
qi52(

j Þ i
`8~qi2qj !, i 51,2,. . . ,N ~1.1!

is a canonical Hamiltonian system, describing the motion ofN particles on the circleS1

5R/vZ, vPR, with Hamiltonian~energy!

H5
1

2 (
j 51

N

pj
21(

j ,k

N

`~qj2qk!, ~1.2!

where`(q)5`(quv,v8) is the Weierstrass elliptic function

`~quv,v8!5 (
m,nPZ

~q1mv1nv8!22, v8/v¹R. ~1.3!

Denote byG1 the elliptic curveC/$2vZ12v8Z% with period lattice generated by 2v and 2v8.
The HamiltonianH is invariant under the obvious action of the permutation groupSn , so the
phase space of the compexified system is the cotangent bundleT* (SNG1) of the Nth symmetric
productSNG1 .

It is known that this system has two Lax representations~Refs. 1, 2, also see Ref. 3 fo
details!. The Lax operatorL definesN integrals of motionI k(p,q)5k21tr(Lk),k51, . . . ,N. It was
proved in Ref. 4 that these integrals are in involution and hence this system is completely
grable in the Jacobi–Liouville sense.5,6

The Krichever Lax pair has a spectral parameter. This means that the equations of mo
the system under consideration are equivalent to the matrix equation

i L̇ ~l!5@L~l!,M ~l!#, ~1.4!

a!Electronic mail: gavrilov@picard.ups-tlse.fr.
b!On leave of absence from Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia. Current el

mail: perelomo@posta.unizar.es.
63390022-2488/99/40(12)/6339/14/$15.00 © 1999 American Institute of Physics
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whereL(l)5L(p,q; l) andM (l)5M (p,q; l) are two matrices of orderN,

$L~l!% jk5pj d jk1 i ~12d jk! F~qj2qk , l!; ~1.5!

$M ~l!% jk5d jk S (
lÞ j

`~qj2ql !2`~l! D 1 ~12d jk! F8~qj2qk , l!; ~1.6!

F~q,l!5
s~q2l!

s~q! s~l!
exp~z~l! q!; ~1.7!

s~q!5q ) 8
m,n

S 12
q

vmn
DexpF q

vmn
1

1

2 S q

vmn
D 2G , ~1.8!

z~q!5
s8~q!

s~q!
, vmn5mv1nv8.

As it was shown by Krichever,2 the equations of motion may be ‘‘linearized’’ on the Jacobian
the spectral curve

GN5$~l,m!: f ~l,m![det~L~l!2mI !50%. ~1.9!

Namely, let

u~zuB!5 (
NPZN

ep i ^N,BN&12p i ^N,z&, zPCN ~1.10!

be the Riemann theta function with period matrixB, where

B5~Bi j !, B5Bt, Im B.0, ^x,y&5(
j

xj y j , i , j 51, . . . ,N.

It has been shown by Krichever2 that, if B is the period matrix of the curveGN, then for suitable
constant vectorsU,V,WPCN and for a fixed parametertPC, the equation

u~Uq1Vt1W!50, qPC ~1.11!

has exactlyN solutionsq5qj (t) on the Jacobian Jac (GN) of the curveGN . The functionsqj (t)
provide solutions of the elliptic Calogero system~1.1!. The equation~1.11! for these solutions is,
however, not explicit and seems to be not well understood.

The aim of the present paper is to give ‘‘the effectivization’’ of these formulas based o
projection method by Olshanetsky and Perelomov7,8 of explicit integration of the equations o
motion in the rational and the trigonometric cases, as well as on the algebro-geometric ap
of Krichever.9,2

II. EXPLICIT SOLUTIONS

Let GN be a genusN Riemann surface which is anN-sheeted covering of an elliptic curveG1 ,

GN→
p

G1 . ~2.1!

It follows from a theorem of Weierstrass~see, for example, Refs. 10, 11, 12, and 13, Theorem!
that the period matrix of the curveGN in a suitable basis has the form (I ,B), where
I 5diag(1,1,. . . ,1), and
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B5S t

N

k

N
0 . . . 0

k

N
b22 b23 . . . b2N

0 b32 b33 . . . b3N

A A A A A

0 bN2 bN3 . . . bNN

D ~2.2!

for a suitable positive integerk. Consider the Riemann theta functionu(x,t)5u(x,tuB), wheret
5(t1 ,t2 , . . . ,tN21), (x,t)PCN . We have

u~x11,t!5u~x,t!,u~x1t,t!5e22p iNx2p iNtu~x,t!,i 5A21 ~2.3!

and therefore for any fixedt the functionu(x,t) is an elliptic theta function of orderN.14 In
particular it has exactlyN zeros onG15C/$Z1tZ% which we denote byxi(t), i 51,2,. . . ,N.

Lemma 2.1: The following identity holds:

]2

]x2
log u~x,tuB!5(

i 51

N

`~x2xi~ t!ut!1N
u1-~0!

3u18~0!
,

where15

u1~xut!5u F1/2

1/2G ~xut!.

Proof: The relations

u1~x11!52u1~x!,u1~x1t!52e22p ix2p i tu1~x! ~2.4!

compared to~2.3! imply that

S u~x,t!

) i 51
N u1~x2xi~ t!! D

2

~2.5!

is a meromorphic function inx on G1 which has no poles, and hence it is a constant~in x!. It
follows that

]2

]x2
log

u~x,t!

) i 51
N u1~x2xi~ t!!

[0.

Finally we use that

`~x!52
]2

]x2
logs~x!, u1~x!5c exp~hx2! s~x!, ~2.6!

where

h52
u1-~0!

6u18~0!

andc is a suitable constant.15 h
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Theorem 2.2: The Krichever curveGN is an N-sheeted covering of an elliptic curveG1

5C/$Z1tZ%. There exists a canonical homology basis and a normalized basis of holomo
one-forms onGN, such that the corresponding period matrix ofGN takes the form(I ,B), where
I 5diag(1,1,. . . ,1),and

B5S t

N

1

N
0 . . . 0

1

N
b22 b23 . . . b2N

0 b32 b33 . . . b3N

A A A A A

0 bN2 bN3 . . . bNN

D . ~2.7!

In the same basis the vectors U and V in~1.11! read

U5~1,0, . . . ,0!,V5~0,V2 , . . . ,VN!. ~2.8!

A direct proof~without using the Weierstrass theorem! of the above Theorem will be given in th
last section. From now on we make the convention that 2v51 so the period lattice ofG1 is

Z1tZ, t52v8/2v52v8.

Corollary 2.3: The symmetric functions

f k~ t !5(
i 51

N

` (k)~qi~ t !!

are meromorphic in t. Explicit formulas for them are obtained from Lemma 2.1,

f 0~ t !5
]2

]x2
log u~x,t!ux502N

u1-~0!

3u18~0!
,

f k~ t !5~21!k
]k12

]xk12
log u~x,t!ux50 , k.0,

where

t5~V2t1W2 ,V3t1W3 , . . . ,VNt1WN!.

Our next construction is motivated by Refs. 7, 8, and 2. Let us define the function

F~x,t !5)
j 51

N
s~x2qj~ t !!

s~x!s~qj~ t !!
5@u18~0!#2N] )

j 51

N
u1~x2qj~ t !!

u1~x!u1~qj~ t !!
, (

j 51

N

qj~ t !50, ~2.9!

where

qj~ t !, tPC, j 51,2,. . . ,N,

is a solution of the elliptic Calogero system.
Lemma 2.4: F(x,t) is a meromorphic function in x onG1 and meromorphic function in t on

C, explicitly given by
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F~x,t !5@2u18~0!#2N]
u~Ux1Vt1W!

u1~x!Nu~Vt1W!
. ~2.10!

Proof: We already noted that the function~2.5! is a constant inx, and hence

u~x,t!

) i 51
N u1~x2xi~ t!!

[
u~0,t!

) i 51
N u1~2xi~ t!!

.

This combined with~2.8! gives

) i 51
N u1~x2qi~ t !!

) i 51
N u1~qi~ t !!

5~21!N
u~Ux1Vt1W!

u~Vt1W!
.

h

The expansion ofF(x,t) on the basis of first order theta functions inx defines (N21)
meromorphic functions in the variablesq1 , . . . ,qN which are also meromorphic functions int
with only simple poles. Hence we can take them as new ‘‘good’’ variables. The expansi
F(x,t) can be obtained by making use of the addition formulas for elliptic functions. In the
N52, we have the following ‘‘addition formula’’15

F~x,t !52
s~x2q! s~x1q!

s2~x!s2~q!
5`~x!2`~q!, ~2.11!

which generalizes for arbitraryN in the following way
Lemma 2.5: For anyq5(q1 ,q2 , . . . ,qN),x, such that(qj50 define

F~x,q!5)
j 51

N
s~x2qj !

s~x!s~qj !
, ~2.12!

D~q!5~N21!!detU 1 `~q1! `8~q1! . . . ` (N23)~q1!

1 `~q2! `8~q2! . . . ` (N23)~q2!

. . . . . . . . . . . . . . .

1 `~qN21! `8~qN21! . . . ` (N23)~qN21!

U . ~2.13!

The following identity holds:

F~x,q!D~q![detU 1 `~x! `8~x! . . . ` (N22)~x!

1 `~q1! `8~q1! . . . ` (N22)~q1!

. . . . . . . . . . . . . . .

1 `~qN21! `8~qN21! . . . ` (N22)~qN21!

U . ~2.14!

Remark:The substitutionx5qN in ~2.14! gives the following addition formula for the Weier
strass̀ -function:

detU 1 `~q1! `8~q1! . . . ` (N22)~q1!

1 `~q2! `8~q2! . . . ` (N22)~q2!

. . . . . . . . . . . . . . .

1 `~qN! `8~qN! . . . ` (N22)~qN!

U[0. ~2.15!
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Proof: For fixed q5(q1 ,q2 , . . . ,qN) the functions in the left and right-hand side of th
identity ~2.14! are meromorphic inx on the elliptic curveG1 . Both of them have a pole of orde
N at x50 and simple zeros atx5q1 , . . . ,qN21 . It follows that their ratio is a first order elliptic
function, and hence a constant inx. To compute this constant we use thats(x)5x1 . . . , `(x)
51/x21 . . . , andthen compare the Laurent series of the two functions in a neighborhoodx
50. h

Note finally that if for fixedq and q̃ holds F(x,q)[F(x,q̃), then up to a permutationq
5q̃. Therefore there is a one-to-one correspondence between the coefficients of`k(x) in the
expansion ofF(x,q), and the points of the (N21)th symmetric power of the elliptic curve
G1\$0%. In particular every meromorphic function on this symmetric power is a rational func
in the above coefficients. This implies the following:

Corollary 2.6: Let f(x) be a meromorphic function on the elliptic curveG1, and let S be a
symmetric rational function in N21 variables. If q1(t),q2(t), . . . ,qN(t), (qi[0 is a solution of
the elliptic Calogero system, then S( f (q1(t), f (q2(t)), . . . ,f N21(qN21(t))) is a meromorphic
function in t.

The further analysis of the explicit formulas for the solutions of the elliptic Calogero sys
can be based on Lemma 2.4, Lemma 2.5, and the identity

F~x,t ![F~x,q~ t !!.

Consider the seemingly trivial case of two particles (N52). Let us give first an explanation
of the Krichever formula~1.11! for the solutionsq1(t)52q2(t). Put q12q25q and p152p2

5p. The HamiltonianH becomesH(p,q)5p21`(q), and the reduced Hamiltonian system is

d

dt
q52p,

d

dt
p52 `8~q!, ~q,p!PT* G1 . ~2.16!

The Lax matrixL is

L~l!5S p iF~q,l!

iF~2q,l! 2p D
and the corresponding spectral polynomial

det~L~l!2mI !5m22p21F~q,l!F~2q,l!5m22p21`~l!2`~q!5m21`~l!2H~p,q!

defines a spectral curve

G25$~m,l!:m21`~l!5h%.

Suppose thath5H(p,q) is fixed in such a way, that the meromorphic function`(l)2h has two
distinct zeros onG1 . The spectral curveG2 is a double ramified covering over the elliptic curv
G1 with projection mapp:G2→G1 :(m,l)→l. It follows that G2 is a genus two curve with
holomorphic differentials

v15dl, v25
dl

m
.

On the other handG2 is identified to the orbit

$~p,q!PT* G15:H~p,q!5h%

under the map

~p,q!→~m,l!.
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Consider further the embedding of the orbitG2 into its Jacobian variety Jac(G2)

G2→Jac~G2!:P→S E
P0

P

dl,E
P0

P dl

m D . ~2.17!

By the Riemann theorem,16 the curveG2,Jac(G2) defines a divisor which coincides, up t
addition of a constant, with the Riemann theta divisorQ,Jac(G2) on the Jacobian variety
Jac(G2).

Let (p(t),q(t)) be a solution of the elliptic Calogero system, with initial conditio
(p(t0),q(t0))5P0 . Taking into consideration that

dl

m
52 dt, dl5dq, ~l,m!PG2 ,

formula ~2.17! takes the form

T* G15C3G1{~p~ t !,q~ t !!→~2t22t0 ,q~ t !2q~ t0!!PJac~G2!. ~2.18!

It follows that there exist constant vectorsa,b,cPC2 such that

u~aq~ t !1bt1c![0. ~2.19!

Of course these constants depend on the choice of symplectic homology basis and the ch
normalized basis of holomorphic one-forms. Namely, leta,b be two loops onG1, such that
p21(a)5$a1 ,a2%, p21(b)5$b1 ,b2%, where ai ,bj represent an integer symplectic homolo
basis onG2 : ai+bj5d i j , ai+aj50, bi+bj50. Then,

E
a1

dl5E
a2

dl, E
b1

dl5E
b2

dl,

E
a1

dl

m
52E

a2

dl

m
, E

b1

dl

m
52E

b2

dl

m
.

If we define a new symplectic basis

ã15a11a2 ,ã25b12b2 ,b̃15b1 ,b̃25a2

and normalize the two holomorphic one-forms as

dl→ dl

* ãp* dl
5

dl

2*adl
,

dl

m
→ dl/m

* ã2dl/m

,

then the period matrix ofG2 takes the form

S 1 0 t1/2 1/2

0 1 1/2 t2/2D ,

where

t15
*bdl

*adl
,t25

*a2
dl/m

*b1
dl/m

.

This, together with~2.18! implies that
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a5S 1

* ã1
dl

,0D 5S 1

2*adl
,0D ,b5S 0,

1

*b1
dl/m D .

Finally the vectorc is arbitrary and plays the role of initial condition. The functionF(x,t) defined
in ~2.9! takes the form

F~x,t !52
s~x2q~ t !! s~x1q~ t !!

s2~x!s2~q~ t !!
~2.20!

and hence15,17

F~x,t !5`~x!2`~ t !. ~2.21!

So the elliptic functioǹ (quv,v8), and also

sn2~q,k!;
u1

2~quk!

u4
2~quk!

, cn2~q,k!;
u2

2~quk!

u4
2~quk!

, dn2~q,k!;
u3

2~quk!

u4
2~quk!

~2.22!

are ‘‘good’’ variables~in the sense that they are meromorphic int!. The equation of motion for
them takes a very simple form. We get

sn2~q,k!512a21a2 sn2~gt,k̃!, ~2.23!

where

a25
h21

h
, g52~h2k2!, k̃25

h21

h2k2
k2. ~2.24!

One can easily show that the even functions cn (q,k) and dn (q,k) ~but not sn (q,k)) are ‘‘good’’
variables and we get as in3

cn~q,k!5a cn~gt,k̃!, ~2.25!

dn~q,k!5b dn~gt,k̃!, b5~k/ k̃!a. ~2.26!

III. REDUCTION OF THETA FUNCTIONS

The reduction theory was elaborated by Weierstrass~see, for example, Ref. 10! and
Poincare´.11,12 Consider first the caseN52. The Riemann theta function associated with the R
mann matrix~2.7! has the form,

u~z1 ,z2!5 (
ni ,nj

exp$ ip @Bi j ninj12njzj #%, i , j 51,2, ~3.1!

where

B115t1/2, B225t2/2, B125B2151/2.

A straightforward computation gives
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u~z1 ,z2!5 (
n1 ,n2

expH ip Ft1

n1
2

2
1n1n21t2

n2
2

2
12n1z112n2z2G J

5 (
k1 ,n2PZ

exp$ ip @2t1k1
214k1z1#%expH ip Ft2

n2
2

2
12n2z2G J

1 (
k1 ,n2PZ

expH ip F2t1S k11
1

2D 2

14S k11
1

2D z1G J expH ip Ft2

n2
2

2
12S n21

1

2D z2G J
5u3~2z1u2t1! u3S z2U t2

2 D1u2~2z1u2t1! u4S z2U t2

2 D ,

whereu1 ,u2 ,u3, andu4 are defined by formulas,

u1~zut!5uF1/2

1/2G~zut!52q1/4(
n51

`

~21!nqn(n11) sin@~2n11!pz#; ~3.2!

u2~zut!5uF1/2

0 G~zut!52q1/4(
n51

`

qn(n11) cos@~2n11!pz#; ~3.3!

u3~zut!5uF0

0G~zut!5112(
n51

`

qn2
cos~2pnz!; q5exp~ ipt!; ~3.4!

u4~zut!5uF 0

1/2G~z,t!5112(
n51

`

~21!n qn2
cos~2pnz!. ~3.5!

So in this case, the equationu(z1 ,z2)50 is equivalent either to

A dn~2z1u4t1! dn~z2ut2!1cn~2z1u4t1!50, ~3.6!

or to

A dn~2z2u4t2! dn~z1ut1!1cn~2z2u4t2!50, ~3.7!

where

A5
u3~0u4t1! u3~0ut2!

u2~0u4t1! u4~0ut2!
~3.8!

or

dn~z1ut1!5B dn~2iz21Ku t̃2!. ~3.9!

Let us give also a more symmetric form of the theta divisor for this case,

dn~2z1 ,k1! dn~2z2 ,k2!1dn~2z1 ,k1! cn~2z2 ,k2!1cn~2z1 ,k1! dn~2z2 ,k2!

2cn~2z1 ,k1! cn~2z2 ,k2!50. ~3.10!

Using the constraintu(ax1bt1c)50 and takingz15q, z25(1/2)K1 igt, we get once again
~2.25! and ~2.26!.

Consider now the case of arbitraryN. Let u(z1 ,z2 , . . . ,zNuB) be the Riemann theta functio
with period matrix as in Theorem 2.2. In a quite similar way we get
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u~z1 ,z2 , . . . ,zN!5 (
j 50

N21

u j~z1! Q j~z2 , . . . ,zN!, ~3.11!

where

u j~z1!5uF j /N

0 G~Nz1uN2t1!, ~3.12!

Q j~z2 , . . . ,zN!5QF 0 0 ¯ 0

j /N 0 ¯ 0G~z2 , . . . ,zNuB̂!. ~3.13!

In the above formulaB̂ is the right lower (N21)3(N21) minor of B ~2.7!, and the theta
functions with fractional characteristics are defined, for example, in Refs. 19,18,14,13. A r
tion formula similar to~3.11!, but containingN2 terms, can be found in Ref. 13, Corollary 7.3

IV. GEOMETRY OF THE SPECTRAL CURVE

In this section we prove Theorem 2.2.
Let GN be a genusN Riemann surface which is anN-sheeted covering of an elliptic curveG1

GN→
p

G1 . ~4.1!

Choose two loopsa,b which generate the fundamental groupp1(G1 ,P), PPG1, and denoteǦ1

5G1\$aøb%. Let us suppose for simplicity that the ramification points of the projection map

are distinct. Connect further these ramification points by non-intersecting arcsg i,Ǧ1 . The set
p21(Ǧ1\ø ig i) is a disjoint union ofN ‘‘sheets.’’ To reconstruct the topological covering~4.1!
we have to indicate how the opposite borders of the cutsg i are glued, as well how the opposit
borders of the~preimages of the! cutsa andb respectively are glued together. Thus there is o
a finite number of topologically different coverings~4.1!. It may be shown that the Kricheve
curve ~1.9! is of genus at mostN, and for generic (pi ,qi) its genus is exactlyN. The projection
mapp ~4.1! is defined then byp~m,l!5l. From now on we shall always assume that (pi ,qi) are
generic. In the case whenGN is the genusN Krichever spectral curve~1.9!, andG1 is the elliptic
curve with half periodsv,v8, the covering~4.1! has a number of special properties.

To prove~2.7! we shall need the following:
Proposition 4.1: LetGN be the Krichever curve~1.9!. There exist loops a,bPp1(G1 ,P) such

that, if Ǧ15G1\$aøb%, ]Ǧ15a+b+a21+b21, then (i) p21(Ǧ1) is connected; (ii)p21(]Ǧ1) has
exactly N connected components.

On its hand the above proposition implies the following:
Proposition 4.2: There exists loops a,bPp1(G1 ,P), PPG1, such that

p21~a!5$a1 ,a2 , . . . ,aN%,p21~b!5$b1 ,b2 , . . . ,bN%,

where ai ,bi represent a symplectic homology basis of H1(GN ,Z), ai+bj5d i j .
Proof of (2.7) assuming Proposition 4.2:Let dl be the holomorphic one-form onG1 . Then

the pullbackp* dl of dl is a holomorphic one-form onGN and we have

E
ai

p* dl5E
a
dl,E

bi

p* dl5E
b
dl.

Choose the following new integer homology basis ofGN:

ã15a11a21 . . . aN , b̃15b1 ,
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ã25Nb12b12b22 . . . 2bN , b̃25a2 ,

and

ãi5bi2b1 , b̃i5a22ai , i 53, . . . ,N.

This is also a symplectic basis ofH1(GN ,Z), as

(
i 51

N

ãi`b̃i5(
i 51

N

ai`bi .

Let v1 ,v2 , . . . ,vN be a basis of holomorphic one-forms onGN , such that

v15
dl

* ã1
dl

, E
ãi

v j5d i j .

ThenB5(* b̃ j
v i) i , j

N,N is a symmetric matrix with positive definite imaginary part, such that

E
b̃1

v15
t

N
, E

b̃2

v15
1

N
, E

b̃i

v150, i>3

which completes the proof of 2.7.
Proof of Proposition 4.1:First of all let us note that if the claim holds for some Krichev

curve, then it holds for any Krichever curve. Indeed, the space of all such curves is parame
by CN21 ~the first integrals of the integrable Hamiltonian system~1.4!! and hence it is connected
Let us fix a generic point (pi ,qi), i 51,2,. . . ,N. It is enough to prove now our proposition for a
least one pair of half-periodsv,v8, for example foruvu,uv8u;`.

Let us representǦ1,C5P1\` as the interior of the period parallelogram formed by 2v and
2v8. When uvu→`, uv8u→`, the boundary.]Ǧ15a+b+a21+b21 tends to`PP1, andǦ1 tends to
Ǧ1

`5C. In a similar way we define the ‘‘limit’’ curveǦN
` which is explicitly described in the

following way. When uvu→`, uv8u→`, then on any compact set the Weierstrass functi
s(q),z(q),`(q) tend toq,1/q,1/q2 respectively, and hence the functionF(q,l) tends to

q2l

ql
exp~q/l!.

Denote the corresponding ‘‘limit’’ Lax matrix~1.5! by L`(l). The curveǦN
` is the affine curve

$~l,m!:det~L`~l!2mI N!50%

completed withN distinct points corresponding tol50. The last holds true if and only if the
ramification points of the projection mapp ~4.1! tend to some values different froml50 ~it is
easy to check that this is a generic condition on (pi ,qi)). We shall also suppose that these valu
are different froml5` ~another generic condition!. Under these restrictions one may prove~as in
Ref. 2! that ǦN

` is a Riemann sphere, withN punctures~the preimages ofl5`!. We obtain thus a
map p:P1→P1 with 2N22 ramification points different froml50,̀ . The fact thatp21(C) is
connected implies the part~i! of the proposition, and the fact thatp21(`) is a disjoint union ofN
points implies~ii !.

Proof of Proposition 4.2:Let us representǦN by a graph withN vertices. A vertex corre-
sponds to a sheet~see the beginning of this section!, an edge connects two vertices if and only
the corresponding sheets have a common ramification point. Proposition 4.1~i! implies that the
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graph is connected, and~ii ! that each sheet contains an even number of ramification points. A
total number of ramification points is 2N22 and each point belongs to exactly two sheets, the
addition the graph ofǦN is simply connected.

Consider now the punctured curve

G̃15Ǧ1\ø iRi ,

whereRi ,i 51, . . . ,2N22 are the ramification points ofp. The fundamental groupp1(G̃1 ,P) has
a natural representation in the permutation groupSn . Namely, when a pointQPG1 makes one
turn along a loopaPp1(G̃1 ,P), the setp21(P)5ø i 51

N Pi is transformed to itself. If the loopsa
andb induce the identity permutation, thenp21(a), p21(b) are disjoint unions ofN loops with
obvious intersections, which implies Proposition 4.2. If not, we shall modifya andb.

Let cPp1(G̃1 ,P) be a loop which makes one turn around some ramification point ofp. Then
c induces a permutation which exchanges the two sheets containing the ramification point.
graph ofǦN is connected then all such transpositions generate the permutation groupSn . Thus for
suitablec the loopa+c induces the identity permutation. It remains to substitutea→a+c and to
note thata5a+c in p1(G1 ,P).

Proof of (2.8) (compare to Ref. 13, Theorem 7.14):Let 0PG1 be the pole of̀ (z). We denote

p21~0!5$`1 ,`2 , . . . ,̀ N%, ` iPGN .

In a neighborhood of each point̀i on the Krichever curve$(l,m): f (l,m)50% the meromorphic
function m has the following Laurent expansion:9

m52
1

l
1O~1!, i 51,2,. . . ,N21,

m5
N21

l
1O~1!.

It follows that if

v j5 f j~P!dl, P5~l,m!PGN

is a differential of first kind~i.e., holomorphic! on GN , thenmv j is a differential of third kind with
simple poles at̀ i . The sum of the residues ofmv j is equal to

(
i 51

N21

f j~` i !2~N21! f j~`N!50. ~4.2!

Let V be a differential of second kind onGN with a single pole at̀ N . Such is for example the
differential

m22`~l!

] f

]m
~l,m!

dl.

If moreoverV is normalized as

E
ãi

V50,

then it is well known that the vectorV is collinear to
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S E
b̃1

V,E
b̃2

V, . . . ,E
b̃N

V D
~see, for example, Ref. 13!. Equivalently, if we apply the reciprocity law to the differentials
second and first kindV,v i , we get thatV is colinear to

~ f 1~`N!, f 2~`N!, . . . ,f N~`N!!.

On the other hand

ã15a11a21 . . . 1aN5p21~a!

and hence

E
ã1

v i5 (
k51

N E
a
f i~l,mk!dl,

where (l,mk)PGN are theN preimages oflPG1 . It is clear that(k51
N f i(l,mk) is a single-valued

function onG1 . As v i is a holomorphic differential onGN anddl is the holomorphic differential
on G1, then (k51

N f i(l,mk) is a holomorphic function onG1 and hence a constant. Asv i is a
normalized basis of holomorphic forms, then* ã1

v i50 for i>2, and hence

(
k51

N E
a
f i~l,mk!dl5 (

k51

N

f i~l,mk!E
a
dl[0, ~l,m!PGN , i>2.

Therefore,

(
k51

N

f i~l,mk![0, i>2,

which combined with~4.2! implies that

f i~`N!50, i>2

and hence the vectorV is colinear to~1,0, . . . ,0!. In fact V is equal to this vector, becaus
qi(t)PG15C/$Z1tZ%. Finally, we may always suppose thatU5(0,U2 , . . . ,UN). Indeed the
Calogero system~1.1! is invariant under the translation

qi→qi2V1t.

h
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11H. Poincare´, ‘‘Sur la réduction des inte´grales abe´liennes,’’ Bull. Soc. Math. France12, 124–143~1884!.
12H. Poincare´, ‘‘Sur les fonctions abe´liennes,’’ Am. J. Math.8, 289–342~1886!.
13B. A. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev,Algebro-Geometric Approach to

Nonlinear Integrable Equations~Springer, Berlin, 1994!.
14B. A. Dubrovin, ‘‘Theta functions and nonlinear equations,’’ Russian Math. Surveys36, 11–80~1981!.
15H. Bateman and A. Erdelyi,Higher Transcendental Functions~McGraw–Hill, New York, 1955!, Vol. 3.
16P. Griffiths and J. Harris,Principles of Algebraic Geometry~Wiley, New York, 1978!.
17Whittaker and Watson,Course of Modern Analysis~Cambridge University Press, Cambridge, 1927!.
18A. Krazer,Lehrbuch der Thetafunctionen~Teubner, Leipzig, 1903!.
19S. Koizumi, ‘‘The equations defining Abelian varieties and modular forms,’’ Math. Ann.242, 127–145~1976!.
                                                                                                                



scribe
ued in

he

tic fields

n

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 12 DECEMBER 1999

                    
SU„N… skyrmions and harmonic maps
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Harmonic maps fromS2 to CPN21 are introduced to construct low-energy configu-
rations of the SU(N) Skyrme model. We show that one of such maps gives an
exact, topologically trivial, solution of the SU(3) model. We study various prop-
erties of these maps and show that, in general, their energies are only a little higher
than the energies of the corresponding SU(2) embeddings. Moreover, we show that
the baryon and energy densities of the SU(3) configurations with baryon number
B5326 are more symmetrical than their SU(2) analogs, thus suggesting that
there exist solutions of the model with these symmetries. We also show that any
SU(2) solution embedded into the SU(4) Skyrme model becomes a topologically
trivial solution of this model. ©1999 American Institute of Physics.
@S0022-2488~99!02712-7#

I. INTRODUCTION

The Skyrme model is now well established as an effective classical theory used to de
nuclei1,2 for which the field, which describes pions and other pseudoscalar mesons, is val
SU(N). To have finite-energy configurations, one must require that the fieldU(xW ,t) goes to a
constant matrix, sayI, at spatial infinity:U→I as uxW u→`. This effectively compactifies the
three-dimensional Euclidean space intoS3 and hence implies that the field configurations of t
Skyrme model can be considered as maps fromS3 into SU(N).

In the static limit, the energy of the Skyrme model with a mass term is

E5
1

12p2 E
R3

H 2
1

2
tr~] iU U21!22

1

16
tr@] iU U21,] jU U21#22

mp
2

2
tr~U211U22I !J d3xW ,

~1!

when the energy is expressed in the same units as the baryon number. In this case, the sta
U obey the equation

] i S ] iU U212
1

4
@] jU U21,@] jU U21,] iU U21## D2

mp
2

4
~U2U21!50. ~2!

As the third homotopy class of SU(N) is Z, every field configuration is characterized by a
integer:

B5
1

24p2 E
R3

e i jk tr~] iU U21 ] jU U21 ]kU U21!d3xW , ~3!

a!Electronic mail: T.Ioannidou@ukc.ac.uk
b!Electronic mail: B.M.A.G.Piette@durham.ac.uk
c!Electronic mail: W.J.Zakrzewski@durham.ac.uk
63530022-2488/99/40(12)/6353/13/$15.00 © 1999 American Institute of Physics
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which is interpreted as the baryon number;2,3 therefore, the lowest-energy state in theB51 sector
can be identified with the~classical! nucleon. From the mathematical point of view these fi
configurations represent three-dimensional topological solitons.

Up to now most of the studies involving the Skyrme model have concentrated on its S
version and its embeddings into SU(N). The simplest nontrivial classical solution involves
single skyrmion (B51) and has already been discussed by Skyrme.1 The energy density of this
solution is radially symmetric and, as a result, using the so-called hedgehog ansatz one can
~2! to an ordinary differential equation that can then be solved numerically. Many solutions
B.1 have also been computed numerically and in all cases the energy densities of these s
are very symmetrical and exhibit interesting patterns~cf. Battyeet al.4 and references therein!.

Last year, Houghtonet al.5 showed that using rational maps fromS2 to S2 one can easily
construct field configurations for the SU(2) model that are close to being solutions of the m
they have energies slightly higher than the energies of the exact solutions found numerica
the symmetries of the baryon and energy densities are the same. When these configurat
used as initial conditions in a relaxation program, the fields do not change much as they
toward the exact solutions.

However, so far, very little has been done for the SU(N) model whenN.2—except the
obvious SU(2) embeddings. The first example of anonembeddingconfiguration for a higher
group was theSO(3) soliton, which corresponds to a bound system of two skyrmions, and
was found using the chiral field ansatz by Balachandranet al.6 Another configuration, with a large
SU(3) strangeness content, was found by Kopeliovichet al.7 However, all other known skyrmion
configurations seem to have been the embeddings of the solutions of the SU(2) model.

In the following sections, we construct baryon configurations for the SU(N)(N.2) Skyrme
model, with energies slightly higher than the corresponding SU(2) embbedings—using har
maps fromS2 to CPN21. However, the difference between the two energies, in most cases, i
than the energy of a pion. In most cases, the configurations are more symmetrical than their
embeddings, implying that the SU(N) Skyrme model has solutions with a larger symmetry th
those of the SU(2) one. These solutions might have energies higher than the SU(2) embe
and might be unstable, but our construction provides an upper bound on their energies. A
solutions have an excitation energy smaller than the pion mass, they will have to be consid
any attempt to quantize the low-energy modes of the Skyrme model.

II. SU„2… EMBEDDINGS

Any solution of the SU(N8) model is automatically a solution of any SU(N) model when
N8,N—as a simple embedding. The energy, the baryon number, and all other properti
unchanged by this operation, and so such embeddings have the same properties as the
fields. However, less obvious embeddings exist in which new fields have different properties
the original ones. In particular, it can be can shown that any solution of the SU(2) m
generates a solution of the SU(4) one.

A special feature of the SU(2) field is that it can be written as

U5fW –tW , ~4!

wheretW5(1,is1 ,is2 ,is3) and thes’s stand for the Pauli matrices. The unitarity ofU requires
that fW –fW 51. Introducing the notation thatfW i5] ifW and fW i j 5] i ] jfW , it is easy to see that the
energy density of this SU(2) field is

E25~fW i–fW i !1 1
2@~fW i–fW i !

22~fW i–fW j !
2#, ~5!

and the equations of motion that follow from~2! are
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fW i i 1fW i i ~fW j–fW j !1fW i~fW i j –fW j !2fW i j ~fW i–fW j !2fW j~fW i i –fW j !2fW ~fW –fW i i !

2fW @~fW –fW i i !~fW j–fW j !2~fW –fW i j !~fW i–fW j !#50. ~6!

A SU(4) field can be constructed out of anyS3 field fW as

U5U0~ I 22fW ^fW †!, ~7!

where U0 is a constant matrix. Note that, as can easily be seen by direct expansion o~7!,
detU52detU0 and so by choosingU0 to be a constant matrix of determinant21 we see thatU
is unitary. In this case,U215(I 22fW ^fW †)U0

21 and theU0’s cancel in~2!.
To derive the equation that the fieldfW must satisfy so that~7! is a solution of~2!, with mp

50, we note thatfW –fW 51 gives

] jU U2152fW j ^fW †22fW ^fW j
† , ~8!

and so~2! becomes

2] i@fW ^fW j
†~fW j–fW i !2fW ^fW i

†~fW j–fW j !1fW i ^fW †~fW j–fW j !2fW j ^fW †~fW i–fW j !#1] i~fW i ^ fW †2fW ^ fW i
†!

50. ~9!

It can easily be shown that Eqs.~9! and~6! are equivalent, implying thatfW satisfies the equation
of the SU(2) Skyrme model~9!. Thus, any solution of the SU(2) model can be transformed
a solution of the SU(4) model by the embedding~7!.

The solutions obtained this way are topologically trivial since their baryon density van
identically. Moreover, their energy density is four times larger than the corresponding ene
the original SU(2) field~5!, i.e., E454E2 .

This suggests that these particular SU(4) solutions may be interpreted as states corres
to 2B skyrmions and 2B antiskyrmions, whereB is the baryon number of the original SU(2
solution. Incidentally, a similar situation arises in two-dimensions, where anyB solitonic solution
of the CP1 model gives a topologically trivial solution of theCP2 model, which can be inter-
preted as a bound state of 2B solitons and 2B antisolitons.8

III. HARMONIC MAPS

The idea of the Houghtonet al. construction5 is to separate the radial and the angular dep
dence of the fields by using an appropriate ansatz. Using the polar coordinates (r ,u,f) in R3, our
SU(N) generalization of the SU(2) Houghtonet al.’s rational map ansatz is

U~r ,u,f!5e2ig~r !~P2I /N!5e22ig~r !/N
„I 1~e2ig21!P…, ~10!

whereP is aN3N Hermitian projector that depends only on the angular variables~u, f! andg(r )
is the radial profile function. Note that the matrixP is a harmonic map fromS2 into CPN21.
Hence it is convenient, rather than using the polar coordinates, to map the sphere onto the c
plane via a stereographic projection and, instead ofu andf, use the complex coordinatej and its
conjugate. Thus,P can be written as

P~V!5
V^ V†

uVu2
, ~11!

whereV is anN-component complex vector~dependent onj and j̄!.
For ~10! to be well defined at the origin, the radial profile functiong(r ) has to satisfyg(0)

5p while the boundary valueU→I at r 5` requires thatg(`)50. An attractive feature of the
ansatz~10! is that it leads to a simple expression for the energy density that can be succes
minimized with respect to the parameters of the projectorP and then with respect to the shape
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the profile functiong(r ). This procedure is then expected to give good approximations to m
skyrmion field configurations.

Moreover, we will show that this method not only allows us to find such field configurat
but also gives us an exactnontopologicalsolution of the SU(3) Skyrme model. We will als
present some upper bounds on the energy of some multiskyrmion field configurations
SU(N) model ~with radially symmetric energy density distribution!. In what follows, we restrict
our attention to the casemp50.

To find an exact solution of the SU(3) model, we put~10! into ~2! and obtain

2
2i

r 2 ] r~grr
2!S 1

N
2PD2

i

2r 2 ] r~gr uAu2!~11uju2!2~@Pj̄ ,PPj#1@Pj ,PPj̄# !

1
ĀuAu2

16r 4 ~11uju2!2$]j̄„~11uju2!2
†Pj ,@Pj̄Pj#‡…2]j„~11uju2!2

†Pj̄ ,@Pj̄ ,Pj#‡…%

1
uAu4

16r 4 ~11uju2!2$]j̄„~11uju2!2
†PjP,@Pj̄ ,Pj#‡…2]j„~11uju2!2

†Pj̄P,@Pj̄ ,Pj#‡…%

1
1

r 2 ~11gr
2!~11uju2!2F ĀPjj̄1

uAu2

2
„]j~Pj̄P!1]j̄~PjP!…G50, ~12!

whereA5e22ig21.
Moreover, the energy~1! simplifies to

E5
1

3p E drS ANgr
2r 212N sin2 g~11gr

2!1I sin4 g

r 2 D , ~13!

where

AN5
2

N
~N21!, ~14!

N5
i

2p E dj dj̄ tr~ u]jPu2!, ~15!

I5
i

4p E dj dj̄~11uju2!2 tr~@]jP,]j̄P#2!. ~16!

As the integralsN andI in ~13! are independent ofr, we can minimize~13! by first mini-
mizing N andI as functions ofP and then with respect to the profile functiong.

However, sinceN is the expression for the energy of the two-dimensional EuclideanCP2

sigma model, all classical solutions contain the so-called self-dual solutions, instantons or
morphic maps fromS2 into CPN21—introduced in Ref. 9 and are given by the projectorP of the
form ~11! with V5 f (j). In this case, the energyN is the degree off, i.e., the degree of the
highest-order polynomial inj among the components off after all their common factors have bee
canceled out.

By a Bogomolny-type argument it can be shown that

E5
1

3p E drF S grrAAN1AI sin2 g

r D 2

12N sin2 g~11gr !
222gr sin2 g~2N1AANI!G

>
1

3
~2N1AANI!. ~17!
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Finally, the baryon number for this ansatz is

B5
i

p2 E dj dj̄ tr~P@]jP,]j̄P# !E
0

`

dr sin2 ggr5
i

2p E dj dj̄ tr~P@]j̄P,]jP# !, ~18!

which is the topological charge of the two-dimensionalCPN21 sigma model. In this calculation
we have used the boundary conditions on the profile functiong.

In the next two sections, we will show that this ansatz gives us interesting low-energy
configurations of the SU(N) Skyrme model, which are not the SU(2) embeddings. To minim
E we will, first of all, fix the baryon numberN5B of the configurations in which we ar
interested. We will then minimizeI over all maps of degreeB and then derive a second-ord
differential equation forg by minimizing the energy~13!, treatingN andI as parameters.

IV. SU„3… EXACT SOLUTION

When the projectorP is analytic, i.e., is of the form

P05P~ f !5
f f †

u f u2
, ~19!

wheref is a holomorphic vector~i.e., whose entries are functions only ofj! thenP0 satisfies the
equation

P0 ]jP050, ]jP0 P05]jP0 , ~20!

i.e., the self-dual equations of the two-dimensionalCPN21 sigma models.8

Following Ref. 10, we define a new operatorP1 , by its action on any vectorvPCN, as

P1v5]jv2
v~v† ]jv !

uvu2
, ~21!

and then define further vectorsP1
k v by induction:P1

k v5P1(P1
k21v).

Next, we note the following useful properties ofP1
k f when f is holomorphic:

~P1
k f !†P1

l f 50, kÞ l , ~22!

]j̄~P1
k f !52P1

k21f
uP1

k f u2

uP1
k21f u2 , ]jS P1

k21f

uP1
k21f u2D 5

P1
k f

uP1
k21f u2

. ~23!

These properties either follow directly from the definition of theP1 operator or are very easy t
prove.8

It is also convenient to define projectors corresponding to the family ofP1
k f vectors:

Pk5P~P1
k f !, k50,...,N21, ~24!

which always satisfy the relation(k50
N21Pk5I .

Taking P5Pk , for a givenk, and using the above properties we observe that all the term
~12!, except the first one, can be gathered into one term if and only if

uP1 f u2

u f u2
[

K
~11uju2!2 , ~25!

whereK is a constant. Moreover, in the SU(2) case, the projectorsP0 andP1 satisfy the relation
P01P15I , and for f 5(1,j) t all the terms in~12! are proportional to one common matrix—thu
giving a second-order differential equation for the profile functiong. This means that the Skyrm
field ~10!, in the case wheng satisfies its equation, is anexactsolution of Eq.~12!. A little thought
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shows that this is the well-known hedgehog solution.
Unfortunately, this discussion does not generalize to higher SU(N) groups—with one excep

tion. Note that in the SU(3) model, if we takeP(V)5P1 and use the fact thatP01P11P25I , all
the matrix terms in Eq.~12! become proportional to each other, leading to a second order d
ential equation for the profile function, if and only if

uP1
2 f u2

uP1 f u2
1

uP1 f u2

u f u2
[

K̃
~11uj2u!2 , ~26!

whereK̃ is a constant. This last condition is satisfied if

f 5~1,&j,j2! t. ~27!

Thus, by takingP5P1 for f of the form ~27!, and requiringg to satisfy the equation

grr S 1

3
12

sin2 g

r 2 D1
2

3

gr

r
1

sin 2g

r 2 S gr
2212

sin2 g

r 2 D50, ~28!

we see that~10! is anexactsolution of the SU(3) model.
For this solution, the parameters in the energy density can be evaluated analytically; w

AN5 4
3, N54, I54, and the total energy is found to beE53.861.

To understand what this solution corresponds to, we calculate the topological charge
configuration and get

B5
i

p E dj dj̄S uP1
2 f u2

uP1 f u22
uP1 f u2

u f u2 D , ~29!

which due to the conditions~22!, ~23!, and~26! is identically zero.
Although the baryon density is identically zero, the solution itself is nontrivial. This follo

from the fact that theCP2 sigma model harmonic mapP1 corresponds to a mixture of two
solitons and two antisolitons. Thus, it seems reasonable to interpret this solution as descr
bound state of two skyrmions and two antiskyrmions and as such to be unstable, i.e., corr
to a saddle point of the energy. However, let us emphasize once again; this field configura
a genuine~although topologically trivial! solution of the SU(3) Skyrme model.

It is easy to see that this new field configuration has an energy density distribution shape
a shell ~i.e., is radially symmetric!. To see this, note that for this solution, tr(u]jPu2) and
tr(@]jP,]j̄P#2) that appear in~15! and ~16!, are proportional to (11uju2)22 and (11uju2)24,
respectively; demonstrating this symmetry. The radial energy density of this solution is giv
Fig. 1, and one sees that, indeed, it corresponds to a shell.

V. SU„N… RADIALLY SYMMETRIC SKYRME FIELDS

In general, our method does not give us further solutions, but it is a matter of simple al
to show that the condition~25! is true for anyN>2 when the modulus of the vectorf is some
power of (11uju2); i.e., for

f 5~ f 0 ,...,f i ,...,f N21! t: f i5j iACi 11
N21, ~30!

whereCi 11
N21 denotes the binomial coefficients. Note that in this case, the constantK in ~25! is

equal to the degree of the vectorf: i.e., K5n.
Using the condition~25! the integrals involvingP5P0 in the energy~13! can be evaluated

analytically,

N5n, I5~N21!25n2. ~31!
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Due to the analyticity of the projectorP0 , the baryon number of this field isB5n, i.e., the degree
of f.

WhenmpÞ0 the energy~13! for the ansatz~10! becomes

E5
1

3p E drH ANgr
2r 212N sin2 g~11gr

2!1I sin4 g

r 2

1mp
2 r 2F ~N21!S 12cosS 2g

N D D112cosS ~N21!2g

N D G J . ~32!

Minimizing ~32! given ~31! leads to the following equation for the profile function:

grr S AN12n
sin2 g

r 2 D12AN

gr

r
1

sin 2g

r 2 S n~gr
221!2n2

sin2 g

r 2 D
2mp

2 S N21

N D FsinS 2g

N D1sinS ~N21!2g

N D G50, ~33!

whereAN is given by~14!.
Solving ~33! to determineg and then calculating the energy of the configuration we find t

for small mp , the energy for these configurations is a little higher than the energy of the S
embedded ansatz with the same baryon numberB when the mass is zero. However, when the m
increases, the picture changes.

We have looked at field configurations corresponding toB5224 for the SU(2) embeddings
and for the SU(N) spherical symmetric fields~30! whereN5B11, and studied the dependence
their energies onmp . In all cases at low values of the mass the embeddings have lower ene
while as the mass increases the energies increase. However, as the embedding energies
faster for all lowB there is a value ofmp above which the embedding energy is higher. This va
of mp is quite large and it increases with the increase ofB.

The results are summarized in Table I, which gives values of the energy for different v
of the mass; while in Fig. 2, we present the plots of the dependence onmp of the energies for the
embeddings and for the radially symmetric fields~30!. Note that for low values ofmp the energy
per skyrmion of the harmonic ansatz configuration is lower than the energy of a single skyrm
demonstrating the existence of bound states. For larger values ofmp our new field configurations
become less massive than the embeddings and for even larger values ofmp either the bound state
do not exist or the approximation through harmonic maps becomes unreliable.

FIG. 1. Energy profile of the nontopological solution.
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Note that, although the Skyrme field ansatz~30! is axially symmetric the energy densit
is radially symmetric. In fact, a rotation by an anglea in the xy plane is equivalent to a unitar
transformation U→A21UA, where A5e2 iN(N21)a/2 diag(1,eia,e2ia,...,e(N21)ia). Since the
B.2 SU(2) skyrmion solutions have only discrete symmetries, the SU(N) skyrmion solutions for
N>4 are more symmetrical than the corresponding SU(2) embeddings. However, tB
52 SU(2) solution is already axially symmetric and so the symmetry arguments do not help
comparing the SU(3) and SU(2) solutions.

The energy of the exactB53 SU(2) skyrmion solution~for mp50.2! is E53.470. From
Table I, we see that the energy difference between this SU(2) solution and ourB53 SU(4)
configuration is, approximately, equal to the pion mass. However, the energy of the actual a
symmetricB53 SU(4) solution is clearly lower than that of our configuration, leading to an e
smaller energy difference. Also, the energy of the exactB54 SU(2) skyrmion~for the same value
of the pion mass! is E54.522. In this case, the energy gap with ourB54 SU(5) configuration is
nearly twice as large as the pion mass; i.e., it is less clear whether the energy gap betw
exact axially symmetric solution and the SU(2) embedding remains lower than the pion m

VI. SU„3… CASE

In this section, we restrict our attention to the SU(3) model withmp50 and construct
low-energy states with a baryon number from one up to six. From now on,N53 and soAN , given
by ~14!, becomesAN5 4

3.

A. General discussion

As in the previous section, we minimize~13! by first minimizing the integralsN and I as
functions ofP and then minimizing~13! with respect to the profile functiong. Once again,N is

TABLE I. Mass dependence of the energy for the radially symmetric configurations in the SU~2!–SU~5! models.

mp

SU~2!
EB51

SU~2!
EB52

SU~3!
EB52

SU~2!
EB53

SU~4!
EB53

SU~2!
EB54

SU~5!
EB54

0 1.232 2.416 2.444 3.553 3.644 4.546 4.838
0.2 1.247 2.444 2.472 3.594 3.683 4.597 4.886
1 1.416 2.795 2.808 4.125 4.172 5.270 5.520
2.23 1.693 3.381 3.370 5.021 5.006 6.419 6.615
7 2.510 5.101 5.030 7.634 7.478 9.776 9.880
30 4.783 9.836 9.633 14.793 14.339 18.971 18.948

FIG. 2. Mass dependence of the SU(2) and SU(B11) harmonic map configurations forB52 – 3.
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minimized by the so-called self-dual solutions of the EuclideanCP2 sigma model. They are given
by ~20!, wheref is any polynomial holomorphic vectorf (j) and their energyN is given by the
degree off.

Next, we note that the angular part of the baryon charge~18! coincides with the expression fo
the topological charge of theCP2 sigma model, and so simplifies to

B5
1

8p E dS~11uju2!2
uP1 f u2

u f u2
, ~34!

wheredS[sinu du df52i(11uju2)22 dj dj̄.
To minimize ~13! for a configuration with a given baryon numberB, we takef (j) to be a

holomorphic vector of degreeB, which, by construction, minimizesN. First we use the globa
SU(3) invariance of the model to reduce the number of parameters to the moduli space
two-dimensional sigma model to

f 5S jB1aB21jB211¯1a1j
bB21jB211bB22jB221¯b1j1b0

cB22jB221cB23jB231¯1c1j1c0

D , ~35!

where all the coefficients are complex exceptbB21 , which can be taken to be real. Then w
substitute~19! for f of the form~35! into I and minimize numerically the integral with respect
all the coefficients. Finally, treatingN5n andI as two fixed parameters, we minimize~13! by
solving the resultant equation forg:

grr S 112N 3 sin2 g

4r 2 D12
gr

r
1

3 sin 2g

4r 2 FN~gr
221!2I sin2 g

r 2 G50. ~36!

An interesting feature of the SU(2) multiskyrmion solutions is the shape of surface
constant energy or baryon density. In fact, the energy and the baryon densities of the sk
solutions look very similar. For the baryon density these surfaces look like hollow shel
structures with holes in it, while for the energy densities the holes are partly filled in and s
represented by local minima.4

In order to investigate the situation for our SU(3) field configurations, we have to look a
components off given in ~35! and study their effects on the density~34!. Writing f
5(K,L,M ) t, whereK, L, andM are polynomials of degreeB, B21, andB22, respectively, the
integrand of~18! takes the form

B5gr sin2 g~11uju2!2
uKjL2LjKu21uKjM2M jKu21uM jL2LjM u2

~ uKu21uLu21uM u2!2 . ~37!

Note that the integrand of~37! is a scalar with respect to U(3) transformations applied to
vector f. Hence, any modifications off that can be interpreted as such U(3) transformations
symmetries of~37!.

The radial factorgr sin2 g in ~37! indicates that if the angular part of the density vanishes,
baryon density will have radial holes going from the origin to infinity. For the density to vanis
some point we must require that the three factors in the numerator of~37! must vanish together
i.e., must have a common root. This is true when the three polynomials,R15KjL2LjK, R2

5KjM2M jK, andR35M jL2LjK, have a common factor. However, these polynomials h
2(B21), 2B23, and 2(B22) roots, respectively; with, in addition, a possible root at infin
~i.e., the south pole of the sphere!. By counting powers we see that the density does not vanis
j5` unlessL is a polynomial of degree less thanB21.

From this we conclude that the baryon density can have, at most, 2B23 holes but, in general
it is likely to have fewer holes if any. Of course, when some terms in~37! vanish, the expression
may ~but does not have to! have a local minimum. Note that this is in contrast with the SU(
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configurations of Houghtonet al.,5 which always have 2(B21) holes. In the SU(2) case, th
vector f has only two components and so there is only one factor in the numerator of the b
density, which thus has 2(B21) zeros.

B. Specific fields

In this section we present the detailed form of harmonic maps that are used in the const
of the SU(3) skyrmion field ansatze.

First of all, theB51 case, as discussed in Sec. V, is the SU(2) embedded skyrmion~i.e., the
hedgehog ansatz!. Next, we discuss field configurations forB5226. In each case, having foun
the map that minimizesI, we solve numerically~36! and determine the corresponding profi
functiong. In Fig. 3 we present theu angular dependence of the baryon densities forB5224 ~no
f dependence!. In Fig. 4, we present plots of surfaces of constant baryon density forB5326.
The values we have chosen are, respectively, 0.3 times the maximum value of the topo
density.~In all the graphs that follow, we always express the constant value for the curve
fraction of the maximum density value.! The energy and baryon density for all the fields has
same symmetry and a virtually indistinguishable shape.

For B52, using the ansatz~35!, we have minimizedI numerically and have foundf to agree
with the ansatz presented in Sec. V, i.e., to be given by

f 5~j2,&j,1! t. ~38!

For this field configurationuP1 f u2/u f u252/(11uju2)2 and, hence, as shown in Fig. 3, the bary
and energy density are independent of the polar angles on the sphere. Thus, the energy de
the B52 field represents a shell.

The field~38! is axially symmetric, i.e., a rotation of an anglea in the xy plane is equivalent
to the isorotationU→A21UA, where A5diag(e2ia,1,eia). This symmetry is identical to the
symmetry of theB52 SU(2) solutions.

FIG. 3. Theu angular dependence of the baryon density~34!.

FIG. 4. Surfaces of constant baryon density forB53 – 6.
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For B53, the numerical minimisation ofI leads to the following expression forf:

f 5~j3,1.576j,&21! t. ~39!

The baryon density of this configuration is axially symmetric and has the shape of atorus with a
sphere on top of it. Since all the components off are monomials, a transformationj→j85jeia for
any a ~i.e., a rotation around thez-axis!, can be interpreted as the SU(3) transformationU
→A21UA, where A5e24/3ia diag(e3ia,eia,1). Hence, the configuration is axially symmetric—
which proves the existence of an axially symmetric SU(3) solution with lower energy tha
energy of this configuration~cf. Table III!.

The baryon density for~39! does not vanish except whenuju2 is infinite. This comes from the
fact that the three terms in the numerator of~37! do not have common factors; however, as t
second term of~39! is a polynomial of degree one, the baryon density vanishes forj5`. Indeed,
we see in Fig. 4~a! that the density vanishes on the negative part of thez-axis (u5p).

For B54 we find

f 5~j4,2.7191j2,1! t. ~40!

This configuration also leads to energy and baryon densities that are axially symmetric an
the shape oftwo tori on top of each other close to the equator of the sphere@see Fig. 4~b!#. These
densities are invariant under a rotation around thez-axis, which is equivalent to the SU(3
transformation:U→A21UA whereA5diag(e22ia,1,e22ia).

Note that the baryon density for~39! does vanish whenj is zero or when its modulusuj2u is
infinite. This happens as the three terms in the numerator of~37! have a single common factor a
j50, and the second term off is a polynomial of degree two—implying once again that t
baryon density vanishes whenj5`. Indeed, this can be seen in Fig. 4~b!; clearly the density
vanishes along thez-axis ~u50 andu5p!.

Let us mention that the energy densities of our configuration forB5324 are remarkably
similar to the density of a SU(2) configuration corresponding to the scattering of three~four!
skyrmions in an attractive channel,11 and of three~four! monopoles.12

The holomorphic vector forB55 is given by

f 5~j522.7j,2j411,9/2j3! t, ~41!

and the baryon density resembles a structure consisting oftwo deformed tori, close to the equator
with anadditional ballat the north pole of the angular sphere@see Fig. 4~c!#. Let us stress that the
energy densities of the SU(2) embeddings have very different shapes and symmetries.

It is easy to check that the baryon density corresponding to the field in~41! does not have any
holes. Note that by takingf in the form close to~41!, i.e.,

f 5S j51
3C

D
j,Dj41C,Ej3D t

, ~42!

all the three terms in the numerator of~37! have zeros when

j45
3C

D
, ~43!

which would give four holes in the baryon density. So, since our field~41! is not very different
from ~42!, our densities have minima; corresponding to the holes~43! partially filled in, by going
from ~42! to ~41!.

The holomorphic vector forB56 is given by

f 5~j613j,123j5,kj3! t, ~44!
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wherek was found, numerically, to be 7.06. Once again, the baryon density of the field~44! does
not have any holes but has regions where it is small but nonzero@see Fig. 4~d!#. This figure shows
that this configuration has anicosahedral symmetryand this leads us to the conclusion tha
modulo a SU(3) global transformation,~44! must be invariant under the following
transformation:13 j→j85jei2p/5 ~i.e., a rotation by 72° around thez-axis!; j→j852j21 ~which
corresponds tou→p2u andf→p2f! andj→j85(j1b)(bj11)21, whereb52 cos(2p/5)
5(A521)/2. This last transformation imposes a condition onk in ~44!: it is easy to see that the
SU(3) transformation onf must be of the formU5R/det(R)1/3, with

R5S 25115a 1015a ~1501100a!k21

1015a 25115a 2~1501100a!k21

2k~312a! k~312a! 15110a
D , ~45!

wherea52(11A5)/2. Imposing the condition that the rows and columns ofR are orthogonal to
each other implies thatk5A50'7.071, which is within the precision of our numerical minimiz
tion program.

In Table II we present the energy values of the resulting Skyrme fields. All the nume
values of the energies are given in units ofB and hence are close to unity. These values are t
compared with the SU(2) skyrmion embeddings obtained using rational maps in Ref. 5. W
that both field configurations have similar values of energy, although the energies of the e
dings are marginally lower.

The symmetries of ourB5324 andB56 configurations are larger than the symmetry of t
corresponding SU(2) embeddings. Therefore, solutions with the same symmetry as our c
rations must exist and they will have lower energies than our fields.~Table II gives the upper
bound on the energy of these solutions.! From Table III, it can be observed that in all three cas
the energy differences between our configurations and the corresponding SU(2) embeddi
lower or comparable to the pion mass.

This does not mean that the embeddings are closer~in shape of their energy densities! to the
lowest-energy solutions of the SU(3) model. Our harmonic map fields and the embedded
have very different symmetries, and as their energies are very close to each other it i

TABLE II. Energy of SU~3! harmonic ansatz compared to the energy of the SU~2! harmonic ansatz and the energy of th
SU~2! solutions obtained numerically.

B I~SU~3!! SU~3! En/Sk ~Ans.! SU~2! En/Sk ~Ans.! SU~2! En/Sk ~Sol.!

1 1 1.232 1.232 1.232
2 4 1.222 1.208 1.171
3 10.65356 1.215 1.184 1.143
4 18.04501 1.184 1.137 1.116
5 27.26 1.164 1.147 1.116
6 37.33 1.1458 1.137 1.109

TABLE III. Energy of SU~2! multiskyrmion solutions for pion masses
mp50 andmp50.2.

B Emp50 Emp50.2

1 1.232 1.247
2 2.342 2.380
3 3.429 3.470
4 4.464 4.522
5 5.58 5.642
6 6.654 6.771
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speculation to argue which are nearer~in their shapes! to the lowest-energy solutions. The tru
solutions may be close to either or neither of them, or it may be that the model has many di
solutions, almost degenerate in energy. When the symmetries are different we do expect d
solutions to exist, although some of them may not correspond to the local minima of the e
This issue will be resolved only when detailed and reliable numerical studies of the SU(3) m
have been performed.

VII. CONCLUSIONS

In this paper, we have discussed various static field configurations of the SU(N) Skyrme
model. We have shown that, in addition to the obvious embeddings, any solution of the S
model generates a solution of the SU(4) model. This solution is topologically trivial~i.e., zero
baryon density! and its energy is equal to four times the energy of the original SU(2) soluti

Next, we have generalized the rational map ansatz of Houghtonet al.5 using harmonic maps
and found another SU(3) exact spherically symmetric skyrmion solution. The baryon num
this solution is also zero and its energy is less than four~in topological units!. We have argued tha
it represents a bound state of two skyrmions and two antiskyrmions.

Then we have presented topologically nontrivial field configurations of the SU(N) Skyrme
model with radially symmetric energy densities—using harmonic maps. They correspondB
5N21 skyrmions in SU(N) models. Although in the massless case their energies have turne
also to be above those of the SU(2) embeddings; when mass is added to the model, for suffi
large masses, their energies can be lower than the energies of the embeddings.

We have also looked at various field configurations of the SU(3) model. The energy
baryon densities of these SU(3) fields exhibit shell-like structures; in all cases, exceptB
51, they are different from the corresponding structures seen in the SU(2) model and are
symmetrical. Their energies are slightly higher but comparable to those of the embeddings
ever, their different symmetry properties imply that there exist true solutions with these sy
tries and with energies lower than our configurations. Thus, the model has at least two ty
low-energy solutions. To know more about them, one will have to perform three-dimens
numerical simulations—this so far has not been done.
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Quasi-Lagrangian systems of Newton equations
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Systems of Newton equations of the formq̈52 1
2A

21(q)¹k with an integral of
motion quadratic in velocities are studied. These equations generalize the potential
case~whenA5I , the identity matrix! and they admit a curious quasi-Lagrangian
formulation which differs from the standard Lagrange equations by the plus sign
between terms. A theory of such quasi-Lagrangian Newton~qLN! systems having
two functionally independent integrals of motion is developed with focus on two-
dimensional systems. Such systems admit a bi-Hamiltonian formulation and are
proved to be completely integrable by embedding into five-dimensional integrable
systems. They are characterized by a linear, second-order partial differential equa-
tion PDE which we call the fundamental equation. Fundamental equations are
classified through linear pencils of matrices associated with qLN systems. The
theory is illustrated by two classes of systems: separable potential systems and
driven systems. New separation variables for driven systems are found. These
variables are based on sets of nonconfocal conics. An effective criterion for exis-
tence of a qLN formulation of a given system is formulated and applied to dynami-
cal systems of the He´non–Heiles type. ©1999 American Institute of Physics.
@S0022-2488~99!00912-3#

I. INTRODUCTION

In this paper we introduce and study such systems of Newton equationsq̈5M (q) that can be
generated as equations of the form

05
d

dx

]E

]q̇
1

]E

]q
[d1E ~1.1!

by an energylike function quadratic inq̇,

E~q,q̇!5 (
i , j 51

n

Ai j ~q!q̇i q̇ j1k~q![q̇tAq̇1k~q!, ~1.2!

whereA(q) is ann3n symmetric matrix with real entriesAi j (q). Here and in what follows we
use the standard mechanical notationq5(q1 ,...,qn) t, q̇5(q̇1 ,...,q̇n) t, for position and velocity
vectors~the superscriptt denotes the transpose of a matrix!, whereq̇k5(]/]x)qk , k51,...,n, with
xPR being the independent~time! variable. By Newton equations we mean second-order ordin
differential equations~ODEs! of the form: accelerationq̈ is equal to the velocity independent forc
M (q). The forceM may be potential or not.

a!Electronic mail: strau@mai.liu.se
b!On leave of absence from Department of Physics, A. Mickiewicz University, Poznan´, Poland. Electronic mail:

krmar@mai.liu.se
c!Electronic mail: halun@mai.liu.se
63660022-2488/99/40(12)/6366/33/$15.00 © 1999 American Institute of Physics
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The equations in~1.1! are called herequasi-Lagrangian~qL! equations since they differ from
the Lagrange equations forE(q,q̇) by sign between terms only. These equations are sho
denoted 05d1E5(d1

1E,...,dn
1E) t where

dk
1E5

d

dx

]E

]q̇k
1

]E

]qk
.

The qL equations are not invariant with respect to arbitrary point transformation, but it c
easily shown that they remain invariant with respect to the affine change of variablesq5SQ
1h whereQ5(Q1 ,...,Qn) t are the new variables andSPGL(n),hPRn.

In the present article we shall mainly discuss quasi-Lagrangian sets of Newton equ
~qLN! generated by a functionE of the form ~1.2! in the two-dimensional space of variablesq
5(q1 ,q2)5(r ,w). This class of equations~which seems to be completely new! is a very inter-
esting class because of its rich differential-algebraic structure and also because it conta~as
special cases! the well understood class of point-separable potential Newton equationq̈
52]V(q)/]q and the class of nonpotential Newton equations of the triangular formr̈
5M1(r ,w), ẅ5M2(w) which we shall calldrivensystems. The qLN systems are not necessa
Lagrangian and thus they do not have any straightforward Hamiltonian formulation.

In this paper we develop a theory of completely integrable sets of qLN equations char
ized by the existence of two functionally independent integrals of motion quadratic in veloc
E as above andF5q̇tB(q)q̇1 l (q). The existence of a second integral of motion has far-reach
consequences; it eventually leads to wide classes of completely integrable qLN systems.

Example 1.1:The functionE5r ṙ ẇ2wṙ22awr21 1
2dr21(w2/2r 4) when inserted into~1.1!

gives rise to

05F d

dx

]E

] ṙ
1

]E

]r

d

dx

]E

]ẇ
1

]E

]w

G5F 22wS r̈ 2ar 1
w

r 5D1r ~ẅ24aw1d!

r S r̈ 2ar 1
w

r 5D G
5F22w r

r 0GF r̈ 2M1~r ,w!

ẅ2M2~w!
G , ~1.3!

which is equivalent to a set of two Newton equations

r̈ 5ar 2
w

r 5 [M1~r ,w!,

ẅ54aw2d[M2~w!, ~1.4!

since the matrix

F22w r

r 0G
is nonsingular. We see that the operation 05d1E generateslinear combinationsof the Newton
equations~1.4!.

Equations~1.4! were discovered accidentally as a Newton parametrization of the se
stationary flow of the Harry Dym hierarchy:1

05~ 1
4]

32a]!~au23/22 5
16u̇

2u27/21 1
4üu25/2!5~ 1

4]
32a]!~2r 5r̈ 2ar 6!
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~here]5]/]x), where we substitutedu5r 24. The substitutionw52r 5r̈ 1ar 6 gives the system
~1.4!. The particular feature of~1.4! is that it is a driven system: the equation forw can be solved
independently and then the solutionw(x) drives the equation forr.

II. GENERAL PROPERTIES OF QUASI-LAGRANGIAN NEWTON SYSTEMS

Let us consider ann-dimensional qL system 05d1E with ~quadratic in velocities! energylike
function

E~q,q̇!5 (
i , j 51

n

Ai j ~q!q̇i q̇ j1k~q! ~2.1!

with a symmetric~which can be assumed without loss of generality! matrix A(q)5At(q). We
shall formulate the necessary and sufficient condition for the matrixA(q) to make the equations
05d1E equivalent to the set of equations

05q̈2M ~q! ~2.2!

with a velocity independent forceM (q)5„M1(q),...,Mn(q)…t.
Theorem 2.1:For the function E given by (2.1) with a nonsingular matrix A(q) the following

conditions are equivalent:

~1! The equations05d1E are equivalent to the set of Newton equations q¨ 5M (q) with velocity
independent forces M52 1

2A
21(q)¹k(q).

~2! The function E is an integral of motion for the qL system05d1E.
~3! The matrix elements Ai j (q) satisfy the following set of ‘‘cyclic’’ differential equations:

05] iAjk~q!1] jAki~q!1]kAi j ~q! for all i , j ,k51,...,n. ~2.3!

Throughout the whole article the symbol¹ denotes the gradient operator and] i5]/]qi . Later on
we will also use the notation] i j 5]2/]qi]qj .

Statement~2! of the above theorem explains the name ‘‘energylike’’ for the functionE.
Proof: Let us calculate thei th equation in 05d1E:

05d i
1E5

d

dx

]E

]q̇i
1

]E

]qi
5

d

dx S 2(
j

Ai j ~q!q̇ j D 1(
j ,k

] iAjk~q!q̇ j q̇k1] ik

52(
j

Ai j ~q!q̈ j1] ik1(
j ,k

„] iAjk~q!1] jAki~q!1]kAi j ~q!…q̇ j q̇k .

~2.4!

The last equality in~2.4! is due to the symmetry ofA(q). Thus, clearly, 2Aq̈1¹k50 if and only
if the equations~2.3! are satisfied and the equivalence of~1! and ~3! is established.

Let us now calculate the total derivative ofE with respect tox:

Ė5(
i

S 2(
j

Ai j q̈ j1] ikD q̇i1(
i , j ,k

]kAi j q̇i q̇ j q̇k

5(
i

S 2(
j

Ai j q̈ j1] ikD q̇i1
1

3 (
i , j ,k

~] iAjk1] jAki1]kAi j !q̇i q̇ j q̇k . ~2.5!

The second term on the right-hand side of the above equation has been rewritten by ren
indices. It contains precisely the cyclic conditions~2.3!. So, if one~and thus both! of the state-
ments~1! and ~3! are satisfied, then both terms in~2.5! vanish. On the other hand, ifĖ50, then
terms at different powers ofq̇i in ~2.5! must be equal to zero, which implies both 1 and 3.

Remark 2.2:For n52 the general solution of equations~2.3! can easily be found. It is
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A11~w!5aw21bw1a,

2A12~r ,w!522arw2br2cw1b, ~2.6!

A22~r !5ar21cr1g,

with some real constantsa,b,c,a,b,g. The corresponding qLN equations read explicitly as

05F d

dx

]E

] ṙ
1

]E

]r

d

dx

]E

]ẇ
1

]E

]w

G52FA11 A12

A12 A22
GF r̈ 2M1~r ,w!

ẅ2M2~r ,w!
G ,

where

M1~r ,w!5
1

2 det~A! S A12

]k

]w
2A22

]k

]r D ,

M2~r ,w!5
1

2 det~A! S A12

]k

]r
2A11

]k

]wD .

The remaining part of this work is mostly devoted to the case when qLN equatioq̈
52 1

2A
21¹k generated byE admit asecond~quadratic in velocities! integral of motionF(q,q̇)

5( i , j 51
n Bi j (q)q̇i q̇ j1 l (q)[q̇tB(q)q̇1 l (q) which is linearly, and therefore functionally, indepe

dent ofE.
Theorem 2.3„qLN systems with two integrals…: Let the qLN system of Newton equation,

05d1E52A~ q̈1 1
2A

21¹k!, ~2.7!

generated by the function E(q,q̇)5q̇tA(q)q̇1k(q), admit a second, functionally independe
quadratic integral of motion F(q,q̇)5q̇tB(q)q̇1 l (q). Then we have the following.

(1) The matrix B(q) has the same structure as the matrix A(q) in the sense that the coeffi
cients Bi j (q) of B(q) satisfy the set of cyclic differential equations (2.3).

~2! If det(B)Þ0, then

A21¹k5B21¹ l , ~2.8!

and so the qLN system05d1F52B(q̈1 1
2B

21¹ l ) generates the same Newton equations as.
~3! Any differentiable function f(E,F) generates the same system of Newton equations

05d1 f (E,F)] as E does. In particular, any linear combination, lE1mF generates the sam
system of Newton equations.

The statement~2! shows one of the peculiar features of qLN systems: all quadratic~in ve-
locities! integrals of motion of a qLN system generate the same system~see also Sec. 151 in Re
2!.

Proof: The requirementḂ50 yields @cf. ~2.5!#

05(
i

S 2(
j

Bi j ~q!q̈ j1] i l D q̇i1(
i , j ,k

]kBi j q̇i q̇ j q̇k

5(
i

q̇iX2BS 2
1

2
A21¹kD1¹ l C

i

1(
i , j ,k

]kBi j q̇i q̇ j q̇k , ~2.9!
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where the indexi at the vector expression containing matricesB andA21 denotes itsi th compo-
nent. The equality is satisfied identically with respect toq̇ and so both sums must be separat
equal to zero. It follows thatBi j satisfy the cyclic conditions] iBjk1cycl50 and that
2B(2 1

2A
21¹k)1¹ l 50. The latter yields precisely the equation~2.8! since we assumed det(B)

Þ0. So the statements~1! and ~2! are proved.
The operatord1 acts as differentiation on the algebra of constants of motion, so that

05d1 f ~E,F !5
] f

]E
d1E1

] f

]F
d1F52S ] f

]E
A1

] f

]F
BD ~ q̈2M !

~whereM52 1
2A

21¹k52 1
2B

21¹ l ), which proves the statement~3! of the theorem. Q.E.D.
It is important to stress that the equation~2.8! is the necessary and sufficient condition for t

equivalence of the qLN system~2.7! and the qLN system generated byF5q̇tB(q)q̇1 l (q). This
condition will be used later.

III. qLN EQUATIONS IN TWO DIMENSIONS

We shall from now on restrict our considerations to the casen52. We will use the notation
q5(q1 ,q2) t5(r ,w) t. The case of arbitraryn is studied in a separate paper.3

For n52 Theorem 2.3 contains two special cases which explain the connection of our t
with classical results2 about separable potential Newton equations and with the class of d
systems where one of the Newton equations depends only on a single variabler or w and can be
solved on its own.

Corollary 3.1: Assume that the Newton equations

r̈ 5M1~r ,w!, ẅ5M2~r ,w! ~3.1!

generated by the integral E5q̇tA(q)q̇1k(q) [with the matrix A given by (2.6)] as05d1E have
a potential force: M152]V/]r , M252]V/]w. Then the potential V(r ,w) satisfies the
Bertrand–Darboux equation2

05~Vww2Vrr !~22arw2br2cw1b!12Vrw~aw22ar21bw2cr1a2g!

13Vr~2aw1b!23Vw~2ar1c! ~3.2!

(where the indices at V denote partial derivatives with respect to r and w) with the coeffic
a,b,c,a,b,g being exactly the coefficients of the polynomials in entries of the matrix A as g
by (2.6). This means that the Newton system (3.1) can be solved by separating variables
related Hamilton–Jacobi equation (see Ref. 2).

Proof: If M is potential, then, according to Theorem 2.3,M52 1
2A

21¹k52¹V and so¹k
52A¹V. The potentialV exists provided that]2k/]r ]w5]2k/]w]r . This yields exactly the
Bertrand–Darboux equation~3.2! for V. Q.E.D.

Remark 3.2:The quantityk(r ,w)/det(A) satisfies the same Bertrand–Darboux equation as
potentialV. This result can be verified directly but it also follows from Theorem 4.1 in the n
section.

Remark 3.3:Let us emphasize that the Hamiltonian system

ṙ 5s, ẇ5z, ṡ52
]V

]r
, ż52

]V

]w

generated by a separable natural Hamiltonian H5 1
2(s

21z2)1V(r ,w) can be reconstructed as th
qLN system 05d1E52A(q̈1 1

2A
21¹k) from its second integral of motionE. This is easy to see

since the above Hamilton equations are equivalent tor̈ 52]V/]r ,ẅ52]V/]w.
The second class of equations satisfying the assumptions of Theorem 2.3 is the class

systems of the form
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r̈ 5M1~r ,w!, ẅ5M2~w!, ~3.3!

which naturally generalizes the system in Example 1.1. Such systems are calleddriven since the
equation forw can be solved independently and thenw(x) can be substituted into the equation f
r. Observe that the second equation~and thus the whole system! admits an extra integral of motion
of the formF(w,ẇ)5ẇ2/22*M2(w) dw. The qLN system 05d1E attains the form~3.3! if and
only if the second componentM2 of the force2 1

2A
21¹k does not depend onr:

]

]r
~A21¹k!250. ~3.4!

Example 3.4:The qLN equations generated by the function

E5r ṙ ẇ2wṙ21k~r ,w!

are driven@i.e., have the form~3.3!# provided thatk(r ,w) satisfies the following second-orde
PDE:

05
]

]r S 1

r
kr1

2w

r 2 kwD ,

which is a specialization of~3.4!. The general solution of the above equation is

k~r ,w!5 f S r 2

w D1r 2g~w!

with arbitrary twice differentiable functionsf and g. The corresponding qLN system attains t
form

r̈ 52rg8~w!1
r

w2 f 8S r 2

w D , ẅ522
d

dw
„wg~w!…

and can be solved by quadratures~see Sec. VII!. The second integral of motion of our system
F5ẇ2/22*M2(w) dw5ẇ2/212wg(w), yields the matrixB

B5F0 0

0 1
2
G ,

which is singular soF does not generate our system. However, any linear combinationlE
1mF of E andF ~with bothl andmÞ0) is another integral of motion with a nonsingular matr
B85lA1mB and thus it generates the same driven system asE.

Existence of two functionally independent constants of motion does not automatically i
Liouville integrability since we also need a Hamiltonian formulation for our equations of mo
Our systems usually do not have a Lagrangian formulation and so they do not have the st
Hamiltonian formulation. On the other hand, the special system discussed in Example 1.1,
a stationary flow of the Harry Dym hierarchy, is expected to be integrable. The question
arises if/when our qLN systems possess a nonstandard Hamiltonian formulation. In Sec.
shall demonstrate the existence of new Poisson structures for qLN systems and their clos
tionship with Poisson pencils for separable potentials. We shall also explain there when
what sense our qLN systems are integrable.
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IV. FUNDAMENTAL EQUATION

We shall now characterize those two-dimensional qLN systems which admit two~quadratic in
velocities! functionally independent integrals of motionE and F, with the forceM52 1

2A
21¹k

52 1
2B

21¹ l . We remind the reader that forn52 we use the notationq5(q1 ,q2) t5(r ,w) t.
Let us consider two symmetric 232 matricesA(r ,w) andB(r ,w) both satisfying the cyclic

conditions~2.3!. According to Remark 2.2 they must have the following structure,

A5FA11 A12

A12 A22
G , B5FB11 B12

B12 B22
G ~4.1!

with the polynomial entries given by@cf. ~2.6!#

A11~w!5a1w21b1w1a1 ,

2A12~r ,w!522a1rw2b1r 2c1w1b1 , ~4.2!

A22~r !5a1r 21c1r 1g1 ,

and

B11~w!5a2w21b2w1a2 ,

2B12~r ,w!522a2rw2b2r 2c2w1b2 , ~4.3!

B22~r !5a2r 21c2r 1g2 ,

with some arbitrary real constantsa1 ,...,g2 .
Theorem 4.1„fundamental equation…: Let

F r̈
ẅG52

1

2
A21¹k52

1

2
B21¹ l , ~4.4!

with nonsingular232 matrices A, B given by (4.1), (4.2), and (4.3), be a set of qLN equati
Then the functions K15k/det(A) and K25 l /det(B) both satisfy the same linear, second-orde
partial differential equation

052~A12B222A22B12!Krr 22~A11B222A22B11!Krw12~A11B122A12B11!Kww

13~A12] rB222B12] rA221A22]wB112B22]wA11!Kr23~A11] rB222B11] rA22

1A12]wB112B12]wA11!Kw13~] rA22]wB112] rB22]wA11!K, ~4.5!

which explicitly reads

052Krr @g2b12g1b21~b2g12g2b11b1c22c1b2!r 1~g1c22g2c1!w1~b2c12c2b11a2b1

2a1b2!r 212~g1a22g2a1!wr1~a1b22a2b1!r 31~a2c12c2a1!wr2#14Krw@a2g12a1g2

1~a2c12a1c2!r 1~b2g12g2b1!w1~a2a12a1a2!r 21~g1a22g2a1!w21~b2c12c2b1!rw

1~a1b22a2b1!wr21~a2c12c2a1!rw2#12Kww@a1b22a2b11~a2b12a1b2!r

1~a2c12a1c21b1b22b2b1!w1~a1b22a2b11b2c12c2b1!w212~a2a12a1a2!wr

1~a2c12c2a1!w31~a1b22a2b1!rw2#13Kr@2b2g122g2b11b1c22c1b2

1~3b2c123c2b112a2b122a1b2!r 14~g1a22g2a1!w14~a1b22a2b1!r 2
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14~a2c12c2a1!rw#13Kw@2a2c122a1c21b1b22b2b11~2a1b222a2b1

13b2c123c2b1!w14~a2a12a1a2!r 14~a2c12c2a1!w214~a1b22a2b1!rw#

16K@b2c12c2b112~a1b22a2b1!r 12~a2c12c2a1!w# ~4.6!

with K denoting either K1 or K2 and Kr5]K/]r , Krr 5]2K/]r 2 and so on.
Conversely, any solution K2(q) of the equation (4.5) generates two different systems of

equations q¨ 52 1
2A

21¹k152 1
2B

21¹ l 1 and q̈52 1
2A

21¹k252 1
2B

21¹ l 2 , where the functions
k1 ,k2 ,l 1 ,l 2 are determined by the equations

l 15K2 det~B!, ¹k15AB21¹„K2 det~B!…,
~4.7!

k25K2 det~A!, ¹ l 25BA21¹„K2 det~A!….

We will call the equation~4.5! the fundamental equationassociated with the matricesA and
B.

The fundamental equation plays a crucial role in our theory of qLN systems. Observe
is invariant with respect to the transformationA°lA1mB, B°l8A1m8B, (l,l8,m,m8PR)
since the coefficients at every monomial in this equation are skew-symmetric inA andB. This is
consistent with statement~3! of Theorem 2.3, which asserts that if any pairE,F of functions
generates a qLN system, then the linear combinationslE1mF andl8E1m8F also generate the
same system. This explains that the assumption of nonsingularity for bothA andB is nonessential
since if det(A)Þ0, a singular matrixB can always be substituted by an invertible matrixB8
5lA1mB. We shall investigate further properties of the fundamental equation in the next
rem.

Notice that in the second part of Theorem 4.1 one has to reconstructl 2 andk1 by integrating
the expressions for¹ l 2 and for¹k1 . This can always be done, as the above theorem implic
states. Also, notice that in the fundamental equation~4.6! all terms of degree 4 and higher canc
so that the polynomial degree of coefficients in this equation is less than or equal to 3.

Proof (of Theorem 4.1):Our qLN system~4.4! is generated by either of the two function
E(q,q̇)5q̇tAq̇1k andF(q,q̇)5q̇tBq̇1 l and so the condition~2.8!, i.e., A21¹k5B21¹ l , must
be satisfied. This implies that¹ l 5BA21¹k. This equation for the functionl has solutions if and
only if its compatibility conditionl rw5 l wr is satisfied. This yields a PDE for the functionk which,
after the substitutionk5K1 det(A) and with use of the cyclic conditions~2.3!, yields thatK1

satisfies equation~4.5!. By inserting into this equation the explicit form of the polynomia
A11,...,B22 we obtain~4.6!. On the other hand, the condition~2.8! implies also¹k5AB21¹ l , and
its compatibility conditionkrw5kwr gives a PDE which in terms ofK25 l /det(B) must attain the
form ~4.5! with interchanged entries ofA and B ~since the equation¹k5AB21¹ l becomes¹ l
5BA21¹k when one exchangesA,k and B,l!. Due to the skew-symmetry of coefficients of th
equation forK1 with respect to the entries of matricesA,B @clearly seen from the form of~4.5!#,
the obtained equation forK2 differs from the equation forK1 by a minus sign on the right-han
side only. This proves thatK1 andK2 both satisfy~4.5! ~notice, however, that this doesnot imply
K15K2).

The existence ofk1 @i.e., the possibility of integrating the equations~4.7! in order to obtaink1#
follows from the fact that the condition]2k1 /]r ]w5]2k1 /]w] l together with ¹k1

5AB21¹„K2 det(B)… yields precisely the fundamental equation forK2 which is satisfied due to
assumptions. One can similarly prove the existence ofl 2 . The second statement of the theore
can now be proved by checking that both pairsk1 ,l 1 andk2 ,l 2 given by~4.7! satisfy the condition
~2.8! and thus give rise to two systems of qLN equations. Q.E

Remark 4.2:For B(q)5 1
2I ~a 232 identity matrix! the equation~4.5! becomes the Bertrand–

Darboux equation~3.2! characterizing all separable potentials since in this caseq̈52 1
2B

21¹ l
52¹ l is a potential equation.
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The next theorem shows that there exists a recursive relation between two differen
systems constructed from a given solutionK2(q) of the fundamental equation~4.5!. This makes it
possible to construct a doubly infinite sequence of qLN systems corresponding to a given
mental equation.

Theorem 4.3„recursion theorem…: Let k1 ,l 1 and k2 ,l 2 be two pairs of functions determine
by a given solution K2 of the fundamental equation (4.5) as in (4.7). Then these functions
related by the following linear algebraic equations:

k25 l 1 det~AB21!, l 25 l 1 Tr ~AB21!2k1 ~4.8!

(whereTr denotes trace of matrix). Moreover, in the infinite sequence

k0 k1 k2

↗ ↗ ↗
¯ ↓ K1 ↓ K2 ↓ K3 ¯

↗ ↗ ↗
l 0 l 1 l 2

~4.9!

of triples (Km ,km ,l m),mPZ, defined recursively by

km5 l m21 det~AB21!, l m5 l m21 Tr ~AB21!2km21 ~4.10!

and by

Km5km /det~A!5 l m21 /det~B!,

the functions km and lm satisfy A21¹km5B21¹ l m and thus they both determine the same (fo
given m) qLN system q¨ 52 1

2A
21¹km52 1

2B
21¹ l m . All functions Km satisfy the fundamenta

equation (4.5) and are related through the following two-step recursion:

Km115Km Tr ~AB21!2Km21 det~AB21!. ~4.11!

The above recursion is reversible. The solutionKm placed betweenl m21 andkm determines both
l m21 andkm . The recursion~4.11! is soluble. Namely, if we denote the eigenvalues of the ma
AB21 by l1 andl2 , then it can be proved that for the casel1Þl2 the solution of~4.11! is

Km5
1

l12l2
~K12l2K0!l1

m1
1

l12l2
~K0l12K1!l2

m ,

while in the casel15l2 the solution of~4.11! becomes

Km5K0l1
m1S K1

l1
2K0Dml1

m .

In both casesK0 andK1 are two subsequent solutions of the fundamental equation in the sequ
~4.9! which are related by

¹„K1 det~B!…5BA21¹„K0 det~A!….

In order to prove the recursion theorem we need the following lemma.
Lemma 4.4: Let X5AB21 with matrices A,Bas above. Then

X21¹„det~X!…5¹„Tr ~X!….
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This lemma follows from the cyclic properties~2.3! of matricesA andB by a lengthy but straight-
forward calculation.

Proof (of the recursion theorem):Consider a solutionK2 of the fundamental equation and th
functionsk1 ,l 1 ;k2 ,l 2 defined by~4.7!. Then obviouslyk2 /det(A)5l1 /det(B), which immediately
implies k25 l 1 det(AB21). Let X5AB21. Then

¹ l 22¹„l 1 Tr ~X!2k1…5X21¹„K2 det~A!…2¹„K2 det~B! Tr ~X!…1X¹„K2 det~B!…

5X21¹„K2 det~A!…2~Tr ~X!I 2X…¹„K2 det~B!…2K2 det~B!¹„Tr ~X!…

5X21¹„K2 det~A!…2X21 det~X!¹„K2 det~B!…2K2 det~B!¹„Tr ~X!…

5K2 det~B!~X21¹„det~X!…2¹„Tr ~X!…!50,

where we used thatX22Tr (X)X1det(X)I50 as follows from the Cayley–Hamilton theorem. Th
last equality is due to Lemma 4.4 above. Thusl 25 l 1 Tr (X)2k1 up to a nonessential additiv
constant. This proves the first assertion of the theorem.

If we now define the sequence$(km ,l m)% via the recursive procedure~4.10!, then a simple
induction argument shows that each pair (km ,l m) satisfies the condition~2.8! and thus bothkm and
l m determine the same qLN system. Moreover, eachKm5km /det(A)5lm21 /det(B) is a solution of
the fundamental equation as theorem~4.1! states. Finally, to obtain~4.11! it is enough to insert the
formula Km5km /det(A)5lm21 /det(B) into the second equation in~4.10!. Q.E.D.

Example 4.5 (cf. Remark 4.2):For B5 1
2I ~the potential case! the recursion~4.8! takes the form

k254V1 det~A!, V252 Tr ~A!V12k1

with V15 l 1 . This is the separable case when~4.5! reduces to the Bertrand–Darboux equation.
the generic case, i.e., whenaÞ0 in ~2.6!, the matrixA(q) can be reduced@with the use of affine
transformationsq5SQ1h with SPGL (2,R),hPR2, see also Sec. V# to the form

A~q!5F2q2
21l2 q1q2

q1q2 2q1
21l1

G .

If we now start with the harmonic oscillator potentialV15 1
2(q1

21q2
2), then the condition¹V1

5 1
2A

21¹k1 givesk15l2q1
21l1q2

2 and the recursion formulas specify to

k252~q1
21q2

2!~l1l22l2q1
22l1q2

2!,

V25l1q1
21l2q2

22~q1
21q2

2!2,

thus reproducing the potential of the Garnier system.4 It can be shown that the above formula
prolongate to then52 case of the recursion for the Jacobi family of elliptic separable potenti5

In order to explain the character of the recursion~4.9! more completely, let us consider instea
of the pair~A,B! of cyclic matrices another pair (A1mB,B) with mPR. As it can be shown~see
below!, this pair determines the same fundamental equation as the pair~A,B! does. By choosing a
solution K2 of the fundamental equation and the pair (A1mB,B) we arrive at a different qLN
system q̈5Mm(q)52 1

2(A1mB)21¹„K2 det(A1mB)…. It turns out that the forceMm(q) is a
linear combination of two neighboring forces in the sequence~4.9! generated byK2 .

Lemma 4.6: Let A and B be two232 matrices satisfying the cyclic conditions (2.3) and let
be a solution of the fundamental equation associated with A and B. Let alsomPR. Then

~A1mB!21¹„K det~A1mB!…5A21¹„K det~A!…1mB21¹„K det~B!….

This lemma is a consequence of Lemma 4.4. It says that a solution of a given fundam
equation determines the forceM ~and so the system of qLN equations! up to linear combinations
of two consecutive systems in the recursion~4.9!.
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As we have mentioned, the matricesA andB uniquely determine the fundamental equatio
The choice ofA,B which generate a given fundamental equation is, however, not unique sinc
pair A85aA1bB, B85gA1dB determines the same equation. One can also ask to what e
a given fundamental equation determines the pair~A,B!. The precise relationship between pa
~A,B! and the fundamental equation is explained in the following theorem.

Theorem 4.7:Let ~A,B! be a pair of linearly independent matrices A, B satisfying the cy
conditions (2.3). Then there is a 1–1 relationship between the linear span$lA1mB:l,mPR% of
A and B and the fundamental equation (4.5), i.e.,

~1! any two linearly independent matrices A85aA1bB, B85gA1dB determine the same fun
damental equation as (A, B) does.

~2! If the pair (A8,B8) determines the same fundamental equation as~A,B! does, then the matri-
ces A8 and B8 belong to the linear span$lA1mB% of A andB.

Proof: An easy calculation shows that the fundamental equation associated with the ma
A85aA1bB and B85gA1dB differs from the fundamental equation associated with the m
trices A and B by the multiplicative factorad2bg on the right-hand side, i.e., by the nonze
determinant of the transformation between~A,B! and (A8,B8), and so it is, in fact, the sam
equation. This shows assertion~1! of the theorem.

Assume now that the equation~4.5! is associated with a pair~A,B!. Consider the vectorXW

5(X1 ,X2 ,X3) tPR3 of the coefficients of~4.5! at the highest derivativesKrr ,Krw ,Kww , respec-
tively. Then

X15A12B222A22B12,

X25A22B112A11B22,

X35A11B122A12B11, ~4.12!

or

XW 5AW 3BW , ~4.13!

whereAW 5(A11,A12,A22)
t andBW 5(B11,B12,B22)

t are three-dimensional vectors depending or

andw. Hence, for a fixed~r,w! both vectorsAW andBW are orthogonal toXW . The coefficients atKr ,
Kw , and K yield equations which are differential consequences of~4.12! and so they do not
impose any additional restrictions on~A,B!. Suppose now that there exist matricesA8 and B8
satisfying the cyclic condition~2.3! and associated with the same fundamental equation.
means that the equation~4.13! has another solution, i.e., thatXW 5AW 83BW 8, so that the vectorsAW 8

and BW 8 are orthogonal toXW and, in consequence, they are linear combinations ofAW and BW : AW 8

5aAW 1bBW , BW 85gAW 1dBW with some coefficients that may depend onr and w. For the corre-
sponding matrices it immediately follows that

A85aA1bB, B85gA1dB.

It remains to show that the coefficientsa, b, g, d in fact do not depend onr nor w. This can be
shown by inserting the explicit form~4.2! and ~4.3! of entries of matricesA,B, A8 and B8 into
~4.12!. This shows assertion~2! of the theorem. Q.E.D.

V. AFFINE INEQUIVALENT FORMS OF FUNDAMENTAL EQUATION

In this section we are interested in characterizing all different types of two-dimensional
systems admitting two functionally independent integrals of motionE andF which are quadratic
in velocities, i.e., systems of the form
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q̈5M52 1
2A

21¹k52 1
2B

21¹ l , ~5.1!

where M is the force of the system. Every such system is described by a pair of ma
A(q),B(q) satisfying the cyclic conditions~2.3! and by a pair of functionsk(q), l (q) satisfying
A21¹k5B21¹ l . We remind the reader that the functionsk/det(A) and l /det(B) satisfy the same
fundamental equation with the coefficients completely determined by the matrix elements ofA and
B.

Let us first consider how the qLN system 05d1E52A(q̈1 1
2A

21¹k) transforms under the
affine transformation of coordinates

q5SQ1h, SPGL~2,R!, heR2, ~5.2!

whereQ5(Q1 ,...,Qn) t. It is easy to see that, under the affine transformation~5.2!, the generating
function E transforms as

E„q~Q!,q̇~Q̇!…5Q̇tStA„q~Q!…SQ1k„q~Q!…, ~5.3!

whereq(Q)5SQ1h and soq̇(Q̇)5SQ̇. It can be shown by a direct verification that the tran
formed matrix

AQ~Q!5StA„q~Q!…S ~5.4!

in ~5.3! also satisfies the cyclic conditions~2.3! and therefore~5.3! generates a qLN system. Th
means that the qLN system 052A(q̈1 1

2A
21¹k) is indeedinvariant with respect to the affine

change of coordinates~5.2!.
Let us now consider the system~5.1!. Using~5.4! one can prove that the fundamental equat

associated with the pair~A,B! of matrices is also invariant with respect to the affine transform
tions ~5.2!. This means that we can simplify this fundamental equation by performing an a
priate affine change of coordinates. However, Theorem 4.7 makes it possible to classify
mental equations, and therefore the corresponding qLN systems, by classifyingpairs of matrices
~A,B!. Instead of working with the coefficients of the fundamental equation we can thus work
linear spans$lA1mB% of A andB. Since the affine transformations do not change the polynom
degree of matricesA,B, the set of all linear spans ofA andB can be divided into affine inequiva
lent classes corresponding to different polynomial degree ofA andB. Each equivalence class wi
be represented by the algebraically simplest pair of matrices obtained by the use of affine
formations and linear combining of matrices~since the latter leave the fundamental equat
unchanged, see above!.

In order to be more precise we shall introduce some notation. ByA( i ) ( i 50,1,2) we will
denote all matricesA which satisfy the cyclic conditions~2.3! and have the highest degree
polynomial entries equal toi. So, for example, the general form of matrices in the classA(1) is

Fbq11a 2 1
2bq12 1

2cq21 1
2b

* cq11g
G

with arbitrary constants~parameters! b,c,a,b,g. We will use the symbol* to denote matrix
elements determined by the symmetry of a given matrix. Moreover, by@A( i ), B( j )# ( i , j 50,1,2) we
will denote the class of~nonordered! pairs ~A,B! of linearly independent matricesA,B such that
one of the matrices belongs toA( i ) and the other toB( j ). We have, of course,@A( i ), B( j )#
5@A( j ), B( i )# and so we have precisely six such classes. Obviously, all classes@A( i ), B( j )# are
invariant with respect to the affine transformations~5.2!. Notice that if (A,B)P@A(2), B(2)#, we
can kill the coefficient a2 at the second degree monomials inB by subtraction B°B
2(a2 /a1)A so every element of this class can be reduced to an element in@A(2), B(1)#. Thus we
have to consider only five classes. It is easy to realize that the five classes@A( i ), B( j )# with i
> j , j ,2 are invariant with respect to the affine transformations~5.2! and with respect to taking
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linear combinations of pairs~A,B!. These two operations can now be used to find for every c
a simple representing pair~A,B! which has a minimal number of free parameters~a simple repre-
sentative!. Consider, for example, the class@A(2), B(0)#. The general form of matrices belongin
to this class is

A5Fa1q2
21b1b21a1 2a1q1q22 1

2b1q12 1
2c1q21b1/2

* a1q1
21c1q11g1

G ,

~5.5!

B5F a2
b2

2

b2

2
g2

G .

Translation by the vectorh52(1/2a1)(c1 ,b1) t kills b1 andc1 in the matrixA. Since translations
obviously preserve the form ofB the above pair of matrices attains the form

A5F a1q2
21a1 2a1q1q21

b1

2

* a1q1
21g1

G , B5F a2
b2

2

b2

2
g2

G
with some new constants denoted by the same letters as in~5.5!. Further, the transformation
A°A2(b1 /b2)B kills the coefficientb1 in A. In the case whenb250 we can still kill b1 in A
by the linear transformationq5SQ with

S5F 2tg12b1/2

a11tb1/2
1

1 t
G ,

where tPR must be chosen so thata11tb1/2Þ0 and det(S)Þ0, which can be always done
Finally, we can divide both matrices bya1 and 2a2 , respectively. So, a simple representative
the class@A(2), B(0)# has the form

A5Fq2
21a1 2q1q2

* q1
21g1

G , B5F 1

2

b2

2

b2

2
g2

G ~5.6!

with four essential parameters. Both separable and driven systems belong to this class sB

5 1
2I for separable systems andB5diag (12,0) for driven systems.

We perform a similar reduction for each class@A( i ), B( j )#,i> j , j ,2. The results are presente
below.

It is also easy to see that one can pass from one invariant class@A( i ), B( j )# to another by
specifying values of free parameters. For example, by settinga150 we obtain@A(1), B(1)# from
@A(2), B(1)#; by settingb25c250 we get@A(1), B(0)# and so on as shown in Fig. 1. This figu
presents—for all classes@A( i ), B( j )#—complete results of simplification of a generic pair~A,B!
belonging to each class with the use of linear combinations and affine transformations.

Below we list the form of the fundamental equation~4.6! corresponding to the simple repre
sentative pair~A,B! of each class as given in Fig. 1. We use the notationKi5]K/]qi , Ki j

5]2K/]qj]qi .
~a! For @A(2), B(1)#,
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05K11~2g1b21g1q222g2q1q22b2q1
22q1

2q2!12K12~a2g12a1g22a1q12g2q2
21a2q1

2

2q1q2
2!1K22~a1b22a1q212a2q1q21b2q2

22q2
3!13K1~2b2q122g2q222q1q2!

13K2~2a112a2q11b2q222q2
2!26q2K.

~b! For @A(2), B(0)#,

05K11~2g1b222g2q1q22b2q1
2!12K12~g12a1g22g2q2

21q1
2!

1K22~a1b212q1q21b2q2
2!13K1~2b2q122g2q2!13K2~2q11b2w!. ~5.7!

~c! For @A(1), B(1)#,

052K11~g2b12g1b21~2g21b1!q11q22q1
2!

14K12~a2g12a1g22a1q12g2q22q1q2!

12K22~a1b22a2b11a2q11~b22a1!q22q2
2!

13K1~22g21b123q1!13K2~22a11b223q2!26K.

~d! For @A(1), B(0)#,

052g2q1K1114g2q2K1222~q1/21b2q2!K2216g2K123b2K2 . ~5.8!

~e! For @A(0), B(0)#,

05g1b2K1112~a1g22a2g1!K122a1b2K22. ~5.9!

FIG. 1. Classification diagram.
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What we present here is an illustrative characterization of different types of fundam
equations in terms of matrix pairs~A,B!. This provides a good intuitive description of the world
qLN equations and helps to specify where two particular classes—separable potentials and
systems—belong. An alternative way of classifying qLN equations with two quadratic integra
motion is to simplify the fundamental equation~4.5! with the use of affine transformations as h
been done for the Bertrand–Darboux equation2 ~see Example 5.1 below!. This may amount to a
similar picture as we have presented above, but the principles of simplification of the third-
polynomials atKrr , Krw , andKww are more difficult to discern. This is yet to be done.

Example 5.1:The classification of types of the Bertrand–Darboux equation with respe
Euclidean transformations leads to three forms of this equation which are separable in
elliptic, parabolic, or Cartesian coordinates. According to Corollary 3.1, if a potential
dimensional Newton system

q̈152
]V

]q1
, q̈252

]V

]q2

with V5V(q1 ,q2) possesses a second integral of motion of the formE5q̇tAq̇1k(q) with A
PA(2), then it has the qLN formq̈52 1

2A
21¹k52 1

2B
21¹V with B5 1

2I whereI is 232 identity
matrix. Moreover, the potentialV must satisfy the Bertrand–Darboux equation~3.2!. This system
belongs to the class@A(2), B(0)# with b250 and witha25g25 1

2. The corresponding fundamenta
equation is exactly the Bertrand–Darboux equation since in this caseK5V/det(B)54V. The
simplification procedure described above does not alter the form of the matrixB5 1

2I and so the
corresponding fundamental equation~5.7! attains the form

05~V222V11!q1q21V12~q1
22q2

21g12a1!26q2V116q1V2 , ~5.10!

which has only one essential parameterg12a1 . This form of the Bertrand–Darboux equatio
separates in the elliptic coordinates.2 The specificationa150 reduces the class@A(2), B(0)# to
@A(1), B(0)#. The corresponding fundamental equation after the simplification procedure a
the form~5.8!. In the case whenB5 1

2I , the final form ofB ~after simplification! will be exactly the
same~i.e., with b250, a25g25 1

2), and so the fundamental equation~5.8! reads

05q1~V112V22!12q2V1213V1 .

It does not contain any parameters now. This equation separates in the parabolic coord2

Further specificationb15c150 leads to the class@A(0), B(0)# of constant symmetric matrices. Th
corresponding fundamental equation in the course of simplification attains the form~5.9! which in
the caseB5 1

2I ~again, this form ofB survives the simplification procedure—in this case just
diagonalization ofA by a rotation! yieldsVjh50, wherej,h are coordinates which originate by
rotation of the Cartesian coordinatesx,y. This is the case of the Bertrand–Darboux equat
separable in~rotated! Cartesian coordinates.

The above example indicates that the fundamental equation plays the same role in the
of qLN equations as the Bertrand–Darboux equation does in the theory of separable po
forces M52]V/]q. For separable potentials the characteristic coordinates of the Bertr
Darboux equation determine the coordinates of separation which makes it possible to so
corresponding Newton equations by quadratures. In Sec. VII we prove a similar result for the
of two-dimensional driven systems by showing that the characteristic coordinates of the f
mental equation associated with a given driven system separate this system, i.e., that i
coordinates it is possible to integrate the system by quadratures. The question whether th
acteristic coordinates of the fundamental equation separate general qLN systems admitti
integrals of motion remains to be investigated. We have here to do with a much broader
depending on five essential parameters while the Bertrand–Darboux equation depends
parameter only.
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VI. HAMILTONIAN STRUCTURES AND COMPLETE INTEGRABILITY

In this section we will establish a Hamiltonian formulation of two-dimensional qLN syst
and discuss their complete integrability. Let us consider first the qLN system 05d1E52A„q̈
1 1

2A
21¹k(q)… generated by the functionE5q̇tA(q)q̇1k(q), q5(q1 ,q2) t with the 232 matrix

A(q) satisfying the cyclic conditions~2.3!. This system usually does not have any Lagrang
formulation and thus it does not have the standard Hamiltonian formulation. However, w
always embed this system in a Hamiltonian qLN system in the five-dimensional phase sp
variables (q1 ,q2 ,p1 ,p2 ,d) as the following theorem states.

Theorem 6.1„Hamiltonian form of qLN systems…: Let

05q̈1 1
2A

21~q!¹~k~q!1dl det„A~q!…! ~6.1!

with q5(q1 ,q2) t be the qLN system generated by

Ê5q̇tA~q!q̇1k~q!1dl det„A~q!…[E1dl det~A!

with some constantl and with dPR. Let alsoM be the extended five-dimensional phase spac
variables(q1 ,q2 ,p1 ,p2 ,d) with pi5q̇i , i 51,2. Then the system~6.1! is equivalent to

F q̇
ṗ

ḋ
G5F 0 2~l/2!G~q! p

~l/2!Gt~q! 2~l/2!F~q,p! M̂ ~q,d!

2pt
2M̂ t~q,d! 0

G¹Md[PA¹Md, ~6.2!

where¹M5(]/]q1 ,]/]q2 ,]/]p1 ,]/]p2 ,]/]d) t is the gradient operator inM and where the2
32 matrices G and F and the vector Mˆ are given by

G~q!5det~A!A215F A22 2A12

2A12 A11
G ,

F12~q,p!5
1

2 S ]A22

]q1
p22

]A11

]q2
p1D , F52Ft,

M̂ ~q,d!5M ~q!2 1
2dlA21¹„det~A!…

with M(q)52 1
2A

21¹k being the force of the qLN system05d1E. Moreover, the antisymmetric
matrix PA is Poisson and so~6.2! is the Hamiltonian formulation of (6.1).

Notice that the matrixG obtained above is symmetric due to the symmetry ofA.
Proof: Since ¹Md5(0,0,0,0,1)t, the equation~6.2! yields q̇5p, ṗ5M̂52 1

2A
21¹„k

1dl det(A)…, ḋ50, i.e., it reproduces~6.1!. The matrixPA is antisymmetric and it is straightfor
ward to verify that it satisfies the Jacobi identity in the phase spaceM. Q.E.D.

We remind the reader that the operatorP:T* M→TM mapping fiberwise the cotangen
bundle T* M of M into the tangent bundleTM is Poisson if the bilinear mapping
$•,•%P :C`(M)3C`(M)→C`(M) defined for any pair of functionsf ,g:M→R by

$ f ,g%P5^¹Mf ,P¹Mg&

~where^•,•& is the dual map between cotangent and tangent spaces ofM! is a Poisson bracket.
Remark 6.2:In the hyperplaned50 the solutions of~6.2! coincide with the solutions ofq̈

52 1
2A

21¹k. Thus our original qLN systemq̈52 1
2A

21¹k is in a natural way embedded in th
Hamiltonian system~6.2!.
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Proposition 6.3: The function

Ê5ptA~q!p1k~q!1dl det„A~q!…

is a Casimir function for the Poisson operatorPA in ~6.2!, that is, PA¹MÊ50.
One can check this proposition by a direct verification.
A statement converse to the second statement of Theorem 6.1 also holds.
Theorem 6.4:Let the antisymmetric matrix

P5F 0 2~l/2!G~q! p

~l/2!Gt~q! 2~l/2!F~q,p! M̂ ~q,d!

2pt
2M̂ t~q,d! 0

G ~6.3!

be a Poisson operator in the space of variables~q,p,d!. Then
~1! G(q) must have the form

G~q!5F aq1
21cq11g aq1q21

b

2
q11

c

2
q22

b

2

* aq2
21bq21a

G ~6.4!

(thus it is symmetric) with some constants a,b,c,a,b,g and so

G5F A22 2A12

2A21 A11
G ~6.5!

for some symmetric matrix A(q) satisfying the cyclic conditions (2.3). In other words, P5PA

with PA defined in (6.2) and with

A5F G22 2G12

2G21 G11
G .

~2! F(q,p) must have the form

F12~q,p!5
1

2 S ]A22

]q1
p22

]A11

]q2
p1D , F52Ft. ~6.6!

~3! M̂ (q,d) must have the form

M̂ ~q,d!5M ~q!1dlN~q!,

where 22AM(q)5¹k for some function k(q), so if det(G)Þ0, then M(q)52 1
2A

21¹k, and
where N(q)52 1

2A
21¹„det(A)….

Proof: The conditions $$qi ,qj%P ,qk%P1cycl50 and $$qi ,qj%P ,pk%P1cycl50 ~where
‘‘cycl’’ means the cyclic permutation of expressions! hold identically due to the block structure o
P. The condition$$qi ,qj%P ,d%P1cycl50 yields the symmetry ofG: G5Gt. Further,

05$$qi ,pj%P ,d%P1cycl52
l

2 S p1

]Gi j

]q1
1p2

]Gi j

]q2
D1

l

2
Fi j 2pi

]M̂ j

]d
.
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Let us denote the right-hand side of the above equality by2(l/2)Ri j . Notice that]M̂ j /]d cannot
depend ond, and so we have]M̂ j /]d5lNj (q) for some vectorN(q)5„N1(q),N2(q)…t which
yields M̂ (q,d)5M (q)1dlN(q) for some vectorM (q). By taking linear combinations of the
conditionsRi j 50 and using the symmetry ofG and the antisymmetry ofF we get the following
sets of equations:

]G11

]q2
5

]G22

]q1
50,

]G11

]q1
52N1 ,

]G22

]q2
52N2 , ~6.7!

]G12

]q1
5N2 ,

]G12

]q2
5N1 , ~6.8!

F125p2N12p1N2 . ~6.9!

The equations~6.7! show thatG11 andN1 depend only onq1 and thatG22 andN2 depend only on
q2 . The equations~6.8! give ]N1 /]q15]2G12/]q1]q25]N2 /]q2 and so all terms in this expres
sion must be equal to a constanta. Integration yields

N15aq11c/2, N25aq21b/2, ~6.10!

whereb andc are integration constants. Substituting~6.10! into ~6.7! and~6.8! and integrating we
get~6.4!. If we now introduce the symmetric matrixA by the equality~6.5! and use~6.7! then~6.9!
will attain the form~6.6!.

It is straightforward to check that with the above forms ofF and G the conditions
$$pi ,pj%P ,pk%P1cycl50 and$$qi ,pj%P ,pk%P1cycl50 are satisfied identically.

Further, the condition$$p1 ,p2%P ,d%P1cycl50 after some calculations attains the form

05
]

]q1
~G11M22G21M1!2

]

]q2
~G22M12G12M2!,

which means that in the vector

F G22M12G12M2

2G21M11G11M2
G5F G22 2G12

2G21 G11
G FM1

M2
G5AM,

the mixed derivatives of its components are equal and so this vector is equal to the grad
some function2 1

2k(q), that is,AM52 1
2¹k or M52 1

2A
21¹k.

Finally, by direct calculation we verify thatN52 1
2A

21¹„det(A)… and so statement~3! of the
theorem is proved. Q.E.D

Remark 6.5:This theorem generalizes the result of Ref. 6. In particular, if we assumM
52¹V(q), then we recover the known second Poisson operator for separable potential sys7

Notice thatM̂ is the force of the two-dimensional qLN system~6.1!. This means that every
Poisson operator of the form~6.3! is a Poisson operator for some qLN system of the form~6.1!.

We are now in position to investigate complete integrability of qLN systems admitting
quadratic, functionally independent integrals of motion. Notice first that Theorem 6.4 provid
with an alternative way of characterizing qLN systems generated by a quadratic integral of m
E: by starting with a Poisson operator of the form~6.3! we arrive at qLN systems generated by t
Hamiltonian H(q,p,d)5d which admit a quadratic integralE. In a similar way the following
theorem characterizes all qLN systems admitting two independent quadratic integralsE,F.

Theorem 6.6„Poisson pencil…: Consider the antisymmetric operator
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Pm5F 0 2~l/2!Gm~q! p

~l/2!Gm
t ~q! 2~l/2!Fm~q,p! M ~q!1dlNm~q!

2pt 2Mt~q!2dlNm
t ~q! 0

G , ~6.11!

where

Gm5F A22 2A12

2A21 A11
G2mF B22 2B12

2B21 B11
G[GA2mGB ,

with both matrices A and B satisfying the cyclic conditions (2.3),

@Fm#125
1

2 S ]~A222mB22!

]q1
p22

]~A112mB11!

]q2
p1D[@FA#122m@FB#12

~with F52Ft, FA52FA
t , FB52FB

t ) and

Nm52 1
2A

21¹„det~A!…1 1
2mB21¹„det~B!…[NA2mNB .

ThenPm is Poisson if and only if

M ~q!52 1
2A

21¹k52 1
2 B21¹ l ~6.12!

for some functions k(q) and l(q). Moreover, if we let

Pm5P12mP2[F 0 2~l/2!GA p

~l/2!GA
t 2~l/2!FA M1dlNA

2pt 2Mt2dlNA
t 0

G2mF 0 2~l/2!GB 0

~l/2!GB
t 2~l/2!FB dlNB

0 2dlNB
t 0

G ,

then both operatorsP1 and P2 are Poisson and soPm5P12mP2 is a Poisson pencil.
Proof: According to the proof of Theorem 6.4 the matrixPm satisfies all the Jacobi identitie

except possibly for̂$p1 ,p2%Pm
,d‰Pm

1cycl50, sincePm differs fromPA2mB5PA2mPB by the
form of M (q) only. Like in the proof of Theorem 6.4 we find thatˆ$p1 ,p2%Pm

,d‰Pm
1cycl50

yields that the mixed derivatives of the components of the vector22(A2mB)M are equal and so
22(A2mB)M5¹(k2m l ) for some functionsk(q) and l (q). By comparing coefficients at dif-
ferent powers ofm we get22AM5¹k and22BM5¹ l and thusM52 1

2A
21¹k52 1

2B
21¹ l .

Further,P15PA in the notation of Theorem 6.4 so it is Poisson. Easy calculation shows
P2 is Poisson, too. Q.E.D

The above theorem states that ifM (q) is the force of a qLN system admitting two function
ally independent integrals of motion, then the matrixPm is a Poisson pencil. We will establish it
Casimir function, which will be a polynomial inm. This will lead to a bi-Hamiltonian chain
containing the qLN system~6.1!. We will prove that this chain is completely integrable. In th
way we will show that our original qLN systemq̈52 1

2A
21¹k52 1

2B
21¹ l can be naturally

embedded in a completely integrable bi-Hamiltonian system.
Proposition 6.7: Suppose thatPm is Poisson, i.e., that (6.12) is satisfied. Then the functio

Hm5pt~A2mB!p1k2m l 1dl det~A2mB! ~6.13!

is a Casimir function forPm , i.e., Pm¹Hm50.
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Proof: This proposition is a consequence of Proposition 6.3. If we modify the matrixPA by
substituting the matrixA by A2mB and substitutingk with k2m l we obtain the matrix

F 0 2
l

2
Gm p

l

2
Gm

t 2
l

2
Fm M̃m

2pt 2M̃m
t 0

G , ~6.14!

where

M̃m52 1
2~A2mB!21¹~k2m l !2 1

2dl~A2mB!21¹„det~A2mB!….

Due to Proposition 6.3 the function~6.13! is the Casimir of~6.14!. However,~6.14! is, in fact,
equal toPm since it can be verified that2 1

2(A2mB)21¹(k2m l )52 1
2A

21¹k52 1
2B

21¹ l and
that (A2mB)21¹„det(A2mB)…5A21¹„det(A)…2mB21¹„det(B)…. Q.E.D.

Let us collect terms inHm at different powers ofm:

Hm5ptAp1k1dl det~A!1m~2ptBp2 l 2dlY!1m2
„dl det~B!…[Ê1mF̂1m2Ĥ

with Y5B11A221B22A1122B12A12. Then the above proposition gives

05Pm¹Hm5~P12mP2!¹~Ê1mF̂1m2Ĥ !

5P1¹Ê1m~P1¹F̂2P2¹Ê!1m2~P1¹Ĥ2P2¹F̂ !2m3P2¹Ĥ.

By equating to zero the coefficients at different powers ofm we obtain the following bi-
Hamiltonian chain:

P1¹Ê50,

P1¹F̂5P2¹Ê,
~6.15!

P1¹Ĥ5P2¹F̂,

05P2¹Ĥ.

Theorem 6.8:The bi-Hamiltonian chain (6.15) is completely integrable, i.e., both nontriv
bi-Hamiltonian vector fields,

V15P1¹F̂5P2¹Ê, V25P1¹Ĥ5P2¹F̂,

in (6.15) are completely integrable.
Proof (modification of the proof of Liouville–Arnold theorem8): Consider the two-dimensiona

manifold N5$xPM:Ê(x)5E0 ,F̂(x)5F0 ,Ĥ(x)5H0% in M. Poisson brackets of all pairs o
Ê,F̂,Ĥ induced by both structuresP0 and P1 are equal to zero, since the functionsÊ,F̂,Ĥ all
belong to the same bi-Hamiltonian chain. For instance,$F̂,Ĥ%P1

5^¹F̂,P1¹Ĥ&5^¹F̂,P2¹F̂&

5$F̂,F̂%P2
50 with the second equality being a consequence of the bi-Hamiltonian structu

V2 . It follows that the Lie bracket@V1 , V2# of both vector fieldsV1 and V2 is equal to zero,

@V1 , V2#5@P1¹F̂, P1¹Ĥ#50, since the mappingsP i¹ ( i 51,2) are Lie algebra homomor
phisms between the Lie algebra of vector fields onM and the Lie algebra of all smooth function
on M with the Lie bracket defined by@ f 1 , f 2#5$ f 1 , f 2%P i

. Moreover,^¹Ê,V1&5^¹Ê,P2¹Ê&
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5$Ê,Ê%P2
50 and similarly^¹F̂,V1&5^¹Ĥ,V2&50, which proves thatV1 is tangent toN. In the

same way one can show thatV2 is also tangent toN. Direct verification shows thatV1 andV2 are
linearly independent. We thus have a two-dimensional submanifoldN in M equipped with a pair
of linearly independent, commuting vector fieldsV1 andV2 . We can now apply the constructio
of Liouville-Arnold8 and conclude that bothV1 andV2 are completely integrable. Q.E.D

Corollary 6.9: The qLN system q¨ 5M52 1
2A

21¹k52 1
2B

21¹ l with two linearly independent
matrices A and B satisfying the cyclic conditions (2.3) is completely integrable in the sens
the trajectories of the system

F q̇ṗG5F p
M G ~6.16!

coincide on the hyperplane d50 with the trajectories of the completely integrable fiv
dimensional system

F q̇
ṗ

ḋ
G5V25P1¹Ĥ5P2¹F̂. ~6.17!

Proof: Consider the vector fieldV2 from ~6.15!. Obviously

V25P1¹Ĥ5l det~B!P1¹d1ldP1¹„det~B!…

and so in the hyperplaned50 we have

V2ud505l det~B!F p
M
0
G , ~6.18!

which means that the hyperplaned50 is invariant with respect to the action of the vector fie
V2 . The formula~6.18! also shows that in the hyperplaned50 the vector field of the system
~6.17! is parallel to the vector field of the system~6.16! and so their trajectories mus
coincide. Q.E.D.

Thus we have shown that the system~6.16! is embedded in the completely integrable b
Hamiltonian system~6.17!. The trajectories of~6.16! stay on the intersection of invariant man
folds for ~6.17! with the hyperplaned50. Also, since we can now solve the system~6.17! by
quadratures the time evolution of the coefficientl det(B) in ~6.18! can be calculated which make
it possible to solve the system~6.16! by quadratures too.

VII. NEW TYPES OF SEPARATION VARIABLES FOR DRIVEN qLN SYSTEMS

In this section we study an important class of two-dimensional qLN equations called d
systems. We find for all such systems their separation variables and prove their integrabi
quadratures. The variables of separation are of a completely new type: they consist of fam
conics which are non-confocal in contrast with the classical separability theory for pote
systems.

We remind the reader that we call a two-dimensional Newton systemdriven if one of the two
differential equations depends on one variable only. By renaming the variables if necessa
can always arrange for such a system to take the form

q̈15M1~q1 ,q2!,
~7.1!

q̈25M2~q2!.
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The second equation can be solved on its own and its solutionq2(x) then determines the equatio
for q1 , which explains the name ‘‘driven.’’ A driven system always has one integral of mo
F5q̇2

2/22*M2 dq2 , obtained by integrating the second equation once, but, in general, there
not exist any others.

Here we shall consider driven systems that admit a quasi-Lagrangian formulatiq̈
52 1

2A
21¹k(q). Here, as usual,A(q) is a nondegenerate 232 matrix satisfying the cyclic

conditions~2.3!, i.e., a matrix of the form

A5F aq2
21bq21a 2aq1q22

b

2
q12

c

2
q21

b

2

2aq1q22
b

2
q12

c

2
q21

b

2
aq1

21cq11g
G . ~7.2!

Such a system always hastwo functionally independent integrals of motionE5q̇tAq̇1k(q) and
F5q̇2

2/22*M2 dq2 .
By examining the second component of the equationq̈52 1

2A
21¹k(q), we immediately see

that a qLN system is driven iff

A12]1k2A11]2k52 det~A!M2~q2!, ~7.3!

for some functionM2(q2) depending onq2 only. We can produce driven qLN systems with a
given M2(q2) andA(q) by solving fork(q) in this equation. The caseA1150 is degenerate and
will be treated separately later~see Remark 7.6!, so we assume from now on thatA11Þ0.

We start by introducing separation variables for~7.1! as characteristic coordinates for~7.3!.
Definition 7.1: Define curvilinear coordinates (u,v)5„u(q),v(q)… as follows. Letu be a

parameter indexing the family of characteristic curves of~7.3! given by

q̇~x!5F A12„q~x!…

2A11„q~x!…G , ~7.4!

and letv5q2 .
In other words, the curves given by~7.4! are the coordinate curves of constantu. For a given

matrix A these curves can be explicitly calculated. In Theorem 7.7 we will describe these c
more explicitly. Let us just note for the moment that they are not parallel to the curves of con
v, because of the assumptionA11Þ0. Thus the above description really defines a coordin
system~at least locally!. There is some freedom in the choice ofu, but this will not affect our
results. By abuse of notation we will writef (q1 ,q2) and f (u,v) for the same functionf expressed
in different coordinate systems.

Lemma 7.2: The general solution of (7.3) is

k~u,v !5 f ~u!1D~u,v !g~v !, ~7.5!

where f is an arbitrary function, D5det(A), and

g~q2!5
22

A11~q2!
E M2~q2! dq2 .

Proof: Along each characteristic curveq(x) given by~7.4! we can consider~7.3! as an ODE

d

dx
k„q~x!…52D„q~x!…M2„q2~x!…,

with general solution
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k~q~x!!5D„q~x!…g„q2~x!…1 f ,

where f is a constant of integration. This can be verified by direct differentiation; the cy
conditions imply that

d

dx
D„q~x!…5]1Dq̇11]2Dq̇25]1DA121]2D~2A11!52D]2A11,

and thus

d

dx
k~q!5

d

dx
„D~q!g~q2!1 f …5

dD

dx
g1D]2gq̇2

52D]2A11g1D]2g~2A11!

52D]2~A11g!52DM2 .

The constant of integrationf can be different for different characteristic curves, so when
express the result in terms ofu andv, f will depend onu ~but not onv). Q.E.D.

Lemma 7.3: Equation (7.3) is equivalent, under the substitution k5K det(A), to the equation

A12]11K2A11]12K2 3
2]2A11]1K50, ~7.6!

which is the fundamental equation (4.5) associated with the matrices A and

B5F0 0

0 1
2
G .

Proof: Equation~7.3! implies

]1S 2A12]1k1A11]2k

det~A! D50.

Conversely, this expression can be integrated to give~7.3!, whereM2(q2) is an arbitrary function
of integration. By substitutingk5K det(A) and simplifying the resulting expression using t
cyclic conditions one obtains~7.6!. Comparison with the general expression for the fundame
equation in Theorem 4.1 proves the second statement of the lemma. Q

Remarks 7.4:The fundamental equation~7.6! is hyperbolic. Its characteristic coordinates a
precisely the coordinates (u,v) of Definition ~7.1!. The general solution isK(u,v)
5 f (u)/D(u,v)1g(v), as can be seen by combining the above lemmas.

Let us turn to the question of how to integrate a driven qLN system. The solutionq2(x) of the
second equation can be found by quadrature fromF5q̇2

2/22*M2 dq2 :

E dq2

A2F12*M2dq2

56E dx. ~7.7!

Insertingq2(x) and q̇2(x) into

E5A11~q2!q̇1
212A12~q1 ,q2!q̇1q̇21A22~q1!q̇2

21k~q1 ,q2!

would give a first-order ODE forq1(x), but there is no obvious way to solve this equation sin
the variablesq1 andx do not separate. We will now show how to proceed instead.

Theorem 7.5:Every driven qLN system can be integrated by quadratures using the ch
teristic coordinates(u,v) of the fundamental equation (7.6) as separation variables.
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Proof: We use the notation of Lemma 7.2. Let the system be generated byE5q̇tAq̇1k(q)
with k(u,v)5 f (u)1D(u,v)g(v). Sincev5q2 , we can expressF asF5 1

2„v̇
21A11(v)g(v)… and

calculatev(x) by quadrature, as above. Now note that since the curves of constantu by definition
have tangentq̇5(A12,2A11)

t, we must have¹u5r(q)(A11,A12)
t for some functionr(q),

whose exact form depends on the choice ofu. This gives u̇5]1uq̇11]2uq̇25r(q)(A11q̇1

1A12q̇2), and thus

u̇25r2A11S A11q̇1
212A12q̇1q̇21

A12
2

A11
q̇2

2D 5r2A11S E2A22q̇2
22k~q!1

A12
2

A11
q̇2

2D
5r2A11S E2S A222

A12
2

A11
D v̇22 f ~u!2Dg~v ! D

5r2A11S E2
D

A11
„2F2A11g~v !…2 f ~u!2Dg~v ! D

5r2A11S E2
2D

A11
F2 f ~u! D .

In order to complete the proof, we will show thatr(u,v)5f(u)uA11(v)u23/2 and
D(u,v)/A11(v)5c(u) for some functionsf andc, since this implies that the variablesu andx
separate. Explicitly, we can then findu(x) from the quadrature

E du

f~u!AE22c~u!F2 f ~u!
56E dx

A11„v~x!…
, ~7.8!

after which the inverse coordinate transformation gives usq1(x). Notice that for a given matrixA,
the characteristic coordinates (u,v) can be calculated explicitly so that the functionr and thusf
and c can be easily calculated and used in the quadrature~7.8! above. The theorem covers
however, all the cases at once without any need of calculatingr explicitly.

To see thatr(u,v)5f(u)uA11(v)u23/2, note that]12u5]21u implies thatr(q) satisfies the
PDE

05]1~rA12!2]2~rA11!5A12]1r2A11]2r2 3
2]2A11r,

which has the same characteristic curves~7.4! as Eq.~7.3!. Along such a curve we determiner by
integrating

d

dx
r„q~x!…5

3

2
]2A11„q2~x!…r„q~x!…,

which, taking into accountq̇2(x)52A11„q2(x)…, gives

r„q~x!…5fuA11„q2~x!…u23/2.

The integration constantf can be different on different characteristic curves, so changing to (u,v)
coordinates we obtain

r~u,v !5f~u!uA11~v !u23/2,

as desired.
Finally, we calculate the total derivative of the functionc(q)5D(q)/A11(q2) along a char-

acteristic curve:
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d

dx
c„q~x!…5]1S A222

A12
2

A11
DA122]2S A222

A12
2

A11
DA11.

Using the cyclic conditions, we find that this expression is identically zero. This implies thatc is
constant along the coordinate curves of constantu, i.e., c5c(u). This completes the proof.

Q.E.D.
Remark 7.6:The degenerate caseA1150 can be treated as follows. Sincea5b5a50, the

expression~7.2! for A reduces to

A5F 0 2
c

2
q21

b

2

2
c

2
q21

b

2
cq11g

G ~7.9!

and Eq.~7.3! reduces to

A12]1k52~2A12
2 !M2~q2!,

with the general solution

k~q!522A12~q2!M2~q2!q11k2~q2!.

We calculateq2(x) by quadrature as before. Insertingq2(x) and q̇2(x) into E52A12q̇1q̇2

1A22q̇2
21k(q1 ,q2) yields in this case an equation of the formq̇1(x)1j(x)q1(x)5h(x), from

which we can findq1(x) by quadrature.
Theorem 7.7: The separation coordinates for driven qLN systems, i.e., the characte

coordinates(u,v) of the fundamental equation (7.6), are of one of the following types, determ
by the coefficients in the matrix A:

~1! fanlike hyperbolic, if aÞ0 and b2/42aa50;
~2! axial hyperbolic, if aÞ0 and b2/42aa,0;
~3! two-point elliptic-hyperbolic, if aÞ0 and b2/42aa.0;
~4! one-point parabolic, if a50 and bÞ0; and
~5! parallel parabolic, if a50 and b50.

Proof: We will compute explicitly the curves given by~7.4!, which constitute the curves o
constantu. ~The curves of constantv are just horizontal lines, sincev5q2 .) Inserting the explicit
expression~7.2! for the matrixA into ~7.4!, we obtain

F q̇1

q̇2
G52F aq1q21

b

2
q11

c

2
q22

b

2

aq2
21bq21a

G . ~7.10!

When solving these equations, we distinguish four different cases, depending on the values
parameters inA.
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The case aÞ0. By settingr 15aq11c/2 andr 25aq21b/2, which is just rescaling of the axe
and translation of the origin, we transform~7.10! into

F ṙ 1

ṙ 2
G5F2r 1r 21C1

2r 2
21C2

G , whereHC15bc/41ab/2,
C25b2/42aa. ~7.11!

Subcase C250 (type 1). Either r 250, or r 25(x1D1)21 and r 15C1(x1D1)/2
1D2(x1D1)21, where D1 and D2 are constants of integration. Eliminatingx and writing u
instead ofD2 , we obtain

r 15
C1

2r 2
1ur2 , ~7.12!

which represents a family of hyperbolas, each with asymptotesr 250 andr 25r 1 /u. The solution
r 250 found above corresponds to the limiting casesu→6` ~see Fig. 2!.

Subcase C2Þ0 (type 2 and 3). The substitutions15r 12C1r 2 /C2 , s25r 2 yields

F ṡ1

ṡ2
G5F 2s1s2

2s2
21C2

G , ~7.13!

and thus

ds1

ds2
5

ṡ1

ṡ2
5

s2

s2
22C2

s1 ,

resulting in

s1
25u2us2

22C2u. ~7.14!

If C2,0 ~type 2!, this represents in thes plane a family of hyperbolas centered around thes1 axis,
with asymptotess256s1 /u and vertices (6uA2C2,0) @Fig. 3~a!#.

If C2.0 ~type 3!, we obtain in the regionus2u.AC2 a family of hyperbolas with asymptote
s256s1 /u and vertices (0,6AC2), and in the regionus2u,AC2 a family of ellipses with vertices

FIG. 2. Fan-like hyperbolic.
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(0,6AC2) and (0,6uAC2). The corresponding curves in ther plane are obtained by a shear
thes1 direction with factorC1 /C2 @Figs. 3~b! and 4~b!#. They are still hyperbolas and ellipses, b
not aligned parallel with ther axes.

The case a50. Subcase bÞ0 (type 4). Translating the origin byr 15q12(ac/b21b/b) and
r 25q21a/b, we obtain

F ṙ 1

ṙ 2
G5F 2

b

2
r 12

c

2
r 2

2br2

G , ~7.15!

which yields

FIG. 3. ~a! Axial-hyperbolic in thes-plane.~b! Axial-hyperbolic in ther-plane.
FIG. 4. ~a! Two-point elliptic-hyperbolic in thes-plane.~b! Two-point elliptic-hyperbolic in ther-plane.
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S r 12
c

b
r 2D 2

5ur2 . ~7.16!

With s15r 12cr2 /b, s25r 2 , we obtain in thes plane a family of parabolass25s1
2/u @Fig. 5~a!#.

The corresponding curves in ther plane are parabolas obtained by a shear in thes1 direction with
factor c/b @Fig. 5~b!#.

Subcase b50 (type 5). Here we can assume thataÞ0, or else we get the degenerate cas
A1150. A simple calculation shows that

q152
c

4a
q2

21
b

2a
q21u, ~7.17!

which is a family of translated parabolas seen in Fig. 6~or straight lines, ifc50). Q.E.D.

FIG. 5. ~a! One-point parabolic in thes-plane.~b! One-point parabolic in ther plane.

FIG. 6. Parallel-parabolic.
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VIII. EXAMPLES AND APPLICATIONS

The notion of a qLN forceM (q)52 1
2A

21(q)¹k(q) naturally generalizes the concept of
potential forceM (q)52¹k(q), which is a special case. The qLN forces admit an integra
motion quadratic in velocities, which in the potential case becomes the energy integra
function k(q) may be called a ‘‘quasi-potential’’ of the forceM (q).

A given force is easy to test for the existence of a qLN formulation, provided that one k
the general form of the matrixA(q) solving the cyclic condition~2.3!. In two dimensionsA(q),
given by

A~r ,w!5F aw21bw1a 2arw2
b

2
r 2

c

2
w1

b

2

2arw2
b

2
r 2

c

2
w1

b

2
ar21cr1g

G ,

depends on six arbitrary parameters, and a qLN formulation exists provided that the mixe
rivatives of¹k(r ,w)522A(r ,w)M (r ,w) are equal for some nonzero values of the parame
a,b,c,a,b,g. We thus have the following lemma:

Lemma 8.1: A given force M(r ,w)5„M1(r ,w),M2(r ,w)…t admits a qLN formulation
M (r ,w)52 1

2A
21(r ,w)¹k(r ,w) if and only if there is a nontrivial solution A, withdet(A)Þ0, of

the equation

05
]

]w
X~aw21bw1a!M11S 2arw2

b

2
r 2

c

2
w1

b

2 D M2C
2

]

]r
XS 2arw2

b

2
r 2

c

2
w1

b

2 D M11~ar21cr1g!M2C. ~8.1!

Lemma 8.2 (Criterion of integrability, n52): Equation (8.1) has a two-parameter family o
solutions for A(r ,w) if and only if q̈5M (q) admits two functionally independent integrals
motion E and F quadratic in velocities.

Proof: If such E5q̇tAq̇1k and F5q̇tBq̇1 l exist, thenlE1mF5q̇t(lA1mB)q̇1(lk
1m l ) is an integral of motion for alll andm, and thuslA1mB is a two-parameter solution o
~8.1!.

Conversely, if there is a two-parameter solutionD(l,m) of ~8.1!, then there are linearly
independent integralsE andF with A5D(1,0) andB5D(0,1). Q.E.D.

These two lemmas make it simple to test a given two-dimensional force for the existen
a qLN formulation, and to show integrability if a two-parameter family of solutions forA exists.

Example 8.3 (gH-H system):The generalized He´non–Heiles~gH-H! system9 is defined by the
potential

V~q1 ,q2!5c1q1q2
22

c2q1
3

3
1

c0

2q2
2 , c1 ,c2Þ0.

It is known to be integrable in three cases: the Korteweg–de Vries~KdV! case 6c11c250, the
Sawada–Kotera~S-K! casec11c250, and the Kaup–Kupershmidt~K-K ! case 16c11c250. In
the KdV case, and also in the S-K case, ifc050, the second integral of motion is quadratic
velocities, in the other cases it is quartic. The system appears naturally when integrati

equation 05( 1
4]

312c1u]1c1ux)(
1
4uxx2

1
4c2u2), which for the above cases corresponds to

stationary flow of the fifth-order KdV, S-K, and K-K soliton equations. This observa
explained10 the remarkable connection of the integrable cases of the gH-H system with s
hierarchies.
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We shall apply our criterion for existence of a qLN formulation to two Newton represe
tions of the gH-H system; the original system inq variables

q̈152
]V

]q1
52c1q2

21c2q1
2,

~8.2!

q̈252
]V

]q2
522c1q1q21

c0

q2
3 ,

and another system inr variables

r̈ 15r 21~c11c2!r 1
2,

~8.3!

r̈ 25c3210c1r 1r 2210c1S c11
c2

3 D r 1
3,

which is equivalent11 to theq system under the mapr 15q1 , r 252c1(q1
21q2

2), c524c1@ 1
2(q̇1

2

1q̇2
2)1V(q1 ,q2)#. The r system does not have any natural Lagrangian or Hamiltonian form

tion and its integrability has previously been studied only through its equivalence with the or
gH-H system. We will show here a more direct approach based on the qLN theory.

Beginning with theq system, we insert the right-hand sideM from ~8.2! into ~8.1!, identifying
(q1 ,q2) with ~r,w! as usual. Since the powersr iwj are linearly independent, the coefficients
different powers must be individually zero. This gives, after some simplification, thata5b50,
a5g arbitrary, (6c11c2)c50, (c11c2)b50 andc0b50. This means that we always have
solutionA5tI ~of course, corresponding to the energy integral, since the system has a pote!.
Moreover, in two cases there exists a two-parameter solution; when 6c11c250,

A5tF1 0

0 1G1sF 0 2q2

2q2 2q1
G ,

and, whenc11c25c050,

A5tF1 0

0 1G1sF0 1

1 0G .
So in this way we have recovered the KdV and S-K (c050) cases, while the K-K and S-K (c0

Þ0) cases, with a quartic extra integral, fall outside of the qLN theory.
Performing the same procedure for ther system ~8.3!, we find that a50, 4c1g1b50,

(31c11c2)c5(3c1
21c1c2)c50, 2a23c3c50, and (6c11c2)b50. Since we have excluded th

trivial casec150, it follows thatc5a50, so that the solution is

A5tF22r 2 r 1

r 1 1/2c1
G

except for the KdV case 6c11c250 which admits a two-parameter solution

A5tF 22r 2 r 1

r 1
1

c1

G1sF0 1

1 0G .
This agrees with the known fact11 that for ther system the second integral is quartic in velociti
in the S-K and K-K cases and thus cannot be found by this method.
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Suppose, however, that we had found the second integral in these cases by som
method. Then we would still have use for the qLN theory in proving the system’s integrab
since ther parametrization admits the nonstandard Hamiltonian formulation~6.2! with l51 and
c3 playing the role of the fifth variabled. ~This coincides with the Hamiltonian formulation tha
was found in Ref. 11 by transferring the standard Hamiltonian formulation from theq parametri-
zation, except for naming the momenta in reverse order; herepi5 ṙ i , while in that papers1

5 ṙ 2 , s25 ṙ 1 .)
For example, in the S-K case (c152c25 1

2) we have

F ṙ 1

ṙ 2

ṗ1

ṗ2

ċ3

G5F 0 0 21/2 2r 1/2 p1

0 2r 1/2 r 2 p2

* 0 2p1/2 r 2

* * 0 c325r 1r 22~5/3!r 1
3

* * * * 0

G¹Mc3,

with the commuting integrals of motionE522r 2p1
212r 1p1p21p2

214r 1r 2
21 2

3r 1
3(r 1

215r 2)
1c3(2r 1

222r 2), which is a Casimir, the Hamiltonianc3 , and F5 3
2p1

426r 1r 2p1
21(3r 1

2

2r 2)p1p21r 1p2
21 7

2r 1
2r 2

21 10
3 r 1

4r 21 5
6r 1

61 1
3r 2

31(22r 1r 22r 1
31 3

2p1
2)c3 , which is quartic in mo-

menta.
In order to give an impression of the wealth of different types of nonpotential Newton fo

belonging to our theory, we will now examine solutions of the fundamental equation~4.5! for
some specified pairs of matricesA and B. Any such solution corresponds to an integrable qL
system, and once one solution has been found, a whole family of solutions can be cons
using the recursion theorem 4.3.

Example 8.4 (One-dimensional complex motion):If we takeA andB as

A5F1 0

0 21G , B5F0 1

1 0G ,
then the fundamental equation reduces to the Laplace equationKrr 1Kww50. Given a solution
K(r ,w), i.e., a harmonic function, we havek5K det(A)52K, sok is also harmonic. We find the
correspondingl from the relation

¹ l 5BA21¹k5F0 21

1 0 G¹k,

which is nothing but the Cauchy–Riemann equations fork andl, so l is the harmonic conjugate o
k. The corresponding qLN systemr̈ 52kr /2, ẅ5kw/2 can be integrated by introducing the com
plex variablez5r 1 iw and the complex integral of motionE5E1 iF 5( ṙ 22ẇ21k)1 i (2ṙ ẇ
1 l )5( ṙ 1 iẇ)21(k1 i l )5 ż21 f (z), wheref (z)5k(z)1 i l (z) is analytic. We can now determin
z, and thusr andw, from ż56AE2 f (z) by one complex quadrature.

Repeated application of the recursion formula~4.10! yields in this case the standard cycle
conjugate harmonic pairs (k,l )→( l ,2k)→(2k,2 l )→(2 l ,k)→(k,l ).

Example 8.5 (Fundamental equation separable in polar coordinates):Let

A5F22w r

r 0G , B5F 0 w

w 22r G .
Then the fundamental equation becomes 052(r 2Krr 12rwKrw1w2Kww)19(rK r1wKw)16K,
which in polar coordinates (r 5R cosf, w5R sinf) transforms into 052R2KRR19RKR16K.
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The general solution of this equation isK(R,f)5 f 0(f)R221g0(f)R23/2, for some arbitrary
functions f 0 and g0 . Changing back tor and w, we find that the general solution of the fund
mental equation in this case is

K~r ,w!5 f 0S arctan
w

r D r 22

11~w/r !2 1g0S arctan
w

r D r 23

„11~w/r !2
…

3/25 f S w

r D r 221gS w

r D r 23,

wheref andg are arbitrary functions.
Finally, let us conclude with an example of a three-dimensional qLN system. A det

treatment of higher-dimensional qLN systems is presented in a separate article.3

Example 8.6:The Newton system

r̈ 15210r 1
214r 2 ,

r̈ 25216r 1r 2110r 1
314r 3 ,

r̈ 35220r 1r 328r 2
2130r 1

2r 2215r 1
41d

was found in Ref. 12 as a parametrization of the seventh-order stationary KdV flow. It has
integrals of motion

E15 ṙ 1ṙ 31
ṙ 2

2

2
110r 1

2r 324r 2r 318r 1r 2
2210r 1

3r 213r 1
52dr1 ,

E25r 3ṙ 1
22r 1ṙ 2

21r 2ṙ 1ṙ 22 ṙ 2ṙ 32r 1ṙ 1ṙ 314r 1
2r 2

215r 1
4r 22

5

2
r 1

6

24r 2
312r 3

2212r 1r 2r 31
dr1

2

2
1dr2 ,

E35
1

8
„r 2

2ṙ 1
21r 1

2ṙ 2
21 ṙ 3

22~2r 1r 214r 3! ṙ 1ṙ 212r 1ṙ 2ṙ 312r 2ṙ 1ṙ 3…1r 1r 2
323r 1

3r 2
2

1
5

4
r 1

5r 212r 1r 3
21

5

4
r 1

4r 32r 1
2r 2r 31r 2

2r 32
d

4
~r 1r 22r 3!,

which all are quadratic in velocities. This means that the system is generated by any of
through the quasi-Lagrangian equations. From the velocity-dependent parts we find

F 0 0 1

0 1 0

1 0 0
G , F 2r 3 r 2 2r 1

r 2 22r 1 21

2r 1 21 0
G , F r 2

2 2r 1r 222r 3 r 2

2r 1r 222r 3 r 1
2 r 1

r 2 r 1 1
G

as examples of 333-matrices satisfying the cyclic conditions~2.3!.

IX. CONCLUSIONS

In this article we have developed a new theory—the theory of quasi-Lagrangian Ne
equations. It was originally inspired by interesting properties of the second stationary flow
Harry Dym hierarchy, which led us to a broad theory which encompasses the classical sepa
theory but goes far beyond the classical results—the classical Bertrand–Darboux theory o
rability for two-dimensional potential forces depends on one essential free parameter whi
theory depends on five parameters.
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The main part of this work has been focused on two-dimensional qLN systems which
two integrals of motionE andF quadratic in velocities. These systems have only a nonstan
Hamiltonian formulation and are completely integrable by embedding into five-dimensional
ville integrable systems. All such qLN systems are characterized by a single PDE called he
fundamental equation. We have shown that there is a one-to-one correspondence betwee
mental equations and linear pencilslA1mB of matricesA andB. These linear pencils have bee
classified in Sec. V. In Sec. VII the class of driven systems has been studied in detail an
types of separation variables~non-confocal conics! have been found. We have also shown that a
given force can be effectively tested for the existence of qLN formulation, which can furth
used for unveiling its complete integrability and for solving the corresponding Newton equa
We have illustrated this by several examples including the generalized He´non-Heiles system~Sec.
VIII !.

There are several natural directions of development of the theory of qLN systems
n-dimensional versions of our main theorems on fundamental equation and on complete in
bility have already been formulated and proved in Ref. 3.

The great wealth of different types of integrable Newton equations contained in the fu
mental equation remains to be studied. Here we have only discussed two special cases: s
systems and driven systems. However, one of the most challenging questions yet to be an
is the existence of separation variables for the fundamental equation in its most general fo
can lead to new and interesting connections with the classical theory of separability o
Hamilton–Jacobi equation and of linear PDEs.
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10A. P. Fordy, ‘‘The Hénon-Heiles system revisited,’’ Physica D52, 204–210~1991!.
11M. Blaszak and S. Rauch-Wojciechowski, ‘‘A generalized He´non-Heiles system and related integrable Newton eq

tions,’’ J. Math. Phys.35, 1693–1709~1994!.
12S. Rauch-Wojciechowski, ‘‘Newton representation for stationary flows of the KdV hierarchy,’’ Phys. Lett. A170, 91–94

~1992!.
                                                                                                                



if the

s, e.g.,
h as in

in the
ic

s of

ced by

the

m:

l
for the
this

ht
ase

mail:

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 12 DECEMBER 1999

                    
Relativistic gas: Moment equations and maximum
wave velocity

Guy Boillata) and Tommaso Ruggerib)

Department of Mathematics and Research Center of Applied Mathematics-(C.I.R.A.M.),
University of Bologna, Via Saragozza 8, 40123 Bologna, Italy

~Received 16 August 1999; accepted for publication 7 September 1999!

For a rarefied relativistic gas we consider theN-moment equations associated with
the relativistic Boltzmann–Chernikov equation and we require the compatibility
with the entropy principle thus obtaining a closed symmetric hyperbolic system.
This interesting form permits one to deduce a lower and an upper bound for the
maximum velocity of a wave propagating in a monoatomic or a degenerate gas of
fermions or bosons and to prove that when this numberN increases this velocity
tends to the speed of light. ©1999 American Institute of Physics.
@S0022-2488~99!02012-5#

I. INTRODUCTION

The thermo-mechanical evolution of a gas must be described in the relativistic context
function g5mc2/kT of the absolute temperatureT is sufficiently small:g!1 ~m, c, andk are,
respectively, the atomic mass, the light velocity, and the Boltzmann constant!. Relativistic fluid
dynamics have possible applications in stellar physics and are appropriate for very hot ga
the white dwarfs, or for some degenerate gas in which the particle mass is very small, suc
the photon gas or in the neutrino gas.

As is well known in the case of rarefied gas we have two possible approaches; one
context of phenomenological theory~continuum models!, the second one using the relativist
kinetic theory. Ordinary relativistic thermodynamics was first developed by Eckart1 and suffers
from the paradox of infinite velocity due to the fact that the partial differential system i
parabolic type. Relativistists have shown a keen interest in the development ofextended
thermodynamics2 that solves the paradox starting from the pioneering paper of Cattaneo.3 The first
approach of relativistic extended thermodynamics was given by Mu¨ller4 and Israel5 and was
presented in a systematic manner by Liu, Mu¨ller, and Ruggeri.6 This hyperbolic theory not only
solves the paradox but also is in perfect agreement with the 14 moment equations dedu
Marle7 from the Chernikov–Boltzmann kinetic equation.8

In Ref. 9 the closure procedure of extended thermodynamics2 was applied to theN-moment
system associated with both the classical and relativistic Boltzmann equation.

In particular it was proved that the compatibility with an entropy principle implies that
~truncated! distribution functionf depends on a single variablex that is a polynomial in the
four-momentum with coefficients~main field! that are solutions of a symmetric hyperbolic syste
the macroscopic field equations for the gas in nonequilibrium.

In wave problems the maximum wave speed plays a particular role~e.g., phase velocity in
high frequencies, light scattering, shock waves, etc., see Ref. 2!. Taking into account the specia
form of the symmetric hyperbolic system it was possible to deduce a lower bound estimate
maximum velocitylmax of a wave propagating in an equilibrium state. In the classical context
velocity increases without limit withN while in the relativistic case it was verified that the lig
speedc is an upper bound.9 In Ref. 10 a lower bound was calculated also in the relativistic c

a!Permanent address: Department of Applied Mathematics, University of Clermont, France; electronic
boillat@riemann.ing.unibo.it

b!Electronic mail: ruggeri@lagrange.ing.unibo.it
63990022-2488/99/40(12)/6399/8/$15.00 © 1999 American Institute of Physics
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for nondegenerate gas and it was proved that when the number of moments increases th
mum velocity does indeed tend toc. A review article on these subjects may be found in the rec
survey of Müller.11

The aim of this paper is to extend this last result to a generic gas including also the inter
cases of degenerate Fermi–Dirac and Bose–Einstein gases.

The paper is organized in the following manner. In Sec. II we introduce the moment equ
associated with the Chernikov–Boltzmann kinetic equation. In Sec. III we consider a finite
ber of moments and we close the system through the procedure of extended thermodynam
is equivalent to the one obtained by themaximum entropy principle. In Sec. IV we deduce for al
kinds of gases a lower and upper bound for the maximum wave speed, proving that wh
number of moments tends to infinity this velocity tends to the light velocity.

II. BOLTZMANN–CHERNIKOV EQUATION AND MOMENTS

In the relativistic kinetic theory of a rarefied gas the phase densityf (xa,pa) (a50,1,2,3)
satisfies the Boltzmann–Chernikov equation8,12

pa]a f 5Q, ]a5]/]xa, ~1!

in which xa andpa are the space–time coordinates and the four-momentum of an atom, re
tively. We havepapa5(p0)22p25m2c2, p25(p1)21(p2)21(p3)2. The right-hand side of~1!
is due to collision between the atoms.

Upon multiplication bypA(A50,1,2,...) and integration the Boltzmann–Chernikov equat
provides an infinite system of balance equations

]aFaA5gA, A50,1,2,..., ~2!

for the momentsFaA and productionsgA given by

FaA~xb!5E papAf dP, gA~xb!5E QpAf dP, ~3!

whereA is a multi-index

pA5 H1
pa1pa2

¯paA
, FaA5 HFa

Faa1
¯

aA
, gA5H 0 for A50

ga1¯aA for A>1

and 0<a1<a2<...<aA<3.
The first five equations of~2! are the conservation laws of the number of particles a

energy–momentum. According by the first five productions vanish:gA50 for A50,1. The vol-
ume element of momentum space is given bydP5d3p/p05dp1dp2dp3/p0 and the integrals—
supposed convergent—are taken over the whole ofp space.

On the other hand if we consider as momentum

ha5kE pa$~s2211 ln f ! f 1s~12s f !ln~12s f !%dP, ~4!

wheres50,11,21 corresponds, respectively, to the nondegenerate gas, the Fermi gas, a
Bose gas, we obtain from~1! the supplementary inequality~H-Theorem!

]aha5S<0. ~5!

The previous expression represents the balance of entropy when we identify2ha and2S with the
entropy four-vector and the entropy production, respectively.
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III. FINITE SYSTEM OF MOMENT EQUATIONS AND CLOSURE

We consider now a finite number of moment equations~2! with the tensorial indexA
50,...,n. In this case the main problem is the so-calledclosure problem. In fact the number of
moments is larger than the number of moment equations and therefore constitutive equati
needed to determine the system. In Ref. 9 we proposed the closure procedure of ex
thermodynamics2 requiring the compatibility with an entropy principle that plays an important r
in selecting the physical class of constitutive equation in thermomechanics. This consists
suming that any differentiable solution of the finite moment equations~2! with A50,...,n is also a
solution of the supplementary entropy law~5! which appears now as a constraint.

We recall that for a general quasilinear system of balance laws of type~2! the compatibility
with the entropy law~5! implies the existence of a privileged field~main field! uA8 (xa) and a
four-vectorh8a(uA8 ) ~generators! such that13,14

FaA5
]h8a

]uA8
, ha5 (

A50

n

uA8
]h8a

]uA8
2h8a, S5 (

A50

n

uA8gA, A50,1,...,n. ~6!

In the present case from (3)1 and (6)1 we obtain

dh8a5 (
A50

n

FaAduA85 (
A50

n E papA duA8 f dP. ~7!

It follows that f must be a function of the single variable

x5 (
A50

n

uA8pA, ~8!

while

h8a5E F~x!pa dP,
dF~x!

dx
5 f ~x!. ~9!

From (6)2 we obtain the admissible entropy four-vector

ha5E ~x f ~x!2F~x!!pa dP. ~10!

The remaining condition is the so-called residual inequality that requires that the admi
productionsgA(uB8 ) are such that

S5 (
A50

n

uA8gA~uB8 !<0. ~11!

Therefore we have verified the following:The compatibility of the truncated moment system w
the entropy principle requires that the truncated distribution function f depend on a single
ablex given by (8), while the entropy four-vector and the productions satisfy (10) and the res
inequality (11).

In Ref. 9 ~see also Ref. 2, p. 218 sqq! it was shown that this closure procedure is equival
to the one obtained by the so-calledmaximum entropy principleby which the truncated distribu
tion function is chosen such that the entropy density thought of as a generic functional of :h0

5*C( f )d3p is a maximum under the constraint that the moments* f pAd3p are assigned func
tions F0A. In fact it is easy to verify thatC( f ) must be equal tox f 2F and the Lagrange
multipliers in the maximization procedure are nothing but the main field variablesuA8 . The first
author that applied the idea of maximization of entropy in nonequilibrium thermodynamics
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Dreyer,15 who started from the observation of Kogan16 that the Grad’s 13-moment density max
mizes the entropy. The procedure of maximizing entropy was introduced in information th
and physics by Jaynes.17,18

By ~6! the finite system of moments~2! becomes

(
B50

n

HaAB~uC8 !]auB85gA~uC8 !, A50,1,...,n ~12!

with the symmetric matrices

HaAB5E d f

dx
papApB dP, ~13!

andHaABja is positive definite for any timelike vector (jaja.0) if d f /dx.0. This implies that
the system of truncated moments~12! is @in the main field variablesuA8 (xa)# a symmetric hyper-
bolic system~in the sense of Friedrichs! for which the Cauchy problem is well posed.19

The wave surfacef(xa)50 is solution of the characteristic equation

det~HaAB]af!50. ~14!

As a consequence, the four-gradient]af cannot be timelike and therefore the velocities of wa
propagation cannot exceed the velocity of light, i.e.,lmax<c. When the number of equation
increases it has already been shown that the maximum wave velocity cannot decrease20 The
question is now: does this velocity tends toc whenn tends to infinity? This is the subject of th
next paragraph.

We observe that since all of the indices in the main fieldua1¯ak
8 may assume the values 0,

2, 3 and therefore,—following Refs. 9 and 10—the componentsua1¯ak
8 may be mapped into the

variablesupqrs8 with p1q1r 1s5k(k51,...,n), wherep,q,r,sare the numbers of indices amon
a1 ...ak which are equal to 0, 1, 2 or 3 respectively. Becausep0 is equal toAm2c21p2, the first
index p can take only two values: 0 and 1. Now, since the number of elements with the su
three integersq1r 1s5k with k50,...,m is (m11)(m12)(m13)/6, the numberN(n) of inde-
pendent components ofupqrs8 -‘‘and equations,’’-up to ordern is N(n)5(n11)(n12)(n13)/6
1n(n11)(n12)/6. Therefore the maximum tensorial indexn that appears in the moment syste
is related to the numberN of independent moments and field equations through10

N~n!5 1
6~n11!~n12!~2n13!, N~n11!5N~n!1~n12!2.

Assuming that~10! is of the form~4! follows

k$ f ~s2211 ln f !1s~12s f !ln~12s f !%5x f 2F ~15!

from which ~by differentiation!

f ~x!5
1

e2x/k1s
. ~16!

Summarizing we have:The admissible truncated distribution function f(x) such that the finite
moment system (2) is compatible with the entropy principle (5) with entropy four-vector giv
(4) is of the form (16) withx given by (8) and uA8 solution of the symmetric hyperbolic system (1.
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IV. PROPAGATION IN AN EQUILIBRIUM STATE AND MAXIMUM WAVE VELOCITY

A thermodynamic equilibrium state is defined as the state for which the productionsgA vanish
and the entropy production2S reaches its minimum value, i.e., zero. The main field variables
privileged also in this context because it is possible to prove that all are zero2,21 with exception of
the first five:14

u85
G

T
, ua852

ua

T
, ~17!

whereG andua are, respectively, the chemical potential and the four velocity. Therefore for
truncation indexn the x given by ~8! reduces in the equilibrium state tox/k5(G2uapa)/(kT)
and in the rest frame in whichui50, u05c, we have

x

k
52a2gA11

p2

m2c2, ~18!

with a52G/KT, g5mc2/kT. In this case the distribution function~16! becomes the well-known
Jüttner equilibrium distribution.22 We recall that for a fermi gasa can assume all real values whi
for bosonsa1g.0.

According to~14! the wave velocityl in the direction of the normaln to the wave front is an
eigenvalue of

det~HiABni2lH0AB!50. ~19!

The matrix in ~19! is negative semidefinite for the maximum eigenvalue, that is if we t
n[(1,0,0) the components of the matrix

H1AB2lmaxH
0AB5E d f

dx
pApB~p12lp0!dP,

satisfy the inequalitiesaii aj j 2ai j
2 >0 so that choosingpA5(p1)n, pB5(p1)n21, we have

lmax
2

c2 E d f

dx
~p1!2nd3pE d f

dx
~p1!2~n21!d3p>S E d f

dx
~p1!2n

d3p

p0 D 2

~20!

since the integrals of odd functions vanish.
Introducing as in Ref. 10 the spherical coordinatesp15mcr sinu cosw, p25mcr sinu sinw,

p35mcr cosu the previous inequality with~16! and~18! yields after some straightforward calcu
lations

lmax
2

c2 >
2n21

2n11

Jn11
2

I nI n11
, ~21!

where

I n5E
0

`

f~r !r 2n dr, Jn5E
0

` f~r !r 2n

A11r 2
dr,

f~r !5
ec~r !

~11sec~r !!2 , c~r !5
x

k
52a2gA11r 2.

Therefore we have:For any type of gas including the degenerate gas of fermions and boson
largest wave velocity satisfies the lower and upper bounds:
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2n21

2n11

Jn11
2

I nI n11
<

lmax
2

c2 <1. ~22!

Now our aim is to prove that whenn→`, lmax→c. Integrating by parts

I n5E
0

`

f~r !
d~r 2n11!

2n11
5

g

2n11 E0

`

f~r !
12sec

11sec

r 2n12

A11r 2
dr,

and taking into account that

12sec

11sec <C, C5H 1 for s50,1

~11e2~a1g!!/~12e2~a1g!! for s521,

it follows

I n<
gC

2n11 E0

` fr 2n12

A11r 2
dr ⇒ Jn11>

2n11

gC
I n ~23!

and ~21! becomes

lmax
2

c2 >
2n21

2n11 S 2n11

gC D 2 I n

I n11
. ~24!

On the other hand for any constantm,

0<E
0

`

fS r nm1
r n12

A11r 2D 2

dr<m2I n12mJn111I n11 ,

which shows that

Jn11
2 <I nI n11

and by~23!

S 2n11

gC D 2 I n

I n11
<1. ~25!

Let Ms be the maximum off(r ):

M05e2~a1g!, M15
1

4
, M 215

e2~a1g!

~12e2~a1g!!2

and consider now the series of functions

un~r !5
1

~n! !2 S rgC

2 D 2n

f~r !<
Ms

~n! !2 S RgC

2 D 2n

,

which converges uniformly for all finite values ofr<R to the functionf(r )I 0(gCr) whereI 0(x)
is the Bessel function.

The integral

Un~R!5E
0

R

un dr5
1

~n! !2 S gC

2 D 2n

In~R!, In~R!5E
0

R

f~r !r 2ndr, I n5In~`!
                                                                                                                



ays
close

tends

. 23 in

of

e

v.

d.

.

enri

ech.

ech.

ical

ivistic

erbolic

ons,’’

6405J. Math. Phys., Vol. 40, No. 12, December 1999 Relativistic gas: Moment equations and . . .

                    
exists and this series is convergent. We can chooseR andn large enough so that the ratio

Un~R!

Un11~R!
5S 2n12

2n11D 2S 2n11

gC D 2 In~R!

In11~R!

is as close as we like to the left member of~25!. Because of the convergence of the series it alw
exists ann as large as we wish such that this ratio is larger than or equal to 1. Therefore it is
to 1 and so, by~24!, is lmax/c which, on the other hand, is a nondecreasing function ofn20 and
cannot exceed 1 and then must tend to 1 asn tends to infinity.

In conclusionwhen the number of moments tends to infinity the maximum wave velocity
for all kind of gases to the light velocity.

These results are in perfect agreement with a recent numerical simulation given in Ref
which the maximum velocity was evaluated for increasing values of the truncation indexn for
different values ofg anda.
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Integral representations of thermodynamic 1PI Green’s
functions in the world-line formalism

Haru-Tada Satoa)

Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16,
D-69120 Heidelberg, Germany

~Received 5 March 1999; accepted for publication 18 March 1999!

The issue discussed is a thermodynamic version of the Bern–Kosower master
amplitude formula, which contains all necessary one-loop Feynman diagrams. It is
demonstrated how the master amplitude at finite values of temperature and chemi-
cal potential can be formulated within the framework of the world-line formalism.
In particular we present an elegant method of how to introduce a chemical potential
for a loop in the master formula. Various useful integral formulas for the master
amplitude are then obtained. The nonanalytic property of the master formula is also
derived in the zero temperature limit with the value of chemical potential kept
finite. © 1999 American Institute of Physics.@S0022-2488~99!00812-9#

I. INTRODUCTION

Based on the field theory limit of string theory~with infinite string tension limit!, a very
elegant method was invented several years ago: the Bern–Kosower~BK! rules to obtain one-loop
gluon scattering amplitudes in a compact form1 ~see also Ref. 2!. For example, five gluon scat
terings are efficiently calculated by using these rules,3 and various field theory limits have bee
studied along the line of the BK formalism: perturbative gravity,4 super Yang–Mills theory,5

bosonic string theory approach,6 and multi-loop generalizations.7–9

The most important and conspicuous point in the BK formalism is that all Feynman diag
are included in a single master integrand. In this formalism, we hence do not compute th
integrals and the Dirac traces of respective Feynman diagrams. These facts can also be a
by another approach, called the world-line formalism, which reformulates Feynman~field theory!
amplitudes similar to string theory amplitudes; i.e., the field theory amplitudes can genera
obtained as a path integral average of vertex operators.10–17

In fact, there have been established many examples:f3 theory,10,11QED,12,13axial vector and
pseudo-scalar couplings,14,15 Yang–Mills theory16,17 ~see also Refs. 18 and 19!, and more refer-
ences can be found in Ref. 20. Both world-line and string theory methods help each other, a
useful to get an insight for solving mutually related problems each in its own way; for exam
this viewpoint has been very useful for specifying pinching limits and corners of string mod
the multi-loop analysis.8 It is very interesting that these two methods, which differ entirely fr
the conventional Feynman diagram technique, improve the computational efficiency for obt
Feynman amplitudes.

However, compared to these developments, their thermodynamic versions have no
studied very much21–25 from the viewpoint of general formulation for constructing a mas
amplitude formula. In particular, there has been no general and convenient method of h
introduce a chemical potential for a loop in the world-line formalism. Before stepping in
unexplored calculation by using the formalism, it is important to establish a definite and univ
foundation in the first place. In this paper, therefore, as a basic step on the thermody
generalization of world-line field theory, we present a universal and fundamental prescript
one-loopN-point amplitudes at finite values of temperature and chemical potential without he

a!Electronic mail: sato@thphys.uni-heidelberg.de
64070022-2488/99/40(12)/6407/23/$15.00 © 1999 American Institute of Physics
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any standard calculation. We shall study the amplitude of a particular form~the master formula!,
where the loop integration and the Matsubara summation area priori finished and Feynman’s
parameter integrals are only left—laying emphasis on the point that we never mean the Fe
integrals as a single Feynman diagram, but as a sum ofall diagrams. It is certainly nontrivial to
introduce a chemical potential~as well as a temperature! with keeping this advantageous poi
pertaining to the master formula intact.

We address the following points in the matter of the thermodynamic generalization~at finite
values of the temperatureb21 and the chemical potentialm for a loop!. First, we present a
formulation of the thermodynamic amplitudes along the same line as the nonthermody
world-line formalism. In particular, the way of introducing the chemical potential is a nontr
problem. Since we do not introduce any idea of the continuous or discrete momentum integ
summation, we have to find an alternative to the shift of internal discrete momenta:

vn→vn1 im. ~1.1!

This situation may be understood in the following way: In the standard method, the in
temperatureb is introduced by summing up all topological differentS1 paths along the zeroth
component~imaginary time! direction. On the other hand, in the world-line formalism, this p
cedure modifies the path integral of a corresponding periodic world-line fieldx0(s), 0<s<1,
into a summation of the path integrals withx0(s) shifted by

x0~s!→x0~s!1nbs. ~1.2!

Although the radiusb of S1 and the world-line circumference~the unity! have nothing to do with
each other, the shift~1.2! involves the world-line coordinates as well. In this sense, the way o
prescribing the temperature and hence the chemical potential becomes different from the s
Matsubara formalism. To introduce the chemical potential, one may of course transform a w
line amplitude formula to the Feynman–Matsubara form, and then resume the world-line
after some efforts to apply the shift~1.1!. However, such a calculation does not utilize the me
of the master formula at all, and there should be a more direct and transparent method to in
m within the world-line formalism~without tracing back and referring any internal loop calcu
tion!.

To this end, we propose a new rule, instead of~1.1!, to introduce the internal chemica
potential. It is simply done by applying the new shift procedure

v̄→v̄1 im, ~1.3!

wherev̄ is an average of the zeroth components of external continuous/discrete momentakj
0, j

51,2,...N, with the summation weightss j ~the local coordinates of the external legs on the clo
loop!. The prescription~1.3! is neither conceivable nor explicable from the standard method~1.1!,
becausevn is the internal momentum whilev̄ concerns the external one. The parameterv̄ will
easily be identified in due course, if we adopt a statistical parameter to discern between bos
fermion loops when summing up theS1 paths: This parameter dependence should vanish a
b→` limit as expected in the nonthermodynamic world-line formalism.

Another nontriviality in this formalism is how to derive a nonanalytic property atb5` with
finite m from the master amplitude formula. Since the nonanalytic property can be derived
theb5` limits of pure thermodynamic parts, we first have to separate a pure thermodynami
G̃N

bm from a full thermodynamic amplitudeGN
bm . If the master integrand ofGN

bm is composed only
of the JacobiU-function, the story is simple as expected. However, in a more complicated
like a photon scattering, the master integrand is not such a simple form but a product of ab- and
m-dependent operatorVbm and the JacobiU-function partKbm . The pure thermodynamic parts o
these quantities,Ṽbm andK̃bm , can easily be separated from their original full quantities, but
show that the pure thermodynamic partG̃N

bm is nontrivially given byVbm3K̃bm against naive
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expectation.~The simple arithmetical splittings indicate one more contribution, however, we

show that it vanishes.! Separating theG̃N
bm in this way, we then analyze the nonanalytic prope

of the master amplitude at zero temperature.
This paper is organized as follows. In Sec. II, we explain our notations, definitions, an

general structure of master amplitudes at zero temperature. In Sec. III, we derive a set of g
formulas for a master amplitude at finiteb andm parts by parts: path integral normalization a
~scalar! kinematical factor in Sec. III A, and reduced kinematical factor in Sec. III b. In Sec. I
we show a general master formula for the purely thermodynamic part of the full amplitudeGN

bm ,

and also prove the above statement, i.e.,G̃N
bm;Vbm3K̃bm . The replacement rule~1.3! is verified

in Appendices A–C from the viewpoints of both Feynman rule’s calculation and the world
formalism. In Secs. IV and V, for arbitraryN, we derive various integral formulas by analyzin
two kinds ofU-function representations, and check their consistency. Several explicit resul
also presented up toN55. In Sec. VI, we derive the nonanalytic property of the master form
in the zero temperature limit with the chemical potential kept finite. Section VII contains sum
and conclusions.

II. NOTATIONS AND DEFINITIONS

First, we summarize the general structure of the one-loopN-point master amplitudes in th
nonthermodynamic world-line formalism.~We assume that a particle change does not occur w
circulating along the loop.! We refer the reader to Refs. 12, 16, and 20 for more details.
master amplitude of general form~for N external momentakj

m , j 51,2,...,N, m50,1,...,D21! is
written in terms of the closed path integrals of bosonicxm(s) and fermioniccm(s) world-line
fields as follows:

GN5
1

2 E
0

` ds

s R Dxm~s!Dcm~s!expF2E
0

1

L~s! dsG)
j 51

N

Vj ~2.1!

with the world-line Lagrangian and the vertex operators

L~s!5
1

4s S ]xm~s!

]s D 2

1
1

2
cm~s!

]

]s
cm~s!1sm2, ~2.2!

Vj5sE
0

1

ds v j@x~s!,c~s!#eik j •x~s!, j 51,2,...,N, ~2.3!

wherekj•x stands for the Lorentz contraction, and we often omit the Lorentz indices as lo
obvious. The zero mode integral of the bosonic path integral should be excluded.18 The explicit
form of v j depends on what particle is inserted in the loop as an external leg; for exampv j

51 for f3 theory, and is in Eq.~C2! for the photon vertex case. Note that our world-lin
coordinates is dimensionless, and is related to the standard notation20 by scalingt5ss. For the
path integral average of a general quantityF,

^F~x,c!&[N21 R DxDcexpF2E
0

1

L~s! dsGF~x,c!, ~2.4!

one may use the Wick contractions with~the Euclidean metric is given bygmn52dmn!

^xm~s1!xn~s2!&52sgmnG~s1 ,s2!, ~2.5!

^cm~s1!cn~s2!&5 1
2g

mn sign~s12s2!, ~2.6!

whereN is the path integral normalization
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N5 R DxDcexpF2E
0

1

L~s! dsG5e2sm2
~4ps!2D/2, ~2.7!

andG is the bosonic world-line correlator

G~s i ,s j !5us i2s j u2~s i2s j !
2[Gi j . ~2.8!

Performing the path integrals~or Wick contractions!, we arrive at the following master am
plitude formula:

GN5cE
0

1

ds1E
0

1

ds2¯E
0

1

dsNE
0

`

ds sN21V3K, ~2.9!

where the constantc depends on the particle circulating in a loop.~It is also related to an
over-counting factor ofs-integration regions.26! For example,

c5H 1
2 for a ~neutral! scalar loop

2 1
2 tr @1# for a fermion loop

, ~2.10!

where the tr@1# expresses the trace of a unit matrix in theD-dimensional gamma matrix space. F
a gluon loop,c is no longer a simple constant.16,17 The quantityK, which we shall call the
kinematical factor~multiplied by the normalizationN !, is defined by the world-line path integra
average ofN scalar vertex operators10,16

K[NK )
j 51

N

eik jx~s j !L 5 R DxmDcmS )
j 51

N

eik jx~s j !D expF2E
0

1

L~s! dsG . ~2.11!

The V stands for an effective vertex function, which is obtained by

V5
^) j 51

N v j exp@ ik j•x~s j !#&

^) j 51
N exp@ ik j•x~s j !#&

. ~2.12!

We shall refer to this quantity as thevertex structure function/operator, which corresponds to the
quantities called thereduced kinematical factor1 or the generating kinematical factor.16 At this
stage, theV is still a function ofs and s j ( j 51,2,...,N), however, it will be generalized to a
operator in the thermodynamic case.

If the vertex structure function can be expanded in the form

V5(
l eZ

als
l 2N exp@2sbl #, ~2.13!

where the coefficientsal and bl may not depend ons, but on s j , and the amplitude~2.9! is
obtained as the sum of the ‘‘partial’’ amplitudes

Al 5
def.E

0

`

ds sl 21K5E
0

`

ds sl 21NK )
j 51

N

eik j •x~s j !L , ~2.14!

with shifting m2 to m21bl .
In the case of finiteb, we assume the zeroth components of the external momentakj

m to be the
bosonic Matsubara frequencies

kj
05vkj

5
2p

b
nj , ~2.15!
                                                                                                                



l states
e to

As the
efs.

s

t
e

6411J. Math. Phys., Vol. 40, No. 12, December 1999 Integral representations of thermodynamic . . .

                    
as well as

kj•x[vkj
x02k j•x. ~2.16!

In this paper, we shall not consider the fermionic external states, since the bosonic externa
are only well formulated in the world-line formalism—however, one may formally generaliz
the fermionic states. We use the notations for the counterparts of Eqs.~2.9!, ~2.11!, ~2.7!, ~2.12!,
and ~2.14!:

GN
b , Kb , Nb , Vb , Al

b . ~2.17!

In the case of finitem andb, we denote

GN
bm , Kbm , Nbm , Vbm , Al

bm . ~2.18!

We explain how to define these quantities in the next section.

III. THE THERMODYNAMIC GENERALIZATION

A. The kinematical factor Kbm and the normalization Nbm

We take a two-step procedure to introduce the temperature and the chemical potential.
first step, we consider them50 case. Basically we follow the same method as discussed in R
22–25, and we start with the following slightly general definition:

GN
b 5

def.

(
n52`

`

e2np i /e GNux0~s!→x0~s!1nbs , ~3.1!

wheree is a constant related to the statistics of the loop. For example, thee52 case correspond
to a fermion loop, and thee5` case to a bosonic loop. Without specifying the value ofe, we deal
with both cases simultaneously~formally fractional statistics as well!. The GN on the right-hand
side~rhs! of the above formula denotes the path integral representation~2.1!, and the replacemen
~1.2! should be applied to thex0 fields for all variabless j . In a nutshell, we have only to replac
the bosonic path integral in the following way:

R Dxm→ R
b
Dxm[ (

n52`

`

e2np i /e R
x0~s!→x0~s!1nbs

Dxm. ~3.2!

For simplicity, let us consider theV51 case, or the ‘‘partial’’ amplitudeAN @the l 5N term in
~2.13!#. In this case, we have only to generalize the kinematical factorK to the finite temperature
versionKb ;

Kb 5
def.

(
n52`

`

e2np i /eNK )
j 51

N

eik j •x~s j !L U
x0~s!→x0~s!1nbs

~3.3!

5~4ps!2D/2e2sM2
U3S 1

e
1

bv̄

2p
,i

b2

4psD , ~3.4!

where the definition ofU3(v,t) is

U3~v,r !5 (
n52`

`

en2tp ie2nvp i , ~3.5!

and we have introduced the following twos-independent quantities:
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M25m22 (
i , j ,51

N

ki•kjGi j , ~3.6!

v̄5(
j 51

N

s jvkj
. ~3.7!

Here the two-point correlator~world-line Green’s function! Gi j , given by Eq.~2.8!, looks differ-
ent from the one used in Ref. 22; however, the value ofM2 does not differ under the condition o
momentum conservation regarding the external legs. The sign ofM2 seems not always to b
positive in spite that 0<Gi j <

1
2. We then assumeM2>0 in the following discussion, choosing th

off-shell symmetric point~satisfying the momentum conservation constraint!

kikj5d i j k
21~d i j 21!

1

N21
k2. ~3.8!

For theVÞ1 case, we have to apply Eq.~3.2! to theV andK parts at the same time; however, th
things are rather straightforward. We refer the reader to Appendix C for an example.

The second step is to introduce the chemical potential for the internal loop. One may
with applying the Jacobi transformation to the quantityKb ; i.e., rewriting Eq.~3.4! in such a way
to revive the discrete summation over internal Matsubara frequenciesvn , one may perform the
replacement~1.1! ~see Ref. 24 for more details!. However, this is a roundabout way, since one h
to make the Matsubara summation reappear in spite of dealing with the world-line formul
where the integration and summation of the loop are already performed. Instead, we pro
much simpler and direct alternative method to steer clear of this problem. It can be promptly
by the replacement~1.3!,

v̄→V[v̄1 im. ~3.9!

This shift looks similar to~1.1!; however, we stress that our shifting parameter is not the inte
frequency but an average of external ones@cf. Eq. ~3.7!#. In this sense, this prescription is non
trivial. For a rigorous reader, we put a justification of this replacement in Appendix A~the case of
V51!, and also refer to Appendix B for a more complicated case~the VÞ1 case!. After all, the
general path integral average for finitem can be obtained in a couple of simple replacements

R Dxm→ R
b
Dxm→ R

bm
Dxm[ R

b
Dxmuv̄→V . ~3.10!

Note that the fermion path integral does not change by any means.
Let us write down the thermodynamic kinematical factorKbm and the normalization facto

Nbm . Applying the above replacement to Eq.~3.4!, we thereby yield the desired thermodynam
kinematical factor for finiteb andm:

Kbm 5
def.

Eq. ~3.4!uv̄→V ~3.11!

5~4ps!2D/2e2sM2
U3S i

bm̄

2p
,i

b2

4psD , ~3.12!

where we have introduced the shorthand notationm̄ by reason of analogy to the vacuum amplitu
of a scalar loop

m̄[m2 i v̄2
2p i

eb
52 i S V1

2p

eb D . ~3.13!
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We refer to the representation~3.12! as thefirst representation. This representation withm̄50
~m5v̄50, e5`! is studied in Ref. 22. We also obtain another expression~which we shall call the
second representation! through the Jacobi transformation,

Kbm5
1

b
~4ps!~12D !/2e2s~M22m̄2!U3S 2sm̄

b
,i

4ps

b2 D . ~3.14!

Note that for a fermion loop~e52!, the above first and the secondU3 representations become th
U4 andU2 representations, respectively.

We can extract the thermodynamic quantityNbm corresponding to the path integral norma
ization ~2.7! from the kinematical factorKbm . If we rewrite Eq.~3.12! as

Kbm5e2sm2
~4ps!2D/2U3S i

bm̄

2p
,i

b2

4psD expFs(
i , j

N

ki•kjGi j G
5

1

b
~4ps!~12D !/2e2s~m22m̄2!U3S 2sm̄

b
,
4p is

b2 D K )
j 51

N

eik j •x~s j !L , ~3.15!

the noncorrelator part can be regarded as an overall normalization to theN-point correlator of zero
temperature type~the zeroth componentskj

0 are formally regarded as continuous variables he!.
Paraphrasing this fact in analogy to Eq.~2.11!,

Kbm[NbmK )
j 51

N

eik j •x~s j !L 5 R
bm

DxDcexpF2E
0

1

L~s!ds G)
j 51

N

eik j •x~s j !, ~3.16!

the thermodynamic version of the path integral normalization~for finite b andm! is found to be

Nbm5
1

b
~4ps!~12D !/2e2s~m22m̄2!U3S 2sm̄

b
,
4p is

b2 D . ~3.17!

This is exactly the same normalization as assumed in Ref. 21~taking a mass term inclusion int
account!.

B. The vertex structure operator Vbm

In this subsection, we discuss the part of vertex structure~VÞ1!. Because of the diversities o
explicit forms ofV, there is no concrete formula such as Eq.~3.12!. However, we can derive a
general property of the pure thermodynamic partṼbm . To explain this, we classifyV into two
categories by the criterion whether or notV contains local world-line variabless j .

First, let us start with the first category, thes-independentV case. Apparently,V51 is the
case. A nontrivial example of this category is thep0→2g decay~e52, D54! without back-
ground field:24

cV52tr@1#mle2emnrse1
me2

nk1
rk2

s , ~3.18!

wherel is the pseudo-scalar coupling,m ande the ~space–time! fermion mass and the quantum
electrodynamics~QED! coupling constant. Another nontrivial example is the effective potentia
a fermion loop~e52, N50! in a constant magnetic field inD dimensions.21 In this case,V
depends on the integration variables,

cV52 1
2 tr@1#sBcoth~sB!, ~3.19!

and this is the case of the expansion~2.13!, if we use
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coth~sB!5112(
n51

`

e22nsB. ~3.20!

With the shift M2→M212lB, this case is essentially described by the ‘‘partial’’ amplitudeA1

defined by Eq.~2.14!. Now, at finite values ofb and m, we can, in principle, express an
thermodynamic vertex structure functionVbm as

Vbm5V1Ṽbm , ~3.21!

whereṼbm denotes the purely thermodynamic part. However, in this category, as can be see
the above examples, we simply have

Vbm5V, Ṽbm50 ~for s-independentV), ~3.22!

because theV’s of this category do not contain the local world-line variabless j , strictly speaking
theGi j which are generated by the bosonic field correlation fromv j . Recall that theb dependence
only appears through the shiftx0→x01nbs in the formula~3.1!. The b dependence cannot b
created from the quantity which does not contain anx-field correlation.

Second, let us consider the other category, thes-dependentV case. In this category, we obtai
a nonzero structure functionṼbm . We here consider the photon polarization case by way
example. In this case, theV is given by Eq.~C5! at zero temperature:16

V5e1•e2

1

s
G̈121e1•k2e2•k1~Ġ12!

21e1•e2k1•k22e1•k2e2•k1 , ~3.23!

where dots onG12 means the first and the second derivatives wrt the first argument ofG12. The
thermodynamic generalization can be done by applying the formulas~3.1! and ~3.9!. For ease of
presentation, we put the computational details in Appendix C, and a comparison with the Fe
diagram technique is also in Appendix B. For finiteb, we derive Eq.~C17!:

Vb5V2e0
1e0

2S 1

s

]

]v̄ D 2

2
1

s

]

]v̄
~e0

1e2•k12e0
2e1•k2!Ġ12, ~3.24!

and then, shiftingv̄→V, we acquire the operator part given by Eq.~C19!:

Ṽbm52e0
1e0

2 S 1

s

]

]V D 2

2
1

s

]

]V
~e0

1e2•k12e0
2e1•k2!Ġ12. ~3.25!

Note that the origin of]/]V is the Wick contractions of the bosonic world-line fields furnished
thev j parts of photon vertex operators@see Eqs.~C2! and~C10!#, and it always happens if a verte
operator comprises a bosonic field in such a way.

We therefore conclude that ifV includesGi j or its derivatives,Ṽbm gives rise to a differential
polynomial in]/]V, and otherwiseṼbm50. An important result following from this fact is

Ṽbm3K50 ~ for all V!. ~3.26!

This is a model-independent result, and we shall make use of this relation in order to decou
pure thermodynamic partG̃N

bm from the totalN-point amplitudeGN
bm .
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C. The master formulas G̃N
bm and Ãl

bm

Gathering the formulas obtained in the above sections, we compose the purely thermod
master amplitudeG̃N

bm , and define the thermodynamic ‘‘partial’’ amplitudesAl
bm . Applying the

following formula to the first representation~3.12!,

U3~v,t!5112(
n51

`

en2tp i cos~2npv !, ~3.27!

we separate the pure thermodynamic partK̃bm from Kbm as

Kbm5K1K̃bm , ~3.28!

where

K̃bm52~4ps!2D/2e2sM2

(
n51

`

e2n2b2/4s cosh~nbm̄!, ~3.29!

or, for the second representation~3.14!,

K̃bm5
2

b
~4ps!~12D !/2e2s~M22m̄2! (

n51

`

e2s~2np/b!2
cosS 4npsm̄

b D . ~3.30!

For a givenVbm , the thermodynamic master amplitudeGN
bm is calculated as

GN
bm 5

def.

cE
0

1

ds1E
0

1

ds2¯E
0

1

dsNE
0

`

ds sN21Vbm3Kbm . ~3.31!

Using the decompositions~3.21! and ~3.28! with the general formula~3.26!, we find

GN
bm5GN1G̃N

bm , ~3.32!

where

G̃N
bm 5

def.

cE
0

1

ds1E
0

1

ds2¯E
0

1

dsNE
0

`

ds sN21Vbm3K̃bm . ~3.33!

Therefore we have only to separate the pure thermodynamic part ofKbm in order to obtain the

purely thermodynamic partG̃N
bm : no separation in theVbm part at all.@Note the difference betwee

Eqs.~3.31! and ~3.33!.#
As can be inferred from the examples in Sec. III B, a general expansion form ofVbm is

Vbm5 (
l ,nPZ

alnsl 2N
]n

]Vn exp@2sbl #. ~3.34!

where the coefficientsaln andbl may not depend ons, but ons j ( j 51,2,...,N). In analogy to Eq.
~2.14!, the relevant ‘‘partial’’ amplitudes for Eqs.~3.31! and ~3.33! are defined as

Al
bm 5

def.E
0

`

ds sl 21Kbmum2→m21bl
, ~3.35!
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Ãl
bm 5

def.E
0

`

ds sl 21K̃bmum2→m21bl
, ~3.36!

and of course the following relation holds:

Al
bm5Al1Ãl

bm . ~3.37!

In the following sections, we present various integral representations for the pure therm
namic partsÃl

bm of the N-point ‘‘partial’’ amplitudes without specifying any values ofN, D, and
e. These parts are the essential quantities to analyze the zero temperature limits with revea
nonanalyticity onm.

IV. THE INTEGRAL FORMULAS FROM THE FIRST REPRESENTATION

In this section, we derive various integral formulas forÃl
bm based on the first representatio

~3.12!. This representation is examined in the special casel 51 ~with N50 ande52!, and actually
(4p)D/2Ã1

bm is the functionOb analyzed in Ref. 21:

Ob~m!54(
n51

`

~21!n cosh~nbm!S nb

2mD 12D/2

KD/221~nbm!. ~4.1!

We want to generalize this function to more genericl ande cases, and it is convenient to mim
the computational technique of Ref. 21, introducing the parallel notation

Ob
~k!~M ! 5

def.

~4p!D/2Ãl
bm ; k[2l 112D. ~4.2!

Hereafter, for simplicity we set

bl50, ~4.3!

and, for later convenience, we also define

d[32k5D1222l . ~4.4!

From Eqs.~3.29! and ~3.36!, the pure thermodynamic partÃl
bm is now given by

Ob
~k!~M !52~4p!D/2E

0

`

ds sl 21~4ps!2D/2e2sM2

(
n51

`

e2n2b2/4s cosh~nbm̄!. ~4.5!

Performing thes integration, we obtain

Ob
~k!~M !54(

n51

`

cosh~nbm̄!S nb

2M D 12d/2

Kd/221~nbM !, ~4.6!

whereKn(z) is the modified Bessel function of second kind. This is a generalized version~for
arbitrary e and l! of the above functionOb . The aim is to obtain integral representations w
performing the summation in Eq.~4.6! ~for generic k or d!. To this end, we first apply the
following formula to Eq.~4.6!:

Kn~z!5
Ap~z/2!n

G~n1 1
2!

E
1

`

e2zt~ t221!n21/2dt; Ren.2
1

2
,Rez.0, ~4.7!
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and note that thek,2(d.1) andk>2(d<1) cases involve different calculations. Here we pu
few remarks. For the convergence of the summation overn, we have to assume

m,M ~4.8!

in order to satisfy the condition

ue2b~Mt6m̄ !u5e2b~Mt6m!,1; t.1. ~4.9!

The k51,0,21(d52,3,4) cases are calculated in Ref. 21, and thek53(d50) case correspond
to Ref. 24, although they did not discuss this representation.~Note that their argument belongs t
our second representation.!

~i! In the first case,k,2(d.1), the condition onn in the formula~4.7! is satisfied as it is; i.e.,
n5d/221.2 1

2, and the calculation is almost parallel to Ref. 21. We then just write down
result

Ob
~k!~M !5

22Ap

G„~d21!/2… F E
0

` ~u212Mu!~d23!/2

12eb~u1M1m̄ ! du1~m̄→2m̄ !G , ~4.10!

where we note that the minus sign of the denominator differs from the previous formula@Eq.
~3.13! in Ref. 21#. For later convenience, let us derive another formula from this result. Perfor
the change of variableu5M (Ap21121), and applying the formulaG(z)G(12z)5p/sinpz
with z5(d21)/2, we derive

Ob
~k!~M !5

2

Ap
GS k

2D M12k sinS 22k

2
p D E

0

` p12k~p211!21/2

ebX1~p!21
dp1~m̄→2m̄ !, ~4.11!

where we have introduced the compact notation

X6~p!5MAp2116m̄. ~4.12!

~ii ! In the second case, 2<k(d<1), the calculation is similar to the case~i!, excepting the
point that we apply the formula~4.7! for n512d/2 instead ofn5d/221 owing to the relation
Kn(z)5K2n(z). Then the summation overn in Eq. ~4.6! leads to the Lerch transcendental fun
tion:

Ob
~k!~M !5aE

1

`

dt ~ t221!~12d!/2e2b~Mt1m̄ !F~e2b~Mt1m̄ !,d22,1!1~m̄→2m̄ !

5
aG~32d!

2p i E
1

`

dt ~ t221!~12d!/2È ~01 ! ~2z!d23dz

12ez1b~Mt1m̄ ! 1~m̄→2m̄ !, ~4.13!

where just for conciseness we have defined the coefficient

a5
A4p

G„~32d!/2… S b

2 D 22d

5
A4p

G~k/2! S b

2 D k21

. ~4.14!

The z-integrand ~4.13! possesses poles atz50 and z52bMt6bm̄12np i (nPZ). Since
2b(Mt6m) is a negative value, there is no pole in the positive region on the real axis othe
z50 as long asbv̄12p/e is not an integer. With the change of variablet5Ap211, and a
replacement of one derivative]/]z by ]/]p, we have

O~M !5a
~21!2kG~k!

Mb~k21!!

]k22

]zk22 E
0

`

pk22
]

]p S 1

12ez1bX1Ddpuz501~m̄→2m̄ !. ~4.15!
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Because ofk>2, the surface terms from a partial integral vanish in Eq.~4.15!, and finally we find

Ob
~k!~M !52GS k11

2 D ~21!12kbk22~k22!

M ~k21!!

]k22

]zk22 E
0

` pk23

12ez1bX1
dpuz501~m̄→2m̄ !.

~4.16!

More explicitly, we present the results fork52,3,4 as follows:

Ob
~2!~M !52

Ap

M F 1

12eb~M1m̄ ! 1~m̄→2m̄ !G , ~4.17!

Ob
~3!~M !5

b

M E
0

` ebX1

~12ebX1!2 dp1~m̄→2m̄ !, ~4.18!

Ob
~4!~M !52

Ap

2M3 F 1

12eb~M1m̄ !2
bMeb~M1m̄ !

~12eb~M1m̄ !!2 1~m̄→2m̄ !G . ~4.19!

For even values ofk, one may directly perform the summation~4.6! without using the integral
representation~4.7!, e.g., usingK1/2(z)5Ap/2ze2z and K3/2(z)5Ap/2z(11z21)e2z for k52
and 4. We will see in the next section that the results~4.11! and~4.17!–~4.19! can be reproduced
from the second representation as well.

V. THE INTEGRAL FORMULAS FROM THE SECOND REPRESENTATION

In this section, based on the second representation~3.14! case, we derive some more formula
on Ob

(k)(M ), with rederiving the results of the previous section. From Eqs.~3.30!, ~3.36!, and
~4.2!, we have the following form of the pure thermodynamic part to start with:

Ob
~k!~M !5

~4p!1/2

b E
0

`

ds s~k22!/2e2s~M22m̄2! (
nPZ,Þ0

e2s~2np/b!2
cos~4npsm̄/b!. ~5.1!

The summation can be converted to the integrals on the contourCm @see Fig. 1~a!#:

Ob
~k!~M !5

1

2
~4p!1/2E

0

`

ds s~k22!/2e2sM2 1

2p i ECm

esz2

eb~z2m̄ !21
dz1~m̄→2m̄ !. ~5.2!

After performing thes integration, one may deform the contourCm into another oneCd @Fig. 1~b!#
in the same way as Ref. 24, thus obtaining

FIG. 1. The contoursCm and Cd . ~a! The Cm impounds an infinite number of poles atz5m̄12np i , wheren denotes
nonzero integers.~b! Coming fromz5`1 i e and going toz5`2 i e, theCd impounds the pole atz5M .
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Ob
~k!~M !5ApGS k

2D 1

2p i È ~M1 ! ~M22z2!2k/2

eb~z2m̄ !21
dz1~m̄→2m̄ !. ~5.3!

Parametrizing the circular part ofCd ~centered atM! by z5M (12deif), and usingp25z221 for
the remaining parts of the contour, we arrive at

Ob
~k!~M !5

2

Ap
GS k

2D M12k sinS 22k

2
p D

3F E
A2d

` p12k~p211!21/2

ebX121
dp1

@1/~22k!#~2d!12k/2

eb~M2m̄ !21
1~m̄→2m̄ !G . ~5.4!

Substitutingk53 ande52, Eq.~5.4! reproduces the result~without background field! of Ref. 24.
Here are a few remarks on the computational difference between Ref. 24 and ours. W

extracted the pure thermodynamic part~5.1! from the beginning, and this fact is expressed by
circle atm̄ in Cm . On the other hand, in the method of Ref. 24, one needs an algebra to se
the nonthermodynamic part by using

21

eb~z2m̄ !21
511

1

e2b~z2m̄ !21
. ~5.5!

The first term on the rhs of Eq.~5.5! corresponds to the nonthermodynamic part, and the sec
term to the following expression instead of Eq.~5.2!:

Obm
~k! ~M !5~4p!1/2E

0

`

ds s~k22!/2e2sM2 1

2p i

3H E
C1

es~z2 i v̄ !2

eb~z2m̄2 i v̄ !21
1E

C2

es~z2 i v̄ !2

e2b~z2m̄2 i v̄ !21J dz, ~5.6!

where the contoursC6 run fromm6o2 i` to m6o1 i` for a small value ofo. Although one can
of course obtain the same result~5.4! from Eq. ~5.6!, it is not obvious at first glance that theC2

integral term corresponds to them̄→2m̄ term of Eq.~5.3!.
Now, further results depend on the cases~i! and~ii !. In the case~i!, k,2, the second term in

the square brackets on the rhs of Eq.~5.4! is proportional tod12k/2, and vanishes asd→0.
Therefore Eq.~5.4! reproduces the first representation result~4.11!.

In the case~ii !, k>2, thed12k/2 term diverges asd→0. We expect that it can be canceled wi
the lower surface term from the first integral in the square brackets on the rhs of Eq.~5.4!. This
can be seen by a partial integral with applying the formula

d

dp SAp211

p D 5
1

p2Ap211
~5.7!

to thep integration in Eq.~5.4! as follows:

E
A2d

` p12k~p211!21/2

ebX121
dp5

@1/~k22!#~2d!12k/2

eb~M2m̄ !21
1

1

22k

3E
0

`

p32kH ~p211!23/2

ebX121
1

Mb~p211!21ebX1

~ebX121!2 J dp. ~5.8!

The first term on the rhs of Eq.~5.8! cancels the divergence as expected, and we derive
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Ob
~k!~M !5A4pGS k

2D M12k
sin~@~22k!/2#p!

~22k!p

3F E
0

`

p32kH ~p211!23/2

ebX121
1

Mb~p211!21ebX1

~ebX121!2 J dp1~m̄→2m̄ !G . ~5.9!

Putting t25p211 in Eq. ~5.9!, we finally obtain the following concise expression:

Ob
~k!~M !5A4pGS k

2D M12k
sin~@~22k!/2#p!

~22k!p E
1

`
At22122k

]

]t F t21

12eb~Mt1m̄ !G dt1~m̄→2m̄ !,

~5.10!

which is an alternative representation of Eq.~4.16!. As a result, we have derived two expressio
in each case: Eqs.~4.10! and ~4.11! in the case~i!, and Eqs.~4.16! and ~5.10! in the case~ii !. In
Eq. ~4.16! we have to performk22 derivatives~after one integration!, while just one integration
in Eq. ~5.10!, whose integrand thus contains a common Boltzmann factor for allk(>2).

Let us check the consistency of Eq.~5.10! with the previous result~4.16! for k52,3,4. The
k52 case~4.17! is immediate from the representation~5.10!, however, let us handle these thre
cases simultaneously. Using (p211)21512p2(p211)21, we first divide the second term in th
curly brackets in Eq.~5.9!, and then perform a partial integral on the rhs in the following quant

2E
0

`

p32k
Mbp2~p211!21ebX1

~ebX121!2 dp5E
0

`

p32k
p

Ap211

]

]p S 1

ebX121D dp. ~5.11!

Changing the integration variable byt25p211, we arrive at

Ob
~k!~M !5A4pGS k

2D M12k
sin~@~22k!/2#p!

~22k!p
@ I k1~m̄→2m̄ !#, ~5.12!

where

I k5E
1

`
At22122ktFk23

t
N~ t !2N8~ t !G dt ~5.13!

andN8(t)[] tN(t) means the derivative of the function

N~ t !5
1

eb~Mt2m̄ !21
. ~5.14!

For thek52 and 3 cases, this expression is sufficient to see the consistency in each. Ho
for thek54 case, notice that we have to extract a singularity, which cancels a zero from th
function in Eq.~5.10!, and we hence perform a partial integral once more:

I k52E
1

` 1

42k
At22142k

]

]t F ~k23!
N~ t !

t
2N8~ t !Gdt, 2<k,4, ~5.15!

where the surface terms can be dropped only whenk,4 @also in Eq.~5.11!#, and this is the reason
why this formula is valid for 2<k,4(21,d<1). Substitutingk52,3,42e ~with e→0!, we
verify that these expressions forI k reproduce Eqs.~4.17!–~4.19!. In this sense, Eq.~5.10! is
equivalent to Eq.~4.16!.

For further values ofk, one should repeat the similar calculation for each interval betw
zero points of the sine function. For example, fork56 and 8, we obtain
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Ob
~6!~M !5

p

16M5 @3N~1!23N8~1!1N9~1!#, ~5.16!

Ob
~8!~M !5

Ap

8M7 @15N~1!215N8~1!16N9~1!2N-~1!#. ~5.17!

These pure thermodynamic ‘‘partial’’ amplitudes exactly correspond to theN54 and 5 pure
thermodynamic amplitudes inD53 whenVbm5V ~the first category!. In D54, oddk integers are
the similar cases. For the second category, for example, theN-photon amplitude inD54, we need
to combine the quantities fromk521 to 2N25. These cases cannot get rid of nonintegra
quantities such as Eq.~4.18!. After all, Eqs. ~4.16! and ~5.10! describe the general amplitud
formulas which contain all Feynman diagrams.

VI. THE b˜` LIMIT

In the above arguments, we have assumedm,M , and allb→` limits vanish because of it:

Ob
~k! ——→

b→`

0. ~6.1!

To obtain a nontrivial~nonzero! limit, we should remove this condition after all. In this sense,
m dependence of the master amplitudes is nonanalytic. To see this, we need to transfo
function Ob

(k) in a form indicating a Bose~or a Fermi! distribution, and we already derived th
kind of representations in Secs. IV and V.

Let us begin with the case~i! k,2, in particular, the case ofk50 ~which is also an odd
dimensional caseD52l 11 by the way!. From Eq. ~4.10! with changing the variableE5u
1M , we have

Ob
~0!~M !522ApE

M

` dE

16eb~E2m8!
1~m8→2m8!, ~6.2!

where the plus/minus signs correspond to the Fermi/Bose statistics, and we put

m85m2 i v̄. ~6.3!

Equation~6.2! can be interpreted an effective action or total energy density with the chem
potentialm8 and the massM (,m8,E). Now, we understand in Eq.~6.2! that theOb

(0) becomes
zero asb→` if m8,E, while theOb

(0) takes a nonzero value ifE,m8. The similar arguments
apply to the case of generick value in the following way. Since we observe

eb~M2m̄1u!5eb~u1M2m!eib~v̄12p/eb! ——→
b→`

0 for u,m2M , ~6.4!

we have the finite upper boundary on the integral~4.10! at u5m2M , thus obtaining

O`
~k!~M ![ lim

b→`

Ob
~k!~M !5

22Ap

G~~22k!/2!
E

0

m2M

~u212Mu!2k/2 duu~m2M !

5
22Ap

G~~42k!/2!
~2M !2k/2~m2M !~22k!/2FS k

2
,
22k

2
,
42k

2
;
M2m

2M D
3u~m2M !. ~6.5!

The explicit results fork521,0,1 are
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O`
~1!~M !522 arccosh~m/M !u~m2M !, ~6.6!

O`
~0!~M !522Ap~m2M !u~m2M !, ~6.7!

O`
~21!~M !5@22mAm22M212M2 arccosh~m/M !#u~m2M !. ~6.8!

In one of thek50 cases~D53, N50, l 51, e52!,21 Eq. ~6.7! coincides with an exact result in
Ref. 27.

The case~ii ! k>2 can also be estimated in the same way. Applying the similar treatme
above to the Boltzmann factor in Eq.~5.10!, we then obtain the nonzero limit given by

O`
~k!~M !52A4pGS k

2D M12k
sin~@~22k!/2#p!

~22k!p E
1

m/M

~ t221!~22k!/2
dt

t2 u~m2M !. ~6.9!

Performing thet integration, some of the explicit results~the k52,3,4 cases! can be shown as
follows:

O`
~2!~M !5

Ap

M S M

m
21D u~m2M !, ~6.10!

O`
~3!~M !52

1

mM
AS m

M D 2

21u~m2M !, ~6.11!

O`
~4!~M !52

Ap

2M3 u~m2M !. ~6.12!

The calculations are rather straightforward for furtherk values, and the general formula~6.9!
suffices. Thee dependence is gone away from theO`

(k) . This is natural because there is n
difference in the kinematical factors~hence in ‘‘partial’’ amplitudes! between boson and fermio
loops at zero temperature.

VII. CONCLUSIONS

In this paper, we studied the thermodynamic generalization of the one-loop amplitudes
can be cast into the BK master formula~2.9! at zero temperature~with zero chemical potential!.
We followed the two-step procedure: first, calculating the path integralS1 summation~3.1! to
introduce the temperature, and then performing the shift manipulation~1.3! to insert the chemica
potential in a loop. This procedure has been applied parts by parts to the kinematical factorK, the
normalization factorN, and the vertex structure function~reduced kinematical factor! V, and we
have derived the general formulas for these parts. From Eqs.~3.31!, ~3.34!, and~3.35!, the ther-
modynamicN-point amplitude of general form is thus summarized as

GN
bm5c (

l ,nPZ
aln

]n

]Vn E
0

1

ds1E
0

1

ds2¯E
0

1

dsN Al
bm . ~7.1!

One can check the validity of this master formula in various cases; the free effective potentia
the photon polarization in Appendix B, the effective potential in a constant magnetic field in
21, and thep0→2g decay in Ref. 24, etc.

The detail analyses on the building blocksVbm andKbm have given us useful information. W
have realized that the total thermodynamic kinematical factorKbm behaves as the thermodynam
cally generalized normalization to the zero-temperature-type correlator shown in Eq.~3.17!. This
is certainly a useful result and makes calculations for largeN much simpler than ever; namely, w
have only to attach the new normalizationNbm to the N-point scalar correlator~with switching
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kj
0→vkj

!. Another interesting point is that the pure thermodynamic part of a vertex stru
function can be expressed in terms of either vanishing orV-differential operators, and this fac
makes it possible to decouple the master formula~3.31! into GN

bm5GN1G̃N
bm in a nontrivial way

@cf. Eqs. ~3.31! and ~3.33!#. It is worth noticing that we do not decouple the vertex struct
function but the kinematical factor only. From Eqs.~3.33!, ~3.34!, and~3.36!, we then conclude
that the pure thermodynamic master amplitude is simply given by

G̃N
bm5c (

l ,nPZ
aln

]n

]Vn E
0

1

ds1E
0

1

ds2¯E
0

1

dsN Ãl
bm . ~7.2!

Apart from GN , the pure thermodynamic part is renormalization free, and hence Eq.~7.2! is the
final form to apply our integral formulas derived in Secs. IV–VI. More explicitly, we have@from
Eqs.~3.13! and ~4.2!#

G̃N
bm5c~4p!2D/2 (

l ,nPZ
aln~2 i !n

]n

]m̄n E
0

1

ds1E
0

1

ds2¯E
0

1

dsN Ob
~2l 112D !~M !um2→m21bl

,

~7.3!

and, in particular, for theb→` limit with mÞ0

lim
b→`

G̃N
bm5c~4p!2D/2(

l PZ
al0E

0

1

ds1E
0

1

ds2¯E
0

1

dsN O`
~2l 112D !~M !um2→m21bl

. ~7.4!

The thermodynamic master amplitudes~7.3! and ~7.4! are provided with Eqs.~4.16!, ~5.10!, and
~6.9!, and several explicit ‘‘partial amplitudes’’Ob

(k) are also given up tok58.
In the master formulas~7.2! and~7.3!, the ‘‘partial’’ amplitudesÃl

bm or Ob
(k) ~s integrals of the

pure thermodynamic kinematical factor! are the fundamental computational blocks in our form
ism, and in Secs. IV and V, we focused on some mathematical aspects and techniques
calculate these integrals. We derived various representations and formulas on these integ
arbitrary values ofN, D, ande. It is obvious that a variety of equivalent formulas makes it easy
find some relation and consistency with the results obtained by different methods. These
generally be related by analytic continuation, and a different analytic expression is certainly
by definition; i.e., another formula can cover the region which cannot be reached in an or
representation, and it also overcomes some defect of an inconvenient representation. For e
in Ref. 21, a dual rotation is used to obtain an electric gap equation from a magnetic on
four-fermion model. We expect such a kind of utility when our formulas are applied in m
explicit stages.

Although we could have possibly simplified our results furthermore through a ce
technique,22 our formulas were sufficiently convenient to extract the nonzero values of zero
perature limit withm kept finite. For this purpose, it is necessary to have the integral repres
tion, such as Eqs.~4.10! and ~5.10!, which clearly indicates a nonanalytic cut in its integrand
b5`. We also had to go beyond the conditionm,M in these representations; however, this mig
be justified by analytic continuation, and at least we know that thek50 case coincides with the
exact result.

We have examined the model-independent structure of the thermodynamic BK maste
mula with consulting several simple examples. The model dependence appears in the
structure functions, and hence one has to evaluate the vertex structure in the first place for
calculations in each model. This task is case by case and will become more lengthy asN increases
for the cases involving more bosonicx fields in the vertex operatorv j parts such as photon, gluon
and pseudo-scalar particle. However, our systematic prescription is certainly promising to
the ~pure! thermodynamicN-point amplitudes in a straightforward way as long as theVbm belongs
to the general form~3.34!. Finally, we should not forget the advantage that the world-line form
encapsulates all necessary Feynman diagrams in a single integrand.
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APPENDIX A: INSERTION OF CHEMICAL POTENTIAL

In this appendix, we give a brief explanation of the shift procedure~3.9!. First consider the
vacuum casev̄50. In this case,M25m2 and

2Tr ln~]21m2!5
1

b (
n
E dDp

~2p!D21 E
0

` ds

s
e2s~p21m2!. ~A1!

We usually perform the insertion of chemical potential in terms of the shift

p25p0
21pW 2→~vn1 im!21pW 2 ~A2!

with the internal Matsubara frequencies

vn5
2p

b S n1
1

e D , ~A3!

and we have

(
n

e2s~vn1 im!2
5esm̄0

2
U3S 2sm̄0

b
,is

4p

b2 D , ~A4!

where we have defined

m̄05m2
2p i

eb
. ~A5!

Thus, we prove Eq.~3.14! for N50:

Eq. ~A1!5
1

b E
0

` ds

s
~4ps!~12D !/2es~m̄0

2
2m2!U3S 2sm̄0

b
,is

4p

b2 D . ~A6!

For further nonzero values ofN, the proofs are straightforward, and we shall not explain the de
anymore. For example, one can find theN52 case in Appendix B.

Instead, we add a supplemental interpretation. Applying the transformation

A4ps

b
esm̄0

2
U3S 2sm̄0

b
,is

4p

b2 D5U3S ibm̄0

2p
,i

b2

4psD , ~A7!

we rewrite Eq.~A6! as

Eq. ~A6!5A0
bm5E

0

` ds

s
~4ps!2D/2e2sm2

U3S i
bm̄0

2p
,i

b2

4psD . ~A8!

Herem̄0 now appears only in the first argument of theU3 , and remember thatv̄ also appears in
the same place asm̄0 does forNÞ0. Taking account of exponent’s additivity in the first argume
of U3 @q.v.Eq. ~3.5!#, one can imagine that the final result is given by the replacement ofm̄0 with
m̄02 i v̄(5m̄). This result coincides with theKbm obtained by the shift manipulation~3.9! in Kb .

APPENDIX B: PHOTON SELF-ENERGY PART FROM FEYNMAN RULE

In this appendix, we rearrange theN52 Feynman amplitude of photon scattering into t
world-line formula at finiteb and m. The photon self-energy part~in D54! by the Feynman
diagram technique is written in the form
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Pb52
1

b (
n
E d3p

~2p!3

Tr @e” 1~p”2k” 1!e” 2p” #

p2~p2k!2 , ~B1!

wherepm5(vn ,pW ), ki
m5(vki

,kW i), ande i[em
i , i 51,2. We also make use ofkm5k1

m52k2
m . The

QED couplinge is set to be the unity for simplicity. For convenience, we decompose thePb into
the following three parts:

P i5
1

b (
n
E d3p

~2p!3 Wi , ~B2!

in terms of

2Tr @e” 1~p”2k” !e” 2p” #5W11W21W3 , ~B3!

where

W152e1•e2„ p21~p2k!2
…, ~B4!

W252~e1•e2k1•k22e1•k2e2•k1!, ~B5!

W3522e1•~2p2k1!e2•~2p2k1!. ~B6!

Applying the Feynman integral formula

1

p2~p2k!2 5E
0

`

dssE
0

1

due2sk2~u2u2!e2s„p2~12u!k…2, ~B7!

we easily rewriteP1 andP2 in the following forms:

P15
4e1•e2

b (
n
E

0

` dss

~4ps!3/2 E
0

1

due2sk2~u2u2!e2s~vn1a!2 1

s
d~12u!, ~B8!

P25~e1•e2k1•k22e1•k2e2•k1!
2

b (
n
E

0

` dss

~4ps!3/2 E
0

1

due2sk2~u2u2!e2s~vn1a!2
, ~B9!

where

a5~12u!vk . ~B10!

TheP3 can be rewritten in the similar way by using Eq.~B7! and shiftingpW→pW 1(12u)kW in the
p-integral. After some algebra, we have

P35
2

b ( E
0

` ds

~4ps!3/2 sE
0

1

due2sk2~u2u2!e2s~vn1a!2

3F2

s
~e0

1e0
22e1•e2!2$2e0

1~vn1a!2~122u!e1•k%$2e0
2~vn1a!2~122u!e2•k%G .

~B11!

Gathering Eqs.~B8!, ~B9!, and~B11!, we obtain
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Pb5
2

b (
n
E

0

` dss

~4ps!3/2 E
0

1

due2sk2~u2u2!e2s~vn1a!2 F2

s
e1•e2$d~12u!21%

1~e1•e2k1•k22e1•k2e2•k1!2~122u!2e1•ke2•k24e0
1e0

2H ~vn1a!22
1

2sJ
12~122u!~e0

1e2•k1e0
2e1•k!~vn1a!G . ~B12!

Now, we can eliminate the forms (vn1a)m,m51,2, in the summand of Eq.~B12! due to the
following operations:

2
1

2s
]a(

n
e2s~vn1a!2

5(
n

~vn1a!e2s~vn1a!2
, ~B13!

S 1

2s
]aD 2

(
n

e2s~vn1a!2
5(

n
F ~vn1a!22

1

2sGe2s~vn1a!2
. ~B14!

Thea dependence of the summand exponential can be transformed into a linear exponent f
using the Jacobi transformation:

(
n

e2s~vn1a!2
5e2sa2

U2S 2sia

b
,
is4p

b2 D
5

b

A4ps
U4S ba

2p
,

ib2

4psD5
b

A4ps
(

n
~21!ne2n2b2/4seinba. ~B15!

Then we are allowed to perform the following replacement in the transformed summands,

]

]a
→ inb, ~B16!

and we finally derive the formula

Pb52E
0

` dss

~4ps!4/2 E
0

1

due2sk2~u2u2!(
n

~21!ne2n2b2/4seinba Fe0
1e0

2 n2b2

s2 1
inb

s
~2u21!

3~e0
1e2•k12e0

2e1•k2!1
2

s
e1•e2$d~12u!21%1~e1•e2k1•k22e1•k2e2•k1!

1~122u!2e1•k2e2•k1G . ~B17!

For mÞ0, we have only to make the standard shift~1.1!, and this causes the following chang
of the a defined in Eq.~B10!:

a→~12u!vk1 im. ~B18!

This modification exactly corresponds to the shift~3.9!. Note that thea coincides withv̄ with
fixing s151.
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APPENDIX C: WORLD-LINE METHOD FOR PHOTON SELF-ENERGY PART

In this appendix, we illustrate how we obtain the thermodynamic version of the vertex s
ture function in the case ofN52 photon scattering. In the world-line formalism, the phot
self-energy part at zero temperature can be obtained from the formula

G252
1

2
2D/2E

0

` ds

s
e2sm2 R DxDc expF2E

0

sS 1

4
ẋ~t!1

1

2
cċ D dtGV1V2 , ~C1!

whereVj , j 51,2, are the photon vertex operators

Vj52 ieE
0

s

dt j ~e j• ẋ12ic•e jc•kj !~t j !e
ik jx~t j !, ~C2!

andẋ5]t x, etc. In the following, we set the QED couplinge51 as assumed in Appendix B. Her
we follow the standard world-line notationt, which is related to the main text notations by

t j5ss j . ~C3!

Equation~C1! is known to become

G252
1

2
2D/2E

0

` ds

s E
0

s

dt1E
0

s

dt2V3K ~C4!

with the vertex structure function

V5e1•e2G̈B
121e1•k2e2•k1~ĠB

12!21~e1•e2k1•k22e1•k2e2•k1!~GF
12!2, ~C5!

and the kinematical factor

K5N^eik1•x~t1!eik2•x~t2!&5e2sm2 R rDxexpF2E
0

s 1

4
ẋ2dtG)

j 51

2

eik j •x~t j !

5~4ps!2D/2e2sm2
ek1•k2GB

12
, ~C6!

where

GB
125ut12t2u2

~t12t2!2

s
, GF

125sign~t12t2!. ~C7!

The path integral normalizations are chosen to be

R DxexpF2E
0

s 1

4
ẋ2 dtG5~4ps!2D/2, R DcexpF2E

0

s

c•ċ drG51. ~C8!

It can be said that the kinematical factor is defined by the insertions of thef3 scalar vertex
operators

Vj5E
0

s

dt j exp@ ik j•x~t j !#, j 51,2. ~C9!

According to the program presented in Sec. III, we are led to calculate the following
integral at finite temperature:
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G2
b52

1

2
2D/2~ ie!2E

0

` ds

s
e2sm2 R DxDc expF2E

0

sS 1

4
ẋ21

1

2
c•ċ D dtG

3S )
i 51

2 E
0

s

dt ie
ikix~t i !D(

n
~21!ne2n2b2/4sein~b/s!~t12t2!vk

3S e0
1 nb

s
1e1

• ẋ12ic•e1c•k1D ~t1!S e0
2 nb

s
1e2

• ẋ12ic•e2c•k2D ~t2!. ~C10!

Using the Wick contraction method with the correlators

^xm~t1!xn~t2!&52gmnGB
12, ^cm~t1!cn~t2!&5 1

2g
mnGF

12, ~C11!

one can verify the coincidence of theG2
b with thePb derived in Appendix B; we have arrived a

the form

Pb5
1

2
2D/2E

0

` ds

s
e2sm2S )

j 51

2 E
0

s

dt j D(
n

~21!nKb
~n!~V1Ṽ!, ~C12!

where

Ṽ5e0
1e0

2 n2b2

S2 1
inb

s
~e0

1e2•k12e0
2e1•k2!ĠB

12, ~C13!

and theKb
(n) is thenth mode of the bosonic two point function at finiteb defined by

Kb
~n!5 R Dx expF2E

0

s

~1/4!ẋ2G)
j 51

2

eik j •x~t j !ux0→x01nbt/s

5e2n2b2/4seinb~t12t2!vk /s~4ps!2D/2e2k2GB
12

. ~C14!

Here Eq.~C12! with ~C13! and ~C14! reproduces the Feynman rule result~B17! with rescaling
t i5ss i and fixings151 with s25u. Note thatĠB

12 behaves as 2u21 in this respect.
Let us further rewrite the aboveṼ in an operator form suitable to Eq.~3.31!. In the following,

we shall not employ the fixings151. As shown in Appendix B, we can replaceinb with ]/]v̄,
where

v̄5~s12s2!vk , ~C15!

and we therefore find

G2
b5

1

2
2D/2E

0

`

dssS )
i 51

2 E
0

1

ds i DVb3Kb ~C16!

with having

Vb5V2e0
1e0

2S 1

s

]

]v̄ D 2

2
1

s

]

]v̄
~e0

1e2•k12e0
2e1•k2!ĠB

12 ~C17!

and

Kb5(
n

~21!nKb
~n!e2sm2

, ~C18!
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where the change of variablest i5ss i in GB
12 should be understood. Since we already justified

shift ~3.9! in the end of Appendix B, we can use the following parts for the finitem case:

Vbm
5VbF ]

]v̄
→ ]

]VG , Kbm
5Kb@v̄→V#. ~C19!

Substituting these in Eq.~C16!, we obtain the two-point functionG2
bm , which therefore coincides

with the corresponding Feynman rule result suggested at the end of Appendix B.
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Interacting systems consisting of two rotators and a pendulum are considered, in a
case in which the uncoupled systems have three very different characteristic time
scales. The abundance of unstable quasiperiodic motions in phase space is studied
via the Lindstedt series regarded as a sum of Feynman graphs and studied with
renormalization group techniques based on Eliasson’s work on KAM tori. The
result is a strong improvement, compared to our previous results, on the domain of
validity of bounds that imply existence of invariant tori, large homoclinic angles,
long heteroclinic chains, and drift-diffusion in phase space. ©1999 American
Institute of Physics.@S0022-2488~99!03310-1#

I. THE HAMILTONIAN SYSTEM

1.1. Let (w,a1 ,a2)5(w,a)PT3 be three angles~i.e., positions on circles!; let (I ,A1 ,A2)
5(I,A)PR3 be their conjugate momenta~or ‘‘actions’’!. We consider the Hamiltonian function
depending on two parameters«,h.0, defined by

H5h1/2V1A11h
A1

2

2J
1h21/2V2A21

I 2

2J0
1J0g0

2~cosw21!1« f ~w,a1 ,a2!, ~1.1!

with f an eventrigonometric polynomial of degreeN, N0 in a, w, respectively;V1 ,V2 ,J,J0 ,g0

are positive constants.
This system describes two rotators~one anisochronous, labeled #1, and one isochron

labeled #2! interacting with a pendulum which has its free~i.e., with «50! unstable equilibrium
position atI 50, w50 and the stable one atI 50, w5p. The scale of frequency of the pendulu
is O(1) in h; at the same time the two rotators rotate at constant speedO(h1/2) andO(h21/2),
respectively. Hence the system has three time scales; we assumeh,1 so that theslow rotator is
the #1 rotator.

The free motion admits invariant tori of dimension 2~namely parameterized byA, a constant
vector, bya arbitrary, and withI 50, w50! which are unstable and possess stable~labeled1! and
unstable~labeled2! three-dimensional manifolds~parameterized byA, the same constant vecto
by a, w arbitrary, and withI 56J0g0A2(12cosw)!.

We shall study properties that eventually hold whenh→0. It is well known~see Refs. 1 and
2, for instance! that if « is small most of the unperturbed tori and their manifolds still exist, jus
little deformed. This means that~under the condition stated below! there exist functionsUA8

6 (w,a)

a!Electronic mail: giovanni@ipparco.roma1.infn.it
b!Electronic mail: gentile@ipparco.roma1.infn.it
c!Electronic mail: vieri@ipparco.roma1.infn.it
64300022-2488/99/40(12)/6430/43/$15.00 © 1999 American Institute of Physics
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andVA8
6 (w,a) which are divisible by« and analytic ina, w, «, for aPT2, uwu,2p, u«u,«0 , with

«0 small enough, such that an initial datum starting on the~three-dimensional! surfacesW«
s ,

s56, defined as

As~w,a!5A81UA8
s

~w,a!, I s~w,a!56J0g0A2~12cosw!1VA8
s

~w,a!, ~1.2!

evolves, when the timet→6`, tending to be confused with a quasiperiodic motion on a invar
torusT(A8), with rotation vector

v85~v18 ,v28!, v185
def

h1/2V11hJ21A18 , v285
def

h21/2V2 , ~1.3!

and furthermore such asymptotic motion takes place withA moving quasiperiodicallywith aver-
ageA8.

All this holds ifv8 verifies the Diophantine condition,

uv8•nu.Cunu2t, ;nPZ2\$0%, ~1.4!

for C,t.0 ~which may depend also onh!. The values of« for which we shall be able to prove th
above will be so small that the part of the stable and unstable manifolds withuwu, 3

2p can be
represented as a graph ofA, I over a, w. ~Note that if «50 they are graphs overa, w for uwu
smaller thanany prefixed quantity,2p.! Hence we look, since the beginning, for invariant to
which have the latter property.

The approach to the invariant tori, of the points that lie on their stable manifolds, wi
exponential in the sense that their distancesd(t) to the tori will be such that

lim
t→1`

t21 logd~ t !215ḡ0 , ḡ0[ḡ0~«!5
def

~11G~«,g0!!g0 , ~1.5!

for a suitable analytic functionG(«,g0), divisible by«. We shall callḡ0 the Lyapunov exponen
of the torus~it will depend on« as well as on the considered torus, i.e., onv8 and onh!. The
exponent relative to the approach to the same torus along its unstable manifold~as t→2`! will
be the same, by time reversal symmetry defined below.

We fix throughout the papert ~t>1! andwe shall mainly study the dependence of«0 , i.e., our
estimate for the analyticity radius, as a function ofh: «05«0(C,h).

1.2.Remark:The relation~1.3! between the value of the average action and the rotation ve
is nontrivial and it has been named in Refs. 3 and 4~where it was pointed out! by saying that the
tori of ~1.1! are ‘‘torsion free’’ or ‘‘twistless.’’ It is a remarkable symmetry property of~1.1!, see
Refs. 3, 5, 6.

1.3. If «50 the stable and unstable manifolds coincide~because the pendulum separatrix
degenerate!; it is a degeneracy that is lost when«Þ0 and generically the manifolds will have onl
pairwise isolated trajectories in common, calledhomoclinic trajectories.

Nevertheless time reversal symmetry and parity symmetry~the latter symmetry is due to th
assumption of evenness off ! hold for ~1.1!. If St denotes the time evolution and the involutio
map i ~composition of parity and time reversal! is defined byi (w,a,I ,A)5(2p2w,2a,I ,A),
theniSt5S2ti and there are relations between the stable and unstable manifolds that are pre
even for«Þ0. Namely,

UA8
1

~w,a!5UA8
2

~2p2w,2a!,

~1.6!

VA8
1

~w,a!5VA8
2

~2p2w,2a!,
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where care must be exercised because the manifolds containtwo points over eacha, w. ~This is in
fact already so for«50.! Hence ifw.p the relations in~1.6! concern points that lie on differen
connected manifolds; to understand what happens one should try a drawing taking into a
that the above representations are considered only foruwu, 3

2p.
Looking at the manifolds atw5p, assuming their existence and that they are graphs abova,

w for uwu, 3
2p, Eqs.~1.6! imply that, fixedA8,

Q~a!5
def

UA8
1

~p,a!2UA8
2

~p,a!52Q~2a!, ~1.7!

so thatQ„0…50; but, in general,Q„a…Þ0 for aÞ0.
The functionQ„a… is called thehomoclinic splitting~or simply splitting! vectorat w5p, and

the determinant of the matrix with entries]a i
Qj (0) ~splitting matrix! is called thesplitting. One

can more generally considerZI [ZI (w,a)5(UA8
1 (w,a)2UA8

2 (w,a),VA8
1 (w,a)2VA8

2 (w,a)) which
would be the splitting vector atw. Here and henceforth the vectors inRl will be denoted with an
underlined letter~while the boldface is used for vectors inRl 21!; so far l 53, but shortly we shall
considerl>3. The functionZI can be written as the gradient of a generating functionF, i.e.,
ZI 5(]wF,]aF). This is a result due to Eliasson who points out that it follows immediately fr
the Lagrangian nature of the stable and unstable manifolds. It is a further symmetry prope~It
can alternatively be easily seen from the explicit expressions for the stable and unstable ma
equations derived in Ref. 3, which also provide a general algorithm for constructing the fun
F as a convergent series in« for « small; see Ref. 7.!

The symmetry of~1.1! ~hence the consequent oddness ofQ„a…! implies that there is one
trajectory which swings throughw5p whena is exactly0: it tends to the same invariant torus a
t→6`, provided the torus exists and its stable and unstable manifolds are graphs overa, w over
an interval ofw greater thanuwu,p.

In this paper we prove the following results:
1.4. Theorem: Given the Hamiltonian (1.1), given constants s,V.0 and givenh.0 small

enough, the following assertions hold:

~1! There are invariant tori with rotation vectorsv8 for all v8 verifying the Diophantine condi-

tion (1.4) with constant C5C(h)5Ve2sh21/2
and uv18uP@ 1

2V1h1/2,2V1h1/2#.
~2! Such tori exist foru«u,«05O(h2) and for h small enough.
~3! They can be parameterized by their average actionsA8; the angular velocity is then given b

the rotation vectorv8[(V1h1/21hJ1
21A18 ,V2h21/2) (i.e., they are ‘‘twistless’’) and the

Lyapunov exponents have the form g0̄5(11G(«,g0))g0 , with G(«,g0) analytic in « and
divisible by«.

~4! The parametric equations for such tori and for their stable and unstable manifolds (‘‘w
kers’’) can be computed by a convergent perturbation series in powers of« around the
unperturbed tori with the same rotation vector and their corresponding stable and uns
manifolds.

~5! At the homoclinic intersection withw5p (existing by symmetry), between the stable manif
and the unstable manifold of each torus, the splitting is generically given by the Mel’n

integral which is of order O(«2h2be2(p/2)g
0
-1h2(1/2)

), for « small enough, withb depending on
the degree N0 in w of the perturbation f; one can takeb52N021 and the asymptotic formula
holds if u«u,hz, z52(N013) and h is small enough.

1.5. Remark:The novelty of the theorem is the ‘‘sharp’’ bound«05O(h2). If we ‘‘only’’
require«05O(h (9/2)1) where 9

21 is any prefixed positive number. 9
2 the result is proved in Ref

6 ~see also Refs. 2 or 5!. The improvement is made possible by thetotally different techniqueused
~with respect to Ref. 6!; a technique that has interest in its own right and, we think, beyond
result itself. In fact the proof of the last assertion of the theorem is the content of Ref. 8, an
values of the constantsb andz are taken from Appendix A2 of Ref. 8.
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1.6. Theorem 1.4 will be proved by a further extension of Eliasson’s method,9,4,10,5 for the
KAM theorem. The following discussion will show the correctness of the intuition that ‘‘ne
small divisors appear in the perturbation expansionat orders spaced by O(h21). So that the
coupling constant is effectivelyO(«h21

) and the analyticity condition is expected to b
«h21

C(h)2q small ~for someq.0, determined as in the discussion in Remark 5.16, item~4!,
below!. Hence the analyticity condition will be«C(h)2qh small rather than the far wors
«C(h)2q small, that is implied directly from lemma 1 in Ref. 2~whereq56 is an estimate!.

In the one degree of freedom case the corresponding problem is studied in Ref. 11.
problem that arises naturally in the context of Nekhoroshev theory. In our case the rotation
is not one-dimensional, so that the cancellations between resonances typical of small d
problems,9,3,10,5have to be exploited in order to prove convergence of the perturbative series
fact that the two components of the rotation vector~1.3! are so different in scale has the cons
quence that small divisors can appear only at high orders, so that the dependence of the
convergence on the Diophantine constantC(h) is highly improvable with respect the ‘‘naı¨ve’’
one, as explained above; the proof of such an assertion is the subject of the present pape~as, in
the weaker form, already of Ref. 6!.

1.7. The paper is organized as follows. In Secs. II, III, IV the formalism is concisely illustr
and the graphic representations of the whiskers in terms of tree graphs is exhibited~for systems
more general than~1.1!; see~2.1! below!. The analysis is brief but self-contained, with referenc
to Refs. 3, 5 only given for further insight and details. The basic formalism is in Sec. III, the
work out in Sec. III two specific examples to explain the origin of the graphical interpretation
in Sec. IV we set up the general Feynman rules for evaluating the equations of the whisker~and
the splitting vector as a particular case! as a sum of quantities that can be elementarily evalua
In Sec. V bounds are derived, assuring the convergence of the perturbative series defin
whiskers in the more general system in~2.1! below and leading to Theorem 1.4, when restrict
to the Hamiltonian~1.1!.

The bounds are derived along the lines of Refs. 3, 5; the main part is the derivation
bounds for the part of the expansion corresponding to what we call the contributions due to
without leaves;’’ this is done fully and self consistently in Sec. V and in the related append
Once the bounds on the contributions from trees without leaves are established,which is the real
difficulty, the same analysis can be applied to bound the other contributions. Since this is s
reduced, without any further technical problems, to the case of contributions from the simple
with no leaves we do not repeat this part of the discussion which is done in Ref. 5 followin
corresponding analysis done in Refs. 3, 10.

In Appendix A we relegate some technical details, while Appendix C concerns the can
tion analysis of Ref. 5, needed in order to treat the small divisors problems, with more details
respect to the quoted paper. An original technical part is also in Appendix B and deals wi
improvement of the dependence of the convergence radius on the Diophantine constantC(h).

We do not comment here on the obvious relevance of the above results for the the
Arnold diffusion, see Refs. 6 and 12.

II. LINDSTEDT SERIES FOR WHISKERED TORI

We use the formalism of Ref. 5. It would be pointless to repeat here the technical
required to motivate the necessity or usefulness of the notations, and we cannot imagine t
reader may have interest in the matter that follows unless he has some experience with Eli
method, as exposed in Ref. 9 and complemented in Refs. 3, 4, 10, 5. The references to Re
are given only to point at places where further details on the motivations of the assertions
found.

The following analysis innovates Ref. 5 in Sec. V because of the extension of Sie
Bryuno’s bound described in Appendix B below; this section and the next two provide aself-
containeddescription of the graphical algorithm exploited in Sec. V and Appendix B.
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2.1. In the following we shall consider a Hamiltonian~‘‘Thirring model’’ ! more general than
the one in~1.1!, i.e., a Hamiltonian which couples a pendulum withl 21 rotators via a perturba
tion f 1 which is always aneven trigonometric polynomial,

H5v•A1
1

2J
A•A1

I 2

2J0
1J0g0

2f 0~w!1«J0g0
2f 1~w,a!1J0g0

2g~«,g0! f 0~w!, ~2.1!

where (a,A)PTl 213Rl 21, (w,I )PT13R1, J0.0, J is a diagonal matrix, with 0,detJ<1`,
and

f 1~w,a!5 (
nPZ

unu<N0

(
nPZl 21

unu<N

f nI
1ei ~n•a1nw!, f nI

15 f 2nI
1 ,

~2.2!

f 0~w!5~cosw21!5 (
unu51
n50

f nI
0ei ~n•a1nw!,

with nI 5(n0 ,n)[(n,n)PZ3Zl 21 andunu5( j 51
l 21un j u; we prefer to consider the Hamiltonian~2.1!

with l arbitrary because the Lindstedt series analysis holds for anyl>1. So that the valuel 53 and
the existence of three time scales will be used only to obtain the second bound in~5.13! below.

The last term in~2.1! could be put together with the free pendulum potentialJ0g0
2(cosw

21) thus modifying the ‘‘gravity acceleration’’g0
2 into (11g(«,g0))g0

2; the term withg(«,g0)
5(k51

` gk(g0)«k is added because we follow here the approach in Ref. 5. We show that,
s,V,h,v8, with h small enough andv8 verifying the Diophantine condition in Theorem 1.4, the
one can fixg(«,g0) so that, foru«u,O(h2), there is an invariant torus with average~over time!
actionA8, with the properties in Theorem 1.4 and with Lyapunov exponentg0 and rotationv8
[v1J21A8. In other words by adding acountertermto the Hamiltonian~1.1! one gets a new
Hamiltonian system,~2.1!, with an invariant torus with rotationv8 and Lyapunov exponent ex
actly equal to the prefixed g0 ~see also Sec. II, 2.7 below!.

We further show that, fixedv8, g(«,g0) is jointly analytic in «,g0 , if g0 varies near a
prefixed ḡ0.0. Going back to the original Hamiltonian~1.1! we therefore set g0

25ḡ0
2(1

1g(«,ḡ0)) and we can invert the latter relation asḡ0
25(11G(«,g0))g0

2 for « small enough~this
will mean, for u«u,O(h2)!. Hence by interpretingg0

2 in ~1.1! as ḡ0
2(11g(«,ḡ0)), so that~1.5!

holds, we obtain Theorem 1.4 as a corollary of the above statements.
Of course a similar proof could be done without first fixing the Lyapunov exponentḡ0 and

then inverting the relation between the ‘‘dressed exponent’’ḡ0 and the ‘‘bare’’ oneg0 . But it is
well known, from the analogous problem in renormalization theory, that it is wiser technically
conceptually to work, in perturbation theory, with prefixed physical quantities~i.e., dressed ones!.
The idea that perturbation theory would be simpler, in the technical estimates, is the ke
beyond3,10 that is introduced in Ref. 5.

2.2. From now on let us denote bya the initial value of the rotators angles~i.e., at timet
50!. We define byXj

s(t;a), j 50,...,2l 21, the values of the variables at timet that are reached
from initial dataXs(0;a)5(p,a,I s(0;0),As(0;0)), with the givena, with w5p and with I, A
such thatXs(0;a) is on the stable~s51! or unstable~s52! manifolds of the invariant torus tha
we are searching for; the convention on the labels ofX is that

X0
s5ws; Xj

s5a j
s , for 1, j , l ;

~2.3!
Xl

s5I s; Xj
s5Aj

s , for l , j ,2l .

All functions in ~2.3! depend ont anda ~the symbolsI s(t;a) andAs(t;a) should not be confused
with I s(w,a) and As(w,a) defined in ~1.2!; in the following no ambiguity can arise as th
quantitiesI s andAs will be used always with the meaning in (2.3)and as functions oft, a!.
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This is a parameterization of the stable and unstable manifolds in terms ofa, t wherea is the
value of the angular coordinates at the moment in whichw5p, andt is the time elapsed since. Th
parameterization is different from the one in terms ofa, w in ~1.2! unless, of course, it isw5p and
correspondinglyt50. Hence the splitting vector~1.7! at w5p can also be writtenQj (a)
5Xj

1(0;a)2Xj
2(0,a), j 5 l 11,...,2l 21. Note that we do not need to consider explicitly t

splitting in theI-coordinates because, by energy conservation, they are functions ofw,a,A6.
Let A8 be given and letv8 in ~1.3! be Diophantine with constantsC5C(h), t.0; see~1.4!.

We look for an invariant torus and for its stable and unstable manifolds with the property th
quasiperiodic rotation on the torus takes place at velocityv8 and,at the same time, the action
variables oscillate with an average positionA8.

Before proceeding we remark that the abovetwo requirements may seem contradictory
there may seem to be no reason for being able to prescribe simultaneously the ‘‘spectrum’’v8 and
the ‘‘average action’’A8 of the invariant tori. In fact this property of ‘‘twistless’’ motion on the
tori or of ‘‘ absence of torsion’’ is very remarkable~see Remark 1.2 and Ref. 3!; it will appear as
due to the special symmetries of the system~2.1! and to the separation of the energy into
quadratic part involving actions only and an angular part involving only the angles.

Note also that we could confine ourselves to study the torus with average positionA850, as
in Refs. 3, 5 because any torus can be reduced to that one through a trivial canonical trans
tion ~a translation in the action variables!. This explains why in the quoted papers only the to
covered with rotation vectorv is explicitly considered; however in the following we consider a
A8Þ0, as we are interested in showing the abundance of such tori in phase space~see the Remark
1.5!.

The quantityXj
s(t;a) can be graphically represented as sum ofvalueswhich can be associ

ated with tree graphs, that we shall call ‘‘Feynman graphs’’ or ‘‘trees’’tout court, see Fig. 1. The
trees are partially ordered sets of points, callednodes, connected by unit lines, calledbranches,
and they are ‘‘oriented’’ towards a point calledroot, which is reached by a single branch of th
tree. Given two nodesv and w of a tree, we say thatw precedesv (w<v) if there is a path
connectingw to v, oriented fromw to v. With an abuse of notations we shall sometimes cons
a tree as the collection of its nodes, sometimes as the collection of its branches and somet
the collection of both nodes and branches. The rootwill not be considered a node.

A typical tree considered below can be drawn as in Fig. 1; the labels meaning and the c
of such a drawing~which has to be interpreted as a mathematical formula! will be elucidated in the
coming sections.

The branch starting at the nodev and linking it to the uniquely determined next node~or to
the root!, which we callv8, will be denoted bylv : there is a unique correspondence betwe
nodes and branches starting at them. We shall say thatlv exits fromv and entersv8; given a node
v we shall say that a branchl pertainsto v if either l entersv or l exits fromv; e.g., in Fig. 1
the linev1v0[lv1

‘‘exits’’ v1 and ‘‘enters’’ v0 , hence it pertains to both.

In Ref. 3 two expansions are considered for the functionsXj
s(t;a) representing the stable an

unstable manifolds; one of them is used to exhibit cancellations taking place at all orders
sums that express the coefficients of the power series in« of the splitting vector;3,13,8 it is some-
what more involved than the other one that is convenient to just discuss convergence
perturbation series for the splitting vector and that we shall use here. This is the reason why~as in
Ref. 5! we shall not have trees whose lowest nodes carry a graphical decoration calledform factor,
or fruit in Refs. 3, 8. Nevertheless some of the nodes will still have a particular structur
characterize them we introduce, below as in Ref. 5, the notion of ‘‘leaf,’’ which is related to the
notion of fruit in Ref. 3, from which it differs~and it, even, differs slightly from the similar notio
of leaf in Ref. 5!, see below for the motivation of the name.

2.3. As mentioned, Fig. 1 has to be regarded as a mathematical formula expressing a fu
of the labels and of the topological structure of the trees. We now prepare the notation f
definition of ‘‘value’’ of a tree~following Ref. 5! ~see Ref. 3 for a simpler case!; the derivation is
not difficult but somewhat long and unusual for the subject~the breakthrough work9 still does not
seem to be well known in its technical aspects!!. We discuss it in detail not only for completene
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but in the attempt to clarify a construction that has generated quite a few new results startin
the work of Ref. 9, see Refs. 3, 8, 14.

Let us consider the unperturbed motionX0(t)[(w0(t),a1v8t,I 0(t),A8), where
(w0(t),I 0(t)) is the separatrix motion, generated by the pendulum in~2.1! starting att50 in
w5p, A5A8, I 522J0g0 , so thatw0(t)54 arctane2g0t. Let Xs(t;a), s5sign t56, be the
evolution, under the flow generated by~1.1!, of the point on W«

s which at time t50 is
(p,a,I s(a,p),As(a,p)), see~1.2!; let

Xs~ t ![Xs~ t;a![ (
h>0

Xhs~ t;a!«h5 (
h>0

Xhs~ t !«h, s56, ~2.4!

be the power series in« of Xs ~which we want to show to be convergent for« small!; note that
X0s[X0 is the unperturbed whisker. We shall often omit writing explicitly thea variable among
the arguments of variousa-dependent functions, to simplify the notations, and we shall regard
two functionsXhs(t), as forming a single functionXh(t), which is Xh1(t) if s51, t.0, and
Xh2(t) if s52, t,0.

Components ofX will be labeledj , j 50,...,2l 21, consistently with~2.3!, with the convention

that X05
def

X2 describes the coordinatew, (Xj ) j 51,...,l 215
def

X↓ describes thea coordinates,Xl5
def

X1

describes theI coordinate and (Xj ) j 5 l 11,...,2l 215
def

X↑ describes theA coordinates,

X5
def

~Xj ! j 50,...,2l 215
def

~X2 ,X↓ ,X1 ,X↑!, ~2.5!

i.e., we write first the angle and then the action components, first the pendulum and th
rotators. The↑ ~‘‘up’’ ! and ↓ ~‘‘down’’ ! labels recall that the components with labels↓ (0, j
, l ) have ‘‘lower’’ index than the variables with labels↑ ( l , j ), which have a ‘‘higher’’ index~a
mnemonically useful fact, on first reading at least!.

Inserting~2.4! into the Hamilton equation associated with~2.1! we get that the coefficients
Xhs(t), h>1, satisfy the hierarchy of linear equations

d

dt
Xhs~ t !5L~ t !Xhs~ t !1Fhs~ t !, ~2.6!

with Fhs(t) a 2l -vector and the 2l 32l -matrix L(t) is

FIG. 1. A treeq with m512, and some labels. The line numbers, distinguishing the lines, and their orientation po
at the root, are not shown. The lines length should be the same but it is drawn of arbitrary size. The nodes labedv are
indicated only for two nodes.
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L~ t !5S 0 0 J0
21 0

0 0 0 J21

g0
2J0 cosw0~ t ! 0 0 0

0 0 0 0

D . ~2.7!

For instance,F1s(t) is a 2l -vector with the first 0,...,l 21 components vanishing~a consequence
of the assumption that the perturbation only depends on the angular variables!, with the l th
component equal to2J0g0

2]w f 1(w0(t),a1v8t)1J0g0
2g1(g0)sin(w0(t)) and with the remaining

components equal to2J0g0
2]a f 1(w0(t),a1v8t).

In generalFhs depends uponX0,...,Xh21s but not on Xhs. The entries of the (2l 32l ) matrix
L have different meaning according to their position; the0’s in the first and third row are (l
21)-~row!-vectors, the0’s in the first and third column are (l 21)-~column!-vectors, and the 0’s
andJ21 in the second and fourth column are (l 21)3( l 21)-matrices, while the 0’s in the firs
and third columns are scalars~asJ0

21 is!. The perturbed motions will be described bydimension-
lessquantitiesJ, F,

Xj
hs5J j

hs , 0< j < l 21, Xj
hs5J0g0J j

hs , l< j <2l 21,
~2.8!

F↑
hs5J0g0

2F↑
hs , F1

hs5J0g0
2F1

hs .

The simple form of the Hamiltonian equations forw, a, namelyẇ5J0
21I , ȧ5v1J21A implies

that Fj
hs5F j

hs[0, for j 50,...,l 21. For instance,

F1s5~0,0,2]w f 1~w0~ t !,a1v8t !1g1~g0!sin~w0~ t !!,22]a f 1~w0~ t !,a1v8t !!. ~2.9!

Given the form ofL(t) and the vanishing of the firstl componentsF2
hs , F↓

hs of Fhs, for h>1, the
above hierarchy of equations~determining the stable and unstable manifolds! takes the form

1

g0

d

dt
J1

hs5cosw0J2
hs1F1

hs ,
1

g0

d

dt
J↑

hs5F↑
hs ,

~2.10!
1

g0

d

dt
J2

hs5J1
hs ,

1

g0

d

dt
J↓

hs5J0J21J↑
hs .

And, for all h>1, we can easily write~via Taylor expansion and order matching! the following
formula for Fhs in terms of the coefficientsJ0,...,Jh21s and of the derivatives off 0 and f 1

[ f , see~2.2!. The first l components ofFhs vanish, as said above,F2
hs[0, F↓

hs[0, and

F↑
hs52 (

umI u>0
~]a f 1!mI ~w0,a1v8t ! (

~hj
i
!mI ,h21

)
i 50

l 21

)
j 51

mi

J
i

hj
i s

,

~2.11!

F1
hs[2 (

umI u>2
~]w f 0~w!!mI ~w0! (

~hj
0
!mI ,h

)
j 51

m0

J
2

hj
0s

2 (
p51

h

(
umI u>0

gp~g0!

3~]w f 0~w!!mI ~w0! (
~hj

0
!mI ,h2p

)
j 51

m0

J
2

hj
0s

2 (
umI u>0

~]w f 1!mI ~w0,a

1v8t ! (
~hj

i
!mI ,h21

)
i 50

l 21

)
j 51

mi

J
i

hj
i s

,

where (G)mI (•), with GP$]w f 0 ,]a f 1 ,]w f 1%, and (hj
i )mI ,q , with hj

i >1, are defined as
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~G!mI ~• ![S ]w
m0]a1

m1
¯]a l 21

ml 21G

m0!m1!¯ml 21!
D ~• !,

~2.12!
~hj

i !mI ,q[~h1
0,...,hm0

0 ,h1
1,...,hm1

1 ,...,h1
l 21,...,hml 21

l 21 !,

with (
i 50

l 21

(
j 51

mi

hj
i 5q,

andmi>0, m5(m0 ,...,ml 21), umI u5( i 50
l mi . Note that the first two sums in the expression f

F1
hs can only involve vectorsmI with mj50 if j >1 ~so thatumI u5m0!, because the functionf 0 ,

see~2.2!, depends only onw and not ona. The evolution ofJh is determined by integrating~2.7!,
if the initial data are known. Theh51 case requires a suitable interpretation of the symbols, g
explicitly by ~2.9!.

Elementary quadrability of the free pendulum equations on the separatrix leads to the f
ing expression for the ‘‘Wronskian matrix’’ W(t) of the separatrix motion for the pendulum
appearing in~2.1!, with initial data att50 given byw5p, I 522g0J0 , i.e.,J1

0 522. The matrix

W~ t !5S w00~ t ! w0l~ t !

wl0~ t ! wll ~ t !
D ~2.13!

is defined to be the solution of the linearization of the free pendulum equation around the
ratrix solution, with dataW(0)51 and withJ051 ~because we use dimensionless solutionsJ, see
~2.10!!,

W~ t !5S 1

coshg0t

w̄~ t !

4

2
sinhg0t

cosh2 g0t S 12
w̄~ t !

4

sinhg0t

cosh2 g0t D coshg0t
D ,

~2.14!

w̄~ t ![
2g0t1sinh 2g0t

coshg0t
.

The evolution of theI ,w components, i.e.,J j
hs with j 50,l ~also identified with the component

with subscripts6, see~2.5!! can be determined fromW(t), by integrating~2.6! for the 0 andl
components, to be

S J2
hs

J1
hsD 5W~ t !S 0

J1
hs~0! D1W~ t !E

0

g0t

W21~t!S 0
F1

hs~t! Ddg0t. ~2.15!

Thus, denoting bywi j ( i , j 50,l ) the entries ofW(t), ~2.15! becomes, forh>1,

J2
hs~ t !5w0l~ t !S J1

hs~0!1E
0

g0t

w00~t!F1
hs~t!dg0t D 2w00~ t !E

0

g0t

w0l~t!F1
hs~t!dg0t,

~2.16!

J1
hs~ t !5wll ~ t !S J1

hs~0!1E
0

g0t

w00~t!F1
hs~t!dg0t D 2wl0~ t !E

0

g0t

w0l~t!F1
hs~t!dg0t,

having used thatJ2
h,s(0)50 because the initial datum forw is fixed and«-independent. Likewise

integration of Eqs.~2.11! for the ↑,↓ components yields, forh>1,
                                                                                                                



t the

s

en-

rrect

can be

s

t
e

, for

e
cen-

ed

6439J. Math. Phys., Vol. 40, No. 12, December 1999 A field theory approach to Lindstedt series . . .

                    
J↓
hs~ t !5J21J0Fg0tS J↑

hs~0!1E
0

g0t

F↑
hs~t!dg0t D 2E

0

g0t

g0tF↑
hs~t!dg0tG ,

~2.17!

J↑
hs~ t !5S J↑

hs~0!1E
0

g0t

F↑
hs~t!dg0t D ,

having used that theJ↓
hs(0)[0 because the initial datum fora is fixed and«-independent.

Equations~2.16! and ~2.17! can be used to find a reasonably simple algorithm to represen
whiskers equations to all ordersh>1 of the perturbation expansion.

2.4. The initial data in~2.16! and~2.17! have to bedetermined by imposing that the solution
(to all orders) become quasiperiodicas t→s`. This is quite easy and~as to be expected! this
condition is simply thatJ1

hs(0), J↑
hs(0) are determined by imposing that the integrals in par

theses become integrals betweens` andt, i.e.,J1
hs(0)5*s`

0
¯ andJ↑

hs(0)5*s`
0

¯ ; see below.
However the latter integrals are no longer necessarily convergent properly~a few examples

suffice to see this!; hence one has to go carefully through the process of imposing the co
asymptotic behavior in order to see what is the meaning to be given to such integrals*s`

t . The
analysis can be found in Refs. 3 and 5. The result is that all expressions under integral sign
written as sums of functions that are rather special, namely,

M ~ t !5sx
~sg0t ! j

j !
ei v8•nt2pg0st, ~2.18!

with x, j ,n,p integers andp>21 ~see below!, so that one has

Jhs~ t !5 (
nPZl 21

(
p521

`

J̃hs~n,p!ei v8•nt2pg0st,

~2.19!

Fhs~ t !5 (
nPZl 21

(
p521

`

F̃hs~n,p!ei v8•nt2pg0st,

where we explicitly write down only the dependence onn andp ~clearly also the fixed constant
like J,J0 ,g0 ,... enter!.

The series turn out to be convergent forst.0; however their sums haveno singularityat
t50 and can be analytically continued forst,0 ~i.e., x>1!. More precisely the functions tha
one has to integrate are contained in analgebraM̂ on which the integration operations that w
need can be given a meaning.

Definition (Ref. 3): LetM̂ be the space of the functions of t which can be represented
some k>0, as

M ~ t !5(
j 50

k
~stg0! j

j !
M j

s~x,vt !, x[e2sg0t, s5signt, ~2.20!

with Mj
s(x,c) a trigonometric polynomial inc with coefficients holomorphic in the x-plane in th

annulus0,uxu,1, with possible singularities, outside the open unit disk, in a closed cone
tered at the origin, with axis of symmetry on the imaginary axis and half opening,p/2, and
possible polar singularities at x50. The smallest cone containing the singularities will be call
the singularity cone of M.

The proper interpretation of the improper integrals*s`
g0tM (t)dg0t, which henceforth will be

denoted byWs`
g0tM (t)dg0t, is simply theresiduumat R50 of the analytic function
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IRM5
defE

s`1 iu

g0t

e2Rg0szM ~z!dg0z, ~2.21!

~whereu is arbitrarily prefixed! which is defined and holomorphic for ReR.0 and large enough
i.e.,

IM ~ t ![«s`

g0t
dg0tM ~t!5

def R dR

2p iR
IRM ~ t !. ~2.22!

By linear extension this defines the integration of function inM̂ for uxu,1. The analyticity inx
around x561 and the remarks that (d/dg0t)IM (t)[M (t), i.e., IM (t)[IM (t8)
1*

g0t8

g0t
dg0tM (t), so thatIM (t) is a special primitive ofM (t) ~at fixeds!, allow us to analyti-

cally continue the result of the integration to a function inM̂. The operatorI maps the algebraM̂
into itself because one checks that on the monomial~2.18! one has

IM ~ t !55 2g0
21sx11ei v8•nt2pg0st (

h50

j
~g0st ! j 2h

~ j 2h!!

1

~p2 isg0
21v8•n!h11 , if upu1unu.0,

g0
21sx11

~sg0t ! j 11

~ j 11!!
, otherwise,

~2.23!

showing, in particular, that the radius of convergence inx of IM , for a generalM, is the same as
that of M. But in general the singularities will not be polar, even when those of theM j

s’s were
such.

We shall see that the casesupu1unu50 do not enter in the discussion~a feature of the method
of Ref. 5!. The complete expression ofXhs(t) becomes

J2
hs~ t !5w0l~ t !I~w00F1

hs!~ t !2w00~ t !~I~w0lF1
hs!~ t !2I~w0lF1

hs!~0s!!5
def

O~F1
hs!~ t !,

J↓
hs~ t !5J21J0~I2~F↑

hs!~ t !2I2~F↑
hs!~0s!!5

def

Ī2~F↑
hs~ t !!,

~2.24!

J1
hs~ t !5wll ~ t !I~w00F1

hs!~ t !2wl0~ t !~I~w0lF1
hs!~ t !2I~w0lF1

hs!~0s!!5
def

O1~F1
hs!~ t !,

J↑
hs~ t !5I~F↑

hs!~ t !,

where O,O1 ,Ī2 are implicitly defined here~and I2 is I applied twice!; and Jhs, Fhs

[(0,0,F1
hs ,F↑

hs) are introduced in~2.9!. While Jhs has nonzero components over both theangle
( j 50,...,l 21) and over theaction ( j 5 l ,...,2l 21) components, theFhs has, as already noted
only the action directions nonzero; the notation 0s means the limit ast→0 from the left~s52!
or from the right~s51!, but below we shall drop the superscript on 0~always clear from he
context because it is the same as the superscripts of the functionsJhs!. Furthermore, with the
definitions~2.19! of F̃↑

hs(n,p) one finds also the property~with the notations in~2.1!!,

F̃↑
hs~0,0!50, ~2.25!

for all h>1.
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We shall repeatedly use that in order to computeJ j
hs we only needJ j 8

h8s with 0< j 8, l ~i.e.,

only J1
h8s , J↑

h8s! andh8,h. This follows from~2.24! and~2.11!; whether we want to compute
an ‘‘action component’’ ~J j

hs , j > l ! or an ‘‘angle component’’ ~J j
hs , j , l ! of Jhs, we only need

the angle components of lower orders, i.e.,J j 8
h8s with h8,h and j 8, l .

2.5. The linearity of the last of~2.24!, together with~2.25! and thet-dependence ofFhs(t) in
~2.19!, implies that the prefixed valueA8 has the interpretation of average actionof the quasip-
eriodic motion on the invariant torus to which the trajectories that we study asymptote; se
third statement in Theorem 1.4. This corresponds to the identity of Ref. 2~see, in the latter
reference, the first of~6.34! and its proof in Appendix~A12!! that follows from the symplectic
structure of the equations of motion, according to a well known argument going bac
Poincare´,15 discussed also in Refs. 9,16. It is a property that generated the qualification of ‘‘twist-
less tori’’ given in Ref. 3 to such tori; the ‘‘dispersion relation’’ linking the frequencies to t
average actionsdoes not changeor is not twistedwhen the perturbation is switched on. This is
property, established in the present context in~33! of Ref. 5, that can be ultimately traced back
the fact that in the above models the twist condition is not needed for establishing a
theorem.

2.6. By combining~2.24! and~2.11!, ~2.12! ~and recalling~2.8!! the representation in terms o
trees is immediate; the integrals in~2.24! and the lower orderXh in ~2.11! becomerecursively
multiple ~improper! integrals over dummy ‘‘time’’ variables.

In this operation each function (2]a f 1(w0(t),a1v8t))mI and (2]w f 0(w0(t)))mI is expanded
as a linear combination of monomialsM (t) having the formsx(sg0t) j ( j !) 21xneiv8•nt with x
5e2g0st; see~2.18!.

The form of ~2.11! shows that the integrations occur in a hierarchical order;hence one can
describe them by a tree. The integrands can be identified by attaching to each node of the
suitably many labels. We shall first illustrate the construction of the trees via two example~in
Sec. III, below!; this can be useful in order to understand the general case~see also Refs. 3 and 5!.

2.7. We shall establish, also recursively, thatJhs will be expanded in monomial like~2.18!
with j 50 andp>0, so that att→6` the quantitiesJhs will approach exponentially fast qua
siperiodic functions describing the motion on the invariant torus. The approach will be pr
tional to e2g0utu or to a higher power of this quantity. This, together with the remark that at o
0 ~i.e., on the unperturbed motion! the approach is precisely proportional toe2g0utu ~in the I, w
coordinates!, will imply that at least forj 50,l ~and ‘‘generically’’ also for the other coordinates!

lim
t→`

1

st
loguJ j

s~ t !u215g0 , ~2.26!

i.e., that the Lyapunov exponents of the torus are6g0 .
Before stating the general graphical rules to represent~2.24! in terms of explicitly performed

integrals, we discuss in detail two examples; understanding them facilitates enormously, we
the understanding of the general cases which will be exposed referring to the examples to m
more concrete.

III. TWO EXAMPLES OF THE TREES CONSTRUCTION

3.1. We discuss how to make more explicit~2.24! by performing two ‘‘third order’’ examples.
The first order reduces trivially to the first order formulas~Mel’nikov integral!; the second order
is also a bit too simple and is left to the reader; the first two orders will be, of course, impl
done below, because to compute the third order one needs the first and second, too.

To third order the last line in~2.24! givesJ↑
3s(t)5I(F↑

3s)(t), whereF↑
3s can be expressed

through the first equation in~2.11!, so that, forj 5 l 11,...,2l 21, one has
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F j
3s52

1

2
]a j

]w
2 f 1J2

1sJ2
1s2]a j

]w f 1J2
2s2 (

p51

l 21

]a j
]ap

]w f 1Jp
1sJ2

1s

2
1

2 (
p,q51

l 21

]a j
]ap

]aq
f 1Jp

1sJq
1s2 (

p51

l 21

]a j
]ap

f 1Jp
2s , ~3.1!

whereJ1s andJ2s can be written by using once more~2.24! ~the first two lines only as per the
general remark in the last paragraph of Sec. II, 2.4!.

We consider explicitly two contributions toJ↑
3s(t). Recalling thats51 corresponds to the

stable manifold ands52 to the unstable one, the first will be

1

2 «s`

g0t
dg0tv0

~2]a japaq
f 1~w0~tv0

!,a1v8tv0
!Jp

1s~tv0
!Jq

1s~tv0
!, ~3.2!

arising from the fourth contribution in the r.h.s. of~3.1!. The contribution~3.2! can be written
more explicitly, by using again the expression forJ↓

1s in ~2.25!, as

1

2 «s`

g0t
dg0tv0

~2]a japaq
f 1!~tv0

!Ī2~2]ap
f 1~tv1

!!~tv0
!Ī2~2]ap

f 1~tv2
!!~tv0

!, ~3.3!

where theĪ2 operations involve, see~2.24!, integrations over variables that we can calltv1
,tv2

and the derivatives off 1 are evaluated at (w0(tvn
),a1v8tvn

), n50,1,2. Such variables hav
been indicated explicitly using the abbreviated notation (tvn

) and with a obvious abuses of nota
tion ~they should not appear at all, excepttv0

, being dummy!.

The second example is obtained by considering the contribution withh2
052 from the first line

of ~2.11!, i.e., the second contribution in the r.h.s. of~3.1!,

«s`

g0t
~2]a jw

f 1!~tv0
!J2

2s~tv0
!dtv0

, ~3.4!

still imagining the derivatives off 1 evaluated at (w0(tv0
),a1v8tv0

). This contribution will be

the sum of several terms, becauseJ2
2s(tv0

) has to be expressed by using~2.24! and ~2.11!. One
of the ~many! contributions will be

1

2 «s`

g0t
dg0tv0

~2]a jw
f 1!~tv0

!O~2]w
3 f 0~tv1

!O~2]w f 1~tv2
!!~tv1

!

3O~2]w f 1~tv3
!!~tv1

!!~tv0
!, ~3.5!

where theO operations involve, see~2.24!, integrations over variables that we can calltv1
, tv2

,
tv3

and the derivatives off 0 , f 1 are evaluated at (w0(tvn
),a1v8tvn

), n50,1,2,3. Such variables
have been indicated explicitly with the same abuse of notation as above; and the dependent
of the derivatives off 0 , f 1 has again been simply denoted by adding the symbol (tvn

) instead of
the full argument (w0(tvn

),a1v8tvn
).
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A complete representation of the above two contributions toJ j
3s(t) is given,with enormous

notational simplification, by the trees in Fig. 2, where the labels on the nodesv are denoteddv , j v
and those on the lineslv are denotedj lv

.
The labeldv50,1 on the nodev indicates selection off dv

, i.e., of f 0 or f 1 , the label j v

denotes a derivative with respect tow if j v5 l or with respect toa j v
if j v5 l 11,...,2l 21. For the

label j lv
associated with the branchlv following v, one hasj lv

5 j v2 l for all v except for the
highest nodev0 , for which one hasj lv0

5 j v0
. In the examples above,~3.3! and~3.5! correspond,

respectively, to the first figure in Fig. 2 withj v0
5 j , j v1

5p1 l , j v2
5q1 l and to the second with

j v1
5 j v2

5 j v3
5 l , j v0

5 j , ~hencej lv1
5 j lv2

5 j lv3
50, j v0

5 j !. In the examples the labelsp,q cor-

respond to]ap
,]aq

in ~3.3!.
3.2. Remark:The exception for the meaning ofj lv0

is convenient, in the above cases, as

integration overtv0
differs from the others: the inner ones evaluateJ j

hs for j 50,...,l 21, because
the functionsf 0 , f 1 only depend on the angle variables~see the last paragraph in Sec. II!; the last
integral, however, evaluates in the examples a component ofJ↑

hs ~which is labeled j 5 l
11,...,2l 21!, but, in general,j can be any valuej 50,...,2l 21. Note that this is not so for the
inner labelsj l which must be angle labelsj l50,...,l 21. So, in general, we shall have that th
value of a tree withj lv0

5 j contributes toJ j
hs .

IV. TREES AND FEYNMAN GRAPHS APPROACH TO WHISKERS CONSTRUCTION:
THE GENERAL CASE

We now proceed to describe the general case.
4.1. To compute the splitting vector we only need to consider the variablet equal to 0.

However we shall be also interested inJhs(a,t) for st.0, for instance in order to study how fa
the invariant torus is approached by the motions on its stable and unstable manifolds~to obtain its
Lyapunov exponent!. Hence it will be natural to attribute the labelt to the root: this will also
remind that the integral overtv0

has to be performed betweens` and t, ~the values52

corresponds to the unstable manifold and the values51 corresponds to the stable one!. Since we
shallneverconsider the stable manifold fort.0 or the unstable fort,0 the value ofs will be the
same as that of the sign oft.

We shall be interested in computing not onlyX↑
s(0;a)2A8 ~or X↑

s(t;a)2A8!, as in Ref. 8,
but, more generally,Xs(t;a)2X0(t;a), with s5signt, ~hereX0 denotes the unperturbed mo
tion!.

In general the rules to expressXs(t;a)2X0(t;a) as sum of ‘‘values’’ associated with tree
will be described now, assuming that the reader follows us by applying and checking them
special cases~3.3!, ~3.5!, illustrated in Fig. 2.

The reader might be helped in following the construction of the algorithm to express the
and unstable manifolds below, by keeping in mind that we simply decompose the~quite involved
and recursively defined by~2.24!, ~2.11!! expressions for the whiskers, so far obtained,further.

The purpose being of reducing their evaluation tovery elementary algebraic operations;
ultimately just products of simple factors associated with the nodes~and their labels! of a tree, that

FIG. 2. Graphic representation of the contributions~3.3! and ~3.5!.
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we shall call ‘‘coupling constants,’’ and of factors associated with the branches~and their labels!,
that we shall call ‘‘propagators,’’ each of which can be trivially evaluated and trivially boun

To each node we attach anorder labeldv50,1, see Fig. 2, and a corresponding functionf dv
;

if a nodev bears a labeldv51 the associated functions isf 1 and if it bears a labeldv50 it is f 0 .
To each nodev of a treeq, see Fig. 1, we associate an integrationtime variabletv and an

integration operation, which corresponds toĪ2 or O if the nodeis not the highest nodev0 and to

Ī2 or O or I or O1 if the nodev is the highest, i.e.,v5v0 . This is so because in the first case~a
‘‘lower node’’! one must use the first two equations in~2.24! because in~2.11! only angle
components ofXhs appear, while in the second case~that of the highest node! one can use all of
~2.24! since we can evaluate either an angle coordinateJ j

hs(a,t), j , l , or an action coordinate
j > l .

When v,v0 the choice between the two possibilities will be marked by anaction label jv
associated with each node; ifj v5 l , v,v0 , then we chooseO, if j v5 l 11,...,2l 21, v,v0 , we

chooseĪ2.
Whenv is the highest nodev0 , there are therefore more possibilities; to distinguish betw

them we use theaction label jv0
and thebranch label jlv0

, which can be equal either toj v0
or to

j v0
2 l . So whenv5v0 and j v0

5 l , we chooseO if j lv0
5 j v0

2 l 50 andO1 if j lv0
5 j v0

5 l , see

~2.24!, while whenv5v0 and j v0
. l , we chooseĪ2 if j lv0

5 j v0
2 l andI if j lv0

5 j v0
, see~2.24!.

As said in Remark 3.2, the meaning of the branch label is that a tree withj lv0
5 j is a graphic

representation of a ‘‘contribution’’ toJ j
hs . Therefore if j lv0

> l we call the branch anaction

branchand if j lv0
, l we call it anangle branch.

In the first of the figures in Fig. 2 integrals with respect to the nodesv1 , v2 are of the typeĪ2.
In the second the integrals over thetvn

, n51,2,3, are all of the typeO. In both cases the integral

over tv0
are of the formI because we fixedj lv0

5 j . l to be an action label. We can associate

branch labelj lv
also to the inner branches withv,v0 ; however, in this case one has necessa

j lv
5 j v2 l because the inner branches necessarily represent angle componentsJ j

hs with j , l , see

~2.11!. Hence no information is carried by such labels that we define only for uniformity
notation. The latter labels appear in Fig. 2 asj,p,q in the first tree and asj, 0, 0, 0 in the second
one. The labelsj l corresponding to the lines pertaining to a nodev determine, as in the example
of Sec. III, which derivatives have to be taken of the functionf dv

which is associated withv; each

line lv with label j lv
corresponds to a derivative off dv

with respect tow if j lv
50 or to a j lv

if

0, j lv
, l .

The integrations over the node timestv must be thought of as improper integrals, in the abo
sense, froms` to eithertv8 or 0 because~2.24! contains various integrals between such extrem
It will be convenient to distinguish between such terms.

This can be easily done by adding, on each node, a new labelrv also equal to 0, 1; ifrv
51 this means, naturally, that in the evaluation of the integration operations relative to the
v we select the terms that correspond to integrations betweens` andtv8 while if rv50 we select
the integrations betweens` and 0. We shall imagine that also the highest node carries a laberv0

which is 1 necessarily if we consider onlyJ↑(t) ~because this implies that the function associa
with the highest node must appear differentiated with respect to aa-component, see above an
~2.11!!, but which could be 0 for the other components ofJ(t). Recall also that in this cas
tv8[t, see~2.24!.

We remark that the hierarchical structure of the integrations implies that ifrv51 and ifv8 is
the node immediately following~in the direction of the root! v along the tree then one hastv
.tv8 if s51 andtv,tv8 if s52, while tv , tv8 have the same sign but are otherwise unrela
if rv50; see~2.24! and check this in the examples.
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Besides the labels already introduced also the labelsrv50,1, just described but not shown i
Fig. 2, should be imagined carried by each node.

Given a tree labeled as above we pick up the nodesv with rv50 which are closest to the roo
and consider the subtrees having such nodes as highest nodes. We call each such subtree,
such nodetogether with the subtrees ending in it~and its labels!, a leaf. @This definition is slightly
different from the one given in Ref. 5, where the leaf represents a collection of trees an
explained below, is related to a resummation operation~see also comments in Sec. IV, 4.3 ite
~v!, below, and~4.27!!, that we do not consider here.# The name is natural if one imagines
enclose the part of the tree including the nodev itself and half of the linelv into a circle~or, more
pictorially, into a leaf shaped contour!: hence, to whom tries the drawing, it will look like th
venationsof a leaf and the half line outside it will look like itsstalk.

All nodes which do not belong to any leaves will be calledfree nodes; they carry, by con-
struction, a labelrv51, so that the corresponding time variables are hierarchically ordered
the lowest nodes up to the root; i.e., ifw,v thentw,tv if s51 andtw.tv if s52. Given a
treeq let us callq f the set of free nodes inq, and callQL the set of highest nodes of the leave

Eachf dv
function, associated with the nodev with order labeldv , can be decomposed into it

Fourier harmonics. This can be done graphically by adding to each nodev a mode label nI v
5(n0v ,nv)[(nv ,nv)PZl , with unvu<N and unvu<N0 , that denotes the particular harmonic
selected for the nodev. If ( j v ,dv ,rv ,nI v) are the labels ofv we will associate withv the quantity

f
nI v

dvei (v•nvtv1nvw0(tv)) multiplied by appropriate products of factorsinv ~one perw-derivative! and

inv j ~one pera j -derivative,j 5 j lv
!. If the mode labelsnI v are specified for eachv we shall define

themomentumn(v) ‘‘flowing’’ on a branchlv as the sum of all the angle mode componentsnw

of the nodesw precedingthe branch, withv included,

n~v !5
def

(
wPq,w<v

nw ; ~4.1!

the momentumn(v0) flowing through the root branch will be called thetotal momentum~of the
tree!.

We shall define also thetotal free momentumof the tree as the sum of the mode labels of t
free nodes; more generally, for any free nodev we can define thefree momentumflowing through
the branchlv as

n0~v !5 (
wPq f ,w<v

nw . ~4.2!

For instance, in the above examples the two contributions~3.3!, ~3.5! ~represented by Fig. 2! are
decomposed into sums of several distinct contributions once therv and the mode labelsnv are
specified.

Likewise we can look at a leaf as a tree; the momentumn8 flowing through its stalk will then
be called the internalleaf momentum. Note that its value givesno contributionto the total free
momentum of the tree to which the leaf belongs.

The free momenta will turn out to describe the harmonics of the time dependent quasipe
motion around the invariant tori, while the Fourier expansion modes ofXhs(t;a) as a function of
a are related to the sum of the free momentaand of all the internal leaf momenta. This is a
important difference: it is a property stressed in Ref. 3 where it is referred as ‘‘quasiflatn
source of the main difficulties and interest in the theory of homoclinic splitting, see Refs. 3,
7.

4.2. The trees contributions of the examples of Sec. III will be sums over the various lab
‘‘values’’ of trees decorated by more labels,
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1

2 «s`

g0t
dg0tv0

~2 inv0 j !~ inv0p!~ inv0q! f nI v0

1 ei ~nv0
•v8tv0

1nv0
w0~tv0

!!

•Ī2~~2 inv1p! f nI v1

1 ei ~nv1
•v8tv1

1nv1
w0~tv1

!!!~rv1
tv0

!

•Ī2~~2 inv2q! f nI v2

1 ei ~nv2
•v8tv2

1nv2
w0~tv2

!!!~rv2
tv0

!, ~4.3!

for ~3.3! and

1

2 «s`

g0t
dg0tv0

~2 inv0 j !~ inv0
! f nI v0

1 ei ~nv0
•v8tv0

1nv0
w0~tv0

!!O~~2 inv1
! f nI v1

0 einv1
w0~tv1

!

•O~~2 inv2
! f nI v2

1 ei ~nv2
•v8tv2

1nv2
w0~tv2

!!!~rv2
tv1

!

•O~~2 inv3
! f nI v3

1 ei ~nv3
•v8tv3

1nv3
w0~tv3

!!!~rv3
tv1

!!, ~4.4!

for ~3.5!, with the conventions following~3.3! about the dummy integration variables.
The integration operations are still fairly involved, as it can be seen from~2.24! and from the

expressions forĪ2 andO. With the above conventions for the dummy variables and noting
for any functionF in M̂,

Ī2~F~t!!~ t !5J21J0~I~g0~ t2t!F~t!!~ t !2I~g0~ t2t!F~t!!~0!!, ~4.5!

we see that the integration over thetv has~by ~2.24!! one of the two forms, whenrv51 andv8
is not the root~so thatj lv

5 j v2 l !,

~1! I~~w0l~tv8!w00~tv!2w00~tv8!w0l~tv!!•ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~tv8!, j lv
50,

~2! I~g0~tv82tv!•ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~tv8!, 0, j lv
, l , ~4.6!

whereGv(tv) is a function that depends on the structure of the tree formed by the nodes pre
v and by the labels attached to the nodes. Ifrv50 it has one of the two forms

~1! w00~tv8!I~w0l~tv!ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, j lv
50,

~2! I~g0tvei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, 0, j lv
, l . ~4.7!

Whenv8 is the root the operations involved in the evaluation of thetv-integral are slightly
different if j lv0

5 j v0
, i.e., if we are considering contributions to the action coordinates~if j lv0

5 j v0
2 l we still have integrations of the form~4.6! or ~4.7!!. If j lv0

5 j v0
the integrations are

particularly simple if we are interested in the evaluation of the splitting vector~1.7!, that is j v0

. l and t50; in such a case the last two of~2.24! are relevant and settingv5v0 the integration
over tv0

is the value fortv8 of

~1! I~w00~tv!ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, j lv
5 l ,

~2! I~ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, j lv
. l , ~4.8!

because, iftv850, one haswll (0)51 andwl0(0)50; see~2.14! and the last two of~2.24!.
More generally, iftv08

5tÞ0, settingv5v0 and r 5v08 , one defines forrv0
51,
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~1! I~~w0l~tv8!w00~tv!2w00~tv8!w0l~tv!!•ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~tv8!, j lv
50,

~2! I~g0~tv82tv!•ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~tv8!, 0, j lv
, l ,

~3! I~~wll ~tv8!w00~tv!2wl0~tv8!w0l~tv!!•ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~tv8!, j lv
5 l ,

~4! I~ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~tv8!, j lv
. l, ~4.9!

~see the last two relations in~2.24!! and forrv0
50

~1! w00~tv8!I~w0l~tv!ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, j lv
50,

~2! I~g0tvei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, 0, j lv
, l .

~3! wl0~tv8!I~w0l~tv!ei ~v8•nvtv1nvw0~tv!!Gv~tv!!~0!, j lv
5 l ,

~4! 0, j lv
. l ; ~4.10!

note that, fortv85t50 and j lv0
> l , ~4.9! and ~4.10!, summed together, give~4.8!.

Hence each node still describes a rather complicated set of operations: it is, therefore,
nient to consider separately the terms that appear in~4.6!–~4.10!. This can be done by simply
adding further labels at each node. To this end, looking at the integrals in~4.7! and ~4.10!, at
rv50, and in ~4.6! and ~4.9!, at rv51, we see that the following kernels are involved in t
integrals:

wj lv

0 ~tv8 ,tv!5H w00~tv8!w0l~tv!, v.v0 , j v5 l→ j lv
50,

g0tv , v.v0 , j v. l→0, j lv
, l ,

wj lv0

0 ~ t,tv0
!55

w00~ t !w0l~tv0
!, j v0

5 l , j lv0
50,

g0tv0
, j v0

. l , 0, j lv0
, l ,

wl0~ t !w0l~tv0
!, j v0

5 l , j lv0
5 l

0, jv0
.l, jlv0

.l,

~4.11!

wj lv

1 ~tv8 ,tv!5H w0l~tv8!w00~tv!2w00~tv8!w0l~tv!, v.v0 , j v5 l→ j lv
50,

g0~tv82tv!, v.v0 , j v. l→0, j lv
, l ,

wj lv0

1 ~ t,tv0
!55

w0l~ t !w00~tv0
!2w00~ t !w0l~tv0

!, j v0
5 l , j lv0

50,

g0~ t2tv0
!, j v0

. l , 0, j lv0
, l ,

wll ~ t !w00~tv0
!2wl0~ t !w0l~tv0

!, j v0
5 l , j lv0

5 l ,

1, jv0
.l, jlv0

.l,

respectively appearing in~4.7! and ~4.10!, at rv50, and in~4.6! and ~4.9!, at rv51.
The function in~4.11! involving the Wronskian matrix elements can be computed from~2.14!

and one finds, for instance, that the function in the seventh row on the r.h.s. is
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w0l~tv8!w00~tv!2w00~tv8!w0l~tv!5
1

2 H g0~tv82tv!

coshg0tv8 coshg0tv
1

sinhg0tv8
coshg0tv

2
sinhg0tv

coshg0tv8
J ;

~4.12!

hence if we consider~4.6!–~4.10! we note that the integrals overtv involve functions that can be
written, for r5rv , t5tv , t85tv8 and for suitable coefficientscj (r,a,v), ~r51 if we consider
~4.6!, ~4.9! andr50 if we consider~4.7!, ~4.10!!,

(
a521

2

Tr
~a!~rt8,t!Y~a!~t8,t!cj~r,a,v !, ~4.13!

whereY(a)(t8,t) are given, ifx5e2sg0t andx85e2sg0t8, by

Y~21!~t8,t!5
1

2

sinhg0t

coshg0t8
exp@ inw0~t!#5 (

k851

`

(
k521

`

yn
~21!~k8,k!x8k8xk,

Y~0!~t8,t!5
1

2

exp@ inw0~t!#

coshg0t8 coshg0t
5 (

k851

`

(
k51

`

yn
~0!~k8,k!x8k8xk,

~4.14!

Y~1!~t8,t!5
1

2

sinhg0t8

coshg0t
exp@ inw0~t!#5 (

k8521

`

(
k51

`

yn
~1!~k8,k!x8k8xk,

Y~2!~t8,t!5exp@ inw0~t!#5 (
k50

`

ỹn
~2!~0,k!xk, k8[0;

~with k8 odd in the first three functions!, which define the coefficientsyn
(a)(k8,k) for a521,0,1,2

~it is easily checked thatk8 is odd in the first three relations! and we set, fora521,0,1,2,

Tr
~a!~rt8,t!5H g0~t82t! if a is either 0 or 2 andr51,

g0t if a is either 0 or 2 andr50,

1 if a is either 21 or 1.

~4.15!

Likewisewe shall set, defining the coefficientsỹn
(a)(k8,k), for a521,0,1, andȳn

(21)(k8,k),

Ỹ~a!~t8,t!52tanhg0t8Y~a!~t8,t!5
def

(
k852a

`

(
k5a

`

ỹn
~a!~k8,k!x8k8xk, a561,

Ỹ~0!~t8,t!52tanhg0t8Y~0!~t8,t!5
def

(
k851

`

(
k51

`

ỹn
~0!~k8,k!x8k8xk,

Ỹ~2!~t8,t!5Y~2~t8,t!5
def

(
k51

`

ỹn
~2!~0,k!xk, ~4.16!

Ȳ~1!~t8,t!5
coshg0t8

coshg0t
exp@ inw0~t!#5

def

(
k8521

`

(
k51

`

ȳn
~1!~k8,k!x8k8xk,

T̃1
~0!~t8,t!5g0~t82t!, T̃1

~2!~t8,t![1, T̃0
~0!~0,t!5T0

~0! ,
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wherek8 is odd except that forỸ(2)(t8,t); in all other cases theT,T̃,T̄-functions will be defined
1 ~no matter which is the value of the labels that we attribute to them!; this is done to uniformize
the notation.

The labelk will be called theincoming hyperbolic modeandk8 theoutgoing hyperbolic mode
for reasons that become clear by contemplating~4.19! below.

In terms of~4.14!–~4.16! the functions~4.11! multiplied by exp@invw
0(tv)# can be expressed a

in ~4.13!, thus defining implicitly the coefficientscj (r,a,v) in ~4.13!,

wj lv

0 ~tv8 ,tv!exp@ invw0~tv!#

5H T0
~0!~0,tv!Y~0!~tv8 ,tv!1Y~21!~tv8 ,tv!, j lv

5 j v2 l 50,

T0
~2!~0,tv!Y~2!~tv8 ,tv!, 0, j lv

5 j v2 l , l ,

wj lv0

0 ~ t,tv0
!exp@ inv0

w0~tv0
!#

55
T0

~0!~0,tv0
!Y~0!~ t,tv0

!1Y~21!~ t,tv0
!, j lv0

5 j v0
2 l 50,

T0
~2!~0,tv0

!Y~2!~ t,tv0
!, 0, j lv0

5 j v0
2 l , l ,

T̃0
~0!~0,tv0

!Ỹ~0!~ t,tv0
!1Ỹ~21!~ t,tv0

!, j v0
5 j lv0

5 l ,

0, jv0
5jlv0

.l,

~4.17!

wj lv

1 ~tv8 ,tv!exp@ invw0~tv!#

5H T1
~0!~tv8 ,tv!Y~0!~tv8 ,tv!1Y~1!~tv8 ,tv!

2Y~21!~tv8 ,tv!, j lv
5 j v2 l 50,

T0
~2!~tv8 ,tv!Y~2!~tv8 ,tv!, 0, j lv

5 j v2 l , l ,

wj lv0

1 ~ t,tv0
!exp@ inv0

w0~tv0
!#

5

¦

T1
~0!~ t,tv0

!Y~0!~ t,tv0
!1Y~1!~ t,tv0

!

2Y~21!~ t,tv0
!, j lv0

5 j v0
2 l 50,

T1
~2!~ t,tv0

!Y~2!~ t,tv0
!, 0, j lv0

5 j v0
2 l , l ,

T̃1
~0!~ t,tv0

!Ỹ~0!~ t,tv0
!1Ỹ~1!~ t,tv0

!1

2Ỹ~21!~ t,tv0
!)1Ȳ~1!~ t,tv!, j v0

5 j lv0
5 l ,

T̃1
~2!~ t,tv0

!Ỹ~2!~ t,tv0
!, j v0

5 j lv0
. l .

One could avoid introducing theT̃ functions as they are simply related to theT functions or are
just identically 1: however it is convenient to introduce them to make the above formulas
symmetric and therefore easier to keep in mind while working with.
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Finally, we define the coefficientsj j (k8,0) by the power series expansion,

1

coshg0t8
5 (

k851

`

j l~k8,0!x8k8, k8>1, odd,

~4.18!
15j j~0,0!, j . l ,

wherex85e2sg0t8 andk8 is odd, which occurs as coefficientw00(t8) in ~4.7! ~whenrv50, i.e.,
vPQL!.

The above definitions~taken from~42! and~45! in Ref. 5! suffice to discuss the whiskers~and
therefore the splitting in the action variables!.

The ~4.13! allow us to introduce a ‘‘relatively simple notation;’’ we can add to each nod
badgelabelav5(21,0,1,2) that will distinguish which choice we make between the possibil
in ~4.14! and~4.16! and twohyperbolic modelabelskv8 , kv which select which particular term w
choose in the sums in~4.14! and ~4.16!; they are integer numbers>21. We shall not have to
introduce labels to distinguish terms coming from the expansions ofY(a), Ỹ(a), Ȳ(a) bearing the
same badgea because one can check that the labelsav together withj v and v itself uniquely
determine which choice has to be made.

In terms of the latter labels we can define ahyperbolic momentumof a line lv as a label
p(v)PZ which will be the sum of all the hyperbolic modes of the nodes that precedev plus the
incoming hyperbolic mode of the nodev itself: this is the sum of the labelskw associated with all
free nodesw<v, with v included, and of the labelskw8 associated with all thefreenodesw,v or
highestnodes of the leavesw,v, with v not included,

p~v !5kv1 (
wPq f
w,v

~kw1kw8 !1 (
wPQL
w,v

kw8 . ~4.19!

A very important propertyis that kw1kw8 >0, by ~4.14! and ~4.16!, and kw8 >0 if wPQL , by
~4.18!, so thatp(v)>21. Furthermore ifp(v)50 theneither kv521 andkw1kw8 50 for all
w,v except one single nodew̃,v ~which is either inq f or QL! for which kw̃1kw̃8 51, or kv
50 andkw1kw8 50 for all w,v. If p(v)521 thenkv521 andkw1kw8 50 for all w,v.

In the above analysis we have not taken explicitly into account the possibility of contribu
to F1

hs coming from the third line in~2.11!, i.e., counterterm contributions. They are, of cour
possible and they can be taken immediately into account in the graphical representation b
sidering the nodes with a labeldv50 and adding to them acounterterm labelkv , a non-negative
integer. If kv50 this will mean that the node represents a contribution from the first line of
definition ofF1

hs , i.e., a contribution that is unrelated to the counterterms, while ifkv>1 the node
represents a contribution from the term withp5kv in the second line contribution toF1

hs in
~2.11!.

4.3. The trees carry, at this point, quite a few decorating labels and each tree together w
its labels will represent a ‘‘very simple’’ contribution to the value of thehth order coefficient in
the Taylor expansion in« ~at fixedh of course! of the Jhs vector. Very simple means that th
improper integrals that correspond to each term are very easy to evaluate explicitly and le
result that can be expressed as a product of factors determined by the labels of the tr
associated with the nodes and with the lines, see~4.30!, below. We list here the set of labels th
have been introduced,

j v action labels,
j lv

branch labels,
dv order labels,
rv leaf labels,
nv mode labels,
n(v) momentum in the branchlv following v,
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n0(v) free momentum in the branchlv following v,
av badge labels,
(kv8 ,kv) hyperbolic mode labels,
p(v) hyperbolic momentum in the branchlv following v,
kv counterterm labels.

There are some constraints between the labels, which follow from the rules stated in Se
4.1 and IV, 4.2 and from the choice of the counterterms~the latter will be discussed in Sec. IV, 4.
below!,

~1! one hasj lv
5 j v2 l if v,v0 and j lv

5 j v or j lv
5 j v2 l if v5v0 ~see Sec. IV, 4.1!;

~2! if rv50 thenavÞ1, ~see~4.17!!;
~3! if j lv

Þ0, l, thenav52, otherwise ifj lv
50,l , thenav can be21, 0, 1,~see~4.17!!;

~4! dv50 implies j v5 l ~by thea-independence off 0!;
~5! kv , kv8 , p(v)>21, ~see~4.14!, ~4.16! and comment following~4.19!!;
~6! (p(v),n0(v))Þ(0,0), see Remark 4.6 below.

In terms of such labels, given a decorated treeq0 with m0 nodes and with highest nodev0 ,
we can define thevalueof a subtreeq with m free nodes, highest nodew ~preceding the highes
nodev0 of q0 : w<v0! and labelj lw

50,...,l 21, rw50,1. It will be given by the expression

Val~q!5F )
vPq f
v<w

«s`

rvg0tv8dg0tvVv~q!G F )
vPQL

Lv~q!GF )
vPq f
dv50

gkv
~g0!G , ~4.20!

where the integration is the improper integrationI ~in the sense of Sec. II, 2.4!, the treeq consists
of a ‘‘free’’ m-nodes treeq f with leaves attached to a~possibly empty! subset of the nodes ofq f ,
and the following notation has been used:

~i! The coefficientsVv(q) and Lv(q) are described by the collection of labels enumera
above. They can be written, respectively, as

Vv~q!5F̄nI v
T̂rv

~av!
~rvtv8 ,tv!ei v8•nvtvxv

kv )
wPq
w85v

xv
kw8 ~21!dav ,21ŷnv

~av!
~kv8 ,kv!, ~4.21!

and

Lv~q!5j j v
~kv8,0!L j vn~v !

hvs
~q!, ~4.22!

wherexv5exp@2sg0 tv# and ŷnv

(av) ,T̂rv

(av) are ~see~4.17!! either

~a! ynv

(av) ,Trv

(av) , if either v,v0 or v5v0 and j lv0
5 j v0

2 l , or

~b! ỹnv

(av) or ȳnv

(1) and T̃rv

(av) or T̄rv

(av) , if v5v0 and j lv0
5 j v0

.

Furthermorerv51 if v,w, while rw can be either 0 or 1;j lw
can have any value 0,...,2l

21 if w5v0 , in any other casej lv
50,...,l 21 ~see above!. In ~4.21!

F̄nIv
5SJ0

J D~12djv ,l!~12djv ,jlv
!

fnIv

dvF~2inv!jv2l )
wPq
w85v

~inv!jw2lG ~4.23!

depends on the labels (d,nI , j ) of the nodev and of its predecessorsw’s ~recall that by~2.2! nI v

5(nv ,nv)!; in ~4.22! the quantityL j vn(v)
hvs (q) is called the ‘‘value of the leaf’’ v of orderhv ~see

item ~v! below for its definition!. The matrixJ is not, in general, a multiple of the identity an
J0J21 will be interpreted as acting on the rotator components ofnI v ~and it will be 1 when raised
to the power 0!.
                                                                                                                



rm of
m

.

ered

e
s

sively

-
dified

at the

6452 J. Math. Phys., Vol. 40, No. 12, December 1999 Gallavotti, Gentile, and Mastropietro

                    
~i! For the purposes of the cancellations analysis performed in Appendix C, the exact fo
a few coefficients among theynv

(av)(kv8 ,kv)’s turns out to be essential, so that we list the

here,

ynv

~21!~2,21!50, ynv

~21!~1,21!5s/2, ynv

~21!~1,0!52inv ,

ynv

~1!~0,1!50, ynv

~1!~21,1!5s/2, ynv

~1!~21,2!52inv ,

ynv

~2!~1,0!50, ynv

~2!~0,0!51, ynv

~2!~0,1!54invs. ~4.24!

The coefficientsỹ(21)(1,21), ỹ(21)(1,0), ỹ(1)(21,1) and ȳ(1)(21,2) are equal to the
corresponding~i.e., with the same values of the labelsk8,k! y(a)(k8,k) coefficients.

~ii ! The value of a leaf with highest nodev in ~4.22! is not the same as the valueL j vn(v)
hvs

in Ref.

5; this is because of the above mentioned change in notation~see the sixth item in Sec
IV 1!. In Ref. 5 leaf values are defined as sums of the values of all leaves~in the sense we
use now! with fixed order, action label and total momentum. Then the leaf value consid
here,L j vn(v)

hvs (q), is a single contribution to theL j vn(v)
hvs of Ref. 5, and dependsonly on the

part of the treeq consisting of the nodesw<v; if we call qv such a subtree, we can writ
~temporarily, just for the purposes of comparison! the present definition of leaf value a
L j vn(v)

hvs (q)[L̄ j vn(v)
hvs (qv) ~as it depends only on the labels of the subtreeqv!. In order to

make a link between the different notations note thatL j n
hs in Ref. 5 would be, with our

present notations, just the sum

Ljn
hs5

def

(
qv0

PTn,h

j v0
5 j

L̄ j n
hs~qv0

!, ~4.25!

where qv0
is the part of the treeq on which the leaf value really depends andTn,h is

defined after~4.27! below.
Coming back to our notations we define theleaf value Lj n

hs(q), with j 5 j v0
, ~where the the

first and third of~4.11! should be used!, to be the value of a treeq with j lv0
5 j v0

2 l and

rv0
50.

~iii ! By construction~see~2.11! and corresponding comments!, and if QL is the set of highest
nodes in the leaves, the total perturbation orderk of q is

k5 (
vPqf
dv50

kv1 (
vPqf

dv1 (
vPQL

hv5 (
vPq
dv50

kv1(
vPq

dv , m,2k. ~4.26!

~iv! Both the counterterms and the leaf values of a given perturbation order are recur
defined in terms of the same quantities with lower orders. In factgk(g0) admits a graphical
representation as sum of tree values defined as in~4.20! with the difference that the inte
gration operation corresponding to the highest node of the tree has to be suitably mo
~see~4.32! below!.

If Val ~q! is defined as in~4.20! ~and in item~iv! above! then, by construction, one has

J j
hs~ t;a!5 (

nPZl 21
J j n

hs~ t !ei n•a, J j n
hs~ t !5

1

m0! (
q0PTn,h
j lv0

5 j

Val~q0!, ~4.27!

whereTn,h is the collection of all trees with total momentumn and orderh. In ~4.27! m0! 21 is a
combinatorial factor, which depends on the way we count trees: the simplest is to think th
tree branches ofq are pairwise distinct and are distinguished by a label 1,2,...,m0 , if m0 is the
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number of nodes in the treeq. In the latter case, which corresponds to our choice, the facto
simply m0! 21, see Refs. 3, 5, provided we regard as identical two trees that can be overlapp
pivoting the branches entering a node~rigidly, together with the subtree attached to them! around
any node; as in Ref. 3 we shall callnumbered treesthe trees so counted.

4.4Remark:Since the value of any leaf with highest nodev depends only on the labels of th
nodesw<v, Eq. ~4.20! factorizes into a product of leaf values times a product of counterte
~whose value, so far arbitrary, has still to be specified and it will be, in the analysis between~4.31!
and ~4.32! when intervening compatibility requirements will dictate its value! times a factor

F )
vPq f
v<w

«sm

rvg0tv8dg0tvVv~q!G F )
vPQL

jv~kv8,0!G , ~4.28!

which does not depend on the leaves.
4.5. The extra effort with respect to the approach without counterterms developed in R

and 10, gives here~as in Ref. 5! a reward; few combinations of powers of the ‘‘times’’tv appear
in the integrand in~4.21!. The time variables, by~4.21! and ~4.14!–~4.17!, appear only via
exponentials like

e2s~tv2tv8!a or ~tv82tv!e2s~tv2tv8!a, ~4.29!

for some complexa5(g0p(v)2 isv8•n0(v)), yielding, respectively, upon integration,a21 or
a22. Note also that by the hierarchical structure of the trees one hass(tv82tv)>0.

This greatly simplifies the actual performance of the integration operationswhich, once one
gets familiarity with the formalism, are trivial. One can say that the absence of high powers
tv’s is due to havinga priori fixed the Lyapunov exponentg0 by means of the counterterms~by
contrast in Refs. 3, 10 arbitrary powers oftv appeared becauseg0 is not fixed a priori!.

Of course the triviality of the integrations is entirely due to the abovevery finedecomposition,
into terms identified by labeled trees, of the more compact~but ‘‘difficult’’ to integrate! integrands
appearing in~4.6!–~4.12! and in the middle terms in~4.14!.

Once all the integration operations will have been performed, the tree value in~4.20! will
become a product of ‘‘factors,’’ in complete analogy with what one is accustomed to find wh
definingFeynman graphsin Field Theory. The factors are associated with the nodesv and with
the brancheslv . The value of a treeq will then bedefinedas

Val~q!5ei v8•n0~v0!t2sg0@kv0
8 1p~v0!#tF )

lvPq
vPq f

S 2
sg0

g0p~v !2 isv82n0~v ! D
r vG

•F )
vPq f

F̄nI v
~21!dav ,21ynv

~av!
~kv8 ,kv!G

•F )
vPQL

j j v
~kv8,0!L j vn

hvs
~q!GF )

vPq f
dv50

gkv
~g0!G , ~4.30!

wherer v is either 1 or 2, and the case (n0(v),p(v))5(0,0) has to beexcludedfor any nodev
Pq f . This is not to claim that no trees withn0(v)50, p(v)50 can be drawn by following the
above rules; this is afurther rule to impose on the labels in order that the analysis does not bec
contradictory requires fixing the functiong(«,g0) conveniently; the consistence criterion dete
mines g(«,g0) uniquely. This rule is a natural extension of the corresponding rule holdin
perturbation theory of KAM tori, which was discussed by Lindstedt and Newcomb for the lo
orders of the perturbation expansions and which was proved to hold at all orders by Poin´;15

see the last paragraph in Sec. II, 2.4 above and the Remark 4.6,~c!, below.
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The values of the numbersr v arise from the time variables integrals via the mechanism
illustrated above~whereby one either getsa21 or a22 from the integration of the functions~4.29!!.

The factors2(sg0) r v@g0p(v)2 i v8•n0(v)#2r v, associated with the branches, will be call
propagatorsor small divisors. The first name arises from the possible interpretation of the tree
Feynman graphs of a suitable field theory, see Ref. 17; the second name corresponds to th
name given in Mechanics to such expressions generated by perturbation expansions.

It can be useful to write, ifv0 is the highest node ofq and j lv0
50,

Val~q!5ei v8•n0~v0!t2sg0@kv0
8 1p~v0!#tS 2

sg0

g0p~v0!2 isv8•n0~v0! D
r v0

Val~q!, ~4.31!

so defining the quantityVal(q) ~this is a well known kind of operation on Feynman graphs, wh
associates with a graph another value gruesomely called the value of theamputatedgraph, am-
putated tree in our case!. Moreover we can defineVal(q) also for (n0(v0),p(v0))5(0,0) as no
vanishing denominator appears in its expression. It is however clear that nodes
(n0(v),p(v0))5(0,0) must not appear at all in the trees that we consider, for~4.30! to make sense
as it is written. This implies, not surprisingly, a consistence problem, namely, one has to
that the sum of all theVal(q) over trees of a given order and with (n0(v0),p(v0))5(0,0) cancel
so that lineslv with (n0(v),p(v0))5(0,0) never appear, neither forv5v0 nor for v,v0 .

The cancellation is made possible because we still have freedom to fix the counterterm
their choice is in fact uniquely determined by the conditions that they be such that the n
cancellation takes place. The quantitiesVal(q) are convenient in order to find and to express
counterterms and also the ‘‘resonance values’’ introduced later~see Appendix C!. One checks, see
Appendix A, that the counterterms can be explicitly written, ifTn,h is the collection of all trees
with total momentumn and orderh, as

gk~g0!52 1
2 (

qPT0,k ,av0
521

p~v0!50,n0~v0!50,kv0
8 51

*
Val~q!, ~4.32!

and the* means that the sum is further restricted so that the tree contains no leaves. This
being simply imposed by the requirement that no contribution with (n0(v0),p(v0))5(0,0) can
arise forJ2

hs(t); see Appendix A.
4.6 Remarks:~a! The presence of the counterterms will manifest itself not only through

elimination of the trees whose value would be meaningless if evaluated via~4.30! but also, and
mainly, in the fact that the elements of the algebraM̂ met in the successive integrations have
special form~namely always like one of the~4.29!! which implies that the result of the imprope
integrals isnot as complicated as one could fear from~2.24!. This leads to the simple expressio
~4.32! ~see Appendix A1 of Ref. 3 for what would otherwise happen without counterterms!.

~b! From ~4.31! one sees that ifj lv0
. l it is natural to collect together the terms withp(v0)

50: for them, sincej lv0
. l , in ~4.30! one must havekv0

8 1p(v0)50 by the last of~4.14!. Note

also that by~2.26! the case (n0(v),p(v0))5(0,0) is excluded. Ifj lv0
< l we, likewise, collect the

terms with kv0
8 1p(v0)50 and, for similar reasons the term withkv0

8 1p(v0)521 cannot be

present~see again~4.14! and ~4.16!, and usep(v0)>21 supplemented by the relations betwe
the labelsp(v0) andkv0

8 which will be exhibited in Sec. V 1!.

Hence the cases withp(v0)1kv0
8 521 are excluded by construction@the initial data

Jhs(0,a) were determined precisely by imposing boundedness atst51`, i.e., by imposing the
absence of divergent terms in the expansion in powers ofx5e2g0st which would correspond to
the terms withp(v0)521# and we see that the sum of the values of the trees withp(v0)1kv08

50 give us the equations for the actions and the angles of the invariant torus to whic
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whiskers considered are asymptotic; the terms withp(v0)1kv08
50 asymptote to quasiperiodi

functions ofvt so that replacingvt by cPTl 21 one gets a parameterization of the points on
tori in terms of a pointcPTl 21 on a ‘‘standard torus.’’

And the terms withkv0
8 1p(v0)51 provide the leading corrections. Since such terms

present already to order 0~as one sees from the expression of the pendulum separatrix! the
distance between a point moving on the stable manifold of the torus and the torus itself w
proportional tox5e2g0st asst→` so thatg0 has the interpretation of Lyapunov exponent of t
invariant torus; see~2.26! in Sec. II, 2.6.

~c! Summarizing,the case(n0(v),p(v))5(0,0) has to be ruled out as a consequence
~2.25! and of~4.32!, respectively, for the contributions toJ↑

hs and toJ1
hs (see the last constrain

listed at the beginning of Sec. IV, 4.3). All cases with kv0
8 1p(v0)521 are also excluded.

V. BOUNDS

We now discuss how to bound the value of a tree or of a sum of a small number of trees
we take for simplicity without leaves and without counterterms. The more general case w
eventually reduced, see below, to the one we consider here.

We shall discuss first how to bound values of trees without leaves and counterterms su
p(v0)50 if v0 is the highest node; hence we shall consider trees, always without leave
counterterms, withp(v0)50. At the end we shall see how the presence of leaves and counter
modifies the analysis.

The following discussion is ‘‘locally’’ simple, but ‘‘globally’’ delicate and repeats that in R
5, Sec. IV, the conclusions are also summarized in the Tables I–IV.

From ~4.19! it follows that the hyperbolic momentump(v) is p(v)>21 and, as remarked
after ~4.19!, p(v)50 can occur only in special cases; more precisely ifp(v)50, thenkv is either
21 or 0, and

~1! if kv50, all free nodesw precedingv ~whether immediately or not! havekw8 1kw50, while
~2! if kv521, all free nodesw precedingv havekw8 1kw50, exceptfor a single nodew̃,v such

that kw̃8 1kw̃51.

In the latter case we callP the path of nodes~i.e., the totally ordered set of nodes! which
connectv to w̃, both extremes included~see also Ref. 5, Sec. IV!.

Supposingp(v)521,0 and recalling thatav,2 implies kv8 odd, the expansions~4.14! im-
pose that there arevery few possible choicesof the values of the hyperbolic modes atw<v;

TABLE I. Possible cases whenp(v)50,21.

p(v) kv kv8 av j v

21 21 odd>1 21 l
0 21 odd>1 21 l
0 0 >1 21 l
0 0 >0 2 . l

TABLE II. Casesp(v)50, w¹P.

aw 21 0 1 2
(kw8 ,kw) ~1,21! impossible ~21,1! ~0,0!
p~w! 21 impossible 1 0
j w l impossible l . l
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~1! if there is no path or there is a path linkingv to w̃ but wÞw̃ andw¹P, thenkw1kw850 and
the casesaw51, aw521 and aw52 require, respectively, (kw8 ,kw)5(21,1), (kw8 ,kw)
5(1,21) and (kw8 ,kw)5(0,0): correspondinglyp(w)51, p(w)521 andp(w)50. While,
for wPP, the value ofp(w) ‘‘increases by one unit,’’ i.e.,p(w)52, p(w)50 and p(w)
51 for wPP;

~2! if w5w̃ then kw1kw851 and the casesa w̃51, a w̃521 anda w̃52 require, respectively
(kw̃8 ,kw̃)5(21,2), (kw̃8 ,kw̃)5(1,0) and (kw̃8 ,kw̃)5(0,1) ~correspondinglyp(w̃)52, p(w̃)
50 andp(w̃)51!.

Note that in both casesaw50 is not possible.
The above analysis covers both casesv,v0 and v5v0 , as the functions in~4.14! and in

~4.16! have the same dependence ont ~hence onk!.
The latter properties have to be considered as a further restriction to impose on the tree

and play an essential role for the discussion of the cancellations.5

Moreover if p(v)50, then

~1! if kv50 then v can be preceded only by leaves with the highest nodesw having j w. l ,
becausekw8 must be 0 in such a case, so that the second of~4.18! applies;

~2! if kv521, then all the leaves again must have the highest nodew with j w. l , except at most
one leaf with highest nodew̃ with j w̃5 l andkw̃8 51.

We extend the definition of path also to the casep(v)50, kv50, by settingP5
def

B if j v5 l and

P5
def

v if j v5 l , only for purposes of notational convenience~see below!. This is consistent with the
above tables and does not change them.

5.2.Remark:Note that, if a tree~or subtree! q0 with the highest nodev0 has a total hyperbolic
momentump(v0)50, then there is one and only one pathP, and, if PÞB, thenP connects the
nodev0 to some nodew̃,v0 . In fact, if there is a pathPÞB, the nodew̃ is so defined that
kw̃1kw̃8 51; then if kv0

50 there cannot be any of such nodes~andP5v0 in such a case!, while
if kv0

521 there must be one and only one such node. This simply follows from the analy

Sec. V, 5.1 by noting that all nodesw,v0 exceptw̃ must havekw1kw8 50.
5.3. The small divisors can be really ‘‘small’’ only whenp(v)50: if p(v)Þ0, they are

bounded byg0
2r v, i.e., by a quantity of orderO(1). So one canconsider all free nodes in the tree

among the ones havingp(v)50, which are closest to the root. All free nodesv between them and
the root have propagators which are not small becauseup(v)u>1 ~see also Ref. 5, p. 298!.

Given a treeq0 with m free nodes, from each subtreeq ending in a nodev0 with p(v0)
50 ~herev0 is some node ofq0 : it becomes the highest node ofq!, one obtains contributions
which can be naturally collected together~recall Remark 4.4! into a contribution to the tree valu
~see~4.30!! consisting of a factor

)
v<v0

F̄nI v
Gv@v8•n0~v !#yv8 , ~5.1!

~here the product is over all free nodes precedingv0! times a product of countertermsgkv
(g0) for

TABLE III. Casesp(v)50, wPP, w.w̃.

aw 21 0 1 2
(kw8 ,kw) ~1,21! impossible ~21,1! ~0,0!
p(w) 0 impossible 2 1
j w l impossible l . l
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vPq f with dv50, times a products of factorsj j v
(kv8,0)L j vn(v)

hvs , for eachvPUL ; see~4.30!. The

vectorn0(v) is the free momentum~defined above; see~4.2!! flowing through the branchlv , the
coefficientsyv8 are related to the expansions~4.14! via

yv85H 1
2@ynv

~1!~21,1!1ynv

~21!~1,21!#5s/2 if vPP,avP$21,1%,

~21!dav ,21ynv

~av!
~kv8 ,kv! otherwise

~5.2!

whereP denotes the path inq ~there is always one such path, possibly the empty set, becaus
supposep(v0)50!; andGv@v8•n0(v)# is related to the propagator of the branchlv , and it will
have the form

Gv@v8•n0~v !#55
g0

2@ i v8•n0~v !#22 if v¹P, j v. l ,

2sg0
2@g0

21~v8•n0~v !!2#21 if v¹P, j v5 l ,

g
0

22d j v ,l@2s~g0p~v !2 isv8•n0~v !!#2~22d j v ,l ! if vPP, avÞ21,

g0@ i v8•n0~v !#21 if vPP, av521,

~5.3!

wherep(v)Þ0 in the third line, because
~a! The first line is such because ifj v. l one has necessarilyav52, see Tables I–IV, and we

have to integrate a functiong0(tv82tv)einvw0(tv) so thatkv>0; hencekv5p(v)50 and we have
the second function in~4.29! to integrate.

~b! The second line is such because ifv¹P, j v5 l we havewl
1(tv8 ,tv)einvw0(tv) which is a

sum of three terms~see the third of~4.17!!; the first haskv1kv8>2 so is excluded~recall that
p(v0)50 andv<v0!; while the second only sees the contribution toY(1) with kv8521, kv51, see
~4.14!, and the third only contributes by the term withkv851, kv521 in Y(21). In the two cases
one hasp(v)51 or p(v)521, respectively; adding up together the latter two contributions
using the first of~5.2! to compute the sum of the coefficients we get

2sg0ynv

~1!~21,1!

g02 isv8•n0~v !
2

2sg0ynv

~21!~1,21!

2g02 isv8•n0~v !
5

s

2

22sg0
2

g0
21~v8•n0~v !!2 , ~5.4!

as it can be read from the coefficients in the intermediate column of~4.24! and fromp(v)5av
561.

~c! The third line of~5.3! is obtained by noting that, ifvPP, v.w̃ one hasp(v)511kv , so
that, if j v5 l andavÞ21, thenp(v).0, see Table III; ifv5w̃ andavÞ21, one hasp(v)Þ0,
see Table IV~note thatavÞ2,0 so that we have to consider the first integrand in~4.29!!.

If j v. l , thenav52, and, by the Tables III and IV one haskv850, kv>0 andkv1kv851, so
thatkv51 andp(v)52; while, if v5w, thenkv850, kv>0 andkv81kv51 imply kv51, so that
p(v)51. So in both casesp(v)>1.

~d! The fourth line is found by looking at the Tables III and IV as follows: ifav521, v
PP, v.w̃, one haskv1kv850, hencekv521, kv851 andp(v)50; this happens only ifj v5 l so
that we have to consider the first integral in~4.29! and we get the fourth relation.

TABLE IV. Casesp(v)50, w5w̃.

aw 21 0 1 2
(kw8 ,kw) ~1,0! impossible ~21,2! ~0,1!
p(w) 0 impossible 2 1
j w l impossible l . l
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This shows that the only trees that do not have a value tending to 0 ast→s`, i.e., are those
with p(v0)1kv0

8 50 ~all the others tend to 0 as a power ofx5e2g0st!, have propagators that ar

even functions of the momenta flowing in them. In fact the observation on the absence of
precedingv0 implies that only the first two propagators in~5.3! appear in such trees. Since,
already remarked, the trees withp(v0)1kv0

8 50 give the equations of the tori this is an interesti

check that the tori equations so obtained att51` and t52` do coincide. A similar analysis,
and check, holds for the casesj lv0

< l .

5.4. Remark:Collecting together the contributions fromav521 andav51, for v¹P, is a
convenient operation and has nothing to do with the deeper resummations that imply the c
lations necessary for convergence estimates: the systematic use of this operation should
scribed by adding a label to the trees on the nodesv¹P and replacing on the branches which gi
rise to one of the two propagators in~5.4! the av label by the new label~e.g., a* label which
indicates that we consider the sum of the values of a tree withav51 and one withav521!. We
shall do this without explicitly mentioning the new label, to simplify the notation. Moreover
can no more associate a labelp(v) to a node of this kind, as two factors with differentp(v) label
~p(v)561 for av561! have been considered together; nevertheless we shall modify slightl

definition ofp(v) by settingp(v)5
def

in such a case~and letting it unchanged in all the other case!.
We shall continue to callGv@v8•n0(v)# a propagatoras, for the purposes of the followin

analysis, only such modified version of the original propagators appearing in~4.30! plays a role.
5.5. Furthermore we define thedegree Dof a propagator to beD52 if either v¹P or v

PP, j v. l ~henceavÞ21!, andD51 otherwise~the constraint, see~4.3!, 1<r v<2 implies that
the power to which the divisors appear raised is either 1 or 2!; by extension we shall say that
branchl has degreeDl5D if the corresponding propagator has degreeD.

The coefficientsF̄nI v
andyv8 in ~5.1! satisfy the bounds

uyv8u<4N, )
v<v0

uF̄nI v
u<~CN2!m, ~5.5!

for some constantC depending on the perturbationf 1 in ~2.1!; see~2.6!, ~2.13!, and ~2.18!. For
instance, one can take

C5max$uJ21uJ0,1% max
unu<N0 ,unu<N

u f nI u; ~5.6!

see~4.23!, whereuJ21u is the maximum of the matrix elements of the~diagonal! matrix J21.
To bound the product in~5.1!, we shall consider simultaneously the caseskv0

50,21; if
kv0

50 the pathP is supposed to be reduced to a single node,v0 , or to the empty set,B,
depending on the value ofj v0

~respectively,j v0
5 l , and j v0

. l , see above!.
What follows below and in Appendix B really goes beyond Ref. 5, although it constitut

natural extension of it. From now now let us consider the casel 53 and the Hamiltonian~1.1!.
We shall assume first a condition on the rotation vectors stronger than the Diophantine o

done in Refs. 3, 18, 5, i.e., we suppose that they satisfy astrong Diophantine condition,

~1! C0uv0•nu>unu2t, 0ÞnPZ2, C0
215h21/2C~h!,

~5.7!
~2! min

0>p>n
uC0uv0•nu22pu>2n11, if n<0, 0,unu<~2n13!21/t,

wheren, pPZ, n<0, and

v0[h21/2~V11h1/2J21A1!21v85~1,h21~V11h1/2J21A1!21V2!, ~5.8!
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so thatv8•n5h1/2(V11h1/2J21A1)v0•n. We suppose also thatA1P@2h21/2R,h21/2R#, with
R<JV1/2, so thath1/2(V11h1/2J21A1)>h1/2V1/2.

If we write v85(h1/2V11hJ21A18 ,h21/2V2) then the measure of the set ofA18’s such that
v0 verifies the strong Diophantine condition~5.7! has measure of sizeO(C0

21h23/2).
By reasoning as in Ref. 18, once the case of strong Diophantine vectors has been unde

it can be extended to cover also the case of the usual~weaker! Diophantine condition~expressed
by ~1! in ~5.7! above!. Alternatively one could follow the approach in Ref. 19 avoiding complet
considering condition~2! in ~5.7! and assuming only the ‘‘usual’’ condition~1! in ~5.7!. We shall
not perform such an analysis~which can be easily adapted from the quoted papers!, and we shall
confine ourselves to the case of strongly Diophantine vectors.@Basically the argument is the
following: The analysis that we present does not change if 2p,2n are replaced by exponentials i
another baseq ~larger than 1! or even if they are replaced byg(p),g(n), whereg(p)/q ——→

p→2`
,

and if in the second of~5.7! we substitute 2p,2n11,2n13 by, respectively,g(p),g(n11),g(n
13). One then proves a simple arithmetic lemma~see Ref. 18!, whereby it follows that, if the first
of ~5.7! is verified and if g(p) is suitably chosen, then the second holds withg(p),g(n
11),g(n13) replacing 2p,2n11,2n13.#

Keeping in mind thatC05h21/2e1sh21/2
is enormous we shall say that

~1! Gv@v8•n0~v !# is on scale 1, ifC0uv0•n0~v !u.C0/4, or if p~v !Þ0;

~2! Gv@v8•n0~v !# is on scale 0, if 1/2,C0uv0•n0~v !u<C0/4; ~5.9!

~3! Gv@v8•n0~v !# is on scalen<21, if 2n21,C0uv0•n0~v !u<2n.

5.6. Remark:Note that in the above definition of scale the second and third cases can
only if p(v)50. The propagators on scale 1 can be bounded by 42 if p(v)50 and by 1 if
p(v)Þ0. Note also that the definition of the scalesn50 andn51 is different from Refs. 3 and 5
this is an important modification, exploited in Appendix B, useful in order to take advantage fr
the existence of different scale times.

5.7. As it is well known,~5.1! cannot usefully be bounded by just taking the absolute valu
each factor and bounding the denominators by using the Diophantine condition. This is tru
only if one wants to get the improved bounds that we are studying, but also if one, more mod
wants to show convergence for« small enough; this is a problem usually referred to as a ‘‘small
divisors problem.’’

Useful bounds are nevertheless possible, as shown first in similar cases in Ref. 9, beca
can collect the contributions from the various trees into pairwise disjoint~‘‘ nonoverlapping’’ !
classes whose values add up to a quantity that verifies much better bounds than the ind
elements of the same class. Each classF~q! will be determined by one of its elementsq called a
representative. This means that there are important cancellations within each class.

The classes can be constructed by collecting trees which have the sameresonance structures.
The key notion of resonance is recalled below and the description of the classes will follow

Definition: A ‘‘cluster’’ T of scalenT will be a maximal connected set of branches with sca
n.nT and with at least one branch of scale nT .

A free nodev will be defined to be internal toT, vPT, if at least one of the branches leadin
to it or coming from it, i.e.,pertaining tov ~as defined in Sec. IV!, belongs toT; a leaf with
highest nodev8 will be defined to be internal to the clusterT if v8PT.

A branchlv is calledexternalto T if it does not belong toT but it pertains to a nodev internal
to T, and it said to be enteringT if the nodev8 following it is in T, exiting fromT if vPT ~note
that an external branch ofT is not any branch outsideT!. We define thedegree DT of a clusterT
to be the degree of its exiting branch, and theorder kT of T to be given by the same formula a
~4.26!, with the extra constraint that the nodes are internal toT.

Definition: A ‘‘resonance’’ V will be a cluster with only two external brancheslv0
and lv1

carrying the same free momentum,n0(v0)5n0(v1) and with order ‘‘not too high,’’ i.e.,
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kV,max$N2122~nlv0
13!/t,~gNh!21%, g5

def4V1

V2
. ~5.10!

The branch exiting from a resonance will be called a resonant branch, and the scale nlv0
of the

two branches entering and exiting the resonance will be called the resonance-scale. The de
the propagator of the exiting branch will be called the degree DV of the resonance.

Even though a nodev either withdv50, kv>1 or with dv51, nv50 is not a cluster in the
above sense~because it does not consist of branches! we shall nevertheless regard it as a clus
when there are only one incoming branch and one exiting branch of equal scale.Therefore, we
shall also regard it as a resonance, if

kv,max$N2122~nlv0
13!/t,~gNh!21%, when dv50, kv>1,

1,max$N2122~nlv0
13!/t,~gNh!21%, when dv51, nv50;

note that the restriction that ifdv505kv there are at least two branches enteringv implies that no
node withdv505kv can be a resonance.

Definition: A resonance will be called ‘‘strong’’ if p(v0)5p(v1)50.
All resonances on scale<0 are strong~see Remark 5.6!.
5.8. It is important to note that a strong resonance of degree 2 is necessarily such that a

degree of the entering branchmustbe 2. No branch inside it can be of order 1 and no path
precedev0 . This is so becauseDlv0

52 implies j v0
. l ~see the first of~5.3!! andp(v0)50 implies

that av0
52, kv0

50, kv0
8 50 so any path precedingv0 would necessarily imply the contradictio

p(v0)51. Also if Dlv1
51, Dlv0

52 one must havej v1
5 l hencekv1

50 ~otherwisep(v0).0! so

that kv1
8 50: but av1

,2 andkv1
8 must be odd. The casesDlv0

51, Dlv1
51,2 are both allowed.

5.9. Given a treeq, let V be a resonance~if there are any! with entering branchlv1
of degree

Dlv1
52. Then consider the family of all trees which can be obtained fromq by detaching the par

of the tree havinglv1
as root branch and reattaching it to all the remaining nodesinternal to V but

external to the resonances contained inside the cluster V~if any!; to the just defined set of tree
we add all the trees obtained by reversing simultaneously the signs of the latter modes of the
~this can be done as the sum of the mode vectorsnw of such nodes,wPV, vanishes!. The set of
all the so obtained trees will be denotedFV(q).

The definition of resonance and the strong Diophantine condition insures that all the tr
constructed have a well defined value~i.e. no division by zero occurs in evaluating it with th
above rules!; see the Remark 5.10,~1!, below.

If the entering branchlv1
of the resonance has degreeDlv1

51 then also the exiting branc

lv0
has degreeDlv0

51, and we collect together with the considered tree also the tree whi

obtained fromq through the following operation. Replace the resonanceV with a single nodev
carrying labelsdv50 and kv5kV , if kV is the order of the resonance. The set of all the
obtained trees will be denoted byFV(q): the definition of the classFV(q) will therefore depend
on the degree of the branch enteringV.

Then repeat the above operations for all resonances inq. Thus a classF~q! has been con-
structed and the number of elements ofF~q! is bounded by the productPV2NV of the numbers
NV of branches in each resonanceV which are notcontained inside inner resonances. The lat
product is bounded by exp(V2NV<exp 2m; the F~q! can be obtained starting from any of i
elements~which therefore we shall callrepresentativesof the class!: this is again aconsequence
of the strong Diophantine condition, see Ref. 5.

5.10.Remarks:~1! The strong Diophantine condition plays a role here that should be stre
In fact one checks that because of it the scale of a branch inside a resonancecannotchange too
much, as one considers the different members of a given family. Not enough to change the
branches that belong to a given resonance and insures that the different families of treesdo not
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overlap; for this reason the strong Diophantine condition leads to a simplification of the ana
~the simplification in the simpler case of the KAM theory!. A simplification that is however no
major ~as explained informally in Ref. 3 and as shown in Ref. 18!.

~2! To see how the above difficulty is bypassed by using the alternative approach of Re
19, we refer to the conclusive comments in Ref. 20, Sec. III.

5.11. Consider trees withp(v0)50, if v0 is the highest node of the tree; then the express
of each tree value contains a product like~5.1!. As mentioned in the Introductionwe consider only
trees without leaves.

Since the leaf values factorize with respect the product~5.1!, they can be dealt with separatel
and no overlap arises with the cancellation mechanisms acting on the product~5.1!, so that leaves
can be easily taken into account; see Appendix C 3~see also Refs. 3, 10, 5!.

The counterterms can also be explicitly expanded in terms of tree values, according to~3.2!,
which again we can imagine to have no leaves~see however, the comments in Appendix C,
below!.

The cancellation mechanisms described in Refs. 10, 5~and recalled in Appendix C! lead to the
bound~on a given familyF~q!! described above, in Sec. V, 5.9, see~5.1!, ~4.30!, ~4.23!,

S 1

h1/2D 2mF ~4N3C8!m24me2m)
n<0

~C
0
2Nn

2

222nNn
2
!~C

0
Nn

1

22nNn
1
!G•

•F )
n<0

)
T,nT5n

)
i 51

mT
1
~n!

2~n2ni13! )
i 51

mT
2
~n!

22~n2ni13!G , ~5.11!

where C85max$(2g0 /V1)
2,42%C, with C the dimensionless constant defined in~5.6!; m is the

number of nodesv>v0 ; Nn
j is the number of propagators on scalen and of degreej in q, which

can be written as

Nn
j 5N̄n

j 1 (
T

nT5n,DT5 j

~21!1 (
T

nT5n

mT
j ~n!, ~5.12!

where mT
j (n) is the number of resonances on scalen and degreej ~i.e., with entering branch

having a propagator of degreej! contained inside the clusterT. The termsÑn
j , j 51,2, which count

the number of propagatorswhich do not correspond to resonant branchesplus the number of
clusters on scalen and of degreej in q, satisfy the bounds

(
j 51

2

N̄n
j <4mN2~n13!/t, (

n52`

0

(
j 51

2

N̄n
j <4mgNh, ~5.13!

~with g54V1 /V2! which are proven in Appendix B. The first square bracket in~5.11! is the
bound on the product of individual elements in the familyF~q! times the bound on their numbe
PV2NV,e2m, see above. The second square bracket term is the part coming from the max
principle ~in the form of Schwarz’s lemma!, applied to bound the sums of the tree values~‘‘ re-
summations’’ ! over the classesF~q! introduced above; this is anontrivial product of small factors
that arise from the cancellations associated with the resummations, see Appendix C. In~5.11! ni

is the scale of the clusterVi which is thei th resonance insideT, as in Ref. 5. Theh2m/2 arises as
a lower bound on the small divisors of the formv8•n on scalen51 ~for n51 we use the bette
bounduv0•nu>22h1/2!.

5.12.Remark:The first bound~5.13! holds for alln and for all Hamiltonians of the form~2.1!.
On the contrary the second bound in~5.13! will follow from the fact that the rotation vectorv0

has the form~5.8!, with h small, and will be used to control the~huge! factorsC0 in ~5.11!.
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5.13. Hence by substituting~5.12! and the first of~5.13! into ~5.11! we see that, forj 51,2, the
mT

j (n) is taken away by the first factor in 2jn22 jni, while the remaining 22 jni are compensated b
the21 before the1mT

j (n) in ~5.11! taken from the factors withT5Vi ~note that there are alway
enough21’s!, and therefore~5.11! is bounded by

S 2

h1/2D 2m

~4N3C8!mem24m28mC0
8mgNh )

n52`

0

228mNn2~n13!/t
, ~5.14!

because the product of the factorsC0 in ~5.11! can be bounded by using the second of~5.13!, since
the product does not contain then51 factor. The last product in~5.14! is bounded by

)
n52`

0

228mNn2~n13!/t
<expF8mN23/t log 2(

p51

`

p22p/tG , ~5.15!

hence, by adding the remark that the perturbation degreek and the number of tree nodesm are
related bym,2k, a bound on the sum over all the subtrees of orderk with p(v0)50, n(v0)
5n ~recalling that the number of trees withm nodes is,4mm! ! is

Dk5
defU 1

uF~q!u (
q8PF~q!

)
vPq8

F̄nI v
Gv@v8•n0~v !# ỹvU<B0

2kh22k, ~5.16!

for some positive constantB0 . The normalization constantuF~q!u is introduced in order to avoid
overcountings; in fact ifq8PF(q) thenqPF(q8), so that, without dividing byuF~q!u in ~5.16!,
each tree would be counteduF~q!u times.

If C0
215h21/2C(h) is chosen as in the statement of Theorem 1.4, an explicit calculation g

the bound on~5.11! of the form (h21/2)4kB0
k , k>1, and

B05218~4N3C8!expF214gNh logh18sgNh1/218N23/t log 2(
p51

`

p22p/tG , ~5.17!

which is bounded uniformly inh ~for h<1!.
5.14. In the previous section trees withp(v0)50 have been considered; in particular only t

contributions~5.1! arising from the value~4.30!, once the corresponding tree has been deprive
leaves and counterterms, have been bounded and the bound~5.16! has been obtained through
suitable resummation operation. In such a case the sum over the labels (kv8 ,kv) is trivial because
the conditionp(v0)50 imposes that only a few values~up to three per node! can be assumed b
the hyperbolic mode labels; also the sum over the mode labelsnI v cannot create any problems. I
fact for any nodev one hasunI vu<N and unvu<N0 ~see the eighth item in Sec. IV 1!.

The casesp(v0)Þ0 as well as those involving graphs containing leaves or counterterms
be treated in the same manner as already done in Refs. 3, 5. We provide, in Appendix D, a
description of the construction of the analyticity bound«05D21 with

«0
215D5@B26l ~2N11!2l 21~2N011!#2, B5max~B0h21,B1!, ~5.18!

andB1 is a suitable numerical constant.
The part of Theorem 1.4 not concerning the connection between the average actionA8 and the

rotation vectorv8 nor the splitting size follows.
5.15. Determining the exact splitting size~i.e., the leading behavior asymptotically ash→0

with «,Bh2! is not trivial because of the existence of major cancellations in the evaluation o
determinant of the splitting matrix; however the analysis in Ref. 8 dealt with this questio
detail; in the latter paper remarkable cancellations are exhibited and an exact formula f
splitting angles is derived~see~7.19! of Ref. 8!.
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One gets the results in the last item of Theorem 1.4 simply if Ref. 8 and the first pa
Theorem 1.4~to estimate the remainders! are used; then the claimed bounds on the splitting foll
immediately~see Remark 1.5!. In Ref. 6 an improvement of lemma 1 and lemma 18 of Ref. 2 was
used instead to control the density of tori in phase space~the lemmata in Ref. 2 were, as suc
useless already in the case in Ref. 8 because they would require that« be far smaller than the«0

of Theorem 1.4!; see Ref. 6, where this is discussed in detail and differs from our case
because it relied on a theorem weaker than Theorem 1.4 above~as the radius of convergenc
estimate there is proportional toh to the power9

21 rather than our 2!.
5.16.Remarks:
~1! The bound~5.16! and the discussion in Sec. V 14 imply the convergence of the pertu

tive expansions for the parametric equations of the invariant tori~for the Hamiltonian~1.1!!, if
u«u,«05O(h2). This bound on the convergence radius should be compared with the value
by Ref. 6, which, forN5O(h21/2), gives «05O(h9/2/ log2 h21). As usual the Lindstedt serie
gives a much better estimate than the classical method~i.e., an exponent 2 vs;4.5!. We do not
see immediately how to improve substantially the classical estimate without important chan
the architecture of the proof of Ref. 6, although this should be possible; on the other hand
the above analysis,«05O(h2) might be close to an optimal result. If so it should be no surpr
that our analysis is so delicate.

~2! In the Hamiltonian~1.1!, ~2.1! the polynomial dependence of the interaction on the ro
tors angles has very likely a purely technical motivation~as it simplifies the analysis! and could
probably be relaxed into a more general analytical dependence, as in Ref. 13. On the contr
hypothesis that the perturbation is a trigonometric polynomial of degreeN0 in w is fundamental to
get the correct asymptotic behavior, in order to apply the results in Ref. 8, where the dom
of Mel’nikov integral is provenprovided the perturbation is polynomially small in a power ofhN0

~so that the results of Ref. 8 become meaningless forN0→`!.
~3! A bound of the form~5.16! holds under the weaker condition thatC(h)<e2sh2a

, with
a<1 ~see~5.17!!.

~4! If q is defined as in Sec. I, 1.6 so thatu«uC(h)qh,1 implies analyticity in«, the above
analysis gives thatq can be takenq58gN. In general all the bounds found so far are not unifo
in N; in order to deal with the analytical case in the frame of the exploited formalism one sh
bound the small divisors by using the results of Ref. 19 or Eliasson-Siegel’s bound~see, for
instance, Ref. 14!, and use explicitly as in Ref. 13 the exponential decay inn of the Fourier
coefficientsf nI

1.
~5! Note that we have convergence foru«u,O(h2), while the asymptoticity of the splitting

estimate follows only foru«u,O(hz) ~with z52(N013)!, which ismuch smallerfor h→0. Then
the question is: What will be the asymptotics for« small enough to be in the convergence dom
but too large to be in the domain of the asymptotic result? There is some evidence that the
critical valueTc such that, if«5hT, then forT.Tc the asymptotic formula that we can prov
only for T.z holds, but for T5Tc it is modified remaining qualitatively of the same siz

O(e2(1/2)h2(1/2)
) and for T,Tc it becomes qualitatively different. The analogy with the critic

point scaling phenomena seems to be substantial and, keeping in mind that the above the
be interpreted as a field theory, see Ref. 17, one would say that the regionT.Tc is described by
a trivial fixed point; a nontrivial fixed point describes the caseT5Tc and another ‘‘low tempera-
ture’’ fixed point describes the casesT,Tc . Evidence in this direction comes also from the theo
of the standard map and its developments.21,22,23
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APPENDIX A: COUNTERTERMS

1. To orderh one can write, by using~2.11!, ~2.24!, and~4.11!,

J2
hs~ t !5«s`

t
dtw0

1~ t,t!~F1
hs~t;g1~g0!,...,gh21~g0!!1gh~g0!sinw0~t!!1«s`

0
dtw0

0~ t,t!

3~F1
hs~t;g1~g0!,...,gh21~g0!!1gh~g0!sinw0~t!!, ~A1!

where F1
hs(t;g1(g0),...,gh21(g0)) takes into account all the contributions toF1

hs

5(J0g0
2)21F1

hs except the only one explicitly depending ongh(g0), which is given by
gh(g0)sinw0(t).

We shall impose, recursively, that the contributions to the integrands in~A1! arising from
amputated trees~see comments after~4.31!! with (n0(v0),p(v0))5(0,0), without leaves and
without end nodes bearing a counterterm label~see Remark A, 2 below!, compensate exactly th
contributions due to the trees with a single node representing a counterterm of orderh ~i.e., the
terms withgh(g0) in ~A1!!. The first described type of contributions can be written

W15wl
1~ t,t!F1

hs~t;g1~g0!,...,gh21~g0!![ (
nPZl 21

(
p521

`

W̃1~n,p!ei v8•nt2pg0st ~A2!

in the first integral in~A1! and

W05wl
0~ t,t!F1

hs~t;g1~g0!,...,gh21~g0!![ (
p521

`

(
nPZl 21

W̃0~n,p!ei v8•nt2pg0st ~A3!

in the second one. Imposing that such contributions are canceled by the contributions
p50 arising fromwl

1(t,t)gh(g0)sinw0(t) andwl
0(t,t)gh(g0)sinw0(t) gives our prescription on

how to fix gh(g0).
Since two integrals are involved~one forrv0

51 and one forrv0
50!, the first time dependen

and the second time independent, two conditions may seem to be required; however, no
sinw0(t)52 sinhg0 t/cosh2 g0t is expanded in odd powers ofx5e2sg0t , hence the only terms
appearing in~A2! and ~A3! which can contribute top50 are, in both cases, those involvin
y(21)(kv0

8 ,kv0
), with kv0

521. This means that the contributions withp50 arising from~A2! and

~A3! are equal, so that no compatibility problem arises.
Note that an expression analogous to~A1! is obtained also forJ1

hs(t); however the terms
with p50 have the same form as in~A1! ~see~4.17! for j lv0

5 l and for j lv0
50!, so that if no term

with (n0(v0),p(v0)5(0,0)) contributes toJ2
hs(t), then also no term with (n0(v0),p(v0))

5(0,0) contributes toJ1
hs(t).

2. Remark:It may seem strange that we exclude from the definition of the counterterms
with leaves; in fact one can imagine to realize trees with (n(v0),p(v0))5(0,0) also by trees
which contain leaves with a stalk bearing a labelj w. l or j w5 l and internal momenta (n8,p8).
Such terms would give rise toa-dependent counterterms which of course are not allowed; h
ever, it turns out that the sum over all contributions to tree values of trees with (n(v0),p(v0))
5(0,0) from such trees cancelexactly; this is explained together with the other cancellations b
in our algorithm, in Appendix C~see Appendix C, 5 in particular!.

3. Let us consider the first integral in~A1!. Corresponding to the nodev0 of each tree whose
value contributes toJ2

hs(t) there is a coefficientỹnv0
(kv0

8 ,kv0
), see~4.14!, ~4.17!. Then from~A1!

and the just formulated condition to impose we obtain
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(
qPT0,h ,av0

521

p~v0!50,kv0
8 51

Val~q!1gh~g0!wl
1~ t,t!sinw0~t!U

k851,p50

50, ~A4!

where the sum is over the setT0,h of all trees of orderh and momentumn(v0)50, with n0(v0)
50 ~see Remark A, 2!, p(v0)50, j v0

5 l andkv0
8 51; hence ifp(v0)50, j v0

5 l , one must have

kv0
521, henceav0

521 andkv0
8 51 which is a possible case indeed.

A trivial calculation ~just take into account thatynv

(21)(1,21)5s/2 and sinw0(t)54sx

1O(x3)! gives

wl
1~ t,t!sinw0~t!uk851,p5052, ~A5!

so that~4.32! follows; the above follows Ref. 5, p. 287.

APPENDIX B: „IMPROVED… RESONANT SIEGEL–BRYUNO’S BOUND

1. We follow the idea of Po¨schel24 ~see also Refs. 3, 18, 5!. In the discussion, we focus on th
scale labels, so that it is quite irrelevant which value thep(v)’s, vPq, assume, and therefor
which resonances are strong and which are not.

Calling Nn* (q) the number of nonresonant branches carrying a scale label<n, in a treeq
with m nodes, we shall prove first that

Nn* ~q!<2mEn21, En5
def

N2~31n!/t, n<1, ~B1!

provided thatNn* (q).0, and

N0* ~q!<2mgNh21, g5
def

4V1 /V2 , ~B2!

if N0* (q).0.
Define, as in Sec. V, 5.7,v05(1,h21(V11h1/2J21A1)21V2). ThenC0uv0•nu.unu2t for all

0ÞnPZl 21; see ~5.7!. Assume alsoh so small thatC0>2 ~this is not restrictive as we ar
interested inh→0!.

Set En[N2(n13)/t as in ~B1!. Note that if m<En
21 one hasNn* (q)50. In fact m<En

21

implies that, for allvPq, un0(v)u<NEn
21, i.e., C0uv0•n0(v)u>(N21En)t52n13, so that there

are no clustersT with nT5n. Note also that ifm<(gNh)21, with g54V1 /V2 , then N0* (q)
50, asuv0•n0(v)u>1 for all vPq in such a case.

2. Let us prove first the inequality~B1!. If q has the root branch either with scale.n, or with
scale<n and resonant, then callingq1 ,q2 ,...,qk the subtrees ofq ending into the highest nod
v0 of q and with mj.En

21 nodes,j 51,...,k, one hasNn* (q)5Nn* (q1)1¯1Nn* (qk) and the
statement is inductively implied from its validity form8,m and from the just proved fact tha
Nn* (q)50 if m<En

21.
If the root branch is on scale<n and nonresonant, one hasNn* (q)<11( i 51

k Nn* (q i): if k
50 the statement is trivial, ifk>2 the statement is again inductively implied by its validity f
m8,m. If k51 one hasNn* (q)<112m1En21, hence we once more have a trivial case unl
the orderm1 of q1 is m1.m2(2En)21: but in the latter case we shall show that the root bran
of q1 has scale.n.

Accepting the last statement~which will be proved below!, one will obtain Nn* (q)51
1Nn* (q1)511Nn* (q18)1¯1Nn* (qk8

8 ), whereq j8’s are thek8 subtrees ending into the highe
node ofq18 with ordersmj8.En

21, j 51,...,k8. Going once more through the analysis the on
nontrivial case is ifk851 with the root branch ofq18 nonresonant; and in such caseNn* (q18)
5Nn* (q19)1¯1Nn(qk9

9 ), etc., until we reach a trivial case or a tree of order<m2(2En)21.
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It remains to check that ifm2m1,(2En)21 then the root branch ofq1 has a scale.n. Let
us proceed byreductio ad absurdum. Suppose that the root branch ofq1 is on scale<n. Then
C0uv0•n0(v0)u<2n and C0uv0•n0(v1)u<2n, if v1 is the highest node ofq1 . HenceC0uv0

•(n0(v)2n0(v1))u,2n11 ~equality would imply violation of the strong Diophantine proper
~5.7!!, and the Diophantine condition implies that

un0~v0!2n0~v1!u.22~n11!/t[d, ~B3!

becausen0(v0)Þn0(v1) ~the root branch ofq being supposed nonresonant!. But m2m1

,(2En)21, so thatun0(v0)2n0(v1)u,(2En)21N,22122(n13)/t522(112/t)d,d, which contra-
dicts the inequality~B3!.

3. Let us prove now~B2!. If q has the root branch either with scale 1, or with scale<0 and
resonant, then callingq1 ,q2 ,...,qk the subtrees ofq ending into the highest nodev0 of q and
with mj.(gNh)21 nodes,j 51,...,k, one hasN0* (q)5N0* (q1)1¯1N0* (qk) and the statemen
is inductively implied from its validity form8,m and from the fact thatN0* (q)50 if m
<(gNh)21.

If the root branch is on scale<0 and nonresonant, one hasN0* (q)<11( i 51
k N0* (q i); if k

50 the statement is trivial, ifk>2 the statement is again inductively implied by its validity f
any m8,m. If k51 we once more have a trivial case unless the orderm1 of q1 is m1.m
2(2gNh)21, but in the latter case the root branch ofq1 has scale 1.

Accepting the last statement~which will be proved below!, one will obtain N0* (q)51
1N0* (q1)511N0* (q18)1¯1N0* (qk8

8 ), whereq j8’s are thek8 subtrees ending into the highe
node ofq18 with ordersmj8.(2gNh)21. Going once more through the analysis the only nontriv
case is ifk851 and in that caseN0* (q18)5N0* (q19)1¯1N0(qk9

9 ), etc., until we reach a trivial
case or a tree of order<m2(2gNh)21.

It remains to check that, ifm2m1,(2gNh)21, then the root branch ofq1 has scale 1.
Suppose that the root branch ofq1 is on scale<0. Thenp(v1)Þ0 and uv0•n0(v0)u<1/4, uv0

•n0(v1)u<1/4, if v1 is the highest node ofq1 , i.e.,

uv0•~n0~v0!2n0~v1!!u<1/2. ~B4!

As the root branch ofq is supposed nonresonant, thenm2m1,(2gNh)21 implies that 0
,un0(v0)2n0(v1)u,(2gNh)21N5(2gh)21, so that one would haveuv0•(n(v0)2n(v1))u
>1, which is contradictory with the inequality~B4!.

4. A similar induction can be used to prove that if the number of branches on scalen is
Nn(q).0 then the numberpn(q) of clusters of scalen verifies the bound

pn~q!<2mN2~n13!/t21. ~B5!

In fact this is true form<En
21, if En is defined as in Appendix B1. Otherwise, if the highest tr

nodev0 is not in a cluster on scalen, one callsq1 ,...,qk the subtrees ending intov0 , and one has
pn(q)5pn(q1)1¯1pn(qk), so that the statement follows by induction. Ifv0 is in a clusterV
of scalen, andq1 ,...,qk are the subtrees entering the cluster containingv0 and with ordersmj

.En
21, one will findpn(q)511pn(q1)1¯1pn(qk). Again we can assume thatk51, the other

cases being trivial. But in such case there will be only one branch entering the clusterV and it will
have a propagator of scale<n21. Therefore the clusterV must contain at leastEn

21 nodes. This
means thatm1<m2(2En)21.

Finally, the bound

(
n52`

0

pn~q!<2mgNh21 ~B6!

is a trivial consequence of~B2!.
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5. Let N̄n* <Nn* be the number of nonresonant branches on scalen. Then if N̄n is the number
of nonresonant branchesplus the number of clusters on scalen, N̄n* verifies the bounds

N̄n* 5~N̄n* 1pn!2pn[N̄n2pn<4mN2~n13!/t222 (
T

nT5n

~1!<4mN2~n13!/t1 (
T

nT5n

~21!.

~B7!

This proves that~B1! and ~B5! imply an inequality analogous to the first of~5.13!; likewise one
derives an inequality similar to the second of~5.13! by combining~B2! and ~B6!.

APPENDIX C: CANCELLATIONS BETWEEN RESONANCES

In this Appendix we recall briefly the cancellation mechanisms of Ref. 5. We provide th
a guide to the reader and as a tune up of a fine points of the analysis of Ref. 5~the analysis in
Appendix C 2 is given here in full details while in Ref. 5 it was left out!.

1. Consider a treeq with a strong resonanceV of orderkV . Let lv0
andlv1

be, respectively,
the exiting and entering branches ofV. There are two possibilities; either the degree of t
propagator corresponding to the branch exiting fromV is Dlv0

52 or it is Dlv0
51 ~equivalently

the degree of the resonance is eitherDV52 or DV51!.
Let us discuss first the case in which the degreeDV of the resonance isDV52. Then j v0

. l

~see ~5.3! and the comments after the definition of strong resonance in Sec. V, 5.9! and, by
following the notations of Sec. V, 5.1, we shall say thatP5B, i.e., there is no pathP ending into
v0 . It follows, from the properties ofP discussed at the beginning of Sec. V, 5.1 above, t
p(v1)50 implies j [ j v1

. l andDlv1
52 ~see again~5.3!!.

Consider all the trees belonging to the classF~q! which are obtained fromq by detaching the
subtree having as branch root the entering branchlv1

of the resonance and attaching it to all th
remaining nodes ofV ~see the definition of the classFV(q) in Sec. 5 I!. As a consequence of suc
an operation some of the branches internal to the resonance have changed the free mome
an amountn0(v1), and if w is the node insideV to which the branchlv1

is attached andj v1
2 l

.0, thenF̄nI w
~see~4.23!!, has the form of an even function ofnI w times a factor (inw j).

We shall call theresonance valueRV the product of factors appearing in the definition of t
tree value and relative only to the nodes and branches internal to the resonanceV,

RV5F̄nI v0
yv0
8 )

vPV
v,v0

F̄nI v
yv8Gv@v8•n0~v !#, ~C1!

and shall consider the resonance value as a function of the quantitym[v0•n0(v1).
Then for m50 a quantity proportional to(wPVnw j is constructed, but such a quantity

vanishing by definition of resonance, asj 5 j v1
2 l .0.

If we sum also on an overall change of signs of the mode labels of the nodes internal
resonance~by following the definition of the classF~q! given in Sec. V, 5.9!, we obtain a zero
contribution also to first order inm ~here the even parity of the perturbationf is essential, see Refs
3 and 5!.

This can be seen by using the explicit form of the functions in~4.21!, i.e., the coefficients
listed in ~4.24!. Noting that in the present casethere cannot be anyP inside V the only propaga-
tors we can associate with the branches internal toV have the form of the two first terms of~5.3!,
so that, form50, they are even functions of the mode labels. Moreover in such a case the analys
in Sec. V, 5.1 shows thatav521, av51 and av52 imply, respectively,kv852kv51, kv85
2kv521 andkv852kv50 ~the caseav50 is not possible here!, then nonv labels appear in the
coefficientsynv

(av)(kv8 ,kv) corresponding to the nodesv<v0 ~see the list of coefficients in~4.24!!.
                                                                                                                



e

ll

ero.
ined by

m

s

;

as

ts

6468 J. Math. Phys., Vol. 40, No. 12, December 1999 Gallavotti, Gentile, and Mastropietro

                    
Therefore all the dependence on thenv labels is through the factorsF̄nI v
in ~4.23!. This yields that

there is an even number of thenv ~if there are any! corresponding to the nodesvPV: two for each
branchlv with j v5 l , by taking into account thatj v0

, j v1
. l , so that no change is produced by th

sign reversal~since, by the parity properties of the Hamiltonians~1.1! and ~2.1!, one has also
f nI v

dv5 f
2nI v

dv !. This means that the resonance value is an even function ofm.

2. Let us now consider the case in which the strong resonance is of degreeDV51 and the tree
q has no leaves insideV. In such a caseav0

521 and j v0
5 l , henceDlv0

51 ~see~5.3!!, then a

first order zero inm will be enough. Moreover there is aP inside the resonance, we sha
distinguish between the casesv1¹P andv1PP.

Let us consider first the casev1¹P ~in particular this is the case whenP5v0 , kv0
50,

providedkV>2!. In such a casej v1
. l and we can reason as above to obtain a first order z

Note that in such a case there would be no cancellations between tree values of trees obta
the sign reversal operation.

On the contrary, ifv1PP, thenkv0
521, and one has alsoav1

521 and j v1
5 l . In this case

consider together with the treeq also the treeq8 obtained fromq by performing the following
operation~recall the definition ofFV(q)!: replace the resonanceV with a single nodev carrying
labelsdv50 andkv5kV ~if kV is the order of the resonanceV!, then express the counterter
gkv

(g0) associated with the nodev in terms of trees. Ifq1 is the subtree havinglv1
as a root

branch, then the values of the two considered treesq and q8 can be written, respectively, a
Val(q)5A(q)RV Val(q1) and Val(q8)5A(q)@gkV

(g0)s/2#Val(q1), where s/25yv
(21)(1,

21) andA(q) takes into account the factors corresponding to all nodesnot precedingv0 , and has
the same value for bothq andq8.

The resonance valueRV , for m50, can be written as

RV5Val~q0!inv18
, for some q0PT0,k with p~v0!50, kv0

521, ~C2!

see the definitions~4.30! and ~4.31! of tree value and the definition~C1! of resonance value
remember that we are considering resonancesV with degreeDV51, so thatkv0

521 and, as a

consequence,kv0
8 >1; see~4.14!. The countertermgk(g0) can be represented in terms of trees

in ~4.32!; note that, if the tree contributing togk(g0) haskv0
521, the conditionav0

521 implies

that such a tree has a nodew.v0 with kw1kw8 51, while all the other nodesvÞw havekv1kv8
50.

Among the contributions in~4.32! to gkV
(g0) there will be a quantityVal~q2!, whereq2 will

have the same topological form ofq0 in ~C2! with the nodew such thatkw1kw8 51 corresponding
to the nodev18PV; then we denote both nodes byw.

ThenVal~q0! will be related toVal~q2! by

Val~q2!52F ynv

~av!
~kw8 ,kw!uk

w8 1kw51

ynv

~av!
~kw8 ,kw!uk

w8 1kw50
GVal~q0!, ~C3!

so that a look at the coefficients listed in and after~4.24! shows that the factor in square bracke
in ~C3! ~when it is not vanishing! is equal to 4inws. The quantityVal~q2!, in order to contribute
to gkV

(g0)s/2, has to be multiplied by a factor24s extra with respect toVal~q0!, which, on the
other hand, has to be multiplied byinw in order to contribute to the resonance valueRV ~see
~4.32!!.

Then, form50, by summing the values of the two considered contributions one obtains

A~q!FVal~q0!inw2
1

4s
Val~q2!GVal~q1!, ~C4!
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which is zero by~C3!, so that a first order zero is obtained.
3. If there are leaves, nothing changes in the discussion of Appendix C 1, askv0

50 implies

that only leavesw with j w. l are possible, andjw(kw8 ,0)[1 in such a case~see~4.18!!.
In Appendix C 2 when discussing the casev1PP, one has to take care of the case in whi

there is a leaf with highest nodew̃ with kw8 51 ~such a leaf will be at the end of the pathP!. In fact
the resonances having as entering branch a branch of the pathP cannot have any leaves wit
kw8 51, while when considering the graphical representation forgk(g0), there will be also contri-
butions arising from trees containing a leaf; such contributions will be either of the form~4.32!
with Val~q2!5Val(q2) inv18

jv1
(1,0)Lln(v1)

h1s (q2), or of the form gk(g0)5gk2h1
(g0) inv18

jv1

(1,0)Lln(v1)
h1s

(q2), whereh1>1, andq28 is a suitable tree of orderk2h1 . Then one realizes that th

two contributions cancel exactly, so that no new case has to be discussed with respect
analysis of Appendix C, 2.

4. The above discussion completes the proof of approximate cancellations of resonance
~i.e., of cancellations to first and second order, according to the degree of the resonant b!.
The existence of cancellations, approximate to the first or second order, is all is needed to
the bound~5.16!; the analysis continues exactly as in Ref. 5 and is based on simple analy
arguments that allow us to exploit, via the maximum principle, the fact that in a resonance
momentumn the functions ofm5v0•n that have been considered above have a zero inm of order
1 or 2.

A complete analysis showing that the higher orders contributions~i.e., the part which does no
cancel! can be performed as in Ref. 5, Appendix B, and the final result is given by the b
~5.16! in Sec. V, 5.13.

5. We shall show now that all contributions with (n0(v0),p(v0))5(0,0) involved in the
definition of the counterterms~see Appendix A! must have automatically alson(v0)50. The
analysis performed in Sec. V, 5.1 shows that in order to havep(v0)50 ~for j v0

5 l !, there can be
any number of leaves with highest nodesw such that j w. l and only one leafw with j w5 l
~contributing, respectively,kw8 50 andkw8 51 to p(v0)!.

Each time a leaf withj w. l appears, if we sum together the values of all trees obtained
detaching the leaf with its stalk, then reattaching it to all the other nodes ofq f , we obtain a
vanishing contribution: simply by the cancellation mechanism described in Appendix C 1~assur-
ing there the first order zero!, which, now, is an exact cancellation as the leaf does not contrib
to the free momenta of the branches ofq f , so that it does not modify the propagators. So we can
suppose that no leaf withj w. l is possible in trees involved in the determination of the coun
terms.

In the same way, if we have a treeq having a leaf withj w5 l andhw5h2h1 ~for someh1!,
we can reason as in Appendix C, 2 and consider, together withq, also the tree formed by only on
free node, carrying a counterterm labelh1 and bearing the same leaf asq. The same cancellation
mechanism described in Appendix C, 2 apply now; again the only difference is that now
cancellation is exact~by the same reason as before!.

This shows that no tree with leaves can contribute to (n0(v0),p(v0))5(0,0), so that for such
trees one hasn(v0)5n0(v0)50. This, together with the analysis in Appendix A, 1 proves~A4!.

APPENDIX D: GRAPHS WITH NONZERO TOTAL HYPERBOLIC MOMENTUM, WITH
LEAVES OR WITH COUNTERTERMS

1. Consider first the casesp(v0)Þ0. In this case we consider the nodesw,v0 with p(w)
50 and which are the nearest tov0 ; by construction all nodesz betweenv0 and the just singled
out nodes havep(z)Þ0. Let us denote byq̃ the set of such nodesz andk1 the sum of their order
labels. The subtrees having as root branches the branches exiting from the nodesw can be
considered as trees of the kind of the previous sections~i.e., with p(w)50!, so that the integra-
tions corresponding to their nodes can be performed and discussed as before and a
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B0
2k0h22k0 follows, if k05k2k1 . All the other nodes~in q̃! havep(z)Þ0, so that no real smal

divisor appears~i.e., the propagators are trivially bounded by~1!. The only delicate point to
discussconcerns the sum over the hyperbolic mode labels, but this can be done as in Re
292, ~or in Ref. 3, item 7 in Appendix A!, to which we refer for details beyond the summary th
follows.

By noting that the Laurent expansion of each function~of x andx8! appearing in~4.14! and
~4.16! starts fromk>21 andk8>51, we can denote byM1 the maximum of all such functions
~multiplied by 1/x and 1/x8, respectively, whenk521 and k8521! in a disk of radiusl
51/2. If M2 is the coefficient of the term withkv521 or kv8521, setM5max$M1,M2%.

Consider the tree value~4.20!. If st,1, the first integral~corresponding to the highest nod
v0! can be split into the sum of two integral, the first one froms` to s1 ~here the value 1 is an
arbitrarily chosen positive number! and the second one froms1 to t. Let us denote byI m(q) the
first integral andJm(q) the second one, ifm is the number of nodes inq.

For the nodesvPq̃, one has

~1! for each node the associated propagator is bounded by 1~asp(v)Þ0!,
~2! PvPq̃uF̄nv

u<(CN2)2k1,

~3! for each nodev one hasuynv

(av)(kv ,kv8)u<M2kv1kv8,

~4! the last integration~on tv0
! produces a factor exp@2kv0

8 1p(v0)#5exp@2(vPq̃(kv1kv8)#.

Then the sum over the hyperbolic mode labels can be performed and gives, for each

vPq̃, a factorA2, where

A5 (
k521

` S 2

eD k

5
e2

2~e22!
. ~D1!

The contribution toI m(q) arising fromq̃ a boundB1
2k1 is obtained,B15A2CN2M , so that, for

I m(q) a bound

B2k, B>max$B0h21,B1% ~D2!

is obtained~see~5.6! for the meaning ofC!.
By taking into account the integralJm(q), one can perform a splitting of the integratio

domain for the integrals corresponding to the nodes immediately precedingv0 ~now for each such
nodes the second integral is froms1 to tv0

!, and, iterating such a splitting, one finds that Val~q!

can be written as sum of at most 2m terms each of which has the form~for some integerp!,

F )
vPq*

E
s1

tv8
dtv~¯ !G I m1

~q1!¯I mp
~qp!, ~D3!

whereq1 ,...,qp are disjoint subtress ofq andq* is the set of them0 nodes inq not belonging
to any such subtrees andm11¯1mp1m05m. The dots between the parentheses denote
product of the functions in

)
wPq

Y~aw!~tw8 ,tw! ~D4!

which depend ontv , for a givenvPq* , and therefore is a quantity bounded by 1~see~4.14! and
~4.16!!. Note that the functionsY haveno singularityas functions of their argumentsx5esgt,
x85esgt8, whenx,x851 ~or t,t850!, even though the valuesx,x851 lie on the convergence
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circle ~the singularities being atx,x856 i !. Furthermore each integration froms1 to tv8 , once the
integrand has been bounded, gives 1, while the integralsI mj

(q j ), j 51,...,p can be bounded a

before.
Of course, ifst.1, the discussion is easier as no splitting of the integration domain

needed.
So we can conclude that a final bound (2B)2k is obtained for Val~q!; so far neither leaves no

counterterms have been considered.
2. Introducing the leaves and the counterterms, one sees~recall Remark 4.4! that the value of

any treeq can be always be written as the product of a factor like~4.28! times the product of the
counterterms and of the leaf values; each counterterm can be decomposed in turn as sum o
of amputated trees~see~4.32!!. As each leaf and each amputated tree can contain other leave
counterterms we can iterate such a decomposition procedure, until, at the end, the value of
q, with highest nodev0 , turns out to be given by the product of factorizing terms which~1! either
are of the form~4.28!, with rw50 for any subtree with highest nodew,v0 and withrw50,1 if
w5v0 , ~2! or differ from ~4.28! simply because no integration is performed corresponding to
highest node.

The terms as in item~1! correspond to subtrees contributing to leaf values~for w,v0! and to
Val~q! itself ~for w5v0!, while the terms as in item~2! correspond to amputated trees contrib

ing to counterterms. Then a natural decomposition of the treeq into subtreesq̃ ~amputated or not!
follows: each of such subtree contains neither counterterms nor leaves~by construction!. Further-
more the subtrees contributing to leaves are linked to nodes of some other subtrees throu
stalks, while the amputated subtrees are not linked to any node~as there is no branch exiting from
the highest node!. To keep memory of the node to which the counterterm label is attached w
draw a hatched line connecting the amputated subtree to such a node.

So for each subtreeq̃ ~amputated or not! one can reason as above and a boundBm0 is
obtained, ifB is the same constant as before and ifm0<2k0 is the number of free nodes of th
subtree. For all of them the resummation described in Sec. V, 5.9 has to be performed, to

the values of the subtreesqv , with p(v)50, vPq̃: such a resummation is taken into account
the constantB. By collecting together all bounds one obtains, for the~normalized! sum of the
values of the all treesq8 generated by the resummations corresponding to the familiesF(qv), a
boundB2k, if k is the order ofq.

Therefore we are left with the sum of all possible ways to arrange leaves and counter
The choice of the leaves is uniquely determined by the assignments of the labelsrv , vPq, so that
it gives a factor 2m ~recall that the number of nodesm is such thatm,2k!.

In the same way one can deal with the counterterms; simply one has to distinguish be
solid and hatched lines, so that another factor 2m is produced.

3. Then the sum over all the other labels can be performed, in the same way as f
contributions without leaves and without counterterms~see the beginning of this subsection!. The
sum over the hyperbolic modes has been taken into account by the constantB ~see~D2!!; more-
over

~1! the sum over the mode labels is bounded by (2N11)m( l 21)(2N011)m,
~2! the sum over the angle labels is bounded byl m,
~3! the sum over the order labels is bounded by 2m,
~4! the sum over the badge labels is bounded by 2m.

Therefore, by taking into account that the momenta and the hyperbolic momenta are un
determined by the mode labels and, respectively, the hyperbolic mode labels and that th
over the leaf labels and counterterms labels have been already considered, we are left with
of ~unlabeled! numbered trees~see comments after~4.27!!: but these are no more than 22mm!, so
that, both forXj n

ks(t) andgk(g0), a final boundDk is obtained, for some constantD: in terms of
B the constantD is given byD5B26l (2N11)( l 21)(2N011), i.e., ~5.18!. In particular one has
that D is proportional toh22, asB is so.
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Note that, as a matter of fact, we have boundedJ j n
hs(t) in ~4.27! by neglecting the constrain

on j and n. Therefore, by making use of the fact that the Fourier coefficients withunu.h(N
1N0) vanish at orderh as a consequence of the trigonometric assumption on the perturbatiof 1 ,
see~2.2!, the bound (2B)2k is a bound both for the Fourier coefficients ofXs(t;a) and for the
function Xs(t;a) itself.
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In this work we develop a general procedure for constructing the recursion opera-
tors for nonlinear integrable equations admitting Lax representation. Several new
examples are given. In particular, we find the recursion operators for some KdV-
type systems of integrable equations. ©1999 American Institute of Physics.
@S0022-2488~99!03212-0#

I. INTRODUCTION

It is well known that most of the integrable nonlinear partial differential equations,

ut5F~ t,x,u,ux ,...,unx!, ~1!

admit a Lax representation,

Lt5@A,L#, ~2!

so that the inverse scattering method is applicable. The generalized symmetries1 of ~1! have also
Lax representations with the sameL operator,

Ltn
5@An ,L#, n>1. ~3!

The recursion operatorR, satisfying the equation~see Ref. 2!

Rt1@DF ,R#50, ~4!

whereDF is the Freche´t derivative of the functionF, generates symmetries of~1! starting from the
simplest ones. In general,R is a nonlocal operator~a pseudodifferential operator!.

The construction of the recursion operator of a given integrable system~1! is not an easy task
Several works are devoted to this subject. Among these works, most of the authors use~4! for the
construction of the recursion operator.3–8 There are several difficulties in this direct approach. T
main problems are the choices of the order ofR and the structure of the nonlocal terms. This is
approach having no relation with the Lax representation~2!.

On the other hand, some of the authors used Lax representation for this purpose. Most o
works are related to the squared eigenfunctions of the Lax operator9–13and are based on finding a
eigenvalue equation for the squared eigenfunctions of the Lax operator. The operator corre
ing to this eigenvalue equation turns out to be the adjoint of the recursion operator.

a!Electronic mail: gurses@fen.bilkent.edu.tr
64730022-2488/99/40(12)/6473/18/$15.00 © 1999 American Institute of Physics
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There is an alternative use of the Lax representation to construct recursion operators
approach is based on the explicit construction of theAn operators~3!. It was first used by Symes,14

Adler15 ~see also Dorfman–Fokas,16 Fokas–Gel’fand17! and Antonowicz–Fordy.18,19 Although
these authors use the Lax representation in different ways, their approach is basically the
Symes and Adler use the Gel’fand–Dikii20 construction of theAn operators. On the other hand
Antonowicz–Fordy determines these operators from integrability condition~3! and by using an
ansatz forAn . Their basic aim is to determine the Hamiltonian operatorsu1 and u2

21 of the
equations under consideration. The recursion operator is simply given byR5u2u1

21. Their ap-
proach is based on some explicit formulas for coefficients of theAn operator. This is necessary t
find the Hamiltonian operatorsu1 and u2 , and it seems that this approach is quite effective
determine the bi-Hamiltonian structure for the simple cases but it becomes more comp
when theL-operator has a sophisticated structure.

If one is interested only in the determination of the recursion operatorR, we shall show in this
work that it is possible to succeed this without any concrete information of the coefficientsAn

operators. We use only an ansatzÃ5PA1R that relatesAn operators for differentn. HereP is
some operator that commutes with theL operator andR is the remainder.

We follow this basic idea, partially used by Symes,14 Adler.15 Shabat and Sokolov,22 and
establish an extremely simple, effective, and algorithmic method for the construction of recu
operators when the Lax representation~2! is given.23

In the next section we consider the case whereL is a scalar operator. We first consider the ca
whereL is a differential operator and then the case where it is a pseudodifferential operat
each case we present our method, discuss the reductions, and give examples for illustrat
Sec. III we consider Lax operator taking values in a Lie algebra. We give our method both f
general case and also for the reductions. We give one example for each case in the text.
additional examples are given in the Appendices A, B, and C corresponding to all different

II. SCALAR LAX REPRESENTATIONS

First we consider equations with the scalar Lax representations of the form

Lt5@A,L#, ~5!

whereL is, in general, a pseudodifferential operator of orderm and A is a differential operator
whose coefficients are functions ofx and t.

The different choice of operatorsA for a givenL leads to a hierarchy of nonlinear systems~3!.
It is well known that one can define operatorsAn by the following formula:20

An5~Ln/m!1 , ~6!

whereLn/m is a pseudodifferential series of the formLn/m5(2`
n v iD

i and (Ln/m)15( i 50
n v iD

i .
Herev i are some concrete functions depending on the coefficients ofL andD is the total deriva-
tive with respect tox.

In Refs. 25 and 26 the relationships between the Kac–Moody algebras and special ty
scalar differential and pseudodifferential operatorsL were established. All corresponding inte
grable systems are Hamiltonian ones. For most of them a second Hamiltonian structure
known up to now.

In this section and Appendices A, B, and C we consider the simplest systems from Re
and 26 as examples and find their recursion operators. In the sequel these examples
referred to as Drinfeld–Sokolov~DS! systems. It is interesting to note that in all these examp
the order of the recursion operator is equal to the Coexter number of the corresponding
Moody algebra.
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A. Gel’fand–Dikii systems

In this section we shall consider the case whereL is a differential operator,

L5Dm1um22Dm221¯1u0 , ~7!

whereui , i 50,1,...,m22 are functions ofx, t. In the framework of Ref. 25, this corresponds to t
Kac–Moody algebras of the typeAm21

(1) .
To show that~3! is equivalent to a system of (m21) evolution equations with respect toui

one can use the following standard reasoning. Set

Ln/m5~Ln/m!11~Ln/m!2 , ~8!

where (Ln/m)1 is the differential part of the seriesLn/m and (Ln/m)2 is a series of order<21.
Since@L,Ln/m#50 we have

@~Ln/m!1 ,L#5@L,~Ln/m!2#. ~9!

The left-hand side of~9! is a differential operator, but the right side is a series of order<n22.
Thus, both sides of~3! are differential operators of order<n22 and it is equivalent to a system o
evolution equations for the dependent variablesui , i 50,1,...,m22. This system can be obtaine
by comparing the coefficients ofDi , where 0,...,m22 in ~3!.

SinceL (n1m)/m5LLn/m, then we have

Am1n5~LLn/m!15L~Ln/m!11„L~Ln/m!2…1 , ~10!

which leads directly to

Ltn1m
5@An1m ,L#5LLtn

1@„L~Ln/m!2…1 ,L#. ~11!

The above equation~11! has been given also by Symes14 ~see also Adler’s paper15!. In his work
Symes expressed the coefficients of the both parts of~11!, in a rather complicated way, in term
of some finite set of coefficients of the resolvent for anL operator. That allows him to expres
Ltn1m

in terms ofLtn
. This relation gives directly the recursion operator. He gave explicit form

for the casesm52 andm53.
In this section we shall show that in order to construct the recursion operator it suffic

know only that

Ltn1m
5LLtn

1@Rn ,L#. ~12!

Obviously, it follows from the following.
Proposition 1:For anyn,

An1m5LAn1Rn , ~13!

whereRn is a differential operator of order<m21.
Proof: The relation~13! coincides with~10! if we put

Rn5„L~Ln/m!2…1 . ~14!

Since (Ln/m)2 is a series of order<21, then ord(Rn)<m21.
Remark 1:It follows from the formula

An1m5~Ln/mL !15~Ln/m!1L1~~Ln/m!2L !1 , ~15!

that
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An1m5AnL1R̄n , ~16!

and

Ltn1m
5Ltn

L1@L,R̄n#, ~17!

whereR̄n is a differential operator of order<m21.
To find the recursion operator we can simply equate the coefficients of different powersD

in ~12!. It is easy to see that in this comparison of the coefficients ofDi , i 52m22,...,m21 we
determineRn in terms of the coefficients of operatorsL andLtn

. It is important that the resulting
formulas turn out to be linear in the coefficients ofLtn

. The remaining coefficients ofDi , i 5m

22,...,0 in~12! give us the relation

S u0

•

•

•

um22

D
tn1m

5RS u0

•

•

•

um22

D
tn

, ~18!

whereR is a recursion operator. Instead of~12! one can use~17!. The corresponding recursio
operators coincide.

Example 1. KdV equation:The KdV equation,

ut5
1
4~u3x16uux!, ~19!

has a Lax representation with

L5D21u, A5~L3/2!1 . ~20!

Since in this caseLtn12
5utn12

[un12 andLtn
5utn

[un , the main relation~12! takes the form

un125~D21u!•un1@Rn ,L#, ~21!

with Rn5anD1bn .
Now if we equate successively to zero the coefficients ofD2, D, and D0 in the above

equation, we obtain

an5 1
2D

21~un!, bn5 3
4un ,

and

un125~ 1
4D

21u1 1
2uxD

21!un ,

that gives the standard recursion operator for the KdV equation,

R5 1
4D

21u1 1
2uxD

21. ~22!

In the same way one can find a recursion operator for the Boussinesq equation~see Appendix
A!.

B. Symmetric and skew-symmetric reductions of a differential Lax operator

The standard reductions of the Gel’fand–Dikii systems are given by the conditionsL* 5L or
L* 52L. Here* denotes the adjoint operation defined as follows. LetL be a differential operator
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L5SaiD
i . Its adjointL* is given byL* 5S(2D) i

•ai . It is easy to see that ifL* 5L then m
5ord(L) must be an even integer. For the caseL* 52L, it must be an odd integer.

It is well known that for both reductions all possibleAn are defined by~6!, wheren takes odd
integer values. This condition provides that (An)* 52An that is necessary for~3! to be compat-
ible.

If L* 5L, the formulaAn1m5(LLn/m)15(L (n1m)/m)1 gives a correctAn operator sincen
1m is an odd integer. Thus, in this case Proposition 1 remains valid and the recursion op
can be found from~12! or ~17!.

On the other hand, ifL* 52L then both integersm and n are odd and hence their summ
1n is an even integer. This means that (L (n1m)/m)1 cannot be taken as anAn operator. In this
~skew adjoint! case we must take

An12m5~L ~n12m!/m!15~L2Ln/m!1 ,

to find the recursion operator. Following the proof of Proposition 1 we obtain Proposition 2
Proposition 2:If L* 52L then

An12m5L2An1Rn , ~23!

where ord(Rn),2 ord(L). It follows from ~23! that

Ltn12m
5L2Ltn

1@Rn ,L#. ~24!

Remark 2:Instead of~23! we can use the ansatz

An12m5LAnL1R̃n , ~25!

or

An12m5AnL21 R̃̃n . ~26!

The recursion operators obtained by the utility of~23!, ~25!, and~26! all coincide.
In the works,25,26 more general reductionsL†56L were also considered. HereL†

5KL* K21, whereK is a given differential operator, such thatLK21 is a differential operator. In
this general reductions, as well, possibleAn operators are given by~6!, with n being an odd
integer. Propositions 1 and 2 are valid for this general symmetric and skew-symmetric cas
hence one can use Eqs.~12!, ~24! accordingly to obtain the recursion operators.

Example 2. Kupershmidt equation:This equation,

ut5u5x110uu3x125uxu2x120u2ux , ~27!

has the Lax pair

L5D312uD1ux , A5~L5/3!1 . ~28!

In this caseL* 52L; therefore we use Eq.~24! with

R̃n5anD51bnD41cnD31dnD21enD1 f n . ~29!

By equating the coefficients of powers ofD in ~24!, we obtain

an5 2
3D

21~un!, bn5 11
3 un , cn5 1

9„20uD21~un!173un,x…,

dn5 1
3„10uxD

21~un!122uun127un,2x…,
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en5 1
27„70u2xD

21~un!22D21~u2xun!140u2D21~un!28D21~u2un!

1134un,3x1212uun,x1184uxun…,

f n,x5 1
27„20u4xD

21~un!174u3xun1126u2xun,x140uu2xD
21~un!140ux

2D21~un!

1136uxun,2x127uuxun128un,5x164uun,3x116u2un,x…,

and the recursion operator for the Kupershmidt equation:

R5D6112uD4136uxD
31~49u2x136u2!D215~7u3x124uux!D113u4x182uu2x169ux

2

132u312uxD
21~u2x14u2!12~u5x110uu3x125uxu2x120u2ux!D

21. ~30!

C. Pseudodifferential Lax operator

In this section we generalize our scheme to the case of pseudodifferential Lax operator
only difference is that in formulas like~13! and ~23! the Rn operator also becomes a pseudod
ferential operator.

It follows from these formulas that the structure of the nonlocal terms inRn is, in general,
similar to the nonlocal terms inL sinceAn1m andAn are differential operators.

For skew-symmetric case,An may be defined by either~23! or ~25!, or ~26!. In the pseudo-
differential case they are not equivalent, in the sense that the nonlocal part ofRn depends on which
ansatz we choose. For illustration, let us consider the caseL5MD21, whereM is a differential
operator. The following lemma shows that ifL†5L or L†52L, where

L†5DL* D21, ~31!

then the formulas~13! and ~25! are much suitable then~16!, ~23!, and~26!.
Lemma:Let L†5eL, wheree561. Then

Rn5Dm211¯1a0 , for e51, ~32!

whereRn is defined by~13!, and

R̃n5D2m211¯1a21D21, for e521, ~33!

whereR̃n is defined by~25!.
Proof: If L5MD21 then L†5eL implies M* 52eM . It is easy to show that (L1/m)†

52L1/m. Hence (Ln/m)†52Ln/m for an odd integern. Define now a seriesKn by

Ln/m5DKn .

It is easy to prove thatKn* 5Kn . SinceKn5(Kn)11(Kn)2 and (Kn)* 5Kn , we have

~Kn!1* 5~Kn!1 , ~Kn!2* 5~Kn!2 .

From the last formula it follows that ord(Kn)2<22, which leads to an important result,

An5~Ln/m!15D~Kn!1 .

This implies that

LAn5M ~Kn!1 ~34!

is a differential operator. Now using~34! in ~13! and~25! for the casese51 ande521, respec-
tively, we find the ansatz forAn given by ~32! and ~33!.
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Example 3(e521): It is known that the KdV equation has, besides the standard Lax re
sentation, the following Lax pair:

L5~D21u!D21, A5~L3!1 . ~35!

The L operator satisfies the reductionL†52L. According to the formula~33! we have

R̃n5anD1bn1cnD21.

It follows from ~25! that

an5D21~un!, bn5un , cn52un,x2uD21~un!.

The remaining equation in~25! gives the recursion operator

R5D214u12uxD
21. ~36!

Example 4(e51). DSIII system:The DSIII system25,26 is given by

ut52u3x16uux16vx ,
~37!

v t52v3x26uvx .

The nonlocal Lax representation for this system is

L5~D522uD322D3u22Dw22wD!D21,
~38!

A5~L3/4!1 ,

wherew5v2u2x . SinceL†5L we can use~32!, which gives us

Rn5anD31bnD21cnD1dn . ~39!

By equating the coefficients of the powers ofD in ~25!, we obtain

an5D21~un!, bn54un ,

cn5 1
2„26uD21~un!111un,x12D21~uun!12D21~vn!…,

dn,x52 1
2„6u2xD

21~un!110uxun25un,3x14uun,x26vn,x….

The recursion operator of the DSIII is found as

R5S R0
0 R1

0

R0
1 R1

1D , ~40!

with

R0
05D428uD2212uxD28u2x116u2116v1~22u3x112uux112vx!D

2114uxD
21u,

R1
05210D218u14uxD

21,
~41!

R0
1510vxD112v2x1~4v3x212uvx!D

2114vxD
21u,

R1
1524D4116uD218uxD116v14vxD

21.

This recursion operator has recently been given in Ref. 6.
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III. MATRIX L OPERATOR OF THE FIRST ORDER

In this section we demonstrate how our approach, given in the previous sections, c
generalized to the case whereL is a matrix operator of the form

L5Dx1la1q~x,t !. ~42!

A. General case

Let us consider the Lax operator~42!, whereq anda belong to a Lie algebrag andl is the
spectral parameter. The constant elementa is supposed to be such that

g5Ker~ada! % Im~ada!. ~43!

First, let us recall the procedure25 of constructing theA operators for the Lax operator~42!.
Proposition 3:There exist unique series,

u5u21l211u22l221¯ , uiPIm~ada!, ~44!

h5h01h21l211h22l221¯ , hiPKer~ada!, ~45!

such that

eadu~L !5L1@u,L#1 1
2†u,@u,L#‡1¯5Dx1al1h. ~46!

Let b be a constant element ofg such that@b,Ker(ada)#5$0%. It follows from ~45! that
@bln,Dx1al1h#50. Hence@Fb,n ,L#50, where

Fb,n5e2adu~bln!. ~47!

Then the correspondingA operator of the form

Ab,n5bln1an21ln211¯1a0 , ~48!

is defined by the formula

Ab,n5~Fb,n!1 , ~49!

where

~S2`
n a il

i !15S0
na il

i . ~50!

According to~47!,

Fb,n115lFb,n . ~51!

Hence

Ab,n115~lFb,n!15l~Fb,n!11„l~Fb,n!2…1 . ~52!

The last formula shows that

Ab,n115lAb,n1Rn , RnPg, ~53!

whereRn does not depend onl. Substituting~53! into the Lax equationLtn11
5@Ab,n11 ,L#, we

get

Ltn11
5lLtn

1@Rn ,L#. ~54!
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Using the ansatz~54!, one can easily find the corresponding recursion operator.
Example 5:The system

ut52 1
2uxx1u2v,

~55!
v t5

1
2vxx2v2u,

is equivalent to the nonlinear Schro¨dinger equation, has a Lax operator

L5D1S 1 0

0 21D l1S 0 u

v 0D . ~56!

The Lie algebrag in this example coincides withsl(2).
Using ~54! with

Rn5S an bn

cn 2an
D ,

we find that

an5 1
2D

21~vun1uvn!,

bn5 1
2un , cn52 1

2vn ,

and the recursion operator of the system~55! is given by

R5S 2 1
2D1uD21v uD21u

2vD21v 1
2D2vD21u

D . ~57!

B. Reductions in matrix case

In the general case considered in the previous section theAn operators belong to the Lie
algebra,

a15$S i 50
k ail

i , aiPg, kPZ1%, ~58!

that is a subalgebra of the Lie algebra,

a5$S2`
k ail

i , a iPg, kPZ%. ~59!

A standards reduction is defined by any automorphisms of the Lie algebrag of finite order
k. Becausesk5Id, the eigenvalues ofs aree i ,i 50,...,k21, wheree is a primitivek root of unity.

Let gi be an eigenspace corresponding to eigenvaluee i . Then the following reductionaj

Pgi , wherei 5 j (modk) in ~58! and~59! is compatible with Eqs.~3!. Note that according to this
definition aPg1 , and the potentialq(x,t) in ~42! belongs tog0 or, the same, satisfiess(q)5q.

It is easy to see that, to satisfy such a reduction, we must use the ansatz

Ab,n1k5lkAb,n1Rn , ~60!

where

Rn5r k21lk211¯1r 0 , r iPgi . ~61!

Further generalizations are associated with modifications of sign ‘‘1’’ in ~50!, which corre-
sponds to the simplest decomposition of algebraa into the direct sum of two subalgebras,
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a5a1 % a2 , ~62!

wherea1 is given by~58! and

a25$S2`
21 ail

i , aiPg%. ~63!

The sign ‘‘1’’ in ~50! is the projection of ontoa1 parallel toa2 . If we have a different decom
position ~62!, then the construction from Proposition 3 is also valid, but we have the follow
condition:

RnPa1ùla2 , ~64!

instead ofRnPg. If we also have thes reduction, we must use the most general ansatz~60!,
where

RnPa1ùlka2 . ~65!

Example 6:Let us consider the following equation:

ut5
1
4uxxx2

3
8uxxu1 3

8uuxx2
3
8uuxu, ~66!

whereu is a square matrix of arbitrary size, or more generally,u belongs to an arbitrary associa
tive algebraK. This equation has a Lax representation with

L5D1S 0 1

1 0D l1S u 0

0 0D . ~67!

Here1 is the unity ofK. The reduction~67! can be described as follows~see Ref. 27!. The Lie
algebrag is the algebra of all 232 matrices with entries belonging toK. The automorphisms is
defined by

s~X!5TXT21, ~68!

where

T5S 1 0

0 21D .

Obviouslys25Id and eigenvalues ofs are 1 and21. The corresponding eigenspaces are

g05H * 0

0 *
J , g15H 0 *

* 0J , ~69!

and therefore the coefficientsai in ~59! have the following structure:

a2 j5S * 0

0 *
D , a2 j 115S 0 *

* 0D . ~70!

The subalgebraa1 is given by~58!, where the coefficients have the structure~70! and, addition-
ally,

a05S * 0

0 0D .

The subalgebraa2 has the following form:
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a25S2`
0 ail

i , ~71!

wherea0 is of the form

a05S a 0

0 a D , aPK.

The A operator for~66! is given by formulaA5(Fa,3)1 @see~49!#, where

a5S 0 1

1 0D ,

and ‘‘1’’ means the projection ontoa1 parallel toa2 .
According to~65!, Rn is of the form

Rn5S an 0

0 an
D l21S 0 bn

cn 0 D l1S dn 0

0 0D . ~72!

It follows from

Ltn12
5l2Ltn

1@Rn ,L#, ~73!

that

un2an,x1@an ,u#1bn2cn50 cn2bn2an,x50,

dn2bn,x2ubn50, dn1cn,x2cnu50,

un1252dn,x1@dx ,u#.

Finding an , bn , cn , anddn from this system, we obtain the following recursion operator:

R52~D1adu!~2D1Ru!~2D1adu!21~D1Lu!D~2D1adu!21, ~74!

whereRu andLu are the operators of right and left multiplications byu, respectively.
Note that in the commutative case~66! coincides with the modified KdV equation. It is eas

to verify that ~74! becomes the standard recursion operator of a modified KdV equation
factors in~74! have to be regarded as operators acting on a~noncommutative! polynomial depend-
ing on u,ux ,uxx ,... .

IV. CONCLUSION

In this work we devoted ourselves in the construction of recursion operators when th
representation is given. We have shown that our approach can be easily generalized to a
where theL operator is a polynomial ofl. It would be interesting to generalize it for the cases
more complicatedl dependence ofL as well as for the cases of 211-dimensional equations
Toda-type lattices, and ordinary differential equations.
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APPENDIX A: EXAMPLE TO SEC. II A

The Boussinesq equation,

utt52 1
3„u4x12~u2!2x…, ~A1!

can be expressed in the form of a pair of first-order evolution equations,

ut5vx ,

v t52 1
3~u3x18uux!. ~A2!

This system has a Lax pair,

L5D312uD1ux1v, A5~L2/3!1 . ~A3!

To construct the recursion operator for this system, we use Eq.~12! with the differential operator,

Rn5anD21bnD1cn .

By equating the coefficients of the powers ofD in ~12!, we find

an5 2
3D

21~un!, bn5 1
3„5un1D21~vn!…,

cn5 1
9„6vn18uD21~un!110un,x…,

and after that we obtain the recursion operator of the form~40! for ~A2! with

R0
053v12vxD

21,

R1
05D212u1uxD

21,
~A4!

R0
152„

1
3D

41 10
3 uD215uxD13u2x1 16

3 u21~ 2
3u3x1 16

3 uux!D
21

…,

R1
153v1vxD

21.

APPENDIX B: EXAMPLES TO SEC. II B

1. Sawada–Kotera equation

The Lax pair for the Sawada–Kotera equation,28

ut5u5x15uu3x15uxu2x15u2ux , ~B1!

is given by

L5D31uD, A5~L5/3!1 . ~B2!

In this example,L†52L, whereL†5D21L* D andL is skew-symmetric, then we use~24!. The
operatorR̃n has the same form as~29!, with the coefficients given by

an5 1
3D

21~un!, bn5 5
3un , cn5 1

9„5uD21~un!129un,x…,

dn5 1
9„5uxD

21~un!114uun126un,2x…,
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en5 1
27„10u2xD

21~un!22D21~u2xun!2D21~u2un!15u2D21~un!

128un,3x132uun,x132uxun…,

f n50.

The recursion operator is given as

R5D616uD419uxD
31~9u2111u2x!D

21~10u3x121uux!D15u4x116uu2x16ux
214u3

1~u5x15uu3x15uxu2x15u2ux!D
211uxD

21~u212u2x!. ~B3!

2. DSI system

The DSI system,25,26

ut53vvx ,
~B4!

v t52v3x12uvx1vux ,

has a Lax representation with

L5@D31~u1v !D1 1
2~u1v !x#@D31~u2v !D1 1

2~u2v !x#,
~B5!

A5~L1/2!1 .

HereRn is a differential operator of order 5, and sinceL is symmetric we again use Eq.~12!. The
expressions for the coefficients of the operatorRn are very long and complicated. Hence we do n
display them here. We find that the recursion operatorR of this system is of the form~40!, where

R0
0524D6224uD4227uxD

312~249u2x218u2142v2!D2110~27u3x212uux130vvx!D

226u4x282uu2x269ux
21222vvx1141vx

2216u3148v2u

12~22u5x210uu3x225uxu2x210u2ux115v2ux130vv3x145vxv2x130uvvx!D
21

12uxD
21~3v222u22u2x!,

R1
05168vD41204vD316~21v2x132uv !D216~40vux17v3x122uvx!D

16~13vu2x110uxvx1v4x15uv2x14vu2112v3!1108vvxD
21v12uxD

21~6uv19v2x!,
~B6!

R0
1556vD41268vxD

312~243v2x132uv !D212~36vux1219v3x1106uvx!D

12~27vu2x192uxvx199vax199uv2x14vu2112v3!12~10vu3x135u2xvx145uxv2x

110uvux118v5x130uv3x110u2vx115v2vx!D
2112vxD

21~3v222u22u2x!,

R1
15108D61216uD41432uxD

316~81u2x118u2122v2!D216~45u3x136uux170vvx!D

13~18u4x118uu2x19ux
2198vv2x167vx

2132uv2!136~2v3x12vxu1vux!D
21v

12vxD
21~6uv19v2x!.

3. DSII system

The DSII system,25,26
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ut53vx ,
~B7!

v t522~v3x1uvx1vux!,

has a Lax representation with

L5~D51uD31D3u1~v1 1
2u

2!D1D~v1 1
2u

2!!D,

A5~L1/2!1 . ~B8!

SinceL is symmetric we again use Eq.~12!. In this case the operatorRn is given as follows:

Rn5anD51bnD41cnD31dnD21enD, ~B9!

where

an5 1
3D

21~un!, bn5 5
3un ,

cn5 1
9@5uD21~un!13D21~vn!129un,x#,

dn5 1
9@5uxD

21~un!126un,2x114uun112vn#,

en5 1
27@5~2u2x1u213v !D21~un!23D21~vun1uvn!19uD21~vn!

22D21~u2xun1 1
2u

2un!154uxun128un,3x132~uun,x2unux!142vn,x#.

The recursion operator~40! for the system can be found as29

R0
052D626uD429uxD

32~11u2x19u2142v !D21~210u3x221uux230vx!D

25u4x216uu2x26ux
2260v2x24u3224vu1~2u5x25uu3x25uxu2x

25u2ux215vux215v3x215uvx!D
212uxD

21~2u2x1u213v !,

R1
05242D4248uD2287uxD26~7u2x1u226v !127vxD

2123uxD
21u,

~B10!
R0

1528vD41106vxD
31~165v2x132uv !D21~54vux1132v3x174vxu!D130vu2x179uxvx

154v4x157uv2x14u2v224v21~10vu3x125vxu2x130uxv2x110uvux19v5x115uv3x

15u2vx215vvx!D
212vxD

21~3v1u212u2x!,

R1
1527D6154uD41135uxD

313~54u2x19u2222v !D213~36u3x127uux228vx!D

13~9u4x19uu2x19ux
2221v2x216vu!218~v3x1uxv1vxu!D2123vxD

21u.

4. DSIV system

The DSIV system,25,26 which is also known as the Hirota–Satsuma system,30,31

ut5
1
2u3x13uux26vvx ,

~B11!
v t52v3x23uvx ,

has Lax representation with

L5~D21u1v !~D21u2v !, A5~L3/4!1 . ~B12!
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Since the operatorL is symmetric we use Eq.~12!. In this case the operatorRn has the same form
as ~39!, with coefficients given by

an5 1
2D

21~un!, bn5 7
4un2 1

2vn ,

cn5 1
8@6uD21~un!12D21~uun!24D21~vvn!117un,x212vn,x#,

dn,x5 1
16@6u2xD

21~un!212v2xD
21~un!130uxun28uxvn124uun,x

115un,3x212vxvn28uvn,x220vvn,x228vn,3x#.

The recursion operator~40! for the given system is

R0
05 1

4D
412uD213uxD12u2x14~u22v2!1~3uux26vvx1 1

2u3x!D
211uxD

21u,

R1
0525vD224vxD2v2x24uv22uxD

21v,
~B13!

R0
152 5

2vxD23v2x2~v3x13uvx!D
211vxD

21u,

R1
152D424uD222uxD24v222vxD

21v.

5. N53 Hirota–Satsuma system

This system is given by29

ut5
1
4u3x13uux13~2v21w!x ,

v t52 1
2v3x23uvx , ~B14!

wt52 1
2w3x23uwx .

This is an example for theN53 system that covers some otherN52 systems as special cases. F
instance, lettingw50, we get DSIV and lettingv50 we get DSIII systems.

The corresponding Lax pair is

L5~D212u22v !~D212u12v !14w, A5~L3/4!1 . ~B15!

In this case the operatorL is symmetric and henceRn has the same form as~39!, with the
coefficients

an5D21~un!, bn5 7
2un1vn ,

cn5 1
4@12uD21~un!14D21~uun1wn22vvn!117un,x112vn,x#,

dn,x5 1
8@12u2xD

21~un!124v2xD
21~un!160uxun116uxvn115un,3x148uun,x124vxun

240vxvn120vn,3x116vvn,x120wn,x#.

The recursion operator is given by

R5S R0
0 R1

0 R2
0

R0
1 R1

1 R2
1

R0
2 R1

2 R2
2
D , ~B16!

where
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R0
05 1

4D
414uD216uxD14~u2x14u224v214w!

14~ 1
4u3x13uux26vvx13wx!D

2114uxD
21u,

R1
0522~5vD214vxD1v2x18uv14uxD

21v !,

R2
055D218u14uxD

21,

R0
1525uxD26v2x22~v3x16vxu!D2114vxD

21u,

R1
152D428uD224uxD18~8w22v2!28vxD

21v28D21wx ,

R2
154~vxD

2112D21vx!,

R0
2525wxD26w2x22~v3x16wxu!D2114wxD

21u.

R1
25216vD21wx28wxD

21v,

R2
252D428uD224uxD116~w2v2!14wxD

21116vD21vx . ~B17!

APPENDIX C: EXAMPLES TO SEC. III

1. Non-Abelian Schro ¨ dinger equation

This is the system given by

ut52 1
2uxx1uvu,

~C1!
v t5

1
2vxx1vuv,

whereu andv belong toK ~see Example 6 for the notations!. The Lax operator of~C1! is given
by

L5D1S 1 0

0 21D l1S 0 u

v 0D . ~C2!

The corresponding formula~54! reduces to

S 0 un11

vn11 0 D 5lS 0 un

vn 0 D 1@Rn ,L#, ~C3!

where

Rn5S an bn

cn 2an
D . ~C4!

The formula~C3! gives us bothan ,bn ,cn and the recursion operatorR. They are given by

an5 1
2D

21~unv1uvn!, bn5 1
2un , cn52 1

2un , ~C5!

R5
1

2 S 2D1RuD21Rv1LuD21Lv RuD21Lu1LuD21Ru

2LvD21Rv2RvD21Lv D2RvD21Ru2LvD21Lu
D . ~C6!
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2. Non-Abelian modified KdV equation

The standard non-Abelian modified KdV equation is given by

ut5
1
4uxxx2

3
4uxu

22 3
4u

2ux . ~C7!

The Lax representation of this equation is given

L5D1S 0 1

1 0D l1S u 0

0 2uD . ~C8!

The recursion operatorR can be found from~60! and~61!. In our case the automorphisms is the
same as in Example 6, and formulas~60! and ~61! give us

S 0 un11

vn11 0 D 5l2S 0 un

vn 0 D 1@Rn ,L#, ~C9!

where

Rn5S 0 an

bn 0 D l1S cn 0

0 dn
D . ~C10!

Using ~C9! we find an ,bn ,cn ,dn from the following:

bn2an5un , 2an,x2anu2uan1cn2dn50,

2bn,x1bnu1ubn1dn2cn50, dn,x1cn,x5@cn2dn ,u#,

un115dn,x1@dn ,u#.

The resulting recursion operator is given by

R5 1
4~D2adu•D21

•adu!„D2~Lu1Ru!D21~Lu1Ru!…. ~C11!
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Using a formal variable separation approach, a nonlinear partial differential equa-
tion can be solved by solving ordinary different equations or even algebraic equa-
tions. Taking the KdV–Burgers and modified KdV–Burgers equations with back-
ground interaction as simple examples, some explicit solitary wave solutions which
are induced by background source and nonlinearity or dispersion are obtained.
© 1999 American Institute of Physics.@S0022-2488~99!00411-9#

I. INTRODUCTION

As the linear physics has been developed quite well and the real natural phenome
nonlinear, the main interest of many scientists has been focused on the nonlinear science. T
some types of special nonlinear problems, the so-called completely integrable models,
powerful methods like the inverse scattering transformation~IST!,1 Bäcklund and Dabourx
transformations,2 symmetry reduction,3 bilinear approach,4 standard5 and extended6 Painlevé
analysis, etc. have been developed by various authors. In comparison with the linear cas
known that IST is an extension of the Fourier transformation in the nonlinear case. In addit
the Fourier transformation, there is another powerful tool called the variable separation met
the linear case. However, there is little progress on obtaining some special solutions by me
a corresponding variable separation method in the nonlinear case. In Ref. 7, one of the
authors~Lou! and Lu have obtained some special solutions for the Davey–Stewartson equat
using a special variable separation procedure. A more systematic ‘‘variable separation’’ ap
has been established by means of the symmetry constraints.8–10 In that approach, although th
independent variables of a reduced field have not totally been separated the field satisfie
lower-dimensional equations. However this type of procedure is used only for integrable m
which possess Lax pairs. In this paper we try to extended the method to any models no matt
possess Lax pairs or not.

In the next section, we review the symmetry constraint approach of the KdV equation si
The extended method is proposed to solve any nonlinear equation in Sec. III. Section IV is
to apply the method to a special nonintegrable model, KdV–Burgers~KdVB! and modified KdV–
Burgers~MKdVB ! equation. The last section is a short summary and discussion.

II. SYMMETRY CONSTRAINT APPROACH OF THE KDV EQUATION

It is known that the KdV equation

ut26uux2uxxx50 ~1!

possesses a Lax pair

cxx1uc5lc, ~2!
64910022-2488/99/40(12)/6491/10/$15.00 © 1999 American Institute of Physics
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c t52~u2l!cx2uxc. ~3!

Equivalently, settingcx5f, ~2! and ~3! can be written as

S c
f D

x

5S 0 1

l2u 0D S c
f D , ~4!

S c
f D

t

5S 2ux 2~u2l!

2uxx22~u2l!2 ux
D S c

f D . ~5!

A symmetry of the KdV equation~1! is defined as a solution of its linearized equation

s t26sux26usx2sxxx50, ~6!

that means~1! is form invariant under the transformation

u→u1es, ~7!

wheree being a infinitesimal parameter.
It is known that (c2)x and ux are two typical symmetries of the KdV equation.11 If we

substitute the symmetry constraint condition

ux2~c2!x50, i.e., u5c2 ~8!

into the Lax pair~4! and ~5!, we have

S c
f D

x

5S f
lc2c3D[K1 , ~9!

S c
f D

t

5S 22lf
22l~lc2c3! D[K2 . ~10!

Now, if we can get a solution of the lower dimensional Eqs.~9! and ~10! then we can get a
corresponding solution of the KdV equation at the same time from the symmetry cons
relation ~8!. It is clear that only one independent variable appears explicitly in Eqs.~9! and ~10!
though the dependent variablesc andf are the functions of the both independent variablesx and
t. Becausec andf are functions of two variables and only one independent variable appea
Eqs.~9! and~10!, we may call this type of symmetry constraints as the ‘‘formal variable sep
tion approach.’’

III. GENERAL FORMAL VARIABLE SEPARATION APPROACH

It is known that the procedure shown in the last section dependent on the existence of t
pair. In other words, the method is valid for completely integrable models. However, most o
physical models are not completely integrable. Can we get a hint to established a more g
variable separation method to solve general nonlinear problems? Fortunately, the answer
tive!

In order to get some special solutions of a general (n11)-dimensionalN order PDE,

F~ t,x1 ,x2 ,...,xn ,u,uxi
,uxixj

,...,uxi 1
xi j

...xi N
![F~u!50, ~11!

we may introduce a set of formally variable separated equations at first

Cxi
5Ki , i 50,1,2,..., n, x0[t, ~12!
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where C[(c1 ,c2 ,...,cM)T and Ki[Ki(C) are M component matrix functions. The matri
functionsKi should be commuted to each other

@Ki ,K j #[Ki8K j2K j8Ki[
]

]e
~Ki~C1eK j !2K j~C1eKi !!U

e50

~13!

because the compatibility conditionsCxixj
5Cxjxi

. Finally one can suppose that the solution
~11! is related toC by

u5U~C! ~14!

and determine the functionsU andKi by substituting~12! and ~14! into ~11!.
In the simple example given in the last section,M52, C5(c,f)T, the compatibility condi-

tion is satisfied naturally becauseK2;K1 and the functionU is given by the symmetry constrain
condition~8! simply. The simplicity in the KdV equation is because of its integrability. In gene
case, it is insignificant to find some suitableKi and U to give out some special exact solution
especially in nonintegrable case. For concreteness, we turn to treat a concrete example.

IV. EXPLICIT SOLUTIONS OF THE KdVB AND MKdVB EQUATION WITH BACKGROUND
SOURCE

Usually, one treats the nonlinear equations describing nonlinear problems without backg
interactions for simplicity. Some authors have considered the case in which the backg
interaction is periodic12 and nonperiodical.13 The general KdVB and MKdVB with source hav
the form

ut1 (
p51

P

apupux1cuxxx1guxx5 (
q50

Q

bquq, ~15!

where the right-hand side of~15! is the source term and the summation term in the left-hand
is the usual nonlinear interaction of the MKdVB (P.1) and the KdVB (P51) equations. The
solitary wave solutions of three special cases,$g50,a150,P52,Q53%, $P51,Q50% and
$c50,P51,Q53% have been given by Lan and Wang.13

Now, we treat the general MKdVB equation~15! by using the formal variable separatio
approach proposed in the last section. In this paper, we take onlyM51 in ~12!, i.e., the formally
variable separation equations have the forms

Cx5K1~C!, C t5K2~C!, ~16!

whereC5C(x,t) is a scalar function of$x,t% andKi(C)5Ki , i 51,2 are functions ofC with the
compatibility condition

@K1 ,K2#50. ~17!

In the single component case,K25vK1 with constantv is an only possible solution of~17!.
Substituting~14! and~16! into ~15! we know that~14! solves Eq.~15! if two functionsK1 andU
satisfy the following ordinary differential equation:

vK1U81K1U8(
p51

P

apUp1cK1~U-K1
213K1K18U9

1K1K19U81K18
2U8!1gK1~K1U91K18U8!5 (

q50

Q

bqUq. ~18!
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In real application, for any fixedK1 , we can get a corresponding solution of~15! by solving~18!.
For instance, we can takeK1 as a polynomial function ofC,

K15(
j 50

J

AjC
j ~19!

to get solitary wave solutions of~15!. Equation~18! with ~19! can always be solved by means
power series approach by setting

U5(
j 50

`

U jC
j ~20!

and fixing the expansion coefficients from~18! recursively. If we takeJ51 andJ52 in ~19!, ~20!
is equivalent to the usual exponential and tanh expansions used by many authors. In some
selections ofap and bq in ~15!, ~20! may be truncated, then some closed explicit solitary w
solutions

U5(
r 50

R

UrC
r ~21!

can be obtained. In the usual KdV and MKdV systems, the solitons are caused by the b
between the effects of the dispersion and the nonlinear interactions. Once the backgroun
actions exist, the solitary waves may be caused in four ways,~i! by the balance between the effec
of the dispersion (cÞ0) and the nonlinear interactions (apÞ0), ~ii ! by the balance between th
effects of the dispersion and background interaction (bqÞ0), ~iii ! by the balance between th
effects of the background interactions and the nonlinear interactions, and~iv! by the balance of all
three effects. Now we discuss the truncation conditions caused by balance among the
dispersion, nonlinear interactions and background interactions.

Substituting~21! and~16! with ~19! into ~18! we know that the highest order terms ofC in the
background, dispersion, and the nonlinear interactions readbQUQ

RCQR, cAJ
3URR((R21)(R

22)13J(R21)1J(2J21))CR13J23, and RAJaPUR
P11C (P11)R1J21, respectively. From the

above leading order terms, we know that~i! if a solitary wave is caused by the effects of th
dispersion and the nonlinear interactions, the balance conditions are

~P11!R1J215R13J23.QR,
~22!

RAJaPUR
P1152cAJ

3URR~~~R22!13J!~R21!1J~2J21!!;

~ii ! if a solitary wave is caused by the effects of the dispersion and the background interactio
balance conditions read

~P11!R1J21,R13J235QR, bQUQ
R5cAJ

3URR~~R21!~~R22!13J!1J~2J21!!;
~23!

~iii ! if a solitary wave is caused by the effects of the nonlinear interactions and the backg
interactions, the balance conditions become

~P11!R1J215QR.R13J23, bQUQ
R5RAJaPUR

P11 ~24!

and ~iv! if a solitary wave is caused by all three effects, the balance conditions have the fo

~P11!R1J215R13J235QR,
~25!

bQUQ
R5cAJ

3URR~~R21!~R22!13J~R21!1J~2J21!!1RAJaPUR
P11.
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Finally, we list some special types of solitary wave solutions of~15! for J52 in cases
~22!–~25!. The general solution of~16! with ~19! andJ52 reads

C5
c1 exp~~c22c1!A2~x1vt1x0!!1c2

11exp~~c22c1!A2~x1vt1x0!!
, ~26!

wherex0 is an arbitrary constant and

c15
1

2A2
~AA1

224A0A22A1!, c25
1

2A2
~2AA1

224A0A22A1!. ~27!

A. Solitary waves caused by the balance between the dispersion and the nonlinear
interactions

SubstitutingJ52 into ~22!, we know that the solitary wave solution with the form~21! and
~26! exist for (P11)R115R13.QR. The simplest two cases read

$R51,P52,Q<3%, and $R52,P51,Q<2%. ~28!

For the first subcase of~28!, the solitary wave solution can be obtained by substituting~19! and
~21! into ~18!. The final result shows us that if the model parameters satisfy a condition

54b3
5c3254c2~a2g23ca1V!b3

41~18a2
2cg2227c2~a1

214ga1V14Vcb2!a2!b3
3

1~~29c2b122g3!a2
319c~2gV1a1!~a1g14cb2!a2

229a2c2a1
3V!b3

2

1~~3cb1g29c2Vb0!a2
423c~3cVb1a114Vb2g213cb2

214b2ga1!a2
3

118a2
2c2Vb2a1

2!b313cb2~b2g13b1cV!a2
429c2a2

3Vb2
2a150, ~29!

then ~15! possesses a kink type solitary wave solution

u5u01C, u052
3b3c23A1a2c2ga213a1Vc

6ca1V
~30!

with

v5
1

A2
S 1

3
A0a2

212a2u0A12a1A123b3u01b22~a1u017cA1
213gA11a2u0

2!A2D , ~31!

A05
V~b01b3u0

31b1u01b2u0
2!

a1A112a2u0A112gVA113b3u01b216cVA1
2 , A256A2a2

6c
[V, ~32!

andA1 being an arbitrary constant.
In the second case, the solitary waves have the form

u5u01u1C1u2C2 ~33!

with C being given by~26! while the parameters can be taken in four different ways:
~A!

g512b2ca1
21, ~34!

u05
b1

224b0b2

192b2
4c

a1
32

b1

2b2
2

3A1c

a1
2 ~a1A114b2!, ~35!
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A252
1

100a1
2c2A0~ga1118b2c!

~~25~5b12gA1
2110b2u0!c21g3!a1

3

14b2c~75cA1~A1c1g!24g2!a1
224c2b2

2~213g1150A1c!a1248b2
3c3!, ~36!

v52S u0a11S ~8A2A01A1
2!c1

6

5
A1g2

g2

25cD2
2b2

25a1
~30A1c123g!1

96

25a1
2 b2

2cD , ~37!

u252
12cA2

2

a1
, u152

12A2

5a1
2 ~22b2c15cA1a11ga1!, ~38!

whereA1 is an arbitrary constant;
~B! In the second subcase, all the parameters can still expressed by~35!–~38! while ~34!

should be changed as

g52b2ca1
21; ~39!

~C! If conditions ~34! and ~35! are replaced by

625c2~2b1
214b0b2!a1

61144b2
2~ga122b2c!450 ~40!

and

u052
1

50b2ca1
3 ~6b2~2~ga122b2c!2110a1c~ga122b2c!A1125c2A1

2a1
2!125b1ca1

3!,

~41!

we get the third type of solitary wave solution of~15! with the form ~33!;
~D! In the first three subcases,A1 is a free parameter and there is a restriction condition on

model parameters. For the forth type of solitary wave solution of the form~33!, there is
no constraint on the model parameters ifA1 is fixed by

15625c4~2b1
214b0b2!a1

61~225a1
2c2~ga1212b2c!A1

2

1300a1b2c2~ga122b2c!A11~ga1212b2c!~ga122b2c!2!250 ~42!

andu0 is given by

u052
1

250b2c2a1
3 ~225a1

2c2~ga1212b2c!A1
21300a1b2c2~ga122b2c!A1

1125b1c2a1
3248b2

3c31g3a1
3152b2

2c2ga1216b2g2a1
2c!, ~43!

while the forms of~36!–~38! are remained to have the same forms though the param
u0 andA1 in ~36!–~38! should be replaced by~42! and ~43!.

B. Solitary wave solution caused by the balance between the dispersion and the
background interactions

WhenJ52, the first condition of~23! becomes (P11)R11,R135QR. The simplest case
is

R51, P51, Q54. ~44!

In this case, if the model parameters are restricted by

2cVV0
21~v01cV1

21gV1!V01b050, ~45!
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where

V[2S b4

6cD 1/3

, V1[2
1

12cV2 ~b31a1V12gV2!, ~46!

V0[
2b1V12gV1

2V16cV1
3V1a1V1

21V1b2

V~a112gV!
, ~47!

and

v0[2
1

V
~a1V113gV1V18cV2V01b217cVV1

2!, ~48!

the form of the solitary wave solution is given by

u5u01u1C ~49!

with ~26! andu0 andu1 being arbitrary while

A25Vu1 , A152
1

12cV2 ~b31a1V12gV214u0b4!, ~50!

A05
1

u1V~a112gV!
~2b1V12gV1

2V16cV1
3V1a1V1

21V1b2

24b4u0
3V1~6a1b423b3V!u0

21~3a1b322b2V!u0!, ~51!

v52
1

V
~a1V113gV1V18cV2V01b217cVV1

216b4u0
21~3b31a1V!u0!. ~52!

C. Solitary wave solution caused by the balance between the nonlinear interactions
and the background interactions

The first condition of~24! reduces to (P11)R115QR.R13, for J52. The simplest one
case is

R51, P53, Q55. ~53!

The corresponding solitary wave solution has the form of~49! also. Substituting~49! and~53! into
~18!, one can find that solitary wave of the form~49! with ~26! exist for the following two
restrictions among the model parameters that are satisfied:

b0a322cb5C0
21v0C0a31cC1

2C0a31gC1C0a350, ~54!

22gb5C01A1C0a31b1a31v0C1a31gC1
2a328cb5C0C11cC1

3a350, ~55!

where

C15
1

a3
4 ~6cb5

32b4a3
31a2b5a3

2!, ~56!

C05
1

a3 ~2a2C1a3
222gb5

22b3a3
21a1b5a3212cb5

2C1!, ~57!
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v05
1

a3b5
~a1C1a3

223gC1b5a327cb5C1
2a31a2C0a3

21b2a3
218cb5

2C0!. ~58!

The constantsu0 andu1 are remains free again whenA2 , A1 , A0 andv in ~26! is given by

A252b5u1 /a3 , ~59!

A15~6cb5
322u0b5a3

32b4a3
31a2b5a3

2!/a3
4, ~60!

A05
1

a3
3u1

~b5~a112a2u0!a323a3
3u0A12~a2A11b314b4u017b5u0

2!a3
22b5

2~2g112cA1!!,

~61!

v5
1

a2b5
~3u0~u0A11u1A0!a3

31~6b4u0
213b3u012a2u0A11b219b5u0

31a2u1A01a1A1!a3
2

1~2a1u023gA12a2u0
227cA1

2!b5a318cu1b5
2A0!. ~62!

D. Solitary wave caused by the effects of the nonlinear interactions, dispersion, and
the background interactions

In J52 case, the first condition of~25! is simplified to (P11)R115QR5R13 with the
only positive integer solution

R51, P52, Q54. ~63!

If the restriction condition

2cVC0
21~cC1

21v01gC1!C01b050, ~64!

with

C152
b312gV21a1V

a2112cV2 , ~65!

C05
2gC1

2V2b1V16cC1
3V1C1b21a1C1

2

2gV21a1V2a2C1
, ~66!

v052
1

V
~a1C117cVC1

21b213gC1V1a2u1C018cu1V2C0!, ~67!

whereV is a root of

6cV31a2V1b450, ~68!

we can obtain the solitary wave solution which are caused by all three effects in the form wit
arbitrary constantsu0 andu1 while A2 , A1 , A0 andv in ~26! is expressed as

A25Vu1 , ~69!

A152
4b4u012a2u0V1b312gV21a1V

a2112cV2 , ~70!
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A05
1

u1~2gV212a2u0V1a1V2a2A1!
~6cA1

3V1~2gV12A2u01a1!A1
2

1~b216b4u0
213b3u0!A124b4u0

3V2b1V22b2u0V23b3u0
2V!, ~71!

v52~~a2V16b4!u0
21~3b31a1V12a2A1!u0

1~a218cV2!u1A017cVA1
21~a113gV!A11b2!/V. ~72!

V. SUMMARY AND DISCUSSION

In linear physics, both the Fourier transformation approach and the variable separation m
play a very important role. However, in nonlinear physics, both the traditional Fourier tran
mation approach and the variable separation method are not valid again. For some special
nonlinear equations, the so-called completely integrable models, the inverse scattering tr
mation approach is considered as the extension of the Fourier transformation and the sym
constraint approach or the nonlinearization of the Lax pair can be considered as a type of
sion of the variable separation approach. Nevertheless, most of the problems in nonlinear p
are not completely integrable. Many mathematicians and physicists have been trying to find
powerful methods to solve the nonlinear partial differential equations which are not comp
integrable models, but there is little progress in this direction except for the symmetry redu
and the perturbation theory basing on the inverse scattering transformation.

In this paper, we have extended the formal variable separation approach to a genera
such that the method can be used to solve both the integrable and nonintegrable models. U
method to a general modified KdV equation with background interactions, we know that o
solution of a formally variable separated system is obtained, a corresponding solution
modified KdVB equation can be obtained by solving an ordinary differential equation. Whe
restrict the functions that appeared in the variable formally separated system as polynomia
tions, the ordinary differential equation can be solved using the series method. In some s
cases where some restricted conditions on the model parameters are satisfied, the series
becomes a closed truncated form.

Once the background interactions exist for the KdVB and modified KdVB system, the so
wave may be formed in some different ways. Usually, the soliton solution is caused by the b
between nonlinear interactions and dispersion. From our calculations, we know that the s
wave solutions can be formed by the balance of any two of three effects: dispersion, non
interactions, and background interactions. Some special explicit solitary wave solutions in
possible cases are listed in Sec. IV.

In this paper, we treat only the formally variable separation system~16! as one component fo
the KdVB MKdVB equation. In one component case for~16!, the only allowed solution has th
traveling wave form. To get nontraveling wave solutions, one has to treat the method with
components. More about the formally variable separation approach is worthy of further stu
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The ~m-vector! k-constrained Kadomtsev–Petviashvili~KP! hierarchy is shown to
be a ‘‘pseudo’’-reduction of the (m11)-component KP hierarchy. To facilitate the
implementation of this reduction on the level of the solutions, the typical multi-
component KP solutions are mapped onto solutions of a Toda molecule-type equa-
tion from which ~Wronskian and Grammian! solutions for the constrained KP hi-
erarchy follow. The reduction of the associated linear systems is discussed and its
importance for the choice of bilinear representation of the reduced systems is ex-
plained. © 1999 American Institute of Physics.@S0022-2488~99!01310-9#

I. INTRODUCTION

Judging by the considerable body of work which has appeared on the topic of constrain
systems, one would expect their properties to be quite well understood by now. Among the
important facts discovered~apart from the original formulation of the ‘‘constrained hierarchies
see Refs. 1–3 for a full account of these! there are the bilinear representation of the redu
systems,4,5 the interpretation of the constraint procedure in terms of the basic KP constructio~be
it on a pseudo-differential, Grassmanian,6 or purely bilinear level,4,7!, and, of course, the descrip
tion of various classes of solutions.8–12 The motivation for this paper however, stems from o
belief that many~if not most! of these features are best appreciated in the framework of m
component KP hierarchies. As it will turn out, the problem of constructing solutions pla
central role therein.

At this early point, in order to render the main object we wish to study slightly m
tangible—them-vector, k-constrained KP hierarchy—we shall characterize it in terms of
familiar KP tau functions: a necessary condition for a KP tau functiont(x) @depending on a set o
coordinatesx5(x1 ,x2 ,x3 ,...)] to be a taufunction for them-vector,k-constrained KP hierarchy
is that its xk-derivative txk

is a superposition ofm ~quite particular! KP tau functions:txk

5S i 51
m t̂ i , the actual description of such a ‘‘constrained’’ tau functiont(x) and the corresponding

t̂ i ’s being the main problem to be solved. Note that as one may always consider allt̂ i[0, the
standardk-reductions of the KP hierarchy are included here as well.

In the past a variety of solution methods for the constrained KP evolutions have been
posed but, undoubtedly, the most important and fruitful method which has been employed
of so-called Darboux–Ba¨cklund transformations.13 Actually, it was recognized early on that th
construction—which works so well in the KP case—should also be adaptable to the sp
problem of constructing ‘‘constrained’’ solutions. Several applications of Darboux–Ba¨cklund
transformations have been reported in the mean-time: ordinary Darboux transformations
been used to construct Wronskian-type determinant solutions whereas binary-type Darboux
formations have been shown to yield Grammian solutions for the reduced hierarchies.14,10 Going
through the literature on this topic one feature of these methods immediately ‘‘jumps’’ out a
reader: in some cases10,11 authors are discussing solutions generated through Darboux–Ba¨cklund
transformations which appear to be more general than those treated in other accounts. The
65010022-2488/99/40(12)/6501/25/$15.00 © 1999 American Institute of Physics
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ence almost always resides in the particular choice of thevacuumsolution for the constrained
equations which is used as aseedin the recursive application of the transformations. However,
problem which invariably arises is how to construct an appropriate vacuum. Any recursio
mula or solution expressed in terms of a postulated vacuum remains rather ‘‘empty’’ witho
actual construction of at least one example of such a ‘‘general’’ vacuum. In other words
problem of obtaining solutions ultimately boils down to constructing vacuum solutions, or
another way, to proving the existence or nonexistence of nontrivial vacuum solutions. Alon
course of the present discussion we shall comment on this problem.

An interesting property of the solutions of the constrained hierarchies obtainable th
consecutive Darboux–Ba¨cklund transformations is that~at least in the simplest case of the sca
constraints, i.e., form51) the transformation chain can be viewed as a Toda-like system.11 In this
paper we wish to invert and at the same time strengthen this relation by presenting a discus
the m-vector k-constrained KP hierarchy as a reduction of the multi~2, 3,...!-component KP
hierarchy,15 in which multi-dimensional generalizations of the~molecule-type! Toda chains take
up a prominent place.

First of all, we believe this to be a natural description of the constrained systems a
example their bilinear representations or the interpretation of the constrained tau function
quite effortlessly from reductions of the multi-component KP hierarchies. As we shall tr
advocate, another advantage of the present point of view is the relative ease with which Wro
and Grammian solutions for the reduced hierarchies can be obtained. As mentioned abo
though such solutions have been discussed by a number of authors~including the present
ones!,8–11,14,16we have the feeling that their origins have never been quite clear altogethe
these solutions exhibit a remarkable ‘‘bi-directional’’ structure which, at least for ordin
vacuum, appears to bear no trace of the constraints imposed on the original KP soluti
situation quite opposed to that of the standardk-reductions of the KP hierarchy. We will show tha
this structure is inherited from the solutions of~what is essentially! the Toda molecule system
Furthermore, we shall make a case for the importance of the constructability of appro
vacuum solutions by showing that the present reduction procedure does not give rise to so
which genuinely refer to nontrivial vacuum. Although the procedure allows for the descriptio
what would be general Darboux–Ba¨cklund orbits, it becomes immediately apparent that ther
no hope whatsoever of obtaining anything~apart from minor adjustments of previously stat
results! more general than the solutions already presented in Ref. 14.

In the next paragraph we introduce the construction of the multi-component KP hier
itself. The language in which the hierarchy is formulated is that of free charged fermion oper
essentially following the treatment given in Refs. 17 and 18. In Sec. II, we discuss the redu
we shall impose on the multi-component KP hierarchies in order to obtain constrained KP
lutions. These reductions are of a ‘‘nonstandard’’ type and we would like to refer to the
‘‘pseudo-reductions’’ to set them apart from regular dimensional reductions. Here we us
qualification ‘‘pseudo’’ in the original sense of Hirota,19 meaning that in the set of coordinate
introduced for the original hierarchy the reduction is not quite a dimensional one, as~generically!
only the dependence on a single variable will be eliminated by it. The effect of these redu
then proves to be such that they impose a constraint on that part of the original hierarchy
consists of the KP evolutions. The present paper is, however, not intended to give a full a
of the effect of such reductions on the multi-component KP hierarchies themselves~as that would
lead us too far from our immediate goal!, but rather to study their effect on the KP evolutions.
an earlier paper20 we discussed the origin~similar to the above! of a particular generalized
k-constraint for the KP hierarchy, lying within the 2-D Toda lattice hierarchy. There, obtai
solutions proved to be rather effortless as they arose immediately from those for the Toda
itself. Here we shall see that the structure of the solutions of the multi-component KP hier
differs considerably from that of the solutions we shall find eventually for the reduced system
order to establish a clear link we shall first have to recast them into a form which is particu
well suited for imposing the reduction. All this will be explained in the fourth part of this pa
Finally, for the scalar constraints several comments on the available bilinear descriptions
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constrained KP hierarchies can be made. Starting from the reduced multi-component linear
it will become obvious that every reduced hierarchy essentially allows for three different bil
descriptions. Each description has its own underlying linear formulation, well adapted to
particular case, all of them being related by rather trivial gauge transformations.

II. MULTI-COMPONENT KP HIERARCHIES

We begin by describing then-component KP hierarchy~by and large following notations
introduced by the Kyoto school17,21,22rather than those found in Ref. 15! in terms of charged~free!
fermion creation-annihilation operatorsc i

(a) ,c j*
(b)( i , j PZ1 1

2; a,b51,...,n) carrying ‘‘charges’’
11 and21, respectively. The operators satisfy the anticommutation relations:

@c i
~a! , c j*

~b!#15da,bd i 1 j ,0 ; @c i
~a! , c j

~b!#15@c i*
~a! ,c j*

~b!#150. ~2.1!

For the~usual! Fock representation of this algebra~and for its dual representation!, one introduces
cyclic vectorsuvac& ~and ^vacu!:

c i
~a!uvac&5c i*

~a!uvac&50 for i .0,
~2.2!

^vacuc i
~a!5^vacuc i*

~a!50 for i ,0.

For our purposes it will prove worthwhile to use the~invertible! shift operatorsSa ,

Sac i
~a!5c i 21

~a! Sa , Sac i*
~a!5c i 11* ~a!Sa ,

~2.3!
Sac i

~b!52c i
~b!Sa , Sac i*

~b!52c i*
~b!Sa , for aÞb,

to represent the~dual! Fock states

um1 ,m2 ,...,mn&[S1
m1S2

m2
¯Sn

mnuvac&,

^m1 ,m2 ,...,mnu[^vacuSn
2mn

¯S2
2m2S1

2m1 ~2.4!

of total charge( i 51
n mi but referring to particular ‘‘colors’’mi ~themi being integers!. These states

are orthonormal with respect to the usual pairing^vacu1uvac&51:

^m1 ,m2 ,...,mnum18 ,m28 ,...,mn8&5dm1,m
18
dm2,m

28
¯dmn,m

n8
. ~2.5!

We also introduce formal operatorsc (a)(p) andc* (a)(q) depending on some parametersp andq:

c~a!~p![ (
j PZ11/2

c j
~a!p2 j 21/2, c* ~a!~q![ (

j PZ11/2
c j*

~a!q2 j 21/2, ~2.6!

for which ‘‘time’’ evolutions with respect ton different sets of infinitely many variablesx(a)

[(x1
(a) ,x2

(a) , ...,xl
(a) , ...) (a51,...n) can be defined in terms of the Hamiltonian:

H~x![ (
a51

n

(
l 51

`

xl
~a!Hl

~a! with Hl
~a![ (

j PZ11/2
:c2 j

~a!c j 1 l* ~a! : ~2.7!

~< denotes the usual normal ordering :c i
(a)c j*

(a):5c i
(a)c j*

(a)2^vacuc i
(a)c j*

(a)uvac&). Note also
that Hl

(a)uvac&50, ; l>1 and accordingly that exp„H(x)…uvac&51. The evolutions forc (a)(p)
andc* (a)(q)wrt the coordinatesx are then given by

eH~x!c~a!~p!e2H~x!5c~a!~p!eja~x,p!, eH~x!c* ~a!~q!e2H~x!5c* ~a!~q!e2ja~x,q!, ~2.8!
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whereja(x,k)5( l 51
` xl

(a)kl . Making use of the time evolutionsg(x)5eH(x)ge2H(x) of an element
g of ~a suitable completion! of the GL~`! group—generated by elements

(
a,b

(
i , j

ci j
abc~a!~pi !c* ~b!~qj !1c ~2.9!

of ~a completion of! the gl~`! algebra15—the n-component tau functionstm(x) are defined as
expectation values:

tm~x![^mug~x!uvac& ~2.10!

for zero-charge states with colorm5(m1 ,m2 ,...,mn):

^mu5^vacuSn
2mn

¯S2
2m2S1

2m1, (
i 51

n

mi50. ~2.11!

These tau functions satisfy the well-known bilinear identity,15,17 ;x,x8:

(
a51

n

Resl@~21!( i 51
a21

~ki1k28! lka2ka822eja~x2x8,l!tk2da
„x2ea~l!…tk81da

„x81ea~l!…#50

~2.12!

for k, k8 subject to(a51
n ka215(a51

n ka81150. The shiftsda and ea(l) only affect theath
component:

k6da5~k1 ,...,ka61,...,kn!,
~2.13!

x6ea~l!: x~a!→S x1
~a!6

1

l
,x2

~a!6
1

2l2 ,x3
~a!6

1

3l3 ,¯ D .

At lowest order, we find that the bilinear identity~2.12! contains a system of coupled second-ord
equations15 made up ofn(n21) copies of Toda molecule equations23,24 ~expressed using the
Hirota D-operators25!,

Dx
1
~b!Dx

1
~a!tk

•tk52tk1db2datk2db1da ;bÞa, ~2.14!

and a higher-order system involvingx2
(b)-derivatives

Dx
2
~b!Dx

1
~a!tk

•tk52Dx
1
~b!tk1db2da

•tk2db1da ;bÞa ~2.15!

@as will be explained later on, opposed to the ordinaryA` Toda lattice,17,26 the lattices described
by the equations~2.14! correspond to finite or at most semi-infinite chains of tau functions, he
the name ‘‘molecule’’#. An intrinsic property of then-component KP hierarchy~which is crucial
to our further purposes! is that a tau functiontn always satisfies the~one-component! KP hierar-
chy expressed in terms of some variablex(b). This can be readily seen as the bilinear ident
~2.12! collapses to the regular KP bilinear identity whenk5n1db and k85n2db ~for some
specificbth variable! with x(a)5x(a)8;aÞb.

Introducing the functions

Vk
~b!~x;p!5^k1dbueH~x!c~b!~p!guvac&5~21!( i 51

b21kitk~x2eb~p!!pkbejb~x,p!, ~2.16!

we can write down a bilinear identity describing the linear problem which underlies
n-component KP evolutions (;x,x8):
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(
a51

n

Resl @eab ~21!da,b1( i 51
a21

~ki1ki8!lka2ka8222da,beja~x2x8,l!

3tk2da
„x2ea~l!…Vk81da

~b!
„x81ea~l!;p…#52Vk2db

~b! ~x;p!tk81db~x8!, ~2.17!

with

eab5 H 21, if a,b.
1, if a>b. ~2.18!

The linear problem itself can then be expressed in terms of thewavefunctions

Ck
~b!~x;p!5

Vk
~b!~x;p!

tk~x!
;b51,...,n, ~2.19!

the lowest-order equations being (;aÞb)

@Ck
~b!~x;p!#x

1
~b!5vk

~b,a!Ck
~b!~x;p!1eabCk1db2da

~b! ~x;p!

~2.20!
@Ck

~b!~x;p!#x
1
~a!5eba e2uk

~b,a!
Ck2db1da

~b! ~x;p!

~remark that, when considering, e.g., thex(b)-variables, the functionsCk
(b)(x;p) are nothing but

standard wavefunctions for the KP hierarchy expressed in those coordinates!.
In the above linear equations we made use of the variables

uk
~b,a!5 log

~tk!2

tk1db2datk2db1da
, ~2.21!

vk
~b,a!5F log

tk1db2da

tk G
x

1
~b!

. ~2.22!

Obviously, the following relationship exists between these variables,

@uk
~b,a!#x

1
~b!5vk2db1da

~b,a! 2vk
~b,a! , ~2.23!

as a result of which we find the 2-D Toda-lattice-like nonlinear equations26

@uk
~b,a!#x

1
~b! ,x

1
~a!52 exp~2uk

~b,a!!2exp~2uk1db2da

~b,a! !2exp~2uk2db1da

~b,a! ! ~2.24!

as compatibility conditions of the linear system~2.20! @note that the ‘‘compatibility’’ conditions
which the first equations in the system~2.20! obviously impose are rather involved and of high
order#. Formula~2.21! acts as the dependent variable transformation connecting the above
linear equations to the bilinear equations~2.14!. A bilinear identity similar to~2.17!, describing the
adjoint linear problem in terms of adjoint wavefunctions

Ck*
~b!~x;q!5

^k2dbueH~x!c* ~b!~q!guvac&
tk~x!

;b51,...,n, ~2.25!

will not be given here as its explicit form is of no real importance in what follows. Rem
however, that a ratiotn1db2dg/tn(gÞb) satisfies the~one-component! KP linear problem ex-
pressed in terms of thex(b)-variables and thetn tau function and that similarly the ratio
tn2db1dg/tn satisfies the adjoint linear problem for the KP hierarchy in thex(b)-variables. The
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former property can easily be proven by choosingk5n12db2dg , k85n2db , andx(a)5x(a)8

for all aÞb and some specificgÞb in the bilinear identity~2.12!, reducing it to a modified KP
bilinear identity in thex(b) variables.

Finally, let us turn to some important examples of multi-component tau functions. In gen
these are constructed through~auto-! Bäcklund transformations performed on the group eleme
gPGL(`):

g→~c1ff* !g, ~2.26!

with constantc and wheref andf* are generalized fermion operators

f5 (
a51

n

Respa
@ha~pa!c~a!~pa!#, f* 5 (

a51

n

Resqa
@ha* ~qa!c* ~a!~qa!#, ~2.27!

defined in terms of certain ‘‘densities’’ha andha* .
The corresponding tau functions then transform as27

t~x!5^vacug~x!uvac&→ t̂~x!5^vacueH~x!~c1ff* !guvac&[t~x!3V~x!, ~2.28!

the resulting tau function being ‘‘factorizable’’ in terms of a so-called~multi-component! eigen-
function potentialV(x):

V~x![(
a,b

n

Respa ,qb
@ha~pa!hb* ~qb!V~a,b!~x!#, ~2.29!

V~a,b!~x!5^vacueH~x!c~a!~pa!c* ~b!~qb!guvac&/t~x!. ~2.30!

A basic explicit solution arises from repeated Ba¨cklund transformations~2.26! applied to the
vacuumelementgvac51,

gG5)
i 51

N

~ci1f if i* !, ~2.31!

in terms of generalized operators as in~2.27!,

f i5 (
a51

n

Respa,i
@ha,i~pa,i !c

~a!~pa,i !#, f i* 5 (
a51

n

Resqa,i
@ha,i* ~qa,i !c* ~a!~qa,i !#, ~2.32!

and by using Wick’s theorem to calculate the corresponding tau function for the colork[0:

tG
0 5det@~mi j !N3N#. ~2.33!

The entries of this Grammian determinant are well-defined potentialsmi j :7,27,28

~mi j !x
1
~a!5w i

~a!w j*
~a! ;a51,...,n, ~2.34!

~mi j !x
k
~a!5Ak

~a!@w i
~a! ,w j*

~a!#[(
s50

k21

~21!s~w i
~a!!~k212s!xi

~a!~w j*
~a!!sx

i
~a!, ~2.35!

~Ak
~a!@w i

~a! ,w j*
~a!# !x

l
~a!5~Al

~a!@w i
~a! ,w j*

~a!# !x
k
~a! ;k,l . ~2.36!

The functionsw i
(a) andw j*

(a) appearing in the determinant~2.33!
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w i
~a!5Respa,i

@ha,i~pa,i !e
ja~x,pa,i !], w j*

~a!5Resqa, j
@ha, j* ~qa, j !e

2ja~x,qa, j !], ~2.37!

only depend on thex(a)-coordinates and satisfy the dispersion relations (; l 51,2,...)

~w i
~a!!x

l
~a!5~w i

~a!! lx
1
~a!, ~w j*

~a!!x
l
~a!5~21! l 11~w j*

~a!! lx
l
~a!. ~2.38!

The tau functionstdb2da and tda2db linked to the tau function~2.33! by the lattice equations
~2.14! can be easily calculated from the above group elementgG by what amounts to a Schlesinge
transformation, e.g.,29

Sba : g→ebaSb
21Sag ⇒ tdb2da5eba^vacuSb

21SagG~x!uvac&. ~2.39!

In fact, all tau functions of different color in the zero-charge section of the Fock space c
obtained by application of such transformations. Use of Wick’s theorem then shows th
general, these tau functions are representable as determinants of combined Wronskian/Gr
type:

H
~b1 ,...,b l !

~a1 ...,ak!
5UONW3NW

W~b1 ,...,b l !

W~a1 ,...,ak!
*

~mi j !N3N
U, ~2.40!

the indices$a1 ,...,ak ,b1 ,...,b l% forming a subset of the set$1,...,n% ~i.e., k1 l<n) and where
NW5(s51

k Nas
5(s51

l Nbs
<N. The matricesW(b1 ,...,b l )

and W(a1 ,...,ak)* themselves exhibit a

block structure,

W~b1 ,...,b l !
[„WNb1

~w~b1!!¯WNb l
(w~b1!)…, W~a1 ,...,ak!

* [S WNa1

* ~w* ~a1!!

]

WNak

* ~w* ~ak!!
D , ~2.41!

defined in terms of Wronskian-like matrices

WNb
~w~b!!5S w1

~b!

]

wN
~b!

~w1
~b!!x

1
~b!

]

~wN
~b!!x

1
~b!

¯

�

¯

~w1
~b!!~Nb21!x1

~b!

]

~wN
~b!!~Nb21!x1

~b!
D , ~2.42!

WNa
* ~w* ~a!!5S w1*

~a!

~w1*
~a!!x

1
~a!

]

~w1*
~a!!~Na21!x1

~a!

¯

¯

�

¯

wN*
~a!

~wN*
~a!!x

1
~a!

]

~wN*
~a!!~Na21!x1

~a!

D . ~2.43!

The ‘‘effect’’ of the Schlesinger transformationSba ~2.39! on such a general determinant~2.40!
then is to add a column~containingNb

th x1
(b)-derivatives! to theb-component block inW, while

deleting the last row of thea-component block inW* . A SchlesingerSb ib j
(Sa ia j

) acts by adding
and deleting columns~rows! in the b i and b j (a j and a i !) blocks, respectively. Moreover, th
determinant of the matrixW(1,...,n) itself is a Wronskian tau function for the multi-component K
hierarchy, constructed from a trivial elementgvac51 by means of the repeated action of so-cal
Darboux transformations:

gW5S1
2N1S2

2N2
¯Sn

2Nn)
i 51

N

f i ⇒ uW~1,...,n!u5^vacugW~x!uvac& ~2.44!
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with N5( i 51
n Ni , someNi ’s possibly being zero. The Schlesinger transformation~2.39! acts on

W(1,...,n) as described above forSb ib j
. Similarly, the determinant ofW(1,...,n)* is a Wronskian tau

function as well, this time obtained through repeated action of adjoint Darboux transformati27

g→Sf* g. The Schlesinger action is as explained above forSa ia j
.

III. PSEUDO-REDUCTIONS

In this section we shall consider a reduction procedure which describes the constrain
hierarchies as part of anm-component KP hierarchy, for whichm denotes the number of compo
nents (m>2). As mentioned in the Introduction, this reduction procedure will turn out to be
rather nonstandard type as it generically does not act as a dimensional reduction for the
multi-component hierarchy, but only eliminates certain~lowest order! time evolutions in favor of
other time variables. Because of this fact and because of the considerable notational com
already apparent in the previous section, we shall first rewrite some of the relevant formula
more telling way.

In our discussion of reductions, we shall be primarily interested in their effect on the mol
Toda evolutions for tau functions~2.14! and their derivative nonlinear fields~2.24!. Furthermore,
as the ultimate goal is to describe a reduction of the KP hierarchy which only involves a sing
of variables, we shall privilege thex(1)-variables by taking them to be the~final! KP variables
whereby dropping the superscript altogether:x(1)→x. The other sets ofx(a)-variables in the
multi-component hierarchy will be renamed asy(a) (a52,...,m). In this new notation, the
x-evolutions of a~multi-component! tau functiont(x,y(a)) are governed by the ‘‘standard’’ KP
evolution equations, with respect to which one is permitted to think of they(a)-evolutions as being
purely parametric. Also, as we only consider tau functions defined in the zero-charge sec
the Fock space~s!, we shall drop the explicit reference to the~basic! color k in the description of
the tau functions, e.g.,tk1dg→tdg.

In the following our chief interest will be the subset of bilinear equations among~2.14!
describing thex1-evolutions of the multi-component tau functions:

Dx1
Dy

1
~a!t•t52td12datda2d1 ;a52,...,m, ~3.1!

the relevant linear problem being

@C~l!#x1
5v ~1,a!C~l!1Cd12da

~l! ,

@C~l!#y
1
~a!52e2u~1,a!

Cda2d1
~l!,

~3.2!

where we have dropped the reference to the first component inC (1)→C, as well as the explicit
dependence on thex and y(a) variables or on thek-state inC(p),v (1,a) and u (1,a). As for the
functions C(x,y(a);l), it should be clear~cf. Sec. II! that they solve the standard KP line
problem expressed in thex-coordinates.

Let us now, for some fixed integerk, impose the following reduction on them-component tau
functions:

(
a52

m

ty
1
~a!5txk

. ~3.3!

In the excellent account of the multi-component KP hierarchy given in Ref. 15 it is shown tha
casek51 is a standard reduction form-component hierarchies30 as it results in subsequent iden
tifications of the sort(a52

m ty
l
(a)5txl

, ; l 51,2,... . The generic case, however, does not prod

such subsequent identities for thex- andy- variables considered here~suitable coordinate trans
formations might alter this picture considerably, but these are a different topic altogether!. Hence,
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we shall refer to the reduction~3.3! as a pseudo reduction. However, the effect of this reduction
thex dependence of the tau functions is dramatic, as it allows us to eliminate they(a) dependence
from the equations~3.1!:

Dx1
Dxk

t•t52 (
a52

m

td12datda2d1, ~3.4!

thereby providing a constraint on thex-evolutions of the tau functions. If, after this reduction, w
choose to regard they(a)-variables as mere parameters—thex-evolution being the only relevan
one—we obtain a constraint on ordinary KP tau functions. Equation~3.4! can be rewritten as

~ logt!x1xk
5t22 (

a52

m

td12datda2d15 (
a52

m

qar a , ~3.5!

where the functionsqa and r a are defined as the ratios

qa5
td12da

t
, r a5

tda2d1

t
, ~3.6!

for which it was pointed out in the previous section that they correspond to solutions of th
linear problem (qa) and adjoint linear problem (r a). If we now consider the one-component ca
of the eigenfunction potential~2.30! introduced in Sec. III,

V~x!5Resp,q @^vacueH~x!h~p!c~p!h* ~q!c* ~q!guvac&#/t~x!, ~3.7!

we recover the standard KP eigenfunction potential. We shall not go into too much detail he~the
interested reader is referred to Refs. 7, 31, 27 and 28 for a full account on eigenfunction
tials!, but we do need to mention two basic properties which are of importance to our discu
First, asV(x) is a well-defined potential wrt gradients inx @generalizing the one-component ca
of the potential in~2.34!#, it can, for example, be defined~up to an arbitrary constant! in terms of
its x1 derivative,

@V~F,F* !#x1
5F~x!F* ~x!, ~3.8!

where the functionsF(x) and F* (x) are general solutions to the KP linear and adjoint line
problems, respectively:

F~x!5Resp@h~p!^1ueH~x!c~p!guvac&#/t~x!, ~3.9!

F* ~x!5Resq@h* ~q!^21ueH~x!c* ~q!guvac&#/t~x!. ~3.10!

Second and most importantly, a shift~2.13! on thex-variables inV~F, F* ! is also completely
defined in terms of its ‘‘constituent’’ functionsF(x) andF* (x):

V„x2e~l!…2V~x![2
1

l
F~x!F* „x2e~l!…. ~3.11!

In other words, to each pair of functions (qa , r a) in ~3.5! we can associate a KP eigenfunctio
potentialVa(x)

@Va~x!#x1
5qar a ;a52,...,m, ~3.12!
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and hence the constraint~3.5! is equivalent to

~ logt!xk
5 (

a52

m

Va~qa ,r a!1C~x!, Cx1
50. ~3.13!

Next we shall proceed to show that the functionC(x) is not only independent ofx1 , but that it
actually is a constant that can be absorbed into the definitions of the potentialsVa . The result,
however, is that the pseudo-reduction~3.3! turns the Toda molecule equations~3.1! into a relation
which, when imposed on KP tau functions, reduces the KP hierarchy to an (m21)-vector
k-constrained hierarchy~see Ref. 7 for a full discussion of the implications of this particu
relation and the way it corresponds to other definitions of constrained hierarchies!:

txk
5 (

a52

m

t3Va~qa ,r a!5 (
a52

m

t̂a ~3.14!

@that a producttVa(qa ,r a) actually defines a new KP tau functiont̂a should be clear from the
defining property~2.28! of an eigenfunction potential#.

Proving thatCxl
50(; l 51,2,...) is quite straightforward if one expresses the second equ

in the linear system~3.2! in terms of tau functions,

@C~l!#y
1
~a!52

td12datda2d1

t2 3
Vda2d1

~1! ~l!

tda2d1

52
1

l

td12da

t
3

tda2d1
„x2e~l!…

t
ej~x,l!, ~3.15!

making use of the definitions~2.21!, ~2.19!, and~2.16! ~for the colork5da2d1), also allowing
one to write

@ logC~l!#y
1
a52

1

l

td12da

t
3

tda2d1
„x2e~l!…

t„x2e~l!…

⇔F log
t„x2e~l!…

t G
y

1
~a!

52
1

l
qar a„x2e~l!… ~3.16!

@remark that the exponential appearing inC~l! only depends onx#. If one now imposes the
pseudo reduction~3.3! on this last equation, one obtains

F log
t„x2e~l!…

t G
xk

52
1

l (
a52

m

qar a„x2e~l!…

5 (
a52

m

@Va„x2e~l!…2Va~x!#. ~3.17!

due to property~3.11! of the eigenfunction potentials. Comparison with relation~3.13! ~and a
shifted version thereof! immediately shows thatC„x2e(l)…5C(x) and hence thatC is actually a
constant.

The effect of the pseudo-reduction on the linear problem for the KP hierarchy is also e
calculated. We immediately have that

@C~l!#xk
5 (

a52

m

@C~l!#y
1
~a!1lkC~l!, ~3.18!
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which, due the linear equations~3.2!, can be made independent of they(a)-variables:

@C~l!#xk
2lkC~l!1 (

a52

m

e2u~1,a!
Cda2d1

~l!50, ~3.19!

after which these can be regarded as mere parameters appearing in the functionsC(x;l). Finally,
the above equation can be turned into a relation which contains no reference whatsoeve
multi-component nature of the functions involved and which can then be imposed as a con
on the KP linear problem. It suffices to notice that because of the obvious identifications,

v ~1,a!5@ logqa#x1
, vda2d1

~1,a! 52@ log r a#x1
, u~1,a!52 logqar a , ~3.20!

the first set of linear equations in~3.2! contains two very special equations,

~qa]x1
qa

21!@C~l!#5Cd12da
~l!, ~3.21!

~r a
21]x1

r a!@Cda2d1
~l!#5C~l!, ~3.22!

on account of which we have the property that

~qa]x1
qa

21!@e2u~1,a!
Cda2d1

~l!#5qar aC~l!. ~3.23!

Hence, in an appropriate pseudo-differential context where the ‘‘inverse’’ of relation~3.23! is
meaningful, formula~3.19! can be cast into a pseudo-differential constraint on the KP wavef
tions:

@C~l!#xk
1 (

a52

m

qa]21r aC~l!5lkC~l!, ~3.24!

which is nothing but the spectral problem for the (m21)-vector k-constrained KP hierarchy
discussed in much detail in Refs. 3, 11 and 1 where it is used to define the constrain
hierarchies. In the last section of this paper we shall discuss different ways of turning the
straint ~3.19! into a purely differential spectral problem and connections of these to diffe
bilinear forms for the reduced hierarchies.

IV. SOLUTIONS OF THE CONSTRAINED KP HIERARCHIES

We now come to the problem of constructing solutions for the (m21)-vectork-constrained
KP hierarchy, in light of the reduction procedure which was described in the previous ch
However, taking the constraint~3.3! at face value, it is not at all clear how to implement it o
explicit examples of multi-component tau functions in order to obtain a reduced tau function
key to solving this problem lies with the Toda molecule equation~3.1!. As is described in the
literature for Wronskian solutions,24 there exist two different types of Wronskian determina
solving the Toda molecule equation: those of multi-component type@as in ~2.44!# and those of
so-calledbidirectional type.32 Between these two types of solutions there exists a peculiar co
spondence which is, so to speak, tailored to the pseudo-reduction we wish to impose. Sim
for the hybrid Wronskian/Grammian determinants described in Sec. II, there also exists a
tion from multi-component ones to ‘‘bidirectional’’ ones, with a slight abuse of language as
be seen shortly~no written account of this correspondence is known to the authors!. Before
starting, let us introduce a rather explicit notation for the multi-component tau functions we
be discussing. Instead of referring to different colors in the labels of the tau functions as we
to now, we shall refer to the explicit form of, e.g., the Wronskian determinant~2.44! by labeling
tau functions with the number of columns in the determinant alotted to each component:
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tN[t~N1 ,N2 ,...,Nm!5uW~1,...,m!u, ~4.1!

or slightly more involved for hybrid determinants~2.40! of sizeN,

tN[t~N1 ,N2 ,...,Nm!5s H
~b1 ,...,b l !

~a1 ,...,ak! , ~4.2!

where thel-tuple (b1 ,...,b l) corresponds to positive indicesNi for the tau function, whereas th
k-tuple (a1 ,...,ak) for the adjoint Wronskian part corresponds tonegativeindicesNi , the number
of rows in each component block then beinguNi u @the factors52sgn(N1) is included in~4.2! to
take care of the change in sign induced by the Schlesinger transformation~2.39! when the index
N1 becomes strictly greater than 0#. At this point it should also be remarked that the above
functions always give rise tofinite Toda chains~as opposed to semi-infinite ones!. Clearly, the
Toda molecule equations~3.1! link tau functions related through the Schlesinger actions descr
at the end of Sec. II, i.e.,t (N1N2 ,...,Nm) is connected to two other tau functionst (N161,...,Na71,...) in
a chain. This means that tau functions~4.1! in the Wronskian chains become trivially zero whe
ever one of the components is ‘‘exhausted’’~i.e., after someNa or N150), the number of nonzero
tau functions~the ‘‘chain length’’! being equal toLa5N11Na11. The hybrid tau functions~4.2!
become trivial whenever the size of the Wronskian blocks (NW) reaches that of the Grammian pa
(N), NW5N, as the determinant then factorizes into the product of two determinants, o
which is independent ofx1 while the other does not depend onxa . The length of such a chain ca
also be expressed in terms of the tau function labels~which can be negative in this case! asLa

5(2N11)2uN11Nau.

A. Bidirectional Wronskian determinants

We start by discussing the case of Wronskian solutions, which is by far the simpler one
paper by Hirotaet al.24 on the 2-D molecule Toda equation, it is explained how two-compon
solutionst (N1 ,N2) for the molecule equation can give rise to determinant solutions with a stri
bidirectional structure~which were originally obtained by Leznov and Saveliev32!,

tJn5U f
f y1

]

f ~n21!y1

f x1

f x1 ,y1

]

¯

¯

¯

�

¯

f ~n21!x1

f ~n21!x1 ,y1

]

f ~n21!x1 ,~n21!y1

U , ~4.3!

the function f (x,y) depending on both sets of coordinatesx and y; subscripts denote~multiple!
derivatives. ThattJn satisfies the two-component case of~3.1! is easily verified since the Tod
molecule equation

Dx1
Dy1

tJn• tJn52tJn11tJn21 ~4.4!

immediately reduces to a simple Jacobi identity~alternatively, see Ref. 24 for a proof based
Lapace expansions of determinants!.

As it is very instructive to describe the correspondence with the two-component tau fun
t (N1 ,N2) in detail and as notations in the multi-component case are quite involved, we shall a
limit ourselves to this example; afterwards the two-component case can readily be extended
generalm-component one. Our starting point is the observation that the Toda equations~3.1! are
invariant under gauge transformationst→t3X(x)Y(y(a)), combined with the obvious fact tha
two tau functions suffice to completely determine a particular Toda chain (tn and tn61 always
unambiguously definetn71). Hence, setting the tau functiontJ051 @which can be identified with
t (0,N)5uWN(w (2))u up to a gauge transformation iny#, we can ‘‘mimic’’ the Toda chain 1,f,
f f x1 ,y1

2 f x1
f y1

,... using two-component Wronskians:
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tJ0[1, tJ15 f ~x,y![
t~1,N21!

t~0,N!
⇒ tJ25

t~2,N22!

t~0,N!
, ... . ~4.5!

As pointed out above, this identification is unambiguous and thus the above sequence of b
tional Wronskians will have finite length as well. Actually, from the explicit form of the funct
f as defined above in terms of matrices~2.42!,

f ~x,y!5(
i 51

N

~21!11 iw i
~1!

MiN@WN~w~2!!#

uWN~w~2!!u
~4.6!

~the symbolMi j @A# stands for the minor of thei j th element in the matrixA!, it can easily be
calculated thattJN factorizes and therefore becomes trivial in that it only depends on
x-coordinates:tJN5uWN(w (1))u.

Now that we have expressed bidirectional tau functions for the Toda molecule equatio
terms of two-component tau functions, we can immediately find solutions of the form~4.3! to the
reduced Toda molecule equations~3.4!. It suffices to notice that although it is not a two
component tau function itself, because of the reduction~3.3! the following identity still holds for
f (x,y):

f y1
5S t~1,N21!

t~0,N!
D

y1

5
Eq.~3.3!S t~1,N21!

t~0,N!
D

xk

5 f xk
. ~4.7!

However, whereas the gauge transformation we applied in the sequence~4.5! alters the
y-dependence oft (1,N) , it does not alter itsx-evolutions and thus we have that the functionf (x,y)
as defined in~4.5! is still a KP tau function for thex-coordinates. Moreover, being defined as t
ratio of two two-component tau functions related by a Schlesinger transformation,f (x,y) also
solves the KP linear problem inx with respect to the tau functiont (0,N) ~which for these evolu-
tions is a mere constant!. Hence it follows thatf (x,y) is an arbitrary function ofx apart from the
requirement that it satisfies the~standard! dispersion relations which also appear in Wronsk
solutions of the KP hierarchy:

f xl
5 f lx1

0 ; l 51,2,... . ~4.8!

Consequently, we have that the bidirectional Wronskian determinants,

tJn5U f
f xk

]

f ~n21!xk

f x1

f x1xk

]

¯

¯

¯

�

¯

f ~n21!x1

f ~n21!x1 ,xk

]

f ~n21!x1 ,~n21!xk

U , ~4.9!

are KP tau functions which also satisfy the constraint~3.14!. In other words, this means that w
have constructed a Wronskian solution for the scalar (m51) k-constrained KP hierarchy. Thes
solutions appear in several papers.4,8,11,33Obviously, the functionsq andr associated to these ta
functions in the formulation~3.14! of the scalark-constraint are given by the ratios@cf. formula
~3.6!#

q5
tJn11

tJn
, r 5

tJn21

tJn
. ~4.10!
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In the general case of them-component KP hierarchy, the construction of bidirectional Wro
skians goes through in pretty much the same way. First, we have to remark that the Toda m
equations~3.1! allow for more general Wronskian solutions of type~4.3!. Assigning the symbol
Bn,N( f ) to the matrix appearing in~4.3! as

Bni ,n~ f i ![S ~ f i !

~ f i !y1
~ i 11!

]

~ f i !~ni21!y1
~ i 11!

~ f i !x1

~ f i !x1,y1
~ i 11!

]

¯

¯

¯

�

¯

~ f i !~n21!x1

~ f i !~n21!x1,y1
~ i 11!

]

~ f i !~n21!x1,~ni21!y1
~ i 11!

D , ~4.11!

we have that determinants (n5( i 51
m21ni)

tJn1 , ... nm21
5U Bn1 ,n~ f 1!

]

Bnm21 ,n~ f m21!
U , ~4.12!

with functions f i(x,y( i 11)) ( i 51,...,m21) only depending onx andy( i 11) each, still satisfy the
Toda molecule equations~3.1! @or ~4.4! with y5y( i 11) if one prefers#. This can be seen by direc
calculation, a verification which is very much the same as in case of equation~4.4! because the
different blocks in the determinants only depend on a single set ofy( l ) coordinates and each Tod
equation therefore only involves a single one of those blocks. Actually, this rather trivial i
twining ~or should one say ‘‘lack of’’! of the different componentsy( l ) in the determinants~4.12!
is at the same time a disappointment as well as a blessing. What is disappointing is that it
it clear straightaway that there is no chance whatsoever for a generalm-component Wronskian tau
function to be mapped onto the above determinants, for such a mapping would entang
components in a nontrivial way. One rather has to look at it as follows: the ‘‘lattice’’ of T
chains one can obtain by Schlesinger transformations starting from a generic~N-sized!
m-component Wronskian~2.44! contains exactlym21 suitable starting pairs (a51,...,m21),

tJ0,...,051 tJ ...,0,na51,0,...5 f a~x,y~a11!![
t~1,...,0,Na115N21,0,...!

t~ ... ,0,Na115N,0, ...!
, ~4.13!

suitable for constructing strains of determinantstJ ...,0,na,0,... in exactly the same way as was don
for the two-component case. As these involvem21 different gauge transformations~and as these
destroy the tau function nature of the resulting determinants!, the different strains are not relate
to each other as real~m-component! Toda chains would be. They can, however, be assembled
a single determinant expression like~4.12!, as is explained above. The upside of this lack
nontrivial intertwining is that the pseudo-reduction~3.3! still implies that (f a)y

1
(a11)5( f a)xk

,

making the construction of solutions to the constraint equation~3.14! a matter of replacing
y1

( l )-derivatives in~4.12! by xk-derivatives. Thus one obtains the Wronskian solutions to them
21) vectork-constrained KP hierarchy which were also described in Refs. 8, 10 and 11
functionsqa andr a associated to the tau functions in the constraint~3.14! are of course given by
the obvious generalizations of the two-component ones~4.10!.

B. Grammian determinants

Let us now move on to the hybrid-type solutions~4.2! and the solutions these give rise to f
the constrained KP hierarchies. Again, initially we shall limit ourselves to the two-componen
after which the generalization to them-component case will be straightforward. Consider a Gra
mian tau function made up of potentialsv i j (x,y) defined by theirx1-derivatives

tJN,N5u~v i j !N3Nu, ~v i j !x1
5 f ~ i 21!y1

f j* , ~4.14!
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in terms of a functionf (x,y) andN functions f j* (x,y) obeying the dispersion relations

f xn
5 f nx1

~ f j* !xn
5~21!n11~ f j* !nx1

, ~4.15!

~ f j* !y1
52m j f j* . ~4.16!

As should be clear from the discussion in Sec. II, thev i j (x,y) are well-defined potentials in th
x-coordinates, determined up to some functionsFi j (y) which we require here to be related to on
N arbitrary functionsF1 j (y) by means of the recursion relations:

Fi 11,j~y![~Fi j !y1
1m jFi j ; i51, ...,N. ~4.17!

Remark that the above requirement is equivalent to imposing the following recurrence relat
the v i j (x,y):

~v i j !y1
5v i 11,j2m jv i j , ~4.18!

for N ‘‘original’’ potentials v1i , the functionsFi j being ~unambiguously! defined byv i j @ f
[0; f j* [0#5Fi j . Furthermore, in analogy to the matrices~2.42! and ~2.43!, we also define
matrices

WJ N,n~ f !5S f f x1 ¯ f ~n21!x1

f y1
f y1 ,x1 ¯ f y1 ,~n21!x1

] ] � ]

f ~N21!y1
f ~N21!y1,x1 ¯ f ~N21!y1,~n21!x1

D , ~4.19!

WJ n,N* ~ f j* !5S f 1* ¯ f N*

~ f 1* !x1
¯ ~ f N* !x1

] � ]

~ f 1* !~n21!x1
¯ ~ f N* !~n21!x1

D . ~4.20!

Because of relations~4.16! and~4.18!, the following derivatives oftJN can be easily expressed i
terms of these matrices (m5( j 51

N mN):

~ tJN,N!x1
52U~v i j !N3N

WJ 1,N*
WJ N,1

0 U ~ tJN,N!y1
52m tJN1U ~v i j !~N21!3N

~vN11,1¯vN11,N!U, ~4.21!

~ tJN,N!x1 ,y1
52m~ tJN!x1

2U ~v i j !~N21!3N

~vN11,1¯vN11,N!

WJ 1,N*

WJ N21,1

f Ny1

0
U ~4.22!

with the convention that the symbol (v i j )M3N denotes theM3N matrix obtained from (v i j )N3N

by the obvious addition or deletion of rows ofv i j @the entries in additional rows being of cours
defined in terms of the previous ones using~4.18!#. Then, it is straightforward to show~using a
simple Jacobi determinant identity! that tJN satisfies the Toda molecule equation

1
2Dx1

Dy1
tJN,N• tJN,N[ tJN,N~ tJN,N!x1 ,y1

2~ tJN,N!x1
~ tJN,N!y1

5 tJN,N11tJN,N21 , ~4.23!

with tJN,M ~for MÞN) defined as
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tJN,M,N5U~v i j !M3N

WJ N2M ,N* U, tJN,M.N5u~v i j !M3N WJ M ,M2Nu. ~4.24!

In general, it can be shown that these determinantstJN,M also satisfy the above Toda molecu
equation, the proof being a straightforward generalization of the preceding one. It should a
noted that these solutions again exhibit a certain ‘‘bidirectionality’’ which is crucial in th
proofs.

We can now proceed to discuss the construction of such determinant solutions usin
component tau functions. Due to the dispersion relation~4.16! we have that (tJN,0)y1

52m tJN,0

and hence thattJN,0 can actually be used as the starting point of the chain oftJN,M we wish to
describe. We therefore first have to find a suitable two-component partner for this determ
This can be done by considering the tau functiont (2N,N) (N@0), as defined in~4.2!, together
with a gauge Y(y)5uWN(w (2))u213uWN* (w* (2))u3V(2m j )

21 where we have chosen th
y-component adjoint functions to be

w j*
~2![exp„2j~y,m j !…; ~4.25!

V(2m j ) is the Vandermonde determinant in2m1 ,...,2m j . Hence we obtain a solutiont (2N,N)

to the ~two-component! Toda molecule equations~3.1!:

U ON3N

WN~w~2!!

WN* ~w* ~1!!

~mi j !N3N
U3uWN~w~2!!u21)

j 51

N

e2j~y,m j !5WN* ~2w* ~1!!)
j 51

N

e2j~y,m j !,

~4.26!

which matches a determinant of the formtJN,0 by choosing

f j* ~x,y![2w j*
~1!e2j~y,m j ! ; j51,...,N. ~4.27!

It can readily be verified that thesef j* (x,y) indeed satisfy the dispersion relations~4.15! and
~4.16!.

The second determinant in the Toda chain~4.23! can be written as

tJN,15(
j 51

N

~21!11 jv1 jMN j@WJ N,N* #. ~4.28!

On the other hand, a Laplace expansion of the determinantt (12N,N21) given by ~4.2! yields the
following expression@after gauge transformationY(y)]:

t~12N,N21!3uWN~w~2!!u21)
j 51

N

e2j~y,m j !5uWN~w~2!!u21(
i 51

N

MNi@WJ N,N* #e2j~y,m i !

3S (
j 51

N

mji M jN@WN~w~2!!# D , ~4.29!

which suggests the identification (; i51,...,N)

v1i5e2j~y,m i !uWN~w~2!!u21S (
j 51

N

mji M jN@WN~w~2!!# D . ~4.30!

Then, thex1-derivative of v1i allows for an easy determination of the functionf (x,y) ~the
potentialmji is the only part in this expression which depends on thex-variables!:
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~v1i !x1
5 f f i* 5e2j~y,m i !uWN~w~2!!u21S (

j 51

N

w j
~1!w i*

~1!M jN@WN~w~2!!# D
⇔

Eq.~4.27!

f ~x,y!52(
j 51

N

w j
~1!

M jN@WN~w~2!!#

uWN~w~2!!u
, ~4.31!

which is essentially the same solution to the KP linear problem as in case of the Wron
determinants~4.6!. Hence, we have succeeded in expressing the functionsf, f j* and the potentials
v1 j in terms of two-component tau functions. Moreover, the nontrivialy-contribution in the
two-component potentialsmi j is responsible for the fact that thev1 j are only defined up to som
arbitrary functionsF1 j (y). The other determinant solutionstJN,M in the Toda chain can now b
calculated explicitly from the two determinantstJN,0 and tJN,1 we just constructed. The fact tha
this chain is finite follows from the exact identification with the two-component Toda c
tM2N,N2M , but is not entirely trivial if one attempts a proof directly on the determinants th
selves.

Of course, since the functionf (x,y) is the same as before, we know that it behaves asf y1

5 f xk
under the pseudo-reduction~3.3! and that it solves the KP linear problem inx. Similarly,

because the functionsf j* (x,y) defined in ~4.27! can be expressed as the product of two tw
component~adjoint! Wronskian tau functionsuW* u, we have that the pseudo-reduction not on
implies that (f j* )y1

5( f j* )xk
, but @due to~4.27!# also that

~ f j* !xk
52m j f j* . ~4.32!

Discarding now they dependence as merely parametric, we can define the potentialsv i j as pure
~one-component! KP eigenfunction potentials by replacing the recurrence relation~4.18! by

~v i j !xk
5v i 11,j2m jv i j . ~4.33!

This implies that the ‘‘arbitrary’’ constantsci j in the potentialsv i j @defined by (v i j )x1

5 f ( i 21)xk
f j* ] are not all arbitrary, but are recursively defined in terms ofN initial ones; in

particularci 11,j5m j ci j . Hence, withtJN,N5u(v i j )u we have constructed a particular example o
KP Grammian solution which also satisfies the constraint~3.4! and thustJN,N is a Grammian
solution to the scalark-constrained KP hierarchy. Similar solutions have been discussed p
ously in Refs. 7, 14, and 10. The functionsq andr appearing in the constraint~3.14! are given by

q5
tJN,N11

tJN,N
, r 5

tJN,N21

tJN
. ~4.34!

We shall only briefly sketch the extension to them-component case. It suffices to note th
there also exist solutions (N5( i 51

m21Ni) to the Toda molecule equations in the form

tJN,N1 ,...,Nm21
5U ~v i j

~1!!N13N

]

~v i j
~m21!!Nm213N

U , ~4.35!

~v i j
~ l !!x1

5@ f l~x,y~ l 11!!#~ i 21!y1
~ l 11! f j* ~x,y!, ~4.36!

where@in contrast to them21 functionsf l(x,y( l 11))] the N functionsf j* (x,y) depend onx and on
all of the ya coordinates, such that

~ f l !xn
5~ f l !nx1

, ~ f j* !xn
5~21!n11~ f j* !nx1

, ~4.37!
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~ f j* !y
1
~a!52m j

~a! f j* ;a52,...,m ~4.38!

~the proof being identical to the two-component case!. The determinants~4.24! associated to thes
solutions are the obvious extensions of the above ones; in case ofM,N, the ‘‘adding or delet-
ing’’ of rows of potentials are restricted to a particular block~i.e., a particular coordinate set!.
Again, the different blocks in these determinants lead, so to speak, separate lives, and ca
fore only be linked~by different gauges! to sequences ofm-component tau functions which refe
to different starting points. Thus, repeating the above construction step-by-step for each s
point t (2N,...,0,Na5N,0,...) of chains of m-component tau functions~4.2!, for particular gauges

uWN(w (a))u213Pb52
m uWN* (w* (b))uV(2m j

(b))21 and for the choice of w* (b)

5exp@2j(y(b),m j
(b))# (b52,...,m), we find that the

f j* ~x,y!52w j*
~1! )

b52

m

e2j~y~b!,m j
~b!

! ; j 51,...,N. ~4.39!

One then proceeds tot (12N,...,0,Na5N21,0,...), which yieldsm21 different functionsf l and conse-

quently them21 series of potentialsv1 j
( l ) needed to define the determinants~4.35!. Since the

functions f l only depend on a single set ofy-variables and as the functionsf j* obey

~ f j* !xk
52m j f j* with m j5 (

a52

m

m j
~a! , ~4.40!

the pseudo-reduction is performed in exactly the same way as in the two-component case:
(m21)-vectork-constrained KP hierarchy possesses Grammian solutions of type~4.35! where, at
each occurrence,y1

( l ) is replaced byxk .

C. Alternative dispersion relations

In all the above solutions, Wronskians and Grammians alike, the functions appearing
determinants~or in the potentials! satisfy trivial versions of the KP linear problem like the di
persion relations~4.15!. This is because the tau functions themselves always refer to a trivial~i.e.,
constant! ‘‘vacuum’’ when one thinks of them as resulting from Ba¨cklund–Darboux transforma
tions ~as was explained in Sec. II!. Some authors,11,10 however, present determinant solutio
referring to nontrivial vacuum, i.e., defined in terms of functions which satisfy nontrivial KP lin
problems. The bidirectional nature of these solutions then manifests itself through a~highly!
nonlinear operator, taking over the role of the]xk

-operator. We shall briefly describe such sol
tions for the case of Wronskian solutions and scalark-constrained hierarchies. However, it wi
turn out that these particular solutions can always be reformulated such that they again r
trivial vacuum.

We shall use a Toda chain of two-componentadjoint Wronskian solutions:

t~N1 ,N2!5uW~1,2!
* u, N5N11N2 . ~4.41!

Starting the Toda chain with the tau functiont (N,0) , we take this to be our ‘‘vacuum:’’

tV[t~N,0!5uWN* ~w* ~1!!u. ~4.42!

Now, performing exactly the same construction as in case of the Wronskian solutions, the s
tau function in the chain allows us to define a function

g~x,y![
t~N21,1!

tV 5(
i 51

N

~21! i 1N
MNi@WN* ~w* ~1!!#

uWN* ~w* ~1!!u
w i*

~2! , ~4.43!
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eventually giving rise to a chain of bidirectional Wronskian solutions,

tV3U g gx1 ¯ g~n21!x1

gy1
gx1 ,y1 ¯ g~n21!x1 ,y1

] ] � ]

g~n21!y1 ¯ ¯ g~n21!x1 ,~n21!y1

U n51,2...,N, ~4.44!

to the Toda molecule equation. Remark that we did not perform any gauge transformations
original two-component chain, so the initial tau functiontV appears as a multiplicative factor i
these solutions. The ratio which definesg(x,y) is actually the ratio of two tau functionstd12d2 and
t(5tV) related by a Schlesinger transformationS12 ~see Sec. II! and henceg(x,y) is a solution of
the KP linear problem34,35,27,31expressed in terms of the tau functiontV:

pn~2 ]̃x!C5C3pn21~2 ]̃x!~ logtV!x1
;n>2 ~4.45!

$the operators pn( ũ) are defined in terms of the Schur polynomials:(n51
` pn( ũ)ln

5exp@(l51
` ul /l ll#%. In addition to these equations, the functiong(x,y) satisfies an additiona

identity stemming from the fact that we require the vacuum tau functiontV itself to satisfy the
constraint~3.14!; the producttVg being a two-component tau function, the pseudo-reduction t
yields

~tVg!y1
5tVgy1

5txk

V g1tVgxk
⇔ gy1

5gxk
1gV~qV,r V!. ~4.46!

As for the functionsqV and r V, since the vacuum tau functiontV is a Wronskian determinan
@expressed in terms of solutionsw* (1)(x) of a trivial, i.e., vacuum51, KP linear problem# which
also has to solve the constrained hierarchy, one is forced to put

w j*
~1!5 f ~ j 21!xk

* , qV5
MNN@WN* ~w j*

~1!!#

tV~w j*
~1!!

, r V5
uWN11* ~w j*

~1!!u

tV~w j*
~1!!

~4.47!

for some functionf * : f xn
* 5(21)n11f nx1

* . Furthermore, it is easily seen that the functiong(x,y)

can only satisfy the constraint~4.46! in all generality if the summation in its definition~4.43! is
restricted to a single term such thatg(x,y)5F(y)3qV. Equation~4.46! can then be written as

]y1
~g!5]xk

~g!1qVV~g,r V!, ~4.48!

allowing us to implement the pseudo-reduction on the determinants~4.44!. It suffices to replace all
occurrences ofy1-derivatives by the operatorLk•5]xk

•1qVV(•,r V)— note that asqV nor r V

depend on they-variables, we can identify]y1

n with Lk
n—and at the same time guaranteeing th

the resultant determinant is of~one-component! KP type. This last statement follows from com
parison of the operatorLk with the constraint on the KP linear problem~3.24!, as is explained in
Ref. 14 and also in Refs. 10 and 11, where solutions of this type are presented and to wh
also refer the reader for the relevant details on the operatorLk .

At face value it might seem that we truly have constructed solutions which refer to a nont
vacuum. It is, however, not difficult to see that all these solutions can be rearranged such th
take the form of mere Wronskian solutions in the functionsf * . The following reasoning proves
this fact: for all practical matters considered, we can look upon the above solutions as being
in a Toda-like manner~if not directly, then at least through the construction in terms of real T
chains!, one ‘‘end’’ of which is given by the determinants

T0[tV5uWN* ~ f ~ j 21!xk
* !u, ~4.49!
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T1[tVg5MNN@WN* ~ f ~ j 21!xk
* !#5uWN21* ~ f ~ j 21!xk

* !u. ~4.50!

However, this sequence could just as easily have been obtained by starting from the ‘‘opp
end of the same two-component Toda chain, i.e., at somet (0,M>N) rather thant (N,0) . The resulting
sequence is then a chain of bidirectional Wronskian determinants in terms of the fun
f * :TM51,TM215 f * , f * f x1,xk

* 2 f x1
* f xk

* ,..., eventually reachingT1 and T0 and beyond. Thus

although the solutions~4.44! appear to be referring to nontrivial vacuum, in practice they do n
Unfortunately, it seems that in all explicitly ‘‘constructable’’ cases a similar thing will happ
i.e., the determinants will always be such that they can be reexpressed in terms of fun
solving trivial dispersion relations, rather than full-fledged linear problems. This fact is intim
related with the restriction to finite Toda molecule chains if one regards them as being const
as part ofm-component hierarchies. This, in the fermionic picture, is an immediate result of b
restricted to constant elements as starting points for sequences of Ba¨cklund transformations for the
elements of GL~`! generating the tau functions.

V. THE SCALAR CONSTRAINTS: BILINEAR DESCRIPTIONS

In this last section we discuss some peculiar properties of the scalark-constrained KP hierar-
chies, with regard to their natural bilinear description. When imposing the pseudo-reduction
linear problem for the two-component hierarchy~see Sec. III! it becomes clear that in this par
ticular case the reduced linear equation~3.19! can be freed of all reference to the differe
components in essentially three different ways. All three resulting linear constraints lead
natural~and very different! bilinear representation of the reduced nonlinear systems, for which
linear constraints then act as spectral problems.

A first way to turn the~two-component case of! equation~3.19!,

~C!xk
2lkC1qrCd22d1

50, ~5.1!

into a~purely! differential spectral problem for the constrained KP hierarchies is by rather triv
introducing the auxiliary fieldF5rCd22d1

, for which we have@due to~3.22!# that

Fx5rC. ~5.2!

Note that because of~them52 case of! the constraint~3.14!, the productqr is defined in terms of
a single tau function,

qr5~ logt!x,xk
, ~5.3!

where we from now on denotex1 by x for simplicity. Now, from the KP linear problem as give
by formula~4.45!, it can be seen that anyxk-derivative (k>2) of a solutionC can be expressed
~recursively! in terms of itsx-derivativesCnx(n<k) and derivatives of thek21 functions con-
tained in the setT5$(logt)x1xl

ul<k21%. Hence we can always rewrite the scalar constraint~5.1!

~C!xk
1qF5lkC ~5.4!

as a first-order spectral problem~in x! for the (k11)-vector (c15C, c25Cx ,...,ck

5C (k21)x , ck115F) t, with coefficients defined in terms of thek11 functions inT ø$q,r %. The
higher-order (xnÞk) evolutions of this vector are calculated from~5.2! and the KP linear problem
~4.45! and all of them will have coefficients defined in terms of these same functionsT ø$q,r %.
The first example~at k51) is of course the well-known Ablowitz-Kaup-Newell-Segur~AKNS!
spectral problem~see, e.g., Ref. 36 for a list of interesting systems obtainable at various v
of k!:

S c1

c2
D

x

5S l
r

2q
0 D S c1

c2
D ~5.5!
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with lowest-order evolution

S c1

c2
D

x2

5S l212qr
r x2lr

2qx2lq
qr D S c1

c2
D . ~5.6!

The nonlinear fieldsq and r are representable as ratios of KP tau functions~denoted here asq
5t* /t and r 5t* /t) for which it was mentioned in Sec. II that the pairs (t* ,t) and (t* ,t)
satisfy the modified KP bilinear equations. Hence, as the constraint~3.14! also has a bilinear
representation in these three tau functions,

DxDxk
t•t52t* t* , ~5.7!

we can give a bilinear description of the nonlinear evolution equations governed by the
linear problems by imposing the bilinear constraint~5.7! on the modified KP bilinear hierarchie
for (t* ,t) and (t* ,t) ~see, e.g., Ref. 17 for a list of bilinear equations for the modified
hiearchy!. In this way we describe the scalark-constrained KP hierarchies in terms of only thr
tau functionst,t* , andt* . For example, from the above example we recover the well-kno
bilinear form of the AKNS equations:

qx2
5q2x12q2r ,

r x2
52r 2x22qr2, ↔H Dx

2t•t52t* t* ,

~Dx2
2Dx

2!t* •t50,

~Dx2
1Dx

2!t* •t50.
~5.8!

A second example~omitting the relevant linear problem! is that ofk52 which—up to a gauge and
coordinate transformation—can be identified as the Yajima–Oikawa system37 @w5(logt)2x#:

qx2
5q2x12wq,

r x2
52~r 2x12wr !

wx2
5~qr !x ,

↔H DxDx2
t•t52t* t* ,

~Dx2
2Dx

2!t* •t50,

~Dx2
1Dx

2!t* •t50.
~5.9!

Another way of obtaining differential spectral problems from~5.1! is by introducing a slightly
different auxiliary fieldF5qrCd22d1

, since in this case formula~3.22! tells us that

Fx2~ logq!xF5qrC. ~5.10!

This again allows us to rewrite the linear constraint~5.1! as a first-order spectral problem~in x! for
the (k11)-vector (c15C, c25Cx ,...,ck5C (k21)x ,ck115F) t, but this time with coefficients
defined in terms of thek11 functions inT ø$h[ logq,(logt)x,xk

5qr%. As we now eliminated the
explicit dependence on ther field ~and hence on thet* tau function!, we should look for a bilinear
description of the resulting nonlinear systems in terms of only two tau functions:t* andt. The
answer lies with thexk derivative oft. In Sec. III it is explained that the constraint~3.14! actually
tells us that thexk derivative oft is not only again a tau function~say,t̂), but a very special one
indeed, as it can be expressed using an eigenfunction potential. The element of GL~`! describing
t̂ is obtained from that fort ~let’s call this oneg! by a mere Ba¨cklund transformation ong:

txk
5^vacuĝ~x!uvac& with ĝ5~c1ff* !g. ~5.11!

The tau functiont* in its turn is linked tot ~and therefore tog! by the Darboux transformation

g̃5S21fg ⇒t* [^1uF~x!g~x!uvac&5q3t, ~5.12!
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which is only a different way of saying that the pair (t* ,t) satisfies the modified KP bilinea
equations~i.e., thatq is a solution to the KP linear equations!. However, since the~generalized!
fermion operators are nilpotent, we immedately have that

S21fĝ5S21f~c1ff* !g5cS21fg;g̃, ~5.13!

and thus we see that the pair (t* ,txk
) also satisfies the modified KP bilinear equations. In ot

words, one can also give a bilinear description of the scalark-constrained KP hierarchy by
replacing the bilinear constraint~5.7! by an expression which states that both pairs (t* ,t) and
(t* ,txk

) satisfy the modified KP bilinear hierarchies, i.e., using only two tau functions.
corresponding nonlinear equations are then expressible in thek11 fields T ø$h,u% with h
5 logt* /t and u[(logt)x,xk

5qr. These are, of course, related to the previous ones by sim
dependent variable transformations, their linear problems being related by gauge transform
~as is clear from the construction!. The most famous occurrence of this fact is that for t
Broer–Kaup system,38 which is obtained for the basic casek51. As was described above, it
spectral problem is

S c1

c2
D

x

5S l
u

21
hx

D S c1

c2
D , ~5.14!

with lowest-order evolution

S c1

c2
D

x2

5S l21u
lu1hxu2ux

2hx2l

2h2x2hx
22uD S c1

c2
D . ~5.15!

The compatibility condition of this system~Broer–Kaup! can be bilinearized as

hx2
5h2x1hx

212u,

ux2
5~2hxu2ux!x ,↔H ~Dx2

2Dx
2!t* •t50,

~Dx2
2Dx

2!t* •tx50.
~5.16!

Remark that for KP tau functionst this last bilinear equation can be rewritten as (Dx2
2Dx

2)t*
•tx50⇔Dx(Dx2

2Dx
2)t* •t50, a property which extends to all the bilinear equations in

modified KP hierarchy. The correspondence between the AKNS hierarchy and the Broer–
hierarchy has been discussed by a number of authors in the past;19,39,35the present construction ha
the nice feature of allowing one to dispense altogether with gauge transformations for ‘‘e
dependent’’ eigenvalue problems40 or constraints for modified KP hierarchies36 in order to appre-
ciate the fact that both hierarchies describe exactly the same systems. It should be clear fr
construction that such gauge transformations are a general feature of the~scalar! k-constrained KP
hierarchies. In particular, for the Yajima–Oikawa system, one finds the following ‘‘partn
system,

hx2
5h2x1hx

212w,

wx2
5ux ,

ux2
5~2hxu2ux!x ,

↔H ~Dx2
2Dx

2!t* •t50,

Dx2
~Dx2

2Dx
2!t* •t50

, ~5.17!

providing an alternative bilinearization of the Yajima–Oikawa equations using only two tau f
tions @h5 logt* /t, w5(logt)2x andu5(logt)x,x2

].
Finally, there exists a third bilinear description of thek-constrained KP hierarchy, one i

which only a single tau function plays a role. Using property~3.23!, we immediately have the
spectral equation
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S ]x2
qx

q D @Cxk
2lkC#1qrC50. ~5.18!

Performing now the pseudo-reduction~3.3! on the~two-component version of the! higher-order
evolution ~2.15!, we obtain

~ logt!x2 ,xk
5t22~tx* t* 2t* t* x!5qxr 2qrx , ~5.19!

which, together with~5.3!, yields the following expression forh:

h[
qx

q
5

~ logt!x2 ,xk
1~ logt!2x,xk

2~ logt!x,xk

. ~5.20!

Accordingly, we can reexpress the spectral problem as

~]x2h!@Cxk
2lkC#1uC50, ~5.21!

but whereu5(logt)x,xk
and h are defined in terms of only one tau functiont. The KP linear

problem ~4.45! allows us to rewrite this spectral problem in terms of a~scalar! (k11)st-order
differential operator inx, with coefficients defined in terms of thek11 functions$(logt)x1,xl

ul
<k%ø$(logt)x2,xk

%. The compatibility conditions of this operator and the usual evolution opera
for the KP linear problem yield nonlinear equations which can be bilinearized using a sing
function. The corresponding bilinear forms are readily obtained by realizing that thek-constraint
imposes the requirement thatxk-derivatives of tau functions should again be KP tau functions
other words, that not onlyt should satisfy the KP bilinear equations buttxk

as well. Of course all
these systems~at every value ofk! are gauge equivalent with the ones we described earlier.
example, in the casek51 the condition discussed above yields~at lowest order! the system of
bilinear equations,

~4DxDx3
2Dx

423Dx2

2 !t•t50,

~4DxDx3
2Dx

423Dx2

2 !tx•tx50,
~5.22!

the last of which can be recombined with the first one so as to give

Dx
2~4DxDx3

2Dx
423Dx2

2 !t•t50 ~5.23!

providedt is a KP tau function. When expressed in the fields (logt)2x and (logt)x,x2
, this bilinear

system yields the first two members of what was identified as anonlocal Boussinesq
hierarchy,41–43 which first appeared as an equation governing the amplitude~squared! of the
nonlinear Schro¨dinger waves.44 Obviously, this hierarchy is gauge equivalent to the AKNS syst
given earlier. The ‘‘one-field’’ bilinearization of thek-constrained KP hierarchies was original
proposed in Ref. 4 and was actually first discovered for the example of the nonlocal-Bous
system.42

As a final example we give~at k52) the following single field bilinearization of the Yajima
Oikawa system:

~4DxDx3
2Dx

423Dx2

2 !t•t50,

Dx2

2 ~4DxDx3
2Dx

423Dx2

2 !t•t50,
~5.24!
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VI. CONCLUSIONS

We feel the description of constrained KP hiearchies offers a number of appealing fea
notably the ease with which the tau function interpretation of the constraints can be obtain
an important consequence of this interpretation we explained how the scalark-constrained KP
hierarchy possesses three different bilinear representations, each corresponding in a natura
different nonlinearizations whose mutual connections were always regarded as somewha
cial.’’ Here we showed these are an intrinsic feature of constrained hierarchies.

We also paid a lot of attention to the explicit construction of solutions. In particular, two t
of solutions, Wronskians and hybrid Wronskian/Grammians, were constructed. We would l
point out that previous accounts on Grammian-type solutions somehow disregarded the na
the ‘‘arbitrary’’ constants which appear in the entries of the Grammian determinants. A
showed in Sec. IV, these constants are not quite arbitrary, but exhibit a structure similar to
the actual Grammian entries. As for the Wronskian solutions~4.12!, it should be clear that thes
allow for a slight generalization in that one can add a number~say M! of ‘‘ k-reduced’’-like
Wronskian blocks. These would contain rows expressed usingk-reduced solutions to the KP linea
problem, meaning functionsf i(x) ( i 51,...,M ) which—besides the dispersion relations~4.8!—
have to satisfy (f i)xk

5ci f i for some constantsci . Such extended Wronskians clearly solve t
constraint~3.14! as they can be viewed as part of an (m211M )-vectork-constrained hierarchy
but one for which the functionsqj corresponding to these extra blocks are always identically z
~Wronskian determinants, solely expressed in terms of such functions, will solve thek-reduced KP
hierarchy!. It is interesting to note that very similar solutions arise when one adopts a v
operator approach to constrained KP evolutions, as described in Ref. 12. It seems worthw
try and understand why exactly these particular solutions should appear in the vertex op
formalism.

Finally, there remains the~general! problem of whether or not one can construct examples
determinant solutions whose entries genuinely satisfy nontrivial KP linear problems~as opposed to
solutions as those discussed in the latter part of Sec. IV!. As we explained, this problem can b
traced back to the choice of starting point in GL~`! if one thinks of the determinants as bein
constructed through Ba¨cklund transformations applied to such a vacuum element~cf. Sec. II!.
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Separation of variables for soliton equations via their
binary constrained flows
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Binary constrained flows of soliton equations admitting 232 Lax matrices have
2N degrees of freedom, which is twice as many degrees of freedom than in the case
of monoconstrained flows. By using the normal method, their Lax matrices directly
give rise to firstN pairs of canonical separated variables for their separation of
variables. We propose a new method to introduce the otherN pairs of canonical
separated variables and additional separated equations. The Jacobi inversion prob-
lems for binary constrained flows are established. Finally, the factorization of soli-
ton equations by two commuting binary constrained flows and the separability of
binary constrained flows enable us to construct the Jacobi inversion problems for
some soliton hierarchies. ©1999 American Institute of Physics.
@S0022-2488~99!02112-X#

I. INTRODUCTION

The separation of variables is one of the most universal methods for solving comp
integrable~classical and quantum! models. It has been applied successfully to the study of a la
number of finite-dimensional integrable Hamiltonian systems~FDIHSs! ~see, e.g., Refs. 1–12!, as
well as infinite-dimensional integrable Hamiltonian systems in the determination of fi
dimensional quasiperiodic solutions~see, e.g., Refs. 13–18!. In many cases the separation
variables of integrable classical systems prepares the passage to the corresponding quan
tems. For the classical integrable systems subject to the inverse scattering method, the s
construction of the action-angle variables using the poles of the Baker–Akhiezer function is
equivalent to the separation of variables.4

For a FDIHS, letm denote the number of degrees of freedom, andPi , i 51,...,m, be func-
tionally independent integrals of motion in involution, the separation of variables means to
structm pairs of canonical separated variablesvk ,uk , k51,...,m,2–4

$uk ,ul%5$vk ,v l%50, $vk ,ul%5dkl , k,l 51,...,m, ~1.1!

andm functions f k such that

f k~uk ,vk ,P1 ,...,Pm!50, k51,...,m. ~1.2!

Equation~1.2! is called the separated equation, which gives rise to an explicit factorization o
Liouville tori.

For the FDIHSs with the Lax matrices admitting ther-matrices of theXXX, XXZand XYZ
type, there is a general approach to introduce canonical separated variables.2–4,8 The correspond-

a!Electronic mail: yzeng@tsinghua.edu.cn
b!Electronic mail: mawx@cityu.edu.hk
65260022-2488/99/40(12)/6526/32/$15.00 © 1999 American Institute of Physics

                                                                                                                



ation in
e. The

e, thus
tion

noni-
s,
l
es have
s

s

deter-
inary

s
r

n

pa-
ained
ented

sional
in this

torize

uce
ly,

e will

y our

ation

first

e
o the

6527J. Math. Phys., Vol. 40, No. 12, December 1999 Separation of variables for soliton equations . . .

                    
ing separated equations enable us to express the generating function of canonical transform
completely separated form as an Abelian integral on the associated invariant spectral curv
resulted linearizing map is essentially the Abel map to the Jacobi variety of the spectral curv
providing a link, through purely Hamiltonian methods, with the algebro-geometric lineariza
methods given by Refs. 19–22.

An important feature of the separation of variables for a FDIHS is that the number of ca
cal separated variablesuk should be equal to the numberm of degrees of freedom. In some case
the number ofuk resulting from the normal method may be less thanm and so some additiona
canonical separated variables should be introduced. So far very few models in these cas
been studied. These cases remain a challenging problem.4 In recent years binary constrained flow
of soliton hierarchies have attracted attention~see, e.g., Refs. 23–29!, whose basic idea wa
described in Ref. 30. The degree of freedom for binary constrained flows admitting 232 Lax
matrices is an even natural number usually denoted by 2N. By using the method,2–4,8 the Lax
matrices allow one to directly introduce firstN pairs of canonical separated variablesu1 ,...,uN

andv1 ,...,vN . The otherN pairs of canonical separated variablesuN11 ,...,u2N andvN11 ,...,v2N

may be constructed by the method in Ref. 3. In this paper we propose a new method for
mining additionalN pairs of canonical separated variables and separated equations for b

constrained flows. The main idea is to construct two functionsB̃(l) and Ã(l) defining

uN11 ,...,u2N by the set of zeros ofB̃(l) andvN1k5Ã(uN1k). To keep the canonical condition
~1.1! and the requirement for the separated equation~1.2!, it is found that certain commutato

relations should be imposed onB̃(l), Ã(l) andÃ(l) has some link with the generating functio

of integrals of motion of binary constrained flows, which provides a way to construct theB̃(l)

and Ã(l). In fact, we have to modify the original approach for introducingu1 ,...,uN and
v1 ,...,vN so thatu1 ,...,u2N andv1 ,...,v2N are canonical conjugated. Having produced the se
ration of variables, we further construct the Jacobi inversion problems for binary constr
flows. This method is somewhat different from that for introducing canonical variables pres
in Ref. 31 and can be applied to more binary constrained flows.

Briefly, separation of variables can be characterized as a reduction of a multidimen
problem to a set of one-dimensional ones. The separation of variables of soliton equations
paper contains two steps of separation of variables. The first step is to fac
(111)-dimensional soliton equations into two commutingx- andt-FDIHSs via binary constrained
flows, namely thex and t dependencies of the soliton equations are separated by thex- and
t-FDIHSs obtained from thex- and t-binary constrained flows. The second step is to prod
separation of variables for thex- and t-FDIHDs by our method to be proposed later on. Final
combining the factorization of soliton equations with the Jacobi inversion problems forx- and
t-FDIHSs enables us to establish the Jacobi inversion problems for soliton equations. W
present the separation of variables for the Korteweg–de Vries~KdV! hierarchy, the AKNS hier-
archy, and the Kaup–Newell hierarchy via their binary constrained flows. In fact, we emplo
method in a little different way for those three cases.

In Sec. II, we recall the binary constrained flows of KdV hierarchy and present factoriz
of the KdV equations into thex- and t-binary constrained flows. By means of the Lax matrixM
5(C(l) 2A(l)

A(l) B(l) ) for the binary constrained flows, the method in Refs. 2–4 and 8 introduce the
N pairs of canonical variablesu1 ,...,uN by the set of zeros ofB(l) andvk52A(uk). We propose

a new method to construct two new functionsB̃(l) andÃ(l) for introducinguN11 ,...,u2N by the

set of zeros ofB̃(l) and vN1k5Ã(uN1k). The construction ofB̃(l) and Ã(l) is based on an

observation that the canonical conditions~1.1! need certain commutator relations betweenÃ(l),

B̃(l), and the requirement for the separated equation~1.2! links Ã(l) with another generating
function of integrals of motion. To guarantee thatv1 ,...,v2N andu1 ,...,u2N are canonical conju-
gated, we also have to modify the original way for introducingu1 ,...,uN andv1 ,...,vN . Then we
establish the Jacobi inversion problems for thex- and t-binary constrained flows. Finally, thes
Jacobi inversion problems together with the factorization of the KdV equations give rise t
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Jacobi inversion problems for the KdV equations. In Sec. III, the factorization of the Ablo
Kaup-Newell-Segur~AKNS! equations is given. SinceB(l) for the binary constrained AKNS
flows, unlike theB(l) for the binary constrained KdV flows, has onlyN21 zeros, we have to
modify the method proposed in Sec. II in order to find 2N pairs of canonical variables for th
binary constrained AKNS flows. In Sec. IV, we present the factorization of the Kaup–Ne
equations. Since the commutator relations ofA(l), B(l), andC(l) for the binary constrained
Kaup–Newell flows are quite different from those for both the binary constrained KdV flows
the binary constrained AKNS flows, we need to further modify the method in Secs. II and
order to find the separation of variables for the Kaup–Newell equations. Finally some rema
made in Sec. V.

II. SEPARATION OF VARIABLES FOR THE KdV EQUATIONS

In this section, we use the binary constrained flows of KdV hierarchy to illustrate our me
of introducing canonical separated variables. Then we show how to produce the separa
variables for the KdV equations. To make the paper self-contained, we first briefly descri
binary constrained flows of the KdV hierarchy.26

A. Binary constrained flows of the KdV hierarchy

Let us start from the Schro¨dinger equation32

fxx1~l1u!f50,

which can be rewritten as the following spectral problem:

fx5U~u,l!f, U~u,l!5S 0 1

2l2u 0D , f5S f1

f2
D . ~2.1!

Its adjoint representation reads

Vx5@U,V#[UV2VU. ~2.2!

Set

V5(
i 50

` S ai bi

ci 2ai
D l2 i . ~2.3!

Equation~2.2! yields

a05b050, c0521, a150, b151, c152 1
2u,

a25 1
4ux , b252 1

2u, c25 1
8~uxx1u2!,...,

and in general

bk115Lbk52 1
2L

k21u, ak52 1
2bk,x , ~2.4a!

ck52 1
2bk,xx2bk112bku, k51,2,..., ~2.4b!

where

L52 1
4]

22u1 1
2]

21ux , ]5]x , ]21]5]]2151.

Set

V~n!~u,l!5 (
i 50

n11 S ai bi

ci 2ai
D ln112 i1S 0 0

bn12 0D , ~2.5!
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and take the time evolution law off as

f tn
5V~n!~u,l!f. ~2.6!

Then the compatibility condition of Eqs.~2.1! and~2.6! gives rise to thenth KdV equation which
can be written as the infinite-dimensional Hamiltonian system

utn
522bn12,x5]Lnu5]

dHn

du
, ~2.7!

where the HamiltonianHn is given by

Hn5
4bn13

2n13
,

dHn

du
522bn12 .

The matrixV determined by~2.2! and ~2.3! also satisfies the adjoint representation of~2.6!,

Vtn
5@V~n!,V#, ~2.8!

whenu satisfies~2.7!.
For n51 we have

f t1
5V~1!~u,l!f, V~1!5S 1

4ux l2 1
2u

2l22 1
2ul1 1

4uxx1
1
2u

2 2 1
4ux

D , ~2.9!

and Eq.~2.7! for n51 is the well-known KdV equation

ut1
52 1

4~uxxx16uux!. ~2.10!

The adjoint spectral problem reads

cx52UT~u,l!c, cS c1

c2
D . ~2.11!

We have26

dl

du
5b TrF S f1c1 f1c2

f2c1 f2c2
D ]U~u,l!

]u G52bc2f1 , ~2.12!

whereb is some constant.
The binaryx-constrained flows of the KdV hierarchy~2.7! consist of the equations obtaine

from the spectral problem~2.1! and the adjoint spectral problem~2.11! for N distinct real numbers
l j and the restriction of the variational derivatives for the conserved quantitiesHk0

~for any fixed
k0) andl j :

F1,x5F2 , F2,x52LF12uF1 , ~2.13a!

C1,x5LC21uC2 , C2,x52C1 , ~2.13b!

dHk0

du
2b21(

j 51

N
dl j

du
522bk0121^C2 ,F1&50. ~2.13c!

Such a constraint~2.13c! has been recognized as a symmetry constraint.25,26,30 Hereafter we
denote the inner product inRN by ^.,.& and
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F i5~f i1 ,...,f iN!T, C i5~c i1 ,...,c iN!T, i 51,2, L5diag~l1 ,...,lN!.

For k050, we have

b252 1
2u5 1

2^C2 ,F1&,

i.e.,

u52^C2 ,F1&. ~2.14!

By substituting~2.14! into ~2.13a! and ~2.13b!, the first binaryx-constrained flow becomes
finite-dimensional Hamiltonian system~FDHS!26

F1x5
]F1

]C1
, F2x5

]F1

]C2
, C1x52

]F1

]F1
, C2x52

]F1

]F2
, ~2.15!

with the Hamiltonian

F15^C1 ,F2&2^LC2 ,F1&1 1
2^C2 ,F1&

2.

The binarytn-constrained flows of the KdV hierarchy~2.7! are defined by the replicas of~2.6!
and its adjoint system forN distinct real numberl j ,

S f1 j

f2 j
D

tn

5V~n!~u,l j !S f1 j

f2 j
D , S c1 j

c2 j
D

tn

52~V~n!~u,l j !!TS c1 j

c2 j
D , j 51,...,N, ~2.16!

as well as thenth KdV equation itself~2.7! in the case of the higher-order constraint fork0>1.
Under the constraint~2.14! and thex-FDHS ~2.15!, the binaryt1-constrained flow obtained from
~2.16! with V(1) given by ~2.9! can also be written as at1-FDHS,

F1,t1
5

]F2

]C1
, F2,t1

52
]F2

]C2
, C1,t1

52
]F2

]F1
, C2,t1

52
]F2

]C2
, ~2.17!

with the Hamiltonian

F252^L2C2 ,F1&1^LC1 ,F2&1 1
2^C2 ,F1&^LC2 ,F1&1 1

2^C2 ,F1&^C1 ,F2&1 1
8~^C2 ,F2&

2^C1 ,F1&!2.

The Lax representation for thex-FDHS ~2.15! and thet1-FDHS ~2.17! can be deduced from
the adjoint representation~2.2! and ~2.8! by using the method in33,34

Mx5@Ũ,M #, Mtn
5@Ṽ~n!,M #, ~2.18!

whereŨ andṼ(n) are obtained fromU andV(n) by a substitution of~2.14!, and the Lax matrixM
is given by

M5S A~l! B~l!

C~l! 2A~l!
D ,

A~l!5
1

4 (
j 51

N
c1 jf1 j2c2 jf2 j

l2l j
, B~l!511

1

2 (
j 51

N
c2 jf1 j

l2l j
, ~2.19!
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C~l!52l1
1

2
^C2 ,F1&1

1

2 (
j 51

N
c1 jf2 j

l2l j
.

Equation~2.18! implies that 1
2Tr M2(l)5A2(l)1B(l)C(l) is the generating function of inte

grals of motion for~2.15! and ~2.17!. A straightforward calculation yields

A2~l!1B~l!C~l![P~l!52l1(
j 51

N F Pj

l2l j
1

PN1 j
2

~l2l j !
2G , ~2.20!

wherePj , j 51,...,2N, are 2N independent integrals of motion for the FDHSs~2.15! and~2.17!,

Pj5
1

2
c1 jf2 j1S 2

1

2
l j1

1

4
^C2 ,F1& Dc2 jf1 j

1
1

8(kÞ j

1

l j2lk
@~c1 jf1 j2c2 jf2 j !~c1kf1k2c2kf2k!14c1 jf2 jc2kf1k#,

j 51,...,N ~2.21a!

PN1 j5
1
4~c1 jf1 j1c2 jf2 j !, j 51,...,N. ~2.21b!

It is easy to verify that

F152(
j 51

N

Pj , F252(
j 51

N

~l j Pj1PN1 j
2 !. ~2.22!

With respect to the standard Poisson bracket it is found that

$A~l!,A~m!%5$B~l!,B~m!%50, $C~l!,C~m!%5A~m!2A~l!, ~2.23a!

$A~l!,B~m!%5
1

2~l2m!
@B~m!2B~l!#, ~2.23b!

$A~l!,C~m!%5
1

2~l2m!
@C~l!2C~m!#, ~2.23c!

$B~l!,C~m!%5
1

l2m
@A~m!2A~l!#. ~2.23d!

It follows from ~2.23! that

$A2~l!1B~l!C~l!,A2~m!1B~m!C~m!%50,

which implies thatPj , j 51,...,2N, are in involution:

$Pk ,Pl%50, k,l 51,...,2N.

Therefore the FDHSs~2.15! and ~2.17! are integrable and commute with each other. The c
struction of ~2.15! and ~2.17! ensures that if (C1 ,C2 ,F1 ,F2) satisfies the finite-dimensiona
integrable Hamiltonian systems~FDIHSs! ~2.15! and ~2.17! simultaneously, thenu defined by
~2.14! solves the KdV equation~2.10!.

In general, by substituting~2.14! and using~2.15!, the tn-constrained flow~2.16! becomes a
tn-FDIHS and thenth KdV equation~2.7! is factorized by thex-FDIHS ~2.15! and thetn-FDIHS.
Set
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A2~l!1B~l!C~l!5l(
k50

`

F̃kl
2k, ~2.24a!

whereF̃k , k51,2,..., are also integrals of motion for both thex-FDIHSs~2.15! and thetn-binary
constrained flows~2.16!. Comparing~2.24a! with ~2.20!, one gets

F̃0521, F̃150, F̃k5(
j 51

N

@l j
k22Pj1~k22!l j

k23PN1 j
2 #, k52,3,.. . ~2.24b!

By employing the method in Refs. 34 and 35, thetn-FDIHS obtained from thetn-constrained flow
~2.16! is found to be of the form

F1,tn
5

]Fn11

]C1
, F2,tn

5
]Fn11

]C2
, C1,tn

5 2
]Fn11

]F1
, C2,tn

52
]Fn11

]F2
, ~2.25a!

with the Hamiltonian

Fn115 (
m50

n S 1

2D m21 am

m11 (
l 11¯1 l m115n12

F̃ l 1
¯F̃ l m11

, ~2.25b!

wherel 1>1,..., l m11>1, a051, a15 1
2, a25 3

2, and34,35

am52am211 (
l 51

m22

a lam2 l 212
1

2 (
l 51

m21

a lam2 l , m>3. ~2.25c!

The nth KdV equation~2.7! is factorized by thex-FDIHS ~2.15! and thetn-FDIHS ~2.25!.
For example, for the second equation in the KdV hierarchy~2.7! with n52,

ut2
5 1

16~uxxxx110uuxx15ux
2110u3!x , ~2.26!

the HamiltonianF3 for the t2-FDIHS reads

F352F̃41
1

2
F̃2

252(
j 51

N

~l j
2Pj12l j PN1 j

2 !1
1

2 S (
j 51

N

Pj D 2

. ~2.27!

Then the second KdV equation~2.26! is factorized by thex-FDIHS ~2.15! and thet2-FDIHS with
the HamiltonianF3 .

B. The separation of variables for the KdV equations

An effective way to introduce the separated variablesvk , uk and to obtain the separate
equations is to use the Lax matrixM and the generating function of integrals of motion. For t
FDIHSs ~2.15! and ~2.17!, we can define the firstN pairs of the canonical variablesuk ,vk , k
51,...,N, by the method.2,3,4,8 The commutator relations~2.23! and the generating function o
integrals of motion~2.20! enable us to defineu1 ,...,uN by the set of zeros ofB(l),

B~l!511
1

2 (
j 51

N
c2 jf1 j

l2l j
5

R~l!

K~l!
, ~2.28a!

where

R~l!5)
k51

N

~l2uk!, K~l!5)
k51

N

~l2lk!,
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andv1 ,...,vN by

vk5A1~uk!, k51,...,N, ~2.28b!

where

A1~l!52A~l!5
1

2 (
j 51

N
c1 jf1 j2c2 jf2 j

l2l j
.

As we will see later, the commutator relations~2.23! guarantee thatu1 ,...,uN and v1 ,...,vN

satisfy the canonical conditions~1.1!. Then substitutinguk into ~2.20! gives rise to the separate
equations

vk5A1~uk!52AP~uk!52A2uk1(
j 51

N F Pj

uk2l j
1

PN1 j
2

~uk2l j !
2G , k51,...,N.

Now the reason for taking our choice ofB(l) andA1(l) becomes apparent.
The FDIHSs~2.15! and ~2.17! have 2N degrees of freedom, therefore we need to introd

the otherN pairs of canonical variablesvk ,uk , k5N11,...,2N. The main idea is to construct tw
suitable functionsB̃(l),Ã(l) in order to defineuN11 ,...,u2N by the set of zeros ofB̃(l) and

vN11 ,...,v2N by vN1k5Ã(uN1k). The above mentioned way for introducinguk ,vk , k51,...,N
stimulates us to impose two requirements onB̃(l) andÃ(l) in order to construct them. First, th
canonical conditions~1.1! require thatB̃(l) and Ã(l) satisfy

$B̃~l!,B̃~m!%5$B̃~l!,B~m!%5$Ã~l!,Ã~m!%5$Ã~l!,B~m!%5$Ã~l!,A1~m!%50, ~2.29a!

$Ã~l!,B̃~m!%5
1

l2m
@B̃~m!2B̃~l!#, ~2.29b!

$A1~l!,B̃~m!%50. ~2.29c!

The second requirement is that the equationvN1k5Ã(uN1k) should give rise to the separate
equations. Notice thatPN1 j given by ~2.21b! are integrals of motion for the FDIHSs~2.15! and
~2.17!, we can construct another generating functionÃ(l) of integrals of motion by

Ã~l!5
1

2 (
j 51

N
c1 jf1 j1c2 jf2 j

l2l j
52(

j 51

N
PN1 j

l2l j
. ~2.30a!

We may useÃ(l) to definevN11 ,...,v2N since substitutinguN1k into Eq. ~2.30a! immediately
leads to the separated equations forvN1k and uN1k . It is easy to see that$Ã(l),B(m)%
5$Ã(l),Ã(m)%5$Ã(l),A1(m)%50. We look forB̃(l) in the form

B̃~l!511
1

2 (
j 51

N
1

l2l j
~d1f1 j

2 1d2f1 jf2 j1d3f2 j
2 !.

By requiring B̃(l) to satisfy~2.29a! and ~2.29b!, one getsd151, d25d350, i.e.,

B̃~l!511
1

2 (
j 51

N f1 j
2

l2l j
. ~2.30b!

But B̃(l) does not fit~2.29c!. In fact, we have
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$A1~l!,B̃~m!%5
1

l2m
@B̃~m!2B̃~l!#. ~2.31!

However,~2.29a!, ~2.29b!, and~2.31! enable us to replaceA1(l) by Ā(l),

Ā~l![A1~l!2Ã~l!52(
j 51

N
c2 jf2 j

l2l j
, ~2.32!

and we will redefinevk by vk5Ā(uk).
Then a straightforward calculation shows thatB̄(l)5B(l),Ā(l),B̃(l),Ã(l) satisfy the fol-

lowing required commutator relations:

$B̄~l!,B̄~m!%5$B̃~l!,B̃~m!%5$Ā~l!,Ā~m!%5$Ã~l!,Ã~m!%50, ~2.33a!

$B̄~l!,B̃~m!%5$B̄~l!,Ã~m!%5$B̃~l!,Ā~m!%5$Ā~l!,Ã~m!%50, ~2.33b!

$Ā~l!,B̄~m!%5
1

l2m
@B̄~m!2B̄~l!#, $Ã~l!,B̃~m!%5

1

l2m
@B̃~m!2B̃~l!#. ~2.33c!

We have the following proposition.

Proposition 1: Assume thatl j ,f i j ,c i j PR, i 51,2, j 51,...,N. Introduce the separated variable

u1 ,...,u2N by the set of zeros of B(̄l) and B̃(l):

B̄~l!511
1

2 (
j 51

N
c2 jf1 j

l2l j
5

R~l!

K~l!
, ~2.34a!

B̃~l!511
1

2 (
j 51

N f1 j
2

l2l j
5

R̄~l!

K~l!
, ~2.34b!

with

R~l!5)
k51

N

~l2uk!, R̄~l!5)
k51

N

~l2uN1k!,

and v1 ,...,v2N by

vk5Ā~uk!5A1~uk!2Ã~uk!52(
j 51

N
c2 jf2 j

uk2l j
, k51,...,N, ~2.34c!

vN1k5Ã~uN1k!5
1

2 (
j 51

N
c1 jf1 j1c2 jf2 j

uN1k2l j
, k51,...,N. ~2.34d!

If u1 ,...,uN , are single zeros of B̄(l), then v1 ,...,v2N and u1 ,...,u2N are canonically conju-
gated, i.e., they satisfy~1.1!.

Proof: Notice that

lim
l→l j 20

B̃~l!52`, lim
l→l j 10

B̃~l!5`,

it is easy to see that
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uN11,l1,uN12,l2,¯,u2N,lN . ~2.35!

We haveB̄8(uk)Þ0, B̃8(uN1k)Þ0. Hereafter the prime denotes the differentiation with respec
l. In what follows, we takek, l 51,...,N. It follows from ~2.33b! that

05$uk ,B̃~uN1 l !%5B̃8~uN1 l !$uk ,uN1 l%1$uk ,B̃~m!%um5uN1 l
,

05$B̄~uk!,uN1 l%5B̄8~uk!$uk ,uN1 l%1$B̄~l!,uN1 l%ul5uk
,

05$B̄~uk!,B̃~uN1 l !%

5B̄8~uk!B̃8~uN1 l !$uk ,uN1 l%1B̄8~uk!$uk ,B̃~m!%um5uN1 l

1B̃8~uN1 l !$B̄~l!,uN1 l%ul5uk
1$B̄~l!,B̃~m!%ul5uk ,m5uN1 l

5B̄8~uk!B̃8~uN1 l !$uk ,uN1 l%1B̄8~uk!$uk ,B̃~m!%um5uN11
1B̃8~uN1 l !$B̄~l!,uN1 l%ul5uk

,

which together lead to$uk ,uN1 l%50. Similarly, $uk ,ul%50, $uN1k ,uN1 l%50.
Using ~2.33b!, ~2.33c!, and the above-mentioned results, one gets

$vk ,B̄~m!%um5ul
5$Ā~uk!,B̄~m!%um5ul

5Ā8~uk!$uk ,B̄~m!%um5ul
1@$Ā~l!,B̄~m!%ul5uk

#um5ul
,

5Ā8~uk!@$uk ,B̄~ul !%2B̄8~ul !$uk ,ul%#1@$Ā~l!,B̄~m!%ul5uk
#um5ul

5@$Ā~l!,B̄~m!%ul5uk
#um5ul

5
B̄~m!2B̄~uk!

uk2m
um5ul

52dklB̄8~uk!,

and

05$vk ,B̄~ul !%5B̄~ul !$vk ,ul%1$vk ,B̄~m!%um5ul
,

then

$vk ,ul%52
1

B̄8~ul !
$vk ,B̄~m!%um5ul

5dkl

B̄8~uk!

B̄8~ul !
5dkl .

In the same way, one gets$vN1k ,uN1 l%5dkl . The following equalities;

$vk ,uN1 l%5$Ā~uk!,uN1 l%5$Ā~l!,uN1 l%ul5uk
,

05$Ā~l!,B̃~uN1 l !%5B̃8~uN1 l !$Ā~l!,uN1 l%,

yield $vk ,uN1 l%50 and similarly$vN1k ,ul%50.
Finally,
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$vk ,vN1 l%5$Ā~uk!,Ã~uN1 l !%

5Ā8~uk!$uk ,Ã~m!%um5uN1 l
1Ā8~uN1 l !$Ā~l!,uN1 l%ul5uk

5Ā8~uk!@$uk ,vN1 l%2Ã8~uN1 l !$uk ,uN1 l%#

1Ã8~uN1 l !@$vk ,uN1 l%2Ā8~uk!$uk ,uN1 l%#50,

similarly

$vk ,v l%5Ā8~uk!$uk ,v l%1Ã8~ul !$vk ,ul%52Ā8~uk!dkl1Ā8~ul !dkl50,

and$vN1k ,vN1 l%50. This completes the proof.
It follows from ~2.34a! and ~2.34b! that

c2 jf1 j52
R~l j !

K8~l j !
, f1 j

2 52
R̄~l j !

K8~l j !
, j 51,...,N,

or

f1 j5A2R̄~l j !

K8~l j !
, c2 j5

&R~l j !

AR̄~l j !K8~l j !

, j 51,...,N. ~2.36!

Also ~2.34a! results

u52^C2 ,F1&52(
j 51

N

~uj2l j !. ~2.37!

We now present the separated equations. By substitutinguk into ~2.20!, uN1k into ~2.30a!, and
using ~2.34!, one gets the separated equations

vk5A1~uk!2Ã~uk!52AP~uk!2Ã~uk!

52A2uk1(
j 51

N F Pj

uk2l j
1

PN1 j
2

~uk2l j !
2G22(

j 51

N
PN1 j

uk2l j
,

k51,...,N, ~2.38a!

vN1k5Ã~uN1k!52(
j 51

N
PN1 j

uN1k2l j
, k51,...,N. ~2.38b!

Replacingvk by the partial derivative]S/]uk of the generating functionS of the canonical
transformation and interpreting thePi as integration constants, Eqs.~2.38a! and~2.38b! give rise
to the Hamilton–Jacobi equations which are completely separable and may be integrated
the completely separated solution

S~u1 ,...,u2N!5 (
k51

N F Euk
~2AP~l!2Ã~l!!dl1EuN1k

Ã~l!dl G
52(

k51

N F EukAP~l!dl2(
i 51

N

PN1 i lnU uk2l i

uN1k2l i
UG . ~2.39!
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The linearizing coordinates are then

Qi5
]S

]Pi
5 (

k51

N Euk 1

~l2l i !AP~l!
dl, i 51,...,N, ~2.40a!

QN1 i5
]S

]PN1 i
52(

k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG , i 51,...,N. ~2.40b!

By using ~2.22!, the linear flow induced by~2.15! is then given by

Qi5g i1x
]F1

]Pi
5g i12x, QN1 i52gN1 i1x

]F1

]PN1 i
52gN1 i , i 51,...,N. ~2.41!

Hereafterg i , i 51,...,2N, are arbitrary constants. Combining Eqs.~2.40a! and ~2.40b! with Eq.
~2.41! leads to the Jacobi inversion problem for the FDIHS~2.15!,

(
k51

N Euk 1

~l2l i !AP~l!
dl5g i12x, i 51,...,N, ~2.42a!

(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG5gN1 i , i 51,...,N. ~2.42b!

The f1 j , c2 j and ^C2 ,F1& defined by~2.36! and ~2.37! are the symmetric functions ofuk , k
51,...,2N. If, by using the Jacobi inversion technique,19 f1 j , c2 j , and^C2 ,F1& can be obtained
from ~2.42!, then f2 j ,c1 j can be found from the first and the last equation in~2.15! by an
algebraic calculation, respectively. The (f1 j ,f2 j ,c1 j ,c2 j ) provides the solution to the FDIHS
~2.15!.

By using ~2.22!, the linear flow induced by~2.17! is then given by

Qi5ḡ i1
]F2

]Pi
t15ḡ i12l i t1 ,

~2.43!

QN1 i52ḡN1 i1
]F2

]PN1 i
t152ḡN1 i14PN1 i t1 , i 51,...,N,

whereḡ i are arbitrary constants. Combining Eqs.~2.40a! and~2.40b! with Eq. ~2.43! leads to the
Jacobi inversion problem for the FDIHS~2.17!,

(
k51

N Euk 1

~l2l i !AP~l!
dl5ḡ i12l i t1 , i 51,...,N, ~2.44a!

(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG5ḡN1 i12PN1 i t1 , i 51,...,N. ~2.44b!

Finally, since the KdV equation~2.10! is factorized by the FDIHSs~2.15! and ~2.17!, com-
bining Eqs.~2.42a! and ~2.42b! with Eqs. ~2.44a! and ~2.44b! and using~2.37! give rise to the
Jacobi inversion problem for the KdV equation~2.10!,

(
k51

N Euk 1

~l2l i !AP~l!
dl5g i12x12l i t1 , i 51,...,N, ~2.45a!
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(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG5gN1 i12PN1 i t1 , i 51,...,N. ~2.45b!

Notice thatu defined by~2.37! is the symmetric function ofuk , k51,...,N. If, by using the Jacobi
inversion technique,19 u can be found in terms of Riemann theta functions by solving~2.45!, then
u provides the solution of the KdV equation~2.10!.

In general, since thenth KdV equation~2.7! is factorized by thex-FDIHS ~2.15! and the
tn-FDIHS ~2.25!, the above-mentioned procedure can be applied to find the Jacobi inve
problem for thenth KdV equation~2.7!. We have the following proposition.

Proposition 2: The Jacobi inversion problem for the nth KdV equation (2.7) is given by

(
k51

N Euk 1

~l2l i !AP~l!
dl5g i12x1tn (

m50

n S 1

2D m21

am (
l 11¯1 l m115n12

l i
l m1122F̃ l 1

¯F̃ l m
,

i 51,...,N, ~2.46a!

(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG

5gN1 i1tn (
m50

n S 1

2D m22

am (
l 11¯1 l m115n12

~ l m1122!l i
l m1123PN1 i F̃ l 1

¯F̃ l m
,

i 51,...,N, ~2.46b!

wherel 1>1,..., l m11>1 and F̃l 1
,...,F̃ l m

, are given by~2.24b!.
For example, by using~2.27!, the Jacobi inversion problem for the second KdV equat

~2.26! is given by

(
k51

N Euk 1

~l2l i !AP~l!
dl5g i12x1S 2l i

21(
j 51

N

Pj D t2 , i 51,...,N, ~2.47a!

(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 ln
uk2l i

uN1k2l i
G5gN1 i14l i PN1 i t2 , i 51,...,N. ~2.47b!

The u solved from the Jacobi inversion problem~2.47! provides the solution for the second Kd
equation~2.26!.

The Jacobi inversion problem for the KdV hierarchy in our case is somewhat different
that derived by means of the stationary equations of the KdV hierarchy,36 since there is an
additional term2 lnuuk2liu1lnuuN1k2liu in ~2.46b!.

III. THE SEPARATION OF VARIABLES FOR THE AKNS EQUATIONS

A. Binary constrained flows of the AKNS hierarchy

For the AKNS spectral problem37

fx5U~u,l!f, U~u,l!5S 2l q

r l
D , f5S f1

f2
D , u5S q

r D , ~3.1!

its adjoint representation~2.2! and ~2.3! yield

a0521, b05c050, a150, b15q, c15r , a25 1
2qr,...,
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and in general

S ck11

bk11
D5LS ck

bk
D , ak5]21~qck2rbk!, k51,2,..., ~3.2!

L5
1

2 S ]22r ]21q 2r ]21r

22q]21q 2]12q]21r D .

Take

f tn
5V~n!~u,l!f, V~n!~u,l!5(

i 50

n S ai bi

ci 2ai
D ln2 i . ~3.3!

Then the compatibility condition of Eqs.~3.1! and ~3.3! gives rise to the AKNS hierarchy

utn
5S q

r D
tn

5JLnS r
qD5J

dHn11

du
, n51,2,..., ~3.4!

where the HamiltonianHn and the Hamiltonian operatorJ are given by

J5S 0 22

2 0 D , Hn5
2an11

n11
, S cn

bn
D5

dHn

du
, n51,2,... .

For n52 we have

f t2
5V~2!~u,l!f, V~2!5S 2l21 1

2qr ql2 1
2qx

rl1 1
2r x l22 1

2qr
D , ~3.5!

and the AKNS equation~3.4! for n52 reads

qt2
52 1

2qxx1q2r , r t2
5 1

2r xx2r 2q. ~3.6!

The adjoint AKNS spectral problem is Eq.~2.11! with U given by ~3.1!. We have25

dl

du
5S dl

dq

dl

dr

D 5b TrF S f1c1 f1c2

f2c1 f2c2
D ]U~u,l!

]u G5bS c1f2

c2f1
D . ~3.7!

The binaryx-constrained flows of the AKNS hierarchy~3.4! are defined by25,29

F1,x52LF11qF2 , F2,x5rF11LF2 , ~3.8a!

C1,x5LC12rC2 , C2,x52qC12LC2 , ~3.8b!

dHk0

du
2b21(

j 51

N
dl j

du
5S ck0

bk0
D 2S ^C1 ,F2&

^C2 ,F1&
D50. ~3.8c!

For k051, we have

S c1

b1
D5S r

qD5S ^C1 ,F2&
^C2 ,F1&

D50. ~3.9!
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By substituting ~3.9! into ~3.8a! and ~3.8b!, the first binary x-constrained flow becomes
x-FDHS,25

F1x5
]F1

]C1
, F2x5

]F1

]C2
, C1x52

]F1

]F1
, C2x52

]F1

]F2
, ~3.10!

with the Hamiltonian

F15^LC2 ,F2&2^LC1 ,F1&1^C2 ,F1&^C1 ,F2&.

Under the constraint~3.9! and the FDHS~3.10!, the binaryt2-constrained flow obtained from
~3.3! with V(2) given by ~3.5! and its adjoint equation forN distinct real numberl j can also be
written as at2-FDHS,

F1,t2
5

]F2

]C1
, F2,t2

5
]F2

]C2
, C1,t2

52
]F2

]F1
, C2,t2

52
]F2

]F2
, ~3.11!

with the Hamiltonian

F25^L2C2 ,F2&2^L2C1 ,F1&1^C2 ,F1&^LC1 ,F2&1^LC2 ,F1&^C1 ,F2&

2 1
2~^C2 ,F2&2^C1 ,F1&!^C2 ,F1&^C1 ,F2&.

The Lax representation for the FDHSs~3.10! and~3.11! which can also be deduced from th
adjoint representation~2.2! and~2.8! are presented by~2.18! with the entries of the Lax matrixM
given by29

A~l!5211
1

2 (
j 51

N
c1 jf1 j2c2 jf2 j

l2l j
, ~3.12a!

B~l!5(
j 51

N
c2 jf1 j

l2l j
, C~l!5(

j 51

N
c1 jf2 j

l2l j
. ~3.12b!

A straightforward calculation yields

A2~l!1B~l!C~l![P~l!511(
j 51

N F Pj

l2l j
1

PN1 j
2

~l2l j !
2G , ~3.13!

wherePj , j 51,...,2N, are 2N independent integrals of motion for the FDHSs~3.10! and~3.11!,

Pj5c2 jf2 j2c1 jf1 j1
1

2 (
kÞ j

1

l j2lk
@~c1 jf1 j2c2 jf2 j !~c1kf1k2c2kf2k!14c1 jf2 jc2kf1k#,

j 51,...,N, ~3.14a!

PN1 j5
1
2~c1 jf1 j1c2 jf2 j !, j 51,...,N. ~3.14b!

It is easy to verify that

F15(
j 51

N

~l j Pj1PN1 j
2 !2

1

4 S (
j 51

N

Pj D 2

, ~3.15a!

F25(
j 51

N

~l j
2Pj12l j PN1 j

2 !2
1

2S (j 51

N

Pj D (
j 51

N

~l j Pj1PN1 j
2 !1

1

8 S (
j 51

N

Pj D 3

. ~3.15b!
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With respect to the standard Poisson bracket it is found that

$A~l!,A~m!%5$B~l!,B~m!%5$C~l!,C~m!%50, ~3.16a!

$A~l!,B~m!%5
1

l2m
@B~m!2B~l!#, ~3.16b!

$A~l!,C~m!%5
1

l2m
@C~l!2C~m!#, ~3.16c!

$B~l!,C~m!%5
2

l2m
@A~m!2A~l!#. ~3.16d!

Then $A2(l)1B(l)C(l),A2(m)1B(m)C(m)%50 implies thatPj , j 51,...,2N, are in involu-
tion. The AKNS equation~3.6! is factorized by thex-FDIHS ~3.10! and thet2-FDIHS ~3.11!,
namely, if (C1 ,C2 ,F1 ,F2) satisfies the FDIHSs~3.10! and ~3.11! simultaneously, then~q, r!
given by ~3.9! solves the AKNS equation~3.6!. In general, the factorization of thenth AKNS
equations~3.4! will be presented at the end of Sec. III B.

B. The separation of variables for the AKNS equations

In contrast with theB(l) in the Lax matrixM for the constrained KdV flows, theB(l) given
by ~3.12b! has onlyN21 zeros, one has to define the canonical variablesuk , vk , k51,...,2N, in
a little different way. The commutator relations~3.16! and the generating function of integrals
motion ~3.13! enable us to introduceu1 ,...,uN by means ofB(l) in the following way:

B~l!5(
j 51

N
c2 jf1 j

l2l j
5euN

R~l!

K~l!
, ~3.17a!

where

R~l!5 )
k51

N21

~l2uk!, K~l!5)
k51

N

~l2lk!,

andv1 ,...,vN by

vk5A~uk!, k51,...,N21, vN5 1
2~^C1 ,F1&2^C2 ,F2&!. ~3.17b!

Equation~3.17a! yields

uN5 ln^C2 ,F1&. ~3.17c!

Then it is easy to verify that

$uN ,B~m!%5$vN ,A~m!%50, $vN ,uN%51, ~3.18a!

$uN ,A~m!%52
B~m!

^C2 ,F1&
, $vN ,B~m!%5B~m!. ~3.18b!

As we will show later, the commutator relations~3.16! and ~3.18! guarantee thatu1 ,...,uN ,
v1 ,...,vN satisfy the canonical conditions~1.1!.

We now need to construct two functionsB̃(l), Ã(l) to defineuN11 ,...,u2N by means of
B̃(l) and vN11 ,...,v2N by vN1k5Ã(uN1k). By the exactly same argument as in Sec. II B, w
constructÃ(l) by
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Ã~l!5
1

2 (
j 51

N
c1 jf1 j1c2 jf2 j

l2l j
5(

j 51

N
PN1 j

l2l j
, ~3.19a!

since Eq.~3.19a! enables us to obtain immediately the separated equation~1.2! for vN1k and
uN1k , andB̃(l) by

B̃~l!5(
j 51

N f1 j
2

l2l j
. ~3.19b!

Then it is easy to verify thatA(l),B(l),Ã(l),B̃(m) satisfy the commutator relations

$B̃~l!,B̃~m!%5$B̃~l!,B~m!%5$Ã~l!,Ã~m!%5$Ã~l!,B~m!%5$Ã~l!,A~m!%50, ~3.20a!

$Ã~l!,B̃~m!%5
1

l2m
@B̃~m!2B̃~l!#, ~3.20b!

$A~l!,B̃~m!%5
1

l2m
@B̃~m!2B̃~l!#. ~3.20c!

Relation ~3.20c! does not fit the requirement for the canonical conditions~1.1!. According to
~3.20! and ~3.16! we can replaceA(l) by Ā(l),

Ā~l![A~l!2Ã~l!5212(
j 51

N
c2 jf2 j

l2l j
, ~3.21!

namely, we redefinev1 ,...,vN by

vk5Ā~uk!5A~uk!2Ã~uk!5212(
j 51

N
c2 jf2 j

uk2l j
, k51,...,N21, ~3.22a!

vN52^C2 ,F2&. ~3.22b!

We now defineuN11 ,...,u2N by B̃(l) as follows:

B̃~l!5(
j 51

N f1 j
2

l2l j
5eu2N

R̄~l!

K~l!
, R̄~l!5 )

k51

N21

~l2uN1k!, ~3.23a!

andvN11 ,...,v2N by

vN1k5Ã~uN1k!5
1

2 (
j 51

N
c1 jf1 j1c2 jf2 j

uN1k2l j
, k51,...,N21, ~3.23b!

v2N5 1
2~^C1 ,F1&1^C2 ,F2&!. ~3.23c!

Equation~3.23a! leads to

u2N5 ln^F1 ,F1&. ~3.23d!

Then a straightforward calculation shows thatB̄(l)5B(l), Ā(l),B̃(l),Ã(l) satisfy the
commutator relations~2.33! and
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$uN ,B̄~m!%5$uN ,B̃~m!%5$uN ,Ã~m!%50, $uN ,Ā~m!%52
B̄~m!

^C2 ,F1&
, ~3.24a!

$vN ,Ā~m!%5$vN ,B̃~m!%5$vN ,Ã~m!%50, $vN ,B̄~m!%5B̄~m!, ~3.24b!

$u2N ,B̄~m!%5$u2N ,Ā~m!%5$u2N ,B̃~m!%50, $u2N ,Ã~m!%52
B̃~m!

^C1 ,F1&
, ~3.24c!

$v2N ,B̄~m!%5$v2N ,Ā~m!%5$v2N ,Ã~m!%50, $v2N ,B̃~m!%5B̃~m!, ~3.24d!

$vN ,uN%51, $v2N ,u2N%51, ~3.24e!

$u2N ,uN%5$u2N ,vN%5$v2N ,uN%5$v2N ,vN%50. ~3.24f!

We have the following proposition.
Proposition 3: Assume thatl j , f i j , c i j PR, i 51,2, j 51,...,N. Introduce the separated

variables u1 ,...,u2N by the B̄(l) and B̃(l):

B̄~l!5B~l!5(
j 51

N
c2 jf1 j

l2l j
5euN

R~l!

K~l!
, ~3.25a!

B̃~l!5(
j 51

N f1 j
2

l2l j
5eu2N

R̄~l!

K~l!
, ~3.25b!

with

R~l!5 )
k51

N21

~l2uk!, R̄~l!5 )
k51

N21

~l2uN1k!,

and v1 ,...,v2N by

vk5Ā~uk!5A~uk!52Ã~uk!5212(
j 51

N
c2 jf2 j

uk2l j
, k51,...,N21, ~3.25c!

vN52^C2 ,F2&, ~3.25d!

vN1k5Ã~uN1k!5
1

2 (
j 51

N
c1 jf1 j1c2 jf2 j

uN1k2l j
, k51,...,N21, ~3.25e!

v2N5 1
2~^C1 ,F1&1^C2 ,F2&!. ~3.25f!

If u1 ,...,uN , are single zeros of B̄(l), then v1 ,...,v2N and u1 ,...,u2N are canonically conju-
gated, i.e., they satisfy~1.1!.

Proof: By using the exactly same method as in the proof of proposition 1, the commu
relations~2.33! guarantee thatu1 ,...,uN21 , v1 ,...,vN21 satisfy the canonical conditions~1.1!. By
using the similar method, for example, it is found from~3.24! that for k51,...,N21, we have

05$uN ,B̄~uk!%5B̄8~uk!$uN ,uk%1$uN ,B̄~m!%um5uk
5B̄8~uk!$uN ,uk%,
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$uN ,vk%5$uN ,Ā~uk!%5Ā8~uk!$uN ,uk%2
B̄~m!

^C2 ,F1&
U

m5uk

50,

which gives rise to$uN ,uk%5$uN ,vk%50 and so on. In this way we complete the proof.
It follows from ~3.25a! and ~3.25b! that

c2 jf1 j5euN
R~l j !

K8~l j !
, f1 j

2 5eu2N
R̄~l j !

K8~l j !
, j 51,...,N,

or

f1 j5Aeu2NR̄~l j !

K8~l j !
, c2 j5

euNR~l j !

Aeu2NR̄~l j !K8~l j !

, j 51,..,N. ~3.26!

Equations~3.9! and ~3.17c! result in

q5euN. ~3.27!

We now present the separated equations. By substitutinguk into ~3.13!, uN1k into ~3.19a! and
using ~3.25c! and ~3.25e!, one gets the separated equations

vk5A~uk!2Ã~uk!5AP~uk!2Ã~uk!

5A11(
j 51

N F Pj

uk2l j
1

PN1 j

~uk2l j !
2G2(

j 51

N
PN1 j

uk2l j
, k51,...,N21,

~3.28a!

vN1k5Ã~uN1k!5(
j 51

N
PN1 j

uN1k2l j
, k51,...,N21. ~3.28b!

It is easy to see from~3.14! that

^C2 ,F2&2^C1 ,F1&5(
i 51

N

Pi , ^C1 ,F1&1^C2 ,F2&52(
i 51

N

PN1 i ,

which together with~3.25d! and ~3.25f! leads to

vN52
1

2 (
i 51

N

~Pi12PN1 i !, v2N5(
i 51

N

PN1 i . ~3.28c!

Replacingvk by the partial derivative]S/]uk of the generating functionS of the canonical
transformation and interpreting thePi as integration constants, Eqs.~3.28a!–~3.28c! may be inte-
grated to give the generating function of the canonical transformation
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S~u1 ,...,u2N!5 (
k51

N21 F Euk
~AP~l!2Ã~l!!dl1EuN1k

Ã~l!dl G
2

1

2 (
i 51

N

~Pi12PN1 i !uN1(
i 51

N

PN1 iu2N

5 (
k51

N21 F EukAP~l!dl2(
i 51

N

PN1 i lnU uk2l i

uN1k2l i
UG

2
1

2 (
i 51

N

~Pi12PN1 i !uN1(
i 51

N

PN1 iu2N . ~3.29!

The linearizing coordinates are then

Qi5
]S

]Pi
5

1

2 (
k51

N21 Euk 1

~l2l i !AP~l!
dl2

1

2
uN , i 51,...,N, ~3.30a!

QN1 i5
]S

]PN1 i
5 (

k51

N21 F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG2uN1u2N ,

i 51,...,N. ~3.30b!

By using~3.15a!, the linear flow induced by the FDIHS~3.10! together with Eqs.~3.30a! and
~3.30b! leads to the Jacobi inversion problem for the FDIHS~3.10!,

(
k51

N21 Euk 1

~l2l i !AP~l!
dl2uN5g i1S 2l i2 (

k51

N

PkD x, i 51,...,N, ~3.31a!

(
k51

N21 F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG2uN1u2N5gN1 i12PN1 ix, i 51,...,N.

~3.31b!

By using ~3.15b!, the linear flow induced by the FDIHS~3.11! and Eqs.~3.30a! and ~3.30b!
result in the Jacobi inversion problem for the FDIHS~3.11!,

(
k51

N21 Euk 1

~l2l i !AP~l!
dl2uN5ḡ i1F2l i

22 (
k51

N

~lkPk1l i Pk1PN1k
2 !1

3

4 S (
k51

N

PkD 2G t2 ,

i 51,...,N, ~3.32a!

(
k51

N21 F Euk PN1 i

~l2l i !
2AP~l!

dl2 ln U uk2l i

uN1k2l i
UG2uN1u2N

5ḡN1 i1PN1 iS 4l i2 (
k51

N

PkD t2 ,

i 51,...,N. ~3.32b!

Then, since the AKNS equations~3.6! are factorized by the FDIHSs~3.10! and ~3.11!, com-
bining Eqs.~3.31a! and ~3.31b! with Eqs. ~3.32a! and ~3.32b! gives rise to the Jacobi inversio
problem for the AKNS equations~3.6!,
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(
k51

N21 Euk 1

~l2l i !AP~l!
dl2uN

5g i1S 2l i2 (
k51

N

PkD x1F2l i
22 (

k51

N

~lkPk1l i Pk1PN1k
2 !1

3

4 S (
k51

N

PkD 2G t2 ,

i 51,...,N, ~3.33a!

(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG2uN1u2N

5gN1 i12PN1 ix1PN1 iS 4l i2 (
k51

N

PkD t2 ,

i 51,...,N. ~3.33b!

If f1 j , c2 j , q defined by~3.26! and ~3.27! can be solved from~3.33! by using the Jacob
inversion technique, thenf2 j , c1 j can be obtained from the first equation and the last equatio
~3.10! by an algebraic calculation, respectively. Finallyq and r 5^C1 ,F2& provides the solution
to the AKNS equations~3.6!.

In general, in order to obtain the Jacobi inversion problem for thenth AKNS equations~3.4!,
we set

A2~l!1B~l!C~l!5 (
k50

`

F̃kl
2k, ~3.34!

where F̃k , k51,2,..., are also integrals of motion for both the FDHS~3.10! and thetn-binary
constrained flow. Comparing~3.34! with ~3.13!, one gets

F̃051, F̃k5(
j 51

N

@l j
k21Pj1~k21!l j

k22PN1 j
2 #, k51,2,... . ~3.35!

The nth AKNS equations~3.4! are factorized by thex-FDIHS ~3.10! and thetn-FDIHS with the
HamiltonianFn given by25

Fn52 (
m50

n S 2
1

2D m am

m11 (
l 11¯1 l m115n11

F̃ l 1
¯F̃ l m11

, ~3.36!

where l 1>1,..., l m11>1, andam are given by~2.25c!. In the same way, we have the followin
proposition.

Proposition 4: The Jacobi inversion problem for the nth AKNS equations (3.4) is of the

(
k51

N21 Euk 1

~l2l i !AP~l!
dl2uN5g i1S 2l i2 (

k51

N

PkD x

12tn (
m50

n S 2
1

2 D m

am (
l 11¯1 l m115n11

l i
l m1121F̃ l 1

¯F̃ l m
,

i 51,...,N, ~3.37a!
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(
k51

N F Euk PN1 i

~l2l i !
2AP~l!

dl2 lnU uk2l i

uN1k2l i
UG2uN1u2N

5gN1 i12PN1 ix14tn (
m50

n S 2
1

2 D m

am (
l 11¯1 l m115n11

~ l m1121!l i
l m1122PN1 i F̃ l 1

¯F̃ l m
,

i 51,...,N, ~3.37b!

where l1>1,..., l m11>1, and F̃l 1
,...F̃ l m

, are given by~3.35!.

IV. THE SEPARATION OF VARIABLES FOR THE KAUP–NEWELL EQUATIONS

A. Binary constrained flows of the Kaup–Newell hierarchy

For the Kaup–Newell spectral problem38

fx5U~u,l!f, U~u,l!5S 2l2 ql

rl l2 D , f5S f1

f2
D , u5S q

r D , ~4.1!

its adjoint representation~2.2! and ~2.3! yields

a051, a252 1
2qr, b152q, c152r , b35 1

2~q2r 1qx!, c35 1
2~qr22r x!,...,

and in generala2k115b2k5c2k50,

S c2k11

b2k11
D5LS c2k21

b2k21
D , a2k5

1

2
]21~qc2k21,x1rb2k21,x!, k51,2,..., ~4.2!

L5 1
2S ]2r ]21q] 2r ]21r ]

2q]21q] 2]2q]21r ]
D .

Take

f tn
5V~n!~u,l!f, V~n!~u,l!5 (

i 50

n21 S a2il
2n22i b2i 11l2n22i 21

c2i 11l2n22i 21 2a2il
2n22i D . ~4.3!

Then the compatibility condition of Eqs.~4.1! and~4.3! gives rise to the Kaup–Newell hierarch

utn
5S q

r D
tn

5JS c2n21

b2n21
D5J

dH2n22

du
, n51,2,..., ~4.4!

where the HamiltonianHn and the Hamiltonian operatorJ are given by

J5S 0 ]

] 0D , H2n5
4a2n122rc2n112qb2n11

2n
, S c2n11

b2n11
D5

dH2n

du
.

For n52 we have

f t2
5V~2!~u,l!f, V~2!5S l42 1

2qrl2 2ql31 1
2~q2r 1qx!l

2rl31 1
2~qr22r x!l 2l41 1

2qrl2 D , ~4.5!

and the coupled derivative nonlinear Schro¨dinger ~CDNS! equations obtained from Eq.~4.4! for
n52 read
                                                                                                                



S

6548 J. Math. Phys., Vol. 40, No. 12, December 1999 Y. B. Zeng and W.-X. Ma

                    
qt2
5 1

2qxx1
1
2~q2r !x , r t2

52 1
2r xx1

1
2~r 2q!x . ~4.6!

The adjoint Kaup–Newell spectral problem is Eq.~2.11! with U given by ~4.1!. We have25

dl

du
5S dl

dq

dl

dr

D 5b TrF S f1c1 f1c2

f2c1 f2c2
D ]U~u,l!

]u G5bS lc1f2

lc2f1
D . ~4.7!

The binaryx-constrained flows of the Kaup–Newell hierarchy~4.4! are defined by

F1,x52L2F11qLF2 , F2,x5rLF11L2F2 , ~4.8a!

C1,x5L2C12rLC2 , C2,x52qLC12L2C2 , ~4.8b!

dHk0

du
2b21(

j 51

N
dl j

du
5S c2k011

b2k011
D 2

1

2 S ^LC1 ,F2&
^LC2 ,F1&

D50. ~4.8c!

For k051, we have

S c1

b1
D52S r

qD5
1

2 S ^LC1 ,F2&
^LC2 ,F1&

D50. ~4.9!

By substituting~4.9! into ~4.8a! and ~4.8b!, the first binaryx-constrained flow becomes a FDH

F1x5
]F1

]C1
, F2x5

]F1

]C2
, C1x52

]F1

]F1
, C2x52

]F1

]F2
, ~4.10!

with the Hamiltonian

F15^L2C2 ,F2&2^L2C1 ,F1&2 1
2^LC2 ,F1&^LC1 ,F2&.

Under the constraint~4.9! and the FDHS~4.10!, the binaryt2-constrained flow obtained from
~4.3! with V(2) given by ~4.5! and its adjoint equation forN distinct real numbersl j can also be
written as a FDHS,

F1,t2
5

]F2

]C1
, F2,t2

5
]F2

]C2
, C1,t2

52
]F2

]F1
, C2,t2

52
]F2

]F2
, ~4.11!

with the Hamiltonian

F252^L4C2 ,F2&1^L4C1 ,F1&1 1
2^LC2 ,F1&^L

3C1 ,F2&1 1
2^L

3C2 ,F1&^LC1 ,F2&

2 1
32^LC2 ,F1&

2^LC1 ,F2&
21 1

8~^L
2C2 ,F2&2^L2C1 ,F1&!^LC2 ,F1&^LC1 ,F2&.

The Lax representation for the FDHSs~4.10! and ~4.11! are presented by~2.18! with the
entries of the Lax matrixM given by

A~l!511
1

4 (
j 51

N
l j

2~c1 jf1 j2c2 jf2 j !

l22l j
2 , ~4.12a!

B~l!5
1

2
l(

j 51

N
l jc2 jf1 j

l22l j
2 , C~l!5

1

2
l(

j 51

N
l jc1 jf2 j

l22l j
2 . ~4.12b!
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A straightforward calculation yields

A2~l!1B~l!C~l![P~l!511(
j 51

N F Pj

l22l j
2 1

l j
4PN1 j

2

~l22l j
2!2G , ~4.13!

wherePj , j 51,...,2N, are 2N independent integrals of motion for the FDIHSs~4.10! and~4.11!,

Pj52
1

2
l j

2~c2 jf2 j2c1 jf1 j !1
1

8
^LC2 ,F1&l jc1 jf2 j1

1

8
^LC1 ,F2&l jc2 jf1 j1

1

8

3(
kÞ j

1

l j
22lk

2 @l j
2lk

2~c1 jf1 j2c2 jf2 j !~c1kf1k2c2kf2k!12l jlk~l j
21lk

2!c1 jf2 jc2kf1k#,

j 51,...,N, ~4.14a!

PN1 j5
1
4~c1 jf1 j1c2 jf2 j !, j 51,...,N. ~4.14b!

It is easy to verify that

F1522(
j 51

N

Pj , F252(
j 51

N

~l j
2Pj1l j

4PN1 j
2 !2

1

2 S (
j 51

N

Pj D 2

, ~4.15a!

^C2 ,F2&1^C1 ,F1&54(
j 51

N

PN1 j . ~4.15b!

By insertingl50, ~4.13! leads to

11
1

4
~^C2 ,F2&2^C1 ,F1&!5AP~0!5A11(

j 51

N

@2Pjl j
221PN1 j

2 #. ~4.16!

With respect to the standard Poisson bracket it is found that

$A~l!,A~m!%5$B~l!,B~m!%5$C~l!,C~m!%50, ~4.17a!

$A~l!,B~m!%5
m

2~l22m2!
@mB~m!2lB~l!#, ~4.17b!

$A~l!,C~m!%5
m

2~l22m2!
@lC~l!2mC~m!#, ~4.17c!

$B~l!,C~m!%5
lm

l22m2 @A~m!2A~l!#. ~4.17d!

Then $A2(l)1B(l)C(l), A2(m)1B(m)C(m)%50 implies thatPj , j 51,...,2N, are in involu-
tion. The CDNS equations~4.6! are factorized by thex-FDIHS ~4.10! and thet2-FDIHS ~4.11!,
namely, if (C1 ,C2 ,F1 ,F2) satisfies the FDIHSs~4.10! and ~4.11! simultaneously, then~q, r!
given by ~4.9! solves the CDNS equations~4.6!. The factorization of thenth Kaup–Newell
equations~4.4! will be presented at the end of Sec. IV B.
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B. The separation of variables for the Kaup–Newell equations

Since the commutator relations~4.17! are quite different from~2.23! and ~3.16!, we have to
modify a little bit of the method presented in Secs. II and III. Let us denotel̃5l2, l̃ j5l j

2. The
entries of the Lax matrixM given by ~4.12! can be rewritten as

A~ l̃ !511 1
4~^C2 ,F2&2^C1 ,F1&!1 1

2l̃A1~ l̃ !, B~ l̃ !5 1
2
Al̃B̄~ l̃ !, ~4.18a!

where

A1~ l̄ !5
1

2
(
j 51

N
c1 jf1 j2c2 jf2 j

l̃2l̃ j

, B̄~ l̃ !5(
j 51

N Al̃ jc2 jf1 j

l̃2l̃ j

. ~4.18b!

It is easy to see that

$A1~ l̃ !,A1~m̃ !%5$B̄~ l̃ !,B̄~m̃ !%50, ~4.19a!

$A1~ l̃ !,B̄~m̃ !%5
1

l̃2m̃
@B̄~m̃ !2B̄~ l̃ !#. ~4.19b!

It follows from ~4.16! and ~4.18a! that

A~ l̃ !5A11(
j 51

N

@2Pj l̃ j
211PN1 j

2 #1 1
2l̃A1~ l̃ !. ~4.19c!

The commutator relations~4.19! and the generating function of integrals of motion~4.13! enable
us to introduceu1 ,...,uN in the following way:

B̄~ l̃ !5(
j 51

N Al̃ jc2 jf1 j

l̃2l̃ j

5euN
R~ l̃ !

K~ l̃ !
, ~4.20!

where

R~ l̃ !5 )
k51

N21

~ l̃2uk!, K~ l̃ !5)
k51

N

~ l̃2l̃k!,

andv1 ,...,vN by A1(l̃).
By the exactly same argument as in Secs. II and III, we constructÃ(l̃) and B̃(l̃) by

Ã~ l̃ !5
1

2
(
j 51

N
c1 jf1 j1c2 jf2 j

l̃2l̃ j

52(
j 51

N
PN1 j

l̃2l̃ j

, ~4.21!

B̃~ l̃ !5(
j 51

N f1 j
2

l̃2l̃ j

, ~4.22!

and, for the same reason, we have to replaceA1(l̃) by Ā(l̃),

Ā~ l̃ ![A1~ l̃ !2Ã~ l̃ !52(
j 51

N
c2 jf2 j

l̃2l̃ j

. ~4.23!
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Then we have the following proposition.
Proposition 5: Assume thatl j ,f i j ,c i j PR, i 51,2, j 51,...,N. Introduce the separated vari

ables u1 ,...,u2N by the B̄(l̃) and B̃(l̃):

B̄~ l̃ !5(
j 51

N Al̃ jc2 jf1 j

l̃2l̃ j

5euN
R~ l̃ !

K~ l̃ !
, ~4.24a!

B̃~ l̃ !5(
j 51

N f1 j
2

l̃2l̃ j

5eu2N
R̄~ l̃ !

K~ l̃ !
, ~4.24b!

with

R~ l̃ !5 )
k51

N21

~ l̃2uk!, R̄~ l̃ !5 )
k51

N21

~ l̃2uN1k!,

and v1 ,...,v2N by

vk5Ā~uk!5A1~uk!2Ã~uk!52(
j 51

N
c2 jf2 j

uk2l̃ j

, k51,...,N21, ~4.24c!

vN52^C2 ,F2&, ~4.24d!

vN1k5Ā~uN1k!5
1

2
(
j 51

N
c1 jf1 j1c2 jf2 j

uN1k2l̃ j

, k51,...,N21, ~4.24e!

v2N5 1
2~^C1 ,F1&1^C2 ,F2&!. ~4.24f!

If u1 ,...,uN , are single zeros of B̄(l), then v1 ,...,v2N and u1 ,...,u2N are canonically conju-
gated, i.e., they satisfy~1.1!.

Proof: It follows from ~4.24a! and ~4.24b! that

uN5 ln^LC2 ,F1&, ~4.25!

u2N5 ln^C1 ,F1&. ~4.26!

By a straightforward calculation, it is found thatB̄(l̃), Ā(l̃), B̃(l̃), Ã(l̃) satisfy the commutator
relations~2.33! with l, m replaced byl̃, m̃, as well as the following commutator relations:

$uN ,B̄~m!%5$uN ,B̃~m!%5$uN ,Ã~m!%50, $uN ,Ā~m!%52
B̄~m!

^LC2 ,F1&
, ~4.27a!

$vN ,Ā~m!%5$vN ,B̃~m!%5$vN ,Ã~m!%50, $vN ,B̄~m!%5B̄~m!, ~4.27b!

$u2N ,B̄~m!%5$u2N ,Ā~m!%5$u2N ,B̃~m!%50, $u2N ,Ã~m!%52
B̃~m!

^C1 ,F1&
, ~4.27c!

$v2N ,B̄~m!%5$v2N ,Ā~m!%5$v2N ,Ã~m!%50, $v2N ,B̃~m!%5B̃~m!, ~4.27d!

$vN ,uN%51, $v2N ,u2N%51, ~4.27e!
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$u2N ,uN%5$u2N ,vN%5$v2N ,uN%5$v2N ,vN%50. ~4.27f!

Then in the exactly same way as for propositions 1 and 3, we can complete the proof.
It follows from ~4.24a! and ~4.24b! that

l jc2 jf1 j5euN
R~l j

2!

K8~l j
2!

, f1 j
2 5eu2N

R̄~l j
2!

K8~l j
2!

, j 51,...,N, ~4.28!

or

f1 j5Aeu2NR̄~l j
2!

K8~l j
2!

, c2 j5
euNR~l j

2!

l j
Aeu2NR̄~l j

2!K8~l j
2!

, j 51,...,N. ~4.29!

Equations~4.9! and ~4.25! result in

q52 1
2e

uN. ~4.30!

We now present the separated equations. By substitutinguk into ~4.13!, uN1k into ~4.21!, and
using ~4.19c!, ~4.24c!, and~4.24e!, one gets the separated equations

vk5A1~uk!2Ã~uk!5
2

uk
@AP̃~uk!2AP~0!#22(

j 51

N
PN1 j

uk2l j
2 , k51,...,N21, ~4.31a!

vN1k5Ã~uN1k!52(
j 51

N
PN1 j

uN1k2l j
2 , k51,...,N21, ~4.31b!

whereP(0) are given by~4.16! and

P̃~ l̃ !511(
j 51

N F Pj

l̃2l j
2

1
l j

4PN1 j
2

~ l̃2l j
2!2G .

It follows from ~4.15b!, ~4.16!, ~4.24d!, and~4.24f! that

vN5222AP~0!22(
i 51

N

PN1 i , v2N52(
i 51

N

PN1 i . ~4.31c!

Replacingvk by the partial derivative]S/]uk of the generating functionS of the canonical
transformation and interpreting thePi as integration constants, Eqs.~4.31a!–~4.31c! may be inte-
grated to give the generating function of the canonical transformation

S~u1 ,...,u2N!5 (
k51

N21 F EukS 2

l̃

AP̃~ l̃ !2
2

l̃
AP~0!2Ã~ l̃ !D dl̃1EuN1k

Ã~ l̃ !dl̃G
1S 222AP~0!22(

i 51

N

PN1 i D uN12(
i 51

N

PN1 iu2N

5 (
k51

N21 F Euk 2

l̃

AP̃~ l̃ !dl̃22AP~0!lnuuku22(
i 51

N

PN1 i lnU uk2l i
2

uN1k2l i
2UG
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1S 222AP~0!22(
i 51

N

PN1 i D uN12(
i 51

N

PN1 iu2N .

The linearizing coordinates are then

Qi5
]S

]Pi

5 (
k51

N21 F Euk 1

l̃~ l̃2l i
2!AP̃~ l̃ !

dl̃1
1

l i
2AP~0!

lnuukuG1
1

l i
2AP~0!

uN , i 51,...,N,

~4.33a!

QN1 i5
]S

]PN1 i
5 (

k51

N21 F Euk 2l i
4PN1 i

l̃~ l̃2l i
2!2AP̃~ l̃ !

dl̃2
2PN1 i

AP~0!
lnuukuG

22 lnU uk2l i
2

uN1k2l i
2UG22S PN1 i

AP~0!
11D uN12u2N , i 51,...,N. ~4.33b!

By using ~4.15a!, the linear flow induced by~4.10! together with Eqs.~4.33a! and ~4.33b!
leads to the Jacobi inversion problem for the FDIHS~4.10!,

(
k51

N21 F Euk 1

l̃~ l̃2l i
2!AP̃~ l̃ !

dl̃1
1

l i
2AP~0!

lnuukuG1
1

l i
2AP~0!

uN5g i22x,

i 51,...,N, ~4.34a!

(
k51

N21 F Euk 2l i
4PN1 i

l̃~ l̃2l i
2!2AP̃~ l̃ !

dl̃2
2PN1 i

AP~0!
lnuukuG22 lnU uk2l i

2

uN1k2l i
2UG22S PN1 i

AP~0!
11D uN12u2N

5gN1 i , i 51,...,N. ~4.34b!

By using ~4.15a!, the linear flow induced by~4.11! and Eqs.~4.34a! and ~4.34b! yield the
Jacobi inversion problem for the FDIHS~4.11!,

(
k51

N21 F Euk 1

l̃~ l̃2l i
2!AP̃~ l̃ !

dl̃1
1

l i
2AP~0!

lnuukuG1
1

l i
2AP~0!

uN

5ḡ i1S 2l i
22 (

k51

N

PkD t2 , i 51,...,N, ~4.35a!

(
k51

N21 F Euk 2l i
4PN1 i

l̃~ l̃2l i
2!2AP̃~ l̃ !

dl̃2
2PN1 i

AP~0!
lnuukuG22 lnU uk2l i

2

uN1k2l i
2UG22S PN1 i

AP~0!
11D uN12u2N

5ḡN1 i14l i
4PN1 i t2 , i 51,...,N. ~4.35b!

Finally, since the CDNS equations~4.6! are factorized by the FDIHS~4.10! and ~4.11!,
combining Eqs.~4.34! and~4.35! gives rise to the Jacobi inversion problem for the CDNS eq
tions ~4.6!,
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(
k51

N21 F Euk 1

l̃~ l̃2l i
2!AP̃~ l̃ !

dl̃1
1

l i
2AP~0!

lnuukuG1
1

l i
2AP~0!

uN

5g i22x1S 2l i
22 (

k51

N

PkD t2 , i 51,...,N, ~4.36a!

(
k51

N21 F Euk 2l i
4PN1 i

l̃~ l̃2l i
2!2AP̃~ l̃ !

dl̃2
2PN1 i

AP~0!
lnuukuG22 lnU uk2l i

2

uN1k2l i
2UG22S PN1 i

AP~0!
11D uN12u2N

5gN1 i14l i
4PN1 i t2 , i 51,...,N. ~4.36b!

If f1 j , c2 j , q defined by~4.29! and ~4.30! can be solved from~4.36! by using the Jacob
inversion technique, thenf2 j , c1 j can be obtained from the first equation and the last equatio
~4.10!, respectively. Finallyq andr 52^LC1 ,F2& provides the solution to the CDNS equatio
~4.6!.

In general, the above mentioned procedure can be applied to the whole Kaup–Newell
chy ~4.4!. Set

A2~l!1B~l!C~l!5 (
k50

`

F̃kl
22k, ~4.37a!

whereF̃k , k51,2,..., are also integrals of motion for both thex-FDHSs~4.10! and thetn-binary
constrained flows~2.16!. Comparing~4.37a! with ~4.13!, one gets

F̃051, F̃k5(
j 51

N

@l j
2k22Pj1~k21!l j

2kPN1 j
2 #, k51,2,... . ~4.37b!

By employing the method in Refs. 34 and 35, thetn-FDIHS obtained from thetn-constrained flow
is of the form

F1,tn
5

]Fn

]C1
, F2,tn

5
]Fn

]C2
, C1,tn

52
]Fn

]F1
, C2,tn

52
]Fn

]F2
, ~4.38a!

with the Hamiltonian

Fn52 (
m50

n21 S 2
1

2D m am

m11 (
l 11¯1 l m115n

F̃ l 1
¯F̃ l m11

, ~4.38b!

wherel 1>1,...,l m11>1, andam are given by~2.25c!. Since thenth Kaup–Newell equations~4.4!
is factorized by thex-FDIHS ~4.10! and thetn-FDIHS ~4.38!. We have the following proposition

Proposition 6: The Jacobi inversion problem for the nth Kaup–Newell equations (4.4) is given
by

(
k51

N21 F Euk 1

l̃~ l̃2l i
2!AP̃~ l̃ !

dl̃1
1

l i
2AP~0!

lnuukuG1
1

l i
2AP~0!

uN

5g i22x12tn (
m50

n21

~2 1
2!

mam (
l 11¯ l m115n

l i
2l m1122F̃ l 1

¯F̃ l m
, i 51,...,N,

~4.39a!
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(
k51

N21 F Euk 2l i
4PN1 i

l̃~ l̃2l i
2!2AP̃~ l̃ !

dl̃2
2PN1 i

AP~0!
lnuukuG22 lnU uk2l i

2

uN1k2l i
2UG22S PN1 i

AP~0!
11D uN12u2N

5gN1 i14tn (
m50

n21 S 2
1

2
D m

am (
l 11¯ l m115n

~ l m1121!l i
2l m11PN1 i F̃ l 1

¯F̃ l m
, i 51,...,N,

~4.39b!

where l1>1,..., l m11>1, and F̃l 1
,...F̃ l m

, are given by~4.37b!.
For example, the third equations in the Kaup–Newell hierarchy withn53 are of the form

qt3
52 1

4qxxx2
3
8~q3r 212qrqx!x , r t3

52 1
4r xxx2

3
8~r 3q222qrr x!x . ~4.40!

The Kaup–Newell equations~4.40! can be factorized by thex-FDIHS ~4.10! and t3-FDIHS with
the HamiltonianF3 defined by

F35(
j 51

N

~2l j
4Pj14l j

6PN1 j
2 !2F (

j 51

N

~l j
2Pj1l j

4PN1 j
2 !G(

j 51

N

Pj1
1

4 S (
j 51

N

Pj D 3

. ~4.41!

The Jacobi inversion problem for Eq.~4.40! is given by

(
k51

N21 F Euk 1

l̃~ l̃2l i
2!AP̃~ l̃ !

dl̃1
1

l i
2AP~0!

lnuukuG1
1

l i
2AP~0!

uN

5g i22x1F2l i
42(

j 51

N

~l j
2Pj1l i

2Pj1l j
4PN1 j

2 !1
3

4 S (
j 51

N

Pj D 2G t3 , i 51,...,N.

(
k51

N21 F Euk 2l i
4PN1 i

l̃~ l̃2l i
2!2AP̃~ l̃ !

dl̃2
2PN1 i

AP~0!
lnuukuG22 lnU uk2l i

2

uN1k2l i
2UG

22S PN1 i

AP~0!
11D uN12u2N

5gN1 i1F8l i
6PN1 i22l i

4PN1 j (
j 51

N

Pj G t3 , i 51,...,N.

V. CONCLUDING REMARKS

This paper proposed a new method to find the additionalN pairs canonical separated variabl
for the separation of variables for binary constrained flows of soliton hierarchies. For a c
kind of integrable models, a general approach to the separation of variables was proposed
2–4 by taking the poles of the properly normalized Baker–Akhiezer function and the corres
ing eigenvalues of the Lax operator as separated variables. As pointed out in Ref. 4, ther
guarantee that the separated variables so constructed satisfy the canonical conditions~1.1!. The
method proposed in this paper is to start directly from the canonical conditions~1.1! and the
requirement for the separated equations~1.2!. We introduced 2N pairs of separated variables b
means of four functionsB̄(l), Ā(l), B̃(l), and Ã(l), which are constructed in such way th
they satisfy certain commutator relations required by the canonical conditions~1.1! andĀ(l) and
Ã(l) are linked to the generating functions of the integrals of motion for the models. This me
                                                                                                                



eparated
arated

tion
d the
-
tions

acobi
ndard

rants
of the
Uni-

nection

B

le

ature,

’

and

ys.

ras,’’

oop

ation,’’

hys.

Math.

h.

eory,’’

ull.

6556 J. Math. Phys., Vol. 40, No. 12, December 1999 Y. B. Zeng and W.-X. Ma

                    
ensures that the separated variables are canonically conjugated. We produced two sets of s
equations directly from two generating functions of integrals of motion. It seems that the sep
equations are intimately connected with the generating functions of integrals of motion.

The finite gap solutions or finite-dimensional quasiperiodic solutions for the KdV equa
was studied in Ref. 36 by means of the stationary equation of the KdV hierarchy calle
Lax–Novikov equation. By the standard Jacobi inversion technique,19 the finite-dimensional qua
siperiodic solution can be given in an explicit form in terms of the Riemann theta func
associated with the invariant spectral curve. The Jacobi inversion problem~2.45! for the KdV
equation is somewhat different from that in Ref. 36 due to some additional terms. The J
inversion problems for some binary constrained flows require the development of the sta
Jacobi inversion technique in order to solve them explicitly.
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Cosmological and spherically symmetric solutions
with intersecting p-branes

V. D. Ivashchuka) and V. N. Melnikov
Center for Gravitation and Fundamental Metrology,
VNIIMS, 3-1 M. Ulyanovoy Str., Moscow, 117313, Russia

~Received 20 January 1999; accepted for publication 12 May 1999!

Multidimensional model describing the cosmological evolution and/or spherically
symmetric configuration withn11 Einstein spaces in the theory with several scalar
fields and forms is considered. When electro-magnetic compositep-brane ansatz is
adopted,n ‘‘internal’’ spaces are Ricci-flat, one spaceM0 has a nonzero curvature,
and all p-branes do not ‘‘live’’ in M0 , a class of exact solutions is obtained if
certain block-orthogonality relations onp-brane vectors are imposed. A subclass of
spherically symmetric solutions~containing nonextremalp-brane black holes! is
considered. Post-Newtonian parameters are calculated. ©1999 American Insti-
tute of Physics.@S0022-2488~99!00510-1#

I. INTRODUCTION

At present there exists a special interest to the so-calledM- and F theories, etc.1–4 These
theories are ‘‘supermembrane’’ analogues of superstring models5 in D511,12, etc. The low-
energy limit of these theories leads to models governed by the action

S5E
M

dDzAugu H R@g#2habgMN]Mwa]Nwb2 (
aPD

ua

na!
exp@2la~w!#~Fa!g

2J , ~1.1!

whereg5gMN dzM
^ dzN is the metric (M ,N51, . . . ,D), w5(wa)PRl is a vector from dilatonic

scalar fields, (hab) is a nondegenerate symmetricl 3 l matrix (l PN), ua561,

Fa5dAa5
1

na!
FM1•••Mna

a dzM1`•••`dzMna ~1.2!

is a na-form (na>1) on aD-dimensional manifoldM, L is cosmological constant andla is a
1-form onRl : la(w)5laawa, aPD, a51, . . . ,l . In ~1.1! we denoteugu5udet(gMN)u,

~Fa!g
25FM1•••Mna

a FN1•••Nna

a gM1N1•••gMna
Nna, ~1.3!

aPD, whereD is some finite set. In the models with one time allua51 when the signature of the
metric is (21,11, . . . ,11).

In Ref. 6 it was shown that after dimensional reduction on the manifoldM* 3M13•••
3Mn and when the compositep-brane ansatz is considered~for review see, for example, Refs. 6
7, and 8! the problem is reduced to the gravitating self-interactings-model with certain con-
straints imposed. For electricp-branes see also Refs. 9, 10, and 11~in Ref. 11 the composite
electric case was considered!. ~For pure gravitational sector see Refs. 12 and 13! This represen-
tation may be considered as a powerful tool for obtaining different solutions with interse
p-branes~analogs of membranes!. In Refs. 6 and 14 the Majumdar–Papapetrou-type soluti
were obtained~for the noncomposite electric case see Refs. 9 and 10 and for composite e

a!Electronic mail: ivas@rgs.phys.msu.su
65580022-2488/99/40(12)/6558/19/$15.00 © 1999 American Institute of Physics
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case see Ref. 11!. These solutions correspond to Ricci-flat (Mi ,gi), i 51, . . . ,n, and were gen-
eralized also to the case of Einstein internal spaces.6 Earlier some special classes of these solutio
were also considered in Refs. 15–22. The obtained solutions take place, when certain orth
ity relations~on couplings parameters, dimensions of ‘‘branes,’’ total dimension! are imposed.

In cosmological~or spherically symmetric! caseM* 5R and the problem is effectively re
duced to Toda-like system with the Lagrangian23

L5
1

2
ḠABẋAẋB2 (

sPS
*

As exp~2UA
s xA!, ~1.4!

with the zero-energy constraintE50, where (ḠAB) is a nondegenerate symmetricN3N matrix
(N5n1 l ), AsÞ0, x5(xA)PRN, Us5(UA

s )PRN, sPS* . The considered cosmological mod
contains some stringy cosmological models~see, for example, Ref. 24!. It may be obtained~at
classical level! from multidimensional cosmological model with perfect fluid25,26as a special case

The integrability of the Lagrange equations corresponding to~1.4! crucially depends upon the
scalar products (Us1,Us2)50, s1 ,s2PS* , where

~U,U8!5ḠABUAUB8 , ~1.5!

U,U8PRN, where (ḠAB)5(ḠAB)21.
In the ‘‘orthogonal’’ case

~Us,Us8!50 ~1.6!

s,s8PS* , a class of cosmological and spherically symmetric solutions was obtained.23 Special
cases were also considered in Refs. 27–30. The solutions with the horizon were consid
details in Refs. 23, 31–35. We note that the ‘‘orthogonality’’ relation~1.6! is known in literature
as a ‘‘no-force’’ condition.

In this paper we consider a more general ‘‘block-orthogonal’’ case:

S* 5S1ø . . . øSk , SiùSj5B, iÞ j , ~1.7!

SiÞB, i.e., the setS is a union ofk nonintersecting~nonempty! subsetsS1 , . . . ,Sk , and

~Us,Us8!50 ~1.8!

for all sPSi , s8PSj , iÞ j ; i , j 51, . . . ,k. According to~1.8! the set of vectors (Us,sPS) has a
block-orthogonal structure with respect to the scalar product~1.5!: it splits into k mutually or-
thogonal blocks (Us,sPSi), i 51, . . . ,k. Here we find a class of special solutions to Lagran
equations corresponding to the Lagrangian~1.1! ~see Appendix B!. Using this result we find a
family of cosmological and/or spherically symmetric solutions with composite electromag
p-branes~see Sec. IV! in the case whenn ‘‘internal’’ spaces are Ricci-flat, one spaceM0 has a
nonzero curvature, and allp-branes do not ‘‘live’’ in M0 , if block-orthogonality relations~on
p-brane vectorsUs) ~1.7! and ~1.8! are imposed. These solutions generalize the solutions f
Ref. 23 with orthogonal set of vectorsUs. A special class of ‘‘block-orthogonal’’ solutions~with
coinciding parametersns inside blocks! was considered earlier in Ref. 36.

Recently a class of Majumdar–Papapetrou type solutions withp-branes was obtained in Re
14 ~see also Ref. 37! for block-orthogonal case. For the solutions from Ref. 14Us vectors may be
related to finite-dimensional Lie algebras or hyperbolic~Kac–Moody! algebras but not to affine
~Kac–Moody! algebras.

We also note that there exists a large variety ofp-brane Toda solutions~open or closed! when
certain intersection rules are satisfied.23 The scalar products (Us,Us8), s,s8PS* , in this case are
governed by Cartan matrices of finite-dimensional or affine Lie algebras. For concrete
solutions see also Refs. 27, 38, and 39.
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In Sec. V we consider a subclass of spherically symmetric solutions. This subclass co
nonextremalp-brane black holes for special values of ‘‘Kasner-like’’ parameters. In Sec. VI
calculate post-Newtonian parametersb andg ~Eddington parameters! for the spherically symmet-
ric solutions. These parameters may be useful for possible physical applications.

II. THE MODEL

The equations of motion corresponding to~1.1! have the following form:

RMN2 1
2 gMNR5TMN , ~2.1!

D@g#wa2 (
aPD

ua

la
a

na!
e2la(w)~Fa!g

250, ~2.2!

¹M1
@g#~e2la(w)Fa,M1•••Mna!50, ~2.3!

aPD; a51, . . . ,l . In ~2.2! la
a5hablab , where (hab) is matrix inverse to (hab). In ~2.1!

TMN5TMN@w,g#1 (
aPD

uae2la(w)TMN@Fa,g#, ~2.4!

where

TMN@w,g#5hab~]Mwa]Nwb2 1
2 gMN]Pwa]Pwb!, ~2.5!

TMN@Fa,g#5
1

na! F2
1

2
gMN~Fa!g

21naFMM2 . . . Mna

a F
N

a,M2 . . . MnaG . ~2.6!

In ~2.2! and ~2.3! D@g# and ¹@g# are Laplace–Beltrami and covariant derivative operators,
spectively, corresponding tog.

Let us consider the manifold

M5R3M03•••3Mn ~2.7!

with the metric

g5we2g(u)du^ du1(
i 50

n

e2f i (u)gi , ~2.8!

wherew561, u is a distinguished coordinate which, by convention, will be called ‘‘time;’’gi

5gmini

i (yi)dyi
mi ^ dyi

ni is a metric onMi satisfying the equation

Rmini
@gi #5j igmini

i , ~2.9!

mi ,ni51, . . . ,di ; di5dim Mi , j i5const,i 50, . . . ,n; nPN. Thus, (Mi ,gi) are Einstein spaces
The functionsg,f i : (u2 ,u1)→R are smooth.

Remark:It is more correct to write in~2.8! ĝi instead ofgi , whereĝi5pi* gi is the pullback
of the metricgi to the manifoldM by the canonical projection:pi : M→Mi , i 50, . . . ,n. In what
follows we omit ‘‘hats’’ for simplicity.

Each manifoldMi is assumed to be oriented and connected,i 50, . . . ,n. Then the volume
di-form

t i5Augi~yi !udyi
1`•••`dyi

di , ~2.10!
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and the signature parameter

«~ i !5sign det~gmini

i !561 ~2.11!

are correctly defined for alli 50, . . . ,n.
Let

V05$B,$0%,$1%, . . . ,$n%,$0,1%, . . . ,$0,1, . . . ,n%% ~2.12!

be a set of all subsets of

I 0[$0, . . . ,n%. ~2.13!

Let I 5$ i 1 , . . . ,i k%PV0 , i 1, . . . , i k . We define a form

t~ I ![t i 1
`•••`t i k

, ~2.14!

of rank

d~ I ![(
i PI

di , ~2.15!

and a correspondingp-brane submanifold

MI[Mi 1
3•••3Mi k

, ~2.16!

wherep5d(I )21 (dimMI5d(I )). We also define«-symbol

«~ I ![«~ i 1!•••«~ i k!. ~2.17!

For I 5B we putt(B)5«(B)51, d(B)50.
For fields of forms we adopt the following ‘‘composite electro-magnetic’’ ansatz

Fa5 (
I PVa,e

F (a,e,I )1 (
JPVa,m

F (a,m,J), ~2.18!

where

F (a,e,I )5dF (a,e,I )`t~ I !, ~2.19!

F (a,m,J)5e22la(w)* ~dF (a,m,J)`t~J!!, ~2.20!

aPD, I PVa,e , JPVa,m and

Va,e ,Va,m,V0 . ~2.21!

@For emptyVa,v5B, v5e,m, we put(B50 in ~2.18!#. In ~2.20! * 5* @g# is the Hodge operato
on (M ,g).

For the potentials in~2.19! and ~2.20! we put

Fs5Fs~u!, ~2.22!

sPS, where

S5SetSm , Sv[taPD$a%3$v%3Va,v , ~2.23!
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v5e,m. Here t means the union of nonintersecting sets. The setS consists of elementss
5(as ,vs ,I s), where asPD, vs5e,m, and I sPVa,vs

are ‘‘color,’’ ‘‘electro-magnetic,’’ and
‘‘brane’’ indices, respectively.

For dilatonic scalar fields we put

wa5wa~u!, ~2.24!

a51, . . . ,l .
From ~2.19! and ~2.20! we obtain the relations between dimensions ofp-brane worldsheets

and ranks of forms

d~ I !5na21, I PVa,e , ~2.25!

d~J!5D2na21, JPVa,m , ~2.26!

in electric and magnetic cases, respectively.

III. LAGRANGE REPRESENTATION

Here, like in Ref. 23, we impose a restriction onp-brane configurations, or, equivalently, o
Va,v . We assume that the energy momentum tensor (TMN) has a block-diagonal structure@as it
takes place for (gMN)]. Sufficient restrictions onVa,v that guarantee a block-diagonality of (TMN)
are presented in Appendix A.

It follows from Ref. 6~see Proposition 2 in Ref. 6! that the equations of motion~2.1!–~2.3!
and the Bianchi identities

dF s50, sPS ~3.1!

for the field configuration~2.8!, ~2.18!–~2.20!, ~2.22!, ~2.24! with the restrictions~A2!, ~A3! ~from
Appendix A! imposed are equivalent to equations of motion for Lagrange system with the
grangian

L5
1

2
NH Gi j ḟ

iḟ j1habẇaẇb1(
sPS

«s exp@22Us~f,w!#~Ḟs!222N 22V~f!J , ~3.2!

whereẋ[dx/du,

V5V~f!5
w

2 (
i 50

n

j idie
22f i12g0(f) ~3.3!

is the potential with

g0~f![(
i 50

n

dif
i , ~3.4!

and

N5exp~g02g!.0 ~3.5!

is the lapse function,

Us5Us~f,w!52xslas
~w!1 (

i PI s

dif
i , ~3.6!
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«s5~2«@g# !(12xs)/2«~ I s!uas
~3.7!

for s5(as ,vs ,I s)PS, «@g#5sign det(gMN), @more explicitly ~3.7! reads«s5«(I s)uas
for vs5e

and«s52«@g#«(I s)uas
, for vs5m]

xs511, vs5e, ~3.8!

xs521, vs5m, ~3.9!

and

Gi j 5did i j 2didj ~3.10!

are components of the ‘‘pure cosmological’’ minisupermetric;i , j 50, . . . ,n.40

Let x5(xA)5(f i ,wa),

Ḡ5ḠAB dxA
^ dxB5Gi j df i

^ df j1hab dwa
^ dwb, ~3.11!

~ḠAB!5S Gi j 0

0 hab
D , ~3.12!

Us(x)5UA
s xA is defined in~3.6! and

~UA
s !5~did i I s

,2xslasa
!. ~3.13!

Here

d i I [(
j PI

d i j 5
1, i PI

0, i ¹I
~3.14!

is an indicator ofi belonging toI. The potential~3.3! reads

V5(
j 50

n
w

2
j j dje

2U j (x), ~3.15!

where

U j~x!5UA
j xA52f j1g0~f!, ~3.16!

~UA
j !5~2d i

j1di ,0!. ~3.17!

The integrability of the Lagrange system~3.2! depends upon the scalar products
co2vectorsU j , Us corresponding toḠ:

~U,U8!5ḠABUAUB8 , ~3.18!

where

~ḠAB!5S Gi j 0

0 habD ~3.19!

is matrix inverse to~3.12!. Here~as in Ref. 40!
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Gi j 5
d i j

di
1

1

22D
, ~3.20!

i , j 50, . . . ,n. These products have the following form26,6

~Ui ,U j !5
d i j

dj
21, ~3.21!

~Us,Us8!5d~ I sùI s8!1
d~ I s!d~ I s8!

22D
1xsxs8laalbbhab, ~3.22!

~Us,Ui !52d i I s
, ~3.23!

wheres5(as ,vs ,I s), s85(as8 ,vs8 ,I s8)PS.

IV. COSMOLOGICAL AND SPHERICALLY SYMMETRIC SOLUTIONS

Here we put the following restrictions on the parameters of the model

„i… j0Þ0, j15•••5jn50, ~4.1!

i.e., one space is curved and others are Ricci-flat,

„ii … 0¹I s , ;s5~as ,vs ,I s!PS, ~4.2!

i.e., all ‘‘brane’’ manifoldsMI s
@see~2.16!# do not containM0 .

We also impose a block-orthogonality restriction on the set of vectors (Us,sPS). Let

S5S1t•••tSk , ~4.3!

SiÞB, i 51, . . . ,k, and

„iii … ~Us,Us8!5d~ I sùI s8!1
d~ I s!d~ I s8!

22D
1xsxs8lasa

las8b
hab50, ~4.4!

for all s5(as ,vs ,I s)PSi , s85(as8 ,vs8 ,I s8)PSj , iÞ j ; i , j 51, . . . ,k. Relation~4.3! means that
the setS is a union ofk nonintersecting~nonempty! subsetsS1 , . . . ,Sk . According to~4.4! the set
of vectors (Us,sPS) has a block-orthogonal structure with respect to the scalar product~3.18!,
i.e., it splits intok mutually orthogonal blocks (Us,sPSi), i 51, . . . ,k.

From „i… we get for the potential~3.15!

V5 1
2 wj0 d0e2U0(x), ~4.5!

where

~U0,U0!5
1

d0
21,0 ~4.6!

@see~3.21!#.
From „ii … and ~3.23! we get

~U0,Us!50 ~4.7!

for all sPS. Thus, the set of co-vectorsU0, Us,sPS @belonging to dual space (Rn111 l)*
.Rn111 l ] has also a block-orthogonal structure with respect to the scalar product~3.18!.
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Here we will integrate the Lagrange equations corresponding to the Lagrangian~3.2! and
hence we will find classical exact solutions when the restrictions~A2! and~A3! from Appendix A
are imposed.

First we integrate the ‘‘Maxwell equations’’~for sPSe) and Bianchi identities~for sPSm):

d

du
~exp~22Us!Ḟs!50⇔Ḟs5Qs exp~2Us!, ~4.8!

whereQs are constants,sPS. We put

QsÞ0, ~4.9!

for all sPS.
Let us fix the time gauge as follows:

g5g0 , N51, ~4.10!

i.e., the harmonic time gauge is used.
For fixed Q5(Qs ,sPS) the Lagrange equations for the Lagrangian~3.2! corresponding to

(xA)5(f i ,wa), when relations~4.10! and ~4.8! are substituted, are equivalent to the Lagran
equations for the Lagrangian23

LQ5 1
2ḠABẋAẋB2VQ , ~4.11!

with the zero-energy constraint

EQ5 1
2ḠABẋAẋB1VQ50, ~4.12!

where

VQ5V1
1

2 (
sPS

«sQs
2 exp@2Us~x!#, ~4.13!

(ḠAB) andV are defined in~3.12! and ~4.5!, respectively.
When the conditions„i…–„iii … are satisfied exact solutions to Lagrange equations corresp

ing to ~4.11! with the potential~4.13! and V from ~4.5! could be readily obtained using th
relations from Appendix B.

The solutions read

xA~u!52
U0A

~U0,U0!
lnu f 0~u!u2(

sPS
hsns

2UsA lnu f s~u!u1cAu1 c̄A. ~4.14!

Functionsf 0 and f s in ~4.14! are the following:

f 0~u!5uj0~d021!u1/2s~u2u0 ,wj0 ,C0! ~4.15!

5U j0~d021!

C0
U1/2

sh~AC0~u2u0!!,C0.0,j0w.0; ~4.16!

5U j0~d021!

C0
U1/2

sin~AuC0u~u2u0!!,C0,0,j0w.0; ~4.17!
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5U j0~d021!

C0
U1/2

ch~AC0~u2u0!!,C0.0,j0w,0; ~4.18!

5uj0~d021!u1/2~u2u0!,C050,j0w.0; ~4.19!

and

f s~u!5
uQsu
unsu

s~u2us ,2hs«s ,Cs! ~4.20!

5
uQsu

unsuuCsu1/2
sh~ACs~u2us!!, Cs.0, hs«s,0; ~4.21!

5
uQsu

unsuuCsu1/2
sin~AuCsu~u2us!!, Cs,0, hs«s,0; ~4.22!

5
uQsu

unsuuCsu1/2
ch~ACs~u2us!!, Cs.0, hs«s.0; ~4.23!

uQsu
unsu

~u2us!, Cs50, hs«s,0; ~4.24!

whereC0 , Cs , u0 , us are constants,sPS. The functions(u,j,C) is defined in Appendix B.
The parametershs561, nsÞ0, sPS, satisfy the relations

(
s8PS

~Us,Us8!hs8ns8
2

51, ~4.25!

for all sPS, with scalar products (Us,Us8) defined in~3.22!.
The constantsCs , us are coinciding inside blocks:

us5us8 , Cs5Cs8 , ~4.26!

s,s8PSi , i 51, . . . ,k @see relation~B13! from Appendix B#. The ratios«sQs
2/(hsns

2) are also
coinciding inside blocks, or, equivalently,

«shs5«s8hs8 , ~4.27!

Qs
2

ns
2

5
Qs8

2

ns8
2 , ~4.28!

s,s8PSi , i 51, . . . ,k. Here we used the relations~4.6! and ~4.7!.
The contravariant componentsUrA5ḠABUB

r are23

U0i52
d0

i

d0
, U0a50, ~4.29!

Usi5Gi j U j
s5d i I s

2
d~ I s!

D22
, Usa52xslas

a . ~4.30!

Using ~4.14!, ~4.6!, ~4.30!, and~4.29! we obtain
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f i5
d0

i

12d0
lnu f 0u2(

sPS
hsns

2S d i I s
2

d~ I s!

D22D lnu f su1ciu1 c̄i ~4.31!

and

wa5(
sPS

hsns
2xslas

a lnu f su1cau1 c̄a, ~4.32!

a51, . . . ,l .
Vectorsc5(cA) andc̄5( c̄A) satisfy the linear constraint relations@see~B20! in Appendix B#

U0~c!5UA
0cA52c01(

j 50

n

djc
j50, ~4.33!

U0~ c̄!5UA
0 c̄A52 c̄01(

j 50

n

dj c̄
j50, ~4.34!

Us~c!5UA
s cA5 (

i PI s

dic
i2xslasa

ca50, ~4.35!

Us~ c̄!5UA
s c̄A5 (

i PI s

di c̄
i2xslasa

c̄a50, ~4.36!

sPS. The ~3.4! reads

g0~f!5
d0

12d0
lnu f 0u1(

sPS

d~ I s!

D22
hsns

2 lnu f su1c0u1 c̄0. ~4.37!

The zero-energy constraint reads~see Appendix B!

E5E01(
sPS

Es1
1

2
ḠABcAcB50, ~4.38!

whereE05C0(U0,U0)21/2, Es5Cs(hsns
2)/2. Using relations~3.10!, ~3.12!, ~4.6!, and~4.33! we

rewrite ~4.38! as

C0

d0

d021
5(

sPS
Csns

2hs1habcacb1(
i 51

n

di~ci !21
1

d021 S (
i 51

n

dic
i D 2

. ~4.39!

From relation

exp~2Us!5 f s
22 , ~4.40!

following from ~4.4!, ~4.7!, ~4.14!, ~4.35!, and~4.36! we get for electric-type forms~2.19!

F s5Qsf s
22 du`t~ I s!, ~4.41!

sPSe , and for magnetic-type forms~2.20!

F s5e22la(w)* @Qsf s
22 du`t~ I s!#5Q̄st~ Ī s!, ~4.42!
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sPSm , where Q̄s5Qs«(I s)m(I s)w and m(I )561 is defined by the relationm(I )du`t(I 0)
5t( Ī )`du`t(I ). The relation~4.42! follows from the formula~5.26! from Ref. 6 ~for g
5g0).

Relations for the metric follows from~4.31! and ~4.37!

g5S )
sPS

@ f s
2~u!#hsd(I s)ns

2/(D22)D H @ f 0
2~u!#d0 /(12d0)e2c0u12c̄0

@w du^ du1 f 0
2~u!g0#

1(
i 51

n S )
sPS

@ f s
2~u!#2hsns

2d i I sDe2ciu12c̄i
giJ . ~4.43!

Thus, here we obtained the ‘‘block-orthogonal’’ generalization of the solution from Ref
This solution describes the evolution ofn11 spaces (M0 ,g0), . . . ,(Mn ,gn), where (M0 ,g0) is
an Einstein space of nonzero curvature, and (Mi ,gi) are ‘‘internal’’ Ricci-flat spaces,i
51, . . . ,n; in the presence of several scalar fields and forms. The solution is presented by
tions ~4.32!, ~4.41!–~4.43! with the functionsf 0 , f s defined in~4.15!–~4.24! and the relations on
the parameters of solutionscA, c̄A (A5 i ,a), C0 , Cs , us , Qs , hs , ns (sPS) imposed in~4.25!–
~4.28!, ~4.33!–~4.36!, ~4.39!, respectively.

This solution describes a set of charged~by forms! overlappingp-branes@ps5d(I s)21, s
PS] ‘‘living’’ on submanifolds ~isomorphic to! MI s

~2.16!, where the setsI s do not contain 0, i.e.,
all p-branes live in ‘‘internal’’ Ricci-flat spaces.

The solution is valid if the dimensions ofp-branes and dilatonic coupling vector satisfy t
relations~4.4!. In ‘‘orthogonal’’ noncomposite case these solutions were considered in Ref
and 28~electric case! and Ref. 35~electro-magnetic case!. For n51 see also Refs. 24 and 27. I
block-orthogonal~noncomposite! case a special class of solutions withns

2 coinciding inside blocks
was considered earlier in Ref. 36.

V. SPHERICALLY SYMMETRIC SOLUTIONS

Here we consider the spherically symmetric case

w51, M05Sd0, g05dVd0

2 , ~5.1!

wheredVd0

2 is the canonical metric on a unit sphereSd0, d>2. We also assume that

M15R, g152dt^ dt ~5.2!

~hereM1 is a time manifold! and

1PI s , ;sPS, ~5.3!

i.e., all p-branes have a common time directiont.
For integration constants we putc̄A50,

cA5m̄~ b̄A2bA!, ~5.4!

b̄A5m̄(
r PS̄

h rn r
2UrA2m̄d1

A, ~5.5!

C05m̄2, ~5.6!

Cs5m̄2bs
2 , bs.0, ~5.7!
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wherem̄.0, S̄5$0%øS andh0n0
25(U0,U0)21.

The only essential restrictions imposed are the inequalitiesC0 ,Cs.0 that cut a subclass in th
class of solutions from Sec. IV. This subclass contains nonextremal black hole solutions a
‘‘Kasner-like’’ ~non-black-hole! deformations. For extremal black hole solutions one should c
sider the special caseC05Cs50. ~For extremal black hole solutions and its multicenter gener
zations see Ref. 14.!

Due to ~4.26! the parametersbs , sPS, are coinciding inside blocks:

bs5bs8 , ~5.8!

s,s8PSi , i 51, . . . ,k.
It may be verified that the restrictions~4.33! and~4.35! are satisfied identically if and only i

U0~b!5UA
0bA52b01(

j 50

n

djb
j51, ~5.9!

Us~b!5UA
s bA5 (

i PI s

dib
i2xslasa

ba51, ~5.10!

sPS. This follows from identitiesU0(b̄)51 andUs(b̄)51, sPS.
Relation~4.39! reads

(
sPS

hsns
2~bs

221!1habbabb1(
i 51

n

di~bi !21
1

d021 S (
i 51

n

dib
i D 2

5
d0

d021
, ~5.11!

where the relation@equivalent to~5.9!#

b05
1

12d0
F (

j 51

n

djb
j21G , ~5.12!

is used.
Now we rewrite a solution~under restrictions imposed! in a so-called ‘‘Kasner-type’’ form

that is more suitable for analyzing the behavior at large distances and for singling out the
hole solutions. For this reason we introduce a new radial variableR5R(u) by relations

exp~22m̄u!512
2m

Rd̄
, m5m̄/d̄.0, d̄5d021, ~5.13!

u.0, Rd̄.2m. For the function

f s~u!5
uQsu

2m̄bsunsu
@exp~m̄bs~u2us!!1hs«s exp~2m̄bs~u2us!!# ~5.14!

we put the restrictionf s(0)51, or, equivalently,

exp~2m̄bsus!1hs«s exp~m̄bsus!5
2m̄bsunsu

uQsu
. ~5.15!

This restriction guarantees the asymptotical flatness of the (21d0)-dimensional section of the
metric in the limit R→1` ~or, when,u→10). It follows from ~5.15! that us,0 for hs«s5
21. In any casef s(u).0 for u>0.
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Then, solutions for the metric and scalar fields@see ~4.32! and ~4.43!# may be written as
follows:

g5S )
sPS

H̄
s

2hsd(I s)ns
2/(D22)D H Fb021dR^ dR1R2Fb0

dVd0

2

2S )
sPS

H̄
s

22hsns
2DFb1

dt^ dt1(
i 52

n S )
sPS

H̄
s

22hsns
2d i I sDFbi

giJ , ~5.16!

wa5(
sPS

hsns
2xslas

a ln H̄s1
1

2
ba ln F, ~5.17!

where

F512
2m

Rd̄
, ~5.18!

H̄s5ĤsF
(12bs)/2, ~5.19!

Ĥs511 P̂s

~12Fbs!

2mbs
, ~5.20!

P̂s52«shsPs , ~5.21!

Ps5
uQsu

d̄unsu
exp~mus!.0, ~5.22!

sPS. Due to~4.26!–~4.28! parametersPs and P̂s are coinciding inside blocks:

Ps5Ps8 , P̂s5 P̂s8 , ~5.23!

s,s8PSi , i 51, . . . ,k. Parametersbs are also coinciding inside blocks, see~5.8!. Parameters
bs ,bi ,ba obey the relations~5.10!–~5.12!.

The fields of forms are given by~2.19! and ~2.20! with

Fs5
ns

Hs8
, ~5.24!

Hs85F12Ps8Ĥs
21 ~12Fbs!

2mbs
G21

, ~5.25!

Ps852
Qs

nsd̄
, ~5.26!

sPS. It follows from ~5.15!, ~5.20!, ~5.21!, and~5.26! that

~Ps8!25Ps~ P̂s12bsm!52«shsP̂s~ P̂s12bsm!, ~5.27!

sPS. This relation is self-consistent, i.e., its left- and right-hand sides have the same sign,
due to~5.15! and ~5.22!:
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Ps,2mbs ~5.28!

for «shs511 and hence

P̂s.22bsm, ~5.29!

for all sPS.
Remark: The black hole solution from Ref. 14 may be obtained from our spherica

symmetric solutions~5.16!–~5.27! when

b15bs51, bi5ba50, ~5.30!

sPS, i 50,2, . . . ,n; a51, . . . ,l . For details see Ref. 41.
We note that the obtained solution generalizes the solutions from Ref. 42~in the pure gravi-

tational case! and Ref. 43~in the case of gravity with one scalar field!.

VI. POST-NEWTONIAN APPROXIMATION

Let d052. Here we consider the four-dimensional section of the metric~5.16!

g(4)5U$Fb021dR^ dR1Fb0
R2dV2

22U1Fb1
dt^ dt%, ~6.1!

whereF512(2m/R), and

U5)
sPS

H̄
s

2hsd(I s)ns
2/(D22)

, ~6.2!

U15)
sPS

H̄
s

22hsns
2

, ~6.3!

Ui5)
sPS

H̄
s

22hsns
2d i I s , i .1, ~6.4!

R.2m.
We may suppose that some real astrophysical objects~e.g., stars! are described by the four

dimensional ‘‘physical’’ metric~6.1!, i.e., they are ‘‘traces’’ of extended multidimensional objec
~chargedp-branes!.

Introducing a new radial variabler by the relation

R5rS 11
m

2r D 2

, ~6.5!

(r.m/2), we rewrite the metric~6.1! in a three-dimensional conformally flat form

g(4)5UH 2U1Fb1
dt^ dt1Fb0S 11

m

2r D 4

d i j dxi
^ dxj J , ~6.6!

F5S 12
m

2r D 2S 11
m

2r D 22

, ~6.7!

wherer25uxu25d i j x
ixj ( i , j 51,2,3).

For possible physical applications we should calculate the post-Newtonian parametersb and
g ~Eddington parameters! using the following relations~see, for example, Ref. 44 and referenc
therein!
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g00
(4)52~122V12bV2!1O~V3!, ~6.8!

gi j
(4)5d i j ~112gV!1O~V2!, ~6.9!

i , j 51,2,3, where

V5
GM

r
~6.10!

is the Newton’s potential,G is the gravitational constant,M is the gravitational mass. From
~6.6!–~6.10! we get

GM5mb11(
sPS

hsns
2@ P̂s1~bs21!m#S 12

d~ I s!

D22D ~6.11!

and forGMÞ0

b215
1

2~GM!2 (
sPS

hsns
2P̂s~ P̂s12bsm!S 12

d~ I s!

D22D , ~6.12!

g2152
1

GM Fm~b01b121!1(
sPS

hsns
2@ P̂s1~bs21!m#S 122

d~ I s!

D22D G . ~6.13!

It follows from ~5.27! and~6.12! and the inequalitiesd(I s),D22 ~for all sPS) that the follow-
ing inequalities take place:

b.1, if all «s521, ~6.14!

b,1, if all «s511. ~6.15!

There exists a large variety of configurations withb51 when the relation«s5const is broken.
There exist also nontrivialp-brane configurations withg51.
Proposition:Let the set ofp-branes consist of several pairs of electric and magnetic bra

Let any such pair (s,s̄PS) correspond to the same color index, i.e.,as5as̄ , and P̂s5 P̂s̄ , bs

5bs̄ , hsns
25h s̄n s̄

2 . Then forb01b151 we get

g51. ~6.16!

The proposition can be readily proved using the relationd(I s)1d(I s̄)5D22, following from
~2.25! and ~2.26!.

Observational restrictions:The observations in the solar system give the tight constraint
the Eddington parameters44

g51.00060.002, ~6.17!

b50.999860.0006. ~6.18!

The first restriction is a result of the Viking time-delay experiment.45 The second restriction
follows from ~6.17! and the analysis of the laser ranging data to the Moon. In this case a
precision test based on the calculation of the combination (4b2g23) appearing in the Nordtved
effect46 is used.47 We note, that as it was pointed in Ref. 44 the ‘‘classic’’ tests of gen
relativity, i.e., the Mercury-perihelion and light deflection tests, are somewhat outdated.

For small enoughp̂s5 P̂s /GM, bs21, b121, bi ( i .1) of the same order we getGM;m
and hence
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b21;(
sPS

hsns
2p̂sS 12

d~ I s!

D22D , ~6.19!

g21;2b02b1112(
sPS

hsns
2@ p̂s1bs21#S 122

d~ I s!

D22D , ~6.20!

i.e., b21 andg21 are of the same order. Thus for small enoughp̂s , bs21, b121, bi ( i .1) it
is possible to fit the ‘‘solar system’’ restrictions~6.17! and ~6.18!.

There exists also another possibility to satisfy these restrictions.
One brane case:Let us consider a special case of onep-brane. In this case we have

hsns
225d~ I s!S 12

d~ I s!

D22D1l2. ~6.21!

Relations~6.12!, ~6.13!, and ~6.21! imply that for large enough values of~dilatonic coupling
constant squared! l2 and b01b151 it is possible to perform the ‘‘fine tuning’’ the paramete
(b,g) near the point~1, 1! even if the parametersP̂s are big.

VII. CONCLUSIONS

In this paper we obtained exact solutions to Einstein equations for the multidimens
cosmological model describing the evolution ofn Ricci-flat spaces and one Einstein spaceM0 of
nonzero curvature in the presence of composite electro-magneticp-branes. The solutions wer
obtained in the block-orthogonal case~4.4!, whenp-branes do not ‘‘live’’ inM0 . We also con-
sidered the spherically symmetric solutions containing nonextremalp-brane black holes.36,14 The
relations for post-Newtonian parametersb andg are obtained.

ACKNOWLEDGMENTS

This work was supported in part by DFG Grant No. 436 RUS 113/236/O~R! and by the
Russian Ministry for Science and Technology, Russian Fund for Basic Research, project
02-16414 and project SEE. V.N.M. is grateful to the Dept. Math., University of Aegean fo
kind hospitality during his stay in Karlovassi, Greece.

APPENDIX A: RESTRICTIONS ON p-BRANE CONFIGURATIONS

Restrictions onVa,v :23 Let

w1[$ i u i P$0, . . . ,n%,di51%. ~A1!

The setw1 describes all one-dimensional manifolds amongMi ( i>0). We impose the following
restrictions on the setsVa,v ~2.21!:

Wi j ~Va,v!5B, ~A2!

aPD; v5e,m; i , j Pw1 , i , j and

Wj
(1)~Va,m ,Va,e!5B, ~A3!

aPD; j Pw1 . Here

Wi j ~V* ![$~ I ,J!uI ,JPV* , I 5$ i %t~ I ùJ!, J5$ j %t~ I ùJ!%, ~A4!

i , j Pw1 , iÞ j , V* ,V0 and
                                                                                                                



s

6574 J. Math. Phys., Vol. 40, No. 12, December 1999 V. D. Ivashchuk and V. N. Melnikov

                    
Wj
(1)~Va,m ,Va,e![$~ I ,J!PVa,m3Va,eu Ī 5$ j %tJ%, ~A5!

j Pw1 . In ~A5!

Ī [I 0\I ~A6!

is ‘‘dual’’ set, (I 05$0,1, . . . ,n%).
The restrictions~A2! and ~A3! are trivially satisfied whenn1<1 and n150, respectively,

wheren15uw1u is the number of one-dimensional manifolds amongMi . They are also satisfied in
the noncomposite case when alluVa,vu51. For n1>2 andn1>1, respectively, these restriction
forbid certain pairs of twop-branes, corresponding to the same formFa,aPD:

APPENDIX B: SOLUTIONS WITH BLOCK-ORTHOGONAL SET OF VECTORS

Let

L5
1

2
^ẋ,ẋ&2(

sPS
As exp~2^bs ,x&! ~B1!

be a Lagrangian, defined onV3V, whereV is a n-dimensional vector space overR, AsÞ0, s
PS; SÞB, and^•,•& is a nondegenerate real-valued quadratic form onV. Let

S5S1t•••tSk , ~B2!

all SiÞB, and

^bs ,bs8&50, ~B3!

for all sPSi , s8PSj , iÞ j ; i , j 51, . . . ,k.
Let us suppose that there exists a sethsPR, hsÞ0, sPS, such that

(
sPS

^bs ,bs8&hs8521, ~B4!

for all sPS, and

As

hs
5

As8

hs8

, ~B5!

s,s8PSi , i 51, . . . ,k, ~the ratioAs /hs is constant insideSi).
Then, the Euler–Lagrange equations for the Lagrangian~B1!

ẍ1(
sPS

2Asbs exp~2^bs ,x&!50, ~B6!

have the following special solutions

x~ t !5
1

2 (
sPS

hsbs lnFys
2~ t !U2As

hs
UG1at1b, ~B7!

wherea,bPV,

^a,bs&5^b,bs&50, ~B8!

sPS, and functionsys(t)Þ0 satisfy the equations
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d

dt S ys
21 dys

dt D52jsys
22 , ~B9!

with

js5signS As

hs
D , ~B10!

sPS, and coincide inside blocks:

ys~ t !5ys8~ t !, ~B11!

s,s8PSi , i 51, . . . ,k. More explicitly

ys~ t !5s~ t2ts ,js ,Cs!, ~B12!

where constantsts ,CsPR coincide inside blocks

ts5ts8 , Cs5Cs8 , ~B13!

s,s8PSi , i 51, . . . ,k, and

s~ t,j,C![
1

AC
sh~ tAC!,j511, C.0; ~B14!

1

A2C
sin~ tA2C!,j511, C,0; ~B15!

t,j511, C50; ~B16!

1

AC
ch~ tAC!,j521, C.0. ~B17!

For the energy

E5
1

2
^ẋ,ẋ&1(

sPS
As exp~2^bs ,x&! ~B18!

corresponding to the solution~B7! we have

E5
1

2 (
sPS

Cs~2hs!1
1

2
^a,a&. ~B19!

For dual vectorsusPV* defined asus(x)5^bs ,x&, ;xPV, we have^us,ul&* 5^bs ,bl&,
where^•,•&* is dual form onV* . The orthogonality conditions~B8! read

us~a!5us~b!50, ~B20!

sPS.
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Kostant’s cubic Dirac operator of Lie superalgebras
Teparksorn Pengpana)
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We extend equal rank embedding of reductive Lie algebras to that of basic Lie
superalgebras. The Kac character formulas for equal rank embedding are derived in
terms of subalgebras and Kostant’s cubic Dirac operator for equal rank embedding
of Lie superalgebras is constructed from both even and odd generators and their
related structure constants. ©1999 American Institute of Physics.
@S0022-2488~99!03012-1#

I. INTRODUCTION

The study of some patterns,1 connected withN51 supergravity theory in 11 dimensions, h
led to a recent understanding in terms of a Weyl character formula by GKRS,2 based on equal rank
embedding of reductive Lie algebras. By using the construction of equal rank embeddi
reductive Lie algebras, all possible equal rank embeddings were catalogued, and nearly al
symmetric multiplets of massless and massive particles that are already known in supersym
gauge field theories emerge as the lowest lines of the infinite tower multiplet spectra, so
them shown in detail in Ref. 1. Immediately after the appearance of the Weyl character fo
for equal rank embedding as an index formula for the Dirac operator, Kostant moved the s
forward and related the multiplet spectrum to the kernel of a cubic Dirac operator, whic
introduced around 30 years ago.3

In this paper, we extend the Gross–Kostant–Ramond–Sternberg~GKRS! Weyl character
formula and Kostant’s cubic Dirac operator for equal rank embedding of reductive Lie algeb
those of basic Lie superalgebras. In Sec. II, we give a brief review in GKRS’s paper. A deriv
of the Weyl character formula for an equal rank embedding is shown. In Sec. III, we exten
equal rank embedding construction of reductive Lie algebras shown in Sec. II to that of bas
superalgebras. The Kac character formulas are written in terms of equal rank subalgebras.
IV, we give a simple and explicit formulation for a typical representation of type I Lie supe
gebras. In Sec. V, we build a multiplet of type I Lie superalgebras from that of reductive
algebras. In Sec. VI, Kostant’s cubic Dirac operator is constructed for full Lie superalgebra
then for equal rank embeddings.

II. WEYL CHARACTER FORMULA AND EQUAL RANK EMBEDDINGS OF REDUCTIVE
LIE ALGEBRAS

Let r be an equal rank subalgebra of reductive Lie algebras,g, and letC be of the order ofC,
the ratio of the Weyl group ofg to that ofr. The restricted conditions for this kind of equal ran
embedding,g.r , are that~1! positive roots ofg must contain those ofr, i.e., F1(g).F1(r ),
and~2! the simple roots ofg andr must be chosen consistently so that the positive Weyl cham
of r contains that ofg. In the Cartan–Weyl basis, thec elements of the Weyl group inC acting on
the sum of highest weight,l, and the Weyl vector ofg, rg , and then after subtracting by the We
vector of r, r r , generateC irreducible representations ofr, called aC multiplet,

c•lªc~l1r!g2r r .

a!Electronic mail: tpengpan@phys.ufl.edu
65770022-2488/99/40(12)/6577/12/$15.00 © 1999 American Institute of Physics
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The Weyl character formula of the irreducible representation ofg, Vl , can be rewritten in terms
of the irreducible representation ofr, Uc•l , as follows:

chVl5
(wPW~g! sgn~w!ew~l1rg!

(wPW~g! sgn~w!ewrg

5
(cPC sgn~c!~(wrPW~r ! sgn~wr !e

wr ~c•l1rr !!

~)fPF1~g/r !~ef/22e2f/2!!~)fPF1~r !~ef/22e2f/2!!
,

5
1

D (
cPC

sgn~c!chUc•l , ~1!

whereD is the character difference of two spinor modules,S1 andS2, of SO(p5g/r ), i.e.,

Dª )
fPF1~g/r !

~ef/22e2f/2!5chS12chS2.

The beauty of Eq.~1! is that it gives us

Vl ^ S12Vl ^ S25 (
cPC

sgn~c!Uc•l . ~2!

Equation ~2! should be viewed as an equation in the Grothendieck ring ofr. The lhs is the
character of the difference between two representations of the same dimension as the rep
tion of g with highest weightl, this representation restricted tor tensored with each of the
half-spin representations of SO(p), wherep5dimg2dim r , restricted tor. In the other words,
the lhs is the algebraic index of the Dirac operator associated tol and the two half-spin repre
sentations. The alternating sum on the rhs is just the dimension difference between the ker
cokernel of the Dirac operator. All the representations on the rhs are inequivalent, and so
is the end result of a lot of cancellation on the lhs, in short an index formula for the Dirac ope
One of the remarkable consequences of Eq.~2! is that, on the lhs, the order of difference ofVl

^ S1 andVl ^ S2 is always equal toC, independent ofl, and, on the rhs, the multiplicity of eac
Uc•l representation is exactly one.

Notice thatC is equal to the Euler number, which is a topological invariant of the co
manifold, G/R, corresponding to exponentiation ofg/r . From our catalog of equal rank embe
ding of reductive Lie algebras, we would like to give some examples of the coset manifolds,
supersymmetric multiplets appear to be in their lowest lines of the infinite tower multiplet sp
N52 hypermultiplet,N54 vector multiplet, andN58 supergravity multiplet, which undoubtedl
emerge in the lowest lines of SU(N11).SU(N)3U(1) and SO(N12).SO(N)3SO(2) series
live on theN-dimensional complex projective space and (N12)-dimensional complex Grassman
nian manifolds, respectively. If SO(2) or U(1) is viewed as the light-cone little group, t
lowest line spectra are massless supermultiplets in four-dimensional space–time. WheN
51, N52, N53, andN54 massive~massless! multiplets in four-dimensional~six-dimensional!
space–time that emerge in the lowest lines of the Sp(2N12).Sp(2N)3Sp(2) series live on
N-dimensional quaternionic projective space. The last multiplet that we would like to menti
theN51 massless~massive! supergravity triplet in 11-dimensional~10-dimensional! space–time.
The triplet emerges fromF4.SO(9) and lives on a~16-dimensional! Cayley plane. All infinite
tower multiplet spectra are a kernel of Kostant’s cubic Dirac operator,K” ,

Ker~K” l
2!5Ker~K” l!5 (

cPC
sgn~c!Uc•l .

For more analytical details on Kostant’s operator, see Ref. 4.
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III. KAC CHARACTER FORMULAS AND EQUAL RANK EMBEDDING OF BASIC LIE
SUPERALGEBRAS

Now, we extend the results of reductive Lie algebras to Lie superalgebras with nondege
Killing form. According to Kac’s classification,5 there are two types of basic Lie superalgeb
type I, which is su(mun) and osp(2u2n) and type II, which is osp(2m11u2n), osp(1u2n),
osp(2mu2n), osp(4u2;a), F(4), andG(3).

Let g5geven% godd be the Lie superalgebras with the root systemF5FevenøFodd. For type
I, geven is simple, i.e.,geven5g0 , and, for type II,geven can be graded intog2% g0% g22 . While,
for the odd part of both type I and II, odd generators can be graded into fermionic creatio
annihilation ones, i.e.godd5g1% g21 . The Poincare´–Birkhoff–Witt theorem for Lie algebras ca
be applied to the case of Lie superalgebras with some extension.6 This grading gives us a univers
enveloping algebra,U(g), e.g., for type I,

U~g!5U~g1! ^ U~g0! ^ U~g21!.

Define root subsystems,F̄even and F̄odd, such that F̄even5$aua/2¹Fodd% and F̄odd

5$bu2b¹Feven%. SinceFeven, Fodd, F̄even, andF̄odd are invariant under the action of the We
group ofgeven. Hence, the Weyl group ofg is equal to that ofgeven, i.e.,W(g)5W(geven). Define
the Weyl vector ofg to be one-half the sum of positive even roots minus one-half the su
positive odd roots, i.e.,r5reven2rodd. Let V(L) be a representation ofg with L as a highes
weight in dual Cartan subalgebra. The highest weight representations ofg are classified into

typical and atypical. The representation is typical if, for;bPF̄odd
1 (L1r,b)Þ0; otherwise, it is

atypical. The typical Kac character and supercharacter formulas ofV(L) are defined, respectively
as

chV~L!5
N1

N0
(

wPW~g!
sgn~w!ew~L1r!, ~3!

schV~L!5
N18

N0
(

wPW~g!
sgn~w̄!ew~L1r!, ~4!

where

N05 )
aPFeven

1
~ea/22e2a/2!,

N15 )
b1PFodd

1
~eb/21e2b/2!,

and

N185 )
b1PFodd

1
~eb/22e2b/2!.

The sgn(w) and (w̄) are sign change due to number of reflections with respect toFeven
1 andF̄even

1 .
In general, in an equal rank embedding of Lie superalgebrasr in g with F1(r ),F1(g) and

C as an index of the Weyl group ofr in the Weyl group ofg, a C multiplet of r is obtained by

c•Lªc~L1r!g2r r ,
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where cPC. Under the condition thatFeven,odd
1 (r ) is invariant under the action ofc, i.e., c

•Feven,odd
1 (r )5Feven,odd

1 (r ), the typical Kac character formula ofg moduleV(L) can be written in
terms of ther moduleU(c•L) as follows:

chV~L!5
PbPF

odd
1 ~g!~eb/21e2b/2!

PaPF
even
1 ~g!~ea/21e2a/2! (

wPW~g!
sgn~w!ew~L1rg!

5S PbPF
odd
1 ~g/r !~eb/21e2b/2!

PaPF
even
1 ~g/r !~ea/22e2a/2!D (

cPC
sgn~c!chU~c•L!. ~5!

Similarly done, the typical Kac supercharacter becomes

schV~L!5S )bPF
odd
1 ~g/r !~eb/22e2b/2!

)aPF
even
1 ~g/r !~ea/22e2a/2!D (

cPC
sgn~c!schU~c•L!. ~6!

For type I Lie superalgebras, there are both typical and atypical representations. F
typical representation, superdimension, sdimV(L)5dimVeven(L)2dimVodd(L), is equal to zero.
Whereas, sdimV(L) of the atypical representation is not. Every type I odd root is zero length

Feven
1 5F̄even

1 . Sincerodd is invariant under the action of the Weyl group, i.e.,wrodd5rodd. The
type I typical Kac character formula~3! can be written as

chV~L!5 )
b1PF1

1
~11e2b!chV0~L!5 )

b2PF1
2

~11eb2!chV0~L!. ~7!

Multiplying out the product factor on the rhs of Eq.~7!, we obtain a Chern character of an exteri
algebra overg21 ,

)
b2PF1

2
~11eb2!5 (

n50

n5dim~F21
2

!

ch~∧ng21!5ch~∧g21!.

So, Eq.~7! simply becomes

chV~L!5ch~∧g21!chV0~L!. ~8!

Similarly, the type I typical Kac supercharacter can be shown to be

schV~L!5 )
b2PF1

2
~12eb2!chV0~L!5sch~∧g21!chV0~L!. ~9!

On the other hand, since$g21 ,g21%50, the universal enveloping algebra overg21 , U(g21), is
isomorphic to the exterior algebra overg21 ,∧(g21). The g module V(L) can be induced by
applying the antisymmetric combinations of theg21 generators onV0(L), i.e.,

V~L!5∧~g21! ^ V0~L!.U~g21! ^ V0~L!. ~10!

The character and supercharacter of Eq.~10! are exactly Eq.~8! and Eq.~9!.
In an equal rank embedding,g.r , of type I, which hasC as an index ofW(r ) in W(g) and

is restricted to the condition thatF1(g).F1(r ), Eq. ~7! becomes

chV~L!5
1

D )
b2PF1

2
~g/r !

~11eb2! (
cPC

sgn~c!S )
b2PF1

2
~r !

~11eb2!chU0~c•L!D ,
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i.e.,

chV~L!~chS12chS2!5ch„∧~g21/r 21!…(
cPC

sgn~c!chU~c•L!. ~11!

Similarly done for the supercharacter, we obtain

schV~L!~chS12chS2!5sch„∧~g21/r 21!…(
cPC

sgn~c!schU~c•L!. ~12!

Equation~11! and Eq.~12! correspond to

V~L! ^ S12V~L! ^ S25∧~g21/r 21! ^ (
cPC

sgn~c!U~c•L!. ~13!

Now, Eq. ~13! can also be derived explicitly from Eq.~10!. By decomposing theg21 basis such
thatg215(g21 /r 21) % r 21 , there exists a map (g21 /r 21) % r 21°(g21 /r 21) ^ 111^ r 21 from
(g21 /r 21) % r 21 to (g21 /r 21) ^ r 21 , which extends uniquely to an isomorphism of exter
algebra,

∧~g21/r 21% r 21!.∧~g21/r 21! ^ ∧~r 21!.

By substituting the above equation into Eq.~10! and tensoring on both sides by (S12S2), we
obtain

V~L! ^ S12V~L! ^ S25∧~g21/r 21! ^ (
cPC

sgn~c!„∧~r 21! ^ U0~c•L!…

5∧~g21/r 21! ^ (
cPC

sgn~c!U~c•L!,

which is exactly Eq.~13!.
For osp(1u2n) of type II Lie superalgebras, every osp(1u2n) odd root has length equal t

one-half the short positive one and

rosp~1u2n!5reven2rodd5~n2 1
2,n2 3

2,...,
1
2!.

Furthermore, every osp(1u2n) representation is typical, but dimVeven(L)ÞdimVodd(L). Never-
theless, the Kac character and supercharacter formulas of an osp(1u2n) representation can b
shown to be similar to that of Lie algebra, i.e.,

chV~L!5
(wPW sgn~w!ew~L1r!

(wPW sgn~w!ew~r! , ~14!

schV~L!5
(wPW sgn~w̄!ew~L1r!

(wPW sgn~w̄!ew~r! . ~15!

The equal rank embedding of osp(1u2m)3osp(1u2n22m) in osp(1u2n) is the only possible type
with the full subsuperalgebra. In this case, all odd generators ofg are completely eaten by ther.
Whereas, the even generators ofg that are left form the orthogonal complement basis to the e
basis ofr under the Killing form ofg. Under the restriction to anr module, Eq.~14! and Eq.~15!
simply become
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chV~L!5
1

D (
cPC

sgn~c!chU~c•L!, ~16!

and

schV~L!5
1

D (
cPC

sgn~c!schU~c•L!. ~17!

Both Eq.~16! and Eq.~17! correspond to

V~L! ^ S12V~L! ^ S25 (
cPC

sgn~c!U~c•L!. ~18!

For the rest of type II, we use Kac character and the supercharacter formulas of equa
embedding, Eq.~5! and Eq.~6!. If g1 and g21 are vector spaces of odd generators, there
canonical linear map from∧ag1^ ∧bg21 to ∧a1b(g1% g21), which takes„(g1)1∧¯∧(g1)a…

^ „(g21)1∧¯∧(g21)b… to „(g1)1∧¯∧(g1)a∧(g21)1∧¯∧(g21)b…. This determines a linear iso
morphism,

∧~g1% g21!. %
a50

N

~∧N2ag1^ ∧ag21!

.∧g1^ ∧g21 .

The prefactorN1 of the Kac character formula is generally the character of the exterior alg
over the direct sum ofg1 andg21 vector spaces,

)
bPF1

1
~eb/21e2b/2!5 )

b6PF1
6

~eb1/21eb2/2!

5ch∧~g1% g21!.

Finally, the type II typical Kac character and supercharacter can be written as

chV~L!~chS12chS2!5ch∧~g1 /r 1% g21 /r 21! (
cPC

sgn~c!chU~c•L!, ~19!

and

schV~L!~chS12chS2!5sch∧~g1 /r 1% g21 /r 21! (
cPC

sgn~c!schU~c•L!, ~20!

which correspond to

V~L! ^ S12V~L! ^ S25∧~g1 /r 1% g21 /r 21! ^ (
cPC

sgn~c!U~c•L!. ~21!

IV. REPRESENTATIONS OF ∧g 21 OF TYPE I LIE SUPERALGEBRAS

For type I Lie superalgebras with a nondegenerate Killing form, the typical representat
induced by applyingg21 generators on ag0 module. Therefore, we need to know an expli
representation of∧g21 in terms of ag0 module. LetN be a dimension ofF1

2 . The exterior
algebra overg21 is
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∧g215 %
k50

N

∧kg21 ,

with dimension

dim~∧g21!5 %
k50

N

dim~∧kg21!5 (
k50

N S N

k D52N,

and superdimension

sdim~∧g21!5 %
k50

N

sdim~∧kg21!5 (
k50

N

~21!k S N

k D50.

Let Qi 51,2,...,N
† be N completely antisymmetric fermionic generators that transform in the fun

mental representation ofg0 . The fermionic generators generate even and odd modules tha
isomorphic to a direct sum of two spinor representations of so(2N). One of the spinor represen
tations of so(2N) is the even module of∧g21 , called the bosonic module, and the other is the o
module of∧g21 , called the fermionic module. LetT1 be the bosonic module andT2 be the
fermionic module of so(2N), such that

T15∧0g21% ∧2g21% ∧4g21%¯

5„~Qi
†!0

% ~Qi
†!2

% ~Qi
†!4

%¯…u1&0

[bosonic module,

and

T25∧1g21% ∧3g21% ∧5g21%¯

5„~Qi
†!1

% ~Qi
†!3

% ~Qi
†!5

%¯…u1&0

[fermionic module.

With a restriction to theg0 module, the type I typical representation is

V~L!5∧g21^ V0~L!

5~T1
% T2! ^ V0~L!.

For su(mun), the ∧g21 representation is isomorphic to a direct sum of two spinor repre
tations of so(2mn). With a restriction to su(m)3su(n)3u(1), Qi

† transforms as (m,n)21 , where
21 is au(1) charge.

Ex. 1su(2u1):

dim~g21!522511211;

Qi
†;221 ,

T1510% 122 ,

T25221 ,

Vsu~2u1!~L!5~T1
% T2! ^ Vsu~2!3u~1!~L!.

Ex. 2su(3u1):
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dim~g21!52351131311;

Qi
†;321

T1510% 3̄22 ,

T25321% 123 ,

Vsu~3u1!~L!5~T1
% T2! ^ Vsu~3!3u~1!~L!.

Ex. 3su(3u2):

dim~g21!52651161151201151611;

Qi
†;(3,2)21 ,

T15~1,1!0% ~ 3̄,3!22% ~6,1!22% ~6,1!24% ~3,3!24% ~1,1!26 ,

T25~3,2!21% ~8,2!23% ~4,1!23% ~ 3̄,2!25 ,

Vsu~3u2!~L!5~T1
% T2! ^ Vsu~3!3su~2!3u~1!~L!.

Ex. 4su(4u2):

dim~g21!52851181281561701561281811,

Qi
†;(4,2)21 ,

T15~1,1!0% ~10,1!22% ~6,3!22% ~208,1!24% ~15,3!24% ~5,1!24% ~10̄,1!26% ~6,3!26% ~1,1!28 ,

T25~4,2!21% ~20,1!23% ~ 4̄,4!23% ~20̄,1!25% ~4,4!25% ~ 4̄,2!27 ,

Vsu~4u2!~L!5~T1
% T2! ^ Vsu~4!3su~2!3u~1!~L!.

For osp(2u2n), ∧g21 representation is a direct sum of two spinor representations of so(n).
With restriction to sp(2n)3u(1), Qi

† transforms as (2n)21 with 21 as au(1) charge.
Ex. 5osp(2u4):

dim~g21!5245114161411;

Qi
†;421 ,

T1510% 522% 122% 124 ,

T25421% 423 ,

Vosp~2u4!~L!5~T1
% T2! ^ Vsp~4!3u~1!~L!.

Ex. 6osp(2u6):

dim~g21!52651161151201151611;

Qi
†;621 ,

T1510% 1422% 122% 1424% 124% 126 ,
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T25621% 14823% 623% 625 ,

Vosp~2u6!~L!5~T1
% T2! ^ Vsp~6!3u~1!~L!.

V. BUILDING TYPE I C MULTIPLETS AND KOSTANT’S CUBIC DIRAC OPERATOR

For type I Lie superalgebras, there is a remarkable point we would like to mention. Fro
multiplet spectrum of equal rank embedding of reductive Lie algebras,r 0,g0 , we can build the
spectrum of the type I Lie superalgebras on top of them by simply tensoring them with a m
generated byr 21 generators. Ther 21 generators transform in the fundamental representatio
r 0 .

Define∧(r 21)5R1
% R2 such that

U~L!5∧~r 21! ^ U0~L!5~R1
% R2! ^ U0~L!.

Tensoring on both side of Eq.~2! with ∧(r 21), we obtain

∧~r 21! ^ „V0~L! ^ S12V0~L! ^ S2
…5 (

cPC
sgn~c!„∧~r 21! ^ U0~c•L!…

5 (
cPC

sgn~c!U~c•L!. ~22!

Under restriction to anr 0 module, wheneverV0(L) on the lhs of Eq.~22! is su(n)3u(1), or
sp(2n)3u(1), there is an emergence of a type I typicalC multiplet on the rhs. Notice in the cas
thatU(c•L) is su(mun), the representations ofR6 are similar to those ofS6 exceptu(1) values.

Let g5r % p be Lie superalgebras wherep is the orthogonal complement tor under the
nondegenerate Killing form ofg. Let p5peven% podd5p0% p1% p21 . Tensoring on both sides o
Eq. ~22! by ∧p21 , we get

V~L! ^ S12V~L! ^ S25∧p21^ (
cPC

sgn~c!U~c•L!, ~23!

which is exactly Eq.~13!. Now, we need to get rid of∧p21 on the rhs of Eq.~23! by mapping it
into identity. To do so, we do a tensor product on both sides of Eq.~23! by the following
contraction, sometimes called an internal product, on exterior powers between vector space
dual:

∧N~podd!5∧Np1^ ∧Np2151.

Equation~23! becomes

~∧Npodd! ^ V~L! ^ ~S12S2!51^ (
cPC

sgn~c!U~c•L!. ~24!

As already known, the character form of a Dirac operator,]”PC(p), with a map ]” :S6

→S7, is

ch~]” !5ch~S1!2ch~S2!.

The character of Eq.~1! implies that there exists a Kostant’s Dirac operator,K” PU(geven)
^ C(peven), with a map

K” l :Vl ^ S6→Vl ^ S7. ~25!
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Similarly, the character of Eq.~24! suggests that there exists the operator for Lie superalge

K” LPU(podd) ^ U(geven% godd) ^ C(peven), with a map

K” L :V~L! ^ S6→V~L! ^ S7. ~26!

VI. KOSTANT’s CUBIC DIRAC OPERATOR FOR AN EQUAL RANK EMBEDDING OF LIE
SUPERALGEBRAS

Let Li andFa be even and odd generators, respectively, forZ2-graded Lie superalgebras su
that

@Li ,L j #5 f @ i jk #Lk ,

$Fa ,Fb%5 f i ~ab!Li ,

and

@Li ,Fa#5 f @ ia#bFb ,

wherei , j ,k51,2,...,dim(g0) anda,b51,2,...,dim(g1). The Kostant’s cubic Dirac operator of Li
superalgebras is extended from that of Lie algebras by adding just two terms; a linear term
operators and a structure constant term, i.e.,

K” L5K” L
0 1K” L

1 , ~27!

where

K” L
0 5g iL i2

1
2g@ i jk # f @ i jk # ~28!

and

K” L
1 5aaFa2 1

2g ia~ab! f i ~ab! . ~29!

The sum over all indices is assumed in the above equations, where@¯# in the subscript is for the
antisymmetric sum and~¯! for the symmetric sum. Equation~28! is the Kostant’ cubic Dirac
operator for reductive Lie algebras. Theg matrices associated to even generators are norma
so that

$g i ,g j%5d i j ,

which gives

$g i 8 ,g@ i jk #%5d i 8kg@ i j # .

The a matrices associated to odd generators are subjected to the following conditions.
~I! $g i ,aa%50. This relation is consistent with the antisymmetric property of the produc

even and odd generators.
~II ! $aa ,@ab ,ac#%1$@aa ,ac#,ab%5@a (ab) ,ac#50. This property is due to invariance of od

generators under the Killing form.
Squaring Eq.~28!, we get

~K” L
0 !25 1

2g~ i j !$Li ,L j%1 1
2g@ i j #@Li ,L j #2 1

2$g i 8 ,g@ i jk #% f @ i jk #Li 81~ 1
2g@ i jk # f @ i jk #!

2

5 1
2g~ i j !$Li ,L j%1~ 1

2g@ i jk # f @ i jk #!
2. ~30!
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Notice that the linear terms in even generators cancel each other. Thus, Eq.~30! is explicitly
invariant under the action of even and odd generators. The first term of Eq.~30! is the quadratic
Casimir operator of reductive Lie algebras,

C2
0~L!5 1

2g~ i j !$Li ,L j%. ~31!

Sincer0 , one-half the sum of positive even roots can be identified as

r05 1
2g@ i jk # f @ i jk # . ~32!

The second term of Eq.~30! is the Freudenthal–de Vries’ strange formula,

~r,r!05~ 1
2g@ i jk # f @ i jk #!

25 1
24 dim~g0!h0

∨~u,u!0

5 1
24 dim~g0!C2

0ad. ~33!

Where, in the above equation,h∨ is the dual Coxeter number,u is the highest root, andC2
ad is the

quadratic Casimir value in the adjoint representation.
Squaring Eq.~29!, we get

~K” L
1 !25 1

2a@ab#@Fa ,Fb#1 1
2a~ab!$Fa ,Fb%2 1

2g i@a~ab! ,aa8# f i @ab#Fa81~ 1
2g ia~ab! f i ~ab!!

2

5 1
2a@ab#@Fa ,Fb#1 1

2a~ab! f i ~ab!Li1~ 1
2g ia~ab! f i ~ab!!

2. ~34!

In contrary to the even part, Eq.~34! by itself is not invariant due to the presence of a linear te
in even generators. The linear term inLi will be cancelled out by one of the the cross terms of
square of the combined even and odd Kostant’s cubic Dirac operator,

~K” L!25~K” L
0 !21~K” L

1 !21$g i ,aa%LiFa2 1
2$g@ i jk # ,aa% f @ i jk #Fa2 1

2$g i ,g i 8%a~ab! f i 8~ab!Li

2 1
2g i@a~ab! ,aa8# f i ~ab!Fa81

1
2$g@ i jk # ,g i 8%a~ab! f @ i jk # f i 8~ab!

5g~ i j !L ( iL j )1a@ab#F [aFb]1~ 1
2g@ i jk # f @ i jk #!

21~ 1
2g ia~ab! f i ~ab!!

21 1
2g@ i j #a~ab! f @ i jk # f k~ab! .

~35!

Sincer1 , one-half the sum of positive odd roots, can be identified as

r152 1
2g ia~ab! f i ~ab! . ~36!

Recall that, for Lie superalgebras,r5r02r1 . Equation~35! can be simply written as

~K” L!25C2~L!1~r,r!, ~37!

where

C2~L!5g~ i j !L ( iL j )1a@ab#F [aFb] .

The Laplacian operator turns out to be invariant under the action of even and odd generatog
again. For Lie superalgebras, the generalization of the Freudenthal–de Vries strange form
holds,7

~r,r!5
h∨

24
~dimg02dimg1!, ~38!

whereh∨’s, the dual Coxeter numbers ofg, are given in Table I.
In an equal rank embedding of Lie superalgebras,g.r , with Fg.F r , let the even and odd

generators,Li andFa , span the basis ofg. According to theg5r % p decomposition,L î andFâ

span the basis ofr andLI andFA span the basis ofp, the orthogonal complement ofr under the
Killing form of g. The Kostant’s cubic Dirac operator onp5g/r is

K” p5K” g2K” r5g ILI1aAFA2 1
2g@ IJK# f @ IJK#2

1
2g Ia~AB! f I ~AB! , ~39!
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where f @ IJK# and f I (AB) are the structure constants ofg that are not inr. Since, under the Killing
form of g, r andp bases are orthogonal to each other,

$g ı̂ ,g I%5$g ı̂ ,aA%5$a â ,g I%5$a â ,aA%50.

As a result, we have

$K” r ,K” p%50.

The square of Kostant’s coset cubic Dirac operator simply is

~K” p!25~K” g!22~K” r !
25„C21~r,r!…g2„C21~r,r!…r . ~40!

Notice that both (K” g)2 and (K” r)
2 commute with the generators ofr. Hence, (K” p)2 is also invariant

under the action ofr.
In conclusion, we have derived the Kac character formulas and have constructed Ko

cubic Dirac operator for equal rank embeddings of Lie superalgebras. In case of reducti
algebras, the coset space method of equal rank embeddings led to a Kazama–Suzuk
construction of a new class of unitaryN52 superconformal theories8 and a subclass of the con
struction could be represented by Landau–Ginzburg models.9 In case of Lie superalgebras,
deserves to be pursued whether there will be any relevance of the coset superspace met
construction of any physical model.
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TABLE I. Dual Coxeter numbers of basic Lie superalgebras.

g h∨

su(mun) um2nu
osp(2u2n) n
osp(2m11un) 2~m2n!21 if m.n,n2m1

1
2 if m<n

osp(2mun) 2(m2n21) if m>n,n2m11 if m,n11
osp(4u2;a) 0
F(4) 3
G(3) 2
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Cones and causal structures on topological
and differentiable manifolds
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General definitions for causal structures on manifolds of dimensiond11.2 are pre-
sented for the topological category and for any differentiable one. Locally, these are
given as cone structures via local~pointwise! homeomorphic or diffeomorphic ab-
straction from the standard null cone variety inRd11. Weak ~C ! and strong (C m)
local cone~LC! structures refer to the cone itself or a manifold thickening of the cone,
respectively. After introducing cone~C-!causality, a causal complement with reason-
able duality properties can be defined. The most common causal concepts of space
times are generalized to the present topological setting. A new notion of precausalit
precludes inner boundaries within future/past cones. LC-structures, C-causality, a to
pological causal complement, and precausality may be useful tools in conformal an
background independent formulations of~algebraic! quantum field theory and quan-
tum gravity. © 1999 American Institute of Physics.@S0022-2488~99!00712-4#

I. INTRODUCTION

While classical general relativity usually employs a Lorentzian space–time metric, all ge
approaches to quantum gravity are free of such a metric background. This poses the que
whether there still exists a notion of structure which captures some essential features of ligh
and their mutual relations in manifolds in a purely topological manner without a priori recu
to a Lorentzian metric or a conformal class of such metrics. Below we will see that the ans
positive.

It is a well known folk theorem that the causal structure on a Lorentzian manifold determ
its metric up to conformal transformations. In Refs. 1 and 2 a path topology for strongly causa
space–times was defined which then determined their differential, causal, and conformal str
In Ref. 3 it was shown that the conformal class of a Lorentzian metric can be reconstructed
the characteristic surfaces of the manifold. Similarly, Ref. 4 gives a nice proof that the null
determine the Lorentzian metric~modulo global sign! up to a conformal factor. All these previou
results already indicate that the notion of a causal structure could exist indeed in a differe
possibly more general setting than that of Lorentzian space–times. However, all the prev
mentioned investigations in the literature assume a priori the existence of some undete
Lorentzian metric and then show that it can be determined modulo conformal transform
uniquely by some other structure.

Motivated by the requirements on suitable structures for a theory of quantum gravity, i
paper new notions of causal structure are developed which do not assume a priori the exist
any ~Lorentzian! metric or conformal metric but rather work on arbitrary topological and diff
ential manifolds.

In Sec. II weak~C ! and strong (C m) local cone~LC! structures are defined on any topologic
~or differentiable! manifold M. These structures are given by continuous~or differentiable! fami-

a!Electronic mail: mrainer@rz.uni-potsdam.de
65890022-2488/99/40(12)/6589/9/$15.00 © 1999 American Institute of Physics
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lies of pointwise homeomorphisms from the standard null cone variety inRd11 or a manifold
thickening thereof, respectively, intoM. In the differentiable case it turns out that a strong L
structure implies the existence of a conformal Lorentzian metric, while a weak LC stru
already implies its uniqueness should one exist. However, the metric resulting from a stro
structure contains only pointwise information about the asymptotic structure of the cone
vertex. Within a given manifold thickening of the cone at a given point ofM, the cone in any
neighborhood of the vertex need a priori not at all be related to the null structure spanned
null geodesics of this metric. However, if such a relationship holds in some region, then a
cones in that region are consistent with each other and this way yield a notion of causality

In Sec. III we provide precisely those definitions of causality which allow us to formulate
consistency of different strength for cones at different points, in some or any open regionM.
Cone ~C-! causality allows first of all the definition of a causal complement with reason
properties. It enables us also to define in a topological~differentiable! manner spacelike, null, an
timelike curves. We discuss C-causality also in the particular context of a fibration. Gener
tions of the most common causality notions for space–times in purely topological term
provided. In the case of Lorentzian manifolds these notions agree with the usual ones an
assume their usual hierarchy. Finally, precausality is defined as a notion which makes the
and the past of any cone homeomorphic to the future and the past of the standard coneC in Rd11,
respectively.

The discussion points out some of the major open issues which require further investig
It addresses also the issues of causal diffeomorphisms, foliations, and possible restrictions
cone structure and causality from the manifold to an embedded graph therein, giving
perspective for possible applications in conformal and background independent quantum
theories and quantum gravity.

Here and below a CAT manifold refers to a Hausdorff (T2) space with a CAT structure
where CAT5C0 ~the topological category! or CAT,C1 ~any differentiable category!. If CAT,C1,
a CAT homeomorphism is a diffeomorphism and a CAT continuous map is a differentiable
For differentiable categories we also define CAT21ªCr if CAT5Cr 11, CAT21ªC` if CAT
5C`, and CAT21ªCv if CAT5Cv.

II. LOCAL CONE „LC… STRUCTURES OF MANIFOLDS

In this section we derive local notions of a cone structure on a topologicald11-dimensional
manifold M (CAT,C0). Let

C ª$xPRd11:x0
25~x2x0e0!2%,C 1

ª$xPC :x0>0%,C 2
ª$xPC :x0<0% ~2.1!

be the standard~unbounded double! light cone, and the forward and backward subcones inRd11,
respectively.

The standard open interior and exterior ofC is defined as

Iª$xPRd11:x0
2.~x2x0e0!2%,Eª$xPRd11:x0

2,~x2x0e0!2%. ~2.2!

A manifold thickeningwith thicknessm.0 is given as

C m5$xPRd11:ux0
22~x2x0e0!2u,m2%. ~2.3!

The characteristic topological data of the standard cone is encoded in the topological relat
all its manifold subspaces~which includes in particular also the singular vertexO! and among
each other.

Typical ~CAT! manifold subspaces ofC are the standard future and past conesC 6, and the
standard light rays,

l ~n!ª$xPC:x05~x,n!%, ~2.4!
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where nPSd21,p is a normal direction in thed-dimensional hyperplanepª$xPRd11:(x,y)
50,;yPa% perpendicular to the cone axisaª$xPRd11:x5le0 ,lPR%.

The topological relations between all the CAT manifold subspaces of the cone are the n
data which will be required to be conserved under a homeomorphism of the cone as a topo
space into the manifoldM at any pointp.

Let t denote the closed sets of the manifold topology ofC 2O. The setC can either inherit
the induced topologyt1 from Rd11 which isT1 but notT2 ~Hausdorff! or it can be equipped with
a more coarse subtopology defined in terms of closed sets ast2ª$$0%øV:VPt%ø$VPt% which
is Hausdorff. However,t2 places geometrically unnatural restrictions on possible submanifold
C . Hence, unless specified otherwise,C will be equipped witht1 .

Definition 1: Let M be a CAT manifold. A~CAT! (null) coneat pP int M is the homeomor-
phic imageC pªfpC of a homeomorphism of topological spacesfp :C →C p,M with fp(0)
5p, such that we have the following.

~i! Every ~CAT! submanifoldN,C is mapped~CAT! homeomorphically on a submanifol
fp(N),M .

~ii ! For any two submanifoldsN1 ,N2,C there exist homeomorphismsfp(N1)ùfp(N2)
>N1ùN2 andfp(N1)øfp(N2)>N1øN2 of ~CAT! manifolds if these are~CAT! manifolds and
as topological spaces otherwise

~iii ! If CAT , C1 then for any two CAT curvesc1 ,c2 :] 2e,e@→C with c1(0)5c2(0)5p it
holds thatT0c15T0c2⇒Tp(fp+c1)u ] 2e,e@5Tp(fp+c2)u ] 2e,e@ .

Condition ~iii ! says that in the differentiable case the well defined notion of transversali
intersections at the vertex is preserved byfp .

On each homeomorphic coneC p at anypP int M , the topologyt1 or t2 of C yields underfp

likewise a non-HausdorffT1 topology fp(t1) or a T2 one fp(t2). However, fp+t2 would
unnaturally restrict the possible submanifolds ofC , while fp+t1 is consistent with the topology
induced fromM.

Definition 2:An (ultraweak) cone structureon M is an assignment intM{p→C p of a cone at
everypP int M .

A cone structure onM can, in general, be rather wild with cones at different points tota
unrelated unless we impose a topological connection between the cones at different points
naturally the connection is provided by continuity of the family$C p%. This allows us to define
local cone~LC! structures.

Definition 3:Let M be a CAT manifold. Aweak (C ) local cone (LC)-structureon M is a cone
structure which is~CAT! continuous, i.e.,$p→C p% is a ~CAT! continuous family.

Given a cone structure one wants to know first of all under which conditions, for givep
P int M , an exterior and interior of the cone can be distinguished locally, i.e., for any
neighborhoodU{p within (M2C p)ùU.

Proposition 1:Let ;pP int M exist open~CAT! submanifoldsIp andEp such that the interior

of M decomposes in the disjoint union intM5C pø̊Ipø̊Ep .
~i! Then Ip and Ep can be topologically distinguished locally in any neighborhood of

vertexp if and only if for any neighborhoodU{p it holds (IpuU)>” (EpuU).
~ii ! Given any neighborhoodU{p assume'kPN0 :Pk(IpuU)ÞPk(EpuU). ThenIp and Ep

can be topologically distinguished locally in any neighborhood of the vertexp.

Proof: ~i! follows from U2C puU5IpuUø̊EpuU . ~ii ! holds because homotopy groups are
pological invariants. h

Note that, althoughC p5fp(C ), I and E here need not be homeomorphic tofp(I) and
fp(E), respectively. The notion of precausality~see below in Sec. III! is set up to ensureEp

>fp(E).
A weak LC structure at each pointpP int M defines a characteristic topological spaceC p of

codimension 1 which is Hausdorff everywhere but atp. In particularC p does not contain any ope
U{p from the manifold topology ofM. However, stronger structures can be defined as follo

Definition 4: Let M be a CAT manifold. A~CAT! (manifold) thickened coneof thickness
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m.0 atpP int M is the~CAT! homeomorphic imageC p
m
ªfpC m of a ~CAT! homeomorphism of

manifoldsfp :C →C p,M with fp(0)5p.
Note that due to the manifold property the notion of a thickened cone is much more s

than that of a cone itself. It also clear that now the only consistent topology onC ,C p is t1 and
correspondinglyfp(t1) on C p,C p

m .
Definition 5: A thickened cone structureon M is an assignment intM{p°C p

m(p) of a thick-
ened cone at everypP int M .

Note that in general the thicknessm can vary from point to point inM. Herem:M→R1 is an
a priori not necessarily continuous function. However, an important case even more speci
the continuous one is that of constantm.

Definition 6: A homogeneously thickened cone structureon M is a thickened cone structur
intM{p→C p with constant thicknessm.

Although homogeneity might be too restrictive, at least continuity of structures onM is a
natural assumption in the topological category.

Definition 7: Let M be a CAT manifold. Astrong (C m) LC structureon M is a ~CAT!
continuous family of~CAT! homeomorphismsfp :C m→C p

m(p),M with fp(0)5p and such that
the thicknessm is a CAT function onM.

In particular the conditions of~ii ! in Proposition 1 apply for all manifolds of dimensiond
11.2 with a strong LC-structure, while a weak LC-structure atpP int M may not be able to
distinguishIpuU andEpuU within any U{p.

Theorem 1: Let M carry a strong LC structure. At anypP int M there exists an openU{p
such that fordªdimM21.0 it is uP0(IpuU)u52 andPd21(EpuU)5Pd21(Sd21); for d.1 it is
Pd21(IpuU)50 and uP0(EpuU)u51; for d51 it is Pd21(IpuU)5Pd21(EpuU)5P0(S0), i.e.,
uP0(IpuU)u5uP0(EpuU)u52, and in dimensiond50 it is Ip5Ep5B.

Proof: For all pP int M the strong LC structure provides a thickened coneC p
m(p) . Since

m(p).0, C p
m(p) contains always a neighborhoodU{p homeomorphic to a neighborhoo

fp
21(U){0 of the standard cone which in any dimension has the desired properties. h

At any interior pointpP int M the open exteriorEp and the open interiorIp of the coneC p are
locally topologically distinguishable ford.1, indistinguishable ford51, and empty ford50.
With a strong LC structureIpuUÞEpuU;U{p⇔d11.2, whence locally in any neighborhoo
U{p the interior and exterior ofC pùU atp in U has an intrinsic invariant meaning.C puU divides
U2CpuU in three open submanifolds: a noncontractable exteriorEpuU plus two contractable con
nected components ofI5:FuUøPuU , the local futureFpuU and thelocal pastPpuU with ]FpuU
5C p

1uU where C p
1
ª(fpC 1), and ]PpuU5C p

2uU where C p
2
ªfpC 2, respectively. This also

raises the question of if and howFp andPp or their local restriction toU{p can be distinguished
This problem is solved by a topologicalZ2 connection~see also Sec. III below!.

Given a strong LC structure, a local~conformal! metric can always be proven to exist on a
differentiable manifoldM with CAT,C 1. Within such CAT, any metrich on Rd11 can be
restricted toC m and pulled back pointwise along (fp)21 to a metricg on C p

m(p) . The CAT
continuity of the family$p→C p

m(p)% implies CAT21 continuity of the family$p→guC
p
m(p)%. So we

can extract a CAT21 continuous metric$p°gp%.
Here we are interested in particular only in Lorentzian metrics which arelocally compatible

with a ~weak or strong! LC structure in the sense thath0(v,v)50⇔vPTxN, ;(x,v)PTN, with
arbitrary submanifoldN,C ,Rd11, and correspondingly withC p.fp(N)>N, it holds that

gp„V~p!,V~p!…50⇔V~p!PTpfp~N!,;pP int M , ~2.5!

i.e., locally at any vertex the cone determines the characteristic null directions in the tangent
On the other hand, the cone structure poses an equivalence relation on Lorentzian

which are compatible with the LC structure. Given any such metricg, the corresponding equiva
lence class@g# is the conformal class ofg. We summarize the existence and uniqueness resu
follows.
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Proposition 2:Given a strong LC structure on a~CAT! manifold, ~i! there always exist a
(CAT21) Lorentzian metricg on M compatible with the LC structure.

~ii ! the conformal class@g# of LC compatible metrics is uniquely determined by the L
structure.

The existence of a conformal Lorentzian metric is guaranteed by astrongLC structure, but
not by a weak one. However, since conditions 3.2 needs only the existence of the tangent
of C p , uniqueness is assured already by a differentiableweakLC structure.

Although at eachpP int M a CAT strong LC structure onM admits a conformal class@g# of
CAT21 Lorentzian metricsg with characteristic directions inTpM tangential toC p , away from
the vertexp the cones of the LC structure need not at all be compatible with the null structu
any conformal metric@g#. This reflect the fact that, apart from its local vertex structure, a str
LC structure is still much more flexible than a conformal structure. For anyqÞp the tangent
directions given byTqC p need a priori not be related to tangent directions of null curves og,
since the cone~or its thickening! atp is in general unrelated to that atq. The need for compatibility
conditions between cones at different points motivates the introduction of some of the cau
structures in open regions ofM introduced later in the following section.

III. CAUSALITY STRUCTURES ON MANIFOLDS

Given a~weak or strong! LC structure one wants to know first of all under which condition
for given pP int M an exterior and interior of the cone can be distinguished within the com
mentM2C p . This problem is the global analog of the local one which was answered by P
sition 1 and Theorem 1 above.

Proposition 3:Assume that atpP int M there are open~CAT! submanifoldsIp andEp such
that the interior ofM decomposes into the disjoint union intM5C pø̊Ipø̊Ep . Assume'k
PN0 :Pk(Ip)ÞPk(Ep). ThenIp andEp can be topologically distinguished.

Proof: int M2C p5Ipø̊Ep , and homotopy groups are topological invariants. h

In particular the conditions of Proposition 3 apply ford11.2 in particular to all manifolds
with the following topological structure.

Example 1:Let in any dimensiondªdimM21.0 at anypP int M be uP0(Ip)u52 and
Pd21(Ep)5Pd21(Sd21), for d.1 be Pd21(Ip)50 and uP0(Ep)u51, for d51 be Pd21(Ip)
5Pd21(Ep)5P0(S0), i.e., uP0(Ip)u5uP0(Ep)u52, and in dimensiond50 beIp5Ep50” at any
pP int M . Then in particularIp>” Ep⇔d11.2. The open exteriorEp and the open interiorIp of
the coneC p at any interior pointpP int M are topologically distinct ford.1, indistinguishable for
d51, and empty ford50.

In the case of Example 1,C p dividesM2C p in three open submanifolds, a noncontractib
exteriorEp , plus two contractible connected components ofIp5:FpøPp , the futureFp and the
pastPp with ]Fp5C p

1
ªfpC 1 and]Pp5C p

2
ªfpC 2, respectively. This raises also the que

tion of if and howFp andPp can be distinguished.
Let M be differentiable andt be any vector fieldM→TM such that at anypP int M its

orientation agrees with that offp(a). Such a orientation vector field comes naturally along w
a (CAT21) Z2-connection onM which allows us to compare the orientationt(p) at differentp
P int M . Given a strong LC structure onM, theZ2-connection is in fact provided via continuity o
p°Tpfp(a). Then t is tangent to an integral curve segment throughp from Pp to Fp . In
particular,Fp andPp are distinguished from each other by a consistentt-orientation onM.

If M is not differentiable, in order to distinguish continuouslyPp from Fp on intM it remains
just to impose a topologicalZ2-connection on intM a fortiori.

In order to obtain a more specific causal structure it remains to identify natural consis
conditions for the intersections of cones of different points. In order to define topologi
timelike, lightlike, and spacelike relations, and a reasonable causal complement, we introdu
following causal consistency conditions on cones.

Definition 8: M is ~locally! cone causal or C-causal in an open regionU, if it carries a~weak
or strong! LC structure and inU the following relations between different cones in intM hold.
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~1! For pÞq one and only one of the following is true:
~i! q andp are causally timelike related,q!p:⇔qPFp∧pPPq ~or p!q);
~ii ! q andp are causally lightlike related,qvp:⇔qPC p

12$p%∧pPC q
22$q% ~or pvq);

~iii ! q andp are causally unrelated, i.e., relatively spacelike to each other,qqp:⇔qPEp∧p
PEq .

~2! Other cases~in particular nonsymmetric ones! do not occur.M is locally C-causal, if it is
C-causal in any regionU,M . M is C-causalif conditions ~1! and ~2! hold ;pPC .

Let M be C-causal inU. Then,q!p⇔'r :qPPr∧pPFr , andqvp⇔'r :qPC r
1∧pPC r

2 .
If an open curveR{s°c(s) or a closed curveS1{s°c(s) is embedded inM, then in

particular its image is im(c)[c(R)>R or im(c)[c(S1)>S1, respectively, whence it is free o
self-intersections. Such a curve is calledspacelike: ⇔;p[c(s)P im(c)'e:cu ]s2e,s1e@\$s%
PEc(s) , andtimelike: ⇔;p[c(s)P im(c)'e:cu ]s2e,s1e@\$s%PIc(s) .

Note that C-causality ofM forbids a multiple refolding intersection topology for any tw
cones. In particular along any timelike curve the future/past cones do not intersect, be
otherwise there would exist points which are simultaneously timelike and lightlike related.
tinuity then implies that future/past cones in fact foliate the part ofM which they cover. Hence, if
there exists a fibrationR� int M�S, then C-causality implies that the future/past cones foliate
particular on any fiber. In fact, given a fibration, one could define also a weaker form of cau
just by the foliating property of all future/past cones on each fiber.~Physically this situation
corresponds to ultralocal classical clocks. Quantum uncertainty of the fiber would require
take appropriate ensemble averages over some bundle of neighboring fibers which then con
particular spacelike related vertices on the fibers of the bundle. Then the corresponding fu
past cones intersect for sure, and even timelike related ones of different fibersmay intersect!!
C-causality, however, requires more, namely the future/past cones ofall timelike related vertices
should be nonintersecting, not only those in a particular fiber.

Therefore C-causality allows also a reasonable definition of acausal complement.
Definition 9: For any open setS in a C-causal manifoldM the causal complement is define

as

S'
ª ù

pPclS
Ep , ~3.1!

where clS denotes the closure in the topology induced from the manifold. Although the ca
complement is always open, it will in general not be a contractable region even ifS itself is so.

Assumep andq are timelike related,pPPq andqPFp . Kp
q
ªFpùPq is the bounded open

double cone betweenp andq. Given any bounded openK such that'p,qPM :K5FpùPq , we
set i 1(K)ª$q%, i 2(K)ª$p%, and i 0(K)ªC p

1ùC q
2 . For anyKp

q,M let clc(Kp
q) be its causal

closure.
Since C-causality prohibits relative refolding of cones, it also ensures that (Kp

q)''5Kp
q , i.e.

the causal complement is a duality operation on double cones.
The open double cones of a C-causal manifoldM generate a topology, called thedouble cone

topologywhich is a genuine generalization of the usual Alexandrov topology for strongly ca
space–times. For strongly causal space–times the Alexandrov topology is equivalent to the
fold topology.5,6 WhenM fails to be locally causal the double cone topology may be coarser
the manifold topology.

Let us discuss now possible natural relations that can appear between two double coK1

andK2 of a C-causal manifold. First there is the caseK1ùK250” which corresponds to causall
unrelated sets. ForK1ùK2Þ0”, the intersection is such thatK1øK22K1ùK2 is either given by
two disconnected pieces or it is connected. In the latter case we distinguish whether]K1ù]K2 is
empty or not. It is in the former case that one ofK1 andK2 will be contained in the other.

Local C-causality does a priori not preclude other more pathological possibilities. Howev
is possible to define in a purely topological manner more refined causality notions.

Definition 10:Let M be a C-causal manifold.

~i! M is globally hyperbolic:⇔clcKp
q compact;p,qPM
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~ii ! M is causally simple: ⇔clcKp
q closed;p,qPM

~iii ! M is causally continuous: ⇔ M is distinguishing and bothF:p°Fp and P:q°Pq are
continuous

~iv! M is stably causal: ⇔ M admitsC0 function f :M→R strictly monotonously increasing
along each future directed nonspacelike curve~global time function!

~v! M is strongly causal: ⇔ the topology generated by$Kp
q%p,qPM is equivalent to the manifold

topology ofM
~vi! M is distinguishing: ⇔Fp5Fq⇒p5q∧Pp5Pq⇒p5q
~vii ! M is causal: ⇔ every closed curve inM is not nonspacelike
~viii ! M is chronological: ⇔ every closed curve inM is not timelike

If a manifold carries a Lorentzian metric we saw in Sec. II above that this is locally com
ible with a strong LC structure. Beyond that it is an interesting question under which conditi
Lorentzian metric iscompatible with some LC structure in the sense thathx(v,v)50⇔@x
PC ⇒vPTC ªøyPN,CTyN# whereN,C is a submanifold ofC with codimension 0 whenx is
not the vertex ofC and codimension 1 when it is the vertex, and, correspondingly,

gq„V~q!,V~q!…50⇔F;pPM :qPC p⇒V~q!PTC pª ù
r PC

Trfp~N!G , ~3.2!

i.e., the cones are the characteristic surfaces of the Lorentzian metric. As pointed out abo
does not hold in general. However, one might search for sufficient and necessary causali
ditions such that this compatibility holds. A systematic investigation of this point is beyond
present investigations. Let us rather assure the correspondence of the causality notions of
to the usual ones in the case of a Lorentzian space–time.

Theorem 2: Let M carry a smooth Lorentzian metricg. Then the Lorentzian metric deter
mines a C-causal structure. If a C-causal structure ofM is related to a Lorentz metric, then th
definitions~i!–~viii ! agree with the standard definitions and the following chain of implication
properties of M holds: globally hyperbolic⇒ causally simple⇒ causally continuous⇒ stably
causal⇒ strongly causal⇒ distinguishing⇒ causal⇒ chronological.

Proof: Given a smooth Lorentzian metricg the cones determined by the null structure@g#
respect the relations of Def. 8, because otherwise there would exist some singularities. Fo~v! in
the case of Lorentzian manifolds see Ref. 6; for the other notions and for the chain of implic
see Ref. 7. h

Finally let us define a condition which excludes the existence of singularities or int
boundaries within the future and past cones.

Definition 11:Let M carry a~weak or strong! LC structure.
~i! M is precausal in an open regionU,M , if the d11-parameter CAT family$fp%pPU of

CAT homeomorphismsfp :Rd11.V→U is such that at anypPU it is C puU5fpC uV , and any
CAT submanifold of C p or (M2C p)ùU is a CAT homeomorphic image ofC or (Rd11

2C )ùV, respectively.M is locally precausaliff it is precausal in any open regionU,M .
~ii ! M is precausalif it is locally precausal such that in the CATd11-parameter family

$fp%pPU any CAT homeomorphism extends also to a homeomorphism of the interiorfp :E
→Ep .

IV. DISCUSSION AND PERSPECTIVE

Above we presented topological definitions of local~i.e., pointwise! cone~LC! structures for
a general topological or differentiable manifoldM of dimensiond11.2 and notions of causality
on M in a purely topological manner. It is remarkable that such definitions are possible, wh
the usual recursion to a Lorentzian metric becomes redundant.

Proposition 1 gives criteria which locally distinguish the exterior and the interior of the c
at any point from each other. Proposition 3 and Example 1 provide concrete global topol
conditions forM in order to allow the relative distinction of interior and exterior of all its con
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Minkowski space is obviously a manifold which satisfies the conditions for topologically di
guished interior and exterior according to Example 1. It is, however, a priori not clear wha
each given category CAT of manifolds is the largest class of manifolds with the topolo
structure described in Example 1.

We saw that a global consistent distinction between future and past cones requires
topologicalZ2-connection. Note that, as an important possible application, the canonical app
to quantum gravity comes always along with such a connection. In fact the canonical configu
variables for oriented manifolds maybe there be chosen as SO(d11)-connections.

The presented LC structures, C-causality, and other our purely topological causality n
provide some alternative to the poset approach8–11 for defining causality in quantum theories o
quantum gravity. While that approach is based on a much weaker local notion of causality o
which essentially involves only a partial ordering, the present definition gives us the possibi
working with the local definition of causality on differentiable manifolds which still captures
essential notions for curves in a C-causal manifold to be lightlike, timelike or spacelike wi
the need of an underlying Lorentzian structure. For any setS in a C-causal manifold a topologica
notion of a causal complementS' is given by~3.1!. Any double coneK in a C-causal manifold
then has the duality propertyK''5K.

Some advantages of conformal invariance in the quantization in minisuperspace mod
higher-dimensional Einstein gravity have been pointed out in Refs. 12, 13. In particular,
ordering problems can be resolved uniquely this way. For a more general background indep
quantum theory the restriction of local diffeomorphisms to those consistent with a causal stru
say, e.g., a LC structure, on the whole manifold might appear too restrictive. After all a stron
structure implies already the existence of a conformal metric, whence diffeomorphisms m
restricted locally to conformal ones. Nevertheless note that even a strong LC structure is
more flexible than a conformal metric structure. The local cones of different vertices might r
away from their vertices with rather complicated intersection topologies while a CAT contin
conformal metric within its~regular!! domain does not admit refolding singularities of the ch
acteristic surfaces, each of the which is spanned out by all the null geodesics passing thr
given vertex. Of course refolding and the associated singularities should be a topic of furthe
systematic investigations elsewhere.

The canonical approach to field quantization usually employs a foliationS� int M�R. This
raises the question of when this is consistent with a~C-!causal structure. This may roughly b
answered as follows: A CAT foliation ofM may be said to be consistent with a C-causal structu
if for any open setO in a CAT slice S,M there exists a double coneK, int M such that
i 0(K),](KùS) ~compare also Sec. III, below Def. 9!.

Consider now such a double coneK in M with OªKùS and]O5 i 0(K) and a diffeomor-
phismf in M with pullbacksfSPDiff( S) to S andfKPDiff( S) to K. If f(K)5K, it can be
naturally identified with an element of Diff~K!. (fuM2K5 idM2K is a sufficient but not necessar
condition for that to be true.! If in addition f(S)5S then alsof(O)5O, andfuO is a diffeo-
morphism ofO.

When M is homeomorphic toS3R it is straightforward to extend the above from a sing
hypersurfaceS,M to a foliation ofM via a 1-parameter set of embeddingsS�M .

For a canonical approach to quantum gravity, one might want to work with a restriction o
causal structure to cones with their vertices on a given graphG within a sliceS of a foliation. A
given topological~differentiable! causal structure, selects particular causal homeomorphisms~dif-
feomorphisms! which preserve it. A strong LC structure on all ofM already implies the existenc
of a conformal metric structure and a requirement of compatibility with that metric would re
the local covariance group to local conformal diffeomorphisms. One might, however, also w
the LC and causal structure of the manifold by considering in any leafS of a given foliation only
cones with vertices onG,S instead on all ofS. A natural choice forG is the dual graph of a
triangulation. Then the cones have to CAT vary along the edges, but at least for CAT.C` the
cones at the vertices of the graph can be freely ascribed. Consequently, a geometry constru
that basis will be invariant under diffeomorphisms much more general than conformal one
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Let us, however, also emphasize that, although the existence of a local conformal me
guaranteed by a strong LC structure, it is a priori not obvious that this metric should pla
significant rôle. Then, however, also the need to restrict diffeomorphisms to those compatible
the conformal metric may be questioned. One might eventually expect that within some app
to quantum geometry a cone at a vertexpPO,S should be replaced by an appropriate avera
over cones with vertices within some regionO of minimal Heisenberg uncertainty. Then th
flexibility of the weak and strong LC structures makes them interesting concepts and po
ingredients for a possible definition of quantum causality too. Presently, however, this is
matter of many speculations.

Classically, the existence of a local metric requires only the differentiable structure
arbitrary small neighborhood of the vertex, and the defined LC structures fix the preferre
directions only locally at each vertex. With sufficiently strong notions of causality~e.g.,
C-causality above! the null structures of this metric may become consistent with the global s
ture of cones of the LC structure. Note that in the case of a given Lorentz metric null geodes
on cones, and with sufficiently strong causality, e.g. global hyperbolicity, these cones have
consistent with respect to each other and under variation of the vertex without refolding into
other ~i.e., in particular without conjugate points!.

For Lorentzian manifolds there is a hierarchy of common notions of causality which
been generalized above. Provided our definitions of causality are sufficiently natural it sho
possible to prove~at least parts! of this hierarchy in the more general topological setting. Ho
ever, a complete investigation of the mutual relations between different topological cau
concepts is beyond the scope and goal of the present paper.

It should be emphasized that the above was just brief demonstration of the possibi
introduce notions of cones and causality on CAT topological manifolds without a metri
particular, weak and strong LC structures, C-causality, precausality, and some generalizat
the most common notions of causality have been obtained. However, the investigation is fa
complete. It remains for future work to develop the topological approach to causal structu
manifolds further, to investigate better some of its implications, and last not least to demon
its applicability in background independent formulations of algebraic quantum field theory
quantum gravity.
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We estimate from above the set of knots,V(n,m), generated by closure of the
n-string 111- and 211-dimensional braids of irreducible lengthm(m@1) in the
limit n@1. © 1999 American Institute of Physics.@S0022-2488~99!04307-8#

I. INTRODUCTION

Besides the traditional fundamental topological issues concerning the construction o
topological invariants, investigation of homotopic classes and fibre bundles we mark a set of
but much less studied problems. First of all, we mean the problem of so-called ‘‘knot entr
calculation. Most generally it can be formulated as follows. Take the latticeZ3 embedded in the
spaceR3. Let V be the ensemble of all possible closed non-self-intersectingN-step paths with one
common fixed point onZ3; by vN we denote the particular configuration of the trajectory. T
main question is: what is the fractionPN of the trajectoriesvNPV belonging to some specific
homotopic class characterized by the topological invariant Inv~we do not specify the way o
defining the topological invariant!. The distribution functionP$Inv% satisfies the obvious norma
ization condition(all vNPVPN$Inv%51.

In the present paper we pay attention to the statistical problem concerning the estima
the set V5$V (1),V (2)% of knots generated by closure of braids embedded in 111- and
211-dimensions~see the definitions below!.

The paper is organized as follows. Below we give the basic definitions of the stand
11-dimensional and 211-dimensional braid groups as well as formulate the basic results; S
is devoted to the estimations of the setsV (1) and V (2) using the concept of 111- and
211-locally-free groups; while in the Conclusion we discuss in more details the coroll
following our consideration.

A. The basic definitions

~1! The 111-dimensional~‘‘standard’’! braid groupBn11
(1) of n11 strings hasn generators

$s1 ,s2 ,...,sn and their inverses% @see Fig. 1~a!# with the following relations:

sisi11si5si11sisi11 ~1<i,n!

sisj5sjsi ~ui2ju>2! ~1!

sisi
215si

21si5e.

~2! The 211-dimensional~‘‘surface’’! braid groupBn11
(2) can be defined in the following way

~see, for instance Refs. 1, 2!. Consider the two-dimensional latticeZ2 and take distinct
points P1 ,P2 ,...,Pn11PZ2. A 211-braid of n11 strings on Z2 based at
$P1 ,P2 ,...,Pn11% is ann11-tupleb5(b1 ,...,bn11) of paths,bi :@1,N#→Z2, such that

~i! bi(1)5Pi andb1(1)P$P1 ,P2 ,...,Pn11%; i P$1,...n11%;
65980022-2488/99/40(12)/6598/11/$15.00 © 1999 American Institute of Physics
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~ii ! bi(t)Þbj (t);$ i , j %P$1,...,n11%, iÞ j ; tP@1,N#.

The braid groupBn11
(2) on Z2 based at$P1 ,P2 ,...,Pn11% is the group of homotopy classes o

braids based at $P1 ,P2 ,...,Pn11%. The group Bn11
(2) has 2(n3n) generators

$(s11
(x) ,s11

(y)),...,(s1n
(x) ,s1n

(y));...;(sn1
(x) ,sn1

(y)),...,(snn
(x) ,snn

(y)) and their inverses% @see Fig. 1~b!# with
the following relations:

s i , j
~x!s i 11,j

~x! s i , j
~x!5s i 11,j

~x! s i , j
~x!s i 11,j

~x! ~1<$ i , j %<n!

s i , j
~y!s i , j 11

~y! s i , j
~y!5s i , j 11

~y! s i , j
~y!s i , j 11

~y! ~1<$ i , j %<n!

s i , j
~x!s i , j

~y!s i , j
~x!5s i , j

~y!s i , j
~x!s i , j

~y! ~1<$ i , j %<n!

~2!
s i 1 , j 1

~x! s i 2 , j 2

~x! 5g j i 2 , j 2

~x! s i 1 , j 1

~x! ~ u i 12 i 2u.1 or u j 12 j 2u.0!

s i 1 , j 1

~x! s i 2 , j 2

~y! 5s i 2 , j 2

~y! s i 1 , j 1

~x! ~ i 22 i 1Þ$0,1% or j 12 j 2Þ$0,1%!

s i , j
~x!~s i , j

~x!!)215s i , j
~y!~s i , j

~y!!)215e.

The braid groupsBn
(1) andBn

(2) have the following general properties:

~a! Any arbitrary word written in terms of ‘‘letters’’—generators of the groupsBn
(1) or

Bn
(2)—gives a particular braid.

~b! The length, N, of the braid is the total number of used letters, while theminimal irreducible
length, m, hereafter referred to as the ‘‘primitive length’’ is the shortest noncontract
length of a particular braid which remains after applying of all possible group relat
Diagrammatically the braid can be represented as a set of crossed strings going from
to the bottom appeared after subsequent gluing the braid generators.

FIG. 1. Representation of~a! 111-braid group generator,s i ; ~b! 211-braid group generatorss i , j
x ands i , j

y .
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~c! The closed braid appears after gluing the ‘‘upper’’ and the ‘‘lower’’ free ends of the brai
the cylinder.

B. The main results

Our basic results might be formulated in a geometrically clear way. Consider two se
braids $Bn

(1)% and $Bn
(2)%, embedded in 111- and 211-dimensions correspondingly. Let eac

particular braid has the primitive lengthm and is represented byn strings.
Then

~1! The setV (1)(n,m) of knots which can be generated by the standard braids of given irredu
lengthm(m@1) from the set$Bn

(1)% (n5const@1) is restricted from above by the value

V~1!~n,m!,
32p2

log4 2

2n

n3 7m21. ~3!

~2! The setV (2)(n,m) of knots which can be generated by the surface braids of given irredu
lengthm(m@1) from the set$Bn

(2)% (n5const@1) is restricted from above by the value

V~2!~n,m!,
32n2

p2 S 2n

lognD
m21

. ~4!

~See the Conclusion for more detailed discussion of the results~3! and ~4!.!

II. COMBINATORICS OF WORDS

Any braid corresponds to some knot or link. The correspondence between braids and k
not mutually single valued and each knot or link can be represented by infinite series of dif
braids. However, we can estimate from above the partition functionsV (1)(n,m) andV (2)(n,m) of
all possible knots generated by the ensemble of all 111- and 211-braids of primitive lengthm
using the following obvious fact.The setsV (1)(n,m) andV (2)(n,m) are bounded from above b
the number of all distinct words of the primitive lengthm in 111- and 211-braid groups
correspondingly.Thus in what follows we are aimed in the estimation of the number of n
equivalent words in the standard and surface braid groups.

A. Definitions of 1 11- „‘‘standard’’ … and 2 11- „‘‘surface’’ … locally free groups

~1! Following the ideas of Vershik concerning the notion of the ‘‘local groups’’3 and the
papers,4 where the concept of a ‘‘locally free’’ group was proposed at first in the to
logical context, let us define the group,LFn11

(1) , which hasn generators$f 1 ,...,f n and
their inverses% with the relations,

H f j fk5fkf j for u j 2ku>2
f i f i

215e. ~5!

We call the group with relations~5! the 111-dimensional ‘‘locally free group,’’ because each pa
of generators (f j , f j 61) produces a free subgroup of the groupLFn11

(1) .
The groupLFn11

(1) can be obtained from the braid groupBn11
(1) if we replace the braiding

~‘‘Yang–Baxter-type’’! relations by the free ones. The geometrical interpretation of the gener
of a groupLFn11

(1) is shown in Fig. 2~a!.
Apparently, in mathematical literature the notion similar to our ‘‘locally free group’’ appea

first in the paper5 devoted to the investigation of the combinatorial properties of rearrangemen
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sequences, known also as ‘‘partially commutative monoids’’~see Ref. 6, and references therei!.
~2! The 211-dimensional~‘‘surface’’! locally free groupLFn11

(2) has 2(n3n) generators
$( f 11

(x) , f 11
(y)),...,(f 1n

(x) , f 1n
(y));...;(f n1

(x) , f n1
(y)),...,(f nn

(x) , f nn
(y)) and their inverses% with the fol-

lowing relations:

f i 1 , j 1

~x! f i 2 , j 2

~x! 5 f i 2 , j 2

~x! f i 1 , j 1

~x! ~ u j 12 j 2u.0 or u i 12 i 2u.1!

f i 1 , j 1

~x! f i 2 , j 2

~y! 5 f i 2 , j 2

~y! f i 1 , j 1

~x! ~ i 22 i 1Þ$0,1% or j 12 j 2Þ$0,1%! ~6!

f i , j
~x!~ f i , j

~x!!215 f i , j
~y!~ f i , j

~y!!215e.

Thus, we can construct the 211-locally free groupLFn11
(2) from the surface braid groupBn11

(2) if
we replace the braiding relations of the neighboring generators by the ‘‘full monodromy,’’ i.e
the free group relations@see Fig. 2~b!#.

The following important properties of 111- and 211-locally free groups should be men
tioned.

~i! By definition the locally free groupsLFn11
(1) andLFn11

(2) have less relations than the bra
groupsBn11

(1) andBn11
(2) correspondingly.Thus, the number of distinct words of the primitiv

length m in the 111- and 211-braid groups is bounded from above by the number
distinct words of the primitive lengthm in the 111- and 211-locally free groups.

~ii ! By construction~compare Figs. 1 and 2! the monodromy generatorsf i ( i P@1,n#) of the
group LFn11

(1) and f i , j
(x,y) ($ i , j %P@1,n#) of the groupLFn11

(2) can be written asf i5(s i)
2

( i P@1,n#) and f i , j
(x,y)5(s i , j

(x,y))2 ($ i , j %P@1,n#), wheres i ands i , j
(x,y) are the generators o

the groupsBn11
(1) and Bn11

(2) correspondingly.Thus, the number of distinct words of th
primitive length2m in the 111- and 211-braid groups is bounded from below by th

FIG. 2. Representation of~a! 111-locally free group generator,f i ; ~b! 211-locally free group generatorsf i , j
x and f i , j

y .
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number of distinct words of the primitive lengthm in the 111- and 211-locally free
groups.

B. Computation of number of nonequivalent words in 1 11- and 2 11-locally free
groups

We derive explicitly the expressions of the numbersV(1)(n,m) and V(2)(n,m) of all non-
equivalent primitive words of lengthm in the groupsLFn11

(1) and LFn11
(2) , respectively. Our

computations are based on the so-called ‘‘normal order’’ representation of words propos
Vershik in Ref. 7~see also Ref. 4!.

1. The group LFn 11
„1…

Let us represent each wordWp of irreducible lengthm in the groupLFn11
(1) in the ‘‘standard’’

form

Wp5~ f a1
!m1~ f a2

!m2
¯~ f as

!ms, ~7!

where( i 51
s umi u5m ~miÞ0; i ; 1<s<m! and the sequence of generatorsf a i

in Eq. ~7! for all

distinct fa i
, satisfies the following local rules4 ~‘‘normal order’’ representation!,

~i! If f a i
5 f 1 , then f a i 11

5 f 2 ;
~ii ! If f a i

5 f k (2<k<n21), then f a i 11
P$ f 1 ,...,f k21 , f k11 ,%;

~iii ! If f a i
5 f n , then f a i 11

P$ f 1 ,...,f n21%.

The rules~i!–~iii ! give the prescription how to encode and enumerate all distinct prim
words in the groupLFn11

(1) . If the sequence of generators in the primitive wordWp does not
satisfy the rules~i!–~iii !, we commute the generators in the wordWp until the normal order is
restored. Hence, the normal order representation enables one to give the unique coding
nonequivalent primitive words in our group.

Let un(m) be the number of all distinct sequences ofm11 generators, 0<m<m21, satis-
fying the rules~i!, ~ii !, ~iii !. The calculation of the number of distinct primitive wordsV(1)

3(n,m) of given primitive lengthm is now straightforward,

V~1!~n,m!5 (
m50

m21

2m11S m21
m D un~m!. ~8!

The combinatorial factor 2m11(m
m21) in Eq. ~8! is the number of all primitive words of lengthm

written in a normal order form for thefixed sequenceof m11 generators.
Our approach to the computation ofun(m) is based on the consideration of a ‘‘correlatio

function’’ un(x,x0 ,m) which is defined as the number of all distinct sequences ofm11 genera-
tors satisfying the rules~i!, ~ii !, ~iii !, beginning with the generatorf x0

and ending with the gen
erator f x . It is easy to write an evolution equation foru(x,m)[un(x,x0 ,m) with the ‘‘time’’ m,

u~x,m11!5u~x21,m!1 (
y5x11

n

u~y,m!. ~9!

This equation should be completed by initial and boundary conditions

u~x,0!5dx,x0

~10!
u~0,m!5u~n11,m!50.

We solve the boundary problems~9!–~10! in the limit n@1 supposing the periodical bound
ary conditions on the segment@0,n11#. Namely, we have
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u~x11,m11!2u~x,m11!5u~x,m!2u~x21,m!2u~x11,m!

u~x,0!5dx0 ,x ~11!

u~0,m!5u~n11,m!50.

The substitution

u~n,m!5 (
k51

n

Aklk
mak~x! ~12!

enables us to pass to the following recursion relations

~lk11!ak~x11!2~lk11!ak~x!1ak~x21!50
~13!

ak~0!5ak~n11!50.

One can readily find the eigenvalues and eigenfunctions of~13!,

lk54 cos2
pk

n11
21,

~14!

ak~x!5

sin
pkx

n11

S 2 cos
pk

n11D x , k51,...,n.

As the function~13! is not symmetric, the set of eigenfunctions is not orthogonal on
segment@0,n11# and it is difficult to ensure the initial condition. It is convenient to pass fr
~13! to symmetric problem. Consider a generating function

Z~x,s!5 (
m50

`

smu~x,m!. ~15!

The equation for the functionZ(x,s) reads

~s11!Z~x11,s!2~s11!Z~x,s!1sZ~x21,s!5dx,x0212dx,x0

~16!
Z~0,s!5Z~n11,s!50.

The last equation can be symmetrized via the substitutionZ(x,s)5Axw(x,s), where A
5As/(s11). Thus, we get

w~x11,s!2
1

A
w~x,s!1w~x21,s!5

A2x

As~s11!
~dx,x0212dx,x0

!

~17!
w~0,s!5w~n11,s!50.

Making use of the sin-Fourier transform,f (k,s)5 (
x51

n

w(x,s)sin@pkx/(n11)#, let us rewrite

~17! in the form
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S 2 cos
pk

n11
2

1

AD f ~k,s!5
A2x0

As~s11!
S A sin

pk~x021!

n11
2sin

pkx0

n11 D .

The final explicit expression of the functionZ(x,s) reads as follows:

Z~x,s!5
2

~n11!~s11!
S s

s11
D ~x2x0!/2

(
k51

n As11

s
sin

pkx0

n11
2sin

pk~x021!

n11

As11

s
22 cos

pk

n11

sin
pkx

n11
.

Now we can restore the functionu(x,m) via contour integration

u~x,m!5
1

2p i R
C

Z~x,s!

sm11 ds,

where the contourC surrounds the points50 and is displaced in the regularity area of t
function Z(s)[Z(x,s). Hence

u~x,m!52(
sk

ResS Z~x,sk!

sk
m11 D ,

wheresk are the poles out of the regularity area,

sk5
1

4 cos2
pk

n11
21

~compare to~14!!. We are interested only in the asymptotic behaviorm@1 of the function
un(x,x0 ,m) which is determined by the poles nearest to the origin,s15sn5 1

3 for n@1. So we get

un~x,x0 ,m!5
4

n11
sin

p~x011!

n11
sin

px

n11
2x02x3m. ~18!

To find the function un(m) we should sum upu(x,x0 ,m) over all x and x0 ; un(m)
5(n

x,x051un(x,x0 ,m). We obtain in the limit forn5const@1 the following expression:

un~m!5
16p2

log4 2

2n

n3 3m. ~19!

The whole number of nonequivalent words follows from Eq.~8! in the limits n5const@1, m
@1,

V~1!~n,m!5
32p2

log4 2

2n

n3 7m21. ~20!

2. The group LFn 11
„2…

It is convenient to enumerate the generatorsf i j
(a) , i , j 51,...,n2, a5x,y, ordering them in a

sequence, (f 11
(x) , f 11

(y)),...,(f 1n
(x) , f 1n

(y)),...,(f n1
(x) , f n1

(y)),..., (f nn
(x) , f nn

(y)). For any such sequence we d
fine the ‘‘normal order’’ according to the prescriptions~i!–~iii !. Let z be the serial number of the
pair (f i j

(x) , f i j
(y)). Consider the functionsa(z,m) and b(z,m) defined as numbers of all distinc

sequences ofm11 generators satisfying the rules~i!–~iii ! and ending withf i j
(x) and f i j

(y) , respec-
tively. One can readily write the evolution equations fora(z,m) andb(z,m) similar to ~9!,
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a~z,m11!5a~z21,m!1b~z2n,m!1b~z2n11,m!1b~z,m!1 (
z85z11

n2

~a~z8,m!1b~z8,m!!

~21!

b~z,m11!5b~z2n,m!1a~z21,m!1a~z,m!1 (
z85z11

n2

~a~z8,m!1b~z8,m!!.

Analogous to the case of the groupLFn11
(1) let us suppose in the limitn@1 the periodical

boundary conditions on the segment@0,n211#. So we have

a~z11,m11!2a~z,m11!5b~z2n12,m!2b~z2n,m!

2b~z,m!1a~z,m!2a~z21,m!2a~z11,m!,

b~z11,m11!2b~z,m11!5b~z2n11,m!2b~z2n,m!2a~z21,m!2b~z11,m!,
~22!

a~0,m!5b~0,m!5a~n211,m!5b~n211,m!50, m50,1,...,

a~z,0!5b~z,0!51, z51,...,n2.

The initial conditions differ from~11! because in~22! we do not fix the first generator in th
sequence involved.

Assuming thatua(z,m)2b(z,m)u→0(n→`) uniformly for z andm, we may pass from~22!
to a single closed equation for the functionb(z,m). ~The self-consistency of this supposition w
check at the end of our computations.! So, we get

b~z11,m11!2b~z,m11!5b~z2n11,m!2b~z2n,m!2b~z21,m!2b~z11,m!,

b~0,m!5b~n211,m!50, m50,1,..., ~23!

b~z,0!51, z51,...,n2.

Performing the decompositionb(z,m)5 (
k51

n2

Bklk
mbk(z), we arrive at the following boundary

problem:

~lk11!bk~z11!2lkbk~z!1bk~z21!1bk~z2n!2bk~z2n11!50
~24!

bk~0!5bk~n211!50.

Let us look for the solution of Eq.~24! in the formbk(z)5pk
z sin@pkz/(n211)#. Substituting

this ansatz in~24! we obtain an equation forpk as well as an expression forlk ,

sin
pk

n211
pk

n111sin
2nk

n211
pk

n2sin
pk

n211
pk

n212sin
pkn

n211
pk

2

12 cos
pk

n211
sin

pkn

n211
pk2sin

pkn

n211
50,

~25!

lk5pk
22212pk

2n

sin
pk~n21!

n211

sin
pk

n211

1pk
2n21

sin
pkn

n211

sin
pk

n211

.
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In Eq. ~25! each rootpk
( i ) corresponds to different values oflk

( i ) . However, we are intereste
only in the asymptotic behavior ofb(z,m)(m@1) determined by the largest value oflk

( i ) for k
51. ~Compare to the case of the groupLFn11

(1) , Eq. ~14!.! Equation~25! at k51 andn@1 reads

p1
n1112p1

n2p1
n212n~p121!250,

~26!
l15p1

22211np1
2n212~n21!p1

2n .

One can easily check that the smallest positive root corresponding to the largest value ofl1
( i ) is

p1512
logn

n
1oS logn

n D , n5const@1,

and

l15
n

logn
1oS n

lognD , n5const@1. ~27!

In the 111-dimensional case the same value oflk was given by the right edge of the spectru
but in 211-dimensional case one can prove that Eq.~25! for any i .1 has no solutionln2

( i )

growing as fast asl1 . The coefficientsBk should be found from the initial condition

(
k51

n2

Bkbk~z!51.

As p1→1 (n@1) we can expect the setbk(z) to be orthogonal in the vicinity of the left edge o
the spectrum, soB1 is determined basically by the expression

B15
*0

n211b1~z!dz

*0
n211b1

2~z!dz
, n@1.

Now we have the following equation for the function forb(z,m) in the limits n5const@1 and
m@1,

b~z,m!5
4

p
sin

pz

n211 S n

lognD m

. ~28!

If we suppose the equalitya(z,m)5b(z,m), whereb(z,m) is given by ~28!, it is easy to
check thata(z,m) andb(z,m) really satisfy Eqs.~22! in the limits n@1, m@1. This fact proves
our assumption about the behaviors ofa(z,m) andb(z,m) in a self-consistent way.

The limiting expression of the functionũn(m) which is defined similar to the functionun(m)
in the 111-dimensional case reads

ũn~m!5(
z51

n2

a~z,m!1b~z,m!5
16n2

p2 S n

lognD m

.

Thus, the asymptotics of the number of nonequivalent words of given irreducible length,m in the
limit n5const@1, m@1 is

V~2!~n,m!5 (
m50

m21

2m11S m21
m D ũn~m!5

32n2

p2 S 2n

lognD m21

~29!

~compare to Eq.~20!.!
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III. CONCLUSION

The principal difference between the limiting behavior of the partition functionsV(1)(n,m)
andV(2)(n,m) ~and, hence, between the upper boundaries of the setsV (1)(n,m) andV (2)(n,m)!
becomes at most illuminating in the limitn5const@1 andm→` if we consider the following
limit:

f 1,25F lim
m→`

logV~1,2!~n,m!

m G
n5const@1

. ~30!

Using Eqs.~20! and ~29!, we get

f 15 log 7

f 25
2n

logn
.

Thus, we can conclude, that with the exponential accuracy in the limitn5const@1 andm
→` the setV (1)(n,m) is bounded from above by then-independent estimate, i.e.,V (1)(n,m) is
‘‘representation-independent;’’ while the setV (2)(n,m) with the same accuracy and in the sam
limit depends strongly on the braid representation~i.e., on the number of strings,n!.

Equations~20! and~29! enable us to make some conclusions about the structure of the g
corresponding to the groupsLFn

(1) andLFn
(2) . These graphs can be viewed as follows. Take

free111- or 211-groups, where all generators do not commute at all. The graphs of these g
have structures of 2n- and 2n2-branching Cayley trees, where the number of distinct words
lengthm is equal to

Vfree
~1! ~n,m!52n~2n21!m21 for 1112free group

Vfree
~2! ~n,m!52n2~2n221!m21 for 2112free group.

The graphs corresponding to the groupsLFn
(1,2) can be constructed from the graphs of the fr

groups in accordance with the following recursion procedure:

~i! Take the root vertex of the free group graph and consider all vertices on the distanm
52. Identify those vertices which correspond to the equivalent words in groupsLFn

(1,2) ;
~ii ! Repeat this procedure taking all vertices on the distancem5(1,2,...) and ‘‘gluing’’ them on

the distancem12 according to the definition of the locally free groups.

By means of this procedure we raise a graph which in average haszeff
(1,2)21 distinct branches

leading from the levelm to the levelm11. We may easily find the expressions ofzeff
(1,2) using Eqs.

~20! and ~29!. We have in the limitn5const@1 andm→`,

zeff
~1,2!5

V~1,2!~n,m11!

V~1,2!~n,m!
115H 8 for 1112 locally free group

2n

logn
for 2112 locally free group.

We see that the graph of the groupLFn
(1) coincides~in average! with (zeff58)-branching Cayley

tree for anyn@1, while the effective coordinational number of the graph of the groupLFn
(2)

depends onn and does not ‘‘saturate’’ forn@1.
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We study the graded derivation-based noncommutative differential geometry of the
Z2-graded algebraM(num) of complex (n1m)3(n1m)-matrices with the ‘‘usual
block matrix grading’’ ~for nÞm). Beside the~infinite-dimensional! algebra of
graded forms, the graded Cartan calculus, graded symplectic structure, graded vec-
tor bundles, graded connections and curvature are introduced and investigated. In
particular we prove the universality of the graded derivation-based first-order dif-
ferential calculus and show thatM(num) is a ‘‘noncommutative graded manifold’’
in a stricter sense: There is a natural body map and the cohomologies ofM(num)
and its body coincide~as in the case of ordinary graded manifolds!. © 1999
American Institute of Physics.@S0022-2488~99!03811-6#

I. INTRODUCTION

The basic idea of noncommutative geometry,1 which is the formulation of differential geo
metric concepts on more general algebras than the algebras ofC` functions on differentiable
manifolds, is at least conceptionally rooted in the fact that all the information about the diff
tiable manifold and its sheaf of differentiable functions is encoded in its algebra of globaC`-
functions such that differential geometry can be formulated in terms of the latter algebra
though theZ2-graded algebra of global sections of the structure sheaf of a graded manifol
‘‘baby-noncommutative geometry,’’ the differential geometry of graded manifolds is treated
interpreted in the spirit of classical differential and algebraic geometry. So graded man
should not be seen as specific noncommutative geometries to which the general meth
noncommutative geometry applies, but rather as a conceptional starting point of a ‘‘super
alization’’ of noncommutative geometry. Because graded manifolds are completely determin
the Z2-graded algebra of global sections of their structure sheafs,2 the natural class of objects t
which such a generalization applies areZ2-graded real and complex algebras, respectively.

There exist already several articles and books in the literature dealing with various asp
Z2-gradedC-algebras, supersymmetry, and noncommutative geometry. Examples, are Refs
4, where notions such as cyclic cohomology and Fredholm modules are treated in theZ2-graded
setting; Ref. 5, where supersymmetry is employed to establish metric, Ka¨hler, and symplectic
structures in noncommutative geometry; Ref. 6, where the concept of a spectral triple is ex
to algebras which contain bosonic and fermionic degrees of freedom, and Refs. 7 and 8, wh
possibility of generalizing matrix geometry to theZ2-graded framework is presented. Here w
want to adopt a somewhat different point of view.

If O(X) is theZ2-graded algebra of global sections of the~complexified! structure sheaf of
some graded manifold~complex! global graded vector fields on the graded manifold are
definition graded derivations ofO(X). All global graded vector fieldsOg(X) from a complex Lie

a!Electronic mail: grosse@doppler.thp.univie.ac.at
b!Electronic mail: reiter@itp.tu-graz.ac.at
66090022-2488/99/40(12)/6609/17/$15.00 © 1999 American Institute of Physics
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subsuperalgebra and a graded module over the graded centerZg(O(X)). ~Complex! global graded
p-forms for pPN are defined asp-fold Zg(O(X))-graded-multilinear, graded-alternating ma
from Og(X) to O(X) and one can form theN03Z2-bigradedC-vector spaceVg(X) of global
graded forms as the direct sum of allZ2-gradedC-vector spacesVg,p(X) of global gradedp forms.
The graded wedge product as well as the whole graded Cartan calculus onVg(X) can be intro-
duced ~see Refs. 2 and 9, for example! by employing only the facts thatOg(X) is a C-Lie
superalgebra andZ2-gradedZg(O(X))-module and thatO(X) is a Z2-gradedC-algebra.

The important feature of the recipe for the construction of the graded deRham comple
the graded Cartan calculus formulated above is that it uses only the graded algebra struc
O(X). In particular it does not use the graded commutativity ofO(X) and we can define on
arbitraryZ2-gradedC algebras noncommutative graded differential calculi.

What we have just described is mutatis mutandis the basic idea of the so-called deriv
based differential calculi10–13 transposed to theZ2-graded setting. Such graded derivation-bas
differential calculi were investigated for arbitrary, but graded-commutativeZ2-graded algebras in
the framework ofZ2-graded Lie–Cartan pairs.3,4,14

Motivated by the rich differential geometric structure of ordinary matrix algebras10,11,15and by
our previous investigation of the fuzzy supersphere,16,17 where each truncated supersphere wa
graded matrix algebra in particular, we will investigate especially the differential calculus b
on all graded derivations on theZ2-graded C-algebra M(num) of complex
(n1m)3(n1m)-matrices (n,mPN0 ,n1mPN),Z2-graded by declaring the vector subspace

M~num! 0̄ªH M5S M1 0

0 M4
D UM1PM~n!,M4PM~m!J ~1!

of M(num) as even and the vector subspace

M~num! 1̄ªH M5S 0 M2

M3 0 D UM2PM~n,m!,M3PM~m,n!J ~2!

of M(num) as odd. HereM(n,m) andM(n) denote the vector space ofn3m, respectively, the
algebra ofn3n-matrices and we will always assumenÞm.

Section II is devoted to the precise definition of the graded derivation-based differe
calculus onM(num) as described in Sec. I and its immediate consequences. The resulting
plexes are nothing else than the complexes of Lie superalgebra cohomology with valu
M(num) and typically infinite. The latter fact shows, in particular, that the complex is comple
different from that proposed in Refs. 7 and 8.

In Sec. III we continue the investigation of the differential calculus using the facts that
exist graded-commutative homogeneous bases in theZ2-gradedM(num)-modules of all graded
p-forms and that all graded derivations ofM(num) are inner. In particular, we construct a
invariant graded one-form, which determines the differential of graded matrices in terms of g
commutators~within the graded algebra of graded forms! and show that the first-order differentia
calculus is universal.

Associated with every graded manifold there exists an even, surjective algebra hom
phismbX from theZ2-graded algebra of global sections of the~complexified! structure sheaf of
the graded manifoldO(X) to the algebraC`(X) of ~complex! C`-functions on its body manifold
X. We call this map, which is the key to all further developments in graded manifold theory
body map. In Sec. IV we show that there exists a natural noncommutative analog to the bod
It induces an isomorphism between the graded derivation-based cohomology ofM(num) and the
derivation-based cohomology of its body, such that the situation described by a theor
Kostant9 is generalized to the noncommutative case.
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In Sec. V we study the graded symplectic geometry ofM(num). As for ordinary matrix
geometry,10,11,18,19which is included as special case, there exists a graded symplectic stru
such that the induced graded Poisson bracket onM(num) is ~i times! the graded commutator o
M(num).

In Sec. VI we investigate the noncommutative generalization of graded vector bundles
graded manifolds. Graded vector bundles over a graded manifold (X,O) are usually introduced a
locally graded-freeO-modules.2,9,20 In the spirit of noncommutative geometry1,21 we concentrate
on the module of global sections and introduced graded vector bundles overM(num) asZ2-graded,
finitely generated~graded-projective! M(num)-modules. Concepts like connections and curvat
can be generalized to theZ2-graded noncommutative setting.

In addition we have included an appendix in which we analyze the associative produ
supertrace-free, graded matrices. The results of this analysis are used for a minimality p
Sec. III.

There will appear lots ofZ2-graded objects. If the object is denoted byA its even part is
denoted byA0̄ , its odd part byA1̄ . If a is some homogeneous element of such an objec
degree will be denoted byā. Speaking of grading in the context of an ungraded object, we m
that the object is endowed with its trivial graduation. If for some construction theZ2-grading is
indicated by an index ‘‘g’’, we omit this index in the case of trivial graduation.

II. GRADED DERIVATION-BASED DIFFERENTIAL CALCULUS ON GRADED MATRIX
ALGEBRAS

We will interpret theC-Lie superalgebra andZ2-gradedZg(M(num))-moduleDerg(M(num))
of all graded derivations ofM(num) as ‘‘noncommutative graded vector fields’’ onM(num).
BecauseM(num) is graded central,

Zg~M~num!!5Zg~M~num!! 0̄5C1n1m>C, ~3!

the concept of gradedZg(M(num)) multilinearity reduces to ordinaryC multilinearity and we can
employ ideas and results of Lie superalgebra cohomology~see Refs. 22 and 23! for the construc-
tion of the graded derivation-based differential calculus onM(num).

For every natural numberpPN let us denote by Homp(Derg(M(num));M(num)) the
Z2-gradedC-vector space of allp-linear mapsDerg(M(num))3...p3Derg(M(num))→M(num)
and bySp the symmetric group ofp letters. Introducing a commutation factorgp :Sp3Z23...p
3Z2→$61% via

gp~s; ıĪ1 ,...,ıĪ p!ª )
r ,s51,¯p;r ,s
s21~r !.s21~s!

~21! ıĪ r ıĪs, ~4!

we can define a representationp of Sp on Homp(Derg(M(num));M(num)) by

~psv!~D1 ,...,Dp!ªgp~s;D̄1 ,...,D̄p!v~Ds~1! ,...,Ds~p!! ~5!

for all vPHomp(Derg(M(num));M(num)), all homogeneousD1 ,...,DpPDerg(M(num)), and all
sPSp . Now by definition ap-linear mapvPHomp(Derg(M(num));M(num)) is called graded
alternating if

psv5sgnsv ~6!

is fulfilled for all sPSp and we interpret such maps as gradedp-forms onM(num). All graded
p-forms onM(num) form a graded vector subspace of Homp(Derg(M(num));M(num)), which we
will denote byVg,p(M(num)).

A general graded form onM(num) is an element of the direct sum
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Vg~M~num!!ª %

pPN0

Vg,p~M~num!!, ~7!

where we setVg,0(M(num))ªM(num). Employing the multiplicative structure ofM(num) we can
proceed exactly as in the case of graded manifolds2,9 ~respectively, graded Lie–Cartan pairs3,4,14!

to introduce a graded wedge product onVg(M(num)). So we first define for allp,p8PN0 , ıĪ ,i 8
PZ2 a bilinear map∧:Vg,p(M(num)) ıĪ3Vg,p(M(num)) i 8→Vg,p1p8(M(num)) i 1 i 8 by

~v∧v8!~D1 ,...,Dp1p8!ª
1

p! p8! (
sPSp1p8

sgnsgp1p8~s;D̄1 ,...,D̄p1p8!

•~21! ıI8( l 51
p D̄s~ l !v~Ds~1! ,...,Ds~p!!v8~Ds~p11! ,...,Ds~p1p8!!.

~8!

for all homogeneousD1 ,...,Dp1p8PDerg(M(num)) and extend these by bilinearity t
Vg(M(num)). With respect to it,Vg(M(num)) becomes aN03Z2-bigradedC algebra.

Via

~LD0
v!~D1 ,...,Dp!ªD0~v~D1 ,...,Dp!!2(

l 51

p

~21!D̄0~v̄1(
l 851
l 21

D̄l 8!v~D1 ,...,@D0 ,Dl #g ,...,Dp!,

~9!

~iD1
v!~D2 ,...,Dp!ªv~D1 ,D2 ,...,Dp! ~10!

and

dv~D0 ,...,Dp!5(
l 50

p

~21! l 1D̄l ~v̄1(
l 850
l 21

D̄l 8!LDl
~v~D0 ,...,D

∨

l ,...,Dp!!

1 (
0< l , l 8<p

~21! l 81D̄l 8(
l 95 l 11
l 821

D̄l 9v~D0 ,...,Dl 21 ,@Dl ,Dl 8#g ,...,D
∨

l 8 ,...,Dp!

~11!

for all homogeneousD0 ,D1 ,...,DpPDerg(M(num)) and all homogeneousvPVg,p(M(num)) ~~
denotes omission!, one defines homogeneous endomorphismsVg(M(num))→Vg(M(num)) of
bidegree (0,D̄0), (21,D̄0), and (1,0̄) respectively. The assignmentsD°iD andD°LD extend to
C-linear maps Derg(M(num))→End(Vg(M(num))) and L is a graded representation o
Derg(M(num)) in particular. Furthermore the relations

d+d50, d+LD5LD+d, ~12!

as well as

iDiD81~21!DD8iD8+iD50,

~LD+iD82iD8+LD!v5~21!D̄v̄i uD,D8ug
v, ~13!

~iD+d1d+iD!v5~21!D̄v̄LDv

for all homogeneousD,D8PDerg(M(num)) and all bihomogeneousvPVg(M(num)) are known
from Lie superalgebra cohomology.23
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By analogy with the case of graded manifolds we calld, LD , andiD the exterior derivative,
Lie derivative and interior product„with respect to a graded vector fieldDPDerg(M(num))…. ~12!
and~13! tell us that they fulfill exactly the same relations as in the ‘‘graded-commutative ca
but this observation remains also true for the graded wedge product~8! of graded forms.

Proposition 1: The relations

LD~v`v8!5~LDv!`v81~21!D̄v̄v`LDv8,

iD~v`v8!5~21!D̄v̄8~iDv!`v81~21!pv`iDv8, ~14!

d~v`v8!5~dv!`v81~21!pv`dv8

are fulfilled for all homogeneous DPDerg(M(num)),vPVg,p(M(num)),v8PVg,p8(M(num)).
Proof: This can be shown exactly as in the case of graded manifolds. That is, one start

a direct proof of the second relation and proofs the other equations inductively using the la
relations~13!.

Because we interpretd as exterior derivative, the Lie superalgebra cohomology
Derg(M(num)) with values inM(num),

H~M~num!![ %

pPN0

Hp~M~num!!ª
kerd

im d
, ~15!

has to be seen as analogous to the graded deRham cohomology on graded manifolds. Vi

@v#∧@v8#ª@v∧v8#, ~16!

the above graded derivation-based cohomology ofM(num) becomes aN03Z2-bigradedC-algebra
and we will continue to study it in Sec. IV.

III. HOMOGENEOUS BASES AND THE CANONICAL GRADED ONE-FORM

Whereas the definitions and results of the preceding considerations apply to eachZ2-graded,
graded-centralC-algebra we shall now employ more specific properties ofM(num). There will
result similar formulas as in ‘‘ordinary’’ matrix geometry,10,11,15which is included as a specia
case.

The setsVZg
g,p(M(num)) of gradedp-forms with values in the graded center ofM(num) form

graded vector subspaces ofVg,p(M(num)) for all pPN and one can introduce

VZg
g

~M~num!!ª %

pPN0

VZg
g,p

~M~num!! ~17!

with VZg
g,0(M(num))5Zg(M(num)). VZg

g (M(num)) is a bigraded subalgebra ofVg(M(num)),
whose product fulfills

v∧v85~21!pp81vv8v8∧v ~18!

for all homogeneousvPVZg
g,p(M(num)),v8PVZg

g,p8(M(num)), and which is stable with respect t
the whole Cartan calculus.

Now let us introduce a homogeneous basis$]A%A51,...,n81m8 of Derg(M(num)) with
]1 ,...,]n8PDerg(M(num)) 0̄ , ]n811 ,...,]n81m8PDerg(M(num)) 1̄ , where we set n8
ªdimC Derg(M(num)) 0̄ andm8ªdimC Derg(M(num)) 1̄ . If $hA%A51,...,n81m8 denotes the dual ba
sis to$]A%A51,...,n81m8 we can introduce a homogeneous basis$uA%A51,...,n81m8 of VZg

g,1(M(num))
by
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uA~D !ªhA~D !1n1m ~19!

for all DPDerg(M(num)). Employing the standard isomorphisms between graded-altern
maps and the graded exterior algebra,2,23 one deduces that

$uA1∧¯∧uApu~A1 ,...,Ap!PJ p
n8um8% ~20!

with

J p
n8um8

ª$~k1 ,...,kp8,ap811,...,ap!u0<p8<p;k1 ,...,kp851,...,n8; ~21!

ap811 ,...,ap5n811,...,n81m8;k1,k2,¯,kp8,ap811<¯<ap21<ap%

is an homogeneous basis ofVZg
g,p(M(num)),pPN.

Because of

M∧v5~21!M̄ v̄v∧M , ~22!

for all homogeneous MPM(num) and all bihomogeneousvPVZg
g (M(num)), the

N03Z2-bigradedC-algebrasVg(M(num)) and M(num) ^̂ CVZg
g (M(num)), where ^̂ denotes the

tensor product ofZ2-graded algebras, are canonically isomorphic. In particular we can conc
Proposition 2: TheZ2-graded M(num)-bimodulesVg,p(M(num)) are graded-free for both

multiplications and for all pPN0 . The set (20) determines a homogeneous basis of the left (ri,
Z2-gradedM(num)-moduleVg,p(M(num)).

Consequently everyvPVg,p(M(num)) can be written as

v5 (
~A1 ,...,Ap!PJp

n8um8
vA1 ...Ap

∧uA1∧¯∧uAp ~23!

with unique coefficientsvA1 ...,Ap
PM(num). Explicitly these coefficients are given by

vA1...Ap
5~21!~1/2!p9~p921!

1

) l 51
n81m8Nl !

v~]A1
,...,]Ap

!, ~24!

wherep9 is the number of entries in (A1 ,...,Ap) greater thann8 andNl is the number of entries
in (A1 ,...,Ap) being equal tol.

In order to investigate graded derivations ofM(num) ~we include the casen5m for the
moment! let us denote bygl(num) the ~complex! general linear Lie superalgebra and bysl(num)
the~complex! special linear Lie superalgebra. The adjoint representation ofgl(num) is at the same
time a Lie superalgebra homomorphism ad:gl(num)→Derg(M(num)) and, as we will see, the
structure ofDerg(M(num)) and its Lie subsuperalgebras is determined by this homomorphis

Proposition 3: IfL is a Lie subsuperalgebra ofgl(num) then

Lad
ª im aduL ~25!

is a Lie subsuperalgebra ofDerg(M(num)). Conversely every Lie subsuperalgebra
Derg(M(num)) is of this form. There are two different cases.

~i! For nÞm the restriction ofad to sl(num) is a Lie superalgebra isomorphism ont
Derg(M(num)) and the various restrictions ofad induce a bijective correspondence b
tween Lie subsuperalgebras ofsl(num) and Lie subsuperalgebras ofDerg(M(num)).

~ii ! For n5m there is no Lie subsuperalgebraL of gl(nun) such that the restriction ofad to L
becomes a Lie superalgebra isomorphism ontoDerg(M(num)).
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Proof: An even graded derivation ofM(num) is just an ordinary derivation of theC-algebra
M(n1m) and these are inner, because the first Hochschild cohomology group ofM(n1m) with
values inM(n1m) is trivial.24 Introducing

GªS 1n 0

0 21m
D

we find for someDPDerg(M(num)) 1̄ and all homogeneousMPM(num),

DM5ad~ 1
2~DG!G!~M !,

from which we can conclude thatD is inner. Consequently, ifD is a Lie subsuperalgebra o
Derg(M(num)), thenLªad21(D) is a Lie subsuperalgebra ofgl(num) with Lad5D. ~i! and ~ii !
are consequences of 1n1m¹sl(num) for nÞm, respectively, 12nP@gl(nun) 1̄ ,gl(nun) 1̄#g . h

The ultimate reason for restricting our geometric investigation to the casenÞm lies in the
existence of the Lie superalgebra isomorphism ad:sl(num)→Derg(M(num)). The elements of
every homogeneous basis$]A%A51,...,n81m8 of Derg(M(num)) are given by

]A5adEA , ~26!

where $EA%A51,...,n81m8 is a homogeneous basis ofsl(num) and we haven85n21m221, m8
52nm in particular. Moreover, the structure constantscAB

C appearing in

@]A ,]B#g5 (
C51

~n1m!221

cAB
C ]C ~27!

are the structure constants of the homogeneoussl(num)-basis$EA%A51,...,(n1m)221 and one de-
duces the nice formulas

dEA52 (
B,C51

~n1m!221

cAB
C EC∧uB ~28!

and

duA5
1

2 (
B,C51

~n1m!221

cBC
A uC∧uB. ~29!

The even graded one-form

Qª (
A51

~n1m!221

EA∧uA ~30!

will be called the canonical graded one-form, because it plays a distinguished role.
Proposition 4: The definition ofQ is independent of the choice of the homogeneous bas

Derg(M(num)) and

Q~adM !5M2
1

n2m
Trs~M !1n1m ~31!

for all M PM(num). Q is (Derg(M(num))-invariant and this property determinesQ up to con-
stant multiples. Furthermore its exterior differential fulfills

dQ5Q∧Q ~32!
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and the exterior differential of each MPM(num) can be expressed according to

dM5@Q,M #g[Q∧M2M∧Q. ~33!

Proof: Beside the uniqueness statement only simple calculations are involved@for which one
can use~28! and~29! advantageously#. The irreducibility of the adjoint representation ofsl(num)25

guarantees that

LDv50, vPVg,1~M~num!!,

for all DPDerg(M(num)) implies v5cQ, cPC. h

Finally we note thatVg(M(num)) is in a certain sense minimal~for the ungraded case se
Refs. 12 and 15!.

Proposition 5: (28) can be inverted according to

uA54~n2m!2 (
B,C,D51

~n1m!221

~21!ĒBĒDKABKCDECEB∧dED , ~34!

where K is the Killing form ofsl(num) and KAB denote the components of the inverse matrix
(K(EA ,EB)). Consequently, ifV is differential subalgebra ofVg(M(num)) containingM(num),
thenV5Vg(M(num)).

Proof: The minimality statement follows from~34! because of proposition 2. In order to sho
~34! one uses~28! and expands the threefold product of the basis elementsEA according to~A4!.
Using the results of proposition A~34! follows.

The second part of proposition 5 can be stated differently: The canonical even algebra
morphisms from the~intrinsic! Z2-graded universal differential envelope ofM(num) to
Vg(M(num)) ~see Refs. 3 and 26 for a precise definition! is onto. The restriction of this homo
morphism to the corresponding first-order differential calculi is an isomorphism.

IV. COHOMOLOGY AND THE NONCOMMUTATIVE BODY MAP

We will call the even, surjectiveC-linear map

b:M~num!→M~nI ! with nIª H n if n.m
m if n,m, ~35!

defined by

b~M ![bS S M1 M2

M3 M4
D Dª H M1 if nI 5n

M4 if nI 5m ~36!

canonical body map ofM(num). A justification for choosing this terminology will result from th
investigation of its properties: They are completely analogous to the corresponding map of g
manifolds if one takes the noncommutativity ofM(num) and its ‘‘body’’ M(nI ) appropriately into
account. In order to distinguish between ‘‘objects’’ onM(num) and corresponding ‘‘objects’’ on
the body we underline the latter.

The restriction ofb to Zg(M(num)) is an even algebra homomorphism ontoZ(M(nI )) and by
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i~MI !ª5 S MI 0

0
1

n
Tr~MI !1m

D if nI 5n

S 1

m
Tr~MI !1n 0

0 MI
D if nI 5m

~37!

we can introduce an even, injectiveC-linear mapi:M(nI )→M(num), which is right inverse tob on
the one hand and whose restriction toZ(M(nI )) is an even algebra homomorphism in
Zg(M(num)) on the other hand.

Analogous to the body map of graded manifoldsb induces a Lie algebra homomorphism
b̂:Derg(M(num)) 0̄→Der(M(nI )) via

b̂~D !b~M !ªb~DM ! ~38!

for all MPM(num). b̂ is surjective because of

b̂~adE!5adb~E! ~39!

for all EPsl(num) 0̄ and in additionî:Der(M(nI ))→Derg(M(num)) 0̄ ,

î~adEI !ªadi~EI ! ~40!

is a Lie algebra homomorphism right-inverse tob̂.
Now we can introduce evenC-linear mapsb (p):Vg,p(M(num))→Vp(M(nI )), pPN by

~b~p!~v!!~DI 1 ,...,DI p!ªb~v~ î~DI 1!,...,î~DI p!!! ~41!

for all DI 1 ,...,DI pPDer(M(nI )). sl(num) 0̄ is canonically isomorphic tosl(n) % gl(1)% sl(m) and
we can choose a homogeneous basis$EA%A51,...,(n1m)221 of sl(num) such thatE1 ,...,EnI 221 lie in
the isomorphic copy ofsl(nI ) andEnI 2,...,En21m221 in the isomorphic copy ofgl(1)% sl(mI ) with
mI ªmin$n,m%. Then the elementsb(Ek)ªEI k , k51,...,nI 221 form a basis ofsl(nI ). Denoting the
elements of the basis ofV1(M(nI )) corresponding to$EI k%k51,...,nI 221 according to~19! and~26! by
uI k the action of the mapsb (p) can be described alternatively by

b~p!~v![b~p!S (
~A1 ,...,Ap!PJp

n21m221u2nm

vA1 ,...,Ap
∧uA1∧¯∧uApD

5 (
~k1 ,...,kp!PJp

nI 221u0
b~vk1 ,...,kp

!∧uI k1∧¯∧uI kp. ~42!

If we setb (0)[b the mapsb (p), pPN0 , extend uniquely to a bihomogeneous,C-linear map
Vg(M(num))→V(M(nI )) of bidegree (0,0̄), which we again denote byb. Because of~42! b is
onto and its restriction toVZg

g (M(num)) is a surjective homomorphism of bigradedC-algebras
onto VZ(M(nI )). Furthermoreb fulfills

b+LD5L b̂~D !+b ~43!

for all DPDerg(M(num)) 0̄ as well as

b+d5d+b. ~44!
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Consequentlyb induces a homomorphismH(b):H(M(num))→H(M(nI )) of cohomologies in the
usual way. Analogous to graded manifold theory9 this map is an isomorphism.

Proposition 6: H(b) is an isomorphism of bigradedC-algebras, such that both cohomologi
H(M(num)) and H(M(n)) are isomorphic to the Lie algebra cohomology H(sl(n);C) of sl(n)
with trivial coefficients.

Proof: Using the results of Ref. 23 as well asDerg(M(num))5sl(num)ad we find the sequence

H~M~num!!>H~sl~num!;M~num!!

>H~sl~num!;C1n1m! % H~sl~num!;sl~num!!

>H~sl~num!;C1n1m!>H~sl~num;C!

of natural isomorphisms between Lie superalgebra cohomologies. In particular we
H(M(n))>H(sl(nI );C) ~as N0-graded C-algebra!, which is well known from matrix
geometry.10–12Combining the above-mentioned result with the calculations of the cohomolog
sl(num) with trivial coefficients22,27 one can conclude thatH(b) is an isomorphism of bigraded
C-algebras.

V. NONCOMMUTATIVE GRADED SYMPLECTIC GEOMETRY

Generalizing the situation on graded manifolds9 as well as the one of ordinary matri
algebras10,11,18,19we call an even, closed graded two-formvPVg,2(M(num)) graded symplectic
structure onM(num), if the equation

v~D,DM !5DM ~45!

for all DPDerg(M(num)) possesses a unique solutionDMPDerg(M(num)) for each M
PM(num). The graded vector fieldsDMPDerg(M(num)) are called Hamiltonian and the set of a
graded Hamiltonian vector fields is denoted byHamg(v).

If vPVg,2(M(num)) is a graded symplectic structure onM(num) the assignmentM°DM

defines an evenC-linear mapDv:M(num)→Hamg(v)#Derg(M(num)) and one can conclude tha
~45! is equivalent to

iDM
v1dM50. ~46!

Using ~13! we find

LDM
v50 ~47!

for all DMPHamg(v), that is a graded symplectic structure onM(num) is—as usual—invariant
with respect to all graded Hamiltonian vector fields.

Via

$M ,M 8%g
v
ªv~DM ,DM8! ~48!

for all M ,M 8PM(num) we can introduce a graded Poisson bracket, which has the analo
properties as its graded-commutative pendant.

Proposition 7: (M(num),$•,•%g
v) is a C-Lie superalgebra and the graded Poisson brack

fulfills in addition

$M ,M 8M 9%g
v5$M ,M 8%g

vM 91~21!MM8M 8$M ,M 9%g
v ,

~49!
$1n1m ,M %g

v50

for all homogeneous M,M 8,M 9PM(num). Moreover, the map Dv:M(num)→Hamg(v) is a ho-
momorphism of Lie superalgebras and
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Hamg~v!5Derg~M~num!!. ~50!

Proof: The properties of$•,•%g
v and ofDv result from the defining properties of the grad

symplectic structurev. From the irreducibility of the adjoint representation ofsl(num) one can
deduce kerDv5C1n1m on the one hand and the injectivity ofDvusl(num) on the other hand. The
~50! follows because ofDerg(M(num))5sl(num)ad. h

There exists an essentially unique graded symplectic structure onM(num).
Proposition 8: dQ is a graded symplectic structure onM(num) and up to complex multiple

it is the only one. The corresponding graded Poisson bracket is given by

$M ,M 8%g
dQ5@M ,M 8#g ~51!

for all M ,M 8PM(num).
Proof: The exact, even graded two-formcdQ,cPC\$0% induces via~45! a homomorphism

DcdQ:M(num)→Derg(M(num)),

DcdQ~M !5
1

c
adM ~52!

of Lie superalgebras and the corresponding graded Poisson bracket is given by$M ,M 8%g
cdQ

5c21@M ,M 8#g . The uniqueness property is a consequence of proposition 3,~50!, and Schur’s
Lemma. h

Consequently the extension of the body mapb maps a graded symplectic structurev onto a
symplectic structureb~v!. Moreover one has

b̂~Dv~M !!5Db~v!~b~M !! ~53!

for all even graded~Hamiltonian! vector fields as well as

b~$M ,M 8%g
v!5$b~M !,b~M 8!%b~v! ~54!

for the graded Poisson bracket ofM ,M 8PM(num) 0̄ . That is, the relation betweenM(num) and its
body is analogous to the one for graded symplectic manifolds and their respective unde
manifolds.

VI. GRADED VECTOR BUNDLES OVER GRADED MATRIX ALGEBRAS

As a synthesis of the definition of graded vector bundles over graded manifolds2,9,20 and the
idea how to introduce vector bundles in noncommutative geometry1,21 we interpret left,Z2-graded,
finitely generated~graded-projective! M(num) modules as graded vector bundles overM(num) and
evenM(num)-module homomorphisms between such modules as graded vector bundle hom
phisms. We note that the specifying property of graded projectivity is redundant in the cont
left, Z2-gradedM(num)-modules, because on the one hand graded-projective meansZ2-graded
plus projective28 and on the other hand every leftM(n1m)-module is projective.24

Let us denote byM(num,r us),r ,sPN0 ,r 1sPN, theC-vector spaceM(n1m,r 1s) together
with the Z2-grading defined by

M~num,r us! 0̄ªH v5S v1 0

0 v4
D Uv1PM~n,r !,v4PM~m,s!J ,

~55!

M~num,r us! 1̄ªH v5S 0 v2

v3 0 D Uv2PM~n,s!,v3PM~m,r !J .
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With respect to ordinary matrix multiplicationM(num,r us) becomes a left,Z2-graded, finitely
generatedM(num)-module and these examples constitute essentially all graded vector bu
over M(num).

Proposition 9: IfV is a graded vector bundle overM(num) then there exist unique numbe
r ,sPN0 ,r 1sPN and a graded vector bundle isomorphismf:V→M(num,r us). V is graded-free
if and only if there are natural numbers p,qPN0 ,p1qPN, such that

pn1qm5r , pm1qn5s. ~56!

Proof: The existence of the isomorphisms are implied by the graded simplicity ofM(num,1u0)
andM(num,0u1) and the fact, that every left,Z2-graded, finitely generatedM(num) module is the
homomorphic image of a left,Z2-graded, graded-freeM(num)-module with homogeneous basis
suitable cardinalitypuq. Because allM(num)-module isomorphisms areC-vector space isomor
phisms in particular, the uniqueness statement and~56! follow. h

After this ‘‘miniature-classification’’ we develop graded differential geometry on a fix
graded vector bundleV generalizing the treatment of noncommutative geometry1,10,13,21on the one
hand and the one of supergeometry2 on the other hand.

So we first define the setVg(V) of V-valued graded forms according to

Vg~V![ %

pPN0

Vg,p~V!ªVg~M~num!! ^̂ M ~num!V. ~57!

Vg(V) is a left N03Z2-bigradedVg(M(num))-module in a natural way and eachVg,p(V),p
PN0 , is a left,Z2-graded, finitely generatedM(num) module, in particular. The product will agai
be denoted by∧.

A connection onV is an evenC-linear map¹:V→Vg,1(V) such that

¹~Mv !5dM ^ v1M∧¹v ~58!

is fulfilled for all MPM(num),vPV. Connections always exist due to~graded! projectivity.
Proposition 10: LetV be a graded vector bundle overM(num). Then there exists a graded

free vector bundleVpuq over M(num) with homogeneous basis$eAueAPV
0̄

puq
, A51,...,p;eA

PV
1̄

puq
, A5p11,...,p1q%, p,qPN0 ,p1qPN, together with an even, idempotent endomorphi

P:Vpuq→Vpuq and an isomorphismw:V→ im P of Z2-graded M(num) modules. The map
¹d :Vpuq→Vg,1(Vpuq) defined by

¹d~v ![¹dS (
A51

p1q

vAeADª (
A51

p1q

dvA
^ eA ~59!

is a connection onVpuq and

¹PdªIdVg,1~M~num!! ^ w21+IdVg,1~M~num!! ^ P+¹d+w ~60!

is a connection onV. A map¹:V→Vg,1(V) is a connection onV if and only if it is of the form

¹5¹Pd1a, ~61!

wherea:V→Vg,1(V) is an even homomorphism ofZ2-gradedM(num) modules.
Proof: Analogous to the ungraded case.1,21 h

We note that the existence of connections onV can also be shown without using~graded!
projectivity ~see Refs. 10, 11, 13, 15 for the ungraded case!: According to~33!,

¹Q~v !ªQ ^ v ~62!

for all vPV defines a connection onV.
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Quite generally we will denote theZ2-gradedM(num)-bimodule of graded (p1q)3(p1q)-
matrices over aZ2-gradedM(num)-bimoduleB with M(puq;B). It is an M(num) bimodule in a
natural way andZ2-graded by declaring those matrices with even diagonal entries and odd
diagonal entries as even and those with odd diagonal entries and even off-diagonal entries
Adopting the notation of the above proposition we introduce homogeneous generators

hAªw21+P~eA! ~63!

of V as well as an even matrix (PA
B)PM(puq;M(num)) 0̄ via

P~eA!5: (
B51

p1q

PA
BeB . ~64!

Then

~¹2¹Pd!~hA!5a~hA!5: (
B51

p1q

aA
B

^ hB . ~65!

establishes a bijective correspondence between the set of all connections onV and the set
PM(puq;Vg,1(M(num))) 0̄P, which consists of those (aA

B)PM(puq;Vg,1(M(num))) 0̄ fulfilling
aA

B5(C,D51
p1q PA

C∧aC
D∧PD

B ~for V5Vpuq set P5w5IdVpuq). The graded one-formsaA
B are called

connection forms of the connection¹5¹Pd1a.
If ¹ is a connection on a graded vector bundleV we can introduce aC-linear mapVg(V)

→Vg(V), again denoted by¹, via

¹~v ^ v !5dv ^ v1~21!pv∧¹v ~66!

for all vPV,vPVg,p(M(num)),pPN0 . This homogeneous map of bidegree (1,0)̄ extends the
original connection if we identifyV with Vg,0(V). Moreover it fulfills

¹~v8∧v ^ v !5dv8∧~v ^ v !1~21!p8v8∧¹~v ^ v ! ~67!

for all vPV,vPVg,p(M(num)),v8PVg,p8(M(num)),p,p8PN0 , and this property determines th
extension of the connection uniquely.

The curvature of a connection¹ on a graded vector bundleV is defined as

¹2[¹+¹:V→Vg,2~V!. ~68!

It is an even homomorphism ofZ2-gradedM(num) modules and one can describe its action on
elementv5(A51

p1q w(v)AhAPV according to

¹2~v !5: (
A,B51

p1q

w~v !A∧RA
B

^ hB ~69!

with a uniquely determined matrix (RA
B)PPM(puq;Vg,2(M(num))) 0̄P. The graded two-formsRA

B

are called curvature forms and they can be expressed according to

RA
B52 (

C51

p1q

aA
C∧aC

B1 (
C,D51

p1q

~PA
C∧daC

D∧PD
B2PA

C∧dPC
D∧dPD

B ! ~70!

in terms of the connection formsaA
B of the connection. Moreover they have to fulfill the Bianc

identity
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(
C,D51

p1q

PA
C∧dRC

D∧PD
B2 (

C51

p1q

~aA
C∧RC

B2RA
C∧aC

B!50. ~71!

Let us finally analyze the space of flat connections, that is the set of all connections with van
curvature. We will not do this in complete generality but only for a graded-free vector bundleV1u0

with an even basis elemente.
Proposition 11: A connection onV1u0 is flat if and only if its connection forma

PVg,1(M(num)) 0̄ is either given by

a5Q ~72!

or by

a5Q2 (
A51

~n1m!221

f ~EA!∧uA, ~73!

where$EA% is the homogeneous basis ofsl(num) ‘‘corresponding’’ to $uA% and f is some auto-
morphism ofsl(num).

Proof: Let us introduce an even graded one-formr5(A51
(n1m)221 rA∧uA according toa5:Q

2r. Using proposition 4 we find that the curvature form is given by

R5
1

2 (
A,B51

~n1m!221

VAB∧uA∧uB ~74!

with

VAB5@rb ,rA#g2 (
C51

~n1m!221

CBA
C rC . ~75!

Because the vanishing of the curvature is equivalent toVAB50 the proposition follows from the
simplicity of sl(num). h

That is, we have the same situation as in ordinary matrix geometry:10,11,13,15There exist
different ‘‘classes’’ of flat connections. Here ‘‘class’’ refers to the action of the group of a
morphisms of the graded vector bundle on the space of connections, which can be intro
similar to the ungraded case. The connection¹d and the one associated with the connection fo
Q will lie in different classes, because the latter is invariant. However, if one does not restri
space of connections by a suitable compatibility requirement with respect to a graded Her
structure there will exist even more than two classes of flat connections.

VII. CONCLUDING REMARKS

We have developed the graded differential geometry of graded matrix algebras and show
the results of matrix geometry10,11,13,15carry over to theZ2-graded setting. In addition we found
natural noncommutative analog of the body map, which allows us to view graded matrix g
etries as true noncommutative generalizations of graded manifolds.

Whereas in ordinary differential geometry one integrates forms this is not true in superg
etry. Except from the before mentioned body map, which plays a central role in the global t
of Berezin integration,29 we completely excluded the integral geometry of graded matrix algeb
We plan to treat this together with metric aspects in a separate work.

Beside its immediate application for the construction of~graded! differential calculi on fuzzy
~super! manifolds15,17 the developments of this article offer another perspective. The extensio
space–time by matrix geometries led to interesting new gauge models. In particular the ex
of different gauge orbits of flat connections in matrix geometry is the origin of the appearan
                                                                                                                



to
tative

n
on-

ng

ive
e,

6623J. Math. Phys., Vol. 40, No. 12, December 1999 Graded differential geometry . . .

                    
the Higgs effect.10,13,15,30 The possibility of extending the structures of matrix geometry
Z2-graded matrix algebras suggests thinking about similar ‘‘supersymmetric’’ noncommu
extensions of space–time.
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APPENDIX: ASSOCIATIVE PRODUCT OF SUPERTRACE-FREE, GRADED MATRICES

Let $EAuEAPsl(num) 0̄ ,A51,...,n21m221;EAPsl(num) 1̄ ,A5n21m2,...,(n1m)221% be a
homogeneous basis ofsl(num),nÞm. The aim of this Appendix is to investigate the associat
product of the homogeneous matricesEA in a similar way as was done in Ref. 31 for trace-fre
Hermitian matrices.

If we introduce a graded anticommutator

@M ,M 8#g
1
ªMM 81~21!MM8M 8M ~A1!

of two homogeneousM ,M 8PM(num) we find the relations

@M ,@M 8,M 9#g#g2@M ,@M 8,M 9#g
1#g

11~21!M̄8M̄9@@M ,M 9#g
1 ,M 8#g

150,
~A2!

@@M ,M 8#g
1 ,M 9#g2@M ,@M 8,M 9#g#g

12~21!M̄8M̄9@@M ,M 9#g ,M 8#g
150

between the graded commutator and the graded anticommutator of homogeneousM ,M 8,M 9
PM(num).

Because$EA,1n1m%A51,...,(n1m)221 forms a homogeneous basis ofM(num) the graded anti-
commutator ofEA andEB can be written according to

@EA ,EB#g
15 (

C51

~n1m!221

dAB
C EC1gAB1n1m ~A3!

with uniquely determined coefficientsdAB
C ,gABPC. Then the associative product ofEA andEB is

given by

EAEB5
1

2 (
C51

~n1m!221

~cAB
C 1dAB

C !EC1
1

2
gAB1n1m . ~A4!

Independent of the specific choice of the homogeneous basis$EA%A51,...,(n1m)221 there exist a lot
of relations between the ‘‘structure constants’’cAB

C , dAB
C , andgAB which we summarize in

Proposition A:~i! cAB
C and dAB

C vanish if ĒA1ĒB1ĒC51̄ and gAB vanishes if ĒA1ĒB51̄.

~ ii ! (
B51

~n1m!221

~21!ĒBcAB
B 50, (

B51

~n1m!221

~21!ĒBdAB
B 50. ~A5!

~iii ! cABC and dABC , defined via

cABCª (
D51

~n1m!221

cAB
D gDC , dABCª (

D51

~n1m!221

dAB
D gDC , ~A6!
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are totally antisymmetric, respectively, totally symmetric in theZ2-graded sense.

~ iv! (
E51

~n1m!221

$~21!ĒAĒCCBC
E CAE

D 1~21!ĒBĒAcCA
E cBE

D 1~21!ĒCĒBcAB
E cCE

D %50,

~A7!

(
E51

~n1m!221

$cBC
E cAE

D 2dAB
E dEC

D 1~21!ĒAĒC1ĒBĒCdCA
E dEB

D %

12~21!ĒAĒC1ĒBĒCgCAdB
D22gABdC

D50,

(
E51

~n1m!221

$dAB
E cEC

D 2cBC
E dAE

D 2~21!ĒBĒCcAC
E dEB

D %50.

~v! If K ABªK(EA ,EB), where K is the Killing form ofsl(num), then

KAB5~n2m!2gAB5 (
C,D51

~n1m!221

~21!ĒCcAD
C cBC

D 5
~n2m!2

~n2m!224 (
C,D51

~n1m!221

~21!ĒCdAD
C dBC

D .

~A8!

~vi! Denoting by gAB the components of the matrix inverse to(gAB), then

(
B,C51

~n1m!221

gBCcBC
A 50, (

B,C51

~n1m!221

gBCdBC
A 50. ~A9!

~vii ! (
C,D,E51

~n1m!221

gCDcCE
A cDB

E 5~n2m!2dB
A ,

(
C,D,E51

~n1m!221

gCDcCE
A dDB

E 50, ~A10!

(
C,D,E51

~n1m!221

gCDdCE
A dDB

E 5~~n2m!224!dB
A .

~viii ! (
D,E,F,G51

~n1m!221

~21!ĒAĒEgDEcEB
F cAF

G cDG
C 5

1

2
~n2m!2cAB

C ,

(
D,E,F,G51

~n1m!221

~21!ĒAĒEgDEcEB
F cAF

G cDG
C 52

1

2
~n2m!2cAB

C ,

~A11!

(
D,E,F,G51

~n1m!221

~21!ĒAĒEgDEcEB
F dAF

G dDG
C 52

1

2
~~n2m!224!cAB

C ,

(
D,E,F,G51

~n1m!221

~21!ĒAĒEgDEdEB
F dAF

G dDG
C 5

1

2
~~n2m!2212!dAB

C .

Proof: ~i! is a reformulation of the homogeneity of$EA%. The first line of~A8! as well as~iii !
result from KAB52(n2m!Trs(EAEB). ~ii ! is a consequence of Trs~adEA)50 and of
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SB,C Trs(g
BC@EB ,EC#g

1EA)50. ~iv! is a reformulation of the graded Jacobi identity and~A2!.
Using the second equation~A7! one deduces the second line of~A8!. ~vi! follows from ~ii ! and
~iii !. The left-hand side of the first equation~A10! is essentially the second-order Casimir opera
of sl(num) in the adjoint representation. The second part of~A10! follows from ~iii !, whereas the
third equation is a consequence of the first part together with~iv! and~vi!. The relations~viii ! are
results of calculations using~iii !, ~iv!, ~vi!, and~vii !. h
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Even moments of a polymer chain distribution
Gary G. Hoffmana)

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 25 February 1999; accepted for publication 17 September 1999!

An algorithm is presented for the evaluation of the even moments of the end-to-end
separation of a polymer chain. The only assumption made in the distribution func-
tion is that the energy of the chain depends only on the individual bond lengths of
the chain. This assumption covers many of the commonly used distribution func-
tions. © 1999 American Institute of Physics.@S0022-2488~99!02512-8#

I. INTRODUCTION

Recent investigations1 into the stress–strain behavior of polymer network solids have led t
expression for the stress tensor in the form of an expansion in moments of the distribut
end-to-end separations of a polymer chain. Practical implementation of the expression re
specifically, the even moments for chain lengths ranging from one on up to arbitrary numb
bonds. It was found that moments up to at least the eighth were needed to obtain a rea
description of the stress–strain behavior. It was found, further, that the non-Gaussian nature
distribution was a critical ingredient in the computations and that the contributions of the sh
chains were found to be important, especially for the larger strains. It was therefore desired t
a model distribution for polymer chain end-to-end separations that reasonably describes t
lecular nature of the material and expressions for the associated moments that are accurat
chain lengths. For sufficiently long chain lengths, the probability distribution is well approxim
by a Gaussian chain distribution. In such a case, the moments could be profitably obtaine
such a distribution or a correction to it. However, a Gaussian distribution would not be appro
for the shorter chain lengths. Since the stress–strain studies involved chain lengths as shor
bond, more accurate expressions were needed. In this paper, an algorithm for deriving
expressions for the moments is presented and specific expressions for the lower order mom
given.

While the moments can be evaluated by brute force, each order being considered in tu
procedure becomes increasingly difficult for higher orders. In trying to recognize pattern
simplifications, a general procedure was developed that can be applied to arbitrary orders
this procedure, closed form expressions were readily generated for the moments up to the
order. It was further noted that the procedure is applicable to a more general class of distr
than the one originally considered. In the event that the evaluation of higher moments o
distributions is desired, the general procedure will be presented in this paper.

This procedure uses a diagrammatic approach and has some similarities to the treatme
for the cluster expansion of the two-body distribution function in the classical statistical mech
of many-body systems2 or the quantum mechanical treatment of many-fermion systems.3 Al-
though the spirit of the development is the same, however, the details are different.

II. MATHEMATICAL FORMULATION

Consider a polymer chain that containsN equivalent bonds. The direction and length of t
j th bond is given by the bond vector,Qj , and the full set ofN such vectors is represented byQN.
It is assumed that the energy of the polymer chain depends only on the lengths of the
Mathematically, the energy of a polymer chain in a particular configuration is then given b

a!Permanent address: Department of Chemistry, Florida International University, Miami, FL 33199.
66260022-2488/99/40(12)/6626/12/$15.00 © 1999 American Institute of Physics
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E~QN!5E01(
j 51

N

f ~Qj !, ~1!

whereE0 is a reference energy associated with the relaxed chain, andf (Q) is an arbitrary function
of the vector magnitude,Q. Recent work4 has focused specifically on a chain of harmonic sprin
where f (Q)5 1

2H(Q2a)2. The equilibrium probability of end-to-end separations of the chain
absolute temperature,T, is then given by

Peq
~N!~r !5

1

Z1
N E dS r2(

j 51

N

Qj D expF2 (
n51

N

f ~Qn!/kTGd3Q1¯d3QN , ~2!

wherek is Boltzmann’s constant and

Z15E e2 f ~Q!/kTd3Q. ~3!

It is easily shown that the distribution~2! depends only on the magnitude of the separation and
its direction.

The objective of this paper is to evaluate the even moments of this distribution:

^r 2 j&0[E r 2 j Peq
~N!~r !d3r . ~4!

The subscript ‘‘0’’ denotes the use of the equilibrium distribution, as opposed to the distrib
for a system under a deformation. In the course of the development, averages over bond
will be needed and it is convenient to introduce the shorthand notation

^F~QN!&Q[
1

Z1
N E F~QN!expF2 (

n51

N

f ~Qn!/kTGd3Q1¯d3QN ~5!

for arbitrary functions of the bond vectors. The subscript ‘‘Q’’ is used to distinguish this averag
from those overr. Although the details vary with the choice for the function,f (Q), it will be
assumed that the specific averages

^Q2 j&Q[
1

Z1
E Q2 je2 f ~Q!/kTd3Q ~6!

are available by some other means. For instance, in the above-mentioned case of the c
harmonic springs, it is readily worked out that

^Q2 j&Q5S a2

e D j ~2 j 12!!

2

D2~2 j 13!~2Ae!

D23~2Ae!
, ~7!

wheree5Ha2/kT andDn(z) is a parabolic cylinder function.
If Eq. ~2! is substituted into Eq.~4!, the integrations overr can be evaluated immediately, an

there results

^r 2 j&05 (
k151

N

¯ (
k2 j 51

N

^~Qk1
•Qk2

!¯~Qk2 j 21
•Qk2 j

!&Q ~8!

Consider each term in the sum separately. The distribution function does not depend
orientation of the bond vectors, so that the directions of the bond vectors are manifest solely
combination of dot products in the average. In any one term, a specific vector may appea
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twice, or even more times. Since each vector is odd under inversion and the overall integra
be invariant under an inversion, the nonvanishing terms in the sum must have the indices
up. The complication is that there are many distinct ways that the indices can be paired up,
it is not valid to just pickj of the indices and then set them equal to the otherj.

A schematic way to represent this constraint on the indices is with the formula

^r 2 j&05 (
k151

N

¯ (
k2 j 51

N

^~Qk1
•Qk2

!¯~Qk2 j 21
•Qk2 j

!

3$dk1k2
¯dk2 j 21k2 j

1all distinct permutations%&Q . ~9!

The phrase ‘‘all distinct permutations’’ needs some elaboration. There is a total of (2j )! possible
permutations of the indices, but a large number of them yield identical terms. For ins
interchangingk1 andk2 in the first product of Kro¨necker deltas yields exactly the same com
nation of Krönecker deltas and really does not provide a distinct term in the average. It shou
be included in the sum of ‘‘distinct permutations.’’ Similarly, the interchange of the pairk1 ,k2

with the pairk3 ,k4 in the first term yields an identical product of Kro¨necker deltas and should als
not be included in the sum of distinct permutations. One may imagine a large number o
equivalences, not necessarily involving the first product of Kro¨necker deltas. Further complica
tions arise when considering terms in which more than one pair are the same. Supposek1

5k3 , so that this implies thatk15k25k35k4 in the first term of the sum of Kro¨necker deltas.
Any permutation of these four indices, even one that would have yielded distinct termsk1

Þk3 were true, should not be viewed as a distinct permutation in this case.
A second thing to notice is that the distribution of bond vectors is symmetric with respe

all permutations of theN vectors. Any terms in the sum, therefore, which differ only by
permutation of the particular labels used on the vectors must have the same value. This allo
grouping of similar terms and an elimination of the sums over the indices. This also is not a
matter, but depends on the number of pairs of indices that are equal as well as how they are
in the dot products. If only terms wherej indices are different and where only the first product
Krönecker deltas in Eq.~9! is considered, there results

(
k151

N

¯ (
k2 j 51

N

k1Þk3Þ¯Þk2 j 21

^~Qk1
•Qk2

!¯~Qk2 j 21
•Qk2 j

!dk1k2
¯dk2 j 21k2 j

&Q

5 (
k151

N

¯ (
kj 51

N

k1Þk2Þ¯Þkj

^Qk1

2 Qk2

2
¯Qkj

2 &Q

5N~N21!¯~N2 j 11!^Q2&Q
j . ~10!

Clearly, there are many more terms to consider and it is important to properly categorize te
well as determine how many times they occur.

Before getting to the diagrammatic treatment, it is instructive to see how the first two
moments can be evaluated by brute force. Forj 51, there are only two sums in Eq.~8!, and it is
clear that only terms withk25k1 will contribute. Further, every term in the remaining sum has
same value so that

^r 2&05N^Q2&Q . ~11!

For j 52, there are four sums, andk1 may equal eitherk2 , k3 , or k4 . Whichever onek1

equals, the remaining two must then be equal to each other. In addition, ifk1 equalsk2 , the dot
productQk1

•Qk1
eliminates the angular dependence of the vectors; the dot product of the
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pair will likewise eliminate any angular dependence. On the other hand, ifk1 equals eitherk3 or
k4 and the two pairs are distinct, there results (Qk1

•Qk2
)2 and the angular dependence of t

vectors must be taken into account. There is a further distinction in that the two pairs m
different or equal. Proceeding in detail, there results

^r 4&05 (
k151

N

(
k251

N

k1Þk2

^Qk1

2 Qk2

2 &Q12 (
k151

N

(
k251

N

k1Þk2

^~Qk1
•Qk2

!2&Q1 (
k151

N

^Qk1

4 &Q

5N~N21!$^Q2&Q
2 12^~Q1•Q2!2&Q%1N^Q4&Q . ~12!

There are three different types of terms and each has its own associated coefficient. The ev
over the angles of the bond vectors will be taken up later.

The types of complications that arise are already evident forj 52, but the above-mentione
procedure illustrates the general approach that must be taken for an arbitrary term. First, th
of terms that can occur must be identified. The indices must all be paired, but terms differ in
many pairs of indices are equal and in how the indices are connected in the dot produc
distinct arrangements lead to different results and so, should be considered separately. The
task is to determine how many times each type of term occurs to get the correct asso
coefficient. Finally, the terms must be evaluated and combined.

III. CATEGORIZATION OF TERMS

Equation~9! contains summations of a large number of terms, in general. The objectiv
categorizing them is to group together equivalent terms and evaluate them all together
reduces the overall number of terms to consider. The 2j indices must all be paired, so that a fir
step is to group the indices together intoj pairs. It is possible for all pairs to be distinct, or for an
number of pairs to be the same. The types of terms can be further distinguished by how th
linked through the dot products.

The categorization is broken down into two steps, which will be called the primary
secondary categorizations. The primary categorization involves finding all the possible s
‘‘cluster’’ sizes. After pairing up the indices, clusters can be made that contain one or more
pairs. All possible arrangements of cluster sizes can occur and must be treated separat
instance, forj 52, there are two pairs and it is possible for the pairs to be different or the sam
the first case, there will be two clusters, both of size one. In the second case, there is ju
cluster of size two. The number of possibilities, naturally, increases withj.

The secondary categorization determines how many distinct ways the pairs of indices
linked given a set of cluster sizes. For instance, forj 52 and two clusters of size one, there a
terms where each pair consists of a dot product with itself and other terms where a mem
each pair has a dot product with a member of the other. The general procedure for categoriz
terms will now be presented and the specific case forj 55 will be used for illustrative purposes

The primary categorization can be reduced to a recursive procedure that is easily prog
on a computer. Each primary categorization is labeled by a set of cluster sizes. For a givenj, the
clusters can have sizes from 1 toj. Let gm denote the number of clusters with sizem. Each
categorization is then labeled by a unique set of integers,$gm , m51,...,j %. It is only necessary tha

(
m51

i

mgm5 j . ~13!

The following procedure can be followed to generate all possible sets.

~a! Begin with g15 j , the rest of thegm’s being zero.
~b! Evaluate the quantityJk5(m51

k mgm , starting withk51 and continuing to successivel
higher values ofk until Jk2(k11).0.
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~c! With this value of k, set gm50 for all m<k, increasegk11 by one, and setg15Jk

2(k11).
~d! Perform steps~b! and ~c! repeatedly until the final case, wheregj51 and the rest are zero

is achieved.

For j 55, the seven sets of clusters listed in Table I are obtained.
The secondary categorization looks at how the indices are connected through the dot pr

This is where the diagrams are helpful. Begin by constructing a representation for the pr
categorizations; call these the primary diagrams. Each pair of indices is assigned a dot. If an
are equal, the corresponding dots are joined to form a ‘‘star.’’ A star is a filled-in object with
number of points representing the number of equal-index pairs. For generality, a dot m
viewed as a star with one point. Each pair of indices is then associated with a point on a st
j 55, the sets of stars associated with all the primary categorizations is shown in Fig. 1.
practice, generation of these primary diagrams may be performed by inspection and is often
than following the set of rules outlined in the previous paragraph. However, the set of ru
more amenable for writing a computer program to perform the task.

Once these primary diagrams are generated, a new symbol is introduced that represe
arrangement of the dot products. Each point on a star represents a pair of bond vectors. Ea
vector is connected with another through a dot product, so each point on a star can ma
connections. These connections are represented in the diagrams by directed lines. Every
a star in the diagram must have one directed line coming in and one going out. It is poss
have a point with a single directed line coming in and going out of it; this corresponds to
product of the vector with itself.

There are some complications that can arise, and so some care is needed to construct
rules for the full generation of allowable diagrams. First of all, to avoid cluttering up the diag
single lines that leave and enter the same point are left out. Any unconnected points are a
to represent dot products of the vector with itself. Second, a star with more than one point m
treated specially to avoid generating more than one equivalent diagram. Because all the po
a star represent the same vector, there is some arbitrariness in choosing where lines com

TABLE I. Clusters and coefficients associated withj 55.

Set g1 g2 g3 g4 g5 Factor Nl

1 5 0 0 0 0 N(N21)(N22)(N23)(N24) 945
2 3 1 0 0 0 N(N21)(N22)(N23) 3150
3 1 2 0 0 0 N(N21)(N22) 1575
4 2 0 1 0 0 N(N21)(N22) 630
5 0 1 1 0 0 N(N21) 210
6 1 0 0 1 0 N(N21) 45
7 0 0 0 0 1 N 1

FIG. 1. The primary diagrams forj 55.
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where they leave. To avoid confusion, if a line comes into one point of a star from another
line must leave by the same point to another star. Lines should not connect two different po
the same star. Since such lines would represent the dot product of a vector with itself, they
be represented as points without any directed lines connected.

Another restriction needs to be made regarding stars of more than one point. Directed
may be followed to form closed loops. Because of the equivalence of points on a star, it is po
to manipulate lines in a diagram so that a given loop contacts the star at only one poi
illustrate this, Fig. 2 shows two equivalent diagrams forj 54. In the first diagram, there is on
loop that contacts the two-point star at two points. In the second, the lines have been rearran
that there are two loops, each contacting the star at only one point. For any general
equivalent diagrams, only one has closed loops that contact each star at no more than on
The rule is therefore made that any loop of an acceptable diagram may contact a given sta
more than one point. With this rule, only the second diagram in Fig. 2 would be acceptabl

It must also be kept in mind that stars with the same number of points are equiv
Diagrams which differ only by a rearrangement of such stars are equivalent and only one
be included.

A moment can be represented by a sum of diagrams. A set of rules for constructin
diagrams can be stated as follows.

~a! Given j, the set of all primary diagrams is generated as described above.
~b! Starting with each primary diagram, directed lines are added to construct all topolog

distinct diagrams such that:
~i! a point may have no lines connected to it,
~ii ! if a line enters a point, another line must leave it,
~iii ! a line may not leave and enter the same point, and
~iv! the lines form closed loops which can connect to any star at no more than one

Following these rules, all distinct diagrams may be constructed. These represent the types o
that will be encountered. As an example, all the diagrams associated withj 55 are shown in Fig.
3.

IV. EVALUATION OF THE DIAGRAMS

The moment is now expressed as a sum of diagrams. It only remains to evaluate
diagrams and combine them for the final result. To interpret the diagrams, label each star w
index. These represent labels for the bond vectors. The directed lines are used to form dot p
between the vectors and unconnected points represent vectors that have dot products wit
selves. The full list of terms forj 55 is rather long, so only the terms forj 55 and the first
primary categorization, withg155, will be presented. The bond vector averages that go with th
diagrams are given in Table II. Aside from evaluating these averages, it is necessary to det
the coefficients that go with each term.

Each primary categorization has associated with it a certain number of distinct indice
instance, set 1 in Table I contains five distinct indices, set 2 contains four, and so on. Deno
number of distinct indices in a given set byM. As already mentioned, terms which differ only
the indices used to label the vectors have the same value. Therefore, with a given prima
egorization, the sum over all appropriate indices can be performed explicitly. For instance,

FIG. 2. Two equivalent diagrams, only one of which is acceptable.
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1 in Table I, all sets of five distinct indices give the same set of terms corresponding to
primary categorization. It is then possible to extract one such set of terms—say fork151, k2

52, k353, k454, andk555—and pull it out of the sums completely. It is then necessary to s
over all sets of five distinct indices, none of which may be equal, to arrive at the coeffic
N(N21)(N22)(N23)(N24), which must multiply all diagrams associated with this prima
categorization. More generally, withM different indices in a given categorization, the sums o
indices yield a factor ofN!/(N2M )!. The factors forj 55 are included in Table I.

A useful quantity for checking the generation of secondary diagrams is the number of
associated with each primary categorization. This is associated with the number of distinc
mutations of the delta functions in Eq.~9! that correspond to a given categorization. This is

FIG. 3. The full set of diagrams forj 55.

TABLE II. Evaluated terms for theg155 cluster diagrams forj 55.

Term Coefficient

Q1
2Q2

2Q3
2Q4

2Q5
2 1

Q1
2Q2

2Q3
2(Q4•Q5)2 20

Q1
2(Q2•Q3)2(Q4•Q5)2 60

Q1
2Q2

2(Q3•Q4)(Q4•Q5)(Q5•Q3) 80
(Q1•Q2)2(Q3•Q4)(Q4•Q5)(Q5•Q3) 160
Q1

2(Q2•Q3)(Q3•Q4)(Q4•Q5)(Q5•Q2) 240
(Q1•Q2)(Q2•Q3)(Q3•Q4)(Q4•Q5)(Q5•Q1) 384
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simple problem in combinatorics, being equal to the number of distinct permutations of thej pairs
of integers in the list amongj boxes, each being able to hold only two integers. For an arbitrary
l, this is given by

Nl5
~2 j !!

Pm~m! !gmgm!
~14!

For j 55, the values are included in Table I.
A coefficient is also associated with each diagram based on the secondary categor

These coefficients represent the number of times such a term appears in the sum of Kro¨necker
deltas. Determining these coefficients leads to exercises in combinatorics. The indices are
as pairs of labels that are to go intoj boxes, each being able to hold two labels. Vectors that
connected by a dot product have their indices paired. It is necessary to determine how
distinct ways a particular set of pairings may be accomplished. It is important to keep in
though, that overall permutations of the labels has already been performed in the sums o
indices. If a simple permutation of labels leads to an indistinguishable term, this permutation
not be included in the coefficient.

For example, the first term in Table II contains the five pairings~11!, ~22!, ~33!, ~44!, and
~55!. The only permutations that yield equivalent pairings are those where a pair is interch
completely with another. There are 5!5120 such permutations. However, note that all sim
permutations of the five labels also lead to equivalent terms. Therefore, the value of 120 m
divided by the number of such permutations, i.e., 120, to get the correct coefficient of 1.

Consider, now, the second term in Table II. This has the five pairings~11!, ~22!, ~33!, ~45!,
and~45!. One way to count the possible permutations is to note that the pair~11! has five possible
positions. Once this placement is taken care of, the pair~22! has four possible positions. Then, th
pair ~33! has three possible positions. This then fixes where the two pairs~45! must go. The
indices in each of these two final pairs may be interchanged, meaning there are four p
arrangements of them. Specifically, these are~45!~45!, ~45!~54!, ~54!~45!, and~54!~54!. Overall,
then, there are 53433345240 appropriate permutations. However, permutations of the la
1, 2, and 3 among themselves lead to indistinguishable terms; there are six such permu
Further, permutation of 4 and 5 lead to indistinguishable terms; there are two such permut
No other permutations of the labels yield indistinguishable terms. Therefore, the result of 240
be divided by 236512 to give 20. The other terms can be worked out in an analogous way
the coefficients for the diagrams listed in Table II are given there.

As a check, it should be noted that the sum of coefficients for all the diagrams associate
a given primary categorization should equal the quantity,Nl , defined in Eq.~14!. Note that the
sum of coefficients in Table II equals 945, the number given in Table I for this primary ca
rization.

The general procedure has been given. The details for the specific cases can be wor
with little difficulty. The final step involves performing the averages over the dot products.
requires integrals over angles, which are readily performed, the procedure being outlined
Appendix. For the first few moments, there results

^r 2&05N^Q2&Q , ~15a!

^r 4&05 5
3N~N21!^Q2&Q

2 1N^Q4&Q , ~15b!

^r 6&05 35
9 N~N21!~N22!^Q2&Q

3 17N~N21!^Q2&Q
2 ^Q4&Q1N^Q6&Q , ~15c!

^r 8&05 35
3 N~N21!~N22!~N23!^Q2&Q

4 142N~N21!~N22!^Q2&Q
2 ^Q4&Q

1 63
5 N~N21!^Q4&Q

2 112N~N21!^Q2&Q^Q6&Q1N^Q8&Q , ~15d!
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^r 10&05 385
9 N~N21!~N22!~N23!~N24!^Q2&Q

5 1 770
3 N~N21!~N22!~N23!^Q2&Q

3 ^Q4&Q

1231N~N21!~N22!^Q2&Q^Q4&Q
2 1110N~N21!~N22!^Q2&Q

2 ^Q6&Q166N~N21!

3^Q4&Q^Q6&Q1 55
3 N~N21!^Q2&Q^Q8&Q1N^Q10&Q , ~15e!

^r 12&05 5005
27 N~N21!~N22!~N23!~N24!~N25!^Q2&Q

6 1 5005
3 N~N21!~N22!~N23!~N24!

3^Q2&Q
4 ^Q4&Q13003N~N21!~N22!~N23!^Q2&Q

2 ^Q4&Q
2 1 2860

3 N~N21!~N22!~N

23!^Q2&Q
3 ^Q6&Q1 3003

5 N~N21!~N22!^Q4&Q
3 11716N~N21!~N22!

3^Q2&Q^Q4&Q^Q6&Q1 715
3 N~N21!~N22!^Q2&Q

2 ^Q8&Q1
858

7
N~N21!^Q6&Q

2

1143N~N21!^Q4&Q^Q8&Q126N~N21!^Q2&Q^Q10&Q1N^Q12&Q . ~15f!

Note that these expressions reduce to those for the Kramers chain5 when ^Q2 j&Q5a2 j .

V. CONCLUSIONS

A general procedure has been given for the closed form evaluation of the even moments
distribution of end-to-end separations of a polymer chain. The only assumption made is th
energy of the polymer chain depends only on the lengths of the polymer bonds. The procedu
be applied to any order, although it is acknowledged that the procedure becomes incre
tedious with higher orders. Nevertheless, the procedure is considerably easier than the bru
approach.

It may be noted that the terms in Eq.~15! to leading order inN are identical to what would be
obtained from the Gaussian chain model:

^r 2 j&G5
~2 j 11!!!

3 j Nj^Q2&Q
j . ~16!

The expressions derived here would therefore converge to the Gaussian chain results asN gets
larger, corrections being of the order 1/N. This may be viewed simply as a statement of the cen
limit theorem.6 A general expression for the distribution function of polymer chain end-to-
separations may be derived as a Gaussian chain distribution times a series expansion co
successive terms being of higher orders in 1/N.7 The moments would therefore be expected to
expansions in 1/N as well, as is clear from the equations derived here. As noted in Sec. I, it
desired to have moments for all possible chain lengths. The expressions derived here wer
fore found to be quite useful in the stress–strain studies.1 The expansion derived in that work wa
truncated so that moments only up to the eighth were needed. If a truncation at the next
order were desired, moments up to the twelfth would be needed, and the appropriate expr
are presented in closed form here. Higher orders, if needed, could be derived by the pro
outlined in this paper.

This procedure is restricted to a specific type of energy dependence of the polymer cha
the possibility of generalization may be worth investigating. As it turns out, the procedu
unchanged if the energy depends not only on the length, but also on the direction of each
except that the evaluation of the angular integrals as described in the Appendix is more c
cated. The restriction of bond angles and even dihedral angles would lead to more re
distribution functions. The methods for evaluating the moments of such distributions with
bonds in the rotational isomeric state approximation8,9 seem rather cumbersome and genera
require numerical evaluation. The extension of these models to chains where bonds may be
stretch away from their equilibrium values would be extremely difficult using these meth
However, there may be some hope for the diagrammatic approach presented here.
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There is another intriguing possibility associated with this procedure that is worth mentio
The diagrammatic approach used here has analogies with that used in cluster expansion
two-body distribution function of many-body systems.2,3 Not only does the diagrammatic trea
ment aid in the identification and evaluation of terms in the cluster expansions, it is also help
deriving relationships between the various types of terms that arise. These relationships a
resummation of the expansion to infinite order resulting in either the hypernetted chain~HNC!10

equations in the classical case or the fermion hypernetted chain~FHNC!11,12 equations in the
many-fermion case. The importance of these equations is realized when it is noted that the
of the cluster expansion may either converge slowly or even diverge at low orders. The r
mation removes these difficulties. The moments of the polymer equilibrium distribution fun
can be used in an expansion of the distribution function for a polymer network under strain13 and
subsequently in an expansion of the free energy density associated with the material. A
mation along the lines of the HNC or FHNC equations might prove valuable for an impr
theory of polymer networks. The method to be presented may serve as a starting point for
development.
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APPENDIX: EVALUATION OF THE ANGULAR INTEGRALS

The evaluation of an angular integral can be reduced to an exercise in tensor analysis
the distribution of vector bonds depends only on their magnitudes, the general average
reduced to

^~Qk1
•Qk2

!¯~Qk2 j 21
•Qk2 j

!&Q5^Qk1
Qk2

¯Qk2
& jQ^~uk1

•uk2
!¯~uk2 j 21

•uk2 j
!&a , ~A1!

whereui is a unit vector in the direction ofQi and the subscript ‘‘a’’ on the final averaged quantity
indicates that the average is taken only over angles. A generic way to write this is

^F~uN!&a[
1

~4p!N E F~uN!dV1¯dVN ~A2!

for an arbitrary function of the unit vectors.
The functions of interest here are simply dot products of the unit vectors. In general, ther

be unit vectors appearing as various powers and connected with each other through
products. The angular average then reduces to a product of averages over single unit v
which are then connected through tensor products. For instance, there is the simple avera

^~u1–u2!2&a5^u1u1&a :^u2u2&a ~A3!

or, getting a little more complicated, there is

~A4!

An important first step is therefore the evaluation of the average of a particular power of
vector.

An elegant procedure for performing these averages has been presented by Brenne14 The
general results is
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^up&a5H 0 if p is odd

1

~p11!!
~“ !pr p if p is even.

~A5!

As already noted in the main part of the paper, only even powers should appear in these av
The above result makes this explicit.

This formal result can be made a bit more convenient. First, note that the successive gr
reduce the power of the coordinates by one, so that the final result is independent ofr. Two
successive gradients, though, will yield a nonzero result only if a particular coordinate ap
twice. This leads to a pairing of the coordinate indices. This pairing, though, can occur in
different ways. A careful analysis leads to

^uj 1
¯uj 2n

&a5
1

~2n11!!!
$d j 1 j 2

¯d j 2n21 j 2n
1all proper permutations%, ~A6!

where the indices in Eq.~A6! indicate specific coordinates of the unit vectors:u1 , u2 , andu3 .
The phrase ‘‘all proper permutations’’ has a slightly different meaning than the phrase
distinct permutations’’ used in the main part of the paper. All indices,$ j 1 ,...,j 2n% are viewed as
distinct and all distinct permutations of the first product of delta functions is included in the
In all, there are (2n21)!! such permutations. Several examples might help see how this w

The average forn51 is given explicitly by

^uu&a5 1
3d, ~A7!

whered is the unit tensor. Forn52, there results

^uuuu&a5 1
15$dd1I1I†%, ~A8!

whereI is a fourth-rank tensor with elementsI i jkl 5d ikd j l . Similarly, the transpose has elemen
I i jkl

† 5d i l d jk . The result forn53 requires more space, but is obtained in a straightforward w

~^uuuuuu&a! i jklmn5 1
105$d i j dkldmn1d i j dkmd ln1d i j dknd lm1d ikd j l dmn1d ikd jmd ln

1d ikd jnd lm1d i l d jkdmn1d i l d jmdkn1d i l d jndkm1d imd jkd ln

1d imd j l dkn1d imd jndkl1d ind jkd lm1d ind j l dkm1d ind jmdkl%. ~A9!

The results for higher orders should be apparent. The procedure is readily programme
computer.

These results can now be used, the appropriate summations over indices being perfor
obtain the final results. Several examples can illustrate this. First, consider

^~Q1•Q2!2&Q5^Q1
2Q2

2&Q^u1u1&a :^u2u2&a5 1
9^Q

2&Q
2 d:d5 1

3^Q
2&Q

2 . ~A10!

A more general result is given by

^~Q1•Q2!2n&Q5
1

2n11
^Qn&Q

2 . ~A11!

Another example is

^~Q1•Q2!~Q2•Q3!~Q3•Q1!&Q5^Q1
2Q2

2Q3
2&Q tr$ 1

3d• 1
3d• 1

3d%5 1
9^Q

2&Q
3 . ~A12!

Generalizing this,
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^~Q1•Q2!~Q2•Q3!¯~Qn•Q1!&Q5
1

3n21 ^Q2&Q
n . ~A13!

The procedure is readily applied to any of the angular averages that arise.
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Zeros of the Jimbo, Miwa, Ueno tau function
John Palmera)

Department of Mathematics, University of Arizona, Tucson, Arizona 85721

~Received 2 March 1999; accepted for publication 30 August 1999!

We introduce a family of local deformations for meromorphic connections onP1 in
the neighborhood of a higher rank~simple! singularity. Following the scheme in
Malgrange@Mathematique et Physique, Progress in Mathematics~Birkhäuser, Bos-
ton, 1983!, Vol. 37, pp. 381–400,ibid., pp. 401–426;ibid., pp. 427–438# we use
these local models to prove that the zeros of the tau function, introduced by Jimbo,
Miwa, and Ueno in their pioneering work on ‘‘Birkhoff’’ deformations at irregular
singular points@Physica D2, 306–352;2, 407–448~1981!; 4, 26–46~1983!; Publ.
RIMS Kyoto Univ. 17-2, 703–721~1981!#, occur at precisely those points in the
deformation space at which a certain Birkhoff–Riemann–Hilbert problem fails to
have a solution. ©1999 American Institute of Physics.@S0022-2488~99!01112-3#

I. INTRODUCTION

A. The Riemann–Hilbert problem and monodromy preserving deformations

Suppose thatA(x) is a p3p matrix with entries that are rational functions ofx on P1. Linear
differential equations,

dc

dx
5A~x!c, ~1.0!

arise in many important applications and have been studied intensively for more than 100
The nature of the singularities in the coefficient matrixA(x) at its poles has a lot to do with th
character of the solutions to~1.0!. For example, in the neighborhood of a pointa whereA(x) has
but a simple pole, it is well known that the equation~1.0! has a fundamental solution,C(x), with
polynomially limited growth asx→a ~by which we mean that solutions are dominated neax
5a by cux2au2N wherec and N are constants!. Higher-order poles inA(x) typically produce
local fundamental solutions with more complicated exponential–polynomial growth near the
Fundamental solutions to the equation~1.0! are usually not single valued. If one has a fundamen
solutionC(x) defined forx in some small ball not containing any of the poles,$a1 ,a2 ,...,an%, of
A(x), then it is possible to analytically continueC(x) along paths inP1 that avoid these poles
The analytic continuation depends only on the homotopy class of the path, so that the re
function,C(x), is defined not onP1 but for x in the simply connected covering space,R(X), of
XªP1\$a1 ,a2 ,...,an% with projectionp:R(X)→X. If x0PR(X) andg is a closed path inX with
base pointp(x0) then

C~g•x0!5C~x0!M ~g!21,

wherex0→g•x0 is the natural action of the homotopy class of the pathg on x0PR(X), andg
→M (g) is an n-dimensional representation of the fundamental groupp1„X,p(x0)…. Riemann’s
analysis of the solutions of the hypergeometric equation in terms of itsmonodromy representation
M (•) led to the general problem of determining if any representation of the fundamental gro
the punctured sphere could arise as the monodromy representation for a linear differential e
~1.0!. It is clear from simple examples that there will not be a unique association betwe

a!Electronic mail: Palmer@math.arizona.edu
66380022-2488/99/40(12)/6638/44/$15.00 © 1999 American Institute of Physics
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representation ofp1 and a differential equation~1.0! without some further restriction on th
differential equation. It is possibly most natural to look for a differential equation withsimple
poles to realize a given monodromy representation. It is not always possible to solve
problem,1 but if one relaxes the condition on the differential equation to admitregular singular
points then it is classical that the inverse monodromy problem always has a solution~a good
discussion of the confusion about the status of the solution to this problem can also be fo
Ref. 1!. A pole a of A(x) in ~1.0! is said to be a regular singular point if fundamental solutions
~1.0! have, at worst, polynomial growth ata. Because the fundamental solutions are defined on
simply connected covering and paths that wind around the pointa pick up powers of the loca
monodromy, the precise notion of polynomial growth requires some restriction to sectors
covering space.1 More important for us, however, isa deformationvariant of the simple pole
condition. Suppose that for some collection of points$a1

0,a2
0,...,an

0%, a given representation of

p1~P1\$a1
0,a2

0,...,an
0%,a0!,

can be realized by a differential equation~1.0! with simple polesat aj
0 j 51,2,...,n and a funda-

mental solutionC(x) normalized toC(a0)5I at the base pointa0 . In this case, we writeA0(x)
for the matrix coefficient in the differential equation~1.0! that realizes the appropriate monodrom
representation. SinceA0(x) has simple poles,

A0~x!5 (
n51

n An
0

x2an
0 .

The problem, first formulated by Schlesinger,2 is to ask whether it is possible to deform th
coefficientsAn

0 in A0(x) as functions of the pole locationsan so that the differential equation~1.0!
with coefficient matrix.

A~x!5 (
n51

n
An~a!

x2an

realizes thesamemonodromy representation as as the differential equation with coefficient m
~1.1! ~we will be more precise about what this means later on!. Note that we have writtena
5(a1 ,a2 ,...,an), and we want

An~a0!5An~a1
0,a2

0,...,an
0!5An

0.

When the point at infinity is a regular point anda05`, Schlesinger showed that if such
deformation exits the coefficientsAn must satisfy a nonlinear system of differential equations

dAm52 (
nÞm

AmAn2AnAm

am2an
d~am2an!,

now called the Schlesinger equations. A modern treatment of the existence question can b
in Ref. 3. If we writeaPCn then, as might be guessed from looking at the Schlesinger equat
it is important to remove the points at whicham5an from consideration. Let

Dmn5$aPCnuan5am%,

and define

Zn5Cn\ønÞmDmn .

As observed by Malgrange, an appropriate place to seek monodromy preserving deforma
the simply connected covering spaceR(Zn)→Zn. Because this same space will enter our cons
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erations with a different significance later on, it will be useful at this point to introduce distinc
notation for elements inR(Zn) and their projection ontoZn. We will write tPR(Zn) anda(t)
PZn for the projection oft on Zn,Cn. We writeaj (t) for the j th component ofa(t).

As pointed out in Refs. 3 and 4, the spaceR(Zn) has a number of advantages as a deforma
space. Not only is it simply connected but sinceZn is contractible5 the long exact sequenc
associated with the fiber bundle projection,

a:R~Zn!→Zn,

shows that all the higher homotopy groups ofR(Zn) are also trivial and hence thatR(Zn) is
contractible. SinceZn is the complement of the zero set of an an analytic function onCn, it is a
Stein space, and sinceR(Zn) is an unramified covering ofZn it too is a Stein space.6 The
consequent triviality of the sheaf cohomologyH1(R(Zn),O* ) plays a role in giving a globa
definition of tau functions following Ref. 4. Finally, although it will not be the principal focus
the deformations we consider in this paper, we indicate the crucial property used to constr
Schlesinger deformations considered in Refs. 3, 4. LetYk denote the subset ofP13R(Zn), given
by

Yk5$~x,t !ux5ak~ t !%.

Let

Y`5$~`,t !utPR~Zn!%,

and

Y5Y`øY1øY2ø...øYn . ~1.1!

Then the property that is exploited in Ref. 3 to construct the Schlesinger deformations, is th
any choice oft0PR(Zn), the injection

P1\$a1
0,a2

0,...an
0,`%{x→~x,t0!PP13R~Zn!\Y

induces an isomorphism of fundamental groups~whereaj
05aj (t

0) is the j th coordinate of the
projection!. Using the correspondence between flat connections and representations of the
mental group from Ref. 7, this allows one to prolong the original connection f
P1\$a1

0,a2
0,...,an

0,`% to P13R(Zn)\Y in a holonomy preserving fashion. The crux of the existen
proof for the Schlesinger deformations is then to extend this connection to a neighborhood oY so
that it haslogarithmic polesalong Y. In Ref. 3 ~and by a similar construction in Ref. 4! this is
accomplished by exhibiting local deformations in a neighborhood of eachYk and then proving that
these can be fit together to provide a solution to the deformation problem if and only if a c
Fredholm integral equation has a solution. We will consider a related construction later on
paper.

Some further analysis then leads to the existence of a holomorphic functiont defined on
R(Zn) whose 0 set is an exceptional set for the solution of the original deformation proble
this paper we wish to use similar constructions to examine a somewhat different class of
mations. Our goal will be to show that thet function introduced by Jimbo, Miwa, and Ueno8 in a
study of such deformations has a similar property. Namely, that the zeros of these tau functio
exceptional sets for the solution of a deformation problem.

B. Birkhoff deformations

The deformations we wish to consider are associated with Birkhoff’s generalization o
Riemann–Hilbert problem.9 To understand what is involved, it is useful to review the analysis
solutions to linear differential equations,
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dc

dx
5A~x!c,

with a rational matrix-valued coefficientA(x) in a neighborhood of an irregular singular point.
helpful modern review of this subject can be found in Ref. 10. Suppose thatx5a is a pole ofA(x)
of order r 11; then we have

A~x!5Ar~x2a!2r 211Ar 21~x2a!2r1¯ .

The integerr is called the rank of the singularity and for the moment we will confine our atten
to the caser>1. The theory offormal solutions to~1.0! is much simplified by one furthe
assumption that we will make from now on. We require the following.

Standing Assumption (1.2). The coefficient, Ar , of the leading singularity in the Lauren
expansion of A(x) at x5a has distinct eigenvalues.

This assumption, of course, guarantees thatAr can be diagonalized by a nonsingular matrixG,

G21ArG5L r ,

whereL r is a diagonal matrix with distinct complex entries. In such circumstances~1.0! has a
uniqueformal fundamental solution,

Ĉ~x,t !5Gâ~x!eH~x!,

whereâ(x) is ann3n matrix-valued formal power series,

â~x!5I 1b1~x2a!11b2~x2a!21¯

and

H~x!5L r

~x2a!2r

2r
1L r 21

~x2a!2r 11

2r 11
¯1L1

~x2a!21

21
1L0 log~x2a!,

where all the matricesLk are diagonal with diagonal entries,

Lk, jª~Lk! j j .

The construction of this formal solution hinges on the inversion of ad(Ar) acting on the off-
diagonal matrices. Since the eigenvalues of ad(Ar) acting on the off-diagonal matrices are diffe
ences of distinct eigenvalues forAr , our standing assumption guarantees that this can be don
is quite typical that the series forâ does not converge and this leads to some complicatio
making a connection between the formal solution to~1.0! and genuine solutions to this equatio
Before we turn to this matter we mention a slightly different way of looking at this result that
make it simpler for the reader to connect this way of thinking with the developments in Refs
and 10.

Now write ]5]/]x and]̄5]/] x̄ and instead of the differential equation~1.0! one regards the
connection

dx^ „]2A~x!…1dx̄^ ]̄, ~1.3!

on the trivial bundle

P13Cp→P1,

as the fundamental object. If$a1 ,a2 ,...,an% is the set of poles forA(x), then flat sections,c, for
~1.3! defined locally inP1\$a1 ,a2 ,...,an% are solutions to the differential equation~1.0!.
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Gauge transformations~e.g., multiplication by smooth invertible matrix-valued functions ofx!

which are holomorphic~or meromorphic! in x do not change thedx̄^ ]̄ part of the connection~at
least away from the singularities! and the solution of the differential equation~1.0! is effectively
accomplished by gauging]2A(x) into diagonal form by such a gauge transformation. The form
gauge substitution,

c←Gâc,

can then be seen to reduce the connection~1.3! to the diagonal form

dx^ „]2h~x!…1dx̄^ ]̄,

whereh(x)ªdH/dx. A fundamental solution to the differential equation

„]2h~x!…c50, ~1.4!

is given by

C5eH~x!,

which is well defined modulo the possible appearance of a multivalued log term inH(x). This
accounts for the structure of the formal fundamental solution above but the relation betwee
formal solution and a genuine fundamental solution is complicated by Stokes’ phenomena,
we will now describe.

We first adopt some notation and definitions from Ref. 10.S will denote a sector with a vertex
at the origin, consisting of pointsreiu with r .0 and argumentuP(a,b) with 0<a,b,2p. For
d.0, we writeSd for the subset ofS with r ,d. If S andS8 are two sectors we writeS8,,S
if the bounding rays forS8 are contained inS. An open setV,S is said to be asymptotic to th
sectorS, if for eachS8,,S we haveSd8,V for all sufficiently smalld. We introduceA(S), the
complex algebra of germs of analytic functions defined on open sets asymptotic toS consisting of
functions that are asymptotic to a formal meromorphic series. The asymptotic conditionf
PA(S) is understood to mean that there exists a formal series,

f̂ ~x!; (
k>m

f kx
k,

with m.2`, so that for anyS8,,S and any integerM one has

f ~x!5 (
k>m

M

f kx
k1O~ uxuM11!, as x→0 in S8.

The basic local existence result for solutions of~1.0! near a polex5a of A(x) ~and we takea
50 for convenience! with leading singularity diagonalized byG is that if a sectorS is chosen
appropriately, there is a function~or germ! aSPA(S) that is asymptotic toâ with the property
that the gauge transformation byaS

21G21 reduces the differential equation~1.0! to the diagonal
form ~1.4! in an open setV asymptotic toS. For simplicity in the following local analysis, we wil
suppose that a trivialization has been chosen so thatG5I . To describe the nonuniqueness foraS ,
upon which the Stokes’ phenomena hinges, we introduce

aS,k5kth column of aS ,

and

Hk~x!5kth diagonal entry ofH~x!.
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Another way to state the existence result mentioned above is that then vector-valued functions,

ck~x!5aS,k~x!eHk~x!,

are independent solutions to~1.0! in some open setV asymptotic to the sectorS. Because the
functionsaS,k(x) are asymptotic to the power series, the ‘‘growth’’ of the functionsck(x) asx
→0 is controlled by the exponential factorseHk(x), which have absolute valueeRHk(x) ~where
Rx5real part ofx!. Now let

DH jk~x!5R„H j~x!2Hk~x!….

The curves along which

DH jk~x!50, ~1.5!

play an important role in understanding the relationship between formal solutions and an
solutions near the singularity atx50. To get an idea of what such curves look like near 0, i
enough to consider the leading-order equivalent of~1.5!. This is

R~L r , j2L r ,k!x
2r50. ~1.6!

Since each differenceL r , j2L r ,kÞ0, it follows that there are 2r rays emanating from 0 that satisf
~1.6!, given by

argx5
1

r S arg~L r , j2L r ,k!1S n1
1

2Dp D , for n50,...,2r 21.

These rays are called Stokes lines. Nearx50 the family of solutions to~1.5! consists of 2r curves,
each asymptotic to one of the Stokes lines~1.6!. The property of the Stokes lines that will b
important for us is that any open sector that contains one of the Stokes lines~1.6! will contain
points withDH jk,0 and also points withDH jk.0.

Now suppose that one crosses such a Stokes line going fromDH jk,0 to DH jk.0. One
moves from a region in whichck(x) dominatesc j (x) asx→0 to a region in which this domi-
nance relation is reversed. For the purpose of illustration assume thatDH jk(x),0 for x in some
truncationSd of S. Then for any constantc, one finds

ck1cc j5~aS,k1caS, je
H j 2Hk!eHk,

and becauseeH j 2Hk is exponentially small inSd , it follows that

aS,k1caS, je
H j 2Hk;âk ,

whereâk is thekth column of the formal seriesâ. Thus, the less dominant solutionc j may be
freely mixed in with ck without affecting the asymptotics ofaS,k . In this way one sees tha
genuine solutions with a given exponential behavior are not uniquely determined by the a
totics of their ‘‘power series component.’’ One obvious way to ‘‘cure’’ this particular nonuniq
ness would be to include a Stokes line from the familyDH jk50 in the sectorS. The exchange of
dominance across the line makes it impossible to alterck by adding in multiples ofc j without
changing the asymptotics ofaS,k , andvice versa. In fact, if one includesexactly one Stokes line
from each of the families (1.6) for j,k, then a simple argument11 shows that a genuine funda
mental solution,

C5aSeH,

in Sd , is uniquely determined by the condition that the asymptotic expansion ofaS is given byâ.
What is more, there is also an existence result for such sectors that can be proved using a
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of the usual integral equation technique but employing different contours for the each o
matrix elements in the solution~see the references in Ref. 12!. Following Ref. 13 we call such
sectorsgood sectors. It is not hard to see that a punctured neighborhood of 0 can be coveredr
~truncated! good sectorsS i ,d that we will take to be arranged in counterclockwise order, star
with S1,d . Because each good sector contains exactly one Stokes line from each family~1.5!, it
follows that the intersectionsS i ,dùS i 11,d do not contain any Stokes lines. On this overlap the t
local fundamental solutionsaS i

eH andaS i 11
eH of ~1.0! necessarily differ by a constant invertib

p3p matrix Si ,i 11 ,

aS i 11
eH5aS i

eHSi ,i 11 . ~1.7!

The matricesSi ,i 11 are called Stokes multipliers and must satisfy a triangularity property tha
will now explain. SinceS i ,dùS i 11,d does not contain any Stokes lines, it follows that for ea
fixed choice of~j,k! the quantityDH jk is either always positive or always negative inS i ,dùS i 11,d

~at least ifd is small enough so that the Stokes lines are good ‘‘stand ins’’ for the curvesDH jk

50). Thus there is a fixed dominance ordering,

RL r ,i 1
x2r.RL r ,i 2

x2r.¯.RL r ,i n
x2r ,

for xPS i ,dùS i 11,d , and some permutation (i 1 ,i 2 ,...,i n) of 1,2,....,n. If we write ~1.7! in matrix
form relative to the ordered basis$ei 1

,ei 2
,...,ei n

%, then the matrix ofSi ,i 11 relative to this ordered
basis must be lower triangular with 1’s on the diagonal in order thatSi ,i 11 should only alteraS i

by exponentially small terms. Another~basis-independent! version of the same observation is th

eHSi ,i 11e2H5I 1O~ uxuN!, for x→0 in S i ,dùS i 11,d ,

for somee.0 and all positive integersN. The relation~1.7! allows us to construct a fundament
solutionC to ~1.0! in a neighborhood ofx5a by analytically continuing the fundamental solutio
aS1

eH from S1,d to S2,d to S3,d and etc. The result is

C~x!55
aS1

~x!eH~x!, for xPS1,d ,

aS2
~x!eH~x!S1,2

21, for xPS2,d ,

¯ ,
aS2r

~x!eH~x!S1,2r
21 , for xPS2r ,d ,

~1.8!

where we have written

S1,k5S1,2S2,3¯Sk21,k ,

and it is understood that the logarithmic term inH(x) is analytically continued fromS1 to S2 to
¯ to S2r . If we write S2r ,1 for the Stokes multiplier connectingS2r with S1 then it is not hard to
see that the analytic continuation ofaS1

(x)eH(x) aroundx5a comes back to its original value
multiplied on the right by

eH~e2p i x!2H~x!~S1,2rS2r ,1!
215e2p iL0~S1,2rS2r ,1!

21. ~1.9!

The matrix~1.9! is thus the local monodromy for the fundamental solution~1.8!. We will refer to
the exponent of formal monodromyL0 , together with the Stokes multipliersSi ,i 11 as the gener-
alized monodromy data for~1.0! at x5a. Roughly speaking the deformations of~1.0! we are
interested in are those that fix the local generalized monodromy data at each of the singulari
~1.0! and fix the global monodromy for~1.0! but permit the formal expansion coefficien
$L r ,L r 21 ,...,L1% at each singularity to vary. The global monodromy is precisely the repre
tation of the fundamental group described earlier and we will say more about this late
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following the presentation in Malgrange3 and Helmink.4 Generalizations of the Schlesinger defo
mations in which the location of the poles are varied are also quite interesting; however, the
we wish to pursue have already been treated for these deformations in Refs. 3 and 4, and so
moment we confine our attention to deformations of the local exponents$L r ,L r 21 ,...,L1%. Our
strategy in studying these deformations will follow closely the developments in Ref. 14. In fa
Ref. 14 Malgrange already proves existence results for such deformations in the irregular s
case. However, we did not understand how to make use of his results to establish the con
with the JMU tau function that is the principal object in this paper. Instead, we will adap
integral equation technique from Flaschka and Newell15 to produce local models for the desire
deformation at each of the poles. These local deformations are then fit together by solvi
same Toeplitz integral equations that one finds in Ref. 3. The tau function is introduce
identifying its log derivative as the connection one-form for a flat connection on an approp
determinant bundle. A computation shows that this connection one-form differs from the
connection one-form by a regular term, and so the tau function we have introduced and th
tau functions have the same 0 set. We show that this 0 set is precisely the exceptional set
existence of the deformations we are considering.

C. Local analysis and Stokes multipliers

It will be useful at this point to be a little more precise about the nature of the genera
local monodromy data that is to be ‘‘fixed’’ under the deformations that are of interest to us. T
deformations concern the local model for our connections. Suppose that one starts with a

morphic connection“̄0 defined on a trivial bundle over a punctured neighborhood of the p
aPP1 with a singularity of typer at a ~note: we will put a bar over connections defined on subs
of P1 to distinguish them from the connections in many variables that will soon appear as d
mations!. Suppose that the connection satisfies our standing assumption and that the trivial

is chosen so that the leading singularity in the one-form for“̄

0 has a diagonal matrix coefficien

Then“̄0 is formally gauge equivalent to the diagonal form,

dx2dxH02L0

dx

x2a
, ~1.10!

where

H05(
j 51

r
L j

0

2 j
~x2a!2 j , ~1.11!

whereL j
0 andL0 are diagonal matrices. More precisely there is a formal gauge transforma

â0~x!5I 1b1
0~x2a!1b2

0~x2a!21¯ ,

so that

“̄

05â0
•Fdx2dxH02L0

dx

x2aG ,
whereâ•@X#5â@X#â21. Note that it is actually the inverse ofâ0 that reduces“̄0 to diagonal
form. This is just how things work out if the relationship betweenâ0 and a fundamental solution

to “̄

0 is given along the lines explained above.

The local analytic equivalence class of“̄0 is determined by further data, which can b
specified by choosing a covering of the punctured neighborhood ofa by good sectors,
S1 ,S2 ,...,S2r ~to somewhat unburden the notation we will writeSk for the truncated sectorSk,d

when the precise value ofd is not an issue!. For simplicity in the following discussion we wil
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always suppose that such a covering is obtained by first choosing a good sectorS1 . The other
sectorsS j are obtained fromS1 by rotating counterclockwise byj p/r radians. The Stokes mul
tipliers Sj , j 11 that connect local fundamental solutions with fixed asymptotics in the sectorS j

andS j 11 ~with S2r 115S1) then determine the local holomorphic equivalence class of“̄

0. The
deformations we wish to focus on allow the local model

“̄Lªdx2dxH2L0

dx

x2a
, ~1.12!

with

H5(
j 51

r
L j

2 j
~x2a!2 j , ~1.13!

to vary in the sense that the diagonal coefficient matricesL r ,L r 21 ,...,L1 vary in a neighborhood
of L r

0,L r 21
0 ,...,L1

0 with L r maintaining distinct eigenvalues andL0 held fixed. In what follows
L0 will always denote a fixed diagonalp3p matrix.

The Stokes multipliers are to remain fixed under our deformations. However, since the S
multipliers are significant relative to some choice of a covering by good sectors$S1 ,S2 ,...,S2r%
we must either fix this covering for all values of the deformation parameters~this is what is done
in Refs. 11 and 8! or say how the choice of covering affects the notion of ‘‘fixed’’ Stok
multipliers. We follow Malgrange in adopting the second alternative. The choice of a good s
S1 is nearly equivalent to the selection of a suitable collection of ‘‘consecutive’’ Stokes lines@one
from each of the families~1.6!#. Once one has selected such a collection of Stokes lines any
sector that contains these Stokes lines could serve as a good sector. However, we wish
further limitation on our good sectors. No Stokes line should lie on the boundary of a good s
The reason for this is that for a fixed connection, the Stokes multipliers associated with s
good sector are not stable under small rotations of the sector; Stokes lines can rotate in o
the sector and this changes the associated Stokes multipliers. Another way of saying this is
local analytic equivalence class associated with a choice of a covering by good secto
associated Stokes multipliers is not stable under small rotations of the good sectors unl
sectors do not have Stokes lines on their boundary. We will say that a covering$S1 ,S2 ,...,S2r%
of a punctured neighborhood ofa by good sectors isstableif the good sectorS1 has no Stokes
lines on its boundary.

We now define a configuration space,C, for our local models~1.12!:

CªZp3Cp3¯3Cp,

where there arer 21 factorsCp. The first factorZp is, of course, the configuration space for t
leading coefficientL r , and the remaining factorsCp are associated with theL j , j 5r 21,...,1.
Following Malgrange, we now introduce a fiber bundle,M→C. The fiberML over each point
Lª(L r ,L r 21 ,...,L1) in C is the moduli space of all holomorphic gauge equivalence classe
locally defined typer connections on the trivial bundle$x:ux2au,e%3Cp ~for somee.0) that

are formally equivalent to the connection~1.12!–~1.13!. Or put another way, if“̄1 and“̄2 are two

type r connections ata and they are formally equivalent to“̄L via â1 and â2 , then“̄1.“̄2 if
â2

21â1 is convergent in a neighborhood ofa ~see Ref. 14!. Next, we want to show that

M→
p

C, ~1.14!

is a fiber bundle with a natural flat connection. This connection will play a role in providin
global significance for monodromy preserving deformations. We first discuss local trivializa

for ~1.14!. Suppose thatL0PC and write “̄

0 for the connection~1.12! associated withL0.
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Suppose that$S1 ,S2 ,...,S2r% is a covering of a punctured neighborhood ofa by stable good

sectors for“̄0. Then we can find a neighborhoodU of L0 in C so that$S1 ,S2 ,...,S2r% is a stable

covering ata for all “̄L with LPU ~in fact, it is clear thatU can be taken to be of the form
Ur3Cp3...3Cp, whereUr is a sufficiently small neighborhood ofL r

0 in Zp). It is a result of
Malgrange and Sibuya,14,16 that for anyLPU and suitable choice of Stokes multipliersSj , j 11

there exists a typer connection ata with local model“̄L and Stokes multipliersSj , j 11 relative to
the covering$S1 ,S2 ,...,S2r%. This connection is not unique but its local holomorphic gau
equivalence class is unique. To be ‘‘suitable’’ the Stokes multipliers must be 1 on the diagon
lower triangular relative to the dominance ordering ofR(L r , j x) for xPS jùS j 11 . This identifies
the fiber ofM as Crp(p21), since there are 2r intersectionsS jùS j 11 and p(p21)/2 arbitrary
coefficients for each Stokes multiplier. The choice of a neighborhoodU and a covering
$S1 ,S2 ,...,S2r%, which is stable for all“L with LPU, thus produces a trivialization,

p21~U !.U3Crp~p21!.

Note: The fiberML is more invariantly defined in Ref. 14, asH1
„S1,St„“̄L)…, the first cohomol-

ogy of the Stokes sheaf associated with the connection“̄L ~see also Ref. 10!.
We will now show thatM is a fiber bundle by determining that the transition maps betw

trivializations are given by polynomial diffeomorphisms in the fiber. Suppose thatU8 is a neigh-

borhood inC with $S18 ,S28 ,...,S2r8 % a covering by sectors ata that is stable for all“̄L with L
PU8. Now suppose thatLPUùU8. Then since$S1 ,S2 ,...,S2r% and$S18 ,S28 ,...,S2r8 % are both

good stable coverings for“̄L it follows that, up to small changes in the opening angle ofS18 ,
which do not affect the Stokes multipliers,S18 can be obtained fromS1 by rotatingS1 counter-

clockwise through an angleu. To emphasize this we will writeS j85S j
u . Now let “̄ denote a

connection of typer at a that is formally equivalent to“̄L @i.e.,p(“̄)5L#. Supposeâ is a formal
series with

“̄5â–@“̄L#,

in the sense of formal series ata. Suppose thata j
uPA(S j

u) is asymptotic toâ and “̄5a j
u

•@“̄L# analytically in the sectorS j
u . Then the Stokes multipliersSj , j 11

u are defined by,

a j 11
u ~x!eHL~x!5a j

u~x!eHL~x!Sj , j 11
u , ~1.15!

where

HL~x!5(
j 51

r
L j

2 j
~x2a!2 j1L0 log~x2a!. ~1.16!

There is a slight ambiguity in the definition of the Stokes multipliers in~1.15! associated with the
choice ofx→ log(x2a) in ~1.16!. To deal with this ambiguity we require that the data that speci
a local trivialization for M→C includes not only the choice of a stable good cover
$S1 ,S2 ,...,S2r% but also a branch of the functionx→ log(x2a) in the sectorS1 . One may
analytically continue this choice fromS1 to S2 to S3 and so on to fix a choice of log in~1.16! and
render~1.15! an unambiguous defining relation forSj , j 11

u . In the rankr 51 case there are only
two sectorsS1 andS2 and the intersectionS1ùS2 is disconnected. In this case we suppose t
the analytic continuation fromS1 to S2 is accomplished so that the function is smooth
counterclockwise oriented circles passing fromS1 into S2 .

In the special caseu50 we will simply write a j
05a j andSj , j 11

0 5Sj , j 11 .
Now we turn to the proof thatM→C is a fiber bundle. As noted above our trivialization

depend on a choice of log(x2a) in S1
u . However, different choices will simply alterSj , j 11

u by
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conjugation with powers of exp(2piL0). Since this is a linear transformation in the fiber const
in the base, we may as well suppose that this choice of log(x2a) has been fixed inS1

u ~andS1).
The Stokes multipliers~1.15! are thus well defined and the transition map we wish to comp
takes$Sj , j 11% to $Sj , j 11

u %. It is enough to compute the transition in the fiber for 0,u,p/r since
a larger rotation may be realized as a composition of rotations satisfying this condition. Su
now that 0,u,p/r . Because the rotationu is smaller thanp/r , it follows that S jùS j

u is not
empty. We may thus compare the local fundamental solutionsa je

HL anda j
ueHL on this intersec-

tion,

a je
HL5a j

ueHLSj~u!, ~1.17!

whereSj (u) is a constantp3p matrix. Combining~1.16! and ~1.17!, one finds that

Sj , j 11
u 5Sj~u!Sj , j 11Sj 11~u!21. ~1.18!

Thus, to findSj , j 11
u in terms of the Stokes multipliers$Sk,k11% it will suffice to determineSk(u)

in terms of$Sk,k11%.
By relabling the eigenvalues,L r , j j 51,...,p, of L r we may suppose that the dominance o

dering inS jùS j 11 is the ‘‘natural’’ one,

R~L r ,1x!,R~L r ,2x!,¯,R~L r ,px!,

for xPS jùS j 11 . It is not hard to see what happens to this dominance ordering as one r
S jùS j 11 counterclockwise. AsS jùS j 11 crosses a ‘‘simple’’ Stokes line, say

R~L r ,1x!,R~L r ,2x!5R~L r ,3x!,R~L r ,3x!,

then the dominance ordering permutes 2 and 3 leaving the rest of the indices in sequence
crosses a Stokes line with ‘‘higher multiplicity,’’ say

R~L r ,1x!,R~L r ,2x!5R~l r ,3x!5R~L r ,4x!,R~L r ,5x!,

then the~2, 3, 4! part of the ordering is inverted to~4, 3, 2!.
For the purpose of illustration suppose thatp55 and that in going fromS jùS j 11 to

S j
uùS j 11

u one passes through the simple Stokes lineR(L r ,1x)5R(L r ,2x) and the higher multi-
plicity Stokes lineR(L r ,3x)5R(L r ,4x)5R(L r ,5x). Then it is not hard to see that the Stok
multiplier for S j

uùS j 11
u must have the following ‘‘triangularity,’’

Sj , j 11
u 5F 1 * 0 0 0

0 1 0 0 0

* * 1 * *

* * 0 1 *

* * 0 0 1

G , ~1.19!

relative to the basis forC5 in which Sj , j 11 is lower triangular. The* ’s represent possibly nonzer
entries. Next consider~1.17!. Sincea j anda j

u have the same asymptotics in the sectorS jùS j
u , it

follows thatSj (u) must have 1’s on the diagonal and cannot have nonzero off-diagonal elem
for any of the pairs associated with Stokes lines in the intersectionS jùS j

u . In the example~1.19!
this means that the~l,m! matrix elements forSj (u) are zero for

~ l ,m!P$~k,1!,~k,2!,~1,k!,~2,k!:k53,4,5%.
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Sinceu,p/r it follows that S jùS j 11 is contained inS jùS j
u ~provided at least one Stokes lin

is crossed, which is the only interesting case!. Thus one can also say ofSj (u) that it is lower
triangular with respect to the dominance ordering inS jùS j 11 . Thus, for our example, the matri
of Sj (u) must have the form

Sj~u!5F 1 0 0 0 0

a 1 0 0 0

0 0 1 0 0

0 0 b 1 0

0 0 c d 1

G . ~1.20!

In a similar fashionS j
uùS j 11

u is contained inS j 11ùS j 11
u , and it follows thatSj 11(u) must be

lower triangular with respect to the dominance ordering forS j
uùS j 11

u . In our example, if we
rewrite ~1.17! in the formSj , j 11

u Sj 11(u)5Sj (u)Sj , j 11 and make use of the lower triangularity o
the productSj , j 11

u Sj 11(u) with respect to the dominance ordering inS j
uùS j 11

u . We find

F 1 * 0 0 0

0 1 0 0 0

* * 1 * *

* * 0 1 *

* * 0 0 1

G5F 1 0 0 0 0

a 1 0 0 0

0 0 1 0 0

0 0 b 1 0

0 0 c d 1

GF 1 0 0 0 0

* 1 0 0 0

* * 1 0 0

* * * 1 0

* * * * 1

G . ~1.21!

The~2,1! matrix element ofSj (u) can be determined simply by equating the~2,1! matrix elements
on both sides of~1.21!. One finds

a5Sj~u!2,152~Sj , j 11!2,1.

The same thing can be done for the matrix elementsb andd for Sj (u) on the subdiagonal. Fo
example,

d5Sj~u!5,252~Sj , j 11!5,2.

Once one knows the subdiagonal elements one can move out to the diagonal below the su
nal. Equating~5,3! matrix elements for~1.21!, one finds

05c1d~Sj , j 11!4,31~Sj , j 11!5,3.

From the earlier relation ford one finds thatc is a polynomial function of the matrix elements o
Sj , j 11 . Thus, the entries ofSj (u) are polynomials in the entries forSj , j 11 and it is clear that this
is true quite generally and does not depend on anything special in our example. From~1.18! it then
follows that Sj , j 11

u is a polynomial in the entries ofSj , j 11 and Sj 11,j 12 . Since this relation is
invertible by construction it follows that the map from$Sk,k11% to $Sk,k11

u % is a polynomial
diffeomorphism onCrp(p21).

We have seen thatp: M→C is a fiber bundle and that there is a natural family of trivializ
tions for this bundle that are related by polynomial diffeomorphisms in the fiber that are con
in the base. Recall that the vertical vectors in the tangent space toM at p,Tp(M), are those killed
by dpp . A connection onM is determined by a one-formv onM whose valuevp(v) at a vector
vPTp(M) is a vertical vector inTp(M) at p; v must have the further property thatvp(v)5v if
v is a vertical vector inTp(M). Our trivializations single out a flat connection onM. If p21(U)
has trivializationU3CN and f 1 , f 2 ,...,f N are the natural coordinate functions onCN then it is
easy to see that
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v5 (
k51

N
]

] f k
d fk

defines a connection one-form independent of the choice of trivialization~among the special clas
of trivializations that we have been considering forM in which the fiber coordinates transform
among themselves!. The curveĝ(t) in M is the horizontal lift ofg(t)5pĝ(t) provided that
v„ĝ8(t)…50. Relative to one of our distinguished trivializations this translates into

ĝ~ t !5„g~ t !, f …,

where f PCN is constant int. The curvature of this connection is clearly 0 and locally para
sections look like

s~x!5~x, f !,

wheref is independent ofx. Now let R(C) denote the simply connected covering space ofC. As
was the case forR(Zn) above it will be convenient to introduce special notation for project
from R(C) to C. We will write lPR(C) andL(l)PC for the projection ofl onto C.

The bundleM overC with flat connectionv pulls back to a bundle overR(C) ~which we will
continue to denote byM! with a flat connection~which we will continue to denote byv!. Because
R(C) is simply connected, the bundle

M→R~C!

has globally defined parallel sections. The existence of these global sections, which are the
of the local notion of ‘‘constant Stokes multipliers’’ inC is the reason for working here inR(C)
instead of just locally inC ~note: the theory of local systems explained in Ref. 10 also applie
M and could be used to bypass the introduction of a connection in the fiber bundleM!.

D. Local models for integrable deformations

Before we state our global result forR(C) deformations we introduce some notation from R
14 concerning connections in several complex variables. Suppose thatX is a complex analytic
variety of dimensionn, Y is a smooth hypersurface inX, E is a rankp complex vector bundle ove
X, “ is a holomorphic connection onX\Y, andV is the one form for“ in a local frame forE.

Definition 1.22: For r>0 an integer one says that“ is of type r along Y, if in a system of loca
coordinates x1 ,x2 ,...,xn for X with Y locally defined by x150 one has

V5(
j 51

n

M j dxj ,

where M1 has a pole of order r11 in x1 , M j for j >2 has a pole of order r in x1 , and Mj is
holomorphic in x2 ,x3 ,...,xn for all j .

Suppose that

M15 (
2r 21

`

M1,kx1
k .

Our standing assumption~1.2! for type r>1 connections, translates into this situation as
assumption thatM1,2r 21(x2 ,x3 ,...,xn) has distinct eigenvalues. We will refer to such connectio
assimpletype r connections alongY. Whenr 50 we will say that a type 0 connection issimpleif
M1,21(x2 ,x3 ,...,xn) has distinct eigenvalues, which, in addition,do not differ by integers. Mal-
grange has shown how to develop the theory of Schlesinger deformations without this assum
but it will be convenient for us to insist on it so that we may work with regular and irreg
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singular points in parallel. Propositions 1.23a and 1.23b below are the principal reason that
possible and will permit us to present the ‘‘unified’’ formula ford logt, which can be found in
Ref. 8.

We recall some results of Malgrange for simpleintegrabletype r connections. Suppose tha
one has a simple integrable typer connection“ alongY and that, as above,Y is locally defined by
x150. Let y5(x2 ,x3 ,...,xn) denote the local coordinates onY. Then one has the following loca
version of Proposition 1.3 in Ref. 14.

Proposition 1.23a: Suppose that (E,“) is a vector bundle with a simple integrable connecti
“ of type r>1 along Y. There exists a local trivialization in a neighborhood of x50 so that
M1,2r 21 is diagonal in this trivialization. LetV denote the connection form for“ in this trivial-
ization. Then in a sufficiently small neighborhooduyu,e there exists a formal power seriesâ in
x1 ,

â~x!5I 1b1~y!x11b2~y!x1
21¯ ,

with matrix coefficientsb j (y), which are holomorphic in y foruyu,e, with the property that

â•@“L#5d1V,

whereâ•@“L#5â “Lâ21 is the formal gauge transformation byâ,

“L5d2d~H!2L0

dx1

x1
,

d is the exterior derivative in the x variables, L0 is a constant diagonal matrix,

H5(
j 51

r

L j~y!
x1

2 j

2 j
,

with L j (y) a diagonal matrix with entries that are holomorphic functions of y, andL r(y) a
diagonal matrix with distinct entries [note: in the statement of this PropositionL does not denote
the projectionR(C)→C described above].

There is an analog of this result for simple type 0 connections, which is the principal re
we work with such connections.

Proposition 1.23b: Suppose that (E,“) is a vector bundle with a simple integrable type
connection“ along Y. There exists a local trivialization near x50 so that M1,21 is diagonal. Let
V denote the one form for“ in this trivialization. Then in a sufficiently small neighborhood
x50 there exists aGL(p,C)-valued holomorphic function,

a~x!5I 1b1~y!x11b2~y!x1
21¯ ,

so that

aS d2
L0

x1
dx1Da215d1V,

whereL0 is a diagonal matrix that is independent of x.
Remark: The conclusion of this theorem is simply that the connection“ is given by d

2(L0 /x1)dx1 in a suitable local trivialization. The analogy with Proposition 1.23a is not
apparent in this formulation, however.

Proof (of Proposition 1.23b):Let V5( j 51
n M j dxj denote the connection one-form for“

relative to some trivialization in a neighborhood ofx50. SupposeM1,21(y) is the residue ofM1
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at x150. Then the matrixM1,21(0) has distinct eigenvalues, and this remains true forM1,21(y)
for x in a sufficiently small neighborhood of 0. Because its eigenvalues are distinct one
diagonalizeM1,21(y) by a holomorphic similarity transformation,

Q~y!M1,21~y!Q~y!215L0~y!,

whereQ(y) is holomorphic andL0(y) is diagonal. Making a gauge transformation byQ, one
finds that the connection“ becomes

d2
L0~y!

x1
dx12(

j 51

n

Bj~x!dxj ,

where theBj (x) is holomorphic inx. By assumption, the eigenvalues ofL0(0) do not differ by
integers and so the same is true forL0(y) if y remains in a sufficiently small neighborhood of
Now let z5x1 and consider the connection

dz2
L0~y!

z
dz2B1~z,y!dz,

depending on the parametery. Since the eigenvalues ofL0(y) are distinct and do not differ by
integers, the standard construction of a fundamental solution@which depends on the inversion o
ad(L0)2nI where n51,2,..., is an integer# shows that one can find a gauge transformat
b(z,y)5I 1O(z), which depends holomorphically on the parametersy and that transforms this
connection to

dz2
L0~y!

z
dz.

The gauge transformation of the complete connection by this transform gives one

d2
L0~y!

z
dz2 (

j 51

n21

Bj 11~z,y!dyj , ~1.23!

whereyj5xj 11 . Now we express the integrability of this connection (dV1V∧V50) expanding
Bk(z,y) in powers ofz,

Bk~z,y!5(
j 50

`

Bj
k~y!zj .

Equating the coefficients ofz21 in the integrability condition, we find that

]L0~y!

]yj
5@B0

j ,L0#.

Since L0 is diagonal the right-hand side vanishes on the diagonal and this shows thatL0(y)
5L05const. The left-hand side vanishes off the diagonal and since the entries ofL0 are distinct
this implies thatB0

j must be diagonal. Equating the coefficients ofzjdz∧dyj in the integrability
condition, one finds

nBn
j 5@L0 ,Bn

j #, for n51,2...,

which implies thatBn
j 50 for n51,2,... . Thus, the connection“ has the form
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dz2
L0

z
dz1dy2 (

j 51

n21

B0
j 11~y!dyj .

The connection

dy2 (
j 51

n21

B0
j 11~y!dyj

is integrable and so a gauge transformation,g(y), in they variables reduces this connection tody .
SinceB0

j 11(y) is diagonal this gauge transformation may be chosen to be diagonal and als
be chosen so thatg(y)5I 1O(y). Since g is diagonal, it does not alter thedz part of the
connection. Composingb andg we get a gauge transformationa5I 1O(z), which reduces~1.23!
to

d2
L0

z
dz,

and this finishes the proof. QED
Although we do not require the result until the next section it will be convenient here to r

Theorem 2.1 from Ref. 14. Suppose that~E,“! is a vector bundle with a connection“ that has a
simple typer pole along the hypersurfaceY defined byx150. Let y5(x2 ,...,xn) denote the
coordinates alongY. Suppose that in a neighborhood of a pointx0PY, with coordinatesx150 and
y50, and relative to some local trivialization of the bundle one has a formal isomorphism,

“5â–@“L#,

where“L is the diagonal connection described in Proposition 1.23a andâ is the formal power
series described in that same proposition. Suppose thatS is a good stable sector~in the x1

variable! for the connection“ restricted toy50. Suppose thate.0 is chosen small enough s
that for all y1 with uy1u,e, the sectorS remains a good stable sector for the restriction of“ to
y5y1 .

Then one has~Theorem 2.1 in Ref. 14!.
Proposition 1.23c: There exists a uniquely determined invertible holomorphic mapaS

PA(Se3uyu,e) such that onSe3uyu,e and in an appropriate trivialization for E, one has

“5aS–@“L#,

and such that the mapaS extendsâ in the sense thataS has an asymptotic development along
which is equal toâ.

Remark:The consequence of this result that is of interest for us is that the formal isomorp
class“L together with the Stokes multipliers determine the local holomorphic equivalence
of a simple, integrable, typer connection. Two collections,aSk

andaSk
8 , associated with the sam

good stable cover$S1 ,...,S2r% with the same Stokes multipliers, and the same asymptoticâ
clearly differ by an invertible holomorphic map.

We are now prepared to state an existence result for a global version of a ‘‘Stokes mul
preserving deformation,’’ which is, however, local in thex1 variable. The space we will work on
is D3R(C), whereD is the unit disk aboutx5a in C and the connection whose existence w
wish to demonstrate is a simple integrable typer connection along$a%3R(C), which has formal
reduction to

“l5d2d~H!2L0

dx

x2a
, ~1.24!
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whered5dx1dl is the exterior derivative in the (x,l)PD3R(C) variables and

H5(
j 51

r

Lk~l!
~x2a!2 j

2 j
. ~1.25!

Note that“l5eH de2H, is the gauge transform of the connectiond by eH, with H given byH
1L0 log(x2a). However, sinceH is singular atx5a and multivalued this is not properly a globa
statement, but does make sense locally.

Theorem 1.26:Suppose thats is a parallel section forM→R(C). Let D denote the unit disk
in C centered at a. Then there exists a holomorphic integrable connection“ defined on the trivial
vector bundle,

D3R~C!3Cp→D3R~C!, ~1.27!

which has a singularity of type r>1 along the hypersurface Y5$a%3R(C) such that the restric-
tion of the connection“ to D\$a%3R(C) is formally equivalent to the diagonal model“l defined
in (1.24) and such that the the holomorphic equivalence class of the restriction of“ to (D\$a%)
3$l% is given bys(l).

Proof: We first recall a result of Malgrange and Sibuya, for which one can also find a det
proof in Ref. 17. Suppose thatlPR(C) andsPMl , whereMl is the fiber inM overl. Then

on the trivial bundleD3Cp→D there exists a simple typer connection“̄ singular atx5a in D,
which has formal reduction to the diagonal model,

“̄lªdx2dxH~l!2L0

dx

x2a
, ~1.28!

and which has ‘‘Stokes multipliers’’ given bys. In the version of this result that is proved in Re
17 the connection is shown to exist on a disk,Dd , of small radiusd. It is not difficult to use the
Birkhoff factorization theorem to produce a connection defined onD\$a% with the same proper-

ties. Suppose then that one has a connection“̄ defined on the trivial bundle overDd and satisfying

the conditions above. There exists a connection“̄ext defined on the trivial bundleC\$a%3Cp

→C\$a% with the same holonomy aboutx5a as the connection“̄ ~it is easy to produce such

connection with a logarithmic pole atx5a). Because the holonomy of“̄ and of “̄ext aboutx
5a are equal it follows that there is an annulusA containing the circle,Sd/2 , of radiusd/2 on
which the two connections are gauge equivalent. Thus there exists a holomorphic mag:A
→GL(p,C) such that

g•@“̄#5“̄ext.

The Birkhoff theorem gives us a factorization,

g5g`
21~x2a!Ng0 ,

whereg0 is holomorphic and invertible in a neighborhood ofx5a containing the annulusA, g`

is holomorphic and invertible in a neighborhood of` that contains the annulus,A, and N is a
diagonal matrix with integer entries. The equality

g0–@“̄#5~x2a!2Ng`–@“̄ext#, ~1.29!

on the annulusA, shows that the connectiong0–@“̄# extends to the punctured unit disk, and sin

it is in the same local holomorphic equivalence class as“̄, we have finished the demonstratio
that we may work on the unit disk,D, rather thanDd .
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To complete the proof of Theorem 1.26 we proceed in two steps. First, we show that
confine our attention to a sufficiently small neighborhoodU of lPR(C), then we can find a
connection“U defined overD\$a%3U that satisfies the conclusions of Theorem 1.26, withsU the
unique local flat section ofM with sU(l)5s. We will prove this using a variant of the

Flaschka–Newell integral equation to produce a ‘‘perturbation’’ of the connection“̄. We defer
the proof of this result to Proposition 1.35 below. The second step is to put together the ‘‘lo
solutions“U to get something defined on all ofR(C). We will now show how to do this.

Let l→s(l) denote a flat section ofM→R(C). For each pointlPR(C) there exists a
neighborhoodU(l,s) of l in which the construction of Proposition 1.35 applies. LetU denote a
subcollection of such open neighborhoods that is a covering forR(C) and for whichUùV is
contractible for each pairU, VPU. We also suppose that each neighborhoodUPU is chosen
sufficiently small so that for d.0 small enough there exists a sectorial cover
$S1,d ,S2,d ,...,S2r ,d% of the punctured neighborhoodDd\$a% that is stable and good for the a
connections,

dx2dxH~l!2L0

dx

x2a
,

with lPU. The construction of Proposition 1.35 shows that there exist holomorphic maps,

ak
U :Sk,d3U→GL~p,C!,

so that

ak
U
–@“l#5“U , on Sk,d3U.

Furthermore, the mapsak
U are related to one another,

ak11
U 5ak

USk,k11~x,l!,

whereSk,k11 :Sk,dùSk11,d3U→GL(p,C) is a gauge automorphism of“l that is asymptotic to
the identityto all ordersat x5a. Recall that

Sk,k11~x,l!5eHSk,k11e2H,

whereSk,k11 is a constant matrix andeH is well defined once a choice ofx→ log(x2a) is made for
xPS1,d . Suppose thatU, VPU; then for lPUùV, the fact thatSk,k11 does not depend onU
implies that the collection of holomorphic maps,

ak
U~ak

V!21 for k51,2,...,2r ,

defines a holomorphic map,gUV , in a punctured neighborhood,Dd\$a%3UùV, and the fact that
Sk,k11(x,l) is asymptotic to the identity to all orders in (x2a) implies thatgUV asymptotic to a
power series nearx5a that does not depend on the sector. This implies thatgUV is actually
holomorphic onDd3UùV. By construction,

gUV–@“V#5“U , on Dd\$a%3UùV. ~1.30!

This shows that the holonomy of the connection“U and the holonomy of the connection“V agree
on D\$a%3UùV ~since UùV is contractible the fundamental group of the productD\$a%
3UùV is determined by the first factor! and hence that they are holomorphically equivalent
all of D\$a%3UùV. The mapgUV has an invertible holomorphic extension to all ofD3UùV
with the property thatg(a,l)5I for all lPUùV. It is not difficult to see that the gauge tran
formation gUV is uniquely determined by~1.30! and this normalization. Because of th
gUVgVW5gUW . Thus, the collection$gUVuU,VPU% is a collection of transition functions for a
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holomorphic vector bundle overD3R(C). But D3R(C) is contractible since both factors ar
and every bundle onD3R(C), is thus topologically trivial. ButD3R(C) is a Stein space. It is a
theorem of Grauert that on a Stein space every topologically trivial holomorphic bundle is
morphically trivial.18 Thus, the bundle defined by these transition functions is holomorphic
trivial. Thus, there exists invertible holomorphic mapsgU :D3U→GL(p,C), so that

gUV5gU
21gV .

Equation~1.30! becomes

gV–@“V#5gU–@“U#,

and we see thatgU–@“U# defines a global connection onD\$a%3R(C) that satisfies the condition
of Theorem 1.26. QED

Now we turn to the proof of the perturbation result used in the proof of the precee

theorem. Suppose that“̄0 is a simple typer connection on the trivial bundle,

D3Cp→D,

with singularity atx5a in D. For the purpose of a technical result later on, it will be conveni

to choose a special trivialization in which to consider the connection“̄

0. Chooser,1 and letA
denote the annulus,

A5$x:r,ux2au,1%,D.

Choose a pointqPA and letM denote thep3p invertible matrix, which gives the holonomy o

the connection“̄0 ~with respect to the initial trivialization! along a counterclockwise oriente
circle of radiusuq2au abouta. Let

mª

1

2p i
logM ,

for some choice of a logarithm forM. The connection

“̄

`
ªdx2

m

x2a
,

defined on the trivial bundleP13Cp, has regular singular points at 0 and` and its restriction to

A has the same holonomy representation as“̄

0. Hence, there exists an invertible holomorphic m
g:A→GL(p,C) so that

g–“̄05“̄

`, on A.

Let g5g`
21(x2a)2Ng0 denote the Birkhoff factorization ofg, with g0 holomorphic and invertible

in D, g` holomorphic and invertible in$x:ux2au.r%ø$`%, andN a diagonal matrix with integer
entries. Thus,

g0–“̄
05~x2a!Ng`–“̄

`,

and we see that by adjusting the trivialization onD3Cp by g0 we may suppose that our conne

tion “̄

0 extends to a connection on the trivial bundleP13Cp→P1 with a regular singular point a
` ~the resulting connection may not be of a simple type at`, however!. In what follows we

suppose that we are looking at“̄0 in just such a trivialization.
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Now suppose that the leading singularity in the connection one-form for“̄

0 is diagonal and
that for the formal power series,

â05I 1b1
0~x2a!1b2

0~x2a!21¯ ,

we have

“̄

05â0
•Fdx2dxH~l0!2L0

dx

x2aG , ~1.31!

whereH is given by~1.25! andl0 is some fixed element inR(C) coveringL(l0). Note that the

projectionL05L(l0) is determined by“̄0 through ~1.31!. Let $S1,d ,S2,d ,...,S2r ,d% denote a

stable good covering of a punctured neighborhood ofx5a for the diagonal connection“̄l0 @see
~1.28!#. Let ak

05aSk

0 PA(Sk) be a holomorphic function whose asymptotics are given byâ0 and

for which one has the analytical relation

“̄

05ak
0
•Fdx2dxH~l0!2L0

dx

x2aG , ~1.32!

in the sectorSk,d . Finally, suppose that onSk,dùSk11,d , we have

ak11
0 5ak

0Sk,k11~x,l0!, ~1.33!

where

Sk,k11~x,l!5eH~l!Sk,k11
0 e2H~l!. ~1.34!

HereH is given by~1.16! and a choice of log(x2a) is fixed for xPS1,d to makeH well defined.
The Stokes multiplierSk,k11

0 is independent ofx andl0. Let V0 denote the connection form fo

“̄

0 and let pr denote the natural projection,

D3R~C!→D.

Define

“

05d1pr* V0,

with d5dx1dl , so that“0 defines a connection on the trivial bundle,

D3R~C!3Cp→D3R~C!.

The following proposition demonstrates the existence of local ‘‘Birkhoff deformations’’ of

connection“̄0 in the spaceD3R(C).
Proposition 1.35: For a sufficiently small neighborhood U ofl0 there exists a simple inte

grable type r connection“U defined on the trivial bundle,

D3U3Cp→D3U,

so that we have the following.
(i) “U is formally reducible to the diagonal form (1.28),

“U5â–@“l#, ~1.36!

where
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â5I 1b1~l!~x2a!1b2~l!~x2a!21¯ ~1.37!

is a formal power series with holomorphic matrix-valued coefficientsbk(l). The sectorsSk

3U are good stable sectors for“U ; there exist holomorphic maps,

akPA~Sk ,U !, ~1.38!

with asymptotics given byâ, so that on open sets asymptotic toSk3U.

“U5ak–@“l#, ~1.39!

(ii) “U is a ‘‘Birkhoff deformation’’ of “̄0, in that the restriction of“U to D\$a%3$l0% is

equivalent to“̄0 and

ak11~x,l!5ak~x,l!Sk,k11~x,l!, ~1.40!

on Sk,dùSk11,d3U [see (1.34)].
(iii) On the punctured neighborhood D\$a%3U, the connections“U and “

0 are gauge
equivalent,

“U5F–@“0#, ~1.41!

by a gauge transformation x→F(x,l) that is holomorphic in the exterior of the disk D an
asymptotic to I as x→`.

(iv) If “̄0 extends to a connection on the trivial bundleP13Cp→P1 with a regular singular
point at infinity; then

dl Resx5a Tr$â21 dxâ dlH~l!%50. ~1.42!

Proof: To construct“U through Eq.~1.39! it will suffice to construct functionsak satisfying
~1.40! with ak(x,l0)5ak

0(x). Our strategy will be to look for solutions

ak~x,l!5wk~x,l!ak
0~x!,

with wk :Sk,d3U→GL(p,C) a holomorphic map with appropriate asymptotics. Condition~1.40!
for $ak% translates into

wk11~x,l!5wk~x,l!„I 1Dsk,k11~x,l!…, ~1.43!

for ~x,l! in Sk,dùSk11,d3U, where

I 1Dsk,k11~x,l!5ak
0~x!Sk,k11~x,l!Sk,k11~x,l0!21ak

0~x!21.

The important property ofDsk,k11 for us is that for any fixedd.0 one can makeDsk,k11 as close
to zero as one likes by choosinglPU, with U a sufficiently small neighborhood ofl0.

The condition~1.40! @or its translation~1.43!# does not determineak uniquely. We will
impose a further condition onak that will uniquely determine it. The extra condition is that t
‘‘fundamental solutions’’C(x,l) andC0(x) associated to$ak% and $ak

0% by ~1.8! differ on the
circle of radiusd by a map that is holomorphic in the exterior of the circle of radiusd aboutx
5a and asymptotic to the identity at̀. More precisely,C(x,l)C0(x)21 should be holomorphic
in x outside the circle of radiusd and

C~x,l!C0~x!215I 1O~x21!.

Note thatF(x,l)5C(x,l)C0(x)21 will be the gauge transformation in~iii ! of Proposition 1.35.
We will now translate the conditions we have outlined into an integral equation for the func
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wk . It will be useful to begin by describing the pieces that make up the integration contou
will use. Let sk,k11 denote an oriented ray segment that lies in the intersectionSk,dùSk11,d ,
joins the pointa to the circle of radiusd abouta, and separates the Stokes lines in the sectorSk,d

from the Stokes lines in the sectorSk11,d for all lPU @Stokes lines are associated with th
function L r(l)#. It is always possible to do this ifd is small enough andU is chosen to be a
sufficiently small neighborhood ofl0. Let gk denote the counterclockwise oriented segment of
circle of radiusd abouta that joins the end point ofsk21,k to the end point ofsk,k11 . Finally, let
sk denote the open wedge that is bounded bysk21,k , gk , andsk,k11 . Then clearlysk,Sk,d ,
and the oriented boundary ofsk is given by

]sk5sk21,k1gk2sk,k11 .

If we now compareC andC0 defined by~1.8! on the circle of radiusd abouta we find

C~x,l!C0~x!215wk~x,l!„I 1Dmk~x,l!… for xPgk , ~1.44!

wherek51,2,...,2r , with

I 1Dmk~x,l!ªak
0~x!eH~x,l!2H~x,l0!ak

0~x!21. ~1.45!

We have written~1.45! in the special formI 1Dmk to emphasize the fact that for fixedd the
right-hand side of~1.45! can be made as close to the identity as one pleases by choosinglPU,
with U a sufficiently small neighborhood ofl0. Next we will obtain a system of integral equation
for wk following Flaschka and Newell.15 Suppose thatyPs1 ; then by Cauchy’s theorem,

w1~y,l!5E
]s1

w1~x,l!

x2y

dx

2p i
5E

s0,1

w1~x,l!

x2y

dx

2p i
1E

g1

w1~x,l!

x2y

dx

2p i
2E

s1,2

w1~x,l!

x2y

dx

2p i
.

~1.46!

On s1,2 we can use~1.43! to write

w1~x,l!5w1~x,l!2w2~x,l!1w2~x,l!52w1Ds1,2~x,l!1w2~x,l!, ~1.47!

where for brevity we have writtenw1 Ds1,2(x,l) for w1(x,l)Ds1,2(x,l) ~we will use this notation
without further comment in what follows!. Substituting this expression in thes1,2 integral in
~1.46!, one finds

w1~y,l!5E
s0,1

w1~x,l!

x2y

dx

2p i
1E

g1

w1~x,l!

x2y

dx

2p i
1E

s1,2

w1Ds1,2~x,l!

x2y

dx

2p i

2E
s1,2

w2~x,l!

x2y

dx

2p i
. ~1.48!

Sincew2(x,l) is holomorphic ins2 andyPs1 , which is outside ofs2 it follows that

2E
s1,2

w2~x,l!

x2y

dx

2p i
5E

g2

w2~x,l!

x2y

dx

2p i
2E

s2,3

w2~x,l!

x2y

dx

2p i
. ~1.49!

We substitute~1.49! for the last integral to appear in~1.48!. In the expression that results w
observe that the integral,

E
s2,3

w2~x,l!

x2y

dx

2p i
52E

s2,3

w2 Ds2,3~x,l!

x2y

dx

2p i
1E

s2,3

w3~x,l!

x2y

dx

2p i
,
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and one may continue this last integral tog3 ands3,4 by Cauchy’s theorem as above. Proceed
all the way around the circle in this fashion, one finds

w1~y,l!2 (
k51

2r H E
gk

wk~x,l!

x2y

dx

2p i
1E

sk,k11

wkDsk,k11~x,l!

x2y

dx

2p i J 50. ~1.50!

Now we formulate the condition that the right-hand side of~1.44! should be holomorphic in the
exterior of the circle of radiusd abouta and asymptotic to the identity at̀. This can be expresse
as

(
k51

2r E
gk

wk~x,l!„I 1Dmk~x,l!…

x2y

dx

2p i
5I . ~1.51!

Adding this result to the preceding equation, one finds

w1~y,l!1K1w~y,l!5I , ~1.52!

where

K1w~y,l!5 (
k51

2r H E
gk

wk Dmk~x,l!

x2y

dx

2p i
2E

sk,k11

wk Dsk,k11~x,l!

x2y

dx

2p i J , ~1.53!

andw5(w1 ,w2 ,...,w2r). We ‘‘derived’’ ~1.52! with y chosen to be in the interior ofs1 . How-
ever, we now choose to think of~1.52! as an integral equation for the restriction ofw1 to ]s1 . In
this case the integral operatorK1 defined in~1.52! is understood to involve nontangential limits fo
y on ]s1 from the interior ofs1 . There is was nothing special aboutw1 in the arguments above
and so we find that the vectorw satisfies the system of integral equations,

wk~y,l!1Kkw~y,l!5I , ~1.54!

where the integral operatorsKk are defined by the same formula asK1 but they variable that
occurs in~1.53! takes values in]sk ~with the integral operator defined by nontangential lim
from the interior!. It might be instructive for the reader to compare the system~1.54! of singular
integral equations with the standard translation of a Riemann–Hilbert problem into a sin
integral equation to be found in~3.17! below.

It is well known that nontangential limits for the Cauchy kernel (x2y)21 determine a
bounded operator onL2(]sk) in case bothx andy are in]sk . It is not hard to see from this tha
the integral operator

Kw5~K1w,K2w,...,K2rw!

is a bounded operator on

H5L2~]s1! % L2~]s2! %¯% L2~]s2r !.

Furthermore, it is clear that becauseDmk(x,l) andDsk,k11(x,l) can be made uniformly small by
choosingl close enough tol0, the system of integral equations~1.54! has a unique solution inH
provided the neighborhoodU is small enough.

Next, we wish to show that the solution of~1.54! satisfies~1.43!. Suppose then thatw is a
solution to~1.54! in H. One calculates that, foryPs j , j 11 ,
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w j 11~y,l!2w j~y,l!5K jw~y,l!2K j 11w~y,l!

5E
s j , j 11

H w j Dsj , j 11~x,l!

x2y~s j !
2

w j Dsj , j 11~x,l!

x2y~s j 11! J dx

2p i
, ~1.55!

where we have writteny(sk) for the boundary value ons j , j 11 taken from the interior ofsk for
k5 j andk5 j 11. Since

1

2p i H 1

x2y~s j !
2

1

x2y~s j 11!J 5d~x2y!, for yPs j , j 11 ,

it follows from ~1.55! that

w j 11~y,l!2w j~y,l!5w j~y,l!Dsj , j 11~y,l!, for yPs j , j 11 . ~1.56!

This is a ‘‘boundary value’’ version of~1.43!, that we will now extend to a sectorial neighborho
of s j , j 11 . As a simple consequence of satisfying the integral equation~1.54!, we know that
w j (y,l) for yPs j , j 11 is the boundary value of a holomorphic functionw j (y,l) for yPs j . Also,
w j 11(y,l) for yPs j , j 11 is the boundary value of a holomorphic functionw j 11(y,l) for y
Ps j 11 . Solving ~1.56! for w j 11(y,l), we see this function has an analytic continuation into
sector containings j , j 11 , since Eq.~1.43! shows that the functionI 1Dsj , j 11(y,l) ~and its in-
verse! has an analytic continuation into such a sector. One can use Morera’s theorem to sho
the function obtained by gluing togetherL2 boundary values alongs j , j 11 is actually holomorphic
in a neighborhood ofs j , j 11 . The same argument works forw j (y,l) and Eq.~1.56! extends to a
sectorial neighborhood ofs j , j 11 . This is ~1.43!.

It is easy to see that the operatorK depends analytically onl in the operator norm onH. It
follows that the iterative solution to~1.54! produces an analytic function ofl with values inH.
We would like to know that the solutionwk(x,l) is jointly analytic inx andl in the usual sense
We know already that for fixedlPU, the functionwk(x,l) is analytic in a sectorial neighborhoo
of sk . It is a theorem~Hartog’s theorem! that separate analyticity in each argument implies jo
analyticity; thus, it will suffice to show that forx0 chosen in a suitable sectorial neighborhood
sk , the functionl→wk(x0 ,l) is holomorphic inl. We can argue for this analyticity in th
following way. If necessary, enlarge the opening of the wedgesk to produce a wedgesk8 so that
the pointx0 becomes an interior point of the regionsk8 , and sk8 remains inside the region o
analyticity for x→wk(x,l) (lPU). Since we have confirmed thatw(x,l) satisfies~1.43! the
arguments leading up to~1.53! now show thatw(x,l) satisfies the integral equation~1.53! with
the contours adjusted to accommodatesk8 (sk21 and sk11 are a bit smaller!. In particular,U
{l→wk(•,l) is an analytic function ofl with values inL2(]sk8). Cauchy’s theorem shows tha

wk~x0 ,l!5
1

2p i E]sk8

wk~x,l!

x2x0
dx.

Sincex→1/(x2x0) is in L2(]sk8) the result is analytic inl. This proves separate analyticity inl.
The asymptotics forw j are obtained by substituting

1

x2y
5

1

x (
n50

N S y

xD n

1yN11
x2N21

x2y

into the integral equation~1.54! and noting that the functions

w j~x,l!x2k Dsj , j 11~x,l!,

are integrable inx on s j , j 11 for all integersk>0 with integrals that are analytic inl.
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This finishes the proof of~i!, ~ii !. To establish~iii ! note that we have shown that each soluti
wk to ~1.54! extends to a holomorphic function in a sector containingsk , with controlled
asymptotic behavior asx→a. This is all that is needed to establish the analog of~1.50! for wk .
Subtracting this from~1.54!, one obtains the analog of~1.51! for wk . As noted above, this is an
expression of the holomorphic character of the gauge transformationF(x,l)ªC(x,l)C0(x)21

in the exterior ofD, and this finishes the proof of~iii !.
To establish~iv! ~which will play an important role in a tau function calculation in Sec. I!

write

V5Vx1Vl ,

for the one-form associated with“U . HereVx is thedx term in the one-form andVl is a sum,

Vl5(
k

Vl,k dlk .

The dl component of the formal equivalence“U5â–@“l# is

2dââ212â dH â215Vl ,

or

dâ52â dH2Vlâ. ~1.57!

For simplicity, we writed5dl and calculate

d Resx5a Tr~ â21 dxâ dH!5Resx5a Tr~2â21 dâ â21 dxâ dH2â21dxdâ dH!

5Resx5a Tr„dx~dH!dH1â21dxVl â dH…,

where to get from the second to the the third line we substituted~1.57! for dâ did an obvious
cancellation in the result and made use of the fact thatdH dH50 sincedH is diagonal. But

Resx5a Tr„dx~dH!dH…50,

since the Laurent series fordx(dH)dH begins with termsC(x2a)23, and so we find

d Resx5a Tr~ â21 dxâ dH!5Resx5a Tr~dxVl â dH â21!. ~1.58!

A straightforward calculation now shows that

Resx5a Tr„dx~ â dH â21!â dH â21
…5Resx5a Tr„dx~dH!dH…50. ~1.59!

In ~1.59! we replaceâ dH â21 by 2dâ â212Vl from ~1.57!, and find

Resx5a Tr„dx~Vl!Vl…12 Resx5a Tr„dx~Vl!dâ â21
…50, ~1.60!

where we made use of the fact thatdx(dâ â21)dâ â21 is ‘‘regular’’ at x5a and so has 0 residue
and that

Resx5a dx Tr~Vl dâ â21!50.

Now substitute2dâ â212Vl for â dH â21 in ~1.58! and make use of~1.60!, to get

d Resx5a Tr~ â21 dxâ dH!52 1
2Resx5a Tr„dx~Vl!Vl…. ~1.61!
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Now for the first time we use the fact that“̄0 is looked at in a trivialization in which it extends t
a connection onP1 with an additional regular singularity at̀. We see from this and~iii ! that

Vl52dF F21,

is holomorphic in a neighborhood of̀. Since Tr„dx(Vl)Vl… is meromorphic onP1 with a single
pole atx5a, it follows that the residue at this pole must be 0. With~1.61!, this finishes the proof
of ~iv! ~incidentally, the argument here follows the argument in Ref. 8 used to show tha
Jimbo, Miwa, Ueno expression ford logt is closed!. QED

II. THE VECTOR BUNDLE DEFORMATION OF MALGRANGE

A. Representations of the fundamental group and flat connections

In this section we are interested in constructing an integrable deformation of a connect
a bundle overP1 that is monodromy preserving and that respects the local character o
connection near its singular points.

The principal tool in the construction of this deformation away from the singular set
correspondence between representations of the fundamental group and vector bundles w
connections. More precisely, suppose thatX is a connected complex manifold with base pointx0.
Suppose thatE→X is a complex vector bundle with a flat holomorphic connection“. Suppose
that g:@0,1#→X is a piecewise smooth curve inX and letP

“
(g) denote parallel translation with

respect to“ alongg. Then

P“~g!:Eg~0!→Eg~1! ,

is a linear isomorphism between the fibers ofE at the end pointsg(0) andg(1). Now suppose
thatg is a piecewise smooth closed loop based atx0 and letg5@g# denote the homotopy class o
g. Then

r~g!ªP
“

~g!21, ~2.1!

defines a representation ofp1(X,x0) on Ex0. The right-hand side depends only on the homoto
class ofg because the curvature of“ is zero. The equivalence class of the representatior
actually determines the pair (E,“) up to an isomorphism. Before we turn to the main theorem
this section we digress to sketch a construction that takes one fromr to (E,“). Let p:R(X)
→X denote the simply connected covering space ofX and suppose that (E,“) is a vector bundle
with flat connection overX as above. The pull-back bundlep* (E)→R(X) is necessarily trivial
since the baseR(X) is simply connected. The natural projectionp̃:p* (E)→E is a local diffeo-
morphism, and sincedp̃ p̃ is an isomorphism of tangent spaces that maps the vertical vecto
Tp̃„p* (E)… bijectively onto the vertical vectors inTp(E) we may usedp̃ p̃ to lift the horizontal
subspace inTp(E) that comes from“ to a horizontal subspace inTp̃„p* (E)…. We writep* (“)
for the resulting connection onp* (E), and note that since the pull-back connectionp* (“) is
related to“ by a local diffeomorphism, it is also a flat connection. We may thus produc
trivialization for p* (E) consisting of flat sections forp* (“). Let x̃0 denote a base point inR(X)
such thatp( x̃0)5x0. For uPp* (E) x̃0 let x̃→P( x̃,u)Pp* (E) x̃ denote the parallel section o
p* (E), which agrees withu at x̃0. Writing E0ªp* (E) x̃0 ~which is naturally isomorphic toEx0),
we have

R~X!3E0{~x,u!→P~x,u!Pp* ~E!,

is an isomorphism between the bundlep* (E) and the trivial bundleR(X)3E0 . If we compose
this mapP with the vector bundle projection,

p̃:p* ~E!→E,
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one obtains a vector bundle map,

p̃P:R~X!3E0→E, ~2.2!

which covers the projectionp:R(X)→X.
The representationr from ~2.1! determines a left action ofp1(X,x0) on R(X)3E0 given by

g•~ x̃,u!5„g• x̃,r~g!u…, ~2.3!

whereg• x̃ is just the usual action ofp1 on the simply connected covering spaceR(X). We will
show that the quotient bundlep1(X,x0)\R(X)3E0→p1(X,x0)\R(X) is isomorphic toE→X as
a vector bundle with connection.

We begin by showing that the mapp̃P is equivariant for this action ofp1(X,x0). To see this
suppose thatx̃5@x#, wherex is a smooth curve joiningx0 to x in X. Let x̃0 denote the class of the
constant path starting and ending atx0. Write x̃ for the lift of x into R(X) with initial point x̃0.
Let g5@g# whereg is a smooth closed path inX based atx0. Then one finds

p̃P~g• x̃,r~g!u!5p̃Pp* ~“ !~gx̃ !r~g!u

5P
“

~gx!r~g!u

5P
“

~x!P
“

~g!r~g!u5P
“

~x!u5p̃P~ x̃,u!,

which shows the equivariance of the mapp̃P. In the third and last equality we used the fact th
p̃Pp* (“)(g̃)u5P

“
(g)u, whereg̃ is a lift of g anduPEg(0) . This is obvious if the curveg stays

in a neighborhoodU in X, which is evenly covered by the projection onX from R(X); the general
result follows from the fact that parallel translation is an antihomomorphism under homo
composition.

Since the vector bundle action~2.3! covers the standard left action ofp1(X,x0) onR(X), and
sincep1(X,x0)\R(X).X, one finds that

p1~X,x0!\R~X!3E0ªR~X!3rE0 ,

is a vector bundle overX isomorphic toE through the map induced by~2.2!. Since the construc-
tion of the bundle

R~X!3rE0→X ~2.4!

depends only on the representationr, it follows that this representation determines the bundleE
→X up to isomorphism. In fact, the bundle~2.4! has a naturally defined flat connection“r so that
the map induced by~2.2! determines an isomorphism,

„R~X!3rE0 ,“r….~E,“ !. ~2.5!

In order to define“r we introduce a family of trivializations for the vector bundle,

pr :R~X!3rE0→X. ~2.6!

Let F denote a covering ofX by open sets, with the following properties.
~1! If UPF, thenU is evenly covered byp:R(X)→X. That is there exist disjoint setsUa,X

such thatp21(U)5øaUa andp:Ua→U is a diffeomorphism for eacha.
~2! If U, VPF andUùVÞf, thenUøV is evenly covered byp.
The existence of such a covering is an easy consequence of the fact thatX has a metric

topology. Now suppose thatUPF andUa,R(X) is such thatp:Ua→U is a diffeomorphism.
We define a trivialization,f(Ua) of pr

21(U), by sending each equivalence class,

@~ x̃,u!#ª$~y,v !:~ ỹ,v !5g•~ x̃,u! for gPp1~X,x0!%,
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in pr
21(U) into the unique representative of the form (x̃,u) with x̃PUa anduPE0 . Then

f~Ua!@~ x̃,u!#ª~p~ x̃!,u!5~x,u!PU3E0 .

Now suppose thatU, VPF andp:Ua→U andp:Vb→V are diffeomorphisms~note thatU5V is
a possibility!. Then if UùVÞf, it follows that there exists a uniquegabPp1(X,x0) so that
UaùgabVbÞf. The existence of such agab is trivial and uniqueness is equivalent to t
assertion that ifUaùVbÞf andUaùgVbÞf for somegPp1(X,x0) theng51. Suppose then
that UaùVbÞf and UaùgVbÞf. Then since UøV is evenly covered, we hav
(UaøVb)ùg(UaøVb)5f if gÞ1. But evidently,

UaùgVb,~UaøVb!ùg~UaøVb!5f,

so UaùgVb5f if gÞ1. Uniqueness follows. One may now easily compute

f~Ua!f~Vb!21~x,u!5„x,r~gab!u…. ~2.7!

Since these transition functions are constant in the base variables there is a globally defi
connection“r on R(X)3rE0 that is obtained by gluing together the exterior derivative in
base variables defined in each of the trivializationsf(Ua). In these trivializations it is not hard t
check the isomorphism of connections~2.5!.

To finish this account of the reconstruction of a bundle with a flat connection and presc
holonomy it is still necessary to check that„R(X)3rE0 ,“r… has a holonomy atx0 given byr.
Suppose thatg is a piecewise smooth loop inX based atx0 with g5@g#Pp1(X,x0). Let g21(F)
be the open covering of the interval@0, 1# by the inverse image of sets fromF underg. Let d
.0 be a Lebesque number for this covering and suppose that 05t0,t1¯,tn51 is a partition of
@0, 1# with t j 112t j,d for all j. Then each curve segment$g(t):tP@ t j ,t j 11#% lies inside some
U jPF. For eachj one can findUa j

,R(X) so thatp:Ua j
→U j is a diffeomorphism and one ca

also arrange thatUa j 11
ùUa j

Þf for j 50,...,n21. Then parallel translation of a vectoru in E0

alongg is constant in the trivializationsf(Ua j
) for j 50,...,n21. To compute the holonomy on

must only compute what the vectoru in the trivializationf(Uan21
) looks like in the trivialization

f(Ua0
). However, it is clear from the construction thatgUa0

ùUan21
Þf. Thus, the paralle

transport ofuPE0 alongg givesr(g)21uPE0 . This finishes our sketch of the reconstruction
a vector bundle with flat connection~up to equivalence! from its holonomy representation. W
now begin to explain the setting for Theorem 2.9 below.

B. The vector bundle deformation

Suppose that$a1
0,a2

0,...,an
0% is a collection ofn distinct points inC. In this section we will

construct a global deformation for a connection“̄0 defined on the trivial bundleE0
ªP13Cp,

with a simple typer j singularity ataj
0 and a regular point or simple typer ` singularity at`. For

simplicity in stating results, when“̄0 has a regular point at̀ we putr `521 and say that“̄0 has
a simple type 1 singularity.

Roughly speaking the deformation we consider will preserve the local type of the singula

for “̄0 and also the local and global monodromy data for the connection“̄

0. We now make this
more precise.

By relabling the points if necessary we may suppose thatr j>1 for j 51,2,...,m andr j50 for
j 5m11,m12,...,n. It could happen thatm50 or m5n. The point` is somewhat special in thi
context since it does not contribute to the space of pole deformations,R(Zn), which we defined
in Sec. I. We will mention special considerations concerning` when we encounter them.

For j 51,...,m let

CjªZp3Cp3¯3Cp with r j21 factors Cr,
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denote the local configuration space ataj
0, as described in Sec. I. Recall that each point inCj

corresponds to a formal equivalence class for a simple typer j connection ataj
0. Write C` for the

corresponding configuration space at`, defined ifr `>1.

Write L j
0PCj for the data associated to“̄0 at aj

0, for j 51,...,m. Recall thatR(X) is just the
simply connected cover ofX, and define

DªR~Zn!3)
j 51

m

R~Cj !3R~C`!, ~2.8!

where the product is just the Cartesian product, and the final factorR(C`) only appears ifr `

>1.
The spaceD will serve as our ‘‘deformation space.’’ In the first factor,Zn, is the space of pole

locations and in each of the subsequent factors,Cj , is the space of local formal equivalence class
at aj

0. We must pass to the simply connected cover inD to guarantee global existence for the so
of deformation we are about to describe.

Let Mj→Cj denote the fiber bundle overCj whose fiber overLPCj is the holomorphic
equivalence class of connections formally equivalent to the diagonal model~1.12! associated to
the base pointL ~defined in Sec. I!. As in Sec. I we also writeMj→R(Cj ) for the pull-back of
Mj under the projectionR(Cj )→Cj . Let s j

0PMj denote the point in the fiber associated to t

class of“̄0 in a neighborhood ofx5aj
0 (s`

0 is also defined ifr `>1). Let l→s j (l) denote the
unique flat section ofMj→R(Cj ) with s j (L j

0)5s j
0 @s`(l) is defined in a similar fashion if

r `>1#.
Recall thatYk is the subset of points (x,t)PP13R(Zn) with x5ak(t), and for j 51,2,...,n

define

Yk5Yk3)
j 51

m

R~Cj !3R~C`!,P13D,

where the factorR(C`) is present only ifr `>1. Let t0PR(Zn) denote a point in the covering
space ofZn such thataj (t

0)5aj
0, let l j

0PR(Cj ) denote a point in the covering space ofCj such
that L j

05L j (l j
0) @whereL j is the projection fromR(Cj ) to Cj # and write

P1{x→ i ~x!ª~x,t0,l0!PP13D,

where

l05~l1
0,...,lm

0 ,l`
0 !,

and, as above,l`
0 only occurs whenr `>1.

The following theorem is due to Malgrange~Ref. 14, Theorem 3.1!.
Theorem 2.9:There exists a rank p holomorphic vector bundle E→P13D and an integrable

connection“ on E with a simple type rj singularity alongYj for j 51,...,n and a simple type r̀

singularity alongY` such that the restriction of(E,“) to P13$(t0,l0)% is equivalent to (E0,“̄0)

@that is,i * (E,“).(E0,“̄0)#. Furthermore, for j51,...,m the restriction of(E,“) to P13$(t,l)%

is formally equivalent to the model connection“̄L j (l j )
~1.12! near x5aj (t) and is in the holo-

morphic equivalence classs j (l j )PMj .
Proof: We will prove this result as Malgrange does by first constructing the deformation i

complement of

Y5ø j 51
n YjøY`,P13D,
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and then extending the connection“̄0 to a tubular neighborhoodT(Yj )„T(Y`)… of each singular
set Yj (Y`) so that it has the right local characteristics. In particular, one finds that the
constructions must be holomorphically equivalent onT(Yk)\Yk and this equivalence allows one t
define a bundle over allP13D together with a connection that has the right global and lo
properties.

An important result for the construction of the deformation onP13D\Y is the following
observation of Malgrange. Choose some pointx0PC so thatx0Þaj (t

0) for all j 51,...,n. Define
p05(x0,t0,l0). Then the map

P1\$a1
0,a2

0,...,an
0,`%{x→~x,t0,l0!PP13D\Y, ~2.10!

induces an isomorphism of fundamental groups,

p1~P1\$a1
0,a2

0,...,an
0,`%,x0!.p1~P13D\Y,p0!. ~2.11!

This is explained in both Refs. 3 and 4, where the deformation space does not include the
R(Cj ). However, the product of these factors is simply connected so it does not influenc

result. The holonomy of the connection“̄0 at the base pointx0 determines a representation,r, of
p1(P1\$a1

0,a2
0,...,an

0,`%,x0) on GL(p,C). The isomorphism~2.11! and the representationr de-
termines a GL(p,C) representation ofp1(P13D\Y,p0) that we continue to denote byr. Associ-
ated with this representation is a vector bundleErª(P13D\Y)3rCp with connection“r whose
holonomy representation is given byr.

Next we turn to the construction of the local deformations. Suppose thata5(a1 ,a2 ,...,an)
PZn and letd(a) denote the minimum of the distances,$uai2aj u,uai

02aj
0u% iÞ j @the reason for

insisting thatd(a)<min$uai
02aj

0u%iÞj will appear below#. Let D j (a) denote the disk of radius
d(a)/3 about the pointaj . Let D`(a) denote the open complement of the closed disk of rad
d(a)1maxi$uaiu,uai

0u%. It is clear by construction that the disks$D`(a),D j (a), j 51,...,n% are pair-
wise disjoint for eachaPZn. Define a tubular neighborhood,T(Yj ), of Yj by

T~Yj !5$~x,t,l!PP13DuxPD j„a~ t !…%,

and a tubular neighborhood ofY` by

T~Y`!ª$~x,t,l!PP13DuxPD`„a~ t !…%.

Then the neighborhoods$T(Y`),T(Yj ), j 51,...,n% are pairwise disjoint. Following the scheme th
can be found in Malgrange3 we define a connection on the trivial bundleT(Yj )3Cp→T(Yj ) by
lifting the connection on the trivial bundle overD j (a

0)3R(Cj ) that one obtains from Theorem
1.26 above. Recall thatl→s j (l) is the unique flat section ofMj→R(Cj ) with s j (L j

0)5s j
0. For

j 51,...,m let “ j denote the integrable connection on the trivial bundle,

D j~a0!3R~Cj !3Cp→D j~a0!3R~Cj !,

with a simple typer j singularity along$aj
0%3R(Cj ), whose existence is guaranteed by Theor

1.26. This connection naturally extends to a connection on the trivial bundle,

D j~a0!3R~C!3Cp→D j~a0!3R~C!,

by pulling back the connection one-form under the natural projection,

D j~a0!3R~C!→D j~a0!3R~Cj !,

where we have written
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R~C!ª)
j 51

m

R~Cj !3R~C`!.

We continue to denote this connection by“ j . Now define a map,

prj :T~Yj !→D j~a0!3R~C!, ~2.12!

by prj (x,t,l)5„x2aj (t)1aj
0,l… @the extra condition thatd(a)<min$uai

02aj
0u%iÞj now guarantees

that x2aj (t)1aj
0PD j (a

0) for xPD j (a
0). Let V j (x,l j ) denote the one-form for“ j @and we

have writtenV j (x,l j ) to emphasize the fact thatV j only depends on the variables (x,l j )#,

“ j5d1V j~x,l j !, ~2.13!

and define a connection~that we again call“ j !) on the trivial bundleEjªT(Yj )3Cp→T(Yj ) by

“ jªd1prj* ~V j !, ~2.14!

whered denotes the exterior derivative onT(Yj ) ~acting onCp-valued functions!. It is easy to
check that connection~2.14! is integrable and has a simple typer j singularity alongYj as a
consequence of~2.13! being integrable with a simple typer j singularity along$aj

0%3R(C). Now
we wish to determine the holonomy for“ j on T(Yj )\Yj . The map

T~Yj !\Yj{~x,t,l!→tPR~Zn!, ~2.15!

is surjective with fiber overt given by D j„a(t)…\$a(t)%3R(C) @which is homeomorphic to
D j (a

0)\$aj
0%3R(C)#. The first part of the homotopy exact sequence for this fiber bundle rea

→p2„R~Zn!…→p1„T~Yj !\Yj…→p1„D j~a0!\$aj
0%…→p1„R~Zn!…→0,

where we substitutedp1„D j (a
0)\$aj

0%… for p1„D j (a
0)\$aj

0%3R(C)…. Thus, we have

p1„T~Yj !\Yj….p1„D j~a0!\$aj
0%…. ~2.16!

Let

„T~Yj !\Yj…t5t05$~x,t0,l!PT~Yj !\Yj%.D j~a0!\$aj
0%3R~C!,

Then the restriction of prj ,

prj :„T~Yj !\Yj…t5t0→D j~a0!\$aj
0%3R~C!, ~2.17!

is essentially the identity. Since~2.16! shows that representatives of all the homotopy classe
curves inT(Yj )\Yj can be found among the loops that stay in the section„T(Yj )\Yj…t5t0, it follows
that the holonomy of the connection“ j can be computed from its restriction to„T(Yj )\Yj…t5t0.
But the identification~2.16! shows that this holonomy is the same as the holonomy of the
nection coming from Theorem 1.26 on the the spaceD j (a

0)\$aj
0%3R(C). Sincep1„R(C)…50 we

may compute this holonomy by restricting tol5l0 where the connection agrees with“̄0 by
construction.

We also need to construct a model connection in the tubular neighborhoodsT(Yj )\Yj for j
5m11,...,n andT(Y`)\Y` . In the first instance, we are looking for a connection onT(Yj ) with

a simple type 0 singularity alongYj , which is equivalent to“̄0 in a neighborhood ofaj
0. Since“̄0

is a simple type 0 connection, Proposition 1.25b shows that in a neighborhood ofx5aj
0 there

exists a diagonal matrixL j so that in the appropriate local trivialization aboutx5aj
0, “̄

0 is
represented by
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dx1V j ,

on the trivial bundle

D j~a0!3Cp→D j~a0!, ~2.18!

where

V j52
L jdx~x2aj

0!

x2aj
0 .

Define a connection“ j on the trivial bundle overT(Yj )\Yj by

“ j5d2
L jd„x2aj~ t !…

x2aj~ t !
,

whered5dx1dt1dl is the exterior derivative onT(Yj ). It is easy to check that“ j is a simple
integrable connection with type 0 singularity alongYj that has a restriction toD j (a

0)

3$(t0,l0)% that is equivalent to“̄0 by construction. The same argument given above foj
51,...,m applies here, and one sees that the connection“ j defined on the trivial bundle,

T~Yj !3Cp→T~Yj !,

has holonomy determined by its restriction tot5t0 and l5l0, where it is essentially“̄0. To
extend the connection toT(Y`)\Y` so that it is regular alongY` , or has a logarithmic pole along
Y` , or a higher rank simple singularity one proceeds as above with some simplification a
from the fact that̀ adds no component to the space of pole deformations. One should us
local parameterw51/x with

pr̀ ~w,t,l!5~w,l!.

We leave the details to the reader.
What we have now is a bundleEr overP13D\Y, bundlesEj overT(Yj ), andE` overT(Y`)

with bundle isomorphisms,

bj :EruT~Yj !\Yj
→Ej uT~Yj !\Yj

, ~2.19!

and

b` :EruT~Y`!\Y`
→E`uT~Y`!\Y` , ~2.20!

which take the connection“r into “ j and“` . We define a vector bundleE over P13D by
forming the unionErøE1ø¯øEnøE` modulo the equivalence relations determined by~2.19!
and ~2.20!. By construction the bundleE and the connection“ obtained by gluing together th
connections“r , “ j , and“` have the properties asserted in the formulation of Theorem 2.9.
finishes the proof. QED

III. TAU FUNCTIONS

In this section we will first follow Helmink4 to define a tau function associated with th
deformation construction of Theorem 2.0 above. Let (E,“) be the integrable deformation o

(E0,“̄0) constructed in Theorem 2.9. Recall thatD5R(Zn)3R(C) and define

Qª$~ t,l!PD,EuP13$~ t,l!%is nontrivial%.
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Theorem 3.0: There exists a nonvanishing holomorphic mapt:D→C so thatQ is equal to
the zero set oft.

This is basically a result of Malgrange14 and Helmink4 that we will sketch a proof of follow-
ing the arguments for Proposition 3.2 in Ref. 4.

Sketch of Proof (more details can be found in Ref. 4):Choose 0,r1,1,r2 and set

D1ª$xuxPP1,uxu.r1%,D2ª$xuxPP1,uxu,r2%.

ThenDk3D for k51,2 is a contractible Stein space, and henceEuDk3D is holomorphically trivial
for k51,2. Letfª( f 1 , f 2 ,...,f p) be a row vector of sections for the restriction ofE to D13D that
trivializes this restriction. Letgª(g1 ,g2 ,...,gp) be a row vector of sections for the restriction
E to D23D that trivializes this restriction. Then there exists a holomorphic mapS:D1ùD23D
→GL(p,C) so that

g5fS

on D1ùD23D. Write S(x,t,l)5St,l(x). Then the restriction ofE to P13$(t,l)% will be trivial
if and only if there are holomorphic mapsSt,l

2 :D1→GL(p,C) andSt,l
1 :D2→GL(p,C), so that

for all xPD1ùD2 ,

St,l~x!5St,l
2 ~x!St,l

1 ~x!21. ~3.1!

A p vector of sections that trivializesE is then given by the appropriate extension of

gSt,l
1 5fSt,l

2 ,

from D1ùD2 . Let S1 denote the unit circle, writeHªL2(S1,Cp), and letH1 be the closed
subspace ofH consisting of those functions that are boundary value functions holomorphic in
the unit disk. LetH25H1

' . Suppose thatS1{x→S(x) is a smoothp3p matrix-valued function
on the circle and letH{ f→S f denote the associated multiplication operator onH. Let

S5Fa~S! b~S!

c~S! d~S!
G ,

denote the decomposition ofS relative to the direct sum decompositionH5H1 % H2 . It is well
known1 that the factorization~3.1! exists if and only ifa(St,l):H1→H1 is invertible. Since
(t,l)→a(St,l) is continuous in the uniform norm topology fora(St,l) anda(S) is known to be
Fredholm if S is smooth, it follows that the index ofa(St,l) is independent of~t, l!. Since
a(St0,l0) is invertible by construction, it follows that the index ofa(St,l) is 0 for all (t,l)PD.
Fix ~t, l! for the moment. Then sincea(St,l) has index 0, there exists a finite rank opera
k:H1→H1 so thatk1a(St,l) is invertible. In fact, there exists a neighborhoodVt,l of ~t, l! so
that for all (s,m)PVt,l the operatorqs,mªk1a(Ss,m) is invertible. Note thatqs,m is a parametrix
for a(Ss,m) for (s,m)PVt,l in that

a~Ss,m!qs,m
215I 1Fs,m ,

whereFs,m is a finite rank operator that depends holomorphically on (s,m). Now we show that it
is possible to make a coherent choice of parametricesqs,m following the argument in Helmink.4

Let $Vi% be a locally finite covering ofD with qi(s,m) a holomorphic parametrix fora(Ss,m) for
all (s,m)PVi . For eachi,j such thatViùVjÞf defineqiqj

215f i j . Note that eachf i j is a finite
rank perturbation of the identity. The mapsViùVj{(s,m)→detfij(s,m) are the transition func-
tions for a holomorphic line bundle onD. SinceD is a Stein space we haveH1(D,O* )50, and
it follows that this line bundle must be trivial. Hence there exist holomorphic mapst i :Vi→C* so
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that t i
21t j5detfij . Now definet i :H1→H1 by t i15t i and t i(e

inu)5einu for n51,2,... . Now
defineqi5t iqi . Thenqi(s,m) remains a holomorphic parametrix fora(Ss,m) for (s,m)PVi and
since

detqiqj
215dett i t j

21 detqiqj
215t it j

21 detf i j 51,

it follows that

t~s,m!ªdet„a~Ss,m!qi~s,m!21
…,

is a well-defined holomorphic function on all ofD whose 0 set is equal toQ. QED
Next, we will make a connection with the tau function defined by Jimbo, Miwa, and Ue8

We follow Malgrange by computing the regularized logarithmic derivative of the determinant
Toeplitz operator, the invertibility of which determines ifEuP13$(t,l)% is trivial or not. The bundle
E is first realized in terms of a system of transition functions that relate local models fo
connection“ in a neighborhood of the singularities to a model for the connection“ in a comple-
ment of a neighborhood of the singularities. We will spend some effort to choose the local m
carefully @so that~3.7! is satisfied#, even though this is not important for the calculation of t
regularized logarithmic derivative of the Toeplitz operator. We do it because it will simpli
curvature calculation later on.

First fix a point (t0,l0)PD. We will examine the restriction ofE to P13W, whereW is a
suitably small neighborhood of (t0,l0). We will cover P13W by neighborhoodsBj3W that
contain the singular setsx5aj (t) ~including x5` for j 5`) and a complementary setBex3W.
We will choose trivializations forE over each of these sets and understand the bundleE in terms
of the transition maps between these trivializations.

Now we turn to the identification of a suitable local model for the connection“ in a neigh-
borhood of each singularity.

For each j 51,...,m choose a connected, simply connected product neighborhoodWj5U j

3Vj of (t j
0,l j

0), with compact closure. Forj 5m11,...,n( j 5`) choose a connected, simpl
connected neighborhood oft j

0(l`
0 ) with compact closure. Let

W5)
j 51

n

Wj3W` .

Let D j (a
0) denote the disk of radiusd(a0)/3 defined in Sec. II and letD j8(a

0)#D j (a
0)

denote the disk of radiusd(a0)/6. Choose a trivialization,gj , for the restrictionEuD j (a
0)3W and

suppose that relative to this trivialization the connection“ is given by

d1V j .

Let V j
0 denote the restriction ofV j to (t j ,l j )5(t j

0,l j
0). As in the developments preceding The

rem 1.35, it is possible to adjust the trivializationgj by a gauge transformation in thex variables
alone so thatdx1V j

0 extends to a connection on the trivial bundleP13Cp→P1 with a simple type
r singularity ataj

0 and a regular singularity at̀. In what follows we suppose that this has be
done. Forj 51,...,m chooseVj small enough so that the Birkhoff deformation ofdx1V j

0 con-
structed in Proposition 1.35 exists onD j (a

0)3Vj . Thus there exists an integrable connection

dx1dl j
1V j

loc , ~3.2!

which is a Birkhoff deformation ofdx1V j
0 in the sense of Proposition 1.35~i! and~ii ! and such

that onD j (a
0)\$aj

0%3Vj one has the gauge equivalence

dx1dl j
1V j

loc5w j•@dx1dl j
1V j

0#, ~3.3!
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where x→w j (x,l j ) is holomorphic in the punctured diskD j (a
0)\$aj

0% and asymptotic to the
identity asx→`. Now choose the neighborhoodU j of $t j

0% small enough so that the mappj ,
defined by

D j8~a0!3U j3Vj{~x,t,l!→pj~x,t,l!ª„x2aj~ t !1aj
0,l…,

maps into D j (a
0)3Vj . Let dj5dx1dt j

1dl , where dl is the exterior derivative on

)k51
n R(Ck)3R(C`) and define the connection

dj1pj* V j
loc , ~3.4!

on the trivialCp bundle over

XjªD j8~a0!3W.

It is a consequence of Proposition 1.26c above that the connection~3.4! on the trivial bundle over
Xj is equivalent to“ on EuXj

~they have the same formal reduction and Stokes multiplie!.
Possibly shrinking the open neighborhoodU j , we can ensure that there is an annular region,

Aj5$xur j,ux2aj
0u,r j8%,D j8~a0!,

with the property thatx2aj (t)Þ0 for (x,t)PAj3U j . The integrable connection~3.4! and the
integrable connection,

dj1V j
loc ,

have the same holonomy onAj3Wj . They are thus related by a holomorphic gauge transfor
tion, c j , defined onAj3Wj , so that

dj1pj* V j
loc5c j•@dj1V j

loc#, ~3.5!

which can be normalized so thatc j (x,t j
0,l j

0)5I for xPAj . By choosingWj small enough, we
may ensure thatc j is a sufficiently small perturbation of the identity so that it has a ‘‘canon
factorization’’ c j5c j

1c j
2 , wherec j

1(x,t j ,l j ) is holomorphic forux2aj
0u,r j8 andc j

2(x,t j ,l j )
is holomorphic forux2aj

0u.r j , with c j
2(`,t j ,l j )5I . Now, define the gauge transform ofdj

1pj* V j
loc by (c j

1)21,

“ jª~c1!21
•@dj1pj* V j

loc#5c j
2
•@dj1V j

loc#. ~3.6!

Combining~3.6! with the extension of~3.3! to

dj1V j
loc5w j•@dj1V j

0#,

which follows from ~3.3!, sincew j does not depend ont j , or lk for kÞ j , we also have

“ j5f j•@dj1V j
0#, ~3.7!

wheref j (x,t j ,l j ) is holomorphic forux2aj
0u.r j . The connection“ j is equivalent to the re-

striction of“ to EuXj
and so is a good local model for“. Thus, we can choose a trivializationf j

for EuXj
so that in this trivialization“ is represented by“ j .

Now we wish to do something similar forj 5m11,...,n. Wj should be small enough so th
map

D j8~a0!3Wj{~x,t !→pj~x,t !ªx2aj~ t !1aj
0,
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maps intoD j (a
0). Choose a trivialization forEuD j (a

0)3W and writeV j for the connection one-
form for “ in this trivialization. Thus,“ is represented by

d1V j ,

in this trivialization.
Let V j

0 denote the restriction ofV j to (t,l)5(t0,l0). Again, using the same argument to b
found in the preliminaries to Proposition 1.35, we may suppose that the trivializatio
EuD j (a

0)3W has been chosen so thatdx1V j
0 extends to a meromorphic connection on the triv

bundleP13Cp→P1 with a simple type 0 singularity atx5a and a regular singularity atx5`.
As above, consider the connection,

dj1pj* V j
0.

One can chooseWj small enough so that there exists an annular regionAj5$xur j,ux2aj
0

u,r j8% contained inD j8(a
0) with the property thatx2aj (t)Þ0 for (x,t j )PAj3Wj . The connec-

tion dj1pj* V j
0 and dj1V j

0 then have the same holonomy overAj3W and so there exists a
holomorphic gauge transformationc j defined onAj3W so that

dj1pj* V j
05c j•@dj1V j

0#.

One can normalizec j so that c j (x,t0,l0)5I and by choosingW sufficiently small we can
guarantee thatc j has a canonical factorizationc j

1c j
2 as above. We define

“ jª~c j
1!21

•@dj1pj* V j
0#5c j

2
•@dj1V j

0#, ~3.8!

wherec j
2(x,t,l) is holomorphic forux2aj

0u.r j and asymptotic to the identityI as x→`. As
above, we can find a trivializationf j for the restriction ofE to D j (a

0)3W so that“ is represented
by “ j .

The local connection at infinity,“` , might be regular, or have a simple typer ` singularity.
It does not matter much for the calculation we are going to do, but for definiteness we su
r `>1. ThenW` is a neighborhood ofl`

0 ~no pole deformation parameters!. Proceeding in close
analogy with the first case discussed above, we choose a trivializationg` for E restricted to
D`(a0)3W so that the connection“ is represented by

dx1dl1V` .

We further suppose that the trivializationg` has been chosen so that the restriction of t
connection tol5l0, given by dx1V`

0 , extends to a connection on the trivial bundleP13Cp

→P1 with a simple typer ` singularity at` and a regular singular point at 0.
Now let

dx1dl`
1V`

loc

denote the Birkhoff deformation ofdx1V`
0 constructed in Proposition 1.35~with the slight alter-

ations needed to locate the singularity at`!. Let p` denote the projection (x,l)→(x,l`) and
define

“`ªdx1dl1p*̀ V`
loc . ~3.9!

Chooser` andr 8̀ so that“` anddx1dl1V`
0 are holomorphically equivalent on the annulus

A`5$xur`,x,r 8̀ %,D`~a0!,

by a gauge transformationf` ,
                                                                                                                



y

c-
for

y

as
ons
e

6674 J. Math. Phys., Vol. 40, No. 12, December 1999 John Palmer

                    
“`5f`•@dx1dl1V`
0 #, ~3.10!

which can be chosen so thatf`(x,l) is holomorphic foruxu,r 8̀ .
In contrast to Theorem 2.9 we donot assume that the restriction

EuP13$t0,l0%

is holomorphically trivial. LetBj (r)5$x:ux2aj
0u,r% denote the open ball of radiusr aboutaj

0.
Let B`(r)5$x:uxu.r%, and define

BjªBj~r j8!,

B`ªB`~r`!,

BªB1~r1!øB2~r2!ø¯øBn~rn!øB`~r 8̀ !,

BexªP1\B̄, ~3.11!

whereX̄ denotes the closure ofX. Then

$B1 ,B2 ,...,Bn ,B` ,Bex% ~3.12!

is an open covering ofP1.
We now wish to show that there is a holomorphic trivialization of the bundleE over Bex

3W. Since we have seen thatQ is the zero set of a holomorphic function,t which is not
identically 0, it follows that there is some (t1,l1)PW so thatEuP13$(t1,l1)% is holomorphically
trivial. SinceBex3W does not intersect any of the singular sets~3.2! or $`%3W it follows that the
integrable connection“ on E is smooth overBex3W, and sinceW is connected and simpl
connected one may integrate“ over W to extend the trivialization overBex3$(t1,l1)% to a
holomorphic trivialization ofE overBex3W. We wish to pick a trivialization so that the conne
tion form for “ is particularly simple. Suppose that relative to some choice of a trivialization
the restriction ofE to P13$(t1,l1)%, the connection“ is

dx1Vex~x!,

whereVex(x) depends only onx. Write d5dx1dt1dl ; then, sinceW is connected and simpl
connected it is easy to see that the connection,

d1Vex~x!, ~3.13!

defined on the trivial bundle overBex3W with fiber Cp has the same holonomy representation
“ on the restriction ofE to Bex3W. The holomorphic equivalence of these two connecti
implies that we can choose a trivializationfex for EuBex3W so that relative to this trivialization th
connection“ is given by~3.13!. Observe that this connection form has nodt or dl components.

For eachj 51,...,n there exists a holomorphic mapSj :Aj3W→GL(p,C) so that

fex5f jSj , ~3.14!

and a holomorphic mapS`:A`3W→GL(p,C) so that

fex5f`S`, ~3.15!

where we think of each trivializationf5( f 1 ,...,f p) as a row vector of sections.
Define

Bin5ø jBjøB` .
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Let S denote the holomorphic map fromBinùBex3W into GL(p,C) that restricts toSj on Aj

3W and S` on A`3W. Then for (t,l)PW, EuP13$(t,l)% will be holomorphically trivial if and
only if there exists a factorization,

S~x,t,l!5F in~x,t,l!21Fex~x,t,l!, ~3.16!

wherex→F in(x,t,l) is holomorphic and invertible inBin andx→Fex(x,t,l) is holomorphic and
invertible inBex. Let Cj (C`) denote a counterclockwise oriented circle contained inAj (A`), and
define the oriented curve,

C5C`2C12C22¯2Cn .

Choose a pointz0PBex with z0¹Bin and define a projectionPex on L2(C) by

Pexf ~z!5E
C

f ~x!H 1

x2z
2

1

x2z0
J dx

2p i
,

wherezPC is a nontangential limit fromBex. This projects onto the subspace ofL2(C), which
has a holomorphic extension into the connected part ofBex bounded by the curveC, with the
further property that this holomorphic extension vanishes atz5z0 . We can make the factorizatio
~3.16! unique~when it exists! by normalizing

Fex~z0 ,t,l!5 identity5I .

Rewriting ~3.16!, we have

F inS5Fex,

and writingPin5I 2Pex we find

Pin~F inS!5I . ~3.17!

Regarding this as an equation for the rows ofF in , the solution of this equation is equivalent to th
existence of the factorization~3.16!. Suppose that~3.16! has a solutionF in , Fex. Then the
Toeplitz operatorTS defined by

TSf 5Pin~ f S!,

wheref is a row vector in the range ofPin , has an inverse,

TS
21g5Pin~gFex

21!F in .

Following Malgrange, we now calculate the regularized trace,

vªTr~TS
21TdS2TdS S21!, ~3.18!

where for brevity we writed5dt,l .
Note: because the multiplication operator in our Toeplitz operator is acting on the right

TRS2TSTR , which is compact whenR andS are smooth.
We will eventually show that~3.18! differs fromd logt, defined above, by a regular term, an

this will allow us to make a connection with the formula for the tau function given by Jim
Miwa, and Ueno in Ref. 8.

We compute
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TS
21TdSf 5Pin„~ f dS!Fex

21
…F in5Pin~ f dSFex

21!F in5Pin„f ~F in
21 dFexFex

21

2F in
21 dF in F in

21!…F in , ~3.19!

and

TdS S21f 5Pin~ f dS S21!5Pin„f ~F in
21 dFexFex

21F in2F in
21 dF in!…. ~3.20!

Now let

Rqf 5 f q,

denote right multiplication byq, and define

Q5F in
21 dFexFex

212F in
21 dF in F in

21 .

Then from~3.19! and ~3.20!, one sees that

TS
21TdS2TdS S215RF in

PinRQ2PinRF in
RQ5@RF in

,Pin#RQ5@Pex,RF in
#RQ .

Thus, the trace of interest is

Tr@Pex,RF in
#RQ , ~3.21!

and one computes

@Pex,RF in
#RQf ~z!5E

C
f ~x!Q~x!„F in~x!2F in~z!…H 1

x2z
2

1

x2z0
J dx

2p i
.

Writing dxF5F8 dx, the integral of the~finite-dimensional! trace over the diagonal is then

E
C
Tr„Q~x!F in8 ~x!…

dx

2p i
5E

C
Tr~dFexFex

21F in8 F in
212dF in F in

21F in8 F in
21!

dx

2p i

5E
C

Tr~dFexFex
21F in8 F in

21!
dx

2p i
, ~3.22!

where the second equality follows from Cauchy’s theorem and the fact thatF in is holomorphic in
Bin . To make a connection between~3.22! and the JMU8 formula for the log derivative of the tau
function we replaceF in andFex in ~3.22! with quantities more intimately related to the connecti
“. First, choosej P$1,...,n,`%, and let“ j denote the representation for“ in the trivializationf j .
Let “ex denote the representation of“ in the trivializationfex. Then, in the trivializationf jF in

21

5fexFex
21 for the restriction ofE to P13(W\Q), we find that the connection“ is given by

“5Fex•@“ex#5F j–@“ j #, ~3.23!

on Aj3W\Q ~or A`3W\Q for j 5`).
Now fix j P$1,...,m,`% and letâ j be the formal power series nearx5aj (t) ~or ` if j 5`) for

which

â j–@“l j
#5“. ~3.24!

Let â j (loc) denote the formal power series nearx5aj (t), such that

â j~ loc!•@“l j
#5“ j . ~3.25!
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Equating~3.24! with the first term of~3.23! and recalling thatVex does not have anydt or dl
terms, one finds

dFexFex
215dâ j â j

212â j dHj â j
21, ~3.26!

which should be understood in the following sense. Replacingâ j by aS, j defined in a suitable
sectorS with vertex atx5aj (t), one finds a sectorial version of~3.26!. This shows that the
function dFexFex

21 that is analytic in an annular region aboutx5aj (t) extends holomorphically
into the sectorS. Since this is true for a collection of sectors that cover a punctured neighbor
of x5aj (t), it follows that dFexFex

21 is holomorphic in a punctured neighborhood ofx5aj (t).
Equation~3.26! may then be understood as an equality of formal Laurent series~which, in fact,
converge since the left-hand side has a convergent Laurent series!.

Applying F̂ in ~the formal power series associated toF in) to both sides of~3.25! and compar-
ing the result with~3.23! and ~3.24!, one finds

F̂ inâ j~ loc!5â j cj ,

where cj is a diagonal constant matrix~the only gauge automorphisms of“l j
are diagonal

constants!. Thus

F̂ in5â j cj â j~ loc!21, ~3.27!

for j 51,2,...,m,`. This is to be understood in the sense of a formal power series atx5aj (t).
For j 5m11,...,n let a j denote the local holomorphic gauge transformation constructe

Proposition 1.25b such that

a j•Fdx1d2
L j

x2aj~ t !
d„x2aj~ t !…G5“, ~3.28!

whereL j is a constant diagonal matrix. Leta j (loc) denote the local holomorphic gauge transfo
mation so that

a j~ loc!•Fdx1d2
L j

x2aj~ t !
d„x2aj~ t !…G5“ j . ~3.29!

Comparing this with the first term in~3.23! and making use of the fact thatVex has nodt or dl
components, one finds

dFexFex
215da j a j

211a j

L jdaj~ t !

x2aj~ t !
a j

21. ~3.30!

If we write dHj5L jd„x2aj (t)…/„x2aj (t)… for j 5m11,...,n ~rememberd5dt1dl), then~3.30!
can be written as

dFexFex
215da j a j

212a j dHj a j
21, ~3.31!

which is analogous to~3.26!.
Applying F in to both sides of~3.29! and comparing with~3.28!, we find

F in5a j cja j~ loc!21, for j 5m11,...,n, ~3.32!

which is analogous to~3.27!.
The formal power series expansion for~3.26! and the powers series expansion for~3.30!

shows that the integral,
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E
Cj

Tr~dFexFex
21F in8 F in

21!
dx

2p i
,

can be ‘‘done’’ by residues to get

6Resx5aj ~ t ! Tr~dFexFex
21F in8 F in

21!, ~3.33!

with the 1 choice for j 51,...,n and the2 choice for j 5`. We now substitute~3.26!, ~3.27!,
~3.31!, and~3.32! into ~3.33!. The first term in~3.26! and~3.30! does not make a contribution t
the formal residue in~3.28! sincedâ j â j

21 andF in8 F in
21 both have formal power series expansio

at x5aj (t). After some simplification~usingcj
21 dHj cj5dHj ), one finds

E
Cj

Tr~dFexFex
21F in8 F in

2!
dx

2p i
56Resj Tr„â j

21â j8 dHj2â j~ loc!21â j8~ loc!dHj…, ~3.34!

where Resj is the residue atx5aj (t) or ` if j 5`, and the sign6 is 1 for j 51,...,n and2 for
j 5`. Combining~3.22! with ~3.34!, one finds that

Tr~TS
21TdS2TdS S21!52(

j
Resj Tr„â j

21â j8 dHj2â j~ loc!21â j8~ loc!dHj…, ~3.35!

where the sum is overj P$1,...,n,`%.
Next, we make use of the special choice we made for the local models“ j that is reflected in

~3.7!, ~3.8!, and~3.10!. Following the arguments for the proof of part~iv! of Proposition 1.35, we
find that

dt,l Resj Tr„â j~ loc!21â j8~ loc!dHj…50, ~3.36!

for j 51,...,n,` follows from ~3.7!, ~3.8!, and ~3.10! in the same way that~1.42! follows from
~1.41!.

We will now make use of~3.36! to show that the one form in~3.35! is closed off the singular
setQ. One easily computes

d Tr~TS
21TdS2TdS S21!52

1

2 (
j .k

Tr~@TS
21T]kS ,TS

21T] jS
#1T@] jSS21,]kS S21#!dsj`dsk ,

wheresª(t,l) and]k5]/]sk. This last expression can be computed as in Malgrange,3 and one
finds

1

2 (
j .k

E
C

dx

2p i
Tr„] jS S21~]kS S21!8…dsj`dsk . ~3.37!

If ( t0,l0)¹Q, then we may take (t1,l1)5(t0,l0) in the construction above. Note that Eq.~3.35!
shows that Tr(TS

21TdS2TdS S21) is actually independent of the choice of (t1,l1), though it does
depend on (t0,l0) throughâ j (loc). With this choice for (t1,l1), Eqs.~3.7!, ~3.8! and~3.10! take
on added significance. In this case one may choose a global trivialization forEuP13$(t0,l0)% . If V j

0

denotes the one-form for“ relative to this trivialization, then~3.7!, ~3.8!, and~3.9! show that the
transition functionSj can be chosen so that it has a holomorphic continuation into the exteri
Cj in P1 ~including j 5`). Each of the integrals,

E
Cj

dx

2p i
Tr~] lSj Sj

21~]kSj Sj
21!8!,
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then vanishes by Cauchy’s theorem. This shows that if (t0,l0)¹Q, then

d Tr~TS
21TdS2TdS S21!50, ~3.38!

at least for the special constructions associated with (t0,l0)5(t1,l1). But we can now use~3.35!
and ~3.36! to show that Tr(TS

21TdS2TdS S21) is closed even without this restriction. Define

vJMUª2(
j

Resj Tr~ â j
21â j8 dHj !,

which is the one-form introduced by Jimbo, Miwa, and Ueno in Ref. 4. Then~3.38!, ~3.35!, and
~3.36! together show that

dvJMU50, ~3.39!

for (t,l)¹Q. This result and~3.36! @which is not restricted to the special choice (t0,l0)
5(t1,l1)# then show that the right-hand side of~3.35! is closed, in general, and we conclude th
Tr(TS

21TdS2TdS S21) is closed even when (t1,l1) is different from (t0,l0). We are now prepared
to state the principal result of this paper.

Theorem 3.40: Suppose that“̄0 is a connection on the trivial bundle, P13Cp→P1, with
simple type rj singularities at the distinct points ajPP1 for j P$1,2,...,n,`% with a`ª`. Let

(E,“) denote the vector bundle with connection constructed as a deformation of“̄

0 in Theorem
2.9. LetQ denote the set of(t,l)PD such that EuP13$(t,l)% is not trivial. For (t,l)¹Q let â j and
a j be defined as in (3.24) and (3.28). Then we have the following.

~i! The form defined by

vJMU52(
j

Resj Tr~ â j
21â j8 dHj !, ~3.41!

is a closed one-form onD\Q and there exists a holomorphic functiontJMU on D such that

vJMU5d logtJMU.

~ii ! The point(t,l)PD is a zero oftJMU if and only if (t,l)PQ.
Proof: Let Sdenote the transition function defined by~3.14! and~3.15!. Then, as in the proo

of Theorem 3.0, one can find an invertible holomorphic parametrix,

W{~ t,l!→q~ t,l!,

so that

TS~ t,l!q~ t,l!215I 1trace class,

for (t,l)PW. Define

tq~ t,l!ªdet„TS~ t,l!q~ t,l!21
….

Then it is clear thattq(t,l)50 if and only if (t,l)PQ. As above, writed5dt1dl . Then the
usual formula for the derivative of a determinant gives

d logtq5Tr~TS
21TdS2dq q21!, ~3.42!

off the singular setQ. Comparing this withv defined by~3.18! above, we find that

v2d logtq5Tr~dq q212TdS S21!. ~3.43!
                                                                                                                



t

was

Reine

uist

with

.

IMS

in

6680 J. Math. Phys., Vol. 40, No. 12, December 1999 John Palmer

                    
The left-hand side is a closed form onW\Q and the right-hand side is holomorphic onW. Thus,
the right hand side of~3.43! is a closed form onW. SinceW is simply connected, it follows tha
there exists a holomorphic functionf on W so that

v2d logtq5df. ~3.44!

Consulting the definition~3.41! for vJMU and the result~3.35! for v, one finds

vJMU2v52(
j

Resj Tr„â j~ loc!21â j8~ loc!dHj…. ~3.45!

The right-hand side of~3.45! is a holomorphic one-form onW and by~3.36! it is closed. Thus,
there exists a holomorphic functionw on W so that

vJMU2v5dw. ~3.46!

Adding ~3.44! and ~3.46! and writingF5f1w, we find

vJMU5d logtq1dF5d log~eFtq!. ~3.47!

Thus, for some constant,c, we have

tJMU5ceFtq .

From this it follows immediately thattJMU(t,l)50 if and only if (t,l)PQ and this finishes the
proof of the theorem. QED
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7P. Deligne, ‘‘Equations differe´ntielles àpoints singulieres re´guliers,’’ Springer Lecture Notes~Springer-Verlag, Berlin,
1970!, Vol. 163.

8M. Jimbo, T. Miwa, and K. Ueno, ‘‘Monodromy preserving deformations of linear ordinary differential equations
rational coefficients I, General theory and tau function,’’ Physica D2, 306–352~1981!; M. Jimbo and T. Miwa,
‘‘Monodromy preserving deformations of linear ordinary differential equations II,’’ibid. 2, 407–448~1981!; M. Jimbo
and T. Miwa, ‘‘Monodromy preserving deformations of linear ordinary differential equations III,’’ibid. 4, 26–46~1983!;
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A note on the Morse index theorem for geodesics between
submanifolds in semi-Riemannian geometry
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The computation of the index of the Hessian of the action functional in semi-
Riemannian geometry at geodesics with two variable endpoints is reduced to the
case of afixedfinal endpoint. Using this observation, we give an elementary proof
of the Morse index theorem for Riemannian geodesics with two variable endpoints,
in the spirit of the original Morse proof. This approach reduces substantially the
effort required in the proofs of the theorem given previously@Ann. Math. 73~1!,
49–86~1961!; J. Diff. Geom12, 567–581~1977!; Trans. Am. Math. Soc.308~1!,
341–348~1988!#. Exactly the same argument works also in the case of timelike
geodesics between two submanifolds of a Lorentzian manifold. For the extension to
the lightlike Lorentzian case, just minor changes are required and one obtains easily
a proof of the focal index theorem previously presented@J. Geom. Phys.6~4!,
657–670~1989!#. © 1999 American Institute of Physics.
@S0022-2488~99!01012-9#

I. INTRODUCTION

A geodesic in a semi-Riemannian manifold (M,g) is a smooth curveg:@a, b#°M that is a
stationary point for the action functionalf (z)5 1

2*a
bg( ż,ż) dt defined in the set of pathsz joining

two given points ofM. If ( M,g) is Riemannian, i.e., ifg is positive definite, given one suc
critical point g, the celebrated Morse index theorem relates some analytical properties o
second variation off at g with some geometrical properties ofg. More precisely, theindex of
Hessf at g, that gives the number ofessentially differentdirections in whichg can be deformed to
obtain a shorter curve, equals the number of conjugate points alongg counted with multiplicity,
excluding the endpointsg(a) andg(b).

The index theorem opened a very active field of research for both geometers and analys
the original result of Morse was successively extended in several directions. Beem and E
extended the results to the case of timelike Lorentzian geodesics~see Ref. 1! and to the lightlike
Lorentzian case.1,2 The case of a Riemannian geodesic with endpoints variable in two subm
folds of M has been treated by several authors, including Ambrose, Bolton and Kalish,~see Refs.
3–5, see also Ref. 6!; Kalish’s result~Ref. 5! has successively been extended in Ref. 7 to the c
that each end manifold lies at a focal point of the other. Following the approach of Ref. 5, E
and Kim have then proven in Ref. 8 the Morse index theorem for lightlike geodesics with
points varying on two spacelike submanifolds of a Lorentzian manifold. The case of spa
geodesics in semi-Riemannian manifolds was treated by Helfer in Ref. 9, where an extens
the index theorem was proven in terms of theMaslovindex of a curve, and by the introduction o
a notion ofsignaturefor conjugate points. Edwards extended in Ref. 10 the Morse Index Theo
to the case of formally self-adjoint linear systems of ordinary differential equations~ODEs!, and
Smale proved in Ref. 11 a general version of the Index Theorem for strongly elliptic operato
a Riemannian manifold.

The key point in the original Morse’s proof of the theorem was the introduction of a func

a!Electronic mail: piccione@ime.usp.br
b!Electronic mail: tausk@ime.usp.br
66820022-2488/99/40(12)/6682/7/$15.00 © 1999 American Institute of Physics
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i :@a, b#°N that gives the index of the formI t , which is the Hessian Hessf restricted to the
geodesicgu@a,t# . Using a suitable subdivision of the interval@a, b# and some geometrical argu
ments ~see Refs. 12 and 13! Morse proved thati is nondecreasing and left continuous, wi
discontinuities precisely at the conjugate points, and that the jump ofi at each discontinuity poin
t0 is given by the value of the multiplicity of the conjugate pointg(t0).

When passing to the case of variable endpoints, i.e., when one admits variations with
having endpoints varying on two fixed submanifoldsP andQ of M, in which case a stationary
point of f is a geodesicg that is orthogonal toP andQ at its endpoints, some obstructions to t
use of the original argument of Morse arise, due mainly to the fact that the restricted index
I t does not detect the influence of the final manifoldQ.

Ambrose3 gave a proof of the Index Theorem that uses the subdivision argument by intro
ing a familyQt of localized end manifoldsalongg, constructed with the help of the geodesic flo
of the normal bundle ofP around„g(a),ġ(a)…. This construction leads to technical difficultie
~see also Ref. 6!, due to the fact that the submanifoldQt may lose dimension and differentiability
The proof of Bolton4 also uses a subdivision argument, and it avoids the introduction of
manifoldsQt , but it employs a restricted index function which is no longer nondecreasing.

The passage to a restricted index function is avoided in Kalish’s proof of the index theor
the variable endpoints case~see Ref. 5!. In this article, it is given an explicit direct sum decom
position of the spaceH(P,Q)5B% B1

c
% B2

c of vector fields alongg which are everywhere orthogo
nal tog and tangent toP andQ respectively atg(a) andg(b). The index theorem is deduced wit
a study of the sign of the index form in each of the three spaces; the definition of such d
position is not very natural, and the remaining calculations are rather involved.

Ehrlich and Kim8 have adapted Kalish’s proof to the case of lightlike Lorentzian geode
where a suitable quotient space is used, in analogy with the null Morse index theorem of R
and 2.

The aim of this paper is to show that the proof of the Morse index theorem for geodesics
two variable endpoints is a simple adaptation of the classical proof for the fixed endpoints c
the spirit of the original proof of Morse, which is well understood. To this goal, the key obse
tion is that the case of a geodesic with final point varying on a submanifoldQ can be deduced
immediately from the case of a fixed final endpoint~see Theorem II.6! by using a natural splitting
of the spaceH(P,Q). Moreover, we emphasize that the case of causal~nonspacelike! Lorentzian
geodesics is essentially analogous to the Riemannian case.

We try to keep all the statements and proofs of the paper at the maximum level of gene
in particular, we present an approach that unifies the Riemannian and the causal Lorentzia
obtaining a proof of all the results for Riemannian and causal Lorentzian geodesics at the
time. In Remark II.7, among other things we observe that, in the Lorentzian lightlike case, th
of the quotient bundle employed in Refs. 1, 2, and 8 is not really essential for the computat
the ~nonaugmented! index, which allows to give an easier statement of the focal index theo
The possibility of circumventing the quotient bundle construction had already been emphas
Ref. 14, where the author’s idea was to consider vector fields which are perpendicular to the
lightlike geodesic but never tangential to it.

It is also important to observe that the result of Theorem II.6 applies to a great numb
situations in semi-Riemannian geometry where the Morse index theorem maynot work, such as,
for instance, in the case of spacelike geodesics in stationary Lorentzian manifolds~see Remark
II.8!.

II. THE INDEX THEOREM

Let (M,g) be a semi-Riemannian manifold,m5dim (M), P,M be a smooth submanifold
of M, andg:@a, b#°M be a nonconstant geodesic inM, with g(a)PP and ġ(a)PTg(a)P

'.
We will say thatg is spacelike, timelike, or lightlike according tog(ġ,ġ) positive, negative, or
zero, respectively; bycausalwe will mean either timelike or lightlike.

Let ¹ denote the Levi-Civita connection ofg and letR(X,Y)5¹X¹Y2¹Y¹X2¹@X,Y# be the
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curvature tensor of¹; moreover, for allpPP and allnPTpP', let Sn
P be the second fundamenta

form of P in the orthogonal directionn, which is the following symmetric bilinear form onTpP:

Sn
P~v1 ,v2!5g~n,¹v1

V2!,

whereV2 is any extension ofv2 to a vector field tangent toP. Observe that we arenot in principle
making any nondegeneracy assumption onP, but if the metric is nondegenerate onTpP, then we
can also define a linear mapSn

P :TpP°TpP such thatg„Sn
P(v1),v2…5Sn

P(v1 ,v2).
Given a~piecewise! smooth vector fieldV alongg, we denote byV8 the covariant derivative

of V alongg.
If ( M,g) is Lorentzian, i.e., if the index ofg is 1, andg is timelike, we have thatTg(a)P is

spacelike, in the sense that the restriction ofg to Tg(a)P is positive definite. More in general, th
restriction of the metricg to the orthogonal spaceġ(t)' is positive definite for alltP@a,b#. If g
is lightlike, the restriction of the metric to the orthogonal space is just positive semi-de
@having a one-dimensional kernel spanned byġ(t)#. We will assume henceforth that
ġ(a)¹Tg(a)P, so that, again,Tg(a)P is spacelike.

Let H̃P denote the vector space of all piecewise smooth vector fieldsV along g such that
V(a)PTg(a)P and letHP be the subspace ofH̃P consisting of thoseV such thatg(V,ġ)[0 and
V(b)50. Moreover, letI P:H̃P3H̃P°R be the symmetric bilinear form given by

I P~V,W!5E
a

b

@g~V8,W8!1g~R~ ġ,V!ġ,W!# dt2Sġ~a!
P

„V~a!,W~a!…. ~1!

Observe that if the submanifoldP consists of just one point, the term involving its second fun
mental formSġ(a)

P in ~1! disappears. In this case we will write justI instead ofI P.
We will be concerned with theindexof I P in HP, defined as follows. IfK is a vector subspace

of H̃P, then the indexi (I P,K) of I P in K is the number

ind ~ I P,K!5sup$dim ~V!:V subspace ofK with IPuV,0%,

and we set

ind ~ I P!5 ind ~ I P,HP!. ~2!

The number ind (I P) will be called theMorse indexof g.
A Jacobi field alongg is a smooth vector fieldJ satisfying the linear equationJ9

2R(ġ,J)ġ50. We say thatJ is a P-Jacobi field if it satisfies in addition

J~a!PTg~a!P and g„J8~a!,w…1Sġ~a!
P ~J~a!,w!50, for all wPTg~a!P. ~3!

If the metric is nondegenerate onTg(a)P we can rewrite the second condition in~3! as

J8~a!1Sġ~a!
P

„J~a!…PTg~a!P
'.

In this case, a simple counting argument shows that the dimension of the vector space ofP-Jacobi
fields along g is precisely equal tom and that the dimension ofP-Jacobi fields satisfying
g(J,ġ)50 is equal tom21 @for P-Jacobi fields the conditiong(J,ġ)50 is equivalent to
g„J8(a),ġ(a)…50#. Observe that ifP is a point, then aP-Jacobi field is simply a Jacobi fieldJ
alongg such thatJ(a)50.

Two pointsq05g(t0) andq15g(t1), t0 , t1P@a,b#, are said to beconjugatealongg if there
exists a non-null Jacobi fieldJ along g with J(t0)50 and J(t1)50. A point q05g(t0),t0

P@a,b# is said to be aP-focal pointalongg if there exists a non-nullP-Jacobi fieldJ alongg such
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thatJ(t0)50; thegeometrical multiplicitymP(t0) of a P-focal pointg(t0) is the dimension of the
vector space of allP-Jacobi fields alongg that vanish att0 . If g(t0) is not P-focal, we set
mP(t0)50.

It is well known that, ifg is either Riemannian or causal Lorentzian, then the set ofP-focal
points alongg is discrete, hence finite.~As proved in Ref. 9, along a spacelike Lorentzian ge
desic, or more in general along a semi-Riemannian geodesic the conjugate points may a
late.! Namely, if J1 ,...,Jm is a linear basis for the space ofP-Jacobi fields alongg andE1 ,...,Em

is a parallelly transported orthogonal basis alongg, then the smooth functionr (t)
5det„g(Ji ,Ej )… has only simple zeroes on@a, b#, i.e., zeroes of finite multiplicity, exactly a
those pointst0P@a, b# such thatg(t0) is aP-focal point alongg @see for instance~Ref. 15, Ex. 8,
p. 299!#. Similarly, for all q05g(t0), the set of pointsq1 that are conjugate toq0 alongg is finite.

We are interested in the kernel of the restriction ofI P to HP. To this aim, we introduce the
spacesN andJ0 as follows:

N5$ f ġ: f :@a,b#°R piecewise smooth,f ~a!5 f ~b!50%;
~4!

J05$P-Jacobi fieldsJ along g:J~b!50%.

If g is lightlike we haveN,HP, and in factN is contained in the kernel ofI P in HP, as follows
directly from ~1!. We now compute this kernel in the case of Riemannian or causal Loren
geodesics.

Lemma II.1: Let(M,g) be either Riemannian or Lorentzian; in the latter case assume thg
is causal. The kernel of the restriction of the bilinear form IP to HP is equal toJ0 if (M,g) is
Riemannian or if(M,g) is Lorentzian andg is timelike. Ifg is lightlike, this kernel is equal to
J0% N.

Proof: It follows by standard integration by parts of~1! and simple arguments involving th
Fundamental lemma of calculus of variations. h

The proof of the index theorem for Riemannian or causal Lorentzian geodesics with
endpoint varying on a submanifold and fixed endpoint is a simple adaptation of the cla
Morse proof of the index theorem in the case of fixed endpoints~see, for instance, Refs. 12 an
13!. For the reader’s convenience, we outline briefly such adaptation.

We start with the following:
Lemma II.2: Let J1 ,J2 ,...,Jn be any family of P-Jacobi fields (not necessarily linearly ind

pendent) andf1 ,...,fn ,c1 ,...,cn be piecewise smooth real functions on@a, b#. Then,

I PS (
i 51

n

f i•Ji ,(
j 51

n

c j•Jj D 5E
a

b

gS (
i 51

n

f i8•Ji ,(
j 51

n

c j8•Jj D dt

1gS (
i 51

n

f i~b!•Ji8~b!,(
j 51

n

c j~b!•Jj~b!D . ~5!

Proof: It is a simple computation that uses the Jacobi equation, formulas~3!, ~1!, and the fact
that, forP-Jacobi fieldsJi andJj , one hasg(Ji8 ,Jj )5g(Ji ,Jj8). h

For Riemannian or causal Lorentzian geodesics, the above Lemma gives immediate
following Corollary:

Corollary II.3: Let (M,g) be either Riemannian or Lorentzian; in the latter case assume

g is causal. Suppose there are no P-focal points alongg. Let V,JPH̃P be vector fields orthogona
to g, with J a P-Jacobi field and such that V(b)5J(b). Then IP(V,V)>I P(J,J). In the Riemann-
ian and timelike Lorentzian case equality holds if and only if V5J, and in the lightlike Lorentzian
case it holds if and only if V2JPN.

Proof: By standard arguments, the absence ofP-focal points alongg implies thatV can be
written as a linear combination ofP-Jacobi fields with piecewise smooth coefficients. The c
clusion follows directly from Lemma II.2. h
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We give the following definition:
Definition II.4: A partition a5t0,t1,¯,tN5b of @a,b# is said to benormal if the follow-

ing conditions are satisfied:

~a! for all i>1 and alltP] t i ,t i 11], the pointg(t) is not conjugate tog(t i) alongg;
~b! ~b! for all tP] t0 ,t1], the pointg(t) is not P-focal alongg.

If g is either Riemannian or causal Lorentzian, since the set ofP-focal points alongg is finite,
it is easy to see that there existsd.0 such that every partitiont0 ,...,tN of @a, b# with t i 112t i

<d for all i is normal. Namely, in order to~b! be satisfied, one can taked to be the Lebesgue
number of a covering ofg by totally normal neighborhoods~see Ref. 13!.

Given a normal partition, we define the following two subspaces ofHP:

H0
P5$VPHP:V~ t i !50,; i>1%;

~6!
HJ

P5$VPHP:Vu@ t i ,t i 11# is Jacobi ; i>1, and Vu@ t0 ,t1# is P-Jacobi%.

Observe that there exists an isomorphism:

f:HJ
P° %

i 51

N21

ġ~ t i !
' ~7!

given by settingf(V)5(V(t1),V(t2),...,V(tN21)). By using the isomorphism~7! one proves that
H0

PùHJ
P5$0% and thatH0

P1HJ
P5HP, hence we have

H0
P

% HJ
P5HP. ~8!

Using standard integration by parts in~1! one sees that the above decomposition isI P-orthogonal;
moreover, it follows directly from Corollary II.3 thatI P is non-negative onH0

P . Thus, the index
of I P on HP is finite, and it equals the index ofI P on HJ

P .
For the proof of the Morse index theorem for Riemannian or causal Lorentzian geodesic

variable initial point we will follow the outline of the proof of Ref. 13, Theorem 2.2, §11:
Theorem II.5: Let (M,g) be either Riemannian or Lorentzian, P a smooth submanifold o

M, and g:@a,b#°M a geodesic [causal, if~M,g! is Lorentzian] with g(a)PP and ġ(a)
PTg(a)P

'\Tg(a)P. Then, ind (I P)5( t0P]a,b@m
P(t0),1`.

Proof: Let I t be the index form of the restricted geodesicgu@a,t# and denote byi (t) its index.
By classical arguments, one sees thati (t)50 for t neara, and thati :]a,b@°N is non decreasing
Let t̄ P]a,b@ be fixed; in order to study the behavior ofi near t̄ we consider a normal partition
t05a,t1,...,tN5b, with t j, t̄ ,t j 11 for somej >1 ~or t j, t̄<t j 11 if t̄ 5b!. ReplacingN with
j 11 in ~7!, for tP] t j ,t j 11@ we obtain an isomorphismf t onto the fixed space U
5 % i 51

j ġ(t i)
'; we regardI t as a family of symmetric bilinear forms onU. As we have already

observed, the index ofI t on U equalsi (t); we also observe thatI t depends continuously ont.
Since negativity is an open condition, it follows thati (t)> i ( t̄ ) for t near t̄ ; the monotonicity

of i implies then thati (t)5 i ( t̄ ) for t, t̄ near t̄ .
If g is Riemannian or timelike Lorentzian, Lemma II.1 implies that dim„Ker(I t̄)…5mP( t̄ ). If

g is lightlike Lorentzian, again by Lemma II.1, we see that the subspacef t(NùHJ
P) of U is

contained in the kernel ofI t ; this space consists of thej-tuples of vectors parallel toġ, and
therefore it does not depend ontP] t j ,t j 11@ .

Since positivity is an open condition, theni (t)< i ( t̄ )1mP( t̄ ) for t. t̄ near t̄ ; to conclude the
proof we now show the opposite inequality. For, a standard argument that uses Corolla
shows that

I t~u,u!<I t̄~u,u!, ;tP] t̄ ,t j 11@ , ;uPQ,
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where the inequality is strict ifV5f
t̄

21
(u) is a nonzeroP-Jacobi field such thatV( t̄ )50. This

concludes the proof. h

We now want to extend the Morse index theorem to the case of two variable endpoin
this end, we now assume thatP andQ are smooth submanifolds ofM, and thatg:@a,b#°M is
a geodesic withg(a)PP, ġ(a)PTg(a)P

', g(b)PQ and ġ(b)PTg(b)Q
'.

We denote byH(P,Q) the vector space of all piecewise smooth vector fieldsV alongg, with
g(V,ġ)[0, V(a)PTg(a)P, andV(b)PTg(b)Q. Moreover, we will consider the symmetric bilin
ear formI (P,Q) on H(P,Q), given by

I ~P,Q!~V,W!5I P~V,W!1Sġ~b!
Q

„V~b!,W~b!…. ~9!

Let JQ denote the subspace ofH(P,Q) consisting ofP-Jacobi fields, and letA be the symmetric
bilinear form onJQ obtained by the restriction ofI (P,Q). Then, it is easily computed from~1!
using integration by parts:

A~J1 ,J2!5Sġ~b!
Q

„J1~b!,J2~b!…1g„J18~b!,J2~b!…, J1 ,J2PJQ.

Moreover, fortP@a,b#, we introduce the spaceJ @ t#:

J@ t#5$J~ t !:J is P-Jacobi%,Tg~ t !M;

observe that, fortP]a,b],g(t) is not P-focal if and only if J @ t#5Tg(t)M.
We can now state and prove the following extension of the Morse Index Theorem for g

sics between submanifolds:
Theorem II.6: Let ~M, g! be a semi-Riemannian manifold, P, Q submanifolds ofM and

g:@a,b#°M be a geodesic such thatg(a)PP, ġ(a)PTg(a)P
', g(b)PQ, and ġ(b)

PTg(b)Q
'. Assume thatJ @b##Tg(b)Q. LetV be a subspace ofH(P,Q) that contains the spaceJQ

of P-Jacobi fields alongg in H(P,Q). Then, ind(I (P,Q),V)5 ind(I P ,HPùV)1 ind(A,JQ).
Proof: The spaceHP is given by the subspace ofH(P,Q) consisting of those vector fieldsV

such thatV(b)50; moreover, the restriction ofI (P,Q) to HP is preciselyI P. Defining J0 as in
formula ~4!, let J1 be any subspace ofJQ such thatJQ5J0% J1 . Clearly, H(P,Q)5HP

% J1 ,
becauseJ@b#.Tg(b)Q; moreover, from~9! it follows immediately that this decomposition i
I (P,Q)-orthogonal, i.e.,I (P,Q)(V,J)50 for all VPHP and all JPJ1 . SinceV containsJ1 , then
V5(VùHP) % J1 . Hence, ind(I (P,Q),V)5 ind(I P,HPùV)1 ind(A,J1). To conclude the proof,
we simply observe that ind(A,J1)5 ind(A,J), becauseJ0,Ker(A). h

Remark II.7: If ~M, g! is Riemannian andV5H(P,Q), then Theorems II.5 and II.6 give as
particular case the Index Theorem of Ref. 5, p. 342, and the older versions of the Morse
Theorem presented in Refs. 3 and 4. In Ref. 8 the fact was briefly mentioned that results ana
to the Riemannian case could apply to the Lorentzian timelike case. As to the lightlike ca
Refs. 1, 2, and 8 the authors consider the index ofI (P,Q) in the quotient spaceH(P,Q)/N @recall
formula ~4!#; in this situation,N is contained in the kernel ofI (P,Q). By a simple linear algebra
argument one proves that the index of a bilinear form in a quotient space by a subspace
kernel is the same as the index of the form in the original space. Hence, Theorems II.5 a
generalize the results of Refs. 1, 2, and 8. In Ref. 14~2.2 Null Index Lemma! the quotient bundle
construction had been avoided by taking into consideration only those vector fields along
geodesic which are orthogonal but never tangential to it.

Remark II.8: The result of Theorem II.6 becomes significant when the subspaceV of H(P,Q)

is chosen in such a way that ind(I P,HPùV) is finite; observe that ind~A, JQ) is always finite. If
one considers geodesics in semi-Riemannian manifolds with metric of index greater or equa
or spacelike geodesics in Lorentzian manifolds, then ind(I P,HP) is in general infinite~see Refs. 9
and 16 for further results in this direction!. Nevertheless, the restriction to suitable subspaces
yield the finiteness of the index, and, possibly, weaker versions of the Morse Index Theorem
apply. For instance~see Ref. 17!, let us consider the case of a stationary Lorentzian manifold~M,
g!, i.e., a Lorentzian manifold endowed with a timelike Killing vector fieldY. Let g be a spacelike
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geodesic. The Killing vector fieldY induces the conservation lawg(ġ,Y)[Cg for all geodesicg;
then, one can consider only variationsgs of g such thatg(ġs ,Y)[Cs , and the corresponding
variational fieldV5(d/ds)us50gs belongs to the space

V5$V:'CVPR such thatg~V8,Y!2g~V,Y8![CV%.

It is a simple observation thatV contains all the Jacobi fields alongg; moreover, using the Sobole
Embedding Theorem one proves that the bilinear formI P is given by a self-adjoint operatorT on
the closure ofVùHP in a suitable Sobolev space completion ofHP, where T is a compact
perturbationof the identity~see Ref. 18!. Thus,VùH(P,Q) satisfies the hypothesis of Theorem II
and it is such that ind(I P,VùHP) is finite. The value of this index has been recently proven to
equal to the sum of the signature of the restriction ofg to Tg(a)P with theMaslov index ofg ~see
Ref. 19 for details!.
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We give a simple proof of the Alisˇauskas–Jucys triple sum formula for Wigner
9 j -symbols. © 1999 American Institute of Physics.@S0022-2488~99!00412-0#

In Ref. 1 we gave a new simple proof of the triple sum formula for Wigner 9j -symbols due
to Ališauskas and Jucys.2 In this note we give an even more simple proof. We will use the nota
of Ref. 1. In particular, we will work with the Lie group SU~1, 1! ~and its covering groups!,
though the same proof works in the physically more important case of SU~2!.

We will denote the~unnormalized! Racah coefficients or 6j -symbols by

Rqr
tu~n1 ,n2 ,n3!5^~~1,1!q,1!r ,~1,~1,1! t!u&An1^ An2^ An3

~whereq1r 5t1u) and use notation such as

x125x11x2 , uxu5x11¯1xn

for a vectorx5(x1 ,...,xn). As in Ref. 1 we denote Wigner 9j -symbols by

Wpqr
tuv 5Wpqr

tuv ~n1 ,n2 ,n3 ,n4!,

wherep1q1r 5t1u1v5s. It is not hard to derive the expression

Wpqr
tuv 5 (

j 50

min~p1r ,t1v !
~21!p1r 1 j 1u

Cp1r 2 j
n2 ,n3412qCj

n1 ,n23412s22 jCt1v2 j
n3 ,n2412u Rpr

p1r 2 j , j~n1 ,n2 ,n3412q!

3Rq,p1r 2 j
u,t1v2 j ~n3 ,n4 ,n2!Rt1v2 j , j

t,v ~n2412u,n3 ,n1!; ~1!

in fact this ~or rather the corresponding formula for SU~2!! is often taken as the definition o
Wigner 9j -symbols. We will prove the triple sum formula by inserting appropriate single
expressions for the Racah coefficients and changing the order of summation.

There is a large number of expressions for Racah coefficients as terminating4F3 series,
including

Rqr
tu~n1 ,n2 ,n3!5~n1!u~n2! t~n3!r~n121q21!q~n231r 1t !q~ unu12q1r 21!r

3
r !u!

~u2q!! 4F3S 2q,12n12q,11r ,n31r
11u2q,n231r 1t,22n1222qU1D

5~n1!u~n2!q~n2! t~n3!s~n121s!q~ unu12q1r 21!r

3r ! 4F3S 2q,12n32t,n21t,n121q21
n2,12n32s,n121s U1D

5~n1!q~n2! t~n3! t~n121q21!u~n2312t !u~ unu12q1r 21!r

a!Electronic mail: hjalmar@maths.lth.se
66890022-2488/99/40(12)/6689/3/$15.00 © 1999 American Institute of Physics
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3
~21!q1uq! t!

~q2u!! 4F3S 2u,12n12u,11t,n31t
11q2u,n2312t,22n122q2uU1D ,

whereq1r 5t1u5s. In the first and third expression we use the4F3 notation somewhat for-
mally; for instance the first4F3 should be interpreted as in

1

~u2q!! 4F3S 2q,a,b,c
11u2q,d,eU1D5 (

k5max~0,q2u!

q
~2q!k~a!k~b!k~c!k

k! ~u2q1k!! ~d!k~e!k
,

where one may haveu,q. Inserting these three expressions, in this order, in~1! gives

Wpqr
tuv 5 (

j 50

min~p1r ,t1v !
~21!q1vr ! t! ~n1! t~n2!s2 j~n3! t~n4!q~n4!u~n121p21!p~n1312t !v

~n34!s2 j~n23412s22 j ! j~n23412u1t1v2 j 21! t1v2 j

3~n34!2q1r~n23412q12r 1p2 j !p~n23412u1t1v2 j 21!v~ unu12p12q1r 21!r

3
1

~ j 2p!! 4F3S 2p,12n12p,11r ,n3412q1r
11 j 2p,n23412q12r 1p2 j ,22n1222pU1D

34F3S 2q,12n22u,n41u,n341q21
n4,12n22s1 j ,n341s2 j U1D

3
1

~ t2 j !! 4F3S 2v,12n2422u2v,11t,n11t
11t2 j ,n1312t,22n23422u2t22v1 jU1D .

By Karlsson’s summation formula3 the second4F3 vanishes ifp1r , j <t1v; therefore the
condition j <p1r is superfluous. Let us now expand the4F3 functions and rearrange the term
according to

(
j 50

t1v

(
k5max~0,p2 j !

p

(
l 50

q

(
m5max~0,j 2t !

v

Cjklm5 (
0<k<p,0< l<q,

0<m<v,k1m>p2t

(
j 50

t2p1k1m

Ct1m2 j ,klm .

This gives

Wpqr
tuv 5~21!q1vr ! t! ~n1! t~n2!u1v~n3! t~n4!q~n4!u~n121p21!p~n1312t !v~n341q1r !q

3~ unu12p12q1r 21!r

3 (
0<k<p,0< l<q,

0<m<v,k1m>p2t

1

~n341q1r !k1 l~12n22u2v ! l 1m~ t2p1k1m!!

3
~2p!k~12n12p!k~11r !k~n3412q1r !k

k! ~22n1222p!k

~2q! l~12n22u! l~n41u! l~n341q21! l

l ! ~n4! l

3
~2v !m~12n2422u2v !m~11t !m~n11t !m

m! ~n1312t !m

3
~n341u1v1 l 2m! t2p1k1m

~n23412s22t22m! t2p1k1m
(
j 50

t2p1k1m
n23412s22t22m2112 j

n23412s22t22m21

3
~p2t2k2m! j~n23412s22t22m21! j~n21u1v2 l 2m! j

j ! ~n341u1v1 l 2m! j~n23412s2p2t1k2m! j
~21! j ,

where, by the summation formula4
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(
k50

n
a12k

a

~2n!k~a!k~b!k

k! ~11a2b!k~11a1n!k
~21!k54F3S a,11 1

2a,b,2n
1
2a,11a2b,11a1n

U21D 5
~11a!n

~11a2b!n
,

the inner sum equals

~n23412s22t22m! t2p1k1m

~n341u1v1 l 2m! t2p1k1m
.

This leads to the expression

Wpqr
tuv 5~21!q1vr ! t! ~n1! t~n2!u1v~n3! t~n4!q~n4!u~n121p21!p~n1312t !v~n341q1r !q

3~ unu12p12q1r 21!r

3 (
0<k<p,0< l<q,

0<m<v,k1m>p2t

1

~n341q1r !k1 l~12n22u2v ! l 1m~ t2p1k1m!!

3
~2p!k~12n12p!k~11r !k~n3412q1r !k

k! ~22n1222p!k

~2q! l~12n22u! l~n41u! l~n341q21! l

l ! ~n4! l

3
~2v !m~12n2422u2v !m~11t !m~n11t !m

m! ~n1312t !m
~2!

which is a version of the Alisˇauskas–Jucys formula.
Finally we remark that Corollary 3.2 of Ref. 1 has previously been obtained~in the case of the

group SU~2!! by Masao Nomura.5 We owe this reference to Sigitas Alisˇauskas.

1H. Rosengren, ‘‘On the triple sum formula for Wigner 9j -symbols,’’ J. Math. Phys.39, 6730–6744~1998!.
2S. J. Ališauskas and A. P. Jucys, ‘‘Weight lowering operators and the multiplicity-free isoscalar factors of the
R5 ,’’ J. Math. Phys.12, 594–605~1971!.

3P. W. Karlsson, ‘‘Hypergeometric functions with integral parameter differences,’’ J. Math. Phys.12, 270–271~1971!.
4L. J. Slater,Generalized Hypergeometric Functions~Cambridge University Press, London, 1966!, Eq. ~III.11!.
5M. Nomura, ‘‘Description of the 6-j and the 9-j symbols in terms of small numbers of 3-j symbols,’’ J. Phys. Soc. Jpn
58, 2677–2686~1989!.
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Invariance groups of transformations of basic
hypergeometric series
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We show that certain two-term transformation formulas between basic hypergeo-
metric series can easily be described by means of invariance groups. For the trans-
formations of nonterminating3f2 series, and those of terminating balanced4f3

series, these invariance groups are symmetric groups. For transformations of2f1

series the invariance group is the dihedral group of order 12. Transformations of
terminating3f2 series are described by means of some subgroup ofS6 , and finally
the invariance group of transformations of very-well-poised nonterminating8f7

series is shown to be isomorphic to the Weyl group of a root system of typeD5 .
© 1999 American Institute of Physics.@S0022-2488~99!00512-5#

I. INTRODUCTION

This article deals with two-term transformation formulas for basic hypergeometric series
aim is to identify the~finite! invariance group structures underlying known transformation form
las. Examining these invariance groups is not only an interesting problem by itself but it en
a whole list of~known! transformation formulas to be summarized as elegant one-line statem

Anyone working with~basic! hypergeometric series is bound to encounter sooner or
transformation formulas which express a series into another. A summary of the most com
used transformation formulas can be found in Appendix III of Gasper and Rahman.1 A required,
specific transformation formula, not listed in this appendix, can be derived by iterative use o
or more of the given transformation formulas. This can be done by hand, or even simple
computer algebra package such asHYP or HYPQ that performs these transformation
consecutively.2 This process of iteration is not new. Already in 1923 Whipple3 showed that by
iterating Thomae’s3F2 transformation formula, one obtains a set of 120 such series, an
tabulated the parameters of these 120 series. He did not, however, recognize any group s
behind these 120 series. In some way, this group comes naturally into the picture, once a
formation formula between two~basic! hypergeometric series is translated into a linear trans
mation between the set of parameters~and/or variables! of the two series. The application of tw
transformation formulas then translates into the composition~or product! of two linear transfor-
mations, and this is how a group structure emerges,~see, for example, Refs. 4 and 5!. This group
is then called the invariance group of the transformations of~basic! hypergeometric series.

For the transformations of nonterminating3f2 series, and those of terminating balanced4f3

series, it is established in Sec. II that the invariance groups are the symmetric groups,S5 andS6 ,
respectively. This result is not surprising, and essentially the same as in the classical case
transformations of the~ordinary! hypergeometric series of unit argument,3F2(1) and 4F3(1),
respectively.4 Our aim in proving these results is twofold: that the results can be establi

a!Research Associate of the Fund for Scientific Research—Flanders~Belgium!. Electronic mail: Joris.VanderJeug
@rug.ac.be
66920022-2488/99/40(12)/6692/9/$15.00 © 1999 American Institute of Physics
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simply, à la Hardy,6 and, more importantly, they pave the way for a study of other cases. In
III, Heine’s transformations for2f1 series are considered, and it is shown that the invaria
group is the dihedral group of order 12,D12. Next, transformations of terminating3f2 series are
considered. The invariance group is a nonsimple group of order 72, which can be descr
terms of extended symmetries of the hexagon. Finally, in Sec. V it is established that the
ance group of transformations of very-well-poised nonterminating8f7 series isWD5 , a group of
signed permutations isomorphic to the Weyl group of a root system of typeD5 .

Apart from the mathematical interest, our motivation for studying these invariance group
stems from a number of examples illustrating the usefulness of the transformations of the o
and basic hypergeometric series in physics and quantum groups. Loucket al. used the invariance
group related to the4F3(1) series to discuss the symmetries of extended 6-j coefficients.6,7

Rajeswari and Srinivasa Rao used Thomae transformations of the3F2(1) to derive the well-
known Wigner, Racah, and Majumdar forms of the 3-j angular momentum coefficient8 of quan-
tum mechanics from the Van der Waerden form. They also derived theq analog of the Van de
Waerden form of the 3-j coefficient and theq analogs of the aforesaid Wigner, Racah, a
Majumdar forms of the 3-j coefficient.9 They showed10 that the transformation theory for bas
hypergeometric functions,3f2 , provides the necessary framework to relate the explicit forms
the Clebsch–Gordan coefficient of the quantum group SUq(2).

We end this Introduction by fixing some notation. For~basic! hypergeometric series, ou
notation is the standard one of Ref. 1. Throughout the paper, the baseq satisfiesuqu,1. The
q-shifted factorial is

~a;q!n5H 1, n50,

)
k50

n21

~12aqk!, n51,2,...,̀ ,

and (a1 ,...,am ;q)n5(a1 ;q)n¯(am ;q)n . The basic hypergeometric series appearing here a

r 11f rFa1 ,a2 ,...,ar 11

b1 ,b2 ,...,br
;q,zG5 (

k50

`
~a1 ,a2 ,...,ar 11 ;q!k

~q,b1 ,b2 ,...,br ;q!k
zk,

and for r 51 we shall usually write2f1(a1 ,a2 ;b1 ;q,z).
It is also useful to establish some notation about permutations here. A permutationn

elements can be denoted by its cycle structure~see, e.g., Ref. 11, Chap. 1!. For example, the
permutationpPS5 with p(1)52, p(2)53, p(3)51, p(4)55, p(5)54 is simply denoted by
~123! ~45!. For the action ofp on an array ofn symbols, we use by abuse of notation againp; thus
for the above example,

p•~x1 ,x2 ,x3 ,x4 ,x5!5p•x5~x2 ,x3 ,x1 ,x5 ,x4!.

With a permutation, ann3n monomial matrix~this is a matrix with exactly one nonzero eleme
in every row and column! is associated with nonzero entries equal to 1. For the above exa
this matrix is

S 0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

D ;
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the actionp•x can then be interpreted as a multiplication of this permutation matrix with a col
vectorx. We will also encounter ‘‘signed permutations;’’ here the nonzero entries of the mono
matrices are61. If, for example, the matrix of a signed permutationp is given by

S 0 1 0 0 0

0 0 21 0 0

1 0 0 0 0

0 0 0 0 21

0 0 0 1 0

D ,

then we define its action on an array ofn variables by

p•~x1 ,x2 ,x3 ,x4 ,x5!5p•x5S x2 ,
1

x3
,x1 ,

1

x5
,x4D .

II. TRANSFORMATIONS OF NONTERMINATING 3f2 SERIES, AND SEARS’
TRANSFORMATIONS OF TERMINATING BALANCED 4f3 SERIES

Thomae12 obtained a number of transformations for hypergeometric series of type3F2 with
unit argument~see also Ref. 13, Sec. 3.2! through the calculus of finite differences. Whippl3

introduced a new notation in order to simplify the numerous formulas obtained by Thomae
showed there are 120 such series related to each other. Still, it was not recognized t
invariance group~the symmetric groupS5! can describe all these relations. To our knowledge,
existence of such an invariance group was first stated by Hardy~Ref. 14, footnote on p. 111!.
Being unaware of Hardy’s result, this property was later rediscovered by Beyeret al..4

Here, theq analogs of Thomae’s transformations are considered. These transformations
derived by Sears~Ref. 15, Sec. 10!, and two of them are given by~III.9! and ~III. 10! of Ref. 1.
It is easy to show that for these transformations of nonterminating3f2 series, the invariance grou
is S5 .

Proposition 1: The function

f ~x!5 f ~x1 ,x2 ,x3 ,x4 ,x5!5S x1x2x3

x4x5
,x4

2,x5
2;qD

`

33f2F x1

x2x3
x4x5 ,

x2

x1x3
x4x5 ,

x3

x1x2
x4x5

x4
2,x5

2
;q,

x1x2x3

x4x5
G ~1!

is symmetric in the variables(x1 ,x2 ,x3 ,x4 ,x5).
Proof: Clearly, f (x) is invariant under permutations of (x1 ,x2 ,x3) @resp. (x4 ,x5)#, since these

do not change the factor in front of the3f2 , and on the3f2 they have the effect of permutin
numerator~resp. denominator! parameters. Next, consider the permutationp5(14325) ~in cycle
notation: x1→x4→x3→x2→x5→x1), which is a permutation of order 5. Upon relabeling t
parameters of the3f2 in f (x) by

3f2Fa,b,c
d,e ;q,

de

abcG ,
it is easy to see that equation~III.10! of Ref. 1 is equivalent tof (x)5 f (p•x). So f (x) is invariant
under the permutationp, and under the transpositionx4↔x5 . However, sincep is a permutation
of order 5, the group generated byp and this transposition is the complete group of permutati
on five elements~see, for example, Ref. 16, p. 5!, i.e., the symmetric groupS5 . h
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For convergence of all the 120 series in~1! it is sufficient that allxi satisfya3/2,uxi u,a, with
a,1 a positive real number.

Next, we consider transformations of terminating balanced4f3 series. This is theq-analog of
Bailey’s transformations for terminating Saalschu¨tzian hypergeometric series of type4F3 with unit
argument@Ref. 13, Sec. 7.2~1!#. All 720 transformations of this type were already obtained
Bailey ~Ref. 13, Chap. VII!, and the fact that the invariance group for these transformations is
symmetric groupS6 was established by Beyeret al.4 For the corresponding basic series, t
essential transformation was first given by Sears@Ref. 15,~8.3!# @see also~III.15! and ~III.16! of
Ref. 1#. Here again, it is not difficult to show that also for these transformations of termina
balanced4f3 series, the invariance group is the symmetric groupS6 .

Proposition 2: Let x1 ,...,x6 be six parameters satisfying

x1x2x3x4x5x65q12n ~2!

for some non-negative integer n. Then the function

f ~x!5 f ~x1 ,x2 ,x3 ,x4 ,x5 ,x6!5q~2
n
!~x1x2x3x4 ,x1x2x3x5 ,x1x2x3x6 ;q!n/~x1x2x3!n

34f3F q2n,x2x3 ,x1x3 ,x1x2

x1x2x3x4 ,x1x2x3x5 ,x1x2x3x6
;q,qG ~3!

is symmetric in the variables(x1 ,x2 ,x3 ,x4 ,x5 ,x6).
Proof: Again f (x) is obviously invariant under permutations of (x1 ,x2 ,x3) @resp.

(x4 ,x5 ,x6)#. Next, consider the cyclic permutationp5(164253), which is a permutation of orde
6. Upon relabeling the parameters of the4f3 in f (x) by

4f3Fq2n,a,b,c
d,e, f ;q,qG ,

it is easy to see that equation~III.16! of Ref. 1 is equivalent tof (x)5 f (p•x). A similar argument
as in the previous proof then implies the current proposition, i.e., the invariance group isS6 . h

Note that in this context equation~III.15! of Ref. 1 corresponds tof (x)5 f (p•x) with p
5(14)(23)(56).

III. HEINE’S TRANSFORMATIONS OF 2f1 SERIES

Heine17 showed that

2f1~a,b;c;q,z!5
~a,bz;q!`

~c,z;q!`
2f1~c/a,z;bz;q,a!; ~4!

see @Ref. 1, ~III.1!–~III.3!# for this and similar transformations. In~4!, uzu,1 and uau,1 is
required for convergence. When iterating this transformation, using the symmetry of the nu
tor parameters of the2f1 , a set of 12 transformation formulas is obtained. This observation is
new, and can already be found in Ref. 15, Sec. 11. However, the identification of the inva
group behind these 12 transformations has never been made. Here, we shall show that the
ance group is the dihedral groupD12 ~sometimes also denoted byD6!, i.e., the group of symme
tries of the hexagon. In terms of a hexagon with sides labeledx1 ,...,x6 , the group consists of al
rotations and reflections that map the hexagon into itself. The hexagon and two of its symm
are shown in the following picture:

~5!
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The second hexagon is obtained from the first one by a reflection about the vertical axis; th
one is obtained from the first one by a rotation through anglep/3. In all, there are 12 such
symmetries. The groupD12, a subgroup ofS6 , is generated by the two elements described abo

Proposition 3: The function

f ~x!5 f ~x1 ,x2 ,x3 ,x4 ,x5!5S x1x4 ,
x2x6

x1
;qD

`
2f1S x1x3

x2
,
x1x5

x6
;x1x4 ;q,

x2x6

x1
D ~6!

is invariant under the dihedral group D12 acting on the variables(x1 ,x2 ,x3 ,x4 ,x5 ,x6).
Proof: It is clear that the only effect of the permutation~26!~35! ~in cycle notation!, i.e.,

x2↔x6 andx3↔x5 , on ~6! is a transposition of the two numerator parameters in the2f1 . Next,
consider the permutation~123456!, or explicitly

p•~x1 ,x2 ,x3 ,x4 ,x5 ,x6!5~x2 ,x3 ,x4 ,x5 ,x6 ,x1!. ~7!

Upon relabeling the parameters of the2f1 in f (x) by 2f1(a,b;c;q,z), it is easy to see that~4! is
equivalent tof (x)5 f (p•x). The two permutations considered here correspond to the two s
metries of the hexagon described in~5!, and they form a set of generators for the groupD12. h

For convergence of all the 12 series in~6! it is sufficient that allxi satisfya2,uxi u,a, with
a,1 a positive real number.

IV. TRANSFORMATIONS OF TERMINATING 3f2 SERIES

Whipple3 not only showed that there are 120 nonterminating3F2 series of unit argument, he
also established that there are 72 terminating3F2(1) series~see also Ref. 13, §3.9!. In Ref. 5 the
72-element group associated with these series transformations was examined. Theq-analogs of
these transformation formulas were given by Sears.15 The essential transformations are summ
rized in Ref. 1,~III.11!–~III.13!, and others can be obtained from these by iteration. For exam
from ~III.11! and ~III.13! one can deduce that

3f2Fq2n,b,c
d,e ;q,qG5 ~c,de/bc;q!n

~d,e;q!n
~b!n

3f2F q2n,d/c,e/c
de/bc,q12n/c;q,

q

bG . ~8!

In the present case the groupG associated with the transformations is somewhat more diffi
to describe. By Cayley’s and Lagrange’s theorems,18 it is obvious that the 72-element groupG
cannot be a subgroup ofS5 ~since 72 is not a factor of 120!, but it is a subgroup ofS6 generated
by the two elements~24! and~123456!. One way to see that the subgroup generated by these
elements has order 72 is by extending the 12 classical symmetries of the hexagon describe
previous section. The new transformations that are allowed on the hexagon are the interch
two sides that are next to nearest neighbors, such asx1↔x3 , x2↔x4 , x3↔x5 , etc. Superposed on
the 12 classical symmetries, this enlarges the total number of allowed transformations to36
572. The two generating elements ofG, ~24! and~123456!, are described by the second and th
hexagons in the following picture:

Another way to describe the elements ofG is by callingx2 , x4 , andx6 the even labels~or even
sides!, andx1 , x3 , andx5 the odd labels~or odd sides! of the hexagon. Then the elements ofG
consist of the symmetries of the hexagon on which permutations of even labels~resp. odd labels!
are superposed. As a consequence,G has a subgroupH consisting of permutations of (x1 ,x3 ,x5)
and of (x2 ,x4 ,x6). ThusH is isomorphic toS33S3 and its order is 36.
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The description of the invariance itself is also slightly more complicated in this case, m
because the argumentz of the3f2 is equal toq only in 36 cases, and different fromq in the other
36 cases.

Proposition 4: Let x1 ,...,x6 be six parameters satisfying

x1x2x3x4x5x65q12n ~10!

for some non-negative integer n. Consider the functions

f 0~x!5 f 0~x1 ,x2 ,x3 ,x4 ,x5 ,x6!

5~x1x2x3x4 ,x1x2x4x5 ;q!n /~x1x2x4!n
3f2F q2n,x1x2 ,x1x4

x1x2x3x4 ,x1x2x4x5
;q,qG , ~11!

f 1~x!5 f 1~x1 ,x2 ,x3 ,x4 ,x5 ,x6!

5~21!nq~2
n
!~x1x2x3x4 ,x1x2x4x5 ;q!n~x6!n

3f2F q2n,x1x2 ,x1x4

x1x2x3x4 ,x1x2x4x5
;q,

q

x1x6
G . ~12!

Then fi(x)5 f i(p•x) if pPH( i 50,1), and f0(x)5 f 1(p•x) ~or f 1(x)5 f 0(p•x)! if pPG2H.
Proof: The permutation~24! ~in cycle notation! only transposes two of the numerator para

eters in the3f2 of f 0(x) or f 1(x). Next, consider the permutation~123456!, or explicitly

p•~x1 ,x2 ,x3 ,x4 ,x5 ,x6!5~x2 ,x3 ,x4 ,x5 ,x6 ,x1!. ~13!

This is an element ofG2H, and it is straightforward to verify that~8! is equivalent tof 0(x)
5 f 1(p•x). The two permutations considered here generateG, henceG is the invariance group o
the terminating3f2 series transformations. h

Consider the permutations~in cycle notation! p15(13)(24) andp25(1432)(56). Thusp1

PH andp2PG2H. As an extra verification, one can check that~III.11!, ~III.12!, and~III.13! of
Ref. 1 correspond tof 0(x)5 f 0(p1•x), f 0(x)5 f 1(p2•x), and f 1(x)5 f 0(p2•x), respectively.

V. TRANSFORMATIONS OF VERY-WELL-POISED 8f7 SERIES

The last type of transformation considered here is for very-well-poised8f7 series. These
transformations can be obtained as a limiting case of Bailey’s terminating10f9 series
transformations19 @see also Ref. 1,~III.23! and~III.24!#. Such transformations are theq-analog of
transformations of ‘‘unrestricted well-poised7F6 series’’ of unit argument~see Ref. 13, Sec. 7.5!.

For our purposes, we define

w~a;b,c,d,e, f !

5
~aq/b,aq/c,aq/d,aq/e,aq/ f ,a2q2/bcde f;q!`

~aq;q!`

38f7Fa, qAa, 2qAa, b, c, d, e, f

Aa, 2Aa, aq/b, aq/c, aq/d, aq/e, aq/ f
;q,

a2q2

bcde fG . ~14!

Clearly,w is invariant under permutations of (b,c,d,e, f ), and henceS5 is going to be a subgroup
of the invariance group. In order to find the complete invariance group, we make again a re
ling as follows:
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f ~x0 ,x1 ,x2 ,x3 ,x4 ,x5!5wS x0
3x1x2x3x4x5 /q;

x0x2x3x4x5

x1
,
x0x1x3x4x5

x2
,

3
x0x1x2x4x5

x3
,
x0x1x2x3x5

x4
,
x0x1x2x3x4

x5
D . ~15!

Thus permutations of~b,c,d,e,f! in w correspond to permutations of (x1 ,x2 ,x3 ,x4 ,x5) in f. On
examining the transformations given in Ref. 1, one finds that~III.23! is equivalent to

f ~x0 ,x1 ,x2 ,x3 ,x4 ,x5!5 f ~x0 ,x1 ,x2 ,x3,1/x5,1/x4!, ~16!

and that~III.24! is equivalent to

f ~x0 ,x1 ,x2 ,x3 ,x4 ,x5!5 f ~x0,1/x2,1/x3,1/x4,1/x5 ,x1!. ~17!

This implies that the invariance group will be a subgroup of the groupWB5 of signed permuta-
tions on five letters. In general, the groupWBn of signed permutations onn letters is the semidi-
rect product of the symmetric groupSn operating as permutations on a standard basisei and (Z2)n

operating asei→6ei , so its order isn!2n. WBn can also be seen as the group ofn3n signed
permutation matrices@cf. Sec. I, also for the action of such a signed permutation on the a
(x1 ,x2 ,x3 ,x4 ,x5)#. Since the invariance group is generated by the elements ofS5 and the elements
corresponding to~16! and~17!, we are dealing with a subgroupWD5 of WB5 consisting of those
elements with an even number of~21!’s in their matrix representation. Therefore the order ofG
is 5!2451920. We have used the notationWBn andWDn becauseWBn is the Weyl group of a
root system of typeBn ~or Cn!, andWDn is the Weyl group of a root system of typeDn ~see, e.g.,
Ref. 20!.

Thus we have the following result:
Proposition 5: The function f(x0 ,x)5 f (x0 ,x1 ,x2 ,x3 ,x4 ,x5) satisfies f(x0 ,x)5 f (x0 ,p•x)

for every element p of WB5 that has an even number of minus signs in its matrix representa
Hence the invariance group of the very-well-poised8f7 transformations is the group WD5 .

For convergence of all the 1920 series it is sufficient that allxi( i 51,...,5) satisfy 1/a,uxi u
,a and ux0u,1/a5 for some real numbera.1.

VI. SUMMARY AND REMARKS

The seminal remark of Hardy in hisNotes on Lecture VII:14

‘‘Formula ~7.3.3! is equivalent to~1!, §3.2, of Bailey’s tract. It is an expression of the theore
that

1

G~b1!G~b2!G~b11b22a12a22a3!
FS a1 ,a2 ,a3

b1 ,b2
D

is a symmetric function of the five arguments

b1 ,b2 ,b11b22a22a3 , b11b22a32a1 , b11b22a12a2’ ’

clearly implies a group theoretical interpretation for formula~7.3.3!, which is a3F2(1) transfor-
mation of Thomae:12

G~x1y1s11!

G~x1s11!G~y1s11!
FS 2a,2b,x1y1s11

x1s11,y1s11 D
5

G~a1b1s11!

G~a1s11!G~b1s11!
FS 2x,2y,a1b1s11

a1s11,b1s11 D .
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Forty-seven years later, Beyeret al.4 rediscovered that Thomae’s identity between two3F2(1)
hypergeometric series of unit argument, together with the trivial invariance under separat
mutations of the numerator and denominator parameters, implies the symmetry groupS5 is an
invariance group of this series. They also showed that Bailey’s identity for Saalschu¨tzian 4F3(1)
series hasS6 as its invariance group. Srinivasa Raoet al.5 studied the group theory of terminatin

3F2(1) series—a case not considered by Beyeret al.4—and found all the invariant subgroups o
the 72-element group.

In this article, taking the cue from Hardy’s remark, the group theoretical basis of well-kn
basic hypergeometric transformations has been studied, for the first time. We have cons
explicit functionsf (x), wherex is a multi-dimensional parameter, expressed in terms of a b
hypergeometric series for the given transformation, and established the appropriate sym
group. The transformations are then given by

f ~x!5 f ~p•x!, ~18!

wherep is any element of the symmetry group. The constructed functions~1!, ~3!, and~6! together
with ~18! are succinct, quintessential one-line statements for Sears’ nonterminating3f2 , Sears’
terminating balanced4f3 , and Heine’s2f1 transformations of basic hypergeometric series,
spectively, which have as their corresponding invariance groups the symmetric groupsS5 , S6 and
the dihedral groupD12.

In the case of the Sears’ terminating3f2 transformations, the 72-element invariance groupG
~being a subgroup ofS6!, a 36-element subgroupH of G, and two functions~instead of one! f 0(x)
and f 1(x) were necessary to give a complete description. In terms of these all the transform
were generated by

f i~x!5 f j~p•x!, i , j 50,1,

wherei 5 j if pPH and iÞ j if pPG2H.
Finally, in the case of transformations of very-well-poised8f7 series, though the constructe

function f (x) is a function of six parameters, the invariance group is a subgroupWD5 of WB5 ,
which is the Weyl group of a root system of typeBn ~or, equivalently, the group ofn3n signed
permutation matrices!.
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Kählerian supermanifolds
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Department of Mathematics, University of Tehran, Tehran, Iran
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In this paper the concepts of almost Hermitian and Ka¨hlerian supermanifolds are
introduced. Using the classical Newlander–Nirenberg theorm, it is shown that an
almost complex structureJ is integrable if it is compatible withDL , the supermani-
fold analog of the Levi-Civita connection. It is proved that an almost Hermitian
supermanifold is Ka¨hlerian if and only ifDL is compatible withJ. © 1999 Ameri-
can Institute of Physics.@S0022-2488~99!00211-X#

I. INTRODUCTION

The concepts of differential geometry on a smooth manifold are based on the sheaf of
of functions which is a sheaf of commutative algebras. Most of these concepts can be exten
a supermanifold which is a manifold and a sheaf ofZ2-graded commutative algebras with certa
local conditions. Although a unified theory of strong, weak, electromagnetic and gravita
intraction can be constructed in the language of supermanifolds~see Ref. 1, and reference
therein!, from a purely mathematical point of view there exists certain open questions o
theory of supermanifolds. A main problem is that the natural definition of characteristic cl
does not provide new invariants and this may be due to the lack of a suitable~co!homology theory
which carries the new invariants~see the Introduction to Ref. 2!. In commutative geometry, it is
known that the space of harmonic forms represents cohomology groups. Therefore, it is na
expect that an appropriate harmonicity for pseudodifferential forms can be related with a
cohomology theory.3 As a first step in this direction, we introduce the concept of almost Herm
supermanifolds. This leads to a new proof of integrability of an almost complex structur
almost Hermitian supermanifolds~see Theorem 4.4!. Using this result a necessary and sufficie
condition that an almost Hermitian supermanifold be Ka¨hlerian is obtained.

II. PRELIMINARIES

Let A be a sheaf ofZ2-graded commutative~i.e., supercommutative! rings on a topological
spaceM. ThusA5A0% A1 with AiAj,A( i 1 j )mod 2, and on each open setU for aPAi(U), b
PAj (U), we haveab5(21)i j ba. The indexi is called the parity ofa and is denoted byã. The
pair ~M, A! is called a supercommutative ringed space.

A morphism of supercommutative ringed spaces~M, A! to (N, B! is a pair ~t, w! of a
continuous mapt:M→N and a morphismw:B→t* A of sheaves ofZ2-graded commutative rings
on N.

A complex~real! supermanifold of dimension~m, n! is a supercommutative ringed space~M,
A! such that:

~i! (M , A/N) is anm-dimensional complex~respectively, real! manifold, whereN is the sheaf
of nilpotents ofA.

~ii ! E5N/N2 is a locally freeA/N-module of finite rankn.
~iii ! A is locally isomorphic to the Grassman algebra∧E.

Any open setU on which the ringed spaces in~iii ! are isomorphic is said to be a splittin
neighborhood. Letx1,...,xm be a system of coordinates ofM on U and lete1,...,en be a basis for
67010022-2488/99/40(12)/6701/6/$15.00 © 1999 American Institute of Physics
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the sections ofE on U. The xi ’s are called the even coordinates, andej ’s are called the odd
coordinates. According to~i!, A/N will be denoted byO(M ) in the complex case and byC`(M )
in the real case in the sequel.

Let DerA be the sheaf of derivations onA. This is a Z2-gradedA-module and DerA
5(DerA)0% (DerA)1 . If ( xi , ej ) is a system of coordinates of~M, A! on U, then DerA is a free
∧E-module with basis$]/]xi ,]/]ej%.

An almost complex structure on the real supermanifold~M, A! is an even automorphismJ on
DerA such thatJ2521. On the underlying real supermanifold of a complex supermanifold, th
exists a natural almost complex structure~Ref. 4, step 1!. Let (zi ,uj ) be a system of coordinates o
the complex supermanifold~M, A!. With zi5xi1A21yi anduj5v j1A21wj , let

JS ]

]xi D5
]

]yi , JS ]

]yi D52
]

]xi ,

~1!

JS ]

]v j D5
]

]wj , JS ]

]wj D52
]

]v j .

Obviously,J is an almost complex structure.

III. ALMOST HERMITIAN SUPERMANIFOLDS

In this section, the concept of a~Riemannian! supermetric is introduced. Due to theZ2-graded
structure and hence the existence of zero divisors, in contrast with the commutative c
supermetric cannot be commutative and positive definite. Instead, some other substitute con
will be imposed.

Definition 3.1:By a supermetric on a real supermanifold~M, A! we mean anA-linear even
mapg:DerA^ ADerA→A such that:

~i! g(X^ Y)5(21)X̃Ỹg(Y^ X),
~ii ! g induces a Riemannian metric onM, i.e., the mapgM with gM(]/]xi ,]/]xk)5g(]/]xi

^ ]/]xk) modN is a Riemannian metric,
~iii ! g induces a symplectic form onE, i.e., the map gE with gE(ej ,el)5g(]/]ej

^ ]/]el)modN, is a symplectic form.

Definition 3.2:Let ~M, A! be a real supermanifold and letJ be an almost complex structure o
~M, A!. A supermetricg on ~M, A! is called a Hermitian supermetric ifg(JX^ JY)5g(X^ Y) for
everyX,YPDerA. Under these circumstances,~M, A! is called an almost Hermitian superman
fold.

As in commutative case, any Hermitian supermetricg can be extended on DerA^ C. SinceJ
preservesg, on any splitting neighborhoodU, g can be written as

g5dzidz̄kgik1dzidūj t i j 1dujdz̄ksjk1dujdūlhjl , ~2!

where dzi5dxi1A21J* (dxi), duj5dej1A21J* (dej ) and dz̄i , dūj are their conjugations
respectively, and (xi ,ej ) is a coordinate system onU andJ* is the automorphism induced byJ on
the dual of DerA.

Obviously every complex supermanifold admits a Hermitian supermetric. More precisel
the existence of partition of unity for supermanifolds, it is sufficient to find a Hermitian su
metric locally. LetU be a spilitting neighborhood of a complex supermanifold~M, A!. If zi5xi

1A21yi , uj5v j1A21wj are coordinates onU thenJ* (dxi)5dyi , J* (dv j )5dwj , whereJ is
the natural almost complex structure on the underlying real supermanifold of~M, A! defined by
~1!. Thusdzi5dxi1A21dyi andduj5dv j1A21dwj . On U we set

gU5dzidz̄i1A21duj dūj ,
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thengU gives a Hermitian supermetric.
Definition 3.3: Let g be a Hermitian supermetric. Setv(X,Y)5g(X, JY) for all X, Y

PDerA. The supermetricg is called Kählerian if dv50. By a Kählerian supermanifold, we mea
a complex supermanifold equipped with a Ka¨hlerian supermetric.

On a splitting neighborhoodU, g is given by~2!, and hence onU,

v5A21~dzi`dz̄kgik1dzi`dēj t i j 1dej`dz̄ksjk1dej`dēlhjl !.

We now give an example of a Ka¨hlerian supermanifold.
Example 3.4:The complex projective superspace of dimension~m, n! is the supermanifold

Pmun5(Pm ,∧(Cn
^ CO(21))), where O~21! is the sheaf of sections of the tautological lin

bundle over the complex projective spacePm . Let Pm5ø i 50
m Ui whereUi5$@z0,...,zm#,ziÞ0%.

If a system of coordinates ofPm on Ui is denoted byz( i )
k where kP$0,1,...,m%\$ i % and if

$ui
1,...,ui

n% is a basis for sections ofCn
^ CO(21) on Ui , then (z( i )

k ,u( i )
j ) is a system of coordi-

nates ofPmun on Ui and the transition rules arez( l )
k 5(z( i )

l )21z( i )
k and u( l )

j 5(z( i )
l )21u( i )

j ~Ref. 5,
Chap. 4, Sec. 3!.

In fact the Fubini–Study metric onPm ~see Ref. 6! can be naturally extended onPmun . Let

f i5 logS 11(
k

z~ i !
k z̄~ i !

k 1A21(
j

u~ i !
j ū~ i !

j D ,

where log(11t)5t2t2/21t3/32¯ . Sinceu( i )
l
•u( i )

l 50, it follows that

f i5 logS 11(
k

z~ i !
k z̄~ i !

k D 1A21S (
j

u~ i !
j ū~ i !

j D S 1

11(
k
z~ i !

k z̄~ i !
k D . ~3!

Thus f i is a well-defined section ofCn
^ CO(21) on Ui and

f i2 f k5 loguz~ i !
k u2.

Therefore,

]]̄ f i5]]̄ f k . ~4!

Let v5]]̄ f i . By ~4! it follows thatv is a 1-1 form defined onPmun . Sincedv50, the supermetric
corresponding tov is Kählerian.

Remark:Expression~3! first appeared in Ref. 7.

IV. CONNECTIONS

In this section the concept of a left connection on a supermanifold is given. It is shown
there exists a unique torsion free left connection on a supermanifold equipped with a super
Then it is shown that an almost complex structure is integrable if it is parallel toDL . HereDL is
the supermanifold analog of the Levi-Civita connection. Finally a necessary and sufficient c
tion that an almost Hermitian supermanifold is Ka¨hlerian will be presented.

Let ~M, A! be a real supermanifold and letF be a locally free sheaf ofA-modules overM. By
D<1 we mean theA-module of differential operators of rank<1.

Definition 4.1:A left connection onF is a mapDL :D<1^ F→F such that:

~i! DL(a^ f )5a f ,
~ii ! DL(Y^ a f )5DL(Y+a^ f ),
~iii ! DL(aY^ f )5aDL(Y^ f ),

whereaPA(U), YPDerA(U), and f PF(U), andU is any open subset.
The natural left connection onA given by
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Y^ a°Y~a!

will be denoted byd.
The torsion of a connectionDL is the mapT:DerA^ DerA→DerA defined by

T~X^ Y!5DL~X^ Y!2~21!X̃ỸDL~Y^ X!2@X,Y#.

Obviously,T is even andA-linear.
Let g be a supermetric on~M, A! and letDL be a connection on DerA @in this case we say tha

DL is a left connection on~M, A!#. ThenDL is said to be compatible withg if:

d~X^ g~Y^ Z!!5g~DL~X^ Y! ^ Z!1~21!X̃Ỹg~Y^ DL~X^ Z!!. ~5!

Theorem 4.2: Let ~M, A! be a real supermanifold with supermetricg. There is a unique
torsion free left connection on~M, A! compatible withg.

Proof (The uniqueness):Let DL be one such connection. By~5!, for everyX,Y,ZPDerA we
have

g~DL~X^ Y! ^ Z!5d~X^ g~Y^ Z!!2~21!X̃Ỹg~Y^ DL~X^ Z!!.

SinceDL is torsion free, it follows that

g~DL~X^ Y! ^ Z!5d~X^ g~Y^ Z!!2~21!X̃Ỹg~Y^ @X,Z# !2~21!X̃Ỹ1X̃Z̃g~Y^ DL~Z^ X!!.

By ~5! and similar substitution as above we get

g~DL~X^ Y! ^ Z!5 1
2@d~X^ g~Y^ Z!!2~21!X̃Z̃1ỸZ̃d~Z^ g~X^ Y!!

1~21!X̃Ỹ1X̃Z̃d~Y^ g~Z^ X!!2g~X^ @Y,Z# !

1~21!X̃Z̃1ỸZ̃g~Z^ @X,Y# !1~21!X̃Ỹ1X̃Z̃g~Y^ @Z,X# !#. ~6!

The conditions~ii ! and ~iii ! in Definition 3.1 imply thatg is nondegenerate. Thus by~6!, the
uniqueness ofDL follows.

~The existence!. EveryXPDerA determines an element of Hom~DerA, A! which is denoted
by the sameX and is defined as

X~Y!5g~X^ Y!.

This correspondence is 1-1 and onto. Sinceg is nondegenerate,~6! determinesDL(X^ Y) as a
derivation onA. With direct computation, it can be shown thatg(T(X,Y) ^ Z)50 for everyZ
PDerA. Again asg is nondegenerate,T(X,Y)50. h

The connectionDL is the supermanifold analog of the Levi-Civita connection.
Definition 4.3:Let DL be a left connection and letJ be an almost complex structure on~M, A!.

By compatibility of DL andJ we mean

DL~X^ JY!2JDL~X^ Y!50

for everyX,YPDerA.
By ~6! it is obvious that the left connection corresponding to a Ka¨hlerian supermetric on a

complex supermanifold is compatible with the natural almost complex structure. On the
hand, if the left connection corresponding to an almost Hermitian supermanifold given by T
rem 4.2 is compatible with the almost complex structureJ, then the supermanifold has a comple
structure, i.e., there exist local coordinates (xi ,ej ), i 51,...,2m; j 51,...,2n, such thatJ(]/]xi)
5]/]xm1 i , J(]/]ej )5]/]en1 j . In this caseJ is called integrable.
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Theorem 4.4:Let ~M, A! be a real supermanifold with almost complex structureJ and letg
be a Hermitian supermetric. IfDL , the left connection corresponding tog, is compatible withJ
thenJ is integrable.

Proof: Let $Ua% be an open covering consisting of splitting neighborhoods onM and let
wa :A(Ua)→∧E be the isomorphisms ofZ2-graded algebras. If (xa

i ,ea
j ) is a system of coordi-

nates onUa , we set:

DM

]

]xa
i ªDL

]

]xa
i mod NK ]

]xa
k L % K ]

]ea
j L

A
,

where^]/]ea
j &A means theA-module generated by]/]ea

j . Obviously,DM is compatible with the
induced metric and the induced almost complex structure onM. Thus, by a well-known theorem
on smooth manifolds,8 the induced almost complex structure onM is integrable. Therefore,M is
a complex manifold.

Similarly, it can be seen thatP, the total space of the vector bundleE, is also a complex
manifold. Set

DP

]

]xa
i 5DL

]

]xa
i mod NK ]

]xa
k ,

]

]ea
l L

k51,...,2m
l 51,...,2n

,

DP

]

]ea
j 5DL

]

]ea
j mod NK ]

]xa
k ,

]

]ea
l L

k51,...,2m;
l 51,...,2n

.

ThenDP is a well-defined connection onP compatible with the induced almost complex structu
on P. SinceDP is torsion free, by Ref. 8, Corollary 3.5,P is a complex manifold. In particular
every point ofP has a neighborhood on which there exist holomorphic coordinateszt andus, t
51,...,m; s51,...,n.

Let Ex be the fiber of the vector bundleE over xPM . Identifying Ex with TpEx , where
p(p)5x andp:P→M is the projection map associated withE, we can regard the derivation o
the inclusion mapEx→P as a linear isomorphismrp :Ex→Vp whereVp is the fiber of the vertical
bundle overpPP. Let k be the vertical projection associated with the linear connectionDE
defined by

DEea
j 5DL

]

]ea
j mod AK ]

]xa
i L

i 5 l ,...,2m

1NK ]

]ea
l L

l 51,...,2n

.

In order to obtain a section ofE, after applying mod in the above congruence, we need
substitute]/]ea

l by ea
l in the resulting expression. Observe that since the transition map o

intersection of any two splitting neighborhoods is a polynomial map in terms of anticommut
coordinates, the definition ofDE is independent of the choice of sectionsea

j . Set:

vs~x!5rp
21+k+

]

]us ~ox!, wt~x!5rp
21+k+

]

]zt ~ox!,

whereox is the null element of the vector spaceEx . Obviously,$wt,vs% is varied holomorphically,
so thatE is a holomorphic vector bundle.

Now consider the algebra of holomorphic sections of∧E(Ua) ^ C. If the inverse image of this
algebra under the isomorphismwa ^ i :A(Ua) ^ C→∧E(Ua) ^ C is denoted byB(Ua), then~M, B!
is a complex supermanifold and~M, A! is the underlying real supermanifold. h

Remark:Theorem 4.4 can be obtained by invoking an extended Newlander–Nirenberg
rem proved by Mc Hugh.9 Indeed, sinceDL is torsion free and is compatible withg and J,
straightforward computations reveal that
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@JX,JY#5@X,Y#1J@JX,Y#1J@X,JY#,

whereX,YPDerA. Therefore by the extended Newlander–Nirenberg theorem for superman
in Ref. 9,J is integrable. However, in our proof of Theorem 4.2 we have avoided the use o
extended Newlander–Nirenberg theorem.

Let ~M, A!, g, J andDL be as specified in Theorem 4.4 under the same hypotheses.
Theorem 4.5: ~M, A! is a Kählerian supermanifold.
Proof: It is sufficient to show thatv is closed, wherev is the associated 1-1 form to th

Hermitian supermetricg. By Ref. 10, Theorem 4-3-7,dv50 if and only if

~21!X̃Z̃d~X^ v~Y,Z!!1~21!X̃Ỹd~Y^ v~Z,X!!1~21!ỸZ̃d~Z^ v~X,Y!!

5~21!X̃Z̃v~@X,Y#,Z!1~21!X̃Ỹv~@Y,Z#,X!1~21!ỸZ̃v~@Z,X#,Y!.

By the definition ofv and the properties ofDL , the validity of the last equation follows.
Theorem 4.6:Let ~M, A, g! be a Kählerian supermanifold as defined in Definition 3.3. Th

DL , the left connection associated tog, is compatible withJ.
Proof: It is sufficient to show that

g~DL~X^ JY!2JDL~X^ Y!,Z!50 ~7!

for everyZPDerA. By ~6!, adding and subtracting suitable terms, the left-hand side of the
equation is equal to

1
2@2d~X,v~Y,Z!!1~21!X̃Ỹd~Y,v~X,Z!!2~21!X̃Z̃1ỸZ̃d~Z,v~X,Y!!

1v~@X,Y#,Z!1~21!X̃Ỹ1X̃Z̃v~@Y,Z#,X!2~21!ỸZ̃v~@X,Z#,Y!#

1 1
2@d~X,v~JY,JZ!!2~21!X̃Ỹd~JY,v~X,JZ!!1~21!X̃Z̃1ỸZ̃d~JZ,v~X,JY!!

2v~@X,JY#,JZ!2~21!X̃Ỹ1X̃Z̃v~@JY,JZ#,X!1~21!Z̃Ỹv~@X,JZ#,JY!#.

By Ref. 10, pp. 252 the first and the second brackets above are equal todv(X,Y,Z) and
2dv(X,JY,JZ), respectively. Thus~7! follows. h
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Dr. van Hemmen has pointed out to me that except for the minor extension to odd and
numbers of sites, the argument leading to Herring’s formula, Eq.~3.11! of my paper, appears in
the same form in Ref. 1. I regret the omission.

Secondly, condition~2.10! for the validity of the discrete WKB method is too weak, a
should be replaced by

udq~ j ! / d j u<sin2 q~ j !.

Lastly, the second of Eqs.~5.8! contains a sign error. The correct equation is

cosu15cosu01sin2 u0 / 2S cosu01•••.

The conclusions are unaffected by either error.

1J. L. van Hemmen and A. Su¨tő, in Quantum Tunneling of Magnetisation—QTM ’94, edited by L. Gunther and B. Barbar
~Kluwer, Dordrecht, 1995!.
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